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PREFACE  

There has been considerable enthusiasm in recent years for the idea that the 
gauge field theories describing elementary particle interactions should 
possess global supersymmetry. This enthusiasm has been generated to a 
considerable extent by the capacity of supersymmetry to solve the gauge 
hierarchy problem of grand unified theories, fine tuning at each order of 
perturbation theory to preserve the electroweak scale being avoided in 
supersymmetric theories as a consequence of non-renormalization 
theorems. 

Once one is committed to global supersymmetry the commitment does 
not end there. Potentially realistic supersymmetric gauge theories have a 
supersymmetry-breaking scale sufficiently large that effects of gravity can­
not be neglected so that one must derive the globally supersymmetric theory 
from a theory of supergravity in which the supersymmetry is local. However, 
supergravity, like any (point particle) field theory containing gravity is non­
renormalizable and cannot be the fundamental theory of interactions. There 
is, at the time of writing, only one known renormalizable theory that can 
describe quantum gravity in the presence of matter, namely the theory of 
superstrings. Thus, once embarked on a study of supersymmetry we are led 
almost inevitably to string theory. 

This book introduces the reader to supersymmetry, supergravity and 
superstring theory in a single volume. In view of the fact that there is 
potentially enough material to fill five or six volumes, we have been very 
selective. In particular, the discussion of supersymmetry is entirely in terms 
of component fields, the discussion of supergravity entirely from the 
Noether procedure standpoint, and the development of string theory does 
not go beyond interactions at tree level. However, we have thought it 
appropriate to include two chapters on the construction of string theories in 
four dimensions so as to make contact between string theory and low-energy 
supergravity. 

We are grateful to many colleagues, including D R T Jones, G GRoss, 
B Sendhoff and especially D C Dunbar and S Thomas for the supersym­
metric physics that we have learned from them, and to Miss A S Clark for her 
very careful and speedy typing of the manuscript. Finally, we wish to thank 
our wives, to whom this book is dedicated, for their invaluable encourage­
ment throughout the writing of the book. 

David  Bailin  
Alexander  Love  
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SUPERSYMMETRY  ALGEBRA  AND 
 
MULTIPLETS 
 

1.1  Introduction  

At the time of writing particle accelerators are beginning to probe the 
100 GeV to 1 Te V energy scale at which many theorists expect the first direct 
evidence of supersymmetry to appear. We shall see shortly that super­
symmetry implies that all particles possess supersymmetric partners having 
opposite statistics. This is because supersymmetry multiplets consist of 
equal-mass particles whose spins differ by !.  So far no supersymmetric 
partners of any known particles have been discovered, so supersymmetry if 
it exists is not only broken, but broken at an energy scale beyond the reach of 
accelerators to date. Nevertheless, supersymmetry remains attractive, at 
least to particle theorists, for several reasons. 

First, it provides the only known solution of the 'technical hierarchy 
problem'. This will be described in detail in Chapter 6. For the present we 
merely remark that in a grand unified theory (of strong and electroweak 
interactions) the unification scale is at least 1015 Ge V, and the (hierarchy) 
problem is to understand how the electroweak scalars remain mass less way 
below this scale when they are not protected by any symmetry that would 
guarantee it. This problem is solved in a supersymmetric theory by a 
cancellation of Feynman diagrams that separately would generate the 
undesired mass scale. This illustrates the second attractive feature of 
supersymmetry, which is that supersymmetric theories have better high­
energy behaviour than non-supersymmetric theories. In fact some 
(extended) supersymmetric theories are so 'well-behaved' that they are 
completely finite(l). (Thus these theories meet Dirac's criticism(2) of (non­
supersymmetric) theories, such as quantum electrodynamics, that they 
cannot be considered as complete physical theories if one has to calculate 
and manipulate infinite quantities.) The third, and most recent, reason for 
supersymmetry being so well regarded is that it appears to be an indispens­
able ingredient of the 'superstring' theories which we shall discuss in 
Chapter 9, and the succeeding chapters. These theories have some quite 
remarkable properties, as we shall see, and at the moment they are the best 
candidates we have for 'theories of everything' , i. e. quantum theories  of the 
strong, electroweak and gravitational interactions. 

The cancellation that solves the hierarchy problem arises because of the 
negative sign associated with closed fermion loops, as compared to bosonic 

DOl: 10.120119780367805807-1 



2 SUPERSYMMETRY ALGEBRA AND MULTIPLETS 

loops. The fact (if it is one) that each boson has a fermionic partner of equal 
mass suggests the enlargement of the Poincare algebra by the inclusion of a 
spinar  generator  Q.  Then since Q commutes with the mass operator, but not 
with the spin operator, we obtain irreducible representations of the enlarged 
algebra that have a definite mass, but different spin values. We can then see 
how this might, in principle, solve the hierarchy problem: since we know 
how to arrange that fermions stay massless, by having a chiral theory, we can 
ensure that their bosonic partners are also kept massless by making such a 
theory supersymmetric. 

In  the first instance, supersymmetry is introduced as a global symmetry of 
the Lagrangian and this will be the standpoint adopted in Chapters 1-3. 
However, it is attractive to think that supersymmetry, like gauge symme­
tries, may occur as a local symmetry. In  that case, because the supersym­
metry algebra contains the generators Pfl  of translations we will be 
considering translations that vary from point to point in space-time. Thus, a 
theory of local supersymmetry will contain general coordinate transform­
ations of space-time, and so, amongst other things, will be a theory of 
gravity. Such supergravity theories will be discussed in Chapter 4. 

One might imagine that it will only be necessary to take account of 
supergravity, as distinct from global supersymmetry, at very high energies, 
close to the Planck scale. However, it turns out, as will be discussed further 
in §4.1, that potentially realistic supersymmetric theories have supersym­
metry breaking scales of 101°_1011 GeV. As will be seen in Chapter 5, this 
supersymmetry breaking feeds through into the low-energy theory as masses 
for scalar partners offermionic states of the order of 102-103 GeV. Thus, it is 
not possible to neglect the effects of supergravity even at low energies. 
Supergravity will be developed in Chapters 4 and 5. 

Like gravity itself, supergravity is a non-renormalizable theory and 
cannot therefore be an acceptable final theory of everything. The only 
known theory containing gravity that is renormalizable is the relativistic 
string and, as will be discussed further at the end of Chapter 12, supergravity 
should be regarded as an effective low-energy theory derived from the 
fundamental string theory. The development of string theory will take up 
the second half of the book. In  string theory, supersymmetry enters in two 
distinct ways. First, it occurs in the formulation of the superstring in Chapter 
8 as a symmetry associated with the two-dimensional world sheet of the 
string. Second, it can also occur as a space-time symmetry such as is studied 
in this chapter. Although space-time supersymmetry need not necessarily 
arise from a superstring theory (with world sheet supersymmetry) theories 
that do not enjoy space-time supersymmetry usually (if not always) lack a 
stable ground state when the question of stability of the ground state is 
studied beyond string tree level. 

At the time of writing the first fairly direct evidence of supersymmetry 
may already have been seen in the running of gauge coupling constants from 
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their measured low-energy values to high energies. When non­
supersymmetric renormalization group equations for the standard model 
are employed nothing special happens, but when supersymmetric renorma­
lization group equations, taking account of the supersymmetry partners of 
the standard model particles, are run instead, the SU(3) x  SU(2) x  U(1) 
gauge coupling constants reach a common value at around 1016 GeV. This 
may be regarded as evidence for supersymmetric grand unification. This 
empirical observation is a little more tricky to interpret in the context of 
superstring theory where there is a natural unification of gauge coupling 
constants at tree level at around 1018 GeV, regardless of whether there is a 
grand unified group or not, and the observed unification at about 1016 GeV 
may require string loop threshold corrections to the re normalization group 
equations to move the unification scale down in energy. 

1.2  Dirac,  WeyJ  and  Majorana  spinors  

We start by reviewing the Poincare algebra. A  Poincare transformation Pis  
a proper Lorentz transformation A followed by a translation a.  Let xi<  
(fl  = 0,1,2,3) denote the coordinates of a space-time point. Then the 
Poincare transformed coordinates are given by 

x'i<  = Ai< vxv  +  ai<  (1.1) 

where A is the restricted Lorentz transformation. So 

det A  = +1 Aaa> 1 (1.2) 

and all such transformations are continuously connected to the identity. We 
denote such a Poincare transformation by 

P=  {A,a}.  (1.3) 

The generators of the Poincare group are evidently the six generators Mi<V  of 
the Lorentz group plus the four generators p).  of the translation group. We 
use Hermitian generators so that p),  is the energy-momentum operator, and 
Mi<V  is the angular momentum tensor. By considering infinitesimal trans­
lations 

x~ = xi<  +  ai<  ==  xi<  - i  a),  (p)')i<  (1.4) 

we find 

(P),)i<=iO~. (1.5) 

Similarly for an infinitesimal Lorentz transformation 

x'P  = x P +  wP  XO  ==  x P -! i  w  (Mi<V)P  XO  (1.6)°  2 i<V  °  
where wpa  = -wpa'  it follows that 
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(M"'V)  = i(lJl'  lJv  - 0'"  01') po  pa  ap'  (1.7) 

It  is then easy to verify that the Poincare algebra is 

[pi-, pI']  = 0 (1.8a)  

[MI'V,  pA.]  =  i(71VA.  PI'  - 'I",;,  PV)  (1.8b)  

[M"'V,  Mpo]  = i(rJvp  M",a  +  Yj",a  MVP  - Yj"'P  Mva  - Yjva  M"'P)  (1.8e)  

and we are using the 'Bjorken and Drell' Minkowski space-time metric 

'YJ",v  -- 'YJ  "'v  -- d' tag(1  ,-1, -1, -1). (1.9) 

We have already declared our intention to enlarge this algebra by the 
introduction of a spinor generator, but to avoid confusion we need to be 
quite precise about the various spinors that arise. First we have the familiar 
Dirac spinor, discussed in §3.4 of Bailin and Love I. This is defined in terms 
of the 4 x  4 matrices y'" which satisfy 

{y"',  yV}  == y"'yV  +  yVy'"  = 2Yj",vI4 .  (1.10) 

It is easy to verify that the matrices 

~~r == ~ (y"'yV  _ yVy"')  (1.11)
4 

satisfy the Lorentz algebra (1.8e),  and in fact on the Dirac spinor the 
Poincare generators are given by 

pA.  = iilA. (1.12a)  

M"'v  = x"'pv  - xVP'"  +  ~l"'v, (1. 12b)  

When discussing massless solutions of Dirac equation it is particularly useful 
to use the WeyJ representation for the gamma matrices. In the WeyJ 
representation 

y'" = (~ a"')  eu =  0, 1,2,3) (1.13)
a'"  0 

where 

a'"  == (12, u)  (1. 14a)  

a'"  == (/2, -u)  = a""  (1.14b)  

Then 

Ys == i  yOyly2y3 = (-12 0) (1.15)
o 12 

and we see that in this representation the upper two components of the Dirac 
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spinor 'I'D have left chirality, while the bottom two components have right 
chirality. In other words, we can write 

'I'D = 'l'L + 'l'R (1.16) 

where 

'l'L = ~(1 - YS)'I'D (1.17a)  

'l'R = ~(1 + YS)'I'D (1.17b)  

and then 'l'L  has two non-zero components, denoted l/Ja  (a  = 1,2), in the 
upper two components. The two non-zero components of 'l'R  are denoted 
Xa (a  = 1,2). These two component spinors are called Weyl spinors. We use 
a dotted label a for the right-handed spinors, since the two types of spinor 
transform differently under Lorentz transformations. This is easily seen 
from (1.11), for example. Both spinors transform identically under ro­
tations, since 

!~ij = !eijk  (~k :k)  .  (1.18) 

The difference is in their behaviour under Lorentz boost transformations, 
since 

!~Oi =~(-iai 0.) (1.19)o ia" 

Thus we write (in the Weyl representation) 

'l'L  = (~a) (a=1,2)  (1.20) 

'l'R  = (~a) (a=  1,2).  (1.21) 

Now suppose the Dirac spinor 'I'D has 'charge' e,  and satisfies the Dirac 
equation 

i  yJl(iJJl  - i  eAJl)'I'D  = 0 (1.22) 

where AJl  is the vector potential associated with some external electro­
magnetic field. Then using ~ == 'l'tyo , we find 

-iyJlT(iJJl  +  ieAJl)iliDT  = O. (1.23) 

The matrices -y/ also satisfy (the Clifford algebra) (1.10), and (in four 
dimensions) there is a non-singular matrix C such that 

C-1yJlC  = _yJlT.  (1.24)  
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Thus if we define the 'charge-conjugate spinor' 'I'D by putting 

'I'D ==  C'lroT  (1.25) 

we see that it has 'charge' -e  and satisfies 

i  Y'''(a"  +  i  eA,,)'I'D'  (1.26) 

It  is easy to show that C is always anti-symmetric, and in the Weyl 
representation (1.13) we may choose C to be (proportional to) yOy2.  So 

C = wyOy2  = W (  - a2  0) . (1.27) 
a 2 o 

Writing 'I'D in terms of two-component spinors 

'I'D = (~)
X  

(1.28) 

we find 

-a  X 2-*) 
'I'D = w  (a 21jJ*  .  (1.29) 

We require that 

(1jJDY  =  'I'D (1.30) 

which implies 

Iwl  =  1.  (1.31) 

It  is easy to verify that a  21jJ  *  transforms in the same way as X  does under 
Lorentz boosts, and that a2X*  transforms like 1jJ.  We therefore introduce the 
following notation: first we define  

lPa  ==  (1jJa)*  Xa  ==  (Xa)*  (1.32) 

and then use the matrix wa 2  to raise dotted indices, and -wa 2  to lower 
undotted indices. It  is convenient to choose 

w  =-j  (1.33) 

and then the two matrices are the inverses of each other: 

(-wa 2)a;3  = Ea;3 = (_ ~ ~) (1.34) 

(wa2)at=Ea~=(0 -1)  (1.35)
1  O'  

Then 
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Xo!  EO!;3X;3  (1.36) 

ifl'  =  EatiPt  (1.37) 

and we have 

'VD  = (;~) 'V~ = (~~) (1.38)1/J0!  .  

The above definitions specify how to raise undotted indices and to lower 
dotted indices: 

xo!  = EO!;3  X;3  (1.39) 

- -t 
1/Ja  = Eat1/J  (1.40) 

where 

(1.41 )Ea;3  = (01 
-1)°  

Eat  = (_~ ~). (1.42) 

Thus 

c - c . - \' 0 2  (1.43)"'a;3  - "'a;3  ­

EO!;3  = Eat  = -i  0 2.  (1.44) 


Evidently a Dirac spinor in general has four independent components, two 
for each Weyl spinor. A Majorana spinor 'VM  is defined as one that is equal 
to its charge-conjugate spinor 

'V~ = 'VM .  (1.45) 

It  follows from (1.38) that this occurs if, and only if, 

1/J  o!  = Xo!  (1.46) 

which implies 

-a  1/,a X  = 'f' . (1.47) 

Clearly a Weyl spinor cannot be a Majorana spinor, and vice versa. 
However, given a Weyl spinor 1/Ja  we can always construct a Majorana 
spin or from it: 

'VM  = (~a:) (1.48)1/Ja  .  

=
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A  general Dirac spinor 'I' 0 can always be written in terms of two  Majorana 
spinors: 

'I'D = 'l'Ml +  i'l'M2 (1.49) 

where 

'l'Ml = ~ ('I'D +  'I'~) (1.50a)  

'l'M2 = ~ ('I'D - 'I'~). (1.50b)  

The reason for introducing raised and lowered indices on the spinors is to 
facilitate the construction of Lorentz-invariant (and covariant) quantities in 
terms of Weyl spinors. (It is analogous to the definition of covariant and 
contravariant vectors from which we construct Lorentz scalars.) Consider 
first the behaviour of a Dirac spinor under the Lorentz transformations (1.1) 
with all  = O. The invariance of the Dirac equation requires that the wave 
function 'l'o(x') describing a spin-i particle in the Poincare transformed 
coordinates is related to the wave function in  the original frame by 

'l'o(x') = S(A)'I'o(x) (1.51) 

where SeA) satisfies 

S(A)-ly!'S(A) = All vyv.  (1.52) 

We may write the general (proper) Lorentz transformation A in the form 

A = exp [ - ~ WuvMf.1V]  (1.53) 

with Mf.1V  given in (1.6), and WUV  = -wv,u,  and then 

SeA) = exp [- ~Wuv~kUV] (1.54 ) 

with k l1v  given in (1.11). In  the Weyl representation given in (1.13) we may 
write 

~ k!'V  = (i of.1V  0 ') (1.55)
2 0 ia'uv;  

where 

O,UV  ==  !(  o l1 aV - 0  Va,U)  (1.56a)  

af.1V  ==  !(a!'oV  _  aV o,U).  (1.56b)  
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Evidently the matrices aiJ. V  and (jiJ. V  control the transformation properties of 
the dotted and undotted spinors, and clearly have indices 

(aiJ.V )/  ((j  /lv)'i J3  (1.57) 

which is consistent with aiJ.  and (jiJ.  having indices 

(aiJ.)aa  ((jiJ.)aa.  (1.58) 

Then under the Lorentz transformation (1.53) the undotted spinor 1/Ja  
transforms to 

1/J~ =  Sl(A)af3 1/Jf3  (1.59) 

where 

Sl(A) =  exp (!wiJ.piJ.V (1.60)).  

Similarly the dotted spinor Xa  transforms to 

Xa,  = S2(A)aJ3X~ (1.61) 

where 

S2(A) =  exp (!wiJ.v(jiJ. V (1.62)).  

It is easy to verify that aiJ.v+  =  _(jiJ.V  and hence that 

Sl(Af =  SiA)-l. (1.63) 

The transformation properties of the undotted raised spinor 1/Ja  follow from 
its definition (1.39): 

1/J1Ct  = Eaf31/Jh  = Eaf3S1(A)/1/Jy  = Eaf3S1(A)/ EY61/J6 == S3(A)"61/J6.  (1.64)  

We leave it as an exercise to check that 

a2aiJ.a2  =  (j.uT  

a 2(jiJ. a2  =  aiJ.T  

a 2aiJ. V a 2  =  _aiJ.vT  

a2(jiJ.va2  = _(jiJ.vT  (1.65) 

and from these it follows that 

S3(A) =  Sl(A)-lT. (1.66) 

Similarly 

xci  =  S4(A)i  Xf3'  (1.67) 

where 
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54(1\) = 52(1\)-1T = 51(1\)* (1.68) 

which is just as well, since this is certainly required by (1.32) and (1.59). 
Finally we may check that the quantities 

X"l/J"  = - X" 1jJ"  (1.69a)  

X "Jf/'  =  - f" 1jJ a  (1.69b)  

are Lorentz invariant, as the notation suggests. We may also construct 
covariant four-vectors from the Weyl spinors using the matrices a'",  0'".  
Thus 

Xa(o'"  )a"l/J  =  Xa (a'"  )"a  l/J"  (1.70a)  

X"( a'")"aipa  =  X,,(OU  )a"1jJa  (1.70b)  

both transform as vectors. Similarly 

x"(a UV)/ l/JfJ  = x,,(a,"V)fJ"  l/JfJ  (1.71a)  

Xa(o,"v)a~ 1jJ~ = xa(o,"via  1jJ~ (1.71b)  

transform as tensors. We can make the indices occur in the natural order on 
the right-hand sides of (1.70), (1.71) by interchanging the two spinors. 
However, in doing this we must remember that the spinors are all Grass­
mann  variables(3).  That is to say all spinors are anti-commuting (c-numbers). 
Then 

{l/J,x}  = {ip,X}  = {l/J,X}  =0  (1. 72) 

for upper or lower indices. It  follows that 

(1.73a) x"l/J"  =  l/J" x"  
- -ci  --ci: 
Xa1jJ  =  l/JaX  (1.73b)  

Xa(o'"  )a"l/J"  =  -l/J"(a'"  )"aXa  (1.74a)  

X"( aW )/ l/JfJ  =  -l/J"( a'"V)"  fJXfJ  (1.74b)  

Xa(fj,"v)a ~ tji  =  -ljJa(ow)a ~ 1jJ~ .  (1.74c) 

It  is often useful to use an abbreviated notation and omit the summed 
spinor indices. Thus we define 

(1.75a) xl/J  == X"l/J"  = l/JX  

xip  = Xa1jJ"  = 1jJx  (1.75b)  

where we have used (1.73) to establish the right-handed sides. The reason 
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for the definition xiP  as XuiPu rather than xUiP u  is so that we may define  the 
Hermitian conjugate of a product 

(X7/')t == 7/'txt. (1.76) 

For single spinors Hermitian conjugation is just complex conjugation, so 

(7/',,)t == (7/',,)* = iPu  (1.77a)  

(Xa)t  == (X")*  = XU  (1.77b)  

from (1.32). Then because of the reversal of order in the definition 

(X7/'  )t  = iPx  = x1j;.  (1.78) 

Also if we define 

xa"iP  == X"( a"  )"tiPt  (1.79) 

then 

(xa"iP)t  = 7/'a'ux  = -Xa"7/'  = -(1j; a"  x/  .  (1.80) 

Similarly defining 

xaf'V7/'  == x"(a"V)!  7/'(3  (1.81) 

implies 

(Xa"V7/')T  = -(iPa"vX)  = Xa"v  1j; = -(7/'a"vx)"  . (1.82) 

We may now use this notation to express the usual Dirac covariant bilinears 
in terms of the Weyl spinors which appear in the Dirac spinors. We write 

~ = (~~) Q) = (;~) (1.83) 

in the Weyl representation, and then 

WQ) = iPfj  +  xcp  = (Cf>~t (1. 84a)  

WysQ)  = iPfj  - xcp  = -(Cf>Ys~f (1.84b)  

'liy"Q)  = xa"fj  +  1j;a"cp  = (Cf>y,,~t (1.84c)  

WY"ysQ)  =  xa"fj  -iPa"cp  =  (<i>Y"Ys~)t (1.84d)  

w~rQ) =  i  Xa"vcp  +  i  iPa"vfj  =  (<i>:suv~)t. (1.84e)  

In  the same way we may also express the Majorana bilinear covariants in 
terms of the various Weyl spin or covariants. Defining the Majorana spinors 
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'I'M == (~~) <f>M =  (~~<) (1.85)
cp  

it follows from (1.84) that 

'IfM<f>M = ipip  +  ljJcp  = (llM'I'M = ('IfM<f>iId)t (1. 86a)  

'IfMYS<f>M = ipip  - ljJcp  = (llMYS'I'M = -('IfMYS<f>M)t (1.86b)  

'IfMy,u<f>M = ljJa,uip  +  ipa<ucp  = -(llMy,u'I'M = -('IfMyu<f>M)t (1.86c) 

'IfMy,uYS<f>M = ljJa,uip  - ipa"cp  = <l>My,uYS'I'M = ('IfMy,uYS<f>M)t (1. 86d)  

'IfM~r<f>M = i  1jJa llV cp  +  i  ipaUVcp  = -<I>M~r'I'M = -('IfM!fv<f>Mf. (1.86e)  

Just like Dirac spinors, the Weyl spinors also satisfy various Fierz 
identities. All of these may be derived from the basic identity 

1 i  i 
() a/3(),/o  =  :MaoDY/3  +  a  a oa'Y  /3]  

which expresses the completeness of the set 12,  a  i  as a set of 2 x 2 matrices. 
Then, for instance, it follows that 

" /3 () y . = 1(a,u  ) .(a  )y/3  (1.87a) U a  0  2: ao,u  

using the definitions (1.14). Hence 

(8cp  )(xiJ)  =  -~(8a,u  iJ)(Xa,u  cp)  (1.87b)  

with the minus sign arising from the anti-commutation of the Grassmann 
variables. Similarly we can write 

D  /3() 0  =  l[() o()  /3 _ (a,uV)  O(a  ) /3]
a )' 2: a y  a,uv  y  (1.88) 

from which we may deduce 

(8cp  )(X1J)  =  - ~[(81]  )(Xcp)  - (8a,uv I]  )  (Xa,uvCP  )] (1.89) 

and 

(eip)(xiJ)  = -H(8iJ)(Xip)  - (8 a,uv  iJ)(xitv  ip)]  (1.90) 

follows using Hermitian conjugation and (1.82). In  the special case 8 =  I]  we 
find 

«()cp )(X())  =  - ~«()()(Xcp) =  «()cp)( ()X)  (1.91) 

since 

()a,uv()  =  0 (1. 92) 

using (1.74b).  Another useful identity, from which (1.91) also follows, is 
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()f3()y  = i(()()of3 y'  (1.93) 

This too follows from (1.88) using (1.92). A complete set of Fierz identities is 
given in Appendix A together with some useful identities involving the 
matrices all,  a AV  etc. 

1.3  Simple  supersymmetry  algebra(4) 

We have already noted that supersymmetry involves the introduction of a 
spinor generator to supplement the usual (bosonic) generators of the 
Poincare group. The simplest way to do this, and the one that we shall use, is 
to introduce a (two-component) Weyl spinor generator Q '"  Of course, given 
Q" we can always construct a (four-component) Majorana spinor, as 
observed in (1.48), and we can then express the various commutation and 
anti-commutation relations satisfied by Q" in terms of this Majorana spinoL 

First, since Q" is a Weyl spinor its transformation properties with respect 
to the Poincare group are already determined: 

[Pll,  Q,,]  = o. (1.94) 

This follows from (1.51), for example, where it is apparent that translations 
act only on the argument of a spinor wave function. Alternatively we can 
derive it using the Jacobi identity 

[Pll,  [r,  Q,,]]  + [r,  [Q",  Pll]]  + [Q",  [PIl,  r]]  = o.  (1.95) 

Clearly the right-hand side of (1.94) must be a spinor quantity and the only 
possibility is 

[PIl,  Q,,]  = ca':.~ Q~ (1.96) 

with Q~ defined by (1.32) and (1.37). It follows that 

(PIl,  QP]  = -c*aIlPYQy  (1.97) 

and then the J acobi identity yields 

Icl 2(a llav  +  aVail)  = 0 (1.98) 

using (1.8a).  Hence c = 0 and (1.94) follows. The Majorana spinor QM  
constructed  from  Q"  and QC> as in (1.48) also commutes with pP:  

[PIl,  QM]  = o.  (1.99) 

Similarly, under an infinitesimal Lorentz transformation (1.53) we have 
from (1.59) 
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Q~ = (1 +  ~(Vf'Vaf'V)j3 Q(3 = U(A)tQ,,u(A)  

=  Qa  +  ~(Vf'v[Mf'V, Qa]·  (1.100) 

Thus 

[Mf'V,  Qa]  =  -i (af'V)a(3  Q(3 (1.101a)  

and likewise 

[M UV ,  Qa]  = -i  (a,u'fp  QP.  (1.101b)  

In terms of the (four-component) Majorana spinor QM these may be 
combined to give 

[Mf'V,  QM] =  -~~f'vQM (1.102) 

with ~f'V defined as in (1.11) and (1.55). 
To close tpe algebra we need to specify the anti-commutators {Qa,  Q(3}  

and {Qm Q(3}.  Evidently both of these are bosonic, rather than fermionic, 
so we require them to be linear in PI'  and Mf'v.  The only possibilities are 
then 

{Qa,  Q(3}  = s(af'V)j3  Mf'v  (1.103a)  

and 

{Qa,  Qp}  = ta':,pPw  (1.103b)  

Since Qa,  Q(3 and Qp all commute with pI',  by virtue of (1.94), both of the 
anti-commutators (1.103) also commute with pI'.  This requires 

s=O  (1.104) 

so 

{Qa,  Q(3}  =  0 =  {Qa,  Qp}  (1.105) 

but does not restrict t.  In fact the value of t  must be positive (see below), and 
evidently depends upon the normalization of the generators Q a'  which we 
have not so far specified. We are therefore free to fix t  =  2, and adopt the 
convention 

{Qa,  Qp}  =  2a':,pPw  (1.106) 

As before we may rewrite (1.105) and (1.106) in terms of the Majorana 
spinor QM (and its adjoint QM == QMtyO) and the y-matrices (1.13): 

{QM, QM} =  2yf'Pw  (1.107) 

There is an immediate and important consequence of (1.106). Since 

af'aV =  'Y}J'v  +  2af'V  (1.108) 
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it follows that 

tr(a,ua V )  = 2YJ,uv  (1.109) 

Applying this to (1.106) yields 

(aV)~a{Qa, Q~} = 4r.  (1.110) 

Now take v  = 0 and take the matrix element of (1.110). Then 

4(1/'ipoi1/') =  (1/'iQ1Qi +  QiQl +  Q2Qi  +  QiQ2i1/')  

= (1/'iQa(Qa)*  +  (Qa)*Qai1/')  ~ 0 (1.111) 

where we have used the defining property (1.32). Thus in a supersymmetric 
theory the energy of any non-vacuum state is positive definite, and, in fact, 
the vanishing of the vacuum energy is a necessary and sufficient condition for 
the existence of a unique vacuum: 

(OiPOiO) =  0 ~ QaiO) =  O. (1.112) 

Another consequence of (1.107) is that in a supersymmetric theory every 
representation has an equal number of equal-mass bosonic and fermionic 
states. First, the mass-squared operator p2  == p"p,u,  which is a Casimir 
operator of the Poincare algebra, is also a Casimir operator of the supersym­
metry algebra, since from (1.94) 

[p2,  Qa]  = 0 = [p2,  Qa]  (1.113) 

Next, the Pauli-Lubanski spin vector 

W,u  =  lE,uvpoP  M  
L.  v  po  (1.114) 

gives a Poincare group Casimir 

W2  = - m2J2  (1.115) 

where m2  is the mass-squared eigenvalue, and J2  = j(j  +  1) is the angular 
momentum eigenvalue. Evidently 

[W2,  Qa]  ~ 0 (1.116) 

by virtue of (1.101). Thus the (massive) irreducible representations of the 
supersymmetry algebra will certainly contain different spins. To see that 
these spin states are split equally between the bosonic and fermionic sectors, 
we note first that Qa  and Q~ each change the fermion number by one  unit, 
and thus change a bosonic state into a fermionic one, and a fermionic state 
into a bosonic state. The anti-commutator {Qa,  Q~} therefore maps the 
fermionic sector into itself, and the bosonic sector into itself. However, 
equation (1.107) shows that this same mapping is accomplished (essentially) 
by P,u  which in  most  representations  is a one-to-one operator. It  follows that 
Qa  (and Q;3)  are also one-to-one operators and therefore that the bosonic 
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sector has the same dimension as the fermionic sector. More formally (and 
perhaps less generally) we note that, since Qa  changes fermion number by 
one unit, we may write 

C-1)NFQa  =  -QaC-1)NF  (1.117) 

where NF  is the fermion number operator. Now consider a finite­
dimensional representation R  of the algebra. Then 

tr[( -l)NF{Qa,  Q~}] = tr[ -Qa( -l)NFQ~ +  (-l)NFQ~Qa] 

= tr[ -Qa( -1)NFQ~ +  Qa(  _1)NFQ~] = 0 (1.118) 

where we have used the cyclic property of the trace to rewrite the second 
term. It follows from (1.107) that 

2a~~ tr[( -l)NFPI"]  =  0 (1.119) 

and so 

tr(-l)NF  = 0 (1.120) 

for fixed non-zero PI"'  Since (-l)NF  has value + Ion a bosonic state and -1 
on a fermionic state, this means that 

nB(R)  - nF(R)  = 0  (1.121 ) 

where nB  (F)(R)  are respectively the number of bosons (fermions) in the 
representation R  of the supersymmetry algebra. 

1.4  Supersymmetry  multipiets  

Before discussing the supersymmetric field theory which is our primary 
interest, it is instructive to consider the representations of the supersym­
metry algebra that can be realized by one-particle states. We start with the 
massless case, since in most ofthe phenomenologically interesting scenarios 
the non-zero masses of the particles that we observe are generated by 
supersymmetry-breaking effects. For massless particles W2  = p2  = 0, and in 
fact the spin vector WI"  and the energy-momentum vector pI"  are parallel: 

WI"  =  )'pl".  (1.122) 

It is easy to see that (for positive energy representations)). is just the helicity: 

}>  =  (J  .  p)POl  (1.123) 

where 

J i  - L,ijkM 
- 2" jk  (1.124) 
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is the total angular momentum. Now consider the (normalized) massless 
state lp,  A)  with momentum p.  Then 

plil p ,  A)  = plilp,  A)  (1. 125a)  

where 

pli  = (E,  0, 0, E)  (1. 125b)  

and A is the helicity: 

Wlil p ,  A)  = Aplil p ,  A).  (1.126) 

We may choose lp,  A)  in such a way that 

Q"lp,  A)  = 0 (a=1,2).  (1.127) 

To see this we note that (1.106) shows that 

Q"Q"  = 0 (no summation) (1.128) 

so, if (1.127) is not  satisfied, we may define 

lp,  A')  == Q"lp,  A)  (1.129) 

and then 

Q"lp,  A')  = o.  (1.130) 

(Note that (1.94) implies that lp,  A')  also has momentum pli,  as the notation 
implies.) Thus we can always choose lp,  A)  in such a way that (1.127) is 
satisfied. It  follows that the only other possible states in the same supersym­
metric representation as lp,  A)  are Q a I p,  A)  (a  = 1,2). However, Qi  lp,  A)  
is a state of zero norm. For, applying (1.106) to lp,  A)  gives 

{Q",  Qj3}lp,A)  = 2(01i)"j3pli lp ,A)  (1.131) 

and with pli  given by (1.125) 

Olipli  = E(oo  - 0 3 )  = 2E  (~ ~). (1.132) 

Then, using (1.127) we see that 

(p,  AIQIQilp,  A)  = 0 (1.133) 

which shows that 

Qilp,  A)  =  O. (1.134) 

Thus the only other state is 

111') == (4E)-1I2Qilp,  A)  = -(4E)-1I2Qi lp ,  A)  (1.135) 

where the factor (4E)-1I2  is included so that 111') is a normalized state. As 
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before, equation (1.94) shows that 17f') has momentump,u, and so is also a 
massless state. Now, from the definition (1.114), and the commutators 
(1.94) and (1.101), it follows that 

[W  Q-a]  - _l Pv(-po)a'Q-/3  (1.136),u'  - 2  E,uvpo  a  f3  .  

Applying this to the state ip,  A),  with p  as in (1.125b),  gives 

[Wo,  Qa]lp,  A)  = -ipo(a 3Q)al p ,  A)  (1.137) 

Thus from (1.126) 

Wo(Qil p ,  AJ)  =  (A  - i)Po(Qil p ,  AJ)  (1.138) 

so Qil p , A)  has helicity A  - 5;, and 

(4E)-1/2Qilp,  }.) ==  Ip,}.  - i)  (1.139) 

is the normalized state in the same supersymmetric representation as lp,  A).  
It is easy to see that there are no other states in this representation; for 
instance, Q2Ip,A  - i)  is proportional to Ip,A),  and (1.127) shows that 
Q21p,  A  - i)  is zero. The fact that there are just these two states in the 
supersymmetry representation is consistent with our previous observation 
(1.121) that any such representation has equal numbers of bosons and 
fermions---one in this case. 

The most common of these representations that we shall encounter are 
those with A  = i,  1,2 (together with their TCP-conjugate  representations). 
The A  =  i supermultiplet consists of a Weyl spinor with helicity i  and a scalar 
particle. To construct a Lorentz invariant field theory it is necessary to 
include also the TCP-conjugate  representation, which has a Weyl fermion 
with helicity -i  and another scalar. Together, these two representations 
constitute a Majorana fermion and a complex scalar field. These 'chiral 
supermultiplets' arise in the applications that we consider for all matter 
fields (quarks and leptons), as well as for the Higgs particles. The scalar 
partners of the quarks are called 'squarks', and the scalar partners of the 
leptons are 'sleptons'. The fermionic partners of Higgs particles are usually 
called 'Higgsinos', but occasionally 'shigges' appears in the literature. The 
boson in the A  =  1 representation has helicity 1, so together with its TCP­
conjugate which has helicity -1,  it describes a (massless) vector particle, 
such as the gauge bosons that arise whenever we have a (locally) gauge­
invariant theory. A = 1 supermultiplets are therefore called 'vector super­
multiplets·. The fermion partners of the gauge particles (having helicity ±i)  
are called 'gauginos' generically, and 'photinos', 'Winos', 'Zinos' and 
'gluinos' in particular. Evidently the A  =  1 representation and its TCP­
conjugate together constitute a vector (gauge) field and a Majorana (gau­
gino) field. In the same way the helicity ±harticle, which is the partner of 
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Table  1.1  N  =  1 supermultiplet examples. 

reP-conjugate  Super-
Particle A  Helicity Degeneracy helicity multiplet 

Quark, lepton 
Higgsino 

Squark, slepton 
Higgs 

1 
'2 {:  1 -:}  Chiral 

Gauge boson 

Gaugino 
1 {;  1 

1 

~; }  Vector 

Graviton 

Gravitino 
2 {;  1 

1 ~; } Gravity 

the helicity ±2 graviton field which mediates gravitational interactions is 
called the 'gravitino'. These examples are summarized in table 1.1. 

The treatment of the massive representations of supersymmetry proceeds 
similarly, but is a little more involved. We consider a particle of mass m  in a 
normalized state lp,  s, S3),  where p  is the momentum, s is the spin and S3 its 
third component. In  the rest frame we have 

p"lp,  s, S3)  = p"lp,  s, S3)  (1. 140a)  

with 

p"  =  (m,  0, 0, 0). (1. 140b)  

Also 

w" w"lp,  s, S3)  = -m2J 2 Ip,  s, S3)  = -m2s(s  +  l)lp,  s, S3)  (1.141) 

and 

]31p,  s, S3)  = s3lp,  s, S3)'  (1.142) 

As before we can always choose lp,  s, S3)  in such a way that 

Q",lp,  s, S3)  = °  (a=1,2).  (1.143) 

From each of the 2s +  1 states lp,  s, S3)  we can construct two  more normal­
ized states also having momentum p:  

·  1 - I Ip,  a)  == V2m  Qa  p,  s, S3)  (ci=i,2). (1.144) 
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To determine the angular momentum quantum numbers of these states we 
use (1.101) again. This shows that 

[J i,  Q"]  =  -~(aiQ)" (1.145) 

from which it follows that 

J 31p,  i) = (53  +  ~)Ip, i> (1. 146a)  

J31p,  i>  = (S3  - ~)Ip, i>.  (1. 146b)  

In the case where the original state lp,  s, 53>  has spin zero  (s = 53  = 0), it is 
easy to see that these two states form a spin-~ doublet. From (1.145) we can 
see that 

[J 1 +  iJ2,  QiJ  =° = [J 1 - iJ2,  Qi]  (1.147) 

from which it follows that 

1  ­v'2m Qilp,  0,  0>  = Ip,~, i)  (1. 148a)  

1 ­v'2m Qilp ,  0, 0) = Ip,t  -~). (1. 148b ) 

The only other independent state in this system is obtained by applying Qi  to 
the first of these (or Qi to the second). Proceeding as above it is easy to verify 
that 

1  -­V2nl  QiQilp,  0, 0) = lp,  0, 0)'. (1.149) 

The prime is to distinguish it from the original state, which has the same 
quantum numbers. So in this case we have two spin-zero states and a spin-~ 
doublet, and 

nF  = nB  = 2. (1.150) 

A similar analysis works for the initial states lp,  t  ±i).  We find 

1 ­V2nl  Qilp,~, i)  :=  lp,  1, I) (1.151a)  

1 -I  11 1V2nl  Qi  p,  2, '1) :: V2  [lp,  1,0) +  lp,  0, 0)1 (1.151b)  

_1_-'1  1 1 1 V2nl  Ql  p,  2, -2) = V2  [lp,  1,0) - lp,  0, 0)] (1.151e)  
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1 ­V2m Qilp,  i,  -i>  =  lp,  1,  -1>  (l.151d)  

1 -­V2m QiQilp,  i,  i>  = lp,  i,  ~> (l.151e)  

1  -­V2m QiQilp,  i,  -i>  = lp,  i,  -~>. (1. 151!) 

So we have two (fermion) doublets having s  = i  and a (boson) s  = 1 triplet 
and s  = ° singlet. In general, starting with a (2s  +  1 )-component multiplet of 
spin s  > 0, we generate a spin-Cs +  ~) multiplet, a spin-Cs - ~) multiplet and 
spin-s multiplets in this way. Thus the general massive representation has 

nB  = nF  = 2(2s  +  1). (1.152) 

The operators Qa  (a  =  1,2), Qc,  (a  =  i, 2) generate an SO(4) algebra 
when acting on these states, since 

{Q""  Q~} =  2mo af3.  (1.153) 

If  we define 

f  a  = - - ~1  - (Q - (1. 154a) V2m a  +  Qc,)  

1  -
(1. 154b )f2+a == V2m (Qa  - Qc,)  

then the four gamma matrices generate the Clifford algebra 

{fa,  f b }  = 20ab  (a,  b  = 1, ... ,4) (1.155) 

with the SO(4) invariance group, whose generators are 

1 
Rab  == - 4"  (ra,  f  b]  .  (1.156) 

The representation that we have constructed is the four-dimensional spinor 
representation with the bosonic and fermionic states each transforming as a 
two-dimensional 'Weyl' representation: if we define 

f5 = flf2f3f4 (1.157) 

then both the original and the generated spin-s states have f  5 = + 1 while the 
spin-Cs ±  i)  states all have f  5 = -1. 

1.5  Supersymmetric  free-field  theory(5) 

The most important realization of supersymmetry is in quantum field 
theory. As we shall see, supersymmetric field theories permit the solution of 
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the 'hierarchy problem', and at the time of writing this is the only known 
solution. To study supersymmetry in this context we need to determine how 
a field operator cp(x)  transforms under a general symmetry. This is fixed by 
the connection 

1JJ(x)  =  (1JJ Icp(x)  10) (1.158) 

which gives the wave function 1JJ(x)  describing the (one-particle) state 11JJ). If  
the transformation properties of the (c-number) wave function are known, 
the above relation determines how cp(x)  transforms. The wave function 
describing the transformed state 

11JJ') = UI1JJ)  (1.159) 

is given by 

1JJ'(x')  = (1JJ'lcp(x')IO) = (1JJIUtcp(x')Uu t IO)  = (1JJIU t cp(x')UIO)  (1.160) 

assuming that the vacuum is invariant, so 

u"IO)  =  10). (1.161 ) 

Now if the transformed wave function is related to the original wave function 
by 

1JJ'(x')  =  S1JJ(x)  =  S(1JJlcp(x)IO) (1.162) 

we deduce that the field operator transforms according to 

cp'(x')  == Utcp(x')U=  Scp(x).  (1.163) 

For example, we may consider the transformation properties of a field cp(x)  
under translations 

x'=x+a.  (1.164) 

Then 

ljJ'(x')  =  1JJ(x)  (1.165) 

and 

cp'(x')  = Ut(a)cp(x')U(a)  = cp(x'  - a).  (1.166) 

For an infinitesimal translation 

U(a)  =  1- iP.a  (1.167) 

so 

cp'(x')  = cp(x')  +  i  [P.  a,  cp(x')]  = cp(x')  - a.  acp(x').  (1.168) 

It  follows that 
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cp'(x)  - cp(x)  == ocp(x)  = [i P.  a,  cp(x)]  = - a  acp(x)  (1.169) 

and 

[PI"  cp(x)]  = i  ai<cp(x).  (1.170) 

An infinitesimal supersymmetry transformation is characterized by (con­
stant) anti-commuting Grassmann parameters ;" and ~". Then 

U(;)  = 1 - i  (;"Q"  +  ~"Q") = 1 - i  (;Q  +  ~Q) (1.171) 

using the notation (1. 75), and 

g",  ;f3}  = {;", ~;3} = 0  

{;",  Qf3}  =  {;",  Q;3}  =  0 

g",  Qf3}  = {~'" Q;3}  = 0 

[;",  Pi<]  = [;", Mi<v]  = 0 etc. (1.172) 

Using such Grassmann parameters the supersymmetry algebra can be 
rewritten entirely in terms of commutators: 

[pI',  ;Q]  = 0 = [pI',  ~Q] 


[Mi<V,  ;Q]  = - i  (;ai<vQ) 
 

[MW,  ~Q] = - i  (~ai<vQ) 


[;Q,  1]Q]  = 0 = [~Q, iJQ] 
 

[;Q,  iJQ]  = 2(;ai<Tf)Pi<  (1.173) 


where 1]", iJ"  are a second set of Grassmann parameters. (Note the minus 
signs in (1.69).) To characterize the supersymmetry transformation in field 
theory we are therefore required to specify the quantities 

o,;cp(x)  == [i (;Q  +  ~Q), cp(x)]  (1.174) 

for a general field cp(x)  in a way that is consistent with the supersymmetry 
algebra (1.173). The first three commutators merely specify the Poincare 
transformation properties of o,;cp.  The last two constrain these possibilities 
by showing how (the difference between) two successive supersymmetry 
transformations must close the algebra. We have already seen in §1.4 that 
supersymmetry has its simplest realization in the massless (chiral) super­
multiplet that has just scalar and spinor particles. Thus we might anticipate a 
field theory realization involving just  scalar and spin or fields. 

Suppose then we start with a complex  scalar field cp(x).  The (mass) 
dimension of q.;(x)  is 
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[cp(x)]  =  1  (1.175) 

and that of Q is 

[Q]  =  ~ =  [Q]  (1.176) 

from (1.173). Thus 

[~] = -~ = [~] (1.177) 

so that ~Q is dimensionless. So the simplest possibility linear in ~ and having 
the right dimensions is 

6~cp(x) = a~1/J(x) +  b~ij;(x) (1.178) 

where 1/Ja(x)  is a (Weyl) spinor field, and therefore has 

[1/J]  = ~ = [ij;]  (1.179) 

and a is a constant. Obviously 6~1/JJx)  has dimension 2, so if we want to close 
the algebra using just these fields we must take out one dimension with a 
derivative: 

6~1/Ja(x) = ca':x~ ~~ allCP  (1.180) 

which implies 

6~ij;a =  -c*(all)af3~f3 allCP*  (1.181 ) 

Thus 

61)6~cp(x) = a~ 61)1/J  +  b~ 6it  = ac( ~alli}) allCP  - bc*  (~a'uYJ) aIlCP*.  (1.182)  

Now 

61)6~cp(x) == [i(YJQ +  i}Q),  [i(~Q +  ~Q), cp(x)]]  (1.183) 

so the Jacobi identity implies that 

(61)6; - 6;61))cp(x)  = [[i(YJQ +  i}Q),  i(~Q +  ~Q)]' cp(x)]  

=  { - 2(YJall~) +  2(~alli})}[PIl  '  cp(x)]  

=  2(~alli} - YJallg)  i  aIlCP(x)  (1.184) 

using the supersymmetry algebra (1.173), and (1.170). Comparison with 
(1.182) gives 

ac  = 2 i  b=O  (1.185) 

unless cp(x)  is a constant field. For future reference it is useful to rewrite 
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(1.184) in terms of the Majorana spinors constructed from ~ and YJ,  using 
(1.86c)  

(0'10,;  - o,;0'l)<p(x)  == [0'1'  o,;]<p(x)  = 2(~MY"YJM) i  a,,<p.  (1.186)  

In the same way we apply two successive supersymmetry transformations 
to 'I/J  a'  This gives 

0'l0,;'l/Ja  = caa~(ia(YJ a,,'I/J)  

=  -i[(a,,1/'a)(YJa"~) +  2(aW)/(a,,1/'i3)(YJav~)] 

=  -2i[(a,,'l/Ja)(YJa"~) - (aVa"  a,,'I/J)a(YJai)]  

using (1.185) and the Fierz identity (AS). This gives 

(0'10,;  - o,;0'l)'l/Ja(x)  = 2(~auiJ - YJa"~) i  a,,'l/Ja  

=  2(~MY"YJM) i  a,,1/'a  (1.187) 

(again as required by (1.173) and (1.170» provided  

a"  a" 1/' = O. (1.188) 

Thus the transformations (1.178), (1.181) are representations of the super­
symmetry algebra provided 'I/J  is a massless non-interacting Weyl field. In 
fact in these circumstances it is straightforward to verify that the action can 
be invariant under the supersymmetry transformations. Taking 

:£ = (a,,<p*)(a"<p)  +  i  ipa"  a,,'I/J  (1.189) 

which describes a free massless complex scalar field, and a free massless 
Weyl spin or field, we find 

o~:£ =  (a,,<p*)a(~ a"1/')  - a*(~ a"ip)(a"<p)  

- i  c*(~aVa" a,,'I/J)(av<p*)  +  i  c(ipa"av ~)(a" av<p)  

=  (a  - i c*)(a,,<p*)(~ a"'I/J)  - (i c +  a*)(~ a"ip)(a"<p)  

+  i  a,,[c(~ip)(a"<p) - 2c*(~av"'I/J)(av<p*)]. (1.190) 

The total divergence does not contribute to the action, so the action is 
supersymmetric if 

a  =  ie*. (1.191) 

Combining with (1.185) gives 

lel 2  = 2  

and a consistent choice is 
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a=Y2  c =  Y2i (1.192) 

giving 

61;CP  = Y2 ~7/J (1. 193a)  

61;7/J = i  Y2 aU~ af.1CfJ  (1. 193b ) 

when substituted into (1.178) and (1.180). 
Thus we have an on-shell  realization of the supersymmetry algebra in the 

field theory given by (1.189), but we have to use the equation of motion 
(1.188). In fact this is a reflection of the fact that the bosonic and fermionic 
degrees of freedom are not  equal in the present context (unless we impose 
the on-shell condition (1.188)). Off-shell a (Weyl) spinor field has two 
complex components, whereas we have only introduced one (bosonic) 
complex scalar field. To match the degrees of freedom we have to introduce 
another complex scalar field F(x),  having mass dimension 

[F]  = 2. (1.194) 

We start with (1.193a),  as before, but modify (1.193b):  

61;7/J = i  Y2 af.1~ auCfJ  +  d~F. (1.195) 

This closes the algebra on CfJ(x)  ,  as in (1.184), for any value of the constant d.  
The extra term contributes to (1) 61;7/J: it generates the extra term d~ (1)F.  

Then we can close the algebra on 7/J without  using the equation of motion 
provided that we take 

61;F  =  e~ijf.1 au7/J  (1.196) 

and 

de  =  2  i. (1.197) 

(As before, the highest-dimension field must transform by a total deriva­
tive.) Finally we require that the algebra closes on F,  which it does without 
further constraint. The introduction of F  has enabled us to realize the 
supersymmetry algebra without  recourse to the field equations, but if we do  
use them we know that we can achieve this with F  =  O. This suggests that Fis 
an 'auxiliary' field, i.e. one that can be eliminated by using its equation of 
motion. We can easily modify (1.189) to accomplish this. We take 

;;£ =  (auCfJ*)(  a·ucp)  +  i  1j!ijf.1  al ,7/J  +  F* F  (1.198) 

and then the Euler-Lagrange equation for F  gives F  =  0 immediately. It is 
straightforward to verify that 61;;;£ is a total derivative, so the action is 



27 EXTENDED SUPERSYMMETRY 

supersymmetric. This technique of introducing auxiliary (non-propagating) 
fields will be used extensively in later chapters to formulate (off-shell) 
supersymmetric field theories with  interactions. 

1.6  Extended  supersymmetry(6) 

We have confined ourselves hitherto to the simplest extension of the 
Poincare algebra, by the inclusion of a single spinor generator Q".  For 
reasons that will become apparent, this 'simple' supersymmetry is likely to 
be the one with most relevance to the spectrum and interactions that can be 
explored by the current, and foreseeable, generation of accelerators. 
Nevertheless it is natural to wonder what would be the consequences of the 
introduction of more than one supersymmetry generator Q"A  

(A  = 1, ... , N)  with A  labelling some internal symmetry. Obviously the 
index A  is a spectator in all of the commutation relations with the generators 
of the Poincare algebra. Thus, as in (1.94), (1.101a)  

[pI',  Q"A]  = 0 (1.199) 

[Mf'V,  Q"A]  = _ i(af'V)/  Qf3A  (1.200) 

and defining 

Q"A  == (Q"A)t  (1.201 ) 

[Mf'V,  Q"A]  = - i(af'V)";jQ;j A  (1.202) 

as in (1.101b).  
The indices A  label the representation of the internal symmetry group to 

which Q"A  belongs. We denote the Hermitian generators of the group by Br,  
so 

[Br,  BS ]  = i  crstBt  (1.203) 

where crst  are the structure constants. A representation (br)A  B  satisfies 

[br,  bS ]  = i  crstbt  (1.204) 

and 

[Br,  Q"A]  = _ (br)AcQ"C  (1.205) 

[Br,  Q"A]  = Q"dbr)C A.  (1.206) 

Finally we have to close the algebra of the supersymmetry generators. On 
general grounds, as in (1.103b),  we should expect 

{Q"A,  Q;jB}  = /:lABa':t;jp",  (1.207)  

Then taking the adjoint shows that the matrix /:l  is Hermitian, and in fact 
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positive definite, as before. So we can diagonalize ~ and rescale the Qs and 
Qs so that 

{QAa,  Q4B}  = 2o~a':x4Pw (1.208) 

The main difference in principle arises in the anti-commutator {Qa A,  Q/}.  
We can exclude the Poincare generators, as in (1.105), but, because of the 
internal symmetry, we are allowed 

{QaA,  Q/}  =  Ea{3ZAB  (1.209) 

with Ea{3 defined in (1.34) and 

ZAB  =  _ZBA  (1.210) 

a linear combination of the internal symmetry generators: 

ZAB  = (qr)ABBr  (1.211 ) 

where the quantities q  have dimension 

[q]  =  1 (1.212) 

in view of (1.176). With a bit of work(7) we can show that 

[ZAB,  Qac ]  = [ZAB,  Qacl  = [ZAB,  Br]  = [ZAB,  ZCD]  = o.  (1.213) 

That is to say, ZAB  commutes with everything: it belongs to the abelian 
invariant sub algebra of the internal symmetry group; hence the name 
'central charges,(8). 

In the absence of central charges the internal symmetry group is U(N),  
since the algebra is invariant under the substitutions 

QaA1  = UABQaB  QaA  = UAB*QaB  (1.214)  

provided that U  is unitary. The effect of the central charges is to reduce this 
symmetry. Note that the anti-symmetry (1.210) shows that central charges 
cannot occur in simple (N  =  1) supersymmetry, and the U(l) invariance is 
called R-symmetry in this case. 

We shall not explore the representations of extended supersymmetry in 
very much detail. Clearly the existence of extra supersymmetry generators 
has the effect of enlarging the number of fields/states that constitute a 
supermultiplet. In the absence of central charges the analysis preceding 
(1.139) holds for each  supersymmetry generator QZA.  Thus if we start with a 
massless single-particle state of helicity }" there are N  states with helicity 

1 _ 1. 

" 2· 


(4E)-1!2Q2Alp,  A) =  lp,  A-!,  A)  (A  = 1, .. . ,N).  (1.215) 

The states with helicity}, - 1 are obtained by applying QZB'  with B  ¥- A,  so 
there are NC2  == N!12!(N  - 2)! of them. Proceeding in this way, the (mass­
less) irreducible representation with highest helicity A will close with a state 
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Table  1.2  N  =  2 supermultiplet examples. 

A  Helicity Degeneracy 
TCP-conjugate 
helicity 

 
Supermultiplet 

1 1 1 

1 
2: 

0 

2 

1 
~~ } Vector

1 
2: 

1 
2 1

0  

1 
-2

2 

1 
} Hypermultiplet

2 2 

3 
2 

1 

1 

2 

1 

~: } 
-1 

Gravity

having helicity A  - N12,  since each Qie  lowers the helicity by ~ and only 
totally antisymmetric states (A  0/=  B  0/=  C 0/=  ••• )  are allowed; the supermul­
tiplet closes when all N  lowering operators have been applied. The dimen­
sionality of the supermultiplet is evidently 2N,  since fOr each QiA  there are 
two possibilities: to apply it, or not to apply it, to the original state lp,  A).  
Together these states comprise a (possibly reducible) representation of the 
internal symmetry group U(N).  If  we wish to construct a supersymmetric 
Yang-Mills theory, then we shall certainly wish to include one-particle 
(gauge boson) states with helicity 1,.1,1  = 1, and to preserve the renormalizabi­
lity we shall also require that there are no states with helicity 1,.1,1  >  1. It follows 
that the largest extended supersymmetry compatible with these require­
ments must have N  :s:: 4. In the same way, a theory involving the graviton with 
1,.1,1  = 2, and that does not contain states with 1,.1,1  >  2, must have N:s::  8.  

The simplest extension is, of course, to take N  = 2. The above argument 
shows that the supermultiplets are four-dimensional (real) representations 
of U(2), in the absence of central charges. Thus the vector supermultiplet 
starts with a highest helicity A  =  1.  It  has two  helicity +~ states and a single 
helicity-O state. As for the N  = 1 case, we shall need to include the TCP­
conjugate states in order to construct a Lorentz invariant field theory. 
However, if we start with highest helicity A  = !, then the supermultiplet has 
two helicity-O states and a single helicity -~ state. Thus this  supermultiplet, 
is TCP-self-conjugate: it includes a Majorana fermion and a complex scalar 
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Table  1.3  N  =  4 supermultiplets. 

TCP-conjugate 
}, Helicity Degeneracy helicity Supermultiplet 

1 1  1  

1 42: 

0  6 Vector 

-2
1 4 

-1  1  

2 2 1 -2 

3 4 -23 
2 

1  6 -1  Gravity 

2: 
1 4 -21 

0 1  0  

in the same  supermultiplet. For this reason it is sometimes called a 'hyper­
multiplet'. Table 1.2 summarizes these examples of N  = 2 supermultiplets. 
Tables 1.3 and 1.4 give N  = 4 and N  = 8 examples. 

From a phenomenological perspective the hypermultiplet looks rather 
unattractive. The N  =  2 supersymmetry requires that the helicity ±~ states 

Table  1.4  N  =  8 gravity supermultiplet . 

.le Helicity Degeneracy 

2 2 1 
3 82 
1 28 
1 
2 56 
o 70 

-21 56 
-1  28 
-;;: 3 8 
-2 1 
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transform in the same way with respect to any gauge symmetry. This would 
be perfectly acceptable if the only such symmetries were SU(3) of colour and 
U(l) of electromagnetism, since both chiral components of a quark field do 
transform in the same way with respect to both groups. However, it is a cast­
iron experimental fact that the weak interactions do not  treat left and right 
chiral components in the same way. The SU(2) of the electroweak group 
SU(2) x U(I) is realized non-trivially by the left chiral components: the left­
handed component (ed  of the electron's field belongs to a doublet, whereas 
the right-handed component (eR)  transforms trivially. Thus if N  = 2 (or 
N>  2) supersymmetry has any connection with reality we shall need (at 
some time) to discover the 'mirror' partner ER  of eL  which also belongs to an 
SU(2) doublet. Since we know that (even N  = 1) supersymmetry is broken, 
it is always possible that these hitherto unobserved states have a mass (just) 
beyond the current experimental bound. However, the fact that the chiral 
anomaly cancels within each generation(9) is generally taken to be circum­
stantial evidence that no such mirror states actually exist: if they did the 
anomaly would cancel separately for each state. It  is for this reason that the 
simple (N  =  1) supersymmetry is the only one that is thought to have any  
physical relevance, at least at low energies. The 'chiral' supermultiplet has 
just A  =  ~ and A  =  0 states, and we are free to place the A  =  -i state into a 
different  representation of the gauge group. The objection to N  ~ 2 super­
symmetries is that they are automatically 'non-chiral'. 

Exercises  

1.1  Verify that the matrices i!.,uv,  defined in (1.11), satisfy the Lorentz 
algebra (1.8e).  

1.2  Show that the matrix C, defined in (1.24), satisfies 

[CTC- 1 , Y,,]  =  0 

and hence deduce that 

CT C= ­

in all representations of the Clifford algebra. 

1.3  Show that Poincare invariance requires the relationship (1.51) for the 
Poincare transformed Dirac wave function, with SeA) obeying (1.52). 

1.4  Check that the commutators (1.101) and (1.106) are consistent with 
the Jacobi identities. 

1.5  Show that with the Lagrangian:£ given in (1.198) the variation defined 
in (1.174) is  a total derivative. 
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LAGRANGIANS  FOR  CHIRAL  SUPERFIELDS  

2.1  Introduction  

Although it is possible to construct supersymmetric Lagrangians directly 
from the component fields belonging to a supermultiplet as in §1.5, the 
procedure is greatly facilitated by the introduction of superfields. (1), (2) 

Whereas an ordinary field is a function of the space-time coordinates x  only, 
a superfield Sex,  e,  e)  is also a function of anticommuting Grassmann 
variables ea  and ea  transforming as two-component Weyl spinors: 

{ea,  ej3}  = {ea,  e~} = {ea,  e~} = o.  (2.1) 

(A discussion of Grassmann variables is given following (1.71).) The fields 
of the supermultiplet then arise as the coefficients in an expansion of 
Sex,  e,  e)  in powers of e and e (which necessarily terminates after a finite 
number of terms for anticommuting Grassmann variables). 

The general superfield Sex,  e,  e)  turns out to contain more than one 
supermultiplet, and the chiral and vector supermultiplets of §1.4 are 
obtained by reducing the number of component fields in S by imposing 
appropriate constraints. In this chapter it will be shown that we obtain the 
chiral supermultiplet of §§1.4, 5 by requiring an appropriate covariant 
derivative of S to vanish. In the case of the vector supermultiplet, as we shall 
see in Chapter 3, the appropriate constraint is just Sf =  S.  

When potentially realistic supersymmetric theories are constructed, the 
chiral superfields discussed in this chapter provide the matter fields, i.e. the 
quarks, leptons and Higgs scalars and associated with them in the same 
multiplet their supersymmetric partners, which in the case of the quarks and 
leptons are the scalar squarks and sleptons and in the case of the Higgses are 
the fermionic Higgsinos. The gauge fields and their fermionic supersym­
metric partners, the gauginos, are to be assigned to the vector superfields 
discussed in the next chapter. The presence of supersymmetric partners for 
particles is the source of the remarkable non-renormalization theorems, 
discussed later in this chapter, which are at the root of the supersymmetry 
solution to the hierarchy problem. 

Since the supersymmetric partners of particles are not observed at low 
energy it is necessary for any potentially realistic theory to contain a 
mechanism that will spontaneously break supersymmetry to provide mass 
splittings within supermultiplets. One such mechanism, F-term  supersym­
metry breaking, will be discussed in this chapter, and another such, D-term 
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supersymmetry breaking, in the next, while supersymmetry breaking by 
gaugino condensates will be deferred to chapter 5. 

2.2  Superfield  representations  of  the  supersymmetry  algebra  

The supersymmetry algebra of §1.3 is generated by the momentum opera­
tors PIl  and the Weyl spinor supersymmetry generators Qa  and Qa:  

[Qa'  PIl ]  = [Qa,  PIl ]  = [PIl , P v]  = 0 (2.2) 

{Qa'  Qf3}  =  {Qa,  Q~} =  0 (2.3) 

and 

{Qa'  Q~} = 2a':x~Pu' (2.4) 

A finite element of the corresponding group is 

G(XIl,  e,  ())  = exp(i(eQ +  ()Q - xllp!,))  (2.5) 

where ea  and ea  are Grassmann variable parameters. We wish to construct 
linear representations of this group (of the supersymmetry algebra). This 
can be done by considering the action induced in (Xll,  e,  ())  parameter space 
by the group elements as follows. It  is not difficult to show that (Exercise 2.1) 

G(XIl,  e,  ())G(a U ,;,  ~) 

=  G(xll  +  all  - i  ;alle  +  i  eall~, e  +  ;,  ()  +  ~) (2.6) 

because the Hausdorff formula 

eAeB  = exp(A +  B  +  HA,  B]  +  ... )  (2.7) 

terminates at the first commutator for the group elements considered here. 
Thus (acting on the right) the supersymmetry generators induce the motion 
in group parameter space: 

exp(i(;Q +  ~Q - aIlPIl )):  

(x 11  , e,  ())  ~ (x"  +  all  - i  ;a ll {)  +  i  eall~, e  +  ;,  ()  +  ~) .  (2.8) 

For a function S(XIl,  e,  ())  (referred to as a superfield) we have 

S(XIl  +  all  - i  ;all {)  +  i  ea"~, e  +  ;,  ()  +  ~) 
- - - as = S(XIl,  e,  e)  +  (all  - i  ;alle  +  i  ea ll ;)  axil 
 

a  as  - as 
+;  -+;._- +  ...  (2.9)
aea  a  aea  
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from which it follows that the action of the supersymmetry algebra on 
superfields 

S(x,u,  e,  e)  ~ exp(i(,;Q +  ~Q - a,up,u))S(x,u,  e,  e)  (2.10) 

is generated by 

P,u  = i  a,u  (2.11) 

. Q a  ',u  e-a 1 =--10'  a  (2.12)a  aea  aa  ,u  

. Q- _ a  .ea  ,u 
1  a - - -_-. +  1  0  aa  a"  .  (2.13)ae a  .  

This is the linear representation of the supersymmetry algebra we were 
seeking. It  is easy to check (Exercise 2.2) that P,u,  Qa,  and Ch of (2.11), 
(2.12) and (2.13) realize the algebra (2.2)-(2.4), as consistency requires. 

The general superfield S(x,u,  e,  e)  may be expanded as a power series in e  
and e involving not more than two powers of e and e,  because e and e are 
two-component Grassmann variables. The coefficients of the various 
powers of e  and e in this expansion are ordinary fields (functions of x,u).  
Such a superfield provides a representation of the supersymmetry algebra 
that is in the first instance reducible. Irreducible representations of the 
supersymmetry algebra are obtained by imposing on the superfields con­
straints that are covariant under the supersymmetry algebra. The simplest 
such constraint is S  = st,  which we use in the next chapter to construct the 
vector superfield, whose component fields form the vector supermultiplet of 
§1.4. In  this section, we use supersymmetric covariant derivatives to 
construct the chiral superfield whose component fields form the chiral 
supermultiplet of § 1.4. 

Fermionic derivatives D  w Do,  which anticommute with the generators 
(acting on superfields) of the supersymmetry algebra may be defined by 

- a  ',u  e-a D a - ea  +  10  aa  a"  (2.14)a  .  

D-.--~-·eaa - - . 0  ,u·a 1 aa  ,u'  (2.15) 
ae a  

The proof that 

{D""  Qf3}  =  {Da,  Qt}  =  {Do"  Qf3}  =  {Do"  Q~} =  0 (2.16) 

follows directly (Exercise 2.3) using the explicit expressions for Qa  and Qa  
of (2.12) and (2.13). These covariant derivatives also have the algebra 

{Da,  Do,}  = 2 i  o~a af<  (2.17) 
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{Da,  Dp}  = {Da,  D~} = O. (2.18) 

The operators DrY. and Da  may be used to impose covariant constraints on 
superfields because they anticommute with the generators (acting on super­
fields) of the supersymmetry algebra Q and Q and so commute with 
;Q  +  ~Q which occurs in supersymmetry transformations. It is thus possible 
to apply the covariant condition 

DaS  =  O. (2.19) 

A superfield on which the constraint (2.19) has been imposed we shall 
denote by <I> and refer to as a chiral superfield: 

Da<l>=O.  (2.20) 

2.3  Expansion  of the  chiral  superfield  in  component  fields  

With Da  given by (2.15), we see that any  function of e and 

yJ.1  =  xJ.1  +  i  ea J.1{)  (2.21) 

satisfies the constraint (2.20), because 

Dae  =  0 (2.22) 

and 

Day J.1  = O. (2.23) 

Indeed <I>(yJ.1,  e)  is the most general solution of (2.20), because, after 
changing variables from (xJ.1,  e,  0)  to (yJ.1,  e,  0),  

Da=- ~al .  (2.24)
a  Y,e  

Expanding <1>( y  J.1,  e)  in powers of the two-component Grassmann vari­
able e gives 

<I>(yJ.1,  e)  =  rp(y)  +  V2 e1jJ(y)  +  88F(y)  (2.25) 

where rp  and F  are complex scalar fields and 1jJ  is a left-handed Weyl spinor 
field. Thus, the general expansion of a chiral superfield in component fields 
IS 

<I>(xJ.1,  e,  8) = rp(x)  +  V2 e1jJ(x)  +  eeF(x)  +  i  aJ.1rp  eaJ.18  

+  i  V2 e  aJ.11/J  e  aJ.10  - ~ af.'  ayrp  eaf.'oeaYO.  (2.26) 

With the aid of the identities of §1.2 and Appendix A, this may be 
rearranged as 
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<I>(x",  e,  0)  = cp  +  V2  e1/J  +  eeF  +  i  a"cpeo"o  
i-I - ­- V2  ee  a,,1/J  o"e  - 4 a"  a"cpeeee.  (2.27) 

It  follows immediately that the conjugate superfield <l>t has the component 
field expansion 

<l>t =  qJt +  V2  Oij;  +  OOFt  - i  aucpt  eouo  

+  ~ ooeo"  a"ij;  - ~ a"  a"cpt  eeoo  (2.28) 

and satisfies the constraint 

Da<l>t  = o.  (2.29) 

We shall someti!lles refer to <I>  as a left chiral superfield and <l>t as a right 
chiral superfield (because they involve the left- and right-handed Weyl 
spinors 1/J  and ij;,  respectively). 

From (2.10)-(2.13) the behaviour of the superfield <I>  under an infinitesi­
mal supersymmetry transformation is 

<I>  ~ <I>  +  6<1> (2.30) 

where 

6<1> = i(;Q +  ~Q)<I> (2.31) 

that is 

6<1> = ;a (a!a  - i  o~aoa a,,)<I>  +  ~a (a~a - i  eao~a a,u)<I>.  (2.32)  

From (2.32) may be derived the supersymmetry transformations of the 
component fields in the expansion (2.27) by comparing 

6<1> =  6cp  +  V2  e 61/J  +  ee  6F  + . . .  (2.33) 

with 

6<1> =  V2;1/J +  2;eF  +  2 i  a"cp  eo"~ 
1 ­

+  V2  ee  a,,1/J  0";  +  ..  '.  (2.34) 

Thus, 

6cp  =  V2;1/J (2.35) 

61/J  =  V2;F  - V2 al,cp  Ol'~ (2.36) 

and 

http:2.10)-(2.13
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6F  =  iY2 alll/J  all~ (2.37) 

in agreement with equations (1. 193a).  (1.196) and (1.197). It will be 
important for the purpose of constructing supersymmetric Lagrangians in 
§2.5 to notice that the change in Funder  a supersymmetry transformation is 
a total divergence. 

2.4  Products  of  chiral  superfields  

For the construction of renormalizable supersymmetric Lagrangians in §2.5 
it will prove necessary to study the products of chiral superfields <Pi<Pj •  
<Pi<Pj<Pk  and <p/<pj •  where the index i  distinguishes the various left chiral 
superfields <Pi in the theory. Because Q. Q and 15  are linear differential 
operators on superspace it is immediate that any product of two left chiral 
superfields is again a left chiral superfield. i.e. transforms as (2.10) and 
satisfies the constraint (2.20). (Consequently any product of left chiral 
superfields is a left chiral superfield.) By direct calculation <Pi(  y.  8)<P/  Y.  8)  
and <Pi( y.  8)<P/  y.  8)<PkCV.  8) have the expansions in the form (2.25). 

<Pi(Y.  8)<Pj(Y.  8) =  q;i(y)q;j(Y)  +  Y2 8(lfJi(Y)<fJj(Y)  +  <fJi(Y)lfJj(Y))  

+  88(q;i(y)F/y)  +  <fJ/y)F/y)  - lfJi(Y)lfJ/Y))  (2.38) 

and 

<Pi(Y'  8)<Pj(Y.  8)<Pk(Y'  8) =  q;i(y)q;/y)q;k(Y)  

+  Y2 8(lfJiq;j<fJk  +  q;t1f!j<fJk  +  <fJ/PJ1f!k)  

+  88(q;i<fJjFk  +  q;jFjq;k  +  Fjq;j<fJk  

- lfJilfJjq;k  - lfJilfJk<fJj  - lfJjlfJk<fJJ·  (2.39) 

These expansions may then be written in terms of x.  8 and e by substituting 
for Y  from (2.21). Also 

<p/(Y.  8)<Pj(Y.  8)  = q;/(y)q;j(Y)  +  Y2 8lfJj(Y)<fJ/(Y)  

+  Y2 eijJ/Y)<fJj(Y)  +  2eijJi(y)elfJj(Y)  +  F/y)q;/(y)e8  

+  F/(Y)<fJj(y)ee  +  Y2 88eijJ/y)F/y)  

+  Y2 ee8lfJj(y)F/(y)  +  ee88F/(y)F/y)  (2.40) 

which is not  a left chiral superfield. (It is a vector superfield as can be seen by 
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comparing with §3.2.) Again, the final expansion in x,  e and 0is obtained by 
sutlstituting for y  from (2.21). 

Of particular importance for the construction of supersymmetric Lagran­
gians in the next section is the coefficient of ee  in the expansion of 
<l>i(X,  e,  O)<I>/x,  e,  0)  and <l>i(X,  e,  O)<I>j(x,  e,  O)<I>k(X,  e,  0),  referred to as the 
F-term  (by analogy with (2.26)) and denoted by [<I>i<l>JF  or [<I>i<l>j<l>dF'  
Also important is the coefficient of ooee  in the expansion of 
<l>/(x,  e,  O)<I>j(x,  e,  0),  referred to as the D-term  (by analogy with (3.4) or 
(3.27) for the vector superfield, apart from a factor of ~). After substituting 
for y  from (2.21) we find that 

[<I>i<l>JF==  [<I>i(X,  e,  O)<I>j(x,  e,  O)]coeffoflJlJ 

= cpb)0{x)  +cp/x)F/x)  - 1/Ji(X)1/Jj(x)  (2.41) 

[<I>i<l>j<l>k]F  ==  [<I>i(X,  e,  0),  <I>/x,  e,  0),  <l>k(X,  e,  O)coefLofOlJ 

= CPiCPjFk  + CPiFjCPk  + FiCPjCPk  -1/Ji1/JjCPk  -1/Ji1/JkCPj  - 1/Jj1/JkCPi  (2.42)  

and 

[<I>/<I>JD ==  [<I>/(x,  e,  O)<I>/x,  e,  O)]coefLoftieee 

_ t 1  t 1' _ 1  t !' _ 1  ,ll  t - Fi  Fj  +  2 aucpi  a  CPj  4 cP;  all  a  CPj  4 all  a  cP;  CPj  

i  - -Il  i "  - -ll 
+  "21/J;  a  au  1/Jj  - "2 U,ll1/J;  a  1/Jj.  (2.43) 

This last equation requires extensive use of the identities of §1.2 and 
Appendix A for its proof (Exercise 2.4). 

2.5  Renormalizable  supersymmetric  Lagrangians  for  chiral  superfields  

When constructing a supersymmetric Lagrangian using products of chiral 
superfields <l>i it is necessary to use terms that are invariant under a 
supersymmetry transformation up to a total divergence. As observed after 
(2.37), the variation under a supersymmetry transformation of the F-term  in 
a chiral superfield is a total divergence. Also, as will be seen in §3.2, the 
variation under a supersymmetry transformation of the D-term  in a vector 
superfield is a total divergence and this applies in particular to the D-term  in 
<1>/<l>i' Thus we may construct supersymmetric Lagrangians by using the 
D-term  of <I>/<I>i and the F-term  of products of left chiral superfields 
(together with their Hermitian conjugates). In general, the supersymmetric 
Lagrangian ::£ has the form 

::£ = I  [<I>/<I>dD +  ([W(<I»]F  +  He)  (2.44) 
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where W( <P),  which is referred to as the superpotential, must involve only up 
to the third power of the superfields <Pi  to obtain a renormalizable Lagran­
gian. ([<Pi<Pj<PdF  is a product of ordinary fields of dimension four, and 
F-terms involving more factors of the <Pi  will have dimension greater than 
four.) Apart from a possible tadpole term linear in the <Pi'  we may write 
(with sums over i,  j  and k  understood) 

W(<P)  =  ~ mij<Pi<Pj  + j  Aijk<Pi<Pj<Pk  (2.45) 

with mij  and Aijk  real and symmetric in their indices. Then, apart from surface 
terms, 

::£  =  a/<f(!/  a"f(!i  +  i  iJ;Jj-u  au1/Ji  +  F/Fi  

+  (mijf(!iFj  - ~ mij'I/Ji1/Jj  +  Aijkf(!if(!jF k  - Aijk1/Ji1/Jjf(!k  +  He).  (2.46) 

The field equations arising from this Lagrangian are 

/<  t 1 t t
a/<  a  f(!i  =  mijFj  +  2l1.ijkf(!j  Fk  (2.47) 

i  O/<  au 1/Ji  =  - mijiJ;j  - 2AijkiJ;jf(!/  (2.48) 

and 

F/  = - m  .. m.  _ 1 m  aW(m) 1]"1']  l1.ijk"1'jf(!k  =  - __ "1'_  (2.49)
af(!i  

where W(f(!)  is the superpotential with each <Pk  replaced by f(!k'  The last of 
these equations shows that the fields Fi  are merely auxiliary fields which may 
now be eliminated. (This results from there being no  derivatives of the Fi  in 
the Lagrangian.) Using (2.49) the Lagrangian becomes 

::£  =  a/<f(!/  aUf(!i  +  i  iJ;iO/<  au 1/Ji  - F/ Fi  

- G mij'I/Ji1/Jj  +  Aijk1/Ji1/Jjf(!k  +  He)  

_  t  ,u  . - -/<  _  1 1 12 - auf(!i  a  f(!i  +  11/Ji O  au  1/Ji mijf(!j  +  l1.ijkf(!jf(!k  

- (~mij'I/Ji1/Jj +  Aijk1/Ji1/Jjf(!k  +  He).  (2.50) 

In particular, the tree level effective potential V  is given by 

V  =  F/Fi  == IFil2  (2.51 ) 

with 

F/  =  _  aW(f(!)  (2.52)
af(!i  
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as in (2.49). It is not too difficult to show (Exercise 2.5) that (2.51) and (2.52) 
hold for any  superpotential W(<I»  (not  just the renormalizable form of 
(2.45))  provided  that the 'kinetic term' in the Lagrangian is of the minimal 
form [<I>/<I>ilD of (2.45), and there are no interactions coupling the chiral 
superfields to other fields. The tree level effective potential for supersym­
metric theories of chiral superfields thus has the remarkable property of 
being positive semi-definite. (We shall see in Chapter 3 that V  remains 
positive semi-definite when the chiral superfields are coupled to vector 
superfields. ) 

2.6  Feynman  rules  for  chiral  supermultiplets  

For the purpose of performing Feynman diagram calculations it is usually 
more convenient to use Majorana spin or fields rather than Weyl spin or fields 
(partly because most particle physicists have developed a facility for using 
Dirac y-matrices rather than Pauli spin matrices.) The Lagrangian (2.46) 
may be cast in terms of Majorana spinors by using the identities (see (1.86)) 

'I'/'1'j  =  1/J  lIP j  +  ij) Jh  (2.53) 

'I'iYS'l'j  = -1/Ji1/Jj  +  ij)iij)j  (2.54) 

and 

qly"  0,,'1'=  1/Ja"  o"ij)  +  ij)a"  o,,1/J  = 2ij)a"  0"  1/J  (2.55) 

dropping a total divergence, where 'I' denotes Majorana spinors and 1/J  
denotes Weyl spinors. Thus, 

:£  =  o"cp/  O"CPi  - ImijCPj  +  AijkCPjCPkl 2  

i  - u  1 - An - ­
+  "2'1'iY  ou'l'i  - ;;:mij'l'i'l'j  - f('I'i'l'j  - 'I'iYS'l')CPk  

-¥ (qli'l'j  +  qliYS'l')CP/  (2.56) 

and the Feynman rules for vertices are 

j  >~--.k  • -iAk(I  - Ys) (2.57)iJ  
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j  >~-, -i.l'ik(J  +Y5)' (2.58) 

When 

mij  = mOij  (2.59) 

the Majorana spinor propagator is

/i:  iOij  
(2.60)

(Jr'- m  +  i  E)  

:

2.7  Mass  and  coupling constant   renormalization  

A very important property of supersymmetric theories is the lack of infinite­
mass renormalization other than by renormalization of the wave function. 
As we shall see in Chapter 6, this means that once the hierarchy of mass 
scales between the electroweak scale (102-103 GeV) and the grand unifica­
tion scale (1015_1019 GeV) has been established at tree level, the hierarchy is 
not destroyed  by radiative corrections. This phenomenon may be illustrated 
by considering a simple model with three superfields <I>x' <l>y   and <I>z' with  the 
first two of these superfields having no  mass term, and the third having a 
large mass. In  a non-supersymmetric model we would normally expect mass 
renormalization to induce a large mass, proportional to mn for  <l>x  and <l>y.  
Here we shall find that it does not.  

The superpotential for the model is 

W(<I>x,  <Py ,  <l>z)  =  A<I>x<l>y<l>z  +  mz<l>z<l>z  (2.61) 

with corresponding F-terms  

•  aw  =  _  ACPycpz  (2.62)Fx'  =  - acpx  

•  aw  1
Fv'  = - - = - AcpxCPz  (2.63) 

~ acpy  

"  aw  1F  . = - - = - AcpxCPy  - mzcpz  (2.64)
z  acpz  
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and Lagrangian 

:£ = aflcp/  aflcpx  +  aflcp/  a·ucpy  +  aflcp/  aflcpz  

i - i - i ­
+  "2  'I'xyfl  a fl  'I'x  +  "2  'I'yyfl  afl  'I'y  +  "2  'I'zyfl  au 'I'z 

2~ t  ~" t"  - Je (cpy'Cpycpz  cpz  +  CPx'CPxcpz'cpz  +  CPx  CPxCPy'Cpy)  

- m;cp/cpz  -

Je­
- - ('I'x'l'y  ­

2  
Je­-"2  ('I'x'l'z  -

Je­
- - ('I'y'l' z ­2 

Jemicp/cp/cpz  +  Cf!xCPyCp/)  - ~ZWz'l'z 

- Je- - " 
'I'xys'l'y)cpz  - - ('I'x'l'y  +  'I'xys'l',)cpz' 

2·'  
- Je- - " 
'I'xys'l'z)cpy  -"2  ('I'x'l'z  +  'I'xY5'1'z)CPy'  

- Je- - ~ 
'I'vYs 'I'z)CPx  - - ('I'y'l' z +  'I'vYs 'I'Jcpx'  .  . 2 . 

The corresponding Feynman rules for vertices are then 

,z  "'z ,  /  

"/~ - iJe2 etc
/' "  

: 

~ ~ y 
 

y 


>  Z.  iA(  ) .--. - 2 1- Ys etc 

x  

y 

Z  i},
.--: - 2(1  +  Ys)  etc>  

x 
 

, y , 
 
"  Z  •  ,  >- .-- : - 1 Am z  

"'~ 
x "" 

(2.65) 

(2.66) 

(2.67) 

(2.68) 

(2.69) 
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y  

" 
''''''"  Z "..,-.-­ - Um z •  (2.70);.'"  
",  

x '" 
In supersymmetric theories it is necessary to use a regularization pro­

cedure for Feynman diagrams that manifestly preserves supersymmetry (at 
least at low loop orders). A suitable procedure is dimensional reduction  
regularization(3)· (4), in which the Dirac gamma matrix algebra is worked out 
first in four dimensions, and the momentum integrations are then performed 
in d  =  2w  dimensions. Using dimensional reduction regularization, the one­
loop diagrams involving mz  contributing to the renormalization of the ({!x  

mass are 

z  
~, 

(  I  f  d2wq  1  
\  I  (2.71)=;".2  (2n)2w  (q2  _  m;)  

-.-.~--.-
11  11  

y  

2wx  x -. 0 -.-- ;".2  J d q  Tr ((1  +  Ys)  ~ (/ - Ys)  (jf'~ m) 
=: - 4 (2n)2w  Jr  

z  

I d2w 
=-2;".2  __ q_  1  (2.72)(2n)2w  . 11 

and 

y  

I" ......  x  22 fd 2W q  1 .  - -:"-1  }- ... - = A  m z  (2n)2W  q2(q2  _ m;)  (2.73) 
\ ....  ~/ 

z  

Thus, 

I d2w  1 
sum of diagrams = - A 2  (2nt  q2  = 0 (2.74) 

using the usual prescription for this quadratically divergent integral. We 
therefore conclude that there is no  contribution to the mass renormalization 
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of m; proportional to m;.  Consequently, the presence of the large mass mz  in 
the theory does not  induce large masses for mx  and my  through radiative 
corrections, and a mass hierarchy can be preserved. This is an essentially 
supersymmetric effect because cancellations are occurring between the 
diagrams involving fermion loops and those involving boson loops, and the 
cancellation depends on a particular relationship between the Yukawa 
coupling and the cp3  and cp4  couplings. 

In supersymmetric theories of chiral superfields there is also no  infinite 
renormalization of coupling constants other than by wave function renorma­
lizations. This can also be illustrated by considering the simple model (2.61). 
The one-loop diagram contributing to the renormalization of the vertex 
'iixCI  - Ys)'I'ycpz  is 

I  Z  

t  
_  (.Ie)3  f  d2w q  1 A 
 - 2 (2JT)2w  (q2  - m;) 
 

1  1 
y  x  x (I  - Ys)  - (I  - Ys)  - (I  +  Ys) 

j{  f(  

=0 (2.75) 

because (I - ys)(I +  Ys)   is zero. In the next section we shall indicate the 
origin of these remarkable results. 

2.8 Non-renormalization theorems 

The results of §2.7 are a special case of a general non-renormalization 
theorem which may be stated as follows. 

The superpotential (for an N  = 1 supersymmetric theory) is not renorma­ 
lized, except by finite amounts, in any order of perturbation theory, other 
than by wave function renormalizations. 

The proof of this theorem depends on supergraph techniques that allow 
several Feynman diagrams involving different component fields belonging 
to the same supermultiplets to be calculated simultaneously. Although we 
do not discuss these techniques here (a detailed discussion may be found in, 
e.g., Srivastava(S), Wess and Bagger(6) or West(7)), we sketch the ideas 
involved in deriving the above theorem. In the absence of mass less fields 
even renormalization of the superpotential by finite amounts is disallowed. 
However, subtleties arise in the presence of massless fields(8) and finite 
renormalizations can occur beyond one-loop level even in the massless 
Wess-Zumino model. 

It is necessary first to write the Lagrangian as an integral over the 
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Grassmann variables e and {j  (over superspace). As discussed in references 
9, integration over Grassmann variables is defined such that 

J de  a  =  J d{j  a  =  0 (2.76) 

and 

J de a  ea  = J d{ja  {ja  = 1  (2.77) 

with no  summation over Cl::  or eX implied. This allows an arbitrary function of 
e and {j  to be integrated, because for Grassmann variables we need never 
consider powers higher than the first power of any component of e or {j.  
Multiple integrals are interpreted as iterated integrals. Volume elements in 
superspace are defined by 

d2e  =  -i de de  = - !  de a dea  (2.78) 

2- 1 - - 1 - -a 
d  e  =  - 4 de de  =  - 4 de a  de  (2.79) 

and 

d4e  ==  d2e d 2{j  .  (2.80) 

It  then follows from (2.76) and (2.77) that the non-zero integrals over 
superspace are (Exercise 2.5) 

J d2e e 2  = J d2{j  (j2  = 1. (2.81) 

The Lagrangian (2.44) may now be written as 

f£ = J d4e I  <l>/<l>i +  (J  d2e W(<l»  +  He) (2.82) 
I  

because the superspace integrations project out D- and F-terms  as a result of 
(2.76) and (2.81). 

The non-renormalization theorem derives from the observation that in 
supergraph perturbation theory any radiative correction to the effective 
action can be written as a single superspace integration J d4e over a product 
of quantities that are local in e  and (j  with no  factors of superspace 
a-functions. The superpotential term in (2.82) is not  of this form because it 
involves only J d2e and can only be written as an integration over d4e  by 
introducing a superspace a-function a({j).  Consequently, the superpotential 
undergoes no  (direct) renormalization. On the other hand, the <l>/<l>i terms 
in (2.82) are renormalized, in general, resulting in wave function renormali­
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zations. Thus, any renormalization of masses and coupling constants is due 
entirely to wave function renormalization. 

2.9 Spontaneous supersymmetry breaking 

There is clearly a need for supersymmetry to be broken in realistic models 
since we do not see scalar particles accompanied by fermions degenerate in 
mass with them, nor vice versa. In this section, we discuss how supersym­
metry breaking may arise by spontaneous breakdown of symmetry in a 
theory with a supersymmetric Lagrangian. Let us consider first ways of 
recognizing when supersymmetry is spontaneously broken. The criterion for 
spontaneous supersymmetry breaking is that the physical vacuum state 10) 
should not  be invariant under a general supersymmetry transformation. 
Equivalently, 10) should not  be annihilated by all the supersymmetry 
generators, i.e. 

QaIO)  ~ 0 or QaIO)  ~ 0 (2.83) 

for some lX,  for spontaneous supersymmetry breaking. This has implications 
for the energy of the ground state because (2.4) can be used to relate the 
Hamiltonian to the supersymmetry generators. With the aid of the identity 

Tr(o,uoV)  = o~~(ov)~a = 21J,uv  (2.84)  

equation (2.4) can be inverted to obtain 

r  =  !(ov)~a{Qa, Q~} (2.85) 

as discussed in §1.3. In particular, the Hamiltonian is 
() 1 - - -­

H  = P  = 4(QIQi +  QiQl +  Q2Q2  +  Q2Q2)  (2.86) 

where Qa  is the Hermitian adjoint of Qa.  Thus, H  is positive semi-definite. 
When supersymmetry is unbroken in the vacuum state this state has zero 
energy, and when supersymmetry is spontaneously broken in the vacuum 
state it has positive energy. As a result, whenever a supersymmetric vacuum 
state exists as a local minimum of the effective potential it is the global 
minimum. If  there is more than one supersymmetric vacuum, they are all 
degenerate in energy with zero energy. For the global minimum of the 
effective potential (the physical vacuum) to be non-supersymmetric it is 
therefore necessary for the effective potential V  to possess no  supersym­
metric minimum. Generic forms of V  for unbroken supersymmetry and 
spontaneously broken supersymmetry are shown in figures 2.1,2.2 and 2.3. 

Another perspective on spontaneous breaking of supersymmetry is ob­
tained by observing that the supersymmetry breaking must arise from some 
fields in the theory having vacuum expectation values (VEVS) that are not  
invariant under supersymmetry transformations. In a theory of chiral 
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v  

o ql 

Figure  2.1  The generic effective potential V  for unbroken supersymmetry, where cp  
is the VEV  of some scalar field. 

superfields, the only one of the supersymmetry transformation laws (2.35)­
(2.37) whose expectation value can have a non-zero right-hand side, without 
breaking Lorentz invariance, is (2.36). Thus, the mechanism for spon­
taneous supersymmetry breaking is for 

(OI01/JiIO)  = V2  ;(OIFiIO)  (2.87) 

to be non-zero for some chiral supermultiplet <Pi' i.e. for one of the auxiliary 

v  

1 
'"  

Figure  2.2  The generic effective potential V  for unbroken supersymmetry with two 
supersymmetric vacua where er;  is the VEV  of some scalar field. 



49 SPONTANEOUS SUPERSYMMETRY BREAKING 

v  

1 'P 

Figure 2.3 The generic effective potential V  for spontaneously broken supersym­
metry where cp  is the VEV  of some scalar field. 

fields Fi  to have a non-zero vacuum expectation value, where in terms of 
physical fields Fi  is given by (2.52). Thus in theories of chiral superfields Fi  is 
the order parameter for spontaneous supersymmetry breaking. 

(O!Fi!O)  ¥  °  for spontaneous supersymmetry breaking. (2.88) 

It may be seen from (2.51) that when such F-term  supersymmetry breaking 
occurs the value of the effective potential in the vacuum state is positive. 
This is consistent with the general conclusion derived from (2.86). (We shall 
see in Chapter 3 that another mechanism for spontaneous supersymmetry 
breaking exists for supersymmetric gauge theories with a U(l) factor in the 
gauge group. This involves a vacuum expectation value for the auxiliary field 
D  of a vector supermultiplet instead of the auxiliary field F  of a chiral 
supermultiplet. We shall also see in Chapters 4 and 5 that other mechanisms 
for supersymmetry breaking are possible in supergravity theories.) 

Once spontaneous supersymmetry breaking has occurred a massless 
Goldstone fermion is expected to appear because the supersymmetry 
generator is fermionic, much as a Goldstone boson appears when ordinary 
global symmetries are spontaneously broken. When a single auxiliary field 
Fi  acquires a VEV  the Goldstone fermion will be the spinor 1/Ji  in the 
supermultiplet <l>i to which Fi  belongs. This is in exact analogy to the 
Goldstone boson in a theory of spontaneously broken ordinary global 
symmetry being in the same multiplet as the scalar that develops a VEV.  The 
Goldstone fermion is potentially a problem for globally supersymmetric 
theories. However, we shall see in Chapters 4 and 5 that when global 
supersymmetry becomes local supersymmetry in supergravity theories the 
Goldstone fermion is 'eaten' by the gravitino to give the gravitino a mass, 
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Figure  2.4  The effective potential V  for the Wess-Zumino model (for m  >  0). 

just as Goldstone bosons are 'eaten' by gauge fields when an ordinary global 
symmetry becomes a (local) gauge symmetry. 

2.10  F-term  supersymmetry  breaking  

It  has been observed in §2.9 that in globally supersymmetric theories of 
chiral superfields supersymmetry breaking occurs via the auxiliary field Fi  in 
some chiral supermultiplet <f>i  acquiring a VEV.  It  has also been observed 
that, in a globally supersymmetric theory, whenever a supersymmetric 
vacuum state exists as a local minimum of the effective potential it will be the 
global minimum, since it has zero energy whereas all vacua in which 
supersymmetry is spontaneously broken have positive energy. Thus, to 
obtain a theory with spontaneously broken supersymmetry it is necessary to 
ensure that the effective potential has no  supersymmetric minimum. This 
considerably restricts the possible forms of the superpotential. In particular, 
any superpotential of the form (2.45) that does not contain terms linear in 
the superfields can never produce spontaneous supersymmetry breaking 
because there is always at least one solution of 

"  aw F;'  =  --=0  for all i  (2.89)
acp;  

obtained by taking all expectation values cp;  equal to zero, which is a 
supersymmetric minimum. For instance, for the Wess-Zumino model 

W(<f»  =  ~m<f>2 +  jA<f>3  (2.90) 

there are two supersymmetric minima, one at cp  =  0 and the other at 
cp  = -m/A.  (See figure 2.4.) 
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The renormaIizable superpotential (2.45) may be generalized to include 
terms linear in the superfields by writing 

W(<I»  = fi<l>i  +  1 mij<l>i<l>j  +  Pijk<l>i<l>j<l>k'  (2.91) 

Even then supersymmetric minima of the effective potential generally arise 
except for carefully chosen numbers of superfields and values of coefficients 
in (2.91). The simplest example of a model without any supersymmetric 
minima is the O'Raifeartaigh model which has three chiral superfields <1>], 
<1>2 and <1>3 with superpotential 

W( <1>], <1>2, <1>3) = A]  <1>] (<I>~ - M2)  +  ,u<l>2<1>3  .  (2.92) 

For this model, 

aw  ') M2) - F]t  = - = A](CP3-- (2.93)
acp]  

t aw_  
- F2  = - - ,uCP3  (2.94)

acp2  

- F3 t  = aw  = 2A]CP]CP3  +  ,uCP2  (2.95)
acp3  

and there is no  solution with F],  F2  and F3  all zero. Thus, supersymmetry is 
spontaneously broken. 

For M2  <  ,u2/2A/,  the absolute minimum of the effective potential 

V  = L 
3 

IFil2= AIlcp~ - M212 +  ,u21cp312 +  I,uCP2 +  2A]cp]CP312  (2.96) 
i=] 

occurs at 

(CP2)  = (CP3)  = 0 (2.97) 

and (cp])  is undetermined (i.e. the potential has a flat direction). At this 
absolute minimum, 

F/  =  A]M2  F2t  = F/  = 0  (2.98) 

and 

V=  ArM4  >  O. (2.99) 

Because F]  is non-zero we expect that 1fJ]  is the Goldstone fermion. This 
may be verified by looking at the fermion mass matrix given by the 
Lagrangian terms ~:;, as in (2.50), 

~:;, =  - i(mij  +  2Aijk(CPk))1fJi1fJj  +  He  (2.100) 

http:A](CP3--(2.93
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which is unaffected by the terms linear in the <Pi  in the superpotential. For 
the present model, 

m23  = m32  = fA,  (2.101 ) 

and 

AI33 =  A313  =  A331 =  Al (2.102) 

with all other mij  and Aijk  equal to zero. Then, 

:£~ = - ~(2fA,1fJ21fJ3 +  2AI(cpI)1fJ~ +  He). (2.103) 

Thus, 7fJI is massless as expected, and there are two massive combinations of 
1fJ2  and 1fJ3'  If we assume for convenience that 

(CPI)  =  0 (2.104) 

these are two Weyl spinors of mass fA,.  Equivalently, defining 

(2.105)'¥  = (~:) 
we have 

:£~ = - fA,W'¥  (2.106) 

corresponding to a single Dirac spinor of mass fA,.  
The bosonic masses may be obtained from the IFil2  terms in the super­

potential after shifting the complex scalar fields by the VEVS. Then, with the 
expectation values (2.97) and (2.104), the bosonic mass terms:£! are 

:£! = AiM2(cP~ +  (CP3  t)2) - fA,2(  CP2  t  CP2  +  cp/ CP3)  .  (2.107) 

If we define real scalar fields a3  and b3 by 

CP3  = ~ (a3  +  i  b3)  (2.108) 

this becomes 


:£! =  - ~(fA,2 - 2AiM2)a~ - ~(fA,2 +  2AiM2)b~ - fA,2CP2  t  CP2  .  (2.109) 


Thus, the complex scalar field CPI is massless, the complex scalar field CP2  has 
mass fA,  ,  and the real scalar fields a3  and b3 have masses 

m~J = fA,2  - 2AiM2 (2.110) 

and 

m~J = fA,2  +  2AiM2. (2.111) 

This means that CPI and CP2  are still degenerate in mass with their super­
partner fermions 7fJI and 1fJ2  even in the presence of supersymmetry break­
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ing. On the other hand, supersymmetry breaking manifests itself by a3  and 
b3  having masses that differ from the mass f.1  of their superpartner tfJ3'  The 
reason for this outcome is that only the superfield <P3 couples to the 
superfield <PI containing the Goldstone fermion in (2.92). 

It  will be noticed that although ma3  and mb3  differ from m1/13'  it is 
nonetheless the case that 

m2  +  m2  = 2IJ 2  = 2m2  (2.112)a,  b3  r  1/13 

just as in the absence of supersymmetry breaking. This is a special case ofthe 
general tree level result(lO) for theories of chiral superfields 

STr M2  == I  (-1)21(21 +  l)m;  = 0 (2.113) 
J  

where STr M2  (the supertrace) denotes the trace of the mass-squared matrix 
over the real fields, of spin 1. In the presence of supersymmetry breaking 
equation (2.113) is modified by radiative corrections. It  is also modified in 
theories containing vector superfields if D-terms  develop VEVS. 

The supersymmetry-breaking scale M;  may be defined as the expectation 
value of the F-term  responsible for supersymmetry breaking. Thus, in the 
present case, 

M;  = AIM2.  (2.114) 

Casting (2.110) and (2.111) in terms of M;,  
2_  221M2 ma,  - f.1  - Al s (2.115) 

and 

m2  
b,  =  IJ2  +  2,1 1M2  (2.116)r s' 

Thus, the squared-mass splittings within supermultiplets resulting from 
supersymmetry breaking are on the scale of AIM;.  It is possible for this scale 
to be much smaller than the supersymmetry-breaking scale Ms  if the 
coupling ,11 of the other chiral superfields to the Goldstone fermion super­
field is small. 

Exercises 

2.1  Derive (2.6) for the product of two group elements associated with the 
supersymmetryalgebra. 

2.2 Show that PI"  Qc<  and Qa  defined by (2.11)-(2.13) realize the super­
symmetry algebra. 

2.3 Derive the anti-commutator (2.16) amongst fermionic covariant de­
rivatives and generators of the supersymmetry algebra. 

http:2.11)-(2.13
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2.4 Show that the tree level effective potential is 

V=  IFil2  
where 

F/  =  _  aw  
arpi  

for any  superpotential W(<I>i)  when the 'kinetic term' in the Lagrangian is of 
the minimal form [<I>/<I>;lD'  

2.5 Show that 

f d2e e 2  = f d2 0 0 2 = 1.  
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3  

LAGRANGIANS  FOR  VECTOR 
 
SUPERFIELDS 
 

3.1  Introduction  

We saw in Chapter 1 that the general (on-shell) representation of supersym­
metry has (particle) states lp,  Je),  of momentum p and  helicity Je,  together 
with the ('sparticle') states Q21  p,  Je)  ~ lp,  Je  - i),  having the same momen­
tum but half a unit less helicity. Thus the simplest realization involves a 
(Weyl) spinor field 7./J  «(x)  and a scalar field cp(x) ,  so  the known fermion fields 
(quarks and leptons) have (yet to be discovered) scalar superpartners (the 
squarks and sleptons). We have seen also that to extend this to an off-shell 
realization it was necessary to introduce an auxiliary field F(x) ,  and that the 
three fields may be elegantly viewed as the component fields of a 'chiral' 
superfield <1>( y, 8).  Any renormalizable supersymmetric field theory involv­
ing just scalar and spinor fields can then be formulated most succinctly in 
terms of products of chiral superfields, as was shown in Chapter 2. However, 
the quarks and leptons, and therefore the squarks and sleptons, all partici­
pate in gauge theories, quantum chromodynamics and electroweak theory, 
which of course involve gauge vector bosons. Thus to formulate a supersym­
metric version of quantum electrodynamics, for example, we shall certainly 
have to involve the vector supermultiplet, which involves the photon and its 
spin-i partner the photino, and we might reasonably expect that a superfield 
description of these should also exist. 

In the following section we shall construct the vector superfield; in general 
it includes four auxiliary scalar fields as well as an auxiliary fermion field. 
However, we can utilize the gauge invariance of the theories in which this 
superfield is deployed to eliminate all except one of these fields, the so-called 
D-field. This is shown in §3.3. In fact this D-term provides  another way to 
break supersymmetry, besides the F-term  method described in §2.9. This 
method is described in §3.S. In order to construct gauge-invariant kinetic 
terms for the vector potential A,,(x)  in quantum electrodynamics, it is of 
course essential to introduce the electromagnetic field strength tensor 
F"v(x).  To make this theory supersymmetric, therefore, we must also 
construct a field strength superfield, as well as the U(l) gauge-invariant and 
supersymmetric Lagrangian. This too is done in §3.3. In §3.4 we investigate 
spontaneous symmetry breaking of a global and local U(l) gauge invariance 
in the context of a supersymmetric theory. Then besides the Goldstone 
boson which arises when the global symmetry is broken, the (unbroken) 

DOl: 10.120119780367805807-1 
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supersymmetry ensures that there is a massless Goldstone fermion. Simi­
larly, when the local symmetry is broken, besides the massive gauge boson 
the supersymmetry ensures the existence of a massive gaugino. The general­
ization of these ideas to non-abelian gauge theories is discussed in §3.7 and 
illustrated in §3.8, in which we construct a supersymmetric version of 
electroweak theory. Finally, in §3.8, we derive the renormalization group 
equations for the gauge coupling constants in a general supersymmetry 
gauge theory. Applying this to the standard SU(3) x SU(2) x U(l) model 
we find that the gauge coupling constants achieve a common value at a 
unification scale of under 1016 Ge V, thereby supplying the best (circumstan­
tial) evidence to date for supersymmetry (and grand unification). 

3.2  The  vector  superfield  

The vector supermultiplet includes a (massless) vector particle (with helicity 
eigenstates ±  1) together with the fermionic gaugino (having helicity eigen­
states ±~). We therefore seek a 'vector' superfield involving a real gauge 
field V,u(x)  and its fermionic partner Aa(X).  It  suffices to start with a Lorentz 
invariant  superfield F(x,  e,  e).  This may be expanded in powers of e,  e up to 
and including quadratic terms in both e and e.  (Any cubic or higher powers 
necessarily vanish because of the anti-commutation properties.) Using just 
these fermionic coordinates, we saw in §1.2 that we can construct the 
Lorentz scalar quantities ee  and ee,  and the vector ea,ue  = - ea,ue.  The 
only candidate tensor quantities ea,uve  and e(j,uve  vanish identically. Thus 
without loss of generality we may write any Lorentz invariant superfield in 
the form 

F(x,  e,  e)  = I(x)  +  ecp(x)  +  ex(x)  +  eern(x)  +  een(x)  

+  ea,uev,u(x)  +  eeeX(x)  +  eee1jJ(x)  +  eeeed(x)  (3.1) 

where I,  rn,  n,  d  are scalar fields, V I'  is a vector field, and cp,  1jJ,  x,  X are Weyl 
spin or fields. If  we require that F(x,  e,  e)  is real: 

F(x,  e,  e)  = F(x,  e,  e)t (3.2) 

then the properties derived in (1.78), (1.80) give 

I=f*  VI'  = VI' *  d  =  d*  (3.3a)  

rn*  =  n  cp=x  A  =  1jJ.  (3.3b)  

Then the superfield F  has two (Weyl) spinors each with two complex 
components, giving a total of eight real fermionic degrees offreedom. These 
are matched by the total of eight (real) bosonic degrees of freedom 
comprised by 1(1),  del),  rn(2)  ,  V,u(4).  It  is convenient to rewrite this 
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superfield using special field combinations for the coefficients of the ()(){), 
()()() and ()(){){) components of F.  Instead of (3.1) we write 

Vex,  (),  ()  =  C(x)  +  i ()x(x)  - i ()x(x)  +!  i ()()[M(x)  +  i N(x)]  

- ! i  (){)[M(x)  - i  N(x)]  +  ()a"{)V,,(x)  

+  i  ()(){)[ X(x)  +  i 0"  a"x(x)]  - i  (){)()  [A(X)  +  i a"  a"x(x)]  

1 - - 1+  '2() ()()() [ D  - '2 a"  a"C]  (3.4) 

where C, M,  N,  D  are real scalar fields. As before, X,  A are Weyl spinor fields 
and V"  is a (real) vector field. There is, of course, no loss of generality in 
using the form (3.4), rather than (3.1), since the extra terms in the 
coefficients merely use (correctly Lorentz transforming) fields constructed 
from those used elsewhere. However, there is also no immediately apparent 
advantage. The advantage becomes clear when we derive the transform­
ation properties of the component fields under a supersymmetry transform­
ation. (We shall find that the fields v"v==a"vv-avv",  A, X,  D  form a 
representation of the supersymmetry algebra by themselves.) The reason 
for this is that with the form (3.4) the components can all be written as 
covariant derivatives of the superfield V,  evaluated at () =  ()  =  O. For 
example, it is obvious using the definitions (2.14) and (2.15) that 

V!  = C (3.5) 

DaV !  = iXa  DiY!  = - i  X"  (3.6) 

where the vertical line signifies evaluation at () = () = O. With a little more 
work, and the use of the results of §1.3, we can also see that 

D215.v!=-4d. 152 = D  V!  = 4i A (3.7)
"  "  " "  

where we use the notation 

D2  =DaD"  152  =  15 ,,15" (3.8) 

introduced in (1.75), and 

a  -' 
Da  == €a f3 Df3  =  - ae  +  i  €"f3 a'/J/J()f3  a"  (3.9a)  

"  
15" == €"(315/J  = -1.- - i  €"iJ()f3 a'/JiJ  a".  (3.9b) 

a()"  

Similarly we find 

[D",  15"lV!  = 2a~"V)i (3.10) 
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Df3jj2D 
Cl:' 
VI  =  4b f3  D  +  2i(a'Ua V)  a f3V  (3.11)0:' flV  

where 

Vw  == a.uvv  - avv.u  (3.12) 

is the (U(l) gauge-invariant) field strength. It  follows immediately from 
(3.11) that 

DalFDavl  =  8D.  (3.13) 

It is now straightforward to determine the transformation properties of the 
components under an (infinitesimal) supersymmetry transformation. We 
use 

b;V  = i(~Q +  ~Q)V (3.14) 

with Q, Q given by (2.12), (2.13). For example 

bC = i(~Q +  ~Q)VI = (~D +  ~D)VI = i(~X - ~X) (3.15) 

using (3.6). In the same way we find 

bAa  = - ~ (~D +  ~D)D2DaVI = - i  D~a - ~(a.uaV)/~f3V.uv (3.16) 

bV"  =  i(~a.u~ - Aa.u~) - a.u(h  +  ~X) (3.17) 

bD  = a.u(-~a.u~ +  Aa.u~). (3.18) 

Then it follows from (3.17) that the transformation property of the field 
strength Vw  is given by 

bVw  =  i  a.u(~av;: - AaV~) - i  aV(~a.u;: - Aa.u~). (3.19)  

Thus, as claimed, A,  ;:, V.u v and D  form an (irreducible) representation of the 
supersymmetry algebra, by themselves. Note also that the variation of the 
D-field is a total divergence. The dimensions of the fields in the 'vector 
supermultiplet' are fixed by requiring that the vector field V.u  has its 
canonical dimension 

[V]  = l.  (3.20) 

Then since D a,  like Qa,  has dimension ~ it follows that 

[e]  = [e]  = - ~ (3.21) 

and then 

[C]  = 0 (3.22a)  

[X]  = ~ = [X]  (3.22b)  

[M]  = 1  = [N]  (3.22c)  

http:a.uaV)/~f3V.uv
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[,1.] = ~ = [ti]  (3.22d)  

[D)  = 2. (3.22e)  

So, as noted in Chapter 1,  the highest-dimension field (D)  in the supermul­
tiplet must transform as a total divergence. Further, since al<  al<c  also 
transforms as a total divergence, we see that D  -  al<  al<c  does too, and so 
therefore does the entire coefficient of oeee  in V(x,  e,  e).  This is the 
justification of the claim in §2.5 that the variation of the D-term in  a vector 
superfield is a total divergence. 

Since the only requirement (3.2) for a vector superfield is that it be real, it 
is easy to construct a particular example of one using the chiral superfield <p 
and the anti-chiral superfield <pt given in (2.27), (2.28). For instance 

i(<P - <pt) = i(<p - <pt) +  i v2(01jJ  - eijJ)  +  i eeF  - i eept  

_  Ool<{)  a  (m  +  m t) __1_  ee{)(jl<  a  ./0 +  _1_  {){)eol<  a  ;I, v2  v2 I<  'r  'r  I<~ I<~ 

-!i  ooee  al<  ~(<p - <pt) (3.23) 

has the form (3.4) with 

C=i(<p-<pt) (3.24a)  

x=v21jJ  (3.24b)  

~(M +  iN)  = F  (3.24c)  

VI<  = - al«<p  +  <pt) (3.24d)  

,1.=0 (3.24e)  

D=O.  (3.24f)  

Of course, for this identification to work the dimension of the fields <p,  1jJ,  F  
must be shifted by one unit from the canonical dimensions (1.175), (1.179), 
(1.194) which they are assigned in order to make the usual identification 
with quarks, leptons etc. Nevertheless the force of the observation (3.24) 
becomes clear when we note that the vector potential VI<  for the superfield 
i(<P - <pt) is a pure U(l) gauge transformation, and this suggests how to 
make a supersymmetric generalization of gauge invariance. 

3.3  Supersymmetric gauge   invariance  

We start with the familiar local U(l) gauge invariance (of QED). Under such 
a gauge transformation the vector potential transforms as 

VI«X)  ~ V/ex)  = VI«x)  + aI<A(x)   (3.25) 

! 
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where A(x)  is a 'gauge function'. The discussion at the end of §3.2 suggests 
an immediate way to supersymmetrize the transformation (3.25). Since V,u  is 
a component of the vector superfield (3.4), and a,uA  == a,uC  cp  +  cp  t) is in 
i(<I> - <I>t), Wess and Zumino(l) suggested that the superfield transforms as 

Vex,  (J,  (j)  -7 v/ex,  (J,  (j)  = vex,  (J,  (j)  +  i[<I>(x,  (J,  (j)  - <I>t(x,  (J,  (j)]  (3.26)  

under a U(l) gauge transformation. In fact, it is clear from (3.24) that in a 
gauge theory the fields C, X,  M,  N  are not physical degrees of freedom, since 
they can be 'gauged away' by a suitable choice of cp  - cp  t, 1jJ,  F  while still 
leaving A = cp  +  cpt arbitrary. Then in the 'Wess-Zumino gauge' the vector 
superfield is 

Vwz(x,  (J,  (j)  =  (Ja,u{jVix)  +  i  (J(J{jX(x)  - i  (j{j(JA(x)  +  ~(J(J{j{jD(x) (3.27) 

and from (3.24) the fields A,  X, D  are gauge invariant while V,u  transforms as 
in (3.25). Note that in the Wess-Zumino gauge the field D,  which from 
(3.18) transforms as a total divergence, is  the coefficient of (J(J{j{j.  Also all 
powers Vwz  with n  > 2 vanish, since they will involve at least (J3.  

The only non-zero power is 

V~z(x, (J,  (j)  = - «(Ja,u{j)({jav(J)V,u  Vv  = ~(J(J{j{jV,uV,u (3.28) 

using (1. 74a)  and (A7). Such a term supplies a mass for the vector field, and 
thereby breaks the gauge invariance. Since the massive vector theory is not 
gauge invariant, the degrees offreedom C, X,  M,  N  are  physical and cannot 
be gauged away. In fact, as is clear from their dimensionality (3.22), the field 
C  supplies the longitudinal mode of the vector field, while X,  X supply the 
extra degrees of freedom for the massive gaugino field. 

To construct a supersymmetric gauge field theory we need first to 
construct the field strength superfield, and secondly to couple the vector 
superfield to the charged (chiral) matter superfield in a gauge-invariant way. 
We have already observed that the fields A,  X,  V,uv  and D  form an irreducible 
representation of the supersymmetry algebra, and that all of these fields are 
gauge invariant. This suggests that the field strength superfield is a spinor 
(chiral) superfield, since the lowest-dimension field is A"  with [A,,]  =  i  =  [X]  
while (V,uv]  = 2 = [D].  It  is easy to construct the required superfield W"  
using covariant derivatives. Let 

W"  == lYDc,v.  (3.29)  

Then from (3.7) 

w"i  = 4iA" (3.30) 

and we see that the lowest-dimension field is A,  as required. Also, it follows 
from (3.29) that 

15tW"  = 0  (3.31) 
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since 

jj~jjyjj6 = 0 (3.32) 

automatically. Thus Wa  is  a chiral superfield satisfying the constraint (2.20), 
which means that it has the general form 

Wjy,  0)  = 4iAa(Y)  +  O/1CPa/1(Y)  +  OOFa(Y)  (3.33a)  

as in (2.25), with 

y/-I  = x/-l  +  i  Oa/-l{)  (3.33b)  

but now CPa/1  is a bosonic field and Fa  a spinor field. It  follows from (3.32), 
(3.28) and (3.11) that 

D/1Wal  = CPaf1  = D/1jj2Dav l  = €/1y[4o~D +  2i(a/-laV)aYV/-IvJ.  (3.34) 

Also, using (2.17) and (3.7) 

D2Wal  = -4Fa  = D2jj2Davl  = D2[jj2,  DaJVI  

=  D2(jj~{Dw jj~} - {Da,  jj~}jj~)VI 

/-I.  a  D2D-~Vl- (3.35)- - 4'1 a  a/1  /-I  - - 16a  /-I aa  a  ; a • - /-lA  

So substituting into (3.33a)  gives the field strength superfield 

Wa(Y,  0)  = 4i Aa(Y)  - [4oa/1D(y)  +  2i(a/-laV)a/1V/-IvCy))e/1  

+  402a /-l·  a  ..i:  a  (3.36)aa  /-I  

with y  given by (3. 33b).  To construct the (gauge-invariant) supersymmetric 
pure gauge theory we want the F-component of waWa'  since, as shown in 
Chapter 2, this transforms as a total divergence under supersymmetry 
transformations and therefore yields an invariant action. A simple calcu­
lation yields 

...L(waw)  = - lVwV  +  i  AO/-l  a ..i:  - lV/-Iv(*V  ) +  1D2  (3.37)32  a  F  4 /-IV  /-I  4 /-IV  2" 

where 

*V  - i  Vpa /-IV  =  2"  E/-Ivpa  (3.38) 

is the dual field strength tensor. We can use (3.37) as the supersymmetric 
generalization of the familiar kinetic terms -!V/-IvV/-IV  of the U(l) gauge 
field, since the term involving *V/-IV  is a total divergence and so does not 
affect the equations of motion. The D-field is an auxiliary field which can be 
eliminated using the equations of motion. The gaugino contribution can be 
rewritten in terms of the (four-component) Majorana spinor 

http:D2D-~Vl-(3.35
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AM  =  (~~) (3.39a)  

i  Aa,u  dj.  = ~AMY,u d,uAM  (3.39b)  

(dropping a total divergence again). 
To go beyond a pure gauge theory we also require a supersymmetric 

version of the interaction of the gauge field with (charged) matter. The 
conventional wisdom is that the known matter fields (quarks, leptons, Higgs 
(?)) are all described by chiral superfields, whose properties were discussed 
in Chapter 2. 

To describe a charged massive field, such as an electron, we must include 
both its left and right chiral components (and of course the left and right 
chiral components of the anti-particle). Thus for a massive charged super­
field we need to employ two (left) chiral superfields, <1>1 and <1>2' Then the 
complex chiral superfield 

1 
S =  V2 (<1>1 +  i <1>2) (3.40) 

transforms under a U(l) gauge transformation as 

S-'>  S'  =  exp(-2iqA)S  (3.41) 

where to avoid confusion now (and henceforth) we denote the scalar chiral 
superfield associated with the gauge transformation by A (rather than <1». 
The reason for the factor 2 in the exponent will become apparent later. Then 

st _ 1- V2 (<1>/ - i <1>2t) (3.42) 

transforms as 

st -'>  st, =  st exp(2i qAt).  (3.43) 

Now consider the combination st exp(2qV)S  with V  the vector superfield 
(3.4) which transforms as 

V  -'>  V'  =  V  +  i(A - At) (3.44) 

under a U(l) gauge transformation, as in (3.26). Then it is easy to 
demonstrate that the quoted combination is U(l) gauge invariant, since 

st, exp(2qV')S'  =  st exp(2i qAt)  exp[2qV  +  2i q(A  - At)] 

x exp( -2i qA)S  = st exp(2qV)S.  (3.45) 

In the same way we can show that if we define 
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T=- 1 v2  (<1>1 - i  <1>2) (3.46) 

then 

T  ~ T'  = exp(2i qA) T  (3.47) 

and the combination 

Tt  exp( -2qV)T  = Tt,  exp( -2qV')T'  (3.48) 

is also gauge invariant. Both (3.45) and (3.48) are real superfields, since V  
is, so the D-terms  of each yield a supersymmetry-invariant action. As in 
Chapter 2, we construct mass terms using just left (or just right) chiral 
superfields. From (3.41), (3.47) ST,  and therefore also StTt , is U(l) gauge 
invariant, and the required mass term is given by the F-term  of 
m(ST  +  StTt). Putting all this together yields the Lagrangian for the 
supersymmetric U (1) gauge-invariant theory 

;£ = 1 (W"W)  +  (st  e2qVS  +  Tt  e-2qVT)  +  m(ST  +  StTt)TI:  "  F  D  F'  (3.49) 

In  the Wess-Zumino gauge (3.27), the exponential 

e2qVwz  =  1 +  2qVwz  +  2q2V~z (3.50) 

since Vwz  = 0, n  > 2, as already noted. The leading term of the exponential 
contributes 

t t  t  t (S S +  T  T)D = (<1>1 <1>1 +  <1>2 <P2)D (3.51) 

and the mass terms 

m(ST  +  StTt)F  = ~m(<I>12 +  <I>/)F  +  He  (3.52) 

just as in (2.44), (2.45). The appearance of interaction terms proportional to 
q  and q2  is also to be expected since in a supersymmetric theory there must 
also appear interactions of the gauge field with the (charged) scalar particles 
(squarks, sleptons) which are the supersymmetric partners of the known 
matter fields. 

It  is straightforward in principle, although tedious in practice, to express 
(3.49) in terms of the component fields of superfields S, T,  V.  We write Sin 
the form (2.27) involving (CPs,  1/Js,  Fs ),  T  in the same way but involving 
(CPT,  1/JT,  FT)'  and Vin  the Wess-Zumino gauge (3.27). Then 

(st  e2qVS)D  =  (D!"CPs)t(D!"CPs)  +  i  1/Jso!"  D!"t1f;s  

+  F/Fs  +  i  v2q(cp/1/JsA  - CPs1f;sJc)  +  qcp/CPsD  (3.53a)  

where 

D!"  =- a!"  +  i  qV!".  (3.53b)  



64 LAGRANGIANS FOR VECTOR SUPERFIELDS 

So using the earlier results (2.46), (3.37) we find 

(0  (D  )T(DI' ) +  (D  t  )(DI'  t)T . ,11 I' D  T,;,~ = I/PS  CPs  ."CPT  CPT  +  I 't'sa"  't'S 

+  i  1f!Ta"  DiPT  +  F/Fs  +  F/FT  +  i  V2q(CPST1f!s  - CP/1fJT))..  

+ i  V2q(CPT1PT- CPs1Ps)A  + q(CPstcps  - cp/rpT)D  
t t t t -­+  m(CPSFT+  CPTFs  +  CPs  FT  +  CPT  Fs  -1f!S1f!T-1f!S1f!T)  

IV V"V  +  .,  I'  a  ; +  ID2 (3.54)- 4 I'V'  I Aa  I,A 2 . 

The fields F s, FT,  D  are auxiliary, since their derivatives do not occur. Using 
their field equations 

Fs  +  mrp/  = 0 = FT +  mcp/  (3.55a)  

D  +  q(rpstrps  - rp/rpT)  = 0 (3.55b)  

we may eliminate them and obtain 

:£ = (DI'CPs)t(Dl'rps)  - m2rp/rps  +  (D/rpT)(Dl'rp/)  - m2cp/rpT  

+  i  1f!sal'  D/1Ps  +  i  1f!Tal'  DI'1PT  - m1f!s1f!T  - m1PsiPT  

+  i  V2q(rp/1f!s  - rp/1f!T)}..  +  i  V2q(CPTiPT  - CPsiPs)A  

I 2( t t)2 I V  VI'V  + .  I'  a  ;1 - 2q  rps  rps  - rpT  rpT  - 4 I'V  1 Aa  I'A. (3.56) 

Finally we combine the Weyl spinors 1f!  s, 1PTto  construct a Dirac spinor, as in 
(1.83). We take 

qt=(~s~) (3.57)
.1f!T  

and use the Majorana spinor AM  defined in (3.39). Then 

:£ = i  'iiy.u  Dl'qt  - m'iiqt  +  (DI'CPsf(Dl'rps)  - m2cpsTcps  

t)t( I'") 2" I 2(" ")7+  (DuCPT  D  rpT'  - m  CPT'  rpT  - 2q  CPs'  CPs  - CPT'  CPT  ­

q  - . - .
+  V2[AM qti(cp/ +  CPT)  +  AMiysqt(cpT- cp/)  

- 'ii AMi(rps  +  cp/)  +  'ii  i  YSAM(rp/  - rps)]  - !VUlYUl'  

i  A- I' A  (3.58)+:2 MY  al'  M'  

Comparing with the gauge-invariant U(l) field theory described in Chapter 
9 of Bailin and Love(2), for example, we see that the Dirac field qt has charge 
q,  as do cP  s, cP  /.  Besides the usual minimal couplings of the charged fields 
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W, CPs,  CPTwe  note that the supersymmetry has forced the fields to have the 
same mass, as expected, but has also completely determined the self­
couplings of the scalars as well as coupling the scalars to the (massless) 
gaugino field AM.  The Feynman rules for the vertices are 

(3.59)~: -iqy,  

s 
,  I  

..... ~ ~ 
yvvvv:  - i  q(p  +  pi)!,  (3.60) 

S  /~
/  

T  
..... ,  pi  
~ ~yvvvv:  i  q(p  +  pi)!,  (3.61) 

T  ",1fp  
/  

(T)  S S (Tl ,  /
.....  / , 

,/ 
/  

: - 2i q2  (3.62) 
",/' , , ",  , ", 
 

(T)  5  5  (Tl 
 

,  
T", ..z ,  ",  

", 
•  i q2  (3.63) 

", "" ''''  ,  •  
S/ , S 
", "  

S 1.1 

. 2 
1 q  g!'v  (3.64):::<: 
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T  11 

1 
. 
q 

2
gJiV  (3.65):::<: 

S.  -q > .. --.  V2  (1 - 1'5)  (3.66) 

>-_!: -q 
V2  (1  +  1'5)'  (3.67) 

3.4  Spontaneously  broken  gauge  invariance  

We saw in Bailin and Love(2) that when a theory with a global internal 
symmetry is spontaneously broken, by a scalar field developing a non-zero 
vacuum expectation value, then massless Goldstone bosons appear in the 
theory (and there are relationships between the trilinear and quadrilinear 
couplings of the scalars). When the internal symmetry is promoted to a local 
(gauge) symmetry, the spontaneously broken theory has no Goldstone 
bosons. Instead erstwhile massless gauge fields 'eat' the putative Goldstone 
bosons and we have a theory with massive vectorbosons. It  is this mechanism 
that is used in the standard electroweak theory. It is clearly of interest to study 
this phenomenon in the case where we have a supersymmetric gauge theory. 

The test bed for the investigation of spontaneous symmetry breaking is a 
theory with a single complex scalar field, so the simplest supersymmetric 
extension is a theory with chiral superfields <1>;, as in §2.5. The potential is 

V(<p;)  =  F/F;  (3.68a)  

where 

F/  =  - (m;j<pj  +  A;jk<Pj<Pk  +  [;)  (3.68b)  

when we allow for a linear (tadpole) term f;<I>;  in the superpotential W(<I>;)  
given in (2.45). If  the equations 
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Fi  = 0 (3.69) 

have solutions in which the scalar fields CfJi  have non-zero values, then, as 
discussed in §2.9, the supersymmetry will be unbroken, but the internal 
(global) symmetry may be broken. 

For example, we may take a theory with three  chiral superfields S,  T,  N,  
with Sand Ttransforming as in (3.41), (3.47) under a U(l) global transform­
ation, and N  invariant: 

S--'>  S'  = (3.70)e-2iq1\S  

T  --'> T'  = e2i qAoT  (3.71) 

N--'>  N'  = N  (3.72) 

where Ao is the constant chiral superfield. Then 

W(S,  T,  N)  = iN  +  )'STN  (3.73) 

is invariant under the U(l) transformation. The requirement (3.69) that the 
F-terms all vanish gives the simultaneous equations 

).tn  = 0 (3.74a)  

).sn  =  0 (3.74b)  

).st  + i=  0 (3.74c)  

for the vacuum expectation values s, t,  n  of the scalar components 

(CfJs)o  = s (3.7Sa)  

(CfJT)O  = t  (3.7Sb)  

(CfJN)O=n  (3.7Sc)  

of the three superfields. The solution 

n  = 0 st  = if),  (3.76) 

requires sand t  to be non-zero and hence (spontaneously) breaks the U(l) 
invariance. We therefore shift the fields CfJs,  CfJT  by 

CfJs  = s +  r{;s  (3.77a)  

CfJT  = t  +  r{;T'  (3.77b)  

The potential is then 

V(r{;s,  r{;T,  CfJN)  = ).21(t  +  r{;T)CfJNI 2  +  ;.21(s +  r{;s)CfJNI2  

+  I).(s  +  r{;s)(t  +  r{;T)  + il 2 

=  ). 2(S2  +  t2)CfJ Nt CfJ N  

+  ;.2(Sr{;T  +  tr{;S)\Sr{;T  +  tr{;s)  +  ...  (3.78) 

where we have used (3.74), and the unspecified terms ... are the cubic and 
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quartic couplings of the scalar fields. Evidently there are two massive scalar 
fields with squared mass A 2(S2  +  t 2),  as well as the massless Goldstone boson 
mode (proportional to) - t<p  T  +  s<p s. (It is easy to see that this is in accord 
with the general treatment given in Chapter 13 of Bailin and Love(2) in which 
we showed that (in a V(l)  theory) the mode 'Lqivi<Piis  massless, where Vi  are 
the VEVS of the scalar fields CPi')  

Since supersymmetry is unbroken, there must also be a mass less Gold­
stone fermionic mode. This can be verified using (2.56), which exhibits the 
Yukawa couplings in a theory involving chiral superfields. The scalar 
couplings generate fermion mass terms when we make the shifts (3.77) 

1  - t­
- 2Aijk1/J/lp/CfJk  + CPk  ) = - A1/JN(S1/JT  + t1/Js)  + . . . (3.79) 

where ... refers to the Yukawa couplings of the shifted fields <Ps,  <PT,  CPN'  As 
anticipated the fermionic mode proportional to - t'l'T  +  s'l's is the 
massless Goldstone fermion. 

Now let us consider the spontaneous breaking when the V(l)  symmetry is 
local. We know, of course, that the massless gauge boson will become 
massive, and because supersymmetry is unbroken there must also be a 
massive gaugino: the erstwhile massless Majorana field AM  combines with 
the massless Goldstone fermion mode to generate a massive Dirac fermion. 
This is the supersymmetrized Higgs mechanism. 

The Lagrangian for the V(l)  local gauge-invariant version of the simple 
model we are studying is 

:£ = ~(waWa)F + (ST e2qVS  + Tt  e-2qVT  + NTN)D  

+  ([W(S,  T,  N)]F  +  He). (3.80) 

The potential is now 

V(cps,  CPT,  CPN)  = FstFs  + F/FT  + F,/FN  + iD2  (3.8Ia)  

where 

.  aw 
Fs'  = - - = - ACPTCPN  (3.8Ib) 

aCfJs  

F/  =  - ACfJSCPN  (3.8Ic) 

Fl'./  =  - (AcpSCPT  +  f)  (3.8Id)  

D  = - q(cp/cps  - CP/CPT)'  (3.8Ie)  

Thus the (supersymmetry-preserving) minimum is when 

s=t=-VjiX  n  = o.  (3.82) 

As usual the covariant derivatives of the scalar fields in (3.58) generate the 
vector boson mass terms 
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m/  = 2q2(i  +  r)  = 4q2f1A.  (3.83) 

However, the same scalars' VEVS also generate a bilinear coupling of the 
gaugino field AM  to the fermion matter field 'If  in (3.58). This gives 

mA  = 2qVfiJ.  (3.84)  

as anticipated because of the preserved supersymmetry. 

3.5  D-term  supersymmetry breaking 

So far, we have insisted that the non-zero VEVS of the scalar fields preserve 
the supersymmetry, and certainly if this is possible it will be the global 
minimum of the potential, as discussed in §2.10. However, for the gauge 
theories that we are considering there is an additional method of breaking 
supersymmetry, besides the F-term  method of Chapter 2. The new method 
utilizes the field D(x)  of the vector superfield. 

We noted in §2.9 that spontaneous breaking of supersymmetry requires 
that some field in the theory, which is not invariant under the supersymmetry 
transformation, acquires a non-zero VEV. For the chiral superfield the only 
possibility is the field F(x).  When there is a vector superfield present there is 
the possibility that the field D(x)  has a VEV 

,OiD(x)iO)  =  d  =P  O. (3.85) 

In other words the D-field is an order parameter for spontaneous supersym­
metry breaking via the vector superfield, just as the fields Fi  are for breaking 
with chiral superfields. Notice that (3.85) is the only way to achieve a non­
zero variation under the supersymmetry transformations (3.15), (3.16), 
(3.17), (3.18) without  breaking Lorentz invariance. This means that the 
gaugino field }'a(x)  has a variation 

,OiO;Aa(x)iO)  = - i  £ad  =P  O. (3.86) 

This non-vanishing of d  is consistent with our earlier observation that to 
break supersymmetry it is necessary for the effective potential V  to possess 
no supersymmetric minimum. The field D(x)  contributes iD2  to V,  as is 
apparent in (3.81a),  so with d  =P  0 we have 

V;:.  id 2  > O. (3.87) 

At first sight, the D-term  method of supersymmetry breaking looks 
unpromising since for a U(l) gauge theory interacting with chiral superfields 
<Pi having charges ei,  the generalization of the Lagrangian (3.49) yields 

D  = - I  eiC{J/C{Ji  (3.88) 

as a generalization of (3.55b).  
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Thus d  is zero if the scalars CPi  have zero VEVS, and supersymmetry is 
unbroken. Further, since the supersymmetric state is always stable, it will be 
the preferred state. (Of course, depending on the superpotential W(<I>J  it 
may be that zero VEVS for all CPi  is not allowed, and then supersymmetry is  
broken.) However, the D-term  method that we wish to discuss does not rely 
on the superpotential. Indeed it is most simply realized when W,  and 
therefore the F-terms,  are absent. It  utilizes the fact that (for a U(l) gauge 
theory only) there is an additional gauge-invariant supersymmetric term 
that may be added to the Lagrangian. This is (proportional to) the D-term  of 
the vector superfield 

:£1  = ~D(x). (3.89) 

We have already noted that the D-term  of any vector supermultiplet yields a 
supersymmetric action, and for the U(l) gauge theory, we noted also that 
the D-term  is gauge invariant. The addition of such a Fayet-Iliopoulos(3) 
D-term  changes the equation (3.88) for the auxiliary D-field to 

D  =  - (~+ I  eiCP/cp}  (3.90) 
I  

It is then possible to break supersymmetry in a gauge theory with just a single  
chiral field <I> having charge e.  The Lagrangian is 

:£  = tz(W"'W",)F+  (<I>t e2eV<l»D  +  ~(Vb. 

The superpotential, and therefore the F-term,  is forced to vanish because of 
U(l) invariance and 

D  = - (~ +  ecp  t cp)  .  (3.91) 

If  ~e <  0 we get a vanishing D  with a non-zero VEV for cp.  This provides 
another example of the supersymmetric Higgs mechanism discussed in the 
previous section. However, if ~e >  0, we minimize V(cp)  = iD2  by choosing 
a zero VEV for cp.  Thus the U(l) gauge invariance is unbroken, but since 
d  = - ~ ¥- 0 the minimum of Vis ~~2 and supersymmetry is (spontaneously) 
broken. In fact 

V(cp)  = i(~ +  ecptcpf  (3.92) 

so the scalar field cP  acquires a non-zero mass 

m/=e~ (3.93) 

while its fermionic partner 1/J  remains massless, thereby verifying that 
supersymmetry is broken. The unbroken gauge invariance ensures that the 
gauge field V,u  remains massless, as does its superpartner the gaugino field A. 
However, the masslessness of A is due to it being the Goldstone fermion 
associated with the spontaneous breaking of global supersymmetry; it is 
called the 'Goldstino'. 
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A similar phenomenon arises in the (more realistic?) model (3.49) which 
represents a supersymmetric extension of quantum electrodynamics. When 
we add the Fayet-Iliopoulos term (3.89) the only effect is upon the scalar 
sector: the fermion sector does not feel the broken supersymmetry. The D­
term in (3.58) is modified to 

H~ +  e(cp/cps  - cp/CPT)f  (3.94)  

so 

m~ = m2  +  e~ (3.95a)  

m}=  m2  - e~ (3.95b)  

but 

m1jJ=m.  (3.96) 

3.6 Supersymmetric non-abelian gauge theories 

If supersymmetry is realized in nature, it is certainly at an energy scale that is 
higher than that of the electroweak scale. It  is therefore essential to have a 
supersymmetric extension not only of the U (1) abelian gauge invariance, as 
discussed in the preceding sections, but also of the non-abelian gauge 
invariance that occurs in electroweak theory, quantum chromodynamics 
and grand unified theories. 

Suppose that we have a chiral superfield <I>  transforming as an (irreduc­
ible) representation of a non-abelian group G. Under a gauge transform­
ation 

<I>  ~ <I>  1  =  exp( - 2i gta Aa) <I>  (3.97) 

where the A a  are chiral superfields and the Hermitian matrices t a  constitute 
the representation of G to which <I>  belongs. That is to say, 

[ta,  tb]  =  irbCtC  (3.98) 

where the rbc  are the totally antisymmetric structure constants of G. Then 

<l>t ~ <l>tl = <l>t exp(2igtaAat ).  (3.99)  

The (non-abelian) gauge-invariant combination of superfields that is 
analogous to the abelian case (3.45) is 

<l>t exp(2gtaV a)<I>  (3.100)  

where V a  are the vector superfields contammg the non-abelian vector 
bosons belonging to the adjoint representation of G. The gauge invariance 
of the above combination follows provided that the gauge-transformed 
vector superfields V al  satisfy 
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exp(V')  = exp(-iAt) exp(V)  exp(iA) (3.101a)  

where 

A  == 2gAata  V=  2gvata.  (3.101b)  

It  should be noted that the above equation does  have a solution for 
V'  = 2gV lata  precisely because the matrices t a represent the generators of a 
group. As in the non-supersymmetric case, it suffices to consider an 
infinitesimal gauge transformation in which we neglect terms of order A 2 . 

Even so, the general solution of (3.101) is non-trivial and requires the use of 
the Baker-Hausdorff formula. However, we shall content ourselves with 
the first few terms. We write 

exp(V')  - exp(V)  = 6V  +  ~(6V V  +  V  6V)  

+  M 6 V  V2  +  V  6 V V  +  V2  6 V]  +  ...  (3.102a)  

where 

6V==  V'  - V.  (3.102b)  

For infinitesimal A 

exp(-i At) exp(V)  exp(i A) - exp V  =  i(A - At) 

.(  t  i  (2 t 2+1  VA-A  V)+- V  A-A V)+'"  (3.103)2 . 

Then substituting into (3.101) we can solve (perturbatively) for 6V giving 

6V=  i(A - At) +  ~[V,A +  At] +  1i2 [V,  [V,A - At)) +  ....  (3.104) 

In  terms of the superfields we get 

V a,  - V a  =  i(Aa - Aat ) _ grbcVb(N  +  Nt) 

- ~ 3 irbcrdevbvd(Ae  _ Aet) +  ...  . (3.105) 

Then it is easy to see that the first two  terms generate the familiar gauge 
transformation of the non-abelian vector potential 

v~a = V~ +  aicrf  +  cpat)  +  grbc(cpb  +  cpbt)V~ (3.106)  

where cpa  is the (leading) scalar term of A a.  As before, we shall work in the 
Wess-Zumino gauge of the superfields V a .  However, a general choice of the 
gauge superfield Aa will yield a V a ,  that is not in  the Wess-Zumino gauge, 
although it can be transformed to it by a supersymmetry transformation. If  
we require that both V/Q  and V a  are in the Wess-Zumino gauge, so that 
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VIGV'bv,c  = 0 (3.107) 

then we must choose A a  such that 

VaVbAc  = 0 (3.108) 

in which case the third and succeeding terms of (3.104) vanish and we get 

dVwZ  = i(A - At) +  ~ [Vwz, A +  At]. (3.109)
2 

To construct the non-abelian field strength superfield, analogous to 
(3.29), we first need to generalize the supersymmetric covariant derivatives 
to be gauge and  supersymmetric covariant(4). We define these as 

VA (A  = ft,  a,  a)  (3.110) 

and having the property that if a (matter) superfield <I> transforms as in (3.97) 
under a gauge transformation, then the (supersymmetry- and) gauge­
covariant derivative <I> transforms as 

(VA<I»'  = exp( -i A)(VA<I»  (3.111) 

using the notation (3.101). Thus 

VA'  = e-i  AVA  ei  A (3.112) 

Since A  is a chiral superfield, 

Dc,A  = 0 = D",At  (3.113) 

we may choose 

Vei:=Dei: (3.114) 

and then 

Vc,' = Vc,. (3.115) 

We also define 

V",=e-VD",e v (3.116) 

in the notation of (3.101) so that using (3.113) 

V",' = e- v'  D",eV'  = e-iAe- V  eiAt DOle- iA+  e V  eiA 

= e-i A e - v  D  ev  eiA= e-i  A V e i  A (3.117)
'"  '"  

as required. Finally we can define V,u by a gauge-covariant generalization of 
the supersymmetry algebra: 

{V"" Vc,} == 2i o'!!a  V,u. (3.118) 
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We leave the construction ofY'fl  as an exercise. The form (3.116) ofY'a  can be 
expanded as 

iY'a =iD a  +ie-V(D a  eV)  (3.119) 

which invites the interpretation of the second term as a (supersymmetric) 
gauge connection: 

fa==ie-v(Da ev).  (3.120) 

Under a gauge transformation we get, as in (3.117), 

fa' = ie-V'(Daev')  = e-iAfaeiA +  ie-iA(DaeiA) (3.121) 

characteristic of a gauge connection. In  the abelian case fa reduces to 

fa =  2igDaV  (3.122) 

and consulting (3.29) this suggests that the non-abelian generalization of the 
field strength (spinor) superfield is given by 

Wa  == (2i g)-11)2fa  = (2g)-11)2 e-V(Da  eV).  (3.123)  

It  is easy to see that Wa  transforms covariantly, since the (inhomogeneous) 
last term of (3.121) drops out because A is chiral. 

Expanding in powers of V  gives 

-i fa =  DaV  +  MDaV,  V]  + . . .  (3.124) 

and in the Wess-Zumino gauge only the first two terms survive. In  terms of 
the component superfields we get 

W~ = 1)2 Dava  +  igrbc1)2(DaVb )VC  (3.125) 

and the effect of the second term is to convert the ordinary derivatives in 
(3.36) into gauge-covariant derivatives. Thus we get 

W~ = 4i,1.~ +  [46~ Da(y)  +2i(aflaV)/V~v(y)]ef3 

+  4e2a~a qnflXaa(y)  (3.126a)  

where 

V a  == B V a  - B V  a  - gjabcvbvc  (3.126b) flY  fl  v  v  fl  fl  v  

qnflX aa  = BflXaa  - grbCV/Xca.  (3.126c)  

Then, as in (3.37), the (pure) gauge-invariant and supersymmetric contri­
bution to the Lagrangian is given by 

:£v  =  l4[(waaw a a)  +  (wa at)(waat)]F  

=  _lVa  Vafl v  +  i,1.aaflqn  Xa +  IDaDa  
4  flY  fl  2  (3.127) 

in the Wess-Zumino gauge. Similarly when we calculate the gauge inter­
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action (3.100) with the chiral matter supermultiplet <P the only difference 
from (3.53) is that the gauge-covariant derivatives are now those of the non­
abelian theory: 

:£4> = [<Pt eV<plD = (9JJj.lcp)t(q]/"CP)  +  i  1jJoj.l9JJj.ltij;  +  FtF  

+  i  V2g( cP  t  ta Aa1jJ  - ij;ta 2acp)  +  gcp  t  ta  Dacp  (3.128a)  

where 

qn~cP =  aj.lcp  +  i  gtav~cp. (3.128b)  

In  general, in physical applications, there are several chiral supermulti­
plets <P(i) transforming as possibly different representations of the gauge 
group G. Then, of course, for each :£4>(1) we use for V  the matrix defined in 
(3.101b)  but constructed with the representation tCi)  appropriate to <P(i)'  
Then the final part of the Lagrangian is given, as before, by the F-part  of the 
superpotential 

:£int  = [WC  <P(i») +  HCIF  (3.129) 

which is required to be invariant under the action of G  (as well as no more 
than cubic in the superfields <P(i»)'  Then the auxiliary fields are given by 

.  aw FT - ___ (3. BOa) (i)  - acp(i)  

Da  = - I  gcp(i)tCi)CP(i)  (3.130b)  

and the tree level approximation to the effective potential is 

V(CP(i»)  = I  laawI2  +  ~g2 I  (I  CP(il(i)CP(i)f,  (3.131) 
i  CP(I)  a  i  

The simplest illustration of this is supersymmetric QCD with a single quark 
flavour. As for the U(l) case, we need two chiral supermultiplets which we 
denote by <Ps and <PT where <Ps includes the left chiral component of the 
quark field and <PT the left chiral component of the anti-quark field; <p/ 
then includes the right chiral component of the quark field. Under a gauge 
transformation <Ps transforms as in (3.97) 

<Ps ~ <Ps' = exp( - 2i g3ta Aa)<Ps (3.132) 

where t a  are the eight 3 x 3 matrices constituting the 3 representation of 
SU(3). Since <PT constitutes a 3' representation 

<PT ~ <Pr' = exp(2i g3ta*  Aa )<p T .  (3.133) 

It  follows that the transpose 
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<l>TT  ~ <l>/  exp(2ig3taAa)  (3.134) 

and so 

W(<l>s,  <l>T)  = - m<l>TT<l>s  (3.135) 

is SU(3) invariant, and 

V(  )  - 2( t +  t ) +  l~[ Tta  Ta*  ]2 ({Js,  ({JT  - m  ({Js  ({JS  ({JT  ({JT  253 ({JS  ({JS  - ({JT  t  ({JT  (3.136) 

is the (tree level) effective potential. (In the above we are denoting by g3 the 
(SU(3» QeD  coupling constant, to avoid confusion with the electroweak 
coupling constants (g,  g' ) that arise in §3.7.) 

As in (3.58) we may express the Lagrangian in terms of the quark's Dirac 
spinor field 'I'  and the gaugino Majorana spinor fields AM  

5£  = i  'liy,uS!j\,'I'  - m'li'l'  +  (q];,u({Js)t(q];,u({Js)  - m2({J/({Js  

+  (q];,u({JT*)t(q];,u({JT*)  - m2({J/({JT  - ig~«({Jstta({Js - ({JTTt a({JT*)2  

+  ~ [AM«({JsT  +  ({J/)ta'l'  +  AM«({JTT  - ({JST)  i  Y5ta'l'  

- 'lita«({Js  +  ({JT*)AM  +  'lita«({JT*  - ({Js)  i  YsAM]  

_  IVa  Va,uv  +  .:  Aa  y,u  q];  Aa (3.137)4  ,uv  2 M  ,u  M  

where 

q];,u({Js  = a,u({JS  +  i  g3taV~({JS (3. 138a)  

q];  Aa = a  Aa - g  fabcVb AC ,u  M  ,U  M  3  ,u  M'  (3. 138b)  

3.7 Supersymmetric  electroweak  theory  

It  is also instructive to write down a supersymmetric version of the 
SU(2)L x U(l)y gauge theory which has been so spectacularly verified by 
experiments during the past twenty or so years. In particular we must 
construct a supersymmetric version of the (non-abelian) Higgs mechanism 
that is required to break the gauge symmetry and generate masses. Thus 
besides introducing chiral superfields for each of the chiral components of 
the known fermions, we must also assign the fields of the electroweak Higgs 
scalars to chiral superfields. It would be nice if we could economize by 
placing these in the same superfields as some of the known fermions. For 
example, the chiral supermultiplet <l>(Ed  which contains the electron 
doublet (VeL' ed  will also have a scalar doublet component with the same 
electric charges (VeL, eL),  which a  priori  could be used to generate masses 



77 SUPERSYMMETRIC ELECTROWEAK THEORY 

for the down-like quarks and charged leptons. In the non-supersymmetric 
theory the up-like quarks acquire their masses using the charge-conjugate 
doublet (-et,  v~d, but in the supersymmetric theory this will be associated 
with the right  chiral antiparticle doublet (-ek,  V~R) which appears in 
<pt(Ed. It  therefore cannot be used in the superpotential W(<P(i)  which, as 
was shown in Chapter 2, must be constructed entirely from left chiral 
superfields. Thus, in order to generate masses for the up quarks, we are 
forced to introduce a new left chiral supermultiplet <P(HI )  having weak 
isospin !  but hypercharge !,  which includes a scalar doublet (Ht,  H?).  
Further since there is also a new charged chiral fermion in this supermulti­
plet, we must ensure that it can be given a Dirac mass, since a Majorana mass 
will break charge conservation; in any case we require a mass term for the 
scalar doublet in order to drive the spontaneous symmetry breaking. The 
cheapest solution is therefore to introduce a further chiral supermultiplet 
<P(H2)  having weak isospin !  and hypercharge -!,  which contains a scalar 
doublet (Hg,  H2).  Then <P(H2)  is used to give masses to the down-like 
quarks and charged leptons and <P(HI )  to give masses to the up-like quarks. 
Thus in the minimal supersymmetric electroweak theory there are two  chiral 
supermultiplets besides those needed for the known matter fields. 

We denote the three doublet superfields that contain the (left chiral) 
lepton doublets by L  (I)  (l  = e, /-l,  i).  Similarly the quark doublets are in the 
superfields Q(f)  (f = 1, 2, 3) with an undisplayed colour index running over 
the three labels which constitute the 3 representation of SU(3). The singlet 
superfields are denoted by IC,  uc(f),  Dc(f)  where the three family labels 
indicate the flavours u,  c, t  in U(f)  and d,  s, b  in D(f);  the superscript c 
indicates charge conjugate, and for the quark fields there is an undisplayed 
colour index running over the three components of the 3representation. We 
also abbreviate our earlier notation and denote the two Higgs doublet 
superfields by HI,  H 2 .  Then the Yukawa couplings necessary to generate 
masses for the charged leptons and quarks ,uise from the F-part  of a 
superpotential of the form 

W  = I  m(I)(L(I)Ti  i2H2W  + I  m}:)(Q(f)T  i  i2H2)Dc(g)  

I  j,g  

+ I  m};)(Q(f)T  i  i2Hduc(g)  (3.139)  
j,g  

where m(u)  and m(d)  are (proportional to) the up-like and down-like quark 
mass matrices. (The factor i i 2  is just the matrix Ea{3  used to construct an 
SU(2) singlet from two doublets of the internal symmetry group, just as we 
did in (1.73) for the space-time spinors.) In the two terms involving quark 
fields an implicit sum over the (three undisplayed) colour labels is assumed. 

The remaining parts of the Lagrangian are simply written down using the 
techniques developed in the earlier sections of this chapter. We denote by 
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Wc/  (i  = 1,2,3) and Ba  the field strength superfields of the SU(2) and U(l) 
gauge theories, so as in (3.125) and (3.29) 

w~ = Jj2DaWi  +  ig€ijkJj2(DaWj)Wk  (3. 140a)  
-2

Ba=  D  DaB  (3.140b)  

where W i ,  B  are the vector superfields. Then the supersymmetric pure 
gauge Lagrangian is 

:£  = ...L[wiawi  +  witwiat  +  2BaB  ]  (3.141)v  64 a a a F'  

The interaction of the gauge supermultiplets with the chiral matter and 
Higgs supermultiplets is fixed by their weak isospin and hypercharge 
quantum numbers: 

:£<1>  = [I L(l)t  exp(i gT' W - i g'B)L(I)  

I  

+ I  Q(f)t exp(i gT . W  + ~i g' B)Q(f)  

f  

+ I  uc(f)t  exp( -ji g' B) Uc(f)  + I  Dc(f)t  exp(~i g' B)DC(f)  

f  f  

+ I  let exp(2i g' B)IC  +  HI t exp(i gT . W  +  i g' B)HI  
I  

+  H2t exp(i gT' W - i g' B)H2L.  (3.142) 

We leave it as an (extended) exercise to express the Lagrangian in terms of 
the component fields, and to eliminate the auxiliary fields. 

We might also use the technology developed in this chapter to formulate a 
supersymmetric grand unified theory, which unifies supersymmetric QeD  

and supersymmetric electroweak theory in a single (supersymmetric) 
theory. However, we shall postpone that pleasure until Chapter 6. The 
reason is that the scale at which such a symmetry is apparent is even higher 
than in the non-supersymmetric case, discussed in Chapter 16 of Bailin and 
Love(2). In  fact the scale (1016 GeV) is comparable with the Planck energy 
(1019 GeV) at which we are forced to discuss quantum gravity. At this scale 
instead of supersymmetry being a (rigid) global symmetry, we must allow it 
to be a local symmetry, just like the gauge symmetries. Such theories are 
called 'supergravity' theories and their formulation is the topic that we begin 
to address in the following chapter. Before doing that, however, we can at 
least see why the unification scale is pushed to an even larger energy by 
(global) supersymmetry. 
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3.8  The  renormalization  group  equations  

We recall first that the renormalized coupling constants necessarily depend 
upon the scale M used in their definition. Since the physics described by the 
(bare) Lagrangian is independent of M, it must be that coupling constants 
'run' with M, and so physical quantities calculated with different values of M 
have the same values, provided that they are cakulated to a sufficiently high 
order. The renormalization group equations specify precisely how the 
renormalized coupling constants vary. We saw in Bailin and Love(2) (Chap­
ter 12) that for a general gauge group G with coupling constant g  the fine­
structure constant 

a  == g2/4n  (3.143) 

satisfies 

M~= _ b  2  (3.144a) dM 2n  a  +  O(a3)  

where 

b  = ¥C](G)  - j  L CiR)  - ~ L C2 (S)  (3.144b)  
R  S 

with 

C]CG)6 ab  = redfbed  (3.144c)  

where rbe  are the structure constants of G, defined in (3.98). The sum over 
R  is for Weyl fermions in representations T R  of G and 

CiR)6 ab  = tr(TRaT/).  (3.145)  

The sum over S is for scalars in representations Ts  of G and C2(S)  is defined 
analogously to CiR).  

In  a supersymmetric theory the gauge bosons are accompanied by 
gauginos, in the same (adjoint) representation of G. Thus the vector 
supermultiplet contributes 

bey)  = ¥C](G)  - jC](G) = 3C]CG) (3.146) 

to b.  Similarly in a chiral supermultiplet each Weyl fermion is accompanied 
by a scalar in the same representation of G, so their contribution is 

b(<I»  = - §C2(R)  - j-C2CR) = - C2CR). (3.147) 

In  all we have 

b  =  3C1CG) - I  C2(R)  (3.148) 
R  

with the sum being over the representations R  of all chiral supermultiplets. It  
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follows that for the supersymmetric standard model, described in the 
previous section, we have for the QeD  group SU(3) 

b3  = 9 - 2no  (3.149) 

where no  is the number of (fermion) generations. Similarly, for the SU(2) 
group we have 

b2  =  6 - 2no  - ~nH (3.150) 

where nH  is the number of Higgs doublets, and for the U(l)y group 

IOI b1 = - -:r-no  - ZnH . (3.151 ) 

Integrating (3.144) between m  z and (the unification scale) m x  gives 

b  mx 
-I  )  -I(m)  =  ------'-In-. (3.152)ai  (mz  - ai  x  27C  mz  

The unification scale (mx)  is defined as the scale at which all three (properly 
normalized) coupling constants have equal value. Thus 

a3(mX)  = a2(mX)  = ~al(mx) == aOUT(mX)'  (3.153)  

The origin of the factor ~ was explained in Bailin and Love(2), and derives 
from the requirement that the U(l)y is associated with a (diagonal) gener­
ator of SU(5) whose normalization is determined by (3.145). The same 
normalization also arises in SO(10) and 'flipped' SU(5) x U(l). Eliminating 
the a  priori  unknowns aOUT(mX)  and In mx/mz  constrains the values of 
ai(mZ)  through the relation 

[8b3  - 3(b l  +  b2)]  sin2Ow(mz)  

=  3(b3  - b2)  +  (5b2  - 3b l )aem(m z )  (3.154)
a3(mZ)  

given in (16.45) of Bailin and Love(2), for example. a em  is the ordinary 
electromagnetic fine-structure constant and Ow  is the weak mixing angle 
defined by 

tan2Ow  == a 11a2'  (3.155) 

Using the supersymmetric values of the b i  given in (3.149)-(3.151) gives 

(54 +  3nH)  sin2 Ow(mz)  =  9 +  ~nH +  (30 - nH)  aem/m~) (3.156)  
a3  mz  

independently of no.  In the minimal supersymmetric model 

nH  = 2 (3.157) 

as we have seen in §3.7, and the fine-structure constants have the values(5) 
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aem -l(mz)  = 128.8 (3.158) 

a3(mZ)  = 0.108 ±  0.005. (3.159) 

Then (3.156) gives 

sin2  8w(mz)  =  0.234 (3.160) 

whereas experimentally 

sin2 8w (mz)  = 0.2336 ±  0.0018. (3.161) 

Thus the supersymmetric renormalization group equations 'predict' 
sin2 8w with remarkable accuracy. Put another way, starting with the 
measured values of the three gauge coupling constants the renormalization 
group equations predict that all three achieve the same value at the 
unification scale mx.  In  contrast, the non-supersymmetric equations ex­
clude such a single unification scale by seven standard deviations. (The value 
of sin2 8w predicted is 0.21.) This looks like excellent circumstantial evi­
dence for supersymmetry and grand unification. The unification scale is also 
independent of nG  and given by 

(18 +  nH) In mx  = 2n[aem -l(mz)  ­
mz  

~a3 -\mz)].  (3.162) 

Using 

mz  = 91.176 ± 0.023 GeV (3.163) 

this gives 

mx = 1.46 x  1016 GeV (3.164) 

which is only three orders of magnitude from the Planck scale, and 
comfortably consistent with the measured lower bounds on the lifetime of 
the proton, as we shall see. In contrast, the non-supersymmetric theory gives 
mx  = 5  x  1014 GeV, which is excluded by the data. 

The common value aGUT(mX)  of the three coupling constants is given 
by 

(18 +  nH)aGUT-l(mx)  =  a3  -l(mz)( -6 +  ¥nG  +  nH) 

+  (9 - 2nH)aem -1(mz).  (3.165) 

We take(6) 

nG  = 3 (3.166) 

as conclusively shown by the LEP experiments, and then 

aGUT-1(mx)  = 25.8. (3.167) 
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Exercises  

3.1  Verify (3.7). 


3.2  Verify that the F-part of waWa  gives the expression (3.37). 


3.3  Verify (3.109). 


3.4  Construct V,u  using (3.118). 


3.5  Verify (3.126). 


3.6* Express the Lagrangian (3.142) in terms of the component fields and 

eliminate the auxiliary fields. 
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4 

PURE  SUPERGRA VITY  

4.1  Introduction  

Most symmetries in particle physics are realized as local symmetries (gauge 
symmetries) rather than mere global symmetries. This suggests that super­
symmetry should also be realized as a local symmetry. Then the group 
parameters gand alA  in (2.10) should be allowed to be functions of the point 
in space-time. In particular, because the supersymmetry algebra contains 
the generator of translations PIA'  we should consider translations that vary 
from point to point in space-time. Thus, we expect local supersymmetry to 
be, among other things, a theory of general coordinate transformations of 
space-time, and so a theory of gravity. The theory of local supersymmetry is 
therefore referred to as supergravity. 

It might  be thought that supergravity effects could be neglected at the 
electroweak scale, and that global supersymmetry could then be used rather 
than local supersymmetry. However, there are phenomenological consider­
ations that suggest that supergravity effects are important even at such low 
energies. For instance, in theories with F-term  supersymmetry breaking, 
equations (2.115) and (2.116) show that at tree level a fermion such as a 
lepton has a scalar supersymmetric partner of higher mass than itself and 
another of lower mass than itself. This does not occur in the real world and if 
the theory is to be phenomenologically acceptable it is necessary for the 
quantum corrections to STr M2  to be significant. In realistic models of this 
type the supersymmetry-breaking scale Ms  (where Ml is  the expectation 
value of the F-term  responsible for supersymmetry breaking) is typically 
found to be 1010-10 11 GeV (more details of such models may be found in the 
review of Nilles(l»). In these circumstances, effects of supergravity cannot be 
neglected. Specifically, we shall find in Chapter 5 that, in the presence of 
supersymmetry breaking, scalar particles in supergravity theory acquire 
masses of order Ml Imp  where mp is the Planck mass (~1019 GeV). For Ms  
of order 1010 to 1011 GeV, these contributions to the scalar masses are of 
order 102 GeV and may not be neglected. It is therefore prudent to consider 
supergravity from the outset. 

In this chapter, we shall consider pure supergravity without couplings to 
matter fields. A pure gravity theory would involve only the spin-2 graviton. 
A pure supergravity theory will have to include in addition the super­
symmetric partner of the graviton. From §1.4 it can be seen that the spin-2 
graviton could belong either to a supermultiplet containing a spin-~ particle 
or to one containing a spin-~ particle. It  is well known that theories 

DOl: 10.120119780367805807-1 
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containing particles with spins greater than 2 tend to have undesirable 
features, and it is therefore natural to assume in formulating supergravity 
that the supermultiplet of the graviton (the supergravity multiplet) contains 
a spin-~ particle, referred to as the gravitino. (It will be seen in §5.3, when 
the coupling of the gravity supermultiplet to matter is considered, that this is 
the correct choice, because the gravitino is the 'gauge field' associated with 
the local supersymmetry transformation.) 

The problem of constructing the locally supersymmetric Lagrangian for 
the supergravity multiplet (the pure supergravity Lagrangian) can be 
tackled in two stages. First, construct the globally supersymmetric Lagran­
gian for the supergravity multiplet, and second use the Noether procedure to 
derive the locally supersymmetric Lagrangian from the globally super­
symmetric Lagrangian. In the next section we shall show how the Noether 
procedure works for the simpler case of an ordinary global symmetry, before 
proceeding in the subsequent section to the construction of the supergravity 
Lagrangian. 

4.2  The  Noether  procedure  

The Noether procedure is a systematic technique for deriving an action with 
a local symmetry from an action with a global symmetry. The simplest 
example of this procedure is obtained by considering the action for a free 
massless Dirac field 1/J, 

50=iJd4X1Pyflau1/J.  (4.1)  

This action is invariant under the transformation 

1/J ~ e-i  f1/J (4.2) 

where E  is a constant phase, i.e. 50 has an abelian global symmetry. To make 
the transformation local we allow E  to depend on the space-time coordinates 
and consider 

ljJ  ~ e-i  f(X)1/J. (4.3) 

However, as it stands 50  is not invariant under the local transformation but 
instead changes by an amount 

Cl50 = J d4x  1Pyfl1/J  aflE  = J d4x r  aflE  (4.4) 

where 

r  = 1Pyfl1/J  (4.5) 
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is the Noether current associated with the symmetry (4.2) of So.  
To restore invariance a gauge field A  f.I- is introduced that transforms under 

(4.3) as 

Af.I-~Af.I- +  af.l-E  (4.6) 

and a term coupling Af.I- to the Noether current is added to the action to 
obtain the modified action 

S  = So  - I d4xjf.l-Af.I- = I d4xi  ijJyf.l-(af.l- +  iAf.I-)1jJ.  (4.7) 

The action S  is then invariant under the local symmetry (4.3) and (4.6). (Of 
course, S  is just the action for the quantum electrodynamics of the Dirac 
field, apart from the kinetic term for the electromagnetic field Af.I- which is 
separately invariant, and with the electromagnetic coupling constant 
absorbed in the definition of Af.I-.)  

In this simple example, the locally invariant action was achieved in a single 
stage, because the variation of the term - J d4x  jf.I-Af.I- added to So  exactly 
cancelled the variation of So  under the local transformation. More generally, 
for example for an initial non-abelian global symmetry, the cancellation only 
occurs correct to lowest order in some expansion parameter, and the process 
has to be iterated. At each stage, a further term is added to the action to 
cancel its variation correct to the next order in the expansion parameter, 
and, in general, for this to occur it is also necessary to add further terms to 
the transformation law (equation (4.6» of the gauge field (in such a way that 
the algebra of transformations still closes). After a finite  number of 
iterations (with luck) an action is obtained that is exactly invariant under the 
local symmetry, i.e. under the form of (4.3) and under the final  form of (4.6) 
appropriate to the symmetry being studied. 

To fill out the above general remarks, we now carry through the Noether 
procedure to derive the pure gauge field action for non-abelian gauge 
theory(2) from the globally symmetric action 

S  =  - 4 1  I G  f.l-VG f.l-V a d4x  (4.8)o a  

where 

Gaf.l-V  ==  af.l-Aa V - aVAaf.l- (4.9) 

and A/, a  =  1, ... , r,  are vector fields transforming as the adjoint represen­
tation (of dimension r)  of some Lie group. If  Ta  are the generators of the 
Lie group and fabc  are the structure constants defined such that 

[Ta,  Tb]  = ifabcTc  (4.10) 
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then under an infinitesimal  global transformation of the group with param­
eters Ea'  

A/' ~ A/'  +  gJabcEbA/  .  (4.11) 

The action (4.8) is invariant under this transformation. 
In  the derivation of an action with local non-abelian symmetry from the 

globally symmetric action, it will prove useful to notice that the action (4.8) 
is also invariant under the abelian  local transformation 

A/' ~ A/'  +  al'Ea  (4.12) 

where the Ea  now depend on the space-time coordinates. 
The action So  is not  invariant under the transformation (4.11) when Ea  is 

space-time dependent, but changes by an amount 

oSo  =  J d4x  jal'  al'Ea  (4.13) 

where 

.  I'  - ,.(  G  I'V A  C la  - gJabc  b  y  (4.14) 

is the Noether current associated with the symmetry generator Ta.  Invar­
iance is restored, correct to first order in the coupling constant g, by adding a 
term coupling AaI'  to the Noether current to the Lagrangian, and simul­
taneously modifying the transformation law (4.11). In  detail, we replace So  
by 

SI =  So - ~ J d4xjal'AI'a  ( 4.15) 

and modify the transformation law (4.11) by the addition of a term al'  Ea'  SO 

that it becomes 

Aa'u  ~ AaI'  +  gJabcEbA/  +  al'Ea'  ( 4.16) 

The required cancellation of oSo  against the variation of the term coupling 
A/ to the Noether current in (4.15) is achieved entirely (Exercise 4.1) by the 
extra term al'Ea  in (4.16). The modified transformation law combines the 
non-abelian global symmetry (4.11) and the abelian local symmetry (4.12) 
into a single non-abelian local symmetry. 

The action SI is invariant under the non-abelian local symmetry (4.16) 
correct to order g. To achieve invariance correct to order i,  a further 
modification of the action is required, but no further modification of the 
transformation law (4.16). The variation of SI under (4.16) is 

OSI  =  - g2JabJbde  JA/AyCA/  al'Ed  d4x.  ( 4.17) 
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If we replace 51 by 

5 = 51 + ~ iabcibde J A/A/A/ Ai'd4x  ( 4.18) 

(substituting Ai" for  -al"Ed  in the expression (4.17) up to a numerical 
factor) then the variation of the added term cancels 051 correct to order g2,  
and 5 is invariant under the local symmetry transformation (4.16) to this 
order in g. Indeed, a little more effort shows that 5 is now exactly invariant 
(to all orders in g).  

Assembling the terms in (4.18), the final action is 

5 = - 1 4  Jd4x  F I"V a F a I"V  ( 4.19) 

with 

F  I"V  = G  I"V  - go!,  A  I" A  v  al" A  v  - av A  I"  - go!'  A  I" AV  a  a  J abe  b  c = a  a  J abe  b  c (4.20)

which is the usual action for pure non-abelian gauge field theory(2). 
We shall use the general procedure described here in §4.4 to derive a 

locally supersymmetric action for the supergravity multiplet from a globally 
supersymmetric action. 

4.3  The  globally  supersymmetric  Lagrangian  for  the  supergravity  
multiplet  

Before constructing the locally supersymmetric pure supergravity Lagran­
gian, we first obtain the globally supersymmetric (free) Lagrangian for the 
supergravity multiplet of the graviton and its spin-~ partner the gravitino. 
The on-shell free Lagrangian for a chiral supermultiplet discussed in §1.5 
was just the sum of quadratic kinetic terms for the Weyl spinor field and the 
complex scalar field making up this supermultiplet. By analogy, we might 
expect to have to use here the sum of a quadratic kinetic term for the 
gravitino, which we may conveniently describe by a massless Majorana 
vector spinor field 'IT 1", and a quadratic kinetic term for the spin-2 graviton, 
described by a traceless symmetric tensor gl"v'  (As discussed in §1.3, a 
supermultiplet has the same number of bosonic and fermionic degrees of 
freedom. Thus, on-shell the supermultiplet of the graviton contains the two 
bosonic degrees of freedom of the graviton and the two fermionic degrees of 
freedom of a massless Weyl vector spinor, or equivalently a massless 
Majorana vector spinor.) The massless Rarita-Schwinger action(3) SRS  

provides a suitable kinetic term for the gravitino. 
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S - - 1 f d4 ,,"VPO,f,  a ,T,RS- 2 XE 'Y,,"YsYv  p'Ya  (4.21) 

where our conventions for Y,,"  and Ys  are as in §1.2, and E""vpo  is the totally 
antisymmetric Levi-Cevita symbol defined so that 

E0123 = 1. (4.22) 

The graviton Lagrangian requires a little more thought. 
The Einstein action provides the most natural choice of Lagrangian term 

for the graviton, but it is not quadratic  in g,,"v  (indeed not even polynomial). 
This is not surprising because the Einstein action describes a theory 
invariant under local  coordinate transformations and, at this stage, we are 
merely trying to construct a theory with global supersymmetry.  To obtain a 
Lagrangian term that is quadratic in the graviton field we need to use the 
action for linearized Einstein gravity. (The linearized field equation can be 
found in textbooks on gravitation in discussions of gravitational waves(4).) 
Let us write 

gw =  rJw  +  Khw  (4.23) 

where rJw  is the Minkowski metric, and 

K2  == 8.nGN  (4.24) 

where GN  is the Newtonian gravitational constant. (It will sometimes be 
convenient later to take units where K2  = 1.) The factor K  in (4.23) is 
introduced so that h,,"v  has mass dimensions 1, as appropriate to a bosonic 
field describing the graviton. Expanding the Einstein field equation to linear 
order in h,,"v  leads to the action SgINSTEIN for linearized Einstein gravity 
(Exercise 4.2) 

SL - 1 f  d4 
EINSTEIN - - 2 X  (RL ,,"V  2rJ,,"v 1 

 - RL)h""V   (4.25)

where indices 
 

are raised and lowered using rJ wand rJ ""V,  
R;v 

 the linearized Ricci 
tensor is given by 

a2h  a2h"  a2hA  a2h)') RL  =  i (  -~ +  v  +  
aX ax"" 

lA _ 
 ax"  ax  ax 

 
ax"" 

"  (4.26) 
,,"v  a~ A  v  A   ax v   

and the linearized curvature scalar RL  by 

RL  == rJ,,"vR;;v'  (4.27) 

It may now be suspected that the on-shell globally supersymmetric action 
SGLOBAL for the supergravity multiplet is 

SGLOBAL =  SRS +  SgINSTEIN' (4.28) 



89 THE GLOBALLY SUPERSYMMETRIC LAGRANGIAN 

To check that this is the case it is necessary to construct transformations 
connecting the graviton and gravitino fields (h"v  and qru)  which realize the 
N  =  1 supersymmetry algebra and leave the action invariant. Since we are 
constructing an on-shell realization of the supersymmetry algebra we only 
expect the algebra to close correctly provided that we use the field equations 
and, in general, any gauge invariances of the theory. In the present case, the 
field equations are 

RL  = 0 (4.29)"V  
and 

€"vp<JYsYv  ap 'I' 0=  o.  (4.30) 

The Rarita-Schwinger action (4.21) is invariant under the gauge transform­
ation 

qr,,~ '1'" +  a,,17  == '1'" +  01)'1'"  (4.31) 

where 17 is an arbitrary Majorana spinor parameter and the linearized 
Einstein action (4.25) is invariant under the gauge transformation 

h"v  ~ h"v  +  auEv  +  avE"  == h"v  +  o,h"v  (4.32) 

where E"  is an arbitrary four-vector parameter, as can be cpecked directly. 
Consider the global supersymmetry transformation e' W,  where'; is a 

Majorana spinor parameter and Q  is the Majorana spinor supersymmetry 
generator of (1.107). The effect of this global supersymmetry transform­
ation on the supergravity multiplet is expected to be of a form linear in .; and 
the fields, and with the correct symmetry in the indices, 

h"v~ h"v  +  Cl~(y"qrv +  yvqr,,)  +  c217"iypqrp  == huv  +  ol;h"v  (4.33) 

and 

'1'" ~ '1'" +  C30{JT  aphT"';  +  C4  aph/';  == 'I',u  +  01;'1'"  (4.34) 

where 

1O"V  == _ [y",  yV].  (4.35)
2 

(This matrix was denoted by I"v  in Chapter 1 to avoid confusion with a 
related 2 x  2 matrix.) The constant coefficients, Cl, C2,  C3 and C4,  will now be 
determined by the requirement that the transformations (4.31), (4.32), 
(4.33) and (4.34) together with space-time translations form a closed algebra 
that realizes the supersymmetry algebra correctly on-shell up to gauge 
transformations. 

We look first at the action of the commutator of the Ravita-Schwinger 
gauge transformation (4.31) and the supersymmetry transformation on h"v,  
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[01)'  o,;]h,uv  = Cl~(Y,u av'fJ  + Yv   a,u'fJ)  + C2'fJ,uv~YP  ap'fJ.  (4.36) 

This is just an Einstein gauge transformation (4.32) with 

E,u  = Cl~Y,u1J (4.37) 

provided that we take 

C2 =  O. (4.38) 

(Otherwise the algebra does not close.) 
Second, we study the action of the commutator of the Einstein gauge 

transformation (4.32) and the supersymmetry transformation on 'I',u:  

[0"  0,;]'I',u  =  C3aP'(ap  a,uE,);  + C4(a  p aPE,"  + a p a,uEP);.  (4.39)  

This is a Rarita-Schwinger gauge transformation with 

'fJ  = C3aP'  apE,;  ( 4.40) 

provided that we take 

C4  =  O. (4.41) 

Turning next to the action of the commutator of two supersymmetry 
transformations with parameters ;1 and ;2 on h,uv,  we find 

[0';1'  0';2]h,uv  =  CIC3(~2Y,uapT aph,v;1  - ~IY,uaP' aph,v  ;2) + (fA,   ~ v)  (4.42)  

where we have used (4.38) and (4.41). This may be simplified by using the 
y-matrix identity 

Y"Y,uYv  = IJ",uYv  + 'fJ,uvY"   - IJ"vY,u  + i   E",uvpYsYP  ( 4.43) 

and the Majorana spinor identities (1.86). Thus 

[OS1' 0s,lh,uv  = 2i C]C3(~2Y';1 a,uh,v  + ~2Y';1  avh,,u  - 2~2yP;1 aph,uv)  ( 4.44) 

which is the sum of an Einstein gauge transformation (4.32) with 

E,u  = 2i CIC3~2Y';lh,v ( 4.45) 

and a space-time translation. The coefficient of the space-time translation in 
(4.44) is consistent with the supersymmetry algebra (as in (1.184)) provided 
that 

2C]C3  = -1. ( 4.46) 

Finally, we consider the action of the commutator of two supersymmetry 
transformations on 'I' w  After some labour this can be written as 

[OS1' 0s,]'I',u =  2i ~21;] a,,'I',u  - i  a,u(~2}/;]'I'" + !~21;]Y"Yp'l'p)  (4.47)  

which is the sum of a space-time translation with the correct coefficient to 
agree with the supersymmetry algebra of (1.187), and a gauge transform­
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ation (4.31) on 'ltw  The derivation (Exercise 4.3) requires the use of the 
Fierz identity for Majorana spinors 

~y" av'lt  aPTYJ  = - !~/'YJaPTy)y" av'lt  (4.48)  

and the Rarita-Schwinger field equation (4.30) which can be written in the 
alternative forms(3) 

E"vpaysyv  a P 'It°  = 0 (4.49a)  

y"(a,,'ltv  - av'lt,,)  = 0 (4.49b)  

or 

E"varys(a°'ltT - aT'lt0 = 2i(a,,'ltv  - av'lt,,).  (4.49c) )  

In summary, we should take the action of the global supersymmetry 
transformation e i  W  on the fields of the on-shell supergravity multiplet to be 

h"v~ h"v  +  6t;h"v  = h"v  +  Cl~(Y"'ltv +  yv'lt,,)  (4.50) 

and 

1 
'It,,~ 'It" +  6t;'It"  = 'It" - -apT  aphT"t;.  (4.51) 

2Cl 

Then, the algebra (4.50), (4.51), (4.31) and (4.32) of supersymmetry 
transformations and gauge transformations taken together with space-time 
translations closes, and the commutators of supersymmetry transformations 
are as required by the supersymmetry algebra up to a gauge transformation, 
provided that we employ the Rarita-Schwinger field equation (4.49). It 
remains to check that the action (4.28), (4.25) and (4.21) for the on-shell 
supergravity multiplet is invariant under the supersymmetry transform­
ations (4.50) and (4.51). After some labour (Exercise 4.4) it can be shown 
that the action is indeed invariant provided that we choose 

Cl = -i/2.  (4.52) 

Thus, the final form of the global supersymmetry transformation ei  ~Q for the 
on-shell supergravity multiplet is 

1 ­
hfiV~ h"v  +  6t;hfiV  = h"v  - 2t;(y,,'ltv  +  yv'lt,,)  (4.53) 

and 

'It" ~ 'It" +  61;'It"  =  'It" - i  apT  aphr:ut;.  (4.54) 

4.4 The locally supersymmetric Lagrangian for the supergravity multi pi et 

In §4.3, we have seen how to construct an action (4.28) for the on-shell 
supergravity multiplet that is invariant under global supersymmetry trans­
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formations (4.53) and (4.54). In this section, we shall sketch the derivation 
of the corresponding locally supersymmetric action utilizing the Noether 
procedure described in §4.2. . 

Consider the local supersymmetry transformation e i  ;(x)Q  where ';(x)  is a 
Majorana spinor parameter that depends on the point in space time and Q is 
a Majorana spinor supersymmetry generator of (1.107). It  is tempting to 
surmise that the action (4.28) can be made locally supersymmetric rather 
than just globally super symmetric by replacing the linearized Einstein 
Lagrangian by the usual Einstein Lagrangian, and replacing the derivatives 
in the Rarita-Schwinger Lagrangian by covariant derivatives. It  turns out 
that this is almost the case, but that some extra terms quartic in the Rarita­
Schwinger field need to be added to the Lagrangian, or equivalently that an 
extra term needs to be added to the standard covariant derivative(S). 

rhe action (4.28) is invariant under the supersymmetry transformation 
ei  W  when'; is independent of x,  but ceases to be invariant when'; depends 
on x.  To apply the Noether procedure of §4.2, we begin by modifying the 
globally supersymmetric action (4.28) and the transformation laws of the 
fields of the supergravity multiplet so as to obtain an action that is locally 
supersymmetric to lowest order in K,  which is the appropriate expansion 
parameter here. 

Under the transformations (4.53) and (4.54), but with'; now dependent 
on x,  the variation of the action (4.28) is 

05GLOBAL  =  f d4x  j  {l  a,l  ( 4.55) 

where r  is the Majorana vector spinor Noether current 

.- " - i  "vpaW  AT  a  h ]  -2£ pYsyv a  AW'  (4.56) 

An action 51  invariant to order K  may be obtained by modifying the 
transformation law (4.54) of '1'" to 

'IF,,-c>  'IF" +  o;'IF"  =  'IF" +  aK- 1  a,,';  - i  aPT  aph,,,';  (4.57) 

where a  is a constant, and adding a term to 5GLOBAL  coupling 'IF{l  to the 
Noether current, so that 

51  =  5GLOBAL  ­ ~Jd4xj"'IFw ( 4.58) 
2a  

No modification of the transformation law for h{lv  is required at this stage. 
As we shall see shortly, equations (4.57) and (4.58) shape up neatly in terms 
of a covariant derivative provided that we take 

a  = 2. (4.59) 
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Proceeding in this way to obtain actions invariant to higher orders in K  

leads (with sufficient labour) to the final local supersymmetry transform­
ation laws(S) 

e"m~e"m +  ol;e"m  =  e"m  - i  K~ym'IJI" (4.60)  

where e" m  is the vierbein(4),(6) with Jl.  a world index and m  a local Lorentz 
index, satisfying h"v  =  e" mevnrJmm  and 

-1 ­
'I'"~'IJI,, +  01;'IJI"  = '1'" +  2K  D/;,  (4.61)  

where D"  is the covariant derivative 

a mn  
(4.62)D"  = a" - i  w"mn  4  

with 
. 2 _ IK - - ­

w"mn  =  w"mn  +  "4 ('IJI"ym'lJln  +  'IJImY,,'lJln  - 'IJI"yn'lJlm)  (4.63) 

and 

w"mn  = ~emV(a"env - aven,,)  +  iemPeno  aoeppe/  - (m  ~ n)  (4.64)  

which is the standard spin connection(4),(6). The covariant derivative D"  
differs from the minimal covariant derivative of general relativity(4) by the 
term quadratic in the Rarita-Schwinger field, which is necessary to achieve 
invariance of the action at order K2.  The final locally supersymmetric 
action(S) is 

s  =  - 2~2 f d4x  Idet elR  - i  f d4x  E"vpaq; "YsYv  Dp'l' °  (4.65) 

which is the sum of the standard Einstein action, with R  the curvature scalar, 
and the action for the Rarita-Schwinger field covariantized using the non­
minimal covariant derivative (4.62). It  is straightforward to check that the 
transformation laws (4.60) and (4.61) and action (4.65) reduce to (4.53), 
(4.57) and (4.58) correct to order K.  The invariance of (4.65) under (4.60) 
and (4.61) to all orders in K  may be checked directly. This is a somewhat 
laborious process which can be simplified(7),(8) by using the first-order 
formalism in which the vierbein and spin connection are treated as indepen­
dent variables with the spin connection ultimately given in terms of the 
vierbein by solving the field equations. 

Exercises 

4.1  Check the invariance of the action (4.15) correct to order g under the 
transformation (4.16), and of the action (4.18) correct to order g2.  
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4.2  Derive the action for linearized Einstein gravity by expanding the 
Einstein field equations to linear order in h/-,v.  

4.3  Show that the commutator of two supersymmetry transformations acts 
on a Rarita-Schwinger spinor as in (4.47). 

4.4  Show that the choice (4.52) of Cl gives a globally supersymmetric 
action for the supergravity multiplet. 
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COUPLING  OF  SUPERGRA VITY  TO 
 
MATTER 
 

5.1  Introduction  

To make contact with the physics of quarks, leptons, gauge fields and 
Higgses it is necessary to extend the discussion of the pure supergravity 
Lagrangian of the graviton and gravitino of Chapter 4 to include couplings to 
these 'matter fields'. In Chapter 4, the locally supersymmetric Lagrangian 
for the supergravity multiplet was derived from the globally supersymmetric 
Lagrangian using the Noether procedure of §4.2. In this chapter, we shall 
use the same technique to illustrate how couplings of the supergravity 
mUltiplet to matter fields may be obtained, before proceeding to a discussion 
of supersymmetry breaking in supergravity theories. Whereas in globally 
supersymmetric theories supersymmetry breaking manifested itself in the 
appearance of a massless Goldstone fermion, in locally supersymmetric 
theories we shall find that the corresponding effect is the appearance of a 
mass for the gravitino, which is the gauge particle of local supersymmetry. 
Supersymmetry breaking in a 'hidden sector' is communicated to the 
'observable sector' (of quarks, leptons etc) in the form of supersymmetry­
breaking terms in an otherwise globally supersymmetric low-energy Lagran­
gian. For the supersymmetry-breaking mass splittings within supermultip­
lets to be small enough (~1 TeV) for the hierarchy problem of grand unified 
theories to be solved (as discussed in §5.6) it will be found to be necessary for 
the gravitino mass m3/2  to be small on the Planck scale mp.  This is most 
naturally achieved in the no-scale supergravity theories, with which we 
conclude the chapter, in which m3/2  is undetermined at tree level with 
non-gravitational radiative corrections leading to a value of m3/2  hierarchi­
cally suppressed relative to the Planck scale. 

5.2  The  supergravity  Lagrangian  for  the  Wess-Zumino  model  

The simplest matter field system to couple to supergravity by making the 
supersymmetry local is the free massless chiral supermultiplet of the Wess­
Zumino model. From (2.50), the corresponding globally supersymmetric 
Lagrangian is 

:.£0 =  af"cp*  af"cp  + i   7paf"  af"1/J  (5.1) 

DOl: 10.120119780367805807-1 
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where 1/J is a Weyl spinor, and the on-shell global supersymmetry transform­
ation laws corresponding to (2.36) and (2.37) are 

ocp  =  V2;w1/J (5.2) 

and 

01/J =  -i V2 al'CP  al'~w (5.3) 

where ;w is a Weyl spinor parameter. Alternatively, the Lagrangian may be 
written in terms of a Majorana spinor 'I' as in (2.56): 

5£0 =  al'CP*  al'cp  +  2:i  -'I'yl'  al' '1'.  (5.4) 

It is not difficult (Exercise 5.1) to show that the global supersymmetry 
transformation laws (5.2) and (5.3) may be recast in terms of the Majorana 
spinor 'I' and real fields A  and B  defined by 

cP  = _1_  (A  +  i  B)  (5.5)
V2 

as 

oA  = ~'I' (5.6) 

oB  = i  ~Ys'l' (5.7) 

and 

0'1' = - i  yU  al'(A  +  i  YsB)  ;  (5.8) 

where; is the Majorana spinor parameter 

(5.9);=(~:). 
To obtain a corresponding locally supersymmetric Lagrangian we need to 

replace; by ;(x),  i.e. to allow; to depend on the point of space-time, and, 
employing the Noether procedure, to add terms to the Lagrangian and to the 
supersymmetry transformation laws until invariance is restored. In the 
absence of space-time dependence of ;, the variation 05£0  of 5£0 under a 
supersymmetry transformation is a total derivative and so 5£0 is globally 
supersymmetric. Allowing; to have space-time dependence, but retaining 
for the moment the transformation laws (5.6), (5.7) and (5.8) (where al'  
differentiates A  +  i YsB  but not  ;), we have instead (Exercise 5.2) 

05£0  =  ai j"  (5.10) 

up to a total divergence, where 
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r  == $(A  - i  YsB)y,u'l'  .  (5.11) 

Cancellation of 65£0 may be achieved by adding a term to the Lagrangian 
coupling the (Noether) current r  to a gauge field for the local supersym­
metry transformation, by analogy with the Yang-Mills case of §4.2. Since 
the supersymmetry generator is a Majorana spin or , the corresponding gauge 
field should be a vector spinor 'I',u,  which we identify with the gravitino of 
§4.3. The transformation law of'l',u under a local supersymmetry transform­
ation is already known from (4.61). To leading order in K  it is 

'I',u~ 'I',u  +  2K- 1 a,u~' (5.12) 

Thus, if we add the Lagrangian term 

5£1 = af!,ur  (5.13) 

the supersymmetry transformation variations 65£0 and 65£1 cancel to zeroth 
order in K  for 

a=  -2 
K  

(5.14) 

To cancel 65£0 +  05£1 to next to leading order (order K)  it is necessary to 
add further terms to the Lagrangian and to the supersymmetry transform­
ation laws. To this order (Exercise 5.3) 

05£ - g.,u.  \jf,u  v~T i  K  ,ut'pa:q,  ~A - B 1 - - a,u  ]  +  1 K  Y  ,uv  +  2 e  ,uYr  ap  aa  

i  K  ,urpa  :q, ~A - B +  2£ ap  ,uY'/:  aa  (5.15) 

where, displaying only the A-dependent part, 

T,uv  == auA  avA  - ±J},uv  apA  aPA  +  ...  (5.16) 

which is just the energy-momentum tensor, and 

A  aaB  == A  aaB  - B  aaA  .  (5.17) 

To cancel the T,uv-dependent part of 05£1 it is necessary to add to the 
Lagrangian the linearized gravity coupling of the graviton to the energy­
momentum tensor 

5£2 = - Kh",vT,uv.  (5.18) 

With the aid of the transformation law for the graviton (4.53), it can be seen 
that 05£2  cancels the T,uv  term in 05£1 correct to order K.  

As a result of (5.12), the third term in (5.15) is cancelled by adding to the 
Lagrangian 
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5£ - - 1 2 ,urpa'li  'I'  A  
3 - 4K E   ,uYr p  

aB 
a·  (5.19) 

The last term in (5.15) is cancelled by the variation of the gravitino kinetic 
term of (4.21) if we modify the local supersymmetry transformation law of 
'I',u  by addition of a term to 

o'l',u  =  2K- 1  d,u~ + i   KYs~A a,uB.  (5.20)  

Of course, once the supersymmetry transformation law for the gravitino 
has been modified as in (5.20), the variation of the existing Lagrangian terms 
is correspondingly modified at order K2.  For example, there is the extra term 
from 5£1, 

. 2 
1 

05£1  = - K  -
- i YsB)y,u'l'  A  

­

2 ~Ys~(A duB  + ...   (5.21 ) . 

which is cancelled by adding 

K2  _ _ 

5£4 = - 4'1'YSy r 'l'A drB.  (5.22) 

There are also various four-fermion terms arising which we have not 
computed. 

The process ends at order K2  apart from covariantization with respect to 
gravity, so we find that the coupling of a free massless chiral supermultiplet 
to supergravity is given by the Lagrangian 

5£ = - ~ Idet elR  - iE,uvpa'li,lySYv  15p 'I' a  +  Idet el  d,uCP*  d,ucP 
2K  

+  
1 - K­
"2ldet el'l'y,u  D,u'l'  - "2ldet el'l',ucp(A  - i YsB)y,u'l'  

. 2 

- ~ K2E,urpa'li  y 'I'  A  D B    - ~ Idet el'liysY,u'l' A  B 4 ,u  r  p  a  4  D ,u   

+ four-fermion  terms (5.23) 

where all derivatives D,u  are covariantized with respect to gravity, the first 
two terms are as in (4.65), and e,u m is the vierbein. The local supersymmetry 
transformation laws are 

oA  =  ~'I' (5.24) 

oB =  i  ~ys'l' (5.25) 

oe  m =  - i  Kfym'l'  
.u  S,u  (5.26)
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0'1'"  = 2K- 1 D,,~ + i  K~A i\B +  two-fermion  terms (5.27) 

and 

0'1'  = - i y" D,,(A   + i  Y5B)~ + two-fermion  terms. (5.28) 

A similar approach(l) may be used to derive the coupling of the vector 
supermultiplet to supergravity. 

5.3  The  general  supergravity  Lagrangian  for  chiral  supermultiplets  

In  §5.2, the coupling to supergravity of free chiral supermultiplets was 
derived from the globally supersymmetric Lagrangians using the Noether 
procedure. For interacting (before coupling to supergravity) chiral super­
multiplets, this same procedure has been used to determine the coupling to 
supergravity for some cases. However, the very laborious general result has 
in practice been derived using the less intuitively appealing but more 
efficient local tensor calculus technique(2),(3), and we now present the result. 
The most general globally supersymmetric Lagrangian for chiral superfields 
<1>i describing complex scalar fields CPi  and Weyl spinor fields 1/Ji'  or equiva­
lently Majorana spinor fields qri'  is 

.;£GLOBAL = f d4e K(<1>t,  <1» +  f d2e (W(<1»  +  He) (5.29) 

where the first term in (2.82) has been generalized to allow a general 
function K  of the superfields <1>/ and <1>i because non-renormalizable kinetic 
terms cannot be excluded in the presence of gravity. Correspondingly, the 
superpotcntial W(<1»  may contain arbitrary powers of the superfields <1>i' 
The supergravity Lagrangian turns out to depend only on a single function of 
the scalar fields cpt  and CPi'  namely 

G(cp*,  cp)  = J(cp*,  cp)  +  In IWI 2 (5.30) 

where 

J(cp*,  cp)  = - 31n( - K/3).  (5.31) 

The function G is referred to as the Kahler potential. (Sometimes J  is 
referred to in this way.) The same supergravity Lagrangians can be obtained 
for different choices ofJ  and W,  because G is invariant under the transform­
ation 

J  ~ J  +  h(cp)  +  h*(cp*)  

W~e-hW (5.32) 
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for an arbitrary function h.  
It  is convenient to write the supergravity Lagrangian in terms of the left 

and right chiral components of the Majorana spinors 

'ViL "'" ~(1 - YS)'Vi  (5.33) 

'ViR = ¥! +  YS)'I'i (5.34) 

and their conjugates 
- - 1
'ViL  =  'Vi  2(1 + Ys)  (5.35) 

- - 1
'ViR =  'I'i 2(1 - Ys)· (5.36) 

This makes it easy to interpret the result in terms of Dirac spinors assembled 
from left and right chiral components of Majorana spinors. 

The rather lengthy supergravity Lagrangian 5£ may be split into terms as 

5£ = 5£B + 5£FK  + 5£F  (5.37) 

where 5£B contains only bosonic fields, 5£FK contains fermionic fields and 
covariant derivatives, and supplies the fermion kinetic energy terms, and 5£F 
fermionic fields but no covariant  derivatives. In detail(3).(4), with Jdet eJ  the 
determinant of the vierbein eJI m,  and R  the curvature scalar, in units with t!­
set equal to 1, 

Jdet el- I5£B =  - ~R + Gj   DJICPi  DJIq/  + e G(3 - Gi(G- 1)jGj)  (5.38)  

where the derivatives DJI  are covariantized with respect to gravity. To keep 
track of differentiation with respect to scalar fields and their adjoints, the 
scalar fields have been written as CPi  and their adjoints as cpi*, and the 
derivatives of the Kahler potential as 

Gi"",iJG  G."", ,   iJG - ..  (5.39) 
iJCPi  iJcp'  

and 

(PG  
(5.40) Gj  =  iJCPi  oqJ*  

The inverse (G- 1 )j   obeys 

(G- 1 )jGk  =  o~. (5.41) 

The kinetic terms and the tree level effective potential of the scalar fields are 
provided by 5£B: 
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Idet el-l~FK =  - ~Idet el- 1E,uvpaW,uY5Yv  Dp'l'a  

+  !ldetel-lE,uvpaW,uYv'l'rCGi DaCPi  - GiDacpi*)  

+  (~GJ'1'iLY,u D,u'l'r!  +  ~ 'lriL  }?JCPj'l'kL(  - G% +  ~G~d) 

+  ~ GJ'Ir "L }?J  cpi*  y"'I'jR +  HC). (S.42)  

This contains the kinetic terms for the fermions and some non­
renormalizable interaction terms. Finally, 

Idet el-l ~ = l  eG / 2'1r o,uv,¥  
F 2  "  v  

+  (~eG/2(_ Gij  - Gid  +  G%(G-l)7Gi)'lriL'¥jR  

+  ~ eG!2Gi'lr ,uLy"'¥iL +  HC) +  four-fermion terms (S.43)  

with o,uv  as in (4.3S).  This contribution to the Lagrangian contains the 
fermion Yukawa couplings, and numerous non-renormalizable terms which 
can be found in full in the original literature(3) or elsewhere(4). (The 
zero-superpotentiallimit, corresponding to the supergravity-coupled Wess­
Zumino model of §S.2,  cannot be taken straightforwardly because the 
superpotential enters the Kiihler potential logarithmically in (S.30).)  

The local supersymmetry transformation laws (analogous to (S.24)­
(S.28))  are 

0CPi  = v'2~i = v'2~R'¥iL (S.44)  

oe" m  = - i  K~~'¥,u (S.4S)  

-1  i  i* O'¥"  =  2K  D,u;  +  K;(G  D,uCPi  - Gi  D,ucp  ) 

+  i eG!2y,u;  +  two-fermion terms (S.46)  

and 

O'¥i  = - i }?J(Ai  +  i Y5Bi);  - v'2eG !2(G- 1){Gi  +  two-fermion terms (S.47)  

where CPi  is decomposed into real fields Ai  and Bi  as 

1  
CPi  = v'2 (Ai  +  i Bi)'  (S.48)  

The renormalizable globally supersymmetric Lagrangian of (2.S6)  can be 
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recovered for mij  = 0 by taking the superpotential as in (2.45) (withmij  = 0), 

W(<I»  =  jAijk<I>i<I>j<I>k  (5.49)  

and the function Kin  (5.29) to be 

K(<I>  +  <I» = <I> t <I> - 3 (5.50),  I I  

which differs from the D-term  in (2.44) by a constant, which has no 
significance in the globally supersymmetric theory but is of importance in the 
locally supersymmetric theory which is coupled to gravity. Neglecting non­
renormalizable terms in (5.38), (5.42) and (5.43) then leads (Exercise 5.4) to 
(2.56), with mij  = O. 

In general, in the presence of gravity, there is no requirement that the 
Lagrangian should be renormalizable, and, in particular, there is no reason 
for K( <I> t, <I» to correspond to only renormalizable kinetic terms in the 
globally supersymmetric Lagrangian. Accordingly, it is often convenient in 
model calculations to use the form of K  that leads to minimal kinetic terms in 
the supergravity Lagrangian, namely 

K  =  - 3 exp( -<I>i<I>it/3). (5.51) 

Then, 

G =  CPiq/  +  In IwI 2 (5.52) 

and 

Gj  = oj.  (5.53) 

As a consequence of (5.53), the kinetic terms for the scalar fields (in (5.38)) 
are simply fJuCPi  a"cpt  and the kinetic terms for the fermion fields in (5.42) 
are 

1  ­
2:'¥iLY"  a,,'¥iL  +  He.  

5.4 The general supergravity Lagrangian including vector supermultiplets 

As observed in §5.2, the coupling of the vector supermultiplet to supergra­
vity may be derived by the Noether procedure. However, in practice, the 
complete supergravity Lagrangian involving vector supermultiplets and 
chiral supermultiplets has been derived(5) by the local tensor calculus 
method(2). To state the result we first need to write down the general (not 
necessarily renormalizable) globally supersymmetric Lagrangian for vector 
superfields Vas defined in §3.6, and chiral superfields <I>i: 
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.:£GLOBAL = f d4e K(<1>t  e2gV ,  <1» +  f d2e (W(<1»  +  He)  

+  f d2e Uab(<1»Wa"'Wab  +  He)  (5.54) 

where Wa  a  is the gauge field strength superfield of (3.125) with spinor index 
a  and gauge group index a,  fab(<1»  is an arbitrary function of the chiral 
superfields which would be just Gab  in the renormalizable case, W(<1»  is the 
superpotential, and, in the function K  of (5.29), e2gV  has been introduced to 
couple the chiral supermultiplets to the gauge fields, as in §3.6. 

The resulting supergravity Lagrangian .:£ may be separated conveniently 
into several terms 

.:£ = iB  +  iFK  +  iF  +  iB  +  ~FK +  ~F (5.55) 

where iB'  iFK  and iF are identical to .:£B, .:£FK and .:£Fof (5.38), (5.42) and 
(5.43), except that the covariant derivatives are to be covariantized with 
respect to the gauge group in the usual way, as well as with respect to gravity. 
The terms ~B' ~FK and ~F are as follows: 

Idet el-l~B = -!(Refab)(Fa)wF6UV  +  ~ (Imfab)(Fa)"Ji'v  

2 

- ~ (Rer;b1 )Gi(Ta)ijcppk(TbhICPI  (5.56) 

where the gauge field strength (Fa)"v  is 

(Fa)"v  =  a"vva  - avV"a  - gfabcV"bVvc  (5.57) 

and its dual (Fa)"v  is 

(Fa)"v  = E"vpa(FaYo.  (5.58) 

The last term in (5.56), which involves the generators (Ta)i)  of the gauge 
group in the appropriate representation for the CPi,  is the D-term of (3.127) 
generalized to take account offab(<1»  in (5.54), 

Idetel-1:£FK =  iRefab(CP)(!Xa  ]:JAb  +  iXaY"avP'I',,(Fb)vp  

+iGi  D"CP)aLy"AbL  ) - ~ Imfab( cp)  D,,(ldet elXaysY" Ab)  

- 1 afab( cp)  'Ii.  a"V(F)  A  +  He  
2: a  IR a  "V  bL (5.59)

CPi  

where Aa  is the gaugino. 
Finally, 
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Idet el-l  co  - 1  eG/2  alab  *  (G- 1\i  GkA  A 
eLF - 4 aq/  Jk  a  b  

1·  - .­- 2. gG'(Ta  )ijC{!j'l' /ALy/A AaL  +  2i gGj(Ta  )ikC{!kAaR'I'iL  

i  R 1-1  albe  Gi(T)  ,Tt 1- -2 g e ab  - a  ijC{!j'Y  kRl'.eL  +  HC
aC{!k  

+  four-fermion terms. (5.60) 

If some  of the scalar fields C{!i  develop expectation values, equation (5.60) 
can give rise to gaugino mass terms. 

The corresponding local supersymmetry transformation laws are identical 
to (5.44)-(5.47) for oC{!;,  oe/Am,  0'1'1'  and O'l'i  except that the covariant 
derivative in (5.47) is also covariantized with respect to the gauge group and 
there are some extra two-fermion terms involving gauginos. In addition, 
there are the transformation laws for the gauge fields and gauginos, 

o V~ = - ~Ly/A}'aL +  HC (5.61) 

and 

OAaL  = a,uV(Fa )/Av~L +  ~ g Re l;;b1Gi(Tb)ijC{!iL  +  two-fermion terms (5.62) 

with a/A V  as in (4.35). The complete expressions for the Lagrangian inclusive 
of four-fermion terms, and for the local supersymmetry transformation laws 
inclusive of two-fermion terms, can be found in the originalliterature(S) or 
elsewhere(4) . 

S.S  Spontaneous  supersymmetry  breaking  in  supergravity  

In §2.9, it was found that for globally supersymmetric theories a super­
symmetric vacuum state had zero energy, and if supersymmetry was spon­
taneously broken in the vacuum state it had positive energy. It  was also 
found that spontaneous supersymmetry breaking occurs if one of the 
auxiliary fields Fi  of a chiral supermultiplet <l>i develops a non-zero VEV, or, 
as in §3.5, there is the alternative of the auxiliary field Da  of a vector 
supermultiplet Va  developing a VEV. A Goldstone fermion arises from the 
supermultiplet to which F;  or Da  belongs. For theories with local super­
symmetry there are some differences and some similarities. 

One difference is that the vacuum energy is no longer positive semi­
definite. This can be seen by looking at the tree level effective potential V  
arising from equations (5.38) and (5.56). For simplicity, consider first the 

http:5.44)-(5.47
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case of a single gauge-singlet chiral superfield <I> with minimal kinetic terms 
arising from 

G  =  cp*cp  +  In  IwI 2 (5.63) 

as in (5.52). Then, after a little algebra, we find from (5.38) that 

V  = e~*~(I~: +  cp*wl 2  
- 31W12)  (5.64) 

for supergravity, to be compared with 

V=  1~:12 (5.65) 

from (2.51) and (2.52) for the globally supersymmetric case. (We are using 
cp*  to denote the complex conjugate of the expectation value of cp.)  It is clear 
from (5.64) that there is now the possibility of a ground state with negative 
energy. 

For spontaneous supersymmetry breaking to occur, at least one of the 
fields in the theory must have a VEV  that is not  invariant under supersym­
metry transformations. The only supersymmetry transformation laws 
amongst (5.44)-(5.48) and (5.61), (5.62) that can have a non-zero right­
hand side without breaking Lorentz invariance are (5.47) and (5.62). If  
moreover we assume that there are no  non-zero expectation values for the 
terms on the right-hand side involving fermionic fields, then (for non­
spatially varying expectation values) we may simplify (5.47) and (5.62) to 

(Olo'l'iI O> = - eGI2(G-l)iGj~ (5.66) 

and 

(OloAaIO>  = ~ g  Re t;lGi(Tb)ijCPi  (5.67) 

where the scalar fields on the right-hand sides of (5.66) and (5.67) are being 
used to denote their expectation values. (In §5.8, we shall discuss the case of 
supersymmetry breaking by a gaugino condensate, in which case we have to 
take account of a VEV  for a product of two fermionic gaugino fields.) 

For the case of a single gauge-singlet chiral superfield <I> with Kiihler 
potential given by (5.63), equation (5.66) simplifies to 

(010'1'10>  = _ exp(!(cp*cp +  In  IWI2))  (aw*  +  w*)  ~ (5.68)W*  acp*  cp  

and the right-hand side of (5.67) is zero. Then, the criterion for supersym­
metry breaking is that the VEV  of aWlacp  +  cp*W  should be non-zero. This is 

http:5.44)-(5.48
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the generalization of F-term  supersymmetry breaking to supergravity. 
Returning to (5.64), we see that 

V  =  - 3 elf*lflWl2  (5.69) 

in a supersymmetric vacuum. Thus, the energy of a supersymmetric vacuum 
is negative. When supersymmetry is broken, the VEV  of aWla<p  +  <p*W  is 
non-zero, and it is possible for a cancellation to occur in (5.64) to give a 
vacuum with zero energy. There is therefore the attractive possibility in 
supergravity theories of obtaining a vacuum state with zero cosmological 
constant when supersymmetry is broken. 

Consider next the case of a gauge non-singlet chiral superfield <Pi with 
minimal kinetic terms arising from 

G  = <pi*<Pi  +  In IwI 2 (5.70) 

and with the minimal choice of gauge field kinetic terms given by 

fab(<P)  =  Oab'  (5.71) 

Then, from (5.38) and (5.56) we find the tree level effective potential 

V  = efP }.  If]  (  I  +  law a<pi  +  <p  12)  +  2  Gi() ij<PP  Ta  kl<PI  (2)-3 W  12  i*  W  i  Ta  k()  5.7  

where 

1  aw  
G i  (5.73)= <pi*  +  Wa<Pi  

for supergravity, to be compared with the positive semi-definite 

lawl2  g2 k* i*  (5.74)V=  aCPi  +2<P  (Ta)ij<Pj<P  (TahICPI  

for the globally supersymmetric case. Assuming no  expectation values on 
the right-hand sides of equations (5.47) and (5.62) involving fermionic 
fields, these equations may be simplified to 

(OIO'l'iIO)  =  - exp(!(<pj*~!,~ In IWI2))  (~w: +  <piW*)  £  (5.75) 
<PI  ,  

and 

(OloAaIO)  =  ~ gGi(Ta)ij<pi·  (5.76) 

There are now two different mechanisms for supersymmetry breaking 
depending on whether one of the 'l'i  or one of the Aa  has a VEV  that is not 
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invariant under supersymmetry transformations. In the former case, the 
criterion for supersymmetry breaking is 

aw  +  <Ptw¥- 0 (5.77)
a<pi  

for some values of i,  generalizing F-term  supersymmetry breaking to 
supergravity. In the latter case, the criterion is 

Gi(Ta)ij<pj  ¥- 0 (5.78) 

for some value of a,  generalizing D-term supersymmetry breaking to 
supergravity. (In either case, a necessary condition for supersymmetry 
breaking is that G i  should be non-zero for at least one value of i.)  

5.6 The super-Higgs mechanism and gravitino mass 

In §2.9 and §2.10, we saw that in globally supersymmetric theories of chiral 
superfields when F-term  supersymmetry breaking occurred with an auxiliary 
field developing an expectation value, the spinor in the supermultiplet of this 
auxiliary field was the Goldstone fermion. In locally supersymmetric theor­
ies, we might expect that the Goldstone fermion would be 'eaten' by the 
gauge field of local supersymmetry, namely the gravitino, and in this way the 
gravitino would acquire a mass. (The helicity ±i  states of the Goldstone 
fermion are combined with the helicity ±~ states of the massless gravitino to 
give the states of a massive spin-~ particle.) 

That this happens(3),(5) can be seen by looking at the terms 5£F of (5.43) 
quadratic in the spin-~ fields 'l'i and the gravitino field '1'". In outline, when 
G' is non-zero for some value of i  (and we have seen in §5.5 that this is a 
necessary condition for supersymmetry breaking) there is a mixing of the 
would-be Goldstone fermion Gi'l'i with the gravitino through the mass term 
«i/V2) eG12Gi'li"Ly"'I'iL +  He). Once the Goldstone fermion has been 
'eaten' by the gravitino (the super-Higgs mechanism) we are left with a 
massive gravitino 'I'~ with mass term (i/2)  eG/2'fr~af'V'I'~, where Go is the 
expectation value of G in the physical vacuum. Recall that we have been 
working in units where K2  in (4.24) has been taken to be 1.  Thus, all masses 
are in units of the Planck mass mp defined by 

8lrGNm~ = K2m~ = 1 (5.79) 

where GN  is the Newtonian gravitational constant. Explicitly restoring the 
mass unit, the gravitino mass m3/2  is 

m3/2  =  e Go12mp (5.80) 

where 
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mp  =2.4 x  1018 GeV. (5.81) 

It is instructive to work through the super-Higgs effect in a little more 
detail. For simplicity, we shall continue to use the minimal form of G as in 
(5.70). The appropriate choice of expectation values for G and its deriva­
tives is that corresponding t6 the physical vacuum. First, the vacuum must be 
a minimum of the effective potential, V.  Assuming, for simplicity, no  D­
terms, Vis as in (5.38): 

V=  - Gi(G-I)jd). (5.82)eG(3 ­
To obtain 

av  =  0  (5.83) 
affJk  

when 

Gi = ci  (5.84)J  J  

we need 

Gk  +  Gpjk  =0.  (5.85) 

Second, we require the value of Vin  the physical vacuum to be zero to obtain 
a vanishing cosmological constant. Thus we also need 

Gpj  = 3. (5.86) 

For the minimal form (5.70) of G, and assuming that the expectation 
values of the scalar fields are real, the mass terms :£'F derived from (5.43) 
simplify to 

Idetel-I:£m = leG12iJr a,uv'l'  +  _i_eGI2GiiJr y,u'l' 
F  2 v'2,u  v  ,u  I  

- ~ eG12(Gij  +  Giej)iJri'l'j'  (5.87) 

The contribution of the Goldstone fermion 

rJ  = Gi'l';  (5.88) 

may be separated from the contributions of the other chiral fermions by 
rewriting (5.87) in the form 

Idetel-I:£m =  leG/2iJr a,uv'l'  +  _i_ eG12iJr y,un 
F  2 ,u  v  v'2 ,u  '/ 

_  1  eG / 2i)n  _  1  eG / 2(Gij  +  1GiGj)iJr'l'  (5.89)3  '/'/  2  J  I  J'  

It is not difficult to verify using (5.85) and (5.86), as appropriate to the 
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physical vacuum, that there is no  contribution to the mass of 'I  from the mass 
matrix 

Mij  = Gij  +  ~GiG. (5.90) 

It  may be shown that all terms in the Lagrangian quadratic in the fermion 
fields may be written in terms of 

'1"  'I'  i  Y2 -G/2  (5 91),,= ,,- 3Y2 Y"YJ  - 3  e a"YJ  .  

and the 'l'i'  In particular (Exercise 5.5) the mass terms of (5.89) may be cast 
in the form 

Idetel-I:£m = !eG12'fr1  a"vqr'  _ I eG/2(Gij  +  IGiG)'fr 'I'  (5.92)F  2 " v  '2 3"  ,  J'  

Whereas '1'" was a massless spin-~ field, qr~ is a massive spin-~ field with the 
extra helicities deriving from the contribution of the Goldstone fermion 'I  to 
(5.91). The mass of the gravitino is given by the value of eG/2  in the physical 
vacuum, as advertised in (5.80). 

Further insight can be obtained by considering the local supersymmetry 
transformation laws (5.46) and (5.47). For the minimal form (5.70) of G, 
and in the physical vacuum, equation (5.47) yields 

0'1  =  -3Y2 eG/2~ +  ..  '.  (5.93) 

To lowest order in K,  the Goldstone fermion can be gauged to zero by 
choosing 

i:  _  1 '"  ___  -G12  (5.94)3Y2 e 'I.  

Then, the gauge-transformed gravitino field 

qr~ =  '1'" +  0'1'" (5.95) 

ansmg from (5.46) is given by (5.91). Thus, as expected in a Higgs 
phenomenon, there is a choice of (supersymmetric) gauge in which the 
Goldstone fermion disappears from the theory having been 'eaten' by the 
gauge-transformed gravitino qr~. 

For the case of D-term  breaking of supersymmetry, the term :£MIX in the 
Lagrangian mixing the gravitino with the would-be Goldstone fermion is 
given by 

I-Ieo i  G/2Gi,'T,  ",J,Id et e  oLMIX =  Y2 e 't' "LY '1' iL +  HC 

1· ­
- '2gG'(Ta)ijCPjqr"LY"AaL  +  HC. (5.96) 
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(The latter term, arising from (5.60), is non-zero when (5.78) is satisfied, 
corresponding to D-term  supersymmetry breaking.) For minimal G, as in 
(5.70), and real expectation values for the scalar fields, the Goldstone 
fermion is 

n  =  Gi'l{!  - L e- G /2Gi(T  ) .. cp.A,  (5.97)'/  I  \1:2  a  I]  a ]  

and similar arguments to those just given can be constructed (Exercise 5.6) 
to display the super-Higgs mechanism. 

5.7  Hidden-sector  supersymmetry  breaking  

The most successful applications of supergravity to the construction of 
supersymmetric grand unified models (see Chapter 6 and the review of 
Nilles(4)) have the supersymmetry breaking occurring in a 'hidden sector', 
by which is meant a sector of the theory that couples to the 'observable 
sector', of quark, leptons, gauge fields, Higgses and their supersymmetric 
partners, only through gravitational interactions. The simplest model of a 
supersymmetry-breaking hidden sector uses the Polonyi superpotential for a 
single gauge-singlet chiral superfield <1>, 

W(<1» =  m2(  <I> +  fJ)  (5.98) 

where m  and fJ  are real parameters with dimensions of mass. Let us also for 
simplicity adopt minimal kinetic terms so that the Kahler potential is 

G =  cp*cp  +  In IWI 2 (5.99) 

as in (5.63). Then, the tree level effective potential derived from (5.64) is 

v  = m4  e'7'*<P(11  +  cp*(cp  +  fJW  - 31cp  +  fJI2).  (5.100) 

For the special choice 

fJ=2-V3  (5,101) 

it may be shown (Exercise 5.7) that V  has an absolute minimum at 

cp  =  CPa  =  V3 - 1 (5.102) 

with V  =  0 (and so the desirable feature of a vanishing cosmological constant 
in the physical vacuum). At this minimum, 

aw  +  cp*W  =  V3m2  (5.103)
acp  

is non-zero and consequently supersymmetry is broken, as discussed in §5 .6. 
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The Majorana fermion 'I'  is the Goldstone fermion and is 'eaten' by the 
gravitino to give the gravitino a mass. Using (5.80), we then find 

_ exp(Y3 - 1)2 m2  (5 10'4)
m3/2  - -2 mp .

2  mp 

where the factors of mp have been restored in eG / 2 . It  is worth noticing that 
the gravitino mass can be much smaller than the Planck mass if m/mp  is 
small. 

In (2.114), the supersymmetry-breaking scale M~ for a globally supersym­
metric theory was defined as the expectation value of the F-term  responsible 
for supersymmetry breaking. For the case of supergravity, comparing (5.66) 
with (2.87), the supersymmetry-breaking scale is defined (almost) corre­
spondingly by 

M~ = eG /2(G- 1){Gj  (5.105) 

where it is understood that the right-hand side denotes the expectation value 
taken at the absolute minimum ofthe effective potential. In the present case 

M~ = eG /2  (cp*  +  l.- aw)  (5.106) wacp  
and we find 

M~ = Y3m3/2mp.  (5.107) 

(This is a general result for theories where the supersymmetry-breaking 
absolute minimum has V  =  0.) Conversely, 

m3/2  =  M~/Y3mp (5.108)  

which means that the gravitino mass will be small compared with the 
supersymmetry-breaking scale whenever Ms is small on the Planck scale. 
For instance, a gravitino mass of the order of 100 GeV is obtained when Ms 
is of the order of 1010 GeV. 

The masses of the fermions and scalars arising from the chiral supermul­
tiplet <I>  and the supergravity multiplet may be calculated in terms of m3/2'  

For the fermions, equation (5.92) gives the mass matrix in the physical 
vacuum 

Id et e I-l:£m F  = :2 i  m3/2 'If' ,,0 "V'I" v  .  (5.109) 

This is as expected because the fermion from the supermultiplet <I> is the 
Goldstone fermion that has been 'eaten' by the gravitino, and is in agree­
ment with the remarks following (5.89). For the scalars, the mass terms:£'ll 
arising from the (5.38) are given by (Exercise 5.8) 

:£'ll  =  - 2mj/2cp'*cp'  - 2(Y3 - l)m~dcp'cp' +  cp'*cp'*)  (5.110)  
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where we have written 

cP  =  CPo  +  cP'  (5.111) 

with CPo  the expectation value of cP  in the physical vacuum as in (5.102). 
Defining real scalar fields A  and B  by 

, 1
cP  =  -(A  +  i  B)  (5.112)

V2 

we then find 

m~ = 2V3m~12 (5.113) 

and 

m~ = 2(2 - V3)m~I2' (5.114) 

For globally supersymmetric theories with only chiral supermultiplets we 
found in §2.10 that the supertrace of the mass-squared matrix over real fields 
was zero. Here we find, with the inclusion of the supergravity multiplet, that 

3/2 

STr M2  = I  (-1)21(21 +  l)m;  = -4m~12 +  m~ +  m~ = 0 (5.115) 
J=O  

which is the same as for the globally supersymmetric case. However, for 
theories with the supergravity multiplet plus N  chiral supermultiplets, this 
generalizes to 

STr M2  = 2(N  - l)m~I2' (5.116) 

There is the attractive feature that the scalar particles are required by 
(5.116) to be more massive on the average than their fermionic super­
partners. This accords with experience, in that, for instance, the squarks and 
sleptons must be more massive than the quarks and leptons. As we have 
remarked earlier, it is possible for m3/2  to be much smaller than the 
supersymmetry-breaking scale and so, even when the supersymmetry­
breaking scale is large, it is possible to have modest mass splittings within 
supermultiplets. 

5.8  Supersymmetry  breaking  by  gaugino  condensates  

As already mentioned following (5.67), another possible mechanism(6) for 
supersymmetry breaking in a supergravity theory would be for a product of 
two fermionic gaugino fields to develop a VEV. Including gaugino terms 
(5.47) is 
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6'1'; = - i  }}(A;  +  i  YsB;);  - V2 eG/2(G-l)JGj;  - Uabj(G-1){)"a)"b  

+  other two-fermion terms (5.117) 

with 

- afab t. abj  =  aq}*  (5.118) 

where fab  is the coefficient of the gauge field strength term as in (5.54). Thus, 
an expectation value for )"a)"b  can break supersymmetry by making the 
expectation value of '1'; non-invariant under a supersymmetry transform­
ation. For this to occur it is necessary for some components of fabj  to be 
non-zero, which requires non-minimal gauge field kinetic terms. 

It may be possible for gaugino condensation to occur in a hidden sector of 
the theory if the gauge group is a product of two factors one of which 
contains the gauge group of the standard model. For instance, in heterotic 
string theories, as we shall see in Chapter 9, it is possible for the gauge group 
to be Es x Es with the first exceptional group factor containing the standard 
model gauge group and the second factor providing a hidden sector. It  has 
been argued(6) that a gaugino condensate with 

()"a)"b)  _ f,)?  (5.119)  

should develop if the running gauge coupling constant for the hidden sector 
becomes strong at an energy scale,u. 

In the presence of such a gaugino condensate, the four-fermion term from 
(5.60), 

Idetel-l~MIX =  !f~b'li;La,uv)"aL'livLY,u)"bR +  He  (5.120) 

will cause 

rJ  = f~b()"a)"b )'1';  (5.121) 

to mix with the gravitino. Thus, rJ  should be identified as the Goldstone 
fermion. The value of the gravitino mass m3/2  arising from the supersym­
metry breaking depends on the details of the Kiihler potential because of 
(5.80). However, the order of magnitude m3/2  may be determined by 
observing that supersymmetry breaking through gaugino condensates is 
known not  to occur in the case of globally supersymmetric theories. It  
follows that the supersymmetry breaking tends to zero as mp  ~ 00, and we 
expect the supersymmetry-breaking scale M~ to be at most 

M~ - ,u3/mp  (5.122) 

with the possibility of it being suppressed by a further power of mp.  

Correspondingly, the gravitino mass arising from (5.108) is at most 

m3/2  - ,u3/m~. (5.123) 
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A small gravitino mass can result even for large values of,u provided that,u is 
small on the scale of the Planck mass. 

5.9  Supersymmetry-breaking  effects  in  the  observable  sector  

In §5.7 and §5.8, mechanisms by which supersymmetrymay be broken in the 
hidden sector have been discussed. The next question that must be 
addressed is of how the supersymmetry breaking that occurs in the hidden 
sector feeds through into the observable sector. In particular, we need an 
effective low-energy Lagrangian(7).(8) including supersymmetry-breaking 
effects that can be used at energies small compared with the Planck scale. 

The chiral superfields may be divided into hidden-sector superfields Zi  
and observable-sector superfields Yr  with corresponding scalars Zi  and y"  
where we are using indices i,  j,  k,  ...  for the hidden sector, and indices 
r,  S, t,  ... for the observable sector. For simplicity, let us assume that the 
superpotential is additive in the hidden and observable sectors: 

W(Zi'  Yr)  = W(Zi)  +  W(Yr)'  (5.124) 

(This certainly avoids any couplings other than gravitational between the 
two sectors.) Let us also assume that the kinetic terms are minimal, 
corresponding to a Kiihler potential 

G  =  mp2(zi*Zi  +  /Yr)  +  In(IWI2/m~) (5.125) 

where we have displayed the Planck mass, mp.  Then, the tree level effective 
potential (excluding D-terms) deriving from (5.38) is 

'*  *  Zi*  - ~ 12(law V  =  exp((zl  Zi  +  yrYr)/m~) - +  -2 (W  +  W) 
aZi  mp 

a~ Y  - ~ 12 2- ~2)W r* +  I -+2'(W+W)  -3mp  Iw+WI  .  (5.126)
aYr  mp 

A form for the effective potential appropriate to energies small compared 
with the Planck scale can be obtained by replacing Zi  by the expectation 
value at the minimum of the effective potential and working to leading order 
in mpl.  In general, the hidden-sector expectation values at the minimum of 
V  may be written as 

(Z;)  =  aimp  (5.127) 

- 2(W)  =  ,ump  (5.128) 

and 
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jaw)  = cdimp  (5.129)
\  aZi  

where ai  and Ci are dimensionless quantities, and /-l  is a mass scale character­
izing the expectation value of the hidden-sector superpotential. (As we shall 
see in a moment it is convenient here to write this scale as /-lm~, rather than 
as m2mp,  if we were to follow §5.7.) Using (5.80), the gravitino mass is then 
given by 

m3/2  =  e1a,l'/2/-l.  (5.130) 

In taking the low-energy limit, we need to hold m3/2  fixed as mp ~ 00, and, 
from (5.130), this means working to leading order in /-lImp.  In the low­
energy limit, equation (5.126) reduces (Exercise 5.9) to 

V=  e1a,I'  [1~;'12 +  /-l21Yr12  +  /-l(Yr  ~;, +  (A  - 3)W  +  cc)] (5.131) 

where 

A  =  (ct  +  ai)at.  (5.132) 

Using (5.130), and defining a modified superpotential 

W ==  e 1a;12/2W  (5.133) 

then (5.131) may be rewritten as 

lawI 2 2 1 12 (aw  ,\)V=  - +m3/2Yr  +m3/2  Yr-+(A-3)W+cc·  (5.134)
aYr  aYr  

The first term is of the stan~ard form (2.51) for unbroken global supersym­
metry with superpotential W,  and the remaining terms are supersymmetry­
breaking terms. The part of the low-energy Lagrangian involving chiral 
spin-! fermions deriving from (5.43) is as for unbroken global supersym­

I  

metry with superpotential W.  Thus, m3/2  is the supersymmetry-breaking 
mass splitting between bosons and fermions in the same chiral supermulti­
plet. In the special case where the hidden-sector superpotential is the 
Polonyi superpotential of §5.7, it is not difficult (Exercise 5.10) to check that 

A=3-\13  Polonyi superpotential. (5.135) 

The parameters A  and m3/2  in (5.134) should be understood as being defined 
at the Planck scale in the first instance. Thus, to employ the effective 
potential at the electroweak scale it will be necessary to run the parameters 
between the two energy scales by means of renormalization group 
equations, as will be discussed in Chapter 6. 

An attractive possibility for the observable-sector superpotential W  is that 
it should be trilinear in the chiral superfields Y r ,  so as to avoid any small 
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(-100 GeV) adjustable mass parameters. Then, the effective potential 
simplifies to 

aw !f  12 22 t!\ 

V  = 1- +  m3niYrl  +  Am3/2(W  +  W*).  (5.136)
aYr  

A feature of (5.134) and (5.136) is that there is a universal super­
symmetry-breaking mass m3/2  for the scalars Yr  from all chiral supermulti­
plets. It  is possible to obtain effective potentials in which this universality is 
absent by taking the kinetic terms for the chiral superfields to be non­
minimal. However, universal supersymmetry-breaking scalar masses may 
be desirable because flavour-changing neutral currents are then avoided in a 
natural way. 

In general, the low-energy effective potential may contain D-terms. 
These are readily obtained from (5.56), and, for G of the form (5.125), the 
complete low-energy effective potential is 

t  12 !. aw  aw 2 2 !  
V  = 1- +  m3niYrl  +  m3/2  (Yr- +  (A  - 3)W  +  cc)

aYr  aYr  

+  ~ Re r;;b1 DaDb  (5.137) 

with 

Da  = gy'*(Ta)rsYs.  (5.138) 

Another possible source of supersymmetry breaking in the observable 
sector is the occurrence of gaugino masses while the corresponding gauge 
fields remain massless; so there are mass splittings within the vector 
supermultiplets. For this to be possible at tree level, it is necessary that non­
minimal gauge kinetic terms should be present with/ab in (5.54) a non-trivial 
function of the chiral superfields. Then, the first term in (5.60), 

:£ =  1  eG12  a/ab  *  (G-1)i Gk;.  ;.  (5.139)GM - 4 aq)*  k  a  b  

can induce gaugino masses provided that Gk  is non-zero for some value of k,  
which is the case whenever supersymmetry is broken, as discussed in §5.5. 
Observing that a/ab * laq}*  has dimensions of inverse mass, assuming a 
hidden-sector scalar field VEV  of order mp  responsible for supersymmetry 
breaking, and defining a supersymmetry-breaking scale Ms as in (5.105), 
we see that the gaugino masses m1l2  are of order of magnitude 

m1l2  - M~/mp - m3/2  (5.140) 

where (5.108) has been used. Thus, the gaugino masses are another possible 
supersymmetry-breaking effect on the scale of the gravitino mass. 
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S.10 No-scale supergravity 

In order to solve the hierarchy problem of grand unified theories (see 
Chapter 6) it is necessary to ensure that the supersymmetry-breaking mass 
splittings in the observable sector are not greater than about 1 TeV. The 
discussion of §S.9  then suggests that we require a gravitino mass m3/2  of not 
more than 1 TeV. In §S.7  such a gravitino mass was obtained by introducing 
by hand into the superpotential of the hidden sector a mass scale m  that 
could be adjusted to obtain the required value of m3/2  as in (S.104).  This is a 
somewhat unnatural procedure and it might be more attractive to have a 
theory in which the only input mass scale is the Planck scale mp.  This can be 
achieved if (in the absence of observable-sector superfields) the effective 
potential for the hidden sector is flat (constant). Then, the expectation 
values of the hidden-sector scalars are undetermined at tree level and 
consequently the gravitino mass of (S.80)  is undetermined at tree level. It 
may then be possible for non-gravitational radiative corrections to the 
effective potential to lift the degeneracy of the tree level effective potential, 
and so the gravitino mass m3/2  may be hierarchically smaller than the Planck 
scale mp.  (When scalar vacuum expectation values arise from radiative 
corrections in this way they can be suppressed by an exponential factor 
relative to the natural mass scale because the radiative correction to the 
effective potential is logarithmic in the scalar VEV.) Such theories(9) are 
called no-scale supergravity theories. 

Kahler potentials of the no-scale supergravity type occur naturally in the 
supergravity limit of string theories(lO),(ll), the simplest example being 

G = - 3 In(z +  z*)  (S.141)  

where z  is a hidden-sector scalar. For this Kahler potential 

aG  = aG  = _ 3(z+  Z*)-l  (S.142) 
az  az*  

a2G  
az  az*  = 3(z  +  Z*)-2  (S.143)  

and consequently the effective potential 

V=  - Gi(G-1);eJ)  (S.l44) eG (3 ­
of (S.82)  gives 

V=O  (S.14S)  

for all  values of z.  
The desired property of a gravitino mass undetermined at tree level may 

be retained when observable-sector superfields are incorporated provided 
that the tree level effective potential is positive semi-definite with a flat 
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direction (a direction along which V  is constant) along which the degeneracy 
in the value of z can be lifted by radiative corrections. A simple example is 
provided by the Kahler potential 

G = - 3ln(z +  z* - kyr*Yr)  +  In IWl 2  (5.146) 

where k  is a positive constant and the superpotential is 

W  =  dpqrYpYqYr  (5.147) 

with c a constant, and dpqr  numerical coefficients. For this Kahler potential 

*  -1 (z +  z* Y s )3(z  +  z* - kyr  Yr)G  =.  y'*  k- 10;  (5.148) 

where we have taken the upper index to be the row index as in (5.38). After a 
little algebra, equation (5.144) together with the D-terms  of (5.56) gives the 
positive semi-definite effective potential (Exercise 5.11) 

V  = (3k)-1(Z  +  z* - kyr*Yr)-21~~12 +  ~ Re {;;b1DaDb  (5.149) 

where 

Da  =  Gr(Ta)rsYs'  (5.150) 

The minimum of the potential occurs for 

aw  =0  Da  =  0 for all r  and a  (5.151)
aYr  

and the cosmological constant is then zero. The expectation value of z is 
undetermined at the minimum of the tree level effective potential, and so 
radiative corrections can again determine m3/2'  

Unlike (5.126), the form (5.149) of V  yields no  supersymmetry-breaking 
scalar masses or A-terms  in the low-energy limit. Thus, at first sight there is 
no way that supersymmetry breaking can communicate itself to the observ­
able sector. However, in no-scale supergravity theories deriving from string 
theory(lO) there is often a second hidden-sector scalar field S which enters the 
gauge kinetic term fab  in the form 

fab=oabS,  (5.152)  

Then, a supersymmetry-breaking gaugino mass can arise as in (5.139). 
Other supersymmetry-breaking effects (such as scalar masses) can then be 
induced by radiative corrections when the parameters of the theory are run 
to the electroweak scale using renormalization group equations. 
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Exercises  

5.1  Rewrite the supersymmetry transformation laws (5.2) and (5.3) in 
terms of Majonma spin or and real scalar fields. 

5.2  Derive (5.10) for the variation of the Lagrangian :£0'  

5.3  Derive the next-to-leading-order variation of the Lagrangian (5.15). 

5.4  Show that the supergravity Lagrangian defined by (5.38), (5.42) and 
(5.43) reduces to the globally supersymmetric form (2.56) with mij  = 0 when 
non-renormalizable terms are neglected. 

5.5  Show that the mass term of (5.89) may be rewritten in the form (5.92). 

5.6  Perform the calculations necessary to demonstrate explicitly the super­
Higgs mechanism for the case of D-term  supersymmetry breaking. 

5.7  Show that the Polonyi model effective potential of (5.100) has an 
absolute minimum at C(!O  =  v'3 - 1. 

5.8  Derive the supersymmetry-breaking scalar mass terms of (5.110). 

5.9  Derive the low-energy effective potential (5.131) for hidden-sector 
supersymmetry breaking of supergravity. 

5.10  Show that the supersymmetry-breaking parameter A  has the value 
3 - j3  for the Polonyi superpotential. 

5.11  Derive the effective potential (5.149) from the Kiihler potential 
(5.146). 
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SUPERGRA VITY  GRAND  UNIFIED 
 
THEORIES 
 

6.1  The  hierarchy  problem  

We noted in Chapter 3 that there is indirect evidence both for super­
symmetry and for grand unification from the calculated evolution of the QeD  

and electroweak coupling constants 
to 

(a3'  a2,  ja1) to a common value of 
ao =  at an energy scale mx of  order 1016 GeV. If these  indications are 
confirmed experimentally, by the discovery of supersymmetric particles on 
LEP200 or LHC, for example, the most pressing questions will be to 
determine what supersymmetric grand unified theory (GUT) describes nature 
above this energy scale, and to understand how its gauge symmetry and 
supersymmetry are broken to the familiar gauge theories that we observe. 
We shall address these shortly. 

First we discuss the generic 'hierarchy problem' that is inherent in all GUTS, 

namely the huge disparity between the (huge) energy scale at which the GUT 

symmetry is broken and the (Te V) energy scale characterizing the familiar 
breaking of the electroweak symmetry. The advantage of a supersymmetric 
theory is that these two scales may be built into the tree level effective 
potential, and the non-re normalization theorems discussed earlier then 
ensure that higher-order loop radiative corrections do not destroy the 
hierarchy. However, even supersymmetric theories do not explain the origin 
of the two scales in the parameters of the input potential. In  a supergravity 
theory emerging from string theory the GUT scale may plausibly be near the 
string scale (related to the Planck scale of 1018 GeV), but the origin of the 
electroweak scale remains problematic. At the time of writing the favoured 
solution is that the electroweak symmetry breaking is driven by radiative 
corrections, in which the mass-squared term for the electroweak scalar 
'runs' from a positive value at the GUT scale to a negative value at the TeV 
scale, thereby inducing the spontaneous breaking of the electroweak 
symmetry. To investigate such a scenario we first need to formulate the 
supergravity GUT. This is done in §6.2 for the minimal SU(5) theory. In  §6.3 
we take universal soft supersymmetry-breaking masses for the scalars (mo)  
and gauginos (ml/2),  as well as trilinear scalar interactions with their 
associated A -parameters.  We then formulate the (coupled) re normalization 
group equations for the Yukawa couplings, scalar masses and A-parameters 
and investigate the possibility of obtaining the required electroweak 
symmetry breakdown. The soft supersymmetry breaking also induces mix-

DOl: 10.120119780367805807-1 
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ing between the gauginos and Higgsinos. This is discussed in §6.4, and the 
current status of experimental searches for these and other sparticles is 
reviewed in §6.S.  In §6.6 we consider proton decay in the context of 
supersymmetric GUTS. The principal generic difference compared with non­
supersymmetric GUTS arises from the existence of additional mechanisms for 
inducing proton decay, some of them at an unacceptably high rate. We 
discuss the removal of the unwanted terms by the assumption of additional 
(discrete or continuous) symmetry. 

The limited evidence for supersymmetry is most welcome for reasons that 
were briefly alluded to in Chapter 1. These relate to the 'hierarchy' problem 
that afflicts all non-supersymmetric GUTS. All GUTS require at least two levels 
of spontaneous symmetry breaking. The first is to break the GUT symmetry, 
and this is achieved by a scalar field <I> acquiring a vacuum expectation value 
(VEV) 

(01<1>10) = V  = 0(1015 GeV). (6.1) 

The second is the familiar electroweak breaking which is achieved by the 
neutral component cp  of the Higgs doublet acquiring a VEV 

(Olcplo)  = v  =  246 GeV. (6.2) 

The hierarchy problem derives from the vast difference between these two 
scales 

Vlv  = 0(1013) (6.3) 

and the difficulty of arranging this in  a natural   way.  The tree level effective 
potential for these fields has the generic form 

V  (<I> m)  = - lA <1>2 + 10,'1'  2 4  B<I>4  - 2'1' 1am2  + lbm4   + l.A.<I> 2m2  
4'1' 2 '1"  (6.4)

The GUT symmetry breakdown (6.1) is achieved by choosing A, B   such that 

V2  = AIB  

and this sets the mass scale for the superheavy Higgs particle(s) associated 
with <1>. The problem arises at the electroweak symmetry breaking (6.2), 
since the superheavy scale V  is communicated to the cp-sector by the term 
proportional to A in (6.4). Such a term is always present, since a represen­
tation multiplied by its complex conjugate always includes the singlet 
representation. The superheavy Higgs fields decouple, and the required 
symmetry breaking is ensured by choosing 

v 2  = (a - AV2 )/b.  (6.5)  

Evidently to achieve the required value (6.2) it is necessary to fine-tune 
the value of a to  one part in 1026, and it is this fine-tuning that is thought to be 
so unnatural. It  might not seem so distasteful if it only had to be done once. 
However, radiative corrections produce loop corrections to the effective 
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potential and we have to retune at each order in perturbation theory to 
accommodate the induced corrections to a,  A,  V,  b.  Even so it should be 
borne in mind that it is  only a matter of taste; after all, we are by now quite 
accustomed to doing something that, in a way, is even worse. When we 
renormalize we have to choose counter-terms that cancel the infinities  that 
arise from the divergent loop momentum integrations. It  is (only) the 
further finite retunings that are now regarded as unaesthetic. 

The advantage of supersymmetric theories is that it is only the tree level 
potential whose parameters have to be fine-tuned, as in (6.5). The non­
re normalization theorems, discussed in §§2.6, 2.7, ensure that loop correc­
tions do not destroy the hierarchy, so there is no necessity to retune. Of 
course, since we know that supersymmetry must be broken, the situation is 
not quite so clean. The non-renormalization theorems derive from a 
cancellation of radiative corrections between the contributions from super­
symmetric partners. Thus if the average supersymmetry-breaking mass­
squared splittings within supermultiplets are of order tt2 ,  we shall obtain 
finite radiative corrections from graphs like (2.71, 2, 3) with 

A2  
om~ - 8J?tt2  (6.6)  

with A some Yukawa or gauge coupling constant. So the retuning problem 
will not arise provided the supersymmetry-breaking mass splitting tt  is of 
order v:  

tt  - v.  (6.7) 

In other words the super-partners of the known quarks and leptons and 
gauge particles should all have masses less than or of order 1 Te V or so, if we 
insist that the hierarchy problem is to be solved by supersymmetry. This then 
suggests, but does not require, that we should attempt to relate supersym­
metry breakdown to the electroweak symmetry-breaking mechanism. 

We have seen in Chapter 5 that an attractive mechanism for achieving the 
required supersymmetry breakdown in supergravity theories is to assume 
the existence of a 'hidden' sector of the theory, involving particles that 
interact only gravitation ally with the quarks, leptons, gauge particles of the 
'observable' sector; such a situation is realized naturally in heterotic string 
theories. In the observable sector the supersymmetry breaking is manifested 
by the appearance of (soft) mass terms for the scalars and/or the gauginos. 
The masses of the scalars (mo)  and the masses of the gauginos (m1l2)  are of 
the order of the gravitino mass (m3/2):  

mo  - ml/2  - m3/2  - M}lmp  (6.8) 

where Ms measures the supersymmetry breaking scale. Then the required 
Te V scale for the particle-sparticle mass splitting is obtained when 
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Ms  = 0(1011 GeV). (6.9) 

In  turn such a value for Ms  might be understood as arising in a no-scale 
theory as a hierarchic suppression of the Planck scale mp.  However, this 
does not explain why  the electroweak symmetry breaking scale (v)  is of the 
same order of magnitude 0(1 TeV) as the supersymmetry-breaking mass 
splittings (6.7). 

Indeed, if we add to the supersymmetric standard model superpotential 
(3.139) the only renormalizable term involving the Higgs chiral superfields 
HI, H2   that is consistent with SU(2) x U(l) symmetryt 

WI=mHii?H2  (6.10) 

then the F-terms generate mass terms 

L I~:J = 2m (hlh l  + h~h2)  (6.11) 
I  

for the Higgs scalar components hI'  h2,  of HI,  H 2.  We see that, since 
m2  >  0, there is no possibility of breaking the SU(2) x U(l) symmetry 
spontaneously. Furthermore the additional terms in the low-energy effec­
tive potential (5.137), which arise in models possessing hidden-sector 
supergravity breaking, also do not generate the necessary negative mass­
squared terms. Thus, far from relating the electroweak breaking to the 
supersymmetry breakdown, we cannot even achieve spontaneous symmetry 
breaking. 

The simplest way out is to_introduce a new SU(2) x U(l) singlet chiral 
superfield Y,  and instead of WI  add the term 

W2 = AY(Hi i  ?H2  - fJ-2)  (6.12)  

to the standard model superpotential. Then the effective potential (5.137) 

for the Higgs sector is 


V  = A21hi i   r 2h 22 - fJ-212 + A y*y(hIh l  + h~h2)  


+ m~I2(Y*Y  + hIhl  +  hih 22)  + m3l2AA(yhi  i   r h2 + He)   

+ (2  - A)AfJ-2(y  + y*)   + §g'2(hIhl   - hih2)2  

+ b  2(hIr ihl  - h~rih2)2 (6.13) 

where the last two terms are the D-terms. In  writing (6.13) we have 
suppressed the factors exp(ilaiI 2)  in the definitions (5.130) and (5.133) of 
m3/2  and W.  They may be restored at the end by rescaling all masses with this 

tWe ignore until §6.6 the possibility of adding terms that do not conserve baryon 
number and/or lepton number. 
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factor. It  is easy to verify (Exercise 6.1) that (6.13) does lead to the 
spontaneous breaking of SU(2) x U(l) to U(l)em provided 

(AJl)2  > m~/2 .  (6.14) 

We shall not proceed further with the minimization of V.  Suffice it to say that 
the magnitude of (the common value of) the VEVS of hI  and h2  is determined 
by the parameter Jl  that we had to introduce in order to achieve the 
SU(2) x  U(l) breaking. Thus the electroweak breaking scale is effectively 
input via Jl  and is not related to the supersymmetry-breaking scale. The 
solution to this problem that is favoured at present is that the electroweak 
symmetry breaking is induced by radiative corrections. In this scenario the 
mass-squared term for the electroweak Higgs fields is positive (or zero) at 
the GUT scale (6.1), but as the couplings evolve, because of radiative 
corrections, the re normalization group equations drive the mass-squared 
negative at the TeV scale (6.2), thereby causing the electroweak transition. 
We shall see later how this can happen. First we formulate the minimal 
SU(5) supergravity GUT. 

6.2 The minimal SU(5) supergravity GUT 

We have described in the previous chapter (§S.4) how to write down the 
supergravity Lagrangian for general (gauge) vector superfields coupled to 
general chiral supermultiplets. The procedure starts with a version of the 
global supersymmetric theory, generalized, by the introduction of the 
Kahler potential (G or K)  and the function Jab,  to include non­
renormalizable terms. The original (renormalizable) theory is fixed once the 
superpotential W(ct»  is known. In the case of the SUeS) GUT, the chiral 
superfields must include those associated with the three generations of chiral 
fermions. These are denoted by 1jJ(f)i  (i  = 1, 2, ... , S) transforming as the 5 
representation of SUeS), and XI&?'  which transforms as the 10  represen­
tation; J=  1,2, 3 labels the generations. In addition there is the adjoint of 
scalars Ia (a  =  1, ... ,24) necessary to break the SUeS) symmetry to 
SU(3) x SU(2) x SU(l), and two  further Higgs scalar multiplets, denoted 
Hi' Hi  (i  =   1, ... , S) associated with the electroweak symmetry breakdown; 
H  transforms as a 5, and H as  a 5.  The couplings required to generate 
fermion masses derive from the superpotential 

W  =  '\"' L   [m(d)1jJ(f)i  (g) Hj  +  m(u) eijklmX(flX(g) X   H   ] (6 lS) 
m  fg  [Ill  fg  [Ill  [kll  m  . . 

f.g  

In addition we need the terms that lead to SU (S) breaking. It is convenient to 
represent the adjoint scalars by a (traceless Hermitian S x S) matrix 

IJ = Ia(ta)J  (6.16) 
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where t a  are the 5 x 5 matrices representing SU(5). 
Then the required breaking can arise from 

Wl = A1(1  tr!? +  iM1  tr ~?). (6.17) 

Ignoring the supergravity contributions for the moment, the effective 
potential is given by 

V  = '\' laWl l2 = tr lawl _ 16i  aWll2L  a:la  a:l', 5 J  a:lZ 
a  J  

= Ai tr 1:l2 +  M1:l - ~ tr :l212 

= Ai[tr:l4 - ~(tr :l2)2 +  Mi tr:l2  +  2M1  tr :l3]. (6.18) 

It  is easy to verify that the F-term  

Fl ==:l2 +  M1:l- ~tr:l2 (6.19) 

is zero for three independence choices of:l. These are 

:l=0 (6.20a)  

:l = 1M1  diag(1, 1, 1, 1, -4) (6.20b)  

:l = M1  diag(2, 2, 2, -3, -3). (6.20c)  

Thus V  has three degenerate minima at which V  = 0, so supersymmetry is 
unbroken. Clearly, at the first SU(5) is unbroken, at the second it is broken 
to SU(4) x U(l), and at the third to SU(3) x SU(2) x U(l). This is a 
generic feature of globally supersymmetric theories. However, in the case of 
supergravity GUTS we have seen how the supersymmetry may be broken via 
gravitational interactions with a hidden sector and so we might anticipate 
that the supergravity contributions in (5.137) will lift the degeneracy and, we 
hope, select the SU(3) x SU(2) x U(l) minimum as the preferred phase. In 
the presence of the supergravity corrections, the stationary points of the 
effective potential occur when 

F"i,  +  mp-2:l(W  +  (W)  = 0 (6.21) 

where (W)  is given by (5.128). In the limit mp  ~ 00 this gives 

:l2 +  (M 1+  IlIAd:l  - ~ tr:l2 = O. (6.22) 

Thus, as in (6.20), there are three solutions, but the positions are shifted by 
the replacement 

M1  ~ M1  +  iliA  (6.23) 

which is small if m3/2  is of Te V order, while M1  is on the GUT scale. These 
(supersymmetric) vacua are no longer degenerate, since Vhas  the value 
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V  = e1a,12 2fl(A  - 3)W  (6.24) 

at such stationary points, and W  has different values for each of the three 
minima. Allowing for the shift (6.23), we find, corresponding to the three 
cases in (6.20), 

e 1a,1 2W = 0  (6.2Sa)  

e 1a,1 2W = ~Al(Ml +  flIAl)2(Ml  - 2fllAl)  (6.2Sb)  

e 1a, I2W = SA1(M1  +  fllAd2(Ml  - 2fllAd·  (6.2Sc)  

Thus if A  < 3, as it is for the Polonyi potential, the global minimum is the 
SU(3) x SU(2) x U(l) phase, as required. 

Besides the terms (6.1S)  and (6.17) of the superpotential, we must have in 
addition the terms 

W  H  =  A2H(I  +  3M2)H.  (6.26) 

At the SU(3) x SU(2) x U(l) minimum we may replace I by its VEV  to 
obtain an effective superpotential that generates mass terms for the colour 
triplet and doublet scalars in Hand H.  Explicitly we see 

mH(3)  = mg(3) = A2[3M2  +  2(Ml  +  ,uIAl)]  (6.27a)  

mH(2)  = mg(2) = 3A2[M2  - (Ml  +  ,uIAl)]·  (6.27b)  

We have seen that M 1 must be of order 10 16 GeV in order to break the SU(S)  
symmetry at the 'observed' scale. This is welcome as a mass scale for the 
Higgs colour triplet scalars, since they can mediate proton decay, and would 
do so at an unacceptably high rate if their masses were less than 
0(1015 GeV). However, we also require light electroweak Higgs doublet 
scalar fields hI,  h2'  and this requires 

Ml=M2 (6.28) 

to TeV accuracy. Dropping the massive colour triplet states then gives an 
effective SU(2) x U(l) superpotential of the form (6.10) with 

m  = - 3A2m3/2/Al  (6.29) 

and we noted before that this cannot generate spontaneous breaking of the 
electroweak gauge group. However, we must also include the supergravity­
induced contributions to the effective potential, besides the global super­
symmetric contribution (6.11). Including such terms, we find, using (S.137),  

Veff = (m2 +  m~I2)(hlhl +  h~h2) +  mm3/2[(A  - l)hT  i  r 2h2  +  He]  (6.30) 

which yields the required symmetry breaking, provided that 

m2  - mm3niA  - 11 +  m~12 <  o. (6.31) 

This is satisfied for certain values of mlm312  provided that 
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lA - 11 >  2. (6.32) 

Of course the required TeV scale for m  is a result of the fine-tuning (6.28), 
which we have input; nothing in the model requires it to be so, and in this 
sense we are no better off than in the original model (6.12). 

What we really need is a model that has no mass scale input, and in which 
all low-energy mass scales derive from the supersymmetry breakdown which 
is transmitted to the observable sector by the parameter m3/2'  Since there 
are to be no explicit mass parameters in the superpotential, it must be 
trilinear in the fields. 

We discussed just this possibility in §5.9. It  leads to the effective potential 
given in (5.136) since 

aWe  
y,-=  3W.  (6.33)

ay,  

Then we can also write 

.\ 12 2 2 1 [(\]aw  aw 
Veff  = 1- +  m3dy,I  +  '3m3/2  Ay,- +  cc . (6.34)

ay,  ay,  

Since W is homogeneous, the effective potential is zero when all fields have 
zero VEVS. Thus the only way to obtain symmetry breakdown, which requires 
non-zero VEVS, is when Veff  is negative. However, it is easy to see that this 
can happen only if 

IAI  >3. (6.35) 

To illustrate this consider a simplified model with three singlet (chiral 
superfields) and 

W=AXYZ.  (6.36) 

Then 

Veff  = A2[IXYI2  + IYZI2 + IZXI2]  

+  m~/2[IXI2 +  IYI2 +  IZI2]  +  m3/2A(AXYZ  +  HC) (6.37) 

where we are now using the same symbol to denote the chiral superfield and 
its scalar component. The symmetry requires that Veff  attains its minimum 
when 

l(x)1  = I(Y)I  = I(Z)I  ==  v  (6.38) 

and 

arg A  +  arg(X)  +  arg(Y) +  arg(Z) = rc.  (6.39) 
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Then the stationary points are given by (Exercise 6.2) 

v  = O,! mr2  [lA I ±  VIA  12 - 8] (6.40) 

at which the potential has the value 

V  - 2( 2 ,2 2)
eff - V  m3/2  - 1\  V  .  (6.41) 

When IAI  >  3, 

Av  =  !m3/2[IA  I +  VIA  12 - 8] > m3/2  (6.42) 

so the non-trivial minimum is the global minimum, as claimed in (6.35). 
To realize this mechanism in electroweak theory it is essential to enlarge 

the Higgs sector, since we cannot make an SU(2) singlet using three 
doublets. The 'cheapest' enlargement is to introduce a singlet  superfield Y 
and take(l) 

WH  = AHT  i  r 2H 2 Y +  ~ay3. (6.43) 

Then, as above, when lA  I  > 3 there is an absolute minimum of the effective 
potential at which the SU(2) x U(l) symmetry is broken. Unfortunately, 
when we include the further terms in the superpotential that are required to 
generate the fermion masses, the absolute minimum typically occurs at a 
place where the slepton and squark fields have a non-zero VEV: in other 
words the SU(3) x U(l)em gauge symmetry is preferentially broken. This is 
already pretty clear from (6.38) since the global minimum occurs when all  
fields have a non-zero VEV, including in our case coloured and charged 
scalars. 

The best bet at this juncture is to arrange that 

A  =3  (6.44) 

since then all of the local minima occur at Veff,  and so are degenerate. 
Radiative corrections might perhaps spoil this degeneracy, and, we hope, 
select the charge-conserving SU(2) x U(l)-breaking solution as the absol­
ute minimum. 

Actually the introduction of singlet fields, such as Y, introduces further 
unsatisfactory features for supergravity GUTS. If  Y in (6.43) is an SU(5) 
singlet, then it can couple to the heavy colour triplet Higgs, and this 
threatens the stability of the Te V mass scale m3/2  which transmits the 
supersymmetry breaking to the observable sector(2). We shall not pursue 
this point further, but instead consider the possibility that we can sustain just 
the minimal Higgs sector (with no  singlets Y).  The breaking of the electro­
weak symmetry at tree level is then impossible, as we have seen, but it might 
be driven by radiative corrections. 
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6.3  Renormalization  group  equations(3) 

At the unification scale (the Planck scale?) we shall assume that the scalar 
masses have a universal value moo  To see whether electroweak breaking can 
arise from radiative corrections we need to write down the renormalization 
group equation for the squared mass of the electroweak Higgs scalars 
(hI'  h2)'  Of course this equation involves other masses and coupling con­
stants so it is necessary to consider the evolution of all of the parameters of 
the theory as we run the energy scale from 1016 GeV down to electroweak 
scale. 

We have already written down in (3.139) the part of the observable-sector 
superpotential that is necessary to induce mass terms for the quarks and 
leptons at the electroweak symmetry breakdown. The only other term 
consistent with the gauge symmetry (and renormalizability) is that given in 
(6.10). It is,  as we have said, unaesthetic to input any small mass scale (such 
as m)  other than the gravitino mass m3/2  deriving from supersymmetry 
breaking in the hidden sector. However, without such a term the theory 
possesses axions, as we shall see later, so we shall include it without further 
ado. Assuming, as in §5.9, that the full superpotential is the sum of the 
observable-sector piece plus a hidden sector piece iV,  the effective potential 
for the scalar particles is given by 

aw /\ 12 2 2 { I IT' 2 c
Veff  =  1aYr  + mrlYrl   + m3/2   L AIG L   1 r  H21  

I  

+ '\'   [AfgG  d  QfT i   r2H Dcg  
d  2 

+ L AfgG  u  QfT i   r2H ucgl fg  U  fg  1 

f.g  

+ Bf1HJ  i   r2H2 + He}  + ~D2  (6.45) 

where we are now using the same symbol to denote the chiral superfield and 
its scalar component. The scalar masses m~ have the common values 

m~=m6 (6.46) 

(perhaps equal to m~d at the unification scale. Similarly at this scale the 
various A-parameters have  a common value: 

Aq =   A{f =   Al =   A  (6.47)  

and, as in (6.30), 

B=A-l.  (6.48) 

Allowing for possibly non-minimal gauge kinetic functions f~b' where 
i  = 1,2,3 refers to the three gauge groups U(l), SUL (2), SUc(3), the 
D-terms in  (6.45) are given by 
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ID2  = I,\, Reji- 1Di Di  
2: 2: L  ab  a b  (6.49a) 

where 

D~ = 5;giy:(Ta)rsYs'  (6.49b)  

The non-minimal gauge kinetic functions can also give rise to non-zero 
gaugino masses, as discussed in §5.9. Thus besides the soft supersymmetry­
breaking masses 

I 
in (6.45) we also include gaugino (Majorana) mass terms 

5;  m;i\'tA't  (6.50) 

where as before i  = 1,2, 3 labels the three gauge groups. 
At the Planck scale these too have a common value 

mi  = m1/2  (6.51) 

of order m3/2  .  
Before formulating the re normalization group equations that determine 

whether the electroweak symmetry is broken by radiative corrections, let us 
first try to get some sort of feel for whether it is even feasible. The terms in 
(6.45) involving just the electroweak Higgs scalars lead to an effective 
potential having the general form 

V  - 2HtH  +  2HTH  2(HT '  2H  )H  - mIll  m2  2 2 - m3  1 I " 2 +  He 

1 2(HtH  HtH  )2 1 2(Ht  iH  Ht  iH  )2 +  sgl I 1 - 2 2 +  Sg2 1" 1 +  2" 2 (6.52) 

and electroweak symmetry breaking occurs when this potential has a 
non-trivial minimum. This will happen in particular if mi <  0, as we shall 
see. The generic structure of the radiative contributions to a scalar squared 
mass is 

om~ _g2(m}_  m~) (6.53) 

where g measures the coupling strength, m}  is the contribution from a 
virtual-fermion loop, and mE  is from a virtual-boson loop; the opposite sign 
derives from the usual -1  factor from closed fermion loops. It  follows that 
the contributions from the gauge interactions is typically positive, since the 
gauge vector particles are massless, while the gauginos have a non-zero mass 
from the supersymmetry breaking. However, besides their electroweak 
gauge interactions the Higgs scalars have Yukawa couplings to the quarks 
and leptons, as displayed in (6.45). The largest of these is the coupling of HI  
to the top quark, since it is the most massive. Its supersymmetric partner, the 
top squark (or stop), is even more massive, so the top/stop contribution is 
negative and can in principle drive mi negative. This gives a non-zero VEV  to 
HI,  and in fact H2.  Furthermore the non-zero VEV  for H2  leaves U(1)em 
unbroken, as required (Exercise 6.3). 
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Figure 6.1 Diagrams contributing to the G~3 renormalization group equation. 

We denote the VEVS of the neutral components of HI,  2 by VI, 2, and these 
are non-zero when the minimum of 

V H(VI,  V2)  = mivi  +  m~v~ +  2m~VIV2 +  Mii  +  iz)(vr  - V~? (6.54) 

is away from the origin. Note that the quartic tenns derive entirely from the 
D-tenns, and that they vanish if IVII = IV21. Stability against Vu running  to 
infinity in this case therefore requires 

mi +  m~  ~ 2Im~l. (6.55) 

Also, the breakdown of SU(2) x  U(l) requires that the quadratic part is 
negative in some direction of the (VI' V2)  plane, and for this it is necessary 
that 

mim~ < mj  (6.56) 

which is satisfied, in particular, in the case where mi  is negative, as we 
envisage. 

We have already noted the renormalization group equations for the gauge 
coupling constants in §3.8. For three generations of chiral fermions (nG  = 3) 
and the minimal Higgs content in a supersymmetric theory (nH = 2), these 
become 

M dal =  .!..!.ai  (6.57a)  
dM  2n 

Mda2=~a~ (6.57b)  
dM  2n 

M da3  =  _  ~a~ (6.57c)  
dM  2n 

at single-loop order. The corresponding equations for the Yukawa coupling 
constants may be computed in a similar manner. We are especially con­
cerned with the largest of these, namely G 33, which eventually generates the 
top quark mass. It is customary to neglect the contributions to all diagrams 
from all except this Yukawa coupling. Its renormalization group equation 
can be computed from the diagrams shown in figure 6.1. 
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Figure 6.2 Diagrams contributing to the my  renormalization group equation. 

They give 


dG 33 _ 3 (Gu)3  G33  (8 3 13)
M  -- - -2 33 - - ~a3 +  Za 2  +  IRa!  .  (6.58)
dM 8n 2n 

Similarly the corresponding three-scalar vertex given in (6.45) generates an 
equation for the A-parameter: 

M  d~ (A 33m3/2)  =  4!2 (A33m3/2)(G33)2  

1  (8 - 3 - 13 -)
- - 3a3m3  +  '1a2m2  +  I8a lml (6.59)

n  

where mi  are the gaugino masses, whose evolution is given by 

aJrni  = constant. (6.60) 

The spontaneous symmetry breakdown is driven by the running of mt ,as we 
have already seen. Its evolution is calculated from the diagrams in figure 6.2: 

dmi  3(G33 )2  [2 2 2 ( 2  
M  dM  =  8.1l2  ml +  mu'  +  mQ'  +  m3/2A

U 

33 )  ] 

2 [3 - 2 1 - 2]
- - 4a2m2  +  4al m l  .  (6.61)

n  

Evidently we also need the equations for m't'  and m~' which may be 
calculated in a similar manner: 

d  2 (G U  f  2 2M  mu,  = __33_ [mi  +  m't'  +  mQ'  +  (m3/2A 33)  ] 
dM 4n2 
 

2(4 -24 -2)

- - 3a 3m 3  +  9alml  (6.62)

n  
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Figure 6.3 Diagrams contributing to the )J,  renormalization group equation. 

dmb3  (G33 )2 [2 2 M  =~ mu 
dM  ml + 

8.n­
3  + 2 ( mQ3   + AU  )2] m3/2  33

2 (4 -2 3 -2 1 -2) 
- - 3a3m 3  + 4a2m 2  + 30a l m l . (6.63)

n  

The parameter m~ in (6.52) is given by 

m~ = B#m3/2  (6.64) 

where the evolution of)J,  is determined from the diagrams in figure 6.3. 
They give 

M  d# _ 3 )2 1 ( )- - - -- (GU 
33 - - al + 3a2   .  (6.65)

#  dM  16n2  4Jl'  

The corresponding diagrams with external scalars determine the evolution 
of the B-parameter 

M  ~ (Bm3d =  - ~ (A33m3/2)(G33)2  - ~ (ia2m2  + aalmd.   (6.66)
dM  8.n- n  

If we  neglect all Yukawa couplings except for G33 then the running of all 
other scalar masses is determined just by the gauge couplings. In particular 
the mass m~ in (6.52) satisfies 

dm~ _ 2 (3 -2 1 -2)
M  dM  - -; 4a2m2  + 4 a lm l . (6.67) 

It is  now straightforward, in principle, to perform the numerical inte­
gration of these equations for given input values of the parameters A, m1/2'   
#, m3/2'  mo,  G33  at the unification scale mx at  which the gauge coupling 
constants have the common value 

a3(mX)  =  a2(mX)  =  ial(mX) ==  aGUT(mX)'  (3.153) 

The values of these last two parameters are those required by the data and 
given in (3.164) and (3.167). 

To get a feel for what actually happens we note first that the Yukawa 
coupling contributions to the running of the masses mT,  mt3, mt3  in  (6.61), 
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(6.62) and (6.63) have the effect of reducing the squared mass as the scale M  
is reduced. Further, since the coefficients of (G 33 )2  are in the ratio 3: 2: 1, mi 
decreases at a faster rate than the other masses squared; thus for suitable 
values of the parameters mi becomes negative before the squark mass­
squared terms do. By subtracting the equations it is clear that this remains 
true even allowing for the contributions of the gauge couplings, which 
oppose the decrease. 

For this to work the coupling (G33 )2  must be large enough to drive mi  
negative, and this leads to a lower bound on the mass of the top quark, since 
it is fixed when G33 is known: 

m t  =  G33V l·  (6.68) 

The actual value of the lower bound depends on the other parameters, 
notably A.  However, we can also see from (6.58) that for large G33  the first 
term dominates and this reduces  G 33 as M  is reduced; if G 33 is too large at the 
unification scale, it becomes too small at lower energies to drive mi  negative. 
In  this way an upper bound on G33 , and therefore mt ,  is found. Altogether 
the allowed range is(4) 

100 GeV:s mt:s  200 GeV (6.69) 

with the renormalization group fixed point of (6.58) tending to attract G33  to 
the value 

u)2  4n  [8 ) 3 13(G33  =""33CX3(mZ  +2CX2(mz )+I8CXl(mJ]  (6.70) 

corresponding to m t  = 210 GeV. The values of m3/2  that allow this are 
typically in the range 

80 GeV:s m3/2:S  300 GeV. (6.71) 

The re normalization group equation (6.61) shows that the running of mi 
to the required negative value is assisted by the (m3/2A33f  term. A larger 
A-value permits the symmetry breaking with a smaller value of G33 , and 
therefore of m t •  However, we have already noted that A  cannot be too large, 
or else the global minimum of the scalar potential will not be that which 
preserves SU(3)c x  U(l)em. Allowing for different masses, as induced by 
radiative corrections, the A-parameter AA  associated with the term )'XYZ in 
the superpotential is constrained byeS) 

IA;.12  < 3(m~ +  m}  +  m~ )/m~/2 (6.72) 

in order to avoid the unwanted minimum. (Note that, as required, this 
reduces to lA  I  < 3 when all masses are m3/2.)  

Incidentally this model also illustrates the source of the axion problem to 
which we have alluded. Evidently such a superpotential possesses a global  
U(l) symmetry in which 
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X~eiaxX Y~eiayy z ~ e-i(ax  +  ay)z  (6.73) 

with ax, ay  arbitrary. One choice ofax , ay is  associated with the (gauged) 
U(l)em symmetry, but there is clearly an independent U(l) that is not  
gauged. The occurrence of the spontaneous symmetry breaking will violate 
the global symmetry and generate an unwanted Peccei-Quinn axion(6). It is 
for this reason that the ,u-term (6.10) was introduced into the potential 
(6.45)-it excludes any such global symmetry. 

The upshot of all of this is that for a range of unification scale parameters 
the renormalization group equations do  generate the required symmetry 
breaking, and all low-energy parameters are determined by a few basic input 
parameters. 

In order to test the consistency of the theory with the data, we need to 
establish the relationship of the low-energy parameters determined by the 
renormalization group to the experimentally measured quantities. The low­
energy effective potential is determined by the parameters m?  (i  =  1,2,3), 
aj (j  =   1,2), and using (6.64) these are all known at low energies, for given 
input values of the parameters. Using these we may determine the VEVS VL 2' 

It is convenient to use instead the related quantities v, 8  defined by 

2  V == vi  + v~  (6.74a)  

tan 8 = V1/V2'  (6.74b)  

Then 8 is given by 

. 28 
Sill =  - 2 

2m~
2 (6.75)

m1  +m2  

(provided that the constraint (6.55) is satisfied) and v2  by 

222m2 2_m1-m2+ __  3_.  
2,n(a1  + (2)V  (6.76) - cos 28 sin 28 

The gauge boson masses are 

m~ =  2,na2v2  (6.77a) 

m~ =  2,n(a1  +  (2)v 2.  (6.77b)  

The physical Higgs scalar particles are found by combining the fields in the 
two scalar doublets 

(6.78)H1  =  (~n H2  =  (Z~)· 
It is convenient to introduce 
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1/J2 = - i  r2H* 2  = (-Hi) -0  (6.79)
H2  

and then define 

x = (cos 8)Hl  - (sin 8)1/J2  (6.80a)  

cP  = (sin 8)Hl  + (cos  8)1/J2  (6.80b)  

so that 

(Olxlo)  = 0 (OlcpIO)  =  (~). (6.81) 

Evidently X is  an 'ordinary' doublet while cp  supplies the three Goldstone 
boson fields. This is to say, the fields X+,  XO and  CPl in 

(6.82)X =   (~:) cP  = C + (lIv?;;CPl  + i   CPJ 

are physical fields, and the Goldstone bosons cP+,  CP2  are eaten in the Higgs 
mechanism. Expressing the low-energy potential in terms of these fields 
then enables us to determine the masses of the physical states. The charged 
scalars X±  have 

2 222
mx±  = ml + m2   + mw   (6.83) 

and, writing 

o 1 
X  = yI2(Xl  + iX2)  (6.84) 

the field X2  is a pseudoscalar, and has a mass given by 

2 2 
mx,  = ml + m2·  2 

 (6.85) 

The two fields CPl and Xl are scalars and mix and produce eigenstates with 
mass eigenvalues given by 

m 2  m 2  =  l(m2  + m  2 )  ±  1[(m2  
a  , b  ~ X2  Z  ~ X2  + m  2 )2  - 4m2 m  2  2

Z  X2  Z  cos 28]1I2  (6.86)

which requires that there is one scalar lighter  than the Z boson. 
The mass parameters for the first- and second-generation squarks and 

sleptons satisfy renormalization group equations of a form similar to (6.67), 
and these can be integrated analytically; the generic structure is 

dm2  -1 \"' -2 (6.87)M  dM  = 2n L  CiCtim i  

which is solved by 
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m2(mx)  - m2(mz)  =  [m~(mx) - m~(mz)] (6.88) 
.  I  
I  

where the b i  are given in (6.57) as 

MdCti
dM =  - bi Ct7.  (6.89) 

We shall not give details of the parameter Ci, but refer the interested reader 
to reference (3). However, it is important to recognize that these mass 
parameters are not the physical masses of the squarks and sleptons under 
discussion. This is because the D-terms and the trilinear scalar terms in 
(6.45) generate additional contributions to the squared masses when the 
scalars acquire non-zero VEVS, besides the explicit mass terms m;.  The 
determination of these additional contributions is controlled by the evol­
ution of the various A-parameters, as well as that of the Yukawa couplings. 
We omit details of these too. 

Because of the non-negligible Yukawa couplings the situation is even 
more complicated for the top squarks (the 'stops'). The two scalars (tL,tR) 
have a non-diagonal mass matrix(7) which has two eigenvalues 

2 _ 1( 2 2) - [( 2 2)2 4  mLL + mRR  mLL - mRR +  mLR 2 ]1/2 mf1.io  - 2 +  (6.90a)  

where 

mLL 2 - 2 2 ( 1) 2 =  mQ3  + m t  + n   Ct2 - 3Ct1  V  26cos (6.90b)  

2_2  2 4n  2 
mRR =  mu 3  + m t  + 3  Ct1V  cos 26 (6.90c)  

mER ==  vG33[A33m3/2  sin 6 + f.,l   cos 6] (6.90d)  

are determined by integrating the renormalization equations given earlier. 
The important point here is that the lighter state (t1)  can in principle be 
lighter than the top quark itself. 

I  ;i.  

6.4  Charginos  and  neutralinos  

We have just seen that because of the existence of the soft supersymmetry­
breaking trilinear scalar interactions, as well as the inclusion of the f.,l-term in 
the superpotential, there is a non-zero coupling of the tL  squark to the tR  
squark, and consequently a non-diagonal stop mass matrix, when the 
electroweak symmetry is spontaneously broken. As a result the mass 
eigenstates are superpositions of t Land t  R. A similar mixing effect occurs in 
the fermionic sector between the electroweak gauginos and the Higgsinos 
when the electroweak symmetry is broken. Of course, since charge is 
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conserved (because U(l)em is unbroken) there is only mixing between states 
of the same charge. 

We start with the mixing between the charged gauginos, the Winos W±,  
and the Higgsinos iif  (i  = 1,2). We have input non-zero gaugino masses in 
(6.50), deriving from possibly non-minimal gauge kinetic functions in the 
hidden sector. The Wino mass terms come from the a  =  1, 2 generators of 
the SUL (2) gauge group and can be written as 

1- (A-IA I  A-2Az) - (W- +W- - W-+W--) 
2m Z  z z +  z z = m2  +  (6.91a)  

where 

W±  _  1  
- Y2 (}·i  =+= i  A~) (6.91b)  

are Weyl spinors constructed from the Weyl spinors A2  of the SU(2) gaugino 
Majorana spinor fields Az. Similarly the Higgsino mass terms derive from 
the f.1HI  i TzH2  terms introduced into the superpotential for the reasons 
discussed earlier. The charged terms come from the f.1Hi Hi  piece, which, 
as in (3.56), generates the mass term 

f.1(Hi Hi  +  Hi Hi)  (6.92) 

where Hi,  Hi  are the spinor components of the superfields Hi  ,  Hi.  The 
bilinear coupling of these fields arises from the gauge terms displayed in 
(3 .128a)  when the neutral components h?  ,  h~ of the scalar doublets HI  ,  H2  
develop VEVS. Then we find 

gzY2 I  Hit aAaH i =g2(v IW-Ht +  vzW+Hi)  (6.93) 
a  =  I.  2 

i  =  1. Z 
 

after spontaneous symmetry breaking. All of these mass terms may be 
combined using the 'chargino' mass matrix (C) as 

(W+  i  Hn(  fizz  gZV2)(.~~). (6.94)
g2vI  -f.1  1Hz  

We diagonalize C by forming the linear combinations 

COS 8±  -sin 8+)(  W±)  (6.95)( 
sin 8±  cos 8±- i H±  

and choosing the angles 8±  appropriately. Then the mass eigenvalues are 

fizz  cos 8+  cos 8_  +  g2VI  cos 8_  sin 8+  +  g2V2  sin 8_  cos 8+  

- f.1  sin 8 +  sin 8_ (6.96a)  
- fizz  sin 8+  sin 8_  +  gzvI sin 8_  cos 8+  +  g2v2  cos 8_  sin 8+  

+  f.1  cos 8+  cos 8 _ .  (6.96b)  
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A similar, but more complicated, treatment applies to the mixing of the 
neutral gauginos with the neutral Higgsinos. The two neutral electroweak 
gauginos are the SU(2) Wino W3  and the U(l) Bino B.  These mix with the 
two neutral Higgsinos after spontaneous symmetry breaking and yield the 
'neutralino' mass matrix (N)  

-Kw 3  B  ii?  iig)  

m2  -ig2Vl/,vi  ig2vzfV2 0 r~3 
x I  

0 ml ig l v l /V2  -ig l v2/V2  

-ig2v/V2  ig1v/V2 0 -11  1 H1  
ig2V2/V2  -igl vz/V2 -11  0 H~j 

(6.97) 

This too can be diagonalized, but we shall give no further details here. We 
merely note that the masses ml  and m2  are related by virtue of the 
renormalization group equation (6.60), the unification condition (3.153) 
and the common gaugino mass (ml/2)  at the unification scale: 

aOUT(mX)  =~2 =5~J (= ~3). (6.98)
mI/2  m2  3ml  m3  

Note also that when.Lt and m2  (and hence ml) are zero, the combinations 
photino 

y  ==  (glW3 +  g2B)/(rl  +  g~)1I2 (6.99) 

and 
- _ -0 -0 
S  = (VJH2  +  V2HJ)/v  (6.100) 

are massless, while the two orthogonal combinations Zino 

2 ==  (giB  - g2W3)/(rl  +  rl)1I2 (6.101) 

and 
- _ -0 -0 
A  = (vIHI  - V2H2)lv  (6.102) 

give degenerate states (11V2)(2  ±  A)  with mass 

1 
mz  = V2  (rl +  rl)l12V  = mz·  (6.103) 

In the_same limit th~ chargino mass eigenstates are the Dirac spinors 
(W+,  it;) and (iit,  W-)  with masses g2V2,  g2VI respectively, both of which 
are less than 2m  w.  
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6.5  Experimental  signatures  

The experimental searches for supersymmetric particles are all constrained 
by the assumption that 'R-parity' is conserved(8). This imposes a discrete 
symmetry on the allowed interactions, which requires, in particular that the 
(so far unobserved) super-partners of the known particles can only be 
produced in pairs. Then the lightest supersymmetric particle (LSP) is stable. 
This assumption of R-parity  conservation is introduced primarily to simplify 
the otherwise prodigiously complicated production and decay mechanisms. 
However, we shall see in §6.6 that the known absence of fast proton decay 
requires some such symmetry in the supersymmetric theories that we are 
considering. 

LEP experiments give lower bounds in the masses of sparticles(9): the 
absence of Z decays that are not in accord with the predictions of the 
standard model bound the charged slepton, squark and chargino: 

mq,  ml,  mw;;::  ~mz (6.104) 

while the 'invisible' width of the Z  gives a sneutrino bound 

mv  > 42 GeV. (6.105) 

In principle, better limits on the squark and gluino masses can be obtained at 
pp colliders, if they are light enough to be pair produced. Ultimately the 
sparticles decay to the LSP which escapes detection, thereby giving an 
imbalance of energy transverse to the beam. However, to derive mass 
bounds further assumptions must be made. All analyses assume that the 
lightest neutralino (X~) is the LSP. If the next lightest sparticle is a squark, it 
is assumed to decay only  via 

q  ~ qX?  (6.106)  

so the experimental signal from squark pair proC:uction will be two  jets plus 
missing transverse energy. On the other hand, if the gluinos are the next 
lightest sparticles, it is assumed that the only decay is 

g  ~ qqX?  (6.107)  

(via a virtual squark), so the signal from gluino pair production is four  jets 
plus missing transverse energy. Then with the further assumptions that the 
LSP is massless and that all squarks have the same mass, the 1991 CDF data 
give 

m3  == mg  >  150 GeV mq >  170 GeV. (6.108) 

Given the numerous assumptions needed it is difficult to assess how reliable 
these bounds are. If  the squarks and gluinos are sufficiently massive that 
chargino and other neutralino decays are kinematically allowed, then these 
dominate the direct decays of g ,  q ,  and the LSP is produced at the end of a 
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Figure  6.4  B- and L-non-conserving diagrams in the SU(5) GUT. 

cascade of decays. Allowing for the cascade decays weakens the lower 
bounds(lO) to 

mg  ~ 135 GeV mq  ~ 130 GeV. (6.109) 

Then using (6.60) we can bound the SU(2) gaugino mass parameter: 

- £X2  - 40 G m2  = -m3~ eV (6.110) 
£X3  

using (3.158), (3.159), (3.161). Combining this with the absence of observed 
neutralinos in Z-decays gives a lower bound of 

mx7  ~ 20 GeV (6.111) 

for the lightest neutralino(ll). 

6.6  Proton  decay  

The minimal (non-supersymmetric) SU(5) GUT has 12 diquark and lepto­
quark gauge bosons Xf4/3,  Yf 1/3 which couple to baryon-number- (B-)  and 
lepton-number- (L-)  non-conserving currents. These gauge bosons acquire 
masses mx  = my  = 0(1015 GeV) when the SU(5) gauge symmetry is 
broken, and the massive bosons can mediate low-energy B- and L-non­
conserving processes. In  particular the Feynman diagrams shown in figure 
6.4 generate a (colour singlet) effective Lagrangian for nucleon decay 
(  +0- +) p~ en, Ven  . 
 

They give 

2 

~eff =  gS2  Eijd[ufyU(l  - YS)Uj][ecY,u(1- Ys)dk  +  dkY,u(1- Y5)e]
8mx  

+  [ufy,u(l  - Ys)dj][dkY,u(1- Ys)VeD (6.112) 

using just the quark and lepton fields of the first generation; gs is the gauge 
coupling constant of the SU(5) GUT, evaluated at the scale m x.  This leads to 
a decay width 

r(p~ e+no) = o(;t m~). (6.113) 
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With the renormalization group equations predicting the GUT 'fine-structure 
constant' a5  == tsl4n  = 1142 and the unification scale rnx  ~ 1015 GeV, this 
gives a lifetime 

r-\p- e+no) == 0(1033 yr). (6.114) 

More sophisticated treatments(12), including an enhancement factor due 
to gluon radiative corrections, reduce this to 

r-\p_e+no)==4.5x1029 ±1.7 (6.115) 

well below the measured lower bound(13) of 6 x 1032 yr, which is why the 
non-supersymmetric theory is dead. The supersymmetric SU(5) GUT of 
course allows proton decay via the same diagrams but the larger values of 
(aG  and) rn x,  given in (3.164) and (3.167), increase the predicted value ofrp 
way above the measured lower bound, principally because of the pro­
portionality of the width to rn;4.  

Another way to see that the matrix element is proportional to rn;2,  and 
hence that r ex rn;4,  is to note that the mass dimension of the four-quark 
field operator in Xeff is [M6]. Then to ensure that Xeff has the required 
dimension [M4], it is necessary to supply [M-2], and the unification scale rnx  
provides this in the gauge-boson-mediated processes shown in figure 6.4. In 
fact it is clear that something like this must be true of any  (non­
supersymmetric) GUT: to construct a colour singlet baryon-number-non­
conserving operator the only possibility is to use three  quark fields; then to 
make a Lorentz invariant effective Lagrangian a further fermion (lepton) 
field must also occur. The missing [M-2] is supplied by whatever mass can 
mediate the baryon number non-conservation. In the minimal SU(5) GUT 

P _  e + nO can also be mediated by the colour triplet Higgs in the 5  
representation, which naturally has a mass of order rn x  (but is not compelled 
to do so). 

In a supersymmetric GUT, however, there are additional operators that 
might arise as an effective Lagrangian. In the first place, there are additional 
SU(3) x SU(2) x U(l)-invariant terms that can be added to the superpo­
tential (3.139): 

ow==  '\'  ",,o)L(n)Tir 2L(rn)l c +  '\'  A(2)L(l)Tir2Q(f)Dc(g)  
~ ~n ~ lfg 
 

I.  rn,  n  l,f.g 
 

+  '\'  A (3) Uc(f) Dc(g) Dc(h)  (6.116)~ [gh 
 
[,g,h 
 

where I,  rn,  n  == e, /1, r label the leptons and j,  g,  h  == 1,2,3 label the three 
quark generations. Each of these violates L- and/or B-conservation, and 
taking the F-part gives a dimension 4-operator, just as it does for the terms in 
(3.139). Thus these operators are un suppressed by any power of the super­
heavy mass scale, and, if they are all present, they generate an amplitude for 
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Figure  6.5  d-squark-mediated B- and L-non-conserving amplitude. 

proton decay suppressed only by the supersymmetry mass breaking 
scale(14), as shown in figure 6.5. 

It is for this reason that an additional (discrete) symmetry must be invoked 
to forbid them: estimating the proton decay rate using the diagram of figure 
6.5, and comparing with the measured bound leads to the constraint(15) 

A (2)A (3) :S m~USy/mi-- - 10-26 . (6.117) 

The simplest way to expunge the offending terms is to require a 'family 
reflection symmetry,(15) under which 

L(l)~ - L(l)  

Uc(f)  ~ _ UcU)  

IC  ~ - ZC  

Dc(f)  ~ _ 

Q(!)  ~ _ 

Dc(f)  

Q(!)  

Hl~Hl H2~H2· (6.118) 

Then, all of the terms (3.139) needed to generate masses are allowed, as is 
the term (6.10) needed to ensure VI  ¥  V2,  but all of the B- and L-non­
conserving terms (6.116) are forbidden. 

We shall discuss later alternative ways of removing these dimension-4 
operators. Assuming that they are absent for some reason, there remains the 
possibility of dimension-S B- and L-non-conserving operators(15), which will 
only be suppressed by a single power of the superheavy scale, and which may 
well be the dominant contributors to proton decay in supersymmetric 
theories. 

The dimension-S B- and L-non-conserving operators allowed by the 
SU(3) x SU(2) x U(l) symmetry have the structure 

0 1 = [QQQL]F  (6.119a)  

O2  = [UCUCDCIC]F  (6.119b)  

0 3 = [QQQH2]F  (6. 119c)  

0 4  = [QuclcL)F  (6. 119d)  

0 5 = [LLHJHdF  (6. 11ge)  

0 6 = [LH2H JHdF  (6.119f) 
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Figure 6.6 Proton decay induced by 0 1 ,  

0 7 = [H1H 1Ict ]D  (6. 119g)  

0 8 = [HiH2IC ]D  (6. 119h)  

0 9 = [QucLt]D  (6.1l9i) 

010 = [ucDctIC]D  (6.119j)  

where we have omitted the generation labels, as well as all of the group 
labels. Each chiral superfield has dimension 1. Since the superspace coordi­
nate e  has dimension -~, as in (3.21), the dimension of the F-part  of a 
product of n  superfields is 

[<PI' .. <Pn]F:  [Mn  +  1] (6.120) 

while the dimension of the D-part  of a product is 

[<PI' .. <P~]D: [Mn  + 2]. (6.121) 

To generate proton decay, which does not involve any sparticles, the above 
operators must be dressed by radiative corrections involving only (light) 
particles and sparticles. Thus 0 1 generates the diagrams shown in figure 6.6. 
In figure 6.6(a)  two incoming quarks annihilate to produce a squark and a 
slepton-this is the dimension-5 B- and L-violation-and these convert to a 
quark and lepton via electroweak gaugino exchange. As in the previous 
examples, proton decay is achieved by adding a spectator quark. 

Evidently not all of the above operators can by themselves generate 
proton decay, since some of them (04,5,6,7,8,9,10) do not violate conser­
vation of B,  and 0 3 does not have L-non-conservation. Of course, if some  of 
the dimension-4 operators (6.116) survived, the missing ingredient might be 
supplied this way. Thus 0 3 together with the term proportional to ,Ay)  will 
generate proton decay, as in figure 6.5, when the electroweak symmetry is 
broken, so H2  is replaced by (OiH2 iO)  ~ V2'  At any rate, if the family 
reflection symmetry (6.118) is invoked, only 0 1,2,4  survive, and 0 4 cannot 
generate proton decay in the absence of the dimension-4 operators which 
are also deleted by the symmetry. 

We therefore consider just 0 1,2,  remembering that the chiral superfields 
obey Bose statistics. Consider first O 2 :  

O2 C 
(6.122)= E"kU<:U) Uc(g) Dck(h)r 

Cl  l  
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Figure  6.7 Higgsino contribution to 0).  

where i,j,  k  =  1,2,3 are the SU(3) labels. Bose statistics therefore require 
that the generation labels!, g are different,! 0/=  g, so one of the UC  fields must 
be the c-quark (CC)  superfield (or else te).  Since this is an SU(2) singlet, 
neither the electroweak nor the strong dressings, shown in figure 6.6, can 
change the flavour. It follows that O2 does not contribute to nucleon decay, 
since t,  c are too massive. Finally, then, there is 0 1:  

0 1 = €ijk(Q~f)T i  ~Q?»)(Q~h)T i  r2L(l»)  

=  €ijk(U~f)d?) - d~f)ujg»)(u~h)l - d~h)VI) (6.123) 

and the Bose statistics again requires the use of at least two  quark gener­
ations. On this occasion, however, we can use Wino exchange in figure 6.6 to 
convert the second- or third-generation up-like flavour to a down-like 
flavour (d,  s);  in the case of a neutrino decay, however, we can use strong 
dressing, via gluino exchange, which leaves the (down-like) flavour 
unchanged. It follows that the dominant decay mode will be 

p~K+v (6.124) 

in a supersymmetric theory, provided, of course that in the supersymmetric 
GUT the operator 0 1 actually arises. The expression (6.123) for 0 1 gives a 
two-fermion-two-sfermion vertex in which both incoming fermions are left 
chiral, and both incoming sfermions are the partners of left chiral fermions. 
Such a vertex therefore cannot arise via gaugino exchange, since gauge 
particles conserve helicity. It  can, however, arise in the supersymmetric 
SU(5) theory via colour triplet Higgsino exchange, as shown in figure 6.7, in 
which the cross denotes the Dirac mass of the Higgsino. 

Using the vertices in (6.15), we can estimate the effective strength of this 
vertex 

G1 =  G~~)G~~) Imfl(3)  (6.125) 

where miI(3)  is the colour triplet Higgsino mass. The dressing via strong 
interactions, as shown in figure 6.6, then gives an effective Lagrangian of the 
form 

5£eff =  Geff€;jk(Uidj)(SkVu)  (6.126) 

(omitting the y-matrices) with 
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a3  rng  
(6.127)Geff  = G1 2.7T rn;  

where rng  is the gluino mass and rns  the squark mass. Reasonable estimates 
of the parameters then yield 

Geff  - gVSrni. (6.12S) 

Thus the dominant decay mode (into kaons) has a lifetime of order 1030 yr, 
as before. 

All of this is dependent upon the assumed family reflection symmetry. 
There are other symmetries that forbid the dimension-4 operators. In  
particular, if the offending terms are dropped, the remaining theory has a 
larger (global) symmetry called R-symmetry.  This is a U(l) continuous 
symmetry, parametrized by a,  under which the superspace coordinate () 
transforms as 

()  ~ ei  a()  (6.129) 

and a general chiral superfield <I> as 

<I> ~ e i  Ra<l>.  (6.130) 

So we can say that () and <I> have R-charges: 

R(()  = 1  R(<I»  = R.  (6.131) 

Evidently, since the superpotential W  contributes f  d2() W  to the Lagran­
gian, the theory is R-invariant if 

R(W)  = 2. (6.132) 

Referring now to the terms that interest us, namely (3.139), (6.10) and 
(6.116), we see that there is an R-invariance in which the superfields have 
charges 

R(QU),  L  (I), UU)c,  D(f)c,  fC) = i  (6. 133a)  

R(Hl'  H 2 )  = 1  (6. 133b)  

and that excludes  the (offending) terms (6.116). 
The transformation properties (6.129), (6.130) show that the scalar and 

spinor components of <I> have charges 

R(cp)  = R  R(1jJ)  = R  - 1 (6.134) 

and according to (6.133) 

R(q,I)=-1  R(i],  7) =  1 (6. 135a)  

R(hl,h2)  = 1 R(hl'  h2 )  = o.  (6. 135b)  

Since it is real, the vector superfield V  has zero charge: 
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R(V)  = O. (6.136) 

Referring to (3.4), we deduce that the gauge field component V,u  has 

R(V,u)  = 0 (6.137) 

since e,  e have opposite charges. It  follows too from (3.4) that the gaugino 
fields transform non-trivially: 

R(?e)  =  1  (6.138) 

and this means that gaugino Majorana mass terms such as (6.50) are 
forbidden by R-symmetry.  Since there is experimental evidence that the 
gluinos have non-zero masses, as we have seen in (6.108), it seems that the 
R-invariance must be (spontaneously) broken. This in turn generates an 
unwanted Goldstone boson (actually an axion, since the U(1) is anomal­
ous). Thus it appears that the continuous symmetry cannot be used to 
exclude the unwanted terms in the superpotential. This has led to a fuller 
investigation of the discrete R-parities that may be used to exclude some, but 
not all, of the B- and L-non-conserving operators, but in a way that is 
consistent with present data on proton decay(16). 

Exercises  

6.1  Show that the potential (6.13) does generate the spontaneous breaking 
of SU(2) x U(l) provided that l?e,ul >  m3/2'  

6.2  Verify (6.40) and (6.41). 

6.3  Show that the minimum of the Higgs potential (6.52) leaves U(l)em 
unbroken. 

6.4  Calculate the R-charges of the chiral superfields in the supersymmetric 
standard model that are needed to give all 'particles' zero R-charge, and all 
'sparticles' non-zero R-charge. 
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THE  BOSONIC  STRING  

7.1  Introduction  

Historically, relativistic string theory was developed as a possible theory of 
strong interactions(1) before the role was filled by quantum chromo­
dynamics. Subsequently, the occurrence of a massless spin-2 particle in the 
spectrum of states of the string suggested an alternative use for string theory 
as a possible framework for gravitation(2) that might succeed in overcoming 
the problems that had been encountered in trying to obtain a renormalizable 
theory of quantum gravity. In particular, there is an intuitive argument, 
which we shall explain in the next section, as to why string theory might not 
suffer from the ultraviolet divergences of quantum field theory of point 
particles. This argument is borne out by detailed calculations of string loop 
diagrams. In the case of the heterotic string, to be discussed in Chapter 9, not 
only does the theory provide a satisfactory framework for quantum gravity 
but it also appears able to unify gravity with the strong, weak and electro­
magnetic interactions. These remarkable properties make string theory a 
candidate theory of all physics (a 'theory of everything'). At the present 
time, the theory is usually formulated in the form of relativistic quantum 
mechanics, a relativistic quantum field theory of strings not yet having been 
fully developed (if indeed this is the appropriate framework for a complete 
string theory). 

7.2  The  bosonic  string  action  

Whereas the position of a point particle in D  dimensions may be described by 
degrees of freedom XU(r)  , !l =  0, 1, ... , D  - 1, depending only on a time­
like coordinate r, to describe a string we need in addition a space-like 
coordinate a.  Then, the string degrees of freedom X,u(r,  a),  
!l =   0, 1, ... , D  - 1, can trace out a curve as a  varies at fixed 1'.  The curve 
may be open or closed (open or closed strings as in figure 7.1) and it is 
convenient to take 

O~a~Jr (7.1) 

to be the range over which a varies  as the string is traced out from one end to 
the other for an open string, or once round the string for a closed string. As r 
varies the string sweeps out a world sheet (figure 7.2) just as a point particle 
sweeps out a world line, and it is appropriate to refer to the coordinates rand 

DOl: 10.120119780367805807-1 
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Figure 7.1 Open and closed strings. 

Figure 7.2 Open- and closed-string world sheets. 

o  as world sheet coordinates. We shall see in §7.8 that consistency of the 
theory requires D  to be 26. 

An action is required to embody the dynamics of the bosonic string. For a 
massless, non-relativistic string of length L  the action of classical mechanics 
is 

_  Tftf  fL  (dy )2 S - -- dt  dx- (7.2) 
2  t,  0 dx  

where Y  is the displacement of the string at position x,  T  is the tension in the 
string, and tj  and tf  are some initial and final times. When writing down an 
analogous action for the relativistic bosonic string propagating in D­
dimensional flat space we wish to ensure that it is not only Lorentz covariant 
in form but also that the physics does not depend on the particular choice of 
world sheet coordinates T  and o.  To this end we introduce a space-time 
metric 

YJI"V  =  diag(l, -1,"',  -1)  /-l,  v  =  0, 1, .. " D  - 1 (7.3) 

and a world sheet metric hCY.{3(  T,  0)  of signature (+, -) where a  = 0 and 1 
refers to T  and 0,  respectively, and adopt the action for the relativistic 
bosonic string 

s = - IfT'  dT  f:r  do  (- det h) 1I2hCY.{3n Pv  a x  a x  (7.4)2 '/ CY.  I'  {3 V'  

T,  0 



152 THE BOSONIC STRING 

Figure  7.3 Point particle and string interactions. 

The required world sheet coordinate covariance then follows in the same 
way as the space-time coordinate covariance of general relativity. Thus, the 
action (7.4) has by construction local world sheet reparametrization invar­
iance, and global D-dimensional space-time Poincare invariance. In detail, 
the infinitesimal transformation for world sheet reparametrization invar­
iance is 

oX"  = £'"  a",x"  oh"'{3  =  £y  ayh",{3  +  ay  £"  hy{3  +  ay  £{3  h"y  (7.5) 

where £'"  is the infinitesimal shift in the coordinates (T,  a).  The transform­
ation for global D-dimensional space-time Poincare invariance is 

oX"  =  1"vXv  +  a"  oh"'{3  = 0 (7.6) 

where z.u v and a"  are constants with 

lw.  =  r; "pi  P v  (7.7) 

antisymmetric. Additionally, at least at the classical level, the action has a 
local Weyl scaling or conformal invariance under the coordinate-dependent 
rescaling of the world sheet metric 

oha{3  = A(T,  a)ha{3  oX"  =  O. (7.8) 

It  should be noted that this is not  included in the world sheet reparametriza­
tion invariance, because those transformations have oX"  oF- 0 as a result of 
the T- and a-dependence of X".  The existence of this accidental conformal 
invariance is peculiar to strings and is not shared by reparametrization­
invariant objects with more dimensions such as membranes. 

As mentioned in the introduction, string theory is expected to be free 
from the ultraviolet divergences that occur in the quantum field theory of 
point particles, for the following reason. In the quantum field theory of point 
particles, interactions are associated with vertices where world lines meet, 
and, correspondingly, string interactions should be associated with world 
sheets joining, as in figure 7.3 for closed strings. An important difference is 
that whereas for a point particle theory there is a well defined point where 
the interaction occurs, for a string theory there is no well defined point at 
which the two strings merge into one. If  we consider two observers 
corresponding to different choices of world sheet coordinates their lines of 
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Figure  7.4  Strings merging as seen by different observers. The solid lines are lines of 
constant r and the dashed lines are lines of constant r'. What the observers see at 
various values of rand r' is depicted alongside. 

Figure  7.5  Loop corrections to a vertex in point particle field theory and in string 
theory. 

constant T  differt and, as in figure 7.4, one observer will see the two strings 
merging at the point marked by the solid dot, and the other at the point 
marked by the cross. If we now consider loop corrections to the vertex as in 
figure 7.5, in the point particle field theory diagram ultraviolet divergences 

t As will be seen in §7.7, it is possible in the light cone gauge to choose the world 
sheet coordinates such that r is identified with any specified combination of X+  and 
Xi,  and it is this freedom which is exploited here. 
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arise from propagators meeting at a well defined interaction point. On the 
other hand, we do not expect such problems in the string case because there 
is no  well defined point at which the interaction occurs. This expectation is 
confirmed by detailed calculations in string loop perturbation theory(3). 

7.3 Equations  of motion  and  covariant  gauges 

String equations of motion may be obtained as Euler-Lagrange equations 
by varying the action with respect to Xi<  and with respect to h"'(3'  The former 
equations of motion are 

a",(  (- det h) 1/2h"'(3  a(3Xi<)  = 0 (7.9) 

where it has been assumed that the surface terms vanish, a point to which we 
return shortly. The latter equations of motion are 

T",(3  == - a",xi<  a(3xi<  +  ih",(3hYO  ayxi<  aOxi<  =  0 (7.10) 

where T ",(3 may be interpreted as the energy-momentum tensor obtained by 
regarding the string action as the action for a two-dimensional field theory of 
D  free scalar fields Xi<.  In deriving (7.10), the identities 

o(det h)  = det h h Yo  ohyo  (7.11)  

and 

oh",(3  =  - h"'Yh(3O  ohyo  (7.12) 

are useful. For any solution of the equations of motion (7.10), the integrand 
of the string action (7.4) may be cast in the form Idet a",xi<  a(3xi<11I2,  which 
shows that the action has a geometrical interpretation in terms of the area of 
the string world sheet. 

Just as in gauge field theory or general relativity, there are fewer 
independent dynamical degrees of freedom than appear explicitly in the 
action, and the number of degrees of freedom may be reduced by a suitable 
choice of gauge. In the present case, the gauge symmetries are the two­
dimensional world sheet reparametrization invariances (7.5), and the con­
formal invariance (7.8). The reparametrization invariance may be used to 
reduce the metric h",(3  of signature (+, - ), which in the first instance has 
three independent components, to the form 

h  = e q;(r, 0)11 ",(3 .,,,,(3 (7.13) 

where 

17",(3 == diag(l, -1). (7.14) 

This choice of gauge is usually referred to as conformal gauge. If  we also 
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exploit the conformal invariance (7.8), the metric may be further simplified 
to 

ha;3  = YJ  a;3'  (7.15) 

When we refer to covariant gauges in what follows we shall have (7.15) in 
mind. There is some further gauge freedom, which we do not employ for the 
time being, that can be used to reduce the number of components of X"'.  
This will be used in §7.7 to obtain the non-covariant light cone gauge which 
does not put all the components of X'"  on the same footing. 

In  the co variant gauge (7.15), the equation of motion (7.9) simplifies to 
the one-dimensional wave equation 

aaaax",  = (a2
2 _  a2

2)x",=0.  (7.16) 
aT  aa  

The string degrees of freedom X'"  are further constrained by (7.10) which 
may now be written as 

_  _ 1  (ax'"  ax",  ax'"  ax",)  _  (7.17)Too  - Tl1  - - 2  ---aT  ~ +  aa  aa  - 0 

and 

TOI  = TlO  = _ ax'"  ax",  (7.18)aT  aa  = 0 

where we are using indices 0 and 1 to refer to T  and a,  respectively. In  
particular, 

ha;3Ta;3  = Too  - Tl1  = 0 (7.19) 

i.e. the two-dimensional energy-momentum tensor is traceless. 
As remarked earlier, the validity of (7.16) depends on the vanishing of 

the surface terms when the variation of the action is made. In  the case of a 
closed string, the boundary conditions 

X"'(T,  a  +  JT)  = X"'(T,  a)  closed string (7.20) 

ensure that the surface terms are zero. For an open string, and in covariant 
gauge, the surface terms again vanish provided that we impose the boundary 
conditions 

ax'" -=0 when a  =  0 and a  =  JT  open string. (7.21)aa  

7.4  Mode  expansion  and  quantization  

For a closed string, the general solution of the wave equation (7.16) 
consistent with the boundary conditions (7.20) is (Exercise 7.1) 
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XI-'  =  xl-'  +  12pl-'r  

+~l I  (~a~e-2in(r-a)+~a~e-2in(r+a») 
nr'O  

closed string (7.22) 

where the zero-frequency part (zero mode) has been treated separately, and 
a fundamental length 

1=  (nT)-1/2  (7.23) 

has been introduced for later convenience. We shall often work in units 
where I  is 1. Hermicity of the operator XI-'  requires the centre-of-mass 
coordinates and momenta Xl'  and pI-'  to be Hermitian, and imposes the 
conditions on the Hermitian adjoints of the oscillator coefficients 

(a~f = a'!..n  (a~)t =  al!"n.  (7.24) 

As always for solutions of the one-dimensional wave equation, the solution 
may be separated into the sum of a term depending on r - a  (the right­
mover part) and a term depending on r + a  (the left-mover part). Thus, for 
the closed string, there is the separation into right mover X~ and left mover 
XC  

XI'(r,  a)  =  X~(r - a)  +  Xt(r  +  a)  (7.25) 

where 

X~(r - a)  =  ~xu + ~12pl-'(r - a)  + ~l I  ~a~ e-2in(r-a) (7.26) 
nr'O  

and 

xt(r+a)=~xl-'+~12pl-'(r+a)+~1 I  ~a~e-2in(T+a) (7.27) 
nr'O  

Quantization of the closed string requires us to identify the canonical 
momentum conjugate to XI-',  

a:£ 
(7.28)P,,(r,  a)  = - ax"  

where 

xl-'=axl-'  (7.29)ar 

and :£ is the Lagrangian density defined by writing the action as 
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s=  fT f  
dr do~. (7.30) 

Ti  0  

From the action (7.4) in covariant gauge, 

axl-'  . 
pl-'(r,  0)  = T- = TXI-'.  (7.31)

ar  

Equal-r canonical commutation relations may now be imposed, namely 

[XI-'(r,  0),  XV(r,  0')]  =  [XI-'(r,  0),  XV(r,  0')]  =  0 (7.32) 

and 

[Pl-'(r,  0),  XV(r,  0')]  =  T[XI-'(r,  0),  XV(r,  0')]  =  i  0(0  - o')Yjl-'v.  (7.33) 

Substituting (7.26) and (7.27) into (7.32) and (7.33) it can be seen that 
(Exercise 7.2) the corresponding commutator for the centre-of-mass coordi­
nate xl-'  and the centre-of-mass momentum pI-'  of the string is 

[xl-',pV]  = -i Yjl-'V  (7.34) 

and the corresponding commutators for the oscillators a~ and a~ are 

[  I-'  V] am,  an  _- - So I-'V mUm  +  n.OYj  (7.35) 

[  -I-'  -V] am,  an  _- - So I-'V mUm  +  n,OYj  (7.36) 

and 

[ I-' am,a-V]-O n  - .  (7.37) 

The operators 

1  I-' I-'t_  -a_n an  -vn  1  I-' al-'  =,  lan  
n  vn  

n>O  (7.38) 

and the operators 

-I-'t  _  1  -I-'  1  -I-' -I-'  - -- an an  - vn a - n  an - vn  n>O  (7.39) 

have standard commutation relations for harmonic oscillator creation and 
annihilation operators, with a factor of Yjl-'V,  

I-'  vt] I-'V So[  am,  an  - UmnYj  .  (7.40) 

It  remains to implement the constraints (7.17) and (7.18) on XI-',  and we 
return to this in §7.5. 

The Hamiltonian in covariant gauge 

H  = In  dO(-Pl  axl-'  _~) = _ IIn  do  (aXI-'  axl-'  +  axl-'  aXI-')  (7.41 ) 
o I aT  2 0 ar  ar  ao  ao  

fn  
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may be written in terms of the oscillators a~ and a~ in the mode expansion 
(7.22) as (Exercise 7.3) 

H  - '\'  (  /1  -/1  - )  [2 /1 - - L  a_na/1n  +  a_na/1n  - lP  P/1'  (7.42) 
n,oO  

For an open string, the general solution of the wave equation (7.16) 
consistent with the boundary conditions (7.21) is (Exercise 7.4) 

X/1  = x/1  +  [2p/1T  +  i [ 	 L ; a~ e-j  ne  cos(na)  open string. (7.43) 
n,oO  

In the open-string case, the left- and right-mover oscillator terms are not  
independent, having been linked by the boundary conditions (7.21), and a 
separation into left and right movers is not particularly useful. Quantizing in 
the same way as for the closed string using (7.32) and (7.33) leads to the non­
zero commutators for the centre-of-mass coordinates 

[x/1,pV]  = - i  Yj/1V 	 (7.45) 

and for the oscillator coefficients 

[  /1  V]  _ oS.  /1V 	 (7.46)an,  an  - - mum+n,oYJ  .  

The constraints (7.17) and (7.18) on X/1  will be discussed in §7.7. For the 
open string, the Hamiltonian takes the form (Exercise 7.5) 

[2
H  = - 1  '\'  rvll  rv  _ _  pllp  (7.47)2 L  ~-n~/1n 2 	 /1'  

n,oO  

7.5 Virasoro algebra and masses of states for the closed string 

The string degrees of freedom in covariant gauge must not only satisfy the 
wave equation (7.16), leading to the mode expansion (7.22), but must also 
satisfy the constraint equations (7.17) and (7.18) which originate from the 
ha{3  equation of motion and are a consequence of the reparametrization 
invariance of the string action. To analyse these constraints it is convenient 
to define combinations T ++  and T __  of the components of the two­
dimensional energy-momentum tensor T  a{3  by 

T  - 1 ( 1 (aXil  aXII)(ax  ax  )++=2:  Too +To1 )=-4--+-- ~+~ (7.48)aT  aa  aT  aa  

and 
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T  - 1 (7' 7') _ 1 (OXI'  oXI')(oX"  oX,') - - =  2 1  00 - 1  01 - - 4 -- - -- -- - - . (7.49)
or 00,  or 00,  

Noticing that T + + can only depend on xt( r +  0),  that L _ can only depend 
on X~(r - 0)  and that 

oXI'  oXI'  oXI'  oXI' __ L=  __ L  __ R=  ___ R  (7.50)
or 00  or 00  

we can write (7.48) and (7.49) more succinctly as 

T  = _ oXtoXI'L  (7.51)
++ or or 

and 

T __  = _ oX~ OXI'R.  (7.52)
or or 

The constraint equations (7.17) and (7.18) may be written as 

T++  = T  __  =0.  (7.53) 

Classically, we are free to implement these constraints straightforwardly. 
However, quantum mechanically we shall see that it is nbt possible to 
impose the full content of (7.53) without inconsistency, and in that case it is 
useful to work with the Fourier components 

L  =Iflr  doe2im(r-a)T 
m  2 -­

o 

Tf;r  , = -"2  0 doe2im(r-a)  (o~:r m#O  (7.54) 

and 

L  =Iflr  doe2im(r+a)T 
m  2 ++ 

o 

= _ I  f,r  do  e2  i  m(r  +  a)  (oXt)2  m#O  (7.55)
2 0 or 

which are referred to as the Virasoro operators. Substituting the expansions 
(7.26) and (7.27) into (7.54) and (7.55) gives the expressions for the 
Virasoro operators: 

Lm  = -~ L  c¥'~ - nc¥l'n  m#O  (7.56) 
n=-x  



160 THE BOSONIC STRING 

and 

- 1 "\' -u  ­
Lm  =  -'2 L  a'm  - "a/1n  m  7"'0  (7.57) 

n  =  - x  

where we have defined 

a~ = a~ = i  p/1  (7.58)
2  

with I  as in (7.23), so as to be able to cast the result in this neat form. Strictly, 
if we were to use (7.54) and (7.55) to define Lo  and Lo  then (7.56) and (7.57) 
would also apply for m  = 0. However, for reasons that we discuss ill  a 
moment we shall denote the expressions obtained in this way by La  and L  () . 
Thus, 

,  TJ:r  1 "\' .lI  (7.59)Lo  =="2  do  T __  =  - '2 L  a_/1a,1I11  
()  '/1  =  - x  

and 

- T  f;'7 1 "\' ­-11
Li)  =="2  do  T++  = - '2 L  a'_/1all /1'  (7.60) 

.0  11  =  _  x 

If  we arrange the oscillators in La  and La  in normal-ordered form with all 
annihilation operators a'~, n  > 0, to the right of all creation operators a':n  ,  
n  > 0, then we have 

L'  - - 1 /1 - I  I1  - (7.61)0- '2a Oa,ua  a  -na/1n  a 
 
n  =  1 


and 

Lb  = - ~a~a,ua - I  a~na/1n - a  (7.62) 
n  =  1 

where a  is a formally infinite constant arising from the commutators. This 
constant needs to be regularized in some way, and we shall show in §7.8 that 
we should take a  to be 1.  (No such problem arises for Lm  and Lm  when 
m  7'" 0.) It  is conventional to define La  and La  to be just the normal-ordered 
products 

L  - 1. "\' ",/1 rv •a  =  - 2:. L  '-'  -n'-'/1n'  (7.63) 
n  =  - :c 
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and 

- 1 '\'
Lo""  - 2: L  a~na,un: .  (7.64) 

n=-oc  

With this definition, 

L  - - 1 Jl.  - '\',u  - L'  + 0- 2a Oa,uO  L  a_na,un  - 0 a  (7.65) 
n  =  1 

and 

- 1-u- '\'
Lo  = - 2a 'Oa,uO  - L  &~na,un =  Lb  +  a.  (7.66) 

n  =  1 

The Hamiltonian (7.41) is related to the Virasoro operators by 

H  = 2(Lb  +  Lb)  = 2(Lo  +  Lo  - 2a).  (7.67) 

The constraint equations (7.53) may be formulated in terms of the 
Virasoro operators, which are the Fourier components of T ++ and T __ , as 
the conditions for physical states Icp), 

Lmlcp)  = LmICP)  = 0  m>O  (7.68) 

and 

Lblcp)  = Lblcp)  = 0 (7.69) 

or equivalently, 

Lolcp)  = Lolcp)  = alcp)·  (7.70) 

(We shall see in §7.8 that a  should be taken to be 1.) The conditions (7.68) 
are applied only for m  > 0 and not for m  < 0 for reasons to do with the 
algebra of the Virasoro operators. 

The algebra may be derived from the explicit expressions (7.56), (7.57), 
(7.65) and (7.66) for the Virasoro operators using the commutation relations 
(7.35)-(7.37) which are also valid for m  or n  equal to zero with the definition 
(7.58) of ab  and ab.  Let us concentrate for the moment on the algebra of the 
Lm.  When m  +  n  =I'  0, [Lm'  Ln]  can be calculated straightforwardly (Exer­
cise 7.6). In  particular, when m  and n  are both non-zero we obtain 

[Lm'  Ln]  =  - i  Ipa':n-pa,u,p+n  - i  I  (m  - p)a':n+n-pal,p  
p  p  

=  - I  (m  - p  )a~a,u, m  + n - p'  (7.71 ) 
p  

http:7.35)-(7.37
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Using the anti symmetry of the commutator in m  and n,  and comparing with 
(7.56), this may be cast in the form 

[Lm'  Lnl  = (m  - n)Lm  +  n  m,  n  ¥- O. (7.72) 

A similar calculation shows that the same result applies when one of m  or n  is 
zero, but not both. 

It remains to consider the case m  and n  both non-zero but m  +  n  = O. (The 
case m  and n  both zero is trivial.) Then, both the infinite sums in the first line 
of (7.71) have normal-ordering problems and adding the two terms is very 
delicate. We therefore write the general formula 

[Lm'  Lnl  =  (m  - n)Lm  +  n  +  b(m)6m +  n,  0 (7.73) 

where b(m)  is a constant deriving from the proper treatment of normal 
ordering when m  +  n  is zero. This constant, referred to as the conformal 
anomaly, may be evaluated by considering [Lm'  L-ml.  As a preliminary to 
this evaluation recall that the a~t and a~ of (7.38) have harmonic oscillator 
commutation relations and a Fock space may therefore be defined by 
applying creation operators a~t (or a".:n)  to a ground state that is annihilated 
by all the a~ (or a~) where n  is positive. A ground state and a corresponding 
Fock space of the oscillator algebra may be constructed for any value of the 
centre-of-mass momentum p  of the string and all possible ground states are 
conveniently labelled as 10; p).  In the case of 10; 0), the Fock space ground 
state is also annihilated by a~ of (7.58). (Notice that this is not  a physical 
state obeying (7.70).) The constant b(m)  may now be evaluated (Exercise 
7.7) as the expectation value of [Lm'  L-ml  with m  > 0, in the Fock space 
ground state 10; 0) with zero centre-of-mass momentum. 

m-I  

(0;  OI[Lm,  L-mlIO;  0)  =~ L p(m  - p)  = ~ m(m2  - 1).  (7.74) 
p=l  

In deriving (7.74) oscillators have been moved past other oscillators so as to 
act on this ground state with the aid of the commutators (7.35). Thus, the 
right-mover part of the Virasoro algebra for general m  and n  is 

[Lm'  Lnl  =  (m  - n)Lm  +  n  +  ~ m(m2  - 1)6m +  n,O'  (7.75) 

The left-mover part of the Virasoro algebra 

- - - D  2 
[Lm'  Lnl  = (m  - n)Lm+n  +  12 m(m  -1)6m+n,o  (7.76) 

is derived in exactly the same fashion, and because the oscillators a~ and a~ 
always commute, the algebra is completed by 
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[Lm'  In]  = o.  (7.77) 

The presence of the constant term (the conformal anomaly) in (7.75) and 
(7.76) can now be seen to prevent us from extending the conditions (7.68) 
and (7.70) for physical states to negative values of m.  If  we consider the 
expectation value of [Lm'  L-m],  with m>  0, in a normalized physical state 
l<p), we find with the aid of (7.68), (7.75) and (7.70) that 

D 
(<PILmL-ml<P)  = 2ma  +  12 m(m2  - 1). (7.78) 

If  we were to require L-ml<P)  to be zero for two or more values of m  with 
m;?!  1 we would have an inconsistency. We shall see later that in physically 
acceptable theories the appropriate choices of D  and a  are D  = 26 and a  = 1. 
In that case, we reach the stronger conclusion that we cannot consistently 
demand L-ml<P)  to be zero for any positive m.  However, condition (7.68) is 
sufficient to ensure that (<PILnl<P)  is zero for all non-zero n,  because when n  is 
negative we can use the fact that 

Ln  = Lt_n'  (7.79) 

The physical state conditions (7.68)-(7.70) have an important role in the 
theory in preventing the occurrence of ghosts, by which we mean, in the 
present context, states with negative norm. That such states could arise can 
be seen by considering the commutation relations (7.40) of the creation and 
annihilation operators. For the time components, we have 

[a~, a~t] = - 1. (7.80) 

Thus, the Fock space state a~tIO; 0)  has negative norm because 

(0;  Ola~a~+10; 0) = (0; Ol[a~, a~+]10; 0) = - 1. (7.81) 

We should hope that the physical state conditions might forbid the occur­
rence of such states. There are certainly enough conditions because (7.68) 
applies for every positive value of n,  and indeed it can be shown that for 
D  = 26 and a  = 1 all ghosts are removed from the theory by these 
conditions(4). Zero-norm states occur in the theory for D  = 26 but these 
de couple from scattering amplitudes of positive-norm physical states. 

The masses M  of physical states in the closed-string theory may be 
obtained from (7.70). In units where I  = 1, equation (7.70) yields 

1M2  - 1  11  - _ "\ 11  - - - "\ -11  - - (7 82)8 - 8P  PI1  - L  (X-n(Xl1n  a  - L  (X-n(Xl1n  a.  .  
n=!  n=!  

This may be written as 

M2=M~ +ME  (7.83) 

http:7.68)-(7.70
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where 

!M~ = - I  a"-nafln  - a  (7.84) 
n=l  

1 2 
4M L =  -

~ -fl  - _ L  a-nafln  a  (7.85) 
n=l  

and 

M~=Mt. (7.86) 

Thus we may think of the squared mass as having equal contributions from 
the left and right movers. This last equation is a consequence of 

Lolcp)  =  Lolcp)  (7.87) 

for all physical states Icp).  Because of the commutators (7.35) and (7.36), 
acting with a"-m  (m  > 0) on a state increases the value of !M~ by m,  and 
acting with a"-m  increases the value of !Mt  by m.  

7.6 Virasoro algebra and  masses of states for the open string 

As discussed in §7.4, the boundary conditions for the open string mean that a 
separation into left and right movers is not useful because the left- and right­
mover oscillator terms are not independent. Consequently, the open-string 
expansion (7.43) only involves one set of oscillators a~, and, correspond­
ingly, we would only expect to define a single Virasoro algebra, rather than 
independent algebras for the left and right movers. The constraint equations 
(7.17) and (7.18) may as before be written as the pair of equations 

T++=T __  =O  (7.88) 

with T + +  and T __  as in (7.48) and (7.49). Generators Lm  of a Virasoro 
algebra may then be defined by taking a combination of Fourier components 
of T + +  and T __  in the following way 

Lm  = T  [ daeim(r  +  a)T++  +  T  [ daeim(T- a)L_. (7.89) 

It is not too difficult to check that these generators may be expressed in terms 
of the oscillators a~ of (7.43) as 

- _1 ~ ~fl ~L  m  - 2 L  ....  m-n .... fln  m~O (7.90) 
n  =  - x 
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where we have defined 

a~ = [pll  (7.91 ) 

with [ as in (7.23). Notice that this differs by a factor of two from the 
definition (7.58) for the closed string. Just as for the right movers of the 
dosed string we define 

00 

L  - 1. ~ all  a  .  (7.92)0= - 2' L  -n  /in'  
n  = - OQ  

and impose the physical state conditions 

Lmlcp)  =  0 m>O  (7.93) 

and 

Lolcp>  =  alcp>  (7.94) 

where 

cc 

Lo=  -~ L  a~nai1n +  a.  (7.95) 
n=-oo  

The same Virasoro algebra as before is obtained because we are dealing with 
oscillators with the same commutation relations. 

[Lm'  Ln]  = (m  - n)Lm  +  n  +  ~ m(m2  - 1)om  +  n,O'  (7.96) 

The Hamiltonian of (7.47) is related to Lo  by 

H=  Lo- a.  (7.97) 

The masses of physical states are obtained from (7.94), and (7.91). In units 
where 1=1,  

QC 

~M2 = - L a~na/in - a.  (7.98) 
n  =  1 

This is of almost the same form as the corresponding expression (7.82) for 
the closed string but differs by a factor of four on the left-hand side. 

7.7 The light cone gauge 

In §7.3, we employed the reparametrization and local Weyl scaling invar­
iance of the action of the string to choose the covariant gauge defined by 
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(7.15). In  choosing this gauge not all the gauge freedom has been removed 
and it  is possible to impose further gauge conditions that reduce the number 
of non-trivial components of XI-'  and leave only physical dynamical degrees 
of freedom(5). Let us first define light cone coordinates for a string in D  
dimensions 

X±  == ~(xo ±  X D - 1 ).  (7.99) 

A reparametrization (7.5) followed by a local Weyl scaling (7.8) is consistent 
with the gauge conditions (7.15), provided that we choose 

Ar/,fJ  =  - (a'x;fJ  +  afJ;,,).  (7.100) 

This residual gauge invariance allows us to make the essentially trivial choice 
for X+  

X+(r,  a)  = x+  +  [2p+r  (7.101) 

where x  +  and p  +  are constants, and [ is as in (7.23). To show this we first 
notice that (7.100) implies that ;0 ±;1 may be taken to be arbitrary 
functions of r ±  a,  respectively. In  particular, ;0 is the sum of an arbitrary 
function of r +  a  and an arbitrary function of r - a.  Recalling that ;" is an 
infinitesimal shift on (r,  a)  we see that we may combine a reparametrization 
and a local Weyl scaling to obtain a new r, say r',  which is the sum of an 
arbitrary function of r +  a  and an arbitrary function of r - a.  This means 
that r' may be identified with any chosen solution u  of the wave equation 

( a2  a2 ) (7.102)ar2  - aa2  u  =  O. 

Since X+  obeys this equation, and consequently so does aX+  +  b for any 
constants a  and b,  we may make the identification (7.101), where the prime 
on the variable r' for the chosen gauge has now been dropped. 

The coordinate X- may now be calculated in terms of the transverse 
degrees of freedom Xi,  i  =  1, ... , D  - 2, in the following way. The con­
straint equations (7.17) and (7.18) written in terms of light cone variables 
become 

ax+  aX- +  ax+  aX- = !((aXi)2  +  (aXi)2) 
ar  ar  aa  aa  2 ar  aa  (7.103) 

and 

ax+  aX­ aX- ax+  axi axi  
----+----=-_. (7.104)ar  aa  ar  aa  ar  aa  

Using (7.101) for X+  gives 
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/2p  + aX- = ~((aXi)2 +  (aXi)2)  (7.105)aT  2  aT  aa  

and 

[2p  + aX- = axi  axi  (7.106)aa  aT  aa  

which may be solved to obtain X- in terms of the transverse degrees of 
freedom X  apart from an integration constant x-.  Thus, in the light cone 
gauge the only dynamical degrees of freedom are the transverse degrees of 
freedom Xi.  We need only solve the string equations of motion (7.16) for the 
transverse degrees of freedom, using closed- or open-string boundary 
combinations as appropriate. There will be the usual mode expansions 
(7.22) or (7.26) and (7.27) for the closed string, and (7.43) for the open 
string, for the transverse degrees of freedom. 

In the light cone gauge, the derivation of the masses of physical states 
proceeds somewhat differently to the derivation of §7.5 for the covariant 
gauge. In the case of the closed string, equation (7.105) may be written with 
the aid of (7.31) and (7.101) as 

[2p+T-lp- = ~((a~T +  (aa~i)} (7.107) 

Using the expansion (7.22), and integrating from 0 to n  with respect to a,  
gives (Exercise 7.8) 

§M2 = §p2  = §(2p+p- - (pi)2)  = ~ L ((l_na~ +  a~na~) - a  (7.108) 
n  =  1 

where we have chosen [=  1, or equivalently, from (7.23), have taken 
T  = n- 1•  The normal-ordering constant a  may be determined because it 
arises from reordering some of the terms in the original sum over n  from - 00 

to 00 using the commutators (7.35) and (7.36). The result is 

oc 

a  = - (D  - 2) L  n.  (7.109) 
n  =  1 

If  we regularize this divergent expression using ~-function regularization 
with ~(s) = ~: =  1 n-s  analytically continued to s = -1,  then 

a  = _ (D  - 2) ~(-1) = (D  - 2). (7.110)
2 24 

(A discussion of the use of ~-function regularization in the field theory 
context can be found in Ramond(6).) 
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For the closed-string case, equation (7.106) may be integrated from 0 to n  
with respect to a  and the periodicity X- in the interval 0 to n  may be used to 
deduce that 

I:r  axi axi  
--da=O.  (7.111) 

o aT  aa  

Using the expansion (7.22) then yields the further condition 

~ -i  -i  _  ~ i  i L  Cl-nCl n  - L.,  Cl-nCl n  (7.112) 
n=l  n=1  

where the normal-ordering constants, which are the same on the left- and 
right-hand sides, have cancelled. Combining (7.108) and (7.112) we may 
write 

M2=M~ +Mt  (7.113) 

where 

1 2 ~ . . 
1,M R  = L  ClI_nCl~ - a  (7.114) 

n  =  I  

1M2 ~ -i -i
4 L = L  Cl-nCl n  - a  (7.115) 

n  =  I  

M~=Mt (7.116) 

and a  is given by (7.110). 
A similar treatment may be used for the open-string case except that there 

is no condition like (7.112) because the string degrees of freedom are not in 
this case periodic in a  in the interval 0 to n.  For the open string we obtain 
(Exercise 7.9) 

I  2_  ~ i  i 2M  - L  Cl_nCln-a  (7.117) 
n  =  I  

with a  again given by (7.110). 

7.8 Low-lying string  states 

Bosonic string states may be constructed in the light cone gauge by acting 
with products of oscillators Cl~n and cX~n' i  = 1, ... , D - 2, on the ground 
states 10>R and 10>L for the right and left movers, respectively, and forming 
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the product of the right- and left-mover states obtained. To calculate the 
masses of these states we need the value of the normal-ordering constant a in  
(7.114) and (7.115). This constant may be determined by constructing the 
Lorentz generators for the D-dimensional string theory, using the Noether 
currents for the Lorentz group, and requiring that the commutators of the 
Lorentz generators do not have any quantum anomalies spoiling the Lorentz 
invariance(5). The vanishing of these anomalies requires 

D  =26  (7.118) 

and (without using (7.110), which is a check on the result) 

a  = 1. (7.119) 

We shall see shortly that there is a simple argument from the masses of the 
string states that leads to the same conclusion. In later chapters it will be seen 
how theories in 4 dimensions rather than 26 dimensions may be constructed. 

For the closed bosonic string, the ground state 10)R for the right movers is 
obtained when the oscillator contribution to (7.114) is zero, and so 10)R has 
M~ = -4, and similarly 10)L has ME  = -4. Thus, the closed-string ground 
state has M2  =  -8, in units where I of  (7.23) is 1. This tachyonic ground state 
constitutes a problem for the bosonic string which can be avoided for the 
superstring of Chapter 8, and for the heterotic string of Chapter 9 which 
employs superstring right movers and closed-bosonic-string left movers. 

To obtain massless states consistently with (7.116) it is necessary for M~ 
and ME  to be separately zero. Thus, the massless closed string states are 

c/-II0)RaL110)L =  ~(a~IIO)RaLIIO)L +  aLIIO)Ra~IIO)L 

- 2oij(D  - 2)-la~110)Ra~110)d 

+ oij(D   - 2)-la~110)Ra~110)L 

+ ~(a~IIO)Raj-lIO)L  - aj-lIO)Ra~IIO)d· (7.120) 

The three terms in (7.120) correspond to a traceless symmetric tensor, which 
may be identified with the graviton for D  = 26 dimensions, a scalar referred 
to as the dilaton, and an antisymmetric tensor. These last two types of 
massless particle accompanying the graviton are characteristic of string 
theory. 

Since we are working in the light cone gauge where only the transverse 
degrees of freedom are present, we should expect massive states to fall into 
irreducible representations of SO(25) and massless states into irreducible 
representations of SO(24). The states of (7.120) do fall neatly into SO(24) 
representations but there are no other states of the same mass, no matter 
what the value of a,  that can complete SO(25) multiplets. This is a further 
argument that the states of (7.120) should be massless, and that the choice 
a  = 1 is the correct one. Consistency with (7.110) then requires D  = 26. 
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7.9 Path  integral  quantization  

In quantum field theory, there are two basic approaches to quantization. 
The first is canonical quantization, in which the classical field cp  is replaced by 
an operator field cp  upon which canonical commutation relations are 
imposed. This is analogous to the procedures that we have been using up to 
this point in the quantization of string theory. The second is the path integral 
approach, in which the generating functional W[J]  is constructed as a path 
integral over the exponential of the action in the presence of source terms, 
and the Green functions of the theory are obtained as functional derivatives 
of the generating functional. We shall now develop this approach to the 
bosonic string(7). 

Because the bosonic string possesses gauge symmetries, namely world 
sheet reparametrization invariance (7.5), the procedure required for path 
integral quantization of the string is very similar to the Faddeev-Popov 
method required for the quantization of gauge field theories(8),(6),(9). It is 
convenient to introduce world sheet 'light cone' coordinates (not to be 
confused with the space-time light cone coordinates of §7.7) 

a±  = T  ± a  (7.121) 

with conjugate derivatives 

a±  = ~:(aT ±  (fa).  (7.122) 

The components of the world sheet metric may be rewritten in terms of 

17++ = 17-- = 0 17+- =  17-+ =~. (7.123) 

Choosing the covariant gauge of (7.13) is then equivalent to imposing the 
gauge conditions 

F++(ha{3)  == h++  =  0  (7.124) 

and 

F--(ha{3)  == h __  =  O. (7.125) 

World sheet reparametrizations 

T~T+£o a~a+£l (7.126) 

may be recast as 

a±~ a±  +  £±.  (7.127) 

The effect of this reparametrization, as in (7.5), may be written as 

ohC!{3  =  V'  a£{3  +  V' {3£a  (7.128) 

where 
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Va;fJ  == (aa  - r~);y (7.129) 

with r~ the affine connection derived from the world sheet metric hafJ .  In 
terms of world sheet 'light cone' coordinates 

ah++  = 2 V  +~+ (7.130) 

and 

oh  __  =2V_;_. (7.131) 

To apply the Faddeev-Popov quantization procedure to the string theory, 
we require the path integral 

Z  QC f CJ1JX'" f qj)h++  CJ1Jh __  CJ1Jh+_  0[F++10[F_-1  

x det (OF ++)  det (aF --)  ei S (7.132)
0;+  0;_  

where S is the bosonic string action of (7.4). The effect of the functional 
a-functions, with F ++  and F __  as in (7.124) and (7.125), is to select the 
gauge h++  = h __  = 0 and to leave an integral over X'"  and h+_  (or 
equivalently, in this latter case, over q;  of (7.13». The determinants may be 
cast in terms of Faddeev-Popov ghosts (not to be confused with the 
negative-norm ghosts of §7.5) by using the identity(6) 

det B  =f qj)cqj)b  exp ~ f d2ad2a'  c;(-r', a')Bij(r',  a';  r, a)bj(r,  a)  (7.133)  

where the ghosts Ci  and anti-ghosts bj  are anti-commuting Grassmann 
variables, and 

f 'f  In f d2a  == ,; dr 0 da  (7.134) 

as in (7.4). With the aid of (7.124) and (7.130) we see that 

aF++(r',  a')  = 2 V  +'a(r'  - r) a(a'  - a).  (7.135)
a;+(r,  a)  

Thus, (7.133) (with the ghosts given the conventional labelling C- and b __ )  
gives 

det a~:+ = f CJ1Jc- CJ1Jb  __  exp '; J d2a  c-(r, a)  V+b  __  (r,  a).  (7.136) 

Similarly, 
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det 6~___ = f ~c+ ~b++ exp~ f d2ac+(r,  a)  V _b++(r,  a).  (7.137) 

The path integral (7.132) may therefore be written as 

Z  et: f ~cp f ~Xf.1 ~c- ~c+ ~b __  ~b++ ei(S +  SFP) (7.138) 

where 

SFP  =  ~J d2a  (c- V +b  __  +  c+  V _b++).  (7.139) 

Although it is beyond our scope here, it may be shown(lO) that in this 
formulation of the theory, with the Faddeev-Popov ghost contribution to 
the Virasoro generators included, there is no anomaly in the Virasoro 
algebra when 

D=26  a  =  1. (7.140) 

Exercises 

7.1 Show that the general solution of the string wave equation with closed­
string boundary conditions is as in (7.22). 

7.2 Derive the commutator (7.34) for string centre-of-mass coordinate xf.1  
and centre-of-mass momentum pf.1.  

7.3 Derive the expression (7.42) for the string Hamiltonian in terms of 
oscillators. 

7.4 Show that the general solution of the string wave equation with 
open-string boundary conditions is (7.43). 

7.5 Show that in terms of oscillators the open-string Hamiltonian is (7.47). 

7.6 Derive the Virasoro algebra commutator [Lnn  Lnl  when m +  n  0/=  O. 

7.7 Calculate the constant b(m)  in (7.73) by considering the expectation 
value of [Lm'  L-ml.  
7.8 Derive the expression (7 .1OS) for the squared mass for the closed string 
in terms of oscillators. 

7.9 Repeat the calculation of Exercise 7.S for the open string to obtain 
(7.117). 
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THE  SUPERSTRING 
 

8.1  Introduction  

The bosonic string theory of Chapter 7 is not entirely satisfactory as a 
complete theory, first because it does not possess any fermionic states, and 
secondly because the string ground state is tachyonic (as discussed in §7.8). 
Both these difficulties can be overcome by constructing a theory in which, 
associated with each bosonic degree of freedom X,u( r,  a), f.1   = 0, ... , D  - 1, 
there is a world sheet spinor fermionic degree of freedom 'l',u(r, a)  
(described by a two-component Ma jorana spinor). The action for this theory 
needs to be formulated in such a way as to avoid the occurrence of ghost 
states of negative norm. 

For the bosonic string, such ghosts were removed in §7.S  by the physical 
state conditions (7.68)-(7.70) which had their origin in the constraint 
equations (7.17) and (7.18), which in turn derived from variation of the 
action with respect to the world sheet metric haf3 •  Thus, for the bosonic 
string, the absence of negative-norm ghosts depends crucially on the 
reparametrization-invariant form (7.4) of the action. This action is formally 
an action for the coupling of the D  scalar fields X,u  to two-dimensional 
gravity. We may therefore suspect that an appropriate construction of the 
action in the case when fermionic degrees of freedom 'l',u  are also present 
might be to treat X,u  and 'l',u  as supersymmetric partners for a world sheet 
supersymmetry, and to couple them to two-dimensional supergravity. It  
turns out that such an action does indeed provide a theory in which all 
negative-norm ghosts are removed by constraint equations arising as Euler­
Lagrange equations of the action. We shall see in §8.8 that consistency of the 
theory requires D  to be 10 for the superstring (rather than 26 as for the 
bosonic string). 

In  the first instance, although the superstring possesses world sheet 
supersymmetry, it does not possess space-time supersymmetry. However, 
we shall see in §8.8 that a potential problem of tachyonic ground states is 
avoided by applying a projection to the states of the theory, and after this 
projection has been applied a ten-dimensional space-time supersymmetric 
theory is obtained. Whether space-time supersymmetry survives in the final 
four-dimensional theory depends on the way in which the ten-dimensional 
theory is compactified to four dimensions, as will be discussed in Chapter 10. 

DOl: 10.120119780367805807-1 
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8.2  The  superstring  action  

As discussed in  §8.1, the required action is formally an action coupling 
supersymmetric partner bosonic and fermionic fields X,u(  T,  a)  and 'I',u( T,  a)  
to two-dimensional supergravity(l). Such an action may be derived using the 
Noether procedure in a way similar to that for the construction of the action 
for the chiral superfield coupled to four-dimensional supergravity in §5.2. 

A suitable starting point for the Noether procedure is the action 

So = - 2~I d2a  (-det h)1I2(h"'~ (J",X,u  (J~X,u +  i qi,up",  (J",'I',u)  (8.1) 

where 

0_(0 -i) 
 (8.2)
p  - i  °  pI  = (~ ~) 

are two-dimensional y-matrices satisfying 

{p"',  p~} = 2rJ"'~I (8.3) 

with rJ",~ as in (7.14). 
The action So possesses world sheet reparametrization invariance and an 

on-shell global world sheet supersymmetry under the supersymmetry trans­
formation 

oX,u  = ~'I',u (8.4) 

and 

o'l',u  = ­ i  p'"  (J",X,u  ~ (8.5) 

where ~ is a two-component Majorana spinor parameter. It may be checked 
(Exercise 8.1) that :io  is invariant under this transformation, and that the 
transformation is truly a supersymmetry in the sense that the commutator of 
two transformations 01 and 02 is a translation: 

[01,  02]X,u  = - 2i ~2P"'~1 (J",X,u  (8.6) 

and 

[01,  02]'I',u  = - 2i ~2P"'~1 (J",'I',u.  (8.7) 

In  checking (8.6) and (8.7) some properties of two-component world sheet 
Majorana spinors are required. For instance, 

~1~2 = ~i1 (8.8) 

and 

~lP"'~2 =  - ~2P"'~1 (8.9) 
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which follow more or less immediately from the fact that the components of 
the Majorana spinors are real and anti-commuting. 

The action So  is no longer invariant when; is replaced by a local variable 
;(r, a).  Then, 

oSo  = ~J d2a (-det h)1I2  a",~r (8.10) 

where 

r  = ipf3p"''I'f'  af3xf'  (8.11) 

is the world sheet supercurrent. To cancel this variation of So  we need to 
introduce the two-dimensional supergravity 'gravitino' X'"  with the trans­
formation 

ox'"  =  a",;.  (8.12) 

Then oSo  is cancelled by adding to the action: 

SI = - ~ Jd2a (-det h)1/2X",pf3  p"''I'f'  af3xw  (8.13) 

However, the transformation of XI'  gives an extra term in oS  I, 

OSI =  -~J d2a(-deth)1I2x",p!3p"''I' u 'lrf'  af3;+'"  

= 2~ Jd2a (-det h) 1/2  \jif' 'l'f'X",pf3 p'"  af3;  +  ..  '.  (8.14) 

This variation is cancelled in its turn by adding a further term to the action: 

S2  = - 4~ J d2a  (-det h)1I2\jif''I'f'X",pf3P'''Xf3'  (8.15) 

Then with the addition of some terms to the local supersymmetry transform­
ations the action 

S  =  So  +  SI  +  S2  (8.16) 

is invariant under 

oXf'  =  ~'I'f' (8.17) 

0'1'1' =  -ip"';(a",xf'  - \jif'X",)  (8.18) 

ox",  =  a",;  (8.19) 

and 
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oe~ = -2i  ~paXa (8.20)  

where e~ is the zweibein, satisfying hafJ  = e~e%rJab' This is the locally world 
sheet super symmetric action we were seeking, which we shall use as our 
action for the superstring. 

At least at the classical level, the superstring action, like the bosonic string 
action, also possesses a local Weyl scaling or conformal invariance under the 
coordinate-dependent rescaling 

oha:(3  = A(T,  a)ha(3  (8.21) 

0Xa:  = ~A(T, a)Xa  (8.22) 

0'1'1'  = - ~A(T,  a)'I',u  (8.23) 

and 

oX,u  = 0 (8.24) 

which now scale Xa  and '1'1'  as well as ha(3'  Moreover, there is a local 
(superconformal) symmetry that acts only on the 'gravitino' for two­
dimensional world sheet supergravity, 

0Xa  = i  PaYJ(T,  a)  (8.25) 

and 

oha(3  = 0'1'1'  = oX,u  = 0 (8.26) 

where YJ  is a two-dimensional world sheet Majorana spinor parameter. 

8.3  Equations  of  motion  and  the  covariant  gauge  

Variation of the action (8.16) with respect to XI',  '1'1',  ha:(3  and X,"  under the 
assumption that the surface terms vanish, leads to Euler-Lagrange 
equations. These equations take a particularly simple form if we choose a 
covariant gauge, much as we did for the bosonic string. For the bosonic 
string we were able to exploit the world sheet reparametrization invariance 
and the conformal invariance to write the world sheet metric in the form 

ha(3  =  YJ  a(3  (8.27) 

with 

YJa:(3 = diag(l, -1)  (8.28) 

and the same is true for the superstring. In addition, the two-dimensional 
world sheet supersymmetry together with the superconformal symmetry 
(8.25), (8.26) may be employed to choose 

Xa: = O. (8.29) 
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In  this covariant gauge, the Euler-Lagrange equations are 

a",a"'x"  = 0  (8.30) 

i  p'"  a",w"  =  0 (8.31) 

T"'f3  =  - a",x"  af3x"  - 4
i  -
W"(P",  af3  +  Pf3  a",)W"  

+  ~ (ayx"  a x  +!  'V"py  a  W )  =  0  (8.32)
2 y"  2 y  "  

and 

J'"  = ~pf3paw" af3x"  = 0 (8.33) 

where T af3  may be interpreted as the energy-momentum tensor for the 
two-dimensional supergravity of the free scalar and Majorana spinor fields 
X"  and W", and J'"  is the world sheet supercurrent. These last two equations 
amount to constraint equations. 

For the derivation of the Euler-Lagrange equations (8.30) and (8.31) to 
be valid it is necessary for surface terms to vanish. In  the case of the bosonic 
degrees of freedom this allows open- and closed-string boundary conditions 
as in (7.20), (7.21). The surface terms for the fermionic degrees of freedom 
W" are a little more subtle and are best discussed by writing the world sheet 
spinor W·u  in components as 

(8.34)W" = (!£).  
Then the equation of motion (8.31) reduces to the pair of equations 

(~ +  ~)w~ = 0 (8.35)
aT  aa  

and 

(:T  - aaa)  wi =  o. (8.36) 

Consequently, W'R, is a function of T  - a  only and describes right-moving 
degrees of freedom, and wi is a function of T  +  a  only, and describes 
left-moving degrees of freedom. Moreover, the term S(W") involving W" in 
the action in covariant gauge may be written as 

S(W") = ~ f d2a (Wi a_  W"L +  W~ a+ W"R) (8.37) 
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where 

a±  == i(a,  ± aa).  (8.38) 

It  may then be seen that, in the case of closed strings, the surface terms 
arising from the variation of the action (8.37) vanish for boundary conditions 

W~(r, a  +  n)  = ±  W~(r, a)  (8.39) 

and 

Wi(r, a  +  n)  = ±  Wi(r, a).  (8.40) 

Notice that periodic or anti-periodic boundary conditions may be chosen 
independently for the right movers W~ and the left movers wi (periodic 
boundary conditions for fermionic degrees of freedom are usually referred 
to as Ramond(2) boundary conditions denoted by R, and anti-periodic 
boundary conditions as Neveu-Schwarz(3) boundary conditions, denoted by 
NS). 

For open strings, the surface terms vanish for boundary conditions 

Wi(r, a)  = W~(r, a)  (8.41) 

and 

Wi(r, n)  = ±  W~(r, n).  (8.42) 

8.4  Mode  expansions  and  quantization  

For the closed superstring, the mode expansions for the bosonic degrees of 
freedom, and their quantization, are just as in §7.3 for the closed bosonic 
string. The mode expansions for the fermionic right and left movers depend 
on whether the choice of periodic (Ramond, R) or anti-periodic (Neveu­
Schwarz, NS) boundary conditions is made, and this choice may be made 
independently for the right and left movers. Thus, for the right movers the 
mode expansion is 

W~ = L  d~ e-2i n(T  - a)  R (8.43) 
nEZ  

or 

W~ = L  b~ e-2i r(r  - a)  NS (8.44) 
rE Z + 112  

where n  runs over all the integers, and r  runs over all the half-integers. For 
the left movers, the mode expansion is 
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'l'i =: I  d~ e-2i neT  +  a)  R (8.45) 
nE2 

or 
,T,Jl _ 
'i'L- bJl  e-2i rC, + a)  NS.r  (8.46)I  

rE 2  +  112  

Modular invariance of the theory (discussed in Chapter 11) requires us to 
consider all four possible pairings of boundary conditions (string sectors) in 
a consistent theory. 

Quantization of the fermionic degrees of freedom is achieved by imposing 
the canonical anti-commutation relations (for the canonical momenta 
(i/2n)'I'~ or d 

{'I'~(r, 0),  'I'~(r, O')}  =: {'I'i(r, 0),  'l'Ur, O')}  

=: - 2m:5(o  - O')1]JlV  (8.47) 

and 

{'I'~(r, 0),  'l'L(r, O')}  =: O. (8.48) 

Substituting the mode expansions (8.43)-(8.46) in (8.47) and (8.48) it may 
be seen (Exercise 8.2) that the corresponding anti-commutators for the 
oscillators in the mode expansions are, for Ramond boundary conditions, 

{d~, d~} =: {d~, d~} =: - 6m  +  n,01]JlV  (8.49) 

and for Neveu-Schwarz boundary conditions 

{b~ bn  =: {b~, b~} =: - 6r  +  s, o1]JlV  (8.50) 

with left- and right-mover oscillators anti-commuting. (Notice again that 
Ramond or Neveu-Schwarz boundary conditions may be chosen indepen­
dently for the right and left movers.) 

The Hamiltonian for the closed superstring in covariant gauge may be 
calculated much as in §7.4 for the closed bosonic string with the result 
(Exercise 8.3) that 

H  =: - - 1  I:r  do (a,xJl  aTxJl  +  aaXJl  aaXJl  
2n 0 

+  i 'l'i aa'l'JlL  - i 'I'~ aa'l'JlR)  (8.51) 

where we have set l  of (7.23) equal to 1.  In terms of the oscillators in the 
mode expansions (7.22), (8.43) and (8.45) for Ramond boundary conditions 
for both right and left movers, 

http:8.43)-(8.46
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H  - - l,u _ '\ ( ,u  +  -,u  - )- '1P  P,u  L  a  -n a,un  a  -n  a,un  
n"cO  

- I  n(d':nd,un  +  d':nd,un).  (8.52) 
nElL  

An exactly similar expression applies when the right and/or left movers have 
Neveu-Schwarz boundary conditions with the replacement of d~ by b~

-,u  -,u  1
and/or d  n  or br,  where r  E  Z - '1'  

For the open superstring, the mode expansions of the right and left 
movers are not independent of each other. For periodic (Ramond, R) 
boundary conditions in (8.42), the mode expansions are 

'I',u R  =  v21 '\L  .d~e-ln(T-a) (8.53) 
nElL  

and 

'I',u  = 1 '\ .L  v2 L  d~e-ln(T+a). (8.54) 
nElL  

The factors of 11v2 are conventional, and 2n  of (8.43) is replaced by n  in the 
exponent because 'I'~ and 'I't  are not now required to be separately 
periodic over the range 0 to 7T  of o.  For anti-periodic (Neveu-Schwarz, NS) 

boundary conditions on (8.42), the mode expansions are instead 

.T,,u _ 1 '\ b,u  -i  r(T  - a) 
'i'R- v2 L  re  (8.55) 

rElL+1!2  

and 

'I't  =,~ '\ b,ue-ir(T+a)  (8.56)v2 L  r  •  

rElL+1!2  

Quantization of the fermionic degrees of freedom is again achieved by 
imposing (8.47) and (8.48), and the corresponding anti-commutators for the 
oscillators in the mode expansions are 

{d~,d~} =  -om+n,01},uv  (8.57) 

and 

{b~,bn=-or+s,01},uv. (8.58)  

The Hamiltonian is again given by (8.51), and in terms of the oscillators in 
the mode expansions (7.43), (8.53) and (8.54) for Ramond boundary 
conditions 

H  - - Ip,up  - 1  '\  a,u  a-I  '\ nd,u  d  (8.59)- 2 ,u  2 i.....  -n,un  2 i.....  -n,un  
n"cO  nEiZ  
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and similarly for Neveu-Schwarz boundary conditions with d~ replaced by 
b~. 

In subsequent sections, we shall concentrate our attention upon the closed 
superstring which, by providing the right movers for the heterotic string of 
Chapter 9, has been the basis for all phenomenologically promising super­
string theories to date. 

8.5  Super-Virasoro  algebra  for  the  closed  string  

The superstring degrees of freedom in the covariant gauge not only obey the 
wave equations (8.30) and (8.31) but are also subject to the constraint 
equations (8.32) and (8.33). In detail these constraints are 

Too  = Tu = - !(o,XU  o,X/A  +  oaX/A  0aX/A)  

- ~ ('l't  0+ 'l'/AL  +  'l''R  0_  'l'/AR)  =  0  (8.60) 

TOl  =  TlO  =  - o,X/A  oaX/A  - ~ ('l't  0+  'l'/AL  - 'l'~ 0_  'l'/AR)  =  0 (8.61) 

JO  = ('l'!  O_X/A)  = 0 (8.62)
'l'L  0+  XI'  

Jl  = ( 'l''R  o_X/A  ) = o. (8.63)
-'l't o+X{t  

It  is convenient to write the independent constraint equations as 

T++=T __  =J+=J_=O  (8.64) 

where 

T ++ "'" !(T 00  +  T01 )  = - o+xt  o+X/AL  - ~ 'l't  0+  'l'/AL  (8.65) 

T __ "'" ~(T00  - TO!)  =  - o_X~ o_X/AR  - ~ 'l'~ 0_  'l'/AR  (8.66) 

J+""''l'to+X/AL  (8.67)  

and 

L  "'"  'l'~ o_X/AR  (8.68)  

with o±  as in (8.38). 
As for the bosonic string, it is not possible quantum mechanically to 

impose the full content of these constraints without inconsistency, and in 
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these circumstances it is useful to work with the Fourier components of T __  
and T++,  

1  fn  . L  = - dae21m(r- a)T 
m  2Jr  -­ m  ;60  (8.69) 

o 

and 

I  =~fn dae2im(r+a)T  m;6  0 (8.70)m  2Jr  ++ 
o 

where we are using units where I  = 1in (7.23) and correspondingly T  = 7/:-1. 

It  is also useful to introduce Fourier components of J _  and J +.  For 
Neveu-Schwarz boundary conditions for the right movers we define 

1  fn  . Gr = 27/: 0  dae21r(r-a)J_  re Z  +  ~ (8.71) 

and for Ramond boundary conditions for the right movers we define 

1 f1r  . F  =- dae21m(r- a)J  me  Z, m  ;60.  (8.72)
m  27/: 0 ­

Similarly, for Neveu-Schwarz boundary conditions for the left movers we 
define 

G  = ~f1rdae2ir(r+a)J re Z  +  ~ (8.73)
r  2Jr  +  

o 

and for Ramond boundary conditions 

Fm  = ~J: dae2im(r+a)J+  meZ.  (8.74) 

As for the bosonic string in §7.5, we shall handle the case m  = 0 in (8.69) and 
(8.70) separately. 

These super-Virasoro operators may be expressed (Exercise 8.4) in terms 
of the oscillators in the expansions (7.26) and (7.27) with the definitions 
(7.58) and (8.43)-(8.46). For Neveu-Schwarz boundary conditions for the 
right-mover fermionic degrees of freedom, 

m;6  0, NSLm  = - ~ I  a~ - na"n  +  ~ I  (; - r)  b~ - rbw  
nE7L  rE7L+I12  

(8.75) 

and 

http:8.43)-(8.46
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Gr = -~ I  b':n-nOl",n·  (8.76) 
ne&::  

For Ramond boundary conditions for the right movers we have instead 

L  - - 1 "\' '" +  1 '\' (m  - ) d'"  d  m  ~ 0, R (8.77)m  - "2  L  OI m - n Ol",n  "2  L  2  n  m-n  ",n 
 

ne&::  nE&:: 
 

and 

Fm  = - ~ I  d':n-nOl",n.  (8.78) 
ne&::  

Similarly, for Neveu-Schwarz boundary conditions for the left-mover fer­
mionic degrees of freedom 

L - - 1 "\' -'" -'" 1 '\' (m  - ) b- '" b- m  ~O,NS- m- "2L OI m-n Ol n+"2  L  2 r  m-rw 
 

ne"Z.  rE&::+  112 


(8.79) 

and 
- I,\, -u  ­
G r  =  - '2 L  b'r  - n  q.,n  (8.80) 

ne"Z.  

and for Ramond boundary conditions for the left movers 

L- - - 1  "\'  -'"  - +  1  '\'  (m  - ) d- '" d­m  - '2 L  01 m  - n  OI",n  2 L  2 n  m  - n  ",n  m  ~ 0, R (8.81) 
ne"Z.  nE"Z.'  

and 

Fm  =  - ~ I  d':n  - n  cX",n  •  (8.82) 
ne"Z.  

In all cases, m  denotes an integer, and r  denotes a half-integer. 
As for the bosonic string, if we were to use (8.69) and (8.70) with m  = 0 to 

define La  and La  then (8.75), (8.77), (8.79) and (8.81) would also apply for 
m  = O. However, as in §7.5, we shall denote the expressions obtained in this 
way by La'  and La',  and reserve Lo  and La  for certain normal-ordered 
quantities to be introduced shortly. Thus, 

1 J" a  do T -- (8.83)La'  ==  2][ 

and 

-La'  ==-1 J"  doT++.  (8.84)
2][  a  

http:T�--(8.83
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For Neveu-Schwarz boundary conditions for the right movers, 

L '  __  l  \"  _1 \ 
o - 2: L  (X  - n (X"n  2 L  rb~rbw NS (8.85) 

nEZ rEZ+1I2 

and for Ramond boundary conditions 

-L,-- 1 \"  _1\ o - :z L  (X  -n (X"n  2 L  nd~nd"n R. (8.86) 
nEZ 	 nEZ  

Similarly, for Neveu-Schwarz boundary conditions for the left movers 

L  / - - 1 \  -"  - _ 1  \  o - 2: L  (X-n(X"n  2 L  rb~rbw NS (8.87) 
nEZ  rEZ+1/2  

and for Ramond boundary conditions 

L- / - - 1 \  -"  - _  1 \  o - 2: L  (X-na",n  2 L  nd':nd",n  R. (8.88) 
nEZ  nEZ  

Arranging the bosonic and fermionic oscillators in Lo'  and La'  in normal­
ordered form with all annihilation operators a~ and d~, and b~ , nand r  
positive, to the right of all creation operators a':n  and d':n,  and b':r,  nand  r  
positive, we have for right movers in the Neveu-Schwarz sector 

Lo'  = - ~(X~ (X"o  - I  (X~n a",n  - I  rb':rbw  - aNS  NS (8.89) 
n>O  r>O  

and for right movers in the Ramond sector 

Lo'  = - ~(X~(X,,0 - I  (X~n(X"n - L nd~nd"n - aR  R. (8.90) 
n>O  n>O  

In (8.89) and (8.90), aNS  and aR  are formally infinite constants arising from 
the commutators and anti-commutators. We shall discuss the values of the 
constants upon regularization in §8.7, and we shall find that aNS  and aR  have 
the values ~ and 0, respectively. Similarly, for left movers in the Neveu­
Schwarz sector 

L  ' 1 -'"  - \  -'"  - \  b- '" b- NS (8.91)o 	= - 2(XOa,,0  - L  (X-na",n  - L  r  -r  W  - aNS 
 

n>O  r>O 
 

and for left movers in the Ramond sector 

Lo'  = - ~a~ a",o  - I  a':n  a",n  - I  nd'~n d",n  - aR  R. (8.92) 
n>O  n>O  

(The same constants aNS  and aR  must occur for both left and right movers 
because the same numbers of oscillators with the same commutation and 
anti-commutation relations are involved.) 
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On the other hand, a common convention is to define Lo  and Lo  to be just 
the normal-ordered products. Thus 

L  - - 1 "\"' . ~J< ~ • _ 1 "\"' 
0- 2: L  .u-n"-J<n·  2: L  r:b~rbw: NS  (8.93) 

n>Z  rEZ+1I2  

and 

L  - - 1  "\"'  ~J< ~ • - 1  "\"'  n·  dJ<  d  .  (8.94)o - 2: L  -n  uJ<n  . 2 L  . -n  J<n·  R
U  

nEZ nEZ 

with similar expressions for the left movers. With these definitions 

Lo  =  Lo'  +  aNS  NS  (8.95) 

Lo  =  Lo'  +  aR  R (8.96) 

Lo  = Io' +  aNS  NS  (8.97) 

and 

Lo  =  Lo'  +  aR  R. (8.98) 

The constraint equations (8.64) may now be formulated in terms of the 
super-Virasoro operators, which are the Fourier components of T + +, T __ , 
J +  and J _.  For the right movers, there are conditions on physical states lIP):  

LmIIP)  = 0 m>O  (8.99) 

and 

Lo'llP)  = 0 (8.100) 

or equivalently, depending on whether the boundary conditions for the 
fermionic right-mover degrees of freedom are Neveu-Schwarz or Ramond, 

LollP)  = aNsIIP)  NS  (8.101 ) 

or 

LollP)  =  aRIIP)  R. (8.102) 

Also, in the right-mover Neveu-Schwarz sector, 

GriIP)  =  0 r>  0, NS  (8.103) 

and in the right-mover Ramond sector, 

FmiIP)  =  0  m>O,R.  (8.104) 

Exactly similar conditions apply for the left movers. These physical state 
conditions are not applied for m  or r  negative for reasons to do with the 
super-Virasoro algebra that we shall discuss later. 
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The Hamiltonian (8.52), for right and left movers both in the Ramond 
sector is related to the Virasoro operators by 

H=  2(Lo'  +  Lo').  (8.105) 

The same expression applies for the other possible choices of boundary 
conditions for the right- and left-mover fermionic degrees of freedom. 

The super-Virasoro algebra for the right movers with Neveu-Schwarz 
boundary conditions for the right-mover fermionic degrees of freedom can 
be derived from the explicit expressions (8.75), (S.76) and (S.93) using the 
commutators (7.35) of the bosonic oscillators a~ and the anti-commutators 
(8.50) of the fermionic oscillators b~, with the result 

[Lm'  Lnl  = (m  - n)Lm  +  n  +  A(m)om  +  n.O  (8.106) 

[Lm'  Grl  = (; - r)  Gm+r  (8.107) 

and 

{G"  Gs}  = 2Lr+s  +  B(r)or+s,O'  (S.lOS) 

Similarly, for Ramond boundary conditions for the right -mover fermionic 
degrees of freedom 

[Lm'  Lnl  = (m  - n)Lm  +  n  +  C(m)om  +  n,O  (S.109) 

[Lm'  Fnl  = (; - n)  Fm+n  (8.110) 

and 

{Fm'  Fn}  = 2Lm+n  +  E(m)om+n,O'  (8.111) 

Exactly similar algebras apply for the left movers. 
In  (S.106), (S.108), (S.109) and (S.111), A(m),  B(r),  C(m)  and E(m)  are c­

number anomaly terms deriving from normal-ordering problems. They may 
be evaluated much as in §7.5, by studying expectation values of commuta­
tors in the ground state, and this will be the subject of the next section. For 
convenience, we record the conclusions here, namely 

A(m)  = '8D  
m(m2  - 1) (S.112) 

B(r)  = -D  (r2  - !)  (S.113)
S 

D C(m)  =  _m3  (S.114)
S 
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and 

D  2) E(m  =gm  .  (8.115) 

8.6 Closed superstring ground states and superconformal anomalies 

The mass-squared operator for the closed superstring may be obtained from 
(8.101) and (8.102), using the expansion (8.93) and (8.94) (and the anal­
ogous expressions for the left movers), and recalling that the centre-of-mass 
momentum pl1  enters as in (7.58) (with I  == 1 in the units being employed). 
By a similar line of argument to that pursued at the end of §7.5, we may 
conveniently write the mass-squared operator in the form 

M2  = M~ +  M~ (8.116)  

where 

1M2  _ _ "\" ~11 ~ 
4 R - L  ...  -n ..... fln  I  rb':rbw  - aNS  (8.117) 

n=1  r  =  1/2 

for Ns-sector right movers, 

!M~ = - I  a':nafln  - I  nd':ndfln  - aR  (8.118) 
n=1  n=1  

for R-sector right movers, and, analogously, 

1M2  - - '\' -11 - - "\" b- fl  b- ­
4 L - L  a  -n afln  L  r  -r  W  a  NS (8.119) 

n  = 1 r  = 1/2 

for Ns-sector left movers, and 

1M2  __ 
4 L -

'\' 
L  

-11 - _ 
a-nafln  

"\" 
L  nd':n  dfln  - aR  (8.120) 

11=1  n=1  

for R-sector left movers, with 

M[=M~ (8.121) 

as a consequence of (8.101), (8.102) and the corresponding expansions for 
left movers. 

The oscillators in the mode expansions act as step-up and step-down 
operators for the eigenvalues of M~ and M[  because of the commutators 
(7.35) and (7.36), and the anti-commutators (8.49) and (8.50). Acting with 
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the oscillator a~m or d~m (m  > 0) on a state increases the value of !M~ by 
m,  and acting with the oscillator b~r (r  > 0) increases the value of !M~ by r.  
The oscillators a~m' d ~m and b ~r have a similar effect on !Mt.  The ground 
state is the product of the ground state for the right movers and the ground 
state for the left movers. Let us concentrate on the right-mover ground state. 
If the fermionic right movers are in the NS sector then the ground state 10)R is 
obtained by requiring 

a~IO)R = b~IO)R = 0 m,r>O.  (8.122) 

When the fermionic right movers are in the R sector, a collection of states 
forming a degenerate ground state occurs rather than a unique ground state 
as in the NS case. Analogously to (8.122), we require the right-mover ground 
state 10)R to satisfy 

a~IO)R = d~IO)R = 0 m>  O. (8.123) 

However, a subtlety results from the presence of the oscillators db,  which 
may act on a state without changing the value of M~. The nature of this 
degenerate ground state may be elucidated by considering 

y'" == i  Y'2db  f.1  = 0, 1, ... , D  - 1. (8.124) 

As a consequence of (8.49), the y'" obey the (Clifford) algebra 

{y'",  yV}  = 2r;f"V  (8.125) 

with r;,"v  as in (7.3), i.e. the y'" behave like D-dimensional y-matrices. Since 
the various ground states transform amongst themselves under the action of 
the db and so of the y'",  the degenerate ground state is an irreducible 
representation of the Clifford algebra. In turn, this means that the ground 
state is a spinor representation of SO(I, D  - 1)  because the generators M'"v  
of this representation may be constructed from the above y-matrices as 

1
M'"V  =  4"  [y'",  yV]  (8.126) 

which satisfy the Lie algebra of SO(I, D  - 1), 

[M'"v,  Mpa]  =  i(r;'"PM va  +  r;vaM'"P  - r;,"aMvp  - r;vPM,"a).  (8.127) 

For the NS sector, the superconformal anomaliesA(m) and B(r)  may now 
be evaluated by calculating the expectation values of the commutator 
(8.106) and the anti-commutator (8.108) in a zero-momentum Fock space 
ground state 10; 0), with the results 

A(m)  ="8D  
m(m2  - 1) (8.128) 

and 
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B(r)  =  8D  
(r2  - !).  (8.129) 

(A ground state of the oscillator algebra Fock space with string centre-of­
mass momentum is labelled as 10;p).)  In  (8.128), a fermionic contribution 
has been added to the bosonic contribution obtained in (7.74). 

Similarly, for the R sector, the superconformal anomalies C(m) and E(m)  
may be calculated from the expectation values of (8.109) and (8.111) in any 
one of the degenerate zero-momentum Fock space ground states to yield 

D C(m) = _m3  (8.130)
8 

and 

D 
E(m)  =8m2.  (8.131) 

As for the bosonic string, ghost states of negative norm are created by the 
time components of the oscillators a':m.  In  addition, ghosts states are 
created by the time components of the oscillators d ':m  and b':r  for the Rand 
NS sectors respectively, because, for m  positive, 

(0;  Old~d~mIO; 0) = (0; 01 {d~, d~m} 10; 0) = - 1 (8.132) 

employing (8.123), and similarly for the NS sector. The physical state 
conditions (8.99) and (8.104) for the Ramond sector, and (8.99) and (8.103) 
for the Neveu-Schwarz sector, provide enough conditions to allow one to 
forbid the occurrence of all ghost states. For D  = 10, aR  = 0 and aNS  = ~, 
which we shall see in §8.8 are the appropriate choices for the superstring, all 
ghosts are indeed removed from the theory by these conditions(4). 

8.7  The  light  cone  gauge  

For the bosonic string in §7.7, we saw that even after the covariant gauge of 
(7.15) had been selected, there remained further gauge freedom. This 
freedom could be removed by imposing additional gauge conditions (light 
cone gauge) in such a way as to reduce the number of non-trivial components 
of Xli  and leave only physical dynamical degrees of freedom. For the 
superstring, a covariant gauge was chosen in §8.3 in which the world sheet 
'gravitino' Xa  was gauged away, and the world sheet metric was given by 
(8.27). Just as for the bosonic string, a combination of a world sheet 
reparametrization and a local Weyl scaling may be used to remove some 
residual gauge freedom and select a gauge in which X+  is given by (see 
(7.101)) 
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X+(r,  a)  = x+  +  p+r  (8.133) 

where x+  and p+  are constants (in units where I  is 1). In addition, a local 
world sheet supersymmetry transformation may be used to choose 

'1'+=0  (8.134) 

where 

'I'± ==  ~ ('1'0 ± 'I'D - 1 ) (8.135) 

without modifying (8.133), because of (8.17). 
The coordinates X- and '1'- may now be calculated in terms of the 

transverse degrees of freedom Xi  and 'l'i,  i  = 1, ... , D  - 2, as follows. 
Written in terms of light cone variables, the constraint equations (8.64)­
(8.68) become 

T ++  = - 2  d+Xt  d+Xr::  - ~ ('I't  d+  'l'r::  +  'l'r::  d+ 'l't)  

. ·1· .
+  d+XL  d+XL  - 2" 'l'L  d+ 'l'L  (8.136) 

T __  = - 2 d_X~ d_XR:  - ~ ('I'~ d_ 'l'R:  +  'l'R:  d_  'I'~) 

.  ·1·  . 
+  d-Xk d-Xk  +  2" 'l'k  d_ 'l'k  (8.137) 

J + = 'l't  d +Xr::  +  'l'r::  d +xt  -:- 'l'L  d +xL  (8.138) 


and 


J _  = 'I'~ d_XR:  +  'l'R:  d_X~ - 'l'k  d_xk  (8.139) 


where the world sheet derivatives d±  are given by (8.38). Applying the light 

cone gauge conditions (8.133) and (8.134) leads to 

p+  d+Xr::  = d+xL  d+xL  +  ~ 'l'L  d+ 'l'L  (8.140) 

and 

+  x-R  =  d_ Xi  Xi R  +  2" 'l'i  (8.141)1  'l'i P  d_  R  d_  R  d_  R  

which may be solved for Xr::  and XR:  in terms of transverse degrees of 
freedom, and 

~p+'I'r:: =  'l'L  d+xL  (8.142) 
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and 

1 +,Tr- - ,Tri  a  Xi 'LP  ~R - ~R - R (8.143) 

which express 'l'L:  and 'l'R:  in terms of transverse degrees of freedom. 
Thus, only the transverse degrees of freedom Xi and  'l'i,  i  = 1, ... , D  - 2, 
remain as dynamical degrees of freedom. These will have the usual mode 
expansions for the closed superstring (7.26), (7.27) and (8.43)-(8.46), with 
the space-time index f.1.  restricted to transverse degrees of freedom, 
i=I, ...  ,D-2.  

The mass-squared operator in terms of left-mover oscillators can be 
derived from (8.140) by substituting the expansions (7.27) for xi and (8.45) 
or (8.46) for 'l'L and  integrating from 0 to 1{ with respect to a.  All terms may 
be written in normal-ordered form with positive values of n  or r  to the right 
of negative values using the commutators (7.36) and anti-commutators 
(8.49) or (8.50). In  similar fashion, an alternative expression for the mass­
squared operator in terms of right-mover oscillators may be derived from 
(8.141). In  the Ramond sector, the result is 

1M2  = Ip2  = '\' ,;,i  ,;,i +  '\'  nd-;  di  
8 g L  U-n  Un  L  -n  n  

n=1  n=l  

I  lXi_nlX~ +  I  d~nd~ (8.144) 
n=1  n=1  

which it is convenient to cast in the form 

M2  =  M~ +  ML  (8.145) 

with 

12  ,\,i  i  '\' i  i  
J,MR = L  lX-nlX n  +  L  nd-ndn  (8.146) 

n  = I n  = 1 

1 2 '\' -i -I  '\'  -I  -i  
J,ML =  L  lX-nlX n  +  L  nd-ndn  (8.147) 

n  =  I  n  =  I  

and 

M~=ML. (8.148) 

No normal-ordering constant occurs in (8.146) and (8.147) because of an 
exact cancellation between the bosonic and fermionic contributions in the 
Ramond sector. Thus, aR  in (8.118) or (8.120) is now identified to be 

aR  = o.  (8.149) 

http:8.43)-(8.46
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(Using ~-function regularization, as in §7. 7, each bosonic degree of freedom 
contributes 1-4 to aR  and each fermionic degree of freedom, with periodic 
boundary conditions as appropriate to the Ramond sector, contributes -1-4 
toaR')  

In the Neveu-Schwarz sector, the corresponding result is 

!M~ = \" a~ a i  +  \"  rb i  b i  _  (D  - 2) (8.150)L  n  n  L  -r  r  

n  =  1 r  =  1/2  

and 

!ML  = I  a~na~ +  I  rh'-r h'  - (D  - 2) (8.151) 
n  =  1 r  =  112  

which determines aNS  in (8.117) or (8.119) to be 

_  (D  - 2) 
aNS  - .  (8.152)

16 

The normal-ordering constant has again been calculated using ~-function 
regularization, as in §7. 7, so each bosonic degree of freedom contributes,ft, 
to aNS  and each fermionic degree of freedom, with anti-periodic boundary 
conditions as appropriate to the Neveu-Schwarz sector, contributes;{g. We 
shall see in §8.8 that the appropriate choice of D  is 10. 

8.8 Superstring states, GSO projections and space-time supersymmetry 

In the light cone gauge, superstring states may be constructed by acting with 
products of oscillators a~n and d~n or b~r on the ground state 10)R for the 
right movers, and with products of oscillators a ~n and d ~n or h ~r on the 
left-mover ground state 10)L, and forming the product of the resulting right­
and left-mover states. A calculation of the masses of these states requires a 
determination of the space-time dimensionality D  of the superstring theory 
to fix the normal-ordering constant aNS  =  (D  - 2)116 which occurs in 
(8.150) and (8.151). (The normal-ordering constant for the Ramond sector 
has already been obtained in (8.149).) As for the bosonic string, normal­
ordering constants may be determined by  requiring that the commutators of 
the Lorentz generators in the light cone gauge are free from quantum 
anomalies. For the superstring, this requires 

D=lO  (8.153) 

and 

-1 
aNS  - 2'  (8.154) 
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It  then follows from (8.150) and (8.151) that the NS sector ground state for 
right or left movers is tachyonic with M~ or MI being -~. 

The problem of tachyonic ground states may be avoided, and a (ten­
dimensional) space-time supersymmetric theory obtained at the same time, 
by applying a projection to the states of the theory due to Gliozzi, Scherk 
and Olive(5) (the GSO projection). This projection is performed separately  on 
left and right movers. For the Neveu-Schwarz sector, the GSO projection Pis  

(1+(-1)F+1) 
P  = -'----'-----'----'-- NS sector (8.155)

2  

where the number operator F  is defined for left movers by 

F  =  L  ((j~)?~ - (g~t g~) NS sector (8.156) 
r  =  1/2  

where l~ and g~, as defined in (9.101), are oscillators for complex fermionic 
degrees offreedom ~a, et = 1, ... ,4, replacing the real fermions 'Vi,  i  = 1, 
... , 8, and similarly for right movers with f~ and g ~ replacing l~ and g~. 
Thus, only states with ( -l)F = -1 survive the projection in the NS sector. 
Among other things, this has the effect of deleting the tachyonic ground 
states with F  = O. 

On the other hand, for the Ramond sector, the GSO projection is defined to 
be 

P  =! (1 +  1]( _l)F+  1) R sector (8.157)
2  

where 1] is either + 1 or -1 and may be chosen independently for the left and 
right movers. In this case, F  is defined for left movers by 

F - '\"' ((-a  )t-a (-a)t-,,) (8.158)- L  em-1  em-1  - em  em  R sector 
m  =  1 

where C~-l and e~ are defined in (9.109), and similarly for right movers with 
e~-l and e~ replacing C~-l and e~. In this case, F  contains a zero mode part 
(cg)tcg or (eg)teg. Theories where 1] has the same value for both left and right 
movers are, for historical reasons, referred to as type-lIB theories and those 
where 1] has opposite values for left and right movers as type-IIA theories. 

The basic distinction between the states of type-IIA and type-lIB theories 
may be clarified by considering the zero-mode contribution to (-l)F.  As 
discussed in §8.6, the ground state for the Ramond sector in covariant gauge 
is degenerate, forming a spinor of SO(l, D  - 1). Correspondingly, in the 
light cone gauge and with D  =  10, the ground state is an SO(8) spinor. For 
definiteness, let us focus on the right-mover Ramond ground state. An 
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exactly similar discussion applies for the left movers. The 16 independent 
components of this SO(8) spinor ground state may be chosen to be 

4 

(8.159)InaJ  = n(a:t"IOJR  na  = ° or 1 
a=1  

where 

1
aa  == Co = V2  (d6a - 1 +  i  d6a)  a  = 1, ... ,4. (8.160) 

The spinor splits into two spinors of opposite chirality X  = ± 1 when we 
introduce the chirality operator 

(8.161)X  =Il Xa  
a  

where 

Xa  = y2a-1 y2a  a=1,  ... ,4  (8.162) 

and yiJ.  is as in (8.124). It  may be checked that a:  anti-commutes with Xa'  so 
that 10JR and a:IOJR have opposite chirality. Moreover, 

[Xa,  a:J  = 2i a:  (8.163) 

from which it follows that we may take the chiralities of 10JR and a:IOJR to be 
(_i)4 = 1 and i(-i)3 = -1 respectively. Consequently, InaJ  of (8.159) has 
chirality 

X  = (-l)~"n". (8.164 ) 

This means that if Fa  is the zero-mode contribution to F,  then the chirality X  
of the SO(8) spinor ground state is 

X=  (_1)Fu•  (8.165) 

Thus, type-lIB theories have Ramond-sector spinor ground states for right 
and left movers of the same chirality, whereas type-lIA theories impose 
opposite chirality. Since there is no absolute definition of chirality, we may if 
we wish take 11 =  1 for both right and left movers for the type-lIB  theory, 
and 11 = 1 for right movers and 11 = -1 for left movers for the type-HA 
theory. 

Before GSO  projection, the massless states in the various Ramond and 
Neveu-Schwarz sectors for right and left movers are 

IOJRb~1I2IOJL R-NS  sector (8.166) 

b~1I2IoJRIOJ L  NS-R  sector (8.167) 

b~ 1I210JRbJ_ 1I2 10JL NS-NS  sector (8.168) 
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and 

iO)RiO)L R-R sector (S.169) 

in terms of the oscillators for real fermionic degrees of freedom. These 
oscillators may be written as linear combinations of the oscillators for 
complex fermionic degrees of freedom using (9.102), (9.103). (9.110) and 
(9.111). As a result they increase the eigenvalue of F  by 1 modulo 2. 
Consequently. the effect of the GSO  projection on the massless states is to 
preserve the states (S.16S). to restrict the right movers in (S.166) and the left 
movers in (S.167) to a single SO(S) chirality. and the right and left movers in 
(S.169) each to a single chirality. For the type-lIB and type-IIA theories 
discussed above. the Ramond-sector SO(S) spinor ground states for right 
and left movers have the same and opposite chirality. respectively. 

After GSO  projection, the ~s-sector vector b~ lniO)R and the R-sector 
spinor ground state iO)R have the same number of degrees of freedom. 
namely S. and similarly for the left movers. Thus. the massless states of the 
theory given by (S.166)-(S.169) contain equal numbers of bosonic and 
fermionic degrees of freedom. This matching of the numbers of degrees of 
freedom is a necessary condition for supersymmetry and strongly suggests 
that. after GSO  projection, we have a supersymmetric theory (in ten dimen­
sions). This is confirmed by comparing the massless states with those of the 
two possible ten-dimensional N  =  2 supergravity theories. For the type-IIA 
theory. the massless states of (S.166)-(S.169) surviving GSO  projection are 
the products that can be formed by using an SO(S) vector or an SO(S) spin or 
of definite chirality for the right movers. and an SO(S) vector or an SO(S) 
spinor of opposite  chirality for the left movers. These are precisely the 
massless states of the ten-dimensional N  =  2 supergravity theory that was 
constructed(6) by dimensional reduction of eleven-dimensional supergrav­
ity. For the type-lIB theory. the massless states of (S.166)-(S.169) surviving 
GSO  projection are the same sorts of products of right and left movers but 
with the same  chirality of SO(S) spinor for right and left movers. These are 
the massless states of the chiral version(7) of ten-dimensional N  =  2 super­
gravity. The supersymmetry of these theories can be made manifest in 
another formulation of superstring theory that we shall discuss briefly in the 
next section. 

8.9 Other  formulations  of  the  super string 

A path integral quantization for the superstring(8) may be developed in 
much the same way as for the bosonic string in §7.9. In the case of the 
bosonic string, the Fadeev-Popov ghosts associated with the world sheet 
reparametrization-invariance gauge symmetries use anti-commuting Grass­
mann variables. For the superstring, these Fadeev-Popov ghosts are 
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required, but so also are ghosts associated with local world sheet supersym­
metry. Because world sheet supersymmetry transformations are rarame­
trized by world sheet Majorana spinors, the Fadeev-Popov ghosts in this 
case are commuting degrees of freedom rather than anti-commuting Grass­
mann variables. 

It is also possible to construct an alternative formulation of the superstring 
in the light cone gauge in which space-time supersymmetry is manifest(9). In 
this approach, the theory is formulated in terms of S bosonic transverse 
degrees of freedom Xi,  i  = 1, ... , S, providing S right movers and S left 
movers, and 16 fermionic transverse degrees of freedom which form a world 
sheet spinor, much as in (S.34), but with S right-mover degrees of freedom 
constituting an SO(S) spinor of definite chirality, and Sleft-mover degrees of 
freedom an SO(S) spinor of either the same or opposite chirality (corre­
sponding to the type-lIB and type-IIA cases discussed in §S.S). Thus. right 
from the outset there are equal numbers of space-time bosonic and space­
time fermionic degrees of freedom in the string degrees of freedom them­
selves. This allows the light cone gauge superstring action to be written in a 
form that displays space-time supersymmetry (as well as world sheet 
supersymmetry). This formulation is equivalent to the formulation of §S.S 
after the GSO  projection has been applied to render it space-time supersym­
metric. Detailed expositions of these alternative formulations of the super­
string may be found elsewhere(lO). 

Exercises  

8.1  Check that the transformation given by (S.4) and (S.S) is a world sheet 
supersymmetry, and that the action (S.l) is invariant under this transform­
ation. 

8.2  Derive the anti-commutators (S.49) and (S.SO) for oscillators in the 
superstring mode expansions. 

8.3  Derive the Hamiltonian (S.SI) for the closed superstring. 

8.4  Express the super-Virasoro operators in terms of oscillators in the 
superstring mode expansions. 
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THE  HETEROTIC  STRING 
 

9.1  Introduction  

A realistic superstring theory will have to contain gauge fields for the 
electroweak and strong interactions and perhaps for a grand unified theory. 
The simplest way for this to happen is for gauge fields to be present in the 
ten-dimensional theory, though, a  priori,  there is the possibility that the 
gauge fields arise from the construction of a four-dimensional theory from 
the ten-dimensional theory, as will be discussed in Chapter 10. For open 
superstrings, this may be achieved(l) by associating with one end of the 
string an index labelling a state of a representation R  of some group, and 
with the other end an index labelling a state of the conjugate representation 
R.  Such theories are only consistent(2) when the gauge group is SO(32) or 
Sp(32). 

The type-lIA closed superstring is unsuitable to describe the real world 
because, as discussed in §8.8, it is non-chiral. The type-lIB closed super­
string is also unsuitable, in the first instance, because the only massless states 
it contains are in the supergravity multiplet of N  = 2 supergravity, so there 
are no non-abelian gauge fields present in the ten-dimensional theory. 

Nonetheless, theories of only closed strings may be obtained with a non­
abelian gauge group occurring in the ten-dimensional theory by the oblique 
method of using the right movers of a type-II superstring and the left movers 
of a bosonic string(3). The GSO projection (8.155) and (8.157) is performed 
on the right movers to ensure equal numbers of bosonic and fermionic 
degrees of freedom, as required for space-time supersymmetry. The free­
dom  to choose the right and left movers of different kinds of string derives 
from the facts that the states of a bosonic string or of type-II superstring are 
direct products of the Fock space states for the right and left movers, and 
that interactions respect this structure. Such a string theory is referred to as a 
heterotic string. (To quote Gross et  al(3),  heterosis is 'increased vigour 
displayed by crossbred plants or animals'.) At first sight, such a theory 
makes little sense, because the right movers are in 10 space-time dimensions 
whereas the left movers are in 26 space-time dimensions. However, in this 
approach, 16 of the left-mover dimensions X'"  are 'compactified' by associat­
ing them with a 16-dimensional torus with radii on the assumedly extremely 
small scale set by the string fundamental length I of  (7.23). As we shall see in 
§9.4, some gauge fields then arise in the Kaluza-Klein manner, as is to be 
expected when a higher-dimensional theory containing gravity is reduced to 

DOl: 10.120119780367805807-1 
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a lower dimension by compactification(4). There are also a large number of 
additional gauge fields of a stringy origin whose existence depends on the 
possibility of having winding numbers for the string on the torus. In this way, 
the extra 16 left-mover dimensions provide the gauge group of the resulting 
lO-dimensional theory. 

For the heterotic string, it is found that the possible gauge groups 
consistent with gauge and gravitational anomaly cancellation(3) are SO(32) 
or Eg X  Eg. The latter possibility has led to phenomenologically promising 
models because one Eg factor can contain E6 which in turn contains SO(lO) 
with useful subgroups such as flipped SU(5) x U(I) or SO(6) x SO(4), 
while the other Eg factor can be treated as a hidden-sector gauge group, 
much as in the discussion of supergravity in §5.7 and §5.8. We therefore 
focus in what follows on the heterotic string with the Es x Es gauge group in 
ten dimensions. 

9.2  Mode  expansions  and  quantization  

For the right movers, the mode expansions for the heterotic string are those 
of §8.4 for the closed superstring. For the bosonic degrees of freedom, 

X~(T - a)  = ~x!1 +  ~pt'(T - a)  +  ~ I  :~ e-2in(r  - (9.1)a)  

ncFO  

and for the fermionic degrees of freedom 

'¥~(T-a)= I  d~e-2in(r-a) R sector (9.2) 
nE£.  

and 

'¥R,(T-a) = I  b~e-2ir(r-a) NS sector (9.3) 
rE£.  +  112 

where in each case,u = 0, 1, ... ,9. 
For the left movers, it is convenient to introduce a notation that dis­

tinguishes the first ten degrees of freedom, which we denote by XL  
,u  = 0, 1, ... , 9, from the last 16 degrees of freedom. We denote these 16 
'internal' degrees of freedom by xL  I  =  1, ... , 16. For the first ten degrees 
of freedom the mode expansion is just as in §7.4 for the closed-bosonic-string 
left movers 

Xt(T+a)=~xu+~pU(T+a)+l "\' a~e-2in(r+a) (9.4)
2  L  n  

ncFO  

where,u = 0, 1, ... ,9. 
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For the 16 internal degrees of freedom we write 
.  -I  

XUr+a)=xL+pUr+a)+~ I  :n e-2in(r+a)  (9.5)  
n,oO  

where 1=  1, ... , 16. 
The quantization for /.-l = 0, 1, ... , 9 is that of §7.4 and §8.4, so 

[xl',pV]  = - i  YJI'V  (9.6) 

[  ,u  V]  _  [-I' -V]  _  _  -"  ,uv CXm'CX n  - CXm,CX n  - mum+n,oYJ  (9.7) 

{d~,d~} = -6m+n. oYJ I'V  R sector (9.8) 

and 

{b l'  bV}  - -"  ,uv r,  s --ur+s,oYJ  NS sector (9.9) 

where in each case /.-l, v  =  0, 1, ... , 9. More care is required for xL  
1=  1, ... , 16, which are not paired with a right mover. Proper account may 
be taken of the absence of corresponding right movers by first replacing xL  
by Xl  with both right- and left-mover degrees of freedom and then 
eliminating the right movers by imposing the constraint 

(a r  - aa)X I  = O. (9.10) 

In §7.4, we could have arrived at the quantization condition (7.33) by writing 
down the Poisson bracket of the classical theory, and then making the 
transition to the quantum theory by replacing the Poisson bracket by the 
corresponding commutator multiplied by -i. Here, a similar procedure may 
be followed but using the Dirac bracket in the classical theory, to incorpor­
ate the (second-class) constraint (9.10), before passing to the quantum 
theory by replacing this bracket by a commutator multiplied by -i. The 
result of this calculation is to replace (7.33) (with I,  J  substituted for /.-l, v)  by 

[pIer,  a),  XJ(r,  a')]  = ~6(a - a')r/J  = - ~6(a - a')6 IJ  (9.11) 

which differs by a factor of ~ from the naive expression. Consistency of the 
mode expansion (9.5) with (9.11) then requires the factor of ~ to feed 
through into the commutator 

[xLp£]  = - ~YJIJ = ~6IJ (9.12) 

while the oscillators a~ have the commutators 

[a~, a~] = - m6m+n.oYJIJ  = m6m+n.o6 IJ  (9.13)  

(without ~) because there is no contribution to (9.11) from right-mover 
oscillators. (No similar modification is required for the right-mover fermio­

http:m6m+n.o6
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nic degrees of freedom 'I'~, which have no corresponding left movers, 
because the anti-commutation relations (8.47) are already separated into 
right and left movers.) 

9.3  Compactification  of  the  bosonic  string  on  a  circle  

As discussed in §9.1, the 16 extra left-mover dimensions of the heterotic 
string are to be compactified on a torus to obtain a ten-dimensional theory 
with a gauge group arising from the compactified dimensions. In  this section, 
we warm up to this task by considering the simpler example of a bosonic 
string with one dimension (for both right and left movers) compactified on a 
circle, say X 25 ,  Then, mode expansions for Xi<,  f-l  = 0, 1, ... , 24 are as in 
§7.4: 

X~(r-a)=~xi<+~p,u(r-a)+! '\' .!.a~e-2in(T-a) (9.14) 
2  L  n  

n¥O  

and 

Xt(r+a)=~x,u+~p,u(r+a)+! '\' .!.a-~e-2in(T+a) (9.15) 
2  L  n  

n¥O  

for f-l  = 0, 1, ... , 24. However, in the case of X 25 ,  which is compactified on a 
circle of radius R  we must make the identification 

X25  == X 25  +  2nRn  (9.16) 

for any integer n.  There are then extra ways of satisfying the closed-string 
boundary condition (7.20) corresponding to winding the string n  times 
round the circle, so 

X25(r,  a  +  n)  = X25(r,  a)  +  2nRn.  (9.17) 

Thus, the general mode expansion is 

X25(r,  a)  = X25  +  p25r  

+  2La  +  ~ L ~ (a~5 e-2in(T - a)  +  a~5 e-2in(T +  a»  (9.18) 
n¥O  

where 

L=nR.  (9.19) 

The integer n  in (9.19) is the winding number for the string configuration. 
The momentum p25  is then constrained by the requirement that 
exp(i p25X25)  should be single valued when we replace X 25  by the equivalent 
coordinate X 25  +  2nRn.  Consequently, we must take 
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p25  = m  (9.20)
R  

where m  is any integer. Decomposing into right and left movers by writing T  

and a  in terms of T  - a  and T  +  a,  

X 25  = xif  +  xi:  (9.21)  

where 

Xif(T-a)=xif+pif(T-a)+~ I  ~a~5e-2in(r-a) (9.22)  
n"oO  

and 

XI5(T+a)=xI5+pt\T+a)+~ I  ~a~5e-2in(r+a) (9.23)  
n,oO  

with 

pif  = ~(p25 - 2L)  (9.24) 

PI5  = ~(p25 +  2L)  (9.25) 

and 

X 25  = xif  +  xi:  .  (9.26) 

To obtain the 25-dimensional mass-squared operator for the physical 
states we need to amend Loand  Loof  (7.65) and (7.66) to take account of the 
effect of one string dimension being compactified on a circle. This amounts 
to replacing "Z~5= Op l'P/1  by' "Z~4= op/1P/1  - (2pif)2  for Lo,  and by 
"Z~4= op/1P/1  - (2PI5f  for Lo.  It  is convenient in the following exposition to 
use p/1P/1  to denote "Z~4= op/1P/1'  which is the 25-dimensional mass-squared 
operator M2  (rather than the 26-dimensional mass-squared operator as in 
(7.82) where the sum over fl  is from 0 to 25). Then, we find 

1M2  _ 1 /1 _ 1( 25)2 _ '\' ( /1 _ 25 ) - 1 
g - gp P/1  -:!  PR  L  a_na/1n  a-na25,n  

n=l  

- 1( 25)2 '\' (-/1 - -25 - ) 1 -:!  PL  - L  a  -n a/1n  - a-na25,  n  - (9.27) 
n  =  1  

where the normal-ordering constant a  of (7.82) has been set to 1  as required 
by (7.118), and the sum over fl  for the oscillator terms is also from 0 to 24. 
The mass-squared operator may now be cast in the form (analogous to (7.83) 
to (7.86» 

M2=M~ +MI  (9.28) 
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where 

1M2  _ 1(p25 )2  _  (9.29)4  R - 2  R  (U":"U,un  - U~nU25,n)-1I  
" = 1  

QC 

1M2  _ l( 25)2 _ ~ (-,u  - _ -25 - ) - 1
4 L - 2 PL  L  U-nu,un  u-n u25,n  (9.30) 

n=1  

and 

M 2  -M2 R- L (9.31) 

which allows us to think of the squared mass as having equal contributions 
from right and left movers. 

Alternatively, substituting the explicit expressions for pi1  and PLs  of (9.24) 
and (9.25), we have 

25)2 L2  1 oc(
1 M2  _ P  ~ ( .u  25 )
8 - -S- +""2  -"2  L  u-nU~tn - u-n u25,n  

,,= 1 

oc 

1 I  (-U  - -25 - ) 1- - a'-nUun  - u-n u25  n  ­2 '  '  
n=1  

n2R2  m2  1  oc
=  __  +  ___  ~ (  .u  25 

2 SRz 2 L  u_na,un  - U- n U25,n)  

n=l  

QC 

1  ~ (-,u  - -25 - ) 1 -"2  L  u-nu,un  - U- n U25.n  - (9.32) 
n  = 1  

with 
:x: 00 

~ (-,u  - -25 - ) ~ ( u  25)L  U-nU,un  - U- n U25,n  - L  U'-nU,un  - a:..n U25,n  

n=1  n=1  

=p25L=mn.  (9,33)  

Equation (9.32) displays the contributions to the 25-dimensional mass 
squared from the winding number and momentum in the compactified 
dimension. 

The mass-squared operator may be written entirely in terms of physical 
dynamical degrees of freedom by adopting the light cone gauge. It is 
convenient for our present purposes to define the light cone coordinates to 
be 



205 COMPACTIFICATION OF THE BOSONIC STRING 

x±  = ~(XO ±  X24)  (9.34) 

so that the transverse degrees of freedom are Xi,  i  =  1, ... , 23, and X 25 ,  

which corresponds to the compactified dimension. (This differs from the 
choice (7.89) which involves X 25  instead of X24.)  Following the argument of 
§7.7, the mass-squared operator then takes the form 

M2=M~ +ML  (9.35) 

where 

!M~ = ~(p?f)2 +  N  - 1 (9.36) 

!ML  = ~(pr)2 +  IV - 1 (9.37) 

with 

\"'  i  i  25N=  L  (a_nan  +  CL na25.n)  (9.38) 
n  =  1 

oc 

- \"' (-i -i -25 - )N=  L  a_nan  +  a- ll a25.n  (9.39) 
n  =  1  

and 

M 2  -M2 
R - L'  (9.40) 

Alternatively, 
2 2 2 ­

kM2  = n  R  +  ~ +  !!.  +  !!.  _ 1 (9.41)
2  8R  2 2 

with 

N-IV=mn.  (9.42) 

After compactification of one dimension on a circle, the massless states of 
the resulting 25-dimensional theory include (in analogy with (7.120)) the 
graviton, the dilaton, and the antisymmetric tensor for 25 dimensions, as the 
traceless symmetric, trace and anti-symmetric" parts of a~lIO)Ra~lIO)L' 
However, there are also massless vector particles Vi  and Vi  obtained by 
taking one index to be associated with 25-dimensional space-time and the 
other with the compactified dimension: 

Vi  = a~lIO)Ra:':\IO)L (9.43) 

and 

- i 25 10)  -i 10) V = a-l  Ra-l  L'  (9.44) 
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One such massless vector could have been expected to arise in Kaluza-Klein 
fashion when a dimension was compactified on a circle, with components of 
the 26-dimensional metric tensor with one index associated with the com­
pactified dimension becoming the components of a U(l) gauge field for 25 
dimensions. Here there are two such gauge fields, deriving from the 26­
dimensional metric tensor and the anti-symmetric tensor field, characteristic 
of string theory, as (l/\1'2)(Vi  ± Vi).  

The gauge group arising from the compactification on a circle can be 
larger than U(l) x U(l) for a particular choice of the radius R.  This 
enhancement of the gauge group is a stringy phenomenon depending on the 
existence of winding number. Let us use Im,  n)  to denote a state obtained 
from the ground state by taking momentum p25  = mlR  in the compactified 
dimension, and winding number L  = nR,  but without applying any oscil­
lators to the ground state. Then, for a special choice of R,  four extra massless 
vector fields may be constructed, namely 

W~ =  a~111, 1)  (9.45) 

W i  a i  - =  -1 1-1 ,  -1'/  (9.46) 

W~ = a~111, -1)  (9.47) 

and 

W~ = a~11-1, 1).  (9.48) 

This may be seen as follows. As a consequence of (9.35) and (9.40), a 
massless state requires 

M~ =Mt  = O. (9.49) 

One way to arrange this in (9.36) and (9.37) is to take Nand N  both to be 
one, and p¥f  and pt5  both to be zero (which implies that m  and n  are both 
zero). This yields the massless vectors of (9.43) and (9.44). An alternative 
way of obtaining massless vectors is to take N  = 1  and p¥f  = 0 to arrange 
M~ = 0, and to take N  = 0 and (pf;)2  = 2 to arrange Mt  = O. Using the 
explicit expressions (9.24) and (9.25) for p¥f  and pt5  ,and noticing that in this 
case 

mn  =N-N=  1  (9.50) 

it follows that 

m  = n  = ±1  (9.51) 

and 
1 

(9.52)R  = \1'2'  

These are therefore massless vectors W~ and W~ provided that the radius of 
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the circle on which a dimension is compactified is given by (9.52). Similarly, 
massless vectors W~ and W~ also occur for this value of R.  To sum up, for 
the special choice (9.52) for the radius of the compactified dimension, there 
are present in the theory the six massless vector fields required for the 
adjoint representation of the gauge group SU(2) x  SU(2). (That these 
massless vector fields are indeed the gauge fields of an SU(2) x SU(2) gauge 
group may be confirmed by explicitly constructing the generators of the 
gauge group and checking that they commute with the mass-squared 
operator.) 

9.4  Compactification  of  the  heterotic  string  on  a  torus  

A  ten-dimensional theory, with the 'internal' degrees of freedom xL 
1=  1, ... , 16, of §9.2 providing a gauge group, may be constructed by 
compactifying these degrees of freedom on a 16-dimensional torus. Much as 
for the quantization, it is necessary to impose boundary conditions on Xl,  
with both right and left movers, and then to eliminate the right movers. A 
16-dimensional torus may be defined by introducing a lattice r with basis 
vectors e~, a  = 1, ... ,16, chosen to have length v2,  and by making the 
identification 

16 

XI  ==  xl  +  v2n  '\'"  n  R  eI  (9.53)L  a  a a  

a=l  

where the Ra  are radii and the na  are arbitrary integers. There are then extra 
ways of satisfying the closed-string boundary conditions (7.20) by winding 
the string round the torus so that 

16 

xI(T,  a  +  n)  = XI(T,  a)  +  v2n  I  naRae~ = XI(T,  a)  +  2nLI  (9.54) 
a  =  1 

where 
161 


-- n  R  I 
L I =  v2  I  a  aea'  (9.55) 
a=l  

The LI  are usually referred to as the winding numbers. Then, the mode 
expansions are 

XI(T,  a)  =  xl  +  pIT  +  2Ll a  

+~ I  ~(a~e-2in(T-a)+a~e-2in(T+a»). (9.56) 
n,.<O  
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Decomposing into right and left movers by writing T  and a  in terms of T  - a  
and T  +  a,  

Xl  =  xk +  xL  (9.57) 

where 

Xk(T-a)=xk+pk(T-a)+~ L ~a~e-2in(T-a) (9.58) 
nr'O  

and 

xUT+a)=xL+pUT+a)+~ L ~ci~e-2in(T+a) (9.59) 
nr'O  

with 

pk =  ~(pI - 2LI)  (9.60) 

pL  =  ~(pI +  2LI)  (9.61) 

and 

Xl  =  xk +  xL.  (9.62) 

We now wish to eliminate the right movers, which in particular means that 
we should take 

pk =0 (9.63) 

with the consequence that 

pL  = 2LI.  (9.64) 

(Notice that if we were not to compactify the internal dimensions, the LI  
would all be zero and the internal momenta pL  would have to be zero.) 
Moreover, we should take 

xk = 0 (9.65) 

which together with (9.62) and (9.53) means that 

xL  == xL  +  Y2n L 
16 

naRae~. (9.66) 
a =  1 

The commutation relation (9.12) implies that it is 2pL  rather than pL  
that generates translations of xL,  and therefore we should require 
exp(2i ~}~ 1  pLxD  to be singled valued when xL  is replaced by the equival­
ent coordinates of (9.66). If the lattice t,  with basis vectors denoted by e~I, 
dual to r,  is defined by 
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I 
16 

e~e'l/ = (jab  (9.67) 
1=1  

then pL  must be given by 

16 

1  1 '\"' ma  *1  (9.68)PL  =  V2  L  Ra  ea  
a  =  1  

where ma  are arbitrary integers. 
In  the light cone gauge, the ten-dimensional mass-squared operator for 

the physical states is given by 

M2=M~ +MI (9.69) 

with M~ and MI as follows. For the superstring right movers, using (8.146) 
and (8.150) with D  = 10, 

!M~=N (9.70) 

where 

N  = I  (a~na~ +  nd~nd~) R  sector (9.71) 
n=1  

and 

N=  I  a~na~ +  
x  

rb~rb~ - ~ NS sector. (9.72)I  
n=1  r =  1/2 

For the bosonic string left movers with 16 dimensions compactified on a 
torus, the analogue of (9.37) is 

16 


1 2 1 '\"' 1  )2 ­
4M  L  = 2L  (PL  +  N  - 1 (9.73) 

1=1  

with 

IV  = I 
oc 

(a~nain +  a~naln) (9.74) 
n=1  

where a sum over i  from 1 to 8, and over !from  1 to 16 is understood. Also, 
for physical states, 

M~=MI· (9.75) 

(For the bosonic string, as well as the superstring, the light cone coordinates 
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have been chosen to be (lIv2)(Xo  ± X 9 ),  so that the transverse degrees of 
freedom for ten-dimensional space-time are i  = 1, ... ,8.) 

Massless states require 

M~ = Mt = O. (9.76) 

For massless vector bosons, the form (9.72) of M~ appropriate to the NS 

sector has to be employed. There are 16 massless vectors vL  1 = 1, ... ,16, 
of Kaluza-Klein type (analogous to (9.44)): 

v~ = b~1n10>Ra:"110>L 1=1, ... ,16 (9.77) 

providing a U 16(1) gauge group. As in §9.3, the gauge group can be 
enhanced for special choices of the lattice r  and the radii Ra.  Let us use the 
notation IpO  to denote a state obtained from the left-mover ground state by 
taking momentum p[  in the compactified dimensions (without acting with 
any oscillators). In the present case, the extra gauge fields Wi(pL)  arising in 
a stringy way are 

Wi(pL)  = b~1n10>RlpO (9.78)  

with 

L (pL)2  = 2  (9.79) 
I  

which, as can be seen from (9.73), ensures that Mt is zero. Whether there 
are internal momenta for which (9.79) is satisfied depends on the lattice r,  its 
dual t,  and the choice of radii Ra.  

As we shall now discuss, there are very few choices of the lattice r  
consistent with an acceptable string theory. In Chapter 10, we shall see that 
there is a fundamental constraint on string theories, referred to as modular 
invariance, that is needed to ensure absence of gauge and gravitational 
anomalies and finiteness of string loop contributions to scattering ampli­
tudes. Demanding a modular invariant theory restricts the radii of the torus 
to be 

Ra  = 11v2 a=1,  ... ,16  (9.80) 

and the lattice r  to be an even self-dual lattice, i.e. a lattice for which 

t=r (9.81) 

and 
16 


_,\,11 .

gaa  =  L eaea  =  even mteger. (9.82) 

1=1  

There are only two such lattices in 16 dimensions, denoted by r  16 and 
r  8 x r  8' The first of these (r 16) contains the root lattice of SO(32) as a 
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sublattice (and leads to an SO(32) gauge group). We shall focus on the 
second possibility (f8 x f 8), which is the direct product of two Eg root 
lattices. The momenta Pt are then on the root lattice of Eg x Eg, and the 
momenta of length two required to satisfy (9.79) are the weight vectors of 
the adjoint representation of Eg xEg. It would therefore by unsurprising if 
the extra massless vector fields (9.78), taken together with the Kaluza-Klein 
gauge fields (9.77), were the gauge fields of an Eg X Eg gauge group. This 
can be demonstrated by an explicit construction of the generators of the 
gauge group, and a check that they commute with the mass-squared 
operator. In this way, an Eg X  Eg gauge group arises from a toroidal 
compactification of the left-mover internal degrees of freedom of the 
heterotic string. 

Other massless states may be constructed by using the superstring right 
movers b~1/210)R' i  = 1, ... ,8, for the NS sector, and 10)R for the R sector, 
with M~ = 0, and the bosonic string left movers ciJ_110)L,j = 1, ... ,8, with 
M[  = O. In this way, we obtain in the NS sector the massless states 

b~1/210)Ra~110)L i,j  = 1, ... ,8 (9.83) 

which decompose into a traceless symmetric ten-dimensional graviton, a 
scalar (dilaton), and an antisymmetric tensor. In the R sector there occur the 
states 

10)Ra~110)L j  = 1, ... ,8. (9.84) 

The decomposition of the product of the ten-dimensional spinor right mover 
and the ten-dimensional vector left mover provides a ten-dimensional 
gravitino together with an eight-component ten-dimensional spinor. In this 
way, the complete supergravity multiplet for ten-dimensional N  = 1 
supergravity(5) is generated. 

The theory contains no  tachyons because the only right-mover state with 
negative M~ is the Ns-sector ground state 10)R with M~ = -2, and the only 
left-mover state with negative M[  is the bosonic string ground state 10)L with 
M[  = -4, and we cannot then satisfy M~ = M[  as required by (9.75). 
(Notice that, unlike in the case of the superstring, the absence of tachyons is 
not  enforced by a GSO projection.) 

9.5  Fermionization  and  bosonization  

In the next section, we shall present an alternative formulation of the 
heterotic string which replaces the internal bosonic degrees of freedom 
compactified on a 16-dimensional torus by 32 world sheet fermionic degrees 
of freedom, a process referred to as fermionization. That such a replacement 
should be possible a  priori  depends on the fact that spin is not defined in two 
dimensions and the two-dimensional nature of the world sheet. In this 
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section, we shall illustrate fermionization (and the inverse process of 
bosonization) by considering the simplest case of a single bosonic degree of 
freedom compactified on a circle. This bosonic model has been discussed in 
§9.3, where the compactified dimension was denoted by X25.  It  will be 
convenient here to display only the part of the squared mass due to X 25 ,  

including the contribution -i4  to the normal-ordering constant. It  will also 
be convenient to suppress the index and denote X 25  by X.  Thus, following 
(9.22) and (9.23) we write the mode expansions 

XR(T-a)=XR+PR(T-a)+~ I  ~ane-2in(T-a) (9.85) 
nr'O  

and 

XL(T+a)=XL+PL(T+a)+~ I  ~ane-2in(T+a) (9.86) 
nr'O  

with 

PR=~(p-2L) (9.87) 

PL  = ~(p +  2L)  (9.88) 

and 

x  = XR  +  XL  (9.89) 

where 

p=mlR  (9.90) 

and 

L=nR  (9.91) 

where m  and n  are integers. The contribution of the single compactified 
dimension to the squared mass 

M2  =  M~ +  M~ (9.92)  

is given by 

1M2  - 1 2 N  14  R - ZPR +  - 24  (9.93) 

and 

!M~ = ~p~ +  N  - i4  (9.94) 

where 

N=  I  a_nan  (9.95) 
n  =  1 
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and 

N=  I 
oc 

a_nan·  (9.96) 
»=1 

We wish to show that for the choice of radius 

R=1  (9.97) 

there is an alternative formulation of the single compactified bosonic degree 
of freedom XL  as single complex fermionic degree of freedom. (An exactly 
similar discussion can of course be given for XR .)  From §8.4 and §8. 7, a pair 
of real fermionic degrees of freedom has left-mover mode expansions for 
Neveu-Schwarz boundary conditions 

I  b~ e-2i r(r +  a)  k  = 1,2 (9.98)'l't=  
re Z +  1/2 

and the contribution of this pair of real fermions to the squared mass Mt  is 
given by 

- k  - k  1 ~Mt= I 
cc: 

rb-rbr  -24  (9.99) 
r=  112  

recalling that each NS fermion contributes -;fg  to the normal-ordering 
constant. A reformulation in terms of a single complex fermionic degree of 
freedom ~L may be made by writing 

,  1  1 . 2 
'I'L  = \72  ('I'L  +  1 'I'd  (9.100) 

Then, 
00  

~L = I  (!r  e-2i r(H  a)  +  g;  e2i r(r  +  a»  (9.101) 
r=ll2  

with 

- 1 ­
fr  =Vi  (fJ,. +  i  b~ )  (9.102) 

and 

-t 1  ­
gr  =Vi  (b~r +  i  b~r)' (9.103) 

The contribution of q,L  to !Mt  may then be written as 
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!ML  = L  rU;!r  +  g;gr)  - ~ (9.104) 
r  =  1/2 

where we have used the fact that 

(b~t = b~r k  =  1,2 (9.105) 

which follows from the mode expansion (8.46) for real fermionic degrees of 
freedom. As a consequence of the anti-commutation relations (8.50), the 
oscillators for the complex fermion obey 

U;'/s}  = {g;  ,gs}  = ors  (9.106)  

from which it follows that!; and g;  increase the eigenvalue of !ML  by r.  
On the other hand, for Ramond boundary conditions the pair of real 

fermionic degrees of freedom has left-mover mode expansion 

'l't=  L  d~e-2in(T+O) k  =  1,2 (9.107) 
nEIl  

and contributes to ML  according to 
I 2 '\' -k  -k  I 
4M L =  L  nd-ndn  +u (9.108) 

n  

recalling that each Ramond fermion contributes ~ to the normal-ordering 
constant. Reformulating in terms of a single complex fermionic degree of 
freedom,pL defined by (9.100) we obtain the mode expansion 

,pL =  L  (cm  _ I e-2i (m  - l)(r +0)  +  e~ e2im(T  +  a»  (9.109) 
m  =  1  

with 
_  1­
Cm _ 1 = - (d l + .  d- 2  m  = 1,  ..  ,  et:;  (9.110)V2 m-I 1 m-d  

and 
-t 1 -1  .  -2  
em  = V2 (d  -m  +  1 d_ m )  m=1,  ... ,::o (9.111) 

The contribution of,pL to !ML  in this case is 

1M2  '\' (_t - +  -t - ) +  1 4 L = L  n  CnCn  en  en  12 (9.112) 
n  =  1 

where we have used the fact following from the mode expansion (8.45) that 

(d~f = d~n k  = 1,2. (9.113) 
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As a consequence of the anticommutation relations (8.49) the oscillators for 
the complex fermions obey 

{c~,cm}={e~,en}=omn (9.114)  

from which it follows that c~ and e~ increase the eigenvalue of ~MI by n.  
A comparison of the values of ~MI in the bosonic and fermionic 

formulations may now be made and such a comparison for some low-lying 
states is given in tables 9.1 and 9.2 for the NS sector and for the R sector of the 
fermionic formulation, respectively. It can be seen that the number of states 
of the fermionic theory at each value of ~MI is the same as the number of 
states of the bosonic theory. A more detailed correspondence of states in the 
two formulations may be achieved by defining a charge lattice momentum qL  
for the fermionic theory by 

qL  = N[  +  VL - ~ (9.115) 

where 

NS sector 
(9.116)VL =g 

R sector 

and N[  is the eigenvalue of the fermionic 'number' operator. For the NS 

sector, the ground state is defined to have N[  = 0 and/: creates 1 unit and 
g: creates -1 unit of Nt  For the R sector, N~ is 0 or 1 for the two 
components of the spinor ground state, c; creates 1 unit and e;  creates -1 
unit of Nt Then for each value of ~ML the number of fermionic states with 
qL  = PL  matches the number of bosonic states with this value of PL,  as also 
displayed in tables 9.1 and 9.2. In the case of table 9.2, IO)L denotes the 
degenerate spinor ground state and so denotes two states with different 
values of qL  .  

The equivalence of the theory of a single left-moving complex fermionic 
degree of freedom and the theory of a single left-moving bosonic degree of 
freedom compactified on a circle of radius R  = 1 may be made more explicit 
by writing 

=' e2iXL'Tr'±'L' ' . (9.117) 

where the normal ordering is taken to mean 

:e2iXL:=exp(_ L ~ane-2in(T+a))exp(- L ~ane-2in(T+a)) 
n<O  'n>O 

x exp[2i(xL +  (PL +  ~)(r +  a))].  (9.118) 

To show that the two theories are equivalent means checking that all 
correlation functions are the same, which can be done by showing that the 
replacement of ~L by : e2i XL  :  gives the correct operator product expansions 
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Table  9.1  Values of !Mi.  for fermionic states in the NS sector compared with 
bosonic states for R  = 1. 

Charge lattice 
!Mi.  momentum qL  NS sector Bosonic theory 

1-'24 	 qL  = PL  = 0 jO)L IPL = 0) 

-f4  +  ~ 	 qL  = PL = 1  li/210)L IPL = I) 

qL  = PL  = -1  gidO)L IPL=-l) 

- f4  +  1  qL  = PL  = 0 Ji;2giI210)L a-llpL  =  0)  

- f4  +  ~ 	 qL  = PL = 1  i;1210)L  a-llPL = I) 

qL  = PL = -1  g;1210)L a-llPL = -I)  

- f4  +  2 	qL  = PL = 0 i;12gi/210)L'  g;IJi/210)L  a-2IPL  = 0), a-la-lIPL = 0) 
qL  = PL = 2 i;l2iiI210)L IPL =  2)  

qL  = PL  = -2 g;/2gidO)L  IPL =  -2)  
1 5 	 _ _ 

- '24 +  2 	 qL  - PL  - 1 /;12  iO)L ,f;ldi/2 gi/210)L a-2!PL  = I), a-la-llpL  = I) 

qL  = PL = -1 g~dO)L' g;ldi/2giI210)L  a_21PL = -I),  a-la-llpL  = -I)  

- f4  +  3 qL  = PL = 0 /;/2giI2i0)L'  g~l2fi/210)L' a-3IPL  = 0), a-2a-llpL  = 0), 
n2g;/210)L  a-la-la-dPL  = 0)  

qL  = PL = 2  /;ldiI210)L  a-llpL  = 2) 
 

qL  = PL  = -2 g;/2giI210)L a-llpL  = -2) 


for W L  and currents constructed from it(6). The only unexpected feature of 
the definition of normal ordering in (9.117) is the occurrence of PL  +  ~ rather 
than PL;  otherwise (9.117) is just normal ordered in the usual sense. 
However. from the discussion above of corresponding states in the two 
formulations. anti-periodic (NS) boundary conditions for the complex fer­
mionic degree of freedom should correspond to integral bosonic momentum 
PLo  and periodic (R) boundary conditions should correspond to half-integral 
bosonic momentum PL'  The presence of PL  +  ~ in (9.117) ensures that this is 
the case. 

9.6  Fermionic  formulation  of  the  compactified  heterotic  string  

The discussion of §9.5 suggests that it should be possible to find an 
alternative formulation of the heterotic string in which the toroidally 
compactified degree of freedom xL  1=  1, .. ,16, are replaced by 16 
complex left-moving fermionic degrees of freedom or 32 real fermionic 
degrees of freedom. In  this section, we shall show that by a suitable choice of 
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Table  9.2  Values of }Mt  for fermionic states in the Ramond sector compared 
with bosonic states for R  =  1. 

Charge lattice 
!Mt  momentum qL  R sector Bosonic theory 

I  
12 	 qL  =  PL  =  ±~ 10)L  IPL  =  ±~) 

h+ 1 	 qL  =  PL  =~,! CrIO)L  IPL  =  ~), a-IlpL  =  !)  
qL  =  PL  =  -~, -! erlO)  L  IPL  =  -~), a-IlpL  =  -!)  

h+ 2  qL  =~, ~ C;IO)L 	 a-IlpL  =  ~), 
- I  I) - - I  I) (L2 PL  =  2, a-la-I  PL  =  2 

qL  =~, -i  cierlO)L  
- I  I) - - I  I) a_2  PL  =  -2 ,a_Ia_1  PL  =  -2 

qL  =  -t-~ e;IO)L  a-IlpL  = 	 -~) 

h+3  qL  =  ~J c;ciIO)L 	 IPL  =  ~) 
- 1 3) - - I  3)a_2  PL  =  2' a_Ia_1  PL  =  2 

qL  =~, ~ c;IO)  L  
- 1 	 I) - - 1 I) a-3  PL  =  2 , a-2 a -1  P2  =  :2 , 
- - - I  I) a_I a_I a_I  PL  =  :2 

qL  =~, -i  c;eiIO)L,  e;ciIO)L  
a-3IPL  =  -~), a-2a-IIPL  =  -~), 
a_Ia_Ia_IlpL  =  -i)  

qL  =  -~, -~ e;IO)L  
a_2  PL  - I  =  -23) ,a_Ia_1 - - I PL  =  -23) 

qL  =  -~, -~ e;eiIO)  L  IPL  =  -~) 

boundary conditions for these 32 real fermionic degrees of freedom, and by 
applying a suitable GSO projection, we can indeed reproduce the E8 x E8 

gauge fields of §9.4. 
Our desire to construct the version of the theory with the E 8. x E8 gauge 

group rather than the SO(32) gauge group suggests that we should separate 
the 32 internal real fermionic left-mover degrees of freedom into two sets of 
16 which we denote by AA, A   = 1, ... , 16, and XA, A   = 1, ... , 16. Because of 
the possibility of assigning Ramond (R) or Neveu-Schwarz (NS) boundary 
conditions independently to the A A  and XA,  the internal theory then 
possesses four sectors (R, R), (NS, NS), (R, NS) and (NS, R), where the first 
boundary condition of the pair refers to the AA  and the second to the XA .  The 
mode expansions for the A A  are 

AA  = I  A~e-2in(T+a) R sector 	 (9.119) 
nEJ'. 
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and 

AA=  I  }>~e-2ir(T+a) NS sector (9.120) 
rE 2. +  112 

and similarly for the J:A.  

To determine the masses of the states, the normal-ordering constants for 
the four sectors are required. As discussed in §8.7, each real bosonic degree 
of freedom contributes :h  to the normal-ordering constant, each real 
fermionic degree of freedom with periodic (R) boundary conditions contrib­
utes -:h,  and each real fermionic degree of freedom with anti-periodic (NS) 

boundary conditions contributes is.  Thus the normal-ordering constants a  
for the left movers for the above four sectors are 

a(R,  R) =  -1 (9.121) 

a(Ns,  NS) =  + 1 (9.122) 

and 

a(R,  NS) =  a(Ns,  R) =  0 (9.123) 

including the contribution of the eight transverse left-mover bosonic degrees 
of freedom associated with ten-dimensional space-time. 

The mass-squared operator for the left movers is then 

!Mr.  = N(a,f3)  - a(a,f3)  (9.124) 

where a,  f3  = R or NS depending on the boundary conditions for the two 
sets of real fermions A A  and J:A.  The normal-ordering constants a(  a,  (3)  are 
given by (9.121)-(9.123). The oscillator term N(a,  (3)  is given by 

N(R,  R) = I  ci~nci~ +  I  n(A~nA~ +  i~nJ:~) (9.125) 
n=l  n=1  

N(NS,  NS) = I  ci~nci~ +  I  r(A~r}>~ +  i~ri~) (9.126) 
n  = 1  r  =  1/2  

N(  ) = I  -i _n an  +  I  AA - n  n  AA  rA_rAr R, NS a  -i n  +  ~A (9.127)I  -A 

n  =  1 n  =  1 r=112  

and 

A  A  -A  -A N(NS,  R) = I  ci~nci~ +  I  rA_rAr  +  I  n}>-nAn  (9.128) 
n  =  1 r =  1/2  n  =  1 
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where i  =  1, ... ,8, runs over the transverse ten-dimensional space-time 
degrees of freedom. The mass-squared operator for the right movers is as in 
(9.70)-(9.72) with the usual requirement of equality of M~ and ME  for 
physical states. 

The Es x Es gauge fields now arise from the four sectors in the following 
way. In the (NS, NS) sector, there are the massless vector states 

b~ 112 i 0)R'1:~ 1/2A~ 1I210)L (9.129) 

b~ 1/210)R~~ 1I)~ 11210)L (9.130) 

and 

.  I  A  -B  I b1 _ 1I2  0)RA_1/2A_ 1/2  O)L (9.131) 

which provide the representation (120,1), (1,120) and (16,16) of 
SO(16) x SO(16), respectively. In the (R, NS) sector, there are the massless 
vector fields 

b~ lI210)RI0)L' (9.132) 

The left-mover ground state for this sector is the spinor representation of the 
first SO(16) factor of SO(16) x SO(16) and so is the representation 
(128, + 128',1)  where 128  and 128' are the two chiralities of the SO(16) 
spinor constructed by applying an even or odd number of zero-mode 
oscillators analogously to the two chiralities of the SO(lO) spinor discussed 
in §8.8. Similarly, in the (NS, R) sector there are massless vector fields in 
(1,128 +  128')  of SO(16) x SO(16). The (R, R) sector contains no massless 
states. 

The 248-dimensional adjoint representation of Es has the decomposition 
under SO(16) 

248  =  120  +  128. (9.133) 

Thus, to obtain precisely the gauge fields of Es x Es it is necessary to delete 
from the theory the massless vector states in (16, 16), (128' ,1) and (1, 128') 
of S0(16) x SO(16). This may be achieved by introducing a pair of GSO 

projections, one for the fermionic degrees of freedom AA  and the other for 
the ~A, as follows. For the AA,  we make the projection 

p=l+(-l)F  
(9.134)

2 

where F  is defined by 

F=  "\'  AA  lA L -rAr  NS sector (9.135) 
r  =  1/2  

http:9.70)-(9.72
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and 

F=  "\'  AA  lA L  -n/I. n  R sector. (9.136) 
n=  0 

Then, surviving states have an even number of AA  oscillators acting on the 
ground state. In the Ramond sector, this includes the zero-mode oscillators 
and so a single chirality of the SO(16) spinor is selected. An exactly similar 
GSO  projection is made for the X A.  As a consequence of this pair of GSO  

projections, the surviving massless vector states are, in the adjoint represen­
tation of Es x Es , 

(248,1) +  (1,248) = (120, 1) +  (128, 1) +  (1,120) +  (1, 128) (9.137) 

The massless supergravity multiplet is constructed in exactly the same way as 
in §9.4. In this way, we obtain exactly the same spectrum of massless states 
as in the bosonic formulation of §9.4, and it can be shown that this extends to 
the spectrum of massive states (Exercise 9.1). 

Exercises 

9.1 Construct the massive states of the Es x Es heterotic string at the first 
excited level in both the fermionic and bosonic formulations. 

9.2 By treating the real fermionic left-mover degrees of freedom as a single 
set of 32 with the same boundary conditions, construct the SO(32) heterotic 
string in the fermionic formulation. 
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10  

COMPACTIFICATION  OF  THE  TEN­

DIMENSIONAL  HETEROTIC  STRING  TO 
 

FOUR  DIMENSIONS 
 

10.1  Introduction  

Any string theory that is to be a candidate theory of the world we live in will 
have to possess just four observable space-time dimensions, or, if there are 
extra spatial dimensions, they will have to be compactified on a sufficiently 
small scale as to be unobservable with the energies that are currently 
available to us. In Chapter 9 a heterotic string theory with ten space-time 
dimensions was constructed by either fermionizing 16 of the left-mover 
bosonic degrees of freedom, or equivalently by compactifying these degrees 
of freedom on a torus in such a way that an Es x Eg gauge group arose from 
these 16 extra left-mover dimensions. To complete the construction of a 
four-dimensional theory it is necessary next to compactify six of these ten 
dimensions in some way for both right and left movers. The simplest 
possibility is a toroidal compactification. However, we shall see that such a 
compactification produces a theory with N  =  4 space-time supersymmetry 
rather than the N  =  1 space-time supersymmetry that we saw in Chapter 1 
was required to obtain a chiral theory. Fortunately, theories with N  = 1 
space-time supersymmetry can be obtained by simple modifications of 
toroidal compactifications, referred to as orbifolds, in which points on the 
torus are identified by a symmetry of the lattice of the torus. Alternatively, 
compactification on a special class of manifolds, called Calabi-Yau mani­
folds, may be employed. 

A somewhat different approach to the construction of four-dimensional 
heterotic string theories, which we shall discuss in the next chapter, is to 
return to the original heterotic string with the right movers of a superstring in 
ten dimensions and the uncompactified left movers of a bosonic string in 
sixteen dimensions, and to reduce the number of space-time dimensions to 
four directly by fermionizing all other string degrees of freedom. In this 
approach, there is no intermediate theory with ten space-time dimensions 
that is compactified to four dimensions. 

10.2  Toroidal  compactifications  

The simplest way of producing a four-dimensional theory from the ten­
dimensional heterotic string constructed in Chapter 9 is by compactifying six 

DOl: 10.120119780367805807-10 
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of the remaining spatial dimensions on a torus. A great attraction of such a 
possibility is that the simple linear string equations of motion of previous 
chapters are unmodified, as a consequence of the fact that a torus is locally 
fiat and so may be taken to have the same X,u-independent metric as fiat 
space, differing from fiat space only in the imposition of spatial periodicity. 

In the light cone gauge, the mode expansions for the transverse space­
time degrees of freedom xk,  'l'k  and xL,  i  = 1, 2 associated with four­
dimensional space-time are as before in (9.1)-(9.4), the mode expansions 
for the 16 left-mover internal degrees of freedom xL,  I  =  1, ... , 16 are as in 
(9.58) and (9.59), and the mode expansions for the fermionic degrees of 
freedom associated with the remaining six spatial degrees of freedom 'I'~, 
k  = 3, ... ,8 are also unmodified and given by (9.2) and (9.3). On the other 
hand, the mode expansions for the bosonic degrees of freedom X~ and xt,  
k  = 3, ... , 8 need to be amended to take account of the toroidal compactifi­
cation of these six spatial dimensions. If  the lattice defining the six­
dimensional torus has basis vectors e~, k,  t  =  3, ... ,8 chosen to have length 
Y2, then for the centre-of-mass string coordinates x  k  there is the identifi­
cation 

8 

Xk  ==  Xk  +  Y2n I  ntRte~ (10.1 ) 
t=  3  

where the R t  are radii, and the n t  are arbitrary integers. This results in extra 
ways of satisfying the closed-string boundary conditions (7.20) by winding 
the string round the torus, so 

Xk(r,  a  +  n)  = Xk(r,  a)  +  2nL k  (10.2) 

where the winding numbers L  k  are given by 

8 

k  1  "\'  k 
L  = Y2 L  ntRtet  .  (10.3) 

t=  3  

By analogy with §9.4, we can then write 

x~(r-a)=x~+p~(r-a)+~ I  ~a~e-2in(r-a) (10.4) 
n*Q 

and 

xt(r+a)=xt+pt(r+a)+~ I  ~ti~e-2in(r+a) (10.5) 
n*Q 

with 

p~ = !(pk  _ 2L k)  (10.6) 
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k  1( k  k PL  = '2 P  +  2L  ) (10.7) 

and 

Xk  =  X~ +  xt.  (10.8) 

However, unlike in §9.4, the six dimensions being compactified here have 
both right movers x~ and left movers xL  and we do not wish to eliminate 
the right movers. We must require exp(i ~~ =  3 pkxk)  to be single valued 
when xk  is replaced by the equivalent coordinates of (10.1). If the lattice with 
basis vectors e~ has a dual lattice with basis vectors e;k  where 

8 

\  k  *k  _ -"L  ete"  - U tu  (10.9) 
k=3  

then pk  must be given by 

8 


k  -' h2 I  mt  *k 
p  - Y  L  et  (10.10)
R  

k=3  t  

where the mt  are arbitrary integers. 
The four-dimensional mass-squared operator for the physical states is 

given by 

M2  =  M~ +  ME  (10.11) 

with 

M~=ME (10.12) 

and M~ and ME  as follows. For the superstring right movers, 

!M~ =  N  +  ~ I 
8 

(p~)2 (10.13) 
k=3  

with p~ given by (10.6), and N  by (9.71) or (9.72). (Notice that 2p~ is the 
coefficient of ~(r - a)  and substitutes for pk  of (7.26) in the uncompactified 
case.) For the left movers in the bosonic formulation of the heterotic string, 

16 8 

12 - 1\ 121\  k2  
4M  L  = N  - 1  +  '2 L  (pd  +  '2 L  (pd  (10.14) 

1=1  k=3  

with N  given by (9.74), Pt by (9.61) andpt by (10.7). Alternatively, in the 
fermionic formulation of the heterotic string, 

!ME  =  N(a,  j3)  - aea,  j3)  +  ~ I 
8 

(pt)2  (10.15) 
k=3  
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with N( et, f3)  and tie et, f3),  where et, f3  = R or NS, as in (9.125)-(9 .12S) and 
(9.121)-(9.123). It  is not too difficult to show (Exercise 10.1) that massless 
states generically have no  momentum or winding number on the compact 
manifold. This is analogous to the situation for the heterotic string left 
movers in §9.4 where massless states with non-zero winding number only 
occur for special choices of the lattice and radii. 

The graviton for four-dimensional gravity for the toroidally compactified 
theory is the Neveu-Schwarz sector state 

b~1/210)Rai_lI0)L i,j=1,2.  (10.16) 

The four-dimensional gravity supermultiplet also contains four gravitini, 

10)Rai_lI0)L  j  =  1,2. (10.17) 

Here, I O)R is the SO(S) spinor Ramond sector ground state, which can, in the 
first instance, be written as the direct product of a transverse space-time 
spinor and an SO(6) spinor with eight components in 4 +  4 of SO(6). 
However, since the SO(S) spinor is of definite chirality because of the GSO 

projection, each space-time chirality is associated with only 4 or only 4, so we 
get a total of eight spinor states, as required for four gravitini. Moreover, 
there are six graviphotons (massless vector fields in the supergravity multi­
plet) given by the Neveu-Schwarz sector states 

b~1/210)Ra'-110)L k=3,  ... ,S,j=1,2.  (10. IS) 

Thus, we have the spin-~ and spin-1 content of the gravity supermultiplet for 
N  =  4 supergravity, as in table 1.3. As discussed in §1.6, theories based on 
N;:.  2 supersymmetry do not provide a suitable description of the world in 
which we live because they are always non-chiral. This means that toroidal 
compactification of the extra six spatial dimensions is not appropriate. 
Fortunately, we shall see in the next section that there is a simple modifi­
cation of toroidal compactification, compactification on an orbifold, which 
overcomes this difficulty. 

10.3  Orbifold  compactifications  

A simple modification of toroidal compactification is compactification on an 
orbifold(l), a six-dimensional space obtained by identifying points on the 
torus that are mapped into one another by certain discrete symmetries of the 
lattice of the torus, referred to as the point group. This approach to 
construction of a four-dimensional theory retains the advantage of toroidal 
compactification that the linear string equations of motion of previous 
chapters are still unmodified. At the same time, we shall see that it is possible 
for orbifold compactification to produce a four-dimensional theory with 
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N  = 1 supersymmetry rather than the undesired N  = 4 supersymmetry of 
toroidal compactification. 

We shall focus attention here on one particular example of an orbifold, 
namely the Z3 orbifold. It  will be convenient to use a complex basis for the 
six spatial degrees of freedom X k , k  =  3, ... , 8 associated with the compact 
manifold, and to employ complex coordinates za,  Cl' =  1,2,3, where 

Zl =  _1_  (X3  +  i  X4)  (10.19)
V2  

Z2 =  _1_(X5  +  iX6)  (10.20)
V2  

and 

Z3 =  ~(X7 +  iX8 ).  (10.21) 

The lattice for the underlying torus of the Z3 orbifold is defined by making 
the identifications, for Cl' = 1, 2, 3, 

za  == za  +  1 (10.22) 

and 

za  == za  +  e 2;ri/3.  (10.23) 

Thus, if we assemble Zl, Z2 and Z3 into a vector Z, 

Z == Z +  I 
3 

(mpe p +  npfp)  (10.24) 
p=l 

where the basis vectors ep andfp  for the lattice are defined by 

el =  (100) e2  =  (010) e3  =  (001) (10.25) 

and 

e 2;ri/3 f. p  
=  ep  p=1,2,3  (10.26) 

and mp  and np  are integers. The point group for the Z3 orbifold is the Z3 
discrete group generated by the element 

w  = diag( e2;ri/3, e2:ri/3,  e 2:ri/3)  (10.27) 

acting on Z. The complex coordinates Z provide a basis for the three­
dimensional representation of the SU(3) subgroup of the SO(6) rotation 
group for the six real coordinates Xk,  k  =  3, ... , 8 and w  is a (finite) element 
of this SU(3). It  is not difficult to show (Exercise 10.2) that w  has the action 
on the basis vectors of the lattice of the torus 
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wep  =JP  (10.28) 

and 

wJp  =  - e p  - Jp.  (10.29) 

Thus, the discrete group generated by w  maps torus lattice vectors to torus 
lattice vectors, i.e. is a symmetry of the torus. The construction of the Z3 
orbifold is completed by identifying points on the torus that are mapped into 
one another by elements of the Z3 group generated by w,  referred to as the 
point group of the orbifold. 

The orbifold is not quite a manifold because of the existence of a finite 
number of fixed points on the torus that are mapped to themselves, up to a 
lattice vector, by a point group element. The characteristic property of a 
fixed point may be restated using the notion of a space group element (e,  I),  
which is a point group rotation e followed by a displacement by an amount 1  
on the lattice, 

(e,  I)Z  = ez  +  1  (10.30) 

where in general 1 is of the form 

3 

1 =  I  (mpep  +  npJp)  (10.31) 
p=  ]  

where mp  and np  are integers. A fixed point is then a point Z that is strictly 
mapped to itself by a space group element, not just up to a lattice vector. We 
shall see in §lO.S that the fixed points of an orbifold are of great importance, 
the various twisted sectors of the orbifold discussed there having centre-of­
mass coordinates, which are fixed points. To find the fixed points we have to 
solve 

(w,I)Z=Z  (10.32) 

with was in (10.27) and 1 as in (10.31). (Fixed points of ware also fixed points 
of w2  = w-].)  It  is not difficult to show (Exercise 10.3) that the fixed points 
may be written in the form 

ei  ;r/6 

Z  = V3  (m]  +  n],  m2  +  n2,  m3  +  n3)  - (n],  n2,  n3).  (10.33)  

Thus, there are 27 inequivalent fixed points 
ei  ;r/6 

Z =  V3  (PI,P2,P3)  (10.34) 

with Pp  = 0, ±  1 for p  = 1, 2, 3, all other fixed points differing from these by a 
lattice vector, and so being the same points on the torus. The fixed points 
(10.34) satisfy (10.32) with 
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3 

I  =  I  ppep.  (10.35) 
p=  1 

However, equation (10.34) also gives a fixed point of (w,  1) with 

3 

I  =  I  Pp  e p +  (I  - w)k  (10.36) 
p  =  J  

for any  lattice vector t,  because Z - k  is equivalent to Z on the torus. 
The toroidal compactification of the heterotic string theory possesses an 

Es x Es gauge group. A first step may be taken towards obtaining a realistic 
gauge group by embedding the point group in the gauge group, i.e. by 
associating with w  an action 0 on the gauge degrees of freedom that is a 
finite global element of the gauge group. The simplest possibility is to take 0  
to be the element 

O=w  (10.37) 

of the SU(3) subgroup of an E6 x SU(3) contained in the first Es factor of 
the Es x Es gauge group (the one to be associated with the observable 
sector). We shall see in the next section that this breaks the observable 
sector Es to E6 x SU(3). Further breaking of the gauge .symmetry may be 
achieved by the Wilson line mechanism discussed in §1O.6. 

The states of the toroidally compactified theory are not all bona  fide  
states of the orbifold theory. To define consistent states on the orbifold, 
such that equivalent points on the orbifold are on the same footing, we 
must restrict ourselves to states that are invariant under the action of the 
point group (including the action of the embedding of the point group in the 
gauge group). States of the orbifold theory derived as point-group­
invariant states of the corresponding toroidaHy compactified theory consti­
tute the so-called untwisted sector of the orbifold. In addition. the orbifold 
theory possesses extra states not to be  found in the toroidaUy compactified 
theory, referred to as twisted-sector states. The twisted sectors of the 
orbifold are obtained by observing that it is no longer necessary for the 
closed heterotic string boundary conditions to be strictly satisfied. It  is 
sufficient for them to be satisfied up to the action of a point group element 
(which links equivalent points on the orbifold). We shall discuss these 
twisted sectors in §1O.5. 

10.4 The untwisted sector of the Z3 orbifold 

As discussed in §1O.3, the untwisted sector of the Z3 orbifold consists of 
those states that can be constructed as a subset of the states of the underlying 
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toroidal compactification by demanding point group invariance. The mass­
less states, from which the light states we observe originate, are of particular 
interest. To construct these states we require the mode expansions of the 
string degrees of freedom which are exactly those of the toroidal compactifi­
cation of §1O.2, although it will usually be convenient here to cast the 
bosonic and fermionic degrees of freedom associated with the compact 
manifold in the complex basis of (10.19)-(10.21). 

It  will now be shown that the undesired N  = 4  supergravity of the toroidal 
compactification has been reduced to N  = 1supergravity by the requirement 
of point group invariance by checking that the number of gravitini has been 
reduced from 4  to 1. In (10.17) we saw that the gravitini were the states 

jO)Raj-liO)L j  = 1,2 (10.38) 

where iO)R was the SO(8) spinor Ramond sector ground state of definite 
chirality. This spinor decomposed into a 4 of SO(6) with (say) right chiral 
space-time chirality, and a 4 of SO(6) with left chiral space-time chirality. 
Under the SU(3) subgroup of SO(6) we have the decomposition 

4=3+1 (10.39) 

and, under the action of the point group element w  of (10.27), the 3 
transforms with a phase factor e2ni/3 and the 1 is invariant. On the other 
hand, the left mover (10.38), which is associated entirely with four­
dimensional space-time is invariant under the action of w.  Thus, to make a 
right chiral point-group-invariant state we must retain only the singlet in 
(10.39). Similarly, to make a left-chiral point-group-invariant state we must 
retain only the singlet in 

4=3+1. (10.40) 

These are then just the right and left chiral states of a single gravitino, as 
required for N  = 1 supergravity. 

The E8 x E8 gauge group of the toroidal compactification is also modified 
by the requirement of point group invariance when w  has the embedding n  
in the gauge group of (10.37). This cannot affect the (hidden sector) E8 but 
reduces the (observable sector) E8 to E6 x SU(3) as follows. Under 
E6 x SU(3), the 248-dimensional adjoint of E8 decomposes as 

248  = (78,1) + (1,8) + (27,3) + (27,3). (10.41) 

The gauge fields of E8 aflslOg from (9.129)-(9.132) have right mover 
b i_ 1/210)R, i  =  1,2, which is invariant under the action of w.  To obtain a 
point-group-invariant state, it is therefore necessary for the left mover to be 
invariant under the action of n.  This eliminates (27,3) and (27,3) in (10.41) 
leaving only the states (78, 1) of the adjoint of E6 and (1,8) of the adjoint of 
SU(3), so the gauge group is reduced to E6 x SU(3). (Notice that the 8 of 

http:10.19)-(10.21
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SU(3) transforms trivially under n  because it is contained in 3 x 3and n  acts 
with opposite phase factors on 3 and 3.)  

Apart from providing the E6 x SU(3) x Es gauge fields, the states 
(9.129)-(9.132) of the uncompactified theory also provide for the orbifold 
compactified-theory matter fields in (27, 3) of E6 x SU(3). These are the 
point-group-invariant states with right movers of the type b~1I210>R' 
£1' =  1, 2, 3, in the complex basis of (10.19)-(10.21), and left movers in the 
(27,3) component of the adjoint of Eg. (Recall that in (9.129)-(9.132) the 
index i  runs over space-time and the compact manifold to form a ten­
dimensional vector state which in the four-dimensional sense is a vector and 
six scalars.) In more detail, the right movers b~~dO>R transform as 3 of the 
SU(3) subgroup of SO(6) associated with the six spatial degrees of freedom 
of the compact manifold and so transform with a phase factor e2!Ti/3  under the 
action of w.  We can therefore obtain point-group-invariant states by linking 
these right movers with left movers in (27,3) of E6 x SU(3), which trans­
forms with phase factor e -2nil3  under the action of n.  Similarly, linking the 
right movers b~1I210>R with left movers in (27,3) of E6 x SU(3) yields 
point-group-invariant states. In this way, we obtain scalar matter fields in 
three copies of (27,3) and three copies of (27,3), one for each value of £1'. If  
instead we consider Ramond-sector right movers, then the space-time right 
chiral component of the SO(6) spinor in 3 of SU(3) in (10.39) links to (27,3) 
left movers, and the space-time left chiral component of the SO(6) spinor in 
3 of SU(3) in (10.40) links to (27,3) left movers, to provide point-group­
invariant states. Taken together with the above scalar states, this completes 
three left chiral supermultiplets in (27,3) of E6 x SU(3) together with their 
anti-particles. 

The untwisted sector also contains certain E6 singlet scalars, referred to as 
moduli, which are point-group-invariant states constructed using the left­
mover bosonic oscillators for the compact manifold ci~ l'  In the complex 
basis of (10.19)-(10.21), these are the nine states 

b~ lI210>R ci~ 10>L £1', j3  =  1,2, 3. (10.42) 

The possibility of giving expectation values to these moduli scalars is related 
to the possibility of modifying the scale or shape of the orbifold by adjusting 
various radii and angles characterizing the underlying torus. 

10.5 The twisted sector of the Z3 orbifold 

As observed in §1O.3, the orbifold theory possesses additional states that 
cannot occur in the toroidally compactified theory, the so-called twisted­
sector states, whose existence depends on the fact that it is sufficient in an 
orbifold theory for the boundary conditions to be satisfied up to the action of 

http:10.19)-(10.21
http:10.19)-(10.21
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a point group element. Indeed, the fundamental modular invariance of 
string theory (see Chapter 11) requires the twisted-sector states to be 
included in a consistent theory. For the Z3 orbifold there are two twisted 
sectors, the wand  w 2  = w- 1  twisted sectors, in which the boundary con­
ditions are satisfied up to a 'twist' by w  or w 2 ,  respectively. Thus, in the w  
twisted sector the boundary conditions for the bosonic degrees of freedom 
for the compactified dimensions in the complex basis of (10.19)-(10.21) are 

Z(r, a  +.n)  = wZ(r,  a)  (10.43) 

and for the fermionic degrees of freedom for the compactified dimensions, 
again in the complex basis, the boundary conditions are 

'\}fR(r, a  +.n)  =  w'\}fR(r, a)  R sector (10.44) 

and 

'\}fR(r, a  +.n)  = - w'\}fR(r, a)  NS sector (10.45) 

with similar expressions for the w 2  twisted sector with w2  replacing w.  In 
addition, in the fermionic formulation of the heterotic string, there are three 
complex left-moving fermions with their boundary conditions twisted by 
n  =  w,  analogously to (10.44) and (10.45). 

The mode expansions in twisted sectors must differ from those for the 
untwisted sector. Proceeding a little more generally than is required for the 
Z3 orbifold, when a bosonic degree of freedom (in the complex basis) za  has 
its boundary conditions twisted by e -2nilJ with 0 <  1] <  1, and so 

za(r, a  +.n)  =  e-2niIJ Za(r, a)  (10.46) 

then the appropriate mode expansion for the right mover ZR is 

ZR(r-a)=ZR+ i  '\'  1 j3~_ e-2i(n-IJ)(r-a) 
2  L (n-1])  IJ 

n=!  

_  a  2' I - 1 1 t 
2  n=O  (n  +  1]) (Yn+lJ)  e l(n+IJ)(r-a)  (10.47) 

where the oscillators j3~ _ IJ  and Y~ +  IJ  have commutation relations 

[j3~-IJ' (j3~_IJ)t] =  Oa;,(n  -1])Omn  (10.48) 

and 

[Y~ +  IJ'  (Y~ +  lJ)t] =  Oain  +  1])Omn'  (10.49) 

The appropriate mode expansion for the left mover Zr is 

http:10.19)-(10.21
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Zr{r  +  a)  =  ZL +  ~ '\'  1  ~o: e- 2i (n  +  I])(r  +  a) 
2  L  (n  +  rJ)  n  +  I]  

n=O  

. x 


_ 1 '\' 1
2:  n~l (n  _ rJ)  (y~ - I]f  e2i (n  - I])(r  +  a)  (10.50) 

where the oscillators ~~ +  I) and y~ _ I]  have commutation relations 

[~~ +  '7' (~~ +  I]n  =  oo:)'(n  +  rJ)Omn  (10.51) 

and 

[y~ - 1]' (y~ - 1])+] =  oo:/3(n  - rJ)Omn·  (10.52) 

It  is important to notice that consistency with the boundary condition 
(10.46) implies that there can be no momentum pO:  for degrees of freedom 
za  for which the boundary conditions are twisted. Notice also that the 
boundary condition (10.46) demands that the centre-of-mass coordinate 

Za  =  ZR +  ZL (10.53) 

of the string satisfies 

Za  =  e - 2:ri I) Z'" . (10.54) 

For the w  twisted sector of the Z3 orbifold, rJ  is ~ for each value of 0', and 
consistency with the boundary conditions requires that 

z  =  wz  (10.55) 

up to a lattice vector (since points that differ by a lattice vector are the same 
point on the torus or orbifold). Thus, we must require that 

(w,l)z=z  (10.56) 

for some lattice vector I.  This is just the fixed point condition (10.32). Thus, 
in twisted sectors of the string theory the centre-of-mass coordinate is 
required to be at a fixed point of the corresponding point group element. 

When a right-moving fermionic degree offreedom (in the complex basis) 
'IIR has its boundary conditions twisted bye-hi I]  with 0 <  rJ  <  1, then, in the 
Ramond sector, 

'II R(T, a  +.:7) =  e-2:ril]'IIR(T, a)  R  sector (10.57) 

and, in the Neveu-Schwarz sector, where the twist is superimposed upon the 
underlying Neveu-Schwarz sector boundary condition, 

'IIR(T, a  +.:7) =  - e2:ril)'IIR(T, a)  NS sector. (10.58) 

Then, the appropriate mode expansion for the Ramond sector is 
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'l'R(r - a)  =  I  c~ _ 'I  e-2i(n - YJ)(r  - a)  

n  =  I  

+  I  (e~ + 'If  e2i(n + YJ)(r  - a)  R sector (10.59) 
n=O  

where the oscillators have anti-commutation relations 

{c~-YJ' (c~-YJn = {e~+YJ' (e~+I)f} = OmnOaf3.  (10.60) 

For the Neveu-Schwarz sector, the form of mode expansion depends on 
whether the twist YJ  is less than or greater than ~. The corresponding 
expansions are 

'l'aR(r - a)  =  \"'  (ca  e-2i (n  - 'I  - 1/2)(r  - a) L  n  - I)  -1/2  

n  =  I  

+  (ea  )t e2i (n  +  'I  - 1/2)(r  - a») 
n  +  I)  - 1/2  

NS sector, 0 <  YJ  <  ~ (10.61 ) 

and 

'l'aR(r - a)  = \"' (ca  e-2i (n  - 'I  +  1/2)(r  - a) L  n  - 1)+  1/2  

n  =  I  

+  (ea  )t e2i(n +  I)  - 3/2)(r  - a») 
n  +  I)  - 3/2  

NS sector, ~ < YJ  < 1 (10.62) 

where 

{ a  ( f3  )t} _ { a  ( f3  )t}
Cm -I)±1/2,  Cn -I)±1/2  - e m +I)-1I2,  e n +I)-1/2  

=  {e~+I)-3/2' (e~+I)_3/2)t} = OmnOaf3·  (10.63) 

In the fermionic formulation of the heterotic string of §9.6, there are also 
left-moving real fermionic degrees of freedom AA,  A  = 1, ... , 16, some of 
which have twisted boundary conditions when the point group is embedded 
in the gauge group. (To realize the point group embedding D = w  on the 
fermionic degrees of freedom involves rotating these degrees of freedom by 
D. This can be seen from (9.129) where the adjoint representation of the 
SO(16) subgroup of E8 for the gauge fields arises from the action of a pair of 
fermionic oscillators on the vacuum.) It  is convenient to assemble these 16 
real fermionic degrees of freedom into 8 complex fermionic degrees of 
freedom, which we shall denote by AP ,  p  = 1, ... ,8. For a left-moving 
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fermionic degree of freedom }/ with it boundary conditions twisted by 
e - 2ni 'I, with 0 <  YJ  <  1, in the Ramond sector, 

AP(r,  a  +  n)  = e-2m 'lAP(r,  a)  R  sector (10.64) 

and in the Neveu-Schwarz sector, 

AP(r,  a  +  n)  = - e-2m 'lAP(r,  a)  NS sector. (10.65) 

The corresponding mode expansion for the Ramond sector is 

AP(  r + a)  = I  p~ +  'I e -2i(n  +  '1)(' +  a)  + I  (tt~ _  'I f  e2i (n  - '1)(r  +  a)  

n=O  n=1  

R sector (10.66) 

where the oscillators have anti-commutation relations 

{p~'l+ 'I' (Ph  +  'In = {,ut;,  - 'I' (,uh  - '7n = 6mn6pq •  (10.67) 

For the Neveu-Schwarz sector, the form of the mode expansion depends on 
whether the twist YJ  is less than or greater than ~. The corresponding 
expansions are 

AP(r  +  a)  = '\' (pp  e-2i(n +  '7 - 1I2)(r  +  a) L  n+  '7 -112 
n  =  1 ' 

+  (/JP  )t e2i(n  - '7 - 1I2)(r  +  a») 
f'"  n  - '7 - 1/2 

NS sector, 0 <  YJ  <  ~ (10.68) 

and 

AP(r  +  a)  = '\'
'"  

(pp  e-2i (n  +  '7 - 3/2)(r  +  a) L  n  +  '7 - 3/2 

n  =  1 

+  (/JP  )t e2i(n  - '7 +  112)(, +  a») 
rn  - '7 +  1/2 

NS sector, ~ <  YJ  <  1 (10.69) 

where the oscillators have anti-commutation relations 

{  P  q  }-{ P  q  }Pm  +  '7 - 1/2, Pn  +  '7 - 1/2 - Pm  +  '7 - 3/2, Pn  +  '7 - 3/2 

=  {,ut;,  - '7 ±  112, (,uh  - '7 ±  l!2t}  =  6mn6Pq .  (10.70)  

In the bosonic formulation of the heterotic string, the embedding of the 
point group in the gauge group is realized quite differently. Since, as 
discussed in §9.5, bosonic degrees of freedom are converted into complex 
fermionic degrees of freedom by exponentiation (as, for example, in 
(9.117)) a twist on the boundary conditions of a complex fermionic degree of 
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freedom becomes a shift on the boundary conditions of the bosonic degree 
of freedom from which it is derived by fermionization. For the Z3 orbifold, 
with the standard embedding of the point group, the twist on the fermionic 
boundary conditions n  = 0),  with 0)  as in (10.27), may be written as 

(2lCi )n  = exp 3 (112 +  134 +  2156) (10.71) 

where 112 , 134 and 156 are the generators of the SO(6) rotation group of 
which the SU(3) in which n  is defined is a subgroup. From (10.71), the twist 
n  on the boundary conditions of three complex fermionic degrees of 
freedom in the fermionic formulation becomes a shift lCVI  on the boundary 
conditions of the bosonic degrees of freedom in the bosonic formulation, 
with 

VI  = (~H05)(OS)' (10.72) 

where we have separated the bosonic degrees of freedom into those 
associated with Es and those associated with Es . (Notice the factor of 2 in the 
exponent in (9.117).) The role of Pt in (9.59) is now taken by Pt - VI,  so far 
as the boundary conditions are concerned, and the momentum lattice for the 
bosonic degrees of freedom becomes a shifted Es x Es lattice, with 
momenta shifted from the Es x Eslattice momenta by VI.  

Mass formulae for the orbifold twisted sector may be derived from the 
mode expansions following the steps described in Chapters 7 and 8 (Exercise 
10.4). The contributions to !M~ may be decomposed in the form 

!M~ = !M~(B) +  !M~(F) - a  (10.73)  

where M~(B) and M~(F) are the contributions of bosonic and fermionic 
degrees of freedom, and a  is the normal-ordering constant. A bosonic 
degree of freedom ZR  with its boundary conditions twisted by e-2".i I),  with 
0<  YJ  <  1, makes the following contribution to M~(B): 

!M~(B)= I  (f3~-l)tf3~-I)+ I  (Y~+I))tY~+I)· (10.74) 
n=!  n=O  

In  the Ramond, sector, a fermionic degree of freedom with its boundary 
conditions twisted by e-2m I)  makes the following contribution to M~(F): 

!M~(F)= I(n-YJ)(c~_I))tc~_I)+ I(n+YJ)(e~+I))te~+1) 
n=!  n=O  

R sector (10.75) 

and in the N eveu-Schwarz sector a fermionic degree of freedom with a twist 
of e-2m I)  superimposed on the underlying Neveu-Schwarz boundary con­
dition contributes 
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~M~(F)= f (n-1J-~)(e~-1]-1I2)te~-1]-1I2 
n=l 

+  (n  + 1J  - i)(e~ + 1] - 1I2)te~ + 1]-112) 

NS sector, 0 < 1J  < i  (10.76) 

or 

~M~(F)= f (n-1/+~)(e~-1]+1/2)te~-1]+I12 
n  =  I  

+  (n  + 1/ - ~)(e~ + 1] - 3!2)te~ + 1] - 3/2) 

NS sector, i <  YJ  <  1.  (10.77) 

As a consequence of the commutators and anti-commutators of the oscil­
lators given above, (f3~ _ ,,)\ (y~ + 1])t, (c~ _ 1])\ (e~ + 1])t, (e~ - T}  _  1I2)t, 
( a  )t (a  )t d ( 112 Cl'  )t· . .en  + 1] - 112 , en  - 1] + an en  + 1] - 3/2 ,actmg on a stnng state, m-
crease the value of iM~ for the state by n  - 1/, n  + 1/, n  - 1/, n  + 1/, 
n  - 1/ - I + 1/ - I 2, n  2:, n  - TJ  + Id  3 .•2 an n  + 1/ - 2 respectIve y. 

The normal-ordering constant a  in (10.73) may, as in Chapter 7 and 
Chapter 8, be fixed by using zeta-function regularization. Then a complex 
bosonic degree of freedom with boundary conditions twisted by e - 2ni 1],  with 
o< YJ  < 1, contfibutes 

a  = - I  (n  + 1J)  = - ~(-1, 1/) = b  - ~1J(1 - 1/) (10.78) 
n=O  

where 

~(z, a)  =  I  (n  +  a)-Z  (10.79) 
n=O  

and a Ramond-sector complex fermionic degree of freedom contributes 

a=-b+~(l-1/). (10.80) 

A complex fermionic degree of freedom in the Neveu-Schwarz sector with a 
twist of e -2ni 1],  with 0 <  1/ <  1, superimposed upon the underlying Neveu­
Schwarz boundary contribution, may be handled by replacing 1/ by 1/ + ~  in 
(10.78), for 0 <  1J  <  ~, and by replacing 1/ by 1/ - i in (10.78) for ±<  1J  <  1. 

For the w  twisted sector of the Z3 orbifold, we may construct the scalar 
super-partners of the fermions in which we are interested (such as quark and 
lepton generations) by considering the Neveu-Schwarz sector for tbe right 
movers. Then, in the light cone gauge, there are two real bosonic and two 
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real fermionic degrees of freedom (or one complex bosonic and one complex 
fermionic degree of freedom) with untwisted boundary contributions. In 
addition, there are three complex bosonic degrees of freedom with bound­
ary conditions twisted by 1] =~, and three complex fermionic degrees of 
freedom with boundary contributions twisted by 1] = !  (after subtracting ~ 
for the underlying Neveu-Schwarz boundary condition). Thus 

1 1 3-03 .  (10.81 ) a:;::U:+'M-3E)-n-

The massless right mover in the (J)  twisted Neveu-Schwarz sector is therefore 
the Neveu-Schwarz ground state 10/R'  

Similarly, in the fermionic formulation of the heterotic string, we may 
decompose !Mt  in the form 

!Mt  =  !MtcB)  +  !MtcF)  - a  (10.82)  

where Mt(B)  and MtcF)  are the contributions of bosonic and fermionic 
degrees of freedom and a is the normal-ordering constant. A bosonic degree 
of freedom Zr with its boundary contributions twisted by e-2:ri '7, with 
0<1] < 1, makes the following contribution to MtcB):  

!MtcB)  = I  (fi~ +  '7)tfi~ +  '7 +  I  (y~ - '7)ty~ - '7 (10.83) 
n=O  n=1  

and the oscillators (fi ~ +  '7) t and (y~ _  '7) t  acting on a string state increase the 
value of !Mt  by n  +  1] and n  - 1] respectively. The contributions of the 
fermionic degrees of freedom in (10.66), (10.68) and (10.69) are analogous 
to those for the right movers. For a complex bosonic degree of freedom with 
boundary conditions twisted by e -2:ri  '7, with ° <  1] <  1, the contribution to a  
IS 

a=b-~1](1-1]) (10.84) 

and for a Ramond-sector complex fermionic degree of freedom 

a=-b+~1](I-1]). (10.85) 

For the Neveu-Schwarz sector the remarks following (10.80) again apply. 
A discussion of the massless left movers for the (J)  twisted sector in the 

fermionic formation of the heterotic string requires the values for the 
normal-ordering constants aea,  (3), with a,  (3 = NS or R, where the index a  
refers to the oscillators A A,  A  = 1, ... , 16, associated with Es, and the index 
(3 refers to the oscillators;: A,  A  = 1, ... , 16, associated with Ell,  as in §9.6. 
When the AA  are assembled into eight complex fermionic degrees of 
freedom A P,  P  =  1, ... , 8, as in the discussion above, three of these complex 
degrees of freedom have boundary conditions twisted by 1] = ~ in the 
Ramond sector, and, after subtracting! for the underlying Neveu-Schwarz 
boundary condition, by 1] =  i  in the Neveu-Schwarz sector. However, none 



238 TEN-DIMENSIONAL HETEROTIC STRING 

of the XA  have twisted boundary conditions because the embedding of the 
point group is entirely in the Es factor of Es x  Er,. In addition, in the light 
cone gauge, there are two real bosonic degrees of freedom (or one complex 
bosonic degree of freedom) with untwisted boundary conditions, and three 
complex bosonic degrees of freedom with boundary conditions twisted by 
r;  =  ~. Consequently the normal-ordering constants are (Exercise 10.5) 

a(R,  R) = -1 (10.86) 

a(Ns,  R) =  -~ (10.87) 

a(Ns,  NS) = 1  (10.88) 

and 

a(R,  NS) =  O. (10.89) 

It  follows that there are no massless left movers in the (R, R) or (NS, R) 
sectors, because of the positive definiteness of the oscillator terms ML(B) 
and ML(F)  in Mr.  In the (NS, NS) sector, if the twisted boundary conditions 
occur for A  =  11, ... , 16, then we can make massless left movers ,t~1I210)L' 
A  = 1, ... , 10, using the oscillators of (9.120), and these 10 states constitute 
a 10  of an SO(lO) subgroup of Es. Also, using the degrees of freedom with 
twisted boundary conditions, we can construct a singlet of SO(10), using the 
oscillators of (10.69), (p~/6npi/6)t(pl/6)tI0)L' withp,  q  and r  all different. 
In the (R, NS) sector, there are precisely 10 real fermionic degrees of freedom 
with (untwisted) periodic boundary conditions, and the massless ground 
state is then the 16-dimensional spinor 16  of SO(lO). Taken together, the 
massless left movers make up the 27  of E6, where, decomposed with respect 
to the SO(lO) subgroup, 

27  =  16  +  10  +  1. (10.90) 

In this way, we arrive at a (27, 1) of the surviving gauge group E6 X  SU(3) of 
§1O.4. There are 27 copies of (27, 1) because there is an w  twisted sector 
associated with each of the fixed points (10.34). 

In the bosonic formulation of the heterotic string, in the light cone gauge, 
the left movers consist of 24 real bosonic degrees of freedom, or 12 complex 
bosonic degrees of freedom with 3 of these complex degrees of freedom 
having boundary conditions twisted by r;  =~. In addition, the internal 
bosonic degrees of freedom have boundary conditions shifted by ;rV I  as in 
(10.72). (These shifts do not affect the normal-ordering constant.) The 
normal-ordering constant for the left movers is then 

-_9 3_2
a  - TI - 30 - 3· (10.91 ) 

The corresponding mass formula is 
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16 

!Mt  = ~ I  (pL  +  VI)2  +  N  - ~ (10.92) 
1=1  

where the shift VI  is as in (10.72), and N  is the oscillator term with bosonic 
degrees of freedom with twisted boundary conditions contributing as in 
(10.83) and bosonic degrees of freedom with untwisted boundary conditions 
contributing as in (9.74). The eigenvalues of N are third integral and, in view 
of the positive definiteness of the first term in (10.92), the only possibilities 
for constructing massless left movers are for N  = 0 or N  = j. The momentum 
pL  is required to be on the Es x  Eslattice of §9.4, where the lattice consists 
of all momenta of the form 

pL  = (n1  , ... , ns)  or (n1  +  t ... , ns  +  ±)  (10.93) 

where the integers ni  are constrained by 

I  ni  =  even integer. (10.94) 

The only solutions of Mt  = 0 are for N  = 0 and these are 

P I L +  VI  - 33 -3_-1 +104 )- (11 __ (10.95) 

pL  +  VI  = (-~ -H (±!)S)  (10.96) 

and 

pL  +  VI  = (-~ -HOs) (10.97) 

where in (10.95) the underlining signifies that all five permutations are to be 
included, and in (10.96) an even number of entries of! is required. The 
states (10.95), (10.96) and (10.97) constitute 10,  16  and 1 of SO(lO) and, as 
in the fermionicformulation, we find 27 copies of (27,  1)  of E6 x  SU(3), one 
for each fixed point of OJ.  

10.6  Wilson  lines  

The orbifold theory discussed in §§1O.3-10.5 has some shortcomings. The 
observable gauge group is E6 x SU(3) which needs to be broken ultimately 
toSU(3) X SU(2) x U(l),and,moreovertherearetoomanygenerationsof 
quarks and leptons. A mechanism that can be used to achieve some or all of 
the required gauge symmetry breaking(1),(2),(3) and at the same time to 
modify the matter-field content(3),(4) is the introduction of Wilson lines. The 
mechanism requires the existence in the theory of non-zero quantities U  of 
the form 
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u~expfAkdXk (10.98) 

referred to as Wilson lines, which are a generalization of integrals that occur 
in the Bohm-Aharonov effect in electrodynamics. In (10.98), k  = 3, ... ,8 
runs over compact manifold coordinates, the integral is round some closed 
loop not contractible to zero on the underlying torus of the orbifold, and the 
Ak  are components of some lO-dimensional gauge field with zero field 
strength. The quantities (10.98) cannot be gauged to zero by an ordinary 
gauge transformation, but they can be gauged away by means of a non­
single-valued gauge transformation. In this alternative formulation of the 
theory the Wilson lines (10.98) are no longer present. Instead, the fermionic 
degrees of freedom realizing the gauge group in the fermionic formulation of 
the heterotic string acquire extra phases upon a circuit of the torus as a result 
of the non-single-valued gauge transformation that has been performed. 
Equivalently, in the bosonic formulation, the bosonic degrees of freedom 
acquire extra shifts upon a circuit of the torus. As a consequence, the 
boundary conditions for the twisted sectors of the orbifold are modified, as 
we now discuss. 

For the cv  twisted sectors of the Z3 orbifold associated with the various 
fixed points of cv,  the boundary conditions are twisted by a space group 
element (cv,  I),  where, as discussed in §10.3, we may take the lattice vector I  
to be of the form 

3 

I  = I  rpep  (10.99) 
p  =  1 

where r p  = 0, ±  1. The basis vectors ep  of the torus lattice constitute single 
circuits of the torus in various 'directions' and should, according to the above 
discussion, be associated with additional twists on the boundary conditions 
of the fermionic degrees of freedom, in the fermionic formulation, or with 
additional shifts on the boundary conditions of the bosonic degrees of 
freedom, in the bosonic formulation of the heterotic string. Thus, not only is 
the point group rotation cv  now embedded in the gauge group, but, in the 
theory in which non-trivial Wilson lines have been gauged away by a non­
single-valued transformation, the discrete translations ep  are also embedded 
in the gauge group. (The lattice basis vectors Jp  of (10.26) do not  have 
independent Wilson lines because of the action of cv,  as in (10.28), relating 
equivalent paths on the orbifold that are inequivalent on the torus.) 

In the bosonic formulation, if the embedding of cv  in the gauge group is 
represented by the shift ;reV I  on the boundary conditions of the bosonic 
degrees of freedom, and the embedding of ep  by the shift ;rea~, then the 
momenta are shifted from the E8 x Es lattice momenta Pt by Vi  +  rpa~. 
Then, the left-mover mass formula for the (cv,  1)  twisted sector of (10.92) is 
modified to 
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16 

1M2  = 1  \"'  (pI  +  VI  +  r  a I )2  +  N  _ f.  (10.100)4 L 2L  L pp  3  

1=1  

where rp  = 0, ±1, for the various fixed points of w.  The spectrum of mass less 
states is now different for different fixed points because of the influence of 
the embeddings a~ of the lattice basis vectors ep •  (The embeddings a~ 
themselves are often referred to as the Wilson lines.) 

In addition, we must demand in the untwisted sector space group 
invariance rather than just point group invariance, i.e. invariance of the 
states under the action of space group elements (w,  I)  and their embeddings 
rather than only under the action of point group elements wand their 
embeddings. The extra invariance due to the embedding of I  must reflect the 
fact that na~ is a shift on the coordinates Xl  and that exp(2ni pLa~) 
represents the effect of this shift on a state with momentum p  L because it is 
2pL  that generates translations, as discussed in §9.4. Thus, space group 
invariance imposes the constraint that exp(2ni p  La~) should be 1, or 
equivalently 

I I  . 
PLap  =  mteger. (10.101) 

(A similar condition is, in general, required for the twisted sectors where 
space group invariance is implemented in a slightly more subtle way as a 
generalized GSO projection. However, in the case of the Z3 orbifold, all 
massless states in the twisted sectors survive the generalized GSO 

projection(5).(6) for arbitrary embedding of the point group and for arbitrary 
Wilson lines.) 

Choices of the embedding of the space group in the gauge group are 
restricted by the need for the embedding to be a homomorphism and by 
modular invariance. In general, for space group elements (81, Id  and 
(82 ,12 )  

(81 , Id(82 ,  12 )  =  (8 182 ,11  +8 112 )  (10.102) 

and consequently for the Z3 point group generated by w  

(w,  1)3 =  (1,0). (10.103) 

For the embedding of the space group to be homomorphism it is therefore 
necessary to have 

3(VI  +  r pa~) on an Es x Eis lattice (10.104) 

for r p  =  0, ± 1. Thus, the embeddings of the point group element wand the 
discrete translations ep  are constrained by 

3Vl  on an Es x Es lattice (10.105) 

and 

3a I  p  on an Es x Eis lattice. (10.106) 
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Also, the fundamental modular invariance property of a consistent string 
theory (see Chapter 11) requires, for the Z3 orbifold, that 

3(VI  +  rpa~)2 = 0 (mod 2) (10.107) 

for rp  = 0, ±l.  
A simple example (Exercise 10.6) of a Z3-orbifold model with a single 

Wilson line that is consistent with the constraints (10.105)-(10.107) on the 
embeddings is obtained by taking Vi  as in (10.72) and 

a{  = a~ = a~ = (05 ~ H)(08) , . (10.108) 

Retaining only space-group-invariant states in the untwisted sector the 
gauge group is reduced to [SU(3)]4, which we may interpret as 
SUcC3) X SUL(3) X SUR(3) X SU(3) where the first three factors of SU(3) 
came from the E6 factor of the original E6 X  SU(3) gauge group. The 
surviving massless matter fields in the untwisted sector constitute nine copies 
of (1,3,3, 1)  of the [SU(3)]4 gauge group. The twisted sectors with Lp  rp  = 0 
(mod 3) provide nine complete (27, 1) representations of the original 
E6 X  SU(3) group, which under [SU(3)]4 decompose as 

(27,1) = (1,3,3,1) +  (3,3,1,1) +  (3, 1,3,1). (10.109) 

The twisted sectors with Lp  r p  = 1 (mod 3) provide nine copies of 

(3,3,1,1) +  (1,3,1, 3) +  (3, 1,  1,3) +  3(1, 1,3,1) (10.110) 

and the twisted sectors with Lprp  = 2 (mod 3) provide nine copies of 

(3,1,3,1) +  (1, 1,3,3) +  (3, 1, 1,3) +  3(1,3,1,1). (10.111) 

It can  be seen that there is an exact cancellation of all non-abelian gauge 
anomalies amongst these surviving massless states, as required for a consist­
ent gauge theory. It is  a general result(7) that modular invariance of the 
string theory ensures this gauge anomaly cancellation. It will also be noticed 
that the twisted sectors in the presence of Wilson lines contain massless 
states in exotic representations of SUc(3) X SUL(3) x SUR(3), some of 
which, with a standard definition of the electric charge Qem  in terms of the 
generators of the group 

Q  em = T~ +  T~ +  !Y L +  !Y R (10.112) 

will be able to form fractionally charged colour singlets. This is a generic 
feature(8) of string theories. Fully realistic theories will either have to have 
hidden-sector non-abelian gauge group quantum numbers for these exotic 
states that confine them, or some spontaneous symmetry-breaking mechan­
ism to provide them with large masses, in view of the tight cosmological 
bounds on the abundance of fractionally charged states. 
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10.7  Calabi-Yau  manifolds  

Throughout this chapter we have been focusing attention on orbifold 
compactifications of the string theory because for such compactifications the 
string field equations are the same as in the uncompactified theory. If one is 
prepared to pay the price of much more difficult field equations it is possible 
to compactify on a manifold(9).(1O) rather than an orbifold. To ensure that (at 
least) N  = 1 supersymmetry survives in four dimensions it is necessary to 
choose this six-dimensional manifold to be a manifold of SU(3) holonomy 
that is also Ricci fiat, i.e. for which the Ricci tensor vanishes everywhere. 
These are the Calabi-Yau manifolds. 

A modular invariant theory may be obtained by making an embedding in 
the gauge group analogous to the standard embedding of the point group in 
the gauge group for the orbifold case. For the Calabi-Yau compactification 
the analogous procedure is to identify the expectation value of the gauge 
fields in the SU(3) factor of an E6 x SU(3) subgroup of the Es of Es x E8 
with the value of the spin connection for the compact manifold (of SU(3) 
holonomy). 

Non-simply connected Calabi-Yau manifolds may be constructed by 
quotienting the original simply connected Calabi-Yau manifold by a freely 
acting (i.e. without fixed points) discrete symmetry group. Then gauge 
symmetry breaking may be achieved by introducing Wilson lines(1l), using 
non-contractible closed loops on the non-simply connected space, in a 
similar fashion to the procedure in the orbifold case. 

Calculation direct from the string theory is now very difficult because of 
the modification of the string field equations. However, topological 
methods(9) may be used to derive the spectrum of massless states, and 
topological methods together with discrete symmetries of the manifold may 
be used to derive some selection rules on Yukawa couplings. More detailed 
calculations may be carried out by exploiting the connection between 
Calabi-Yau manifolds and theories constructed using .representations of the 
superconformal algebra (Gepner models)(12) for which explicit calculations 
of correlation functions are possible. (At least a subset of Calabi-Yau 
manifolds at special points in moduli space, i.e. for special choices of the 
'radii' and 'angles' characterizing the manifold, are believed(13) to be 
equivalent to Gepner models.) It is beyond our scope here to pursue either 
the topological methods employed for Calabi-Yau manifolds, or the con­
struction of Gepner models. 

Exercises 

10.1  Show that, except for special choices of the lattice and radii of the 
compact manifold, the massless states for an orbifold have no momentum or 
winding number on the compact manifold. 
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10.2  Check the action (10.28) and (10.29) of the point group element w  on 
the lattice basis vectors. 

10.3  Show that the fixed points for the Z3 orbifold may be written in the 
form (10.33). 

10.4  Derive the mass formulae (10.73)-(10.77) and (10.82)-(10.83) for the 
orbifold twisted sector. 

10.S  Calculate the normal-ordering constants of (10.86)-(10.89). 

10.6  Construct the spectrum of massless states for the Z3-orbifold model 
with point group embedding (10.72) and Wilson lines (10.108). 
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11  

DIRECT  CONSTRUCTION  OF  FOUR­

DIMENSIONAL  HETEROTIC  STRING 
 

THEORIES 
 

11.1  Introduction  

In Chapter 10 we saw how it was possible to construct heterotic string 
theories with only four space-time dimensions by compactifying six of the 
dimensions of the ten-dimensional heterotic string of Chapter 9 on an 
orbifold or Calabi-Yau manifold. It  is also possible to construct four­
dimensional heterotic string theories in a more direct fashion without the 
intermediate state of a ten-dimensional theory. One approach(l) returns to 
the original heterotic string, with 10 dimensions for the superstring right 
movers and 26 dimensions for the bosonic string left movers, bosonizes the 
fermionic degrees of freedom, other than those associated with four­
dimensional space-time, and compactifies all the right- and left-moving 
bosonic degrees of freedom on a torus, with the exception of those 
associated with four-dimensional space-time. An alternative, essentially 
equivalent, approach(2).(3) which we shall pursue here exploits the possi­
bility discussed in Chapter 9 of fermionizing toroidally compactified bosonic 
degrees of freedom. In this approach, all bosonic degrees of freedom other 
than the four-dimensional space-time degrees of freedom are replaced by 
fermionic degrees of freedom. The boundary conditions for all the internal 
fermionic degrees of freedom (i.e. other than four-dimensional space-time) 
are then chosen in such a way as to be consistent with the fundamental 
constraint of modular invariance. In the next two sections we shall describe 
the way in which modular invariance enters a consistent string theory. 

11.2  Modular  invariance  and  partition  functions  

In string theory, interactions involving strings may be described by world 
sheet diagrams such as figure 11.1 at tree level and such as figure 11.2 at one­
loop level and so forth. (Interacting strings will be discussed in detail in 
Chapter 12.) The essential subtlety of the one-loop diagrams is contained in 
the vacuum-to-vacuum amplitude of figure 11.3 which is a toroidal world 
sheet. It is important not to double count contributions to the path integral 
for the amplitudes coming from equivalent tori. To discuss this point it is 
useful to introduce the modular parameter f  to characterize tori. If we  

DOl: 10.120119780367805807-10 
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Figure  11.1  The string tree level amplitude. 

Figure  11.2  The one-loop string amplitude. 

combine the world sheet coordinates r and a  into a single complex coordi­
nate 

z=a+ir (11.1 ) 

then we can define a world sheet torus by making the identifications 

z == z +  7CAI  (11.2) 

and 

z == z +  7CA2  (11.3) 

so that 

Z  == Z  +  7C(nIAI  +  n2A2)  (11.4) 

where Al and ..1.2  are two complex numbers, and nl  and n2  are arbitrary 
integers. If  we wish, the conformal invariance (7.8) may be used to rescale 
the world sheet metric for the torus so as to scale Al to 1 while leaving the 
ratio fixed. It is therefore only the ratio 

f  = ..1.2/..1.1  (11.5) 
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that is of significance for characterizing tori. Points on the torus may be 
written as 

z = alA]  +  a2A2  with 0,;;;; a],  a2  <n  (11.6) 

or, after rescaling A] to 1, as 

z  = a]  +  fa2'  (11. 7) 

However, not all values of f  describe in equivalent tori. Consider the 
so-called modular transformations 

(11.8)(~D = (: ~)(~:) 
where a,  b,  e and d  are integers with 

ad  - be  =  1. (11.9) 

These transformations induce the transformations on the modular para­
meter 

f' =  af +  b  (11.10)
ef +  d  

and form a group, the 'modular group', SL(2, Z).  The inverse transform­
ation to (11.8) is 

(A2)  = (d  - b)  (A~) (11.11)
A] -e a  A1 

and, consequently, 

n1A1  +  n2A2  = n;A;  +  n2A2  (11.12) 

where, for arbitrary integers n1  and n2>  ni and nz are also arbitrary integers. 
Then, when Ai and Az are related to A1 and A2 by a modular transformation, 
they define the same torus, through (11.4). Consequently, tori with modular 
parameters related by (11.10) are equivalent. 

Infinities in one-loop string amplitudes arising from including equivalent 
tori infinitely many times in the path integral over world sheet metrics may 
be avoided by restricting the integration to a finite range of modular 
parameters. With the aid of the transformation (11.10) relating equivalent 
modular parameters, this range is usually chosen to be 

-!,;;;;  Re f  <!,  Im f  "'"  0, If I "'"  1. (11.13) 

For this way of avoiding infinities to make sense it is necessary that the path 
integral over string degrees of freedom, which will depend on f, should be 
invariant under the modular transformation. (The dependence on f  will 
arise from the periodicity of the string degrees of freedom on the torus.) For 
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the vacuum-to-vacuum amplitude what is required is that the so-called 
partition function 

Z ~ f 0lX0lqr  exp( -SE) (11.14) 

should be modular invariant, where 0lX and 01 qr  refer to path integrals over 
all bosonic and fermionic degrees of freedom of the string and SE is the string 
action continued in Euclidean space. (The vacuum-to-vacuum amplitude 
itself involves a final integration over world sheet metrics.) 

The evaluation of the partition function Z can be carried out by converting 
the Euclidean path integral to a determinant(4). The form of the result may 
be made plausible by comparison with finite-temperature (T)  field theory. 
In  field theory at finite temperature (5) , the path integral for bosonic theories 
is over fields that are periodic in the 'time' variable with periodicity f3  
(= lIkT),  and the vacuum-!o-vacuu~ amplitude, which is the partition 
function, is given by Tr(e -f3H )  where H  is the Hamiltonian operator. In  the 
present situation, roughly speaking, the modular parameter T,  which speci­
fies the periodicity on the torus, plays the role of f3  and it is not too surprising 
that the contribution to the partition function (11.14) of free bosonic degrees 
of freedom is given by 

Z =  Tr(qHL)  Tr(qHR)  =  Tr(qHLqHR  )  (11.15) 

where 

q  =  eh f  (11.16) 

and 

q  =  e-i:rf*  (11.17) 

In  (11.15), the Hamiltonian of (7.67) has been written as 

H=  HL  +  HR  (11.18) 

where 

HR  =  2(Lo  - a)  (11.19) 

and 

HL  =  2(£0  - ii)  (11.20) 

where a  and ii  are the normal-ordering constants for right and left movers, 
respectively. 

In  the case of fermionic degrees of freedom, the path integral of finite­
temperature field theory is over fields that are anti-periodic in the 'time' 
variable. We would therefore expect expression (11.15) for the partition 
function to apply in string theory for free fermionic degrees of freedom in 
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the Neveu-Schwarz sector. To decide what happens for the Ramond sector, 
it is useful to think more generally about what happens when the boundary 
conditions for the fermionic degrees of freedom are twisted boundary 
conditions and to treat the transition from the Ramond to the Neveu­
Schwarz sector as the special case of boundary conditions twisted by 
multiplying by -1. 

For a complex fermionic left-moving degree of freedom 'Jf(az,  al),  the 
boundary conditions in the al  and a2  directions of (11.6) on the torus may 
be specified by 

,T,(az, al  +)n  -_ e - 2:ri V,T,(a2,  al  ) (11.21)or or 

and 

,T'(a +  n  a)  = e -Zni u'Jf(a  a) or 2 ,I 2, 1 (11.22) 

with 0 ~ u,  v  ~ 1. Then, the left-mover partition function factor for these 
boundary conditions takes the form 

Z~ = Tr(qHL(v)  e2ni(1/2 - U)NF(v»)  = Tr(qHL(v)  (_l)NF(v)  e-2ni uNF(v»)  (11.23)  

where H L (  v)  is the Hamiltonian for a complex fermionic left mover with 
boundary conditions twisted by e-2.'Tiv (for example, YJ  = v  in (10.64)) and 
NF(  v)  is the fermionic number operator for left movers with these twisted 
boundary conditions. The NF(v)-dependent factor in (11.23) may be made 
plausible by the following heuristic argument. First notice that we can 
transform to a fermionic degree of freedom with anti-periodic boundary 
conditions in the a2  direction by making the change of variables 

'Jf ~ q, = e2i (u - 112)o,'Jf.  (11.24) 

By construction, the effect of this over a period (0 ~ a2  <  n)  is e2:ri(u - 112)  for 
each occurrence of the fermionic degree of freedom. Starting from an 
expectation based on (11.15), and the following discussion for the fermionic 
Neveu-Schwarz sector, that for q, the contribution to Z would be given by 

Z = Tr(qHL(v»)  

it might then be expected that upon returning to the original string degree of 
freedom q, we would have to introduce a factor 

e -2ni(u  - 1/2)NF(v).  

In  particular, if we take the boundary conditions in the al  and a2  

directions to be either Neveu-Schwarz (NS) or Ramond (R) then for a single 
left-moving real fermionic degree of freedom we should have 

Z~~ =  Tr(qHL(NS»)  (11.25)  

Z~s =  Tr(-ltq HL(NS»)  (11.26)  
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z~s = Tr(qHLCRl) (11.27) 

and 

z~ =  Tr((-I)FqH LCRl)  (11.28) 

where the fermion number operator NF (  v)  has been abbreviated to F.  The 
left-mover Hamiltonians for a single real fermionic degree of freedom 
following from §8.5 with the normal-ordering constants as evaluated in §8.7 
are 

L  - - 1HL(NS)  =  2 rb_rbr  - L4  (11.29) 
r  >  O. r  E  Z +  112  

and 
- - 1

HL(R)  =  2  L  nd_ndn  +TI· (11.30) 
n  >  0,  n  E Z  

11.3  Partition  functions  and  GSO projections  

In §8.8, the GSO  projections for the superstring were introduced ad  hoc  in 
order to delete tachyonic ground states and to obtain equal numbers of 
bosonic and fermionic degrees of freedom, as required for a space-time 
supersymmetric theory. In this section, it will be shown that projections of 
this type can be derived by demanding a modular invariant partition 
function, which as we saw in §11.2 is necessary to avoid infinities in one-loop 
string amplitudes. 

For simplicityC6l, we shall consider a group of eight left-moving real 
fermionic degrees of freedom with all eight degrees of freedom having the 
same boundary conditions on the world sheet torus. The left-mover Hamil­
tonian HL  following from (11.29) and (11.30) (for a single fermionic degree 
of freedom) takes the form 

HL(NS)  = 2 L  rb_rb- i  - i 
r 

 1
 -:; (11.31) 

r  >  0, r  E Z +  112  

for Neveu-Schwarz boundary 

L  
conditions, and 

-.  -.  2  
HL(R)  =  2  nd'-nd~ +:; (11.32) 

n  >  O. nE Z 

for Ramond boundary conditions, where the sum over i  runs over the eight 
degrees of freedom. 

To construct a modular invariant partition function it is necessary in 
general to take a linear combination of terms with definite boundary 
conditions. To explore this, consider the effect of a modular transformation 
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on a fermionic degree offreedom with boundary conditions as in (11.21) and 
(11.22), which we now write as 

'1'(02,01  +  n)  = h'l'(02'  01)  (11.33)  

and 

'1'(02  +  n,  01)  = g'l'(oz,  od  (11.34) 

where 

(h,g)  = (e-2mv,e-2niu).  (11.35) 

If points on the torus after the modular transformation (11.8) are written as 

modularz=oiAi +02A2  with O:s;;; oi, 02  <  n  (11.36) 

the coordinates (02'  a 1) are related to (oz, ad  by 

(a~) = (d  -c)(a2).  (11.37)
01  -b  a  al  

In terms of the new coordinates (02,  oD  the boundary conditions for 
'I'(az, a1)  may be written as 

'I'(a' 2, a' 1 +  n)  ==  h''I'(a' 2, 0') 1 (11.38) 

and 

'I'(a2  +  n,  oD  ==  g''I'(az,  aD  (11.39) 

with 

(h',  g')  = (hdgc,  hbga ).  (11.40) 

Put another way, if we write 

(h',  g')  = (e-Zni v',  e-2ni U')  (11.41) 

the connection between the boundary conditions for 'I'  on the torus defined 
by f  and the boundary conditions for 'I' on the torus defined by f'  of (11.10) is 

(11.42)(~:) = (: ~)(~). 
Thus, the partition function contribution Z~ on the torus defined by f  is 
mapped to the partition function contribution Z~: on the torus defined by f' . 
Since, in general, the boundary conditions (v'  , u')  differ from the boundary 
conditions (v,  u),  a modular invariant partition function must be con­
structed as a linear combination of terms of the type Z~. 

For the present case, if we consider the modular transformation 

f'  = -lIf  (11.43) 



252 FOUR-DIMENSIONAL HETEROTIC STRING THEORIES 

then the mapping between partition function contributions on the torus 
defined by f and the torus defined by f' is 

Z 112  Z1I2 1/2  ~ 112 Zb12~ Z?12  Z?12  ~ Zb/2  zg~zg (11.44) 

up to possible phase factors. For the modular transformation 

f' = f (11.45)
f+1 

the corresponding mapping is 

Z 1/2  ZO Z o Z1I2 112  ~ 112 Zb/2~ Zb/2  
112 ~ 112 zg~zg (11.46) 

up to possible phase factors. To determine the phase factors involved 
in these transformations we next construct the partition function terms 
explicitly. 

Using the left-mover Hamiltonians (11.29) and (11.30), together with 
(11.25)-(11.28), and remembering that Z~ as defined in (11.23) is for a single 
complex  fermionic degree of freedom, we find that (Exercise 11.1) 

zlj~=q-1/l2 n(1+q2n-1)2  (11.47) 
n=1  

Zbl2 = q-1I12  n(1_ q2n-1)2  (11.48) 
n  =  1 

Z?12=2q1l6  n(1+q2n)2  (11.49) 
n  =  1 

and 

z8=  o. (11.50) 

The factor of 2 in (11.49) and the vanishing of zg derive from the 
contributions of the two possible Ramond ground states for each pair of real 
fermions discussed in §8.8. For the Neveu-Schwarz and Ramond sectors 
under discussion here with eight real fermionic degrees of freedom or 
equivalently four complex fermionic degrees of freedom, the relevant 
partition function contributions are 

Z NS - [Z1/2]4 
NS - 1/2 (11.51 ) 

Z~s =  [zN2]4  (11.52) 

z~s =  [Z?/2]4  (11.53) 

and 

http:11.25)-(11.28
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z~ = [Z8]4.  (11.54)  

The infinite products in (11.47)-(11.49) are special cases of the genera­
lized O-functions(7), 

o ((~), f) = qV2  - V  +  116 e:riu(l- v)  

x n (1 - q2(n  - v)  e2:riU)(1 _ 

n=l  

q2(n  +  v-I)  e-2:Ti U)  (11.55) 

and in general (Exercise 11.2) 

z~=e-JriU(l-V)O((~),f)' (11.56) 

These generalized O-functions possess the useful shift properties: 

o ((u:  1),  f) = ­ e-mv  0  ((~), f) (11.57) 

and 

o ( (v  :  1)'  f) = ­ eJri u  0  ( (  ~) ,  f) . (11.58) 

They transform under modular transformations (11.10) as 

O(a(~),f)=Eae((~),a-1f) 

where Ea  is a twelfth root of unity independent of u and v,  
_  af  +  b  

a:T~-­

cf  +  d  

(11.59) 

(11.60) 

and the action of a  on 

is 

(~) 

a(~)=(~ ~)(~). (11.61) 

For the present case, 

http:11.47)-(11.49
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z~~ = - [e((~), f)r  (11.62) 

Z~s = [e((~), f)r  (11.63) 

(11.64)z~s =  [e  ( (  t),  f)r 
and 

Z~=O (11.65) 

where we have used the identity 

n(1 +  q2n)(1  +  q2(n  - I») = 2 n(1 +  q2n)2  
n=1  n=1  

00 

= ~ n(1 +  q2(n  -1))2. (11.66) 
n=1  

We may now construct a modular invariant partition function by taking a 
suitable superposition of these terms 

z  = 1]~~Z~~ +  1]~sZ~s +  1]~sZ~s +  1]~Z~. (11.67) 

Relationships between the coefficients 1] required for modular invariance 
may be obtained by applying the transformation property (11.59). In the 
present discussion, employing only a group of eight left-moving real fermio­
nic degrees of freedom, we should disregard the factors Ea'  which cancel 
between left and right movers in a complete model. Then, using the modular 
transformation 

f-'> f' =  f/(f  +  1) (11.68) 

we find that 

Z~~(f/(f +  1))  = - Z~s(f) (11.69) 

and 

Z~s(f/(f + 1))  =  - Z~~(f) (11.70) 

and modular invariance of Z requires 

1]~s =  - 1]~~. (11.71) 

Also, using the modular transformation 

f-'> f' =  - lIf (11.72) 
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Figure 11.3 The vacuum-ta-vacuum string amplitude. 

we find that 

Z~s(-lIi)  = Z~s(i) (11. 73) 

and 

Z~s( -lIi)  = Z~s(1)  (11.74) 

and modular invariance of Z requires 

1]~s = 1]~s. (11.75) 

Thus, the modular invariant partition function takes the form 

(21]~~)-IZ = Tr(l + (-l)F+  I) H  (NS»)2  q  L  

_Tr((1 + 1](;1)F+  I) qHL(R»)  (11.76) 

where 

1]  = 1]~/1]~~. (11.77) 

Remembering that the partition function is essentially the vacuum-to­
vacuum amplitude of the theory of figure 11.3, equation (11.76) implies 
projections (GSO projections) on the string states. For the Neveu-Schwarz 
sector, the GSO projection Pis 

1+(-1)F+l 
P  = ----"--'--- NS sector. (11.78)

2 

In agreement with (8.155). For the Ramond sector, the projection is 

1+1](-1)F+l 
P  = ---!"'---'--- R sector (11.79)

2 
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in agreement with (8.157). The coefficient 1] is not determined by modular 
invariance of the partition function. 

However, consideration of unitarity shows that 1] should be ±  1. All this 
discussion has been for a group of eight real fermionic left movers. If instead 
we consider a group of sixteen real fermionic left movers, as appropriate for 
the internal degrees of freedom in the fermionic formulation of the heterotic 
string, the projection (11.78) is modified to (1 + (  -1 )F)/2  in agreement with 
(9.134). 

Strictly, we should be considering right and left movers simultaneously to 
impose modular invariance on the complete partition function of (11.15). 
For a complex fermionic right mover with boundary conditions twisted by 
e -2:ri v  and e -2;ri U  in the 01  and 02  directions on the world sheet torus, 
respectively, the partition function contribution is instead Z~, consistently 
with the replacement of q  by q  in (11.15). It is not difficult (Exercise 11.3) to 
repeat the arguments employed here retaining all right- and left-moving 
fermionic degrees of freedom of the superstring to arrive at the GSO  

projections (11. 78) and (11. 79), which now apply separately to left and right 
movers. As in §8.8, type-lIB and type-HA superstring theories are possible 
depending on whether 1] in (11.79) has the same or opposite values for left 
and right movers. Thus, the GSO  projections that were introduced ad  hoc  in 
§8.8 can now be derived from the fundamental requirement of modular 
invariance of the theory. 

In the next section, we shall discuss the way in which the requirement of 
modular invariance can be used in the construction of consistent four­
dimensional heterotic string theories. 

11.4  Four-dimensional heterotic  string  theories  

In this section, we shall develop the fermionic construction of four­
dimensional heterotic string theories described in the introduction where all 
bosonic degrees of freedom other than those associated with four­
dimensional space-time are fermionized(2).(3). Before proceeding to the 
constraints imposed on such theories by modular invariance, we shall first 
establish notations for the boundary conditions [or the fermionic degrees of 
freedom, and shall also consider the requirements for world sheet supersym­
metry. 

When all bosonic degrees of freedom other than those associated with 
four-dimensional space-time are fermionized the complete set of degrees of 
freedom of the heterotic string, in the light cone gauge, is as follows. 
Associated with four-dimensional space-time there are the bosonic degrees 
of freedom Xi,  and the real fermionic right movers 'l'k"  i  = 1, 2. It  will be 
convenient to group these two real fermionic degrees of freedom into a 
single complex degree of freedom, which we denote by 1]. There are 18 real 
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fermionic right-mover internal degrees of freedom A ~R' A~R and A~R' 
k  = 3, ... ,8, because for each of the 'original' real fermionic degrees of 
freedom there are two more arising from the fermionization of the corre­
sponding bosonic degree of freedom. 

We shall assume in what follows that these real fermionic degrees of 
freedom occur in pairs of triplets with the same boundary conditions, so that 
we can assemble the six triplets of real fermionic degrees of freedom into 
three triplets of complex fermionic degrees, which we denote by MR, AZR 
and A3R, a  = 1, 2, 3. Finally, there are 44 real fermionic left-moving degrees 
of freedom, which we assume can be assembled into 22 complex fermionic 
degrees of freedom which we denote by ~t , A  =  1, ... , 22. The action for 
all these string degrees of freedom is 

S =  ~Jd2a[dTXi dTXi  - daXi daXi  +  2i(iJ d+YJ  +  He) 
2n 

+  2i(AIR d+AIR +  AZR d+A1R +  k~R d+A3R +  He)  

+  2i(~t d_~t +  He)]  (11.80) 

where 

d±  =  ~(dT ±  da).  (11.81 ) 

The fermionic degrees of freedom, both left and right movers, will be 
denoted collectively by 'l'1(r, a),  and twisted-sector boundary conditions 
will be written in the form 

'l'1(r, a  +  n) =  e-2:ri WI'I'I(r,  a)  (11.82) 

with 

O:s;  Wl  <  1. (11.83) 

It is convenient to split the vector W  of boundary conditions Wl  into right­
and left-mover boundary conditions WR and WL  by writing 

W=  (WRlwd.  (11.84) 

It  is also convenient to write W  R in a way that displays the triplets of 
fermionic degrees of freedom so that 

W  =  (s(ajbjcj)  (a2b2c2)  (a3b3c3)IWd  (11.85) 

where the twists are for the degrees of freedom 

(YJ(A1RA~RA1R) (AiRA~RA~R) (AfRA~RA~R)I~t). 

It  is important, for the elimination of ghosts from the theory to be 
possible, that the right movers (which derive from the superstring) should 
possess world sheet supersymmetry (unspoiled by the process offermioniza­
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tion). With all the bosonic degrees of freedom other than those associated 
with four-dimensional space-time fermionized, the world sheet supersym­
metry has to be realized in a non-linear way. To discover the form of the 
supersymmetry transformations in these circumstances it is necessary to find 
transformations that leave the action invariant and such that the commuta­
tor of two such transformations is a translation, as appropriate for the 
supersymmetry algebra. This program has been carried(8) through with the 
resulting world sheet supercurrent TF(which  is the analogue of (8.11)) 

T  2·  ,T.i Xi  ."\' lk  lk  lk  
F  =  l"t' R a+  +  1 L  "lR"2R"3R' (11.86) 

k  

For this supercurrent to be well defined, all terms in T F  must have the same 
boundary conditions, and so the boundary conditions for the product ofA~R' 
A~R and A~R must be the same as those for 'l'k.  If,  as assumed above, the 
triplets A~R' A~R and A~R of real fermionic degrees of freedom are assembled 
into triplets A1R , A2R and A3R of complex fermionic degrees of freedom, the 
resulting condition on the boundary conditions, referred to as the triplet 
constraint, is 

aa  +  ba  +  Ca  = s (mod 1) (11.87) 

where aa,  ba  and Ca  and s are half-integers or integers. 
To construct a modular invariant partition function it is necessary to take a 

superposition of terms with the various allowed boundary conditions in the 
01  and 02  directions on the world sheet torus for the vacuum-to-vacuum 
amplitude. In the present case, the generalization of (11.23) to include all 
left- and right-moving fermionic degrees of freedom is 

zn;,  =Tr(qHL(W)qHR(W)  e2:ri(Wo - W')'  N(W»)  (11.88) 

where Wo  is defined to be 

Wo  =  «WOI(~)22). (11.89) 

Scalar products are defined to have a minus sign for right movers so that, for 
example, 

W'  . N  == Wi. . NL  - WR.NR  (11.90) 

and 

N(W)  = (NR(W)INdW))  (11.91) 

is the vector of fermionic number operators for right and left movers with 
boundary 

Zn;,  
conditions twisted by W. 

factorizes as a product of partition function factors and their conju­
gates of the type (11.23) for the 22 complex left movers and 10 complex right 
movers. 
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10 32 
W  n -W'  n  w'  (Zw  = ZW1  Zw1 •  11.92)  

1=1 1=11 

Now, a modular invariant partition function must be constructed as a 
superposition of the type 

Z  = I  ctt:.ztt:.  (11.93) 
w,w·  

for some coefficients Ctt:.,  where the sum is over all allowed boundary 
conditions in the 01  and 02  directions. 

Using the general expression (11.56)  for the factors in Ztt:.  in terms of 
generalized O-functions and the modular transformation property (11.59), 
conditions for (11.93) to be modular invariant may be derived(2),(3),(9). 
These conditions fall into two general types. First, when a modular trans­
formation maps Ztt:.  to itself, modular invariance requires that no phase 
factor should arise from the transformation. (This occurs when 
(h',g') =  (h,g)  in (11.40).) This restricts the choices of boundary con­
ditions W in a consistent theory. Second, when a modular transformation 
maps partition function terms Ctt:.ztt:.  into other such terms, relationships 
amongst the Ctt:.  are required for modular invariance. In  the way discussed 
in §11.3, summing over 02  boundary conditions W for fixed 01  boundary 
conditions W' leads to generalized GSO  projections. 

The somewhat lengthy calculations involved are to be found given in some 
detail in the original literature(2),(3), to which we refer the reader. The 
results as regards the allowed boundary conditions in a modular invariant 
theory may be summarized as follows. All allowed boundary conditions can 
be written as linear combinations of a set of 'basis vectors' {Wi }, so  the most 
general boundary conditions Ware 

W = I  Q'iWi' (11.94) 

If the  order mi  of Wi is defined to the smallest integer such that the 
components of miWi  (no summation on i)  are integers, then the Q'i are 
integers taking values in the range 0 to mi - 1. The bar over the top of Q'iWi 
means that one is to take the fractional part of its components so that the 
components of W satisfy (11.83).  Basis vectors Wi consistent with modular 
invariance satisfy 

mi I  W;L = 0 (mod 2) (11.95) 
1 

mi I  W;R  = 0 (mod 2) (11. 96) 
1 
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where W has been separated into right- and left-mover boundary conditions 
as in (11.84), 

miWi'  Wi  =  0 (mod 2) mi  even (11.97) 

miWi' W i  =  0 (mod 1) mi  odd (11.98) 

(no sum on i implied),  and, for i #- j,  

mijWi '  Wj =   0 (mod 1) mij  even (11.99) 

and 

2mijWi '  Wj =   0 (mod 1) mij  odd (11.100) 

where mij is the least common multiple of mi and  mj' and  the scalar products 
are again defined in the fashion of (11.90). 

Once a set of basis vectors W i  has been chosen, all sectors of the theory 
corresponding to distinct choices of boundary conditions are obtained from 
(11.94). However, the theory is not completely specified until the genera­
lized GSO projections have been determined. Modular invariance tightly 
constrains these projections for any choice of the W i  but there is still some 
freedom, which may be parametrized by certain parameters kij  which are 
subject to the conditions 

mikij =   0 (mod 1) (11.101) 

kij  +  kji  =  Wi '  Wj  (mod 1) (11.102) 

and 

k ii  +  kiQ  +  Si - ~Wi' Wi  =  0 (mod 1) (11.103) 

where Si  is the first entry of Wi  as in (11.85), and no sum on i  or j  is implied 
in (11.101) or (11.103). The generalized GSO projections for the W twisted 
sector, with W given by (11.94), may be cast in the form 

Wi '  N(W)  =  Si - Wi '  W + I  kipj  +  kOi  (mod 1) (11.104) 

where 

N(W)  = (NR(W)INL(W))  (11.105) 

is the vector of eigenvalues of the fermionic number operator N (W)  for the 
sector with boundary conditions twisted by W, and the scalar products are 
again defined as in (11.90). 

There is an important subtlety when some of the fermionic degrees of 
freedom have Ramond boundary conditions. Then, N(W)  contains a contri­
bution from the zero modes ea  of the subset 'I'a  with Ramond boundary 
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conditions of the complete set of fermionic degrees of freedom (right- and 
left-moving) '1'1. These zero modes create spinor ground states 

Inal  =  n(e:r"IOI  na  =  0 or 1 (11.106) 
a 

as in (8.159), and the contribution No  to La Na(w)  is 

(11.107)No=  I  na'  
a 

When La Na(w)  is mUltiplied by ~ in the generalized GSO  projection (11.104) 
(as can occur when Wi  has entries of ~ in appropriate positions), the 
zero-mode contribution to (11.104) only depends on whether No  is even or 
odd, and this amounts to the chirality of the spinor ground state (for both 
right and left movers together) entering the projection, since the chirality of 
the ground state is given by 

x = (_1)No  (11.108) 

as a consequence of (8.164). 

11.5  Semi-realistic  four-dimensional  models  

We shall now construct some examples(2),(3) of four-dimensional heterotic 
string theories using the approach of the previous section. The simplest 
example to be studied employs just two basis vectors Wo  and Wj with Wo  (as 
before) given by 

Wo  =  (m!OI(~f2) (11.109) 

and Wj  given by 

Wj  =  (0 (O~) (O~) (@)1(!)22). (11.110) 

(This choice of basis vectors is consistent with the modular invariance and 
world sheet supersymmetry constraints of §11.4.) Since both basis vectors 
have order two, the model has four sectors given by 

W=o  Wo  Wj  Wo+W j (11.111)•  

The normal-ordering constants aR and aL for the 0 sector and Wo  +  Wj  

sector are negative and consequently these sectors contain no massless 
states, The normal-ordering constants for the other sectors are 

(aR' ad  =  (~, 1) for the Wo  sector 

(aR' ad  =  (0, 1) for the Wj  sector. (11.112) 
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The parameters kij  that enter the generalized GSO projections are restricted 
by (11.101)-(11.103) to take the values 

koo=O  or ~ (modI) (11.113) 

kll  =  0 or 2:
1 (mod 1) (11.114) 

and 

kOl  = k10  = kll  (mod 1). (11.115) 

There are 32 complex fermionic degrees of freedom (both right and left 
movers) '1'1, I  =  1, ... ,32, and there are transverse four-dimensional space­
time real bosonic degrees of freedom X~ and Xi, j  =  1, 2, whose oscillators 
can be used in the construction of string states. Let us consider the Wo sector 
first. Adopting the notations of (9.101) and (9.109) for complex fermionic 
degrees of freedom, with obvious modifications for right movers, the 
massless right movers are 

(fi!2fIO)R and (gL2fI0)R 1=  1, ... ,10 (11.116) 

and the massless left movers are 

aj-110)L  j  = 1,2 (11.117) 

and 

(IT!2  t  (/712  )t 10)L (g'I!2)t (g712  t  10)L (/1)2 )t (g7/2 r 10)L 

m,n  = 11, ... ,32. (11.118) 

The Wo sector is subject to the generalized GSO projections (deriving from 
(11.104» , 

NL  - NR  = 1 (mod 2) (11.119) 

and 

NL  - Nk  = °  (mod 2) (11.120)I  
1=3.4.6.7.9.10 

where NR  and NL  are the sums over all components of NR  and N L,  

N R =  Nk  (11.121)I  
1= 1, .... 10 

and 

N L =  NL.  (11.122)L  
1= 11 ..... 32 

Amongst other things, these project~ons delete potential tachyonic states 

http:1=3.4.6.7.9.10
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with m~ = mE  = -!. The massless states in the Wo  sector surviving the 
generalized GSO projections are as follows. First there are the states 

(!L2)t  IO)Raj-lIO\.  (11.123) 

and 

(gL2)tIO)R aj-lIO)L  (11.124) 

which for I  = 1 provide the graviton, dilaton and antisymmetric tensor. In 
the present four-dimensional case, the antisymmetric tensor is just a single 
(pseudo) scalar state, so the graviton is accompanied by two real scalars. For 
1=  2, 5 and 8, which is also consistent with the generalized GSO projections, 
we obtain instead six real vector fields. It  may be conjectured at this stage 
that these are the six graviphotons that occur in the N  = 4 supergravity 
multiplet of table 1.3, and we shall see shortly that the model does indeed 
contain all the massless states necessary to complete this supermultiplet. 

Second, there are the states obtained by taking a right mover of the form 
(11.116) and a left mover of the form (11.118). Observing that (/lh)tIO)L  
and (g'1I2)tIO)L  taken together provide the components of an SO( 44) vector, 
we see that the left movers (11.118) are the antisymmetric part of the 
product of two SO( 44) vectors and so transform as the adjoint represen­
tation of SO( 44). Taking I  = 1 for the right movers we obtain vector fields in 
the adjoint of SO( 44) that can provide the gauge fields of SO( 44). Taking 
instead 1=  2, 5 or 8 (which also satisfies the generalized GSO projections) 
gives six multiplets of real scalars in the adjoint of SO(44) (as required for 
the N  = 4 vector supermultiplet of table 1.3). 

Next, let us consider the W1 sector. In that case the massless right movers 
are just the ground state IO)R;  and the massless left movers are (11.117) and 
(11.118), exactly as for the Wo  sector. Because the right movers 'IT! , 'IT2 ,  'ITs 
and 'ITS have periodic boundary conditions, the ground state IO)R  is an SO(8) 
spinor. In this case, the generalized GSO projections are 

NL - Nk =  0 (mod 2) (11.125)L  
1=3,4,6,7,9,10 

and 

NL - NR =  2(ko!  +  koo)  (mod 2). (11.126) 

It is important to notice that (11.126) contains contributions from the zero 
modes of 'IT!,  'IT2 , 'ITs and 'IT8, which means that the chirality of the SO(8) 
spin or ground state enters this projection in the way discussed at the end of 
§11.4. In consequence, the surviving massless states possess a single SO(8) 
chirality. 

Taking IO)R  as the right mover and the left mover of (11.117) to obtain the 
states 
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10/Raj-l10/L  j  =  1,2 (11.127) 

provides four four-dimensional vector spinor states with helicity ~ and four 
four-dimensional spinor states with helicity 5: along with the same numbers 
of massless states with helicity -~ and -t as required for N  =  4 supergravity 
gravitinos and associated spin-! components. Taken together with the 
massless states already obtained in the Wo  sector, these states complete the 
N  =  4 supergravity multiplet of table 1.3. 

Taking 10/R as the right mover and the left movers of (11.118) provides 
four states with helicity 5: and four with helicity -5: in the adjoint of SO(44) as 
required for the N  =  4 gauginos. Together with the massless states in the 
adjoint of SO(44) from the Wo sector these states complete the N  = 4 vector 
supermultiplet of table 1.3. 

Thus, the model generated by the basis vectors Wo and W1 is an N  =  4 
supergravity theory with SO(44) gauge fields. More realistic models with 
N  =  1 supergravity may be obtained by adding further basis vectors consist­
ent with the modular invariance and world sheet supersymmetry con­
straints. We first add a single additional basis vector W2 where 

W2  =  (0 (05:5:) (5:05:) (5:05:)1(5:) 14 08 ).  (11.128) 

Then, in addition to the massless states in the Wo and W1 sectors there are 
also massless states in the W2 sector with fermionic super-partners in the 
Wo +  W1 +  W2 sector. The parameters k ij  required for the generalized GSO 

projections satisfy (11.113)-(11.115) and additionally 

or (11.129)kl2  = °  !  (mod 1) 

or (11.130)k22  = °  !  (mod 1) 

kzo =  k02 =  k22  (mod 1) (11.131) 

and 

k21  =  kl2  +!  (mod 1). (11.132) 

The massless spectrum in the Wo sector is modified by the W2 generalized 
GSO projection 

NL- Nk  =  0 (mod 2). (11.133)I  I  
1 =  11  .....  24  1=3.4.5.7.8.10  

The three complex gauge singlet vector fields are reduced to a single 
complex vector field or, equivalently, two real vector fields. For the gauge 
non-singlet vector fields, either both  left-mover indices m  and n  of (11.118) 
have to belong to {11, ... , 24} or both  have to belong to {25, ... , 32}. In 
this way, the surviving gauge fields make up the adjoint of SO(28) x SO(16). 
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Moreover, the original three complex scalars in the adjoint of SO(44) are 
reduced to one complex scalar in the adjoint of SO(28), one complex scalar 
in the adjoint of SO(16) (each with right-mover index I  = 2 in (11.116)) and 
two complex scalars which are vectors of both SO(28) and SO(16) (with 
right-mover index I  = 5 or 8). 

For the W1 sector, the W2 generalized GSO projection is 

NL- N~ = 2(k12  +  k22)'  (11.134)I  I  
1= 11 ..... 24 1=3.4.5.7.8.111 

Noticing that Ni.  and Nt  have zero-mode contributions, we see that for the 
gravitinos a definite chirality is chosen in the corresponding SO( 4) subgroup 
of SO(8). In consequence, the number of gravitinos is reduced from four to 
two. Similarly, the number of massless spin-j states associated with the 
gravitinos in the original N  = 4 theory is reduced to two. In the case of the 
gauginos, the projection is also influenced by the representation of 
SO(28) x SO(16) to which the left movers belong. As a result, there are 
surviving gauginos in the adjoint of SO(28) and in the adjoint of SO(16) for 
one right-mover SO( 4) chirality, and surviving erstwhile gauginos (not now 
associated with any gauge fields) transforming as a vector of both SO(28) 
and SO(16) for the other SO(4) chirality. 

It  can now be seen that the massless states correspond to an N  =  2 
supergravity theory with SO(28) x SO(16) gauge group. The N  = 2 super­
gravity multiplet of table 1.2 is made up of the graviton and a single real 
gauge singlet vector from the Wo sector together with two gravitinos each 
with helicity ±~ from the W1 sector. The remaining real gauge singlet vector 
from the Wo sector joins forces with two massless spin-i states each with 
helicity ±i  from the W1 sector and two real scalars from the Wo sector 
(originally the dilaton and antisymmetric tensor of the N  =  4 theory) to form 
a gauge singlet N  =  2 vector supermultiplet as in table 1.2. Moreover, the Wo 
and W1 sectors provide the gauge fields together with their gauginos and two 
real scalars, all in the adjoint of SO(28) x SO(16). In addition, the complex 
scalars and erstwhile gauginos in the vector representation of both SO(28) 
and SO(16) constitute an N  =  2 hypermultiplet as in table 1.2. 

In the W 2 sector, the massless states in the fi  rst instance are 

IO)RIO)L  (11.135) 

where because of the zero modes the right-mover ground state IO)R  is an 
SO(8) spin or and the left-mover ground state is an SO(16) spinor. The Wo, 
W1 and W2 generalized GSO projections on the W2 sector take the form 

NL  - NR  =  1 +  2(ko2  +  koo)  (mod 1) (11.136) 

N L - N~ = 1 +  2(k ll  +  k 12 )  (mod 1) (11.137)L  
1=3.4.6,7.9.10 

http:1=3.4.6,7.9.10
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and 

L  NL  - L  Nk  = 0 (mod 2). (11.138) 
1=11",.,24 1=3.4.5.7.8.10 

After applying these generalized GSO projections, a definite right-mover 
SO(8) chirality is associated with a definite left-mover SO(16) chirality. 
However, since the SO(8) spinor contains both four-dimensional space-time 
chiralities the theory is non-chiral, as expected for N  = 2 supergravity. 

A chiral N  = 1 supersymmetric theory may be obtained by the addition of 
one further basis vector 

W3  =  (0 (iO~) (OH) (~)I(~f 07 (~? 05). (11.139) 

The parameters k ij in  the generalized GSO projections then satisfy (11.113)­
(11.115), (11.129)-(11.132) and additionally 

k30  = k03  = k33  + ~  (mod 1) (11.140) 

k31  = k13  + ~  (mod 1) (11.141) 

and 

k32  = k23  (mod 1). (11.142) 

The normal-ordering constants are such that no new sectors with massless 
states arise. 

The W 3 generalized GSO projection for the Wo  sector takes the form 

NL(SO(14))  + NL(SO(6))   - L 
 Nk=o  (mod 2) (11.143)
1 = 2.4.6.7,8.9 

where 

NL(SO(14))  =  L  NL  (11.144)
1=11, .... 17 

and 

NL(SO(6))  = L  NL.  (11.145) 
1 =  25 ..... 27 

This projection removes the remaining gauge singlet complex vector field 
and so removes the real vector in the N  = 2 supergravity multiplet and the 
real vector in the gauge singlet N  =  2 vector supermultiplet of which it is 
composed. The gauge fields are reduced to those of S0(14) x S0(14) 
x SO(lO) x SO(6) and the model can be regarded as an SO(10) grand 

http:1=3.4.5.7.8.10
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unified theory with horizontal symmetry group SO(6) and SO(14) x  SO(14) 
hidden-sector gauge group. 

In the W j   sector, the W 3 projection takes the form 

NL(SO(14)) +  NL(SO(6)) - Nk  =  1 + 2(k13   +  k33)  (11.146) 
1= 2,4,6,7,8,9  

I  
where N~ and N~ have zero-mode contributions. The projection therefore 
selects a definite chirality in the SO( 4) associated with N~, and N~ and 
halves the number of gravitinos leaving just a single gravitino as required for 
the N  = 1 supergravity multiplet. The gauginos are unaffected. Thus, we 
end up with the supergravity and the gauge field vector supermultiplet of an 
N  =  1 theory. 

Finally, the W3  generalized GSO projection for the W 2  sector takes the form 

NL(SO(14)) +  NL(SO(6)) - I  Nk  
1= 2,4,6,7,8,9  

=  1 + 2(k23   +  k33)  (mod 2) (11.147) 

where NL(SO(6)), N~, Nt and  N~ have a zero-mode contribution. Com­
bining (11.147) with (11.136) which has zero-mode contributions from Nk,  
Nt Nt,  N~and  

NL(SO(16)) == I  NL  (11.148)
1= 25,  , , ,,32 

we see that the four-dimensional space-time chirality for the right movers is 
correlated with the S0(10) chirality for the left movers. However, both 
S0(16) chiralities are allowed. Thus, after all projections, the W2  sector 
contains massless SO(14) x  SO'(14) singlet states in 

2(16,4)L + 2(16,4)L  + 2(16,4)R  + 2(16,4)R  (11.149) 

where (a, b)L, R  denotes the representation a of SO(10), b of SO(6) and 
four-dimensional space-time chirality L or R. The two copies of each 
representation occur because, as a result of the Wo,  W j  and W3  'projections, 
there is definite chirality in the SO( 4) associated with Nt and  N~ (and so 
two states) for a given space-time chirality. We now have a chiral theory, as 
is permitted for N  =  1 supersymmetry, with 16 generations in 16  of SO(10), 
together with their anti-particles. 

The discussion given in this chapter can be generalized slightly to allow for 
the possible presence of some real fermionic degrees of freedom(2),(3) which 
cannot be paired with other fermionic degrees of freedom with the same 
boundary conditions to form complex fermionic degrees of freedom. With 
this generalization, it has proved possible to construct potentially realistic 
three-generation models with flipped SUeS) x U(l) grand unification (10). 
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Exercises 

11.1 Derive the partition function contributions for periodic and anti­
periodic boundary conditions (11.47)-(11.50). 

11.2 Derive the partition function Z~ of (11.56) for general v  and u.  

11.3 Use modular invariance to derive the GSO projections for the super­
string. 
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SUPERSTRING  INTERACTIONS 
 

12.1  Introduction  

Apart from the intrinsic interest in formulating a consistent, relativistic 
quantum string theory, its importance stems from the fact (belief) that it may 
provide a finite quantum theory of all of the interactions in nature, including 
gravitation. The particles whose interactions we study are identified with 
single (massless) modes of the string. If we  are to ascertain the consistency 
(or lack of it) of string theory with the real world, it is obviously essential that 
we can calculate scattering amplitudes whose external lines represent single­
particle states, but whose internal structure includes all of the allowed string 
modes, not just a few single-particle states. Thus we are interested in 
calculating diagrams such as the closed-string diagrams shown in figure 12.1. 

This task is made feasible by utilizing the invariance of the theory under a 
conformal rescaling of the world sheet metric h aj3(T,  a),  described in §7.2. 
Under a finite such transformation, 

haj3~ eA h aj3  (12.1)  

with A(T,  a)  an arbitrary function of the world sheet coordinates T,  a.  By a 
suitable choice of A we can always arrange that the external lines 'puncture' 
the world sheet at finite  points. The simplest illustration is provided by a 
single incoming particle and a single outgoing particle, as shown in figure 
12.1(a),  with a cylindrical world sheet, parametrized by z, cp  with 

-oo<z<oo o~ cp  < 2n  (12.2) 

and having the metric 

ds2 = dz2 + R2   dcp2.  (12.3) 

Instead of z we may use the parameter e defined by 

z = 2R  In(tan ~e) 0 <  e <  n.  (12.4) 

Then 

ds2 = R2[(sin e)-2 de 2 +  dcp2]   (12.5) 

and exploiting the conformal invariance allows us to rescale the metric with a 
factor 

ell.  = sin2  e.  (12.6) 

Then the new metric is 

DOl: 10.120119780367805807-10 
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Figure 12.1 Conformal transformations of the closed-string world sheet mapping 
asymptotic states into finite points. 

ds2 = R2( d02 +  sin2 0  dcp2)  (12.7) 

which we recognize as the metric on a 2-sphere of radius R.  The initial and 
final string states at z = - 00, + 00 correspond to 0  = 0, Jr,  i.e. the north and 
south poles of the sphere, as shown in figure 12.1(a').  

For more complicated processes, such as those shown in figure 12.1, (b)  
and (c),  a suitable conformal factor eA  can always be found that maps each 
external string state onto a finite point on the world sheet, as shown in figure 
12.1,  (b')  and (c').  This is possible because we only need to choose a 
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Figure 12.2 Conformal transformations of the open-string world sheet. 

conformal factor eA  that has the desired asymptotic  behaviour for each 
external string, and these can be chosen independently. 

Similar remarks apply in the case of open-string scattering, as shown in 
figure 12.2(a).  The world sheet can be conform ally mapped onto a disk, or 
onto the upper half-plane, with the external states now appearing at finite 
points on the boundary, as shown in figure 12.2, (b)  and (c).  

In order to construct scattering amplitudes we must next deduce or define 
a vertex operator characterizing the particular particle being emitted or 
absorbed at this (finite) point on the world sheet. This is done for the lowest­
lying states of the bosonic string in §12.2; the required operator is derived 
using the Lorentz properties of the particle, together with its 'conformal 
dimension', which describes its behaviour under world sheet reparametriza­
tions. In §§12.2 and 12.3 we present the rules for calculating on-shell tree 
scattering amplitudes for the open (and closer!) bosonic string, using the 
previously derived vertex operators and a propagator whose form is moti­
vated by our experience of calculating scattering amplitudes in (bosonic) 
quantum field theory. We also verify that the (open-string) amplitudes 
possess the anticipated symmetry under a cyclic permutation of the external 
particles, and have poles corresponding to the known tachyon, vector states 
and the whole tower of massive string states. The generalization of these 
topics to the superstring is addressed in §12.S.  In this case we need the vertex 
operators for the emission of a boson from a bosonic state of the string, the 
emission of a boson from a fermionic state of the string, and the emission of a 
fermion from a fermionic state of the string, turning it into a bosonic state. 
The form of these superstring operators is constrained by requiring invar­
iance under supersymmetric reparametrizations of the world sheet. We also 
use the vertex operators to determine the three-graviton vertex and the 
graviton-gravitino-gravitino vertex in the context of the closed superstring. 
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The former reproduces the three-graviton vertex which may be derived from 
general relativity, while the latter reproduces the interaction vertex that was 
obtained previously in supergravity theory. Finally, in §12.6, we outline 
recent developments that are beyond the scope of this text. In  particular we 
indicate how scattering amplitudes are calculated in (potentially) realistic 
theories such as the orbifold and fermionic models discussed in Chapters 10 
and 11. We also give a short report on the current status of the most 
developed realistic model, the flipped SUeS) x U(l) (fermionic) model. 

12.2  Bosonic  string  vertex  operators  and  conformal  dimensions  

For closed strings, when we have mapped the external string states to 
puncture the world sheet at finite points, there must appear local operators 
that characterize the individual string states associated with each such point. 
We denote by W 1\(T,  a)  the local operator that corresponds to the absorption 
of a string state lA)  at the point (T,  a)  on the world sheet. W 1\ must carry the 
quantum numbers appropriate to the state lA)  and must be constructed from 
the operator Xi<  and its derivatives (in the case of the bosonic string). Thus in 
the case where lA)  is the (tachyon) ground state, w.~ must be a (D­
dimensional) scalar, while if lA)  is a graviton state, WI\  must transform 
as a spin-2 Lorentz tensor. However, with only this information there is still 
considerable freedom in choosing an appropriate WA .  

Besides the Lorentz properties discussed above we must also ensure the 
correct behaviour under translations. A  state Ik)  of momentum ki<  is 
multiplied by a factor e -i  k.  a  when the translation 

Xi<  -? Xi<  +  ai<  (12.8) 

is effected. Thus we expect WA(T,  a)  to be multiplied by the operator e- i  k.X  

if it is to describe the absorption of the state lA,  k)  having momentum k.  
Further, since any vertex operator W A (  T,  a)  may be inserted at any point on 
the world sheet, the quantity that is required for the calculation of scattering 
amplitudes is the operator 

VI\(k)  = I d2av=hWA (T,  a)  e- ikX.  (12.9) 

Since (by construction) all string theories are invariant under reparametriza­
tions of the world sheet, we should expect that V A(k)  also has this property. 
In  particular it should be invariant under rescaling of the world sheet 
parameters 

a-?Aa  (12.lOa)  

T-?AT.  (12.lOb)  



273 BOSONIC STRING VERTEX OPERATORS 

(Such a rescaling will not destroy the conformal gauge choice (7.13), (7.14).) 
Since the measure acquires a factor A 2  as a result of the rescaling, we require 
that WAe-ik,X  acquires a (compensating) factor of A-2 .  Now, the invar­
iance of the bosonic string action (7.4) under the above rescaling suggests 
that Xfl  is invariant. (In that case the required A -2 comes from the two 
derivatives aa,  a{3  in (7.4).) Further, if Xfl  is invariant, it would appear that 
e-1  k  ,x is also invariant. But this is not correct, as we shall see shortly. 

For open strings, the external string states are mapped onto the boundary 
of the world sheet, so there is a vertex operator W,\(r) that is associated with 
the absorption of the state I A)  at the point on the boundary parametrized by 
r. In this case the quantity needed for the calculation of scattering ampli­
tudes is 

VA(k)  =  f dr~WA(r) (12.11)e-ik,X(T)  

where k  is the momentum of the absorbed state, and X( r) is evaluated on the 
boundary (a  =  0 or 2.n)  of the world sheet. Then under the rescaling (12.10) 
of the parameter r, by reasoning as we did above, we require that for the 
open string W A e -i  k,  x  acquires a (compensating) factor A-I;  the difference 
arises because, since the external states are inserted on the boundary of the 
world sheet, there is only a single integration variable in (12.11). 

The rescalings (12.10) are merely special cases of the reparametrizations 

a~ 0'(0)  (12.12a)  

r~ r'(r) (12.12b)  

which preserve the conformal gauge. The above observations about the 
behaviour of the local operator W A e -i  k,  x  under the rescalings can then be 
understood as statements about the 'conformal dimension' of the operator. 
This is defined as follows. Consider a local operator A(r), such as arises in 
the open-string vertex operator for example. Under the reparametrizations 
(12.12b)  A(r) is transformed into A'( r') and we say that A(r) has 'conformal 
dimension J'  when 

A'(r') = (::J A(r). (12.13) 

So if the open-string W A  e-ik,X  has conformal dimension one,  then (in 
particular) it will acquire the required A-I  under the rescaling (12.10b).  

The infinitesimal generators of the coordinate transformation (12.12b)  
are just the Virasoro operators introduced in §§7.5, 7.6. To see this consider 
an infinitesimal general coordinate transformation of the circle parame­
trized bye,  0:;;;: e  <  2.n,  

e~e'=e+a(e). (12.14) 
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Define 

z=  eie  (12.15) 

then 

z~ z' = z(l  +  E(Z» = z +  L EnZn  + 1 (12.16) 
n  

and 

fez')  = fez)  +  L EnZn  +  1 dt.  (12.17) 
n  dz  

Thus the operators (corresponding to E(Z) = - Zn)  are 

d L  =_Zn+l_  (12.18a) 
n  dz  

= ieine~ (12.18b) 
de  

generate the reparametrization, and it is easy to check that they realize the 
Virasoro algebra (7.96) (without the central extension). The relevance of 
this to the case in hand is apparent when we note that although 'l'  is not an 
angular variable it becomes such in the open-string mode expansion (7.43) 
since it arises only in the form e i  nr  with n  integral. 

The definition (12.13) becomes 

A'(z')  = (~ ::)'A(z)  (12.19)  

in terms of the variable z,  so for the infinitesimal transformation (12.16) we 
find 

dA  dE]OA(z)  =A'(z)  - A(z)  = - Z  [E- + lA  - . (12.20)
dz dz  

Taking E  = - zm  we deduce 

[Lm,  A(z)]  = zm  (z   +  ml) A(z)  (12.21) 

and expanding A(z)  in its moments 

A(z)  =I  Anz-n  (12.22) 
n  

gives 
[Lm'  An]  = [m(J  - 1) - n]Am  +  n'  (12.23) 

! 
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The Virasoro generators (7.92) for the open string are 

Lm  =  -~: L 
oc 

am  - pap:  (12.24) 
p=-oo  

and with a  = 0 the moment x~ of X,u(  T,  0) == X,u(z)  is (from (7.43» 

x,u  = !.. a,u  (n,..O).  (12.25)
n  n  n  

We leave it as an exercise (Exercise 12.2) to show that 

[Lm'X~] = - (m  +  n)X~+n (12.26) 

thereby suggesting that X,u(z)  has conformal dimension I  = 0; however, this 
does not work for n  = 0, because the momentum part of X,u  in (7.43) 
involves T  = -i In z.  Thus X,u(z)  is strictly not  an operator of definite 
conformal dimension. On the other hand it is easy to check that 
-i a,X,u(T,  0) = z  azx,u(z)  does  have definite conformal dimension I  = 1 
(and this is essentially all that is needed for the invariance of the action), so 
in this weak sense X,u  has I  =  O. 

This also indicates why e i  k,  X(z)  might have I  ,..  0 in general; the exponen­
tiation of the momentum term gives a power of z  (see (12.27) below), and we 
can imagine that this might ensure that ei  k,  X(z)  has definite conformal 
dimension. The verification that this is the case, and the determination ofthe 
I-value, is considerably more involved. First we have to be more precise 
about what we mean by e -i  k,  X(x).  We shall study the normal-ordered form 

A(z)==  :e-ik,X(Z):=exp(_ i  k.~-nzn)eXp(-ik.x-k'PlnZ) 
n  =  1 

x exp(  i  k~an zn).  (12.27) 
n  =  1  

Rather than determine the moments An  it is easier to work with (12.21). 
The algebra is straightforward but tedious (Exercise 12.3); commuting L m ,  

given in (12.24), with A(z)  generates terms that are not  in normal-ordered 
form whereas the right-hand side of (12.21) is  normal ordered, and it is 
necessary to reorder carefully. The upshot is that the conformal dimension 
of :e-ik,X(z):  is 

I  = - k2/2.  (12.28) 
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Let us return to the question of the vertex operators. It follows from (7.98) 
that the open-string ground state has a mass M  satisfying 

M2  =  -2 (12.29) 

(since a  = 1). Thus the conformal dimension of :e -i  k.X(z):  for the tachyonic 
ground state 10,  k)  having momentum k  is J  = 1. Since we require that 
W A  e-i  k.  x  has conformal dimension one,  it follows that the tachyon vertex 
operator Wo  has zero  conformal dimension. Thus we may take 

Wo  = 1. (12.30) 

The first excited state of the open string is the massless vector state 
obtained by operating on the state 10,  k)  with the (Ll operators. Since this is 
a massless vector (e  = 0) in D  space-time dimensions, there are only D  - 2 
physical states corresponding to the D  - 2  directions transverse to the 
vector k.  A vector state Iv; E, k)  having polarization E and momentum k  is 
given by 

Iv; E, k)  =  E!-'a'=-lIO; k)  (12.31a)  

with 

e=O  E.k  =  0 E2  =  -1. (12.31b)  

Since the conformal dimension of :e- ik .X :  is now zero, from (12.28), the 
corresponding vertex operator Wv,e(r) must have conformal dimension 
J  =  1. We therefore take 

Wv,e(r) =  ilr[E!-,X!-'(r, 0)] (12.32a)  

or 

Wv,.(z)  =  iz :Z[E!-,X!-'(Z)].  (12.32b)  

(The overall normalization will be justified later.) 
Things are only slightly more complicated when we address the closed­

string vertex operators. In this case, since the external states are conform ally 
mapped onto any point on the world sheet, we need first to know the 
conformal dimension of :exp( -i k  .X(r,  a»:  with 

X!-'(r,  a)  = X'R(r  - a)  +  Xt(r  +  a)  (12.33)  

and X'R,L having the mode expansions given in (7.26) and (7.27). The 
separation (12.32) implies that the exponential factorizes as 

:exp(-ik.X(r, a»:  =  :exp(-ik,XR)::exp(-ik.Xd: (12.34) 

and it is apparent that such an operator has conformal dimensions associated 
with each of the independent reparametrizations 

http:exp(-ik,XR)::exp(-ik.Xd
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a+  ~ a~ (a+)  (12.35a)  

a_  ~ a'- (a_)  (12.35b)  

where 

a±  == T  ±  a  (12.35c)  

parametrize the left- and right-moving modes respectively. Let us define h  
as the conformal dimension associated with (12.35a),  and JR  that associated 
with (12.35b).  For the operator (12.34) it is clear that 

h  = JR'  (12.36)  

The calculation of this common value proceeds very similarly to the 
open-string case with the result 

h  = JR  = -§k2 .  (12.37)  

The factor of four difference between this result and the open-string result 
(12.28) arises from the overall factor of two difference in the mode 
expansions (7.26), (7.27) compared with the open-string expansion (7.43); 
effectively this replaces k  by kl2  in the calculation of the conformal 
dimension. 

We saw in §7.8 that the closed-string ground state is tachyonic with mass 
M  satisfying 

M2  = -8 (12.38) 

so the conformal dimensions hand JR  of :e- i  k.X:  for the ground state are 
h  = JR  = 1. Thus it acquires a factor 0LA. -1  under each of the independent 
rescalings 

a+~Aa+ (12.39a)  

a_~Aa_ (12.39b)  

and consequently a factor A -2 under the simultaneous rescaling. It  follows 
that the (closed-string) tachyon vertex operator Wo  has zero conformal 
dimensions, and we may take 

Wo=  1 (12.40) 

as in the open string. 
The first excited states of the closed string are the massless states given in 

(7.120), corresponding to the graviton, antisymmetric tensor, and dilaton 
states. 

As in (12.31), the massless graviton state with polarization tensor E,uv  and 
momentum k  is given by 

Ig;  E, k)  = E,uva~llk)Ra~llk)L (12.41a)  
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Figure  12.3  The N-particle open-string amplitude. 

with 

k 2  =  0 EflV  =  Ev.u  Efl'1 =  0 kflEjAV  =  O. (12.41b)  

The corresponding vertex operator Wg  ••  must have h  = JR  = 1 and is given 
by 

Wg  .• (r,  a)  = EflV  a+xfl  a_xv  (12.42a)  

that is 

Wg  .• (r,  a)  =  !E flV  aaXfl  aaxv  (12.42b)  

where, as in (8.38), 

a± == a/aa±  =  ~(aT ±  aa).  (12.42c)  

The anti-symmetric tensor and dilaton states have vertex operators con­
structed in an analogous manner. 

12.3  Bosonic  open-string  scattering  amplitudes  

To date there is no really satisfactory quantum field theory of strings. As a 
result we are not yet able to derive the rules for calculating amplitudes from 
a Lagrangian in the manner that we are accustomed to using for point 
particles. Instead we have to postulate certain rules for constructing dia­
grams, which have been found to yield scattering amplitudes with the 
features that we would expect in the light of our knowledge of point particle 
scattering amplitudes. At present the rules give satisfactory results for on­
shell S-matrix elements only. In this section we shall address the calculation 
of tree amplitudes only. There are non-trivial complications in extending the 
techniques to loop amplitudes that are beyond the scope of this book. 

Our experience of calculating Feynman diagrams leads us to expect that a 
(tree) scattering amplitude will have associated with it (i) vertex factors 
VA,(k;) , in general momentum dependent, characterizing the absorption of 
string states lA;;  k i )  of momentum k;,  and (ii) propagator factors ~ associ­
ated with the propagation of the string between two vertices(l). Then the 
amplitude for the N-particle process shown in figure 12.3 is given by 
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AN  =  gN  - 2(A1 ; k11V A/k2)  IlV A3(k3)  ... IlVAN _ ,(kN  _ 1 )IAN;  kN>  (12.43)  

where g is the string coupling constant. The vertex factors are just the 
products:W A  e- i  k,X:,  introduced in §12.2, but evaluated at r = 0 (z  = 1). 
The propagators Il are analogous to the familiar scalar-field Feynman 
propagator (p2  - m2 +  i E)-\  the (open-string) mass formula is given in 
(7.98): 

1M2  - - \'" ~fi Cl! - 1 (12.44)L  - L  ....  -n  fin 
 
n  =  1 
 

and we see from (7.91) and (7.92) that the Hamiltonian H,  given in (7.97), is 

H  = La  - 1 = - ~(p2 - M2).  (12.45)  

We therefore take the propagator to be 

Il = (La  - 1 - i  E)-l (12.46) 

not worrying too much at present with the normalization. We write each 
propagator Il in (12.43) using the integral representation 

Il = tdz  ZLo  - 2. (12.47) 

Then 

A  - N-2I1dz3I1dZ4  I1dZN- 1(A'k  IV  (k)  L  -lV  -L  +1 N  - g  - - . .. -- 1, 1 A2 2 Z 3 0 A3Z3  0 

a  Z3  a  Z4  a  ZN  - 1 

X (Z3Z4)Lo  - 1V A 4(k4)(Z3Z4)-Lo +  1 ... (Z3Z4  ... ZN  _ llo - 1 

X  VAv_,(kN- d(Z3Z4'"  ZN_1)-Lo+ 1  

X  (Z3Z4'"  ZN_1)Lo -lIAN; kN>'  (12.48) 

The operator La  generates r translations, so for any local operator A(r)  
we have 

A(r)  =  eirLoA(O)  e-irLo  =  eir(Lo  -l)A(O)  e-ir(Lo -1).  (12.49) 

In terms of the variable introduced in the previous section 

= eirZ  (12.50) 

this gives 

A(z)  = ZLo - 1A(1)z-Lo +  1. (12.51) 

Thus we may rewrite (12.48) as 



280 SUPERSTRING INTERACTIONS 

A  ,=  N- 2fl dZ3fl dz4... fl dzN _  I (AI; k l lV",,(k2,  Z2)  
l\  g  a  Z3 a  Z4 a  ZN  - I 

X Vdk3'  Z3)V"'4(k4,  Z3Z4)'"  

X VAv_,(kN - I , Z3Z4'"  zN-I)IAN;  kN)  (12.52a)  

where 

Z2  == 1  (12.52b)  

and we have used 

(La  - l)IAN;  kN)  =  O. (12.52c)  

Changing variables to 

Y;  =  Z2Z3Z4 ...  Zi (i =  2,3, ... , N  - 1) (12.53) 

gives 

N-I  N-I n dy;=  n dz; (12.54) 
;=3  y;  ;=3 Zi 

and the domain of integration is 

q]j:  0 < Y N  - I < Y N  - 2 ... < Y3  < Y2  =  1. (12.55) 

Then 

N-I  

AN  =  gN  - 2 f  n dYi  (AI; k l iV",,(k2, Y2)Vi\3(k3, Y3)  ...  
'Z!J i  =  3 y,  

X VA'._l(kN - I, YN  - I )IAN;  kN)'  (12.56) 

We may view the above manipulations as follows. The integral represen­
tation of the propagator, used in (12.47), requires the integration of the 
variable T  in (12.50) to be along the imaginary  axis T  == iT'  ,0 <  T'  <  00. It  is 
therefore natural to associate the initial state IAN'  kN)  with TN  =  cc, corre­
sponding to YN  = 0, and the final state IAI k l ) with T]  = -00, YI = 00. 

However, we observed in §12.1 that for open-string scattering we can 
always choose a mapping of the world sheet onto the upper half-plane, or 
onto a disk, with the external states appearing at finite points, as in figure 
12.2,  (b)  and (c).  Thus the scattering amplitude ought to be invariant under 
the cyclic transformation of the N  external particles: 

(AI, kl ; A2 , k2;  ... ;  AN,  kN)  ----'>  (AN,  kN;  AI, kl ; ... ; AN  - I, kN- I)' (12.57) 

Obviously to prove this statement, we will need to perform a conformal 
transformation in which 
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Tt  ~ Tt  +  1 (i=1,  ... ,N-1)  (12.58a)  

TN~ TJ (12.58b)  

but to do this we need to associate vertex operators V AJkN'  YN)  and 
VA,(k l , Yl)  with the initial and final states in (12.56). 

Consider first the case where lA)  is a tachyon state, so WA  = 1. Then 

lA;  k)  = lim Zk2!2v,,,,(k,  z)IO,  0)  (12.59) 
z->  0 

where 10,0)  is the zero-momentum Fock space ground state. The reason for 
inclusion of the factor Zk2/2  =  Z-l  is that we may write V A(k,  z)  in the form 
(12.27) and only the zero-mode piece 

Zo=e-ik.x-k.plnz  (12.60) 

contributes in the tachyon state. It is easy to see (Exercise 12.3) that we may 
rewrite this as 

Zo = e- i  k.xZ-k.p  - k2/2  = z-k.p  +  k2/2  e- i  k.x  (12.61) 

so 

zolO,  0)  =  Z-k2/2  e -i  k .xIO,  0)  =  z - k2/2 IA,  k)  (12.62) 

and it is this Z-k2/2  (=  z  for the tachyon) that must be cancelled in (12.59). 
Similarly 

<A; kl  =  lim <0, 0IV\(k,  Z)Z-k2!2.  (12.63) 
z->  DC 

Thus we may rewrite (12.56) as 

N  - 1 

A -I'  N-2  -k2/2  k 2 ,/2J  ndYi<O  0lv  (k  ) N  - lm g  Yl'  YN'  -, A, 1, Yl  
y,->DC,y,v->O  'l!J  i=3 Yi  

x V A 2(k2, Y2)  ... VA,v_  ,(kN  - 1, YN  - l)V AJkN' YN)IO,  0) (12.64) 

with the domain q}j  given in (12.55) 
Using this form for the amplitude the cyclic invariance may be readily 

established. It is instructive to do this, since the proof utilizes the residual 
symmetry (SL(2, R) in fact), which preserves the conformal gauge choice 
made in (7.13), (7.14). However, it is not needed for the calculation of the 
simple string amplitudes that constitute the main objective of this chapter. 
We therefore refer the interested reader to Appendix B for the details. 

The simplest amplitudes to calculate are the three-point functions A 3 ,  

since it is apparent from (12.56) that no integrations are needed. The three­
tachyon vertex is 
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A3  = g<O;  kl lVo(k2,  1)10; k3)  (12.65) 

with 

Vo(k,  z)  == :Woe-ik.X(zl:  (12.66)  

and Wo  = 1, as given in (12.30). It  is clear from (12.27) that only the 

zero-mode part of Vo(k,  1) contributes: 


A  = g<O'  k  le- ik2 ,x I0' k  ) = g<O'  k  10' k  +  k  )
3,1 ,3 ,1,23 

=  g(21i)DO(Dl(k l  +  k2  +  k3)'  (12.67) 

Evidently such an energy-momentum-conserving o-function, multiplied by 
(21i)D,  will appear in all amplitudes, and we shall only exhibit the remainder 
of the amplitude: 

A3  - g.  (12.68) 

Next consider the tachyon-tachyon-vector vertex: 

A3  = g<O;  kl lVv,e,(k2,  1)10; k3)  (12.69a)  

where 

V  (k  z)=W  (z)e-ik.X(zl  (12.69b) 
V,€'  V,E  

with Wv,e(z)  given in (12.32). Thus using (7.43) (and setting I  = 1) 

Wv,eCZ)=E.p+  L  E.anz-n.  (12.70)  
n"'O  

Hence 

A3  =  g<O;  kl lE2' plO;  k2  +  k3)  - gE2' (k2  +  k3)  (12.71) 

with E2 the polarization of the external vector state. Since E2 is transverse to 
k2,  as given in (12.31b),  

A3  - gE2·k3  = - gE2·kl  = ~gE2' (k3  - kr) (12.72) 

using energy-momentum conservation. The same result must of course be 
obtained if we cyclically permute the states so that the vector state is the 
initial state and we insert a tachyon vertex operator: 

A3  = g<O;  k3IVo(kl ,  1)1V; E2, k2)  = g<O;  k3IVo(k,  1)E2' a-110; k2)  

=  g<O;  k31e -i  k,.x  ek ,.  a 1E2 . a_110; k2)  

=  g<O;  k3  +  kll[k l . ab  E2' a-dIO; k2)  - - gE2kl  (12.73) 

in agreement with (12.72). Incidentally, this agreement provides the pro­
mised justification of the overall normalization of the vector emission vertex 
operator (12.32). 

The triple-vector vertex is given by 
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A3  = g(V;  El, k l lVv  .• ,(k2,  l)lv; E3, k3}  

=  g(O;  klkl' al[(E2' (Ll +  E2'P  +  E2' al) e-k2 · a _ 1  

X e-i  k2 ·x  ek2'  a l ]E3' a_lIO; k3}  

- - g[ El' E2 E3' kl  +  E2' E3 El . k2  +  E3' El E2' k3  

- (El·k2)(E2· k3)(E3· k l)]  

=  ~g[El.E2E3·(k2 - k l )  +  E2· E3El·(k3 - k2)  +  E3· E1E2·(kl - k3)  

- El·(k3  - k2)E2·(kl  - k3)E3·(k2  - k l )]  (12.74)  

and we have used the fact that only the n  =  0, ±  1 modes are active in this 
case. The final form shows that this amplitude is antisymmetric: 

A 3(1,  2, 3) =  - A 3(2,  1, 3) (12.75) 

so the full (Bose symmetric) amplitude for the process, obtained by adding 
these two amplitudes, for example, is zero. Thus, as in QED, the triple­
(massless-) vector amplitude is zero in an abelian gauge theory. However, it 
survives in a non-abelian theory, in which there is a compensating totally 
anti-symmetric group theory factor rbc  associated with the vertex. We note 
too that the first three terms of (12.74) give precisely the momentum 
dependence of the triple-vector vertex in non-abelian theories, as can be 
verified by comparison with equation (10.75) of Bailin and Love(2). (Of 
course in that case the vertex is for general off-shell vector particles, and 
derives from the cubic terms of the Yang-Mills Lagrangian -!Faf'V  Fap.v.)  
The last term in (12.74) is actually of order a',  and amounts to an additional 
term proportional to r bc  Fa/ Fb/ Fc/  in the effective (Yang-Mills) Lagran­
gian. 

We turn now to the simplest four-particle amplitude, involving four 
tachyons. From (12.56) we have 

l  d  
A4=g2  J ~(0;kllVo(k2,1)Vo(k3,y)10;k4)' (12.76)  

o y  

Using (12.27) and (12.61) the zero-mode part of VO(k3 ,  y)  gives 

e- i  k,.xy-k,.p  - k;/210;  k4}  =  e- i  k , .xy -k,.  k.  + 110; k4}  

=  y-sl2  - 110; k3  +  k4}  (12.77a)  

since k~ =  - 2 for a tachyon state and we have defined 

s == (k1  +  k2)2  = (k3  +  k4)2  =  2k3.k4  - 4. (12.77b)  

Similarly the zero-mode part of VO(k2,  1) converts (0; kll to (0; kl  +  k21.  The 
contribution of the non-zero modes is then determined by 

(0, olexp( i  k2~am) exp( - i  k3.:-n yn)  10, O}  (12.78) 
m=  1 n  =  1 
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Figure  12.4  s-channel exchange contribution to A 4 .  

and this is most easily evaluated using the 'coherent state' methods, 
described in  Appendix C.  Using the result 

(:eA::e B:)  = e(AB)  (12.79) 

it is apparent that we only need 

(AB)'=  (0,01 (i k2~am)( - i k3.;-n yn)  10,0) 
'm  =  1 'n  =  1 

= i  k2~k3yn = - k2.k3In(l- y).  (12.80) 
n  =  1 

Putting these results together we get (the Veneziano(3) amplitude) 

A  2Jl  d  -5/2 - 2(1 )-t/2  - 2 - 2B  ( sIt  1) 4-g  yy  -y  -g  -2'- ,-2'- (12.81a)  
a ' 

where 

t==  (kl  +  k4f  = (k2  +  k3?  = 2k2.k3  - 4 (12.81b)  

and B  is the beta function 

B(a,  b)  ==  J'1  dx  x a  - 1(1 _ X)b  - 1 =  f(a)r(b).  (12.81c) 
a rea  + b)  

Note that because the gamma functions have poles where their arguments 
are zero or negative integers, the amplitude A4  has poles when 
s, t  =  -2,0,2,4, .... This result is in accord with what we would expect 
from field theory considerations. We have already established in (12.68) the 
existence of a non-zero three-tachyon vertex, when all three tachyons are 
on-shell. Thus there ought to be a contribution to A4  arising from the 
exchange of a tachyon (T)  between the pairs kl'  k2  and k3' k4'  as shown in 
figure 12.4. 
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Figure  12.5  t-channel exchange contribution to A.j.  

Our experience of field theory leads us to expect a pole in the amplitude 
from the propagator of T  which contributes (k  2  - m}) -I,  where k  is the 
momentum of T,  and mT  is its mass. Thus using energy-momentum 
conservation, the pole is when k 2  = (k l  +  k2)2  = S = -2, in accordance 
with the vanishing of the argument of the gamma function r( -s/2 - 1) in 
A 4 .  The other s-channel poles arise from couplings of the tachyon to the 
massless vector, as suggested by (12.73), and to the whole tower of massive 
string states. In  the same way the t-channel poles may be understood to arise 
from exchanges between the pairs k2,  k3  and k  I,  k 4 .  

The fact that this amplitude (12.81) is symmetric  under the interchange of 
sand t  is, however, quite amazing from a field theory viewpoint. It amounts 
to the statement that the diagrams in figure 12.4 are equal  to the diagrams in 
figure 12.5. More generally, for N-point amplitudes, AN  is invariant under 
cyclic interchange of the momenta k I,  k2'  ... , kN .  

12.4  Bosonic  closed-string  amplitudes  

The evaluation of closed-string amplitudes proceeds analogously to that of 
the open-string amplitudes. The principal difference arises because the 
world sheet for a closed string is (topologically) a sphere, and the external 
particles puncture the sphere (generally) at finite points. As explained in 
§12.1, the world sheet can be transformed to an ordinary round sphere, and 
then mapped onto the entire (complex) place. Then after the Wick rotation 
r =  i r' the right-moving part of the world sheet XR(r  - a)  becomes a 
function XR(z)  of the complex variable 

z = e2i (T - a)  = e-2 (T'  +  i a)  (12.82a)  

while the left-moving piece XL(r  +  a)  becomes a function XL(z)  of the 
complex conjugate variable 

Z = e2i (T +  a)  = e- 2(r' - i a).  (12.82b)  
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There is a difference too in the propagator. The closed-string mass formulae 
are given in (7.84), (7.85), (7.86), and using the expressions for La,  La  given 
in (7.65), (7.66) we see that the Hamiltonian H,  given in (7.67), is 

H  = 2(La  +  La  - 2) = - ~(p2 - M2)  (12.83)  

so, with the same normalization as (12.46), we take the propagator to be 

~ = ~(La +  La  - 2)-1 = ~ [ dp  pLo  +  Lo  - 3 (12.84) 

where we have introduced the integral representation analogous to that 
given in (12.47). However, we also have the constraint (7.87) which requires 

(La  - La)lcp>  = 0 (12.85) 

for any physical state Icp>.  Since this constraint has not been incorporated 
into (12.84), it is clear that non-physical states will be propagated by~. To 
restrict the propagation to physical states obeying (12.85) we modify ~ to 

1 f1  lOT -. - 1 f  d2z  ­
4:r  a  a  4:r  Iz,;;  1  Izl  

(12.86a)  

~=- dp  dcppLo+LlI-3e,q;(LlI-Lo)= __ 2ZLo-1ZLu-1  

where 

z  =  p  e i  q;  (12.86b)  

d2z  = pdpdcp.  (12.86c)  

Just as in the open-string case (12.43) the amplitude for a general (tree) 
scattering process is given by 

AN  = gN  - 2(A1;  k 1 ]VA2 (k2 )  ~V\,(k3 )  ••• ~V\v- ,(kN  - 1 )IAN;  kN>  

+  permutations (12.87) 

with g the string coupling constant, and the vertex factors V\,(k;)  character­
ize the absorption of a state IAi>  of momentum k i  (at the point 
(r, a)  = (0,0)). Since there is no well-defined order for the N  - 2 emitted 
particles, the amplitude AN  includes a sum over all permutations of the 
vertex operators. Then, just as the open-string amplitude is symmetric under 
cyclic reordering of the N  external particles, so the closed-string amplitude 
includes all possible orderings of the N  external states. 

The separation of the world sheet X"( r, a)  into right- and left-moving 
pieces also entails a similar separation of the vertex factors V\(k),  so 

VA(k)  =  VAR(k,  a_  =  O)V.\L(k,  a+  =  0) (12.88) 

with a±  defined in (12.35c).  La,  La  generate translations of a_,  a+  for the 
right- and left-moving pieces, so 
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VAR(k,  T  - a)  = e2i(r  - a)LoV~R(k, 0) e-2i(r  - a)Lo  (12.89a)  

V AL(k, T  +  a)  = e2i(r  +  a)Lo  VAL(k,  0) e -2i(r  +  a)Lo  (12.89b)  

which, as in (12.51), can be rewritten in terms of the variables z,  zintroduced 
in (12.82): 

V  (k  Z)=ZLo- 1
AR  ,  V AR  (k  ,   l)Z-Lo+l (12.90a)  

V AL(k ,  Z)=ZLo- 1V AL(k , l)Z- l o+1 .  (12.90b)  

As before these are precisely the factors that appear in the propagator ~ 
given in (12.86). For this reason the final expression for AN is  very similar to 
(12.56): 

_ ( g )N  - 2 J N 
A N - 4.7T  4.7T  SJ i=3IziI2(Al,kllV~2(k2,1,1)VA3(k3'Z3'Z3)'" n-1 d2zi  .  _ 

X VAs _JkN- 1, ZN-l,  ZN-l)IAN; kN)  + permutations  (12.91a)  

with 

x VA(k,  z,  z)  = V~R(k, Z)VAL(k,  z)  (12. 91b)  

as in (12.88). The domain of integration is 

®: 0 <  IZN  - 11  <  IZN  - 21  <  ... <   IZ31  <  l.  (12.91c)  

In  this case the simplest amplitude, the three-tachyon vertex is 

A  = glO'  k  I e-ik2·XR(I)  e- ik
3 \,1 ,.xL (1)lo, ,3  k  )  = glO'  k  I e- ik2 ·x 

\,1 .,3 I0·  k  ) (12.92) 

since only the zero-mode part of the vertex operator is activated. The 
external tachyon states are defined by 

10;  k)  == e-ik,xIO)RIO)L  (12.93) 

(with k 2  = -8). Then as in (12.68) 

A3  = g(O;  kIlo; k2   + k3)   (12.94a)  

that is 

A  -g  (12.94b)  

omitting the energy-momentum-conserving 6-function multiplied by (2.7T)D.  
Similarly the tachyon-tachyon-graviton vertex may be derived in a way 

that closely parallels the tachyon-tachyon-vector vertex in open-string 
theory: 

A3  = g(O;  k1IVg"2(k2,  1, 1)10; k3)  (12.95a)  

where 
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VgE(k,z,i)=W  (z i)e-ik.X(z.z) .  g.E  ,  (12.95b)  

with Wg.E(r, a)  given in (12.42). Using the expansions (7.26), (7.27) we find 

Wg,il,  1) =  EIlV(~PIl +  2au)(~pv +  2av)'  (12.96) 

Hence 

A3  = 19(O; klIE~vPIlPvIO; k2  +  k3)  ~ 19E~Vk3llk3v 
- 1  IlVk  k  - 1  Ilvk  k  (12.97)-"gE2 III Iv- -"gE 2 311  Iv 

using energy-momentum conservation and the transverse properties 
(12.41b)  of E~v. 

We leave the other closed-string three-point vertices as exercises and turn 
now to the four-tachyon scattering amplitude. Equation (12.87) gives 

A4  =  1<0;  k1iVo(k2)  ~VO(k3 )IO;  k4)  

+  1(0;  kliVo(k3)  ~VO(k2)10; k4)  (12.98) 

and, using (12.86), we can write the first term as in (12.91) as 

1  J  d2z. - .-4. -I 12 (0, kliVo(k2'  1, 1)VOCk3,  z,  z)IO,  k4)·  (12.99) 
;z; /zl'" 1 z 

Similarly, we can use the propagator in the second term to write it as 

g2 J d121~ (0; kliVo(k3'  Z-I,  Z-1)Vo(k2'  1, 1)10; k4).  (12.100)  
4n  /z/  ~ I Z 

Now change variables in this term to 

w  =  Z-I  w = i-I  (12.101) 

so that 

d2z d2w  
(12.102)~= Iw1 2 ' 

Then 

g2 J d2z ­A4=- -I 12 (0;kIIP[Vo(kz,I,1)Vo(k3,Z,z)]10;k4)  (12.103)
4;z; z 

where the region of integration is the whole of the z-plane and P  is an 
ordering operation, defined by 

_  {Vo(k2 ,  1, 1)Vo(k3'  i,  i)  Izl  ,;;;;  1  
P[Vo(kz,  1, I)VoCk3'  Z, z)]  =  VO(k3 ,  Z, i)Vo(k2'  1, 1) Izl  >  1. (12.104) 

The factorization property (12.88) of the vertex operator means that the 
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integrand in (12.103) also factorizes into left- and right-moving pieces. The 
contributions of each of these is readily evaluated as in the open-string case 
(see (12.77) to (12.80)). First note that using the notation (12.82) 

X I1(z,  z)  =  X~(z) +  xt(z)  (12.105a)  

with 

x'R(z)  = ix l1  - i  pl1ln  z  +  i  '\" Q:~z-n (12.105b) 
4  2  L  

nT'O  

xt,(z)  =  ~xl1 - ~pl1  In z  +  ~ L a~rn. (12.105e)  
nT'O  

Thus the zero-mode part of VO(k3 ,  z,  z)  gives 

exp( -i k3.x  - !k 3.p  In zz)IO;  k4)  =  e- i  k,.x(zZ)-k,.k/4  - k;/4  

=  Izl-k,.k/2  +  210; k3  +  k4)  (12.106) 

since for the closed-string tachyon state k~ =  -8. As in (12.80), the non-zero 
mode contribution is 

(1 - Z)-k,.k/4(1  - Z)-k,.k/4  (12.107) 

so 

A4  = ~ f d2z  Izl- k ,. k/211  - ZI-k,.k,l2.  (12.108) 

The general expression for integrals of this and more general forms is 
given in Appendix D (see (Dll». 

Thus(4) 

A4  =  l  reI - k3. k4 /4)rel - kz· k3/4)f(1 - kJ .k3/4)  
4  f(k3.k4/4)f(kz.k3/4)f(kJ.k3/4)  

= l  f( -1 - s/8)f( -1 - t/8)f( -1 - u/8)  
(12.l09a)

4 f(2 +  s/8)f(2 +  t/8)f(2  +  u/8)  

where 

s  ==  (kJ +  k Z)2  = 2kJ  •  kz  - 16 (12.109b)  

t  ==  (kz  +  k3)Z  =  2kz.k3  - 16 (12.10ge) 

u  =  (kJ +  k3)2  =  2kJ .k3 -16  (12.109d) 

now, because of the different tachyon mass. As expected this has poles at 

s, t,  u  = 8(n  - 1) n=0,1,2,  ...  (12.110) 
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corresponding to the tachyon, (massless) graviton, anti-symmetric tensor, 
dilaton, and the whole tower of massive string states. 

The factorization (12.88) of the closed-string vertex operator into vertex 
operators (12.89a)  and (12.89b)  associated with the right- and left-moving 
modes, suggests that the result (12.109) might also be separable. Also, since 
both of the vertex operators (12.89a)  and (12.89b)  are similar to the open­
string vertex operator, we might suspect that our result is expressible in 
terms of the open-string result (12.81) for the four-tachyon scattering 
amplitude. It is  easy to verify that this is the case. Using the elementary 
property 

f(x)f(1 - x)  = nisin nx   (12.111) 

we see that(5) 

--2 A closed( ) =  sin m/8 A  open  (~ ~) A open  (~ !:!.)
4  

(12.112) b  s, t,  u  4n  4  4' 4 4  4' 4 

where A4Pen(s, t)  is given in (12.81). 

12.5  The  superstring  vertex  operator  

In order to calculate scattering amplitudes for a superstring theory, it is 
obviously essential to construct vertex operators for three basic processes: 
(i) the emission of an on-shell bosonic state from a bosonic string; (ii) the 
emission of an on-shell bosonic state from a fermionic string; and (iii) the 
emission of an on-shell fermionic state from a bosonic string, changing it to a 
fermionic string. (The latter will then fix the emission of an on-shell 
fermionic state from a fermionic string, changing it to a bosonic string.) One 
might suspect that the first of these, involving only bosons and the bosonic 
string, would be covered by our earlier treatment in §12.2, and indeed it is  
true that we require the vertex operator v,\(0),  describing the emission of 
the bosonic state A from the point r =  0 on the edge of an open string, to 
have conformal dimension 

J  = 1. (12.113) 

However, in a superstring theory V A(O) is constrained by the Virasoro 
super-algebra; the rescalings (12.10) are now merely special cases of the 
world sheet super-reparametrizations that preserve the super-conformal 
gauge (8.28), (8.29). In the (open-) superstring theory we now require the 
existence of an operator WA(O)  such that 

V\(O)  = [G" W\(O)]±  (12.114) 

for all rE 7L  +~. We take the commutator [ ]_ or anti-commutator 
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,  ]+  depending upon whether W,,,-(O)  is a world sheet bosonic or 
fermionic operator. 

Then it can be shown (Exercise 12.10) that VA(O)  has the required 
conformal dimension J  = 1 if and only if WA(O)  has conformal dimension 
J  =  !.  We can verify this as follows. Take 

WA(O)  = :exp(-ik.X(O»:  (12.115) 

with X(z)  having the usual (open-string) expansion, as in (12.27). Then 
using 

Gr =  - I  b~-nal<n (12.116) 
nEE  

which is the open-string analogue of (8.76), we find (6) 

[G n  WA(O)]  = - Y2k.1/J(O)  :e-ik.XCO):  (12.117a)  

where 

1/J'U(T)=_l_  '\"  bl<e- irr  (12.117b) Y2 L  r  
rE E  +  1/2  

is the (NS) world sheet fermion field. Now, the invariance of the superstring 
action (8.1) under the rescalings (12.10) requires that 1/J1<  (and ijjl<)  acquire a 
factor of .le  -1/2  under the rescaling, which is consistent with 1/J having 
conformal dimension J  = !.  Thus in this case VA(O)  defined in (12.114) will 
have the required conformal dimension J  =  1 if and only if the conformal 
dimension of W,,- in (12.115) is J  = !.  We have seen already, in (12.28), that 
the conformal dimension of W A  is -k2/2,  so we only get the required value 
for k 2  = -1,  which corresponds to the tachyonic state that is removed by the 
GSO projection. 

The (undeleted) massless vector state Iv;  E,k)  having momentum k  and 
polarization vector E  is given by 

Iv;  E, k)  =  - Eub~1/210; k).  (12.118) 

This suggests that to construct the vertex operator we take 

Wv  =  - Y2E.1/J(O) :e-ikXCO):  (12.119) 

which has J  = ~, since k 2  = O. Then 

Vv  = {Gn  Wv }  (12.120) 

in which we take the anti-commutator  of Gr  with Wm  since both are 
fermionic, has the required conformal dimension J  =  1. This may also be 
readily verified by calculating Vv  explicitly, which gives (6) 

Vv  = :[-E.BrX(O)  - 2E.1/J(0)k.1/J(O)]  e-ik.XCO):.  (12.121 ) 
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The general rule is that if W  is a bosonic operator (on the world sheet), such 
as (12.115), involving an even number of 1jJs, then V  is constructed using the 
commutator with G" as in (12.114). However, if W  is a fermionic operator 
on the world sheet, such as (12.119), involving an odd number of 1jJs then Vis 
constructed using the anti-commutator with Gn  as in (12.120). In fact we 
saw in §8.8 that the GSO  projection deletes states involving an even number 
of 1jJs in the NS sector, so we will only ever need the anti-commutator 
(12.120) for physical processes in this sector. 

In the Ramond sector, describing space-time fermions, the bosonic 
emission vertex operators have essentially the same form as when emitted in 
the Neveu-Schwarz sector; a vertex operator is associated with emission at a 
specific point on the world sheet, and this should not be affected by the 
difference in boundary conditions which is the only distinction between the 
space-time bosonic (NS) and the space-time fermionic (R) sectors. The 
formulae (12.114) relating VA  to W,,"  must have G r  replaced by Fm  with 

Fm  =  - I  d':r,  - nO'.l1n  (12.122) 
nEE  

which is the open-string analogue of (8.78), and the upshot is that one simply 
uses the expansion (12.117 b)  of 1jJ11(  r) in half-integral modes for emission 
from a bosonic (NS) string or 

1jJ11(  r) = _1_  \'  dl1  e-i nr  (12.123)V2L.,n  
nEE  

for emission from a fermionic (R) string. 
The vertex operator (V F)  that describes fermion emission(7) from a 

bosonic string is altogether more complicated. It must change the incoming 
bosonic string into an outgoing fermionic string. In the R-NS  formulation 
that we are using this entails changing the boundary conditions of the 1jJ11  

field. Thus V F  must be associated with a cut on the world sheet with a 
branch point at the specific point where the emission occurs, and it is 
difficult, at first sight, to see how to construct such an operator from X I1 ,  1jJ11.  
The trick is to bosonize the R-NS  fermions in pairs: 

1jJ2m  - J  ±  i  1jJ2m  = e±i  'Fm  (12.124) 

and then construct the spin operators 

D'!!:.1/2  = e±i<p,p.  (12.125) 

Then 

0",  == D~1/2D~1/2D~1I2D~1/2D~1/2 (12.126) 

has 32 (=25) components and transforms as an SO(lO) spinor 16  +  16  
representation, and creates the required cuts in all of the 1jJ11.  However, 0", 
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has conformal dimension ~ and has to be augmented by a (ghost spin) 
operator ~+1I2 having dimension ~ in order to obtain the requisite J  = 1. It is 
beyond the scope of this book to give further details of this, and we refer the 
interested reader to the extensive literature on this topic(8). Suffice it to say 
that the vertex operator 

VF 

relates to the emission of a massless fermion of momentum k  described by 
the spinor u"',  and so 

r"k"u  = 0 (12.128) 

with r" the 10-dimensional gamma matrices. It is also true, but not obvious, 
that the appearance of the super-conformal ghost operator ~+1/2 is compat­
ible with the de coupling of these ghosts, as well as the time-like ghosts 
discussed in §S.6. 

The extension of all of these considerations to the closed  superstring is 
straightforward, and very similar to that given in §12.2 for bosonic string. 
This is because the left- and right-moving components are essentially 
independent in the closed string, and each behaves very much like the open 
string. As in (12.88), the vertex operator factorizes into left- and right­
moving pieces: 

VA =  VALVAR  (12.129) 

and we require that the conformal dimensions satisfy 

JL =  1 =  JR'  (12.130) 

Consider first the mass less (ten-dimensional) graviton bosonic states (8.168) 
that survive the GSO  projection with momentum k  and polarization tensor 
Ew'  Then the associated vertex operator is 

Vg,ik)  =  E"v[a_X~ + ~1/J~k.1/JR][a+XL  + ~1/JLk.1/Jd  e- ik X . (12.131)  

in which the right- and left-moving contributions are obtained by computing 
the anti-commutators of G r  and G r  with 

,h"  e- i  k,XL.R 
't'L,R , 

analogously to (12.121); a± are defined in (12.42c).  
The vertex operators for the other massless states in (8.166), (8.167) and 

(S.169) that survive the GSO  projection are constructed similarly. Thus for 
the (ten-dimensional) gravitino fermionic states (8.166) having momentum 
k  and vector spinor u ~ of definite chirality, the vertex operator is 

V  ( -'" k)  - -",,,,R  eR[a  X"  + 1   "k  ] -i k.X  g  U",  - U,,";'+1I2  '"  +  L 21/JL ·1/JL e (12.132) 

where ~~ 112 is the right movers'conformal ghost operator, and e~ is defined 
as in (12.126) for the right-moving R-NS  fermions. 

=  ~+1I2u"'e",e-ik.X (12.127) 
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12.6  Superstring  scattering  amplitudes  

As in the bosonic string we consider only tree scattering amplitudes. We 
start with the N-boson  amplitude AN'  As before, we expect that the 
superstring amplitude has the form (12.43) 

AN  = gN- 2(CPIIV",,(k2)  IlVA3(k3)···  VA\_1(kN-1)!CPN)  (12.133)  

and that for suitably chosen vertex operators V Ai'  and propagator Il, this will 
possess the usual properties of unitarity and, in the case of open strings, 
cyclic symmetry. The propagator is determined, as before, from the Hamil­
tonian. For the open string we have 

H  =  - !(p2  - M2)  =  Lo  - a  (12.134) 

where, in the bosonic (NS) sector, Lo  is given by (8.93) and aNS  =  ~, as given 
in (8.154). Thus we take the superstring propagator to be 

Il = (Lo  - !)-l = J~ dz  ZLo  - 3/2. (12.135) 

Then proceeding as in §12.3 it is easy to show that AN  is given precisely as in 
(12.56) by 

AN  = gN  - 2J  

N-l ndYi  (cpIIVA2(k2,  1)VA3(k3'  Y3)  ... 
'Zt  i  =  3 y,  

X VAO_l(kN-l,  YN-l)!CPN)'  (12.136) 

However, it is not possible to proceed as we did before to obtain the form 
(12.64) which facilitates the proof of cyclic symmetry. The problem is best 
illustrated by considering an N-tachyon amplitude, even though the GSO 

projection deletes this state. We see from (12.62) that the incoming tachyon 
state !o; k)  is obtained from 

!o; k)  = lim z"2/2  e-ikX!O,  0) = lim z- lI2Wo(k,  z)!O,  0). (12.137) 
z~o z~o 

Then the analogue of (12.64) will involve N  - 2 V-operators and two 
W-operators, rather than the N  V-operators we had in the bosonic string; 
this derives from the conformal dimensions of the operator Wo  being 
- el2  =! rather than the J  = 1 of the vertex operators Vo.  For this reason 
the proof of cyclic symmetry is most readily given in a different 'picture' to 
the one we have discussed so far. It  is beyond the scope of this book to give 
details of the alternative (F1)  picture or its equivalence to the (F2)  picture we 
have used hitherto. The interested reader is referred to other texts(8) for 
this. 
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The simplest amplitude is the three-point function A 3.  Since the tachyon 
state is deleted by the GSO projection, the lowest-mass bosonic state is the 
massless vector state. The three-vector vertex(7) is 

A3  = g(v;  El, k l lVu,e2(k2)lv;  E3, k3>  

= g(O;  kliel' b1l2 Vu,ez(k2)E3'  b -11210; k3>'  (12.138) 

Using the vertex (12.121), and exhibiting only the active modes in this 
amplitude, we find 

Vu  e,(k2)  =  [-E2'P  - E2.b-l/2k2.bl/2  + k2.b_1I2E2.b1l2]  e-ikz ·x .  (12.139)  

Thus, using the anti-commutation relations, we find 

A 3  = g( El . E3 E2 . k3  - El . E2 E3 . k2  +  El' k2 E2  . E3) = ~g[El . E2 E3 . (kl  - k2)  

+  E2·E3EI·(k2 - k3)  +  E3' EIE2' (k3  - k l )].  (12.140)  

Just like the (open-) bosonic string amplitude (12.74), this amplitude is Bose 
anti-symmetric, and survives only in a non-abelian theory. However, unlike 
in (12.74), there are no additional O(a') terms;  superstring theory delivers 
precisely the three-vector interaction vertex of the Yang-Mills Lagrangian. 

For the closed  superstring, the analogous process is the three-graviton 
vertex. We leave it as an exercise to show that using the graviton emission 
vertex (12.131) we get 

A3  = -fogEiE~VE3P[YJp,u(kl - k2)a  + YJ,ua(k 2 - k3)p  + YJap(k 3 - kl),u]  

x  [YJav(k l  - k2)p  + YJvp(k2   - k3)a  + YJpa(k3   - k1)v]·  (12.141) 

Thus if we write the open-string three-vector amplitude (12.140) as 

A open - p,u  av  (k  k  k)  3 - gE 1 E 2 E3 p,ua  1, 2, 3 (12.142)

we see that the closed-string three-graviton amplitude (12.141) is given by 

A closed  -3 - gE 1 po,uv E 2 E3aPv (lk 2 1, lk 2 2,  lk)V 2 3 (lk 2 lk) p,ua avp 1, lk 2 2, 2 3 . (12.143) 

This gives precisely the same three-graviton vertex as that implied by the 
Einstein-Hilbert action of general relativity: 

5£GR =  Y=geJt (12.144a)  

where 

g =  det(g,uv)  (12.144b)  

and eJt is the curvature scalar. In  the weak-field limit, in which g,uv(x)  is 
expanded about the flat metric YJ  ,uv:  

g,uv(x)  = YJ,uv  - Kh,uv(x)  

5£GR generates trilinear terms in the graviton field h,uv  which reproduce the 
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vertex (12.142) for on-shell gravitons (Exercise 12.14). This is one of the 
string theory 'miracles'. Nothing like space-time  reparametrization invar­
iance was input into the string action, and yet it has emerged in the effective 
action. 

As before, the first non-trivial amplitudes are the four-point functions. 
For the open-string four-vector amplitude we need 

A4  =  g2 Jd:  (v;  El, k1IVu .• ,(k2, 1)Vu .• ,Ck3'  z)lv;  E4, k4!  (12.145a)  

where 

Iv;  E, k!  =  E.b_ 1I2 10;  k!  (12.145b)  

and 

Vu,.(k,  z) = - :  [i Z€  azX(z)  +  2E  .1/J(z)k  .1/J(z)]  e-i  kX(z)  (12.145c)  

with z = e i  r,  as in the bosonic string. The existence of the fermionic modes, 
as well as the additional complication of the vector vertex, make this 
calculation considerably more involved than that for the four-tachyon 
amplitude that was carried out in §12.4. It  is nevertheless straightforward 
and we merely outline the calculation. First we use the zero-mode contri­
butions to the exp( -i kX)  factors to write 

A4  =  g2 J dz z-sl2  - 1(0; k1  +  k2 1 E1' b1l2 :[ -E2' k1  +  L  E2' am  
m"fO 

+  2k2.1/J(1)E2.1/J(1)]Wo(k2,  1)::[E3. k4  +  L  E3· anz- n  

n"fO  

+  2k3  .1/J(Z)E3  .1/J(Z) ]Wo(k3 ,  Z):E4' b-1do; k3  +  k4 !  (12.146a)  

where 

Wo(k,  z) =  exp( - i  k.;-p  zp)  exp( i  k;q  Z-q)  (12.146b)  
p=l  q=l  

and because the vector particles are massless 

s == (k1  +  k2)2  =  2k1.k2  

t  == (k2  +  k3)2  =  2k2.k3  

U  == (k3  +  k1)2  =  2k3. k 1.  (12.146c)  

This splits into four pieces as follows. First, there is the contribution 
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proportional to the bosonic piece of both square brackets. This may be 
evaluated using the previous results in (12.78) and (12.80), as well as 

[L  E2' am,  WO(k3,  Z)]  = - E2' k3  1 ~ Z W O(k3,  z)  (12.147a)  
m>O  

[WO(k2'  1), L  E3. anz- n ]  = E3. k2 1  ~ z  WO(k2,  1) (12.147b)  
n<O  

[I E2· am'  I E3. anz- n]  = - E2.E3 Z  (12. 147c)  
m n<O  

Next there is the contribution proportional to the fermionic piece 
k2  .1P(1)E2 .11'(1) of the first bracket and the bosonic piece of the second 
bracket. The fermionic operators generate a factor El . k2E2'  E4 - El' E2k2  . E4, 

and the remaining bosonic piece can be determined as above. Similarly the 
bosonic piece of the first bracket multiplied by the fermionic piece of the 
second generates a factor El' k3E3  . E4 - El . E3k3  . E4' Finally, there is the 
contribution proportional to the fermionic piece of both square brackets. 
This requires the evaluation of 

(01 El' b1l2k2  .11'(1 )E2 .1P(1)k3 .1P(Z)E3  .1P(Z)E4·  b- 1I2 10).  (12.148)  

This too is straightforward (but tedious) and uses the contraction 

(OllPll(l)lPV(z)IO)  =  - Vz 1JIlV  (12.149)
1 - Z  

extensively. The final result is that 

1.,2 [( -s/2)[( -tI2)  I 
A4  = - n , { - 4[StE13 E24  +  SUE23EI4 +  tUE12E34] T'/ 

1  +  u/2  

+  ~s[kl4k32E24  + k23k41  E13 + k 13k4Z EZ3  + kZ4k31  E14] 

+  ~t[k21k43E31 + k34k12EZ4  + kZ4k 13 E34  + k 3I k 4ZEZI] 

+  iU[k12k43E32  + k34kzIEI4 + k14k23E34  + k32k4IE12]} (12.150a)  

where 

Eij  == Ei' Ej  kij==Ei.kj.  (12.150b)  

The calculation of the analogous process for the closed superstring, namely 
the four-graviton amplitude(5), proceeds similarly, and, as in (12.112), the 
final result is expressible in terms of the open-string four-vector amplitude 
(12.150). If  we write the latter as 
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Aopen =  g2 [( -s/2)[( -t12) El  dE ~E~Va!3y6(k1 , k
+ 

,  k3, k )  
u/2)  2 4 (12.151) 

4 [(1  

then the required closed-string four-graviton amplitude is given by 

closed -g _ 2 C  ( s,t,u ) aa'  !3!3' yy'  
A4   66' 1k  

El E2 E3 E4 Va!3y6 (1  'lk1,'lk1 1 )
2 ,'l  3,'lk4  

X Va'!3'Y'6'(1k1,  1k2 ,  1k3, 1k 4 )  (12.152a)  

where 

C(s, t,  U)  =  _  n  [( -s/8)[( -t/8)[( -u/8)  (12.152b)  
expressionexpressionexpressionexpression 

As expected, both open- and closed-string amplitudes have no tachyon 
poles, and possess the poles from the massless and massive modes in the 
superstring spectrum. 

The only other amplitudes that we address are those (tree) processes in 
which bosons are emitted from a fermionic string. Thus there are two 
external fermion lines, and, if bosons are emitted, the required amplitude is 
given by(9) an expression analogous to (12.133): 

A 2,N  =  gN(7J!1IW1SW2S··· SW NI7J!21  (12.153)  

where 17J!11  and 17J!21  are physical fermion  states. For the open string these 
satisfy 

Fml7J!1  =  0  m>O  (12.154) 

analogously to the closed-string constraint (8.104). Actually the constraint 
equations also require 

Fol7J!1  = 0 (12.155) 

since there is no normal-ordering ambiguity. Also, as in (8.111) and (8.115), 
we see that 

F6  =  Lo  (12.156) 

so Fo  plays the role of the Dirac operator, and 

S =  Fo1  =  FoLo1  (12.157) 

is then the analogue of the fermionic propagator that is needed in (12.153). 
The factors Wi  are precisely those discussed earlier in this section. So for 
vector emission we use the vertex operator given in (12.119), but now, since  
we are concerned with emission from a fermionic string, we use the Ramond 
sector expansion of 

7J!f'(r) =  ~ I  d~ e- i  nr. (12.158) 
nE?!. 
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In  the case of the open string the simplest example is the emission of a vector 
particle from the Ramond (spinor) ground state 

10;  k/",u"'(k)  (12.159) 

where ex is the (summed) spinor index and u"'(k)  is a (massless) spinor. Then 
(suppressing the spinor indices) 

A 2.]  = gu(k])(O;  k]lwv ,.2(k2)10;  k3/U(k3)  

= - gu(k])(O;  k]I€2d oI0;  k2  +  k3/U(k3)  

~ ~ i  g€~u(k])y"u(k3) (12.160) 

where the last step follows because the operators 

y" == i  Y2diJ  (12.161) 

satisfy the Clifford algebra 

{y",  yV}  =  2Yj"v  (12.162) 

as in (8.124) and (8.125), and therefore are represented by Dirac matrices 
(also denoted by y")  acting on the spinor indices. We note that this is 
precisely the gaugino vertex contained in the (non-abelian) vector superfield 
Lagrangian (3.138). 

The analogous process for the closed string is graviton emission from a 
gravitino (ground) state. For example we consider the gravitino state of 
momentum k  described by the vector spinor u"  which is constructed from 
the right-moving Neveu-Schwarz ground state and the left-moving Ramond 
ground state: 

Ig; u",  k/  = - b'=-1I210;  k/RIO; k/L",u:(k)  (12.163a)  

yPkpu,,(k)  = 0 = k"u,,(k)  (12.163b)  

The required graviton vertex operator is then constructed using the bosonic 
right-moving prescription tensored with the fermionic left-moving recipe: 

€w[  arx'R(O)  +  ~V'~k. V'R(O)] V'L(O) e-i  k  .x.  (12.164) 

The amplitude for graviton emission from a gravitino then factorizes to give 

A 2,]  =  g€2pa  R(O; k]lbtl2:[ arxf«O)  +  ~V' ~(O) k2· V'R(0)]b~l/210; k2  +  k3/R  

x u,,(k]h(O;  k]IV'E(O)IO; k2  +  k3/L  U),(k3)  

=  ~g€2pa[_Yj"A(k2 +  k3)P  +  Yj"Pk~ - YjPAk~]u,,(k])yOUA(k3) 

= !g€2pa[Yj"\k]  - k3)P  +  Yj"P(k2  - k])A  +  Yjp)'(k3  - k2Y]  

x u,,(kdrOuAk3).  (12.165) 
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We leave it as an exercise to verify that this is precisely the interaction vertex 
that arises in the supergravity Lagrangian discussed in Chapter 4. 

12.7  A  review  of  further  developments  

It is beyond the scope of a book at this level to take the development of string 
theory much further. In particular we shall not  construct the vertex opera­
tors or scattering amplitudes for the ten-dimensional heterotic string theory 
that was described in Chapter 9. We trust that a conscientious reader who 
has followed the developments thus far should have little difficulty in sewing 
together the bosonic string vertex operators, appropriate to the left-moving 
modes of the heterotic string, and the superstring vertex operators, appro­
priate to the right movers. It  is, though, perhaps of some interest to 
comment on how calculations are performed in  _the jJotentially realistic 
cases, such as when the ten-dimensional heterotic string is compacLtfied to 
four dimensions on an orbifold, as discussed in Chapter 10, or when a four­
dimensional heterotic string theory is constructed directly, as discussed in 
Chapter 11. 

The purpose of all of these calculations is to determine the effective 
supergravity (grand unified?) theory that emerges at the string scale, and 
then to use the renormalization group techniques discussed in Chapter 6 to 
confront the low-energy (TeV scale) experimental data. We have seen in 
Chapter 5 that in general a supergravity theory involving chiral and vector 
superfields is characterized by the superpotential W(<P i ),  the Kahler poten­
tial G(rpt,  rpi),  and the gauge kinetic functionfab(<PJ;  as before, <Pi  denotes 
the chiral superfields, and rpi  their scalar-field components. The most 
immediately accessible of these is the superpotential W.  Its form determines 
the (renormalizable and non-renormalizable) point interactions of the 
fields, so the calculation of these interactions enables one to infer W.  

We start with the orbifold compactifications discussed in Chapter 10. 
Physical states arise in both the untwisted sector (u) as well as twisted sectors 
(r) and the allowed couplings are constrained by the requirement of point 
group, or more generally space group, invariance. Suppose we consider a 
trilinear (Yukawa) coupling of three twisted-sector states. Each is associ­
ated with the string centre-of-mass coordinates at a fixed point (f)  of the 
orbifold satisfying 

(e,  l)f=  ef+  1=  f  (12.166) 

where e  is a point group element and I  a lattice vector. Since f  is only 
defined up to a lattice vector (A)  

f-f+A  (12.167) 

the lattice vector I  associated with f  is only defined up to (1 - e)A:  
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l  - l  +  (1 - (1)2.  (12.168) 

Let us denote the space group elements associated with the three fixed 
points by (ei ,  li)  (i  =  1,2,3). Then point group invariance requires 

(1)61 2613  = I  (12.169) 

the identity element of the point group. Thus there is no constraint on uuu 
couplings from point group invariance and TUU couplings are always forbid­
den. For the Z3 orbifold the only (left chiral) twisted-sector states T are in the 
61  =  w  sector, so ITU  couplings are also forbidden. The allowed TIT  couplings 
are further constrained by space group invariance. We require that 

(e),  l)  )(612, l2)(e3, l3)  - (1,0) (12.170) 

using the equivalences (12.168) for each i.  It is easy to see that this entails 

l)  +  l2  +  l3  - O. (12.171) 

In the case of the Z3 orbifold the associated lattice vectors (I;)  are given in 
(10.35) and space group invariance requires the indices p~) to satisfy 

p~l) + p~2) + p~3) = 0 (mod 3). (12.172) 

There remains the problem of calculating the non-zero couplings that are  
allowed by space group invariance. The simplest case is when all states are 
untwisted; these correspond to states that are already present in the Hilbert 
space before the orbifold construction, i.e. states from strictly periodic 
loops. In this case the construction of the vertex operator is a straight­
forward application of (12.129) but now  only V AR  is a superstring vertex 
operator; V AL is built using the bosonic string results of §12.2. The Yukawa 
couplings can then be calculated, for example, by evaluating the matrix 
element of the vertex operator for the emission of an (untwisted) boson 
between two (untwisted) fermionic states. In fact this prescription works 
also for the ITU  Yukawa couplings, when they exist. The two external 
fermionic states are taken to be the twisted-sector fermions, and the vertex 
operator for the emission of the untwisted bosonic state is evaluated using 
the expansions of X(z,  z),  1/JR(Z) appropriate to the twisted sector to which 
the incoming fermion belongs. (Point group invariance requires that the 
outgoing fermion belongs to the same  twisted sector.) In this case it is clear 
that the coupling is independent of the particular fixed point associated with 
the twisted-sector states. Because of this the ITU  and uuu Yukawa couplings 
have a universal strength and there is no chance of obtaining a hierarchy of 
Yukawa coupling strengths. Such a hierarchy is desirable phenomenologi­
cally, since when the electroweak symmetry breaking occurs it will convert 
into a hierarchy of fermion masses, thereby explaining the huge disparities 
observed in the quark and lepton mass spectrum. (It was for this reason that 
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in §6.3 as a first approximation we ignored all Yukawa couplings except  the 
coupling of the top quark to the electroweak Higgs.) 

The evaluation of the TIT  couplings, in which all three states belong to 
twisted sectors, is more subtle and the outcome has more chance of 
phenomenological success. This is because the strength of the coupling does  
now depend upon the fixed points associated with each twisted state. We 
shall not give much detail, but we shall endeavour to explain how the fixed­
point dependence enters. 

We consider a ZN  point group with elements er  (r  = 0, 1, ... , N  - 1) 
satisfying 

fiN  = 1. (12.173) 

As before the twisted-sector states are associated with fixed points f  
satisfying 

(1 - fir)(f  +  A) =  i  (12.174) 

where i,  A are lattice vectors. The twisted-sector ground states are created by 
'twist fields' ao',/(z,  z)  analogous to the spin field introduced in §12.5: 

ao',/(z,  z)IO)  =  100''/)' (12.175) 

The required Yukawa coupling acquires its dependence on the fixed points 
via the three-point correlation function 

Z  == (Olaok,!a(za,  za)aO',jb(Zb,  zb)aOm,j,(ze>  zc)IO)  (12.176a)  

where 

k  +  i  +  m = °  (mod N)  (12.176b)  

is necessary to satisfy point group invariance (12.169) and the lattice vectors 
ia,bp  defined in (12.174), must satisfy (12.171). The correlation function 
may be calculated using the path integral method mentioned in §7.9, in 
which we perform a functional integral over the string coordinate fields 
Xi(Z,  z).  To do this we split Xi(Z,  z) into a classical piece (Xci)  with quantum 
excitations (Xq):  

Xi(Z,  z)  = X~I(Z, z)  +  X~(z, z)  (12.177) 

where only the classical piece feels the lattice shift when taken around the 
twist field aOk,j.  The action S is given by 

1 J  2 - ­S = 4.7T d Z (ozX  ozX  +  ozX ozX)  (12.178) 

where X a ,  X a  are three complex coordinates (in which the twist acts 
diagonally, as in (10.27), for example). Since S is quadratic the required 
correlation function Z factorizes into a quantum and classical part 



303 A REVIEW OF FURTHER DEVELOPMENTS 

Z  = Zq I  e-S" (12.179) 

x"  

and the fixed-point dependence enters via ScI' To see how, consider a loop Cf6  

enclosing the two twist fields at Zm  Zb  with  net  zero  twist.  Thus if p  and q  are 
the smallest integers such that 

pk  = ql,  (12.180) 

Cf6  encircles za  p  times in an anti-clockwise sense and Zb  I  times in a clock­
wise sense. Then the shift in Xci  around this closed path is 

IlxcI "",l  dza zx cI +l  dza"XcI  (12.181) 
Jce Jce 

and this is required to be the lattice vector v  arising in the product of the 
space group elements 

(ok,  la)p(OI,  Ib)-q  = [OPk,  (1 - OPk)(fa  +  Aa)]  

X [O-ql,  (1 - O-ql)(fb  +  Ab)]  =  (1, v)  (12.182a)  

where 

v  =  (1 - OPk)(fa  - ib  +  A)  (12.182b)  

is related to the difference between the fixed points. This determines the 
overall normalization of a zXcI  (or a "Xci)'  and hence the value of Se]'  
the required correlation function, and the Yukawa coupling. Because of 
the exponential  suppression there is the possibility that for suitable values of 
the scale factors (moduli) of the orbifold and the other (angular) defor­
mation parameters we can achieve the required hie~archy of Yukawa 
couplings at the string scale needed to generate the observed hierarchy of 
fermion masses. Recent work(lO) suggests that a reasonable fit to the 
physical fermion masses is  feasible for some orbifold models. However, the 
Yukawa couplings also determine the mixing of the electroweak eigenstates 
to form the mass eigenstates. This is encoded in the Cabibbo-Kobayashi­
Maskawa matrix, and there is no possibility of fitting its parameters, at least 
at the renormalizable level. 

In fact, the calculation of the interaction terms in the Lagrangian (or the 
superpotential W(<P;))  is not sufficient to determine the coupling strength of 
the physical  fields because, until the Kahler potential G(cp,  CPt)  is known, we 
do not know that the string states have canonical kinetic terms; diagonaliz­
ing and normalizing these could enhance or weaken any hierarchy emerging 
from the superpotential. The derivation of the Kahler potential from string 
amplitudes can be done, at least for untwisted moduli fields (Ua ).  The 
upshot is that the quantity 
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Gi ==  a2G  0'  (12.183) 
I  aCPi  acpl  

defined in (5.40), which multiplies the kinetic term Df.1CPi  Df.1cpi*  in (5.38), has 
the generic form 

3 

G i  - b i  n  (V + Vt)-P",  I III    (12.184)
a a 
 

a  =  1 


with the 'modular weights' Pai  fractional numbers typically in the range 
(-1, 5). Thus there is a power law hierarchy as well as the exponential 
hierarchy already discussed. 

We saw in Chapter 3 that the convergence of the gauge coupling constants 
in the supersymmetric standard model provides the best (circumstantial) 
evidence so far for supersymmetry and grand unification. String theory also 
requires the gauge coupling constants to have a common value(11), so one 
might also construe the above convergence as evidence for string theory. 
However, the unification scale from the string is at 1018 GeV, significantly 
higher than the energy scale (1016 GeV) at which the coupling constants are 
'observed' to converge. So the convergence is also the best evidence against  
string theory. It may  be that there is additional so-far-unobserved matter, 
beyond the reach of current accelerators, but lighter than the unification 
scale. This matter would affect the running of the coupling constants and 
could delay the unification. There are certainly models in which this 
occurS(12). Alternatively, it may be that the massive string modes generate 
threshold corrections that have the same effect, although this has not so far 
been achieved in model orbifold caiculations(13). At any rate, the aesthetic 
and theoretical arguments for string theory, that it is the only known theory 
that can provide a consistent quantum  theory of all of the interactions 
observed in nature, remain compelling. The 'evidence' against it is recog­
nized as a problem, but it is not (yet?) regarded as fatal. 

The fact that the gauge coupling constants unify at the string scale is not 
necessarily evidence of non-abelian unification. However, the fact that the 
known matter is organized into (three complete generations of) a few 
representations (5,  10, 1) of SU(5) or a single representation (16) of SO(lO) 
certainly points towards a grand unification group that contains something 
like these groups. If we  assume, as we shall, that this (supergravity) GUT 

originates in the string theory, then the possible models are constrained by a 
(fairly) general theorem that excludes the existence of matter in the adjoint 
or higher representations(14). This means that the minimal SUeS) theory, 
which we discussed in Chapter 6, cannot  emerge from string theory; the 
adjoint scalar multiplet~, introduced in (6.16) in order to break the SUeS), 
does not occur. The allowed matter representations are 5,  10, 1 and their 
conjugates. Thus we require a GUT with electroweak and GUT Higgs particles 
in one or more of these representations. The flipped SU(5) x U(l) model is 
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then a prime candidate in this context, and realistic models have been 
constructed using the direct construction discussed in Chapter 11, in which 
all degrees of freedom other than these relating to the four-dimensional 
space-time are fermionized(l5). The model is called 'flipped' because, 
compared with the ordinary (minimal) SU(5), lepton and quark flavour 
assignments to the representations are interchanged (or flipped). Thus the 
assignments are now 

5:  L, U C  (12.l85a) 

10: Q,  dC,  VC  (12.l85b) 

1:  eC  (12.l85c) 

where L, Q  denote the (left chiral) lepton and quark doublets, and uC, dC,   vc,  
eC  the corresponding singlets. Although the SU(3)c and SU(2)L gauge 
groups are (still) embedded in SU(5), the U(l)em is not, as is immediately 
apparent from the assignment of eC  to a singlet representation. This is why 
the GUT must be enlarged to SU(5) x U(l). The appearance of the electro­
weak singlet Vc  in the 10  also indicates that the SU(5) can be broken using 
this representation for the GUT scalars, rather than the adjoint (24) scalars of 
the minimal SU(5). It is  also natural that besides the (three generations of) 
chiral matter there is additional 'vector-like' matter, in this case in 5 + 5 and 
10  +  10  representations, besides the Higgs scalars required to ensure the 
spontaneous breaking of the GUT and electroweak symmetry breaking. This 
additional matter removed the gap between the 'observed' unification scale 
of 1016 Ge V and the string unification scale of 1018 GeV, as discussed earlier. 

As already mentioned, any specific string model generates a unique 
supergravity theory that can in principle be compared with experiment. In 
practice, though, it is necessary to make additional assumptions. For 
example, besides the 'observable' sector of the theory, which houses the GUT 

that we have been discussing, there is a 'hidden' sector, with respect to 
whose gauge group all observable matter is a singlet representation. The 
hidden-sector gauge couplings are assumed to become large at an intermedi­
ate scale and trigger supersymmetry breaking via hierarchically small, soft, 
supersymmetry-breaking parameters. In principle what happens is fully 
determined, but in practice these non-perturbative effects are not really 
calculable, and we have to supplement the model with assumptions about 
the precise nature of the soft supersymmetry-breaking parameters. Even so, 
the number of parameters is considerably less than the 20 or so of the 
minimal SU(5) supergravity GUT discussed earlier. Such models are at the 
level of making falsifiable predictions(16) for the particle and sparticle 
spectra, which should be tested soon at the Tevatron and LEP 200. This 
interplay between string-inspired models and experimental data is the only 
method currently available for determining which particular string theory 
really is the 'theory of everything'. 
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Exercises  

12.1  Check that the operators Ln  in (12.18) obey the Virasoro algebra 
(7.96) without the central extension. 

12.2  Verify (12.26) for n  ~ O. Hence show that arXhas  conformal dimen­

sion J  =  1. 


12.3  Show that :exp(-i k.  X(z»:  has conformal dimension J  =  -~k? 

directly from (12.21). 


12.4  Verify (12.62). 


12.5  Calculate the open-bosonic-string vector-vector-tachyon vertex. 


12.6  Show that the O(k3)  term in the three-vector vertex (12.74) would 

arise from an effective Lagrangian tr(F/F/F t).  

12.7  Calculate the closed-bosonic-string graviton-graviton-tachyon ver­

tex. 


12.8  Calculate the closed-bosonic-string three-graviton vertex. 


12.9  Verify (12.112). 


12.10  Show that if the superstring vertex operators V A, W A  are related as 

in (12.114) then VA  has conformal dimension J  =  1 if and only if WA  has 
conformal dimension J  =  ~. 


12.11  Show that the invariance of the superstring action (8.1) under the 

rescalings (12.10) requires that 7/J" acquires a factor A.  -1/2 under the rescal­

ing. 


12.12  Show that if the open-string state Iv;  E, k)  is a physical state, obeying 
G1/2I7/J) = 0 then E. k  = O. 


12.13  Show that the closed-superstring three-graviton vertex is given by 

(12.141), and verify (12.143). 


12.14  Show that the (Einstein-Hilbert) action (12.144) generates the 

three-graviton vertex given in (12.141). 


12.15  Verify (12.147) and (12.149). 


12.16  Calculate the gravitino-gravitino-graviton vertex deriving from the 

supergravity action (4.65). 
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APPENDIX  A  

WEYL  SPINOR  FIERZ  IDENTITIES  

We summarize here the complete set of Fierz identities for Weyl spinors. 
They may all be derived from the matrix identities (1.85) and (1.88), which 
in an obvious notation may be written as 

I  x I  =  ±a u  ® O,u  (AI) 

or 

I  x I  =  ±[1  ®  I - a Uv  ®  Om']'  (A2) 

Then besides the immediate identities (1.87) and (1.89): 

(f3cp)(m)  =  - W81])(X<P)  - (8a uvl])(xauvq;)]  (A3) 


(8<p)(Ff)  =  - ±(8a,uI])CX0,u  q;)  (A4) 


we have 


(8<p)(Xa,urj)  =  - ±[(8a,urj)(x<p)  +  2(8avrj)(xa,uv  <p)]  (AS) 


(8<p)(xo!'I])  =  - ±[(81]) (Xo!'  q;)  - 2(8al'V  1])(XOv<p)]  (A6) 

(8aufP)(xaVrj)  = - ±[(8al'rj)(xavfP)  +  (8a V rj)(xa,ufP)  

- 1],uv(8aArj)(xa},fP)  - i  E,uVK\8aKrj)(xa,cfP)]  (A7)  

(8a'ufP)(xoV 1])  = - ±[ I]uv  (81]  ) (xfP)  +  2(8a,uv  I]  )(xfP)  

- 2(81]  )(XO UV  cp)  - 4(8a  vi'l]  ) (XO/  cp)]  (A8) 

(8<p)(xa flVl])  = - ±[(81])(xa uv<p)  +  (8a,uvI])(X<p)  

- (8a,u;'I])(Xa/<p)  +  (8a vi'I])(xa/'<p)]  (A9) 

(8<p  )(XO UV  rj)  = - H (8a"  rj)(XO,u  q;)  - (8a'U  rj)(XOV q;)  

+  i  E,uvK},( 8a Krj)(XOA  <p)]  (AIO) 

(8a!'v<p)(xa i'i])  =  HI],u,c(8aVrj)(xq;)  - I]v,cC8a U rj)Cxq;)  

+  i  E,uvAP(8aprj)(xq;)]  +  ±[C8aVrj)Cxa}',u<p)  

- (8aPrj)Cxai.vq;)  +  i  euvKPC8aKrj)(xa/<p)]  (All) 

C8a,uv<p)CXo i'l])  =  - HI]UA(81])Cxov<p)  - I]vi'C81])CxoP<p)  

+  i  EPV},PC81])(Xop<P)]  - ±[C8a pi'I])(XO v<p)  

- (8a v,cI])(XO,u<p)  +  i  EUVKP C8a/"  I])CXOp <p)]  CAI2) 
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(eaI'Vcp)(xaKArn  = _H(~"A~VK - ~"K~V;')(eaPfj)(f(jrJP) 

+  Yj  W(eaVYj)(xaAcp)  +  Yj"K(ea?'Yj)(f(jvcp)  

- rjVKceaJirj)(xaAcp)  - rjVK(eaArj)(xaJicp)  

+  rjV?·(ea"Yj)(xaKcp)  +  YjVA(eaKYj)(xoJicp)  

- Yj  Ji\eaVYj)(xaKcp)  - Yj"'A(eaKYj)(XoVcp)  

+  i  €I'VKP(eapYj)(xaJ,cp)  - i  €"VAP(eapYj)(xoKcp)  

- i  €0,JiP(eavYj)(XopCp)  +  i  €KAVpceaJiYj)CXopcp)].  (A13) 

We leave the verification of these as an exercise in which the following 

identities may also prove useful: 


o  I<VOA  = - ~[rj"i,Ov - rj  v)·o  P  + i  EPVAPOp]  (A14) 


O"OVA  =  ~[YjPVOA - Yj"J,ov  +  i  EI'VAPap]  (A15) 

o  "vO,d  = - MYjPKYjvi.  - Yjp)'YjVK  +  i  EPVKA  

+  2(YjI'KOVA  +  YjVi'OPK  _ Yf,UAOVK  _ YjVKaJiA)].  (A16) 



APPENDIX  B 
 

CYCLIC  SYMMETRY  OF  THE  OPEN-STRING  
SCATTERING  AMPLITUDE  

The proof of this requires the use of the residual conformal invariance that 
preserves the conformal gauge choice made in (7.13), (7.14). This residual 
symmetry is in fact SL(2, R): the group of 2 x  2 real matrices of unit 
determinant. It  is the group of all (1,1) analytic mappings z-'>  z'  of the 
upper half complex plane into itself: 

Z  -'> Z'  =  az  +  b  (B1a)  
ez  +  d  

with 

a,  b,  e, d  real 

ad  ~ be  = 1. (BIb)  

Such mappings are called 'Mobius transformations'. 
It  is easy to see that this symmetry is a (finite-dimensional) subalgebra, 

generated by L 1,  La,  L-l'  of the infinite-dimensional Virasoro algebra. The 
generator Ln  is associated with the infinitesimal transformation 

z-'>  Z'  =  Z  ~ EZ n  + 1 (B2) 

as given in (12.16). Thus the finite operator e).L" generates the transform­
ation obeying 

AL1  = Z'  = 1  +  AZ  (B4a)  

dz  n  +  1-=  ~z 
dt  

(B3a)  

with 

z(O)  =  Z  Z(A)  =  z'.  (B3b)  

Hence 

Z  
eAL1z  e­

e),Loze-ALo  =  z'  =  e-Az  (B4b)  

eAL-1z  e-J.L_ 1 = z'  = Z  - A  (B4e) 

and we see that the general transformation is given by (B1a).  The restriction 
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ad - be  = 1 is convenient, since there are only three independent para­
meters. 

The zero-momentum state 10;  0)  which appears in (12.59) (uniquely) has 
the property that it is annihilated by all three generators of the SL(2, R) 
algebra 

LilO,  0)  = 0  i  = 0, ±1 (B5) 

with Li given  in (12.24). We leave it as an exercise to verify this statement, 
but note in passing that, since it is annihilated by La,  and not by La  - a,  10;  0)  
is not a  physical state. We note also that the SL(2, R) sub algebra generated 
by Li (i  =  ± 1,  0) is unaffected by the central extension term in (7.96), so 

[L l , L-d =  2La  (B6) 

just as for the classical algebra. 
To prove the cyclic property we consider a general SL(2, R) transform­

ation 

A(T) =  exp(LlL_l + AaLa   + AlLl)'   (B7) 

Then it follows from (B5) that the state 10;  0)  satisfies 

A(T)IO;  0)  =  10;  0).  (B8) 

Also, the transformation A(T)  generates the conformal transformation 
(Bl), as we have seen, and since the vertex operators V A(k, y)  that  appear in 
(12.64) have conformal dimension J  = 1, as we argued after (12.13), it 
follows from (12.19) that 

A(T)[VA(k, y)   dY] A(T)-l  == V",(k,  Y')  d~' =  VA(k,  y)  dy.  (B9)
y  y y  

Thus each of the factors VA,(k i ,  yJ dyJYi   (i  =  3, ... , N  - 1) appearing in 
(12.64) can be replaced by the SL(2, R)-transformed factor, if we choose. 
Further, it is easy to see that the transformation (B 1) preserves the order of 
the events (12.55) on the boundary of the world sheet. 

This would be sufficient to demonstrate the invariance of the integral in 
(12.64) if we were integrating over all of the variables Yi  (i  =  1,2, ... , N),  
whereas in actuality Y N  = 0, Y2  = 1 and Yl  ~ 00 are fixed.  If we were to allow 
integrations over all of the Yi'  including i  =  1,2, N,  this would overcount 
because we would be including configurations that can be mapped into each 
other by the use of the Mobius transformations given in (Bl). In fact the 
overcounting would be by an infinite amount, equal to the volume of the 
non-compact group. 

This is analogous to the problem encountered when quantizing gauge 
theories using the path integral technique, as discussed in Bailin and 
Love(1), Chapter 10, for example. The naive first guess is to perform a 
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functional integral over all gauge configurations A  ~(x), including those that 
are gauge transformations of each other. Then because the Yang-Mills 
Lagrangian is gauge invariant, the integrand is constant over the infinite 
surface in gauge field space obtained from a given A  ~(x) by applying all 
possible gauge transformations. 

Similarly, in the present case integrating over all  of the Yi  overcounts each 
in equivalent set of Yi  by the volume of SL(2, R). As explained in §1O.4 of 
Bailin and Love(l), the correct procedure is to impose delta-function 
constraints on three  of the integration parameters 

Yi  =  YiO  (i=1,2,N)  (BI0) 

and to include in the integrand the Fadeev-Popov determinant arising from 
the (infinitesimal) SL(2, R)  transformations (B4) 

YiO~ yio  = Yi  - (L1 +  AOYiO  +  A1Y~O)' (Bll) 

The required determinant is then the J acobian 

, 1 YlO  yio 

det(a:;o)  = 11 Y20  Y~O I  (i  = 1,2, N;  j  = -1,0,1) 
J  1  YNO  YNO  

= (YlO  - Y2o)(Y2o  - YNO)(YNO  - YlO)  
.2 

~ - YlO  as YlO~ 0:, Y20  = 1, YNO  = °  (BI2) 

and this is precisely what is required to convert the factor (YlOY2oYNO)-1  
associated with VA1 ,  V A,  and VAs  into YlOYN6  as appears in (12.64) when k1  
and kN  are tachyons. Thus the amplitude (12.64) is  invariant under the 
(Mbbius) transformations, and can be written in the more symmetric form 

N  N  

AN  =  gN  - 2 J  ndYi  nO(  Yj  - 1 - Yj)b(  Ya  - YaO  )b(  Yb  - YbO  )b(  Ye  - YeO)  
i  = 1 y,  j  = 2 

X  (Ya  - Yb)(Yb  - Ye)(Ye  - Ya)(O;  OjVO(k1'  ydVo(k2'  Y2)  ... 

xVO(kN,YN)IO;O)  (BI3) 

and we previously selected (a,  b,  c =  1,2, N)  with the fixed values 

(Ylo, Y2o, YNO)  = (00, 1,0). (BI4) 

We now use this invariance to demonstrate the cyclic invariance of the 
amplitude (12.64). For simplicity we consider only the case when all N  
particles are tachyons. The general Mbbius transformation preserves the 
cyclic order of the coordinates Yi'  In  fact, since 

L d' = (cy  +  d)-2  (BI5)
dy  
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the transformation preserves the actual order of those events for which 
CYi  + d>  0,  and the actual order of those with CYi  + d   <  0. The cyclic aspect 
operates when we have coordinates of both types. We consider just such a 
transformation so that points Yi  satisfying 

YN<YN-l  <YN-2 <  ... <Y3  <Yz <Yl  (B16) 

are mapped into yi satisfying  

y;"  - I < YN   - 2 <  ... <  Y2   <  Y;  < YN   (B17) 

for example. To verify the cyclic property we need to be able to commute the 
vertex factor VO(kN, YN)   past the preceding vertex factors so that the 
resulting expression is just the cyclic permutation applied to (B13). In fact 
commuting VO(kN, YN)   past all  of the preceding vertex operators gives an 
overall factor of unity. To see this we note that commuting VO(kN, YN)  past 
anyone of the tachyon vertex operators gives a phase factor 

VO(ki,yi)Vo(kN,YN)  = VO(kN,YN)Vo(ki,yi)  einkj.k,.  (BlS) 

This may be proved by using 

eA  e B  =  e B  eA  erA, Bl   (B19) 

when [A,  B]  is a c-number. In our case the required commutator is 

[i ki. X(yi) ,  i k N. X(YN)]  =  i TCki · kN  (B20) 

since yi<YN'  Then taking VO(kN,YN)  past all of the VO(ki , yj)  gives an 
overall phase factor 

N-l  

ex . 
plTC [ k 

N' 
 

 l '\' .....    k] 
i  

 =e,=l. -ink'  (B2l)
1=1  

Thus the SL(2, R) invariance allows us to prove that the amplitude (B13) 
is equal to a similar expression in which the cyclic transforml:ltion (12.57) has 
been applied. 

Reference  

1 Bailin D and Love A 1993 Introduction  to  Gauge  Field  Theory  (Bristol: Institute of 
Physics Publishing) 



APPENDIX  C  

COHERENT  STATE  METHODS  

In order to evaluate quantities such as (12.78), it suffices to consider a single 
oscillator mode with annihilation operator a  and creation operator at 
satisfying 

[a,  at] = 1.  (Cl) 

This is because different modes commute, and we can always normalize the 
operators so that (Cl) is satisfied. In order to establish (12.79), therefore, we 
need only consider operators A,  B  with 

A  =  alat  +  a2a  (C2a)  

B  =  blat  +  b2a.  (C2b)  

Then 

:eA :  = eal'"  ea,"  (C3a)  

:e B:  = ebl'"  eb,,,  (C3b)  

and 

(OI:eA::eB:IOI  =  (Olea,,, ebl"'IOI.  (C4) 

The 'coherent' state Ibll  is defined by 

x  bn  

= I  -In-! 1nl Ibll  == e bl '"  (C5a)  
n=O  

where 

1nl  == vk (attlOI  (C5b)  

is the standard (normalized) number operator eigenstate satisfying 

Nlnl  = nlnl  (C6a)  

with 

N==  aTa  (C6b)  

and 

(minI  = omn·  (C6c)  
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So the right-hand side of (C4) is the scalar product of two coherent states 

(a2Ib 1 )  = L '\"' vm!Vn!  (C7)a;mb1  (mln)  =  ea;bJ =  e(OiABiO).  
m.n  

Thus we have shown that 

(OI:eA::eB:IO)  = e(OiABiO)  (C8) 

which is (12.79). 
This may be generalized to 

(01:eAJ ::eA2:  ... :eAn:IOl  =  exp(I (OIAiAjIO))  (C9) 
i<j  

which arises when we calculate the N-tachyon scattering amplitude, using 
(12.64) for example. Using (12.80) we see that the contribution of the non­
zero modes to the integrand isn(1 - y/y;)-kj.kj.  (C10) 

i<j  

The contribution from the zero-mode pieces is easily determined using 
(12.61). We get 

(0; 0IZo(k1 ,  Yl  )ZO(k2'  Y2)  ... Zo(kn,  Yn)IO;  0) = (n  Yi)(  nYi-kj.kj)  (Cll) 
I  1<]  

so the integrand of (12.64) is 

(0; 01 n(Vo(ki ,  yJlyJIO;  0) = n(Yi  - Yj)-k,.kj.  (C12) 
i<j  

Using the symmetric form (B 13) of (12.64) established in Appendix B we see 
that the N-tachyon scattering amplitude is given by 

N  N  

AN  =  ~ - 2 f n dYi  n 8(Yj  - 1 - Yj)b(Ya  - YaO)b(Yb  - YbO)b(yc  - Yea)  
i=l  j=2 
i<j  

X (Ya  - Yb)(Yb  - Yc)(Yc  - Ya)  n(Yl  - Ym)-k/.km  (CB) 
k<l  

which is the Koba-Nielsen formula(l). 

Reference  

1 Koba Z J and Nielsen H B 1969 Nud.  Phys.  B 12517  
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CLOSED-STRING  INTEGRALS  

The integral (12.109), which is required in order to evaluate the four­
tachyon amplitude in the closed-bosonic-string theory, is a special case of 
the more general integral 

I d2z 
I(a,  n;  f3,  m)  =  -lzl"11 - zl j3zn(1- z)m 	 (D1)  

Jr 

which is convergent for 

Re(a  +  f3  +  m  +  n  +  2) <  0 

Re(a  +  n  +  2) >  0 

Re(f3  +  m  +  2) > O. (D2) 

We substitute an integral representation of Izl" 

Izl" =  1 J'''''  ds S-,,/2  - 1 e-slzl ' (D3)
f( -a/2)  0 

which follows from the standard definition of the f  function 

f(p) =  [dUUP-1e- U 	 (D4) 

by changing the integration variable to U =  slzl2. Similarly for 11 - zl 13.  Then 

1=  1 IX  ds S-,,/2  - 1 IX  dt t-j3l2  - 1 re -aI2)f( -(312)  0 0 

I d2z
X ---;;- zn(1  - z)m  e-slz;' - 111 - zl'. (DS) 

Next we do the z-integral. This is easily done using the generating integral 

Jd2z 
J(A,  fA)  == - exp[ -slzl2 - tl1  - zl2 +  AZ +  fA(1  - z)].  (D6) 

Jr 

This integral separates into standard (Gaussian) integrals when Cartesian 
coordinates are used for z =  x  +  i y.  Then 

J(A,  fA)  = 	 _1_ exp(At  +  fAS  - st)  (D7)
s+t  s+t  
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so the z-integral in (DS) is obtained by differentiating with respect to A, f-l:  
nm Jd2

-.!. ~(1 - z)m  e -slzl2  - tl1  - zl2  == t  s e -stl(s  + t).  (D8) 
n (s +  tt +m  + 1 

Of course this result follows only when n,  m  are integral, but we can 
continue to the case when they are non-integral. Next we change integration 
variables to u  and x  where 

st  
u==-­

s+t  
(D9a)  

t 
x==--'  

s+t  
(D9b)  

The domain of integration is 

O";:;;u<oo  0,,;:;;  x,,;:;;  1. (DlO) 

Then the required integral (DS) is(1) 

1==  1  Jl  dxx n + aJ2(1-X)m+/3J2J"  duu- al2 -/3J2-2 e-u  
f( -aI2)f( -,812)  0 0 

== f(1 +  n  +  aI2)f(1  +  m  +  ,812)f( -a12  - ,812  - 1) (Dll)
f( - aI2)f( -,812)f(2  +  m  +  n  +  al2  +  ,8/2) 

Reference  

1 Gross D J, Harvey J A, Martinec E and Rohm R 1986 Nud.  Phys.  B 267  75  
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