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Preface

This book covers the basic theory of complex analysis and a selection of advanced top-
ics. It evolved out of lecture notes from two quarter-long graduate classes that I taught
several times at the University of California, Davis in 2016–2021. The book is primarily
aimed at graduate students, advanced undergraduate students, and postgraduatemath-
ematics researchers. It is suited for self-study or as a primary reference material for
approximately two semester-long graduate-level university courses.

The advanced topics covered in Chapters 2–5 are classical and are discussed inmany
other places. It is my hope thatmy own exposition advances the pedagogy of the subject,
if only ever so slightly, by simplifying the explanations, logical arguments, notation, etc,
as much as it has been within my power to do.

The last chapter, Chapter 6, is more modern in content and covers Maryna Via-
zovska’s spectacular application of modular forms to the solution of the sphere pack-
ing problem in dimension 8. Published in 2016, this work was until now only accessi-
ble to learn about from the primary literature [71] and from a few expository papers
[12, 13, 20, 52]. The detailed exposition of Viazovska’s work in Chapter 6, and the ac-
companying Appendix A covering the relevant backgroundmaterial on sphere packing,
should be useful to students and researchers wishing to get up to speed about these
beautiful recent developments, which are at the forefront of much ongoing research.

The choice of topics you will find in this work is idiosyncratic and reflects my own
mathematical taste, interests, and biases. I make no claim that they are the most impor-
tant parts of the vast theory that is complex analysis; only that they are beautiful, that
they relate to many topics and theories that are of interest to a broad section of pure
mathematicians, and that they are, broadly speaking, a fine set of mathematical ideas,
one could devote one’s time to studying and thinking about. I hope some readers will
agree.

I am grateful to Guy Kindler for help with the book cover design and to Christopher
Alexander, Jennifer Brown, Brynn Caddel, Keith Conrad, Bo Long, AnthonyNguyen, Jian-
ping Pan, and Brad Velasquez for helpful comments on versions of the lecture notes the
book evolved from.

Davis Dan Romik
March 2023

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783110796810-201





0 Prerequisites and notation

0.1 Prerequisites

This book assumes knowledge of the following subjects, roughly at the level covered by
advanced undergraduate courses in the United States:
– Real analysis and multivariable calculus
– Topology of ℝn (mostly for n = 2)
– Complex numbers and their basic properties
– The transcendental functions ez, sin z, cos z of a complex variable

In a few places, some familiarity with Fourier analysis is needed to fully understand
the material. Specifically, in Chapter 2 the Poisson summation formula is derived from
basic properties of Fourier series, and this is used to prove some of the fundamental
properties of the Riemann zeta function. Chapter 6 and Appendix A assume knowledge
of the Fourier transform in ℝn and its basic properties.

Starting in Chapter 3, and increasingly in Chapter 5, knowledge of the basic language
of group theory may be needed to fully understand some of the topics being discussed.
No results from group theory are used beyond the definition of a quotient group.

0.2 Notation

The following notation is used throughout the book.
– ℝ— the real numbers
– ℂ— the complex numbers
– ℤ— the integers
– i— the imaginary unit
– Re(z)— the real part of a complex number z
– Im(z)— the imaginary part of a complex number z
– z— the complex conjugate of a complex number z
– |z|— the modulus of a complex number z
– arg z— the argument of a complex number z
– DR(z)— the open disc of radius R centered at z
– D≤R(z)— the closed disc of radius R centered at z
– CR(z)— the circle of radius R centered at z
– cl(E)— the topological closure of a set E ⊂ ℂ
– 𝔻— the open unit disc D1(0)
– ℍ— the upper half-plane: {z ∈ ℂ : Im(z) > 0}
– Ω— a complex region (open and connected subset of ℂ)

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783110796810-001



2 � 0 Prerequisites and notation

Big-Onotation and asymptotic equality. In a few places, the standard big-Onotation
is used. Formally, the statement “F = O(G),” where F ,G are complex-valued quantities
that depend on one or more variables, means that |F| ≤ C|G|when the variable or vari-
ables in question range over some specified set of values (usually a neighborhood of
some limiting point). Big-O expressions can also be combined in various ways in formu-
las, e. g., “f (t) = O(e−t) + O(t2) as t → ∞” means that f (t) can be expressed as a sum of
two quantities of the forms O(e−t) and O(t2), respectively, as t →∞.

The statement F ∼ G (read as “F is asymptotically equal to G”) means that F/G
converges to 1 in some limiting sense, which is either specified explicitly or inferred
from the context. For example,

sin(x) ∼ x as x → 0

states an asymptotic equality, as does

(2n)!
(n!)2
∼

4n

√πn
as n→∞.



Exercises for Chapter 0 � 3

Exercises for Chapter 0

0.1 Important formulas. Below there is a list of basic formulas in complex analysis.
Review each of them, making sure that you understand what it says and why it is
true; that is, if it is a theorem, then prove it, or if it is a definition, then make sure
you understand it.

In the formulas below, a, b, c, d, t, x, y denote arbitrary real numbers, and w, z de-
note arbitrary complex numbers.
a. i2 = −1
b. (a + bi)(c + di)
= (ac − bd) + (ad + bc)i

c. 1
i = −i

d. z = Re(z) + i Im(z)
e. z = Re(z) − i Im(z)
f. Re(z) = z+z

2
g. Im(z) = z−z

2i
h. |z|2 = zz
i. 1

z =
z
|z|2

j. 1
x+iy =

x−iy
x2+y2

k. w ⋅ z = w ⋅ z

l. |wz| = |w| ⋅ |z|
m. ||w| − |z|| ≤ |w + z| ≤ |w| + |z|
n. ex+iy = ex(cos(y) + i sin(y))
o. |ez| = eRe(z)

p. |ez| ≤ e|z|

q. eit = cos(t) + i sin(t)
r. |eit| = 1
s. cos(t) = eit+e−it

2

t. sin(t) = eit−e−it
2i

u. eπi = −1
v. e±πi/2 = ±i
w. e2πi = 1

0.2 Reminder of basic analysis concepts. Remind yourself of the definitions of the
following terms in real and complex analysis and the topology of ℂ, referring to
other textbooks or online sources if necessary.
a. real part
b. imaginary part
c. complex conjugate
d. modulus
e. argument
f. open set (in ℂ)
g. closed set
h. closure
i. connected set

j. bounded set
k. compact set
l. region
m. convergent sequence
n. Cauchy sequence
o. limit point
p. accumulation point
q. continuous function



1 Basic theory
What is unpleasant here, and indeed directly to be objected to, is the use of complex numbers. ψ is
surely fundamentally a real function.

Erwin Schrödinger, June 6, 1926 letter to Hendrik Lorentz

1.1 Motivation: why study complex analysis?

This book is about complex analysis, the area ofmathematics that studies holomorphic
functions of a complex variable and their properties. Although this may sound a bit
specialized, there are (at least) two excellent reasons why all mathematicians should
learn about complex analysis. First, it is, inmyhumble opinion, one of themost beautiful
areas ofmathematics. Oneway of putting it is that complex analysis seems to have a very
high ratio of theorems to definitions (i. e., a very low “entropy”): you get a lot more as
“output” than you put in as “input.”

The second reason is that complex analysis and, more generally, complex numbers,
have a large number of applications in both the pure mathematics and applied math-
ematics senses of the word. Moreover, many of these applications are to problems that
a priori look like they ought to have little to do with complex numbers. Here are a few
examples, including some that will be discussed later in the book:
– Solving polynomial equations. In 1545, the Italian thinker Gerolamo Cardano pub-

lished the famous formula for solving cubic equations, after learning of the solution
found earlier by Scipione del Ferro. Historically, this appears to have been the first
problem inmathematics to be solved using complex numbers. One surprising aspect
of Cardano’s formula is that it sometimes requires taking operations in the complex
plane as an intermediate step to get to the final answer, evenwhen the cubic equation
being solved has only real roots.

– Proving asymptotic formulas. A well-known approximation to the factorial func-
tion n! is given by Stirling’s formula, which states that the behavior of the factorial
function for large values of n is given by

n! ∼ √2πn(n
e
)
n

(1.1)

(using the notation of Section 0.2). Another famous asymptotic formula is the Hardy–
Ramanujan formula, which states that the number p(n) of integer partitions of n
behaves for large n like

p(n) ∼ 1
4√3n

eπ√2n/3. (1.2)

A standard approach to proving these types of results uses complex analysis, as dis-
cussed, for example, in [28].

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative
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1.1 Motivation: why study complex analysis? � 5

– Counting prime numbers. Let π(n) denote the number of primes less than or equal
to n. This function is known as the the prime-counting function. The prime num-
ber theorem states that

π(n) ∼ n
log n

as n→∞.

This is one of the most celebrated asymptotic formulas (and, indeed, one of the most
famous theorems) in mathematics. Because it deals with prime numbers, it stands
apart from the more general class of asymptotic formulas, such as (1.1)–(1.2) men-
tioned above, and its proof requires more specialized techniques. A standard path to
a proof of the prime number theorem goes through complex analysis, and this is the
subject of Chapter 2.

– Evaluation of complicated definite integrals. Complex analysis offers a set of tech-
niques for evaluating definite integrals that are difficult or impossible to derive using
standard calculus methods. An example is the integral∞

∫
0

sin(t2) dt =
√π
2√2

(known as one of the Fresnel integrals). See Exercise 1.47 at the end of this chapter
for additional examples.

– Solving partial differential equations. Complex-analytic techniques are very use-
ful for solving several kinds of partial differential equation, particularly those arising
in various applied physics problems in hydrodynamics, heat conduction, electrostat-
ics, and more.

– Analyzing alternating current electrical networks. Electrical engineers learn that
the usefulness of Ohm’s law can be greatly extended by generalizing the notion of
electrical resistance to that of electrical impedance, a complex-valued quantity.
Complex analysis also has many other important applications in electrical engineer-
ing, signal processing, and control theory.

– Solution of the sphere packing problem in 8 and 24 dimensions. It was proved in
2016 that the optimal densities for packing unit spheres in 8 and 24 dimensions are
π4
384 and

π12
12! , respectively. The proofs make use of complex analysis in a fundamental

way. The proof for the case of 8 dimensions is presented in Chapter 6.
– Applications in probability and combinatorics. Over the last few decades, com-

plex analysis has been applied in spectacular ways to prove asymptotic results
in probability and combinatorics. One such application is a proof of the Cardy–
Smirnov formula in percolation theory, which answers the following question:
consider a parallelogram-shaped section of cells in the honeycomb lattice with m
rows of cells, each containing n cells. Each cell is colored either black or white ac-
cording to the outcome of a fair coin toss, independently of all other cells (Fig. 1.1(a)).
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Figure 1.1: (a) Percolation on a honeycomb: the Cardy–Smirnov formula gives the asymptotic probability
of a left-to-right crossing event. In this sample configuration, a left-to-right crossing has occurred, as illus-
trated by the trail of red dots representing one possible crossing path. (b) A self-avoiding walk of length 45
on the hexagonal lattice.

A left-to-right crossing event is the event that we can find a contiguous path of
white-colored cells connecting the left edge of the parallelogram to the right edge.
What is the asymptotic probability of this event in the limit as the side lengths of
the parallelogram grow to infinity but its shape tends toward a parallelogram with
a fixed aspect ratio?
Specifically, let P(m, n) denote the probability of a left-to-right crossing event. Cardy
conjectured [10] and Smirnov proved [64] the following result.

Theorem 1.1 (Cardy–Smirnov formula). As m, n → ∞ with the aspect ratio m/n con-
verging to a fixed value λ ∈ (0,∞), the probabilities P(m, n) have the limiting behavior

P(m, n) →
m,n→∞
m/n→λ Φ(λ)

for an explicit function Φ(λ).

A detailed account of Smirnov’s proof can be found in [34, 73]. The function Φ(λ) is
most naturally defined as a certain geometric invariant associated with the parallel-
ogramwith corners 0, 1, ( 1+√3i2 )λ, and (

1+√3i
2 )λ+ 1 and can be written down explicitly

in terms of modular forms [43] and other special functions from complex analysis.
A second example of a recent application of complex analysis to probability and com-
binatorics is the evaluation of the connective constant of thehexagonal lattice. Let
cn denote the number of self-avoiding walks of length n in the hexagonal lattice that
start at the origin; that is, hexagonal lattice paths that do not intersect themselves;
see Fig. 1.1(b). Without the condition of the path being self-avoiding, the number of
such paths would be exactly equal to 3n. The sequence (cn)

∞
n=1, with initial values

1, 3, 6, 12, 24, 48, 90, 174, 336, . . . [W1], is much more mysterious, and its rate of growth
(as well as the rates of growth of similar sequences associated with the square lattice
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and other natural lattices) have been the subject ofmuch study. From general consid-
erations it is fairly easy to see that the sequence grows roughly exponentially, that is,
there exists a constant μ > 0 such that c1/nn → μ as n →∞. The constant μ is known
as the connective constant of the hexagonal lattice. Nienhuis [51] conjectured in 1982
and Duminil-Copin and Smirnov [65] proved in 2010 the following remarkable result
concerning the value of μ.

Theorem 1.2 (Duminil-Copin–Smirnov theorem). The connective constant of self-avoi-

ding walks in the hexagonal lattice is equal to√2 +√2 ≈ 1.84776, that is, the numbers
cn satisfy

lim
n→∞ c1/nn = √2 +√2.

– Running the universe. Nature uses complex numbers in the fundamental laws of
physics, Schrödinger’s equation and quantum field theory. This is not a mere math-
ematical convenience or sleight-of-hand, but appears to be a built-in feature of the
very equations describing our physical universe. Why? No one knows.1 (But it is a
fun topic for debate; see, e. g., [42], [W2], [W3].)

– Conformalmaps. A conformal map is amapping from one planar region to another
that preserves angles. This notion, which comes up in purely geometric applications
where the algebraic or analytic structure of complex numbers seems irrelevant, are
in fact deeply tied to complex analysis. Conformalmapswere used by theDutch artist
M. C. Escher (though he had no formal mathematical training) to create amazing art
and used by others to better understand, and even to improve on, Escher’s work. See
Fig. 1.2 and [21, 59] for more on the connection of Escher’s work to mathematics. We
discuss conformal maps in detail in Chapter 3.

– Proving number-theoretic identities. Lagrange proved in 1770 a classic result in
number theory, which states that every positive integer can be represented as a sum
of four squares of integers. Jacobi later proved a more precise fact: if we denote by
r4(n) the number of distinct ways in which a positive integer n can be represented as
a sum of four squares (with different orderings counting as distinct), then we have
the remarkable identity

r4(n) = 8 ∑
d | n, 4 ∤ d d. (1.3)

(In words: eight times the sum of divisors of n that are not divisible by 4.) This beau-
tiful identity and many others like it with a number-theoretic flavor can be proved

1 Schrödinger himself appeared dissatisfied with the idea that his equation uses complex numbers to
describe physical reality. See the epigraph at the beginning of this chapter and [42] for further discussion.
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Figure 1.2: The photo is only available in the printed edition.

using complex analysis; see Chapter 5 (and Exercise 5.21 at the end of that chapter
for the particular application to proving (1.3)).

– Complex dynamics. Iteration of complex-analytic maps can be used to generate
beautiful fractals with remarkable properties. A famous example is the iconicMan-
delbrot set (Fig. 1.3) defined as the set of complex numbers c ∈ ℂ for which the
sequence of functional iterates f (n)c (0) of the map fc(z) = z

2 + c starting from the
point z = 0 remains bounded.

This has been just a short andnecessarily very incomplete survey on the importance
of complex analysis. There are many other intriguing applications and connections of
complex analysis to other areas of mathematics.

In the next section, I will begin our journey into the subject by proving a famous
theorem about polynomials over the complex numbers.
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Figure 1.3: (a) The Mandelbrot set. (b) Magnified details of a small region.

1.2 The fundamental theorem of algebra

One of themost famous results about complex numbers is the fundamental theoremof
algebra. Although the statement of the theorem is indeed very fundamental to algebra,
most of its known proofs rely on complex analysis in an essential way. Looking at a few
of these proofs seems like a fitting place to start our journey into the theory.

Theorem 1.3 (Fundamental theorem of algebra). Every nonconstant polynomial

p(z) = anz
n + an−1zn−1 + ⋅ ⋅ ⋅ + a0 (n ≥ 1) (1.4)

with complex coefficients has a complex root.

The fundamental theorem of algebra is a striking and subtle result and has many
beautiful proofs. I will show you three of them.

First proof: analytic proof. Let p(z) be as in (1.4), and consider where |p(z)| attains its
infimum.

First, note that the infimum cannot be attained as |z|→∞, since

p(z)
 = |z|

n ⋅ (an + an−1z−1 + an−2z−2 + ⋅ ⋅ ⋅ + a0z−n)
and, in particular,

lim|z|→∞ |p(z)||z|n = |an|, (1.5)
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so for large |z|, it is guaranteed that |p(z)| ≥ |p(0)| = |a0|. Now fix some radius R > 0 for
which |z| > R implies |p(z)| ≥ |a0|, and choose a complex number z0 in the disc DR(0)
for which |p(z0)| = min|z|≤R |p(z)|. (The minimum exists because p(z) is a continuous
function on the disc.) We then have that

m0 := infz∈ℂp(z) = inf|z|≤Rp(z) = min|z|≤Rp(z) = p(z0).
Denote w0 = p(z0), so thatm0 = |w0|. We now claim thatm0 = 0. Indeed, assume by

contradiction that this is not the case. The idea is now to examine the local behavior of
p(z) around z0. Expanding p(z) in powers of z − z0, we can write

p(z) = w0 +
n
∑
j=1 cj(z − z0)j

for some complex coefficients c1, . . . , cn. This can also be written as

p(z) = w0 + ck(z − z0)
k + ⋅ ⋅ ⋅ + cn(z − z0)

n, (1.6)

wherewe denote by k theminimal positive index forwhich cj ̸= 0. Now imagine starting
at the initial point z = z0 and then making a small perturbation away from z0 in the
direction of some unit vector eiθ. We estimate the way that such a perturbation affects
the value p(z). Expansion (1.6) gives

p(z0 + re
iθ) = w0 + ckr

keikθ + ck+1rk+1ei(k+1)θ + ⋅ ⋅ ⋅ + cnrneinθ. (1.7)

When r (the magnitude of the perturbation) is very small, the power rk dominates the
other terms rj with k < j ≤ n; that is, (1.7) can be rewritten as

p(z0 + re
iθ) = w0 + r

k(cke
ikθ + ck+1rei(k+1)θ + ⋅ ⋅ ⋅ + cnrn−keinθ)

= w0 + ckr
keikθ(1 + g(r, θ)), (1.8)

where we denote

g(r, θ) =
n
∑
j=k+1 cjck rj−kei(j−k)θ.

Note that g(r, θ) satisfies a bound of the form

g(r, θ)
 < Ar (1.9)

for all r ∈ [0, 1] and some constant A > 0.
To reach a contradiction, we now choose θ, the angle of the perturbation, to be such

that the vector ckr
keikθ “points in the opposite direction” from w0, that is, such that
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ckr
keikθ

w0
∈ (−∞, 0).

This is clearly possible: take θ = 1
k (argw0 −arg(ck)+π). The idea in doing this is that for

this choice of θ, the expression w0 + ckr
keikθ that forms the dominant term in (1.8) will

have a smaller magnitude than w0 if r is chosen small enough.
To make this precise, choose a number r ∈ [0, 1] smaller than the minimum of the

two numbers 1/(2A) (where A is the constant in (1.9)) and (|w0|/|ck |)
1/k . This choice en-

sures the two inequalities

ckr
keikθ < |w0| and g(r, θ)

 <
1
2
.

With those choices for θ and r, we have that

p(z0 + re
iθ) =
w0 + ckr

keikθ(1 + g(r, θ)) ≤
w0 + ckr

keikθ +
ckr

kg(r, θ)

= |w0| − |ck |r
k + |ck |r

k g(r, θ)
 < |w0| −

1
2
|ck |r

k < |w0| =
p(z0)
.

This is in contradiction to the defining property of z0 and completes the proof.

Second proof: topological proof. If the constant coefficient a0 = p(0) of p(z) is equal to 0,
then we are done, since 0 is a complex root of p(z). Otherwise, consider the image under
p of the circle |z| = r. Note that, on the one hand, for sufficiently small values of r, the
image is contained in a neighborhood of w0, so it cannot “go around” the origin.

On the other hand, for r very large, we have

p(reiθ) = anr
neinθ(1 +

an−1
an

r−1e−iθ + ⋅ ⋅ ⋅ + a0
an
r−ne−inθ)

= anr
neinθ(1 + h(r, θ)),

where h(r, θ) is a function that satisfies limr→∞ h(r, θ) = 0 (uniformly in θ). As θ goes
from 0 to 2π, this is a closed curve that goes around the origin n times (in an approxi-
mately circular path, which becomes closer and closer to a circle as r →∞).

As we gradually increase r from 0 to a very large number, to transition from a curve
that does not go around the origin to a curve that goes around the origin n times, there
has to be a value of r for which the curve crosses 0. This means that the circle |z| = r
contains a point z such that p(z) = 0, which was the claim.

The argument presented in the topological proof is imprecise. It can be made rigor-
ous in a couple of ways—one way we will see a bit later is using Rouché’s theorem (see
Section 1.13 and Exercise 1.30 at the end of the chapter). The difficulty of making these
sorts of arguments precise, in spite of their appealing intuitive nature, gives a hint as to
the importance of subtle topological arguments in complex analysis.
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As another remark, the topological proof should be compared to the standard calcu-
lus proof that any odd-degree polynomial over the reals has a real root. That argument
is also “topological”, although much more elementary.

Third proof: typical textbook proof (or: “hocus-pocus” proof). This is a one-liner of a
proof that assumes some complex analysis knowledge. Recall that an entire function is
a function f : ℂ→ ℂ that is everywhere holomorphic. Recall thewell-knownLiouville’s
theorem, which states that any bounded entire function is constant.

Assuming this result (which we will prove in Section 1.9), if p(z) is a polynomial
with no root, then 1/p(z) is an entire function. Moreover, it is bounded, since our earlier
observation (1.5) implies that lim|z|→∞ 1/p(z) = 0. By Liouville’s theorem it follows that
1/p(z) is a constant, which then has to be 0, leading to a contradiction.

To summarize this section, we saw three proofs of the fundamental theorem of al-
gebra. They are all beautiful—the “hocus-pocus” proof certainly packs a punch, which is
why it is a favorite of complex analysis textbooks—but personally I like the first one best
since it is fully rigorous while being completely elementary and not requiring the use
of either Cauchy’s theorem or any of its consequences, or of subtle topological concepts.
Moreover, it employs a “local” argument based on understanding how a polynomial be-
haves locally, where by contrast the other two proofs can be characterized as “global.”
It is a general principle in mathematical analysis (that has analogies in other areas of
mathematics, such as number theory and graph theory) that local arguments are con-
ceptually easier than global ones.

Suggested exercises for Section 1.2. 1.1, 1.2.

1.3 Holomorphicity, conformality, and the Cauchy–Riemann
equations

In this section, we begin to build the theory in a systematic way by laying its most basic
cornerstone, the definition of holomorphicity, along with some of the useful ways to
think about this fundamental concept.

1.3.1 Definition of holomorphicity

A function f (z) of a complex variable is called holomorphic at z0 if the limit

lim
h→0 f (z0 + h) − f (z0)h

(1.10)
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exists. In this case, we denote this limit by f ′(z0) and call it the derivative of f at z0. A
function of a complex variable defined on all of the complex plane that is everywhere
holomorphic is called an entire function.

The terms analytic, differentiable, and complex-differentiable are synonyms for
“holomorphic.” Some books will make a somewhat pedantic distinction between “ana-
lytic” and “holomorphic” as two distinct concepts that are defined in a priori different
ways but are then shown to be equivalent soon afterward, at which point the distinction
ceases to have any real importance. In this book, we do not follow that approach.

The following are basic properties of complex derivatives.

Lemma 1.4. Under appropriate assumptions (see Exercise 1.4), we have the relations

(f + g)′(z) = f ′(z) + g′(z), (1.11)
(fg)′(z) = f ′(z)g(z) + f (z)g′(z), (1.12)

(
1
f
)
′
= −

f ′(z)
f (z)2
, (1.13)

(
f
g
)
′
=
f ′(z)g(z) − f (z)g′(z)

g(z)2
, (1.14)

(f ∘ g)′(z) = f ′(g(z))g′(z). (1.15)

Proof. Exercise 1.4.

The concept of the derivative in complex analysis is clearly at the heart of the sub-
ject, and there are several helpful ways to think about its meaning. Assume that f (z)
is holomorphic at z0. In the discussion below, we make the further assumption that
f ′(z0) ̸= 0.
1.3.2 First interpretation of holomorphicity: local geometric behavior

If we write the polar decomposition f ′(z0) = reiθ of the derivative, then for points z that
are close to z0, we will have the approximate equality

f (z) − f (z0)
z − z0

≈ f ′(z0) = reiθ
or, equivalently,

f (z) ≈ f (z0) + re
iθ(z − z0) + [lower-order terms],

where “lower-order terms” refers to a quantity that is much smaller in magnitude that
|z − z0| when z is close to z0. Geometrically, this means that to compute f (z), we start
from f (z0) and move by a vector that results by taking the displacement vector z − z0,
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rotating it by an angle of θ, and then scaling it by a factor of r (which corresponds to a
magnification if r > 1, a shrinking if 0 < r < 1, or no scaling if r = 1). This idea can be
summarized by the slogan:

Holomorphic functions behave locally as a rotation composed with a scaling.

The local behavior of analytic functions in the case f ′(z) = 0 is more subtle; see Sec-
tion 1.16.

1.3.3 Second interpretation of holomorphicity: the Cauchy–Riemann equations

Next, we interpret holomorphicity from the point of view of real analysis. Remembering
that complex numbers are vectors that have real and imaginary components, we can
denote z = x+ iy, where x and y are the real and imaginary parts of the complex number
z, and f = u + iv, where u and v are real-valued functions of z (or, equivalently, of x and
y) that return the real and imaginary parts, respectively, of f . Now if f is holomorphic
at z, then the limit (1.10) exists as a complex limit, that is, independently of the way h
approaches 0 as a complex number. In particular, we can evaluate the limit in two ways
by considering two specific ways of letting h approach 0, as a pure real number or as a
pure imaginary number. For the first of those possibilities, we have

f ′(z) = lim
h→0 f (z + h) − f (z)h

= lim
h→0, h∈ℝ u(x + h + iy) − u(x + iy)h

+ i v(x + h + iy) − v(x + iy)
h

=
𝜕u
𝜕x
+ i 𝜕v
𝜕x
.

Similarly, for the second method of approaching 0, we get that

f ′(z) = lim
h→0 f (z + h) − f (z)h

= lim
h→0, h∈iℝ u(x + h + iy) − u(x + iy)h

+ i v(x + h + iy) − v(x + iy)
h

= lim
h→0, h∈ℝ u(x + iy + ih) − u(x + iy)ih

+ i v(x + iy + ih) − v(x + iy)
ih

= −i𝜕u
𝜕y
− i ⋅ i𝜕v
𝜕y
=
𝜕v
𝜕y
− i𝜕u
𝜕y
.

Since these limits are equal, by equating their real and imaginary parts we get a cele-
brated system of partial differential equations, the Cauchy–Riemann equations:

𝜕u
𝜕x
=
𝜕v
𝜕y
,
𝜕v
𝜕x
= −
𝜕u
𝜕y
. (1.16)
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Wehave proved that if f is holomorphic at z = x+ iy, then the components u and v of
f satisfy the Cauchy–Riemann equations (1.16). A kind of converse to this is also true but
requires additional assumptions. Assume that f = u + iv is continuously differentiable
at z = x + iy (in the sense that each of u and v is a continuously differentiable function
of x, y as defined in ordinary real analysis) and satisfies the Cauchy–Riemann equations
there. This implies that f has a differential at z; that is, in the notation of vector calculus,
if we denote f , z, and Δz as the column vectors

f = (u
v
) , z = (x

y
) , Δz = (h1

h2
) ,

then we have

f (z + Δz) = (u(z)
v(z)
) + (

𝜕u𝜕x 𝜕u𝜕y𝜕v𝜕x 𝜕v𝜕y)(h1h2) + E(h1, h2),
where E(Δz) is a function of Δz that satisfies

lim
Δz→0 |E(Δz)||Δz| = 0.

Now by the assumption that the Cauchy–Riemann equations hold, we also have

(
𝜕u𝜕x 𝜕u𝜕y𝜕v𝜕x 𝜕v𝜕y)(h1h2) = (

𝜕u𝜕x h1 + 𝜕u𝜕yh2
− 𝜕u𝜕yh1 + 𝜕u𝜕x h2) ,

which is the vector calculus notation for the complex number

(
𝜕u
𝜕x
− i𝜕u
𝜕y
)(h1 + ih2) = (

𝜕u
𝜕x
− i𝜕u
𝜕y
)Δz.

So we have shown that (again, in complex analysis notation)

lim
Δz→0 f (z + Δz) − f (z)Δz

= lim
Δz→0(𝜕u𝜕x − i𝜕u𝜕y + E(Δz)Δz

) =
𝜕u
𝜕x
− i𝜕u
𝜕y
.

This proves that f is holomorphic at z with derivative given by f ′(z) = 𝜕u𝜕x − i 𝜕u𝜕y . We
summarize the above discussion with the following proposition.

Proposition 1.5 (Cauchy–Riemann equations). Let f = u + iv be a function of a complex
variable z with real and imaginary parts u and v, respectively. If f is holomorphic at z,
then the Cauchy–Riemann equations (1.16) are satisfied at z. Conversely, if equations (1.16)
are satisfied at z and if u and v are continuously differentiable functions at z, then f is
holomorphic at z.
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1.3.4 Third interpretation of holomorphicity: conformal maps

Going back to a more geometric way of thinking about holomorphicity, a further inter-
pretation of the meaning of this property is that holomorphic functions are conformal
mappingswhere their derivatives do not vanish. More precisely, assume as before that
f (z) is holomorphic at z0 and f

′(z0) ̸= 0. Let γ1, γ2 : (a, b) → ℂ be two differentiable
parameterized planar curves defined on some interval (a, b) containing 0, such that
γ1(0) = γ2(0) = z0. The tangent vectors to the curves γ1 and γ2 at z0 are the complex
numbers v1 and v2 defined by

v1 = γ
′
1(0), v2 = γ

′
2(0). (1.17)

Similarly, the tangent vectors to the curves f ∘ γ1 and f ∘ γ2 at f (z0) are

w1 = (f ∘ γ1)
′(0) w2 = (f ∘ γ2)

′(0),
which, by a version of the chain rule from vector calculus adapted to complex-analytic
notation (Exercise 1.6), can be rewritten as

w1 = f
′(γ1(0))γ′1(0) = f ′(z0)γ′1(0), (1.18)

w2 = f
′(γ2(0))γ′2(0) = f ′(z0)γ′2(0). (1.19)

It follows that we can write the inner products (in the ordinary sense of planar vector
geometry) between the complex number pairs v1, v2 and w1,w2 as

⟨v1, v2⟩ = Re(v1v2),

⟨w1,w2⟩ = Re(w1w2) = Re((f
′(z0)γ′1(0))(f ′(z0)γ′2(0)))

= f ′(z0)f ′(z0)Re(v1v2) = f ′(z)2⟨v1, v2⟩. (1.20)

If we denote by θ and φ the angle between v1, v2 and the angle between w1,w2, respec-
tively, we then get using (1.17)–(1.20) that

cosφ = ⟨w1,w2⟩
|w1| |w2|

=
|f ′(z0)|2⟨v1, v2⟩
|f ′(z0)v1| |f ′(z0)v2| = ⟨v1, v2⟩|v1| |v2|

= cos θ.

Sowe have shown that under the assumption that f ′(z0) ̸= 0, the function f (z)maps two
curves meeting at an angle θ at z0 to two curves that meet at the same angle at f (z0). A
function with this property is said to be conformal at z0; see Fig. 1.4.

We can also prove that, under additional assumptions, the converse to the fact that
holomorphicitywith a nonvanishing derivative implies conformality also holds,making
holomorphicity and conformality into nearly equivalent concepts. An important addi-
tional condition is that the conformal map needs to be orientation-preserving; this
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Figure 1.4: A conformal map f preserves the angle between curves crossing at a point: θ = φ.
condition can be seen to be necessary by considering the map f (z) = z, which is con-
formal but not holomorphic. Recall from vector calculus that for a differentiable vector
planar map f : U → ℝ2 (where U is some open set in ℝ2), the Jacobian matrix of f is
the matrix of partial derivatives,

Jf = (
𝜕u𝜕x 𝜕u𝜕y𝜕v𝜕x 𝜕v𝜕y) . (1.21)

If det Jf > 0, then we say that f preserves orientation.

Theorem 1.6. If f = u + iv is holomorphic at z0 and f
′(z0) ̸= 0, then f is conformal at

z0. Conversely, if f is conformal at z0, continuously differentiable at z0 in the real analysis
sense, and preserves orientation at z0, then f is holomorphic at z0.

The first claim of the theorem was already proved above. The converse direction is
provedwith the help of the Cauchy–Riemann equations. First, wewill need the following
simple lemma about linear transformations in the plane.

Lemma 1.7 (Linear conformal maps). Assume that A = ( a b
c d ) is a 2 × 2 real matrix. The

following are equivalent:
(a) A preserves orientation (that is, detA > 0) and is a linear conformal map, that is,

satisfies

⟨Aw1,Aw2⟩
|Aw1| |Aw2|

=
⟨w1,w2⟩
|w1| |w2|

(w1,w2 ∈ ℝ
2 \ {(0, 0)}). (1.22)

(b) A takes the form

A = ( a b
−b a
) for some a, b ∈ ℝ with a2 + b2 > 0. (1.23)
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(c) A takes the form

A = r (cos θ − sin θ
sin θ cos θ

) for some r > 0 and θ ∈ ℝ.

(That is, geometrically A acts by a rotation followed by a scaling.)

Proof that (a) ⇒ (b). Note that both columns of A are nonzero vectors by the assump-
tion that detA > 0. Now applying assumption (1.22) with w1 = (1, 0)

⊤, w2 = (0, 1)
⊤ yields

that (a, c) ⊥ (b, d), so that we must have

(b, d) = κ(−c, a) (1.24)

for some κ ∈ ℝ\{0}. On the other hand, applying (1.22) withw1 = (1, 1)
⊤ andw2 = (1,−1)

⊤
yields that (a + b, c + d) ⊥ (a − b, c − d), which is easily seen to be equivalent to a2 + c2 =
b2 + d2. When combined with (1.24), this implies that κ = ±1. So A is of one of the two
forms ( a −cc a ) or ( a c

c −a ). Finally, the assumption that detA > 0 means that it is the first of
those two possibilities that must occur.

Proof of the implications (b)⇐⇒ (c) and (b) ⇒ (a). This is left as an exercise (Exer-
cise 1.7).

Proof of Theorem 1.6. Assume that f is conformal, continuously differentiable, and
orientation-preserving at z0. Let γ : (a, b)→ ℂ be a differentiable parameterized planar
curve with 0 ∈ (a, b), γ(0) = z0, and tangent vector v = γ

′(0) at z0. By standard prop-
erties of differentiable planar maps the tangent vector of f ∘ γ at f (w0) is Jf (z0)v (that
is, the Jacobian matrix of f at z0 acting as a linear map on the vector v, interpreted as
a column vector). This means that f is conformal at z0 if and only if the matrix Jf (z0) is
a linear conformal map in the sense of satisfying condition (1.22) in Lemma 1.7(a). Now
adding the knowledge that f is orientation-preserving at z0, the equivalence stated in
the lemma implies that Jf (z0)must be of the form given on the right-hand side of (1.23).
Comparing that form with (1.21), we see that this precisely means that f satisfies the
Cauchy–Riemann equations at z0. This means that the converse part of Proposition 1.5
applies, and we conclude that f is holomorphic at z0, as claimed.

Suggested exercises for Section 1.3. 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11.

1.4 Additional consequences of the Cauchy–Riemann equations

In the previous section, we saw that the Cauchy–Riemann equations can be used to
prove the near-equivalence between holomorphicity with a nonvanishing derivative
and conformality. Another curious consequence of the Cauchy–Riemann equations,
which gives an alternative geometric picture to that of conformality, is that holomor-
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phicity implies the orthogonality of the level curves of u and of v. That is, if f = u + iv is
holomorphic, then

⟨∇u, ∇v⟩ = ⟨ (ux , uy), (vx , vy) ⟩ = uxvx + uyvy = vyvx − vxvy = 0.

Since∇u (resp.,∇v) is orthogonal to the level curve {u = c} (resp., the level curve {v = d}),
this proves that the level curves {u = c} and {v = d}meet at right angles whenever they
intersect.

Yet another important and remarkable consequence of the Cauchy–Riemann equa-
tions is that, at least undermild smoothness assumptions (which, aswewill see later, can
be removed) in addition to holomorphicity, u and v are harmonic functions. Assume
that f is holomorphic at z and is twice continuously differentiable (in the real analysis
sense) there. Then

𝜕2u
𝜕x2
+
𝜕2u
𝜕y2
=
𝜕
𝜕x
(
𝜕u
𝜕x
) +
𝜕
𝜕y
(
𝜕u
𝜕y
)

=
𝜕
𝜕x
(
𝜕v
𝜕y
) −
𝜕
𝜕y
(
𝜕v
𝜕x
) =
𝜕2v
𝜕x𝜕y
−
𝜕2v
𝜕y𝜕x
= 0,

i. e., u satisfies Laplace’s equation

△u = 0,

where△ = 𝜕2𝜕x2 + 𝜕2𝜕y2 is the two-dimensional Laplacian operator. A function that satisfies
this equation is called a harmonic function. Similarly (check), v also satisfies

△v = 𝜕
2v
𝜕x2
+
𝜕2v
𝜕y2
= 0.

So we have shown that u and v are harmonic functions. This fact is an important con-
nection between complex analysis, real analysis, and the theory of partial differential
equations.

We will later see that the assumption of f being twice continuously differentiable is
unnecessary, but proving this requires more advanced ideas (see Theorem 1.30 in Sec-
tion 1.9).

A final remark related to holomorphicity and the Cauchy–Riemann equations is the
observation that if f = u + iv is holomorphic, then its Jacobian matrix is given by

Jf = det(
ux uy
vx vy
) = uxvy − uyvx = u

2
x + v

2
x = |ux + ivx | =

f
′(z)2. (1.25)

This can also be understood geometrically—spend amoment thinkingwhat the geomet-
ric interpretation is.

Suggested exercises for Section 1.4. 1.12.
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1.5 Power series

Until now we have not discussed any specific examples of functions of a complex vari-
able. Of course, there are the standard functions that you probably encountered already
in your undergraduate studies: polynomials, rational functions, ez, the trigonometric
functions, etc. Aside from these examples, it would be useful to have a general way
to construct a large family of functions. Of course, there is such a way: power series,
which—nonobviously—turn out to be essentially as general a family of functions as one
could hope for.

Tomake things precise, a power series is a function of a complex variable z defined
by

f (z) =
∞
∑
n=0 an(z − z0)n, (1.26)

where z0 ∈ ℂ, and (an)
∞
n=0 is a sequence of complex numbers. This function is defined

wherever the respective series converges.
For which values of z does this formula make sense? Define the number R ∈ [0,∞]

as

R = (lim sup
n→∞ |an|1/n)−1,

which we refer to as the radius of convergence of the power series. Its significance is
explained in the following simple result.

Lemma 1.8. 1. The series (1.26) converges absolutely if |z − z0| < R.
2. The series (1.26) diverges for all z satisfying |z − z0| > R.

Proof. We assume that 0 < R < ∞; the edge cases R = 0 and R = ∞ are left as an
exercise (Exercise 1.13). The defining property of R is that for all ϵ > 0, we have that
|an| < (

1
R + ϵ)

n if n is large enough, and R is the maximal number with that property. Let
z ∈ DR(0). Since |z| < R, we have |z|(

1
R + ϵ) < 1 for some fixed ϵ > 0 chosen small enough.

This implies that for all n > N (for some large enough N that depends on ϵ),∞
∑
n=Nanzn < ∞∑n=N[( 1R + ϵ)|z|]

n

,

so the series is dominated by a convergent geometric series and hence converges.
Conversely, if |z| > R, then |z|( 1R − ϵ) > 1 for some small enough fixed ϵ > 0. Taking a

subsequence (ank )
∞
k=1 for which |ank | > ( 1R − ϵ)nk for all k (such a subsequence exists by

the definition of R), we see that

ankz
nk  ≥ [|z|(

1
R
− ϵ)]

nk
> 1,
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that is, the power series (1.26) contains infinitely many terms with modulus > 1 and
hence diverges.

Another important property of power series is given in the following theorem.

Theorem 1.9 (Power series are holomorphic). Power series are holomorphic functions in
the interior of their disc of convergence and can be differentiated termwise there; that is,
the derivative of the infinite series is equal to the series of the derivatives.

Proof. Denote

f (z) =
∞
∑
n=0 anzn = SN (z) + RN (z), where

SN (z) =
N
∑
n=0 anzn, RN (z) =

∞
∑

n=N+1 anzn,
and let

g(z) =
∞
∑
n=1 nanzn−1.

The claim is that f is differentiable on the disc of convergence and that its derivative is
the power series g. Since n1/n → 1 as n→∞, it is easy to see that f (z) and g(z) have the
same radius of convergence. Fix z0 with |z0| < r < R. We wish to show that f (z0+h)−f (z0)

h
converges to g(z0) as h→ 0. Observe that

f (z0 + h) − f (z0)
h

− g(z0) = (
SN (z0 + h) − SN (z0)

h
− S′N (z0))

+
RN (z0 + h) − RN (z0)

h
+ (S′N (z0) − g(z0)). (1.27)

In this last expression, the first term converges to 0 as h → 0 for any fixed N . To bound
the second term, fix some ϵ > 0, and assume that |h| < r, and moreover that |h| is small
enough so that |z0 + h| < r. Now make use of the algebraic identity

pn − qn = (p − q)(pn−1 + pn−2q + ⋅ ⋅ ⋅ + pqn−2 + qn−1)
to get that


RN (z0 + h) − RN (z0)

h


≤
∞
∑

n=N+1 |an|  (z0 + h)n − zn0h



=
∞
∑

n=N+1 |an| h∑n−1k=0 hk(z0 + h)n−1−k
h



≤
∞
∑

n=N+1 |an|nrn−1.
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The last expression in this chain of inequalities is the tail of an absolutely convergent
series, so it can bemade < ϵ be takingN large enough (before taking the limit as h→ 0).

Third, we have the limit S′N (z0) → g(z0) as N → ∞, so we can choose N large
enough so that |S′N (z0) − g(z0)| < ϵ. Having thus chosen N , we get finally from (1.27) and
the above estimates that

lim sup
h→0  f (z0 + h) − f (z0)h

− g(z0)

≤ 0 + ϵ + ϵ = 2ϵ.

Since ϵ was an arbitrary positive number, this shows that f (z0+h)−f (z0)h → g(z0) as h→ 0,
as claimed.

Corollary 1.10. Holomorphic functions defined as power series are differentiable (in the
complex-analytic sense) infinitely many times in the disc of convergence.

Corollary 1.11. For a power series g(z) = ∑∞n=0 an(z − z0)n with positive radius of conver-
gence, we have

an =
g(n)(z0)

n!
. (1.28)

In other words, g(z) satisfies Taylor’s formula

g(z) =
∞
∑
n=0 g(n)(z0)n!

(z − z0)
n.

Suggested exercises for Section 1.5. 1.13, 1.14, 1.15, 1.16.

1.6 Contour integrals

We now introduce contour integrals, which are another fundamental building block
of the theory.

Contour integrals, like many other types of integrals, take as input a function to be
integrated and a “thing” (or “place”) over which the function is integrated. In the case of
contour integrals, the “thing” is a contour, which is (for our current purposes at least) a
kind of planar curve. We start by developing some terminology to discuss such objects.
A parameterized curve is a continuous function γ : [a, b]→ ℂ. The value γ(a) is called
the starting point, and γ(b) is called the ending point (both a, b together are referred
to as the endpoints). Two curves γ1 : [a, b] → ℂ, γ2 : [c, d] → ℂ are called equivalent,
denoted γ1 ∼ γ2, if γ2(t) = γ1(I(t)) where I : [c, d] → [a, b] is a continuous, one-to-one,
onto, increasing function. A curve γ is called simple if it does not intersect itself, that is,
if γ is injective. It is called closed if γ(a) = γ(b).
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What we will refer to as a curve is, formally speaking, an equivalence class of pa-
rameterized curves with respect to the equivalence relation defined above. We also use
the word contour as a synonym for curve.

In practice, wewill usually refer to parameterized curves simply as “curves,” which
is the usual abuse of terminology that one sees in various places in mathematics, in
which one blurs the distinction between equivalence classes and their members, re-
membering that various definitions, notation, and proof arguments need to “respect
the equivalence” in the sense that they do not depend of the choice of a member. (As a
meta exercise, try to think of other examples of this phenomenon you might have en-
countered in your studies.)

For our present context of developing the theory of complex analysis, we will as-
sume that all our curves are piecewise continuously differentiable. More generally, we
can assume them to be rectifiable, but we will not bother to develop that theory. There
are yet more general contexts in which allowing curves to be merely continuous is ben-
eficial (and indeed some of the ideas we will develop in a complex-analytic context can
be carried over to that more general setting), but we will not pursue such distractions
either.

You probably encountered curves and parameterized curves in your earlier studies
of multivariate calculus, where they were used to define the notion of line integrals
of vector and scalar fields. Recall that there are two types of line integrals, which are
referred to as line integrals of the first and second kind. The line integral of the first
kind of a scalar (usually real-valued) function u(z) over a curve γ is defined as

∫
γ

u(z) ds = lim
max

j
Δsj→0 n
∑
j=1 u(zj)Δsj , (1.29)

where the limit is a limit of Riemann sumswith respect to a family of tagged partitions of
the interval [a, b] over which the curve γ is defined as the norm of the partitions shrinks
to 0. Such a partition consists of partition points

a = t0 < t1 < ⋅ ⋅ ⋅ < tn = b,

and each partition subinterval [tj−1, tj] is “tagged” or marked with an arbitrary point τj
chosen from the subinterval. Given this partition, we denote zj = γ(τj), and the symbols
Δsj refer to finite line elements, namely Δsj = |zj − zj−1|. This notation gives meaning to
the right-hand side of (1.29).

The line integral of the second kind is defined for a vector field F = (P,Q) (using
the more traditional notation from calculus; in the complex analysis context, we would
regard this object as the complex-valued function F = P + iQ) by

∫
γ

F ⋅ ds = ∫
γ

P dx + Qdy = lim
max

j
Δsj→0 n
∑
j=1 P(zj)Δxj + Q(zj)Δyj ,
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where the numbers zj are associated with the tagged partition as above, and

xj = Re(zj), yj = Im(zj), Δxj = xj − xj−1, Δyj = yj − yj−1.
It is well known from calculus that line integrals can be expressed in terms of ordi-

nary (single-variable) Riemann integrals. Take a couple of minutes to remind yourself
of why the following formulas are true (assuming that all the functions involved are
piecewise continuously differentiable):

∫
γ

u(z) ds =
b

∫
a

u(γ(t))γ
′(t) dt, (1.30)

∫
γ

F ⋅ ds =
b

∫
a

F(γ(t)) ⋅ γ′(t) dt. (1.31)

(In (1.31), “⋅” refers to the dot product of vectors in the plane.)
As a further reminder, the basic result known as the fundamental theorem of cal-

culus for line integrals states that if F = ∇u, then

∫
γ

F ⋅ ds = u(γ(b)) − u(γ(a)).

We are now ready to define contour integrals and arc length integrals, which are
the complex-analytic analogues of line integrals of the first and second kinds (and are
defined in terms of those integrals). For a function f = u+ iv of a complex variable z and
a curve γ, the contour integral ∫γ f (z) dz (in words: the integral of f over the curve γ) is
defined, loosely speaking, as the line integral of the second kind “∫γ(u + iv)(dx + idy)”.
More precisely, expanding this product of a complex number and a complex differential
and separating into real and imaginary components, this definition becomes

∫
γ

f (z) dz = (∫
γ

u dx − v dy) + i(∫
γ

v dx + u dy), (1.32)

that is, the complex number whose real part is the line integral of F ⋅ ds and whose
imaginary part is the line integral ofG⋅ds, where F andG are the vector fields F = (u,−v)
and G = (v, u). Appealing to (1.31), you can check easily that the contour integral can be
evaluated explicitly as the ordinary Riemann integral

∫
γ

f (z) dz =
b

∫
a

f (γ(t))γ′(t) dt. (1.33)

Similarly, the arc length integral is defined as
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∫
γ

f (z) |dz| = ∫
γ

f (z) ds = ∫
γ

u ds + i∫
γ

v ds, (1.34)

which is simply a line integral of the first kind inwhich the integrand is complex-valued.
If γ is a closed curve, thenwe denote the contour integral as∮γ f (z) dz, and similarly

∮γ f (z) |dz| for the arc length integral.
A particular case of an arc length integral is the length of the curve, denoted len(γ)

and defined as the integral of the constant function 1:

len(γ) = ∫
γ

|dz| =
b

∫
a

γ
′(t) dt.

As mentioned above, our convention of mildly abusing terminology puts on us the
burden of having to remember to check that these definitions do not depend on the
parameterization of the curve. Indeed, if γ1 ∼ γ2 are representatives of the same equiv-
alence class of parameterized curves, that is, γ2(t) = γ1(I(t)) for some nicely behaved
function, then using a standard change of variables in single-variable integrals, we see
that

∫
γ2

f (z) dz =
d

∫
c

f (γ2(t))γ
′
2(t)dt =

d

∫
c

f (γ1(I(t)))(γ1 ∘ I)
′(t) dt

=
d

∫
c

f (γ1(I(t)))γ
′
1(I(t))I

′(t) dt = b

∫
a

f (γ1(τ))γ
′
1(τ) dτ = ∫

γ1

f (z) dz. (1.35)

The analogous verification in the case of arc length integrals is left as an exercise
(Exercise 1.17).

Contour integrals have many surprising properties, but the ones on the following
list of basic properties are not of the surprising kind.

Proposition 1.12 (properties of contour integrals). Contour integrals satisfy the following
properties:
(a) Linearity as an operator on functions: for functions f (z), g(z) and complex numbers

α, β, we have

∫
γ

(αf (z) + βg(z)) dz = α∫
γ

f (z) dz + β∫
γ

g(z) dz.

(b) Linearity as an operator on curves: if a contour Γ is a “composition” of two contours
γ1 and γ2 (in a sense that is easy to define graphically but tedious to write down pre-
cisely), then
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∫
Γ

f (z) dz = ∫
γ1

f (z) dz + ∫
γ2

f (z) dz.

Similarly, if γ2 is the “reverse” contour of γ1, then

∫
γ2

f (z) dz = −∫
γ1

f (z) dz.

(c) Triangle inequality:

∫
γ

f (z) dz

≤ ∫f (z)

 |dz| ≤ len(γ) ⋅ supz∈γ f (z).
Proof. Exercise 1.18.

Contour integrals have their own version of the fundamental theorem of calculus.

Theorem 1.13 (The fundamental theorem of calculus for contour integrals). If γ is a curve
connecting two points w1 and w2 in a regionΩ on which a function F is holomorphic, then

∫
γ

F′(z) dz = F(w2) − F(w1).

Equivalently, the theorem says that to compute a general contour integral ∫γ f (z) dz,
we try to find a primitive of f , that is, a holomorphic function F such that F′(z) = f (z)
on all of Ω. (A term synonymous with “primitive” is antiderivative.) If we found such a
primitive, then the contour integral ∫γ f (z) dz is given by F(w2) − F(w1).

Proof. For smooth curves, an easy application of the chain rule gives

∫
γ

F′(z) dz = b

∫
a

F′(γ(t))γ′(t) dt = b

∫
a

(F ∘ γ)′(t) dt = (F ∘ γ)(t)|t=bt=a
= F(γ(b)) − F(γ(a)) = F(w2) − F(w1).

For piecewise smooth curves, this is a trivial extension that is left to the reader.

Many of our discussions of contour integrals will involve the behavior of integrals
over closed contours and the interplay between the properties of such integrals and
integrals over general contours. As an example of this interplay, the above result has an
easy—but important—consequence for integrals over closed contours.

Corollary 1.14. If f = F′ where F is holomorphic on a region Ω—that is, f has a
primitive—then for any closed contour γ in Ω, we have

∮
γ

f (z) dz = 0.
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This last result has the following partial converse.

Proposition 1.15. If f : Ω→ ℂ is a continuous function on a region Ω such that

∮
γ

f (z) dz = 0

for any closed contour in Ω, then f has a primitive.

Proof. Fix some z0 ∈ Ω. For any z ∈ Ω, there is some curve γ(z0, z) connecting z0 and
z (since Ω is connected and open, hence pathwise-connected—a standard exercise in
topology). Moreover, it is also not hard to see that the curve can be assumed to be piece-
wise differentiable. Define

F(z) = ∫
γ(z0 ,z) f (w) dw. (1.36)

By the assumption this integral does not depend on which curve γ(z0, z) connecting z0
and z was chosen, so F(z) is well-defined. We now claim that F is holomorphic and its
derivative is equal to f . To see this, note that if h is a complex number such that z+h ∈ Ω,
then

F(z + h) − F(z)
h

− f (z)

=
1
h
( ∫
γ(z0 ,z+h) f (w) dw − ∫γ(z0 ,z) f (w) dw) − f (z)

=
1
h
∫

γ(z,z+h) f (w) dw − f (z) = 1h ∫γ(z,z+h)(f (w) − f (z)) dw, (1.37)

where γ(z, z + h) denotes a curve in Ω connecting z and z + h. When |h| is sufficiently
small so that the disc Dh(z) is contained in Ω, we can take γ(z, z + h) as the straight line
segment connecting z and z + h. For such h, we get that


F(z + h) − F(z)

h
− f (z)

≤
1
h
len(γ(z, z + h)) sup

w∈Dh(z)f (w) − f (z)
= sup

w∈Dh(z)f (w) − f (z) →h→0 0

by the continuity of f .

Lemma 1.16. If f is holomorphic on Ω and f ′ ≡ 0, then f is a constant.
Proof. Fix some z0 ∈ Ω. For any z ∈ Ω, as we discussed above, there is a path γ(z0, z)
connecting z0 and z. Then
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f (z) − f (z0) = ∫
γ(z0 ,z) f ′(w) dw = 0,

and hence f (z) ≡ f (z0), that is, f is constant.

Suggested exercises for Section 1.6. 1.17, 1.18.

1.7 The Cauchy, Goursat, and Morera theorems

One of the central results in complex analysis is Cauchy’s theorem.

Theorem 1.17 (Cauchy’s theorem.). If f is a holomorphic function on a simply connected
region Ω, then for any closed curve in Ω, we have

∮
γ

f (z) dz = 0.

The challenges facing us are as follows: first, to prove Cauchy’s theorem for curves
and regions that are relatively simple (wherewe do not have to deal with subtle topolog-
ical considerations); second, to define what “simply connected” means; third, to extend
the theorem to the most general setting. This is done in the next section.

Two other theorems closely related to Cauchy’s theorem are Goursat’s theorem, a
relatively easy particular case of Cauchy’s theorem, andMorera’s theorem, which is a
kind of converse to Cauchy’s theorem.

Theorem 1.18 (Goursat’s theorem). If f is holomorphic on a region Ω, T is a triangle con-
tained in Ω, and 𝜕T is the boundary of T (considered as a curve in the usual sense), then

∮𝜕T f (z) dz = 0. (1.38)

Theorem 1.19 (Morera’s theorem). If f : Ω → ℂ is a continuous function on a region Ω
such that

∮
γ

f (z) dz = 0

for any closed contour in Ω, then f is holomorphic on Ω.

Morera’s theorem is proved in Section 1.9.

Proof of Goursat’s theorem. The proof can be summarized with a slogan “localize the
damage.” Namely, try to translate a global statement about the integral around the tri-
angle to a local statement about behavior near a specific point inside the triangle, which
would becomemanageable since we have a good understanding of the local behavior of
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a holomorphic function near a point. If something goes wrong with the global integral,
then something has to go wrong at the local level, and wewill show that cannot happen.
(Although technically the proof is not a proof by contradiction, conceptually I find this
a helpful way to think about it).

The idea can bemademore precise using triangle subdivision. Specifically, let T (0) =
T , and define a hierarchy of subdivided triangles:

order 0 triangle: T (0),
order 1 triangles: T (1)j , 1 ≤ j ≤ 4,
order 2 triangles: T (2)j,k , 1 ≤ j, k ≤ 4,
order 3 triangles: T (3)j,k,ℓ, 1 ≤ j, k, ℓ ≤ 4,

...

order n triangles: T (n)j1 ,...,jn , 1 ≤ j1, . . . , jn ≤ 4.
...

Here the triangles T (n)j1 ,...,jn for jn = 1, 2, 3, 4 are obtained by subdividing the order-(n − 1)
triangle T (n−1)j1 ,...,jn−1 into 4 subtriangles whose vertices are the vertices and/or edge bisectors
of T (n−1)j1 ,...,jn−1 ; see Fig. 1.5.

Figure 1.5: The triangle T = T (0) and the first few steps in its hierarchy of subdivided triangles.
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Now, given the way this subdivision was done, it is clear that we have the relation

∮𝜕T (n−1)j1 ,...,jn−1
f (z) dz =

4
∑
jn=1 ∮𝜕T (n)j1 ,...,jn f (z) dz

(where 𝜕T (n)j1 ,...,jn refers as before to the boundary of the triangle T (n)j1 ,...,jn , considered as a
curve oriented in the positive sense) due to cancelation along the internal edges, and
hence

∮𝜕T (0) f (z) dz =
4
∑

j1 ,...,jn=1 ∮𝜕T (n)j1 ,...,jn f (z) dz.
So the contour integral around the boundary of the original triangle is equal to the sum
of the integrals around all 4n triangles at the nth subdivision level. Now a key obser-
vation is that one of these integrals has to have a modulus that is at least as big as the
average, that is, there exists an n-tuple j(n) = (j(n)1 , . . . , j(n)n ) ∈ {1, 2, 3, 4}n for which


∮𝜕T (0) f (z) dz


≤

4
∑

j1 ,...,jn=1

∮𝜕T (n)j1 ,...,jn f (z) dz


≤ 4n

∮𝜕T (n)j(n) f (z) dz


. (1.39)

Moreover,we can choose j(n) inductively in such away that the triangles T (n)j(n) are nested,
that is, T (n)j(n) ⊂ T (n−1)j(n−1) for n ≥ 1, or, equivalently, j(n) = (j(n−1)1 , . . . , j

(n−1)
n−1 , k) for some

1 ≤ k ≤ 4. To make this happen, choose a value of k for which |∮𝜕T (n)(j(n−1),k) f (z) dz| is
greater than or equal to the average

1
4

4
∑
d=1 ∮𝜕T (n)(j(n−1),d) f (z) dz


,

which in turn can be seen (by induction) to be greater than or equal to

1
4



4
∑
d=1 ∮𝜕T (n)(j(n−1),d) f (z) dz


=
1
4


∮𝜕T (n−1)j(n−1)

f (z) dz

≥
1
4
⋅ 4−(n−1)∮𝜕T f (z) dz,

thereby justifying (1.39).
We now claim that the sequence of nested triangles T (n)j(n) shrinks to a single point,

that is, we have ∞
⋂
n=0 T (n)j(n) = {z0}
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for some point z0 ∈ T . Indeed, the diameter of the triangles goes to 0 as n → ∞, so
certainly there cannot be two distinct points in the intersection. On the other hand, the
triangles T (n)j(n) are all compact, and the finite intersections⋂Nn=0 T (n)j(n) are nonempty, so by
the standard finite intersection property of compact sets the full intersection⋂∞n=0 T (n)j(n)
is also nonempty.

Having defined z0, write f (z) for z near z0 as

f (z) = f (z0) + f
′(z0)(z − z0) + ψ(z)(z − z0),

where

ψ(z) = f (z) − f (z0)
z − z0

− f ′(z0).
The holomorphicity of f at z0 implies that ψ(z) → 0 as z → z0. Denote by d

(n) the diam-
eter of T (n)j(n) and by p(n) its perimeter. Each subdivision shrinks both the diameter and
perimeter by a factor of 2, so we have

d(n) = 2−nd(0), p(n) = 2−np(0).
It follows that


∫𝜕T (n)j(n) f (z) dz


=

∫𝜕T (n)j(n) (f (z0) + f

′(z0)(z − z0) + ψ(z)(z − z0)) dz
=

∫𝜕T (n)j(n) ψ(z)(z − z0) dz


≤ p(n)d(n) sup

z∈T (n)j(n)ψ(z)
= 4−np(0)d(0) sup

z∈T (n)j(n)ψ(z).
This estimate allows us to finish, since combining it with (1.39), we get that


∫𝜕T (0) f (z) dz


≤ p(0)d(0) sup

z∈T (n)j(n)ψ(z) →n→∞ 0,

which establishes (1.38).

The next few results illustrate howGoursat’s theorem, for all its apparent simplicity,
can be used to quickly derive even stronger versions of Cauchy’s theorem, gradually
building up our knowledge toward the general version that will be proved in the next
section.

Corollary 1.20 (Goursat’s theorem for rectangles). Theorem 1.18 is also true when we re-
place the word “triangle” with “rectangle.”
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Proof. Obviously, a rectangle can be decomposed as the union of two triangles, with the
contour integral around the rectangle being the sum of the integrals around the two
triangles due to cancelation of the integrals going in both directions along the diagonal.

Corollary 1.21 (existence of a primitive for a holomorphic function on a disc). If f is holo-
morphic on a disc D, then f = F′ for some holomorphic function F on D.
Proof. The claim is identical to Proposition 1.15, but with a different set of assumptions.
In fact, the proof of that proposition can be easily adapted to prove the existence of a
primitive in the current setting. Specifically, we again define the purported primitive F
for f using (1.36), but this time using a particular choice of path γ(z0, z) connecting z0
and z, namely, we take γ(z0, z) to be the straight line segment from z0 to z.

We now claim that with this definition, for h small in magnitude (so that z + h is
still in the disc D), the chain of equalities (1.37) still holds, where in this chain, we also
interpret γ(z, z + h) as the straight line segment connecting z and z + h. If we can show
this, then the rest of the proof carries through as before. Now, upon inspection of (1.37),
we see that the first and third equalities still hold trivially; it is only the middle equality
that needs to be explained. This equality can be rewritten as

∫
γ(z0 ,z) f (w) dw + ∫γ(z,z+h) f (w) dw − ∫γ(z0 ,z+h) f (w) dw = 0,

a relationship between the contour integrals of f along the three straight line segments
γ(z0, z), γ(z0, z+ h), and γ(z, z+ h). This is simply the statement that the contour integral
along the boundary of the triangle with vertices z0, z, and z + h is 0, which follows from
Goursat’s theorem.

Theorem 1.22 (Cauchy’s theorem for a disc). If f is holomorphic on a disc, then∮γ f dz = 0
for any closed contour γ in the disc.

Proof. By Corollary 1.21, f has a primitive, so Corollary 1.14 implies the claimed conse-
quence.

1.8 Simply connected regions and the general version of Cauchy’s
theorem

We now develop the additional concepts required to formulate and prove the general
version of Cauchy’s theorem. A key notion is that ofhomotopy of curves. Given a region
Ω ⊂ ℂ, two parameterized curves γ1, γ2 : [0, 1] → Ω (assumed for simplicity of notation
to be defined on [0, 1]) are said to be homotopic (with fixed endpoints) if γ1(0) = γ2(0),
γ1(1) = γ2(1), and there exists a function F : [0, 1] × [0, 1]→ Ω such that
i) F is continuous.



1.8 Simply connected regions and Cauchy’s theorem � 33

ii) F(0, t) = γ1(t) for all t ∈ [0, 1].
iii) F(1, t) = γ2(t) for all t ∈ [0, 1].
iv) F(s, 0) = γ1(0) for all s ∈ [0, 1].
v) F(s, 1) = γ1(1) for all s ∈ [0, 1].

The map F is called a homotopy between γ1 and γ2. Intuitively, for each s ∈ [0, 1], the
function Fs : t → F(s, t) defines a curve connecting the two endpoints γ1(0) and γ1(1). As
s grows from 0 to 1, this family of curves transitions in a continuous way between the
curve γ1 and γ2 with the endpoints being fixed in place; see Fig. 1.6.

Figure 1.6: A homotopy between two curves γ1 and γ2, visualized as a one-parameter family of curves
t → Fs(t) that interpolate continuously between γ1 and γ2, with the endpoints staying fixed.
A common alternative way to define the notion of homotopy of curves is for closed
curves,where the endpoints are not fixed, but the homotopymust keep the curves closed
as it is deforming them. The definition of a simply connected region then becomes a
region in which any two closed curves are homotopic. It is not hard to show that those
two definitions are equivalent.

It is easy (but recommended!) to check that the relation of being homotopic is an
equivalence relation; see Exercise 1.19.

Next, we define the notion of a simply connected region. A regionΩ is called simply
connected if any two curves γ1, γ2 in Ωwith the same endpoints are homotopic. Note that
this is a topological property (in the sense that it is preserved under homeomorphism).
The complex plane, the unit disc, and any region homeomorphic to the unit disc are
simply connected regions (Exercise 1.20).

Theorem 1.23. If f is a holomorphic function on a region Ω, and γ0,γ1 are two curves on
Ω with the same endpoints that are homotopic, then

∫
γ0

f (z) dz = ∫
γ1

f (z) dz.

Proof. Aswith the proof of Goursat’s theorem in the previous section, this proof is based
on the idea of reducing the global statement about the equality of the two contour in-
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tegrals into a local statement. Denote by F : [0, 1] × [0, 1] → Ω the homotopy between
γ0 and γ1, and for any s ∈ [0, 1], denote by γs : [0, 1] → ℂ the curve γs(t) = F(s, t). The
strategy of the proof is to show that there are values 0 = s0 < s1 < s2 < ⋅ ⋅ ⋅ < sn = 1 such
that

∫
γs0

f (z) dz = ∫
γs1

f (z) dz = ⋅ ⋅ ⋅ = ∫
γsn−1

f (z) dz = ∫
γsn

f (z) dz.

In fact, we can take sk = k/n for 0 ≤ k ≤ n with large n; we will define nmore precisely
below. Fix 1 ≤ k ≤ n. To prove the equality between the two integrals ∫γsk−1 f (z) dz and
∫γsk

f (z) dz, we decompose each of the two integrals into a sum of integrals over small
pieces of the contours γsk−1 and γsk by writing them as

∫
γsk−1

f (z) dz =
m
∑
j=1 ∫γsk−1 |[tj−1 ,tj ])

f (z) dz, (1.40)

∫
γsk

f (z) dz =
m
∑
j=1 ∫γsk |[tj−1 ,tj ]

f (z) dz. (1.41)

Here γsk |[tj−1 ,tj] denotes the restriction of the contour γ to the interval [tj−1, tj], where tj
denotes some sequence of points 0 = t0 < t1 < ⋅ ⋅ ⋅ < tn = 1 partitioning [0, 1] into
subintervals [tj−1, tj]. We will show at the end of the proof that the partition tj = j/n for
0 ≤ j ≤ n − 1, where n is large (and is the same n that was used for the definition of
sk above), works well for our purposes. Specifically, we will show that with the way we
defined sk and tj above and with n taken sufficiently large, the following assumption is
satisfied: for all 1 ≤ k, j ≤ n, there exists an open disc Dk,j ⊂ Ω containing the two curve
segments γsk−1|[tj−1 ,tj] and γsk |[tj−1 ,tj].

Under this assumption, to prove that the two integrals (1.40)–(1.41) are equal, it suf-
fices to prove that for any 1 ≤ j ≤ n, we have the equality

∫
γsk−1 |[tj−1 ,tj ])

f (z) dz = ∫
γsk |[tj−1 ,tj ]

f (z) dz (1.42)

between the integrals over the small subcontours.
For each 0 ≤ j ≤ n, let ηk,j denote a straight line segment (considered as a param-

eterized curve) from γsk−1 (tj) to γsk (tj), and for each 1 ≤ j ≤ m, let Γk,j denote the closed
curve γsk−1 ([tj−1, tj]) + ηk,j − γsk ([tj−1, tj]) − ηk,j−1 (in words: the concatenation of the four
curves γsk−1 ([tj−1, tj]), ηk,j , “the reverse of γsk ([tj−1, tj]),” and “the reverse of ηk,j−1”). By
the assumption on the disc Dk,j the curve Γk,j is contained in Dk,j . Therefore by Cauchy’s
theorem for discs (Theorem 1.22) we have
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∮
Γk,j f (z) dz = 0,

or, more explicitly,

∫
γsk−1 |[tj−1 ,tj ]

f (z) dz − ∫
γsk |[tj−1 ,tj ]

f (z) dz = ∫
ηk,j−1 f (z) dz − ∫ηk,j f (z) dz.

Summing this relation over j and recalling (1.40)–(1.41), we get that

∫
γsk−1

f (z) dz − ∫
γsk

f (z) dz =
m
∑
j=1( ∫ηk,j−1 f (z) dz − ∫ηk,j f (z) dz)
= ∫
ηk,0 f (z) dz − ∫ηk,m f (z) dz = 0.

(Here, in the next-to-last step the sum is telescoping, and in the last step, we note that
ηk,0 and ηk,m are both degenerate curves, each of which simply stays at a single point.)
This is precisely equality (1.42) we wanted.

It remains to justify the assumption about the discs Dk,j . This is done as follows.
First, since the set A = F([0, 1] × [0, 1]) is compact, it is easy to see (for example, using
the Heine–Borel property) that there exists a number ϵ > 0 such that the discs Dϵ(z) are
contained in Ω for all z ∈ A. Second, since F is continuous, and hence also uniformly
continuous, on [0, 1] × [0, 1], there exists a number δ > 0 such that for any 0 ≤ s, t ≤ 1
with |s − s′| + |t − t′| < δ, we have

γs′(t′) − γs(t) = F(s′, t′) − F(s, t) < ϵ.
Let n be an integer larger than 2/δ, and let sk = k/n and tj = j/n as before. We define the
discs Dk,j by Dk,j = Dϵ(γsk−1 (tj−1)) and claim that they satisfy our assumption. Indeed, if
t ∈ [tj−1, tj], then |t−tj−1| ≤ 1/n < δ/2, so |γsk−1 (t)−γsk−1 (tj−1)| < ϵ. This shows that the curve
segment γsk−1|[tj−1 ,tj] is contained in Dk,j . Similarly, |t − tj−1| + |sk − sk−1| ≤ 1/n + 1/n < δ, so
|γsk (t) − γsk−1 (tj−1)| < ϵ, that is, the curve segment γsk |[tj−1 ,tj] is also contained in Dk,j . This
proves that our assumption about the discs Dk,j is satisfied and finishes the proof.
Theorem 1.24 (Cauchy’s theorem, general version). If f is holomorphic on a simply con-
nected region Ω, then for any closed curve in Ω, we have

∮
γ

f (z) dz = 0.

Proof. Assume without loss of generality that γ is parameterized as a curve on [0, 1].
Then it can be thought of as the concatenation of two curves γ1 and −γ2, where γ1 =
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γ|[0,1/2], and γ2 is the “reverse” of the curve γ|[1/2,1]. Note that γ1 and γ2 have the same
endpoints. By Theorem 1.23 we have

∫
γ

f (z) dz = ∫
γ1−γ2 f (z) dz = ∫γ1 f (z) dz − ∫γ2 f (z) dz = 0.

Combining Theorem 1.24 with Proposition 1.15, we get the following result.

Corollary 1.25. Any holomorphic function on a simply connected region has a primitive.

One subtle issue that is glossed over inmany complex analysis textbooks is the ques-
tion of how to recognizewhen a region is simply connected. Inmany practical situations,
it is easy to recognize or at least accept as intuitively plausible, that the region under dis-
cussion is homeomorphic to a disc, which of course implies the property of being simply
connected. This informal style of reasoning will be sufficient for our needs in this book.
For those readers who prefer a higher level of rigor, we cite without proof the following
result from topology.

Theorem 1.26. Given any simple closed curve γ in the plane, there is a regionΩ such that:
1. Ω is bounded;
2. Ω is the unique connected component of ℂ \ γ that is bounded;
3. Ω is homeomorphic to a disc.

Because of the second property of Ω given in the theorem, Ω is usually referred to
as “the region enclosed by γ.”

Theorem 1.26 is a version of the Jordan–Schoenflies theorem, which in turn is
a strengthened version of the Jordan curve theorem. These results have elementary
proofs that do not require complex analysis; see [9, 69] and [W6] for additional discus-
sion and references. A planar curve that is simple and closed is often referred to as a
Jordan curve.

Suggested exercises for Section 1.8. 1.19, 1.20, 1.21, 1.22.

1.9 Consequences of Cauchy’s theorem

Theorem 1.27 (Cauchy’s integral formula). If f is holomorphic on a region Ω containing
the closed disc D≤R(z0), then

1
2πi
∮

CR(z0) f (w)w − z
dw =
{{{
{{{
{

f (z) if z ∈ DR(z0),
0 if z ∈ Ω \ D≤R(D),
undefined if z ∈ CR(z0)

(1.43)

Proof. The case where z ∈ Ω \ D≤R(D) is covered by Cauchy’s theorem in a disc, since in
that case the functionw → f (w)/(w−z) is holomorphic in an open set containingD≤R(D).
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Figure 1.7: The keyhole contour Γϵ,δ .
It remains to deal with the case z ∈ DR(z0). In this case, denote Fz(w) = f (w)/(w−z). The
idea is now to consider instead the integral

∮
Γϵ,δ Fz(w) dw = ∮Γϵ,δ

f (w)
w − z

dw,

where Γϵ,δ is a so-called keyhole contour, namely a contour comprising a large circular
arc around z0 that is a subset of the circle CR(z0), and another smaller circular arc of
radius ϵ centered at z, with two straight line segments connecting the two circular arcs
to form a closed curve, such that the width of the “neck” of the keyhole is δ. (Here ϵ and
δ are two small positive parameters; think of ϵ as being small and of δ as being much
smaller than ϵ.) See Fig. 1.7. Note that the function Fz(w) is holomorphic inside the region
enclosed by Γϵ,δ . Moreover, this region is clearly homeomorphic to a disc and so is simply
connected. Therefore Cauchy’s theorem gives that

∮
Γϵ,δ Fz(w) dw = 0.

We now take the limit of this equation as δ → 0. The two parts of the integral along the
“neck” of the contour Γϵ,δ cancel out in the limit because Fz is continuous, and hence
uniformly continuous, on the compact set D≤R(z0) \ Dϵ(z). So we can conclude that

∮
CR(z0) Fz(w) dw = ∮Cϵ(z) Fz(w) dw. (1.44)

The next and final step is to take the limit as ϵ → 0 of the right-hand side of this equation.
Write
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Fz(w) =
f (w) − f (z)

w − z
+ f (z) ⋅ 1

w − z
. (1.45)

Integrating each of these two terms separately, for the first term, we have


∮

Cϵ(z) f (w) − f (z)w − z
dw

≤ 2πϵ ⋅ sup|w−z|=ϵ |f (w) − f (z)|ϵ

= 2π sup|w−z|=ϵf (w) − f (z) →ϵ→0 0 (1.46)

by the continuity of f ; and for the second term,

∮
Cϵ(z) f (z) ⋅ 1

w − z
dw = f (z) ∮

Cϵ(z) 1
w − z

dw = 2πif (z) (1.47)

(by a standard calculation; see Exercise 1.21). Combining (1.44) and (1.47) gives that
∮CR(z0) 1

2πiFz(w) dw = f (z), which was the formula to be proved.

An important particular case of (1.43) is the one in which z = z0. Cauchy’s integral
formula gives in this case that

f (z) = 1
2π
∮

CR(z0) f (w) dw
i(w − z)

=
1
2π

2π

∫
0

f (z + Reit)dt.

In other words, we have proved the following result.

Theorem 1.28 (Mean value property for holomorphic functions). If f is holomorphic on a
region Ω containing the closed disc D≤R(z0), then the value f (z0) is equal to the average of
the values of f around the circle CR(z0).

Considering what the mean value property means for the real and imaginary parts
of f = u+ iv, which are harmonic functions, we see that they in turn also satisfy a similar
mean value property:

u(x, y) = 1
2π

2π

∫
0

u(x + R cos t, y + R sin t) dt. (1.48)

In fact, (1.48) holds for all harmonic functions and is a result known as themean value
property for harmonic functions. This result is proved inmany textbooks usingmeth-
ods from real analysis or partial differential equations. Alternatively, it can be derived
from the above considerations by proving that every harmonic function in a disc is the
real part of a holomorphic function.
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Theorem 1.29 (Cauchy’s integral formula, extended version). Under the same assump-
tions as in Theorem 1.27, f is differentiable infinitely many times, and for z ∈ DR(z0), its
derivatives f (n)(z) are given by

f (n)(z) = n!
2πi
∮

CR(z0) f (w)
(w − z)n+1 dw. (1.49)

Proof. We prove by induction that for all n ≥ 0, f (n)(z) exists, is differentiable, and is
given by the expression on the right-hand side of (1.49). For n = 0, this is the statement
of (1.43) in the case z ∈ DR(z0). For the inductive step, assuming that we have proved the
claim for a given value of n, the idea is now to show that the expression on the right-
hand side of (1.49) can be differentiated under the integral sign. More precisely, observe
that, by the inductive hypothesis, if z + h ∈ DR(z0) (which is the case where h is close
enough to 0), then

f (n)(z + h) − f (n)(z)
h

=
n!
2πi
∮
C

f (w) ⋅ 1
h
(

1
(w − z − h)n+1 − 1

(w − z)n+1)dw.
It is easily seen that as h → 0, the divided difference (w−z−h)−n−1−(w−z)−n−1h converges to
(n + 1)(w − z)−n−2, uniformly over w ∈ C. (The same claim without the uniformity is just
the rule for differentiation of a power function; to get the uniformity, we need to “go
back to basics” and repeat the elementary algebraic calculation that was originally used
to derive this power rule; we leave this as an exercise.) It follows that

lim
h→0 f (n)(z + h) − f (n)(z)h

=
n!
2πi
∮

CR(z0)(n + 1) f (w)
(w − z)n+2 dz

=
(n + 1)!
2πi
∮

CR(z0) f (w)
(w − z)n+2 dz. (1.50)

This implies that f n+1(z) exists and is equal to the last expression in (1.50), which was
precisely the claim in the (n + 1)th case. The induction is complete.

In Theorem 1.29, we have stated one of the most remarkable facts about holomor-
phic functions but hid it inside a technical-looking claim in a way that makes it seem
almost like an afterthought. Let us state it more explicitly to pay it proper respect.

Theorem 1.30 (Infinite differentiability of holomorphic functions). If a function f of a com-
plex variable is holomorphic in a region Ω, then it is differentiable infinitely many times
there.

The real-analysis analogue of Theorem 1.30 is, of course, (very) false. As another
illustration of how remarkable this result is, recall that in Section 1.4, we proved that
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the real and imaginary parts of a holomorphic function are harmonic functions subject
to the extra assumption that those functions are twice continuously differentiable. We
now see that this assumption is not needed and the conclusion that u, v are harmonic
already follows just from the holomorphicity assumption. Moreover, as an added bonus,
we also get “for free” the statement that u and v are themselves infinitely many times
differentiable; that is, they are C∞ functions. (The fact that harmonic functions are C∞
can also be proved just using real analysis techniques, but it is nonetheless pleasing to
see it emerging out of the theory we are developing.)

Proof of Morera’s theorem. Wealready proved that if f is a function all ofwhose contour
integrals over closed curves vanish, then f has a primitive F . By Theorem 1.29, F′ = f is
also holomorphic.

As another immediate corollary to the (extended) Cauchy integral formula, we now
get an extremely useful family of inequalities that bounds a function f (z) and its deriva-
tives at some specific point z ∈ C in terms of the values of the function on the boundary
of a circle centered at z.

Theorem 1.31 (Cauchy inequalities). For f holomorphic in a region Ω that contains the
closed disc D≤R(z), we have

f
(n)(z) ≤ n!R−n sup|w−z|=Rf (w). (1.51)

Yet another remarkable fact we can now prove is the equivalence between the class
of holomorphic functions and the class of functions that are locally expressible as power
series. One direction in this equivalence—the easy one—was already proved in Theo-
rem 1.9. The other is given in the following result.

Theorem 1.32 (Holomorphic functions have convergent power series). If f is holomorphic
in a regionΩ that contains a closed disc D≤R(z0), then f has a power series expansion at z0

f (z) =
∞
∑
n=0 an(z − z0)n,

which is convergent for all z ∈ DR(z0). The coefficients an in this expansion are given (in
accordance with (1.28)) by an = f

(n)(z0)/n!.
Proof. The basic idea here is that Cauchy’s integral formula gives us a representation of
f (z) as a weighted “sum” (in fact, an integral, which is a limit of sums) of functions of
the form z → (w − z)−1. Each of the functions in the weighted sum has a power series
expansion since it is, essentially, a geometric series, so the sum also has a power series
expansion.
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To make this precise, write

1
w − z
=

1
(w − z0) − (z − z0)

=
1

w − z0
⋅

1
1 − ( z−z0w−z0 )

=
1

w − z0

∞
∑
n=0( z − z0w − z0

)
n

=
∞
∑
n=0(w − z0)−n−1(z − z0)n.

This is a power series in z− z0, which, for any fixedw ∈ CR(z0), converges absolutely for
all z such that |z−z0| < R (that is, for all z ∈ DR(z0)). Moreover, the convergence is clearly
uniform in w ∈ CR(z0). Since infinite summations that are absolutely and uniformly
convergent can be interchanged with integration operations, we then get, appealing to
both the regular and extended versions of Cauchy’s integral formula, that

f (z) = 1
2πi
∮

CR(z0) f (w)w − z
dw

=
1
2πi
∮

CR(z0) f (w)
∞
∑
n=0(w − z0)−n−1(z − z0)n dw

=
∞
∑
n=0( 1

2πi
∮

CR(z0) f (w)(w − z0)n−1 dw)(z − z0)n
=
∞
∑
n=0 f (n)(z0)n!

(z − z0)
n,

which is precisely the expansion we were after.

Theorem 1.33 (Liouville’s theorem). A bounded entire function is constant.

Proof. Let f be bounded and entire, and letM = supz∈ℂ |f (z)| <∞. By the case n = 1 of
the Cauchy inequalities (1.51), for any z ∈ ℂ and R > 0, we have

f
′(z) ≤ MR .

Taking the limit as R → ∞ gives that f ′(z) = 0. Since f ′ is identically 0, f is constant by
Lemma 1.16.

Exercises 1.23, 1.24, and 1.25 explore some additional ideas related to Liouville’s the-
orem and additional results that can be proved using a similar technique.

Proposition 1.34. If f is holomorphic on a region Ω, and f (z) = 0 for z in a set containing
a limit point in Ω, then f is identically zero on Ω.

The condition that the limit point z0 is in Ω in this result is needed. For example, the
function e1/z − 1 has zeros in every neighborhood of z0 = 0 but is not identically zero.
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Proof of Proposition 1.34. Let z0 ∈ Ω be a limit point of zeros of 0. This means that there
is a sequence (wk)

∞
k=1 of points in Ω such that f (wk) = 0 for all n,wk → z0 as k →∞, and

wk ̸= z0 for all k. We know that in a neighborhood of z0, f has a convergent power series
expansion. If we assume that f is not identically zero in a neighborhood of z0, then we
can write the power series expansion as

f (z) = ∑
n=0 an(z − z0)n = ∞∑n=m an(z − z0)n
= am(z − z0)

m
∞
∑
n=0 an+mam

(z − z0)
n = am(z − z0)

m(1 + g(z)),

where we define m to be the smallest index such that am ̸= 0, and define g(z) =
∑∞n=1 an+m

am
(z − z0)

n. Note that g is a holomorphic function in a neighborhood of z0 that
satisfies g(z0) = 0. It follows that for all k,

am(wk − z0)
m(1 + g(wk)) = f (wk) = 0,

but for large enough k, this is impossible, sincewk −z0 ̸= 0 for all k and g(wk)→ g(z0) =
0 as k →∞.

The conclusion is that f is identically zero at least in a neighborhood of z0. Now we
claim that this also implies that f is identically zero on all of Ω, because Ω is a region
(open and connected). More precisely, denote by U the set of points z ∈ Ω such that f
is equal to 0 in a neighborhood of z. It is obvious that U is open; U is also closed by the
argument above, which shows that any point that is a limit of points in U must be in
U ; and U is nonempty (it contains z0, again by what we showed above). It follows that
U = Ω by the well-known characterization of a connected set in the plane as a set E that
has no “clopen” (closed and open) sets other than the empty set and E itself.

Proposition 1.34 has an equivalent form that is more memorable, given in the next
result.

Theorem 1.35 (Zeros of holomorphic functions are isolated). If f is holomorphic on Ω, is
not identically zero on Ω, and f (z0) = 0 for z0 ∈ Ω, then for some ϵ > 0, the punctured
neighborhood Dϵ(z0) \ {z0} of z0 contains no zeros of f . In other words, the set of zeros of
f contains only isolated points.

Corollary 1.36. If f , g are holomorphic on a region Ω, and f (z) = g(z) for z in a set with
limit point in Ω (e. g., an open disc or even a sequence of points zn converging to some
z ∈ Ω), then f ≡ g everywhere in Ω.

Proof. Apply the previous result to f − g.

The previous result is usually reformulated slightly as the following conceptually
important result.
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Theorem 1.37 (Principle of analytic continuation). If f is holomorphic on a region Ω, and
f+ is holomorphic on a bigger region Ω+ ⊃ Ω and satisfies f+(z) = f (z) for all z ∈ Ω, then
f+ is the unique such extension, in the sense that if f̃+ is another function with the same
properties, then f̃+(z) = f+(z) for all z ∈ Ω+.

The function f+ in Theorem 1.37, if it exists, is usually referred to as the analytic
continuation of f .

The principle of analytic continuation is of fundamental importance in complex
analysis. One of the common ways in which it is used is as a tool for justifying the con-
struction of interesting holomorphic functions in several stages, where one starts by
defining the function on a small region and then shows how to extend the definition to a
larger region (see Chapter 2 for two of themost famous examples of this idea). There are
often several ways of performing the extension, with no single one of them being neces-
sarily more natural or canonical than the others, so we typically appeal to the principle
of analytic continuation to explain why we end up with the same extended function
regardless of which particular construction is used. In that sense, the principle of ana-
lytic continuation gives a philosophical justification for regarding naturally occurring
holomorphic functions, such as the Euler gamma function and Riemann zeta function
discussed in Chapter 2, as having a kind of idealized Platonic existence that transcends
any particular formula used to represent them.

This philosophical point of view can be illustrated in an amusing way in a more
elementary setting. In real analysis, we learn that “formulas” such as

1 − 1 + 1 − 1 + 1 − 1 + ⋅ ⋅ ⋅ = 1
2
, (1.52)

1 + 2 + 4 + 8 + 16 + 32 + ⋅ ⋅ ⋅ = −1 (1.53)

do not have any meaning, despite the fact that they can be easily “proved” using alge-
braic manipulations of a somewhat dubious nature. However, in the context of complex
analysis, we can in fact make perfect sense of such identities using the principle of an-
alytic continuation! Do you see how? (Exercise 1.27.) Additional seemingly meaningless
formulas of this type, beloved by complex analysts and recreational mathematicians
alike, are

1 + 2 + 3 + 4 + ⋅ ⋅ ⋅ = − 1
12
, (1.54)

1 − 2 + 3 − 4 + ⋅ ⋅ ⋅ = 1
4
. (1.55)

These formulas have attracted considerable attention in recent years, being the subject
of a popular online video [W7], newspaper articles [W8], discussions on mathematics
blogs and forums [W9], [W10], [W11], aWikipedia article [W12], andmore. Wewill learn
in Chapter 2 that they, too, can be given a formal meaning that is no less precise or
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rigorous than the formulas involving convergent series that you are more familiar with
from real analysis; see Exercise 2.11.

We now discuss a particular case of analytic continuation that constitutes the most
minimalistic kind of continuation we can imagine, namely, a scenario in which a holo-
morphic function is extended to a region that is larger by a single point relative to the
original domain onwhich it is defined. This is usually described in terms of the so-called
removable singularity. A point z0 ∈ Ω is called a removable singularity of a function
f : Ω → ℂ ∪ {undefined} if f is holomorphic in a punctured neighborhood of z0, is not
holomorphic at z0, but its value at z0 can be redefined so as to make it holomorphic at
z0, that is, if we can perform an analytic continuation of f from Ω \ {z0} to Ω. Of course,
in this case the fact that the analytic continuation is unique is trivial; the issue here is to
understand when the continuation exists, and the next result gives a useful condition.

Theorem 1.38 (Riemann’s removable singularities theorem). If f is holomorphic in Ω ex-
cept at a point z0 ∈ Ω (where it may be undefined or be defined but not known to be
holomorphic or even continuous). Assume that f is bounded in a punctured neighborhood
Dr(z0) \ {z0} of z0. Then z0 is a removable singularity of f .

Proof. Fix some disc D = DR(z0) around z0 whose closure is contained in Ω. Define the
function

f̃ (z) = 1
2πi
∮

CR(z0) f (w)w − z
dw (z ∈ D). (1.56)

We claim that f̃ extends f to a holomorphic function on D, which requires showing that
f̃ (z) = f (z) for all z ∈ D\{z0} and that f̃ is holomorphic at z0. For the first part of the claim,
let z ∈ D\{z0}. Consider a “double keyhole” contourKϵ,δ that surroundsmost of the discD
butmakes diversions to avoid the points z0 and z, circling them in the negative direction
around most of a circle of radius ϵ (Fig. 1.8). We assume that 0 < δ < ϵ < 1

4 |z − z0|. Now
the region enclosed byKϵ,δ is simply connected, so, after applying Cauchy’s theorem and
a limiting argument similar to that used in the proof of Theorem 1.27 (taking the limit as
δ → 0 with ϵ fixed), we get that

f̃ (z) = 1
2πi
∮

Cϵ(z) f (w)w − z
dw + 1

2πi
∮

Cϵ(z0) f (w)w − z
dw. (1.57)

On the right-hand side, the first term is equal to f (z) by a straightforward application
of Cauchy’s integral formula. The second term can be bounded in magnitude using the
assumption that f is bounded in a neighborhood of z0; more precisely, denote M =
supw∈Dr(z0)\{z0} |f (w)| <∞. We have


∮

Cϵ(z0) f (w)w − z
dw

≤ 2πϵ sup

w∈Cϵ(z0)f (w) ⋅ 1
|z − z0| − ϵ

≤
πMϵ
|z − z0|
.
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Figure 1.8: The double keyhole contour Kϵ,δ .
Thus the claim that f̃ (z) = f (z) follows by taking the limit of (1.57) as ϵ → 0.

It remains to prove that f̃ defined in (1.56) is holomorphic at z0. This is easy to see and
is somethingwe already knew implicitly. For example, the relevant argument (involving
a direct manipulation of the divided differences 1

h (f̃ (z+h)− f̃ (z))) appeared in the proof
of Theorem 1.29. Another approach is to show that integrating f̃ over closed contours
gives 0 (which requires interchanging the order of two integration operations, which
will not be hard to justify) and then use Morera’s theorem. The details are left as an
exercise.

We now introduce the concept of uniform convergence on compact subsets. If f
and (fn)

∞
n=1 are holomorphic functions on a region Ω, we say that the sequence fn con-

verges to f uniformly on compact subsets if for any compact set K ⊂ Ω, fn(z) → f (z)
uniformly on K . This mode of convergence is preserved under differentiation, as the
following result makes precise.

Theorem 1.39. If fn → f uniformly on compact subsets inΩ and fn are holomorphic, then
f is holomorphic, and f ′n → f ′ uniformly on compact subsets in Ω.
Proof. The fact that f is holomorphic can be shown through a combination of Cauchy’s
and Morera’s theorems. More precisely, note that for each closed disc D≤r(z0) ⊂ Ω, we
have fn(z) → f uniformly on D≤r(z0). In particular, for each curve γ whose image is
contained in the open disc Dr(z0),

∫
γ

fn(z) dz →n→∞ ∫
γ

f (z) dz.

By Cauchy’s theorem the integrals in this sequence are all zero, so ∫γ f (z) dz = 0. Since
this is true for all curves γ in the disc Dr(z0), by Morera’s theorem, f is holomorphic
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on Dr(z0). This holds for any disc whose closure is in Ω, and holomorphicity is a local
property, so we have shown that f is holomorphic on all of Ω, as claimed.

Next, to show that f ′n → f ′ uniformly on compact sets, we start by proving that uni-
form convergence holds on a certain family of discs. Let Dr(z0) be a disc whose closure
is contained in Ω. For z ∈ Dr(z0), we have by Cauchy’s integral formula that

f ′n (z) − f ′(z) = 1
2πi
∮

Cr(z0) fn(w)
(w − z)2

dw − 1
2πi
∮

Cr(z0) f (w)
(w − z)2

dw

=
1
2πi
∮

Cr(z0) fn(w) − f (w)(w − z)2
dw.

This implies that f ′n (z)→ f ′(z) as n→∞, uniformly as z ranges on the disc Dr/2(z0), since
fn(w)→ f (w) uniformly forw ∈ Cr(z0) ⊂ D≤r(z0), and since the bound |w−z|−2 ≤ (r/2)−2
holds for z ∈ Dr/2(z0) and w ∈ Cr(z0).

Now let K ⊂ Ω be compact. For each z ∈ K , let r(z) be the radius of a closed disc
D≤r(z)(z) around z that is contained in Ω. The family of discs {Bz := Dr(z)/2(z) : z ∈ Ω}
is an open covering of K , so by the Heine–Borel property of compact sets it has a finite
subcovering Bz1 , . . . ,Bzn . We showed that f ′n (z) → f ′(z) uniformly on every Bzj , so we
also have uniform convergence on their union, which contains K , so we get that f ′n → f ′
uniformly on K , as claimed.

Suggested exercises for Section 1.9. 1.23, 1.24, 1.25, 1.26, 1.27.

1.10 Zeros, poles, and the residue theorem

We say that a complex number z0 is a zero of a holomorphic function f if f (z0) = 0. Zeros
in complex analysis behave rather like zeros of polynomial, in the sense that a zeromust
have an integer multiplicity, known as its order. More precisely, we say that z0 is a zero
of order m ≥ 1 of a nonconstant holomorphic function f if it can be represented in the
form

f (z) = (z − z0)
mg(z) (1.58)

in some neighborhood of z0, wherem ≥ 1, and g is a holomorphic function in that neigh-
borhood such that g(z0) ̸= 0. A zero of order 1 is called a simple zero.

Lemma 1.40. The order of a zero is a well-defined concept. That is, if f is a nonconstant
holomorphic function and f (z0) = 0, then representation (1.58)with the properties of g as
given above exists for a unique integer m ≥ 1.
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Proof. We make use of power series expansions and a calculation similar to that used
in the proof of Proposition 1.34. Write the power series expansion (known to converge
in a neighborhood of z0)

f (z) =
∞
∑
n=0 an(z − z0)n = ∞∑n=m an(z − z0)n,

where m is the smallest index ≥ 0 such that am ̸= 0. Since a0 = f (z0) = 0, it must be the
case thatm ≥ 1. If we now define

g(z) =
∞
∑
k=0 am+k(z − z0)k ,

then clearly f (z) = (z − z0)
mg(z), and g(z0) = am ̸= 0; this proves the existence of

representation (1.58). On the other hand, given a representation of this form, expanding
g(z) as a power series around z0 shows thatm has to be the smallest index of a nonzero
coefficient in the power series expansion of f (z) around z0. This proves the uniqueness
claim.

In the definition above, in the case where z0 is not a zero of f , the same represen-
tation (1.58) holds with m = 0 (and g = f ), so in certain contexts, we may occasionally
describe this situation by saying that z0 is a zero of order 0.

If f is holomorphic in a punctured neighborhood of a point z0, then we say that it
has a pole of orderm at z0 if the function h(z) = 1/f (z) (defined to be 0 at z0) has a zero
of order m at z0. A pole of order 1 is called a simple pole. As with the case of zeros, we
can extend this definition in an obvious way by saying that f has a pole of order 0 if f
is holomorphic at z0 or has a removable singularity there, and the value f (z0) (or the
redefined value limz→z0 f (z) that makes f holomorphic at z0 in the case of a removable
singularity) is nonzero.

Lemma 1.41. A function f has a pole of order m at z0 if and only if it can be represented
in the form

f (z) = (z − z0)
−mg(z)

in a punctured neighborhood of z0, where g is holomorphic in a neighborhood of z0 and
satisfies g(z0) ̸= 0.

Proof. Apply the previous lemma to 1/f (z).

Theorem 1.42. If f has a pole of order m at z0, then it can be represented in a unique way
as

f (z) =
a−m
(z − z0)m

+
a−m+1
(z − z0)m−1 + ⋅ ⋅ ⋅ + a−1

z − z0
+ G(z), (1.59)
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where G is holomorphic in a neighborhood of z0, and a−1, . . . , a−m are arbitrary complex
numbers with a−m ̸= 0.
Proof. The function g(z) = (z − z0)

mf (z) is holomorphic in a neighborhood of z0 and
satisfies g(z0) ̸= 0. Write its power series expansion as

g(z) =
∞
∑
n=0 bn(z − z0)n (1.60)

= b0 + b1(z − z0) + ⋅ ⋅ ⋅ + bm−1(z − z0)m−1 + ∞∑
n=m bm(z − z0)n. (1.61)

Here b0 = g(z0) ̸= 0. Now defining G(z) = ∑∞n=m bm(z − z0)n−m and converting (1.61) to
an expression for f , we get that

f (z) = b0
(z − z0)m

+
b1

(z − z0)m−1 + ⋅ ⋅ ⋅ + bm−1
z − z0
+ G(z),

which is of the correct form (1.59) if we further define a−j = bm−j for 1 ≤ j ≤ m. This
proves the existence part of the claim; the uniqueness part is left as an easy exercise.

In representation (1.59) the expression

f (z) − G(z) =
a−m
(z − z0)m

+
a−m+1
(z − z0)m−1 + ⋅ ⋅ ⋅ + a−1

z − z0

is called the principal part of f at the pole z0. The coefficient a−1 is called the residue
of f at z0 and denoted Resz0 (f ).

The definitions of the order of a zero and a pole can be unified into a single con-
sistent definition of the (generalized) order of a zero, where if f has a pole of order
m at z0, then we say instead that f has a zero of order −m. Denote the order of a zero
of f at z0—an integer, which may be positive, negative, or zero—by ordz0 (f ). With these
definitions, it is easy to check (Exercise 1.28) that

ordz0 (f + g) ≥ min(ordz0 (f ), ordz0 (g)), (1.62)

ordz0 (fg) = ordz0 (f ) + ordz0 (g). (1.63)

The residue theorem is a famous formula for evaluating integrals around closed
contours of functions holomorphic inside the region enclosed by the contour, except
for a discrete set of points. This theorem, like Cauchy’s theorem, has several different
formulations addressing different levels of generality. We further give three versions of
the theorem, which are sufficient for our needs.
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Theorem 1.43 (The residue theorem; simple version). Assume that f is holomorphic in a
region containing a closed disc D≤R(z0), except for a pole at z0 ∈ D. Then

∮
CR(z0) f (z) dz = 2πi Resz0 (f ).

Proof. By the standard argument involving a keyhole contour we see that the circle
CR(z0) in the integral can be replaced with a circle Cϵ(z0) of a small radius ϵ > 0 around
z0, that is, we have

∮
CR(z0) f (z) dz = ∮Cϵ(z0) f (z) dz.

When ϵ is small enough, to evaluate the integral over Cϵ(z0), we can use decomposi-
tion (1.59) of f into its principal part and the remaining holomorphic part. Integrating
the right-hand side of (1.59) termwise over the contour Cϵ(z0) gives 0 for the integral of
G(z) by Cauchy’s theorem; 0 for the integral powers (z−z0)

k with −m ≤ k ≤ −2 by a stan-
dard computation (Exercise 1.21); and 2πi a−1 = 2πi Resz0 (f ) for the integral of (z − z0)−1
by the same standard computation. This gives the result.

Theorem 1.44 (The residue theorem for discs). Assume that f is holomorphic in a region
containing a closed disc D≤R(z0), except for a finite number of poles at z1, . . . , zN ∈ DR(z0).
Then

∮
CR(z0) f (z) dz = 2πi

N
∑
k=1Reszk (f ).

Proof. The idea is the same as in the proof of Theorem 1.43, except that now we use a
contourwithmultiple keyholes (one for each zj) to deduce after a limiting argument that

∮
CR(z0) f (z) dz =

N
∑
k=1 ∮Cϵ(zk ) f (z) dz

for a small enough ϵ, and then proceeds as before.

Theorem 1.45 (The residue theorem for simple closed contours). Let f be a function de-
fined in a region Ω containing a simple closed curve γ (oriented in the positive direction).
Denote by Rγ the region enclosed by γ. Assume that f is holomorphic everywhere in Ω
except for the finite set of points z1, . . . , zN ∈ Rγ, where it has poles. Then

∮
γ

f (z) dz = 2πi
N
∑
k=1Reszk (f ).
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Sketch of proof. Again, construct a multiple keyhole version of the original contour γ
and then use a limiting argument to conclude that

∮
γ

f (z) dz =
N
∑
k=1 ∮Cϵ(zk ) f (z) dz

for a small enough ϵ. Then proceed as before.

Suggested exercises for Section 1.10. 1.28.

1.11 Meromorphic functions, holomorphicity at∞, and the
Riemann sphere

We extend the notion of holomorphicity in two directions by introducing the notions of
meromorphicity and holomorphicity at∞. First, a function f : Ω→ ℂ ∪ {undefined}
on a region Ω is called meromorphic if f is holomorphic except for a discrete set of
points, all of which are poles of f .

Second, let U ⊂ ℂ be an open set containing the complement ℂ \ D≤R(0) of a closed
disc around 0. A function f : U → ℂ is holomorphic at∞ if g(z) = f (1/z) (defined on
a neighborhood D1/R(0) of 0) has a removable singularity at 0. In that case, we define
f (∞) = g(0) (more precisely, the value that makes g holomorphic at 0).

Conceptually, the above definitions can be thought of as extending the notion of
what a complex number is to include an additional “point at infinity.” Formally, we de-
fine the set of extended complex numbers, also known as the Riemann sphere, as the
set ℂ̂ = ℂ ∪ {∞} equipped with several layers of additional structure:
– Topological structure.We think of ℂ̂ as the one-point compactification ofℂ; that

is, we add to ℂ an additional element∞ and say that the open neighborhoods of∞
are the complements of compact sets in ℂ. This turns ℂ̂ into a topological space in a
simple way.

– Geometric structure. We can identify ℂ̂ with an actual sphere embedded in ℝ3,
namely

S2 = {(X , Y , Z) ∈ ℝ3 : X2 + Y 2 + (Z − 1
2
)
2

=
1
4
}

(the sphere of radius 1/2 centered at (0, 0, 1/2)). The identification works as follows:
the point at∞ is identifiedwith the north pole (0, 0, 1) of the sphere; for other points,
the identification (X , Y , Z) ∈ S2 ←→ a + ib ∈ ℂ is given by two reciprocal relations

a + ib = X
1 − Z
+ i Y

1 − Z
,

(X , Y , Z) = ( a
1 + a2 + b2

,
b

1 + a2 + b2
,

a2 + b2

1 + a2 + b2
).
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Figure 1.9: The Riemann sphere ℂ̂ = S2 and the translation between points a + ib on the complex plane
and points P = (X , Y , Z) on the sphere via stereographic projection. The equator on the sphere is mapped
to the unit circle inℂ.

Geometrically, this identification corresponds to stereographic projection, where
the point a+bi is calculated from P = (X , Y , Z) by projecting the straight line segment
from the north pole (0, 0, 1) to P further out onto its unique intersection point with
the x–y plane, identifiedwith the complex planeℂ in the obviousway; see Fig. 1.9.We
can check without difficulty that this geometric identification is a homeomorphism
between S2, equipped with the obvious topology inherited from ℝ3, and ℂ̂ with the
one-point compactification topology defined above.

– Holomorphic structure. The above definition of what it means for a function on a
neighborhood of∞ to be holomorphic at∞ provides a way of giving ℂ̂ the structure
of a Riemann surface (the simplest nontrivial case of a manifold with a complex-
analytic structure). We will not discuss the topic of Riemann surfaces here; for more
details on this point of view, see, e. g., [23, 60].

From this new point of view of the Riemann sphere, the concept of ameromorphic func-
tion f : Ω → ℂ ∪ {undefined} can be seen to coincide with the notion of a holomorphic
function f : Ω → ℂ̂; that is, the underlying concept of the definition is still holomor-
phicity, but it applies to functions taking values in ℂ̂, a different Riemann surface, in-
stead of ℂ. Similarly, the idea of a function f : Ω → ℂ being holomorphic at∞ corre-
sponds exactly to the notion of a function whose “true” domain of definition is actually
Ω ∪ {∞} in the sense that it can be extended to a holomorphic function on this larger
domain.
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To conclude this section, we also generalize the notion of the order of a zero or pole
at a point to include the behavior at the point at∞. Let U ⊂ ℂ be an open set containing
the complement ℂ \ D≤R(0) of a closed disc around 0. We say that a function f : U → ℂ
has a zero (resp., pole) of order m at∞ if g(z) = f (1/z) has a zero (resp., pole) at z = 0
after appropriately defining the value of g at 0.

1.12 Classification of singularities and the Casorati–Weierstrass
theorem

If a function f : Ω → ℂ̂ ∪ {undefined} is holomorphic in a punctured neighborhood
Dr(z0) \ {z0} of z0, then we say that f has a singularity at z0 if f is not holomorphic at z0.
We classify singularities into three types, two of which we already defined:
– Removable singularities: when f can be made holomorphic at z0 by defining or

redefining its value at z0;
– poles;
– any singularity that is not removable or a pole is called an essential singularity.

For a function defined on a neighborhood of∞ that is not holomorphic at∞, we say
that f has a singularity at∞ and classify the singularity as a removable singularity, a
pole, or an essential singularity according to the type of singularity that z → f (1/z) has
at z = 0.

The function z → e1/z is an example of a function with an essential singularity at
the point z = 0. Its behavior near that singularity is rather difficult to visualize. Indeed,
the next result shows that this is the case more generally.

Theorem 1.46 (Casorati–Weierstrass theorem). If f is holomorphic in a punctured neigh-
borhood Dr(z0) \ {z0} of z0 and has an essential singularity at z0, then the image f (Dr(z0) \
{z0}) of the punctured neighborhood under f is dense in ℂ.

Proof. We prove the contrapositive of the claim: assume that for some r > 0, the im-
age f (Dr(z0) \ {z0}) is not dense. Then the closure cl(f (Dr(z0) \ {z0})) of this image does
not contain some point w ∈ ℂ. It follows that the function g defined by g(z) = 1

f (z)−w is
holomorphic and bounded inDr(z0)\{z0}. By Theorem 1.38 its singularity at z0 is remov-
able, so we can assume that it is holomorphic at z0 after defining its value there. It then
follows that

f (z) = w + 1
g(z)

has either a pole or a removable singularity at z0, that is, the singularity at z0 is not
essential.
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1.13 The argument principle and Rouché’s theorem

We define the logarithmic derivative of a holomorphic function f (z) as the function
f ′(z)/f (z). Intuitively, this can be thought of as “the derivative of the logarithm of f .” A
word of caution is in order however: we have not actually defined what “the logarithm
of f ” means, and when we actually define it a bit later (in Section 1.15), we will see that
“the logarithm of f ” does not always exist. The logarithmic derivative on the other hand
clearly exists, so it is best to get used to thinking about it as a separate concept from that
of a logarithm rather than being derived from it.

Lemma 1.47. The logarithmic derivative of a product of holomorphic functions is the sum
of their logarithmic derivatives, that is,

(∏nk=1 fk)′
∏nk=1 fk = n

∑
k=1 f ′k (z)fk(z)

.

Proof. Show this for n = 2 and proceed by induction.

Theorem 1.48 (The argument principle). Assume that f is meromorphic in a regionΩ and
that γ is a simple closed contour in Ω enclosing a region Rγ such that f has no zeros or
poles on the circle γ. Denote its zeros and poles inside Rγ by z1, . . . , zn, where zk is a zero
of generalized order mk = ordzk (f ) (in the sense discussed in Section 1.10, where mk is a
positive integer if zk is a zero and a negative integer if zk is a pole). Then

1
2πi
∮
γ

f ′(z)
f (z)

dz =
n
∑
k=1mk

= [total number of zeros of f inside Rγ, counting multiplicities]

− [total number of poles of f inside Rγ, counting multiplicities].

Proof. Define

g(z) =
n
∏
k=1(z − zk)−mk f (z).

Then g(z) is meromorphic on Ω, has no singularities or zeros on γ, and has no poles or
zeros inside Rγ, only removable singularities at z1, . . . , zn (so after redefining its values
at these points, we can assume that it is holomorphic on Rγ). It follows that

f (z) =
n
∏
k=1(z − zk)mkg(z).

Taking the logarithmic derivative of this equation gives that
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f ′(z)
f (z)
=

n
∑
k=1 mk

z − zk
+
g′(z)
g(z)
.

The result now follows by integrating this equation and using the residue theorem (the
term g′(z)/g(z) is holomorphic on an open set containing cl(Rγ), so by Cauchy’s theorem
its contribution to the integral is 0).

There is another way to look at the integral 1
2πi ∮γ

f ′(z)
f (z) dz, which gives an alternative

explanation for why it is an integer, as well as an alternative geometric interpretation
of its value. To see this, start by rewriting the integral (using the chain rule (1.84) from
Exercise 1.6) as

1
2πi
∮
γ

f ′(z)
f (z)

dz = 1
2πi

b

∫
a

f ′(γ(t))γ′(t)
f (γ(t))

dt = 1
2πi

b

∫
a

(f ∘ γ)′(t)
(f ∘ γ)(t)

dt = 1
2πi
∫
f ∘γ 1

w
dw,

that is, an integral of dw/w over the contour f ∘ γ, the image of γ under f . Now note
that the differential form dw/w has a special geometric meaning in complex analysis;
namely, we have

dw
w
= “d(logw)” = “d(log |w| + i argw)”.

We put these expressions in quotes since the logarithm and argument are not single-
valued functions (see Section 1.15), so it needs to be explainedwhat such formulasmean.
However, at least log |w| is well-defined for a curve that does not cross 0, so when inte-
grating over the closed curve f ∘ γ, the real part is zero by the fundamental theorem
of calculus. The imaginary part (which becomes real after the division by 2πi) can be
interpreted intuitively as the change in the argument over the curve. That is, initially at
time parameter t = a, we fix a specific value of argw = arg γ(a); then as t increases
from t = a to t = b, we track the increase or decrease in the argument as we travel
along the curve γ(t); if this is done correctly (i. e., in a continuous fashion), at the end
the argument must have a well-defined value. Since the curve is closed, the total change
in the argument must be an integer multiple of 2π, so the division by 2π turns it into an
integer. The value of the integer has the intuitive meaning of “the total number of times
the curve f ∘ γ goes around the origin.”

This discussion leads us to another important concept, that of winding numbers.
Given a closed curve Γ that does not cross 0, the above reasoning involving the differ-
ential form dw/w, applied to the curve Γ instead of f ∘ γ, shows that an integral of the
form

1
2πi
∮
Γ

dz
z
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carries the meaning of “the total number of times the curve γ goes around the origin,”
with the number being positive if the curve goes in the positive direction around the
origin; negative if the curve goes in the negative direction around the origin; or zero if
there is nonet change in the argument. This number ismore properly called thewinding
number of Γ around 0 (also sometimes referred to as the index of the curve around 0)
and denoted IndΓ(0):

IndΓ(0) =
1
2πi
∮
Γ

dz
z
.

More generally, we define the winding number of Γ around z0, denoted IndΓ(z0), as

IndΓ(z0) =
1
2πi
∮
Γ

dz
z − z0
,

assuming that Γ does not cross z0. This can be interpreted as the number of times the
curve Γ “winds around” an arbitrary point z0.

To summarize the discussion above, we defined the notion of winding numbers and
explainedwhy thequantity 1

2πi ∮γ
f ′(z)
f (z) dz that is the subject of the argument principle has

the additional interpretation as thewinding number of the curve f ∘γ around 0. Note that
the winding number is a topological concept of planar geometry that can be considered
and studied without any reference to complex analysis. It is not very difficult to define
it in purely topological terms without mentioning contour integrals and then show that
the complex analytic and topological definitions coincide, but we will not pursue this
here. Try to think what such a definition might look like.

Theorem 1.49 (Rouché’s theorem). Assume that f , g are holomorphic on a region Ω con-
taining a circle γ = C and the disc U enclosed by it (or, more generally, a simple closed
contour γ enclosing a region U). If |f (z)| > |g(z)| for all z ∈ γ, then f and f + g have the
same number of zeros in U.

Proof. Define ft(z) = f (z) + tg(z) for t ∈ [0, 1], and note that f0 = f and f1 = f + g, and
that the condition |f (z)| > |g(z)| on γ implies that ft has no zeros on γ for any t ∈ [0, 1].
Denote

nt =
1
2πi
∮
γ

f ′t (z)
ft(z)

dz,

which by the argument principle is the number of “generalized zeros” (zeros or poles,
counting multiplicities) of ft in U . In particular, the function t → nt is integer-valued.
If we also knew that it was continuous, then it would have to be constant (by the easy
exercise: any integer-valued continuous function on an interval [a, b] is constant), so in
particular we would get the desired conclusion that n1 = n0.
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To prove continuity of nt , fix a number ϵ > 0. Note that the function g(t, z) =
f ′t (z)/ft(z) is continuous, hence also uniformly continuous, on the compact set [0, 1] × γ.
Therefore there exists δ > 0 such that if 0 ≤ t, s ≤ 1 satisfy |t − s| < δ, then |g(t, z) −
g(s, z)| < 2πϵ/ len(γ) (recall that len(γ) denotes the length of the curve γ). It follows that
for such t, s, we have

|nt − ns| ≤
1
2π
∮
γ

g(t, z) − g(s, z)
 ⋅ |dz| ≤

1
2π
∮
γ

2πϵ
len(γ)
|dz| = ϵ.

This is exactly what is needed to show that t → nt is continuous.

Rouché’s theorem has a rather amusing intuitive explanation (which I learned from
the book [48]). The slogan to remember is “walking the dog.” Imagine that you are walk-
ing in a large empty park containing at some “origin” point 0 a large lamppost. You start
at some point X and go for a walk along some curve, ending back at the same starting
point X . Let N denote your winding number around the lamppost at the origin—that is,
the total number of times you went around the lamppost with appropriate sign.

Now imagine that you also have a dog that is walking alongside you in some erratic
path that is sometimes close to you, sometimes less close. As you traverse your curve C1,
the dog walks along on its own curve C2, which also begins and ends in the same place.
LetM denote the dog’s winding number around the lamppost at the origin. Can we say
that N = M? The answer is yes, we can, provided that we know the dog’s distance to you
was always less than your distance to the lamppost. To see this, imagine that you had
the dog on a retractable leash; if the distance condition was not satisfied, it would be
possible for the dog to reach the lamppost and go in a short tour around it while you
were still far away and not turning around the lamppost, causing an entanglement of
the leash with the pole.

The above scenario maps in a precise way to Rouché’s theorem using the following
dictionary: the curve f ∘ γ represents your path; the curve (f + g) ∘ γ represents the dog’s
path; g ∘ γ represents the vector pointing from you to the dog; the condition |f | > |g|
along γ is precisely the condition that the dog stays closer to you than your distance to
the pole; and the conclusion that the two winding numbers are the same is precisely the
statement of the theorem that f and f + g have the same number of generalized zeros in
the region U enclosed by γ (see the discussion above regarding the connection between
the integral (2πi)−1 ∮γ f ′/f dz and the winding number of f ∘ γ around 0).

I recommend spending a few minutes thinking about the above correspondence
and making sure you understand it. You may forget the technical details of the proof of
Rouché’s theorem in a fewweeks ormonths, but I hope youwill remember this intuitive
explanation for a long time.

Rouché’s theorem is an important tool both for numerically estimating the numbers
of roots of polynomials and other functions in regions of interests and for theoretical ap-
plications. One illustration of the power of Rouché’s theorem is given in Exercise 1.30.
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In the next section, we also use Rouché’s theorem to prove two more well-known prop-
erties of holomorphic functions, the open mapping theorem and themaximummod-
ulus principle.

Suggested exercises for Section 1.13. 1.29, 1.30.

1.14 The open mapping theorem and maximummodulus principle

Theorem 1.50 (Open mapping theorem). Any holomorphic function that is not constant
is an open mapping, that is, it maps open sets to open sets.

Proof. Let f be holomorphic and nonconstant in a region Ω. Fix an arbitrary z0 ∈ Ω,
and denote w0 = f (z0). We need to show that f (Ω) contains a neighborhood of w0, that
is, that there exists some δ > 0 for which f (Ω) ⊃ Dδ(w0). The reason Rouché’s theorem
can be brought into play is that the inclusion f (Ω) ⊃ Dδ(w0) amounts to the statement
that for w ∈ Dδ(w0), the function f (z) − w has at least one zero; and we know that this
is true for the function f (z) −w0, so we are precisely in a situation in which we want to
compare the number of zeros of two functions, where (if we restrict our point of view
to what is happening in a small neighborhood of z0) one function can be regarded as a
perturbation of the other.

To make this idea precise, define

F(z) = f (z) − w0,

Gw(z) = w0 − w,

hw(z) = F(z) + Gw(z) = f (z) − w.

Let ϵ > 0 be a number small enough so that the closed disc D≤ϵ(z0) is contained in Ω and
such that the point z = z0 is the only zero of F(z) in the disc Dϵ(z0). (Such ϵ exists by the
property that zeros of holomorphic functions are isolated.) Now define

δ = inf{f (z) − w0
 : z ∈ D≤ϵ(z0)}. (1.64)

By construction we have that δ > 0 and |f (z)−w0| ≥ δ for z on the circle |z−z0| = ϵ. This
means that for anyw ∈ Dδ(w0), the condition |F(z)| > |Gw(z)| in Rouché’s theoremwill be
satisfied for z ∈ 𝜕Dϵ(z0). The conclusion is that the equation hw(z) = 0 (or, equivalently,
f (z) = w) has the same number in solutions as the equation f (z) = w0 in the disc Dϵ(z0).
The latter equation has precisely one solution, the point z = z0. Thus we have shown
that for w ∈ Dδ(w0) with δ defined in (1.64), there exists z ∈ Dϵ(z0) such that f (z) = w.
This was precisely what we needed to establish that f is an open mapping.

Theorem 1.51 (Maximummodulus principle). If f is a nonconstant holomorphic function
on a region Ω, then |f | cannot attain a maximum on Ω.
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Proof. This follows immediately from the open mapping theorem.

For an interesting application of the maximummodulus principle, see Section 3.5.

1.15 The logarithm function

The logarithm function can be defined as

log z = log |z| + i arg z

on any region Ω that does not contain 0 and where we can make a consistent, smoothly
varying choice of arg z as z ranges over Ω. It is easy to see that this formula gives an
inverse to the exponential function.2

For example, if

Ω = ℂ \ (−∞, 0]

(the “slit complex plane” with the negative real axis removed), then we can set

Log z = log |z| + iArg z,

where Arg z is defined as a choice of arg z that takes values in (−π, π). The function Log z
is called the principal branch of the logarithm, a kind of standard version of the log
function that complex analysts have agreed to use whenever this is reasonably conve-
nient. However, sometimes wemaywant to consider the logarithm function on stranger
or more complicated regions. When can this be made to work? The answer is: when Ω
is simply connected. We further give two results making this notion precise, the first
involving a situation where the logarithm exists and can be made unique in a relatively
canonical way, and the second in a more general setting that forces us to accept a (mild)
lack of uniqueness.

Theorem 1.52 (Existence of the logarithm: first version). Assume that Ω is a simply con-
nected region with 0 ∉ Ω, 1 ∈ Ω. There exists a unique function F : Ω → ℂ with the
following properties:
i) F is holomorphic in Ω.
ii) eF(z) = z for all z ∈ Ω.
iii) F(r) = log r (the usual logarithm for real numbers) for all real numbers r ∈ Ω suffi-

ciently close to 1.

2 Logarithms in complex analysis are a subtle concept. One common source of confusion is that the lan-
guage used to refer to them is inconsistent with their properties: it is common to speak of “the logarithm
function” when the use of the definite article is potentially at odds with the fact that a function satisfying
the properties of a logarithm is not unique.



1.15 The logarithm function � 59

Proof. Uniqueness: if F and G are two functions satisfying the properties listed in the
theorem, then since F(r) = G(r) for real r in a neighborhood of 1, we must have F ≡ G
by Corollary 1.36.

Existence: we define F as a primitive function of the function z → 1/z, guaranteed
to exist by Corollary 1.25. We can assume without loss of generality that F(1) = 0. We
then have that

d
dz
(ze−F(z)) = e−F(z) − zF′(z)e−F(z) = e−F(z)(1 − z/z) = 0,

so ze−F(z) is a constant function. Since its value at z = 1 is 1, we see that eF(z) = z, as
required. Finally, let ϵ be chosen small enough so that the interval (1−ϵ, 1+ϵ) is contained
in Ω. Then for r ∈ (1 − ϵ, 1 + ϵ), the fundamental theorem of calculus gives that

F(r) = F(1) +
r

∫
1

F′(x) dx = 0 + r

∫
1

dx
x
= log r.

Note that, a bit counterintuitively, the conclusion that F(r) = log r in the theorem
may not be satisfied for all positive real r ∈ Ω; see Exercise 1.33.

Theorem 1.53 (Existence of the logarithm: second version). Assume that Ω is a simply
connected region with 0 ∉ Ω. There exists a function F : Ω → ℂ with the following
properties:
i) F is holomorphic in Ω.
ii) eF(z) = z for all z ∈ Ω.
The function F is unique up to an additive integer multiple of 2πi in the following sense: if
G is another function satisfying the same properties, then we have

G(z) ≡ F(z) + 2πik (1.65)

for some integer k; conversely, any function G of the form (1.65) for some k ∈ ℤ satisfies
the same properties.

Proof. Exercise 1.34.

A function F with the properties given in Theorem 1.53 is called a branch of the
logarithm function on Ω.

Next, we generalize the concept of a logarithm further by considering the following
question: given a regionΩand aholomorphic function f : Ω→ ℂ, when canwe “take the
logarithmof f ”? That is, does there exist a holomorphic function g forwhich eg(z) ≡ f (z)?
An obvious necessary condition is that f must not have any zeros; this generalizes the
requirement that 0 ∉ Ω from Theorems 1.52 and 1.53. If Ω is simply connected, then this
is also a sufficient condition. The precise result, including the extent to which the choice
of logarithm is unique, is as follows.
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Theorem 1.54 (Existence of the logarithm of a function). If f is a holomorphic function on
a simply connected region Ω and f ̸= 0 on Ω, then there exists a holomorphic function g
on Ω satisfying

eg(z) = f (z).
The function g is unique up to an additive constant of the form 2πik with integer k.

Proof. The idea is to define g as a primitive function of the function z → f ′(z)/f (z), then
the reasoning is similar to the proof of Theorem 1.52. The details are left as an exercise
(Exercise 1.35).

On a simply connected region Ω, we can now define the power function z → zα for
an arbitrary α ∈ ℂ by setting

zα = eαF(z),
where F is some branch of the logarithm on Ω.3 In the particular case α = 1/n with
positive integer n, this has the meaning of the nth root function z → z1/n, which satisfies

(z1/n)n = (e 1
n F(z))n = en 1

n F(z) = eF(z) = z.
If f (z) = z1/n is an nth root function associated with some branch of the logarithm, then
for any 0 ≤ k ≤ n − 1, the function g(z) = e2πik/nf (z) will be another function satisfying
g(z)n = z. Conversely, it is easy to see that those are precisely the possible choices for
an nth root function. That is, nth root functions are unique up to multiplication by an
arbitrary nth root of unity.

Generalizing power functions further in a similar way as we did for the logarithm,
if Ω is a simply connected region, f is a holomorphic function on Ω that has no zeros, g
is a branch of the logarithm of f , and α ∈ ℂ is an arbitrary complex number, then the
function h(z) = eαg(z) can be interpreted as the power function “f raised to the power
α.” In particular, for α = 1/n (n a positive integer), this function is usually referred to as
(a branch of) the nth root of f and has the property that h(z)n = f (z).

Suggested exercises for Section 1.15. 1.31, 1.32, 1.33, 1.34, 1.35.

1.16 The local behavior of holomorphic functions
In Section 1.3, we considered what the property of being holomorphic at a point z0 says
about the local behavior of the function near the point, focusing on the case when the

3 As with the phrase “the logarithm function,” saying “the power function” is somewhat misleading;
it is more correct to say “a branch of the power function.” However, mathematicians are human and
prone to employing mental shortcuts just like everyone else, so in practice, you will rarely encounter
mathematicians in the real world employing such precise terminology.
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derivative f ′(z0) does not vanish. We now give a more complete analysis that covers a
more general situation. As we will show in Theorem 1.57, for a function f holomorphic
in the neighborhood of a point z0, we can canonically express the function as c + wk ,
wherew is a new variable associated with z near z0, which takes values in the unit disc.
Thus, loosely speaking, f behaves locally “like a power function w → wk .”

We say that a holomorphic function f : Ω → ℂ is locally injective near a point
z0 ∈ Ω if there is a neighborhood U of z0 such that the restriction of f to U is injective.

Lemma 1.55. Let f : Ω→ ℂ be a holomorphic function, and let z0 ∈ Ω. If f
′(z0) ̸= 0, then

f is locally injective near z0.

Proof. Denote λ = f ′(z0) and ϵ = |λ|2. Denoting ⟨z,w⟩ = Re(zw) (the standard inner
product in the plane), we have ⟨f ′(z0), λ⟩ = |λ|2 > ϵ/2, and therefore by continuity also
⟨f ′(z), λ⟩ > ϵ/2 for all z in some disc Dδ(z0). Let z1 and z2 be distinct points in Dδ(z0).
Then we have

f (z2) − f (z1) =
z2

∫
z1

f ′(z) dz = (z2 − z1) 1∫
0

f ′(z1 + t(z2 − z1)) dt.
This implies that

(z2 − z1)⟨f (z2) − f (z1), λ⟩ = (z2 − z1)⟨(z2 − z1)
1

∫
0

f ′(z1 + t(z2 − z1)) dt, λ⟩
= |z2 − z1|

2
1

∫
0

⟨f ′(z1 + t(z2 − z1)), λ⟩ dt ≥ ϵ2 |z2 − z1|2 > 0.
In particular, f (z2) − f (z1) ̸= 0.

The next two classic results are both important consequences.

Theorem 1.56 (Inverse function theorem). Let f : Ω → ℂ be a holomorphic function. Let
z0 ∈ Ω, and denote w0 = f (z0). Assume that f

′(z0) ̸= 0. Then f has a local holomorphic
inverse. More precisely, there exist an open neighborhood U of z0, an open neighborhood
V of w0, and a holomorphic function g : V → U such that:
1. f maps U bijectively onto V;
2. g maps V bijectively onto U ′
3. g = f −1 (in the set-theoretic sense of an inverse function);
4. The derivative of the inverse function g is given by

g′(w0) =
1

f ′(z0) . (1.66)
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Proof. By Lemma 1.55, f maps an open neighborhood U = Dδ(z0) bijectively into V =
f (U). By the open mapping theorem, V is an open neighborhood V of w0. Since the re-
striction f|U : U → V of f to U is continuous and open, it is a homeomorphism. Denote
its inverse by g : V → U . To see that g is holomorphic at z0, observe that

lim
w→w0

g(w) − g(w0)
w − w0

= lim
z→z0 g(f (z)) − g(f (z0))f (z) − f (z0)

= lim
z→z0 z − z0

f (z) − f (z0)

= ( lim
z→z0 f (z) − f (z0)z − z0

)
−1
=

1
f ′(z0) , (1.67)

which also gives formula (1.66). Similarly, replacing z0 and w0 in (1.67) by an arbitrary
pair of points z1 ∈ U and w1 = f (z1) proves that g is holomorphic on all of V .

Theorem 1.57 (Local behavior of holomorphic functions). Let f be holomorphic in a region
Ω. Let z0 ∈ Ω, and let k ≥ 1 denote the order of the zero of f (z) − f (z0) at z0. Then there
exist an open neighborhood U of z0, a number r > 0, and a function φ : U → Dr(0) such
that:
1. φ is holomorphic and bijective, and the inverse function φ is also holomorphic;4

2. φ(z0) = 0;
3. We have

f (z) = f (z0) + φ(z)
k (z ∈ U). (1.68)

In other words, under the change of variables w = φ(z), the function z → f (z), z ∈ U,
is represented as w → f (z0) + w

k , w ∈ Dr(0), in terms of the new variable w.

Proof. By the definition of k we can represent f as

f (z) = f (z0) + (z − z0)
kg(z)

with g holomorphic and g(z0) ̸= 0. Since zeros of holomorphic functions are isolated, g
is also nonzero in some disc Dϵ(z0), so by the discussion about nth roots at the end of the
previous section we can express g as

g(z) = h(z)k (z ∈ Dϵ(z0)) (1.69)

for some function h that is holomorphic (and also nonzero by (1.69)) in Dϵ(z0). If we now
define

H(z) = (z − z0)h(z),

then we see that f (z) can be expressed as

4 A function with these properties is called a biholomorphism; see Chapter 3.
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f (z) = f (z0) + ((z − z0)h(z))
k = f (z0) + H(z)

k , (1.70)

a representation that is similar to (1.68), but not yet with the correct domain and range
claimed in the theorem. Note thatH(z0) = 0 andH

′(z0) = h(z0) ̸= 0. By Lemma 1.55,H is
locally injective near z0, that is, its restrictionH|Dδ(z0) to a smaller discDδ(z0) for some δ ∈
(0, ϵ) is injective. The restricted function, being holomorphic, is also an open continuous
mapping„ so it maps the disc Dδ(z0) homeomorphically to some open set V containing
H(z0) = 0. Let r > 0 be such that Dr(0) ⊂ U , and denote U = (H|Dδ(z0))−1(Dr(0)). Then
φ := H|U (the further restriction of H to U) maps U bijectively and homeomorphically
onto Dr(0), and its inverse is holomorphic. The above remarks together with (1.70) show
that it satisfies the properties claimed in the theorem. The proof is complete.

Corollary 1.58. A holomorphic function f : Ω → ℂ is locally injective near z0 ∈ Ω if and
only if f ′(z0) ̸= 0.
Suggested exercises for Section 1.16. 1.36.

1.17 Infinite products and the product representation of the sine
function

Complex analysis abounds in esthetically appealing identities involving integrals and
infinite sums. We will also encounter a variety of beautiful identities involving infinite
products. In this section, we develop the basic theory of such products and illustrate it
in one particularly elegant example, the infinite product identity for the sine function.

1.17.1 Infinite products of complex numbers

Let (cn)
∞
n=1 be a sequence of complex numbers. The infinite product∏∞n=1 cn is defined

as the limit of finite (partial) products limN→∞∏Nn=1 ck if the limit exists. In that case,
we say that the product∏∞n=1 cn converges.
Proposition 1.59. For a sequence of complex numbers (an)

∞
n=1, if ∑∞n=1 |an| <∞, then the

infinite product∏∞n=1(1 + an) converges, and its value is 0 if and only if one of the factors
1 + an is equal to 0.

Proof. Under the assumption, there exists some large enoughN0 ≥ 1 such that |an| < 1/2
for all n ≥ N0. This implies that 1 + an = exp(Log(1 + an)), where Log(z) is the principal
branch of the logarithm function. Now by the Taylor expansion of the function z →
Log(z) (Exercise 1.31) there is some constant C > 0 such that

Log(1 + w)
 ≤ C|w| if |w| < 1/2.
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It follows that ∞
∑
n=N0

Log(1 + an)
 ≤ C

∞
∑
n=N0

|an| <∞,

so in particular, the series ∑∞n=N0
Log(1 + an) converges. We can now write

∞
∏
n=N0

(1 + an) = lim
N→∞ N
∏
n=N0

(1 + an) = lim
N→∞ N
∏
n=N0

exp(Log(1 + an))

= lim
N→∞ exp( N

∑
n=N0

Log(1 + ak)) = exp( limN→∞ N
∑
n=N0

Log(1 + ak))

= exp(
∞
∑
n=N0

Log(1 + ak)).

Thus we have proved that the infinite product∏∞n=N0
(1 + an) converges, and, moreover,

it converges to a nonzero value. Therefore, trivially, the product∏∞n=N0
(1 + an) also con-

verges and is equal to zero if and only if one of the factors 1 + an for 1 ≤ n < N0 is
zero.

1.17.2 Infinite products of holomorphic functions

Proposition 1.60. Let (fn)
∞
n=1 be a sequence of holomorphic functions on a region Ω. If the

series ∑∞n=1 |fn| converges uniformly on compacts in Ω, then the infinite product F(z) =
∏∞n=1(1 + fn(z)) also converges uniformly on compacts. The limiting function F(z) is holo-
morphic and is nonzero everywhere except at the points z for which 1 + fn(z) = 0 for
some n.

Proof. Proposition 1.59 implies that the infinite product ∏∞n=1(1 + fn(z)) converges to a
nonzero limit for any z ∈ Ω. By repeating the same estimates in the proof of that propo-
sition in the context of z being allowed to range on a compact subset K ⊂ Ω, we see
that the sequence of partial products∏nk=1(1+ fn) actually converges uniformly on com-
pacts, so the limiting function is holomorphic. The claim about the set of points z for
which F(z) = 0 is an immediate consequence of the corresponding condition in Propo-
sition 1.59.

Proposition 1.61. Under the assumptions of Proposition 1.60, the logarithmic derivative
of the infinite product∏∞n=1(1+fn) is the sumof the logarithmic derivatives of the individual
factors, that is,

(∏∞n=1(1 + fn))′
∏∞n=1(1 + fn) = ∞∑n=1 f ′n

1 + fn
. (1.71)
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Moreover, the infinite series in (1.71) converges uniformly on compacts in the set {z ∈ Ω :
∏∞n=1(1 + fn(z)) ̸= 0}.
Proof. Exercise 1.37

1.17.3 The sine function

As an illustration of the theory of infinite products, we prove the following classic result.

Theorem 1.62 (Infinite product formula for the sine function).

sin(πz) = πz
∞
∏
n=1(1 − z2n2) (z ∈ ℂ). (1.72)

Theorem 1.62 often comes up in an equivalent form of an infinite series identity,
obtained by taking the logarithmic derivative of both sides of (1.72). This result is known
as the partial fraction expansion of the cotangent function.

Theorem 1.63 (Partial fraction expansion of the cotangent function). The rescaled cotan-
gent function π cot(πz) has three representations

π cot(πz) = lim
N→∞ N
∑

n=−N 1
z + n
=
1
z
+ ∑
n∈ℤ\{0}( 1

z + n
−
1
n
) =

1
z
+
∞
∑
n=1 2z

z2 − n2
, (1.73)

valid for all z ∈ ℂ \ℤ.

The equivalence of the three sums in (1.73) and the convergence of the respective
expressions are easy to verify (Exercise 1.38). The first of the three formulas is sometimes
written in the form of the infinite series

P.V.
∞
∑

n=−∞ 1
z + n
, (1.74)

with the caveat that this is to be interpreted in the “principal value” sense, where the
summation is performed symmetrically on positive and negative indices. This also gives
a bit of intuition of why we expect an identity such as (1.74) to hold: the series (1.74), as-
suming that we can make sense of it as defining a genuine function, is periodic with
period 1, and its local behavior around z = n for each integer n is the correct principal
value of the function π cot(πz) around that point, namely the simple pole 1

z−n . This in-
tuition is not quite a proof, but can be turned into one with some additional arguments
(see [3, Ch. 26]). Here we give a more complex-analytic proof based on contour integra-
tion.
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Figure 1.10: The integration contour γN and the poles (as a function of w with z fixed) of the integrand
fz(w) = π cot(πw)(w+z)2 .

Proof of Theorem 1.63. Let z ∈ ℂ \ ℤ. Fix a large positive integer N . We use the residue
theorem to evaluate the contour integral

IN (z) := ∮
γN

π cot(πw)
(w + z)2

dw

over the contour γN going in the positive direction around the rectangle with vertices
(±(N + 1/2),±N); see Fig. 1.10. The integrand fz(w) =

π cot(πw)(w+z)2 has at its poles enclosed by
the contour the points w = −z (assuming that N is chosen large enough) and w = k ∈ ℤ,
−N ≤ k ≤ N . The residues are evaluated without much difficulty as

Res−z(fz) = − π2

sin2(πz)
,

Resk(fz) =
1
(z + k)2

(−N ≤ k ≤ N),

so the residue theorem gives that

IN (z) = 2πi[−
π2

sin2(πz)
+

N
∑

k=−N 1
(z + k)2

]. (1.75)

Now consider what this means in the limit as N →∞. We claim that

IN (z) →N→∞ 0,
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which, together with (1.75), would imply the identity

π2

sin2(πz)
=
∞
∑

n=−∞ 1
(z + n)2

(z ∈ ℂ \ℤ). (1.76)

To prove this, first note the auxiliary identities

sin(x + iy)

2 = sin2 x + sinh2 y,

cos(x + iy)

2 = cos2 x + sinh2 y,

(x, y ∈ ℝ),

which we leave to the reader to verify. Taking x = ±π(N + 1/2) and y arbitrary, these
identities imply the bound


cot(±π(N + 1

2
) + πiy)


=

sinh2(πy)
1 + sinh2(πy)

≤ 1, (1.77)

and similarly, for y = ±N and x arbitrary, we have

cot(πx ± πiN)
 ≤

1 + sinh2(πN)
sinh2(πN)

≤ 2. (1.78)

The bounds (1.77)–(1.78) together show that on the contour γN , the integrand fz(w) is
bounded in magnitude by 2π(N−|z|)2 , which implies that

IN (z)
 ≤

10πN
(N − |z|)2

→
N→∞ 0,

as claimed, proving (1.76).
Finally, to derive (1.63), let

F(z) = π cot(πz), G(z) = 1
z
+
∞
∑
n=1 2z

z2 − n2
.

Note that

F′(z) = − π2

sin2(πz)
,

G′(z) = − 1
z2
− 2
∞
∑
n=1 z2 + n2

(z2 − n2)2
= −

1
z2
−
∞
∑
n=1( 1
(z + n)2

+
1
(z − n)2

)

= −
∞
∑

n=−∞ 1
(z + n)2

,

so that, by (1.76), F′(z) ≡ G′(z). It follows that F(z) ≡ G(z) + c for some constant c.
However, F and G are both odd functions, so we must have c = 0, i. e., F ≡ G.
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Proof of Theorem 1.62. Define the holomorphic functions

S(z) = sin(πz), T(z) = πz
∞
∏
n=1(1 − z2n2),

noting that the convergence of the infinite product to a holomorphic function is justified
by Proposition 1.60. Taking logarithmic derivatives, we see (using (1.71)) that

S′(z)
S(z)
= π cot(πz), T ′(z)

T(z)
=
1
z
+
∞
∑
n=1 2z

z2 − n2
(z ∈ ℂ \ℤ).

By (1.73) we therefore see that S′/S ≡ T ′/T or, equivalently, (S/T)′ ≡ 0. It follows that
S ≡ c0T for some constant c0. Rewriting this in the form

sin(πz)
πz
≡ c0
∞
∏
n=1(1 − z2n2)

and taking the limit as z→ 0 show that c0 = 1 and finish the proof.

Aside from being a remarkable result in its own right, Theorem 1.62 has a number
of interesting consequences, discussed in Exercise 1.39. We will also use this result (in
the equivalent form (1.73)) several times in our studies of modular forms in Chapter 5.

Corollary 1.64. We have the infinite product formulas

cos(πz) =
∞
∏
n=1(1 − z2

(n − 1/2)2
), (1.79)

ez − 1 = zez/2 ∞∏
n=1(1 + z2

4π2n2
). (1.80)

Proof. Exercise 1.40.

Suggested exercises for Section 1.17. 1.37, 1.38, 1.39, 1.40, 1.41, 1.42.

1.18 Laurent series

A Laurent series is a generalization of a power series expansion and takes the form of
a two-sided infinite series

f (z) =
∞
∑

n=−∞ an(z − z0)n (1.81)

for some z0 ∈ ℂ and complex coefficients (an)
∞
n=−∞. Given such a series, it is easy to see

that it converges absolutely and uniformly on compacts in the annulus-shaped region
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Ar,R(z0) = {z : r < |z − z0| < R},
whereR is the radius of convergence of the power series∑∞n=0 anzn, and r is the reciprocal
of the radius of convergence of the power series ∑∞n=1 a−nwn. Note that this region can
be empty, e. g., if r =∞, R = 0, or r > R.

The basic question about when a function can be expressed as a Laurent series is
answered by the following theorem.

Theorem 1.65. Let 0 ≤ r < R ≤ ∞. Let f be holomorphic in a region Ω containing the
annulus Ar,R(z0). Then f (z) has a unique representation as a Laurent series (1.81), which
is absolutely convergent uniformly on compacts on Ar,R(z0). The coefficients an are given
by

an =
1
2πi
∮

Cρ(z0) f (z)
(z − z0)n+1 dz (n ∈ ℤ) (1.82)

with arbitrary ρ ∈ (r,R).

Proof. Uniqueness: Given an expansion of the form (1.81) known to converge absolutely
uniformly on compacts on Ar,R(z0), let ρ ∈ (r,R), and observe that

1
2πi
∮

Cρ(z0) f (z)
(z − z0)n+1 dz = 1

2πi
∮

Cρ(z0) 1
(z − z0)n+1( ∞∑m=−∞ am(z − z0)m) dz

=
∞
∑

m=−∞ am( 1
2πi
∮

Cρ(z0)(z − z0)m−n−1 dz) = an.
(The last step uses the standard formula (1.92) from Exercise 1.21.) Thus the an are deter-
mined uniquely and are given by (1.82).

Existence: Fix z ∈ Ar,R(z0). Take numbers ρ− and ρ+, with r < ρ− < |z− z0| < ρ+ < R.
Then,by a standard limiting argument involving a keyhole contour we can show that

f (z) = 1
2πi
∮

Cρ+ (z0)
f (w)
w − z

dw − 1
2πi
∮

Cρ− (z0)
f (w)
w − z

dw.

In this representation the factors 1
w−z inside the two integrals can be expanded as geo-

metric series (in two different ways, one being valid forw ∈ Cρ− (z0) and the other forw
on the circle Cρ− (z0)). This leads to

f (z) = 1
2πi
∮

Cρ+ (z0)
1
(w − z0)

1
1 − z−z0

w−z0 f (w) dw
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+
1
2πi
∮

Cρ− (z0)
1

z − z0
1

1 − w−z0
z−z0 f (w) dw

=
1
2πi
∮

Cρ+ (z0)
∞
∑
n=0 (z − z0)n(w − z0)n+1 f (w) dw

+
1
2πi
∮

Cρ− (z0)
∞
∑
m=0 (w − z0)m(z − z0)m+1 f (w) dw

=
∞
∑
n=0 1

2πi
( ∮
Cρ+ (z0)

f (w)
(w − z0)n+1 dw)(z − z0)n

+
∞
∑
m=0 1

2πi
( ∮
Cρ− (z0) f (w)(w − z0)m dw)(z − z0)−m−1,

where in the last step, we interchanged the summation and integration; this is easy to
justify, since the geometric series converge uniformly on the integration contours. We
have therefore obtained a representation for f (z), whichwe see is of the form (1.81) with
the coefficients an given by

an =

{{{{{{
{{{{{{
{

1
2πi
∮

Cρ+ (z0)
f (w)
(w − z0)n+1 dw if n ≥ 0,

1
2πi
∮

Cρ− (z0)
f (w)
(w − z0)n+1 dw if n < 0.

(1.83)

Finally, observe that (1.83) is equivalent to (1.82), since, by another application of
Cauchy’s formula on an appropriate keyhole contour, it can easily be shown that the
integral on the right-hand side of (1.82) is independent of the radius ρ of the integration
contour.

Suggested exercises for Section 1.18. 1.43, 1.44.
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Exercises for Chapter 1

1.1 An immediate corollary of the fundamental theorem of algebra is that any complex
polynomial

p(z) = anz
n + an−1zn−1 + ⋅ ⋅ ⋅ + a0

(where a0, . . . , an ∈ ℂ and an ̸= 0) can be factored as

p(z) = an
n
∏
k=1(z − zk)

for some z1, . . . , zn ∈ ℂ; these are the roots of p(z) counted with multiplicities. Use
this to prove that any such polynomial where the coefficients a0, . . . , an are real has
a factorization

p(z) = anQ1(z)Q2(z) . . .Qm(z),

where each Qk(z) is a linear or quadratic monic polynomial (i. e., is of one of the
forms z − c or z2 + bz + c) with real coefficients.

1.2 If p(z) = anz
n + an−1zn−1 + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + a0 is a polynomial of degree n such that

|an| >
n−1
∑
j=0 |aj|,

then prove that p(z) has exactly n zeros (counting multiplicities) in the unit disc𝔻.
Guidance. Use the fundamental theorem of algebra.
Note. This is a particular case of a less elementary fact, which can be proved using
Rouché’s theorem; see Exercise 1.29.

1.3 For each of the following functions, determine where it is holomorphic.
a. f (z) = z
b. f (z) = Re(z)

c. f (z) = |z|
d. f (z) = |z|2

e. f (z) = z
f. f (z) = 1/z

1.4 For each of relations (1.11)–(1.15) in Lemma 1.4, explain precisely what holomor-
phicity assumptions are needed for the relation to hold and prove its correctness
under those assumptions.

1.5 Draw (approximately, or with as much precision as you can) the image in the
w-plane of the following figure in the z-plane
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under each of the following maps w = f (z):

a. w = 1
2z

b. w = iz
c. w = z
d. w = (2 + i)z − 3

e. w = 1/z
f. w = z2 − 1

1.6 Let f be a holomorphic function in a region Ω, and let γ : (a, b) → ℂ be a differen-
tiable parameterized curve in Ω. Prove that

d
dt
(f (γ(t))) = f ′(γ(t))γ′(t). (1.84)

1.7 Complete the proof of Lemma 1.7 by proving the remaining implications (b)⇐⇒ (c)
and (b) ⇒ (a), which were not proved in the text.

1.8 For each of the following functions u(x, y), determine if there exists a function
v(x, y) such that f (x + iy) = u(x, y) + iv(x, y) is an entire function, and if so, then
find it and try to find a formula for f (z) directly in terms of z rather than in terms
of its real and imaginary parts.

a. u(x, y) = x2 − y2

b. u(x, y) = y3
c. u(x, y) = x4 − 6x2y2 + 3x + y4 − 2
d. u(x, y) = cos x cosh y

1.9 Alternative form of the Cauchy–Riemann equations. A function f = u + iv of
a complex variable z = x + iy is traditionally thought of as a function of the two
coordinates x and y. However, if we think of the equations

z = x + iy, z = x − iy

as representing a formal change of variables from the “real coordinates” (x, y) to
the “complex conjugate coordinates” (z, z), then it may make sense to think of f as
a function of the two variables z and z (pretending that those are two independent
variables). Thus we may suggestively write u = u(z, z) and v = v(z, z) and consider
operations such as taking the partial derivatives of f , u, v with respect to z and z.
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Show that from this point of view, the Cauchy–Riemann equations

𝜕u
𝜕x
=
𝜕v
𝜕y
,
𝜕u
𝜕y
= −
𝜕v
𝜕x

can be rewritten in the more concise equivalent form

𝜕f
𝜕z
= 0,

assuming that it is okay to apply the chain rule from multivariable calculus; and,
moreover, that in this notation, we also have the identity

f ′(z) = 𝜕f
𝜕z
.

1.10 Let f : Ω→ ℂ be a function defined on a region Ω such that both functions f (z) and
zf (z) have real and imaginary parts that are harmonic functions. Prove that f (z) is
holomorphic on Ω.

1.11 Let p(z) = anz
n +an−1zn−1 + ⋅ ⋅ ⋅+a0 be a complex polynomial of degree n ≥ 2 (that is,

a0, . . . , an ∈ ℂ and an ̸= 0), and let z1, . . . , zn be its roots counted with multiplicities.
Let w1, . . . ,wn−1 denote the roots of p′(z). Prove the following claim, known as the
Gauss–Lucas theorem.

Theorem 1.66 (Gauss–Lucas theorem). The points w1, . . . ,wn−1 all lie in the convex
hull of z1, . . . , zn, that is, each wk can be expressed as a convex combination

wk = α
(k)
1 z1 + α

(k)
2 z2 + ⋅ ⋅ ⋅ + α

(k)
n zn

for some coefficients α(k)1 , . . . , α(k)n ≥ 0 satisfying ∑nj=1 α(k)j = 1.
See Fig. 1.11 for an illustration of this phenomenon.

Figure 1.11: An illustration of the Gauss–Lucas theorem discussed in Exercise 1.11, showing the roots
z1, . . . , z7 of a polynomial p(z) of degree 7, their convex hull, and the roots w1, . . . ,w6 of p

′(z).
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1.12 Illustrate the claim from p. 19 regarding the orthogonality of the level curves of the
real and imaginary parts of holomorphic functions by plotting some of the level
curves of Re(f ) and Im(f ) for each of the following functions:
a. f (z) = z2 b. f (z) = 1/z c. f (z) = ez

1.13 Complete the argument of the proof of Lemma 1.8 in the extreme cases R = 0,∞.
1.14 Using the formula ez = ∑∞n=0 zn

n! as the definition of the exponential function, prove
that

ew+z = ewez (w, z ∈ ℂ).
1.15 The Bernoulli numbers. The Bernoulli numbers are the numbers (Bn)

∞
n=0 defined

by the power series expansion

z
ez − 1
=
∞
∑
n=0 Bnn! zn. (1.85)

For example, the first three Bernoulli numbers are B0 = 1, B1 = −1/2, and B2 = 1/6.
(a) Find the radius of convergence of the series (1.85).
(b) Prove that the Bernoulli numbers satisfy the following identities:

B2k+1 = 0 (k = 1, 2, . . .), (1.86)

(n + 1)Bn = −
n−1
∑
k=0(n + 1k

)Bk (n ≥ 1), (1.87)

(2n + 1)B2n = −
n−1
∑
k=1(2n2k)B2kB2n−2k (n ≥ 2), (1.88)

z
2
coth(z

2
) =
∞
∑
n=0 B2n
(2n)!

z2n. (1.89)

Hint for (1.88). Show that the function g(z) = f (z) + z/2 satisfies the ordinary
differential equation g(z) − zg′(z) = g(z)2 − z2/4.

(c) Prove that

lim sup
n→∞ B2n2n!



1/(2n)
=

1
2π
. (1.90)

(See also Exercise 1.39, where we will derive a much more precise formula for
the asymptotic behavior of B2n for large n.)

1.16 Bessel functions. The Bessel functions (also known as Bessel functions of the
first kind) are a family of functions (Jn)

∞
n=−∞ of a complex variable, defined by

Jn(z) =
∞
∑
k=0 (−1)kk!(k + n)!

(
z
2
)
2k+n
. (1.91)
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(For example, note that J0(−2√x) = ∑
∞
k=0 xk(k!)2 , which is reminiscent of the exponen-

tial function and already seems like a fairly natural function to study.)
(a) For which z ∈ ℂ does the series (1.91) converge?
(b) Prove that the Bessel functions satisfy the following properties:

J−n(z) = (−1)nJn(z),
Jn+1(z) = 2nz Jn(z) − Jn−1(z),
J ′′n (z) = − 1z J ′n(z) − z2 − n2z2

Jn(z).

(c) Prove the following additional identities:

exp[z
2
(t − 1

t
)] =

∞
∑

n=−∞ Jn(z)tn,
cos(z sin t) = J0(z) + 2

∞
∑
n=1 J2n(z) cos(2nt),

sin(z sin t) = 2
∞
∑
n=0 J2n+1(z) sin((2n + 1)t),

cos(z cos t) = J0(z) + 2
∞
∑
n=1(−1)nJ2n(z) cos(2nt),

sin(z cos t) = 2
∞
∑
n=0(−1)nJ2n+1(z) cos((2n + 1)t),

Jn(z) =
1
π

π

∫
0

cos(z sin t − nt) dt.

1.17 Show that, analogously to the calculation in (1.35), the arc length integral (1.34) does
not depend on the particular parameterization chosen for the curve γ.

1.18 Prove Proposition 1.12. (Part of the exercise is to define precisely the notions of
“composition of curves” and “reverse curve”).

1.19 Prove that homotopy of curves defined at the beginning of Section 1.8 is an equiv-
alence relation.

1.20 Prove that ℂ is simply connected.
1.21 (a) For r > 0 and n ∈ ℤ, show that

∮|z|=r zn dz = {2πi if n = −1,
0 otherwise.

(1.92)

(b) Forwhich n ∈ ℤ does the function f (z) = zn have a primitive inℂ\{0}? Explain.
(c) Is the “punctured complex plane” ℂ \ {0} simply connected? Explain.
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1.22 Cauchy’s theoremand irrotational vectorfields.Recall fromvector calculus that
a planar vector field F = (P,Q) defined on some region Ω ⊂ ℂ = ℝ2 is called
conservative if it is of the form F = ∇g = ( 𝜕g𝜕x , 𝜕g𝜕y ) (the gradient of g) for some scalar
function g : Ω → ℝ. By the fundamental theorem of calculus for line integrals, for
such a vector field, we have

∮
γ

F ⋅ ds = 0

for any closed curve γ. Recall also that (as is easy to check) any conservative vector
field is irrotational, that is, it satisfies

curl F = 0,

where, in the context of two-dimensional vector fields, the curl operator is defined
by

curl F = 𝜕Q
𝜕x
−
𝜕P
𝜕y
.

The following converse to this result can be shown: if the region Ω is simply con-
nected, then a theorem in vector calculus says that an irrotational vector field is
also conservative.
Use these background results to show that if f = u + iv is holomorphic on a simply
connected region Ω, then

∮
γ

f (z) dz = 0

for any closed curve γ in Ω. (This is, of course, Cauchy’s theorem.)
1.23 Show that Liouville’s theorem (Theorem 1.33) can be proved directly using the “sim-

ple” (n = 0) case of Cauchy’s integral formula, instead of using the case n = 1 of the
extended formula as we did in the lecture.

1.24 Show that Liouville’s theorem can in fact be deduced even just from themean value
property of holomorphic functions (Theorem 1.28), which, as you may recall, is the
particular case of Cauchy’s integral formula in which z is taken as the center of the
circle around which the integration is performed.

Guidance. Here it makes sense to consider a modified version of the mean value
property (that follows easily from the original version) that says that f (z) is the
average value of f (w) over a disc DR(z) (instead of a circle CR(z)), that is,

f (z) = 1
πR2
∬
DR(z) f (x + iy) dx dy,
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where the integral is an ordinary two-dimensional Riemann integral. Explain why
this formula holds, then use it to bound |f (z1) − f (z2)| (for arbitrary complex num-
bers z1, z2) from above by a quantity that goes to 0 as R→∞.

1.25 Prove the following generalization of Liouville’s theorem: let f be an entire function
that for all z ∈ ℂ satisfies the inequality

f (z)
 ≤ A + B|z|

n

for some constants A,B > 0 and integer n ≥ 0. Then f is a polynomial of degree at
most n.

1.26 Integration of a family of holomorphic functions with respect to a parameter.
Let I ⊂ ℝ be an interval, and let Ω be a complex region. Let F(t, z) be a function of a
real parameter t ∈ I and a complex variable z ∈ Ω. Assume that F(t, z) is continuous
on I × Ω, holomorphic in z for any fixed t ∈ I , and that for any compact set K ⊂ Ω,
supz∈K ∫I |F(t, z)| dt <∞. Prove that the function f : Ω→ ℂ defined by

f (z) = ∫
I

F(t, z) dt

is holomorphic on Ω.
1.27 (a) Explain how to derive the formulas (1.52)–(1.53) through purely formal alge-

braic manipulations. Are these manipulations valid in any sense you are fa-
miliar with from real analysis?

(b) Explain how the principle of analytic continuation can breathe new life into
the two formulas by providing a context within which the formulas can be
interpreted as having a precise, well-defined (and correct) meaning.

1.28 Prove properties (1.62)–(1.63) of the generalized order of a zero of a holomorphic
function at a point z0. Can you give a useful condition for when equality holds
in (1.62)?

1.29 If p(z) = anz
n +an−1zn−1+ ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅+a0 is a polynomial of degree n such that for some

0 ≤ k ≤ n, we have

|ak | > ∑
0≤j≤n
j ̸=k |aj|,

then prove that p(z) has exactly k zeros (counting multiplicities) in the unit disc𝔻.
Guidance. Use Rouché’s theorem.
Note. This result generalizes the result of Exercise 1.2.

1.30 Show how Rouché’s theorem can be used to give yet a proof of the fundamental
theoremof algebra. This proof is oneway tomake precise the intuitively compelling
“topological” proof idea discussed in Section 1.2.
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1.31 Prove that the principal branch of the logarithm has the Taylor series expansion

Log z =
∞
∑
n=1 (−1)n−1n

(z − 1)n (|z − 1| < 1) (1.93)

around z = 1.
1.32 What is (or are) the complex number (or numbers) represented by ii?
1.33 (a) Draw a simply connected region Ω ⊂ ℂ such that 0 ∉ Ω, 1, 2 ∈ Ω, and such that

there exists a branch F(z) of the logarithm function on Ω satisfying

F(1) = 0, F(2) = log 2 + 2πi

(where log 2 is the ordinary natural logarithm of 2 in the usual sense of real
analysis).

(b) More generally, let k ∈ ℤ. If we were to replace the above condition F(2) =
log 2 + 2πi with the more general condition F(2) = log 2 + 2πik but keep all the
other conditions, would an appropriate simply connected region Ω = Ω(k) ex-
ist to make that possible? If so, then what would this region look like, roughly,
as a function of k?

1.34 Prove Theorem 1.53.
1.35 Prove Theorem 1.54.
1.36 Prove Theorem 1.56.
1.37 Prove Proposition 1.61.
1.38 Prove that the three infinite series in (1.73) all converge for z ∈ ℂ \ℤ and represent

the same function.
1.39 Consequences of the infinite product formula for the sine function.

(a) By specializing the value of z in (1.72) to an appropriate specific value obtain
the following infinite product formula for π, known asWallis’ product (first
proved by John Wallis in 1655):

π
2
=
2
1
⋅
2
3
⋅
4
3
⋅
4
5
⋅
6
5
⋅
6
7
⋅
8
7
⋅
8
9
⋅ . . . .

(b) By comparing the first terms in the Taylor expansion around z = 0 of both
sides of (1.72), derive the well-known identities∞

∑
n=1 1

n2
=
π2

6
,
∞
∑
n=1 1

n4
=
π4

90
. (1.94)

(c) More generally, we can use (1.72) or, more conveniently, its equivalent cousin
(1.73) to obtain closed formulas for all the series

ζ (2k) =
∞
∑
n=1 1

n2k
= 1 + 1

22k
+

1
32k
+

1
42k
+ ⋅ ⋅ ⋅ (k = 1, 2, . . .).
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(The notation ζ (2k) for these infinite sums is standard and has to do with
the fact that these are the special values of the Riemann zeta function ζ (s) =
∑∞n=1 1

ns at the positive even integers; see Chapter 2.) To see this, expand both
sides of the relation

π cot(πz) = 1
z
+
∞
∑
n=−∞
n ̸=0 (

1
z + n
−
1
n
) (z ∈ ℂ \ℤ)

in a Taylor series around z = 0, making use of identity (1.89) from Exercise 1.15.
Compare the coefficients and simplify to get the famous formula

ζ (2k) = (−1)
k−1(2π)2k
2(2k)!

B2k (k ≥ 1). (1.95)

For example, using the first few values B2 =
1
6 , B4 = −

1
30 , B6 =

1
42 , and B8 = −

1
30 ,

we get

ζ (2) =
∞
∑
n=1 1

n2
=
π2

6
,

ζ (4) =
∞
∑
n=1 1

n4
=
π4

90
,

ζ (6) =
∞
∑
n=1 1

n6
=

π6

945
,

ζ (8) =
∞
∑
n=1 1

n8
=

π8

9 450
,

where of course the first two values coincide with those from (1.94).
(d) Show that ζ (2k) = 1 + O(2−2k) as k → ∞ and deduce that the asymptotic

behavior of the Bernoulli numbers is given by

B2k = (1 + O(2
−2k))(−1)k−1 2(2k)!

(2π)2k
, k →∞.

Note that this is consistent with the earlier weaker estimate (1.90).
1.40 Prove identities (1.79)–(1.80).
1.41 (a) Prove the infinite product formula

sin(z) = z
∞
∏
n=1 cos( z2n) (z ∈ ℂ). (1.96)

Hint. sin(z) = 2 sin(z/2) cos(z/2).
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(b) By substituting an appropriate value of z into (1.96) prove the formula

2
π
=
√2
2
⋅
√2 +√2

2
⋅
√2 +√2 +√2

2
⋅
√2 +√2 +√2 +√2

2
⋅ . . . ,

first proved by François Viète in 1593.
1.42 Evaluate the following infinite products:

(a) ∏∞n=2 n2−1
n2 =

3
4 ⋅

8
9 ⋅

15
16 ⋅

24
25 ⋅

48
49 ⋅ . . . = ?

(b) ∏∞n=1 n2+1
n2 =

2
1 ⋅

5
4 ⋅

10
9 ⋅

17
16 ⋅

26
25 ⋅ . . . = ?

Later, in Chapter 2, we will encounter an interesting variation on these infinite
products; see Exercise 2.17.

1.43 Let f be holomorphic in a punctured neighborhood of a point z0 ∈ ℂ. Assume that
f has a pole of order k at z0. Show that the Laurent series (1.81) in this case takes
the form

f (z) =
∞
∑
n=−k an(z − z0)n.

1.44 Let f (z) = 1
z(2−z) . By Theorem 1.65, f (z) has a Laurent series (1.81) that converges in

the punctured disc {0 < |z| < 2}, and separately from that, f (z) has a Laurent series
that converges in {2 < |z| < ∞}. Find the coefficients an explicitly for both those
Laurent series.

1.45 Let f (z) = p(z)/q(z) be a rational function such that deg q ≥ deg p + 2 (where deg p
denotes the degree of a polynomial p). Prove that the sum of the residues of f (z)
over all its poles is equal to 0.

1.46 Sendov’s conjecture, an elementary statement in complex analysis proposed by
the mathematician Blagovest Sendov in 1959 and still open today, is the claim that
if p(z) = (z−z1) . . . (z−zn) is a complex polynomial whose roots zj , j = 1, . . . , n, all lie
in the closed unit disc |z| ≤ 1, then for each root zj , there is a root α of the derivative
p′(z) for which |zj − α| ≤ 1.
(a) Prove the conjecture for the case n = 2 of quadratic polynomials.
(b) Prove that if in the inequality |zj − α| ≤ 1, the number 1 is replaced by any

smaller number, then the claim is false.
(c) Prove the conjecture for the case n = 3 of cubic polynomials. (This is not a

completely trivial result; for one possible proof, see [11].)
1.47 Use Cauchy’s theorem and the residue theorem to calculate the following definite

integrals:

(a)
∞
∫−∞ e−x2 dx = √π.
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(b)
∞
∫−∞ e−πx2e2πiux dx = e−πu2 (u ∈ ℝ).

(c)
∞
∫
0

sin(t2) dt =
∞
∫
0

cos(t2) dt =
√π
2√2
.

(d)
∞
∫−∞ 1

cosh(x)
dx = π.

(e)
∞
∫−∞ 1

cosh(πx)
e2πiux dx = 1

cosh(πu)
(u ∈ ℝ).

(f)
∞
∫−∞ 1

x2 + 1
eiux dx = πe−|u| (u ∈ ℝ).

(g)
∞
∫−∞ eux

1 + ex
dx = π

sin(πu)
(0 < u < 1).
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My distinguished friend:

Your remarks concerning the frequency of primes were of interest to me in more ways than one.
You have reminded me of my own endeavors in the field which began in the very distant past, in
1792 or 1793, after I had acquired the Lambert supplements to the logarithmic tables. Even before
I had begun my more detailed investigations into higher arithmetic, one of my first projects was
to turn my attention to the decreasing frequency of primes, to which end I counted the primes in
several chiliads and recorded the results on the attachedwhite pages. I soon recognized that behind
all of its fluctuations, this frequency is on the average inversely proportional to the logarithm, so
that the number of primes below a given bound n is approximately equal to∫ dn

log n
,

where the logarithm is understood to be hyperbolic.

Carl Friedrich Gauss, letter to Johann Encke dated December 24, 1847

2.1 Motivation: analytic number theory and the distribution of
prime numbers

Humans have been fascinated by the prime numbers since antiquity. Euclid famously
proved that there exist infinitelymany prime numbers; his ingenious proof still delights
us today. Erathostenes developed his eponymous sieve algorithm for finding all primes
up to some prescribed upper limit. They and the mathematicians who came after them
continued to puzzle over the apparent erraticismwithwhich prime numbers seem to be
spread out among the natural numbers. For a long time, the only empirical observation
anyone dared to make concerning the primes was that as we look at higher and higher
numbers, primes seem to occur with a diminishing frequency.

It was only in the late eighteenth century thatmathematicians startedmakingmore
quantitative guesses. Gauss observed privately in 1792 or 1793 (when he was around 16
years old!) that the density of primes found around a certain integer n falls like the
inverse of the logarithm of n; see the epigraphic quote above, and the historical survey
[30]. This is easily seen to be equivalent to the statement that the number π(x) of prime
numbers up to a given upper bound x behaves like x

log x as x → ∞. Legendre, who
was unaware of Gauss’s unpublished investigations, published an equivalent formula
in 1808. This statement is now known as the prime number theorem.

Theorem 2.1 (Prime number theorem). The prime-counting functionπ(x) behaves asymp-
totically as

π(x) ∼ x
log x

as x →∞. (2.1)

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783110796810-003
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What is so striking about this result is that it takes a set of objects that appear to be
the epitome of disorder, at leastwhen inspected on a small scale, and in one clean, simple
statement decrees that they nonetheless obey a very rigid law on the large scale. More-
over, the connection to calculus in the form of the appearance of the natural logarithm
function seems surprising in view of the existence of prime numbers as fundamentally
discrete objects that do not appear to have any connection to the types of continuous
phenomena calculus was developed to understand.

Gauss’ conjecture, though bold and (as it turned out) correct, was ahead of its time;
he and his contemporaries lacked the tools tomake any significant progress on the prob-
lem until several decades later. In fact, the entire field of complex analysis had yet to be
invented, and it would turn out that that branch of mathematics is rather crucial to the
methods involved in an eventual proof. Even when Riemann came up with some of the
ideas that would turn out to be the most significant, in a famous paper he published
in 1859—one of the most famous papers in the entire history of mathematics, titled On
the Number of Primes Less Than a Given Magnitude—significant work still needed to be
done, and several more decades would pass before the result became a proper theorem.
This happened in 1896, when two proofs were published independently by Hadamard
and de la Vallée Poussin.

The work that led to the proof has become a cornerstone of what is now its own
rich area of mathematics, known as analytic number theory. At the heart of this field
is one of the greatest mathematical questions of all time, the still unsolved Riemann
hypothesis, which can be thought of as being, in a rather precise sense, the “ultimate”
version of the prime number theorem [46].

In this chapter, our ostensible goal is a proof of the prime number theorem, which
in my opinion is the quintessential application of complex analysis.1 However, this is
a case where the journey is no less interesting than the destination and will take us
through a study of two special functions that play a crucial role in the proof: the Eu-
ler gamma function and the Riemann zeta function. These functions are well worth
learning about for their own sake, independently of the prime number theorem, and be-
cause of their applicability to many other problems in pure and applied mathematics.

2.2 The Euler gamma function

The Euler gamma function (often referred to simply as the gamma function) is one
of the most important special functions in mathematics. It has applications to many
areas, such as combinatorics, number theory, differential equations, probability, and

1 To be fair, so-called “elementary” proofs of the prime number theorem that avoid the use of complex
analysis have been found, but this development came much later, required great effort and ingenuity,
and many mathematicians seem to agree that these proofs are conceptually less appealing and fruitful
for understanding the behavior of the prime numbers than the complex-analytic proofs.
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more, and is probably the most ubiquitous transcendental function after the “elemen-
tary” transcendental functions (the exponential function, logarithms, trigonometric
functions, and their inverses) that we learn about in calculus. The gamma function is a
natural meromorphic function of a complex variable that extends the factorial function
to noninteger values. In complex analysis, it is particularly important in connection
with the theory of the Mellin transform (a version of the Fourier transform associ-
ated with the multiplicative group of positive real numbers in the same way that the
ordinary Fourier transform is associated with the additive group of the real numbers).

Most textbooks define the gamma function in oneway and proceed to prove several
other equivalent representations of it. I have always found that approach to be slightly
misleading; the truth is that none of the representations of the gamma function is more
fundamental or “natural” than the others. It seems more logical to me to present the
topic by listing the various formulas and properties associatedwith the gamma function
and then proving that that list adds up to a consistent whole, that is, that there exists a
unique mathematical object satisfying them.

Theorem 2.2 (Euler gamma function). There exists a unique function Γ of a complex vari-
able s that has the following properties:
1. Γ(s) is a meromorphic function on ℂ.
2. Connection to factorials: Γ(n + 1) = n! for n = 0, 1, 2, . . . .
3. Important special value: Γ(1/2) = √π.
4. Integral representation:

Γ(s) =
∞
∫
0

e−xxs−1 dx (Re s > 0). (2.2)

5. Infinite product representation:

Γ(s) = s−1e−γs ∞∏
n=1(1 + sn)

−1
es/n (s ∈ ℂ), (2.3)

where γ = limn→∞(1 + 1
2 +

1
3 + ⋅ ⋅ ⋅ +

1
n − log n) ≐ 0.577215 is the Euler–Mascheroni

constant.
6. Limit of finite products representation:

Γ(s) = lim
n→∞ n! ns

s(s + 1) ⋅ ⋅ ⋅ (s + n)
(s ∈ ℂ). (2.4)

7. Zeros: the gamma function has no zeros (so Γ(s)−1 is an entire function).
8. Poles: the gamma function has poles precisely at the nonpositive integers s =

0,−1,−2, . . . and is holomorphic everywhere else. The pole at s = −n is a simple
pole with residue

Ress=−n(Γ) = (−1)nn!
(n = 0, 1, 2, . . .).
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9. Functional equation:

Γ(s + 1) = s Γ(s) (s ∈ ℂ). (2.5)

10. Reflection formula:

Γ(s)Γ(1 − s) = π
sin(πs)

(s ∈ ℂ). (2.6)

To begin the proofs, we do have to define the function we are claiming exists some-
how, so we take formula (2.2) as our working definition of Γ(s). Fix α > 0. If s is in the
half-plane {Re(s) ≥ α > 0}, then



∞
∫
0

e−xxs−1 dx ≤
∞
∫
0

e−x xs−1 dx = ∞∫
0

e−xxRe(s)−1 dx < ∞∫
0

e−xxα−1 dx <∞.
Thus the improper integral (2.2) converges in the region Re(s) > 0 (uniformly on any
half-plane Re(s) ≥ α > 0) and therefore defines a function Γ(s) which, by the result of
Exercise 1.26, is holomorphic in that region.

Next, perform an integration by parts, to get that for Re(s) > 0, we have

Γ(s + 1) =
∞
∫
0

e−xxs dx = −e−xxs|x=∞x=0 + ∞∫
0

e−xsxs−1 dx = s Γ(s),
which is the functional equation (2.5).

Combining the trivial evaluation Γ(1) = ∫∞0 e−x dx = 1 with the functional equation
shows by induction that Γ(n + 1) = n!.

Why is the gamma function shifted from the factorial by 1?
The titular question above is a standard one that gets asked by many students introduced to the gamma
function but is rarely discussed in print. If you assume that that the gamma function is a well-behaved
extension of the factorial function to noninteger values is one of its most important properties, then the
shifting of the value of the argument by 1 seems to make little sense, and the competing definition of a
“factorial function”

Π(s) = Γ(s + 1)
would appear to be the more logical and natural one. In fact, historically, both definitions coexisted for
some time, and the reasons why the notation Γ(s) won the day and became established as the standard
one are not entirely clear; this may be more of an accident of history than anything else.

Nonetheless, there are indeed some good reasons to accept Γ(s) as the more natural and sensible
notational convention, at least in the context of complex-analytic applications (as opposed to, say, uses
of the gamma function in combinatorics). See [W13] for further discussion of this issue.
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The special value Γ(1/2) = √π follows immediately by a change of variable x = u2

in the integral (2.2) and an appeal to the standard Gaussian integral ∫∞−∞ e−u2 du = √π:
Γ(1/2) =

∞
∫
0

e−xx−1/2 dx = ∞∫
0

e−u22 du = ∞∫−∞ e−u2 du = √π.
The functional equation (2.5), which so far we have only established in the region

Re(s) > 0, where our working definition (2.2) is valid, can now be used to perform an
analytic continuation of Γ(s) to a meromorphic function onℂ. This is done in a series of
steps: as the first step, define

Γ1(s) =
Γ(s + 1)

s
,

which is a function that is holomorphic on Re(s) > −1, s ̸= 0, and coincides with Γ(s) for
Re(s) > 0. By the principle of analytic continuation this provides a unique extension of
Γ(s) to a meromorphic function in the region Re(s) > −1. Because of the factor 1/s and
the fact that Γ(1) = 1, we also see that Γ1(s) has a simple pole at s = 0 with residue 1.

Next, for Re(s) > −2, we define

Γ2(s) =
Γ1(s + 1)

s
=
Γ(s + 2)
s(s + 1)
,

a function that is holomorphic on Re(s) > −2, s ̸= 0,−1, and coincides with Γ1(s) for
Re(s) > −1, s ̸= 0. Again, this provides an analytic continuation of Γ(s) to that region.
The factors 1/s(s + 1) show that Γ2(s) has a simple pole at s = −1 with residue −1.

Continuing by induction, having defined an analytic continuation Γn−1(s) of Γ(s) to
the region Re(s) > −n + 1, s ̸= 0,−1,−2, . . . ,−n + 2, we now define

Γn(s) =
Γn−1(s + 1)

s
= ⋅ ⋅ ⋅ =

Γ(s + n)
s(s + 1) ⋅ ⋅ ⋅ (s + n − 1)

.

By inspection we see that this gives a meromorphic function in Re(s) > −n whose poles
are precisely at s = −n + 1, . . . , 0 and have the claimed residues.

We constructed a sequence of meromorphic functions Γn(s) that are analytic con-
tinuations of the original function Γ(s) defined in (2.2) to a growing sequence of regions
whose union is the entire complex plane. By packaging all these continuations into a sin-
gle object we see that we have proved the existence of a unique meromorphic function
on all of ℂ that is an analytic continuation of the original Γ(s) and whose restriction to
each of the half-planes Re(s) > −n coincides with the nth function Γn(s) in the sequence.
By a standard abuse of notation,we continue to denote this global analytically continued
version of Γ(s) by Γ(s).

As a partial summary, we established the existence and uniqueness of Γ(s) as a func-
tion of a complex variable satisfying properties 1, 2, 3, 4, 8, and 9 in Theorem 2.2. We now
proceed with the proof of the remaining properties.
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Lemma 2.3. For Re(s) > 0, we have

Γ(s) = lim
n→∞ n

∫
0

(1 − x
n
)
n

xs−1 dx. (2.7)

Proof. The right-hand side of (2.7) can be rewritten as ∫∞0 (1 − xn )nχ[0,n](x)xs−1 dx (where
χA denotes the characteristic function of a set). The integrand in this expression con-
verges to e−xxs−1 pointwise as n → ∞. By the elementary inequality 1 − t ≤ e−t (t ∈ ℝ)
we have


(1 − x

n
)
n

χ[0,n](x)xs−1 ≤ e−xxRe(s)−1 (x > 0).
The claim therefore follows from the dominated convergence theorem.

Lemma 2.4. For Re(s) > 0, we have

n

∫
0

(1 − x
n
)
n

xs−1 dx = n! ns

s(s + 1) ⋅ ⋅ ⋅ (s + n)
.

Proof. For n = 1, the claim is that

1

∫
0

(1 − x)xs−1 dx = 1
s(s + 1)
,

which is easy to verify directly. For the general claim, using a linear change of variables
and integration by parts, we see that

n

∫
0

(1 − x
n
)
n

xs−1 dx = ns 1

∫
0

(1 − t)nts−1 dt
= ns[(1 − t)n t

s

s



t=1
t=0 +

1

∫
0

n(1 − t)n−1 ts
s
dt]

= ns ⋅ n
s

1

∫
0

(1 − t)n−1t(s+1)−1 dt,
so the claim follows by induction on n.

Combining the results of Lemmas 2.3 and 2.4, we obtain the “limit of finite prod-
ucts” representation (2.4), except that we only proved it for Re(s) > 0. To establish it for
general s, note first that



88 � 2 The prime number theorem

n! ns

s(s + 1) ⋅ ⋅ ⋅ (s + n)
= s−1es log n[(1 + s

1
)(1 + s

2
) ⋅ ⋅ ⋅(1 + s

n
)]
−1

= s−1e−s(∑nk=1 1
k −log n) n
∏
k=1(1 + sk)

−1
es/k ,

which is an expression whose limit (if it exists) is the expression on the right-hand side
of (2.3). This shows that representations (2.3) and (2.4) are equivalent, and from the dis-
cussion above, both of them hold at least for Re(s) > 0.

We now check that the infinite product on the right-hand side of (2.3)—or rather
its reciprocal, corresponding to the entire function Γ(s)−1, which is slightly more
convenient—satisfies the assumptions of Proposition 1.60 (with Ω = ℂ) and there-
fore defines an entire function. Indeed, if K is a compact subset ofℂ, then, for s ∈ K , we
have ∞

∑
n=1(1 + sn)e−s/n − 1 = ∞∑n=1(1 + sn)(1 − sn + O( 1n2)) − 1

=
∞
∑
n=1O( 1n2) <∞.

(Here the big-O notation hides a constant that depends on K but not on n.)
Therefore the infinite product ∏∞n=1(1 + s

n )e
−s/n indeed defines an entire function,

and relations (2.3) and (2.4) must hold for all s ∈ ℂ by the principle of analytic continu-
ation.

The last property that remains to be proved from the list of properties in Theo-
rem 2.2 is the reflection formula (2.6). To prove this, we use the functional equation to
transform the factor Γ(1 − s) as (−s)Γ(−s) and then apply the infinite product formu-
las (2.3) and (1.72) for the gamma and sine functions, respectively, to get that

1
Γ(s)Γ(1 − s)

=
1

Γ(s) ⋅ (−s)Γ(−s)

=
−1
s
⋅ seγs

∞
∏
n=1(1 + sn)e−s/n ⋅ (−s)e−γs ∞∏n=1(1 − sn)es/n

= s
∞
∏
n=1(1 − s2n2) = s sin(πs)πs

=
sin(πs)

π
,

as claimed.
An alternativemethod for proving (2.6) avoids the use of the infinite product formu-

las. Assume that s is real and satisfies 0 < s < 1 (proving the identity for such s implies
it for all s by analytic continuation). Then we have that

Γ(s)Γ(1 − s) =
∞
∫
0

e−tt−sΓ(s) dt = ∞∫
0

e−tt−s(t ∞∫
0

e−vt(vt)s−1 dv)dt
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=
∞
∫
0

∞
∫
0

e−t(1+v)vs−1 dv dt = ∞∫
0

(
∞
∫
0

e−t(1+v) dt)vs−1 dv
=
∞
∫
0

vs−1
1 + v

dv =
∞
∫−∞ esx

1 + ex
dx (by setting v = ex).

So the claim reduces to the definite integral evaluation∞
∫−∞ esx

1 + ex
dx = π

sin(πs)
(0 < s < 1).

This definite integral appeared in Exercise 1.47 and can be evaluated in a straightfor-
ward manner using contour integration techniques.

Suggested exercises for Section 2.2. 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7.

2.3 The Riemann zeta function: definition and basic properties

The Riemann zeta function (often referred to simply as the zeta function when there
is no risk of confusion), like the Euler gamma function is considered one of the most im-
portant special functions in “higher” mathematics. However, the Riemann zeta function
is a lot more mysterious than the gamma function and remains the subject of many fa-
mous open problems, including the most famous of them all, the Riemann hypothesis,
widely regarded as one of the most important open problem in mathematics today.

Themain reason for the importance of the zeta function is its connectionwith prime
numbers and other concepts and quantities from number theory. Its study and in par-
ticular the attempts to prove the Riemann hypothesis have also stimulated an unusually
large number of important developments in many areas of mathematics.

As with the gamma function, the Riemann zeta function is usually defined on only
part of the complex plane, and its definition is then extended by analytic continuation,
which can be done inmany different ways. Again, this strikesme as in some sense “miss-
ing the point” of the Riemann zeta function as a natural mathematical object that exists
independently of which of the many formulas for it you choose as your definition. I will
present the function in the form of a theorem summarizing its most important formulas
and properties.

Theorem 2.5 (Riemann zeta function). There exists a unique function, denoted ζ (s), of a
complex variable s, having the following properties:
1. ζ (s) is a meromorphic function on ℂ.
2. Series formula: for Re(s) > 1, ζ (s) is given by the series

ζ (s) =
∞
∑
n=1 1

ns
= 1 + 1

2s
+

1
3s
+ ⋅ ⋅ ⋅ . (2.8)
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3. Euler product formula: for Re(s) > 1, ζ (s) also has an infinite product representa-
tion

ζ (s) =∏
p

1
1 − p−s , (2.9)

where the product ranges over the prime numbers p = 2, 3, 5, 7, 11, . . . .
4. ζ (s) has no zeros in the region Re(s) > 1.
5. The “trivial” zeros: the zeros of ζ (s) in the region Re(s) < 0 are precisely at s =
−2,−4,−6, . . . .

6. ζ (s) has a unique pole, located at s = 1. It is a simple pole with residue 1.
7. The “Basel problem” and its generalizations: the values of ζ (s) at even positive

integers are given by Euler’s formula

ζ (2n) = (−1)
n−1(2π)2n
2(2n)!

B2n (n = 1, 2, . . .), (2.10)

where (Bm)
∞
m=0 are the Bernoulli numbers, defined as the coefficients in the Taylor

expansion

z
ez − 1
=
∞
∑
m=0 Bmm! zm.

Some of the properties of these remarkable numbers were discussed in Exercise 1.15.
8. Values at negative integers: we have

ζ (−n) = −
Bn+1
n + 1
(n = 1, 2, 3, . . .).

(Note that for negative even integers, this coincides with the property stated above
about the trivial zeros at s = −2,−4,−6, . . . , since the Bernoulli numbers satisfy B2k+1 =
0 for integer k ≥ 1. However, this formula adds information about the values of ζ (s)
at negative odd integers.)

9. Functional equation: the zeta function satisfies

ζ∗(1 − s) = ζ∗(s) (s ∈ ℂ), (2.11)

where we denote by ζ∗(s) the symmetrized zeta function

ζ∗(s) = π−s/2Γ( s
2
)ζ (s). (2.12)

An equivalent form for the functional equation is

ζ (s) = 2sπs−1 sin(πs
2
)Γ(1 − s)ζ (1 − s). (2.13)
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10. Integral representation: an expression for ζ (s) valid for all s ∈ ℂ is

π−s/2Γ( s
2
)ζ (s) = − 1

1 − s
−
1
s
+
1
2

∞
∫
1

(t− s+12 + t s−22 )(θ(t) − 1) dt, (2.14)

where θ(t) is the Jacobi theta function2 defined as

θ(t) =
∞
∑

n=−∞ e−πn2t = 1 + 2 ∞∑n=1 e−πn2t . (2.15)

To begin the proof of Theorem 2.5, we take as the definition of ζ (s) the standard
infinite series representation (2.8). Since ∑n |n

−s| = ∑n n−Re(s), we see that the series
converges absolutely precisely when Re(s) > 1 and that the convergence is uniform on
any half-plane of the form Re(s) > α with α > 1. In particular, it is uniform on compact
subsets, so ζ (s) is holomorphic in this region.

We now prove the Euler product formula (2.9). Intuitively, the remarkable identity
between the infinite series (2.8) and the product (2.9) is often described as an analytic
restatement of the fact that any positive integer has a unique factorization into primes.
Indeed, observe that each of the factors 1

1−p−s in the product can be expanded as a ge-
ometric series in powers of p−s. Setting aside issues of convergence for a moment, the
product can therefore be written as

∏
p

1
1 − p−s =∏p (1 + p−s + p−2s + p−3s + ⋅ ⋅ ⋅) = ∑

n=pj11 ⋅⋅⋅pjkk
p1 ,...,pk primes

1
ns
. (2.16)

This last summation is in fact a sum over all positive integers n (with each n being
summed over precisely once) by the fundamental theorem of arithmetic. So the sum
is equal to ∑∞n=1 1

ns = ζ (s).
This calculation is appealing and memorable but lacking in rigor, since we have

not said anything about the assumptions about s, nor justified our expansion of an infi-
nite product of infinite series into a single infinite series. A fully rigorous (though more
tedious) version of the same calculation proceeds as follows. Define the holomorphic
function

Z(s) =∏
p
(1 − p−s)−1

and note that this product converges absolutely if and only if the series ∑p |p
−s| =

∑p p
−Re(s) converges and in particular if Re(s) > 1. It follows that Z(s) is well-defined

2 The same name is also used to refer to several other closely related functions; see Section 5.13, where
some of those functions are discussed.
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and nonzero for Re(s) > 1. We now prove that in this region, Z(s) = ζ (s). This can be
done by manipulating the partial products associated with the infinite product defin-
ing Z(s) in a similar vein to (2.16): if we denote by ζN (s) the product ∏p≤N 1

1−p−s (still a
product over primes), then

ζN (s) = ∏
p≤N 1

1 − p−s = ∏p≤N(1 + p−s + p−2s + p−3s + ⋅ ⋅ ⋅).
This is a product of a finite number of infinite series, each of them absolutely convergent
in Re(s) > 1. By the standard fact from analysis that in such a product, the summands
can be rearranged and summed in any order we desire, we see that the product can be
expanded as

∑
n=pj11 ⋅⋅⋅pjkk

p1 ,...,pk primes ≤N
1
ns
.

So we have represented ζN (s) as a series of a similar form to (2.8) but involving terms of
the form n−s only for those positive integers n whose prime factorization contains only
primes ≤ N . This set of integers in particular contains all the integers in [1,N]. It follows
that

ζ (s) − ζN (s)
 ≤ ∑

n>N 1
ns
.

Taking the limit as N → ∞ shows that Z(s) = limN→∞ ζN (s) = ζ (s). This proves the
validity of the Euler product formula. As a corollary, we also get that ζ (s) has no zeros
in the region Re(s) > 1 (Property 4 in Theorem 2.5) since we already noted that Z(s) has
this property.

Next, we prove that ζ (s) can be analytically continued to a meromorphic function
onℂ that has a pole at s = 1 and is holomorphic everywhere else. In the process of doing
so, we will also obtain a proof of the functional equation (2.11). We will be aided by an
important result from harmonic analysis, the Poisson summation formula.

Theorem 2.6 (Poisson summation formula). Let f : ℝ → ℂ be differentiable infinitely
many times, and assume that supx∈ℝ |xnf (k)(x)| <∞ for all k, n ≥ 0.3 Then∞

∑
n=−∞ f (n) = ∞∑k=−∞ f̂ (k), (2.17)

where

3 A function satisfying these assumptions is called a Schwartz function. See Section A.6.
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f̂ (u) =
∞
∫−∞ f (x)e−2πiux dx (u ∈ ℝ)

is the Fourier transform of f .

Proof. Define the function g : [0, 1]→ ℂ by

g(x) =
∞
∑

n=−∞ f (x + n). (2.18)

By the assumptions on f the series defining g(x) converges, and g is differentiable. Note
that g(0) = g(1), so that g can also be interpreted as a periodic function on ℝ or, equiv-
alently, as a function on the circle ℝ/ℤ; consequently, it is sometimes referred to as the
“periodicization” of f . Now, since g is periodic and differentiable, a standard result from
harmonic analysis [67, Thm. 2.1, p. 81] states that g(x) will have a pointwise convergent
Fourier series of the form

g(x) =
∞
∑

k=−∞ ĝ(k)e2πikx , (2.19)

where ĝ(k) are the Fourier coefficients of g given by

ĝ(k) =
1

∫
0

g(x)e−2πikx dx.
In particular, the particular case x = 0 of (2.19) is the relation

g(0) =
∞
∑

k=−∞ ĝ(k). (2.20)

Moreover, the Fourier coefficient ĝ(k) can be expressed in terms of the Fourier coeffi-
cients of the original function f (x):

ĝ(k) =
1

∫
0

g(x)e−2πikx dx = 1

∫
0

∞
∑

n=−∞ f (x + n)e−2πikx dx
=
∞
∑

n=−∞
1

∫
0

f (x + n)e−2πikx dx = ∞∑
n=−∞

n+1
∫
n

f (u)e−2πiku du
=
∞
∫−∞ f (u)e−2πiku du = f̂ (k). (2.21)

Combining (2.20) and (2.21), we get that
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g(0) =
∞
∑

k=−∞ f̂ (k),
the quantity on the right-hand side of (2.17). On the other hand, setting x = 0 in (2.18)
gives

g(0) =
∞
∑

n=−∞ f (n),
so (2.17) follows.

Theorem 2.7 (Functional equation for the Jacobi theta function). The Jacobi theta function
θ(t) satisfies the functional equation

θ( 1
t
) = √t θ(t) (t > 0). (2.22)

We remark that equations of the form (2.22) and its variants are studied in the theory
ofmodular forms, which is the subject of Chapter 5. Indeed, when we learn about this
more general theory, we will see that θ(t) can be seen as belonging to a more general
class of Jacobi theta functions, which are special functions with many applications in
number theory and other areas of mathematics. See Section 5.13.1 and also Chapter 6.

Proof of Theorem 2.7. Fix t > 0, and define the function f : ℝ → ℝ (depending on the
parameter t) by

f (x) = e−πtx2 . (2.23)

The function f clearly satisfies the assumptions of (2.6), so (2.17) holds. Note that the
Fourier transform of f is given by

f̂ (u) = t−1/2e−πu2/t . (2.24)

Indeed, for t = 1, it is the standard integral∞
∫−∞ e−πx2e−2πixu dx = e−πu2 (2.25)

(that is, the well-known fact that the function e−πx2 is its own Fourier transform; see Ex-
ercise 1.47), and for general t > 0, this follows from (2.25) by a linear change of variables.
Now substituting (2.23)–(2.24) into (2.17) immediately gives (2.22).

An alternative method of proving (2.22) using purely complex-analytic arguments
is discussed in Exercise 2.15.
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Lemma 2.8. The asymptotic behavior of θ(t) near t = 0 and t = +∞ is given by

θ(t) = O( 1
√t
) (t → 0+), (2.26)

θ(t) = 1 + O(e−πt) (t →∞). (2.27)

Proof. The claim about the behavior of θ(t) as t →∞ is immediate from

θ(t) − 1 = 2
∞
∑
n=1 e−πn2t ≤ 2 ∞∑n=1 e−πnt = 2e−πt

1 − e−πt ,
which is bounded by 3e−πt if t > 1. This gives (2.27). Using (2.22) now gives that θ(t) =
t−1/2θ(1/t) = t−1/2(1 + O(e−π/t)) = O(t−1/2) as t → 0+, which proves (2.26).

We are now ready to prove that ζ (s) can be analytically continued to a meromor-
phic function onℂ. This will be done by deriving representation (2.14) for Re(s) > 1 and
showing that the expression on the right-hand side of (2.14) in fact defines a meromor-
phic function on ℂ. Start with the identity

Γ( s
2
) =
∞
∫
0

e−xxs/2−1 dx
for Re(s) > 0. A linear change of variables x = πn2t brings this to the form

π−s/2Γ( s
2
)n−s = ∞∫

0

e−πn2tts/2−1 dt. (2.28)

Summing the left-hand side over n = 1, 2, . . . gives π−s/2Γ( s2 )ζ (s)—the function we de-
noted ζ∗(s)—except that in order for this sum to converge, we now make the more re-
strictive assumption that Re(s) > 1. Similarly, performing the same summation on the
right-hand side of (2.28), we have that∞

∑
n=1
∞
∫
0

e−πn2tts/2−1 dt. = ∞∫
0

(
∞
∑
n=1 e−πn2t)ts/2−1 dt =

∞
∫
0

θ(t) − 1
2

ts/2−1 dt.
Here we again assume that Re(s) > 1; by Lemma 2.8 this ensures that the integral in the
last expression is absolutely convergent and therefore also, by the dominated conver-
gence theorem, that it is permissible to interchange the order of summation and inte-
gration as we did.

Summarizing the above discussion, we have obtained the representation

ζ∗(s) = 1
2

∞
∫
0

(θ(t) − 1)ts/2−1 dt (Re(s) > 1)
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for the symmetrized zeta function ζ∗(s) defined in (2.12). It is convenient to rewrite this
as

ζ∗(s) = ∞∫
0

φ(t)ts/2−1 dt (Re(s) > 1),
where we denote φ(t) = 1

2 (θ(t) − 1). Next, we use the functional equation (2.22) for θ(t)
to bring this integral to a new form, which is well-defined for all s ∈ ℂ except s = 0, 1.
More specifically, note that (2.22) can be expressed in the equivalent form

φ(t) = t−1/2φ(1/t) + 1
2
t−1/2 − 1

2
.

We can therefore write, still assuming that Re(s) > 1,

ζ∗(s) = 1

∫
0

φ(t)ts/2−1 dt + ∞∫
1

φ(t)ts/2−1 dt
=

1

∫
0

(t−1/2φ(1/t) + 1
2
t−1/2 − 1

2
)ts/2−1 dt + ∞∫

1

φ(t)ts/2−1 dt
= −

1
1 − s
−
1
s
+
∞
∫
1

(t(1−s)/2−1 + ts/2−1)φ(t) dt. (2.29)

This is representation (2.14). Now observe that since φ(t) = O(e−πt) as t → ∞, the inte-
gral ∫∞1 (t(1−s)/2−1 + ts/2−1)φ(t) dt satisfies the assumptions of Exercise 1.26 and therefore
defines an entire function of s. Thus we have derived a formula for ζ∗(s) that defines a
meromorphic function on all ofℂ, whose only poles are the simple poles at s = 0, 1 (due
to the two terms −1/s and 1/(s− 1) in (2.29)). This concludes the proof that ζ (s) can be an-
alytically continued to ameromorphic function onℂ. The functional equation (2.11) also
follows trivially: simply observe that the representation we derived for ζ∗(s) is mani-
festly symmetric with respect to replacing each occurrence of s by 1 − s.

It is straightforward to verify that the two forms (2.11) and (2.13) of the functional
equation are equivalent (Exercise 2.8).

The claims fromTheorem2.5 that remain to be proved are properties 5–8. Property 7
was proved in Chapter 1 as one of the consequences of the partial fraction expansion of
the cotangent function (see Exercise 1.39). The remaining properties will now follow as
a sequence of easy corollaries to the results we already proved.

Corollary 2.9. The only pole of ζ (s) is a simple pole at s = 1 with residue 1.

Proof. Our representation for ζ∗(s) expresses it as a sum of − 1s ,
1
s−1 , and an entire func-

tion. Thus the poles of ζ∗(s) are simple poles at s = 0, 1 with residues −1 and 1, respec-
tively. It follows that
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ζ (s) = πs/2Γ(s/2)−1ζ∗(s)
has a pole at s = 1 with residue π1/2Γ(1/2)−1 = 1 and a pole (that turns out to be a remov-
able singularity) at s = 0 with residue π0Γ(0)−1 = 0. (That is, the pole of ζ∗(s) at s = 0 is
canceled out by the zero of Γ(s/2).)

Corollary 2.10. ζ (−n) = −Bn+1/(n + 1) for n = 1, 2, 3, . . . .
Proof. Let n ≥ 1. Using version (2.13) of the functional equation, we have that

ζ (−n) = 2−nπ−n−1 sin(−πn/2)Γ(n + 1)ζ (n + 1)
= 2−nπ−n−1 sin(−πn/2)n!ζ (n + 1).

If n = 2k is even, then sin(−πn/2) = 0, so we get that ζ (−2k) = 0 (that is, n = 2k is
one of the so-called “trivial zeros”). We also know from Exercise 1.15 that B2k+1 = 0 for
k = 1, 2, 3, . . . , so the formula ζ (−n) = Bn+1/(n + 1) is satisfied in this case.

If on the other hand n = 2k − 1 is odd, then sin(−π(2k − 1)/2) = (−1)k , and therefore
using (2.10), we get that

ζ (−n) = (−1)k2−2k+1π−2k(2k − 1)!ζ (2k)
= (−1)k2−2k+1π−2k(2k − 1)! (−1)k−1(2π)2k

2(2k)!
B2k

= −
B2k
2k
= −

Bn+1
n + 1
,

so again the formula is satisfied.

Corollary 2.11. The zeros of ζ (s) in the region Re(s) < 0 are precisely the trivial zeros
s = −2,−4,−6, . . . .

Proof. We have already established the existence of the trivial zeros. We leave to you to
verify that the fact that there are no other zeros follows immediately from the functional
equation.

Suggested exercises for Section 2.3. 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18.

2.4 A theorem on the zeros of the Riemann zeta function

Next, we prove a subtle and very important fact about the zeta function, which will play
a crucial role in our proof of the prime number theorem.

Theorem 2.12. ζ (s) has no zeros on the line Re(s) = 1.

Proof. For this proof, denote s = σ + it, where we assume that σ > 1 and t is real and
nonzero. The proof is based on investigating simultaneously the behavior of ζ (σ + it),
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ζ (σ + 2it), and ζ (σ) for fixed t as σ ↘ 1. Consider the following somewhat mysterious
quantity:

X = logζ (σ)
3ζ (σ + it)4ζ (σ + 2it).

Using the Euler product formula (2.9), we can evaluate X as

X = 3 logζ (σ)
 + 4 log

ζ (σ + it)
 + log
ζ (σ + 2it)



= 3 log( ∏
p prime

1 − p
−σ −1) + 4 log( ∏

p prime

1 − p
−σ−it−1)

+ log( ∏
p prime

1 − p
−σ−2it−1)

= ∑
p prime
(−3 log1 − p

−σ  − 4 log1 − p−σ−it − log1 − p−σ−2it)
= ∑

p prime
(−3 Re[Log(1 − p−σ)] − 4 Re[Log(1 − p−σ−it)]

− Re Log[1 − p−σ−2it]),
where in the last expression, Log(⋅) denotes the principal branch of the logarithm func-
tion. Now note that for z = a + ib with a > 1 and an arbitrary prime number p, we have
|p−z| = p−a < 1, so by the Taylor expansion (1.93) of the Log(⋅) function,

− Log(1 − p−z) = ∞∑
m=1 p−mzm

,

and therefore

−Re[Log(1 − p−z)] = ∞∑
m=1 p−mam

Re[cos(mb log p) + i sin(mb log p)]

=
∞
∑
m=1 p−mam

cos(mb log p).

This means that if we define quantities βn and cn for n ≥ 1 by

βn = t log n, cn = {
1/m if n = pm for some prime p,
0 otherwise,

then we can rewrite X as

X =
∞
∑
n=1 cnn−σ(3 + 4 cos βn + cos(2βn)).
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We can now use the simple trigonometric identity

3 + 4 cos β + cos(2β) = 2(1 + cos β)2

to rewrite X yet again as

X = 2
∞
∑
n=1 cnn−σ(1 + cos βn)2.

We have proved a crucial fact that X ≥ 0 or, equivalently, that

eX = ζ (σ)
3ζ (σ + it)4ζ (σ + 2it) ≥ 1. (2.30)

We now claim that this innocent-looking inequality is incompatible with the existence
of a zero of ζ (s) on the line Re(s) = 1. Indeed, assume by contradiction that ζ (1 + it) = 0
for some real t ̸= 0. Then the three quantities ζ (σ), ζ (σ + it), and ζ (σ + 2it) have the
following asymptotic behavior as σ ↘ 1:

ζ (σ)
 =

1
σ − 1
+ O(1) (since ζ (s) has a pole at s = 1),

ζ (σ + it)
 = O(σ − 1) (since ζ (s) has a zero at s = 1 + it),

ζ (σ + 2it)
 = O(1) (since ζ (s) is holomorphic at s = 1 + 2it).

Combining these results, we have that

eX = ζ (σ)
3ζ (σ + it)4ζ (σ + 2it) = O((σ − 1)

−3(σ − 1)4) = O(σ − 1).
Thus eX → 0 as σ ↘ 1, in contradiction to (2.30). This finishes the proof.

2.5 Proof of the prime number theorem

The prime number theorem (Theorem 2.1) was proved in 1896 by Jacques Hadamard
and independently by Charles Jean de la Vallée Poussin using the groundbreaking ideas
from Riemann’s famous 1859 paper, in which he introduced the use of the Riemann zeta
function as a tool for counting prime numbers. The history of these developments is
described in great detail (both historical and technical) in the book [25].

The original proofs of the prime number theoremwere very complicated and relied
on the “explicit formula of number theory” and some its variants (see the box on p. 109).
Throughout the twentieth century, mathematicians worked hard to find simpler ways
to derive the prime number theorem. This resulted in several important developments
(such as theWiener Tauberian theorem and the Hardy–Littlewood Tauberian theorem)
that advanced not just the state of analytic number theory but also of complex analysis,
harmonic analysis, and functional analysis. Despite all the efforts and the discovery of
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several paths to a proof that were simpler than the original approach, all known proofs
remained quite difficult. Aminor breakthrough occurred in 1980whenDonald Newman
discovered a surprisingly simple way to derive the theorem using relatively elementary
complex-analytic arguments. The proof presented here is adapted from of a version of
Newman’s proof due to Zagier [74]; see also [44, 49, 70].

Recall that the prime number theorem concerns the so-called prime-counting func-
tion π(x) defined as the number of primes that are less than or equal to x. It is helpful
to write this in the form of a sum over primes, namely

π(x) = #{p prime : p ≤ x} = ∑
p≤x 1

with the convention that the symbol p in summations always refers to primes. We also
define the Chebyshev function ψ(x) as a closely related weighted sum

ψ(x) = ∑
pk≤x log p = ∑p≤x log p⌊ log xlog p

⌋.

In this definition, the first sum is over prime powers pk (with integer k ≥ 1); the second
sum is an alternative and trivially equivalent way of writing ψ(x) as a sum over primes
rather than over prime powers. Another customary and equivalent way to write the
function ψ(x) is as

ψ(x) = ∑
n≤x Λ(n),

where the function Λ(n), called the von Mangoldt function, is defined by

Λ(n) = {
log p if n = pk with p prime, k ≥ 1,
0 otherwise.

Lemma 2.13. The prime number theorem π(x) ∼ x
log x is equivalent to the statement that

ψ(x) ∼ x.

Proof. The functionsψ(x) and π(x) can be related to each other in an approximate sense
through two simple inequalities. First, observe that

ψ(x) = ∑
p≤x log p⌊ log xlog p

⌋ ≤ ∑
p≤x log p log xlog p

= ∑
p≤x log x = log x ⋅ π(x). (2.31)

Second, in the opposite direction, we have that for any 0 < ϵ < 1 and x ≥ 2,

ψ(x) ≥ ∑
p≤x log p ≥ ∑x1−ϵ<p≤x log p ≥ ∑x1−ϵ<p≤x log(x1−ϵ)
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= (1 − ϵ) log x(π(x) − π(x1−ϵ)) ≥ (1 − ϵ) log x(π(x) − x1−ϵ). (2.32)

Now assume that ψ(x) ∼ x as x →∞. Then (2.31) implies that π(x) ≥ ψ(x)
log x , and therefore

lim inf
x→∞ π(x)

x/ log x
≥ 1. (2.33)

On the other hand, (2.32) gives that π(x) ≤ 1
1−ϵ ⋅ ψ(x)log x + x

1−ϵ , which then implies that
lim sup
x→∞ π(x)

x/ log x
≤

1
1 − ϵ
+ lim sup

x→∞ log x
xϵ
=

1
1 − ϵ
.

Since ϵ was an arbitrary number in (0, 1), it follows that

lim sup
x→∞ π(x)

x/ log x
≤ 1. (2.34)

Combining (2.33) and (2.34) gives that π(x) ∼ x/ log x. This proves one of the two impli-
cations claimed in the theorem.

To prove the reverse implication, assume that π(x) ∼ x
log x , and note that, by (2.31),

lim sup
x→∞ ψ(x)

x
≤ lim sup

x→∞ π(x)
x/ log x

= 1. (2.35)

On the other hand, (2.32) implies that

lim inf
x→∞ ψ(x)

x
≥ lim inf

x→∞ ( π(x)
x/ log x

−
log x
xϵ
) = 1 − ϵ.

Again, since ϵ ∈ (0, 1)was arbitrary, it follows that lim infx→∞ ψ(x)
x = 1. When combined

with (2.35), we have shown that limx→∞ ψ(x)
x = 1, as claimed.

A hint of the significance of the Chebyshev function and the equivalent form ψ(x) ∼
x of the prime number theorem is offered by the next lemma.

Lemma 2.14. For Re(s) > 1 we have

−
ζ ′(s)
ζ (s)
=
∞
∑
n=1Λ(n)n−s. (2.36)

Proof. Using the Euler product formula and taking the logarithmic derivative (which is
an operation that works as it should when applied to infinite products of holomorphic
functions that are uniformly convergent on compact subsets), we have

−
ζ ′(s)
ζ (s)
=∑

p

d
ds (1 − p

−s)
1 − p−s =∑p log p ⋅ p−s

1 − p−s
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=∑
p
log p (p−s + p−2s + p−3s + ⋅ ⋅ ⋅) = ∑

p prime

∞
∑
k=1 log p ⋅ p−ks

=
∞
∑
n=1Λ(n)n−s.

At this point in the discussion, we can already outline a plausible-sounding heuris-
tic explanation for why the prime number theoremmight be true. Consider the two se-
quences an = Λ(n) and bn = 1. By Lemma 2.13 the prime number theorem is equivalent
to the claim that

1
x
∑
n≤x an ∼ 1x ∑n≤x bn as x →∞, (2.37)

that is, that the sequences an and bn exhibit similar average asymptotic behavior. On the
other hand, if we are willing to be a bit more flexible about interpreting what we mean
by “average”, that is, replacing the straightforward arithmetic averages by a certain class
ofweighted averages, then there is a statement of this type that is easily seen to be true,
namely, the statement that

1
ζ (σ)

∞
∑
n=1 annσ ∼ 1

ζ (σ)

∞
∑
n=1 bnnσ as σ ↘ 1. (2.38)

Indeed, the right-hand side of this relation is equal to 1, and the left-hand side is, by (2.36),
equal to −ζ ′(σ)/ζ (σ)ζ (σ) , which converges to 1 as σ ↘ 1 due to the fact that both the numerator
and the denominator in this fraction have a simple pole with residue 1 at σ = 1.

The above argument raises the question of whether this heuristic explanation can
be turned into a proof. That is, is it generally true that an asymptotic equivalence of the
form (2.38) can be used to deduce themore natural equivalence (2.37)? Or, if it is not true
in unrestricted generality, what additional assumptions are needed to make such a de-
duction correct, and are these assumptions satisfied for our particular case of interest?
The general area inwhich such questions belong is that ofTauberian theorems (a name
honoring an 1897 result of the mathematician Alfred Tauber, who proved an important
early result of this type). These questions turn out to be quite delicate, and although this
approach does in fact offer a viable route toward a proof of the prime number theorem
(see [47, p. 261]), following this route requires rather involved ideas from Fourier anal-
ysis. Here we take a slightly different path that, although also in line with the general
philosophy of Tauberian theorems, starts by further reducing the problem into that of
showing the convergence of a certain improper integral. The following lemma gives the
details of this simple reduction.

Lemma 2.15. Assume that the improper integral∞
∫
1

(
ψ(x)
x
− 1)dx

x
(2.39)

converges. Then the prime number theorem follows.



2.5 Proof of the prime number theorem � 103

Proof. Keeping in mind Lemma 2.13, we will prove the contrapositive claim that if ψ(x)
x

does not converge to 1 as x →∞, then the integral (2.39) cannot converge.
Assume that ψ(x)

x ̸→ 1. In this scenario, either L+ = lim supx→∞ ψ(x)
x > 1, or L− =

lim infx→∞ ψ(x)
x < 1. In the first case, observe that there are arbitrarily large values of x

for which ψ(x)
x > 1+2ϵ, wherewe denote ϵ =

L+−1
4 > 0. For a value of xwith that property,

using the fact that ψ(x) is weakly monotone increasing, we see that(1+ϵ)x
∫
x

(
ψ(t)
t
− 1)dt

t
≥

(1+ϵ)x
∫
x

(
(1 + 2ϵ)x
(1 + ϵ)x

− 1) dt
(1 + ϵ)x

= (
ϵ

1 + ϵ
)
2

=: C.

Thuswe have shown that the function I(T) = ∫T1 (
ψ(x)
x −1)

dx
x has infinitelymany intervals

over which it changes value by at least the fixed positive constant C, which implies that
the improper integral (2.39) cannot converge.

Similarly, in the second case inwhich L− < 1, we again note that there are arbitrarily
large values of x for which ψ(x)

x < 1 − 2ϵ, where ϵ is defined as the constant ϵ =
1−L−
4

(which is positive and trivially bounded from above by 1/4). For such x, again from the
monotonicity of ψ(x) we get that

x

∫(1−ϵ)x(ψ(t)t − 1)dtt ≤
x

∫(1−ϵ)x( (1 − 2ϵ)x(1 − ϵ)x
− 1) dt
(1 − ϵ)x

= −(
ϵ

1 − ϵ
)
2

.

This is again inconsistent with the possibility that the integral (2.39) converges.

One additional ingredient of our proof is the following elementary bound on the
Chebyshev function.

Lemma 2.16. There is a constant C > 0 such that ψ(x) ≤ Cx for all x ≥ 1.

Proof. The idea of the proof is that the binomial coefficient (2nn ) is not too large on the
one hand but is divisible bymany primes (at least all primes between n+1 and 2n) on the
other hand; hence it follows that there cannot be toomany primes, and in particular the
weighted prime-counting function ψ(x) can be easily bounded from above using such
an argument. More precisely, we have that

22n = (1 + 1)2n =
2n
∑
k=0(2nk ) > (2nn ) ≥ ∏n<p≤2n p = exp( ∑n<p≤2n log p)

= exp(ψ(2n) − ψ(n) − ∑
n<pk≤2n, k≥2 log p). (2.40)

The sum in the last expression is easily bounded as

∑
n<pk≤2n, k≥2 log p ≤ 10√n log2 n + 10 (n ≥ 1) (2.41)
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(Exercise 2.19). Thus taking the logarithm of the first and last expressions in (2.40), we
get the bound

ψ(2n) − ψ(n) ≤ 2n log 2 + 10√n log n + 10 ≤ 1
2
Cn

for all n ≥ 1 with some constant C > 0. For n of the form n = 2m,m ≥ 0, this allows us to
write

ψ(2m) = (ψ(2m) − ψ(2m−1))
+ (ψ(2m−1) − ψ(2m−2)) + ⋅ ⋅ ⋅ + (ψ(21) − ψ(20))
≤
1
2
C(2m−1 + ⋅ ⋅ ⋅ + 20) ≤ C2m−1,

thereby establishing the inequality ψ(x) ≤ 1
2Cx for any x that is a power of 2. Finally, for

a general integer x ≥ 1, we can represent x as x = 2m + ℓ for somem ≥ 0 and 0 ≤ ℓ < 2m.
We then observe that

ψ(x) = ψ(2m + ℓ) ≤ ψ(2m+1) ≤ C2m ≤ Cx,
which is the desired bound.

We are ready to state a Tauberian theorem, which in some sense forms the heart of
the proof of the prime number theorem.

Theorem 2.17 (Newman’s Tauberian theorem). Let f : [1,∞) → ℝ be a bounded function
that is integrable on compact intervals. Define a function g(s) of a complex variable s by

g(s) =
∞
∫
1

f (x)x−s−1 dx. (2.42)

Clearly, g(s) is defined and holomorphic in the open half-plane Re(s) > 0. Assume that
g(s) has an analytic continuation to an open region Ω containing the closed half-plane
Re(s) ≥ 0. Then the improper integral ∞

∫
1

f (x)
x

dx (2.43)

converges, and its value is equal to g(0), the value at s = 0 of the analytic continuation
of g.

Before we proceed with the proof, it is worth pausing to appreciate the subtlety
of this result. The conclusion of the theorem about the existence of the improper inte-
gral (2.43) can be expressed as the statement that



2.5 Proof of the prime number theorem � 105

lim
T→∞ T

∫
1

f (x)
x

dx = lim
ϵ↘0 ∞∫

1

f (x)
x

x−ϵ dx.
This sort of equivalence of limits seems to fall readilywithin the realm of real analysis. It
is remarkable that the condition needed for this conclusion to hold is a complex-analytic
condition involving the existence of an analytic continuation for the function g(s) (and,
moreover, to a region that contains parts that extend arbitrarily far from the real axis).
If you were not already convinced of the importance and relevance of complex analysis
to the rest of mathematics, I hope this will make you rethink your skepticism!

Proof of Theorem 2.17. Define a truncated version of the integral defining g(s), namely

gT (s) =
T

∫
1

f (x)x−s−1 dx
for T > 1.We claim that gT (s) is an entire function of s for any fixed T . This can be proved
using Morera’s theorem: let γ be a closed contour in ℂ. Then

∮
γ

gT (s) ds = ∮
γ

T

∫
1

f (x)x−s−1 dx ds = T

∫
1

∮
γ

f (x)x−s−1 ds dx = ∫
I

0 dx = 0.

In the above calculation, interchanging the order of the two integrals is justified by Fu-
bini’s theorem, which (as we can easily check) is applicable in the current situation.
Since the integral of gT (s) over an arbitrary closed contour γ vanishes, gT is entire by
Morera’s theorem.

Now our goal is to show that limT→∞ gT (0) = g(0). This will be achieved through
an application of Cauchy’s integral formula. Fix some large number R > 0 and a small
number δ > 0 (which depends onR in away thatwill be explained shortly), and consider
the contour C consisting of the part of the circle |s| = R that lies in the half-plane Re(s) ≥
−δ together with the straight line segment along the line Re(s) = −δ connecting the top
andbottom intersection points of this circlewith the line (see Fig. 2.1(a)). Assume that δ is
small enough so that g(s) (which by the assumptions of the theorem extends analytically
at least slightly to the left of Re(s) = 0) is holomorphic in an open set containing C and
the region enclosed by it. Then by Cauchy’s integral formula the difference g(0) − gT (0)
can be expressed as

g(0) − gT (0) =
1
2πi
∮
C

(g(s) − gT (s))T
s(1 + s

2

R2
)
ds
s
. (2.44)

Note that this equation would still hold true if the integrand on the right-hand side were
the simpler expression g(s)−gT (s)

s ; however, Newman’s inspired observation was that the
inclusion of the additional factors T s(1+ s

2

R2 ) actually helps by producing an integral that
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Figure 2.1: The contours C, A, B, and B′.
can be estimated effectively (while keeping the value of the integral the same). To see
how this works, start by separating the contour C into two parts, a semicircular arc A
that lies in the half-plane Re(s) > 0 and the remaining part B in the half-plane Re(s) < 0
(Fig. 2.1(b)). We can then write

g(0) − gT (0) = I1 + I2, (2.45)

where

I1 =
1
2πi
∫
A

(g(s) − gT (s))T
s(1 + s

2

R2
)
ds
s
, (2.46)

I2 =
1
2πi
∫
B

(g(s) − gT (s))T
s(1 + s

2

R2
)
ds
s
. (2.47)

We now bound I1 and I2 separately. Denote

M = sup
t≥1 f (t)

(and recall the assumption that this number is finite). For swith Re(s) > 0, we are in the
region where formula (2.42) is valid, so we can bound the expression g(s) − gT (s) as

g(s) − gT (s)
 =


∞
∫
1

f (x)x−s−1 dx − T

∫
1

f (x)x−s−1 dx
=


∞
∫
T

f (x)x−s−1 dx ≤ M
∞
∫
T

x
−s−1 dx = MT−Re(s)Re(s)

. (2.48)

Note also that for s satisfying |s| = R, we have that
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T s(1 + s

2

R2
)

= TRe(s) sR ⋅ (Rs + sR) = TRe(s)(s/R + s/R)
= TRe(s) 2 |Re(s)|

R
. (2.49)

The bounds (2.48)–(2.49) both apply on the subcontour A, so by combining them we get
that

|I1| ≤
1
2π
(πR)2M

R2
=
M
R
. (2.50)

Next, we bound I2 by bounding the contributions from g(s) and gT (s) separately, that is,
further decomposing that integral as

I2 =
1
2πi
∫
B

g(s)T s(1 + s
2

R2
)
ds
s
−

1
2πi
∫
B

gT (s)T
s(1 + s

2

R2
)
ds
s
=: J1 − J2. (2.51)

In the case of J2, since gT (s) is an entire function and the only singularity of the integrand
is at s = 0, we can deform the integration contour B replacing it with the semicircular
arc B′ = {s : |s| = R, Re(s) < 0} (Fig. 2.1(c)). By Cauchy’s theorem the value of the integral
remains the same. On the new contour B′ the bound (2.49) holds, and there we also have
the estimate

gT (s)
 =


T

∫
1

f (x)x−s−1 dx ≤ M
T

∫
0

x
−s−1 dx = MT−Re(s)|Re(s)|

.

Therefore, similarly to (2.50), we have the bound

|J2| ≤
1
2π
(πR)2M

R2
=
M
R
. (2.52)

The remaining integral J1 tends to 0 as T → ∞ (with R fixed), since the dependence
on T is only through the factor T s, which converges to 0 uniformly on compact sets in
Re(s) < 0 as T →∞.

Combining this last observation with (2.45), (2.50), (2.51), and (2.52), we have there-
fore shown that

lim sup
T→∞ g(0) − gT (0) ≤ 2MR .

Since R was an arbitrary positive number, the lim sup must be 0, and the theorem is
proved.

Consider now the following application of Theorem 2.17 to a specific function: take

f (x) = ψ(x)
x
− 1 (x ≥ 1)
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as our function f (x). Note that f (x) is bounded by Lemma 2.16. The associated function
g(s) is then

g(s) =
∞
∫
1

(
ψ(x)
x
− 1)x−s−1 dx

=
∞
∫
1

ψ(x)x−s−2 dx − 1
s
=
∞
∫
1

(∑
n≤x Λ(n))x−s−2 dx − 1s

=
∞
∑
n=1Λ(n)(

∞
∫
n

x−s−2 dx) − 1
s
=
∞
∑
n=1Λ(n) x−s−1−s − 1 

∞
n
−
1
s

=
1

s + 1

∞
∑
n=1Λ(n)n−s−1 − 1s = − 1

s + 1
⋅
ζ ′(s + 1)
ζ (s + 1)

−
1
s
(Re(s) > 0)

by (2.36). Recall that−ζ ′(s)/ζ (s)has a simple pole at s = 1with residue 1 (because ζ (s)has
a simple pole at s = 1; it is useful to remember themore general fact that if a holomorphic
function h(z) has a zero of order k at z = z0, then the logarithmic derivative h

′(z)/h(z)
has a simple pole at z = z0 with residue k). So −

1
s+1 ⋅ ζ ′(s+1)ζ (s+1) has a simple pole with residue

1 at s = 0, and therefore − 1
s+1 ⋅ ζ ′(s+1)ζ (s+1) − 1

s has a removable singularity at s = 0. Thus the

identity g(s) = − 1
s+1 ⋅ ζ ′(s+1)ζ (s+1) − 1

s shows that g(s) extends analytically to a holomorphic
function in the region

{s ∈ ℂ : ζ (s + 1) ̸= 0}.

By Theorem 2.12, g(s) in particular extends holomorphically to an open set containing
the half-plane Re(s) ≥ 0.

We have therefore shown that f (x) satisfies the assumption of Newman’s Tabuerian
theorem. We conclude from the theorem that the improper integral∞

∫
0

f (x)
x

dx =
∞
∫
1

(
ψ(x)
x
− 1)dx

x

converges. By Lemma 2.15 the prime number theorem follows.

Suggested exercises for Section 2.5. 2.19, 2.20, 2.21.
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The explicit formulae of number theory and the Riemann
hypothesis
The proof of the prime number theorem presented in this chapter made crucial use of the fact that ζ (s)
has no zeros on the line Re(s) = 1, but when following this approach, the connection between those two
facts seems somewhat opaque and mysterious.

Another, more advanced, approach to the prime number theorem that draws a clearer conceptual
line between the location of the zeros of ζ (s) and the validity of the asymptotic formula ψ(x) ∼ x is based
on the so-called “explicit formulae of number theory.” This is the name given to a family of identities, the
simplest of which being

ψ(x) = x −∑
ρ

xρ

ρ
− log(2π) (x > 1, x noninteger). (2.53)

In this formula the sum on the right-hand side ranges over all zeros ρ of the Riemann zeta function
counted with their respective multiplicities. (In most textbooks the sum is separated into two sums, one
ranging over the trivial zeros, which can be evaluated explicitly, and the other ranging over the zeros in
the strip 0 < Re(s) < 1. Also, the sum is only conditionally convergent; refer to [47, p. 397] for the proper
way to interpret it to get a convergent sum.) Note that this is an exact identity, not an asymptotic result.
To convert it to an asymptotic result, the key observation is that each of the power terms xρ has magni-
tude xRe(ρ). Thus, knowing that Re(ρ) < 1 suggests that the term xρ is of a smaller order of magnitude
than the “principal” term x and therefore plays a negligible role in the asymptotic behavior of ψ(x). This
leads directly to the asymptotic formula ψ(x) ∼ x. (Note that this argument is incomplete, since there
are infinitely many zeros, so we would be dropping infinitely many of these terms, which requires further
justification.)

The same type of reasoning involving (2.53) also suggests that even if we had more precise bounds
on the real parts of the zeros of ζ (s), we could prove quantitative versions of the prime number theorem
with explicit error bounds. The strongest statement of this type that is believed to hold is the celebrated
Riemann hypothesis.

Conjecture 2.18 (The Riemann hypothesis). All the nontrivial zeros of ζ (s) are on the “critical line” Re(s) =
1/2.

For more details, see [25, 46, 47] and [W14].
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Exercises for Chapter 2

2.1 Prove the following properties satisfied by the Euler gamma function:
(a) Values at half-integers:

Γ(n + 1
2
) =
(2n)!
4nn!
√π (n = 0, 1, 2, . . .).

(b) The duplication formula:

Γ(s)Γ(s + 1/2) = 21−2s√πΓ(2s).
(c) The multiplication theorem: for any k ≥ 1,

Γ(s)Γ(s + 1
k
)Γ(s + 2

k
) ⋅ ⋅ ⋅ Γ(s + k − 1

k
) = (2π)(k−1)/2k1/2−ksΓ(ks).

2.2 Prove the following representation for the gamma function:

Γ(s) =
∞
∑
n=0 (−1)nn!(n + s)

+
∞
∫
1

e−xxs−1 dx (s ∈ ℂ).
2.3 For n ≥ 1, let Vn denote the volume of the unit ball in ℝn. By evaluating the

n-dimensional integral

An =∬. . .∫
ℝn

exp(− 1
2

n
∑
j=1 x2j )dx1 dx2 . . . dxn

in two ways, prove the well-known formula

Vn =
πn/2

Γ( n2 + 1)
.

Note. This problem requires applying a small amount of geometric intuition (or,
alternatively, having some technical knowledge of spherical coordinates inℝn). For
the solution, see [W15].

2.4 The beta function is a function B(s, t) of two complex variables, defined for
Re(s),Re(t) > 0 by

B(s, t) =
1

∫
0

xs−1(1 − x)t−1 dx.
(a) Show that the improper integral defining B(s, t) converges absolutely if and

only if Re(s),Re(t) > 0.
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(b) Show that B(s, t) can be expressed in terms of the gamma function as

B(s, t) = Γ(s)Γ(t)
Γ(s + t)
.

Guidance. Start by writing Γ(s)Γ(t) as a double integral on the positive quad-
rant [0,∞)2 of ℝ2 (with integration variables, say, x and y); then make the
change of variables u = x + y, v = x/(x + y) and use the change-of-variables
formula for two-dimensional integrals to show that the integral evaluates as
Γ(s + t)B(s, t).

2.5 The digamma function ψ(s) is the logarithmic derivative

ψ(s) = Γ
′(s)
Γ(s)

of the gamma function, also considered as a somewhat important special function
in its own right.
(a) Show that ψ(s) has the convergent series expansions

ψ(s) = −γ − 1
s
+
∞
∑
n=1 s

n(n + s)

= −γ +
∞
∑
n=0( 1

n + 1
−

1
n + s
) (s ̸= 0,−1,−2, . . .),

where γ is the Euler–Mascheroni constant.
(b) Equivalently, show that ψ(s) can be expressed as

ψ(s) = − lim
n→∞( n
∑
k=0 1

k + s
− log n).

(c) Show that ψ(s) satisfies the functional equation

ψ(s + 1) = ψ(s) + 1
s
(s ̸= 0,−1,−2, . . .).

(d) Show that

ψ(n + 1) = −γ +
n
∑
k=1 1k (n = 0, 1, 2, . . .).

That is, ψ(x)+ γ can be thought of as extending the definition of the harmonic
numbers Hn = ∑

n
k=1 1

k to noninteger arguments.
(e) Show that ψ(s) satisfies the reflection formula

ψ(1 − s) − ψ(s) = π cot(πs).
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(f) Here is a curious application of the digamma function. Consider the sequence
of polynomials

Pn(x) = x(x − 1) . . . (x − n) (n = 0, 1, 2, . . .)

and their derivatives

Qn(x) = P
′
n(x).

By Rolle’s theorem, Qn(x) has precisely one root in each interval (k, k + 1) for
0 ≤ k ≤ n−1. Denote this root by k+αn,k , so that the numbers αn,k (the fractional
parts of the roots of Qn(x)) are in (0, 1).
A curious phenomenon can now be observed by plotting the points αn,k , k =
0, . . . , n − 1, numerically, say for n = 50. You will see that for large n, the plot
appears to approximate a smooth limiting curve. The following precise state-
ment can be proved.

Theorem 2.19 ([56]). Let t ∈ (0, 1). Let k = k(n) be a sequence such that 0 ≤
k(n) ≤ n − 1, k(n) → ∞ as n → ∞, n − k(n) → ∞ as n → ∞, and k(n)/n → t
as n→∞. Then we have

lim
n→∞ αn,k(n) = 1π arccot( 1

π
log( 1 − t

t
)).

In the above formula, arccot(⋅) refers to the branch of the inverse cotangent
function taking values between 0 and π.

Prove Theorem 2.19 using the facts you learned about the digamma function.
2.6 Given two integrable functions f , g : ℝ → ℂ of a real variable, their convolution

is the function h = f ∗ g defined by the formula

h(x) = (f ∗ g)(x) =
∞
∫−∞ f (t)g(x − t) dt (x ∈ ℝ).

The convolution operation is extremely important in harmonic analysis, since it
corresponds to a simple multiplication operation in the Fourier domain; in prob-
ability theory, where it corresponds to the addition of independent random vari-
ables; and in many other areas of mathematics, science, and engineering.
For α > 0, define the gamma density with parameter α, denoted γα : ℝ→ ℝ, as

γα(x) =
1

Γ(α)
e−xxα−1χ[0,∞)(x) (x ∈ ℝ)

(where χA denotes the characteristic function of a set A ⊂ ℝ). Note that γα(x) is
a nonnegative function whose integral equals 1, so that it is a probability density
function.
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Show that for all α, β > 0, we have

γα ∗ γβ = γα+β,
that is, the family of density functions (γα)α>0 is closed under the convolution op-
eration. This fact is one of the reasons why the family of gamma densities plays an
important role in probability theory and appears in many real-life applications.

2.7 Show that the initial terms in the Laurent expansion of Γ(s) around s = 0 are of the
form

Γ(s) = 1
s
− γ + (γ

2

2
+
π2

12
)s + O(s2),

where γ is the Euler–Mascheroni constant.
2.8 Prove the equivalence of the two versions (2.11) and (2.13) of the functional equation

for the Riemann zeta function.
2.9 Show that the initial terms in the Laurent expansion of ζ (s) around s = 1 are of the

form

ζ (s) = 1
s − 1
+ γ + O(s − 1).

2.10 Define the function η(s) of a complex variable s by

η(s) =
∞
∑
n=1 (−1)n−1ns

= 1 − 1
2s
+

1
3s
−

1
4s
+ ⋅ ⋅ ⋅ .

This function, a close cousin of theRiemann zeta function, is knownas theDirichlet
eta function.
(a) Prove that the series defining η(s) converges uniformly on any half-plane of

the form Re(s) ≥ α withe α > 0, and conclude that η(s) is defined and holo-
morphic in the half-plane Re(s) > 0.

(b) Show that η(s) is related to the Riemann zeta function by the formula

η(s) = (1 − 21−s)ζ (s) (Re(s) > 1).
(c) Using this relation, deduce a new proof that the zeta function can be analyti-

cally continued to a meromorphic function on Re(s) > 0 that has a simple pole
at s = 1 with residue 1 and is holomorphic everywhere else in the region.

2.11 Now that you have learned about the Riemann zeta function and its properties, go
back and look at identities (1.54)–(1.55). Can youmake sense of what these formulas
claim? How do they relate to ζ (s) and to the Dirichlet eta function η(s) discussed in
Exercise 2.10?
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2.12 Show that the Taylor expansion of the digamma function ψ(s) = Γ′(s)
Γ(s) (discussed in

Exercise 2.5) around s = 1 is given by

ψ(s) = −γ +
∞
∑
n=1(−1)n−1ζ (n + 1)(s − 1)n (|s − 1| < 1),

where γ is the Euler–Mascheroni constant.
2.13 (a) Prove that for all x ≥ 1,

∏
p≤x 1

1 − 1
p

≥ log x

(where the product is over all prime numbers p ≤ x).
(b) Pass to the logarithm and deduce that for some constant K > 0, we have the

bound

∑
p≤x 1p ≥ log log x − K (x ≥ 1).

(It is also possible to show a matching upper bound of log log x + K ′ for some
constantK ′ > 0, that is, theharmonic series of primes∑p 1

p diverges as log log x,
in contrast to the usual harmonic series, which diverges as log x.)

2.14 Riemann’s contour integral representation for ζ (s). Prove another expression
for ζ (s) valid for all s ∈ ℂ:

ζ (s) = Γ(1 − s)
2πi
∫
C

(−x)s

ex − 1
dx
x
, (2.54)

where C is a keyhole contour coming from +∞ to 0 slightly above the positive
x-axis, then circling the origin in a counterclockwise direction around a circle of
small radius, and then going back to +∞ slightly below the positive x-axis.
Note. Representation (2.54) is due to Riemann, who used it in his famous 1859 pa-
per for his first proof of the analytic continuation and functional equation for his
eponymous zeta function. In the same paper, he proceeded to give a second proof
using the method described in Section 2.3. See [25, Ch. 1] for more details.

2.15 An alternative proof of the functional equation of the Jacobi theta function.
(a) Recall the definition of the Jacobi theta function θ(t) in (2.15). Use the residue

theorem to evaluate the contour integral

∮
γN

e−πz2t
e2πiz − 1

dz,

where γN is the rectanglewith vertices ±(N+1/2)±i (withN a positive integer),
then take the limit as N →∞ to derive the integral representation
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θ(t) =
∞−i
∫−∞−i e−πz2t

e2πiz − 1
dz −
∞+i
∫−∞+i e−πz2t

e2πiz − 1
dz (t > 0) (2.55)

for θ(t).
(b) In representation (2.55), expand the factor (e2πiz − 1)−1 as a geometric series in

e−2πiz (for the first integral) and as a geometric series in e2πiz (for the second
integral). Evaluate the resulting infinite series, rigorously justifying all steps,
to obtain an alternative proof of the functional equation (2.22).

2.16 Define the following arithmetic functions taking an integer argument n:

d(n) =∑
d|n 1 (the number of divisors function),

σ(n) =∑
d|n d (the sum of divisors function),

ϕ(n) = #{1 ≤ k ≤ n − 1 : gcd(k, n) = 1}

(the Euler totient function),

Λ(n) = {
log p if n = pk , p prime,
0 otherwise,

(the von Mangoldt Λ-function),

μ(n) = {
(−1)k if n = p1p2 ⋅ ⋅ ⋅ pk is a product of k distinct primes,
0 otherwise,

(the Möbius μ-function),

λ(n) = (−1)k if n = p1p2 ⋅ ⋅ ⋅ pk is a product of k primes,

(the Liouville λ-function).

We saw that the zeta function and its logarithmic derivative have the series repre-
sentations

ζ (s) =
∞
∑
n=1 n−s, − ζ ′(s)ζ (s)

=
∞
∑
n=1Λ(n)n−s.

Both these series are of the general form∞
∑
n=1 cnns

for some sequence (cn)
∞
n=1. A series of this type is called a Dirichlet series.

Prove the following additional identities (valid for Re(s) > 1) expressing various
functions related to ζ (s) as Dirichlet series:
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−ζ ′(s) = ∞∑
n=1 log n ⋅ n−s,

1
ζ (s)
=
∞
∑
n=1 μ(n)n−s,

ζ (s)
ζ (2s)
=
∞
∑
n=1μ(n)n−s,

ζ (2s)
ζ (s)
=
∞
∑
n=1 λ(n)n−s,

ζ (s)2 =
∞
∑
n=1 d(n)n−s,

ζ (s − 1)
ζ (s)
=
∞
∑
n=1ϕ(n)n−s,

ζ (s)ζ (s − 1) =
∞
∑
n=1 σ(n)n−s.

2.17 Evaluate the following infinite products:
(a) ∏p prime

p2−1
p2 =

3
4 ⋅

8
9 ⋅

24
25 ⋅

48
49 ⋅ . . . = ?

(b) ∏p prime
p2+1
p2 =

5
4 ⋅

11
9 ⋅

26
25 ⋅

50
49 ⋅ . . . = ?

(Compare with the products in Exercise 1.42.)
2.18 Show that the infinite product K := ∏p prime

p2−1
p2 whose value you computed in

Exercise 2.17 can be given the following geometric interpretation as “the fraction
of lattice points inℤ2 visible from the origin.” That is, assume that you are standing
at the origin point (0, 0) of an infinite grove of trees, positioned at the lattice points
(m, n) ∈ ℤ2 \ {(0, 0)}. These are idealized trees that have zero thickness, so you will
be able to see the tree at (m, n) from your vantage point if and only if there is no
other tree obscuring the view from some position (m/k, n/k), where k is a common
divisor ofm and n, that is, if and only ifm and n are relatively prime.
Define

KN =
#{(m, n) ∈ ℤ2 \ {(0, 0)} : |m|, |n| ≤ N , m, n are relatively prime}

#{(m, n) ∈ ℤ2 \ {(0, 0)} : |m|, |n| ≤ N}

for N ≥ 1. Prove that Kn → K as N → ∞. This gives a precise asymptotic meaning
to the above informal description of K as the fraction of lattice points visible from
the origin.

2.19 Prove the bound (2.41).
2.20 Let pn denote the nth prime number. Prove that the prime number theorem is

equivalent to the statement that

pn ∼ n log n as n→∞.
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2.21 Define a sequence of numbers (β(n))∞n=1 by
β(n) = lcm(1, 2, . . . , n),

where for integers a1, . . . , ak , lcm(a1, . . . , ak) denotes the least common multiple of
a1, . . . , ak . This natural number-theoretic sequence of integers [W16] has the num-
bers 1, 2, 6, 12, 60, 60, 420, 840, 2 520, 2 520, 27 720 as its first few values.
(a) Prove that β(n) = exp(ψ(n)), where ψ(x) = ∑pk≤x log p denotes Chebyshev’s

weighted prime counting function.
(b) Conclude using the equivalent formulation of the prime number theorem in

terms of Chebyshev’s function that

β(n) = e(1+o(1))n as n→∞.



3 Conformal mapping
Second Hypothesis: That small regions of the Earth should be displayed as similar figures in the
plane.

Leonhard Euler, “On the mapping of spherical surfaces onto the plane” (1777)

3.1 Motivation: classifying complex regions up to conformal
equivalence

As we discussed in Chapter 1, the notion of a conformal mapping is a highly appealing
geometric idea that can be explained to anyone without any requirement that they ever
heard of complex analysis, let alone understand any of the mathematics underlying it.
Anyone who can appreciate the art of M. C. Escher (see Fig. 1.2 on p. 8) will intuitively
grasp that there is something special and beautiful about conformal maps.

Conformalmaps are also an important tool in the toolkit of appliedmathematicians.
They have many applications for solving important partial differential equations that
show up in physics, engineering, and in other areas as diverse as cartography [68] and
medical imaging [37].

In this chapter, we will approach the area of conformal mapping from a purely
complex-analytic direction. We will see that this side of the theory has a beauty all
its own, which, while subtle and requiring patience and contemplation to appreciate,
equals and perhaps surpasses the more obvious aspects appreciated by art lovers and
equation solvers.

Let Ω ⊂ ℂ be a complex region. In complex analysis, we often wish to understand
the classes of functionsℋ(Ω) andℳ(Ω) of holomorphic andmeromorphic functions on
Ω, respectively. You might think that the structures of these classes of functions would
depend in some highly sensitive way on the particular choice of the region Ω. As it turns
out, this is largely untrue: although the structure of such a family does vary somewhat,
there are large families of regionsΩ forwhich the structure ofℋ(Ω) (respectively,ℳ(Ω))
is the same across all members of a given family, so that it is in practice enough to un-
derstand what is happening in one representative region of each family. Moreover, the
question ofwhich family a particular regionΩbelongs to can inmany cases be answered
using topological properties of Ω.

To make this idea precise, we define an equivalence relation on regions that cap-
tures the notion that for two regions Ω and Ω′, ℋ(Ω) and ℋ(Ω′) “have the same struc-
ture.” This relation is called biholomorphism or conformal equivalence. We say that
Ω andΩ′ are conformally equivalent if there is a bijective holomorphicmap g : Ω→ Ω′

whose inverse is also holomorphic. Such a map g is called a biholomorphism, biholo-
morphicmap, or conformalmap. Note that a conformal mapmust satisfy g′(z) ̸= 0 for

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783110796810-004
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any z ∈ Ω, by Corollary 1.58. It is trivial to check that the relation of conformal equiva-
lence is, as its name suggests, an equivalence relation.1

If Ω and Ω′ are conformally equivalent and related by a conformal map g : Ω→ Ω′,
then each holomorphic function (respectively, meromorphic function) f : Ω → ℂ can
be used to define a holomorphic (respectively, meromorphic) function f̃ : Ω′ → ℂ by

f̃ = f ∘ g−1.

It is immediate to check that the correspondence f → f̃ defines a bijection between
ℋ(Ω) and ℋ(Ω′) (respectively, between ℳ(Ω) and ℳ(Ω′)). Thus the conformal map
allows us to translate any question about holomorphic or meromorphic functions on Ω′

to a question about holomorphic or meromorphic functions on Ω. The definition of
conformal equivalence therefore captures precisely the notion of equivalence we were
interested in.

In many areas of mathematics, when we find an interesting equivalence relation,
this immediately leads to a standard set of interesting questions: how do we determine
equivalence? Can we describe all equivalence classes, or at least some particularly sim-
ple or important ones? Do there exist some canonical representatives in each of those
equivalence classes? How can we construct a map demonstrating equivalence, and to
what extent is it unique? And so on. Asking such questions for this particular equiva-
lence relation turns out to be very fruitful and is what the area of conformal mapping
is about.

Examples. Here are some regions that seem worth thinking about from the point of
view of conformal mapping, both theoretically and because they arise in applications
(for example, in the study of Laplace’s equation in mathematical physics, electrostatics,
hydrodynamics, etc):
1. the complex plane ℂ
2. the punctured plane ℂ \ {0}
3. the unit disc𝔻 = {z ∈ ℂ : |z| < 1}
4. the upper half-planeℍ = {z ∈ ℂ : Im(z) > 0}
5. the Riemann sphere2 ℂ̂ = ℂ ∪ {∞}

1 In this chapter, we use the term “conformal map” with a slightly different meaning than the sense in
which this term was used in Subsection 1.3.4. That subsection was concerned with understanding the
property of being conformal as a local property; here we develop the conceptually much richer set of
ideas related to understanding maps that are globally conformal—that is, conformal everywhere in the
local sense but also bijective. Moreover, the conformal maps from Subsection 1.3.4 were not assumed to
be orientation preserving. Here we focus on conformal maps that are holomorphic, which in particular
means that they are orientation preserving (see (1.25)).
2 The Riemann sphere is not quite a complex region in the usual sense; technically, it is a Riemann sur-
face, but we will still count it and trust that you understand how the various definitions apply in that sit-
uation; refer to Section 1.11. Actually, the same classification questions we are addressing in the context
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6. the slit plane ℂ \ (−∞, 0]
7. a strip S(x1, x2) = {z ∈ ℂ : 0 < Re(z) < 1}
8. a rectangle {z ∈ ℂ : 0 < Re(z) < 1, a < Im(z) < b}
9. an annulus A(r1, r2) = {z ∈ ℂ : r1 < |z| < r2}
10. a quadrant {z : Re(z) > 0, Im(z) > 0}
11. an ellipse {z = x + iy : ( xA )

2 + ( yB )
2 < 1}

12. the plane with an interval removed, ℂ \ [−1, 1]
13. the upper half-plane with an interval removed,ℍ \ [0, i]
14. a “blob” (Fig. 3.1)

Figure 3.1: Two blob-shaped regions. Are they conformally equivalent?

Can you guess what is the correct grouping of these regions according to conformal
equivalence? (Note: in example 9 of the annulus, we in fact have a family of regions,
which may not all be conformally equivalent to each other.) By the end of this chapter,
you will know the answers.

Since conformal maps are continuous, the relation of conformal equivalence is a
stronger notion of equivalence than topological equivalence (a. k. a. homeomorphism).
We record this obvious but important fact as a lemma.

Lemma 3.1. If regionsΩ andΩ′ are conformally equivalent, then they are homeomorphic.

Next, if regions Ω and Ω′ are conformally equivalent, with the conformal map g :
Ω → Ω′ relating them, then is g unique? If not, can the extent to which it is not unique
be made precise? The answer to these questions is described in terms of the automor-
phism group of a complex region. More precisely, if g̃ : Ω → Ω′ is another conformal
map, then the map h : Ω→ Ω defined by

h = g−1 ∘ g̃

of conformal equivalence apply more generally in the theory of Riemann surfaces. We will encounter
an interesting example of the classification of a class of Riemann surfaces up to conformal equivalence
in Chapters 4 and 5; see Sections 4.15, 5.5, and 5.11.
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is a conformal equivalence map between Ω and itself. We call such a map a (conformal)
automorphism of Ω. Conversely, if g : Ω → Ω′ is a conformal map and h : Ω → Ω is a
conformal automorphism, then g̃ : Ω→ Ω′ defined by

g̃ = g ∘ h

is also a conformal map from Ω to Ω′, and clearly every conformal map g̃ : Ω → Ω′

can be represented in such a way for some automorphism h : Ω → Ω (just define h
as above). Thus the family of automorphisms of Ω precisely measures the extent of the
nonuniqueness of the conformal map g : Ω → Ω′ for any Ω′ that is conformally equiv-
alent to Ω. This family has the algebraic structure of a group, with the group operation
being composition of maps, and is thus referred to as the automorphism group of Ω. We
denote this group by Aut(Ω). We will seek to give explicit descriptions of automorphism
groups whenever this is possible.

To conclude this general discussion, we note one additional useful fact about con-
formal maps.

Lemma 3.2. In the definition of conformal equivalence, the condition that g−1 is holo-
morphic can be dropped, that is, if g : Ω → Ω′ is holomorphic and bijective, then g−1 is
automatically holomorphic.

Proof. Since g satisfies g′(z0) ̸= 0 for any z0 ∈ Ω, the inverse function theorem (Theo-
rem 1.56) implies that the inverse map g−1 exists locally in a neighborhood of g(z0) as a
holomorphic function for any z0 ∈ Ω. Since g is a bijection, the inverse function exists
globally (in the sense of set theory) as a function g−1 : Ω′ → Ω. The fact that g−1 is locally
holomorphic implies that the global inverse function g−1 is holomorphic, which is the
claim of the lemma.

In the next few sections, we begin to classify some of the main conformal equiva-
lence classes that every complex analyst should be familiar with. The most important
classification result in this chapter is the Riemann mapping theorem, which is formu-
lated in Section 3.4.

Suggested exercises for Section 3.1. 3.1.

3.2 First singleton conformal equivalence class: the complex plane
The first conformal equivalence class we discuss contains just a single element, the com-
plex plane. This is explained by the following theorem.

Theorem 3.3. Let g : ℂ→ Ω be a conformal map betweenℂ and a region Ω. Then Ω = ℂ,
g(z) is a conformal automorphism, and g(z) has the form

g(z) = az + b

for some complex numbers a, b with a ̸= 0.
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Proof. Let g : ℂ→ Ω be a conformal equivalence map. We will prove that g(z) is of the
form g(z) = az + b with a ̸= 0 just based on the assumption that it is an entire function
and that it is injective; the additional claims that Ω = ℂ and g(z) is an automorphism
will then follow.

Since g(z) is an entire function, it is either a polynomial, or it is not. We treat each
of those two cases separately (proving that g(z) is of the desired form in the first case
and proving that the second case cannot occur).

If g(z) is a polynomial, it cannot be a constant since those certainly are not injective
maps. We claim that it also cannot be a polynomial of degree k ≥ 2, which if true would
leave only the option of a linear function g(z) = az + b with a ̸= 0. The fact that poly-
nomials of degree higher than 1 are not injective is easy to see: a polynomial of degree
k has k roots counting with multiplicity, which means that either there are at least two
distinct zeros (contradicting the assumption of injectivity), or there is a single zero of
multiplicity k, which means that the polynomial is of the form g(z) = c(z − a)k . This
polynomial is clearly also not injective since in that case the equation g(z) = 1 has k
distinct solutions.

It remains to consider the other possibility of an entire function that is not a poly-
nomial. In that scenario, we claim that g(z) has an essential singularity at z = ∞. For
otherwise, by our classification of singularities (Section 1.12), g(z) must have a pole of
some order k at infinity. However, having such a pole implies that the rate of growth
of |g(z)| is restricted by the order of the pole; specifically, g(z) satisfies a bound of the
form |g(z)| ≤ A + B|z|k for all z, where A and B are positive real constants. Now a well-
known argument frombasic complex analysis (Exercise 1.25) implies that g(z) is actually
a polynomial of degree at most k, which is a contradiction.

We are now in a good position to apply the Casorati–Weierstrass theorem (Theo-
rem 1.46) about the behavior of functions near an essential singularity. Denote w0 =
g(0). Since g(z) is an open mapping by the open mapping theorem (Theorem 1.50), the
image g(𝔻) of the unit disc under g(z) contains an open neighborhood E of w0. But by
the Casorati–Weierstrass theorem the image g(ℂ \ D≤R(0)) of the complement of any
closed disc around 0 (i. e., any neighborhood of∞) is dense in ℂ and therefore has a
nonempty intersection with E. This intersection means that there exist points z1 ∈ 𝔻
and z2 ∈ ℂ \ DR(0) for which

g(z1) = g(z2).

Now if R > 1, then z1 ̸= z2. We have therefore shown that g(z) is not injective, which
contradicts our initial assumption. Thus the scenario of a conformal map on ℂ that is
not a polynomial is impossible, and the proof is complete.

By Theorem 3.3 the group of conformal automorphisms of ℂ is

Aut(ℂ) = {z → az + b : a, b ∈ ℂ, a ̸= 0}.
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3.3 Second singleton conformal equivalence class: the Riemann
sphere

There is a second conformal equivalence class that is a singleton, the Riemann sphere.
The following result is the analogue of Theorem 3.3 for ℂ̂.

Theorem 3.4. If g : ℂ̂ → Ω is a conformal map between ℂ̂ and a region Ω, then Ω = ℂ̂,
g(z) is a conformal automorphism, and g(z) has the form

g(z) = az + b
cz + d

(3.1)

for some complex numbers a, b, c, d with ad − bc ̸= 0.

Proof of Theorem 3.4. We start by proving that Ω = ℂ̂. Assume that this is not the case,
i. e., that there is at least one point w ∈ ℂ̂ that is not in the image g(ℂ̂). We can assume
without loss of generality that w = ∞; otherwise, replace the map g(z) with g̃(z) =

1
g(z)−w . Once g̃(z) is shown to be of the desired form (3.1), solving the equation g̃(z) =

1
g(z)−w for g(z) shows that g(z) is of that form as well.

Since g(z) does not take the value∞, it also cannot approach infinity, that is, there
does not exist a sequence (zn)

∞
n=1 of points in ℂ̂ for which g(zn)→∞. If such a sequence

existed, we could use the fact that ℂ̂ is compact to extract a convergent subsequence
znk → Z ∈ ℂ̂, whence it would follow, since g(z) is a continuous function, that g(Z) =∞,
which cannot happen since∞ is not in the image of g(z).

The fact that g(z)does not approach∞means simply that g(z) is a bounded function
and a holomorphic one at that (our a priori assumption that allows Ω to contain the
point∞ only means it is meromorphic). Thus it is a bounded entire function and hence
constant by Liouville’s theorem, a contradiction.

Having established that Ω = ℂ̂, we now know that g(z) is a genuine automorphism
of ℂ̂. Denote w = g(∞). Once again, we can assume without loss of generality that w =
∞; otherwise, replace themap g(z)with g̃(z) = 1

g(z)−w as before. Under this assumption,
the restriction of g(z) toℂ is a conformal automorphism ofℂ, so from the discussion in
the previous section we know that g(z) is of the form az+b for some a, b ∈ ℂ, a ̸= 0.

By Theorem 3.4 the group of conformal automorphisms of ℂ̂ is

Aut(ℂ̂) = {z → az + b
cz + d
: a, b, c, d ∈ ℂ, ad − bc ̸= 0}. (3.2)

The elements of this group are known asMöbius transformations. An important and
easy-to-check property of such transformations is that they act as 2 × 2 linear transfor-
mations; more precisely, given two Möbius transformations

T1(z) =
a1z + b1
c1z + d1

and T2(z) =
a2z + b2
c2z + d2

, (3.3)
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their composition is given by

(T1 ∘ T2)(z) =
αz + β
γz + δ
, (3.4)

where α, β, γ, δ are the entries of the matrix

(
α β
γ δ
) = (

a1 b1
c1 d1
)(

a2 b2
c2 d2
) . (3.5)

For this reason, Möbius transformations are also known as fractional linear transfor-
mations.

The group (3.2) is also sometimes referred to as the projective linear group (of
order 2 over the complex numbers) and denoted PSL(2,ℂ). The reason for this termi-
nology is as follows. If we define the special linear group (of order 2 over the complex
numbers) by

SL(2,ℂ) = {(a b
c d
) : a, b, c, d ∈ ℂ, ad − bc = 1} ,

then we can easily check that the association mapping a matrix ( a b
c d ) ∈ SL(2,ℂ) to the

Möbius transformation z → az+b
cz+d is a surjective group homomorphism, which has the

subgroup {±( 1 00 1 )} as its kernel. Thus, by the first isomorphism theorem in group theory,
the group Aut(ℂ̂) can be identified with the quotient group

SL(2,ℂ)/{±( 1 00 1 )}.

The quotienting operation in this context is often referred to as projectivization, which
leads to the name projective linear group both for the quotient group and the occasional
use of the same name and notation for the group of Möbius transformations.

The group PSL(2,ℂ) is an important group inmathematics and even has interesting
connections to physics; see the box overleaf.

Suggested exercises for Section 3.3. 3.2.

3.4 The Riemann mapping theorem

We have seen two conformal equivalence classes consisting of a single element each.
Obviously, if all other equivalence classes were also singletons, the situation would be
extremely boring, and the notion of conformal equivalence would not even deserve its
own name. It is easy to see however that the true situation is, at least, more complicated
than this simplistic scenario (see Exercise 3.3).
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The group PSL(2,ℂ) and the night sky of a relativistically
moving observer
Suppose you get into a spaceship and speed away from Earth, reaching a velocity of αc, where c is the
speed of light, and the fraction α is substantial (say, higher than 5%). We know from science fiction
movies that your view of the stars as you peer through the spaceship window will appear distorted. But
how, exactly? This problem has a delightful connection to complex analysis and the automorphism group
PSL(2,ℂ) of the Riemann sphere. In fact, your view of the celestial sphere of stars gets transformed by a
Möbius transformation acting on the celestial sphere precisely as if it were the Riemann sphere.

Mathematically, the connection is roughly as follows: it is well known from the theory of special
relativity that an observer moving at relativistic velocity v relative to the Earth (which for the sake of
discussion we assume is an inertial frame of reference) will have their time and space coordinates trans-
formed from the Earth’s time and space coordinate system according to a type of linear transformation
known as a proper, orthochronous Lorentz transformation. The group of such transformations can be
represented as the group of 4 × 4 real matrices

L↑+ = {T ∈ Mat4×4(ℝ) : det(T) = 1, T1,1 < 0, T
⊤XT = X},

where X is the 4× 4 diagonal matrix with diagonal entries −1, 1, 1, 1. In fact, it can be shown that L↑+ is iso-
morphic to PSL(2,ℂ) and that the isomorphism ρ : L↑+ → PSL(2,ℂ) is such that for the moving observer
with a given associated Lorentz transformation T , the distortion of themoving observer’s celestial sphere
relative to the celestial sphere of the static frame of reference is described precisely by the Möbius trans-
formation ρ(T), under the obvious identification between the celestial sphere and the Riemann sphere.
See [53, Appendix B] and [55, Ch. 1] for the details of this surprising result.

On this optimistic note, it looks like there ought to be some interesting phenomena
for us to explore. This brings us to one of the most fundamental results on conformal
mapping, the Riemann mapping theorem, which identifies the first nontrivial confor-
mal equivalence class and the one that undoubtedly plays the most central role in com-
plex analysis.

Theorem 3.5 (Riemann mapping theorem: simple version). Let Ω,Ω′ ⊂ ℂ be simply con-
nected complex regions with Ω,Ω′ ̸= ℂ. Then Ω and Ω′ are conformally equivalent.

As an immediate corollary, we get an interesting result in topology, an illustration of
the principle that the often symbiotic relationship between complex analysis and topol-
ogy involves a flow of ideas in both directions.

Corollary 3.6. Any two simply connected regions in the plane are homeomorphic.

This well-known result can also be proved without the use of complex analysis.
See [W17] for a related discussion.

To prove Theorem 3.5, we will need to develop some new theoretical ideas (which
are also interesting in their own right and are of broader applicability). A more precise
version of the theorem is stated in Section 3.7.

Tangentially to that effort, we also wish to understand the structure of the auto-
morphism groups Aut(Ω) for regions Ω belonging to the conformal equivalence class
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described by the theorem. By Exercise 3.1 all such groups are isomorphic in such a way
that the isomorphism between any two can be described in terms of conformal equiv-
alence maps g : Ω → Ω′ relating different class members. Thus, to understand the
automorphism groups, it is in fact sufficient to classify the automorphisms for just one
representative member of the class. There are two fairly canonical choices for such a
member, the unit disc𝔻 and the upper half-planeℍ (and those two are easy to relate to
each other, though doing so is still interesting). We discuss these regions in the next two
sections.

Suggested exercises for Section 3.4. 3.3.

3.5 The unit disc and its automorphisms

The next result, known as the Schwarz lemma, is a simple yet powerful result about
holomorphic functions from the unit disc to itself that keep the origin fixed. It is an
important tool on the path to characterizing the automorphisms of the unit disc.

If g : 𝔻 → 𝔻, then we say that g(z) is a rotation map, or simply a rotation, if it is
of the form g(z) = eiθz for some θ ∈ [0, 2π).

Lemma 3.7 (The Schwarz lemma). Let g : 𝔻→ 𝔻 be a holomorphic function that satisfies
g(0) = 0. Then:
1. |g(z)| ≤ |z| for all z ∈ 𝔻.
2. If |g(z)| = |z| for some z ̸= 0, then g(z) is a rotation.
3. |g′(0)| ≤ 1.
4. If |g′(0)| = 1, then g(z) is a rotation.

Proof. Since g(z) has a zero at z = 0, we know that it satisfies |g(z)| ≤ C|z| for some
C > 0 and all z in some neighborhood of 0. This is a weaker inequality than the one we
are trying to prove, but in fact it is a helpful observation, as it can be restated as the
claim that h(z) = g(z)/z satisfies |h(z)| ≤ C for all z ∈ 𝔻 \ {0}; that is, h(z) is bounded in a
puncturedneighborhoodof 0 andof course holomorphic there. ByRiemann’s removable
singularity theorem (Theorem 1.38), h(z) therefore has a removable singularity at 0 and
can be extended to a holomorphic function on all of 𝔻 (which we still denote h(z), as
per the usual convention when talking about analytic continuation). Now let z ∈ 𝔻 \
{0}, and let r be a real number with |z| < r < 1. By the maximum modulus principle
(Theorem 1.51) the maximum modulus of h(z) in the closed disc of radius r around 0 is
attained at the boundary of that disc. Therefore we have that



g(z)
z


= h(z)
 ≤ max|w|≤r

h(w)
 ≤ max0≤t<2π

h(re
it) = max0≤t<2π

|g(reit)|
r
≤
1
r
.

(In the last step, we used the fact that g(z)maps𝔻 into itself, so |g(w)| ≤ 1 for allw ∈ 𝔻.)
Since this is true for all |z| < r < 1, we then have that
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g(z)
z


≤ inf
|z|<r<1

1
r
= 1,

that is, |g(z)| ≤ |z|, which was the first claim of the lemma. Now claim 3 also fol-
lows by taking an additional limit of these inequalities as z → 0, since |g′(0)| =
| limz→0

g(z)−g(0)
z | = limz→0 |

g(z)
z |.

Now, for the claim 2, note that an equality for some z ∈ 𝔻 in the bound |h(z)| ≤ 1
means that |h(z)| attains its maximal value in the interior of the disc. By the condition
for equality in the maximum modulus principle, h(z) must be a constant, which is of
unit magnitude (since we know that |h(z)| = 1 for some z). That is, we have shown that
h(z) ≡ eiθ for some θ or, equivalently, that g(z) is a rotation, giving claim 2.

Similarly, for the fourth claim, if 1 = |g′(0)| = limz→0 |
g(z)
z | = limz→0 |h(z)| = |h(0)|,

then again we see that |h(z)| attains its maximum value in the interior of the disc (in this
case at z = 0) and infer using the same argument as above that g(z) is a rotation.

Corollary 3.8 (Automorphisms of the unit disc that fix 0). The automorphisms g : 𝔻→ 𝔻
of the unit disc that fix 0 (that is, satisfy g(0) = 0) are precisely the rotations.

Proof. Obviously, a rotation is a conformal automorphism of𝔻 that fixes 0. Conversely,
let g : 𝔻 → 𝔻 be an automorphism that fixes 0. Then both g(z) and its inverse func-
tion g−1(z) satisfy the assumptions of the Schwarz lemma. It follows that |g(z)| ≤ z and
|g−1(w)| ≤ w for all z,w ∈ 𝔻; or, setting w = g(z) for an arbitrary z ∈ 𝔻 in the second
inequality,

g(z)
 ≤ z and |z| ≤

g(z)
 ⇒

g(z)
 = |z|

for all z ∈ 𝔻. By part 2 of the Schwarz lemma, g(z) is a rotation.

We can now exhibit a more general two-parameter family of automorphisms of𝔻,
which are obtained by composing rotationswith an additional family of automorphisms
that do not fix 0. As a first step, for w ∈ 𝔻, we define the Möbius transformation

φw(z) =
w − z
1 − wz
. (3.6)

Lemma 3.9. The transformation φw is an automorphism of 𝔻. Moreover, it has the fol-
lowing properties: (a) φw(0) = w; (b) φw(w) = 0; (c) φ

−1
w = φw.

Proof. Properties (a)–(c) are trivial to check through a direct calculation, which I leave
as an exercise. For the claim that φw is an automorphism, note that if |z| = 1, then

φw(z)
 =
|w − z|
|1 − wz|

=
|w − z|
|1 − wz| ⋅ |z|

=
|w − z|
|z − wzz|

=
|w − z|
|z − w|
= 1.

Thus φw maps the unit circle into itself. It is also injective (as a meromorphic function
on ℂ) since it is a Möbius transformation. Therefore either φmaps the unit disc𝔻 into
itself and maps the complement �̃� = {|z| > 1} of the closed unit disc into itself, or φw
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maps 𝔻 into �̃� and maps �̃� into 𝔻. However, we know that φw(0) = w and w ∈ 𝔻, so
that rules out the latter possibility. Finally, since we have established that φw(𝔻) ⊂ 𝔻,
and we know that φ−1w = φw, the mapping of 𝔻 into itself by φ is bijective, and φw is a
conformal equivalence.

The composition of an arbitrary member of the family of rotations (specified by a
real-valued parameter θ ∈ [0, 2π)) and an arbitrary member of the family φw, specified
by the point w ∈ 𝔻, is a map of the form

z → eiθ w − z
1 − wz
.

It turns out that all automorphisms of the unit disc are of this form. This is the well-
known characterization of the automorphism group Aut(𝔻), given in the following the-
orem.

Theorem 3.10 (Automorphisms of the unit disc). A function g : 𝔻 → 𝔻 is an automor-
phism of𝔻 if and only if it is of the form

g(z) = eiθ w − z
1 − wz

(3.7)

for some θ ∈ [0, 2π) and w ∈ 𝔻. The pair (θ,w) in this representation is unique.

Proof. The “if” part was already explained above. To prove the “only if” claim, let g :
𝔻 → 𝔻 be an automorphism. Denote w = g−1(0) ∈ 𝔻, and let h = g ∘ φw. As the
composition of two automorphisms of 𝔻, h(z) is itself an automorphism of 𝔻. It also
leaves z = 0 fixed. By Corollary 3.8 it is a rotation and can be expressed as h(z) = eiθz for
some θ ∈ [0, 2π). Therefore g(z) = (h ∘ φw)(z) is of the desired form (3.7).

For the uniqueness claim, note that (3.7) implies that w = g−1(0), which determines
w uniquely for a given automorphism g. Now ifw ̸= 0, then we have g(0) = eiθw, which
can be written as eiθ = g(0)/w, and thus θ is also determined uniquely from the map g.
In the second case where w = 0, we are back to the scenario of an automorphism that
fixes 0, which we have seen must be a rotation g(z) = eiθz, with θ again clearly being
uniquely determined.

An alternative, but less frequently used, characterization of the automorphisms of
the unit disc is given in the next result. The proof is left as an exercise (Exercise 3.4).

Theorem 3.11 (Automorphisms of the unit disc: alternative representation). A function g :
𝔻→ 𝔻 is an automorphism of𝔻 if and only if it is of the form

g(z) = μz + ν
νz + μ

(3.8)

for some μ, ν ∈ ℂ satisfying |μ|2 − |ν|2 = 1. The pair (μ, ν) is unique.
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The explicit description of the automorphisms of 𝔻 in terms of the representa-
tions (3.7)–(3.8), involving formulas that one rarely encounters outside of complex anal-
ysis, masks the fact that the group of such automorphisms bears a close relationship
with a standard matrix group you may be familiar with from linear algebra, the theory
of Lie groups, topology, and other areas. As we will see in the next section, the connec-
tion becomes apparent when we switch from the unit disc to its “conformal sibling,” the
upper half-plane.

Suggested exercises for Section 3.5. 3.4.

3.6 The upper half-plane and its automorphisms

Lemma 3.12. The unit disc𝔻 and the upper half-planeℍ are conformally equivalent. The
pair of maps Φ : ℍ→ 𝔻 and Ψ : 𝔻→ ℍ given by

Φ(z) = z − i
z + i

and Ψ(z) = −i z + 1
z − 1

(3.9)

give an explicit pair ofmutually inverse conformalmapsmapping each of the regions onto
the other.

Proof. Note that if z = x + iy, then |Φ(z)|2 = |z−i|
2

|z+i|2 =
x2+(y−1)2

x2+(y+1)2 , which is < 1 if and only if
Im(z) = y > 0 (the geometric meaning of this statement is simply that Φ(z) is the ratio
of the distances of z to i and −i, and the upper half-plane is precisely the locus of points
that are closer to i than to −i). Thus Φ mapsℍ into𝔻 and the complement ofℍ into the
complement of 𝔻. Since we know that Φ is a conformal map when regarded as a map
from ℂ̂ to itself, this is enough to imply that it mapsℍ surjectively and conformally onto
𝔻. Finally, it is trivial to verify by direct calculation that the inverse map to Φ(z) is given
by the formula defining Ψ(z).

Theorem 3.13 (Conformal automorphisms of the upper half-plane). A function g : ℍ →
ℍ is a conformal automorphism if and only if it is of the form

g(z) = az + b
cz + d

(3.10)

for real numbers a, b, c, d satisfying ad − bc = 1. The numbers a, b, c, d in this representa-
tion are unique up to a single choice of sign, in the sense that if a, b, c, d and a′, b′, c′, d′

are coefficients in two distinct representations, then (a′, b′, c′, d′) = ±(a, b, c, d).

Proof. “If”: assume that g(z) has the stated form (3.10) with a, b, c, d real and ad−bc = 1.
As we already know from Theorem 3.4, g(z) is a conformal automorphism of ℂ. More-
over, since a, b, c, d ∈ ℝ, we have
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Im(az + b
cz + d
) = Im( (az + b)(cz + d)

|cz + d|2
)

=
1
|cz + d|2

Im(ac|z|2 + bd + adz + bcz) = ad − bc
|cz + d|2

Im(z). (3.11)

This immediately implies that Im(g(z)) > 0 if and only if Im(z) > 0, that is, g is an
automorphism ofℍ.

“Only if”: assume that g ∈ Aut(ℍ). Then f = Φ ∘ g ∘ Ψ is an automorphism of the
unit disc, where Φ and Ψ are given in (3.9). By Theorem 3.11, f can be expressed as

f (z) = μz + ν
νz + μ

for some μ, ν ∈ ℂ with |μ|2 − |ν|2 = 1. To calculate what this means for g = Ψ ∘ f ∘ Φ, we
switch to the notation of matrix multiplication, which, as we know from (3.3)–(3.5), is
a way to represent the action of Möbius transformations. The matrices associated with
the action of Φ, Ψ, and f are

Φ = (1 −i
1 i
) , Ψ = (−i −i

1 −1
) , f = (μ ν

ν μ
) .

Therefore the map Ψ ∘ f ∘ Φ is represented by the matrix product

ΨfΦ = (−i −i
1 −1
)(

μ ν
ν μ
)(

1 −i
1 i
) .

More explicitly, if we denote μ = x + iy and ν = u + iv to represent μ, ν in terms of their
real and imaginary parts, then this matrix product is

ΨfΦ = (−i −i
1 −1
)(

x + iy u + iv
u − iv x − iy

)(
1 −i
1 i
)

= 2i(−x − u −y + v
y + v −x + u

) =: 2i(a b
c d
) .

Thenumbersa, b, c, d thus definedare real, andmoreover it is easy to check thatad−bc =
1 (hint: determinants). Note that the scalar factor 2imultiplying the matrix is irrelevant
when we go back to considering g as a Möbius transformation instead of a matrix, that
is, we see that g(z) is indeed of the form az+b

cz+d with a, b, c, d as claimed in the theorem.

The automorphism group

Aut(ℍ) = {z → az + b
cz + d
: a, b, c, d ∈ ℝ, ad − bc = 1}

is known as the projective special linear group (of order 2 over the real numbers)
and sometimes denoted PSL(2,ℝ). By the natural association between 2×2 matrices and
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Möbius transformations discussed in Section 3.3, it can be identified with the quotient
group

SL(2,ℝ)/{±I},

where SL(2,ℝ) is the special linear group of order 2 overℝ (the group of invertible 2× 2
realmatriceswith determinant 1), and {±I} is its subgroupwith two elements containing
the identity matrix and its negation.

3.7 The Riemann mapping theorem: a more precise formulation
We formulated in Section 3.4 a version of the Riemann mapping theorem that identi-
fies an interesting conformal equivalence class of complex regions. Conceptually, this is
what I regard as themain content of the theorem. Note that this formulation is carefully
“neutral” in the sense of not singling out any member of the equivalence class as being
more important or worthy of attention than others. However, in practice, we already
discussed the fact that the unit disc and upper half-plane are each in their own way
somewhat canonical members of the class. By contrast, other member regions such as,
say, the unit square, seldom play a particularly important role in the theory, although
from a purely geometric point of view, theymay be just as natural, and theymay appear
in specific applications.

Furthermore, as we inch our way toward a proof of the theorem, it does in fact
become convenient to fix a specific member of the class—the unit disc—as the target
region for the conformal maps we will construct. Another small conceptual advance
is to add more information about the conformal map mapping a given region Ω to 𝔻
so as to ensure uniqueness. This leads us to the following more detailed version of the
theorem.

Theorem 3.14 (Riemann mapping theorem: detailed version). Let Ω ⊂ ℂ be a simply con-
nected complex region with Ω ̸= ℂ, and let z0 ∈ Ω. Then there exists a unique biholomor-
phism F : Ω→ 𝔻 with the property that
1. F(z0) = 0
2. F′(z0) is a positive real number.

Proof of uniqueness. Let F1 and F2 be two biholomorphisms with the properties de-
scribed in the theorem. Then the conformal map Φ = F2 ∘ F

−1
1 is an automorphism of𝔻

that fixes 0, so by Corollary 3.8 it is a rotation, that is, of the form Φ(z) = az for some a
with |a| = 1. On the other hand, the constant a can be expressed as

a = Φ′(0) = F′2(F
−1
1 (0))(F

−1
1 )
′
(0) =

F′2(z0)
F′1(z0)
,

which shows that it is a positive real number. It follows that a = 1 and Φ(z) ≡ z, that is,
F1 ≡ F2.
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The history of the Riemann mapping theorem
The Riemann mapping theorem was formulated by the great Bernhard Riemann in 1851 as part of his
PhD thesis. Riemann stated the result for regions with a piecewise smooth boundary and gave a proof
that contained useful ideas but was later realized to be flawed. Later nineteenth-century mathematicians
worked hard to fill in the gaps in Riemann’s argument, with varying levels of success. The first proof con-
sidered to be fully correct by modern standards was given by Osgood in 1900. Osgood’s proof, like others
before it, relied on the “potential-theoretic” approach (related to Dirichlet’s principle and the study of
Laplace’s equation) advocated by Riemann rather than on ideas of a more conceptually complex-analytic
nature. This approach, while interesting, has since fallen out of fashion as an approach to proving the
Riemann mapping theorem because of various technical shortcomings it has.

The proof of the theoremwe present in Sections 3.8–3.9 is described inWalsh’s historical survey [72]
as the “standard modern proof.” You will find it described in most complex analysis textbooks, as it ap-
pears to be the simplest proof known today. For additional details on the interesting history of Riemann’s
famous theorem and the ideas developed out of it, see the historical reviews [33, 72].

The more difficult part of Theorem 3.14 is the existence claim. As we will see, the
key insight needed for the proof is that the problem of mapping Ω conformally to𝔻 can
be formulated as a maximization problem for a certain functional. Specifically, in the
classℱ consisting of all the injectivemaps from Ω into𝔻 that map z0 to 0 and for which
F′(z0) is a positive real number, we will see that the one map that is also surjective (and
thus establishes the required conformal equivalence of Ω to 𝔻) is the one for which
the number F′(z0) is maximal. This will be shown in a somewhat constructive way by
arguing that if F(z) is not surjective, then we can exploit the point that is “missing” from
the image to produce a new conformal map G : Ω → 𝔻 with a larger value of G′(z0).
Although the basic idea of how this is done is fairly simple (see Lemma 3.21), there are a
few technical issues that need to be addressed to turn it into a complete proof, namely
showing that the classℱ is nonempty, that the functional F → F′(z0) attains amaximum,
and so on. The details are given in the next two sections.

3.8 Proof of the Riemann mapping theorem, part I: technical
background

In this section, we prove a few auxiliary results needed for the proof of the Riemann
mapping theorem. Two of the results, Montel’s and Hurwitz’s theorems, are theorems
in complex analysis. The third, the Arzelà–Ascoli theorem, is a theorem in real analysis.

Let ℱ be a family of complex-valued continuous functions on a complex region Ω.
We say that ℱ is locally uniformly bounded if for any compact set K ⊂ Ω, we have

sup
f ∈ℱ , z∈K

f (z)
 <∞. (3.12)

We say that ℱ is locally uniformly equicontinuous if for any compact K ⊂ Ω and any
ε > 0, there exists δ > 0 such that
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if z1, z2 ∈ K and |z1 − z2| < δ, then sup
f ∈ℱ

f (z1) − f (z2)
 < ε. (3.13)

The following is a version of the well-known Arzelà–Ascoli theorem, a staple of real
and functional analysis, slightly adapted to our setting.

Theorem 3.15 (Arzelà–Ascoli theorem). Let ℱ be a family of continuous complex-valued
functions on Ω. Assume that the family is locally uniformly equicontinuous and locally
uniformly bounded. Then any sequence (fn)

∞
n=1 of functions inℱ has a subsequence (fnk )

∞
k=1

that converges uniformly on compacts in Ω to some continuous function f .

Proof. Let Q = (zm)
∞
m=1 be a dense countable set of points in Ω (ordered as a sequence

according to some arbitrary enumeration). The sequence (fn(z1))
∞
n=1 is a sequence of

complex numbers taking values in a compact set {|z| ≤ M1}, where we denote M1 =
supf ∈ℱ |f (z1)| < ∞ (guaranteed to be finite by (3.12)). By compactness this sequence
therefore has a convergent sequence, which we denote by (f (1)n (z1))

∞
n=1 (instead of the

more traditional subsequence notation fnk (z1)). That is, f
(1)
n is the notation for the nth

function in the extracted subsequence of the original sequence of functions (fn(z))n.
Nowweextract a further subsequence of this subsequence, noting that the sequence

(f (1)n (z2))
∞
n=1 is a sequence of complex numbers taking values in a compact set {|z| ≤ M2},

where

M2 = sup
f ∈ℱ , z∈{z1 ,z2}

f (z)
.

(Again, the local uniform boundedness assumption guarantees that M2 < ∞.) So
again by compactness, this sequence has a convergent sequence, which we denote
by (f (2)n (z1))

∞
n=1.

Continuing in this way, we proceed to successively extract nested subsequences
(f (3)n )
∞
n=1, (f

(4)
n )
∞
n=1, . . . of the original sequence of functions, where each subsequence is

extracted as a further subsequence of the previous one. These subsequences have the
property that for each j ≥ 1, the jth sequence (f (j)n )∞n=1 is a subsequence of the original
sequence (fn)n for which f

(j)
n (zm) converges to a limit as n→∞ form = 1, 2, . . . , j.

Now consider the “diagonal” sequence in this nested sequence of subsequences:
we let gn = f

(n)
n . Then (gn)

∞
n=1 is a subsequence of (fn)n with the property that gn(zm)

converges to a limit as n→∞ for all m ≥ 1.
We claim that the sequence of functions (gn(z))

∞
n=1 converges uniformly on compacts

in Ω. Let K ⊂ Ω be compact, and let ε > 0. Let δ > 0 be a number, guaranteed to exist by
the assumption of local uniform equicontinuity, with the property that

if z1, z2 ∈ K and |z1 − z2| < δ, then sup
f ∈ℱ

f (z1) − f (z2)
 <

ε
3
.

(Compare with (3.13): we merely replaced ε there with ε/3, with the usual goal in
mind that some other bound later will end up smaller than ε.) The containment
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K ⊂ ∪ξ∈KDδ/2(ξ) gives an open covering of K , which by compactness has a finite sub-
covering (Dδ/2(ξj))

q
j=1. Select a point zνj of the countable dense set Q from each of the

subcovering discs Dδ/2(ξj). For any 1 ≤ j ≤ q, (gk(zνj ))
∞
k=1 is a convergent sequence or,

equivalently, is a Cauchy sequence; therefore there exists an index Nj ≥ 1 such that

gℓ(zνj ) − gk(zνj )
 <

ε
3

whenever k, ℓ ≥ Nj . Set N = max(N1,N2, . . . ,Nq). Then for any w ∈ K , we have that
w ∈ Dδ/2(ξj) ⊂ Dδ(zνj ) for some 1 ≤ j ≤ q. It follows that, for k, ℓ ≥ N ,

gℓ(w) − gk(w)
 ≤
gℓ(w) − gℓ(zνj )

 +
gℓ(zνj ) − gk(zνj )



+ gk(zνj ) − gk(w)
 <

ε
3
+
ε
3
+
ε
3
= ε.

This establishes that (gk(z))
∞
k=1 is a Cauchy sequence uniformly on K and hence (by a

standard fact from real analysis) converges uniformly on K . The compact K was arbi-
trary, so we proved the existence of a subsequence that converges uniformly on com-
pacts; the fact that the limiting function must be continuous is standard, and the proof
of the theorem is complete.

Returning to the realm of complex analysis, we now introduce the concept of a nor-
mal family of functions. Let Ω be a complex region as before. A family ℱ of holomor-
phic functions on Ω is called normal, or a normal family, if every sequence (fn)

∞
n=1 in

the family has a subsequence (fnk )
∞
k=1 such that fnk converges uniformly on compacts to

a holomorphic function g.

Theorem 3.16 (Montel’s theorem). Letℱ be a family of holomorphic functions on a region
Ω that is locally uniformly bounded. Then ℱ is a normal family.

Proof. We claim that the added assumption of holomorphicity of the members of ℱ ,
together with local uniform boundedness, implies that the family is uniformly locally
equicontinuous. Once we show this, the Arzelà–Ascoli theorem will imply that every
sequence (Fn)

∞
n=1 of elements in the family has a subsequence Fnk that converges uni-

formly on compacts to a limiting function F . Then it would follow that F is holomorphic
by standard properties of uniform convergence on compacts (Theorem 1.39 on p. 45),
and we would be done.

We start by showing aweaker version of the required property that does not include
uniformity over compact subsets. Fix a point a ∈ Ω and a radius ρ > 0 such thatD2ρ(a) ⊂
Ω. Later we will need to emphasize the dependence of ρ on a, so we will then denote it
by ρ(a). If z1, z2 ∈ Dρ(a), then by Cauchy’s integral formula we have, uniformly over all
f ∈ ℱ ,

f (z1) − f (z2)
 =


1
2πi
∮
|w−a|=2ρ

f (w)( 1
w − z1
−

1
w − z2
) dw
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=


z1 − z2
2πi

∮
|w−a|=2ρ

f (w)
(w − z1)(w − z2)

dw


≤
1
2π
|z1 − z2| ⋅ sup

|w−a|=2ρ

f (w)
 ⋅ 2π(2ρ)

1
ρ2
≤
2M
ρ
|z1 − z2|, (3.14)

where we denote M = supf ∈ℱ , |w−a|=2ρ |f (w)|, a finite number by the local uniform
boundedness assumption.

Now fix a number ε > 0. If we define the number

η = min(ρ, ρε
4M
) > 0,

then by (3.14) we have the property that

if z1, z2 ∈ Dη(a), then sup
f ∈ℱ

f (z1) − f (z2)
 < ε. (3.15)

This is the nonuniform local equicontinuity property alluded to above. Note that the
parameter η depends on the point a, so we will now redenote it by η(a) to emphasize
this dependence. (η also depends on ε, but the value of ε will remain fixed throughout
the discussion.)

Finally, we can derive the uniform-over-compacts version of local equicontinuity.
Let K ⊂ Ω be a compact set, and let ε > 0 be the same as above. Consider the covering of
K by open sets given by

K ⊂ ⋃
a∈K

Dη(a)/2(a).

By compactness there exists a finite subcovering

K ⊂
n
⋃
j=1

Dη(aj)/2(aj)

for some points a1, . . . , an ∈ K . Denote δ =
1
2 min(η(a1), . . . , η(an)). Then we claim that

for all z1, z2 ∈ K such that |z1 − z2| < δ,

sup
f ∈ℱ

f (z1) − f (z2)
 < ε. (3.16)

Indeed, z1 must belong to Dη(aj)/2(aj) for some 1 ≤ j ≤ n by the defining property of the
subcovering. This also implies that

|z2 − aj| ≤ |z2 − z1| + |z1 − aj| < δ +
η(aj)
2
≤
η(aj)
2
+
η(aj)
2
= η(aj),
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so altogether we see that both z1, z2 are in Dη(aj)(aj). Relation (3.16) therefore follows
from (3.15). To summarize, we proved that for any compact set K ⊂ Ω and ε > 0, (3.13)
is satisfied without choice of δ as defined above; this proves that the family ℱ is locally
uniformly equicontinuous and concludes the proof of the theorem.

Theorem 3.17 (Hurwitz’s theorem). Let Ω ⊂ ℂ be a region, and let (fn(z))
∞
n=1 and g(z) be

holomorphic functions onΩ such that fn(z)→ g(z) uniformly on compacts inΩ as n→∞,
where g(z) is not the zero function. If z0 ∈ Ω is a zero of g(z) of order k ≥ 0, and Dr(z0) ⊂ Ω
is a disc centered at z0 such that the punctured closed disc D≤r(z0) \ {z0} contains no
zeros of g(z), then for any large enough n, fn(z) has precisely k zeros in Dr(z0) counting
multiplicities.

Proof. Recall that by the argument principle the order k of the zero of g(z) at z0 can be
expressed as the contour integral

k = 1
2πi
∮
|z−z0|=r

g′(z)
g(z)

dz. (3.17)

Denote by κn the number of zeros of fn(z) in Dr(z0) counting multiplicities. We wish to
express κn similarly as a contour integral over the same circle. This can be done but
requires first checking that fn(z) does not have any zeros on the circle, which is indeed
true for large n. Let M = inf|z−z0|=r |g(z)| and note that M > 0 by the assumption that
g(z) has no zeros in the punctured disc D≤r(z0) \ {z0} and, in particular, on the circle. By
the uniform convergence of fn(z) to g(z) on the circle there exists an index N ≥ 1 such
that for all n ≥ N , inf|z−z0|=r |fn(z)| ≥ M/2, so that, in particular, fn(z) also does not have
any zeros on the circle |z − z0| = r as we wanted to show. Thus we have the expression

κn =
1
2πi
∮
|z−z0|=r

f ′n (z)
fn(z)

dz (3.18)

for all n ≥ N .
Note also that on the circle |z−z0|wehave not only the uniform convergence fn(z)→

g(z), but also that of the derivatives f ′n (z)→ g′(z) (recall Theorem 1.39). Combining those
facts, we deduce also that

f ′n (z)
fn(z)
→
n→∞

g′(z)
g(z)

uniformly on the circle |z − z0| = r. Finally, this, together with (3.17) and (3.18), implies
that

κn =
1
2πi
∮
|z−z0|=r

f ′n (z)
fn(z)

dz →
n→∞

1
2πi
∮
|z−z0|=r

g′(z)
g(z)

dz = k

Since k and κn are all integers, it follows that κn = k for all sufficiently large n.
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Corollary 3.18. LetΩ ⊂ ℂ be a region, and as in Hurwitz’s theorem, let (fn(z))
∞
n=1 and g(z)

be holomorphic functions on Ω such that fn(z) → g(z) uniformly on compacts in Ω. If the
functions fn(z) are all injective, then g(z) is either injective or a constant.

Proof. Assume by contradiction that g(z) is not injective and also not a constant func-
tion. Then there exist distinct points a, b, ∈ Ω for which g(a) = g(b). We have the con-
vergence fn(a)→ g(a), and so, if we define functions ψ(z) and φn(z), n = 1, 2, . . . , by

ψ(z) = g(z) − g(a), φn(z) = fn(z) − fn(a),

then φn(z) → ψ(z) uniformly on compacts in Ω. Moreover, ψ(z) is not the zero func-
tion. Therefore we are in a position to apply Hurwitz’s theorem. Specifically, note that
ψ(b) = 0, and denote the order of the zero at b by k ≥ 1. Let r > 0 be such that the
punctured closed disc D≤r(b) \ {b} does not contain any other zeros of ψ(z) (so, in partic-
ular, it does not contain the point z = a). Applying Hurwitz’s theorem, we conclude that
for all sufficiently large n, φn(z) has at least one zero in the disc Dr(b). However, this is
impossible, since φn(z) already has one zero at z = a andwas assumed to be an injective
function. We have reached a contradiction, and the proof is complete.

Suggested exercises for Section 3.8. 3.5, 3.6.

3.9 Proof of the Riemann mapping theorem, part II: the main
construction

From now on, let Ω be a simply connected complex region with Ω ̸= ℂ and z0 ∈ Ω, as in
the statement of Theorem 3.14.

Lemma 3.19. There exists an injective holomorphic function G : Ω→ 𝔻.

Proof. We know that Ω is not the entire complex plane, so take some point α ∈ ℂ\Ω. The
function z → z − α has no zeros on Ω, so, since Ω is simply connected, by Theorem 1.53
there exists a branch of the logarithm function of z − α on it, that is, a holomorphic
function h(z) such that eh(z) = z − α for all z ∈ Ω.

Fix an arbitrary point β ∈ Ω, and define a function G : Ω→ ℂ by

G(z) = 1
h(z) − h(β) − 2πi

. (3.19)

We claim that G(z) is holomorphic, injective, and bounded on Ω; this would imply that
its scaled version F(z) = cG(z) is injective andmaps into𝔻 if c is a small enough positive
constant, which would prove the result.

To establish these properties ofG(z), note first thath(z) is injective, sinceh(z) = h(w)
implies z − α = eh(z) = eh(w) = w − α, so z = w. Clearly, G(z) = G(w) also implies
h(z) = h(w), so similarly implies z = w, which shows that G(z) is injective.
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Now the claim that G(z) is bounded is equivalent to the claim that

inf
z∈Ω
h(z) − (h(β) + 2πi)

 > 0.

Assume by contradiction that this is not true. Then there is a sequence (zn)
∞
n=1 of points

in Ω such that h(zn) →n→∞
h(β) + 2πi. Exponentiating, we get that

zn − α = e
h(zn) →

n→∞
eh(β)+2πi = eh(β) = β − α.

In other words, zn converges to β as n → ∞. However, then we would have that h(zn)
converges to h(β) and not to h(β)+ 2πi. This gives a contradiction and finishes the proof.

Now define the family of functions

ℱ = {F : Ω→ 𝔻 : F(z) is holomorphic and injective, F(z0) = 0}.

The family ℱ is not empty: if G(z) is an injective holomorphic function G : Ω → 𝔻
guaranteed to exist by Lemma 3.19, then clearly F(z) = c(G(z) − G(z0)) is an element of
ℱ if c is a small enough positive number. Define the number λ ∈ [0,∞] by

λ = sup
F∈ℱ

F
′(z0)
.

Lemma 3.20. 0 < λ <∞.

Proof. Let F ∈ ℱ . To bound |F′(z0)| from above, observe that, by the Cauchy integral
formula, if r > 0 is a number for which the closed disc D≤r(z0) is contained in Ω, then

F
′(z0)
 =


1
2πi
∮
|w−z0|=r

F(w)
(w − z0)2

dw

≤

1
2π
(2πr) 1

r2
sup
w∈Ω

F(w)
 ≤

1
r
,

since F maps into the unit disc. Since this is true for all F ∈ ℱ , we get that λ ≤ 1
r . On the

other hand,we claim that |F′(z0)| > 0,whichwould show that λ > 0. Indeed, if F′(z0) = 0,
then F(z) has a zero of order at least 2 in z0. By Corollary 1.58, F(z) is not locally injective
in any neighborhood of z0, in contradiction to the fact that F is injective. Thus |F′(z0)|
must be positive.

We now come to the most important lemma of this section, which contains the key
idea behind our proof of the Riemann mapping theorem.

Lemma 3.21. Given F ∈ ℱ , if F(Ω) ⊊ 𝔻 (that is, the image of Ω under F does not cover all
of𝔻), then there exists G ∈ ℱ for which |G′(z0)| > |F

′(z0)|.
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Proof. Take some w ∈ 𝔻 \ F(Ω), known to exist by the assumption. Since w is not in the
image of Ω under F , the point 0 is not in the image of the composedmap φw ∘F : Ω→ 𝔻,
where (recall from (3.6) and Lemma 3.9) φw(z) =

w−z
1−wz is the standard automorphism of

𝔻mapping 0 and w to each other. Since φw ∘ F does not take the value 0 and is defined
on a simply connected region, by the construction of nth root functions described in
Section 1.15 there exists a holomorphic branch of its square root, that is, a holomorphic
function S : Ω→ 𝔻 satisfying

S(z)2 = (φw ∘ F)(z). (3.20)

Now define G : Ω→ 𝔻 by the composition

G(z) = (φS(z0) ∘ S)(z). (3.21)

We claim that G(z) has the properties claimed by the lemma. First,

G(z0) = (φS(z0) ∘ S)(z0) = φS(z0)(S(z0)) = 0.

Second, note that S(z) is injective since its square is injective as a composition of two
injective maps. Therefore G(z) is also injective. Both of those facts together show that
G ∈ ℱ .

Third and crucially, we wish to show that |G′(z0)| > |F
′(z0)|. To this end, note that

by (3.20) and (3.21), F(z) can be represented in terms of G(z) as

F(z) = φw((φS(z0) ∘ G)(z)
2). (3.22)

(This is a key relation that deserves to be digested properly. Take a minute or two to
unwrap all the horrible notation and convince yourself that this relation is correct, and
see if you can find some deeper meaning here.) Alternatively, if we define the function
W : 𝔻→ 𝔻 by

W (z) = φw(φS(z0)(z)
2),

then (3.22) can be rewritten as

F(z) = (W ∘ G)(z). (3.23)

Note that

W (0) = φw(φS(z0)(0)
2) = φw(S(z0)

2) = φw(φw(F(0))) = F(0) = 0.

ThusW (z) satisfies the assumptions of Schwarz’s lemma, andwe conclude that |W ′(0)| ≤
1, and in fact the strict inequality |W ′(0)| < 1 holds, sinceW (z) is clearly not a rotation.
This is what we want, since by (3.23)
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F
′(z0)
 =
W
′(G(z0))G

′(z0)
 =
W
′(0) ⋅
G
′(z0)
,

which gives the desired conclusion that |G′(z0)| > |F
′(z0)|.

Lemma 3.22. The family ℱ is a normal family.

Proof. The functions inℱ all map into the unit disc, so they are uniformly bounded, and
a fortiriori locally uniformly bounded. By Montel’s theorem, ℱ is normal.

Lemma 3.23. There exists an element F ∈ ℱ for which |F′(z0)| = λ, that is, the functional
G → |G′(z0)| attains a maximum in the family ℱ .

Proof. Let (Fn)
∞
n=1 be a sequence of elements of ℱ such that we have the convergence

|F′n(z0)|→ λ. By Lemma 3.22 there is a subsequence (Fnk )
∞
k=1 that converges uniformly on

compacts in Ω to some limiting function F : Ω→ ℂ, which moreover satisfies F(z0) = 0,
since Fn(z0) = 0 for all n. Since uniform convergence on compacts implies convergence
of the derivatives, we have that |F′(z0)| = λ. Since the Fn are all injective, by Hurwitz’s
theorem, F either is a constant function or is injective, but we know from Lemma 3.20
that |F′(z0)| = λ > 0, and hence F is not a constant and is therefore injective.

Let z ∈ Ω. We know that |F(z)| ≤ 1, since it is the limit of functions whose modulus
is bounded by 1. However, F is holomorphic, and hence by the open mapping theorem,
F(Ω) is an open set contained in the closed disc {z : |z| ≤ 1} and therefore is contained
in the open disc 𝔻. Thus we have shown that F is an element of ℱ , and the proof is
complete.

Proof of existence in Theorem 3.14. Take the element F ∈ ℱ , guaranteed to exist by
Lemma 3.23, for which |F′(z0)| = λ. By composing F with a rotation if necessary, we may
assume that F′(z0) is real and positive. By Lemma 3.21, F(z) must be surjective, which,
together with the positivity of F′(z0) and the properties implied by belonging toℱ , gives
that F(z) is the biholomorphism whose existence was claimed.

Summarizing, we proved the uniqueness claim from Theorem 3.14 in Section 3.7,
and the existence claim was proved above. This finishes the proof of the Riemann map-
ping theorem.

3.10 Annuli and doubly connected regions

The topic of conformal mapping does not end with the consideration of simply con-
nected regions, where the problem of classifying complex regions up to conformal
equivalence is now essentially settled (at least in principle) by the Riemann mapping
theorem. To conclude this chapter, we give a brief taste of some of the interesting phe-
nomena that arise when we try to classify conformal equivalence classes of regions
that are not simply connected, starting with the next simplest case of regions that are
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Figure 3.2: An annulus A(r1, r2).

doubly connected. A region Ω is called doubly connected if the complement ℂ \ Ω has
two connected components.3

One important class of doubly connected regions are the annuli. For 0 < r1 < r2, we
denote

A(r1, r2) = {z : r1 < |z| < r2},

an open annulus centered at 0 with internal radius r1 and external radius r2 (Fig. 3.2).
It turns out that unlike the situation for simply connected regions, these annuli are not
all in a single conformal equivalence class, despite being homeomorphic. The precise
classification is given in the next result, sometimes known as Schottky’s theorem.

Theorem 3.24 (Conformal classification of annuli). Let 0 < r1 < r2 and 0 < ρ1 < ρ2. The
annuli A(r1, r2) and A(ρ1, ρ2) are conformally equivalent if and only if

r1
r2
=
ρ1
ρ2
.

Proof. “If”: assume that r1r2 =
ρ1
ρ2
. Then themap z → ρ1

r1
z = ρ2

r2
z is a conformal equivalence

between A(r1, r2) and A(ρ1, ρ2).
“Only if”: this is the nontrivial direction. Assume that A(r1, r2) and A(ρ1, ρ2) are con-

formally equivalent. We start with a normalization that fixes the two inner radii at 1
to simplify things a bit: denote μ = r2/r1 and ν = ρ2/ρ1. Then A(1, μ) is conformally
equivalent to A(r1, r2) (by the scaling transformation mentioned in the “if” part), and

3 More generally, Ω is called k-connected ifℂ \Ω has k connected components and finitely connected
if it is k-connected for some k ≥ 1.
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similarly A(1, ν) is conformally equivalent to A(ρ1, ρ2). Therefore A(1, μ) and A(1, ν) are
conformally equivalent to each other. Let f : A(1, μ) → A(1, ν) be a conformal map. We
can assume without loss of generality that f maps the inner boundary circle |z| = 1 to
itself and maps the outer boundary circle |z| = μ of A(1, ν) to its counterpart |z| = ν in
A(1, ν); otherwise, f maps the inner circle of A(1, μ) to the outer circle of A(1, ν) and vice
versa, and in that case, we can get a conformal map that maps the inner circle to itself
by replacing f by f (μ/z) (the composition of f with the inversion z → μ/z, which is a
conformal automorphism of A(1, μ)).

For each 1 < r < μ, let γr denote the circular contour {|z| = r}, and let Γr = f ∘ γr de-
note its image under themap f . The curve Γr is a simple closed curve and hence encloses
a well-defined region (see Theorem 1.26 and the discussion following it in Section 1.8),
which we denote by Ωr . The area enclosed by γr is, of course, πr

2. The area of Ωr is a
continuous increasing function of r, which we denote α(r). Two important observations
about α(r) are that

λ− := limr↘1 α(r) = π and λ+ := limr↗μ α(r) = πν
2,

since λ− and λ+ are simply the areas enclosed by the inner and outer boundary circles
of A(1, ν), respectively.

Now we claim that

α(r) ≥ πr2 for all 1 < r < μ. (3.24)

This would imply, by taking the limit as r ↗ μ, that πν2 = λ+ ≥ πμ
2, so we would get that

ν ≥ μ. Reversing the roles of the two annuli would imply the reverse inequality ν ≤ μ,
and we would get that μ = ν, which is the claim we wanted, and the proof would be
done.

To prove (3.24), we note that α(r) can be evaluated as a contour integral using a
complex-analytic version of Green’s theorem from calculus. Specifically, appealing to
the result of Exercise 3.7, we see that

α(r) = 1
2i
∮
Γr

z dz = 1
2i

2π

∫
0

f (reit) d
dt
(f (reit)) dt = r

2

2π

∫
0

f (reit)f ′(reit)eit dt. (3.25)

Now let

f (z) =
∞

∑
n=−∞

cnz
n (3.26)

be the Laurent expansion of f , which converges uniformly on compacts in the annulus
1 < |z| < μ where f is holomorphic (see Theorem 1.65). Substituting (3.26) into (3.25), we
get that
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α(r) = 1
2

2π

∫
0

(∑
n
cnr

ne−int)(∑
m
mcmr

mei(m−1)t)reit dt

=
1
2
∑
n,m

mcmcnr
n+m

2π

∫
0

ei(m−n)t dt = π
∞

∑
n=−∞

n|cn|
2r2n.

Taking the limit as r ↘ 1 gives that

∞

∑
n=−∞

n|cn|
2 = 1.

Now it follows that

α(r) − πr2 = π
∞

∑
n=−∞

n|cn|
2r2n − π

∞

∑
n=−∞

n|cn|
2 = π

∞

∑
n=−∞

n|cn|
2(r2n − 1).

Since each summand in this last expression is nonnegative, we have that α(r) − πr2 ≥ 0,
as claimed.

Having classified the annuli up to conformal equivalence, we state without proof
an additional result that explains why the family of annuli plays a role in the theory of
conformal mapping of doubly connected regions that parallels the role of the unit disc
in the case of simply connected regions. For the proof, see [2, 6].

Theorem 3.25 (Conformal classification of doubly connected regions). The annuli A(1, ρ),
ρ > 1, form a complete set of conformal equivalence representatives for doubly connected
complex regions. That is, if Ω ⊂ ℂ is a doubly connected region, then Ω is conformally
equivalent to A(1,Λ) for precisely one value of Λ > 1.

The numbermΩ =
1
2π log(Λ), where Λ is the outer radius of the annulus to which Ω

maps, is called the conformal modulus of Ω. Theorem 3.24 guarantees that if such a
number exists, then it is unique, and the much stronger Theorem 3.25 guarantees that
it exists. ThusmΩ is an important example of what is known as a conformal invariant.
Muchmore can be said aboutmΩ, including amore directway to define it that is intrinsic
to Ω and does not rely on the idea of conformally mapping Ω to an annulus; consult the
references mentioned above for details.

The final component in the discussion of conformal equivalence classes of doubly
connected regions is the identification of the conformal automorphisms of such a region.

Theorem 3.26 (Conformal automorphisms of an annulus). The conformal automorphism
group of the annulus A(r1, r2) is

Aut(A(r1, r2)) = {z → eiθz : 0 ≤ θ < 2π} ∪ {z → eiθ r1r2
z
: 0 ≤ θ < 2π}.
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That is, the automorphisms consist of the rotations z → eiθz, together with the composi-
tions of the inversion map z → r1r2

z with a rotation.

Proof. Exercise 3.9.

Suggested exercises for Section 3.10. 3.7, 3.8, 3.9.
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Exercises for Chapter 3

3.1 If Ω and Ω′ are conformally equivalent with a conformal map g : Ω → Ω′, then
describe an explicit group isomorphism between Aut(Ω) and Aut(Ω′).

3.2 Let z1, z2, z3,w1,w2,w3 be elements of ℂ̂. Prove that there is a unique Möbius trans-
formation mapping zj to wj for j = 1, 2, 3.

3.3 Prove that besides the singleton conformal equivalence classes {ℂ} and {ℂ̂} de-
scribed above, any other conformal equivalence class 𝒦 is infinite and in fact con-
tains an infinity of regions any two of which are not images of each other under an
affine transformation z → az + b.

3.4 Prove Theorem 3.11.
3.5 Show that the assumption of holomorphicity in Montel’s theorem (Theorem 3.16)

cannot be removed; that is, the result properly belongs in complex analysis and
does not have a real analysis analogue (at least not an obvious one).

3.6 Show that the real analysis analogue of Hurwitz’s theorem is not true.
3.7 The complex-analytic version of Green’s formula frommultivariate calculus states

that if γ is a simple closed contour in the plane, then the area A enclosed inside γ is
given by

A = 1
2i
∮
γ

z dz.

Show that this follows from the usual Green’s theorem in real-variable calculus.
3.8 Prove that the statement of Theorem 3.24 is also correct under the relaxed assump-

tion 0 ≤ r1 < r2 and 0 ≤ ρ1 < ρ2, which addresses also the case of “degenerate”
annuli with an inner radius of 0 (that is, punctured discs).

3.9 Prove Theorem 3.26.



4 Elliptic functions
The theory of elliptic functions is the fairyland of mathematics. Themathematician who once gazes
upon this enchanting and wondrous domain crowded with the most beautiful relations and con-
cepts is forever captivated.

Richard Bellman, “A Brief Introduction to Theta Functions” (1961)

4.1 Motivation: elliptic curves

Elliptic curves are fascinating objects studied in complex analysis, algebraic geometry,
number theory, cryptography, and other areas of mathematics. An elliptic curve ℰ is the
set of solutions to an algebraic equation of the form

ℰ : y2 = ax3 + bx2 + cx + d (4.1)

relating a cubic in x to a quadratic function of y, where the coefficients (and solutions)
are assumed to be elements of some field 𝔽, such as the rationals, reals, complex num-
bers, or a finite field. It is often helpful to assume further that the curve is nondegen-
erate, that is, that the cubic polynomial on the right-hand side of (4.1) has no multiple
roots (see Section 4.11 for a related discussion).

To study elliptic curves, it is helpful to first bring equation (4.1) to a simpler canon-
ical form, usually written as

ℰ : y2 = 4x3 − g2x − g3 (4.2)

through a standard change of variables; I skip the details of such a reduction. From here
on, we will take (4.2) as the definition of an elliptic curve.

A beautiful and surprising fact about elliptic curves that holds the key to many of
their amazing properties is that they form an abelian group in a natural way. The group
operation, denoted as a kind of “addition” operation P ⊕ Q for two points P = (x1, y1)
and Q = (x2, y2) on the curve, can be defined algebraically using a messy and strange
formula that you would never think to guess directly. However, the formula has a sim-
ple geometric interpretation, which is very easy to explain: the idea is that to compute
P ⊕ Q, you find the intersection point R = (x3, y3) of the line passing through P and
Q with the curve (other than the points P and Q themselves) and then reflect R in the
y-coordinate to define P ⊕ Q = (x3,−y3); see Fig. 4.1. The fact that this construction is
well-defined is tied to the subtle fact that a generic straight line intersects the curve at
precisely three points. (I use the word “generic” because there are also technicalities
involving degenerate cases where the line is tangent to the curve, which means that we
have to be careful in interpreting this definition for a “doubling” operation P + P, or
where one of the three intersection points is not actually there, in which case we add

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783110796810-005
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Figure 4.1: An elliptic curve and the group addition law, visualized here for the curve y2 = x3 − x + 1
10 over

the real numbers.

an additional “point at infinity” to serve in its place. I ignore such technical issues in the
current informal discussion.)

Taking the above geometric construction, we canwork out by an explicit calculation
that the algebraic expression for the coordinates of the result P ⊕ Q = (x3,−y3) of the
group addition of P and Q described above in geometric terms—again, in the generic
situation—are given by the supremely unintuitive formulas

x3 =
1
4
(
y1 − y2
x1 − x2
)
2

− x1 − x2, (4.3)

−y3 = −
1
4
(
y1 − y2
x1 − x2
)
3

+
(x31y1 − x

3
2y2) − 2(x

3
1y2 − x

3
2y1) + 3x1x2(x1y2 − x2y1)

(x1 − x2)3
. (4.4)

It is far from clear why these formulas should define an associative operation, let alone
a group law (at least the fact that the operation is commutative is easy to see). Even for
the geometric construction, associativity requires some effort to explain (see [62, Ch. 1]).

All of this raises many intriguing questions about elliptic curves in the specific con-
text of curves defined over the complex numbers:
1. Where does the group structure of elliptic curves “really” come from? That is, is

there a conceptual way of thinking about them that makes it easy to see that such a
group addition law should exist and that makes it possible to avoid the need for a
cumbersome calculation to verify that (4.3)–(4.4) define a valid group operation?

2. What does an elliptic curve look like topologically?
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3. Canwe classify all elliptic curves up to conformal equivalence as Riemann surfaces?
That is, how do we determine when two elliptic curves are conformally equivalent,
and how do we parameterize the conformal equivalence classes of elliptic curves?

4. What additional roles exist for elliptic curves within complex analysis? What other
topics or problems do they relate to?

It turns out that all these questions andmore can be answered by studying a certain fam-
ily of meromorphic functions in the complex plane, called elliptic functions or doubly
periodic functions. In fact, all members of the family can be obtained from a single
function, the so-calledWeierstrass ℘-function, denoted ℘(z), along with its derivative
℘′(z); and the map z → (℘(z), ℘′(z)) gives a convenient parameterization of the elliptic
curve ℰ , which does much to explain what the elliptic curve and its group law “really”
look like.

The situation is analogous to what happens in the case of a much simpler group
arising from an algebraic equation, the circle group

S1 = {(x, y) ∈ ℝ2 : x2 + y2 = 1}.

There too we have an abelian group “addition” law ⊞ given by

(x1, y1) ⊞ (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1).

Although this formula can be easily verified to satisfy the properties of a commutative
group operation through a purely formal calculation, to the uninitiated encountering it
for the first time, the reason why such a group law exists may appear mysterious. For-
tunately, there exists a “circular function” C : ℝ→ ℝ that has the following properties:
1. The map φ(t) = (C(t), C′(t))maps a real number to an element of S1.
2. φ(t + s) = φ(t) ⊞ φ(s) (that is, φ is a group homomorphism from (ℝ,+) to (S1,⊞)).
3. φ(t + 2π) = φ(t), that is, φ is periodic with period 2π; equivalently, its kernel as a

group homomorphism is the additive subgroup 2πℤ of ℝ.

These properties taken together imply thatφ induces (by the first isomorphism theorem)
a group isomorphism between the quotient group ℝ/(2πℤ) with “ordinary” addition
of real numbers (which in the quotient group becomes “addition modulo 2π”) on the
one hand, and S1 with the “exotic” addition law ⊞ on the other hand. That is, the cir-
cular function C(t) and the map φ derived from it “linearize” the group operation and
make it apparent that the circle group is topologically a real interval with its two ends
glued together (that is, a circle), with the group operation being addition modulo 2π. Of
course, you may have realized by now that the “circular function” is nothing more than
the familiar cosine function C(t) = cos t. So in this point of view the cosine function
and its derivative can be thought of as gadgets that help us understand the algebraic
and topological structure of the circle group by parameterizing it in terms of a group
that is easier to understand. As we will see, the situation with elliptic curves and the
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use of the elliptic functions ℘(z) and ℘′(z) to parameterize them is quite similar. Also,
as happens with the case of the trigonometric functions, the functions we construct out
of this group-theoretic motivation will end up being useful for many other things.

We now proceed to make precise these somewhat vague notions in a way that gives
substance to the analogy described above. This will lead us to many new and beautiful
ideas that will take us far beyond the familiar realm of trigonometric functions.

4.2 Doubly periodic functions

The cosine and sine functions in the example discussed above are periodic functions
of a single real variable. We now double the dimensions and look for a meromorphic
function of a complex variable that is “periodic” in two different directions in the plane.
Such a function is called a doubly periodic function or an elliptic function. Formally,
we say that ω ∈ ℂ is a period of a meromorphic function f : ℂ → ℂ if f (z + ω) = f (z)
for all z ∈ ℂ. The set of periods of f (z) is denoted Λf and is easily seen to be an additive
subgroup ofℂ. We say that a meromorphic function f is doubly periodic if Λf contains
twononzero elementsω1,ω2 that are linearly independentwhen considered as elements
of a vector space over the real numbers (this is equivalent to saying that the complex
number ω2/ω1 is nonreal). Trivially, if f , g are doubly periodic with the same linearly
independent periods ω1,ω2, then so are f + g, fg,

1
f , and the derivative f

′.
Note that the constant functions have every complex number as a period. This illus-

trates the fact that the pair ω1,ω2 of complex numbers attesting to the doubly periodic
nature of a function f is not unique. To understand the less trivial scenario of a func-
tion f that is doubly periodic but not constant, observe that in that case Λf must be a
topologically discrete additive subgroup ofℂ, for otherwise f can be seen to be constant
by the uniqueness theorem for holomorphic functions (Corollary 1.36 on p. 42), since it
takes the same value on a set of points with an accumulation point. It then follows (see
Exercise 4.1) that Λf must be of the form ω1ℤ + ω2ℤ with nonzero numbers ω1,ω2 that
are linearly independent overℝ; that is, Λf is a discrete rank-2 subgroup. A subgroup of
ℂ of this form is called a lattice. The subgroup Λf of periods of a nonconstant doubly
periodic function f is called its period lattice.

If f is a nonconstant doubly periodic functionwith Λf = ω1ℤ+ω2ℤ, thenwe say that
ω1,ω2 form a fundamental period pair for f . Not all pairs of periods are fundamental:
for example, if ω1,ω2 is a fundamental period pair, then 2ω1, 2ω2 is a pair of periods,
which, while it attests to f being doubly periodic according to the above definition, is
not fundamental since 2ω1ℤ + 2ω2ℤ is a proper sublattice of Λf . On the other hand,
a nonconstant doubly periodic function has infinitely many fundamental period pairs,
since it is easy to see that the representationω1ℤ+ω2ℤ of a lattice is far fromunique; for
example,ω1ℤ+ω2ℤ = (ω1+kω2)ℤ+ω2ℤ for any k ∈ ℤ. Amore precise characterization
of when two pairs (ω1,ω2) and (ω

′
1,ω
′
2) generate the same lattice is given in the following

lemma.
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Lemma 4.1. Let L = ω1ℤ + ω2ℤ and L
′ = ω′1ℤ + ω

′
2ℤ be lattices. Then L = L

′ if and only
if ω′1 and ω

′
2 can be represented as

ω′1 = aω1 + bω2, (4.5)

ω′2 = cω1 + dω2, (4.6)

where ( a b
c d ) is a 2 × 2 invertible matrix with integer entries, that is, a, b, c, d ∈ ℤ, and

ad − bc = ±1.

Proof. Proof of the “if” claim: assume that ω′1 and ω′2 have the form (4.5)–(4.6) with
a, b, c, d ∈ ℤ, ad − bc = ±1. Then ω′1,ω

′
2 ∈ ω1ℤ+ω2ℤ. This clearly implies that L

′ ⊆ L. For
the reverse containment, invert relations (4.5)–(4.6) to see that

ω1 =
d

ad − bc
ω′1 −

b
ad − bc

ω′2,

ω2 = −
c

ad − bc
ω′1 +

a
ad − bc

ω′2,

which, because of the assumption that ad−bc = ±1, is a representation of the form (4.5)–
(4.6) with coefficients satisfying the same conditions, but with the roles of the pairs
(ω1,ω2) and (ω

′
1,ω
′
2) reversed. Therefore L ⊆ L

′, and altogether we have shown that
L = L′.

Proof of “only if”: assume that L = L′, that is, ω1ℤ + ω2ℤ = ω
′
1ℤ + ω

′
2ℤ. In partic-

ular, ω1,ω2 ∈ ω
′
1ℤ + ω

′
2ℤ, and ω

′
1,ω
′
2 ∈ ω1ℤ + ω2ℤ. It follows that there exist integers

a, b, c, d, α, β, γ, δ such that

ω′1 = aω1 + bω2, ω1 = αω
′
1 + βω

′
2,

ω′2 = cω1 + dω2, ω2 = γω
′
1 + δω

′
2.

Thus we have representation (4.5)–(4.6) with integer coefficients a, b, c, d. Moreover,
since the matrices ( a b

c d ) and (
α β
γ δ ) are inverse to each other and have integer en-

tries, their determinants are also mutually reciprocal integers, so we must have that
ad − bc = ±1.

A doubly periodic function f with a fundamental period pair ω1,ω2 is determined
uniquely by its values on the parallelogram

Pz0 (ω1,ω2) = {z0 + tω1 + sω2 : 0 ≤ t, s < 1},

where z0 ∈ ℂ is an arbitrary point. This is geometrically obvious, since if we denote by
L = ω1ℤ+ω2ℤ the period lattice, thenℂ is tiled perfectly by nonoverlapping L-translates
of Pz0 (ω1,ω2) (that is, shifted copies of the formω+Pz0 (ω1,ω2)withω ∈ L), and the value
of f (z) for z in some L-translateω+Pz0 (ω1,ω2) reduces by periodicity to the shifted value
f (z−ω), which is in Pz0 (ω1,ω2). We refer to Pz0 (ω1,ω2) as a fundamental parallelogram
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Figure 4.2: A fundamental parallelogram Pz0 (ω1,ω2) and its L-translates.

for f ; see Fig. 4.2. Note that the fundamental parallelogram depends on the choice of a
fundamental period pair, so the choice of a parallelogram contains some arbitrariness
in the same way that the choice of a fundamental period pair is arbitrary. Moreover, the
additional (also arbitrary) parameter z0 allows us to specify the “origin” of the paral-
lelogram; it is convenient to have that extra degree of freedom to avoid slight technical
complications in some of the results below.

Suggested exercises for Section 4.2. 4.1.

4.3 Poles and zeros; the order of a doubly periodic function

An obvious goal that we have is to construct some nontrivial doubly periodic functions,
assuming that they exist.1 To motivate our construction and help convince you that it is
in a sense the simplest one that has any chance of working, it would be helpful to under-
stand what sorts of constraints exist on doubly periodic functions. The next few results
show that there are in fact rather rigid constraints that such functions must satisfy.

1 A tip for the reader: when you are reading a mathematical text and read a definition of a new and
exotic class of mathematical objects, it is a good habit to always ask yourself right away: does such an
object even exist? For, although in the case of a textbook the answer will usually be “yes,” when you are
reading research papers on topics at the forefront of human knowledge, the answer will occasionally be
far from clear even to the writer of the text and may well turn out to be “no.” Even for textbook-level
mathematics, asking this question and spending a fewminutes trying to answer it by yourself will often
provide you with insight far beyond what a purely passive reading of the text can offer.
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Proposition 4.2. There are no entire doubly periodic functions other than the constant
functions.

Proof. If f is entire and doubly periodic, then in particular f is bounded on the paral-
lelogram {tω1 + sω2 : t, s ∈ [0, 1]}, which is a compact set. By periodicity, f (z) is also
bounded on all of ℂ and is therefore constant by Liouville’s theorem.

We see from Proposition 4.2 that a nonconstant doubly periodic function f must
have poles; by applying the same result to 1/f we see that f must also have zeros. Note
that since the sets of zeros andpoles of a holomorphic function are discrete, f canhave at
most finitely many zeros and poles in any fundamental parallelogram. To avoid certain
technical issues, it is helpful to choose the “origin point” z0 for the fundamental parallel-
ogram Pz0 (ω1,ω2) in such a way that f does not have poles or zeros on the boundary of
the parallelogram. We call a fundamental parallelogram with such a property generic
(for the doubly periodic function f ). It is easy to see that a generic fundamental paral-
lelogram exists.

Proposition 4.3. Let f be a doubly periodic function with fundamental period pair ω1,ω2.
Let Pz0 (ω1,ω2) be a generic fundamental parallelogram for f . Then

∮
𝜕Pz0 (ω1 ,ω2)

f (z) dz = 0, (4.7)

where we consider the boundary 𝜕Pz0 (ω1,ω2) as an integration contour oriented in the
usual way in the positive mathematical direction.

Proof. Decompose the contour Γ = 𝜕Pz0 (ω1,ω2) as the concatenation

Γ = γ1 + γ2 + γ3 + γ4

of four contours γ1, γ2, γ3, γ4 corresponding to the edges of the parallelogram, where γ1
is the directed line segment from z0 to z0+ω1, γ2 is the directed line segment from z0+ω1
to z0 +ω1 +ω2;, γ3 is the directed line segment from z0 +ω1 +ω2 to z0 +ω2, and γ4 is the
directed line segment from z0 + ω2 to z0. By the doubly periodic property of f we have

∫
γ1

f (z) dz = −∫
γ3

f (w) dw,

since the change of variables w = z + ω2 maps the integral on the left to the one on the
right (including the minus sign). Thus, in the contour integral on Γ, the contributions
from the integral over the two segments γ1 and γ3 cancel each other out. Similarly, by the
change of variables w = z + ω1 we get a cancelation of the second and fourth segments:

∫
γ2

f (z) dz = −∫
γ4

f (w) dw,
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so that in total we have

∮
Γ

f (z) dz = ∫
γ1

f (z) dz + ∫
γ2

f (z) dz + ∫
γ3

f (z) dz + ∫
γ4

f (z) dz = 0,

as claimed.

Corollary 4.4. Under the assumptions of Proposition 4.3, the sum of the residues of f over
the poles of f in the fundamental parallelogram Pz0 (ω1,ω2) is zero.

Proof. By the residue theorem the integral on the left-hand side of (4.7) is equal to 2πi
times the sum of the residues.

Corollary 4.5. A nonconstant doubly periodic function with a generic fundamental paral-
lelogram Pz0 (ω1,ω2)must have at least two poles, counting multiplicities, inside the par-
allelogram.

Proposition 4.6. Let g : ℂ → ℂ be a doubly periodic function with fundamental period
pair ω1,ω2 and a generic fundamental parallelogram P = Pz0 (ω1,ω2). The sum of the
orders of the zeros of g(z) inside P is equal to the sum of the orders of the poles of g(z) in
the parallelogram, counting with multiplicities.

Proof. Apply Proposition 4.3 to f (z) = g′(z)
g(z) , and note that by the argument principle

(Theorem 1.48) the resulting integral is 2πi times the number of zerosminus the number
of poles of f in the interior of P.

The last result enables us to define an important integer parameter associated with
a doubly periodic function, called its order. This ismade precise in the next result, which
follows immediately from Proposition 4.6.

Corollary 4.7. Let f be a nonconstant doubly periodic function. There exists a unique in-
teger m ≥ 2, called the order of f , with the following properties:
1. f has exactly m poles, counting with multiplicities, in any generic fundamental paral-

lelogram Pz0 (ω1,ω2).
2. For any α ∈ ℂ, f (z) assumes the value α exactly m times (that is, the function z →

f (z) − α has m zeros), counting with multiplicities, in any fundamental parallelogram
Pz0 (ω1,ω2) that is generic for the doubly periodic function f (z) − α.

Proposition 4.8. Let g : ℂ → ℂ be a nonconstant doubly periodic function with funda-
mental period pair ω1,ω2. Let P = Pz0 (ω1,ω2) be a generic fundamental parallelogram for
g. Denote by z1, . . . , zn the zeros of g(z) in P, counting multiplicities, and let w1, . . . ,wm be
the poles of g(z) in P, counting multiplicities. Then the number

n
∑
j=1

zj −
m
∑
k=1

wk (4.8)

is a period of f .
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Proof. Similarly to the proof of Proposition 4.3, we consider the contour integral

∮
𝜕P

zg′(z)
g(z)

dz,

which by the residue theorem is evaluated as 2πi(∑nj=1 zj − ∑
m
k=1 wk). We use the same

decomposition of the contour 𝜕P into four subcontours γj , 1 ≤ j ≤ 4, as in the proof of
Proposition 4.3. Note that by the periodicity of g the images of each of the subcontours
γ1 and γ2 under g(z) (denoted g ∘γ1 and g ∘γ2, respectively) are closed curves. Therefore
we can use the same changes of variable as in the proof of Proposition 4.3 to write

∫
γ1

zg′(z)
g(z)

dz + ∫
γ3

wg′(w)
g(w)

dw

= ∫
γ1

zg′(z)
g(z)

dz − ∫
γ1

(z + ω2)g
′(z + ω2)

g(z + ω2)
dz

= −ω2 ∫
γ1

g′(z)
g(z)

dz = −ω2 ∮
g∘γ1

dξ
ξ
= −ω2 ⋅ 2πim

for some integer m equal to the winding number (see Section 1.13) of the closed curve
g ∘ γ1 around 0. (Note that g ∘ γ1 does not cross 0 because we chose P to be a generic
parallelogram for g.) By similar reasoning,

∮
γ2

zg′(z)
g(z)

dz +∮
γ4

wg′(w)
g(w)

dw = ω1 ⋅ 2πin

with n ∈ ℤ. Combining these results gives that the quantity in (4.8) is of the form −mω2+
nω1 for integerm, n and hence is a period.

4.4 Construction of the Weierstrass ℘-function

We are now ready to construct our first doubly periodic function, the Weierstrass
℘-functionmentioned at the beginning of the chapter, which occupies a central place in
the theory of elliptic functions. The construction is motivated by the following general
principle that we see in many areas of mathematics: to construct an object with certain
symmetry, it is often helpful to start with a nonsymmetric object and then symmetrize
it by summing over its orbit under the action of the desired symmetry group. Our con-
struction follows this template, although in practice we will need to deviate from it in a
small way. In our situation the symmetry group is the group of translations z → z + ω
where ω is a period, so this will involve an infinite summation over the elements of the
period lattice L, which leads to slightly delicate issues of convergence. The next lemma
clarifies what kind of summations are well-behaved enough to be useful.
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The symbol ℘
The mathematical symbol ℘ (pronounced similarly to the name of the letter “p,” or sometimes as “Weier-
strass p” depending on the context) used for the Weierstrass elliptic function has an apparently unique
status in mathematical notation as a symbol that is reserved for denoting one mathematical object and
that object alone. Even the distinguished constants π, e, and i do not enjoy such an exclusivity! The symbol
℘ has its own code point in the Unicode string encoding system (U+2118) and its own escape string in the
HTML standard (&weierp;). It seems rather generous of the developers of these computing standards to
go to such lengths to please the fairly small group of mathematicians who use elliptic functions in their
work.

You may wonder how this quirky state of affairs came to be. It appears to have been little more
than a historical accident. Both the function ℘(z) and the notation for it were introduced by Weierstrass,
who for this purpose used a stylized handwritten lowercase p bearing some resemblance to the Sütterlin
alphabet used in handwritten German during that period in large parts of Prussia. Later authors ended
up adopting not only Weierstrass’s choice of the letter but also his particular stylization of it, and thus a
new symbol was born. For more details, refer to the online discussion [W18].

Figure 4.3:Weierstrass’ legacy in mathematical typography.

Lemma 4.9. Let L ⊂ ℂ be a lattice, and let β > 0. The infinite sum

∑
ω∈L
ω ̸=0

1
|ω|β

(4.9)

converges if and only if β > 2.

Proof. Exercise 4.2.

Theorem 4.10 (The Weierstrass ℘-function). Fix a lattice L ⊂ ℂ. There exists a unique
meromorphic function, called the Weierstrass ℘-function and denoted ℘(z), with the fol-
lowing properties:
1. ℘(z) is a doubly periodic function of order 2 with period lattice L.
2. ℘(z) has a pole of order 2 at every period ω ∈ L, with Laurent expansion around the

pole beginning with

℘(z) = 1
(z − ω)2

+ O(z − ω) (z→ ω), (4.10)

and no other poles.
3. ℘(z) is an even function.

Moreover, the uniqueness already holds for a function satisfying the first two properties
without assuming the even symmetry of ℘(z).
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Proof. Proof of uniqueness: if ℘(1)(z) and ℘(2)(z) are two meromorphic functions satis-
fying properties 1–2, then the function f (z) = ℘(1)(z) − ℘(2)(z) is doubly periodic and has
no poles. By Lemma 4.5 it must be a constant. However, its Laurent expansion around
z = 0 has the constant term 0 by (4.10), so in fact f (z) ≡ 0 and ℘(1)(z) ≡ ℘(2)(z).

Proof of existence: we define ℘(z) as

℘(z) = 1
z2
+ ∑

ω∈L
ω≠0(

1
(z − ω)2

−
1
ω2). (4.11)

This is a doubly infinite sum that can bewrittenmore explicitly in terms of a fundamen-
tal pair of periods ω1,ω2 as

℘(z) = 1
z2
+ ∑(m,n)∈ℤ2(m,n) ̸=(0,0)

(
1

(z −mω1 − nω2)2
−

1
(mω1 + nω2)2

).

We claim that for any compact K ⊂ ℂ, the series obtained from (4.11) by removing (if
necessary) finitely many terms that have poles in K converges absolutely uniformly on
K . This would show that (4.11) defines a meromorphic function on ℂ with poles only at
the points of Lwhere individual summands of the series have poles. To prove the claim,
fix a compact K ⊂ ℂ. For z ∈ K and ω ∈ L \ K , making the further assumption that
|w| > 2|z| (which applies to all but finitely many terms in the series), we have



1
(z − ω)2

−
1
ω2


=


ω2 − (z − ω)2

ω2(z − ω)2

=


2zω − z2

ω2(z − ω)2


≤
2|z|

|ω|(|ω| − |z|)2
+
|z|2

|ω|2(|ω| − |z|)2
≤

C
|ω|3
,

where C > 0 is a constant that depends only onK . The absolute convergence of the series
now follows from Lemma 4.9.

Next, observe that ℘(z) is trivially even, since ω ∈ L if and only if ω′ = −ω ∈ L, so

℘(−z) = 1
(−z)2
+ ∑

ω∈L
ω≠0(

1
(−z − ω)2

−
1
ω2)

=
1
z2
+ ∑

ω′∈L
ω ̸=0
(

1
(−z + ω′)2

−
1
(−ω′)2
)

=
1
z2
+ ∑

ω′∈L
ω ̸=0
(

1
(z − ω′)2

−
1
ω′ 2
) = ℘(z).
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Next, to prove that ℘(z) is doubly periodic, differentiate (4.11) termwise to get

℘′(z) = − 2
z3
− 2∑

ω∈L
ω ̸=0

1
(z − ω′)3

= −2 ∑
ω∈L

1
(z − ω)3

. (4.12)

This infinite series is manifestly doubly periodic, as it is a true symmetrization with
respect to the orbit of the L-action as discussed at the beginning of this section. (In fact,
the expression ∑ω∈L(z − ω)

−3 is probably the simplest possible formula we can write
that defines a nontrivial doubly periodic function, except that the resulting function is
of order 3 and thus not the “simplest” in the sense of having the smallest order possible.)
Now let ω ∈ L, and denote gω(z) := ℘(z + ω) − ℘(z). Since

g′ω(z) = ℘
′(z + ω) − ℘′(z) ≡ 0,

that is, the derivative of gω is identically 0, we get that gω(z) is a constant. Taking z =
−ω/2 gives gω(z) = ℘(ω/2)−℘(−ω/2) = 0 since℘(z) is even. Thus gω(z) ≡ 0 and℘(z+ω) =
℘(z) for all z, which shows that ℘(z) is doubly periodic.

Finally, note that ℘(z) has a pole of order 2 at z = 0 with principal part 1
z2 . After

subtracting that principal part, we are left with

℘(z) − 1
z2
= ∑

ω∈L
ω ̸=0(

1
(z − ω)2

−
1
ω2),

which is holomorphic in the neighborhood of 0, with the constant term in its Taylor
expansion obtained by setting z = 0 in this expression, which gives

∑
ω∈L
ω ̸=0(

1
(0 − ω)2

−
1
ω2) = 0.

This proves the Laurent expansion (4.10) for the case z = 0, and the expansion around
a general period ω ∈ L follows by periodicity.

Note that the construction of the function℘(z) depends on the choice of lattice L. For
the timebeing,we regard the lattice as fixed, but later on,wewill start caringmore about
this dependence, and it will be helpful to have a notation that emphasizes it. To that end,
two common ways to denote the function ℘(z) associated with a specific lattice L are as
℘L(z) or as ℘(z; L). At some point in the discussion, wewill also replace Lwith a complex
variable τ, called themodular variable, which parameterizes the space of lattices in a
convenient way (see Section 4.14). In that context the notation ℘(z; τ) is used to denote
theWeierstrass ℘-function including its dependence on both complex variables z and τ.

Suggested exercises for Section 4.4. 4.2.
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4.5 Eisenstein series and the Laurent expansion of ℘(z)

Let L ⊂ ℂ be a lattice. Define the quantities Gn, n ≥ 3, associated with L by

Gn = ∑
ω∈L\0

1
ωn . (4.13)

The Gn are known as the Eisenstein series. As with the remark above about ℘(z), the
value ofGn depends on the lattice L, and whenwewants to emphasize that, the notation
Gn(L) can be used, or Gn(τ) once we switch to the point of view involving the modular
variable τ. Note that G2k−1 = 0 for k ≥ 2 because of each term associated with ω ∈ L
canceling out the term associated with −ω. Thus the interesting Eisenstein series are
the even-indexed ones G4,G6,G8, . . . . As the next result shows, these series are closely
related to the Weierstrass ℘-function.

Theorem 4.11. The Laurent expansion of ℘(z) around z = 0 is given by

℘(z) = 1
z2
+
∞

∑
n=1
(2n + 1)G2n+2z

2n =
1
z2
+ 3G4z

2 + 5G6z
4 + 7G8z

6 + ⋅ ⋅ ⋅ . (4.14)

Proof. Keeping in mind the standard Taylor expansion

1
(1 − x)2

= 1 + 2x + 3x2 + 4x3 + ⋅ ⋅ ⋅ ,

we write

℘(z) = 1
z2
+ ∑

ω∈L
ω ̸=0(

1
(z − ω)2

−
1
ω2) =

1
z2
+ ∑

ω∈L
ω ̸=0(

1
ω2(1 − ( zω ))

2 −
1
ω2)

=
1
z2
+ ∑

ω∈L
ω ̸=0

1
ω2(2(

z
ω
) + 3( z

ω
)
2

+ 4( z
ω
)
3

+ 5( z
ω
)
4

+ ⋅ ⋅ ⋅)

=
1
z2
+ 2( ∑

ω∈L\0

1
ω3)z + 3( ∑

ω∈L\0

1
ω4)z

2 + 4( ∑
ω∈L\0

1
ω5)z

3 + ⋅ ⋅ ⋅

=
1
z2
+ 2G3z + 3G4z

2 + 4G5z
3 + 5G6z

4 + ⋅ ⋅ ⋅

=
1
z2
+ 3G4z

2 + 5G6z
4 + 7G8z

6 + ⋅ ⋅ ⋅ ,

as claimed. Note that this calculation technically involved a rearrangement of terms in
a double summation (the summation over ω ∈ L and the summation over the powers of
z/ω in each of the hypergeometric series 1/(1− (z/ω))2 being expanded), which needs to
be justified. This is easy to do and addressed in Exercise 4.3.

Suggested exercises for Section 4.5. 4.3.
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4.6 The differential equation satisfied by ℘(z)

The first two Eisenstein series G4 and G6 play a special role in the theory of the Weier-
strass ℘-function and of elliptic curves. It is traditional to define rescaled versions of
them, labeled g2 and g3, by

g2 = 60G4, g3 = 140G6. (4.15)

The quantities g2 and g3 are known as the elliptic invariants. The role they play is
hinted at by the following result (compare to (4.2)).

Theorem 4.12. The function ℘(z) satisfies the nonlinear differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z) − g3. (4.16)

Proof. The idea is to consider the behavior of each term in (4.16) near z = 0. Using (4.14),
we have

℘(z) = 1
z2
+ 3G4z

2 + 5G6z
4 + O(z6),

℘′(z) = − 2
z3
+ 6G4z + 20G6z

3 + O(z5),

℘′(z)2 = 4
z6
−
24G4
z2
− 80G6 + O(z

2),

℘(z)3 = 1
z6
+
9G4
z2
+ 15G6 + O(z

2).

Wesee that by taking an appropriate combination of℘′(z)2,℘(z), and℘(z)3wecan cancel
the pole at z = 0 (and hence all the poles throughout the complex plane, since all of the
functions involved are doubly periodic with poles only at periods). Specifically, we have
the Taylor expansion

℘′(z)2 − 4℘(z)3 + 60G4℘(z) = −140G6 + O(z) (4.17)

around z = 0. This is a doubly periodic function without poles and therefore a constant
by Proposition 4.2. The value of the constant must be equal to the constant coefficient
on the right-hand side of (4.17), namely −140G6 = −g3. Thus the relation ℘

′(z)2 −4℘(z)3 +
g2℘(z) = −g3 holds as an identity of meromorphic functions, proving (4.16).

Corollary 4.13. The function ℘(z) also satisfies the second-order differential equation

℘′′(z) = 6℘(z)2 − 1
2
g2. (4.18)

Proof. This follows immediately from (4.16) by differentiating both sides and dividing
by 2℘′(z).
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4.7 A recurrence relation for the Eisenstein series

Starting from the differential equations (4.16) or (4.18) and comparing Taylor coefficients
on both sides, we get interesting identities relating the different Eisenstein series. For
example, the coefficient of z2 on the left-hand side of (4.16) is

−2 ⋅ 2 ⋅ 42G8 + 36G
2
4 = −168G8 + 36G

2
4,

whereas the coefficient of z2 of the expression on the right-hand side of that equation is

4 ⋅ 3 ⋅ 7G8 + 4 ⋅ 3 ⋅ 3 ⋅ 3G
2
4 − 60 ⋅ 3G

2
4 = 84G8 − 72G

2
4.

Equating the two and simplifying give the identity

G8 =
3
7
G24. (4.19)

Similarly, inspecting the coefficients of z4 and z6 on both sides of (4.16) gives two addi-
tional identities of this type, namely

G10 =
5
11
G4G6, (4.20)

G12 =
1
143
(42G4G8 + 25G

2
6). (4.21)

The above idea can be exploited systematically by extracting the coefficient for any
power z2n. In the general case, this results in a recurrence relation for the Eisenstein
series.

Proposition 4.14. TheEisenstein series can be computed recursively startingwith the two
initial values G4,G6. Specifically, for any k ≥ 4, we have the recurrence relation

G2k =
3

(k − 3)(2k − 1)(2k + 1)

k−2
∑
j=2
(2j − 1)(2k − 2j − 1)G2jG2(k−j). (4.22)

Proof. Expand both sides of (4.18) as a Laurent series in z using (4.14). For the left-hand
side, we have

℘′′(z) = 6
z4
+ 6G4 +

∞

∑
n=1
(2n + 1)(2n + 2)(2n + 3)G2n+4z

2n.

For the right-hand side,
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6℘(z)2 − 1
2
g2 = 6(

1
z2
+
∞

∑
k=1
(2k + 1)G2k+2z

2k)

2

− 30G4

= 6
∞

∑
n=1
[2(2n + 3)G2n+4

+
n−1
∑
j=1
(2j + 1)(2(n − j) + 1)G2j+2G2(n−j)+2]z

2n +
6
z4
+ 36G4 − 30G4.

Equating the coefficients of z2n in these expressions gives (4.22).

An alternative method of proving (4.22) that does not rely on doubly periodic func-
tions is explored in Exercise 4.6; see also Exercise 4.7 for further applications of this
method.

Corollary 4.15. All the Eisenstein series G2k , k ≥ 2, can be expressed as polynomials in G4
and G6 with rational coefficients (that do not depend on the lattice L they are associated
with).

Suggested exercises for Section 4.7. 4.4, 4.5, 4.6, 4.7.

4.8 Half-periods; factorization of the associated cubic

Let ω1,ω2 be a fundamental period pair for our fixed lattice L. Denote by ν1, ν2, ν3 the
numbers

ν1 =
1
2
ω1, ν2 =

1
2
ω2, ν3 =

1
2
(ω1 + ω2), (4.23)

which we refer to as the half-periods associated with the fundamental period pair
ω1,ω2.

Lemma 4.16. The function ℘′(z) is a doubly periodic function of order 3. Its zeros in any
fundamental parallelogramPz0 (ω1,ω2) that is generic for℘

′(z) are the unique three points
in the parallelogram that are congruent modulo the lattice L to the half-periods ν1, ν2, ν3,
respectively, and they are all simple zeros.2

Proof. We know that ℘′(z) is of order 3 since its poles are the periods, and each one is
of order 3 (the principal part is −2/(z − ω)3; see (4.12)). Thus there are precisely three
zeros countingmultiplicities in a generic fundamental parallelogram, and if we identify
three distinct zeros in such a parallelogram, then they are necessarily all simple. Now
recall that ℘(z) is an even function, so ℘′(z) is odd. We also know that the values ℘′(νj)
of ℘′(z) at the half-periods are finite numbers (that is, each νj is not a pole of ℘

′(z)), since

2 We say that two complex numbers a and b are congruent modulo L if a − b ∈ L.
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℘′(z) only has poles at periods. Combining these observations we see that for any of the
half-periods νj ,

℘′(νj) = −℘
′(−νj) = −℘

′(−νj + 2νj) = −℘
′(νj). (4.24)

Thus ℘′(νj) = 0 for j = 1, 2, 3, and in any generic fundamental parallelogram Pz0 (ω1,ω2),
the three zeros of℘′(z)will be those three points that are congruent to ν1, ν2, ν3moduloL.

The values of ℘(z) at the half-periods are also important. We denote them by
e1, e2, e3, that is,

e1 = ℘(
1
2
ω1), e2 = ℘(

1
2
ω2), e3 = ℘(

1
2
(ω1 + ω2)). (4.25)

Lemma 4.17. The numbers e1, e2, e3 are distinct and are the three roots of the cubic poly-
nomial 4x3 − g2x − g3 (where g2 and g3 are the elliptic invariants defined in (4.15)), that is,
we have the factorization

4x3 − g2x − g3 = 4(x − e1)(x − e2)(x − e3).

Proof. If we denote h(x) = 4x3 − g2x − g3, then, by (4.16),

h(ej) = h(℘(νj)) = 4℘(νj)
3 − g2℘(νj) − g3 = (℘

′(νj))
2
= 0.

Thus e1, e2, e3 are zeros of h(x). It remains to show that they are distinct. Assume by
contradiction that ej = ek for some 1 ≤ j < k ≤ 3. This would mean that the function
℘(z) − ej has a zero of order at least 2 at z = νj (since ℘

′(νj) = 0 by Lemma 4.16) and also
a zero of order at least 2 at z = νk , counting multiplicities. So in total ℘(z) − ej would
have at least 4 zeros in the fundamental parallelogram P0(ω1,ω2). This contradicts the
fact that ℘(z) is of order 2, and the proof is finished.

The definitions of e1, e2, and e3 makes it seem like they are dependent on the choice
of a fundamental pair ω1,ω2. In fact, when regarded together, they depend only on the
lattice itself, as the next result shows.

Corollary 4.18. The numbers e1, e2, e3, considered as an unordered triple of numbers, are
independent of the choice of fundamental period pair ω1,ω2. That is, if ω

′
1,ω
′
2 is another

fundamental period pair for L and e′1, e
′
2, e
′
3 are the numbers associatedwith it analogously

to e1, e2, e3, then

{e′1, e
′
2, e
′
3} = {e1, e2, e3}.

Proof. The ej are the roots of the cubic polynomial 4x
3 − g2x − g3, whose coefficients do

not depend on the choice of fundamental pair.
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4.9 ℘(z) and ℘′(z) generate all doubly periodic functions

We say that a function f is L-periodic or periodic with respect to L if any ω ∈ L is a pe-
riod of f . Our general discussion of doubly periodic functions earlier in the chapter mo-
tivated and complemented our explicit construction of the Weierstrass ℘-function, but
it seems desirable to give an explicit way to generate all doubly periodic functions with
respect to a fixed lattice L. The next two theorems give an elegant solution to this classi-
fication problem, which highlights the central role played by theWeierstrass ℘-function
in the theory of doubly periodic functions.

Theorem 4.19. Let L ⊂ ℂ be a lattice. The set of even meromorphic functions that are
periodic with respect to L coincides with the set of functions of the form

f (z) = R(℘(z)), (4.26)

where R(w) is a rational function.

Proof. If f (z) is of the form (4.26), then clearly f (z) is even,meromorphic, andL-periodic.
Conversely, let f (z) be even, meromorphic, and L-periodic. Assume that f (z) is non-
constant, since otherwise there is nothing to prove. Fix a fundamental parallelogram
P = Pz0 (ω1,ω2) that is generic for f ; as an extra precaution, choose this P in such a way
that it does not contain any points of L on its boundary (it is easy to see that this is pos-
sible). Now define the even doubly periodic function

g(z) =
∏nj=1(℘(z) − ℘(aj))
∏mk=1(℘(z) − ℘(bk))

, (4.27)

wherea1, . . . , an, b1, . . . , bm are somepoints inP thatwill be specified shortly. Theplan for
the proof is as follows:wewill findvalues for these points forwhich g(z)definedby (4.27)
has the same zeros and the same poles inℂ \L as f (z) (counting with multiplicities). We
will then show that this property implies that f (z) ≡ cg(z). Thus f (z) would be of the
form (4.26), and the claim would be proved.

To show that points a1, . . . , an, b1, . . . , bm with the desired properties exist, consider
the zeros first. The key property we need is the following claim: if the list of zeros of f (z)
in P that are not elements of L, counting with multiplicities, consists of points c1, . . . , cν,
then ν = 2n is an even number, and we can order the points in pairs c2j−1, c2j so that for
each 1 ≤ j ≤ n, c2j−1 is congruent to −c2j modulo L (that is, c2j−1 + c2j ∈ L). To prove this,
let α be any of zero of f (z) that is not in L, and let μ denote its order. We consider two
cases: first, if α is not a half-period, that is, α is not congruent to −αmodulo L, then since
f (z) is even, −α is also a zero of f (z) (and of the same order as α), so the list of zeros that
are not in L has a number β ∈ P that is congruent to −αmodulo L, is distinct from α, and
appears in the list of zeros the same number μ of times as α does. Thus we can pair up
the μ appearances of α with the μ appearances of β as required.
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Next, consider the case where α is a half-period. In that case, we claim that the mul-
tiplicity μ of α as a zero of f (z) is an even number, so the required pairing would simply
be μ/2 pairs of α, α. The justification for this claim is that α being a zero of f (z) of order
μmeans that

f (α) = f ′(α) = f ′′(α) = ⋅ ⋅ ⋅ = f (μ−1)(α) = 0, f (μ)(α) ̸= 0.

However, we also know that f is even, and therefore any derivative f (2j)(z) of f of even
order is also even, and any derivative f (2j−1)(z) of f of odd order is an odd function. Then
by a calculation similar to (4.24), taking into account that 2α ∈ L, we get that

f (2j−1)(α) = −f (2j−1)(−α) = −f (2j−1)(−α + 2α) = −f (2j−1)(α),

whence f (2j−1)(α) = 0 for j ≥ 1. Since f (μ)(α) ̸= 0, μmust be even.
Having shown that the zeros c1, . . . , cν can be matched in the way claimed above,

we now define the numbers a1, . . . , an by aj = c2j , 1 ≤ j ≤ n, that is, we include in the
list a1, . . . , an a single representative from each pair c2j−1, c2j . The numbers b1, . . . , bm are
now defined by repeating the same construction as with the zeros but for the function
1/f instead of f .

We defined the numbers a1, . . . , an and b1, . . . , bm. They were all chosen as elements
of P \ L, so that ℘(aj) and ℘(bk) are all finite complex numbers; thus the right-hand side
of (4.27) is a well-defined expression.

We now claim that g(z) has the same zeros and poles as f (z) in P \ L, counting mul-
tiplicities. Let α ∈ P \ L be a zero of f (z) of order μ. Denote by β the unique point
in P for which β is congruent to −α modulo L. Again, we consider the cases where α
is a half-period or not a half-period separately. If α is not a half-period, then by our
construction the list of numbers a1, . . . , an includes μ numbers γ that are equal to ei-
ther α or β. Each of them corresponds to a factor in the numerator of g(z) of the form
℘(z) − ℘(γ) = ℘(z) − ℘(α) = ℘(z) − ℘(β), which is a function that has simple zeros at α
and at β and no other zeros or poles in P \ L. None of the other factors in the products
that make up the numerator and denominator of g(z) have a zero or pole at α. Thus the
order of the zero of g(z) at α is μ.

In the case where α is a half-period, we have α = β. The function hα(z) = ℘(z)−℘(α)
has a double zero at α (the point z = α is a zero of hα of order at least 2, since both hα and
its derivative vanish there, but hα is a doubly periodic function of order 2, so the order
of the zero is exactly 2) and no other zeros or poles in P \ L. This function was included
μ/2 times in the product in the numerator of g(z), and again, none of the other factors
in the products in the numerator and denominator of g(z) has a zero or pole at α. So in
this case, we also have shown that the order of the zero of g(z) at α is μ.

We showed that the zeros of g(z) in P \ L match the zeros of f (z) in P \ L, with the
same multiplicities. Applying the same reasoning to the poles (that is, comparing the
zeros of 1/f (z)with those of 1/g(z)) shows that the poles of g(z) in P \ Lmatch the poles
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of f (z) in P \ L and their multiplicities. The conclusion is that the function f (z)/g(z)
is a meromorphic L-periodic function all of whose zeros and poles are elements of L.
However, such a function must be constant: for otherwise, if it had a zero of any order
at z = 0, then by periodicity it would have a zero at any ω ∈ L and therefore no poles,
and similarly, if it had a pole at z = 0, then it would have a pole at allω ∈ L and therefore
no zeros. Since we know that any nonconstant doubly periodic functionmust have both
zeros and poles, neither of those situations can occur.

To summarize, we proved that f (z) coincides with the function cg(z) for some con-
stant c, as claimed. The proof is complete.

Theorem 4.20. Let L ⊂ ℂ be a lattice. The set of meromorphic functions that are periodic
with respect to L coincides with the set of functions of the form

f (z) = R(℘(z), ℘′(z)), (4.28)

where R(ξ , ζ ) is a rational function in two variables.

Proof. If f is of the form (4.28), then it is meromorphic and L-periodic. Conversely, given
ameromorphic and L-periodic function f , decompose f (z) in the standard way as a sum
f (z) = g(z) + h(z) of an even function g(z) and an odd function h(z), where

g(z) = f (z) + f (−z)
2
, h(z) = f (z) − f (−z)

2
.

Now note that g(z) is an even L-periodic function and therefore by Theorem 4.19 can be
represented as a rational function in ℘(z). Similarly, h(z) is an odd L-periodic function,
which means that h(z)/℘′(z) is even and L-periodic. Therefore h(z) can be represented
as ℘′(z) times a rational function in ℘(z). Combining the two representations for g(z)
and h(z) gives the desired representation for f (z).

Suggested exercises for Section 4.9. 4.8, 4.9.

4.10 ℘(z) as a conformal map for rectangles

Among the remarkable properties of the Weierstrass ℘-function, it provides a solution
to the natural geometric problem of conformally mapping a rectangle onto a half-plane.
This happens in the case where the associated lattice L is a rectangular lattice, that is,
when it is of the form L = ℤ + iAℤ for a real parameter A > 0. The precise result is as
follows.

Theorem 4.21. Let A > 0, let L = ℤ + iAℤ be a rectangular lattice, and let ℘(z) = ℘(z; L)
be the associated Weierstrass elliptic function. The map ℘(z) restricted to the rectangle
R = (0, 12 ) × (0,

1
2A) is a conformal map from R to the lower half-plane {z : Im(z) < 0}.
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Proof. Denote by R′ the closed rectangle [0, 12 ] × [0,
1
2A]. First, note that the restriction

of ℘(z) to R′ is injective. Indeed, α = 0 is the unique point in R′ that gets mapped to∞.
On the other hand, if α ∈ R′ \ {0}, then the function ℘(z)−℘(α) has simple zeros at α and
1 + iA − α and (since ℘(z) is a doubly periodic function of order 2) at no other points in
the fundamental parallelogram P0(1, iA). When α = (1+ iA)/2, those two points coincide,
and for any other α ∈ R′ \ {0}, the second zero 1 + iA − α is not in R′. This proves the
injectivity claim. It follows that ℘(z)maps R conformally to its image ℘(Ω).

To understand why the image ℘(Ω) is the lower half-plane, it is helpful to examine
the behavior of ℘(z) as one traverses the boundary 𝜕R of the rectangle in an anticlock-
wise direction, starting at 0. Denote e1 = ℘(1/2), e2 = ℘(iA/2), e3 = ℘((1 + iA)/2) as
in (4.25). We claim that 𝜕R is mapped under ℘(z) to the real line (including the point
at infinity, the image of 0). More specifically, the numbers e1, e2, e3 have the ordering
−∞ < e2 < e3 < e1 < ∞, and as z moves successively along the four boundary edges
[0, 1/2], [1/2, (1 + iA)/2], [(1 + iA)/2, iA/2], and [iA/2, 0],3 the image ℘(z) descends from
+∞ to e1 (the image of the first boundary edge), then from e1 to e3 (second boundary
edge image), then from e3 to e2 (third boundary edge image), and finally from e2 to −∞
(fourth boundary edge image).

This geometric picture is easily justified by the following list of simple claims.
1. ℘(z) takes real values on the segment (0, 1/2).

Proof. This is immediate from (4.11).

2. ℘(z) is decreasing on (0, 1/2].

Proof. The derivative ℘′(z) is nonzero everywhere in R′ except at the three points
1/2, (1+ iA)/2, and iA/2. Thus ℘(t) regarded as a function of a real variable t ∈ (0, 1/2]
is monotone. It must be decreasing rather than increasing, since the Laurent expan-
sion (4.10) around ω = 0 implies that

lim
t↘0
℘(t) = +∞

(in the sense of ordinary real limits from calculus).

3. ℘(z) takes real values on the segment [1/2, (1 + iA)/2].

Proof. By representation (4.12) for the derivative of ℘(z), we have

℘′(
1
2
+ it) = −2 ∑

m,n∈ℤ

1
( 12 + it −m − iAn)

3
.

3 Here we use the notation [a, b] to denote the directed straight line segment connecting a point a to
another point b. Similarly, the notations (a, b), (a, b], and [a, b) are further used to denote open and half-
open straight line segments, consistently with the usual notation for intervals from real analysis.
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= −2 ∑
n∈ℤ

∞

∑
m=1
[

1
( 12 + it −m − iAn)

3
+

1
( 12 + it − (1 −m) − iAn)

3
]

= −2 ∑
n∈ℤ

∞

∑
m=1
[

1
( 12 −m + i(t − An))

3
+

1
(m − 1

2 + i(t − An))
3
].

This represents ℘′( 12 + it) as a sum of terms of the form

1
(x + iy)3

+
1

(−x + iy)3
= −2i y(3x

2 − y2)
(x2 + y2)3

over pairs x = 1/2 −m and y = t − An (both real numbers if t is assumed real). Thus
we see that ℘′(z) takes imaginary values on the segment [1/2, (1 + iA)/2]. Since we
already know that ℘(1/2) is a real number, we get that

℘(1/2 + it) = ℘(1/2) +
1/2+it

∫
1/2

℘′(z) dz

is also real for 0 ≤ t ≤ A.

4. ℘(z) is decreasing on the segment [1/2, (1 + iA)/2].

Proof. Again, from the knowledge of where ℘′(z) takes nonzero values we conclude
that the function t → ℘(1/2 + it) is monotone for 0 ≤ t ≤ A. Again, it is not only
monotone but in fact must be decreasing: if it were increasing, then ℘(1/2 + it) for
0 ≤ t ≤ A would be a real number in (e1,∞). That is impossible, since as discussed
above, ℘(z) is injective on the closed rectangle R′, and the real numbers in (e1,∞)
were already shown to belong to the image of the interval (0, 1/2).

Using similar arguments, it is not difficult to verify the following additional claims:
5. ℘(z) takes real values on the segment [(1 + iA)/2, iA/2].
6. ℘(z) is decreasing on the segment [(1 + iA)/2, iA/2].
7. ℘(z) takes real values on the segment [iA/2, 0).
8. ℘(z) is decreasing on the segment [iA/2, 0).

This completes the explanation about the mapping properties of ℘(z) on the boundary
of R. Now since ℘(z) maps the rectangle boundary to the real axis and is injective on
R′, we see that R itself must get mapped either to the lower half-plane or to the upper
half-plane. Appealing again to the Laurent expansion (4.10), we see that for z in R that is
close to 0 (for example, z of the form ϵ(1 + i)where ϵ > 0 is small), ℘(z) lies in the lower
half-plane, so ℘(R) is the lower half-plane, as claimed.

Fig. 4.4 illustrates how theWeierstrass ℘-function associated with the square lattice
ℤ2 can be used to conformally map a square to the unit disc.
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Figure 4.4: For the square latticeℤ2 = ℤ + iℤ, if we take ψ to be any conformal map from the lower half-
plane to the unit disc, then the map z → ψ ∘ ℘(z)maps the square (0, 12 ) × (0,

1
2 ) conformally onto the unit

disc. The figure shows the action of the map in the case where ψ(w) = − 1+i√2
w+4i
w−4i .

4.11 The discriminant of a cubic polynomial

The discriminant of a complex polynomial p(z) = anz
n + ⋅ ⋅ ⋅ + a1z + a0 of degree n ≥ 1

is defined by

Δp = a
2n−2
n ∏

1≤i<j≤n
(zi − zj)

2, (4.29)

where z1, . . . , zn denote the roots of p(z), counting multiplicities. Note that this defini-
tion does not depend on the ordering of the roots. Trivially, p(z) has multiple (that is,
nonsimple) zeros if and only if Δp = 0. What in addition makes Δp a useful quantity is
that it is of the form a2n−2n multiplied by a symmetric polynomial in the zeros of p(z),
and therefore, by a standard result from algebra, it can be expressed as a polynomial in
the coefficients of p(z), providing an explicit criterion for checking if a polynomial has
multiple zeros. For example, for a quadratic polynomial p(z) = az2 + bz + c, we learn in
basic algebra that Δp = b

2 − 4ac. The derivation is trivial.
If p(z) = 4z3 − az− b is a cubic polynomial given in the “reduced” formwe are using

for our elliptic curves discussion, then the formula expressing the discriminant in terms
of the coefficients a, b is less well known, and its derivation is a bit less trivial.

Lemma 4.22. The discriminant of the cubic p(z) = 4z3 − az − b is given by

Δp = 16(a
3 − 27b2). (4.30)

We note that in some books, the discriminant of a cubic polynomial 4z3 − az − b =
4(z − z1)(z − z2)(z − z3) is defined as 16(z1 − z2)

2(z1 − z3)
2(z2 − z3)

2, which differs from
our definition (4.29), the usual definition for general degree n polynomials, by a factor
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of 1/16. For that alternative scaling, the correct formula would be Δp = a
3 − 27b2. See

also (4.35).

Proof of Lemma 4.22. Denote the zeros of p(z) by z1, z2, z3. By comparing coefficients of
powers of z in the equation

p(z) = 4z3 − az − b = 4(z − z1)(z − z2)(z − z3)

we get the relations

μ1 := z1 + z2 + z3 = 0,

μ2 := z1z2 + z1z3 + z2z3 = −
a
4
,

μ3 := z1z2z3 =
b
4
.

Next, differentiate p(z) to get that

p′(z) = 4(z − z1)(z − z2) + 4(z − z1)(z − z3) + 4(z − z2)(z − z3),

so in particular

p′(z1) = 4(z1 − z2)(z1 − z3),

p′(z2) = 4(z2 − z1)(z2 − z3),

p′(z3) = 4(z3 − z1)(z3 − z2).

Therefore

Δp = −4p
′(z1)p
′(z2)p
′(z3).

On the other hand, p′(z) = 12z2 − a, so we get that

Δp = −4(12z
2
1 − a)(12z

2
2 − a)(12z

2
3 − a)

= −4[123z21z
2
2z
2
3 − 12

2a(z21z
2
2 + z

2
1z
2
3 + z

2
2z
2
3) + 12a

2(z21 + z
2
2 + z

2
3) − a

3]. (4.31)

In this expansion, we have that

z21z
2
2z
2
3 = μ

2
3 =

b2

16
, (4.32)

z21 + z
2
2 + z

2
3 = (z1 + z2 + z3)

2 − 2(z1z2 + z1z3 + z2z3) = 0 − 2μ2 =
a
2
. (4.33)

This also gives that
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a2

4
= 4μ22 = 4(z1z2 + z1z3 + z2z3)

2

= 4(z21z
2
2 + z

2
1z
2
3 + z

2
2z
2
3) + 8z1z2z3(z1 + z2 + z3),

which yields the relation

z21z
2
2 + z

2
1z
2
3 + z

2
2z
2
3 =

a2

16
. (4.34)

Substituting (4.32), (4.33), and (4.34) into representation (4.31) for Δp gives finally that

Δp = −4(12
3 b2

16
− 122 a

3

16
+ 12a

3

2
− a3) = 16(a3 − 27b2),

as claimed.

4.12 The discriminant of a lattice

Let L ⊂ ℂ be a lattice, and let g2, g3 be the associated elliptic invariants defined in (4.15).
The quantity

Δ = g32 − 27g
2
3 (4.35)

is called the discriminant of the lattice L. In the context of the theory of modular forms,
which is the subject of the next chapter, it is called themodular discriminant. Note that,
as we see from (4.30), Δ is simply the discriminant of the cubic polynomial 4z3 − g2z− g3
(with the different scaling convention mentioned after the statement of Lemma 4.22).
By (4.29), (4.30), and Lemma 4.17 it can also be rewritten as

Δ = 16(e1 − e2)
2(e1 − e3)

2(e2 − e3)
2, (4.36)

where e1, e2, e3 are given by (4.25). We also get the following conceptually important re-
sult.

Corollary 4.23. The discriminant Δ of a lattice L is always nonzero.

4.13 The J -invariant of a lattice

Another important parameter associated with a lattice L is known as Klein’s J -inva-
riant. It is defined by

J =
g32
Δ
=

g32
g32 − 27g

2
3
,
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which evaluates to a complex number since Δ is never 0. Klein’s J -invariant plays an
important role in the theory of modular functions andmodular forms, and wewill have
more to say about it later; see Sections 5.9–5.10.

4.14 The modular variable τ: from elliptic functions to elliptic
modular functions

Up until now, we considered the Weierstrass elliptic function associated with a specific
fixed lattice L and denoted it by ℘(z), letting the dependence on L remain implicit in the
notation. However, it turns out that there is much to gain from considering the lattice it-
self as another variable the Weierstrass ℘-function and other related quantities depend
on. Moreover, while a priori it might seem that “functions of a lattice-valued variable”
are a cumbersome notion to attempt to study, it turns out that we can encode the depen-
dence on the lattice in a natural waywith a single complex variable, called themodular
variable and denoted τ. From this new point of view, the function ℘(z) (which, as we
have also said, can sometimes be denoted ℘(z; L)) becomes a function of two complex
variables, now denoted ℘(z; τ). Historically, the functions that we now refer to as elliptic
functions were known as ellipticmodular functions to signify this double dependence
on the variable z, with respect to which they are doubly periodic, and the variable τ, the
dependence on which has its own interesting flavor, captured by the term “modular.”
This term seems to be mostly used in older textbooks.

To explain the connection between L and τ, note that our convention to represent
lattices as L = ω1ℤ + ω2ℤ involve certain degrees of freedom that are not interesting
in the sense that they can easily be eliminated and play no further role in the analysis.
First, the ordering of ω1,ω2 is immaterial; that is, the ordered pair ω1,ω2 represents
the same lattice as ω2,ω1. We can get rid of this double representation of lattices by
considering the pair ω1,ω2 to come ordered in such a way that the parallelogram with
vertices 0,ω1,ω1 +ω2,ω2 is “oriented in the positive direction.” Equivalently, this means
that their quotient ω2/ω1 lies in the upper half-plane.

Second, lattices can also be scaled and rotated; that is, a pair ω1,ω2 representing
the lattice L = ω1ℤ + ω2ℤ can be replaced by ω′1 = λω1, ω

′
2 = λω2 for some scalar

λ ̸= 0 to obtain the lattice L′ = ω′1ℤ + ω
′
2ℤ. Although L

′ are L are technically distinct
lattices, from the point of view of complex analysis, they are equivalent in the sense
that the Riemann surfacesℂ/L andℂ/L′ are conformally equivalent via the scalingmap
z → λz; meromorphic functions that are L-periodic are trivially in bijection with those
that are L′-periodic; the Weierstrass ℘-function associated with L is in a simple relation
to the ℘-function associated with L′; etc. Formally, we say that lattices L, L′ related by
L′ = λL for some λ ̸= 0 are homothetic. The above remarks can be summarized as
saying that our main interest is in understanding lattices up to the equivalence relation
of homothety.
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For this reason, we now define the modular variable

τ = ω2
ω1
,

aparameter taking values in theupperhalf-planeℍ, andwhichwe consider to be canon-
ically associated with the lattice

Lτ = ℤ + τℤ.

As remarkedabove, this lattice is equivalent via a rescaling operation as described above
to the lattice

L = ω1ℤ + ω2ℤ.

With this notation, the original lattice L and fundamental period pair ω1,ω2 need not
play any further role in the analysis.

As we will see in the next chapter, the transition to the parameterization of lattices
using the modular variable τ will reveal many additional layers of depth and beauty
to the theory and open up a new complex-analytic area to explore, that of the modu-
lar surface and various families of meromorphic functions that are associated with it,
which are known asmodular functions andmodular forms.

4.15 The classification problem for complex tori

You might have noticed by now, or seen it pointed out somewhere, that the doubly pe-
riodic functions we have been studying can be naturally identified with functions on
a quotient space ℂ/L in which we consider points z, z′ as equivalent if they are con-
gruent modulo the lattice L. This quotient space (which is indeed a quotient group) is
topologically homeomorphic to the torus 𝕋2 = S1 × S1, a compact surface. It also comes
naturally equipped with the structure of a Riemann surface, inherited from ℂ (in this
book, we will not discuss the formal details of how this structure is set up, but at an in-
tuitive level, it is not hard to appreciate that quotienting by a discrete subgroup leaves
the complex structure “locally” similar to that of a normal complex region Ω), so when
thought of in that way, we refer to it as a complex torus. The doubly periodic functions
that are periodic with respect to the lattice L, which are the meromorphic functions on
ℂ that “respect” the equivalence relation of congruence modulo the lattice, can be seen
from this point of view as simply meromorphic functions on the complex torus ℂ/L. So
the theory of doubly periodic functions is precisely the study of the complex-analytic
structure of complex tori.

This way of thinking takes us back to the discussion of conformal mappings from
Chapter 3 and the problem of classifying complex regions, or in the current context Rie-
mann surfaces, up to conformal equivalence. Each lattice L gives rise to its own complex
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torus, but what can be said about how to decide when one complex torusℂ/L is biholo-
morphic to another complex torus ℂ/L′?4 (Note that there is no hope for a complex
torus to be biholomorphic to anything that is not topologically a torus, such as an ordi-
nary complex region Ω ⊂ ℂ, since conformal equivalence is stronger than topological
homeomorphism.) Thuswe arrive at the classification problem for complex tori. This
consists broadly of several related questions:
1. First, what are necessary and sufficient conditions that two lattices L, L′ ⊂ ℂ must

satisfy for the biholomorphism relation ℂ/L ≅ ℂ/L′ to hold?
2. Second, can we find a nicely behaved set of representatives covering all conformal

equivalence classes for the tori ℂ/L, with each class being covered exactly once?
3. Third, can this set of representatives be parameterized using a canonical “invariant”

of some kind to make its description even simpler? (What this means exactly will
become clearer later.)

Before you continue reading, pause for a minute to think what you might expect a solu-
tion to this classification problem to look like, keeping in mind some of the phenomena
we discussed in Chapter 3, such as the Riemannmapping theorem and the classification
of annuli and doubly connected regions up to conformal equivalence.

We will have to develop some additional theory to fully answer these questions. As
we will see, the answers are related to the theory of modular forms, discussed in the
next chapter. For now, we can formulate an initial attempt at a solution that answers
the first of the questions formulated above. The remaining questions are answered in
Sections 5.5 and 5.11.

Theorem 4.24 (Classification of complex tori: first part). Let L, L′ ⊂ ℂ be two lattices in
the complex plane.
(a) The complex tori ℂ/L and ℂ/L′ are biholomorphic as Riemann surfaces if and only

if the lattices L and L′ are homothetic.
(b) If L, L′ are given explicitly as

L = ω1ℤ + ω2ℤ, L′ = ω′1ℤ + ω
′
2ℤ, (4.37)

in terms of respective fundamental period pairs (ω1,ω2), (ω
′
1,ω
′
2) for the two lattices,

then the homothety condition in part (a) is satisfied if and only if

ω′2
ω′1
=
aω2 + bω1
cω2 + dω1

for some a, b, c, d ∈ ℤ such that ad − bc = ±1.

4 When talking about Riemann surfaces, it seems a bit more customary to use the term “biholomorphic”
rather than “conformally equivalent”, although the two terms are generally regarded as synonymous.
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Proof. (b) It is immediate from Lemma 4.1 that L and L′ given in (4.37) are homothetic
if and only if

ω′1 = λ(αω1 + βω2),

ω′2 = λ(γω1 + δω2)

for some complex number λ ̸= 0 and integers α, β, γ, δ ∈ ℤ such that αδ − βγ = ±1. It is
easy to see that this is equivalent to the condition described in the theorem.

(a) We start by proving the “if” part of the claim. Assume that L′ = λL with λ′ ̸= 0.
Define the map f : ℂ/L→ ℂ/L′ by

f (z + L) = λz + L′,

that is, the map taking the coset z + L in the quotient group ℂ/L to the coset λz + L′

in the quotient group ℂ/L′. We claim that f is well-defined (i. e., that the definition is
independent of the choice of a member z of the coset). Indeed, if z1, z2 are members of
the same coset of ℂ/L, that is, z1 + L = z2 + L, then

λz1 + L
′ = λz1 + λL = λ(z1 + L) = λ(z2 + L) = λz2 + L

′,

so λz1 and λz2 are in the same coset of ℂ/L
′.

It is easily checked that this map also respects the Riemann surface structure of
the quotient groups ℂ/L and ℂ/L′, that is, that it is holomorphic. Applying the same
reasoning with the roles of L and L′ swapped, the map g : ℂ/L′ → ℂ/L defined by

g(w + L′) = λ−1w + L

is a well-defined holomorphic map ofℂ/L′ intoℂ/L, and trivially g and f are inverse to
each other, thus the two surfaces are biholomorphic.

Now we prove the “only if” part, which is the less obvious part. Assume that ℂ/L ≅
ℂ/L′ (meaning that the two tori are biholomorphic), and let f : ℂ/L→ ℂ/L′ be a biholo-
morphism. We can assume without loss of generality that f maps the zero coset 0 + L to
the zero coset 0 + L′ (otherwise, replace f with its composition with a translation map
z + L′ → z + α + L′ for a suitable α). Motivated by the proof of the “if” part above, it
seems natural to ask whether f can be represented as a map of cosets inherited from
an “ordinary” complex-valued function of a complex-valued parameter. In other words,
we look for an entire function f̃ : ℂ→ ℂ for which

f (z + L) = f̃ (z) + L′ (4.38)

for all z ∈ ℂ. Schematically, it is helpful to think of such f̃ as the “solution” to the problem
of completing the dashed line in the commutative diagram
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ℂ
f̃
→ ℂ

φL

↑↑↑↑↑↑↑↑↑↓

↑↑↑↑↑↑↑↑↑↓
φL′

ℂ/L
f
→ ℂ/L′

where φL : ℂ→ ℂ/L and φL′ : ℂ→ ℂ/L′ denote the quotient maps associated with the
quotient groups ℂ/L and ℂ/L′, respectively. That is, φL and φL′ are given by

φL(z) = z + L, φL′ (w) = w + L′.
If you have studied topology or other areas ofmathematicswhere such diagrams appear,
you are probably aware that the question of when we can “solve” such an equation in
the unknown map is a rather subtle one in general; in our particular situation, it will
not be very hard, fortunately. If such f̃ exists, it is often referred to as a lifting of f (with
respect to the quotienting maps φL, φL′ that “descend” from the “upstairs” part of the
diagram to the “downstairs” part).

Now assume that such f̃ can be shown to exist—we will prove this shortly. Since
f (0 + L) = 0 + L′, we must have f̃ (0) ∈ L′, and again we may assume without loss of
generality that f̃ (0) = 0 by replacing f̃ by its composition with translationw → w − f̃ (0)
if necessary.

The function f̃ is entire by assumption. We claim that it is in fact a conformal au-
tomorphism of ℂ. The reason is that if g : ℂ/L′ → ℂ/L denotes the inverse map to
f , then the same assumption we made above about the existence of a lifting for f also
implies that there exists a lifting for g, that is, an entire function g̃ : ℂ → ℂ such that
g(w + L′) = g̃(w) + L for all w ∈ ℂ. Then it is easy to see that the fact that f and g are
inverse to each other or, in other words, that f ∘ g is the identity function, together with
the normalization f̃ (0) = 0 = g̃(0), implies also that the composition f̃ ∘ g̃ of the lifted
maps coincides with the identity function at least locally in a neighborhood of 0; and
similarly for g̃ ∘ f̃ . Therefore by analytic continuation in fact f ∘ g and g ∘ f both coincide
with the identity function globally on all of the complex plane. Thus we see that f̃ and g̃
are inverse maps, and thus f̃ is an automorphism, as claimed.

Now we can apply the classification theorem for automorphisms of the complex
plane (Theorem 3.3) and conclude that f̃ (z) is of the form f̃ (z) = λz+ bwith λ ̸= 0. In our
case, f̃ (0) = 0, so b = 0 and f̃ (z) = λz. In that case, for any ω ∈ L, we have

L′ = 0 + L′ = f (0 + L) = f (ω + L) = f̃ (ω) + L′ = λω + L′,

so λω ∈ L′. This proves that λL ⊆ L′. Applying the same reasoning to the inverse map
g̃(w) = f̃ −1(w) = λ−1w gives the opposite inclusion λL ⊇ L, so finally we get that L′ = λL,
as claimed.

It remains to prove the existence of the lifting f̃ of f . The reason why it exists is
fundamentally a topological one and has to do with the notion of a coveringmap. I will
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sketch the argument, which is somewhat abstract and uses some background from the
theory of Riemann surfaces, and then also provide a self-contained proof that manages
to avoid any Riemann surface machinery.

The abstract explanation is as follows. In a general version of this situation, visual-
ized by the diagram

X
f̃
→ Y

φ
↑↑↑↑↑↑↑↑↑↓

↑↑↑↑↑↑↑↑↑↓
ψ

U
f
→ V

in which X , Y ,U ,V are Riemann surfaces and φ : X → U and ψ : Y → V are covering
maps, a theorem from Riemann surfaces says that the lifting f̃ is guaranteed to exist if
the Riemann surface X at the top-left corner of the diagram is simply connected. (In that
case, X is called the universal cover or universal covering space of U .) Fortunately,
we are in precisely that scenario. So if you are familiar with that result, then the proof
is complete, and no more effort is required.

Now for the self-contained argument: the function f ∘φL is a holomorphicmap from
ℂ toℂ/L′. Let z0 ∈ ℂ. By the definition of theRiemann surface structure onℂ/L

′, in some
open disc Uz0 centered at z0, this map is represented by an ordinary holomorphic map
gz0 : Uz0 → ℂ such that f ∘ φL = φL′ ∘ gz0 , that is, f (z + L) = gz0 (z) + L′ for all z ∈ Uz0 .

It is also easy to see that any other holomorphic map h : Uz0 → ℂ representing f in
such a way will have the form

h(z) = gz0 (z) + ω
′ (4.39)

for someω′ ∈ L′. This is because the assumption on gz0 and h implies that h(z)−gz0 (z) ∈
L′ for any z ∈ Uz0 , so (4.39) has to hold for some ω

′ ∈ L′ that might depend on z; but
z → h(z) − gz0 (z) is a continuous function of z, Uz0 is connected, and L

′ is discrete, so in
fact the ω′ has to be the same for all z ∈ Uz0 .

Observe further that for any h as above, again by (4.39) we have h′ ≡ g′z0 , that is,
the derivative g′z0 (z) is actually independent of the choice of gz0 from the set of possible
choices. By similar reasoning it is also easy to check that if z0, z1 ∈ ℂ have the property
that Uz0 ∩ Uz1 ̸= 0, then g

′
z0 and g

′
z1 agree on Uz0 ∩ Uz1 . We can therefore define a global

(entire) function H : ℂ → ℂ such that H|Uz0 ≡ g
′
z0 for each of the local representation

functions gz0 .
Now let f̃ : ℂ → ℂ be the primitive of H satisfying f̃ (0) = 0 (guaranteed to exist by

Corollary 1.25). We claim that f̃ satisfies the claimed property (4.38) of being a lifting for
f . This equation is true for z = 0 by definition. Moreover, assume that we already know
that f (z0 + L) = f̃ (z0) + L

′ for some z0 ∈ ℂ. We claim that this implies the same property
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f (z + L) = f̃ (z) + L′ for all z ∈ Uz0 (the open disc centered at z0 as above). This is because
in that disc we can write

f (z + L) = (f ∘ φL)(z) = (φL′ ∘ gz0 )(z) = φL′(gz0 (z))
= φL′(gz0 (z0) +

z

∫
z0

g′z0 (w) dw)

= φL′(gz0 (z0) +
z

∫
z0

H(w) dw)

= φL′(gz0 (z0) + f̃ (z) − f̃ (z0))
= φL′(gz0 (z0)) + φL′(f̃ (z)) − φL′(f̃ (z0))
= f (φL(z0)) + φL′(f̃ (z)) − φL′(f̃ (z0)) = φL′(f̃ (z)) = f̃ (z) + L′,

where we use the fact that φL is a group homomorphism (and use “+” to denote addition
both in ℂ and in the quotient group ℂ/L′).

The conclusion from the above discussion is that if we define the set

E = {z ∈ ℂ : (f ∘ φL)(z) = (φL′ ∘ f̃ )(z)}
(the set of points for which (4.38) holds), then E is nonempty (it contains z = 0) and open.
Moreover, E is a closed set: if (zn)

∞
n=1 is a sequence of points in E and zn → ξ as n →∞,

then

(f ∘ φL)(ξ) = (f ∘ φL)( limn→∞
zn) = lim

n→∞
(f ∘ φL)(zn)

= lim
n→∞
(φL′ ∘ f̃ )(zn) = (φL′ ∘ f̃ )( limn→∞

zn) = (φL′ ∘ f̃ )(ξ),
so ξ is in E as well.

We showed that E ⊂ ℂ is closed and open (that is, it is a “clopen” set in topology
jargon) and is nonempty. The complex plane ℂ is connected, which means that its only
clopen subsets are itself and the open set. Thus E = ℂ. This establishes the lifting prop-
erty of f̃ and finishes the proof.

Suggested exercises for Section 4.15. 4.10.

4.16 Equivalence between complex tori and elliptic curves

At the beginning of this chapter, we presented the topic of elliptic curves as motivation
for the study of doubly periodic functions, but until now, we have not explained the
preciseway inwhich the study of doubly periodic functions is helpful for understanding
the structure of elliptic curves. In fact, the connection between the two subjects is very
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close and can be summarized by the slogan “elliptic curves are equivalent to complex
tori.” The key lies in the differential equation (4.16) satisfied by ℘(z), which implies that
for a given lattice L ⊂ ℂ with invariants g2, g3, the point (x, y) = (℘(z), ℘

′(z)) lies on the
elliptic curve ℰ described in (4.2). Moreover, the map z → (℘(z), ℘′(z)) is, when properly
interpreted, a biholomorphism and an isomorphism of groups between the complex
torus ℂ/L and the elliptic curve ℰ .

The following result gives a fuller description of this intriguing and highly nonob-
vious correspondence between two classes of objects.

Theorem 4.25 (Equivalence between complex tori and elliptic curves). Let L ⊂ ℂ be a lat-
tice with associated invariants g2 and g3. Let ℰ = ℰ(g2, g3) denote the elliptic curve

ℰ : y2 = 4x3 − g2x − g3

over the complex numbers, including the point at∞. Then:
1. The elliptic curve ℰ is nondegenerate and is equipped in a natural way with the struc-

ture of a compact Riemann surface.
2. The map φ : ℂ/L→ ℰ defined by

φ(z + L) = {
(℘(z), ℘′(z)) if z ̸∈ L,
∞ if z ∈ L,

is a biholomorphism of Riemann surfaces.
3. If ℰ is also regarded as an abelian group with the group law defined as in Section 4.1,

andℂ/L is viewed as a quotient group ofℂ, then φ is a group isomorphism in addition
to being a biholomorphism.

4. The association L → ℰ(g2, g3) is a bijection from the set of lattices onto the set of
nondegenerate elliptic curves over ℂ.

The upshot of this result is the remarkable fact that the study of elliptic curves over
ℂ coincides (albeit in a rather nontrivial way) with the study of complex tori ℂ/L. In
particular, we get that any elliptic curve is topologically a torus, which does not seem
obvious from the definition.Moreover, the problemof classifying elliptic curves up to bi-
holomorphism reduces to the already-discussed classification problem of complex tori.

The proof of Theorem 4.25 is beyond the scope of this book and requires a more
involved discussion of the group structure and Riemann surface structure on elliptic
curves. For the details, see [61, Ch. 6].
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Exercises for Chapter 4

4.1 Prove that a topologically discrete additive subgroup of ℂ must be the zero sub-
group of the form ωℤ for some ω ∈ ℤ or of the form ω1ℤ + ω2 with ω1,ω2 linearly
independent over the real numbers.

4.2 Prove Lemma 4.9.
4.3 Identify the precise region of convergence of the Laurent expansion (4.14) and

prove the necessary bounds that justify that in that region the rearrangement in
the proof of Theorem 4.11 is valid.

4.4 To practice the technique demonstrated at the beginning of Section 4.7 that led to
the Eisenstein series identities (4.19)–(4.21), use your favorite computer algebra sys-
tem to extract additional Laurent expansion coefficients from the differential equa-
tions (4.16) and (4.18) and see what kinds of explicit identities you get.

4.5 Try to apply the method of proof of Proposition 4.14 by equating the coefficients
of z2n in the Laurent expansions for both sides of (4.16) instead of (4.18). Do you get
any new identities involving the Eisenstein series?

4.6 This exercise explores an alternative and more direct method for proving the re-
currence (4.22), which was found by Zagier [74].
a) To illustrate the idea behind the method in a simple example, consider the bi-

variate rational function

R(s, t) = 1
st3
+

1
2s2t2
+

1
s3t
.

Check that R(s, t) satisfies

R(s, t) − R(s + t, t) − R(s, s + t) = 1
s2t2
. (4.40)

b) Sum both sides of (4.40) over all integer pairs s, t ≥ 1 and perform a bit of
creative rearrangement of terms to conclude that

ζ (4) = 2
5
ζ (2)2

(where ζ (s) is the Riemann zeta function). This is a nice identity in that for
example it makes it possible to deduce Euler’s identity ζ (4) = π4

90 from its easier
cousin ζ (2) = π2

6 .
c) Show that ifwe sum the sides of (4.40) instead over all pairs of complex numbers

s, t in the “half-lattice”

L+ = {pω1 + qω2 : p, q ∈ ℤ with p ≥ 1 or [p = 0 and q ≥ 1]},

then by an analogous calculation we in fact obtain identity (4.19) relating the
Eisenstein series G4 and G8, which is the case k = 4 of (4.22).
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d) Generalizing the idea above, let k ≥ 2 and define

Rk(s, t) =
1

st2k−1
+
1
2

2k−2
∑
r=2

1
srt2k−r
+

1
s2k−1t

=
1

st2k−1
+

1
s2k−1t
+

1
2s2k−2t2k−2

⋅
s2k−3 − t2k−3

s − t
.

Show that Rk(s, t) satisfies the identity

Rk(s, t) − Rk(s + t, t) − Rk(s, s + t) =
k−1
∑
j=1

1
s2jt2k−2j

. (4.41)

(To practice your computer algebra skills and save yourself a tedious calcula-
tion, see if you can get the computer to prove this for you!)

e) Show that summing both sides of (4.41) over all integer pairs s, t ≥ 1 yields the
recurrence relation

ζ (2k) = 2
2k + 1

k−1
∑
j=1

ζ (2j)ζ (2k − 2j) (k ≥ 2), (4.42)

satisfied by the values of the Riemann zeta function at positive even integers.
f) Show that if we assume that ζ (2) = π2

6 , then (4.42), togetherwith standard prop-
erties of the Bernoulli numbers discussed in Exercise 1.15, can be used to give
a new proof by induction of formula (2.10) from Chapter 2.

g) Finally, show that summing both sides of (4.41) over all complex numbers s, t
in the half-lattice L+ as in part c) above gives exactly (4.22).

h) The above calculations highlight an interesting connection between the values
ζ (2n) and the Eisenstein series G2n, wherein the former can be viewed as a
certain limiting case of the latter. Can you make this notion more precise? See
Section 5.7 for additional clues.

4.7 The Eisenstein series are known to satisfy other summation identities. As an exam-
ple (taken from [57]), by extending Zagier’s method described in Exercise 4.6, or in
any other way, prove the identity

G6n+2 =
1

6n + 1
⋅
(4n + 1)!
((2n)!)2

n
∑
k=1

( 2n2k−1)

( 6n
2n+2k−1)

G2n+2kG4n−2k+2.

4.8 (a) Prove the following addition theorems for theWeierstrass ℘-function and its
derivative:

℘(z + w) = 1
4
(
℘′(z) − ℘′(w)
℘(z) − ℘(w)

)
2

− ℘(z) − ℘(w), (4.43)
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℘′(z + w) = − 1
4
(
℘′(z) − ℘′(w)
℘(z) − ℘(w)

)
3

+
1

(℘(z) − ℘(w))3

× [(℘(z)3℘′(z) − ℘(w)3℘′(w))

− 2(℘(z)3℘′(w) − ℘(w)3℘′(z))
+ 3℘(z)℘(w)(℘(z)℘′(w) − ℘(w)℘′(z))]. (4.44)

Guidance. It may be useful to note that assuming (4.43), the second iden-
tity (4.44) is equivalent to the determinantal identity



1 1 1
℘(z) ℘(w) ℘(z + w)
℘′(z) ℘′(w) −℘′(z + w)



= 0.

(b) Use (4.43)–(4.44) together with the fact that the Weierstrass ℘-function and its
derivative parameterize the elliptic curve (4.2) to prove that formulas (4.3)–
(4.4) define a valid group addition law on the elliptic curve ℰ in (4.2).

4.9 Prove the duplication formula

℘(2z) = 1
4
(
12℘(z)2 − g2

2℘′(z)
)
2

− 2℘(z).

4.10 (a) Given a lattice L ⊂ ℂ, identify the complex numbers λ for which λL = L.
(b) Given a lattice L ⊂ ℂ, find all the conformal automorphisms of the complex

torus ℂ/L.



5 Modular forms
There are five elementary arithmetical operations: addition, subtraction, multiplication, division,
and modular forms.

Martin Eichler1

5.1 Motivation: functions of lattices

Our investigations of elliptic functions in the previous chapter gave rise to a host of in-
teresting quantities associated with a lattice L ⊂ ℂ; among them, the Eisenstein series
G2k , modular discriminant Δ, and Klein’s J -invariant. As we discussed in Section 4.14,
these quantities can be viewed as functions of the modular variable τ that we use to pa-
rameterize (up to a trivial scaling operation) the space of lattices, associating it canoni-
cally with the lattice Lτ = ℤ + τℤ. Moreover, we saw that these functions satisfy inter-
esting identities, such as the relations G8 =

3
7G

2
4, G10 =

5
11G4G6, and the more general

recurrence relation (4.22). As we will see a bit later (Section 5.7), these types of complex-
analytic identities encode identities of a purely number-theoretic nature; for example,
the relation just mentioned between G8 and G

2
4 is equivalent to the curious identity

σ7(n) = σ3(n) + 120
n−1
∑
k=1

σ3(k)σ3(n − k) (n ≥ 1), (5.1)

where σα(m) denotes the generalized sum-of-divisors function defined as

σα(m) = ∑
d|m

dα (5.2)

(the sum of the α-powers of the divisors of m). And this is just beginning to scratch the
surface of the wealth of remarkable phenomena these functions are involved in.

Fromnow onwewill make the dependence on themodular variable τmore explicit
by writing G2k(τ), Δ(τ), and J(τ) instead of G2k , Δ, and J . At the heart of the phenomena
mentioned above is the fact that the functions G2k(τ), J(τ), Δ(τ) all satisfy interesting
“transformation properties,” that is, functional equations that relate their value at τ to
their value at aτ+b

cτ+d for a certain class of Möbius transformations τ →
aτ+b
cτ+d . This fact is

essentially immediate from the definitions; we record it as a lemma.

Lemma 5.1. The functions G2k(τ) (k ≥ 2), J(τ), and Δ(τ) satisfy the functional equations

G2k(
aτ + b
cτ + d
) = (cτ + d)2kG2k(τ), (5.3)

1 This quote may be apocryphal; see the discussion in [W19].

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783110796810-006



5.1 Motivation: functions of lattices � 183

J(aτ + b
cτ + d
) = J(τ), (5.4)

Δ(aτ + b
cτ + d
) = (cτ + d)12G2k(τ) (5.5)

for all τ ∈ ℍ and a, b, c, d ∈ ℤ satisfying ad − bc = 1.

Proof. Relations (5.4)–(5.5) follow immediately from (5.3) and the definitions of J(τ) and
Δ(τ). To prove (5.3), apply definition (4.13) of G2k to write

G2k(
aτ + b
cτ + d
) = ∑
(m,n)∈ℤ2\(0,0)

1
(m + n aτ+bcτ+d )

2k

= (cτ + d)2k ∑
(m,n)∈ℤ2\(0,0)

(m(cτ + d) + n(aτ + b))−2k

= (cτ + d)2k ∑
(m,n)∈ℤ2\(0,0)

((dm + bn) + (cm + an)τ)−2k . (5.6)

Denoting new summation indices p = dm + bn and q = cm + an or, in matrix notation,

(
q
p
) = (

a c
b d
)(

n
m
) ,

we can rewrite the last expression in (5.6) as

(cτ + d)2k∑ 1
(p + qτ)2k

, (5.7)

where the summation ranges over the possible pairs (p, q) associated with (m, n) ∈ ℤ2 \
{(0, 0)} through the above linear transformation. However, the assumptions on a, b, c, d
imply that the matrix ( a c

b d ) maps ℤ
2 \ {(0, 0)} bijectively onto itself, so the summation

range is exactly ℤ2 \ {(0, 0)}, and we see that (5.7) is precisely (cτ + d)2kG2k(τ).

Coneptually, the transformation properties (5.3)–(5.5) can be regarded as a kind of
family of internal symmetries of the functions G2k(τ), J(τ), and Δ(τ). As the easy calcu-
lation above shows, these symmetries are simply a manifestation of the fact that the
functions were originally defined in terms of infinite summations over a lattice, and so
they must transform in a specific way when we switch from one fundamental period
pair ω1,ω2 generating the lattice to another. However, it turns out that functions with
similar internal symmetries arise in many other places where the reason for the sym-
metry holding is not nearly as self-evident (we will see examples of this later; see Sec-
tion 5.13). The systematic study of functions with these types of symmetries, which we
now undertake, is the beginning of the theory of modular forms, a rich subbranch of
complex analysis that has strong connections to elliptic functions, number theory, and
numerous other topics in mathematics.

Suggested exercises for Section 5.1. 5.1.
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5.2 The modular group Γ = PSL(2,ℤ)

Lemma 4.1 and Theorem 4.24(b) give conditions for two lattices to be equal and homoth-
etic, respectively. It is convenient to think about these types of equivalences in terms of
group actions. The condition for the equivalence of two latticesω1ℤ+ω2ℤ andω

′
1ℤ+ω

′
2ℤ

given in Lemma 4.1 can be interpreted as the statement that (ω1,ω2) and (ω
′
1,ω
′
2) are in

the same orbit under the action of the general linear group of order 2 overℤ defined
by

GL(2,ℤ) = {(a b
c d
) : a, b, c, d ∈ ℤ, ad − bc = ±1} .

Our interest is mainly in describing lattices up to homothety, which means that we can
consider the action of a smaller group. Let

SL(2,ℤ) = {(a b
c d
) : a, b, c, d ∈ ℤ, ad − bc = 1}

be the special linear groupof order 2 overℤ. Note that SL(2,ℤ)has a normal subgroup
{±I} of order 2 comprising the identity matrix I and its negative. We define the group Γ
as the quotient group

Γ = SL(2,ℤ)/{±I}.

This group is known as the modular group (or in certain contexts as the projective
special linear group of order 2 overℤ). The notation Γ is in common use in the theory
of modular forms. The alternative notation PSL(2,ℤ) is also sometimes used to denote
the same group.

It turns out that Γ is the “correct” group to work with for our complex-analytic pur-
poses, since it measures the precise extent of nonuniqueness when studying lattices up
to homothety and parameterizing them using the modular variable τ as discussed in
Section 4.14. This will be explained in Sections 5.3–5.4. We start however by thinking
about Γ from a more abstract group-theoretic point of view.

Workingwith quotient groups is a bit cumbersome, and in the case of Γ the quotient-
ing is quite minimal, involving the identification of pairs ±A of matrices. It is therefore
common to abuse notation slightly and still denote elements of Γ as 2 × 2 matrices with
the understanding that both such a matrix A and its negation −A represent the same
element of Γ and that all matrix equations written in this context are only assumed to
hold modulo the subgroup {±I}.2

2 Note that we can get away with this without running into trouble as long as we onlymultiplymatrices,
as opposed to adding themor performing other operations that do not behavewell under the quotienting
homomorphism.
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Three elements of Γ that play a special role in its analysis are the matrices

S = ( 0 1
−1 0
) , T = (1 1

0 1
) , U = ST = ( 0 1

−1 −1
) . (5.8)

Note that S2 = I (in the sense of the abuse of notation mentioned above), U3 = I , and
Tk = ( 1 k0 1 ), so that S, U , and T generate cyclic subgroups of Γ of orders 2, 3, and ∞,
respectively.

Theorem 5.2. The group Γ is generated by the elements T , S.

Proof. Let A = ( a b
c d ) ∈ Γ. We may assume that c ≥ 0; otherwise, replace A by −A (recall

that the two are equal as elements of Γ). We prove by induction on c that A can be rep-
resented as a product of elements of the form S and Tk , k ∈ ℤ. In the case c = 0, A is of
the form ( a b

0 d ), and since detA = ad = 1 and the entries are integers, actually

A = (1 b
0 1
) = Tb or A = (−1 b

0 −1
) = (

1 −b
0 1
) = T−b,

both of which are of the required form.
For the inductive step, we assume that the claim has been proved in the case where

the entry in the south-west corner of the matrix is strictly less than c. Dividing d by c
with remainder, we let q, r ≥ 0 denote the integers for which

d = qc + r, 0 ≤ r < c.

Then

AT−q = (a b
c d
)(

1 −q
0 1
) = (

a −aq + b
c r

) ,

and therefore

AT−qS = (aq − b a
−r c

) = (
−aq + b −a

r −c
) =: M .

Applying the inductive hypothesis to the matrixM on the right-hand side, we see that it
can be expressed as a product of group elements involving appearances of S and powers
(negative or positive) of T . ThereforeA = MSTq can also be expressed in such away, and
we are done.

5.3 The modular group as a group of Möbius transformations

In Section 4.14, we introduced the point of view whereby the space of lattices up to ho-
mothety is parameterized in terms of the modular variable τ taking values in the upper
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half-plane. The following lemma adapts the statement of Theorem 4.24(b) to that new
point of view.

Lemma 5.3. Let τ, τ′ ∈ ℍ. The lattices L1 = ℤ + τℤ and L2 = ℤ + τ
′ℤ are homothetic if

and only if τ′ is related to τ via

τ′ = aτ + b
cτ + d

for some a, b, c, d ∈ ℤ, ad − bc = 1. (5.9)

Proof. Exercise 5.2.

From Lemma 5.3 we see that the study of lattices up to homothety can be regarded
as the study of the set of points inℍ quotiented out by the action of a group of Möbius
transformations of the form (5.9). In fact, this group is canonically isomorphic to the
modular group Γ with the isomorphism sending the element ±( a b

c d ) of Γ to the Möbius
transformation τ → aτ+b

cτ+d . In another small abuse of notation that is standard practice
in the field, we still use the same letter Γ to denote this group and still refer to it as the
modular group. That is, we write

Γ = SL(2,ℤ)/{±I} = {τ → aτ + b
cτ + d
: a, b, c, d ∈ ℤ, ad − bc = 1}

with the convention that themap τ → aτ+b
cτ+d is simply anotherway to represent the group

element ±( a b
c d ) of Γ.When referring to group elements, wewill often use the same letter

to denote an element of Γ thought of either as a matrix (with a ± sign ambiguity) or as
a Möbius transformation. In particular, the group elements S, T , and U defined in (5.8)
have the expressions

S(τ) = −1
τ
, T(τ) = τ + 1, U(τ) = −1

τ + 1

in their interpretation as Möbius transformations.
Being able to switch at will between the two alternative points of view of working

with matrices on the one hand and Möbius transformations on the other is convenient,
since some arguments become simpler when considered from one of the points of view,
and others are easier to understand from the alternative one.

Suggested exercises for Section 5.3. 5.2, 5.3.

5.4 The fundamental domain and the modular surfaceℍ/Γ

Having identified the modular group as capturing the notion of the equivalence of two
modular parameters τ, τ′ that represent the same lattice, it is natural to ask for a com-
plete set of equivalence class representatives, that is, a set of values of τ such that each
point in the upper half-plane is equivalent to precisely one. (This question is precisely
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analogous to the idea that led us to the notion of a fundamental parallelogram in the
study of elliptic functions.) The identification of such a set is one of the famous results
of the field. It is given by

𝒟 = {τ ∈ ℍ : − 1
2
≤ Re(τ) < 1

2

and [|τ| > 1 or |τ| = 1, π
2
≤ arg τ ≤ 2π

3
]}.

We call 𝒟 the fundamental domain under the action of Γ; see Fig. 5.1.

Figure 5.1: The fundamental domain𝒟.

Theorem 5.4. The translates A(𝒟), A ∈ Γ of the fundamental domain 𝒟 under the ele-
ments of Γ tile the upper half-plane without overlap, except for specific exceptions given
below. More precisely, each τ ∈ ℍ has a representation of the form

τ = A(τ0) (5.10)

for some A ∈ Γ and τ0 ∈ 𝒟. The point τ0 is unique. The Möbius transformation A is also
unique if τ0 ̸= i, e

2πi/3. If τ0 = i, then there are precisely two distinct representations

τ = A1(i) = A2(i)

where A1,A2 ∈ Γ are related by A2 = A1S. If τ0 = e
2πi/3, then there are precisely three

distinct representations

τ = A1(e
2πi/3) = A2(e

2πi/3) = A3(e
2πi/3)

where A1,A2,A3 ∈ Γ are related by A2 = A1U and A3 = A1U
2.
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Proof. Let τ ∈ ℍ. We prove the existence of A and τ0 satisfying (5.10). Recall from (3.11)
that for a, b, c, d ∈ ℝ, we have the formula

Im(aτ + b
cτ + d
) =

ad − bc
|cτ + d|2

Im(τ). (5.11)

In particular, Im(A(τ)) = Im(τ)
|cτ+d|2 for A = (

a b
c d ) ∈ Γ. Now the set of points

{cτ + d : (c, d) ∈ ℤ2 \ (0, 0)}

is discrete and in particular disjoint from a neighborhood of 0; hence there exists some
point of the form c0τ + d0 in this set for which |cτ + d| is minimal. It is clear that for this
c0, d0 wemust have gcd(c0, d0) = 1 (otherwise, divide each of c0 and d0 by their g. c. d. to
get a pair with a smaller value of |cτ + d|). This in turn implies that there exist integers
a0 and b0 for which a0c0 + b0d0 = 1, in other words, such that the matrix A0 = (

b0 −a0
c0 d0
) is

an element of Γ. By the construction this A0 has the property that Im(A0(τ)) is maximal
over all A ∈ Γ. By replacing A0 by T

kA0 for a suitable k ∈ ℤ (thus replacing A0(τ) with
A0(τ) + k, which does not affect the imaginary value) we can also assume without loss
of generality that − 12 ≤ Re(A0τ) <

1
2 , still retaining the maximality property.

Having chosen A0, denote τ
′ = A0(τ). We claim that |τ′| ≥ 1. To see this, assume by

contradiction that |τ′| < 1. Then letting B = SA0, we have

Im(B(τ))
 =
Im(Sτ

′) =
Im(−1/τ

′) >
Im(τ
′) =
Im(A0τ)

,

contradicting the maximality property of A0.
Now if τ′ ∈ 𝒟, then we can denote A = A−10 , τ0 = τ

′, and get that (5.10) holds, so we
are done with the proof of the existence claim. Otherwise, we must have |τ′| = 1 and
π
3 ≤ arg(τ

′) < π
2 . In that case, let τ0 = Sτ

′ = −1/τ′ and note that τ0 ∈ 𝒟, so that if we
define A = (SA0)

−1, then (5.10) again holds. Thus the existence of the representation has
been proved.

Now assume that τ has two distinct representations τ = Aτ0 = A
′τ′0 with τ0, τ

′
0 ∈ 𝒟

and A,A′ ∈ Γ. Our goal is to show that this can only happen in the specific situations
listed in the theorem.

Assume without loss of generality that Im(τ′0) ≥ Im(τ0) (otherwise, switch their la-
bels). Denote B = (A′)−1A. Then τ′0 = Bτ0 =

aτ0+b
cτ0+d

, where a, b, c, d denote the entries of B.
Then by (5.11) we get that

|cτ0 + d| ≤ 1. (5.12)

Since τ0 ∈ 𝒟 and c, d are integers and τ0 ∈ 𝒟, there are not toomanyways this inequality
can hold. First, we could have c = 0 and d = ±1. In that case, we must have a = d, and
therefore B is of the form
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B = (±1 b
0 ±1
) = (

1 ±b
0 1
) = T±b.

Then τ′0 = Bτ0 = τ0 ± b. The conditions −
1
2 ≤ Re(τ0) <

1
2 then guarantee that b = 0, so B

is the identity map, A′ = A, and τ′0 = τ0, so that this is the case where the two represen-
tations τ = Aτ0 = A

′τ′0 are the same, which is not relevant to the current discussion.
A second possibility for (5.12) to hold is that d = 0, c = ±1, and |τ0| = 1. In that case,

B is of the form

B = ( a ∓1
±1 0
) = (
±a −1
1 0
) = T±aS.

Therefore τ′0 = −
1
τ0
± a, or alternatively, if we write τ0 = e

iθ and α = ±a, then

τ′0 = e
i(π−θ) + α.

For this to hold with τ0, τ
′
0 elements of 𝒟 and α an integer, we must have that either

α = 0, B = S, and τ′0 = τ0 = i, (5.13)

or

α = −1, B = T−1S, and τ0 = τ
′
0 = e

2πi/3. (5.14)

In the first subcase (5.13), the two representations for τ become

τ = A(i) = AS(i). (5.15)

In the second subcase (5.14), we get that B−1 = U , so the two representations are

τ = A(e2πi/3) = AU(e2πi/3). (5.16)

The third and final possibility for (5.12) to hold is that c = d = ±1 and τ0 = τ
′
0 = e

2πi/3.
Assume without loss of generality that c = d = 1 (in the other case, replace a, b, c, d with
the numbers −a,−b,−c,−d, respectively, which represent the same element of Γ). In that
case the condition ad − bc = 1 forces a = b + 1, and we see that B is of the form

B = (b + 1 b
1 1
) = TbSU−1.

Then

τ′0 = Bτ0 =
(b + 1)τ0 + b

τ0 + 1
= b + τ0

τ0 + 1
= b + 1 − 1

τ0 + 1

= b + 1 − 1
eπi/3
= b + 1 + e2πi/3 = b + 1 + τ′0.
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Thus we must have b = −1, and therefore B = ( 0 −11 1 ) = U , B
−1 = U−1 = U2, and we get

that the two representations for τ are

τ = A(e2πi/3) = AU2(e2πi/3). (5.17)

Summarizing, we showed that representation (5.10) is unique except for the three
possible exceptions we identified, which are given by (5.15), (5.16), and (5.17). Those were
precisely the exceptions listed in the theorem. This finishes the proof.

The fundamental domain 𝒟 can be thought of as the “arena” where modular func-
tions and modular forms “live.” We will do all our analysis in reference to this arena.
This is mostly straightforward, except for some technical subtleties that will arise when
functions have zeros or poles on the boundary of 𝒟. (This is analogous to the issue that
led us to consider fundamental parallelograms of the form Pz0 (ω1,ω2)with an arbitrary
origin point z0 in Chapter 4 as a way to avoid having to worry about doubly periodic
functions that have zeros or poles on the boundary of the parallelogram. In the case of
modular forms, this issue is harder to work around using a simple translation trick of
that type.)

Wemention in passing that there is amore advanced, but conceptually clearer, point
of view, in which the correct object to regard as the arena on which modular forms and
functions are defined is the quotient spaceℍ/Γ, that is, the space of orbits ofℍ under
the action of Γ. This quotient space is equipped in a natural way with the structure of
a Riemann surface and is called the modular surface. The fundamental domain 𝒟 is
just one particular coordinate chart (in the sense of being an element of the atlas of
charts a Riemann surface and other manifold-like objects come equipped with) that is
used to perform calculations on it. Understanding this point of view will make various
arguments and calculations in some of the proofs in this chapter appear more intuitive
and motivated but is not strictly necessary from a formal point of view, so we will not
discuss the details of how such arguments can be presented from the point of view of
Riemann surfaces.

Suggested exercises for Section 5.4. 5.4.

5.5 The classification problem for complex tori, part II

We now return to the classification problem for complex tori discussed in Section 4.15.
Previously we solved the first part of the problem when we gave a necessary and suf-
ficient condition for two tori ℂ/L and ℂ/L′ to be biholomorphic. Now we can use the
results of the previous section to give a solution to the second part, namely finding a
canonical system of representatives under this equivalence relation on the family of
lattices.
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Theorem 5.5 (Classification of complex tori; second part). The family of complex tori

{ℂ/Lτ : τ ∈ 𝒟} (5.18)

(where Lτ = ℤ + τℤ as before) forms a complete set of biholomorphism representatives
of the complex tori ℂ/L, that is, each complex torus ℂ/L is biholomorphic to ℂ/Lτ0 for
precisely one τ0 ∈ 𝒟. If L is given explicitly as L = ω1ℤ + ω2ℤ with ω2/ω1 ∈ ℍ, then τ0 is
the unique element of 𝒟 related to τ = ω2/ω1 via (5.10) for some A ∈ Γ, with the biholo-
morphism being the homothety z → ω1z (more precisely: the map of Riemann surfaces
whose lifting is the homothety map, in the sense discussed in the proof of Theorem 4.24).

Proof. First, we show that no two elements of the family (5.18) are biholomorphic. As-
sume that τ1, τ2 ∈ 𝒟whereℂ/Lτ1 andℂ/Lτ2 are biholomorphic. ThenbyTheorem4.24(a),
Lτ1 and Lτ2 are homothetic. By Lemma 5.3 we have

τ2 =
aτ1 + b
cτ1 + d

= A(τ1) for some A = (a b
c d
) ∈ Γ.

Of course, τ2 can also be represented as I(τ2), where I is the identity element of Γ, so
since τ1, τ2 ∈ 𝒟, the uniqueness claim in Theorem 5.4 implies that τ1 = τ2.

For the remaining claim that the tori (5.18) include a representative of all biholo-
morphism classes of complex tori, let L = ω1ℤ + ω2ℤ be a lattice, where the ordering
of ω1,ω2 is chosen such that τ := ω2/ω1 ∈ ℍ. Let τ0 ∈ 𝒟 be the unique point in the
fundamental domain, guaranteed to exist by Theorem 5.4, such that

τ = A(τ0) =
aτ0 + b
cτ0 + d

for some A = (a b
c d
) ∈ Γ.

By Lemma 5.3 the lattices ℤ + τℤ and ℤ + τ0ℤ are homothetic, that is, we have

ℤ + τℤ = λ(ℤ + τ0ℤ)

for some λ ̸= 0. It then follows that

L = ω1ℤ + ω2ℤ = ω1(ℤ + τℤ) = ω1λ(ℤ + τ0ℤ) = ω1λLτ0 .

Thus L and Lτ0 are also homothetic, and by Theorem 4.24(a), ℂ/L is biholomorphic to
ℂ/Lτ0 , as claimed.

5.6 The point at i∞, premodular forms, and their Fourier
expansions

In the sections below, we will start defining certain classes of functions that generalize
properties (5.3)–(5.5) of the explicit functions we constructed. All of them will share one
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particular property that will be useful to name: we say that a function f : ℍ → ℂ is a
premodular form3 if it is
1. holomorphic;
2. periodic with period 1, that is, satisfies f (τ + 1) = f (τ) for all τ ∈ ℍ; and
3. for some constant C ∈ ℝ, f (τ) satisfies the asymptotic bound

f (τ)
 = O(e

C Im(τ)) as Im(τ)→∞, uniformly in Re(τ). (5.19)

We say that a function f : ℍ → ℂ is a weak premodular form if it satisfies the same
conditions as for a premodular form, but with the first condition being relaxed to that
of f beingmeromorphic.

Proposition 5.6. Let f : ℍ → ℂ. Then f (τ) is a premodular form if and only if it has an
expansion of the form

f (τ) =
∞

∑
n=−m

a(n)e2πinτ (τ ∈ ℍ), (5.20)

which converges absolutely, uniformly on compacts inℍ, and where m ≥ 0 is an integer.
We refer to expansion (5.20) as theFourier expansion of f . The coefficients a(n) are called
the Fourier coefficients of f and can be recovered as

a(n) =
1/2

∫
−1/2

f (x + iy)e−2πin(x+iy) dx (y > 0 arbitrary). (5.21)

Proof. The change of variables q = e2πiτ defines the bijective correspondence

f (τ)←→ g(q)

defined via the relation

f (τ) = g(e2πiτ) (5.22)

between holomorphic functions f : ℍ → ℂ that are periodic with period 1 and holo-
morphic functions g : 𝔻 \ {0}→ ℂ on the punctured unit disc. If we add the assumption
that f (τ) satisfies a bound of the form (5.19), then that translates to the condition that
g(q)must satisfy a bound of the form

g(q)
 = O(|q|

M), q → 0,

3 Note that this term is not standard in the literature.
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for some constant M ∈ ℝ. Of course, this asymptotic bound is nothing particularly ex-
otic; it is easily seen to be equivalent to the statement that g(q) has either a removable
singularity or a pole at q = 0. From Section 1.18 and Exercise 1.43 we know that any such
function has a Laurent series of the form

g(q) =
∞

∑
n=−m

a(n)qn,

which converges (absolutely and uniformly on compacts) for q in the punctured disc.
Translating this back to the language of f (τ), this shows exactly that the condition of f
being a premodular form is equivalent to it having the Fourier expansion (5.20) with
the appropriate convergence. Finally, the coefficients can be extracted in the usual way
as an integral on the circular contour {|q| = r}, 0 < r < 1, using the residue theorem.
Specifically, if we denote for convenience r = e−2πy, y > 0, then we have

a(n) = 1
2πi
∮
|q|=r

g(q)
qn+1

dq = 1
2πi

1/2

∫
−1/2

g(re2πix)
rn+1e2πi(n+1)x

(2πi)re2πix dx

=

1/2

∫
−1/2

g(e2πi(x+iy))e−2πin(x+iy) dx =
1/2

∫
−1/2

f (x + iy)e−2πin(x+iy) dx,

which is exactly (5.21).

As we see from the proof above, the growth restriction on |f (τ)| as Im(τ) → ∞
for premodular forms is equivalent to the statement that under the change of variables
q = e2πiτ , such a function expressed as a function of q is a holomorphic function on the
punctured unit disc with a pole or removable singularity at q = 0. This suggests intro-
ducing the notion of “the point at i∞” as away of discussing the behavior of premodular
forms near q = 0 while still thinking in terms of the variable τ. We will use the notation
𝒟 = 𝒟 ∪ {i∞} to denote the fundamental domain with this point at i∞ added. We will
refer to 𝒟 as the extended fundamental domain. We also introduce the following bit
of terminology to describe the behavior of f (τ) near the point i∞: if the function g(q)
associated with f (τ) as in (5.22) has a pole of some order k ≥ 1, then we say that f (τ) has
a pole of order k at i∞. If g(q) has a zero of order k ≥ 1 at q = 0, we say that f (τ) has a
zero of order k at i∞. As usual, we can unify those two concepts and regard both zeros
and poles as two aspects of the same thing by declaring that f (τ) has a (generalized)
zero of order k at τ = i∞ if g(q) has a generalized zero of order k at q = 0 in the sense of
having an ordinary zero of order k if k ≥ 1, a pole of order −k if k < 0, or neither a zero
nor a pole if k = 0. (Refer to the parallel discussion on this terminology in Section 1.10.)
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5.7 Fourier expansions and number-theoretic identities

The functions G2k(τ), Δ(τ), and J(τ) are all periodic functions with period 1 and, as we
will see shortly, satisfy the growth condition (5.19) for being a premodular form. It turns
out that their associated Fourier expansions, which we will now derive, are extremely
interesting and lead to identities of a purely arithmetic nature.

Theorem 5.7 (Fourier expansion of the Eisenstein series). For k ≥ 2, the Eisenstein series
G2k(τ) is a premodular form and has the Fourier expansion

G2k(τ) = 2ζ (2k) + 2
(2πi)2k

(2k − 1)!

∞

∑
n=1

σ2k−1(n)q
n (q = e2πiτ , τ ∈ ℍ), (5.23)

where σ2k−1(n) is the generalized sum-of-divisors function defined in (5.2).

Proof. Start with the partial fraction expansion of the cotangent function

π cot(πz) = 1
z
+ ∑

n∈ℤ
n≠0

(
1

z + n
−
1
n
) (5.24)

(see (1.73)). Differentiating this expansion p times gives

dp

dzp
(π cot(πz)) = (−1)pp!

∞

∑
n=−∞

1
(z + n)p+1

(p ≥ 1). (5.25)

On the other hand, note that for z ∈ ℍ,

π cot πz = π cos πz
sin πz
= πi(1 − 2

1 − e2πiz
) = −πi(1 + 2

∞

∑
ℓ=1

e2πiℓz),

and therefore also

dp

dzp
(π cot(πz)) = −(2πi)p+1

∞

∑
ℓ=1
ℓpe2πiℓz (p ≥ 1). (5.26)

Now

G2k(τ) = ∑
(m,n) ̸=(0,0)

1
(mτ + n)2k

= ∑
n ̸=0

1
n2k
+ ∑
m ̸=0

∞

∑
n=−∞

1
(mτ + n)2k

= 2ζ (2k) + 2
∞

∑
m=1

∞

∑
n=−∞

1
(mτ + n)2k

= 2ζ (2k) + 2
∞

∑
m=1

(−1)2k−1

(2k − 1)!
⋅

1
m2k−1 ⋅

d2k−1

dτ2k−1
(π cot(πmτ))

= 2ζ (2k) + 2
∞

∑
m=1

(−1)2k(2πi)2k

(2k − 1)!
⋅
∞

∑
ℓ=1
ℓ2k−1e2πiℓmτ
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= 2ζ (2k) + 2(2πi)
2k

(2k − 1)!

∞

∑
n=1
( ∑
ℓ,m≥1
ℓm=n

ℓ2k−1)e2πinτ

= 2ζ (2k) + 2(2πi)
2k

(2k − 1)!

∞

∑
n=1

σ2k−1(n)e
2πinτ , (5.27)

which is the claimed expansion. Since σ2k−1(n) is bounded by a polynomial in n, expan-
sion (5.23) clearly converges absolutely and uniformly in a neighborhood of q = 0 and
defines a holomorphic function there. As we remarked in the previous section, this im-
plies that G2k(τ) is a premodular form.

Theorem 5.8 (Fourier expansion of the modular discriminant). The modular discriminant
Δ(τ) is a premodular form. Its Fourier expansion is given by

Δ(τ) = (2π)12(q − 24q2 + 252q3 − 1 472q4 + ⋅ ⋅ ⋅)

= (2π)12
∞

∑
n=1

τ(n)qn (q = e2πiτ , τ ∈ ℍ). (5.28)

Here the normalized coefficients (τ(n))∞n=1 are a sequence of integers, which are given ex-
plicitly by

τ(n) = 8 000 ∑
j,k≥0
j+k≤n

σ3(j)σ3(k)σ3(n − j − k) − 147
n
∑
j=0

σ5(j)σ5(n − j) (5.29)

for all n ≥ 1, where σ3 and σ5 denote the generalized sum-of-divisors functions as before
with the additional convention that σ3(0) =

1
240 and σ5(0) = −

1
504 .

Proof. Wehave Δ(τ) = 603G4(τ)
3−27⋅1402G6(τ)

2, so Δ(τ) trivially inherits the property of
being a premodular form from G4(τ) and G6(τ). To get its Fourier expansion, note that,
by (5.23) and (1.95),

603G4(τ)
3 = 603(π

4

45
+ 2 (2π)

4

6

∞

∑
n=1

σ3(n)q
n)

3

= (2π)12 8 ⋅ 60
3

63
(
∞

∑
n=0

σ3(n)q
n)

3

= (2π)12 ⋅ 8 000
∞

∑
n=0
(

n
∑
j,k≥0
j+k≤n

σ3(j)σ3(k)σ3(n − j − k))q
n

= (2π)12( 1
1 728
+ 8 000

∞

∑
n=1
(

n
∑
j,k≥0
j+k≤n

σ3(j)σ3(k)σ3(n − j − k))q
n)

and, similarly,
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27 ⋅ 1402G6(τ)
2 = 27 ⋅ 1402(2π

6

945
− 2 (2π)

6

120

∞

∑
n=1

σ5(n)q
n)

2

= (2π)12 ⋅ 4 ⋅ 27 ⋅ 140
2

1202
(−
∞

∑
n=0

σ5(n)q
n)

2

= (2π)12 ⋅ 147
∞

∑
n=0
(

n
∑
j=0

σ5(j)σ5(n − j))q
n

= (2π)12( 1
1 728
+ 147

∞

∑
n=1
(

n
∑
j=0

σ5(j)σ5(n − j))q
n).

Subtracting these two expressions leads to (5.28)–(5.29).
It remains to show that τ(n) is an integer. Observe that in representation (5.29), all

the summands are integers, except possibly those for which one or both of the summa-
tion indices j, k are equal to 0. The total contribution of these exceptional summands to
τ(n) can be expressed as

3 × 8 000σ3(0)
2σ3(n) + 3 × 8 000σ3(0)

n−1
∑
k=1

σ3(k)σ3(n − k) + 2 × 147σ5(0)σ5(n)

=
5
12
σ3(n) + 100

n−1
∑
k=1

σ3(k)σ3(n − k) +
7
12
σ5(n)

= 100
n−1
∑
k=1

σ3(k)σ3(n − k) + ∑
d | n

5d3 + 7d5

12
.

This is in fact an integer, since it is easy to check that 5d3 + 7d5 is divisible by 12 for any
integer d. (Another famous formula for Δ(τ) that wewill prove later makes it immediate
to see that the τ(n) are integers; see Theorem 5.31 in Section 5.14.)

The sequence of normalized Fourier coefficients

(τ(n))∞n=1 = 1,−24, 252,−1 472, 4 830,−6 048, . . .

of the modular discriminant is called Ramanujan’s tau function.4 It is a celebrated
mathematical object with many remarkable properties. To name one example, one of
the surprising results of the theory of modular forms, which we will not prove here, is
the following property, conjectured by Ramanujan in 1916 and proved shortly afterward
by Mordell.

4 Beware the small notational quirk of the theory wherein the letter τ is used to denote both the se-
quence τ(n) and the modular variable τ.
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Theorem 5.9 (Multiplicativity of Ramanujan’s tau function). If m, n ≥ 1 are relatively
prime integers, then τ(mn) = τ(m)τ(n).

For the proof, see [5, Ch. 6].

Theorem 5.10 (Fourier expansion of Klein’s J-invariant). Klein’s J-invariant is a premodu-
lar form and has the Fourier expansion

J(τ) = 1
1 728
(
1
q
+ 744 + 196 884q + 21 493 760q2 + ⋅ ⋅ ⋅)

=
1

1 728
(
1
q
+
∞

∑
n=0

c(n)qn) (q = e2πiτ , τ ∈ ℍ).

The coefficients c(n) are all positive integers.

Proof. Exercise 5.5.

The coefficients c(n) are also amuch-studied sequence of numbers. In the late 1970s,
they were found to be related to dimensions of the irreducible representations of the so-
calledmonster group, a connection that was developed into a deep mathematical the-
ory and is sometimes referred to asmonstrous moonshine. The story of this discovery
and some of the amazing mathematical ideas it led to is told in [29].

More mundane, but still interesting, is a result due to Petersson from 1932, which
states that the asymptotic rate of growth of the coefficients c(n) is given by

c(n) ∼ 1
√2n3/4

e4π√n as n→∞. (5.30)

This result is conceptually related to another famous result, the Hardy–Ramanujan
formula for the asymptotic rate of growth of the number p(n) of integer partitions of n.
That formula states that

p(n) ∼ 1
4√3n

eπ√2n/3 as n→∞. (5.31)

Both (5.30) and (5.31) can be proved using complex analysis; see [22], [66, Appendix A].
The Fourier expansions (5.23) and (5.28) make it possible to translate various iden-

tities involving the functions G2k and Δ into number-theoretic identities.

Theorem 5.11. We have the following number-theoretic identities for all n ≥ 1:

σ7(n) = σ3(n) + 120
n−1
∑
k=1

σ3(k)σ3(n − k), (5.32)

σ9(n) =
1
11
(21σ5(n) − 10σ3(n) + 5 040

n−1
∑
k=1

σ3(k)σ5(n − k)), (5.33)
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σ13(n) = 11σ9(n) − 10σ3(n) + 2 640
n−1
∑
k=1

σ3(k)σ9(n − k), (5.34)

τ(n) = 65
756

σ11(n) +
691
756

σ5(n) −
691
3

n−1
∑
k=1

σ5(k)σ5(n − k). (5.35)

Proof of (5.32) and (5.33). We consider the Fourier expansions of both sides of the iden-
tity G8 =

3
7G

2
4 from Section 4.7. By (5.23) the left-hand side is

G8(τ) = 2ζ (8) + 2
(2πi)8

7!

∞

∑
n=1

σ7(n)q
n = 2 (2π)

8

7!
(

1
480
+
∞

∑
n=1

σ7(n)q
n).

The right-hand side is

3
7
(2ζ (4) + 2 (2πi)

4

3!

∞

∑
n=1

σ3(n)q
n)

2

=
π8

4 725
+
32π8

315

∞

∑
n=1

σ3(n)q
n +

256π8

21

∞

∑
n=1
(
n−1
∑
k=1

σ3(k)σ3(n − k))q
n.

Equating the coefficients at qn in the above expressions gives identity (5.32).
Identity (5.33) follows similarly from the Eisenstein series identity G10 =

5
11G4G6,

whichwe also discussed in Section 4.7.We omit the details of this simple calculation.

The principle behind identities (5.34) and (5.35) is similar. They follow by equating
the Fourier coefficients in the Eisenstein series identities

G14 =
6
13
G4G10, (5.36)

Δ = 1 200(1 430G12 − 691G
2
6), (5.37)

respectively. These are not identities that we have previously derived, but they are con-
ceptually similar to (4.19)–(4.21) and can be proved without great effort using the results
of Section 4.7. However, rather than pursue this method, we will instead show in Sec-
tion 5.12 amore elegant way of obtaining them (and similar identities) by applyingmore
general ideas we will develop about modular forms.

Many more identities with a similar flavor to (5.32)–(5.35) are known to exist and
can be proved using modular form techniques (or, through a much more painstaking
analysis, using manipulations of a purely elementary nature [63]). As an example of a
more sophisticated identity whose proof requires additional background, we mention
the following identity due to Niebur [50]:

τ(n) = n4σ1(n) − 24
n−1
∑
k=1
(35k4 − 52k3n + 18k2n2)σ1(k)σ1(n − k).
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The above discussion gives a glimpse into some of the close connections that ex-
ist between arithmetic and modular forms. As seen in the examples above, one way in
which these connectionsmanifest themselves is that the Fourier coefficients of naturally
occurring modular forms (or mildly renormalized versions of them) are often integers
with interesting arithmetic properties.

Suggested exercises for Section 5.7. 5.5.

5.8 Modular functions

A meromorphic function f : ℍ → ℂ is called a modular function if it is a weak pre-
modular form and satisfies

f(aτ + b
cτ + d
) = f (τ) (5.38)

for all τ ∈ ℍ and A = ( a b
c d ) ∈ Γ. That is, a modular function is a true meromorphic func-

tion on the modular surface (including also the point i∞). Note that since Γ is generated
by the elements T , S, to verify themodular invariance property (5.38), it suffices to check
that f (τ) satisfies

f (τ + 1) = f (τ), f (−1/τ) = f (τ), (τ ∈ ℍ). (5.39)

(The first of these two equations is already guaranteed by the condition that f (τ) is a
weak premodular form.)

A modular function f (τ) that is not the zero function has only finitely many zeros
and poles in 𝒟: indeed, the zeros and poles cannot have i∞ as an accumulation point
(otherwise, i∞would be an essential singularity rather than a pole or removable singu-
larity), which means that all the zeros and poles of f (τ) in the closure cl(𝒟) are concen-
trated in the intersection of the closure with the strip {0 < Im(τ) ≤ M} for someM > 0.
This intersection is compact, so if there were an infinite sequence of zeros or poles of
f (τ) in it, it would have an accumulation point, so it would be identically zero or have
an essential singularity inℍ, which is not allowed.

An essential property of modular functions is analogous to Proposition 4.6 we en-
countered in our discussion of elliptic functions in Chapter 4; loosely speaking, it states
that the total number of zeros of a modular functions in the fundamental domain is
equal to its total number of poles (as usual, counted with multiplicities, and the point
i∞ needs to be included in the count as well). An additional caveat in the current set-
ting is that the “numbers” being referred to are actually weighted counts of points with
respect to a certain weight function. We define the weight w(τ) of a point τ ∈ 𝒟 by
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w(τ) =

{{{{{{
{{{{{{
{

1
2 if τ = i,
1
3 if τ = eπi/3,
1 if τ = i∞,
1 otherwise.

Theorem 5.12 (The weight formula for modular functions). Let f : ℍ → ℂ be a modular
function other than the zero function. Then

∑
f (ξ)=0

w(ξ) = ∑
f (ζ )=∞

w(ζ ). (5.40)

Here the summation on the left-hand side ranges over zeros ξ of f (τ) in 𝒟, counted with
multiplicities, and the summation on the right-hand side ranges over poles ζ of f (τ) in𝒟,
countedwithmultiplicities. In both summations,we include the point i∞with appropriate
multiplicity if f (τ) has a zero or a pole there.

Proof. Consider a contour integral of the form

∮
𝒢

f ′(τ)
f (τ)

dτ (5.41)

around a suitable contour 𝒢 that, as a first approximation, hugs the boundary of the fun-
damental domain 𝒟 up to some vertical levelM in the imaginary direction (Fig. 5.2(a)).
The parameter M > 0 is chosen larger than the imaginary values of any of the zeros
or poles of f (τ), other possibly than the point i∞ (we discussed earlier why such an
M exists). Now the general idea of the proof is to evaluate the contour integral in two
ways. This is not conceptually difficult, but involves some technicalities of a somewhat
tedious nature (which are nonetheless essential to check carefully), so to make things
clearer pedagogically, we build up the calculation in several successive versions, each
improving on the previous one.

First version. In the first version of the proof, we assume for simplicity that f (τ) does
not have any zeros or poles on the boundary of 𝒟. The integration contour in that case
takes the form shown in Fig. 5.2(a) and decomposes as a sum of five subcontours

𝒢 = γ1 + γ2 + γ3 + γ4 + γ5.

Denote by X the total number of zeros of f (τ) in 𝒟 and by Y the total number of poles,
counted with multiplicities. Then the integral (5.41) is equal to 2πi(X − Y ).

On the other hand, denote by Z the order of the zero f (τ) has at i∞ (with the
usual convention that Z is taken negative if f (τ) has a pole there). Breaking up the inte-
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Figure 5.2: (a) The integration contour 𝒢 used in the first version of the proof. (b) The modified version of
𝒢 with detours added around zeros and poles on the boundary of𝒟. The detours on γ5 are images of the
detours on γ4 under the inversion map τ → −1/τ. (c) The third version in which detours (labeled γ6, γ7, γ8)
are also added around i, eπi/3, and e2πi/3.

gral (5.41) into the integrals over the five subcontours γj , 1 ≤ j ≤ 5, we wish to show that
it is equal to 2πiZ. This will give the equation

X + Z = Y or, equivalently, X = Y − Z,

and one or both of these two equations (depending on whether Z > 0, Z = 0, or Z < 0;
that is, whether i∞ is a zero, a pole, or neither a zero nor a pole) is what (5.40) claims
under our simplified assumptions on f (τ).

Start with the contributions to (5.41) from the subcontours γ1 and γ3. Those are
trivially seen to cancel each out, summing up to 0 because of the periodicity property
f (τ + 1) = f (τ).

Second, we show that the contributions from the subcontours γ4 and γ5 likewise
cancel each other out. This follows by making the change of variables ρ = −1/τ in the
integral over γ5, which maps γ5 to −γ4 and therefore gives that

∫
γ5

f ′(τ)
f (τ)

dτ = ∫
−γ4

f ′(−1/ρ)
f (−1/ρ)

dρ
ρ2
= −∫

γ4

f ′(ρ)
f (ρ)

dρ. (5.42)

(The last equality follows from the relation τ−2f ′(−1/τ) = f ′(τ), obtained by differenti-
ating the second identity in (5.39).)
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The contribution from the integral over the remaining subcontour γ2 can be eval-
uated by once again using the change of variables q = e2πiτ , which transforms this sub-
contour into a circle of radius e−2πM around q = 0 in the q-plane. Denote ϕ(q) = f (τ);
as discussed in the proof of Proposition 5.6, ϕ(q) is a holomorphic function on the punc-
tured unit disc because f (τ) is periodic and has a zero of order Z (or a pole of order −Z)
at the origin. Under this change of variables, we have

f ′(τ) = ϕ′(q)q′(τ),

and therefore

f ′(τ)
f (τ)

dτ = ϕ
′(q)
ϕ(q)

q′(τ)dτ = ϕ
′(q)
ϕ(q)

dq,

which then implies that

∫
γ2

f ′(τ)
f (τ)

dτ = − ∮
|q|=e−2πM

ϕ′(q)
ϕ(q)

dq,

nicely mapping the integral to a similar-looking one in the variable q, except that the in-
tegral in the q variable is over a closed curve (and receives aminus sign since the change
of variables maps the subcontour γ2 to a circle oriented in the negative (clockwise) di-
rection around q = 0). By the argument principle (Theorem 1.48) this last integral is
equal to 2πi times the number of zeros minus the number of poles of ϕ(q) inside the cir-
cle |q| = e−2πM . SinceM was taken large enough so that f (τ) has no zeros or poles with
imaginary value greater thanM , its value is equal to 2πiZ.

Putting the above results together, we have shown that

X − Y = 1
2πi
∮
𝒢

f ′(τ)
f (τ)

dτ

=
1
2πi
[(∫

γ1

f ′(τ)
f (τ)

dτ + ∫
γ3

f ′(τ)
f (τ)

dτ)

+ (∫
γ4

f ′(τ)
f (τ)

dτ + ∫
γ5

f ′(τ)
f (τ)

dτ) + ∫
γ2

f ′(τ)
f (τ)

dτ] = 0 + 0 − Z.

As we pointed out earlier, this was exactly the equality needed to balance the books and
conclude that (5.40) holds.

Second version. For the next iteration of the proof, consider a situation in which f (τ)
might now have zeros or poles on the boundary of 𝒟 but assume that it does not have
poles at τ = i or τ = eπi/3. The above proof can then be amended by modifying the
integration contour 𝒢 to add small “detours” bypassing each of the boundary zeros and
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poles, as shown in Fig. 5.2(b). The requirements for the detours are as follows: first, the
detours on the subcontour γ3 of 𝒢 dip into𝒟, are matched by detours of the same shape
moving away from𝒟 along the subcontour γ1, and are small enough so that each detour
goes around exactly one of the distinct zeros and poles. In this way, the contributions to
the integral (5.41) from the subcontours γ1 and γ3 still trivially cancel each other out as
before.

Second, for the detours along the two circular arc segments γ4 and γ5, they also
move away from the unit circle in opposite directions, with the detours on γ4 dipping
into the fundamental domain, and those in γ5 moving away from it. The precise shapes
of these detours are not important; it is important to make them small enough (so that
each detour only goes around a single pole or zero), and the shape of each detour around
a zero or pole τ0 along γ5 should be associated with the shape of the detour around the
“reflected” point −1/τ0 lying along γ4 in such a way that γ5 coincides with the image of
γ4 under the map τ → −1/τ.

Again, because the contours γ4 and γ5 have been matched to each other as we de-
scribed, we will still have cancelation of the contributions to the integral (5.41) from γ4
and γ5 (since the first equality in (5.42) remains valid).

Now, with the modifications to the contour 𝒢 described above, you can easily con-
vince yourself that the integral (5.41) is still equal to 2πi(X − Y ), where X and Y denote
the same quantities as before. As a result, all the arguments from the first version of the
proof remain valid, and we conclude that (5.40) holds in the same way as before.

Third version. So far we have avoided thinking about zeros and poles at τ = i and
τ = e2πi/3, so we did not really have to grapple with the question of where the weights
1/2 and 1/3 in the definition of the weight function w(τ) come from. We now prove the
theorem in its full generality, in the setting where f (τ) is allowed to have zeros and poles
on the boundary of 𝒟, including possibly at τ = i and τ = eπi/3. Let X , Y , Z be as before,
except that we now define X and Y more carefully as the respective numbers of zeros
and poles of f that are in 𝒟 other than the points τ = i and τ = e2πi/3. Now denote
additionally byQ and R the orders of the zeros of f (τ) at τ = i and τ = e2πi/3, respectively
(again with the convention that they are negative if we have poles instead of zeros). In
this setting, we modify the contour again, introducing additional detours around τ = i,
τ = eπi/3, and τ = e2πi/3, as shown in Fig. 5.2(c). These detours are taken as circular arcs
of some radius r, chosen small enough so that no other zeros or poles of f (τ) lie within
distance r of the special points τ = i, eπi/3, and e2πi/3.

With this notation, the decomposition of 𝒢 into segments now has the form

𝒢 = γ1 + γ2 + γ3 + γ4 + γ5 + γ6(r) + γ7(r) + γ8(r),

where γ6 = γ6(r), γ7 = γ7(r), and γ8 = γ8(r) denote the three added circular arcs; we
emphasize their dependence on r in our notation for reasons that will become clear
shortly.
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Now retracing the reasoning in the previous version of the proof, we see that the
conclusion X − Y = −Z is now modified to

X − Y = −Z + 1
2πi
∫

γ6(r)

f ′(τ)
f (τ)

dτ + 1
2πi
∫

γ7(r)

f ′(τ)
f (τ)

dτ + 1
2πi
∫

γ8(r)

f ′(τ)
f (τ)

dτ. (5.43)

To understand the contribution from the new integrals over γ6(r), γ7(r), and γ8(r), con-
sider the local behavior of f (τ) near τ = i, e2πi/3. Using our notation Q,R for the orders
of the zeros at these exceptional points, we can factor f (τ) as

f (τ) = (τ − i)Qg(τ)

for τ in some neighborhood V of i, with g(τ) being holomorphic and nonzero in that
neighborhood. Therefore the integral over γ7(r) can be evaluated (assuming that r is
small enough so that the disc of radius r around i is contained in V ) as

∫
γ7(r)

f ′(τ)
f (τ)

dτ = Q ∫
γ7(r)

1
τ − i

dτ + ∫
γ7(r)

g′(τ)
g(τ)

dτ.

Denote by θr the angle subtended by the circular arc γ7(r) (relative to the center point
i of the circle of which that arc forms a part). Then by explicit parameterization of the
integral of 1/(τ − i) above, it is easily seen that that integral (without the constant Q in
front of it) is equal to −θr . For the second integral involving g

′(τ)/g(τ), we can bound it
as


∫

γ7(r)

g′(τ)
g(τ)

dτ

≤ 2πMr,

whereM is a positive constant such that |g′(τ)/g(τ)| ≤ M for τ ∈ V . Thuswe have shown
that

∫
γ7(r)

f ′(τ)
f (τ)

dτ = −Qθr + O(r) (5.44)

for small r. Furthermore, it is geometrically obvious (and trivial to show formally if
desired) that θr → π as r → 0.

Similarly, the integrals over γ6(r) and γ8(r) can be understood by writing a factor-
ization for f (τ) of the form

f (τ) = (τ − e2πi/3)Rh(τ), (5.45)

valid in a neighborhood of e2πi/3, with h(τ) holomorphic and nonzero in that neighbor-
hood. By the periodicity of f this also implies that for τ in a neighborhood of eπi/3 =
e2πi/3 + 1, we have a similar factorization
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f (τ) = f (τ − 1) = (τ − eπi/3)Rh(τ − 1), (5.46)

where again τ → h(τ−1) is holomorphic and nonzero in the neighborhood of eπi/3. From
representations (5.45)–(5.46) by a similar calculation as the one that led us to (5.44) we
get that

∫
γ6(r)

f ′(τ)
f (τ)

dτ = −Rϕr + O(r) and ∫
γ8(r)

f ′(τ)
f (τ)

dτ = −Rϕr + O(r)

for r near 0, where ϕr denotes the angle subtended by each of the circular arcs γ6(r) and
γ8(r) relative to the center points e

2πi/3 and eπi/3 of the circles of which these arcs are a
part. It is easy to see that ϕr → π/3 as r → 0.

Combining (5.43) and the other results noted above, we have shown that

X − Y = −Z − θr
2π

Q − ϕr
π
R + O(r)

for r near 0. Passing to the limit as r → 0, this becomes

X − Y = −Z − 1
2
Q − 1

3
R,

which, as we see upon inspection, is simply another way of writing (5.40).

Corollary 5.13. Let f : ℍ → ℂ be a nonconstant modular function. Then f takes on any
value an equal number of times in 𝒟; that is, the weighted number of zeros of f (τ) − α in
𝒟 calculated in the sense of the left-hand side of (5.40) is the same for any α ∈ ℂ.

Proof. The right-hand side of (5.12) remains the same when we replace f (τ) by f (τ) − α.

Corollary 5.14. A modular function without poles in 𝒟 is a constant.

Proof. If f is a modular function without poles in𝒟, then f (τ)must in fact be bounded,
since f is bounded in a neighborhood of i∞ (that is, a half-plane of the form {Im(τ) ≥
M}), and separately from that, it is bounded in the (compact) intersection of {0 < Im(τ) ≤
M} with the closure cl(𝒟) of the fundamental domain.

Nowsince f is bounded, thatmeans that for someα ∈ ℂ, the equation f (τ) = α hasno
solutions. ByCorollary 5.13, if f werenonconstant, then the equation f (τ) = αwouldhave
no solutions for all α ∈ ℂ, which is obviously impossible. Therefore f is a constant.

5.9 Klein’s J -invariant

Let us now apply some of the understanding we developed on modular functions to
Klein’s function J(τ).
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Lemma 5.15. The Eisenstein series G2k(τ) satisfy

G2k(i) = 0 if k is odd, and

G2k(e
2πi/3) = 0 is k is not divisible by 3.

Proof. We have

G2k(i) = ∑
(m,n)∈ℤ2\(0,0)

1
(m + ni)2k

= ∑
(m,n)∈ℤ2\(0,0)

1
i2k(−im + n)2k

= (−1)k ∑
(m,n)∈ℤ2\(0,0)

1
(−im + n)2k

= (−1)kG2k(i),

which implies that G2k(i) = 0 if k is odd. Similarly, we write

G2k(e
2πi/3) = ∑

(m,n)∈ℤ2\(0,0)

1
(m + ne2πi/3)2k

= ∑
(m,n)∈ℤ2\(0,0)

1
e2(2k)πi/3(me−2πi/3 + n)2k

= e−4kπi/3 ∑
(m,n)∈ℤ2\(0,0)

1
(m(−e2πi/3 − 1) + n)2k

= e−4kπi/3 ∑
(m,n)∈ℤ2\(0,0)

1
((n −m) + (−m)e2πi/3)2k

= e−4kπi/3 ∑
(p,q)∈ℤ2\(0,0)

1
(p + qe2πi/3)2k

= e−4kπi/3G2k(e
2πi/3).

Since e−4kπi/3 ̸= 1 if k is not divisible by 3, the desired conclusion follows.

Proposition 5.16. The function J(τ) is a modular function. At the special points τ = i,
τ = e2πi/3, and τ = i∞, it takes the values

J(e2πi/3) = 0, J(i) = 1, J(i∞) =∞.

The zero at e2πi/3 is of order 3, the zero of J(τ) − 1 at τ = i is of order 2, and the pole at i∞
is simple.

Proof. Weknow fromLemma4.23 that Δ(τ) is never zero for τ ∈ ℍ, and from the Fourier
expansion (5.28) we see that Δ(τ) has a simple zero at τ = i∞. Therefore J(τ) has a simple
pole at i∞ and no other poles. We can also see using Lemma 5.15 that

J(i) = g2(i)
3

g2(i)3 − 27g3(i)2
= 1,
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since g3(i) = 140G6(i) = 0. Similarly, g2(e
2πi/3) = 60G4(e

2πi/3) = 0, so

J(e2πi/3) = g2(e
2πi/3)3

Δ(e2πi/3)
= 0.

Now the zero of J(τ) at e2πi/3 must be of an order that balances out the simple pole at
i∞ in accordance with (5.40). This implies that it is a zero of order 3. Applying the same
reasoning to the zero of J(τ) − 1 at τ = i shows that that zero is of order 2.

Corollary 5.17. The function J(τ) takes on any value in 𝒟 exactly once; that is, the
weighted number of zeros of J(τ) − α in 𝒟 calculated in the sense of the left-hand side
of (5.12) is equal to 1 for any α ∈ ℂ.

Proof. By Proposition 5.16 the right-hand side of the sum in (5.40) for the case f = J is
equal to 1. The claim therefore follows from Corollary 5.13.

We now show that J(τ) gives rise to all possiblemodular functions, as the next result
explains.

Theorem 5.18. Ameromorphic function f : ℍ→ ℂ is a modular function if and only if it
is of the form

f (τ) = R(J(τ))

for some rational function R(w).

Proof. The “if” part is obvious; for the “only if,” let f (τ) be a modular function that is
not identically zero. Denote by μi∞ the order of the zero of f (τ) at i∞. Denote by μi the
order of the zero of f (τ) at i. Denote by μρ the order of the zero of f (τ) at ρ := e

2πi/3. In
these definitions, we use the usual convention that μa (for a = i, ρ, i∞) is negative and
equal to minus the order of the pole at a if there is a pole at that point instead of a zero.

Denote the zeros of f in the fundamental domain, counted with multiplicities but
excluding the points i, ρ, i∞, by z1, . . . , zn. Denote the poles of f in the fundamental do-
main, with the same exclusions, by w1, . . . ,wk .

Relation (5.40) translates to the concrete statement that

n + μi∞ +
1
2
μi +

1
3
μρ = k. (5.47)

Since n, k, and μi∞ are integers, we see that μi must be even, and μρ must be a multiple
of 3.

Now define the function

g(τ) = (J(τ) − 1)μi/2J(τ)μρ/3
∏nj=1(J(τ) − J(zj))

∏kj=1(J(τ) − J(wj))
. (5.48)



208 � 5 Modular forms

Let h(τ) = f (τ)/g(τ). This is a modular function; let us examine where it has zeros and
poles. By Corollary 5.17 each of the factors J(τ)−J(a) participating in the product in (5.48)
(where a = zj or a = wj for some j) has a simple zero at z = a and no other zeros.
Therefore the zeros of f at z1, . . . , zn and the poles of f (τ) at w1, . . . ,wk are precisely
canceled out by the factors J(τ) − J(zj) and (J(τ) − J(wj))

−1 in g, so the points z1, . . . , zn,
w1, . . . ,wk are not zeros or poles of h. No other zeros or poles at any other points of
the fundamental domain that are not the special points i∞, i, ρ are contributed by any
multiplicand. Thus h may have zeros or poles at the three special points but nowhere
else.

In fact, there are no zeros or poles at the special points either, since by Proposi-
tion 5.16 the factor (J(τ) − 1)μi/2 has a zero of order μi at i, which cancels out the zero of
order μi of f (τ) at i; similarly, the factor J(τ)

μρ/3 has a zero of order μρ at ρ, canceling out
the zero of the same order of f (τ) at ρ; and, finally, the order of the zero of h(τ) at i∞ is

μi∞ +
μi
2
+
μρ
3
+ n − k = 0

by (5.47).
The conclusion is that h(τ) is amodular functionwith no poles or zeros and is there-

fore a constant by Corollary 5.14, that is, h ≡ cwith c ∈ ℂ. We have therefore shown that
f (τ) = cg(τ), which is a rational function in J(τ), as claimed.

5.10 The J -invariant as a conformal map

Another thing that makes J(τ) a natural function is that it is a conformal map and eluci-
dates the structure of the modular surface H/Γ as a Riemann surface.

Theorem 5.19. The function J(τ) is a biholomorphism between the modular surfaceℍ/Γ
and the Riemann sphere ℂ̂.

Sketch of proof. J(τ)mapsℍ to ℂ but respects the equivalence relation induced by the
action of the modular group Γ. Thus it induces a function (which, abusing notation
slightly, we also denote by J) J : ℍ/Γ → ℂ. Adding the point i∞, which gets mapped
by J to the point∞ on the Riemann sphere (this is just the fancy Riemann surface way
of saying J(τ)has a simple pole at i∞, aswe stated in Proposition 5.16), turns J into a func-
tion from the full modular surface to the Riemann sphere. This function is holomorphic:
this is reasonably obvious at a generic point ofℍ/Γ but requires an explanation in terms
of the Riemann surface structure ofℍ/Γ at the special points τ = i, e2πi/3, i∞. To avoid
an involved digression into Riemann surfaces, we omit the details.

Moreover, we claim that the induced function is in fact a bijection and therefore
a biholomorphism of Riemann surfaces. Indeed, Corollary 5.17 states that J(τ) takes on
any value α exactly once on 𝒟 (or, equivalently, on ℍ/Γ) in the sense of the weighted
sum (5.40) over solutions of f (ξ) = α. For α = 0, this corresponds to the triple zero at
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τ = e2πi/3 (which is the only zero; otherwise, the weighted sum would be greater than
1); for α = 1, this corresponds to the double zero of J(τ) − 1 at τ = i, which again must be
the only solution to the equation J(τ) = 1; for α =∞, this corresponds to the simple pole
at τ = i∞. For any other α ∈ ℂ, the equation J(τ) = α must have at least one solution
τ ∈ 𝒟, and since τ is not one of the special points i, e2πi/3, i∞, it has weightw(τ) = 1, and
therefore (5.40) guarantees that it is the only solution. Thus J is a bijection.

5.11 The classification problem for complex tori, part III

We saw in Section 5.5 that the fundamental domain𝒟 is a natural index set for the fam-
ily of biholomorphism classes of complex tori ℂ/L. While this is satisfying at one level,
it still leaves some room to complain that the fundamental domain is an oddly shaped
region, with various identifications along its boundary induced by the action of Γ mak-
ing its structure odder and still more mysterious. However, the result of the previous
section clarifies things by showing that this structure is in fact simply that of the set of
complex numbers, with the J -invariant acting as a conformal map translating between
the two sets. Thus we arrive at the following result, which complements the results of
Sections 4.15 and 5.5 and completes our solution of the classification problem for com-
plex tori.

Theorem 5.20 (Classification of complex tori; third part). The conformal map J−1 parame-
terizes the biholomorphism classes of complex toriℂ/L in the following precise sense: for
any z ∈ ℂ, denote by τ0(z) the point in the fundamental domain 𝒟 for which J(τ0) = z.
(Theorem 5.19 guarantees that τ(z) exists and is unique.) Then the map z → Lτ0(z) is a
bijection between ℂ and the biholomorphism classes of complex tori.

Proof. Immediate from Theorem 5.5.

Recall also that Theorem 4.25 established a bijection between the family of complex
tori ℂ/L and the family of elliptic curves ℰ(g2, g3). Thus Theorems 4.24, 5.5, and 5.20,
which together formed our solution to the classification problem for complex tori, when
combined with Theorem 4.25, also give a complete solution to the analogous classifica-
tion problem for elliptic curves.

5.12 Modular forms

As Theorem 5.18 makes evident, the property of being a modular function is such a
strong one that we end up with a fairly small collection of functions, the rational func-
tions in J(τ), which, moreover, does not include most of the interesting functions we
already encountered and which served as motivation for the much of the theory we
developed so far in this chapter, such as the Eisenstein series and the modular discrim-
inant.
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Fortunately, the true richness and beauty of the theory starts to emerge once we
expand our notion of modularity from modular functions to the more general concept
of modular forms. For an integer ℓ ≥ 0, we say that a function f : ℍ → ℂ is an entire
modular form of weight ℓ if it is a pre-modular form, is holomorphic at i∞ (that is, the
Fourier expansion (5.20) contains no terms with n < 0), and satisfies the condition

f(aτ + b
cτ + d
) = (cτ + d)ℓf (τ) for all τ ∈ ℍ, (a b

c d
) ∈ Γ. (5.49)

We say that f : ℍ→ ℂ is a weak modular form of weight ℓ if it is a weak premodular
form and satisfies (5.49). Note that the notion of modular functions coincides with that
of weak modular forms of weight ℓ = 0.5

In practice, to check that a function is a modular form, it is sufficient and necessary
to check that it is periodic and transforms in a certain way under the map τ → −1/τ, as
the next lemma explains.

Lemma 5.21. A function f : ℍ→ ℂ satisfies (5.49) if and only if it satisfies the functional
equations

f (τ + 1) = f (τ), f (−1/τ) = τℓf (τ). (5.50)

Proof. Exercise 5.6.

Another simple observation is that if f is a nonzero (weak or entire) modular form
of weight ℓ, the weight must be an even integer. This is necessary for the condition (5.49)
to be self-consistent, since we can apply this relation with the group element ( a b

c d ) of Γ
being equal to either ( 0 −11 0 ) or ( 0 1

−1 0 ) (both representing the same Möbius transforma-
tion τ → −1/τ), to get that

τℓf (τ) = f(−1
τ
) = f( 1
−τ
) = (−τ)ℓf (τ) = (−1)ℓτℓf (τ),

implying that either f is identically zero or ℓ is even.
The following result is an analogue of Theorem 5.12 for modular forms and is of

fundamental importance.

Theorem 5.22 (The weight formula for modular forms). Let f : ℍ → ℂ be an entire mod-
ular form of weight ℓ that is not the zero function. Then

12 ∑
f (ξ)=0

w(ξ) = ℓ. (5.51)

Here the summation extends over all zeros ξ of f (τ) counted with multiplicities, including
the point i∞ if it is a zero.

5 The logic behind not attaching the label “weak” to modular functions is that, as Corollary 5.14 shows,
there is no useful notion of a “strong” or “entire” modular function. Nonetheless, this terminology is a
bit inconsistent and a possible source of confusion to be aware of.
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Proof. The proof involves a repetition of the calculation used in the proof of Theo-
rem 5.12, where we consider the same contour integral (5.41) as we did in that proof.
In the current setting, the modular transformation property (5.49) that generalizes the
simple notion of modular invariance associated with a modular function will affect the
calculation in a specific way, which needs to be carefully examined. We will not go over
the full calculation again, but simply point out where the change happens, which is in
the consideration of the contour integrals of f ′(τ)/f (τ) over the subcontours γ4 and γ5 of
the overall integration contour 𝒢 (refer to the proof of Theorem 5.12 for the definitions).
Where previously we saw in (5.42) that the two integrals cancel led each other out,
now there will be a residual effect from the factor τℓ appearing in the transformation
property (5.50). Specifically, the version of (5.42) updated for the current situation is

∫
γ5

f ′(τ)
f (τ)

dτ = ∫
−γ4

f ′(−1/ρ)
f (−1/ρ)

dρ
ρ2
= −∫

γ4

f ′(ρ)
f (ρ)

dρ − ∫
γ4

ℓ
ρ
dρ

= −∫
γ4

f ′(ρ)
f (ρ)

dρ + ℓ
e2πi/3

∫
i

dρ
ρ
= −∫

γ4

f ′(ρ)
f (ρ)

dρ + πi
6
ℓ.

We leave to the reader to check that when the reasoning of the proof of Theorem 5.12
is carried out again but with the new term πiℓ/6 included, the result is precisely (5.51).
(Note that another difference from the case of modular functions is that in the current
setting, poles are not allowed,whichmeans thatwhen repeating the calculation from the
proof of Theorem 5.12, all the terms associated with counting poles can be set to 0.)

Theorem 5.22 gives us a powerful tool for understanding what sort of functions can
be entire modular forms of different weights. We now aim to use it to classify the mod-
ular forms of even weight ℓ = 2k for any k ≥ 0. We start by answering this question for
small values of k.

Proposition 5.23. Let f (τ) be a modular form of even weight ℓ = 2k ≤ 10. Then:
(a) If ℓ = 0, then f is a constant.
(b) If ℓ = 2, then f is the zero function.
(c) If ℓ ∈ {4, 6, 8, 10}, then f is a constant multiple of G2k .

Proof. The case ℓ = 0 is the case of modular functions without poles. In this case, we al-
ready saw in Corollary 5.14 that the only functionswith these properties are the constant
functions.

For the case ℓ = 2, note that by the definition of the weight function w(ξ) for-
mula (5.22) cannot be satisfied with any possible (multi)set of zeros, as the smallest pos-
itive contribution on the left-hand side can be 4, so f must be the zero function.

Similarly, for other values ℓ ∈ {4, 6, 8, 10}, formula (5.22) can be satisfied but only
in very limited ways. Specifically, it is impossible to have any zeros at points other than
τ = i, e2πi/3, since for such zeros, we have 12w(ξ) = 12, which is too large. So we need
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to consider for each value of ℓ different solutions in nonnegative integers a, b of the
equation

ℓ = 4a + 6b.

Here a and b denote the orders of the zero of f (τ) at τ = e2πi/3 and τ = i, respectively.
In the case ℓ = 4 the only solution is a = 1, b = 0, that is, f (τ) must have a simple

zero at τ = e2πi/3 and no other zeros. By the same reasoning applied to the Eisenstein
series G4 instead of to f , G4 as well must have a simple zero at τ = e

2πi/3 and no other
zeros. Therefore f (τ)/G4(τ) is an entire modular form of weight 0 and hence a constant
by part (a).

In the case ℓ = 6, we get that a = 0 and b = 1, so f (τ) must have a simple zero at
τ = i and no other zeros. Again, the same conclusionmust also apply to G6, so f (τ)/G6(τ)
is an entire modular form of weight 0 and hence a constant.

In the case ℓ = 8 the unique solution is a = 2, b = 0, so f (τ) must have a zero of
order 2 at τ = e2πi/3 and no other zeros. Therefore f (τ)/G4(τ)

2 is an entire modular form
of weight 0 and hence a constant. Since G24 is proportional to G8 (see (4.19)), the claim
follows in this case.

Finally, in the case ℓ = 10, we get that a = b = 1, so f (τ) has a simple zero at τ = i,
a simple zero at τ = e2πi/3, and no other zeros. Therefore f (τ)/(G4(τ)G6(τ)) is an entire
modular form of weight 0 and hence a constant. Since we know from (4.20) that G4G6 is
proportional to G10, this case is also proved.

The next result characterizes all entire modular forms of an arbitrary even weight.
This is best stated in terms of linear algebra. For k ≥ 0, we define the vector spaceM2k
(over the field of complex numbers, naturally) as the space consisting of all entire mod-
ular forms of weight 2k.

Theorem 5.24. (a) The vector spaces M2k are finite-dimensional. Their dimensions are
equal to

dimM2k =
{
{
{

2k−2
12 if 2k ≡ 2 (mod 12),

⌊ 2k12 ⌋ + 1 otherwise.

(b) A linear basis for M2k is the set

𝒜k = {G4(τ)
aG6(τ)

b : a, b ∈ ℤ, a, b ≥ 0, 4a + 6b = 2k}. (5.52)

(c) Another linear basis for M2k is the set

ℬk = {G2k−12a(τ)Δ(τ)
a : a ∈ ℤ, 0 ≤ a ≤ ⌊2k

12
⌋, 12a ̸= 2k − 2} (5.53)

with the notational convention that G0 = 1.
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Proof. We prove part (c) (which also trivially implies part (a)) by induction on k. The
base cases 2k = 0, 2, 4, 6, 8, 10 form precisely the content of Proposition 5.23. For the
inductive step, let 2k ≥ 12. We claim thatM2k is spanned by the set ℬk . To show this, let
f ∈ M2k . Let α = f (i∞) be the constant coefficient in the Fourier expansion for f . Then
g(τ) = f (τ) − α G2k (τ)

G2k (i∞)
is an entire modular form of weight 2k and satisfies g(i∞) = 0.

Therefore the function g(τ)/Δ(τ) is an entire modular form of weight 2k − 12, that is,
an element of the space M2k−12. By the inductive hypothesis it can be represented as a
linear combination of the form

g(τ)
Δ(τ)
=∑

a
caG2k−12−12a(τ)Δ(τ)

a

for some coefficients ca, where the sum ranges over all a ≥ 0 for which 2k − 12 − 12a ≥ 0
and 2k − 12 − 12a ̸= 2. In terms of the original modular form f , this means that we have
represented f in the form

f (τ) = α
G2k(i∞)

G2k(τ) +∑
a
caG2k−12(a+1)(τ)Δ(τ)

a+1,

which is a linear combination of elements of ℬk . This proves that ℬk spansM2k .
To establish linear independence, assume that we have a linear relation of the form

∑
a
caG2k−12a(τ)Δ(τ)

a = 0

over the appropriate range of indices a. In particular, for τ = i∞, this implies that c0 = 0,
since G2k(i∞) = 2ζ (2k) ̸= 0 (recall (5.23)). The remaining expression can be factored as

Δ(τ)∑
a≥1

caG2k−12a(τ)Δ(τ)
a−1 = 0,

that is,

∑
a≥1

caG2k−12−12(a−1)(τ)Δ(τ)
a−1 = 0,

so by the inductive hypothesis, ca = 0 for all a. The proof by induction is complete.
Finally, to prove part (b), since we already showed that ℬk is a linear basis, it is

sufficient to show that any element of ℬk can be represented as a linear combination
of elements of 𝒜k and that 𝒜k and ℬk have the same cardinality. The second claim is
left as an exercise (Exercise 5.7). For the first claim, use (4.22) and an induction to show
that for any j ≥ 2, G2j can be represented as a linear combination of terms of the form
Gp4G

q
6 , where p, q ≥ 0 are integers satisfying 4p + 6q = 2j (this is a slightly more precise

version of Corollary 4.15). Then, taking 2j = 2k − 2a and using the fact that Δ is a linear
combination of G34 and G

2
6, we see that G2k−12aΔ

a can similarly be expressed as a linear
combination of monomials Ga4G

b
6 with 4a + 6b = 2k, as claimed.
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Corollary 5.25. Any entire modular form can be expressed as a polynomial in G4 and G6.

Proof of (5.36) and (5.37). We now revisit our earlier discussion about the Eisenstein se-
ries identities (5.36)–(5.37) and the number-theoretic identities (5.34)–(5.35) they imply.
Themain thing to observe is that Theorem 5.24 reduces these identities and similar ones
to essentially a triviality, since it represents an equality between elements of a finite-
dimensional (indeed, very low-dimensional in the situation at hand) vector space,whose
existence can be guessed based on simple linear-algebraic considerations, and whose
precise form can be derived mechanically.

The verification in the case of (5.36) is as follows: since the space M14 of modular
forms of weight 14 is of dimension 1 and contains both G14 and G4G10, there must be
a linear dependence between these two modular forms, that is, a relation of the form
G14 = cG4G10 for some constant c. The value of the constant c can now be found simply
by comparing the zeroth Fourier coefficient of the two sides of the relation. (You can
check that this leads to c = 6/13.)

The verification of (5.37) is similar but involves the two-dimensional space M12,
which contains the modular forms Δ, G12, and G26 as elements. Again, because of our
knowledge of the dimension of the space, we can deduce the existence of a linear
dependence relation of the form Δ = aG12 + bG

2
6 for some unknown constants a, b. Look-

ing at the first two Fourier coefficients gives two linear equations for the coefficients
a, b, which (again, you are encouraged to check) are easily solved to give the values
a = 1 200 × 1 430 and b = −1 200 × 691.

Suggested exercises for Section 5.12. 5.6, 5.7, 5.8.

5.13 Examples of modular forms

We have already encountered some of the most important examples of modular forms,
namely:
1. The Eisenstein series G2k , k ≥ 2, is a modular form of weight 2k.
2. The modular discriminant Δ = g32 − 27g

2
3 is a modular form of weight 12.

3. Klein’s J -function J = g32 /Δ is a modular function and a weak modular form of
weight 0.

Although Corollary 5.25 guarantees that allmodular forms can in fact be represented in
terms of these known, “obvious” examples, other examples ofmodular forms sometimes
appear “in the wild,” arising out of formulas that do not make it at all obvious that these
functions are either modular forms or related toEisenstein series.6 Below we survey a
few important examples.

6 Moreover, many more examples come up in more advanced parts of the theory when we broaden
the notion of what a modular form is to allow for functions that have nice transformation properties
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5.13.1 Theta functions

In our study of the Riemann zeta function in Chapter 2, we encountered the function

θ(t) =
∞

∑
n=−∞

e−πn
2t

(see (2.15)) whose functional equation θ(1/t) = √tθ(t) (Theorem 2.7) provides one of
the standard ways of analytically continuing ζ (s) to a meromorphic function on ℂ and
proving its functional equation. This function is in fact a mildly disguisedmodular form
(although of weight half, and under the action of a subgroup of Γ rather than the full
modular group) and belongs to a much larger family of functions known as theta func-
tions. Switching to the notation more customary to use in the theory of modular forms,
we define functions

θ2(τ) =
∞

∑
n=−∞

eπi(n+1/2)
2τ , (5.54)

θ3(τ) =
∞

∑
n=−∞

eπin
2τ , (5.55)

θ4(τ) =
∞

∑
n=−∞
(−1)neπin

2τ . (5.56)

We will refer to them as the Jacobi thetanull functions.7

Theorem 5.26. The functions θj(τ) satisfy the following transformation properties under
the generators T , S of the modular group Γ:

θ2(τ + 1) = e
πi/4θ2(τ), θ2(−1/τ) = √−iτ θ4(τ), (5.57)

θ3(τ + 1) = θ4(τ), θ3(−1/τ) = √−iτ θ3(τ), (5.58)

θ4(τ + 1) = θ3(τ), θ4(−1/τ) = √−iτ θ2(τ). (5.59)

Proof. This is Exercise 5.9. Note that the relations involving θj(τ+1) are immediate from
thedefinitions; the relationbetween θ3(−1/τ) and θ3(τ) is the sameas the transformation
property θ(1/x) = √xθ(x)discussed above from the theory of the Riemann zeta function;
and the remaining relations involving θj(−1/τ) for j = 2, 4 are proved using an argument

with respect to only a subgroup of the full modular group or otherwise relax or generalize the various
conditions a modular form is expected to satisfy. Here we focus mostly on the forms that are modular
under the full action of Γ.
7 The functions θj(τ) are also sometimes referred to as Jacobi theta constants or Jacobi theta func-
tions. The term “Jacobi theta function” also denotes a more general function of two complex variables z
and τ, which specializes to our θj under certain substitutions of the “elliptic” variable z.
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involving the Poisson summation formula similarly to that used to prove the functional
equation for θ3(−1/τ).

Theorem 5.27. We have the following identities:

G4 =
π4

90
(θ82 + θ

8
3 + θ

8
4), (5.60)

G6 =
π6

945
(θ123 + θ

12
4 − 3θ

8
2(θ

4
3 + θ

4
4)) (5.61)

=
π6

√2 ⋅ 945
((θ82 + θ

8
3 + θ

8
4)
3
− 54(θ2θ3θ4)

8)
1/2
, (5.62)

Δ = 16π12(θ2θ3θ4)
8. (5.63)

Proof. Exercise 5.10.

5.13.2 The modular lambda function

Define the function λ : ℍ→ ℂ by

λ(τ) = e3(τ) − e2(τ)
e1(τ) − e2(τ)

, (5.64)

where e1(τ), e2(τ), e3(τ) are the quantities derived from the Weierstrass ℘-function as-
sociated with the lattice L = ℤ + τℤ according to (4.25). The function λ(τ) is known as
themodular lambda function. It is a modular form, although not quite of the ordinary
kind we are used to work with. The next result adds more details.

Theorem 5.28. (a) λ(τ) is a modular function under the action of the congruence group
Γ(2) discussed in Exercise 5.4, that is, λ(τ) satisfies

λ(aτ + b
cτ + d
) = λ(τ) for all (a b

c d
) ∈ Γ(2).

(b) Klein’s J-invariant can be expressed in terms of λ(τ) as

J = 256 (1 − λ + λ
2)3

λ2(1 − λ)2
.

Proof. Exercise 5.11.

The modular λ function has interesting applications to parts of complex analysis
that seem a priori unrelated to modular forms. The most well-known such application
is its use in giving a slick proof of a deep result known as Picard’s theorem.
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Theorem 5.29 (Picard’s theorem). Let f : ℂ → ℂ be an entire function such that two
distinct complex numbers a, b are not in the image of f . Then f is a constant.

The proof, although conceptually simple, involves a use of themonodromy theorem,
which is outside the scope of this book. See [1, Ch. 8] for the details.

Another appearance of the modular lambda function is in connection with a maxi-
mization problem in the theory of conformalmapping of doubly connected regions. This
is discussed in [2, Sec. 4.12].

5.13.3 The zeros of ℘(z) and their modular properties

Fix a lattice L = ω1ℤ +ω2ℤ. In our discussion of doubly periodic functions in Chapter 4,
we saw that both ℘(z) and its derivative ℘′(z) have their poles at the points of L and that
℘′(z) has its zeros at the half-periods 1

2ω1,
1
2ω2,

1
2 (ω1 + ω2). We also discussed that ℘(z)

takes every value twice in any fundamental parallelogram as a doubly periodic function
of order 2. It might therefore seem like a curious omission that we never discussed the
question of where the zeros of ℘(z) are located. In fact, the question of the location of
the zeros as a function of the lattice L turns out to be quite nontrivial and gives rise to
an interesting modular form.

Let us denote the location of one of the zeros of ℘(z) by Z. This is a function of the
lattice L, so we can write Z = Z(L) or

Z = Z(τ)

if we switch to the notation involving the modular variable τ taking values in the upper
half-plane and representing the “canonical” lattice Lτ = ℤ + τℤ, that is, the defining
equation of Z(τ) is

℘(Z(τ); τ) ≡ 0 (τ ∈ ℍ).

It is natural to think of Z(τ) as a multivalued function of τ in the sense that—
similarly to the logarithm and kth root functions, we are familiar with from basic
complex analysis—it takes its values in the quotient of the complex plane by some
discrete group of symmetries. In our case the set of zeros of ℘(z) has two obvious sym-
metries: it is L-periodic, and (since ℘(z) is even) it is invariant under reflection z → −z.
Thus Z(τ) can be thought of as a function of τ that is well-defined up to a translation
by an arbitrary element of L and a sign change. Moreover, the location of any one zero
of ℘(z) determines the location of all of its zeros, since if Z lies in some fundamental
parallelogram, then either Z is a half-period and then must be of order 2 (in which case
there are no other zeros in the parallelogram), or Z is not a half-period, is a simple
zero, and is matched by another zero at the unique point in the parallelogram that is
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congruent to −Z modulo L. That is, geometrically, the zeros come in pairs of points that
are reflections of each other around the center of the parallelogram.

It is worth keeping in mind that when we discuss multivalued functions, we are
really talking about functions taking values in a certain Riemann surface. We will not
explore this point of view in depth, but if you find it interesting, then try to think what
the Riemann surface is in this case.

The question of understanding the behavior of Z(τ) seems to have been addressed
for the first time in a 1982 paper by Eichler and Zagier [26], who derived a formula for
this function. A more explicit formula was found in 2008 by Duke and Imamöglu [24].
It seems possible that the last word has not yet been said on this interesting and quite
nontrivial problem.

We present belowwithout proof Eichler and Zagier’s result, which ties in a nice way
to our current discussion of modular forms.

Theorem 5.30. (a) The function Z(τ) is holomorphic.
(b) The function Z′′(τ)2 is a single-valued function of τ, that is, an ordinary holomorphic

function onℍ.
(c) The function Z′′(τ)2 is a weak modular form of weight 6 for the modular group Γ. It

is given explicitly by

Z′′(τ)2 = −124 416π2 Δ(τ)
2

E6(τ)3
.

(d) Z(τ) can be expressed explicitly as

Z(τ) = ℤ + τℤ + 1
2
± (

log(5 + 2√6)
2πi

+ 144πi√6
i∞

∫
τ

(ρ − τ) Δ(ρ)
E6(ρ)3/2

dρ).

5.13.4 Infinite products

Modular forms often arise in applications in the form of certain types of infinite prod-
ucts, where, again, the fact that the function expressed in such a way is a modular form
is not easily apparent. This is the subject of the next section.

Suggested exercises for Section 5.13. 5.9, 5.10, 5.11.

5.14 Infinite products for modular forms

One additional beautiful and somewhat mysterious aspect of the theory of modular
forms is the fact thatmanymodular forms that are commonly encountered in the theory
have elegant representations as infinite products. It is not clear whether there is a good
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conceptual explanation for why this happens so frequently [W20], or whether instead it
is yet another vivid illustration of John von Neumann’s famous quip that “in mathemat-
ics you don’t understand things. You just get used to them.”8 Our goal in this section is
to prove a few of the most well-known identities of this type.

5.14.1 The modular discriminant

The following result is one of the famous identities of modular form theory.

Theorem 5.31. The modular discriminant Δ has the infinite product representation

Δ(τ) = (2π)12q
∞

∏
n=1
(1 − qn)24 (q = e2πiτ , τ ∈ ℍ), (5.65)

One reason why identity (5.65) is interesting is that it highlights an unexpected con-
nection between the modular discriminant and integer partitions, since the function on
the right-hand side of (5.65) is, up to trivial factors, the generating function of integer
partitions raised to the power −24. The connection between modular forms and integer
partitions goesmuch further than this single identity andhas far-reaching consequences
that go quite deep into the theory; you can learn about it inmore specialized books, such
as [5].

The existence of identity (5.65) is closely tied to yet another intriguing object, which
we will now study, the weight 2 Eisenstein series G2. One motivation for introducing
G2 is that Theorem 5.24 suggests an annoying gap in the dimensions of the vector spaces
M2k(Γ). Noticing this, we might wonder whether the definition of a modular form of
weight 2 can bemodified somehow to lead to someuseful family of functions rather than
the empty set and—which is related—whether formula (4.13) defining the Eisenstein
series can bemade to make sense for the exponent 2 through some simple modification.
The answer to both these questions is “yes”; in fact, the modification to (4.13) is the most
obvious one that one can think of and consists of replacing an absolutely convergent
series by a conditionally convergent one. The next result explains what happens when
such a modification is carried out.

Theorem 5.32. Define the weight 2 Eisenstein series G2 by

G2(τ) =
∞

∑
m∈ℤ
[ ∑

n∈ℤ
(m,n) ̸=(0,0)

1
(mτ + n)2

]. (5.66)

8 Von Neumann said this in response to a complaint from a colleague that he did not understand the
method of characteristics [75, p. 208].
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(a) Expression (5.66) defines a meromorphic function G2(τ) on the upper half-plane.
(b) G2 transforms under the actions of the generators T , S of Γ as

G2(τ + 1) = G2(τ), (5.67)

G2(−1/τ) = τ
2G2(τ) − 2πiτ. (5.68)

(c) G2 is a premodular form with the Fourier expansion

G2(τ) =
π2

3
(1 − 24

∞

∑
n=1

σ1(n)q
n) (q = e2πiτ , τ ∈ ℍ). (5.69)

Note that (5.69) is the case 2k = 2 of the Fourier expansion (5.23). Thus we see yet
another way in which G2 can be thought of as extending the definition of the original
Eisenstein series G2k , k ≥ 2, in the most natural way possible by a kind of “analytic con-
tinuation” (very loosely speaking), that is, by taking one of the formulas that represent
those series and simply observing that it continues to represent a well-defined object
even in the case 2k = 2.

Proof. (a) For m = 0, the inner sum in (5.66) is equal to 2ζ (2) = π2/3. For m ̸= 0, this
inner sum can be summed using (5.25) as

∞

∑
n=−∞

1
(mτ + n)2

= −
1
m
⋅
d
dτ
(π cot(πmτ)) = π2

sin2(πmτ)
.

It is now easy to see that the infinite series ∑m ̸=0 sin
−2(πmτ) converges absolutely uni-

formly on compacts in ℍ (since | sin(z)| grows exponentially in | Im(z)|). Thus G2(z) is
well-defined and holomorphic onℍ.

(c) The calculation is essentially a repetition of (5.27): againusing (5.25) andalso (5.26),
we have

∞

∑
m∈ℤ
[ ∑

n∈ℤ
(m,n) ̸=(0,0)

1
(mτ + n)2

]

=
π2

3
+
∞

∑
m ̸=0

∞

∑
n=−∞

1
(mτ + n)2

=
π2

3
+ 2
∞

∑
m=1

∞

∑
n=−∞

1
(mτ + n)2

=
π2

3
− 8π2

∞

∑
m=1

∞

∑
ℓ=1
ℓe2πiℓmτ = π

2

3
− 8π2

∞

∑
n=1
( ∑
ℓ,m≥1
ℓm=n

ℓ)e2πinτ

=
π2

3
(1 − 24

∞

∑
n=1

σ1(n)e
2πinτ),

as claimed.
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(b) The first relation (5.67) is obvious from (5.69) and also easy to check directly
from the definition of G2. Thus the main challenge is to prove (5.68). As in the proof of
(c) above, we start by attempting to replicate the calculation that we used to prove the
analogous property (5.3) (in the particular case of the transformation S(z) = −1/z) for the
“proper” Eisenstein series. However, in this case, we are in for a surprise. Specifically,
multiplying the left-hand side of (5.68) by τ−2 gives

τ−2G2(−1/τ) = ∑
m ̸=0
[∑
n∈ℤ

1
(m(−1/τ) + n)2

]τ−2 + 2ζ (2)τ−2

=
π2

3τ2
+ ∑
m ̸=0
[∑
n∈ℤ

1
(nτ −m)2

] =
π2

3τ2
+ ∑
m ̸=0
[
1
m2 + ∑

n ̸=0

1
(nτ −m)2

]

=
π2

3τ2
+
π2

3
+ ∑
m ̸=0
[∑
n ̸=0

1
(nτ −m)2

]

=
π2

3
+ ∑
n ̸=0

1
(nτ)2
+ ∑
m ̸=0
[∑
n ̸=0

1
(nτ −m)2

]

=
π2

3
+∑

m
[∑
n ̸=0

1
(nτ −m)2

] =
π2

3
+∑

n
[∑
m ̸=0

1
(mτ + n)2

].

Comparing this to (5.66) and (5.68), we see that the proof of (5.68) reduces to showing the
following curious rearrangement identity:

∑
m ̸=0
(∑

n

1
(mτ + n)2

) −∑
n
(∑
m ̸=0

1
(mτ + n)2

) =
2πi
τ
. (5.70)

In other words, what we have here is a naturally occurring example of a condition-
ally convergent double summation for which changing the order of summation not
only changes the value of the series (which can happen, as we know from calculus),
but changes it in a predictable and rather interesting way.9 It is precisely this change
that accounts for G2 satisfying the “exotic” transformation property (5.68) (sometimes
described as a “quasimodular” relation) rather than the more standard modular trans-
formation relation satisfied by the other, absolutely convergent G2k .

Denote the first double sum on the left-hand side of (5.70) by X and the second by Y .
We have

X = ∑
m ̸=0
[∑
n
(

1
(mτ + n)2(mτ + n + 1)

+
1

mτ + n
−

1
mτ + n + 1

)]

= ∑
m ̸=0
[∑
n

1
(mτ + n)2(mτ + n + 1)

] + ∑
m ̸=0
[∑
n
(

1
mτ + n

−
1

mτ + n + 1
)].

9 The examples illustrating this sort of order-dependence phenomenon in calculus textbooks often have
a rather contrived feel to them. This one seems more natural.
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A key observation here is that the first of these two double summations is absolutely
convergent. Similarly,

Y =∑
n
[∑
m ̸=0
(

1
(mτ + n)2(mτ + n + 1)

+
1

mτ + n
−

1
mτ + n + 1

)]

=∑
n
[∑
m ̸=0

1
(mτ + n)2(mτ + n + 1)

] +∑
n
[∑
m ̸=0
(

1
mτ + n

−
1

mτ + n + 1
)],

and thus, by absolute convergence, the difference X − Y is now seen to be equal to

∑
m ̸=0
[∑
n
(

1
mτ + n

−
1

mτ + n + 1
)] −∑

n
[∑
m ̸=0
(

1
mτ + n

−
1

mτ + n + 1
)]. (5.71)

The first of these new double series is trivial to evaluate, since the internal summation
is telescoping: we have

∑
m ̸=0
[∑
n
(

1
mτ + n

−
1

mτ + n + 1
)]

= ∑
m ̸=0
[ lim
N→∞

N
∑

n=−N
(

1
mτ + n

−
1

mτ + n + 1
)]

= ∑
m ̸=0
[ lim
N→∞
(

1
mτ − N

−
1

mτ + N + 1
)] = ∑

m ̸=0
0 = 0.

The second double series in (5.71) is only slightly more challenging. Write

∑
n
[∑
m ̸=0
(

1
mτ + n

−
1

mτ + n + 1
)]

= lim
N→∞

N−1
∑

n=−N
[∑
m ̸=0
(

1
mτ + n

−
1

mτ + n + 1
)]

= lim
N→∞
∑
m ̸=0
[

N−1
∑

n=−N
(

1
mτ + n

−
1

mτ + n + 1
)]

= lim
N→∞
∑
m ̸=0
(

1
mτ − N

−
1

mτ + N
)

= lim
N→∞

∞

∑
m=1
(

1
mτ − N

−
1

mτ + N
+

1
−mτ − N

−
1

−mτ + N
)

= lim
N→∞

2
∞

∑
m=1
(

1
mτ − N

−
1

mτ + N
)

= −
2
τ
lim
N→∞

∞

∑
m=1
(

1
N
τ +m
+

1
N
τ −m
). (5.72)
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Appealing to the partial fraction expansion of the cotangent function in one of its variant
forms,

π cot(πz) = 1
z
+
∞

∑
m=1
(

1
z +m
+

1
z −m
)

(a trivial recasting of (5.24)), we see that the last expression in (5.72) is equal to

−
2
τ
lim
N→∞
(π cot(πN

τ
) −

τ
N
) = −

2π
τ

lim
N→∞

cot(πN
τ
).

By a straightforward calculation (Exercise 5.12) this is equal to −2πi/τ, and there-
fore (5.71) is equal to 2πi/τ, which is what we have reduced our claim to. The proof
is complete.

Proof of Theorem 5.31. Define Δ̃ : ℍ→ ℂ by

Δ̃(τ) = (2π)12q
∞

∏
n=1
(1 − qn)24.

By Proposition 1.60 the product converges uniformly on compacts in ℍ and defines
a holomorphic function with no zeros, which, since it can be expanded as a series in
powers of q with good convergence properties, is a premodular form. Our goal is to
prove that Δ(τ) ≡ Δ̃(τ), and this will pass through a curious relationship to the Eisen-
stein series G2. Namely, the logarithmic derivative of Δ̃(τ) is given by

Δ̃′(τ)
Δ̃(τ)
= 2πi − 24

∞

∑
n=1

2πin e2πinτ

1 − e2πinτ
= 2πi(1 − 24

∞

∑
n=1

n
∞

∑
ℓ=1

e2πinℓτ)

= 2πi(1 − 24
∞

∑
m=1
( ∑

n,ℓ≥1
nℓ=m

n)e2πimτ)

= 2πi(1 − 24
∞

∑
m=1

σ1(m)e
2πimτ) =

6i
π
G2(τ). (5.73)

We claim that this connection implies that Δ̃(τ) is a modular form of weight 12. By
Lemma 5.21 it suffices to prove that Δ̃ satisfies

Δ̃(−1/τ) = τ12Δ̃(τ) (τ ∈ ℍ). (5.74)

However, the logarithmic derivative of the left-hand side is equal to

d
dτ (Δ̃(−1/τ))
Δ̃(−1/τ)

=
1
τ2
Δ̃′(−1/τ)
Δ̃(−1/τ)

=
6i
πτ2

G2(−1/τ)
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=
6i
πτ2
(τ2G2(τ) − 2πiτ) =

6i
π
G2(τ) +

12
τ
,

which is the same as the logarithmic derivative of the right-hand side of (5.74). Therefore
if we recall the trivial fact that if f , g are twomeromorphic functions that are not identi-
cally zero for which f ′/f ≡ g′/g, then f ≡ cg for some constant c, then, together with the
fact that (5.74) is satisfied for τ = i, we deduce that (5.74) holds for general τ ∈ ℍ. Thus
Δ̃(τ) is a modular form of weight 12. As such, it is an element of the vector spaceM12(Γ),
which we know (Theorem 5.24) is of dimension 2 and spanned by the original modular
discriminant Δ(τ) and the Eisenstein series G12. It follows that Δ̃ ≡ αΔ + βG12 for some
α, β ∈ ℂ. Comparing the constant and linear terms in the Fourier expansions of Δ, G12,
and Δ̃ shows that α = 1 and β = 0 and finishes the proof.10

The relation between Δ and G2 that was obtained as part of the proof is of indepen-
dent interest, so we note it as a corollary.

Corollary 5.33. The functions Δ(τ) and G2(τ) are related to each other via

Δ′(τ)
Δ(τ)
=
6i
π
G2(τ) (τ ∈ ℍ).

5.14.2 The modular lambda function

In this and next subsections, we denoteQ = eπiτ . (This is the square root of the parameter
q = e2πiτ we have been using throughout much of the discussions in this chapter and is
more convenient for some expansions discussed below.11)

Theorem 5.34. The modular lambda function λ(τ) defined in (5.64) and the complemen-
tary function 1 − λ(τ) have the infinite product representations

λ(τ) = 16Q
∞

∏
n=1
(
1 + Q2n

1 + Q2n−1
)
8

, (5.75)

1 − λ(τ) =
∞

∏
n=1
(
1 − Q2n−1

1 + Q2n−1
)
8

(5.76)

with Q = eπiτ , τ ∈ ℍ.

10 In fact, the constant coefficients of Δ and Δ̃ are 0, whichmeans they both belong to the codimension-1
subspace of M12(Γ) of forms with a constant coefficient 0. Such forms are known as cusp forms. So an
alternative way of phrasing the argument above without mentioning G12 is by saying that Δ̃ must be
proportional to Δ, since they are both cusp forms of weight 12, and since the space of such forms is one-
dimensional and spanned by Δ.
11 In many textbooks on modular forms, the letter q may be used alternately for either eπiτ or e2πiτ

depending on the context, so pay close attention to the definitions when you read the literature.
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Proof of (5.75). Fix τ ∈ ℍ, and let Lτ = ℤ + τℤ denote as usual the associated lattice
with fundamental period pair ω1 = 1, ω2 = τ, and let ℘(z) = ℘(z; Lτ) be the Weierstrass
function of Lτ . Define the meromorphic function F : ℂ→ ℂ by the expression

F(z) =
∞

∏
n=−∞

(1 + eπi(2n−1)τ−2πiz)(1 + eπi(2n+1)τ−2πiz)
(1 + e2πinτ−2πiz)2

. (5.77)

Denote the nth factor in this two-sided infinite product by ζn = ζn(z; τ). The product
of ζn over positive values of n clearly converges absolutely, uniformly as z ranges over
compacts inℂ away fromany poles of individual factors, due to the exponential decay of
|e2πinτ |.Moreover, ζn has the symmetry ζ−n(−z; τ) = ζn(z; τ), which is easy to check, imply-
ing the same convergence also for the product over negative n. Thus F(z) is well-defined
and is a meromorphic function with poles only at places where one of the individual
factors ζn has a pole (more on that below).

The usefulness of F(z) is related to the fact, whichwe nowobserve, that it is a doubly
periodic function with period lattice Lτ . This is easy to see: the relation F(z + 1) = F(z)
holds trivially, and to show that F(z + τ) = F(z), observe that the substitution z → z + τ
maps each factor ζn to its predecessor ζn−1, that is, we have the relation ζn(z + τ; τ) =
ζn−1(z; τ).

Next, an examination of the factors involved in the definition of ζn and their zeros
(as a function of z with fixed τ) reveals that F(z) has double poles at the half-period
z = ν1 = 1/2 (in the notation of (4.23)) and all its Lτ -translates, and double zeros at the
half-period z = ν3 = (1 + τ)/2 and all its Lτ -translates. There are no other zeros or poles.
Thismeans that in fact F(z) has the same zeros and poles as the doubly periodic function
℘(z)−e3
℘(z)−e1

. Therefore the quotient F(z)/℘(z)−e3℘(z)−e1
is a doubly periodic function with no poles

and so must be a constant. Taking z = 0 shows that the constant is equal to F(0) (the
limit of ℘(z)−e3℘(z)−e1

as z → 0 is 1 because of cancelation of the principal parts of the poles of
the numerator and denominator at z = 0; refer to (4.10)). So we have shown that

F(z) = F(0)
℘(z) − e3
℘(z) − e1

.

Now set z = ν2 = τ/2 in this identity to get that

F(τ/2) = F(ν2) = F(0)
℘(ν2) − e3
℘(ν2) − e1

= F(0)e2 − e3
e2 − e1
= F(0)λ(τ).

In other words, we have shown that the lambda function can be represented in terms
of F(z) as λ(τ) = F(τ/2)/F(0). Making the relevant substitutions into (5.77), we see that

F(0) =
∞

∏
n=−∞

(1 + eπi(2n−1)τ)(1 + eπi(2n+1)τ)
(1 + e2πinτ)2

=
(1 + Q−1)(1 + Q)

4
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×
∞

∏
n=1

(1 + Q2n−1)(1 + Q2n+1)(1 + Q−(2n−1))(1 + Q−(2n+1))
(1 + Q2n)2(1 + Q−2n)2

=
(1 + Q)2

4Q

∞

∏
n=1

(1 + Q2n−1)2(1 + Q2n+1)2

(1 + Q2n)4
=

1
4Q

∞

∏
n=1

(1 + Q2n−1)4

(1 + Q2n)4
.

Similarly,

F(τ/2) =
∞

∏
n=−∞

(1 + eπi(2n−2)τ)(1 + eπi(2n)τ)
(1 + eπi(2n−1)τ)2

=
∞

∏
n=1

(1 + Q2n−2)(1 + Q2n)(1 + Q−(2n−2))(1 + Q−2n)
(1 + Q2n−1)2(1 + Q−(2n−1))2

=
∞

∏
n=1

(1 + Q2n−2)2(1 + Q2n)2

(1 + Q2n−1)4
= 4
∞

∏
n=1

(1 + Q2n)4

(1 + Q2n−1)4
.

Combining the above results yields precisely the infinite product formula (5.75).

Proof of (5.76). Exercise 5.15.

5.14.3 The Jacobi thetanull functions

Our final result on infinite product expansions concerns the Jacobi thetanull functions.

Theorem 5.35. The Jacobi thetanull functions have the infinite product representations

θ2(τ) = 2Q
1/4
∞

∏
n=1
(1 − Q2n)(1 + Q2n)2, (5.78)

θ3(τ) =
∞

∏
n=1
(1 − Q2n)(1 + Q2n−1)2, (5.79)

θ4(τ) =
∞

∏
n=1
(1 − Q2n)(1 − Q2n−1)2, (5.80)

with the usual notation Q = eπiτ , τ ∈ ℍ.

As a corollary of (5.75), (5.76), and (5.78)–(5.80), we obtain two additional remarkable
identities relating λ(τ) to the Jacobi thetanull functions.

Corollary 5.36. The modular lambda function λ(τ) satisfies the relations

λ(τ) = (θ2(τ)
θ3(τ)
)
4

, 1 − λ(τ) = (θ4(τ)
θ3(τ)
)
4

. (5.81)

Additional interesting corollary worth noting is the following.
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Corollary 5.37. The Jacobi thetanull functions satisfy the identity

θ2(τ)
4 + θ4(τ)

4 = θ3(τ)
4. (5.82)

The infinite products (5.78)–(5.80) are particular cases of a more general product
identity for the full Jacobi theta function (involving two variables z and τ), known as
the Jacobi triple product identity.

Theorem 5.38 (Jacobi triple product identity). We have the identity

∞

∑
n=−∞

exp(πin2τ + 2πinz)

=
∞

∏
n=1
(1 − e2nπiτ)(1 + e(2n−1)πiτ+2πiz)(1 + e(2n−1)πiτ−2πiz) (5.83)

for τ ∈ ℍ and z ∈ ℂ.

For a complex-analytic proof of identity (5.83) using techniques of a flavor similar
to those used in the proof of Theorem 5.34; see [66, Ch. 10]. An alternative approach
proceeds by rewriting (5.83) as

∞

∑
n=−∞

xn
2
yn =
∞

∏
n=1
(1 − x2n)(1 + yx2n−1)(1 + y−1x2n−1)

(by making the substitutions x = eπiτ , y = e2πiz) or, equivalently,

∞

∏
n=1

1
1 − x2n

∞

∑
n=−∞

xn
2
yn =
∞

∏
n=1
(1 + yx2n−1)(1 + y−1x2n−1).

This can be given a combinatorial proof by interpreting both sides as bivariate gener-
ating functions for certain classes of objects associated with integer partitions. These
classes are then shown to be in explicit bijection with each other, implying the equality
of the coefficients at xjyk on both sides of the equation for all j, k. See [54, Sec. 6] for
details.

Proof of Theorem 5.35. Exercise 5.17.

Suggested exercises for Section 5.14. 5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 5.18, 5.19, 5.20, 5.21.



228 � 5 Modular forms

Exercises for Chapter 5

5.1 Show that theWeierstrass ℘-function, regarded as a function ℘(z; τ) of both the “el-
liptic” variable z and the modular variable τ, satisfies the transformation relation

℘(
z

cτ + d
;
aτ + b
cτ + d
) = (cτ + d)2℘(z, τ) (z ∈ ℂ, τ ∈ ℍ) (5.84)

for all a, b, c, d ∈ ℤ for which ad − bc = 1.
5.2 Prove Lemma 5.3. (Hint: reminding yourself of the statement of Theorem 3.13 from

Chapter 3 might be helpful.)
5.3 Structureof themodular group.Prove that the algebraic structure of themodular

group Γ can be expressed succinctly by the relation

Γ ≅ Z2 ∗ Z3.

In words, this says that Γ is isomorphic to the free product of the cyclic groups of
orders 2 and 3. More precisely, show that it is freely generated by the elements
S,U , that is, that if the standard cyclic groups Z2 and Z3 have respective generators
denoted γ2 and γ3, then the map

φ : Z2 ∗ Z3 → Γ

(where Z2 ∗ Z3 denotes the free product of those groups) defined by

φ(γ2) = S, φ(γ3) = U ,

and extended in the obvious way to a group homomorphism is a group isomor-
phism. (Note: this is a well-known result. A simple proof is given in [4].)

5.4 The congruence subgroup Γ(2). Let

Γ(2) = {A = (a b
c d
) ∈ Γ : a, d are odd, b, c are even} .

It is easy to see that Γ(2) is a subgroup of the modular group Γ either through direct
verification or by noting that Γ(2) is the kernel of the homomorphism that sends
any matrix A in Γ to its reduction mod 2, an element of the matrix group SL(2, Z2).
The group Γ(2) belongs to the class of subgroups of Γ known as the congruence
subgroups.
(a) Prove that the two matrices

A = (1 2
0 1
) and B = (1 0

2 1
) = A⊤ (5.85)

generate Γ(2).
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Figure 5.3: The fundamental domain 𝒢 for the congruence subgroup Γ(2).

(b) Prove that Γ(2) is freely generated by A and B. That is, the only products we
can form from A, A−1, B, and B−1 that give the identity element are those that
reduce to the identity element by successively canceling out the appearances
of AA−1, A−1A, BB−1, and B−1B.

(c) Prove that the set

𝒢 = {z ∈ ℍ : −1 ≤ Re(z)
 < 1,

z − 1

2


> 1,

z + 1

2


≥ 1} ∪ {0}

(Fig. 5.3) is a fundamental domain under the action of Γ(2) in a sense that you
should formulate precisely as an analogue of the statement of Theorem 5.4.

(d) Find the index [Γ : Γ(2)].
5.5 Prove Theorem 5.10.
5.6 Prove Lemma 5.21.
5.7 Fill in the missing detail in the proof of Theorem 5.24 by proving that |𝒜k | = |ℬk |

for all k ≥ 0, where𝒜k and ℬk are defined by (5.52)–(5.53).
5.8 Write a computer program to generate the change of basis matrices (in both direc-

tions) between the two linear bases 𝒜k and ℬk for the vector spaceM2k described
in Theorem 5.24. Investigate these matrices for small values of k and see if you can
work out a formula for them that is valid in the general case, or find other interest-
ing patterns.

5.9 Prove the transformation properties (5.57)–(5.59).
5.10 Prove Theorem 5.27. The idea is to show that each of the functions on the right-hand

sides of (5.60)–(5.63) has the right structural properties that make it an element of
the space M2k for an appropriate value of k, then conclude that it is a constant
multiple of the function on the left-hand side, and finally find a way to determine
the value of the constant.

5.11 Prove Theorem 5.28.
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5.12 Prove that if z ∈ ℂ \ ℝ, then

lim
N→∞

cot(Nz) = {
−i if Im(z) > 0,
i if Im(z) < 0.

5.13 Prove that G2 satisfies the general transformation relation

G2(
aτ + b
cτ + d
) = (cτ + d)2G2(τ) − 2πic(cτ + d), (

a b
c d
) ∈ Γ,

under the action of the modular group.
5.14 Prove that G2(i) = π.
5.15 Prove the infinite product formula (5.76) by applying a similar technique to that

used in the proof of (5.75).
5.16 (a) Enter a truncated version of the infinite product formula (5.75) into a computer

algebra system of your choice, to obtain the first 10 coefficients in the Q-series
expansion of the modular λ function.

(b) Enter the first few coefficients into the search box on theOn-Line Encyclopedia
of Integer Sequences [W21]. If youhave the correct coefficients, then the search
results will show you a lot of additional information and references on this
sequence of numbers and on the modular lambda function. (You can also try
doing the same with the Fourier coefficients for Δ, the Eisenstein series, or
other sequences of integers that you encounter inmodular forms or any other
area of mathematics.)

5.17 Show how to derive formulas (5.78)–(5.80) from (5.83).

In the exercises below,wedefine renormalized versions of theEisenstein seriesG2,G4,G6
by

E2(τ) =
3
π2
G2(τ) = 1 − 24

∞

∑
n=1

σ1(n)q
n, (5.86)

E4(τ) =
45
π4
G4(τ) = 1 + 240

∞

∑
n=1

σ3(n)q
n, (5.87)

E6(τ) =
945
2π6

G6(τ) = 1 − 504
∞

∑
n=1

σ5(n)q
n. (5.88)

These versions of the Eisenstein series are often used in the literature in connectionwith
number-theoretic applications.
5.18 (a) Prove that E2, E4, and E6 satisfy the following system of differential equations,

known as Ramanujan’s identities:

1
2πi

E′2(τ) =
1
12
(E2(τ)

2 − E4(τ)), (5.89)
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1
2πi

E′4(τ) =
1
3
(E2(τ)E4(τ) − E6(τ)), (5.90)

1
2πi

E′6(τ) =
1
2
(E2(τ)E6(τ) − E4(τ)

2). (5.91)

(b) For each of identities (5.89)–(5.91), find the Fourier expansions of both sides
and compare the coefficients to obtain interesting number-theoretic identities.

5.19 Prove the identities

E2(τ) =
1
6
(4E2(2τ) + E2(

τ
2
) + E2(

τ + 1
2
)),

E4(τ) =
1
18
(16E4(2τ) + E4(

τ
2
) + E4(

τ + 1
2
)).

5.20 Prove the identities

θ2(τ)
4 =

1
3
(E2(

τ + 1
2
) − E2(

τ
2
)), (5.92)

θ3(τ)
4 =

1
3
(4E2(2τ) − E2(

τ
2
)), (5.93)

θ4(τ)
4 =

1
3
(4E2(2τ) − E2(

τ + 1
2
)), (5.94)

θ2(τ)
8 =

16
15
(E4(τ) − E4(2τ)), (5.95)

θ3(τ)
8 =

1
15
(16E4(τ) − E4(

τ + 1
2
)), (5.96)

θ4(τ)
8 =

1
15
(16E4(τ) − E4(

τ
2
)). (5.97)

Guidance for proving (5.92)–(5.94). Define the functions

R2(τ) =
E2(

τ+1
2 ) − E2(

τ
2 )

3θ2(τ)4
,

R3(τ) =
4E2(2τ) − E2(

τ
2 )

3θ3(τ)4
,

R4(τ) =
4E2(2τ) − E2(

τ+1
2 )

3θ4(τ)4
,

ϕ1 = R2 + R3 + R4,

ϕ2 = R2R3 + R2R4 + R3R4,

ϕ3 = R2R3R4.

Show that ϕ1, ϕ2, ϕ3 are entire modular forms of weight 0 and use this to show that
ϕ1 ≡ 3, ϕ2 ≡ 3, ϕ3 ≡ 1. Deduce from this that R2 ≡ R3 ≡ R4 ≡ 1.
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5.21 Show that by expanding both sides of (5.93) and (5.96) as Fourier series and compar-
ing the coefficients, we will obtain interesting number-theoretic identities related
to counting the number of ways in which integers can be represented as a sum of
squares. Specifically, let r4(n) and r8(n) denote the numbers of ways to represent
an integer n as a sum of 4 squares and as a sum of 8 squares, respectively. Prove
the following identities, due to Jacobi:

r4(n) = 8 ∑
d | n, 4 ∤ d

d,

r8(n) = 16(−1)
n ∑
d | n
(−1)dd3.

(In particular, we get the fact that every integer can be expressed as a sum of four
squares, a famous result in number theory proved by Lagrange in 1770.)

5.22 Use (5.92)–(5.93) to prove that

2θ3(τ)
4 − θ2(τ)

4

2
= 1 + 24

∞

∑
n=1

σodd(n)e
2πinτ , (5.98)

where σodd(n), the odd divisor function, is defined by

σodd(n) = ∑
d | n
d odd

d (n ≥ 1).

5.23 Use the Jacobi triple product identity (5.83) to derive the following identity, known
as the Euler pentagonal number theorem:

∞

∏
n=1
(1 − xn) =

∞

∑
k=−∞
(−1)kxk(3k−1)/2 (|x| < 1).



6 Sphere packing in 8 dimensions
Discovery inmathematics is not a matter of logic. It is rather the result of mysterious powers which
no one understands, and in which unconscious recognition of beauty must play an important part.
Out of an infinity of designs, a mathematician chooses one pattern for beauty’s sake and pulls it
down to earth, no one knows how.

Marston Morse, “Mathematics and the arts” (1959)

6.1 Motivation: the sphere packing problem in d dimensions

In 1611, two years after publishing the first two of his famous laws of planetary motion,
the astronomer Johannes Kepler also published a curious observation about geometry
in an essay titled “On the Six-Cornered Snowflake.” Kepler speculated that the most ef-
ficient way to pack solid spheres of equal size in three-dimensional space was using
the lattice arrangement now known as the face-centered cubic (Fig. 6.1). This packing
results in a packing density—the fraction of the volume of the packed space occupied
by the interior of the spheres—of π

3√2 , and Kepler’s conjecture was the statement that
no other configuration of spheres can achieve (in a limiting sense when this is done
over larger and larger volumes that fill up space) a higher packing density. Although
intuitively plausible, even obvious-sounding to anyone who has tried to stack oranges
or other spherical objects, the conjecture nonetheless proved extremely resistant to at-
tempts by mathematicians over the ensuing centuries to prove it rigorously. In the late
twentieth century, it stood as one of the most famous and longest-standing open prob-
lems in mathematics (among other markers of status, it was included as part of the 18th
problemonHilbert’s famous list of 23 problems) andwasfinally provedbyThomasHales
[39] in 1998.

We will not discuss Hales’s proof, which is very involved and does not use complex
analysis; the book [38] is a good reference on this topic. However, it turns out that sphere

Figure 6.1: The Kepler conjecture, proved by Thomas Hales in 1998, states that the highest density for
packing spheres inℝ3 is π/3√2. The packing density for the two lattice packings: (a) the cubic close pack-
ing (derived from the lattice known as the face-centered cubic) and (b) the hexagonal close packing.

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783110796810-007
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Figure 6.2: The hexagonal packing is the densest way to pack unit circles in the plane.

packing is extremely interesting to study in other dimensions as well (where “spheres”
now refer to hyperspheres of appropriate dimension, and the meaning of “packing” re-
mains the same). For example, the case of sphere packing in two dimensions (that is,
circle packing) is also interesting, though it is much simpler to understand than in three
dimensions and has as its solution the hexagonal lattice packing with a packing density
of π√12 (a fact that was shown, in increasing levels of generality and rigor, by Gauss in
1831, Thue in 1890, and Tóth in 1940); see Fig. 6.2. Much research in recent decades has
focused on studying the question in dimensions higher than 3; see [18].

Our goal in this chapter is to explain the remarkablemathematical ideas behind the
recent solution of the sphere packing problem in dimensions 8 and 24. These are cur-
rently the only dimensions apart from d = 2, 3 for which the problem has been solved.
Specifically, we will give a detailed proof of Viazovska’s theorem.

Theorem 6.1 (Viazovska’s theorem). The optimal sphere packing density in ℝ8 is π4
384 .

Theorem 6.1 was proved by Maryna Viazovska [71] in 2016.1 Following the appear-
ance of her groundbreaking paper, Viazovska’s new insights ledwithin days to a success-
ful solution of the problem in dimension 24 by her and her collaborators Cohn, Kumar,
Miller, and Radchenko [16]. In 2022, Viazovska was awarded the Fields Medal for these
remarkable achievements and for further contributions to related problems in geome-
try and Fourier analysis. For more details, see [12, 13, 20, 52].

One of the remarkable aspects of the solutions to the sphere packing problem in
both dimensions 8 and 24 is that they use very little geometry: in fact, what little geo-
metrical reasoning appears only does so in connection with the explicit constructions

1 This statement (and our name for Theorem 6.1) are simplifications: this theorem summarizes the re-
sults and contributions of several mathematicians. However, in this writer’s opinion, Viazovska’s contri-
bution being the last, as well as being inarguably most ingenious and remarkable, makes her deserving
of being the eponym of the theorem.
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of the optimal packings (which imply lower bounds for the packing density), whereas
the proof of the matching upper bounds for the packing density instead draws primarily
on complex analysis and the theory of modular forms, spiced up with a bit of Fourier
analysis. If you have read Chapter 5, then you are well equipped to tackle this modern
and quite beautiful application of complex analysis.

The E8 lattice and sphere packing
The E8 sphere packing is a packing in which each of the spheres of the packing is centered at a vertex
of the so-called E8 lattice, a lattice with many remarkable properties that is closely associated with (and
shares a notation with) the exceptional Lie algebra E8.

As the E8 packing is an intrinsically 8-dimensional object, it is somewhat difficult to visualize what
the packing “looks like.” One can nonetheless gain some understanding of the qualitative behavior of the
packing by considering what a single “cell” of the packing looks like — that is, a single sphere centered
at the origin together with the spheres of the packing that are tangent to it. In the case of the E8 packing,
there are 240 such tangent spheres. Each of the tangent spheres is itself tangent to 56 of the other 239
spheres. This is visualized in the figure below, where the 240 spheres are represented as dots, and two
dots representing spheres that are mutually tangent are connected with a line. (The positions of the dots
are given by a particularly symmetric two-dimensional projection of their sphere centers inℝ8.)

A formal construction of the E8 lattice is given in Section A.7 in the appendix.

Figure 6.3: A two-dimensional projection of a packing cell in the E8 sphere packing, which realizes the
optimal sphere packing inℝ8, having a packing density of π4/384.
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6.2 A high-level overview of the proof

To understand the proof of Theorem 6.1, a bit of background is required to set up the
problem for the final part of the proof, the part that involves complex analysis and is of
main interest to us. Our presentation is self-contained and is split between this chapter
and Appendix A. Here we give a brief overview of the full structure of the proof:
1. Backgroundmaterial: this consists of definitions and basic facts about sphere pack-

ings and lattices. This material is presented in Sections A.1–A.6 of the Appendix.
2. Lower bound: construction of an optimal packing. An 8-dimensional sphere

packing now known to be optimal is the E8 sphere packing and is based on the
E8 lattice; see the box on the next page. A few basic facts about this lattice will be
needed, and we discuss the relevant material in Section A.7 in the Appendix. This
is the “easy” part of the proof (at least in the sense that it is based on little more
than elementary linear algebra), which gives a lower bound on the optimal sphere
packing density.

3. Upper bound, part I: the Cohn–Elkies bounds and magic function conjectures.
Conceptually more difficult is to prove an upper bound on the packing density, as
that involves proving that no packing can have a density better than some number.
Since the family of possible packings is very large (in fact, infinite-dimensional), it is
not obvious how to approach this. A beautiful technique for deriving upper bounds
was introduced by Cohn and Elkies [14], who discovered that the Poisson summation
formula from harmonic analysis (more precisely, a multidimensional version of it
for lattices) is just the right tool for the task. Their bounds, belonging to a class of
bounds knownas linear programming bounds, give away of associating a numerical
upper bound for the packing densitywith certain functions of a single (real) variable
with nice properties. The problem then becomes that of optimizing the bound over
the relevant family of functions in the hope of producing a sharp bound.
Amazingly, the numerical calculations Cohn and Elkies performed for many differ-
ent values of the dimension d, which gave numerical bounds that were in many
cases better than those previously known, revealed that for d = 2, 8, and 24, their
bounding technique seems to approach the value known (in the case d = 2) or be-
lieved at the time (in the cases d = 8 and 24) to equal the optimal packing density.
They conjectured that in those dimensions, there exists a so-called “magic function,”
a function in the class of bounding functions for which the associated upper bound
for the optimal sphere packing density matches the known lower bound and hence
serves as a certificate that solves the sphere packing problem in that dimension.
We explain the Cohn–Elkies bounding technique and their magic function conjec-
tures in Sections A.8–A.11 of the Appendix.

4. Upper bound, part II: Viazovska’smodular form construction. Cohn and Elkies’s
work reduced the sphere packing problem, at least in dimensions 8 and 24, to the
problem of constructing a magic function. Viazovska discovered just the right tech-
nique for constructing the function with the desired properties in dimension 8 (and
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her ideas proved also applicable to dimension 24 withminormodifications) bymak-
ing an ingenious use of modular forms. Explaining the details of her construction is
the main goal of this chapter.

To the readerwho is completely unfamiliarwith the topic of sphere packings andwishes
to gain a full understanding of the proof of Theorem 6.1, a recommended path is to read
Appendix A first and then proceed to reading the remainder of this chapter. Section A.7,
which only deals with the explicit construction of the E8 lattice, is not necessary to
understand any other parts of the proof and may be skipped on a first reading.

6.3 Preparation: some remarks on Fourier eigenfunctions

From here on, we assume that you are familiar with the material and notation of Ap-
pendix A. The starting point for our proof is Theorem A.29, which, as explained in Sec-
tion A.12, provides a kind of roadmap for constructing an E8 magic function, based on
constructing separately the Fourier-even and Fourier-odd components Φ+(r) and Φ+(r)
associatedwith a hypothetical radialmagic function; these functionswill be constructed
with the goal of manufacturing (±1)-Fourier eigenfunctions having the prescribed set
of zeros (of appropriate orders) at √2n, n = 1, 2, . . . . Once these functions are con-
structed, they can be combined into a single radial function having the two functions
as its Fourier-even and Fourier-odd components. The hope is that for the function thus
constructed, the necessary conditions of TheoremA.29 will also turn out to be sufficient.

Thus, forgetting about magic functions for the moment, our immediate goal is to
construct radial Fourier eigenfunctions in 8 dimensions with the correct set of zeros.
We will prove the following result.

Theorem 6.2. There exist radial Schwartz functions φ+,φ− : ℝ8 → ℝ with the following
properties.
1. φ+(x) is a (+1)-Fourier eigenfunction, that is,

ℱ8[φ+] = φ+,
where ℱ8 denotes the Fourier transform in 8 dimensions (see the definition in (A.5)).

2. φ−(x) is a (−1)-Fourier eigenfunction, that is,
ℱ8[φ−] = −φ−.

3. Each of the radial profiles φ̃+(r), φ̃−(r) has zeros at r = √2n, n = 1, 2, 3, . . . , with the
zero at√2 being simple and the other zeros being of order 2.

Where do we begin to look for such functions? Well, probably the most famous ex-
ample of such an eigenfunction is the Gaussian function
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γ(x) = e−π‖x‖2 ,
for which it follows trivially from the analogous property of the one-dimensional Gaus-
sian,

ℱ8(γ)(y) = γ(y).

This will be useful to us in the following way: if we let

γs(x) = e
−πs‖x‖2

denote a rescaled Gaussian, then because of the scaling behavior of the Fourier trans-
form, we have

ℱ8[γs](y) =
1
s4
γ1/s(y). (6.1)

This identity is valid not just for a real positive scaling parameter s, but in fact for any
s in the half-plane Re(s) > 0, since in that case, γs(x) has good decay and integrability
properties.

Thus we see that the rescaled Gaussian γs is not a Fourier eigenfunction if s ̸= 1, but
a linear combination of γs and γ1/s of the form aγs + bγ1/s with a, b satisfying

a = ±s4b (6.2)

is an eigenfunction (associated with eigenvalue ±1 according to the choice of sign
in (6.2)). More generally, we can take sums of such linear combinations involving differ-
ent values of s, or even integrals with respect to s of the form

f (x) = ∫w(s)γs(x) ds = ∫w(s)e
−πs‖x‖2 ds, (6.3)

wherew(s) is someweight function, andwhere the integration is taken over some range
of values of s in the half-plane Re(s) > 0. Under appropriate assumptions over howw(s)
relates tow(1/s), the resulting function will be a Fourier eigenfunction. This gives a rich
source of potential eigenfunctions to use for our construction.

It seems most natural to choose the interval (0,∞) as the range for the integration
in (6.3); the integral (6.3) can then be thought of simply as the Laplace transform∞

∫
0

w(s)e−πsz ds, (6.4)

in the variable z = ‖x‖2. In that case the weight function will need to satisfy w(1/s) =
±s−2w(s), a condition reminiscent of one of the defining equations for a modular form.
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However, this is too naive of an idea anddoes notwork, as it does not lead to a viable path
to choosing the weight functionw(s) in a way that causes the function f (x) to have zeros
at the desired radii. It turns out that a more clever choice is required that also incorpo-
rates certain nonreal values of the scaling parameter s (see equations (6.31) and (6.54)).
Modular forms still enter the picture, but they do so in a much more subtle and surpris-
ing way. The details are given in the next two sections.

6.4 The (+1)-Fourier eigenfunction
In this section, we complete half of the proof of Theorem 6.2 by constructing the func-
tion φ+(x) and establishing its properties. The construction for φ−(x) is given in the next
section. Both the functions φ+(x) and φ−(x) are constructed by taking the Laplace trans-
form of two functions U : ℍ → ℂ and V : ℍ → ℂ, which are given explicitly in terms
of modular forms.

Let τ be a complex variable taking values in the upper half-plane, and let q = e2πiτ

as in Chapter 5. We will use the normalized versions E4 and E6 of the Eisenstein series
G4 and G6 defined in (5.87)–(5.88). With these definitions, it is useful to observe that

E4(τ)
3 − E6(τ)

2 =
1 728
(2π)12

Δ(τ), (6.5)

a scalar multiple of the modular discriminant (see (4.15), (4.35)).
Now define the function U(τ) by

U(τ) = 108
(τE′4(τ) + 4E4(τ))2
E4(τ)3 − E6(τ)2

. (6.6)

This can be expanded in the form

U(τ) = 108(
E′4(τ)2

E4(τ)3 − E6(τ)2
)τ2 + 864(

E′4(τ)E4(τ)
E4(τ)3 − E6(τ)2

)τ

+ 1 728( E4(τ)
2

E4(τ)3 − E6(τ)2
), (6.7)

which will be convenient for certain calculations and highlights the structure of U(τ) as
a kind of “polynomial” in τ whose “coefficients” are themselves holomorphic functions
in τ that have useful modular properties and in particular are 1-periodic.

Lemma 6.3. The function U(τ) takes real, nonnegative values on the positive imaginary
axis.

Proof. Referring to (5.87)–(5.88), it is evident that E4(τ) and E6(τ) take real values on
the positive imaginary axis and that E′4(τ) takes imaginary values there. Therefore (6.6)
implies thatU(τ) is real for τ = it, t > 0. Moreover, in the fraction in (6.6), the numerator
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is the square of a real number (hence nonnegative) for τ = it, and the denominator
is a positive scalar multiple of Δ(it), which is itself a positive real number, as can be
seen, e. g., from the infinite product representation (5.65). Combining these observations
shows that U(it) ≥ 0 for t > 0.

Lemma 6.4. U(τ) satisfies the transformation properties

U(− 1
τ
) =

1
2τ2
(U(τ + 1) − 2U(τ) + U(τ − 1)), (6.8)

U(− 1
τ
+ 1) = 1

τ2
U(τ − 1), (6.9)

U(− 1
τ
− 1) = 1

τ2
U(τ + 1). (6.10)

Proof. Start by noting that

E′4(−1/τ) = τ2( 1τ2 E′4(−1/τ)) = τ2 ddτ (E4(−1/τ)) = τ2 ddτ (τ4E4(τ))
= τ2(τ4E′4(τ) + 4τ3E4(τ)) = τ5(τE′4(τ) + 4E4(τ)).

It follows that

U(−1/τ) = 108
((−1/τ)E′4(−1/τ) + 4E4(−1/τ))2

E4(−1/τ)3 − E6(−1/τ)2

= 108
((−1/τ)τ5(τE′4(τ) + 4E4(τ)) + 4τ4E4(τ))2

τ12(E4(τ)3 − E6(τ)2)

= 108 1
τ2
⋅

E′4(τ)2
E4(τ)3 − E6(τ)2

. (6.11)

On the other hand, by (6.7) and the comment above about the parenthesized expressions
in that representation being 1-periodic, the discrete second difference U(τ + 1)− 2U(τ)+
U(τ − 1) on the right-hand side of (6.8) is easily seen to be

108(
E′ 24

E34 − E
2
6
)((τ + 1)2 − 2τ2 + (τ − 1)2)

+ 864(
E′4E4
E34 − E

2
6
)((τ + 1) − 2τ + (τ − 1))

+ 1 728(
E24

E34 − E
2
6
)(1 − 2 + 1)

= 2 ⋅ 108(
E′ 24

E34 − E
2
6
) + 0 + 0 = 2 ⋅ 108

E′ 24
E34 − E

2
6
.

This last expression by (6.11) is equal to 2τ2U(−1/τ). This proves (6.8).
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Next, if we denote Ũ(τ) = τ2U(−1/τ), then by (6.11), Ũ(τ) is also 1-periodic. Using this
fact, we can write

U(− 1
τ
+ 1)τ2 = U(τ − 1

τ
)τ2

= U(−1/(− τ
τ − 1
))(−

τ
τ − 1
)
2

(τ − 1)2

= Ũ(− τ
τ − 1
)(τ − 1)2 = Ũ(− τ

τ − 1
+ 1)(τ − 1)2

= Ũ(− 1
τ − 1
)(τ − 1)2 = U(τ − 1),

whichproves (6.9). Finally, (6.10) is obtainedby substituting−1/τ in place of τ in (6.9).

Lemma 6.5. On the positive imaginary axis near τ = i∞ and τ = 0, U(τ) has the asymp-
totic behavior

U(it) = e2πt − 240πt + 504 + O(t2e−2πt) (t →∞), (6.12)

U(it) = O(t2e−2π/t) (t → 0). (6.13)

Proof. Using (5.87)–(5.88), the initial terms of the Taylor expansions (in powers of the
variable q) of each of the parenthesized expressions in (6.7) can be readily obtained,
giving the asymptotic relations, as τ → i∞ and q → 0,

E′4(τ)2
E4(τ)3 − E6(τ)2

= −
400π2

3
q + O(q2), (6.14)

E′4(τ)E4(τ)
E4(τ)3 − E6(τ)2

=
5πi
18
+ O(q), (6.15)

E4(τ)
2

E4(τ)3 − E6(τ)2
=

1
1 728q
+

7
24
+ O(q). (6.16)

Substituting these relations into (6.7) gives (6.12). To get (6.13), use (6.11) together
with (6.14) to get that, as t → 0,

U(it) = 108(−it)2
E′4(i/t)2

E4(i/t)3 − E6(i/t)2
= 108 ⋅ 400π

2

3
⋅ t2e−2π/t + O(t2e−4π/t),

which proves the claim.

Now define the holomorphic function

A(z) = 4i sin2(πz
2
)

i∞
∫
0

U(τ)eπiτzdτ, (6.17)
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where the integral is a contour integral along the positive imaginary line. The motiva-
tion for this definition is that φ+(x) will later be constructed by substituting ‖x‖2 for z
(see (6.30)). This gives a variant of the Laplace transform-based construction (6.4), but
with the additional term of sin2( π‖x‖22 ) introduced to force the function to have zeros at
the correct points ‖x‖ = √2,√4,√6, . . . . (The sine factor is squared since we want all
but one of the zeros to be double zeros; recall Theorem A.29.) Some analysis is now re-
quired to verify that the idea can lead to a Fourier eigenfunction or indeed that φ+(x)
thus defined is even a legitimate function on ℝ8. We focus on the properties of A(z) as
a holomorphic function first before turning to a discussion of φ+(x) but keep the substi-
tution z = ‖x‖2 in mind as you read the next few results.

Lemma 6.6. The integral in (6.17) converges in the half-plane Re(z) > 2 and defines a
holomorphic function there.

Proof. By Lemma 6.5 the integrand in (6.17) (with the parameterization τ = it) satisfies
the asymptotic bounds

U(it)e
−πtz = O(e−π(Re(z)−2)t) (t →∞),

U(it)e
−πtz = O(t2e−π(Re(z)+2)/t) (t → 0).

The constant implicit in the big-O notation does not depend on z. Thus, if we write the
integral in (6.17) as I1(z)+ I2(z), where I1(z) = ∫

1
0 U(τ)e

πiτz dτ and I1(z) = ∫
∞
1 U(τ)eπiτz dτ,

then, by the standard complex analysis lemma on integrals of a family of holomorphic
functions with respect to a parameter (Exercise 1.26 on p. 77), the improper integral I1(z)
converges in the half-plane Re(z) > −2 and defines a holomorphic function there. Simi-
larly, I2(z) converges and is holomorphic in the half-plane Re(z) > 2.

Next, we show that A(z) can be continued analytically to the half-plane Re(z) > 0,
and a bit later, we will show that it can be continued analytically even beyond that half-
plane. As per the usual convention in complex analysis, we continue to use the same
notation A(z) to denote all analytic continuations of A(z).

The formula for the first analytic continuation involves integration over four paths,
which we denote by Ψ−1, Ψ0, Ψ1, and Ψi∞, collectively forming the shape of an inverted
pitchfork (or an inverted Greek letter Ψ), as shown in Fig. 6.4. These paths are defined
as follows:
– Ψ−1 is the circular subarc of the unit circle leading from −1 to i;
– Ψ1 is the circular subarc of the unit circle leading from +1 to i;
– Ψ0 is the straight line segment from 0 to i;
– Ψi∞ is the infinite straight line segment from i to i∞.
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Figure 6.4: The “pitchfork paths”Ψ−1,Ψ0,Ψ1,Ψi∞.
Lemma 6.7. The function A(z) has the alternative expression

A(z) = −i ∫
Ψ−1

U(τ + 1)eπiτz dτ − i ∫
Ψ1

U(τ − 1)eπiτz dτ

+ 2i ∫
Ψ0

U(τ)eπiτz dτ − 2i ∫
Ψi∞

τ2U(−1/τ)eπiτz dτ. (6.18)

Expression (6.18) extends the definition of A(z) to a holomorphic function on the half-plane
Re(z) > 0.

Proof. Denote the right-hand side of (6.18) by Ã(z), and rewrite this function as

Ã(z) = −i(Ã−1(z) + Ã1(z) − 2Ã0(z) + 2Ãi∞(z)),
where we set

Ã−1(z) = ∫
Ψ−1

U(τ + 1)eπiτz dτ, (6.19)

Ã1(z) = ∫
Ψ1

U(τ − 1)eπiτz dτ, (6.20)
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Ã0(z) = ∫
Ψ0

U(τ)eπiτz dτ, (6.21)

Ãi∞(z) = ∫
Ψi∞

τ2U(−1/τ)eπiτz dτ. (6.22)

Now Ã0(z) is the same as the integral I1(z) from the proof of Lemma 6.6. It was estab-
lished in that proof that this integral converges to a holomorphic function in the region
Re(z) > −2. The convergence of Ãi∞(z) to a holomorphic function, also in the region
Re(z) > −2, follows in a similar manner using (6.11) and (6.14).

Next, to verify the convergence of the integral Ã−1(z), we first rewrite it by applying
a change of variables ξ = −1/(τ + 1). It is easy to check that this maps the contour Ψ−1
into the reverse of the straight line segment [− 12 +

1
2 i,−

1
2 + i∞), so we get the expression

Ã−1(z) = − − 12+i∞∫− 12+ 12 i U(−1/ξ)e
−πiz(ξ−1+1) dξ

ξ2
.

Denoting ξ = − 12 + it, where t ≥ 1/2, we have the bounds

U(−1/ξ)
 = O(e

−2πt)
(refer again to (6.11) and (6.14)) and, under the assumption that Re(z) > 0,

e
−πiz(ξ−1+1) = exp[π(Re(z) Im(ξ−1 + 1) + Im(z)Re(ξ−1 + 1))]

= exp[−π Re(z) t
t2 + 1/4

+ π Im(z) t
2 − 1/4
t2 + 1/4
] ≤ exp(πIm(z)

).

Therefore we conclude that given a compact set K ⊂ {Re(z) > 0}, there is a constant
C > 0 such that for all z ∈ K , we have

∫
Ψ−1

U(τ + 1)e
πiτz |dτ| =

− 12+i∞
∫− 12+ 12 i
U(−1/ξ)

 ⋅
e
−πiz(ξ−1+1) |dξ||ξ|2

≤ C
∞
∫
1/2 e−2πt dt ≤ C

2π
.

This implies the convergence of the integral to a holomorphic function in the half-plane
Re(z) > 0 by the result of Exercise 1.26.

The convergence of Ã1(z) is proved similarly to the case of Ã−1(z) by making the
substitution ξ = −1/(τ − 1); details are left to the reader.
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Having established that Ã(z) is well-defined and holomorphic on Re(z) > 0, it re-
mains to check that it extends the definition ofA(z). Assume that Re(z) > 2. First, rewrite
definition (6.17) of A(z) as

A(z) = −i(eπiz/2 − e−πiz/2)2 i∞
∫
0

U(τ)eπiτzdτ

= −i(eπiz − 2 + e−πiz) i∞∫
0

U(τ)eπiτzdτ

= −i(
i∞
∫
0

U(τ)eπi(τ+1)z dτ − 2 i∞
∫
0

U(τ)eπiτz dτ +
i∞
∫
0

U(τ)eπi(τ−1)z dτ)
= −i(

1+i∞
∫
1

U(ρ − 1)eπiρz dρ +
−1+i∞
∫−1 U(ξ + 1)eπiξz dξ

− 2 ∫
Ψ0

U(τ)eπiτz dτ − 2 ∫
Ψi∞

U(τ)eπiτz dτ), (6.23)

where in the last step, we make the substitutions ρ = τ + 1, ξ = τ − 1, and for the middle
integral, decompose the integral over the segment [0, i∞) into two integrals over Ψ0 and
Ψi∞.

Next, observe that in (6.23), we can transform the integrals over the segments
[−1,−1 + i∞) and [1, 1 + i∞) by deforming the contours: specifically, the segment
[−1,−1 + i∞) can be deformed into Ψ−1 + Ψi∞, and the segment [1, 1 + i∞) can be de-
formed into Ψ1 +Ψi∞. Because of the exponential decay of the integrand as Im(τ)→∞
(a fact which follows from the assumption that Re(z) > 0, expression (6.7), and the
asymptotic estimates (6.14)–(6.16)), an application of Cauchy’s theorem together with an
easy limiting argument shows that this deformation leaves the values of the respective
integrals unchanged. The first transformed integral can therefore be rewritten as

1+i∞
∫
1

U(ρ − 1)eπiρz dρ = ∫
Ψ1

U(ρ − 1)eπiρz dρ + ∫
Ψi∞

U(ρ − 1)eπiρz dρ,

and similarly the second transformed integral becomes−1+i∞
∫−1 U(ξ + 1)eπiξz dξ = ∫

Ψ−1

U(ξ + 1)eπiξz dξ + ∫
Ψi∞

U(ξ + 1)eπiξz dξ .

Substituting these expressions into (6.23), collecting terms, and then making use of (6.8)
give
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A(z) = −i( ∫
Ψ1

U(τ − 1)eπiτz dτ + ∫
Ψ−1

U(τ + 1)eπiτz dτ

+ ∫
Ψi∞

(U(τ + 1) − 2U(τ) + U(τ − 1))eπiτz dτ − 2 ∫
Ψ0

U(τ)eπiτz dτ)

= −i( ∫
Ψ1

U(τ − 1)eπiτz dτ + ∫
Ψ−1

U(τ + 1)eπiτz dτ

+ 2 ∫
Ψi∞

τ2U(−1/τ)eπiτz dτ − 2 ∫
Ψ0

U(τ)eπiτz dτ)

= −i(Ã1(z) + Ã−1(z) + 2Ãi∞(z) − 2Ã0(z)) = Ã(z),
as claimed.

Next, it is useful to derive yet another representation for A(z), which continues it
analytically to an even larger half-plane.

Lemma 6.8. The function A(z) is also given by the alternative expression

A(z) = −4 sin2(πz
2
)[

1
π
(

1
z − 2
−
240
z2
+
504
z
)

+
∞
∫
0

(U(it) − e2πt + 240πt − 504)e−πzt dt]. (6.24)

The right-hand side of (6.24) defines a holomorphic function on the half-plane Re(z) > −2
(after interpreting its values at the points z = 0 and z = 2 in a suitable limiting sense
to account for removable singularities at those points) and therefore gives an analytic
continuation of A(z) to that half-plane.

Proof. Assume first that Re(z) > 2. Motivated by (6.12), we write

A(z) = −4 sin2(πz
2
)
∞
∫
0

U(it)e−πtz dt
= −4 sin2(πz

2
)
∞
∫
0

[(e2πt − 240πt + 504)

+ (U(it) − e2πt + 240πt − 504)]e−πtz dt
= −4 sin2(πz

2
)[
∞
∫
0

(e2πt − 240πt + 504)e−πtzdt
+
∞
∫
0

(U(it) − e2πt + 240πt − 504)e−πtz dt].
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Evaluating the first of the two integrals in the last expression, we obtain the represen-
tation

A(z) = −4 sin2(πz
2
)[

1
π(z − 2)

−
240
πz2
+
504
πz

+
∞
∫
0

(U(it) − e2πt + 240πt − 504)e−πzt dt]. (6.25)

Finally, observe that by (6.12) and the usual appeal to the integration lemma from Exer-
cise 1.26, (6.25) converges to a holomorphic function in the half-plane Re(z) > −2.

Lemma 6.9. The function A(z) has the special value

A(0) = 240π. (6.26)

Proof. A(0) is the value of A(z) at the removable singularity z = 0 of the expression
in (6.24). It is easily calculated as

A(0) = lim
z→0(− 4π sin2(πz

2
)(

1
z − 2
−
240
z2
+
504
z
))

= lim
z→0(240z2 ⋅ 4π sin2(πz

2
)) = 240π lim

z→0( sin(πz/2)(πz/2)
)
2

= 240π.

The next two lemmas establish some useful technical bounds.

Lemma 6.10. We have the bound∞
∫
0

e−at−b/t dt ≤ 2
a
e−√ab (6.27)

for all a, b > 0.

Proof. Exercise 6.1.

Lemma 6.11. For any k ≥ 0, there exist constants C1, C2 > 0 such that the kth derivative
A(k)(z) of A(z) satisfies the bound

A
(k)(z) ≤ C1e−C2√Re(z) (Re(z) > 3). (6.28)

Proof. Denote α(z) = ∫∞0 U(τ)eπiτzdτ. Then, for z with Re(z) > 3, we have

α(k)(z) = i(−π)k ∞∫
0

tkU(it)e−πtz dt = i(−π)k( 1

∫
0

+
∞
∫
1

)tkU(it)e−πtz dt.
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Using Lemma 6.5, we see that there exists a constant C > 0 such that

α
(k)(z) ≤ Cπk( 1

∫
0

tk+2e−πt Re(z)−2π/t dt + ∞∫
1

tke−π(Re(z)−2)t dt)
≤ Cπk(

∞
∫
0

e−πt Re(z)−2π/t dt + e2πe−π Re(z) ∞∫
1

tke−π(Re(z)−2)(t−1) dt).
In the last expression, by (6.27) the first integral is bounded fromabove by c1e

−c2√Re(z) for
some constants c1, c2 > 0. It is similarly easy to check that the second integral (including
the leading multiplicative factor e2πe−π Re(z)) is bounded by c3e−π Re(z) for some constant
c3 > 0. Combining these two bounds, we get a bound of the form

α
(k)(z) ≤ c4e−c5√Re(z) (Re(z) > 3) (6.29)

with constants c4, c5 > 0 (possibly depending on k).
Finally, note that

A
(k)(z) =  dkdzk (sin2(πz2 )α(z)) =  k∑j=0(kj)α(j)(z) ⋅ dk−jdzk−j (sin2(πz2 ))
≤

k
∑
j=0(kj)α(j)(z) ⋅  dk−jdzk−j (sin2(πz2 )),

so the bound (6.29) (ormore precisely, the family of bounds indexed by k ≥ 0) also easily
implies a bound of the form (6.28) forA(z) for any k ≥ 0with constants C1, C2, whichmay
depend on k.

We now use the function A(z) to define a radial Fourier eigenfunction inℝ8. Define
the radial function φ+ : ℝ8 → ℂ by

φ+(x) = A(‖x‖2). (6.30)

By Lemma 6.7, for x ̸= 0, this can be expressed explicitly as

φ+(x) = −i ∫
Ψ−1

U(τ + 1)eπiτ‖x‖2 dτ − i ∫
Ψ1

U(τ − 1)eπiτ‖x‖2 dτ
+ 2i ∫

Ψ0

U(τ)eπiτ‖x‖2 dτ − 2i ∫
Ψi∞

τ2U(−1/τ)eπiτ‖x‖2 dτ. (6.31)

This should be thought of as the “correct” version of (6.3), in which the weight function
w(s) and the range for the integration are explicitly revealed.
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Lemma 6.12. φ+(x) is a Schwartz function.
Proof. This follows from Lemma 6.11 and LemmaA.23. The details are left as an exercise
(Exercise 6.2).

Lemma 6.13. φ+(x) is a (+1)-eigenfunction for the Fourier transform in ℝ8.

Proof. We evaluate the Fourier transform of φ+ by commuting the transform operator
ℱ8with the integrals in (6.31) and applying (6.1) (or rather, the generalized version of this
relation that applies to complex s; see (A.12)–(A.13) in Section A.7) inside each integral.
Let y ∈ ℝd \ {0}. Then

ℱ8[φ+](y) = −i ∫
Ψ−1

U(τ + 1)ℱ8[e
πiτ‖x‖2](y) dτ − i ∫

Ψ1

U(τ − 1)ℱ8[e
πiτ‖x‖2](y) dτ

+ 2i ∫
Ψ0

U(τ)ℱ8[e
πiτ‖x‖2](y) dτ − 2i ∫

Ψi∞

τ2U(−1/τ)ℱ8[e
πiτ‖x‖2](y) dτ

= −i ∫
Ψ−1

U(τ + 1)τ−4eπi(−1/τ)‖y‖2 dτ − i ∫
Ψ1

U(τ − 1)τ−4eπi(−1/τ)‖y‖2 dτ
+ 2i ∫

Ψ0

U(τ)τ−4eπi(−1/τ)‖y‖2 dτ − 2i ∫
Ψi∞

τ2U(−1/τ)τ−4eπi(−1/τ)‖y‖2 dτ. (6.32)

Now, in each of the four integrals in the last expression, make the change of variables
ρ = −1/τ. This change has the effect of permuting the four pitchfork paths Ψ−1, Ψ1, Ψ0,
Ψi∞ according to

Ψ−1 ←→ Ψ1, Ψ0 ←→ −Ψi∞ (6.33)

(where −Ψi∞ refers to Ψi∞ with the reverse orientation). Thus the expression in (6.32)
becomes

− i ∫
Ψ1

U(− 1
ρ
+ 1)ρ4eπiρ‖y‖2 dρ

ρ2
− i ∫

Ψ−1

U(− 1
ρ
− 1)ρ4eπiρ‖y‖2 dρ

ρ2

− 2i ∫
Ψi∞

U(− 1
ρ
)ρ4eπiρ‖y‖2 dρ

ρ2
+ 2i ∫

Ψ0

(−1/ρ)2U(ρ)ρ4eπiρ‖y‖2 dρ
ρ2
. (6.34)

By (6.9) and (6.10) this is equal to

− i ∫
Ψ1

U(ρ − 1)ρ4eπiρ‖y‖2 dρ
ρ2
− i ∫

Ψ−1

U(ρ + 1)ρ4eπiρ‖y‖2 dρ
ρ2

− 2i ∫
Ψi∞

ρ2U(− 1
ρ
)eπiρ‖y‖2 dρ + 2i ∫

Ψ0

U(ρ)eπiρ‖y‖2 dρ = φ+(y).
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We proved the equality ℱ8[φ+](y) = φ+(y) for all y ∈ ℝd \ {0}. By continuity the claim
also holds for y = 0.

Lemma 6.14. The radial profile φ̃+(r) associated with φ+(x) has zeros at r = √2n, n =
1, 2, 3, . . . . The zero at r = √2 is simple, and the zeros at r = √2n, n ≥ 2, are of order 2.

Proof. By (6.25), A(z) has zeros at z = 2n, n = 1, 2, 3, . . . , with the zero at z = 2 being
simple and the zeros at z = 2n, n ≥ 2 being of order 2. Since φ̃+(r) is related to A(z) via

φ̃+(r) = A(r2),
the result follows.

Suggested exercises for Section 6.4. 6.1, 6.2, 6.3, 6.4.

6.5 The (−1)-Fourier eigenfunction
Let θj(τ), j = 2, 3, 4, be the Jacobi thetanull functions, discussed in Subsections 5.13.1
and 5.14.3. We define

V (τ) = 128(θ3(τ)
4 + θ4(τ)

4

θ2(τ)8
+
θ4(τ)

4 − θ2(τ)
4

θ3(τ)8
). (6.35)

Lemma 6.15. The function V (τ) takes real, nonnegative values on the positive imaginary
axis.

Proof. We can see from (5.54)–(5.56) and (6.35) thatV (τ) is real on the positive imaginary
axis. For the nonnegativity claim, it is helpful to use the connection of the theta functions
θ2, θ3, θ4 to themodular lambda function λ(τ) (see Sections 5.13.2, 5.14.2, and 5.14.3). Using
identities (5.81), we have that

1
128

V (τ) =
θ43 + θ

4
4

θ82
+
θ44 − θ

4
2

θ83
=

1
θ43
⋅
θ83 + θ

4
3θ

4
4

θ82
+

1
θ43
⋅
θ44 − θ

4
2

θ43

=
1
θ43
(
1
λ2
+
1
λ
⋅
1 − λ
λ
+ (1 − λ) − λ) = 1

θ43

(1 − λ)(2 + λ + 2λ2)
λ2

.

Now note that λ(it) ∈ (0, 1) for t > 0, as is apparent from either the second iden-
tity in (5.81) or from the infinite product representation (5.75). Since the function x →(1−x)(2+x+2x2)

x2 is positive for x ∈ (0, 1), and since clearly θ3(it)
4 > 0 for t > 0, from the

definition we get that V (it) is nonnegative (in fact, positive) for t > 0.

Lemma 6.16. V (τ) satisfies the transformation properties

V(− 1
τ
) =

1
τ2
(V (τ) − V (τ + 1)) = 1

τ2
(V (τ) − V (τ − 1)), (6.36)
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V(− 1
τ
) = −

1
2τ2
(V (τ + 1) − 2V (τ) + V (τ − 1)), (6.37)

V(− 1
τ
+ 1) = − 1

τ2
V (τ − 1), (6.38)

V(− 1
τ
− 1) = − 1

τ2
V (τ + 1). (6.39)

Proof. From (6.35) and the transformation relations (5.57)–(5.59) satisfied by the func-
tions θj(τ) we get immediately that

V (τ + 1) = V (τ − 1) = 128(θ3(τ)
4 + θ4(τ)

4

θ2(τ)8
+
θ3(τ)

4 + θ2(τ)
4

θ4(τ)8
), (6.40)

τ2V (−1/τ) = −128(θ3(τ)
4 + θ2(τ)

4

θ4(τ)8
+
θ2(τ)

4 − θ4(τ)
4

θ3(τ)8
), (6.41)

which, together with (6.35), gives (6.36). Relation (6.37) then follows trivially. We also
obtain from (6.41) that Ṽ (τ) = τ2V (−1/τ) satisfies Ṽ (τ + 1) = −Ṽ (τ). This in turn im-
plies (6.38) and (6.39) in a manner analogous to the proof of (6.9) and (6.10) from (6.8) in
the previous section.

From now on, we adopt the notation Q = eπiτ = q1/2 introduced in Subsection 5.14.2.
As we can see from (5.54)–(5.56) and (5.78)–(5.80), the functions θ42 , θ

4
3 , and θ

4
4 in terms

of which V (τ) is defined are all naturally expressed as power series in the variable Q, so
this notation is helpful for asymptotic calculations.

Lemma 6.17. On the positive imaginary axis near τ = i∞ and τ = 0, V (τ) has the asymp-
totic behavior

V (it) = e2πt + 144 + O(e−πt) (t →∞), (6.42)

V (it) = 10 240t2e−π/t + O(e−2π/t) (t → 0). (6.43)

Proof. By writing out the series expansions for θj(τ) in powers of Q up to low order we
find that, as τ → i∞,

θ2(τ)
4 = 16(Q + 4Q3 + 6Q5 + 8Q7 + 13Q9) + O(Q11), (6.44)

θ3(τ)
4 = 1 + 8Q + 24Q2 + 32Q3 + 24Q4 + 48Q5 + 96Q6 + O(Q7), (6.45)

θ4(τ)
4 = 1 − 8Q + 24Q2 − 32Q3 + 24Q4 − 48Q5 + 96Q6 + O(Q7). (6.46)

Upon substitution of these relations into (6.35), further mundane algebraic calculations
give the expansion

V (τ) = 1
Q2
+ 144 − 5 120Q + 70 524Q2 − 626 688Q3 + 4 265 600Q4 + O(Q5) (6.47)
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for V (τ). This gives (6.42). A similar calculation using (6.41) gives

τ2V (−1/τ) = −2 048(5Q + 612Q3 + 23 598Q5) + O(Q7), (6.48)

easily implying (6.43) on setting τ = i/t.

Now by analogy with (6.17) define

B(z) = 4i sin2(πz
2
)

i∞
∫
0

V (τ)eπiτzdτ (6.49)

(a contour integral along the positive imaginary line).

Lemma 6.18. The integral in (6.49) converges absolutely uniformly on compacts and de-
fines a holomorphic function in the half-plane Re(z) > 2.

Proof. This follows from (6.42)–(6.43) analogously to the proof of Lemma 6.6.

We now proceed to perform an analytic continuation of B(z) to the half-plane
Re(z) > −1 in two steps that are analogous to Lemmas 6.7 and 6.8 from the previous
section.

Lemma 6.19. The function B(z) has the alternative expression

B(z) = −i ∫
Ψ−1

V (τ + 1)eπiτz dτ − i ∫
Ψ1

V (τ − 1)eπiτz dτ

+ 2i ∫
Ψ0

V (τ)eπiτz dτ + 2i ∫
Ψi∞

τ2V (−1/τ)eπiτz dτ. (6.50)

Expression (6.50) analytically continues B(z) to the half-plane Re(z) > 0.

Proof. This is similar to the proof of Lemma 6.7. As in that proof, denote the right-hand
side of (6.50) by B̃(z), which we represent as

B̃(z) = −i(B̃−1(z) + B̃1(z) − 2B̃0(z) − 2B̃i∞(z)),
where

B̃−1(z) = ∫
Ψ−1

V (τ + 1)eπiτz dτ,

B̃1(z) = ∫
Ψ1

V (τ − 1)eπiτz dτ,

B̃0(z) = ∫
Ψ0

V (τ)eπiτz dτ,
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B̃i∞(z) = ∫
Ψi∞

τ2V (−1/τ)eπiτz dτ.

The proof that the integrals converge in the half-plane Re(z) > 0 and are holomorphic
there is similar to the analogous claim for the integrals (6.19)–(6.22) and is omitted.

We now check that B̃(z) coincides with B(z)where the latter is defined. Assume that
Re(z) > 2. Rewrite definition (6.49) of B(z) as

B(z) = −i(eπiz/2 − e−πiz/2)2 i∞
∫
0

V (τ)eπiτzdτ

= −i(eπiz − 2 + e−πiz) i∞∫
0

V (τ)eπiτzdτ

= −i
i∞
∫
0

V (τ)eπi(τ+1)z dτ + 2i i∞∫
0

V (τ)eπiτz dτ − i
i∞
∫
0

V (τ)eπi(τ−1)z dτ
= −i

1+i∞
∫
1

V (ρ − 1)eπiρz dρ − i
−1+i∞
∫−1 V (ξ + 1)eπiξz dξ

+ 2i ∫
Ψ0

V (τ)eπiτz dτ + 2i ∫
Ψi∞

V (τ)eπiτz dτ. (6.51)

Now as in the proof of Lemma 6.7, the reader can check that the straight line contours
[−1, 1,+i∞) and [−1, 1,+i∞) can be deformed into the concatenated contours Ψ−1 +Ψi∞
and Ψ1 + Ψi∞, respectively, without changing the values of the respective contour inte-
grals. Performing this deformation transforms (6.51), after some minor rearrangement
and regrouping of terms, into the relation

B(z) = −i( ∫
Ψ1

V (τ − 1)eπiτz dτ + ∫
Ψ−1

V (τ + 1)eπiτz dτ

+ ∫
Ψi∞

(V (τ + 1) − 2V (τ) + V (τ − 1))eπiτz dτ − 2 ∫
Ψ0

V (τ)eπiτz dτ),

whereupon, after making use of (6.37) to simplify the third of the four integrals, we fi-
nally get that

B(z) = −i( ∫
Ψ1

V (τ − 1)eπiτz dτ + ∫
Ψ−1

V (τ + 1)eπiτz dτ

− 2 ∫
Ψi∞

τ2V (−1/τ)eπiτz dτ − 2 ∫
Ψ0

V (τ)eπiτz dτ)
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= −i(B̃1(z) + B̃−1(z) − 2B̃i∞(z) − 2B̃0(z)) = B̃(z),
as was to be shown.

Lemma 6.20. The function B(z) is also given by the alternative expression

B(z) = −4 sin2(πz
2
)[

1
π
(

1
z − 2
+
144
z
) +
∞
∫
0

(V (it) − 144 − e2πt)e−πzt dt]. (6.52)

Representation (6.52) analytically continues B(z) to the region Re(z) > −1 (with the obvi-
ous limiting interpretation at the points z = 0 and z = 2, which are removable singulari-
ties).

Proof. Let Re(z) > 2. Starting from (6.49), we write

B(z) = −4 sin2(πz
2
)
∞
∫
0

V (it)e−πzt dt
= −4 sin2(πz

2
)[
∞
∫
0

(V (it) − 144 − e2πt)e−πzt dt + ∞∫
0

(144 + e2πt)e−πzt dt]
= −4 sin2(πz

2
)[

144
πz
+

1
π(z − 2)

+
∞
∫
0

(V (it) − 144 − e2πt)e−πzt dt].
Now inspect the last integral to conclude from (6.42)–(6.43) (appealing as before to the
result of Exercise 1.26) that this integral converges and defines a holomorphic function
on Re(z) > −1.

Lemma 6.21. B(z) satisfies

B(0) = 0. (6.53)

Proof. Immediate from (6.52).

Lemma 6.22. For any k ≥ 0, there exist constants C1, C2 > 0 such that the kth derivative
B(k)(z) of A(z) satisfies the bound

B
(k)(z) ≤ C1e−C2√Re(z) (Re(z) > 3).

Proof. Similar to the proof of Lemma 6.11.

Now let φ− : ℝ8 → ℂ be the radial function defined by
φ−(x) = B(‖x‖2).

For x ̸= 0, we can write explicitly
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φ−(x) = −i ∫
Ψ−1

V (τ + 1)eπiτ‖x‖2 dτ − i ∫
Ψ1

V (τ − 1)eπiτ‖x‖2 dτ
+ 2i ∫

Ψ0

V (τ)eπiτ‖x‖2 dτ + 2i ∫
Ψi∞

τ2V (−1/τ)eπiτ‖x‖2 dτ. (6.54)

Lemma 6.23. φ−(x) is a Schwartz function.
Proof. Analogous to the proof of Lemma 6.12.

Lemma 6.24. φ−(x) is a (−1)-eigenfunction for the Fourier transform in ℝ8.

Proof. This is a calculation similar to the one in the proof of Lemma 6.13. Namely, using
representation (6.54) and commuting the integrals and Fourier transforms, we have for
y ∈ ℝd \ {0} that

ℱ8[φ−](y) = −i ∫
Ψ−1

V (τ + 1)ℱ8[e
πiτ‖x‖2](y) dτ − i ∫

Ψ1

V (τ − 1)ℱ8[e
πiτ‖x‖2](y) dτ

+ 2i ∫
Ψ0

V (τ)ℱ8[e
πiτ‖x‖2](y) dτ + 2i ∫

Ψi∞

τ2V (−1/τ)ℱ8[e
πiτ‖x‖2](y) dτ

= −i ∫
Ψ−1

V (τ + 1)τ−4eπi(−1/τ)‖y‖2 dτ − i ∫
Ψ1

V (τ − 1)τ−4eπi(−1/τ)‖y‖2 dτ
+ 2i ∫

Ψ0

V (τ)τ−4eπi(−1/τ)‖y‖2 dτ + 2i ∫
Ψi∞

τ2V (−1/τ)τ−4eπi(−1/τ)‖y‖2 dτ. (6.55)

Nowmaking the change of variables ρ = −1/τ as in the proof of Lemma6.13 and recalling
that the pitchfork paths get permuted as in (6.33), the expression in (6.55) becomes

− i ∫
Ψ1

V(− 1
ρ
+ 1)ρ4eπiρ‖y‖2 dρ

ρ2
− i ∫

Ψ−1

V(− 1
ρ
− 1)ρ4eπiρ‖y‖2 dρ

ρ2

− 2i ∫
Ψi∞

V(− 1
ρ
)ρ4eπiρ‖y‖2 dρ

ρ2
− 2i ∫

Ψ0

(−1/ρ)2V (ρ)ρ4eπiρ‖y‖2 dρ
ρ2
. (6.56)

Finally, making use of (6.38)–(6.39) (the analogues of the relations (6.9)–(6.10) that were
used in the proof of Lemma 6.13) gives an expression, whichwe easily recognize as being
equal to −φ−(y).
Lemma 6.25. The radial profile φ̃−(r) associated with φ−(x) has zeros at r = √2n, n =
0, 1, 2, . . . . The zero at r = √2 is simple, and the zeros at r = √2n, n = 0, 2, 3, . . . , are of
order 2.

Proof. It follows from (6.52) that B(z) has simple zeros at z = 0 and z = 2 and double
zeros at z = 4, 6, 8, . . . . Since φ̃−(r) = B(r2), the result follows.
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The results of this section and the previous one, taken together, prove Theorem 6.2.
This gets us most of the way toward an eventual proof of Theorem 6.1. Note that so far
our analysis has treated the functions φ+(x) and φ−(x) completely separately from each
other. To complete the proof of Theorem 6.1, wewill need to gain some additional insight
into how the two functions relate to each other or, going back to the two functions U(τ),
V (τ) in terms of which φ+(x) and φ−(x) were defined, how those two functions in turn
compare with each other. This is discussed in the next section.

6.6 A modular form inequality

Our goal in this section is to prove the following result.

Theorem 6.26 (Viazovska’s modular form inequality). The functions U(τ) and V (τ) satisfy
the inequality

U(it) < V (it) (t > 0). (6.57)

Inequality (6.57) plays a key role in the proof of Theorem 6.1; as we will see in the
next section, it is needed to establish the fact that our constructed magic function can-
didate satisfies the nonnegativity condition in Theorem A.21.

Viazovska’s original proof of Theorem 6.26 in [71] relied on computer calculations.
The proof presented below, adapted from [58], offers a more direct approach.

6.6.1 Preparation

As preparation for the proof, recall the functions Ũ(τ) and Ṽ (τ), which made minor
appearances in the proofs of Lemmas 6.4 and 6.16. They are given by

Ũ(τ) = τ2U(−1/τ) = 108
(E′4)2
E34 − E

2
6
,

Ṽ (τ) = τ2V (−1/τ) = −128(
θ43 + θ

4
2

θ84
+
θ42 − θ

4
4

θ83
).

Because of the reciprocal relation between it and i/t = −1/(it), inequality (6.57) is equiv-
alent to the claim that both the inequalities U(it) < V (it) and −Ũ(it) ≤ −Ṽ (it) hold for
t ≥ 1. As a further simplification, we can clear the denominators in the expressions for
U(τ),V (τ), Ũ(τ), Ṽ (τ) bymultiplying all four functions by E34−E

2
6 (which can also bewrit-

ten as 27
4 (θ2θ3θ4)

8 by (5.63) and (6.5); this function takes positive values on the positive
imaginary axis). This leads us to defining the functions F , F̃ , G, G̃ by

F(τ) = 1
108
(E34 − E

2
6)U(τ) = (E

′
4)
2τ2 + 8E′4E4τ + 16E24, (6.58)
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F̃(τ) = 1
108
(E34 − E

2
6)Ũ(τ) = (E

′
4)
2
, (6.59)

G(τ) = 1
108
(
27
4
(θ2θ3θ4)

8)V (τ) = 8θ84(θ
12
3 + θ

4
4θ

8
3 + θ

8
2θ

4
4 − θ

12
2 ), (6.60)

G̃(τ) = 1
108
(
27
4
(θ2θ3θ4)

8)Ṽ (τ) = −8θ82(θ
12
3 + θ

4
2θ

8
3 + θ

4
2θ

8
4 − θ

12
4 ). (6.61)

The normalization by a common numerical factor of 1/108 is added to simplify some of
the formulas. Our goal is now to prove the pair of inequalities

−F̃(it) < −G̃(it) if t ≥ 1, (6.62)
F(it) < G(it) if t ≥ 1. (6.63)

By the above remarks this will be sufficient to imply (6.57).

6.6.2 Some special values of modular forms

Our proof of inequalities (6.62)–(6.63) will rely on the numerical values of certain con-
stants obtained from evaluating various modular forms and related functions at τ = i.
The relevant evaluations are given below.

Lemma 6.27 (Special values of modular forms at τ = i). We have the following identities:

E4(i) =
3Γ(1/4)8

64π6
≈ 1.45576, (6.64)

E′4(i) = 3Γ(1/4)832π6
i ≈ 2.91152 i, (6.65)

θ2(i) =
Γ(1/4)
(2π)3/4 ≈ 0.91357, (6.66)

θ3(i) =
Γ(1/4)
√2 π3/4 ≈ 1.08643, (6.67)

θ4(i) =
Γ(1/4)
(2π)3/4 ≈ 0.91357. (6.68)

In these formulas, Γ is the Euler gamma function.

Sketch of proof. For the proof of (6.66)–(6.67), refer to [8, p. 325] (which appeals to re-
sults from Chapter 17 of [7]) or see alternatively [19], where these identities appear as
equation (2.21) on p. 307. Evaluation (6.66) also implies (6.68) through the observation
that θ4(i) = θ2(i), a consequence of (5.57).

Formula (6.64) can now be shown using (6.66)–(6.68) and identity (5.60) from Chap-
ter 5 expressing E4 in terms of the thetanull functions.

Finally, (6.65) is obtained by combining (6.64) with the results of Exercises 5.14
and 5.18, recalling the fact (shown in Lemma 5.15) that E6(i) = 0.
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The evaluations in the lemma are closely related to Gauss’s lemniscate constant

ϖ = 2
1

∫
0

dx
√1 − x4

=
Γ(1/4)2

2√2π
,

an importantmathematical constant. See [19], [27, Sec. 6.1], [W22], [W23] formore details.
The proof of (6.62)–(6.63) given below is robust in the sense that it does not de-

pend on the exact values given in the lemma; the inequalities we are dealing with
have “slackness,” so we really only need approximate numerical values of the five con-
stants (6.64)–(6.68). These constants are all expressible as rapidly converging infinite
series, so, as an alternative to relying on the closed-form evaluations (6.64)–(6.68), we
can simply calculate the numerical values to a few digits of accuracy using a computer.

6.6.3 Proof of (6.62)

We proceed with a proof of inequality (6.62). To develop first a rough sense of why we
expect such an inequality to hold, at least for large values of t, it helps to look at the
expansions of the functions involved in powers of the variableQ. Those are given, as we
can easily check using a computer algebra system, by

−F̃(τ) = 230 400π2Q4 + 8 294 400π2Q6 + 113 356 800π2Q8 + 831 283 200π2Q10

+ 4 337 971 200π2Q12 + ⋅ ⋅ ⋅ , (6.69)

−G̃(τ) = 163 840Q3 + 16 121 856Q5 + 333 250 560Q7 + 3 199 467 520Q9

+ 19 472 547 840Q11 + ⋅ ⋅ ⋅ . (6.70)

When τ = it, we have Q = e−πt , so a key point to note is that for large t, the dominant
term in the expansion of −F̃(it) decays like e−4πt , whereas the dominant term in the
expansion of −G̃(it) decays like e−3πt , so we will certainly have that −F̃(it) < −G̃(it) if t is
large enough.

In fact, with a bit of additional reasoning, we can show that the inequality holds for
all t ≥ 1. First, observe that the coefficients in expansion (6.69) are all nonnegative; this is
immediate from (5.87) and (6.59). Second,we claim similarly that the coefficients in (6.70)
are all nonnegative. To see this, note that, by the transformation properties (5.57)–(5.59)
of the thetanull functions, we can represent G̃(τ) as

G̃(τ) = γ(τ + 1) − γ(τ),

where γ(τ) is defined by

γ(τ) = 8θ82θ
12
3 + 8θ

12
2 θ

8
3 .
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Now the substitution τ → τ + 1 corresponds to replacingQ by −Q. Therefore theQ-series
expansion of −G̃(τ) has all even coefficients equal to 0 and all odd coefficients equal to
twice the respective coefficients of γ(τ), which are manifestly nonnegative. This proves
the nonnegativity claim.

From the above remarks it now follows that the function t → −Q−3F̃(it) = −e3πtF̃(it)
is a decreasing function of t (since each term in its Q-series expansion is a nonnegative
coefficient times the decreasing exponential e−nπt). This implies that for t ≥ 1, we have
the bound

−e3πtF̃(it) ≤ −e3π F̃(i) = −e3π(E′4(i))2
or, using (6.65),

− e3πtF̃(it) ≤ e3π 9Γ(1/4)
16

1 024 π12
≈ 105 043.78 (t ≥ 1). (6.71)

On the other hand, by (6.70) and the observation about the nonnegativity of the coeffi-
cients of −G̃(τ) we have the bound

− e3πtG̃(it) ≥ 163 840 (6.72)

for all t > 0. Combining (6.71) and (6.72) gives (6.62).

6.6.4 Proof of (6.63)

As with the proof of (6.62), before tackling inequality (6.63) for the full range t ≥ 1, it
is helpful to put on our asymptotician hat and first ask the question of why we should
expect the inequality to hold for large t. The answer is that the asymptotic expansions
of the functions F(it) and G(it) are given by

F(it) = 16 + (−3 840πt + 7 680)Q2 + (230 400π2t2 − 990 720πt + 990 720)Q4

+ (8 294 400π2t2 − 25 205 760πt + 16 803 840)Q6 + ⋅ ⋅ ⋅ , (6.73)

G(it) = 16 + 1 920Q2 − 81 920Q3 + 1 077 120Q4 − 8 060 928Q5 + 41 725 440Q6

− 166 625 280Q7 + 553 054 080Q8 − 1 599 733 760Q9 + ⋅ ⋅ ⋅ , (6.74)

whereQ = e−πt as before. Here (6.74) is an ordinaryQ-series expansion, whereas (6.73) is
a somewhat nonstandard type of expansion that involves powers of Q = e−πt , with each
coefficient being itself a quadratic polynomial in t (refer to (6.58) to understand where
this structure comes from).

Now the insight we get from these two expansions is that they share the same con-
stant term 16 and that both have a next-order term proportional to Q2 with coefficients
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7 680−3 840πt and 1 920, respectively. Since 7 680−3 840πt < 0 < 1 920 for t ≥ 1, again we
see that for t large, once the lower-order terms have decayed sufficiently, the relation
F(it) < G(it) will necessarily hold.

To turn this line of argumentation into a proof of the stronger claim that the inequal-
ity F(it) < G(it) holds for all t ≥ 1, we need to gain some measure of control over those
lower-order terms, since for moderately sized t, they are not altogether negligible. This
requires more subtle reasoning than that used in the proof of (6.62), since in the current
case, both expansions (6.73) and+ (6.74) involve a mixture of terms with positive and
negative coefficients.

Lemma 6.28. Define

W (τ) = θ123 θ
8
2 + θ

8
3θ

12
2 + θ

12
3 θ

8
4 + θ

8
3θ

12
4 . (6.75)

The coefficients in the Q-series expansion of W are nonnegative.

Proof. Denote for convenience

Z = θ43 , X = θ42 , Y = 2Z − X .

Note that θ44 = Z −X , by (5.82). Now Z and X have Q-series expansions with nonnegative
coefficients. Moreover, recalling (5.82), we see that Y can be written as Y = Z + θ44 =
θ3(τ)

4 + θ3(τ + 1)
4, which implies that Y also has a Q-series expansion with nonnegative

coefficients. Therefore by straightforward algebra we get that

W (τ) = Z3X2 + Z2X3 + Z3(Z − X)2 + Z2(Z − X)3

= (
X + Y
2
)
3

X2 + (
X + Y
2
)
2

X3

+ (
X + Y
2
)
3

(
−X + Y

2
)
2

+ (
X + Y
2
)
2

(
−X + Y

2
)
3

=
1
16
(6X5 + 15X4Y + 10X3Y 2 + Y 5).

This representation clearly shows that theQ-series expansion ofW also has nonnegative
coefficients.

Next, it is helpful to renormalize the functions F andG by defining the new functions

K(τ) = −F(τ) − 16
Q2
= −Q−2(E′4)2τ2 − 8Q−2E′4E4τ − 16Q−2(E24 − 1),

L(τ) = −G(τ) − 16
Q2
= −8Q−2[θ84(θ123 + θ44θ83 + θ82θ44 − θ122 ) − 2].

Inequality (6.63) can now be restated as the claim that K(it) > L(it) for t ≥ 1. This will
follow from the combination of the following two lemmas.
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Lemma 6.29. L(it) ≤ 2 297 for all t ≥ 1.

Lemma 6.30. K(it) ≥ 3 747 for all t ≥ 1.

Proof of Lemma 6.29. The expansion of L(it) in powers of Q is easily written as

L(it) = −1 920 + 81 920Q − 1 077 120Q2 + 8 060 928Q3 − 41 725 440Q4

+ 166 625 280Q5 − 553 054 080Q6 + 1 599 733 760Q7 + ⋅ ⋅ ⋅ (6.76)

(compare with (6.74)). Again using the substitution τ → τ + 1, we also have

−L(it + 1) = 1 920 + 81 920Q + 1 077 120Q2 + 8 060 928Q3 + 41 725 440Q4

+ 166 625 280Q5 + 553 054 080Q6 + 1 599 733 760Q7 + ⋅ ⋅ ⋅ . (6.77)

On the other hand, using the usual properties of this substitution, we have

−L(τ + 1) = Q−2(G(τ + 1) − 16) = 8Q−2[θ83(θ124 + θ43θ84 + θ82θ43 + θ122 ) − 2]
= 8Q−2(W (τ) − 2)

(with W defined in (6.75)). Lemma 6.28 reassures us that the coefficients in expan-
sion (6.77) are nonnegative, and consequently the coefficients in (6.76) appear with
alternating signs. Now defining

H(τ) = L(τ) − L(τ + 1)
2

,

we see that H(it) has the expansion

H(it) = 81 920Q + 8 060 928Q3 + 166 625 280Q5 + 1 599 733 760Q7 + ⋅ ⋅ ⋅

with coefficients that are also nonnegative and majorize those of L(it). Note moreover
that the constant coefficient in L(it) is −1 920, whereas the constant coefficient in H(it)
is 0. Therefore the bound L(it) ≤ H(it) − 1 920 holds for all t > 0. In fact, since H(it) is
decreasing in t, we get a constant upper bound for L(it) on the interval [1,∞), namely

L(it) ≤ H(i) − 1 920 (t ≥ 1).

To make this bound explicit, we express H(τ) directly in terms of thetanull functions.
Appealing to (5.57)–(5.59) as before, we have

H(τ) = −4Q−2[θ84(θ123 + θ44θ83 + θ82θ44 − θ122 ) − 2
− θ83(θ

12
4 + θ

4
3θ

8
4 + θ

8
2θ

4
3 + θ

12
2 ) + 2]

= 4Q−2(θ82θ123 + θ122 θ83 + θ122 θ84 − θ82θ124 )
= 4Q−2(θ82(θ123 − θ124 ) + θ122 (θ83 + θ84)).
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Therefore, making use of (6.66)–(6.68), H(i) can be calculated as

H(i) = 4e2π( Γ(1/4)
(2π)3/4)20((21/4)12 − 1 + (21/4)8 + 1)

= 4e2π Γ(1/4)
20

(2π)15
(8 + 4) = 3e2π Γ(1/4)

20

2 048π15
≈ 4 216.16.

We conclude that L(it) ≤ 4 217 − 1 920 = 2 297 for all t ≥ 1, as claimed.

Proof of Lemma 6.30. The asymptotic expansion for K(it) is

K(it) = (3 840πt − 7 680) + (−230 400π2t2 + 990 720πt − 990 720)Q2

+ (−8 294 400π2t2 + 25 205 760πt − 16 803 840)Q4 + ⋅ ⋅ ⋅ .

We separate K(it) into three components, defining

K1(t) = 3 840πt + (−230 400π
2t2 + 990 720πt − 990 720)Q2,

K2(t) = Q
−2E′4(it)2t2 − 16Q−2(E4(it)2 − 1) + (230 400π2t2 + 990 720)Q2,

K3(t) = −8iQ
−2E′4(it)E4(it)t − (3 840πt + 990 720πtQ2),

so that we have

K(it) = K1(t) + K2(t) + K3(t).

The asymptotic behavior of K2(t) and K3(t) can be understood from the expansions

K2(t) = −7 680 − (8 294 400π
2t2 + 16 803 840)Q4

− (113 356 800π2t2 + 126 819 840)Q6 − ⋅ ⋅ ⋅ ,

K3(t) = 25 205 760πtQ
4 + 253 639 680πtQ6 + 1 500 019 200πtQ8 + ⋅ ⋅ ⋅ .

We now make the following elementary observations:
1. The function K1(t) is increasing on [1,∞).

Proof. Assume that t ≥ 1. Then

K ′1 (t) = 3 840πe−2πt(e2πt + 120π2t2 − 636πt + 774)
≥ 3 840πe−2πt(e2π + 120π2t2 − 636πt + 774).

The last expression is of the form e−2πt times a quadratic polynomial in t, which, as
it is easy to check, is positive on the real line. Thus we have shown that K ′1 (t) > 0 for
t ≥ 1, which proves the claim.

2. The function K2(t) is increasing on [1,∞).

Proof. By inspection the expansion of K2(t) consists of the constant term −7 680 plus
a sumof lower-order terms, each being of the form−(at2+b)e−nπt for some nonnega-
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tive coefficients a, b and positive integer n. Each such term is an increasing function
of t for t ≥ 2

nπ , so in particular for t ≥ 1.

3. K3(t) ≥ 0 for all t > 0.

Proof. The expansion of K3(t) has nonnegative coefficients.

Combining the above observations, we get that for t ≥ 1,

K(it) ≥ K1(t) + K2(t) ≥ K1(1) + K2(1)

= −e2π(−E′4(i)2 + 16E4(i)2 − 16) + 3 840π + 990 720πe−2π
= −e2π(9Γ(1/4)

16

1 024 π12
+ 169Γ(1/4)

16

4 096 π12
− 16) + 3 840π + 990 720πe−2π

= −e2π(45 Γ(1/4)
16

1 024 π12
− 16) + 3 840π + 990 720πe−2π ≈ 3 747.1,

as claimed.

6.7 Proof of Theorem 6.1

Define the functions

C(z) = A(z) + B(z),

D(z) = A(z) − B(z).

Lemma 6.31. The functions C(z) and D(z) are holomorphic in the region Re(z) > −2 and
have the explicit representations

C(z) = −4 sin2(πz
2
)
∞
∫
0

(U(it) + V (it))e−πzt dt (Re(z) > 2), (6.78)

D(z) = −4 sin2(πz
2
)
∞
∫
0

(U(it) − V (it))e−πzt dt (Re(z) > 0), (6.79)

Proof. The holomorphicity is immediate from the analytic continuation ofA(z) and B(z)
discussed in Sections 6.4–6.5. Similarly, relation (6.78) is an immediate consequence of
Lemmas 6.6 and 6.18. Relation (6.79) follows as well from these lemmas for z satisfying
Re(z) > 2, but here wemake the stronger claim that this representation remains valid in
the larger half-plane Re(z) > 0; this is related to the fact that in the analytically contin-
ued representations (6.24) and (6.52), the poles 1

z−2 inside the parenthesized expressions
cancel each other out upon subtracting the two formulas. To make this more precise,
observe that combining estimates (6.12), (6.13), (6.42), and (6.43) gives that
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U(it) − V (it) = O(t) (t →∞), (6.80)

U(it) − V (it) = O(t2e−π/t) (t → 0), (6.81)

and this is clearly sufficient to imply the absolute convergence of the integral in (6.79),
uniformly on compacts in the half-plane Re(z) > 0. By the principle of analytic continu-
ation, since the right-hand side of (6.79) is equal to D(z) for Re(z) > 2, it must also equal
D(z) on Re(z) > 0.

Define φ : ℝ8 → ℝ by

φ(x) = C(‖x‖2) = φ+(x) + φ−(x).
By Lemmas 6.12 and 6.23, φ(x) is a radial Schwartz function. By Lemmas 6.13 and 6.24 its
Fourier transform is

ℱ8[φ](x) = φ+(x) − φ−(x) = D(‖x‖2).
In other words, φ+(x) and φ−(x) are the Fourier-even and Fourier-odd components in
the Fourier parity decomposition of φ; see (A.20)–(A.21).

Theorem 6.32. The function φ is a magic function for the lattice E8. Consequently,
Δoptimal(8) =

π4
384 , and the E8 sphere packing is optimal.

Proof. Let ρ0 = √2. In ℝ
8, we have

vol(Bρ0/2(0)) = π4

24Γ(5)
=

π4

384
,

which is precisely the packing density of E8 (see Theorem A.8). Therefore we need to
show that φ satisfies the three conditions of Theorem A.21 with the particular value of ρ
being equal to√2. Indeed, by (6.26) and (6.53) we have

φ(0) = φ+(0) + φ−(0) = 240π > 0,
φ̂(0) = φ+(0) − φ+(0) = 240π,

so the first condition is satisfied. Next, (6.78), when combined with Lemmas 6.3 and 6.15,
implies that φ(x) ≤ 0 for all x ∈ ℝd with ‖x‖ ≥ √2. This confirms the third condition.
Finally, (6.79), togetherwith inequality (6.57), implies thatℱ8[φ] is everywhere nonnega-
tive. This is the second condition of TheoremA.21 and the final one needed to be verified.
The proof that φ is a magic function for E8 and therefore that the E8 sphere packing is
optimal for sphere packing in 8 dimensions is complete.

Suggested exercises for Section 6.7. 6.5, 6.6, 6.7.
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Exercises for Chapter 6

6.1 Prove Lemma 6.10.
6.2 Prove Lemma 6.12.
6.3 Explain why the operation of commuting the Fourier transform with the integrals

in (6.32) is justified.
6.4 Show that the function A(z), which was analytically continued to a holomorphic

function on the half-plane Re(z) > −2 in Lemma 6.8, can in fact be continued ana-
lytically to an entire function.

6.5 Find the special values φ̃(√2), (φ̃)′(√2), ̃̂φ(√2), (̃̂φ)′(√2) associated with the radial
profile φ̃ of the E8 magic function φ, the radial profile of the Fourier transform of
φ, and their derivatives.

6.6 Prove that the magic function φ(x) satisfies the following properties:
(a) ∫ℝ8 φ(x) dx = 240π.
(b) ∑∞n=1 σ3(n)φ̃(√2n − 1) = 0.
(c) ∑x∈E8 φ(x + y) ≡ 240π for all y ∈ ℝ8.

6.7 Magic function for the Leech lattice. [16] Prove that there exists amagic function
for the Leech lattice in dimension 24.
Guidance. Repeat the proof of this chapter with appropriate modifications. The
function U(τ) should be replaced by

U24(τ) = 6 912 ×
μ2(τ)τ

2 + μ1(τ)τ + μ0(τ)
(E34 − E

2
6)
2

with μ0, μ1, μ2 defined by

μ0(τ) = 36(25E
2
6 − 49E

3
4),

μ1(τ) = 6πi(48E6E
2
4 + 2(25E

2
6 − 49E

3
4)E2),

μ2(τ) = π
2(25E44 − 49E

2
6E4 + 48E6E

2
4E2 + (25E

2
6 − 49E

3
4)E

2
2).

In place of V (τ), use

V24(τ) = 12
6 ×

7θ204 θ
8
2 + 7θ

24
4 θ

4
2 + 2θ

28
4

(E34 − E
2
6)
2 .

See Exercise A.16 in the Appendix for the relevant properties of the Leech lattice.





A Appendix: Background on sphere packings

This appendix presents the backgroundmaterial on sphere packings and related notions
that is necessary to understand the developments of Chapter 6. The material discussed
here mostly does not involve any complex analysis (with the one notable exception be-
ing the proof of Proposition A.17 in Section A.7). Before reading this appendix, we rec-
ommend reading Sections 6.1 and 6.2 for motivation.

A.1 Sphere packings and their densities

Fix a dimension d ≥ 2. Given r > 0 and x ∈ ℝd , denote by Br(x) the Euclidean ball of
radius r centered at x. A sphere packing inℝd consists of a union of balls of equal radii
with nonoverlapping interiors. We commonly denote a packing as

P = P(X , r) = ⋃
x∈X

Br(x),

where X ⊂ ℝd is the set of centers of the balls participating in the union, and r is their
common radius. The upper packing density associated with a sphere packing P is

Δ+P = lim sup
R→∞

vol(P ∩ BR(0))
vol(BR(0))

. (A.1)

In the case where the limsup in (A.1) is in fact an ordinary limit, we say that P has a
packing density. In that case, we denote Δ+P by ΔP and refer to this quantity simply as the
packing density of P.

The optimal packing density of ℝd is defined to be

Δoptimal(d) = sup{Δ
+
P : P is a sphere packing in ℝ

d}.

A sphere packing P in ℝd is called optimal if it has a packing density and its packing
density is equal to Δoptimal(d).

Theorem A.1 ([35], [36, Sec. 3.viii]). An optimal sphere packing in ℝd exists.

Sphere packings have a trivial scale invariance property: replacing all the balls
Br(x) in a sphere packing P by their scaled copies Bλr(λx) for some constant λ > 0 re-
sults in a sphere packing with the same packing density. For this reason, when proving
facts about packing densities for general sphere packings, we can assume without loss
of generality that a packing has some specific common sphere radius r (where r can be
chosen arbitrarily for some reason of convenience).

Suggested exercises for Section A.1. A.1.

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783110796810-008
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A.2 Lattices and lattice packings

A lattice in ℝd is a set of points of the form

Λ = {
d
∑
j=1

njxj : n1, . . . , nd ∈ ℤ},

where x1, . . . , xd is a linear basis for ℝ
d . Another notation for the same set is⨁d

j=1ℤ ⋅
xj . (This may be referred to as the ℤ-span of the vectors x1, . . . , xd . The spanning set
x1, . . . , xd is said to be a basis for the lattice Λ; note that it is not unique.) Given a lattice,
it is easy to check that the associated union of balls P(Λ, r) is a sphere packing if and only
if r ≤ r∗(Λ), where

r∗(Λ) :=
1
2
min{


n
∑
j=1

njxj

: (n1, . . . , nd) ∈ ℤ

d \ {(0, . . . , 0)}}.

We refer to the sphere packing P(Λ, r∗(Λ)) as the lattice sphere packing (or lattice pack-
ing) associated with the lattice Λ and denote its packing density by δΛ.

It is not known whether in every dimension d there exists a lattice Λ whose associ-
ated sphere packing is optimal. This is the case in the dimensions d = 2, 3, 8, 24,which are
the only dimensions for which the value of Δoptimal(d) has been established rigorously.

A.3 Periodic sphere packings

Lattice sphere packings are a particular case of a more general family of sphere pack-
ings called periodic sphere packings. These are packings that have a periodic structure
associated with a lattice. More precisely, let Λ be a lattice inℝd , let A = {x1, . . . , xm} ⊂ ℝ

d

be a finite set of points, and let r > 0 be a number. Assume that ‖x + xj − xk‖ ≥ 2r for all
1 ≤ j, k ≤ m and all x ∈ Λ, except for the case x = 0 and j = k. Then the union of balls of
radius r centered around Λ-translates of the points of A is a sphere packing; that is, we
define

P = P(X , r), where X = A + Λ = {xj + y : 1 ≤ j ≤ m, y ∈ Λ}. (A.2)

A sphere packing constructed in such a way is called a periodic sphere packing (or
periodic packing).

It is not known whether in every dimension d there exists a periodic sphere pack-
ing that is optimal. However, periodic packings are sufficiently general that they come
arbitrarily close to being optimal, as the following result makes precise.

Lemma A.2 ([14, Appendix A]).

Δoptimal(d) = sup{ΔP : P is a periodic sphere packing in ℝ
d}.
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A.4 Lattice covolume

The covolume of a lattice Λ = ⨁d
j=1ℤ ⋅ xj , denoted covol(Λ), is defined as the absolute

value of the determinant of the matrix containing the vectors x1, . . . , xd as its rows.

Lemma A.3. The definition of covol(Λ) is independent of the choice of basis x1, . . . , xd for
the lattice. Moreover, the covolume has the following geometric interpretation: it is the
volume of the set

{t1x1 + t2x2 + ⋅ ⋅ ⋅ + tdxd : t1, . . . , td ∈ [0, 1]}

(called the fundamental cell, or fundamental parallelepiped, of the lattice associated
with the basis x1, . . . , xd).

Proof. Exercise A.2.

Lemma A.4. 1. For a lattice Λ ⊂ ℝd , the packing density of the associated lattice sphere
packing is given by

δΛ =
vol(Br∗(Λ)(0))
covol(Λ)

=
πd/2r∗(Λ)

d

Γ( d2 + 1) covol(Λ)
. (A.3)

2. For a periodic sphere packing P as in (A.2), its packing density is

ΔP =
m vol(Br(0))
covol(Λ)

=
mπd/2rd

Γ( d2 + 1) covol(Λ)
. (A.4)

(In (A.3)–(A.4), Γ denotes the Euler gamma function.)

Proof. The second equality in each of relations (A.3) and (A.4) follows from the well-
known formula for the volume of the unit ball in ℝd ; see Exercise 2.3 on page 110. The
proof of the additional claim relating the explicit quantities in (A.3) and (A.4) to the pack-
ing densities δΛ and ΔP is left as an exercise (Exercise A.3).

Suggested exercises for Section A.4. A.2, A.3.

A.5 Dual lattices

If Λ is a lattice in ℝd , then its dual lattice is the set denoted Λ∗ and defined by

Λ∗ = {y ∈ ℝd : ⟨x, y⟩ ∈ ℤ for all x ∈ Λ}.

The fact that Λ∗ is a lattice follows from Lemma A.5.
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Lemma A.5. If B = {x1, . . . , xd} is a basis for the lattice Λ, let B
∗ = {y1, . . . , yd} be the dual

basis, when considering B as a linear basis for ℝd; that is, the vectors y1, . . . , yd are the
unique vectors satisfying

⟨xj , yk⟩ = δjk (1 ≤ j, k ≤ d)

(where δjk denotes the Kronecker delta). Then we have Λ
∗ =⨁d

j=1ℤ ⋅ yj .

Proof. Exercise A.4.

Suggested exercises for Section A.5. A.4, A.5.

A.6 The Poisson summation formula for lattices

In Chapter 2, we discussed the Poisson summation formula for functions of a single real
variable (Theorem 2.6), a classical result from Fourier analysis, in the context of our
proof of the functional equation of the Riemann zeta function. There is a version of the
same result for functions onℝd involving summation over lattices. This result relates the
summation of values of a nicely behaved function onℝd over a lattice to the summation
of its Fourier transform over the dual lattice and plays an important role in the study of
sphere packings.

To state the result, first recall some basic facts about Fourier transforms in d dimen-
sions. The Fourier transform in ℝd is the operator ℱd taking a function f : ℝ

d → ℂ to
the function ℱd[f ] given by

ℱd[f ](y) = ∫
ℝd

f (x) exp(−2πi⟨y, x⟩) dx, (A.5)

assuming appropriate integrability conditions. We also denote the Fourier transform of
f by f̂ . The Fourier transform acts in a particularly nice way on Schwartz functions.
A function f : ℝd → ℝ is called a Schwartz function if it satisfies

sup
x=(x1 ,...,xd)∈ℝd


xj11 x

j2
2 ⋅ ⋅ ⋅ x

jd
d ⋅
𝜕k1𝜕k2 ⋅ ⋅ ⋅ 𝜕kd f
𝜕xk11 𝜕x

k2
2 ⋅ ⋅ ⋅ 𝜕x

kd
d


<∞

for any integers j1, . . . , jd , k1, . . . , kd ≥ 0. The following is a standard fact from analysis;
see [41, p. 301] for the proof.

Proposition A.6. The Fourier transform of a Schwartz function is also a Schwartz func-
tion.

We can now state the Poisson summation formula for lattices.
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Theorem A.7 (Poisson summation formula for lattices). Let Λ ⊂ ℝd be a lattice, and let
f : ℝd → ℂ be a Schwartz function. Then

∑
x∈Λ

f (x) = 1
covol(Λ)

∑
y∈Λ∗ f̂ (y). (A.6)

Another, slightly more general, version of the Poisson summation formula for lat-
tices is

∑
x∈Λ

f (x + t) = 1
covol(Λ)

∑
y∈Λ∗ f̂ (y) exp(2πi⟨y, t⟩) (t ∈ ℝd). (A.7)

In fact, equations (A.6) and (A.7) are equivalent, since (A.6) is the case t = 0 of (A.7),
and conversely, the general case of (A.7) for arbitrary t ∈ ℝd is immediately obtained
from (A.6) on applying that relation to the function g(x) = f (x + t).

Proof of Theorem A.7. Exercise A.6.

Suggested exercises for Section A.6. A.6.

A.7 Construction of the lattice E8
The goal of this section is to construct the lattice E8, which plays a central role in the
sphere packing story. We will prove the following result.

Theorem A.8. There exists a lattice in ℝ8, denoted E8, with the following properties:
1. The packing density δE8 of the sphere packing associated with E8 is

π4
384 .

2. The set of Euclidean norms of points of the lattice E8 is

{√2n : n = 0, 1, 2, . . .}.

An immediate corollary of the existence of E8 is the following conceptually impor-
tant result.

Corollary A.9. The optimal sphere packing density Δoptimal(8) in 8 dimensions satisfies

Δoptimal(8) ≥
π4

384
.

Several different constructions of E8 are known; perhaps its most natural manifes-
tation is as the lattice spanned by the E8 root system, an object associated with the E8
Lie algebra, one of the so-called exceptional Lie algebras that appears in a famous clas-
sification theorem. [40, p. 238] Here we give an elementary construction of E8, which
provides a straightforward path to a proof of our claims (while offering little insight
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into what makes E8 so special and interesting). Define the vectors x1, . . . , x8 ∈ ℝ
8 as the

columns of the matrix

M =

((((((((((

(

2 −1 0 0 0 0 0 1
2

0 1 −1 0 0 0 0 1
2

0 0 1 −1 0 0 0 1
2

0 0 0 1 −1 0 0 1
2

0 0 0 0 1 −1 0 1
2

0 0 0 0 0 1 −1 1
2

0 0 0 0 0 0 1 1
2

0 0 0 0 0 0 0 1
2

))))))))))

)

,

and define

E8 =
8
⨁
j=1
ℤ ⋅ xj .

Lemma A.10. E8 is a lattice with basis x1, . . . , x8, and its covolume is 1.

Proof. The xj are clearly linearly independent, so E8 is indeed a lattice in ℝ8, and
covol(E8) = det(M) = 1.

Lemma A.11. The lattice E8 has an alternative representation as

E8 = {(y1, . . . , y8) ∈ ℤ
8 :

8
∑
j=1

yj ≡ 0 (mod 2)}

∪ {(y1, . . . , y8) ∈ (ℤ +
1
2
)
8

:
8
∑
j=1

yj ≡ 0 (mod 2)}. (A.8)

Proof. Denote the two sets participating in the union on the right-hand side of (A.8) by
I8 and J8, respectively. By inspection, x1, . . . , x7 ∈ I8, x8 ∈ J8, and I8 ∪ J8 is closed under
the taking of linear combinations with integer coefficients. This shows that E8 ⊂ I8 ∪ J8.
Conversely, if y = (y1, . . . , y8) ∈ I8, then we can write

y =
8
∑
j=1

ajxj

(regarding y for convenience as a column vector), where
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((((((((

(

a1
a2
a3
a4
a5
a6
a7
a8

))))))))

)

= M−1y =

((((((((

(

1
2

1
2

1
2

1
2

1
2

1
2

1
2 −

7
2

0 1 1 1 1 1 1 −6
0 0 1 1 1 1 1 −5
0 0 0 1 1 1 1 −4
0 0 0 0 1 1 1 −3
0 0 0 0 0 1 1 −2
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 2

))))))))

)

((((((((

(

y1
y2
y3
y4
y5
y6
y7
y8

))))))))

)

.

Again by inspection, the assumption that yj are integers satisfying ∑
8
j=1 yj ≡ 0 (mod 2)

immediately implies that a1, . . . , a8 obtained in thisway are themselves integers and that
therefore y = ∑8j=1 ajxj ∈ E8. This shows that I8 ⊂ E8. To show that also J8 ⊂ E8, observe
that if y ∈ J8, then y − x8 ∈ I8, so the previous calculation shows that y = x8 + ∑

8
j=1 ajxj ,

where aj are integer coefficients, and thus once again we have that y ∈ E8.

Lemma A.12. For any x, y ∈ E8, we have ⟨x, y⟩ ∈ ℤ.

Proof. For 1 ≤ j, k ≤ 8, define tj,k = ⟨xj , xk⟩; explicitly, the numbers (tj,k)
8
j,k=1 are the

entries of the symmetric matrix

M⊤M =

((((((((

(

4 −2 0 0 0 0 0 1
−2 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
1 0 0 0 0 0 0 2

))))))))

)

.

Now if x, y ∈ E8, then express x, y as x = ∑8j=1 ajxj and y = ∑8k=1 bkxk with integer
coefficients aj , bk . Then

⟨x, y⟩ =
8
∑
j,k=1

tj,kajbk , (A.9)

which is manifestly an integer.

Lemma A.13. For any x ∈ E8, we have ‖x‖
2 ∈ 2ℤ.

Proof. This is immediate from (A.9) on setting y = x and noting that the double sum can
be rewritten as

8
∑
j,k=1

tj,kajak =
8
∑
j=1

tj,ja
2
j + 2 ∑

1≤j<k≤8
tj,kajak ,

which is easily recognized as an even integer.
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Lemma A.14. The packing density of the sphere packing associated with E8 is
π4
384 .

Proof. Since the squared norms ‖x‖2 for x ∈ E8 are nonnegative even integers, the
minimal norm of a nonzero vector is at least √2. On the other hand, the vector x =
(1, 1, 0, 0, 0, 0, 0, 0) = x1 + x2 is one specific vector in E8 with that norm, so √2 is in fact
precisely the minimal nonzero norm. This establishes that

r∗(E8) =
√2
2
.

Now using (A.3) together with the already established fact that covol(E8) = 1 gives the
claim.

Lemma A.15. E8 = E
∗
8 .

Proof. Lemma A.12 can be reformulated as the statement that E8 ⊆ E
∗
8 . To prove the

reverse inclusion, let y1, . . . , y8 ∈ ℝ
d denote the elements of the dual basis to x1, . . . , x8.

These are simply the rows ofM−1 (or if they are thought of as column vectors, then the
columns of (M−1)⊤). Now observe the somewhat trivial matrix equation

(M−1)⊤ = M(M−1(M−1)⊤)

= M

((((((((

(

14 24 20 16 12 8 4 −7
24 42 35 28 21 14 7 −12
20 35 30 24 18 12 6 −10
16 28 24 20 15 10 5 −8
12 21 18 15 12 8 4 −6
8 14 12 10 8 6 3 −4
4 7 6 5 4 3 2 −2
−7 −12 −10 −8 −6 −4 −2 4

))))))))

)

.

For each 1 ≤ j ≤ 8, the jth column yj of the matrix (M
−1)⊤ can be expressed as a lin-

ear combination of x1, . . . , x8 with coefficients taken from the jth column of the matrix
M−1(M−1)⊤ (e. g., y1 = 14x1 + 24x2 + 20x3 + 16x4 + 12x5 + 8x6 + 4x7 − 7x8). These coefficients
are all integers, and thus yj ∈ E8. Since y1, . . . , y8 are a basis for E

∗
8 (see Lemma A.5), we

have shown that E∗8 ⊆ E8. This completes the proof that E8 = E
∗
8

Our last remaining task for this section is to prove the second claim in Theorem A.8.
We already showed that all the squared norms of E8 lattice vectors are even integers; it
remains to show that all positive even integers are in fact squared norms of E8 vectors.
This will follow from a much more precise statement. Define the numbers (an)

∞
n=0 by

an = #{x ∈ E8 : ‖x‖
2 = 2n}.

Note that, trivially, a0 = 1.
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Lemma A.16. For some constant C > 0, we have the bound an ≤ Cn
4 for all n ≥ 1.

Proof. Exercise A.7.

Proposition A.17. We have the relation

an = 240σ3(n)

(where σ3(n) is defined in (5.2)) for all n ≥ 1.

Remarkably, this result, which has a distinct number-theoretic flavor, can be proved
using a complex-analytic argument involving modular forms. The idea is to form a kind
of generating function for the squared norms of E8 lattice vectors (known in the theory
of lattices as the theta series of the lattice) and study its complex-analytic properties.
More precisely, define a function of a complex variable τ by

η(τ) = ∑
x∈E8

eπiτ‖x‖
2
=
∞

∑
n=0

ane
2πinτ . (A.10)

Lemma A.18. The infinite series (A.10) converges absolutely and uniformly on compacts
on the upper half-planeℍ and defines a holomorphic function there.

Proof. By Lemma A.16,

∑
x∈E8

e
πiτ‖x‖2  ≤ 1 +

∞

∑
n=1

Cn4e−2πn Im(τ),

which converges uniformly in any half-plane of the form {τ : Im(τ) > κ} where κ > 0
and a fortiori on any compact subset ofℍ. The holomorphy follows from the standard
theory (Theorem 1.39).

Lemma A.19. The function η(τ) is a modular form of weight 4.

Proof. The equation η(τ + 1) = η(τ) is immediate from (A.10), i. e., η(τ) transforms cor-
rectly under the generator T of the modular group Γ. We need to show that η(τ) also
transforms in the correct way under the generator S, that is, that η(τ) satisfies the equa-
tion

η(−1/τ) = τ4η(τ). (A.11)

By Lemma 5.21 that would imply that η(τ) is a modular form of weight 4.
To prove (A.11), define the function fτ : ℝ

8 → ℂ depending on a parameter τ ∈ ℍ
by

fτ(x) = e
πiτ‖x‖2 . (A.12)
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In the case where τ lies on the positive imaginary axis, i. e., τ = it with t > 0, this is
an 8-dimensional scaled Gaussian e−πt‖x‖

2
, which transforms under the (8-dimensional)

Fourier transform as

f̂τ(y) = τ
−4f−1/τ(y) = τ

−4eπi(−1/τ)‖y‖
2
. (A.13)

(For general τ ∈ ℍ, this equation still holds, but if you are feeling queasy about this or
cannot be bothered to check it, just assume that τ is on the positive imaginary axis for
now.) Applying the Poisson summation formula (A.6) and keeping in mind Lemma A.15
give

∑
x∈E8

fτ(x) = ∑
y∈E8

f̂τ(y). (A.14)

This is precisely what we need, since the left-hand side of (A.14) is equal to η(τ), and,
by (A.13), the right-hand side is equal to τ−4η(−1/τ). Thus we have established (A.11).
(As a final step, if you previously assumed that τ is imaginary, then now appeal to the
principle of analytic continuation to argue that since the equation (A.11) holds on the
positive imaginary axis, it must hold on all ofℍ.)

Lemma A.20. We have the identity

η(τ) = E4(τ) (τ ∈ ℍ), (A.15)

where E4 denotes the normalized version of the Eisenstein series G4 defined in (5.87).

Proof. By Theorem 5.24 the vector space M4 of modular forms of weight 4 is one-
dimensional and contains η(τ) and E4(τ). Thus we have

1 +
∞

∑
n=1

ane
2πinτ = KE4(τ) = K ⋅ (1 + 240

∞

∑
n=0

σ3(n)e
2πinτ).

Equating the 0th Fourier coefficients on both sides gives K = 1, proving the claim.

Proof of Proposition A.17. This follows immediately from (A.15), again by comparing the
Fourier coefficients on both sides.

Suggested exercises for Section A.7. A.7, A.8.

A.8 The Cohn–Elkies sphere packing bounds

Theorem A.21 (Cohn–Elkies sphere packing bounds [14]). Let f : ℝd → ℝ be a Schwartz
function, and let ρ > 0 be a number. Assume that the following conditions are satisfied:
1. f (0) = f̂ (0) > 0;
2. The Fourier transform f̂ is real-valued, and f̂ (y) ≥ 0 for all y ∈ ℝd;
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3. f (x) ≤ 0 for all x ∈ ℝd such that ‖x‖ ≥ ρ.

Then Δoptimal(d), the optimal packing density in ℝ
d , satisfies

Δoptimal(d) ≤ vol(Bρ/2(0)) =
πd/2ρd

2dΓ( d2 + 1)
. (A.16)

Proof. By Lemma A.2 it suffices to prove that vol(Bρ/2(0)) is an upper bound for the
packing density of any periodic sphere packing with common sphere radius ρ/2 (see the
remark about scale invariance in Section A.1). Let P be such a packing, defined in terms
of a lattice Λ and a finite set {x1, . . . , xm} as in (A.2). Recall that the fact that the common
radius of the spheres in the packing is ρ/2 means that the Euclidean norm ‖x + xj − xk‖
for any 1 ≤ j, k ≤ m and lattice point x ∈ Λ is either 0 (in the case x = 0 and j = k) or is
otherwise bounded from below by ρ.

Let 1 ≤ j, k ≤ m. Applying the Poisson summation formula (A.7) with t = xj−xk gives

∑
x∈Λ

f (x + xj − xk) =
1

covol(Λ)
∑
y∈Λ∗ f̂ (y) exp(2πi⟨y, xj − xk⟩). (A.17)

Summing this relation over all j, k further gives that

m
∑
j,k=1
∑
x∈Λ

f (x + xj − xk)

=
1

covol(Λ)

m
∑
j,k=1
∑
y∈Λ∗ f̂ (y) exp(2πi⟨y, xj − xk⟩)

=
1

covol(Λ)
∑
y∈Λ∗ f̂ (y)

m
∑
j,k=1

exp(2πi⟨y, xj⟩)exp(2πi⟨y, xk⟩)

=
1

covol(Λ)
∑
y∈Λ∗ f̂ (y)(

m
∑
j=1

exp(2πi⟨y, xj⟩))(
m
∑
k=1

exp(2πi⟨y, xk⟩))

=
1

covol(Λ)
∑
y∈Λ∗ f̂ (y)



m
∑
j=1

exp(2πi⟨y, xj⟩)


2

. (A.18)

The first and last expressions in this chain of relations are manifestly real numbers,
and we will reach our desired conclusion by upper-bounding the former and lower-
bounding the latter. Specifically, we have that

f (x + xj − xk) is {
= f (0) if x = 0 and j = k,
≤ 0 otherwise,
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by our observation above about ‖x + xj − xk‖ combined with the third condition in the
theorem about f . Thus the leftmost expression in (A.18) is bounded from above bymf (0).
On the other hand, by the second condition f satisfies, the rightmost expression in (A.18)
can only be made smaller by discarding all terms y ∈ Λ \ {0}. Thus the expression is
bounded from below by m2

covol(Λ) f̂ (0) =
m2

covol(Λ) f (0). Combining these two bounds yields
the inequality

covol(Λ) ≥ m.

This is exactly what we need, since the packing density then satisfies

ΔP =
m vol(Bρ/2(0))

covol Λ
≤ vol(Bρ/2(0)),

as the inequality in (A.16) claims. (The second, more explicit expression in (A.16) for the
upper bound follows from the well-known formula for the volume of the unit ball in
ℝd ; see Exercise 2.3 on page 110.)

A.9 Magic functions

Given a lattice Λ ⊂ ℝd with packing density δΛ, a Schwartz function f : ℝ
d → ℝ is called

amagic function for Λ if it satisfies the assumptions of TheoremA.21with the particular
value of ρ for which

vol(Bρ/2(0)) = δΛ.

By Theorem A.21, if we were to prove the existence of a magic function for some specific
lattice Λ, that would imply that Δoptimal(d) = δΛ, and that the lattice packing associated
with Λ is optimal for sphere packing in ℝd , thereby resolving the sphere packing prob-
lem in dimension d.

Magic functions are a tool that seems almost too powerful (or “magic,” hence the
name) to exist. Indeed, heavy numerical experimentation done by Cohn and Elkies
suggested that in most low dimensions they do not; but in a few special dimensions,
the numerical evidence suggested that they do exist, leading to the following conjec-
ture.

Conjecture A.22 (Cohn–Elkies [14]). Magic functions exist for the following dimensions
and lattices:
1. d = 2: the hexagonal lattice (ℤ ⋅ (1, 0))⨁(ℤ ⋅ ( 12 ,

√3
2 )) in ℝ

2;
2. d = 8: the lattice E8;
3. d = 24: the Leech lattice (described in [18, Sec. 5.11]).
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Viazovska [71] proved the second of these conjectures by finding an explicit con-
struction of a magic function for the lattice E8; her proof, using complex analysis and
modular forms, is the subject of Chapter 6. A subsequent construction using similar
methods of a magic function for the Leech lattice in the case of 24 dimensions, prov-
ing the third conjecture, was given by Cohn et al. [16]. The first conjecture regarding the
existence of a magic function for the hexagonal lattice in ℝ2 remains open (as of 2023).

A.10 Radial functions and their Fourier transforms

A function f : ℝd → ℝ is called radially symmetric, or a radial function, if f (x)depends
only on the radial coordinate of x, that is, if f (x) = f (y)whenever ‖x‖ = ‖y‖. Clearly, f (x)
is radial if and only if it can be represented as

f (x) = f̃ (‖x‖)

for some function f̃ : [0,∞)→ ℝ. The function f̃ (r) is determined uniquely, as f̃ (r) is the
unique value that f (x) takes on the sphere {x : ‖x‖ = r}. We refer to f̃ (r) as the radial
profile of f (x).1

If f : ℝd → ℝ is a general—not necessarily radially symmetric—function, then we
can apply a standard analytic trick to f (x) to obtain a radial function to perform radial
symmetrization, that is, to average out the function over concentric spherical shells of
equal radius around 0. More precisely, we define

frad(x) =
1

sd−1
∫

Sd−1 f (‖x‖y)dσd−1(y),
the integral over the unit sphere Sd−1 = {y ∈ ℝd : ‖y‖ = 1} with respect to its surface
area measure σd−1, normalized to be a weighted average by dividing by the total sphere
surface area sd−1 = σd−1(S

d−1). We call frad(x) the radially symmetrized version of f (x).
Note that f is radial if and only if it coincides with its radially symmetrized version.

Lemma A.23. Let f : ℝd → ℝ be a radial function. Then f (x) is a Schwartz function if
and only if the radial profile f̃ (r) satisfies the following properties:
1. f̃ (r) is the restriction to [0,∞) of an infinitely differentiable even function on ℝ.
2. r−n f̃ (m)(r) →

r→∞
0 for all n,m ≥ 0.

Proof. Exercise A.9.

1 Some authors commit the mild abuse of not making a clear distinction between a function and its
radial profile, for example, by referring to them interchangeably and denoting both of them with the
same symbol.
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Lemma A.24. The radially symmetrized function frad(x) has the following alternative ex-
pression:

frad(x) =
1

νd(SO(d))
∫

SO(d)

f (Ax) dνd(A). (A.19)

Themeanings of the symbols in this formula are as follows: SO(d) is the special orthogonal
group of order d, that is, the group of d × d orthogonal matrices with determinant 1; and
νd is the Haar measure on SO(d), that is, the unique (up to scalar multiplication) Borel
measure on SO(d) that is invariant under the group action, i. e., satisfies νd(A ⋅ E) = νd(E)
for all A ∈ SO(d) and all Borel sets E ⊂ SO(d) (with A ⋅ E denoting the set of matrices
{AB : B ∈ E}).

Proof. Exercise A.11.

Lemma A.25. If f : ℝd → ℝ is a Schwartz function, then?(frad) = (f̂ )rad; that is, the Fourier
transform of the radial symmetrization of f is equal to the radial symmetrization of the
Fourier transform of f .

Proof. If A is a d × d orthogonal matrix and g : ℝd → ℝ, then denote by gA the function
g “rotated by the transformation A”, that is,

gA(x) = g(Ax) (x ∈ ℝ
d).

It is trivial to check that (̂gA) = (ĝ)A (the Fourier transform commutes with orthogonal
transformations). Now using (A.19) (applied to both f and f̂ ), it follows that

?(frad)(y) = ℱd[x →
1

νd(SO(d))
∫

SO(d)

f (Ax) dνd(A)](y)

= ℱd[x →
1

νd(SO(d))
∫

SO(d)

fA(x) dνd(A)](y)

=
1

νd(SO(d))
∫

SO(d)

(̂fA)(y) dνd(A) =
1

νd(SO(d))
∫

SO(d)

(f̂ )A(y) dνd(A)

=
1

νd(SO(d))
∫

SO(d)

f̂ (Ay) dνd(A) = (f̂ )rad(y).

From Lemma A.25 it follows in particular that the Fourier transform of a radial
Schwartz function f : ℝd → ℝ is also a radial function. Because of this, when discussing
radial functions, it is helpful to think of the Fourier transform in d dimensions as an
operator acting directly on the associated radial profile. That is, if f : ℝd → ℝ has an
associated radial profile f̃ (r), and g(y) = ℱd[f ](y) denotes the Fourier transform of f (x)
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with associated radial profile g̃(ρ), then we refer to g̃(ρ) as the radial Fourier trans-
form of f̃ (r) and denote this as

g̃(ρ) = ℱ rad
d [f̃ ](ρ).

See Exercise A.13 at the end of this Appendix for more details (which are interesting but
not needed for our purposes) on how this transform can be described more explicitly
and some of its properties.

Radial Schwartz functions have a decomposition into “even” and “odd” parts with
respect to the taking of radial Fourier transforms. This is explained in the following
lemma.

Lemma A.26. Let f : ℝd → ℝ be a radial Schwartz function. Then f has a unique repre-
sentation of the form

f = f+ + f−, (A.20)

where f+, f− : ℝ
d → ℝ are radial Schwartz functions with

ℱd[f+] = f+, ℱd[f−] = −f−,

that is, f± are eigenfunctions of the Fourier transform with associated eigenvalues +1 and
−1, respectively. The Fourier transform of f is then given by

ℱd[f ] = f+ − f−, (A.21)

and f+, f− are given by

f+ =
f + ℱd[f ]

2
, f− =

f − ℱd[f ]
2
.

Proof. Exercise A.12.

We call (A.20) the Fourier parity decomposition for radial Schwartz functions. We
call f+ the Fourier-even part of f and call f− the Fourier-odd part of f .

Suggested exercises for Section A.10. A.9, A.10, A.11, A.12, A.13.

A.11 Structural properties of E8 magic functions

Theorem A.21 provides a powerful technique for proving upper bounds on the optimal
packing density ofℝd . This was used in [14] to prove improved numerical upper bounds
for Δoptimal(d). Even more intriguingly, it raises the natural question of how we can go
about using the theorem to try to derive a sharp upper bound in any given dimension,
or at least one that is best possible using the method. Needless to say, this is a highly
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nontrivial question. The difficulty lies in the fact thatwe are trying to optimize the bound
(the quantity on the right-hand side of (A.16)) over a rather peculiar-looking space of
functions.Without any further clues as towhat sort of properties an optimizing function
f might have, this is tantamount to groping in the dark.

Fortunately, in the case of 8 and 24 dimensions, Cohn and Elkies pointed out that we
can infer some interesting structural properties of a hypothetical optimizer by using the
additional (conjectured, at that point) knowledge that in those dimensions, the optimiz-
ers are magic functions for the E8 and Leech lattices, respectively. Let us see what those
structural properties are. We focus here on the case of 8 dimensions, where these prop-
erties turned out to be the crucial clues that ultimately led Viazovska to her construction
of an E8 magic function.

First, we can strip away one apparent layer of complexity from the optimization
problem by noting that although the class of functions f we are optimizing over consists
of functions onℝd (that is, functions of d real variables), there is no real loss of generality
in assuming that the function in question is a radial function—a huge simplification,
since radial functions are described in terms of their radial profile, which is a function
of a single real variable. The idea is made precise in the following lemma.

Lemma A.27. If f : ℝd → ℝ is a function satisfying the conditions of Theorem A.21 with
parameter ρ, then there exists a radial Schwartz function g : ℝd → ℝ that satisfies the
same conditions with the same value of ρ.

Proof. Take g = frad, the radially symmetrized version of f , which is also a Schwartz
function (Exercise A.10). Using Lemma A.25, it is easy to check that g satisfies the same
conditions that f satisfied, with the same value of ρ.

A second important observation concerns a necessary condition a function must
satisfy to be a magic function.

Lemma A.28. If f : ℝd → ℝ is a Schwartz function that is a magic function for a lattice
Λ ⊂ ℝd , then it must satisfy

f (x) = 0 for all x ∈ Λ \ {0} and

f̂ (x) = 0 for all x ∈ Λ∗ \ {0}.

Proof. First, note that we can assume without loss of generality that Λ has the property
that

r∗(Λ) = ρ/2.

Indeed, if Λ does not satisfy this, then we can replace it by a scaled version αΛ of itself
with α > 0 chosen so as to cause this equation to be satisfied; the scaling does not change
the value of δΛ, so f would still be a magic function for the rescaled lattice.
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Now combining the Poisson summation formula (A.6) with the assumptions on f ,
we have that

f (0) ≥ f (0) + ∑
x∈Λ\{0}

f (x) = ∑
x∈Λ

f (x)

=
1

covol(Λ)
∑
y∈Λ∗ f̂ (y) =

1
covol(Λ)

(f̂ (0) + ∑
y∈Λ∗\{0} f̂ (y))

≥
f̂ (0)

covol(Λ)
=

f (0)
covol(Λ)

. (A.22)

This is equivalent to saying that covol(Λ) ≥ 1, which in turn is equivalent (refer to (A.3))
to the relation

δΛ ≤ vol(Br∗(Λ)(0)).
Since we assumed that f was a magic function, δΛ is also equal to vol(Bρ/2(0)), so a final
equivalent reformulation of the inequality between the leftmost and rightmost terms
in (A.22) is the statement that ρ/2 ≤ r∗(Λ). However, we started the proof by assuming
that ρ/2 is equal to r∗(Λ). Thismeans that both (weak) inequalities in (A.22)must actually
hold as equalities. The only way in which this can be true is if all the summation terms
that were discarded to obtain those inequalities—the terms f (x) for x ∈ Λ \ {0} in the
first inequality, which were known to be nonpositive, and the terms f̂ (y) for y ∈ Λ \ {0}
in the first inequality, whichwere known to be nonnegative—are necessarily 0; this was
exactly the claim to prove.

Combining the above results and specializing to the case of E8, we easily obtain the
following result.

Theorem A.29 (Necessary condition for E8 magic). Let f : ℝ
8 → ℝ be a radial Schwartz

function, and let f+ and f− denote the Fourier-even and Fourier-odd parts of f as in (A.20).
Define the functions Φ, Φ̂,Φ+,Φ− : [0,∞)→ ℝ by

Φ(r) = f̃ (r) (the radial profile of f ),

Φ̂(r) = ℱ rad
d [Φ](r) (the radial profile of f̂ ),

Φ+(r) = f̃+(r) =
Φ(r) + Φ̂(r)

2
(the radial profile of f+),

Φ−(r) = f̃+(r) =
Φ(r) − Φ̂(r)

2
(the radial profile of f−).

If f is a magic function for E8, then the following conditions hold:
1. Φ(0) = Φ̂(0) > 0;
2. Φ(r), Φ̂(r), Φ+(r), and Φ−(r) have zeros at the points r = √2n for n = 1, 2, 3, . . . .
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3. Φ(r) does not change signs at r = √2n for n = 2, 3, . . . (so its zeros there are of even
order, assuming that it is real-analytic so that the order of the zeros is well-defined).

4. Φ̂(r) does not change signs at r = √2n for n = 1, 2, 3, . . . (so its zeros there are of even
order, assuming that it is real-analytic).

5. IfΦ(r) does not have zeros in (0,√2), then it changes signs at r = √2, so its zero there
is of odd order, assuming that it is real-analytic.

Proof. Exercise A.14.

Suggested exercises for Section A.11. A.14, A.15.

A.12 Summary

In this appendix, we have developed a solid framework for the study of the sphere pack-
ing problem in d dimensions, with a focus on the case of d = 8, from the point of view
of the connections of the problem to harmonic analysis. The main tool is an analytic re-
sult, TheoremA.21, which, alongwith related observations such as LemmaA.27, reduces
the problem to a purely analytic question: namely, can a radial function be constructed
with certain special properties involving simultaneous conditions on the function and
its Fourier transform?

An additional tool of importance is Theorem A.29. This result plays a motivational
role in helping us think about the sphere packing problem in 8 dimensions, as it nar-
rows down considerably the class of functions that we need to consider as hypothetical
magic function candidates. Specifically, the theorem suggests that to find an E8 magic
function, we should look for a function Φ(r) of a single (radial) real variable that has
the property that both Φ(r) and its radial Fourier transform ℱ rad

8 [Φ] have zeros at the
points r = √2,√4,√6, . . . . This is a rather idiosyncratic problem quite unlike anything
elsemathematicians had ever seen before, and its solution eluded the researchers think-
ing about the problem until Viazovska came up with her breakthrough solution in 2016.
Conceptually, what makes the problem hard is that it is difficult to control the zeros of
a function and its Fourier transform simultaneously: it is straightforward to construct
functions with a given set of zeros and functions whose Fourier transform has a given
set of zeros, but no standard tools or ideas in (pre-2016) harmonic analysis offermuch of
a clue for how to do both of those things at the same time, or indeed give much insight
into whether it can be done at all.

One of the conditions in Theorem A.29 offers a possible way out of this conundrum:
specifically, the point of considering separately the componentsΦ+ andΦ− in the Fourier
parity decomposition of Φ is that each of those components is an eigenfunction of the
radial Fourier transform, and thus, if we can force it to have the required set of zeros,
then its Fourier transform will automatically have those zeros as well. So the problem
is reduced to constructing radial Fourier eigenfunctions that have zeros (with certain
constraints on their orders) at √2n, n = 1, 2, . . . . Of course, the condition of being a
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Fourier eigenfunction is not a trivial one to satisfy either, especially when combined
with the constraints on the zeros, so it is not a priori clear that this observation makes
the problem anymore tractable; it seems conceivable that we have merely traded one
difficult-to-satisfy condition for another.

Nonetheless, constructing Fourier eigenfunctions with the correct set of zeros turns
out to be precisely the right approach. This was the path taken successfully in Via-
zovska’s solution of the sphere packing problem in 8 dimensions; for the details, read
Chapter 6, which you now have the necessary background to tackle.

Suggested exercises for Section A.12. A.16, A.17.
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Exercises for Appendix A

A.1 Is an optimal sphere packing in ℝd unique? Why, or why not? If not, then what
can be said about the extent of the nonuniqueness?

A.2 Prove Lemma A.3.
A.3 Prove Lemma A.4.
A.4 Prove Lemma A.5.
A.5 Prove that for any lattice Λ in ℝd , covol(Λ∗) = covol(Λ)−1.
A.6 Prove Theorem A.7. One possible proof proceeds in two steps: first, prove the re-

sult for the specific lattice Λ = ℤd by deducing it from the original Poisson sum-
mation formula for functions onℝ. Second, derive the result in full generality by
starting with the formula for ℤd and applying a linear coordinate change.
For a more direct approach, see [15, Appendix A].

A.7 Prove Lemma A.16.
A.8 Another construction of the lattice E8 (discussed, for example, in [12]) starts by

postulating the existence of a basis x1, . . . , x8 ∈ ℝ
8 whose Grammatrix (thematrix

of inner products ⟨xj , xk⟩) takes the form

(⟨xj , xk⟩)
8
j,k=1 =

((((((((

(

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 −1 0 0 0
0 0 −1 2 0 0 0 0
0 0 −1 0 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2

))))))))

)

.

Prove that such a basis exists and try to redevelop the results of Section A.7 based
on this construction.

A.9 Prove Lemma A.23. (See also [32, Sec. 3], [17, Subsec. 2.3].)
A.10 Prove that the radially symmetrized version of a Schwartz function is a Schwartz

function.
A.11 Prove Lemma A.24.
A.12 Prove Lemma A.26.
A.13 Radial Fourier transforms in ℝd. [31, Sec. B.5], [45, Secs. 4.20, 4.23]

(a) Let f : ℝd → ℝ be a radial function with a well-defined Fourier transform.
Denote F(r) = f̃ (r) and G(ρ) = ̃̂f (ρ) (the radial profiles of f and f̂ , respec-
tively). Prove that F and G are related to each other by

G(ρ) = 2π
ρd/2−1

∞

∫
0

F(r)rd/2Jd/2−1(2πρr) dr, (A.23)
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F(r) = 2π
rd/2−1

∞

∫
0

G(ρ)ρd/2Jd/2−1(2πρr) dρ. (A.24)

Here we use the notation Jα(z) for the Bessel function of the first kind of
index α, an entire function defined by

Jα(z) =
∞

∑
n=0

(−1)n

n! Γ(n + α + 1)
(
z
2
)
2n+α

(see also Exercise 1.16 on p. 74). The integral transform that associates a func-
tion G on [0,∞) with another function F on [0,∞) according to (A.23) is
known as the Hankel transform.

(b) Prove that if f : ℝd → ℝ is a radial square-integrable function that is an
eigenfunction of the Fourier transform, that is, F̂d(f ) = λf , then λ = 1 or
λ = −1.

(c) Let α > 0. Define the sequence of polynomials (Lαn(x))
∞
n=0 by the formula

Lαn(x) =
n
∑
k=0

(−1)k

k!
(
n + α
n − k
)xk .

The polynomials Lαn(x) are called the Laguerre polynomials with parame-
ter α. Prove that the polynomials Lαn(x) satisfy the orthogonality relation

∞

∫
0

Lαn(x)L
α
m(x)e
−xxα dx = Γ(n + α + 1)

n!
δmn (m, n ≥ 0).

Here δmn denotes the Kronecker delta.
(d) Let d ≥ 1. Define the radial functions γdn(x) = G

d
n(‖x‖) on ℝ

d , n ≥ 0, by

Gdn(r) = e
−πr2Ld/2−1n (2πr

2)

= e−πr
2 n
∑
k=0

(−1)k

k!
(
n + d/2 − 1
n − k

)(2π)kr2k .

Prove that γdn is an eigenfunction of the Fourier transform with eigen-
value (−1)n.

(e) Prove that the sequence (γdn)
∞
n=0 forms an orthogonal basis of the subspace

L2rad(ℝ
d) of L2(ℝd) consisting of radial functions. (In other words, together

with the previous claim, this shows that the sequence (γdn)
∞
n=0 diagonalizes the

restriction of the d-dimensional Fourier transform to the radial functions.)
A.14 Prove Theorem A.29.
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A.15 How close are the conditions listed in Theorem A.29 to being sufficient for the
function f to be amagic function forE8? That is,what additionalmild assumptions
on Φ(r) and Φ̂(r) would guarantee that f is a magic function?

A.16 The Leech lattice. Prove the following analogue of Theorem A.8:

Theorem A.30 ([18, pp. 131–134]). There exists a lattice in ℝ24, denoted L24 and
known as the Leech lattice, with the following properties:
(a) The packing density of the sphere packing associated with L24 is

π12
12! .

(b) The set of Euclidean norms of points of L24 is

{√2k : k = 0, 2, 3, 4, . . .}.

(c) The numbers (bn)
∞
n=0 defined by

bn = #{x ∈ L24 : ‖x‖
2 = 2n}

are given explicitly by

bn =
65 520
691
(σ11(n) − τ(n)) (n ≥ 1).

For the definitions of σ11(n) and τ(n), see (5.2) and (5.28).

A.17 Formulate an analogue of Theorem A.29 for the case of a magic function for the
Leech lattice in 24 dimensions.
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