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Series Foreword

Dear reader,

Our aim with the series Simula SpringerBriefs on Computing is to provide
compact introductions to selected fields of computing. Entering a new field of
research can be quite demanding for graduate students, postdocs, and experi-
enced researchers alike: the process often involves reading hundreds of papers,
and the methods, results and notation styles used often vary considerably,
which makes for a time-consuming and potentially frustrating experience.
The briefs in this series are meant to ease the process by introducing and ex-
plaining important concepts and theories in a relatively narrow field, and by
posing critical questions on the fundamentals of that field. A typical brief in
this series should be around 100 pages and should be well suited as material
for a research seminar in a well-defined and limited area of computing.

We have decided to publish all items in this series under the SpringerOpen
framework, as this will allow authors to use the series to publish an initial
version of their manuscript that could subsequently evolve into a full-scale
book on a broader theme. Since the briefs are freely available online, the
authors will not receive any direct income from the sales; however, remuner-
ation is provided for every completed manuscript. Briefs are written on the
basis of an invitation from a member of the editorial board. Suggestions for
possible topics are most welcome and can be sent to aslak@simula.no.

January 2016 Prof. Aslak Tveito
CEO

Dr. Martin Peters

Executive Editor Mathematics

Springer Heidelberg, Germany
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Foreword

Neuroscientists like to remind us that the brain is the most complex object in
the known universe. The complexity they talk about is related to the brain’s
strange ability to integrate sensory inputs, to learn, to think, to store mem-
ories, to develop feeling, and to perform higher cognitive functions such as
consciousness, self-awareness, mathematics, and yes, being able to write po-
ems and equations about itself. Mostly, neuroscientists think about complexity
in terms of signal processing and information transfer for which they have accu-
mulated, through a century of exploration, an encyclopedic knowledge. Despite
these Herculean efforts, much about the brain remains a mystery. In partic-
ular, there is another level of complexity associated with the brain that has
been mostly neglected in the traditional neurosciences. The brain is a living
organ that relies on a myriad of biological, chemical, and physical processes
perfectly orchestrated to maintain its basic activities. Viewed from a physical
perspective, what makes the brain so fascinating and so complicated as an
organ is that it operates across multiple scales and constantly uses multiple
physical fields. Indeed, processes that take place in the blink of an eye may be
coupled with events that develop over a lifetime. In space, what happens inside
a single neuron may trigger a global response at the organ or even body level.
This large time and space scale-coupling prevents us from using the physical
scale-separation paradigm that has been so successful in the study of planets
and atoms. Similarly, the brain is a strange composite in which fluid and soft
solid flow into one another, it is a soup of ions and electrolytes that needs to
be carefully balanced at all times, and is a constant electric and magnetic field
generator. This delicate symphony of processes is what allows the brain to
function in harmony. Any defects or disturbance may lead to severe pathology

vii



viii Foreword

as seen in development, trauma, or dementia. To make matter worse, our thick
skull has impaired our ability to probe the brain properly and even some of its
basic defining features, such as its material response under poking, are poorly
understood.

Yet, for the last decade, many scientists from different fields have come
together to rethink the way we think about the brain by adapting various
theories and ideas from engineering, physics, mathematics, and computer sci-
ence. To elevate brain modeling to a quantitative physical theory, one must
combine data, experiments, theory, and computation. For many years, data
was a true bottleneck as recording any physical fields in the living brain was
particularly difficult and invasive. This situation changed completely with the
advent of magnetic resonance imaging (MRI) that became routine in the late
1990s. The basic MRI and its multiple variants and generalizations have com-
pletely, but quietly, revolutionized medical practice by imparting a reliable,
reasonably-high resolution, non-invasive means of observing the internal states
of the brain. MRI imaging has become a basic source of information for clin-
ical neuroscience and neurodegenerative disease research as it allows to map,
and measure properties of the cortex and white matter, to determine the pat-
terns of water flow within the brain, and to isolate regions of high cognitive
processes.

In another realm of science, completely disconnected from neurosciences,
another quiet revolution was taking place in the same period. With the rise
of computing power, the ability to model and simulate the response of large
three-dimensional structures through finite-element modeling also became rou-
tine. Initially, these methods were used to evaluate the safety of a bridge or to
test the response of automotive pieces under loads. But, rapidly scientists re-
alized that they could adapt these ideas to biology by simulating the response
of arteries, heart, lungs, bones, and, eventually, the brain. The problem was
not just to run existing codes to new soft structures but develop a new math-
ematical theory of soft biological materials. Indeed, with its extreme softness,
viscous, active, nonlinear properties, and composite composition, the brain is
not just a very soft piece of rubber but a complex material with fascinating
properties not shared with any other organ.

Scientists interested in modeling the brain are now in an interesting sit-
uation: sitting on a giant heap of MRI data, with sophisticated theoretical
and computational tools to simulate the brain, they have to find a way to
bridge data to simulation and create a framework where systematic explo-
ration of scientific and medical questions can be performed. This is where
this little monograph comes in. This text, authored by four leading experts
in the field, offers an explicit bridge linking MRI images to scientific comput-
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ing and mathematical modeling of the brain. The authors introduce in simple
and clear terms most of the concepts needed and provide a freely-available,
open-source, and easy-to-use Python software tool allowing MRI images to be
easily transformed into physiologically-accurate computational assets. They
showcase their approach by showing how an anisotropic diffusion problem can
be solved using a detailed computational domain, and diffusion tensor, con-
structed from a single patient MRI data set. Remarkably, what would have
been a major research project a couple years ago can now be performed ele-
gantly through their pipeline by any interested reader.

As Wittgenstein wrote in Philosophical Investigations: “We talk of processes
and states, and leave their nature undecided. Sometime perhaps we will know
more about them - we think. But that is just what commits us to a particular
way of looking at the matter.” Thanks to this wonderful book, now is the time
when we will know more about processes and states of the brain.

Oxford Mathematical Institute Alain Goriely
January, 2021



Preface

Observations surrounding the nature and fundamental biology of humankind
date back to some of our earliest written historical accounts. Brain pulsatile be-
haviour and the structure of brain folding were described in the ancient Egyp-
tian Edwin Smith Surgical Papyrus * dating back to 1700 BC. Hippocrates, the
father of medicine, hypothesized that the brain was the seat of intelligence,
while Aristotle was fascinated by and wrote about both sleep and dreams. How-
ever, early methods of directly investigating human anatomy were crude and
invasive. Arguably, one of the profound medical achievements of our modern
age is the advent of non-invasive imaging technologies.

The imaging revolution was born with Wilhelm Roéntgen’s discovery of X-
rays as far back as in 1895. A few years later, Marie Curie successfully isolated
radium, and X-rays then began to be used medically. Still, even with these
early breakthroughs, positron emission tomography (PET) would not arrive
until 1950, and it would be 1967 before the first clinical X-ray computed to-
mography (CT) scanner was put to use. An explosive development of different
techniques followed these successes and the reader who is interested in the fas-
cinating history of radiology can find more details in [65]. We now have many
new imaging methods at our disposal; in addition to PET and CT, the various

1 The text is named after the dealer who bought it.

xi



xii Preface

magnetic resonance (MR) imaging techniques 2 have proven to be indispens-
able for understanding the brain of living patients. The medical imaging field
is now vast. For instance, the annual meeting of the Radiological Society of
North America hosts around 25,000 attendees, while 44,000 people attended
the meeting of the Society for Neuroscience.

Meanwhile, engineering and industrial applications have led to the rapid
development of both numerical methods, and applications using partial differ-
ential equations (PDEs) to model and understand physical phenomena. The
finite element method (FEM), in particular, was introduced in the 1960s for
solving PDEs on domains with complex geometries. Significant work has been
invested in the construction of scalable, performant, and approachable software
libraries for solving PDEs via the FEM. Today, we have many such libraries
at our disposal; including Abaqus, COMSOL, deal.Il, DUNE, and FEniCS.
However, the generation of suitable, physiological finite element geometries
for solving PDEs over brain domains remains a practical barrier. Therefore,
the impact of computational modeling on medical imaging and neuroscience
has not yet reached its full potential. Our aim with this book is to provide a
bridge between common tools in medical imaging and neuroscience, and the
numerical solution of PDEs that can arise in brain modeling. More specifically,
our work focuses on the use of two existing tools, FreeSurfer and FEniCS, and
one novel tool, the SVM-Tk, developed for this book.

A central, and practical, problem preventing a more widespread interest in
the mathematical modeling of the human brain is that of anatomical mesh
generation. Generating physiological finite element meshes of the brain is not
an easy task. The sulcal and gyral folds of the cortex are intricate, and the
extracellular diffusion tensor, dictated largely by axonal white-matter bundles,
is anisotropic and tortuous. Nevertheless, such features are essential for even
the simplest, patient-specific PDE models of brain structural deformation and
fluid dynamics. The ability to accurately capture anatomical features could
help us address many human problems, particularly when it comes to under-
standing the mechanisms underlying neurodegenerative pathology evolution.
This book stands at the gateway of these pressing problems.

2 MR images will play a fundamental role in this book. We introduce MR images in
Chapter 2, but do take a sneak peek at Figures 2.1-2.3. It is astonishing that, in less
than 100 years since Isidor Rabi published his seminal work measuring the nuclear spin
of molecules [65], MRI has become a cornerstone of medical science and of mathematical
modeling of the human brain.
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Herein, we guide the reader through a straightforward methodology for as-
certaining the basic assets, that is, a finite element mesh and the extracellular
diffusion tensor, from a set of patient MR images. To do so, we introduce a
novel software library, the Surface Volume Meshing Toolkit (SVM-Tk), wrap-
ping functionality from the broad array of capabilities provided by the Compu-
tational Geometry Algorithms Library (CGAL), thus offering an approachable
set of features specifically for the brain modeling community. Along the way,
we will also employ the automatic segmentation capacity of the FreeSurfer tool
set, a gold standard for MR image processing. The marriage of mathematical
modeling, clinical imaging, and numerical analysis is demonstrated by solving
a simplified PDE model of anisotropic gadobutrol diffusion in the brain.

We are deeply grateful to the numerous colleagues who have provided ad-
vice, and guidance, along the way as we commence our journey with you, the
reader, into the exciting world of mathematical brain modeling. In particular,
we thank Siri Flggstad Svensson and Kyrre Eeg Emblem for the imaging data,
Johannes Ring for creating Docker images, and Ana Budisa, Jgrgen Dokken,
Kyrre Eeg Emblem, Ingeborg Gjerde, Martin Hornkjgl, Miroslav Kuchta, Yn-
gve Mardal Moe, Geir Ringstad, Vegard Vinje, and Bastian Zapf for their ex-
tremely constructive feedback on the book and the associated software. Jacob
Schreiner has made significant contributions to SVM-Tk and finally, we wish to
thank Anders M. Dale for hosting several research visits to La Jolla, which were
instrumental for starting this project. Finally, this work has received funding
from the European Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement 714892
and the Research Council of Norway, grant 300305 and 301013.

Oslo, Norway Kent-André Mardal
Oxford, United Kingdom Marie E. Rognes

Travis B. Thompson
Jan, 2021 Lars Magnus Valnes
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Chapter 1
Introduction

Our brain is our most precious yet most mysterious organ. It consists of nearly
100 billion neurons, of which typically has 10,000 connections that extend up
to a meter. As such, it is an intricate web that enable us to experience the
world. In addition to neurons, the brain consists of about the same number
of glial cells, around 700 kilometers of blood vessels, the extracellular matrix,
and is surrounded by clear water-like cerebrospinal fluid, which together all
work to maintain the delicate neurons’ environment in a healthy state. At the
whole-organ level, this is already incredibly complex, yet this is only part of
the story; at any given time, various processes are happening in the brain,
such as the electrical impulses between neurons and the complex chemical
signaling that helps to maintain homeostasis. Due to the innate micro-scale
complexity of the brain, a natural approach, in attempting to understand the
brain’s physiology and function, is offered by homogenized, continuum-based
modeling; here, the focus is on modeling the large-scale behavior arising from
the aggregate of small-scale contributions.

While continuum-based brain modeling has many applications, our moti-
vation for writing this book and the corresponding software tools comes from
recent theories concerning the restorative mechanisms of sleep. Recent theo-
ries consider the brain a porous and elastic (poroelastic) medium, where the
elastic medium consists of the cells, and the fluid-filled pores are the extra-
cellular matrix (of course, hyperelastic and viscoelastic materials [25, 15] could
also be considered). In this setting, a paradigm shift was introduced by the
glymphatic theory, proposed and developed over the last eight years by the
Nedergaard group [33]. The glymphatic theory proposes that extra-cellular
diffusion, as described in the seminal work of Sykovd and Nicholson [63], is

© The Author(s) 2022 1
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2 1 Introduction

not sufficient to explain the fundamental transport processes in the brain.
In particular, pressure-driven convective flow is hypothesized to wash away
the larger molecules of the metabolic waste products produced during the
day [33, 36, 70]. Such metabolic waste proteins are observed to accumulate in
patients with neurodegenerative diseases such as Alzheimer’s or Parkinson’s
disease.

This topic has received a great deal of attention from the modeling com-
munity when it comes to the mechanisms at the microscopic level, e.g. [7, 19,
20, 31, 53, 58, 59]. However, very few works address the macroscopic level and
how to employ modeling in a patient-specific manner, see e.g., [16, 43]. Mesh
generation based on medical images, typically integrating images of different
types, plays a critical role in achieving a patient-specific assessment. Our in-
tention with this book is to equip the reader with software tools to perform
studies of this kind.

Many other applications involve continuum-based models of the brain’s
physiology. For instance, alternative macroscopic theories involving the prion-
related development of Alzheimer’s disease have been proposed [22, 38]. An-
other interesting observation is that astronauts often experience visual im-
pairments and are at risk of developing early dementia as a consequence of
their periods in low or zero gravity. This seems to be a result of intracra-
nial pressure changes and a shift in fluid volumes in intracranial compart-
ments [10]. Another well-known computational modeling problem relates to
epilepsy: specifically, the inverse problem of electroencephalography (EEG) in
determining the source of an epileptic seizure via an elliptic PDE [27].

Fig. 1.1 Going from magnetic resonance (MR) images of a human brain to a numerical
simulation of a biophysical phenomenon. From left to right: (a) An MR image of a
human brain viewed along the axial direction, (b) a finite element mesh extracted from
the MR image, (c) a snapshot of a tracer distribution simulation over this mesh. MR
image types are discussed in Chapter 2.

This book provides the computational resources that form the founda-
tions of continuum-based modeling of the human brain. Although we don’t
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focus explicitly on the exciting multiphysics applications mentioned above,
the approach discussed here is generalizable to multiphysics problems. You,
the reader, will learn how to formulate, set-up and implement mathematical
and computational models of brain biophysics in patient-specific geometries
using finite element simulations and MR images (see Figure 1.1). We will use
the evolution and distribution of a solute concentration due to diffusion as a
model problem, and increase the complexity of the data and techniques in-
volved over the course of the book. Of course, the process involves several
challenges and pitfalls, which will be outlined.

1.1 A model problem

Suppose that we aim to study the diffusion of a solute concentration in a re-
gion of the brain. The region {2 could represent the left brain hemisphere or
a smaller region such as the hippocampus, while the concentration u could
represent an injected tracer used in imaging (such as gadobutrol [54] or dex-
tran [34]) or possibly a metabolic waste protein, such as amyloid-§ or tau.
We can describe this model problem by a time-dependent partial differential
equation (PDE): find the concentration u = u(t,x) at spatial points x € 2
and time points ¢ > 0 such that

uy —divDVu=Ff in (0,7] x £2, (1.1a)
u=ug on (0,T] x 042, (1.1b)
u(0,-) = ug in £2. (1.1c)

In the diffusion equation (1.1a), u is the unknown field, while D is the diffusion
tensor coefficient and f represents any source or sink for the concentration
within the domain. The subscript ¢t denotes the time derivative, div represents
the divergence and V the spatial gradient. The second equation (1.1b) gives
a boundary condition: the function ug represents a known distribution of the
concentration on the boundary 92 for all times. The third equation (1.1¢) gives
an initial condition for the solute concentration: the function ug represents the
known initial concentration distribution throughout (2 at ¢ = 0. The combined
problem (1.1) is a complete initial boundary-value problem and will be our
model problem.
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1.2 On reading this book

This text does not assume that the reader is well versed in anatomy or neuro-
science. In fact, most of the anatomical knowledge needed to follow along with
this text is covered in Chapter 2.1. We have also made liberal use of footnotes
and citations to inform the reader of additional interesting, or contextually
useful, anatomical or physiological details. This text does, however, assume a
basic knowledge of PDEs. For instance, the diffusion equation (1.1) is a classi-
cal continuum-based PDE with well-known behavior in both the mathematical
and numerical sense. The reader unfamiliar with this equation is advised to
first consult an introductory text on solving PDEs using the finite element
method [24, 41, 42, 66].

The reader is assumed to be comfortable executing commands from a com-
mand line in a terminal window (also canonically referred to as a command
window or command prompt). Terminal commands will be formatted through-
out as:

$cd ..

Commands at the operating-system (OS) level, such as that above, can differ
from OS to OS, and we mainly demonstrate Linux commands here.

We also assume the reader is familiar with the fundamentals of the Python
programming language or, alternatively, can understand the syntax well enough
to follow the source code that appears throughout; we will not use any ad-
vanced Python programming techniques. We use Python 3 throughout, so
please ensure that you have Python version 3.0 or any later version installed.
You can check your Python version with either of the following terminal com-
mands:

$ python --version
$ python3 --version

We will use the Python interface to the FEniCS Project finite element soft-
ware [9], and we assume that the reader is familiar with the material covered
by the FEniCS tutorial [41].
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1.3 Datasets and scripts

The datasets and scripts used and described in this book are openly available
and associated with its Zenodo community:
https://zenodo.org/communities/mri2fem/.

e The book dataset, including MR images, can be downloaded from
http://doi.org/10.5281/zenodo.4386986 [45].

e The book scripts can be downloaded from
http://doi.org/10.5281 /zenodo.4386998 [46].

e A git repository containing the book and its scripts can be found at:
https://github.com/kent-and /mri2fem.

We highly recommend that you download and unpack these materials before
reading further. We expect to update the Zenodo community with script up-
dates, updated installation guides and further material as needed.

1.4 Other software

We will use a number of external tools in this book. Most of these tools are
available for several operating systems, with separate installation instructions
and dependencies for each system. For the key external tools, we provide in-
stallation instructions for Linux Ubuntu (version 20.04, but earlier or later
versions should also work along the same, or similar, lines). Whenever we refer
to an Ubuntu-specific terminal command, we format it as follows:

$ sudo apt-get install ... (Ubuntu)

We note that, before installing packages, it can be important to update the
Ubuntu package list. This can be done by the following command:

$ sudo apt-get update (Ubuntu)

For other operating systems, we refer to the specific software documentation
for installation instructions.
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1.5 Book outline

Chapter 2 provides an introduction to brain physiology and imaging, as and
outlines the software ecosystem that will take us from MR images to numerical
simulation. In Chapter 3, our aim is to get up and running quickly: we step
through the entire pipeline from generating a volume mesh from MR image
data to solving our model problem (1.1) on this mesh. In Chapter 4, we cover
other aspects of meshing, including distinguishing between gray and white
matter, merging left and right hemispheres, and adding parcellation labels. In
Chapter 5, we focus on diffusion tensor imaging (DTI) and demonstrate how
we can convert DTT data to a numerical tensor field. Finally, Chapter 6 brings
together everything from Chapters 3 to 5 to present a realistic simulation of
anisotropic diffusion in heterogeneous brain regions.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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Chapter 2

Working with magnetic resonance images
of the brain

2.1 Human brain anatomy

The human brain consists of multiple structures, including the large cerebrum,
the smaller cerebellum, and the brain stem. These structures can easily be
identified from MR images of the brain (Figure 2.1). The cerebrum is composed
of the left and right hemispheres, which are connected through bundles of nerve
fibers (the corpus callosum).

There are two main types of brain cells: neurons (or nerve cells) and glial
cells. Each neuron is generally composed of a cell body (soma), a long nerve
fiber (azon), and other branching extensions (dendrites). The spatial distri-
bution of the brain cells results in two primary types of brain tissue matter:
white and gray matter. ! White matter mainly consists of bundles of (myeli-
nated) axons while gray matter includes neuronal cell bodies, and glial cells.
The distribution of white and gray matter in the cerebrum is shown in Fig-
ure 2.1 (right), which demonstrates the white matter and the cortical and
sub-cortical gray matter. The sub-cortical gray matter includes a number of

! In simple terms, neurons have a cell body (soma) and branches (axons and dendrites)

that extend from the cell body. Axons are either covered with a lipid-rich (fatty) layer
called myelin (myelinated axons) or surrounded by other cells (unmyelinated axons);
myelin helps the axons conduct electrical signals over long distances. Myelin, being
fatty, gives off a white-ish color; conversely, unmyelinated axons, dendrites, and neural
cell bodies, in close proximity to microcirculation, appear gray. This is the origin of
the terms gray matter and white matter.

© The Author(s) 2022 7
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8 2 Working with magnetic resonance images of the brain

Fig. 2.1 MR images (T1-weighted) of the human brain. Left: A sagittal (longitudinal)
cross-section of the human brain with the cerebrum in blue, the cerebellum in red,
and the brain stem in yellow. Right: A coronal slice of the brain. The tissue matter
composition of the cerebrum is marked by color with red denoting the cortical gray
matter, blue denoting the subcortical gray matter and white denoting the white matter.
(The colors were added after post-processing.)

important structures or regions located deep inside the brain, such as the hip-
pocampus, basal ganglia and thalamus.

The brain is enclosed and protected by three layers of meninges; the out-
ermost dura, the middle arachnoid and the innermost pia membrane. The
narrow space between the pial and arachnoid membranes is filled with cere-
brospinal fluid (CSF) and is referred to as the subarachnoid space (SAS). The
SAS extends around the brain and further down along the spinal cord. The
SAS is also connected to the ventricular system, a system of interconnected
CSF compartments surrounded by the brain. The ventricular system consists
of the two lateral ventricles and the third and fourth ventricles, shown in Fig-
ure 2.2. The thin passage between the third and fourth ventricle is known as
the cerebral aqueduct.

We refer the reader, for example, to [26] for a good introduction to human
brain anatomy and [13] for a general introduction to human physiology.



2.2 Magnetic resonance imaging 9

Fig. 2.2 Sagittal (left) and axial (right) MR image cross-sections of the brain with
the lateral ventricles marked in yellow, the third ventricle marked in blue and the 4th
ventricle and the aqueduct marked in red. The white region surrounding the lateral
ventricles, on the left, is the corpus callosum. The distinction between (cortical) gray
and white matter is also clearly visible on the right.

2.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a rich and versatile technique for the
non-invasive medical imaging of the brain and other organs. The method has its
roots in studies of Isidor Rabi; dating to the early 20th century. Rabi was able
to ascertain information on the rotation and magnetic movements of the nuclei
of atoms and molecules [65]. MRI leverages these types of magnetic properties;
specifically for the nucleus of elemental hydrogen, which is abundant in fat and
other tissues [12]. An MRI scanner creates a strong magnetic field, aligning
the poles of hydrogen atoms along the scanner’s axis. A radio wave is added
to the magnetic field, causing the hydrogen nuclei to resonate, and different
(scanner) slices of the body resonate differently. Turning off the applied radio
frequency induces the realignment of the hydrogen nuclei with the applied
magnetic field, and this process in turn causes the emission of another radio
wave signal which the MRI scanner measures. The intensity of this last signal
is what we visualize as MRI images [12].
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The MRI method can be used for detailed investigations of tissue morphol-
ogy and structure (structural MRI), tissue properties (e.g. diffusion-weighted
MRI), blood flow (perfusion MRI) as well as aspects relating to brain function
(functional MRI). As detailed above, an MR image is constructed from the
interaction between a strong magnetic field and radio waves. The specifics of
the procedure can be controlled by manipulating factors that affect this inter-
action, such as the magnetic field gradient. A specific set of changing magnetic
gradients is referred to as an MRI sequence, which in turn has a number of
parameters. We briefly describe a few key MRI sequences here; the interested
reader can find more information in e.g. [29, 50, 8].

2.2.1 Structural MRI: T1- and T2-weighted images

Structural MRI provides high-resolution images of brain anatomy and can
thus give information about the shape, size and composition of different brain
compartments and regions 2. Examples of structural MRI sequences include
T1- and T2-weighted images, as already encountered in Figures 2.1 and 2.2.
Such images are well suited for defining brain geometry models and will be
used extensively for this purpose (Chapters 3—4). A brief introduction to T1-
and T2-weighted images can be found in [52].

T1- and T2-weighted images correspond to different (groups of) MRI se-
quences, each with their own parameters and characteristics. A T1- or T2-
weighted image is a three-dimensional image, typically viewed as a stack of
black and white images of different planes (axial, coronal or sagittal) of the
brain. The colored shading is referred to as the signal intensity; white rep-
resents a high signal intensity and black represents low intensity (with gray
tones representing intermediate values). Both imaging sequences (T1- and T2-
weighted) produce different signal intensities for different types of tissue and
fluids, but the two differ in their dominant intensities.

In T1-weighted images, fat gives off a high intensity signal and appears
white, while fluids give off a low intensity signal and appear black. There-
fore, the brain tissue appears as different shades of gray with white matter
appearing lighter than gray matter (Figure 2.3 (left)). T1-weighted images are
effective at differentiating between white and gray matter, but less effective

2 Gray matter (cortical) and white matter regions are defined vis-a-vis a segmentation
and parcellation process. Parcellations are discussed in more detail in Chapter 4.2.1
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Fig. 2.3 Tl-weighted image (left) versus T2-weighted image (right). In the T1-
weighted image, white matter is recognized as light gray, whereas the darker gray
lining the surface of the brain is gray matter. T1-weighted images are used particularly
because they exhibit a sharp contrast between gray and white matter. The T2-weighted
image shows the CSF as almost white and provides good contrast between the CSF
and the brain, but less contrast between white and gray matter. Also note that blood
is dark in T2-weighted images.

at distinguishing between, for example, the CSF (black) and the gray matter
(dark gray). In particular, it can be difficult to identify fluid compartments
such as the ventricles, the aqueduct, and SAS from T1-weighted images alone.

In T2-weighted images on the other hand, fluids give off a high intensity
signal and appear white (Figure 2.3 (right)). Such images are less effective at
distinguishing between white and gray matter, but can provide good contrast
between the CSF (white) and brain matter (gray). T2-weighted images can
thus supplement data from T1-weighted images for identifying and separating
the ventricles and aqueduct from subcortical gray matter.

2.2.2 Diffusion-weighted imaging and diffusion tensor
imaging

Diffusion MRI (dMRI) is an imaging modality that detects water molecule
movement patterns [37, 60]. Both isotropic and anisotropic diffusion coeffi-
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Fig. 2.4 A raw, axially-
oriented dMRI image of
the brain. The ventricles
(center) appear in lower
contrast due to the fast
signal decay caused by
the strongly isotropic
diffusion of the water
contained within them.

cients can be determined. Diffusion tensor imaging (DTI) is a specific type
of diffusion-weighted MRI; Figure 2.4 shows an example of a DTI-weighted
image. At a high level, a reference signal is used as a comparison and the
DTT imaging process measures the difference in that reference signal with sev-
eral follow-up signals. The resulting sequence provides information about how
water diffuses in different regions of the brain.

More specifically, DTT provides information on both the magnitude and
(multiple) directions of the movement of molecular water in the brain; that is,
how water travels. In mathematical terms, DTI provides information regarding
the diffusion tensor, D, in (1.1). In three dimensions, this tensor has nine
entries and a global representation given by

di1 di2 dis
D = | doy dos dos | . (21)
d31 dsz ds3

Each of the entries d;; can be a function of the position z € R?. We will extract
the heterogeneous, anisotropic, and patient-specific diffusion tensor from DTI
image data in Chapter 5. DTI has been used extensively to study the layout
of brain’s white matter tracts; these tracts heavily bias the movement of water
within the brain. We refer the interested reader to [37], and the many sources
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therein, for a discussion of the more advanced topics related to the field of
dMRI techniques.

2.3 Viewing and working with MRI datasets
2.3.1 The DICOM file format

Medical images, including T'1, T2 and DTI, are often stored in the DICOM file
format. DICOM stands for Digital Imaging and Communications in Medicine
and is an imaging standard [48]. The format stores both the image itself and
a comprehensive set of meta-data, such as the imaging protocol and patient
identification, which enables consistent and safe usage across different vendors
and software packages.

The DICOM format gives the output from an MRI scan as a collection of
files arranged in sequences. A given file within a sequence  also contains the
necessary information to inform the viewer what the next (or previous) file in
that file sequence is. DICOM files are sometimes stored in a binary file named
DICOMDIR that indexes the entire structure of an MRI dataset.

2.3.2 Working with the contents of an MRI dataset

A DICOM viewer is an essential component for viewing and working with
DICOM files. A number of DICOM browsers exist, and we will use Dicom-
Browser [11]. Currently, DicomBrowser is available * as a pre-packaged binary
download for several operating systems; the source code ° is also available. On

3 Formally, the term MRI sequence does not refer to an ordered measure (such as a
sequence in time) but rather to a specific type of pulse sequence or field gradient that
determines the specific imaging protocol. A T1 MRI sequence produces T1 images,
a T2 MRI sequence produces T2 images, and so forth. Here, when we speak of ‘a
sequence of files’ we are referring to the order in which the files are produced by the
MRI scanner; this is typically reflected in the naming of the files such that IM_0001
would be produced before IM_0002, and so on.

4 https://wiki.xnat.org/xnat-tools/dicombrowser

5 https://bitbucket.org/xnatdcm/dicombrowser/src/master/
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Ubuntu Linux, DicomBrowser comes pre-packaged as a Debian package file;
this type of file can be installed on Ubuntu using the command

$ sudo apt install /path to file/my-dicombrowser.deb (Ubuntu)

where you should change ‘path to file’ to the path where the DicomBrowser
installation file (ending in .deb) has been downloaded and change the text
of ‘my-dicombrowser.deb’ to be the specific filename of the DicomBrowser
installer package.

You can then begin the process of extracting sequences from an MRI dataset
by launching the DicomBrowser utility with the command:

$ DicomBrowser &

After the DicomBrowser window opens, select | File—Open | from the top menu

bar; a dialogue box will appear with the heading [Select DICOM ﬁles}. Nav-
igate to the directory containing the (example) book dataset and select the
directory titled dicom/ernie. In this directory, select the file titled DICOMDIR.
The main DicomBrowser window should now show a list of the patients whose
data are included in this dataset (in this case just one patient). In the main
window (c.f. Figure 2.5 (left)), click the patient, whose ID starts with 1.3.46,
and then click the symbol to the left of the patient ID to expand the entry.

DicomBrowser

Fig. 2.5 Example of the DicomBrowser layout and selection of an MR series
(dicom/ernie).

A list of studies now appears under the patient ID; generally, a patient
can have several associated studies but the (example) book dataset contains
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one study per patient. Expand the study (beginning with 568) by clicking the
symbol to the left. A list of MR series now fills the main window; many MR
series can be contained in a single study and we see that the dicom/ernie
data contains three series (201, 501 and 1301), as shown in Figure 2.5.

Find MR Series 201 and left-click on it. The secondary window now contains
a list of tags, each of which has an associated name, action, and value (Figure
2.5). Note that tag (0018, 1030)© is named ‘protocol name’ and has value
T13D; this indicates that MR Series 201 corresponds to a T1-weighted image
sequence. With ‘MR Series 201’ as the current selection, in the DicomBrowser
(left) window, we can select to extract the series; a window then
appears which provides extraction options. We would like to extract this series
to a directory with a memorable name; we can do this by changing ‘-anon’ to
-T13D’ to signify that the series we are extracting represents a T1-weighted
image in 3D. Also note that DicomBrowser can be used to anonymize the data,
as indicated by the default extension -anon, or, in general, to change DICOM
tag values either through the GUI or in scripts.

We can use the same procedure to extract other image sequences. In the
DICOM images in our example dataset, MR Series 501 is a DTI sequence and
MR Series 1301 includes T2-weighted images. We have already extracted all
three series present in the sample DICOMDIR into the (example) book dataset.
Image series 201 has been extracted to dicom/ernie/T13D, image series 1301
has been extracted to dicom/ernie/T23D, and image series 501 has been ex-
tracted to dicom/ernie/DTI. We note that dicom/ernie/DTI also contains
some non-image files; these files are not in the DICOMDIR data but will be
generated and discussed in Chapter 5.

2.4 From images to simulation: A software ecosystem

In this section, we provide a brief overview of the software tools that comprise
the pipeline used in this book. We will extract data from clinical images, seg-
ment the data, extract and work with diffusion tensor information, generate a
finite element mesh, and bring all of this together to solve a partial differen-
tial equation. Along the way, we will need additional tools for miscellaneous

6 Tag identifiers are not standard, and can differ based on the MRI scanner manu-
facturer. Generally, we identify a sequence from the Name field by looking for a label
containing T1, T2, or DTI.
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objectives, such as file conversion and visualization. A visual representation of
the patient-specific pipeline from MRI-images to finite element simulations is
shown in Figure 2.6.

2.4.1 FreeSurfer for MRI processing and segmentation

FreeSurfer [18] is an open-source software suite for the segmentation (identi-
fication of different brain regions), processing, visualization, and analysis of
human brain MR images. FreeSurfer is well established, well documented, and
widely used and we refer to the FreeSurfer website for extensive documentation,
online tutorials, support, an overview of publications and general installation
instructions [2]. Generally, all FreeSurfer commands also have extensive doc-
umentation available via ——help. At the time of writing, FreeSurfer provides
step-by-step installation guides for Linux ” and Mac® Below, we discuss the
Linux installation process, for the sake of completeness.

To install FreeSurfer on Ubuntu Linux, we suggest downloading the most re-
cent FreeSurfer tar archive ? locally, for instance under /home/me/local/src.
If the name of this file is freesurfer.tar.gz, unpack the archive via

$ tar -zxvpf freesurfer.tar.gz (Ubuntu)

The next step is to configure your environment for using FreeSurfer. If your
FreeSurfer archive has been unpacked at /home/me/freesurfer, you can con-
figure your FreeSurfer environment manually by adding the following lines at
the end of the file named .bashrc in your home directory:

export FREESURFER_HOME=/home/me/freesurfer
export SUBJECTS_DIR=$FREESURFER_HOME/subjects
source $FREESURFER_HOME/SetUpFreeSurfer.sh

The FreeSurfer programming team requires that each user acquire a license file
to use the software; the license file is free, and to acquire it, follow the registra-
tion directions at the FreeSurfer website [2]. Finally, FreeSurfer comes pack-

7 https://surfer.nmr.mgh.harvard.edu/fswiki//FS7_linux
8 https://surfer.nmr.mgh.harvard.edu/fswiki//FS7_mac
9 See for example https://surfer.nmr.mgh.harvard.edu/fswiki/FS7_linux
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Fig. 2.6 Overview of the imaging, segmentation, meshing, simulation and visualiza-
tion pipeline. T1, T2, and DTI images have already been discussed. Freesurfer and
segmentation are discussed in Section 2.4.1. Nibabel and Numpy are Python libraries
that are used for neuroimaging applications and convenient manipulation of tensors,
respectively. SVM-Tk is a computational geometry package, written for this book,
which is specialized for creating brain meshes and FEniCS is a Python library for

high-performance finite element method computations.
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aged with the Freeview visualization tool. Test Freeview (and your FreeSurfer
installation) by opening a new terminal (noting the FreeSurfer environment
commands appearing on top), and typing:

$ freeview &

to open the Freeview user interface.

We will use the command dt_recon in FreeSurfer, which has additional
requirements: tcsh'® and FSL. The installation of tcsh can be done from the
terminal with the following command lines:

$ sudo apt update
$ sudo apt install tcsh (Ubuntu)

FSL is a comprehensive library for functional MRI, MRI, and DTT brain
imaging data [35], and we refer the reader to its website for installation instruc-
tions! Note that FSL, like FreeSurfer, requires a license to be operational.

2.4.2 NiBabel: A python tool for MRI data

The Python module NiBabel [14] provides read and write access to several
neuroimaging file formats. The module is part of NIPY, '2 a community for
neuroimaging data analysis via Python. NiBabel can be installed using pip,
for example, via the following terminal command:

$ sudo apt install python3-pip
$ sudo pip3 install nibabel (Ubuntu)

We will use Nibabel to work with image data in Python in Chapter 4 and
onwards.

10 tcsh refers to a specific type of Unix shell. A Unix shell is a command-line interpreter;
many such shells can be used in a Unix environment (such as Ubuntu Linux).

11 See https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation.
12 See https://nipy.org/.
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2.4.3 SVM-Tk for volume mesh generation

The Surface Volume Meshing Toolkit (SVM-Tk) generates meshes with sub-
domains based on surfaces and segmentations provided by FreeSurfer. In par-
ticular, SVM-Tk provides a Python-based interface to the Computational Ge-
ometry Algorithms Library (CGAL) [21] and provides tools for both fixing
and marking surfaces to enable a relatively robust mesh generation for the
various compartments of the brain. We refer to the SVM-Tk documentation'3
for general installation instructions, including a detailed list of dependencies
(including CGAL and a number of packages available, e.g. through the Ubuntu
package manager).

2.4.4 The FEniCS Project for finite element simulation

We will use the open-source FEniCS Project [9, 44] as our finite element soft-
ware. FEniCS includes both a C++ and a Python interface; we will use the
Python interface throughout. Extensive documentation, support, an overview
of publications, and general installation instructions can be found on the FEn-
iCS Project website [1]. In particular, we strongly encourage the reader to
become familiar with FEniCS and the finite element method via the introduc-
tory FEniCS tutorial [41].

There are many ways to install the FEniCS Project software, including
the use of Docker images, using pre-built Anaconda packages, or from source.
Two simple ways of installing FEniCS are via Docker images (see the FEniCS
Project websité) and via Ubuntu package managers. For the latter, use the
following terminal commands:

$ sudo apt-get install software-properties-common

$ sudo add-apt-repository ppa:fenics-packages/fenics
$ sudo apt-get update

$ sudo apt-get install --no-install-recommends fenics

13 See https://github.com/SVMTK/SVMTK.
14 https://fenicsproject.org/download/
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2.4.5 ParaView and other visualization tools

We recommend using ParaView [6] to visualize the simulation results and
other meshing objects that we discuss throughout the book. For installation
instructions, see the ParaView website!®>. On Ubuntu Linux, ParaView can be
installed with the following terminal command:

$ sudo apt-get install paraview (Ubuntu)

After installation, ParaView can be launched with
$ paraview &

An optional but useful tool for visualizing surfaces (in the form of surface
STL files) is Gmsh [23]. For installation instructions, see the Gmsh website!%
On Ubuntu Linux, Gmsh can be installed with the following terminal com-
mand:

$ sudo apt-get install gmsh (Ubuntu)

For quick plotting in Python, the Python package Matplotlib is very con-
venient [32]. The pyplot module of Matplotlib can be imported in a Python
script (as any other Python module) as:

import matplotlib.pyplot as plt

2.4.6 Meshio for data and mesh conversion

We recommend using meshio [56] for conversion between computational mesh
formats. The meshio suite can convert between various unstructured mesh
formats, for instance, between the CGAL medit file format (.mesh) and the
FEniCS mesh format (.xml or .h5). We suggest using the pip installer to install
meshid” for example, via typing the following in the terminal:

15 See https://www.paraview.org/.
16 See http://gmsh.info/#Download.
17 See https://pypi.org/project/meshio/.
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$ sudo pip3 install meshio[all] (Ubuntu)

2.4.7 Testing the software pipeline

To verify that all software dependencies are correctly installed, we provide
a test script (in mri2fem/chp2); the test script can be executed with the
command:

$ python3 test_book_software.py

The script will check each software dependency and output a response indi-
cating whether it is installed or not. If the software is not installed, the response
provides a detailed description of ways to correctly install it, including links
to installation guides:

Checking FEniCS installation.

FEniCS is not installed
Follow the installation guide at
https://fenicsproject.org/

If the software is installed, the response is a single-line response confirming
that the software is installed:

Checking FEniCS installation. => FEniCS installed

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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Chapter 3

Getting started: from T1 images to
simulation

The goal of this chapter is to outline how to perform a numerical simulation of
a brain region defined from structural MR images. To address this challenge,
we first demonstrate how to generate a high quality mesh of a brain hemisphere
from T1-weighted MR images using the tools introduced in Chapter 2. Next, we
show how to define a finite element discretization of the diffusion equation (1.1)
over this mesh to simulate the influx of an injected tracer. !

3.1 Generating a volume mesh from T1-weighted MRI

To generate a mesh from an MRI dataset including T1-weighted images, we
follow three main steps:

1. Extract a T1-weighted image series from the MRI dataset,

2. Create (boundary) surfaces from the T1-weighted images using FreeSurfer,

3. Generate a volume mesh of the interior using FreeSurfer along with SVM-
Tk.

L MRI scanners operate by manipulating a magnetic field around the patient and then

measuring the body’s molecular interaction with radio waves. Non-toxic substances,
designed specifically with this interaction in mind, have been developed that can be
injected into a patient to improve the visibility of internal body structures. These
substances are referred to as MRI tracers or MRI contrast agents. Dennis Carr and
Wolfgang Schorner published the first tracer-enhanced MR images, in humans, using
gadolinium diethylenetriaminepentacetate [65].
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We will consider each of these steps in order, and encourage the reader to
ensure that FreeSurfer is installed and configured (see Chapter 2.4.1) before
proceeding. Step 2 can be particularly time consuming, probably involving
FreeSurfer segmentation and reconstruction run times of up to 24 hours. While
we provide already processed files in the tarball that accompanies the book,
we encourage the reader to try these steps.

3.1.1 Extracting a single series from an MRI dataset

To extract a single MR series from an MRI dataset or a DICOM database, we
can use the DicomBrowser graphical interface or FreeSurfer command line
tools. The first option, using the DicomBrowser graphical interface to ex-
tract a T1-weighted image series, is described in Chapter 2.3.2 with the book
dataset as an example, and the resulting image series can be found under
dicom/ernie/T13D in the book dataset. The second option is described in
Chapter 3.4.

3.1.2 Creating surfaces from T1-weighted MRI

The next step is to create surfaces, representing, for example, the interface
between the pial membrane and the surrounding cerebrospinal fluid (CSF),
referred to here as the pial surface (Figure 3.1), or the interface between white
and gray matter, from the T1-weighted MRI series just extracted. We will use
FreeSurfer for this task, and as an example, we will extract the pial surface
surrounding the left hemisphere of a brain.

To conduct a full image stack segmentation and surface reconstruction,
we take advantage of the FreeSurfer command recon-all. This command
is compute-intensive, with likely run times of up to 24 hours. To invoke
recon-all, we select one of the T1 DICOM files: e.g., in dicom/ernie/T13D,
we can pick IM_0162. Next, we decide on a subject identifier for the FreeSurfer
pipeline; we choose to name this example subject ”ernie”. We are now ready
to launch recon-all:?

2 It is advisable to do this on a separate core or overnight.
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$ cd dicom/ernie/T13D
$ recon-all -subjid ernie -i IM_0162 -all

The results of recon-all will be output to the folder SUBJECTS_DIR/ernie,
where the environment variable SUBJECTS_DIR defaults to the subjects folder
under FREESURFER_HOME (see Chapter 2.4.1). For convenience, this output is
also included in the book dataset, under freesurfer/ernie. If we inspect the
contents of this directory we will see several subdirectories. Some important
subdirectories are:

e /stats, contains files providing statistics derived during segmentation;
e /mri, contains volume files generated during segmentation; and
e /surf, contains surface files generated during segmentation.

To view the generated surface files, we focus on the /surf directory, and
launch Freeview (see Chapter 2.4.1):

$ cd freesurfer/ernie/surf
$ freeview &

Targeting the pial surface that surrounds the left brain hemisphere as an ex-

ample, select [File%Load Surface} from the command bar, and then select the
file titled 1h.pial (where 1h refers to left hemisphere and pial denotes the
pial surface). After a moment, the view windows will be populated with 2D
surface slices shown as curves, in addition to a reconstructed 3D image of the
pial surface (Figure 3.1).

Fig. 3.1 Freeview visualization of the pial surface of a single brain hemisphere ex-
tracted from T1 images via FreeSurfer.
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To work further with this surface, we use the FreeSurfer tool mris_convert
to convert the binary surface file into the STL format [55]. STL is a widely used
format representing the surface discretely in terms of vertices, triangles and
normals. Generally, mris_convert is used to handle the conversion between dif-
ferent surface formats. For instance, in the directory freesurfer/ernie/surf,
we can run

$ mris_convert ./lh.pial pial.stl

to create the file 1h.pial.stl in the current directory. ®* The resulting file can
be opened in several different programs, for instance, ParaView or Gmsh.

3.1.3 Creating a volume mesh from a surface

The third step of our initial meshing pipeline is to generate a mesh of the vol-
ume bounded by the surface representation. We will use the tailored package
SVM-Tk (see Chapter 2.4.3) to convert from the STL surface representation to
a volume mesh. The Python script below ( mri2fem/chp3/surface_to_mesh.py
in the book scripts) demonstrates the fundamentals of this process. The script
(and all similar scripts in the following) can then be run from there as:

$ python surface_to_mesh.py

Recall that Python version 3 is required. If you have more than one version
of python installed on your machine you may need to use ‘python3’ in the
above, and all further commands, instead of the ‘python’ directive; this will
explicitly specify which version of Python should be used to execute the script
at hand. The script surface_to_mesh.py defines a Python function, named
create_volume_mesh, within it that can be called as

create_volume_mesh("lh.pial.stl", "lh.mesh")

The function itself reads

import SVMTK as svmtk

def create_volume_mesh(stlfile, output, resolution=16):

3 Note that it is possible to avoid the automatic addition of the prefix lh. in lh.pial.stl
by adding the prefix ./ to the output filename.
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# Load input file
surface = svmtk.Surface(stlfile)

# Generate the volume mesh
domain = svmtk.Domain (surface)
domain.create_mesh(resolution)

# Write the mesh to the output file
domain.save (output)

Given an input STL filename (stlfile), an output mesh filename with the
mesh suffix (meshfile), and an optional mesh resolution,  the script creates
an SVM-Tk Domain object, generates a volume mesh from the surface via the
call to create_mesh, and saves this mesh in the .mesh format to the output
mesh file. The mesh resolution parameter determines the maximum size of a
tetrahedron in the volume mesh (relative to the overall bounding box length
for the input surface): the higher the value, the higher the resolution — that is,
the smaller the volume of each element in the volume mesh generated. Figure
3.2 shows meshes with resolution = 16 (left) and resolution = 64 (right).
Mesh generation can be a costly operation, with higher run times (in the order
of seconds to minutes) for higher resolutions.

The .mesh format is the standard mesh format for SVM-Tk and CGAL.
However, it is not native to FEniCS, and so we need to convert the mesh to
a FEniCS-supported file format (for example .xml, .xdmf, .h5). The Python
package meshio (see Chapter 2.4.6) is well suited for this purpose and can
convert between many different input and output mesh formats. For instance,
to convert to the FEniCS .xdmf format, we can run

$ meshio-convert lh.mesh lh.xdmf

The .xdmf file can then be viewed in a program such as ParaView.

4 The resolution parameter is a number that coarsely specifies the size of the mesh
elements; higher values of resolution produce meshes composed of smaller average
tetrahedral diameters. The resolution parameter default in this script is 16. Small
changes in this value will not typically produce a visual difference (i.e. resolution
=18) while larger differences (e.g. resolution=32 or 64) will produce visually distinct
meshes with a clear difference in tetrahedral element size.
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Fig. 3.2 Volume meshes of a left brain hemisphere produced by SVM-Tk from STL
surface files, with lower (left) and higher (right) mesh resolutions.

3.2 Improved volume meshing by surface preprocessing

In the previous section, we stepped through the main pipeline for generating
a volume mesh from MR images. However, the brain surfaces generated from
T1 images often have a number of weaknesses:

unphysiologically sharp corners,

triangles with very large aspect ratios,

topological defects such as holes, and

a tendency to self-intersect or overlap with other surfaces.

These defects can cause the volume mesh generation to fail or result in low-
quality meshes that are not suitable for numerical simulation. Therefore, sur-
face preprocessing is often required to enhance surface quality prior to gener-
ating volumetric meshes. Here, we outline three main aspects of surface pre-
processing: remeshing, smoothing and separation. The enhanced STL surfaces
can then be directly inserted into the volume mesh generation as described in
Chapter 3.1.3.

3.2.1 Remeshing a surface

To increase surface or volume mesh quality, we can remesh the original surface
representation. The remeshing can, for instance, reduce the frequency of mesh
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cells that are overly distorted and reduce the density of vertices with large
numbers of connected edges.

SVM-Tk includes utilities for remeshing surface files, and we can remesh our
original surface 1h.pial.stl, for example, via the following script (included
as mri2fem/chp3/remesh_surface.py in the book scripts). We define a short
Python function remesh_surface that can be called as

remesh_surface("lh.pial.stl", "lh.pial.remesh.stl", 1.0, 3)

The function itself reads

import SVMTK as svmtk

def remesh_surface(stl_input, output, L, n,
do_not_move_boundary_edges=False):

# Load input STL file
surface = svmtk.Surface(stl_input)

# Remesh surface
surface.isotropic_remeshing(L, n,
do_not_move_boundary_edges)

# Save remeshed STL surface
surface.save (output)

Here, we read the input STL file as an SVM-Tk Surface, and remesh us-
ing isotropic_remeshing, before saving the remeshed surface again as an
STL file. We can specify more iterations and produce a finer mesh by increas-
ing the integer value of n; we mention that n should not be thought of as
an ‘average inverse cell size’ but only as a qualitative parameter such that
higher values generally produce finer meshes. On the other hand, the floating
point value of L corresponds to a quantitative mesh parameter: L indicates
the maximum edge length of a mesh cell. Surfaces generated by FreeSurfer are
typically in millimeters, and the volume meshes inherit this unit. The Boolean
do_not_move_boundary_edges defines whether SVM-Tk is allowed to move
the boundary vertices during the remeshing procedure (False) or not (True).
It is generally advisable to allow boundary vertices to move, since requiring
these to be fixed can cause the remeshing to fail.

Figure 3.3 shows the result 1h.pial.remesh.stl with three remeshing it-
erations on the raw input file 1h.pial.stl. The figure has been zoomed in to
draw attention to local feature differences. Both files were viewed and visual-
ized in ParaView.
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Fig. 3.3 Original (left) pial surface and (right) after remeshing with SVM-Tk.
Remeshing improves the fidelity of the mesh and, at a high level, starts by subdividing
tetrahedra based on a criterion, such as a maximal diameter or anisotropy condition,
and further subdividing neighboring tetrahedron as needed (e.g. to ensure overall mesh
quality).

3.2.2 Smoothing a surface file

To reduce the presence of non-physiological features such as sharp corners,
it may be advantageous to smoothen the surfaces prior to volume meshing.
SVM-Tk also includes utilities for smoothing surfaces, as we demonstrate in
the script below (included as mri2fem/chp3/smooth_surface.py in the book
scripts), using our remeshed surface 1h.pial.remesh.stl as sample input. It
is worth noting that surface smoothing operations alter the position of existing
vertices; in particular, smoothing does not alter the number of elements in the
mesh. Again, we define a short Python function smoothen_surface that can
be called as

smoothen_surface("lh.pial.remesh.stl", "lh.pial.smooth.stl",
n=10, eps=1.0)

The function itself reads

import SVMTK as svmtk

def smoothen_surface(stl_input, output,
n=1, eps=1.0, preserve_volume=True):
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# Load input STL file
surface = svmtk.Surface(stl_input)

# Smooth using Taubin smoothing
# if volume should be preserved,
# otherwise use Laplacian smoothing
if preserve_volume:
surface.smooth_taubin(n)
else:
surface.smooth_laplacian(eps, n)

# Save smoothened STL surface
surface.save (output)

The Boolean variable preserve_volume determines whether a shrinkage-
preventing [64] Taubin smoothing (True) or a Laplacian smoothing (False)
process should be used. From a conceptual point of view, Taubin smoothing
is essentially a local smoothing iteration followed by a local ‘swelling’ opera-
tion that aims to prevent any shrinkage in the volume of the original patch,
whereas Laplacian smoothing consists only of local smoothing operations and
the volume of the original patch might not be preserved [64]. We recommend
Taubin smoothing over the Laplacian approach since the latter tends to sig-
nificantly diminish anatomical features. The integer value n sets the number
of times the smoothing process should take place. Higher values will produce
a smoother mesh; however, too a value that is too high may result in a loss of
resolution in features on the brain surface, such as the sulci and gyri (grooves
and bumps). Finally, the floating point value eps determines the strength of
the smoothing operation for each smoothing iteration, and should be in the
interval [0, 1] with 0.0 (1.0) indicating no (full) smoothing.

Figure 3.4 shows the result of 10 iterations of smoothing; over-smoothing of
the pial surface can lead to missing anatomical detail or errors (for example,
Figure 3.4 (right)). It is generally advised to check the file visually by opening it
directly, using either ParaView or Gmsh, to determine if more or less smoothing
is needed; the number of iterations can vary between some surface STL files.

We can generate a higher quality mesh in XML or XDMF format by gener-
ating the volume mesh from the remeshed and smoothened STL surface using
the Python call:

create_volume_mesh("lh.pial.smooth.stl", "ernie.mesh")

followed by:
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Fig. 3.4 Surface smoothing: original pial surface (1h.pial.remesh.stl, top left), af-
ter Taubin smoothing with SVM-Tk (1lh.pial.smooth.stl, top middle), and Lapla-
cian over-smoothing (top right). The bottom row shows a zoomed view of the three
paradigms of the top row; the volume loss of the Laplace over-smoothing is evident.

$ meshio-convert ernie.mesh ernie.xml
$ meshio-convert ernie.xml ernie.xdmf

We will use the resulting ernie.xdmf in the simulations ahead in Chapter 3.3.

3.2.3 Preventing surface intersections and missing facets

SVM-Tk also includes utilities for repairing surface faults:

Surfaces constructed by FreeSurfer can have topological defects, such as
missing facets. Missing facets appear as ‘holes’ in the surface, i.e. a missing
triangular simplex, when viewing a surface STL (.stl) file using ParaView or
Gmsh. These defects can be repaired by following the FreeSurfer topological
defects tutorial guide [3]. We can also attempt to fix missing surface facets
using the SVM-Tk function £i11_holes.

The folds of pial surfaces can produce narrow gaps. Gaps that are shorter
than the edges of the mesh may result in bridges instead of folds in the
mesh, as exemplified in Figure 3.5. The function separate_narrow_gaps
identifies narrow gaps and uses an algorithm to separate them based on the
characteristics of the surrounding mesh. The function requires a negative
value as input. Lower values of L results in a faster runtime for for the
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algorithm, but may result in a more jagged surface. Higher values of L,
e.g. those closer to zero, can extend computational time but generally result
in a smoother surface.

e The command collapse_edges will combine short edges such that the new
edge lengths are equal to the input target edge length.

A B

Fig. 3.5 Illustration of
close junctures in a coro-
nal slice of the pial surface
created by FreeSurfer.

The following Python snippet illustrates the use of these commands (included
as mri2fem/chp3/svmtk _repair utilities.py in the book scripts):

import SVMTK as svmtk

# Import the STL surface
lpial = svmtk.Surface("lh.pial.smooth.stl")

# Find and fill holes
lpial.fill_holes ()

# Separate narrow gaps
# Default argument is -0.33.

lpial.separate_narrow_gaps (-0.25)

More commands involving multiple surfaces will be covered in Chapter 4.

3.3 Simulation of diffusion into the brain hemisphere

With a mesh representing the domain of interest, we are ready to start mod-
eling and numerically simulating biophysical processes in this domain. As a
first example, we will study diffusion into the brain parenchyma of a tracer
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injected in the subarachnoid space (SAS). This scenario might be encountered,
for example, in clinical practice when gadobutrol is injected intrathecally (into
the cerebrospinal fluid in the spinal cord SAS) [54], or in experimental re-
search when fluorescent tracers such as dextran are injected in the cisterna
magna of mice [33, 70]. Understanding the role of diffusion versus other mech-
anisms, such as convection, in the brain parenchyma is currently a hot topic
in physiology and medicine [5].

3.3.1 Research question and model formulation

Let us ask the following question: assuming that solutes move in the brain
parenchyma by diffusion alone, given an intrathecal injection of the contrast
agent gadobutrol as in glymphatic MRI investigations [54], what evolution and
distribution patterns of gadobutrol in the brain would we see up to 24 hours
after injection?

To answer this, we define an initial boundary value problem for the diffu-
sion of gadobutrol in the brain parenchyma. To do so, we need to prescribe
the computational domain, initial conditions, parameter values, and bound-
ary conditions for (1.1). It is also a good idea to think about the units when
defining your simulation scenario. In brain mechanics at the tissue or organ
level, millimeters (mm) or meters (m) and seconds (s) or minutes (min) are
often appropriate units to use, although it is important to note that some
physiological processes can take days, months, or years.

Here, we let the concentration w represent the (unitless) concentration, of
gadobutrol tracer, solving (1.1) in 2. The image-based mesh of the left brain
hemisphere (for example ernie.xdmf) defines the computational domain (2.
Formally, {2 is then the union of the cells in the mesh. Note that the mesh
defines the spatial coordinates of the domain and consequently the spatial unit.
Meshes generated from FreeSurfer data are typically defined in terms of mm,
and thus mm is the default unit for the spatial scale. The spatial unit can be
redefined by rescaling the mesh, a simple operation in FEniCS. We also pick
a final time and time unit, for instance T' = 1440 min (7 = 24 hours).

We assume that no gadobutrol is present in the domain initially, which
translates to the initial condition:

uo(z,0) =0 forall x € (2. (3.1)
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Next, we assume that gadobutrol is instantaneously distributed to the brain
surface via the CSF in the SAS by setting the boundary condition:

ug(z,t) =2.813 x 1072 €90, t>0 (3.2)

where 0f2 denotes the boundary of {2, which represents the pial surface in this
scenario. Clearly, the assumption that the concentration is known on the pial
surface everywhere, and at all times, is overly simplistic. More realistic bound-
ary conditions have been considered in the literature [17, 67], and one could
also directly model the movement of tracer in the CSF in the subarachnoid
space [30, 51]

Brain tissue is heterogeneous and anisotropic, which means that the effective
diffusion coefficient D in (1.1) should vary in space (and probably in time
over longer time scales) and be tensor valued. We will address these topics in
Chapter 5, but for now we just consider a uniform and scalar-valued D. We
estimate the average effective diffusion coefficient of gadobutrol in brain tissue
to be:

D =4.32 x 107" mm? /hour = 7.2 x 1073 mm? /min (3.3)

Finally, we assume that there are no sources or sinks of gadobutrol within the
brain parenchyma, and thus set:

flz,t)=0 ze, t>0. (3.4)

Again, this is clearly a simplification that does not account for potential exit
pathways for gadobutrol from the parenchyma.

3.3.1.1 Quantities of interest

The computed solution u will vary in time and space and thus encodes a
substantial amount of information. Initially, we are often interested in merely
inspecting the solution visually or qualitatively. For more quantitative analysis
and comparison with experimental or clinical findings, we typically compute
quantities of interest associated with the solution. These quantities of interest
can, for instance, be the total volume of solute in the entire domain over time:

Q(t):/ﬂu(t)dx, (3.5)
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the average concentration in local regions, or the concentration in specific
points x over time: u(x,t).

3.3.2 Numerical solution of the diffusion equation

To compute numerical solutions of the diffusion equation (1.1) in general,
and our specific initial boundary value problem in particular, we will use a
finite difference discretization in time and a finite element discretization in
space [42, 24]. This is a common approach and we will implement this numer-
ical scheme using FEniCS Project software [44, 9, 41]. As mentioned in our
introductory remarks, we strongly encourage readers unfamiliar with numer-
ically solving partial differential equations (PDEs) or FEniCS to study the
FEniCS tutorial [41] before proceeding.

For the discretization in time, we define a set of discrete times 0 = ty <
t1--- <ty =T, where N is the number of time steps and the time step (size) is
Tn =tp —tn_1 forn=1,..., N. Our aim is to compute approximate solutions
u of (1.1) such that u}} ~ u(t,) for each n. To this end, we introduce the
(first-order, backward) finite difference approximation in time

1
u(ty) mu”,  w(ty,) =~ T—(u” — "), (3.6)
and obtain the time-discrete equations for n =1,..., N:
1
T—(u” —u" ) —divDVu" = f(t,) in 2. (3.7)

Next, for the finite element discretization in space, we derive a discrete
variational formulation of (3.7) by multiplying it by test functions ¢ belonging
to a finite element space V' defined relative to the mesh 7, integrating by parts,
and moving all known terms to the right-hand side to obtain the following fully

discrete problem: find the discrete solution uj € V" at each timen =1,..., N
such that
(upp, @) + T (Vup, Vo) = (up ™", 6) + ([, 8), (3.8)

for all test functions ¢ € V, where we use the L?({2)-inner product notation

<u7¢>=/9u¢dx. (3.9)
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In addition, we require the discrete solution to satisfy the boundary condi-
tion (3.2), and to initially be given by the initial condition (3.1).

The fully discrete equation (3.8) is a good starting point for the FEniCS
implementation of this scheme. We choose to approximate the solution using
continuous piecewise linear finite element spaces.

3.3.3 Implementation using FEniCS

Our model problem is very similar to the heat equation problem presented
in the FEniCS tutorial [41, Chapter 3.1], and we base our implementation on
the algorithm and code presented there. We begin by importing the Python
module fenics, and we also import numpy as a handy Python module for
general numerics:

from femnics import *
import numpy

We then read the mesh that we have just generated into the FEniCS program.
We use the XDMF mesh format and reader, since they are suitable for large-
scale simulations and work seamlessly with MPI-parallel computing:

# Read the mesh

mesh = Mesh ()

file = XDMFFile (MPI.comm_world, "ernie.xdmf") # mm
file.read (mesh)

file.close ()

# Compute and print basic info about the mesh
print("#vertices =", mesh.num_vertices())
print("#cells =", mesh.num_cells())

print("max cell size (mm) =", mesh.hmax())
print("Volume (mm~3) = ", assemble(l*dx(mesh)))

We now define the parameters for the time discretization. We choose to sim-
ulate up to 72 hours and choose a time step 7 (tau) of three min. Note that
we use the Constant type to represent time; it is useful for updating functions
depending on time later. In addition, it is good practice to keep track of the
parameter units that are used. Here we just use the comments, although much
more rigorous solutions, such as SymPy’s unit systems [47], could be used.

# Define time discretization parameters
T = 72%60 # 72 hours in min
tau = Constant(3.0) # Time step (min)
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‘time = Constant (0.0)
L

We also define the diffusion coefficient, source function and initial condition
(even though the latter two are just zero):

# Define the diffusion parameter
D = Constant(7.2e-3) # mm~2/min

# Define the source function and initial condition
f = Constant (0.0)
u0 = Constant (0.0)

We now move on to consider the specification of the finite element discretiza-
tion. We first define the finite element space V' as the Lagrange elements of
degree 1 defined relative to our mesh, and then define a TrialFunction and
TestFunction over this space

Define the finite element spaces and functions
= FunctionSpace(mesh, "Lagrange", 1)
TrialFunction (V)

TestFunction (V)

< e <%

We next define a Function to hold the value of the solution at the previous
time step u_, and initialize this function with the initial condition u0:

# Define function to hold solution at previous time and
# assign initial condition to it
u_ = Function (V) # AU (Arbitrary Unit)

u_.assign(u0)

Having defined these objects, we can express the variational problem (3.8),
to be solved at each time step, in code. We also redefine u as a Function to
represent the solution at the current time:

# Define the variational system to be solved at each time
a = (u*v + tau*D*dot(grad(u), grad(v)))=*dx
L = (u_*v + tauxfx*v)x*dx

# (Re-)define u as the solution at the current time
u = Function (V) # AU

Having defined the finite element space, we can also define the boundary con-
dition, which will be imposed on the linear system of equations at each time
step.

[
‘# Define the boundary condition: grow linearly up

‘# to the value c¢ in the first 6 hours:
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u_d = Expression("t < 6*%60 ? t/(6x60)*c : c",
t=time, c=2.813e-3, degree=1) # AU
bc = DirichletBC(V, u_d, ’on_boundary’)

Note how we let the boundary value u_d depend on the previously defined
Constant time. This way, when time updates, so will u_d and bc.

We have now defined all the elements of the model problem and numerical
method and can start stepping through the solution algorithm. Since the bilin-
ear form on the left-hand side of (3.8) does not vary in time, we can assemble
this matrix once, outside the time loop, for the sake of efficiency:

# Assemble the left hand side matrix outside time loop
# for efficiency
A = assemble(a)

In order to view our solutions using ParaView, we define a PVD file (indicated
by the suffix .pvd) for storing the solution, computed at each time step, as
well as the initial data.

# Define file to store solutions and store initial solution
vtkfile = File("results/u.pvd")

u.assign(u_)

vtkfile << (u, float(time))

The PVD format works well for visualization in ParaView but is not a con-
venient format for reading the functions back into FEniCS; the XDMF or h5
formats are more appropriate for this.

Next, we compute the number of time steps, N, and initialize NumPy arrays
for storing computational quantities of interest at each time step, such as the
total amount of solute (amounts) cf. (3.5), and the concentration (concs) at
a specific point (p).

# Compute number of time steps and create arrays for
# computational quantities of interest

N = int(T/float (tau))

times = numpy.zeros(N+1)

amounts = numpy.zeros(N+1)

p = (-22.66, -48.23, 12.50)

concs = numpy.zeros (N+1)

Now we are ready to start stepping through time and to solve the finite
element system at each time step. We increment time with the timestep tau,
assemble the right-hand side into the vector b, apply the Dirichlet boundary
condition, solve the resulting linear system using an iterative solver (gmres,
amg), and update the previous solution with the current solution:
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# Iterate over the time steps
for n in range(l, N+1):

# Update time
time.assign(time + tau)
times[n] = float(time)

# Assemble right-hand side
b = assemble (L)

# Apply boundary condition to linear system and solve it
bc.apply (A, b)
solve(A, u.vector(), b, "gmres", "amg")

# Set previous solution to the current before moving on
u_.assign(u)

Note that the use of ”"gmres”, in the solve function above, tells FEniCS to
use the generalized minimal residual method as the iterative solution tech-
nique; the use of "amg” specifies that the algebraic multigrid method should
be used as the preconditioning approach for the iterative method. The inter-
ested reader can find more on the GMRES method, including convergence
details, in [28] and a review of algebraic multigrid in [62]. Both GMRES and
AMG are well suited to parabolic problems like (1.1), and FEniCS supports
several alternative iterative methods and preconditioning options [41].

We can compute the total amount of solute by integrating the concentration
over the domain, and the concentration in the specified point by evaluating
the computed solution at this point. We also store the entire solution to the
PVD file. Writing the solution to file can take some time, and, for fine time
steps, it may often be practical to do this only, say, every second or tenth or
one-hundredth time step:

# Compute the total amount of solute and concentration
# at given point:

amounts [n] = assemble(uxdx) # AU mm~3

concs [n] = u(p) # AU

# Output progress and store solution every 10th time step:
if n%10==0:
print ("Storing at n = %d (of %d), t = %g (min)"
% (n, N, time))
vtkfile << (u, float(time))
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It can also be practical to store the computed quantities in a file, from which
the contents may be read and plotted at a later time.

# Store amounts, times and concs to file

numpy .savetxt ("results/times.csv", times, delimiter=",")
numpy . savetxt ("results/amounts.csv", amounts, delimiter=",")
numpy .savetxt ("results/concs.csv", concs, delimiter=",")

The Python module matplotlib, which offers quick and convenient plot-
ting, can be used to plot the quantities of interest (the total amount of solute
and the concentration at the given point) at different time points and save
these in a format such as PNG. The resulting plots are shown in Figure 3.6.
The complete script (including the plot code) is available in the book scripts
(mri2fem/chp3/diffusion.py). The concentration at various points ® can be
investigated by modifying the value of p in the script, as shown in the code
block below:

# Compute number of time steps and create arrays for
# computational quantities of interest

N = int(T/float (tau))

times = numpy.zeros(N+1)

amounts = numpy.zeros(N+1)

p = (-22.66, -48.23, 12.50)

concs = numpy.zeros (N+1)

The plot of total solute (Figure 3.6, left) shows a steady increase of solute
within the brain as the available tracer at the boundary (implemented by the
concentration boundary condition u_d) increases. As the process is diffusive,
the total solute will increase until the concentration of the solution within the
brain and at the boundary are in equilibrium. The approximation of the solute
concentration (Figure 3.6, right) at a given point over time demonstrates an
interesting numerical artifact: the concentration drops below zero to become
negative between 0 and 550 min. Negative solute concentrations, which are
clearly unphysiological, are a common numerical problem in diffusion simula-
tions. A partial and often used remedy that can be applied within the context
of diffusion simulations in the brain [17], is mass lumping. Mass lumping can
reduce spurious negative concentrations, but may worsen the overall conver-
gence of the numerical solutions. We will return to this issue in Chapter 6.

5 The point we consider here has no particular significance; p was selected simply as
an arbitrary point in the interior of the brain mesh.
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Fig. 3.6 Plots of the quantities of interest, in arbitrary units (AU), associated with the
computed concentration: total amount of solute @ over time ¢ (left) and concentration
u(p, t) for a given point p over time ¢ (right). The unphysiological early concentration
(right) results from a numerical artifact that is common when solving diffusion prob-
lems; in Chapter 6, we discuss a way to adjust our solution method to remedy this
behavior.

3.3.4 Visualization of solution fields

To visualize computed solution fields, for instance, the concentrations stored
in u.pvd (and the associated u*.vtu files) in the previous section, we will use
ParaView. After launching the ParaView graphical user interface (see Chap-

ter 2.4.5), we can open collections of files by | File—Open | and selecting the

.pvd or .vtu file(s) from the folder results. ParaView is a powerful and versatile
visualization tool, and we refer the reader to the extensive resources available
on the ParaView website [4], including guides and tutorials. In Figure 3.7, we
used ParaView to plot clips of snapshots of the solute concentrations, with the
x-axis as the normal direction for the clips and the view direction, rescaled to
the data range over all timesteps, and using the viridis color scheme.

3.4 Advanced topics for working with larger cohorts

We have now covered the entire computational pipeline from MR images to
numerical simulation and visualization for a single imaging modality, a single
stack of MRI data, and a single simulation scenario. In this section, we will
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Fig. 3.7 Simulated tracer concentration at given times (2, 6, 12, 24, 48, and 72 hours)
post-injection into subarachnoid CSF. Blue represents lower values, while yellow rep-
resents higher values. The scalar concentration is plotted on the whole brain volume
mesh; the mesh has been sliced, in ParaView, for sagittal visualization.

cover some more advanced topics that are useful when it comes to working
with more complex DICOM data collections.

3.4.1 Scripting the extraction of MRI series

When processing larger DICOM datasets consisting of many patients and/or
studies, the extraction of single MRI series via a graphical interface can become
tedious and error-prone. An alternative approach is to script the extraction of
specific MRI series using FreeSurfer command line utilities.

The extraction process consists of two command line steps: probing the
dataset for a given tag name and then extracting all data with the given tag
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from the database. We will utilize the FreeSurfer command mri_probedicom
to examine and probe the DICOM metadata, so please ensure that FreeSurfer
is installed and configured (see Chapter 2.4.1) before proceeding. The useful
command mri_probedicom can be used to compare the metadata of different
DICOM files with the flag ——compare followed by two DICOM filenames. We
can also view individual images associated to a particular DICOM file collec-
tion by specifying the image name and using the flag —-view, for example:

$ cd dicom/ernie/DICOM
$ mri_probedicom --i IM_0162 --view

Alternatively, we may want to look for a specific tag. DICOM stores tags as
numeric identifiers. If we know that our MR scanner saves the Protocol Name
to tag 18 1030, as in the book DICOM dataset, then we could probe the
DICOM data for tag 18 1030 with the command:

$ mri probedicom --i IM_ 0162 --t 18 1030
T13D

The complete description of possible options to mri_probedicom can be viewed
by using the --help flag.

To extract files with a specific tag on the command line, we can thus
probe each file, and copy files with a specific tag to a new directory. This
can be accomplished via the following bash script for example (also available
at mri2fem/chp3/extract_dicom.sh). The script takes three types of input,
namely, the DICOM directory, the output directory and an identifier for the
protocol name:

#!/bin/bash

# 1st argument $1: input DICOM folder

# 2nd argument $2: the output copy directory
# 3rd argument $3: the identifier

# Find all files in the directory and subdirectories
files=$(find $1 -type f )
for j in ${files}; do

# Probe for protocol name (18 1030)

name=$ (mri_probedicom --i ${j} --t 18 1030)

# Check if identifier is part of protocol name.
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if [ "${name/$3}" != "$name" ]
then
# Copy file to (new) subdirectory
mkdir -p ${2}/${name//[[:blank:1]1/}
cp ${j}r ${2}/${name//[[:blank:]1]1/}
fi
done

This script uses the bash command find and the flag -type f to find all
files in the input directory and its subdirectories. The script will go through all
the files and probe each for the protocol name and check if the protocol name
contains the identifier argument. Each file with the identifier in the protocol
name will be copied to a folder named by the protocol name in the output
directory. Spaces are removed from the protocol name, which is preferred to
avoid errors when using FreeSurfer. Thus, we can use the script to extract all
the images with the T1 string in the protocol name from the sample dataset:

$ cd dicom/ernie
$ ./extract_dicom.sh ./DICOM ./ "T1"

3.4.2 More about FreeSurfer’s recon-all

The command recon-all is the primary command for FreeSurfer, since it will
start the segmentation process. We have already described the necessary flags
for this command, but below we continue the description, at an introductory
level, with additional options. For more in-depth information, the interested
reader can use the flag ~help, which will print detail about the entire process
and provide references to related articles and texts.

The command recon-all is a sequential process that consists of three steps
comprising 34 different stages [3]. Data will be produced throughout the pro-
cess, and are often required as input for the next stage. The recon-all command
can be used to execute the full set of 34 stages or to execute only a portion of
the stages. Some of the available recon-all flags are shown below; a full list
of options is available online. %

e recon-all -autoreconl -subjid subject: starts the step-1 process,
which includes stages 1 to 5, involving normalization and skull stripping
using the data in the subject folder named subject;

e recon-all -autorecon2 -subjid subject: starts the step-2 process,
which includes stages 6 to 23, involving segmentation and surface generation
using the data in the subject folder named subject;

6 See https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all/
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e recon-all -autorecon3 -subjid subject: starts the step-3 process,
which includes stages 24 to 34, involving statistical data generation and
final parcellation using the data in the subject folder named subject;

These flags can be useful for restarting the segmentation. For instance, if
a failure occurred at stage 34, then we can start over from stage 24 rather
than from the beginning by using the flag —autorecon3, as shown above. This
approach can also be useful when it is necessary to rerun the segmentation
process after correcting an error. In FreeSurfer, there exist two types of errors:
hard and soft errors. Hard errors will terminate the segmentation process,
while soft errors are errors that we find in the produced data. Soft errors are
mostly segmentation errors, such as the inclusion of the dura in the segmenta-
tion and erroneous segmentation of white matter. In this situation, we could
edit the segmentation to correct the error, and run recon-all with the flag
—autorecon2-pial. Specific details for the ~autorecon2-pial flag, which we
do not discuss here, can be found in the FreeSurfer documentation [3]. This
will create new surfaces based on the corrected segmentation files. The correc-
tion of soft errors will not be covered further in this book. Instead, we refer to
the FreeSurfer documentation [3].

We continue with the flag -sd, which can be used to specify the subject
directory for the recon-all command. This can be quite useful for separating
the segmentation data for different cohorts. The segmentation of CSF-filled
structures, such as the ventricular system, may require the additional use of
T2-weighted MR images to obtain an acceptable quality. We can include T2
MR images with the flag -T2, and we can use the flag -T2-pial to use the T2
MRI in the construction of pial surfaces.

The segmentation in FreeSurfer is based on the segmentation atlas of
healthy subjects; therefore, the segmentation can often encounter hard errors
for patients with abnormal brain anatomy. We can often allow the segmen-
tation to finish if we add the flag -notalairach, which causes recon-all to
skip assertion points in the first step. The log of recon-all is documented in
the folder scripts and all the specific command lines can be found in touch.
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adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
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Chapter 4
Introducing heterogeneities

In this chapter, we will consider how to mark, remove, and mesh different
regions of the brain and its environment based on FreeSurfer segmentations.
We will

create hemisphere meshes differentiating between gray and white matter,
create hemisphere meshes without ventricles,

create brain meshes by combining the two hemispheres,

map parcellations ! onto brain meshes, and

locally refine parcellated brain meshes.

4.1 Hemisphere meshing with gray and white matter

Gray and white matter differ substantially in their characteristics. These dif-
ferences can often be represented in mathematical models and simulations by
differing material properties. For instance, denoting the domains occupied by
gray and white matter by 2, and {2, respectively, we may want to consider
heterogeneous diffusion tensors in (1.1), for example, such that

L A parcellation is a way of dividing the brain into distinct regions. FreeSurfer, for
instance, does this as part of the recon-all process and this is why we can use Freeview
to view the different parts of a subject’s brain, such as the hippocampus or anterior
cingulate, after recon-all completes.
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D x € 2,
D=D(z) = {DZ; . Qi (4.1)

where D, and D,, take on different values, and D, may be scalar-valued and
D,, tensor-valued. To represent fields such as D in numerical simulations, it is
useful to transfer the information about gray and white matter from the mag-
netic resonance (MR) images into the meshes. To introduce the basic concepts
of differentiating brain regions, we will once more create a computational mesh
of the left hemisphere. In Chapter 3, all of the mesh tetrahedra belonged to a
single region. In this chapter, we extend the previous approach by creating a
mesh where the individual tetrahedra will be labeled as belonging to the gray
matter, the white matter, or the ventricles. In short, we will

create STL files from the pial and white FreeSurfer left hemisphere surfaces,
create a mesh from these STL files conforming to the interior interfaces
between white and gray matter, using SVM-Tk, and

e include tags for different regions of the mesh. That is, for each tetrahedron
in the mesh we want to label it as residing in the ‘gray matter’, ‘white
matter’, ‘ventricles’, etc.

4.1.1 Converting pial and gray/white surface files to STL

Starting with the FreeSurfer segmentation and using the book data from
freesurfer/ernie/surf/ as an example, we first convert the left hemisphere
pial surface (1h.pial) and gray-white interface surface (1h.white) files to the
STL format (as described in Chapter 3.1.2):

$ mris convert ./lh.pial pial.stl
$ mris_convert ./lh.white white.stl

We can now also improve the quality of the resulting surfaces as discussed in
Chapter 3.2. 2

2 We leave the precise code for this as an exercise for the reader. The resulting files
could be called 1h.pial.smooth.stl and lh.white.smooth.stl, respectively. For sim-
plicity, we assume that the resulting pial and white surface STL files are (re)named
lh.pial.stl and lh.white.stl, respectively, in the following. As noted in Chapter 3,
the automatic addition of the prefix lh., in lh.pial.stl, can be avoided by using ./ in the
output filename.
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4.1.2 Creating the gray and white matter mesh

Given these two surfaces, we can create a volume mesh conforming to the inte-
rior (gray—white) surface, with the white and gray regions identified separately.
We will use SVM-Tk for this task, and proceed with an SVM-Tk code example.
We will wrap the main functionality in a Python function create_gw_mesh.
This function can then, for instance, be called as

create_gw_mesh("lh.pial.stl", "lh.white.stl", "ernie-gw.mesh")

to use the two STL surface files from above as input and create a new file
ernie-gw.mesh for the resulting volume mesh.
Our function first loads the two surfaces using SVM-Tk:

import SVMTK as svmtk

def create_gw_mesh(pial_stl, white_stl, output):
# Load the surfaces into SVM-Tk and combine in list
pial = svmtk.Surface(pial_stl)
white = svmtk.Surface(white_stl)
surfaces = [pial, whitel

Notice that the list surfaces = [pial, white] contains two surfaces; the
order of these surfaces in this list will matter. We next create a tailored SVM-
Tk SubdomainMap object that represents a map between regions defined by
surfaces and tags. This map is defined by (repeated) calls to smap.add with a
string representing the region and an integer representing the tag as arguments.
The (binary) string is a sequence of zeros and ones, with zero denoting the
outside and one the inside. 3

# Create a map for the subdomains with tags

# 1 for inside the first and outside the second ("10")
# 2 for inside the first and inside the second ("11")
smap = svmtk.SubdomainMap ()

smap.add ("10", 1)

smap.add("11", 2)

Intuitively, smap.add("10",1) will mean ‘those tetrahedron inside surface
1 (pial surface) and outside surface 2 (white matter surface) should be marked

3 Note that the STL surface format includes information about the orientation of the
surfaces via the surface normals: each surface thus has an orientation, with an inside
and an outside direction.
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with the numeric (tag) value of 1’ while smap.add("11",2) will mean ‘those
tetrahedron inside surface 1 (pial surface) and inside surface 2 (white matter
surface) should be marked with the numeric (tag) value of 2’. At this point,
however, SVM-Tk does not know that the surfaces list and our SubdomainMap
object, smap, are related. Relating a surface list to a SubdomainMap object is
handled by creating a Domain object; a Domain object is constructed from the
ordered list of surfaces and the subdomain map as follows:

# Create a tagged domain from the list of surfaces
# and the map
domain = svmtk.Domain(surfaces, smap)

The Domain object reads the entries, registered above as smap.add("10",1)
etc, of the SubdomainMap with respect to the ordering of the entries in our
surfaces list. The important point here is that the order of the entries in
the surfaces list plays a key role; permuting the entries will yield different
results. For the code above, the string "10" is interpreted as ’inside pial’ and
‘outside white’ and thus represents all tetrahedron in the region between the
pial and white surface; this region consists of only the gray matter. Similarly,
the string "11" is interpreted as ’inside pial’ and ’inside white’ and thus rep-
resents all tetrahedron in the white matter region since this region lies within
both surfaces. We will discuss SubdomainMap further in Chapter 4.1.3.

With domain, we can now create a volume mesh of suitable resolution and
save it in the .mesh format (as in Chapter 3.1.3):

# Create and save the volume mesh
resolution = 32
domain.create_mesh(resolution)
domain.save (output)

This script is also available as mri2fem/chp4/two-domain-tagged.py in the
book scripts, and can be run from there as:

$ python two-domain-tagged.py

As before, the resulting .mesh file can be converted to different formats using
meshio. For instance, to convert to the ParaView-friendly .vtu format, use:

$ meshio-convert ernie-gw.mesh ernie-gw.vtu

We used ParaView to visualize the tags associated with this mesh in
Figure 4.1. To see a view similar to that of Figure 4.1 in ParaView, first

load ernie-gw.vtu by selecting | File—Open | and s electing ernie-gw.vtu,
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then click | Apply | to show the mesh. In the left-hand window, under the
Coloring heading, select the second entry titled medit:ref. Now select

[Filters%Alphabetical—)Clip] from the top menu bar. The clipping plane

should, by default, appear in the middle of the mesh with the (red) clipping
plane in the sagittal orientation. Click the [ Apply | button in the left-hand

window to cut the mesh and reveal the tagged gray and white matter (tagged)
tetrahedron. We see that the mesh cells associated with the gray matter region
have the value 1, while the cells associated with the white matter region have
the value 2, as defined by our subdomain map.

Fig. 4.1 Volume mesh of the left hemisphere conforming to the interior gray—white
interface. Gray matter is tagged with a value of 1 and white matter is tagged with
a value of 2. The color scale is inverted. A sagittal view (left) of the left hemisphere
volume mesh and a sliced (right) view exposes the interior white matter region.

As a side note, we observe that the ventricles have been labeled as white
matter (see Figure 4.1, right), since the ventricles are positioned inside the
gray—white interface surface. Removal of the ventricles from our computational
mesh is the topic of Chapter 4.2.

4.1.3 More about defining SVM-Tk subdomain maps

To delve into further detail about the SVM-Tk feature SubdomainMap, let’s
consider another, more involved example. Let us now assume that we have
four surfaces: a left pial surface, a right pial surface, the whole white matter
surface and a surface enclosing the ventricles. A schematic of this set-up is
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Fig. 4.2 The upper left panel, (A), shows three colored squares that differentiate the
volumes enclosed by the large-scale surfaces files, in the surfaces list, at their simplest
level. The left hemisphere volume is colored blue, the right hemisphere volume is colored
red, the white matter volume is purple and the ventricle volume is yellow. The upper
right panel (B) shows the complex combination of volumes that can be separately
tagged using smap.add and the surfaces defined in the surfaces list. The regions of
(B) are colored by an independent color scheme that shows all possible combinations
of volumes addressable by smap.add. The bottom panel (C) shows four of the six
subdomains of (B) and their corresponding bit strings. The left image, corresponding
to bit string ‘1000, denotes the volume that is within the left hemisphere, but not
within the right hemisphere, white matter or ventricles - hence the gray matter of the
left hemisphere. The image with bit string 0100’ is completely analogous for the right
hemisphere. The bit string 1011’ refers to the surface that is within the left hemisphere
and within both the white surface and ventricles; hence the left ventricle. Finally, the
image for the bit string 0110’ corresponds to the white matter of the right hemisphere.
For completeness, the remaining two bit strings for the regions shown in (B) are 1010’
(left, magenta region) and ‘0111’ (right, golden region).

illustrated in Figure 4.2. Now, let us see how we can tag all the tetrahedra of
the ventricles.

To represent the subdomains, assuming that 1pial, rpial, white, and
ventricles exist as svmtk.Surfaces, we could use the following sample code:

surfaces = [lpial, rpial, white, ventricles]
smap = svmtk.SubdomainMap ()
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The ventricles are filled with cerebrospinal fluid. A practical reason to tag the
ventricles separately may be, for example, to specify a much faster (isotropic)
diffusion coefficient in the ventricular domain. Here, we demonstrate how to
mark all of the mesh tetrahedra that lie inside the subdomain defined by the
ventricle surface with a (tag) value of 6. To do this, we need to identify the
placement of volume corresponding to the left ventricles; as we have seen,
this volume is defined implicitly by the surfaces within the list surfaces. The
ventricles in the left hemisphere are inside the left pial surface, outside the right
pial surface, inside the gray-white matter surface and inside the ventricular
surface, resulting in the bit-string '1011’. We could thus call smap.add as

smap.add("1011", 6)

Similarly, we can tag the ventricle volume within the right pial surface by

smap.add("0111", 6)

Finally, we can tag the ventricular volume at the intersection of the left and
right pial surfaces via

smap.add("1111", 6)

Indeed, tagging the entire ventricular volume in this manner requires that we
add all three of the lines above.

Finally, we note that SVM-Tk also allows for marking several domains at
once:

smap.add ("10*", 6)

will mark all underlying domains - that is, in this case 1000°, ’1001°, *1010’,
and ’'1011°. Note that the use of the asterisk requires a prior specification
of the number of input surfaces, either as an optional argument in the con-
structor, of a SubdomainMap object, such as smap, or by using the member
function set_number_of_surfaces of the SubdomainMap class (for example,
smap.set_number_of_surfaces). Therefore, as an alternative, one could just
include the line

smap.add("x1", 6)

instead of adding each ventricular volume separately.
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4.2 Separating the ventricles from the gray and white
matter

The volume hemispheric meshes created in Chapter 3, and the volume hemi-
sphere mesh illustrated in Figure 4.1 include the ventricles as part of the
white matter. Since the physics of the fluid-filled ventricles and the soft but
solid brain cerebrum may be very different, removal of the ventricles from the
hemisphere volume is a useful operation. Here, we demonstrate how to (i) use
FreeSurfer to extract and postprocess the ventricular surface, and (ii) remove
the resulting ventricular volume from the cerebrum.

4.2.1 Extracting a ventricular surface from MRI data

We will extract the ventricle surface(s) from our T1 MRI data via FreeSurfer.
Extracting a ventricular surface representation is relatively straightforward,
while extracting a high-quality surface representation may be more involved.
Accordingly, we will be introducing tools and utilities of increasing complexity.

Segmentations and parcellations: A sneak peek

Recall that FreeSurfer’s recon-all generates a number of surface and volume
files (see, for example, Chapter 3.1.2). In particular, the FreeSurfer-generated
mri/ directory includes volume-based data, such as T1-weighted images, seg-
mentations, and parcellations. These volume files have the extension mgz, and
the segmentations and parcellations can be identified by the base filename.
For instance, the file aseg.mgz stands for automatic segmentation, and the
file wmparc.mgz stands for white matter parcellation. The parcellation will
split the segmentation into finer regions, for example, the cortical gray matter
will be divided into 35 regions* for each hemisphere. We can use the seg-

4 FreeSurfer defines regions via an anatomical atlas. An atlas is a labeling of distinct
regions. The 35 regions referenced here correspond to the Desikan-Killiany atlas which
ships with FreeSurfer; the Destrieux atlas also ships with FreeSurfer and can be used
to annotate various cortical regions. More information regarding FreeSurfer atlas anno-
tations is available at https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
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mentation or the parcellation files to construct the surface of the ventricular
volume.

The segmentations can be inspected using a tool such as Freeview. As an
example, we use the FreeSurfer generated files from our dataset at
freesurfer/ernie/mri, and visualize the aseg.mgz file:

$ cd freesurfer/ernie/mri
$ freeview --colormap lut --v aseg.mgz

The list in the left-hand panel of the Freeview window shows the segmentation
tags, that is, the values associated with different brain regions. Alternatively,
hovering the pointer over a voxel will cause the corresponding region tag and
name to appear in the bottom right corner. For instance, the left hippocampus
has tag 17, while the fourth ventricle has tag 15. We will look further into
segmentations and parcellations in Chapter 4.4, including a visualization in
Figure 4.6.

Extracting and binarizing voxel-based information

The FreeSurfer command mri binarize is used to extract and mark voxels
that contain a certain type of information such as a range of signal values or
a collection of segmentation tags. The command includes about 40 optional
flags, all of which are described in

$ mri_binarize --help

or via the FreeSurfer online documentation [3]; we will focus on but a few of
these here.

The input file is given following the flag =i, and a volume output file (.mgz)
is given following the flag --o. A surface output file (.stl) can be given in
addition to or instead of the volume output following the flag --surf. The
essential flag —-match, followed by one or more integers, will mark all voxels
whose assigned segmentation region identification tag matches any of the given
integer values. For instance, to select all voxels from the fourth ventricle, we
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can use ——match 15°. Alternatively, specific regions can also be identified by
designated flags, for instance:

e —-ventricles marks voxels in the third and lateral ventricles and in the
choroid plexus,
--ctx-wm marks voxels in the cerebral white matter,
—--gm marks voxels in the gray matter, and
—--subcort-gm marks voxels in the subcortical gray matter, including the
gray matter in the cerebellum and brainstem.

These flags can be combined. For example,
$ mri binarize --i aseg.mgz --ventricles --match 15 --o v.mgz

will mark the third and lateral ventricles (via the ventricles flag) and the
fourth ventricle (with match value 15). In the output file, all the marked vox-
els will have the value one and the rest will be set to zero. This result can be
changed by specifying the output bin value with the optional flag —-bin fol-
lowed by an integer. The marked voxels will now have the selected bin value in
the output. The surface output flag ——surf is often used together with the flag
--surf-smooth followed by an integer determining the number of smoothing
iterations on the output surface.

To extract the ventricular surface from our white matter parcellation, we
define a customizable bash script (extract-ventricles.sh). We begin by
defining the input and output file names:

#!/bin/bash

# Input and output filenames
input="wmparc.mgz"
output="ventricles.stl"

To extract a surface file of the ventricular system, we call mri_binarize with
the input filename (in input), the --ventricles flag, additional tags given
by matchval, and a number of smoothing iterations:

mri_binarize --i $input --ventricles \

5 FreeSurfer assigns a numeric label to each identified region in the brain. These labels
can be viewed by opening a subject’s aseg.mgz file using Freeview. Doing so, we see that
a value of ‘15’ is assigned by FreeSurfer to the region that its segmentation procedure
identifies as the subject’s fourth ventricle.
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--match $matchval \
--surf-smooth $num_smoothing \
--surf $output

Prior to this call, we allow for the inclusion of the fourth ventricle and aqueduct
by setting the matchval variable ® and we set the num_smoothing iterations:

# Also match the 4th ventricle and aqueduct?
include_fourth_and_aqueduct=true
if [ "$include_fourth_and_aqueduct" == true ]; then
matchval="15"
else
matchval="1"
fi

num_smoothing=3

We suggest setting num_smoothing to an integer value between one and five.
The resulting ventricular surfaces with zero and five smoothing iterations, both
including the fourth ventricle, are shown in Figure 4.3.

In practice, the decision to include or discard the fourth ventricle and aque-
duct is data specific. The aqueduct may not be well resolved in the MRI data
on a patient-by-patient basis; if the aqueduct is not visible in the data then
keeping the fourth ventricle leads to a ventricle system that is not connected,
as Figure 4.3 indeed shows. Moreover, if we include the fourth ventricle and
aqueduct, we should be cautious regarding the extent of the smoothing.

Improving the morphology of the ventricular surface

In Section 4.2.2, we will use the ventricular surface to modify a volume mesh.
In this section, we discuss improving the ventricle surface by fixing a few
morphological defects that may be present following the extraction process.
In particular, we will introduce the FreeSurfer utilities mri_volcluster and
mri morphology. These tools can be used to: remove the smaller disconnected

6 Setting the matchval variable only allows for the inclusion of the fourth ven-
tricle and aqueduct. In particular, the aqueduct is a small, fine structure and is
typically not fully differentiated. Note that volume files can be edited manually
using Freeview, for instance to repair a partially resolved or missing aqueduct. See
https://surfer.nmr.mgh.harvard.edu/fswiki/FreeviewGuide/FreeviewTools/Voxel Edit
for more detail.
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Fig. 4.3 Ventricular surfaces, including the fourth ventricle, extracted and generated
by FreeSurfer from MRI images. No smoothing of the output surface (left) and five
smoothing iterations (right). Note the disconnected regions.

ventricle regions that may appear in the original surface extraction; close small
holes in the large ventricle surface; and smooth the resulting surface before
further use.

mri_volcluster is used to identify clusters in a volume. A cluster is de-
fined as a set of continuous voxels that satisfies a specified volume threshold
criteria; we will specify a minimum volume threshold in the code example
below. The input file is given following the flag —-in, -——thmin gives a mini-
mum threshold value, -~—minsize gives a minimal cluster volume (in mm?).
Different output flags are admissible [3], including --ocn, used to save the
output volume file with sorted clusters, where all voxels of the largest clus-
ter will have the tag 1, the second largest would have the tag 2, and so
on.

mri_morphology is used to perform certain operations on volume files and
supports many operations. These operations include opening, closing, dilat-
ing, eroding and filling holes in a volume. We will make use of the ‘close’
operation, of this utility, to close holes in an extracted ventricle domain.

Using these functions, we may extract an improved, higher-quality ventricu-

lar surface by removing apparently disconnected regions. Our algorithm takes
the following steps:

1.

We extract the lateral and third ventricles into a separate volume file.
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2. In this separate volume, we extract clusters of connected voxels, but only
those above a minimal cluster size. Since the average adult volume of cere-
brospinal fluid in the ventricles is about 150 mm?, we set the threshold size
to be around 100 mm?3.

3. We extract the largest of these clusters (thus ignoring smaller, disconnected
regions)

4. We close any holes in the resulting volume as necessary.

5. We extract the surface of the resulting volume and smooth it as necessary.

The corresponding continuation of our Bash script is as follows. Note how we
output the clusters sorted by size using the argument --ocn tomri_volcluster
and extract the largest cluster by matching on one in the subsequent call
to mri binarize. We allow for setting the number of closing iterations
num_closing and the minimal largest cluster size V.min as parameters. We
advise setting the number of closing iterations relatively low (e.g. to 1 or 2).
Setting the number of closing iterations too high can cause non-physiological
connections in the resulting ventricular surface.

# Other parameters
postprocess=true
num_closing=2

V_min=100
if [ "$postprocess" == true ]; then
mri_binarize --i $input --ventricles \
--o "tmp.mgz"
mri_volcluster --in "tmp.mgz" \
--thmin 1 \
--minsize $V_min \
--ocn "tmp-ocn.mgz"
mri_binarize --i "tmp-ocn.mgz" \

--match 1 \
--o "tmp.mgz"

mri_morphology "tmp.mgz" \
close $num_closing "tmp.mgz"

mri_binarize --i "tmp.mgz" \
--match 1 \
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--surf-smooth $num_smoothing \
--surf $output

rm tmp.mgz
rm tmp-ocn.mgz

exit
fi
r
.
y
L .
-
| 1| o -
Fig. 4.4 Post-processed ventricle surface extracted from MRI using

FreeSurfer. This surface file (ernie-ventricles.stl) is created by the script
mri2fem/chp4/extract-ventricles.sh.

Figure 4.4 shows the ventricular surface STL file generated by the above code,
with postprocess=true, visualized in ParaView.

4.2.2 Removing the ventricular volume

In this section, we demonstrate how to remove a subvolume defined by an en-
closing surface. Though we will focus here on removing the volume enclosed by
the ventricle surface, as extracted in the previous section, the general process
will also work for any volume defined by a closed surface STL file. The core
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idea is to use SVM-Tk to generate tags for the different subvolumes in the
domain and then simply delete the volume corresponding to a specific tag.
We assume that we have the left pial, gray/white matter, and ventricular
surfaces available as STL files. Again, we will wrap the main functionality in
a Python function, called create_gwv_mesh, to create the ‘gray matter plus
white matter’ volume mesh. This function can then, for instance, be called as

create_gwv_mesh("lh.pial.stl", "lh.white.stl",
"lh.ventricles.stl",
"lh.no-ventricles.mesh")

This code example is included in mri2fem/chp4/three-domain-tagged.py.
We first create Surfaces from the surface STL files:

import SVMTK as svmtk

def create_gwv_mesh(pial_stl, white_stl, ventricles_stl,
output, remove_ventricles=True):

# Create SVMTk Surfaces from STL files
pial = svmtk.Surface(pial_stl)

white = svmtk.Surface(white_stl)
ventricles = svmtk.Surface(ventricles_stl)
surfaces = [pial, white, ventricles]

We then tag different regions using SubdomainMap:

# Define identifying tags for the different regions
tags = {"pial": 1, "white": 2, "ventricle": 3}

# Define the corresponding subdomain map
smap = svmtk.SubdomainMap ()

smap.add ("100", tags["pial"])
smap.add("110", tags["white"])
smap.add("111", tags["ventricle"])

As before, we create a tagged mesh (of a given resolution) of the domain via
the surfaces and the subdomain map:

# Mesh and tag the domain from the surfaces and map
domain = svmtk.Domain(surfaces, smap)

resolution = 32

domain.create_mesh(resolution)

We can now, via a call to SVM-Tk remove_subdomain, remove the mesh
cells tagged as within the ventricles before saving the mesh:
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# Remove subdomain with right tag from the domain
if remove_ventricles:
domain.remove_subdomain(tags["ventricle"])

# Save the mesh
domain.save (output)

Note that remove_subdomain can also handle the removal of multiple subdo-
mains by providing a tuple of tags as input. The resulting meshes, with and
without ventricles removed, are shown in Figure 4.5.

Fig. 4.5 Volume meshes of the left hemisphere (sagittal planes), conforming to the
gray matter, white matter, and ventricles, with ventricles marked in blue (left) and
with ventricles removed (right). Note that the tetrahedral boundary lines of the mesh
have been suppressed for visual clarity. To view the tetrahedra of the mesh, select
the Surface With Edges option, for the Representation setting in the left-hand pane,
after loading the .mesh files, created by three-domain-tagged.py, in ParaView.

4.3 Combining the hemispheres

In this section, our aim is to create a mesh that includes both the left and right
hemispheres, with gray and white regions tagged, and the ventricular volume
removed. We will combine the approaches of the previous sections with SVM-
Tk techniques for working with the union of multiple surfaces.
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4.3.1 Repairing overlapping surfaces

FreeSurfer generates the right and left hemisphere surfaces separately. Com-
bining surfaces from different hemispheres can therefore create problems, such
as:

e The hemisphere surfaces overlap, creating bridges in the cortical gray mat-
ter, at the mesh and surface level, that do not exist physically.
e The hemisphere surfaces may have gaps between them which are too large
and are unphysical. In this case, the resulting mesh may have undesirable
gaps between the hemispheres where they would otherwise be connected by
the white matter nerve tracts.

In general, we want to join the hemisphere surfaces, via the white matter nerve
tracts, while simultaneously avoiding overlapping surfaces in the cortical gray
matter. SVM-Tk includes utilities to address such challenges. In particular:

separate_overlapping_surfaces can separate overlapping surfaces,
separate_close_surfaces can separate nearly overlapping surfaces, and

if we desire a single surface for the white matter but the white matter
surfaces only partially overlap, due to smoothing for instance, the SVM-Tk
function union_partially_overlapping_surfaces offers an improved set
of features to handle the union operation of the white matter surfaces.

The following code snippet shows how these functions are used:

# Input Surfaces

rpial = svmtk.Surface("rh.pial.stl")
lpial = svmtk.Surface("lh.pial.stl")
rwhite = svmtk.Surface("rh.white.stl")
lwhite = svmtk.Surface("lh.white.stl")

# Create white matter surface as union of hemispheres
white = svmtk.union_partially_overlapping_surfaces(rwhite,
lwhite)

Separate overlapping and close vertices between

the left and right pial surfaces,

but only outside the optional third argument, which

in this example is the white surface:
svmtk.separate_overlapping_surfaces (rpial, lpial, white)
svmtk.separate_close_surfaces(rpial, lpial, white)

H OB R R
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4.3.2 Combining surfaces to create a brain mesh

We assume that left pial, left white, right pial, right white and ventricular
surface STL files have been extracted, converted and possibly processed, by
the processes described in the previous section. Now, how do we combine these
to create a complete brain mesh? Again, we proceed via an SVM-Tk code ex-
ample (with the complete code: mri2fem/chp4/fullbrain-five-domain.py).
We wrap the main functionality in a Python function create_brain_mesh.
This function can then, for instance, be called as:

stls = ("lh.pial.stl", "rh.pial.stl",
"lh.white.stl", "rh.white.stl",
"lh.ventricles.stl")

create_brain_mesh(stls, "ernie-brain-32.mesh")

We begin by loading Surfaces from the STL files.

import SVMTK as svmtk

def create_brain_mesh(stls, output,
resolution=32, remove_ventricles=True):

# Load each of the Surfaces
surfaces = [svmtk.Surface(stl) for stl in stls]

We take the union of the left and right white surfaces to illustrate the possi-
bility of combining surfaces:

# Take the union of the left (#3) and right (#4)
# white surface and put the result into

# the (former left) white surface
surfaces [2] .union(surfaces [3])

# ... and drop the right white surface from the list
surfaces.pop (3)

It is natural to ask whether we can do the same with the pial matter; indeed,
the union of the left and right pial surfaces is possible. However, whether
the joined surface can be successfully meshed without further postprocessing
is data specific. There is a higher chance that the FreeSurfer segmentation
process of the left and right pial MRI surface data can lead to non-physical
intersections, thus producing left and right pial surface files that overlap and
self-intersect when combined. Self-intersections within a surface can then cause
the meshing process to fail. Similarly, one could simply work with all five
surfaces separately. This approach leads to a more complex tagging process,
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with SubdomainMap, but alleviates difficulties, such as the self-intersections
mentioned above, that can arise when computing the union of two surface
objects.

We continue by creating tags, a subdomain map, domain and mesh, and
leave the option of removing the ventricles, as in previous examples:

# Define identifying tags for the different regions
tags = {"pial": 1, "white": 2, "ventricle": 3}

# Label the different regions

smap = svmtk.SubdomainMap ()
smap.add ("1000", tags["pial"])
smap.add("0100", tags["pial"])
smap.add("1010", tags["white"])
smap.add("0110", tags["white"])
smap.add("1110", tags["white"])
smap.add("1011", tags["ventricle"])
smap.add("0111", tags["ventricle"])
smap.add("1111", tags["ventricle"])

# Generate mesh at given resolution
domain = svmtk.Domain(surfaces, smap)
domain.create_mesh(resolution)

# Remove ventricles perhaps
if remove_ventricles:
domain.remove_subdomain(tags["ventricle"])

# Save mesh
domain.save (output)

Note that running this code example as is will take a few minutes. The resulting
mesh can be visualized using ParaView after conversion from .mesh to .vtu or
xdmf.
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4.4 Working with parcellations and finite element meshes

FreeSurfer’s recon-all automatic segmentation process can identify almost
two hundred different brain regions. 7 FreeSurfer labels identified regions with
a numeric code. For instance, in the left hemisphere, FreeSurfer assigns the
numeric code of 17 to the hippocampus &, 1035 to the gray matter insula, 3035
to the white matter insula, 1028 to the gray matter superiorfrontal region
and 3028 to the white matter superiorfrontal region. Figure 4.6 (left) illus-
trates some of these regions using freesurfer/ernie/mri/wmparz.mgz as an
example.

4.4.1 Mapping a parcellation onto a finite element mesh

In a brain parcellation, each region is identified by an integer value. Our current
goal is to map these region tags onto the generated volume mesh and into a
FEniCS-compatible format. Doing so involves:

e reading and working with image (voxel-based) data in Python,

e representing discrete mesh data in FEniCS,

e mapping values from voxel indices/voxel space to mesh coordinates - that
is, left-to-right, posterior-to-anterior, inferior-to-superior (RAS) space.

As usual, we will illustrate these steps using a concrete code example (included
in mri2fem/chp4/map_parcellation.py). We wrap our main functionality in

7 FreeSurfer’s recon-all parcellates a brain into the regions defined by the Desikan-
Killiany and Destrieux atlases. Numbers are assigned to the different regions, by
default, when FreeSurfer performs the segmentation. These numbers are specific to
FreeSurfer but independent of a subject. We note that the particular brain matter
that FreeSurfer identifies as ‘region N’ (where N is some number) may differ between
patients depending on their individual brain topology.

8 In many neuroscience applications, the hippocampus region is of special interest
because it is central to memory consolidation. The reader is refered to the interesting
story of Henry Molaison, aka Patient H.M., [61, 57] who lost his ability to form new
memories after the removal of both the left and right hippocampus. The procedure was
performed as a treatment for his epilepsy. He lived for more than 50 years after the re-
moval of his hippocampus and participated voluntarily in many scientific experiments,
demonstrating the crucial role of the hippocampus. He never recognized the scientists
who frequently visited him.
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Fig. 4.6 Brain parcellations: (left) as generated by FreeSurfer and visualized using
Freeview and (right) the same parcellation transferred onto the FEniCS brain mesh
and visualized using ParaView (with different colors, different slices, and different view
angles).

a Python function map_parcellation_to_mesh taking the parcellation file-
name and mesh filename as input (with wmparc.mgz and ernie-brain-32.xdmf
from the previous section as an example).

|
\ map_parcellation_to_mesh("wmparc.mgz", "ernie-brain-32.xdmf") \
L |

Working with image data in Python

We will use the Python packages NiBabel to work with neuroimaging data,
NumPy for general numerics in Python, and FEniCS to represent the mesh
and the mesh data:

import numpy

import nibabel

from nibabel.affines import apply_affine
from dolfin import =*

We begin by loading the image data from the parcellation file as follows:

def map_parcellation_to_mesh(parcfile, meshfile):
# Load image from the parcellation file,
# and extract the data it contains
image = nibabel.load(parcfile)
data = image.get_fdata ()
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We can, for example, inspect the image shape (number of voxels in each di-
mension) and extract voxel values by indexing the data array:

# Examine the dimensions of the image and
# examine the tag for the voxel located at
# data position 100, 100, 100

print (data.shape)

print (data[100, 100, 1001)

Representing discrete mesh data in FEniCS

We aim to map the parcellation labels, generated by FreeSurfer during seg-
mentation, onto the brain mesh. At this point, we have loaded the FreeSurfer-
generated wmparc.gz; this parcellation was created from a set of T1 MR im-
ages. We will also work with a mesh file: ernie-brain-32.xdmf. This mesh file
was generated from surfaces extracted from files that were also constructed by
FreeSurfer from a set of T1 images. We mention this because the following fact
is important: to label a mesh file with parcellated region IDs, it is imperative
that the T1 images used to generate the parcellation and the T1 images used
to generate the mesh file are the same set of images.

One way to associate discrete data, such as a parcellation label, with mesh
elements is to use a FEniCS MeshFunction. Mesh functions can be associated
with geometrical objects, X, of various dimensions, d = dim(X). We can
associate mesh functions with cells (d = 3), faces (d = 2), edges (d = 1), or
vertices (d = 0). Here, we aim to identify the parcellation region for each cell
in the brain mesh and will thus make use of a cell function. We first import
the full brain mesh:

# Import brain mesh

mesh = Mesh()

with XDMFFile(meshfile) as file:
file.read(mesh)

print (mesh.num_cells ())

Next, we create a mesh function for the mesh entities of dimension 3 (tetrahe-
dral mesh cells). Our MeshFunction object will define a function whose input
is a tetrahedron of the mesh and whose output, or associated value, is a real
number; we start by specifying a mesh function associating an initial value of
zero to all tetrahedra of the mesh:

# Define mesh-based region representation
n = mesh.topology () .dim()
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regions = MeshFunction("size_t", mesh, n, 0)
print (regions[0])
print (regions.array())

Note that the MeshFunction can be indexed directly, or its values can be
accessed via the member function array.

Our strategy now is: iterate over all cells in the mesh; identify the parcella-
tion region label for each mesh cell; and set the associated value of the mesh
function for that cell to the corresponding parcellation label value. However,
at this point, a key question arises: While we can index the image data by its
indices and the mesh by its cell or vertex indices (and/or their coordinates),
how can we identify the voxel index corresponding to a given cell or vertex
(coordinate), and vice versa?

Converting between indices, coordinates, and spaces

Converting between voxel indices and other coordinates is a core problem that
we will encounter several times. To address this task, we begin by introducing
some nomenclature. The span of the image dimensions is often referred to as
the (T1) vozel space, with indices (or dimensions) (4, j, k). On the other hand,
the span of the mesh axes defines the RAS (left-to-right, posterior-to-anterior,
inferior-to-superior) space with coordinates (z,y, z).

We aim to construct the transformation f from voxel space to RAS space:

(ZL‘,y,Z) = f(ivjv k)’ (42)

as well as its inverse, =1, from RAS to voxel space. Fortunately, the parcel-
lation information allows us to extract this transformation easily:

# Find the transformation f from T1 voxel space
# to RAS space and take its inverse to get the
# map from RAS to voxel space

vox2ras = image.header.get_vox2ras_tkr ()
ras2vox = numpy.linalg.inv(vox2ras)

Note that FreeSurfer operates with several coordinate systems, including dif-
ferent RAS spaces. In this book, RAS space will refer to the FreeSurfer surface
RAS space, which is identified via the suffix tkr in the code snippet above.
Next, we iterate over the cells of the mesh. For each cell, we will: extract the
cell index; extract the RAS coordinates of the cell midpoint; convert from the
RAS coordinates to voxel space (via a call to apply_affine); round off to the
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nearest integer values to find the image indices; and map the corresponding
image data values into the regions mesh function. The code for this iterative
process is

print ("Iterating over all cells...")
for cell in cells(mesh):
c = cell.index ()

# Extract RAS coordinates of cell midpoint
xyz = cell.midpoint () [:]

# Convert to voxel space
ijk = apply_affine(ras2vox, xyz)

# Round off to nearest integers to find voxel indices
i, j, k = numpy.rint(ijk).astype("int")

# Insert image data into the mesh function:
regions.array () [c] = int(datali, j, k1)

We save the resulting mesh function in XDMF format (suitable for Par-
aView) and in the HDF5 format (suitable for further FEniCS processing):

# Store regions in XDMF

xdmf = XDMFFile (mesh.mpi_comm(),
"results/ernie-parcellation.xdmf")

xdmf .write(regions)

xdmf . close ()

# and/or store regions in HDF5 format

hdf5 = HDF5File (mesh.mpi_comm(),
"results/h5-ernie-parcellation.hb", "w")

hdf5.write(mesh, "/mesh")

hdf5.write(regions, "/regions")

hdf5.close ()

The result can be seen alongside the original parcellation in Figure 4.6.

4.4.2 Mapping parcellations respecting subdomains

By careful inspection of the mesh-based representation of the parcellation in
Figure 4.6 (right), we find some artifacts in the labeling of the cells. Indeed,
since the finite element mesh is not aligned with the segmentation, the pre-
vious direct mapping between cell midpoints and voxels can lead to minor
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inaccuracies. In this section, we therefore focus on improving our mesh-based
parcellation representation by using subdomain information.
Specifically, we will show you how to:

e read in a mesh with subdomain information. The mesh may contain many
subdomains, such as those defined by a regional parcellation label. The mesh
subdomain structure may also be simple, such as the gray/white matter
subdomain regions discussed in Section 4.1.2;

e for each cell in every subdomain, determine if we should alter the label
assigned to the cell by inspecting the label of the neighboring cells;

e store the subdomain and parcellation information together.

Converting meshes and mesh data between different formats

In Chapter 4.1, we created a mesh with gray and white matter labels stored
as subdomain information in the .mesh format. Our next step is to convert
this information to a FEniCS-compatible format. We will write a convenient
Python script for this common operation and use the opportunity to illus-
trate the use of an ArgumentParser to read in arguments from the command
line, instead of coding the arguments directly into the script (included in
mri2fem/chp4/convert_to_dolfin mesh.py).

In this script, we will use the argparse package to enable us to pass in
command-line arguments that inform the conversion process.

import argparse
def write_mesh_to_xdmf (meshfile, xdmfdir):

Our argument parser set-up looks like this:

if __nmame__ ==’__main__":
parser = argparse.ArgumentParser ()
parser.add_argument (’--meshfile’, type=str)
parser.add_argument (’--hdf5file’, type=str)
parser.add_argument (’--xdmfdir’, type=str,
default="tmp")
Z = parser.parse_args ()

and we then call two functions (described below):

write_mesh_to_xdmf (Z.meshfile, Z.xdmfdir)
write_xdmf_to_h5(Z.xdmfdir, Z.hdf5file)
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The script can then be called as, for example:

$ cd mri2fem/chpd
$ python convert_to_dolfin mesh.py --meshfile ernie-gw.mesh
--hdf5file ernie-gw.hb

We use meshio to first read the .mesh file, its data associated with the mesh
cells (subdomains), and its data associated with mesh facets (boundaries).
We then write these in the FEniCS-readable .xdmf format as separate files.

# Read the .mesh file into meshio
mesh = meshio.read(meshfile)

# Extract subdomains and boundaries between regions

# into appropriate containers

points = mesh.points

tetra = {"tetra": mesh.cells_dict["tetra"]}

triangles = {"triangle": mesh.cells_dict["triangle"]}

subdomains = {"subdomains": [mesh.cell_data_dict["medit:
ref"] ["tetra"]]l}

boundaries = {"boundaries": [mesh.cell_data_dict["medit:
ref"] ["triangle"]]}

# Write the mesh to xdmfdir/mesh.xdmf
xdmf = meshio.Mesh(points, tetra)
meshio.write("%s/mesh.xdmf" % xdmfdir, xdmf)

# Write the subdomains of the mesh
xdmf = meshio.Mesh(points, tetra, cell_data=subdomains)
meshio.write("%s/subdomains.xdmf" % xdmfdir, xdmf)

# Write the boundaries/interfaces of the mesh
xdmf = meshio.Mesh(points, triangles,cell_data=boundaries)
meshio.write("’s/boundaries.xdmf" /) xdmfdir, xdmf)

Subsequently, FEniCS can read the files mesh.xdmf and subdomains.xdnf,
created above, into a Mesh object and MeshFunction object, respectively. FEn-
iCS can then write the data from both objects into a single .hb5 file:

import dolfin as df

# Read .xdmf mesh into a FEniCS Mesh

mesh = df.Mesh ()

with df .XDMFFile("%s/mesh.xdmf" % xdmfdir) as infile:
infile.read (mesh)

# Read cell data to a MeshFunction (of dim n)
n = mesh.topology () .dim()
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subdomains = df.MeshFunction("size_t", mesh, n)
with df.XDMFFile("%s/subdomains.xdmf" % xdmfdir) as infile

infile.read(subdomains, "subdomains")

# Read facet data to a MeshFunction (of dim n-1)
boundaries = df.MeshFunction("size_t", mesh, n-1, 0)
with df.XDMFFile("%s/boundaries.xdmf" % xdmfdir) as infile

infile.read (boundaries, "boundaries")

# Write all files into a single hb file.

hdf = df .HDF5File(mesh.mpi_comm(), hdf5file, "w")
hdf .write (mesh, "/mesh")

hdf .write (subdomains, "/subdomains")

hdf .write (boundaries, "/boundaries")

hdf.close ()

The mesh, subdomain, and boundary information saved above can be read

back into FEniCS as follows (with the filename given in hdf5file):

# Read the mesh and mesh data from .h5:

mesh = Mesh ()

hdf = HDF5File(mesh.mpi_comm(), hdf5file, "r")
hdf.read (mesh, "/mesh", False)

d = mesh.topology().dim()

subdomains = MeshFunction("size_t", mesh, d)
hdf .read (subdomains, "/subdomains")

boundaries = MeshFunction("size_t", mesh, d-1)
hdf .read (boundaries, "/boundaries")

hdf.close ()

Masking data and improved parcellation identification

Let us now assume that we have available the mesh, subdomains, as well as
the image data from the parcellation file (e.g wmparc.mgz) and the RAS to
voxel space transform ras2vox, as described in Chapter 4.4.1. Our next steps
are to:

find the RAS coordinates of all cells (midpoints), and map these to voxel
space indices and,

map parcellation values to mesh cells in a manner that ensures that the
parcellation regions do not extend across subdomains.
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In particular, for each mesh cell, we will now examine a neighborhood of
the corresponding voxel values to pick the most frequent adjacent one as the
matched parcellation value.

We first extract all the RAS coordinates of the cell midpoints,

# Extract RAS coordinates of cell midpoints
xyz = numpy.array([cell.midpoint () [:]
for cell in cells(mesh)])

before converting these to voxel coordinates and indices, as before:

# Convert to voxel space and voxel indices: for cell c,
# il[c], jlcl], k[c] give the corresponding voxel indices.
abc = apply_affine(ras2vox, xyz).T

ijk = numpy.rint(abc).astype("int")

(i, j, k) = ijk

Now, we create two arrays. The first array, vox2sub, provides a map from
the index of a voxel to its subdomain tag; the second array, regions, will hold
the parcellation tags.

# Create a map from voxel index to subdomain tag
# Note use of NumPy’s "fancy" indexing:

vox2sub = numpy.zeros(data.shape)

vox2sub[i, j, k] = subdomains.array()

# Create new array for the parcellation tags:
N = mesh.num_cells ()
regions = numpy.zeros(N)

Now we adjust tags by a consensus method. We do this by applying the
following algorithm: for a fixed subdomain, iterate over the cells in that sub-
domain; for each cell, examine the voxel data (region label) associated to the
neighbors of that cell but only those neighbors which also live in the same
subdomain; set the region of the cell to the most common region of its neigh-
bors. This process is repeated for each subdomain in the mesh; the algorithm
is implemented below:

# Extract unique mesh subdomain tags,

# and iterate over these:

subdomain_tags = numpy.unique (subdomains.array())

for tag in subdomain_tags:
# Zero out voxel data not associated with the current
# subdomain
masked_data = (vox2sub == tag)x*data




4.4 Working with parcellations and finite element meshes

# Iterate of all cells in this subdomain
for ¢ in range (N):
if (subdomains[c] == tag):
# Find and set the most common (non-zero)
# adjacent parcellation tag
regions[c] = adjacent_tag(masked_data,
ilel, jlel, klcl)
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We can then update the subdomain array

# Update the subdomains array with the parcellation tags
if not specific_tags:
subdomains.array () [:] = regions
else:
for tag in specific_tags:
subdomains.array () [regions == tag] = tag

and store the resulting mesh data again:

# Now store everything to a new file

hdf = HDF5File(mesh.mpi_comm(), out_hdf5, "w")
hdf .write (mesh, "/mesh")

hdf .write (subdomains, "/subdomains")

hdf .write (boundaries, "/boundaries")
hdf.close ()

The adjacent_tag function reads

def adjacent_tag(data, i, j, k, Mmin=3, Mmax=10):
# Given an image voxel index (i, j, k), examine the
# image data in the voxel neighborhood, and identify
# the most common non-zero value among these. Start at
# a neighborhood of radius Mmin, and increase 1if needed.
for m in range (Mmin, Mmax):

# Extract the data values from the neighborhood
values = datal[i-m:i+m+1, j-m:j+m+1, k-m:k+m+1]

# Reshape values from (2m+1, 2m+1, 2m+1) to list:
v = values.reshape(1l, -1)

# Identify unique non-zero (positive) values and

# the number of each

pairs, counts = numpy.unique(v[v > 0],
return_counts=True)

# Return the most common non-zero tag:
success = counts.size > 0
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if success:
return pairs[counts.argmax()]

return O

The complete script is included in mri2fem/chp4/add_parcellations.py
and can be tested, for example, via

$ python3 convert_to_dolfin mesh.py --meshfile
ernie-brain-32.mesh --hdfb5file ernie-brain-32.h5

$ python3 add_parcellations.py --in_hdf5

ernie-brain-32.h5 --in_parc wmparc.mgz --out_hdfb
results/ernie-brain-subdomains-tags.h5 --add 17 1028 1035 3028
3035

4.5 Refinement of parcellated meshes

We end this chapter by examining how we can refine the generated meshes
and, in particular, how we can refine local regions. FEniCS supports global
and local mesh refinement and adaptivity through the functions refine and
adapt. The latter (adapt) is particularly useful for refining mesh functions
and associated mesh data, in addition to the refinement of the mesh it-
self. The code snippets presented here are included in a complete context
in mri2fem/chp4/refine mesh_tags.py.

4.5.1 Extending the Python interface of DOLFIN /FEniCS

DOLFIN, the problem-solving interface to FEniCS, provides a C++ and a
Python interface. The Python interface is generated from the C++ interface
using pybind11, but the entire C+4 API is not exposed. Instead, a user can
generate their own Python bindings fairly easily. Since parts of the adapt
interface are not, by default, available in Python, we illustrate how to use
pybind11 to compile our own FEniCS wrappers here.

We provide Python bindings for the adapt function as follows:
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nwun

cpp_code =
#include<pybind11/pybind11.h>
#include<dolfin/adaptivity/adapt.h>
#include<dolfin/mesh/Mesh.h>
#include<dolfin/mesh/MeshFunction.h>

namespace py = pybindll;

PYBIND11_MODULE (SIGNATURE, m) {
m.def ("adapt", (std::shared_ptr<dolfin::MeshFunction<std::
size_t>> (*) (const dolfin::
MeshFunction<std::size_t>&,
std::shared_ptr<const dolfin
::Mesh>)) &dolfin::adapt, py
::arg ("mesh_function"), py::
arg ("adapted_mesh"));
m.def ("adapt", (std::shared_ptr<dolfin::Mesh> (*) (const
dolfin::Mesh&)) &dolfin::
adapt );
m.def ("adapt", (std::shared_ptr<dolfin::Mesh> (*) (const
dolfin::Mesh&,const dolfin::
MeshFunction<bool>&)) &dolfin
::adapt );
}

won

adapt = compile_cpp_code(cpp_code) .adapt

We also notice that this function is overloaded, and we provide bindings
to three versions with different signatures. After the code is executed, the
bindings are compiled by the Python module. However, note that the module
will not be added to the DOLFIN library, but resides in the user’s local cache.

4.5.2 Refining certain regions of parcellated meshes

It may be desirable to refine a mesh - either globally or within particular
regions. In this section, we discuss two options for refinement; global and local.
The code snippets in this section can be found in the file refine_mesh_tags.
py. Let us assume that in Python we have a FEniCS mesh with FEniCS mesh
functions subdomains and boundaries, for instance, extracted from an .h5
file, as illustrated in Chapter 4.4.2.
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One option is, then, to refine the mesh globally, meaning that we refine all
the cells of the mesh. We would then also like to refine or adapt the associated
mesh functions to the refined mesh. We can accomplish this as follows:

# Initialize connections between all mesh entities, and

# use a refinement algorithm that remember parent facets

mesh.init ()

parameters ["refinement_algorithm"] = \
"plaza_with_parent_facets"

# Refine globally if no tags given
if not tags:
# Refine all cells in the mesh
new_mesh = adapt(mesh)

# Update the subdomain and boundary markers
adapted_subdomains = adapt(subdomains, new_mesh)
adapted_boundaries = adapt(boundaries, new_mesh)

Notice that the script refine_mesh_tags. py refines the mesh globally if the
tags is empty. The tags list can be specified, or not, as an input argument to
refine_mesh_tags.py. For global refinement, we do not want to specify tags;
the following command will globally refine the mesh, ernie-brain-32.h5,
created in the previous section:

$ python3 refine mesh_tags.py --in_hdf5 ernie-brain-32.h5
--out_hdf5 ernie-brain-32-refined.hb

Alternatively, we can refine the mesh locally. In the code, this is done by
providing the adapt function with a Boolean cell-based mesh function that
sets a value of True or False at each mesh cell (i.e. tetrahedron). A value of
True indicates that the cell should be refined, while False indicates it should
not. The code starts by setting every cell’s associated value to False. Then,
we loop over the mesh cells and check to see if the cell’s region matches a
region in the tags list; if so, we mark this cell for refinement by changing its
associated value to True. The relevant code snippet is:

else:
# Create markers for local refinement
markers = MeshFunction("bool", mesh, d, False)

# Iterate over given tags, label all cells

# with this subdomain tag for refinement:

for tag in tags:
markers.array () [subdomains.array()==tag] = True
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Fig. 4.7 Illustration of a locally refined left hemisphere mesh. The left figures show
the original mesh with labeled (color coded) regions. The right figures show the locally
refined mesh. Only particular regions have been refined; compare the green region to
the red region. Local refinement is carried out using refine_mesh_tags.py and using
the --refine_tag option.

# Refine mesh according to the markers
new_mesh = adapt(mesh, markers)

# Update subdomain and boundary markers
adapted_subdomains = adapt (subdomains, new_mesh)
adapted_boundaries = adapt (boundaries, new_mesh)
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In practice, the tags list is populated by passing in command line arguments
to the script. For instance, the following command will refine the cells in regions
17 (left hippocampus), 1028 (left superior frontal cortex), 1035 (left insular
cortex), 3028 (left superior frontal white matter) and 3035 (left insular white
matter).

$ python3 refine mesh tags.py --in_hdf5 ernie-brain-32.h5
--out_hdf5 ernie-brain-32-refine-tags.h5 --refine_tag 17 1028
1035 3028 3035

We remind the reader that the various tags can be found by opening Free-
view (c.f. Chapter 2.4), selecting [File—)Load Volume} from the top menu,
selecting mri2fem/chp4/wmparc.mgz, and then setting the Color map option
(in the left pane) to Lookup Table. The local refinement of a mesh with labeled
parcellation regions is illustrated in Figure 4.7.
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Chapter 5
Introducing directionality with diffusion
tensors

In this chapter, we focus on how to transfer information from diffusion tensor
imaging (DTI) data to our finite element methods. To do so, we will need
to overcome a few practical challenges. In particular, the raw DTI data can
contain non-physiological data, especially near the CSF. Moreover, the raw
DTI data is represented both in terms of a different coordinate system and
at a different resolution than the computational mesh. To overcome the first
challenge, we will use local extrapolation of nearby valid values; to overcome
the second challenge, we will co-register ! the data with the images used to
construct the computational mesh.
Specifically, we will:

e process the diffusion tensor images to extract mean diffusivity and fractional
anisotropy 2 data, and

e map the DTI tensor data into a finite element representation created from
the T1-weighted images.

1 See Section 5.2.3.
2 Mean diffusivity and fractional anisotropy are defined in (5.1) and (5.2), respectively.
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5.1 Extracting mean diffusivity and fractional anisotropy
5.1.1 Extracting and converting DTI data

The DTI data must first be extracted from a DICOM dataset. We use Dicom-
Browser to extract a D'TT series from the book data-set in Chapter 2.3, and the
resulting files are available in dicom/ernie/DTI. Our next task is to convert the
extracted DTT images to a single volume image and to produce supplementary
information files about the DTI image data for downstream postprocessing.
Various open source tools are available for the processing of DTI data [60].
Here, we continue to use FreeSurfer and its associated command-line tools.
As in chapter 3.1.2, we can select any of the files extracted from the DICOM
DTTI data (dicom/ernie/DTI) to start the process; here, we arbitrarily choose
IM_1496 and launch the FreeSurfer command mri_convert:

$ cd dicom/ernie/DTI
$ mri_convert IM_1496 dti.mgz

This process, when successful, creates three files: dti.mgz, dti.bvals, and
dti.voxel_space.bvec. The last two, plain text files, contain information re-
garding the b-values and b-vectors associated with the DTI data. The b-vectors
and b-values are selected as part of the imaging process; they determine the
direction (b-vector) and strength (b-value) of the pulsed magnetic diffusion
gradient used during the diffusion weighted imaging scan. For instance, Fig-
ure 5.1 shows an axial slice measured with the same choice of b-value but
different b-vectors. Once the scan has taken place, we can read this informa-
tion but it cannot be altered without scanning the patient again.

5.1.2 DTI reconstruction with FreeSurfer

Next, we aim to reconstruct comprehensive DTI data from the volume, b-value,
and b-vector files using the FreeSurfer command dt_recon. The command
takes an input volume (following --i), b-vector and b-values files (following
--b), an output directory --o, and the recon-all subject ID --s (see Chap-
ter 3.1.2). Within our book data directory dicom/ernie/DTI, we can launch
the following commands:
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Fig. 5.1 Axial DTI slices measured with different b-vectors. The resolution in the
diffusion tensor image is typically lower (here, 96x96x50) compared to that in the T1
images; the latter are, canonically, 256x256x256.

$ export SUBJECTS_DIR=my-freesurfer-dir
$ dt_recon --i dti.mgz --b dti.bvals dti.voxel_space.bvecs --s
ernie --o $SUBJECTS_DIR/ernie/dti

with my-freesurfer-dir replaced by the FreeSurfer subject’s directory (e.g.
freesurfer/ from the book data-set).

This command produces multiple output files, 3 including tensor.nii.gz,
register.dat, and register.1lta. The registration in dt_recon uses the reg-
istration command bbregister ¢ to register the DTI data [3]. Files with the
suffix .nii are in the NIfTT format. Of these, tensor.nii.gz is the spatially
varying diffusion tensor. Further, an eigendecomposition of this tensor in terms
of spatially varying eigenvalues A1, A2, and A3 and eigenvectors vy, ve, and vs
is given in the files eigvals.nii.gz and eigvecl.nii.gz,eigvec2.nii.gz,
and eigvec3.nii.gz.

3 The command above will store the files in $SUBJECTS_DIR/ernie/dti. Al-
ternatively, you can run mri2fem/chp5/all.sh which will create a directory
mri2fem/chp5/ernie-dti that includes the same set of the files as well. You will need
FSL installed to use dt_recon (see Chapter 2.4.1).

4 This registration step is done automatically by FreeSurfer using the subject’s pre-
viously FreeSurfer-processed data that is assumed to be available at this stage of
the book; see Chapter 3.1.2 for the necessary steps. The mathematical details of co-
registration are further discussed in Section 5.2.3.
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5.1.3 Mean diffusivity and fractional anisotropy

In addition, dt_recon produces the NIfTT files adc.nii.gz and fa.nii.gz
for the mean (or apparent) diffusivity (MD) and fractional anisotropy (FA),
respectively. The mean diffusivity is given by

1
MD = g()\l + Ao + /\3), (51)

and fractional anisotropy is defined [39] by

paz — L4 — )+ (A2 — X3)® + (A3 — \1)? (5.2)
2 M43+ A3 ' ’

NIfTI files can be viewed in ParaView. You might first need to enable

0.0e+00 38603 g 10
Apparent Diffusion Coefficient Fractional Anisotropy

Fig. 5.2 Mean diffusivity (left) and fractional anisotropy (right) as shown in ParaView.

the NIfTI viewer plugin by selecting the ParaView menu option labeled
[Tools—)Manage Plugins], selecting ° [AnalyzeNifT IReaderWriter] and then

clicking | Load Selected | You can then open and view .nii files in ParaView,

5 The correct plugin may also be named AnalyzeNifTIIO in earlier versions (i.e. before
5.7.0) of ParaView.
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just as you would any other file. To unzip .nii.gz to .nii, one can use mri_convert:

$ mri_convert adc.nii.gz adc.nii
$ mri_convert fa.nii.gz fa.nii

Let us open adc.nii and verify that we can reproduce Figure 5.2 (left); the
process will be the same for fa.nii. After loading the AnalyzeNifTIIO plu-
gin, described above, and opening adc.nii click . You will likely see
an empty three-dimensional cube in the view window. In the left pane, find
the Representation option and change this to Volume. You should now see
something that looks similar to a ‘brain in a box’ viewed from the top. Now
click [Filters%Alphabetical] and select Slice. In the left pane, find the option
labeled Normal; it should be under the option labeled Origin. Change the
Normal from 1 0 0to 0 1 0 and click .

In the left pane, once more, hide the object adc.nii by clicking the picture
of the eye next to its name. Now, rotate the view window so that you can
see the X—Z plane; the result should look similar to Figure 5.2. We can make
it look more similar by changing the color scheme. In the left pane, find the
section labeled Coloring. Mouse over the buttons here until you find the but-
ton labeled Choose preset. Click this and select the Black, blue and white
color scheme, click and then close the color scheme preset window. The
image you see now was saved and post-processed to remove the border outside
the skull to produce Figure 5.2 (left). You can repeat these steps with fa.nii,
this time using the jet color scheme, to reproduce Figure 5.2 (right).

The average FA value is generally around 0.5 and changes by around 2%
between day and night [68]. Anisotropy decreases with age, declining around
14% between 30 to 80 years [40] and can change by up to 50% in certain
areas of the brain of a person with Alzheimer’s disease compared with healthy
subjects [49]. In the ernie data (Figure 5.2), the median white matter FA
value is 0.3, with a minimum of 0.009 and a maximum of 0.9998.

5.2 Finite element representation of the diffusion tensor

In this section, we:

e ensure that the DTT data have a valid eigendecomposition (with positive
eigenvalues),
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e map the DTT tensor into a finite element tensor function defined on a finite
element mesh, and
e briefly discuss co-registration.

5.2.1 Preprocessing the diffusion tensor data

The DTT data can be quite rough compared to the T'1 data and our correspond-
ing finite element meshes; DTI data is typically at a low resolution of 96x96x50
while T1 resolution is typically much higher at 256x256x256. ¢ Moreover, the
signal can be disturbed near the cerebrospinal fluid (CSF), which makes the
data in certain areas of the cortical gray matter and in regions near the ventri-
cle system less reliable. Indeed, inspection of the eigenvalues of the DTT tensor
shows non-physiological (zero and/or negative) eigenvalues. To ensure a phys-
iologically (and mathematically) reasonable diffusion tensor, we recommend
preprocessing the diffusion tensor prior to numerical simulation. In particular,
in this chapter we present two scripts that:

e check the DTI tensor data for non-physiological values and
e replace non-physiological with physiological values in the DTI tensor,

respectively.

Creating brain masks

First, we will use FreeSurfer to create masks of the brain. A mask is a type
of filter where voxels (significantly) outside the brain are set to zero and all
other voxels are set to a value of one. Using our white matter parcellation data
(included in freesurfer/ernie/mri/wmparc.mgz), we can create brain masks
as follows:

$ mri_binarize --i wmparc.mgz --gm --dilate 2 --o mask.mgz

The dilate flag determines the extent to which the mask should be extended
outside the brain surface provided by wmparc.mgz. Examples of such masks
are shown in Figure 5.3.

6 See Figure 2.3 (left) versus Figure 5.1.
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Fig. 5.3 Brain masks created using mri_binarize with dilate ranging from zero to
three.

Examining the DTI data values

We can work with the DTI data in a very similar manner as we did for the
parcellation (image) data in Chapter 4.4.1. We will again use NiBabel to load
the image data, use the vox2ras functions for the mapping between the dif-
ferent image coordinate systems (DTI voxel space and T1 voxel space), and
process the data as NumPy arrays. The complete script can be run as

$ cd mri2fem/chpb
$ python3 check. dti.py --dti tensor.nii.gz --mask mask.mgz

We import the key packages:

import argparse
import numpy
import nibabel

from nibabel.processing import resample_from_to
numpy .seterr (divide=’ignore’, invalid=’ignore’)
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We define the function check_dti_data that takes the DTI tensor and mask
files as input:

def check_dti_data(dti_file, mask_file, order=0):
# Load the DTI image data and mask:
dti_image = nibabel.load(dti_file)
dti_data = dti_image.get_fdata()

mask_image = nibabel.load(mask_file)
mask = mask_image.get_fdata().astype(bool)

# Examine the differences in shape
print ("dti shape ", dti_data.shape)
print ("mask shape ", mask.shape)

M1, M2, M3 = mask.shape

Now, the important coordinate transformations can be handled as follows:

# Create an empty image as a helper for mapping
# from DTI voxel space to Tl voxel space:
shape = numpy.zeros((M1, M2, M3, 9))

vox2ras = mask_image.header.get_vox2ras ()
Nii = nibabel.niftil.Niftillmage
helper = Nii(shape, vox2ras)

# Resample the DTI data in the T1 voxel space:
image = resample_from_to(dti_image, helper, order=order)
D = image.get_fdata ()

Before computing eigenvalues, we run

# Reshape D from M1 x M2 x M3 x 9 into a N x 3 x 3:
D = D.reshape(-1, 3, 3)

# Compute eigenvalues and eigenvectors
lmbdas, v = numpy.linalg.eigh(D)

and we compute the fractional anisotropy and check the validity of each voxel
value, as follows:

# Compute fractional anisotropy (FA)
FA = compute_FA (1lmbdas)

# Define valid entries as those where all eigenvalues are
# positive and FA is between 0 and 1

positives = (lmbdas[:,0]>0)*(1lmbdas[:,1]>0)*(1lmbdas[:,2]>0)
valid = positives*(FA < 1.0)*(FA > 0.0)

valid = valid.reshape ((M1, M2, M3))
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# Find all voxels with invalid tensors within the mask

ii, jj, kk = numpy.where((“valid) *mask)

print ("Number of invalid tensor voxels within the mask ROI:
", len(ii))

# Reshape D from N x 3 x 3 to M1 x M2 x M3 x 9
D = D.reshape ((M1,M2,M3,9))

return valid, mask, D

The above snippet makes use of the function compute_FA, which is also defined
in check_dti.py, to compute (5.2). The result is a vector FA whose entries con-
tain the fractional anisotropy computed at each available DTT data location.
The term positives is a binary vector, with the same number of entries as FA;
it has a value of one if all three of the eigenvalues for the region corresponding
to the array index are positive, and zero otherwise. The vector valid is there-
fore a second binary vector whose indices correspond to the locations where
DTI data are available. The value at each index of valid is one precisely when
all of the eigenvalues are positive and the fractional anisotropy there is larger
than zero but less than one. The valid vector is therefore a mask that indi-
cates where the DTT tensor contains physically admissible values. The valid
mask is then reshaped 7 to fit the dimensions of the original mask, created from
the mask_file, and the number of zeros, corresponding to invalid entries, is
computed and reported in the final lines.

Improving DTT values by extrapolation and resampling to T1 space

If numerous invalid DTT voxel data are reported, by check_dti.py as discussed
above, we can attempt to improve the DTI data by extrapolating from adjacent
valid voxel locations to correct nearby invalid data. The correction script is
mri2fem/chp5/clean_dti_data.py and can be run as

$ cd mri2fem/chpb
$ python3 clean_ dti_data.py --dti tensor.nii.gz --mask mask.mgz
--out tensor-clean.nii

7 The term reshaped here means that the (tensor) data is reorganized into an expected
form. An example would be reshaping a 1 x 9 (row) tensor to a 3 X 3 (matrix) tensor
by putting the first three entries of the 1 X 9 tensor in the first row, the next three in
the second row and the last three in the final row of the 3 x 3 tensor.
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and the main functionality reads

def clean_dti_data(dti_file, mask_file, out_file, order=3,
max_search=9):
valid, mask, D = check_dti_data(dti_file, mask_file,
order=order)
# Zero out "invalid" tensor entries outside mask,
# and extrapolate from valid neighbors
D["mask] = numpy.zeros(9)
D[(~valid)*mask] = numpy.zeros(9)
ii, jj, kk = numpy.where((~valid)*mask)
for i, j, k in zip(ii, jj, kk):
D[i, j, k, :1 =\
find_valid_adjacent_tensor(D, i, j, k, max_search)

# Create and save clean DTI image in T1 voxel space:
mask_image = nibabel.load(mask_file)

M1, M2, M3 = mask.shape

shape = numpy.zeros ((M1, M2, M3, 9))

vox2ras = mask_image.header.get_vox2ras()
Nii = nibabel.niftil.Niftillmage
dti_image = Nii(D, vox2ras)

nibabel.save(dti_image, out_file)

The first operation carried out by the clean_dti_data function is to call
check_dti_data, which we discussed in the previous section. Recall that,
among other things, the check_dti_data function returns a tensor represen-
tation (D) of the DTT data that has been converted from DTI voxel space coor-
dinates to T1 voxel space coordinates. 8 Next, we will search for a valid tensor
in directly adjacent voxels using the function find_valid_adjacent_tensor
defined in clean_dti_data.py. If no valid tensor is found nearby, the search
range is iteratively increased.

The script determines that a nearby tensor, in the valid region, contains
valid data if a non-zero mean diffusivity (MD) is also calculated there. Once
one or more, nearby valid value(s) are found, replacement data is chosen. If
only one valid value is found, it is directly used. If there are multiple valid

8 T1 coordinates are the same coordinates used by the computational meshes that
were constructed, in previous chapters, from the surfaces extracted from FreeSurfer
segmented T1 data. Thus, D is now expressed in terms of coordinates that make sense
when used alongside the computational meshes
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tensors within the search range, the tensor data® with MD value closest to
the median of the non-zero MD is chosen as a replacement:

def find_valid_adjacent_tensor(data, i, j, k ,max_iter):
# Start at 1, since 0 is an invalid tensor
for m in range (1, max_iter+1)
# Extract the adjacent data to voxel i, j, k
and compute the mean diffusivity.
= datali-m:i+m+1, j-m:j+m+1, k-m:k+m+1,:]
= A.reshape(-1, 9)
MD = (A[:, O]+ A[:, 4] + A[:,8])/3.

= e 3

# If valid tensor is found:
if MD.sum() > 0.0:
# Find index of the median valid tensor, and return
# corresponding tensor.
index = (numpy.abs(MD - numpy.median(MD[MD>0]))).
argmin ()
return A[index]

print("Failed to find valid tensor")
return datali, j, kI

5.2.2 Representing the DTI tensor in FEniCS

With the DTI data checked and potentially improved, we are now ready to
map our preprocessed DTI image (now in T1 voxel space) onto a FEniCS
mesh. We will use the code located in mri2fem/chp5/dti_data to_mesh.py
to accomplish this task. To begin, we assume that we have a mesh available
(e.g. ernie-brain-32.h5 from Chapter 4.4.2), that we have loaded the clean
DTI image and data in dti_image and dti_data, respectively, and that we
have the ras2vox transform associated with this image. We can retrieve the
vox2ras and ras2vox transformations associated with the data by

9 Because of the way the valid mask is constructed, a tensor with invalid data can
violate either the required condition that all of the eigenvalues must satisfy A\; > 0 or
the required condition that the FA must satisfy 0 <FA< 1. In either case, the search
for a nearby valid tensor identifies a nearby candidate and replaces the whole of the
tensor information at the invalid tensor location. Thus, all of required conditions are
satisfied, at the previously invalid location, after the data replacement.
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# Transformation to voxel space from mesh coordinates
vox2ras = dti_image.header.get_vox2ras_tkr ()
ras2vox = numpy.linalg.inv(vox2ras)

To represent the diffusion tensor in FEniCS, we create a FEniCS Function
over a TensorFunctionSpace of (discontinuous) piecewise constant polyno-
mial fields ("DG", 0):

# Create a FEniCS tensor field:
DGO9 = TensorFunctionSpace (mesh, "DG", 0)
D = Function(DGO09)

For each cell, we need to associate an identifying coordinate value so that
we can associate the cells of our mesh to the voxel data. One possibility is to
extract the cell midpoints as we have done before; here, we opt to extract the
coordinates of the degrees of freedom associated with a DG FunctionSpace
object that we will define on our mesh and convert these to voxel indices:

# Get the coordinates xyz of each degree of freedom
DGO = FunctionSpace(mesh, "DG", 0)
imap = DGO.dofmap().index_map ()
num_dofs_local = (imap.local_range()[1] \
- imap.local_range () [0])
xyz = DGO.tabulate_dof_coordinates ()
xyz = xyz.reshape((num_dofs_local, -1))

# Convert to voxel space and round off to find
# voxel indices

ijk = apply_affine(ras2vox, xyz).T

i, j, k = numpy.rint(ijk).astype(’int’)

The above snippet first retrieves the coordinates of the TensorFunctionSpace
degrees of freedom on our mesh and applies the ras2vox transformation to
determine coordinates in voxel space.

We can now reshape the DTI data into a cell-wise structure based on the
extracted indices® (now in voxel space):

# Create a matrix from the DTI representation
D1 = dti_datali, j, k]

10 Voxels are located based on the degree of freedom (DOF) coordinates from the
FunctionSpace object. This approach guarantees that there are no missing values as
every coordinate maps to some voxel. However, some voxels may correspond to more
than one mesh cell as there may be more cells in the mesh than there are voxels e.g. if
the mesh has a lower resolution than the resolution of the T1 (voxel) image space.
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print (D1.shape)

With the reshaped DT data in hand, we assign these to a FEniCS tensor field,
D, allowing the data to be saved alongside the mesh data.

# Assign the output to the temnsor function
D.vector (D) [:] = Di.reshape(-1)

The FEniCS tensor field DTI data can be saved alongside the mesh for later
use in FEniCS simulations with

# Now store everything to a new file - ready for use!
hdf = HDF5File(mesh.mpi_comm(), outfile, ’w’)

hdf .write (mesh,"/mesh")

hdf .write(D, "/DTI")

The resulting fiber directions, shown in Figure 5.4, can be inspected visually.

5.2.3 A note on co-registering DTI and T1 data

As we have seen, FreeSurfer uses several different coordinate systems to label
the position of data in its various output files. Thus, to combine different types
of data into something we can use in FEniCS simulations, we need to extract
information about the different coordinate systems used in the files and be
able to map between these different coordinate systems. This process is known
as co-registration. The scripts we have presented use NiBabel functionality to
handle co-registration; this section provides additional information regarding
co-registration, for both context and completeness.

In short, let &1 = (21,y1,21) and x3 = (22, Y2, 22) represent the same phys-
iological point in R3 but represented with respect to two different coordinate
systems (bases). Then, there is an affine transformation such that

To = AIl + b, (53)

for A € R®*3 and b € R3. The mapping is often stored instead as a 4 x 4 ma-
trix, where the last row can be ignored. As this equivalent 4 x 4 representation
often appears in the discussions, and software documentation, within the neu-
roimaging community, we also show it here; the above affine transformation
(5.3) can also be written as:
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Fig. 5.4 Upper panels show fiber directions (DTI eigenvectors) colored by the frac-
tional anisotropy in the axial and coronal planes. The lower panels show a zoom focus-
ing on the boundary between gray matter and the cerebrospinal fluid. Note that the
vector nature of the data can be seen more clearly in bottom panel images where the
fibers can be seen to have clear directionality.

T2 ay a1z a3 b T
Y2 | _ | G21 G22 G23 by Y1
z3 | |asias2azzbs | | 21
1 0 0 0 1 1

where the a;; are the entries of the matrix A and the b; are the entries of the
vector b.

The term co-registration specifically refers to the determination of the trans-
formation matrix A and vector b corresponding to a pair of files. A key step
in the co-registration of T1 and DTT images, or any pair of images in general,
is to ascertain the type of coordinate system used when initially storing these
images. Towards this end, we can make use of the mri_info command. Co-
ordinate system information regarding the FreeSurfer-processed T1 images is
stored in the file orig.mgz. We can interrogate this file by:
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$ cd $SUBJECTS_DIR/ernie/mri
$ mri_info orig.mgz --orientation
LIA

The output LIA means that the T1 image files were generated with respect to
the ‘Left Inferior Anterior’ coordinate system (see [3] for details). Coordinate
system information regarding the FreeSurfer-processed DTI images is stored in
the file tensor.nii.gz. We can interrogate this file, once more using mri_info,

by:

$ cd $SUBJECTS_DIR/ernie/dti
$ mri_info tensor.nii.mgz --orientation
LPS

The coordinate systems can be understood as follows: the positive direction
in the sagittal plane can be either (L)eft or (R)ight, the positive direction in the
coronal plane can be either (P)osterior or (A)nterior, and the positive direction
in the axial plane can be either (I)nferior or (S)uperior. Furthermore, the order
of the planes can be different, that is, the third axis might not correspond to
the axial plane. For instance, let us examine the coordinate systems described
by the abbreviations LIA and LPS. We see that the coronal plane corresponds
to the third axes (A) in LIA and second axes (P) in LPS, and we have the
opposite for the axial plane (I vs. S). Thus, these coordinate systems differ by
the choice of a positive direction in the coronal and axial planes, in addition
to their order.

Both coordinate systems describe voxel spaces, and we thus need to take into
account any difference in voxel sizes. We can obtain voxel sizes (in millimeters)
by further using mri_info:

$ cd $SUBJECTS_DIR/ernie/dti
$ mri info tensor.nii.gz | grep voxel\ sizes
voxel sizes: 2.500000, 2.500000, 2.500000

$ cd $SUBJECTS_DIR/ernie/mri
$ mri_info orig.mgz | grep voxel\ sizes
voxel sizes: 1.000000, 1.000000, 1.000000

We observe that the voxel sizes differ, and therefore the transformation
matrix needs to be scaled from 2.5 mm to 1.0 mm. Thus, the matrix transfor-
mation will have the form:

04 0 0
A=10 0 -04
0 -04 0
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The vector b gives the difference between the origins of the two coordinate
systems.

Note, however, that this affine transformation matrix is not quite realistic.
First, it assumes that there is no rotational difference between the brains. Sec-
ond, due to the lack of offset vector b as in (5.3), this transformation assumes
that the origins have the same anatomical position. This is unlikely to be the
case, since the magnetic resonance images differ in modality or occurrence
(i.e. taken at different times). Therefore, to find the affine transformation ma-
trix, we need to find the optimal overlap of the brain contour in the magnetic
resonance images. This can be done manually, but it is preferable to do this
using registration tools such as bbregister, which was used with dt_recon
in Chapter 5.1.2. In our example, the affine transformation matrix can com-
puted by taking the inverse of the augmented matrix found in register.lta!!
located in folder $SUBJECTS_DIR/ernie/dti. The augmented matrix is a com-
bination of the matrix A and the vector b with the following structure:

o

The approximated transformation matrix becomes

04 0.0 —-0.1
A=1]-0.1 0.0 —04{,
0.0 —0.4 0.0
and the translation vector
9.0
b= (106.4
7.7

11 This file was created by bbregister as part of the dt_recon command discussed in
Section 5.1.2.
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Chapter 6

Simulating anisotropic diffusion in
heterogeneous brain regions

In this chapter, we return to our model problem (1.1) and bring together the
tools and techniques introduced in Chapters 3 to 5. The computational domain
will be determined from T1-weighted data and divided into gray and white
matter subdomains, diffusion tensor imaging (DTI) data will be employed in
the construction of the heterogeneous and anisotropic diffusion tensor, and
specific sub regions, such as the hippocampus, will be selected to assess site-
specific solute distribution governed by a diffusive process.

In practice, one should first address data and mesh resolution issues. For
instance, raw DTI data can exhibit rough transitions, as well as noise. This is
particularly true in the gray matter proximal to cerebrospinal fluid (e.g. Fig-
ures 5.2 and 5.4 in Chapter 5). Here, we assume that the DTI data have been
suitably smoothened and denoised for use in simulations. In addition, we must
ascertain a mesh resolution that will provide reliable estimates of the spread
of different molecules, while avoiding the unnecessary computational costs as-
sociated with over-resolving the mesh.

6.1 Molecular diffusion in one dimension

To estimate a suitable spatial mesh resolution, time step, and time scale of the
solute diffusion, it is useful to first consider equation (1.1) in one dimension for
different molecules. Here, we consider the protein fragment amyloid-beta (Af3)
associated with neurodegenerative disease [33], the tracer gadobutrol used in
glymphatic magnetic resonance imaging [54], and water. The effective diffusion
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coefficient D in brain tissue for each of these molecules is estimated to be 6.2 x
1075 mm?/s, 1.3 x 10~* mm? /s, and 1.1 x 1073 mm? /s, respectively [69, 67].

6.1.1 Analytical solution

In one dimension and over the domain (0, 00), the parabolic diffusion problem
(1.1) with ug(x) = 0, u(0,t) = 1, and u(oco,t) = 0 allows for a simple analytic
solution:

u(x, t) = erfe(z/(2v/Dt)). (6.1)

Figure 6.1 shows solutions of (6.1) zoomed in on the (left) first 2 mm of
the domain, and the (middle) first 10 mm after 9 hours, and (right) the first
10 mm after 24 hours. It is evident that diffusion is a slow process: signifi-
cant concentration changes occur within 2 mm of the boundary after 9 hours;
however, 1 cm away, the heavier molecules, amyloid-beta and gadobutrol, still
have concentrations near zero. The source code for generating these plots is
available in mri2fem/chp6/analytical_1D.py.

c
= m— AMYloid =R — Amyloid — AMYlOid
50‘50 = Gadovist, ) = Gadovist m— Gadovist
v} ™~
<025 So. ™~
o o

0.00 0 1 3 0.00 0 s To 0.00 0 5 10

distance [mm] distance [mm] distance [mm]

Fig. 6.1 Diffusion according to (6.1): concentration (arbitrary unit) versus distance
from the source/left boundary after 9 hours (left and middle) and after 24 hours (right).

6.1.2 Numerical solution and handling numerical artifacts

Next, we discretize (1.1) using the finite element method (as described in
Chapter 3). Note, however, that the sharp change in the boundary versus
initial conditions for our model problem can lead to artificial oscillations in the
numerical solution. Such oscillations often diminish with refinement; they can
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also be avoided through the use of monotonic or maximum principle preserving
schemes. Another common method, which we consider here, for Galerkin finite
element schemes is mass lumping (e.g. [41]). We provide FEniCS-based source
code for the finite element solution of (1.1) with and without mass lumping in
mri2fem/chp6/diffusion_1D.py. To use this script, see, for example:

$ cd mri2fem/chp6
$ python3 diffusion_1D.py --help

1.0 1.00
c e =10 c m— N=10
o — N= o — N=
= N=20 -5 0.75 N=20
Sos] — N=40 Ju w— N=40
S — N=80 S 0.50 — N=80
2 = analytical sol 2 0.25 = analytical sol
o 0.04 o
o vl

0.00

(a) t = 30 minutes, standard Galerkin

1.004 1.00
- e N=10 - e N=10
.% 0.75 w— N=20 .% 0.75 — N=20
e m =40 Haal m =40
£ 0.254 = gnalytical sol g 0.25 = analytical sol
o o —
¥ 0.00] N 0.00

20 40 20 40

20

40

distance [mm]

(b) ¢t = 30 minutes, lumped mass matrix

20

40

distance [mm]

distance [mm] distance [mm]

(c) t =9 hours, standard Galerkin (d) t =9 hours, lumped mass matrix

Fig. 6.2 Comparison of standard Galerkin (left) and mass-lumped (right) finite ele-
ment schemes of the diffusion equation (1.1) in one dimension over 2 = (0,50) mm at
different times. The parameter N is the number of finite elements and the time step is
5 minutes.
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The standard and mass-lumped finite element solutions are shown in Fig-
ure 6.2 at different times and with different time steps. Early on, for coarse
resolutions (N = 10 or N = 20), with mesh size parameter h = 50 mm/N, the
standard approach yields considerable nonphysical oscillations, whereas the
mass-lumped solution (right) produces significant numerical diffusion. How-
ever, in the longer-term context, the standard Galerkin scheme is clearly de-
sirable: the former allows for a spatial resolution of N = 10 or N = 20, whereas
the latter requires N = 40 or N = 80 to control the numerical diffusion. Es-
sentially, the initial error from the short-term Gibbs phenomenon, that is, the
discontinuous initial data, is no match for the long-term regularizing effect of
the parabolic partial differential equation. Therefore, these early errors do not
contribute much to the long-term numerical solution.

In conclusion, these results suggest that, if we are interested in long-term dy-
namics, a time step size of At ~ 5 minutes with a spatial resolution of N = 40
or N = 80, corresponding roughly to a quasi-uniform mesh cell diameter of 0.5
mm < h < 1 mm, is a good starting target for the standard Galerkin approach
in our three dimensional (3D) discretization. The corresponding scheme with
a lumped mass matrix does, however, significantly overestimate the diffusion
at N = 80.

6.2 Anisotropic diffusion in 3D brain regions

In this section, we consider simulations of gadobutrol diffusion and compute the
average concentrations in different brain regions. We begin with the following
steps:

e We create a brain mesh with gray and white matter marked and ventricles
removed and mark parcellation regions as described in Chapter 4.4.2.

e We filter and map our DTI data onto this geometry as described in Chap-
ter 5.2.2.

e Using FEniCS, we implement a version of the diffusion simulation script
presented in Chapter 3.3.3 allowing for anisotropic diffusion and the com-
putation of integrals over labeled regions.

In the numerical simulation, we represent the DTT data in the form of a hetero-
geneous and anisotropic diffusion tensor field D. The FEniCS code for setting
up the diffusion tensor field reads:

# read the DTI
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T = TensorFunctionSpace (mesh, "DG", 0)
D = Function(T)
hdf.read (D, "/DTI")

We compute the average amount of tracer in a labeled region by integrating the
concentration over the region and dividing by the region’s volume as follows
(with the regions labeled 17 and 1035 as examples):

unit17 += [assemble(u*dx(17))/voll7]
unit1035 += [assemble (u*dx(1035))/vol1035]

The precise commands run are included in mri2fem/chp6/all.sh, and the
script mri2fem/chp6/chp6-diffusion-mritracer.py gives the complete FEn-
iCS code.

6.2.1 Regional distribution of gadobutrol

We compute the average concentrations of gadobutrol diffusing in from the
brain’s surface in regions 17 (hippocampus), 1035 (insula gray matter), 3035
(insula white matter), 1028 (superior frontal gray matter), and 3028 (superior
frontal white matter). The diffusivity of Gadobutrol is approximately twice
that of amyloid-beta, and the estimated mesh size and time step of the previous
section should therefore apply to this case as well. The resulting curves are
shown in Figure 6.3, and the simulation results are shown in Figures 6.4-6.5.
Note that, here, we consider the tracer distribution in certain regions as a
function of time; the distribution therefore starts at a low value and increases
with time as the solute diffuses throughout the brain. Clearly, the distribution
of gadobutrol in the gray matter regions and hippocampus are affected much
more than in the white matter regions. This result is expected since both the
gray matter and hippocampus are closer to the cerebrospinal fluid where, in
our simulation, the gadobutrol concentration is assumed to reside initially.
It is also observed that the upper regions, that is, the superior frontal gray
and white matter (1028 and 3028, respectively), experience faster gadobutrol
deposition than the corresponding regions on the side of the brain.
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Fig. 6.3 Average concentration of gadobutrol (y-axis, arbitrary unit) versus time (x-
axis, hours) in different brain regions: 17 (hippocampus), 1035 (insula gray matter),
3035 (insula white matter), 1028 (superior frontal gray matter), and 3028 (superior
frontal white matter). Time step: 6 minutes, N = 64 brain mesh (cf. below).

Concenfration
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Fig. 6.4 The simulated distribution of gadobutrol, for a mesh with resolution param-
eter set to 32, after 0 hours (left), 5 hours (middle) and 9 hours (right).

6.2.2 Accuracy and convergence of computed quantities

A common question in numerical simulations is whether the computed solu-
tions have converged. In this section, we therefore investigate the mesh conver-
gence of the standard Galerkin and mass-lumped Galerkin approaches. More
precisely, we consider a set of meshes, aiming to determine the accuracy of
the numerical solution. In this example, we consider a roughly uniform refine-
ment, but the mesh is not refined in place; rather, a sequence of meshes is first
generated at different resolutions using the surface volume meshing toolkit
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Fig. 6.5 Illustration of the simulated distribution of solute concentration in the brain
within the cranium.

(SVM-Tk). In particular, we construct a sequence of quasi-uniform meshes, as
follows (using mri2fem/chp6/create mesh refinements.py):

import SVMTK as svmtk
import time

# Import surfaces, and merge lh/rh white surfaces
ventricles = svmtk.Surface("surfaces/lh.ventricles.stl")
lhpial = svmtk.Surface("surfaces/lh.pial.stl")

rhpial = svmtk.Surface("surfaces/rh.pial.stl")

white = svmtk.Surface("surfaces/lh.white.stl")

rhwhite = svmtk.Surface("surfaces/rh.white.stl")
white.union(rhwhite)

surfaces = [lhpial, rhpial, white, ventricles]

# Create subdomain map

smap = svmtk.SubdomainMap ()
smap.add("1000", 1)
smap.add ("0100", 1)
smap.add ("0110", 2)
smap.add ("0010", 2)
smap.add ("1010", 2)
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smap.add("0111", 3)
smap.add("1011", 3)

# Create domain
domain = svmtk.Domain(surfaces, smap)

# Create meshes of increasing resolutions
Ns = [16, 32, 64, 128]
for N in Ns:
print ("Creating mesh for N=%d" 7 N)
t0 = time.time ()
domain.create_mesh (N)
domain.remove_subdomain ([3])
domain.save ("brain_7%d.mesh" 7 N)
tl = time.time ()
print ("Done! That took %g sec" % (t1-t0))

After creating the meshes we mark the subdomains of interest and map
the DTI data onto the mesh, before running the simulations. The following
is a code snippet from mri2fem/chp6/all.sh that shows how the 16 mesh is
created by the scripts described in the previous chapters:

# using the 16 mesh

# convert to hb

python3 ../chp4/convert_to_dolfin_mesh.py \
--meshfile brain_16.mesh --hdf5file brain_16.h5

# mark subdomains
python3 ../chp4/add_parcellations.py \
--in_hdf5 brain_16.h5 \
--in_parc ../chp4/wmparc.mgz \
--out_hdf5 brain_16_tags.h5 \
--add 17 1028 1035 3028 3035

# add dti to the hb file

python3 ../chp5/dti_data_to_mesh.py \
--dti ../chpb5/clean-dti.mgz \
--mesh brain_16_tags.h5 --label 1 0.4 0.6 \
--out DTI_16.h5

# run simulation
python3 chp6-diffusion-mritracer.py --mesh DTI_16.h5 \
--lumped lumped --annotation uniforml6lumped
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python3 chp6-diffusion-mritracer.py --mesh DTI_16.h5 \
--lumped not --annotation uniforml6énotlumped

The average gadobutrol concentrations in the hippocampus over time for
the sequence of meshes generated here are shown in Figure 6.6, without (left)
and with (right) mass lumping. Clearly, the standard Galerkin approach (left)
seems to yield more consistent results than the mass-lumped Galerkin scheme
(right). However, even for the standard Galerkin scheme, whether the solutions
are fully converged seems questionable at the highest resolution tested (around
15.5 million mesh cells). Recall that piecewise constants are used to represent
the anisotropic diffusion tensor D. This DG construction requires about nine
entries per cell, thus yielding approximately 140 million values for 15.5 mil-
lion cells. Higher resolutions, such as those for piecewise linear or quadratic
constructions, are not feasible on a personal computing device with only 32
gigabytes of RAM.

concentration
concentration

— 128 —— 128

0 2 4 6 8 0 2 4 6 8
time [h] time [h]

Fig. 6.6 Average gadobutrol concentration in the hippocampus (y-axis, arbitrary
unit) versus time (x-axis, hours) for different mesh resolutions, At = 6 min. Quasi-
uniform mesh sequence with N = 16, 32, 64, 128 generated by SVM-Tk. Standard
Galerkin (left) versus mass-lumped Galerkin (right) discretizations.

To further assess the accuracy and convergence of the computed concen-
trations under mesh refinements, we therefore also consider adaptively refined
meshes. In particular, we focus on the hippocampus and adaptively refine the
meshes in this region, starting from the N = 16 brain mesh of the previous
mesh sequence. Again, we plot the average gadobutrol concentrations in the
hippocampus over time for a sequence of adaptively refined meshes (see Fig-
ure 6.7 with (right) and without (left) mass-lumping). Using this technique,
we find the solutions between the first, second, and third adaptive refinements
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differ little for the standard scheme. However, mesh convergence for the mass-
lumped Galerkin strategy remains unclear, even after four refinements to the
hippocampal region.

Finally, we examine the mesh statistics (e.g. the number of vertices, cells
and the range of mesh sizes) for the uniformly and adaptively refined meshes.
Before doing so, we comment on the variables h, hpax and hpi,. In scientific
computing, h typically refers to a quantity defined on each tetrahedron 7T in
the mesh and h = hy = max {z — y} where z and y are any two points in
T. We can then define the max and min values as hpyax = maxhy and Apin
is defined similarly; the T subscript on hr is typically dropped and we have
hmin S h S hmax~

Figure 6.6 suggests that, on quasi-uniform meshes, we reach mesh con-
vergence around the refinement level denoted by ’'128’, which, as shown in
Table 6.1 (left), consists of about 15.5 million tetrahedrons. Figure 6.7 sug-
gests that when we use adaptive refinement, mesh convergence is reached at
refinement level '4’ which consists of nearly 7.7 million tetrahedrons (Table 6.1
(right)). Thus, adaptive refinement has reduced the number of mesh tetrahe-
drons by half; a clear benefit. Using our one-dimension test case, in Chapter 6.1,
we estimated that a value of Ay, ~ 0.5 mm would be needed to reach mesh
convergence. However, the results of Table 6.1 indicate that our estimate was
off by a factor of about 3, for the quasi-uniform case, or 10, for the adaptive
case.
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0.8 0.8
0.6 p— 0.6

refinement 1

refinement 1
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Fig. 6.7 Average gadobutrol concentration in the hippocampus (y-axis, arbitrary
unit) versus time (x-axis, hours) for a sequence of adaptively refined meshes, At = 6
minutes. Standard Galerkin (left) versus mass-lumped Galerkin (right) discretizations.
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Reﬁnement|\/ertices Cells hAmin hmax Reﬁnement|Vertices Cells hmin hmax
16 94K 457K 0.97 114 1 99K 479K 0.64 11.4
32 194K 908K 0.46 5.7 2 123K 613K 0.30 11.4
64 567K 2.75M 0.26 2.9 3 275K 1.5M 0.14 11.4
128 2.8M 15.5M 0.14 1.45 4 1.3M 7.7M 0.07 11.4

Table 6.1 Mesh statistics (number of vertices, cells, and minimal and maximal cell
sizes) for the (left) uniformly refined and (right) adaptively refined mesh sequences.

In summary, we have established that assessing the process of tracer distri-
bution within the brain due to diffusion is a feasible, but somewhat compu-
tationally demanding task. In our case, we focused on the hippocampus and
Gadobutrol enrichment and found that indeed a standard Galerkin procedure
was sufficient given a locally refined mesh of a few hundred thousand cells.
Quasi-uniform meshes on the other hand need several million cells before con-
vergence. It is also worth noting that mass-lumping schemes, which are often
prefered due to their monotonic properties that reduce non-physical oscilla-
tions in the short-term, can suffer from significant added numerical diffusivity
and corresponding non-physical spread of tracer in long-term scenarios.
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Chapter 7
Concluding remarks and outlook

Physics-based modeling of brain mechanics, informed by multi-modal imaging
data, is an exciting research area at the frontier of science. Through this intro-
ductory and hands-on text, we have aimed to present a sufficient yet accessible
amount of material to place the reader near the research front and to establish
a solid foundation for further scientific investigations.

The MRI data to finite element pipeline presented here can be used for
further simulations of solute transport within the brain, and importantly, pro-
vides a basis for more complex simulation scenarios. Our techniques for cre-
ating finite element meshes from T1 MR images can be equally applicable
for numerical simulation of the brain as an elastic medium in the context of
traumatic brain injuries, as a poroelastic medium for studying neurological
disorders or stroke, or as an electrical medium for studying the propagation of
epileptic seizures. Similarly, anisotropy data extracted from DTI can inform
diffusion tensors (as here), or the permeability tensor in the context of brain
fluid movement, the conductivity tensor in the context of brain electrophysi-
ology, or possibly the compliance tensor(s) in the context of brain elasticity.
While such physical models have not been considered here, the meshes and
finite element simulation platform FEniCS extend readily to these contexts.

The brain does not exist in isolation, but is tightly coupled to its local
environment, including the surrounding CSF, vasculature, membranes and
spinal cord. The components presented here can be used as building blocks
for computational modeling of the brain and its local environment, but geo-
metrical, numerical, and computational challenges remain for this non-trivial
multi-physics setting.
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110 7 Concluding remarks and outlook

In coming decades, we envisage that mathematics and numerical computa-
tions could play a crucial role in gaining new insights into the mechanisms and
physiological processes of the human brain. Indeed, clinicians and experimen-
talists express a need for modeling and simulation as an alternative avenue of
investigation to alleviate fundamental limitations in traditional techniques. A
greater understanding of physiology and pathology could then ultimately pave
the way for new diagnostics and treatments for a range of brain disorders and
diseases — with immense scientific and societal impact.
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