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Preface to the second edition

In the eight years since the first edition, the Standard Model has not been seriously

discredited as a description of particle physics in the energy region (<2 TeV) so

far explored. The principal discovery in particle physics since the first edition is

that neutrinos carry mass. In this new edition we have added chapters that extend

the formalism of the Standard Model to include neutrino fields with mass, and we

consider also the possibility that neutrinos are Majorana particles rather than Dirac

particles.

The Large Hadron Collider (LHC) is now under construction at CERN. It is

expected that, at the energies that will become available for experiments at the

LHC (∼20 TeV), the physics of the Higgs field will be elucidated, and we shall

begin to see ‘physics beyond the Standard Model’. Data from the ‘B factories’ will

continue to accumulate and give greater understanding of CP violation. We are

confident that interest in the Standard Model will be maintained for some time into

the future.

Cambridge University Press have again been most helpful. We thank Miss V. K.

Johnson for secretarial assistance. We are grateful to Professor Dr J. G. Körner

for his corrections to the first edition, and to Professor C. Davies for her helpful

correspondence.

xi





Preface to the first edition

The ‘Standard Model’ of particle physics is the result of an immense experimental

and inspired theoretical effort, spanning more than fifty years. This book is intended

as a concise but accessible introduction to the elegant theoretical edifice of the

Standard Model. With the planned construction of the Large Hadron Collider at

CERN now agreed, the Standard Model will continue to be a vital and active subject.

The beauty and basic simplicity of the theory can be appreciated at a certain

‘classical’ level, treating the boson fields as true classical fields and the fermion

fields as completely anticommuting. To make contact with experiment the theory

must be quantised. Many of the calculations of the consequences of the theory are

made in quantum perturbation theory. Those we present are for the most part to the

lowest order of perturbation theory only, and do not have to be renormalised. Our

account of renormalisation in Chapter 8 is descriptive, as is also our final Chapter 19

on the anomalies that are generated upon quantisation.

A full appreciation of the success and significance of the Standard Model requires

an intimate knowledge of particle physics that goes far beyond what is usually taught

in undergraduate courses, and cannot be conveyed in a short introduction. However,

we attempt to give an overview of the intellectual achievement represented by the

Model, and something of the excitement of its successes. In Chapter 1 we give a

brief résumé of the physics of particles as it is qualitatively understood today. Later

chapters developing the theory are interspersed with chapters on the experimental

data. The amount of supporting data is immense and so we attempt to focus only on

the most salient experimental results. Unless otherwise referenced, experimental

values quoted are those recommended by the Particle Data Group (1996).

The mathematical background assumed is that usually acquired during an under-

graduate physics course. In particular, a facility with the manipulations of matrix

algebra is very necessary; Appendix A provides an aide-mémoire. Principles of

symmetry play an important rôle in the construction of the model, and Appendix B

is a self-contained account of the group theoretic ideas we use in describing these

xiii



xiv Preface to the first edition

symmetries. The mathematics we require is not technically difficult, but the reader

must accept a gradually more abstract formulation of physical theory than that pre-

sented at undergraduate level. Detailed derivations that would impair the flow of

the text are often set as problems (and outline solutions to these are provided).

The book is based on lectures given to beginning graduate students at the Uni-

versity of Bristol, and is intended for use at this level and, perhaps, in part at least,

at senior undergraduate level. It is not intended only for the dedicated particle

physicist: we hope it may be read by physicists working in other fields who are

interested in the present understanding of the ultimate constituents of matter.

We should like to thank the anonymous referees of Cambridge University Press

for their useful comments on our proposals. The Department of Physics at Bristol

has been generous in its encouragement of our work. Many colleagues, at Bristol

and elsewhere, have contributed to our understanding of the subject. We are grateful

to Mrs Victoria Parry for her careful and accurate work on the typescript, without

which this book would never have appeared.



Notation

Position vectors in three-dimensional space are denoted by r = (x, y, z), or x =
(x1, x2, x3) where x1 = x, x2 = y, x3 = z.

A general vector a has components (a1, a2, a3), and â denotes a unit vector in

the direction of a.

Volume elements in three-dimensional space are denoted by d3x = dxdydz =
dx1dx2dx3.

The coordinates of an event in four-dimensional time and space are denoted by

x = (x0, x1, x2, x3) = (x0, x) where x0 = ct .
Volume elements in four-dimensional time and space are denoted by d4x =

dx0dx1dx2dx3 = c dt d3x.

Greek indices �, �, �, � take on the values 0, 1, 2, 3.

Latin indices i, j, k, l take on the space values 1, 2, 3.

Pauli matrices

We denote by �� the set (�0, �1, �2, �3) and by �̃� the set (�0, −�1, −�2, −�3),

where

�0 = I =
(

1 0

0 1

)
, �1 =

(
0 1

1 0

)
, �2 =

(
0 −i

i 0

)
, �3 =

(
1 0

0 −1

)
,

(�1)2 = (�2)2 = (�3)2 = I; �1�2 = i�3 = − �2�1, etc.

Chiral representation for � -matrices

� 0 =
(

0 I
I 0

)
, � i =

(
0 �i

−�i 0

)
,

� 5 = i� 0 � 1 � 2 � 3 =
(−I 0

0 I

)
.
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xvi Notation

Quantisation (� = c = 1)

(E, p) → (i∂/∂t, −i∇), or p� → i∂�.

For a particle carrying charge q in an external electromagnetic field,

(E, p) → (E − q	, p − qA), or p� → p� − q A�,

i∂� → (i∂� − q A�) = i(∂� + iq A�).

Field definitions

Z� = W�
3 cos 
w − B� sin 
w,

A� = W�
3 sin 
w + B� cos 
w,

where sin2 
w = 0.2315(4)

g2 sin 
w = g1 cos 
w = e, GF = g2
2/(4

√
2Mw

2).

Glossary of symbols

A electromagnetic vector potential Section 4.3

A� electromagnetic four-vector potential

A�� field strength tensor Section 11.3

AFB forward–backward asymmetry Section 15.2

a wave amplitude Section 3.5

a, a† boson annihilation, creation operator

B magnetic field

B� gauge field Section 11.1

B�� field strength tensor Section 11.2

b,b† fermion annihilation, creation operator

D isospin doublet Section 16.6

d,d† antifermion annihilation, creation operator

dk (k = 1,2,3) down-type quark field

E electric field

E energy

e, eL, eR electron Dirac, two-component left-handed, right-handed field

F�� electromagnetic field strength tensor Section 4.1

f radiative corrections factor Sections 15.1, 17.4

fabc structure constants of SU(3) Section B.7

G� gluon matrix gauge field

G�� gluon field strength tensor

GF Fermi constant Section 9.4
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g�� metric tensor

g strong coupling constant Section 16.1

g1, g2 electroweak coupling constants

H Hamiltonian Section 3.1

h(x) Higgs field

H Hamiltonian density Section 3.3

I isospin operator Sections 1.5, 16.6

J electric current density Section 4.1

J total angular momentum operator

J Jarlskog constant Section 14.3

J � lepton number current Section 12.4

j probability current Section 7.1

j� lepton current Section 12.2

K string tension Section 17.1

k wave vector

L lepton doublet Section 12.1

L Lagrangian Section 3.1

L Lagrangian density Section 3.3

l3 normalisation volume Section 3.5

M left-handed spinor transformation matrix Section B.6

M proton mass Section D.1

m mass

N right-handed spinor transformation matrix Section B.6

N number operator Section C.1

Ô quantum operator

P total field momentum

p momentum

Q2 = −q�q�

q quark colour triplet

q� energy–momentum transfer

R rotation matrix Section B.2

S spin operator

S action Section 3.1

s square of centre of mass energy

T �
� energy–momentum tensor Section 3.6

U unitary matrix

uk (k = 1, 2, 3) up-type quark field

uL, uR two-component left-handed, right-handed spinors Section 6.1

u+, u− Dirac spinors Section 6.3

V Kobayashi–Maskawa matrix Section 14.2
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V normalisation volume

v velocity

v = |v|
vL, vR two-component left-handed, right-handed spinors

v+, v− Dirac spinors Section 6.4

W� matrix of vector gauge field Section 11.1

W�� field strength tensor Section 11.2

W 1
�, W 2

�, W +
� , W −

� fields of W boson

Z� field of Z boson

�(Q2) effective fine structure constant Section 16.3

�s(Q2) effective strong coupling constant Section 16.3

�latt lattice coupling constant Section 17.1

�i Dirac matrix Section 5.1

� Dirac matrix Section 5.1
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�� Dirac matrix Section 5.5
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ε helicity index


 boost parameter: tanh 
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 = � Section 2.1,

phase angle, scattering angle, scalar potential Section 4.3,
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�−1 confinement length Section 16.3

�latt lattice parameter Section 17.1

�a matrices associated with SU(3) Section B.7
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1

The particle physicist’s view of Nature

1.1 Introduction

It is more than a century since the discovery by J. J. Thomson of the electron. The

electron is still thought to be a structureless point particle, and one of the elementary

particles of Nature. Other particles that were subsequently discovered and at first

thought to be elementary, like the proton and the neutron, have since been found to

have a complex structure.

What then are the ultimate constituents of matter? How are they categorised?

How do they interact with each other? What, indeed, should we ask of a mathemat-

ical theory of elementary particles? Since the discovery of the electron, and more

particularly in the last sixty years, there has been an immense amount of experi-

mental and theoretical effort to determine answers to these questions. The present

Standard Model of particle physics stems from that effort.

The Standard Model asserts that the material in the Universe is made up of

elementary fermions interacting through fields, of which they are the sources. The

particles associated with the interaction fields are bosons.

Four types of interaction field, set out in Table 1.1., have been distinguished in

Nature. On the scales of particle physics, gravitational forces are insignificant. The

Standard Model excludes from consideration the gravitational field. The quanta of

the electromagnetic interaction field between electrically charged fermions are the

massless photons. The quanta of the weak interaction fields between fermions are

the charged W+ and W− bosons and the neutral Z boson, discovered at CERN in

1983. Since these carry mass, the weak interaction is short ranged: by the uncertainty

principle, a particle of mass M can exist as part of an intermediate state for a time

h/Mc2, and in this time the particle can travel a distance no greater than hc/Mc.

Since Mw ≈ 80 GeV/c2 and Mz ≈ 90 GeV/c2, the weak interaction has a range

≈ 10−3 fm.

1



2 The particle physicist’s view of Nature

Table 1.1. Types of interaction field

Interaction field Boson Spin

Gravitational field ‘Gravitons’ postulated 2
Weak field W+, W−, Z particles 1
Electromagnetic field Photons 1
Strong field ‘Gluons’ postulated 1

The quanta of the strong interaction field, the gluons, have zero mass and, like

photons, might be expected to have infinite range. However, unlike the electromag-

netic field, the gluon fields are confining, a property we shall be discussing at length

in the later chapters of this book.

The elementary fermions of the Standard Model are of two types: leptons and

quarks. All have spin 1
2
, in units of h, and in isolation would be described by

the Dirac equation, which we discuss in Chapters 5, 6 and 7. Leptons interact

only through the electromagnetic interaction (if they are charged) and the weak

interaction. Quarks interact through the electromagnetic and weak interactions and

also through the strong interaction.

1.2 The construction of the Standard Model

Any theory of elementary particles must be consistent with special relativity. The

combination of quantum mechanics, electromagnetism and special relativity led

Dirac to the equation now universally known as the Dirac equation and, on quan-

tising the fields, to quantum field theory. Quantum field theory had as its first

triumph quantum electrodynamics, QED for short, which describes the interaction

of the electron with the electromagnetic field. The success of a post-1945 genera-

tion of physicists, Feynman, Schwinger, Tomonaga, Dyson and others, in handling

the infinities that arise in the theory led to a spectacular agreement between QED

and experiment, which we describe in Chapter 8.

The Standard Model, like the QED it contains, is a theory of interacting fields.

Our emphasis will be on the beauty and simplicity of the theory, and this can be

understood at a certain ‘classical’ level, treating the boson fields as true classical

fields, and the fermion fields as completely anticommuting. To make a judgement

of the success of the model in describing the data, it is necessary to quantise the

fields, but to keep this book concise and accessible, results beyond the lowest orders

of perturbation theory will only be quoted.

The construction of the Standard Model has been guided by principles of sym-

metry. The mathematics of symmetry is provided by group theory; groups of



1.3 Leptons 3

Table 1.2. Leptons

Mass (MeV/c2) Mean life (s) Electric charge

Electron e− 0.5110 ∞ −e
Electron neutrino νe < 3 × 10−6 0
Muon μ− 105.658 2.197 × 10−6 −e
Muon neutrino νμ 0
Tau τ− 1777 (291.0 ± 1.5) × 10−15 −e
Tau neutrino ντ 0

For neutrino masses see Chapter 20.

particular significance in the formulation of the Model are described in Appendix B.

The connection between symmetries and physics is deep. Noether’s theorem states,

essentially, that for every continuous symmetry of Nature there is a correspond-

ing conservation law. For example, it follows from the presumed homogeneity of

space and time that the Lagrangian of a closed system is invariant under uniform

translations of the system in space and in time. Such transformations are therefore

symmetry operations on the system. It may be shown that they lead, respectively,

to the laws of conservation of momentum and conservation of energy. Symmetries,

and symmetry breaking, will play a large part in this book.

In the following sections of this chapter, we remind the reader of some of the

salient discoveries of particle physics that the Standard Model must incorporate. In

Chapter 2 we begin on the mathematical formalism we shall need in the construction

of the Standard Model.

1.3 Leptons

The known leptons are listed in Table 1.2.. The Dirac equation for a charged massive

fermion predicts, correctly, the existence of an antiparticle of the same mass and

spin, but opposite charge, and opposite magnetic moment relative to the direction of

the spin. The Dirac equation for a neutrino ν allows the existence of an antineutrino

ν̄.

Of the charged leptons, only the electron e− carrying charge −e and its antipar-

ticle e+, are stable. The muon μ− and tau τ− and their antiparticles, the μ+ and τ+,

differ from the electron and positron only in their masses and their finite lifetimes.

They appear to be elementary particles. The experimental situation regarding small

neutrino masses has not yet been clarified. There is good experimental evidence

that the e, μ and τ have different neutrinos νe, νμ and ντ associated with them.

It is believed to be true of all interactions that they preserve electric charge. It

seems that in its interactions a lepton can change only to another of the same type,
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Table 1.3. Properties of quarks

Quark Electric charge (e) Mass (×c−2)

Up u 2/3 1.5 to 4 MeV
Down d −1/3 4 to 8 MeV
Charmed c 2/3 1.15 to 1.35 GeV
Strange s −1/3 80 to 130 MeV
Top t 2/3 169 to 174 GeV
Bottom b −1/3 4.1 to 4.4 GeV

and a lepton and an antilepton of the same type can only be created or destroyed

together. These laws are exemplified in the decay

μ− → νμ + e− + ν̄e.

Apart from neutrino oscillations (see Chapters 19–21). This conservation of lepton
number, antileptons being counted negatively, which holds for each separate type

of lepton, along with the conservation of electric charge, will be apparent in the

Standard Model.

1.4 Quarks and systems of quarks

The known quarks are listed in Table 1.3.. In the Standard Model, quarks, like

leptons, are spin 1
2

Dirac fermions, but the electric charges they carry are 2e/3,

−e/3. Quarks carry quark number, antiquarks being counted negatively. The net

quark number of an isolated system has never been observed to change. However,

the number of different types or flavours of quark are not separately conserved:

changes are possible through the weak interaction.

A difficulty with the experimental investigation of quarks is that an isolated quark

has never been observed. Quarks are always confined in compound systems that

extend over distances of about 1 fm. The most elementary quark systems are baryons
which have net quark number three, and mesons which have net quark number zero.

In particular, the proton and neutron are baryons. Mesons are essentially a quark

and an antiquark, bound transiently by the strong interaction field. The term hadron
is used generically for a quark system.

The proton basically contains two up quarks and one down quark (uud), and the

neutron two down quarks and one up (udd). The proton is the only stable baryon.

The neutron is a little more massive than the proton, by about 1.3 MeV/c2, and

in free space it decays to a proton through the weak interaction: n → p + e−+ ν̄e,

with a mean life of about 15 minutes.
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All mesons are unstable. The lightest mesons are the π-mesons or ‘pions’. The

electrically charged π+ and π− are made up of (ud̄) and (ūd) pairs, respectively,

and the neutral π0 is either uū or dd̄, with equal probabilities; it is a coherent

superposition (uū − dd̄)/
√

2 of the two states. The π+ and π− have a mass of

139.57 MeV/c2 and the π0 is a little lighter, 134.98 MeV/c2. The next lightest

meson is the η (≈ 547 MeV/c2), which is the combination (uū + dd̄)/
√

2 of quark–

antiquark pairs orthogonal to the π0, with some ss̄ component.

1.5 Spectroscopy of systems of light quarks

As will be discussed in Chapter 16, the masses of the u and d quarks are quite small,

of the order of a few MeV/c2, closer to the electron mass than to a meson or baryon

mass. A u or d quark confined within a distance ≈ 1 fm has, by the uncertainty

principle, a momentum p ≈ h/(1fm) ≈ 200 MeV/c, and hence its energy is E ≈
pc ≈ 200 MeV, almost independent of the quark mass. All quarks have the same

strong interactions. As a consequence, the physics of light quark systems is almost

independent of the quark masses. There is an approximate SU(2) isospin symmetry

(Section 16.6), which is evident in the Standard Model.

The symmetry is not exact because of the different quark masses and different

quark charges. The symmetry breaking due to quark mass differences prevails over

the electromagnetic. In all cases where two particles differ only in that a d quark is

substituted for a u quark, the particle with the d quark is more massive. For example,

the neutron is more massive than the proton, even though the mass, ∼ 2 MeV/c2,

associated with the electrical energy of the charged proton is far greater than that

associated with the (overall neutral) charge distribution of the neutron. We conclude

that the d quark is heavier than the u quark.

The evidence for the existence of quarks came first from nucleon spectroscopy.

The proton and neutron have many excited states that appear as resonances in

photon–nucleon scattering and in pion–nucleon scattering (Fig. 1.1). Hadron states

containing light quarks can be classified using the concept of isospin. The u and d

quarks are regarded as a doublet of states |u〉 and |d〉, with I = 1/2 and I3 = +1/2,

–1/2, respectively. The total isospin of a baryon made up of three u or d quarks is

then I = 3/2 or I = 1/2. The isospin 3/2 states make up multiplets of four states

almost degenerate in energy but having charges 2e(uuu), e(uud), 0(udd), −e(ddd).

The I = 1/2 states make up doublets, like the proton and neutron, having charges

e(uud) and 0(udd). The electric charge assignments of the quarks were made to

comprehend this baryon charge structure.

Energy level diagrams of the I = 3/2 and I = 1/2 states up to excitation energies

of 1 GeV are shown in Fig. 1.2. The energy differences between states in a multiplet

are only of the order of 1 MeV and cannot be shown on the scale of the figure. The
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Figure 1.1 The photon cross-section for hadron production by photons on protons
(dashes) and deuterons (crosses). The difference between these cross-sections is
approximately the cross-section for hadron production by photons on neutrons.
(After Armstrong et al. (1972).)

widths � of the excited states are however quite large, of the order of 100 MeV,

corresponding to mean lives τ = h/� ∼ 10−23s. The excited states are all energetic

enough to decay through the strong interaction, as for example �++ → p + π+

(Fig. 1.3).
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Figure 1.2 An energy-level diagram for the nucleon and its excited states. The
levels fall into two classes: isotopic doublets (I = 1/2) and isotopic quartets (I =
3/2). The states are labelled by their total angular momenta and parities JP . The
nucleon doublet N(939) is the ground state of the system, the �(1232) is the lowest
lying quartet. Within the quark model (see text) these two states are the lowest that
can be formed with no quark orbital angular momentum (L = 0). The other states
designated by unbroken lines have clear interpretations: they are all the next most
simple states with L = 1 (negative parity) and L = 2 (positive parity). The broken
lines show states that have no clear interpretation within the simple three-quark
model. They are perhaps associated with excited states of the gluon fields.
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Table 1.4. Isospin quantum numbers
of light quarks

Quark Isospin I I3

u 1/2 1/2
ū 1/2 −1/2
d 1/2 −1/2
d̄ 1/2 1/2
s 0 0
s̄ 0 0

Figure 1.3 A quark model diagram of the decay �++ → p + π+. The gluon field
is not represented in this diagram, but it would be responsible for holding the quark
systems together and for the creation of the dd̄ pair.

The rich spectrum of the baryon states can largely be described and understood

on the basis of a simple ‘shell’ model of three confined quarks. The lowest states

have orbital angular momentum L = 0 and positive parity. The states in the next

group have L = 1 and negative parity, and so on. However, the model has the curious

feature that, to fit the data, the states are completely symmetric in the interchange

of any two quarks. For example, the �++(uuu), which belongs to the lowest I =
3/2 multiplet, has J p = 3/2+. If L = 0 the three quark spins must be aligned ↑↑↑
in a symmetric state to give J = 3/2, and the lowest energy spatial state must be

totally symmetric. Symmetry under interchange is not allowed for an assembly of

identical fermions! However, there is no doubt that the model demands symmetry,

and with symmetry it works very well. The resolution of this problem will be left

to later in this chapter. There are only a few states (broken lines in Fig. 1.2) that

cannot be understood within the simple shell model.

Mesons made up of light u and d quarks and their antiquarks also have a rich

spectrum of states that can be classified by their isospin. Antiquarks have an I3 of

opposite sign to that of their corresponding quark (Table 1.4.). By the rules for the

addition of isospin, quark–antiquark pairs have I = 0 or I = 1. The I = 0 states



1.5 Spectroscopy of systems of light quarks 9

1−

0−

1−

0−

1+

(a)

States are predominantly ss

(b) (c)Mass

(GeV)

(c)

1+

2+

0+

0+

2+

2+

1+

0+

1+

0+

1.5

1.0

0.5 

0.0

1+

1+

0+

1−

1−

0−

I = 0 I = 1 I = 1
2

Figure 1.4 States of the quark–antiquark system uū, ud̄, dū, dd̄ form isotopic triplets

(l = 1) : ud̄, (uū − dd̄)/
√

2, dū; and also isotopic singlets (I = 0) : (uū + dd̄)/
√

2.
Figure 1.4(a) is an energy-level diagram of the lowest energy isosinglets, including
states --- which are interpreted as ss̄ states. Figure 1.4(b) is an energy-level diagram
of the lowest energy isotriplets. Figure 1.4(c) is an energy-level diagram of the
lowest energy K mesons. The K mesons are quark–antiquark systems us̄ and ds̄;
they are isotopic doublets, as are their antiparticle states sū and sd̄. Their higher
energies relative to the states in Fig. 1.4(b) are largely due to the higher mass of
the s over the u and d quarks. The large relative displacement of the 0+ state is a
feature with, as yet, no clear interpretation.

are singlets with charge 0, like the η (Fig. 1.4(a)). The I = 1 states make up triplets

carrying charge +e, 0, −e, which are almost degenerate in energy, like the triplet

π+, π0, π−.

The spectrum of I = 1 states with energies up to 1.5 GeV is shown in Fig. 1.4(b).

As in the baryon case the splitting between states in the same isotopic multiplet

is only a few MeV; the widths of the excited states are like the widths of the
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excited baryon states, of the order of 100 MeV. In the lowest multiplet (the pions),

the quark–antiquark pair is in an L = 0 state with spins coupled to zero. Hence

J P = 0−, since a fermion and antifermion have opposite relative parity (Section

6.4). In the first excited state the spins are coupled to 1 and J P = 1−. These are

the ρ mesons. With L = 1 and spins coupled to S = 1 one can construct states

2+, 1+, 0+, and with L = 1 and spins coupled to S = 0 a state 1+. All these states

can be identified in Fig. 1.4(b).

1.6 More quarks

‘Strange’ mesons and baryons were discovered in the late 1940s, soon after the

discovery of the pions. It is apparent that as well as the u and d quarks there exists

a so-called strange quark s, and strange particles contain one or more s quarks. An

s quark can replace a u or d quark in any baryon or meson to make the strange

baryons and strange mesons. The electric charges show that the s quark, like the

d, has charge –e/3, and the spectra can be understood if the s is assigned isospin

I = 0.

The lowest mass strange mesons are the I = 1/2 doublet, K−(sū, mass 494 MeV)

and K̄o(sd̄, mass 498 MeV). Their antiparticles make up another doublet, the K+(us̄)

and Ko(ds̄).

The effect of quark replacement on the meson spectrum is illustrated in

Fig. 1.4. Each level in the spectrum of Fig. 1.4(b) has a member (dū) with charge −e.

Figure 1.4(c) shows the spectrum of strange (sū) mesons. There is a correspondence

in angular momentum and parity between states in the two spectra. The energy dif-

ferences are a consequence of the s quark having a much larger mass, of the order

of 200 MeV.

The excess of mass of the s quark over the u and d quarks makes the s quark in

any strange particle unstable to decay by the weak interaction.

Besides the u, d and s quarks there are considerably heavier quarks: the

charmed quark c (mass ≈ 1.3 GeV/c2, charge 2e/3), the bottom quark b (mass ≈
4.3 GeV/c2, charge −e/3), and the top quark t (mass ≈ 180 GeV/c2, charge 2e/3).

The quark masses are most remarkable, being even more disparate than the lepton

masses. The experimental investigation of the elusive top quark is still in its infancy,

but it seems that three quarks of any of the six known flavours can be bound to form

a system of states of a baryon (or three antiquarks to form antibaryon states), and

any quark–antiquark pair can bind into mesonic states.

The c and b quarks were discovered in e+ e− colliding beam machines. Very

prominent narrow resonances were observed in the e+ e− annihilation cross-

sections. Their widths, of less than 15 MeV, distinguished the meson states respon-

sible from those made up of u, d or s quarks. There are two groups of resonant states.
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The group at around 3 GeV centre of mass energy are known as J/ψ resonances,

and are interpreted as charmonium cc̄ states. Another group, around 10 GeV, the ϒ

(upsilon) resonances, are interpreted as bottomonium bb̄ states. The current state of

knowledge of the cc̄ and bb̄ energy levels is displayed in Fig. 1.5. We shall discuss

these systems in Chapter 17.

The existence of the top quark was established in 1995 at Fermilab, in p̄p colli-

sions.

1.7 Quark colour

Much informative quark physics has been revealed in experiments with e+ e− col-

liding beams. We mention here experiments in the range between centre of mass

energies 10 GeV and the threshold energy, around 90 GeV, at which the Z boson

can be produced.

The e+ e− annihilation cross-section σ(e+ e− → μ+ μ−) is comparatively easy

to measure, and is easy to calculate in the Weinberg–Salam electroweak theory,

which we shall introduce in Chapter 12. At centre of mass energies much below 90

GeV the cross-section is dominated by the electromagnetic process represented by

the Feynman diagram of Fig. 1.6. The muon pair are produced ‘back-to-back’ in the

centre of mass system, which for most e+ e− colliders is the laboratory system. To

leading order in the fine-structure constant α = e2/(4πε0hc), the differential cross-

section for producing muons moving at an angle θ with respect to unpolarised

incident beams is

dσ

dθ
= πα2

2s
(1 + cos2 θ ) sin θ (1.1)

where s is the square of the centre of mass energy (see Okun, 1982, p. 205). In the

derivation of (1.1) the lepton masses are neglected. Integrating with respect to θ ,

the total cross-section is

σ = 4πα2

3s
. (1.2)

The quantity R(E) shown in Fig. 1.7 is the ratio

R = σ (e+ e− → strongly interacting particles)

σ (e+ e− → μ+ μ−)
. (1.3)

At the lower energies many hadronic states are revealed as resonances, but R seems

to become approximately constant, R ≈ 4, at energies above 10 GeV up to about

40 GeV.
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Figure 1.5 Energy-level diagrams for charmonium cc̄ and bottomonium bb̄ states,
below the threshold at which they can decay through the strong interaction to
meson pairs (for example cc̄ → cū + uc̄). States labelled 1S, 2S, 3S have orbital
angular momentum L = 0 and the 1P, 2P states have L = 1. The intrinsic quark
spins can couple to S = 0 to give states with total angular momentum J = L.
These states are denoted by -----; experimentally they are difficult to detect. The
intrinsic quark spins can also couple to give S = 1. States with S = 1 are denoted
by —. Spin–orbit coupling splits the P states with S = 1 to give rise to states with
J P = 0+, 1+, 2+. This spin–orbit splitting is apparent in the figure. All the S = 1
states shown have been measured.
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Figure 1.6 The lowest order Feynman diagram (Chapter 8) for electromagnetic
μ+ μ− pair production in e+e− collisions.

As fundamental particles, quarks have the same electrodynamics as muons, apart

from the magnitude of their electric charge. The Feynman diagrams that dominate

the numerator of R in this range 10 GeV to 40 GeV are shown in Fig. 1.8. (The top

quark has a mass ∼ 174 GeV/c2 and will not contribute.) For each quark process

the formula (1.2) holds, except that e is replaced by the quark’s electric charge at

the quark vertex, which suggests

R =
(

2

3

)2

+
(

1

3

)2

+
(

2

3

)2

+
(

1

3

)2

+
(

1

3

)2

= 11

9
. (1.4)

This value is too low, by a factor of about 3.

In the Standard Model, the discrepancy is resolved by introducing the idea of

quark colour. A quark not only has a flavour index, u, d, s, c, b, t, but also, for each

flavour, a colour index. There are postulated to be three basic states of colour, say

red, green and blue (r, g, b). With three quark colour states to each flavour, we have

to multiply the R of (1.4) by 3, to obtain

R = 11

3
, (1.5)

which is in excellent agreement with the data of Fig. 1.7.

This invention of colour not only solves the problem of R but, most significantly,

solves the problem of the symmetry of the baryon states. We have seen (Section

1.5) that in the absence of any new quantum number baryon states are completely

symmetric in the interchange of two quarks. However, if these state functions are

multiplied by an antisymmetric colour state function, the overall state becomes

antisymmetric, and the Pauli principle is preserved.

Strong support for the mechanism of quark production represented by the

Feynman diagrams of Fig. 1.8 is given by other features in the data from

e+ e− colliders. An e+ e− annihilation at high energies produces many hadrons.
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Figure 1.7 Measurements of R(E) from the resonance region 1 GeV < E < 11 GeV
into the region 11 GeV < E < 60 GeV, which contains no prominent resonances
and no quark–antiquark production threshold. For E > 11 GeV two curves are
shown of calculations that take account of quark colour and include electroweak
corrections and strong interaction (QCD) effects. (Adapted from Particle Data
Group (1996).)

Figure 1.8 The lowest order Feynman diagrams for quark–antiquark pair produc-
tion in e+ e− collisions at energies below the Z threshold.
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Figure 1.9 An example of an e+ e− annihilation event that results in two jets of
hadrons. The figure shows the projection of the charged particle tracks onto a plane
perpendicular to the axis of the e+ e− beams. This figure was taken from an event
in the TASSO detector at PETRA DESY.

These are mostly correlated into two back-to-back jets. An example is shown in

Fig. 1.9. (The charged particle tracks are curved because of the presence of an

external magnetic field: the curvature is related to the particle’s momentum.) The

direction of a jet may be defined as the direction at the point of production of the

total momentum of all the hadrons associated with it. The momenta of two back-

to-back jets are equal and opposite. The jet directions may be presumed to be the

directions of the initial quark–antiquark pair. This interpretation is corroborated by

an examination of the angular distribution of the jet directions of two-jet events

from many annihilations, with respect to the e+ e− beams. The angular distribution

is the same as that for muons (equation (1.1)) after allowance has been made for

the Z contribution, which becomes significant as the energy for Z production is

approached.
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The hadron jets result from the original quark and antiquark combining with

quark–antiquark pairs generated from the vacuum. The precise details of the pro-

cesses involved are not yet fully understood.

1.8 Electron scattering from nucleons

There is a clear advantage in using electrons to probe the proton and neutron, since

electrons interact with quarks primarily through electromagnetic forces that are

well understood: the weak interaction is negligible in the scattering process, except

at very high energy and large scattering angle, and the strong interaction is not

directly involved.

In the 1950s, experiments at Stanford on nucleon targets at rest in the laboratory

revealed the electric charge distribution in the proton and (using scattering data

from deuterium targets) the neutron. These early experiments were performed at

electron energies ≤ 500 MeV (Hofstadter et al., 1958). Scattering at higher ener-

gies has thrown more light on the behaviour of quarks in the proton. At these

energies inelastic electron scattering, which involves meson production, becomes

the dominant mode.

At the electron–proton collider HERA at Hamburg, a beam of 30 GeV electrons

met a beam of 820 GeV protons head on. Many features of the ensuing electron–

proton collisions are well described by the parton model, which was introduced

by Feynman in 1969. In the parton model each proton in the beam is regarded as

a system of sub-particles called partons. These are quarks, antiquarks and gluons.

Quarks and antiquarks are the particles that carry electric charge. The basic idea of

the parton model is that at high energy–momentum transfer Q2, an electron scatters

from an effectively free quark or antiquark and the scattering process is completed

before the recoiling quark or antiquark has time to interact with its environment of

quarks, antiquarks and gluons. Thus in the calculation of the inclusive cross-section

the final hadronic states do not appear.

In the model, at large Q2 both the electron and the struck quark are deflected

through large angles. Figure 1.10 shows an example of an event from the ZEUS

detector at HERA. The transverse momentum of the scattered electron is balanced

by a jet of hadrons, which can be associated with the recoiling quark. Another jet,

the ‘proton remnant’ jet is confined to small angles with respect to the proton beam.

Events like these give further strong support to the parton model.

The success of the parton model in interpreting the data gives added support to

the concept of quarks. The parton model is not strictly part of our main theme but,

in view of its interest and importance in particle physics, a simple account of the

model and its relation to experiment is given in Appendix D.



1.9 Particle accelerators 17

(a)

e

e

(b)

30 GeV
electron beam

820 GeV
proton beam

Figure 1.10 This figure illustrating particle tracks is taken from an event in the
ZEUS detector at HERA, DESY. Figure 1.10(a) is the event projected onto a plane
perpendicular to the axis of the beams. Figure 1.10(b) is the event projected onto
a plane passing through the axis of the beams.

A hadron jet has been ejected from the proton by an electron. The track of the
recoiling electron is marked e. The initiating beams and the proton remnant jet are
confined to the beam pipes and are not detected.

1.9 Particle accelerators

Progress in our understanding of Nature has come through the interplay between

theory and experiment. In particle physics, experiment now depends primarily on

the great particle accelerators and ingeneous and complex particle detectors, which

have been built, beginning in the early 1930s with the Cockroft–Walton linear

accelerator at Cambridge, UK, and Lawrence’s cyclotron at Berkeley, USA. The

Cambridge machine accelerated protons to 0.7 MeV; the first Berkeley cyclotron

accelerated protons to 1.2 MeV. For a time after 1945 important results were

obtained using cosmic radiation as a source of high energy particles, events

being detected in photographic emulsion, but in the 1950s new accelerators
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Table 1.5. Some particle accelerators

Machine Particles collided Start date–end date

TEVATRON p: 900 GeV 1987
(Fermilab, Batavia, Il) p̄ : 900 GeV

SLC e+ : 50 GeV 1989–1998
(SLAC, Stanford) e− : 50 GeV

HERA e: 30 GeV 1992
(DESY, Hamburg) p: 820 GeV

LEP2 e+ : 81GeV 1996–2000
(CERN, Geneva) e− : 81GeV

PEP-II e− : 9 GeV 1999–2008
(SLAC, Stanford) e+ : 3.1 GeV

LHC p: 7 TeV 2008
(CERN, Geneva) p: 7 TeV

provided beams of particles of increasingly high energies. Some of the machines,

past, present and future, are listed in Table 1.5.. Detailed parameters of these

machines, and of others, may be found in Particle Data Group (2005).

The TEVATRON at Fermilab is where the top quark was discovered. The physics

of the top quark is as yet little explored. It makes only a brief appearance in our text,

though it is an essential part of the pattern of the Standard Model. The upgraded

LEP2 at CERN is able to create W+ W− pairs, and will allow detailed studies of

the weak interaction. At Stanford, PEP-II and the associated ‘BaBar’ (BB̄) detector

is designed to study charge conjugation, parity (CP) violation. The way in which

CP violation appears in the Standard Model is discussed in Chapter 18.

The most ambitious machine likely to be built in the immediate future is the

Large Hadron Collider (LHC) at CERN. It is expected that with this machine it will

be possible to observe the Higgs boson, if such a particle exists. The Higgs boson is

an essential component of the Standard Model; we introduce it in Chapter 10. It is

also widely believed that the physics of Supersymmetry, which perhaps underlies

the Standard Model, will become apparent at the energies, up to 14 TeV, which will

be available at the LHC.

1.10 Units

In particle physics it is usual to simplify the appearance of equations by using units

in which h = 1 and c = 1. In electromagnetism we set ε0 = 1 (so that the force

between charges q1 and q2 is q1q2/4πr2), and μ0 = 1, to give c2 = (μ0ε0)−1 = 1.
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We shall occasionally reinsert factors of h and c where it may be reassuring

or illuminating, or for the purposes of calculation. It is useful to remember

that

hc ≈ 197 MeV fm, e2 4π ≈ 1.44 MeV fm,

α = e2/4πhc ≈ (1/137), c ≈ 3 × 1023 fm s−1.

Energies, masses and momenta are usually quoted in MeV or GeV, and we shall

follow this convention.
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Lorentz transformations

The equations of the Standard Model must be consistent with Einstein’s principle

of relativity, which states that the laws of Nature take the same form in every

inertial frame of reference. An inertial frame is one in which a free body moves

without acceleration. An earth-bound frame approximates to an inertial frame if the

gravitational field of the earth is introduced as an external field. We shall assume

that the reader is familiar with rotations, and with proper Lorentz transformations

and the relativistic mechanics of particle collisions. This chapter is very largely

about notation, which may make for dry reading; however an appropriate notation

is crucial to the exposition of any theory, and particularly so to a relativistic theory,

such as the Standard Model.

2.1 Rotations, boosts and proper Lorentz transformations

The time and space coordinates of an event measured in different inertial frames

of reference are related by a Lorentz transformation. A rotation is a special case of

a Lorentz transformation. Consider, for example, a frame K ′ that is rotated about

the z-axis with respect to a frame K, by an angle θ . If (t, r) are the time and space

coordinates of an event observed in K, then in K ′ the event is observed at (t′, r′)
and

t ′ = t
x ′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ

z′ = z.

(2.1)

Lorentz transformations also relate events observed in frames of reference that

are moving with constant velocity, one with respect to the other. Consider, for

example, an inertial frame K ′ moving in the z-direction in a frame K with velocity

v, the spatial axes of K and K ′ being coincident at t = 0. If (t, r) are the time and

20
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space coordinates of an event observed in K, and (t′, r′) are the coordinates of the

same event observed in K ′, the transformation takes the form

ct ′ = γ (ct − βz)

x ′ = x
y′ = y
z′ = γ (z − βct),

(2.2)

where c is the velocity of light, β = υ/c, γ = (1 − β2)−1/2.

Putting x0 = ct, x1 = x, x2 = y, x3 = z, the xμ are dimensionally homoge-

neous, and an event in K is specified by the set xμ, where μ = 0, 1, 2, 3. Greek

indices in the text will in general take these values. With this more convenient

notation, we may write the Lorentz transformation (2.2) as

x ′0 = x0 cosh θ − x3 sinh θ

x ′1 = x1

(2.3)
x ′2 = x2

x ′3 = −x0 sinh θ + x3 cosh θ,

where we have put β = v/c = tanh θ ; then γ = cosh θ .

Transformations to a frame with parallel axes but moving in an arbitrary direc-

tion are called boosts. A general Lorentz transformation between inertial frames K
and K ′ whose origins coincide at x0 = x ′0 = 0 is a combination of a rotation and

a boost. It is specified by six parameters: three parameters to give the orientation

of the K ′ axes relative to the K axes, and three parameters to give the compo-

nents of the velocity of K ′ relative to K. Such a general transformation is of the

form

x ′μ = Lμ
νxν, (2.4)

where the elements Lμ
ν of the transformation matrix are real and dimensionless.

We use here, and subsequently, the Einstein summation convention: a repeated

‘dummy’ index is understood to be summed over, so that in (2.4) the notation∑3
ν=0 has been omitted on the right-hand side. The matrices Lμ

ν form a group,

called the proper Lorentz group (Problem 2.6 and Appendix B). The significance

of the placing of the superscript and the subscript will become evident shortly.

The interval (�s)2 between events xμ and xμ + �xμ is defined to be

(�s)2 = (�x0)2 − (�x1)2 − (�x2)2 − (�x3)2. (2.5)

It is a fundamental property of a Lorentz transformation that it leaves the interval

between two events invariant:

(�s ′)2 = (�s)2. (2.6)
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We can express (�s)2 more compactly by introducing the metric tensor (gμν):

(gμν) =

⎛
⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎠ . (2.7)

Then

(�s)2 = gμν�xμ�xν, (2.8)

where the repeated upper and lower indices are summed over. Note that gμν = gνμ;

it is a symmetric tensor. It has the same elements in every frame of reference.

2.2 Scalars, contravariant and covariant four-vectors

Quantities, such as (�s)2, which are invariant under Lorentz transformations are

called scalars. We define a contravariant four-vector to be a set aμ which transforms

like the set xμ under a proper Lorentz transformation:

a′μ = Lμ
νaν. (2.9)

A familiar example of a contravariant four-vector is the energy–momentum vector

of a particle (E/c, p).

We define the corresponding covariant four-vector aμ, carrying a subscript,

rather than a superscript, by

aμ = gμνaν. (2.10)

Hence if aμ = (a0, a), then aμ = (a0, −a).

We can write the invariant �s2 as

�s2 = gμν�xμ�xν = �xν�xν.

More generally, if aμ, bμ are contravariant four-vectors, the scalar product

gμνaμbν = aμbμ = aμbμ = a0b0 − a·b (2.11)

is invariant under a Lorentz transformation.

We can define the contravariant metric tensor gμν so that

αμ = gμνaν. (2.12)

The elements of gμν are evidently identical to those of gμν .

The transformation law for covariant vectors, which we write

a′
μ = Lμ

νaν, (2.13)
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follows from that for contravariant vectors (Problem 2.1). Note that, in general,

Lμ
ν is not equal to Lν

μ (Problem 2.1). Using the invariance of the scalar product

(2.11), we have

a′
μb′μ = Lμ

ν Lμ
ρaνbp = aνbν

and

a′μb′
μ = Lμ

ν Lμ
ρaν bρ = aν bν .

Since the aμ and bμ are arbitrary, it follows that

Lμ
ν Lμ

ρ = Lμ
ν Lμ

ρ = δρ
ν (2.14)

where

δρ
ν = δν

ρ =
{

1, ρ = ν

0, ρ �= ν.

2.3 Fields

The Standard Model is a theory of fields. We shall be concerned with fields that at

each point x of space and time transform as scalars, or vectors, or tensors (defined

later in this section). We use x to stand for the set (x0, x1, x2, x3). For example,

we shall see that the electromagnetic potentials form a four-vector field, and the

electromagnetic field is a tensor field. We shall also be concerned with scalar fields

φ(x), which by definition transform simply as

φ′(x ′) = φ(x), (2.15)

where x′ and x refer to the same point in space-time.

We can construct a vector field from a scalar field. Consider the change of field

dφ in moving from x to a neighbouring point x + dx, with dx infinitesimal. Then

dφ = ∂φ

∂xμ
dxμ

is invariant under a Lorentz transformation. Since the set dxμ make up an arbitrary

contravariant infinitesimal vector, the set ∂φ/∂xμ must make up a covariant vector

(Problem 2.3). Following the subscript convention we write

∂φ

∂xμ
=

(
1

c

∂φ

∂t
, ∇φ

)
= ∂μφ. (2.16)

We can then also define the contravariant vector

∂μφ = gμν∂νφ = ∂φ

∂xμ

=
(

1

c

∂φ

∂t
, −∇φ

)
. (2.17)
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It follows that

∂μφ∂μφ =
(

1

c

∂φ

∂t

)2

− (∇φ)2 (2.18)

and

∂μ∂μφ = 1

c2

∂2φ

∂t2
− ∇2φ (2.19)

are invariant under Lorentz transformations.

We can define, and we shall need, tensor quantities. Tensors T μν, Tμν, T μ
ν, T μν

λ,

etc., are defined as quantities which transform under a Lorentz transformation in

the same way as aμaν, aμaν, aμaν, aμaνaλ, etc. For example,

T ′μν = Lμ
ρ Lν

λT ρλ.

The ‘contraction’ by summation of a repeated upper and lower index leaves

the transformation properties determined by what remains. For example, T μ
μ is a

scalar, T μν
μ is a contravariant four-vector. The metric tensors gμν, gμν conform

with the definition, and this leads to the conditions on the matrix elements Lμ
ν :

gμν = gpλLρ
μLλ

ν. (2.20)

The conditions (2.20) and (2.14) are equivalent.

As well as scalars, vectors and tensors there are also very important objects

called spinors, and spinors fields, which have well-defined rules of transformation

under a Lorentz transformation of the coordinates. Their properties are discussed

in Appendix B and Chapter 5.

2.4 The Levi–Civita tensor

The Levi–Civita tensor εμνλρ is defined by

εμνλρ =
⎧⎨
⎩

+1 if μ, ν, λ, ρ is an even permutation of 0, 1, 2, 3;

−1 if μ, ν, λ, ρ is an odd permutation of 0, 1, 2, 3;

0 otherwise.

(2.21)

For example, ε1023 = −1, ε1203 = +1, ε0023 = 0.

It is straightforward to verify that εμνλρ satisfies

ε′
μνλρ = Lμ

α Lν
β Lλ

γ Lρ
δεαβγ δ

= εμνλμ det(L) = εμνλμ,

using the definition of a determinant (Appendix A), and the result that the determi-

nant of the transformation matrix is 1 (Problems 2.4 and 2.5).
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The corresponding Levi–Civita symbol in three dimensions, εi jk , is defined sim-

ilarly. It is useful in the construction of volumes, since

εi jk Ai B j Ck = A · (B × C)

is the volume of the parallelepiped defined by the vectors A, B, C. The four-

dimensional Levi–Civita tensor enables one to construct four-dimensional volumes

εμνλρaμbνcλdρ . The contraction of indices leaves this a Lorentz scalar. In partic-

ular, taking a,b,c,d to be infinitesimal elements parallel to the axes 0xμ so that

a = (dx0, 0, 0, 0), b = (0, dx1, 0, 0), c = (0, 0, dx2, 0), d = (0, 0, 0, dx3), it fol-

lows that the ‘volume’ element of space-time

d4x = dx0dx1dx2dx3 = cd3x dt

is a Lorentz invariant scalar (see also Problem 2.9).

2.5 Time reversal and space inversion

The operations of time reversal:

x ′0 = −x0,

x ′ i = xi , i = 1, 2, 3,

and space inversion:

x ′0 = x0

x ′ i = −xi , i = 1, 2, 3,

also leave (�s)2 invariant, but these transformations are excluded from the proper

Lorentz group. They are however of interest, and will arise in later chapters.

Problems

2.1 Show that Lμ
ν = gμρ Lρ

λgλν . Verify L0
1 = −L1

0.

2.2 Using (2.14), show that the inverse transformations to (2.9) and (2.13) are

aμ = a′ν Lν
μ, aμ = a′

ν Lν
μ.

Hence show

Lν
μLρ

μ = δρ
ν .

2.3 Prove that if φ(x) is a scalar field, the set (∂φ/∂xμ) makes up a covariant vector

field.
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2.4 Using Problem 2.1, show that det(Lμ
ν) = det(Lμ

ν) and hence show, using equation

(2.14), that

det(Lμ
ν) = ±1.

2.5 Show that det(Lμ
ν) for both the rotation (2.1) and the boost (2.3) is equal to +1.

This is a general property of proper Lorentz transformations that distinguishes them

from space reflections and time reversal (Section 2.5), for which the determinant of

the transformation equals −1.

2.6 Show that the matrices Lμ
ν corresponding to proper Lorentz transformations form

a group.

2.7 Show that δμ
ν is a tensor.

2.8 The frequency ω and wave vector k of an electromagnetic wave in free space make

up a contravariant four-vector

k = (ω/c, k).

The invariant kμkμ = 0; this corresponds to the dispersion relation ω2 = c2k2. Show

that a wave propagating with frequency ω in the z-direction, if viewed from a frame

moving along the z-axis with velocity v, is seen to be Doppler shifted in frequency,

with

ω′ = e−θω =
√

1 − v/c

1 + v/c
ω.

2.9 By considering the Jacobian of the Lorentz transformation, show that the four-

dimensional volume element d4x = dx0dx1dx2dx3 is a Lorentz invariant.

2.10 Show that εμνλρ is a pseudo-tensor, i.e. it changes sign under the operation of space

inversion.
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The Lagrangian formulation of mechanics

In most introductory texts on quantum mechanics you will find ‘Hamiltonian’ in the

index (see our equation (3.8)) but you are less likely to find ‘Lagrangian’. However,

quantum field theories are most conveniently described in a Lagrangian formalism,

to which this chapter is an introduction.

3.1 Hamilton’s principle

The classical dynamics of a mechanical (non-dissipative) system is most elegantly

derived from Hamilton’s principle. A closed mechanical system is completely char-

acterised by its Lagrangian L(q, q̇); the variables q(t), which are functions of time,

are a set of coordinates q1(t),q2(t), ..., qs(t) which determine the configuration of

the system at time t. In particular, the qi might be the Cartesian coordinates of a set

of interacting particles. We restrict our discussion to the case where all the qi (t) are

independent. In non-relativistic mechanics we take L = T − V , where T (q, q̇) is

the kinetic energy of the system and V(q) is its potential energy.

Given L, the action S is defined by

S =
∫ t2

t1

L(q, q̇) dt. (3.1)

The value of S depends on the path of integration in q-space. The end-points of

the path are fixed at times t1 and t2, but the path is otherwise unrestricted. S is

said to be a functional of q(t). Hamilton’s principle states that S is stationary for

that particular path in q-space determined by the equations of motion, so that if we

consider a variation to an arbitrary neighbouring path (Fig. 3.1), δS = 0, where

δS = δ

∫ t2

t1

L(q, q̇) dt

=
∫ t2

t1

∑
i

[
∂L

∂qi
δqi + ∂L

∂q̇
δq̇i

]
dt .

27
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Figure 3.1 A schematic representation of the path in q-space determined by the
equations of motion (full line) and a neighbouring path (dashed line).

Since δq̇ = d(δq)/dt , we can integrate the second term in this integral by parts, to

give

δS =
∫ t2

t1

∑
i

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqi dt . (3.2)

The ‘end-point’ contributions from the integration by parts are zero, since δq(t1) =
δq(t2) = 0.

The variations δqi (t) are arbitrary. It follows from (3.2) that the condition δS = 0

requires

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, ..., s. (3.3)

These are the Euler–Lagrange equations of motion. In classical non-relativistic

mechanics they are equivalent to Newton’s equations of motion. As a simple exam-

ple, consider a particle of mass m moving in one dimension in a potential V(x). Then

L = T − V = (mẋ2/2) − V (x). From (3.3) we have immediately mẍ = −∂V/∂x ,

which is Newton’s equation of motion for the particle.

An external, and possibly time-dependent, field can be included in the Lagrangian

formalism through a time-dependent potential. In our one-dimensional example

above, V(x) may be replaced by V(x,t). Making the Lagrangian L depend explicitly

on t does not affect the derivation of the field equations.



3.2 Conservation of energy 29

It is important to note that the Lagrangian of a given system is not unique: we

can add to L any function of the form df (q,t)/dt where f(q,t) is an arbitrary function

of q and t. Such a term gives a contribution [ f (q2, t2) − f (q1, t1)] to S, independent

of the path, and hence leaves the equations of motion unchanged.

3.2 Conservation of energy

In the case of a closed system of particles, interacting only among themselves, the

equations of motion of the system do not depend explicitly on the time t, since the

physics of a closed system does not depend on our choice of the origin of time.

There is no reason to doubt that the laws of physics at the time of Archimedes, or

the time of Newton, were the same as they are for us. Hence for a closed system

we must be able to construct a Lagrangian L(q, q̇) that does not depend explicitly

on t. For such a Lagrangian,

dL

dt
=

∑
i

[
∂L

∂qi
q̇i + ∂L

∂q̇i
q̈i

]
.

Taking the qi(t) to obey the equations of motion and substituting for ∂L/dqi from

(3.3) we obtain

dL

dt
=

∑
i

[(
d

dt

∂L

∂q̇i

)
q̇i + ∂L

∂q̇i
q̈i

]
=

∑
i

d

dt

(
∂L

∂q̇i
q̇i

)

or

d

dt

[∑
i

∂L

∂q̇i
q̇i − L

]
= 0. (3.4)

Thus

E =
[∑

i

∂L

∂q̇i
q̇i − L

]
(3.5)

remains constant during the motion, and is called the energy of the system. This

result exemplifies Noether’s theorem (Section 1.2): we have here a conservation

law stemming from the symmetry of the Lagrangian under a translation in time.

For a closed system of non-relativistic particles, with a potential function

V (qi ), ∂L/∂ q̇i = ∂T/∂ q̇i . Since the kinetic energy T is a quadratic function of

the q̇i (Problem 3.1), (∂T/∂ q̇i )q̇i = 2T . Hence

E = 2T − (T − V ) = T + V .

We recover the result of elementary mechanics.
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The generalised momenta, pi , are defined by

pi = ∂L

∂q̇i
. (3.6)

The Hamiltonian of a system is defined by

H (p, q) =
∑

i

pi q̇i − L. (3.7)

In terms of p and q, the energy equation (3.5) for a closed system becomes

H (p, q) = E . (3.8)

This equation, which is a consequence of the homogeneity of time, is a foundation

stone for making the transition from classical to quantum mechanics.

3.3 Continuous systems

To see how Hamilton’s principle may be extended to continuous systems, we con-

sider a flexible string, of mass ρ per unit length, stretched under tension F between

two fixed points at x = 0 and x = l, say, but subject to small transverse displace-

ments in a plane. Gravity is neglected. If φ(x, t) is the transverse displacement from

equilibrium of an element dx of the string at x, at time t, then the length of the string

is ∫ l

0

(dx2 + dφ2)1/2 =
∫ l

0

[1 + (∂φ/∂x)2]1/2dx .

To leading order in ∂φ/∂x , which we take to be small for small displacements,

the extension of the string is
∫ l

0
1
2
(∂φ/∂x)2dx , and the potential energy of stretch-

ing under the tension F is
∫ 1

0
1
2

F(∂φ/∂x)2dx . The kinetic energy of the string is∫ 1

0
1
2
ρ(∂φ/∂t)2dx . Hence

L = T − V =
∫ 1

0

L dx, (3.9)

where

L = 1

2
ρ

(
∂φ

∂t

)2

− 1

2
F

(
∂φ

∂x

)2

(3.10)

is called the Lagrangian density.
The corresponding action is

S =
∫ 1

0

dx
∫ t2

t1

dtL(φ̇, φ′),

writing ∂φ/∂t = φ̇ and ∂φ/∂x = φ′.
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Figure 3.2 The actual motion of the string between an initial displacement φ(x, t1)
and a final displacement φ(x, t2) generates a surface in space-time.

Hamilton’s principle states that the action is stationary for that surface that

describes the actual motion of the string between its initial displacement φ(x, t1)

and its final displacement φ(x, t2) (Fig. 3.2). We have

δS =
∫ 1

0

dx
∫ t2

t1

dt

[
∂L

∂φ̇
δ(φ̇) + ∂L

∂φ′ δ(φ′)
]
.

Using δ(φ̇) = ∂(δφ)/∂t and δ(φ′) = ∂(δφ)/dx we integrate each term by parts.

Again, the boundary contributions are zero since

δφ(x, t1) = δφ(x, t2) = 0 for all x,

δφ(0, t) = δφ(l, t) = 0 for all t.

We are left with

δS = −
∫ 1

0

dx
∫ t2

t1

dt

[
∂

∂t

(
∂L

∂φ̇

)
+ ∂

∂x

(
∂L

∂φ′

)]
δφ. (3.11)

Since δφ(x, t) is arbitrary, the condition δS = 0 gives

∂

∂t

(
∂L

∂φ̇

)
+ ∂

∂x

(
∂L

∂φ′

)
= 0. (3.12)
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Inserting the Lagrangian density (3.10), we obtain the familiar wave equation

for small amplitude waves on a string:

ρ
∂2φ

∂t2
− F

∂2φ

∂x2
= 0.

Thus continuous systems can be described in a Lagrangian formalism by a suitable

choice of Lagrangian density, and clearly the method can be extended to waves

in any number of dimensions. By analogy with (3.6) and (3.7), we can define the

momentum density

�(φ̇) = ∂L

∂φ̇

and the Hamiltonian density

H = �φ̇ − L. (3.13)

Since the Lagrangian density (3.10) does not depend explicitly on t, it follows that

E =
∫

H dx =
∫ (

∂L

∂φ̇
φ̇ − L

)
dx (3.14)

remains constant during the motion (Problem 3.2). This result is the analogue of

(3.5).

3.4 A Lorentz covariant field theory

In three spatial dimensions, the action is of the form

S =
∫

L dx dy dz dt =
∫

L dx0dx1dx2dx3. (3.15)

The ‘volume element’ dx0dx1dx2dx3 = d4x is a Lorentz invariant (Section 2.4).

Hence S is a Lorentz invariant if the Lagrangian density L transforms like a scalar

field. The covariance of the field equations is then assured. Other symmetries

required of a theory may be built into L.

Consider a Lorentz invariant Lagrangian density of the form

L = L(φ, ∂μφ), (3.16)

where φ(x) = φ(x0, x) is a scalar field. At any point x in space-time, such a

Lagrangian density depends only on the field and its first derivatives at that point.

The field theory is said to be local: there is no ‘action at a distance’. This will be an

important feature of the Standard Model. The field equation is easily derived from

the condition δS = 0, together with the condition that the field vanishes at large
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distances, and we find

∂L

∂φ
− ∂μ

(
∂L

∂(∂μφ)

)
= 0. (3.17)

3.5 The Klein–Gordon equation

The Lorentz invariant Lagrangian density

L = 1

2
[gμν∂μφ∂νφ − m2φ2] = 1

2
[∂μφ∂μφ − m2φ2], (3.18)

where φ(x) is a real scalar field, is a particular case of (3.16). The field equation

(3.17) becomes

−∂μ∂μφ − m2φ = 0,

or (
− ∂2

∂t2
+ ∇2 − m2

)
φ = 0. (3.19)

This equation is known as the Klein–Gordon equation.
The equation has wave-like solutions

φ(r, t) = a cos(k · r − ωkt + θk)

where the frequency ωk is related to the wave vector k by the dispersion relation

ω2
k = k2 + m2, (3.20)

and θk is an arbitrary phase angle.

For mathematical simplicity we shall take the solutions φ(r, t) to lie in a large

cube of side l, volume V = l3, and apply periodic boundary conditions, so that

k = (2πn1/ l, 2πn2/ l, 2πn3/ l) where n1, n2, n3 are any integers 0, ±1, ±2, . . .

The general solution of (3.19) is a superposition of such plane waves:

φ(r, t) = 1√
V

∑
k

(
ak√
2ωk

ei(k·r−ωt) + a∗
k√

2ωk
e−i(k·r−ωt)

)
. (3.21)

The factors
√

2ωk are introduced for later convenience, and the phase factors have

been absorbed into the complex wave amplitudes ak. The sum is over all allowed

values of k.

With the de Broglie identifications of E = ωk, p = k (recall h = 1, c = 1) the

dispersion relation for ωk is equivalent to the Einstein equation for a free particle,

E2 = p2 + m2.
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We may conjecture that the Klein–Gordon equation for φ describes a scalar

particle of mass m. There is no vector associated with a one-component scalar field,

and the intrinsic angular momentum associated with such a particle is zero.

We shall see a Lagrangian density of the form (3.18) arising in the Standard Model

to describe the Higgs particle. At a less fundamental level, the overall motion of

the π0 meson, which is an uncharged composite particle, is described by a similar

Lagrangian density.

3.6 The energy–momentum tensor

The equations expressing both conservation of energy and conservation of linear

momentum are obtained by considering the change in L corresponding to a uniform

infinitesimal space-time displacement

xμ → xμ + δaμ, (3.22)

where δaμ does not depend on x. The corresponding change in φ is

δφ = (∂νφ)δaν. (3.23)

Since L does not depend explicitly on the xμ,

δL = ∂L

∂φ
δφ + ∂L

∂(∂μφ)
δ(∂μφ).

Using the field equation (3.17) for ∂L/∂φ, and the fact that δ(∂μφ) = ∂μ(δφ), we

can rewrite this as

δL = ∂μ

[(
∂L

∂(∂μφ)

)
δφ

]
,

and then, from (3.23),

δL = ∂μ

[
∂L

∂(∂μφ)
∂νφ

]
δaν.

We have also

δL = ∂L

∂xμ
δaμ = δμ

ν

∂L

∂xμ
δaν,

where, as in (2.14),

δμ
ν =

{
1, μ = ν

0, μ �= ν.
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Since the δaν are arbitrary, it follows on comparing these expressions for δL that

∂μ

[
∂L

∂(∂μφ)
∂νφ − δμ

ν L

]
= 0, (3.24)

or

∂μT μ
ν = 0, where T μ

ν =
[

∂L

∂(∂μφ)
∂νφ − δμ

ν L

]
. (3.25)

T μ
ν is the energy–momentum tensor. The component

T 0
0 = ∂L

∂φ̇
φ̇ − L

corresponds to the Hamiltonian density defined in equation (3.13), and is inter-

preted as the energy density of the field; in a relativistic theory, the energy density

transforms like a component of a tensor. The ν = 0 component of (3.25) may be

written

∂

∂t
(T 0

0 ) + ∇ · T0 = 0, (3.26)

and expresses local conservation of energy, with T0 = (T 1
0 , T 2

0 , T 3
0 ) interpreted as

the energy flux. Integrating (3.26) over all space and using the divergence theorem

yields

∂

∂t

∫
T 0

0 d3x = 0, (3.27)

provided the field vanishes at large distances. This equation expresses the overall

conservation of energy.

Similarly the ν = 1, 2, 3 components of (3.24) correspond to local conservation

of momentum, with the overall total momentum of the field given by

Pi =
∫

T 0
i d3x. (3.28)

As with the energy, the total momentum of the field is conserved if the field vanishes

at large distances.

In the case of the Klein–Gordon Lagrangian density (3.19),

∂L

∂φ̇
= φ̇,

and the energy density of the field is

T 0
0 = 1

2
[φ̇2 + (∇φ)2 + m2φ2]. (3.29)
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Expressing φ in terms of the field amplitudes ak and a∗
k, and integrating over all

space, gives the total field energy

H =
∫

T 0
0 d3x =

∑
k

a∗
kakωk. (3.30)

In obtaining this expression we have used the orthogonality of the plane waves

1

V

∫
ei(k−k′)·rd3x = δkk′ .

Similarly from (3.28) the total momentum of the field can be shown to be

P =
∑

k

a∗
kakk. (3.31)

3.7 Complex scalar fields

It is instructive to consider also complex scalar fields� = (φ1 + iφ2) /
√

2 satisfying

the Klein–Gordon equation. We shall see in Section 7.6 that if the field � carries

charge q, then the field �∗ carries charge −q. The Klein–Gordon equation for a

complex field � is obtained from the (real) Lagrangian density

L = ∂μ�∗∂μ� − m2�∗�. (3.32)

We introduce here a device that we shall often find useful. Instead of varying the

real and imaginary parts of � to obtain the field equations, we may vary � and

its complex conjugate �∗ independently. These procedures are equivalent. Varying

�∗ in the action constructed from (3.32) yields, easily,

−∂μ∂μ� − m2� = 0. (3.33)

(Varying � gives the complex conjugate of this equation.)

Note that the Lagrangian density (3.32) is the sum of contributions from the

scalar fields φ1 and φ2:

L = ∂μ�∗∂μ� − m2�∗� = 1

2

[
∂μφ1∂

μφ1 − m2φ2
1

]
(3.34)

+ 1

2

[
∂μφ2∂

μφ2 − m2φ2
2

]
.

The general solution of (3.33) is a superposition of plane waves of the form

� = 1√
V

∑
k

(
ak√
2ωk

ei(k·r−ωt) + b∗
k√

2ωk
e−i(k·r−ωt)

)
(3.35)

where ak and bk are now independent complex numbers. The field energy becomes

H =
∑

k

(
a∗

kak + b∗
kbk

)
ωk. (3.36)
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We shall see that we can interpret this expression as being made up of the distinct

contributions of positively and negatively charged fields. (The π+ and π− mesons

are composite particles whose overall motion is described by complex scalar fields.)

Problems

3.1 Show that the kinetic energy of a system of particles, whose positions are determined

by q(t), is a quadratic function of the q̇i .

3.2 Show that dE/dt = 0, where E is given by equation (3.14).

3.3 For the stretched string of Section 3.3, show that the Hamiltonian density is

H = 1

2
ρ

(
∂φ

∂t

)2

+ 1

2
F

(
∂φ

∂x

)2

.

The nth normal mode of oscillation, with wave amplitude An , is given by

φn(x, t) = An sin(knx) sin(ωnt)

where kn = nπ/ l, ωn = (F/ρ)1/2kn . Show that the total energy is An
2ωn

2ρl/4 and

oscillates harmonically between potential energy and kinetic energy.

3.4 Verify the expressions (3.30) and (3.31) for the energy and momentum of the scalar

field given by equation (3.21).

3.5 Show that the Schrödinger equation for the wave function ψ(r, t) of a particle of mass

m moving in a potential V (r) may be obtained from the Lagrangian density

L = −(1/2i)

(
ψ∗ ∂ψ

∂t
− ∂ψ∗

∂t
ψ

)
− (1/2m)∇ψ∗ · ∇ψ − ψ∗V ψ.

(Note that L is real, but not Lorentz invariant.)
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Classical electromagnetism

Maxwell’s theory of electromagnetism is, along with Einstein’s theory of grav-
itation, one of the most beautiful of classical field theories. In this chapter we
exhibit the Lorentz covariance of Maxwell’s equations and show how they may be
obtained from Hamilton’s principle. The important idea of a gauge transformation
is introduced, and related to the conservation of electric charge. We analyse some
properties of solutions of the field equations. Finally, we generalise the Lagrangian
to describe massive vector fields, which will figure in later chapters.

4.1 Maxwell’s equations

In common with much of the literature, we shall use units in which the force between
charges q1 and q2 is q1q2/4πr2, and the velocity of light c = 1. (Thus in these units
μ0 = 1, ε0 = 1.) Maxwell’s equations then take the form

∇ · E = ρ (a), ∇ × B − ∂E

∂t
= J (b),

∇ · B = 0 (c), ∇ × E + ∂B

∂t
= 0 (d).

(4.1)

E and B are the electric and magnetic fields, ρ and J are the electric charge and
current densities. In this chapter we do not consider the dynamics of ρ and J, but
take them to be ‘external’ fields that we are free to manipulate. The inhomogeneous
equations (a) and (b) are consistent with the observed fact of charge conservation,
which is expressed by the continuity equation:

∂ρ

∂t
+ ∇ · J = 0.

This equation takes the Lorentz invariant form

∂μ Jμ = 0 (4.2)

38
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if we postulate that the charge-current densities

Jμ = (ρ, J) (4.3)

make up a contravariant four-vector field.
Introducing a scalar potential φ and a vector potential A, the homogeneous

equations (c) and (d) of the set (4.1) are satisfied identically by

B = ∇ × A, E = −∇φ − ∂A
∂t

. (4.4)

We postulate that the potentials

Aμ = (φ, A) (4.5)

make up a contravariant four-vector field also.
Maxwell’s equations may be written in terms of the antisymmetric tensor Fμν ,

defined by

Fμν = ∂μ Aν − ∂ν Aμ =

⎛
⎜⎜⎝

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎞
⎟⎟⎠ . (4.6)

It is apparent that the electromagnetic field is a tensor field. For example,

F01 = ∂ A1/∂x0 − ∂ A0/∂x1 = ∂ Ax/∂t + ∂φ/∂x = −Ex .

Thus the components of the electromagnetic field transform under a Lorentz trans-
formation like the elements of a tensor.

The homogeneous Maxwell equations correspond to the identitities

∂λFμν + ∂ν Fλμ + ∂μFνλ ≡ 0, (4.7)

where λ, μ, ν are any three of 0, 1, 2, 3, as the reader may easily verify. The
inhomogeneous equations take the manifestly covariant form

∂μFμν = J ν. (4.8)

For example, with ν = 0, looking at the first column of Fμν , and noting ∂μ =
(∂

/
∂t, ∇), gives

∇ · E = ρ.

4.2 A Lagrangian density for electromagnetism

We now seek a Lagrangian density L that will yield Maxwell’s equations from
Hamilton’s principle. If L is Lorentz invariant, the action

S =
∫

L d4x =
∫

L dx0dx1dx2dx3 (4.9)
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is also Lorentz invariant, since d4x is invariant (Section 2.4 and Section 3.4), and
the field equations which follow from the condition δS = 0 will take the same form
in every inertial frame of reference.

Although Maxwell’s equations do not refer explicitly to the potentials Aμ, to
derive the equations from Hamilton’s principle requires the potentials to be taken
as the basic fields which are to be varied. The ‘stretched string’ example of Section
3.4 suggests that L should be quadratic in the first derivatives of the field. A suitable
Lorentz invariant choice is found to be

L = −1

4
Fμν Fμν − Jμ Aμ. (4.10)

Varying the fields Aμ, while keeping the charge and current densities Jμ fixed, yields
Maxwell’s equations, as we shall show in some detail. (Subsequent arguments will
be more terse!)

We may write

S =
∫ [

−1

4
gμλgνρ Fλρ Fμν − Jμ Aμ

]
d4x . (4.11)

Then

δS =
∫ [

−1

2
gμλgνρ FλρδFμν − JμδAμ

]
d4x

=
∫ [

−1

2
Fλρ(∂λδAρ − ∂ρδAλ) − JμδAμ

]
d4x

=
∫

[−Fλρ∂λδAρ − JμδAμ]d4x, since Fλρ = −Fρλ.

The first term we integrate by parts. The boundary terms vanish for suitable condi-
tions on the fields, so that we are left with

δS =
∫

[∂λFλρ − J ρ]δAρ d4x .

Setting δS = 0 for arbitrary δAρ gives the inhomogeneous Maxwell equations (4.8).
(The homogeneous equations (4.7) are no more than identities.)

4.3 Gauge transformations

The four-potential Aμ = (φ, A) is not unique: the same electromagnetic field tensor
Fμν is obtained from the potential

Aμ + ∂μχ = (φ + ∂χ
/
∂t, A − ∇χ ), (4.12)
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where χ (x) is an arbitrary scalar field, since the additional terms which appear in
Fμν are identically zero:

∂μ∂νχ − ∂ν∂μχ = 0.

The transformation Aμ → A′μ = Aμ + ∂μχ is called a gauge transformation.
Under a gauge transformation, the action (4.11) acquires an additional term �S,

where

�S = −
∫

Jμ∂μχ d4x

=
∫

(∂μ Jμ)χ d4x .

We have integrated by parts to obtain the second line and again assumed that the
boundary terms vanish. �S is zero for arbitrary χ if, and only if,

∂μ Jμ = ∂μ Jμ = 0,

which is just equation (4.2). Thus the gauge invariance of the action requires, and
follows from, the conservation of electric charge.

4.4 Solutions of Maxwell’s equations

In terms of the potentials, the field equations (4.8) are

(∂μ∂μ)Aν − ∂ν(∂μ Aμ) = J ν. (4.13)

We stress again that there is much arbitrariness in the solutions to these equations.
Equivalent solutions differ by gauge transformations. It is usual to impose a gauge-
fixing condition. For example in the ‘radiation gauge’ we set∇ · A = 0, everywhere
and at all times (Problem 4.2). This has the disadvantage of not being a Lorentz
invariant condition – it will not be true in another, moving, frame – but it does
display important features of the theory. In the radiation gauge the field equation
for A0 becomes

(∂i∂
i )A0 = −∇2 A0 = J 0

(setting ν = 0 in (4.13), and noting ∂μ Aμ = ∂0 A0 since in the radiation gauge
∂i Ai = 0). This equation has the solution

A0(r, t) = 1

4π

∫
ρ(r′, t)

|r − r′|d
3r′.
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Hence, in the radiation gauge, A0 is determined entirely by the charge density to
which it is rigidly attached! There are no wave-like solutions. The vector compo-
nents Ai (i = 1, 2, 3) satisfy the inhomogeneous wave equation

∂2A
∂t2

− ∇2A = J − ∂

∂t
∇ A0. (4.14)

Charges and currents act as a source (and sink) of the field A.
In free space J = 0, ρ = 0, A0 = 0, and there are plane wave solutions with

wave vector k, frequency ωk = |k|, of the form

A(r, t) = aεε cos(k · r − ωkt).

Here εε is a unit vector and a is the wave amplitude. The gauge condition requires
k·εε = 0. Thus for a given k there are only two independent states of polarisation,
εε1(k) and εε2(k) say, perpendicular to k. The general solution in free space is

A(r, t) = 1√
V

∑
k

∑
α=1,2

εεα(k)√
2ωk

[akαei(k · r−ωt) + a∗
kαe−i(k · r−ωt)]. (4.15)

The complex number akα represents an amplitude and a phase, and the plane waves
are normalised in a volume V, with periodic boundary conditions. The factor

√
2ωk

is put in for convenience later.
An important point apparent in the radiation gauge is that although the vector

potential has four components Aμ, one of these, A0, has no independent dynamics
and another is a gauge artifact, which is eliminated by fixing the gauge. There are
only two physically significant dynamical fields.

The fields in any other gauge are related to the fields in the radiation gauge by a
gauge transformation; the physics is the same but the mathematics is different. For
some purposes it is better to work in the relativistically invariant ‘Lorentz gauge’.
In the Lorentz gauge

∂μ Aμ = 0 (4.16)

and the field equations become(
∂2

∂t2
− ∇2

)
Aμ = Jμ. (4.17)

4.5 Space inversion

We now consider the operation of space inversion of the coordinate axes in the
origin: r → r′ = −r, ∇ → ∇′ = −∇ (Fig. 4.1), which was excluded from the
group of proper Lorentz transformations. We shall also refer to this as the parity
operation. The transformed coordinate axes are left-handed. By convention the
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Figure 4.1 A normal right-handed set of axes (solid lines) and a space-inverted set
(dashed lines). The space-inverted set is said to be left-handed. (Oz is out of the
plane of the page.)

charge density is taken to be invariant under this transformation: if at some instant
of time ρP (r′) is the charge density referred to the inverted coordinate axes, then
ρP (r′) = ρ(r) when r′ = −r. The current density J(r) = ρ(r) u(r), where u(r) is a
velocity, and therefore transforms like dr/dt , an ordinary vector: JP (r′) = −J(r).
Maxwell’s equations (4.1) retain the same form in the primed coordinate system
if E(r′) also transforms like a vector, EP (r′) = −E(r), and B(r) transforms like an
axial vector, BP (r′) = B(r).

In terms of the potentials, equation (4.4) shows that we must take

φP (r′) = φ(r), AP (r′) = −A(r). (4.18)

The field equations in a left-handed frame then have the same form as in a right-
handed frame. The Lagrangian density (4.10) is invariant under space inversion.
Electromagnetism is indifferent to handedness.
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4.6 Charge conjugation

It will also be of interest to note that Maxwell’s equations can be made to take the
same form if matter is replaced by antimatter. As a consequence of this replacement
both the charge and current densities change sign so that

ρ(r) → ρC (r) = −ρ(r) and J(r) → JC (r) = −J(r).

Maxwell’s equations take the same form if we define

φC (r) = −φ(r), AC (r) = −A(r). (4.19)

This operation is called charge conjugation. As with Lorentz transformations and
the parity transformation, the Lagrangian is invariant under the charge conjugation
transformation.

4.7 Intrinsic angular momentum of the photon

Without embarking here on the full quantisation of the electromagnetic field, we
can discuss the quantised intrinsic angular momentum, or spin, of the photons
associated with plane waves of the form (4.15).

The spin S of a particle with mass is defined as its angular momentum in a frame of
reference in which it is at rest. In such a frame its orbital angular momentum L = 0,
and its total angular momentum J = L + S = S. This definition is inapplicable to
a massless particle, which moves with the velocity of light in every frame of refer-
ence. However, for a massless particle moving in, say, the z-direction, it is possible
to define the z-component Sz of its spin, since the z-component of the orbital angu-
lar momentum is Lz = xpy − ypx , and px = py = 0 for a particle moving in the
z-direction, hence Lz = 0, and Jz = Sz .

In quantum mechanics, the component Jz of the total angular momentum operator
of a system is given by

Jz = ihrz = ih lim
φ→0

[Rz(φ) − 1] φ, (4.20)

where Rz(φ) is the operator that rotates the system through an angle φ about Oz in
a positive sense.

Consider a term from (4.15) with k = (0, 0, k) along Oz:

A(r, t) = 1√
2ωV

[(a1εεx + a2εεy)ei(kz−ωt) + complex conjugate]. (4.21)

The wave amplitudes a1 and a2 are complex numbers, and we have taken the
polarisation vectors εεx and εεy to be unit vectors aligned with the x- and y-axes. A
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rotation of A through an angle φ about Oz makes a change in the amplitudes that
can be expressed by the rotation matrix equation

Rz(φ)

(
a1

a2

)
=

(
a′

1

a′
2

)
=

(
cos φ − sin φ

sin φ cos φ

) (
a1

a2

)
.

In the limit φ → 0, we have

lim[Rz(φ) − 1]/φ =
(

0 −1
1 0

)

and

Jz = h

(
0 −i
i 0

)
.

The eigenvectors of Jz/h are (
a1

a2

)
=

(
1
i

)

with eigenvalue + 1, (
a1

a2

)
=

(
1

−i

)

with eigenvalue −1.
Thus we may say that a photon represented by the plane wave (4.21) has ‘spin

one’, with just two spin states aligned and anti-aligned with its direction of motion.
No meaning can be given to spin components perpendicular to the direction of
motion. Classically these waves are right circularly polarised and left circularly
polarised, respectively (Problem 4.4).

A plane wave of any polarisation can be constructed by a suitable superposition
of right-handed and left-handed circularly polarised waves.

4.8 The energy density of the electromagnetic field

The analysis of the energy density of the electromagnetic field in free space is a
generalisation of the analysis for a scalar field set out in Section 3.6. Equation (3.25)
becomes

T μ
ν = ∂L

∂(∂μ Aλ)
∂ν Aλ − δμ

ν L, (4.22)

and using this formula gives

T 0
0 = −F0μF0μ + 1

4
Fμν Fμν (4.23)
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(Problem 4.5). In terms of the physical fields E and B, (4.23) is the familiar expres-
sion

energy density = 1

2
(E2 + B2). (4.24)

We can also express the fields in terms of the field amplitudes akα introduced in
equation (4.15) and obtain for the total energy of the field

H =
∫

T 0
0d3x =

∑
k,α

a∗
kαakαωk. (4.25)

Similarly the total momentum of the field is

P =
∑
k,α

a∗
kαakαk. (4.26)

4.9 Massive vector fields

Let us modify the Lagrangian density (4.10) by adding an additional Lorentz invari-
ant term, and consider

L = −1

4
Fμν Fμν + 1

2
m2 AμAμ − JμAμ (4.27)

where Jμ is an external current. The additional term in the action is easily seen to
modify the field equations to

∂μFμν + m2 Aν = Jν . (4.28)

Since ∂ν∂μFμν ≡ 0, it follows from (4.28) that

m2∂ν Aν = ∂ν Jν . (4.29)

This equation is a necessary consequence of the field equations: it is not a Lorentz
gauge-fixing condition like equation (4.16), but it does imply that the Aν are not
independent. Using this equation, the field equations simplify to

∂μ∂μAν + m2 Aν = Jν + ∂ν(∂μ Jμ)/m2. (4.30)

Hence in free space each component of Aν of the field satisfies

∂2 Aν

∂t2
− ∇2 Aν + m2 Aν = 0. (4.31)

This wave equation is related by the quantisation rules E → i∂/∂t, p → −i∇, to
the Einstein equation for a free particle,

E2 = p2 + m2.
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We may conclude that our modified Lagrangian, when quantised, describes particles
of mass m associated with a four-component field, of which three components are
independent.

Plane wave solutions of (4.31) are of the form

Aν = aεν cos(k·r − ωkt) = aεν cos(kμxμ),

where ωk = k0 = √
m2 + k2. To satisfy the condition ∂ν Aν = 0 we need

kνε
ν = 0. (4.32)

For example, if we consider a plane wave in the z-direction with kν = (k0, 0, 0, k)
there are three independent polarisations, labelled 1, 2, 3, which we may take as
the contravariant four-vectors

εν
1 = (0, 1, 0, 0),

εν
2 = (0, 0, 1, 0),

εν
3 = (k, 0, 0, k0)/m.

The intrinsic spin of a particle is its angular momentum in a frame of reference
in which it is at rest (Section 4.7). In such a frame k = 0, and ε1 = (0, εx ), ε2 =
(0, εy), ε3 = (0, εz). As in Section 4.7, the states with polarisation εx ± iεy cor-
respond to Jz = ±1, but we now have also the state with polarisation εz , which
corresponds to Jz = 0, since the operator rz acting on εz gives rzεz = 0.

Thus our modified Lagrangian describes massive particles having intrinsic spin
S with S = 1 and Sz = 1, 0, −1. That such particles are important in the Standard
Model will become evident in later chapters.

Problems

4.1 Show that the Lagrangian density of equation (4.10) can also be written

L = 1

2
(E2 − B2) − JμAμ.

4.2 Suppose that in a certain gauge ∇ · A = f (r, t) �= 0. Find an expression for a gauge
transforming function χ (r, t) such that the new potentials given by equation (4.12)
satisfy the radiation gauge condition.

4.3 Show that the tensor field F̃μν = 1
2εμναβ Fαβ has the same form as Fμν but with the

electric and magnetic fields interchanged. Show that

1

4
F̃μν Fμν = E · B

and that it is a scalar field under Lorentz transformations but a pseudoscalar under the
parity operation.
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4.4 Show that the electric field of the wave of equation (4.21) with a1 = 1, a2 = i, is

(Ex , Ey, Ez) = −
√

2ω

V
[sin(kz − ωt), cos(kz − ωt), 0].

Show that as a function of time, at a fixed z, E rotates in a positive sense about the
z-axis. This is the definition of right circular polarisation.

4.5 Show that equation (4.22) gives immediately

T 0
0 = −F0μ∂0 Aμ + 1

4
Fμν Fμν.

Show that the term ∂μ(A0 F0μ) = ∂i (A0 F0i ) can be added to this without changing
the total energy. Hence arrive at the form for T 0

0 given in equation (4.23).

4.6 A particle of mass m, charge q, is moving in a fixed external electromagnetic field
described by the four-potential (φ, A). Show that the Lagrangian

L = 1

2
mẋ2 − qφ + qẋ · A

gives the non-relativistic equation of motion

mẍ = q(E + ẋ × B),

and the Hamiltonian is

H (p, x) = 1

2m
(p − qA)2 + qφ,

where p = mẋ + qA.

4.7 Show that for a particle the action S = ∫
L dt is Lorentz invariant if γ L is Lorentz

invariant. Verify that this condition is satisfied by the Lagrangian

L = −m/γ − q Aμ(dxμ/dt).

(This gives the relativistic version of Problem 4.6.)
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The Dirac equation and the Dirac field

The Standard Model is a quantum field theory. In Chapter 4 we discussed the

classical electromagnetic field. The transition to a quantum field will be made in

Chapter 8. In this chapter we begin our discussion of the Dirac equation, which was

invented by Dirac as an equation for the relativistic quantum wave function of a

single electron. However, we shall regard the Dirac wave function as a field, which

will subsequently be quantised along with the electromagnetic field. The Dirac

equation will be regarded as a field equation. The transition to a quantum field theory

is called second quantisation. The field, like the Dirac wave function, is complex.

We shall show how the Dirac field transforms under a Lorentz transformation, and

find a Lorentz invariant Lagrangian from which it may be derived.

On quantisation, the electromagnetic fields Aμ(x), Fμν(x) become space- and

time-dependent operators. The expectation values of these operators in the environ-

ment described by the quantum states are the classical fields. The Dirac fields ψ(x)

also become space- and time-dependent operators on quantisation. However, there

are no corresponding measurable classical fields. This difference reflects the Pauli

exclusion principle, which applies to fermions but not to bosons. In this chapter

and in the following two chapters, the properties of the Dirac fields as operators are

rarely invoked: for the most part the manipulations proceed as if the Dirac fields

were ordinary complex functions, and the fields can be thought of as single-particle

Dirac wave functions.

5.1 The Dirac equation

Dirac invented his equation in seeking to make Schrödinger’s equation for an elec-

tron compatible with special relativity. The Schrödinger equation for an electron

wave function ψ is

i
∂ψ

∂t
= Hψ.

49
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To secure a symmetry between space and time, Dirac postulated the Hamiltonian

for a free electron to be of the form

HD = α · p + βm = −iα · ∇ + βm, (5.1)

where m is the mass of the electron, p its momentum, α = (α1, α2, α3), and

α1, α2, α3 and β are matrices. ψ is a column vector, and the Schrödinger equa-

tion becomes the multicomponent Dirac equation:

(i∂
/
∂t + iα · ∇ − βm)ψ = 0. (5.2)

If this equation is to describe a free electron of mass m, its solutions should also

satisfy the Klein–Gordon equation of Section 3.5. Multiplying the Dirac equation

on the left by the operator (i∂
/
∂t − iα · ∇ + βm), we obtain[

−∂2/∂t2 +
∑

i

α2
i ∂i∂i +

∑
i< j

(αiα j + α jαi )∂i∂ j

+ im
∑

i

(αiβ + βαi )∂i − β2m2
]
ψ = 0,

where ∂i = ∂
/
∂xi . This equation is identical to the Klein–Gordon equation if

β2 = 1, α2
1 = α2

2 = α2
3 = 1,

αiα j + α jαi = 0, i �= j ; αiβ + βαi = 0, i = 1, 2, 3. (5.3)

The reader may recall that similar equations are satisfied by the set of 2 × 2 Pauli

spin matrices σ = (σ 1, σ 2, σ 3), where it is conventional to take

σ 1 =
(

0 1

1 0

)
, σ 2 =

(
0 −i

i 0

)
, σ 3 =

(
1 0

0 −1

)
. (5.4)

We shall also find it useful to write

σ 0 =
(

1 0

0 1

)

for the 2 × 2 unit matrix.

However, here we have four anticommuting matrices, the αi and β, to represent.

It proves necessary to introduce a second set of Pauli matrices and represent the

αi and β by 4 × 4 matrices. The representation is not unique: different choices are

appropriate for illuminating different properties of the Dirac equation. We shall use

the so-called chiral representation, in which

αi =
(−σ i 0

0 σ i

)
, β =

(
0 σ 0

σ 0 0

)
, (5.5)
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writing the matrices in 2 × 2 ‘block’ form. Here

0 =
(

0 0

0 0

)

and the 4 × 4 identity matrix may be written

I =
(

σ 0 0
0 σ 0

)
.

It can easily be checked that these matrices satisfy the conditions (5.3). (The block

multiplication of matrices is described in Appendix A.)

Since the αi and β are 4 × 4 matrices, the Dirac wave function ψ is a four-

component column matrix. Regarded as a relativistic Schrödinger equation, the

Dirac equation has, as we shall see, remarkable consequences: it describes a par-

ticle with intrinsic angular momentum (h
/

2)σ and intrinsic magnetic moment

(qh/2m)σ if the particle carries charge q, and there exist ‘negative energy’ solu-

tions, which Dirac interpreted as antiparticles.

A Lagrangian density that yields the Dirac equation from the action principle is

L = ψ†(i∂/∂t + iα · ∇ − βm)ψ

= ψ∗
a (Iabi∂/∂t + iαab · ∇βabm)ψb, (5.6)

where we have written in the matrix indices. ψ∗
a is a row matrix, the Hermitian

conjugate ψ† = ψT∗ of ψ . Instead of varying the real and imaginary parts of ψa

independently, it is formally equivalent to treat ψa and its complex conjugate ψ∗
a as

independent fields (cf. Section 3.7). The condition that S = ∫
L d4x be stationary

for an arbitrary variation δψ∗
a then gives the Dirac equation immediately, since L

does not depend on the derivatives of ψ∗
a .

5.2 Lorentz transformations and Lorentz invariance

The chiral representation (5.5) of the matrices αi and β is particularly convenient

for discussing the way in which the Dirac field must transform under a Lorentz

transformation. We have written the Dirac matrices in blocks of 2 × 2 matrices,

and it is natural to write similarly the four-component Dirac field as a pair of

two-component fields

ψ =
(

ψL

ψR

)
=

(
ψL

0

)
+

(
0
ψR

)
, (5.7)
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where ψL and ψR are, respectively, the top and bottom two components of the

four-component Dirac field:

ψL =
(

ψ1

ψ2

)
, ψR =

(
ψ3

ψ4

)
. (5.8)

The Dirac equation (5.2) becomes

i

(
σ 0 0
0 σ 0

) (
∂0ψL

∂0ψR

)
+ i

(−σ i 0
0 σ i

) (
∂iψL

∂iψR

)
− m

(
0 σ 0

σ 0 0

) (
ψL

ψR

)
= 0.

(5.9)

Block multiplication then gives two coupled equations for ψL and ψR:

iσ 0∂0ψL − iσ i∂iψL − mψR = 0,

iσ 0∂0ψR + iσ i∂iψR − mψL = 0.
(5.10)

We shall find it highly convenient for displaying the Lorentz structure to define

σμ = (σ 0, σ 1, σ 2, σ 3), σ̃ μ = (σ 0, −σ 1, −σ 2, −σ 3).

With this notation, the equations (5.10) may be written

iσ̃ μ∂μψL − mψR = 0,

iσμ∂μψR − mψL = 0.
(5.11)

To obtain the Lagrangian density (5.6) in terms of ψL and ψR, we need to

multiply the expression on the left-hand side of (5.9) by the row matrix (ψ
†
L, ψ

†
R),

where the Hermitian conjugate fields are ψ
†
L = (ψ∗

1 , ψ∗
2 ), ψ

†
R = (ψ∗

3 , ψ∗
4 ). Block

multiplication gives

L = iψ
†
Lσ̃ μ∂μψL + iψ

†
Rσμ∂μψR − m(ψ

†
LψR + ψ

†
RψL). (5.12)

Variations δψ∗
L and δψ∗

R in the action give the field equations (5.11).

To show that the Lagrangian has the same form in every frame of reference,

we must relate the field ψ ′(x ′) in the frame K ′ to ψ(x) in the frame K, when x′

and x refer to the same point in space-time, and are related by a proper Lorentz

transformation

x ′μ = Lμ
νxν. (5.13)

The operator ∂μ transforms like a covariant vector, so that

∂ ′
μ = Lμ

ν∂ν,

which has the inverse

∂μ = Lν
μ∂ ′

ν. (5.14)

(See Problem 2.2.)
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It is shown in Appendix B (equations (B.17) and (B.18)) that with this Lorentz

transformation we can associate 2 × 2 matrices M and N with determinant 1 and

with the properties

M†σ̃ νM = Lν
μσ̃ μ, (5.15)

N†σ νN = Lν
μσμ. (5.16)

The matrices M and N are related by (B.19):

M†N = N†M = l. (5.17)

In the frame K ′ the Lagrangian density (5.12) can be written

L = iψ
†
LM†σ̃ νM∂ ′

νψL + iψ
†
RN†σ νN∂ ′

νψR − m(ψ
†
LψR + ψ

†
RψL), (5.18)

where we have used (5.14) along with (5.15) and (5.16) in the first two terms.

We must define

ψ ′
L(x ′) = MψL(x), (5.19)

ψ ′
R(x ′) = NψR(x), (5.20)

to give

L = iψ
′†
L σ̃ ν∂ ′

νψ
′
L + iψ

′†
R σ ν∂ ′

νψ
′
R − m(ψ

′†
L ψ ′

R + ψ
′†
R ψ ′

L)

(noting that ψ
′†
L ψ ′

R = ψ
†
LM†NψR = ψ

†
LψR, since M†N = I, and similarly ψ

′†
R ψ ′

L =
ψ

†
RψL).

With the transformations (5.19) and (5.20) the Lagrangian, and hence the field

equations, take the same form in every inertial frame. The way to construct an M
and an N for any Lorentz transformation is given in Appendix B.

An example of a rotation is

Lμ
ν =

⎛
⎜⎜⎝

1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1

⎞
⎟⎟⎠ . (5.21)

This is a rotation of the coordinate axes through an angle θ about the z-axis and is

equivalent to equations (2.1). The corresponding matrix M is unitary:

M =
(

eiθ/2 0

0 e−iθ/2

)
. (5.22)

Hence, from (5.17), N = (M†)−1 = M, since MM† = 1. The reader may verify that

(5.15) and (5.16) hold. M is unitary (and hence equal to N) for all rotations.
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An example of a Lorentz boost is

Lμ
v =

⎛
⎜⎜⎝

cosh θ 0 0 −sinh θ

0 1 0 0

0 0 1 0

− sinh θ 0 0 cosh θ

⎞
⎟⎟⎠ . (5.23)

This is a boost with velocity v/c = tanh θ along the z-axis and is equivalent to

equations (2.3). The corresponding matrix M is

M =
(

eθ/2 0

0 e−θ/2

)
, and N = (M†)−1 =

(
e−θ/2 0

0 eθ/2

)
= M−1. (5.24)

5.3 The parity transformation

The Lagrangian density (5.12) can also be made invariant under space inversion

of the axes. Denoting by a prime the space coordinates of a point as seen from the

inverted axes, we have

r′ = −r and ∇′ = −∇. (5.25)

Hence, from the definitions (5.10) of σμ and σ̃ μ,

σ̃ μ∂ ′
μ = σμ∂μ, σμ∂ ′

μ = σ̃ μ∂μ. (5.26)

Our Lagrangian density (5.12) is evidently invariant if ψ(r) → ψ P (r′) where

ψ P
L (r′) = ψR(r), ψ P

R (r′) = ψL(r). (5.27)

Actually the Lagrangian density would also retain the same form if we were to

take, for example,

ψ P
L (r′) = eiαψR(r), ψ P

R (r′) = eiαψL(r),

for any real α. It is the standard convention to adopt the form (5.27) for the field

transformation under space inversion.

5.4 Spinors

Two-component complex quantities that transform under a Lorentz transforma-

tion according to the rules (5.19) and (5.20) are called left-handed spinors and

right-handed spinors, respectively. Our subscripts L and R anticipated this. The

four-component Dirac field is often called a Dirac spinor.
Spinors have the remarkable property that they can be combined in pairs

to make Lorentz scalars, pseudoscalars, four-vectors, pseudovectors and higher

order tensors. For example, (ψ
†
LψR + ψ

†
RψL) is a Lorentz invariant real scalar

and i(ψ
†
LψR − ψ

†
RψL) is a real pseudoscalar; it is invariant under proper Lorentz
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transformations but changes sign under space inversion. Using (5.15), (5.16) and

(5.27), we can see that (ψ
†
Lσ̃ μψL + ψ

†
RσμψR) is a four-vector, the space-like

components of which change sign under space inversion (since σ̃ i = −σ i ), and

(ψ
†
Lσ̃ μψL − ψ

†
RσμψR) is an axial four-vector, the space-like components of which

are unchanged under space inversion.

5.5 The matrices γ μ

The separation of the Dirac spinor into left-handed and right-handed components

will be particularly appropriate when we discuss the weak interaction. For describ-

ing the electromagnetic interactions of fermions it is convenient to introduce 4 × 4

matrices γ μ defined by

γ 0 = β; γ i = βαi , i = 1, 2, 3. (5.28)

It follows from the properties of the β and αi matrices that

(γ 0)2 = I; (γ i )2 = −I, i = 1, 2, 3;

γ μγ ν + γ νγ μ = 0, μ �= ν.
(5.29)

In the chiral representation,

γ 0 =
(

0 σ 0

σ 0 0

)
, γ i =

(
0 σ i

−σ i 0

)
. (5.30)

Written with the γ μ matrices, the Lagrangian density (5.6) becomes

L =ψ̄(iγ μ∂μ − m)ψ, (5.31)

where ψ̄ is the row matrix ψ̄ = ψ†γ 0, and the Dirac equation takes the symmetrical

form

(iγ μ∂μ − m)ψ = 0. (5.32)

Another useful matrix γ 5 = iγ 0γ 1γ 2γ 3. In the chiral representation,

γ 5 =
(−σ 0 0

0 σ 0

)
.

The matrices 1
2
(I − γ 5), 1

2
(I + γ 5) are projection operators giving the left-handed

and right-handed parts of a Dirac spinor:

1

2
(I − γ 5)ψ =

(
σ 0 0
0 0

) (
ψL

ψR

)
=

(
ψL

0

)
, (5.33)

1

2
(I + γ 5)ψ =

(
0 0
0 σ 0

) (
ψL

ψR

)
=

(
0
ψR

)
. (5.34)



56 The Dirac equation and the Dirac field

It is straightforward to verify that the Lorentz scalars and vectors constructed in

Section 5.4 from two-component spinors can be written:

ψ
†
LψR + ψ

†
RψL =ψ̄ψ (scalar)

i(ψ
†
LψR − ψ

†
RψL) = iψ̄γ 5ψ (pseudoscalar)

ψ
†
Lσ̃ μψL + ψ

†
RσμψR =ψ̄γ μψ (contravariant four-vector)

ψ
†
Lσ̃ μψL − ψ

†
RσμψR =ψ̄γ 5γ μψ (contravariant axial vector).

Note that these quantities are all real.

5.6 Making the Lagrangian density real

A potential problem with our Lagrangian density (5.6) or (5.12) is that it is not

real. Regarding ψ as a wave function, L is a complex function; regarding ψ as an

operator, L is not Hermitian. As a consequence, the energy–momentum tensor is

complex. Indeed, to apply Hamilton’s principle, the variation δS in the action must

be real. The term − m(ψ
†
LψR + ψ

†
RψL) in (5.12) is real, and the imaginary part of

L may be written

(1
/

2i)[iψ
†
Lσ̃ μ∂μψL + iψ

†
Rσμ∂μψR − (iψ

†
Lσ̃ μ∂μψL + iψ

†
Rσμ∂μψR)†]

= (1
/

2i)[iψ
†
Lσ̃ μ∂μψL + iψ

†
Rσμ∂μψR + i(∂μψ

†
L)σ̃ μψL + i(∂μψR)†σμψR],

(where we have used the Hermitian property of the matrices σμ and σ̃ μ). The last

expression is just

(1/2)∂μ(ψ
†
Lσ̃ μψL + ψ

†
RσμψR).

This is a sum of derivatives, which give only irrelevant end-point contributions

to the action (cf. Section 3.1). Hence δS is real. The imaginary part of L can be

discarded, and we can take

L = 1

2
[(iψ

†
Lσ̃ μ∂μψL + iψ

†
Rσμ∂μψR) (5.35)

+ Hermitian conjugate] − m(ψ
†
LψR + ψ

†
RψL). (5.36)

For further interesting discussion of this question see Olive (1997).

Problems

5.1 Show that the matrix M = N of equation (5.22) when inserted into equations (5.15)

and (5.16) generates the rotation matrix (5.21).

5.2 Show that the matrices M and N = M−1 given by equation (5.24) when inserted into

equations (5.15) and (5.16) generate the Lorentz boost of equation (5.23).
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5.3 Show that ψ
†
RψL and ψ

†
LψR are invariant under proper Lorentz transformations.

Show that ψ
†
RσμψR and ψL

†σ̃ μψL are contravariant four-vectors under proper

Lorentz transformations.

Show that ψ
†
Rσμσ̃ νψL and ψ

†
Lσ̃ μσ νψR are contravariant tensors under proper

Lorentz transformations.

5.4 Demonstrate the equivalence of the expressions (5.6) and (5.31) for the Lagrangian

density.

5.5 Show that γ 5 has the properties

(γ 5)2 = I; γ μγ 5 = −γ 5γ μ; μ = 0, 1, 2, 3.

5.6 Show that iψ̄γ 5ψ is a pseudoscalar field and ψ̄γ 5γ μψ = −ψ̄γ μγ 5ψ is an axial

vector field.

5.7 Show that (γ 0)† = γ 0, (γ i )† = −γ i .
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Free space solutions of the Dirac equation

In this chapter we display the plane wave solutions of the Dirac equation. We show
that a Dirac particle has intrinsic spin h/2, and we shall see how the Dirac equation
predicts the existence of antiparticles.

6.1 A Dirac particle at rest

In Chapter 5 we showed that the Dirac equation for a particle in free space is
equivalent to the coupled two-component equations

iσ̃ μ∂μψL − mψR = 0,

iσμ∂μψR − mψL = 0.
(6.1)

These equations have plane wave solutions of the form

ψL = uLei(p · r−Et), ψR = uRei(p · r−Et), (6.2)

where uL and uR are two-component spinors. Since solutions of the Dirac equation
also satisfy the Klein–Gordon equation (3.19), we must have

E2 = p2 + m2. (6.3)

It is simplest to find the solution in a frame K ′ in which the particle is at rest, and
then obtain the solution in a frame in which the particle is moving with velocity v

by making a Lorentz boost. Using primes to denote quantities in the frame K ′, the
momentum p′ = 0, so that equations (6.1) and (6.3) become

i∂ ′
0ψ

′
L = mψ ′

R, i∂ ′
0ψR = mψ ′

L,

and

E ′2 = m2, E ′ = ±m. (6.4)

58
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The solutions with positive energy E ′ = m are

ψ ′
L = ue−imt ′

, ψ ′
R = ue−imt ′

, (6.5)

where

u =
(

u1

u2

)
= u1

(
1
0

)
+ u2

(
0
1

)

is an arbitrary two-component spinor and we are adopting the standard convention
of quantum mechanics that the time dependence of an energy eigenstate is given
by the phase factor e−iEt .

In the rest frame K ′, the left-handed and right-handed positive energy spinors
are identical. As a consequence this solution is invariant under space inversion (see
Section 5.3). It is said to have positive parity.

6.2 The intrinsic spin of a Dirac particle

The intrinsic spin operator S of a particle with mass is defined to be its angular
momentum operator in a frame in which it is at rest. The component of S along the
z-direction is given by

Sz = ih lim
φ→0

[Rz(φ) − 1] / φ,

where Rz(φ) is the operator that rotates the state of the particle through an angle φ

about Oz (cf. Section 4.7). A rotation of the state through an angle φ, is equivalent to
rotating the axes through an angle −φ, and then ψL → MψL, ψR → NψR where,
from (5.22),

M = N =
(

e−iφ/2 0
0 eiφ/2

)
.

Hence

Sz = ih lim
φ→0

1

φ

(
e−iφ/2 − 1 0
0 eiφ/2 − 1

)
= h

2

(
1 0
0 −1

)
= h

2
σz.

In the state with u1 = 1, u2 = 0,

Szψ
′
L = (h/2)ψ ′

L

and

Szψ
′
R = (h/2)ψ ′

R.
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Acting on the Dirac wave function, we have

Sz

(
ψ ′

L

ψ ′
R

)
= (h/2)

(
ψ ′

L

ψ ′
R

)
. (6.6)

Similarly, in the state with u1 = 0, u2 = 1,

Sz

(
ψ ′

L

ψ ′
R

)
= −(h/2)

(
ψ ′

L

ψ ′
R

)
. (6.7)

Thus in the rest frame of the particle there are two independent states which
are eigenstates of Sz with eigenvalues ± (h/2). The operator Sz on a Dirac wave
function is represented by the matrix

Σz = (h/2)

(
σz 0
0 σz

)
. (6.8)

More generally, S is represented by

Σ = (h/2)

(
σ 0
0 σ

)
. (6.9)

Also, every Dirac wave function is an eigenstate of the square of the spin oper-
ator,

Σ2 = (3/4)h2I,

with eigenvalue (3/4)h2= (1/2)((1/2) + 1)h2. Recalling that the square J 2 of the
angular momentum for a state with angular momentum j is j( j + 1)h2; it is appro-
priate to say that a Dirac particle has intrinsic spin h/2.

6.3 Plane waves and helicity

We now transform to a frame K in which the frame K ′, and the particle, are moving
with velocity v. For simplicity we take v = (0, 0, v), along the z-axis with v > 0,
and consider the state with u1 = 1, u2 = 0.

Transformations between K and K ′ are then given by (5.23), along with (5.24).
Using (5.19) and (5.20),

ψL = M−1ψ ′
L =

(
e−θ/2 0
0 eθ/2

)
e−imt ′

(
1
0

)
= e−imt ′

e−θ/2

(
1
0

)
,

ψR = N−1ψ ′
R =

(
eθ/2 0
0 e−θ/2

)
e−imt ′

(
1
0

)
= e−imt ′

eθ/2

(
1
0

)
.
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Finally, substituting t ′ = t cosh θ − z sinh θ (and noting that m cosh θ = γ m =
E, m sinh θ = γ mν = p, where γ = (1 − v2/c2)−1/2 we have

ψL = ei(pz−Et)

(
e−θ/2

0

)
, ψR = ei(pz−Et)

(
eθ/2

0

)
. (6.10)

The helicity operator is useful in classifying plane wave states. It is defined by

helicity = Σ · p
|p| . (6.11)

The expectation value of this operator in a given state is a measure of the alignment
of a particle’s intrinsic spin with its direction of motion in that state. For p =
(0, 0, p), p > 0, the helicity operator Σ · p/|p| =	z . Thus the state (6.10) is an
eigenstate of the helicity operator with positive helicity 1/2, which we can write as
a Dirac spinor

ψ+ = 1√
2

ei(pz−Et)

⎛
⎜⎜⎝

e−θ/2

0
eθ/2

0

⎞
⎟⎟⎠ , p > 0. (6.12)

We have inserted the normalisation factor 1/
√

2 to conform with the standard
normalisation of the Lorentz scalar ψ̄ψ :

ψ̄ψ = ψ†γ 0ψ = ψ
†
LψR + ψ

†
RψL = 1.

Similarly, taking u1 = 0, u2 = 1, we can construct an eigenstate of negative
helicity −1/2:

ψ− = 1√
2

ei(pz−Et)

⎛
⎜⎜⎝

0
eθ/2

0
e−θ/2

⎞
⎟⎟⎠ , p > 0. (6.13)

All plane waves with positive energy can be generated by applying rotations to the
states we have found. The helicity of a state is unchanged by a rotation, since it is
defined by a scalar product. The evident generalisations of (6.12) and (6.13) to a
wave with wave vector p are

ψ+ = ei(p·r−Et)u+(p) (6.14)

where

u+(p) = 1√
2

(
e−θ/2 |+〉
eθ/2 |+〉

)
,
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and

ψ− = ei(p · r−Et)u−(p) (6.15)

where

u−(p) = 1√
2

(
eθ/2 |−〉

e−θ/2 |−〉
)

.

The Pauli spin states |±〉 are here the eigenstates of the operators σ · p/|p| with
eigenvalues ±1 (Problem 6.6). A general state of positive energy can be constructed
as a superposition of plane waves.

6.4 Negative energy solutions

In the frame K ′ in which the particle is at rest, there are also negative energy
solutions of (6.4) with E ′ = −m:

ψ ′
L = veimt ′

, ψ ′
R = −veimt ′

. (6.16)

In this case the left-handed and right-handed spinors v differ in sign. Thus the
negative energy solution changes sign under space inversion (see Section 5.3). It is
said to have negative parity.

The same Lorentz boost we used above in Section 6.3 gives solutions ψ+ and
ψ− with positive and negative helicity, respectively, which we can write as Dirac
spinors

ψ+ = 1√
2

ei(−pz+Et)

⎛
⎜⎜⎝

0
eθ/2

0
−e−θ/2

⎞
⎟⎟⎠ , ψ− = 1√

2
ei(−pz+Et)

⎛
⎜⎜⎝

−e−θ/2

0
eθ/2

0

⎞
⎟⎟⎠ , p > 0.

(6.17)
These solutions generalise to

ψ+ = ei(−p·r+Et)v+(p) (6.18)

where

υ+(p) = 1√
2

(
eθ/2 |−〉

−e−θ/2 |−〉
)

,

and

ψ− = ei(−p·r+Et)v−(p) (6.19)

where

v−(p) = 1√
2

(−eθ/2 |+〉
e−θ/2 |+〉

)
.
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|+〉 and |−〉 remain eigenstates of σ · p/|p| as defined below (6.15). Note that the
Lorentz invariant ψ̄ψ acquires a minus sign; in the case of the negative energy
solutions,

ψ̄ψ = ψ
†
LψR + ψ

†
RψL = −1.

Negative energy solutions of the Dirac equation appear at first sight to be an
embarrassment. In quantum theory a particle can make transitions between states.
Hence all Dirac states would seem to be unstable to a transition to lower energy.
Dirac’s solution to the difficulty was to assume that nearly all negative energy
states are occupied, so that the Pauli exclusion principle forbids transitions to them.
An unoccupied negative energy state, or hole, will behave as a positive energy
antiparticle, of the same mass but opposite momentum, spin, and electric charge.
Left unfilled, the negative energy state ψ+ of (6.17) corresponds to an antiparticle
of positive energy E and positive momentum p, and positive helicity, since the spin
of the hole is also opposite to that of the negative energy state.

A particle falling into an empty negative energy state will be seen as the simulta-
neous annihilation of a particle–antiparticle pair with the emission of electromag-
netic energy ≥ 2mc2. Conversely, the excitation of a particle from a negative energy
state to a positive energy state will be seen as pair production. The existence of the
positron, the antiparticle of the electron, was established experimentally in 1932,
and the observation of pair production soon followed.

The uniform background sea of occupied negative energy states, with its asso-
ciated infinite electric charge, is assumed to be unobservable. In any case, it is
clearly quite arbitrary whether, say, the electron is regarded as the particle and the
positron as antiparticle, or vice versa. Evidently our starting interpretation of the
Dirac equation as a single particle equation is not tenable. We are led, inevitably,
to a quantum field theory in which particles and antiparticles appear as the quanta
of the field, in somewhat the same way as photons appear as the quanta of the
electromagnetic field. We shall take up this theme in Chapter 8.

6.5 The energy and momentum of the Dirac field

The Lagrangian density of the Dirac field is given by (5.31), which we display in
more detail:

L = ψ̄(iγ μ∂μ − m)ψ
= iψ∗

a ∂0ψa + ψ̄b
(
iγ i

ba∂i − mδba
)
ψa.

(6.20)

As in Section 5.1 we may treat the fields ψa and ψa
∗ as independent, and take the

energy–momentum tensor to be

T μ
ν = ∂L

∂(∂μψa)
∂νψa − Lδμ

ν (6.21)

(L does not depend on ∂μψa
∗).
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In particular, the energy density is

T 0
0 = iψ∗

a ∂0ψa − L

= ψ̄(−iγ i∂i + m)ψ (6.22)

and the momentum density is

T 0
i = iψ∗

a ∂iψa = iψ†∂iψ. (6.23)

The general solution of the free space Dirac equation is a superposition of all
possible plane waves, which we will write

ψ = 1√
V

∑
p,ε

√
m

Ep

(
bpεuε(p)ei(p·r−E pt) + d∗

pεvε(p)ei(−p·r+E pt)). (6.24)

ε is the helicity index, ±, and bpε and dpε are arbitrary complex numbers. The
factors

√
(m/E p) take the place of the factors 1/

√
2ωk we inserted in the boson

field expansions of Chapter 3 and Chapter 4.
We can express the total energy and total momentum of the Dirac field in terms of

the wave amplitudes, by inserting the field expansion into T 0
0 and T 0

i , and integrating
over the normalisation volume V. The results are

H=
∑
p,ε

(
b∗

pεbpε − dpεd∗
pε

)
Ep, (6.25)

P=
∑
p,ε

(
b∗

pεbpε − dpεd∗
pε

)
p. (6.26)

ε = ±1 is the helicity index.
The (somewhat tedious) derivation of these results is left to the reader. Note that

each plane wave is a solution of the Dirac equation (5.32), which implies

(γ 0 E p − γ i pi )uε(p) = muε(p),

(γ 0 E p − γ i pi )vε(p) = −mvε(p).
(6.27)

It is also necessary to use various orthogonality relations, which are set out in
Problem 6.3.

For later convenience, we rewrite the Dirac field ψ (6.24) in terms of ψL and
ψR. Using (6.14), (6.15), (6.18) and (6.19) gives

ψL = 1√
V

∑
p

√
m

2E p

[(
bp+e−θ/2 |+〉 + bp−eθ/2 |−〉) ei(p·r−Et)

+ (
d∗

p+eθ/2 |−〉 − d∗
p−e−θ/2 |+〉) ei(−p·r+Et)] (6.28)

ψR = 1√
V

∑
p

√
m

2E p

[(
bp+eθ/2 |+〉 + bp−e−θ/2 |−〉) ei(p·r−Et)

+ (−d∗
p+e−θ/2 |−〉 + d∗

p−eθ/2 |+〉) ei(−p·r+Et)] (6.29)
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6.6 Dirac and Majorana fields

The expansion (6.24) is the general solution of the free field Dirac equation. For
every momentum p there are four independent complex coefficients: bp+, bp−, d∗

p+
and d∗

p−, which correspond to particles with helicities +1/2, −1/2 and antiparticles
with helicities +1/2, −1/2, respectively.

It will be of interest, in Chapter 21, to consider solutions in which we impose the
constraint that dp+ = bp+, dp− = bp−, and hence d∗

p+ = b∗
p+, d∗

p− = b∗
p−. These

solutions are known as Majorana fields. On quantisation, we shall see that the
Dirac fields create and annihilate particles, and antiparticles. For example, if ψ is
an electron field it creates positrons and annihilates electrons, ψ† creates electrons
and annihilates positrons. With the Majorana constraint, particles and antiparticles
are identical. Majorana fields are irrelevant for electrically charged particles, but it
is possible that the electrically neutral neutrino fields have this property. It is still
an open question whether neutrino fields are Dirac or Majorana.

6.7 The E � m limit, neutrinos

The coefficients of the plane waves in the expansions (6.25) and (6.26) may be
expressed as √(

m
/

2E
)
e±θ/2 = {(1 ± v/c) /2}1/2 , (6.30)

where v is the particle velocity (Problem 6.1). In the high energy limit, E � m, the
velocity v → c. The only significant terms in the field expansions which survive in
this limit are

ψL = 1√
V

∑
p

(
bp− |−〉 ei(p·r−Et) + d∗

p+ |−〉 ei(−p·r+Et)) , (6.31)

ψR = 1√
V

∑
p

(
bp+ |+〉 ei(p·r−Et) + d∗

p− |+〉 ei(−p·r+Et)) . (6.32)

In the limit, ψL and ψR are completely independent: ψL involves only nega-
tive helicity particles and positive helicity antiparticles; ψR involves only positive
helicity particles and negative helicity antiparticles.

Since neutrinos are electrically neutral, they are accessible to experimental inves-
tigation only through the weak interaction and we shall see in Chapter 9 that in the
weak interaction Nature only employs ψL. In practice neutrino energies are usually
many orders of magnitude greater than their mass, so that only negative helicity
neutrinos and positive helicity antineutrinos are readily observed. It has not so far
been established that the ‘hard to see’ positive helicity neutrino is different from
the ‘easy to see’ positive helicity antineutrino.
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Problems

6.1 With the normalisaion of ψ+ determined by equation (6.14), show that

ψ
†
+ψ+ = cosh θ = E/m.

(Note that this is not the usual normalisation of particle quantum mechanics.)
Show that the probability of this positive helicity state being in the right-handed

mode is

eθ /(2 cosh θ ) = (1 + v/c)/2

and the probability of its being in the left-handed mode is (1 − v/c)/2. What are the
corresponding results for ψ−?

6.2 Show that the negative energy positive helicity state of equation (6.18) has probability
(1 + v/c)/2 of being in the left-handed mode.

6.3 Show that

u†
±(p)u±(p) = ν

†
±(p)v±(p) = E p/m,

u†
±(p)u∓(p) = v

†
±(p)v∓(p) = 0,

u†
±(p)v±(−p) = v

†
±(−p)u±(p) = u†

±(p)v∓(−p) = v
†
∓(−p)u±(p) = 0.

These results are useful in Problem 6.4.

6.4 Using the plane wave expansion (6.24) and the energy–momentum tensor components
(6.22) and (6.23), show that the energy and momentum carried by the wave ψ are
given by (6.25) and (6.26).

6.5 Consider a momentum p in the direction specified by the polar coordinates θ and φ.

p̂ = (sin θ cos φ, sin θ sin φ, cos θ ).

Show that

σ · p̂ =
(

cos θ sin θ e−iφ

sin θ eiφ − cos θ

)

and the Pauli spin states

|+〉 =
(

cos(θ/2)
sin(θ/2)eiφ

)
, |−〉 =

(− sin(θ/2)e−iφ

cos(θ/2)

)

are the helicity eigenstates appearing in (6.14) and (6.15). An overall phase is
undetermined.
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Electrodynamics

In this chapter we set up a Lagrangian for a field theory in which electrically charged
Dirac particles and antiparticles, for example electrons and positrons, interact with
and through the electromagnetic field. To facilitate reference to other texts, and
for conciseness, we work with four-component Dirac spinors and the matrices γ μ

introduced in Section 5.5.

7.1 Probability density and probability current

We have seen in previous chapters how conservation laws are associated with
symmetries of the Lagrangian. The Lagrangian density (5.31),

L = ψ̄(iγ μ∂μ − m)ψ,

is invariant under the transformation

ψ (x) → ψ ′ (x) = e−iαψ (x) , (7.1)

where α is a constant phase. These transformations form a group U(1) (see
Appendix B) and are said to be global: the same at every point in space and time.

If now we allow an arbitrary small space- and time-dependent variation in
α, α → α′ (x) = α + δα (x) , and if the fields satisfy the field equations, the cor-
responding first-order variation δS in the action must be zero, since S is stationary
for the actual fields. The variation comes from the operators ∂μ acting on e−iδα(x),
so that

∂S =
∫

ψ̄γ μψ i∂μe−iδαd4x

=
∫

ψ̄γ μψ∂μ (δα) d4x, to first order.

67
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Integrating by parts,

δS = −
∫

[∂μ(ψ̄γ μψ)]δα d4x .

This is zero for any arbitrary function δα(x) only if

∂μ(ψ̄γ μψ) = 0. (7.2)

At each point x of space and time, ψ̄ (x) γ μψ (x) transforms like a contravariant
four-vector (Section 5.5) and we may define the contravariant field

jμ (x) = ψ̄γ μψ = (P (x) , j (x)) (7.3)

where P (x) = ψ̄γ 0ψ = ψ†(y0)2ψ = ψ∗
a ψa =

4∑
a=1

|ψa|2. Then (7.2) takes the

familiar form

∂ P

∂t
+ ∇ · j = 0. (7.4)

If P(x) is interpreted as the particle probability density associated with the wave
function ψ(x) and j(x) as the probability current, (7.4) expresses local particle
conservation. Integrating over all space, and using the divergence theorem, it follows
that for fields that vanish at large distances

d

dt

∫
Pd3x = 0.

Hence ∫
P (t, x) d3x =

∫
ψ†ψ d3x

is a constant independent of time. With ψ(x) taken to be a normalised wave function
for a particle, the constant is unity, and we see that a wave function once normalised
stays normalised. In Chapter 8 we shall see that in a second quantised field theory,∫

P (t, x) d3x is an operator that counts the number of particles minus the number
of antiparticles, and thus this number is conserved.

We could have derived (7.2) from the field equation but the device introduced
here, whereby the conservation law appears as a consequence of the U(1) symmetry
(7.1), is both elegant and economical.

7.2 The Dirac equation with an electromagnetic field

In classical mechanics, the Hamiltonian for a particle carrying charge q moving in
an external electromagnetic field specified by the electromagnetic potentials (φ,A)
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is obtained from the free particle Hamiltonian by the substitution in (3.8)

E → E − qφ, p → p − qA,

or, equivalently

pμ → pμ − q Aμ, (7.5)

where pμ = (E,p) is the energy-momentum four-vector of the particle. (See Prob-
lems 4.6 and 4.7.) With the quantisation rule pμ → i∂μ, (7.5) suggests that the
Dirac equation in the presence of an electromagnetic field should be

[γ μ(i∂μ − q Aμ) − m]ψ = 0, (7.6)

and there should be a corresponding substitution in the Lagrangian density.
Using (4.10) and (5.31), we take the Lagrangian density for the Dirac field

together with the electromagnetic field with external charge-current sources Jμ to
be

L = ψ̄[γ μ(i∂μ − q Aμ) − m]ψ − 1

4
Fμν Fμν − Jμ Aμ

(7.7)
= ψ̄[γ μi∂μ − m]ψ − 1

4
Fμν Fμν − (

Jμ + qψ̄γ μψ
)

Aμ.

The Lagrangian is still invariant under the transformation ψ (x) → ψ ′ (x) =
e−iαψ (x) with α constant, and this leads as before to particle conservation:

∂μ jμ = 0, jμ = ψ̄γ μψ. (7.8)

Variation of the fields Aμ in the action, as in Section 4.2, yields the Maxwell
equations, with charge-current density

Jμ + qψ̄γ μψ = Jμ + q jμ. (7.9)

In (7.8) and (7.9), jμ (x) is the conserved particle number density current (antiparti-
cles being counted as negative), and q jμ (x) is the conserved charge density current.
Thus the Lagrangian density (7.7) includes the electromagnetic field produced by
the charged particle current as well as the field produced by external sources.

Setting q = the electron charge = −e, and m to be the electron mass, the
Lagrangian (7.7) is, after quantisation, the Lagrangian of quantum electrodynamics.
With the external charge-current distribution Jμ (x) taken to be that of the atomic
nuclei, and including the dynamics of the nuclei as an assembly of point particles,
this is the basic Lagrangian that describes and explains most of chemistry and
materials science. We shall review some of the astounding successes of quantum
electrodynamics in the next chapter.



70 Electrodynamics

7.3 Gauge transformations and symmetry

In Chapter 4 we stressed that the four-potential Aμ is not unique: the same physical
electric and magnetic fields are obtained after a gauge transformation

Aμ (x) → A′
μ (x) = Aμ (x) + ∂μχ (x)

where χ (x) is an arbitrary function of space and time.
If ψ is a solution of the Dirac equation with the four-potential Aμ, the corre-

sponding solution in the gauge with four-potential A′
μ is given by

ψ → ψ ′ = e−iqχψ.

This is easily verified:
(
i∂μ − q A′

μ

)
ψ ′ = e−iqχ

{
i∂μ + q∂μχ − q(Aμ + ∂μχ )

}
ψ

= e−iqχ (i∂μ − q Aμ)ψ.

Hence the Dirac equation (7.6) is equivalent to
[
γ μ(i∂μ−q A′

μ) − m
]
ψ ′ = 0.

The transformations:

Aμ (x) → Aμ (x) + ∂μχ (x) (7.10a)

ψ (x) → e−iqχ (x)ψ (x) (7.10b)

make up a general local gauge transformation.
The charge-current density q jμ = qψ̄γ μψ is invariant under the transformation

and so too is the action provided that (as in Section 4.3) ∂μ Jμ = 0. It is also
interesting to note that the phase of a charged Dirac field, for example that of an
electron, is a gauge artefact without physical significance: this phase cannot be
measured.

We can look at this transformation from a different point of view. The Lagrangian
(7.7) is invariant under the global U(1) transformation ψ → ψ ′ = e−iαψ where
α is constant. If we now ask for the Lagrangian to be invariant under a similar
but local transformation, ψ → ψ ′ (x) = e−iqχψ(x), where χ (x) is an arbitrary
function of space and time, we are forced into introducing the gauge field Aμ,
with the transformation property Aμ → A′

μ = Aμ + ∂μχ , in order to cancel out
the additional terms which arise.

From this point of view, the electromagnetic field appears as a consequence of
the invariance of the Lagrangian under a local symmetry transformation. This idea
will be generalised in later chapters.
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7.4 Charge conjugation

Charge conjugation is the operation of replacing matter by antimatter so that, for
example, an electron is interpreted as the antiparticle of the positron, which is then
the particle. This would be the natural point of view if the Universe contained anti-
matter rather than matter. An interchange is achieved if we replace the Dirac field
by its complex conjugate. Consider a positive energy solution of the field equation
that has a phase factor e−iEt . After complex conjugation it has a phase factor eiEt ,
and with the standard phase convention is a negative energy solution. In the ‘hole’
interpretation, negative energy solutions are associated with antiparticles. How-
ever, the operation of complex conjugation does not leave L invariant: additional
manipulations are needed to display the symmetry.

Taking the complex conjugate of the Dirac equation (7.6) gives

[(γ μ)∗(−i∂μ − q Aμ) − m]ψ∗ = 0.

Now in the chiral representation γ 0, γ 1 and γ 3 are real and (γ 2)∗ = −γ 2. Multi-
plying the equation above by γ 2 and using the anticommuting properties of the γ

matrices gives

[γ μ(i∂μ + q Aμ) − m](γ 2ψ∗) = 0,

or
[
γ μ

(
i∂μ − q Ac

μ

) − m
]

(γ 2ψ∗) = 0.

Hence if ψ is a positive energy solution of the Dirac equation for a particle carrying
charge q, (γ 2ψ∗) is a negative energy solution in the charge conjugate field Ac

μ =
−Aμ, which we introduced in Section 4.6.

There is some freedom of choice in the details of the transformation. We shall
define the charge conjugate field ψc by

ψc = − iγ 2ψ∗ (7.11a)

or, in terms of two-component spinors

ψc
L = −iσ 2ψ∗

R, ψc
R = iσ 2ψ∗

L. (7.11b)

Using
(
γ 2

)2 = −I,
(
γ 2

)∗ = −γ 2, we can invert the transformation (7.11a),
obtaining

ψ = −iγ 2 (
ψc

)∗
(7.12a)

or

ψL = −iσ 2 (
ψc

R

)∗
, ψR = iσ 2 (

ψc
L

)∗
. (7.12b)
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Then (noting (γ 2)† = −γ 2) we have

ψ† = −i(ψc)Tγ 2 (7.13a)

or

ψ
†
L = i

(
ψc

R

)T
σ 2, ψ

†
R = −i

(
ψc

L

)T
σ 2. (7.13b)

Let us see how the various terms in the Lagrangian density (7.7) transform. Con-
sider

ψ̄ψ = ψ†γ 0ψ = −(ψc)Tγ 2γ 0γ 2(ψc)∗ = −(ψc)Tγ 0(ψc)∗,

(using the properties of the γ -matrices).
To display the invariance of L we must anticipate Chapter 8. As operators,

spinor fields anticommute: if a product of two fields is interchanged, a minus
sign is introduced. For example, ψa

∗ψb = −ψbψa
∗. Thus in transposing the last

expression above we introduce a minus sign, and hence recover the form of the
original term:

ψ̄ψ = (ψ̄c)ψc

(since (γ 0)T = γ 0).
Other terms likewise acquire a minus sign:

ψ̄γ μψ = −(ψc)Tγ 2γ 0γ μγ 2(ψc)∗

= (ψc)†(γ 2γ 0γ μγ 2)T (ψc).

But, as the reader may verify,

(γ 2γ 0γ μγ 2)T = −γ 0γ μ.

Hence

ψ̄γ μψ = −(ψ̄c)γ μ(ψc).

Finally,

ψ̄γ μi∂μψ = −(ψc)Tγ 2γ 0γ μγ 2i∂μ(ψc)∗

= i∂μ(ψc)†(γ 2γ 0γ μγ 2)T(ψc)

= −i∂μ(ψc)†γ 0γ μ(ψc).

Integration by parts in the action allows us to replace this last term by (ψ̄c)γ μi∂μ(ψc)
in the Lagrangian density.

The Lagrangian can be seen to be of exactly the same form after charge conjuga-
tion, provided that the charge conjugate potentials Ac

μ are defined to be Ac
μ = −Aμ

(as in Section 4.6) and any external charge-current density Jμ also changes sign. In
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ordinary matter, where the Dirac particles are electrons, the external Jμ arise from
the atomic nuclei, and these currents also change sign under charge conjugation.

7.5 The electrodynamics of a charged scalar field

In Section 3.5 we introduced the Klein–Gordon equation,

−∂μ∂μφ − m2φ = 0,

which describes the motion of an uncharged scalar particle. The corresponding
equation for a charged scalar particle is obtained from the Klein–Gordon equation
by making the substitution (7.5), i∂μ → i∂μ − q Aμ, which gives

[(i∂μ − q Aμ)(i∂μ − q Aμ) − m2]� = 0. (7.14)

A solution of (7.14) is necessarily complex. Thus a charged particle of zero spin
in an electromagnetic field must be described by a complex, or two-component,
wave function � = (φ1 + iφ2)/

√
2. We introduced complex scalar fields in Section

3.7. A real Lagrangian density that yields (7.14) and is Lorentz invariant is

L = − [
(i∂μ + q Aμ)�∗] [

(i∂μ − q Aμ) �
] − m2�∗�. (7.15)

L is invariant under a local gauge transformation, � → e−iqχ�. Note that, since
zero spin particles are bosons, the fields � and �∗ commute.

Taking the complex conjugate of equation (7.14), we see that if � (x) is a solution
for a particle carrying charge q in a given external field, then �∗(x) is a solution
for a particle carrying a charge −q. We define the field �c (x) = �∗ (x) to be the
charge conjugate of �. The Lagrangian density (7.15) is invariant under charge
conjugation, � → �c, if the charge conjugate potentials are again defined to be
Ac

μ = −Aμ.
The charged π+ and π− mesons are composite, spin zero, particles whose overall

motion is described by the generalised Klein–Gordon equation (7.14). We shall
meet these particles and the fields � and �∗ in the phenomenological discussions
of Chapter 9.

7.6 Particles at low energies and the Dirac magnetic moment

In an electromagnetic field, the coupled Dirac equations (5.10) become

(i∂0 − q A0) ψL − σ i (i∂i − q Ai ) ψL − mψR = 0
(7.16)

(i∂0 − q A0) ψR + σ i (i∂i − q Ai ) ψR − mψL = 0

where the σ i are the Pauli spin matrices.
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From Section 6.1, solutions of the Dirac equation that correspond to particles
at low energies have ψL ≈ ψR. We shall now show that at low energies the two-
component wave function

φ = eimt (ψL + ψR) (7.17a)

corresponds closely to the Schrödinger wave function for the particle. The factor
eimt has been inserted so that, as in the Schrödinger equation, the rest mass energy
of the particle is omitted. If we define the orthogonal combination

χ = eimt (ψL − ψR) , (7.17b)

then by adding and subtracting the equations (7.16) we obtain an equivalent pair of
equations:

(i∂0 − q A0) φ − σ i (i∂i − q Ai ) χ = 0,

(i∂0 − q A0 + 2m) χ − σ i (i∂i − q Ai ) φ = 0.
(7.18)

The Schrödinger equation results if the term (i∂0 − q A0 + 2m) χ is replaced by
2mχ . This approximation is reasonable if the Coulomb potential energy q A0 and
the kinetic energy are small compared with the rest mass of the particle. Then

χ = (1/2m) σ i (i∂i − q Ai ) φ,

and by substitution

i
∂φ

∂t
=

[
1

2m
σ i (i∂i − q Ai ) σ j (i∂ j − q A j ) + q A0

]
φ. (7.19)

The Pauli spin matrices have the property

σ iσ j = iεi jkσ
k + δi jσ

0,

and from the antisymmetry of εi jk ,

εi jk∂i∂ jφ = 0, εi jk Ai A j = 0.

Also εi jk[∂i (A jφ) + Ai∂ jφ] = εi jk[∂i (A jφ) − A j∂iφ] = εi jk(∂i A j )φ, and recall-
ing Aμ = (φ, −A), εi jk(∂i A j ) = Bk = −Bk gives the magnetic field B. Using
these results, we write (7.19) as

i
∂φ

∂t
=

[
1

2m
(−i∇−qA)2 + q A0 −

(qσ

2m

)
· B

]
φ. (7.20)

Without the term − (qσ/2m). B, this would be the Schrödinger equation for a
charged particle in an electromagnetic field. The additional term we interpret as the
energy in a magnetic field of an intrinsic magnetic moment associated with a Dirac
particle. This is another remarkable consequence of the Dirac equation. For an
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electron, with q = −e, the magnetic moment is the Bohr magneton μB = eh/2m,
anti-aligned with the electron spin. The observed magnetic moment agrees to better
than 1% (cf. Section 8.5).

At the level of approximation of (7.20), the magnetic moment would play no
role in a purely electrostatic field A0. In better approximations, or indeed solving
the Dirac equation directly, ‘spin–orbit coupling’ terms appear, which are of some
importance in atomic physics and materials science.

Problems

7.1 Using the plane wave expansion (6.24), show that the conserved particle number can
be written

∫
P

(
x0, x

)
d3x =

∫
ψ†ψd3x =

∑
p,ε

(b∗
pεbpε + dpεd∗

pε).

7.2 Show that the charge conjugation operation acting on the positive energy solutions
(7.12) and (7.13) yields the negative energy solutions (7.17).

7.3 Show that, taking the fields to be anticommuting and neglecting the neutrino mass,
the neutrino Lagrangian density

L = iψ†
Lσ̃ μ∂μψL

is invariant under the combined operations of parity and charge conjugation. (Note
equations (5.26) and (5.27).)

7.4 Show that iσ 2ψ∗
R transforms like a left-handed spinor under a Lorentz transformation.

7.5 Obtain the Klein–Gordon equation (7.14) from the Lagrangian density (7.15).

7.6 Using the method of Section 7.1, show that the global U(1) symmetry � → eiα� of
the Lagrangian density (7.15) leads to a conserved charge density current

q jμ = iq[�∗(∂μ�) − (∂μ�∗)�] − 2q2 Aμ�∗�.

(Note that, in contrast to the result (7.9) for the Dirac Lagrangian, the current of a
complex scalar field contains a term proportional to Aμ.)

7.7 Show that for the positive energy solutions (6.12) and (6.13) of the Dirac equation,

q jμ = −eψ̄γ μψ = −e (cosh θ, 0, 0, sinh θ ) = − (eE/m) (1, 0, 0, υ)

and also for the ‘negative energy’ solutions (6.17),

q jμ = − (eE/m) (1, 0, 0, υ) .
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With Dirac’s interpretation, the hole that remains when this state is removed from
the sea corresponds to a particle carrying charge e moving with velocity v along the
z-axis.

7.8 Show that after the operation of charge conjugation a proton has negative charge and
an electron has positive charge.

7.9 How do the electromagnetic potentials transform under the operation of time reversal,
t → t ′ = −t? Show that γ 1γ 3ψ∗ (t) is a solution of the time reversed Dirac equation,
if ψ (t) is a solution of the Dirac equation.

7.10 Show that, for a Dirac particle in a magnetic field B given by the vector potential A,
both ψL and ψR satisfy the equation[

− ∂2

∂t2
− (−i∇ − qA)2 − m2 + qσ · B

]
ψ = 0.

Note that this differs from the Klein–Gordon equation for a charged scalar particle
in a magnetic field, by the additional term qσ · B.

7.11 Using the parity transformations (4.18) and (5.27), show that the Lagrangian density
(7.7) is invariant under space inversion.



8

Quantising fields: QED

We turn now to the quantisation of the electrodynamic fields introduced in

Chapter 7. So far we have treated the electromagnetic field and the Dirac field

as classical fields (though we were compelled in Chapter 7 to recognise that Dirac

fields anticommute). On quantisation, these fields become operator fields, acting

on the states of a system. The classical total field energy becomes the Hamiltonian

operator, which determines the dynamics of the system. We shall use the formal-

ism of annihilation and creation operators; this formalism is reviewed briefly in

Appendix C for readers not already familiar with it.

Quantum electrodynamics, or QED, is an important component of the Standard

Model. It is also the foundation of our understanding of the material world at the

atomic level. However, we do not wish to enter into the technical complications

of electrons in atoms or in material media. In this chapter we shall only con-

sider more simple situations of a few interacting photons, electrons and positrons,

at energies sufficiently high for bound systems of electrons and positrons to be

ignored. In these situations, the free field approximation to QED provides a sound

basis for understanding the interactions of particles as perturbations on their free

behaviour.

This is not a text on quantum field theory, and our outline of perturbation theory

in this chapter is necessarily sketchy. But our intention is to try to give some insight

into how the results of calculations, presented in later chapters, are arrived at. We

shall attempt to explain the necessity of renormalisation, which is an important

concept in the formulation of the Standard Model.

8.1 Boson and fermion field quantisation

The simplest classical field we have introduced is that of a massive free scalar

particle. It satisfies the Klein–Gordon equation (3.19). In the field expansion (3.21)

we have so far regarded the classical wave amplitudes ak and a∗
k as ordinary complex

77



78 Quantising fields

numbers. We now quantise the theory. We interpret ak as an annihilation operator

and a∗
k becomes the creation operator a†

k, the Hermitian conjugate of ak. These

operators are to obey the commutation relations[
ak, a†

k′
] = δkk′, [ak, ak′] = 0,

[
a†

k, a†
k′
] = 0. (8.1)

The total field energy (3.30) becomes the Hamiltonian operator

H =
∑

k

a†
kakωk =

∑
k

Nkωk, (8.2)

where ωk = √
(k2 + m2) and it follows from the commutation relations that Nk =

a†
kak is the number operator (Appendix C). As in Chapter 3, we shall in this chapter

confine all particles to a cube of side l, volume V = l3, and use periodic boundary

conditions. By defining the Hamiltonian to be of the form (8.2), rather than the

more symmetrical form

1

2

∑
k

(
a†

kak + aka†
k

)
ωk =

∑
k

(
Nk + 1

2

)
ωk (8.3)

we discard ‘zero-point energy’ contributions and hence make the energy of the

vacuum state |0〉 to be zero. The excited energy eigenstates of the Hamiltonian can

then be interpreted as assemblies of particles (π0 mesons, say, or Higgs particles)

with an integer number nk of particles in the state k, where nk is the eigenvalue of

the number operator Nk. The particles will obey Bose–Einstein statistics.

In the radiation gauge of Section 4.1, the electromagnetic field in free space is

quantised in a very similar way to the Klein–Gordon field. The wave amplitudes akα

and a∗
kα which appear in the expansion (4.15), become the annihilation and creation

operators akα and a†
kα, and the total field energy (4.25) becomes the Hamiltonian

operator

Hem =
∑
k,α

a†
kαakαωk (8.4)

where ωk = |k|. The operators akα and a†
kα annihilate and create photons of wave

vector k and polarisation α, and satisfy commutation relations[
akω, a†

k′α′
] = δkk′δαα′, [akα, ak′α′] = 0,

[
a†

kα, a†
k′α′

] = 0. (8.5)

N (k, α) = a†
kαakα is the number operator. The energy eigenstates of the radiation

field correspond to assemblies of photons. Photons, like scalar particles, obey Bose–

Einstein statistics. (See Problem 8.1.)

On quantising the Dirac field of a free electron, the wave amplitudes appearing in

the expansion (6.24), and their complex conjugates likewise become operators: bpε

and bpε
† annihilate and create electrons of momentum p, helicity ε; dpε and dpε

†
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annihilate and create positrons of momentum p, helicity ε. Electrons and positrons

are fermions, and these operators obey anticommutation relations, for example

bpεb†
p′ε′ + b†

p′ε′bpε = {
bpε, b†

p′ε′
} = δpp′δεε′, {bpε, bp′ε′ } = 0,

{
b†

pε, b†
p′ε′

} = 0

(8.6)

dpε and d†
p′ε′ obey similar rules. Also all electron operators anticommute with

all positron operators. The electron number operator Ne (p, ε) = b†
pεbpε and the

positron number operator Np (p, ε) = d†
pεdpε have possible eigenvalues restricted

to 0 and 1, in accord with the Pauli exclusion principle (Appendix C). Electrons

and positrons obey Fermi–Dirac statistics. (See Problem 8.2.)

After second quantisation, the difficulties that were associated with the interpre-

tation of the Dirac equation as a single particle wave equation disappear. Elec-

trons and positrons are now on a similar footing and the ‘sea’ of filled nega-

tive energy states is no longer needed. The total field energy (6.25) becomes the

Hamiltonian

H =
∑
p,ε

(
b†

pεbpε − dpεd†
pε

)
Ep.

Using an anticommutation relation, we can replace this by

H =
∑
p,ε

(
b†

pεbpε + d†
pεdpε − 1

)
Ep.

We shall discard the constant zero-point energy term (which we note is negative

for fermions) and take

H =
∑
p,ε

(
b†

pεbpε + d†
pεdpε

)
Ep. (8.7)

The energy of the vacuum state is then zero, and the excited states correspond to

assemblies of electrons and positrons.

Similarly, the field momentum (6.26) becomes the momentum operator

P =
∑
p,ε

(
b†

pεbpε + d†
pεdpε

)
p. (8.8)

The conserved particle number (Problem 7.1) becomes the time independent

operator ∫
P

(
x0, x

)
d3x =

∑
p,ε

(
b†

pεbpε + dpεd†
pε

)
. (8.8)

which we replace by:

conserved number operator =
∑
p,ε

(
b†

pεbpε + d†
pεdpε

)
. (8.9)
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This operator counts the number of electrons minus the number of positrons, a

number which is therefore constant in quantum electrodynamics.

8.2 Time dependence

In the Schrödinger picture, a system described by a Hamiltonian H evolves in time

from a state |t0〉 at time t0 to a state |t〉 at time t, where

|t〉 = e−iH (t−t0)|t0〉.
Thus time displacements are generated by the unitary operator e−iHt .

The expectation value of a time independent operator Ô at time t is

〈t |Ô|t〉 = 〈t0|eiH (t−t0) Ôe
−iH (t−t0)|t0〉

= 〈t0|Ô H (t − t0)|t0〉
where

Ô H (t) = eiHt Ôe−iHt (8.10)

depends on t.
These last equations give the so-called Heisenberg picture, in which the states

of a system remain fixed and the operators become time dependent. In the case of

free fields, the time dependence of the annihilation and creation operators is very

simple. For example, in the case of a scalar field (see (3.21)),

ak (t) = e−iωkt ak, a†
k(t) = eiωkt a†

k, (8.11)

as may be seen by considering the effect of the operators on a state |nk〉 (Appendix

C). It is usual in quantum field theory to work in the Heisenberg picture.

In the case of interacting fields, the basic free field states we have defined are no

longer eigenstates of the total Hamiltonian. In QED we may write

H = H0 + V, (8.12)

where

H0 = H (photons) + H (electrons) + H (positrons)

is given by (8.4) and (8.7). The eigenstates of Ho are just collections of freely

moving photons, electrons, and positrons.

V comes from the term −q
(
ψ̄γ μψ

)
Aμ in the Lagrangian density, (7.7),

which we constructed in Chapter 7. We are here excluding external fields. Since

V does not depend on derivatives of the fields, its contribution to the energy

density T 0
0 is just q(ψ̄γ μψ)Aμ, and setting q = −e for electrons we obtain
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at t = t0

V (t0) = −e
∫

ψ̄(r, t0)γ μψ(r, t0)Aμ(r, t0)d3r. (8.13)

Note that the subsequent time development of the fields is not that of the free fields,

since it is determined by the full Hamiltonian H = H0 + V .

We can expand the fields Aμ and ψ at the initial time to using (4.15) and (6.24),

replacing the wave amplitudes by appropriate operators. On expanding out V there

will be several types of term. For example, setting to = 0 one can easily pick out a

term

− em√
(2V ωk Ep′ Ep′′)

[ūε′(p′)γ μυε′′(p′′)εμ]d†
p′εd†

p′′ε′′akαδ(k−p′−p′′),0. (8.14)

This term annihilates a photon and creates an electron–positron pair. The condition

k − p′ − p′′ = 0 comes from the integration over space of the exponential factors,

and explicitly conserves momentum.

Dynamical calculations in a quantum field theory can be viewed as the calculation

of the unitary operator e−iHt acting on some initial specified state. In QED, the

coupling (8.13) between the radiation field and the Dirac field is determined by the

charge on the electron e. It is natural to introduce the dimensionless parameter α,

the fine structure constant:

α = e2

4πhc
≈ 1

137
.

α characterises the strength of the coupling, and is small. Much progress has been

made in QED by the construction of the operator e−iHt as an expansion of the form

e−iHt = e−iH0t [1 + eÔ1 (t) + e2 Ô2 (t) + . . .] (8.15)

where the Ôn(t) are time-dependent operators.

8.3 Perturbation theory

To construct the perturbation expansion (8.15), one can start by considering

e−iHt = [e−iHδt ]nwith δt = t/n.

For large enough n (small enough δt), one can take

e−iHδt = 1 − iHδt

and discard higher order terms in the Taylor expansion. Then

e−iHt = [1 − i (H0 + V ) δt]n .
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In the lowest order of perturbation theory only the terms linear in V are kept, so

that

e−iH0t eÔ1 (t) = −i
n−1∑
r=0

[1 − iH0δt]n−1−r V δt [1 − iH0δt]r

= −i
n−1∑
r=0

e−iH0(t−t ′)V δte−iH0t ′

with t ′ = rδt and n large.

In the limit of δt → 0, we can replace the sum by an integral, so that

eÔ1 (t) = −i

t∫
0

dt ′eiH 0t ′
V e−iH0t ′

. (8.16)

The operator e−iH0t ′
is the simple free field time evolution operator. If we take V to

be given at t = 0 by (8.13), we can write

Ô1 (t) = i

t∫
0

ψ̄(r′, t ′)γ μψ(r′, t ′)Aμ(r′, t ′) dt ′d3r′ (8.17)

where the fields have the time dependence of free unperturbed fields. A term like

(8.14), for example, will have time dependence (see equation (8.11)).

e−i(ωk−Ep′−Ep′′)t ′
(8.18)

The evolution of a state from time −t/2 in the past to time t/2 in the future

corresponds to taking the integral in (8.17) from −t/2 to t/2. This more symmetrical

form is appropriate to the description of particle scattering processes. For example,

if the initial state at time −t/2 consists of a photon in the state (k, α), the operators in

(8.14) annihilate this photon and create an electron in a state (p′, ε′) and a positron

in the state (p′′, ε′′). Taking the limit t → ∞ in the time factor (8.18) gives

∞∫
−∞

e−i(ωk−Ep′−Ep′′ )t ′
dt ′ = 2πδ(ωk − Ep′ − Ep′′).

Thus energy conservation, as well as momentum conservation, is explicit. In free

space it is impossible to satisfy both these conservation laws in the case of pair

production from a photon (Problem 8.3), so that first-order perturbation theory con-

tributes nothing. (In the presence of an external electromagnetic field, for example

the Coulomb field of a nucleus, momentum conservation between electrons and

photons is lost, and pair production is possible if ωk > 2m.)
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When the first-order transition amplitude at time t does not vanish, we have,

using (8.16),

〈final state|eÔ1(t)|initial state〉 = 〈f|V (0)|i〉
t/2∫

−t/2

e−i
Et ′
dt ′,

where 
E = Ei − Ef and Ei and Ef are the energies of the initial state |i〉 and final

state | f 〉. It is shown in textbooks on quantum mechanics that the time dependence

can be interpreted as a transition probability per unit time, from the initial state i to

the final state f, given by

transition probability = 2π |〈f|V (0)|i〉|2ρ(Ef),

whereρ(Ef)is the density of final energy states at Ef = Ei.

It is straightforward to extract higher order terms of the perturbation expansion.

For example

Ô2 (t) =
t/2∫

−t/2

d4x2 ψ̄(x2)γ μψ (x2) Aμ (x2)

t2∫
−t/2

d4x1 ψ̄ (x1) γ μψ (x1) Aμ (x1)

(8.19)

where x1 = (t1, r1), x2 = (t2, r2) and −t/2 < t2 < t/2.

8.4 Renormalisation and renormalisable field theories

In second-order perturbation theory, we can pick out terms corresponding to the

creation of an electron–positron pair at a point x1 in space-time and its destruction

at a point x2. They may be characterised by the diagrams of Fig. 8.1. In these dia-

grams time runs from left to right. Momentum is conserved at x1 and x2. Overall

there is also conservation of energy and angular momentum, so that the ‘unper-

turbed’ photon that emerges at time t2 is in the same state as the initial unperturbed

photon.

We pointed out that in free space it is not possible to create a real e−e+ pair from

a photon. The e−e+ pair of the diagram is a virtual pair, corresponding to a term in

a mathematical expansion. The transition amplitude

〈k|e−iH0t Ô2 (t) |k〉 = e−iωkt〈k|Ô2 (t) |k〉
is non-vanishing. The ‘real’ photon is evidently a complex object. Calculations

show that the effect of virtual e−e+ pairs is to make the vacuum behave like an

electrically polarisable medium. In particular, the Coulomb interaction between

two ‘bare’ electrons is screened. We can envisage this effect as resulting from a

screening cloud of virtual positrons around each bare electron, the corresponding
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Figure 8.1 In these diagrams an unperturbed electron–positron pair is created at
a point x1 in space-time and destroyed at a point x2. In (a) the initial unperturbed
photon is destroyed at x1 and recreated at x2; vice versa in (b). In (a) and (b)
time runs from left to right. As shown by Feynman it is convenient to characterise
both processes by the single Feynman diagram (c). In all of these diagrams the
arrows on the fermion lines follow the direction of electron number. (The arrows
on positrons then run backwards in time.)

negative charge of the virtual e−e+ pairs appearing as charge at the surface of the

confining volume.

What is measured experimentally as the charge −e on an electron is the screened

charge. To compensate for this screening effect, the parameter e that appears in the

Lagrangian must be replaced by a ‘bare’ charge eo = e + 
e. This gives ‘counter

terms’ in the Lagrangian. 
e is chosen to cancel the screening effect. To second

order the calculation gives 
e = αA1e where A1 is a dimensionless quantity. With

this adjustment and to this order, the screened charge on the electron becomes −e.

In higher orders of perturbation theory one obtains


e = e[αA1 + α2 A2 + · · ·].

To any order of perturbation theory an account must be kept of the readjustment

of e, in order to extract from a calculation the significant physical effects which

are also determined by terms in the perturbation expansion. The charge −e on

the electron is said to be renormalised. 
e itself can never be measured. Physical

effects in atomic physics arising in part from vacuum polarisation terms have been

calculated and measured with high precision. (See also Section 16.3.)

The other parameter appearing in electrodynamics is the mass of the elec-

tron. The bare mass of the electron is modified in second-order perturbation
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Figure 8.2 In these diagrams an unperturbed photon is created at a point x1 in
space-time and destroyed at a point x2. In (a) the initial unperturbed electron is
destroyed at x1 and recreated at x2; vice versa in (b). In (a) and (b) time runs from
left to right. It is convenient to characterise both processes by the single Feynman
diagram (c). In all of these diagrams the arrows on the fermion lines follow the
direction of the electron number. (The arrows on positrons then run backwards in
time.)

theory by the processes shown in Fig. 8.2. To compensate for these processes

we must take mo = m − 
m in the Lagrangian where 
m is chosen to compen-

sate for the shift in mass produced by the electron–photon interactions. We can

think of the bare electron as ‘dressed’ by virtual photons. It is found that to sec-

ond order 
m = αm B1, where B1 is another dimensionless quantity, and more

generally


m = m[αB1 + α2 B2 + · · ·].

As with 
e, 
m has to be adjusted at each higher order of perturbation theory,

and there is a systematic way of extracting physical answers from perturbation

calculations. The physical mass m is the renormalised mass.

Diagrams like those of Fig. 8.3, in which virtual e−e+ pairs and virtual photons

are created and annihilated together, give terms that modify the vacuum energy.

Energy shifts in perturbation theory are to be expected, but since we have no

unperturbed vacuum with which to compare, such shifts are not measurable. The

cosmological constant of general relativity gives a measure of the vacuum energy
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Figure 8.3 The vacuum state of quantum electrodynamics differs from the unper-
turbed vacuum by processes, one of which is illustrated in this figure.

density that is certainly very small, and is consistent with its being zero. We shall

take the vacuum energy density, whatever its origin, to be zero.

It could have been anticipated without calculation that there would be perturbing

effects of charge renormalisation and mass renormalisation. The unpalatable feature

of quantum electrodynamics is that when the constants Ai , and Bi are calculated

they all turn out to be infinite, as does the correction to the vacuum state energy. It

is just as well that 
e and 
m have no physical significance. However, it is the case

that an expansion in the small parameter α gives seemingly infinite corrections to

quantities one cannot measure. An important feature of QED is that, leaving aside

a scaling of the fields that is also part of the renormalisation scheme, infinities only

appear in the renormalisation of the parameters of the theory, e, m and the vacuum

energy. The only infinite counter terms that have to be added to the Lagrangian

are contained in these parameters. Having made these adjustments, the remaining

physical effects are calculable and finite.

QED is a local field theory, i.e. a theory in which the interaction terms involve a

product of fields at the same point in space time. Infinities such as occur in QED

are endemic in all local field theories. Field theories in which the infinities only

appear in a finite number of parameters of the theory are said to be renormalisable.
The divergences in the coefficients Ai of 
e and Bi of 
m arise, for example,

in the contribution from O2 (see (8.19)), from the integration region where x2 ≈ x1

and in particular where r2 ≈ r1. An important feature of QED is that the expansion

parameter α and hence the coefficients, are dimensionless numbers. In Chapters 9

and 21 we will encounter theories in which the coupling constants and therefore

the expansion parameters have the dimensions of inverse powers of mass. All

the terms in perturbation expansions must have the same dimension, therefore the

coefficients have a dimension to compensate those of the coupling constant. In the

integration regions the integrands diverge with large inverse powers of |r2 − r1| as

r2 → r1 to achieve the compensation, but they render the integrals infinite. Infinities

occur for all multiparticle interactions, they can not be removed just by mass and
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coupling constant renormalisation. Such theories are unrenormalisable, they can

not be taken seriously as quantum field theories.

8.5 The magnetic moment of the electron

We shall now illustrate the remarkable success of QED in calculating quantities

of physical significance by giving an account of the calculation of the electron’s

magnetic moment. In Chapter 7 we showed that the Dirac equation before second

quantisation implies that the electron carries a magnetic moment of magnitude

μB = eh/2m anti-aligned with its spin. The electron’s magnetic moment has been

measured with high precision: the experimental value μe is

μe = μB (1 + a)

where the ‘anomaly’ a = 0.001159 652 188 4(43) (Van Dyck et al., 1987).

After second quantisation, the perturbative corrections to the Dirac value can be

calculated. The Dirac value is contained in the operator Ô1 of equation (8.16), and

is associated with diagram (a) of Fig. 8.4. This lowest order calculation reproduces

the Dirac result μe = μB.

Since μB is the only combination of the parameters e, me and h which has the

dimensions of magnetic moment, higher orders of perturbation theory will give

terms of the form

μe = μB(1 + αC1 + α2C2 + α3C3 + α4C4 + · · ·),
where the Ci are dimensionless constants. To compare the theory with experiment

we use the 1986 adjusted value of the fine structure constant,

α−1 = 137.035 9979 (32) .

C1 is associated with diagram (b) of Fig. 8.4; the calculation gives C1 = 1/(2π ).

Hence to this order

a = C1α = 0.001 161 409 74,

which agrees with experiment to within five significant figures.

The next order correction, associated with diagrams (c) of Fig. 8.4, is

C2 = 1

π2

(
197

144
+ 3

4
ζ (3)

)
− 1

2
ln 2 + 1

12

where ζ (z) is the Riemann zeta function. To this order,

a = 0.001 159 637 44,

in agreement to seven significant figures.
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Figure 8.4 Perturbation theory Feynman diagrams that represent contnbutions to
the electron magnetic moment. The anomalous moment, to order α2, comes from
calculations associated with diagrams (b) and (c).
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Calculations of higher orders of perturbation theory become rapidly more

intractable. Numerical estimates give C3 ≈ 0.03792, C4 ≈ −0.014. At this level

of accuracy, corrections have to be made for processes that come from other parts

of the Standard Model, in particular from the muon. The most recent comprehensive

calculations (Kinoshita and Lindquist, 1990) give

a = 0.001 159 652 140 0 (41 + 53 + 271),

in agreement with experiment to ten significant figures. The largest error in the

theory is from the uncertainty in α−1.

Within its range of applicability, quantum electrodynamics provides an aston-

ishingly exact model of Nature. One may have some confidence that the techniques

of renormalisation in perturbation theory are valid.

8.6 Quantisation in the Standard Model

In this chapter we have outlined the ‘canonical quantisation’ techniques that have

been particularly successful in quantum electrodynamics. Many books have been

written on this subject, for example Itzykson and Zuber (1980); some will have to

be consulted if one is to be competent and confident in making detailed calcula-

tions. However, many of the decay rates and cross-sections given in the following

chapters, which are needed to compare the predictions of the Standard Model with

experiment, are quite well approximated by the so-called ‘tree level’ of perturbation

theory. The tree-level diagrams have no closed loops (see Fig. 8.4(a)) and require

no renormalisation. It is a fortunate circumstance that in low orders of perturbation

theory these can be calculated quite easily.

The particles and forces of the weak and the strong interactions are also described

by local gauge field theories, which will be exhibited at the classical level in the

chapters that follow. The quantisation procedures used in these extensions of QED

have been most successfully pursued by the path integral method of quantisation

(see, for example, Cheng and Li (1984)). Both the theory of the weak interaction

and the theory of the strong interaction pose their own special problems, but the

principles of gauge symmetry and renormalisability have been essential in the

construction of the Standard Model as it is today.

Problems

8.1 A general two-particle state of scalar bosons (Section 8.1) can be written

|state〉 =
∑
k1,k2

f (k1, k2) a†
k1 a†

k2|0〉,
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where, apart from normalisation, f (k1, k2) is any function of k1 and k2. (f can be

called the wave function of the state.)

Show that this state may be written

|state〉 =
∑
k1,k2

g (k1, k2) a†
k1 a†

k2|0〉

with g(k1, k2) = {f (k1, k2) + f (k2, k1)}/2, symmetric under the interchange of

labelling.

8.2 A general two-particle state of fermions can be written

|state〉 =
∑

p1,ε1,p2,ε2

f (p1, ε1, p2, ε2) b†
p1ε1

b†
p2ε2

|0〉

where apart from normalisation f is any function of p1, ε1 and p2, ε2.

Show that this state can also be written

|state〉 =
∑

p1,ε1,p2,ε2

g (p1, ε1, p2, ε2) b†
p1ε1

b†
p2ε2

|0〉

with g(p1, ε1; p2, ε2) = {f (p1, ε1; p2, ε2) − f (p2, ε2; p1, ε1}/2, antisymmetric under

the interchange of labelling.

8.2 Use energy and momentum conservation to show that pair creation by a single photon,

γ → e+ + e−, is impossible in free space.

8.3 The energy density of an electromagnetic field is given by equation (4.24). Show that

the total electric field energy of a point charge q outside a sphere of radius R centred

on the particle is

energy = q2/(8πR).

Note that this classical contribution to the particle rest energy is infinite in the limit

R → 0.
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The weak interaction: low energy phenomenology

In this chapter we review some of the early phenomenology of the weak interaction

that played an important guiding role in the construction of the Standard Model.

The phenomenology discussed is insensitive to the very small effects of neutrino

mass. These effects will be ignored.

9.1 Nuclear beta decay

In early investigations of nuclear physics, the existence of a ‘weak interaction’

responsible for nuclear β decay was discerned. It was regarded as weak since the

mean lives of decays such as

17
9 F → 17

8 O + e+ + νe,

n → p + e− + ν̄e,

are very long, minutes in these examples, compared with typical nuclear electro-

magnetic decays, which have a mean life of ∼10−15s.

Nuclear physicists have by careful and ingenious experimentation established

the principal features of the weak interaction and the properties of the electron

neutrino νe. To conserve electric charge the neutrino must be electrically neutral,

and angular momentum is conserved if it is a Dirac spin 1
2

fermion. If the electron

neutrino has a mass, it is certainly very small.

The surprising feature of the weak interaction, which was established experi-

mentally in 1957 by Wu following a suggestion by Lee and Yang, is that it does not
conserve parity. Nature is not ambidextrous. Indeed, parity is maximally violated,

in that only the left-handed components of both the electron and neutrino fields

participate in the interaction.

This phenomenon is clearly illustrated if one examines the longitudinal elec-

tron polarisation of electrons produced in ‘allowed’ β decays. An electron of

negative helicity − 1
2

and velocity v is in a left-handed state with probability

91
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Figure 9.1 Measured degree of longitudinal polarisation P for allowed e− decays.
(Data from Koks and Van Klinken (1976).)

1
2
[1 + (v/c)]; an electron of positive helicity + 1

2
is in a left-handed state with

probability + 1
2
[1 − (v/c)] (Section 6.5). In allowed nuclear β decays there are no

nuclear factors that favour one helicity state over another, so that if only the left-

handed component of the electron field participates in the interaction, the degree

of longitudinal polarisation of the emitted electron is

−1

2

(
1 + v

c

)
+ 1

2

(
1 − v

c

)
= −v

c
.

For positrons, the probabilities are reversed (Section 6.5) and the longitudinal polar-

isation of a positron emitted in an allowed β decay is +v/c. Data from several

such decays are shown in Fig. 9.1.

A direct measurement of the helicities of neutrinos emitted in β decay is almost

impossible, but the helicities may be inferred from careful measurements of the

angular momentum states of the participating nuclei. Within experimental error,

only negative helicity neutrinos and positive helicity antineutrinos participate in

the weak interaction.

Nuclear β decays do not release sufficient energy to produce either of the two

other lepton families known to exist: muons and muon neutrinos, and tau leptons
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Figure 9.2 π− → e− + v̄e. In this illustration the electron velocity is to the right,
the antineutrino to the left, the spin directions are indicated Any orbital angular
momentum is out of the plane of the page (L = r × p) and since the total angular
momentum must be zero the spins have to be opposite.

and their partner neutrinos. We shall see in Chapter 13 that probably there are just

these three, e, μ, τ, lepton families. Each family seems to play a similar role in

Nature, an observation known as lepton universality. They differ only in the masses

of the electrically charged leptons: me ≈ 0.511 MeV, mμ ≈ 106 MeV, mτ =
1777 MeV.

9.2 Pion decay

An important example that illustrates both the left-handedness of the lepton fields

participating in β decay and lepton universality is provided by the decay of the

charged pi mesons. These decays are common in the cosmic radiation and provide

its principal component, muons, at ground level. Almost 100% of the pions decay

through

π− → μ− + ν̄μ, π+ → μ+ + νμ,

with a decay rate 1/τ (π → μν̄μ) = 2.53 × 10−14 MeV. The corresponding

decays to electrons have much smaller decay rates: 1/τ (π → eν̄e) = 1.23 ×
10−4(1/τ (π → μν̄μ)).

The decay rate to electrons is suppressed because only the left-handed fields of

the electron and neutrino take part. Consider the π− decay in a frame in which

the pion is at rest (Fig. 9.2). The π− has zero spin, the antineutrino has positive

helicity. Hence to conserve angular momentum in this two-body decay the electron

also must have positive helicity. The probability of its being in the left-handed state

is 1
2
[1 − (ve/c)] = m2

e/(m2
π + m2

e) = 1.34 × 10−5 (Problem 9.1). The μ− decay is

similarly inhibited, but the muon’s much larger mass makes the factor less effective:
1
2
[1 − (vμ/c)] = 0.36.

An effective interaction Lagrangian density that incorporates these features

is

Lint = απ[ jμ∂μ�π + jμ†∂μ�†
π], (9.1)
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where

jμ = e†Lσ̃ μveL + μ
†
Lσ̃ μvμL + τ

†
Lσ̃ μvτL, (9.2)

and απ is an effective (real) coupling constant.

�π is a complex scalar field describing the charged π± mesons (Section 7.6).

�π destroys negative pions, and creates positive pions. It is not a fundamental field

of the Standard Model, since it ignores the internal structure of the pions. The

four-vector e†Lσ̃ μveL is the simplest Lorentz structure we can construct from the

two left-handed spinor fields, eL, veL, belonging to the electron and its neutrino (see

Problem 5.3). Lepton universality is then incorporated in the model, the three lepton

families contributing in a similar way to the ‘current’ jμ; this structure survives

in the Standard Model. A Lorentz invariant Lint is obtained by taking the scalar

product of jμ with ∂μ�, and, finally, we make Lint real. Note that Lint is a ‘point’

interaction: jμ and ∂μ� are evaluated at the same point x in space-time. Since the

pion is an extended object, this point interaction must be an approximation, not to

be taken too seriously.

An effective interaction Lagrangian is to be used only in low orders of perturba-

tion theory. It is not suitable for calculating high order corrections. One should not

therefore demand high accuracy when comparing the results of a calculation with

experiment.

Using our Lint to lowest order, the partial decay rates for pions at rest are (Problem

9.4)

1

τ(π → eν̄e)
= α2

π

4π

(
1 − υe

c

)
p2

e Ee,
1

τ(π → μν̄μ)
= α2

π

4π

(
1 − υμ

c

)
p2

μEμ.

(9.3)

In these equations, Ee, Eμ and pe, pμ are the charged lepton’s energy and momen-

tum, and are determined by energy and momentum conservation. The factors

p2
e Ee, p2

μEμ come from the density of states factor in the expression for the transi-

tion probability (Problem 9.2). The factors (1 − υe/c) and (1 − υμ/c) are a conse-

quence of the participation of left-handed fields only.

The ratio

τ (π → μν̄μ)

τ (π → eν̄e)
= m2

e(m2
π − m2

e)2

m2
μ(m2

π − m2
μ)2

= 1.28 × 10−4 (9.4)

(Problem 9.3). This lowest order calculation, which neglects the effects of non-

locality and electromagnetic corrections, agrees well with the experimental value

of 1.23 × 10−4, and gives strong support for lepton universality.
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The observations give 1/τ (π → eν̄e) = 3.11 × 10−18 MeV, 1/τ (π → μν̄μ) =
2.53 × 10−14 MeV, from which we may estimate

απ = 2.09 × 10−9 MeV−1.

The smallness of απ reflects the weakness of the weak interaction.

Although the pion does not have enough mass to decay to tau leptons, the effective

Lagrangian (9.1) also described the decays

τ+ → π+ + ν̄τ, τ− → π− + ντ,

and in lowest order of perturbation theory, predicts

1

τ (τ → πντ)
= α2

π

32π
m3

τ[1 − (mπ/mτ)2]2. (9.5)

Using the estimate of απ from π± decay to calculate 1/τ (τ → πντ) provides a

further test of lepton universality: the predicted value 2.42 × 10−10 MeV compares

quite well with the experimental value, (2.6 ± 0.1) × 10−10 MeV.

9.3 Conservation of lepton number

In the model Lagrangian discussed so far, a single lepton can change only to another

of the same family, and a lepton and antilepton of the same family can only be

created or destroyed together. There is thus a conservation law, the conservation
of lepton number (antileptons being counted negatively), for each separate family,

exemplified in the decays we have so far considered.

We saw in Section 7.1 that particle conservation follows from a U(1) symmetry

of the Lagrangian, and it is interesting to see how this is accomplished with our

model Lagrangian. We have

L = Lfree + Lint

where, using Dirac spinors for the lepton fields,

Lfree = ∂μ�†∂μ� − m2
π�

†�

+ ψ̄e(γ
μi∂μ − me)ψe + ν̄eγ

μi∂μνe

+ ψ̄μ(γ μi∂μ − mμ)ψμ + ν̄μγ μi∂μνμ

+ ψ̄τ(γ μi∂μ − mτ)ψτ + ν̄τγ
μi∂μντ,

Lint = απ[ jμ∂μ�π + jμ†∂μ�†
π],

and, in terms of Dirac spinors, the current jμ of equation (9.2) can be written

jμ = ψ̄eγ
μ 1

2
(1 − γ 5)νe + ψ̄μγ μ 1

2
(1 − γ 5)νμ + ψ̄τγ

μ 1

2
(1 − γ 5)ντ. (9.6)
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By itself, Lfree has seven U(1) symmetries: seven independent phases on the

seven free fields. Including Lint reduces these to four, which can be written

ψe → eiβeiαe�e, νe → eiαeνe;

ψμ → eiβeiαμ�μ, νμ → eiαμνμ;

ψτ → eiβeiατ�τ, ντ → eiατντ;

�π → eiβ�π.

The phase factors αe, αμ, ατ are associated with the conserved lepton currents

(Problem 9.6). If we require L to be invariant under a local gauge symmetry, with

β = β(x) arbitrarily space and time dependent, we are led to the introduction of the

electromagnetic field Aμ, as in Section 5.5. We shall see that not all these features of

our effective Lagrangian survive the introduction of neutrino mass into the Standard

Model.

9.4 Muon decay

The analysis of the muon decays

μ− → e− + ν̄e + νμ, μ+ → e+ + νe + ν̄μ, (9.7)

has played a very important role in establishing the Standard Model. The decays

involve lepton fields only, so that the physics is not obscured by the phenomenology

of strong interaction fields as was our example of pion decay.

An effective Lagrangian density that describes the decays again couples the

participating particles into currents. In fact all decays seen so far that involve just

leptons are well described by the effective interaction Lagrangian density

Llepton = −2
√

2G F gμν jμ jν†, (9.8)

with jμ again defined by (9.2) or (9.6). A similar form for nuclear β decay was

introduced by Fermi, and GF is called the Fermi constant. The 2
√

2 is a related

accident of history.

The term in (9.8) that describes μ− decay is

L = −2
√

2GFgμν

[
e
†
Lσ̃ μνeLν

†
μLσ̃ νμL

]
. (9.9)

The most ready supply of muons comes from pion decays and these, as we have

seen, are almost 100% polarised. The interaction Lagrangian density (9.9) implies

a strong correlation between the angle θ made by the direction of the electron with

the direction of the muon spin, and the energy Ee of the electron. In the muon rest

frame, to lowest order of perturbation theory, and neglecting terms in (me/mμ)2,

the decay rate into an angular interval dθ and energy interval dEe is (see Donoghue
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et al. 1992, p. 138)

R(θ, Ee) dθ dEe = mμG2
F

6π3

[(
3

4
mμ − Ee

)

+ cos θ

(
1

4
mμ − Ee

)]
E2

e dEe sin θdθ. (9.10)

Integrating (9.10) over θ and Ee gives the total decay rate for this process

1

τ(μ → eν̄eνμ)
= m5

μG2
F

192π3
. (9.11)

The total muon decay rate, which includes also decays with photons in the final

state, for example the decays

μ− → e− + γ + ν̄e + νμ,

has been very accurately measured, giving

τμ = (2.19703 ± 0.00004) × 10−6 s.

A corresponding accurate theoretical expression that corrects (9.11) by including

terms in (me/mμ)2 and electromagnetic effects, gives

GF = 1.16639(2) × 10−5 GeV−2, (9.12)

which is the presently accepted value of this important constant.

Further tests of lepton universality are provided by the decays

τ− → μ− + ν̄μ + ντ, τ− → e− + ν̄e + ντ,

and their charge conjugates. These, like muon decay, are described by appropriate

terms in the interaction Lagrangian (9.8). Since both (me/mτ)2 and (mμ/mτ)2 are

small, the first-order formula (9.11) with mμ replaced by mτ predicts these decay

rates to be equal and ≈ 4 × 10−10 MeV. They are indeed so within experimental

error. Also from this formula

τ (τ → eν̄eντ)

τ (μ → eν̄eνμ)
≈

(
mμ

mτ

)5

.

The ratio of the decay rates is 7.36 × 10−7 and the ratio of the fifth power of the

masses is 7.43 × 10−7.

It should be noted that the coupling constant GF has the dimension of (mass)−2.

The effective interaction (9.8) cannot be elevated into a quantum field interaction;

see Section 8.4.
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9.5 The interactions of muon neutrinos with electrons

In the 1960s, intense muon neutrino beams were engineered at Brookhaven and

at CERN. Muon neutrinos (or antineutrinos) were produced as secondary particles

from the decay of π+ (or π−) mesons in flight. It was from the observation that these

neutrino beams produced almost exclusively muons rather than electrons, when in

interaction with a target, that the distinction between electron neutrinos and muon

neutrinos was established.

The centre of mass energy
√

s available in a collision of a neutrino with an

electron at rest is relatively small, because of the smallness of the electron mass. If

Eν is the neutrino energy,

s = me(2Eν + me), (9.13)

(Problem 9.8). For example, if Eν = 30 GeV then s = (175 MeV)2, which will

produce no more than a muon. Most neutrino interactions will be with the atomic

nuclei in the target. However, here we consider only the interactions with electrons.

The interaction

νμ + e− → μ− + νe

is included in the effective interaction Lagrangian density (9.8). In first-order per-

turbation theory and averaging over electron polarisations, this Lagrangian predicts

an isotropic differential cross-section in the centre of mass system:

dσ

d�
= G2

F

4π2

(
s − m2

μ

)2

s
, σtot = G2

F

π

(
s − m2

μ

)2

s
(9.14)

with s the square of the centre of mass energy. (See Okun 1982, p. 134.)

At the low energies available experimentally, the cross-section appears to be

consistent with the theoretical form. The high energy structure is not easily explored

experimentally, because of (9.13), but clearly the theoretical formulae become

inadequate at high energies: the expressions (9.14) increase without limit as s
increases, and for a ‘point’ interaction this is inconsistent with unitarity. Nor is

it possible to improve the expressions within this framework, since the effective

Lagrangian does not give a renormalisable theory.

The most significant result to come from the experiments on neutrino–electron

interactions was the observation of elastic scattering for both νμ and ν̄μ:

νμ + e− → νμ + e−,

ν̄μ + e− → ν̄μ + e−,

with cross-sections of a magnitude similar to those for muon production. Such elas-

tic scattering is not included in our Lint (though there are terms corresponding to
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eνe → eνe and eν̄e → eν̄e). Thus another weak interaction must exist. The experi-

mental investigation of this is difficult because of the smallness of the cross-sections

at the available energies. We shall see from the Standard Model that the effective

interaction Lagrangian required is again of current–current form,

Lint = −G F√
2

( jneutral)μ( jneutral)
μ, (9.15)

where, in terms of Dirac spinors,

( jneutral)
μ = ν̄eγ

μ 1

2
(1 − γ 5)νe + ψ̄eγ

μ(cV − cAγ 5)ψe (9.16)

+ similar terms for the μ and τ lepton families,

and cV and cA are parameters. The current is called a neutral current because it

does not induce a change of charge as do the currents (9.2). (Note that it will also

contribute to the scattering eνe → eνe.)

Rewriting (9.16) with two-component spinors,

( jneutral)
μ = (νeL)†σ̃ μνeL + (cV + cA)e†Lσ̃ μeL

+ (cV + cA)e
†
RσμeR + similar μ and τ terms. (9.17)

In this form it is evident that right-handed lepton fields as well as left-handed

are involved in the neutral currents. The parameters cV and cA are related to the

Weinberg angle θw, which appears in the Standard Model, as we shall see in Chapter

12 (equation (12.24)). The subscripts V and A refer, respectively, to the vector and

axial vector nature of the terms in (9.16). (See Section 5.5.)

One might anticipate that neutral currents are also present in atomic physics,

and indeed they are. However, their effects are hard to discern experimentally.

For example, they induce parity violation in atoms, but at atomic energies the

weak interaction gives a very small effect. Indeed the decay of an unstable nuclear

or atomic system through the neutral current must always compete with faster

electromagnetic decays, and for this reason neutral current decays in these systems

have never been observed.

Problems

9.1 In the decay of the π− at rest, π− → e− + ν̄e, show that

1

2

(
1 − υe

c

)
= m 2

e

m 2
π

+ m 2
e

.
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9.2 Show that the density of final states for the decay of Problem 9.1 is

ρ(E) = V

(2π)3
4πp2

e

dpe

dE

where V is the normalisation volume and

dpe

dE
= Ee

mπ

.

9.3 Obtain the ratio of decay rates given by equation (9.4).

9.4 The term in Lint describing the decay π− → e− + ν̄e is

Lint = απe†Lσ̃ μνeL∂μ�π.

Assume that this gives a corresponding term V(0) in the effective Hamiltonian,

V (0) = −απ

∫
e†Lσ̃ μνeL∂μ�πd3x.

(This assumption will be justified in Chapter 12.)

The transition probability per unit time for the decay is to lowest order

2π|〈ep, ν̄ p′ |V (0)|π−(rest)〉|2ρ(E)

where ρ(E) is given by Problem 9.2.

Use the free field expansions given in equations (3.35) and (6.24), and Problem

6.5, to evaluate the matrix element above and hence verify equation (9.3).

9.5 Verify the equivalence of the expressions (9.2) and (9.6) for the current jμ.

9.6 Taking the effective Lagrangian of Section 9.3, show that the conserved current asso-

ciated with the U(1) symmetry ψe → eiαψe, νe → eiανe, is the electron electron–

neutrino current

jμ = ψ̄eγ
μψe + ν̄eγ

μνe.

Show that the conserved current associated with eiβ in the transformations (9.7)

is

ψ̄eγ
μψe + ψ̄μγ μψμ + ψ̄τγ

μψτ + i[(�†∂μ� − �∂μ�†)

+ απ( jμ†�† − jμ�)].

Construct the Lagrangian density that results, when the electromagnetic field is

introduced by elevating the global U(1) symmetry of the phase factor eiβ into a local

gauge symmetry.

9.7 Estimate GF from the expression (9.11) and the experimental lifetime τμ.

9.8 Using a suitable Lorentz invariant, obtain equation (9.13).
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9.9 Pick out the term in the effective Lagrangian density (9.8) that contributes to the

scattering

e− + νe → e− + νe,

and the term in (9.15) that contributes to the scattering

e− + νμ → e− + νμ.

9.10 The K− is like the π−, but with an s quark replacing the d. An effective inter-

action with leptons is similar in form to equation (9.1), with �K replacing �π

and αK replacing απ. Use the analogue of equation (9.4) to estimate the ratio

τ (K → μν̄μ)/τ (K → eν̄e), and compare with the observed value (2.44 ± 0.1) ×
10−5 (mK = 493.68 MeV).

The mean life τ (K− → μ−ν̄μ) is measured to be 1.948 × 10−8 s. EstimateαK/απ.

9.11 Obtain the decay rate (9.5).



10

Symmetry breaking in model theories

In Chapter 9, ‘effective’ weak interaction Lagrangian densities were constructed.

When used in low orders of perturbation theory, these account well for the observed

phenomena at low energies. Difficulties arise in higher order perturbation theory, as

they do in quantum electrodynamics. There is, however, an important difference: it

has been proved that these effective Lagrangian theories cannot be renormalised and

they are therefore unsatisfactory. Furthermore, at higher energies new phenomena

appear, and it is now well established experimentally that the weak interaction is

mediated by the W+, W− and Z bosons. How are these particles to be incorporated in

a theory of the weak interaction that can be renormalised, and which has the same

seeming inevitability as QED? The answer lies in the Weinberg–Salam unified

theory of the electromagnetic and weak interactions. As an introduction to the

Weinberg–Salam theory we shall in this chapter consider ‘model’ theories, the

mathematics of which is fairly simple, but which contain the basic ideas we shall

need.

10.1 Global symmetry breaking and Goldstone bosons

A possible Lagrangian density for a complex scalar field � = (φ1 + iφ2)/
√

2 is

L = ∂μ�†∂μ� − m2�†� (10.1)

(cf. equation (3.32)).

In this expression (∂�†/∂t)(∂�/∂t) can be regarded as the kinetic energy density

and ∇�† · ∇� + m2�†� as the potential energy density (see Section 3.3). If � is

constant, independent of space and time, the only contribution to the energy is

m2�†�. Since m2 is positive this will be a minimum when φ1 = φ2 = 0. Thus

� = 0 corresponds to the ‘vacuum’ state. Consider now the Lagrangian density

obtained by changing the sign in front of m2. This would be unstable: the potential

102
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Figure 10.1 Plot of V = (m2/2φ2
0)[�∗� − φ2

0]2 as a function of |�|; � is here a
classical field.

energy density is then unbounded below. Stability can be restored by introducing

a term (m2/2φ2
0)(�†�)2 where φ2

0 is another (real) parameter. For convenience we

add a constant term m2φ2
0/2, and then

L = ∂μ�†∂μ� − V (�†�)

where

V (�†�) = m2

2φ2
0

[
�†� − φ2

0

]2
. (10.2)

The form of V is shown in Fig. (10.1). The minimum field energy is now obtained

with � constant independent of space and time, but such that �†� = |�|2 = φ2
0 .

Such a field is not unique but is defined by a point on the circle |�| = φ0 in the

state space (φ1, φ2), so that the number of possible vacuum states is infinite.

An analogy with magnetism is helpful. The Hamiltonian describing a

Heisenberg ferromagnet has rotational symmetry: all directions in space are equiv-

alent. However, in its ground state a ferromagnet is magnetised in some particular

direction, which is not determined within the theory, and the rotational symmetry

is lost. This is an example of spontaneous symmetry breaking.
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The Lagrangian density (10.2) has a ‘global’ U(1) symmetry: � → �′ =
e−iα�, L → L′ = L, for any real α. Equivalently,

φ′
1 = φ1 cos α + φ2 sin α,

φ′
2 = − φ1 sin α + φ2 cos α.

The transformation rotates the state round a circle |�|2 = constant in the state space

(φ1, φ2). If we pick out the particular direction in (φ1, φ2) space for which � is real,

and take the vacuum state to be (φ0, 0), we break the U(1) symmetry.

Expanding about this ground state (φ0, 0), we put � = φ0 + (1/
√

2)(χ + iψ).

The Lagrangian density becomes

L = 1

2
∂μχ∂μχ + 1

2
∂μψ∂μψ − m2

2φ2
0

[√
2φ0χ + χ2

2
+ ψ2

2

]2

. (10.3)

After breaking the U(1) symmetry we must interpret the new fields. (In much the

same way, the excited states of a ferromagnet cannot be discussed until the spatial

symmetry has been broken.) In place of the complex field �, we have two coupled

scalar real fields χ and ψ . We write

L = Lfree + Lint

where

Lfree = 1

2
∂μχ∂μχ − m2χ2 + 1

2
∂μψ∂μψ. (10.4)

Lfree represents free particle fields, and contains all the terms in L that are quadratic

in the fields. For classical fields and small oscillations, these terms dominate. The

rest of the Lagrangian density, Lint, corresponds to interactions between the free

particles and higher order corrections to their motion.

There is a quadratic term −m2χ2 in (10.4), so that the χ field corresponds to

a scalar spin-zero particle of mass
√

2m (by comparison with (3.18)). In the case

of the ψ field there is no such quadratic term: the corresponding scalar spin-zero

particle is therefore massless. The massless particles that always arise as a result of

global symmetry breaking are called Goldstone bosons.

10.2 Local symmetry breaking and the Higgs boson

We now generalise further, and construct a Lagrangian density that is invariant

under a local U(1) gauge transformation,

� → �′ = e−iqθ�,
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where θ = θ (x) may be space and time dependent. This requires the introduction

of a (massless) gauge field Aμ, as in Section 7.5, and we take

L = [(∂μ − iq Aμ)�†][(∂μ + iq Aμ)�] − 1

4
Fμν Fμν − V (�†�), (10.5)

where Fμν = ∂μ Aν − ∂ν Aμ, and again

V (�†�) = m2

2φ2
0

[
�†� − φ2

0

]2
.

L is invariant under the local gauge transformation

�(x) → �′(x) = e−iqθ�(x), Aμ(x) → A′
μ(x) = Aμ(x) + ∂μθ (x).

A minimum field energy is obtained when the fields Aμ vanish, and � is constant,

defined by a point on the circle |�| = φ0. Any gauge transformation on this field

configuration is also a minimum. Again we have an infinity of vacuum states.

Given �(x), we can always choose θ (x) so that the field �′(x) = e−iqθ�(x) is

real. This breaks the symmetry, since we are no longer free to make further gauge

transformations.

Putting �′(x) = φ0 + h(x)/
√

2, where h(x) is real, gives

L = [(∂μ − iq A′
μ)(φ0 + h/

√
2)][(∂μ + iq A′μ)(φ0 + h/

√
2)]

− 1

4
F ′

μν F ′μν − m2

2φ2
0

[√
2φ0h + 1

2
h2

]2

. (10.6)

For clarity, we again separate this into

L = Lfree + Lint

where, dropping the primes on the gauge field,

Lfree = 1

2
∂μh∂μh − m2h2 − 1

4
Fμν Fμν + q2φ2

0 Aμ Aμ,

Lint = q2 Aμ Aμ

(√
2φ0h + 1

2
h2

)
− m2h2

2φ2
0

(√
2φ0h + 1

4
h2

)
.

(10.7)

Before symmetry breaking, we had a complex scalar field � = (φ1 + iφ2)/
√

2,

and a massless vector field with two polarisation states (Section 4.4). In Lfree we

have a single scalar field h(x) corresponding to a spinless boson of mass
√

2m,

and a vector field Aμ, corresponding to a vector boson of mass
√

2qφ0, with three

independent components (Section 4.9).

This mechanism for introducing mass into a theory was invented by Higgs (1964)

and others (for example Anderson, 1963), and the particle corresponding to the field

h(x) is called a Higgs boson. As a consequence of local symmetry breaking the gauge
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field acquires a mass, and the massless spin-zero Goldstone boson that appeared

in our example of global symmetry breaking in Section 10.1 is replaced by the

longitudinal polarised state of this massive spin one boson.

In the Weinberg and Salam ‘electroweak’ theory, the masses of the W± and

Z particles arise as a result of symmetry breaking. The resulting theory can be

renormalised, whereas the phenomenological theory of Chapter 9 cannot be renor-

malised. The form of V (�†�) that has been introduced in this chapter appears also

in the electroweak theory. It may seem a somewhat arbitrary feature. However, it

can be shown to be the most general form that can be renormalised.

Problems

10.1 What interaction term in the model Lagrangian density (10.3) allows the massive

boson to decay into two Goldstone bosons? Show that the decay rate in lowest order

perturbation theory is

1

τ (χ → ψψ)
= mχ

128π

(
mχ

φ0

)2

.

10.2 Show that with the model Lagrangian density (10.7), the vector boson would be

stable, but if the coupling constant q < m/(2φ0) the scalar boson would decay into

two vector bosons.
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Massive gauge fields

In the preceding chapter (Section 10.2), we set up a simple Lorentz invariant

Lagrangian density, which we required to be also invariant under a local U(1)

transformation. This requirement leads to the introduction of a ‘gauge field’ Aμ.

The system has a degenerate ground state. Breaking the local symmetry results in

the appearance of a vector field carrying mass, together with a scalar Higgs field

also carrying mass. The motivation for introducing mass in this way is that the

subsequent quantum theory can be renormalised. In this chapter we apply the same

idea to a more complicated Lagrangian, which will turn out to have remarkable

physical significance.

11.1 SU(2) symmetry

As a further generalisation, which is basic to the Standard Model, we shall construct

a Lagrangian density that is invariant under a local SU(2) transformation as well as

a local U(1) transformation. The idea was first explored by Yang and Mills (1954).

We introduce a two-component field

� =
(

�A

�B

)
, (11.1)

where now �A and �B are both complex scalar fields,

�A = φ1 + iφ2, �B = φ3 + iφ4,

giving, in total, four real fields.

If e−iθ is any element of the group U(1) and U is any element of the group SU(2)

(discussed in Appendix B), so that U†U = UU† = 1, we require the Lagrangian

density to be invariant under the U(1) × SU(2) transformation

� → �′ = e−iθU�. (11.2)
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A simple Lagrangian density that has a global U(1) × SU(2) symmetry is

L� = ∂μ�†∂μ� − V (�†�). (11.3)

In terms of the real fields,

�†� = �∗
A�A + �∗

B�B = φ2
1 + φ2

2 + φ2
3 + φ2

4,

∂μ�†∂μ� = ∂μφ1∂
μφ1 + ∂μφ2∂

μφ2 + ∂μφ3∂
μφ3 + ∂μφ4∂

μφ4.

If V (�†�) = m2�†�, this Lagrangian density corresponds to four independent

free scalar fields, all with the same mass m (cf. (3.18)).

In the Standard Model, the U(1) and SU(2) global symmetries are promoted to

local symmetries. The U(1) transformation may be written

� → �′ = e−iθ� = exp(−iθτ 0)�, (11.4a)

where in this context we write τ 0 for the unit matrix

τ 0 =
(

1 0

0 1

)
.

For this to become a local symmetry, we must introduce a vector gauge field Bμ(x)τ 0

with the transformation law

Bμ(x) → B ′
μ(x) = Bμ(x) + (2/g1)∂μθ, (11.4b)

and make the replacement

i∂μ → i∂μ − (g1/2)Bμ,

as in Chapter 7. Here the constant g1 is a dimensionless parameter of the theory,

and the factor 2 follows convention.

Any element of SU(2) can be written in the form

U = exp(−iαkτ k) (11.5)

where the αk are three real numbers and the τ k are the three generators of the group

SU(2). The τ k are identical to the Pauli spin matrices:

τ 1 =
(

0 1

1 0

)
, τ 2 =

(
0 −i

i 0

)
, τ 3 =

(
1 0

0 −1

)
.

For the global SU(2) symmetry to be made into a local SU(2) symmetry, with U =
U(x) dependent on space and time coordinates, we must introduce a vector gauge

field Wμ
k(x) for each generator τ k . The transformation law for the matrices

Wμ(x) = Wμ
k(x)τ k
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is

Wμ(x) → W′
μ(x) = U(x)Wμ(x)U†(x) + (2i/g2)(∂μU(x))U†(x), (11.6)

which is a generalisation of (11.4). Here g2 is another dimensionless parameter of

the theory.

Note that the matrices

Wμ(x) =
(

W 3
μ

W 1
μ + iW 2

μ

W 1
μ − iW 2

μ

−W 3
μ

)
(11.7)

are Hermitian and have zero trace. These properties are preserved by the transfor-

mation (11.6) as is clearly necessary (Problem 11.1). A global SU(2) transformation

W′
μ= UWμU† corresponds to a rotation of the vectors Wμ

k in the three-dimensional

‘weak isospin’ space defined by the generators τ k . (See Appendix B.)

Finally we define

Dμ� = [∂μ + (ig1/2)Bμ + (ig2/2)Wμ]�. (11.8a)

It is straightforward to show

D′
μ�′ = [∂μ + (ig1/2)B ′

μ + (ig2/2)W′
μ]�′ = e−iθUDμ�,

where

�′ = e−iθU�. (11.8b)

Hence the locally gauge invariant Lagrangian density corresponding to (11.3) is

L� = (Dμ�)†Dμ� − V (�†�). (11.9)

L� is also invariant under Lorentz transformations if we require Bμ and Wμ to

transform as covariant four-vectors.

11.2 The gauge fields

In the case of the gauge field Bμ, we define the field strength tensor Bμν by

Bμν = ∂μ Bν − ∂ν Bμ, (11.10)

and take the dynamical contribution to the Lagrangian density to be −(1/4) Bμν Bμν ,

as in Section 4.2.
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There are additional complications in introducing the field strength tensors for

the gauge fields Wμ, stemming from the non-Abelian nature of the group SU(2).

The field strength tensor must be taken to be

Wμν = [∂μ + (ig2/2)Wμ]Wν − [∂ν + (ig2/2)Wν]Wμ. (11.11)

Under an SU(2) transformation, Wμ → W′
μ
, given by (11.6), it is straightforward,

if tedious, to show that

Wμν → W′
μν

= UWμνU†. (11.12)

In verifying this result, note that, since UU† = 1,

U(∂μU†) + (∂μU)U† = 0.

The complicated definition of Wμν given by (11.11) is necessary in order to achieve

the simple transformation property (11.12).

We then take the total dynamical contribution to the Lagrangian density associ-

ated with the gauge fields to be

Ldyn = −1

4
Bμν Bμν − 1

8
Tr(WμνWμν). (11.13)

Using (11.12) and the cyclic invariance of the trace, we can see that Ldyn is invariant

under a local SU(2) transformation.

Using the results [τ 2, τ 3] = 2iτ 1, etc., the matrix Wμν may be written

Wμν = W i
μντ

i (11.14)

where

W 1
μν

= ∂μW 1
ν − ∂νW 1

μ − g2

(
W 2

μW 3
ν − W 2

ν W 3
μ

)
, (11.15a)

W 2
μν

= ∂μW 2
ν − ∂νW 2

μ − g2

(
W 3

μW 1
ν − W 3

ν W 1
μ

)
, (11.15b)

W 3
μν

= ∂μW 3
ν − ∂νW 3

μ − g2

(
W 1

μW 2
ν − W 1

ν W 2
μ

)
. (11.15c)

Since Tr(τ i )2 = 2, and Tr(τ iτ j ) = 0, i �= j , we can use (11.14) to express the

Lagrangian density in the more reassuring form:

Ldyn = −1

4
Bμν Bμν −

3∑
i=1

1

4
W i

μνW iμν. (11.16)

We shall see, later in this chapter, that the fields W 1
μ and W 2

μ are electrically

charged, and it is convenient to define here the complex combinations

W +
μ = (

W 1
μ − iW 2

μ

)
/
√

2, W −
μ = (

W 1
μ + iW 2

μ

)
/
√

2. (11.17)
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Note that the field W −
μ is the complex conjugate of the field W +

μ . We also define

W +
μν = (

W 1
μν − iW 2

μν

)
/
√

2

= (
∂μ + ig2W 3

μ

)
W +

ν − (
∂ν + ig2W 3

ν

)
W +

μ (11.18)

using (11.15a) and (11.15b). W −
μν is defined similarly.

We can also write (11.15c) as

W 3
μν = ∂μW 3

ν − ∂νW 3
μ − ig2

(
W −

μ W +
ν − W −

ν W +
μ

)
(11.19)

and (11.16) becomes

Ldyn = −1

4
Bμν Bμν − 1

4
W 3

μνW 3μν − 1

2
W −

μνW +μν. (11.20)

11.3 Breaking the SU(2) symmetry

As in equation (10.2) we take V (�†�) to be

V (�†�) = m2

2φ2
0

[
(�†�) − φ2

0

]2

= m2

2φ2
0

[
φ2

1 + φ2
2 + φ2

3 + φ2
4 − φ2

0

]2
(11.21)

where φ0 is a fixed parameter that is the analogue of (10.2). With this expression

for V, the vacuum state of our system is degenerate in the four-dimensional space

of the scalar fields. We now break the SU(2) symmetry. At our disposal we have the

three real parameters αk(x) that specify an element of SU(2). We use this freedom

to adopt a gauge in which for any field configuration �A = 0 (two conditions) and

�B is real (one condition). The ground state is then

�ground =
(

0

φ0

)
, (11.22)

and excited states are of the form

� =
(

0

φ0 + h(x)/
√

2

)
, (11.23)

where the field h(x) is real.

A local U(1) symmetry remains: the fields (11.23) are unchanged by a U(1) ×
SU(2) transformation of the form

e−iθ/2

(
e−iθ/2 0

0 eiθ/2

)
=

(
e−iθ 0

0 1

)
. (11.24)
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Such matrices give a 2 × 2 matrix representation of the group U(1). This residual

symmetry will turn out to be the U(1) symmetry of electromagnetism.

We wish to express L� (equation (11.9)) in terms of the field h(x). We have from

(11.21)

V ( �†�) = m2h2 + m2h3

√
2φ0

+ m2h4

8φ2
0

= V (h),

and from (11.8a) and (11.7)

Dμ� =
(

0

∂μh/
√

2

)
+ ig1

2

(
0

Bμ(φ0 + h/
√

2)

)
+ ig2

2

(√
2W +

μ (φ0 + h/
√

2)

−W 3
μ(φ0 + h/

√
2)

)
.

Multiplying (Dμ�)† by Dμ�, we find

L� = 1

2
∂μh∂μh + g2

2

2
W −

μ W +μ(φ0 + h/
√

2)2

+
[

g2
2

4
W 3

μW 3μ − g1g2

2
W 3

μ Bμ + g2
1

4
Bμ Bμ

]
(φ0 + h/

√
2)2 − V (h)

= 1

2
∂μh∂μh + g2

2

2
W −

μ W +μ(φ0 + h/
√

2)2

+ 1

4

(
g2

1 + g2
2

)
ZμZμ(φ0 + h/

√
2)2 − V (h). (11.25)

We have written

Zμ = W 3
μ cos θw − Bμ sin θw, (11.26)

where

cos θw = g2(
g2

1 + g2
2

)1/2
, sin θw = g1(

g2
1 + g2

2

)1/2
. (11.27)

θw is called the Weinberg angle.
Along with the field Zμ, we define the orthogonal combination

Aμ = W 3
μ sin θw + Bμ cos θw. (11.28)

Equations (11.26) and (11.28) correspond to a rotation of axes in (Bμ, W 3
μ) space.

The rotation can be inverted to give

Bμ = Aμ cos θw − Zμ sin θw,

W 3
μ = Aμ sin θw + Zμ cos θw.

(11.29)

Substituting in (11.10) and (11.19) gives

Bμν = Aμν cos θw − Zμν sin θw,

W 3
μν = Aμν sin θw + Zμν cos θw − ig2

(
W −

μ W +
ν − W −

ν W +
μ

)
,
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where

Aμν = ∂μ Aν − ∂ν Aμ (Aμν is the Fμν of Chapter 4)

and

Zμν = ∂μZν − ∂v Zμ. (11.30)

11.4 Identification of the fields

We are now in a position to rearrange the terms in the full Lagrangian density

L = L� + Ldyn to reveal its physical content. In Ldyn (equation (11.20)) we use

(11.29) and (11.30) to express the field Bμ and W 3
μ in terms of the fields Aμ and

Zμ, and then we may write

L = L1 + L2,

where

L1 = 1

2
∂μh∂μh − m2h2

− 1

4
Zμν Zμν + 1

4
φ2

0

(
g2

1 + g2
2

)
ZμZμ

− 1

4
Aμν Aμν

− 1

2

[(
DμW +

ν

)∗ − (
DνW +

μ

)∗]
[DμW +ν − DνW +μ] + 1

2
g2

2φ
2
0W −

μ W +μ,

(11.31)

and DμW +
ν = (∂μ + ig2 sin θw Aμ)W +

ν .

L1 is relatively simple: you will recognise it as the Lagrangian density for a

free massive neutral scalar boson field h(x), a free massive neutral vector boson

field Zμ(x), and a pair of massive charged vector boson fields W +
μ (x) and W −

μ (x),

interacting with the electromagnetic field Aμ(x).

L2 is the sum of the remaining interaction terms. As the patient reader may

verify,

L2 =
(

1

4
h2 + 1√

2
hφ0

) (
g2

2 W −
μ W +μ + 1

2

(
g2

1 + g2
2

)
ZμZμ

)

− m2h3

√
2φ0

− m2h4

8φ2
0

+ g2
2

4

(
W −

μ W +
ν − W −

ν W +
μ

)
(W −μW +ν − W −νW +μ)

+ ig2

2
(Aμν sin θw + Zμν cos θw)(W −μW +ν − W −νW +μ)

− g2
2 cos2 θw(ZμZμW −

ν W +ν − ZμZ νW −
ν W +μ)
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+ ig2

2
cos θw[(ZμW −

ν − ZνW −
μ )(DμW +ν − DνW +μ)

− (
ZμW +

ν − ZνW +
μ

)
(DμW +ν)∗ − (DνW +μ)∗)]. (11.32)

Most of the U(1) × SU(2) symmetry with which we began has been lost on sym-

metry breaking. In particular, no trace of the original SU(2) symmetry is to be seen

in the interactions described by L2. Nevertheless it is precisely this complicated set

of interactions that makes the theory renormalisable, as it would be if the symmetry

were not broken.

We identify the three vector fields, W +
μ , W −

μ , Zμ, with the mediators of the

weak interaction, the W +, W −, Z particles, which, subsequent to the theory, were

discovered experimentally. The masses are (Particle Data Group, 2004)

Mw = 80.425 ± 0.038 GeV, (11.33)

Mz = 91.1876 ± 0.0021GeV. (11.34)

From (11.31) and Section 4.9, we identify

φ0g2/
√

2 = Mw, (11.35)

φ0

(
g2

1 + g2
2

)1/2
/
√

2 = Mz. (11.36)

Then, from (11.27), and neglecting quantum corrections to the mass ratio,

cos θw = Mw/Mz = 0.8810 ± 0.0016. (11.37a)

It is usual to quote the value of sin2 θw, which will appear in later calculations.

The estimate above would suggest

sin2 θw = 0.23120 ± 0.00015.

The uncertainty arises mainly from uncertainty in Mw. Other ways of estimating

sin2 θw exist and the accepted value (in 1996) was

sin2 θw = 0.2315 ± 0.0004. (11.37b)

We shall adopt this value in subsequent calculations.

The W± bosons are found experimentally to carry charge ±e. In (11.31) the

gauge derivative is

DμWν
+ = (∂μ + ig2 sin θw Aμ)Wν

+,

so that from the coupling to the electromagnetic field Aμ and (11.27) we can

identify

e = g2 sin θw = g1 cos θw. (11.38)
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The fields W 1
μ, W 2

μ, and Zμ have free field expansions similar to (4.15) but with

three polarisation states (see Section 4.9). As a quantum field W +
μ destroys W+

bosons and creates W− bosons; W −
μ destroys W− bosons and creates W+ bosons.

There remains the scalar Higgs field h(x). The vacuum state expectation value

φ0 of the Higgs field is, from (11.35),

φ0 =
√

2Mw

g2

=
√

2Mw sin θw

e
= 180 GeV. (11.39)

The only parameter not fixed from experiment is the mass MH = √
2m of the

Higgs boson. No Higgs boson has yet been identified experimentally, though

its existence is, apparently, an essential part of the Standard Model. The fail-

ure so far of experimental searches to find the Higgs boson suggests MH >

64 GeV. Recent experimental and theoretical studies suggest an MH close to this

limit.

The requirements of U(1) and SU(2) symmetry, followed by SU(2) symmetry

breaking, have generated the electromagnetic field, the massive vector W± and Z

boson fields, and the scalar Higgs field, in a remarkably economical way. In the next

chapter, we add lepton fermion fields to these boson fields, to obtain the richness

of the Weinberg–Salam electroweak theory.

Problems

11.1 Show that the W′
μ defined by (11.6) are Hermitian and have zero trace. (Use the

expression (B.9) of Appendix B: U= cos αI+i sin α(α̂ · τ ).)

11.2 Verify that the expressions (11.13) and (11.16) for Ldyn are equivalent.

11.3 Verify that the last two terms on the right-hand side of (11.31) correspond to a pair

of massive charged vector boson fields.

11.4 Show that the Higgs boson can decay to two photons, in the third order of perturbation

theory. Draw the appropriate Feynman graph.

11.5 Under an SU(2) transformation, � → �′ where

(
�′

A

�′
B

)
= U

(
�A

�B

)
.

Using (B.9), show that τ 2U ∗ = Uτ 2. Hence show that

(
�′∗

B

−�′∗
A

)
= U

(
�∗

B

−�∗
A

)
.
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11.6 Show that the SU(2) matrix U = eiτα with α = α(sin φ, cos φ, 0) is

U =
(

cos α eiφ sin α

−e−iφ sin α cos α

)
.

Show that under the SU(2) transformation �′ = U�, the two-component complex

field

� =
(

�A

�B

)
=

(
aeiδ

beiγ

)

can be put in the form

�′ =
(

�′
A

�′
B

)
=

(
0

eiγ
√

a2 + b2

)
,

taking φ = (δ − γ ) and α = − tan−1(a/b). Show that �′ can then be put in the

standard form (11.23) by a further SU(2) transformation with α = γ (0, 0, 1).
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The Weinberg–Salam electroweak theory for leptons

We shall now couple the lepton fields to all the gauge boson fields: the electromag-
netic field, the W + and W − fields, and the Z field. We know that at low energies
the theory must reproduce the phenomenology of Chapter 9. This consideration
and the principles of U (1) × SU (2) local gauge symmetry determine the couplings
uniquely.

We have seen how the Higgs mechanism gives mass to the W± and Z bosons. To
give mass to the charged leptons: the electron, the muon, the tau, they too must be
coupled to the Higgs field. We shall finally arrive at the Weinberg–Salam unified
theory of the electroweak interaction.

12.1 Lepton doublets and the Weinberg–Salam theory

We shall first construct a Lagrangian density for lepton fields that is invariant under
U(1) and SU(2) transformations. The left-handed electron spinor eL and the electron
neutrino spinor νeL are put together in an SU(2) doublet, like the Higgs fields in
equation (11.1),

L =
(

νeL

eL

)
=

(
LA

LB

)
. (12.1)

We are now again specialising our notation; two-component left-handed and right-
handed spinors were denoted by ψL and ψR, respectively, in Chapter 6. Under an
SU(2) transformation, this doublet transforms in exactly the same way as the Higgs
doublet:

L → L′ = UL. (12.2)

Since SU(2) transformations mix the two spinor fields making up the doublet,
to maintain Lorentz invariance only fields with the same Lorentz transformation
properties can be combined together into a doublet.
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From the phenomenology of Chapter 9 the right-handed lepton fields do
not couple to the W boson field so that eR and νeR are invariant under SU(2)
transformations:

eR → e′
R = eR. νeR → ν ′

eR = νeR. (12.3)

To be consistent with the transformation rule (12.2), all SU(2) gauge derivatives
must be of the same form, ∂μ + i(g2/2)Wμ, where g2sin θw=e, as in (11.8) and
(11.38). This is a consequence of the non-Abelian nature of the group SU(2).
However, there is no similar constraint on the coupling constant to the U(1) gauge
field Bμ. (See Problem 12.1.) We may take

DμL = [∂μ+i(g2/2)Wμ+i(g′/2)Bμ)]L, (12.4)

where g′ remains at our disposal. We must choose g′ so that the neutrino is neutral
and the electron has charge −e. The terms in DμL which couple to the electromag-
netic field Aμ are linear combinations of W 3

μ and Bμ. Using (11.7) and (11.29) the
terms in Aμ are(

∂μ + {i(g2/2) sin θw + i(g′/2) cos θw}Aμ, 0
0, ∂μ + {−i(g2/2) sin θw + i(g′/2) cos θw}Aμ

) (
νeL

eL

)
.

The gauge derivatives ∂μνeL and (∂μ − ieAμ)eL which leave the neutrino electrically
neutral but impart electric charge −e to eL, are obtained with the choice

g′ cos θw = −g2 sin θw = −e.

The complete gauge derivative of the left-handed fields is then

DμL =
(

∂μ + i(e/ sin 2θw)Zμ, i{e/(
√

2 sin θw)}W +
μ

i{e/(
√

2 sin θw)}W −
μ , ∂μ − ieAμ − ie cot(2 θw)Zμ

) (
νeL

eL

)
(12.5)

where we have used (11.7), (11.17) and (11.29).
The gauge derivative of eR must be of the form

DμeR= [∂μ+i(g′′/2)Bμ]eR. (12.6a)

Since the electron has charge −e we take g′′ = −2e/cos θw = −2g1, (see (11.38))
so that, using (11.29) again,

DμeR= [(∂μ−ieAμ) + ie tan θw Zμ]eR. (12.6b)

With g′′ = −2g1 and g′ = −g1, it can easily be checked that, under a local
U (1) × SU (2) transformation

L → L′ = eiθ (x)U(x)L,

eR → e′
R = e2iθ(x)eR,
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the gauge derivatives satisfy

Dμ
′L′ = (∂μ + i(g2/2)Wμ

′ + i(g′/2)Bμ
′)L′ = eiθUDμL

Dμ
′eR

′ = (∂μ + i(g′′/2)Bμ
′)eR

′ = e2iθDμeR,

where the fields Bμ and Wμ transform as in (11.4b) and (11.6).
We can now construct a gauge invariant and Lorentz invariant expression for the

dynamical part of the Lagrangian density for the electron and the electron neutrino:

Le
dyn = L†σ̃ μiDμL + e†

RσμiDμeR + ν+
eRσμi∂μνeR. (12.7)

The gauge invariance follows from our construction of the gauge derivatives, and
the Lorentz invariance from the spinor properties set out in Section 5.4. (Remember
that the σ̃μ matrices act on the spinor indices, whereas the SU(2) transformation
acts independently on the components of the doublet of spinor fields.) Note that
besides the interaction with the electromagnetic field we have fully determined,
from the factor DμL, all the interactions with the heavy vector bosons.

Finally, we must give mass to the charged leptons. A gauge and Lorentz invariant
contribution to the Lagrangian density that will impart mass to the electron but leave
the neutrino massless is (neutrino mass will be introduced in Chapter 19)

Le
mass = −ce[(L†�)eR + e†R(�†L)]

= −ce[(ν†
L�A + e†L�B)eR + e†R(�†

AνL + �
†
BeL)],

(12.8)

where � is the Higgs doublet field and ce is a dimensionless coupling constant.
After symmetry breaking (see (11.23)), Le

mass becomes

Le
mass = −ceφ0(e†LeR + e†ReL) − ceh√

2

(
e†LeR + e†ReL

)
. (12.9)

Comparing this with the Dirac Lagrangian density (5.12), we identify ceφ0 with
the electron mass me. Introducing mass by following the principles of symmetry
has left us no option but to introduce an interaction between the electron field and
the Higgs field h(x). Hence the coupling constant to the Higgs field is

ce√
2

= me√
2φ0

= 2.01 × 10−6 (12.10)

(using (11.39)). It is just as well that ce is small: we do not want this term to upset
the calculations of QED!

The total Lagrangian density Le for the electron and its neutrino is given by
(12.7) and (12.8):

Le = Le
dyn + Le

mass. (12.11)
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From Le we can pick out the terms

L
e

Dirac = ν
†
eLσ̃ μi(∂μνeL)+e†Lσ̃ μi(∂μ − ieAμ)eL + ν

†
eRσμi∂μνeR

+ e†Rσμi(∂μ − ieAμ)eR − me
(
e†LeR + e†ReL

)
,

(12.12)

which correspond to the expressions we found in Chapter 6 and Chapter 7 for a
Dirac massless neutrino, and a Dirac electron of mass me and charge −e in an
electromagnetic field.

The Lagrangian densities Lμ and Lτ for the muon and tau leptons and their neu-
trinos differ from (12.11) only in their mass parameters and, hence, their couplings
to the Higgs field:

cμ√
2

= mμ√
2φ0

= 4.15 × 10−4,
cτ√

2
= mτ√

2φ0

= 6.98 × 10−3. (12.13)

The coupling constant g2 of the SU(2) gauge theory, or, equivalently, the Weinberg
angle θw (see (11.38)), which determines the coupling to the W ± and Z fields, must
be the same for all leptons, a feature of the theory that is forced on us by the SU(2)
group, and that is known as lepton universality.

The complete Lagrangian density Lws of the Weinberg–Salam theory (Wein-
berg, 1967; Salam, 1968) is the sum of the lepton contributions, and the boson
contributions given by (11.31) and (11.32):

Lws = Le + Lμ + Lτ + Lbosons, (12.14)

The form of Lws has been determined by considerations of symmetry: invariance
under Lorentz transformations, and under U(1) and SU(2) transformations. Massive
bosons and leptons appear through the Higgs mechanism of local symmetry break-
ing. It has been proved by t’Hooft (1976), who introduced radically new methods
of analysis, that the theory is renormalisable. We shall see in Chapter 13 that there
is a great body of data that supports it.

12.2 Lepton coupling to the W ±

The coupling of the electron and the electron neutrino to the W + and W − gauge
fields is given by the appropriate terms in (12.5) and (12.7), which are

Lew = −
(

g2/
√

2
)
ν
†
eLσ̃ μeLW +

μ −
(

g2/
√

2
)

e†Lσ̃ μνeLW −
μ

= −
(

g2/
√

2
)

[ jμ†
e W +

μ + jμ
e W −

μ ]. (12.15)

The right-handed fields do not contribute to this interaction. As in Chapter 9 the
currents are defined as

jμ
e = e†Lσ̃ μνeL, jμ†

e = ν
†
eLσ̃ μeL. (12.16)
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There are similar muon and tau currents, giving a total lepton current

jμ =
(

e†Lσ̃ μνeL + μ
†
Lσ̃ μνμL + τ

†
Lσ̃ μντL

)
, (12.17)

and total interaction Lagrangian density

LlW = −(g2/
√

2)
[

jμ†W +
μ + jμW −

μ

]
. (12.18)

The effective Llepton used in the discussion of muon decay in Section 9.4 can be
obtained as the low energy limit of the Weinberg–Salam theory. Since the mass
Mw is so large, at low energies the term M2

wW −
μ W +μ in (11.31) dominates in the

W contribution to the Lagrangian density, and

Lw ≈ M2
wW −

μ W +μ −
(

g2/
√

2
)

[ jμ†W †
μ + jμW −

μ ]. (12.19)

Physical field configurations correspond to stationary values of the action. Varying
W +

μ and W −
μ independently gives the field equations

M2
wW −

μ =
(

g2/
√

2
)

j †μ , M2
wW +

μ =
(

g2/
√

2
)

jμ, (12.20)

and using these in (12.19) gives

Lw ≈ −1

2
g2

2 M−2
w j †μ jμ. (12.21)

Lw is equivalent to the effective Llepton of (9.8) if we make the identification

GF = g2
2

4
√

2M2
w

= e2

4
√

2M2
w sin2 θw

. (12.22)

Taking Mw = 80.33 Gev, Mz = 91.187 GeV, sin2 θw = 1 − M2
w/M2

z , gives GF =
1.12 × 10−5 GeV−2, which is in good agreement with the accepted experimental
value, 1.166 × 10−5 GeV−2. Historically, the knowledge of GF, together with an
estimate of θw (see Section 13.1) was used to predict the masses of the W± and Z
bosons, and the CERN proton–antiproton collider was then built to find them.

12.3 Lepton coupling to the Z

The coupling of the leptons to the Z field can be extracted from the terms involving
Zμ in (12.7):

LeZ = −ν
†
eLσ̃ μνeL

(
e

sin(2θw)

)
Zμ + e†Lσ̃ μeL

(
e cos(2θw)

sin(2θw)

)
Zμ

−e†RσμeR(e tan θw)Zμ (using (12.5) and (12.6b))

= −e

sin(2θw)
( jneutral)μZμ,
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where

( jneutral)
μ = ν

†
eLσ̃ μνeL − cos(2θw)e†Lσ̃ μeL

+ 2 sin2 θwe†RσμeR. (12.23)

There are similar expressions for Lμz and Lτz. Note that the right-handed charged
lepton fields also couple to the Z field but not the right-handed neutrino.

The low energy limit of Lz may be obtained in the same way as we obtained
the low energy limit Lw in Section 12.2, with the same identification of coupling
constants, and is identical with the effective Lagrangian density (9.15) if, comparing
(12.23) with (9.17),

cA = −1

2
, cV = −1

2
+ 2 sin2 θw. (12.24)

The low energy muon neutrino–electron elastic scattering cross-sections calcu-
lated from the effective Lagrangian density are

σ (νμ + e− → νμ + e−) = G2
Fs

π

[
4

3
sin4 θw − sin2 θw + 1

4

]
, (12.25)

σ (ν̄μ + e− → ν̄μ + e−) = G2
Fs

π

[
4

3
sin4 θw − 1

3
sin2 θw + 1

12

]
, (12.26)

where s is the square of the centre of mass energy and Eν � me (see Perkins, 1987,
p. 327).

These low energy (� Mz, Mw) cross-sections have been measured at CERN
(CHARM II Collaboration, 1994), and their ratio yields an estimate for sin2 θw =
0.2324 ± 0.0083.

The Fermi constant GF is also known experimentally from low energy phenom-
ena, and e is of course well known. Hence within the framework of the Weinberg–
Salam theory the masses of the Z and W± gauge bosons can be estimated from low
energy data alone, using (12.22) and (11.37). (Earlier estimates of sin2 θw came
from neutrino–nuclear scattering.)

12.4 Conservation of lepton number and conservation of charge

The Weinberg–Salam Lagrangian density LWS has also further independent global
U(1) symmetries. It is invariant under the U(1) transformation Le → eiαLe, eR →
eiαeR, where α is a constant phase (see (12.7) and (12.9)). Using the device (by
now familiar) of varying α so that α → α + δα(x), where δα is space and time
dependent, the first-order variation in the action comes from the dynamical part of
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Le
dyn (equation (12.7)), and is

δS = −
∫

L†σ̃ μL∂μ(δα) d4x −
∫

e†RσμeR∂μ(δα) d4x

=
∫ [

∂μ(L†σ̃ μL) + ∂μ

(
e†RσμeR

)]
(δα) d4x,

on integrating by parts. Setting δS = 0 for arbitrary δα yields

∂μ

(
ν
†
L σ̃ μνL + e†Lσ̃ μeL

) + ∂μ

(
e+

R σμeR
) = 0,

or

∂μ

(
Jμ

e

) = 0, (12.27)

where

J 0
e = ν

†
LνL + e†LeL + e†ReR,

J i
e = ν

†
Lσ̃ iνL + e†Lσ̃ i eL + e†Rσ i eR.

(12.28)

Equation (12.28), which we may write as

∂ J 0
e

∂t
+ ∇ · Je = 0, (12.29)

expresses the conservation of electron lepton number. Similar U(1) transformations
applied to the muon and tau parts of Lws give the conservation of muon lepton
number, and tau lepton number. We will see in Chapter 19 that the inclusion of
Dirac neutrino mass into the Standard Model reduces these three conservation laws
to one.

As in Chapters 4 and 5, the inhomogeneous Maxwell equations can be obtained
by varying Aμ. There are contributions to the electric current from the charged W ±

fields, as well as from the charged leptons. Conservation of charge follows from
Maxwell’s equations, but can be obtained more directly from the U(1) symmetry
apparent in each term of the Weinberg–Salam Lagrangian density (12.14):

eL → eiαeL, eR → eiαeR; μL → eiαμL, μR → eiαμR; τL

→ eiατL, τR → eiατR; W +
μ → e−iαW +

μ , W −
μ → eiαW −

μ . (12.30)

12.5 CP symmetry

We saw in Chapter 5 (equation (5.27)) that under space inversion a left-handed
spinor ψL transforms into a right-handed spinor ψR, and vice versa. The Weinberg–
Salam Lagrangian does not have space inversion symmetry, since only the left-hand
components of the lepton wave functions are coupled to the SU(2) gauge field Wμ.
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We also discussed in Chapter 7 the operation of charge conjugation,

ψC
L = −iσ 2ψ∗

R, ψC
R = iσ 2ψ∗

L,

which relates solutions of the Dirac equation for particles to solutions for antipar-
ticles. In the Weinberg–Salam theory there is no charge symmetry.

The Weinberg–Salam Lagrangian does exhibit a symmetry under the combined
CP (charge conjugation, parity) operation. This symmetry implies that the physics
of particles described in a right-handed coordinate system is the same as the physics
of antiparticles described in a left-handed coordinate system.

Under the combined CP operation, lepton fields transform according to

ψC P
L = −iσ 2ψ∗

L, ψC P
R = iσ 2ψ∗

R. (12.31)

The other fields in the electroweak theory transform as set out below:

Higgs field:

(
�C P

A

�C P
B

)
=

(
�∗

A

�∗
B

)
.

U(1) gauge fields: BC P
0 = −B0, BC P

i = Bi .
SU(2) gauge fields:

(
W 3

0 W 1
o − iW 2

0

W 1
0 + iW 2

0 −W 3
0

)C P

= −
(

W 3
0 W 1

0 + iW 2
0

W 1
0 − iW 2

0 −W 3
0

)
,

(
W 3

i W 1
i − iW 2

i

W 1
i + iW 2

i −W 3
i

)C P

=
(

W 3
i W 1

i + iW 2
i

W 1
i − iW 2

i −W 3
i

)
.

It follows that

W +C P
0 = −W −

0 , W +C P
i = W −

i ,

ZC P
0 = −Z 0, ZC P

i = Zi ,

AC P
0 = −A 0, AC P

i = Ai .

(12.32)

Space derivatives of fields are replaced by their negatives.
To show that the Lagrangian density is invariant under these transformations

requires some care. We demonstrate it here for just one term, but one which involves
all the necessary steps in the complete argument, and we leave the remaining terms
to the reader. Consider then the term from the expression (12.7)

e†Rσμi[∂μ + i(g′′/2)Bμ]eR = l, say.
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Replacing the fields by their CP transforms, and ∂i by −∂i , gives

lC P = eT
R(σμ)Ti[∂μ − i(g′′/2)Bμ]e∗

R,

where we have used the results

(σ 2)2 = 1, σ 2σ iσ 2 = −(σ i )T.

The operators ∂μ now act on the conjugate fields. In fact lC P is not identical to l, but
differs from it only by a sum of total derivatives and, as explained in Section 3.1, a
total derivative is of no consequence. If we add to lC P the terms −i∂μ[eT

R(σμ)Te∗
R]

we obtain

−i
(
∂μeT

R

)
(σμ)T e∗

R + (
g′′/2

)
BμeT

R (σμ)T e∗
R.

Transposing this expression introduces another minus sign, since eR and eR
† are

fermion fields and hence anticommute. We then recover l.

12.6 Mass terms in L: an attempted generalisation

For later use, when the theory is extended to quarks, we finish this chapter by
contemplating a possible generalisation of our Lagrangian density. The coupling
of the three lepton families to the Higgs field was taken to be

Lmass = −
3∑

i=1

ci

[(
L†

i �
)

ri + r †i

(
�†Li

)]
,

where the sum is over the three lepton families, and we have modified the notation
of (12.8) in an obvious way. We might have taken a more general coupling,

Lgen
mass = −

∑ [
Gi j

(
L†

i �
)

r j + G∗
i j r

†
j

(
�†Li

)]
.

This preserves the U (1) × SU (2) symmetry with Gi j any 3 × 3 complex matrix.
We wish to show that this form has no essential difference from that already

introduced. This is because an arbitrary complex matrix can always be put
into real diagonal form with the help of two unitary matrices, UL and UR

(Appendix A):

G = UL
†CUR,

with Ci j = 0 for i 
= j .
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UL and UR are in general unique, except that both may be multiplied on the left
by the same ‘phase factor’ matrix⎛

⎝ eiα1 0 0
0 eiα2 0
0 0 eiα3

⎞
⎠ .

If we define ri
′ = URijr j , Li

′ = ULijL j we recover the original form for the
coupling to the Higgs field. Since the dynamical terms in the Lagrangian density
are of the same form after these unitary transformations (Problem 12.5), Lgen

mass is
just a more complicated expression of the same physics. The three phase factors
exp(iαk) correspond to the three U(1) symmetries which lead to electron, muon,
and tau number conservation.

Problems

12.1 Set the fields Wμ to be zero, and consider the dynamical Lagrangian density

L1 = L†σ̃ μi
(
∂μ + i

(
g′/2

)
Bμ

)
L.

With the gauge transformation (11.4b),

Bμ → Bμ
′ = Bμ + (2/g1) ∂μθ,

show that L1 is invariant if L transforms as

L → L′ = exp[−i( g′/g1)θ ]L.

Now set the fields Bμ to be zero, and consider

L2 = L†σ̃ μi(∂μ+i(g′/2)Wμ)L.

With the gauge transformation (11.6),

Wμ → Wμ
′ = UWμU† + (2i/g2)(∂μU)U†,

show that L2, can be made invariant only if

L → L′ = UL and g′ = g2.

12.2 Show that, to conform with the mathematical structure of Chapter 11, if two
fields are to be put together in an SU(2) doublet then they must differ by e
in electric charge.

12.3 Inspection of (12.9) shows that the Higgs boson can decay into an e+e− pair.
Show that, in the rest frame of the Higgs particle, the electron and positron must
have equal and opposite momenta and the same helicity (i.e. both positive or both
negative).
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Show that the final density of momentum states for the decay is

ρ(E f ) = V

(2π )2
pe Ee,

where pe and Ee are the momentum and energy of the electron.
Calculate the matrix elements for the transition, and hence show that to lowest

order in perturbation theory,

total decay rate = c2
e

16π
mH

(ve

c

)3
,

where ve is the electron velocity.

12.4 Show that the ratio of the leptonic partial width of the Higgs particle to its mass is
approximately

1

16π

(
mτ

φ0

)2

≈ 2 × 10−6.

12.5 Verify that the unitary transformations of Section 12.6 preserve the form of the
dynamical terms in the Lagrangian density.
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Experimental tests of the Weinberg–Salam theory

13.1 The search for the gauge bosons

We saw in the preceding chapter that the low energy limit of the electroweak
Weinberg–Salam theory reduces to the successful phenomenology of Chapter 9.
There is no reason to doubt that the Weinberg–Salam theory describes all low energy
β decays, but it also describes very much more. The pathological cross-section of
equation (9.14) is modified to

σ (νμe− → μ−νe) = G2
F

π

( (
s − mμ

2
)2

s[1 + (
s − mμ

2
)
/Mw

2]

)
. (13.1)

At high energies � Mw, this expression tends to GF
2 Mw

2/π = 1.08 × 10−10 b.

It is a renormalisable theory, so that quantum corrections can be calculated. At
high energies these corrections become increasingly important (at the few per cent
level).

The clearest test of the theory is the observation of the conjectured gauge bosons,
the W± and Z. These were discovered at CERN in 1983, using a specially con-
structed proton–antiproton collider, with a centre of mass energy of 540 GeV. It
was very important for the successful identification of the new particles that their
masses and decay characteristics had already been well estimated within the the-
ory. The masses depend on GF, e and the Weinberg angle θw (equations (11.37) and
(12.22)). The values of GF and e were well established, and estimates of θwwere
available from careful observations of neutral current events. We saw in Section
12.3 that the eνμ → eνμ and eν̄μ → eν̄μ cross-sections are sensitive to θw. Simi-
larly, the cross-sections for ν and ν̄ scattering from nuclei depend on θw, as we
shall see in more detail in Chapter 14. Since the centre of mass energy available
in neutrino–nuclear scattering is much greater than in neutrino–electron scattering
(equation (9.13)) and the cross-sections increase with energy, it was the neutral

128
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Figure 13.1 Quark–antiquark annihilation is the principal process contributing
to W and Z production in proton–antiproton collisions at present day collider
energies.

current experiments on nuclei which gave an estimate of θw, and this estimate was
in fact close to the presently accepted value. The experimental physicists knew
what to look for!

The successful identification of the new particles also relied on estimates of the
likely production cross-sections of the particles. We have not yet discussed how
quarks interact with the W± and Z bosons, but we shall see in Chapter 14 that the
interactions are similar to the interactions of leptons with the gauge bosons. Two
of the processes that contribute to Z and W+ production are sketched in Fig. 13.1.
The outgoing proton and antiproton remnants materialise as complicated jets of par-
ticles moving in directions closely correlated with the original proton and antiproton
directions. It is a fortunate circumstance for identification that the decay products
of the gauge bosons are frequently well separated from the particles in the remnants
(Problem 13.1).

The quark–antiquark pair responsible for gauge boson production carry only a
fraction of the original 540 GeV of energy, and the 540 GeV design parameter
allowed for this effect. The important analysis of the partition of the energy of a
beam particle between its constituents is discussed in Appendix D.

13.2 The W± bosons

The results of these experiments at CERN and subsequent experiments dramatically
confirmed the theoretical expectations. The charged W± bosons have a mass

Mw = 80.425 ± 0.038 GeV,

and their decay rates to lepton pairs are measured to be

�(W+ → e+νe) = 228 ± 6 MeV,

�(W+ → μ+νμ) = 225 ± 9 MeV,

�(W+ → τ+ντ) = 228 ± 11 MeV,

and �(W+ → e+νe) = �(W− → e−ν̄e), etc.
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To lowest order in perturbation theory, and neglecting terms in (m lepton/Mw)2,

these partial widths are all equal in the Standard Model and

�(W+ → e+ν) = GF M3
W

6π
√

2
= 226 ± 1 MeV, (13.2)

(Problem 13.3) in good agreement with the experimental data.

13.3 The Z boson

The experiments that revealed the charged W± bosons also revealed the neutral Z
boson, but the mass of the Z boson and its decay rates are now known far more
accurately than those of the W± bosons. In 1989, two e+e− colliders were opened:
LEP at CERN and SLC at Stanford. In these machines, the electrons and positrons
have equal energies and opposite momenta, and the centre of mass energy can be
tuned to lie at and around the mass of the Z. Typical resonant cross-sections for
particle production are shown in Fig. 13.2, and corresponding Feynman diagrams
in Fig. 13.3. At the peak energy, Z bosons at rest are copiously produced by e+e−

annihilation. These very clean events have given precise data on the properties of
the Z. The mass of the Z is

Mz = 91.1876 ± 0.0021 GeV,

and partial decay widths to charged lepton–antilepton pairs are

�(Z → e+e−) = 83.91 ± 0.20 MeV,

�(Z → μ+μ−) = 83.99 ± 0.35 MeV,

�(Z → τ+τ−) = 84.09 ± 0.40 MeV.

The total decay width, which includes decays to hadrons and the νν̄ pairs, is
� (total) = 2495 ± 2 MeV.

The theoretical partial widths for decay to charged lepton pairs depend on the
Weinberg angle θw. To lowest order and neglecting terms in (mlepton/Mz)2, the
partial widths are all equal and

�(Z → e+e−) = GF Mz
3

12
√

2π

[(
1 − 2 sin2 θw

)2 + 4 sin4 θw
]
. (13.3)

Taking the accepted value of sin2 θw = 0.2312, this gives, to lowest order,

�(Z → e+e−) = 83.4 MeV.

Again, there is remarkable agreement between theory and experiment.
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Figure 13.2 The cross-section σ (e+e− → e+e− + μ+μ− + τ+τ−) as a function
of E the initiating e+e− centre of mass energy. The experimental data were pre-
sented at the 25th International Conference on High Energy Physics in Singapore
in 1990 by the ALEPH collaboration of CERN. The curve is the prediction of the
Standard Model but with parameters such as the Z mass as variables determined
by the data (see Hansen (1991)).

13.4 The number of lepton families

For the decay rates to neutrino–antineutrino pairs, the Standard Model gives

�(Z → νeν̄e) = �(Z → νμν̄μ) = �(Z → ντ ν̄τ ) = GF M3
z

12
√

2π
= 165.9 MeV.

(13.4)
Hence the partial width for decay to any neutrino–antineutrino pair is

3�(Z → νeν̄e) = 497.6 MeV.

This can be compared with the partial width �(invisible) associated with e+e− pairs
annihilating without trace, since neutrinos and antineutrinos are the only particles
that will escape unseen by the particle detectors.
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Figure 13.3 The basic Feynman graphs that describe the processes of Fig. 13.2.
The fitting curve indudes additional graphs that give the Z resonance its width and
graphs that describe accompanying electromagnetic processes.

Experimentally, it is found that

�(invisible) = 498.3 ± 4.2 MeV.

The agreement with the Standard Model value is a striking confirmation of the
theory. It implies that there are no more light neutrino types and rules out there
being any more ‘standard’ lepton doublets in Nature than the three already known.
This is a result of fundamental significance.

13.5 The measurement of partial widths

In view of the importance of the partial widths for Z decay, we shall sketch how
they are obtained from the experimental results. The cross-section for e+e− elas-
tic scattering at small angles is dominated by photon exchange, even around the
Z resonance, and is well known from QED. This small angle elastic scattering
of the beam particles is constantly monitored during data taking, and the cross-
section for any other process, for example e+e− → μ+μ−, is then obtained from
the measured rate of μ+μ− production relative to the rate of e+e− small angle
scattering. This, essentially, is how the graphs of Fig. 13.2 are arrived at. We
give now a much simplified analysis that indicates how the partial widths are
extracted.
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Assume that the cross-sections are described by a simple Breit–Wigner formula.
For example,

σ
(
e+e− → μ+μ−) = 3π

Mz
2

�ee�μμ

(E − Mz)2 + �2/4
, (13.5)

σ
(
e+e− → hadrons

) = 3π

Mz
2

�ee�had

(E − Mz)2 + �2/4
. (13.6)

(The factor 3 is a spin factor.)
Mz and the total decay width � can be found from the position and width of the

experimental peak. Then, taking �ee = �μμ, the ratio �ee/� can be found from the
peak of the cross-section σ

(
e+e− → μ+μ−)

at E = Mz, using (13.5):

�ee

�
=

(
Mz

2σ
(
e+e− → μ+μ− at E = MZ

)
12π

)1/2

.

Using this result, the ratio �had/� follows from the peak of the cross-section
σ(e+e− → hadrons). From (13.6),

�had

�
= Mz

2

12π

�

�ee
σ

(
e+e− → hadrons at E = Mz

)
.

To obtain �(invisible), we take

� (invisible) = � − 3�ee − �had.

In reality the data have to be treated very much more carefully than is implied
above. In particular electromagnetic effects during the collision process distort the
simple Breit–Wigner shape, and appropriate corrections are applied in the actual
analysis.

Figure 13.4 shows the result of such a more sophisticated fit, compared with Stan-
dard Model predictions assuming two, three and four types of massless neutrinos.
The data unequivocally require three.

13.6 Left–right production cross-section asymmetry and lepton decay
asymmetry of the Z boson

Other details of the Weinberg–Salam theory can be tested with e+e− colliders. Much
work has been done at Stanford with the SLC beam energies tuned to the Z boson
mass. The beam intensities at SLC were lower than those at the CERN collider,
but the SLC had an advantage in that the electron beam can be polarised along
the beam direction so that the relative proportions of positive and negative helicity
electrons can be changed. We have seen in Chapter 7 that, at high energies, negative
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Figure 13.4 The cross-section σ
(
e+e− → hadrons

)
as a function of E the ini-

tiating e+e− centre of mass energy. The experimental data were presented at the
25th International Conference on High Energy Physics in Singapore in 1990 by the
OPAL collaboration of CERN. The data are compared with the predictions of the
Standard Model but with two, three and four neutrino types. Three light neutrino
types are clearly favoured (see Mori (1991)).
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Figure 13.5 The differential cross-section dσ
(
e+e− → μ+μ−)

/d cos θ. The data
were taken at DESY at an e+e− centre of mass energy of 30 GeV. The dashed line
is the prediction of quantum electrodynamics alone, the full line fits the data
and shows the modification due to the presence of the Z boson which gives this
interference effect (R. Marshall, Rutherford Appleton Laboratory Report RAL
89–021).

helicity electrons and positive helicity positrons are associated with left-handed
fields, positive helicity electrons and negative helicity positrons are associated with
right-handed fields. It follows from the form of the interaction term (12.33) in the
Weinberg–Salam Lagrangian that in interacting with an unpolarised positron beam
(equal numbers of positive helicity and negative helicity positrons) the cross-section
σL for Z production by a negative helicity electron is proportional to (cos 2θw)2 and
the cross-section σR for Z production by a positive helicity electron is proportional
to

(
2 sin2 θw

)2
. The constants of proportionality are the same so that the left–right

cross-section asymmetry is, to lowest order,

ALR = σL − σR

σL + σR
= (cos 2θw)2 − (

2 sin2 θw
)2

(cos 2θw)2 + (
2 sin2 θw

)2 = 2
(
1 − 4 sin2 θw

)
1 + (

1 − 4 sin2 θw
)2 .

From the measurements at SLC (Fero, 1994) it is calculated that ALR = 0.1628 ±
0.0099, which gives an estimate

sin2 θw = 0.2292 ± 0.0013.
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This estimate does not depend on the ratio Mw/Mz, since the W± bosons are not
involved.

At CERN and at a previous e+e− collider at DESY in Hamburg the electron
beams had no longitudinal polarisation. Nevertheless if a Z boson is formed its spin
is aligned with the direction of the electron beam with probability proportional to
[2 sin2 θw]2, and anti-aligned with probability proportional to [cos 2θw]2, giving it
a mean polarisation in the direction of the beam of −ALR.

When the Z decays to a lepton–antilepton pair, the direction of the lepton is
correlated with the direction of the Z spin. The polarisation of the Z therefore gives
a forward–backward asymmetry in the angular distribution of the leptons.

The competing process of lepton production through the electromagnetic interac-
tion does give a symmetrical angular distribution. The observed asymmetry depends
on the interference between Z and γ processes, and is energy dependent. Figure 13.5
shows the angular distribution of leptons with respect to the electron beam distri-
bution at a centre of mass energy E = 30 GeV (which is below Mz). This data was
taken at DESY and gave an estimate of sin2 θw = 0.212 ± 0.014. This is another
impressive confirmation of the overall consistency of the Weinberg–Salam theory.

Problems

13.1 W± bosons are produced when a beam of high energy protons is in head-on col-
lision with a beam of antiprotons. The W boson momenta are strongly aligned
with the beams. The transverse component of momentum given to the W is small.
Neglecting this component, and assuming that in the W rest frame there is an
isotropic distribution of decay products, show that in a decay to a charged lepton
and a neutrino, the root mean square transverse lepton momentum is approximately
Mw/

√
6 = 33 GeV.

Events with large transverse momenta are rare, and their observation allows W
production to be identified. (Note that the transverse momenta are unchanged by a
Lorentz boost of the W in the beam direction.)

13.2 From the interaction term in (12.23) of the Z boson with an electron–positron pair,
show that in head-on unpolarised e+e− collisions, the probability of the Z boson
spin being aligned with the electron beam is proportional to

(
2 sin2 θw

)2
, and of

being antialigned is proportional to (cos 2θw)2.

13.3 Neglecting lepton mass terms, obtain the partial widths (13.2), (13.3) and (13.4).

13.4 Recalculate (13.3), taking cos θw = Mw/Mz.
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The electromagnetic and weak interactions of quarks

In the Standard Model it is the quarks’ colour that is the source of their strong
interaction. In this chapter we shall consider only the electromagnetic and weak
interactions of quarks, and colour will not enter. The theory will be constructed in
close analogy with the electroweak theory for leptons set out in Chapter 12. The
theory for quarks is not as well founded in experiment as the theory for leptons.
This is because quarks cannot be isolated from hadrons. Experiments can only
be performed on composite quark systems, and the basic Lagrangian density is
obscured at low energies by the strong interactions. At higher energies, and espe-
cially through the hadronic decays of the Z bosons, the electroweak physics of the
isolated quarks can to some extent be discerned. In Chapter 15 some of the relevant
experimental data on these decays will be described.

14.1 Construction of the Lagrangian density

At low energies, the model has to describe decays like

n → p + e− + ν̄e

or, at quark level,

d → u + e− + ν̄e.

This decay is mediated by the W boson. Comparing it with muon decay,

μ− → νμ + e− + ν̄e,

which is also mediated by the W boson, suggests that the left-handed components
uL and dL of the quark fields should be put together in an SU(2) doublet,

L =
(

uL

dL

)
, (14.1)

137
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while uR and dR are, like νR and eR, unchanged by SU(2) transformations. We shall
see that this simple assignment would be correct if Nature had provided us with
only one type of up quark, and only one type of down quark.

With such an assignment there is no freedom in the construction of the weak inter-
action. There is only one way to make the dynamical part of the quark Lagrangian
density gauge invariant. The coupling to the field Wμ is uniquely determined by
SU(2) symmetry and the coupling to the field Bμ is fixed by the quark electric
charges: 2e/3 on the u quark, −e/3 on the d quark. Hence

Ldyn = L†σ̃ μi[∂μ + (ig2/2)Wμ + (ig1/6)Bμ]L

+ μ
†
Rσμi[dμ + (2ig1/3)Bμ]uR

+ d†
Rσμi[∂μ − (ig1/3)Bμ]dR, (14.2)

where g2 sin θw = g1 cos θw = e.
To conform with the transformation laws (11.4b) and (11.6) on the gauge fields,

the U(1) × SU(2) transformation of the quark fields must be

L → L′ = e−iθ (x)/3UL,

uR → uR
′ = e−4iθ(x)/3uR,

dR → dR
′ = e2iθ(x)/3dR. (14.3)

Using (11.17) and (11.29), Ldyn can be written in terms of the fields W ±
μ , Zμ and

Aμ and becomes

Ldyn = L†σ̃ μi

⎛
⎜⎜⎝

∂μ + 2ie

3
Aμ + ie

3 sin 2θw
(1 + 2 cos 2θw) Zμ,

ie√
2 sin θw

W +
μ

ie√
2 sin θw

W −
μ , ∂μ − ie

3
Aμ − ie

3 sin 2θw
(2 + cos 2θw) Zμ

⎞
⎟⎟⎠L

+ u†
Rσμi

[
∂μ + 2ie

3
Aμ − 2ie

3
tan θw Zμ

]
uR (14.4)

+ d†
Rσμi

[
∂μ − ie

3
Aμ + ie

3
tan θw Zμ

]
dR.

However, the Standard Model postulates three families, or generations, of quarks.
We therefore introduce three left-handed SU(2) doublets:(

uL1

dL1

)
,

(
uL2

dL2

)
,

(
uL3

dL3

)
,

and six right-handed singlets: uR1, dR1; uR2, dR2; uR3, dR3. For a more compact nota-
tion we shall denote these by

Lk =
(

uLk

dLk

)
, uRk, dRk with k = 1, 2, 3.
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As in the lepton case, we take the dynamical part of the total quark Lagrangian as
a sum:

L dyn(quark) =
3∑

k=1

L dyn (uk, dk). (14.5)

14.2 Quark masses and the Kobayashi–Maskawa mixing matrix

To retain renormalisability we must retain gauge symmetry, and give mass to the
quarks by coupling to the Higgs field as in Chapter 12 where we gave mass to the
leptons. For the dk quarks this is straightforward. The most general form we might
consider that preserves the gauge symmetries is

LHiggs(d) = −
∑ [

Gd
i j

(
L†

i Φ
)
dR j + Gd∗

i j d†
R j (Φ

†Li )
]
, (14.6)

as we discussed in the lepton case in Section 12.6. After the symmetry breaking of
the Higgs field �, this gives the mass term for the d-type quarks:

Lmass(d) = − φ0

∑ [
Gd

i j d
†
Li dR j + Gd∗

i j d†
R j dLi

]
. (14.7)

A priori, Gd
i j is an arbitrary 3 × 3 complex matrix. As we remarked in Section

12.6, such a matrix can always be put into real diagonal form with the help of two
unitary matrices, so that we can write

φ0Gd = D†
LmdDR,

where md is a real diagonal matrix, and DL, DR are unitary matrices. If the diagonal
elements are distinct, as appears experimentally to be the case, DL, DR are unique,
except that both may be multiplied on the left by the same phase-factor matrix

⎛
⎝ eiα1 0 0

0 eiα2 0
0 0 eiα3

⎞
⎠ . (14.8)

In the Standard Model as set out in Chapter 12, the neutrinos were taken to have
zero mass. However, for the u-type quarks, which are here making up a left-handed
doublet, we need a mass term. For this purpose we introduce the 2 × 2 matrix in
SU(2) space

ε =
(

εAA εAB

εB A εB B

)
=

(
0 1

−1 0

)
.

A suitable SU(2) invariant expression which we can construct from the doublets Φ
and Li is

(
ΦT ε Li

)
, where ΦT = (ΦA,ΦB) is the transpose of Φ (Problem 14.3).
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We then take

LHiggs(u) = −
∑

i j

[
Gu

i j

(
L†

i ε Φ∗)uR j − Gu∗
i j u†

R j (Φ
T ε Li )

]
(14.9)

where Gu
i j is another complex 3×3 matrix. On symmetry breaking, this gives the

u-quarks mass term

Lmass (u) = −φ0

∑ [
Gu

i j u
†
Li uR j + Gu∗

i j u†
R j uLi

]
, (14.10)

which is, as we might expect, similar to (14.7), and likewise preserves the gauge
symmetries. It can be brought into real diagonal form in a similar way:

φ0Gu = UL
†muUR,

where UL and UR are unitary matrices, and mu is diagonal.
UL and UR may be both multiplied on the left by a phase factor matrix, say⎛

⎝ eiβ1 0 0
0 eiβ2 0
0 0 eiβ3

⎞
⎠ .

The theory is most directly described in terms of the ‘true’ quark fields, for which
the mass matrices are diagonal, so that we define the six quark fields:

d ′
Li = DLi j dL j , d ′

Ri = DRi j dR j ,

u′
Li = ULi j uL j , u′

Ri = URi j uR j .
(14.11)

The quark mass contribution to L becomes:

Lmass(quarks) = −
3∑

i=1

[
md

i

(
d ′†

Li d
′
Ri + d ′†

Ri d
′
Li

) + mu
i

(
u′†

Li u
′
Ri + u′†

Ri u
′
Li

)]
.

(14.12a)
We identify the Dirac spinors(

u′
L1

u′
R1

)
,

(
u′

L2

u′
R2

)
,

(
u′

L3

u′
R3

)

with the u, c and t quarks, respectively, and the Dirac spinors(
d ′

L1

d ′
R1

)
,

(
d ′

L2

d ′
R2

)
,

(
d ′

L3

d ′
R3

)

with the d, s and b quarks, so that we might rewrite (14.12a) as

Lmass(quarks) = − [
md

(
d†

LdR + d†
RdL

) + mu
(
u†

LuR + u†
RuL

)]
− [

ms
(
s†LsR + s†RsL

) + mc
(
c†LcR + c†RcL

)]
− [

mb
(
b†

LbR + b†
RbL

) + mt
(
t†LtR + t†RtL

)]
. (14.12b)

The terms in (14.12b) correspond to six Dirac fermions.
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We have dropped the primes, and for the remainder of the book uk and dk , for
k = 1, 2, 3, will denote true quark fields.

In the Ldyn given by (14.2) and (14.5), the ‘diagonal’ terms do not mix u-type and
d-type quarks and are invariant under the unitary transformations (14.11). However,
the terms that arise from the off-diagonal elements of the matrix Wμ, mix u and d
quarks through their coupling to the W± boson fields, and these terms are profoundly
changed.

The diagonal terms give LqDirac and Lqz that parallel the expressions (12.12) and
(12.23) of the lepton theory of Chapter 12. The complete electroweak Lagrangian
density for the quarks is

Lq = LqDirac + Lqz + Lqw + LqH

where

LqDirac =
∑

i

[
u†

Li σ̃
μi {∂μ + i(2e/3)Aμ}uLi + u†

Riσ
μi {∂μ + i(2e/3)Aμ}uRi

]

+ [
d†

Li σ̃
μi {∂μ − i(e/3)Aμ}dLi + d†

Riσ
μi {∂μ − i(e/3)Aμ}dRi

] + Lqmass

(14.13)

Lqz =
∑

i

[
−u†

Li σ̃
μuLi

(
e

sin (2θw)

)
Zμ(1 − (4/3) sin2 θw)

+ u†
Riσ

μuRi

(
e

sin (2θw)

)
Zμ

4

3
sin2 θw

+ d†
Li σ̃

μdLi

(
e

sin (2θw)

)
Zμ(1 − (2/3) sin2 θw)

− d†
Riσ

μdRi

(
e

sin (2θw)

)
Zμ

2

3
sin2 θw

]
. (14.14)

In the Lqw, part of the Lagrangian density, the terms

− e√
2 sin θw

∑
i

[
u†

Li σ̃
μdLi W

+
μ + d†

Li σ̃
μuLi W

−
μ

]
,

when written in terms of the ‘true’ quark fields given by (14.11), become

Lqw = − e√
2 sin θw

(
u†

L, c†L, t†L

) ⎛
⎝ Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎠

⎛
⎝ σ̃ μdL

σ̃ μsL

σ̃ μbL

⎞
⎠ W +

μ

+ Hermitian conjugate,

(14.15)

where V = ULD†
L.

Since the product of two unitary matrices is unitary, V is a 3 × 3 unitary
matrix. The elements of V are not determined within the theory. It is in this
matrix that another four of the parameters of the Standard Model reside. An
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n × n unitary matrix is specified by n2 parameters (Appendix A), so we appar-
ently have nine parameters to be measured experimentally. However, five of these
can be absorbed into the non-physical phases of the quark fields, through the phase-
factor matrices associated with DL (see (14.8)) and UL. (There are five, rather than
six, non-physical phases since only phase differences appear in V. For example
Vud = exp [i (βu − αd)] V 0

ud.)
When the quark phase factors have been extracted, the resulting matrix V0 is

dependent on four physical parameters. It is called the Kobayashi–Maskawa (KM)
matrix (Kobayashi and Maskawa, 1973).

14.3 The parameterisation of the KM matrix

A 3 × 3 rotation matrix is also a unitary matrix. A more general unitary matrix
can be constructed as a product of rotation matrices and unitary matrices made up
of phase factors. There is no unique parameterisation of the KM matrix by this
method. That advocated by the Particle Data Group is

V =
⎛
⎝1 0 0

0 c23 s23

0 −s23 c23

⎞
⎠

⎛
⎝ e−iδ/2 0 0

0 1 0
0 0 eiδ/2

⎞
⎠

⎛
⎝ c13 0 s13

0 1 0
−s13 0 c13

⎞
⎠

×
⎛
⎝ eiδ/2 0 0

0 1 0
0 0 e−iδ/2

⎞
⎠

⎛
⎝ c12 s12 0

−s12 c12 0
0 0 1

⎞
⎠

=
⎛
⎝ c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞
⎠

(14.16)

where ci j = cos θi j , si j = sin θi j . The four parameters are the three rotation angles
θ12, θ23, θ13, and the phase δ.

Evidently, if s13 = 0 or sin δ = 0 then V is real. Less evidently, if s12 = 0 then
V is made real by redefining the quark fields

eiδu1 → u1, eiδd1 → d1,

and if s23 = 0 then V is made real by redefining

e−iδu3 → u3, e−iδd3 → d3,

as the reader may verify.



14.4 CP symmetry and the KM matrix 143

A general redefinition of the quark phases,

di → eiαi di , ui → eiβi ui ,

will change the matrix elements of V by

Vi j → ei(αi −β j )Vi j . (14.17)

Using this freedom, the three rotation angles can be chosen all to lie in the first
quadrant.

Jarlskog (1985) gives an important necessary and sufficient condition for deter-
mining whether, given a unitary matrix V, it is possible to make it real by such
changes. She considers the imaginary part of any one of the nine products,
Vi j Vkl V ∗

kl V
∗

il with i �= k and j �= l, for example

Im
(
V11V22V ∗

21V ∗
12

) = J say. (14.18)

J is invariant under a general phase change (14.17), so that if J is not zero then it
cannot be made so, and hence V cannot be made real. All nine quantities are equal
to ± J. In the parameterisation of equation (14.16),

J = c12c2
13c23s12s13s23 sin δ. (14.19)

(The conditions already obtained for the reality of the KM matrix are contained in
the condition J = 0.)

Having fixed the KM matrix there remains only one global U(1) symmetry which
leaves it unchanged. All six quark fields, left and right, can be multiplied by the
same phase factor. As a consequence, only the total quark number current and hence
the total quark number is conserved. At the macroscopic level this is observed as
baryon number conservation.

14.4 CP symmetry and the KM matrix

We shall now show that, if the KM matrix cannot be made real by a redefinition
of the quark phases, the Standard Model does not have CP (change conjugation,
parity) symmetry.

We saw in Section 12.5 that the Weinberg–Salam electroweak theory is invariant
under the CP operation. Similarly, CP is a symmetry of every term in the Standard
Model of the weak and electromagnetic interactions of quarks, except for those
terms that give the interaction between the quarks and the W bosons. These are the
terms that involve the KM matrix.

The CP transforms of the W fields are defined in equation (12.32):

W +C P
0 = −W −

0 , W +C P
i = W −

i ,
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and the quark fields transform like all fermion fields:

qC P
L = −iσ 2q∗

L, qC P
R = iσ 2q∗

R.

To show how CP symmetry is violated, we consider the terms (14.15), which we
write as

(−e/
√

2 sin θw)
∑
i, j

[
u†

Li σ̃
μVi j dL j W

+
μ + d†

L j σ̃
μV ∗

i j uLi W
−
μ

]
(i = u, c, t; j = d, s, b)

Replacing the fields by their CP transforms gives

(−e/
√

2 sin θw)
∑

i j

[−uT
Li (σ̃

μ)TVi j d
∗
L j

W −
μ − dT

L j (σ̃
μ)TV ∗

i j u
∗
Li W

+
μ

]

where, as in Section 12.5, we have used the results

(σ 2)2 = 1, σ 2σ iσ 2 = −(σ i )T.

On transposing this expression with respect to the spinor indices we introduce a
minus sign from the anticommuting fermion fields, and obtain the CP transformed
expression

(−e/
√

2 sin θw)
∑
i, j

[
d†

L j σ̃
μVi j uLi W

−
μ + d†

Li σ̃
μV ∗

i j dL j W
+
μ

]
.

This is the same as the original term if and only if Vi j is real for all i, j .
Experimental evidence for the breakdown of CP symmetry first became apparent

in 1964, in the decay of the K0 (ds̄) meson. We shall discuss this decay and its
implications in Chapter 18, where we consider what is known experimentally about
the parameters of the KM matrix. It is an interesting fact that CP-violating effects
in the Standard Model are proportional to J.

14.5 The weak interaction in the low energy limit

Combining the results of Chapter 12 (equation (12.18)) with those of the present
chapter (equation (14.15)), we have the complete interaction of the W bosons with
all the fermions, both leptons and quarks, of the Standard Model:

LWint = (−e/
√

2 sin θw)
[

jμ†W +
μ + jμW −

μ

]
where

jμ = ∑
leptons

e†Ll σ̃
μνLl + ∑

i j
d†

L j σ̃
μuLi V ∗

i j (i = u, c, t; j = d, s, b). (14.20)
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Note that we have suppressed colour indices in this chapter. The labels i,j on the
quark spinors in (14.15) carry with them implied colour indices which are also
summed over.

By eliminating the W field as in Section 12.2, we obtain the low energy effective
interaction

LWeff = −2
√

2G F j †μ jμ. (14.21)

For example, the part of this effective interaction which is basically responsible for
all nuclear β decays involves the electron field and the u and d quarks (i = j = 1):

Leff = −2
√

2GF

[
gμνv

†
eLσ̃ μeLd†

Lσ̃ vuLV ∗
ud

]
+ Hermitian conjugate (14.22)

That part of the effective interaction responsible for the decay K0 →
π+π− (

s̄ → u + ū + d̄
)

is

Leff = −2
√

2GF
[
gμνs†Lσ̃ μuLu†

Lσ̃ vdL V ∗
usVud

]
. (14.23)

We have also the complete interaction of the Z boson with all the fermions.
Combining (12.23) with (14.14) gives

LZint = −e

sin (2θw)
( jneutral)μ Zμ (14.24)

where

( jneutral)
μ =

∑
leptons

[
ν
†
Ll σ̃

μνLl − cos(2θw)e†Ll σ̃
μeLl

+ 2 sin2 θwe†RσμeR
]

+
∑

i

[
u†

Li σ̃
μuLi

(
1 − 4

3
sin2 θw

)
− u†

Riσ
μuRi

(
4

3
sin2 θw

)

− d†
Li σ̃

μdLi

(
1 − 2

3
sin2 θw

)
+ d†

Riσ
μdRi

(
2

3
sin2 θw

)]
.

By eliminating the Z field, we obtain the low energy effective interaction

LZeff = −
(

GF/
√

2
)

( jneutral)μ( jneutral)
μ. (14.25)
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Problems

14.1 Verify that the transformations (14.3) along with (11.4b) and (11.6) leave Ldyn

invariant.

14.2 Obtain LqZ, (equation (14.14)) from (14.4).

14.3 Show that (Φ ε L) is an SU(2) invariant. (Show that U T ε U = ε det(U ))

14.4 Write down the interaction Lagrangian density between the quark fields and the
Higgs field, which appears in (14.6) and (14.9).

Estimate the coupling constant ct between the Higgs field and the top quark.

14.5 Which terms in (14.20) and (14.21) are responsible for the meson decays

K+ (us̄) → μ+ + νμ,

D+ (
cd̄

) → K0
(
d̄s

) + e+ + νe,

B+ (
ub̄

) → D0 (c̄u) + π+ (
ud̄

)
?

Sketch appropriate quark diagrams.

14.6 There are no ‘flavour changing neutral currents’, i.e. there are no terms in the neutral
current of (14.24) that involve a change of quark flavour. Draw Feynman diagrams
from higher orders of perturbation theory that simulate the flavour changing neutral
current decays

b → s + γ, b → s + e+ + e−.
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The hadronic decays of the Z and W bosons

In Chapter 13 we described the results on the leptonic decays of the Z boson,

obtained from experiments using e+e− colliders. These results are in striking agree-

ment with the predictions of the Weinberg–Salam electroweak model. In this chap-

ter, we shall consider some of the wealth of data that has been accumulated at

CERN and SLAC on the hadronic decays of the Z, and we shall find equally strik-

ing agreement between experiment and theory.

15.1 Hadronic decays of the Z

In the Standard Model, a hadronic decay of the Z is most likely to be triggered by

an initial decay to a quark–antiquark pair. The subsequent hadrons produced are

mostly confined to two jets, back-to-back in the Z rest frame and made up of stable,

or long lived, particles (see Fig. 15.1). The precise details of the processes involved

in the creation of a jet are not fully understood.

The momentum of a jet may be defined as the total momentum of the particles

associated with it, and may be presumed to be equal to the momentum of the

initiating quark or antiquark. The Z has sufficient rest energy to decay to any quark–

antiquark pair other than a tt̄ pair, but it has so far not been possible to identify jets

as arising specifically from u, d or s quarks, or their antiquarks. However, many

b quark jets can be identified with some confidence from the recognition of B

mesons (bū, bd̄), which have a high probability of being produced in b quark jets,

and a low probability of being produced in other jets. Similarly, B̄ mesons are used

to identify b̄ jets. The observation of charmed hadrons in jets has likewise been

used to identify jets arising from c quarks and c̄ antiquarks.

Associating the observed jets with the initiating quarks, comparisons can be

made with the Standard Model predictions of Z decay rates to quark–antiquark

pairs. We shall first consider the decay of a Z that is in a definite spin state. The

interaction Lagrangian (14.4) has the same form for the d, s and b quarks, and in

147
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Figure 15.1 A Z hadronic decay recorded by the OPAL detector at CERN. The
charged particle tracks can be seen in the inner region. The dark bands around
the outer circle indicate the angular distribution of energy deposited in the outer
calorimeter. The figure gives a projection of the event onto a plane perpendicular
to the beam axis (see Dydak (1990)).

the lowest order of perturbation theory gives a differential decay rate into a dk d̄k

pair (d1 = d, d2 = s, d3 = b)

d�(dk d̄k)

d cos θ
= 3GF MZ

3

32
√

2π

[(
1 − 2

3
sin2 θw

)2

(1 − cos θ )2

+
(

2

3
sin2 θw

)2

(1 + cos θ )2

]
, (15.1)

where θ is the angle between the direction of the dk quark momentum and the

direction of the Z spin. Similarly, the decay rate to a uū or cc̄ pair is

d�(uk ūk)

d cos θ
= 3GF MZ

3

32
√

2π

[(
1 − 4

3
sin2 θw

)2

(1 − cos θ )2

+
(

4

3
sin2 θw

)2

(1 + cos θ )2

]
. (15.2)



15.2 Asymmetry in quark production 149

The colour factor of 3 is included in these rates. Terms in mq/MZ are neglected.

Integrating over θ gives the total decay rates

�(dk d̄k) = G F MZ
3

4
√

2π

[
1 − 4

3
sin2 θw + 8

9
sin4 θw

]
= 0.3677 GeV, (15.3)

�(uk ūk) = G F MZ
3

4
√

2π

[
1 − 8

3
sin2 θw + 32

9
sin4 θw

]
= 0.2853 GeV. (15.4)

These numbers are obtained taking sin2 θw = 0.2315 (see Section 11.4). Adding

the decay rates to all pairs gives a total decay rate

�qq̄ = 1.6737 GeV.

This lowest order calculation is in quite good agreement with the experimental total

hadronic decay rate, which is

�experiment = 1.741 ± 0.006 GeV.

At the high energy of the Z boson, the effects of the strong interaction can be

estimated with some confidence (Chapter 17). When additional gluon radiation is

taken into account, the theoretical �qq̄ is modified by a factor f = 1.038, and gives

�theoretical = f �qq̄ = 1.737 GeV,

in very close agreement with experiment.

The identification of bb̄ jets and (less precisely) cc̄ jets enables these partial

decay modes also to be compared with the Standard Model. The estimates from

experiment are

�(bb̄) = 0.385 ± 0.006 GeV,

�(cc̄) = 0.275 ± 0.025 GeV.

The Standard Model values, (15.3) and (15.4) corrected by the factor f, are

�(bb̄) (theoretical) = 0.3817 GeV,

�(cc̄) (theoretical) = 0.2961 GeV.

The agreement between theory and experiment is satisfactory.

15.2 Asymmetry in quark production

We noted in Section 13.6 that the SLC electron beam can be polarised to produce

Z bosons with a much higher degree of polarisation than those produced at CERN
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by unpolarised beams. From (15.1) there is a forward–backward asymmetry, with

respect to the Z spin direction, in the angular distribution of b quarks in a bb̄ pair

produced by Z decay, given by

��

�
= �(0 < θ < π/2) − �(π/2 < θ < π )

�(0 < θ < π/2) + �(π/2 < θ < π )

= −3

4

(
1 − (4/3) sin2 θw

1 − (4/3) sin2 θw + (8/9) sin4 θw

)
.

Taking sin2 θw = 0.2315 gives ��/� = −0.7016. At the peak of the Z mass dis-

tribution electromagnetic interference effects are very small, and one can expect a

forward–backward asymmetry in the b quark jets relative to the electron beam direc-

tion. Measurements of b quark jets at SLC give a value of ��/� = −0.630 ± 0.075

(Prescott, 1996).

At LEP the Zs produced in e+e− collisions are polarised along the direction of

the electron beam with polarisation P, to give a forward–backward asymmetry of

b quark jets with respect to the electron beam direction of

Ab
FB = P

��

�
.

From Section 13.6, taking sin2 θw = 0.2315 gives P = −ALR = −0.148, so that

Ab
FB(theory) = 0.104.

The experimental value (Renton, 1996) is

Ab
FB(experimental) = 0.0997 ± 0.0031.

The corresponding numbers for the c quark jets are

Ac
FB(theory) = 0.0719,

Ac
FB(experimental) = 0.0729 ± 0.0058.

Again the Standard Model and experiment are in accord.

A significant aspect of these asymmetry measurements is that an assignment of

the right-handed rather than the left-handed quark fields to the SU(2) doublet would

lead to an asymmetry of opposite sign. (The total widths would be unaffected.) The

results vindicate the left-handed assignment.

15.3 Hadronic decays of the W±

The e+e− colliders give a clean source of Z bosons, but there is as yet no clean

source of W± bosons. Consequently the experimental data on W± decays is less
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precise than that for Z decay. The hadronic decays of a W± are, in its rest frame,

like those of the Z: principally into two back-to-back jets, which are interpreted as

the signatures of the initiating quark–antiquark pairs.

Consider for example the decay of the W+ to a quark ui (u1 = u, u2 = c) and an

antiquark d̄ j (d̄1 = d̄, d̄2 = s̄, d̄3 = b̄). The coupling of the W+ to the quark fields is

given by Lqw (equation (14.15)), and depends on the elements Vi j of the Kobayashi–

Maskawa matrix. In the lowest order of perturbation theory, and neglecting quark

masses, the differential decay rate to a pair ui d̄ j is

d�i j

d cos θ
= 3GF Mw

3

16
√

2π
|Vi j |2(1 − cos θ )2, (15.5)

where θ is the angle between the direction of the ui momentum and the direction

of the W+ spin. Integrating over θ gives the total decay rate

�(W+ → ui d̄ j ) = G F Mw
3

2
√

2π
|Vi j |2 = (0.677 ± 0.006)|Vi j |2 GeV. (15.6)

There is no data that resolves both initiating quark jets, so that we have no infor-

mation from W decay on individual components of the KM matrix. However, we

can sum over j, and since the KM matrix is unitary

3∑
j=1

|Vi j |2 =
3∑

j=1

Vi j V
∗

i j =
3∑

j=1

Vi j Vji
† = 1 for i = 1, 2, 3.

Then summing over the possible ui , the u and c quarks, and including the factor f,
we have

�(all possible qq̄′ pairs) = GF Mw
3 f√

2π
= 1.41 ± 0.008 GeV.

This value is in close agreement with the observed hadronic decay rate of the W+:

�(hadronic) = 1.44 ± 0.04 GeV.

Also, c quark jets can be identified with some confidence. From the above we would

expect

�(all possible cq̄′ pairs)

�(all possible qq̄′ pairs)
= 0.5

close to the measured value 0.51 ± 0.08.

In conclusion, it would seem that we have no reason to doubt the efficacy of the

Standard Model in describing the interactions of the Z and W± bosons with both

leptons and quarks. The details of the KM matrix Vi j remain undetermined by these
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experiments, but it does pass two tests of unitarity. We have to rely on lower energy

hadron physics to investigate the KM matrix more thoroughly, as will be discussed

in Chapter 18.

Problems

15.1 Obtain the decay rates (15.3), (15.4) and (15.6). Note that quark masses have been

neglected in these expressions (cf. Problem 13.3).
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The theory of strong interactions: quantum
chromodynamics

The basic features of the quark model of hadrons were set out in Chapter 1. Quarks

carry a colour index, and interact with the gluon fields which mediate the strong

interaction.

We have seen that in the Standard Model the electromagnetic interaction and

the weak interaction are well described by gauge theories. In the Standard Model

the strong interaction also is described by a gauge theory. In this chapter we show

how this is done. The theory is known as quantum chromodynamics (QCD) and

has the remarkable property that in the theory quarks are confined, as appears to be

the case experimentally (Section 1.4). In this chapter we concentrate exclusively

on the strong interaction. The electromagnetic and weak interactions of quarks are

neglected.

16.1 A local SU (3) gauge theory

In QCD, we have three fields for each flavour of quark. These are put into so-called

colour triplets. For example the u quark is associated with the triplet

u =
⎛
⎝ ur

ug

ub

⎞
⎠ ,

where ur, ug, ub are four-component Dirac spinors, and the subscripts r, g, b label

the colour states (red, green, blue, say).

We then postulate that the theory is invariant under a local SU(3) transformation

q → q′ = Uq (16.1a)

where q is any quark triplet, and U is any space- and time-dependent element of

the group SU(3). The mathematical steps follow those of the SU(2) theory of the

weak interaction of leptons. We introduce a 3 × 3 matrix gauge field Gμ, which
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is the analogue of the matrix field Wμ of the electroweak theory. Under an SU(3)

transformation,

Gμ → Gμ
′ = UGμU† + (i/g)(∂μU)U†. (16.1b)

We define

Dμq = (∂μ + igGμ)q. (16.2)

It follows that under a local SU(3) transformation

Dμ
′q′ = UDμq (16.3)

where Dμ
′q′ = (∂μ + igGμ

′)q′. The parameter g that appears in these equations is

the strong coupling constant.
Gμ is taken to be Hermitian and traceless, like Wμ in the electroweak theory,

and hence it can be expressed in terms of the eight matrices λa set out in Appendix

B, Section B.7:

Gμ = 1

2

8∑
a=1

Ga
μλa (16.4)

where the coefficients Ga
μ(x) are eight real independent gluon gauge fields. (The

factor 1
2

is conventional.)

The Yang–Mills construction (cf. Section 11.2),

Gμν = ∂μGν − ∂νGμ + ig(GμGν − GνGμ), (16.5)

leads to the result that, under SU(3) transformations of the form (16.1b),

G′
μν = UGμνU+. (16.6)

The gluon Lagrangian density is taken to be

Lgluon = −1

2
Tr[GμνGμν]. (16.7)

It follows from (16.16) and the cyclic invariance of the trace that Lgluon is gauge

invariant.

We can expand Gμν in terms of its ‘components’,

Gμν = 1

2

8∑
a=1

Ga
μνλa, (16.8)

using equation (B.27) of Appendix B. Hence, using also the property (B.28), that

Tr(λaλb) = 2δab,
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the gluon Lagrangian density becomes

Lgluon = −1

4

8∑
a=1

Ga
μνGaμν. (16.9)

The quark Lagrangian density is taken to be of the standard Dirac form (equation

(7.7)):

Lquark =
6∑

f =1

[q̄ f iγ μ(∂μ + igGμ)q f − m f q̄ f q f ], (16.10)

where the sum is over all flavours of quark and m f are the ‘true’ quark masses

defined in Section 14.2. Lquark is evidently invariant under an SU(3) transformation

(using (16.3)). The reader should note here the very compact notation that has

been developed: as well as the explicit sum over flavours, there are sums over

colour indices and sums over the indices of the four-component Dirac spinor and γ

matrices. It is perhaps instructive for the reader to write out the expression in full.

The total strong interaction Lagrangian density is

Lstrong = Lgluon + Lquark. (16.11)

The eight gluon gauge fields have no mass terms. There is no direct coupling of

the gluon fields to the Higgs field. The Higgs field is relevant in that it gives mass

to the quarks. The field equations follow from Hamilton’s principle of stationary

action. For the six quark triplets we easily obtain (cf. Section 5.5)

(iγ μ Dμ − m f )q f = 0. (16.12)

For the eight gluon fields, variation of the Lagrangian density with respect to the

field Ga
ν gives (cf. Section 4.2)

∂μGaμν = j aν (16.13)

where

j aν = g[ fabcGb
μGcμν +

∑
f

q̄ f γ
ν(λa/2)q f ]. (16.14)

Here fabc are the SU(3) structure constants, defined by

[λa, λb] = λaλb − λbλa = 2i
8∑

c=1

fabcλc. (16.15)

(See Appendix B, Section B.7.) Their appearance here stems from the definition

(16.5) of Gμν .
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Since Gμν = −Gνμ it follows that

∂ν j aν = 0, (16.16)

and we have eight conserved currents. These are the Noether currents, which are a

consequence of the SU(3) symmetry taken as a global symmetry. We therefore have

eight constants of the motion, associated with the time-independent operators

Qa =
∫

j a0d3x. (16.17)

The field equations, and in particular the gluon field equations, are non-linear,

like the equations of the electroweak theory. It is clear from (16.14) that both the

quarks and the gluon fields themselves contribute to the currents j aν which are the

sources of the gluon fields. The quarks interact through the mediation of the gluon

fields; the gluon fields are also self-interacting.

Since the gluon fields are massless we might anticipate colour forces to be long

range, which appears inconsistent with the short range of the strong interaction.

However, the fields are known to be confining on a length scale greater than about

10−15 m = 1 fm: neither free quarks nor free ‘gluons’ have ever been observed.

In the electroweak theory, the ‘free field’ approximation in which all coupling

constants are set to zero is the basis for the successful perturbation calculations we

have seen in the preceding chapters. The free field approximation for quarks and

gluons is not a good starting point for calculations in QCD, except on the scale of

very small distances (≤ 0.1 fm) or very high energies ( > 10 GeV). For low energy

physics, the equations of the theory are analytically highly intractable. Even the

vacuum state is characterised by complicated field configurations that have so far

defied analysis. There is no analytical proof of confinement. Confinement is not dis-

played in perturbation theory, but numerical simulations demonstrate convincingly

that QCD has this necessary property for an acceptable theory.

16.2 Colour gauge transformations on baryons and mesons

Since colour symmetry plays such an important part in the theory of strong interac-

tions, it is natural to ask why it is not readily apparent in the particles, baryons and

mesons, formed from quarks by the strong interaction. Here we attempt to answer

that question.

In Section 1.4 we asserted that baryons are essentially made up of three quarks,

and mesons are essentially quark–antiquark pairs. We shall denote a three-quark

state in which quark 1 is in colour state i, quark 2 is in colour state j, and quark 3 is

in colour state k by |i, j, k〉, and take the colour indices to be the numbers 1, 2, 3.

We have suppressed all other aspects (position, spin, flavour) of the quarks. In



16.2 Colour gauge transformations on baryons and mesons 157

Section 1.7 we saw that the Pauli principle required baryon states to be antisym-

metric in the interchange of colour indices. The only antisymmetric combination

of colour states we can construct is

|state〉 = (1/
√

6)εi jk |i, j, k〉, (16.18)

where εi jk is defined by:

ε123 = ε231 = ε312 = −ε132 = −ε321 = −ε213 = 1,

and εi jk = 0 if any two of i, j, k are the same. (1/
√

6) is a normalisation factor.

How does this state transform under a colour SU(3) transformation? We restrict

the discussion to a global (space- and time-independent) transformation, since a

baryon is an object extended in space. We consider the quark fields to be trans-

formed by q → q′ = Uq. In quantum field theory, these fields destroy quarks

and create antiquarks. It follows that under the transformation the baryon state

(16.18) will transform as | state〉 → | state〉′ = (1/
√

6)|a,b,c〉U ∗
aiU

∗
bjU

∗
ckεi jk . But

εi jkU ∗
aiU

∗
bjU

∗
ck = εabc det U∗ = εabc, since the determinant of an SU(3) matrix

is 1. Thus we have the important result that under an SU(3) transformation,

|state〉′ = |state〉. The transformation of the state is a trivial multiplication by unity.

The state is said to be a colour singlet.
Turning now to the mesons, we denote a state of a quark, colour i, and an

antiquark of colour j by |i, j̄〉. Again, we have suppressed all other aspects of the

quarks. Meson states are linear combinations

|mesons〉 = (1/
√

3)(|1, 1̄〉 + |2, 2̄〉 + |3, 3̄〉). (16.19)

Under an SU(3) transformation,

|meson〉 → |meson〉′ = (1/
√

3)|a, b̄〉U ∗
aiUbi .

But U ∗
aiUbi = UbiU

†
ia = δab, so that

|meson〉′ = |meson〉.

The meson states, like the baryon states, are colour singlets.

In the quark model, we see that colour transformations have no effect on the

observed particles. It can also be shown that the eight gluon colour operators Qa ,

defined by (16.17), give zero when they act on these states. Thus the SU(3) symmetry

is well hidden by Nature: the particles are blind to the transformation of colour

symmetry. These observations can be related to lattice QCD, in which calculations

indicate that all the allowed states of the theory have this property.
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16.3 Lattice QCD and asymptotic freedom

Numerical simulations of QCD replace continuous space-time by a finite but large

four-dimensional space and time lattice of points. The quark and gluon fields are

only defined at these points. Sophisticated computer programs have been written

that are capable of handling the lattice. Gluon fields are commuting boson fields.

The quark fields are anticommuting fermion fields and pose a technically much

more difficult numerical problem. In fact the first lattice calculations were done

neglecting all quark fields, even those of the light u and d quarks, and thus excluding

all effects of virtual quark pair creation and annihilation. In this so-called quenched
approximation the Lagrangian density it taken to be the Lgluon of (16.9). Lgluon

displays confinement at distances greater than about a fermi.

At shorter distances, less than about 0.2 fermi, both Lgluon and the full QCD

Lagrangian density display another important property, known as asymptotic free-
dom. The effective strong interaction coupling constant becomes so small at short

distances that quarks and gluons can be considered as approximately free, and their

interactions can be treated in perturbation theory.

To set the scene for the discussion of the effective ‘running’ strong interaction

coupling constant, we first discuss the case of electromagnetism.

At atomic distances ∼ 10−10 m, the electrostatic interaction between an electron

and a positron is given by the Coulomb energy V (r ) = −e2/4πr . In the lowest order

of perturbation theory, the amplitude for electron–positron Coulomb scattering is

proportional to the Fourier transform V (Q2) of V(r),

V (Q2) =
∫

V(r )eiQ·rd3r = −e2/Q2, (16.20)

where Q is the momentum transfer in the centre of mass system.

In QED, this result is modified by quantum corrections: virtual e+e− pairs created

from the vacuum are polarised by the electric field of a charge, so that its measured

charge at atomic distances is a ‘bare’ charge screened by virtual e+e− pairs. At

short distances the screening is reduced, so that the effective charge is greater. Per-

turbation calculations in QED that include vacuum polarisation effects (Fig. 16.1)

show that at large Q2, (16.20) is modified to

V(Q2) = − e2

Q2

1

1 − (e2/12π2) ln(Q2/4m2)
(16.21)

where m is the electron mass. This result holds for large Q2 	 4m2 (but not so

large Q2 that the denominator vanishes!). Thus at large Q2 we have an effective

coupling constant

α(Q2) = e2(Q2)

4π
= (e2/4π )

1 − (e2/12π2) ln(Q2/4m2)
, (16.22)
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Figure 16.1 (a) The lowest order Feynman diagram representing single photon
exchange. The corresponding perturbation calculation reproduces the result of
(16.20). (b) The lowest order modification due to vacuum polarisation. Including
this effect gives, at large Q2/m2, the result of (16.21).

which increases as Q2 increases (or, equivalently, as we probe shorter distances).

Because e2/12π2 ≈ 10−3 the effects of vacuum polarisation are small, but in atomic

physics they have been calculated and measured with high precision.

Similar vacuum polarisation effects occur in QCD, but the coupling is much

larger and the consequences are more dramatic. If the scattering of a quark and

an antiquark is calculated to the same order of perturbation theory as that used to

obtain (16.22), then at large Q2 the effective strong coupling constant αs(Q2) is

(see Close, 1979, p. 217)

αs(Q2) = g2(Q2)

4π
= g2/4π

1 + (g2/16π2)[11 − (2/3)nf] ln(Q2/λ2)
. (16.23)

In this expression λ is a parameter with the dimensions of energy that replaces

the electron mass appearing in QED. It is a necessary parameter associated with

the renormalisation scheme. nf is the effective number of quark flavours. For very

large Q2 > (mass of the top quark)2, nf = 6, but nf is smaller at smaller Q2. The

important point to note is that (11 − (2/3)nf) is a positive number. Thus, in contrast

to what happens in QED, g(Q2) decreases as Q2 increases, and this is the basis of
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Figure 16.2 There are Feynman graphs similar to those of Fig. 16.1 but for gluon
exchange between quarks and antiquarks. An additional lowest order contribution
to vacuum polarisation is associated with this Feynman graph coming from the
gluon self-coupling.

asymptotic freedom. As with QED the fermions contribute with a negative sign,

but their contribution is outweighed by the virtual gluons that contribute the num-

ber 11. The difference is due to the presence of gluon loops in QCD (Fig. 16.2).

This property of QCD was discovered by Gross and Wilczek (1973) and Politzer

(1973).

Although renormalisation seems to necessitate the introduction of a second,

dimensioned, parameter λ, the effective coupling constant is in fact dependent on

only one parameter. We can set

1

g2
− 1

16π2
[11 − (2/3)n f ] ln λ2 = − 1

16π2
[11 − (2/3)nf] ln 
2, (16.24)
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thus defining 
, and then

αs(Q2) = g2(Q2)

4π
= 4π

[11 − (2/3)nf] ln(Q2/
2)
. (16.25)

This remarkable feature survives in all orders of perturbation theory. Higher terms

in the expansion of αs(Q2) are given in, for example, Particle Data Group (2005).


 is well defined in the limit of large Q2, and it is standard practice to regard

the one parameter 
, rather than the two parameters g and λ, as the fundamental

constant of QCD, which must be determined from experiment. It is also interesting

to note that we have replaced a dimensionless parameter g by a dimensioned one,


. Asymptotic freedom is displayed since αs(Q2) → 0 as Q2 → ∞. It is clear

from (16.25) that perturbation theory breaks down at Q2 = 
2, when the effective

coupling constant becomes infinite. Small values of Q2 are associated with large

distances, and the length scale 
−1 is called the confinement length.

16.4 The quark–antiquark interaction at short distances

In QED, single photon exchange between an electron and a positron gives the

Coulomb potential

V(r ) = 1

(2π )3

∫
V (Q2)e−iQ·r d3 Q = e2

4πr
= −α

r
,

where V(Q2) = −e2/Q2 and α is the fine-structure constant. In QCD perturba-

tion theory, single photon exchange is replaced by the sum of eight single gluon

exchanges. To lowest order, the Coulomb-like potential between a quark and an

antiquark in a colour singlet state and at a distance r apart may be shown to be (see

Leader and Predazzi, 1982, p. 175)

VQCD(r ) = −
∑

a

g2

4πr

1

3

λai j

2

λaji

2
= −

∑
a

g2

4πr

1

12
Tr(λaλa) = −4

3

g2

4πr
.

(16.26)

The factor (1/3) is from the normalisation of the colour singlet state (see (16.19)).

With quantum corrections, the effective potential at short distances becomes

VQCD = −4

3

αs(r )

r
,

where

αs(r )

r
= 4π

(2π )3

∫
αs(Q2)

Q2
e−iQ·r d3 Q. (16.27)
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This is a significant result for the charmonium cc̄ and bottomonium bb̄ systems,

in which the heavy quark and antiquark are slowly moving. In these systems the

colour Coulomb energy is the main contribution to the potential energy: colour

magnetic effects are of relative order v/c. The behaviour of αs(Q2) at large Q2

gives the dominant contribution to VQCD(r ) at small r (Problem 16.5). We shall

return to charmonium and bottomonium in Chapter 17.

16.5 The conservation of quarks

In addition to the SU(3) local colour symmetry, the Lagrangian density (16.11) has

six global U(1) symmetries:

qf → qf
′ = exp(iαf)qf. (16.28)

In the Standard Model these remain global and are not elevated into local gauge

symmetries. They imply conservation of quark number for each flavour of quark.

Thus the strong interaction does not change quark flavour. Regarding mesons and

baryons, the K+, for example, which can be denoted K(us̄) has u quark number

1 and s quark number −1, the proton P (uud) has u quark number 2 and d quark

number 1. Only the weak interaction, as exemplified in weak decays, can change

quark flavour. Including the weak interaction, and in particular that part involving

the Kobayashi–Maskawa mixing matrix, the six U(1) symmetries reduce to one.

Individual quark flavour numbers are not conserved, and only the overall quark

number remains constant.

16.6 Isospin symmetry

The estimated masses of the u quark (1.5 MeV < mu < 4 MeV) and d quark

(4 MeV < md < 8 MeV) are small compared with those of the s quark (100 MeV <

ms < 300 MeV) and the heavy c, b and t quarks. The masses of the u and d quarks

are also small compared with those of the lightest hadrons: the π0 has a mass

∼ 135 MeV and the proton has a mass ∼ 938 MeV. At low energies we may there-

fore neglect all but the u and d quarks, and consider the Lagrangian density to be,

as a first approximation,

Lud = ūiγ μ(∂μ + igGμ)u + d̄iγ μ(∂μ + igGμ)d − muūu − mdd̄d (16.29)

where here Gμ is the gluon field matrix, evaluated from the field equations (16.13)

with all but the u and d quark fields neglected. The fields u and d in (16.29)

are triplets of Dirac fermion fields; colour indices and Dirac indices have been

suppressed.
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We now combine the u and d fields into an isospin doublet,

D(x) =
(

u(x)

d(x)

)
(16.30)

and we can write

Lud = D̄iγ μ(∂μ + igGμ)D − (1/2)(mu + md)D̄D − (1/2)(mu − md)D̄τ3D
(16.31)

where

τ3 =
(

1 0

0 −1

)
and D̄ = (u+γ 0, d†γ 0).

Lud is invariant under a global U(1) transformation

D → D′ = exp(−iα0)D, (16.32)

which leads (cf. Section 4.1) to the conserved quark current

Jμ = D̄γ μD = ūγ μu + d̄γ μd. (16.33)

It is also invariant under a global U(1) transformation

D → D′ = exp(−iα3τ 3)D (16.34)

which leads to the conserved current

J3
μ = D̄γ μτ 3D = ūγ μu − dγ μd. (16.35)

(16.33) and (16.35) show that this Lagrangian density (16.31) conserves both u and

d quark numbers separately.

So-called isospin symmetry appears if we neglect the mass difference (mu − md).

The resulting, simplified, Lagrangian density is invariant under the global SU(2)

transformation

D → D′ = exp(−iαkτ k)D (16.36)

where the τ k are the generators of the group SU(2) (Appendix B, Section B.3).

In addition to the conserved current (16.35) we now have also the conserved

currents

Jμ

1 = D̄γ μτ 1D, Jμ

2 = D̄γ μτ 2D (16.37)

and the corresponding time-independent quantities∫
D†τ kD d3x, k = 1,2,3. (16.38)
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SU(2) transformations are equivalent to rotations in a three-dimensional ‘isospin

space’. In analogy with the intrinsic angular momentum operator S = (1/2)σ, we

define the isospin operator I = (1/2)τ ; then

I2 = I1
2 + I2

2 + I3
2 = (3/4)

(
1 0

0 1

)
= 1

2

(
1

2
+ 1

) (
1 0

0 1

)
.

A u quark state is an eigenstate of I2 and I3 with I = 1/2, I3 = 1/2, and a d quark

state is an eigenstate with I = 1/2, I3 = −1/2. The mathematics of isospin is

identical to the mathematics of angular momentum, and the formalism of isospin is

very useful in understanding and classifying hadron states, as indicated in Chapter

1. We see here its origin in QCD, with the neglect of the u − d mass difference and

the electromagnetic and weak interactions.

16.7 Chiral symmetry

If we neglect entirely the quark masses, further approximate symmetries arise. These

are of interest in particle physics. The Lagrangian density (16.31) may be written

in terms of the left-handed and right-handed isospin doublets L = (1/2)(1 − γ 5)D
and R = (1/2)(1 + γ 5)D. Neglecting the mass terms it becomes

L = L†iσ̃ μ(∂μ + igGμ)L + R†iσμ(∂μ + igGμ)R. (16.39)

L and R are now doublets of two-component spinors, and there are eight conserved

currents:

L†σ̃ μL, L†σ̃ μτ kL, R†σμR, R†σμτ kR, k = 1, 2, 3.

An important observation is that the currents L†σ̃ μτ 1L and L†σ̃ μτ 2L couple to

the W ± boson fields in the Lagrangian density (14.15), and appear in the effective

Lagrangian density (14.22). The relevant quark factor in (14.15) is u†
Lσ̃ μdLVud, and

we may write

u†
Lσ̃ μdL = L†σ̃ μ(1/2)(τ 1 + iτ 2)L,

d†
Lσ̃ μuL = L†σ̃ μ(1/2)(τ 1 − iτ 2)L. (16.40)

This observation gives insight into the nature of the effective Lagrangian for β

decay, as we shall see in Chapter 18.

The independent symmetry transformations

L → L′ = exp[ − i(α0 + αkτ k)]L, R → R

and

R → R′ = exp[ − i(β0 + βkτ k)]R, L → L
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may be written in terms of Dirac spinors as

D → D′ = exp[ − i(α0 + αkτ k)(1/2)(1 − γ 5)]D, (16.41)

D → D′ = exp[ − i(β0 + βkτ k)(1/2)(1 + γ 5)]D, (16.42)

respectively.

The eight independent symmetry operations can also be taken as

D → D′ = exp[ − i(α′0 + α′kτ k)]D (16.43)

which give conservation of quark number and isospin, and

D → D′ = exp[ − i(β ′0 + β ′kτ k)γ 5]D (16.44)

The last four are known as the chiral symmetries.

Problems

16.1 Show that

Ga
μν = (∂μGa

ν − ∂νGa
μ) − g

∑
b,c

fabcGb
μGc

ν .

16.2 Using Problem 16.1, show that the gluon self-coupling terms in the Lagrangian

density (16.9) are

Lint = g(∂μGa
ν fabcGbμGcν) − (g2/4) fabc fadeGb

μGc
νGdμGeν .

16.3 Verify the expression (16.14) for the current j aν .

16.4 Estimate the value of Q for which V (Q2) of equation (16.21) becomes infinite.

16.5 From (16.27) show that

αs(r ) = 2

π

∞∫
0

αs(x2/r2)
sin x

x
dx .

(Note that the expression (16.25) for αs(x2/r2) is only valid for x > 
r , but for

small r this range may be anticipated to give the main contribution to the integral.)
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Quantum chromodynamics: calculations

Calculations in QCD have been made in two ways: lattice simulations at low ener-

gies, and perturbative calculations at high energies. In this chapter we outline some

of the results obtained.

17.1 Lattice QCD and confinement

It was pointed out in Section 16.1 that, at low energies, a non-perturbative approach

to QCD is needed. ‘Lattice QCD’ is such an approach. The gluon fields are defined

on a four-dimensional lattice of points (nμ, n)a, where a is the lattice spacing and

the nμ are integers. Field derivatives are replaced by discrete differences. This gives

a ‘lattice regularised’ QCD. The lattice spacing corresponds to an ultraviolet cut-off,

since wavelengths < 2a cannot be described on the lattice. A lattice does not have

full rotational symmetry in space, but it is believed that nevertheless continuum

QCD corresponds to the limit a → 0. Current computing power allows lattices of

∼(36)4 points. The range of the strong nuclear force is ∼ 1 fm. To fit such a distance

comfortably on the lattice, we can anticipate that we shall not want a to be much

less than (2fm)/36 = 0.056fm (and hc/a > 3.5 GeV).

In the high energy perturbation theory described in Section 16.3, the renormal-

isation parameter λ and the dimensionless coupling parameter g are combined to

give a single physical parameter, �, having the dimensions of energy. The rela-

tionship between the effective coupling constant αs(Q2) and � in the lowest order

of perturbation theory is given by (16.25). In lattice QCD, the unphysical lattice

parameter a and the dimensionless coupling parameter g(a) combine to give a sin-

gle physical parameter �latt, having the dimensions of energy. In the lowest order

166
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of ‘lattice’ perturbation theory, as a → 0 then g(a) → 0,

g2 (a) = −16π2

11 1n
(
a2�2

latt

) (17.1)

(see Hasenfratz and Hasenfratz, 1985).

�latt is independent of a in the limit a → 0. This remarkable feature of the theory

is called dimensional transmutation.
Equation (17.1) may be compared with (16.25) with nf set equal to zero. It can

be shown theoretically (Dashen and Gross, 1981) that

�latt

�
= constant ≈ 1

30
. (17.2)

The precise value of the constant depends on the renormalisation scheme in which

� is defined, and the number of quark flavours included. �latt, or equivalently �,

is to be determined from experiment. We shall see in Section 17.3 that � is known

to be ∼ 300 MeV, so that �latt ∼ 10 MeV. We can then infer from equation (17.1)

that for a ∼ 0.056 fm, the coupling constant g should be of order 1.

Lattice QCD calculations have been made to compute the potential energy of

a fixed quark and an antiquark in a colour singlet state, as a function of their

separation distance. The form of this potential at short distances was discussed in

Section 16.4. Non-perturbative lattice calculations have been made in the quenched

approximation, excluding effects of virtual quark pair creation.

In the lattice calculations, distances are measured in units of a, and energies in

units of (1/a). A coupling constant g is chosen, and the quark and antiquark are

localised on lattice sites that are spatially fixed at a distance apart of r = |n|a, where

n is a set of three integers. The field energy E(r) generated by the quark–antiquark

pair is computed for a sequence of separation distances, and is found to be of the

form

E(r ) = 2A + Kr − 4

3

αlatt(r )

r
, (17.3)

where A and K are constants, and the factor (4/3) has been inserted to facilitate

comparison with the perturbation results of Section 16.4. The constant 2A can be

interpreted as a contribution to the rest energies of the quark and antiquark, and is

absorbed into their notional masses to leave an effective potential energy

V (r ) = Kr − 4

3

αlatt (r )

r
. (17.4)

The results of such a calculation by Bali and Schilling (1993) using a (32)4 lat-

tice are shown in Fig. 17.1. In this calculation g = 0.97. The term Kr dominates

at large distances. The constant K is called the string tension. In quenched QCD

on a lattice, with g fixed, there is only one energy parameter a−1 (or �latt). Hence
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Figure 17.1 The colour singlet quark–antiquark potential as computed on a lattice.
For a fixed value of the coupling constant g (of order 1) V(r) is computed in lattice
units (r in units of a, V in units of 1/a). The computed points are fitted with a curve
of the form

V (r ) = 2A + Kr − (c/r ) + ( f/r2).

In this example g was fixed at 0.97. The calculation determined K = 0.0148;
K is the string tension in units of 1/a2. The phenomenology of cc̄ and b b̄ quark
systems suggests K ≈ (440 MeV)2. Taking this value determines a = 0.055 fm
and 1/a = 3.58 GeV. It also determines one point on the curve g(a) as a function
of a. The calculations must be repeated to compute a for several values of g to
check the extent to which the asymptotic form, like equation (17.1), is obeyed
(�latt is independent of a) in order to be confident of the continuum limit (Bali and
Schilling, 1993).

K has the dimensions of a−2. Bali and Schilling (1993) find K = 0.01475(29)a−2.

In Chapter 1, Fig. (1.5) shows the experimental spectra of the heavy quark systems

charmonium (c, c̄) and bottomonium (b, b̄). Many fits to these spectra have been

made using a Schrödinger equation with an interaction potential of the form (17.3).

In the lowest energy states of heavy quark systems, the quark and antiquark are

slowly moving, so that a non-relativistic approximation is reasonable. The spec-

tra are well fitted with K = (440 MeV)2 = 1 GeV fm−1, α(r ) = constant = 0.39.
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Taking K = (440 MeV)2 fixes the lattice spacing a = 0.0544 fm, and a−1 =
3.62 GeV.

Equation (17.1) could now be used to estimate �latt. However, this equation (and

more sophisticated extensions to higher orders of lattice perturbation theory) hold

only in the limit a → 0. To extract �latt reliably, the calculations must be repeated

for different values of g. The corresponding values of a follow from the string

tension. The limit �latt as a → 0 may then be estimated. Bali and Schilling (1993)

found
√

K/�latt = 51.9+1.6
−1.8, which is consistent with the value

√
K/�latt = 49.6

(3.8) estimated by Booth et al. (1992) from results on a (36)4 lattice. Taking
√

K =
440 MeV gives �latt ≈ 8.5 MeV, and from (17.2) � ≈ 255 MeV.

At small r the attractive Coulomb-like term dominates. It is found that αlatt(r ) is

a slowly varying function of r that decreases with decreasing r, as expected from

perturbation theory (Section 16.3). The potential of Fig. 17.1 is well fitted with

αlatt (r ) = 0.236 − (0.0031 fm)/r.

This is to be compared with the value of α = e2/4π ≈ 1/137 of QED.

It is interesting to note that the linearly rising term in the potential is computed

in the quenched approximation. If quantum fluctuating quark fields were to be

included, the large potential energy available at large separation distances of the

fixed quark and antiquark pair would produce pairs of quarks and antiquarks. A

quark would migrate to the neighbourhood of the fixed antiquark to form a colour

singlet, and an antiquark would similarly form another singlet with the fixed quark,

resulting in two well separated mesons.

17.2 Lattice QCD and hadrons

Systems of quarks and antiquarks held together by the associated gluon field are

called hadrons (see Section 1.4). For example, the proton, the only stable hadron,

has up quark number two and down quark number one. Other systems, for example

mesons, are held together only transiently by their gluon field. As well as these

so-called valence quarks that define a system, a hadron contains quark–antiquark

pairs excited by the gluon field, and known as sea quarks.
So far, in our discussion of hadrons and confinement, sea quarks have been

neglected. Convincing calculations of hadron properties require their inclusion

especially uū. dd̄ and ss̄ pairs which because of their small masses with respect

to �QCD are readily excited by the gluon field Since the first edition of this book,

much progress in lattice QCD has been made to include these pairs.
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Quarks on the lattice require the introduction of quark masses. In the work of

Davies et al. (2004) calculations are made with mu = md (the isospin symmetry

limit: see Section 16.6). A mean mass (mu + md)/2 is introduced along with the

masses ms, mc, mb, and the strong coupling constant g: five parameters in all. With a

fixed value of g the lattice spacing a and the four quark masses are determined by fit-

ting the five experimentally determined masses m(bb̄1s) = 9.460 GeV, m(bb̄2s) =
10.023 GeV (see Figure 1.5), mπ = 0.139 GeV, mK = 0.496 GeV and mD =
1.867 GeV. The D+ meson D(cs̄) is the ground state of the cs̄ valence quark

system.

As in Section 17.1 the lattice spacing a is a function of g and so also are the quark

masses. The calculations have to be repeated for different values of g to extract �latt

and g(a) and the four quark masses which are also taken to be functions of a. They

can also be regarded as function of energy, hc/a. The fact that the strong coupling

constant and quark masses are functions of the energy at which they are measured

is a natural feature of QCD. The calculations give, at an energy of 2 GeV for the

light quarks

(
mu + md

2

)
(2 GeV) = 3.2 ± 0.4 MeV

ms (2 GeV) = 87 ± 8 MeV

mc = 1.1 ± 0.1 GeV

mb = 4.25 ± 0.15 GeV

and αs (Mz) = 0.121 ± 0.003.

mc and mb are quoted at their own mass scale and it is conventional to quote αs

at the scale of the Z boson. To find the parameters at different scales their energy

dependence is given by equations like (16.25).

Having values for the parameters of QCD its validity can be tested by confronting

independent experimental data with calculations. At present one is confined to

single hadrons that are stable to the strong interaction. Unstable particles or those

that are close to instability tend to fluctuate outside the lattice boundaries. Also the

baryons, and in particular the proton and neutron that carry u and d valence quarks

can not yet be reliably handled on the lattice. Nevertheless many particle properties

lend themselves to lattice calculations and the success in fitting data is impressive.

Figure 17.2 shows results taken from Davies et al. (2004). Ten calculations are

compared with experiment. The results are expressed as the calculated divided by

the experimental value. The experimental values are accurately known and the errors

that bracket the mean values indicate the estimated accuracy of the calculation. It

seems that with present computing power, theory and experiment agree to better
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fπ

fK

3mΞ
 
− mN

2mB
 
− mY

ψ(IP - IS)

Y(ID - IS)

Y(2P - IS)

Y(3S - IS)

Y(IP - IS)

0.9 1.0 1.1

mΩ

Figure 17.2 Quantities calculated in lattice QCD divided by their experimental
values:

fπ = απ/
√

2 GFVud
see Section 9.2,

fK = αK/
√

2 GFVus
see Problem 9.10.

m� is the mass of the �(sss), the ground state of the baryon with s quark number
three.

3m� − mN is a combination of ground state baryon masses �(ssu) and the
neutron N(ddu).

The other mass differences are between states of the cc̄ and bb̄ mesons (Davies
et al., 2004 ).

than 4%. There is no reason here to doubt the validity of QCD as the theory of

strong interactions.

17.3 Perturbative QCD and deep inelastic scattering

One of the first applications of perturbative QCD was to the Q2 dependence of

the parton distribution functions of the proton. In the parton model of inelastic
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Figure 17.3 The proton structure function F2(x, Q2). The experimental points are
fitted with curves generated by the evolution equations with � = 205 MeV. To
aid reading in the left-hand section, the data have been scaled by the given factors,
so for example at x = 0.18 the graph is of 2F2(0.18, Q2). (Taken from Physics
Letters B223, Benvenuti, A. C. et al. Test of QCD and a measurement of � from
scaling violations in the proton structure factor F2(x, Q2) at high Q2 (Benvenuti
et al., p. 490), with kind permission of Elsevier Science-NL, Sara Burgerhartstraat
25, 1005 kv Amsterdam, The Netherlands.)

electron–proton scattering (Appendix D), the proton is described by parton distri-

bution functions pi (x, Q2), where

Q2 = −qμqμ = (p − p′)2 − (E − E ′)2,

qμ = (E − E ′, p − p′) is the energy and momentum transferred in the inelastic

electron scattering, and x = Q2/[2M(E − E ′)] where M is the proton mass. The

partons are identified as quarks, antiquarks and gluons. Typically, at a fixed value

of Q2, say Q2
0, distribution functions pi (x, Q2

0) are extracted from the data, the

number of distribution functions being determined by the number of distinct data

sets. At this stage the extraction of the distribution functions is merely a matter of

curve fitting: although the functions pi (x, Q2
0) should be a consequence of QCD, the

problem of establishing their form theoretically is immensely difficult. However,

given these distribution functions, and provided Q2
0 is large enough, perturbative

QCD can be used to predict how they evolve with changing Q2. This evolution
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Figure 17.4 e+e− annihilation to a quark–antiquark pair with no gluon radiative
corrections.

is described by the equations of Altarelli and Parisi (1977), which take account

perturbatively of the quark–gluon interactions.

As an example, Fig. 17.3 shows experimental data on the related structure

function F2(x, Q2) defined in Appendix D, taken by the BCDMS collaboration

(Benvenuti et al., 1989). Also shown are the theoretical predictions, at fixed values

of x, of the QCD evolution as a function of Q2. The data are precise and the shapes

of all the curves are given by the single parameter �. Fits to the data determine

� = 205 ± 80 MeV, from which one can infer, using (16.25) with nf = 5, that

αs(Mz
2) = 0.115 ± 0.007.

17.4 Perturbative QCD and e+e− collider physics

The basic Feynman diagrams for hadron production in e+e− colliding beam exper-

iments are shown in Fig. 17.4. In the range 10 GeV to 40 GeV, electromagnetic

processes dominate. The data were discussed in Section 1.7.

Around 90 GeV, close to the centre of mass energy for Z production, the weak

interaction dominates. The hadronic decays of the Z were discussed in Chapter

15, using perturbation theory. However, there are additional contributions to the

cross-section arising from gluon radiation, for example the processes illustrated in

Fig. 17.5.

The modification is simply expressed (see Particle Data Group, 1996). If the

hadron production cross-section without gluon radiative corrections is denoted by

σ0 then (to order α3
s ) the cross-section σ with corrections is

σ = f σ0,

with

f = 1 + αs

π
+ 1.411

(αs

π

)2

− 12.8
(αs

π

)3

, (17.5)
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Figure 17.5 The lowest order gluon radiative corrections to quark–antiquark pair
production by e+e− annihilation.

and αs(Q2) taken at Q2 equal to the square of the centre of mass energy. For example,

taking αs(M2
z ) = 0.115 ± 0.007 from Section 17.3 gives f = 1.038 ± 0.003. This

is the value of f used in Chapter 15. Alternatively, the best fit to the hadronic

decays of the Z would suggest f = 1.041 ± 0.003, which gives αs(M2
z ) = 0.123 ±

0.007 and � = 310 ± 90 MeV. The consistency of the theory between the two

very different experimental regimes: electron–proton scattering and Z decays, from

which these estimates are obtained, is impressive.
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Figure 17.6 A three-jet event recorded by the JADE detector at the PETRA e+e−
collider, DESY.

The hadrons produced in most e+e− annihilations at high energies appear in

two back to back jets associated with the originating qq̄ pair. Gluon radiation

contributing to the f factor is mostly confined to be within the associated quark or

antiquark jet. However, according to perturbative QCD it is also possible for a gluon

to be radiated into a distinct region of phase space and appear as a third distinct jet.

Figure 17.6 is an example of such a three-jet event. Measurements of these three-

and even four-jet events gives further strong support to the theory of QCD.
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The Kobayashi–Maskawa matrix

In Chapter 14, in the theory of the weak interaction of quarks, there appeared the

Kobayashi–Maskawa matrix:

V =
⎛
⎝ Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎠ (18.1)

and its parameterisation:

V =
⎛
⎝ c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞
⎠ (18.2)

where c12 = cos θ12 > 0, s12 = sin θ12 > 0, etc. The KM matrix couples quark

fields of different flavours. It contains four physically significant parameters, which

can be taken to be the three rotation angles θ12, θ13, θ23, each lying in the first

quadrant, and the phase angle δ.

There is no theory relating these parameters, just as there is no theory relating

quark masses. Indeed, the quark sector of the Standard Model may appear to the

reader to be lacking in aesthetic appeal. The parameters of the KM matrix must

be determined from experiment, and in this chapter we indicate how experimental

information has been obtained.

18.1 Leptonic weak decays of hadrons

We have seen in Section 15.3 two unitarity sum rules that support the validity of the

Standard Model, and there are many independent measurements that both test for

consistency and given consistency determine the parameters. So far no definitive

inconsistencies have been established, and a large body of data is well described
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(a)

c

w

ne

e−

Figure 18.1(a) A Feynman diagram for the leptonic decay b → c + e− + ν̄e

b c

w

e−

µ µ

ne

(b)

(b) A quark model diagram for the decay B− → charmed hadron system +
e− + ν̄e

with the parameter values s12 = 0.2243 ± 0.0016, s23 = 0.0413 ± 0.0015, s13 =
0.0037 ± 0.0005 and δ = 57◦ ± 14◦.

A suitable starting point for the consideration of hadronic weak decays is first-

order perturbation theory in the effective Lagrangian density of equation (14.21):

L = −2
√

2GF j †μ jμ, where jμ is given by (14.20). Leptonic decays are the most

simple for theoretical analysis because the leptonic parts of a transition matrix

element can be calculated with some confidence. If quarks were available as isolated

particles, the three rotation angles of the KM matrix could be determined by the

measurement of the decay rates of leptonic decays such as

b → c + e + ν̄e.

In lowest order perturbation theory (see Fig. 18.1a) the decay rate for this process

is given by

1

τ (b → c)
= G2

Fm5
b

192π3
|Vcb|2 f

(
mc

mb

)
(18.3)

where f (x) = 1 − 8x2 + 8x6 − x8 − 24x4 ln(x) is a factor associated with the

available phase space. This programme cannot be carried out directly since the b

and c quarks are accompanied by other spectator quarks and gluons (see the quark
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model diagram of Fig. 18.1b), which involve the calculation of strong interaction

matrix elements. To the extent that the hadronic matrix elements can be calculated,

a measurement of the decay rate will determine |Vcb|2.

18.2 |Vud| and nuclear β decay

Isospin symmetry (see Section 16.6) is important for the determination of the

hadronic matrix elements of all nuclear β decays. Such decays involved the quark

current

jμ
q = d†

Lσ̃ μuL = d̄γ μ(1/2)(1 − γ 5)u. (18.4)

Here we have expressed the current in terms of the Dirac four-component spinors

u and d, with the help of the projection operator (1/2)(1 − γ 5) introduced in (5.32)

and noting d̄ = d†γ o.

As in Chapter 16, we now take the u and d quarks together in an isotopic doublet:

D(x) =
(

u(x)

d(x)

)
.

The isospin operator (1/2)(τ 1 − iτ 2) has the property

1

2

(
τ 1 − iτ 2

) (
u
d

)
=

(
0

u

)
,

so that we may write (see (16.31))

j u
q = (1/4)D(x)γ μ(1 − γ 5)(τ 1 − iτ 2)D(x)

= (1/2)
[
νμ(x) − aμ(x)

]
. (18.5)

We have split the current into the part νμ(x), which transforms like a vector under

space inversion and the part aμ(x), which transforms like an axial vector (see

Section 5.5):

νμ(x) = (1/2)Dγ μ(τ 1 − iτ 2)D, (18.6)

aμ(x) = (1/2)Dγ μγ 5(τ 1 − iτ 2)D. (18.7)

We saw in Section 16.6 that exact isospin symmetry leads to conserved currents:

ν
μ

i = (1/2)Dγ μτ iD, (18.8)

so that the vector part of the β decay current of the u and d quarks is a conserved

isospin current.
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In the case of nucleons, we denote the isospin doublet of the effective Dirac

fields p(x) and n(x) of the proton and neutron by

DN(x) =
(

p(x)

n(x)

)
. (18.9)

An effective Lagrangian density that at the low energies of nuclear physics describes

the β decay of a nucleon is

Leff = −2
√

2GFC | j †e jμ

N + jμ†
e jeμ|, (18.10)

with

jμ

N = 1

4
DNγ μ(1 − gAγ 5)(τ1 − iτ 2)DN. (18.11)

Experimentally, it is found from a range of nuclear data that

C = 0.9713 ± 0.0013 and gA = 1.2739 ± 0.0019.

(See Particle Data Group.)

The vector part of the current j
μ

N is the conserved isospin current of nuclear

physics and corresponds to the more fundamental conserved isospin current at

the quark level. Exact isospin symmetry would require that the contribution of the

conserved nucleon isospin current to the effective interaction (18.8, 18.9) be the

same as that of the quarks in (18.5, 18.6), so that we identify C = Vud = 0.9713 ±
0.0013.

18.3 More leptonic decays

The most precise estimates of |Vus| have come from observations of leptonic

K decays, for example K−(sū) → πo(uū − dd̄)/
√

2 + e− + ν̄e. Analyses of these

decays by lattice QCD, quark model calculations, and calculations based on chiral

symmetry (see Section 16.7) all converge on the value |Vus| = 0.224 ± 0.003.

Estimates of |Vcs| and |Vcd| can be extracted from D decays, for exam-

ple D−(c̄d) → Ko(s̄d) + e− + ν̄e or D−(c̄d) → πo(uū − dd̄)/
√

2 + e− + ν̄e. These

decay rates are proportional to |Vcs|2 and |Vcd|2 respectively.

More experimental information on |Vcd|2 comes from the deep inelastic scattering

of neutrinos by atomic nuclei through processes such as

νμ + d → μ− + c. (See Appendix D.)

Atomic nuclei provide an abundant source of d quark targets. The cross-section

for producing a c quark rather than a u quark can be inferred by identifying those

c quarks that decay as c → d + μ+ + νμ. Overall, a characteristic μ+μ− pair is

produced.
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The conclusions, after much work along the lines indicated, and without imposing

the unitarity condition, are

|Vcd| = 0.224 ± 0.014, |Vcs| = 1.04 ± 0.16.

Leptonic decays of B mesons (bū, bd̄, b̄u and b̄d) provide the best data on |Vcb|
and |Vub|, Three experimental facilities have been constructed to measure B decays:

in the USA at Cornell (Cleo) and Stanford (Babar), and in Japan (Belle). At these

‘B meson factories’ many million B mesons have been produced for analysis.

In the case of |Vcb|, the hadronic matrix elements for decays like B− → D◦ +
e− + ν̄e can be calculated taking the heavy b quark in the B−(b, ū) meson as static

in first approximation. Analysis of the data gives

|Vcb| = 0.0413 ± 0.0015, |Vub| = 0.00367 ± 0.00047.

The remaining three elements of the KM matrix involve the top quark. The

mean life of the top quark is so short it is likely to decay before it has time to

settle into a top quark hadron. The methods described above are unavailable for

|Vti | (i = d, s or b).

18.4 CP symmetry violation in neutral kaon decays

In Section 14.4 we obtained the important result that the quark sector of the Standard

Model is not invariant under the charge conjugation, parity, operation unless all the

elements of the KM matrix can be made real. With the parameterisation (18.2), this

requires that the phase angle δ = 0.

CP violation was first observed in 1964 in the decay of neutral K mesons. The

states of definite quark number are the K◦(ds̄) and K̄◦(d̄s). These mesons are readily

produced in strong interactions, for exampleπ−(ūd) + p(uud) → Ko(ds̄) + 
(uds).

Without the weak interaction the K◦ and K̄◦ would have equal mass and be stable.

The weak interaction is responsible for their instability and CP violation would be

manifest if for example it were seen that the decay rates Ko → π+π− and K̄◦ →
π+π− were different. Such a difference can occur in second-order perturbation

theory in the weak interaction (first order in GF. See (14.21)). This is known as

direct CP violation.

The weak interaction also gives rise to the phenomenon of mixing (Appendix E,

Fig. E1). Although mixing occurs only at second order in GF it has the dramatic

effect of splitting the mass degeneracy: it results in two mixed states of different

mass. If CP were conserved the mixed states would be

|Ko
1) =

(
1
/√

2
) ( |Ko

〉 + |K̄o
〉)

and |Ko
2

) =
(

1
/√

2
) (|Ko

〉 − ∣∣K̄o
〉)

.
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Acting on Ko and K̄o, the CP operator may be taken to give

CP
∣∣Ko

〉 = ∣∣K̄o
〉

and CP
∣∣K̄o

〉 = ∣∣Ko
〉
.

Then
∣∣Ko

1

〉
and

∣∣Ko
2

〉
are eigenstates of CP with eigenvalues +1 and −1 respectively.

Experimentally two states with a mass difference 3.5 × 10−12 MeV are indeed

observed; they also have very different mean lives

τs = 8.9 × 10−11s, τL = 5.17 × 10−8s.

The Ko
s decays predominantly into two pions, π+π− or πoπo. Each of these

two-pion states is an eigenstate of CP, with eigenvalue +1 (Problem 18.2). In its

mesonic decay modes, the Ko
L decays predominantly into πoπo πo, and these three-

pion states are eigenstates of CP with eigenvalue −1 (Problem 18.3). However, in

about three decays in a thousand Ko
L decays into two pions, with CP eigenvalue +1.

If CP were conserved Ko
L would be either Ko

1 or Ko
2 and could not have both two

pion and three pion decay modes. CP violation is also seen in leptonic K decays.

These show that direct CP violation is not responsible for the anomalous Ko
L decays

but they are predominantly due to CP violation in mixing.

It is shown in Appendix E that neither
∣∣Ko

s

〉
nor

∣∣Ko
L

〉
is an eigenstate of CP, but

each can be written in terms of |Ko〉 and
∣∣K̄o

〉
:

∣∣Ko
s

〉 = N
[

p |Ko〉 + q
∣∣K̄o

〉]
,∣∣Ko

L

〉 = N
[

p |Ko〉 − q
∣∣K̄o

〉]
.

(18.12)

N is the normalisation factor: (|p|2 + |q|2)−1/2. Note that q is not equal to p. In

Appendix E we indicate how p and q can be calculated in the Standard Model.

We can similarly express
∣∣Ko

s

〉
and

∣∣Ko
L

〉
in terms of

∣∣Ko
1

〉
and

∣∣Ko
2

〉
:

∣∣Ko
s

〉 =
(

N/
√

2
) [

(p + q)
∣∣Ko

1

〉 + (p − q)
∣∣Ko

2

〉]
,∣∣Ko

L

〉 =
(

N/
√

2
) [

(p − q)
∣∣Ko

1

〉 + (p + q)
∣∣Ko

2

〉]
.

(18.13)

Neglecting direct CP violation only Ko
1 can decay into ππ so that the ratio of the

decay rates

�(KL) → ππ

�(KS) → ππ
= |p/q − 1|2

|p/q + 1|2 = (5.25 ± 0.05) × 10−6 (from experiment).

Defining p/q = 1 + 2εK we infer that |εK| = 2.3 × 10−3; εK is a measure of CP
violation.
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z1

z2

0 1

a

g b

Figure 18.2 The unitarity triangle.

18.5 B meson decays and Bo, B̄o mixing

At the B meson factories the 4s (bb̄) meson is copiously produced by e+e− collisions

with beam energies turned to the meson mass. The meson decays almost exclusively

into B+, B− or Bo, B̄o pairs and so provides a rich source of B mesons. With a mass

of 5.28 GeV, B mesons decay into many different final states and many exhibit CP
violation. An indication of why this is so can be seen by a consideration of the

unitarity condition

VudV ∗
ub + VcdV ∗

cb + VtdV ∗
tb = 0,

which can be written as

z1 + z2 = 1 (18.14)

where we have defined z1 = −VudV ∗
ub

VcdV ∗
cb

and z2 = − VtdV ∗
tb

VcdV ∗
cb

.

z1 and z2 are complex numbers that, in the complex plane form a triangle, the

unitarity triangle illustrated in Fig. 18.2. Also it can be seen from the parameters

given in Section 18.1 that VcdV ∗
cb is almost real and negative. Neglecting its very

small imaginary part, the angle γ = δ, the phase of V ∗
ub, and β is the phase of

V ∗
td. Of all the unitarity triangles, this is the only one with direct access to the

two KM matrix elements with large phases; it also involves the b quark and hence

B mesons.

Of particular importance has been the measurement of the angle α through both

charged and neutral decays B → ππ, B → πρ and B → ρρ and of the angle β

through Bo, B̄0 mixing. As one example it is shown in Appendix E how sin(2β) is

measured at the B factories.
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Im(z1)

| z1|

Real (z1)

0.5

0 0.5 1

sin(2b )

eK

a

Figure 18.3 The apex of the unitarity triangle is in, or near, the shaded region of
the plot.

The unitary triangle is specified by the position of its apex. This requires two

parameters, say the real and imaginary parts of z1. A single parameter defines a

line on the complex plane and a parameter with errors defines a band. Four such

bands inferred from experiment are shown in Fig. 18.3. The most important point

illustrated by the figure is the consistency between four independent measurements.

There is no indication of the Standard Model failing. The KM phase δ (≈γ ) can be

seen to be in the region δ = 57o ± 14o. The apex of the unitarity triangle is in, or

near, the shaded region of the figure.

18.6 The CPT theorem

We denote by T the operation of time reversal, t → t ′ = −t . The CPT theorem
states that, under very general conditions, a Lorentz invariant quantum field theory

is invariant under the combined operations of charge conjugation, space inversion,

and time reversal. The theorem was discovered by Pauli in 1955.

For the Standard Model, the CPT theorem implies that, since CP is not a sym-

metry of the Model, then neither is time reversal T. One may contemplate the

implications for the ‘Arrow of Time’.
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Problems

18.1 Draw quark model diagrams for the decays

π− → μ− + ν̄μ, K− → μ− + ν̄μ.

Show that the decay amplitudes are proportional to Vud and Vus respectively, and

Vus/Vud = tan θ12.

Neglecting the effects of the different quark masses, the ratio αK/απ calculated

in Problem 9.10 would equal Vus/Vud. Use this observation to estimate sin θ12.

18.2 A πo meson is even under the charge conjugation operation C, i.e. C |π0〉 = |π0〉.
Also, C |π+〉 = |π−〉 and C |π−〉 = |π+〉.

Show that two pions |πo, πo〉 or |π+, π−〉 in a relative S state and with their centre

of mass at rest satisfy CP|π, π〉 = |π, π〉.
18.3 Show that a state of three πo mesons |πo, πo, πo〉 with angular momentum zero and

centre of mass at rest satisfies C P|πo, πo, πo〉 = −|πo, πo, πo〉. (See Problem 18.2.)

18.4 Show that the area of the unitary triangle of Fig. 18.5 is J/2.

18.5 Show that if the quark fields are subject to a change of phase

d → eiθd d, b → eiθb b,

then the unitary triangle of Fig. 18.5 is rotated through an angle (θd − θb).
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Neutrino masses and mixing

In this chapter we introduce the phenomenology of neutrino masses and mixing,

and show how the phenomenology can be made to be consistent with the SU(2)

× U(1) broken gauge symmetry of the Standard Model. We take it that neutrinos

and antineutrinos are distinct Dirac fermions, setting aside, until Chapter 21, the

suggestions that neutrinos are Majorana fermions.

The phenomenology arose from the observations that the number of electron

neutrinos arriving at the Earth from the Sun is only about half of the number

expected from our knowledge of the nuclear reactions that occur in the Sun, and the

physics of the Sun’s interior. These observations are now explained as the result of

some electron neutrinos turning into muon neutrinos and tau neutrinos during their

transit between their creation in the interior of the Sun and their observation on

Earth. These transitions violate the conservation laws of Section 9.3. We will show

that they occur because the e, μ and τ neutrinos are not massless but, as conceived

by Pontecorvo (1968) they do not have a definite mass, i.e., they are not eigenstates

of the mass operator.

19.1 Neutrino masses

The most general Lorentz invariant neutrino mass term that can be introduced into

the Lagrangian density of the Standard Model is

Lν
mass(x) = −

∑
α,β

ν
†
αL (x) mαβνβR (x) + Hermitian conjugate, (19.1)

where mαβ is an arbitrary 3 × 3 complex matrix, α and β run over the three neutrino

types e, μ, τ, and ναL (x), ναR (x) are left-handed and right-handed two-component

spinor fields. (Spinor indices are omitted here.)

185
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An arbitrary complex matrix can be put into real diagonal form with the help of

two unitary matrices (see Problem A.4). We can write

mαβ =
∑

i

U L∗
αi miU

R
βi , (19.2)

where mi are three real and positive masses; UL and UR are unitary matrices. It is

evident that U L
αi and U R

βi can be replaced by U L
αi e

−iδi and U R
βi e

−iδi , where the δi are

three arbitrary phases.

If we now define the fields

νiL (x) = ∑
α

U L
αiναL (x),

νiR (x) = ∑
α

U R
αiναR (x),

(19.3)

the mass term takes the standard Dirac form (5.12)

Lν
mass (x) = −

∑
i

mi
(
ν
†
iLνiR + ν

†
iRνiL

)
. (19.4)

It is easy to show that the transformations given by equations (19.3) retain the Dirac

form of the dynamical terms:

Lν
dyn = ∑

α

i
[
ν
†
αLσ̃ μ∂μναL + ν

†
αRσμ∂μναR

]
= ∑

i
i
[
ν
†
iLσ̃ μ∂μνiL + ν

†
iRσμ∂μνRi

]
.

(19.5)

(Lν
dyn + Lν

mass) is the Lagrangian density of free neutrinos of masses m1, m2, m3.

Since UL and UR are unitary matrices, and a unitary matrix U satisfies UU† =
U†U = I, we can invert equations (19.3) to give

ναL (x) =
∑

i

U L∗
αi νiL (x),

ναR (x) =
∑

i

U R∗
αi νiR (x).

(19.6)

The e, μ and τ neutrinos are mixtures of the neutrinos having definite mass. We

shall see that this leads to the phenomenon of neutrino oscillations.

19.2 The weak currents

Neutrinos interact with each other and with other particles through the weak cur-

rents. The charged weak current (9.2), expressed in terms of the neutrino mass

eigenfields using (19.6), becomes

jμ =
∑

α

α
†
Lσ̃ μναL =

∑
α,i

α
†
Lσ̃ μU L∗

αi νiL (19.7)

αL are the charged lepton fields α = e, μ, τ .
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The neutral weak current (9.17) keeps the same form: since UL is unitary, we

have

∑
α

(ναL)† σ̃ μναL =
∑

i

(νiL)† σ̃ μνiL. (19.8)

As an example of how these modifications influence the physics discussed in

earlier chapters, consider our effective pion interaction (9.1):

Lint = απ

[
jμ∂μ
π + jμ†∂μ
†

π

]
.

The β decay rate formula (9.3) for π− → e− + ν̄e becomes three decay rates:

1

τ (π− → e−ν̄i )
= α2

π

4π

(
1 − ve

c

)
p2

e Ee

∣∣U L
ei

∣∣2
, i = 1, 2, 3.

In the derivation of this result the effects of small neutrino masses have been

neglected. Because neutrino masses are small (see Table 1.2), it is not possible with

present technology to discern differences in energy between these decay modes. The

total decay rate is measured, and since
∑

i U L
eiU

L∗
ei = 1 we recover the expression

(9.3) for this. A similar conclusion can be drawn about the processes π− → μ− +
ν̄μ and τ− → π− + ντ , described in Section 9.2 by the same effective Lagrangian,

and about the results on muon decay of Section 9.4.

19.3 Neutrino oscillations

The Lagrangian density (19.1) with (19.5) for a free neutrino yields the equations

iσ̃ μ∂μναL − mαβνβR = 0,

iσμ∂μναR − m∗
βανβL = 0.

(19.9)

These equations are a generalisation of the Dirac equations (5.11), and in this

section we shall interpret their solutions as neutrino wave functions for the three

types α = e, μ, τ , not as neutrino fields. We shall look for energy eigenfunctions

with time dependence e−iEt .

Zero mass neutrinos would have plane wave solutions of negative helicity (see

Section 6.6). For a wave in the z direction

ναL (z, t) = e−iE(t−z) fα

(
0

1

)
, ναR = 0,

where the fα are constants.
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The introduction of neutrino masses modifies these solutions by allowing the fα
to depend on z:

ναL (z, t) = e−iE(t−z) fα (z)

(
0

1

)
,

ναR (z, t) = e−iE(t−z)gα (z)

(
0

1

)
.

(19.10)

Substituting in the Dirac equations gives

i
d

dz
fα (z) − mαβgβ (z) = 0,

(
2E − i

d

dz

)
gγ (z) − m∗

αγ fα (z) = 0.

(19.11)

(
Note that σ̃ 3

(
0

1

)
=

(
0

1

)
, σ 3

(
0

1

)
= −

(
0

1

)
.

)

For neutrino energies much greater that their mass we can neglect −i dgγ /dz
compared with 2Egγ (see Problem 19.1) to obtain

gγ (z) = m∗
αγ fα (z) /2E, (19.12)

and hence by substitution three coupled equations for fα (z):

i
d

dz
fβ (z) = mβγ m∗

αγ fα (z) /2E .

Diagonalising the mass matrices mβγ and mαγ gives

i
d

dz
fβ (z) = U L∗

βi U L
αi fα (z) m2

i /2E . (19.13)

The right-handed U R do not now appear, so that the label L is now redundant and

we shall put U L
αi = Uαi for the remainder of this section.

To solve these equations we construct linear combinations

fi (z) = Uαi fα(z); i = 1, 2, 3. (19.14)

which satisfy, using (19.13),

i
d

dz
fi (z) = iUαi

d

dz
fα (z) = UαiU

∗
α jUβ j m

2
j fβ (z) /2E

= δi jUβ j m2
j fβ (z) /2E = (

m2
i /2E

)
fi (z) .

(19.15)

These uncoupled equations have the simple solutions

fi (z) = e−i(m2
i /2E)z fi (0) .
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Inserting the factor e−iE(t−z), the νi neutrino wave function is

νi (z, t) = e−iEt+i(E−m2
i /2E)z fi (0) . (19.16)

This state has energy E and momentum pi = E − m2
i /2E . For m2

i � E2, p2
i =

E2 − m2
i , which is the relativistic relationship for a particle of mass mi . Thus the

neutrino νi carries mass mi . νi (z, t) are the left-handed wavefunctions of (19.3).

Suppose that at z = 0 a neutrino of type α is born. The να wavefunction is a

linear superposition of mass eigenstates νi with fi (0) = Uαi fα (0). Different mass

eigenstates propagate with different phases so that the neutrino type changes with

z:

fβ(z) = U ∗
βi fi (z) = U ∗

βi e
−i(m2

i /2E)zUαi fα(0). (19.17)

To be exact a neutrino is born as a wave packet in some localised region of space

time around some point z = 0, t = 0. A realistic treatment of its propagation requires

the construction of the appropriate wave packet. We take it that the packet travels

with almost the speed of light and with little distortion so that having travelled

a distance z = D the probability amplitude for finding a neutrino type β will be

e−iE(t−D) fβ (D).

The probability of a transition PD
(
να → νβ

)
is

PD(να → νβ) =
∣∣∣U ∗

βi e
−i(m2

i /2E)zUαi

∣∣∣2

=
∑

i j

U ∗
βiUαiUβ jU

∗
α j e

−i
(
�m2

i j D/2E
)
.

(19.18)

Re(U ∗
βiUαiUβ jU ∗

α j ) is symmetric and Im (U ∗
βiUαiUβ jU ∗

α j ) antisymmetric under the

interchange of i and j, from this and the unitarity of U we can write

PD(να → νβ) = δαβ − 4
∑
i> j

Re
(
U ∗

βiUαiUβ jU
∗
α j

)
sin2

(
�m2

i j D

4E

)

(19.19)
+ 2

∑
i> j

Im
(
U ∗

βiUαiUβ jU
∗
α j

)
sin

(
�m2

i j D

2E

)

where �m2
i j = m2

i − m2
j .

These expressions describe the phenomena of neutrino oscillations. We note

that experiments designed to observe and measure neutrino oscillations (Chapter

20) can only give values for the differences �m2
i j , and cannot give values for the

individual masses mi . The differences must satisfy the condition

�m2
12 + �m2

23 + �m2
31 = 0.
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Restoring factors of c and �, it will be useful to write

�m2
i j D

4E
= �m2

i j c
4

(
D

�c

)
1

4E
= 1.27

(
�m2

i j c
4

leV2

) (
D

1 km

) (
1 GeV

E

)
.

(19.20)

By considering the equations for the charge conjugate wave functions νc
α (see

Section 7.4), similar formulae result, but with Uαi replaced by its complex conju-

gate U ∗
αi . If Im {U ∗

βiUαiUβ jU ∗
α j } is not zero it changes sign for antineutrinos and

PD(ν̄α → ν̄β) �= PD(να → νβ). The lepton sector joins the quark sector in display-

ing matter–antimatter asymmetry.

19.4 The MSW effect

In many experiments that investigate oscillations the neutrinos are not completely

free, but pass through matter on their journey from source to detector. This modifies

the free wave functions discussed in the previous sections. In particular, matter

contains electrons that interact with neutrinos through the charged weak currents.

The effective interaction Lagrangian for this process is given by (9.8):

Lint = −2
√

2GFgμν jμ jν†,

where, from (9.2), jμ = e†Lσ̃ μνeL, jν† = ν
†
eLσ̃ μeL, giving

Lint = −2
√

2GFgμν

(
e†Lσ̃ μνeL

)(
ν
†
eLσ̃ νeL

)
= −2

√
2GFgμν

(
e†Lσ̃ μeL

)(
ν
†
eLσ̃ ννeL

)
. (19.21)

The last step uses a Fierz transformation (Appendix A),

For matter at rest, the expectation value of e†Lσ̃ oeL = e†LeL = 1
2

Ne (x) where

Ne (x) is the total electron density at x. The factor of 1/2 stems from the involve-

ment of the left-handed electron field components only. Also, apart possibly from

ferromagnetic effects, we can expect that the expectation value of e†Lσ̃ i eL = 0. The

neutrino Lagrangian density acquires an additional term −√
2GF Ne (x) ν

†
eLνeL. This

results in the modified equations for f(z):

i
d fβ (z)

dz
− mβγ m∗

αγ fα (z)
/

2E − V (z) δβe fe (z) = 0,

or equivalently (see equation 19.15)

i
d fi (z)

dz
= m2

i

2E
fi (z) + V (z) Uei U

∗
e j f j (z) (19.22)

where V(z) = √
2Ne (z) GF.
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The influence of matter on the propagation of neutrinos was pointed out by

Wolfenstein (1978), and further elaborated by Mikheyev and Smirnov (1986). It is

known as the MSW effect.

The neutral weak currents also contribute to the Lagrangian density of all neutrino

types and result in an additional common phase factor on the wave functions of all

types, which has no influence on neutrino oscillations.

19.5 Neutrino masses and the Standard Model

In the Weinberg–Salam electroweak theory for leptons of Chapter 12 we introduced

three left-handed lepton doublet fields:

Le =
(

LeA

LeB

)
=

(
νeL

eeL

)
, Lμ =

(
νμL

μL

)
, Lτ =

(
ντL

τL

)
,

and three right-handed singlets eR, μR, τR. Under an SU(2) transformation,

Lα → L′
α = ULα, αR → α′

R = αR.

Dirac neutrinos having mass implies the existence of right-handed neutrino fields.

In the Standard Model the right-handed neutrino fields, like the right-handed fields

of the charged leptons, must be SU(2) singlets. Neutrino masses are introduced into

the model in the same way as the u, c and t quarks by coupling to the Higgs field.

An SU(2) invariant coupling of the Higgs field to neutrinos is then (equation (14.9)

and Problem 14.3.)

Lν
Higgs = −

∑
αβ

[
Gν

αβ

(
L†

αε

∗) νβR − Gν∗

αβν
†
βR

(

TεLα

)]
(19.23)

where Gν
αβ is a complex 3 × 3 matrix. On symmetry breaking this gives the neutrino

mass term

Lν
mass = −φo

∑
α,β

[
Gν

αβν
†
αLνβR + Gν∗

αβν
†
βRναL

]
. (19.24)

This is just the mass term of equation (19.1) if we identify φoGν
αβ with mαβ .

19.6 Parameterisation of U

We have taken the parameters me, mμ, mτ and g2 to be real and positive, but this

is in fact a phase convention: any phase on these parameters can be absorbed in

phase factors multiplying the lepton fields, and such phase factors are of no physical

significance. It is also the case that the definition of the mass matrix mαβ depends

on a phase convention.
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Define the six neutrino fields ν ′
αL, ν ′

αR(α = e, μ, τ) and the six charged lepton

fields α′
L, α′

R by

ναL = eiθαν ′
αL, ναR = eiγαν ′

αR,

(
αL

αR

)
= eiθα

(
α′

L

α′
R

)
.

The leptonic part of the electroweak Lagrangian density described in Chapter 12

(equation (12.12)), and the charged current (equation (12.16)) and neutral current

(equation (12.23)) that give the neutrino coupling to the W± and Z fields, are

unchanged in form under these transformations. The neutrino mass matrix retains

the same form but with mαβ replaced by

m ′
αβ = e−iθα+iγβ mαβ.

We can redefine mαβ in this way, keeping the physical content of the theory

unchanged.

The unitary matrix UL was defined by mαβ = ∑
i U L∗

αi m iU R
βi. Hence we can

redefine U L′
αi = ei(θα−δi )U L

αi , where the phase factors eiδi were introduced in Section

19.1. As in our discussion of the KM matrix in Section 14.2, when the non-physical

phase factors have been taken out, the resulting matrix depends on four physical

parameters. We parameterise it in the same way as the KM matrix but replace θ1 j

by θe j , θ2 j by θμ j and θ3 j by θτ j , etc. It can be called the neutrino mass mixing

matrix.

The term exhibiting matter–antimatter asymmetry in PD(να → νβ) is (see

Problem 19.2)

2
∑
i> j

Im
(
U ∗

βiUαiUβ jU
∗
α j

)
sin

�m2
i j D

2E

=

⎧⎪⎨
⎪⎩

0 if α = β

±8J sin

(
�m2

21 D

4E

)
sin

(
�m2

32 D

4E

)
sin

(
�m2

31 D

4E

)
, otherwise

where J = ce2c2
e3cμ3se2se3sμ3 sin δ, cf. (14.18, 14.19), the minus sign is taken for

transitions e → μ, μ → τ, τ → e, and the plus sign otherwise.

19.7 Lepton number conservation

Having defined the phase conventions that fix the parameters of the neutrino mixing

matrix, the Lagrangian density has only one remaining global U(1) symmetry. It is

unchanged if all lepton fields, charged and neutral, left-handed and right-handed,

are multiplied by the same phase factor eiδ. Following the method of Section 7.1, we

consider an arbitrary small space- and time-dependent variation in δ, and conclude
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that we have one conserved current:

jμ(x) =
∑

α

[
α
†
L(x)σ̃ μαL(x) + α

†
R(x)σμαR(x)

+ ν
†
αL(x)σ̃ μναL(x) + ν

†
αR(x)σμναR(x)

]
. (19.25)

The quantity
∫

jo(x) d3x counts the number of leptons minus the number of

antileptons, and this number is conserved.

19.8 Sterile neutrinos

We will see in the next chapter that there is some experimental indication that there

are more than three neutrino mass eigenstates. If these indications are confirmed

then we will be obliged to introduce a fourth neutrino type (perhaps more), say

νw. Since there is no indication of another charged lepton to partner νwL in an

SU(2) doublet, and since the decays of the Z (Section 13.6) confirm that only three

neutrino types participate in the weak interaction, both νwL and νwR must be SU(2)

singlets and have no electroweak interactions except through the mass eigenstate.

Such a neutrino is known as a sterile neutrino.

Problems

19.1 Neglect the term i(dgγ /dz) in (19.11) and show that gγ (z) = m∗
αγ

fα(z)/2E . Show

that an estimate of i(dgγ /dz) is then idgγ (z)/dz = Sγβ(2Egβ(z)) with Sγβ =
m∗

αγ mαβ/4E2, very small for E much greater than the masses.

19.2 Define Fβαi j = Im (U ∗
βiUαiUβ jU ∗

α j )

(a) Show that Fβαi j = −Fβα j i and that
∑

i Fβαi j = 0, and hence that

Fβα12 = Fβα23 = Fβα31. Define J = Fμe12 (this conforms with (14.18)

and (19.25)). Using the trigonometric identity sin(x) + sin(y) − sin(x + y) =
4 sin(x/2) sin(y/2) sin((x + y)/2).

(b) verify the matter–antimatter asymmetry term in (19.25) for PD(να → νβ).
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Neutrino masses and mixing: experimental results

The cross-sections for neutrino–lepton and neutrino–quark interactions are exceed-

ingly small: the collection of data from a particular experiment may extend over

several years. The aims of neutrino experiments include: establishing the existence

of neutrino oscillations, checking the validity of the theory of Chapter 19, measur-

ing the parameters of the mixing matrix U and determining the mass eigenstates of

the neutrino. In this chapter we shall present some results of recent experimental

work, and indicate how they have been obtained.

20.1 Introduction

Setting aside the possible existence of sterile neutrinos, it is thought that there are

three neutrino mass eigenstates, which we shall label by i = 1, 2, 3. Measurements

of neutrino oscillations give (mass)2 differences:

�m2
i j = m2

i − m2
j .

It is estimated from experiment that

1.3 × 10−3 eV2 < |�m2
32| < 3 × 10−3 eV2,

and

6.5 × 10−5 eV2 < |�m2
21| < 8.5 × 10−5 eV2.

Then �m2
31 = �m2

32 + �m2
21.

For illustrative numerical calculations in this chapter we shall take |�m2
32| =

2 × 10−3 eV2 and |�m2
21| = 7 × 10−5 eV2.

194
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(Mass)2

m2
3

m2
2

m2
1

Figure 20.1 A three neutrino mass-squared spectrum. The νe fraction of each mass
eigenstate is indicated by right-leaning hatching, the νμ fraction is blank and the
ντ fraction by left-leaning hatching (see the report by B. Kayser, Particle Data
Group, 2004). The mass-squared base line is not known.

The 3 × 3 unitary mixing matrix is approximately

U =

⎡
⎢⎣

c s se3eiδ

−s/
√

2 c/
√

2 1/
√

2

s/
√

2 −c/
√

2 1/
√

2

⎤
⎥⎦ (20.1)

where c ≈ cos θe2 ≈ 0.84 and s ≈ sin θe2 ≈ 0.54.

It is estimated that |se3|2 < 0.05. A term se3eiδ with sin δ �= 0 would violate

CP conservation and lead to matter–antimatter asymmetry. Such asymmetry has

not yet (2006) been discerned. If se3 �= 0 there are small complex corrections to

other elements of the matrix. (The matrix (20.1) may be obtained from the unitary

KM matrix of Section 14.3 by taking c13(=ce3) = 1, c12 (=ce2) = c, c23(=cμ3) =
1/

√
2, s13 = se3).

The (mass)2 differences imply either a spectrum of (mass)2 eigenstates as in

Fig. 20.1, with the closest eigenstates having the smallest mass, or the figure might

be inverted, with the closest (mass)2 eigenstates the heaviest. The mixing matrix

determines the fractions of νe, νμ and ντ states making up the states 1, 2, 3, and

these are indicated on the figure.

In many data analyses the approximation is made of setting se3 = 0. We shall

see that any particular analysis is then greatly simplified since the number of

participating neutrino mass eigenstates is reduced from three to two. Apart from our
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discussion of the CHOOZ experiment, we shall always make this approximation.

However, as the quality of data improves, and in particular when and if se3 is seen

to be finite, the approximation will be abandoned. It is important to note that with

se3 = 0 there is no CP violation.

The analysis of data from accelerator and reactor neutrinos is the least compli-

cated, since the MSW effect is negligible at the levels of precision so far obtained,

and our formula (19.19) can be directly invoked.

20.2 K2K

The Japanese K2K experiment studies a muon neutrino beam that is engineered at

the KEK proton accelerator. 12 GeV protons hit an aluminium target, producing

mainly positive pions that decay π+ → μ+ + νμ (Section 9.2). The beam char-

acteristics are measured by near detectors located 300 m down-stream from the

proton target. The mean νμ energy is 1.3 GeV. There is then a 250 km flight path

to the Super-Kamiokandi detector in the Komioka mine. This detector consists of

22.5 kilotonnes of very pure water (H2O). Muon neutrinos are observed through

their reaction with neutrons in the oxygen nuclei: νμ + n → p + μ−. The neutrino

energy Eν can be determined from measurements of the energy and direction of

the muon.

To reach the detector, a neutrino has to pass through the Earth’s upper crust. How-

ever, we ignore any MSW effect for the moment, and take the values of �m2
21 given

in Section 20.1. �m2
21 = 7 × 10−5 eV2 and D = 250 km. From (19.20) the oscil-

lating function sin2

(
�m2

21 D

4Eν

)
= sin2

(
0.022

(
1 GeV

Eν

))
< 10−3 for all relevant

Eν. This is so small that with present precision it can be ignored. Also, since �m2
31 =

�m2
32 + �m2

21 the two other oscillating functions are almost equal, and we will take

them both as sin2

(
�m2

At D

4Eν

)
with �m2

At a mean value of �m2
32 and �m2

31. For

historical reasons �m2
At is called the atmospheric mass squared difference.

With these approximations, setting Ue3 = 0 and using the unitarity of U, equa-

tions (19.19) give

PD(νμ → νμ) = 1 − 4|Uμ3|2(1 − |Uμ3|2) sin2

(
�m2

At D

4Eν

)
,

PD(νμ → νe) = 0,

PD(νμ → ντ) = 4|Uμ3|2(1 − |Uμ3|2) sin2

(
�m2

At D

4Eν

)
.

(20.2)

From these equations, and because of the smallness of |Ue3|2, the ∇m2
At oscil-

lation is almost entirely between νμ and ντ. Since the MSW effect is for electron



20.2 K2K 197

0

12

10

E
ve

nt
s

8

6

4

2

0
1 2 3 4 5

Eν

Figure 20.2 K2K data (M. H. Ahn et al. Phys. Rev. Letts. 90, 041801 (2003)).
Points with error bars are data. The box histogram is the expected spectrum with-
out oscillations, where the height of the box is the systematic error. The solid
line is the best-fit spectrum. These histograms are normalised by the number of
events observed (29). In addition, the dashed line shows the expectation with no
oscillations normalised to the expected number of events (44).

neutrinos only, it can with present precision be neglected. With Ue3 = 0, we have

|Uμ3| = sin θμ3 and we arrive at our final formula:

PD(νμ → νμ) = 1 − sin2(2θμ3) sin2

(
�m2

At D

4Eν

)
(20.3)

for fitting the K2K data. This is presented in Fig. 20.2 in which the number of

events in the designated energy bins are shown as a function of the mean neu-

trino energy of each bin. The dashed curve is the expected number distribution

dN/dEν without oscillation, and when integrated over Eν is clearly larger than

the total number (29) of events accepted. The best fit with equation (20.3), mod-

ified to take account of corrections such as energy resolution, is also shown.
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It corresponds to �m2
At = 2.8 × 10−3 eV2 and sin2(2θμ3) = 1. The latter allows

θμ3 = π/4, cos θμ3 = sin θμ3 = 1/
√

2.

20.3 Chooz

Chooz is a village close to a French nuclear power station. The power station’s

two reactors are rich sources of electron antineutronos ν̄e. The fluxes and energy

distributions, centred around 3 MeV, of these antineutrinos are very well understood.

The detector, shielded from cosmic ray muons by its location deep underground,

was positioned about 1 km from the reactors.

The antineutrinos ν̄e were detected by their inverse β decay interaction with

protons, ν̄e + p + 1 .8 MeV → n + e+, in a hydrogen rich paraffinic liquid scintil-

lator.

As with the K2K experiment, the oscillatory function sin2
(
�m2

21 D/4Eν

)
is,

from (19.20), negligibly small, < 2 × 10−3 (taking D = 1 km, Eν > 1.8 MeV).

The MSW effect can also be neglected, since for material in the Earth’s crust V (z) ∼
10−13 eV � �m2

21/2Eν < �m2
32/2Eν. We can, again, to a good approximation,

put �m2
32 D/4Eν = �m2

31 D/4Eν = �m2
At D/4Eν to obtain

PD(ν̄e → ν̄e) = 1 − 4|Ue3|2
(
1 − |Ue3|2

)
sin2

(
�m2

At D/4Eν

)
. (20.4)

Setting |Ue3| = sin θe3, D = 1 km, �m2
At = 2 × 10−3 eV2, we find from (19.20)

PD(ν̄e → ν̄e) = 1 − sin2(2θe3) sin2[2.54(3 MeV/Eν)].

To the experimental precision obtained, there was no reduction in flux at the

detector and no oscillation, and it was concluded (Apollonio et al., 2003) that

sin2(2θe3) < 0.18, which implies |Ue3|2 = < 0.05, the result we quote in Section

20.1 of this chapter.

20.4 KamLAND

Like Chooz, the Kamioka Liquid scintillator AntiNeutrino Detector (KamLAND)

experiment uses reactor antineutrinos. The sources are a group of nuclear power

stations in Japan situated at various distances ∼ 100 km to 200 km from the detector.

As at Chooz, the detector makes use of the inverse β decay ν̄e + p → n + e+.

The experiment was designed to explore the �m2
21 ∼ 7 × 10−5 eV2 mass region.

For a particular reactor at distance D from the detector, we have from (19.19) and

setting |Ue3|2 = 0, that the survival probability is given by

PD(ν̄e → ν̄e) = 1 − 4|Ue1|2|Ue2|2 sin2

(
�m2

21 D

4E

)
(20.5)
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Figure 20.3 KamLAND data (K. Eguchi et al. Phys. Rev. Lett 90, 021802 (2003)).
The energy distribution of the observed positrons in bins of 0.425 MeV (solid
circles with error bars), along with the expected no oscillations distribution (upper
histogram) and the best fit including oscillations using (20.5) (lower histogram).
The shaded bands indicate the systematic error in the best fit distribution. The
vertical dashed line corresponds to the analysis threshold at 2.6 MeV.

and from the parameterization (14.16)

4|Ue1|2|Ue2|2 = cos4 θe3 sin2 2θe2 ≈ sin2 2θe2.

As at Chooz, MSW effects are negligible. The measured positron energy spectrum

is compared with the positron energy spectrum that would be expected if there

were no antineutrino oscillations. This spectrum can be very well estimated from

knowledge of the various reactor characteristics.

Some results from KamLAND are shown in Fig. 20.3. The energy spectrum of

the positrons is clearly below what it would be without oscillation. The best fit to

the data using an expression based on (20.5) has

|m2
21| = 6.9 × 10−5 eV2,

0.84 < sin22θe2 < 1.

The KamLAND analysis took some account of systematic errors arising from the

simplifying assumption |Ue3|2 = 0.
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20.5 Atmospheric neutrinos

The Earth is continually bombarded by cosmic rays, which consist for the most part

of high energy protons and electrons. The protons, in their collisions with nuclei

in the upper atmosphere, produce π mesons. The π mesons decay by the chains

(Section 9.2, Section 9.4):

π+ → μ+ + νμ , π− → μ− + ν̄μ .

→e+ + νe + ν̄μ →e− + ν̄e + νμ

The neutrinos and antineutrinos are produced at a mean height ∼ 20 km, with

energies extending to the multi-GeV region. The ratio of the flux νμ + ν̄μ to the

flux of νe + ν̄e is evidently about 2.

In water detectors, such as Super Kamiokandi, charged leptons are produced

through reactions essentially of the form

νe + n → e− + p, ν̄e + p → e+ + n ;

νμ + n → μ− + p, ν̄μ + p → μ+ + n.

The charged leptons emit Cerenkov radiation, which provides information on the

energy, direction and identity of the incident neutrino.

Figure 20.4 shows some results from the Super-Kamiokandi detector. The plots

show the ratio of observed νe- and νμ-like events to Monte Carlo calculations

in the absence of oscillations, as a function of D/Eν. Eν is the neutrino energy

and D the distance from the point of production ∼ 20 km above the Earth’s sur-

face, to the detector. D is then inferred from the measured neutrino direction.

For multi-GeV electron neutrinos, the MSW modification to the equations has

to be included for those neutrinos passing through the Earth on their way to the

detector.

The νe data show no sign of oscillation, but there is a clear deficit of muon

neutrinos. The best fit to the data has �m2
At = 2.2 × 10−3 eV2, and like K2K has

sin2 2θμ3 = 1, where for D/Eν < 103 km/GeV the �m2
32 and �m2

31 oscillations

are combined into one �m2
At oscillation. The absence of discernible νe → νe oscil-

lations in the data was the first indication of the smallness of |Ue3|2, which again

implies that the �m2
At oscillations are predominantly between νμ and ντ.

20.6 Solar neutrinos

The nuclear and thermal physics of the Sun is well understood. The solar neutrino

spectra predicted by the Standard Solar Model and shown in Fig. 20.5 may be

assumed with confidence.
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Figure 20.4 Data from Super Kamiokande (Y. Fukunda et al. Phys. Rev. Lett.
82, 1562 (1998). The ratio of measured events to expected events in the absence
of oscillations. The lines show the expected shape for νμ ↔ ντ with �m2

At =
2.2 × 10−3 eV2 and sin2(2θμ3) = 1. There is no significant νe ↔ νe oscillation
observed.

The first measurements of the spectra were made by R. Davis and his collabora-

tors in the deep Homestake mine in the U.S.A, (Davis 1964). The detection of the

neutrinos was made through the reaction

νe + 37
17Cl + 0.81 MeV → e− + 37

18Ar.

The Super-Kamiokande detector also made measurements of the solar neutrino

flux with Eν greater than about 6 Mev (Fukuda et al. 1996).

Because of the high energy threshold these measurements were blind to the

principal flux from the ‘pp’ reaction. The GALLEX (Italy) and SAGE (Russia)



202 Neutrino masses and mixing: experimental results

Ga

15O

1016

1014

1012

1010

108

106

0.1 0.2 0.5 1 2 5 10 20

17F

7Be

8B

pep

hep

13N

Cl SNO

pp

F
lu

x 
at

 1
 A

U
 (

m
−2

 s
−1

 M
eV

−1
) 

(f
or

 li
ne

s 
m

−2
 s

−1
)

Neutrino energy (MeV)

Figure 20.5 The solar neutrino spectra predicted by the standard solar model.
Spectra for the pp chain are shown by solid lines and those for the CNO chain by
dashed lines. (See Bahcall, J. N. and Ulrich, R. K. (1988), Rev. Mod. Phys. 60,
297.)

experiments were designed to remedy this, and examine the pp flux through the

reaction (Hampel et al., 1999; Gavrin et al., 2003)

νe + 17
31Ga + 0.23 MeV → 71

32Ge + e−.

The SNO (Sudbury Neutrino Observatory, Canada) is a heavy water detector. Neu-

trinos, with Eν greater than about 5 Mev, are detected through the reactions, (Ahmad

et al. 2002)

νe + D2 + 1.44 MeV → e− + p + p,

νe + D2 + 2.22 MeV → p + n + ν.

The first of these reactions is a charged current interaction and can be initiated only

by an electron neutrino. The second is a neutral current interaction, initiated with
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equal probability by an electron, muon or tau neutrino. The SNO experiment also

measured the reaction rate of elastic neutrino scattering from electrons,

ν + e− → ν + e−.

Again, this reaction can be triggered by a neutrino of any type. Measurements can

be used to infer both the νe flux φ(νe)) and the total flux φ(νe + νμ + ντ).

The early results from the Homestake detector gave a measured flux of only

about one third of that expected from the standard Solar Model without oscillation.

Super Kamiokande, GALLEX and SAGE gave about half the expected rate. SNO

found that

φ(νe)

φ(νe + νμ + ντ )
= 0.306 ± 0.05.

The measured total neutrino flux was consistent with that expected from the Stan-

dard Solar Model and clearly, since the Sun produces only electron neutrinos, many

have made the transition to νμ and ντ .

20.7 Solar MSW effects

We showed in Section 19.4 that plane wave neutrino mass eigenstates depended on

functions fi (z), that satisfied

i
d fi

dz
= m2

i

2E
fi + V (z)U ∗

ejUei f j . (20.6)

The source of solar neutrinos is the central region of the Sun, where the Standard

Solar Model gives V (o) = 7.6 × 10−12 eV. Comparing this with �m2
21/2E , which

with the ‘reference parameters’ of Section 20.1 equals 3.5 × 10−12(10 MeV/Eν), it

is clear that the interpretation of the data from solar neutrino experiments requires

a serious consideration of the MSW effect.

As a starting approximation we again neglect the small term Ue3. With Ue3 = 0

the solution of (20.6) for f3(z) is

f3(z) = eim2
3z/2E f3(0),

independent of V (z). With Ue3 = 0, and since the initial neutrino is an electron

neutrino, f3(0) = 0 and it follows that f3(z) is zero for all z: it plays no part in

the oscillations. The approximation again reduces the analysis to a two-neutrino

phenomenon in f1(z) and f2(z). After some algebra it can be shown that the solar
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neutrino data can be analysed with the equations

i
d fe

dz
= �m2

21

2E
(− cos(2θe2) fe + sin(2θe2) fx ) + V (z) fe

(20.7)

i
d fx

dz
= �m2

21

2E
(sin(2θe2) fe + (cos 2θe2) fx ).

fx = cμ3 fμ − sμ3 fτ is a combination of fμ and fτ, V (z) is known from the Standard

Solar Model. The equations have to be integrated numerically.

All the solar neutrino data is consistent with the oscillation interpretation, and

analysis of the data gives 3 × 10−5 eV2 < �m2
21 < 1.9 × 10−4 eV2, 30.2◦ < θe2 <

34.9◦ with high probability (95% confidence level). The best fit is with �m2
21 =

6.9 × 10−5 eV2, θe2 = 32◦.

The solar neutrino data give a tighter constraint on θe2 than KamLAND. Also,

with the MSW effect, the solution of equations (20.7) depends on the sign of �m2
21.

It is found to be positive, as is indicated in Figure 20.1

20.8 Future prospects

There are several planned experiments that will make a more thorough investigation

of neutrino masses and mixing phenomena. Apart from the possibility of sterile

neutrinos, indications of which have not been confirmed, there is no evidence to

contradict the three-neutrino theory of Chapter 19. However, it can be seen from

the quality of the data presented in this chapter that the neutrino mass theory is not

as well established as other branches of The Standard Model. Within the theory

experiments are planned to make more precise measurements of the �m2 and the

parameters of the neutrino mixing matrix.

The principal focus of experimental activity is on the construction of muon

neutrino beams as in the K2K experiment. An advantage of accelerator-generated

neutrinos is the control that one has on the flux and energy distribution. K2K is

an ongoing experiment but by late 2006 the muon neutrino experiments CNGS

and MINOS (Main Injector Neutrino Oscillation Search) will be in operation. The

CNGS neutrinos are generated at CERN and detected at the GRAN SASSO under-

ground laboratory in Italy. The MINOS beam is generated at Fermilab and detected

in the Soudan mine in Minnesota. Both experiments will look for evidence of the

rare νμ → νe transition and for the expected νμ → ντ oscillations. If the theory of

Chapter 19 is not challenged it is expected that by 2010 we will have much tighter

bounds on both sin2(2θe3) and |�m2
At|.

In the more distant future a new very high intensity proton accelerator will be

built at Tokai, Japan. The experiment T2K will take over from K2K with a neutrino

beam of much higher intensity. Detection at Super Kamiokande will give a base line
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0.01

0.005

0.5 1.0Eν

PD νμ → νe

νμ → νe

Figure 20.6 The upper curve is PD(νμ → νe).
The lower curve PD(ν̄μ → ν̄e).

The parameters are �m2
32 = 2 × 10−3 eV2, �m2

21 = 7 × 10−5 eV2,

cos θe2 = 0.84, cos θμ3 = 1/
√

2, sin θe3 = 0.05, δ = π/4, D = 295 km.
The MSW effect, which depends on the local geology will be significant but
calculable. It is not included here.

D ≈ 295 km. An upgrade to higher intensity for MINOS is also planned with a new

experiment NOνA. By 2015 with T2K and NOνA it is expected that if sin2(2θe3) >

0.01 then it will be detected. The MSW effect will influence these measurements and

the sign of �m2
32 could be established, and hence the mass ordering. If sin2(2θe3) can

be measured then it is also possible to have a measurement of the CP violating phase

δ. Figure 20.6 shows the transition probabilities PD(νμ → νe) and PD(ν̄μ → ν̄e)

as a function of Eν with the T2K baseline. δ is taken as 45◦ and the other parameters

are a plausible set. Although the probabilities are small, the particle and antiparticle

probabilities differ considerably (see Section 19.3).
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Majorana neutrinos

Majorana fields were introduced in Section 6.6. If neutrino fields are Majorana,

then there is no distinction to be made between neutrinos and antineutrinos. As

explained in Section 6.7, the smallness of neutrino masses makes the differences

between Dirac and Majorana neutrinos difficult to discern experimentally.

In this chapter we elaborate on the theory of Majorana neutrinos and show

how they can be accommodated within the Standard Model. Finally we describe

experiments on ‘double β decay’ that may determine the nature of neutrinos.

21.1 Majorana neutrino fields

We shall denote left-handed and right-handed Majorana neutrino fields by νL(x)

and νR(x). From (6.28 and 6.29), making the identifications

bp+ = dp+, bp− = dp−

we have for a Majorana neutrino field carrying mass m

νL = 1√
V

∑
p

√
m

2E p

[(
bp+e−θ/2 |+〉) + bp−eθ/2 |−〉 ei(p·r−Et)

+ (
b∗

p+eθ/2 |−〉 − b∗
p−e−θ/2 |+〉) ei(−p·r+Et)

]
,

(21.1)

νR = 1√
V

∑
p

√
m

2E p

[(
bp+eθ/2 |+〉) + bp−e−θ/2 |−〉 ei(p·r−Et)

+ (−b∗
p+e−θ/2 |−〉 + b∗

p−eθ/2 |+〉) ei(−p·r+Et)
]
.

(21.2)

The fields νL(x) and νR(x) are not independent. It is easily shown, using Problem

6.5, that (
iσ 2

) |−〉∗ = |+〉 ,
(
iσ 2

) |+〉∗ = − |−〉 ,

206
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and then that

νR = (iσ 2)ν∗
L and νL = −(iσ 2)ν∗

R. (21.3)

Thus either field may be derived from the other. As a consequence, only left-handed

Majorana fields or only right-handed Majorana fields need appear in any theory.

The charge conjugate field νc
L was defined in (7.11b) by

νc
L = −(iσ 2)ν∗

R.

But by the results above −(iσ 2)ν∗
R = νL, so that

νc
L = νL. (21.4)

Thus the charge conjugate of a Majorana field is identical to the field. There is no

room in the theory of Majorana neutrinos for a distinguishable antineutrino. For

a given momentum, there are two basic particle states, which we may take to be

one with helicity +1/2, the other with helicity −1/2. (In these respects, Majorana

neutrinos are somewhat similar to photons, but with photons having helicities ±1).

21.2 Majorana Lagrangian density

The Majorana field is constructed from solutions of the Dirac equation. We saw in

Section 5.2 that the Lagrangian density for a free Dirac particle of mass m is

LDirac = iψ
†
Lσ̃ μ∂μψL + iψ

†
Rσμ∂μψR − m

(
ψ

†
LψR + ψ

†
RψL

)
.

In the case of a Majorana field, νR is determined by νL, and given by (21.3) above.

We choose to work with νL, and therefore take the Majorana Lagrangian density to

be

LM = 1

2

[
iν†σ̃ μ∂μν + i(iσ 2ν∗)†σμ∂μ(iσ 2ν∗) − m

{
ν†(iσ 2)ν∗ + νT(−iσ 2)ν

}]
,

where ν = νL. For the remainder of this chapter we shall drop the subscript L,

for clarity of notation. ν is a two component left-handed neutrino field. We have

introduced a factor of 1/2 to compensate for double counting.

The second dynamical term in LM is equivalent to the first (Problem 21.1), so

that the Lagrangian density may be written

LM = iν†σ̃ μ∂μν − m

2

{
ν† (

iσ 2
)
ν∗ + νT

(−iσ 2
)
ν
}
. (21.5)

It is interesting and important to note that, with finite mass m and with the

Majorana constraints, we lose the U(1) symmetry that gave neutrino number
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conservation in the Dirac case (Section 7.1). We shall see that with Majorana

neutrinos the overall lepton number is no longer conserved.

Noting the factor 1/2 in the Lagrangian density, the Hamiltonian operator H and

momentum operator P for Majorana neutrinos are (see Section 6.5)

H = 1

2

∑
p,ε

(
b∗

pεbpε − bpεb∗
pε

)
Ep =

∑
p,ε

(
b∗

pεbpε

)
Ep,

P = 1

2

∑
p,ε

(
b∗

pεbpε − bpεb∗
pε

)
p =

∑
p,ε

(
b∗

pεbpε

)
p,

(21.6)

where ε = ±1 is the helicity index.

21.3 Majorana field equations

A variation δν∗ in the Majorana action yields the field equation

iσ̃ μ∂μν = m
(
iσ 2

)
ν∗.

(Note that there are two contributions from the mass term in the Lagrangian density.)

In a frame K ′ in which the Majorana neutrino is at rest, p′
iν

′ = −i∂ ′
iν

′ = 0 (i =
1, 2, 3), and the field equation reduces to

i
∂ν ′

∂t ′ = m
(
iσ 2

)
ν ′∗ (21.7)

It is easy to verify that this equation has two solutions of the form

ν ′
1 = be−iEt ′

(
1

0

)
+ b∗eiEt ′

(
0

1

)
and ν ′

2 = be−iEt ′
(

0

1

)
− b∗eiEt ′

(
1

0

)
,

with E = m. (21.8)

We may then, as in Section 6.3, transform to a frame K in which the Majorana

neutrino is moving with velocity ν > 0 in the Oz direction:

ν1 = M−1ν ′
1 =

(
e−θ/2 0

0 eθ/2

) [
be−imt ′

(
1

0

)
+ b∗eimt ′

(
0

1

)]

= be−mt ′
e−θ/2

(
1

0

)
+ b∗eimt ′

eθ/2

(
0

1

)
.

Substituting t ′ = t cosh θ − z sinh θ ,

ν1 = be−θ/2

(
1

0

)
ei(pz−Et) + b∗eθ/2

(
0

1

)
ei(−pz+Et). (21.9)
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Similarly there are solutions of the form

ν2 = beθ/2

(
0

1

)
ei(pz−Et) − b∗e−θ/2

(
1

0

)
ei(−pz+Et). (21.10)

All other plane wave solutions may be generated from these by rotations, and

we recover the general field (21.1).

21.4 Majorana neutrinos: mixing and oscillations

The most general Lorentz invariant Majorana mass term that can be introduced into

a Lagrangian density is

Lmass(x) = −1

2

∑
α,β

νT
α

(−iσ 2
)
νβmαβ + Hermitian conjugate. (21.11)

α and β run over the three neutrino types, e, μ and τ; να, νβ are left-handed Majo-

rana fields; mαβ is an arbitrary complex matrix. In contrast to the case of Dirac

neutrinos, mαβ can be taken to be symmetric. This is because fermion fields anti-

commute, so that νT
α

(−iσ 2
)
νβ is symmetric on the interchange of α and β (see

Problem 21.2).

A general symmetric complex matrix can be transformed into a real diagonal

matrix with positive diagonal elements by means of a single unitary matrix U (see,

for example, Horn and Johnson (1985)). If mαβ = mβα, we can write

mαβ =
3∑

i=1

Uαi mi Uβi , (21.12)

where the mi are three positive masses. Note that U has no phase ambiguities,

whereas Dirac neutrinos have phase ambiguities (see (19.2)).

If we now define the fields

νi (x) =
∑

α

Uαiνα(x), (21.13)

the mass term takes the standard Majorana form:

Lmass = −1

2

∑
i

miν
T
i

(−iσ 2
)
νi + Hermitian conjugate.

The dynamical terms in the Lagrangian density keep the same form under the

transformation:

Ldyn =
∑

α

iν†
ασ̃

μ∂μνα =
∑

i

iν
†
i σ̃

μ∂μνi .
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(Ldyn + Lmass) is the Lagrangian density of free Majorana neutrinos of masses

m1, m2, m3. Inverting equation (21.13), the neutrino fields να(x) appear as mix-

tures of the neutrino fields of definite mass:

να(x) =
∑

i

U ∗
αiνi (x). (21.14)

This is of the same form as equation (19.6) for Dirac neutrinos. The consequences

for the weak currents and neutrino oscillations are the same as in Section 19.2 and

Section 19.3 for Dirac neutrinos but antineutrinos are interpreted as the neutrinos

that accompany a negative charge lepton in weak interaction decays.

21.5 Parameterisation of U

A 3 × 3 unitary matrix U is specified by nine real parameters, but by absorbing

phase factors into the definition of the lepton fields, as in Section 19.6, Uαi can be

redefined as

U ′
αi = eiθαUαi ,

without changing the physical content of the theory. Thus U can be characterised

by 9 − 3 = 6 parameters. The Dirac neutrino mixing matrix (Section 19.6) is deter-

mined by four parameters, and requires extension, to include two more parameters.

One may take

UMajorana = UDirac ×
⎛
⎝ ei
1 0 0

0 ei
2 0

0 0 1

⎞
⎠ . (21.15)

Potentially we have two more CP violating parameters. However 
1 and 
2 make

no contribution to the CP violation of the oscillation phenomena of Chapters 19

and 20 (see (19.19) and Problem 21.3)

21.6 Majorana neutrinos in the Standard Model

To bring Majorana neutrinos carrying mass into the Standard Model, we must

maintain the SU(2) symmetry of the weak interaction. As in the case of Dirac

neutrinos, a suitable SU(2) invariant expressions that we can construct from the

Higgs doublet field � and a lepton doublet Lα is (�T ε Lα) (See Section 19.5). On

symmetry breaking, this becomes (�T ε Lα) = −(φ0 + h/
√

2)να.

φ0 ≈ 180 GeV is the Higgs field vacuum expectation value and h(x) is the Higgs

boson field.
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From these SU(2) invariant expressions we can construct an SU(2) invariant

Lagrangian density that on symmetry breaking becomes

Lmass = −1

2
(φ0 + h/

√
2)2 νT

α (−iσ 2)νβ Kαβ + Hermitian conjugate.

(21.16)

The matrix Kαβ couples the neutrino fields to the Higgs field, and we can identify

the mass term

mαβ = φ2
0 Kαβ. (21.17)

Hence the coupling matrix K has dimension (mass)−1, which implies (see Section

8.4) that it is an ‘effective’ Lagrange density. Coupling terms such as this render

the theory unrenormalisable.

21.7 The seesaw mechanism

To address the question of renormalisability consider the Lagrangian density

L = iν
†
Lσ̃ μ∂μνL + iR†σμ∂μ R − M

2

(
iRTσ 2 R − iR†σ 2 R∗) − μν

†
L R − μR†νL.

(21.18)

M and μ are mass parameters; νL and R are two component left-handed and right-

handed spinor fields respectively. Discarding the terms coupling νL and R, the

Lagrangian density is that of a massless left-handed neutrino field νL, and a right-

handed Majorana neutrino field carrying mass M.

We now suppose that M is so large that the dynamical term iR†σμ∂μ R may be

neglected, to leave

L = iν
†
Lσ̃ μ∂μνL − M

2
(RT (iσ 2)R − R†(iσ 2)R∗) − μν

†
LR−μR†νL. (21.19)

A variation δR∗ in the action gives the field equation for R:

M iσ 2 R∗ − μνL = 0.

And multiplying by iσ 2/M we obtain

R = −(μ/M)iσ 2ν∗
L. (21.20)

Substituting back into (21.19) gives the effective Lagrangian density

L = iν
†
Lσ̃ μ∂μνL + (μ2/2M)

(
ν
†
Liσ 2ν∗

L + νT
L(−iσ 2)νL

)
. (21.21)
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The sign of the mass term can be changed by making the phase change νL →
ν ′

L = iνL. The effective L is then a free neutrino field of mass m = μ2/M. Taking

for μ a typical lepton mass, say the mass of the muon (102 MeV), we can make

m the magnitude of a neutrino mass by taking M sufficiently large, >107 GeV.

The generalisation of the seesaw mechanism to include three neutrino types is

straightforward.

Taking R to be an SU(2) singlet, the Lagrangian density (21.19) can be made

compatible with the Standard Model by replacing μν
†
L R with the SU(2) invariant

C(L†
Lφ)R, and similarly replacing μR†ν, where C is a dimensionless coupling

constant. After symmetry breaking, μν
†
L R becomes C

(
φO + h (x)/

√
2
)

ν
†
L R and

setting aside the coupling to the Higgs boson, the mass μ = Cφ0. It should be

noted though that although there are no dimensioned coupling constants the mass

M is not generated by the Higgs mechanism.

21.8 Are neutrinos Dirac or Majorana?

The principal feature that distinguishes massive Majorana neutrinos from massive

Dirac neutrinos is that Majorana neutrinos do not conserve lepton number. As

pointed out in Section 21.2, in the Majorana case the U(1) symmetry that gives

lepton number conservation in the Dirac case is lost. The experimental observation

of a lepton number violating process would therefore be of great interest. ‘Double

β decay’ is the most promising phenomenon for investigation.

The first direct laboratory observation of double β decay was made in 1987, with

the decay

82

34
Se → 82

36
Kr + e− + e− + ν̄e + ν̄e + 3.03 MeV.

The mean lifetime for this decay has been measured to be (9.2 ± 1) 1019 yrs.

If neutrinos are Dirac particles, ν̄e is the appropriate symbol in this decay.

If neutrinos are Majorana particles, ν and ν̄ are identical. The observed decay

does not distinguish between the two interpretations. The process is illustrated in

Fig. 21.1a. An electron and a ν̄ in the Dirac case, or a ν in the Majorana case, are

created at each interaction point at which a d quark is transformed into a u quark.

The nucleus becomes 82
35

Br, possibly in an excited state, between the interaction

points.

If neutrinos are Majorana, the decay might be a neutrinoless double β decay, as

envisaged in Fig. 21.1b. The neutrino created at X1 is annihilated at X2, giving a

change of 2 in lepton number. This process is not available if neutrinos are Dirac

particles. In the absence of neutrinos to share the energy, the sum of the energies of
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Figure 21.1 (a) Illustrates the two neutrino double β decay of 82
34Se. The decay

occurs at the second order of perturbation theory in the weak interaction and
involves a sum over many states of 82

35Br (denoted by 82
35Br∗).

(b) Illustrates the neutrinoless double β decay, a Majorana neutrino created in the
transition 82

34Se → 82
35Br∗ is annihilated in the transition 82

35Br∗ → 82
36Kr. In pertur-

bation theory this involves a sum over all momentum states of the neutrino as well
as many states of 82

35Br.

the two electrons emitted would be sharply peaked at the decay energy. (The recoil

energy of the nucleus would be small.)

Double β decay and neutrinoless double β decay occur at the second order

of perturbation theory in the effective weak interaction of equation (14.22). For

Majorana neutrinos, double β decay and neutrinoless double β decay are competing

processes. Neutrinoless decays are heavily suppressed. From the field equation
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Table 21.1. From Elliot and Vogel hep/ph/0202264 Feb 2002

Nucleus T 2ν
1/2 (years) Estimate T 0ν

1/2 (years)
Measured 0υ half life
Lower limit (years)

48 Ca (4.2 ± 1.2) 1019 (2.2 ± 1.3) 1025 > 9.5 × 1021

76 Ge (1.3 ± 0.1) 1021 (3.2 ± 2.4) 1025 > 1.9 × 1025

82 Se (9.2 ± 1.0) 1019 (1.3 ± 1.0) 1025 > 2.7 × 1022

100 Mo (8.0 ± 0.6) 1018 (8.4 ± 7.2) 1026 > 5.5 × 1022

116 Cd (3.2 ± 0.3) 1019 (1.0 ± 0.9) 1025 > 7.0 × 1022

(21.1), the decay amplitude for the neutrinoless mode, with an intermediate neutrino

of mass mi and energy Eν , is proportional to

(mi/2Eν)
⌊

e−θ/2 eθ/2 + eϑ/2 e−θ/2
⌋ = (m i/Eν) .

The two terms come from the two helicity states. The corresponding factors in two

neutrino β decay are dominated by the term (mi/2Eν) eθ , and eθ ≈ 2 cosh θ =
(2Eν/mi ), giving unity.

With three neutrino mass eigenstates the decay rate will be proportional to

(1/Ē2
ν)|∑i miUei|2 where Ēν is some mean neutrino energy that can be expected

to be a nuclear excitation energy.

Table 21.1. gives some measured two neutrino β decay half lives, and corre-

sponding estimates of the half lives of the neutrinoless decays. These theoretical

estimates are sensitive to the nuclear model used.

Problems

21.1 Show that (iσ 2ν∗)†σμ∂μ(iσ 2ν∗) = ν†σ̃ μ∂μν.

21.2 Show that, taking account of the anticommuting spinor fields,

νT
ασ 2νβ = νT

β σ 2να.

21.3 Denoting the Majorana and Dirac mixing matrices by UM and UD, show that

U M
β jU

M∗
α j = U D

β jU
D∗
α j and hence that the phenomenology of mixing is the same for

both Majorana and Dirac neutrinos.
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Anomalies

In the Standard Model, the fermion fields of the leptons and quarks interact through

the mediation of vector bosons. As we remarked in Chapter 10, the renormalisability

of the Model requires the vector boson fields to be introduced through the mecha-

nisms of local gauge symmetry. Renormalisation requires the insertion of counter

terms in the Lagrangian (Chapter 8). It is important that the counter terms maintain

the local gauge symmetries, along with their corresponding conserved currents. As

a consequence, one of the global current conservation laws of the Standard Model,

that we have obtained by treating the fields as classical fields, has to be modified

when the classical fields are quantised. This is an example of an anomaly. We shall

see that baryon number and lepton number are not strictly conserved quantities in

quantum field theory.

22.1 The Adler–Bell–Jackiw anomaly

Bell and Jackiw and, independently, Adler were the first to find an anomaly in a field

theory (see Treiman et al., 1985). They were concerned with the axial vector current

associated with the chiral symmetries introduced in Section 16.7. To appreciate the

nature of this anomaly, consider the model Lagrangian density

L = ψ̄[γ μ(i∂μ − q Aμ) − m]ψ − 1

4
Fμν Fμν. (22.1)

This has the local gauge symmetry of electromagnetism; it is invariant under the

transformation

ψ(x) → ψ ′(x) = e−iqχ (x)ψ(x),

Aμ(x) → A′
μ(x) = Aμ(x) + ∂μχ (x).

(22.2)

215
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If m = 0, L also has a global chiral symmetry: it is then invariant under the

transformation

ψ(x) → ψ ′(x) = eiαγ 5ψ(x), (22.3)

as may easily be verified using the properties of the γ matrices (Section 5.5).

Applying the transformation (22.3) to the Lagrangian density (22.1), with α taken

to be infinitesimal and space and time dependent, gives an infinitesimal change δL

in L which (after an integration by parts in the action) may be taken to be

δL = α(x)[∂μ jμ

A − 2imψ̄γ 5ψ],

where

jμ

A = ψ̄γ μγ 5ψ (22.4)

is the axial current. (See Problem 5.6.)

It follows from Hamilton’s principle that, for fields that obey the field

equations,

∂μ jμ

A = 2imψ̄γ 5ψ. (22.5)

If m = 0, the axial current is conserved:

∂μ jμ

A = 0 if m = 0. (22.6)

The results (22.5) and (22.6) have been obtained treating the fields as classical fields.

In quantum field theory the fields become quantum operators, and the currents can be

calculated in perturbation theory. It is found that in order to keep the electric charge

conserved and maintain electromagnetism as a local gauge symmetry, perturbation

theory requires

∂μ jμ

A = 2imψ̄γ 5ψ − e2

2π2
εμνλρ∂μ Aν∂λ Aρ. (22.7)

With m = 0 the axial current is not conserved, but instead

∂μ jμ

A = − e2

2π2
εμνλρ∂μ Aν∂λ Aρ. (22.8)

This is the Adler–Bell–Jackiw axial anomaly. It is found to be the only anomalous

term in ∂μ jμ

A . Using Problem 4.3, we can write (22.8) in the explicitly gauge

invariant form

∂μ jμ

A = − e2

π2
E · B. (22.9)

It is interesting to note that from (22.8) we can construct a current

jμ

total = jμ

A + e2

4π2
εμνλρ Aν Fλρ, (22.10)
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which evidently is conserved:

∂μ jμ

total = 0. (22.11)

jμ

total is gauge dependent (it contains Aν) and hence lacks immediate physical sig-

nificance. Nevertheless it follows from (22.11) that the charge

Q(t) =
∫

jo
total d3x (22.12)

is constant in time. Q(t) is a gauge invariant quantity.

22.2 Cancellation of anomalies in electroweak currents

In the Standard Model, there are anomalies that have an origin and structure similar

to the axial anomaly described in Section 22.1. In particular in the electroweak

sector the gauge bosons couple to currents that have both vector and axial vector

components, as, for example, in (12.15) where

jμ
e = e†Lσ̄ μνL = ēγ μ(1/2)(1 − γ 5)νe. (22.13)

It is the mix of vector and axial vector that gives rise to anomalies that threaten

the renormalisability of the electroweak sector. Detailed calculations show that, in

a theory that has only leptons and no quarks, anomalies do spoil the conservation

laws of the currents that couple to the bosons. Conversely, in a theory with only

quarks and no leptons there are again anomalies. Remarkably, in a theory which

includes both leptons and quarks the anomalies cancel exactly, provided that the

number of lepton families is equal to the number of quark families, and then the

electroweak gauge currents are strictly conserved (t’Hooft, 1976). Thus equality in

the number of lepton families and quark families is of fundamental importance to

the renormalisability of the Standard Model.

There are no serious anomalies associated with the gluon fields of the strong

interaction.

22.3 Lepton and baryon anomalies

We now turn to the currents that, classically, arise from global symmetries and

conserve the number of leptons and the number of quarks. We will first consider

the situation if neutrinos are shown to be Dirac fermions. For Dirac neutrinos there

is a conserved lepton current given by (22.25)

Jμ

lepton(x) =
∑

α=e,μ,r

[
α
†
L (x) σ̃ μαL (x) + α

†
R (x) σμαR (x) + ν

†
αL(x) σ̃ μναL (x)

+ ν
†
αR (x) σμναR (x)

]
. (22.14)
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and classically

∂μ(Jμ

lepton) = 0. (22.15)

On quantisation, this current is not conserved. The divergence equation has to

be modified in a way reminiscent of (22.8) and becomes

∂μ

(
Jμ

lepton

)
= 3

64π2
εμνλρ

[
1

2
g2

2Tr
(
WμνWλρ

) − g2
1BμνBλρ

]
. (22.16)

The fields Wμν, Bμν , and the coupling constants g1 and g2, were introduced in

Chapter 11.

The total quark number is also classically conserved but the same anomalous term

as in (22.15) arises when the quark fields are quantised for each colour. Summing

over the three colours we have

∂μ Jμ

quark = 3∂μ Jμ

lepton. (22.17)

Since baryon number is one third of the quark number, this can also be written

∂μ Jμ

baryon = ∂μ Jμ

lepton, (22.18)

where Jμ

lepton = Jμ
e + Jμ

muon + Jμ
tau.

Thus if neutrinos are Dirac particles, anomalies reduce the two classically con-

served currents of the Standard Model to one that can be taken as Jμ

baryon − Jμ

lepton.

The independent current Jμ

baryon + Jμ

lepton is not conserved.

Let us now consider the lepton number current. This is not conserved but, as we

found with the chiral anomaly, there is nevertheless an associated current that is

conserved, and we may write

∂μ

(
Jμ

lepton − Jμ

T

)
= 0, (22.19)

where

Jμ

T = 3

32π2
εμνλρ

[
1

2
g2

2Tr
(
WνWλρ − (ig2/3) WνWλWρ

) − g2
1 Bν Bλρ

]
.

(22.20)

Jμ

T is called the topological current, and

NT =
∫

J 0
T d3x (22.21)

is the topological number.

The lepton number is defined to be

Nlepton =
∫

J 0
leptond3x, (22.22)
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and it follows from (22.19) that Nlepton − NT is constant in time. If NT changes by

�NT, then Nlepton changes by �Nlepton, and �Nlepton = �NT .

22.4 Gauge transformations and the topological number

Is the topological number a gauge invariant? For simplicity we shall restrict our

discussion to fields that are gauge transforms of the vacuum field configuration.

Then from (11.4b) and (11.6)

Bμ = (2/g1) ∂μθ, (22.23)

Wμ = (2i/g2)
(
∂μU

)
U†. (22.24)

The field strengths Bμν and Wμν are of course zero everywhere. Also we shall only

consider gauge transformations in a local region of space, so that θ → 0 and U → I
as r → ∞. The topological number for this vacuum configuration is

NT = − 1

8π2

∫
ε0i jkTr

{
(∂i U) U† (

∂ j U
)

U† (∂kU) U†} d3x, (22.25)

using (22.24) in (22.20).

It can be shown that NT is an integer multiple of 3, 0, ±3, ±6, . . . We can illus-

trate this by considering unitary transformations of the form

U(x) = cos f (r )I + i sin f (r )(r̂·τ ), (22.26)

taking α = f (r )r̂ in (B.9). Here f (r ) is a function with the property that f (r ) → 0

as r → ∞, so that U → I as r → ∞. If U(x) is to be defined at r = 0, then sin f (r )

must vanish there (since r̂ is not defined at r = 0). Thus we require f (0) = nπ where

n is an integer. Subject only to the boundary conditions at r = 0 and r → ∞, f (r )

can be any continuous and differentiable function.

If n = 0, f (r ) can be deformed continuously to give f (r ) = 0, U = I, for all r;

transformations like this are called ‘small’ unitary transformations. If n �= 0 there

is no way in which f(r) can be deformed continuously to give U = I for all r; these

are ‘large’ unitary transformations. Direct computation of (22.25) with U of the

form (22.26) gives

NT = 6

π

∫ nπ

0

sin2 f d f = 3n. (22.27)

It appears that in a theory with no fermions there would be many inequivalent

representations of the vacuum state, characterised by a topological number NT.

Neglecting the fermions, and treating the SU (2) × U (1) gauge fields and the Higgs

field classically, it is found that to change NT continuously by one unit involves

field distortions that require energy. Estimates suggest the energy barrier in field
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configurations is of height a few times (4π/g2
2) Mw ∼ 100 Mw. Treating the fields

as quantum fields, t’Hooft (1976) found that quantum tunnelling can take place

through the barrier, but the probability per unit volume in space-time of a change in

NT is very small because of a very small tunnelling factor exp(−16π2/g2
2) ≈ 10−173.

22.5 The instability of matter, and matter genesis

Including the fermions in the Standard Model, if the Higgs and gauge fields

pass over the energy barrier separating different topological sectors, the fermion

fields must also evolve. Suppose, for example, that �Nlepton = −3 and, from

(22.18), �Nbaryon = −3. These conditions are satisfied by, for example, the decay
3
2He → e+ + μ+ + ν̄τ.

With suppression factors like 10−173, it is unlikely that any helium nucleus in

our galaxy has ever decayed in this way since helium nuclei were formed.

It is nevertheless an intriguing possibility that the matter content of the Universe

could have been generated by an anomaly mechanism. In the Big Bang model of

cosmology, at the very early stage in its evolution the Universe was intensely hot, at

a temperature high compared even with the barrier height separating the different

topological sectors. Thermal fluctuations over the barrier would produce matter

or antimatter depending on the sign of �NT. In the beginning the net baryon and

lepton numbers might both have taken the symmetrical value zero. To generate the

observed preponderance of matter over antimatter requires CP violation, and this

is an attribute of the Standard Model.

The modifications are straightforward if neutrinos are Majorana fermions. For

example, with the Majorana Lagrange density of (21.11), (22.19) becomes

∂μ

(
Jμ

lepton − Jμ

T

)
= mαβ

(
νT

ασ 2νβ + ν+
β σ 2ν∗

α

)
(22.28)

as can be shown by making an infinitesimal, space time dependent, phase change

on all the lepton fields (see the method of section (22.1)). If neutrinos are Majorana

particles then, with the anomalies, no global conservation laws remain.



Epilogue

Reductionism complete?

The Standard Model, extended to include neutrinos carrying mass, gives a remark-
ably successful account of the experimental data of particle physics obtained up
to 2006. Any subsequent theory must, in some sense, correspond to the Standard
Model in the energy range that has so far been explored.

Many questions remain to be answered. Why is there the internal electroweak and
strong group structure U (1) × SU (2) × SU (3), with the three coupling constants
g1, g2, g3? Is the origin of mass really to be found in the Higgs field with its two
parameters: the Higgs mass and the expectation value of the Higgs field? In the
electroweak sector, why are the masses of the charged leptons as they are? There
are three parameters here. Another set of parameters comes with allowing neutrinos
to have mass: three neutrino masses and four parameters of the mass mixing matrix
(or six if it appears that neutrinos correspond to Majorana fields rather than Dirac
fields). In the quark sector ten more parameters are introduced: six quark masses,
and four parameters in the Kobayashi–Maskawa matrix.

Are these twenty five or twenty six parameters really independent?
Some of these questions may be answered when experimentalists have the LHC

(Large Hadron Collider) at CERN, probing to higher energies and thereby to smaller
distances to make progress into finding common origins of what are now diverse
elements of the Standard Model. The task is to reduce twenty six parameters to one
or two, say, before closing the book on the theory of matter and radiation.
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Appendix A

An aide-mémoire on matrices

A.1 Definitions and notation

An m × n matrix A = (Ai j ); i = 1, . . . , m; j = 1, . . . , n; is an ordered array of mn
numbers, which may be complex:

A =

⎛
⎜⎜⎜⎝

A11 A12 . . . A1n

A21 A22 . . .

. . . . . . . . . . . . . . .

Am1 . . . Amn

⎞
⎟⎟⎟⎠ .

Ai j is the element of the ith row and jth column.
The complex conjugate of A, written A∗, is defined by

A∗ = (A∗
i j ).

The transpose of A, written AT, is the n × m matrix defined by

AT
j i = Ai j .

The Hermitian conjugate, or adjoint, of A, written A†, is defined by

A†
j t = A∗

i j = AT
j i

∗, or equivalently byA† = (AT)∗.

If λ, μ are complex numbers and A, B are m × n matrices, C = λA + μB is defined
by

Ci j = λAi j + μBi j .

Multiplication of the m × n matrix A by an n × l matrix B is defined by AB = C,
where C is the m × l matrix given by

Cik = Ai j B jk .

We use the Einstein convention, that a repeated ‘dummy’ suffix is understood to be
summed over, so that

Ai j B jk means
n∑

j=1

Ai j B jk .
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Multiplication is associative: (AB)C = A(BC). If follows immediately from the
definitions that

(AB)∗ = A∗B∗, (AB)T = BTAT, (AB)† = B†A†.

Block multiplication: matrices may be subdivided into blocks and multiplied by a rule
similar to that for multiplication of elements, provided that the blocks are compatible. For
example, (

A B
C D

) (
E
F

)
=

(
AE + BF
CE + DF

)

provided that the l1 columns of A and l2 columns of B are matched by l1 rows of E and l2

rows of F. The proof follows from writing out the appropriate sums.

A.2 Properties of n × n matrices

We now focus on ‘square’ n × n matrices. If A and B are n × n matrices, we can construct
both AB and BA. In general, matrix multiplication is non-commutative, i.e. in general,
AB �= BA.

The n × n identity matrix or unit matrix I is defined by Ii j = δi j , where δi j is the
Kronecker δ:

δi j =
{

1 if i = j,
0 if i �= j.

From the rule for multiplication,

IA = AI = A

for any A. A is said to be diagonal if Ai j = 0 for i �= j .
Determinants: with a square matrix A we can associate the determinant of A, denoted

by det A or |Ai j |, and defined by

det A = εi j ...t A1i A2 j . . . Ant

(remember the summation convention) where

εi j ...t =
{

1 if i, j, . . . , t is an even permutation of 1, 2, . . . , n,
−1 if i, j, . . . , t is an odd permutation of 1, 2, . . . , n,

0 otherwise.

An important result is

det(AB) = det A det B.

Note also

det AT = det A, det I = 1.

If det A �= 0 the matrix A is said to be non-singular, and det A �= 0 is a necessary and
sufficient condition for a unique inverse A−1 to exist, such that

AA−1 = A−1A = I.

Evidently,

(AB)−1 = B−1A−1.
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The trace of a matrix A, written TrA, is the sum of its diagonal elements:

TrA = Aii .

It follows from the definition that

Tr(AB) = Ai j B ji = B ji Ai j = Tr(BA),

and hence

Tr(ABC) = Tr(BCA) = Tr(CAB).

A.3 Hermitian and unitary matrices

Hermitian and unitary matrices are square matrices of particular importance in quantum
mechanics. In a matrix formulation of quantum mechanics, dynamical observables are
represented by Hermitian matrices, while the time development of a system is determined
by a unitary matrix.

A matrix H is Hermitian if it is equal to its Hermitian conjugate:

H = H†, or Hi j = H∗
j i .

The diagonal elements of a Hermitian matrix are therefore real, and an n × n Hermitian
matrix is specified by n + 2n(n − 1)/2 = n2 real numbers.

A matrix U is unitary if

U−1 = U†, or UU† = U†U = I.

The product of two unitary matrices is also unitary.
A unitary transformation of a matrix A is a transformation of the form

A → A′ = UAU−1 = UAU†,

where U is a unitary matrix. The transformation preserves algebraic relationships:

(AB)′ = A′B′,

and Hermitian conjugation

(A′)† = UA†U†.

Also

TrA′ = TrA, det A′ = det A.

An important theorem of matrix algebra is that, for each Hermitian matrix H, there
exists a unitary matrix U such that

H′ = UHU−1 = UHU† = HD

is a real diagonal matrix.
A necessary and sufficient condition that Hermitian matrices H1 and H2 can be brought

into the diagonal form by the same unitary transformation is

H1H2 − H2H1 = 0.

It follows from this (see Problem A.3) that a matrix M can be brought into diagonal form
by a unitary transformation if and only if

MM† − M†M = 0.

Note that unitary matrices satisfy this condition.
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An arbitrary matrix M which does not satisfy this condition can be brought into real
diagonal form by a generalised transformation involving two unitary matrices, U1 and U2

say, which may be chosen so that

U1MU†
2 = MD

is diagonal (see Problem A.4).
If H is a Hermitian matrix, the matrix

U = exp(iH)

is unitary. The right-hand side of this equation is to be understood as defined by the series
expansion

U = I + (iH) + (iH)2/2! + · · ·
Then

U† = I + (−iH†) + (−iH†)2/2! + · · ·
= exp(−iH†) = exp(−iH) = U−1

(the operation of Hermitian conjugation being carried out term by term). Conversely, any
unitary matrix U can be expressed in this form. Since an n × n Hermitian matrix is
specified by n2 real numbers, it follows that a unitary matrix is specified by n2 real
numbers.

A.4 A Fierz transformation

It is easy to show that any 2 × 2 matrix M with complex elements may be expressed as a
linear combination of the matrices σ̃ μ.

M = Zμσ̃ μ,

and Zμ = 1
2
Tr (σ̃ μM), since Tr (σ̃ μσ̃ ν) = 2δμν .

Consider the expression
gμν〈a∗|σ̃ μ|b〉〈c∗|σ̃ ν |d〉, where |a〉, |b〉, |c〉, |d〉 are two-component spinor fields. Using
the result above, we can replace the matrix |b〉〈c∗| by

|b〉〈c∗| = 1

2
T r (σ̃ λ|b〉〈c∗|)σ̃ λ

= −1

2
〈c∗|σ̃ λ|b〉σ̃ λ.

The last step is evident on putting in the spinors indices, and the minus sign arises from
the interchange of anticommuting spinor fields.

We now have

gμν〈a∗|σ̃ μ|b〉〈c∗|σ̃ ν |d〉 = −1

2
gμν〈a∗|σ̃ μσ̃ λσ̃ ν |d >< c∗|σ̃ λ|b〉.

Using the algebraic identity

gμνσ̃
μσ̃ λσ̃ ν = −2gρλσ̃

ρ,

gives gμν〈a∗|σ̃ μ|b〉〈c∗|σ̃ ν |d〉 = gρλ〈a∗|σ̃ ρ |d〉〈c∗|σ̃ λ|b〉.
This is an example of a Fierz transformation.
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Problems

A.1 Show that

εi j ...t Aαi Aβ j · · · Aνt = εαβ...ν det A.

A.2 Show that if A, B are Hermitian, then i(AB − BA) is Hermitian.

A.3 Show that an arbitrary square matrix M can be written in the form M = A + iB,
where A and B are Hermitian matrices. Find A and B in terms of M and M†. Hence
show that M may be put into diagonal form by a unitary transformation if and only

if MM† − M†M = 0.

A.4 If M is an arbitrary square matrix, show that MM† is Hermitian and hence can be
diagonalised by a unitary matrix U1, so that we can write

U1(MM†)U1
† = MD

2

where MD is diagonal with real diagonal elements ≥ 0. Suppose none are zero. Define
the Hermitian matrix H = U1

†MDU1. Show that V = H−1M is unitary. Hence show
that

M = U1
†MDU2,

where U2 = U1V is a unitary matrix.
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The groups of the Standard Model

The Standard Model is constructed by insisting that the equations of the model retain the
same form after certain transformations. For instance, we require that the equations take
the same form in every inertial frame of reference, so that they are covariant under a
Lorentz transformation; this may be a rotation of axes or a boost, or a combination of
rotation and boost. The Lagrangian density that describes the Standard Model takes the
same form in the new coordinate system, and the Lorentz transformation is said to be a
symmetry transformation. In the Standard Model, as well as symmetries under coordinate
transformations, there are ‘internal’ symmetries of the particle fields. The corresponding
symmetry transformations are conveniently represented by matrices.

It is characteristic of symmetry transformations that they satisfy the mathematical
axioms of a group, which we set out below. In this appendix we consider some properties
of the groups that play a special role in the Standard Model.

B.1 Definition of a group

A group G is a set of elements a, b, c, . . ., together with a rule that combines any two
elements a,b of G to form an element ab, which also belongs to G, satisfying the
following conditions.

(i) The rule is associative: a(bc) = (ab)c.
(ii) G contains a unique identity element I such that, for every element a of G,

aI = I a = a.

(iii) For every element a of G there exists a unique inverse element a−1 such that

aa−1 = a−1a = I.

If also ab = ba for all a, b the group is said to be commutative or Abelian.
It is usually easy to determine whether or not a given set of elements and their

combination law satisfy these axioms. For example, the set of all integers forms an
Abelian group under addition, with 0 the identity element. The set of all non-singular
n × n matrices (n > 1) forms a non-Abelian group under matrix multiplication. The
permutations of the numbers 1, 2, . . ., n form a group which has n! elements; this is an
example of a finite group. The group of rotations of the coordinate axes is a
three-parameter continuous group: an element is specified by three parameters that take on
a continuous range of values. We shall be concerned principally with groups of this type.
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B.2 Rotations of the coordinate axes, and the group SO(3)

Consider a rotation of the coordinate axes about the origin. If the coordinates of a point P
are (x1, x2, x3) in a frame of reference K, and (x ′1, x ′2, x ′3) in a frame K ′, rotated relative
to K, the x ′i are related to the xi by a real linear transformation of the form

x ′i = Ri
j x

j . (B.1)

R = (Ri
j ) is the rotation matrix. For example, a rotation of the axes through an angle θ

about the 03 axis in a right-handed sense is given by

x ′1 = x1 cos θ + x2 sin θ,
x ′2 = −x1 sin θ + x2 cos θ,
x ′3 = x3,

and corresponds to the matrix

R03(θ ) =
(

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

)
. (B.2)

We may regard the x ′i and xi as 3 × 1 (column) matrices x′ and x, and write the
transformation (B.1) as

x′ = Rx.

The transpose xT of x is a 1 × 3 (row) matrix, and the scalar product of two vectors x and
y is

x ′y′ = xTy = yTx.

In particular, the length OP is given by
√

(xTx). Since a rotation of axes preserves scalar
products,

x′Ty′ = xTRTRy = xTy.

This holds for all pairs x, y. Hence

RTR = I (B.3)

where I is the identity matrix: hence the inverse of R is the transpose RT of R and R is
said to be an orthogonal matrix.

Since det RT det R = det(RTR) = det I = 1 and det RT = det R, (B.4)

(det R)2 = 1, det R = ±1.

Matrices corresponding to pure or ‘proper’ rotations have det R = +1. We can see this
by noting that the identity rotation is a proper rotation, and det I = 1. Any proper rotation
can be constructed as a sequence of infinitesimal rotations starting from I and hence by
continuity also has determinant +1.

The product of two orthogonal matrices is an orthogonal matrix, since

(R1R2)T = R2
TR T

1 = R2
−1R1

−1 = (R1R2)−1,

and if det R1 = 1 and det R2 = 1,

det(R1R2) = det R1 det R2 = 1.

Hence real orthogonal 3 × 3 matrices with det R = 1 form a group under matrix
multiplication. This group is called the special orthogonal group and is denoted by SO(3).

Orthogonal matrices with det R = −1 also preserve scalar products. It is easy to see
that inversion of the coordinate axes in the origin, x ′i = −xi , corresponds to an
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orthogonal matrix with determinant −1; a general ‘improper’ rotation corresponds to
inversion in the origin together with a proper rotation. Improper rotation matrices do not
form a group, since the product of two improper rotations is a proper rotation.

A general proper rotation may be built up as a sequence of rotations about three
different axes. For example, consider

R(ψ, θ, φ) = R03′′ (ψ)R02′ (θ )R03(φ), (B.5)

in an obvious notation. The direction of 03′′ is defined by θ and φ, and then ψ defines the
final orientation of 01′′2′′ in the plane perpendicular to 03′′. Thus each element of SO(3) is
specified by just three parameters. (ψ, θ, φ are known as the Euler angles.)

We can also interpret the transformation (B.1) in an active sense. Consider a system
described by a wave function Φ(x) in the frame K. The system is described by
Φ′(x′) = Φ(R−1x′) in the frame K′. This is the passive interpretation. We might,
alternatively, drop the primes on the coordinates and give this equation an active
interpretation, supposing that the axes have been held fixed and the system given the
inverse rotation R−1. The wave function of the rotated system is Φ′(x) = Φ(R−1x).

B.3 The group SU(2)

An n × n matrix U is unitary if UU† = U†U = I. The product of two unitary matrices is
unitary. Hence n × n unitary matrices form a group under matrix multiplication, denoted
by U (n).

Since

det(UU†) = det U det U∗ = det U(det(U)∗ = det I = 1,

we may write det U = einα , where α is real.
The special unitary group SU(2) is the group of all 2 × 2 unitary matrices with

determinant equal to 1. These form a group, since if det U1 = 1 and det U2 = 1 then
det(U1U2) = det U1 det U2 = 1. SU(2) is a sub-group of U(2). Every element of U(2) is
the product of a phase factor eiα , which is an element of U(1), and an element of SU(2).

The group SU(2) is related in a remarkable way to the rotation group SO(3) described
in Section B.2. It is central to the electroweak sector of the Standard Model.

Any element of U(2) can be put in the form

U = exp (iH)

where H is a Hermitian matrix (Appendix A). A general 2 × 2 Hermitian matrix may be
taken as

H =
(

α0 + α3 a1 − iα2

α1 + iα2 α0 − α3

)

where the αμ(μ = 0, 1, 2, 3) are four real parameters. This choice enables us to write

H = α0I + αkσ k, (B.6)

where the index k runs from 1 to 3, and

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
.

The σ k are the same as the Pauli spin matrices, and hence they satisfy

(σ 1)2 = (σ 2)2 = (σ 3)2 = I; σ jσ k + σ kσ j = 0, j �= k;

[σ 1, σ 2] = σ 1σ 2 − σ 2σ 1 = 2iσ3, etc.
(B.7)
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Since the unit matrix I commutes with all matrices, a general member of U(2) can be
written as

U = exp i(α0I + αkσ k) = exp(iα0) exp(iαkσ k).

The phase factor exp(iα0) belongs to the group U(1). Hence elements of SU(2) are of the
form

Us = exp(iαkσ k). (B.8)

An element may be specified by the three parameters αk ; the matrices σ k are the
corresponding generators of the group. Each has zero trace (see Problem B.1).

The algebra of the σ k matrices enables us to write these elements in closed form. Let us
formally consider the αk to make up a vector α = αα̂, where α̂ is the corresponding unit
vector, and write the ‘scalar product’ αkσ k as αα̂ · σ. It is easy to see that

(α̂ · σ)2 = α̂ jσ j α̂kσ k = α̂ j α̂ j I = I,

since σ jσ k + σ kσ j = 0 and (σ 1)2 = I, etc. Then the power series expansion of (B.8)
gives

Us = I + iα(α̂ · σ) + (iα)2

2!
I + · · ·

= cos αI + i sin α(α̂ · σ). (B.9)

To establish the connection between the groups SU(2) and SO(3), we associate with
each point x the Hermitian matrix

X(x) =
(

x3 x1 − ix2

x1 + ix2 − x3

)
. (B.10)

This matrix has Tr X = 0 and det X = − xk xk .
Consider now an element U of SU(2) and the matrix

X′= UXU†. (B.11)

(We are now dropping the suffix s on U.)

X′ is also Hermitian, and Tr X′ = Tr(UXU†) = Tr(U†UX) = Tr X = 0. Hence X′ is of
the form

X′ =
(

x ′3 x ′1 − ix ′2
x ′1 + ix ′2 −x ′3

)

where the x ′k are related to the xk by a real linear transformation.

Also det X′ = det U det X det U† = det(UU†) det X = det X, so that x ′k x ′k = xk xk .
Since the length of x is preserved and the transformation may be continuously generated
from the identity matrix (see Problem B.3), the transformation must correspond to a
proper rotation of the coordinate axes and hence to a rotation matrix R(U).

As an example, the SU(2) matrix

U = exp[i(θ/2)σ 3] = cos(θ/2)I + i sin(θ/2)σ 3 =
(

eiθ/2 0
0 e−iθ/2

)
, (B.12)

where we have used (B.9), corresponds to the rotation matrix R03(θ ) of equation (B.2).
This may be verified by direct matrix multiplication.

The matrices U and −U give the same transformation (B.11), and hence correspond to
the same rotation matrix: to every element of SO(3) there correspond two elements of
SU(2), differing by a factor of −1. In the example (B.12) above, rotations of θ and θ + 2π
about the 03 axis correspond to the same rotation matrix, but give matrices U and −U,
respectively in SU(2).
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B.4 The group SL(2,C) and the proper Lorentz group

The set of all 2 × 2 matrices with complex elements and with determinant equal to 1
evidently forms a group under matrix multiplication. This group is denoted by SL(2,C). It
is related to the group of proper Lorentz transformations in much the same way as the
group SU(2) is related to the group of proper rotations.

We now associate with each point x = (x0, x) in space-time the general Hermitian
matrix

X(x) =
(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
(B.13)

which has

det X = (x0)2 − xk xk .

Consider an element M of SL(2,C) and the matrix X′ given by

M†X′M = X or X′ = (M−1)†XM−1. (B.14)

Then X′ is also Hermitian and hence we can write

X′ =
(

x ′0 + x ′3 x ′1 − ix ′2
x ′1 + ix ′2 x ′0 − x ′3

)
,

where the x ′μ are related to the xμ(μ = 0, 1, 2, 3) by a real linear transformation. Also

det M†X′M = det M† det X′ det M = det X′ = det X

so that

(x ′0)2 − x ′k x ′k = (x0)2 − xk xk .

Hence the matrix M corresponds to a Lorentz transformation matrix L(M). The matrices
L(M) form a group that includes the identity transformation L(I) = I, and hence by
continuity correspond to proper Lorentz transformations.

A general proper Lorentz transformation between frames K and K′ is specified by six
parameters: three parameters to give the velocity v of K′ relative to K and three parameters
to give the orientation of K′ relative to K. A general 2 × 2 complex matrix is defined by
eight real parameters. The condition det M = 1 reduces this number to six. Hence a matrix
M can be found corresponding to every proper Lorentz transformation. The matrices M
and −M give the same transformation (B.14): two elements of SL(2,C) correspond to each
element of the proper Lorentz group.

The matrix

P = exp[(θ/2)σ 3] = cosh(θ/2)I + sinh(θ/2)σ 3 =
(

eθ/2 0
0 e−θ/2

)
(B.15)

corresponds to the Lorentz boost (2.3) of Chapter 2, as may be verified by direct matrix
multiplication.

More generally, a Lorentz boost from a frame K to a frame K′ moving with velocity
ν = tanh θ in the direction of the unit vector v̂ is given by

P = exp[(θ/2)v̂·σ] = cosh(θ/2)I + sinh(θ/2)v̂·σ
where σ = (

σ 1, σ 2, σ 3
)
.

Note that, since the matrices σ k are Hermitian, so also is any matrix P corresponding to
a Lorentz boost.
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B.5 Transformations of the Pauli matrices

In discussing Lorentz transformations, it is convenient to write I = σ 0 and introduce the
notation

σμ = (σ 0, σ 1, σ 2, σ 3), σ̃ μ = (σ 0, −σ 1, −σ 2, −σ 3). (B.16)

Then from (B.13)

X(x) = x0σ 0 + xkσ k = xμσ̃ μ, X′(x ′) =x ′
μσ̃ μ.

The relation

M†X′M = X

gives

x ′
μM†σ̃ μM =xν σ̃

ν = Lμ
νσ̃

νx ′
μ

(see Problem 2.2). Since the x ′
μ are arbitrary, we can deduce

M†σ̃ μM =Lμ
νσ̃

ν . (B.17)

Also (Problem B.6)

Lμ
ν = 1

2
Tr(σ̃ ν M†σ̃ μM).

Similarly, by considering the matrix

X1(x) = x0σ 0 − xkσ k = xνσ
ν,

which also has det X1 = (x0)2 − xk xk , we can show that there exists a matrix N belonging
to SL(2,C) such that

N†σμN = Lμ
νσ

ν. (B.18)

The matrices M and N are evidently related. The reader may verify directly that when
M = P, where P is given by (B.15) and corresponds to a Lorentz boost, we can take
N = P−1, and this will be true for a Lorentz boost in any direction. For a pure rotation of
axes, we take M = N = U, where U is a unitary matrix. A general M can be constructed
as a product of a rotation followed by a boost: M = PU. The corresponding N is given by
N = P−1U.

Now U satisfies UU† = I, and we noted that P is Hermitian, P = P†. Hence

NM† = (P−1U)(U†P) = I, (B.19)

so that N is the inverse of M†.
The results (B.17) and (B.18), together with (B.19), are useful in constructing Lorentz

scalars, vectors and higher order tensors.

B.6 Spinors

We define a left-handed spinor

l =
(

l1

l2

)

as a complex two-component entity that transforms under a Lorentz transformation with
matrix L(M) by the rule

l′ = Ml (B.20)

i.e. l ′a = Mablb, where a and b take on the values 1, 2.



B.7 The group SU(3) 233

We similarly define a right-handed spinor

r =
(

r1

r2

)
(B.21)

as a two-component entity that transforms by

r′ = Nr.

Electrons, and all other fermions in the Standard Model, are described by spinor fields.
The nomenclature of ‘left-handed’ and ‘right-handed’ is elucidated in Section 6.3.

Spinors have the remarkable property that they can be combined in pairs to make
Lorentz scalars, Lorentz four-vectors and higher order Lorentz tensors. For example,
l†r =l∗ ara is a (complex) Lorentz scalar, since

l′†r′ = (MI)
†Nr = l†M†Nr = l†r, (B.22)

where we have used (B.19).
The quantities

l†σ̃ l = l†(σ 0, −σ 1, − σ 2, − σ 3)l,
r†σr = r†(σ 0, σ 1σ 2,σ 3)r,

transform like (real) contravariant four-vectors, since

l′†σ̃ μl′ = l†M†σ̃ μMl =Lμ
ν(l†σ̃ ν l), (B.23)

using (B.17), and

r′†σμr′ = r†N†σμNr =Lμ
ν(r†σ νr), (B.24)

using (B.18).

B.7 The group SU(3)

The special unitary group SU(3) is the group of all 3 × 3 unitary matrices with
determinant equal to 1. Our discussion will parallel our discussion of the group SU(2) in
Section B.3. An element of SU(3) can be expressed as

U = exp(iH)

where H is a 3 × 3 Hermitian matrix. A general 3 × 3 Hermitian matrix is specified by
32 = 9 real parameters (Appendix A). The condition det U = 1, or equivalently TrH = 0
(Problem B.1), reduces this number to 8. In place of the σ k matrices used in Section B.3,
we have the eight traceless Hermitian matrices introduced by Gell-Mann:

λ1 =
(

0 1 0
1 0 0
0 0 0

)
, λ2 =

(
0 −i 0
i 0 0
0 0 0

)
λ3 =

(
1 0 0
0 −1 0
0 0 0

)
,

λ4 =
(

0 0 1
0 0 0
1 0 0

)
, λ5 =

(
0 0 −i
0 0 0
i 0 0

)
, λ6 =

(
0 0 0
0 0 1
0 1 0

)
,

λ7 =
(

0 0 0
0 0 −i
0 i 0

)
, λ8 = (1/

√
3)

(
1 0 0
0 1 0
0 0 −2

)
.

(B.25)



234 Appendix B: Groups of the Standard Model

A general traceless Hermitian matrix is of the form

H = α1λ1 + α2λ2 + · · · + α8λ8

=
⎛
⎝α3 + α8/

√
3 α1 − iα2 α4 − iα5

α1 + iα2 −α3 + α8/
√

3 α6 − iα7

α1 + iα5 α6 + iα7 −2α8/
√

3

⎞
⎠ (B.26)

The matrices λa satisfy the commutation relations

[λa, λb] = 2i
8∑

c=1

fabcλc (B.27)

where the fabc are the structure constants (cf. equations (B.7)). The fabc are odd in the
interchange of any pair of indices, and the non-vanishing fabc are given by the
permutations of f123 = 1, f147 = f246 = f257 = f345 = f516 = f637 = 1/2, f458 =
f678 = √

3/2.
The matrices also have the property

Tr(λaλb) = 2δab, (B.28)

where δab is the Kronecker δ.
These results may be verified by direct calculation.

Problems

B.1 Show that if U = exp(iH) and Tr H = 0, then det U =1. (Make H diagonal with a
unitary transformation. U is then also diagonal.)

B.2 Verify that the SU(2) matrices exp[i(θ/2)σ 1] and exp [i(θ/2)σ 2] correspond to rota-
tions R01(θ ) and R02(θ ), respectively.

B.3 Show that the SU(2) matrix corresponding to the rotation R(ψ, θ, φ) (equation (B.5))
is (

eiψ/2 cos(θ/2)eiφ/2

−e−iψ/2 sin(θ/2)eiφ/2

eiψ/2 sin(θ/2)e−iφ/2

e−iψ/2 cos(θ/2)e−iφ/2

)
.

B.4 Show that l†σ̃ μσ νr transforms as a tensor and l†(σ̃ μσ ν+σ̃ νσμ)r = 2gμν l†r.

B.5 Show that the rotation matrix Ri
j of equation (B.1) is related to the SU(2) matrix U

of (B.11) by

Ri
j=

1

2
Tr(Uσ i U†σ j).

B.6 Show from (B.17) that

Lμ
ν=

1

2
Tr(σ̃ ν M†σ̃ μM).
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Annihilation and creation operators

C.1 The simple harmonic oscillator

The reader may well have met annihilation and creation operators in treating the quantum
mechanics of the simple harmonic oscillator. In this context, an operator a and its
Hermitian conjugate a† are constructed. These satisfy the commutation relations

[a, a†] = aa† − a†a = 1 (C.1)

and also of course

[a, a] = 0, [a†, a†] = 0.

The operator N = a†a is Hermitian. We denote by |n〉 the normalised eigenstate of N
with eigenvalue n. Since n = 〈n|a†a|n〉 is the modulus squared of the state a|n〉, n is real
and ≥ 0, and equal to 0 only if a|n〉 = 0.

It follows from the commutation relations that the lowest eigenstate of n is n = 0,
corresponding to the ground state |0〉. This is because

Na|n〉 = a†aa|n〉 = (aa† − 1)a|n〉 = (n − 1)a|n〉.
Thus a|n〉 is, apart from normalisation, an eigenstate of N with eigenvalue (n − 1), unless
a|n〉 = 0. Similarly a|n − 1〉 is an eigenstate of N with eigenvalue (n − 2), and so on. The
process must terminate at the eigenstate |0〉 with eigenvalue 0, and a|0〉 = 0, since
otherwise we would be able to violate the condition n ≥ 0.

Similarly a†|n〉 is, apart from normalisation, an eigenstate of N with eigenvalue (n+1).
Thus the eigenvalues of the number operator N are the integers 0, 1, 2, 3 . . .

Since 〈n|a†a|n〉 = n, we have

a|n〉 = n1/2|n − 1〉. (C.2)

Also, 〈n|aa†|n〉 = 〈n|a†a + 1|n〉 = n + 1 , so that

a†|n〉 = (n + 1)1/2|n + 1〉. (C.3)

We call a an annihilation operator and a† a creation operator.
Written in terms of a and a†, the simple harmonic oscillator Hamiltonian becomes

H =
(

a†a + 1

2

)
hω =

(
N + 1

2

)
hω, (C.4)

where ω is the frequency of the corresponding classical oscillator (Problem C.1). The term
1
2
hω is the zero-point energy. Since in field theory only energy differences are of physical
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significance, it is usually convenient to redefine H, dropping the zero-point energy and
taking H = a†ahω. We may then reinterpret the state |n〉 as a state in which there are n
identical ‘particles’ each of energy hω, associated with the oscillator, and say that a and a†

annihilate and create particles.
In the Heisenberg representation (Section 8.2),

a(t) = eiHt ae−iHt = eiNωt ae−iNωt = e−iωt a. (C.5)

This may be seen by considering the effect of a(t) acting on a state |n〉, and noting that,
since

e±iNωt |n〉 = e±nωt |n〉,
the two expressions for a(t) give the same result. Similarly,

a†(t) = eiωt a†. (C.6)

C.2 An assembly of bosons

A similar operator formalism may be developed for assemblies of identical particles. We
set out first the formalism when the particles are bosons.

Let ui (ξ ) be a complete set of single particle states, where ξ stands for the space and

spin coordinate of a particle. We define annihilation and creation operators ai and a†
i for

each state, satisfying the commutation relations

[ai , a j
†] = δi j , [ai , a j ] = 0, [ai

†, a j
†] = 0. (C.7)

Any state of the system can be constructed by operating on the vacuum state |0〉, in
which there are no particles present, and ai |0〉 = 0 for all i. For example, a three-particle
state having two particles in the state u1 and one particle in the state u2 is given (apart

from normalisation) by a†
1a†

1a†
2|0〉. Evidently such a state is symmetric in the interchange

of any two particles since the creation operators all commute, and the particles will obey
Bose–Einstein statistics.

It follows from the commutation relations that the number operator Ni = a†
i ai gives the

number of particles in the state ui . In the case of non-interacting bosons, the ui (ξ ) can be
taken as the single particle energy eigenstates and the Hamiltonian operator is then

H0 =
∑

i

a†
i aiεi =

∑
i

Niεi , (C.7)

where the εi are the single particle energy levels.
In the Heisenberg representation and with the free particle Hamiltonian H0, the time

dependence of the annihilation and creation operators is like that of simple harmonic
oscillator operators, and follows by a similar argument:

ai (t) = e−iεi t ai , a†
i (t) = eiεi t a†

i . (C.8)

C.3 An assembly of fermions

In the case of an assembly of identical fermions, we define annihilation and creation
operators bi and bi

† for each single particle state ui (ξ ), which are anticommuting:

{bi , b j
†} = bi b j

† + b j
†bi = δi j , {bi , b j } = 0, {bi

†, b j
†} = 0. (C.9)
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In particular,

(bi )
2 = 0, (b j

†)2 = 0. (C.10)

Thus two fermions cannot be annihilated from the same state, or created in the same state,
in accord with the Pauli principle.

The number operator Ni = bi
†bi satisfies

N 2
i = bi

†bi bi
†bi = bi

†(1 − bi
†bi ) bi = bi

†bi = Ni ,

or

Ni (Ni − 1) = 0,

so that the eigenvalues of Ni are 0 and 1. This, again, is in accord with the Pauli principle.
A many-particle fermion state can be constructed by operating on the vacuum state |0〉
with creation operators. For example b1

†b2
†b5

†|0〉 is a state with a fermion in each of the
states u1, u2, u5. Such a state is antisymmetric under particle exchange, and the particles
obey Fermi–Dirac statistics.

In the case of an assembly of non-interacting fermions, the Hamiltonian operator is

H0 =
∑

i

bi
†biεi , (C.11)

and in the Heisenberg representation

bi (t) = e−iεi t bi , bi
†(t) = eiεi t bi

†. (C.12)

Problems

C.1 With rescaling of coordinates,

P = p/(mhω)1/2, X = x(mω/h)1/2,

the simple harmonic oscillator Hamiltonian

H = (p2/2m) + (mω2x2/2)

becomes

H = (hω/2)(P2 + X2),

and

[X, P] = i

Show that if a = (1/
√

2)(X + iP), a† = (1/
√

2)(X − iP), then

[a, a†] = 1 and H = (a†a + 1

2
)hω.

C.2 Show that the normalised ground state wave function of the simple harmonic oscillator
is (mω/πh)1/4 exp(−mωx2/2h).

C.3 Using the commutation relations for fermions show that the state bi
†|0〉 is an eigenstate

of Ni = bi
†bi with eigenvalue 1.

C.4 Show that the matrices

b =
(

0 1
0 0

)
and b† =

(
0 0
1 0

)

satisfy the commutation relations for fermion annihilation and creation operators.
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The parton model

D.1 Elastic electron scattering from nucleons

In the 1950s, experiments on elastic scattering of electrons from nucleon targets at rest in
the laboratory revealed the electric charge distribution in protons and neutrons, clearly
establishing the size of the nucleons.

The differential cross-section for the elastic scattering of electrons at high energies
from a Dirac particle of mass M and charge e may be calculated in QED. To leading order
in the fine-structure constant α = e2/4π, and neglecting the electron’s mass compared
with its energy, the differential cross-section for scattering from an unpolarised Dirac
particle, initially at rest in the laboratory frame, in which the scattered electron emerges at
an angle θ with respect to its incident direction, is

dσ

d�
= α2

4E2 sin4(θ/2)

(
E ′

E

) [
cos2(θ/2) + Q2

2M2
sin2(θ/2)

]
, (D.1)

where

(E, p) = initial electron energy-momentum four-vector,

(E ′, p′) = final electron energy-momentum four-vector,

qμ = (E − E ′, p − p′) = energy-momentum transfer,

Q2 = −qμqμ = (p − p′)2 − (E − E ′)2.

(See, for example, Gross, 1993, p. 294.)
Note that Q2 is Lorentz invariant. For elastic scattering at a given energy, the angle θ

determines, through energy and momentum conservation, all other quantities in the
expression. For example,

Q2 = 4E E ′ sin2(θ/2), (D.2)

where the energy E′ is given by

M(E − E ′) − 2E E ′ sin2(θ/2) = 0 (D.3)

(Problem D.1).
Taking M to be the proton mass, the formula (D.1) does not fit the experimental data

and, indeed, since the proton has an anomalous magnetic moment ≈ 1.79(eh/2M), we
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would not expect a fit. More generally, the elastic scattering from an unpolarised
‘extended’ proton is of the form

dσ

d�
= α2

4E2 sin4(θ/2)

(
E ′

E

) [{
f 2
1 (Q2) + Q2

4M2
f 2
2 (Q2)

}
cos2 (θ/2)

+ Q2

2M2
{ f1(Q2) + f2(Q2)}2 sin2(θ/2)

]
. (D.4)

The form of this expression is essentially determined given the proton has spin 1/2 and
no electric dipole moment. f1(Q2) is called the Dirac form factor of the proton, and
f2(Q2) is the form factor associated with the anomalous magnetic moment. At
Q = 0, f1(0) = 1 and f2(0) ≈ 1.79 (corresponding to the anomalous moment). The
electric and magnetic form factors

G E (Q2) = f1(Q2) − Q2

4M2
f2 (Q2), (D.5)

G M (Q2) = f1(Q2) + f2(Q2), (D.6)

can be interpreted in the non-relativistic limit as Fourier transforms of the electric charge
and magnetic moment distributions in the proton (Problem D.2). It is from their
experimental determination that the size of the proton is inferred. Both f1(Q2) and f2(Q2)
fall off rapidly as Q2 increases (Fig. D.1). Similar form factors can be defined, and
determined experimentally, for the neutron (using scattering data from deuterium targets).
The analysis is consistent with the quark model. Since the electric charge is carried by the
quarks, the charge and magnetic moment distribution should trace the distributions of
quark charge and quark magnetic moment.

D.2 Inelastic electron scattering from nucleons: the parton model

The early elastic scattering experiments were performed at electron energies ≤ 500 MeV.
Scattering at higher energies has thrown more light on the behaviour of quarks in
nucleons, and revealed properties that will continue to be crucial for pursuing particle
physics at the even higher energies of the future. Except where Q2 is small, inelastic
scattering, which involves hadron production, becomes the dominant mode at higher
energies. In the case of inelastic scattering, θ and E ′ are independent variables. In general,
there are many other independent variables that describe the final hadronic system, but the
very important differential cross-section d2σ/dE ′d�, called the inclusive cross-section,
includes all the possible final hadronic states.

At the electron–proton collider HERA at Hamburg a beam of 30 GeV electrons meets a
beam of 820 GeV protons head on. Many features of the ensuing electron–proton
collisions are described by the parton model. which was introduced by Feynman in 1969.

In the parton model each proton in the beam is regarded as a system of sub-particles,
called partons. These are quarks, antiquarks and gluons. Quarks and antiquarks are the
partons that carry electric charge. The proton’s energy and momentum Pμ is envisaged as
being distributed over the different parton types i with certain probability distributions.
The mean number of partons of type i in the proton carrying energy and momentum in the
range x Pμ, (x + dx)Pμ, 0 < x < 1, is written pi (x)dx . Here the label i covers all types
of quarks, antiquarks and gluons (u, ū, d, d̄, s, s̄, etc.). Scaling both energy and momentum
by the same factor ensures that all the partons have the velocity of the proton. Any
transverse momentum a parton may have is neglected. Thus, in the model, each proton in
the HERA beam is regarded as a sub-beam of partons. The consequences of the model for
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Figure D.1 This figure shows the measured magnetic dipole form factor of the
proton. The data are quite well represented by the simple expression

GM(Q2) = μp

[
1

1 + Q2/β2

]2

with μp = 2.79, β = 0.84 GeV. This curve is shown.

For Q2 < 3 GeV2, GE = (Q2)GM(Q2)/μP but for Q2 > 5 GeV2 only GM(Q2)
can be measured with accuracy (see Coward et al., 1968).

the inclusive cross-section can be most easily demonstrated in the rest frame of the proton.
In this frame, a parton with energy–momentum fraction x will behave like a particle of
mass xM at rest. For Q2 < M2

w the dominant scattering will be electromagnetic scattering
from the charged partons: the spin 1/2 quarks and antiquarks. For the elastic scattering
from a parton of type i with effective mass xM we have

d2σ i

dE ′d�
= (x M)E

E ′ δ{(E ′ − E)(x M) + 2E E ′ sin2(θ/2)}
(

dσ i

d�

)
elastic

, (D.7)
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where (dσ i/d�)elastic is of the form given by (D.4), but with M replaced by (xM), and α2

by q2
i α2 where q2

i = (1/3)2 or (2/3)2 depending on the type of parton. On integrating over
E ′, the δ-function in (D.7) picks out the energy for elastic scattering through an angle θ , as
required by the condition (D.3) with (xM) in place of M.
(Note that δ(aE ′ − b) = (E ′/b)δ(E ′ − b/a), a > 0)). If we define

ν = E − E ′

then
d2σ i

dE ′ d�
= (x M)E

E ′ δ{(x M)ν − Q2/2}
(

dσ i

d�

)
elastic

. (D.8)

Averaging over a large number of collisions, and assuming that the partons scatter
incoherently, the inclusive cross-section in the parton model is

d2σ

dE ′ d�
=

∫
(x M)E

E ′ δ{(x M)ν − Q2/2}
(∑

i

pi (x)

(
dσ i

d�

)
elastic

)
dx

= x

ν

E

E ′
∑

i

pi (x)

(
dσ i

d�

)
elastic

, (D.9)

where

x = Q2/2Mν, (D.10)

and the sum is over all types of charged partons. Finally, inserting explicitly the general
elastic scattering formula (D.4)

d2σ

dE ′d�
= α2

2M E2 sin4(θ/2)

[
M

2ν
F2(x, Q2) cos2(θ/2) + F1(x, Q2) sin2(θ/2)

]
(D.11)

where

F2(x, Q2) = x
∑

i

pi (x)q2
i

{(
f i
1

)2 + ν

2Mx

(
f i
2

)2
}

, (D.12)

F1(x, Q2) = 1

2

∑
i

pi (x)q2
i

{(
f i
1

) + (
f i
2

)}2
(D.13)

(using (D.10), Q2/4x2 M2 = ν/2Mx).
In fact the form (D.11) for the inclusive cross-section, in terms of two structure

functions F1(x, Q2) and F2(x, Q2), is quite general, and does not depend on the model we
have introduced.

The wavelength h/Q is a measure of the scale on which the structure of the proton is
explored in an electron scattering experiment. For low Q, such that h/Q is large compared
with the size of the proton, we can anticipate that the electron is scattered coherently from
the proton as a whole. It is at high Q that the parton model becomes interesting. For Q2 > a
few GeV2, incoherent parton scattering seems to dominate, and the quarks and antiquarks
in the proton apparently behave almost like free elementary particles: their anomalous
moments can be neglected and we can set f i

2 = 0. Then from (D.12) and (D.13)

F2(x, Q2) = 2x F1(x, Q2). (D.14)

This, the Callen–Gross relation, is well satisfied experimentally.
If the charged partons are structureless Dirac particles, f i

1 = 1 for all Q2, so that

F2(x, Q2) = x
∑

i

pi (x)q2
i = F2(x), (D.15)

F1(x, Q2) = 1

2

∑
i

pi (x)q2
i = F1(x), (D.16)
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Figure D.2 An illustration of a muon neutrino converting to a muon on scattering
from a d quark in a nuclean. The illustration indicates three ‘valence quarks’. In
fact there is additional scattering from quark–antiquark pairs that are generated by
the gluon field.

and both F2 and F1 depend only on the dimensionless parameter x = Q2/2Mν. This is
Bjorken scaling.

F2(x, Q2) is illustrated in Fig. 17.3 over a wide range of values of Q2 and x. It can be
seen that the naı̈ve parton model is not strictly correct, but that the Q2 dependence is weak
compared with that of the elastic form factor of the proton (Fig. D.1). It is usual to rewrite
(D.12) as

F2(x, Q2) = x
∑

i

pi (x, Q2)q2
i , (D.17)

associating the Q2 dependence with the parton distribution itself rather than with the
parton form factor. (See the discussion of the Altarelli–Parisi equations of QCD in Section
17.3.)

To determine the individual parton distributions pi (x, Q2) introduced in equation
(D.17) requires more information than is contained in the proton structure functions alone.
The neutron has been investigated using deuteron targets, and, using the isospin symmetry
between the neutron and proton (u ↔ d, ū ↔ d̄), the neutron data give further
independent information. The weak interaction between quarks and leptons is described in
Chapter 14. Neutrino and antineutrino inclusive cross-sections on proton and deuteron
targets (Fig. D.2) give a further four independent relationships, so that, neglecting the
contributions of heavier quarks, the individual u, d, s, ū, d̄, s̄ parton distributions can be
estimated. In this approximation, (D.17) becomes

F2(x) ≈ 4

9
[xu(x) + xū(x)] + 1

9
[xd(x) + xd̄(x) + xs(x) + xs̄(x)], (D.18)

where u(x) = pu(x), etc.
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Figure D.3 Curve 1 is of x(u(x) − ū(x)) (see equation (D.18)). u(x) − ū(x) is
called the valence u quark distribution function. Curve 2 is x(d(x) − d̄(x)), (d(x) −
d̄(x)), the valence d quark distribution function.

Curve 3 illustrates the sea quark distribution. Neglecting the generation of cc̄,
bb̄ and tt̄ pairs, curve 3 is of x(ū(x) + d̄(x) + s̄(x)).

Figure D.3 shows acceptable sets of parton distributions for the proton at Q2 = 5 GeV2

and at Q2 = 104 GeV2. With the present precision of the data these curves can be taken
only as a fair indication of their forms. They have been constructed to satisfy the condition
that the total parton charge is equal to e:

∑
i

∫ 1

0

qi pi (x) dx = 1,

but it is important to note that the charged partons carry only about one half of the total
proton momentum:

∑
i

∫
xpi (x) dx ≈ 1/2.

The remainder is presumably carried by the electrically neutral gluons.
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D.3 Hadronic states

The basic idea of the naı̈ve parton model is that at high Q2 an electron scatters from a free
elementary quark or antiquark, and the scattering process is completed before the recoiling
quark has time to interact with its environment of quarks, antiquarks and gluons. Thus in
the calculation of the inclusive cross-section the final hadronic states do not appear.

In the model, at large Q2 both the electron and the struck quark are deflected through
large angles. Figure 1.10 shows an example of an event from the ZEUS detector at HERA.
The transverse momentum of the scattered electron is balanced by a jet of hadrons that can
be associated with the recoiling quark. Another jet, the ‘proton remnant’ jet is confined to
small angles with respect to the proton beam. Events like these give further strong support
to the parton model.

The ‘deep inelastic’ scattering data, when interpreted within the parton model, require
the nucleon to have some ū and d̄ content, and also to contain ss̄ quark-antiquark pairs
(Fig. D.3). How is this to be reconciled with the simple quark model of nucleons at rest
that we used in Chapter 1? A quark of the ‘three quark’ model of a nucleon, often called a
constituent quark, is to be regarded as an elementary quark dressed with the strong
interaction field, which will itself induce fluctuating quark–antiquark pairs. The quarks in
the parton model are to be regarded as more like elementary quarks.

In quantum field theory, it is a non-trivial matter to make a Lorentz transformation on
the internal wave function of a complex interacting system like a nucleon. The quark and
gluon content of a proton are frame dependent. Because of time dilation, the time scale of
the internal dynamics of the nucleon becomes long in a frame in which its momentum is
large, and in this frame the parton distribution will be fixed over the time of interaction
with an electron in a deep inelastic scattering experiment. The parton distributions in the
model are taken to represent the distributions in this ‘infinite momentum’ frame.

Problems

D.1 Verify equations (D.2) and (D.3).

D.2 In quantum mechanics, the differential cross-section for the elastic scattering of an
electron with energy E � me from a fixed electrostatic potential φ (r ) is given in
Born approximation, and neglecting the effects of electron spin, by

dσ

d�
=

(
E

2π

)2 (
e
∫

φ (r ) eiq·rd3x
)2

,

where q is the difference between the initial and final wave vectors of the electron.

a. Show that q = |q| = 2E sin (θ/2), where θ is the scattering angle.

b. Poisson’s equation relates the potential φ (r ) to the charge density ρ(r ) by ∇2φ =
−ρ. Noting that ∇2eiq·r = −q2eiq·r, and integrating by parts, show that

dσ

d�
=

(
E

2π

)2 1

q4

(
e
∫

ρ (r ) eiq·rd3x
)2

.

Thus a measured cross-section can be used to infer the Fourier transform of the charge
distribution, as this simple example illustrates.

D.3 Taking Q2 and ν as independent variables instead of E′ and θ , show that

d2σ

dE ′d�
= 1

2π

d2σ

dE ′ d(cos θ )
= E E ′

π

d2σ

dQ2dν
.



Appendix E

Mass matrices and mixing

E.1 Ko and K̄o

A phenomenological description of the time development of an electrically charged
meson |P〉 at rest is given by the equation

i
d

dt
|P〉 = [m − (i/2) �] |P〉 (E.1)

with its solution

|P (t)〉 = |P (0)〉e−imt−(1/2)�t

Here, m is the meson mass, � is the decay rate and 1/� is the mean life of the meson.
Electrically neutral mesons, for example Ko(ds̄) and Bo(db̄), which have a distinct

antimeson, in this example K̄o(sd̄) and B̄o(bd̄), can mix so that (E.1) becomes two coupled
equations. For Ko and K̄o these are

i
d

dt

( |Ko〉
|K̄o〉

)
=

(
m − (i/2) � −p2

−q2 m − (i/2) �

) ( |Ko〉
|K̄o〉

)
(E.2)

p2 and q2 are two complex numbers. We can regard the 2 × 2 mass matrix as an
‘effective’ Hamiltonian Hweak. The equality of the diagonal elements of Hweak is
guaranteed by CPT invariance. The weak interaction generates the off-diagonal elements

〈Ko|Hweak|K̄o〉 = −p2, 〈K̄o|Hweak|Ko〉 = −q2.

Contributions to p2 and q2 are illustrated in Fig. E.1.
By substitution into (E.2) it can be seen that the eigenstates of Hweak are

|KS〉 = N [p|Ko〉 + q|K̄o〉] (E.3)

and

|KL〉 = N [p|Ko〉 − q|K̄o〉] (E.4)

with eigenvalues m − i�/2 − pq and m − i�/2 + pq respectively. N = (|p|2 + |q|2)−1/2

is a normalising factor. We choose the sign of the square root, pq =
√

p2q2, so that
Im(pq) is positive; then KL has a longer mean life than KS.

The mass difference �m = 2Real(pq) (from experiment �m ≈ 3 × 10−12 MeV). We
shall identify m with the mean mass of KS and KL. The mean lives are
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Ko Ko

s dq i

Vis

〈K°⏐Hweak⏐K°〉

Vid
*

Vjd
* Vj s

q jd s

Ko Ko

s dq i

Vis
* Vid

Vj d Vjs
*

q jd s

〈K°⏐Hweak⏐K°〉

Figure E.1 Quark diagrams illustrating how the weak interaction with W bosons
generates mixing. qi , and q j are any of the (2/3)e charged quarks u, c or t. The
mixing matrix elements are proportional to the products of the four KM factors in
the diagrams.

τL ≈ 1

� − 2 Im(pq)
and τS = 1

� + 2 Im(pq)
(from experiment

τL ≈ 5 × 10−8 s, τS ≈ 10−10 s.) The subscripts L and S refer to the long and short lives.
From lattice estimations of the bound state wave functions and other QCD

modifications, p2 and q2 can be calculated by perturbation theory in the weak interaction.
Fig.E.1 illustrates the fact that because some of the KM factors Vis, etc. are complex
numbers, p and q are not equal. As a consequence neither |KL〉 nor |KS〉 is an eigenstate of
CP. See Section (18.4).

E.2 Bo and B̄o

The neutral B meson pair Bo and B̄o mix by the same mechanism as the neutral K mesons.
The parameters m, �, p2 and q2 take, of course, different values.

For the B pair Im(pq) is much smaller than � so that the two mean lives are almost
equal. There are two particles of different mass:

|BL〉 = N [p|Bo〉 + q|B̄o〉],
|BH〉 = N [p|Bo〉 − q|B̄o〉].

The subscripts L and H refer to their masses: light and heavy.
For BoB̄o mixing it is a fortunate circumstance that the top quark qi = t, q̄ j = t̄ gives

the dominant contribution to p2 and q2, p2 is proportional to (VtbV ∗
td)2 and q2 is

proportional to (V ∗
tbVtd)2 (see Fig. E. 1) Calculations result in the expressions

p = √
mBm t

G F

4π
fB FttVtbV ∗

td,

q = √
mBm t

G F

4π
fB FttV

∗
tbVtd.

(E.5)

(Donoghue et al., 1992, p. 395.)
All other contributions are smaller by factors of (mc/m t)

2, mB is the B meson mass,
fB ≈ 0.3 GeV is its ‘leptonic decay constant’ and Ftt is a dimensionless number, real to a
very good approximation.

With Ftt real, Im(pq) = 0, and BL and BH have the same mean life. Within
experimental error this is seen to be so. Also |p| = |q| and p = |p|eiβ q = |p|e−iβ.
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(See the unitarity triangle, Fig. 18.2). Hence

|BL〉 = 1√
2

[
eiβ

∣∣Bo
〉 + e−iβ

∣∣B̄o
〉]

|BH〉 = 1√
2

[
eiβ

∣∣Bo
〉 − e−iβ

∣∣B̄o
〉]

.

(E.6)

A BL meson or a BH meson, at rest, develop independently with time

|BL(t)〉 = |BL (o)〉 e−i(m−�m/2)t−t/2τ ,

|BH(t)〉 = |BH (o)〉 e−i(m+�m/2)t−t/2τ .

After some algebra it then follows that an initial Bo or B̄o develops in time into a mixture
denoted by

|Bo
phy(t)〉 =

[
cos

(
�mt

2

)
|Bo〉 + ie−2iβsin

(
�mt

2

)
|B̄o〉

]
e−imt−t/2τ

|B̄o
phy(t)〉 =

[
ie2iβsin

(
�mt

2

)
|Bo〉 + cos

(
�mt

2

)
|B̄o〉

]
e−imt−t/2τ.

(E.7)

If the meson decays at time t, to a final state |f〉 the decay amplitude for an initial Bo will
be

〈f|Bo
phy(t)〉 =

[
cos

(
�mt

2

)
Af + ie−2iβsin

(
�mt

2

)
Āf

]
e−imt−t/2τ

and an initial Bo

〈f|B̄o
phy(t)〉 =

[
ie2iβsin

(
�mt

2

)
Af + cos

(
�mt

2

)
Āf

]
e−imt−t/2τ . (E.8)

Af = 〈f|Bo
phy〉 and Āf = 〈f|B̄o

phy〉 are the amplitudes for the decays Bo → f and B̄o → f. If

the charge parity (CP) of f is +1 then it does not couple to the CP = −1 state (Bo − B̄o);
hence Af = Āf. The decay rates are then

Rate
(
Bo

phy(t) → f
) = |Af|2e−t/τ [1 + sin(2β)sin(mt)]

Rate
(
B̄o

phy(t) → f
) = |Af|2e−t/τ [1 − sin(2β)sin(mt)].

(E.9)

If f has C P = −1 the same expression results but with the + and − signs interchanged.
At Cleo, Babar and Belle, Bo and B̄o mesons are produced in pairs. If one undergoes a

leptonic decay with a negative charge lepton it must have been a B̄o, its partner, at that
instant is a Bo and it is the time dependence of this second decay that is measured.

Similarly a positive charge lepton identifies a Bo decay that leaves its partner an initial
B̄o. This procedure is called tagging. The mass difference �m and sin 2β are measured by
tracking the time dependence of tagged mesons.

The formulae for p2 and q2 for Ko, K̄o follow the same pattern as for B decays but the
top quark contributions are highly suppressed by very small KM factors. c and u quarks
contribute significantly and the simplicity for B mesons is lost.
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Hints to selected problems

Chapter 2

2.1 a′
μ = gμρa′ρ = gμρ Lρ

λaλ = gμρ Lρ
λgλνaν . Hence a′

μ = Lμ
νaν where Lμ

ν =
gμρ Lρ

λgλν . In particular, L0
1 = g00L0

1g11 = −L0
1.

2.2 a′μ = Lμ
νaν . Multiply on the left by Lμ

ρ · Lμ
ρa′μ = Lμ

ρ Lμ
νaν = aρ, or aμ =

a
′ν Lν

μ. Similarly, aμ = a′
ν Lν

μ.

2.3 dφ = ∂φ

∂xμ
dxμ = ∂φ

∂x ′ν dx ′ν = ∂φ

∂x ′ν Lν
μdxμ. Since the dxμ are arbitrary,

∂φ

∂xμ
= ∂φ

∂x ′ν Lν
μ.

This is a covariant vector field transformation (Problem 2.2).

2.4
det

(
Lμ

ν
) = det(gμρ) det

(
Lρ

λ

)
det(gλν)

= (−1)2 det
(
Lρ

λ

)
.

From (2.14), det(Lμ
ν) det(Lμ

ρ) det
(
δν

ρ

) = 1. The result follows.

2.6 Note that if det L1 = 1 and det L2 = 1 then det L1 det L2 = 1.

2.7 δ′μ
ν = Lμ

ρ Lν
λδ

ρ
λ = Lμ

ρ Lν
ρ = δμ

ν using Problem 2.2.

2.8 Using (2.3), ω′ = ω cosh θ − k sinh θ
= ω(cosh θ − sinh θ ) since ω = k
= e−θω.

Since υ/c = tanh θ , the result follows.

2.9 Jacobian is det(∂x ′μ/∂xν) = det(Lμ
ν) = 1.

2.10 The operation of space inversion can be written as xμ
′ = Pν

μxν . Then the tensor
εμνλρ , transforms as

ε′
μνλρ = Pα

μ Pβ
ν Pγ

λ Pδ
ρ εαβγ δ

= εμνλρ det P = −εμνλρ.
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Chapter 3

3.1 Let xi (i = 1, ..., 3N ) be the Cartesian coordinates of the particles. Since xi =
xi (q), ẋi = (∂xi/∂q j ) q̇ j . Then T = (m/2)ẋi ẋi = (m/2)(∂xi/∂q j )(∂xi/∂qk)q̇ j q̇k .

3.2 dE

dt
=

∫ [
φ̇

∂

∂t

(
∂L

∂φ̇

)
+ ∂L

∂φ̇
φ̈ − ∂L

∂φ̇
φ̈ − ∂L

∂φ′ φ̇
′
]

dx .

Integrate by parts the term −(∂L/∂φ′)(∂φ̇/∂x) and use (3.12).

3.4 Use orthogonality and the dispersion relation (3.20). Note that H and Pi form a

contravariant four-vector (H, P).

3.5 Varying ψ∗,

δS =
∫

δL dt d3x

=
∫ [

−(1/2i)

(
δψ∗ ∂ψ

∂t
− ∂(δψ∗)

∂t
ψ

)

− (1/2m)∇(δψ∗) · ∇ψ − δψ∗V ψ
]

dt d3x.

Integrating by parts the terms involving ∂(δψ∗)/∂t and ∇(δψ∗) gives

δS =
∫ [

−(1/i)
∂ψ

∂t
+ (1/2m)∇2ψ − V ψ

]
δψ∗dt d3x.

Since this is true for any δψ∗, the integrand must vanish. Hence

i
∂ψ

∂t
= −(1/2m)∇2ψ + V ψ.

Chapter 4

4.1 L = −(1/4)Fμν Fμν − Jμ Aμ. From (4.16), F01 = −Ex = −F01, F12 = −B2 = F12,

etc.

4.2 A → A′ = A − ∇χ . We require ∇ · A′ = ∇ · (A − ∇χ ) = f − ∇2χ = 0. The solu-

tion is

χ (r, t) = − 1

4π

∫
f (r′, t)

|r − r′|d3r′.

4.3 F̃01 = (ε0123 F23 + ε0132 F32)/2

= (F23 − F32)/2 = (−Bx − Bx )/2 = −Bx , etc.

4.4 A = 1√
2ωV

[
(εx + iεy)ei(kz−ωt) + (εx − iεy)e−i(kz−ωt)

]

= 1√
2ωV

[2 cos(kz − ωt), −2 sin(kz − ωt), 0] ,

E = −∂A
∂t

=
√

2ω

V
[sin(ωt − kz), − cos(ωt − kz), 0] .

By inspection, on any plane of fixed z, E rotates in a positive sense about the z-axis.
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4.5 If the fields vanish at infinity, a term ∂i (A0 F0i ) = ∂μ(A0 F0μ) does not contribute to

the energy. Thus the energy density is not unique, and we may take

T 0
0 = −F0μ∂0 Aμ + ∂μ(A0 F0μ) + 1

4
Fμν Fμν

= −F0μ(∂0 Aμ − ∂μ A0) + 1

4
Fμν Fμν,

since in free space ∂μF0μ = 0 by (4.8),

= −F0μF0μ + 1

4
Fμν Fμν.

4.6 L = 1
2
mẋ2 − qφ + qẋ · A, pi = (∂L/∂ ẋ i ) = mẋi + q Ai are the generalised

momenta. The equation of motion (dpi/dt) = (∂L/∂xi ) is

mẍi + q(∂ Ai/∂t) + q(∂ Ai/∂x j )ẋ j = −q(∂φ/∂xi ) + qẋ j (∂ A j/∂xi ),

giving

mẍi = q[−(∂φ/∂xi ) − q(∂ Ai/∂t)] − q Fi j ẋ j

(noting ∂ i = −∂/∂xi , and definition (4.6)). Taking i = 1,

mẍ = q(Ex − F12 ẏ − F13 ż)

= q(Ex + ẏ Bz − ż By),

and similarly for the other components.

H (p, x) = pi ẋ i − L
= p · (p − qA)/m − [(p − qA)2/2m − qφ + q(p − qA) · A/m]

= (p − qA)2/2m + qφ.

4.7
∫

L dt = ∫
(γ L) dτ , where dτ = dt/γ is Lorentz invariant (see (2.5); τ is the ‘proper

time’). Hence the result.

Chapter 5

5.3 Under the transformations (5.19) and (5.20),

ψ
′†
R ψ ′

L = ψ
†
RN†MψL = ψ

†
RψL,

ψ
′†
L ψ ′

R = ψ
†
LM†NψR = ψ

′†
L ψR,

ψ
′†
R σμψ ′

R = ψ
†
RN†σμNψR = Lμ

νψRσ νψR,

ψ
′†
L σ̃ μψ ′

L = ψ
†
LM†σ̃ μMψL = Lμ

νψ
†
Lσ̃ νψL,

ψ ′
Rσμσ̃ νψ ′

L = ψ
†
RM†σμMN†σ νNψL

(
since MN† = I

)
= Lμ

λLμ
ρψ

†
Rσλσ̃ ρψL, etc.

5.4 Using (5.28), (5.31) becomes

ψ†β (iβ∂0 + iβαi∂i − m) ψ = ψ† (i∂0 + iαi∂i − βm) ψ since β2 = I.
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5.6
iψ̄γ 5ψ = i

(
ψ

†
L, ψ

†
R

)( 0 σ 0

σ 0 0

)(−σ 0 0
0 σ 0

)(
ψL

ψR

)

= i
(
ψ

†
LψR − ψ

†
RψL

)
.

This is invariant under proper Lorentz transformations, but changes sign under the

parity operation (5.27).

5.7 The results follow from the definitions (5.30) and (5.4).

Chapter 6
6.1

ψ
†
+ψ+ = 1

2
(〈+ | e−θ/2, 〈+ | eθ/2)

(
e−θ/2| + 〉
eθ/2| + 〉

)

= 1

2
[e−θ 〈+ | +〉 + eθ 〈+ | + 〉]

= cosh θ = γ = E/m.

From (6.14), probability of right-handed mode

= eθ

eθ + e−θ
= eθ

2 cosh θ
= 1

2

(
1 + v

c

)
, since tanh θ = v

c
.

6.3 u†
+(p)u+(p) = 1

2
(eθ + e−θ ) = cosh θ = E/m, etc.

u†
+(p)u−(p) = 0 since 〈+ | −〉 = 0.

Note that

σ ·p̂| + 〉 = | + 〉 and σ ·p̂| − 〉 = − | − 〉
implies

σ ·(−p̂) | + 〉 = − | + 〉 and σ ·(−p̂) | − 〉 = | − 〉.
6.5 | + 〉 and | − 〉 are evidently normalised, and by direct substitution and the use of

trigonometric identities, σ ·p | + 〉 = | + 〉,σ ·p | − 〉 = − | − 〉.

Chapter 7

7.1 This follows using the orthogonality properties of plane waves and those derived in

Problem 6.3.

7.2 For example,

ψc
+ = −iγ 2ψ∗

+ =
(

i/
√

2
)

e−i(pz−Et)

(
0 −σ 2

σ 2 0

) (
e−θ/2 |+〉
eθ/2 |+〉

)

and σ 2 |+〉 = i |−〉, giving

ψc
+ =

(
1/

√
2
)

e−i(pz−Et)

(
eθ/2 |−〉

−e−θ/2 |−〉
)

.
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7.3 Under the parity operation,

ψL → ψR, σ̃ μ∂μ → σμ∂μ,

from (5.26) and (5.27). Under charge conjugation,

ψR → iσ 2ψ∗
L.

Hence under the combined operations,

iψ
†
Lσ̃ μ∂μψL → iψT

L σ 2σμσ 2∂μψ∗
L = −i∂μψ

†
L(σ 2σμσ 2)TψL

(recall the – sign that must be introduced when spinor fields are interchanged). But(
σ 2σμσ 2

)T = σ̃ μ.

Finally, integrating by parts in the action yields the Lagrangian density iψ
†
Lσ̃ μ∂μψL.

7.4 ψR → ψ ′
R = NψR by (5.20).

iσ 2ψ∗
R

→ iσ 2N∗ψ∗
R
.

But σ 2N∗ = Mσ 2. This is true for M and N given by (5.24), and holds in general.

7.5 Varying Φ∗ in the action gives

δS =
∫

{−[(i∂μ + q Aμ)δΦ∗][(i∂μ − q Aμ)Φ] − m2δΦ∗Φ} dt d3x

=
∫

δΦ∗{(i∂μ − q Aμ)(i∂μ − q Aμ)Φ − m2Φ} dt d3x,

after integrating by parts. Since this holds for any δ�∗, the Klein–Gordon equation

follows.

7.6 If Φ → eiαΦ with α = α(x) small,

(i∂μ + q Aμ)(eiαΦ) = eiα(i∂μ + q Aμ)Φ − (∂μα)eiαΦ

δS =
∫

{−(∂μα)Φ∗[(i∂μ − q Aμ)Φ] + [(i∂μ + q Aμ)Φ∗](δμα)Φ} dt d3x

=
∫

α(x)∂μ{Φ∗[(i∂μ − q Aμ)Φ] − [(i∂μ + q Aμ)Φ∗]Φ} dt d3x,

after integrating by parts. Hence the current

jμ = i[Φ∗(∂μΦ) − (∂μΦ∗)Φ] − 2q AμΦ∗Φ

is conserved, as is also q jμ. (Note that q jμ = −∂L/∂ Aμ is the electromagnetic

current.)
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7.7 Verify by direct calculation, e.g. for positive helicity and taking μ = 3,

q j3 = −eψ+γ 0γ 3ψ

= − (e/2)
(
e−θ/2〈+|, eθ/2〈+|)

(−σ 3 0

0 σ 3

) (
e−θ/2 |+〉
eθ/2 |+〉

)

= −e sinh θ, since σ 3 |+〉 = | +〉.
7.8 This follows since the electric field lines are reversed in direction, E → E′ = −E.

7.9 Assuming ρ(t) → ρ ′(t′) = ρ(−t), Maxwell’s equations retain the same form if E →
E′ = E, B → B′ = −B, J → J′ = −J, or equivalently

φ → φ′ = φ, A → A′ = −A.

Taking the complex conjugate of (7.6) and multiplying on the left by γ 1γ 3 gives

γ 1γ 3[γ μ∗(−i∂μ − q Aμ) − m]ψ∗ = 0.

Now

γ 1γ 3
(
γ 0

)∗ = γ 1γ 3γ 0 = γ 0γ 1γ 3,

γ 1γ 3
(
γ i

)∗ = −γ iγ 1γ 3 for i = 1, 2, 3,

and the result follows.

Chapter 8

8.3 If an e+e− pair is created there is a frame of reference (the centre of mass frame)

in which the total momentum of the pair is zero. The photon would also have zero

momentum in this frame and hence zero energy: energy conservation would be vio-

lated.

Chapter 9

9.1 Conservation of energy gives mπ = Ee + Eν. Conservation of momentum gives pe =
pν . Also

Eν = pν, Ee
2 = pe

2 + me
2, υe = pe/Ee.

Hence

(mπ − pe)2 = Ee
2 = pe

2 + me
2, pe = mπ

2 − me
2

2mπ

.

Then

Ee = mπ − pe = mπ
2 + me

2

2mπ

,

1

2

(
1 − υ

c

)
= 1

2

(
1 − mπ

2 − me
2

mπ
2 + me

2

)
= me

2

mπ
2 + me

2
.
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9.2 Final energy E = Ee + Eν = Ee + pe

dE

dpe

= dEe

dpe

+ 1 = Pe

Ee

+ 1 = Ee + Pe

Ee

= Mπ

Ee

.

9.3 Using Problem (9.1),

(
1 − υe

c

)
pe

2 Ee = me
2

4mπ
3

= (
mπ

2 − me
2
)2

,

with a similar expression for the μ leptons.

9.4 Since the pion is at rest, only the term ∂Φ/∂t contributes. From (3.35), there is a

factor in Lint arising from this:

1√
V

(−imπ)√
2mπ

a0.

From Problem 6.5, the ν̄ factor is

1√
V

d†
p′e

i(−p′ ·r) |−〉p′ .

From (6.24), the e†L factor is

1√
V

√
me

E p
b†

pei(−p·r) 1√
2

e−θ/2 〈+|p .

(Only this helicity term contributes.)

Integrating over volume gives p′ = −p and a volume factor V, so that, for a

given p,

〈
ep, ν̄−p |V (0)| π−〉 = (−i)√

V

√
mπ

2

√
me

Ee

απ√
2

e−θ/2.

(Note that |−〉−p = |+〉p.)

Hence the transition rate s is obtained. The factor 4π in the density of states comes

from summing over all directions of p. Also (Ee/me) = cosh θ and e−θ / cosh θ =
(1 − tanh θ ) = (1 − υ/c).

9.7 G F ≈
(

192π3

τmμ
5

)1/2

= 1.164 × 10−5(GeV)−2.

9.8 The square of the centre of mass energy

s = (Ee + Eν)2 − (pe + pν)2

is Lorentz invariant. In the electron’s rest frame

s = (me + Eν)2 − p2
ν = m2

e + 2me Eν.

9.9 The expression (9.8) contains the term

−2
√

2GFgμνe†Lσ̃ μνeLν
†
eLσ̃ νeL.
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The expression (9.15) contains the term(
GF/

√
2
)

gμνν
†
μLσ̃ μνμLψ̄eγ

ν(cv − cAγ 5)ψe.

9.10 τ (K → μν̄μ)

τ (K → eν̄e)
= m2

e(m2
K − m2

e)2

m2
μ(m2

K − m2
μ)2

= 2.57 × 10−5

1

τ (K → μν̄μ)
= αK

2

4π

(
1 − υμ

c

)
pμ

2 Eμ (cf. (9.3)),

where
(

1 − υμ

c

)
p2

μEμ = mμ
2

4mK
2

(mK
2 − mμ

2)2

(cf. Problem 9.3).

This gives αK = 5.82 × 10−10 MeV−1, and απ = 2.09 × 10−9 (text), giving

αK/απ = 0.28.

9.11 Consider the decay τ− → π− + ντ . The term in Lint that generates the decay is

ν
†
τLσ̃ μτL∂μΦ†.

Consider the τ to be at rest with its spin aligned along the z-axis, and the neutrino

momentum to be p. The pion momentum is then (−p), and the interaction energy

contains a term

απ√
V

i√
2Eπ

a†
π (−p) b†

ν (p) bτ (0) 〈−|p
(
σ o Eπ − σ · p

) 1√
2

(
1

0

)
.

Now 〈−|p (σ 0 Eπ − σ ·p) = 〈−|p (Eπ + pν) = 〈−|p mτ , and from Problem 6.5,

〈−|p = (− sin(θ/2)eiφ, cos(θ/2)) where θ and φ are the polar angles of p.

Hence

〈
π−p, νp |V | τ 〉 = − απ√

V

i√
2Eπ

mτ

1√
2

sin (θ/2) eiφ.

The decay rate is

1

τ
= 2π

∫
|〈 f | V |i〉|2 p (mτ) d�

where

p (mτ ) = V

(2π )3

(
m

τ

2 − mπ
2
)2

4mτ
2

Eπ

mτ

,

and the angular integration gives a factor 2π.

Chapter 10

10.1 The term −(m2/2φ0
2)

√
2φ0χψ2 links the χ and ψ fields, and m = mχ/

√
2. Since

the ψ particles are massless, the final energy E = 2p, and the density of states factor
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for the decay is

ρ(E) = V

(2π )3
4πp2 dp

dE
where

dp

dE
= 1

2
,

and the factor 4π comes from the angular integration.

In the matrix element 〈p, −p|V |χ at rest〉, the χ field gives a factor 1/
√

2mχ from

the expansion (3.21), and each of the ψ fields gives a factor 1/
√

2p. Hence

2π |〈p|V |i〉|2ρ(E) = 2π
mχ

4

8φ0
2

1

2mχ

1

4p2

4πp2

(2π )3

1

2

= mχ

128π

(
mχ

φ0

)2

.

10.2 The decay of an isolated vector boson requires a term in Lint linear in Aμ. There is

a term (
√

2φ0q2)Aμ Aμh that allows the decay of the scalar boson if energy conser-

vation can be satisfied, i.e. mh = √
2m > 2

(√
2qφ0

)
.

Chapter 11

11.1 The term UWU† satisfies (UWU†)† = UWU† and Tr(UWU†) =
Tr(U†UW) = Tr(W) = 0.

Noting that (α̂ · τ )2= I and (∂μα j )α j= 0 since α jα j = 1, the term

(2i/g2)(∂μU)U† may be written as a linear combination of the matrices τ j

with real coefficients. Each τ j is Hermitian and has zero trace.

11.3 The last term may be written as (g2
2φ0

2/4)(Wμ
1W 1μ + Wμ

2W 2μ), and in the absence

of electromagnetic fields the term that precedes it can be handled similarly. There

are therefore two independent fields each with mass g2φ0/
√

2 (cf. Section 4.9).

11.4 The interaction Lagrangian density (11.32) contains a term g2
2/

√
2)hW −

μ W +μ cou-

pling the h field and the charged W fields.
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11.5 Consider

U = cos αI + i sin ατ · α̂ (see B.9).

Then

U∗= cos αI − i sin α(τ 1α̂1 − τ 2α̂2 + τ 3α̂3)

and

τ 2U∗ = [cos αI + i sin α(τ 1α̂1 + τ 2α̂2 + τ 3α̂3)]τ 2

using

τ 2τ 1 = −τ 1τ 2, τ 2τ 3 = −τ 3τ 2.

Hence

iτ 2U∗ = U(iτ 2) and iτ 2 =
(

0 1

−1 0

)
.

The result follows.

11.6 Using (B.9).

U = cos αI + sin α(sin φτ 1 + cos φτ 2)

=
(

cos α i sin α(sin φ − i cos φ)

i sin α(sin φ + i cos φ) cos α

)
.

Chapter 12

12.2 Take the two fields to be

L =
(

L1

L2

)
.

To maintain local gauge invariance, the dynamical term in the Lagrangian density

must be L†σ̃ μi(∂μ + i(g2/2)Wμ)L.

There are terms which mix L1 and L2, for example,

−(g2/2)L1
†σ̃ μ(Wμ

1 − iWμ
2)L2

= −(g2/2)L1
†σ̃ μL2Wμ

†.

The operator Wμ
† destroys electric charge e, so that to conserve charge L1

†σ̃ μL2,

must create charge e.

12.3 The Higgs particle at rest has zero momentum and zero angular momentum. Hence

the e+ and e− have opposite momentum. If they had opposite helicities, they would

have to carry orbital angular momentum with a component +1 or −1 along their

direction of motion, to conserve angular momentum. This is not possible since

p · (r × p) = 0.

The final density of momentum states is

ρ(E) = V

(2π )3
4π pe

2 dpe

dE
.
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The final energy E = 2Ee,where Ee
2 = me

2 pe
2. Hence

dpe

dE
= 1

2

dpe

dEe

= Ee

2pe

, and p(E) = V

(2π )2
pe Ee.

The interaction term in (12.9) is −(ce

√
2)hψ̄ψ . From (6.24) and (3.21), this gives

〈 f |V |i〉 = 1√
V

1√
2mH

me

Ee

[μ̄+(p)v+(−p)]

or

[μ̄−(p)v−(−p)].

Now μ̄±(p)v±(−p) = sinh θ , and Ee/me = cosh θ . Hence the decay rate to positive

helicities is

2π |〈 f |V |i〉|2ρ(E) = 2π
ce

2

2

1

2mH

tanh2 θ
1

(2π )2
pe Ee.

Also tan θ = ve/c = pe/Ee and Ee = mH/2. The decay rate to negative helicities is

the same, and the result follows.

12.4 Since cτ > cμ > ce (see (12.13)) the decay to τ+τ− dominates in the leptonic partial

width. Also, since the Higgs mass is much greater than the τ mass, vτ ≈ c. Hence

�

mH

≈ c2
τ

16π
= 1

16π

(
mτ

φ 0

)2

.

Chapter 13

13.1 In the rest frame of the W, and neglecting the lepton mass, p1 = −pv, El = pl =
Mw/2, and pi

2 = Mw
2/4 = px

2 + py
2 + pz

2. Taking the x-axis to be the beam direc-

tion, the mean square transverse momentum is

px
2 + py

2 = (2/3)pl
2 = Mw

2/6.

13.2 From (12.23), the Zμ is produced by right-handed electron fields with a cou-

pling e tan θw = 2 e sin2 θw/ sin(2θw) and by left-handed fields with a coupling

−e cos(2θw)/ sin(2θw). In head-on collisions at high energies the right-handed com-

ponent of the electron (positron) has positive (negative) helicity. Hence the total spin

is +1 along the electron beam direction. The spin of the left-handed components is

opposite. For unpolarised beams the left-handed and right-handed components are

equally populated, and the result follows.

13.3 Consider the decay W− → e− + ν̄e in the W− rest frame. With no loss of general-

ity we may take the W− to have J = 1, Jz = 0 (see Section 4.9). The interaction

Lagrangian density responsible for the decay is (from (12.15) and (12.16))

L = −(g2/
√

2) j3W −
3 .



Hints to selected problems 261

If the electron has momentum p, the neutrino has momentum −p. Neglecting the

electron mass (see Problem 6.5) the matrix element for the decay is

〈 f | V |i〉 = g2√
2

1√
2MwV

〈−| σ 3 |+〉 .

(Recall σ ·p |−〉 = − |−〉 ,σ · (−p) |+〉 = − |+〉.) Also, from Problem 6.6,

〈−| σ 3 |+〉 = − sin θeiφ . The decay rate is

� = 2π

∫
| 〈 f | V |i〉 |2d�

V

(2π )
3 pe

2 dpe

dE

where dpe/dE = 1/2, pe = Mw/2, giving

� = g2
2

48π
Mw = GF Mw

3

6π
√

2
, by (12.22).

The decay rate for Z → νν̄ requires a similar calculation, with Mw replaced

by Mz and the coupling constant g2/
√

2 replaced by e/ sin 2θw = g2/2 cos θw =
g2 Mz/2Mw. (We have used (12.23), (11.38) and (11.37a).) Then

�(Z → νν̄) = GF M3
z

12π
√

2
.

There are two terms in (12.23) contributing to �(Z → e+e−), yielding

�(Z → e+e−) = �(Z → νν̄)[(2 sin2 θw)2 + (cos 2θw)2].

13.4 83.86 MeV.

Chapter 14

14.3 Under an SU(2) transformation, and from Appendix A.2

(�TεL) → (�TU TεUL)

U TεU =
[

UAA UB A

UAB UB B

] [
0 1

−1 0

] [
UAA UAB

UB A UB B

]
=

[
0 Det(U )

−Det(U ) 0

]

= (Det(U ))ε

= ε, since Det(U) = 1. Hence (ΦTU TεUL) = (ΦTεL)

14.4 From (11.23),

Φ =
(

0

φ0 +h/
√

2

)
.

Inserting this in (14.6) gives the coupling terms

− (1/
√

2)
∑

[Gd
i j d

†
Li dR j h + Hermitian conjugate.

Similar terms arise from (14.9) and (14.10). Using the true quark masses these

become

− (1/
√

2φ0)
∑

[md
i (d†

LidRi + d†
RidLi) + mu

i (u†
LiuRi + u†

RiuLi)]h.
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The coupling to the top quark is

ct = mt√
2φ0

≈ 180 GeV√
2 × 180 GeV

≈ 0.7.

14.5 For K+ → μ+ + νμ, the terms

sL
†σ̃ μuLV ∗

us from jμ, νμL
†σ̃ μμL from jμ†

contribute in the second order of perturbation theory. (See (a).)

For D+ → K 0 + e+ + νe,

s†Lσ̃ μcLV ∗
cs from jμ, ν

†
eLσ̃ μeL from jμ†. (See (b).)

For B† → D̄0 + π †,

b†
Lσ̃ μcLV ∗

cb from jμ, u†
Lσ̃ μdLVud from jμ†. (See (c).)
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14.6

Chapter 15

15.1 The decay rate for Z → dd̄ of (15.3) can be compared with the decay rate for

Z → e+e− of (13.3), calculated in the answer to Problem 13.3. Comparing the inter-

action Lagrangian densities (12.23) and (14.14), the term in the left-handed coupling

cos 2θw = 1 − 2 sin2 θw is replaced by (1 − (2/3) sin2 θw), and in the right-handed

coupling 2 sin2 θw is replaced by (2/3) sin2 θw. Including a colour factor of 3 and

replacing sin2 θw by (1/3) sin2 θw in the rate (13.3) gives the rate (15.3).

Similarly for Z → uū. Comparing (12.23) with (14.14), sin2 θw is replaced by

(2/3) sin2 θw.

The decay rate W+ → ui d̄ j of (15.6) can be compared with the rate W+ → e+νe

of (13.2) calculated in the answer to Problem 13.3. Comparing the interactions

(12.18) and (14.20), g2/
√

2 is replaced by eVi j/
√

2 sin θw = g2Vi j/
√

2. Including

the colour factor of 3, the rate (15.6) follows from the rate (13.2).

Chapter 16

16.1 Gμν = ∂μGν − ∂νGμ + ig(GμGν − GνGμ)

= (∂μGa
ν − ∂νGa

μ)(λa/2)

+ i(g/4)
(

Gb
μGc

νλbλc − Gc
νGb

μλcλb

)
,

and

(λbλc − λcλb) = 2i fbcaλa (see (B.27)).

Hence

Gμν = [(∂μGa
ν − ∂νGa

μ) − g fabcGb
μGc

ν](λa/2).

16.2 These are the terms in (16.9) cubic and quadratic in the G fields.
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16.3 Variation of Ga
ν gives

δS =
∫ [

− (1/2)GaμνδGa
μν − g

∑
f

q̄ f γ
νδGa

ν (λa/2)q f

]
d4x,

and

−(1/2)GaμνδGa
μν = −Gaμν∂μ(δGa

ν ) + gGcμνGb
μδGa

ν fcba .

(There are two equal contributions to the right-hand side.) Integrating by parts gives

δS =
∫ [

∂μGaμν − gGcμνGb
μ fabc − g

∑
f

q̄ f γ
ν(λa/2)q f

]
δGa

ν d4x

( fcba = − fabc).

Since the δGa
ν are arbitrary (16.14) is obtained.

16.4 Q2/4m2 = e12x2/e2 = e3π/α = 10560.

2m ∼ 1 MeV, Q2 ∼ 10560 (MeV)2.

16.5 Take Q·r = Qr cos θ and d3Q = Q2dQ d(cos θ )dφ where (Q, θ, φ) are the polar

coordinates of Q, with r taken to be (0, 0, r).

Chapter 18

18.1

From (14.15), the interaction terms in ūdW+ and ūsW+ contain factors Vud and

Vus, respectively. Problem (9.10) shows αK/απ ≈ 0.28. Setting this equal to Vus/Vud

gives sin θ12 ≈ 0.27.
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18.2 The internal wave function of two pions at r1 and r2 in an S state is a function of

only |r1−r2| and |r1−r2| is invariant under both C and P. Hence

CP
∣∣π0π0

〉 = ∣∣π0π0
〉

and CP
∣∣π+π−〉 = ∣∣π+π−〉

.

18.3 The internal wave function of three pions at r1, r2, r3, depends only on two relative

coordinates, say r12 = r2 − r1 and r23 = r3 − r2. To be invariant under rotations (J =
0) the internal wave function can be a function of only three scalars: r12 · r12, r12 · r23,

and r23 · r23. These are invariant under C and P. Since the intrinsic parity of the π0

is negative,

C P
∣∣π0π0π0

〉 = − ∣∣π0π0π0
〉
.

18.4 The area of the triangle formed by the origin and the points r1= (x1, y1, 0) and

r2= (x2, y2, 0) is

(1/2)|r1 × r2| = (1/2)|x1 y2−x2 y2)|
= (1/2)|Im(z∗

1z2)|,

where z1 = x1 + iy1, z2 = x2 + iy2. Hence the area of the unitary triangle is

(1/2)|Im(V∗
ud VubVcd V ∗

cb)| = J/2.

18.5 All the complex numbers zi are transformed to z1
i = ei(θd−θb)zi and the triangle is

rotated through an angle (θd − θb).

Chapter 19

19.2 (a) (U ∗
β jUα jUβiU ∗

αi ) = (U ∗
βiUαiUβ jU ∗

α j )
∗ hence

Im(U ∗
β jUα jUβiU ∗

αi ) = −Im(U ∗
βiUαiUβ jU ∗

α j ).

(b) Since U is unitary,∑
i

Fβαi j = Im(∂αβUβ jU ∗
α j ) = Im(|Uα j |2) = 0.

As two examples Fβα12 + Fβα32 = 0 and Fβα13 + Fβα23 = 0.

Hence Fβα12 + Fβα23 = Fβα31.

(c) ∑
i> j

Fμei j sin(
�m2

i j L

2E
) = −J

[
sin(

�m2
21L

2E
) + sin(

�m2
32L

2E
)

− sin(
(�m2

21 + �m2
32)L

2E
)

]

and the result follows.

Chapter 21

21.1 Let
(
iσ 2 ν∗)† σμ ∂μ

(
iσ 2 ν∗) = E

Inserting explicit spinor indices

E = νiσ
2
i jσ

μ

jkσ
2
kl∂μν∗

l , (repeated indices summed).
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But from the algebra of Pauli matrices σ 2
i jσ

μ

jkσ
2
kl = σ̃

μ

li . Taking account of the

anticommuting spinor fields E = −∂μν∗
l σ̃

μ

li νi . and discarding a total derivative that

makes no contribution to the action

E = ν∗
l σ̃

μ

li ∂μνi = ν†σ̃ μ∂μν.

21.2 Inserting explicit spinor indices

νT
ασ 2νβ = ναiσ

2
i jνβ j = −ναiσ

2
j iνβ j = νβ jσ

2
j iναi = νT

β σ 2να.

21.3 From (21.15)

U M
β j U M∗

α j = U D
β j e

i� j U D∗
α j e−i� j = U D

β j U D∗
α j .

Appendix A

A.1 The equation holds for αβ . . . ν = 1, 2, . . . , n. Interchanging, say, α and β is equiv-

alent to interchanging column i with column j, and gives the same sign change.

A.3 M = (M + M†)/2 + i(M − M†)/2i. (M + M†)/2 is Hermitian, as is (M − M†)/2i.

A and B, and hence M, can be diagonalised by the same transformation if and only if

AB − BA = 0, i.e. (M + M†)(M − M†) − (M − M†)(M + M†) = 0

or

M†M − MM† = 0.

(This condition is satisfied if M is unitary.)

A.4 Since (MM†)† = MM†, we can find U1 such that U1(MM†)U†
1 = MD

2. MD
2 has

diagonal elements ≥ 0, since MD
2 = U1M(U1M)†. Thus we can choose MD with

real diagonal elements ≥ 0. If none are zero, MD can be inverted. We may then define

H = U1
†MDU1 = H†, and V = H−1M.

Hence

VV† = H−1MM†H−1 since (H−1)† = H−1

= H−1U1
†MD

2U1H−1

= U1
†MD

−1U1U1
†MD

2U1U1
†MD

−1U1

= I, since U1U1
† = I.

Thus V is unitary, as is U1V = U2.

Finally, M = HV = U1
†MDU1V = U†

1MDU2.

Appendix B

B.1 A unitary transformation, H → H′ = VHV† = HD, say, also diagonalises each term

of U and hence

U → U′ = VUV† = UD = exp(iHD).
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det U = det UD =
∏

n

exp i(HD)nn

= exp
[
i
∑

n

(HD)nn

]
= exp[iTr HD].

But TrHD = TrH. Hence if Tr H = 0, det U = 1.

B.2 The SU(2) matrices corresponding to R01(θ ) and R02(θ ) are respectively

(
cos(θ/2) i sin(θ/2)

i sin(θ/2) cos(θ/2)

)
and

(
cos(θ/2) sin(θ/2)

−sin(θ/2) cos(θ/2)

)

and the correspondence can be checked directly.

B.3 From equation (B.5), using (B.12) and Problem B.2, R(ψ, θ, φ) corresponds to the

product

(
eiψ/2 0

0 e−iψ/2

) (
cos(θ/2) sin(θ/2)

−sin(θ/2) cos(θ/2)

) (
eiφ/2 0

0 e−iφ/2

)
.

B.4 Under a Lorentz transformation, l → l′ = Ml, r → r′ = Nr.

Hence

l†σ̃ μσ νr → l†M†σ̃ μσ νNr
= l†M†σ̃ μMN†σ νNr since MN† = I
= l†Lμ

λσ̃
λLν

ρσ
ρr from (B.17) and (B.18)

= Lμ
λLν

ρ(l†σ̃ λσ ρr).

It is easy to verify that

σ̃ μσ ν + σ̃ νσμ =
⎧⎨
⎩

0 if μ �= ν,

2 if μ = ν = 0,

−2 if μν = i ; i = 1, 2, 3.

B.5 Equation (B.10) gives

X(x) = xiσ i

X′(x ′) = x ′iσ i = Ri
j x

jσ i .

Also X′ = UXU† = Ux jσ j U†. The x j are arbitrary. Hence Uσ j U† = Ri
jσ

i . Multi-

plying on the left by σ k and taking the trace,

Tr(σ kUσ j U†) = Ri
j Tr(σ kσ i ).

Now

Tr(σ kσ i ) =
{

2 if k = i,
0 if k �= i.

Hence the result.
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B.6 From (B.17), M†σ̃ μM = Lμ
λ σ̃ λ. Multiplying on the left by σ̃ ν and taking the trace,

the result follows, since

Tr(σ̃ ν σ̃ λ) =
{

2 if λ = ν,

0 if λ �= ν.

Appendix C

C.2 The ground state is given by a|0〉 = 0, or (X + iP)|0〉 = 0. In the Schrödinger rep-

resentation. P = −id/dX , so that (X + d/dX )ψ0 = 0, giving ψ0 = Ae−X2

/2, where

the constant A is determined by normalisation.

C.3 Ni bi
†|0〉 = bi

†bi bi
†|0〉

= bi
†(1 − bi

†bi )|0〉 = bi
†|0〉.

Appendix D

D.1 Q2 = (p − p′)2 − (E − E ′)2

= (p2 − E2) + (p′2 − E ′2) − 2p·p′ + 2EE′.

But E2 = p2 + m2, E ′2 = p′2 + m2, so that, neglecting electron masses,

Q2 = −2pp′ cos θ + 2EE′ = 2EE′(1 − cos θ ) = 4EE′ sin2(θ/2).

The energy and momentum of the recoil proton are given by E p = M +
E − E ′, P = p − p′; also Ep

2 = M2 + P2. Hence

Q2 = p2 − (E − E ′)2

= (M + E − E ′)2 − M2 − (E − E ′)2

= 2M(E − E ′)

so that (D.3) follows.

D.3 Q2 = 2EE′(1 − cos θ )

ν = E − E ′

dQ2dν = ∂(Q2, ν)

∂(cos θ, E ′)
d(cos θ )dE ′

where the Jacobian of the transformation is∣∣∣∣−2EE′ 2E(1 − cos θ )

0 −1

∣∣∣∣ = 2EE′.

Hence the result.
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