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Preface

Elementary particle physics has made remarkable progress in the past ten
years. We now have, for the first time, a comprehensive theory of particle
interactions. One can argue that it gives a complete and correct description of
all non-gravitational physics. This theory is based on the principle of gauge
symmetry. Strong, weak, and electromagnetic interactions are all gauge
interactions. The importance of a knowledge of gauge theory to anyone
interested in modern high energy physics can scarcely be overstated.
Regardless of the ultimate correctness of every detail of this theory, it is the
framework within which new theoretical and experimental advances will be
interpreted in the foreseeable future.

The aim of this book is to provide student and researcher with a practical
introduction to some of the principal ideas in gauge theories and their
applications to elementary particle physics. Wherever. possible we avoid
intricate mathematical proofs and rely on heuristic arguments and illustrative
examples. We have also taken particular care to include in the derivations
intermediate steps which are usually omitted in more specialized communi-
cations. Some well-known results are derived anew, in a way more accessible
to a non-expert.

The book is not intended as an exhaustive survey. However, it should
adequately provide the general background necessary for a serious student
who wishes to specialize in the field of elementary particle theory. We also
hope that experimental physicists with interest in some general aspects of
gauge theory will find parts of the book useful.

The material is based primarily on a set of notes for the graduate courses
taught by one of us (L.F.L.) over the past six years at the Carnegie-Mellon
University and on lectures delivered at the 1981 Hefei (China) Summer
School on Particle Physics (Li 1981). It is augmented by material covered in
seminars given by the other author (T.P.C.) at the University of Minnesota
and elsewhere. These notes have been considerably amplified, reorganized,
and their scope expanded. In this text we shall assume that the reader has had
some exposure to quantum field theory. She or he should also be moderately
familiar with the phenomenology of high energy physics. In practical terms
we have in mind as a typical reader an advanced graduate student in
theoretical physics; it is also our hope that some researchers will use the book
as a convenient guide to topics that they wish to look up.

Modern gauge theory may be described as being a ‘radically conservative
theory’ in the sense used by J. A. Wheeler (see Wilczek 1982b). Thus, one
extrapolates a few fundamental principles as far as one can, accepting some
‘paradoxes’ that fall short of contradiction. Here we take as axioms the
principles of locality, causality, and renormalizability. We discover that a
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certain class of relativistic quantum field theory, i.e. the gauge theory,
contains unexpected richness (Higgs phenomena, asymptotic freedom,
confinement, anomalies, etc.), which is necessary for an understanding of
elementary particle interactions. And yet, this does not occasion any revision
of the basic principles of relativity and quantum mechanics. Thus the
prerequisite for the study of gauge theory is just the traditional preparation in
advanced quantum mechanics and quantum field theory, especially the
prototype gauge theory of quantum electrodynamics (QED).

The book is organized in two parts. Part I contains material that can be
characterized as being ‘pre-gauge theory’. In Chapters 1, 2, and 3 the basics
of relativisitic quantum field theory (quantization and renormalization) are
reviewed, using the simple A¢* theory as an illustrative example. In Chapters
4 and 5 we present the elements of group theory, the quark model, and chiral
symmetry. The interrelationship of the above main topics—renormalization
and symmetry—is then studied in Chapter 6. The argument that quarks are
the basic constituents of hadrons is further strengthened by the discovery of
Bjorken scaling. Scaling and the quark—parton model are described in
Chapter 7. These results paved the way for the great synthesis of particle
interaction theories in the framework of the non-Abelian gauge theories,
which is treated in Part I1. After the classical and quantized versions of gauge
theories are discussed in Chapters 8 and 9, we are then ready for the core
chapters of this book—Chapters 10-14—where gauge theories of quantum
chromodynamics (QCD), quantum flavourdynamics (QFD), and grand
unification (GUT) are presented. As a further illustration of the richness of
the gauge theory structure we exhibit its nonperturbative solutions in the
form of magnetic monopoles and instantons in Chapters 15 and 16.

We have also included at the end of the book two appendices. In Appendix
A one can find the conventions and normalizations used in this book.
Appendix B contains a practical guide to the derivation of Feynman rules as
well as a summary of the propagators and vertices for the most commonly
used theories—the 1¢*, Yukawa, QCD, and the (R, gauge) standard model
of the electroweak interaction.

In the table of contents we have marked sections and chapters to indicate
whether they are an essential part (unmarked), or details that may be omitted
upon a first reading (marked by an asterisk), or introductions to advanced
topics that are somewhat outside the book’s main line of development
(marked by a dagger). From our experience the material covered in the
unmarked sections is sufficient for a one-semester course on the gauge theory
of particle physics. Without omitting the marked sections, the book as a
whole is adequate for a two-semester course. It should also be pointed out
that although we have organized the sections according to their logical
interconnection there is no need (it is in fact unproductive!) for the reader to
strictly follow the order of our presentation. For example, §1.2 on path
integral quantization can be postponed until Chapter 9 where it will be used
for the first time when we quantize the gauge theories. As we anticipate a
readership of rather diverse background and interests, we urge each reader to
study the table of contents carefully before launching into a study pro-
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gramme. A certain amount of repetition is deliberately built into the book so
that the reader can pick and choose different sections without any serious
problems. An experimentally inclined reader, who is not particularly
interested in the formal aspects of relativistic quantum field theory, can skip
Chapters 1, 2, 3, and 6 on quantization and renormalization. After an
introductory study of group theory and the quark model in Chapters 4, 5,
and 7 she or he should proceed directly to the parts of Chapters 8, 10, 11, 12,
14, etc. where a general introduction to and applications of gauge theory
can be found.

The sections on references and bibliography at the end of the book
represent some of the commonly cited references that we ourselves are
familiar with. They are not a comprehensive listing. We apologize to our
colleagues who have been inadequately referenced. Our hope is that we have
provided a sufficient set so that an interested reader can use it to go on to find
further reviews and research articles.

It is a pleasure to acknowledge the aid we have received from our
colleagues and students; many have made helpful comments about the
preliminary version of the book. We are very grateful to Professor Mahiko
Suzuki who undertook a critical reading of the manuscript, and also to
Professors James Bjorken, Sidney Drell, Jonathan Rosner, and Lincoln
Wolfenstein for having encouraged us to begin the conversion of the lecture
notes into a book. One of us (T.P.C.) would like to thank the National
Science Foundation, UMSL Summer Research Fellowship Committee, and
the Weldon Spring Endowment for support. During various stages of
working on this project he has enjoyed the hospitality of the theoretical
physics groups at the Lawrence Berkeley Laboratory, the Stanford Linear
Accelerator Center and the University of Minnesota. L.F.L. would like to
thank the Institute for Theoretical Physics at the University of California—
Santa Barbara for hospitality and the Department of Energy and the Alfred
P. Sloan Foundation for support. Finally, we also gratefully acknowledge the
encouragement and help given by our wives throughout this project. And, we
are much indebted to Ms Susan Swyers for the painstaking task of typing this
manuscript. Other technical assistance by Ms Tina Ramey and Mr Jerry
McClure is also much appreciated.

Note added in proof. As this manuscript was being readied for publication we
received the news that the CERN UA1 and UA2 groups have observed events
in pp collisions which may be interpreted as the production of an
intermediate vector boson W with a mass approximately 80 GeV. Also, the
Irvine-Michigan—-Brookhaven collaboration reported a preliminary result
setting a lower bound for the lifetime 7(p — e* 7% > 6.5 x 103! years.

St. Louis and Pittsburgh T.P.C.
September 1982 LF.L.
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Basics in field quantization

The dynamics of a classical field ¢(x) are determined by the Lagrangian
density £(¢, 0,¢) through the action principle

55 =0 (1.1)

where S is the action
S = fd“xﬁ(gb, 0,9).

This extremization leads to the Euler—Lagrange equation of motion

o 3297
"o0,9) 0

To quantize a system we can adopt either of two equivalent approaches.
The canonical formalism involves the identification of the true dynamical
variables of the system. They are taken to be operators and are postulated to
satisfy the canonical commutation relations. The Hamiltonian of the system
is constructed and used to find the time evolution of the system. This allows
us to compute the transition amplitude from the state at an initial time to the
state at final time. Alternatively, we can use the Feynman path-integral
formalism to describe the quantum system. Here the transition amplitude is
expressed directly as the sum (a functional integral) over all possible paths
between the initial and final states, weighted by the exponential of i times the
action (in units of the Planck’s constant %) for the particular path. Thus in the
classical limit (A — 0) the integrand oscillates greatly, making a negligible
contribution to the integral except along the stationary path selected by the
action principle of eqn (1.1).

In this chapter we present an elementary study of field quantization. First
we review the more familiar canonical quantization procedure and its
perturbative solutions in the form of Feynman rules. Since we will find that
gauge field theories are most easily quantized using the path-integral
formalism we will present an introduction to this technique (and its
connection to Feynman rules) in §1.2. For the most part the simplest case of
the self-interacting scalar particle will be used as the illustrative example;
path-integral formalism for fermions will be presented in §1.3.

Since the path-integral formalism will not be used until Chapter 9 when we
quantize the gauge fields, the reader may wish to postpone the study of §§1.2
and 1.3 until then. It should also be pointed out that even for gauge theories
we shall use these two quantization formalisms in an intermixed fashion. By
this we mean that we will use whatever language is most convenient for the
task at hand, regardless of whether it implies path-integral or canonical

(1.2)



4 Basics in field quantization 1.1

quantization. For example, in the discussion of the short-distance pheno-
mena in Chapter 10, we continue to use the language of ‘operator product
expansion’ even though strictly speaking this implies canonical quantization.
The reader is also referred to Appendix B at the end of the book where one
can find a practical guide to derivation of Feynman rules via path-integral
formalism.

1.1 Review of canonical quantization formalism

We assume familiarity with the transition from a classical nonrelativistic
particle system to the corresponding quantum system. The Schrédinger
equation is obtained after we replace the canonical variables by operators
and the Poisson brackets by commutators. These operators act on the
Hilbert space of square integrable functions (the wavefunctions), and they
satisfy equations of motion which are formally identical to the classical
equations of motion.

A relativistic field may be quantized by a similar procedure. For a system
described by the Lagrangian density £(¢, 0,¢), the field ¢(x) satisfies the
classical equation of motion given in eqn (1.2). We obtain the corresponding
quantum system by imposing the canonical commutation relations at equal
time

[n(x, 1), p(x', )] = —i63(x — x')
[n(x, 1), n(x', )] = [$(x, 1), (X', )] = 0 (1.3)

where the conjugate momentum is defined by

0¥
n(x) = 6(60¢). (1.4)
The Hamiltonian
H = J d3x[n(x) dop(x) — L(x)] (1.5)
governs the dynamics of the system
0op(x, 1) = i[H, ¢(x, 1)]
Oom(x, t) = i[H, n(x, 1)]. (1.6)

Example 1.1. Free scalar field. Given the Lagrangian density
& = 3[(0:9)@*¢) — 1> ¢*1,
eqn (1.2) yields the Klein—-Gordon equation
(0 + p*)¢(x) = 0. (1.7)

In quantum field theory the field ¢(x) and its conjugate momentum operators
given by eqn (1.4), m(x) = dy¢(x), satisfy the canonical commutation
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relations
[000(x, 1), d(X', )] = —i6>(x — X')
[009(x, 1), God(X', )] = [P(xX, 1), p(X', )] = 0. (1.8)

The Hamiltonian is given by

H, = J d*x3[(009)* + (Vo) + 12¢?]. (1.9)

The time evolution equation (1.6), which is basically Hamilton’s equation of
motion, can be cast in the form of (1.7). Thus the field operator ¢(x) formally
satisfies the Klein-Gordon equation. This simple non-interacting case can be
solved and we have

d*k . .
00 = j a2 LW €+ alk) e (110)

where w, = (k* + u?)'/2. The coefficients of expansion a(k) and a'(k) are
operators. The canonical commutation relations of eqn (1.8) are transcribed
into

[a(k), a'(k')] = 6°(k — k')

[a(k), a(k)] = [a'(k), a"(k')] = O (L.11)

and the Hamiltonian of eqn (1.9) can be expressed as
H, = Jd3kwkaf(k)a(k) (1.12)

where we have discarded an irrelevant constant. Remembering the situation
of the harmonic oscillator, we see immediately that a(k) and a'(k) can be
interpreted as destruction and creation operators. Thus the one-particle state
with momentum k is given by the creation operator acting on the vacuum
state

k> = [27)*2w,]"?a"(k)|0) (1.13)
where the normalization is

K'k) = 2n)2w, 63k — K').

The product a'a has the usual interpretation as a number operator and eqn
(1.12) shows that H, is the Hamiltonian for a system of non-interacting
particles.

Given the solution, (1.10), and (1.11), we can easily calculate the Feynman
propagator function, which is the vacuum expectation value for a time-
ordered product of two fields,

iA(xy — x3) = <0|T(¢(x)p(x,))0>
= 0(t; — 12)<0lp(x1)P(x)I0> + O(r, — 1,)<O0lp(x;)p(x,)I0)

d*k i _ )
= (2713)4 K2 _uz +igexp{1k-(xl —xz)!- (114)
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Example 1.2. Scalar field with A¢* interaction. The Lagrangian density is
given by

% = @) — 1971~ 1 8"
the equation of motion is
@ + )60 = — 5 (). (1.15)
The conjugate momentum and canonical commutation relations are the

same as those for the free-field case in Example 1.1. The Hamiltonian is of the
form

H=H,+H (1.16)
where Hj is given by eqn (1.9) and
H' = Jd3x¢}f’
where
’ )' 4
H' = a0 ¢ (1.17)

is the interaction Hamiltonian density. Since the free-field theory is soluble
we can obtain transition amplitudes and matrix elements of physical interest
by a systematic expansion in A. This approximation scheme of perturbation
theory will be briefly outlined below.

In the usual Heisenberg picture the operators are time-dependent and the
time evolutions of the dynamical variables of the system are governed by the
Hamiltonian

d(x, 1) = e™'p(x, 0) e~
n(x, t) = e'n(x, 0) e,

The state vector |a) is time-independent. But, in the Schrédinger picture, the
operators are time-independent and state vectors carry time dependence.
They are related to those in the Heisenberg picture by

¢S(X) — e“i”’d>(x, t) eiHr
n3(x) = e H'n(x, t) e
la, 15 = e #Hg).

In perturbation theory we introduce another picture—the interaction
picture—with operators and states defined by

¢I(X, t) = eiH0r¢S(x) e-iHo'
- eiﬁot e‘i"’d)(x, t) eth e—iHot

= U(t, 0)p(x, YU (1, 0) (1.18)
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Similarly, for n'(x, ),
la, )! = ¥|a, 1)®
- U1, 0)la> (1.19)
where . .
U(t, 0) = eifol g (1.20)

is the unitary time-evolution operator. Since the operators in the interaction
picture (1.18) satisfy the (soluble) free-field equation

009 (x, t) = i[Hp, ¢'(x, )]

Oom'(x, 1) = i[Hp, T'(x, )], (1.21)
the dynamic problem in this language becomes that of finding the solution
for the U-matrix.

The time-evolution operator U can be defined more generally than in
(1.20),

la, ' = U, to)la, 10" (1.22)
where U(ty, ty) = 1 and satisfies the multiplication rule,
U@, 1)U, 1o) = U1, 1o)
U(t, O)U ™ Y(t5, 0) = U1, to). (1.23)
The equation of motion for the U-operator can be deduced from eqns (1.19)
and (1.20)
.0
15 U(t, to) = H'(HU(, t,) (1.24)
where
H/l — eiHOtHl e—iHOt
is the interaction Hamiltonian in the interaction picture, i.e.
H'"= H'(¢". (1.25)
Eqn (1.24) has the solution

t

Ult, ty) = Texp[—i Jdt,H"(tl)]

to
t

= Texpl:—i Jdtl fd%cﬁf"(xb tl)] (1.26)

to

which can be expanded in a power series
t t
v (=07 [ 4
U(t,t0)=1+z— dxl d.xZ...
p=1 p'
. to to

x J d*x, T () H () - H7'(x,). (1.27)

to
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Green’s functions in 1¢* theory. Next we need to translate this formal
perturbative solution into quantities that will have more direct physical
meaning.

In field theory we are interested in calculating Green’s function defined by

GO(xy, ..o, %) = OIT((xy), - . ., $(x,))I0) (1.28)

from which the S-matrix elements can be readily obtained. By a straightfor-
ward application of eqns (1.18), (1.23), and (1.26) we have

G(x, ..., x,) = U8, 0)T($'(x,) . .. $'(x,)

x exp[—i J dt’H"(t’):|)U(—t, 00>  (1.29)

-t
where ¢ is some reference time which we shall eventually let approach co. In
this limit the vacuum state becomes an eigenstate of the U-operator, and the
eigenvalue product of the two Us in (1.29) becomes

1

(0|T(exp|: —i Jw dt’H"(t'):DlO)

The effect of these two Us acting on the vacuum states is to take out ‘the
disconnected part’ of the vacuum expectation value (see, for example,
Bjorken and Drell 1965). Also, after we substitute the power series expansion
of (1.27), the n-point Green’s function with the notation of (1.25) takes on the
form

)= 3 O [ Ay, .. d4y, O, -y )

(1.30)

x H'(@' (1) ... H'(§'1,))I0D.. (1.31)

The subscript ¢ denotes ‘the connected part’. The terminology clearly reflects
features in the graphic representation of the Green’s function.

Consider the simplest example of a first-order (p = 1) term for a four-
point (n = 4) Green’s function in the theory with 5#'(¢) = 1/4! ¢* asin (1.17)

il
GPxy, .0 X4) = -:1—! [d“y(0IT(¢'(x1), s P[PPI, (1.32)

We then normal-order the entire time-ordered product by moving the
creation operators to the left of the annihilation operators and eliminating
those terms which end up with the annihilation operator on the right and/or
the creation operator on the left. After this application of Wick’s theorem
(1950) the connected part of the expression in (1.32) decomposes into a
product of two-point functions

GP(xy, .., x4) = (—i2) jd“y<0| T('(x1)' MNIXCOIT($'(x2)¢'())I0>
0IT(¢'(x3)' WNI0YOIT($'(x4)$' (VIO - (1.33)
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The original 4! factor in the denominator of (1.32) is cancelled because there
are a corresponding number of ways to contract the ¢'(x;)s with each field in
[¢'(»)]*. The interaction picture field obeying the free-field equation, the
propagator iA(x, y) = <0|T(¢'(x)®"(»))|0), is a known quantity and is given
by eqn (1.14). A graphic representation of the expression in (1.33) is shown in
Fig. 1.1.

X X;

X3 X4

FiG. 1.1. Graphic representation of eqn (1.33).

We next consider the example of the second-order term for the four-point
function, i.e. the p = 2, n = 4 term in eqn (1.31)

1 /—ir)?
G(24)(x1 ceXg) = N (—41'—> Jd4y1 d4y2<O|T(¢I(xl) e ¢I(X4)[¢I(J’1)]4
x [¢'(2)]1%10>. (1.34)

We then use Wick’s theorem to reduce it and keep only the connected parts,
GP(xy ... x4)

1
=51 (—iAy? jd“)’l d*y,[IA(y 1, y2)1P{[AGx1, y1) Axs, p1)]
X [Alx3, y2) Alxg, 7)1 + [A(x1, y1) Alxs, y)I[A(X2, y2) Alxy, y5)]
1
+ [A(x1, y1) Alxg, y1)I[A(X2, ¥2) Alxs, y2)]} + 2 (—id)? jd4)’1 d*y,

x [IAY 1, yO)IOAG 1, y2)H{AX L, 1) A(Xa, p2) A(Xs, 2) A(Xy, p2)
+ A(xy, y2) Alxz, y1) Alxs, p2) A(xy, y2) + Alxy, ¥2) Alx,, p2)

X A(x3, y1) A(xy, y2) + A(xy, y2) Alxy, p2) A(xs, ) Alx,, yl)}- (1.35)

The symmetry factor 2! in the first term on the right-hand side of (1.35) can
be understood as follows. The original factors of (1/2!)(1/4")? in eqn (1.34)
are cancelled by the permutation of y; and y, and by the multiple ways in
which we can attach the fields emanating out of each vertex. However, this is
an over-counting. Since there are two identical internal lines connecting a
pair of vertices, we need to divide out a factor of 2!. The factor 1/2 in the
second term of (1.35) has a different origin. It comes from the fact that an
internal line starts and terminates in the same vertex. Eqn (1.35) is shown
graphically in Fig. 1.2.
Similarly, for a first-order (p = 1) two-point (n = 2) function, we have
GP(xy, x) = -21,—/1 [d“y[iA(xny)][iA(y, MIOAGx,, )] (1.36)
as shown in Fig. 1.3.
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X1 X2 X X2 Xy X2
Y
Yy 82
b, 2 2

X3 X4 X3 Xy X3 Xy

X X X3

X3 X3

Fi1G. 1.2. Graphic representation of eqn (1.35).

Xy y X3

FiG. 1.3. Graphic representation of eqn (1.36).

Usually it is more convenient to work with Green’s function in momentum
space

QRr)*6*(py + ... + p)G™(py ... py) = JH d*x; e PG (x, ... x,)
=l (1.37)
and with the amputated Green’s function, which is related to G™(p;...p,)
by removing the propagators on external lines

n

Ganp(P1 - Pa) =

. 136y
where p; +p,+...p,=0. In fact for spin-0 particles the amputated
Green’s function is just the usual transition amplitude (the T-matrix element)
from which the cross-section can be directly computed.

—i

]G‘"’(m <+ Pn) (1.38)

Feynman rules of A¢* theory. The result of perturbation theory may be
conveniently summarized in terms of the Feynman rules for the transition
amplitude. With the s, = (1/4!)¢*(x) interaction, we have the following
prescription for calculating the N-point amputated Green’s function.

1. Draw all possible connected, topologically distinct, graphs with N
external lines;

2. For each internal line, put in the propagator factor

i) e A ()= — .

pl—pttie
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For each vertex,

(i) —il;

3. For each internal momentum / not fixed by momentum conservation at
each vertex, perform an integration | d*l/(2m)*;

4. Each graph has to be divided by a symmetry factor S corresponding to the
number of permutations of internal lines one can make for fixed vertices.

1.2 Introduction to path integral formalism

In the first section the canonical quantization procedure via operator
formalism was briefly reviewed. We have outlined the steps through which
the perturbative solution of an interacting field theory may be obtained in the
form of Feynman rules. In this section the same set of rules will be recovered
using the path-integral (PI) formalism (Dirac 1933; Feynman 1948a;
Schwinger 1951b). This alternative quantization approach has the advantage
of exhibiting a closer relationship to the classical dynamical description and
the manipulation involves only ordinary functions. This allows us to see
more clearly the effect of any nonlinear transformations on the fundamental
variables. Thus the PI formalism is particularly suited for handling
constrained systems such as gauge theories.

Quantum mechanics in one dimension

We first introduce the PI formalism in the simplest quantum-mechanical
system in one dimension. Generalization to field theory with infinite degrees
of freedom, together with its perturbative solution, will be presented in a later
part of this section.

In quantum mechanics a fundamental quantity is the transition matrix
element corresponding to the overlap between initial and final stages

{q'; t'lg; 1) = {q'le” Vg (1.39)

where the |g)s are eigenstates of the position operator Q in the Schrédinger
picture with eigenvalue ¢

Olgy = qlg> (1.40)

and the |g;¢>s on the left-hand side of (1.39) denote the states in the
Heisenberg picture, |g;¢> = e*|g). It should be remembered that the
Heisenberg-picture states do not carry time-dependance. The notation used
here means that the Heisenberg-picture states |¢; > and |¢’; ¢') in eqn (1.39)
coincide with two distinctive Schrodinger-picture states |g(¢)> and |¢'(¢)) at
time ¢ and ¢’ respectively. In the PI formalism the transformation matrix
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element of eqn (1.39) is written as a functional integral
v
q'5t1g;ty = N J[dq] exp{i j L(¢, 9) dr} (1.41)
t

where N is the normalization factor and L(g, ¢) is the Lagrangian. The
integration is performed in the function space ¢(¢). It represents the sum of
contributions over all paths that connect (g, ¢) and (¢’, t*), weighted by the
exponential of i times the action. In the following we will derive (1.41) using
the familiar canonical-operator formalism. The definition of the integration
measure [dq] will be given in eqns (1.50) and (1.51) and this should clarify the
meaning of the functional integral.

We first divide the interval (¢/,¢) intc n segments with space 6t =
(t' — t)/n. Then the transition amplitude in eqn (1.39) may be written

{g'le U Dgy = qul oo dg,_1<q e g,  Dgu-1l e H ¥ g, 0> ...

. Lgile™ % g) (1.42)

where we have inserted complete sets of eigenstates of the Schrdodinger
picture operator Q°. For sufficiently small ¢,

(g e™"*|g> = {qI[1 — iH(P, Q) 51]Ig)> + O(51)*. (1.43)

If the Hamiltonian has the form

2

H(P, Q) = % + 1(Q), (1.44)

then

, P q+4q ,
{q'|HP, D)g> =<q Iﬂ lg> + V<—2—> oq—4q')

dp
= [—* q Ip><p| . |q> +V<q “; 1 > JZn el —a)

dp ip(q'—q) q + q
J‘2TE 2m + 4 T2

We have used {q'lg> = 6(¢' — q) and {q|p) = €'P%. Also, symmetric ordering
of operators in V(Q) is assumed. Then

e o5

~ Jgp eiP@' ~a) o —i6H(p.q+4'[2) (1.45)
[
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Thus, H(p, g) is the classical Hamiltonian. Substituting into (1.42), we have

T dp, dp
’ H@' —1) ~ n
{q'le !q>_j<2n)"'(2n>qul'“dq"_l

x exp{i Y [pi(qi —qi-1) — &H(p"’&;iiﬂ}

i=1
(1.46)

The transition amplitude can then be written symbolically as

t

- dpd .
(q1e™" gy J [ ’;n"] exp{l Jdt[pq—H(p,.qn} (1.47)
([ (4 |
= nlirg J(%) e <Ep1r_> qul ...dg,-,
ol ) A2

The second line defines the path integral. We almost have the promised
result of eqn (1.41) if we can perform the momentum-space [dp/2n] =
IT! dp;/2n part of the path integral. The integrand being oscillatory, we
analytically continue it to Euclidean space by formally treating (i 6t) as real.
The Gaussian integral formula

dx —ax?+bx __ 1 b*/4a
J o = Jina e (1.49)

can then be used to obtain

dp; —idt , . _ m \'? im(g; — g;-1)*
on °"p[“2_m"’i +ipia; - q"“)} <2ni 5:) exp 21

In this way we have for eqn (1.48)

- ) m ‘n/2 n—1
’ —iH({t' -1t . o d .
(q'le lg> = lim <2ni 5:) J H as

n— o

.- m(q—qi-1\
* exp{l i; 5t[7< ot ) - V]} (1.50)

t

{g;tg's 1) ={qg'|e" ™ D|gy = N J[dq] exp{i J dr[inz— q* — V(q)]}

t

or

(1.51)
which is the stated result of eqn (1.41), where L = (mg*/2) — V(q).
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Green’s functions of one-dimensional quantum mechanics. We will next
translate the basic result of eqns (1.41) and (1.47) into forms that can be easily
generalized to PI formulae for Green’s functions in field theory.

Let us start with the simplest two-point function: the matrix element of a
time-ordered product between ground states,

G(t1, 1) = OIT(Q"(1,)Q"(t2))I0>

where |0)> denotes the ground state. Inserting complete sets of states,

Gy, 1) = qu dg'<0lq’s £ 3<q's *1T(Q"(t,)Q"(t2))lg; 1<q; 10> (1.52)

The matrix element
0lg; 1> = ¢o(q) €™ = ¢o(g, 1) (1.53)

is the wavefunction for the ground state. We next concentrate on the PI
formulation of {¢’; ¢|T(Q"(t,)Q"(t,))lg;t>. For t, >1t, (e, t' >t >
t, > t), we have

q's 'IT(Q"(t)Q"(t2))lgs 1) = (| e 1IQ3 ™M m 1) QS e M =12l g 3

B J<q’l e =g, 5 q,|Q° e 1g,

x {g,|0% e 2"g dg, dg,.

Taking eigenvalues in the Schrodinger picture and applying the basic PI
result of eqn (1.47), it follows that

@5 (ITQ"(t)Q (2 )lgs 1)
dp dq ' : .
= J[—zn ] q1(11)g,(12) exp{l J dtz[pq — H(p, q)]} (1.54)

A minute of thought will convince us that exactly the same PI formula holds
for the time sequence ¢, > ¢, (i.e.,, ¢’ > t, > t; > ). Thus eqn (1.54) is a
general result. Substituting eqns (1.54) and (1.53) into eqn (1.52) we have

G(ty, 1) = qu dq'do(q’, 1)P8(q, 1) J‘[@Z-gg] q1(t1)q2(t3)

X exp{i f dt[pg — H(p,q)]} (1.55)

t
or

dgd
Glty. 1) = J [—%}’]qso(q', )98, 00:(11)aa(12)

t

X exp{i j de[p4 — H(p, q)]}- (1.56)

t
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The presence of the ground-state wavefunctions ¢,(q’, t') and ¢§(q, t) in eqn
(1.55) makes it clumsy to do practical calculations. To remove them, consider
the matrix element

g5 1101, t5)lg; 1) = IdQ dQ<q’; 1O T

x Q5 T'O(ty, 1)1Q; THQ: Tlg; £y (1.57)

where O(t, t,) = T(Q"(¢,)Q"(t,)) and t' > T' > (¢,,t,) = T > t. Let |n)> be
the energy eigenstate with energy E, and wavefunction ¢,(q),

Hiny = E,|n)
{qln> = dx(q).

Then we have
g5 1105 T =gl e =TNQ") = ¥ (g'Iny<n| e =TQ"
=Y o} )P(Q) e =T, (1.58)

To isolate the ground-state wavefunction in this equation, we use the fact
that E, > E, for all n # 0, and take the limit £ — —ioo, which yields

,llh? (g5 1105 T = ¢§(q")do(Q') e~ Foll e, (1.59)
Similarly,
'lim $Q; TIg; t) = $o(q)pE(Q) e~ Pl e~ 0T (1.60)

Then eqn (1.57) becomes
Jim {g'; 010(t12)lg; t) = [ dQ dQ'9§(d)Po(Q)KQ'; T'|O(1,12)IQ, T

> —ico

X ¢3(Q)¢0(q) e—Eolt’l e+iE0T’ e—iEoTe—Eom

= ¢¥(g)dolg) e~ B e PGty 1) (1.61)
where we have used eqn (1.52). From eqns (1.59) and (1.60) it is clear that
lim {q';¢'lg;t) = ¢p§(q)po(g) e~ e~ Eol, (1.62)
t'— —ioo
t—ioo

Combining eqns (1.61) and (1.62), we obtain for Green’s function

G(ty, 1) = lim [<q’; tIT(Q"(t1)Q"(2))lg; t>]
{q';t'g;t>

t'— —ioo
t—ioo

. 1 dg dp]
= lim t)q(t
t't—;i—ogoo <q/; t,‘q, Z> J‘[ 21_[ q( 1)4( 2)

t

X exp{i Jdr[pq — H(p, q)} (1.63)

t
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where we have used eqn (1.54) and the path-integral representation for the
factor {q’; t'| ¢; t> in the denominator is given in eqn (1.51). This clearly can
be generalized to the n-point Green’s function

G(ty ... ty) = <O T(q(t1)q(12) - - - 9(2))I0)

o 1 dqdp
B "tl*llfnim (q'5t1g; J[ 2n ]q(tl)mq(t")

t

X exp{i J dt[pg — H(p, q)}- (1.64)

t

This entire set of Green’s functions can be generated as follows.

(=0)"o"WLJ]

Gltv - tn) = 53 S T o0

(1.65)

J=0

) 1 dgdp
124 = lim
o v-~iw {q';t'lq; t) J[ 2n ]
t—100

t

X exp{i jdt[pq' — H(p, q) + J(‘c)q(r)]}. (1.66)

t

with

Comparing this expression for W[ J] with the Green’s function in eqn (1.64),
we see that the generating functional W[J] corresponds to the transition
amplitude from the ground state at ¢ to the ground state at ¢’ in the presence
of an external source J(1),

WLJ] = <005, (1.67)

with the normalization W[0] = 1. Thus the computation of Green’s
functions is now reduced to the computation of W[ J]. We will see later in the
case of quantum field theory that the J(z)-independent factor {q; tlg’; ¢') in
eqn (1.66)is irrelevant for generating the connected Green’s functions and can
be neglected.

Euclidean Green’s function. In the formulae for Green’s function (eqns (1.63)
and (1.64)) the unphysical boundary condition t' - —ioo, t — ico should be
interpreted in terms of the ‘Euclidean’ Green’s functions which are defined by

SOty ..., 1,) = "G(—ity, ..., —it,). (1.68)

The generating functional for the S-function is then given by

.

2
WelJ] = lim J[dq] exp{j df"[—%’— (:%) — Vig) + J(r")q(t”)]}

(1.69)
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with
O"We[J]

S"(ty ... 1,) = 8J(z,) ... 0J(x,)

J=0

The unphysical limits ¢ — —ico, ¢t —ico make sense in ‘Euclidean
space’ where ¢ is replaced by —ir. Furthermore, the path integral in
Euclidean space (eqn (1.69)), is well-defined for those potentials ¥(g) which
are bounded below. This is because we can always readjust the zero point of
V(g) such that

m (dq\?
-2—(5) + V@) >0 (1.70)

and the exponential in (1.69) will always give a damping factor so that the
path integral converges. Note that (1.70) is satisfied for a physically stable
system.

Thus, the path-integral formalism has well-defined meaning only in
Euclidean (or imaginary-time) space. To obtain physical quantities in real
space, we have to do an analytic continuation. In practice, we will just do the
manipulations in real space with the understanding that they can be justified
in Euclidean space.

Let us summarize the discussion of the PI formulation of the quantum-
mechanical description of a one-dimensional system. The basic results are the
functional-integral formulae for the transition amplitude of eqns (1.41) and
(1.47). In preparation for generalizing the formalism to field theory we have
derived from these results the n-point Green’s functions in (1.64). All these
G™(t, ...t,)s can be generated from W[J], the ground-state transition
amplitude in the presence of an external source J. This central quantity can
be computed according to (1.66) with an obvious generalization to systems
with N degrees of freedom as

N
WLJi, ..., k]~ lim [H[dqidpi]

t'— —ico
t—ico ,
t

X exp{i JdT[Z pd; — H(p;, q;) + Z Jiqi:|}

t
or

- —iow
=100

WiJ,...,Jn]~ lim fﬂ [dg;]

t

x exp{i f dr[L(qf, ES) J.-q,]}- (1.71)

t

Field theory

We consider a field theory as a quantum-mechanical system with infinite
degrees of freedom and make the following identifications for the results
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presented abowve

T [dg,dp] — [d() dn(x)]

L(g:, 4, H(qi, pi) = Jd3x$ (¢, 0,9), jd3x?f (¢, m) (1.72)

with 7n(x), Z(x), and s#(x) being .the conjugate momentum field, the
Lagrangian density, and the Hamiltonian density, respectively. The ground
state in field theory is generally referred to as the vacuum state. Thus the
generating functional W[ J] is the vacuum-to-vacuum transition amplitude
in the presence of an external source J(x). The generalization of eqn (1.71)
takes the form

WLJ] ~ J[drﬁ dn] exp{i Jd“X[ﬂ(x) Oop(x) — A (7, ) + J(x)¢(X)]} (1.73)

or
WLJ] ~ j [d¢] CXP{i Jd“XEY (p(x)) + J(X)d)(X)]}- (1.74)

Furthermore, the limit + — ico in (1.71) suggests that we first calculate the
Euclidean-space quantity Wg[J], which is the analytic continuation of W[ J]
with x, = (t = it, x) replacing x, = (¢, x).

WelJ] ~ J [de] eXp{Jd“i[g (6(x) + J(f)dJ(f)]}- (1.75)

For field theory what we are interested in is the connected Green’s function
which is related to the generating functional by

1 O"WelJ] il

WelJ] 8J(%,)...0J (%,) (1.76)

G"(%,, ..., %,) =[

J=0

Thus in order to remove the disconnected part of the Green’s function, an
extra factor of W[ J] has been inserted in the denominator of the definition
(1.69). We recall that the same division was involved in our previous
discussion of Green’s function (eqns (1.30) and (1.31)). The important
practical consequence of this division is that the J-independent absolute
normalization of W[J] is immaterial for any subsequent calculation of the
Green’s function.
We now return to our illustrative example of A¢* theory

ZL(9) = Zo(9) + Zi(¢)
with
ZLo(¢) = 350,0)(0* ) — 3u*P*

-2
gl(‘ﬁ) = T¢4~
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The Euclidean generating functional

6 2
WL = f [d4] exp{- j d‘*xB (5;2) F3 PR 4L et J¢]
(1.77)

may be written as

W[J] = [exp Jd“x.,?, (—(%)] WolJ] (1.78)

where
WolJ] = j[dtﬂ eXpUd“x(fo + Jd>)]

is the free-field generating functional. (For simplicity of notation we drop the
subscript E and the bar over x indicating Euclidean space.) The factors
—(0¢/0t)* — (V¢)* in eqn (1.77) can be replaced by ¢(8%/0t% 4+ V?)p
because the difference is a total four-divergence and we have

WolJ] = J [d¢] exr{—% Jd“x d*yd(x)K(x, y)p(») + jd“zJ(Z)d)(Z)jI (1.79)

where
62
K(x,y) = 0*(x — y) <— pei V2 + u2>- (1.80)

As x and y may be taken as ‘continuous indices’, W,[J] of eqn (1.79) can be
considered an infinite-dimensional (N — oo) Gaussian integral of form

0. avwen] 1 6ik0,+ L]

1 1
- \/detKexP[ini(K_l)iij]' (1.81)

i,j

The right-hand side is obtained by a generalization of the result cited in eqn
(1.49). In this way the ¢ functional integral in (1.79) can be performed and we
obtain, up to an inessential multiplicative factor,

WolJ] = expB Jd‘*x d*yJ(x) A(x, y)J(y)] (1.82)
where A(x, y) should be the inverse of K(x, y) in (1.80). Thus,
Jd“yK(x, ») Ay, z) = 6*(x — 2). (1.83)

It is not difficult to see that

d4K. eix~(x—y)
Alx,y) = j—m)“ P (1.84)

where k = (ikq, k) forms a Euclidean momentum four-vector. The perturba-
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tive expansion in powers of %, of the exponential in (1.78) gives

WLJ] = Wo[J){1 + Ao [J] + Pw,[J] + ...}, (1.85)

1 -1 s I
o\[J] = —3; W5' ] Ud [51( )] } Wol /]

L /4% d* o 42W
wz[ﬂ=—m o[ﬂ{f x[éJ(x):I} ol /]

: wy! 6 1 1.86
230 [/l m }601[-]1 (1.86)

When we plug in the explicit form (eqn (1.82)) for W,[J], we obtain

where

o [J] =—-— [A(x y1) A, y3) Alx, y3) Ax, y2)J1)I02)I(13)J(1s)

+ 31 A(x, y1) A(x, y3) Alx, x)J(1)J(¥2)], (1.87)
and

w,J] = 5 @il]

1
2(3,)2 ACxy, y1) Alxy, y2) Alxy, y3) Alxy, X2) Alxz, pa)
x A(xy, ¥s) A(x3, y6)I(11)I2)I3)I 1) I3 s)I(Ve)

3
2(4,) A(xy, y1) Alxy, y2) Az(xls X3) A(x,, y3) A(xz, ¥4)

x -’(}’1)-]()’2)-](}’3)-](}’4)"‘ A(xlsyl)A(xlaxl)A(xl,XZ)
X A(xy, ¥2) A(xz, ¥3) Axz, ya)J(1)I(2)I(r3)I(Vs)

+ % Alxy, y1) A(xys x1) Alxy, x5) Alxy, X2) Alxa, y2)J(1)J(r2)

+ 5 ACe1, 72 B2 3) ACey, 33) Ak, 72)T01)907)

o A 1) A1, %2) A, 12)J00)J0) (1.89)

where we have dropped all J-independent terms (see Figs. 1.4 and 1.5). It is
understood that all arguments (x;, y;) are integrated over.

It is clear that the first factor on the right-hand side of (1.88), iw?,
corresponds to a disconnected contribution. For the connected Green’s
function defined by (1.76)

8" In W[J]

(n) =<7 sno
G™(xy ... x,) = 8J(x1) - 0J(x)ls =0

(1.89)
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B Y3
X
N X Y2
Y Vs

FIG. 1.4. Graphic representation of w, in eqn (1.87).

i Y4

X Xy

)2 Js

V3 Ve

N Y3 Y2
X2
x) X3 )1 ™ Y3
Y2 Y4 Y4

X2 X} X)
? ’ ‘ ’ N Y2
Y1ox X3 ¥ N Xy Y2

FiG. 1.5. Connected parts of @, in eqn (1.88).

such terms would not contribute. To see this explicitly,
In W[J] = In Wo[J] + In{1 + W' [JIW[J] - W,[J])}
=In Wo[J] + In{l + W5 '[J](*” — 1)W,[J]}, (1.90)

where we have used (1.78). Since W5 '(e“*” — 1)W, is also small, we can
expand the exponential as well as the logarithm. Thus from eqn (1.85)

In W[J] = In Wy[J] + (Ao, + 2w, +...) 34w, + o, +...)% +...
= ln Wo[J] + A.(Dl + lZ(wz - %w%) + R (191)

Thus the disconnected fw? in w, is in fact cancelled. It is not difficult to
generalize this, to prove that all disconnected contributions disappear in

In W[J].
We note that what corresponds to Wick’s theorem is simply the rule for
functional differentiation

oJy) ¢
8J(x)  6J(x)
= &(x — y). (1.92)

Differentiation according to (1.89) finally yields the (Euclidean) Green’s
function. For example, the terms with four Js in (1.87) and (1.88) give rise to
the first- and second-order four-point functions. These results are the same as

JJ(x) o(x — y)dx
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those in (1.33) and (1.35) (with the propagator given in eqn (1.14)) except
that they are valid in Euclidean space.

The analytic continuation x, — x, and k, — k, of A(X — y) in (1.84) yields
the familiar Feynman propagator (1.14)

d4k e-ik'(x—y)
Cm* k2 — 2 +ie

—ARX —y) - iAe(x — y) = ij

The i¢ factor in the denominator indicates how the boundary condition on
the propagator is to be imposed. It corresponds to the addition of a lie¢?
term in the Lagrangian and hence provides a suitable damping factor for the
path integral (1.77) in Minkowski space.

Clearly the same set of Feynman rules, which we briefly reviewed in §1.1,
follow from PI quantization formalism. The reader is referred to Appendix B
where a practical guide to the derivation of the Feynman rules is given.

1.3 Fermion field quantization

Here we discuss the quantization procedure for systems with fermions. After
briefly reviewing the canonical formalism, we indicate how the correspond-
ing path-integral quantization can be formulated (see, for example, Berezin
1966). This involves the subject of Grassmann algebra.

Canonical quantization for fermions

In §1.1 we reviewed the canonical quantization procedure for a scalar field.
Bose-Einstein statistics follow naturally from the commutation relations of
the particle creation and annihilation operators (1.11), i.e. from the
commutation of scalar field operators (1.3). For a many-fermion system, in
order to arrive at an exclusion principle the field operations must satisfy a set
of anticommutation relations. Consider the case of free Dirac field,

Z(x) = Y(x)(iy" 8, — mWy(x). (1.93)
Eqn (1.2) yields the Dirac equation
(iy* 0, — miy(x) = 0. (1.94)

In quantum theory, the field ¥(x) and its conjugate momentum 7(x) =

iy/'(x) are postulated to be operators; they satisfy the canonical anticommu-
tation relations

33 (x —x')

(¥, 0, ¢ (", 1)}
W, 0,9, ) = {Y'(x, 1),y (x', 1)} =0
where {4, B} = AB + BA. Following the same steps as in the scalar case of

§1.1 we formally solve the Dirac equation and calculate the Feynman
propagator function
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iSk(x; — X2)up = OIT(Walx)P(x2))I0>
d4k ] —ik- X1 —X;
~ Jen?® (k —m+ i8>a/3 e, (1:99)

For interacting systems the perturbative solution in the form of Feynman
rules can be developed, again much in the same manner as the scalar case of
§1.1. We shall not repeat the steps here except noting that a consequence of
the anticommutation relation is that there will be a minus sign for each closed
fermion loop in a Feynman diagram.

Path-integral quantization for fermions

Quantization of the fermion system can also be carried out by expressing the
transition amplitude directly as the sum over all possible world lines
connecting the initial and final states. The generating functional is then

Win, 7] = f [dy()][d¥(x)] eXp{i ‘[d“XEf W, ¥) + Y + W]} (1.96)

where ¥(x), ¥(x), n(x), and #(x) are (classical) fermion fields and sources,
respectively. While the sum over the path for a boson system is a functional
integral over ordinary c-number functions (classical scalar fields), the
functional integral in (1.96) must be taken over anticommuting c-number
functions (‘classical’ fermion fields)

W), ¥} = {Y(x), P(x)} = {P(x), ¥(x)} = 0
{n(x), n(x"} = {n(x), n(x")} = {7x), 7(x)} = 0.

Thus they are elements of Grassmann algebra. In the following section we
shall provide a brief introduction to this subject.

Grassmann algebra

In an n-dimensional Grassmann algebra, the n generators 6,,0,,...,0,
satisfy

{6,,0,} =0 Lj=1,2,...,n (1.97)
and every element can be expanded in a finite series

p(0) = Py + PVO, + P26, 0, + ...+ PP .6 ...0

1i2 odn iy in

where each of the summed-over indices iy, i,, ..., i, ranges from 1 to n. The
expansion terminates because of (1.97). We shall now discuss the subject of
differentiation and integration in such an algebra. Before stating the general
n-dimensional results, we first motivate them with the simplest case of one
Grassmann variable,

{0,0} =0 or 6*>=0. (1.98)
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Thus any element of the algebra has the simple expansion
p(6) = P, + 6P,. (1.99)

If we take p(0) to be an ordinary number, then P, and P, are ordinary and
Grassmann numbers, respectively. (We can imagine embedding this one-
dimensional Grassmann algebra into a higher-dimensional one so that we
would have more than one anticommuting element.)

The operation of differentiation may be taken from left or right with the
basic definition

P

d d

@9=0£=1. (1.100)
We have the ‘left derivative’
d
L e =P '
) p(6) = P, (1.101)
and the ‘right derivative’
d
p(0)a§= —P, (1.102)

because (dP,/df) = 0 and (d/df) anticommutes with P,;.

We next introduce the integration operation, which ordinarily is taken to
be the inverse of differentiation. However such an inverse is ill defined in a
Grassmann algebra, as can be seen by the fact that, for either type of
derivative,

d2

Wp(()) =0. (1.103)
Thus we must be content with a formal definition of the integration
operation which preserves some general properties of our intuitive notion of

integration. We require it to be invariant under a translation of the
integration variable by a constant. Thus

[d@p(@) = de)p(f) + a). (1.104)
From (1.99) we must have
Jd@P,a:O or de):O (1.105)

where o is another element in the Grassmann algebra which is independent of
0 and anticommutes with §. We can normalize the remaining integral using

JdBO =1. (1.106)
From (1.105) and (1.106) it follows that

Jd@p(@) - P, (1.107)
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which is the same as left differentiation in (1.101). Thus our definitions of
integration and (left) differentiation lead to the same result

J dép(6) = ;—0 p6) = P;. (1.108)
We next consider the problem of change of integration variable

6 — 0 = a + b, where a and b are anticommuting and ordinary numbers,
respectively. For an ordinary c-number we have the familiar relation

Jdﬁf(i) - de (g;) G (x)). (1.109)

What will be the corresponding result for Grassmann numbers? Since, by
(1.108),

[ d

dfp@) = 7 p@) =P, (1.110)
and :

dop@) = qu%ep1 =bP,, (1.111)
we have )

[ da\1

ddp(0) = Jde <&§> p(0(0)). (1.112)

Thus for anticommuting numbers the ‘Jacobian’ is the inverse of what we
would ordinarily expect.

We now proceed to generalize our one-variable results of (1.101), (1.102),
(1.105), and (1.106) to the n-dimensional Grassmann algebra. We have the
‘left derivative’

d
a‘e—.(BIOZH'On)=5i102~-'9n_6i20103-“0n+---(—l)n_léingl ...0"_1

and the ‘right derivative’

-

d
6,0, ...6,)

qg, = Oub e Oy = (S50, 0

Thus, to calculate the left (right) derivative (d/d#;) of 6,0,, ..., 6,, commute
0, all the way to the left (right) in the product; then drop that 6;. The symbol
df,, db,, ..., do, is introduced with the conditions

and
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which defines the integration operation. For a change of integration variable

0, =b;,0 (1.114)

ijvje

we have the generalization of (1.112)

Jdé‘,, ...dd, p@) = jd@,, ...do, [detc;—g}_l p@©®). (1.115)

To show this result we follow the same steps as in the one-6 case. Just as in
(1.110) and (1.111), we need to compare [df,...dd,p@) and
§d6, ...do,p@(0)). The only terms in p(f) which can contribute to these
integrals are terms with n s,

gl"'gn=b1i1"‘bni"9i1“‘0i,,‘ (1.116)
The right-hand side is non-zero only if i;, ..., i, are all different and we can
write

gl gn = blil ~~bni,,8i1..,i,,91 0"
= (det b)d, ... 0,. (1.117)

However, in order to maintain the normalization conditions (1.113), we must
have

df, ...dd, = (detb)"*d6, ...do,; (1.118)

hence the result of (1.115). To repeat, for anticommuting variables inte-
gration is equivalent to differentiation and we get [det (d0/df)] ™' rather
than [det (dd/d0)].
As we have seen in §1.2 the Gaussian integral plays an important role in
the PI formalism. Thus we need to evaluate
G(A) = Jdﬂn ...d0o, exp(3(0, A0)) (1.119)

where 4 is an antisymmetric matrix and (0, 40) = 0,4,;0;. First consider the

simple case of n = 2
0 A
4= 12
'_A12 O

G(A) = J‘dgz del exp(elezAlz)

and

= jd@z do,(1 + 0,0,4,,)
=A,, = Jdet 4. (1.120)

For the general case where 4 is an n x n antisymmetric matrix, we can first
put 4 in the standard form by a unitary transformation. (Here # is taken to
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be even as the integral vanishes for odd ».)

UAU' = 4, (1.121)

F( 0 1)

a,

-1 0

A, = o[ 01 . (1.122)
-1 0

» T

with

This can be seen as follows. Since i4 is hermitian, it can be diagonalized by a
unitary transformation ¥’

ViV = 4, (1.123)

where A, is real and diagonal with diagonal elements which are solutions to
the secular equation

detlid — Al = 0. (1.124)

Since AT = — A, we have det[id — AI|" = det| —i4 — AI| = 0.Thus, if 1 is a
solution, so is (—4), and A is of the form

Il
o

Ay (1.125)

L J

To put A, into the standard form of (1.122), we use the 2 x 2 unitary matrix

S Lt (1.126)
22\ i '
which has the property

1 0 0 1
Sz(—1)<0 _1>S§=<_1 0). (1.127)

Thus S(—i44)S" = 4, for
S = S, (1.128)

and the unitary matrix in (1.122) must be the product U = SV because
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(SMA(SV)' = S(—id4)ST = A,. Furthermore, let
[ 412
a-12

T- b2
b—l/2

Thus,
det(T™ ') = /det 4.
We can then write

T(UAUNT = TA,T = A,

01
-1 0

-1 0

L -

The Gaussian integral (1.119) can then be written as

G(A) = f df, ...do, exp((6, U'T~14,T~1U9).

Change the integration variable
b=(T"'U)
and use (1.115)

G(A) = j dd, ...dd, exp(i(, 4,0)) [det(%%ﬂ

df
= det[ — |-
et<d9>
Since, by (1.133) and (1.130)
df - )
det )= det(T~'U) = det(T™') = /det 4,

we obtain the result

G(A) = JdO,, ... d6, exp(3(0, 40)) = /det 4

(1.129)

(1.130)

(1.131)

(1.132)

(1.133)

(1.134)

(1.135)

(1.136)

which should be contrasted with the Gaussian integral with ordinary
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commuting real variables

dx, dx, L 1
—3(x, Ax)) = ——— 1.
f o S A0) = (1.137)
or with ordinary commuting complex variables (z = x + iy)
d dz, dz¥  dz¥ 1
2 S O O exp(— (2%, Az2)) = (1.138)

%..‘\/n%.-.\/n d—'ea

where [dzdz* = {dxdy. The Gaussian integral for complex Grassmann
variables can be shown to have the value

Jd@l df, ...d6, dd, exp(8, A0) = det 4 (1.139)

where 6; and 0, are independent generators of the algebra.

The classical fermion fields y(x) and J(x) are then taken to be elements of
an infinite-dimensional Grassmann algebra. All the above results for the
general n-dimensional case can be naively extended.

Since the fermion fields always enter the Lagrangian quadratically
& = (JAyY), the functional integral of (1.96) will be a generalized Gaussian
integral. The result in (1.139) can then be applied

W= f[dtﬁ(X)][le(X)] CXP{fd“X!PAt//}

—det 4 (1.140)

where we have not bothered to display the source fields. W is the vacuum-to-
vacuum amplitude and the (connected) Feynman diagram representation, as
generated by In W, will be a set of single-closed-fermion-loop graphs (Fig.
1.6). The change of going from the ordinary functional integral (1.138) to the
anticommuting variable functional integral (1.140), with the replacement of
(det A)~! by (det 4), corresponds to changing the overall sign of In W. This
is the familiar Feynman rule of an extra minus sign for each closed fermion

000

F1G. 1.6. Vacuum-to-vacuum amplitude as represented by single closed loops.



Introduction to renormalization
theory

Given any quantum field theory one can construct the Feynman rules for
calculating the Green’s functions and S-matrix elements in perturbation
theory as described in Chapter 1. But in relativistic field theory one often
encounters infinities in the calculation of diagrams containing loops. This is
because the momentum variable in the loop integration ranges all the way
from zero to infinity. In other words, for a relativistic theory, there is no
intrinsic cut-off in momenta. These divergences will render the calculation
meaningless. The theory of renormalization is a prescription which allows us
to consistently isolate and remove all these infinities from the physically
measurable quantities. It has been of utmost importance to the development
of relativistic quantum field theory.

It should be emphasized however that the need for renormalization is
rather general and is not unique to the relativistic field theories.
Renormalization has its own intrinsic physical basis and is not brought about
solely by the necessity to expurgate infinities. Even in a totally finite theory
we would still have to renormalize physical quantities. The following
example should illustrate this point. Consider an electron moving inside a
solid. Due to the interaction of the electron with the lattice, the effective mass
of the electron m*, which determines its response to an externally applied
force, is certainly different from the mass of the electron m measured outside
the solid. The electron mass is changed (renormalized) from m to m* by the
interaction of the electron with the lattice in the solid. In this simple case one
can in principle measure both m* and m by switching on and off the
interaction (i.e. by placing the electron inside or outside of the solid). Clearly
the difference is finite since both m and m* are finite and measurable. For the
relativistic field theory, the situation is the same except for two important
distinctions. First, renormalization due to the interaction is generally infinite
(corresponding to the divergent loop diagrams). Second, there is no way to
switch off the interaction; hence quantities in the absence of interaction,
called the unrenormalized or the bare quantities, are not measurable. For
example, in quantum electrodynamics the difference between the bare
electron mass m and the renormalized mass m* is infinite, and the bare mass
cannot be measured because the electron interacts with the virtual photon
field constantly and there is no way to turn off this interaction.

The programme of removing infinities from physically measurable quan-
tities in a relativistic theory, the renormalization programme, involves
shuffling all divergences into the bare quantities. In other words, the
unrenormalized quantities are assumed to be appropriately divergent to
begin with and the infinite renormalization due to interaction then cancels
these divergences to produce finite renormalized quantities. We should recall



2.1 Conventional renormalization in Ap* theory 31

that in a relativistic quantum field theory the renormalized quantities are
physically measurable while the bare ones are not. This difficult programme,
as originally formulated for quantum electrodynamics by Feynman (1948b),
Schwinger (1948, 1949), Tomonaga (1948), and Dyson (1949), has been
quite successful and in the case of QED the agreement between theory and
experiment has been spectacular.

Technically the theory of renormalization is rather complicated. A detailed
and thorough discussion of this subject is beyond the scope of this book. In
this chapter we shall explain the principal ideas behind it and give examples to
illustrate how it works.

2.1 Conventional renormalization in 1¢* theory

We shall first use the simple A¢* theory as an example to illustrate the
renormalization procedure. The Lagrangian density is separated into free
and interacting parts

L =%+ 2.1
with
%o = 3[0,90)* —uged] (2.2)
and
Ao a4
&L= TR 2.3)

The propagator and the vertex of this theory are displayed in Fig. 2.1.

i
—iA
pP—ultie >< 0

FiG. 2.1.

We will concentrate on the one-particle-irreducible (1PI) diagrams. They
are the Feynman diagrams which cannot be disconnected by cutting any one
internal line. Correspondingly, we define the one-particle-irreducible (1PI)
Green’s functions, denoted by T'(p, ... p,), which have contributions
coming from 1PI diagrams only. For example the graph in Fig. 2.2(a) is a 1PI
diagram while the one in Fig. 2.2(b) is not. The reason for selecting 1PI
diagrams is that any one-particle-reducible diagram can be decomposed into
1PI diagrams without further loop integration, and if we know how to take
care of the divergences of 1Pl diagrams we will also be able to handle the

<= LU0

(a) (b)
FiG. 2.2.
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reducible diagrams. For example, the two-point Green’s function
(propagator)

1A(p) = Jd“x e 7" *C0|T(¢o(x)ho(0))I0> (24)
can be decomposed in terms of the 1PI self-energy parts Z(p) as in Fig. 2.3.
FIG. 2.3. The propagator as a sum of 1P self-energy insertions.
Then we can write the propagator as
A = e e

1 [ 1
=3 2 n .
P — Up +1e . 2 1 ‘
1 +1Z — s
(p)pz—y(2,+w

i
TP —ud—Z(p?) +ie

2.5)

Clearly if we can make the proper self-energy part £(p?) finite, the propagator
A(p) will also be finite.

Since there is no divergence in the tree (zero-loop) diagrams, we begin our
calculation with the one-loop 1PI graphs. It is not difficult to see that Figs.
2.4 and 2.5 represent an exhaustive listing of all the one-loop divergent 1PI
diagrams in this A¢* theory. Fig. 2.4 is the self-energy graph

ido [ d% i
—iS(p?) = — 22 . 2.6
=(p%) 2 j(2n)4 P_ 12 +ie 2:6)

The factor of 1/2 is the symmetry factor, of which some examples were given
in §1.1. Or we can deduce it directly from the fact that there are 4-3 = 12

/

O

P P
Fi1G. 2.4,

P Py ) )
3 4
P3 Py
P :p2
P P, P P,
(@) (b) ©

FiG. 2.5.
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ways to ‘contract’ ¢(x;)¢@(x,) into the interaction term ¢*(x) and this does
not completely compensate for the 1/4! factor in (2.3). The integral in (2.6) is
quadratically divergent. Fig. 2.5 shows the vertex corrections with contri-
butions given by

(—ido)? [ d* i i
L=T(") =T6) = 2 @Rr)* (I —p)? —ud +ie 1> — ud +ie @7
I=T@, TI.=Tw (2.8)

where
s=p*=(py+p)  t=(p1—p3) u=(p;—p)* (29

are the Mandelstam variables. The contributions in (2.7) and (2.8) diverge
logarithmically.

In the renormalization programme one first introduces some appropriate
regularization schemes so that all divergent integrals are made finite. We
are then free to manipulate (formally) these quantities, which are divergent
only when the regularization is removed (e.g. by letting the cutoff approach
infinity) at the end of the calculation. The commonly used regularization
schemes will be discussed in §2.3. In the meantime it should be understood
that by divergences we mean the regulated divergent quantities which are
finite and cutoff-dependent.

For any divergent diagram we will first separate the divergent part from
the finite part, then absorb the divergences in some appropriate redefinitions
of mass, coupling, and field operators. To make the separation one uses an
important property of the Feynman integrals given in (2.6) and (2.7): if one
differentiates the divergent integral with respect to the external momenta,
this increases the power of the internal momenta in the denominator and
makes the integral less divergent. (These are examples of the ‘primitively
divergent’ diagrams—for further discussion, see §2.2.) Therefore, when
differentiated a sufficient number of times, the result is completely con-
vergent. For example, if one differentiates I'(p?) with respect to p?, one finds

o .1 0
517—2F(P )—?Puar@ )
A [ a¥ (I=p)p 1

) . - (2.10)
p? J@m)* [l —p)* — p§ +ie]* P — pd + ie

which is finite. This means that the divergences will reside only in the first few
terms of a Taylor series expansion in external momenta of the Feynman
diagrams. For example, the Taylor expansion I'(p?) around p* = 0 is of the
form

1
F(pz) =4y + a1p2 + ...;—'an(pz)" + ...

where

n

_ 0
- anp2

a, reps) - 2.11)
pZ

=0
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The a,s are finite for n > 1 and only a, contains the logarithmic divergence.
We can sum up all the finite terms and write

I'(s) = ['(0) + T'(s) (2.12)
where I'(0) = a, is divergent and I'(s) is finite with the property
ro)=o. (2.13)

These functions I'(0) and I"(s) will be calculated explicitly in §2.3. Note that
the finite part I"(s) is just the original I'(s) with its value at s = 0 subtracted
out. Hence this procedure is sometimes referred to as the subtraction.

In the following discussion we shall use the Taylor expansion of (2.6) and
(2.7) to separate the divergent part from the finite part and absorb the
divergent parts into redefinitions of the bare quantities.

Mass and wavefunction renormalization

The self-energy contribution given in eqn (2.6) is quadratically divergent. But
this one-loop contribution has the peculiar property of being independent of
the external momentum p. Hence the Taylor expansion is trivial; i.e.
Z(p?) = Z(0). This is true only for the one-loop approximation in A¢*
theory. For example the two-loop self-energy diagram in Fig. 2.2(a) is
quadratically divergent and has a non-trivial dependence on p2. Thus in
general the Taylor expansion in external momenta around some arbitrary
value u? will have two divergent terms

Z(p?) = () + (p* — pHT'W?) + £(p?) (2.14)

where Z(u?) is quadratically and X'(u?) logarithmically divergent, as each
differentiation with respect to the external momentum 0/dp, decreases the
degree of divergence by one unit and X'(4?) can be written in the form
#(0/0p,)(0/0p*)Z(p?)l,2=,2- Note that in general a quadratically divergent
diagram will have three divergent terms with quadratic, linear, and
logarithmic divergences. But in Z(p?) there is no linearly divergent term
because a term proportional to p, is not Lorentz invariant. The last term in
(2.14) is finite and has the properties

S =0, (2.15)
$' ) =0. (2.16)

Of course in the one-loop approximation X'(p?) = £(p?) = 0 for all values
of p?. But in general the self-energies do not vanish. Substituting (2.14) into
the expression for the full propagator in (2.5), we have

i
p? — ud — T(u?) — (p* — pAE'(?) — Z(p?) + ie
The physical mass is defined as the position of the pole of the propagator.
Since up to this point u? is arbitrary, we can choose it to satisfy the equation

uo + Z(u?) = 1. (2.18)

iA(p) = 2.17)



2.1 Conventional renormalization in A$p* theory 35

Then
i
(P — 1 -] - £ +ie

Using (2.15) one sees that A(p?) has a pole at p> = u?. Thus p? is the physical
mass and is related to the bare mass through eqn (2.18). This is the mass
renormalization. Since X(u?) is divergent, the bare mass p3 must also be
divergent so that the physical mass p? is finite. To remove the divergent term
T'(u?) we note that both X'(u?) and £(p?) are of order A, (again keep in
mind that all divergent quantities are regulated to be finite); we have

(") = [1 = Z(WHIE(P?) (2.20)

and the propagator function can be written as

iA(p?) = (2.19)

A2y iZ,
iA(p?) ey (2.21)
where
Zy=1[1—- W] =1+ Z'(u?) + 0(A3). (2.22)

In this form the divergence is a multiplicative factor and can be removed by
rescaling the field operator ¢,. More specifically, if we define the re-
normalized field ¢ by

¢ =Z;'"%¢,, (2.23)

then the renormalized propagator function given by

1Ar(p) = Jd“x e~ 70| T($(x)$(0))|0)

=Z;! Jd“x e~ 70| T(¢o(x)o(0))I0)

i
TP - +ie

iZ,' A(p) (2.24)

is completely finite. Z, is usually referred to as the wavefunction renormaliza-
tion constant. In this way, the divergences in self-energy are removed by
mass renormalization (2.18) and wavefunction renormalization (2.23).

The renormalized field ¢ given in eqn (2.23) defines the renormalized
Green’s functions G which are related to the unrenormalized ones by

GR(xy ... x,) = O T((x,) . .. p(x,))[0)
= Z;"*0|T(po(x1) . .. Po(x,))I0)
= Z;"2GP(x, ... x,). (2.25)

Or, in momentum space,

GR(p1 ... pa) =Z5"*G(py ... pw) (2.26)
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where
@m)* 6%(py + ... + PA)GR(Py - Pa) = (H dx; e‘""'m>
J\i=1

X GP(xy...x,) (2.27)

f/ n
(@n)* 8*(py + ... + PGPy - Pa) = (1:[1 dx; e_,,,,--xi>

X GP(xy ... x,) (2.28)

To go from the connected Green’s function given in (2.26) to the 1PI
(amputated) Green’s function, we have to eliminate the one-particle
reducible diagrams, and also to remove the propagators for the external
lines in 1PI Green’s functions, i.e. remove the Ag(p;)s from Gg')(pl ...p,) and
the A(p;)s from G(()")(pl ... P,). Since Ag(p) and A(p) are related by

A(p) = Z5 ' A(py), (2.29)
the renormalized and unrenormalized 1PI Green’s functions are related by
TPy - Pa) = ZPTO(py - . pu)- (2.30)

Coupling constant renormalization

We now proceed to renormalize the 1PI four-point function of Fig. 2.5.
From eqns (2.7) and (2.8), this unrenormalized Green’s function is given, to
order A3, by

T§(s, t,u) = —ido + I(s) + I'(¢) + '(w) (2.31)

where on the right-hand side the first term is the tree-graph contribution and
the last three terms are the one-loop contributions which are divergent. We
want to absorb these divergences by a redefinition of the coupling constant.

How is the coupling constant measured in A¢* theory? Since the basic
vertex involves four particles, it would be natural to define the coupling
constant in terms of the two-particle scattering amplitude, which is physically
measurable. But for the discussion of the renormalization, it is more
convenient to define the coupling constant in terms of the closely related
renormalized 1PI (amputated) four-point function I'{’(p,, ..., p,). Since
'Y is a function of the kinematical variables s, ¢, and u (i.e. it is not a
constant), some particular point in the kinematical region has to be chosen to
define the physical coupling constant. Remembering that for particles on the
shell p? = p? these variables satisfy the relation s + ¢ + u = 4u?, one may
choose, as a convention, the symmetric point,

4u?

So =1ty =Uy = T (2.32)

to define the coupling constant. Thus,
T(s0, Lo, tg) = —iA (2.33)

where 4 is the physical coupling constant.
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We will now separate the divergent and finite parts in the unrenormalized
vertex function of (2.31) by making a Taylor series expansion around the
symmetric point given in (2.32)

T¥(s, 1, u) = —idg + 30Go) + T(s) + T(t) + T(w) (2.34)
where I"(s) = I'(s) — I'(s,) is finite and has the property
I'(so) = 0. (2.35)
One defines the vertex renormalization constant Z, by
—iZ7 A9 = —iAg + 3T (so). (2.36)
Eqn (2.34) becomes
T, tu) = —iZ7 2 + T(s) + T(t) + T(w) (2.37)
which at the symmetric point gives
T§(so, to, o) = —1Z35 1A,. (2.38)

From the relation between the unrenormalized and the renormalized 1PI
Green’s functions eqn (2.30), we have

(s, 1, u) = Z3T(s, 1, u). (2.39)

Then using eqns (2.33), (2.38), and (2.39), we see that the renormalized
(physical) coupling constant A defined in (2.33) is related to the un-
renormalized coupling constant 4, by

A= 2Z3Z7"%. (2.40)

It is now easy to demonstrate the finiteness of the renormalized 1PI four-
point function. From eqns (2.37), (2.39), and (2.40), one has

TR(p1s -5 Pa) = ZZTE(Pys - s P4)
= —iZ7'Z% + Z3[T(s) + T'(t) + T'(w)]
= —id + Z3[T(s) + T(t) + T(w)]. (2.41)
Since Z, = 1 + O(4,), I' = 0(4), and A = 4, + O(A3), we write to order A2
T(py, ..., pa) = —id + T(s) + T(t) + T(w) + 0(23) (2.42)

which is completely finite.

For the renormalization of the connected four-point Green’s function to
one loop, we have to add the one-particle reducible one-loop diagram (Fig.
2.6) and attach propagators for the external lines. Thus the unrenormalized

X + 3 other diagrams

FIG. 2.6.
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Green’s function G§(p, ... p,) is given by

4
GOy pa) = [ I <__1__)H—uo +3T(s0) + (s) + B(¢) + D)

j=1 p_lz - ﬂ(z) + ie
+ (—ido) i [—iZ(Pf)]<z—i—r—-)l : (2.43)
K=1 Pk — up t+1¢ (
The first and last terms in (2.43) can be combined to give

) 4 1 : 2 1
ol 1 G 1+ &=t

. 4 1
N (_MO)[E <pf —ug—Z(p}) + isﬂ +OG). @44

Since I' ~ 0(42), T ~ 0(A2), we can also write

4 1 ~ - -

4 1
B [Bl (pf —ug —=(p}) + iﬁ)]

x [3I(so) + T(s) + T(t) + T(w)] + 0(43). (2.45)
Using eqns (2.44) and (2.45), we can write eqn (2.43) as
4 1
GP(py ... pa) = jl;ll [mil
x [—idg + 3T(so) + T'(s) + T'(¢) + T(u)]

4
= [ [1 iA(pj)] T{(py ... pa) (2.46)

ji=1

where we have used eqns (2.5) and (2.31). The renormalized four-point
Green’s function is defined by (2.26) as

G(p .. pa)=Z5*GP(py ... pa). (2.47)

Then from eqn (2.46) and the relations between the renormalized and the
unrenormalized quantities (2.29) and (2.39), we get

4
G(py...p) =257 l:Z;‘, I1 iAR(p,«)] ZT(py - pa)
j=1
4
= [] LAr(PHITR (s - .. Ps) (2.48)
j=1

which is also finite because Ag(p) and T'{’(p; ... p,) have been shown to be
finite.

We see that the mass, wavefunction, and vertex renormalizations remove
all the divergences in the two- and four-point Green’s functions in the one-
loop approximation. There is no divergence in the other 1PI diagrams
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although the one-particle reducible graphs for the higher-point functions
have divergent one-loop graphs. For example, the six-point function in Fig.
2.7 is divergent. However, it is clear that the divergence is brought about by
that of the four-point vertex function and it is removed once we renormalize
the four-point vertex function.

x>

FiG. 2.7.

In summary, Green’s function can be made finite if we express the bare
quantities in terms of the renormalized ones through relations (2.18), (2.23),

and (2.40)
b =2Z;'"¢, (2.49)
h=Z7'Z%, (2.50)
u? = pg + ou (2.51)

where dpu* = Z(u?). More specifically, for an n-point Green’s function when
we express the bare mass u, and bare coupling constant A, in terms of the
renormalized mass y and coupling 4, and multiply by Z; */? for each external
field as in (2.26), then the result (the renormalized n-point Green’s function)
is completely finite

Gg)(pls <ovs Pns }'7 u) = Z;n/ZG((;l)(pls vevs Pns j'0> Ho» A) (252)

where A is the cut-off needed to define the divergent integrals. This feature, in
which all the divergences, after rewriting A, and p, in terms of A and p, are
aggregated into some multiplicative constants [Z; "/ in eqn (2.52)], is called
being multiplicatively renormalizable. Equivalently, the 1PI Green’s functions
are made finite as in (2.30) by multiplying by Z}> and expressing the bare
quantities Ay, lo in terms of the physical quantities A, u,

rg‘)(pl LIRS *’pn; }" #) = ng/zrg')(l’h ey pn’ '105 luO’ A) (253)

The programme of removing divergences as outlined in this section is closely
related to the one originally developed and we shall refer to this as the
conventional renormalization scheme.

2.2 BPH renormalization in i¢* theory

BPH renormalization (Bogoliubov and Parasiuk 1957; Hepp 1966;
Zimmermann 1970) is completely equivalent to conventional renormaliza-
tion. This alternative formulation of the programme is often more
convenient for many applications of the renormalization theory. In this
section we shall simply illustrate the connection between these two re-

normalization schemes. For a concise and lucid presentation see Coleman
(1971b).
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For the original (unrenormalized) Lagrangian (2.1)
A
Zo = 3[(@u$0)" — u3p3] — 57 86 (2:54)

we can replace the bare quantities by renormalized quantities using eqns
(2.49), (2.50), and (2.51) to obtain

Lo=L + AL
where
% = @97~ 197 - o @59)
and
ag - e D er - 191+ Wz, G Dy s6)

£, which has exactly the same form as £, but with all the unrenormalized
quantities replaced by renormalized ones, is called the renormalized
Lagrangian density. A% contains the divergent renormalization constants.
(Z, - 1), (Z; — 1), and 6p? are all of order A and this makes A% of order
AZL. We call AZ the counterterm Lagrangian.

‘The BPH renormalization prescription consists of the following sequence
of steps

(1) One starts with the renormalized Lagrangian of eqn (2.55) to construct
propagators and vertices.

(2) The divergent part of the one-loop 1PI diagrams is isolated by the
Taylor expansion. One then constructs a set of counterterms A.#*) which is
designed to cancel these one-loop divergences.

(3) A new Lagrangian ¥V = ¥ + A#" is used to generate two-loop
diagrams and to construct the counterterm A% which cancels the
divergences up to this order and so on, as this sequence of operations is
iteratively applied.

The resulting Lagrangian is of the form
Y=L +AZ
where the counterterm Lagrangian A% is given by
AY =ALY + AP + ...+ A" + ... 2.57

In order to show that this renormalization scheme is equivalent to the
conventional one which develops the unrenormalized perturbation theory
directly we need to show that the counterterm Lagrangian (2.57) has the
same structure as that of eqn (2.56). To demonstrate this we shall use the
power-counting method to study the counterterms.

Power-counting method

To analyse the divergent structure of any Feynman diagram we introduce the
term superficial degree of divergence D, which is the number of loop momenta
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in the numerator minus the number of loop momenta in the denominator.
For example the graph shown in Fig. 2.8 has D = 4 — 4 = 0. Hence it is
expected to be logarithmically divergent. To calculate D for any graph in the
A¢* theory we define the following numbers.

B = number of external lines;
IB = number of internal lines;
n = number of vertices.

Since each vertex has four lines and both ends of an internal line must

P ll P3
P2 Iz P4
FiG. 2.8.

terminate on vertices while only one end of an external line is connected to a
vertex, we have the relation

4n = 2(IB) + B. (2.58)

We need to convert some of these to the number of loop momenta. The usual
Feynman rule requires us to integrate over internal momenta which are not
fixed by momentum conservation at each vertex. Thus we expect the number
of loop momenta (L) to be the number of internal lines (/B) minus the
number of vertices (n). But one of the combinations of momentum
conservation d-functions just expresses the overall momentum conservation
and it does not depend on the internal momenta. For example the graph in
Fig. 2.8 has two vertices and hence two d-functions: 6*(p; + p, — I, — 1,)
6%l + 1, — p3 — p,). But this can be written as 6*(p; + p, — ps — pa)
6*(p, + p, — I; — 1,). The two vertices eliminate only one, rather than two,
internal momenta. Therefore, we have

L=IB—n+1. (2.59)

For each internal line the propagator contributes two powers of loop
momenta in the denominator and each loop integration contributes four
powers of loop momenta in the numerator. For 1¢* theory the vertices do
not contribute any momentum factors and the superficial degree of
divergence is given by

D = 4L — 2(IB). (2.60)

We can eliminate L and IB in favour of B and »n by using eqns (2.59) and
(2.58),

D=4-B. (2.61)

Since A¢* theory has reflection symmetry ¢ - —¢, B must be an even
number and eqn (2.61) implies that only the two-point function (B = 2) and
four-point function (B = 4) are superficially divergent.
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From this power counting, which is valid to all orders of perturbation
theory, we can now study the structure of the counterterms. For the two-
point function we have, according to (2.61), D = 2. Being quadratically
divergent, the necessary Taylor expansion is taken to be

Z(p*) = 2(0) + p*Z'(0) + £(p?)

where X(0) and X'(0) are divergent while £(p?) is finite. There is no term
linear in p, as £(p?) is a Lorentz scalar. We need to add two counterterms
13(0)¢* + $Z'(0)(0,¢)* to cancel the divergences. They correspond to the
Feynman-rule vertices shown in Fig. 2.9(a), (b). The four-point function has
D = 0 and the Taylor expansion

I(p) = T(0) + F(p)

where I'®)(0) is a logarithmically divergent term which is to be cancelled by a
counterterm of the form (il'*)(0)/4!)¢*. This has the graphic representation
shown in Fig. 2.9(c).

iZ(0) i20) p?
———>— ——>— ()

(a) (b) (c)
FiG. 2.9. Feynman-rule vertices corresponding to the counterterm Lagrangian (2.11).

The general counterterm Lagrangian is then of the form
3:—(292 * + zléo) (0,4)* + i_rp ¢* (2.62)
which is clearly the same as eqn (2.56) with the correspondences
0)=2,-1
2(0) = —(Z, — u? + ou? = —Z'(0)u® + ou® (2.63)
r'™0) = —iAd(l — Z,).

They are consistent with eqns (2.22), (2.51), and (2.36) as the renormalized
coupling 4 here is defined at the zero momentum point, thus I'¥(0) = 3(0).
This demonstrates the equivalence of BPH renormalization and conven-
tional renormalization.

AY =

Comments on subgraph divergences

We shall not present any proof that, to all orders in the perturbation
theory, this renormalization programme removes all divergences in the
Green’s functions. We merely illustrate some general features of the
renormalization procedure for higher-order diagrams and the convergence
properties of Feynman integrals with the following remarks.

(1) We state without proof the following convergence theorem (Weinberg
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1960). The general Feynman integral converges if the superficial degree of
divergence of the graph together with the superficial degree of divergence of all
subgraphs are negative. To be more explicit, consider a Feynman graph with n
external lines and / loops. Put a cut-off A in the momentum integration to
estimate the order of divergence

A

T™py ... pyy) = Jd“q1-.-d“qzl(pl-..p..-l;qlu-qz) (2.64)
0

where [ is the product of vertices and propagators depending on p; (external
momenta) and g; (internal momenta). Take a subset S = {q} ...q;,} of the
loop momenta {g, ... g,} and scale them to infinity (all g; > A with A - 00),
all other momenta being fixed. Let D(S) be the superficial degree of
divergence associated with the integration over this set, namely

A

l Jd“q’l codiqnl

0

< A®S{In A} (2.65)

where {In A} is some function of In A. Then the above theorem states that the
integral over {q ...q,} converges if the D(S)s for all possible choices of S are
negative. For example the graph in Fig. 2.10 being a six-point function has
D = —2. But the integration inside the box having D = 0 is logarithmically
divergent. Thus a successful renormalization programme must systematically
remove all divergences including those associated with the subintegrations.
In the BPH procedure these subdiagram divergences are in fact renormalized
by low-order counterterms. For example, the graph in Fig. 2.11 with its
counterterm vertex will cancel the subgraph divergence of Fig. 2.10.

Fic. 2.10. FiG. 2.11.

(2) There is another aspect of the renormalization programme related to
these graphs with divergent subintegrations: not all divergences in a multi-
loop diagram can be removed by subtracting out the first few terms in the
Taylor expansion around the external momenta. This can be illustrated by
the following example. Consider the two-loop graph of Fig. 2.12(a) which
has the Feynman integral

¥ (p) oc A[T(p)1? (2.66)
where
1 1

-t +ie (I —p)* —p* +ie

T'(p) = % J d“l (2.67)

with p = p; + p,. With each of the I'(p) factors being logarithmically
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divergent, I' cannot be made convergent no matter how many derivatives
operate on it, even though the overall superficial degree of divergence is zero.
However we have the lower-order counterterm — A°I'(0) corresponding to
the subtraction introduced at the one-loop level. This generates the
additional A3 contributions of Fig. 2.12(b), (c) with Tt¥ oc — AT (p)I'(0) and
'™ oc —A3T(0)I'(p), respectively.

P 1 ) P3

P2 h—p l=p A

(a)
(b) (c)

FiG. 2.12. s-channel A3 four-point functions. The black spots represent the counterterm
—A’T(0).

Adding the three graphs, Fig. 2.12(a), (b), (c), we have

I'p)=TW + TP +TW
- 2’[T0)]* + A°[T(p) — T(0)}? (2.68)
r™(0) + T*(p).

Only the first term on the right-hand side is divergent and can be removed by
a A* counterterm of the formil'®(0)¢*/4!. We see how, with the inclusion of the
lower-order counterterms, divergences take on the form of polynomials in the
external momenta. Thus for diagrams with more than one loop it is useful to
characterize a divergent contribution as being primitively divergent or not. A
primitively divergent graph has a non-negative overall superficial degree of
divergence but is convergent for all subintegrations. Thus, they are diagrams in
which the only divergence is caused by all of the loop momenta growing large
together.In general only primitively divergent graphssuch as Fig.2.13 can have
their divergences isolated by direct Taylor-series expansion. For other cases,
diagrams with lower-order counterterm insertions must be included in order to
aggregate the divergences into the form of polynomials in the external
momenta.

It

N
~

FiG. 2.13. A primitively divergent four-point function.

(3) In the above example of a two-loop, four-point function we have seen
how the overall divergence can be isolated when diagrams with lower-order
counterterms are included. For such cases where the divergent subinteg-
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rations are disjoint this can be accomplished in a fairly direct manner.
Similarly, it is also relatively easy for cases with nested divergences, i.e. for
cases where one of each pair of divergent 1PI subgraphs is entirely contained
within the other (see the example in Fig. 2.14). After the subgraph divergence

Fi1G. 2.14. Nested divergences and a diagram with a lower-order counterterm which cancels the
subintegration divergence.

is removed by diagrams with lower-order counterterms (Fig. 2.14(b)), the
overall divergence is then renormalized by a A3 counterterm. Thus for both
disjoint and nested divergences the renormalization procedure is rather
straightforward. The difficult step in the proof of the convergence (to all
orders) involves disentangling the overlapping divergences, which are neither
disjoint nor nested divergent 1PI diagrams. Fig. 2.2(a) is an example of
overlapping divergence. Here it is difficult to see in a simple way how the
subintegration divergences can be removed in a systematic fashion because
they do not factorize in a simple manner. Nevertheless, this problem has been
overcome and we refer the interested reader to the literature (Hepp 1966;
Zimmermann 1970; Itzykson and Zuber 1980). The purpose of these
comments is to indicate how the proof of renormalizability generally involves
complicated -graph classifications and combinatorial analysis.

2.3 Regularization schemes

In this section we will give detailed calculations of the various renormaliza-
tion constants in the renormalized perturbation theory described in the
previous sections. To make any meaningful mathematical manipulations on
the divergent integrals we must cut off, or regularize, the momentum
integration to make the integral finite. The divergent part will then be a
function of the cut-off A while the finite part will be cut-off-independent in
the limit A — oo. The cut-off procedure must be chosen in such a way that it
maintains the Lorentz invariance and symmetry of the problem. There are
two commonly used regularization schemes: the covariant cut-off and
dimensional regularization. We shall illustrate them in turn.

Covariant regularization
In this procedure (Pauli and Villars 1949) the propagator will be modified as
1 1

—

a;
P —u*+ie 12—#2+i8+,zlz—1\,~2+i8

(2.69)

where A? > u? and the a;s are chosen in such a way that in the asymptotic
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region the modified propagator will have a sufficient number of internal
momenta in the denominator so that the integral is convergent.

Let us start with the four-point function. The graph in Fig. 2.5(a) yields a
contribution (2.7)

(—id)? [ d i i
— 2 = : :
Fa = F(p ) 2 (27_[)4 (1 _p)z _ 'uz +ic 12 _ HZ +ie (2 70)

Clearly the replacement

1 1 1 u? — A2
— —_ =
P—p?+ie P—pl+ic P-—AN+ie (P*—p*>+ie)l>—A*+ie)

will be sufficient to render the integral finite. Eqn (2.70) then becomes
—A*A* [ d4 1
2 Qr)* (I = p)* — u* +ie)(I* — p? +ig)(I* — A? + ig)
(2.71)

We choose to make the Taylor expansion around p? =0 (or to make
subtraction at p? = 0),

I(p?) =

T(p*) =T(0) + I'(p?) (2.72)
with
— 2N [ d* 1
A ] Ko s 7y s, 2.73)
—2A2 (44 1
2y —
F(p*) = — J(Zn)“ P+l —A+io

1 1
X [(l—p)z—y2+ie _lz—u2+is:|
(a4 2p— p
2 J@my* (P — @2 +ie)*((l — p)* — 12 + ie)

(2.74)

where in the last line we have taken the limit A — oo inside the integral
because ['(p?) is convergent. The standard method to evaluate these integrals
is to first use the identity to combine the denominator factors

1

1 — (-1 dz, dz,...dz, 6(1 _ 3y Zi> 2.79)

n
aa, ...a, (ayzy + azz, + ... a,2,) =4
0

where the z;s are called the Feynman parameters. We can also differentiate
with respect to a; to get
1

L 7214z, dz, ... dz, 5(1—221.)‘ (2.76)

ala, ...a, (@124 + ayzy + ... a,z,)" !
0

This formula has the advantage that one less Feynman parameter is needed
for the case where there are two identical factors in the denominator. Using
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(2.76), we can combine the denominators in (2.74) to give

1

1 1 _5 j(l — a) da 2.77)

P —p>+ie(—p)P? —p? +ie A3
0
where
A=(10-0)@ —p?)+al( —p) —p*]+ie
=(—oap)? —a®+ie
with
a* = p? — ol — a)p?.

Thus,

1
4 . —n2
f(p2)=zzj(1—a)dajdl dp—p
0

Qn)* [( — ap)? — a® +ie]?

1

~ d*  Qu—1)p?
=22 J(l — o) da J(2n)4 T (2.78)

0

where we have changed the variable / to / + ap and have dropped the term
linear in / which will vanish upon symmetric integration. It is more
convenient to do the integration by the Wick rotation, which transforms the
Minkowski momentum to the Euclidean momentum. First we note that
d*l = dl, dl, dl, dl; and

P—a’+ie=0B~1P —-a*+ie
= B— [0 + @' — i),

This shows that the integral (2.78) has poles in the complex /,-plane as shown
in Fig. 2.15.

Im /;

) C
ly=—(*+a?)?+ie
o
- ) Rel;
\w = (P +a?) —ie

Fi1G. 2.15.

Using Cauchy’s theorem we then have

§d10 flo) =0 (2.79)

C
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where
1

5 — @+ a7 =i T

Since f(lp) - lo® as [, —» oo, the contribution from the circular part of
contour C vanishes. Eqn. (2.79) implies that

Jlo) =

© +ioo

J dly f(lo) = J dlo (o) -

—© —ico

Thus, the integration along the real axis has been rotated to that along the
imaginary axis. Change the variable /, = i/, so that /, is real and

+i00 <]
f dly () = i thf(ih)
_ . dl4
- ) FYETErET @i (2.80)

If we define Euclidean momentum k; = (l,,l,,13,1,) with k* =13 +
13 + 13 + 12, then the results in eqns (2.79) and (2.80) may be written
d*/ 1 _ [ 1
Qnr)* (P —a® +ie)® n)* (k* + a* —ig)?

(2.81)

where d*k = dl/; d/, d/; d/,. Using polar coordinates in four-dimensional
Euclidean space, we have

0 2n T T
fd“k = J k3 dk j do Jsin 6do Jsin2 xdy (2.82)
0 0 0 0
and
d*k 1 o2 k3 dk 1
et +a—ie) ) )t B+ —ie)
0

R k? dk? 583
T16n? | (K + a2 —ig)® (2.83)
0

Using the formula for beta functions

o)

""'dt 1 T(mI(n—m)
j (ray @ T (2.84)
0
we obtain
a4k 1 1
(2.85)

Qn)* (K + a® —ie)>  32n%(a” — ie)
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or the vertex function in eqn (2.78) becomes
1
—iA? j da(l — a)(2x — 1)p?
[

2\ _ .
r(r) 32n? | [u? — a(l — a)p? — i)
0

(2.86)

Since 0 < o < 1 we get u2 — a(1 — a)p* > 0 for p* < 4u* and we can drop ie
in the denominator. It is straightforward to evaluate the integral to give

112 42 — s\?
f(p?) =) = 312/17:2 {2 + ( #lsl S) In[{(44> — 5)*

—(ISI)*}/{(4u2—s)*+(|s|)*}]} for s<0

iA? 4t —-s\t (s 5
_Eti{2—2< 5 ) tan (m>}for 0<S<4ﬂ

iA? s—ap\t st — (-4 .
= 53 {2+( . ) In [s*+(s—4u2)*]+ln}
for s> 4u*. (2.87)

With the same procedure, the divergent term I'(0) given in eqn (2.73) can be
calculated

1

iA2A? ada
FO0) =322 ja(,ﬂ —A)+ AT (2.88)
0
For large A2, this gives
iA2 A2
Thus the one-loop contribution to the four-point function is
T{%o(s, 1, u) = 3T(0) + T'(s) + () + T(u) (2.90)

where the cut-off-dependent I'(0) is given by eqn (2.89) and the finite I'(s) is
given by eqn (2.87). We have to add the counterterm (3iI"(0)/4!)¢* to cancel
these divergences. By (2.36) this corresponds to the renormalization constant
3irQ) 30 A?

Having cancelled the divergences, the total four-point function up to this
order is then given by (2.42)

TG, ,u) = —id + T(s) + T') + Tw). (2.92)

For the two-point function of eqn (2.6), corresponding to the graph in Fig.
2.4, we have

Z;'=1+

—id [ d¥ i

—iZ(p?) = .
N [Tl ey

(2.93)
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This is a quadratically divergent integral and it can be regularized by
choosing a, and a, in eqn (2.69) such that

! + ! 2 ! as - o0
a a 5 - o©.
P +ie P—-—AN+ic P—-A+ie 5

It is not difficult to see that we need

2 2 2 2
a, =£%—:Il—\é and a2=[/:§l—:x—%-
Then the modified propagator becomes
1 a, a,
P2y  P-Atie P_A+ie
(A = p*)A] - 1) A*

T AE - ANE =AY (B = i) = AP
for A, and A, both approach a large A. The regularized self-energy is

iz - L [44 A*
P = | P = v i = A% + ie)?
1
it ade
32 ) aA? + (1 — a)u?

0
—iA A?
=357 [A2 —u?ln ;F:l 2.94)

Since it is independent of the external momentum p, the Taylor expansion is
trivial,

Z(p*) = Z(0) ~

A% 2.95
32n? (2.95)
As we have mentioned before, this p-independence is a special property of the
one-loop approximation in A¢* theory. For a more general self-energy

graph, Z(p) will have a nontrivial dependence on p and the Taylor series
around p? = 0 will be

Z(p?) = Z(0) + p*Z'(0) + Z(p?) (2.96)

where 2(0) and X’(0) are cut-off-dependent and £(p?) is finite. And we have
to add 4%(0)¢* and 3X'(0)(0,¢)* counterterms to cancel these divergences.
To summarize, the total Lagrangian up to one loop has the form

PN = PO L APD 2.97)
where

1 A
L0 =3 (@) - '] - 1 ¢*

3ir(0)

m _
AL = 4!

§* + S TOF + 3 0087
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Combining terms of the same structure, we can write (2.97) as

P _ % 0,0)* — W - j"z)d’z. _ %Z'_'l ¢t (2.98)
with
Z,=1+Z0),
AZ7t = A+ 30(0),
2 = X(0). 2.99)

The values of these renormalization constants in the one-loop approximation
are

Zy,=1 since X'(0) =0,

30 . A?
Z}. =1 +—3—2—1E§ln;2-,
2 A 2
o = 53 A (2.100)

If we express everything in terms of the bare quantities through eqns (2.49),
(2.50), and (2.51), we find

1 A
£ =2 [Oubo)? — W3] - 5 48 (2.101)

which is exactly the same as the unrenormalized Lagrangian (2.1) as it should
be.

Finally we comment on the convention used in making the Taylor series
expansions (2.72) and (2.96) around p; = 0 to fix the finite part of the Green’s
function. An equivalent way to state the same convention is to specify the
normalization conditions of Green’s function. From (2.96), the finite part of
the self-energy has the properties

Z(P)p2=0=0 (2.102)
and [}
ZpH|  _
W |co 0. (2.103)

These properties imply that the full propagator

i

. 2 =
iAr(p®) p? — 2 —E(p?) +ie (2.104)
will satisfy the normalization conditions
AN (PP p2z0 = — 1 (2.105)
and
0AR?!
7 |yieo =1. (2.106)

Similarly from (2.72) and thus from '(0) = 0, we have from (2.92) the
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normalization condition for the vertex function
r{o,0,0) = —iA. (2.107)

(Remark: Although (2.104) was originally derived with a Taylor expansion of
Z(p?) around p? = u? it also holds for the present p?> = 0 expansion as a
derivation entirely similar to eqns (2.14)—(2.22) will show.)

In short, one can use conditions (2.105), (2.106), and (2.107) to replace the
prescription ‘Taylor expansion around p; = 0’ to fix the finite part of Green’s
function.

In this connection we observe that the renormalized coupling constant
defined by (2.107) differs from that defined by eqn (2.41) where a Taylor
expansion has been made around the symmetric point s, = to = uo = 4u%/3.
It implies condition (2.33)

TR0, to, Up) = —iA (2.108)

to be contrasted with (2.107). Thus, different Taylor expansions or
subtraction points yield different definitions of the coupling constant. This
leads to the concept of a running coupling constant (see Chapter 3). Clearly
the physics should not depend on the choice of subtraction point which is
purely a convention. In practice how is this apparent difference taken care
of? Consider the two-body scattering cross-sections calculated using two
different definitions of the coupling constant. The calculated cross-sections
may appear to be different by an overall constant (the angular distributions
are identical). But this is immaterial because we need to define the coupling
constant operationally as the value of the cross-section at some kinematical
point. Thus the difference is only apparent and the two seemingly different
calculations really yield the same result.

Dimensional regularization

The basic idea of this scheme ('t Hooft and Veltman 1972; Bollini and
Giambiagi 1972; Ashmore 1972; Cicuta and Montaldi 1972) is that, since the
ultraviolet divergences in Feynman diagrams come from the integration of
internal momenta in four-dimensional space, the integrals can be made finite
by lowering the dimensionalities of the space-time. Then the Feynman
integrals can be defined as analytic functions of the space-time dimension n.
The ultraviolet divergences will manifest themselves as singularities as » — 4.
As before, the finite part can be obtained by subtracting out the first few
terms in the Taylor expansion. This regularization scheme has the important
advantage that it will not destroy any algebraic relations among Green’s
functions that do not depend on space-time dimensions. In particular, the
Ward identities, which are relations among Green’s functions resulting from
the symmetries of the theory, can be maintained in this dimensional
regularization scheme. For a review see Leibrandt (1975).

We will illustrate this method with an example. Consider the one-loop
four-point Green’s function in eqn (2.7) corresponding to the diagram in Fig.
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2.5(a). It is proportional to the integral

1 1
I=|d* - 2.109

J ((—pP —u?+ie P—u? +ie ( )
which is logarithmically divergent. To define the integral in n-dimensional
space, we take the internal momentum to have » components:
l, =Wy 1, ..., 1,_1), while the external momentum has four nonvanishing

components: p, = (po, P1, P2, P3,0...0). Theintegral in n-dimensional space
is then defined as

1 1
I(n) = | d" - -
(n) J (—=py—p*+ie P —p® +ice
which is convergent for n < 4. To define this integral for non-integer values
of n, we first combine the denominators using Feynman parameters and
make the Wick rotation (eqn (2.75)),
1

dn
In) = Jd“ J [(—ap) — & +ic]
0

1

) d"l

0

(2.110)

with @ = pu? — a(1 — a)p?.
The integrand is now independent of the angles of the integration
momentum, which can then be integrated out

© 2n n n
jd"l = j Jn-1 dlj de, jsin 0, do, jsinz 0,de, ...
0 0 0

X

1_—530

sin"~26,_,df,_,

0

n/2 K
- Z”n jl"“‘dl 2.112)
F(i)"

where we have used the formula

. n1/2F<m + 1)
2

Thus eqn (2.111) may be written
1

s ph/2 t n—1
l(n)=%n_jdaj__l__dL_. 2.114)

n 1?2 + a® — ig]?
r<§>o 0[ ]
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The dependence on »n is now explicit. For complex »n, the integral is well-
defined as long as 0 < Re(n) < 4; the lower bound results from the apparent
divergence of the integral at the /= 0 limit. This infrared divergence is
actually an artefact of our procedure as it is cancelled by the singularity in
I'(3n) as n — 0. We can extend this domain of analyticity by integration by
parts

1 ["~1di =2 ... d 1
N\ P+a —ie®  _/n Pdg \Frya—ap
r 5 0 F §+ 1 0 .
(2.115)
where we have used
zZI'z) =Tz + 1). (2.116)

The integral is now well defined for —2 < Re(n) < 4. If we repeat this
procedure v times, the analyticity domain is extended to —2v < Re(n) < 4
and eventually to Re(n) > — oo. Thus the integral given in eqn (2.114) can be
taken as an analytic function for Re(n) < 4. To see what happens as n — 4,
we use (2.84) to evaluate the integral for n < 4,

1

to) = iwr(2- ) [ o .117)
0

Using formula (2.116)

we see that the singularity at n = 4 is a simple pole. If we now expand
everything around n = 4

2 4—n
A t=1+@m—4%Hma+..., (2.119)

where 4 and B are some constants, we obtain the limit
1

— in? Jda In[p? — ol — a)p?] + in24. (2.120)
0
With the one-loop contribution of (2.7) (I' = A*1/32n*), we have

1

{———4 2_1 P i jda In[p? — a(1 — a)p?] +iA}- (2.121)

0

F<2—E>=—2—+A+(n—4)B+... (2.118)

2in?

I(n) »

n—4

)'2

F(?) = 3272
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The Taylor expansion around p? = 0 gives

[(p?) =T(0) + I'(p?) L (2.122)
where
A2 21
I'0)=——(———1i 2 4
© 32n2<4—n ilnp +1A>
i2?
~ 2
16724 — n) (2.123)
and
1
~ —i2? 1 — ol —a)p?
T(p?)=—"- (A S
(p*) o Jda ln[ 7

0
1

~ =i [da(l — o) — p?
-2 ) [ -l — o)p?]
0

(2.124)

where we have performed an integration by parts. Clearly the finite part is
exactly the same as that given by the method of covariant regularization in
eqn (2.86). Thus the finite part of Green’s function is independent of the
regularization schemes as it should be and only depends on the subtraction
point. The I'(0) term diverges as a simple pole at n = 4 corresponding to the
In A term (2.89) in the covariant regularization calculation.

The one-loop self-energy (Fig. 2.4) is given by eqn (2.6) which in the
dimensional-regularization scheme becomes

s 4[4 1
P = e S e
—i/ln"/zl“(l _ g)
- : (2.125)

3271.4(#2)1—;1/2
Since, from eqn (2.116),

G

the quadratic divergent term (2.95) has poles at n = 4 and also at n = 2. For
n — 4 we have

. i (1
—i%(0) = ;—6% <4—_7> (2.127)

To compare the two regularization methods we list the results for the
divergences in Table 2.1. Thus divergent Feynman integrals when evaluated
in n-dimensional space appear as poles of the resulting I' function at



56 Introduction to renormalization theory 2.4

n =4, ...etc., keeping in mind that the quadratic divergence also has a pole
at n = 2, see eqn (2.126).

TABLE 2.1
Covariant Dimensional
regularization regularization
o ilzl A? i}?( 2 )
© a2 3272 \4 —n
Y] A —2,uz>
(0 A —
© 3272 3272 (4 —n

2.4 Power counting and renormalizability

In the previous sections the renormalization procedure in A¢* theory has
been illustrated in some detail. Here we will discuss the problem of
renormalization for the more general types of interaction. The BPH
renormalization procedure will be followed in this discussion. In a later part
of this section, renormalization of composite operators will also be
examined.

Theories with fermion and scalar particles

For simplicity we shall first concentrate on theories with spin-1/2 and spin-0
particles only. For the Lagrangian density, & = %, + X, %., where %, is
the free Lagrangian quadratic in the fields and the %s are the interaction

terms (for example, &; = g,Yy,¥ 0", g(0¥)%, 930V ¢, 9ud>, gs¢*, .. ), for
a given graph we can define the quantities

n; = number of ith type vertices;

b; = number of scalar lines in the ith type vertex;
J; = number of fermion lines in the ith type vertex;
d; = number of derivatives in the ith type vertex;
B = number of external scalar lines;

F = number of external fermion lines;
IB = number of internal scalar lines;

IF = number of internal fermion lines.

Thus for &, = g,Yy,¥ 0*¢ we have b, =1, f, =2, d, = 1. From the
structure of the graph we have relations like that of (2.58)

B+ 2(IB) = Z nb; (2.129a)
F +2(IF) =) nf. (2.129b)
Just as in (2.59), the number of loop integrations L can be calculated

L=(B)+(IF)—n+1 (2.130)
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where
n=y n. ©.131)

The superficial degree of divergence D is then given by

D = 4L - 2(IB) — (IF) + ¥ nd,
=4+ 2(IB) + 3(F) + ¥ ni(d; — 4). (2.132)

Using (2.129) we can eliminate /B and IF,

D=4—-B-3F+Y ns, (2.133)

where
Si=b+3fi+d —4 (2.134)

is called the index of divergence of the interaction .%;. For 1¢* theory, § = 0
and (2.133) reduces to (2.61). In general §; can be related to the dimension of
the coupling constant in units of mass. Knowing that the Lagrangian density
has dimension four and that the scalar field, the fermion field, and the
derivative have dimensions 1, 3/2, and 1, respectively, the dimension of the
coupling constant is given by

dim(g;) =4 — b, — 3f, — d; = — ;. (2.135)

From (2.133) we see that, for a fixed number of external lines, the superficial
degree of divergence will have different behaviour for the following three
cases.

(1) g; has positive dimension (or §; < 0). Then D decreases with the number
of ith type vertices. In this case .Z; is called a super-renormalizable interaction
and the divergences are restricted to a finite number of graphs. For example,
consider the graphs for the two-point Green’s functions in the super-
renormalizable A¢3 theory. The one-loop diagram in Fig. 2.16(a) is divergent
while the two-loop one in Fig. 2.16(b) is not.

—(O—  —(D—

(a) (b)
FiG. 2.16.

(2) g, is dimensionless (or 6; = 0). Here D is independent of the number of
ith type vertices. The divergences are present in all higher-order diagrams of
a finite number of Green’s functions. %; = g,¢*, g, ¢ are such examples,
and they are called renormalizable interactions.

(3) g; has negative dimension (or 6; > 0). In this case, D increases with the
number of ith type vertices and all Green’s functions are divergent for
sufficiently large n;. These types of interactions are non-renormalizable, and

are exemplified by %; = g,Yy,¥ 0*¢, g,(Y¥)?, g3¢°, ... etc.
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The index of divergence J; is also related to the canonical dimension of the
field operator. The latter is defined in terms of the high-energy behaviour of
the free-field propagator, which is clearly relevant for power counting. Write
the propagator for the free-field operator as

DA(p?) = jd“x e "'P*{0|T(A(x)A(0))0>. (2.136)

If the asymptotic behaviour is of form
DA(p?) = (p?)~¥2, (2.137)

p2o

then the canonical dimension for the field operator is defined as
d(A) = (4 — w,)/2. (2.138)
Thus for the scalar and fermion fields and their derivatives, we have
do) =1, d0"¢) =1+ n,
di) =3, d(o™) = 3 + n. (2.139)

For composite operators that are polynomials in the fields the canonical
dimension is the algebraic sum of the constituent fields: for example,
d(¢?) = 2d(¢p) = 2, AWy d) = 2d() + d(¢) = 4. In the case of theories with
fermions and scalars only, the canonical dimension of an operator is the
same as that of the naive dimension in units of mass. But as we shall see later,
these dimensions are different for massive vector fields. With these definitions
and those in (2.128), the canonical dimension for each term in the interaction
Lagrangian density becomes

d&) = b +3f +d. (2.140)

With the index of divergence §; = d(¥;) — 4, we see that a dimension-four
term corresponds to a renormalizable interaction, that less than four is super
renormalizable, and that greater than four is nonrenormalizable.

Counterterms

Since the counterterms are constructed to cancel the divergences in the n-
point Green’s function, their structures are closely related to that of the
superficially divergent Green’s function. For example, we have seen that in
A¢* theory to cancel the quadratically divergent parts in the two-point
function, we need counterterms (9,¢$)(0"¢) with dimension 4 and ¢* terms
with dimension 2, while the logarithmically divergent four-point function
needs the dimension-4 counterterm ¢*. In general we have to add counter-
terms to cancel all divergences in Green’s functions with superficial degrees
of divergence D > 0 as determined by (2.133). For convenience we will use
the Taylor expansion around zero external momenta p; = 0 to isolate the
divergent terms. The structure of the counterterms depends on the number of
divergent terms in the Taylor expansion. For example, if a Green’s function
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is quadratically divergent, the first three terms in the expansion will be
divergent

T®(p;) = a + bl py + clipupse + T(py). (2.141)

The counterterms designed to cancel the a-term will have no derivative, the
terms designed to cancel the b-term will have one derivative, etc. In the
notation of (2.128) the counterterm will have the form O, = (0,)*(¥)"(¢)"
with « =0, 1,..., D. For A¢* theory, for example, we have terms cor-
responding to F=0, B=2 with «a =0 and 2, B=4 with a =0. The
canonical dimension of O is given by

d,=3F+ B +a. (2.142)

The index of divergence of the counterterm can then be written through
(2.133) as

5::1 = dc\ —4
=(a—D)+Zni6,-. (2.143)

Since o < D, we have the result

5a < Y 16y (2.144)

Thus, the counterterms induced by a Feynman diagram have indices of
divergence d, less or equal to the sum of the indices of divergence of all
interactions ¢; in the diagram.

The renormalizable interactions which have ¢; = 0 will generate counter-
terms with J, < 0. If all the §; <0 terms are present in the original
Lagrangian, so that here the counterterms have the same structure as the
terms in the original Lagrangian, they may be considered as redefining
parameters like masses and coupling constants in the theory. These
renormalized parameters are inputs of the theory and we need measurements
of some physical processes to determine them. With these inputs, we can then
predict the outcome of all other physical processes. For example, in A¢*
theory we have two free parameters, the coupling constant 4 and mass u. We
can use the two-particle elastic scattering cross-section at two different
scattering angles to determine the values of A and u. The cross-sections for all
other angles and/or all other energies (and also all other inelastic cross-
sections) can then be predicted. Much the same holds for super-
renormalizable theories. On the other hand, non-renormalizable interactions
which have §, > 0 will generate counterterms with arbitrary large J. in
sufficiently high orders and clearly they cannot be absorbed into the original
Lagrangian by a redefinition of parameters. For example, the non-
renormalizable interaction A¢® which has é = 2, will produce counterterms
consisting of all even powers of ¢ and their derivatives: ¢>" and 8>"¢*" with
nm=1,2,..., 00. We need an infinite number of measurements to fix the
coefficients of these terms. Thus non-renormalizable theories will not
necessarily be infinite; however the infinite number of counterterms
associated with a non-renormalizable interaction will make it lack in pre-
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dictive power and hence be unattractive, in the framework of perturbation
theory.

We will adopt a more restricted definition of renormalizability. A
Lagrangian is said to be renormalizable by power counting if all the
counterterms induced by the renormalization procedure can be absorbed by
redefinitions of the parameters in the Lagrangian. With this definition, the
theory with a single-fermion interaction with a single scalar through the
Yukawa coupling §ys¥¢ is not renormalizable even though the coupling
constant is dimensionless. This is because the one-loop diagram of Fig. 2.17
is logarithmically divergent and we need a ¢* counterterm. But such a term is
not present in the original Lagrangian. The same theory with a ¢* interaction

¢ ¢

¥

FiG. 2.17.

is renormalizable. On the other hand, if a term can be excluded on symmetry
grounds, then the renormalizability of the theory is not disturbed because
higher-order terms will not generate such a term. For example, in a theory
with only one scalar field,

% =409~ e — 4t
is renormalizable because it contains a// terms with 6 < 0 (equivalently with
dimension less than or equal to 4) which are consistent with the symmetry
¢ - —¢. The ¢> counterterm will be forbidden by such a reflection
symmetry. Also, in this context we can understand result (2.133), or the more
restricted A¢* result (2.61). The higher-order contributions to, say, a six-
point function should be finite in (renormalizable) A¢* theory. This must be
the case because, if they were not, one would need a ¢° counterterm to
absorb the divergences. Such a counterterm having é = 2 would ruin the
renormalizability of the theory.

Theories with vector fields

Since the asymptotic behaviour of free vector-field propagators is very
different for the massless and massive cases, we will discuss them separately.

Massless vector field. In a theory with local gauge invariance such as QED,
the vector field is massless. The asymptotic behaviour of the free propagator
is mild. For example the Feynman-gauge photon propagator in QED is given
by

—ig,,
kz + 1€ koo

Auk) = O(k™?). (2.145)
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This implies that the photon field will have unit canonical dimension:
d(A) = 1, like that for the scalar ¢. Consequently power counting for a
massless vector field is the same as that for the scalar field. Theories with a
massless vector field will be renormalizable if they contain all interactions
with dimension less than or equal to four and consistent with local gauge
invariance. Denoting the massless vector field by 4,, we have, for example,
the dimension-4 operators

Uy A, o*4,4%, (0,0)pA".

This in fact represents an exhaustive listing of all possible renormalizable
interactions (i.e. dimension-4 or -3) of spin-0 and -1/2 fields with massless
vector fields. The only possible dimension-3 operator (9,¢)4*, which is
bilinear in fields, is part of the free Lagrangian.

Massive vector field. Generally the free Lagrangian for a massive vector field
V, has the form

o= —HOV. = OOV — V) + MV V. (2146)
The vector propagator in momentum space

_i(g;u' - kuk\/M\?)
KX —MI+ie

D, (k) = (2.147)

has the asymptotic behaviour

D, (k) - O(1). (2.148)
k— oo

This means that the canonical dimension for the vector field is two which
differs from its (naive) dimension by a mass unit of one. The power counting
is now modified with the superficial degree of divergence given by

D=4—B—3F-2V+Y n(A — 4 (2.149)

and
A, = b, + 3f + 20, + d, (2.150)

where V is the number of external vector lines, v; is the number of vector fields
in the ith type of vertex, and A, is the canonical dimension of the interaction
term %;. To have a renormalizable interaction we need A; < 4 but, from
(2.150), the only such term trilinear in the fields is ¢®4,, which is not
Lorentz-invariant. There is no nontrivial interaction of the massive vector
field which is renormalizable. However, two important exceptions to this
statement should be noted.

(A) In a gauge theory with spontaneous symmetry breakdown, the vector
(gauge) boson will acquire mass in such a way as to preserve the
renormalizability of the theory. We will discuss this in detail in Chapter 8.

(B) A theory with a neutral massive vector boson coupled to conserved
current is also renormalizable. Heuristically we can understand this as
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follows. The propagator D, (k) given in (2.147) always appears between the
conserved currents J*(k) and J'(k) and the k k,/M 2 term will not contribute
because of current conservation. k*J,(k) = 0 or, in the coordinate space,
0"J,(x) = 0. Then power counting is essentially the same as for the massless
vector field case.

Renormalization of composite operators

So far we have only considered Green’s functions involving elementary field
operators. In many practical applications we are interested also in functions
of composite operators, i.e. local monomials of fields and their derivatives, e.g.
W, 6%, ¢ 62, etc.

Again we will illustrate the renormalization of such composite operators in
A¢* theory. Consider the composite operator 3¢?(x). The Green’s function
with one insertion of $¢?(x) has the form

Glx; xy ... x,) = KOITG*(X)P(xy) - .. D(x,))|0) (2.151)

or, in momentum space,

@n)*o*(p+py + ... P)GR(Ps pys - s DY)

= Jd“xe"""c Jl—[ d*x; e PN GE(x; Xy, .y X)), (2.152)

i=1
In perturbation theory we can use Wick’s theorem to work out Green’s
function in terms of Feynman diagrams. For example, for G?(x; x, x,) to the
zeroth order in A we have

GR(x; xy, %;) = COTES2(X)p(x, )b (x2))0)

= 1A(x — x,) IA(x — x;) (2.153)
or, in momentum space,
GP(p; P, —p — p1) = iA(py) iA(p + py)- (2.154)
If we truncate the propagators on the external lines, we have
T@(p; p1, —p —p1) =1 (2.155)
as represented in Fig. 2.18(a). The same Green’s function to first order in 4 is

(=i4)
4!

GP(x; xy, X;) = jd4y<0|T(%¢2(X)¢(x1)¢(x2) ¢*(»)I0>

— l
= Jd“y( 21 ) [AGe — »)17 1AGx; — p) iA(x; — p)

with (amputated) 1PI momentum-space Green’s function given below (see
Fig. 2.18(b))

—iA [ d¥ i i
T®p:p.. —p —p.) = —* :
e (p; pys —p — p1) 3 J(2H)4 2 +ie(l—p)P? —p? +ie

(2.156)
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! I-p

p ptp, Py lard
(a) (b)
FIG. 2.18. Zeroth- and first-order diagrams of I'd (p; p1, —p — p).

We see that the composite operator generates a vertex very much like a
term in the Lagrangian except that the composite operator can carry off
momenta. This suggests the following method of systematically calculating
Green’s functions with composite operators. As we have seen in §1.2, we can
generate Green’s functions of elementary fields ¢(x) with the insertion of
J(x)¢(x) in the Lagrangian density, J(x) being an arbitrary c-number
function. For a composite operator Q(x) we can similarly insert y(x)Q(x) in
the Lagrangian density where y(x) is the c-number source function

2] = 2101 + 2Q. (2.157)

Following exactly the same procedure of constructing the generating
functional WTyx], which is the vacuum-to-vacuum transition amplitude in the
presence of this external source y(x), we obtain the connected Green’s
functions by first differentiating In W[y] with respect to y and then setting
the source y to zero. With Q(x) = 1¢2(x) we have the vertex shown in Fig.
2.19(a) which may appear for example in the one-loop four-point ¢ function
in Fig. 2.19(b),

(—id)? [ d% i i
2 @r)* P —pu?+ie (+p)* —p*+ie

T(pspy - pa) =

i

X —- (2.158)
(I—p1—p2) — 12 +ie
p V4
P ! T
Py ptp, 123 I=p,—p, Py
(a) (b)
FiG. 2.19.

We are now ready to discuss the renormalization of this new set of Green’s
functions T$(p; p; ...p.). The procedure is exactly the same as that for
Green’s functions without Q(x), I'™(p,...p,). Since an insertion of a
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composite operator is like an additional vertex, a straightforward application
of (2.133) will show that the superficial degree of divergence D, of I'$” differs
from D of I'™ by the index of divergence &, of the composite operator

Do=D+3q=D + (dy — 4), (2.159)

where d,, is the canonical dimension of Q. Thus, for dy < 4, the insertion of
(renormalizable or superrenormalizable) composite operators will not
worsen the convergence property of the Green’s function; the insertion of a
a’Q > 4 operator worsens the divergence of the diagram. For the case of

= 3¢, we have d(¢?) = 2 and, for an n-point function, D, = 2 — n. Thus
only I'% is logarithmically divergent and needs to be renormalized. The
relevant one-loop diagram shown in Fig. 2.18(b) has the Taylor expansion

I‘"‘%)(p'pl, —p —py) =T0;0,0) + TEk(p; p1, —p — p1) (2.160)
where is finite and has the normalization
I'%(0;0,0)=0. (2.161)
We can combine the counterterm

—-T(0;0,0)x(x)¢>(x)

with the original term to write

—i
f,?z (0;0,0)7¢? = — Z,1¢*

_1 )
5 19 2

I\)I'-'

with
Z,=1+T%(0;0,0). (2.162)
Thus, the total contribution to '3k up to one loop is
T&k(p;pys —p = p) =1+ T&(ps Py, —p — p1) (2.163)
with the normalization

I'2:(0;0,0) = 1. (2.164)

In general we need to insert the counterterm AQ into the original addition of
(2.157).

L > 2+ 1(Q+ AQ). (2.165)

In particular, for the counterterm proportional to the original composite
operator itself, AQ = CQ, as is the case with 1¢2, we have

ZLlx] = Z10] + 1ZQ

= 207 + 19 (2.166)
with
QO = ZQQ = (1 '+‘ C)Q.

Such composite operators are said to be multiplicatively renormalizable. This
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means that the Green’s function of the unrenormalized operator Q, is related
to that of the renormalized operator Q by

GEAx; x5 ... %,) = 0T (Qo(x)o(x1), - . . Po(x,))0)
= ZoZWPG (X Xy .. X,). (2.167)

The composite operator Q = $¢? is multiplicatively renormalizable be-
cause it is the only operator with dimension-two. For more general cases,
AQ # CQ, the renormalization of a composite operator may require
counterterms proportional to other composite operators. In this way
renormalization may introduce mixings among composite operators. For
example, for Q = ¢*, the counterterms AQ = ¢?, (0,¢)*, and ¢* will be
needed. To be definite we will restrict our illustration to the case of two
composite operators 4 and B which can mix under renormalization

Llx] = ZL[0] + x4 + AA) + x5(B + AB). (2.168)
The counterterms A4 and AB are some linear combinations of 4 and B

AA = CAAA + CABB

AB = Cg A + CyB. (2.169)
We can write Z[y] as
A
ZLx] = Z10] + (X4s xB)C< B> (2.170)
where
1+C C
c_('TCm  Cu ) 2.171)
Such a matrix C can be diagonalized with a bi-unitary transformation (see
§11.3). Thus,
Z, 0
vevt =7 (2.172)
0 Zg

where U and V are unitary matrices. The Lagrangian can then be written

Llxl = LI0] + ZygaA + Zpye B

) 2.173
B)” \»B @173)

Ot x8) = (Aas XB)UT-

This means that the linear combinators A’ and B’ as defined by (2.173) are
multiplicatively renormalizable

OIT(A'(x)B'(y)d(x1) . - (x,))I0)
=Z5' Z5' 25" O T(Ao(x) Bo(D)do(x1) - - - po(x,)I0).  (2.174)

where
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An example of such simple mixing involving only two composite operators is
the theory defined by
. 1 2 1 242 A 4 '1,4’3
$=|ﬁ(1y"6u—m)¢—§(6u¢) ok ¢ —ﬂfﬁ — gyo ~ 30
(2.175)

with 4 = ¢3 and B = Jy. These two composite operators can mix under
renormalization because of the divergences in the diagrams shown in Fig. 2.20.

B A
. /// : \\\
S I l

FIG. 2.20. One-loop divergent diagrams involving composite operators 4 = ¢> and B = .
The dashed lines represent ¢-fields; solid lines y-fields.



3 Renormalization group

The renormalization theory discussed in the last chapter has some arbitrari-
ness related to our choice of kinematic points in defining physical parameters
such as the mass and the coupling constants. For example, the BPH
renormalization prescription only requires that the divergent part of the 1PI
graph be cancelled by counterterms constructed from Taylor expansions.
However the reference points for the expansions are arbitrary. Different
choices of the reference points, i.e. different subtraction points, lead to
different definitions of the physical parameters of the theory. But any choice
is as good as any other; the physics should not depend on the choices of the
normalization conditions. This is the renormalization group: the physical
content of the theory should be invariant under the transformations which
merely change the normalization conditions. This seemingly empty statement
actually provides us with highly nontrivial constraints on the asymptotic
behaviour of the theory. In systems with infinite degrees of freedom (such as
quantum field theory), renormalization can be defined in such a way that it
involves a series of redefinitions of physical parameters on the relevant
length or energy scales. There must be relations between the physical quan-
tities so defined. Hence the renormalization group equation expresses the
effect of a scale change in the theory or, more accurately, expresses the con-
nection of renormalizability to scale transformations.

Gell-Mann and Low (1954) were the first ones to use renormalization group
techniques to study the asymptotic behaviour of Green’s functions in
quantum electrodynamics. The renormalization group was discovered by
Stueckelberg and Peterman (1953); its role in the Gell-Mann-Low analysis
was discussed by Bogoliubov and Shirkov (1959). The recent interest in the
applications of renormalization group has largely been brought about by the
work of Wilson (1969). Our presentation is patterned after the lecture by
Coleman (1971a). There are a number of ways to set up the renormalization
group equation. In §3.1 we study this in the form of the Callan-Symanzik
equation (Callan 1970; Symanzik 1970b) which is associated with momen-
tum subtraction schemes. In §3.2 we briefly discuss the mass-independent
renormalization or minimal subtraction scheme ('t Hooft 1973; Weinberg
1973a) and its associated renormalization group equation. The solutions to
these equations in the asymptotic region are found in terms of the ‘effective
coupling constants’ which are studied in more detail in §3.3.

3.1 Momentum subtraction schemes and the Callan-Symanzik
eqguation

As stated above the existence of a renormalization group is related to the
freedom one has in the choice of the reference points for Taylor expansions
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leading to different definitions of the physical parameters of the theory.
These choices may be expressed as different normalization conditions on
certain 1PI amplitudes. The physical parameters should then be regarded as
dependent on the choices of normalization conditions. We shall first
illustrate this in A¢* theory by giving two specific examples of mass-
dependent normalization conditions (or momentum-subtraction schemes).

Intermediate renormalization

This corresponds to a Taylor expansion around zero external momenta. For
the self-energy we have

2(p?) = Z(0) + Z'O0p* + Z(p?). (3.1)
The finite part £(p?) will have the properties
$0)=0 (3.2)
9Z(p*)
et =0. .
s (3.3)
The full propagator Ag(p?) is related to the self-energy Z(p?) by
i
iA(P?) = 5—5—=—~ 3.4
R(p ) P2 _ ”2 _ 2(}72) ( )

and the 1PI two-point function I'@(p?) is given by
irP(p®) = iAr(p*)[iAr(P*)] 2
= —i[Ax(p*)]7!
= —i[p* — p* - £(P)]. (3.5)
The normalization conditions on £(p?) (eqns (3.2) and (3.3)) can be
translated in terms of ['P(p?) as
o) = 2 (3.6)
arg(p?)
apz p2=0

For the four-point function, the finite part of the higher-order contribution is
defined by

= —1. 3.7

TPy, P2, p3) = T¥(py, P2, p3) — T(0,0,0). (3.8)
Thus we have
T(pysp2.p3) =0 at py=p, =p3=0. (3.9)
Including the tree-level contribution
T(p1, P25 p3) = =14 + TPy, P2 P3), (3.10)

the normalization condition on the total four-point function reads

T(py, pap3) = —id at py=p,=p; =0. (3.11)
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We note that u? in this subtraction scheme is not the physical mass and that A
is not the physical coupling constant because the points p; = 0 are not in the
physically allowed region. But we can express all physically measurable
quantities in terms of these two parameters. In this sense they are physical
parameters.

On-shell renormalization

This corresponds to a Taylor expansion for external momenta on the mass
shell, i.e. p? = p?. For the self-energy, this gives

I(p?) = Z(?) + (p* — 1)) + £(p?). (3.12)
Thus,
$W) =0 (3.13)
0% (p?
AL B, (3.14)
6p p2=p?
Or, in terms of T'P)(p?) of (3.5),
rPw?) =0 (3.15)
arP(p?
AP (3.16)
ap p2=p?

For the four-point function, a convenient choice of the reference point for
the Taylor expansion will be the symmetric momentum point

TP(py,pasp3) = —id at pf = p?,
s=i=u="4’/3 (3.17)

where s, 7, and u are the Mandelstam variables. In this case the parameters u?
and 4 are the physical mass and, up to some kinematical factors, the physical
differential cross-section at s = ¢ = u = 4u?/3, respectively.

These two examples are specific realizations of a general renormalization
scheme where the normalization conditions R can be a function of several
fixed ‘reference momenta’, &,, &, ... such that

et = p? (3.18a)
(2)( 2
M = —1 (3.18b)
op pr=&
and
T(Es, &g, E5) = —id. (3.18¢)

Renormalization group. Consider two different renormalization procedures,
R and R'. Since both start from the same bare Lagrangian

¥ = & (R-quantities)
= Zr(R'-quantities), (3.19)
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in terms of the unrenormalized fields (see eqn (2.23)), we must have

br = Zg P (R)o; br = Z '*(R)o. (3.20)
Thus,

¢r=Z5 ' *(R, R)pg
where

Zy(R', R) = Z,(R)/Z4(R). (3.21)

This means that the renormalized fields in different subtraction schemes are
related by a multiplicative constant. Since both ¢, and ¢, are finite,
Zy(R', R) must also be finite even though it is a ratio of two divergent
quantities. Similar relations between the coupling constants, masses, and
Green’s functions can be worked out

A =Z; YR, R)Zi(R’, R)Ax (3.22)
Uz =z + 0u*(R', R) (3.23)
where
Z, (R, R) = Z,(R)/Z,(R) (3.24)
Su (R, R) = 6p2(R') — Sp*(R). (3.25)

are all finite. The operation which takes the quantities in one renormalization
scheme R to quantities in another scheme R’ can be viewed as a
transformation from R to R’. The set of all such transformations is said to
form the renormalization group. We now translate this renormalization group
invariance into the analytic form.

Callan-Symanzik equation

First we note that differentiation of the unrenormalized Green’s function
with respect to the bare mass is equivalent to an insertion of the composite
operator Q, = 142 carrying zero momentum
orm ; )
TP _ _ireo; py) (3.26)
duo

because I'™(p;) depends on u3 only through the bare propagator

lAO(p) =

P (3.27)

and because

0%(112—;%+is>=p2—/13+is“i)p2—;%+is' (329

In terms of the renormalized (1PI) Green’s functions, we can write
CRUpis 2 1) = ZYPT (py; Ao o) (3.292)
T8 (p, pis 4, 1) = Z 32" ZPTEAp, pi5 2o, to)- (3.29b)
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After substituting (3.29) into (3.26) and using the following relation
0 ou? 0 0A 0
—T®pshw=|==5+=5= |TDp; 4 w, .30
we have the Callan-Symanzik equation in 1¢* theory

0 0 .
[ﬂ P ny] TR(pis 4 W) = — ip?al (0, pis 4, 1) (3.31)

where o, f§, and y are dimensionless functions

04/0u3
= 2u? .
B=2u IR (3.32)
0lnZ,/ou3
_ 2 /Ko
[ Py (3.33)
0Z 42 /0ud
= ERIE: . (3.34)

The function « is related to y: for n = 2 we have the normalization conditions
(3.6) and (2.164)

TP0; 4, p) =ip*> and T@ER0,0; 4, p) = 1. (3.35)
Hence, from eqn (3.31),
o=2y—1). (3.36)

Since the renormalized quantities I'Y) and I'{; are both cut-off independent
to all orders in A, we expect that the functions a, f8, and y are also cut-off
independent. To see this explicitly we set » = 2 in (3.31) and differentiate
with respect to p?

) 0 0 0
[u 5; + B Fr 2?] — TR(p; A w) = —ipPa— TER(O, p; 4, p).

op op®
(3.37)
Set p> = 0 and use the normalization condition (3.7)
or'P(p?; A,
Mepstm) (3.38)
ap p2=0
Then (3.37) turns into
2 0 ra 2
y=p(l-9) 6—2F¢2R(0,P s Ay 1) : (3.39)
p p2=0

This demonstrates that y is cut-off independent. Every function except f§ in
(3.31) is now independent of the cut-off; hence f is also cut-off independent.
Since, o, B, and y are dimensionless, the cut-off independence implies that
they are functions of the dimensionless coupling constant only, i.e. & = a(4),
B = B(%), and y = y(2).

In practical calculations of @, §, and 7 it is convenient to use the cut-off (A)
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dependence of the renormalization constants Z,, Z, as follows. In un-
renormalized perturbation theory with unrenormalized A, and p,, the
renormalized parameters yu and A, defined in (2.51) and (2.50),

1= g + op? (3.40)

and
A=Z (3.41)

with
zZ=2;'7 (3.42)

are functions of 4,4, uo, and A. From dimensional argument, 4 and the Z;s
can depend only on dimensionless quantities like 1, and A/u,. If we further
replace po by p = u(do, o, A), we have 1 = A4y, A/u)and Z; = Z; (4o, A/p).
Using the chain rule of differentiation

0 ou* 0
— Mo, A =— —5 AMAg, A > 3.43
0#(2) ( 0 /.u) Ao 5#3 a'uz ( 0 /,U.) Ao ( )
we have
0
B=u o [A(4o, A/.u)]/\.).o
u
0 —
=Hu 6_ [Z(4o, A/H)AOJA.}.O
n
o —
= —AA 8_A [Z (%, A/.u)]u,/lo (3.44)
or
B =~z [In Z(ho, A/W)]. (3.45)
Similarly, we obtain
1 0
v = =5 57 [0 Zy(o, A/W)). (3.46)

This means that to calculate the Callan—-Symanzik f and y functions we only
need to know the In A term in the Z;s. At the one-loop level we have (eqn
(2.100))

Z)=1+5- % In —+0(,1 )
Zy =1+ 0(A3).
Hence
342
POY = 1e=+ 0(4%) (3.47)
P(4) = O(4?). (3.48)

The generalization of the Callan-Symanzik equation to Green’s functions
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involving several composite operators 4, B, C ... can be carried through in a
straightforward manner. First we choose the appropriate linear combination
of operators such that they are multiplicatively renormalizable (see §2.4).

(G Jr=Z7"Z5" ... Z;"{G5 o (3.49)
or

T Je=2Z7"Z5" ... ZPTG Jo- (3:50)

The Callan-Symanzik equation can be readily shown to be

0 0 .
hospl-m Fran [ (T Je = —walTEL e G5D
with
1 0

Yap... = 37 A In[Z,Z...].

Weinberg’s theorem on the asymptotic behaviour of Green’s function

The large-momentum or short-distance behaviour of Green’s function is
clearly of great interest. It is related to the renormalizability properties of the
theory. An important theorem here is the one due to Weinberg (1960). It
concerns this behaviour for nonexceptional values of momenta in the
Euclidean region. In the Euclidean region all momenta are space-like, p? < 0,
which can be realized most easily by having real space and imaginary time
components. A momentum configuration p,p,,...,p, is said to be
nonexceptional if no nontrivial partial sum vanishes, p; +p;, +... p;, =0
for iy, i,, ..., i, take on any of the labels, 1, 2, ..., n. (A trivial partial sum
which vanishes would be p, + p, + ... p, = 0 because of the overall energy—
momentum conservation.)

Again we state without proof Weinberg’s theorem. If the momenta are non
exceptional and parametrized as p; = ok;, the 1PI Green’s function TP grows
in the deep Euclidean region (corresponding to ¢ — oo with k; fixed) as ¢*™"
times polynomials in In ¢ to any finite order in the coupling A. Similarly T3,
grows as ¢~ " times polynomials in In .

We note that the powers of ¢ for 'y’ and I'{¥ are just their superficial
degrees of divergence (see Chapter 2), which are also their (naive) dimensions
in unit of the mass.

For convergent diagrams it is not difficult to understand this result
intuitively. For a nonexceptional external momentum configuration, the
hard momenta must flow through the internal loops and set the scale for the
loop integration momenta as well. (For an exceptional momentum configura-
tion this need not be true.) This explains why the same degrees of divergence
appear in our study of the large internal momentum limit and of the large
external momentum limit. For divergent diagrams the result stated by
Weinberg’s theorem may not be so obvious. One would expect that the
ultraviolet portion of the integration would be controlled by the cut-off A
even for hard external momenta. However, the cut-off-dependent part is
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cancelled when the necessary counterterms are included. The surviving
leading contribution again corresponds to the portion of the loop integration
with momentum of the same order of magnitude as the hard external
momenta. To illustrate this remark, consider the one-loop four-point
function in Fig. 2.5,
4
I~ J d*l .
[( - p)* — w*1[P - 4]
In the three integration regions, we haveI' ~ In Afor ! >» p;T" ~ In pforl ~ p;
I ~ p~2forl « p. After the inclusion of the counterterm of Fig. 2.9(c), the In A
term is cancelled and replaced by some term constant in p. Thus the dominant
asymptotic behaviour comes from the region of integration where [ ~ p. This
is why the power of ¢ in the asymptotic behaviour is the same as the superficial
degree of divergence. In this particular case, we have D =4 —n = 0; we
expect from Weinberg’s theorem the asymptotic form I = (¢°) x
(polynomial in In o). This agrees with the estimate given above.

We note that, in the deep Euclidean region, particles are very off their mass
shell p? » u?. Nevertheless, as we shall see later in Chapters 7 and 10, in cases
such as deep inelastic lepton scatterings we can still extract useful infor-
mation with the help of the operator product expansion.

Weinberg’s theorem tells us that Green’s function in perturbation theory
takes on the asymptotic form

(3.52)

I'(ep;, A, u) — o* "[aog(ln 6)% + a,(In 0)*' 4 + ...] (3.53)
g— 0
with the constants a; and b; unspecified. Thus, it leaves open the question as
to what the power series in polynomials of In ¢ sums up to. If this sums up to
some power of g, say o7, then y will be called the anomalous dimension as it
modifies the canonical behaviour ¢*~" to ¢*~"~?. Clearly, we would like to
learn all we can about the anomalous dimension .

The asymptotic solution of the renormalization-group equation

If we can ignore the inhomogeneous term on the right-hand side of eqn (3.31)
involving mass insertions, the Callan—-Symanzik equation can provide
information on the asymptotic behaviour of Green’s function. As it relates
quantities of different orders in the coupling (u(d/0u) ~ O(1),
p(0/04) ~ O(2), and y is of even higher order), the equation can be viewed as
some kind of recurrence relation among the a;s and b;s of (3.53). Thus the
asymptotic solution of the Callan—-Symanzik equation should be relevant to
the study of the true large-momentum or short-distance behaviour of Green’s
function. In other words, this renormalization-group equation sums up all
the leading logarithmic terms to all orders of the perturbation series.
From Weinberg’s theorem we have I'y’ » I'{; to any finite order of 1 in
the deep Euclidean region (¢ — o0). If we assume that this is true even when
the perturbation series is summed to all orders, we can then drop the right-
hand side of the Callan—-Symanzik equation (3.31) and obtain a homo-
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geneous differential equation
0 -0
[u i BA) = — nv(/l)J T%(pi, A, ) =0 (3.54)
" 04

where I'") is the asymptotic form of I'{’. Thus in the deep Euclidean region, a
small change in the mass parameter (the u(d/du) term) can always be
compensated for by an appropriate small change in the coupling (the f(0/04)
term) and an appropriate small rescaling of the fields (the —ny term).
First we replace the change in mass parameter trivially by the correspond-
ing change in the scale parameter. From dimensional analysis we can write

L& (pis 4 w) = u* TR (pi/ 1, 1) (3.55)
where I’ is dimensionless and satisfies
i+0i T'™op,/u, A)=0 (3.56)
2 aﬂ ao_ R\OD;i/H, - Y. .
We have from (3.55) and (3.56)
0 0
B+ o~ + (n—4) [T(op/u, ) = 0. (3.57)
ou oo
The asymptotic form of the Callan—Symanzik equation can be written
0 0
I — — M(gp. =
[a = B 55+ ) + (n 4)] 0P, 2, 1) = 0. (3.58)

To solve this equation we first remove the nonderivative terms with the
transformation

A
T&(opi, A p) = * 7" exp[n y(—x)fix}F “op;, A, 1)  (3.59)
B(x)
Thus, 0
g B(/’L)i F™@p, A, u)=0 (3.60)
%% P op, 4, 1) = 0. '

For convenience, define 1 = In . We need to solve
O gy 2| Foep,, 2, = 0. (3.61)
ot oA v '

In order to do this we introduce the effective, or running, coupling constant %
as the solution to the equation
di(z, A) _
TR B(A) (3.62)

with the boundary condition A(z = 0, ) = 4. To obtain another form of
(3.62) we first integrate it with respect to t

M, A)

t= j dx/p(x), (3.63)
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then differentiate both sides with respect to 1

P
B di T B()

or

0 07 -
[E — B ﬁ] A, 2) = 0. (3.64)

Thus if F* depends on t and A through the combination of A(t, 1) it will satisfy
(3.61). T™ must have the form

2

I(opi, A, p) =0*"" eXp[n J

0

()

B00) dx]F(")(pia AMt, A), p).  (3.65)

We can write
A A

oo [ 1]l B 0 [ 5]
J B(x) B(x) B(x)
— H(T) ex [ J;— ]
= HD) exp[ Jy(l(t A)dr ] (3.66)

bi
()
HQ) = exp[n B[dejl-

t

I'%op;, A, 1) = o“‘"eXP[—n jv(I(X’, A) dx]H(l(t A)DF O (py, Alt, 2), p).

0

where

Thus, we have

(3.67)

If we set t=0 (6=1) in eqn (3.67), we see that the combination
H(DHF™(]) is just T™. Therefore,

t

T(opi, 4, p) = 0*7" exp[—n Jy(,T(x’, A) dX'] Cps A, 1), ). (3.68)
0

In this form the asymptotic solution I'™ has a simple interpretation. The
effect of rescaling the momenta p; in the Green’s function I'? is equivalent to
replacing the coupling constant A by the effective coupling constant 1, apart
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from some multiplicative factors. The first factor ¢*~" in (3.68) is the
canonical dimension coming from the fact that I'%) has dimension 4 — n in
units of mass. The exponential factor in (3.68) is the anomalous dimension
term which is the result of summing up the leading logarithms in
perturbation theory. This factor is controlled by the y-function. Thus y is
often called the anomalous dimension (Wilson 1971).

The result in this section may be viewed as follows. The expectation that in
the large-momentum limit masses become negligible and theory should be
scale-invariant is too simple. Even without physical masses the renormaliz-
able theory still has an energy scale as we must always impose normalization
conditions at some mass scale. Thus naive dimension analysis is generally
inadequate and scale invariance is broken. However the dependence of the
theory on this normalization mass scale is given by the renormalization-
group equation which expresses the effect of a small change of scale. In
favourable cases when the inhomogeneous term in the Callan-Symanzik
equation may be dropped the solution indicates that the asymptotic
behaviour displays a certain universal character with operators being
assigned anomalous dimensions.

3.2 The minimal subtraction scheme and its renormalization-
group equation

In this section we will illustrate other forms of the renormalization-group
equation. Again let us examine the multiplicative renormalizability statement
(3.292) which may be written as

Tpi; Ao, to) = Zg "*TRApi; 4, 1, K). (3.69)

If we regard the bare parameters 4, 1y, ¢ as independent variables, then the
renormalized quantities are functions of these bare parameters and the
normalization scale parameter k. In this form, the right-hand side of (3.69)
depends on k explicitly as well as implicitly through the definitions of A and p.
However the left-hand side is independent of k; we then have

0 0 0
— — —— '™=0 3.70
[Kax+ﬂa,1+y’"“ay nv] R (3.70)
with
U a4
ﬁ(/l, K) =Ko 3.71)
U Olnpu
—|= 3.72
y'"(j" K> K 6K ( )
vy 1 dlnZ,
Y</1, K) = (3.73)

Compared to the Callan—Symanzik equation (3.31), this renormalization-
group equation has no inhomogeneous term to begin with. We will try to
approach it with a procedure similar to that used in solving the asymptotic
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form (3.54) of the Callan—Symanzik equation. But the coefficients §, y,,, and
y are now dimensionless functions of two variables A and u/x which makes
the solution difficult. However, in contrast to the momentum subtraction
schemes discussed in §3.1, there exists a mass-independent renormalization
procedure in which the mass dependences of these renormalization group
equation coefficients disappear. We now give an outline of this subtraction
scheme due to ’t Hooft (1973); see also the discussion in Ramond
(1981).

Minimal subtraction scheme

This renormalization procedure is particularly suitable for dimensional
regularization. Here the divergences show up as poles when the dimension
n — 4. The minimal subtraction scheme consists of adding counterterms to
cancel these poles. In other words, the counterterms have no finite parts.

As an example, consider the one-loop self-energy (Fig. 2.4) in 1¢* theory.
In momentum subtraction schemes of §3.1 the presence of the arbitrary mass
scale k is obvious (e.g. as the normalization point). In the dimensional
regularization one also needs to introduce a mass scale k to compensate for
the naive dimensions of coupling constants and masses: 4 — (x)* "1 and
u — ku. We have

iAk® { d"l i

—iX(p?) = —_
BRI = o2
—idk® TPT(1 — nf2)  —idu? K\
= = (-1 2)| =) 2°n®2 3.74
200 o LD () 2 BT
where
e=4—n. (3.75)
To make an expansion around ¢ = 0, we use the formulae
(=D"f1
I'(—n+¢)= |z + y(n+ 1)+ O(e) (3.76)
a=e"=1+¢lna+ O(?) (3.77)
where

1 1
yn+D)=14+-+...——y
2 n

and y = 0.5772 ... is the Euler constant. Thus as ¢ — 0, eqn (3.74) becomes
—iAu?

3002

—iZ(p?) |:§ +yQ2)+2In(k/p) +2In2/n + O(s):l~ (3.78)

Thus the counterterm Z(0)¢?2/2 to be added, as in eqn (2.62), in the minimal
subtraction scheme is

21
32n% ¢
This is to be contrasted with the counterterm (Au?/32n%)[1/e + 3¥(2) +

ALy = 2. (3.79)
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In(x/p) + In 2 /n]¢? that one would have added in the momentum subtrac-
tion schemes. Thus the minimal subtraction counterterm Lagrangian when
expanded in a Laurent series in ¢ will contain only divergent terms. The
relations between the physical 4, 4, and ¢ and the bare parameters are

Ao = KE|:/1 + i a,(/l)/s’j' (3.80)
o = K[l + Z b,(l)/e'] (3.81)
o = ¢[1 +) c,(/l)/a’:l =¢Z, ' (3.82)

Thus the coefficients, reflecting the same property of the counterterms, are
independent of the arbitrary parameter x and (since they are all dimension-
less) the particle mass u. Hence this minimal subtraction scheme is also called
the mass-independent renormalization procedure. One can easily understand
this feature as the counterterms have no finite part; they just have the ‘bare-
bone’ structure needed to cancel the infinities at very large momenta where
the theory is not sensitive to its masses (provided the amplitude are well-
behaved as p - o0).

To calculate the renormalization-group parameters of eqns (3.71)-(3.73),
we use the fact that the bare quantities are independent of x. Thus, from
(3.80),

0 S 1|0a, 04
s/l+<a1 +x5'€>+ Y —,[a/{ Ka+a,+1:|—0. (3.83)

r=1 €
Since x(04/0k) is analytic at ¢ = 0, we can write
oA

K5;=d0+d18+d282+.... (3.84)
From (3.83), it is clear that d, = 0 for r > 1 and
da 1 da, da,
8(/,L+d1)+<a1+d0+d1d—}’l>+gg[ar+l+doa+d1 d;1:|=0
(3.85)
which implies that
A+d)=0
da
a, + d1 -d—,ll = —do
d da,
(1 + dl a) a,.H = —do d)' * (3.86)
Thus,
04 da
Koo = —a,+ld—;—ie
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or
da
B(A) = —a, + Aai- (3.87)
We also have
=2 ) - a1 = L0 (3.88)
dl i1 1 - dl r . .
Similarly, we have, from (3.81),
J0ln db
Vm = x——aK” = Ad—/f- (3.89)
db, ., db, db, d
A . =bA - <1 ldl)al(l) (3.90)
and, from (3.82),
1 dlnZ, dc,
de,vy  ,dey  de, d

Thus eqns (3.87), (3.89), and (3.91) enable us to calculate f, y,,, and y directly
from the residues of the simple poles a,, b,, and c,. The recursion relations
(3.88) and (3.90) are useful in computing the residues of the higher-order pole
terms in terms of the simple pole. (This is the same reason why the leading
logarithms, the next-to-leading logarithms, etc. can be calculated to all
orders by using the renormalization-group equation with the computation of
just a few low-order terms.) Here we will just make a simple check that the -
function result agrees with previous calculation. From eqns (2.50), (2.63),
and (2.123) we have

).0 = 4:22/1).
with
Zy=1
AMy,=1—-10)=21+ 21 (3.93)
¢ o) = 1672 ¢ '
Thus, a, being quadratic in 4, A(da,/dA) = 2a, and
322

which agrees with (3.47).

The fact that f8, y, and y,, in this subtraction scheme are functions of 4 only
will simplify the solution to the renormalization-group equation (3.70). The
procedure will be similar to the steps of eqns (3.55)—(3.68). From dimensional
analysis, eqn (3.70) can be written as

0 0 0 "
[g% — B z7 = (v — 1)5 + ny(A) + (n — 4)] T®(op;, py 4, 6) = 0.
(3.95)
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To solve (3.95) we now introduce not only an effective coupling constant A(¢),
but also an effective mass ji(t) (with ¢ = In ¢ as before)

O _ gy (3.96)
S _ 1,0 - 110 69
with boundary conditions
At=0)= 2 (3.98)
it = 0) = u. (3.99)

The solution to eqn (3.95) may be written down: just as eqn (3.68),

t

TP(opi p, 4, k) = 07" exp[—n Jv(/T(t’)) dt’jl R0p;, f@), A1), ©).
0

In this formulation the large-momentum limit (3.54) and the validity of the
asymptotic solution (3.68) hinge on whether or not the effective mass fi(z)
vanishes in the deep Euclidean limit ¢ — oo.

We should remark that in the momentum-subtraction schemes of §3.1, one
can also introduce the arbitrary mass scale u as the subtraction point to
derive a homogeneous renormalization-group equation (Weinberg 1973a).
But then the functions y, §, y,, will depend on (m/y) in addition to depending
on the coupling constant A. This will cause some difficulty in solving the
renormalization-group equation. In practice one can get around this by
choosing the subtraction point u large enough so that the dependence on
(m/p) of y, B, and y,, can be neglected.

3.3 Effective coupling constants

Apart from the trivial dimensional factor ¢*~", the Green’s function
% (ap;, A, ) in the deep Euclidean region with ¢ — oo (or e’ — o0) depends
on ¢ only through the effective coupling constant A(z, ), which we will
concentrate on in our study of the asymptotic behaviour of Green’s function.
As we discussed in §3.1, the definition of the coupling constant A depends
on the subtraction point. For example in the intermediate renormalization
scheme, the four-point function in the A¢* theory is given by eqn (2.42),

T, t,u) = —id + T, 4) + T(¢, A1) + Tw, 4) (3.100)

where I"(s, 1) is given by eqn (2.86), and 4, is the coupling constant defined in
the intermediate renormalization scheme. The cross-section for two-particle
elastic scattering is related to the four-point function by

do 1 1
E=64n2;|1“‘4’12. (3.101)
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But in the on-shell renormalization scheme the coupling is defined differently
with the four-point function expanded around the symmetric point
s=1t=u=4u*/3.

(s, t,u) = —ids + Ts(s, As) + s, As) + Ts(u, As) (3.102)
where

Fs(s, As)ls=au23 =0 and T{(s =t =u=4p?/3) = —ils.

Since the cross-section (3.101) should be the same in these two schemes of
renormalization, we have

(s, 1, u) = TEAs, 1, ). (3.103)

Evaluating both sides at the symmetric point, s, = t, = u, = 4u%/3, eqn
(3.103) implies

—idsg = —id + T(s0, 1) + T(to, &) + T(uo, 4).

This gives the relation between coupling constants defined by different
subtraction schemes. Clearly the subtraction point can be taken at any point
in the physical or unphysical region. And the coupling constant in any
renormalization scheme should be regarded as a function of the subtraction
point. In this sense the coupling constant is energy-dependent and is called
the effective, or the running coupling constant.

There is another way to look at the running coupling constant. It simply
reflects the effect of the leading radiative-correction terms. In perturbation
theory the effective expansion parameter is actually the coupling constant
multiplied by some logarithmical factors. Normally one picks the normaliza-'
tion point to be of the same order of magnitude as the typical momentum
scale of the problem. The argument of the logarithm, which is typically the
ratio of these scale factors, is then generally of order one. However, for a
problem involving a large range of energy scale, the radiative correction
through these large log factors can be substantial. The solution to the
renormalization-group equation simply represents the summation of these
logarithmic factors to all orders of perturbation theory.

The running coupling constant 1 satisfies the differential equation (3.62)

da, A)
dt

= B(D) (3.104)

or more explicitly as a renormalization-group equation (3.64)

0 d\ -
(E - ﬁa> A, A) =0. (3.105)

Thus the change in the effective coupling 1 induced by the change in energy
scale is governed by the renormalization-group S-function. To study the
asymptotic behaviour of 1 let us suppose that §(A) has the form shown in Fig.
3.1. The points 0, 4,, and A, where 8 vanishes are called fixed points. If the
coupling constant 4 is at any one of these points at ¢ = 0, it will remain there
for all values of momenta. Furthermore, we can distinguish two types of
fixed points. Consider the neighbourhood of A,. Because f(1) > 0 for
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0 <A< A, the effective coupling constant 1 in (3.104) increases with
increasing momenta (i.e. d4/dt = B(t) > 0) and is driven to A, as t — c0. As
B(A) <0 for A, < A < A,, it decreases with increasing momenta and is again
drivento 4, . Thusin the interval 0 < 1 < 1,, the coupling constant A is always
driven to 4, for large momenta. 1, iscalled an ultraviolet stable fixed point. By
similar argument it is straightforward to see that in the neighbourhood of 0
and 4, the coupling will be driven to these points for small momenta, i.e. as
t — 0. Hence the origin and 4, are examples of infrared stable fixed points.

B(R)

F1G. 3.1. An example of the Callan-Symanzik f-function exhibiting an ultraviolet stable fixed
point at A, and infrared stable fixed points at 0 and 4,. The direction arrows indicate how the
coupling constant will move for increasing momenta.

Now we can study the asymptotic solution of the Callan—Symanzik
equation. Suppose 0 < A < 4,. Then

lim A(¢, A) = 4, (3.106)
t— oo
and
rilrs‘)(pi’ 1(15 l)’ #) i rg’s,)(pi’ ’11 ’ ,Ll) (3107)

For purposes of illustration let us assume that B(4) has a simple zero at A,
and that y(4,) does not vanish; then we have in the neighbourhood of 4,

p(A) ~a(A, —A) with a>0. (3.108)
From
dl
Frie a(ly — A), (3.109)
we obtain
A=l +(A—=21)e ™ (3.110)

Thus for (3.108) the approach of 1 to A, is exponential in the variable z. In the
same approximation, we have

t Z
- () dy
Mx, ) dx =
Jﬂ(n))x J 50)
0 A i
o —(4y) i’
T a4 V=2

A

—7(4,) A=y
a o <l — A4

=yt =) Ino. (3.111)
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Thus the particular realization of (3.68) takes on the form

lim T@(ap;, 4, p) = o* 7" YRy, 4y, p). (3.112)
g~ 0
This means that in the deep Euclidean region, the field scales with anomalous
dimension y(4,) and Green’s function takes on a value with A replaced by 4,.
In general it is difficult to calculate the zeros of the f-function since this
requires results beyond perturbation theory. However f(4) has a trivial zero
at the origin A = 0, where the anomalous dimension y(4) also vanishes.
Besides the practicality of calculating (1) for small 1 it turns out that this
may have particular phenomenological relevance. As we shall discuss in
Chapter 7 deep inelastic lepton-hadron scattering probes the large-
momentum behaviour of products of hadronic electromagnetic (or weak)
currents. The observed phenomena of Bjorken scaling can be interpreted as
indicating that the product of these currents has the free-field singularity
structure. Hence, if we can find a field theory which has an ultraviolet stable
fixed point at the origin 4 = 0, it may be taken as a candidate theory for the
hadron constituent (quark) interactions. In other words, the Bjorken scaling
phenomena in deep inelastic lepton—hadron scattering may be explained if
the effective interaction among quarks vanishes in the short-distance limit.
This suggests that a theory of quark interactions should have the feature that
it become a free-field theory in the ultraviolet asymptotic limit (asymptotic
freedom) and one needs to calculate the S-function and to see whether (1) < 0
for A 2 0.
For A¢* theory, from (3.47) we see that it is not ultraviolet asymptotically
free. More explicitly we can integrate (3.104)

di  31?
PPy (3.113)
to obtain
A
A= —3 (3.114)
=16

where A = A(t = 0, 1). Of course (3.113) and (3.114) are valid only for small
4. We have dropped higher-order terms in 4. Had it been applicable for large
couplings also, eqn (3.114) would predict that interaction strength would
blow up at the ‘Landau singularity’ of ¢ = 16n%/34.

The B-functions for other theories will be discussed in Chapter 10. It will be
shown in particular that no theory without a non-Abelian gauge field can be
asymptotically free.

We can summarize this introduction of the renormalization group and its
effective couplings as follows. The aim of the renormalization-group
approach is to describe how the dynamics of a system evolves as one changes
the scale of the phenomena being observed. Generally one is particularly
interested in the behaviour of the system at extremely small (ultraviolet) or
extremely large (infrared) limits of the scale. These renormalization-group
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transformations (of the effective theories at different scales) after some
iterations often have the property of approaching a fixed point in these limits.
The attractive feature is that the behaviour of effective theory at the fixed
point is relatively insensitive to details of the theory at ordinary length scales

and in some cases these fixed-point effective theories are particularly simple
to calculate.



4 Group theory and the quark
model

Ever since Einstein, symmetry has played a fundamental role in theoretical
physics. In this chapter and the next one, we shall discuss the more familiar
subject of global symmetry. The notion of local gauge symmetry with its
space—time-dependent transformation will be introduced in Chapter 8. Such
gauge symmetries can be used to generate dynamics, the gauge interactions.
The natural mathematical language of symmetry is group theory. After the
development of quark models and non-Abelian gauge theories of strong and
electroweak interactions, some knowledge of Lie groups has become
indispensable for anyone interested in the study of elementary particle
theory. Here we shall present a practical introduction to the subject. It begins
with a mathematical preliminary section composed mostly of definitions and
illustrative examples. Our approach is informal. The basic notions intro-
duced here are for group theory as applied in practice in particle physics. The
groups SU(2) and SU(3) are studied with elementary techniques and
supplemented with graphic methods in §4.2. The tensor method which is
appropriate for the general SU(n) groups is presented in §4.3. The physical
realization of the flavour symmetry SU(3) of strong interactions is the quark
model which is briefly studied in §4.4.

4.1 Elements of group theory

A group G is a set of elements (a, b, ¢, ...) with a multiplication law having
the following properties.

(i) Closure. If a and b are in G, ¢ = ab is also in G;
(ii) Associative. a(bc) = (ab)c;
(iii) Identity. There exists an element e such that ea = ae = a for every a
in G;
(iv) Inverse. For every a in G, there exists an element a~! such that
aa '=ala=ec.

Also, if the multiplication is commutative—ab = ba for all @ and b in G, G is
an Abelian group. If the number of elements in G is finite, it is a finite group. A
subgroup is a subset of G, which also forms a group.

Here are some examples. The cyclic group of order n, Z,, consists of a, a?,
a’,...,a" = e(identity). It is a finite Abelian group. The symmetric group (or
permutation group), S,, being the set of all permutations of # objects is a finite
non-Abelian group. The unitary group, U(n), is the set of n X n unitary
matrices: UU' = U'U = 1. It is non-Abelian for n > 1. The Abelian group
U(1) consists of 1 x 1 unitary matrices, i.e. they are phase transformations
¢, The group of n x n unitary matrices with a unit determinant is called the

3
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special unitary group, SU(n). Similarly, SO(n) is the group of nxn
orthogonal matrices: AA” = A"A = 1 with unit determinant. Thus SO(3) is
just the familiar rotational group.

Given any two groups G = {gy,9,,...} and H = {hy, h,, ...}, if the g;s
commute with the A;s, we can define a direct-product group G x H = {g;h;}
with the multiplication law

9 Gmhn = GiGm* iy 4.1)

Examples of direct-product groups are SU(2) x U(1) (the group consists of
elements which are direct products of SU(2) matrices and the U(1) phase
factor) and SU(3) x SU(3) (the group consists of elements which are direct
products of matrices of two different SU(3)s). These groups will play an
important role in the application of group theory in particle physics (see
Chapters 5 and 11). If we can write a group as a direct product of smaller
groups, the study of group structure will be greatly simplified. To see whether
this decomposition is possible, it is useful to introduce the notion of an
invariant subgroup, which is the subgroup N such that for any element ¢ in N
then rtr~! is still in N for all r in G. Thus each component of a direct-
product group is an invariant subgroup. If the group does not contain any
non-trivial invariant subgroup, i.e. it cannot be written as a direct-product
group, it is a simple group. SU(n) is such an example, but U(r) is not because
it can be written as SU(n) x U(1). The groups which are a direct product of
simple groups without any Abelian factors are called semi-simple groups.

A representation is a specific realization of the multiplication of the group
elements by matrices. Thus, it is a mapping of the abstract group elements to
a set of matrices a — D(a) such that, if ab = ¢, then D(a)D(b) = D(c), i.e. the
group multiplications are preserved. Thus properly speaking the above
definitions of the groups U(n) and SU(n) are given in terms of their defining
representations. Also note that the permutation operations of S, may be
represented by a finite number of n x »n matrices. If a representation D(a) can
be put in block-diagonal form, i.e. if there exists a non-singular matrix M,
independent of the group elements, such that

Dy(a) 0
MD@M™! = D,(a) forallain G, (4.2)
0 .

D(a) is called a reducible representation. It is denoted by a direct sum
D, (@)@ D, @ ....If this cannot be done, D(a) is said to be irreducible. We
can consider the matrices D(a) as linear transformations on a set of basis (or
state) vectors. The dimension of a representation is just the dimension of the
vector space on which it acts. The reducible representation means that a
subset of states is never connected to other states and in irreducible
representations all states are connected with each other through group
transformations.

Of particular relevance to physical applications are the Lie groups, which
we shall first define narrowly as continuous groups (having elements labelled
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by continuous parameters such as the Euler angles for the rotation
group SO(3)) with representations by unitary operators. Let
a(0) = a(0,, 6,, ..., 0,) be the group elements labelled by » continuous real
parameters. The identity element is taken to be e =a(0). The group
multiplication a(8)a($) = a(€) corresponds to the mapping of the parameter
space on to itself

f0,¢)=¢ (4.3)

which satisfies the requirements of
f(0,0) = (6,0) =0, (0, f(d, §)) = f(f(®, ), &), (4.4)

and f(0, 0') = 0 if a(@) ! is parametrized as a(@'). This is a Lie group if the
function fin (4.3) is an analytic function (or continuously differentiable) with
respect to its variables. Thus we can use the usual analytic methods in
abstract group space when dealing with Lie groups. Also, since trans-
formations in quantum mechanics are unitary operators in Hilbert space we
are particularly interested in those Lie groups with unitary representations

a(0) = exp{i0-X} = a(0) + 16, X, + ... 4.5)
where
X, = —i2% (4.6)
¢ 90xlo=o '

are called the (infinitesimal) group generators. For unitary a(0), the X, are a
set of linearly independent hermitian operators. For example, when a(f) is an
element of the SO(2) group, the group of two-dimensional rotations, the
generator is simply the Pauli matrix

Yoo (0 7! 4.7
—Uz—i 0' 4.7

Define the commutator of two group elements a(¢) and a(8), lying near
the identity, as a(d)a(0)a(dp) *a(@)~!. This product should also be a group
element, call it a(). £ must be a function of 8 and ¢,

¢i=g:0,0) with g(0,¢)=g6,0)=0. (4.8)
For small 8 and ¢ we can expand g¢,(0, ¢) in powers of 6; and ¢;,
& = A'+ Bi0; + Bl + Ci0,p + Cp0,0, + Clidibye + ...

The boundary conditions in (4.8) imply that

A’=B§=B}'=C}}‘=C}’I£=0
or

&= C§k9j¢k +... 4.9)
When we equate

a®) = e +iEX, + ... (4.10a)
to
a(d)a@)a(d) 'a®) ' = e+ 0,0, [X;, X, 1+ ..., (4.10b)
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we have the Lie algebra
[X;, X] = iCl,X,. (@.11)

The Ci;s, called the structure constants of the group, are a set of real numbers
with

Ch = —CL,. (4.12)

For example, the generators of the rotation group in three dimensions SO(3)
are just the angular momentum operators J;, J,, and J;. They satisfy the
commutation relation

[J,-, Jl= isjlil 4.13)

where ¢, is the totally antisymmetric Levi-Civita symbol with &, = 1.

If the D(a)s form a representation of the group, the D*(a)s form the
complex conjugate representation, since D(a,)D(a,) = D(a;a,) implies
D*(a,)D*(a,) = D*(aja,). From (4.6) we have the representation matrix of
the generators T(X;) = T;,

D(a(8)) = exp{i-T} 4.14)
with
[T, T,] = iC4T;. (4.15)
Clearly the —T7s also form a representation of the generators. If 7; and
— T are equivalent, i.e. if there exists a nonsingular matrix S such that
ST;S™' = —T* forallj, (4.16)

then the T is called a real representation. As we shall see below in §4.2, all
irreducible representations of SU(2) are real, some properties of real
representations will also be discussed in §4.2.

From the Jacobi identity

[X;, [X, X1] + [X, [XG, X 1] + [X, [X, X511 =0 (4.17)
and (4.11), we have the relation among structure constants
%Clm + CliCh + CClh = 0. (4.18)

We can define a set of matrices
T =1(T)y 4.19)

which satisfies the commutation relation of (4.15). Thus the structure
constants also generate a representation of the algebra, the adjoint represen-
tation. It has dimension equal to the number of real parameters necessary to
specify a group element.

For the semi-simple group (i.e. one having no U(1) invariant subgroup) a
normalization convention of the Tjs that is compatible with the nonlinear
commutation relation (4.15) is

t(T,T;) = A3;; (4.20)
J ]

because tr(7;T;) is a real symmetric matrix and can be diagonalized by
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taking an appropriately chosen real linear combination of the generators. The
diagonal coefficients have been set to a constant 4. With this basis in the
vector space of the generators, the structure constants may be written

= - (TIT L) @421)

which implies that C7, is totally antisymmetric in all three indices.

Because the representation matrices of the group elements and their
generators are related by exponentiation (4.14), many of their properties can
be directly translated into one another. Trivially, they have the same
dimension, etc. In the following, unless the ambiguity makes a difference, the
term ‘representation’ will mean either that of the group elements or their
generators. Also, the set of basis states of the representation is sometimes
referred to, for brevity, as the representation.

4.2 SU(2) and SU(3)

The special unitary groups SU(n) are encountered repeatedly in particle
physics theories. It is SU(2) in isospin invariance; SU(3) in ‘the eightfold
way’; the standard gauge model of strong and electroweak interactions uses
SU(3) x SU(2) x U(1); the simplest grand unification group is SU(5). In this
section we shall concentrate on groups SU(2) and SU(3). The subject of the
tensor method in SU(n) is presented in §4.3.

SU(n) is the group of n x n unitary matrices with unit determinant:
U'U=UU'=1 and det U = 1. Any unitary matrix U can be written in
terms of a hermitian matrix H as U = . From the identity det(e”) = e"*
and det U = 1, it follows that tr H = 0. Since there are n*> — 1 traceless
hermitian » X n matrices, an element of SU(n) can be written as

n2—1
U= exp{i Y saJa} (4.22)
a=1

where the ¢,s are (real) group parameters. The J,s are group generators
represented by traceless hermitian matrices. Only n — 1 of n*> — 1 generators
are diagonal. We say SU(n) is a group of rank n — 1.

The SU(2) group

There are three group parameters. We write the 2 x 2 unitary unimodular
matrices as

Uley, €5, &3) = explie,o,} (4.23)

where the o,s are 2 x 2 traceless hermitian matrices. We choose the basis to
be the standard Pauli matrices.

01 0 —i 10
= 9 = 9 O, = .
=\ o 2=\ o 3=\ o -1
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The generators defined by J; = ¢,/2 will give the commutation relation
[T Tl = igg.J. (4.24)

where ¢, is the totally antisymmetric Levi—Civita symbol and ¢,,; = 1. We
then abstract this as the general Lie algebra of SU(2) and all representations
of the generators satisfy this set of commutation relations.

SU(2) representations. The algebra (4.24) is the same as that in (4.13). We
say SU(2) is isomorphic to the rotation group SO(3). The standard method
of setting up angular momentum eigenstates will be followed here to get all
the irreducible representations of SU(2).

First define

J2=J+ 2+ T2 (4.25)

which is an invariant operator, a Casimir operator, commuting with all the
generators of the group

[/ J]=0, a=1,2,3. (4.26)
Also define the raising and lowering operators
J,=J, +1iJ, (4.27)
then
J2=3J, J.+J_J) + J3. (4.28)
We have from (4.24)
(Jy, J-]=2J5 (4.29)
[V, 5] = FJ,. (4.30)

Consider an eigenstate of J? and J; with eigenvalues A and m
J3 A, my = A4, m)
J3lA, md> = m|d, m). (4.31)

Because of (4.30) the states J,.|A,m) are also eigenstates of J, with
eigenvalues m + 1, and, because of (4.26), the same eigenvalue 4

T, my = Co(dy m)d,m + 15 (4.32)

where the C, (4, m)s are constants to be determined later. For a given A,
values of m are bounded

A—m?>0 (4.33)
because J? — J3 = J? + J2 > 0. Let j be the largest value of m

Jolaj> = 0. (4.34)
Eqns (4.34), (4.28), and (4.29) then imply

0=J_J:14, />
= (2 =3 = B> = (=7 = DAy (4.35)
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or

A=jy+1). (4.36)
Similarly, let j* be the smallest value of m

J_|A,j'> =0. (4.37)
We obtain

A=j'(j' —1). (4.38)

Thus j(j + 1) =j'(j' — 1) which has the solutions j' = —j and j' =j + 1.
Since second solution violates the assumption that j is the largest value of m,
we have

J'=-J (4.39)
Since J _ lowers the value of m by one unit, j — j' = 2j must be an interger.

This means that j can be either an integer or half-integer. To determine
C.(4, m) in (4.32) we use

Ay mlJ_J 1A, m) = |C (4, m). (4.40)

because J_ =J'. implies that (A, m|J_ = CX(4,m){A,m + 1|. We also
have, from (4.35)

<}~> mIJ—J+M~3 m> = <}-7 ml(J2 - J% - J3)|1s m>

=j(j+1)—m? —m. (4.41)
Hence,
C.,(4m)=[(—m)(+ m+ 1)]V2. (4.42)
Similarly,
C_(A,m=[({+m(—m+ 1)]*2. (4.43)

These states |j, m) with m=j,j—1,..., —j form the basis of an SU(2)
irreducible representation, characterized by j which is either an integer or
half-integer. Thus the dimension of the representation is 2j + 1. We can use
the relations

Jslj, my = mlj, m)
Jiliymy =[G F mG £ m+1D]Vj,m+ 1) (4.44)

to work out the representation matrices.

N[

Example 1. J =1 m= +

~
w
o
I+
N=
N

I
H+
o

7 T3 (4.45)

B~ = (°> (4.46)

J, = %<(1) _(1’>. (4.47)

If we denote

then
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From J+'%’ %> =0 and J+I%’ _%> = |%5 %> we have

J 01 4.48)
+=\0 o .
Also,
PR L (4.49)
-— + - 1 0 0
0 1 . 0 —i
Jl=(J++J-)/2=%<1 0)’ J2=(J+~J-)/21=%<i 0)-
(4.50)
Example 2. J=1,m=1,0, —1.
Denote
1 0 0
L1>=f 0§ |1,0>=y 1} |I,—-1>={ 0} (4.51)
0 0 1
Then
1 0 0
J;=10 0 0} (4.52)
0 0 -1

From J,|1,1> =0, J.|1,0) = {/2|1,1), and J, |1, —1) = /2|1,0), we
have

0 V2 0
J.=to o 2 (4.53)
0 0 0
Then
0 00
J_=1v2 00 (4.54)
0 J2 0
010 0 —i 0
J1=%- 1 0 1 J2=% i 0 —i) (@55
010 0 i 0

It is straightforward to check that the J;s satisfy the Lie algebra of (4.24).

SU(2) product representations. In applications, we often need to deal with
product representations. For example, if we have two spin 1/2 particles, we
want to know the total spin J of the product of the two wavefunctions. In
this simple case, the answer is J = 0 or 1. Let us study this case in terms of
group theory. Denote the spin-up and spin-down wavefunctions of the first
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particle by r; and r,. Similarly denote those of the second particle by s,
and s,. Under SU(2) transformation

rp= U(e)ijrja s = U®)s (4.56)
where U(g) = exp{ie,J,} and J, = 0,/2. Then the product will transform as
(risi) = U (&)U (€)u(rjs;) = D (&), j(r;s1)- (4.57)

Generally D(g) is reducible. To see what irreducible representation it
decomposes into, it is easier to work with the generators directly by taking
g < 1.

r; = (1 + iSaJa)ijrj = (1 + iBan,l))ijrj
S’,( = (1 + iana)kISI = (1 + iganZ))k’Sl (458)

where J!) operates only on r; and does not affect s;; J'2 operates only on s,
and not on r;. Define the total angular momentum operator as

J=J0 4 Jo, (4.59)

We now change to the more familiar notation. Let «; denote the spin-up
wavefunction of the ith particle and f; the spin-down wavefunction. There
are four combinations of two-particle wavefunctions: o, 0;, o 85, B1%,, B18,.
Take the one with the largest value of J,

Ja(ayay) = (JPoy)ay + 0y (JPat)
= (a10;). (4.60)
Clearly it is a state with J; = 1. To find its J value, we use
J? = (J(l))Z + (J(Z))Z 4+ 2JM . 3@
=J((1))2 + (J(Z))Z +2[%(J(1)J(_2) +J(_1)J(f)) +J(31)J(32)] (4.61)

to find that
J2(ag0,) = 2(0q05). (4.62)
This means J = 1 and we can make the identification
1, 1> = (a05)-

We use the lowering operator J_ = J% + J® to reach all other states of the
J = 1 irreducible representation

J_(alaz) = (J(_l.)al)az + OCI(J(_I)OCZ)

= (Byoz + 2182). (4.63)
On the other hand, using eqn (4.44), we get
J_|L 1D = /21, 0). (4.64)
Thus,
1
I1,0> = — (o, B + B1ty). (4.65)

2
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Obviously,
I1, =15 = B1f,. (4.66)
The remaining independent state must be identified as
1
V2

Again, we can check this assignment by applying eqn (4.61). In short, the
two-particle wavefunctions can be organized as

10,0> = —= (a1, — Br1xz). (4.67)

11, 1) = oy,
1
I1,0> = ﬁ (1B, + Brry) (4.68)
Il, —1> = ﬁlﬂZ

which is symmetric under the interchange of particles 1 < 2, and

1
J2
which is antisymmetric under 1« 2.

More generally the product representations |j,, m;» x |j,, m,» can be
combined into eigenstates |J, M) of total J = JV 4+ J?

I, M> = Z JimyjamalIM | jimydljamsy) . (4.70)
my,my
The coefficients {j,;m,j,m,|JM ) are called the Clebsch-Gordon coefficients.
Thus for the above case (eqns (4.68) and (4.69)) we have
1
Gzl =1, & -$5-3110) =T/§,etc.

The procedure of working out the irreducible representations of the

product representations can be summarized as follows.

0,05 = (o182 — B1y) (4.69)

(1) Start with the combination of states with the largest J;. This is also the
state with the largest total J.

(2) Use the lowering operator J_ = J + J@ to get to all the other states
in the same irreducible representation.

(3) Find the orthogonal combination to |J,, J,, — 1> where J,, is the
maximum value of J in the product. This should be the state |J, — 1,
J,, — 1>. Then use the lowering operator to reach the other J = (J,, — 1)
states.

(4) Repeat these steps until J = |j; — j,].

We can also graphically represent SU(2) representations. The group is
rank 1, i.e. it has one diagonal generator; each irreducible representation j
can be characterized by a straight-line segment with points on it denoting
values of m (see Fig. 4.1). In a product representation the eigenvalues of the
diagonal generators JY) and J¢ are additive. We can represent this addition
graphically by repeatedly placing the centre (m = 0) of one representation,
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say j;, over on every point of the other, j,, representation (see examples in
Fig. 4.2). As we shall see, this graphical method can be generalized to the
rank-2 group of SU(3), where the results are less trivial and difficult to see
without such a diagramatical aid.

1 1 1
=1 —Ix X7
-1 0 +1
j=1 r————X
_3 1 1 3
2 -2 2
=3 —— %X

FiG. 4.1. Graphical representation of SU(2) multiplets. The raising (lowering) operator J,(J_)
moves a state to the right (left).

. ! . ! *—k
1 1 ) 2 -2 2 *—TX
T® 7 = ® *—x= —X
X
=z —b—x = 0 B |
*—X
1 ] i
I = 7 -1 0 1 HER
7® 1 = X X = —R—R
= *—X =
= =1 ® 3
FiG. 4.2

The Reality property of SU(2) representations. We shall denote the repre-
sentation matrices of the generator by T'(J,) = T,. As we already mentioned
in §4.1, SU(2) has the property that all its representations are real, i.e. there
is a (fixed) matrix S such that

ST,S™' = —T%. “4.71)
For example, in the defining representation 7, = 0,/2 we have —of = —0,
—o0% = 0,, and —o% = —0;. The reality condition (4.71) can be satisfied

with S = ¢,. In general the eigenvalues of diagonal generators change sign as
we go from T, to — T because the T,s are hermitian with real eigenvalues.
The eigenvalues of — T¥ are precisely the negatives of those for 7. In SU(2)
all the irreducible representations have the property that their J; eigenvalues
occur in pairs, i.e. m= +j, +(j—1),.... This is why they are real
representations; — 7% can be obtained from 7, by changing the basis from
lj, m) to |j, —m). For example, in the j = 1 representation, the |1, 1) and
|1, — 1) states of (4.51) are interchanged, leaving |1, 0> invariant, by the
transformation

0 0 1
§=10 -1 0 4.72)
1 00

and we can easily check that (4.71) is satisfied. Clearly, it is a general property
of any group representation that, if one of the diagonal generators does not
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have eigenvalues in pairs of opposite signs, then that representation is not
real.

We state once again some of the SU(2) properties which the reader should
keep in mind when studying the less familiar SU(3) group.

(1) Only the representation matrix of J; is diagonal; SU(2) is a rank-1
group.

(2) The irreducible representation labelled by j (dimension 2j + 1) has
basis states |j, m)

J2j, my =j( + 1)Ij, m)
Jalj, my = mlj, m).
(3) States with different values of m are connected through the raising and
lowering operators
Jiljimy =[G F m)j £m+ DI2jim+ 1).

(4) Each irreducible representation can be pictured by a one-dimensional
graph because of (1), with equally spaced points representing the 2j + 1
states. The T, operator moves these points along the line.

«T_ T,—

AV3

jva W
Ve [a) A

-J  —J+1 J=1 J

Products of two representations j; and j, can be obtained simply by placing
the first representation line 2j, + 1 times over the second representation line,
with the m; = 0 centres coinciding with each state of the j,-representation.

The SU(3) group

There are eight group parameters. For the defining representation we write
the 3 x 3 unitary unimodular matrices

Uey, - .., €g) = expiied,} a=1,...,8. 4.73)

The A,s are 3 x 3 traceless hermitian matrices, which may be chosen to have
the form (Gell-Mann 1962a)

01 0 0 —i 0 100
=10 0] A,=]i =0 -1 0
000 0 0 0 00
00 1 00 —i
=100 o] as={0 0 o0
\100 i 0
000 00 0 Lo
Jo=|0 0 1) d=|0 0 —if d=—p|O 1 0] @74
01 0 0i 0 00 -2
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They have the normalization

tr(4,4,) = 20, 4.75)
and satisfy the commutation relation
}'a j'I.‘» : Ac
[7 ?] s 4.76)

Jose 18 totally antisymmetric with nonvanishing members,

f123 = 1’f147 = 1/2af156 = _1/2’f246 = 1/2’f257 = 1/2,

Sras = 1/2, fisr = —1/2, fass = v/3/2,fe1s = V/3/2 4.77)
The generators F, of SU(3) satisfy the Lie algebra
[F., By ] = ifancFe. (4.78)

We can follow the pattern of the SU(2) procedure to obtain irreducible
representations of SU(3). Here we follow the presentation of Gasiorowicz
(1966).

SU(3) is a rank-2 group; since A5 and Ag are both diagonal,

[F3,Fg] =0. (4.79)

F; and Fg can be diagonalized simultaneously. We define the following raising
and lowering operators

T, =F +iF,, U, =F,+iF,, V,=F,+iF;.

We also define

2
T3 = F3, Y = 7}" FB' (4.80)
In terms of these operators, the communication relations of (4.78) can be
written as

[T3. Tyl= 4T, [Y,T,]=0
[T, U= F12U, [V, U= +U,
[T, Vil=+12V. [V, V=1V, (4.81)
[T.,T.]=2T,
[U,,U_]1=32Y~T,=2U,
V., V.1=32Y+ T, =2V, (4.82)
[T..V,1=[T.,U.]1=[U,,V.]=0
[7.,V.]1=-U_ [7,.,U,]=V,
[U,,V.1=T-. [Ts, Y]=0. (4.83)

SU(3) representations. Since T3 and Y can be diagonalized simultaneously,
the states in an SU(3) irreducible representation must be labelled by two
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eigenvalues: t3 and y. A representation is then pictured as a two-dimensional
figure on the 15—y plane, just as an SU(2) representation is an one-dimen-
sional line (Fig. 4.2). From the commutation relations in eqns (4.81)—
(4.83), it is not difficult to see the results of raising and lowering operators
acting on the states:

T, raises t; by 1 unit and leaves y unchanged;
U, lowers t; by 1/2 unit and raises y by 1 unit;
V., raises t5 by 1/2 unit and raises y by | unit, etc. (4.84)

If the units of ¢5 and y are appropriately scaled in the graph, these raising and
lowering operators connect points along lines that are multiples of 60° with
each other (Fig. 4.3).

FiG. 4.3.

Each irreducible representation of SU(3) is characterized by a set of two
integers (p, ¢). Graphically it shows up as a figure with a hexagonal
boundary on the ¢;—y plane: three sides having p units of length and the other
three sides having ¢ units (see Fig. 4.4(a)); the hexagon collapses into a
equilateral triangle when either p or ¢ vanishes (Fig. 4.4(b)). The boundary is
symmetric under reflections in the y-axis. We recall that an SU(2) irreducible
representation is characterized by one integer j; graphically it is a straight line
of 2j units of length. There are 2j + 1 sites, each of them singly occupied by
one state. For the SU(3) representation (p, ¢) the multiplicity of states on
each site in the 73—y plane form the following pattern: the sites in the
boundary are singly occupied, on the next layer they are doubly occupied, on
the third layer triply occupied, etc., until a triangle layer is reached beyond

SN

o/

\¢

NIV

(a)

P_7
/'

(b)

L]

q

L\

F1G. 4.4. Boundaries of the SU(3) representation (p, q), (p, 0), and (0, ¢).
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which the multiplicity ceases to increase and remains g + 1 for p > g (or
p + 1for g > p).

The procedures used to deduce these properties of the irreducible
representation from the commutation relations are all similar. We shall
present one such proof to illustrate the general algebraic technique. To show
that the boundary layer is singly occupied, take two neighbouring states |4)
and |B) on the boundary shown in Fig. 4.5. Thus

U_|4) = |B). (4.85)
We need to show that, given |4), the state | B) is unique regardless of the path
taken to go from |4) to |B). Consider an alternative path ACB; we have
V_T |4y = ([V-, T 1+ T, Vo)l4) = U_|4) = |B) (4.86)
where we have used V_|4) = 0 and (4.83).

FiG. 4.5. A typical representation with (p, ¢) = (5, 1). Multiplicity of states at each site is
indicated by the crosses. Y, is the t = t; = (p + q)/2 = 3 state.

It is not difficult to convince oneself that the result holds independently of
the path taken to go from |4) to |B); hence, given |4), the state |B) is
unique. Since the state of maximum eigenvalue of 75 is unique and resides on
the boundary, all boundary sites are singly occupied.

Once the multiplicity of states at each site is given, we can add them up.
This sum is the dimension of the irreducible representation. To do this we
start with counting the number of sites in the inner triangle which has sites

pP—4
p—q+1 1
> =§(P—¢1+1)(P—q+2)- (4.87)
1=1
Here the multiplicity is (g + 1). On the next outer layer there are

3(p — g + 2) sites with multiplicity ¢; on the next one, 3(p — g + 4) sites
each with (¢ — 1) states, etc. Thus the dimension is equal to

1 q
2@+ D —g+Dp-q+2)+ Z 3g—v)p—qg+2v+2)
=0 (4.88)
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or
d(p,q) = (p + D(g + D(p + g +2)/2. (4.89)

Instead of labelling an irreducible representation by (p, g), another
common practice is to denote it by its dimensionality. Thus an m-
dimensional irreducible representation is labelled by m and its complex
conjugate by m*. Some of the more important representations are shown in
Fig. 4.6.

/N 17
JAIRN \/
(p.q)=(0,1), 3* (triplet) (p,q)=(1,0), 3(triplet)

AN

(p.g)=(1,1), 8(octet) (p.q)=(3,0), 10(decuplet)

FIG. 4.6. Examples of SU(3) representations with states labelled by (t3, y). Here all sites are
singly occupied except the centre of 8: one is a ¢ = 0 state; another is the t; = 0 member of a
t = 1 triplet.

One more remark about the graphical representation (p, ¢). Since there are
generally several states for a given value of (¢5, y), at a given site we need
further labelling to distinguish the different states. For this we can specify the
SU(2) subgroup to which they belong. A convenient choice will be the 7-spin
value 7. There are p + 1 sites each singly occupied on the top line,
corresponding to ¢ = p/2. The next line has two T-spin multiplets:
ti =(p+1)/2 and t, = (p — 1)/2. etc. Also since the widest portion of the
hexagon has width (p + ¢) we conclude that

tmax = (P + 9)/2. (4.90)

For the product representation we can follow a procedure similar to that
for the SU(2) group. The method of using the raising and lowering operators
gives not only the decomposition of the product representations but also the
Clebsch—Gordon coefficients. But this method is rather tedious as there are
quite a few raising and lowering operators in SU(3). If we are interested only
in the decomposition, we can use the simple graphical method. Again we will
place one representation figure on top of each member state of the second
representation: the centre (f; = y = 0) of the first one coinciding with the site
of each state of the second representation. The simplest case of
3 x 3* =8 + 1 is illustrated in Fig. 4.7. The more systematic approach of
the tensor method will be presented in the next section.
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N\

VR

FiG. 4.7.

4.3 The tensor method in SU(n)

The analysis of SU(2) and SU(3) in the last section shows that, as the
group gets larger, the elementary techniques used to dissect the represen-
tation structure and product become inadequate. For the SU(4) group,
which is rank-3, the irreducible representations have to be pictured in a three-
dimensional plot and one would need a keen spatial sense to work out the
decomposition of the product representation. This approach becomes rather
hopelessly complicated for groups of rank-4 or higher. Clearly one needs a
more efficient approach. The tensor method turns out to be particularly
appropriate for the study of irreducible representations and the de-
composition of the product representations in the general SU(n) group.

Transformation law of tensors

The SU(n) group consists of n X r unitary matrices with unit determinant.
We can regard these matrices as linear transformations in an #-dimensional
complex vector space C,. Thus any vector ¥; = (Y, Y5, ..., ¥,) in C, is
mapped by an SU(n) transformation U;; as

- Y= Uijl//j- 4.91)

The /s also belong to C,, with UU" = U'U = 1 and det U = 1. Clearly for
any two vectors we can define a scalar product

W, ¢) = ¥ (4.92)
which is an SU(n) invariant. The transformation law for the conjugate vector
is given by

YE o U = Ut = YU (4.93)

It is convenient to introduce upper and lower indices
Y =y Ui=U; and Ui=Ut. (4.94)

Thus complex conjugation just changes the lower indices to upper ones, and
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vice versa. In this notation, eqns (4.91) and (4.93) read

lpi - ‘p: = U,'jl//j
Yoyl = Uy, (4.95)
The SU(n) invariant scalar product is
W, ¢) = ¥'es. (4.96)
and the unitarity condition becomes
UikUkj = 51] (4.97)
where the Kronecker delta is defined as
0; =0 = {0 otherwise (4.98)

Note that in this notation the summation is always over a pair of upper and
lower indices. We call this a contraction of indices. The ;s are the basis for
the SU(n) defining representation (also called the fundamental or vector
representation and denoted as n), while the i/’s are the basis for the conjugate
representation, n*.

Higher-rank tensors are defined as those quantities which have the same
transformation properties as the direct products of vectors. Thus tensors
generally have both upper and lower indices with the transformation law

Tk = (UL UE,. . Ug)U U Uil (4.99)
They correspond to the basis for higher-dimensional representations.
The Kronecker delta and Levi—Civita symbol are invariant tensors under

SU(n) transformations. They play important role in the study of irreducible
tensors.

(1) From the unitarity condition of (4.97) we immediately have
8 = U U} op. (4.100)

Hence & is an invariant tensor. Generally, contracting indices with the
Kronecker delta will produce a tensor of low rank. For example,
on e = (4.101)

We can regard the right-hand side as the frace between the pair of indices, in
this case /; and j;. Also, a tensor with all its indices contracted yj1i2::-{r is an
SU(n) invariant scalar.

(2) The Levi-Civita symbol is defined as the totally antisymmetric
quantity

o 1if (i, ..., i,) is an even permutation of (1, ..., n)
giztn=g ., .=19 —1if (i, ..., 1,) is an odd permutation of (1,..., n)
0 otherwise. (4.102)
It is an invariant tensor
Ehiy...iy = UBUE .. Uleyj,
= (det U)es, ..o, = Eiyis...i, (4.103)
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where we have used the definition of determinant and det U = 1 for SU(n).
Similar to the contraction by 6 we can sum over indices by using the Levi—
Civita symbol. For example,

Biliz”'i"l//iz..‘i,. _ (4.104)

Thus tensors with upper indices can be constructed from those with lower
indices, and vice versa

Piie = (e gy, )@y ). (4.105)

So, in principle, to study the transformation properties of the tensor we need
work with a tensor having only upper (or lower) indices.

In this connection we also note that
Y= Eiliz.“i,,'ﬁiliz”'i" (4.106)

is an SU(n)-invariant scalar. And eqns (4.103) and (4.106) imply that a totally
antisymmetric tensor of rank » is invariant under SU(#n) transformations.

Irreducible representations and the Young tableaux

Generally the tensors we have just defined are bases for reducible represen-
tations of SU(n). To decompose them into irreducible representations we use
the following property of these tensors. The permutation of upper (or lower)
indices commutes with the group transformations, as the latter consist of
identical U (or U,Tjs). We will illustrate this with the following example.
Consider the second-rank tensor y;; whose transformation is given by

Y =ULUYM. (4.107)

Since the Us are the same, we can relabel the indices
Y = UjUy™ = ULU ™. (4.108)
Thus the permutation of the indices does not change the transformation law.

If Py, is the permutation operator which interchanges the first two indices
P,y =y, then P,, commutes with the group transformation

Py = UU{P, 0. (4.109)

This property can be used to decompose Y/ as follows. First we form
eigenstates of the permutation operator P,, by symmetrization or
antisymmetrization,

T - T O "
ST SR, AT = — g,
Thus,
P12Sij = Sij, Pleij = —Aij. (4.110)

It is clear that S¥ and A" will not mix under the group transformation

SU=ULUJSH, A =UjU{A". @.111)
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This shows that the second-rank tensor ¥ decomposes into S% and 4% in
such a way that group transformations never mix parts with different
symmetries. It turns out S¥ and 4” cannot be decomposed any further and
they thus form the basics for irreducible representations of SU(#). This can
be generalized to tensors of higher rank (hence the possibility of mixed
symmetries) with the result that the basis for irreducible representations of
SU(n) correspond to tensors with definite permutation symmetry among (the
positions of) its indices. The task of finding irreducible tensors of an
arbitrary rank f (i.e. number of upper indices) involves forming a complete
set of permutation operations on these indices. The problem of finding the
irreducible representation of the permutation group has a complete solution
in terms of the Young tableaux. They are pictorial representations of the
permutation operations of f objects as a set of f~boxes each with an index
number in it. For example, for the second-rank tensors, the symmetrization
of indices i and j in S; is represented by [ ]j]; the antisymmetrization

operation in 4;; is represented by E For the third-rank tensors, we have

7
[i[jTk] in the case of the completely symmetric S;j, in the totally
antisymmetric 4,;, and [7]j ] for the tensor with mixed symmetry
k

Vijie = Vijee + Vi — Vi — Ve
A general Young tableau is shown in Fig. 4.8. It is an arrangement of f boxes
in rows and columns such that the length of rows should not increase from

top to bottom: f; > f, > ... and f; + f, + ... = f Each box has an index
i, =1,2,...,n To this tableau we associate the tensor

(4.112)

lpil,iz,...,ifllifl-fl ..... if1+ 1250,
with the following properties.

(1) Indices appearing in the same row of the tableau are first subject to
symmetrization.

(2) Subsequent indices appearing in the same column are subject to
antisymmetrization.

- h]s A
If|+l—<-b ir

Fi1G. 4.8.

A tableau where the index numbers do not decrease when going from left to
right in a row and always increase from top to bottom is a standard tableau.
For example, the n =3 mixed-symmetry tensor [7]j]| has the
k
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following standard tableaux

1] 071 O721 021 003 O3] 2121 [2]3]
2] 3 2] 3 2] By 13 13

while tableaux such as [1[1], [2]3], and [2]1] are not standard.
L1 L1 3]
The non-standard tableaux give tensors that, by symmetrization or
antisymmetrization, either vanish or are not independent of the standard
tableaux. Thus for a given pattern of the Young tableaux the number of
independent tensors is equal to the number of standard tableaux which can
be formed. It is not hard to see that this number for the simplest case of a
tensor with k& antisymmetric indices is

i n\ nn-1)..n—k+1)
©o\k) 1.2...k (4.113)

and that for a tensor with k symmetric indices the number is

(T 1T <n+k-—l)_n(n+1)...(n+k—1)'
\-—-\kz-/’ k - 1.2...k

(4.114)

One should note that because of antisymmetrization there are not more
than » rows in any Young tableau. Also, if there are » rows, we can use
€,i,...;, t0 contract the indices in the columns with n entries. Pictorially we

can simply cross out any column with n rows (see, for example, eqns (4.123)
and (4.125)).

Fundamental theorem (See, for example, Hammermesh 1963.) A tensor
corresponding to the Young tableau of a given pattern forms the basis of an
irreducible representation of SU(n). Moreover if we enumerate all possible
Young tableaux under the restriction that there should be no more than
n — 1 rows, the corresponding tensors form a complete set, in the sense that
all finite-dimensional irreducible representations of the group are counted
only once.

We next give two formulae of the dimensionality of irreducible represen-
tations. If the Young tableau is characterized by the length of its rows
(fisfas---s Ju—1), define the length differences of adjacent rows as
M=hHh—f Aa=fo —far--es A1 = fu—1. The dimension of an SU(n)
irreducible representation will then be the number of standard tableaux for a
given pattern

dAys Ay oos b)) =L+ A0+ 4) o (4 A1)

A+ Ay Ay + A3 In—z t Ay
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x(l+11+'132+}~3><1+iz+‘;3+i4>_”<l+'1n—3+;1n3-2+/1n—1>

x<1+i‘+'12+'1"'1"-1>. (4.115)
n-——

One can easily check that the special results of (4.113) and (4.114) for the
tableaux (£, 0,0,...) and (0,0,..., 1,0,0,...) are recovered.
—

k

Example 1. SU(2) group. The Young tableaux can have only one row:
d(A)) = (1 + 4,). Thus 4, = 2j. It follows that a doublet is pictured as [_]
and a triplet as [_ ], etc.

Example 2. SU(3) group. The Young tableaux can have two rows, hence
d(Ay, A2) = (1 + A)1 + 4,)(1 + (4, + 4,)/2). Thus, 4, =p and 4, =q of
(4.89).

(11,03, [I3J@206 [I17](3,0)10,
B (0, 1) 3%, ©,2) 6*, (1, 1)8. (4.116)

L

The formula (4.115) is rather cumbersome to use for large values of n; in such
cases the second formulation is perhaps more useful. For this we need to
introduce two definitions—°hook length’ and ‘distance to the first box’. For
any box in the tableau, draw two perpendicular lines, in the shape of a
‘hook’, one going to the right and another going downward. The total
number of boxes that this hook passes, including the originating box itself, is
the hook length (h;) associated with the ith box. For example,

T b =3, . hi=1. @.117)
\—:

The distance to the first box (D,) is defined to be the number of steps going
from the box in the upper left-hand corner of the tableau (the first box) to the
ith box with each step towards the right counted as +1 unit and each
downward step as —1 unit. For example, we have

0[1[2]
~1]0 (4.118)
—2

The dimension of the SU(n)-irreducible representation associated with the
Young tableau is given by

d= n (n+ Dy)/h; 4.119)

The products are taken over all boxes in the tableau. For example, for the
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tableau pattern 1, we have hook lengths [ 3]1] and distances to the first

| L1
box [ 0] I |. This yields the dimension d = n(n — 1)(n + 1)/3, which gives
=11
d=28 forn=3.

Reduction of the product representations

One of the most useful applications of the association of SU(n)-irreducible
representations with the Young tableaux is the decomposition of the product
representations. To find the irreducible representations in the product of two
factors,

(1) In the tableau for the first factor, assign the same symbol, say a, to all
boxes in the first row, the same b to all the boxes in the second row, etc.

(4.120)

(2) Attach boxes labelled by the symbol a to the tableau of the second
factor in all possible ways, subject to the rules that no two a’s appear in the
same column and that the resultant graph is still a Young tableau (i.e. the
length of rows does not increase going from top to bottom and there are not
more than n rows, etc.). Repeat this process with the bs, ... etc.

(3) After all symbols have been added to the tableau, these added symbols
are then read from right to left in the first row, then the second row ..., and
so forth. This sequence of symbols aabbac ... must form a lattice permu-
tation. Thus, to the left of any symbol there are no fewer a than b and no
fewer b than c, etc.

We consider two examples in the SU(3) group.

Example 1.
@xl____[=@+|:@ 4.121)
which corresponds to
3x3=3*+6. 4.122)
Example 2.
ala] x ] =8 x 8.
b |
First step: [a]+ + |
- al ||
L 4 ]
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Second step: [a]a] + al+ [a] +
 la a
) a] 4]
Third step: alal+ [ala]+ al+
b || alb
b |
27 10 10*
T Ta] + a] + []
a b I}
4] 4] alh (4.123)
8 8 1

As we have already explained, any column with n boxes in an SU(n) tableau
can be ‘crossed out’—indicated by a vertical line over the column—thus the
last three tableaux yield two octets and one singlet.

Note that tableaux such as [alalb] and Ta D] are rejected
a
because the symbols do not form a lattice permutation. Thus
8x8=1+4+8+8+10+10*% + 27. (4.124)

Young tableaux for conjugate representations. If y; and y* are the bases for
the defining representation n and its complex conjugate n*. Clearly ¥/ is
SU(n) invariant. It is not difficul<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>