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Preface

Elementary particle physics has made remarkable progress in the past ten
years. We now have, for the first time, a comprehensive theory of particle
interactions. One can argue that it gives a complete and correct description of
all non-gravitational physics. This theory is based on the principle of gauge
symmetry. Strong, weak, and electromagnetic interactions are all gauge
interactions. The importance of a knowledge of gauge theory to anyone
interested in modern high energy physics can scarcely be overstated.
Regardless of the ultimate correctness of every detail of this theory, it is the
framework within which new theoretical and experimental advances will be
interpreted in the foreseeable future.

The aim of this book is to provide student and researcher with a practical
introduction to some of the principal ideas in gauge theories and their
applications to elementary particle physics. Wherever. possible we avoid
intricate mathematical proofs and rely on heuristic arguments and illustrative
examples. We have also taken particular care to include in the derivations
intermediate steps which are usually omitted in more specialized communi-
cations. Some well-known results are derived anew, in a way more accessible
to a non-expert.

The book is not intended as an exhaustive survey. However, it should
adequately provide the general background necessary for a serious student
who wishes to specialize in the field of elementary particle theory. We also
hope that experimental physicists with interest in some general aspects of
gauge theory will find parts of the book useful.

The material is based primarily on a set of notes for the graduate courses
taught by one of us (L.F.L.) over the past six years at the Carnegie-Mellon
University and on lectures delivered at the 1981 Hefei (China) Summer
School on Particle Physics (Li 1981). It is augmented by material covered in
seminars given by the other author (T.P.C.) at the University of Minnesota
and elsewhere. These notes have been considerably amplified, reorganized,
and their scope expanded. In this text we shall assume that the reader has had
some exposure to quantum field theory. She or he should also be moderately
familiar with the phenomenology of high energy physics. In practical terms
we have in mind as a typical reader an advanced graduate student in
theoretical physics; it is also our hope that some researchers will use the book
as a convenient guide to topics that they wish to look up.

Modern gauge theory may be described as being a ‘radically conservative
theory’ in the sense used by J. A. Wheeler (see Wilczek 1982b). Thus, one
extrapolates a few fundamental principles as far as one can, accepting some
‘paradoxes’ that fall short of contradiction. Here we take as axioms the
principles of locality, causality, and renormalizability. We discover that a
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certain class of relativistic quantum field theory, i.e. the gauge theory,
contains unexpected richness (Higgs phenomena, asymptotic freedom,
confinement, anomalies, etc.), which is necessary for an understanding of
elementary particle interactions. And yet, this does not occasion any revision
of the basic principles of relativity and quantum mechanics. Thus the
prerequisite for the study of gauge theory is just the traditional preparation in
advanced quantum mechanics and quantum field theory, especially the
prototype gauge theory of quantum electrodynamics (QED).

The book is organized in two parts. Part I contains material that can be
characterized as being ‘pre-gauge theory’. In Chapters 1, 2, and 3 the basics
of relativisitic quantum field theory (quantization and renormalization) are
reviewed, using the simple A¢* theory as an illustrative example. In Chapters
4 and 5 we present the elements of group theory, the quark model, and chiral
symmetry. The interrelationship of the above main topics—renormalization
and symmetry—is then studied in Chapter 6. The argument that quarks are
the basic constituents of hadrons is further strengthened by the discovery of
Bjorken scaling. Scaling and the quark—parton model are described in
Chapter 7. These results paved the way for the great synthesis of particle
interaction theories in the framework of the non-Abelian gauge theories,
which is treated in Part I1. After the classical and quantized versions of gauge
theories are discussed in Chapters 8 and 9, we are then ready for the core
chapters of this book—Chapters 10-14—where gauge theories of quantum
chromodynamics (QCD), quantum flavourdynamics (QFD), and grand
unification (GUT) are presented. As a further illustration of the richness of
the gauge theory structure we exhibit its nonperturbative solutions in the
form of magnetic monopoles and instantons in Chapters 15 and 16.

We have also included at the end of the book two appendices. In Appendix
A one can find the conventions and normalizations used in this book.
Appendix B contains a practical guide to the derivation of Feynman rules as
well as a summary of the propagators and vertices for the most commonly
used theories—the 1¢*, Yukawa, QCD, and the (R, gauge) standard model
of the electroweak interaction.

In the table of contents we have marked sections and chapters to indicate
whether they are an essential part (unmarked), or details that may be omitted
upon a first reading (marked by an asterisk), or introductions to advanced
topics that are somewhat outside the book’s main line of development
(marked by a dagger). From our experience the material covered in the
unmarked sections is sufficient for a one-semester course on the gauge theory
of particle physics. Without omitting the marked sections, the book as a
whole is adequate for a two-semester course. It should also be pointed out
that although we have organized the sections according to their logical
interconnection there is no need (it is in fact unproductive!) for the reader to
strictly follow the order of our presentation. For example, §1.2 on path
integral quantization can be postponed until Chapter 9 where it will be used
for the first time when we quantize the gauge theories. As we anticipate a
readership of rather diverse background and interests, we urge each reader to
study the table of contents carefully before launching into a study pro-
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gramme. A certain amount of repetition is deliberately built into the book so
that the reader can pick and choose different sections without any serious
problems. An experimentally inclined reader, who is not particularly
interested in the formal aspects of relativistic quantum field theory, can skip
Chapters 1, 2, 3, and 6 on quantization and renormalization. After an
introductory study of group theory and the quark model in Chapters 4, 5,
and 7 she or he should proceed directly to the parts of Chapters 8, 10, 11, 12,
14, etc. where a general introduction to and applications of gauge theory
can be found.

The sections on references and bibliography at the end of the book
represent some of the commonly cited references that we ourselves are
familiar with. They are not a comprehensive listing. We apologize to our
colleagues who have been inadequately referenced. Our hope is that we have
provided a sufficient set so that an interested reader can use it to go on to find
further reviews and research articles.

It is a pleasure to acknowledge the aid we have received from our
colleagues and students; many have made helpful comments about the
preliminary version of the book. We are very grateful to Professor Mahiko
Suzuki who undertook a critical reading of the manuscript, and also to
Professors James Bjorken, Sidney Drell, Jonathan Rosner, and Lincoln
Wolfenstein for having encouraged us to begin the conversion of the lecture
notes into a book. One of us (T.P.C.) would like to thank the National
Science Foundation, UMSL Summer Research Fellowship Committee, and
the Weldon Spring Endowment for support. During various stages of
working on this project he has enjoyed the hospitality of the theoretical
physics groups at the Lawrence Berkeley Laboratory, the Stanford Linear
Accelerator Center and the University of Minnesota. L.F.L. would like to
thank the Institute for Theoretical Physics at the University of California—
Santa Barbara for hospitality and the Department of Energy and the Alfred
P. Sloan Foundation for support. Finally, we also gratefully acknowledge the
encouragement and help given by our wives throughout this project. And, we
are much indebted to Ms Susan Swyers for the painstaking task of typing this
manuscript. Other technical assistance by Ms Tina Ramey and Mr Jerry
McClure is also much appreciated.

Note added in proof. As this manuscript was being readied for publication we
received the news that the CERN UA1 and UA2 groups have observed events
in pp collisions which may be interpreted as the production of an
intermediate vector boson W with a mass approximately 80 GeV. Also, the
Irvine-Michigan—-Brookhaven collaboration reported a preliminary result
setting a lower bound for the lifetime 7(p — e* 7% > 6.5 x 103! years.

St. Louis and Pittsburgh T.P.C.
September 1982 LF.L.
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Basics in field quantization

The dynamics of a classical field ¢(x) are determined by the Lagrangian
density £(¢, 0,¢) through the action principle

55 =0 (1.1)

where S is the action
S = fd“xﬁ(gb, 0,9).

This extremization leads to the Euler—Lagrange equation of motion

o 3297
"o0,9) 0

To quantize a system we can adopt either of two equivalent approaches.
The canonical formalism involves the identification of the true dynamical
variables of the system. They are taken to be operators and are postulated to
satisfy the canonical commutation relations. The Hamiltonian of the system
is constructed and used to find the time evolution of the system. This allows
us to compute the transition amplitude from the state at an initial time to the
state at final time. Alternatively, we can use the Feynman path-integral
formalism to describe the quantum system. Here the transition amplitude is
expressed directly as the sum (a functional integral) over all possible paths
between the initial and final states, weighted by the exponential of i times the
action (in units of the Planck’s constant %) for the particular path. Thus in the
classical limit (A — 0) the integrand oscillates greatly, making a negligible
contribution to the integral except along the stationary path selected by the
action principle of eqn (1.1).

In this chapter we present an elementary study of field quantization. First
we review the more familiar canonical quantization procedure and its
perturbative solutions in the form of Feynman rules. Since we will find that
gauge field theories are most easily quantized using the path-integral
formalism we will present an introduction to this technique (and its
connection to Feynman rules) in §1.2. For the most part the simplest case of
the self-interacting scalar particle will be used as the illustrative example;
path-integral formalism for fermions will be presented in §1.3.

Since the path-integral formalism will not be used until Chapter 9 when we
quantize the gauge fields, the reader may wish to postpone the study of §§1.2
and 1.3 until then. It should also be pointed out that even for gauge theories
we shall use these two quantization formalisms in an intermixed fashion. By
this we mean that we will use whatever language is most convenient for the
task at hand, regardless of whether it implies path-integral or canonical

(1.2)



4 Basics in field quantization 1.1

quantization. For example, in the discussion of the short-distance pheno-
mena in Chapter 10, we continue to use the language of ‘operator product
expansion’ even though strictly speaking this implies canonical quantization.
The reader is also referred to Appendix B at the end of the book where one
can find a practical guide to derivation of Feynman rules via path-integral
formalism.

1.1 Review of canonical quantization formalism

We assume familiarity with the transition from a classical nonrelativistic
particle system to the corresponding quantum system. The Schrédinger
equation is obtained after we replace the canonical variables by operators
and the Poisson brackets by commutators. These operators act on the
Hilbert space of square integrable functions (the wavefunctions), and they
satisfy equations of motion which are formally identical to the classical
equations of motion.

A relativistic field may be quantized by a similar procedure. For a system
described by the Lagrangian density £(¢, 0,¢), the field ¢(x) satisfies the
classical equation of motion given in eqn (1.2). We obtain the corresponding
quantum system by imposing the canonical commutation relations at equal
time

[n(x, 1), p(x', )] = —i63(x — x')
[n(x, 1), n(x', )] = [$(x, 1), (X', )] = 0 (1.3)

where the conjugate momentum is defined by

0¥
n(x) = 6(60¢). (1.4)
The Hamiltonian
H = J d3x[n(x) dop(x) — L(x)] (1.5)
governs the dynamics of the system
0op(x, 1) = i[H, ¢(x, 1)]
Oom(x, t) = i[H, n(x, 1)]. (1.6)

Example 1.1. Free scalar field. Given the Lagrangian density
& = 3[(0:9)@*¢) — 1> ¢*1,
eqn (1.2) yields the Klein—-Gordon equation
(0 + p*)¢(x) = 0. (1.7)

In quantum field theory the field ¢(x) and its conjugate momentum operators
given by eqn (1.4), m(x) = dy¢(x), satisfy the canonical commutation
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relations
[000(x, 1), d(X', )] = —i6>(x — X')
[009(x, 1), God(X', )] = [P(xX, 1), p(X', )] = 0. (1.8)

The Hamiltonian is given by

H, = J d*x3[(009)* + (Vo) + 12¢?]. (1.9)

The time evolution equation (1.6), which is basically Hamilton’s equation of
motion, can be cast in the form of (1.7). Thus the field operator ¢(x) formally
satisfies the Klein-Gordon equation. This simple non-interacting case can be
solved and we have

d*k . .
00 = j a2 LW €+ alk) e (110)

where w, = (k* + u?)'/2. The coefficients of expansion a(k) and a'(k) are
operators. The canonical commutation relations of eqn (1.8) are transcribed
into

[a(k), a'(k')] = 6°(k — k')

[a(k), a(k)] = [a'(k), a"(k')] = O (L.11)

and the Hamiltonian of eqn (1.9) can be expressed as
H, = Jd3kwkaf(k)a(k) (1.12)

where we have discarded an irrelevant constant. Remembering the situation
of the harmonic oscillator, we see immediately that a(k) and a'(k) can be
interpreted as destruction and creation operators. Thus the one-particle state
with momentum k is given by the creation operator acting on the vacuum
state

k> = [27)*2w,]"?a"(k)|0) (1.13)
where the normalization is

K'k) = 2n)2w, 63k — K').

The product a'a has the usual interpretation as a number operator and eqn
(1.12) shows that H, is the Hamiltonian for a system of non-interacting
particles.

Given the solution, (1.10), and (1.11), we can easily calculate the Feynman
propagator function, which is the vacuum expectation value for a time-
ordered product of two fields,

iA(xy — x3) = <0|T(¢(x)p(x,))0>
= 0(t; — 12)<0lp(x1)P(x)I0> + O(r, — 1,)<O0lp(x;)p(x,)I0)

d*k i _ )
= (2713)4 K2 _uz +igexp{1k-(xl —xz)!- (114)
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Example 1.2. Scalar field with A¢* interaction. The Lagrangian density is
given by

% = @) — 1971~ 1 8"
the equation of motion is
@ + )60 = — 5 (). (1.15)
The conjugate momentum and canonical commutation relations are the

same as those for the free-field case in Example 1.1. The Hamiltonian is of the
form

H=H,+H (1.16)
where Hj is given by eqn (1.9) and
H' = Jd3x¢}f’
where
’ )' 4
H' = a0 ¢ (1.17)

is the interaction Hamiltonian density. Since the free-field theory is soluble
we can obtain transition amplitudes and matrix elements of physical interest
by a systematic expansion in A. This approximation scheme of perturbation
theory will be briefly outlined below.

In the usual Heisenberg picture the operators are time-dependent and the
time evolutions of the dynamical variables of the system are governed by the
Hamiltonian

d(x, 1) = e™'p(x, 0) e~
n(x, t) = e'n(x, 0) e,

The state vector |a) is time-independent. But, in the Schrédinger picture, the
operators are time-independent and state vectors carry time dependence.
They are related to those in the Heisenberg picture by

¢S(X) — e“i”’d>(x, t) eiHr
n3(x) = e H'n(x, t) e
la, 15 = e #Hg).

In perturbation theory we introduce another picture—the interaction
picture—with operators and states defined by

¢I(X, t) = eiH0r¢S(x) e-iHo'
- eiﬁot e‘i"’d)(x, t) eth e—iHot

= U(t, 0)p(x, YU (1, 0) (1.18)
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Similarly, for n'(x, ),
la, )! = ¥|a, 1)®
- U1, 0)la> (1.19)
where . .
U(t, 0) = eifol g (1.20)

is the unitary time-evolution operator. Since the operators in the interaction
picture (1.18) satisfy the (soluble) free-field equation

009 (x, t) = i[Hp, ¢'(x, )]

Oom'(x, 1) = i[Hp, T'(x, )], (1.21)
the dynamic problem in this language becomes that of finding the solution
for the U-matrix.

The time-evolution operator U can be defined more generally than in
(1.20),

la, ' = U, to)la, 10" (1.22)
where U(ty, ty) = 1 and satisfies the multiplication rule,
U@, 1)U, 1o) = U1, 1o)
U(t, O)U ™ Y(t5, 0) = U1, to). (1.23)
The equation of motion for the U-operator can be deduced from eqns (1.19)
and (1.20)
.0
15 U(t, to) = H'(HU(, t,) (1.24)
where
H/l — eiHOtHl e—iHOt
is the interaction Hamiltonian in the interaction picture, i.e.
H'"= H'(¢". (1.25)
Eqn (1.24) has the solution

t

Ult, ty) = Texp[—i Jdt,H"(tl)]

to
t

= Texpl:—i Jdtl fd%cﬁf"(xb tl)] (1.26)

to

which can be expanded in a power series
t t
v (=07 [ 4
U(t,t0)=1+z— dxl d.xZ...
p=1 p'
. to to

x J d*x, T () H () - H7'(x,). (1.27)

to
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Green’s functions in 1¢* theory. Next we need to translate this formal
perturbative solution into quantities that will have more direct physical
meaning.

In field theory we are interested in calculating Green’s function defined by

GO(xy, ..o, %) = OIT((xy), - . ., $(x,))I0) (1.28)

from which the S-matrix elements can be readily obtained. By a straightfor-
ward application of eqns (1.18), (1.23), and (1.26) we have

G(x, ..., x,) = U8, 0)T($'(x,) . .. $'(x,)

x exp[—i J dt’H"(t’):|)U(—t, 00>  (1.29)

-t
where ¢ is some reference time which we shall eventually let approach co. In
this limit the vacuum state becomes an eigenstate of the U-operator, and the
eigenvalue product of the two Us in (1.29) becomes

1

(0|T(exp|: —i Jw dt’H"(t'):DlO)

The effect of these two Us acting on the vacuum states is to take out ‘the
disconnected part’ of the vacuum expectation value (see, for example,
Bjorken and Drell 1965). Also, after we substitute the power series expansion
of (1.27), the n-point Green’s function with the notation of (1.25) takes on the
form

)= 3 O [ Ay, .. d4y, O, -y )

(1.30)

x H'(@' (1) ... H'(§'1,))I0D.. (1.31)

The subscript ¢ denotes ‘the connected part’. The terminology clearly reflects
features in the graphic representation of the Green’s function.

Consider the simplest example of a first-order (p = 1) term for a four-
point (n = 4) Green’s function in the theory with 5#'(¢) = 1/4! ¢* asin (1.17)

il
GPxy, .0 X4) = -:1—! [d“y(0IT(¢'(x1), s P[PPI, (1.32)

We then normal-order the entire time-ordered product by moving the
creation operators to the left of the annihilation operators and eliminating
those terms which end up with the annihilation operator on the right and/or
the creation operator on the left. After this application of Wick’s theorem
(1950) the connected part of the expression in (1.32) decomposes into a
product of two-point functions

GP(xy, .., x4) = (—i2) jd“y<0| T('(x1)' MNIXCOIT($'(x2)¢'())I0>
0IT(¢'(x3)' WNI0YOIT($'(x4)$' (VIO - (1.33)
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The original 4! factor in the denominator of (1.32) is cancelled because there
are a corresponding number of ways to contract the ¢'(x;)s with each field in
[¢'(»)]*. The interaction picture field obeying the free-field equation, the
propagator iA(x, y) = <0|T(¢'(x)®"(»))|0), is a known quantity and is given
by eqn (1.14). A graphic representation of the expression in (1.33) is shown in
Fig. 1.1.

X X;

X3 X4

FiG. 1.1. Graphic representation of eqn (1.33).

We next consider the example of the second-order term for the four-point
function, i.e. the p = 2, n = 4 term in eqn (1.31)

1 /—ir)?
G(24)(x1 ceXg) = N (—41'—> Jd4y1 d4y2<O|T(¢I(xl) e ¢I(X4)[¢I(J’1)]4
x [¢'(2)]1%10>. (1.34)

We then use Wick’s theorem to reduce it and keep only the connected parts,
GP(xy ... x4)

1
=51 (—iAy? jd“)’l d*y,[IA(y 1, y2)1P{[AGx1, y1) Axs, p1)]
X [Alx3, y2) Alxg, 7)1 + [A(x1, y1) Alxs, y)I[A(X2, y2) Alxy, y5)]
1
+ [A(x1, y1) Alxg, y1)I[A(X2, ¥2) Alxs, y2)]} + 2 (—id)? jd4)’1 d*y,

x [IAY 1, yO)IOAG 1, y2)H{AX L, 1) A(Xa, p2) A(Xs, 2) A(Xy, p2)
+ A(xy, y2) Alxz, y1) Alxs, p2) A(xy, y2) + Alxy, ¥2) Alx,, p2)

X A(x3, y1) A(xy, y2) + A(xy, y2) Alxy, p2) A(xs, ) Alx,, yl)}- (1.35)

The symmetry factor 2! in the first term on the right-hand side of (1.35) can
be understood as follows. The original factors of (1/2!)(1/4")? in eqn (1.34)
are cancelled by the permutation of y; and y, and by the multiple ways in
which we can attach the fields emanating out of each vertex. However, this is
an over-counting. Since there are two identical internal lines connecting a
pair of vertices, we need to divide out a factor of 2!. The factor 1/2 in the
second term of (1.35) has a different origin. It comes from the fact that an
internal line starts and terminates in the same vertex. Eqn (1.35) is shown
graphically in Fig. 1.2.
Similarly, for a first-order (p = 1) two-point (n = 2) function, we have
GP(xy, x) = -21,—/1 [d“y[iA(xny)][iA(y, MIOAGx,, )] (1.36)
as shown in Fig. 1.3.
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X1 X2 X X2 Xy X2
Y
Yy 82
b, 2 2

X3 X4 X3 Xy X3 Xy

X X X3

X3 X3

Fi1G. 1.2. Graphic representation of eqn (1.35).

Xy y X3

FiG. 1.3. Graphic representation of eqn (1.36).

Usually it is more convenient to work with Green’s function in momentum
space

QRr)*6*(py + ... + p)G™(py ... py) = JH d*x; e PG (x, ... x,)
=l (1.37)
and with the amputated Green’s function, which is related to G™(p;...p,)
by removing the propagators on external lines

n

Ganp(P1 - Pa) =

. 136y
where p; +p,+...p,=0. In fact for spin-0 particles the amputated
Green’s function is just the usual transition amplitude (the T-matrix element)
from which the cross-section can be directly computed.

—i

]G‘"’(m <+ Pn) (1.38)

Feynman rules of A¢* theory. The result of perturbation theory may be
conveniently summarized in terms of the Feynman rules for the transition
amplitude. With the s, = (1/4!)¢*(x) interaction, we have the following
prescription for calculating the N-point amputated Green’s function.

1. Draw all possible connected, topologically distinct, graphs with N
external lines;

2. For each internal line, put in the propagator factor

i) e A ()= — .

pl—pttie
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For each vertex,

(i) —il;

3. For each internal momentum / not fixed by momentum conservation at
each vertex, perform an integration | d*l/(2m)*;

4. Each graph has to be divided by a symmetry factor S corresponding to the
number of permutations of internal lines one can make for fixed vertices.

1.2 Introduction to path integral formalism

In the first section the canonical quantization procedure via operator
formalism was briefly reviewed. We have outlined the steps through which
the perturbative solution of an interacting field theory may be obtained in the
form of Feynman rules. In this section the same set of rules will be recovered
using the path-integral (PI) formalism (Dirac 1933; Feynman 1948a;
Schwinger 1951b). This alternative quantization approach has the advantage
of exhibiting a closer relationship to the classical dynamical description and
the manipulation involves only ordinary functions. This allows us to see
more clearly the effect of any nonlinear transformations on the fundamental
variables. Thus the PI formalism is particularly suited for handling
constrained systems such as gauge theories.

Quantum mechanics in one dimension

We first introduce the PI formalism in the simplest quantum-mechanical
system in one dimension. Generalization to field theory with infinite degrees
of freedom, together with its perturbative solution, will be presented in a later
part of this section.

In quantum mechanics a fundamental quantity is the transition matrix
element corresponding to the overlap between initial and final stages

{q'; t'lg; 1) = {q'le” Vg (1.39)

where the |g)s are eigenstates of the position operator Q in the Schrédinger
picture with eigenvalue ¢

Olgy = qlg> (1.40)

and the |g;¢>s on the left-hand side of (1.39) denote the states in the
Heisenberg picture, |g;¢> = e*|g). It should be remembered that the
Heisenberg-picture states do not carry time-dependance. The notation used
here means that the Heisenberg-picture states |¢; > and |¢’; ¢') in eqn (1.39)
coincide with two distinctive Schrodinger-picture states |g(¢)> and |¢'(¢)) at
time ¢ and ¢’ respectively. In the PI formalism the transformation matrix
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element of eqn (1.39) is written as a functional integral
v
q'5t1g;ty = N J[dq] exp{i j L(¢, 9) dr} (1.41)
t

where N is the normalization factor and L(g, ¢) is the Lagrangian. The
integration is performed in the function space ¢(¢). It represents the sum of
contributions over all paths that connect (g, ¢) and (¢’, t*), weighted by the
exponential of i times the action. In the following we will derive (1.41) using
the familiar canonical-operator formalism. The definition of the integration
measure [dq] will be given in eqns (1.50) and (1.51) and this should clarify the
meaning of the functional integral.

We first divide the interval (¢/,¢) intc n segments with space 6t =
(t' — t)/n. Then the transition amplitude in eqn (1.39) may be written

{g'le U Dgy = qul oo dg,_1<q e g,  Dgu-1l e H ¥ g, 0> ...

. Lgile™ % g) (1.42)

where we have inserted complete sets of eigenstates of the Schrdodinger
picture operator Q°. For sufficiently small ¢,

(g e™"*|g> = {qI[1 — iH(P, Q) 51]Ig)> + O(51)*. (1.43)

If the Hamiltonian has the form

2

H(P, Q) = % + 1(Q), (1.44)

then

, P q+4q ,
{q'|HP, D)g> =<q Iﬂ lg> + V<—2—> oq—4q')

dp
= [—* q Ip><p| . |q> +V<q “; 1 > JZn el —a)

dp ip(q'—q) q + q
J‘2TE 2m + 4 T2

We have used {q'lg> = 6(¢' — q) and {q|p) = €'P%. Also, symmetric ordering
of operators in V(Q) is assumed. Then

e o5

~ Jgp eiP@' ~a) o —i6H(p.q+4'[2) (1.45)
[
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Thus, H(p, g) is the classical Hamiltonian. Substituting into (1.42), we have

T dp, dp
’ H@' —1) ~ n
{q'le !q>_j<2n)"'(2n>qul'“dq"_l

x exp{i Y [pi(qi —qi-1) — &H(p"’&;iiﬂ}

i=1
(1.46)

The transition amplitude can then be written symbolically as

t

- dpd .
(q1e™" gy J [ ’;n"] exp{l Jdt[pq—H(p,.qn} (1.47)
([ (4 |
= nlirg J(%) e <Ep1r_> qul ...dg,-,
ol ) A2

The second line defines the path integral. We almost have the promised
result of eqn (1.41) if we can perform the momentum-space [dp/2n] =
IT! dp;/2n part of the path integral. The integrand being oscillatory, we
analytically continue it to Euclidean space by formally treating (i 6t) as real.
The Gaussian integral formula

dx —ax?+bx __ 1 b*/4a
J o = Jina e (1.49)

can then be used to obtain

dp; —idt , . _ m \'? im(g; — g;-1)*
on °"p[“2_m"’i +ipia; - q"“)} <2ni 5:) exp 21

In this way we have for eqn (1.48)

- ) m ‘n/2 n—1
’ —iH({t' -1t . o d .
(q'le lg> = lim <2ni 5:) J H as

n— o

.- m(q—qi-1\
* exp{l i; 5t[7< ot ) - V]} (1.50)

t

{g;tg's 1) ={qg'|e" ™ D|gy = N J[dq] exp{i J dr[inz— q* — V(q)]}

t

or

(1.51)
which is the stated result of eqn (1.41), where L = (mg*/2) — V(q).



14 Basics in field quantization 1.2

Green’s functions of one-dimensional quantum mechanics. We will next
translate the basic result of eqns (1.41) and (1.47) into forms that can be easily
generalized to PI formulae for Green’s functions in field theory.

Let us start with the simplest two-point function: the matrix element of a
time-ordered product between ground states,

G(t1, 1) = OIT(Q"(1,)Q"(t2))I0>

where |0)> denotes the ground state. Inserting complete sets of states,

Gy, 1) = qu dg'<0lq’s £ 3<q's *1T(Q"(t,)Q"(t2))lg; 1<q; 10> (1.52)

The matrix element
0lg; 1> = ¢o(q) €™ = ¢o(g, 1) (1.53)

is the wavefunction for the ground state. We next concentrate on the PI
formulation of {¢’; ¢|T(Q"(t,)Q"(t,))lg;t>. For t, >1t, (e, t' >t >
t, > t), we have

q's 'IT(Q"(t)Q"(t2))lgs 1) = (| e 1IQ3 ™M m 1) QS e M =12l g 3

B J<q’l e =g, 5 q,|Q° e 1g,

x {g,|0% e 2"g dg, dg,.

Taking eigenvalues in the Schrodinger picture and applying the basic PI
result of eqn (1.47), it follows that

@5 (ITQ"(t)Q (2 )lgs 1)
dp dq ' : .
= J[—zn ] q1(11)g,(12) exp{l J dtz[pq — H(p, q)]} (1.54)

A minute of thought will convince us that exactly the same PI formula holds
for the time sequence ¢, > ¢, (i.e.,, ¢’ > t, > t; > ). Thus eqn (1.54) is a
general result. Substituting eqns (1.54) and (1.53) into eqn (1.52) we have

G(ty, 1) = qu dq'do(q’, 1)P8(q, 1) J‘[@Z-gg] q1(t1)q2(t3)

X exp{i f dt[pg — H(p,q)]} (1.55)

t
or

dgd
Glty. 1) = J [—%}’]qso(q', )98, 00:(11)aa(12)

t

X exp{i j de[p4 — H(p, q)]}- (1.56)

t
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The presence of the ground-state wavefunctions ¢,(q’, t') and ¢§(q, t) in eqn
(1.55) makes it clumsy to do practical calculations. To remove them, consider
the matrix element

g5 1101, t5)lg; 1) = IdQ dQ<q’; 1O T

x Q5 T'O(ty, 1)1Q; THQ: Tlg; £y (1.57)

where O(t, t,) = T(Q"(¢,)Q"(t,)) and t' > T' > (¢,,t,) = T > t. Let |n)> be
the energy eigenstate with energy E, and wavefunction ¢,(q),

Hiny = E,|n)
{qln> = dx(q).

Then we have
g5 1105 T =gl e =TNQ") = ¥ (g'Iny<n| e =TQ"
=Y o} )P(Q) e =T, (1.58)

To isolate the ground-state wavefunction in this equation, we use the fact
that E, > E, for all n # 0, and take the limit £ — —ioo, which yields

,llh? (g5 1105 T = ¢§(q")do(Q') e~ Foll e, (1.59)
Similarly,
'lim $Q; TIg; t) = $o(q)pE(Q) e~ Pl e~ 0T (1.60)

Then eqn (1.57) becomes
Jim {g'; 010(t12)lg; t) = [ dQ dQ'9§(d)Po(Q)KQ'; T'|O(1,12)IQ, T

> —ico

X ¢3(Q)¢0(q) e—Eolt’l e+iE0T’ e—iEoTe—Eom

= ¢¥(g)dolg) e~ B e PGty 1) (1.61)
where we have used eqn (1.52). From eqns (1.59) and (1.60) it is clear that
lim {q';¢'lg;t) = ¢p§(q)po(g) e~ e~ Eol, (1.62)
t'— —ioo
t—ioo

Combining eqns (1.61) and (1.62), we obtain for Green’s function

G(ty, 1) = lim [<q’; tIT(Q"(t1)Q"(2))lg; t>]
{q';t'g;t>

t'— —ioo
t—ioo

. 1 dg dp]
= lim t)q(t
t't—;i—ogoo <q/; t,‘q, Z> J‘[ 21_[ q( 1)4( 2)

t

X exp{i Jdr[pq — H(p, q)} (1.63)

t
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where we have used eqn (1.54) and the path-integral representation for the
factor {q’; t'| ¢; t> in the denominator is given in eqn (1.51). This clearly can
be generalized to the n-point Green’s function

G(ty ... ty) = <O T(q(t1)q(12) - - - 9(2))I0)

o 1 dqdp
B "tl*llfnim (q'5t1g; J[ 2n ]q(tl)mq(t")

t

X exp{i J dt[pg — H(p, q)}- (1.64)

t

This entire set of Green’s functions can be generated as follows.

(=0)"o"WLJ]

Gltv - tn) = 53 S T o0

(1.65)

J=0

) 1 dgdp
124 = lim
o v-~iw {q';t'lq; t) J[ 2n ]
t—100

t

X exp{i jdt[pq' — H(p, q) + J(‘c)q(r)]}. (1.66)

t

with

Comparing this expression for W[ J] with the Green’s function in eqn (1.64),
we see that the generating functional W[J] corresponds to the transition
amplitude from the ground state at ¢ to the ground state at ¢’ in the presence
of an external source J(1),

WLJ] = <005, (1.67)

with the normalization W[0] = 1. Thus the computation of Green’s
functions is now reduced to the computation of W[ J]. We will see later in the
case of quantum field theory that the J(z)-independent factor {q; tlg’; ¢') in
eqn (1.66)is irrelevant for generating the connected Green’s functions and can
be neglected.

Euclidean Green’s function. In the formulae for Green’s function (eqns (1.63)
and (1.64)) the unphysical boundary condition t' - —ioo, t — ico should be
interpreted in terms of the ‘Euclidean’ Green’s functions which are defined by

SOty ..., 1,) = "G(—ity, ..., —it,). (1.68)

The generating functional for the S-function is then given by

.

2
WelJ] = lim J[dq] exp{j df"[—%’— (:%) — Vig) + J(r")q(t”)]}

(1.69)
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with
O"We[J]

S"(ty ... 1,) = 8J(z,) ... 0J(x,)

J=0

The unphysical limits ¢ — —ico, ¢t —ico make sense in ‘Euclidean
space’ where ¢ is replaced by —ir. Furthermore, the path integral in
Euclidean space (eqn (1.69)), is well-defined for those potentials ¥(g) which
are bounded below. This is because we can always readjust the zero point of
V(g) such that

m (dq\?
-2—(5) + V@) >0 (1.70)

and the exponential in (1.69) will always give a damping factor so that the
path integral converges. Note that (1.70) is satisfied for a physically stable
system.

Thus, the path-integral formalism has well-defined meaning only in
Euclidean (or imaginary-time) space. To obtain physical quantities in real
space, we have to do an analytic continuation. In practice, we will just do the
manipulations in real space with the understanding that they can be justified
in Euclidean space.

Let us summarize the discussion of the PI formulation of the quantum-
mechanical description of a one-dimensional system. The basic results are the
functional-integral formulae for the transition amplitude of eqns (1.41) and
(1.47). In preparation for generalizing the formalism to field theory we have
derived from these results the n-point Green’s functions in (1.64). All these
G™(t, ...t,)s can be generated from W[J], the ground-state transition
amplitude in the presence of an external source J. This central quantity can
be computed according to (1.66) with an obvious generalization to systems
with N degrees of freedom as

N
WLJi, ..., k]~ lim [H[dqidpi]

t'— —ico
t—ico ,
t

X exp{i JdT[Z pd; — H(p;, q;) + Z Jiqi:|}

t
or

- —iow
=100

WiJ,...,Jn]~ lim fﬂ [dg;]

t

x exp{i f dr[L(qf, ES) J.-q,]}- (1.71)

t

Field theory

We consider a field theory as a quantum-mechanical system with infinite
degrees of freedom and make the following identifications for the results
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presented abowve

T [dg,dp] — [d() dn(x)]

L(g:, 4, H(qi, pi) = Jd3x$ (¢, 0,9), jd3x?f (¢, m) (1.72)

with 7n(x), Z(x), and s#(x) being .the conjugate momentum field, the
Lagrangian density, and the Hamiltonian density, respectively. The ground
state in field theory is generally referred to as the vacuum state. Thus the
generating functional W[ J] is the vacuum-to-vacuum transition amplitude
in the presence of an external source J(x). The generalization of eqn (1.71)
takes the form

WLJ] ~ J[drﬁ dn] exp{i Jd“X[ﬂ(x) Oop(x) — A (7, ) + J(x)¢(X)]} (1.73)

or
WLJ] ~ j [d¢] CXP{i Jd“XEY (p(x)) + J(X)d)(X)]}- (1.74)

Furthermore, the limit + — ico in (1.71) suggests that we first calculate the
Euclidean-space quantity Wg[J], which is the analytic continuation of W[ J]
with x, = (t = it, x) replacing x, = (¢, x).

WelJ] ~ J [de] eXp{Jd“i[g (6(x) + J(f)dJ(f)]}- (1.75)

For field theory what we are interested in is the connected Green’s function
which is related to the generating functional by

1 O"WelJ] il

WelJ] 8J(%,)...0J (%,) (1.76)

G"(%,, ..., %,) =[

J=0

Thus in order to remove the disconnected part of the Green’s function, an
extra factor of W[ J] has been inserted in the denominator of the definition
(1.69). We recall that the same division was involved in our previous
discussion of Green’s function (eqns (1.30) and (1.31)). The important
practical consequence of this division is that the J-independent absolute
normalization of W[J] is immaterial for any subsequent calculation of the
Green’s function.
We now return to our illustrative example of A¢* theory

ZL(9) = Zo(9) + Zi(¢)
with
ZLo(¢) = 350,0)(0* ) — 3u*P*

-2
gl(‘ﬁ) = T¢4~
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The Euclidean generating functional

6 2
WL = f [d4] exp{- j d‘*xB (5;2) F3 PR 4L et J¢]
(1.77)

may be written as

W[J] = [exp Jd“x.,?, (—(%)] WolJ] (1.78)

where
WolJ] = j[dtﬂ eXpUd“x(fo + Jd>)]

is the free-field generating functional. (For simplicity of notation we drop the
subscript E and the bar over x indicating Euclidean space.) The factors
—(0¢/0t)* — (V¢)* in eqn (1.77) can be replaced by ¢(8%/0t% 4+ V?)p
because the difference is a total four-divergence and we have

WolJ] = J [d¢] exr{—% Jd“x d*yd(x)K(x, y)p(») + jd“zJ(Z)d)(Z)jI (1.79)

where
62
K(x,y) = 0*(x — y) <— pei V2 + u2>- (1.80)

As x and y may be taken as ‘continuous indices’, W,[J] of eqn (1.79) can be
considered an infinite-dimensional (N — oo) Gaussian integral of form

0. avwen] 1 6ik0,+ L]

1 1
- \/detKexP[ini(K_l)iij]' (1.81)

i,j

The right-hand side is obtained by a generalization of the result cited in eqn
(1.49). In this way the ¢ functional integral in (1.79) can be performed and we
obtain, up to an inessential multiplicative factor,

WolJ] = expB Jd‘*x d*yJ(x) A(x, y)J(y)] (1.82)
where A(x, y) should be the inverse of K(x, y) in (1.80). Thus,
Jd“yK(x, ») Ay, z) = 6*(x — 2). (1.83)

It is not difficult to see that

d4K. eix~(x—y)
Alx,y) = j—m)“ P (1.84)

where k = (ikq, k) forms a Euclidean momentum four-vector. The perturba-
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tive expansion in powers of %, of the exponential in (1.78) gives

WLJ] = Wo[J){1 + Ao [J] + Pw,[J] + ...}, (1.85)

1 -1 s I
o\[J] = —3; W5' ] Ud [51( )] } Wol /]

L /4% d* o 42W
wz[ﬂ=—m o[ﬂ{f x[éJ(x):I} ol /]

: wy! 6 1 1.86
230 [/l m }601[-]1 (1.86)

When we plug in the explicit form (eqn (1.82)) for W,[J], we obtain

where

o [J] =—-— [A(x y1) A, y3) Alx, y3) Ax, y2)J1)I02)I(13)J(1s)

+ 31 A(x, y1) A(x, y3) Alx, x)J(1)J(¥2)], (1.87)
and

w,J] = 5 @il]

1
2(3,)2 ACxy, y1) Alxy, y2) Alxy, y3) Alxy, X2) Alxz, pa)
x A(xy, ¥s) A(x3, y6)I(11)I2)I3)I 1) I3 s)I(Ve)

3
2(4,) A(xy, y1) Alxy, y2) Az(xls X3) A(x,, y3) A(xz, ¥4)

x -’(}’1)-]()’2)-](}’3)-](}’4)"‘ A(xlsyl)A(xlaxl)A(xl,XZ)
X A(xy, ¥2) A(xz, ¥3) Axz, ya)J(1)I(2)I(r3)I(Vs)

+ % Alxy, y1) A(xys x1) Alxy, x5) Alxy, X2) Alxa, y2)J(1)J(r2)

+ 5 ACe1, 72 B2 3) ACey, 33) Ak, 72)T01)907)

o A 1) A1, %2) A, 12)J00)J0) (1.89)

where we have dropped all J-independent terms (see Figs. 1.4 and 1.5). It is
understood that all arguments (x;, y;) are integrated over.

It is clear that the first factor on the right-hand side of (1.88), iw?,
corresponds to a disconnected contribution. For the connected Green’s
function defined by (1.76)

8" In W[J]

(n) =<7 sno
G™(xy ... x,) = 8J(x1) - 0J(x)ls =0

(1.89)
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B Y3
X
N X Y2
Y Vs

FIG. 1.4. Graphic representation of w, in eqn (1.87).

i Y4

X Xy

)2 Js

V3 Ve

N Y3 Y2
X2
x) X3 )1 ™ Y3
Y2 Y4 Y4

X2 X} X)
? ’ ‘ ’ N Y2
Y1ox X3 ¥ N Xy Y2

FiG. 1.5. Connected parts of @, in eqn (1.88).

such terms would not contribute. To see this explicitly,
In W[J] = In Wo[J] + In{1 + W' [JIW[J] - W,[J])}
=In Wo[J] + In{l + W5 '[J](*” — 1)W,[J]}, (1.90)

where we have used (1.78). Since W5 '(e“*” — 1)W, is also small, we can
expand the exponential as well as the logarithm. Thus from eqn (1.85)

In W[J] = In Wy[J] + (Ao, + 2w, +...) 34w, + o, +...)% +...
= ln Wo[J] + A.(Dl + lZ(wz - %w%) + R (191)

Thus the disconnected fw? in w, is in fact cancelled. It is not difficult to
generalize this, to prove that all disconnected contributions disappear in

In W[J].
We note that what corresponds to Wick’s theorem is simply the rule for
functional differentiation

oJy) ¢
8J(x)  6J(x)
= &(x — y). (1.92)

Differentiation according to (1.89) finally yields the (Euclidean) Green’s
function. For example, the terms with four Js in (1.87) and (1.88) give rise to
the first- and second-order four-point functions. These results are the same as

JJ(x) o(x — y)dx
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those in (1.33) and (1.35) (with the propagator given in eqn (1.14)) except
that they are valid in Euclidean space.

The analytic continuation x, — x, and k, — k, of A(X — y) in (1.84) yields
the familiar Feynman propagator (1.14)

d4k e-ik'(x—y)
Cm* k2 — 2 +ie

—ARX —y) - iAe(x — y) = ij

The i¢ factor in the denominator indicates how the boundary condition on
the propagator is to be imposed. It corresponds to the addition of a lie¢?
term in the Lagrangian and hence provides a suitable damping factor for the
path integral (1.77) in Minkowski space.

Clearly the same set of Feynman rules, which we briefly reviewed in §1.1,
follow from PI quantization formalism. The reader is referred to Appendix B
where a practical guide to the derivation of the Feynman rules is given.

1.3 Fermion field quantization

Here we discuss the quantization procedure for systems with fermions. After
briefly reviewing the canonical formalism, we indicate how the correspond-
ing path-integral quantization can be formulated (see, for example, Berezin
1966). This involves the subject of Grassmann algebra.

Canonical quantization for fermions

In §1.1 we reviewed the canonical quantization procedure for a scalar field.
Bose-Einstein statistics follow naturally from the commutation relations of
the particle creation and annihilation operators (1.11), i.e. from the
commutation of scalar field operators (1.3). For a many-fermion system, in
order to arrive at an exclusion principle the field operations must satisfy a set
of anticommutation relations. Consider the case of free Dirac field,

Z(x) = Y(x)(iy" 8, — mWy(x). (1.93)
Eqn (1.2) yields the Dirac equation
(iy* 0, — miy(x) = 0. (1.94)

In quantum theory, the field ¥(x) and its conjugate momentum 7(x) =

iy/'(x) are postulated to be operators; they satisfy the canonical anticommu-
tation relations

33 (x —x')

(¥, 0, ¢ (", 1)}
W, 0,9, ) = {Y'(x, 1),y (x', 1)} =0
where {4, B} = AB + BA. Following the same steps as in the scalar case of

§1.1 we formally solve the Dirac equation and calculate the Feynman
propagator function
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iSk(x; — X2)up = OIT(Walx)P(x2))I0>
d4k ] —ik- X1 —X;
~ Jen?® (k —m+ i8>a/3 e, (1:99)

For interacting systems the perturbative solution in the form of Feynman
rules can be developed, again much in the same manner as the scalar case of
§1.1. We shall not repeat the steps here except noting that a consequence of
the anticommutation relation is that there will be a minus sign for each closed
fermion loop in a Feynman diagram.

Path-integral quantization for fermions

Quantization of the fermion system can also be carried out by expressing the
transition amplitude directly as the sum over all possible world lines
connecting the initial and final states. The generating functional is then

Win, 7] = f [dy()][d¥(x)] eXp{i ‘[d“XEf W, ¥) + Y + W]} (1.96)

where ¥(x), ¥(x), n(x), and #(x) are (classical) fermion fields and sources,
respectively. While the sum over the path for a boson system is a functional
integral over ordinary c-number functions (classical scalar fields), the
functional integral in (1.96) must be taken over anticommuting c-number
functions (‘classical’ fermion fields)

W), ¥} = {Y(x), P(x)} = {P(x), ¥(x)} = 0
{n(x), n(x"} = {n(x), n(x")} = {7x), 7(x)} = 0.

Thus they are elements of Grassmann algebra. In the following section we
shall provide a brief introduction to this subject.

Grassmann algebra

In an n-dimensional Grassmann algebra, the n generators 6,,0,,...,0,
satisfy

{6,,0,} =0 Lj=1,2,...,n (1.97)
and every element can be expanded in a finite series

p(0) = Py + PVO, + P26, 0, + ...+ PP .6 ...0

1i2 odn iy in

where each of the summed-over indices iy, i,, ..., i, ranges from 1 to n. The
expansion terminates because of (1.97). We shall now discuss the subject of
differentiation and integration in such an algebra. Before stating the general
n-dimensional results, we first motivate them with the simplest case of one
Grassmann variable,

{0,0} =0 or 6*>=0. (1.98)
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Thus any element of the algebra has the simple expansion
p(6) = P, + 6P,. (1.99)

If we take p(0) to be an ordinary number, then P, and P, are ordinary and
Grassmann numbers, respectively. (We can imagine embedding this one-
dimensional Grassmann algebra into a higher-dimensional one so that we
would have more than one anticommuting element.)

The operation of differentiation may be taken from left or right with the
basic definition

P

d d

@9=0£=1. (1.100)
We have the ‘left derivative’
d
L e =P '
) p(6) = P, (1.101)
and the ‘right derivative’
d
p(0)a§= —P, (1.102)

because (dP,/df) = 0 and (d/df) anticommutes with P,;.

We next introduce the integration operation, which ordinarily is taken to
be the inverse of differentiation. However such an inverse is ill defined in a
Grassmann algebra, as can be seen by the fact that, for either type of
derivative,

d2

Wp(()) =0. (1.103)
Thus we must be content with a formal definition of the integration
operation which preserves some general properties of our intuitive notion of

integration. We require it to be invariant under a translation of the
integration variable by a constant. Thus

[d@p(@) = de)p(f) + a). (1.104)
From (1.99) we must have
Jd@P,a:O or de):O (1.105)

where o is another element in the Grassmann algebra which is independent of
0 and anticommutes with §. We can normalize the remaining integral using

JdBO =1. (1.106)
From (1.105) and (1.106) it follows that

Jd@p(@) - P, (1.107)
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which is the same as left differentiation in (1.101). Thus our definitions of
integration and (left) differentiation lead to the same result

J dép(6) = ;—0 p6) = P;. (1.108)
We next consider the problem of change of integration variable

6 — 0 = a + b, where a and b are anticommuting and ordinary numbers,
respectively. For an ordinary c-number we have the familiar relation

Jdﬁf(i) - de (g;) G (x)). (1.109)

What will be the corresponding result for Grassmann numbers? Since, by
(1.108),

[ d

dfp@) = 7 p@) =P, (1.110)
and :

dop@) = qu%ep1 =bP,, (1.111)
we have )

[ da\1

ddp(0) = Jde <&§> p(0(0)). (1.112)

Thus for anticommuting numbers the ‘Jacobian’ is the inverse of what we
would ordinarily expect.

We now proceed to generalize our one-variable results of (1.101), (1.102),
(1.105), and (1.106) to the n-dimensional Grassmann algebra. We have the
‘left derivative’

d
a‘e—.(BIOZH'On)=5i102~-'9n_6i20103-“0n+---(—l)n_léingl ...0"_1

and the ‘right derivative’

-

d
6,0, ...6,)

qg, = Oub e Oy = (S50, 0

Thus, to calculate the left (right) derivative (d/d#;) of 6,0,, ..., 6,, commute
0, all the way to the left (right) in the product; then drop that 6;. The symbol
df,, db,, ..., do, is introduced with the conditions

and
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which defines the integration operation. For a change of integration variable

0, =b;,0 (1.114)

ijvje

we have the generalization of (1.112)

Jdé‘,, ...dd, p@) = jd@,, ...do, [detc;—g}_l p@©®). (1.115)

To show this result we follow the same steps as in the one-6 case. Just as in
(1.110) and (1.111), we need to compare [df,...dd,p@) and
§d6, ...do,p@(0)). The only terms in p(f) which can contribute to these
integrals are terms with n s,

gl"'gn=b1i1"‘bni"9i1“‘0i,,‘ (1.116)
The right-hand side is non-zero only if i;, ..., i, are all different and we can
write

gl gn = blil ~~bni,,8i1..,i,,91 0"
= (det b)d, ... 0,. (1.117)

However, in order to maintain the normalization conditions (1.113), we must
have

df, ...dd, = (detb)"*d6, ...do,; (1.118)

hence the result of (1.115). To repeat, for anticommuting variables inte-
gration is equivalent to differentiation and we get [det (d0/df)] ™' rather
than [det (dd/d0)].
As we have seen in §1.2 the Gaussian integral plays an important role in
the PI formalism. Thus we need to evaluate
G(A) = Jdﬂn ...d0o, exp(3(0, A0)) (1.119)

where 4 is an antisymmetric matrix and (0, 40) = 0,4,;0;. First consider the

simple case of n = 2
0 A
4= 12
'_A12 O

G(A) = J‘dgz del exp(elezAlz)

and

= jd@z do,(1 + 0,0,4,,)
=A,, = Jdet 4. (1.120)

For the general case where 4 is an n x n antisymmetric matrix, we can first
put 4 in the standard form by a unitary transformation. (Here # is taken to
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be even as the integral vanishes for odd ».)

UAU' = 4, (1.121)

F( 0 1)

a,

-1 0

A, = o[ 01 . (1.122)
-1 0

» T

with

This can be seen as follows. Since i4 is hermitian, it can be diagonalized by a
unitary transformation ¥’

ViV = 4, (1.123)

where A, is real and diagonal with diagonal elements which are solutions to
the secular equation

detlid — Al = 0. (1.124)

Since AT = — A, we have det[id — AI|" = det| —i4 — AI| = 0.Thus, if 1 is a
solution, so is (—4), and A is of the form

Il
o

Ay (1.125)

L J

To put A, into the standard form of (1.122), we use the 2 x 2 unitary matrix

S Lt (1.126)
22\ i '
which has the property

1 0 0 1
Sz(—1)<0 _1>S§=<_1 0). (1.127)

Thus S(—i44)S" = 4, for
S = S, (1.128)

and the unitary matrix in (1.122) must be the product U = SV because
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(SMA(SV)' = S(—id4)ST = A,. Furthermore, let
[ 412
a-12

T- b2
b—l/2

Thus,
det(T™ ') = /det 4.
We can then write

T(UAUNT = TA,T = A,

01
-1 0

-1 0

L -

The Gaussian integral (1.119) can then be written as

G(A) = f df, ...do, exp((6, U'T~14,T~1U9).

Change the integration variable
b=(T"'U)
and use (1.115)

G(A) = j dd, ...dd, exp(i(, 4,0)) [det(%%ﬂ

df
= det[ — |-
et<d9>
Since, by (1.133) and (1.130)
df - )
det )= det(T~'U) = det(T™') = /det 4,

we obtain the result

G(A) = JdO,, ... d6, exp(3(0, 40)) = /det 4

(1.129)

(1.130)

(1.131)

(1.132)

(1.133)

(1.134)

(1.135)

(1.136)

which should be contrasted with the Gaussian integral with ordinary
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commuting real variables

dx, dx, L 1
—3(x, Ax)) = ——— 1.
f o S A0) = (1.137)
or with ordinary commuting complex variables (z = x + iy)
d dz, dz¥  dz¥ 1
2 S O O exp(— (2%, Az2)) = (1.138)

%..‘\/n%.-.\/n d—'ea

where [dzdz* = {dxdy. The Gaussian integral for complex Grassmann
variables can be shown to have the value

Jd@l df, ...d6, dd, exp(8, A0) = det 4 (1.139)

where 6; and 0, are independent generators of the algebra.

The classical fermion fields y(x) and J(x) are then taken to be elements of
an infinite-dimensional Grassmann algebra. All the above results for the
general n-dimensional case can be naively extended.

Since the fermion fields always enter the Lagrangian quadratically
& = (JAyY), the functional integral of (1.96) will be a generalized Gaussian
integral. The result in (1.139) can then be applied

W= f[dtﬁ(X)][le(X)] CXP{fd“X!PAt//}

—det 4 (1.140)

where we have not bothered to display the source fields. W is the vacuum-to-
vacuum amplitude and the (connected) Feynman diagram representation, as
generated by In W, will be a set of single-closed-fermion-loop graphs (Fig.
1.6). The change of going from the ordinary functional integral (1.138) to the
anticommuting variable functional integral (1.140), with the replacement of
(det A)~! by (det 4), corresponds to changing the overall sign of In W. This
is the familiar Feynman rule of an extra minus sign for each closed fermion

000

F1G. 1.6. Vacuum-to-vacuum amplitude as represented by single closed loops.



Introduction to renormalization
theory

Given any quantum field theory one can construct the Feynman rules for
calculating the Green’s functions and S-matrix elements in perturbation
theory as described in Chapter 1. But in relativistic field theory one often
encounters infinities in the calculation of diagrams containing loops. This is
because the momentum variable in the loop integration ranges all the way
from zero to infinity. In other words, for a relativistic theory, there is no
intrinsic cut-off in momenta. These divergences will render the calculation
meaningless. The theory of renormalization is a prescription which allows us
to consistently isolate and remove all these infinities from the physically
measurable quantities. It has been of utmost importance to the development
of relativistic quantum field theory.

It should be emphasized however that the need for renormalization is
rather general and is not unique to the relativistic field theories.
Renormalization has its own intrinsic physical basis and is not brought about
solely by the necessity to expurgate infinities. Even in a totally finite theory
we would still have to renormalize physical quantities. The following
example should illustrate this point. Consider an electron moving inside a
solid. Due to the interaction of the electron with the lattice, the effective mass
of the electron m*, which determines its response to an externally applied
force, is certainly different from the mass of the electron m measured outside
the solid. The electron mass is changed (renormalized) from m to m* by the
interaction of the electron with the lattice in the solid. In this simple case one
can in principle measure both m* and m by switching on and off the
interaction (i.e. by placing the electron inside or outside of the solid). Clearly
the difference is finite since both m and m* are finite and measurable. For the
relativistic field theory, the situation is the same except for two important
distinctions. First, renormalization due to the interaction is generally infinite
(corresponding to the divergent loop diagrams). Second, there is no way to
switch off the interaction; hence quantities in the absence of interaction,
called the unrenormalized or the bare quantities, are not measurable. For
example, in quantum electrodynamics the difference between the bare
electron mass m and the renormalized mass m* is infinite, and the bare mass
cannot be measured because the electron interacts with the virtual photon
field constantly and there is no way to turn off this interaction.

The programme of removing infinities from physically measurable quan-
tities in a relativistic theory, the renormalization programme, involves
shuffling all divergences into the bare quantities. In other words, the
unrenormalized quantities are assumed to be appropriately divergent to
begin with and the infinite renormalization due to interaction then cancels
these divergences to produce finite renormalized quantities. We should recall
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that in a relativistic quantum field theory the renormalized quantities are
physically measurable while the bare ones are not. This difficult programme,
as originally formulated for quantum electrodynamics by Feynman (1948b),
Schwinger (1948, 1949), Tomonaga (1948), and Dyson (1949), has been
quite successful and in the case of QED the agreement between theory and
experiment has been spectacular.

Technically the theory of renormalization is rather complicated. A detailed
and thorough discussion of this subject is beyond the scope of this book. In
this chapter we shall explain the principal ideas behind it and give examples to
illustrate how it works.

2.1 Conventional renormalization in 1¢* theory

We shall first use the simple A¢* theory as an example to illustrate the
renormalization procedure. The Lagrangian density is separated into free
and interacting parts

L =%+ 2.1
with
%o = 3[0,90)* —uged] (2.2)
and
Ao a4
&L= TR 2.3)

The propagator and the vertex of this theory are displayed in Fig. 2.1.

i
—iA
pP—ultie >< 0

FiG. 2.1.

We will concentrate on the one-particle-irreducible (1PI) diagrams. They
are the Feynman diagrams which cannot be disconnected by cutting any one
internal line. Correspondingly, we define the one-particle-irreducible (1PI)
Green’s functions, denoted by T'(p, ... p,), which have contributions
coming from 1PI diagrams only. For example the graph in Fig. 2.2(a) is a 1PI
diagram while the one in Fig. 2.2(b) is not. The reason for selecting 1PI
diagrams is that any one-particle-reducible diagram can be decomposed into
1PI diagrams without further loop integration, and if we know how to take
care of the divergences of 1Pl diagrams we will also be able to handle the

<= LU0

(a) (b)
FiG. 2.2.
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reducible diagrams. For example, the two-point Green’s function
(propagator)

1A(p) = Jd“x e 7" *C0|T(¢o(x)ho(0))I0> (24)
can be decomposed in terms of the 1PI self-energy parts Z(p) as in Fig. 2.3.
FIG. 2.3. The propagator as a sum of 1P self-energy insertions.
Then we can write the propagator as
A = e e

1 [ 1
=3 2 n .
P — Up +1e . 2 1 ‘
1 +1Z — s
(p)pz—y(2,+w

i
TP —ud—Z(p?) +ie

2.5)

Clearly if we can make the proper self-energy part £(p?) finite, the propagator
A(p) will also be finite.

Since there is no divergence in the tree (zero-loop) diagrams, we begin our
calculation with the one-loop 1PI graphs. It is not difficult to see that Figs.
2.4 and 2.5 represent an exhaustive listing of all the one-loop divergent 1PI
diagrams in this A¢* theory. Fig. 2.4 is the self-energy graph

ido [ d% i
—iS(p?) = — 22 . 2.6
=(p%) 2 j(2n)4 P_ 12 +ie 2:6)

The factor of 1/2 is the symmetry factor, of which some examples were given
in §1.1. Or we can deduce it directly from the fact that there are 4-3 = 12

/

O

P P
Fi1G. 2.4,

P Py ) )
3 4
P3 Py
P :p2
P P, P P,
(@) (b) ©

FiG. 2.5.
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ways to ‘contract’ ¢(x;)¢@(x,) into the interaction term ¢*(x) and this does
not completely compensate for the 1/4! factor in (2.3). The integral in (2.6) is
quadratically divergent. Fig. 2.5 shows the vertex corrections with contri-
butions given by

(—ido)? [ d* i i
L=T(") =T6) = 2 @Rr)* (I —p)? —ud +ie 1> — ud +ie @7
I=T@, TI.=Tw (2.8)

where
s=p*=(py+p)  t=(p1—p3) u=(p;—p)* (29

are the Mandelstam variables. The contributions in (2.7) and (2.8) diverge
logarithmically.

In the renormalization programme one first introduces some appropriate
regularization schemes so that all divergent integrals are made finite. We
are then free to manipulate (formally) these quantities, which are divergent
only when the regularization is removed (e.g. by letting the cutoff approach
infinity) at the end of the calculation. The commonly used regularization
schemes will be discussed in §2.3. In the meantime it should be understood
that by divergences we mean the regulated divergent quantities which are
finite and cutoff-dependent.

For any divergent diagram we will first separate the divergent part from
the finite part, then absorb the divergences in some appropriate redefinitions
of mass, coupling, and field operators. To make the separation one uses an
important property of the Feynman integrals given in (2.6) and (2.7): if one
differentiates the divergent integral with respect to the external momenta,
this increases the power of the internal momenta in the denominator and
makes the integral less divergent. (These are examples of the ‘primitively
divergent’ diagrams—for further discussion, see §2.2.) Therefore, when
differentiated a sufficient number of times, the result is completely con-
vergent. For example, if one differentiates I'(p?) with respect to p?, one finds

o .1 0
517—2F(P )—?Puar@ )
A [ a¥ (I=p)p 1

) . - (2.10)
p? J@m)* [l —p)* — p§ +ie]* P — pd + ie

which is finite. This means that the divergences will reside only in the first few
terms of a Taylor series expansion in external momenta of the Feynman
diagrams. For example, the Taylor expansion I'(p?) around p* = 0 is of the
form

1
F(pz) =4y + a1p2 + ...;—'an(pz)" + ...

where

n

_ 0
- anp2

a, reps) - 2.11)
pZ

=0
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The a,s are finite for n > 1 and only a, contains the logarithmic divergence.
We can sum up all the finite terms and write

I'(s) = ['(0) + T'(s) (2.12)
where I'(0) = a, is divergent and I'(s) is finite with the property
ro)=o. (2.13)

These functions I'(0) and I"(s) will be calculated explicitly in §2.3. Note that
the finite part I"(s) is just the original I'(s) with its value at s = 0 subtracted
out. Hence this procedure is sometimes referred to as the subtraction.

In the following discussion we shall use the Taylor expansion of (2.6) and
(2.7) to separate the divergent part from the finite part and absorb the
divergent parts into redefinitions of the bare quantities.

Mass and wavefunction renormalization

The self-energy contribution given in eqn (2.6) is quadratically divergent. But
this one-loop contribution has the peculiar property of being independent of
the external momentum p. Hence the Taylor expansion is trivial; i.e.
Z(p?) = Z(0). This is true only for the one-loop approximation in A¢*
theory. For example the two-loop self-energy diagram in Fig. 2.2(a) is
quadratically divergent and has a non-trivial dependence on p2. Thus in
general the Taylor expansion in external momenta around some arbitrary
value u? will have two divergent terms

Z(p?) = () + (p* — pHT'W?) + £(p?) (2.14)

where Z(u?) is quadratically and X'(u?) logarithmically divergent, as each
differentiation with respect to the external momentum 0/dp, decreases the
degree of divergence by one unit and X'(4?) can be written in the form
#(0/0p,)(0/0p*)Z(p?)l,2=,2- Note that in general a quadratically divergent
diagram will have three divergent terms with quadratic, linear, and
logarithmic divergences. But in Z(p?) there is no linearly divergent term
because a term proportional to p, is not Lorentz invariant. The last term in
(2.14) is finite and has the properties

S =0, (2.15)
$' ) =0. (2.16)

Of course in the one-loop approximation X'(p?) = £(p?) = 0 for all values
of p?. But in general the self-energies do not vanish. Substituting (2.14) into
the expression for the full propagator in (2.5), we have

i
p? — ud — T(u?) — (p* — pAE'(?) — Z(p?) + ie
The physical mass is defined as the position of the pole of the propagator.
Since up to this point u? is arbitrary, we can choose it to satisfy the equation

uo + Z(u?) = 1. (2.18)

iA(p) = 2.17)



2.1 Conventional renormalization in A$p* theory 35

Then
i
(P — 1 -] - £ +ie

Using (2.15) one sees that A(p?) has a pole at p> = u?. Thus p? is the physical
mass and is related to the bare mass through eqn (2.18). This is the mass
renormalization. Since X(u?) is divergent, the bare mass p3 must also be
divergent so that the physical mass p? is finite. To remove the divergent term
T'(u?) we note that both X'(u?) and £(p?) are of order A, (again keep in
mind that all divergent quantities are regulated to be finite); we have

(") = [1 = Z(WHIE(P?) (2.20)

and the propagator function can be written as

iA(p?) = (2.19)

A2y iZ,
iA(p?) ey (2.21)
where
Zy=1[1—- W] =1+ Z'(u?) + 0(A3). (2.22)

In this form the divergence is a multiplicative factor and can be removed by
rescaling the field operator ¢,. More specifically, if we define the re-
normalized field ¢ by

¢ =Z;'"%¢,, (2.23)

then the renormalized propagator function given by

1Ar(p) = Jd“x e~ 70| T($(x)$(0))|0)

=Z;! Jd“x e~ 70| T(¢o(x)o(0))I0)

i
TP - +ie

iZ,' A(p) (2.24)

is completely finite. Z, is usually referred to as the wavefunction renormaliza-
tion constant. In this way, the divergences in self-energy are removed by
mass renormalization (2.18) and wavefunction renormalization (2.23).

The renormalized field ¢ given in eqn (2.23) defines the renormalized
Green’s functions G which are related to the unrenormalized ones by

GR(xy ... x,) = O T((x,) . .. p(x,))[0)
= Z;"*0|T(po(x1) . .. Po(x,))I0)
= Z;"2GP(x, ... x,). (2.25)

Or, in momentum space,

GR(p1 ... pa) =Z5"*G(py ... pw) (2.26)
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where
@m)* 6%(py + ... + PA)GR(Py - Pa) = (H dx; e‘""'m>
J\i=1

X GP(xy...x,) (2.27)

f/ n
(@n)* 8*(py + ... + PGPy - Pa) = (1:[1 dx; e_,,,,--xi>

X GP(xy ... x,) (2.28)

To go from the connected Green’s function given in (2.26) to the 1PI
(amputated) Green’s function, we have to eliminate the one-particle
reducible diagrams, and also to remove the propagators for the external
lines in 1PI Green’s functions, i.e. remove the Ag(p;)s from Gg')(pl ...p,) and
the A(p;)s from G(()")(pl ... P,). Since Ag(p) and A(p) are related by

A(p) = Z5 ' A(py), (2.29)
the renormalized and unrenormalized 1PI Green’s functions are related by
TPy - Pa) = ZPTO(py - . pu)- (2.30)

Coupling constant renormalization

We now proceed to renormalize the 1PI four-point function of Fig. 2.5.
From eqns (2.7) and (2.8), this unrenormalized Green’s function is given, to
order A3, by

T§(s, t,u) = —ido + I(s) + I'(¢) + '(w) (2.31)

where on the right-hand side the first term is the tree-graph contribution and
the last three terms are the one-loop contributions which are divergent. We
want to absorb these divergences by a redefinition of the coupling constant.

How is the coupling constant measured in A¢* theory? Since the basic
vertex involves four particles, it would be natural to define the coupling
constant in terms of the two-particle scattering amplitude, which is physically
measurable. But for the discussion of the renormalization, it is more
convenient to define the coupling constant in terms of the closely related
renormalized 1PI (amputated) four-point function I'{’(p,, ..., p,). Since
'Y is a function of the kinematical variables s, ¢, and u (i.e. it is not a
constant), some particular point in the kinematical region has to be chosen to
define the physical coupling constant. Remembering that for particles on the
shell p? = p? these variables satisfy the relation s + ¢ + u = 4u?, one may
choose, as a convention, the symmetric point,

4u?

So =1ty =Uy = T (2.32)

to define the coupling constant. Thus,
T(s0, Lo, tg) = —iA (2.33)

where 4 is the physical coupling constant.
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We will now separate the divergent and finite parts in the unrenormalized
vertex function of (2.31) by making a Taylor series expansion around the
symmetric point given in (2.32)

T¥(s, 1, u) = —idg + 30Go) + T(s) + T(t) + T(w) (2.34)
where I"(s) = I'(s) — I'(s,) is finite and has the property
I'(so) = 0. (2.35)
One defines the vertex renormalization constant Z, by
—iZ7 A9 = —iAg + 3T (so). (2.36)
Eqn (2.34) becomes
T, tu) = —iZ7 2 + T(s) + T(t) + T(w) (2.37)
which at the symmetric point gives
T§(so, to, o) = —1Z35 1A,. (2.38)

From the relation between the unrenormalized and the renormalized 1PI
Green’s functions eqn (2.30), we have

(s, 1, u) = Z3T(s, 1, u). (2.39)

Then using eqns (2.33), (2.38), and (2.39), we see that the renormalized
(physical) coupling constant A defined in (2.33) is related to the un-
renormalized coupling constant 4, by

A= 2Z3Z7"%. (2.40)

It is now easy to demonstrate the finiteness of the renormalized 1PI four-
point function. From eqns (2.37), (2.39), and (2.40), one has

TR(p1s -5 Pa) = ZZTE(Pys - s P4)
= —iZ7'Z% + Z3[T(s) + T'(t) + T'(w)]
= —id + Z3[T(s) + T(t) + T(w)]. (2.41)
Since Z, = 1 + O(4,), I' = 0(4), and A = 4, + O(A3), we write to order A2
T(py, ..., pa) = —id + T(s) + T(t) + T(w) + 0(23) (2.42)

which is completely finite.

For the renormalization of the connected four-point Green’s function to
one loop, we have to add the one-particle reducible one-loop diagram (Fig.
2.6) and attach propagators for the external lines. Thus the unrenormalized

X + 3 other diagrams

FIG. 2.6.
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Green’s function G§(p, ... p,) is given by

4
GOy pa) = [ I <__1__)H—uo +3T(s0) + (s) + B(¢) + D)

j=1 p_lz - ﬂ(z) + ie
+ (—ido) i [—iZ(Pf)]<z—i—r—-)l : (2.43)
K=1 Pk — up t+1¢ (
The first and last terms in (2.43) can be combined to give

) 4 1 : 2 1
ol 1 G 1+ &=t

. 4 1
N (_MO)[E <pf —ug—Z(p}) + isﬂ +OG). @44

Since I' ~ 0(42), T ~ 0(A2), we can also write

4 1 ~ - -

4 1
B [Bl (pf —ug —=(p}) + iﬁ)]

x [3I(so) + T(s) + T(t) + T(w)] + 0(43). (2.45)
Using eqns (2.44) and (2.45), we can write eqn (2.43) as
4 1
GP(py ... pa) = jl;ll [mil
x [—idg + 3T(so) + T'(s) + T'(¢) + T(u)]

4
= [ [1 iA(pj)] T{(py ... pa) (2.46)

ji=1

where we have used eqns (2.5) and (2.31). The renormalized four-point
Green’s function is defined by (2.26) as

G(p .. pa)=Z5*GP(py ... pa). (2.47)

Then from eqn (2.46) and the relations between the renormalized and the
unrenormalized quantities (2.29) and (2.39), we get

4
G(py...p) =257 l:Z;‘, I1 iAR(p,«)] ZT(py - pa)
j=1
4
= [] LAr(PHITR (s - .. Ps) (2.48)
j=1

which is also finite because Ag(p) and T'{’(p; ... p,) have been shown to be
finite.

We see that the mass, wavefunction, and vertex renormalizations remove
all the divergences in the two- and four-point Green’s functions in the one-
loop approximation. There is no divergence in the other 1PI diagrams
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although the one-particle reducible graphs for the higher-point functions
have divergent one-loop graphs. For example, the six-point function in Fig.
2.7 is divergent. However, it is clear that the divergence is brought about by
that of the four-point vertex function and it is removed once we renormalize
the four-point vertex function.

x>

FiG. 2.7.

In summary, Green’s function can be made finite if we express the bare
quantities in terms of the renormalized ones through relations (2.18), (2.23),

and (2.40)
b =2Z;'"¢, (2.49)
h=Z7'Z%, (2.50)
u? = pg + ou (2.51)

where dpu* = Z(u?). More specifically, for an n-point Green’s function when
we express the bare mass u, and bare coupling constant A, in terms of the
renormalized mass y and coupling 4, and multiply by Z; */? for each external
field as in (2.26), then the result (the renormalized n-point Green’s function)
is completely finite

Gg)(pls <ovs Pns }'7 u) = Z;n/ZG((;l)(pls vevs Pns j'0> Ho» A) (252)

where A is the cut-off needed to define the divergent integrals. This feature, in
which all the divergences, after rewriting A, and p, in terms of A and p, are
aggregated into some multiplicative constants [Z; "/ in eqn (2.52)], is called
being multiplicatively renormalizable. Equivalently, the 1PI Green’s functions
are made finite as in (2.30) by multiplying by Z}> and expressing the bare
quantities Ay, lo in terms of the physical quantities A, u,

rg‘)(pl LIRS *’pn; }" #) = ng/zrg')(l’h ey pn’ '105 luO’ A) (253)

The programme of removing divergences as outlined in this section is closely
related to the one originally developed and we shall refer to this as the
conventional renormalization scheme.

2.2 BPH renormalization in i¢* theory

BPH renormalization (Bogoliubov and Parasiuk 1957; Hepp 1966;
Zimmermann 1970) is completely equivalent to conventional renormaliza-
tion. This alternative formulation of the programme is often more
convenient for many applications of the renormalization theory. In this
section we shall simply illustrate the connection between these two re-

normalization schemes. For a concise and lucid presentation see Coleman
(1971b).
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For the original (unrenormalized) Lagrangian (2.1)
A
Zo = 3[(@u$0)" — u3p3] — 57 86 (2:54)

we can replace the bare quantities by renormalized quantities using eqns
(2.49), (2.50), and (2.51) to obtain

Lo=L + AL
where
% = @97~ 197 - o @59)
and
ag - e D er - 191+ Wz, G Dy s6)

£, which has exactly the same form as £, but with all the unrenormalized
quantities replaced by renormalized ones, is called the renormalized
Lagrangian density. A% contains the divergent renormalization constants.
(Z, - 1), (Z; — 1), and 6p? are all of order A and this makes A% of order
AZL. We call AZ the counterterm Lagrangian.

‘The BPH renormalization prescription consists of the following sequence
of steps

(1) One starts with the renormalized Lagrangian of eqn (2.55) to construct
propagators and vertices.

(2) The divergent part of the one-loop 1PI diagrams is isolated by the
Taylor expansion. One then constructs a set of counterterms A.#*) which is
designed to cancel these one-loop divergences.

(3) A new Lagrangian ¥V = ¥ + A#" is used to generate two-loop
diagrams and to construct the counterterm A% which cancels the
divergences up to this order and so on, as this sequence of operations is
iteratively applied.

The resulting Lagrangian is of the form
Y=L +AZ
where the counterterm Lagrangian A% is given by
AY =ALY + AP + ...+ A" + ... 2.57

In order to show that this renormalization scheme is equivalent to the
conventional one which develops the unrenormalized perturbation theory
directly we need to show that the counterterm Lagrangian (2.57) has the
same structure as that of eqn (2.56). To demonstrate this we shall use the
power-counting method to study the counterterms.

Power-counting method

To analyse the divergent structure of any Feynman diagram we introduce the
term superficial degree of divergence D, which is the number of loop momenta
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in the numerator minus the number of loop momenta in the denominator.
For example the graph shown in Fig. 2.8 has D = 4 — 4 = 0. Hence it is
expected to be logarithmically divergent. To calculate D for any graph in the
A¢* theory we define the following numbers.

B = number of external lines;
IB = number of internal lines;
n = number of vertices.

Since each vertex has four lines and both ends of an internal line must

P ll P3
P2 Iz P4
FiG. 2.8.

terminate on vertices while only one end of an external line is connected to a
vertex, we have the relation

4n = 2(IB) + B. (2.58)

We need to convert some of these to the number of loop momenta. The usual
Feynman rule requires us to integrate over internal momenta which are not
fixed by momentum conservation at each vertex. Thus we expect the number
of loop momenta (L) to be the number of internal lines (/B) minus the
number of vertices (n). But one of the combinations of momentum
conservation d-functions just expresses the overall momentum conservation
and it does not depend on the internal momenta. For example the graph in
Fig. 2.8 has two vertices and hence two d-functions: 6*(p; + p, — I, — 1,)
6%l + 1, — p3 — p,). But this can be written as 6*(p; + p, — ps — pa)
6*(p, + p, — I; — 1,). The two vertices eliminate only one, rather than two,
internal momenta. Therefore, we have

L=IB—n+1. (2.59)

For each internal line the propagator contributes two powers of loop
momenta in the denominator and each loop integration contributes four
powers of loop momenta in the numerator. For 1¢* theory the vertices do
not contribute any momentum factors and the superficial degree of
divergence is given by

D = 4L — 2(IB). (2.60)

We can eliminate L and IB in favour of B and »n by using eqns (2.59) and
(2.58),

D=4-B. (2.61)

Since A¢* theory has reflection symmetry ¢ - —¢, B must be an even
number and eqn (2.61) implies that only the two-point function (B = 2) and
four-point function (B = 4) are superficially divergent.
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From this power counting, which is valid to all orders of perturbation
theory, we can now study the structure of the counterterms. For the two-
point function we have, according to (2.61), D = 2. Being quadratically
divergent, the necessary Taylor expansion is taken to be

Z(p*) = 2(0) + p*Z'(0) + £(p?)

where X(0) and X'(0) are divergent while £(p?) is finite. There is no term
linear in p, as £(p?) is a Lorentz scalar. We need to add two counterterms
13(0)¢* + $Z'(0)(0,¢)* to cancel the divergences. They correspond to the
Feynman-rule vertices shown in Fig. 2.9(a), (b). The four-point function has
D = 0 and the Taylor expansion

I(p) = T(0) + F(p)

where I'®)(0) is a logarithmically divergent term which is to be cancelled by a
counterterm of the form (il'*)(0)/4!)¢*. This has the graphic representation
shown in Fig. 2.9(c).

iZ(0) i20) p?
———>— ——>— ()

(a) (b) (c)
FiG. 2.9. Feynman-rule vertices corresponding to the counterterm Lagrangian (2.11).

The general counterterm Lagrangian is then of the form
3:—(292 * + zléo) (0,4)* + i_rp ¢* (2.62)
which is clearly the same as eqn (2.56) with the correspondences
0)=2,-1
2(0) = —(Z, — u? + ou? = —Z'(0)u® + ou® (2.63)
r'™0) = —iAd(l — Z,).

They are consistent with eqns (2.22), (2.51), and (2.36) as the renormalized
coupling 4 here is defined at the zero momentum point, thus I'¥(0) = 3(0).
This demonstrates the equivalence of BPH renormalization and conven-
tional renormalization.

AY =

Comments on subgraph divergences

We shall not present any proof that, to all orders in the perturbation
theory, this renormalization programme removes all divergences in the
Green’s functions. We merely illustrate some general features of the
renormalization procedure for higher-order diagrams and the convergence
properties of Feynman integrals with the following remarks.

(1) We state without proof the following convergence theorem (Weinberg
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1960). The general Feynman integral converges if the superficial degree of
divergence of the graph together with the superficial degree of divergence of all
subgraphs are negative. To be more explicit, consider a Feynman graph with n
external lines and / loops. Put a cut-off A in the momentum integration to
estimate the order of divergence

A

T™py ... pyy) = Jd“q1-.-d“qzl(pl-..p..-l;qlu-qz) (2.64)
0

where [ is the product of vertices and propagators depending on p; (external
momenta) and g; (internal momenta). Take a subset S = {q} ...q;,} of the
loop momenta {g, ... g,} and scale them to infinity (all g; > A with A - 00),
all other momenta being fixed. Let D(S) be the superficial degree of
divergence associated with the integration over this set, namely

A

l Jd“q’l codiqnl

0

< A®S{In A} (2.65)

where {In A} is some function of In A. Then the above theorem states that the
integral over {q ...q,} converges if the D(S)s for all possible choices of S are
negative. For example the graph in Fig. 2.10 being a six-point function has
D = —2. But the integration inside the box having D = 0 is logarithmically
divergent. Thus a successful renormalization programme must systematically
remove all divergences including those associated with the subintegrations.
In the BPH procedure these subdiagram divergences are in fact renormalized
by low-order counterterms. For example, the graph in Fig. 2.11 with its
counterterm vertex will cancel the subgraph divergence of Fig. 2.10.

Fic. 2.10. FiG. 2.11.

(2) There is another aspect of the renormalization programme related to
these graphs with divergent subintegrations: not all divergences in a multi-
loop diagram can be removed by subtracting out the first few terms in the
Taylor expansion around the external momenta. This can be illustrated by
the following example. Consider the two-loop graph of Fig. 2.12(a) which
has the Feynman integral

¥ (p) oc A[T(p)1? (2.66)
where
1 1

-t +ie (I —p)* —p* +ie

T'(p) = % J d“l (2.67)

with p = p; + p,. With each of the I'(p) factors being logarithmically
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divergent, I' cannot be made convergent no matter how many derivatives
operate on it, even though the overall superficial degree of divergence is zero.
However we have the lower-order counterterm — A°I'(0) corresponding to
the subtraction introduced at the one-loop level. This generates the
additional A3 contributions of Fig. 2.12(b), (c) with Tt¥ oc — AT (p)I'(0) and
'™ oc —A3T(0)I'(p), respectively.

P 1 ) P3

P2 h—p l=p A

(a)
(b) (c)

FiG. 2.12. s-channel A3 four-point functions. The black spots represent the counterterm
—A’T(0).

Adding the three graphs, Fig. 2.12(a), (b), (c), we have

I'p)=TW + TP +TW
- 2’[T0)]* + A°[T(p) — T(0)}? (2.68)
r™(0) + T*(p).

Only the first term on the right-hand side is divergent and can be removed by
a A* counterterm of the formil'®(0)¢*/4!. We see how, with the inclusion of the
lower-order counterterms, divergences take on the form of polynomials in the
external momenta. Thus for diagrams with more than one loop it is useful to
characterize a divergent contribution as being primitively divergent or not. A
primitively divergent graph has a non-negative overall superficial degree of
divergence but is convergent for all subintegrations. Thus, they are diagrams in
which the only divergence is caused by all of the loop momenta growing large
together.In general only primitively divergent graphssuch as Fig.2.13 can have
their divergences isolated by direct Taylor-series expansion. For other cases,
diagrams with lower-order counterterm insertions must be included in order to
aggregate the divergences into the form of polynomials in the external
momenta.

It

N
~

FiG. 2.13. A primitively divergent four-point function.

(3) In the above example of a two-loop, four-point function we have seen
how the overall divergence can be isolated when diagrams with lower-order
counterterms are included. For such cases where the divergent subinteg-
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rations are disjoint this can be accomplished in a fairly direct manner.
Similarly, it is also relatively easy for cases with nested divergences, i.e. for
cases where one of each pair of divergent 1PI subgraphs is entirely contained
within the other (see the example in Fig. 2.14). After the subgraph divergence

Fi1G. 2.14. Nested divergences and a diagram with a lower-order counterterm which cancels the
subintegration divergence.

is removed by diagrams with lower-order counterterms (Fig. 2.14(b)), the
overall divergence is then renormalized by a A3 counterterm. Thus for both
disjoint and nested divergences the renormalization procedure is rather
straightforward. The difficult step in the proof of the convergence (to all
orders) involves disentangling the overlapping divergences, which are neither
disjoint nor nested divergent 1PI diagrams. Fig. 2.2(a) is an example of
overlapping divergence. Here it is difficult to see in a simple way how the
subintegration divergences can be removed in a systematic fashion because
they do not factorize in a simple manner. Nevertheless, this problem has been
overcome and we refer the interested reader to the literature (Hepp 1966;
Zimmermann 1970; Itzykson and Zuber 1980). The purpose of these
comments is to indicate how the proof of renormalizability generally involves
complicated -graph classifications and combinatorial analysis.

2.3 Regularization schemes

In this section we will give detailed calculations of the various renormaliza-
tion constants in the renormalized perturbation theory described in the
previous sections. To make any meaningful mathematical manipulations on
the divergent integrals we must cut off, or regularize, the momentum
integration to make the integral finite. The divergent part will then be a
function of the cut-off A while the finite part will be cut-off-independent in
the limit A — oo. The cut-off procedure must be chosen in such a way that it
maintains the Lorentz invariance and symmetry of the problem. There are
two commonly used regularization schemes: the covariant cut-off and
dimensional regularization. We shall illustrate them in turn.

Covariant regularization
In this procedure (Pauli and Villars 1949) the propagator will be modified as
1 1

—

a;
P —u*+ie 12—#2+i8+,zlz—1\,~2+i8

(2.69)

where A? > u? and the a;s are chosen in such a way that in the asymptotic
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region the modified propagator will have a sufficient number of internal
momenta in the denominator so that the integral is convergent.

Let us start with the four-point function. The graph in Fig. 2.5(a) yields a
contribution (2.7)

(—id)? [ d i i
— 2 = : :
Fa = F(p ) 2 (27_[)4 (1 _p)z _ 'uz +ic 12 _ HZ +ie (2 70)

Clearly the replacement

1 1 1 u? — A2
— —_ =
P—p?+ie P—pl+ic P-—AN+ie (P*—p*>+ie)l>—A*+ie)

will be sufficient to render the integral finite. Eqn (2.70) then becomes
—A*A* [ d4 1
2 Qr)* (I = p)* — u* +ie)(I* — p? +ig)(I* — A? + ig)
(2.71)

We choose to make the Taylor expansion around p? =0 (or to make
subtraction at p? = 0),

I(p?) =

T(p*) =T(0) + I'(p?) (2.72)
with
— 2N [ d* 1
A ] Ko s 7y s, 2.73)
—2A2 (44 1
2y —
F(p*) = — J(Zn)“ P+l —A+io

1 1
X [(l—p)z—y2+ie _lz—u2+is:|
(a4 2p— p
2 J@my* (P — @2 +ie)*((l — p)* — 12 + ie)

(2.74)

where in the last line we have taken the limit A — oo inside the integral
because ['(p?) is convergent. The standard method to evaluate these integrals
is to first use the identity to combine the denominator factors

1

1 — (-1 dz, dz,...dz, 6(1 _ 3y Zi> 2.79)

n
aa, ...a, (ayzy + azz, + ... a,2,) =4
0

where the z;s are called the Feynman parameters. We can also differentiate
with respect to a; to get
1

L 7214z, dz, ... dz, 5(1—221.)‘ (2.76)

ala, ...a, (@124 + ayzy + ... a,z,)" !
0

This formula has the advantage that one less Feynman parameter is needed
for the case where there are two identical factors in the denominator. Using
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(2.76), we can combine the denominators in (2.74) to give

1

1 1 _5 j(l — a) da 2.77)

P —p>+ie(—p)P? —p? +ie A3
0
where
A=(10-0)@ —p?)+al( —p) —p*]+ie
=(—oap)? —a®+ie
with
a* = p? — ol — a)p?.

Thus,

1
4 . —n2
f(p2)=zzj(1—a)dajdl dp—p
0

Qn)* [( — ap)? — a® +ie]?

1

~ d*  Qu—1)p?
=22 J(l — o) da J(2n)4 T (2.78)

0

where we have changed the variable / to / + ap and have dropped the term
linear in / which will vanish upon symmetric integration. It is more
convenient to do the integration by the Wick rotation, which transforms the
Minkowski momentum to the Euclidean momentum. First we note that
d*l = dl, dl, dl, dl; and

P—a’+ie=0B~1P —-a*+ie
= B— [0 + @' — i),

This shows that the integral (2.78) has poles in the complex /,-plane as shown
in Fig. 2.15.

Im /;

) C
ly=—(*+a?)?+ie
o
- ) Rel;
\w = (P +a?) —ie

Fi1G. 2.15.

Using Cauchy’s theorem we then have

§d10 flo) =0 (2.79)

C
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where
1

5 — @+ a7 =i T

Since f(lp) - lo® as [, —» oo, the contribution from the circular part of
contour C vanishes. Eqn. (2.79) implies that

Jlo) =

© +ioo

J dly f(lo) = J dlo (o) -

—© —ico

Thus, the integration along the real axis has been rotated to that along the
imaginary axis. Change the variable /, = i/, so that /, is real and

+i00 <]
f dly () = i thf(ih)
_ . dl4
- ) FYETErET @i (2.80)

If we define Euclidean momentum k; = (l,,l,,13,1,) with k* =13 +
13 + 13 + 12, then the results in eqns (2.79) and (2.80) may be written
d*/ 1 _ [ 1
Qnr)* (P —a® +ie)® n)* (k* + a* —ig)?

(2.81)

where d*k = dl/; d/, d/; d/,. Using polar coordinates in four-dimensional
Euclidean space, we have

0 2n T T
fd“k = J k3 dk j do Jsin 6do Jsin2 xdy (2.82)
0 0 0 0
and
d*k 1 o2 k3 dk 1
et +a—ie) ) )t B+ —ie)
0

R k? dk? 583
T16n? | (K + a2 —ig)® (2.83)
0

Using the formula for beta functions

o)

""'dt 1 T(mI(n—m)
j (ray @ T (2.84)
0
we obtain
a4k 1 1
(2.85)

Qn)* (K + a® —ie)>  32n%(a” — ie)
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or the vertex function in eqn (2.78) becomes
1
—iA? j da(l — a)(2x — 1)p?
[

2\ _ .
r(r) 32n? | [u? — a(l — a)p? — i)
0

(2.86)

Since 0 < o < 1 we get u2 — a(1 — a)p* > 0 for p* < 4u* and we can drop ie
in the denominator. It is straightforward to evaluate the integral to give

112 42 — s\?
f(p?) =) = 312/17:2 {2 + ( #lsl S) In[{(44> — 5)*

—(ISI)*}/{(4u2—s)*+(|s|)*}]} for s<0

iA? 4t —-s\t (s 5
_Eti{2—2< 5 ) tan (m>}for 0<S<4ﬂ

iA? s—ap\t st — (-4 .
= 53 {2+( . ) In [s*+(s—4u2)*]+ln}
for s> 4u*. (2.87)

With the same procedure, the divergent term I'(0) given in eqn (2.73) can be
calculated

1

iA2A? ada
FO0) =322 ja(,ﬂ —A)+ AT (2.88)
0
For large A2, this gives
iA2 A2
Thus the one-loop contribution to the four-point function is
T{%o(s, 1, u) = 3T(0) + T'(s) + () + T(u) (2.90)

where the cut-off-dependent I'(0) is given by eqn (2.89) and the finite I'(s) is
given by eqn (2.87). We have to add the counterterm (3iI"(0)/4!)¢* to cancel
these divergences. By (2.36) this corresponds to the renormalization constant
3irQ) 30 A?

Having cancelled the divergences, the total four-point function up to this
order is then given by (2.42)

TG, ,u) = —id + T(s) + T') + Tw). (2.92)

For the two-point function of eqn (2.6), corresponding to the graph in Fig.
2.4, we have

Z;'=1+

—id [ d¥ i

—iZ(p?) = .
N [Tl ey

(2.93)
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This is a quadratically divergent integral and it can be regularized by
choosing a, and a, in eqn (2.69) such that

! + ! 2 ! as - o0
a a 5 - o©.
P +ie P—-—AN+ic P—-A+ie 5

It is not difficult to see that we need

2 2 2 2
a, =£%—:Il—\é and a2=[/:§l—:x—%-
Then the modified propagator becomes
1 a, a,
P2y  P-Atie P_A+ie
(A = p*)A] - 1) A*

T AE - ANE =AY (B = i) = AP
for A, and A, both approach a large A. The regularized self-energy is

iz - L [44 A*
P = | P = v i = A% + ie)?
1
it ade
32 ) aA? + (1 — a)u?

0
—iA A?
=357 [A2 —u?ln ;F:l 2.94)

Since it is independent of the external momentum p, the Taylor expansion is
trivial,

Z(p*) = Z(0) ~

A% 2.95
32n? (2.95)
As we have mentioned before, this p-independence is a special property of the
one-loop approximation in A¢* theory. For a more general self-energy

graph, Z(p) will have a nontrivial dependence on p and the Taylor series
around p? = 0 will be

Z(p?) = Z(0) + p*Z'(0) + Z(p?) (2.96)

where 2(0) and X’(0) are cut-off-dependent and £(p?) is finite. And we have
to add 4%(0)¢* and 3X'(0)(0,¢)* counterterms to cancel these divergences.
To summarize, the total Lagrangian up to one loop has the form

PN = PO L APD 2.97)
where

1 A
L0 =3 (@) - '] - 1 ¢*

3ir(0)

m _
AL = 4!

§* + S TOF + 3 0087
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Combining terms of the same structure, we can write (2.97) as

P _ % 0,0)* — W - j"z)d’z. _ %Z'_'l ¢t (2.98)
with
Z,=1+Z0),
AZ7t = A+ 30(0),
2 = X(0). 2.99)

The values of these renormalization constants in the one-loop approximation
are

Zy,=1 since X'(0) =0,

30 . A?
Z}. =1 +—3—2—1E§ln;2-,
2 A 2
o = 53 A (2.100)

If we express everything in terms of the bare quantities through eqns (2.49),
(2.50), and (2.51), we find

1 A
£ =2 [Oubo)? — W3] - 5 48 (2.101)

which is exactly the same as the unrenormalized Lagrangian (2.1) as it should
be.

Finally we comment on the convention used in making the Taylor series
expansions (2.72) and (2.96) around p; = 0 to fix the finite part of the Green’s
function. An equivalent way to state the same convention is to specify the
normalization conditions of Green’s function. From (2.96), the finite part of
the self-energy has the properties

Z(P)p2=0=0 (2.102)
and [}
ZpH|  _
W |co 0. (2.103)

These properties imply that the full propagator

i

. 2 =
iAr(p®) p? — 2 —E(p?) +ie (2.104)
will satisfy the normalization conditions
AN (PP p2z0 = — 1 (2.105)
and
0AR?!
7 |yieo =1. (2.106)

Similarly from (2.72) and thus from '(0) = 0, we have from (2.92) the
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normalization condition for the vertex function
r{o,0,0) = —iA. (2.107)

(Remark: Although (2.104) was originally derived with a Taylor expansion of
Z(p?) around p? = u? it also holds for the present p?> = 0 expansion as a
derivation entirely similar to eqns (2.14)—(2.22) will show.)

In short, one can use conditions (2.105), (2.106), and (2.107) to replace the
prescription ‘Taylor expansion around p; = 0’ to fix the finite part of Green’s
function.

In this connection we observe that the renormalized coupling constant
defined by (2.107) differs from that defined by eqn (2.41) where a Taylor
expansion has been made around the symmetric point s, = to = uo = 4u%/3.
It implies condition (2.33)

TR0, to, Up) = —iA (2.108)

to be contrasted with (2.107). Thus, different Taylor expansions or
subtraction points yield different definitions of the coupling constant. This
leads to the concept of a running coupling constant (see Chapter 3). Clearly
the physics should not depend on the choice of subtraction point which is
purely a convention. In practice how is this apparent difference taken care
of? Consider the two-body scattering cross-sections calculated using two
different definitions of the coupling constant. The calculated cross-sections
may appear to be different by an overall constant (the angular distributions
are identical). But this is immaterial because we need to define the coupling
constant operationally as the value of the cross-section at some kinematical
point. Thus the difference is only apparent and the two seemingly different
calculations really yield the same result.

Dimensional regularization

The basic idea of this scheme ('t Hooft and Veltman 1972; Bollini and
Giambiagi 1972; Ashmore 1972; Cicuta and Montaldi 1972) is that, since the
ultraviolet divergences in Feynman diagrams come from the integration of
internal momenta in four-dimensional space, the integrals can be made finite
by lowering the dimensionalities of the space-time. Then the Feynman
integrals can be defined as analytic functions of the space-time dimension n.
The ultraviolet divergences will manifest themselves as singularities as » — 4.
As before, the finite part can be obtained by subtracting out the first few
terms in the Taylor expansion. This regularization scheme has the important
advantage that it will not destroy any algebraic relations among Green’s
functions that do not depend on space-time dimensions. In particular, the
Ward identities, which are relations among Green’s functions resulting from
the symmetries of the theory, can be maintained in this dimensional
regularization scheme. For a review see Leibrandt (1975).

We will illustrate this method with an example. Consider the one-loop
four-point Green’s function in eqn (2.7) corresponding to the diagram in Fig.
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2.5(a). It is proportional to the integral

1 1
I=|d* - 2.109

J ((—pP —u?+ie P—u? +ie ( )
which is logarithmically divergent. To define the integral in n-dimensional
space, we take the internal momentum to have » components:
l, =Wy 1, ..., 1,_1), while the external momentum has four nonvanishing

components: p, = (po, P1, P2, P3,0...0). Theintegral in n-dimensional space
is then defined as

1 1
I(n) = | d" - -
(n) J (—=py—p*+ie P —p® +ice
which is convergent for n < 4. To define this integral for non-integer values
of n, we first combine the denominators using Feynman parameters and
make the Wick rotation (eqn (2.75)),
1

dn
In) = Jd“ J [(—ap) — & +ic]
0

1

) d"l

0

(2.110)

with @ = pu? — a(1 — a)p?.
The integrand is now independent of the angles of the integration
momentum, which can then be integrated out

© 2n n n
jd"l = j Jn-1 dlj de, jsin 0, do, jsinz 0,de, ...
0 0 0

X

1_—530

sin"~26,_,df,_,

0

n/2 K
- Z”n jl"“‘dl 2.112)
F(i)"

where we have used the formula

. n1/2F<m + 1)
2

Thus eqn (2.111) may be written
1

s ph/2 t n—1
l(n)=%n_jdaj__l__dL_. 2.114)

n 1?2 + a® — ig]?
r<§>o 0[ ]
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The dependence on »n is now explicit. For complex »n, the integral is well-
defined as long as 0 < Re(n) < 4; the lower bound results from the apparent
divergence of the integral at the /= 0 limit. This infrared divergence is
actually an artefact of our procedure as it is cancelled by the singularity in
I'(3n) as n — 0. We can extend this domain of analyticity by integration by
parts

1 ["~1di =2 ... d 1
N\ P+a —ie®  _/n Pdg \Frya—ap
r 5 0 F §+ 1 0 .
(2.115)
where we have used
zZI'z) =Tz + 1). (2.116)

The integral is now well defined for —2 < Re(n) < 4. If we repeat this
procedure v times, the analyticity domain is extended to —2v < Re(n) < 4
and eventually to Re(n) > — oo. Thus the integral given in eqn (2.114) can be
taken as an analytic function for Re(n) < 4. To see what happens as n — 4,
we use (2.84) to evaluate the integral for n < 4,

1

to) = iwr(2- ) [ o .117)
0

Using formula (2.116)

we see that the singularity at n = 4 is a simple pole. If we now expand
everything around n = 4

2 4—n
A t=1+@m—4%Hma+..., (2.119)

where 4 and B are some constants, we obtain the limit
1

— in? Jda In[p? — ol — a)p?] + in24. (2.120)
0
With the one-loop contribution of (2.7) (I' = A*1/32n*), we have

1

{———4 2_1 P i jda In[p? — a(1 — a)p?] +iA}- (2.121)

0

F<2—E>=—2—+A+(n—4)B+... (2.118)

2in?

I(n) »

n—4

)'2

F(?) = 3272
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The Taylor expansion around p? = 0 gives

[(p?) =T(0) + I'(p?) L (2.122)
where
A2 21
I'0)=——(———1i 2 4
© 32n2<4—n ilnp +1A>
i2?
~ 2
16724 — n) (2.123)
and
1
~ —i2? 1 — ol —a)p?
T(p?)=—"- (A S
(p*) o Jda ln[ 7

0
1

~ =i [da(l — o) — p?
-2 ) [ -l — o)p?]
0

(2.124)

where we have performed an integration by parts. Clearly the finite part is
exactly the same as that given by the method of covariant regularization in
eqn (2.86). Thus the finite part of Green’s function is independent of the
regularization schemes as it should be and only depends on the subtraction
point. The I'(0) term diverges as a simple pole at n = 4 corresponding to the
In A term (2.89) in the covariant regularization calculation.

The one-loop self-energy (Fig. 2.4) is given by eqn (2.6) which in the
dimensional-regularization scheme becomes

s 4[4 1
P = e S e
—i/ln"/zl“(l _ g)
- : (2.125)

3271.4(#2)1—;1/2
Since, from eqn (2.116),

G

the quadratic divergent term (2.95) has poles at n = 4 and also at n = 2. For
n — 4 we have

. i (1
—i%(0) = ;—6% <4—_7> (2.127)

To compare the two regularization methods we list the results for the
divergences in Table 2.1. Thus divergent Feynman integrals when evaluated
in n-dimensional space appear as poles of the resulting I' function at
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n =4, ...etc., keeping in mind that the quadratic divergence also has a pole
at n = 2, see eqn (2.126).

TABLE 2.1
Covariant Dimensional
regularization regularization
o ilzl A? i}?( 2 )
© a2 3272 \4 —n
Y] A —2,uz>
(0 A —
© 3272 3272 (4 —n

2.4 Power counting and renormalizability

In the previous sections the renormalization procedure in A¢* theory has
been illustrated in some detail. Here we will discuss the problem of
renormalization for the more general types of interaction. The BPH
renormalization procedure will be followed in this discussion. In a later part
of this section, renormalization of composite operators will also be
examined.

Theories with fermion and scalar particles

For simplicity we shall first concentrate on theories with spin-1/2 and spin-0
particles only. For the Lagrangian density, & = %, + X, %., where %, is
the free Lagrangian quadratic in the fields and the %s are the interaction

terms (for example, &; = g,Yy,¥ 0", g(0¥)%, 930V ¢, 9ud>, gs¢*, .. ), for
a given graph we can define the quantities

n; = number of ith type vertices;

b; = number of scalar lines in the ith type vertex;
J; = number of fermion lines in the ith type vertex;
d; = number of derivatives in the ith type vertex;
B = number of external scalar lines;

F = number of external fermion lines;
IB = number of internal scalar lines;

IF = number of internal fermion lines.

Thus for &, = g,Yy,¥ 0*¢ we have b, =1, f, =2, d, = 1. From the
structure of the graph we have relations like that of (2.58)

B+ 2(IB) = Z nb; (2.129a)
F +2(IF) =) nf. (2.129b)
Just as in (2.59), the number of loop integrations L can be calculated

L=(B)+(IF)—n+1 (2.130)
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where
n=y n. ©.131)

The superficial degree of divergence D is then given by

D = 4L - 2(IB) — (IF) + ¥ nd,
=4+ 2(IB) + 3(F) + ¥ ni(d; — 4). (2.132)

Using (2.129) we can eliminate /B and IF,

D=4—-B-3F+Y ns, (2.133)

where
Si=b+3fi+d —4 (2.134)

is called the index of divergence of the interaction .%;. For 1¢* theory, § = 0
and (2.133) reduces to (2.61). In general §; can be related to the dimension of
the coupling constant in units of mass. Knowing that the Lagrangian density
has dimension four and that the scalar field, the fermion field, and the
derivative have dimensions 1, 3/2, and 1, respectively, the dimension of the
coupling constant is given by

dim(g;) =4 — b, — 3f, — d; = — ;. (2.135)

From (2.133) we see that, for a fixed number of external lines, the superficial
degree of divergence will have different behaviour for the following three
cases.

(1) g; has positive dimension (or §; < 0). Then D decreases with the number
of ith type vertices. In this case .Z; is called a super-renormalizable interaction
and the divergences are restricted to a finite number of graphs. For example,
consider the graphs for the two-point Green’s functions in the super-
renormalizable A¢3 theory. The one-loop diagram in Fig. 2.16(a) is divergent
while the two-loop one in Fig. 2.16(b) is not.

—(O—  —(D—

(a) (b)
FiG. 2.16.

(2) g, is dimensionless (or 6; = 0). Here D is independent of the number of
ith type vertices. The divergences are present in all higher-order diagrams of
a finite number of Green’s functions. %; = g,¢*, g, ¢ are such examples,
and they are called renormalizable interactions.

(3) g; has negative dimension (or 6; > 0). In this case, D increases with the
number of ith type vertices and all Green’s functions are divergent for
sufficiently large n;. These types of interactions are non-renormalizable, and

are exemplified by %; = g,Yy,¥ 0*¢, g,(Y¥)?, g3¢°, ... etc.
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The index of divergence J; is also related to the canonical dimension of the
field operator. The latter is defined in terms of the high-energy behaviour of
the free-field propagator, which is clearly relevant for power counting. Write
the propagator for the free-field operator as

DA(p?) = jd“x e "'P*{0|T(A(x)A(0))0>. (2.136)

If the asymptotic behaviour is of form
DA(p?) = (p?)~¥2, (2.137)

p2o

then the canonical dimension for the field operator is defined as
d(A) = (4 — w,)/2. (2.138)
Thus for the scalar and fermion fields and their derivatives, we have
do) =1, d0"¢) =1+ n,
di) =3, d(o™) = 3 + n. (2.139)

For composite operators that are polynomials in the fields the canonical
dimension is the algebraic sum of the constituent fields: for example,
d(¢?) = 2d(¢p) = 2, AWy d) = 2d() + d(¢) = 4. In the case of theories with
fermions and scalars only, the canonical dimension of an operator is the
same as that of the naive dimension in units of mass. But as we shall see later,
these dimensions are different for massive vector fields. With these definitions
and those in (2.128), the canonical dimension for each term in the interaction
Lagrangian density becomes

d&) = b +3f +d. (2.140)

With the index of divergence §; = d(¥;) — 4, we see that a dimension-four
term corresponds to a renormalizable interaction, that less than four is super
renormalizable, and that greater than four is nonrenormalizable.

Counterterms

Since the counterterms are constructed to cancel the divergences in the n-
point Green’s function, their structures are closely related to that of the
superficially divergent Green’s function. For example, we have seen that in
A¢* theory to cancel the quadratically divergent parts in the two-point
function, we need counterterms (9,¢$)(0"¢) with dimension 4 and ¢* terms
with dimension 2, while the logarithmically divergent four-point function
needs the dimension-4 counterterm ¢*. In general we have to add counter-
terms to cancel all divergences in Green’s functions with superficial degrees
of divergence D > 0 as determined by (2.133). For convenience we will use
the Taylor expansion around zero external momenta p; = 0 to isolate the
divergent terms. The structure of the counterterms depends on the number of
divergent terms in the Taylor expansion. For example, if a Green’s function
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is quadratically divergent, the first three terms in the expansion will be
divergent

T®(p;) = a + bl py + clipupse + T(py). (2.141)

The counterterms designed to cancel the a-term will have no derivative, the
terms designed to cancel the b-term will have one derivative, etc. In the
notation of (2.128) the counterterm will have the form O, = (0,)*(¥)"(¢)"
with « =0, 1,..., D. For A¢* theory, for example, we have terms cor-
responding to F=0, B=2 with «a =0 and 2, B=4 with a =0. The
canonical dimension of O is given by

d,=3F+ B +a. (2.142)

The index of divergence of the counterterm can then be written through
(2.133) as

5::1 = dc\ —4
=(a—D)+Zni6,-. (2.143)

Since o < D, we have the result

5a < Y 16y (2.144)

Thus, the counterterms induced by a Feynman diagram have indices of
divergence d, less or equal to the sum of the indices of divergence of all
interactions ¢; in the diagram.

The renormalizable interactions which have ¢; = 0 will generate counter-
terms with J, < 0. If all the §; <0 terms are present in the original
Lagrangian, so that here the counterterms have the same structure as the
terms in the original Lagrangian, they may be considered as redefining
parameters like masses and coupling constants in the theory. These
renormalized parameters are inputs of the theory and we need measurements
of some physical processes to determine them. With these inputs, we can then
predict the outcome of all other physical processes. For example, in A¢*
theory we have two free parameters, the coupling constant 4 and mass u. We
can use the two-particle elastic scattering cross-section at two different
scattering angles to determine the values of A and u. The cross-sections for all
other angles and/or all other energies (and also all other inelastic cross-
sections) can then be predicted. Much the same holds for super-
renormalizable theories. On the other hand, non-renormalizable interactions
which have §, > 0 will generate counterterms with arbitrary large J. in
sufficiently high orders and clearly they cannot be absorbed into the original
Lagrangian by a redefinition of parameters. For example, the non-
renormalizable interaction A¢® which has é = 2, will produce counterterms
consisting of all even powers of ¢ and their derivatives: ¢>" and 8>"¢*" with
nm=1,2,..., 00. We need an infinite number of measurements to fix the
coefficients of these terms. Thus non-renormalizable theories will not
necessarily be infinite; however the infinite number of counterterms
associated with a non-renormalizable interaction will make it lack in pre-
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dictive power and hence be unattractive, in the framework of perturbation
theory.

We will adopt a more restricted definition of renormalizability. A
Lagrangian is said to be renormalizable by power counting if all the
counterterms induced by the renormalization procedure can be absorbed by
redefinitions of the parameters in the Lagrangian. With this definition, the
theory with a single-fermion interaction with a single scalar through the
Yukawa coupling §ys¥¢ is not renormalizable even though the coupling
constant is dimensionless. This is because the one-loop diagram of Fig. 2.17
is logarithmically divergent and we need a ¢* counterterm. But such a term is
not present in the original Lagrangian. The same theory with a ¢* interaction

¢ ¢

¥

FiG. 2.17.

is renormalizable. On the other hand, if a term can be excluded on symmetry
grounds, then the renormalizability of the theory is not disturbed because
higher-order terms will not generate such a term. For example, in a theory
with only one scalar field,

% =409~ e — 4t
is renormalizable because it contains a// terms with 6 < 0 (equivalently with
dimension less than or equal to 4) which are consistent with the symmetry
¢ - —¢. The ¢> counterterm will be forbidden by such a reflection
symmetry. Also, in this context we can understand result (2.133), or the more
restricted A¢* result (2.61). The higher-order contributions to, say, a six-
point function should be finite in (renormalizable) A¢* theory. This must be
the case because, if they were not, one would need a ¢° counterterm to
absorb the divergences. Such a counterterm having é = 2 would ruin the
renormalizability of the theory.

Theories with vector fields

Since the asymptotic behaviour of free vector-field propagators is very
different for the massless and massive cases, we will discuss them separately.

Massless vector field. In a theory with local gauge invariance such as QED,
the vector field is massless. The asymptotic behaviour of the free propagator
is mild. For example the Feynman-gauge photon propagator in QED is given
by

—ig,,
kz + 1€ koo

Auk) = O(k™?). (2.145)
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This implies that the photon field will have unit canonical dimension:
d(A) = 1, like that for the scalar ¢. Consequently power counting for a
massless vector field is the same as that for the scalar field. Theories with a
massless vector field will be renormalizable if they contain all interactions
with dimension less than or equal to four and consistent with local gauge
invariance. Denoting the massless vector field by 4,, we have, for example,
the dimension-4 operators

Uy A, o*4,4%, (0,0)pA".

This in fact represents an exhaustive listing of all possible renormalizable
interactions (i.e. dimension-4 or -3) of spin-0 and -1/2 fields with massless
vector fields. The only possible dimension-3 operator (9,¢)4*, which is
bilinear in fields, is part of the free Lagrangian.

Massive vector field. Generally the free Lagrangian for a massive vector field
V, has the form

o= —HOV. = OOV — V) + MV V. (2146)
The vector propagator in momentum space

_i(g;u' - kuk\/M\?)
KX —MI+ie

D, (k) = (2.147)

has the asymptotic behaviour

D, (k) - O(1). (2.148)
k— oo

This means that the canonical dimension for the vector field is two which
differs from its (naive) dimension by a mass unit of one. The power counting
is now modified with the superficial degree of divergence given by

D=4—B—3F-2V+Y n(A — 4 (2.149)

and
A, = b, + 3f + 20, + d, (2.150)

where V is the number of external vector lines, v; is the number of vector fields
in the ith type of vertex, and A, is the canonical dimension of the interaction
term %;. To have a renormalizable interaction we need A; < 4 but, from
(2.150), the only such term trilinear in the fields is ¢®4,, which is not
Lorentz-invariant. There is no nontrivial interaction of the massive vector
field which is renormalizable. However, two important exceptions to this
statement should be noted.

(A) In a gauge theory with spontaneous symmetry breakdown, the vector
(gauge) boson will acquire mass in such a way as to preserve the
renormalizability of the theory. We will discuss this in detail in Chapter 8.

(B) A theory with a neutral massive vector boson coupled to conserved
current is also renormalizable. Heuristically we can understand this as
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follows. The propagator D, (k) given in (2.147) always appears between the
conserved currents J*(k) and J'(k) and the k k,/M 2 term will not contribute
because of current conservation. k*J,(k) = 0 or, in the coordinate space,
0"J,(x) = 0. Then power counting is essentially the same as for the massless
vector field case.

Renormalization of composite operators

So far we have only considered Green’s functions involving elementary field
operators. In many practical applications we are interested also in functions
of composite operators, i.e. local monomials of fields and their derivatives, e.g.
W, 6%, ¢ 62, etc.

Again we will illustrate the renormalization of such composite operators in
A¢* theory. Consider the composite operator 3¢?(x). The Green’s function
with one insertion of $¢?(x) has the form

Glx; xy ... x,) = KOITG*(X)P(xy) - .. D(x,))|0) (2.151)

or, in momentum space,

@n)*o*(p+py + ... P)GR(Ps pys - s DY)

= Jd“xe"""c Jl—[ d*x; e PN GE(x; Xy, .y X)), (2.152)

i=1
In perturbation theory we can use Wick’s theorem to work out Green’s
function in terms of Feynman diagrams. For example, for G?(x; x, x,) to the
zeroth order in A we have

GR(x; xy, %;) = COTES2(X)p(x, )b (x2))0)

= 1A(x — x,) IA(x — x;) (2.153)
or, in momentum space,
GP(p; P, —p — p1) = iA(py) iA(p + py)- (2.154)
If we truncate the propagators on the external lines, we have
T@(p; p1, —p —p1) =1 (2.155)
as represented in Fig. 2.18(a). The same Green’s function to first order in 4 is

(=i4)
4!

GP(x; xy, X;) = jd4y<0|T(%¢2(X)¢(x1)¢(x2) ¢*(»)I0>

— l
= Jd“y( 21 ) [AGe — »)17 1AGx; — p) iA(x; — p)

with (amputated) 1PI momentum-space Green’s function given below (see
Fig. 2.18(b))

—iA [ d¥ i i
T®p:p.. —p —p.) = —* :
e (p; pys —p — p1) 3 J(2H)4 2 +ie(l—p)P? —p? +ie

(2.156)
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! I-p

p ptp, Py lard
(a) (b)
FIG. 2.18. Zeroth- and first-order diagrams of I'd (p; p1, —p — p).

We see that the composite operator generates a vertex very much like a
term in the Lagrangian except that the composite operator can carry off
momenta. This suggests the following method of systematically calculating
Green’s functions with composite operators. As we have seen in §1.2, we can
generate Green’s functions of elementary fields ¢(x) with the insertion of
J(x)¢(x) in the Lagrangian density, J(x) being an arbitrary c-number
function. For a composite operator Q(x) we can similarly insert y(x)Q(x) in
the Lagrangian density where y(x) is the c-number source function

2] = 2101 + 2Q. (2.157)

Following exactly the same procedure of constructing the generating
functional WTyx], which is the vacuum-to-vacuum transition amplitude in the
presence of this external source y(x), we obtain the connected Green’s
functions by first differentiating In W[y] with respect to y and then setting
the source y to zero. With Q(x) = 1¢2(x) we have the vertex shown in Fig.
2.19(a) which may appear for example in the one-loop four-point ¢ function
in Fig. 2.19(b),

(—id)? [ d% i i
2 @r)* P —pu?+ie (+p)* —p*+ie

T(pspy - pa) =

i

X —- (2.158)
(I—p1—p2) — 12 +ie
p V4
P ! T
Py ptp, 123 I=p,—p, Py
(a) (b)
FiG. 2.19.

We are now ready to discuss the renormalization of this new set of Green’s
functions T$(p; p; ...p.). The procedure is exactly the same as that for
Green’s functions without Q(x), I'™(p,...p,). Since an insertion of a
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composite operator is like an additional vertex, a straightforward application
of (2.133) will show that the superficial degree of divergence D, of I'$” differs
from D of I'™ by the index of divergence &, of the composite operator

Do=D+3q=D + (dy — 4), (2.159)

where d,, is the canonical dimension of Q. Thus, for dy < 4, the insertion of
(renormalizable or superrenormalizable) composite operators will not
worsen the convergence property of the Green’s function; the insertion of a
a’Q > 4 operator worsens the divergence of the diagram. For the case of

= 3¢, we have d(¢?) = 2 and, for an n-point function, D, = 2 — n. Thus
only I'% is logarithmically divergent and needs to be renormalized. The
relevant one-loop diagram shown in Fig. 2.18(b) has the Taylor expansion

I‘"‘%)(p'pl, —p —py) =T0;0,0) + TEk(p; p1, —p — p1) (2.160)
where is finite and has the normalization
I'%(0;0,0)=0. (2.161)
We can combine the counterterm

—-T(0;0,0)x(x)¢>(x)

with the original term to write

—i
f,?z (0;0,0)7¢? = — Z,1¢*

_1 )
5 19 2

I\)I'-'

with
Z,=1+T%(0;0,0). (2.162)
Thus, the total contribution to '3k up to one loop is
T&k(p;pys —p = p) =1+ T&(ps Py, —p — p1) (2.163)
with the normalization

I'2:(0;0,0) = 1. (2.164)

In general we need to insert the counterterm AQ into the original addition of
(2.157).

L > 2+ 1(Q+ AQ). (2.165)

In particular, for the counterterm proportional to the original composite
operator itself, AQ = CQ, as is the case with 1¢2, we have

ZLlx] = Z10] + 1ZQ

= 207 + 19 (2.166)
with
QO = ZQQ = (1 '+‘ C)Q.

Such composite operators are said to be multiplicatively renormalizable. This
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means that the Green’s function of the unrenormalized operator Q, is related
to that of the renormalized operator Q by

GEAx; x5 ... %,) = 0T (Qo(x)o(x1), - . . Po(x,))0)
= ZoZWPG (X Xy .. X,). (2.167)

The composite operator Q = $¢? is multiplicatively renormalizable be-
cause it is the only operator with dimension-two. For more general cases,
AQ # CQ, the renormalization of a composite operator may require
counterterms proportional to other composite operators. In this way
renormalization may introduce mixings among composite operators. For
example, for Q = ¢*, the counterterms AQ = ¢?, (0,¢)*, and ¢* will be
needed. To be definite we will restrict our illustration to the case of two
composite operators 4 and B which can mix under renormalization

Llx] = ZL[0] + x4 + AA) + x5(B + AB). (2.168)
The counterterms A4 and AB are some linear combinations of 4 and B

AA = CAAA + CABB

AB = Cg A + CyB. (2.169)
We can write Z[y] as
A
ZLx] = Z10] + (X4s xB)C< B> (2.170)
where
1+C C
c_('TCm  Cu ) 2.171)
Such a matrix C can be diagonalized with a bi-unitary transformation (see
§11.3). Thus,
Z, 0
vevt =7 (2.172)
0 Zg

where U and V are unitary matrices. The Lagrangian can then be written

Llxl = LI0] + ZygaA + Zpye B

) 2.173
B)” \»B @173)

Ot x8) = (Aas XB)UT-

This means that the linear combinators A’ and B’ as defined by (2.173) are
multiplicatively renormalizable

OIT(A'(x)B'(y)d(x1) . - (x,))I0)
=Z5' Z5' 25" O T(Ao(x) Bo(D)do(x1) - - - po(x,)I0).  (2.174)

where
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An example of such simple mixing involving only two composite operators is
the theory defined by
. 1 2 1 242 A 4 '1,4’3
$=|ﬁ(1y"6u—m)¢—§(6u¢) ok ¢ —ﬂfﬁ — gyo ~ 30
(2.175)

with 4 = ¢3 and B = Jy. These two composite operators can mix under
renormalization because of the divergences in the diagrams shown in Fig. 2.20.

B A
. /// : \\\
S I l

FIG. 2.20. One-loop divergent diagrams involving composite operators 4 = ¢> and B = .
The dashed lines represent ¢-fields; solid lines y-fields.



3 Renormalization group

The renormalization theory discussed in the last chapter has some arbitrari-
ness related to our choice of kinematic points in defining physical parameters
such as the mass and the coupling constants. For example, the BPH
renormalization prescription only requires that the divergent part of the 1PI
graph be cancelled by counterterms constructed from Taylor expansions.
However the reference points for the expansions are arbitrary. Different
choices of the reference points, i.e. different subtraction points, lead to
different definitions of the physical parameters of the theory. But any choice
is as good as any other; the physics should not depend on the choices of the
normalization conditions. This is the renormalization group: the physical
content of the theory should be invariant under the transformations which
merely change the normalization conditions. This seemingly empty statement
actually provides us with highly nontrivial constraints on the asymptotic
behaviour of the theory. In systems with infinite degrees of freedom (such as
quantum field theory), renormalization can be defined in such a way that it
involves a series of redefinitions of physical parameters on the relevant
length or energy scales. There must be relations between the physical quan-
tities so defined. Hence the renormalization group equation expresses the
effect of a scale change in the theory or, more accurately, expresses the con-
nection of renormalizability to scale transformations.

Gell-Mann and Low (1954) were the first ones to use renormalization group
techniques to study the asymptotic behaviour of Green’s functions in
quantum electrodynamics. The renormalization group was discovered by
Stueckelberg and Peterman (1953); its role in the Gell-Mann-Low analysis
was discussed by Bogoliubov and Shirkov (1959). The recent interest in the
applications of renormalization group has largely been brought about by the
work of Wilson (1969). Our presentation is patterned after the lecture by
Coleman (1971a). There are a number of ways to set up the renormalization
group equation. In §3.1 we study this in the form of the Callan-Symanzik
equation (Callan 1970; Symanzik 1970b) which is associated with momen-
tum subtraction schemes. In §3.2 we briefly discuss the mass-independent
renormalization or minimal subtraction scheme ('t Hooft 1973; Weinberg
1973a) and its associated renormalization group equation. The solutions to
these equations in the asymptotic region are found in terms of the ‘effective
coupling constants’ which are studied in more detail in §3.3.

3.1 Momentum subtraction schemes and the Callan-Symanzik
eqguation

As stated above the existence of a renormalization group is related to the
freedom one has in the choice of the reference points for Taylor expansions
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leading to different definitions of the physical parameters of the theory.
These choices may be expressed as different normalization conditions on
certain 1PI amplitudes. The physical parameters should then be regarded as
dependent on the choices of normalization conditions. We shall first
illustrate this in A¢* theory by giving two specific examples of mass-
dependent normalization conditions (or momentum-subtraction schemes).

Intermediate renormalization

This corresponds to a Taylor expansion around zero external momenta. For
the self-energy we have

2(p?) = Z(0) + Z'O0p* + Z(p?). (3.1)
The finite part £(p?) will have the properties
$0)=0 (3.2)
9Z(p*)
et =0. .
s (3.3)
The full propagator Ag(p?) is related to the self-energy Z(p?) by
i
iA(P?) = 5—5—=—~ 3.4
R(p ) P2 _ ”2 _ 2(}72) ( )

and the 1PI two-point function I'@(p?) is given by
irP(p®) = iAr(p*)[iAr(P*)] 2
= —i[Ax(p*)]7!
= —i[p* — p* - £(P)]. (3.5)
The normalization conditions on £(p?) (eqns (3.2) and (3.3)) can be
translated in terms of ['P(p?) as
o) = 2 (3.6)
arg(p?)
apz p2=0

For the four-point function, the finite part of the higher-order contribution is
defined by

= —1. 3.7

TPy, P2, p3) = T¥(py, P2, p3) — T(0,0,0). (3.8)
Thus we have
T(pysp2.p3) =0 at py=p, =p3=0. (3.9)
Including the tree-level contribution
T(p1, P25 p3) = =14 + TPy, P2 P3), (3.10)

the normalization condition on the total four-point function reads

T(py, pap3) = —id at py=p,=p; =0. (3.11)
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We note that u? in this subtraction scheme is not the physical mass and that A
is not the physical coupling constant because the points p; = 0 are not in the
physically allowed region. But we can express all physically measurable
quantities in terms of these two parameters. In this sense they are physical
parameters.

On-shell renormalization

This corresponds to a Taylor expansion for external momenta on the mass
shell, i.e. p? = p?. For the self-energy, this gives

I(p?) = Z(?) + (p* — 1)) + £(p?). (3.12)
Thus,
$W) =0 (3.13)
0% (p?
AL B, (3.14)
6p p2=p?
Or, in terms of T'P)(p?) of (3.5),
rPw?) =0 (3.15)
arP(p?
AP (3.16)
ap p2=p?

For the four-point function, a convenient choice of the reference point for
the Taylor expansion will be the symmetric momentum point

TP(py,pasp3) = —id at pf = p?,
s=i=u="4’/3 (3.17)

where s, 7, and u are the Mandelstam variables. In this case the parameters u?
and 4 are the physical mass and, up to some kinematical factors, the physical
differential cross-section at s = ¢ = u = 4u?/3, respectively.

These two examples are specific realizations of a general renormalization
scheme where the normalization conditions R can be a function of several
fixed ‘reference momenta’, &,, &, ... such that

et = p? (3.18a)
(2)( 2
M = —1 (3.18b)
op pr=&
and
T(Es, &g, E5) = —id. (3.18¢)

Renormalization group. Consider two different renormalization procedures,
R and R'. Since both start from the same bare Lagrangian

¥ = & (R-quantities)
= Zr(R'-quantities), (3.19)
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in terms of the unrenormalized fields (see eqn (2.23)), we must have

br = Zg P (R)o; br = Z '*(R)o. (3.20)
Thus,

¢r=Z5 ' *(R, R)pg
where

Zy(R', R) = Z,(R)/Z4(R). (3.21)

This means that the renormalized fields in different subtraction schemes are
related by a multiplicative constant. Since both ¢, and ¢, are finite,
Zy(R', R) must also be finite even though it is a ratio of two divergent
quantities. Similar relations between the coupling constants, masses, and
Green’s functions can be worked out

A =Z; YR, R)Zi(R’, R)Ax (3.22)
Uz =z + 0u*(R', R) (3.23)
where
Z, (R, R) = Z,(R)/Z,(R) (3.24)
Su (R, R) = 6p2(R') — Sp*(R). (3.25)

are all finite. The operation which takes the quantities in one renormalization
scheme R to quantities in another scheme R’ can be viewed as a
transformation from R to R’. The set of all such transformations is said to
form the renormalization group. We now translate this renormalization group
invariance into the analytic form.

Callan-Symanzik equation

First we note that differentiation of the unrenormalized Green’s function
with respect to the bare mass is equivalent to an insertion of the composite
operator Q, = 142 carrying zero momentum
orm ; )
TP _ _ireo; py) (3.26)
duo

because I'™(p;) depends on u3 only through the bare propagator

lAO(p) =

P (3.27)

and because

0%(112—;%+is>=p2—/13+is“i)p2—;%+is' (329

In terms of the renormalized (1PI) Green’s functions, we can write
CRUpis 2 1) = ZYPT (py; Ao o) (3.292)
T8 (p, pis 4, 1) = Z 32" ZPTEAp, pi5 2o, to)- (3.29b)
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After substituting (3.29) into (3.26) and using the following relation
0 ou? 0 0A 0
—T®pshw=|==5+=5= |TDp; 4 w, .30
we have the Callan-Symanzik equation in 1¢* theory

0 0 .
[ﬂ P ny] TR(pis 4 W) = — ip?al (0, pis 4, 1) (3.31)

where o, f§, and y are dimensionless functions

04/0u3
= 2u? .
B=2u IR (3.32)
0lnZ,/ou3
_ 2 /Ko
[ Py (3.33)
0Z 42 /0ud
= ERIE: . (3.34)

The function « is related to y: for n = 2 we have the normalization conditions
(3.6) and (2.164)

TP0; 4, p) =ip*> and T@ER0,0; 4, p) = 1. (3.35)
Hence, from eqn (3.31),
o=2y—1). (3.36)

Since the renormalized quantities I'Y) and I'{; are both cut-off independent
to all orders in A, we expect that the functions a, f8, and y are also cut-off
independent. To see this explicitly we set » = 2 in (3.31) and differentiate
with respect to p?

) 0 0 0
[u 5; + B Fr 2?] — TR(p; A w) = —ipPa— TER(O, p; 4, p).

op op®
(3.37)
Set p> = 0 and use the normalization condition (3.7)
or'P(p?; A,
Mepstm) (3.38)
ap p2=0
Then (3.37) turns into
2 0 ra 2
y=p(l-9) 6—2F¢2R(0,P s Ay 1) : (3.39)
p p2=0

This demonstrates that y is cut-off independent. Every function except f§ in
(3.31) is now independent of the cut-off; hence f is also cut-off independent.
Since, o, B, and y are dimensionless, the cut-off independence implies that
they are functions of the dimensionless coupling constant only, i.e. & = a(4),
B = B(%), and y = y(2).

In practical calculations of @, §, and 7 it is convenient to use the cut-off (A)
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dependence of the renormalization constants Z,, Z, as follows. In un-
renormalized perturbation theory with unrenormalized A, and p,, the
renormalized parameters yu and A, defined in (2.51) and (2.50),

1= g + op? (3.40)

and
A=Z (3.41)

with
zZ=2;'7 (3.42)

are functions of 4,4, uo, and A. From dimensional argument, 4 and the Z;s
can depend only on dimensionless quantities like 1, and A/u,. If we further
replace po by p = u(do, o, A), we have 1 = A4y, A/u)and Z; = Z; (4o, A/p).
Using the chain rule of differentiation

0 ou* 0
— Mo, A =— —5 AMAg, A > 3.43
0#(2) ( 0 /.u) Ao 5#3 a'uz ( 0 /,U.) Ao ( )
we have
0
B=u o [A(4o, A/.u)]/\.).o
u
0 —
=Hu 6_ [Z(4o, A/H)AOJA.}.O
n
o —
= —AA 8_A [Z (%, A/.u)]u,/lo (3.44)
or
B =~z [In Z(ho, A/W)]. (3.45)
Similarly, we obtain
1 0
v = =5 57 [0 Zy(o, A/W)). (3.46)

This means that to calculate the Callan—-Symanzik f and y functions we only
need to know the In A term in the Z;s. At the one-loop level we have (eqn
(2.100))

Z)=1+5- % In —+0(,1 )
Zy =1+ 0(A3).
Hence
342
POY = 1e=+ 0(4%) (3.47)
P(4) = O(4?). (3.48)

The generalization of the Callan-Symanzik equation to Green’s functions
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involving several composite operators 4, B, C ... can be carried through in a
straightforward manner. First we choose the appropriate linear combination
of operators such that they are multiplicatively renormalizable (see §2.4).

(G Jr=Z7"Z5" ... Z;"{G5 o (3.49)
or

T Je=2Z7"Z5" ... ZPTG Jo- (3:50)

The Callan-Symanzik equation can be readily shown to be

0 0 .
hospl-m Fran [ (T Je = —walTEL e G5D
with
1 0

Yap... = 37 A In[Z,Z...].

Weinberg’s theorem on the asymptotic behaviour of Green’s function

The large-momentum or short-distance behaviour of Green’s function is
clearly of great interest. It is related to the renormalizability properties of the
theory. An important theorem here is the one due to Weinberg (1960). It
concerns this behaviour for nonexceptional values of momenta in the
Euclidean region. In the Euclidean region all momenta are space-like, p? < 0,
which can be realized most easily by having real space and imaginary time
components. A momentum configuration p,p,,...,p, is said to be
nonexceptional if no nontrivial partial sum vanishes, p; +p;, +... p;, =0
for iy, i,, ..., i, take on any of the labels, 1, 2, ..., n. (A trivial partial sum
which vanishes would be p, + p, + ... p, = 0 because of the overall energy—
momentum conservation.)

Again we state without proof Weinberg’s theorem. If the momenta are non
exceptional and parametrized as p; = ok;, the 1PI Green’s function TP grows
in the deep Euclidean region (corresponding to ¢ — oo with k; fixed) as ¢*™"
times polynomials in In ¢ to any finite order in the coupling A. Similarly T3,
grows as ¢~ " times polynomials in In .

We note that the powers of ¢ for 'y’ and I'{¥ are just their superficial
degrees of divergence (see Chapter 2), which are also their (naive) dimensions
in unit of the mass.

For convergent diagrams it is not difficult to understand this result
intuitively. For a nonexceptional external momentum configuration, the
hard momenta must flow through the internal loops and set the scale for the
loop integration momenta as well. (For an exceptional momentum configura-
tion this need not be true.) This explains why the same degrees of divergence
appear in our study of the large internal momentum limit and of the large
external momentum limit. For divergent diagrams the result stated by
Weinberg’s theorem may not be so obvious. One would expect that the
ultraviolet portion of the integration would be controlled by the cut-off A
even for hard external momenta. However, the cut-off-dependent part is
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cancelled when the necessary counterterms are included. The surviving
leading contribution again corresponds to the portion of the loop integration
with momentum of the same order of magnitude as the hard external
momenta. To illustrate this remark, consider the one-loop four-point
function in Fig. 2.5,
4
I~ J d*l .
[( - p)* — w*1[P - 4]
In the three integration regions, we haveI' ~ In Afor ! >» p;T" ~ In pforl ~ p;
I ~ p~2forl « p. After the inclusion of the counterterm of Fig. 2.9(c), the In A
term is cancelled and replaced by some term constant in p. Thus the dominant
asymptotic behaviour comes from the region of integration where [ ~ p. This
is why the power of ¢ in the asymptotic behaviour is the same as the superficial
degree of divergence. In this particular case, we have D =4 —n = 0; we
expect from Weinberg’s theorem the asymptotic form I = (¢°) x
(polynomial in In o). This agrees with the estimate given above.

We note that, in the deep Euclidean region, particles are very off their mass
shell p? » u?. Nevertheless, as we shall see later in Chapters 7 and 10, in cases
such as deep inelastic lepton scatterings we can still extract useful infor-
mation with the help of the operator product expansion.

Weinberg’s theorem tells us that Green’s function in perturbation theory
takes on the asymptotic form

(3.52)

I'(ep;, A, u) — o* "[aog(ln 6)% + a,(In 0)*' 4 + ...] (3.53)
g— 0
with the constants a; and b; unspecified. Thus, it leaves open the question as
to what the power series in polynomials of In ¢ sums up to. If this sums up to
some power of g, say o7, then y will be called the anomalous dimension as it
modifies the canonical behaviour ¢*~" to ¢*~"~?. Clearly, we would like to
learn all we can about the anomalous dimension .

The asymptotic solution of the renormalization-group equation

If we can ignore the inhomogeneous term on the right-hand side of eqn (3.31)
involving mass insertions, the Callan—-Symanzik equation can provide
information on the asymptotic behaviour of Green’s function. As it relates
quantities of different orders in the coupling (u(d/0u) ~ O(1),
p(0/04) ~ O(2), and y is of even higher order), the equation can be viewed as
some kind of recurrence relation among the a;s and b;s of (3.53). Thus the
asymptotic solution of the Callan—-Symanzik equation should be relevant to
the study of the true large-momentum or short-distance behaviour of Green’s
function. In other words, this renormalization-group equation sums up all
the leading logarithmic terms to all orders of the perturbation series.
From Weinberg’s theorem we have I'y’ » I'{; to any finite order of 1 in
the deep Euclidean region (¢ — o0). If we assume that this is true even when
the perturbation series is summed to all orders, we can then drop the right-
hand side of the Callan—-Symanzik equation (3.31) and obtain a homo-
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geneous differential equation
0 -0
[u i BA) = — nv(/l)J T%(pi, A, ) =0 (3.54)
" 04

where I'") is the asymptotic form of I'{’. Thus in the deep Euclidean region, a
small change in the mass parameter (the u(d/du) term) can always be
compensated for by an appropriate small change in the coupling (the f(0/04)
term) and an appropriate small rescaling of the fields (the —ny term).
First we replace the change in mass parameter trivially by the correspond-
ing change in the scale parameter. From dimensional analysis we can write

L& (pis 4 w) = u* TR (pi/ 1, 1) (3.55)
where I’ is dimensionless and satisfies
i+0i T'™op,/u, A)=0 (3.56)
2 aﬂ ao_ R\OD;i/H, - Y. .
We have from (3.55) and (3.56)
0 0
B+ o~ + (n—4) [T(op/u, ) = 0. (3.57)
ou oo
The asymptotic form of the Callan—Symanzik equation can be written
0 0
I — — M(gp. =
[a = B 55+ ) + (n 4)] 0P, 2, 1) = 0. (3.58)

To solve this equation we first remove the nonderivative terms with the
transformation

A
T&(opi, A p) = * 7" exp[n y(—x)fix}F “op;, A, 1)  (3.59)
B(x)
Thus, 0
g B(/’L)i F™@p, A, u)=0 (3.60)
%% P op, 4, 1) = 0. '

For convenience, define 1 = In . We need to solve
O gy 2| Foep,, 2, = 0. (3.61)
ot oA v '

In order to do this we introduce the effective, or running, coupling constant %
as the solution to the equation
di(z, A) _
TR B(A) (3.62)

with the boundary condition A(z = 0, ) = 4. To obtain another form of
(3.62) we first integrate it with respect to t

M, A)

t= j dx/p(x), (3.63)
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then differentiate both sides with respect to 1

P
B di T B()

or

0 07 -
[E — B ﬁ] A, 2) = 0. (3.64)

Thus if F* depends on t and A through the combination of A(t, 1) it will satisfy
(3.61). T™ must have the form

2

I(opi, A, p) =0*"" eXp[n J

0

()

B00) dx]F(")(pia AMt, A), p).  (3.65)

We can write
A A

oo [ 1]l B 0 [ 5]
J B(x) B(x) B(x)
— H(T) ex [ J;— ]
= HD) exp[ Jy(l(t A)dr ] (3.66)

bi
()
HQ) = exp[n B[dejl-

t

I'%op;, A, 1) = o“‘"eXP[—n jv(I(X’, A) dx]H(l(t A)DF O (py, Alt, 2), p).

0

where

Thus, we have

(3.67)

If we set t=0 (6=1) in eqn (3.67), we see that the combination
H(DHF™(]) is just T™. Therefore,

t

T(opi, 4, p) = 0*7" exp[—n Jy(,T(x’, A) dX'] Cps A, 1), ). (3.68)
0

In this form the asymptotic solution I'™ has a simple interpretation. The
effect of rescaling the momenta p; in the Green’s function I'? is equivalent to
replacing the coupling constant A by the effective coupling constant 1, apart
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from some multiplicative factors. The first factor ¢*~" in (3.68) is the
canonical dimension coming from the fact that I'%) has dimension 4 — n in
units of mass. The exponential factor in (3.68) is the anomalous dimension
term which is the result of summing up the leading logarithms in
perturbation theory. This factor is controlled by the y-function. Thus y is
often called the anomalous dimension (Wilson 1971).

The result in this section may be viewed as follows. The expectation that in
the large-momentum limit masses become negligible and theory should be
scale-invariant is too simple. Even without physical masses the renormaliz-
able theory still has an energy scale as we must always impose normalization
conditions at some mass scale. Thus naive dimension analysis is generally
inadequate and scale invariance is broken. However the dependence of the
theory on this normalization mass scale is given by the renormalization-
group equation which expresses the effect of a small change of scale. In
favourable cases when the inhomogeneous term in the Callan-Symanzik
equation may be dropped the solution indicates that the asymptotic
behaviour displays a certain universal character with operators being
assigned anomalous dimensions.

3.2 The minimal subtraction scheme and its renormalization-
group equation

In this section we will illustrate other forms of the renormalization-group
equation. Again let us examine the multiplicative renormalizability statement
(3.292) which may be written as

Tpi; Ao, to) = Zg "*TRApi; 4, 1, K). (3.69)

If we regard the bare parameters 4, 1y, ¢ as independent variables, then the
renormalized quantities are functions of these bare parameters and the
normalization scale parameter k. In this form, the right-hand side of (3.69)
depends on k explicitly as well as implicitly through the definitions of A and p.
However the left-hand side is independent of k; we then have

0 0 0
— — —— '™=0 3.70
[Kax+ﬂa,1+y’"“ay nv] R (3.70)
with
U a4
ﬁ(/l, K) =Ko 3.71)
U Olnpu
—|= 3.72
y'"(j" K> K 6K ( )
vy 1 dlnZ,
Y</1, K) = (3.73)

Compared to the Callan—Symanzik equation (3.31), this renormalization-
group equation has no inhomogeneous term to begin with. We will try to
approach it with a procedure similar to that used in solving the asymptotic
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form (3.54) of the Callan—Symanzik equation. But the coefficients §, y,,, and
y are now dimensionless functions of two variables A and u/x which makes
the solution difficult. However, in contrast to the momentum subtraction
schemes discussed in §3.1, there exists a mass-independent renormalization
procedure in which the mass dependences of these renormalization group
equation coefficients disappear. We now give an outline of this subtraction
scheme due to ’t Hooft (1973); see also the discussion in Ramond
(1981).

Minimal subtraction scheme

This renormalization procedure is particularly suitable for dimensional
regularization. Here the divergences show up as poles when the dimension
n — 4. The minimal subtraction scheme consists of adding counterterms to
cancel these poles. In other words, the counterterms have no finite parts.

As an example, consider the one-loop self-energy (Fig. 2.4) in 1¢* theory.
In momentum subtraction schemes of §3.1 the presence of the arbitrary mass
scale k is obvious (e.g. as the normalization point). In the dimensional
regularization one also needs to introduce a mass scale k to compensate for
the naive dimensions of coupling constants and masses: 4 — (x)* "1 and
u — ku. We have

iAk® { d"l i

—iX(p?) = —_
BRI = o2
—idk® TPT(1 — nf2)  —idu? K\
= = (-1 2)| =) 2°n®2 3.74
200 o LD () 2 BT
where
e=4—n. (3.75)
To make an expansion around ¢ = 0, we use the formulae
(=D"f1
I'(—n+¢)= |z + y(n+ 1)+ O(e) (3.76)
a=e"=1+¢lna+ O(?) (3.77)
where

1 1
yn+D)=14+-+...——y
2 n

and y = 0.5772 ... is the Euler constant. Thus as ¢ — 0, eqn (3.74) becomes
—iAu?

3002

—iZ(p?) |:§ +yQ2)+2In(k/p) +2In2/n + O(s):l~ (3.78)

Thus the counterterm Z(0)¢?2/2 to be added, as in eqn (2.62), in the minimal
subtraction scheme is

21
32n% ¢
This is to be contrasted with the counterterm (Au?/32n%)[1/e + 3¥(2) +

ALy = 2. (3.79)



3.2 The minimal subtraction scheme and its renormalization-group equation 79

In(x/p) + In 2 /n]¢? that one would have added in the momentum subtrac-
tion schemes. Thus the minimal subtraction counterterm Lagrangian when
expanded in a Laurent series in ¢ will contain only divergent terms. The
relations between the physical 4, 4, and ¢ and the bare parameters are

Ao = KE|:/1 + i a,(/l)/s’j' (3.80)
o = K[l + Z b,(l)/e'] (3.81)
o = ¢[1 +) c,(/l)/a’:l =¢Z, ' (3.82)

Thus the coefficients, reflecting the same property of the counterterms, are
independent of the arbitrary parameter x and (since they are all dimension-
less) the particle mass u. Hence this minimal subtraction scheme is also called
the mass-independent renormalization procedure. One can easily understand
this feature as the counterterms have no finite part; they just have the ‘bare-
bone’ structure needed to cancel the infinities at very large momenta where
the theory is not sensitive to its masses (provided the amplitude are well-
behaved as p - o0).

To calculate the renormalization-group parameters of eqns (3.71)-(3.73),
we use the fact that the bare quantities are independent of x. Thus, from
(3.80),

0 S 1|0a, 04
s/l+<a1 +x5'€>+ Y —,[a/{ Ka+a,+1:|—0. (3.83)

r=1 €
Since x(04/0k) is analytic at ¢ = 0, we can write
oA

K5;=d0+d18+d282+.... (3.84)
From (3.83), it is clear that d, = 0 for r > 1 and
da 1 da, da,
8(/,L+d1)+<a1+d0+d1d—}’l>+gg[ar+l+doa+d1 d;1:|=0
(3.85)
which implies that
A+d)=0
da
a, + d1 -d—,ll = —do
d da,
(1 + dl a) a,.H = —do d)' * (3.86)
Thus,
04 da
Koo = —a,+ld—;—ie
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or
da
B(A) = —a, + Aai- (3.87)
We also have
=2 ) - a1 = L0 (3.88)
dl i1 1 - dl r . .
Similarly, we have, from (3.81),
J0ln db
Vm = x——aK” = Ad—/f- (3.89)
db, ., db, db, d
A . =bA - <1 ldl)al(l) (3.90)
and, from (3.82),
1 dlnZ, dc,
de,vy  ,dey  de, d

Thus eqns (3.87), (3.89), and (3.91) enable us to calculate f, y,,, and y directly
from the residues of the simple poles a,, b,, and c,. The recursion relations
(3.88) and (3.90) are useful in computing the residues of the higher-order pole
terms in terms of the simple pole. (This is the same reason why the leading
logarithms, the next-to-leading logarithms, etc. can be calculated to all
orders by using the renormalization-group equation with the computation of
just a few low-order terms.) Here we will just make a simple check that the -
function result agrees with previous calculation. From eqns (2.50), (2.63),
and (2.123) we have

).0 = 4:22/1).
with
Zy=1
AMy,=1—-10)=21+ 21 (3.93)
¢ o) = 1672 ¢ '
Thus, a, being quadratic in 4, A(da,/dA) = 2a, and
322

which agrees with (3.47).

The fact that f8, y, and y,, in this subtraction scheme are functions of 4 only
will simplify the solution to the renormalization-group equation (3.70). The
procedure will be similar to the steps of eqns (3.55)—(3.68). From dimensional
analysis, eqn (3.70) can be written as

0 0 0 "
[g% — B z7 = (v — 1)5 + ny(A) + (n — 4)] T®(op;, py 4, 6) = 0.
(3.95)
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To solve (3.95) we now introduce not only an effective coupling constant A(¢),
but also an effective mass ji(t) (with ¢ = In ¢ as before)

O _ gy (3.96)
S _ 1,0 - 110 69
with boundary conditions
At=0)= 2 (3.98)
it = 0) = u. (3.99)

The solution to eqn (3.95) may be written down: just as eqn (3.68),

t

TP(opi p, 4, k) = 07" exp[—n Jv(/T(t’)) dt’jl R0p;, f@), A1), ©).
0

In this formulation the large-momentum limit (3.54) and the validity of the
asymptotic solution (3.68) hinge on whether or not the effective mass fi(z)
vanishes in the deep Euclidean limit ¢ — oo.

We should remark that in the momentum-subtraction schemes of §3.1, one
can also introduce the arbitrary mass scale u as the subtraction point to
derive a homogeneous renormalization-group equation (Weinberg 1973a).
But then the functions y, §, y,, will depend on (m/y) in addition to depending
on the coupling constant A. This will cause some difficulty in solving the
renormalization-group equation. In practice one can get around this by
choosing the subtraction point u large enough so that the dependence on
(m/p) of y, B, and y,, can be neglected.

3.3 Effective coupling constants

Apart from the trivial dimensional factor ¢*~", the Green’s function
% (ap;, A, ) in the deep Euclidean region with ¢ — oo (or e’ — o0) depends
on ¢ only through the effective coupling constant A(z, ), which we will
concentrate on in our study of the asymptotic behaviour of Green’s function.
As we discussed in §3.1, the definition of the coupling constant A depends
on the subtraction point. For example in the intermediate renormalization
scheme, the four-point function in the A¢* theory is given by eqn (2.42),

T, t,u) = —id + T, 4) + T(¢, A1) + Tw, 4) (3.100)

where I"(s, 1) is given by eqn (2.86), and 4, is the coupling constant defined in
the intermediate renormalization scheme. The cross-section for two-particle
elastic scattering is related to the four-point function by

do 1 1
E=64n2;|1“‘4’12. (3.101)
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But in the on-shell renormalization scheme the coupling is defined differently
with the four-point function expanded around the symmetric point
s=1t=u=4u*/3.

(s, t,u) = —ids + Ts(s, As) + s, As) + Ts(u, As) (3.102)
where

Fs(s, As)ls=au23 =0 and T{(s =t =u=4p?/3) = —ils.

Since the cross-section (3.101) should be the same in these two schemes of
renormalization, we have

(s, 1, u) = TEAs, 1, ). (3.103)

Evaluating both sides at the symmetric point, s, = t, = u, = 4u%/3, eqn
(3.103) implies

—idsg = —id + T(s0, 1) + T(to, &) + T(uo, 4).

This gives the relation between coupling constants defined by different
subtraction schemes. Clearly the subtraction point can be taken at any point
in the physical or unphysical region. And the coupling constant in any
renormalization scheme should be regarded as a function of the subtraction
point. In this sense the coupling constant is energy-dependent and is called
the effective, or the running coupling constant.

There is another way to look at the running coupling constant. It simply
reflects the effect of the leading radiative-correction terms. In perturbation
theory the effective expansion parameter is actually the coupling constant
multiplied by some logarithmical factors. Normally one picks the normaliza-'
tion point to be of the same order of magnitude as the typical momentum
scale of the problem. The argument of the logarithm, which is typically the
ratio of these scale factors, is then generally of order one. However, for a
problem involving a large range of energy scale, the radiative correction
through these large log factors can be substantial. The solution to the
renormalization-group equation simply represents the summation of these
logarithmic factors to all orders of perturbation theory.

The running coupling constant 1 satisfies the differential equation (3.62)

da, A)
dt

= B(D) (3.104)

or more explicitly as a renormalization-group equation (3.64)

0 d\ -
(E - ﬁa> A, A) =0. (3.105)

Thus the change in the effective coupling 1 induced by the change in energy
scale is governed by the renormalization-group S-function. To study the
asymptotic behaviour of 1 let us suppose that §(A) has the form shown in Fig.
3.1. The points 0, 4,, and A, where 8 vanishes are called fixed points. If the
coupling constant 4 is at any one of these points at ¢ = 0, it will remain there
for all values of momenta. Furthermore, we can distinguish two types of
fixed points. Consider the neighbourhood of A,. Because f(1) > 0 for
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0 <A< A, the effective coupling constant 1 in (3.104) increases with
increasing momenta (i.e. d4/dt = B(t) > 0) and is driven to A, as t — c0. As
B(A) <0 for A, < A < A,, it decreases with increasing momenta and is again
drivento 4, . Thusin the interval 0 < 1 < 1,, the coupling constant A is always
driven to 4, for large momenta. 1, iscalled an ultraviolet stable fixed point. By
similar argument it is straightforward to see that in the neighbourhood of 0
and 4, the coupling will be driven to these points for small momenta, i.e. as
t — 0. Hence the origin and 4, are examples of infrared stable fixed points.

B(R)

F1G. 3.1. An example of the Callan-Symanzik f-function exhibiting an ultraviolet stable fixed
point at A, and infrared stable fixed points at 0 and 4,. The direction arrows indicate how the
coupling constant will move for increasing momenta.

Now we can study the asymptotic solution of the Callan—Symanzik
equation. Suppose 0 < A < 4,. Then

lim A(¢, A) = 4, (3.106)
t— oo
and
rilrs‘)(pi’ 1(15 l)’ #) i rg’s,)(pi’ ’11 ’ ,Ll) (3107)

For purposes of illustration let us assume that B(4) has a simple zero at A,
and that y(4,) does not vanish; then we have in the neighbourhood of 4,

p(A) ~a(A, —A) with a>0. (3.108)
From
dl
Frie a(ly — A), (3.109)
we obtain
A=l +(A—=21)e ™ (3.110)

Thus for (3.108) the approach of 1 to A, is exponential in the variable z. In the
same approximation, we have

t Z
- () dy
Mx, ) dx =
Jﬂ(n))x J 50)
0 A i
o —(4y) i’
T a4 V=2

A

—7(4,) A=y
a o <l — A4

=yt =) Ino. (3.111)
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Thus the particular realization of (3.68) takes on the form

lim T@(ap;, 4, p) = o* 7" YRy, 4y, p). (3.112)
g~ 0
This means that in the deep Euclidean region, the field scales with anomalous
dimension y(4,) and Green’s function takes on a value with A replaced by 4,.
In general it is difficult to calculate the zeros of the f-function since this
requires results beyond perturbation theory. However f(4) has a trivial zero
at the origin A = 0, where the anomalous dimension y(4) also vanishes.
Besides the practicality of calculating (1) for small 1 it turns out that this
may have particular phenomenological relevance. As we shall discuss in
Chapter 7 deep inelastic lepton-hadron scattering probes the large-
momentum behaviour of products of hadronic electromagnetic (or weak)
currents. The observed phenomena of Bjorken scaling can be interpreted as
indicating that the product of these currents has the free-field singularity
structure. Hence, if we can find a field theory which has an ultraviolet stable
fixed point at the origin 4 = 0, it may be taken as a candidate theory for the
hadron constituent (quark) interactions. In other words, the Bjorken scaling
phenomena in deep inelastic lepton—hadron scattering may be explained if
the effective interaction among quarks vanishes in the short-distance limit.
This suggests that a theory of quark interactions should have the feature that
it become a free-field theory in the ultraviolet asymptotic limit (asymptotic
freedom) and one needs to calculate the S-function and to see whether (1) < 0
for A 2 0.
For A¢* theory, from (3.47) we see that it is not ultraviolet asymptotically
free. More explicitly we can integrate (3.104)

di  31?
PPy (3.113)
to obtain
A
A= —3 (3.114)
=16

where A = A(t = 0, 1). Of course (3.113) and (3.114) are valid only for small
4. We have dropped higher-order terms in 4. Had it been applicable for large
couplings also, eqn (3.114) would predict that interaction strength would
blow up at the ‘Landau singularity’ of ¢ = 16n%/34.

The B-functions for other theories will be discussed in Chapter 10. It will be
shown in particular that no theory without a non-Abelian gauge field can be
asymptotically free.

We can summarize this introduction of the renormalization group and its
effective couplings as follows. The aim of the renormalization-group
approach is to describe how the dynamics of a system evolves as one changes
the scale of the phenomena being observed. Generally one is particularly
interested in the behaviour of the system at extremely small (ultraviolet) or
extremely large (infrared) limits of the scale. These renormalization-group
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transformations (of the effective theories at different scales) after some
iterations often have the property of approaching a fixed point in these limits.
The attractive feature is that the behaviour of effective theory at the fixed
point is relatively insensitive to details of the theory at ordinary length scales

and in some cases these fixed-point effective theories are particularly simple
to calculate.



4 Group theory and the quark
model

Ever since Einstein, symmetry has played a fundamental role in theoretical
physics. In this chapter and the next one, we shall discuss the more familiar
subject of global symmetry. The notion of local gauge symmetry with its
space—time-dependent transformation will be introduced in Chapter 8. Such
gauge symmetries can be used to generate dynamics, the gauge interactions.
The natural mathematical language of symmetry is group theory. After the
development of quark models and non-Abelian gauge theories of strong and
electroweak interactions, some knowledge of Lie groups has become
indispensable for anyone interested in the study of elementary particle
theory. Here we shall present a practical introduction to the subject. It begins
with a mathematical preliminary section composed mostly of definitions and
illustrative examples. Our approach is informal. The basic notions intro-
duced here are for group theory as applied in practice in particle physics. The
groups SU(2) and SU(3) are studied with elementary techniques and
supplemented with graphic methods in §4.2. The tensor method which is
appropriate for the general SU(n) groups is presented in §4.3. The physical
realization of the flavour symmetry SU(3) of strong interactions is the quark
model which is briefly studied in §4.4.

4.1 Elements of group theory

A group G is a set of elements (a, b, ¢, ...) with a multiplication law having
the following properties.

(i) Closure. If a and b are in G, ¢ = ab is also in G;
(ii) Associative. a(bc) = (ab)c;
(iii) Identity. There exists an element e such that ea = ae = a for every a
in G;
(iv) Inverse. For every a in G, there exists an element a~! such that
aa '=ala=ec.

Also, if the multiplication is commutative—ab = ba for all @ and b in G, G is
an Abelian group. If the number of elements in G is finite, it is a finite group. A
subgroup is a subset of G, which also forms a group.

Here are some examples. The cyclic group of order n, Z,, consists of a, a?,
a’,...,a" = e(identity). It is a finite Abelian group. The symmetric group (or
permutation group), S,, being the set of all permutations of # objects is a finite
non-Abelian group. The unitary group, U(n), is the set of n X n unitary
matrices: UU' = U'U = 1. It is non-Abelian for n > 1. The Abelian group
U(1) consists of 1 x 1 unitary matrices, i.e. they are phase transformations
¢, The group of n x n unitary matrices with a unit determinant is called the

3
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special unitary group, SU(n). Similarly, SO(n) is the group of nxn
orthogonal matrices: AA” = A"A = 1 with unit determinant. Thus SO(3) is
just the familiar rotational group.

Given any two groups G = {gy,9,,...} and H = {hy, h,, ...}, if the g;s
commute with the A;s, we can define a direct-product group G x H = {g;h;}
with the multiplication law

9 Gmhn = GiGm* iy 4.1)

Examples of direct-product groups are SU(2) x U(1) (the group consists of
elements which are direct products of SU(2) matrices and the U(1) phase
factor) and SU(3) x SU(3) (the group consists of elements which are direct
products of matrices of two different SU(3)s). These groups will play an
important role in the application of group theory in particle physics (see
Chapters 5 and 11). If we can write a group as a direct product of smaller
groups, the study of group structure will be greatly simplified. To see whether
this decomposition is possible, it is useful to introduce the notion of an
invariant subgroup, which is the subgroup N such that for any element ¢ in N
then rtr~! is still in N for all r in G. Thus each component of a direct-
product group is an invariant subgroup. If the group does not contain any
non-trivial invariant subgroup, i.e. it cannot be written as a direct-product
group, it is a simple group. SU(n) is such an example, but U(r) is not because
it can be written as SU(n) x U(1). The groups which are a direct product of
simple groups without any Abelian factors are called semi-simple groups.

A representation is a specific realization of the multiplication of the group
elements by matrices. Thus, it is a mapping of the abstract group elements to
a set of matrices a — D(a) such that, if ab = ¢, then D(a)D(b) = D(c), i.e. the
group multiplications are preserved. Thus properly speaking the above
definitions of the groups U(n) and SU(n) are given in terms of their defining
representations. Also note that the permutation operations of S, may be
represented by a finite number of n x »n matrices. If a representation D(a) can
be put in block-diagonal form, i.e. if there exists a non-singular matrix M,
independent of the group elements, such that

Dy(a) 0
MD@M™! = D,(a) forallain G, (4.2)
0 .

D(a) is called a reducible representation. It is denoted by a direct sum
D, (@)@ D, @ ....If this cannot be done, D(a) is said to be irreducible. We
can consider the matrices D(a) as linear transformations on a set of basis (or
state) vectors. The dimension of a representation is just the dimension of the
vector space on which it acts. The reducible representation means that a
subset of states is never connected to other states and in irreducible
representations all states are connected with each other through group
transformations.

Of particular relevance to physical applications are the Lie groups, which
we shall first define narrowly as continuous groups (having elements labelled
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by continuous parameters such as the Euler angles for the rotation
group SO(3)) with representations by unitary operators. Let
a(0) = a(0,, 6,, ..., 0,) be the group elements labelled by » continuous real
parameters. The identity element is taken to be e =a(0). The group
multiplication a(8)a($) = a(€) corresponds to the mapping of the parameter
space on to itself

f0,¢)=¢ (4.3)

which satisfies the requirements of
f(0,0) = (6,0) =0, (0, f(d, §)) = f(f(®, ), &), (4.4)

and f(0, 0') = 0 if a(@) ! is parametrized as a(@'). This is a Lie group if the
function fin (4.3) is an analytic function (or continuously differentiable) with
respect to its variables. Thus we can use the usual analytic methods in
abstract group space when dealing with Lie groups. Also, since trans-
formations in quantum mechanics are unitary operators in Hilbert space we
are particularly interested in those Lie groups with unitary representations

a(0) = exp{i0-X} = a(0) + 16, X, + ... 4.5)
where
X, = —i2% (4.6)
¢ 90xlo=o '

are called the (infinitesimal) group generators. For unitary a(0), the X, are a
set of linearly independent hermitian operators. For example, when a(f) is an
element of the SO(2) group, the group of two-dimensional rotations, the
generator is simply the Pauli matrix

Yoo (0 7! 4.7
—Uz—i 0' 4.7

Define the commutator of two group elements a(¢) and a(8), lying near
the identity, as a(d)a(0)a(dp) *a(@)~!. This product should also be a group
element, call it a(). £ must be a function of 8 and ¢,

¢i=g:0,0) with g(0,¢)=g6,0)=0. (4.8)
For small 8 and ¢ we can expand g¢,(0, ¢) in powers of 6; and ¢;,
& = A'+ Bi0; + Bl + Ci0,p + Cp0,0, + Clidibye + ...

The boundary conditions in (4.8) imply that

A’=B§=B}'=C}}‘=C}’I£=0
or

&= C§k9j¢k +... 4.9)
When we equate

a®) = e +iEX, + ... (4.10a)
to
a(d)a@)a(d) 'a®) ' = e+ 0,0, [X;, X, 1+ ..., (4.10b)
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we have the Lie algebra
[X;, X] = iCl,X,. (@.11)

The Ci;s, called the structure constants of the group, are a set of real numbers
with

Ch = —CL,. (4.12)

For example, the generators of the rotation group in three dimensions SO(3)
are just the angular momentum operators J;, J,, and J;. They satisfy the
commutation relation

[J,-, Jl= isjlil 4.13)

where ¢, is the totally antisymmetric Levi-Civita symbol with &, = 1.

If the D(a)s form a representation of the group, the D*(a)s form the
complex conjugate representation, since D(a,)D(a,) = D(a;a,) implies
D*(a,)D*(a,) = D*(aja,). From (4.6) we have the representation matrix of
the generators T(X;) = T;,

D(a(8)) = exp{i-T} 4.14)
with
[T, T,] = iC4T;. (4.15)
Clearly the —T7s also form a representation of the generators. If 7; and
— T are equivalent, i.e. if there exists a nonsingular matrix S such that
ST;S™' = —T* forallj, (4.16)

then the T is called a real representation. As we shall see below in §4.2, all
irreducible representations of SU(2) are real, some properties of real
representations will also be discussed in §4.2.

From the Jacobi identity

[X;, [X, X1] + [X, [XG, X 1] + [X, [X, X511 =0 (4.17)
and (4.11), we have the relation among structure constants
%Clm + CliCh + CClh = 0. (4.18)

We can define a set of matrices
T =1(T)y 4.19)

which satisfies the commutation relation of (4.15). Thus the structure
constants also generate a representation of the algebra, the adjoint represen-
tation. It has dimension equal to the number of real parameters necessary to
specify a group element.

For the semi-simple group (i.e. one having no U(1) invariant subgroup) a
normalization convention of the Tjs that is compatible with the nonlinear
commutation relation (4.15) is

t(T,T;) = A3;; (4.20)
J ]

because tr(7;T;) is a real symmetric matrix and can be diagonalized by
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taking an appropriately chosen real linear combination of the generators. The
diagonal coefficients have been set to a constant 4. With this basis in the
vector space of the generators, the structure constants may be written

= - (TIT L) @421)

which implies that C7, is totally antisymmetric in all three indices.

Because the representation matrices of the group elements and their
generators are related by exponentiation (4.14), many of their properties can
be directly translated into one another. Trivially, they have the same
dimension, etc. In the following, unless the ambiguity makes a difference, the
term ‘representation’ will mean either that of the group elements or their
generators. Also, the set of basis states of the representation is sometimes
referred to, for brevity, as the representation.

4.2 SU(2) and SU(3)

The special unitary groups SU(n) are encountered repeatedly in particle
physics theories. It is SU(2) in isospin invariance; SU(3) in ‘the eightfold
way’; the standard gauge model of strong and electroweak interactions uses
SU(3) x SU(2) x U(1); the simplest grand unification group is SU(5). In this
section we shall concentrate on groups SU(2) and SU(3). The subject of the
tensor method in SU(n) is presented in §4.3.

SU(n) is the group of n x n unitary matrices with unit determinant:
U'U=UU'=1 and det U = 1. Any unitary matrix U can be written in
terms of a hermitian matrix H as U = . From the identity det(e”) = e"*
and det U = 1, it follows that tr H = 0. Since there are n*> — 1 traceless
hermitian » X n matrices, an element of SU(n) can be written as

n2—1
U= exp{i Y saJa} (4.22)
a=1

where the ¢,s are (real) group parameters. The J,s are group generators
represented by traceless hermitian matrices. Only n — 1 of n*> — 1 generators
are diagonal. We say SU(n) is a group of rank n — 1.

The SU(2) group

There are three group parameters. We write the 2 x 2 unitary unimodular
matrices as

Uley, €5, &3) = explie,o,} (4.23)

where the o,s are 2 x 2 traceless hermitian matrices. We choose the basis to
be the standard Pauli matrices.

01 0 —i 10
= 9 = 9 O, = .
=\ o 2=\ o 3=\ o -1
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The generators defined by J; = ¢,/2 will give the commutation relation
[T Tl = igg.J. (4.24)

where ¢, is the totally antisymmetric Levi—Civita symbol and ¢,,; = 1. We
then abstract this as the general Lie algebra of SU(2) and all representations
of the generators satisfy this set of commutation relations.

SU(2) representations. The algebra (4.24) is the same as that in (4.13). We
say SU(2) is isomorphic to the rotation group SO(3). The standard method
of setting up angular momentum eigenstates will be followed here to get all
the irreducible representations of SU(2).

First define

J2=J+ 2+ T2 (4.25)

which is an invariant operator, a Casimir operator, commuting with all the
generators of the group

[/ J]=0, a=1,2,3. (4.26)
Also define the raising and lowering operators
J,=J, +1iJ, (4.27)
then
J2=3J, J.+J_J) + J3. (4.28)
We have from (4.24)
(Jy, J-]=2J5 (4.29)
[V, 5] = FJ,. (4.30)

Consider an eigenstate of J? and J; with eigenvalues A and m
J3 A, my = A4, m)
J3lA, md> = m|d, m). (4.31)

Because of (4.30) the states J,.|A,m) are also eigenstates of J, with
eigenvalues m + 1, and, because of (4.26), the same eigenvalue 4

T, my = Co(dy m)d,m + 15 (4.32)

where the C, (4, m)s are constants to be determined later. For a given A,
values of m are bounded

A—m?>0 (4.33)
because J? — J3 = J? + J2 > 0. Let j be the largest value of m

Jolaj> = 0. (4.34)
Eqns (4.34), (4.28), and (4.29) then imply

0=J_J:14, />
= (2 =3 = B> = (=7 = DAy (4.35)
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or

A=jy+1). (4.36)
Similarly, let j* be the smallest value of m

J_|A,j'> =0. (4.37)
We obtain

A=j'(j' —1). (4.38)

Thus j(j + 1) =j'(j' — 1) which has the solutions j' = —j and j' =j + 1.
Since second solution violates the assumption that j is the largest value of m,
we have

J'=-J (4.39)
Since J _ lowers the value of m by one unit, j — j' = 2j must be an interger.

This means that j can be either an integer or half-integer. To determine
C.(4, m) in (4.32) we use

Ay mlJ_J 1A, m) = |C (4, m). (4.40)

because J_ =J'. implies that (A, m|J_ = CX(4,m){A,m + 1|. We also
have, from (4.35)

<}~> mIJ—J+M~3 m> = <}-7 ml(J2 - J% - J3)|1s m>

=j(j+1)—m? —m. (4.41)
Hence,
C.,(4m)=[(—m)(+ m+ 1)]V2. (4.42)
Similarly,
C_(A,m=[({+m(—m+ 1)]*2. (4.43)

These states |j, m) with m=j,j—1,..., —j form the basis of an SU(2)
irreducible representation, characterized by j which is either an integer or
half-integer. Thus the dimension of the representation is 2j + 1. We can use
the relations

Jslj, my = mlj, m)
Jiliymy =[G F mG £ m+1D]Vj,m+ 1) (4.44)

to work out the representation matrices.

N[

Example 1. J =1 m= +

~
w
o
I+
N=
N

I
H+
o

7 T3 (4.45)

B~ = (°> (4.46)

J, = %<(1) _(1’>. (4.47)

If we denote

then
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From J+'%’ %> =0 and J+I%’ _%> = |%5 %> we have

J 01 4.48)
+=\0 o .
Also,
PR L (4.49)
-— + - 1 0 0
0 1 . 0 —i
Jl=(J++J-)/2=%<1 0)’ J2=(J+~J-)/21=%<i 0)-
(4.50)
Example 2. J=1,m=1,0, —1.
Denote
1 0 0
L1>=f 0§ |1,0>=y 1} |I,—-1>={ 0} (4.51)
0 0 1
Then
1 0 0
J;=10 0 0} (4.52)
0 0 -1

From J,|1,1> =0, J.|1,0) = {/2|1,1), and J, |1, —1) = /2|1,0), we
have

0 V2 0
J.=to o 2 (4.53)
0 0 0
Then
0 00
J_=1v2 00 (4.54)
0 J2 0
010 0 —i 0
J1=%- 1 0 1 J2=% i 0 —i) (@55
010 0 i 0

It is straightforward to check that the J;s satisfy the Lie algebra of (4.24).

SU(2) product representations. In applications, we often need to deal with
product representations. For example, if we have two spin 1/2 particles, we
want to know the total spin J of the product of the two wavefunctions. In
this simple case, the answer is J = 0 or 1. Let us study this case in terms of
group theory. Denote the spin-up and spin-down wavefunctions of the first
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particle by r; and r,. Similarly denote those of the second particle by s,
and s,. Under SU(2) transformation

rp= U(e)ijrja s = U®)s (4.56)
where U(g) = exp{ie,J,} and J, = 0,/2. Then the product will transform as
(risi) = U (&)U (€)u(rjs;) = D (&), j(r;s1)- (4.57)

Generally D(g) is reducible. To see what irreducible representation it
decomposes into, it is easier to work with the generators directly by taking
g < 1.

r; = (1 + iSaJa)ijrj = (1 + iBan,l))ijrj
S’,( = (1 + iana)kISI = (1 + iganZ))k’Sl (458)

where J!) operates only on r; and does not affect s;; J'2 operates only on s,
and not on r;. Define the total angular momentum operator as

J=J0 4 Jo, (4.59)

We now change to the more familiar notation. Let «; denote the spin-up
wavefunction of the ith particle and f; the spin-down wavefunction. There
are four combinations of two-particle wavefunctions: o, 0;, o 85, B1%,, B18,.
Take the one with the largest value of J,

Ja(ayay) = (JPoy)ay + 0y (JPat)
= (a10;). (4.60)
Clearly it is a state with J; = 1. To find its J value, we use
J? = (J(l))Z + (J(Z))Z 4+ 2JM . 3@
=J((1))2 + (J(Z))Z +2[%(J(1)J(_2) +J(_1)J(f)) +J(31)J(32)] (4.61)

to find that
J2(ag0,) = 2(0q05). (4.62)
This means J = 1 and we can make the identification
1, 1> = (a05)-

We use the lowering operator J_ = J% + J® to reach all other states of the
J = 1 irreducible representation

J_(alaz) = (J(_l.)al)az + OCI(J(_I)OCZ)

= (Byoz + 2182). (4.63)
On the other hand, using eqn (4.44), we get
J_|L 1D = /21, 0). (4.64)
Thus,
1
I1,0> = — (o, B + B1ty). (4.65)

2
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Obviously,
I1, =15 = B1f,. (4.66)
The remaining independent state must be identified as
1
V2

Again, we can check this assignment by applying eqn (4.61). In short, the
two-particle wavefunctions can be organized as

10,0> = —= (a1, — Br1xz). (4.67)

11, 1) = oy,
1
I1,0> = ﬁ (1B, + Brry) (4.68)
Il, —1> = ﬁlﬂZ

which is symmetric under the interchange of particles 1 < 2, and

1
J2
which is antisymmetric under 1« 2.

More generally the product representations |j,, m;» x |j,, m,» can be
combined into eigenstates |J, M) of total J = JV 4+ J?

I, M> = Z JimyjamalIM | jimydljamsy) . (4.70)
my,my
The coefficients {j,;m,j,m,|JM ) are called the Clebsch-Gordon coefficients.
Thus for the above case (eqns (4.68) and (4.69)) we have
1
Gzl =1, & -$5-3110) =T/§,etc.

The procedure of working out the irreducible representations of the

product representations can be summarized as follows.

0,05 = (o182 — B1y) (4.69)

(1) Start with the combination of states with the largest J;. This is also the
state with the largest total J.

(2) Use the lowering operator J_ = J + J@ to get to all the other states
in the same irreducible representation.

(3) Find the orthogonal combination to |J,, J,, — 1> where J,, is the
maximum value of J in the product. This should be the state |J, — 1,
J,, — 1>. Then use the lowering operator to reach the other J = (J,, — 1)
states.

(4) Repeat these steps until J = |j; — j,].

We can also graphically represent SU(2) representations. The group is
rank 1, i.e. it has one diagonal generator; each irreducible representation j
can be characterized by a straight-line segment with points on it denoting
values of m (see Fig. 4.1). In a product representation the eigenvalues of the
diagonal generators JY) and J¢ are additive. We can represent this addition
graphically by repeatedly placing the centre (m = 0) of one representation,
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say j;, over on every point of the other, j,, representation (see examples in
Fig. 4.2). As we shall see, this graphical method can be generalized to the
rank-2 group of SU(3), where the results are less trivial and difficult to see
without such a diagramatical aid.

1 1 1
=1 —Ix X7
-1 0 +1
j=1 r————X
_3 1 1 3
2 -2 2
=3 —— %X

FiG. 4.1. Graphical representation of SU(2) multiplets. The raising (lowering) operator J,(J_)
moves a state to the right (left).

. ! . ! *—k
1 1 ) 2 -2 2 *—TX
T® 7 = ® *—x= —X
X
=z —b—x = 0 B |
*—X
1 ] i
I = 7 -1 0 1 HER
7® 1 = X X = —R—R
= *—X =
= =1 ® 3
FiG. 4.2

The Reality property of SU(2) representations. We shall denote the repre-
sentation matrices of the generator by T'(J,) = T,. As we already mentioned
in §4.1, SU(2) has the property that all its representations are real, i.e. there
is a (fixed) matrix S such that

ST,S™' = —T%. “4.71)
For example, in the defining representation 7, = 0,/2 we have —of = —0,
—o0% = 0,, and —o% = —0;. The reality condition (4.71) can be satisfied

with S = ¢,. In general the eigenvalues of diagonal generators change sign as
we go from T, to — T because the T,s are hermitian with real eigenvalues.
The eigenvalues of — T¥ are precisely the negatives of those for 7. In SU(2)
all the irreducible representations have the property that their J; eigenvalues
occur in pairs, i.e. m= +j, +(j—1),.... This is why they are real
representations; — 7% can be obtained from 7, by changing the basis from
lj, m) to |j, —m). For example, in the j = 1 representation, the |1, 1) and
|1, — 1) states of (4.51) are interchanged, leaving |1, 0> invariant, by the
transformation

0 0 1
§=10 -1 0 4.72)
1 00

and we can easily check that (4.71) is satisfied. Clearly, it is a general property
of any group representation that, if one of the diagonal generators does not
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have eigenvalues in pairs of opposite signs, then that representation is not
real.

We state once again some of the SU(2) properties which the reader should
keep in mind when studying the less familiar SU(3) group.

(1) Only the representation matrix of J; is diagonal; SU(2) is a rank-1
group.

(2) The irreducible representation labelled by j (dimension 2j + 1) has
basis states |j, m)

J2j, my =j( + 1)Ij, m)
Jalj, my = mlj, m).
(3) States with different values of m are connected through the raising and
lowering operators
Jiljimy =[G F m)j £m+ DI2jim+ 1).

(4) Each irreducible representation can be pictured by a one-dimensional
graph because of (1), with equally spaced points representing the 2j + 1
states. The T, operator moves these points along the line.

«T_ T,—

AV3

jva W
Ve [a) A

-J  —J+1 J=1 J

Products of two representations j; and j, can be obtained simply by placing
the first representation line 2j, + 1 times over the second representation line,
with the m; = 0 centres coinciding with each state of the j,-representation.

The SU(3) group

There are eight group parameters. For the defining representation we write
the 3 x 3 unitary unimodular matrices

Uey, - .., €g) = expiied,} a=1,...,8. 4.73)

The A,s are 3 x 3 traceless hermitian matrices, which may be chosen to have
the form (Gell-Mann 1962a)

01 0 0 —i 0 100
=10 0] A,=]i =0 -1 0
000 0 0 0 00
00 1 00 —i
=100 o] as={0 0 o0
\100 i 0
000 00 0 Lo
Jo=|0 0 1) d=|0 0 —if d=—p|O 1 0] @74
01 0 0i 0 00 -2
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They have the normalization

tr(4,4,) = 20, 4.75)
and satisfy the commutation relation
}'a j'I.‘» : Ac
[7 ?] s 4.76)

Jose 18 totally antisymmetric with nonvanishing members,

f123 = 1’f147 = 1/2af156 = _1/2’f246 = 1/2’f257 = 1/2,

Sras = 1/2, fisr = —1/2, fass = v/3/2,fe1s = V/3/2 4.77)
The generators F, of SU(3) satisfy the Lie algebra
[F., By ] = ifancFe. (4.78)

We can follow the pattern of the SU(2) procedure to obtain irreducible
representations of SU(3). Here we follow the presentation of Gasiorowicz
(1966).

SU(3) is a rank-2 group; since A5 and Ag are both diagonal,

[F3,Fg] =0. (4.79)

F; and Fg can be diagonalized simultaneously. We define the following raising
and lowering operators

T, =F +iF,, U, =F,+iF,, V,=F,+iF;.

We also define

2
T3 = F3, Y = 7}" FB' (4.80)
In terms of these operators, the communication relations of (4.78) can be
written as

[T3. Tyl= 4T, [Y,T,]=0
[T, U= F12U, [V, U= +U,
[T, Vil=+12V. [V, V=1V, (4.81)
[T.,T.]=2T,
[U,,U_]1=32Y~T,=2U,
V., V.1=32Y+ T, =2V, (4.82)
[T..V,1=[T.,U.]1=[U,,V.]=0
[7.,V.]1=-U_ [7,.,U,]=V,
[U,,V.1=T-. [Ts, Y]=0. (4.83)

SU(3) representations. Since T3 and Y can be diagonalized simultaneously,
the states in an SU(3) irreducible representation must be labelled by two
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eigenvalues: t3 and y. A representation is then pictured as a two-dimensional
figure on the 15—y plane, just as an SU(2) representation is an one-dimen-
sional line (Fig. 4.2). From the commutation relations in eqns (4.81)—
(4.83), it is not difficult to see the results of raising and lowering operators
acting on the states:

T, raises t; by 1 unit and leaves y unchanged;
U, lowers t; by 1/2 unit and raises y by 1 unit;
V., raises t5 by 1/2 unit and raises y by | unit, etc. (4.84)

If the units of ¢5 and y are appropriately scaled in the graph, these raising and
lowering operators connect points along lines that are multiples of 60° with
each other (Fig. 4.3).

FiG. 4.3.

Each irreducible representation of SU(3) is characterized by a set of two
integers (p, ¢). Graphically it shows up as a figure with a hexagonal
boundary on the ¢;—y plane: three sides having p units of length and the other
three sides having ¢ units (see Fig. 4.4(a)); the hexagon collapses into a
equilateral triangle when either p or ¢ vanishes (Fig. 4.4(b)). The boundary is
symmetric under reflections in the y-axis. We recall that an SU(2) irreducible
representation is characterized by one integer j; graphically it is a straight line
of 2j units of length. There are 2j + 1 sites, each of them singly occupied by
one state. For the SU(3) representation (p, ¢) the multiplicity of states on
each site in the 73—y plane form the following pattern: the sites in the
boundary are singly occupied, on the next layer they are doubly occupied, on
the third layer triply occupied, etc., until a triangle layer is reached beyond

SN

o/

\¢

NIV

(a)

P_7
/'

(b)

L]

q

L\

F1G. 4.4. Boundaries of the SU(3) representation (p, q), (p, 0), and (0, ¢).



100 Group theory and the quark model 4.2

which the multiplicity ceases to increase and remains g + 1 for p > g (or
p + 1for g > p).

The procedures used to deduce these properties of the irreducible
representation from the commutation relations are all similar. We shall
present one such proof to illustrate the general algebraic technique. To show
that the boundary layer is singly occupied, take two neighbouring states |4)
and |B) on the boundary shown in Fig. 4.5. Thus

U_|4) = |B). (4.85)
We need to show that, given |4), the state | B) is unique regardless of the path
taken to go from |4) to |B). Consider an alternative path ACB; we have
V_T |4y = ([V-, T 1+ T, Vo)l4) = U_|4) = |B) (4.86)
where we have used V_|4) = 0 and (4.83).

FiG. 4.5. A typical representation with (p, ¢) = (5, 1). Multiplicity of states at each site is
indicated by the crosses. Y, is the t = t; = (p + q)/2 = 3 state.

It is not difficult to convince oneself that the result holds independently of
the path taken to go from |4) to |B); hence, given |4), the state |B) is
unique. Since the state of maximum eigenvalue of 75 is unique and resides on
the boundary, all boundary sites are singly occupied.

Once the multiplicity of states at each site is given, we can add them up.
This sum is the dimension of the irreducible representation. To do this we
start with counting the number of sites in the inner triangle which has sites

pP—4
p—q+1 1
> =§(P—¢1+1)(P—q+2)- (4.87)
1=1
Here the multiplicity is (g + 1). On the next outer layer there are

3(p — g + 2) sites with multiplicity ¢; on the next one, 3(p — g + 4) sites
each with (¢ — 1) states, etc. Thus the dimension is equal to

1 q
2@+ D —g+Dp-q+2)+ Z 3g—v)p—qg+2v+2)
=0 (4.88)
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or
d(p,q) = (p + D(g + D(p + g +2)/2. (4.89)

Instead of labelling an irreducible representation by (p, g), another
common practice is to denote it by its dimensionality. Thus an m-
dimensional irreducible representation is labelled by m and its complex
conjugate by m*. Some of the more important representations are shown in
Fig. 4.6.

/N 17
JAIRN \/
(p.q)=(0,1), 3* (triplet) (p,q)=(1,0), 3(triplet)

AN

(p.g)=(1,1), 8(octet) (p.q)=(3,0), 10(decuplet)

FIG. 4.6. Examples of SU(3) representations with states labelled by (t3, y). Here all sites are
singly occupied except the centre of 8: one is a ¢ = 0 state; another is the t; = 0 member of a
t = 1 triplet.

One more remark about the graphical representation (p, ¢). Since there are
generally several states for a given value of (¢5, y), at a given site we need
further labelling to distinguish the different states. For this we can specify the
SU(2) subgroup to which they belong. A convenient choice will be the 7-spin
value 7. There are p + 1 sites each singly occupied on the top line,
corresponding to ¢ = p/2. The next line has two T-spin multiplets:
ti =(p+1)/2 and t, = (p — 1)/2. etc. Also since the widest portion of the
hexagon has width (p + ¢) we conclude that

tmax = (P + 9)/2. (4.90)

For the product representation we can follow a procedure similar to that
for the SU(2) group. The method of using the raising and lowering operators
gives not only the decomposition of the product representations but also the
Clebsch—Gordon coefficients. But this method is rather tedious as there are
quite a few raising and lowering operators in SU(3). If we are interested only
in the decomposition, we can use the simple graphical method. Again we will
place one representation figure on top of each member state of the second
representation: the centre (f; = y = 0) of the first one coinciding with the site
of each state of the second representation. The simplest case of
3 x 3* =8 + 1 is illustrated in Fig. 4.7. The more systematic approach of
the tensor method will be presented in the next section.
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N\

VR

FiG. 4.7.

4.3 The tensor method in SU(n)

The analysis of SU(2) and SU(3) in the last section shows that, as the
group gets larger, the elementary techniques used to dissect the represen-
tation structure and product become inadequate. For the SU(4) group,
which is rank-3, the irreducible representations have to be pictured in a three-
dimensional plot and one would need a keen spatial sense to work out the
decomposition of the product representation. This approach becomes rather
hopelessly complicated for groups of rank-4 or higher. Clearly one needs a
more efficient approach. The tensor method turns out to be particularly
appropriate for the study of irreducible representations and the de-
composition of the product representations in the general SU(n) group.

Transformation law of tensors

The SU(n) group consists of n X r unitary matrices with unit determinant.
We can regard these matrices as linear transformations in an #-dimensional
complex vector space C,. Thus any vector ¥; = (Y, Y5, ..., ¥,) in C, is
mapped by an SU(n) transformation U;; as

- Y= Uijl//j- 4.91)

The /s also belong to C,, with UU" = U'U = 1 and det U = 1. Clearly for
any two vectors we can define a scalar product

W, ¢) = ¥ (4.92)
which is an SU(n) invariant. The transformation law for the conjugate vector
is given by

YE o U = Ut = YU (4.93)

It is convenient to introduce upper and lower indices
Y =y Ui=U; and Ui=Ut. (4.94)

Thus complex conjugation just changes the lower indices to upper ones, and
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vice versa. In this notation, eqns (4.91) and (4.93) read

lpi - ‘p: = U,'jl//j
Yoyl = Uy, (4.95)
The SU(n) invariant scalar product is
W, ¢) = ¥'es. (4.96)
and the unitarity condition becomes
UikUkj = 51] (4.97)
where the Kronecker delta is defined as
0; =0 = {0 otherwise (4.98)

Note that in this notation the summation is always over a pair of upper and
lower indices. We call this a contraction of indices. The ;s are the basis for
the SU(n) defining representation (also called the fundamental or vector
representation and denoted as n), while the i/’s are the basis for the conjugate
representation, n*.

Higher-rank tensors are defined as those quantities which have the same
transformation properties as the direct products of vectors. Thus tensors
generally have both upper and lower indices with the transformation law

Tk = (UL UE,. . Ug)U U Uil (4.99)
They correspond to the basis for higher-dimensional representations.
The Kronecker delta and Levi—Civita symbol are invariant tensors under

SU(n) transformations. They play important role in the study of irreducible
tensors.

(1) From the unitarity condition of (4.97) we immediately have
8 = U U} op. (4.100)

Hence & is an invariant tensor. Generally, contracting indices with the
Kronecker delta will produce a tensor of low rank. For example,
on e = (4.101)

We can regard the right-hand side as the frace between the pair of indices, in
this case /; and j;. Also, a tensor with all its indices contracted yj1i2::-{r is an
SU(n) invariant scalar.

(2) The Levi-Civita symbol is defined as the totally antisymmetric
quantity

o 1if (i, ..., i,) is an even permutation of (1, ..., n)
giztn=g ., .=19 —1if (i, ..., 1,) is an odd permutation of (1,..., n)
0 otherwise. (4.102)
It is an invariant tensor
Ehiy...iy = UBUE .. Uleyj,
= (det U)es, ..o, = Eiyis...i, (4.103)
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where we have used the definition of determinant and det U = 1 for SU(n).
Similar to the contraction by 6 we can sum over indices by using the Levi—
Civita symbol. For example,

Biliz”'i"l//iz..‘i,. _ (4.104)

Thus tensors with upper indices can be constructed from those with lower
indices, and vice versa

Piie = (e gy, )@y ). (4.105)

So, in principle, to study the transformation properties of the tensor we need
work with a tensor having only upper (or lower) indices.

In this connection we also note that
Y= Eiliz.“i,,'ﬁiliz”'i" (4.106)

is an SU(n)-invariant scalar. And eqns (4.103) and (4.106) imply that a totally
antisymmetric tensor of rank » is invariant under SU(#n) transformations.

Irreducible representations and the Young tableaux

Generally the tensors we have just defined are bases for reducible represen-
tations of SU(n). To decompose them into irreducible representations we use
the following property of these tensors. The permutation of upper (or lower)
indices commutes with the group transformations, as the latter consist of
identical U (or U,Tjs). We will illustrate this with the following example.
Consider the second-rank tensor y;; whose transformation is given by

Y =ULUYM. (4.107)

Since the Us are the same, we can relabel the indices
Y = UjUy™ = ULU ™. (4.108)
Thus the permutation of the indices does not change the transformation law.

If Py, is the permutation operator which interchanges the first two indices
P,y =y, then P,, commutes with the group transformation

Py = UU{P, 0. (4.109)

This property can be used to decompose Y/ as follows. First we form
eigenstates of the permutation operator P,, by symmetrization or
antisymmetrization,

T - T O "
ST SR, AT = — g,
Thus,
P12Sij = Sij, Pleij = —Aij. (4.110)

It is clear that S¥ and A" will not mix under the group transformation

SU=ULUJSH, A =UjU{A". @.111)
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This shows that the second-rank tensor ¥ decomposes into S% and 4% in
such a way that group transformations never mix parts with different
symmetries. It turns out S¥ and 4” cannot be decomposed any further and
they thus form the basics for irreducible representations of SU(#). This can
be generalized to tensors of higher rank (hence the possibility of mixed
symmetries) with the result that the basis for irreducible representations of
SU(n) correspond to tensors with definite permutation symmetry among (the
positions of) its indices. The task of finding irreducible tensors of an
arbitrary rank f (i.e. number of upper indices) involves forming a complete
set of permutation operations on these indices. The problem of finding the
irreducible representation of the permutation group has a complete solution
in terms of the Young tableaux. They are pictorial representations of the
permutation operations of f objects as a set of f~boxes each with an index
number in it. For example, for the second-rank tensors, the symmetrization
of indices i and j in S; is represented by [ ]j]; the antisymmetrization

operation in 4;; is represented by E For the third-rank tensors, we have

7
[i[jTk] in the case of the completely symmetric S;j, in the totally
antisymmetric 4,;, and [7]j ] for the tensor with mixed symmetry
k

Vijie = Vijee + Vi — Vi — Ve
A general Young tableau is shown in Fig. 4.8. It is an arrangement of f boxes
in rows and columns such that the length of rows should not increase from

top to bottom: f; > f, > ... and f; + f, + ... = f Each box has an index
i, =1,2,...,n To this tableau we associate the tensor

(4.112)

lpil,iz,...,ifllifl-fl ..... if1+ 1250,
with the following properties.

(1) Indices appearing in the same row of the tableau are first subject to
symmetrization.

(2) Subsequent indices appearing in the same column are subject to
antisymmetrization.

- h]s A
If|+l—<-b ir

Fi1G. 4.8.

A tableau where the index numbers do not decrease when going from left to
right in a row and always increase from top to bottom is a standard tableau.
For example, the n =3 mixed-symmetry tensor [7]j]| has the
k
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following standard tableaux

1] 071 O721 021 003 O3] 2121 [2]3]
2] 3 2] 3 2] By 13 13

while tableaux such as [1[1], [2]3], and [2]1] are not standard.
L1 L1 3]
The non-standard tableaux give tensors that, by symmetrization or
antisymmetrization, either vanish or are not independent of the standard
tableaux. Thus for a given pattern of the Young tableaux the number of
independent tensors is equal to the number of standard tableaux which can
be formed. It is not hard to see that this number for the simplest case of a
tensor with k& antisymmetric indices is

i n\ nn-1)..n—k+1)
©o\k) 1.2...k (4.113)

and that for a tensor with k symmetric indices the number is

(T 1T <n+k-—l)_n(n+1)...(n+k—1)'
\-—-\kz-/’ k - 1.2...k

(4.114)

One should note that because of antisymmetrization there are not more
than » rows in any Young tableau. Also, if there are » rows, we can use
€,i,...;, t0 contract the indices in the columns with n entries. Pictorially we

can simply cross out any column with n rows (see, for example, eqns (4.123)
and (4.125)).

Fundamental theorem (See, for example, Hammermesh 1963.) A tensor
corresponding to the Young tableau of a given pattern forms the basis of an
irreducible representation of SU(n). Moreover if we enumerate all possible
Young tableaux under the restriction that there should be no more than
n — 1 rows, the corresponding tensors form a complete set, in the sense that
all finite-dimensional irreducible representations of the group are counted
only once.

We next give two formulae of the dimensionality of irreducible represen-
tations. If the Young tableau is characterized by the length of its rows
(fisfas---s Ju—1), define the length differences of adjacent rows as
M=hHh—f Aa=fo —far--es A1 = fu—1. The dimension of an SU(n)
irreducible representation will then be the number of standard tableaux for a
given pattern

dAys Ay oos b)) =L+ A0+ 4) o (4 A1)

A+ Ay Ay + A3 In—z t Ay
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x(l+11+'132+}~3><1+iz+‘;3+i4>_”<l+'1n—3+;1n3-2+/1n—1>

x<1+i‘+'12+'1"'1"-1>. (4.115)
n-——

One can easily check that the special results of (4.113) and (4.114) for the
tableaux (£, 0,0,...) and (0,0,..., 1,0,0,...) are recovered.
—

k

Example 1. SU(2) group. The Young tableaux can have only one row:
d(A)) = (1 + 4,). Thus 4, = 2j. It follows that a doublet is pictured as [_]
and a triplet as [_ ], etc.

Example 2. SU(3) group. The Young tableaux can have two rows, hence
d(Ay, A2) = (1 + A)1 + 4,)(1 + (4, + 4,)/2). Thus, 4, =p and 4, =q of
(4.89).

(11,03, [I3J@206 [I17](3,0)10,
B (0, 1) 3%, ©,2) 6*, (1, 1)8. (4.116)

L

The formula (4.115) is rather cumbersome to use for large values of n; in such
cases the second formulation is perhaps more useful. For this we need to
introduce two definitions—°hook length’ and ‘distance to the first box’. For
any box in the tableau, draw two perpendicular lines, in the shape of a
‘hook’, one going to the right and another going downward. The total
number of boxes that this hook passes, including the originating box itself, is
the hook length (h;) associated with the ith box. For example,

T b =3, . hi=1. @.117)
\—:

The distance to the first box (D,) is defined to be the number of steps going
from the box in the upper left-hand corner of the tableau (the first box) to the
ith box with each step towards the right counted as +1 unit and each
downward step as —1 unit. For example, we have

0[1[2]
~1]0 (4.118)
—2

The dimension of the SU(n)-irreducible representation associated with the
Young tableau is given by

d= n (n+ Dy)/h; 4.119)

The products are taken over all boxes in the tableau. For example, for the
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tableau pattern 1, we have hook lengths [ 3]1] and distances to the first

| L1
box [ 0] I |. This yields the dimension d = n(n — 1)(n + 1)/3, which gives
=11
d=28 forn=3.

Reduction of the product representations

One of the most useful applications of the association of SU(n)-irreducible
representations with the Young tableaux is the decomposition of the product
representations. To find the irreducible representations in the product of two
factors,

(1) In the tableau for the first factor, assign the same symbol, say a, to all
boxes in the first row, the same b to all the boxes in the second row, etc.

(4.120)

(2) Attach boxes labelled by the symbol a to the tableau of the second
factor in all possible ways, subject to the rules that no two a’s appear in the
same column and that the resultant graph is still a Young tableau (i.e. the
length of rows does not increase going from top to bottom and there are not
more than n rows, etc.). Repeat this process with the bs, ... etc.

(3) After all symbols have been added to the tableau, these added symbols
are then read from right to left in the first row, then the second row ..., and
so forth. This sequence of symbols aabbac ... must form a lattice permu-
tation. Thus, to the left of any symbol there are no fewer a than b and no
fewer b than c, etc.

We consider two examples in the SU(3) group.

Example 1.
@xl____[=@+|:@ 4.121)
which corresponds to
3x3=3*+6. 4.122)
Example 2.
ala] x ] =8 x 8.
b |
First step: [a]+ + |
- al ||
L 4 ]
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Second step: [a]a] + al+ [a] +
 la a
) a] 4]
Third step: alal+ [ala]+ al+
b || alb
b |
27 10 10*
T Ta] + a] + []
a b I}
4] 4] alh (4.123)
8 8 1

As we have already explained, any column with n boxes in an SU(n) tableau
can be ‘crossed out’—indicated by a vertical line over the column—thus the
last three tableaux yield two octets and one singlet.

Note that tableaux such as [alalb] and Ta D] are rejected
a
because the symbols do not form a lattice permutation. Thus
8x8=1+4+8+8+10+10*% + 27. (4.124)

Young tableaux for conjugate representations. If y; and y* are the bases for
the defining representation n and its complex conjugate n*. Clearly ¥/ is
SU(n) invariant. It is not difficult to see from the reduction of product
representation that the Young tableau for the conjugate representation is a
column of n— 1 boxes so that there will be an identity representation
(a column of » boxes) in the product n x n*.

[]x = +
n—1 n n—1. (4.125)

In general if we take the Young tableau for a representation - and fill the
boxes such that rectangular tableau of » rows is obtained, the additional
boxes, when rotated by 180°, form the standard tableau for the complex
conjugate representation (Y")* = ¢ ::. For example, in SU(3) we have 6
as pictured by [_ | ] which can be filled in as [_T_]. Thus is the
Young tableau for 6*.

Group generators in tensor notation

We first concentrate on the (defining) vector representation and later
generalize our study to the action of generators on higher-rank tensors.

(1) Hermitian and real generator matrices. Any n X n unitary unimodular
matrix U may be written in the form

U=e" (4.126)
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where H is hermitian and traceless. Normally we choose the group
parameters to be real. If e, = ¢}, a=1,2,..., n? — 1, then

H=¢J, 4.127)

where the A,s are n x n hermitian generator matrices. Those for SU(3) have
been displayed in (4.74). From their commutation relation

A b1 A
[7, 3] = e 5 (4.128)

we can extract the Lie algebra with the identification of 34, = F, as the
generators

LFa B = VacEe (4.129)

where the f,,s are the structure constants. For the tensor-method approach
instead of the form (4.127) we can write the hermitian matrix H as

Hi = gW (4.130)
where all indices (a, B, i, j) range from 1 to n. We can choose to have real
generator matrices which take the form

. o1 ;

(VB = 8, 0% — = 52 . (413D
The hermiticity condition on H is then satisfied by having the hermitian
group parameter matrix

€5 = eh*.
Using (4.131) we can work out the commutator
[WE Wil =sbws — SSwe. (4.132)

The group generators are defined to satisfy the same commutation relation
(the Lie algebra)

[Fg’ F?] = 551;‘: - 52F€

The structure constants are simply some combinations of the 8%s. It is not
difficult to find the relation between the real generators F* and the hermitian
generators F*,

F* = 3(A,)5F%. (4.133)
Eqn (4.133) can be inverted by using the identity,
nz2—1 1
Zl (la)aﬂ(’la)yé = 2<5a6 5[!7' - ; 5aﬂ 5}6) (4134)

which can be derived as follows. Since the n x n hermitian traceless matrices
2% a=1,...,(n* —1), together with the n x n identity matrix form a
complete set of n x n hermitian matrices, we can expand an arbitrary
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hermitian matrix M in terms of them

n2—1
M=myl,+ ) mp° (4.135)
a=1
where 1, is the » x » identity matrix. We normalize the A% such that
tr(A°A%) = 26%.
The coefficients m, and the m,s in eqn (4.135) can be calculated by
multiplying matrices of the corresponding bases and taking traces,

1
m0=;trM

1

m, = = tr(MA%).

N

Eqn (4.135) then becomes

n2—1

1 1
M= ;(tr M, + Y > (tr M2A%)2°
a=1
or, in terms of the components,

1 1
foﬂ = ;l' (zé Ma), 5)'6) 6‘1[3 + E z Z (la)aﬂ(ia)).aMa-), .
Vs

a y,0

Since M, is arbitrary, we get

1 1
Ous 5ﬂv = ; 51/3 5}'6 + 2 Z ('la)al}(la)vé

which is just the identity (4.134). Using eqn (4.134) we can write the real
generator as

Fy = Y F°(%),

a

where we have used the fact that tr F* = 0.

(2) Real generators in vector representation. The nondiagonal real gener-
ators F?, a # B, are simply raising and lowering operators. For the defining
vector representation, W# has a nonzero element only at the ath row and Sth
column. The infinitesimal SU(n) transformation on the basis
Yt Yt =yt + Sy with 6y = ef(WE)iy shows that

(Fiy) = oyP. (4.136)

Thus, F? will take the ath component of ¥ and turn it into the fth
component, and the result will be zero for all other components. The
diagonal generators Fis form a set of mutually commuting operators. Their
eigenvalues can be used to characterize the basis functions (states) of
irreducible representations. For example, in the defining vector represen-
tation, any particular diagonal generator D,, which is some linear combi-
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nation of the W3s, may be written
(Dy); = (); 9 (4.137)
where the (d,);s are the eigenvalues of state i/’

(3) Real generators on higher rank tensors. The group generator F? acting
on any tensor is defined as

S =y — ¥ = ied(Fhy). (4.138)

Given (4.99), the general transformation law of i with the SU(n) transfor-
mation factor given by

Uk =6}* + ieg(WhE (4.139a)
and
U/ = &) — iy (WP, (4.139b)

where the i, j (k, ]) indices belong to untransformed (transformed) tensors,
we have

s p . .

Fiyhde= ) (Whmpl: e

ki
m=1

q X X .
= Y (WOl (4.140)
n=1

The presence of the minus sign reflects the fact that the tensors with upper
indices correspond to complex conjugate representations, as compared to
those with lower indices (see eqns (4.94) and (4.95)). In particular for the
diagonal generators F = D, (4.137) we have

P q
DI*MI’:J,‘,’ = |: Zl (), — Zl (dl)j,,:| {1‘{: (4.141)

Thus the quantum number of the tensor is simply the algebraic sum of the
corresponding quantum numbers of the component vectors which make up
the tensor.

We will summarize this discussion by working through the simple example
of the j = 1 representation of SU(2). Instead of using the m = 1, 0, —1 states
as in (4.51) and as its hermitian generator the 3 x 3 matrices in (4.52) and
(4.55), in the tensor method approach the bases are taken to be y;; ~ Yy},
The indices i, j = 1, 2 are symmetrized (see (4.68)). The superscripts 4 and B
distinguish the two vectors. The real generators for the SU(2) defining
representation are 2 x 2 matrices:

12 0
Wiz_W§=<(/) -1/2>

is the diagonal generator, giving eigenvalues d(/;) = 1/2 and d(y,) = —1/2
for the two states in ;. We can read off the quantum numbers for the triplet
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states as
A ) =3+3=1, d)=3—-%=0,
dW) = —$-4=-1. (4.142)

00
Wi =
=0 o)

is the lowering operator. Thus,

Wi = (? 8) Yyt + <(1) g) Wil = Yyl + Y1z, (4.143)

One last comment—the adjoint representation which we have defined in
terms of the structure constants of a group (4.19) takes on a particularly
simple form in tensor notation. The basis for adjoint representation is simply
Y} with yi =0, where its Young tableau is the last one in (4.125) and
evidently is self-conjugate. One can show that this is the correct identification
by converting /} using a method similar to that in eqn (4.133) to an n? — 1
component vector ¢° using

¢ = 2. (4.144)

The transformation law (4.140) can be used to demonstrate that the
matrices for its generators (F¢),. are indeed the structure constants f,,.

4.4 The quark model

Group theory is relevant in physics because the various symmetry
transformations which leave the physical system invariant form a group. The
consequence of symmetry can then be deduced through group-theoretical
analysis, independent of any detailed dynamical considerations. For ex-
ample, if a quantum-mechanical system, described by the Hamiltonian H(r),
has no preferred direction, all rotation operators R(0) will leave the
Hamiltonian invariant,

RO)H(Ir)R™'(8) = H(r). (4.145)
Or, in terms of the generators of the rotation, R(0) = €®"’, this gives
[H,J]=0. (4.146)
The consequence of this symmetry, i.e. (4.145), is that
H(Jn)) = E,(Jiln)) (4.147)
! Hpn> = En>. (4.148)

Thus, all states connected by a rotation transformation are degenerate. These
states form the basis vectors for irreducible representations (;) of the group.
From the result on the dimensionality of the irreducible representations
in SO(3) we conclude that there is a (2j + 1) degeneracy of energy levels.
In internal symmetries the states are identified with various particles. Such
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symmetry transformations change particle labels but not the coordinate
system, and irreducible representations of the group manifest themselves as
degenerate particle multiplets. In this section we shall present a brief dis-
cussion of the early successful internal symmetries of the strong interaction.
First we have the isotopic spin, or isospin, invariance of SU(2). It is later
found to be part of a larger group SU(3). This is the Eightfold Way theory of
Gell-Mann (1961) and Ne’eman (1961). This in turn led to the proposal by
Gell-Mann (1964b) and by Zweig (1964a) that quarks are constituents of
hadrons. Our purpose here is to give an informal historical introduction and
to establish, so to speak, the kinematics of the quark model—all in
preparation for the study of the dynamics, with quarks being the funda-
mental matter field.

Isospin invariance—SU(2) symmetry

In the early studies of nuclear reactions it was found that, to a good
approximation, the nuclear forces (strong interactions) are independent of
the electric charge carried by nucleons. The strong interactions are invariant
under a transformation which interchanges proton (p) and neutron (n).
More precisely the strong interaction has an SU(2) isospin symmetry in
which the p and n states form an isospin doublet. Thus the group structure of
isospin symmetry is very similar to that of the usual spin. The isospin
generators 7; satisfy the Lie algebra of SU(2)

[T;, T;] = ie;p Ty (4.149)

where the indices range from 1 to 3. That p and n form a doublet (p ) means
n
that (see eqn (4.45))

Tslp) = %'P>s T;n) = _%In>
and

Tin) =Ip)>,  T_-Ip)> =In). (4.150)

That the strong interaction does not distinguish n from p means that the
strong-interaction Hamiltonian H, has the property

[T;,,H]=0 i=1,2,3. (4.151)
The concept of isospin can be extended to other hadrons. For example,
(n*,n°% =7), (£*,Z°% Z7), and (p*,p°%p~) are (T =1) isotriplets;
(K*,K?), (K%, K7),and (E° E7)are (T = 1/2) doublets; 1, ®, $, and A are
(T = 0) isosinglets.

Since different members of the isospin multiplet have different electric
charges, the electromagnetic interaction clearly does not respect the isospin
symmetry. Thus isospin cannot be an exact symmetry. How good a
symmetry is it? If the symmetry is an exact one, we have

[T, H] =0 (4.152)

for the total Hamiltonian of the system; all members of an isomultiplet
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would be strictly degenerate in mass. Thus the mass differences within an
isomultiplet are a good measure of the symmetry breaking. Experimentally
they are typically at most a few per cent of the masses themselves, e.g.

m, —m

P~ 0.7 x 1073 Mot ZM® 17 %1072 etc.  (4.153)
m, + my Mg+ + Myo

my+ —

We conclude that isospin is a rather good symmetry and write the total
Hamiltonian as

H=H,+ H,
where
[HO’Ti]ZO’ [Hl, T,];é() (4154)
with
Hy>» H,. (4.155)

Thus we can treat the symmetry-breaking part (H,) as a small perturbation.
As we have mentioned, the electromagnetic interaction must belong to H, . It
turns out that weak interactions also violate isospin symmetry. One
interesting question is whether the strong interaction contains a part that
does not respect isospin invariance. We shall return to this question of a
possible small isospin violation by the strong interaction in §5.5.

SU(3) symmetry and the quark model

When the A and K particles were discovered they were found to be produced
copiously but to decay with a long lifetime. It was postulated that these ‘new’
particles possessed a new additive quantum number, strangeness S, which is
conserved in the strong interaction (associated production) but is violated in
the decay of these particles via the weak interaction. For example, the pions
and nucleons have zero strangeness but S(A%) = —1, S(K°) = +1, so that
we have the strangeness-conserving strong production n~ + p — A° + K°
which is followed by the strangeness-changing weak decays, A° » n~ + p
and K° - n* + n~. The strangeness S, like the electric charge Q, is
associated with a U(1) symmetry. In fact it was noted that there is a linear
relation, the Gell-Mann—Nishijima relation, among S, Q, and the diagonal
generator T of the isospin SU(2) (Gell-Mann 1953; Nishijima and Nakano
1953),

Q=n+§ (4.156)
with
Y=B+S

where B is the baryon number and Y is called the hypercharge. Thus isospin
and strangeness (or hypercharge) are only approximately conserved, but a
certain linear combination, the electric charge, is preserved by all known
interactions.

The search continued for ‘higher symmetry’ that could incorporate isospin
T; and hypercharge Y together in one group by enlarging the multiplet, i.e. to
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find a larger simple group which contains SU(2); x U(1), as a subgroup.
Gell-Mann (1961) and Ne’eman (1961) pointed out that we could group all
mesons or baryons with the same spin and parity on the (75, Y) plot (Fig.
4.9), and they look very much like representations of the SU(3) group (Fig.
4.6(c), (d)). One sees that 0~, 1~ mesons and 1/2* baryons fit nicely into the
octet representation (p = g = 1) while 3/2* baryons fit the decuplet represen-
tation (p = 3, ¢ = 0). The octet particles y/; being tensors of only two indices
can be written in matrices

B 7]
0 0
%+%€ ot K+
M= T - +’1_0 K°
V2 o6
_ o
K K J6
%+% p* K** |
00 @°
- o —\/Lz+76 K*0 (4.157)
_ —20°
K*- R*°
L \/6 -
rzO AO 7]
e T+ p
J2 U6
_50  A°
B- x- A
NIV
= =0 —ZAO
g o N

Of course at the time of the Eightfold-Way proposal not all the mesons and
baryons predicted by this pattern were well established. The discovery of
Q™ (Barnes et al. 1964) at the predicted mass value and with the correct
decay properties (Gell-Mann 1962b) played an important role in convincing
a large segment of the physics community as to the correctness of this
SU(3) classification scheme. Clearly this SU(3) is not as good a syminetry
as the isospin SU(2). A measure of the SU(3) breaking is the mass splitting
within the multiplet, e.g. (my — my)/(ms + my) = 0.12.

One notable feature of the hadron spectrum in the Eightfold-Way scheme
is that the fundamental (or defining) representation of SU(3) (Fig. 4.6(a), (b))
is not identified with any known particles. The significance of the funda-
mental representation in any SU(n) group is that all higher-dimensional
representations can be built out of the tensor products of the fundamental
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representation. This property is particularly transparent in the tensor-
method approach to SU(n) (see §4.3). On the other hand, more and more
strongly interacting ‘elementary particles’ had been discovered. It is difficult
to believe that all these hadrons are truly elementary and devoid of structure.

©
FIG. 4.9. Hadrons in SU(3) representations. Octets for (a) 0~ mesons; (b) 1~ mesons; (c) 3*
baryons; and decuplet for (d) 3/2* baryons.

Against this background, the quark model was proposed, in which all
hadrons are built out of spin-1/2 quarks which transform as members of
the fundamental representation (p = 1, ¢ = 0) of SU(3). (Clearly even if one
does not believe in the physical reality of quarks, they are a useful mnemonic
device for the less familiar group of SU(3).)

(1) There are three types (flavours) of quarks, “up’, ‘down’, and ‘strange’,
in the fundamental representation, 3

q1 u
a=l .| =| d (4.158)
qds S

corresponding to a Young tableau of [ ]. The members have quantum
numbers

o T T, Y S B
w23 12 12 13 0 173
d —13 12 —-12 13 0 1/3
s —13 0 0 -2/3 -1 13
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Their antiparticles, called antiquarks, are in the conjugate representation, 3*

el
It
e
Il
[=RE =]

(4.159)

wi

corresponding to the Young tableau H Their additive quantum numbers

are just the negative of those for the quarks
0 T T, Y S B
a -2/3 12 -1/2 -1/3 0 -1/3
d 1/3 172 12 -13 0 -1/3
g 1/3 0 0 2/3 1 —=1/3

(2) The mesons (B = 0) are qq bound states. From 3 x 3* =1 + 8 we
have mesons in SU(3) singlets and octets. For the 0~ mesons, we have

nt ~du, n°%~ (Gu-dd)/y2, n” ~iad,
K*~s5u, K°~sd, K®°~ds, K ~is,
n° ~ (i + dd — 255)//6. (4.160)

Similarly octet 1~ vector mesons have the same quark contents. The 0~
meson 1’ and the 1~ meson ‘¢’ (more on this later) can be identified with the
SU(3) singlet q'q; = (au + dd + §s).

(3) The baryons (B = 1) are qqq bound states. From the multiplications

DXD=B+ED ie.3x3=3*+6

[IXB=E+ ] ie.3x3*=1+8

=< [1J J+ [T T ] 1e.3x6=8+10,

we have
I3x3x3=1+8+8+10. (4.161)

The octet parts have the same quantum numbers (73, Y) as the octet mesons,
even though they have different quark contents, because T3 and Y (also total
isospin T) are generators of the SU(3) group and their eigenvalues for a given
representation are uniquely defined. Meson octet states and baryon octet
states will have a different baryon number; B is not a generator of SU(3).
Specially, for the 1/2* baryons |

L

p ~udu, n ~ udd,
Tt ~suu, X0~ s(ud +du)//2, I7 ~sdd,
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Z% ~ssu, =7 ~ ssd,

A° ~ s(ud — du)//2 (4.162)
and for the 3/2" baryons [ [ [ |
N*** ~uuu, N** ~uud, N*°~udd, N*  ~ ddd
>*T ~suu, X*0 ~sud, X* ~sdd,
=*%0 < ssu, E*T ~ssd,

Q7 ~ sss. (4.163)

The Gell-Mann—Okubo mass formula

Here we study the hadron spectrum in the presence of the SU(3)-breaking
H, « H similar to (4.154). The isospin, as mentioned above, seems to be a
good symmetry, hence the mass difference in the isospin multiplet can be
neglected in discussing the SU(3) breaking. We can proceed in a pure group-
theoretical manner. With an assumption about the SU(3) transformation
property of H; (~Y, or equivalently ~Fy), the relation among masses of
isospin multiplets in a given SU(3) representation can be derived (Gell-
Mann 1961; Okubo 1962). Here we will demonstrate this with a simple
calculation in the quark model: we assume that the binding energies of
quarks are independent of quark flavours (this can be justified later) and
that the mass differences in an SU(3) representation are entirely due to the
quark mass difference. This is a specific realization of the H, ~ Fg assump-
tion. In the approximation of exact SU(2) isospin symmetry, we have
m, = my. First consider the 0™ meson masses. In terms of the quark masses we
have from (4.160)

m: = mgy + 2m,
mi = my + m, + m
mk = my + ¥(m, + 2m,) (4.164)

where m, is the flavour-independent common mass. We have used the
quadratic mass for mesons. The principal reason is that this works better
(than linear masses). A possible justification is that 0~ meson masses vanish
in the SU(3) symmetry limit (see Chapter 5) and perturbation of the energy
around such a value automatically leads to a relation among quadratic
masses. From (4.164) we obtain

4mi = m? + 3m?. (4.165)

Experimentally the left-hand side ~ 0.98 GeV?, and the right-hand
side ~ 0.92 GeV2. Thus this mass relation is good to a few per cent. Similarly
for the 1/2* baryons from (4.162),

my = my + 3m,

ms = my + 2my, + my
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mz = mgy + my, + 2m;
my = my + 2m, + m;.
Eliminating the three parameters m,, m,, and m,, we have one relation
among the baryon masses
ms + 3m,
2

which is experimentally very well satisfied. We have the left-hand
side ~ 2.23 GeV and the right-hand side ~ 2.25 GeV. The quark model
allows us to identify the particular mass shifts from the SU(3) average value
my. This yields an additional relation

my = msg. (4.167)
For the 3/2* baryon decuplet (4.163) we easily derive the equal-spacing rule

=my + mg (4.166)

mQ - mE* = mE* - mz# = mz' - mN*. (4.168)

In fact the mass of Q™ was first (correctly) predicted from this rule.

®—¢ mixings

The Gell-Mann-Okubo mass formula for the 1~ vector meson multiplet does
not seem to work. In analogy to the 0~ mesons (4.165), we would have

3mZ = dmg. — m2. (4.169)

With my. =890 MeV and m, = 770 MeV, this equation would predict
m, = 926.5 MeV, while the experimental value is m, = 783 MeV. It turns out
that there is another 1~ vector meson ¢ with the same quantum numbers as
o (i.e. T = 0 and S = 0) and it has a mass of 1020 MeV. This leads to the idea
that @ is not a pure SU(3) octet state but has a mixture of an SU(3) singlet
state (Sakurai 1962). Let Vg be the T = Y = 0 member of the SU(3) octet and
V', be the SU(3) singlet state, then o is a linear combination of Vg and V,
while ¢ is the other orthogonal combination. More precisely, write the mass
matrix in Vg and V; space as

2 2
M= (’"88 '"81)- (4.170)

mig mi
The wavefunctions for Vg and V, are
Ve = (Gu + dd — 28s)/ /6
V, = (uu + dd + §s)/ /3. (4.171)
The eigenvalues of M should be m, and m,

2
RmMr= (™ © 4.172)
0 my

R=( cos 6 sm0>. @173)

—sinf cos @

where
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Hence
®=cosf@ Vg —sinfV,

¢ =sinf Vg +cosf V. (4.174)

Since (4.169) predicts that mgg is 926.5 MeV, we can calculate the mixing
angle. From (4.172),

2

m=r("™ °\r* (4.175)
0 m¢

we have
sin 0 = [(mdg — m2)/(m3 — m2)]*/?
=0.76. (4.176)

The fact that sin 6 is very close to ./(2/3) =0.81 has the following
significance. If sin 6 is exactly ./(2/3), called ‘ideal mixing’, we have

o = (Gu + dd)/ /2 4.177)
b = ss. (4.178)

Namely, for ideal mixing, ¢ is completely built out of the strange quarks and
o out of the non-strange quarks. Thus with the value of 6 in (4.176) it is clear
that ¢ is predominantly s and has very few tu and dd components.

The Zweig rule and the discovery of ‘charm’

As o and ¢ have the same quantum numbers 7 = 0, Y = 0, one would expect
that they should have very similar strong-interaction properties. In particular
their strong decay widths should be comparable. Experimentally this is not
so. @ decays predominantly, as it should, into the 3n channel, while ¢ — 3w is
suppressed relative to ¢ — KK even though the phase space for the latter
decay is very small (m, is barely above 2my ~ 998 MeV). This indicates a
strong preference for ¢ to decay into channels involving strange particles
rather than into channels without strange particles. To explain this, Zweig
(1964b) and also others independently (Okubo 1963; lizuka 1966) suggested
that strong processes in which the final states can only be reached through q
and g annihilations are suppressed. Thus, since ¢ is a predominantly s state,
the decay into pions must proceed through the annihilation diagram of Fig.
4.10(a) while the decay into the KK channel involves no annihilation of s
and §, as shown in Fig. 4.10(b).

V 3 S
" K L TN

N

(a) (b) K~
FIG. 4.10. ¢ decays: (a) disallowed; (b) allowed by the Zweig rule.
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In 1974 the {/J(3100) particle was dicovered (Aubert et al. 1974; Augustin
et al. 1974). It has the rather unusual property of having a width (only about
70 KeV) much narrower than the widths of typical hadrons (e.g.
r',~150MeV, I', ~ 10 MeV). Also width should increase with mass as
there will be more decay phase space. The interpretation is that \/J is a
bound state of a new heavy quark, the charmed quark c and its antiparticle ¢,
i.e. ¥ ~cc. It is below the threshold for Zweig-rule allowed decays into
charmed mesons (bound states involving at least one charmed quark), see

Fig. 4.11.
ya A
—) C< 2 H— <
nt d

c /D+

v

(a) (b)
FIG. 4.11. Zweig-rule allowed decays such as (b) y > D*D~ are forbidden by phase space.

For a detailed discussion on charmed particles see Gaillard, Lee, and
Rosner (1975). Here we only note that this new 2/3-charged quark was
predicted earlier on the basis of lepton—quark symmetry (Bjorken and
Glashow 1964) and, more compellingly, on the basis of the requirement to
suppress strangeness-changing neutral-current effects (Glashow, Iliopoulos
and Maiani 1970). With this new quantum number the flavour symmetry is
enlarged from SU(3) to SU(4). Of course SU(4) is badly broken as m, is heavy
(~1.5 GeV). Consideration of such badly broken symmetry is no longer
particularly meaningful. One should go directly to the dynamical considera-
tion of quark models of such hadrons carrying new quantum numbers. For
example, we have the additional 0™ meson states

D* ~dc, D™ ~&d, D°~iic, D° ~cu,
F* ~5c, F~ ~3s, M.~ cc. (4.179)

In fact one of the most convincing bits of evidence for the quark model is the
detailed verification of level structure and transitions among the various (cc)
‘quarkonium’ states.

In 1977 yet another set of narrow-resonance Y's were discovered (Herb et
al. 1977; Lederman 1978) and they were successfully interpreted as bound
states of yet another heavy quark, b (for ‘beauty’ or ‘bottom’) carrying
charge —1/3 with a very large mass my, ~ 5 GeV.

As we shall see (especially §11.3), from the pattern of fermion family
replication in the standard electroweak theory one anticipates at least one
more superheavy flavour of quark: this quark, t (for ‘truth’ or ‘top’), should
carry charge 2/3. It is to be associated with the b-quark in the same way as
pairing of (u,d) and (c, s).
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The pioneering paper on heavy quarkonium is Appelquist and Politzer
(1975). (For more recent discussions, including (bb) quarkonium, and
reviews see, for example, Appelquist, Barnett, and Lane 1978; Quigg and
Rosner 1979; Eichten et al. 1980; Shifman 1981.)

Paradoxes of the simple quark model

By simple quark model we mean the model of three, or more, types of quarks
as originally invented with no hidden degrees of freedom. This simple model
has the following difficulties.

(1) The quarks have fractional electric charges while all the observed
hadrons have integer charges. With charge conservation, this implies that at
least one of the quarks is absolutely stable. The fractionally charged stable
quark has been searched for and so far there is no generally accepted positive
evidence for its detection (see however LaRue, Fairbank and Hebard 1977).

(2) Hadrons are seen to be built exclusively out of qq and qqq states (and
their conjugates). There is no evidence for qq and qqqq bound states. It is
difficult to understand the absence of such hadron states with masses
comparable to the observed particles.

(3) The most serious problem is that the J* = 3/2* decuplet baryon
wavefunctions seem to violate the connection between spin and statistics.
Take the example of N** * ~ uuu. Since it is a ground state for the system of
three u-quarks, the spatial wavefunction has zero total angular momentum
and is totally symmetric. But N** * has spin-3/2 and the spins of all u quarks
must be lined up in the same direction for the N** * wavefunctions (with the
third component of spin s; = + 3/2) so the spin wavefunction is also totally
symmetric. Consequently the overall wavefunction is totally symmetric with
respect to the interchange of any pairs of constituent quarks. This violates
Fermi-Dirac statistics since the u-quark is a spin-1/2 fermion.

Colour degree of freedom

The way out of all these difficulties graduately emerges (Greenberg 1964,
Han and Nambu 1965; Nambu 1966). It is to postulate that each quark has a
hidden degree of freedom, called colour. More specifically each type of quark
is assumed to come in three different colours which form a triplet under a
colour SU(3) group. Thus for the known quarks we have

u, = (ula Uy, u3)
d, =(d;,d;,ds)
flavour Sy = (81,83, 83)
Ca = (Cl! Cj, C3)
b, = (by, b,, by) (4.180)

«——colour ——.

The five types (flavours) of quarks correspond to five distinct colour triplets
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The colour group operators change the quark from one colour to another but
leave the flavour unchanged: u; u,, u,eu;, uzeu,, or d,<d,,
d, «d;, d3—d,, etc. Along with this supposition of an extra degree of
freedom, it is further postulated that only colour singlet states are physically
observable states.

Since there are colour singlets in the product of 3 x 3* and 3 x 3 x 3, see
(4.161), only qg and qqq configurations can bind into physically observable
hadrons while q, qq, or qqqq states cannot be seen experimentally. The
N*** wavefunction is now antisymmetric

N*** ~ oy, (xug(x)u,(x;)e. (4.181)

where a, 8, y are colour indices 1, 2, 3.

It cannot be overemphasized that this colour SU(3) has nothing to do with
the original flavour SU(3) of the Eightfold Way. In fact, unlike all the flavour
SU(n) symmetries with n=2,3,4,..., the colour SU(3) symmetry is
assumed to be exact.

We now have a very peculiar situation where hadrons are composed of
particles which cannot themselves be directly observed. Quarks can exist only
inside hadrons and can never be free. This property is usually referred to as
quark confinement. It should be a part of any viable theory of hadrons as
quark bound states.

In recent years physicists have converged on a gauge theory called
quantum chromodynamics (QCD) in which the colour quantum number
plays a similar role to that of the electric charge in QED. In QCD the
coloured quarks will interact with each other through the exchange of the
gluons in a manner analogous to the exchange of the photon between
charged particles. These interactions are responsible for the (colour-depen-
dent and flavour-independent) binding of quarks into hadrons. Even though
QCD has many attractive features (see Chapter 10), quark confinement has
not up to now been derived from QCD in a convincing way. But there are
many arguments (see for example §10.5), which indicate that it should be a
property of QCD.



Chiral symmetry of the strong
Interaction

In §4.4 we studied the flavour symmetry of the strong interaction and its
physical realization in terms of the quark model. The symmetries SU(2),
SU(3), etc. are supposed to be manifestations of the quark mass degeneracies
m, = my and, to a less good approximation, m, = my = m,. As it turns out,
the reason we have such close equalities is not so much that the three quarks
happen to have equal masses but that they all are light on the typical strong-
interaction energy scale. Thus the symmetry limits should really be
m, = my = 0, and also to a lesser extent m, = 0, with the corresponding
flavour symmetries being SU(2), x SU(2)y and SU(3). x SU(3)x, the chiral
symmetries. However, we do not see any particle degeneracy patterns
ascribable to such symmetries. The resolution of this paradox lies in the fact
that the physical vacuum is not invariant (not a singlet) under these chiral
symmetries and, we say, the symmetry is spontaneously broken. The physical
manifestation of such symmetry-realization is the presence of a set of near-
massless bosons: the three pions, and also the whole octet of 0~ mesons.
Here we present the basics of an approach commonly referred to as current
algebra. The matrix elements of these light pseudoscalar mesons in certain
kinematic limits are calculated by a direct application of the commutation
and conservation relations of the chiral symmetry currents.

This chapter is organized as follows. In §5.1 we discuss the relation
between symmetry and the conservation laws in field theory, and also
establish the important result that charge commutation relations are valid
even in the presence of symmetry-breaking terms. In §5.2 we emphasize the
point that, in field theory, symmetry currents are actually the physical
(electromagnetic and weak) currents. Adler’s test of the current algebra (of
chiral symmetry) in high-energy neutrino scattering is presented. In §5.3 we
study spontaneous breakdown of global symmetries and the Goldstone
theorem. This introduces us to the subject of partially conserved axial-vector
current (PCAC) in §5.4. In the chiral symmetric limit of massless pions we
can use PCAC and current algebra to derive a number of low-energy
theorems: the Goldberger-Treiman relation, Adler’s consistency conditions
on the N scattering amplitude, the Adler—Weisberger sum rules, etc. In §5.5
we study the pattern of (explicit) chiral symmetry breaking as revealed by the
pseudoscalar meson masses and the TN o-term.

The discussion of this chapter will show that the hadronic interactions
obey an approximate chiral symmetry, which is realized in the Goldstone
mode. Thus any satisfactory theory of the strong interaction must have
these flavour-symmetry properties (also confer comments at the end of
§5.5). As we shall see, the gauge theory QCD naturally displays such global
symmetries.
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5.1 Global symmetries in field theory and current commutators

Conservation laws in physics can be attributed to symmetry principles. The
invariance of the physical system under certain symmetry transformations
implies an appropriate set of conservation laws. In classical physics we have
the familiar examples

Translational invariance in time Energy conservation
dE
t—>t+a - — =
dr
Translational invariance in space Momentum conservation
dp!
r.—>r,+ b, > —_ =
4 i 1 dt
Rotational invariance Angular momentum conservation
. , dJi
r; > Ryr;, with RR" =1 DA E:O.

In quantum mechanics, observables are associated with operators. Their
time evolution in the Heisenberg picture is governed by the commutator with
the Hamiltonian

do

— = i[H, 0]. 5.1

< = ilH, 0] (5.1
The conservation law is then equivalent to the statement that the correspond-
ing operator commutes with the Hamiltonian. For example, the angular-
momentum conservation dJ;/d¢ = 0 means that

[J,, H] = 0. (5.2)

It follows that the energy levels of the system have a (2j + 1)-fold degeneracy,
j being the angular momentum eigenvalue. In group theory language the
Hamiltonian operator is invariant under the rotation group O(3), which has
the generators J,, J,, and J; satisfying the commutation relation

[Ji J] = isiijk i,j, k = 1, 2, 3. (5.3)

> v
The states with definite energy eigenvalues then form representations of the

group O(3). The degeneracy of the energy levels is associated with the
dimensionalities of the irreducible representations.

Noether’s theorem

In field theory, symmetries and conservation laws are related in a similar
manner. This connection is made precise by the Noether theorem (Noether
1918). For a system described by the Lagrangian

L= Jd3x$ (9i(x), 0,¢:(x)) G4
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with the equation of motion
o 0L 0
0(0.0:) 09
any continuous symmetry transformation which leaves the action S = | L dt
invariant implies the existence of a conserved current

(5.5)

o*J,(x)=0 (5.6)
with the charge defined by
o) = Jd:“xJo(x) 5.7
which is a constant of motion
dg
= _0 5.8
ar (5.8)

because the surface term at infinity being negligibly small

d3x 8gJp = |d3xa*J, = 0. (5.9)
n

Noether’s theorem can be illustrated easily in the case of internal symmetry.
The Lagrangian density % is invariant under some symmetry group G, i.e.
under the infinitesimal transformation

di(x) = ¢i(x) = pi(x) + 5¢i(x) (5.10)

where
0;(x) = ie“t;;(x)

&% are (x-independent) small parameters and the ¢% are a set of matrices
satisfying the Lie algebra of the group G

[2% 7] = iC%¢e (5.11)
where the C“*s are the structure constants of the group G. We have the
corresponding change in the Lagrangian density

$5¢.~ 0L

%; 5(‘9;4‘15 ) 0(0,9)). (5.12)
Using (5.5) and the fact that
0(0"¢;) = 0,¢: — 0,9 = 0,(00)), (5-13)
we can write 0.% as
0¥ 0%
o 0
L= 05080 P 5.0 0%

0
=? [6(6,@ y 0% ]

0L
= g8 _ e | 5.14
¢ 0#[5(0,‘@) ""¢’] 19
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Clearly if the Lagrangian is invariant under the transformation (5.10), i.e.
0% =0, eqn (5.14) implies a conserved current

J% = 0
with
a : 0L a
Ju = —lmlljiﬁj. (515)

The conserved charges given by

0° = J d3xJ3(x) (5.16)

are the generators of the symmetry group.

These types of symmetries which are characterized by the space-time-
independent parameters &° in (5.10) are called global symmetries. The fields
¢;(x) are transformed in exactly the same way for all space-time points x.

Example 1. Abelian U(1) symmetry. The Lagrange density given by
& = 30,$1)* + (0,02)°1 — 31(¢1 + ¢3) — 2A(dT + 43)*  (5.17)
is invariant under the transformation
¢, > ¢ = p,cosa— ¢p,sina
¢, = @5 = ¢, sina + ¢, cosa. (5.18)

It is the O(2) symmetry corresponding to the invariance under rotations in
the (¢, ¢,) plane. For infinitesimal transformation, o« « 1,

¢y = ¢ — 0,
¢y = ¢, + gy, (5.19)

(O 5.20
= o o) (20

According to (5.15), the conserved current is

ie. ¢, = ¢, + iat;;¢; with

Jy= —(0,91)92 + (0,9,)¢;. (5.21)
In terms of the complex fields defined as
1 .
¢ = '\_/5 (@1 +iy)
1
o* = N (¢, —ig,), (5.22)

the Langrangian of (5.17) may be written
& = (0,0%)(0"9) — 12 (¢*d) — Md*¢)* (5.23)
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which is invariant under the U(1) transformation

o> ¢ =¢e% (5.24)
giving rise to the conserved current
J, = il(0,4%)¢ — (0.9)9*]. (5.25)

We note that ¢, and ¢, (or ¢ and ¢*) are degenerate in mass because of
the O(2), or U(1), symmetry.

Example 2. Isospin symmetry SU(2). We now consider the simple example of
non-Abelian symmetry. Let ¢ be an isodoublet

¢,
¢=< : 5.26
, (5.26)
The Lagrange density given by
A
& = (0,00") — 1P (') — 5 (¢'¢) (5.27)
is invariant under the infinitesimal isospin rotation
> b=+ ia"%i i (5.28)

where the 7% are the standard Pauli matrices. The conserved isospin current
is given by

—i
Jy = EN (0,015¢; — dl%0,9)). (5.29)
The time-components J§ have a simple form

J“O = _TJ (60d):r‘cf,¢, - d)r‘cfjao(bj)

—i
=7 [mitfio; — d)}‘t;'jn‘f] (5.30)

where 7; is the canonical momentum conjugate to ¢;. Using the canonical
commutators

[ni(xa t), ¢j(x” t)] = _iéij53(x - X/), (531)
we can show (see eqn (5.37) below) that the charges defined by

Q= jd3xJ‘5(x) a=1,2,3

satisfy the commutation relations of SU(2) symmetry

[Qa’ Qb] = ieachc’ (532)

This means that the Q,s are the generators of the SU(2) symmetry. Again, the
¢, ¢, fields have the same mass because of SU(2) symmetry.
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Current algebra

In the above we see that the exact symmetries lead to conserved current and
their charges generate the group algebra of symmetry transformations. These
simple commutation relations are useful for classifying particle states. For
instance, the SU(2) transformations in Example 2 give rise to Q%, a = 1,2, 3
which are generators of isospin SU(2) symmetry (5.32). As we have discussed
in §§4.2 and 4.4, they transform a particle into others within a given isospin
multiplet. We shall demonstrate below that commutation relations such as
(5.32) will hold even in the presence of symmetry-breaking terms. Consider
the Lagrangian

L =S+ L (5.33)

where %, is invariant under the symmetry group G while %, is not. Under
the infinitesimal transformation (5.10) we can still define the current Jj, as in
(5.15) but it will no longer be conserved and the charge defined as

0%
a(ry — | ga 3y = i | —= s20.d3 5.34
will not be time-independent. However the factor 6.#/6(0°¢,) is still the
canonical momentum conjugate to ¢; even in the presence of %,

o0&
(%) = —— 5.3
m0) = 5543 (5.35)
and satisfies the canonical commutation relation at equal time
[mi(x, 1), ¢;(y, )] = —id*(x —y) 0ij. (5.36)

From this we can, without knowing the explicit form of the symmetry-
breaking term .%;, calculate the (equal-time) commutator of the charges,
by using the identity [AB,CD]=A[B,C]D — C[D,A]B when
[A,C]=[D,B]=0

(o), 2°(1] —fd3x dy[mx, NEfi,(x, 1), My, Dty )]

- stx ds}’(ﬂi(x, t)t?j[d)j(x, t)9 nk(ya t)]tzlq&l(y’ t)
+ nk(ys t)til[ni(xa t)a ¢l(y9 t)]tgi j(x’ t))

=— Jd3x(nk(x, Oife?, t°7,9;(x, 1)).

Or, using (5.11), we have
[Q%(1), Q%(1)] = iC™Q (). (5.37)

Thus even though the Q%&)s change with time, at any given instant ¢, the
commutation relations of the group algebra will still be satisfied. These
relations are usually referred to as charge algebra.
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Example. Broken symmetries of the free SU(3) quark model. Here we are
concerned with the flavour SU(3) group (not colour!). The quark fields are in
the triplet representation

q;(x) u(x)
q(x) = q2(x) | = d(x) (5.38)
qs(x) s(x)
with the transformation properties
q; — q; = q; + 1a%(4%/2),;q;, ot « 1 (5.39)
where the A% are the eight Gell-Mann matrices
|:f12i, %b] = if“”‘é—c- (5.40)
The f¢s are the SU(3) structure constants. We have the Lagrangian
L =%+% (5.41)
with
%o =iqy*0,9q (5.42)
and
&, = m,iu + mydd + mg§s. (5.43)

%o is SU(3)-invariant while %, is not. The currents associated with the SU(3)
transformation are given by

Vi) = 4(x)7,(2/2)q(x). (5.49)
The charges defined by
QY1) = | Vi(x) d3x
will satisfy the SU(3) algebra

[Q%(), Q*(1)] = if ™ Q) (5.45)
as a consequence of the canonical commutation relation
{qu(x, 1), qJ/r;j(Ya N} = 5ij5aﬂ53(x -y (5.46)

where 7, j are the flavour indices and o, § are the Dirac indices. To have exact
SU(3) symmetry we actually need m, = my = m,. In the ¥, =0 limit, %,
is invariant under transformations of a group larger than SU(3). Besides the
transformation of (5.39), %, is also unchanged under the axial
transformation

Qi — q; = q; +1B2Y2)75q;, B« 1. (547)
The corresponding currents are given by

Au(x) = q(x)(A/2)y,759(x) (548)
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which are axial-vector currents. Thus even in the presence of the symmetry-
breaking term .%,, we can define the axial charge Q¢

0%%(1) = JAg(x) d3x. (5.49)

Together with the vector charge Q%x), the axial charges generate the
following equal-time commutation relations

[Q%(1), Q°(1)] = if ™ Q°(t)
[Q°(1), @** (0] = if ™ Q>(1)
[Q*(1), Q% (D)] = if QD). (5.50)
These commutation relations correspond to the chiral SU(3). x SUQ3)x
algebra. To see this, we form left-handed and right-handed charges defined
by
0f = Q" - 0*) (5.51a)
0% = Q" + 0°9). (5.51b)

Eqn (5.50) may then be written as
[QL(), QL] = if Qi (1)
[QR(), OR(N] = if *Qk(®)
[Qi(), Or()] = 0. (5.52)

Thus the Q¢s generate the SU(3), algebra while the Q%s generate the SU(3)g
algebra.

One can extend the charge algebra (5.37) by considering the equal-time
commutators of the charges and their currents. With exactly the same
calculation as that leading to (5.37) we can show that

[Q°(1), J4(x, D] = IC*Jo(x, 1). (5.53)

Then from Lorentz covariance, we can include the other components of the
currents

[0“(1), Jy(x, ] = iC™T5(x, ). (5-54)
Similarly we can go further than (5.53) and have
[J5(x, 1), J8(y, )] = iC™T5(x, )3 (x — y). (5.55)

These relations, and similar extensions of (5.50), are called current algebra,
see eqn (5.80) below.

If one tries to include spatial components in the current algebra (5.55), one
encounters additional terms which vanish upon spatial integration. For
example,

LJ6(x, 1), J(y, ] = iIC™Ji(x, )33 (x —y)
d
+ S§) -8 —y) (5.56)

J
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where S§/(x) is some operator depending on the explicit form of J{(x). This
term vanishes upon integration over space

Se(x) J% Bx—-yddy=0 (5.57)
J

so it will not modify the charge—current algebra of (5.54). Terms of this type
are called Schwinger terms (Schwinger 1959). A simple argument will show
that they cannot vanish in general. Consider the simplest case of the U(1)
symmetry where there is no need of group indices and the structure constants
vanish. If we assume the absence of Schwinger terms, the commutator (5.56)
becomes

[Jo(x, 1), Ji(y, )] =0 (5.58)
which implies
[Jo(x, 1), 0:i(y, )] = 0. (5.59)
From current conservation ¢*J, = 0, we obtain
[Jo(x, 1), 0gJo(y, D] = 0. (5.60)

Taking the vacuum expectation value and inserting a complete set of energy
eigenstates, we have

OILJo(x, 1), doJo(y, D]I0> =" (O] Jo(x, t)iny<nldoJo(y, 1)I0>
— <0196 Jo(y, Dlny<nlJo(x, 1)]07)
=i Z (eipn-(x—y) + e—ip"'(x—y))

x E, |01 Jo(0)ln>I. (5.61)
Thus in the limit x — y, eqn (5.60) would imply that

Y EKO01Jo(0)n)I? = 0. (5.62)

From the positivity of energy we must conclude that
01Jo(0)jn> = 0 for all |n). (5.63)

Thus, we have J, = 0 identically and the relation (5.60) is trivial. Therefore,
we must have a nonvanishing Schwinger term.

We should also note that the free quark model in fact has two more U(1)
symmetries. The first U(1) symmetry corresponds to % (eqn (5.41)) being
invariant under the common phase change for each of the quark fields

qi(x) — e”q;(x) (5.64)
with the conserved (baryon-number) current

Ja(x) ~ Qi(x)y,q:(x). (5.65)
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The second U(1) symmetry corresponds to %, (eqn (5.42)) being invariant

under
qi(x) — €¥75q;(x) (5.66)
with the (partially) conserved (‘axial baryon number’) current
T () ~ Q)5 (x). (5.67)
The problems associated with this axial U(1) symmetry will be discussed in
§16.3.

5.2 Symmetry currents as physical currents

As we studied in the previous chapter, symmetry groups are of great
importance in particle classification. Now we see in field theoretical studies
that these symmetry currents (Noether currents) and charges satisfy definite
commutation relations that are valid even in the presence of symmetry-
breaking terms. Another important result of field theoretical studies is that
these symmetry currents are just the physical currents appearing in
electromagnetic and weak interactions, i.e. the same Noether currents, or
some linear combinations thereof, appear in the interaction Lagrangian.
Thus current algebra, which represents symmetries of the strong interaction,
can be directly tested in electromagnetic or weak-interaction processes
involving hadrons. For reviews of applications of current algebra see Adler
and Dashen (1968) and de Alfaro et al. (1973).

Electromagnetic currents

The most familiar physical current is the electromagnetic current J§"(x)
which is coupled to the photon field 4,(x) in the interaction Lagrangian by

L = eJm 4P (5.68)

where e is the electromagnetic charge coupling constant. We can decompose
the current into leptonic and hadronic parts

T=Ju+Jn. (5.69)

The leptonic current can be written directly in terms of the charged lepton
fields

Jip=—8ye—fyn+... (5.70)

where the fermion field operators are denoted by their particle names. Since
the leptons do not have strong interactions and the electromagnetic
interaction can be treated perturbatively, we can directly measure J;y in
physical processes. In this respect the hadronic electromagnetic current Ji; is
quite different. It cannot be written directly in terms of hadronic fields such
as , K, N, etc. because they are not elementary constituents. While we can
express Ji; in terms of the quark fields,

= 30yu —ddyd — $syas 4 (5.71)
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it cannot be used in the same way as the leptonic current. We do not know
the hadronic wavefunction in terms of the quark fields and quarks have
strong interactions which must be taken into account to all orders. Until
this can be done we have to rely on the experimental measurement to learn
the structure of the matrix elements of this current. On the other hand, the
electromagnetic current is also a symmetry current. In fact it is conserved by
all known interactions. The hadronic charge operator

o = JJ?,‘“ d3x (5.72)
obeys the Gell-Mann—Nishijima relation (see §4.4)
Y
em __ T .
h 3 + 2
This implies a similar relation for the corresponding currents,
m=Ji+ 375 (5.73)
In the quark model this corresponds to
o =3%u'u—4d'd —4s's + ...
= $(utu — d'd) + {(utu + d'd — 2s's) +...
=B+ 3L (5.74)

Weak currents

In weak interactions the currents play a similar role toJ{" in electromagnetic
interaction. We shall see (cf. Chapter 11) that these two interactions are
‘unified’ in modern gauge theories and that the weak and electromagnetic
currents are members of one multiplet; hence they really have similar
theoretical status. In this chapter we shall restrict our discussion to the
charged weak current J,—to the part of J, that does not bear any of the new
quantum numbers: ‘Charm’, ‘bottom’, etc. Similarly to (5.68) it is coupled
to the charged intermediate vector boson (IVB) field W, in the interaction as

LY = gI,W* 4+ he. (5.75)

where g is the coupling constant. From this we have the effective low-energy
Lagrangian for a current—current interaction

Ge
L= —=JJ* +he 5.76
r 727 + (5.76)
where g>/M¥ = Gg/+/2, as the massive IVB propagator, contributes the M3,
mass factor in the denominator. G ~ 10~ % is the Fermi constant measured
in units of inverse proton mass squared. The weak current J, can also be
separated into leptonic and hadronic parts

JA=Jt+Jt (5.77)
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with
JE=vy* 1 —ys)e + Vv rr (1 =y + ... (5.78)

where v,(x) and v,(x) are field operators for the neutrino fields. The hadronic
current can be written in the V-A form

JE=[(V} +iV3) — (4% + i42)] cos 6,
+ [(VA +iV%) — (42 + i4%)] sin 6, (5.79)

where 6, ~ 0.25 is the Cabibbo angle (Cabibbo 1963). The subscripts on the
vector and axial vector operators are the flavour SU(3) octet indices. The
various selection rules and symmetry relations implied by the SU(3) and
SU(2) transformation properties of hadronic currents are well tested in semi-
leptonic weak processes. For example, the strangeness-conserving vector
current V% + iV} and its conjugate ¥4 — iV are partners of the isovector
electromagnetic current V% in an isospin triplet and the corresponding
charges will form the generators of the isospin SU(2) subgroup of SU(3).
These isospin currents are of course approximately conserved. This is called
the conserved vector current (CVC) hypothesis (Feynman and Gell-Mann
1958). Thus from our knowledge of the electromagnetic-current matrix
elements (form factors) we can predict the strangeness-conserving weak
vector-current form factor by isospin rotations. Similarly the weak form
factors of the strangeness-changing vector currents can be fixed by SU(3)
rotations since all these vector currents are members of the same SU(3)
octet, etc. Furthermore, these vector and axial vector currents are postulated
to satisfy the SU(3). x SU(3)g algebra (Gell-Mann 1964a)

[VB(X, t)a Vg(y’ t)] =1 ach?(xa t)53(x - Y)
[Va(x, 0, Ap(y, 0] = ifapcAd(X, )33 (x —y)
[A,?(X, t)s Ag(y, t)] = ifabc V?(X, [)53(X - y) (580)

We note that these relations in which the left-hand sides are quadratic in the
currents while the right-hand sides are linear will give rise to non-linear
constraints among currents. Thus the normalizations of the currents are fixed
by these non-linear commutation relations.

A great triumph of the quark model of hadrons is its successful and simple
explanation of all the above symmetry features of the weak hadronic current.
Very much like the leptonic current in (5.78), the hadronic weak current in
(5.79) can be written directly in terms of quark fields

JE = wy*(1 — y5)d cos 6, + uy*(1 — ys)s sin 6, (5.81)

and, as we have seen in §5.1, the SU(3), x SU(3)y algebra (5.80) is also
satisfied in a free quark model. The key problem of course remains of
finding a fully interacting theory of the quarks in which the strong interaction
naturally has this approximate global SU(3), x SU(3)g chiral symmetry.
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Current algebra sum rule

As an illustration of the type of results that can be obtained from the current
algebra of (5.80) we will derive the Adler’s sum rule for neutrino scattering
(Adler 1966).

v (k) 17 (k")

N() X,
FiG. 5.1.
Consider (Fig. 5.1) the neutrino scattering off a nucleon target producing

a charged lepton /= and some hadron state X, (n particles with total
momentum p,)

v(k) + N(p) = 17 (k') + X(p,)- (5.82)
Define
g=k -k
v=p-q/M (5.83)

where M is the nucleon mass. In the lab-frame
by = (Ma 0’ 05 O)’ ku = (Ea k)a k;1= (Ela kl)’

we have

0
q* = —4EE’ sin? 3

v=E—E (5.84)

where 0 is the angle between k and k', and the energy is high enough so that
we can make the approximation of taking the charged lepton mass m, to be
zero. From (5.76) and (5.78) the amplitude for this process can be written

G
Y = 7F2 i(k', X)3(1 — ys)uk, <nlJilp, o> (5.85)

and the unpolarized differential cross-section as

o(v)=_l_L_1_ &F ﬁ &pi
" M2M2E 2m)*2kp i | (27)°2ps0

LS TOR@R sk 4 p — K — py) (5.86)

X —
2 arr’

where o, 4, and 1’ are spin labels of nucleon, initial and final lepton, res-
pectively, and
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If we sum over all possible hadronic final states, we obtain the inclusive cross-
section
&6 G2
dlg’|dv  32nE?

FrWS) (5.87)

with the leptonic tensor
Lg = tr[&)y.(1 — v5)(®)ys(1 —7s)]
= 8(k.kp + kyky — k- K'gyp + 1e,5,5K" k%) (5.88)

and the hadronic tensor

Wy =55 2L |1 [(2n>32p.o]

X <p, 07 15(0)In)<n|J 4, (0)l p, 6>(27)*6*(p, — p — q)
Z J— {p> o1 (V)T1a(0)lp, 0> €47, (5.89)

Note that W) is non-zero only for g, = E — E’ > 0. Since it is a second-
rank tensor depending only on momenta p and g, it can be written as
W(V) W(IV)ga[i (V)pzxp /M2 - lW(V)saﬂyép qb/MZ
W.95/M? + W (pagp + Ppda)/M?
+iW S (pgs — Ppa)/M* (5.90)

where the Ws are Lorentz-invariant functions of g% and v of (5.84), called
structure functions. The cross-section in (5.87) is now

d2e™ G: (E 0 E+ E' 0
g F( >|:2W‘1V’ sin2~2- + Wy coszg— usinz— w{ |-

digfldv 2\ E 2 M 2
(5.91)
The WY 5 ¢s do not appear in the m, = 0 limit.
Similarly for anti-neutrino scattering
V+N-I" + X, (5.92)

we have

dZO_(V) GZ 9 . (E + E' )
W(v) 27 W(V) V)
dlg?ldv 27z< >[2 sin” 3+ W3l cos 2+ M 2W }

(5.93)

where the structure functions W{" are defined by
W ) 9 01 p, o1,y (1)L0p. 0
5 (P @) =37 2 | 5y € <P ol gy p,o

= — W9, + Wpupy/M?* — iWep,5p"q° | M*
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W40,/ M?* + W (p.g; + ppg)/M?

+iW(pgp — ppa)/M?>. (5.94)

Again they are non-zero only for g, > 0. We can alter (5.94) slightly using
translational invariance

1

d4
Wesp, )—4MZJ2 € 7Cp, olJwp(0) T (=), 0

_ 5[4 e p, 60,50 0p. 0> . (5.95)
A4M 7 | 2n

Now consider the tensor W,; defined by
1 d*y ot R
mﬂ(p9 q) Z e y<p, 6|[Jhﬂ(y)7 Jha(O)]|p9 0>' (596)
4aM 2n

When this is compared to (5.89) and (5.95) we have
WD @) = Wiip, @) for  go>0
= —WyAp, —q) for g¢,<0. (5.97)

To derive the sum rule, we take W, and integrate over g,

Il

j Woo(p, ) dgo = | (WSh(p, 9) — W3k(p, 9)) dgo

— o0

— OL_->8

~amL f‘“y e ¢p, 6lLTholy; 0), Juo(O)Ip, 0.
(5.98)

This equal-time commutator can be evaluated using the current algebra of
(5.80). The simplest way to calculate this is to use the fact that these
commutation relations are also satisfied in the free-quark model (see §5.1)
where the current is given by (5.81). Using the canonical anti-commutation
relations

{4l(y, 0), ¢;0} = 8*(¥)3; (5.99)

where the indices are those of the Dirac matrix space as well as the flavour
space of (5.38), we have

[770(y,0), J4o(0)] = [(cos 0.4'(y, 0) + sin O.s"(y, 0))(1 — ys)u(y, 0),
u’(0)(1 — ys)(cos 6.d(0) + sin 6.5(0))]
= 2(cos 0.d'(y, 0) + sin O,s'(y, 0))(1 — 75)
x {u(y, 0), u'(0)}(cos 6.d(0) + sin 6s(0))
—2u’(0)(1 — ys)(cos? 6.{d'(y, 0), d(0)}
+ sin? 6.{s'(y, 0), s(0)})u(y, 0)
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= 20%(y)(cos? 8.d"(0)(1 — y5)d(0)
+ sin? 0s7(0)(1 — y5)s(0)
+ sin O cos 0.(d"(0)(1 — 75)s(0) + s'(0)(1 — y5)d(0))
—u'(0)(1 — 75)u(0))
—0%(y)[4 cos® 0.(V5(0) — A45(0))
+sin? ,(3(V'5(0) — 43(0)) + 2(V3(0) — 43(0)))

+ 4sin 0, cos 0,(VE(0) — AS(0))] (5.100)
where
VY= (u'u +d'd — 2s%)/3 A = (u'ysu + dYysd — 2sTys8)/3
V3 = (u'u —d'd)/2 A3 = (u'ysu — d'y5d)/2
Vs = (d's + s'd)/2 A§ = (d'yss + s'ysd)/2.

(5.101)

Since V'§ and A§ are strangeness-changing operators, their matrix elements
vanish when taken between nuclear states. Also averaging over nucleon spin,
we have

—;—Z {p,al|Ai|p,ay =0 foralli. (5.102)

Thus (5.98) becomes

o

J [W8h(p, a) — WEi(p, q)] dgo =

0

20.+ (3Y + 2T3)sin* 0] (5.103)
where T and Y are the isospin and hypercharge of the nucleon state

3 5 <P alV3lp, o> = 2Tsp,

%Z <p: olV3lp, 6> = 2Yp,. (5.104)

We now proceed to express the left-hand side of (5.103) in terms of the
structure functions

{ Wb dgo = J [=WY + W(po/M)? + WNgo/M )?
+ WSApogo/M?)] dgo. (5.105)

A judicial choice of reference frame will simplify this equation. Instead of the
nucleon rest frame, we will take the infinite-momentum frame (Fubini and
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Furlan 1965) in which the nucleon has infinite momentum orthogonal to q
Ipl > o withp-q=0. (5.106)

Then in this frame,

Po=(p* + M) ~|p| » 0

V=pq/M = poqo/M

¢ =q5—q* = OM/po)’ - ¢’ > —¢ (5.107)

and the largest term on the right-hand side of (5.105) is W’

lim J W§) dgqo = —j dvi{(q%, v) (5.108)

Ipl —

where we have assumed that it is valid to intercharge the limit and the
integration. Thus the sum rule in (5.103) becomes

j (WA v) — WH(g% v)]1dv = 4T5 cos? O, + (3Y + 2T;) sin? 6,

_ { 2c0s? O+ 4sin* 0, for a proton target o

—2cos? 6, + 2sin? §, for a neutron target.

This is the Adler current-algebra sum rule for neutrino scattering. We remark
that even though it is derived in the infinite-momentum frame, the final result
expressed in terms of Lorentz invariants should be true in any given frame. It
has the notable feature that the g*-dependence of the left-hand side gets
‘integrated away’. This sum rule can be used for any target with appropriate
T5 and Y quantum numbers on the right-hand side. An extension to include
other additive flavour quantum rules (beyond strangeness) can be carried
out in a straightforward fashion.

5.3 Spontaneous breaking of global symmetry, the Goldstone
theorem

The SU(3), x SU(3)g algebra (5.80) generated by the various physical
currents suggests that we have a strong-interaction Hamiltonian

H=H,+ AH, (5.110)

where H,, is invariant under SU(3), x SU(3)g transformations and H, is not.
In the limit of 4 = 0, all generators of the chiral algebra are conserved. We
would expect particles to form degenerate multiplets corresponding to
irreducible representations of the group SU(3), x SU(3)g. For example, the
octet pseudoscalar mesons should be accompanied by an octet of scalar
mesons, and the J? = (1/2)* baryons should have partners with opposite
parities. But in reality there is no evidence for this larger multiplet structure.
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This leads to the idea that SU(3), x SU(3)x symmetry is spontaneously
broken and that this symmetry of H, is not realized by the particle spectrum.

Non-invariance of the ground state as a symmetry-breaking condition
Let U be an element of the symmetry group which leaves H,, invariant. Then
UH,U' = H, (.111)

and it connects states that form an irreducible representation (basis ) of the
group

Uld) = |B). (5.112)
From (5.111) and (5.112) it follows immediately that
Eq = {A|Ho|4)
= (B|Hy|B) = Ej;. (5.113)

Thus the symmetry of the Hamiltonian H,, is manifest in the degeneracies of
the energy eigenstates corresponding to the irreducible representations of the
symmetry group. However implicit in the statement of (5.112) and hence
(5.113) is the invariance of the ground state under symmetry transformation.
Since |4A) and |B) must be related to the ground state |0) through some
appropriate creation operators ¢, and ¢,

4> = ¢40),  |B) = ¢4[0) (5.114)
and
U, U' = ¢p, (5.115)
eqn (5.112) follows only if
Uj0> = 10>. (5.116)

When (5.116) is not satisfied, this vitiates (5.113) and the usual symmetry
consequence of degenerate energy levels. Such a situation is commonly
referred to as a spontaneous symmetry breakdown. However, it must be
emphasized that, even though the symmetry is not manifest in the degenerate
energy levels, there are still symmetry relations coming from the fact the
Hamiltonian or the Lagrangian is still invariant under the symmetry
transformation.

Ferromagnetism as an example of spontaneous symmetry breakdown

This lack of degeneracy in particle spectra in a symmetry theory may come as
a surprise, but there are a number of familiar situations where the ground
state is not a symmetric state. A well-known example is ferromagnetism near
the Curie temperature T¢. For T > T, all the dipoles are randomly oriented;
the ground state is rotationally invariant. For T < T¢, all the dipoles are
aligned in some arbitrary direction (spontaneous magnetization) and the
rotational symmetry is hidden. Consider the description of this phenomenon
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by the Ginzburg-Landau theory (1950). For temperatures near the Curie
point, the magnetization M is expected to be small; a power series expansion
of the free energy density can be made, with higher powers of M being
neglected

u(M) = (OM)* + V(M) (5.117)
where
VM) = o (T)(M M) + o,(M - M)?. (5.118)
The energy densities u and V are clearly rotationally symmetric. We have
assumed a slowly varying field and kept only the first derivatives. The
(M-M)? term in (5.118), with a positive coefficient a, > 0, is included
because, at the Curie point, a; vanishes
oy =T — Te) with o> 0.
Since the (9;M)? term is non-negative, to obtain the ground-state magnetiza-
tion we simply minimize V(M)
oV/oM; =0 (5.119)
or
M(a; + 20,M M) = 0.

For T > T, (i.e. a; > 0), the solution is at M = 0. For T < T (i.e. a; < 0)
M =0 is a local maximum and the minimization fixes the magnitude of
magnetization (the order parameter) to be

M| = (—a,/20,)"/2, (5.120)

But its direction is unspecified by the theory itself. The ground state, having
M in some definite direction, is one member of this infinitely degenerate set;
it is fixed by the boundary condition and is not rotationally symmetric. For
temperatures below the Curie point the rotational symmetry of the magnet is
spontaneously broken. Thus the symmetry-breaking condition is the non-
invariance of the vacuum (ground state)

Ul0> #(0>. (5.121)

For U = exp(ie*Q®), where the ¢% are the continuous group parameters,
(5.121) can be expressed by the statement that the symmetry charge does not
annihilate the vacuum

0°10> # 0. (5.122)

An equivalent statement to (5.121) and (5.122) is that certain field operators
have nonvanishing vacuum expectation values

<0l¢;0> # 0. (5.123)

This can be seen easily as a symmetry transformation of the type (5.115) or
(5.10) may be represented in terms of generators as

[0% ¢:] = it];; (5.124)
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where t{; is the appropriate representation matrix. Thus (5.122) implies the
existence of at least some nonvanishing matrix element {0|¢;/0>. We should
also remark that translational invariance of the vacuum state leads to the
conclusion that these matrix elements are space—time-independent constants,

<0j(x)10> = <O0| ¥ *p(0) e~ |0
= <0{¢(0)[0>. (5.125)

The Goldstone theorem

Spontaneous breakdown of a continuous symmetry implies the existence of
massless spinless particles. The study of this connection was initiated by
Nambu (1960; Nambu and Jona-Lasinio 19614, b) and subsequently the
proofs, with various degrees of rigour and generality, were provided by
Goldstone (1961) and others (Goldstone, Salam, and Weinberg 1962). Such
scalar particles are referred to as Nambu—Goldstone bosons or simply as
Goldstone bosons. In the following we shall first give a formal proof
(Guralnik ez al. 1968). This is followed by a number of illustrative examples.

Any continuous symmetry of the Lagrangian, by Noether’s theorem,
implies the existence of a conserved current

8,J%(x) = 0. (5.126)

Normally we can convert this into the statement of the charge being a
constant of motion dQ(¢)/dt = 0 with Q(¢) = | d3xJy(x, t). However, with
spontaneous symmetry breakdown (5.123), Q(?) is not well defined because
of the poor convergence property of the field operator in the integrand. Even
the weak limit, corresponding to the matrix element <0|Q?(t)|0>, does not
exist. The translational invariance property of the vacuum state leads to the
result

0IQ* (010> = J d3x<0170(0)Q(0)/0>

which diverges because the integrand is nonvanishing and x-independent.
The nonexistence of Q does not really matter since in actual calculation only
the commutator of Q need ever appear. For the transformation of some
generic field operator ¢(x), we have

d(x) - ¢'(x) = e*%p(x) e ¢
d(x) + ie[Q, p(X)] + ...

Here we shall only assume that the commutator exists and formulate the
proof entirely in terms of its properties. Current conservation (5.126) implies
that

0= jdﬁ[a‘vﬂ(x, ), $(0)]

=0° Jd3x[J°(x, 1), o(0)] + st -[J(x, t), $(0)].
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For alarge enough surface and thus for large space-like separations the second
term on the right-hand side vanishes. Hence

d
3, [0, (0] = 0. (5.127)

This commutator being some combination of fields, if it has nonvanishing
vacuum expectation value

OILQ(®), #(0)]10> =17 # 0, (5.128)

we say that the symmetry is spontaneously broken. After inserting a
complete set of intermediate states and using a translation operator, (5.128)
may be written

Y. (2m)*3°(p,){<01Jo(0)In><ni¢|(0)|0) &~

—€091(0)ln)<n|Jo(0)I0) €5} = 5. (5.129)

The right-hand side is nonvanishing and time-independent because of (5.128)
and (5.127). Since the positive and negative frequency parts do not mutually
cancel, (5.129) can be satisfied only if there exists an intermediate state for
which

E,=0 forp,=0.

Thus, it is a massless state (the Goldstone boson). This particle will have the
property that

<n|¢(0)|0) # 0, <0l Jo(0)n) # 0. (5.130)

Thus it can be connected to vacuum by the current J(0) or the operator ¢(0).
This theorem is true independently of perturbation theory. We will illustrate
it in a few examples.

Discrete symmetry case

Goldstone bosons are not expected to be present in the discrete symmetry
case. Our purpose is to illustrate the circumstance in which the symmetry-
breaking condition (5.123) can take place. The Lagrange density given by

1 1 A
$=§(51¢>)2 *5#2¢2 —Zfb“ (5.131)

has the discrete symmetry

b ¢ = —o. (5.132)

Since 0y¢ is the momentum field conjugate to ¢, the Hamiltonian density is
given by

1 1 A
H =3 Gob) +5(V9P + 54707 + 5 6
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Thus the classical potential (energy density) may be identified as

1

u(g) = 3 (Vo)? + V(9)

with
1

V(p) = %uzqﬁz + 440" (5.133)
Since the (V¢)? term is non-negative, the minimum of u(¢) will have the
property V¢ =0 with the constant value ¢ given by minimizing V(¢) of
(5.133) directly. Since the coupling 4 is positive (so that energy is bound from

below), V(¢) for the two possible cases of u?> > 0 and u? < 0 is shown in Fig.
5.2. For u? < 0, the ground-state field is nonvanishing

¢ = H(—p*/W)". (5.134)

Vi) V)

”2 >0 L 2¢0
FiG. 5.2. Effective potential with the quadratic term having different signs.

In quantum field language, the ground-state is the vacuum and the classical
ground-state fields in (5.134) correspond to the vacuum expectation values
(VEV) of the field operator ¢

0]pl0> = v
with
v=t(—p2/)t. (5.135)

The two possible values in (5.135) correspond to the two possible vacua. One
can choose either one (and only one) to build the theory. Either choice, say
v = +(—pu?/A)}, clearly breaks the original reflection symmetry ¢ — — ¢ of
the theory. (Since the Fock spaces built on the two possible vacua are
mutually orthogonal, it is not meaningful to build a theory based on some
superposition of the two vacua.) This is the broken symmetry condition.

Since the symmetry in this case is discrete, we do not expect massless
Goldstone bosons. To verify this we need to consider small oscillations
around the true vacuum. Thus define a new quantum field variable with zero
VEV. In terms of this ‘shifted field’

¢'=¢—v, (5.136)
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the Lagrangian density becomes

A
% = SO~ (I~ g — 8.

¢’ describes a particle with mass (—2u?)?.

Abelian symmetry case

The Lagrange density given by
1 1
) (0,0)* + 3 (0;m)* — V(c? + n?)
with
V(O'2 + 7".2) - __2_(0.2 + 7'52) + Z(0.2 + 7.':2)2
has (continuous) U(1), i.e. O(2), symmetry
o a’ cosa sino /o
- = . .
T ' —sina cosa/\7

The extremum of the potential V is determined by

(;—GI{= o[—p? + Ae*+71H)] =0
%; =n[—p® + Mo? + 7?)] = 0.
For p? > 0, the minimum is at
o +n*=1?
with
v = (/M.

147

(5.137)

(5.138)

(5.139)

(5.140)

(5.141)

(5.142)

(5.143)

A graphic representation of the potential is given in Fig. 5.3. The minima
consist of points on a circle with radius v in the (o, 7) plane. They are related

14

FiG. 5.3. The potential function of eqn (5.139) for p? > 0.
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to each other through O(2) rotations. Hence they are all equivalent and there
are an infinite number of degenerate vacua. Any point on this circle may be
chosen as the true vacuum. We can pick, for example,

Olol0y =v,  <Ojm|0> = 0. (5.144)

Thus the O(2) symmetry is broken by the vacuum state.
To find the particle spectrum in perturbation theory we consider small
oscillations around the true minimum and define a shifted field

o' =0—v. (5.145)

The Lagrange density may be written
1 A
¥ = 3 [(@:0')* + (8;m)*] — p20’* — Jvo' (6’ + n*) — 1 (0’ + n?)*. (5.146)

There is no quadratic term in the n-field and that in the o’ field has the right
sign. Therefore, 7 is the massless Goldstone boson and ¢’ is a particle with
mass (2u?)%. In fact it is easy to see this pictorially in Fig. 5.3. Small
oscillations around any point of the minimum circle may be decomposed into
the radial and polar angle components. The polar-angle oscillations are
along an equipotential trajectory and it does not cost any energy and hence
corresponds to a massless particle. With our choice of vacuum (5.144) the
polar angle oscillation is along the n direction—hence n becomes the
Goldstone boson.

We shall also examine these features more formally through the
Goldstone theorem and make connection to the proof of eqns (5.128) and
(5.130). The conserved current generated by the U(1) symmetry (5.140) is
given by

Jux) = [(8;m)0 — (0,0)m] (5.147)

with the associated charge being

0= JJo(x) d’x = j[aon)a — (0o0)n] d3x. (5.148)
Using the canonical commutation relations
[Oom(x, 1), n(y, )] = —i63(x —y) (5.149a)
[000(x, 1), a(y, )] = —id3(x —y), (5.149b)
we can derive
[Q, ©(0)] = —ic(0) (5.150a)
[Q, 5(0)] = in(0). (5.150b)

According to the formal proof (eqns (5.128)—(5.130)) of the Goldstone
theorem, the symmetry-breaking condition (5.144) implies the existence of a
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massless particle state, in this case the quanta of the n-field with
<min(0)/0> # 0
0]Jp(0)|m> # 0. (5.151)

To see more explicitly that the right-hand side is nonvanishing we note that
(5.129) for our case takes on the form

Y. 2m)*63(p,){<01/o(0)lnXn|m(0)I0> e~ &

—<{0|m(0)|[n)<n|Jo(0)|0> '} = —iv. (5.152)
The only contribution on the left-hand side is from the massless 7 state:
|n) = |n)>. Thus

d3
Jgf: 3*(P){<01Jo(0)In(p)><n(p)Im(0)|0)
= €0Im(0)[m(p) ><{nip)| Jo(0)I0>} = —iv (5.153)

which is satisfied for
<01Jo(0)In(p)) =ivp, (5.154)

if the normalization condition {0|n(0){n(p)> = 1 is taken. We note that
manifest covariance requires that

01, (0)|n(p)) = ivp,. (5-155)
Thus the matrix element of the current divergence is
<0[0“J,0)In(p)y = vm (5-156)
and current conservation implies that either
v = <0|c(0)|0> =0 (5.157)
or
m, = 0. (5.158)

Thus in this example, the nonvanishing VEV, v = {0|5|0), is related to the
pion decay constant (see eqn (5.178) below).

Non-Abelian symmetry case: the SU(2), x SU(2); ¢ model

Consider a theory (Schwinger 1958; Polkinghorne 1958; Gell-Mann and
Levy 1960) with the following fields: isotriplet of pions & = (n,, ,, n3), an
isoscalar o-field and an isodoublet of nucleons N = (p, n). The Lagrangian
given by

& =3(0,0)* + (0,m)*] + Niy*o,N

+ gN(o + it - nys)N — V(c? + n?) (5.159)
with

2
V(c? +n%) = —:— (6 +n?) + ‘—'1(02 + n?)? (5.160)
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is invariant under the SU(2) transformations
c—>0' =0

Tont =nm+0XT
N-»N':N-ia-%N (5.161)
for a; « 1 with the conserved currents given by
Jo = Ny”% N + e®mdd,n fora=1,2,3. (5.162)
The SU(2) generators are

0" = f a(x) d3x. (5.163)
This Lagrangian (5.159) is also invariant under the axial SU(2)
transformations
co>0c =0c+Pp'n

non =n—fc
N—»N’=N+iﬁ~%y5N (5.164)
with the conserved currents given by
A5 =Ny, SN + Q00 - 0,7 (5.165)
and

Q% = J Af(x) d3x. (5.166)

These charges generate the SU(2), x SU(2)y algebra
[0, 0] = ie™eq
[Qa’ QSb] - isachic
[Q%, Q%] = ig™QF. (5.167)

The spontaneous symmetry breakdown will happen for u?> >0 and the
minimum of the potential is at

o2 +n? =0v? with v = (u2/A)*. (5.168)
We can choose {0|r|0> = 0 and
{0|o]0> = v. (5.169)

With the shifted field defined as ¢’ = 6 — v in V(o? + n%); we can easily
check that ms are the massless Goldstone bosons. Following a similar
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procedure to that outlined in the previous example, we can work out
commutators such as

[0%, n*] = —ic®. (5.170)

And the choice of (5.169) implies that axial charges Q°* do not annihilate the
vacuum; in fact

<014;(0)n"> # 0. (5.171)

Thus the SU(2), x SU(2)x symmetry is broken spontaneously into the
SU(2) symmetry generated by the charges Q¢ of (5.163) because

040> =0 fora=1,2,3. (5.172)

We note that in the original Lagrangian (5.159) there is no nucleon mass term
because a myNN term would not be invariant under the axial transformation
(5.164). However the chirally symmetric Yukawa coupling of
gN(o + it -mys)N generates a mass term for the nucleon after spontaneous
symmetry breakdown

gN(o + it mys)N - gvNN + gN(¢’ + it - ny5)N (5.173)
and the isodoublet nucleon mass is
my = gv. (5.174)

The meson masses are (isoscalar) m, = /2u and (isotriplet) m, = 0. Thus the
symmetry of the Lagrangian SU(2), x SU(2)g is not realized in the particle
spectrum which displays only the isospin SU(2) symmetry. If we have u? < 0,
then the symmetry is not hidden: ¢ and = will be degenerate in mass and form
the (2, 2) irreducible representation of the SU(2), x SU(2)g group.

5.4 PCAC and soft pion theorems

The symmetry of the Lagrangian is always reflected in the algebra of
currents. But in spontaneous symmetry breakdown the particle spectrum
only realizes that portion of the symmetry which is also respected by the
ground state. Thus in the SU(3), x SU(3)y algebra of electromagnetic and
weak currents (see §5.2) we want the symmetry to be broken spontaneously in
such a way that the vacuum is only SU(3) symmetric. The Goldstone
theorem then implies that there must be eight massless pseudoscalar mesons
associated with the spontaneously broken axial charges Q°°, a=1,...,8.
Clearly in reality we do not have such massless particles but eight relatively
light mesons, m, K, and n. We then conclude that the flavour
SU(3). x SU(3)g symmetry must also be broken explicitly and the masses of
the 0~ mesons reflect this chiral symmetry breaking (Dashen 1969)

H = Hy + AH (5.175a)

where #, is SU(3), x SU(3)y invariant and s#’ is not. Also the pion
isotriplet being much lighter than the Ks and n suggests that we can further
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decompose the symmetry-breaking Hamiltonian into two terms
AKH' = M Hy + A5, (5.175b)

where #, is SU(2), x SU(2)g invariant and A; > 4,. Thus, SU(2), x SU(2)x
is a much better symmetry than SU(3), x SU(3)z. An example is the free-
quark model where chiral symmetry is broken explicitly by the quark mass
term (5.43) with m;>»>m,, my; and we identify 1,5#, = mSs and
A, #, = m,iu + mydd. Thus the pions are expected to have masses propor-
tional to the nonstrange quark masses, and the kaons and eta meson to have
masses proportional to the strange quark mass (more on this in the next
section). In this section we shall derive a number of soft pion theorems which
hold in the chiral symmetry limit (1, = 0) with pions taken to be massless
particles. In the next section soft meson theorems sensitive to the structure of
the symmetry-breaking term 1,5, + 1,5, will be studied.

PCAC

As the discussion in §5.3 indicates, the Goldstone bosons ©%(x) have direct
couplings to the broken axial charges Q°* and currents 4% as in (5.171):

01420)Im>(p)) = if**p, a,b=1273 (5.176)

where f“* is some nonzero constant. If we assume that the SU(2) isospin
symmetry is unbroken, it may be written as

f® = f6% (5.177)

where f, is the pion decay constant measured in n* —[* +v,.
Experimentally we have f; ~ 93 MeV. Taking the divergence of the axial-
vector current, we have

0|0 A%(0)|mb(p)y = 6°f,m?2. (5.178)

Thus, if 4, = 0in (5.175), the SU(2), x SU(2)g symmetry in the Hamiltonian
is exact, and

0*4; =0 (5.179)

which implies that m2 = 0 in (5.178), as required by the Goldstone theorem.
However if the symmetry is explicitly broken , 4, # 0, we can rewrite (5.178)

00" 450)n*(p)) = f;mz<0¢°(0)In*(p)> (5.180)
where ¢° is the pion field operator with the normalization
0lp*(0)In*(p)y = 6°.
The generalization of (5.180) into an operator relation
0t AL = fimip* a=1,23 (5.181)

is known as the partially conserved axial-vector current (PCAC) hypothesis
(Nambu 1960; Chou 1961; Gell-Mann and Levy 1960). One would think that
such a relation which connects the weak currents 4j and the strong
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interacting pion fields ¢“ should have a host of experimental implications. In
practice, in order to translate this PCAC hypothesis into relations connecting
physically measurable quantities, additional assumptions need to be made as
we shall see in the following example.

Low energy theorems with one soft pion

(1) Goldberger—Treiman relation. Consider the matrix element of the weak
axial vector current between nucleon states {p(k’)|(4; + iAZ)In(k)> which is
measured in the neutron B-decays. From Lorentz covariance we have

<pkI(Ay +iA2)In(k)> = (K )[7,y594(q%) + q,75ha(@*)]ua(k)
(5.182)

where ¢ = k — k' is the momentum transfer between n and p. The form
factors g,, h, are functions of the invariant g>. Experimentally we have
g4(0) =~ 1.26. The current divergence has the matrix element

<p(k")| 044, + i4DIn(k)> =
i, (k' )y sun(k)[2mng a(@®) + q*h4a(g*)]  (5.183)
where my is the nucleon mass. The PCAS hypothesis of (5.181) with

¢ = (' +i9?/ V2 (5.184)
yields
<p(k|oM(4, + i4Dn(k)y = 2fmp(K)d In(k))
2fym3

=" Find gun(@)idt (k'Y sun(k) - (5.185)

where g.n(g?) is the TNN vertex function. The physical pion-nucleon
coupling constant g,y is defined as

grnn = Gunn(m3) (5.186)

with an experimental value of (gfr/NN/4n 14.6. Comparing (5.185) with
(5.183) we have

2fym2
P Gl @) = g ) + PhAP). 618D
If we set ¢ = 0 in this equation, we have

Jegann(0) = myng 40). (5.188)

This relates the nucleon axial vector coupling g,(0) to the TNN vertex at an
off-mass-shell point g,,n(0). In order to convert this into a physical relation
we need to make an additional assumption that the variation g n(g?) from
q*> =0 to g®> = m? is small, i.e. that g\n(g?) is a ‘smooth’ function

gann(0) =~ gnNN(m: ) = gunn- (5.189)
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Only then do we obtain the Goldberger—Treiman relation (1958)
Jegann = Mng4(0) (5.190)

which is satisfied within 10 per cent for the above-quoted measurement
values.

We should remark that only the form factor 4,(¢?) has a pion pole term
corresponding to the diagram in Fig. 5.4

V2fs

2 2
m; —q

V2gmn(q?). (5.191)

pion pole of h,(g?) =

At the pion mass shell point ¢*> = m?2, eqn (5.187) yields a trivial identity

2f7‘tm7%g1tNN(m1%) = Zﬁmr%gnNN(mg) .

n———)——/p

~
~
~

F/2REN
® 4,
FiG. 5.4.

This example illustrates that the additional smoothness assumption is
needed in order to obtain relations among physical quantities from the
PCAC hypothesis. In particular we have to extrapolate the pion field from
the off-shell point g* = 0 to the on-shell point g? = m?. Since numerically the
pion mass m? is rather small on the hadronic scale, this extrapolation is
believed to cause only a small error. The Goldberger-Treiman relation
(5.190) serves as a measure of the typical accuracy of this type of
extrapolation. This means that if we extend the PCAC hypothesis to other
pseudoscalar mesons, the Ks and n, the extrapolation must be over a much
larger kinematical region (from 0 to mg or m?2). Thus the kaon and eta meson
PCAC relations are not expected to be as good as those for the pions.

One can also derive the Goldberger—Treiman relation in the chiral
SU(2), x SUR)g limit (4, =0 in (5.175)). In this symmetric limit the
currents are conserved

0"4,=0 (5.192)

which modifies (5.183) to read
2Mng4(@*) + a*hi(q®) = 0 (5.193)
and pions are massless Goldstone bosons. Hence the pole term of 4 ,(¢?) is at

g* = 0. From (5.191) we have

-2 0
lim ,(¢?) = M (5.194)
420 q
which, when combined with (5.193) leads again to (5.190). Thus the deviation
from the Goldberger-Treiman relation measures the chiral symmetry-
breaking term A,5#,. Similarly the derivation from the kaon and eta meson
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PCAC relations, which we expect to be larger, measured the chiral SU(3),
x SU(3)g-breaking term 1,5, + A,54,.
(2) Adler’s consistency condition on the TN scattering amplitude. Consider
the pion—nucleon scattering amplitude
(n(@IN(p)In*(g)N(py)) = i2m)* 6*(py + ¢4 — P2 — ¢2) T (5.195)

which has the invariant decomposition

17 a + a
R s

The invariant amplitudes 4 and B are functions of the usual Mandelstam
variables s and ¢ or the more symmetric variables
v=q1-(p1+p2)/2M =g, - (01 +p2)2M
VB = —¢q; - q2/2M.

We note that v — 0, vy — 0 for either of the pions becoming soft, g, — 0 or
g, — 0. One easily works out the pole-term, i.e. single-nucleon term,
contribution to the invariant amplitudes. It can be shown that the
combination of invariant amplitudes (which is just the forward scattering for

qi = 43)
T—A+vB (5.196)

is nonsingular for either ¢, — 0 and/or ¢, — 0. Furthermore we have the
isospin-even and -odd amplitudes

A% = 54D + 377,147
similarly for B®) and T,

To derive the single soft pion theorem we use the standard reduction
formula (see, for example, Bjorken and Drell 1965) for the one-pion field
operator in (5.195)

TR = i(—g5 + m)XN(p,)|¢*(0)in*(g)N(p1)>
_ (=g + mp)
Jamz
where we have used the PCAC relation (5.181). Taking the ¢, — 0 limit, the
nonsingular amplitude of (5.196) T(v, vs, 47, g3) vanishes
70,0, m2,0) = 0. (5.198a)

This is Adler’s PCAC consistency condition (Adler 1965a). That T(7) is zero in
this limit is trivial since it is odd under crossing and we expect it to be
proportional to the variable v. Similarly, we also have the condition,

T0,0,0,m2) =0 (5.198b)
when taking the g; — 0 limit.

(N(p)I4;0)In"(g:)N(p1)> (5.197)
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Low-energy theorems involving two soft pions
For matrix elements involving more than one current, low-energy theorems
may be derived if we combine PCAC and current algebra. In fact the physics
and the mathematical procedure to be used are similar to those of the
familiar soft-photon theorems which reflects the U(1) gauge invariance of
charge conservation (see, for example, Low 1954).

Consider the double divergence of a time-ordered product of two axial
vector currents

040, T(Ag(x)A5(¥)) = 8405(0(x0 — o) A(x)A5(»)

+ 0(yo — x0)A5(»)45(x))

= 0%(0(xo — yo)Asi(x) 0*45()
+ 0(yo — Xo) 0*A5(»)A™(x)
— 8(xo — yo)A5(x)A8(»)
+ 3(yo — Xo)A4(y)A5(x))

= T(0"A5(x) *45(»))
+ 8(xo — yo)[45(x), *A5(»)]
— 0% 8(xo — yo)[44(x), A6(»].  (5.199)

Sandwiching this identity between nucleon states and taking the Fourier
transform

4y d4y eldi X a—ig2"
Jd xd*yeTeT Y,
we obtain

a3 jd"'x e (N(p)| T(Ai(x)A50)IN(p1)>

= jd"'x e “{{N(p,)IT(0" 4(x) 6" A3(0)IN(p,)>

—ig{{N(p,)16(xo)[46(0), 45 (x)IIN(p,)>
+ (N(p)I6(xo)[45(x), 0*A50)]IIN(py)>} (5-200)

where we have used translational invariance and factored out a (2m)*
d(p; + 91 — P2 — q,)- This relation between the matrix elements of currents
and the matrix elements of divergences is an example of the Ward identities. It
is the starting point for the derivation of low-energy theorems. The question
of maintaining the Ward identities in higher-order perturbations will be dis-
cussed in §§6.1 and 6.2.

PCAC implies that the first term on the right-hand side of (5.200) is the
(nucleon) matrix element of a time-ordered product of two-pion operators,
i.e., it is the 7N scattering amplitude. The second term can be evaluated
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from the SU(2), x SU(2)y current algebra of (5.80)
8(xo)[A5(0), Aj(x)] = —i 5(x)a“"‘Vfl(x). (5.201)

In principle there is also the contribution from the Schwinger term in this
commutator. But as it turns out, the time-ordered product defined in (5.199)
is not covariant because of the singularities in the product 7'(4%(x)A4%(y)) as
Xo — Yo and an extra term should be added to make it covariant. This extra
term will cancel the Schwinger term in the commutator of (5.201) (see, for
example, Adler and Dashen 1968). The net result is that if one uses the usual
time-ordered product one does not have to be concerned about the
Schwinger term in the derivation of the Ward identities.

The third term on the right-hand side of (5.200) is an equal-time
commutator of a current and a divergence. This commutator, called the o-
term, is not governed by the current algebra and it depends on the symmetry-
breaking terms (5.175b). In the following application we shall eventually take
the limit of p; = p, = p, q; = g, = q — 0. In such a kinematical configura-
tion the o-term can be shown on general grounds to be symmetric in the
indices a and b. To see this, write

lim o¥(p,q) = o =i Jd“x S(xo)N(P)I[AG(x, xo), 6*A5(0, x0)]IN(p)) .
(5.202)

Using translational invariance and changing variables x to —x, we can write
(5.202) as

ov =i Jd3X<N(P)I[A‘6(0, Xo), 0*A3(x, x0)]IN(p))

=1 jd3X<N(P)I[A3(x, Xo), 9°A45(0, x0)IN(p)> (5.203)

where we have used the fact that the spatial divergence vanishes upon
integration over all space. We then have

of =10, jd3X<N(P)I[A8(X, Xo), 43(0, X0)1IN(p)>

—i Jd3X<N(P)|[5oA‘6(x, Xo), 45(0, x0)1IN(p)> (5.204)

or

oR — o' =10, Jd3X<N(p)I[A‘6(X, Xo), A4(0, x0)1IN(p)>.

The commutator on the right-hand side will give an isospin charge after the
integration over space is performed, and it is time-independent if we neglect
isospin-breaking effects. Thus we have

¥ = o¥. (5.205)
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It is also clear from the form of eqn (5.203) that the o-term, being pro-
portional to %4, represents chiral symmetry-breaking effects.

Adler—Weisberger relation. To derive the low-energy theorems for nN
amplitudes involving two soft pions we reduce out both of the pions in
(5.195) and apply the PCAC formula (5.181)

T = i f dx €9 (g2 — m2)(gE — m2)
x (N() T Q)N
g} = miad — w77 [t

x (N(p,)| T(0"A5(x) 8*A5(0)IN(p,)) - (5.206)

Similarly consider the weak axial-vector current amplitude
@n)* 6*(py + g1 — P2 — 42) T
= Jd“x d*y e X e 4 V(N (p)| T(A5(x)A5(»))IN(py)> - (5.207)

The amplitudes of (5.206) and (5.207) are related by the Ward identity
(5.200). With the forward scattering kinematics p, = p, =p and ¢, =
q, = q, we have

q"q* Ty = —i(g*> — m2)™*m} 2T + iv[1%, 1°1/2 — i6%(p, q)
(5.208)

where we have used the definitions in (5.206), (5.207), and (5.202). The
commutation relation in (5.201) implies that the second term on the right-
hand side of (5.200) takes on the form

—ig* Jd“x e “(N(p)Io(xo)[46(0), 45(x)IN(p)>

= e™q"u(p)y,cu(p)/2
= 2p - qe™ )2 = —iv[7% 7°]/2. (5.209)

The o-term, as we have demonstrated above, is symmetric in a, b. Since the
pion has isospin 1, the isospin symmetric ¢-channel state must be 0 or 2. Only
the isospin-zero state can contribute here since the nucleon has isospin 1/2.
Thus we write

o = 6%ay. (5.210)

The left-hand side of (5.208) is quite complicated as it involves contributions
from all possible intermediate states that can couple to the nucleon through
the axial vector currents. This can be simplified by taking the low-energy



5.4  PCAC and soft pion theorems 159

limit g, — 0 so that the only surviving terms in 7" ab are those singular in this
limit. It is easy to see that such terms correspond to the one-nucleon pole
diagrams in Fig. (5.5).

A3 Ag 43 Ay
» Pty P

FiG. 5.5.

(0" 4" T pore = 2ig3{[7", 1]y — 07¢*}(v* — miq®)/(q* — 4v?)

(5.211)
where g, is defined in (5.182). Since ¢*> « v = p - g for small g, we have
(@G T ~ ig[1% 7112 (5212)
Thus in the low-energy limit, the Ward identity (5.208) becomes
igZv[1%, 1°]/2 = —if 2T%, + iv[1% 1°]/2 — 16%0y. (5.213)

The forward amplitude T,y is just the combination 4 + vB of (5.196). We
have the following soft-pion theorems for the isospin odd and even 7N
amplitudes T (v, vg, g%, ¢3):

lim v 1T, 0,0,0) = (1 — g2)/f? (5.214)

v—0

and
T((0,0,0,0) = —ay/f2. (5.215)

To make contact with physical amplitudes (g2 = g3 = m2) we can extrapolate

the result to the physical threshold (scattering length) at v = vy = mmy,
2

Vp = —'mn/za

vo 'T T vo, —m/2,m3, m) = f73(1 — g3) + 0(2,)  (5.216)
T vo, —my/2, mZ, m) = O(4,) (5:217)

where we have used the fact that m? and the o-term are chiral symmetry-
breaking effects and are of order O(4,) in (5.175b) (Weinberg 1966).
Alternatively we can convert the low-energy theorem to sum rules by using
dispersion relations. For example, since T'7)(v, %) is odd under v - —v, we
can write an unsubtracted dispersion relation for v~ 1T(7)(v, 0),

oo

TO(,0 2 j Im TV, 0) dv'
s

. T (5.218)

Vo
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Then setting v = 0 and using (5.214), we get

1—g2 2 jlm T (v, 0) dv
> .

v

f:oon
vo

We may use the Goldberger—Treiman relation (5.190) to eliminate f;

(5.219)

1 | 2m? J Im T¢)(v, 0) dv
- 5 )

2= 2
9u TG NN
Vo

If we make the smoothness assumption
Im T7(v, 0) =~ Im T (v, m2),

(5.220)

v

we can relate the on-shell amplitude Im T¢™)(v, m2) to the ©N cross-section
from the optical theorem

Im 7y, m3) = vols) (v) = v[oW’ () — ot ()] (5.221)

The sum rule in (5.220) becomes

1 2mg f dVoll(v) —05"(V)]
—==1+— )
g TGxNN v
Vo
This is the Adler—Weisberger relation (Adler 1965b; Weisberger 1966).
Using experimental values for the np total cross-sections we get the weak
axial nucleon coupling g, ~ 1.24 which agrees quite well with the
experimental value 1.259 4 0.017.
The isospin-even amplitude is related to the chiral symmetry-breaking o-
term, which will be examined in the next section.

(5.222)

5.5 Pattern of chiral symmetry breaking

Soft-pion theorems such as the Goldberger—Treiman relation and the Adler—
Weisberger sum rule are exact chiral SU(2), x SU(2)g symmetric results.
They are not sensitive to the structure of the symmetry-breaking terms in
(5.175b). On the other hand, the o-term represents chiral symmetry-breaking
effects. Consider this commutator of axial current with its divergence
appearing in (5.199) and (5.203), taken between some general hadronic states
of momentum p

o =i st‘x([f(p)l[A‘(',(x, 0), 3°A5(0)]l(p)>

- Jd3y<ﬂ(p)I[Q5“, LAy, 0), 45(0)1]le(p)>

- Jd:’}‘(ﬂ(P)I[QS“, [#(0), A5(y, 0)11la(p)>
= <B(P)LQ*, [Q%, #(0)]]lo(p)> - (5:223)
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Thus the o-term is simply a double commutator of the Hamiltonian density
A with two axial charges. If the chiral symmetry-breaking term is absent in
#, the axial charges are conserved. They commute with the Hamiltonian and
the ¢ commutator vanishes. Thus we can replace # in (5.223) by the chiral
symmetry-breaking term (5.175b).

Measuring the nucleon and vacuum o-terms

We have already seen (5.215) that the isospin-even nN scattering amplitude
in the soft-pion limit is proportional to the o-commutator between the
nucleon states. One must be careful in relating this result for 7¢+)(0, 0, 0, 0)
to the on-shell g2 = g2 = m? amplitude since this extrapolation involves
a correction term of the same order as the o-term itself. However a systematic
expansion in the chiral SU(2), x SU(2)g symmetry-breaking parameter 4, of
(5.175b) is possible (Cheng and Dashen 1971)

T(+)(O9 0’ mr%’ mf) = T(+)(09 Oa 0, 0)
2aT("') zaT(+)

— 4. (5.224
+ m; i + m; Fre + O(my). ( )
Using Adler’s consistency conditions (5.198) such as
oT ™)
70, 0, m2, 0) = T(0, 0, 0, 0) + m? o + O(m¥ =0,
1

we have
(0,0, m2, m?) = —T*(0,0,0,0) + O(my)
onlfE + O(mf). (5.225)

In this expansion in powers of the symmetry-breaking parameter A, (i.e. m?),
we have ignored any possible non-analyticity problem (Li and Pagels 1971).
It should be noted that even for the on-shell amplitude the kinematic point
v = vy = 0 is still outside the physical region. However the amplitude value at
this point can be reliably extrapolated from the physical quantities via
ordinary dispersion relations.

So far we have concentrated on the SU(2), x SU(2)g chiral symmetry. The
generalization to SU(3), x SU(3)y is straightforward. The PCAC relation
for octet axial-vector currents reads

AL = fmi¢p®  a=1,2,...,8 (5.226)

where the ¢ are the field operators for the octet pseudoscalar mesons. The
generalized Goldberger-Treiman relations and soft-meson theorems for
meson—baryon scattering amplitudes can be derived in a similar fashion.

We can also obtain more low-energy theorems in the soft-meson limit by
considering other matrix elements of the currents. In particular, from (5.226)
we have

<0l 45| Py(K)) = &4 fo (5.227)
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Using the reduction formula and PCAC, we can write this equation as

im? — k?)
5abmﬁfa = ;LT

_i(mg — k)

Jomy

— Jd“x e *¢01d(x0)[A5(x), 0*A5(0)]|0)} . (5.228)

jd“x e "% 0| T (0" A25(0) 0°A%(x))|0)

{ik, jd“x(OlT(@“A;(o) AY(x)|0Y e %

The low-energy theorem is then
Sapmifi =1 J d*x{016(xo)[A45(x), 8*A45(0)]I0> = o’ (5-229)

where

of = 0I[Q™, [Q*, #(0)]]/0>.

Thus the pseudoscalar meson masses are related to the vacuum matrix
elements of the o-term. (This relation (5.229) can also be derived by directly
sandwiching eqn (5.199) between the vacuum states.)

The (3, 3*) + (3%, 3) theory of chiral symmetry breaking

The nucleon and vacuum matrix elements of the s-commutator are related to
the experimentally measurable quantities through the relations in (5.225) and
(5.229). We now need a theory of chiral symmetry breaking. What is the
structure of the A#’ term in (5.175)?

A simple possibility is that the chiral symmetry is broken by the quark
mass term only

AH' = m,iu + mydd + mgs (5.230)
or
M#, =mss and A, #, = m,iu + mydd (5.231)

since the quark fields transform as
Q=31 - ys5)a ~ (3,0)
Qe = 3(1 +75)g ~ (0, 3)

of the SU(3), x SU(3)g group. A#”, being of the form §,qg + qrq., trans-
forms as a member of the (3, 3*) + (3*, 3) representation. This is the theory of
chiral symmetry-breaking proposed by Gell-Mann, Oakes, and Renner (1968),
and by Glashow and Weinberg (1968). In group-theoretical language we say

AH' = coug + c3uz + cglg (5.232)

where the u,s are a set of scalar densities. In terms of the quark fields (5.38)
and Gell-Mann matrices they have the representation

u; = qliqi i = Oa 1, 2’ teey 8 (5233)
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with

Ao = (2/3)41. (5.234)
Similarly define the pseudoscalar density as

v; = —iqAysq. (5.235)

With the representation of u;, v; in (5.233) and (5.235) and Q% Q°“in (5.44)
and (5.48) one can then work out their commutators using the canonical anti-
commutation relations for quark fields,

{qI(X, t), qﬂ(y, t)} = 5aﬁ 53(x - y)> (5236)

where a, f label the Dirac and flavour indices. We shall illustrate this

procedure for the case [Q°%(¢), u®(x, t)]. Suppressing all space-time depen-
dences we have

a

_A _
[q ) Yo?59, qiijI = [q;rqui » Q;Qa] (A"5)up (ibyo)yo/ 2

= (—alai{as, a5} + al{as. al}as — al{al, a5},
+ {CII, q;}qﬁq&)(layS)aﬂ(lb'yo)yﬁ/ 2

= q'[A%s, 4°19/2 = —ays{2%, 1"}q/2. (5.237)
We can define a totally symmetric symbol d,, by
o abe e

{3,7} = §5‘*1 +d"e (5.238)

The nonvanishing elements are

1
diig = dygg = dyzg — dggg = 1/V/3,duag = dssg = dgeg = dg = —3(379),
d344 = d355 = _d366 = _d377 = d146 = d157 = _d247 = d256 = 1/2‘

(5.239)
Furthermore, if we supplement this with (5.234) and
doay ='3)* dap, (5.240)
we have
3(x0)[@3(x0), u;(X, xo)] = —id,j03(0) 6*(x). (5.241a)
Similarly,
8(x0)[Q3(x0), (X, Xo)] = id,;a4(0) 6*(x) (5.241b)
8(x0)[Qulx0), ;(X, Xo)] = fasuth(0) 0*(x) (5.241¢)
8(x0)[Qu(x0), v;(X, Xo)] =ifo:(0) 6*(x) (5.241d)

with a=1,...,8 and jk=0,1,...,8 The f,s are the usual SUQ3)
structure constants with f,,0 = 0.
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In the quark model language
uo = $*(tu + dd + ss)
ug = H)*(tu + dd — 25s)
u3 = (u — dd). (5.242)

The coefficients in (5.232) correspond to quark masses

1
c0=—(mu+md+ms)

V6
o = L m, + my m
8 — \/3 2 s
1
C3 = 3 (m“ - md). (5.243)

In the following we shall first assume isospin invariance; hence m, = my or
¢3 = 0. The question of isospin violation due to m, # m, will be taken up at
the end of this section

AH' = coly + Cglg. (5.244)

Thus SU(3) symmetry breaking is due entirely to the cgug term.

Current quark masses

The double commutator of the o-term can be calculated using (5.241a) and
(5.241b). In actual computation it is simpler if one takes A3#” and the F3s to
be 3 x 3 matrices and computes the anticommutator of (5.237) directly. One
finds (eqn (5.229))

fim? = (—'"—“%m—")@mu +adpoy
fimd = (’"%”’) <Ofiu + 55/0)
famt = M) g 4 adioy + 2™ ooy, (5.245)

6 3
Since the SU(3) symmetry is not spontaneously broken, we will take the
vacuum to be SU(3)-symmetric, i.e.

{0laul0) = <0|dd|0) = <O0fss|0) = u3, (5.246)

and, from the definition of decay constants (5.176) and conditions for

spontaneous chiral symmetry-breaking ((eqns (5.169) and (5.154)), we have

h=k=HR=T (5.247)

Besides recovering the Gell-Mann-Okubo mass relation 4mg = 3m? + m2,
we obtain the ratio of quark masses

mo+mg  m: 1

= ~ 5.248
2m, 2mg —m? 25 ( )
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The pseudoscalar masses suggest that the strange quark has a much larger
mass than the masses of the non-strange quarks u and d. This means that the
SU@2). x SU(Q2)g symmetry is a much better symmetry than SU(3),
x SU(3)g. In terms of the parameters in (5.244), this means that

c

B~ 125 (5.249)

Co

is not far from the SU(2), x SU(2) symmetric value of —2?.

nN ¢-term

The nN o-term for the symmetry-breaking Hamiltonian (5.244) can be
similarly computed in the quark model

on = 3(m, + my){N[iu + dd|N). (5.250)

At this stage of theoretical development we still do not have a reliable
method for calculating such a matrix element. One possible way to estimate
this quantity is to invoke the Zweig rule (Cheng 1976)

(N[SSIND ~ 0 (5.251)

since the nucleon is supposed to contain little strange-quark component (see
the discussion following eqn (7.85)). Eqn (5.250) may then be written

on =~ 3(m, + my){N|tu + dd — 25s|N>

3(m, + my)

where we have used eqns (5.242) and (5.243). The nucleon mass shift due to
the SU(3)-breaking Hamiltonian cgug is
Amy = (Nlcgug|N> (5.253)
which can be related to the general baryon octet mass splittings by
Amy = {B|cgug|B) = a tr(BugB) + B tr(BBug). (5.254)

On the right-hand side we have written the baryon octet (and ug) in 3 x 3
matrices (see (4.157)). That there are two terms on the right-hand side reflects
the fact that there are two 8s in the product 8 x 8 (eqn (4.124)); hence two
SU(3) scalars are contained in the product 8 x 8 x 8. Reading off eqn
(5.254) the coefficients a and f are then related to the baryon mass shifts as

my = mq + (¢ — 2f)
my = mg + (¢ + )
mz = my — (20 — )
my = my — (o + f) (5.255)

where we have absorbed an inessential common factor of /3 into « and f.
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Besides recovering the Gell-Mann—Okubo mass formula eqn (4.166) we can
identify

{Nlcgug|N> = (& — 2B) = m, — mz. (5.256)
Hence, from (5.252),

3(mu + md)

oN
For the ratio (5.248) we obtain gy &~ 30 MeV. It is clear that there is quite a
bit of uncertainty in this estimate, yet the TN o-term is one of the few places
where one can probe the chiral symmetry-breaking pattern with any sort of
reliability.

m, # my and isospin violation by the strong interaction

To close this section we also examine the possibility of isospin symmetry
breaking due to m, # my. Since we already know that electromagnetic
interaction violates this invariance, we must untangle these two separate
mechanisms of isospin-breaking; the SU(3), x SU(3)g-violating term may be
written

A = H, + K, (5.258)

with
H,, = myiu + mydd + mgs (5.259)
H, = e J d*x T(J4x)*(0))D,.,(x) (5.260)

where J*(x) is the electromagnetic current operator and D, ,(x) is the photon
propagator.

There are two contributions to the pseudoscalar meson masses: one
coming from the o-term due to %, the other from the o-term due to J,.
Eqn (5.229) reads

fim2 6% = 6%, + o, (5.261)
where
oom = <0I[Q°, [Q*, #,,1110) (5-262)
oy = 0I[Q%, [Q*", #,11/0>. (5.263)
But
[Q%, #]1=0 (5.264)
for any electrically neutral 9 operator. Thus (Dashen 1969)
00,(1%) = 00,(K®) = 00,(n°) = 0. (5.265)

Also from SU(3), i.e., U-spin invariance, we have
0o,(m*) = 60,(K™) = 5. (5.266)
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After an entirely similar calculation to that which leads to (5.245) and using
the SU(3) results (5.246) and (5.247), we have (Weinberg 1977)

[P (t) = (m, + mou® + p3
[mA(n°) = (m, + mo)u’
rm*K*) = (m, + mu® + p3
[rm*(KO) = (mg + mp?
F2m2(M°) = (m, + my + 4my)p’. (5.267)
We obtain the (improved) Gell-Mann—Okubo relation, as well as

m*(n°)  my+my
m2(K® ~ m+ my

(5.268)

and
m(K*) = mK) —m*@) m
m2(K®) — m*(K*) + m*(n*) — 2m*(n%)  m,

(5.269)

Besides the quark-mass ratio of (5.248) we also obtain
my/m, ~ 1.8. (5.270)

This indicates that u and d quarks are actually not degenerate in mass. This
helps us to resolve a number of longstanding difficulties in our picture of
isospin invariance being broken only by electromagnetism: the sign puzzle of
the proton—neutron and K* — K° mass differences, and then — 37 problem.
If one considers this isospin-violating decay 1 — 3= to proceed via a second-
order virtual electromagnetic interaction, a straightforward current-algebra
calculation then predicts that, in the SU(2); x SU(2)g chiral symmetric limit,
it is strictly forbidden. (For further discussion see §16.3.) It has, of course,
been well-known for a long time (Feynman and Speisman 1954) that this
picture for isospin breaking produces the ‘wrong’ sign for the n—p mass
difference. Also if electromagnetism is the only source of isospin symmetry-
breaking, we will have (through eqns (5.265) and (5.266)) the Dashen sum rule

m2(K*) — m4K®) = m*(n*) — m4(n°) (5.271)

which again yields a wrong sign for the K*-K° mass difference. But the
result in eqn (5.270) shows that there actually is a substantial isospin
violation coming from the strong interaction itself.

If m, and my are so different, how do we account for the smallness of the
observed isospin violation? This is possible if the u and d mass difference is
comparable to m, and m, themselves and they are all small on the typical
strong-interaction scale. Indeed a modern-day calculation of the n—p mass
difference (Gasser and Leutwyler 1975) gives

m,~4MeV, my~7MeV (5.272)

and we now know (see Chapter 10) that the intrinsic strong-interaction
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mass—energy scale is about 200 to 400 MeV. Thus SU(2) isotopic spin is a

good symmetry because the chiral SU(2), x SU(2)g is a good symmetry!
To a lesser extent a similar situation holds for the flavour SU(3) and chiral

SU(3). x SU(3)g symmetries. From eqns (5.248) and (5.272) we have

mg ~ 25(m, + my)/2 ~ 130 MeV. (5.273)

We should emphasize the quark masses we have been discussing are
current-algebra quark masses, or current quark masses. They are the
parameters of the chiral symmetry breaking. In quantum field theory (e.g. in
the free quark model of (5.41)), they are the parameters appearing directly in
the Lagrangian. These are different from the constituent quark masses r
appearing as parameters in (nonrelativistic) bound-state calculations of
hadrons: myeen > 31, m, ~ 2. Since even in the full strong-interaction
theory of quantum chromodynamics (QCD) we have not been able to solve
the bound-state problem from first principles, the connection between these
two types of quark masses has not been rigorously established. But, as a rule
of thumb, the constituent masses 2 and current masses m; differ by a
common constant

Wy = m; + my. (5.274)

m,, being somehow related to the scale parameter of strong interactions, is of
order 300 MeV.

Global flavour symmetry of the strong interaction—a summary

The discussion of this chapter leads us to expect that a viable theory of the
strong interaction must be approximately chiral SU(3), x SU(3)g symmetric.
The field theory of free quarks (5.41) indeed displays such a global symmetry.
It must then be endowed with an interaction that formally (i.e. at the
Lagrangian level) preserves this invariance. However the dynamics must be
such that this chiral symmetry is spontaneously broken with the vacuum
state having quark—antiquark condensate <0|qq|0> # 0, hence not being a
chiral singlet. This dynamical breaking should be characterized by a
momentum scale comparable to f; . It should be symmetric with respect to the
diagonal subgroup SU(3), so that the hadron spectra and interactions
exhibit the familiar SU(3) symmetry of Eightfold-Way and there is an octet of
pseudoscalar Goldstone bosons. This chiral symmetry is also broken
explicitly (hence the Goldstone bosons are not strictly massless) with a
pattern consistent with the three light quark mass terms in the Lagrangian
being the soft symmetry breaking terms. As we shall see in Chapter 10, the
gauge theory of the strong interaction (QCD) has all the features compatible
with these expectations.



6 Renormalization and symmetry

THE topics of renormalization and symmetry are closely related. The
symmetry relations among Green’s functions are generally known as the
Ward identities (Ward 1950; Takahashi 1957). In a theory with nontrivial
symmetry, renormalizability depends critically on the cancellation of diver-
gences from different sectors of the theory as enforced by the Ward identities.
This is even more so for gauge theories where we often need to introduce
spurious degrees of freedom (e.g., photon longitudinal polarization state,
etc.), and one has to be certain that, through the use of Ward identities, these
unphysical states are all cancelled in the physical S-matrix elements. On the
other hand, one is also concerned with the effects of renormalization on the
symmetries themselves. It is this latter aspect of the relation between
renormalization and symmetry that we will concentrate on in this chapter.

In §6.1 we first see how the vector-current Ward identity in the A¢* theory is
maintained up to one-loop diagrams. However similar considerations in §6.2
lead us to the conclusion that the QED Ward identities involving axial-vector
currents are spoiled by renormalization, by the triangle fermion loops. There
must be ‘anomalous terms’ in the axial-vector-current divergence equation.
This allows us to derive the correct current-algebra low-energy theorem for
the n° — 2y decay.

The last two sections concern the relationship between spontaneous
symmetry breakdown and renormalization. Again we concentrate on the
effects of renormalization on symmetry. In §6.3 we present several topics
illustrating the renormalization of theories with spontaneous symmetry
breaking. Finally in §6.4 we show how the classical potential, which we have
used repeatedly to study spontaneous symmetry breaking, can be regarded as
the first term in a systematic expansion in powers of Planck’s constant and
how in certain situations, radiative corrections themselves bring about
spontaneous symmetry breakdown.

6.1 The vector-current Ward identity and renormalization

In eqn (5.200) we saw an example of Ward identities. These relations among
Green’s functions follow from the symmetry properties of the Lagrangian
(i.e., current conservation, charge commutator, etc.). They play a crucial role
in the derivation of current-algebra low-energy theorems and, as we shall
elaborate later on, they are essential in the renormalization programme of
any theory with nontrivial symmetries. Thus it is important to check that
these Ward identities are not spoiled by higher-order correction terms in
perturbation theory. In this section we shall first see, in simple 1¢* theory,
how the vector-current Ward identity is maintained up to one-loop diagrams.
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The vector-current Ward identity

The A¢* theory of eqn (5.23) has U(1) symmetry with the conserved (vector)

current of (5.25). The canonical commutation relation for the complex fields
of (5.22)

(000" (x, 1), p(x', )] = —i6°(x — X) (6.1)

then leads to the commutators
[Jo(x, 1), p(X', )] = i[0o"(x, 1), P(X', )](x, 1)
= 63(x — xX)P(x, 1)
[Jo(x, 1), ¢'(x', ] = —&*(x — x)o'(x, 1). (6.2)

Consider the three-point Green’s function given in Fig. 6.1

ptaq

p

Fi1G. 6.1. The Green’s function of two scalar fields coupled to a vector current.

Gup, q) = Jd“x d*y e TP IC0| T(J,(x)$(1)¢"(0))[0) . (63)

We make the standard current-algebra manipulation

Gup,q) = —i Jd“x dty e™ P 9LC0IT(J ,(x)(y)$'(0))|0)

_ j dx d*y e~V CO| TG, (D) 00

+ C0IT(3(xo — yo)[Jo(x), ¢(»)14'(0)10>
+ €010(x0)[ o (%), 6T(0)1p(¥)I0>}. 64

The first term on the right-hand side vanishes because of current conserva-
tion, 0*J, = 0, and the other terms can be simplified by using (6.2)

q"G,(p, q) = —1 Jd“x e~ PO 0| T(((x)$'(0))I0>
+i jd“y e 2C0IT($'(0)p(»))I0>. (6.5)
The right-hand side is just the propagators for the scalar field

Alp) = Jd“x ™7 0| T(¢(x)$'(0))[0>. (6.6)
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Eqn (6.5) may be written
—i¢"G,(p, 9) = Alp + 9) — A(p) (6.7)

which is an example of vector-current Ward identities.

Z, =1 and Ward identities

Here we digress briefly to illustrate an application of the Ward identities.
They can be used to show that conserved current J,(x) is not renormalized
as a composite operator. The identity given in (6.7) is for the unrenormal-
ized fields which satisfy the canonical commutation relation (6.1). (For the
renormalized fields there will be a factor of Z; ! on the right-hand sides of
the commutation relations.) In terms of the renormalized quantities, using
the relation (2.167),

G:}(P, Q) = Z:;IZJ—IG;;(p’ q)
Ap) = Z; 1 A(p).
We can express the Ward identity (6.7) as
—iZ,q"G(p, 9) = A%(p + q) — A%(p).

Since the right-hand side of this equation is cutoff-independent, Z, on the
left-hand side must also be cutoff-independent, and we do not need any
counter term to renormalize J,(x). In other words, the conserved current
J,(x) is not renormalized as a composite operator, i.., Z, = 1. Thus the
Ward identity (6.7) also holds for the renormalized quantities:

—ig"G(p, 9) = AXp + q) — A¥(p). (6.8)

From now on we will drop the superscript R in (6.8) with the understanding
that these Green’s functions refer to the renormalized quantities.

Such a nonrenormalization result holds for all sorts of conserved
quantities, in Abelian (as this example shows) and in non-Abelian cases.
Actually, for currents associated with non-Abelian symmetries, there is a
direct way to understand this result. These currents must obey fundamental
commutation relations such as eqn (5.55). The nonlinear nature of commu-
tators fixes their normalizations so that no renormalization is possible.

The vector Ward identity at the one-loop level

It is instructive to see how the one-loop diagrams satisfy the Ward identity of
(6.7). In terms of the amputated Green’s function I',(p, q) and the 1PI self-
energy £ defined by (see eqns (2.48) and (2.24)),

L.(p,q) = [A(p + )17 'G,(p, @)[A(p)] !
[A(p)]~' =p* — i — E(p), (6.9)
the Ward identity (6.7) takes the form
ig"T,(p,q9) = (p + 9P — p> — Z(p + @) + E(p). (6.10)
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FIG. 6.2. Tree and one-loop diagrams for the vector current and scalar fields vertex function.

For the contributions of I',(p, g) Fig. 6.2(a) shows the vertex function in
the tree approximation

ig'T}"(p, q) = ig"(—=)(2p + @), = (p + 9)* — p* (6.11)

which is just the lowest-order Ward identity.
Using dimensional regularization for the one-loop diagram (Fig. 6.2(b)),

we have

: o (dk . i
ig"T'"(p, q) = iq" J@T—)z bz (—=i)(2k + g), k1o -2

d"k 1 1
=il - . .
“ ey [(k - ;ﬁ} ©12
For n < 2, the first integral on the right-hand side is convergent and we can
shift the integration variable k to k — ¢, to get

: L | d% 1 1
lqur‘:tb)(pa q) = 1'1 J(zn)4 |:k2 _ #2 - k2 _ ”2] = 0. (6.13)

This will still be true when we analytically continue to » > 2, in particular to
n = 4. The contribution of Fig. 6.2(c) is given by

i T(p, ) = ig"(— )2 + ), m [Z(p + g) — (0)]

(6.14)
where

. iz (dk i
—iZ(pt+a)=—5 JWW——/? (6.15)
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which is independent of the external momentum. We get

£(p) = Z(p) — Z(0) = 0. (6.16)
Hence the right-hand side of (6.14) vanishes and we have
ig"T(p,q) = 0. 6.17)
Similarly, we also have
ig"T"(p, q) = 0. (6.18)
Thus up to the one-loop order we have, from the sum of Fig. 6.2(a), (b), (c),
and (d),
ig"T,(p, q) = (p + q)* — p* (6.19)

which is the Ward identity of (6.10) because of (6.16).

We note that the above proof of the Ward identity (6.7) (or (6.10) in
perturbation theory) involves two important ingredients: (i) the algebraic
relation of (6.11); and (ii) the translation of the integration variable in going
from (6.12) to (6.13). Generally, in order to maintain the Ward identity,
which is the consequence of the symmetry, we must not choose a
regularization scheme that will spoil the original symmetry. (It is clear that
the dimensional regularization fulfils those requirements.)

6.2 Axial-vector-current Ward identity anomaly and n°® — 2y

Following essentially the same steps as in §6.1 we shall see that the validity of
the (axial) Ward identity is not automatic when there are fermions in the
theory, even after the theory is regularized symmetrically. This is because
certain one-loop diagrams introduce anomalous terms which prevent the
Ward identities from reproducing themselves recursively at higher orders in
the perturbative expansion. Such anomalies were discovered by Adler (1969,
1970) and by Bell and Jackiw (1969) in their current-algebra studies. In the
following we shall present an elementary introduction to this subject of ABJ
anomalies.

The tree-level Ward identities and current divergences from the equation of
motion

Consider the three-point functions in electrodynamics
Tyilky, kyyq) =i Jd“xl d*x, 01 T(V (1) V(x2) A,(0)[0) eir i+
(6.20)
T,k kasq) =1 J d*x; d*x, 01 T(V(x1) Vi(x2) P(0))|0) efe i+
(6.21)
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where V,, A,, and P are the vector, axial vector, and pseudoscalar currents,
respectively,

Vu(x) =y (x)y(x),
A (x) = P(x)ypsP(x),
P(x) =y (xpysy(x), (6.22)
and
q=k, +k,.

For the Ward identities relating T, and T,,, we need the divergences of V,
and A4, which are calculated from the equation of motion

OV, (x) = 0
0" A4,(x) = 2imP(x) (6.23)

where m is the mass of the fermion field y/(x). With an elementary application
of current-algebra techniques such as

GUT (1 ()O(y)) = T(3*J ()O)) + [o(x), O(y)] 6(xo — yo) (6.24)

for the current J,(x) and the local operator ((y) and with the knowledge that
in our case the equal-time commutators vanish

[Vo(x), Ao(¥)] 6(xo — yo) = 0, (6.25)
we can formally derive the following vector and axial-vector Ward identities
KT, =k3T,,, =0 (6.26)

and
q*T,,; = 2mT,,. (6.27)

Anomalies arising from renormalization

But when we calculate the lowest-order contributions to T,,,; and T, (see
Figs (6.3) and (6.4) we find that the Ward identities (6.26) and (6.27) are not
satisfied

[ dp i i i
T =1 J(Zn)4 (—1){“[?—"1”5 w-—a-m"p—F)- ”’yu]
N <k; :%)} (6.28)

[ d*p i i !
T,.v=1J(2—n?(_l){tr[p-my5(p—q)—my”(p—kl)—my"]

N <k1 H"Z)}. (6.29)
pey
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ky ky
H v
P p
—_> = p—k — p—k,
q q
P—4a pP—q
v H
k, K,

FIG. 6.4. Lowest-order contributions to T,, of eqn (6.21).

To check the Ward identities, in particular (6.27), we can use the relation
qvs =vs(p — g —m) + (p — m)ys + 2mys. (6.30)
to find that
¢*T,ys = 2mT,, + AD) + AD (6.31)
with

d*p i i
AR = t
& J(zn)‘* r{p— m" =ty —m

1 i
Tt -m g —m V"} (.32

d*p i i
AR = t
g f @ {p —m =) —m "

i i

o—t)—m' =g -m v”} (6325
If the integrals A{) vanish we have the Ward identity in (6.27). Superficially
this appears to be the case. The two integrals in A} cancel each other if we
can shift the integration variable p to p + k, in the second term. Similarly the
other pair of integrals in (6.32b) would cancel. But the integrals are linearly
divergent and a translation of integration variable produces extra finite terms
with A} # 0 and A{2) # 0. This ruins the Ward identity.
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Shift of integration variable for linearly divergent integrals

It can easily be demonstrated in one dimension that a shift of integration
variable may be illegitimate for a divergent integral (see, for example, Jackiw
1972)

©

Aa) = J dx[f(x + a) — f(x)]. (6.33)

To see that A(a) may be nonzero, we expand the integrand

e}

2
A(@) = j dx[af’(x) + ”7 10x) + ]

2
= a[f(0) - f(-0)] + g—[f’(OO) —f(=0)]+... (634

where the primes signify differentiation. When the integral j‘fm f(x)dx
converges (or at most diverges logarithmically) we have 0 = f(+ o) =

f'(+00) = ..., and A(a) vanishes. However, for a linearly divergent integral,
0% f(+o),0=f'(+o)=...,and A(a) need not vanish
A(a) = a[ f(o0) — f(—0)]. (6.35)

This corresponds to a ‘surface term’ (‘surface’ in one dimension is the end-
points). The generalization to a linearly divergent integral in n dimensions is
straightforward

Aa) = Jd"r[f (r+a)—f(n]

0 1.0
= jd"rl:ara—rlf(r)+§a’6—rla"5%f(r)+...:|- (6.36)

After applying Gauss’s theorem, all but the first term vanish upon integrating
over the surface r = R » o

A@ = a2 F (RIS, (R) 6.37)

where S,(R) is the surface area of the hypersphere with radius R. For the case
of four-dimensional Minkowski space, we have

A@) = a Jd“r 0.f(r) = 2in%a’ lim R*R.f(R). (6.38)
R-

Ambiguities in T,

The one-loop amplitude T,,, is (superficially) linearly divergent; hence it is
not uniquely defined. The expression in (6.28) implies a particular routing of
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the loop momentum p: the fermion line between the vector and axial vector
vertices carries momentum p. We could have chosen to route it differently so
that this fermion line carries p + a, where a is some (arbitrary) linear
combination of k, and k,

a = ok; + (& — B)k,. (6.39)

The fact that integral is linearly divergent implies that 7,,, has an ambiguity
in its definition by an amount

Auv}.(a) = Tuvﬁ.(a) - Tuv}.(o)
d*p
== J(Zn)‘*

1 1 1
X {tr[(p+a) “m YiVs (pra—q)—m Py (pra—k,)—m Vu]

! )
m 73 (= q) m! p—ky)—m " perv

= AN + AR (6.40)
Applying the result (6.38), we have

dp . @ 1 1 1
AY, = (-1 Tt
) [ e e e e

—i2n%a" .
= ———— lim p?p, tr(y,7:7s750 77, PP’ P°/p®
Q)¢ o
127t a, P p

=n )4 :;w e die,, -

After replacing p°p’/p* by ¢g*°/4, we have
AN, = ¢,,,,a° /87 (6.42)

Since AZ), is related to (6.42) by the exchanges k, < k, and p < v, we have
from eqns (6.40), (6.42), and (6.39)

(6.41)

g
Buvs = A+ AR = o epunilhy = ). (6.43)

Thus the definition of T,,, has an ambiguity signified by the arbitrary
parameter f§

Tl = Tps0) = gy s —la¥ = T, (640

Determination of the anomalous term

We now attempt to determine f by imposing the Ward identities. We shall
see that no value of f exists such that T,,,(a) satisfies both the vector and
axial-vector Ward identities (eqns (6.26) and (6.27)).
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Let us first check the axial Ward identity (6.27). Like those in (6.40) the
two surface terms in (6.31) can again be evaluated using (6.38)

A — _ k3 44 0 (ul(p+mysyp— % +mpy,] >
" (@n)* p. \ @ —m)p - ky)* —m’]

T

k5
_ B
=GP 2in? lim 22 7 > () sV YY) P KA

p=x

-1

=52 Euvopk K5 (6.45)
and
AD = AR, (6.46)
Thus from (6.44) and (6.31), we have
1—
qlTlv}.(ﬁ) = 2mTuv(0) - 47r2B uva’pkdkp (6'47)

For the vector Ward identity (6.26) we have

1 T,:(0) = (= 1) f(z )* { r[ Pa¥s p—q)—m T 7 —%k)— mkl}

1 1 1
+ tr[p—m YiVs r—a) —m k, (p—Fy)—m Vv:l}' (6.48)

Using
ky = (p—m) — [(p — %) — m]
=[—*%)—ml—[(p—¢q) —m], (6.49)
we can rewrite (6.48)
d*p 1 1
T,,;(0)=(-1) JW tr[?z?s F—q —m Pv (7 —%) —m
1 1
s G gy —m m:l- (6.50)

Again the right-hand side is a surface term that can be evaluated using (6.38)

0) = k3 4 0 <tr[ms(p —k, + m)y(p + m)]
TodlD =0y |97 35\ 1o = ko = w717 = )

T

kS
= 2in? llmp—tr(vsmavvv,;)kzp”

p—=x©

-1
=2 E1avpk K (6.51)
or, with (6.44)

1
T8 =" ”” 610 kSRS (6.52)
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Thus it is not possible to put (6.47) into the form of (6.27) and (6.52) into the
form of (6.26) with any choice of . As it turns out that there is no anomalous
term in the Ward identities for {0|7(VVV)|0) and that there are anomalous
terms for <0|T(AAA)|0), it is logical to associate the anomaly with the axial-
vector current. Thus we fix the momentum routing so that the vector Ward
identity (6.26) is maintained: i.e., if § = —1, the axial Ward identity becomes

¢*T,,, = 2mT,, — 3 Euvapk TK5. (6.53)
This corresponds to a modification of the axial-vector current divergence eqn
(6.23) as

0*A;(x) = 2imP(x) + (4m) " 2e""P°F,(X)F ,4(x) (6.54)

where F, (x) is the usual electromagnetic field tensor. This extra term, the
ABJ anomaly, is thus produced by the renormalization effect and has the
following properties:

(1) The anomaly is independent of the fermion masses and should also be
present in the massless theory.

(2) Adler and Bardeen (1969) showed that the coefficient in the anomaly
term is not affected by higher-order radiative corrections, i.e., triangle
diagrams with more than one loop do not contribute to the anomaly term.
This can be understood heuristically by noting that the superficial degrees of
divergence of the higher-order triangle diagrams are less than one and the
momentum-routing ambiguity does not exist for such diagrams.

(3) As our presentation has been in terms of momentum routing and
conventional cut-off regularization, the reader may inquire how this anomaly
problem rears its head in the dimensional regularization scheme. There the
problem shows up as the difficulty of giving a proper definition to the Dirac
¥s matrix in space—time dimensions other than four.

(4) It was pointed out by Fujikawa (1979) that the ABJ anomalous Ward
identity could be formulated rather directly in the path-integral formalism.
He showed that the path-integral measure for gauge-invariant fermion
theory is not invariant under the y, transformation. The extra Jacobian
factor gives rise to the ABJ anomaly.

The ABJ anomaly for non-Abelian cases. In non-Abelian theories, Green’s
functions with odd number of axial vector couplings up to five-point
functions contribute anomalous terms to the divergence of axial-vector
current (Bardeen 1969). However the triangle anomaly may be regarded as
the basic one since it is the simplest and its absence implies the absence of all
other anomalous diagrams. In the following we shall continue to restrict our
discussion to the triangle anomaly. Consider

Tiilky ka5 q) =i Jd“xl d%x, 01T (V1) V() A5(0))]0) e ke,
(6.55)
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where

Vax) =y ()T, (x)

A5(x) = Y () T,59 (x) (6.56)

and the T are the internal symmetry matrices. Also consider

Tiv(ky, ko q) = Jd“xld“xz@lT( Vix1)V3(x2) PE(0)|0) e xi+a=2
(6.57)
with
P(x) = Y() Ty (). (6.58)
The anomaly in the axial-vector Ward identity is
T = 2mTol

7 Euvpoki kG D + commutator terms  (6.59)
n

where
D = %tr({T“, 7). (6.60)

In the non-Abelian situation the Ward identity usually also involves equal-
time commutators (see eqn (6.65) below for an example).

n® — 2y

An important application of the ABJ anomaly in current algebra is in the
derivation of the soft-pion theorem for the n° — 2y decay. This amplitude is
defined as

(ke vlkaes) | 70(q)) = i(2m)*6*(g — ky — ky)eb (ke (k)
x Tk, kas q) (6.61)
with
ki, ky,q) =€ Jd“z d*y e R O|T(T52) () In(g))
(6.62)
which has the Lorentz covariant structure
T¥(ky, ky, q) = ig,,,,k k5T (q7). (6.63)

To derive the low-energy theorem, consider the amplitude

Cpatkys kysq) = jd“x d*y e =" 0| T(A3(x) JS(») 57 (0))|0)
(6.64)
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which satisfies the Ward identity
qlruvl(kl ’ kZ ’ CJ) = —i Jd“x d4y eikz‘f"ifl'z\'

x {<OIT(@*A3(x) JY"(») J3"(0))I0)

+ <0IT(3(xo — yo)[A3(x), J3"(1)175"(0))[0>

+ <0IT(3(x0)[A5(x), J;"(0)]I"(¥)I0Y}.  (6.65)
From the current algebra of eqn (5.80) the commutator terms vanish.

Naively one would identify the first term on the right-hand side as the
n® — 2y amplitude via PCAC (5.181)

—ie*(—q* + m? » .
(f:iz m ) d4x d4y elkz')'—-lq'.\

x 0T (2* A3(x) J3"(») J3"(0))|0 . (6.66)

Then there should be the soft-pion result of I'(g? = 0) = 0 (Sutherland 1967;
Veltman 1967) since the left-hand side of (6.65) vanishes when ¢* - 0asT,,;
does not have intermediate states degenerate with the vacuum and coupling
to the vacuum through the axial-vector current 43(x). However one must
include the anomaly term in the Ward identity (i.e., PCAC is modified in this
case)

qlruvl(kl ) kz’ q) =

l"l“’(kl’ k2a 41) =

Jfumz iD 3
m ruv(kl B k2, q) - 5;[_2 suvapklkg (6.67)

where D is the anomaly coefficient (6.60) (see eqn (6.72)). We then obtain the
low-energy theorem

) ie’D S
lql_I.IOI l_\uv(kl s kZ, ‘I) = EZZ suvdpklkZ (668)
or
e’D
L0 =52 (6.69)

Thus in the soft-pion limit the contribution to the n° — 2y amplitude comes
entirely from the anomaly (Adler 1969). To calculate D, let us first assume
the simple quark model (without the colour degrees of freedom) where the
currents are given by

() = q(x)7,0q(x)
3

A
A3(x) = A,y 5 9) (6.70)

with

-1 L=l -1 ] (6.71)
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The anomaly coefficient (6.60) takes on the value

1 ) 1
-yu(lea%)-4 (6.72)

yielding I'(0) = 0.0123m, ! which is about a factor of 3 smaller than the
experimental value of I'(m2) ~ 0.0375m, *. This lends support to the idea
that quarks carry colour degrees of freedom. The anomaly coefficient D is
proportional to the trace of the fermion loops and there will be an additional
factor of 3 coming from summing over the three colours

I'(0) = 0.037m; ! (6.73)

We note that in the above calculation the strangeness flavour does not play a
role as A5 is nonzero only for the first two components. Physically this
corresponds to the statement that the pion is composed of nonstrange
quarks. Clearly (6.73) is not modified when other flavours (c, b, ...) are
included.

6.3 Renormalization in theories with spontaneous symmetry
breaking

In this section we discuss two topics related to the renormalization of theories
with spontaneous symmetry breaking. First we study the one-loop renor-
malization of the simplest 1¢* theory (5.131) with spontaneous breaking of
its discrete symmetry. We show how ‘tadpole diagrams’ contribute to a shift
in the vacuum expectation value (VEV) of the scalar field and that the
counterterms are the same as those of the symmetric theory. We next study a
case of spontaneously broken continuous symmetry and show how the
Goldstone particles remain massless even in the presence of higher-order
radiative corrections.

One-loop renormalization and the VEV shift

We return to the theory considered in eqn (5.137). The original Lagrangian

(5.131)
L =@ 51200~ 4 (6.74)
2+ 2 4 ‘
has the discrete symmetry ¢ — ¢’ = —@. When p? > 0, this symmetry is
broken by the vacuum with ¢ developing VEV
01§10y = v
v = (u?/A)*. (6.75)

Perturbing around this vacuum, we define a shifted field

¢ =0
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In terms of this field we have the potential (5.137)
A
V() = w2 + Jvd” + 7 ¢ (6.76)

which corresponds to a scalar with mass 2u? with the self-interacting vertices

shown in Fig. 6.5.
)imv ><6i,1

Fi1G. 6.5. Interaction vertices for the Lagrangian in eqn (6.76).

We now study the renormalization effects at the one-loop level.

(1) One-point function (the tadpole diagram in Fig. 6.6). We have

7

FiG. 6.6.

1 d*k i
T=(—6i)x | ——ry—
(=610)7 f(Zn)“ K =22
= —3ilvl, (6.77)
where
I d*k i
2 @n)* K —2p?

To cancel this divergence we need a counterterm — D¢’ in the Lagrangian
with

(6.78)

D = —-3Jvl,. (6.79)
(2) Two-point function (Fig. 6.7). Diagrams (a) and (b) give rise to self-

energy terms
(a) (b)

FiG. 6.7.

d*k i

P T (6.80)

Z,(0) = (~6i) f

1 [ d* P\
£,(0) = (—6ik0)* 5 J a5 (P—I—ZLIE) — 18i2%0°1, (6.81)

where

[ d*k i 2
14 =1 (—271:—)4 <m> (6.82)
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We have
2(0) = Z,(0) + Z4(0) = —3iAl, + 18iA2v?1,. (6.83)

This requires a counterterm — A’ with
3
A = —5 112 + 9}.21]214. (6.84)

(3) Three-point function (Fig. 6.8).

S e

FiG. 6.8.
1 (d* i 2
I'300) =3(—6i)(—6id) = | —5| 5>——=
3( ) ( 1 U)( 61)’) 2 J(zn)4 <k2 _ 2ﬂ2>
= 54iA%vl,. (6.85)
For this we need counterterm — B¢’® with
B= —31—' (54i220l,) = 9220l ,. (6.86)

(4) Four-point function (Fig. 6.9).

= 1A

FiG. 6.9.

o1 [d*% i 2

= 54221, (6.87)

which requires the counterterm —+C¢’# with
C= -% (54i221,) = 9A2I,. (6.88)
Therefore, the one-loop counterterms are

oV(¢") = Ap> + B + % ¢"* + D¢’ (6.89)
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and the effective potential to the one-loop level is given by
Vi(g) = V(¢) + 0V(¢) = (4> + A)p”* + (v + B)$"
+ 31+ C)¢™* + D¢’ (6.90)
Let 6v be the shift in VEV due to the one-loop contribution

oVi(¢)

=0
00" o=

or
2(u? + A) v + 3(Jv + B)(0v)> + (A + C)(ov)* + D=0.  (6.91)
Since v is small, we can neglect higher-order terms so that

D -D

= T A ~ e (6.92)
Thus to eliminate the linear term in ¢', we define a shifted field
¢ =¢" —ov (6.93)
<0|¢"10> =0 to one loop. (6.94)
In terms of this new field, the potential can be written as
Vi@ + 00) = ag" + bg" + 2 ¢ (6.95)
where
c=A+C=1+92%,
312
b=Jv+ B+ 460 =iv+91%l, +szz
a=p®+ A+ 36viv = p* + 34, + 94%v%,. (6.96)
From (6.96) we can check that
b* —ac=0. (6.97)

Throughout the above computation we have consistently dropped higher
powers of év. Eqn (6.97) means that we have

Vi(@®) = Vi@ +60) = ag™ + @)tg + 3 ¢

la*> af,, a\* ¢, a\*
ST CRINA I CRIN A R

This means the effective potential still has reflection symmetry in terms of

b=9"+ \/g (6.99)
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in spite of the addition of counterterms (6.89). In other words the
counterterms still have the original symmetry as they reflect the ultraviolet
properties of the theory which are insensitive to soft symmetry breaking.
Therefore, even for broken symmetry theory, we only need the counterterms
of the symmetric theory. Further discussion on this point will be given below
in the study of U(1) symmetric theory.

Goldstone bosons remain massless in higher orders

We now take up theories with continuous symmetries where spontaneous
symmetry breaking is accompanied by the presence of Goldstone bosons. We
show how the Goldstone particles remain massless even in the presence of
higher-order radiative corrections. Again we will illustrate the point with the
simplest example of U(1) symmetry at the one-loop level.

The U(1) symmetric Lagrangian (eqn (5.138))

1 1 2 p
& =5 @:00 +50m)* + 5‘2— (6 + 1) + S (6> + 72 (6.100)

when expressed in terms of the shifted field
o=0-v (6.101)
with the VEV
050> = v = (u?/A)* (6.102)
gives rise to the Lagrangian (eqn (5.146))

& = %[(6,10')2 + (0,m)*] — p*c’? — wo'(c’? + n?)

A
— Z (0-’2 + 1'[2)2 (6103)

which has a massless field n and massive (2u?) field o’ interacting through the
vertices shown in Fig. 6.10. To see how the n-field remains massless at the
one-loop level we need to check that the mass renormalization counterterm
om vanishes. This must be so since it cannot be absorbed in any redefinition
of the physical n-mass. We recall that the self-energy diagrams have the
expansion

Z(p?) = Z(0) + Z'(0)p* + Z(p*) (6.104)
\ZZMU Y—ﬁiv
g’ o'
4 a’ o’ a b3 T
T T o' o' T T

FIG. 6.10. Interaction vertices for the Lagrangian of eqn (6.103).



6.3 Renormalization in theories with spontaneous symmetry breaking 187

o' m
o' i1
Lo P o O
T
T n T T o T T

o’/

n
b
(e)

(a) (b) (c) (d)
F1G. 6.11. Self-energy diagrams for the n-particle.

where dm? is identified with £(0). The one-loop diagrams shown in Fig. 6.11
can be calculated using the Feynman rules of Fig. (6.10)

L L1 [d% ,
Za(O) = (—2]/11)) ':E—’u—z (—61}.1})5 sz__—z'u—z = —311(2# )

1 (%
%0 = (~2i2)5 JWP’—%}F Q)

i

2.(0) = (—2idv) i ( 2i/lv)1 d%k = —AI(0)
) =AM T 2len* k=
1 [d*% i
Z =(— i — —_— =
4(0) = ( 6‘/1)2[(2%)4 2 311(0)
d*k i i
Z =(— i 2 - = 2y —
{0) = (=2ik) J G e e = = )~ 101]
(6.105)
where the subscripts on the s indicate the diagram number in Fig. 6.11 and
d*k 1
2y _ - .
I(m®) = LGy pER— (6.106)

Thus I (2u*) =iI, of (6.78). Again we have the usual symmetry factors 1/2.
Clearly the contributions to Z(0) coming from all five diagrams sum up to
zero

2(0) = Z,(0) + Z4(0) + Z(0) + Z4(0) + Z,(0) = 0. (6.107)

This is the promised result: the n-particle remains massless as required by the
Goldstone theorem

Soft symmetry breaking and renormalizability

We note that the Feynman rule of Fig. 6.10 shows that there are five vertices
which in turn depend only on the two parameters A and v. This means that
there are three relations among these five couplings (five Green’s functions).
These Ward identities are consequences of the original U(1) symmetry. The
counterterms for these vertices must satisfy the same relations in order that
they can be absorbed into the redefinitions of ¢ and v (Lee 1972a). This can
be checked explicitly in the one-loop approximation, as was done in the
earlier example of discrete symmetry. Again this illustrates that the
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counterterms in the spontaneously broken theory have the same structure as
in the corresponding symmetric theory. In fact this is the key point which
explains why spontaneous symmetry breaking ultimately does not spoil the
renormalizability of the theory.

We will amplify briefly the important point that the renormalizability of a
spontaneously broken theory depends only on the renormalizability of the
symmetric theory. This is in fact a slightly stronger version of a theorem
(Symanzik 1970a) which states that soft symmetry-breaking terms do not
destroy the renormalizability of a symmetric theory. By soft symmetry
breaking we mean asymmetric terms of dimension less than four, i.e., they
correspond to vertices with a negative index of divergence (eqn (2.134))

5i=di_4<0' (6.108)
From the result of eqn (2.144) for the index of divergence of the counterterm

0o < ) m;0; (6.109)

and from the fact that symmetry-breaking counterterms can arise only from
diagrams that involve at least one symmetry-breaking interaction, one
deduces immediately that the index for asymmetric counterterms must be
negative

5B < 0. (6.110)

We can illustrate this theorem with two simple examples in the U(1)
theory of eqn (6.100).

(1) s = co, which has dimension one or 655 = —3. Thus the only
counterterm which satisfies 652 < —3 is #38 = — Ao (as the n-term can be
excluded by the reflection symmetry ® — —m). This does not destroy the
renormalizability of the theory.

(2) ZLsp = c(c? — 1), which has dimension two or dsy = —2. Since the
only interactions with dimension less than two or ., < —2 are (6% + n%) and

(62 — n?) (as terms linear in the fields can be excluded by reflection
symmetry), the renormalizability is again maintained.

Spontaneous symmetry breaking is clearly of the soft variety as shifting the
fields only changes the terms with dimension less than four. The remarkable
point is that these breaking terms not only do not induce asymmetric terms
having dimension equal to or greater than four but the lower-dimensional
terms maintain the same algebraic relations as the original theory. Thus, the
process of renormalization does not introduce additional symmetry break-
ing, in the sense that symmetric counterterms suffice to remove infinities from
the theory whether or not the symmetry is realized in the ‘conventional’ or
Goldstone modes.
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6.4 The effective potential and radiatively induced spontaneous
symmetry breakdown

In previous discussions of spontaneous symmetry breaking (SSB) in field
theory, we used the classical potential part of the Lagrangian to decide at
each level of perturbation theory which is the true vacuum. We have to shift
the field at each order (see calculations in the previous section). We need a
more systematic method for treating SSB which enables us to survey all
possible vacua at once, and to compute higher-order correction before
deciding which vacuum the theory finally picks. The formalism is the
effective potential (Schwinger 1951a,b; Goldstone et al. 1962; Jona-Lasinio
1964) and the appropriate approximation scheme is the loop expansion
(Nambu 1968). Here we follow the presentation of Coleman and Weinberg
(1973).

The effective potential formalism

To illustrate this approach in path-integral formalism, we first consider the
simple case of one scalar field. The generating functional for the Green’s
function is given by eqn (1.74)

WiJ] = J[d¢] exp {i Jd“XES’ (¢(x) +J (X)¢(X)]}' (6.111)

We can also think of this as the vacuum-to-vacuum transition amplitude in
the presence of the external source J(x)

WILJ] = (0]0),. (6.112)

When we expand In W[J] in a functional Taylor series in J(x), the
coefficients will be the connected Green’s functions (1.76)

In W[J] = Z% f d*xy ... d*%,G™(x, ... x)J(xy) ... J(x,). (6.113)

We define the classical field ¢, as the vacuum expectation value (VEV) of the
operator ¢ in the presence of the source J(x)

dlm W [<0l¢(X)|0>]
oJ(x) | <010 |,

The effective action of the classical field I'(¢,) is defined by the functional
Legendre transform

d(x) = ((6.114)

I'(¢) =In W[J] — J d*xJ(x)p(x). (6.115)
From this definition, it follows that

oT(¢e) _

30, —J(x). (6.116)
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We can also expand I'(¢,) in powers of ¢,

1
I(g) =Y — J déxy ... A%, IO, . x)Pdxy) .. olx,).  (6.117)

It is possible to show that I'™(x, ... x,) is the sum of all 1PI Feynman
diagrams with n external lines. Alternatively we can expand the effective
action I'(¢.) in powers of momentum. In position space this expansion takes
on the form

I'(¢.) = jd“XE— V(o) + 30,00 Z(¢o) + .. .]. (6.118)

The term without derivatives V(¢,) is called the effective potential. To express
V in terms of 1PI Greens functions, we first write I'™ in momentum space

d*k d*k,
T™(x; ... x,) = (2n)f"" & Qn)* 6%k, + ... k,)
x gl itk PO ey, (6.119)

Putting this into (6.117) and expanding in powers of k;, we get

Lol [ o [d%,  d%,
F(¢c)_;n!de1...dxn o ame

X jd-’lx ei(k, +... k) x ei(kl Xy .k, xy)
x [T™0, ... 0)p(x;)...dx,) +...]
1
= fd“x ; pr} {T™O,...0)[¢()]" + ...}. (6.120)

Comparing (6.118) and (6.120) we see that the nth derivative of V(¢,) is just
the sum of all 1PI diagrams with » external lines carrying zero momenta

1
Vigd = —% ] ™, ... 0)[p(x)]". (6.121)

The usual renormalization conditions of the perturbation theory can be
expressed in terms of functions occurring in eqn (6.118). For example in A¢*
theory we can define the mass squared as the value of the inverse propagator
at zero momentum

ro0) = —u?. (6.122)
Then we have
d*v
2 . 6.123
K=y 5 Lo ( )

Similarly, if we define the four-point function at zero external momenta to be
the coupling constant

T0) = —4, (6.124)
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then
d*v
A=z . (1.125)
dé? lge-o
Similarly, the standard condition for wavefunction renormalization becomes
Z(¢) lp=0 = 1. (6.126)

Consider now the SSB of a theory with some internal symmetry. SSB
occurs if the quantum field ¢ develops a non-zero VEV even when the source
J(x) vanishes. In this language with eqns (6.114) and (6.116), this means that
it occurs if

oT(9) _
o0,
for some nonzero value of ¢.. Furthermore, since we are typically only

interested in cases where VEV is translationally invariant, we can simplify
this to

0 (6.127)

V(o)
5, -0 for ¢ #0. (6.128)

The value of ¢, for which the minimum of ¥(¢.) occurs will be denoted by
{¢>, which is the expectation value of ¢ in the new vacuum.

Loop expansion

To calculate V(¢.) we need an approximation scheme which preserves the
main advantage of this effective potential formalism, i.e., the capability to
survey all vacua at once before deciding which is the true ground state.
Clearly ordinary perturbation theory with its expansion in coupling con-
stants is not appropriate as we need to, at each order, identify the true
vacuum state and shift the field.

Instead, we will here organize perturbation theory in the form of loop
expansion. This is an expansion according to the increasing number of
independent loops of connected Feynman diagrams. Thus the lowest-order
graphs will be the Born diagrams or tree graphs. The next order consists of
the one-loop diagrams which have one integration over the internal
momenta, etc. For the effective potential (6.121) each loop level still involves
an infinite summation corresponding to all possible external lines. The usual
classical potential we have been working with is simply the first term (the tree
graphs) of V(¢.) in this loop expansion. In fact the loop expansion can be
identified as an expansion in powers of the Planck’s constant #. This can be
seen as follows. Let 7 be the number of internal lines and ¥ the number of
vertices in a given Feynman diagram. The number of independent loops L
will be the number of independent internal momenta after the momentum
conservation at each vertex is taken into account. Since one combination of
these momentum conservations corresponds to the overall conservation of
external momenta, the number of independent loops in a given Feynman
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diagram is given by
L=I—V-1). (6.129)

To relate L to the powers of #, we have to keep track of the factor % in the
standard quantization procedure. First there is one power of # in the
canonical commutation relation

[o(x, 1), n(y, ] = ih > (x —y). (6.130)
This will give rise to a factor of # in the free propagator in momentum space
ih

K —m? +ic

4
COIT($)PO)I0> = f K e (6.131)
(2m)
The other place where # appears is in the evolution operator exp[ —iHt/h]
which gives rise to the operator exp[i/h [ Lin(¢) d*x] in the interaction
picture. This means that there will be a factor of 1/ for each vertex. Thus, for
a given Feynman diagram, we have P powers of # with

P=I-V=L-1. (6.132)

Thus the number of loops and the power of # are directly correlated. The
statement that loop expansion corresponds to an expansion in Planck’s
constant is really a statement that it is an expansion in some parameter a that
multiplies the total Lagrange density

L(P,0,¢,a) =a" ' ZL(¢, 0,¢). (6.133)

The above counting of the # powers (P) reflects the fact that while every
vertex carries a factor a ™!, the propagator carries a factor a because it is the
inverse of the differential operator occurring in the quadratic terms in .
Because #, or a, is a parameter that multiplies the total Lagrangian, it is
unaffected by shifts of fields and by the redefinition or division of % into
free and interacting parts associated with such shifts. In short it allows us to
compute V(¢.) before the shift; thus it is an appropriate perturbation
scheme for our purpose.

We should remark that this loop expansion is certainly not a worse
approximation scheme than the ordinary coupling-constant expansion
perturbation theory since the loop expansion includes the latter as a subset at
a given loop level. In fact if we fix the number of the external lines (which we
do not in the calculation of V(¢.)) these two expansions are identical for the
simple case of one coupling constant. For example, in A¢* theory we have
(eqn (2.58)) for Green’s functions with E external lines

4V = E+2I (6.134)

which can be converted into a relation between the powers of the coupling
constant (V) and the number of loops by using (6.129) to eliminate /

VoilE—L+1. (6.135)
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The effective potential of the 1¢* theories

We now illustrate the calculation of the effective potential in the simple case
of A¢* theories in the one-loop approximation. The Lagrangian density is
given by

with
= 40,0 — h¢”
,1 4
$[= —E(ﬁ .

We shall study the three cases corresponding to u? > 0, u? < 0, and p? = 0.

(1) u*> > 0 case (no SSB). To calculate the effective potential in eqn
(6.121), we must sum all one-loop diagrams with an even number of external
lines having zero momenta (see Fig. 6.12).

5004550

The 1PI Green’s function is given by

re»o 0) =1iS d% (—id) i " (6.137)
T 2my* k* — p® +ie '

where S, is the symmetry factor

_@n)!
" 2"Mn

(6.138)

corresponding to the fact that there are (2n)! ways to distribute 2n particles to
the external lines of the diagram and that interchanges of any two external
lines at a given vertex or reflections and rotations of # vertices on the ring do
not lead to new contributions. The no-loop and one-loop effective potential
is then given by

V(¢) 2¢ + — ¢4 d4k oo l[ (;,'/2)¢3 jln
C. c 4'

)t S| — 2+ ie
d*k 1922
= 2¢c + ¢c - A J(ZTC)“ ln[l - m] (6139)
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The integral is divergent. If it is cut off at some large momentum, we obtain

A2 A
V(g == ﬂ 2p2 + ¢>“ <u2 +3 ¢3>

1 + AP2/2 + 1
+ o <u +Z ¢>[ (“—%) 5] (6.140)

The appearance of the combination #2 + (4/2)¢2 results from the summation

Lo, ! ¢2 = 1
K-t K N (N P}
(6.141)

i.e., the A¢2/2 term acts effectively as a mass insertion (for further remarks
see eqn (6.147) below).

To remove the cut-off dependence we introduce counterterms which have
the same structure as the original potential

A B
V(@) = 5 92+ 5 6. (6.142)

so that the renormalized effective potential, given by

Vr(¢c) = V(¢c) + Vct(¢'c)s (6143)

is finite and cut-off-independent. The coefficients 4 and B in (6.142) can be
determined by the renormalization conditions (6.123)—(6.126). In this way we

have
1 24 Ap22
V.= 2¢c + ¢c I:(,u += ¢c2 )2 <M+ﬂ#>
Ap? 3.,
- 2 —gl d)?]- (6.144)

We see that the large ¢. behaviour of V(¢.) is modified by radiative
corrections.

(2) u* <0 case (with SSB). For illustrative purposes we choose this time
to separate the Lagrangian differently

=30.4)* — U($) (6.145)

where
U(¢) = 2¢2 + ¢4 (6.146)

and take U(¢) as a perturbation. There are two vertices: u? and $A¢?, shown
in Fig. 6.13(a). Their combination is the second derivative U"(¢) which is just

(a) (b)
Fi1G. 6.13.
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the scalar mass squared for ¢ = {¢)>. Thus we use the notation
mi($) = p* + 32¢°. (6.147)

The effective potential calculated by summing up the diagrams in Fig.
6.13(b), with a massless propagator and mZ(¢) vertices, has the form

1 d*k mi($.)
V(¢c) = 5 .uzd)c + ¢4 ‘[(27‘)4 Z] n [kz + IF:|

! ak | mi@)
-39yt 3 [

1 mi(@e) o m (¢c)
- 2¢C + ¢c 6an? [In 2 B (6.148)

We see that, apart from an irrelevant constant, this is the same result as case
(1) with g? > 0. Thus, if we choose the same renormalization condition as in
case (1), we arrive at the renormalized potential (6.144). In this case the
quantity u? has a different physical meaning and is not the mass of the
particle in the zeroth order. Nevertheless it is still a finite quantity which
serves to parametrize the theory.

The calculations in cases (1) and (2) illustrate the advantage of this
perturbative approach: the same result can be obtained whether there is SSB
or not; we need not shift the field beforehand. Also, this approach is
insensitive to how we divide up the Lagrangian, whether as in (6.136) or
(6.145). More importantly, the calculations illustrate the feature that even in
the presence of SSB the counterterms are still the same as those of the
symmetric theory. In other words the ultraviolet divergences respect the
symmetry of the Lagrangian even if the vacuum does not. This reflects the
fact that SSB is generated by the nonzero VEV {¢) which has the dimensions
of mass and the ultraviolet divergences are insensitive to finite mass scales.

(3) u? = 0 case (SSB driven by radiative corrections?). In this case V(¢) is
flat at ¢ = 0 and the usual procedure of using the classical potential is
inadequate to determine whether SSB is induced or not, and we have to go
to higher orders to see the pattern of symmetry realization. Coleman and
Weinberg (1973) were the first ones to point out this interesting phenomenon
of radiatively induced SSB. We cannot take the u? — 0 limit of eqn (6.144)
because of the infrared singularity. To get around this difficulty, we will
choose a renormalization condition for the coupling constant different from
that of (6.125). Instead, at ¢, = 0, we have

d4v
A=—" 6.149
40 |y (6.149)

where M is an arbitrary mass parameter. The effective potential now takes,
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for u « M, the form

1 A
V() = 5 1062 + 5

1 12 + Ap2/2
ram {5 ]

122 25 54 1o, 2
2).;1 P 24). ¢c+4l ¢¢In e (6.150)

This has the p? = 0 limit
2
Vo) = —l(bc 4 ¢° [ln ¢ - 2—5:| (6.151)

256n2 | M? 6

Since the second term in eqn (6.151) is negative for small ¢,, it has the effect
of turning the zeroth-order minimum at the origin into a local maximum
and producing a new minimum at some point away from the origin. In other
words, the one-loop correction has generated SSB. However this conclusion
is unwarranted as the new minimum is located at
2 =32

<:;>2 =— " 72 + O(4). (6.152)
The fact that 4 In({¢*>/M?) is bigger than one (i.e., the loop contribution
is larger than that of the tree) means that the new minimum lies outside
the validity of the one-loop approximation. In this simple theory with one
coupling constant such a result is inevitable. Since we want the one-loop con-
tribution to compete with the three contribution, A In {$*)» must be large, yet
A is the only parameter in the theory. This implies that to avoid this
difficulty we should examine theories with more than one coupling.

Aln

Massless scalar QED (dimensional transmutation)

The Lagrange density is given by

1 1 A
L = -3 F,F* + 3 (0, — ied,)¢|* — a (p*)? (6.153)
where A, is the photon field with F,, = 0,4, — 0,4,. ¢ is a complex scalar
field

¢ = ¢, +i¢,, (6.154)

where ¢, , is real. Now we have two coupling constants 4 and e and it will be
possible to obtain a small expansion parameter.

The calculation will be considerably simplified in the Landau gauge, where
the photon propagator is

i guv - kukv/k2

k) = =17

(6.155)
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Because we always work with zero external momenta and because k* A, (k)
= 0, all graphs of the type shown in Fig. 6.14 make no contribution. Also
note that the effective potential can depend only on ¢2 = ¢p*¢. = ¢3. + ¢3..

=

Fi1G. 6.14.

We need only compute diagrams having ¢, external lines; there are three
basic classes of graphs with different particles running in the loop (Fig. 6.15).

"6] ¢2 A
Q e g% o ,)J;{J '

FiG. 6.15.

In this way we obtain

1 ;t 2 2 1 2 2
V(o) = 77 202 + 6—1? {<§> [1 + <§> ] + 3e“}[1n ];?2 - 2—65} (6.156)

The calculation is entirely analogous to the previous case; we only need to
note that the ¢33 coupling is 1/3 of the ¢4 coupling because of the different
Wick contractions and that the extra factor 3 in the photon loop comes from
the trace of Landau-gauge propagator. If we assume that A is of order e*, we
can neglect the A? term in (6.156). Since M is arbitrary, we take it to be the
actual location of the new minimum, M = {¢). The effective potential
becomes

1 4 384 ¢c2 25
Vidd) =149 + ¢ ¢>;‘<ln e F)' (6.157)

We also have the relation

11e*

A
0=V = <g - W><¢>3
or

3
A:S%—z—e“. (6.158)

Surprisingly, the two independent coupling constants are related. This can be
understood from the fact that we start out with two dimensionless para-
meters e and A; we end up also with two parameters e and {¢). In other
words we have traded a dimensionless parameter 1 for a dimensional
parameter {¢). This has been called dimensional transmutation (Coleman
and Weinberg 1973) which is a general feature of the theory without any
mass scale. Changes in M always involve a new definition of the coupling
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constant. With (6.158), the potential in (6.157) can be written simply as

3e* o2 1
V(g = 1 - 159
which has a minimum at ¢, = {¢) and symmetry is spontaneously broken.
This time the loop expansion is valid as the one-loop contribution can be
smaller than that of the tree. Incidently since the mass of the ‘photon’ after
SSB, m, = e{¢), we may use the notation

m(¢) = e (6.160)
and write (6.157) as
3m 2 1
V(go) = ’Z‘V‘f:fg In <<$°>z - 5)' (6.161)

This is to be contrasted with eqn (6.148) for the scalar loop.

We should also remark that, if there are fermions in the theory, there will
be, in addition to the scalar and vector loops, fermion loops. We can
calculate their contribution in an analogous manner. If we follow the
procedure of case (2) above and work with massless propagators, we will
have the general vertex mg(¢) = m + h¢, where m is the bare fermion mass
and h is the Yukawa coupling. Since the trace of an odd number of Dirac
y-matrices is zero, we must have an even number of fermion propagators.
Then we can group terms as

1 1 1
@) @) = g M) (6.162)

Then the calculation becomes exactly the same as the scalar case except the
important difference of an overall minus sign for the loop integral. And we
have the fermion loop contribution

—4
a2 M@ G2/M + ... (6.163)

oV(¢) =

The factor of 4 arises from the trace of Dirac matrices. Thus in a theory
having vector, scalar, and fermion loops, we can combine (6.161), (6.148),
and (6.163) to obtain the one-loop contribution

1
6V(9) = o3 [3mi(#) + mi(9) — mt(9J] In 9/M* + ...
(6.164)



7 The parton model and scaling

LEeproN—NUCLEON scatterings at high energy and large momentum transfer
exhibit the remarkable phenomenon known as Bjorken scaling. This
correlation pattern of the energy and angular distribution of the scattered
leptons in these deep inelastic processes can be described simply by
Feynman’s parton model (Feynman 1972). At short distances hadrons may
be viewed as composed of (almost free) point-like spin 1/2 constituents, the
partons. It is natural to identify them as quarks. After a description of
the quark—parton model and some of its applications in the first two sections
we will then present the formal field theoretical apparatus required to
describe the short-distance behaviour. This is Wilson’s operator product
expansion (Wilson 1969) with coefficients satisfying the renormalization
group equations. Thus the stage is set for a field theory of strong interactions
with the quarks being identified as the fundamental matter fields.

7.1 The parton model of deep inelastic lepton-hadron
scattering

Kinematics and Bjorken scaling

The leptons used in deep inelastic processes are either charged leptons
(electron or muon) or neutrinos which scatter off the target nucleons via the
electromagnetic or weak interactions, respectively.
Electron—nucleon case. The momenta for the reaction
e(k) + N(p) — e(k") + X(p,) (7.1)

are shown in Fig. 7.1, where X is some hadronic final state with total four-
momentum p,.

o) e(k’)

N@) X®,)
FiG. 7.1.

We define the kinematic variables by
g=k—Fk, v=p-g/M, W*=pl=(p+q)’ (1.2)
In the lab-frame we have
p,=(M0,0,0), k,=(EKk), k,=(E,K). (7.3)
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Then
y=FE—E' (7.4)

is the energy loss of the lepton and, when the lepton mass m, is neglected
q* = (k — k') = —4EE’ sin? g <0, Q%= —¢* (7.5)
where 6 is the scattering angle of the lepton. The amplitude is given by
T, = e*u(k’, Ay u(k, A) q—12 <nlJ"O)p, o) (7.6)

where J}" is the hadronic electromagnetic current. The unpolarized differen-
tial cross-section is given by

o L1 &kl dp
O = VI 2M 2E 2n)*2k, L | 2n)2pi
x % Y |T,2Qn)*6%p + k — k' — p,). 1.7)
GAA

where p, = X!_; p;. If we sum over all possible hadronic final states (i.e., they
are not observed) we obtain the inclusive cross-section

d%e o (E'
dQdE’ - q_4 <E> " Wi (7.8)

where « = e?/4n is the fine structure constant. The leptonic tensor corres-

ponds to
2

1
b = 5 1Ky, 7) = 200, + ek, + L9, (7.9)

and the hadronic tensor is given by

1 W[4
Winlp: ) = 37 L2 JUI [(71?)327]

x {p, ol T (0)n><nJ3™(0)|p, 6)(2m)* 6*(p, — p — q)

= Ly [ L o, alapr . o 7.10
_4M¢, 2ne P, ol (x)J5"(0)|p, o). (7.10)

Sometimes it is more convenient to rewrite this in the form of a commutator;
we observe that

d4
Jz_;‘ e (p, ol J,(0)1,(X)Ip, o

- d*x i(pu—p+q)-x
=X |5 X, ol O <nl ], 0)lp, 0

=) (2n)* 0*(p, — p + 9)<p, 11, (0)n)<n| 1, (0)|p, o).
(7.11)
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In the lab frame g, = v > 0 there is no intermediate state [n) with energy
E, =M — v < M which can contribute; thus the above term vanishes. We
can therefore write

l d4x 19X em em
Wilp.a) =13, J%eq K, ollJ7 ), JMO)lp, 0. (7.12)

From current conservation ¢*J," = 0 we have
q¢{p,olJIny =0
or
gWy=qgW,, =0. (7.13)

From (7.13) and the fact that W, is a second-rank Lorentz tensor depending
on the momenta p, and ¢,, one can deduce its covariant decomposition

9.9y
Wuv(p9 q) = [_ Wl(.guv - ;2 )

w, pq pq
+W<p“ __qz—q“ py —Zz—qv (7.14)

where W, , are Lorentz-invariant structure functions of the target nucleon
depending on the invariant variables g* and v of (7.2) and (7.5). We can then
write (7.8)

d%c o?
0dE = — 4(9<2W1 sin2§+ choszg) (7.15)
4F* sin* —
2
A measurement of the inclusive cross-section yields information about the
structure functions W, ,(q% v) which are the strong-interaction quantities
characterizing the response (and hence the structure) of the target nucleon to
electromagnetic probes.

To get some feeling about the structure functions, we first consider the
special case where the final hadronic state X(p,) is also a nucleon. The matrix
element of the electromagnetic current between either the proton or the
neutron states can be written as

NEIOIN)> = a(p)v,Fi(g?)
+i0,,4"F»(¢*)/2M Ju(p) (7.16)

with ¢ = p — p'. F, ,(g*) are Lorentz-invariant form factors. For the case of
the proton, F%(0) = 1 and F%(0) = 1.79 (nucleon magnetons) measure the
total charge and anomalous magnetic moment, respectively, of the proton;
F1(0) =0 and F3(0) = —1.91 measure the total charge and anomalous
magnetic moment, respectively, of the neutron. To check that Fj(0) =1
does give the total charge of the proton as +1, we note that the charge
operator

Olp> =1p> (1.17)
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implies

<P'IQlp> = <p'|p> = 2EQ2n)° 3°(p' — p). (7.18)
On the other hand from (7.16) we have

P'1Qlpy> = Jd3X<p’|JB"‘(X)|p>

- f &x PP IO

= (2m)* 8°(p’ — Pa(pYyou(p)F,(0)
= 2EQ2n)* 83(p’ — p)F,(0). (7.19)
Thus (7.17) implies that F,(0) = 1, as promised. It is straightforward to take
the elastic limit p2 = M? in (7.10) and obtain
2
W a2 ) = 8(a2 4 2,2
1%, v) = 8(¢* + 209) 50 Gii(g?)

2M 2
W3(g*, v) = 8(g* + 2Mv) a = ¢jam?) |:G§(q2) - 4;{42 Gr%a(q2):|

(7.20)
where
2
Gelq) = Fi(q®) + 71z Fa@?)
GM(‘]Z) = F1(q2) + Fz(qz) (7.21)

are the electric and magnetic form factors, respectively. The elastic electron—
nucleon cross-section is then

de® o

dQ  4E?

0
cos? Fd= a’/AM?)"'[GE — (¢*/4M*)GR,] — sin’ g (4*/2M*)G3y
X

[1 + (2E/M) sin? g] sin“g
(7.22)

Thus measurements of the elastic eN differential cross-section yield infor-
mation about the electric and magnetic form factors. Experimentally G and
G\, for the proton are given by (for a review see Taylor 1975)

Gu(g®) ~ 1
Kp (1 — ¢?/0.7 GeV?)?

where k, = 2.79 is the magnetic moment of the proton. If the proton were a
point-like (structureless) particle, we would have Gy(g?) = Gg(¢*) = 1. Thus
the nontrivial dependence of ¢? in (7.23) indicates the structure of the proton.
Also for large ¢, the elastic cross-section falls off rapidly as G ~ Gy ~ ¢~ *.

Ge(g*) ~

(7.23)
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If the inelastic cross-sections for final states other than the nucleon all
behaved much like the elastic cross-section, we would expect them to fall off
rapidly for large g2. The surprise is that experimentally these cross-sections
for large final-state invariant mass W > M seem to have a much more
moderate dependence on g¢? (for a review see Panofsky 1968). This leads to
the idea that there must be some point-like constituents inside the nucleon
much as the large-angle scattering of the a-particle in Rutherford’s
experiments suggested that the charge of the target atom was concentrated in
the ‘point-like’ nucleus. These structureless particles inside the nucleon are
called partons. A proper description of the parton model will be given after
we have made a more precise statement of the deep inelastic scattering
behaviour in terms of Bjorken scaling (Bjorken 1969).

Define the dimensionless scaling variables

2 2
_—9_<
T oMy T 2My (7.24)
The range of x
0<x<l (7.25)

is given by the fact that the invariant mass of the unobserved final hadronic
state is larger than the nucleon mass

W2=(p+q)?=q*+2Mv+ M* > M?. (7.26)
Note that the elastic scattering corresponds to x = 1. Also define the variable
v E’
=—=]-= _
Y= E (7.27)

which is the fraction of the initial energy transfered to the hadrons. From the
fact that 0 < E’ < E we obtain the range of y

0<y<l. (7.28)

It is convenient to express the cross-section in terms of the x and y variables.
Using the relation

dxdy = EE dz?[yd;j (7.29)
and the definitions
MW,(¢*,v) = Fi(x,4*/ M)
yWs(q'v) = Fy(x,4°/M?), (7.30)

we can write (7.15) in the form

d3e 8ma? ) M
_ M\ | 31
dxdy = MEXS? [xy o +<1 Y =3E xy) 2] (7.31)

Bjorken scaling is the statement that in the large O limit with x fixed, the F;s
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are functions of x only. Thus,

2

q
lim F; Fi(x 7.32
'qulir%o <M2> i(%). (7.32)

The dimensionless structure functions become independent of any mass
scale. The F;(x)s are called the scaling functions. Experimentally Bjorken
scaling seems to be obtained for a rather modest value of Q% > 2(GeV)? in ep
scattering.

Neutrino—nucleon scattering. Next we come to the case of the charged
weak-current process

vi(k) + N(p) = I (k') + X(p,)- (7.33)

Since the basic idea is exactly the same as for the electromagnetic IN
scattering considered above and since the reaction has also been presented in
our discussion of the Adler-current-algebra sum rule in §5.2, we merely
summarize the results. We will assume the current—current interaction for the
weak effective Lagrangian

G
2

where Gy is the Fermi constant. The (charged) weak current J* can be
separated into the leptonic and hadronic parts

L= ——=JiJ* + he. (7.34)

JA=Jt+Jt (7.35)
The leptonic weak current has the explicit form
Ji =M1 = ysye + vy (1 =y + ... (1.36)

The cross-section for neutrino and antineutrino scatterings can be written as
d’¢™  G? [ 0 0 (E+E )
——— =——FE"? 2sin’ = WP +cos? - W —— 2 P
dQdE ~2p2C | PN oSy M Ty 2W

(1.37)

d?e® Gt ., ,0 0 (E+E) .
' in2 — W® 29 @) )
A0dE = o2 E _2 sin” 5 W1 + cos 5 Wy + 3y om 2 W :l

(1.38)

where the structure functions W are defined as

W = Z J e (p, ol J(x), J1.(0)|p, o>

= - W(l )gaﬂ + W(V)papﬂ/Mz - lW(V)Eap,..;py 6/M2
W45/ M* + W(sv)(l’aqﬁ + ppd)/M?
+iWg (paqﬁ - pﬂqa)/Mz' (7.39)
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The Ws can be obtained from (7.39) using J,, <> J}, (also see §5.2). We also
define dimensionless structure functions

MW (g, v) = GY(x, ¢*/M?)
vW§(g?, v) = GYAx, ¢*/M?)

V(g2 v) = GP(x, ¢*/M?). (7.40)
These structure functions will also satisfy the Bjorken scaling
lim G(x, ¢?)/M?) = F{(x). (7.41)
lg2|—»c0

x fixed

It is often useful to have structure functions with definite helicities. They can
be obtained as follows. In the lab frame, choose the z-axis such that

p,=(M,0,0,0) and g, =(qo,0,0,q;). (7.42)

The longitudinal polarization vector is then of the form

e = (43, 0,0, go) (7.43)

1
v -4
and the corresponding structure function is
Ws(g?, v) = e Wre

2
— —‘;—2 Wy=(1— V@)W, — W,  (144)

where we have suppressed the neutrino superscript (v). The right- and left-
handed transverse polarization vectors are

_ b

&R = 50110 (7.45)
&b = T}E ©,1, —i, 0) (7.46)

and their structure functions are

1 N
Wr=W,;+ m("z — ¢»)iW,

WL = Wl - %4 (v2 - qZ)é-W3' (747)

Note that these structure functions with definite helicities, W, , Wy, and Wy,
have to be positive. In the scaling limit, the following helicity functions are
functions of x only

1
2MWS—’FS=;F2—2F1

MWL—’FL=F1_%F3
MWy — Fy = F, + 1F;. (7.48)
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The differential cross-section can be written

%" ME.

=GP [ — DR + FY + (L= yPFR] (149)
xdy n

d2s® ME. _ . -

7 = G = )FP + (1 — p)PFP + FPL. (1.50)
x dy n

Note that these equations imply that the total cross-section will grow
linearly with energy. (This is also the typical behaviour of the neutrino
scattering off the point-like lepton.) That this is indeed the behaviour
observed experimentally also suggests that there are point-like constituents in
the nucleon.

The parton model

We shall now calculate the lepton—nucleon structure functions in the parton
model (Feynman 1972; Bjorken and Paschos 1969) which is the subnucleon
version of the familiar impulse approximation of high-energy scattering of
composite particles with weakly bound constituents. The inclusive scattering
is viewed as due to incoherent elastic scattering from point-like constituents
of the nucleon, the partons, depicted in Fig. (7.2). The final-state partons
then recombine (fragment) somehow into hadronic states. Thus we are mak-
ing the physical assumptions that (1) during the time of current-parton
interaction one can ignore interactions among partons themselves and (2)
the final-state interactions (necessary for partons to fragment into hadrons)
take place on such a relatively long time-scale that they can be ignored
in the calculation of the inclusive cross-sections. For a more detailed
presentation the reader is referred to Close (1979).

Specifically, each of the spin-1/2 partons is hypothesized to carry a fraction
of the original nucleon momentum &p with 0 < £ < 1, i.e., we neglect any
parton momentum transverse to the nucleon momentum. Then the contri-
bution to the hadronic tensor (7.10) from such a spin-1/2 parton can be
immediately worked out as

l d3pl
4eM Z (27)*2p,
x (Ep, alTO) P, 6", /| TP O)|Ep, o) (2n) 8*(p' — &p — q)

K,.(8) =

1
= 220 2 #(Ep)y,u(p)a(p" )y, u(Cp) 6(po — Epo — q0)/2po.  (7.51)

FIG. 7.2. Inelastic lepton—nucleon scattering as incoherent elastic scattering from partons.
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The factor of ¢ in the denominator appears because of the change in the
relative flux from p to &p. The delta function may be written as

8(po — Epo — 40)/26 = 0(p5) L ps — (Epo + 40)*]
= 0(po) o[p"* — (&p + 9]
= 0(Epo + q0) 62MVE + ¢7)

o(¢ — x)

= 0(&po + G0) =7 (7.52)

For the spin sum, we have

1
3 2 #EpIuCp + PECp + q)yu(Ep)

spin
= Sy, ep + o)
=2[p.Cp+ @), + &P+ Dy —p- (Ep + 9)g,,]

= 4M?*E(p,p,/M?) — 2Mvég,, + ... (7.53)

where we have neglected the parton mass. The parton tensor (7.51) is then

1
K, (&) = (& - x)(%’;“f; — 579w+ ) (7.54)

Let (&) d¢ be the number of partons with momenta between & and & + d&
(weighted by the squared charge). Then we can calculate the hadronic tensor
in terms of an integral over K,,(¢)

1

W = Jf (O)K,(&) d¢

0

xf(x) ppy,  f(x)

=—V——M—2——2—M~guv+.... (755)

In this way the delta function that enforces the mass-shell condition of the

final parton leads to the structure-function dependence on x = —g?/2My
alone,

MW, - Fy(x) =3f(x) (7.56)

vW, — F,(x) = xf(x). (7.57)

Thus the scaling functions of (7.32) are measures of the momentum
distribution of the the parton in the target nucleon.
We also note, from eqns (7.56) and (7.57), that

2xF(x) = F,(x) (7.58)

which is known as the Callan—Gross relation (1969). This is a direct
consequence of the assumed spin-1/2 nature of partons. For example if we
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had used spin-0 partons, we would have had
K,y oc {xpldulxp + g><xp + qlJ|xp)
oc (2xp + 9),(2xp + g),.
With the absence of a g, term this would lead to
Fi(x)=0. (7.59)

There is a simple interpretation of (7.58) and (7.59) in terms of the helicity
structure functions. If we define photon polarization vectors as in (7.43) and
(7.46), we have eqn (7.48)

1

Fs = ;FZ — 2F, (7.60)
FT=FL+FR=2F1. (761)
Thus (7.58) and (7.59) can be translated into
Fs=0 for a spin-1/2 parton (7.62)
F:=0 for a spin-0 parton. (7.63)

To see that these results follow from angular momentum conservation, we go
to the Breit frame of reference in which the momentum of the parton just
reverses its direction without changing its magnitude upon collision with the
virtual photon

qu = (0’ Os 0, “2xp),
xp, = (xp, 0, 0, xp),
Pu = (xp, 0,0, —xp). (7.64)

If the parton has spin-0, only the virtual photon with zero helicity (&) can
contribute while the helicity +1 states (¢-, &) do not conserve angular
momentum along the direction of motion. On the other hand, for the spin-
1/2 parton (with negligible mass) the spin component also gets reversed upon
collision and this will require the virtual photon to be in the + 1 helicity state;
hence Fg = 0. Experimentally (7.58) or (7.62) is reasonably satisfied in the
scaling region and we can conclude that nucleons do indeed have charged
spin-1/2 point-like constituents.

7.2 Sum rules and applications of the quark—parton model

It is natural to identify these charged spin-1/2 partons with the quarks which
were first invented to account for the spectroscopic properties of hadrons.
Eventually we shall develop a field theory of the strong interaction, quantum
chromodynamics (QCD), which is a non-Abelian generalization of the
familiar theory of quantum electrodynamics (QED). In QCD the quarks, like
the electrons in QED, are the basic matter fields with interactions mediated
by the electrically neutral vector fields, the gluons, much as the photon
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mediates the electromagnetic interactions among electrons. With this picture
we can also have a qualitative understanding of the form of the parton
distribution function f(x). Experimentally it has the shape shown in Fig.
(7.3). To understand this we follow the presentation by Close (1979) and start
with a primitive model of three free quarks of the nucleon (see Fig. 7.4) for
which the parton distribution function is essentially a delta function at
x =1/3, i.e., f(x) ~ 6(x — 1/3). We turn on the interaction of the quarks
with gluons; this distribution will be smeared by the gluon exchange be-
tween quarks (Fig. 7.5). Then, just as the case of QED where the virtual
photon (emitted with a bremsstrahlung momentum spectrum of dk/k) can
create e*e” pairs, the gluons (emitted with a probability ~dx/x) can pro-
duce qq pairs. These processes of internal conversion and bremsstrahlung
will produce a ‘qq sea’ at small x to give the final distribution (Fig. 7.6).
We would like to see whether the high-energy lepton—nucleon scattering
data are consistent with the quark quantum number fixed by the spectro-
scopic phenomenology. Working with the quark model with only light

f(x)
1 1
1 X
FiG. 7.3.
1
Fi1G. 7.4.
% /TIKI
1
FiG. 7.5.

FiG. 7.6.



210 The parton model and scaling 7.2

quarks u, d, and s, the hadronic electromagnetic current has the explicit
form
Jo =

y.u — 3dy,d — 35y,8 (7.65)

2 —
3
and, below the charm threshold, the hadronic (charged) weak current has the
form
JE = ay*(1 — y5)(d cos O, + s sin 6,) (7.66)

We shall work in the approximation of vanishing Cabibbo angle (6. = 0);
hence
byl —ys)d. (7.67)

Here we have used the quark labels as particle field operators. In the
following we shall use these names to denote the quark—parton distribution
function instead. With the squared electric charges factored out explicitly, we
have, through eqns (7.56) and (7.61),

FR(x) = fi(x) = $(up + 0,) + &(d, + &) + &(s, + ) (7.68)
FT(x) = £o(x) = 5(u + 8,) + 5(d, + dn) + 5(50 + 5) (7.69)

where qn(x) denotes the probability of finding a parton with longitudinal
momentum fraction x carrying the quantum number of quark q in the target
nucleon N. They are constrained by the quantum number of nucleon. For
example,

Isospin: 1
3 | e - s -t -demac=) o)
Strangeness: ’ 1
J\ [sp(x) —5,(x)]dx =0 (7.71)
Charge: ’

1

1
|3 w0 - s ax - [ a0 - g 0x
0 0

1

— J % [sp(x) — 8p(x)] dx = 1.
0

Using isospin symmetry (i.e., the invariance under the interchanges p<—n
and u«<d), we have

up(x) = dn(x) = u(x)
dy(x) = u,(x) = d(x)
Sp(X) = s4(x) = s(x). (7.72)
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Thus (7.68) and (7.69) may be written
FR(x) =f(x) =3(u+0) + 5(d + d) + 5(s +35) (7.73)
FP(x) = fu(x) = %(d + d) + 3(u + @) + (s +35) (7.74)
The ratio of the proton and neutron structure function is then

FP(x) 4u+u)+d+d)+(+5)
FP(x) (+ua)+4d+d)+(s+53)

(7.75)

Since all q(x)s are positive, we must have the bounds (Nachtmann 1972)

1 _F®
47 FP(x) "~

(7.76)

which is in fact consistent with experimental data.

Furthermore, our discussion of the quark—parton model at the beginning
of this section also suggests (e.g., Kuti and Weisskopf 1971; Landshoff and
Polkinghorne 1971) that the quark distribution function can be usefully
decomposed into valence quarks and sea quarks

q(x) = q,(x) + q(x)- (7.77)

The presence of the valence quarks is already indicated by the original quark
model. Thus protons and neutrons have valence quarks of (uud) and (udd),
respectively. The sea quarks correspond to those quark pairs produced by the
gluons: they are symmetric with respect to the flavour SU(3) group and, as
indicated by our discussion above, they should be concentrated in the small-x
region. For the proton target we have

u,(x) = 2d,(x)
s,(x) = U(x) = dy(x) = 8.(x) = 0
u(x) = 8,(x) = dy(x) = dy(x) = s4(x) = 5(x) = G(x). (7.78)
Thus eqns (7.73) and (7.74) may be written as
FP(x) = u(x) +5G(x)

FP(x) = $u,(x) + 3G(x). (7.79)
Their difference directly measures the valence quark distribution
F(x) — FT(x) = gu,(x) (7.80)

which should have a peak approximately around x = 1/3, as suggested by
Fig. 7.5.
Also, the experimental observations
1 asx—0
) n
FP(x)/FF"(x) — {4 ol (7.81)
supports the expectation that G(x) is important only in the x — 0 region, and

the feature that the valence distributions dominate in the x — 1 region with
uy(x) > d (x).
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For the neutrino-nucleon structure functions, corresponding to eqns
(7.73) and (7.74), we will merely list the basic results

FP(x) = 2d(x) F{"(x) = 2u(x)
FR(x) =20(x)  Fr(x) = 2d(x)
F(x)=0 Fs'(x) =0
FP(x) =2u(x)  F{'(x) = 2d(x)
FR(x) =2d(x)  FR(x) = 2u(x)
FP(x)=0 Fg(x) = 0. (7.82)
The functions on the right-hand sides are distribution functions for proton
targets and the factors of 2 reflect the presence of both vector and axial-
vector parts in the weak currents. We can then isolate the strange-quark
distribution as follows. Using F, = x(F, + Fy + Fs) and (7.82), we have
FP(x) + Fy(x) =2x(u+a+d +d). (7.83)
From F, = xF; and eqns (7.73) and (7.74), we have
F3(x) + F3(x) = x[5(u + 0 + d + d)/9 + 2(s +5)/9]. (7.84)
They imply that

FE0)+ F300 = 22 [P0 + FE0] = 2 [s0) 4 5(9]. (789)

The experimental data are consistent with a vanishing right-hand side, except
for the small x (<0.2) region. In other words the strange quark and
antiquark content of the nucleon is very small. Furthermore, if we assume
that the sea-quark distributions are SU(3) symmetric, the G(x) and d(x)
contents should also be small.

We next consider a number of sum rules; their validity strongly supports
the quark—parton picture we have presented.

The Adler sum rule

This sum rule has already been derived in our discussion of current algebra.
Eqn (5.109) takes on the following (6, =0) form in the scaling limit
—q% - o, v = o0, with x fixed

1
f ¥ (rpe) — PR = 2. (7.86)

0
We can obtain the same result directly from the quark—parton model. Since
Fy =x(FL+ Fr + F), (7.87)

the combination of structure functions appearing on the left-hand side of
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(7.86) can be expressed in terms of the quark distribution function through
(7.82)

F2(x) — FP(x) = 2x{[u(x) — 0(x)] - [d(x) — d(x)]} (7.88)
= 4xT5(x)

where T is the third component of the isospin density. Using the fact that
proton has isospin-1/2 (eqn (7.70)) we immediately recover (7.86)

1 1

j éxf [FP(x) — FP(x)] = 4 f Ty(x) dx = 2. (7.89)

0 0o

Gross—Llewellyn Smith sum rule

The sum of the scaling functions F; = Fg — F|,

FP(x) + F3'(x) = —2[u(x) + d(x) — a(x) — d(x)] (7.90)
can be written as a combination of baryon number and strangeness densities
FP(x) + F3(x) = —6[B(x) + 35(x)] (7.91)

with
B(x) = ${u(x) + d(x) + s(x) — d(x) — d(x) —5(x)] (7.92)
S(x) = —[s(x) —s(x)]. (7.93)

Since the proton has baryon number 1 and zero strangeness, we obtain the
Gross—Llewellyn Smith (1969) sum rule

1

J dx[FP(x) + F(x)] = —6. (7.94)

0

The momentum sum rule

If the quarks were to carry all the momentum of the target nucleon, we would
have the sum rule

j [u(x) + d(x) + s(x) + a(x) + d(x) + 5(x)]xdx = 1. (7.95)
0

Since the x &~ 0 region is not important to this integral, we can drop all the
sea-quark contributions

1
J [u(x) + d(x)] xdx = 1. (7.96)
4]
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The quark density functions on the left-hand side can be expressed directly in
terms of the measurable structure functions (7.84) and we obtain

1
J [FP(x) + F3(x)]dx = 3. (7.97)
0
Similarly,
1
J [FP(x) + F5(x)]dx = 2. (7.98)

0

Experimentally, however, we find the integrals in (7.97) to be approximately
0.28. This indicates that almost 50 per cent of the nucleon momentum is
carried by some constituents which do not interact with the electromagnetic
or the weak currents (Llewellyn Smith 1974). This again is in accord with the
expectations of the QCD-parton model where one identifies these neutral
constituents with the gluons.

Other applications of the quark—parton model

For the remaining part of this section we shall briefly touch upon two
other topics of the quark—parton model—its applications in the description
of high energy e*e~ annihilations and the Drell-Yan process of lepton pair
production in hadron-hadron collisions. We will follow the presentation of
(Close 1979) and (Aitchson and Hey 1982).

e*e” annihilation

(1)e*e™ —» p*p~. We shall use e*e~ annihilation through the one-photon
intermediate state into a p*p~ pair (Fig. 7.7(a)) as the ‘reference reaction’ in

el Tl et P
>\L“Q\< >¢‘QA<
e B e~ p
(a) (b)

FiG. 7.7.

describing annihilations into other final states. The total cross section for
ete” —» pTpu~ may be calculated in QED as

4 2 4 2\ 1/2
slete” - pp) = 3”—;<1 - %) @m? + ¢%) (7.99)

where ¢ is the intermediate photon momentum

¢ =(ps +p-)?=s>0. (7.100)



7.2 Sum rules and applications of the quark—parton model 215

For high energies s » m?, we obtain

4na?

+.- EEN .
ole’e” - pTpT) = 35

(7.101)

The fact that the cross-section falls as s~ ! is typical for e*e™ annihilation
into point-like particles.

(2)e*e™ — pp. The amplitude for this process (Fig. 7.7(b)) is related to that
of ep elastic scattering by crossing symmetry. We calculate the cross-section
to be

dmod [ 4MZ\'2
i (1 - —q—) [2M2GHg) + ¢*G(g)]

(7.102)

where Gg(gq?) and Gy(g?) are the electric and magnetic form factors,
respectively (see (7.21) with ¢? > 0. For large ¢, Gx(g?) «c Gu(g?) ~ g~ *.
Thus for high energies s > M2, the cross-section a(e*e™ — pp) ~ s~ 7 falls
off rapidly as is typical for annihilations into any given final state of hadrons
with structure.

oe’e” - pp) =

(3) e*e” — hadrons. We now consider the inclusive process of e*e~
annihilation into all possible hadronic final states. In the quark—parton
model we expect this to take place via e*e” — q,§; and the quarks then
fragment into free hadrons (Fig. 7.8(a)). The subscript i ranges over all
possible (flavour and colour) labels of the produced quarks. Thus

o(e*e™ — hadrons) = ) a(e*e” — q,q;). (7.103)
/
6
et —>— e
/

(a)

FiG. 7.8.

The ratio to the reference reaction e e~ — p*p~ cross-section is then

R= a(e*e” — hadrons)

=Y e? (7.104)

i

aeTe” - ptp7)
so the ratio R measures the sum of squared quark charges (Cabibbo, Parisi,

and Testa 1970). Thus for energies below the charm threshold we sum over
three colours of the u, d, and s quarks

R=3¢+4+%=2 for s<2m, (7.105)
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and above charm and bottom thresholds
R=2+3¢+dH=4 for /s > 2my,. (7.106)

The data seems to support this scaling behaviour with three colours. (See
Fig. 7.9 taken from a recent review by Felst (1981).)
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Fi1G. 7.9. Compilation of R-values from different e*e ™ experiments. Only statistical errors are
shown. The quark—parton model prediction (eqn (7.106)) is also indicated.

One should also mention that e*e~ annihilations have many other
detailed features that check well with the quark—parton model description.
For example, one finds Bjorken scaling in the differential cross-section for
the inclusive reaction e*e~ — hX (i.e., one of the final hadrons is detected)
which is related by crossing to the inelastic ep — e€X scattering. Also, there is
strong experimental evidence that the e*e ™ annihilation final-state hadrons
form jets, i.e., they tend to flow in preferred cones of small width. For 4 GeV
< /s < 7.5 GeV one finds two-jet events (Hanson et al. 1975; Fig. 7.8(b))
with the jet axes having the angular distribution ~ (1 4 cos? ), where 0 is the
polar angle of the jet axis with respect to the e*e™ beam. Such a distribution
is characteristic of an e *e~ final state of spin-1/2 point-like particles. This is
clearly in agreement with the expectation of the quark—parton model with its
implicit assumption of transverse momentum cut-off. Finally at even higher
energies (> 7.5 GeV) corresponding to the gluon bremsstrahlung as expected
in the QCD-parton model, one begins to find evidence for three-jet events
(Brandelik et al. 1979; Barber et al. 1979; Berger et al. 1979).

The Drell-Yan process

As we shall see in the next section, it is possible to provide a more formal
basis for parton-model descriptions of the deep inelastic IN scattering and
high-energy e*e™ annihilation in terms of the light-cone and short-distance
operator product expansions. However this cannot be done for other high-
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energy and large-momentum transfer processes. The parton formulation has
the advantage of suggesting parton descriptions for which direct formal
operator argument may not be possible. The most important example is the
Drell-Yan process (1971) (Fig. 7.10(a))

pp—» pp~X (7.107)

(a)
FiG. 7.10.

where a p*pu~ pair is produced in hadron-hadron (usually proton—proton)
collisions along with the unobserved hadron state X. The parton model leads
us to expect that in the limit of large s = (p; + p,)* = o and large virtual
photon mass g> — oo, with the ratio ¢*/s fixed, the reaction can be assumed
to proceed via the annihilation of a parton and antiparton, each coming from
one of the initial hadrons, into a massive virtual photon which then decays
into the observed p*p~ pair (Fig. 7.10(b)). In the centre-of-mass system,
neglecting all masses, we have

p'i = (p9 0, 0,]7), pg = (pa 09 0’ _P)

and
s = 4p?. (7.108)

Also neglecting the parton masses and transverse momenta, the parton
momenta have the form

Ky =xph, ks =x;p5 (7.109)
leading to the photon momentum
¢" = ((x1 + x2)p, 0,0, (x; — x3)p). (7.110)
Thus we have
g% = 4x,x,p* = x,X,5. (7.111)

The probabilities of a quark and antiquark pair of the ith type with
momentum fractions x; and x, in the initial protons are given by

q;(x;) dx;G;(x;) dx, + §;(x;) dx;q;(x2) dx,. (7.112)
This is to be multiplied by the cross-section for the basic parton process of
qQ; > k'p” of
4o
3q?

do _ _
d—qz(q.-q,- —ptuT) = e? 6(q* — x1x,5) (7.113)
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to obtain the cross-section for the Drell-Yan process

1
do B 4mo? ~
— (p > X)) =7 Y e | [qx)aqix2)
dg 3q" 4

0

+ i(x1)qi(x2)] dx, dx, 5( ! —;—2>- (7.114)

X1X2 X1X2

Thus the parton model will have g*(da/dg?) to scale as a function of ¢?/s. The
experimental support for this prediction is quite convincing. Note that the
same quark distribution functions are measured in the deep inelastic lepton
proton scatterings, so one can also make a prediction of the absolute
magnitude.

7.3 Free-field light-cone singularities and Bjorken scaling

In this section we study Bjorken scaling in the framework of field theory, thus
giving some of the parton model results a more formal foundation. For a
general introduction see, for example, Gross (1976) and Ellis (1977).

The deep inelastic limit and the light cone

First we will demonstrate that the deep inelastic IN processes of §7.1, with
—q% v— 0, and —q?/2Mpv fixed, probe the light-cone behaviour of the
current commutator. We recall (7.12) that the hadronic tensor in the
differential cross-section can be expressed as a current commutator

1 d*x |
W, q) = mz Jz—; " p, allJu(x), J,(O)]Ip, 0. (7.115)

The scalar product in the exponential may be written

Y (g0 + g3) (xo — Xx3) n (g0 — q3) (xo + x3)
22 N NG

where qr =(q:,q,) and x;=(x;,x;). In the rest frame of the
target nucleon, the momenta are given by

p.=(M,0,0,0), g,=(v0,0,0>—g*. (7.117)

In the deep inelastic limit (— g2, v — oo with —g?/2Mv fixed) we observe that

—qr X, (7.116)

Go+qs~2v and g — g5 ~ q*/2v. (7.118)

We expect that the dominant contribution to the integral (7.115) comes from
regions with less rapid oscillations, i.e., ¢ -x = O(1); hence

Xo — X3~ O(1/v) and xo + x5 ~ O(1/xM) (7.119)
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or

x5 —x3~ O( ! 2)- (7.120)
Thus x?=x3 —x3 —x2<x%3—x3~0(1/—q?) which vanishes as
—g% — oo. In other words, in the scaling limit we are probing the structure of
the current product near the light cone. This reduces the study of Bjorken
scaling in field theory to the study of the light-cone behaviour of the current
product.

Free-field light-cone singularities

As it turns out, Bjorken scaling corresponds to the statement that the current
commutator has the light-cone behaviour of a free-field theory (for a review
see Frishman 1974). To pave the way, we shall first study the free-field light-
cone behaviour of some simpler products.

(1) Products of fields. In free field theories, the products of fields such as
commutators and propagators are singular on the light cone (x? ~ 0) and the
leading singularities are independent of the masses. Consider, for example,
the propagator of the scalar field given by

COIT@EHON0> = iel) = i |k

SR @n)t kR - m? + e

The Fourier transform in (7.121) can be calculated to give (see, for example,
Bogoliubov and Shirkov 1959)

(7.121)

m

8m./x?

Ael) = o 66) + g BT (/%) = INy(m %]

- ;mz;:/n_? 0(—x*K (m / — x?) (7.122)

where J,, N,, and K, are Bessel functions. For x* ~ 0, we have

-1 i1 im? myx? m?
M) = 400 + g g —galn g ~ T2 009
i1
! __ 4 O(m?x?). (7.123)

T 4n? (x — ie)

The leading singularity is independent of the masses as the x*> ~ 0 region
corresponds to the large k? in the momentum space. Thus we can also
calculate this mass-independent singularity directly from a simpler object,
the massless propagator

d4k e—ik~,\'

Qn)* k2 +ic

&k, dk, e~ Hkovo
“ et Jkg—kuig'

—oC

Ap(x) =

(7.124)
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The k,-integration can be performed by the standard contour method

( dk e Hox —irn . )
J o107~ g 0 dox el (1.129)
T

~0

We then have

1 r . . . .
Ap(x) = — o J dre(e" — e " )[0(xp) 7" + 0(—x0) €]  (7.126)
0

where k = |k| and r = |x|. Using the identity

et dr = | etitinrgr _ - + 1 , (7127)
(o + i€)
0 0

we obtain

-1 1 1
Ap(X) = —5
#() 8n?r [O(XO) (r — Xo + i 7 + Xo — is)

1 1
+ 9(—xo)<r+x0 L —ie)]
i [ 000) |, O(=x0) ]

dn? | r? — x3 +iex, r* — x3 —iex,
i 1
T 4n? x? —ie

(7.128)

which agrees with (7.123). One can do a similar calculation of the leading
singularity for the commutator of two scalar fields

[d(x), #(0)] = iA(x) = (371;)—3 Jd“k e * %g(k,) (k* — m?) (7.129)
with the result
A(x) ~ ;—nl &(xo) 6(x?) for x> =~ 0. (7.130)

Thus, we have the singular-function identity
i Jd“k e % Ye(ko) 0(k?) = (2m)*e(x,) O(x?). (7.131)

The result (7.130) can be viewed in another way: the light-cone singularity of
the commutator A(x) and that of the propagator function Ag(x) are directly
related

A(x) = 26(xo) Im(AR(x)). (7.132)
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This reflects the singular-function identity

1 1 .
e T D= 2mielxo) 6(x*) (7.133)

which is a special case of the general identity

( ! )—( ! >"=(n‘_z’;i)!e(xo)a("—“(xz). (1.134)

—x? +ie —x%—ie

In the following calculations we shall obtain the commutator singularities
through those of the propagators by making the replacement

(—x% —ie)™" — 2mig(xo) 6™~ V(x?)/(n — 1)! (7.135)
For the fermions, the results are summarized as
{Yul(x), Y5(0)} = 1Sep(x — ¥),
Sapx) = (iy 0 + m)yy A(x),
COIT W) g(PDI0) = iSz5(x — ),

Sf,;(x) = (iy - 0 + m),p Ap(x). (7.136)
For x? = 0, we have
Sap(x) = (1y - 0)gg |:2—1n_ &(xo) 6(x2)] (7.137)
. i 1
S5a(x) = (iy - 0)p [4;n2 m] (7.138)

(2) Product of scalar currents. We can extend this analysis to the case of
composite operators. Consider for example the scalar current

J(x) = :d*(x):. (7.139)

Note that the effect of the normal ordering is to remove the singularities
which occur in the product ¢(x + {)p(x — ) as {* — 0. The singularities in
the product 7'(J(x)J(0)) can be worked out by using Wick’s theorem

T(J(x)J(0)) = T(:¢*(x)::¢*(0):)
= 2[<0IT(¢(x)¢(0))10>]*
+ 40[T(¢(x)(0))10): $(x)(0):
+ :¢*(x)¢*(0):
= —2[Ap(x, m)]* + 4iAp(x, m*): p(x)(0):
+ :02(x)d*(0):. (7.140)

Hence for x? ~ 0, we get

T(J (x)J (0)) ~ ! _1p(0)(0):

8n*(x? —ig)?  m(x? —ig)

+ :%(x)p2(0):. (7.141)
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If we take (7.141) between two arbitrary states |4) and |B),

4|B Al 0):|B
CAIT(J(x)J(0)|B) ~ <4|B) (Al:p(x)$(0):|B)

8rt(x2 —ie)>  mA(x? — i)
+ (4|:¢*(x)¢*(0):|B (7.142)

which corresponds to the diagrams in Fig. 7.11.

J(x) J(0) . 0
VD" x 0 x 0
—2"> + +
‘=0

x S

A B
A B A B
(@) (b) ©

FiG. 7.11. Diagrams that are singular on the light cone. Free massless propagators are
represented by light straight lines: (a) has two; (b) has one; (c) has none. Note that only (a) will
contribute if |[4) = |[B) = |0).

To calculate the singularities of the commutator [ J(x), J(0)] we only need
use the identity given in (7.135).

Free-field singularities and scaling

Now we are ready to demonstrate Bjorken scaling in free-field theory.
Consider the electromagnetic current given by

JAx) = P(x)y,Q¥(x): (7.143)

where Q is the charge operator. Following the same procedure used in the
above case of scalar current densities, instead of the commutator

[J.(x), J,(0)], we will first calculate the time-ordered product by using
Wick’s theorem

T(J,()J(0)) = TC:P(x)y, Q% (x)::9(0)y,0%(0):)
= triSe(—x)y,iSe(x)7,0°]
+ ()7, QiSk(x)y, QY (0):
+ 1P(0)y,QiSe(—x)y, Q¥ (x):
+ P (x)7,.0¥ () (0)y, Q¥ (0): (7.144)
where Si(x) was defined in (7.136). Using (7.138) and the identity

Yulv¥a = (Suvlp + isuvlpyS)yp (7145)
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where S5, = 9y + Gupdvs — Guigve> WE can write (7.144) in the limit
x?2x0 as

T(J,(x)J(0)) = (tr Q%) ("0, = 2%,X,)

m(x? — ie)*
+L{S [V¥(x, 0) — V0, x)]
2m2(x2 — ig)? \Trf ’ ’
+ iguavﬁ[Aﬂ(x’ O) - Aﬁ(oa X)]}
+ P (x)y, QU (x) (0)y,Q(0): (7.146)
where
VE(x, y) = )y Q% (y): (7.147)
AP(x, y) = Y)Yy sQ* (). (7.148)
If we write
X = 2%,%, 2 gu 1 1
2 —i*  3(x*—i)® 12 Ou 0y (2 — ig)? (7.149)
and
x* -1, 1
i <x2 ~ i8> (7.150)

and use the substitution (7.135), we obtain the leading light-cone singularities
of the current commutator

[.(x), J(0)] = 39, 0"(x?)e(x0) + & 0, 0,[0'(x*)e(x0)1}

.
T
+ {SuavB[Vﬂ(X, 0) — Vﬂ(o, X)]

2
ity LAY, 0) — A30, ) o X0

+ 1P (), Q0 (x)(0)y,Qy(0):. (7.151)

We can then translate this explicit form of the current commutator into
statements on the cross-sections for e*e~ annihilation and for inelastic IN
scatterings.

(1) e*e™ annihilation. Following the procedure of §7.1 it is straight-
forward to show that the total hadronic cross-section for e e~ annihilation
can be written as a current commutator

2.2

o(ete” — hadrons) = 3(7;—2)2

f d*x 4 (0|1, (), JH(0)][0
(7.152)

The most singular light-cone term comes from the first one on the right-hand
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side of (7.151). (Thus this actually probes the short distance behaviour of the
current commutator.)
8n%a?i tr Q2 (8

3()> d*x e*{§ 6" (x?)e(x,)

+ L 02[6'(x*)e(x0)]} - (7.153)

o(e*e” — hadrons) ~

Using the identity in (7.131), we get

8n2a? tr Q2 (8¢* ¢*
te~ r—— = [ — - )0(q?
a(e e~ — hadrons) m@? \34 6 (9°)e(q0)
dmo®

tr 02 (7.154)

342
or

_a(e*e” — hadrons)
~ olete” > putpn)

= tr Q2. (7.155)

This justifies the results of the parton model (7.104) if the leading short
distance singularity is that of the free-field theory. We next consider the
genuine light-cone process of deep inelastic lepton—hadron scattering.

(2) Lepton—hadron scattering. For deep inelastic IN scattering (7.115), the
first term on the right-hand side of (7.151) will not contribute since it is a c-
number; thus the nontrivial leading singular term will be the second one

A ASI-poL sl 3) o]
o (2 (2)
ol

We can expand the bilocal operator

X X - xM 1 « < xt1xk
x/7(§>¢<—§> = &(0)[1 +9,, 5 0, 0, 5 5+ J

\

(7.156)

(7.157)
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X X 1 x*1 x*2 xn
= —_— = - =~ mnt+1)
G (5)]- T s s T oo

X Suavﬂ o* Ii————é(xzz):[(XO)iI

Z 1 xtt xk2 x“"
even n n! 2 2

X i€00p a[m] (7.158)

to get

@'+ 1
,Bnumz) u..()

2n
where
‘1 R —
oty . 0) =)0, d,,...0,7"0*(0) (7.159a)
(n+ 1 vy S S b, 02

OG5 0(0) = ¥(0) 0, 0,,...0,7ysQ*¥(0). (7.159b)
To calculate the structure functions, we write
1
3 Y (polOGt)  (0)pad = A" Vpp, p,,...p,, + trace terms (7.160)
where A®* Y some constant and where the trace terms which contain one
or more factors of g, , will produce powers of x? when contracted with
xHixk2 . x#nin (7.158) and are less important near the light cone x? ~ 0. Also

the @'"* 1 term will not contribute to the spin-averaged structure functions
due to the antisymmetry property of ¢,,,;. We then have for (7.115)

1 (d*x o < [(xp .
Wuv(PaQ)%WJ?_ ‘ g < > ACD

X Syavp 6[%] (7.161)
Define
> (%) i jdé Q). (7.162)
then
Wolp.4) = 557 J X g j ag e (@)
< Sgly + ey TR (163
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Using the identity (7.131)

d*x
i J\(—zn—;cz eix (g +¢p) 5(x2)£(x0) = 5((q + ép)Z)g(qo + fPo), (7164)

we have
1
W fdéf(é) o(q* + 2Mv9)
X (guagvﬂ + guﬁgva - guvgaﬂ)(q + ép)app

1
=577 Jdéf(i) o + ¢*/2Mv)(— Mvg,, + 26pp, + ..

2M3y
o] — 9w X PPy
f(x)[ 2M+v e +:| (7.165)
for x = —¢?/2Mv. Thus we recover the parton-model results of eqns (7.56)
and (7.57)

MW, - Fi(x) = 3 (x)
VW, = Fy(x) = xf(x). (7.166)

This implies that the assumption of canonical free-field light-cone structure is
equivalent to that of the parton model.
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8 Gauge symmetries

THE symmetries we have discussed up to this point are global symmetries. The
parameters &¢* of the symmetry transformation in eqn (5.10) are independent
of space-time; thus fields at different space-time points are all supposed to
transform by the same amount. We now consider theories where the
symmetry transformations are space-time dependent, i.e., & = ¢°(x). They
are called local symmetries or gauge symmetries (Weyl 1929). We shall see
that such symmetries may be used to generate dynamics, the gauge
interactions. The prototype gauge theory is quantum electrodynamics. It is
now believed that all fundamental interactions are described by some form of
gauge theory. In the first section, after an introductory discussion of QED
with its Abelian U(1) local symmetry, we study the fundamentally richer
systems of non-Abelian gauge theories, the Yang—Mills theories (1954). After
an elementary geometric look at gauge invariance, we present in the last
section the subject of spontaneous symmetry breakdown in a gauge theory.

8.1 Local symmetries in field theory
Abelian gauge theory

As we have already stated, QED is an Abelian gauge theory. It is instructive
to show that the theory can actually be ‘derived’ by requiring the Dirac free
electron theory to be gauge invariant and renormalizable.

Consider the Lagrangian for a free-electron field y(x)

Lo = Y(x)(iy* 8, — mp(x). 8.1)

Clearly it has a global U(1) symmetry corresponding to the invariance of the
theory under a phase change

Y(x) > ¥'(x) = e"Y(x)
Y(x) = ¥'(x) = e"P(x). (8.2)

We are going to turn this symmetry into a local symmetry, i.e., ‘to gauge the
symmetry’ by replacing « with a(x). Thus we are going to construct a theory
which will be invariant under a space-time dependent phase change,

Y(x) = P'(x) = e "(x).
Y(x) = ¥'(x) = e"N(x). (8.3)
The derivative term will now have a rather complicated transformation
Y() 0,9 (x) = ¥'(x) 3,4 (x) = P(x) € 9, (e ()
= ¥(x) 0,9(x) — if(x) O, a(x)Y(x).  (8.4)
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The second term spoils the invariance. We need to form a gauge-covariant
derivative D, to replace d,, and D ,(x) will have the simple transformation

D (x) - [Dy(x)] = e ““D,y(x) 8.5)

so that the combination y(x)D,y(x) is gauge invariant. In other words, the
action of the covariant derivative on the field will not change the
transformation property of the field. This can be realized if we enlarge the
theory with a new vector field 4,(x), the gauge field, and form the covariant
derivative as

Dy = (0, + ieA, )W (8.6)

where e is a free parameter which we eventually will identify with the electric
charge. Then the transformation law for the covariant derivative (8.5) will
be satisfied if the gauge field 4,(x) has the transformation property

A (x) = A, (x) = A,(x) + é@ua(x) (8.7)

From (8.1) we now have

Lo = Yiy"(0, + ied W — mjy. (8.8)

To make the gauge field a true dynamical variable we need to add a term to
the Lagrangian involving its derivatives. The simplest gauge-invariant term
of dimension-four or less (with a conventional normalization) is

L= —%F,wF‘” (8.9)
where
F,=0,4,—04,. (8.10)

By direct substitution of (8.7) we see that F,, is in fact gauge invariant by
itself. It is useful to see this in another way—the antisymmetric tensor F,, is
related to the covariant derivative as

(D,D, — D,D )y = ieF, i (8.11)

From (8.5) is it easy to see that

[(D,D, — D,DY] =e “[(D,D, — D,D,y] (8.12)

or
F 0 = (F )™ (8.13)

or
F,, =F,. (8.14)

Combining (8.8) and (8.9) we arrive at the QED Lagrangian

£ = Yiy"(0, + ieA W — mpyy — LF, F*. (8.15)
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The following features of (8.15) should be noted

(1) The photon is massless because a 4,4" term is not gauge invariant.

(2) The minimal coupling of photon to the electron is contained in the
covariant derivative D, which can be constructed from the transformation
property of the electron field. In other words, the coupling of the photon to
any matter field is determined by its transformation property under the
symmetry group. This is usually referred to as universality. Other (higher-
dimensional) gauge-invariant couplings such as Y, F*’ are ruled out by
the requirement of renormalizability.

(3) The Lagrangian of (8.15) does not have a gauge-field self-coupling,
because the photon does not carry a charge (or U(l) quantum number).
Thus, without a matter field, the theory is a free-field theory.

We shall see that the first two features will still hold for non-Abelian
gauge theories but the last will not. The presence of gauge-field self-
coupling will make such non-Abelian theories highly nonlinear and will give
rise to a number of fundamentally distinctive properties.

Non-Abelian gauge symmetry—Yang-Mills fields

In 1954 Yang and Mills extended the gauge principle to non-Abelian
symmetry. (For subsequent development of the Yang-Mills theories see
Utiyama 1956; Gell-Mann and Glashow 1961.) We shall illustrate the
construction for the simplest case of isospin SU(2).

Let the fermion field be an isospin doublet,

_ (™).
()

Under an SU(2) transformation, we have
, —it-0
Y(x) - ¥'(x) = exp {—2—}l//(X) (8.17)
where t = (1,, 7,, T3) are the usual Pauli matrices, satisfying
T T . T ..
[5, 51] - 1aij,‘3" ijk=1,23 (8.18)
and 0 =(0,, 0,, 0;) are the SU(2) transformation parameters. The free

Lagrangian
Zo = Y(x)(iy" 0, — mpp(x) (8.19)

is invariant under the global SU(2) symmetry with {6;} being space—time
independent. However under the local symmetry transformation

Y(x) = Y'(x) = UOW(x) (8.20)
with

8.21)

U(0) = exp {—:E—B(i)}

2
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the free Lagrangian %, is no longer invariant because the derivative term
transforms as

Y() 0,9(x) = P (x) 8,4/ (x) = Y(x) 0, (x)
+ YU O, UOTY(x).  (8.22)

To construct a gauge-invariant Lagrangian we follow a procedure similar to
that of the Abelian case. First we introduce the vector gauge fields A4},
i=1,2,3 (one for each group generator) to form the gauge-covariant
derivative through the minimal coupling

D,y = (a,, _ig?t '2A“>¢ (8.23)

where g is the coupling constant in analogy to e in (8.6). We demand that
D,y have the same transformation property as ¥ itself, i.e.

Dy - Dy) =U@®Dy. (8.24)
This implies that
A, . TA
(«‘n ~ig = “)(Uw)z//) - U(e><a,, ~ig = “>w. (829
or
“A, A
[mv(e) —ig " U(e)]w — —igU(O) =y
or
A TA B}
s =UO) 52U 'O . [0,U6IU~1(6) (8.26)

which defines the transformation law for the gauge fields. For an in-
finitesimal change 0(x) « 1,

.10
vy =1-i- 9 (8.27)
and (8.26) becomes
A, tA, o na] 1T
2 = 2 19’Au|:5,? g 5 5ﬂ9
1A 1 ki 1/t
) £ +§sl"t6"A’;—;<§'au0>

or

AL = AL 4 g Aﬁ‘é 2,0, (8.28)

The second term is clearly the transformation for a triplet (the adjoint)
representation under SU(2). Thus the ALs carry charges, in contrast to the
Abelian gauge field.
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To obtain the antisymmetric second-rank tensor of the gauge fields we can
follow (8.11) and study the combination

(T
with
tF, T-A, A, L [TA, T-A,
7 =0 — 0 1g[ 5 2] (8.30)
or
Ffw = 6‘,A"V — GVA;', + gs“"A{;A’v‘. (8.31)

From the fact that D,y has the same gauge transformation property as y, we
see that

[(DuDv - DvDu)l//], = U(B)(DuDv - DvDu)l// (8'32)
Substituting the definition (8.29) of F, on both sides of (8.32), we have
©F, U0 =U@O)F, ¥

or
©F,, = U@O)(t-F,)U ' (0). (8.33)
For the infinitesimal transformation 6; « 1, this translates into
Fii, = Fi, + ¢7*'Fk,. (8.34)

Unlike the Abelian case, Fi, transform nontrivially, like a triplet under
SU(2). However the product

tr{(t " F,,)(t - F*")} oc Fi F*

is gauge invariant.

We can summarize the above discussion by displaying the complete gauge-
invariant Lagrangian which describes the interaction between gauge fields 4.,
and the SU(2) doublet fields

P = —LFL F® 4 Jip*D oy — mp (8.35)
where
Fi, = 0,4, — 8,4\ + g 4] A* (8.36)
‘A
D,y = (an —igt : ">l/,. (8.37)

The SU(2) gauge transformations of fields are

T-0(x)
2

Y(x) > ¥'(x) = exp{— i }%(X) = U (x) (8.38)

T-A T-A
ko, u

2 2

=U() (%)U‘ 1) — ; [0, U@OIU ') (8.39)
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with infinitesimal forms
.t0
VoY =y —iy (8.40)

Ay = Al = A+ AL - 0,0 (8.41)

Generalization to higher groups and arbitrary representation for y is
straightforward. Let G be some simple Lie group with generators satisfying
the algebra

[Fe, F*] = iC®F¢ (8.42)
where the C®°s are the totally antisymmetric structure constants. y is

supposed to belong to some representation with representation matrices T°.
Thus

[Te T"] = iC®T*. (8.43)
The covariant derivative is then

Dy = (0, —igT* Ay (8.44)

and the second-rank tensor for gauge fields is
Fi, = 0,47 — 0,45 + gC™ A% 45 (8.45)
(T'F),,=0(T-A)—-0,(T-A)—ig[T-A,,T-A/] (8.46)
L = —3FL F* + §(iy*D, — m)y. (8.47)
The Lagrangian is then invariant under the transformation of the group G
Y(x) - ¥'(x) = U(T-0(x)(x) = U0, )¥(x) (8.48)

T 'Au(x) — T’A;t(x) = U(Gx)T'A”U—l(Ox)
- é [0,U(0,)1U(6,) (8.49)

with the infinitesimal variations taking on the forms

Y(x) = Y'(x) = Y(x) = iT0%(x)Y(x) (8.50)
A%(X) = AZ(x) = A%(x) + CPO(x) A5(x) — !1] 2,0°x).  (8.51)

The pure Yang-Mills term, —3F4,F*", contains factors that are trilinear
and quadrilinear in Aj,

2
—gC® 0,434 A — % CoeCMe A8 454 42, (8.52)
which correspond to self-couplings of non-Abelian gauge fields. They are

brought about by the nonlinear terms in F, (8.45), because the gauge fields
Aj themselves transform nontrivially, like the generators, as members of the
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adjoint representation. While this is fundamentally different from (rather,
richer than) in the Abelian case, the properties of universality and
masslessness of the gauge fields remain essentially the same. We note that the
number of massless gauge fields is equal to the number of generators of gauge
symmetry. Concerning universality we should make two comments about the
coupling strength.

(1) In the case of Abelian gauge theories there is no restriction on the
coupling strength between the gauge field 4, and other fields. Thus the
electron carries charge e and another particle can in principle carry any
charge Ade with an arbitrary 4 (for instance 4 = x). In a non-Abelian gauge
theory such as the SU(2) case considered above with a doublet , the
situation is more restrictive. If one tries, for example, to couple the gauge
field to an extra doublet ¢ with a coupling Ag, the commutation relation
(8.18) insuring gauge invariance gets rescaled and implies A2 = A or A = 1.
Basically in non-Abelian theories the normalization of the generators are
fixed by the non-linear relation of commutator, hence g cannot be scaled
arbitrarily.

(2) Can there be different gauge couplings associated with different gauge
fields? If the group is simple, as just stated, there can be only one coupling
constant. However if the group is a product of simple groups such as SU(2)
x SU(3) where each set of generators closes under commutation and
commutes with other sets, there will be an independent coupling for each factor
group.

8.2 Gauge invariance and geometry

Einstein’s successful formulation of general relativity in 1916 unveiled a
profound connection between gravitation and geometry. This discovery
inspired Weyl (1919, 1921) to incorporate electromagnetism into geometry
through the concept of a space-time dependent (local) scale transformation.
Namely, at a neighbouring point, a distance dx* away, the scale is changed
(from one) to (1 + S, dx*), and thus a space-time dependent function is
changed according to

fX) = (f+©,0)d)( + S, dx*) ~f+[(0, + S,)f]dx*. (8.53)

Weyl tried to derive electromagnetism by requiring invariance under this
local scale transformation and by identifying the scale factor with the vector
potential: S, < A4,. His initial attempt was not successful. By 1925 modern
quantum mechanics has emerged. Here a key concept was to identify the
momentum with the operator (—id,), and the canonical momentum in the
presence of electromagnetic field with (—id, + eA,). It was then realized that
the correct identification of Weyl’s scale factor should be S, «<»i4,, and that
what would be required would be invariance of the theory under space—time
dependent phase transformation, see eqn (8.3). However when Weyl (1929)
finally worked out this approach he retained his original terminology of
‘gauge invariance’, the invariance under a change of the scale, a change of the
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gauge. For a concise history of the gauge field concept, the reader is referred
to the lectures by Yang (1975).

The framework for a proper geometrical discussion of gauge fields is the
modern theory of fibre bundles. However such a differential geometry study
would be beyond the scope of this presentation. It suffices for us to note the
existence of a deep geometric foundation to the gauge field concept. Here we
merely present an elementary geometric look at gauge invariance. We will
show how gauge fields 4, describe parallel transport in charge space with the
curvature tensor being the field intensity F,, .

We briefly review some of the basic geometric concepts for a curved space.
First, there is the notion of parallel transport. In any space, to compare two
vectors (or any tensors) at two different space points ¥,(x) and V,(x), we
must first move (parallel transport) ¥, from x to x’, i.e. the two vectors must
be in the same coordinate system before we can take their difference. Thus
there are always two steps in such a comparison

DV, = 8V, +dV, (8.54)

where 6V, is the (apparent) change due to moving these two vectors to the
same coordinate origin and dV, is their difference measured in the same
coordinate system. The operational definition of parallel transport is such as
to keep the vector, throughout the transport, at a fixed angle to the tangent of
the trajectory. Clearly parallel transport is a trivial operation in flat
(Euclidean) space as it does not introduce any change of the vector 6V, = 0,
and covariant differentiation is simply ordinary differentiation

DV* = dV* = (0,V*)dx* in flat space. (8.55)

However, in a curvilinear system there will be an apparent change in such a
translation, as the coordinate axes differ from point to point in such a system
(i.e. the metric is position-dependent). For x andx’ infinitesimally separated
by a distance dx*, we expect 6V, to be linear in dx* and V*

SVH = —TH, VY dx?
and
ov, =TV, dx* (8.56)

since 6(V*V,) =0. The coefficient I'}, is the Affine connection or the
Christoffel symbol and may be shown to be (some combination of) the
derivative of the metric (and hence vanishes in a space with constant metric).
The comparison of the original vector at x” after parallel transport from x to
X' results in

DVH = VHx) — [V*(x) + 6V*]
= (0, V" + T5 V") dx? (8.57)

where the combination in the parenthesis is the covariant derivative. This
contrast between flat and curved spaces is illustrated in Fig. 8.1.
Another important concept in non-Euclidean geometry is the curvature
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tensor which can be best introduced through the notion of parallel transport
of a vector around a closed path (see Fig. 8.2 for an illustrative comparison).
Consider the apparent variation of the vector after being moved around a
small parallelogram PP,P,P; composed of two vectors a* and b* (and their
parallel displacements) (Fig. 8.3). Let 6V, and 6V, be the apparent changes
along the paths PP,P, and PP;P,, respectively. Thus the total apparent
change for a round trip is

AV, =0V, -4V, (8.58)

with
oV, = ([T V.)ea + (T V)p (bF + 6bF) (8.59a)
OV, = TV )eb? + (T}, Ve, (@ + 6a%) (8.59b)

We can expand the quantities evaluated at points P, and P; so that all
tensors are measured at a common point P

TasV)e, = Crp + 0L pa® )V, + T2,V ,a%); (8.60)
similarly for (I',,V,)p,. Substituting these results and

a* +éa* = a* —T4a'd" 8.61)

\
£ P b
\
482 14a
(a) ®)

F1G. 8.1. Apparent changes induced by parallel transport (a) in flat space (no apparent change);
and (b) in curved space.
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FiG. 8.2. Apparent changes induced by parallel transport (a) around a closed path 1-2-3-4 in
flat space; and (b) on a spherical surface.
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and a similar expression for (b® + 6b*) into eqns (8.59) and (8.58), we have

AV, = R,V 0%. (8.62)
The apparent change around a closed path is proportional to the vector itself,
to the area (tensor) bounded by the path ¢** = a®b?, and to the curvature
tensor

Ryup = 0,005 — 0500 + Taglhe — Tacl 3p- (8.63)
For the rather simple example of a spherical triangle with 90° at each vertex
(Fig. 8.2), the apparent change is clearly 7/2. This agrees with eqn (8.62) as
the curvature tensor reduces to a curvature R = 1/r? where r is the radius of
the sphere. When multiplied by the area of the triangle nr?/2 one gets an
apparent change of n/2.

A direct comparison of (8.57) with the gauge covariant derivative D,y
(8.44) indicates that T- A, has a geometrical interpretation as the ‘connec-
tion’ (i.e. Christoffel symbol) in the internal charge space. As in (8.56), under
a parallel transport the field y(x) undergoes, because of the local change of
axes, an apparent change

Y(x) = Y(x + dx) = Y(x) + oy(x)
with
oY(x) = igT - Ay dx* (8.64)

where T is the set of representation matrices of the symmetry generators and
Y is the basis vector.

For parallel transport of a finite interval from x to x’ we can exponentiate
(8.64) and obtain

P(x', x) = exp {ig f T-A,() dy"} (8.65)

where the line integral is taken along a path joining x and x'. Thus for every
path we can associate a group element. Let us check that such an
interpretation is compatible with the transformation properties of gauge
fields. For simplicity consider infinitesimal parallel transport (8.64)

W(x + dx) = (1 + igT - A, dx*)(x). (8.66)

Now for a different choice of frame at each point, we make a gauge
transformation, a rotation of axes, at each point by T -0(x) as in (8.48)

Y(x) > ¥'(x) = U, )Y (x) (8.67)

and
Y(x) - Y'(x) = U@ W (x'). (8.68)
In order to keep the product Y(x + dx) P(x + dx, x){/(x) invariant, parallel
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transport ‘connection’ must transform according to
1 +igT- A, dx* = U(f,.4,)(1 + igT-A, dx*)U~2(6,)
= (U0, + 0,U(B,) dx")(1 + igT - A, dx)U~1(6,)  (8.69)

or
T-A(x)=U@BIT-AU" 16, - é [0,U0)1U1(8,) (8.70)

which is the required transformation property of gauge fields as given in
(8.49). This result clearly holds also for finite separations. Thus the parallel
transport operator (8.65) has the gauge transformation

P(x', x) —» P'(x', x) = U(0,)P(x', x)U " 1(6,). (8.71)

A direct comparison of T F,, (8.46) with Rf ; (8.63) suggests that T-F,,
be interpreted as the curvature of internal charge space. This can be checked
explicitly by considering parallel transport around a closed path C. For
simplicity we choose C to be a parallelogram with one corner at x, and two
sides dx, and dx,,.

PO = P(x, x + dx) P(x + dx, x + dx + 6x)
x P(x + dx + dx, x + ox) P(x + dx, x) (8.72)

where the Ps are the parallel transport matrices of (8.65). Using the matrix
identity

et B — gMA+B)+27/24. B] 4 0(13), (8.73)
we find
P(x, x + dx) P(x + dx, x + dx + 6x)
= exp[igAd,(x) dx*] exp[ig4,(x + dx) 6x"]

= exp{ig(4,dx* + 4,6x" + 9,4,dx" dx") — %i [A4,,4,]dx"6x"}
(8.74)
and
P(x + dx + ox, x + 0x)P(x + dx, X)
= exp[ —igA,(x + x) dx*] exp[ —ig4,(x) 6x"]
= exp{ —ig(4, dx* + A4, 6x* + 0,4, dx* 6x”) — 92—2 [A4,, A,]dx" 6x"}.

(8.75)
Thus (8.72) may be written as

Po = exp{ig(0,4, — 0,4, — ig[4,, A,]) dx* 6x"}. (8.76)
In eqns (8.74)—(8.76) we have simplified the notation by writing T-A, as 4,.
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The above calculation justifies the identification of
TF,=0TA -0T-A,—ig[T-A,,T-A] 8.77)

as the curvature tensor of the internal charge space.

In summary, the essential point is that, in any (physical or internal) space
where the coordinates are position-dependent, the significance of comparing
two vectors (or any two tensors) at different points is lost. The standard way
of dealing with this problem is to introduce the notion of parallel transport
or affine connection. In the case of physical curved space—time the Christoffel
symbol is introduced and in the case of internal charge space the gauge fields
are introduced. They ‘compensate’ for the change of local frames at each
space time point.

8.3 Spontaneous breaking of gauge symmetry, the Higgs
phenomenon

We saw in §8.1 that the imposition of local symmetry implies the existence of
massless vector particles. If we want to avoid this feature of the gauge theory
and obtain massive vector bosons, the gauge symmetry must be broken
somehow. If we introduce explicit breaking terms in the form of arbitrary
gauge boson masses we alter the high-energy behaviour of the theory in such
a way that the renormalizability of the theory is lost (see the discussion in
§2.4). We may contemplate the possibility of spontaneous breaking of the
symmetry, as discussed in §5.3. Thus, we have the situation of a hidden
symmetry: the Lagrangian is still fully invariant under the symmetry
transformations but the dynamics are such that the vacuum, the ground
state, is not a singlet of the symmetry group. The choice of one from all the
possible degenerate ground states as the physical vacuum breaks the
symmetry. This spoils the usual symmetry consequence of energy-level
degeneracies. But, according to the Goldstone theorem of §5.3, this would
imply the existence of a set of massless scalar bosons. Thus either way it
would seem that we run into undesirable massless particles.

As it turns out the Goldstone theorem is evaded in gauge theories as the
proof of the theorem requires the validity of all the usual field theory axioms:
manifest Lorentz covariance, positivity of the norm, etc. There is no gauge-
fixing condition we can impose for which a gauge theory obeys all the axioms
of the usual field theories. In covariant gauges we have states of negative
norm (longitudinal photons); in the radiation or axial gauges, we do not have
manifest Lorentz covariance. If we regard the massless gauge bosons and
massless Goldstone bosons as diseases of the theory, each turns out to be the
cure of the other. They both disappear from the physical spectrum of the
theory by combining to form massive vector particles, without ruining the
good high-energy behaviour of the symmetric theory. This remarkable
phenomenon was first suggested by Anderson (1958, 1963) who pointed out
that several cases in nonrelativistic condensed-matter physics may be
interpreted as due to massive photons. Particularly in superconductivity we
have the phenomenon of magnetic flux exclusion (the Meissner effect) and
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this corresponds to a finite-range electromagnetic field, hence a ‘massive
photon’. The extra longitudinal component is in fact coupled to the collective
density fluctuation of the electron system—the plasma oscillation. The
proper generalizations to relativistic field theory were carried out by Englert
and Brout (1964), and by Guralnik et al. (1964), and more completely, by
Higgs (1964a, 1966). In the literature it is commonly referred to as the Higgs
phenomenon. ’t Hooft (1971b) first showed that gauge theories are re-
normalizable even in the presence of spontaneous symmetry breakdown.

Abelian case
Consider the simple case of Abelian U(1) gauge theory.
& = (D,9) (D ) + (2¢'¢ — M¢p'¢)* — 1F,,F* (8.78)
where
D,¢ = (0, —ig4,)¢
F,=0,4,—-0A,. (8.79)
The Lagrangian is invariant under the local gauge transformation

P(x) > ¢'(x) = e (x)

1
A (x) = A,(x) = A,(x) — p 0,0(x). (8.80)
When p? > 0, the minimum of the potential
V(o) = —1d'¢ + Ao'¢) (8.81)
is at
|}l = v//2 (8.82)
with
v = (u*/A)%. (8.83)
This means that the field operator ¢ develops a vacuum expectation value
I<0I@10>] = v/ /2. (8.84)

If we write ¢ in terms of the real fields ¢, and ¢,
1

=7

(@1 +id,), (8.85)

we can choose
{0]¢4]0> =v and <0|¢,|0> = 0. (8.86)

Thus, the Lagrangian (and the potential) have U(1) symmetry and the
minimization can only fix the modulus of ¢. To pick one as in (8.86) out of
this infinite number of possible minimum values as the physical vacuum
breaks the symmetry. (This example is essentially the one given in §5.3 with a
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change of notation: ¢ — ¢, and n= — ¢,.) Thus with the shifted fields
¢1=¢,—v and ¢ = ¢, (8.87)

we would conclude that ¢’ corresponds to the massless Goldstone boson.
The added feature of the case at hand is of course that we have a local gauge
symmetry. The ordinary derivative is replaced by the covariant derivative.
That term will yield

ID,I* = 10, — igA,)pI*

= 30,91 + 94,02)* + 30,93 — 9A,$1)*
g*0?
2
The last term can be interpreted as a mass term for 4,,. Thus the gauge boson
acquires a mass M = gv.

— gvA*(0,95 + gA,9)) + A*A,. (8.88)

Unitary gauge (Abelian case). The presence of the term
gvA* 0,0, (8.89)

in eqn (8.88) will bring about a mixing between 4, and ¢, to make this
interpretation less clear. To remove this mixing term, we will parametrize the
complex field in polar variables and shift only the modulus field

1
P(x) = ﬁ

1
V2

Thus, for small oscillations, #(x) and &(x) are really ¢'(x) and ¢5(x),
respectively. The free Lagrangian also keeps the same form

1

2
Ly == [0 — 3,7 - = n? + &) (8.91)
2 2

The canonical quantization conditions are not changed; #(x) and &(x) have
the same particle interpretation as ¢; and ¢,.

We can now remove the unwanted term (8.89) by transforming ¢5(x) or
&(x) away or, more accurately speaking, by fixing the gauge (the unitary
gauge). To do this, we define new fields

¢'(x) = exp(—if/v)(x) =

[v + n(x)] exp(i&(x)/v)

[v + n(x) +i(x) +...]. (8.90)

1
7

B,(x) = A,(x) — 1 0,¢(x). (8.92)
gu

(v + n(x))

From the property of gauge transformation (8.80), we have
D,¢ = exp(—i¢/v)(0,¢" — igB,¢")
= exp(—i&/v)(0,n — igB, (v + 1))/ /2
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and
ID,@I* = 319,n — igB,(v + n)? (8.93)
and also
F,, =0,B,—0,B,.
The Lagrangian of (8.78) may be written

1 . 2 A
& =510 — igBo + P + 5 @+ =50+ )

1
_Z (aqu - aan)z

= 30 + g]
with

1 1 1
Zo=5(0m) = w'n" = 7(0,B, - 8,B,)" + 5 (gv)’ B,B"

%= % g*B,B*n(2v + n) — Av’n® — % n*. (8.94)

It is clear that %, is the free Lagrangian density for a massive vector boson
with mass M = gv and a scalar meson with mass m = /2u. The field £(x) has
disappeared from the Lagrangian. This may be less surprising when we count
the degrees of freedom. Before spontaneous symmetry breaking, we had two
scalar fields ¢; and ¢, and one massless gauge boson 4, (with only two
polarization states). After the symmetry breaking, we have only one scalar
field n and one massive gauge boson B, (with three polarization states). Thus
the massless gauge field 4, combines with the scalar field ¢ to become a
massive vector field B, in (8.92). This is the Higgs mechanism for the Abelian
case. The &(x) field is called a would-be-Goldstone boson.

Non-Abelian case

It is straightforward to generalize the Higgs mechanism to theories with non-
Abelian gauge symmetry. Consider the case of an SU(2) gauge theory with a

complex doublet of scalar fields ¢ = (zl>
2

£ = (D,9)'(D,¢) — V(¢) — 2F,, F™ (8.95)

where

D¢ = (au - ig%'A,,)d)
Fy, = 0,47 — 0,4, + ge""‘AZAﬁ
V($) = — 1 (d'd) + Up'9)>. (8.96)
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For pu? > 0 the classical potential is a minimum at
('Pdo =02 with v = (u?/A)*. (8.97)

We can choose the physical vacuum corresponding to the expectation value
having the form

1 /0
<¢>0 = T/_i <u> (8.98)
If we define the new field

¢ = ¢ —<d>o, (8.99)

then {(¢')>o = 0. The covariant derivative term will generate a mass for the
vector boson field since

,
(D,4)'(D,9) = ((a - ig;Au>(¢' + <¢>o>)

x ((aﬂ - ig% -A“>(d>' + <¢>o)> (8.100)
contains the factor
% G POhT- AT A(Do = % <%>2AMA“ (8.101)
corresponding to A, having a mass
M, = 97”- (8.102)

In the scalar sector, we have
' ="' + (dDod’ + ¢ (Do + (D) elPDo
(9'0)? = v*¢"d" + ((dDod' + ¢ (dDo)* + ... (8.103)

’

Writing ¢’ = <¢,1>, the term quadratic in ¢’ is
2

0 2
5@+ 90 =5 9h + 0. (8.104)

This means that only the combination (¢, + ¢5')//2 is massive (physical
Higgs particle). The other three states ¢}, ¢}', and (¢, — ¢3")/ /2 are the
would-be-Goldstone bosons, which will combine with the original three
massless gauge bosons to become three massive vector bosons.

Unitary gauge (non-Abelian case). To see this explicitly we go to the unitary
gauge. We parametrize the scalar doublet

0
_ T v+ 7n(x)
o(x) = exp{l 5 &(x)}( 7 ) (8.105)
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where (£*>y = (1) = 0. We can then define the new fields by

1 0
‘)=U =— 8.106
() = VWP = —5 (v N n) (8.106)
%-Bﬂ - U(x)%-A,,U“(x) —é[c’)uU(x)]U"‘(x) (8.107)
where
Ulx) = exv{—i%&(x)} (8.108)
From the properties of the gauge transformation, we obtain
D,¢ = U™ '(x)D,¢" (8.109)
Fy F® = Gy G (8.110)
where
K
D,¢" = <6u — ig E'B">¢" (8.111)
G4, = (0,B% — 0,B; + ge™ B Bs). (8.112)

Then the Lagrangian density in the unitary gauge is simply
2 A 1
£ = (D7D + 5@+ 0 — @ +1)* -7 GLG™.  (8.113)

The first term contains a term quadratic in B,

2 2
g 0 1/gv
ry (0, v)(x- B, t-B“)(v> =3 (—2—> B B". (8.114)
We have vector particles with mass M, = gv/2. Thus the original SU(2)
gauge symmetry is completely broken; all three gauge fields acquire mass.

Pattern of symmetry breaking

It is important to keep in mind that the pattern of symmetry breaking is not
arbitrary but depends on the structure of the theory in particular the (group)
representation content of the scalar field (Kibble 1967; Li 1974). For
example, if we have a triplet of real scalar fields ¢ instead of the complex
doublet, the gauge symmetry SU(2) will be broken down to a residual U(1)
gauge symmetry with one massless vector boson remaining. To see that this is
the case, start with the scalar potential

V(d) = —u*d” + Ad?)°. (8.115)
Again, minimization of V(¢) only detern;nines the magnitude

Kbdol = 0/v/2 with v = (u¥/A)*. (8.116)
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We are free to choose the vacuum state so that

0
1

7 (8.117)

(Do =
.

The ground state ¢ points in the 3-direction, the symmetry is spontaneously
broken. The covariant derivative term

[D.$]° = [0,4' — ig(d’ + <o) x A,T* (8.118)

will not contain any term quadratic in A2. Thus the A} field continues to
describe a massless vector boson. We note that this pattern of symmetry
breaking is related to the fact that {(¢), of (8.117) is still invariant under an
O(2), i.e. a U(1), rotation in (1, 2) space.

The number of massive gauge bosons

Since the number of massless gauge bosons corresponds to the number of
generators of the (unbroken) gauge symmetry group, the number of gauge
bosons that become massive (or the number of would-be-Goldstone bosons)
is equal to the difference in the number of generators of the original
symmetry and of the final symmetry. We shall present a proof of this
statement; this also will provide us with a chance to introduce some general
formalism.
Consider the general Lagrangian density

& =310.0: +1gT5A50,)I[(0"D; — igT5 A $y)]
— V(¢) — &F5, F™ (8.119)

where ¢; is a set of real fields, transforming according to some (possibly
reducible) representation of the gauge symmetry group G with n generators

$i(x) = Pi(x) = ¢i(x) + ieX)THg;(x), a=1,2,...,n  (8.120)

Given that the potential in (8.119) is invariant under an arbitrary group
transformation (if the potential is invariant under a larger group, there will
be scalars which become massive only through radiative corrections. They
are often referred to as the pseudo-Goldstone bosons (Weinberg 1972b)),

ov OV
or
ov
6TS~T?j ;i =0, a=1,...,n. (8.121)
Differentiation gives
*v . ov ..
WTij¢j+E¢;Tik =0. (8.122)
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If ¥ is a minimum at ¢; = v;, then the second term in (8.122) vanishes, and
0V

0¢; 0,

We should remark that, in the global symmetry case, (8.123) corresponds to

the statement that a number of scalars are massless. That this second

derivative matrix corresponds to a mass matrix can be seen by an expansion
of V(¢;) around the minirmum

*V

T¢v

ijtJj
di=t,

=0. (8.123)

1
Vo) = V() + 5

—— | (@i—uv)d—v)+ ... (8.124)
2 a¢l ad)k ¢i=r; k k
Thus the mass matrix is
%4
M¥)y=—| . 8.125
= 56 08 (*129

Now suppose G has a subgroup G’ with n’ generators that leaves the vacuum
invariant

Thvj=0 for b=12...n (8.126a)
and
Tjv;#0 for c=n"+1,...,n. (8.126b)

If we choose T° to be linearly independent, eqns (8.126), (8.125), and
(8.123) clearly imply that M? has n — n’ zero eigenvalues and hence (n — »’)
Goldstone bosons. In the gauge symmetry case, these (n — n’) massless states
correspond to the (n — n’) would-be-Goldstone bosons. In preparation for
gauging them away, we re-parametrize ¢; by

¢ = exP{injéc(x)/U}(Uj + 1;(x)) (8.127)

where c = 1,2, ..., (n — n'), i.e. we sum over the broken generators. v in the
exponent is the magnitude of v;. The 5;(x)s are the remaining scalar fields
which are orthogonal to &°s. After a gauge transformation. 4, — A4, with
gauge function 0(x) = —iT°¢(x)/v. The Lagrangian has a quadratic term in
A

2
—% (Tv, Tl) AL A", (8.128)

After diagonalization this leads to (n — n’) massive vector bosons. To
summarize, the number of would-be-Goldstone bosons is equal to the
difference in the number of generators of the original and the final gauge
symmetries.

In this section we have chosen to fix the gauge so that the particle content
of the theory is obvious (the unitary gauge). In the next chapter, at the
end of §9.2, we shall also discuss another class of gauge choices (the
renormalizable gauge or the R gauge) where the would-be-Goldstone bosons
are not eliminated explicitly but the gauge-field propagators manifestly have
good high-energy behaviour and the renormalizability of the theory is more
transparent.



Quantum gauge theories

WE now proceed to quantize the gauge theories, explain their perturbative
solutions, and discuss the generalized Ward identities of such theories.

9.1 Path-integral quantization of gauge theories

Gauge theories, being gauge invariant, represent systems with constrained
dynamical variables, i.e., there are variables that do not represent true
dynamical degrees of freedom. The quantization procedure of such theories
is more involved than that for the scalar field theory discussed in Chapter 1.
For gauge theories the path-integral formalism provides the most direct
quantization procedure.

Difficulties of gauge theory quantization

We are already familiar with the problem of quantizing the electromagnetic
field 4,(x). In the canonical formalism one identifies the canonical variables
A,(x) and their conjugate momenta 7,(x) = 6.£(x)/6(0,4"(x)) as operators
and postulates their commutation relations. One immediately discovers that
() and V - m(x) vanish, which implies that 4,(x) and V - A(x) commute with
all canonical operators. They are really c-numbers. The four-vector field
A,(x) actually represents only two independent dynamical degrees of
freedom. The canonical commutation relations for these transverse fields
A (x) and =, (x) have to be formulated so that they are compatible with the
above-mentioned constraints. For example, we can take the constraint in the
form of V-A(x) = 0 (radiation gauge) or A;(x) =0 (axial gauge). In such
formulations one sacrifices manifest Lorentz covariance. Alternatively, one
maintains explicit Lorentz covariance and introduces spurious degrees of
freedom into the theory. This brings about a Hilbert space with indefinite
metric (the Gupta—Bleuler formulation). A physically sensible theory is
recovered only after we restrict the admissible states to those satisfying (the
Lorentz gauge) 0*A,|'¥) = 0. The key point in all these formulations is that
one must remove the redundant degrees of freedom (resulting from gauge
invariance) of the theory by some acceptable gauge-fixing conditions. In the
language of path-integral quantization formalism, one must restrict the
functional integration to reflect these gauge-fixing conditions. A consistent
implementation of such constraints for non-Abelian theories is a highly
nontrivial matter, and the problem was finally solved through the work of
Feynman (1963), DeWitt (1967), Faddeev and Popov (1967), and many
others (Mandelstam 1968; Popov and Faddeev 1967; Veltman 1970; 't
Hooft 1971a, b).
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We shall restate the difficulty of quantization directly in terms of the path-
integral formulation of gauge theories. To be specific, we consider the case of
SU(2) Yang-Mills fields

Z = —%F;';VF"““, a=1,2,3 .1
with
Fi, =0,47 — 0,45 + gz:"”cAf;Af.. (9.2)

If we write the generating functional as

wiJ] = J[dA,,] exp{i Jd“x[,?(x) +J3,(x) 'A"(x)]}- 9.3)
the free-field part is then

WolJ] = J [dA,] exp{i jd“x[,‘%(x) +J,(x) -A"(x)]} ©.4)
with

J d*xZy(x) = —% f d*x(0,4% — 0,4%)(0* A — 3 A)

1
=3 jd“xA,‘j(x)(g‘” 0% — 0" 0")A%(x). 9.5)
Now we have a situation very similar to the scalar field theory and we would

like to proceed and perform the Gaussian integration as in eqns (1.79) and
(1.81)

j[dqﬁ] exp[ —3{¢K$> + {Jp)] ~ exp(JK™1T). (9.6)

1
Jdet K
However this is not possible, because the operator

K,=g9,0"—-3,0, 9.7)

in (9.5) does not have an inverse, as we shall demonstrate below.
Assuming G**(x — y) is the inverse of K,,,,

(Guy 02 = 0, 0,)G*(x — y) = g1 *(x — y). (CRI)

Using the Fourier transform

G (x) = d* e G*M(k) 9.9
@)t ’ '
we have
(—k"g,” + kukv)G”‘(k) = g,’}. (9.10)

With the invariant decomposition

G*M(k) = a(k?)g** + b(k?)k*k?, ©.11)
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it is clear that the left-hand side of eqn (9.10) = —a(k?)(k*g} — k,k*) cannot
be equal to the right-hand side. Thus K, does not have an inverse. Another
way to see this is that the operator K, given in (9.7) satisfies the relation
K, (x)K}(x) oc K,;(x). This means that it is a projection operator (which
projects out the transverse degree of freedom of the gauge field) and clearly
does not have an inverse. Equivalently, for the case det K vanishes and eqn
(9.6) is not applicable. This singular nature of the path integral, i.e. this extra
infinity, is related to the gauge invariance of the theory. In eqns (9.3) and
(9.4) we have summed over all the field configurations, including ‘orbits’ that
are related by gauge transformations. This overcounting is at the root of the
divergent functional integral. We need to seek a prescription to divide out
this infinite (functional) volume of the orbit. To quantize a gauge theory, it is
necessary to fix the gauge.

Isolating the path-integral volume factor

(1) A two-dimensional case as illustrative example. Before launching into the
actual calculation that will isolate this volume factor from the functional
integration (hence in infinite-dimensional space) we shall use a two-
dimensional integral to illustrate our strategy

W= de dy 5=

= j d’r 50 (9.12)
where r = (r, 0) is the label in the polar coordinate system. S(r) is supposed
to be invariant under a rotation in two-dimensional space

S(r)=S(ry) (9.13)
for

r=0)-r,=(,0+9¢). 9.14)

Thus S(r) is a constant over the (circular) orbit. In this simple case if we only
wish to sum over the contribution from the inequivalent S(r)s we can simply
divide out the ‘volume factor’ corresponding to the polar angle integration,
§fdO =2n. To do this we adopt the following procedure which can be
generalized to more complicated situations. First we insert

1= jdd) 00 — ¢) 9.15)
into the original expression for W
W = jdd) Jdr eSO 50 — @) = jd¢W¢ (9.16)

where W, = [ dr §(6 — ¢) ¢ is evaluated for a given angle ¢. Thus, we first
calculate W along a fixed angle 0 = ¢, then integrate over the contributions
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% /e=¢ @ g(n =0
(a) (b)

FiG. 9.1.

for all values of ¢ (see Fig. 9.1(a)). Using the invariance property of S in
(9.13) we have

Wy=W,. (9.17)

Thus the volume of the orbit can be factored out

W= Jd¢W¢= W, fdd)

= 2nW,. (9.18)

Generally a constraint that is more complicated than § = ¢ may be chosen,
and we represent this by

g(r)=0 9.19)

which intersects each of the orbits once as shown in Fig. 9.1(b), i.e. the
equation g(r,) = 0 must have a unique solution ¢ for a given value of r. For
this general constraint (9.19), instead of the simple eqn (9.15), we need (to
define) a function A,(r) such that

[AmM]7 ! = f d¢ o[ g(r,)]. (9.20)
Hence
_ 0g(r)
Ayr) = a0 | 9.21)

and A/(r) is itself invariant under the two-dimensional rotation (9.14) since
[A(rg)] ™! = Jdd) oLg(ry+4)]

= Jdrﬁ" o[g(ry-)]

= [A,00]7". (9.22)

Repeating steps (9.16)—(9.18) the volume factor in W can then be isolated

W = J dpw, (9.23)
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with
W, = Jdr eis™ A,(r) o[g(ry)]. (9.24)

W, is rotationally invariant

Wy = fd' e A/(r) 3[g(ry)]

_ j dr' &5 A (r) o[ g(x,)]

- W, (9.25)

where we have introduced the variable r' = (r, ¢') and have used the fact that
S(r), A/(r), and the integration measure dr, are invariant under rotations.
Thus to remove the ‘volume factor’, we can insert a constraining é-function
and multiply it by a function A, defined by (9.20).

(2) The PI volume factor in gauge theories. We now return to the task of
isolating the actual volume factor in the functional integration of the
generating functional in gauge theory. The procedure will be exactly the same
as for the simple case we have just discussed. The action is invariant under
the gauge transformation

A AL

where
Af’,-t/z = U(9)|:A”'t/2 +% U~ 6“U(0):|U‘1(0)

with
U(0) = exp[ —i0(x) - t/2]. (9.26)

Os are the space-time dependent parameters of the group. The ts are the
Pauli matrices. Thus the action is constant on the orbit of the gauge group
formed out of all the Ajs for some fixed A, with U(6) ranging over all
elements of the group SU(2). A proper quantization procedure must restrict
the path integration to a ‘hypersurface’ which intersects each orbit only once.
Thus, if we write the equation for the hypersurface as

f{A)=0 a=1,23, 9.27)

then the equation
fAAD) =0 (9.28)

must have an unique solution 0 for a given A,,. Eqn (9.27) is clearly a gauge-
fixing condition.

We also need to define the integration over the group space. Let 6 and 6’ be
elements of an SU(2) group. In terms of the representation matrices U(6) the
multiplication of group elements takes on the form

U@u(ey = U(ee). 9.29)
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In the neighbourhood of identity, we can write

U@®)=1+i0-t/2 + O(0?). (9.30)
The integration measure over group space can be chosen as
3
[d6] = [] d6, 9.31)
a=1

which is invariant in the sense that
d(eg’y = do'.

We can now isolate the desired volume factor by defining a function
A [A]

AF'[A] = J[dH(X)] OLf(AD)]. (9.32)
Thus
A[JA,] =det M, (9.33)
where
_%
M)y = 3, (9.34)

Thus, M, is just the response of f,[A,] to the infinitesimal gauge
transformation. More precisely, from (9.30), the infinitesimal gauge trans-
formation is of the form

a a aoc c 1 ja
AL = A5+ 04—~ 0,0 (9.35)

u

and the response of f,[A,] is

JLAUOT = f[A()] + Jd“y[M 56 Y)1afs(y) + 0(6%).  (9.36)

Because of the requirement that eqn (9.28) have a unique solution, (det M)
does not vanish.

A;[A,] has the important property that it is gauge invariant. To see this,
we write (9.32) as

Ar'A] = J[d(?’(x}] SLLADT; 9.37)

then

A7 AL = | [dO'(x)] OLfu(AY ()]

LY

= | [d(O(x)0'(x))] O fu( AL (x))]

.
= | [d6" ()] oL LAY ()]

LY

= A7 '[A,]. (9.38)
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We now substitute (9.32) into the path-integral representation of the
vacuum-to-vacuum amplitude

j [dA,] exp{i Jd“xff(x)} - J[dﬂ(x)][dAu(x)] A[A,]
x S f(A%)] exp {i Jd“x.,?(x)}
= j [d8(x)1[dA,(x)] A,[A,]

x O[fo(A,)] exp {i fd“xip (X)}-
9.39)
To arrive at the last line we used the fact that both A [A,] and exp{i [ d*x
Z(x)} are invariant under a gauge transformation A) — A,. Now, the
integrand is independent of 6(x) and the integration over IT, df(x) is the
infinite orbit volume we have been seeking to identify. This suggests that the

prescription for the generating functional of the gauge field A, (after
applying eqn (9.33) and eqn (9.39)), should be

w,[J] = f [dA,J(det M,) 5[ f,(A,)] exp{i j d*X[L(x) + Ju-A"]}-
(9.40)

This is the Faddeev—Popov ansatz (1967). In other words, we can get rid of the
unwanted redundancy in the quantization procedure by restricting the
functional measure with det|df/60] 6[ f(A4,)].

Consistency check of the FP ansatz in axial gauge

Before proceeding further with the formalism we shall make an elementary
check of the FP ansatz with a specific example. Consider the following choice
of the gauge-fixing condition (9.27), the axial gauge (Arnowitt and Fickler
1962)

Jo=45=0. (9.41)
Under the gauge transformation (9.35) we have for (9.36)

1
fi(A%) = A9 + ePQPAG — p 0,0°
1
= Lo (9.42)
g

because of (9.41). Thus we have the response matrix M, = (—1/g) 03 64,
which is independent of the gauge field. For this choice of the (axial) gauge
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we can therefore ignore the (det M) factor in W [J]

W, [J] = J[dAM] S5(As) exp{iS[J]) (9.43)

S[I = j d*x[ —4(Fe,)? + J34%]

It is more convenient to work with an alternative form of the generating
functional

W] = J[dFu‘.][dAu] 0(A;) exp{iS'[J]} (9.44)
with
S'TJ] = Jd“x[—é—(Fﬁ‘.)z + $F*(0,A4¢ — 0,4°
+ geAbAS) + JaAm]. (9.45)
If we integrate over Fy,, W/ [J] reduces to W [J] of (9.43).

uv>
Let us check the compatibility of the FP formulation eqns ((9.43) and
(9.44)) with the canonical quantization, to see whether it does restrict the
functional integration to the same dynamical variables as deduced with the
canonical procedure.
We first identify the independent canonical variables in the axial gauge

A4 = 0. The Lagrangian in (9.45) becomes
L= —3(Fa ) + 3FI0,A5 — 0,47 + ge AL A°)
+ FO%00A% — 0;A% + g™ A A%
+ F39(—03A4%) + FO3%(—0;4%) (9.46)

where 7,j = 1,2.
The Euler-Lagrange equations
o2 o0& _ o0&
5(6’1F,‘1v) OF;,

(9.47)

and
, 028
5(0*4%)  SA4°

(9.48)

give rise to the following constraint equations (having no time derivatives)
bc 4b
Fi; = 0,45 — 0,47 + ge™* A} 4
?3 = “‘33A?
55 = — 034

OFS, — 03F4, = — geeFB A (9.49)
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and to the following dynamical equations
8 = 0oA! — 0,48 + ge™™ AL AS (9.50a)
O"Fa; = —ge ™ (FRA* + F§A%). (9.50b)

Thus 4§, F{;, F{5, and F§, are constraint variables; they can be eliminated
from S’ (resulting in S”) by the constraint equations (9.49) in terms of the
remaining variables A¢ and F§;. This identification of independent canonical

variables leads us to construct the generating functional

WilJ] = f[dFm][dFon[dAl][dAz] exp{iS"[J]}. 9.51)

Our consistency check of the FP ansatz now consists in showing the
equivalence of this functional integral to that in (9.44) and thus (9.43). We
need to show that, if a dynamical variable appears at most quadratically
(with a constant coefficient) in the action, then integrating over the variable is
the same as eliminating it from the action by the Euler-Lagrange equation.
This is indeed the case and we can illustrate this theorem as follows. Consider
the functional (Gaussian) integral

Il

J[ddﬂ exp{iS[¢]} J[drb] e)(p{i Jd“XE%ad)z(X) +f (X)¢(X)]}

Il

exp{—i J d*x[ f(x)]z}- (9.52)
2a

On the other hand, the Euler-Lagrange equation from S in (9.52) yields

ap(x) + f(x) = 0. (9.53)

Thus eliminating ¢(x) in S, we have
1
L f ST 9.54)
which is the same as eqn (9.52). This also completes our demonstration that
the FP ansatz indeed provides the correct restriction (i.e. the same as
canonical procedure) on the integration measure. As we illustrated in the

introduction to PI formalism in Chapter 1, the Hamiltonian PI formalism
where

W[J] ~ J [d¢ dn] exp{i J d*x[ndod — H(r, ¢) + J(b]} (9.55)

is equivalent to the Lagrangian PI where

WiJ] ~ J[dd)] exp{i ~fd“x[,ff(qb, 0,9) + qu]}- (9.56)

It is not difficult to check that (9.51) is the Hamiltonian formulation with F§;
being the transverse canonical momenta.
Because we can drop the FP determinant with this choice of axial gauge,
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the quantization is particularly simple. But in this gauge we lose manifest
Lorentz invariance and Feynman rules are complicated.

Abelian gauge theory
We should remark that all the formalism developed in this section also

encompasses the simpler case of Abelian gauge theory. Under a U(1) gauge
transformation, eqn (9.35) reads

A%(x) = A,(x) — é 0,0(x). 9.57)

It is then clear that for any choice of linear gauge-fixing condition of (9.27)
the response matrix M, in (9.34) or (9.36), like the special case of non-
Abelian theory in the axial gauge just considered, will be independent of

A,(x). The FP factor (det M) plays no physical role and can be dropped
from the generating functional,

W, [J] = J[dA“] o[ f(4,)] exp{i Jd“x[,?(x) + J,,(x)A”(x)]}-

(9.58)

9.2 Feynman rules in covariant gauges

For practical calculations it is more convenient to use the covariant gauges
where unlike the axial gauge unphysical ‘ghost fields’ are needed. We start
with the generating functional (9.40) in the form

W] = J[dAu] exp{iseff +i Jd“xJ"-AM}- (9.59)

Thus, the FP modification of the integration measure det M 6[ f,(4,)] can
be exponentiated and expressed as additional terms in the action, leading to a
new S.;. In this language, the problem of gauge field quantization is solved
because these new factors lead to a new K operator for the prototype
Gaussian integrand in (9.6), which will have a nonvanishing determinant and
possess an inverse.

Faddeev—Popov ghosts
It is straightforward to write det M, in an exponential form,

det M, = exp{tr(In M,)}. (9.60)
If we further write

My=1+1L, 9.61)
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then

1 1
exp{tr(ln M)} =exp{trL+§tr L2+...;tr L"+...}

1
= exp{ Jd4xLaa(x, x) + 3 Jd“x d*yL (%, V) Lyo(y, X) + .. }
9.62)
which is represented diagramatically in Fig. 9.2.

L b L
b ¢
Q + L L+ D +  eee
L L
a a a

F1G. 9.2. Diagrammatical representation of the Faddeev—Popov determinant.

This series may be viewed as arising from loops generated by a fictitious
isotriplet of the complex scalar fields ¢(x). Their presence and interactions
can be described by the generating functional

det M, ~ f[dCJ[dc'r] exp{i Jd“x d*y Y el(x)[M ,(x, y)]abcb(y)}'
’ (9.63)

Because the Gaussian integral is proportional to det M, as in the case for the
Grassmann number, rather than (det M)~ ! we see that the scalar fields ¢(x)
must obey Fermi statistics (recall the discussion in §1.3, especially eqns
(1.139)-(1.141)). They are referred to as Faddeev—Popov ghost fields.

Gauge-fixing terms

We next attempt to convert the delta function 6[ f,(A,)] into an exponential
factor. This can be accomplished by first generalizing the gauge-fixing
condition f,(A,) = 0 to

JdA,] = B,(x) (9.64)

where B,(x) is an arbitrary function of space and time, independent of the
gauge field. The definition (9.32) of A, is correspondingly generalized

J[dH(X)] A,[A,JOLfo(A}) — By(x)] = 1. (9.65)

Clearly this definition yields the same A as in (9.32). And we can extract the
infinite-orbit volume factor as before and prescribe a generating functional as

W] = J[dA,J[dB](det M) oL f(A,) — B.]

x exp{i fd“x[f(x) —JHA, - 2% Bz(x)]} (9.66)
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where we have inserted a constant

constant ~ J[dB] exp{—zié Jd“sz(x)}
where ¢ is some arbitrary constant coefficient, the gauge parameter. The
generating functional of (9.66) differs from that of (9.40) by an immaterial
normalization factor. We can then use the delta functional to perform the
integration over [dB(x)]. Also, substituting in (9.63), we have

W] = J [dA,J[dc][dc'] exp{iS.:[J]1}

with

Ser[J]1 = S[JI] + See + Sera 9.67)
where the additional terms are the gauge-fixing term

1

Sy = % d*x{f,[A,()]}? (9.68)

and the FP ghost term
Serg = jd“x d*y Y ch()[M p(x, y)]apCh(¥)- (9.69)
a,b

Covariant gauges in symmetric gauge theories

Here we shall make a specific choice for the condition in (9.27), i.e. (9.64) (the
covariant, or Lorentz, gauges)

SdA) =0"45=0 a=1,2,3. (9.70)
Under the infinitesimal gauge transformation
U(x)) =1 +i0(x) /2 + 0(6*) 9.71)
A%(x) = Al(x) + e0°(x)A,(x) — éa,,ea(x), 9.72)
we have
So(A = %A, + [s“’”ob(x)Aﬁx) -7 aﬂoa(x)]
=/“A + Jd4J’[M 6 Y)1at"(¥) 9.73)
with
M) = =5 068 0, — ] S4x =), 079

From (9.70) and (9.74) we can calculate the extra terms (9.68) and (9.69) in
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the effective action Sy,

Sy = _216 J d*x(0"A,)? (9.75)
Skrc = é jd4x Z C:rz(x) *[6ap 0,1 - gaabcAfL]cb(x)' (9.76)
a,b

Introducing the source functions 7, #, for the ghost fields ¢, and c}, we can
write the generating functional

W dnnl= J[dAM de dc'] exp{i Jd‘x[f(x) - 2% (04 A4%)?

+ CZ aM[éab 6;1 - gsabcAZ]cb
+ JaA" + n"e" + n“c“*]} 9.77)
where we have redefined ¢ and c¢' to absorb the 1/g factor in M.

(A) Perturbation expansion in covariant gauges. To do the perturbation
expansion first for a pure Yang-Mills theory, we decompose Sz = Sy + S
where the free action is quadratic in the fields,

1 a 1 a
Sy = Jd“x[—z (0,45 — ('ﬁvAu)2 — 2_5 (6“AM)2
+ ch d%c, + JaA* + et + n“c“*], (9.78)

and the remainder is the interaction term

u

S][Au, C, cT] = J‘d“'x[_%(aqu _ avAa)gﬁabcAb“Acv

+ %QZEabCSadeAZAf,Ad”AeV

— ige™ oree A ch]. 9.79)
The generating functional can then be written
W, a1 = explisi| oo, =, 2 Lworawem, w1 9.80)
s s 1 léJu’lén’lént A c 5 -

with
1
woI = j[dAﬂ] exp{i Jd“x[—z (0,44 — 0,45)

1

u fa\2 a Jau
oy 5]

won. w1l = J[dC*][dCJ eXp{—i J d*x[c* 82

_ r,afca _ ﬂaCaf]}' (981)
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(B) Propagators. To calculate the propagator for the A4, field, we rewrite
w9 as

woI = J[dAn] exp{i Jd“xB Al(g™ 0*
E—1
¢

0" 0") Syl + JZA"“:|}

- j [dA,] exp{i Jd“x[% ASKE AL + J:A“"]} (9.82)

K™ = [g‘” 0 — (1 - %) o av] So

which possesses an inverse and we can use (9.6) to integrate over [dA,],

with

i

2

&k k*kY
Gﬁ;('x - y) = 6ab J(Zn)“ e—lk(x—))Ij_(g“V - k2 >

k*kY 1
k? |k* +ie

wilJl = exp{ Jd“x d*yJu(0)Ga(x — »)J 'v’(y)} (9-83)

where

It is easy to check that
fd“yKL‘Z(x = NGy — 2) = g4 8, 0*(x — 2). (9.84)
Similarly, we find

won,n' = CXP{ —i Jd“x d*yn*'(x)G™(x — y)n“(y)} (9.85)

where
d4k e—ik'(x—y)
GP(x—y)= — |——2 5.
= J(27r)4 I 1 ot

Thus we have the Feynman rules.

(i) Vector boson propagator

. . k.k, 1
IAZ’i(k) = _6abl[guv -(1-=9 #} m§ M

(ii)) FP ghost propagator
'0."').0..'

®R2 4 e a

A ghost field line, like that for a fermion, has directions. Thus a ghost
is distinct from its antiparticle.

iA®D(k) = —i0
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(C) Gauge field couplings. For non-Abelian theories there are self-
couplings among the gauge fields, with polarization vectors &*(k)

e(ky)e" (kp)er (k)T iba(ky, ks, k3) (9-86)
and
8"(k1)8”(kz)8‘(k3)8"(k4)l"f,’3‘,1",, (ky,ky ks, ky). (9.87)

The Feynman rules for the vertices (I's) follow from S in eqn (9.79). One can
work them out by a straightforward application of the procedure outlined in
Chapter 1 (for the A¢* theory). But they can just as easily be deduced from
their symmetry properties under the interchange of gauge fields. Such a
derivation also helps us to remember their structure. In momentum space the
first term of (9.79) has the form

1 . ~ -
A"k DA (k) AN k)i (ks ks, k3) (9.88)

where the As are the Fourier transform of the gauge fields, and I’ is the
Feynman rule vertex of (9.86) which must be totally symmetric under the

interchange of As. The SU(2) structure is already fixed,
Tinalky, ks ky) = 6Tk, ks, k3). (9-89)

The Lorentz structure can then be deduced. It is clear from (9.79) that
[,y.(ky, ky, k3)is made up of terms like k,,g,,. The precise combination can
be worked out from the condition that I, ;(k,, k,, k3) must be antisym-
metric with respect to index interchanges: p<»v, 12, etc. since & is
totally antisymmetric. In this way we find

ky.p.a ki, Ac
(iii) iCs = ige®™[(ky — k2):9,
+ (ky — k3)ugyi + (k3 — k1),9,4]
with
ky+ky+ky=0. ky.v,b

Similarly for the quartic gauge-field self-coupling in (9.79) we have the vertex

. . . ky, m, ke, p,d
(lV) lr‘f}\))c}:ip = ng[eabescde(guigvp - gv).gup) pha “P

+ Sacegbde(guvglp - glvgup)

+ EadeSCbe(gu/lgpv - gplgﬂ")]

. ky, v, b s Ay

it 2V ks, A, ¢
ky+ky +ky+ky=0.

For the covariant gauge vertex which couples the ghost fields to a gauge field
with polarization vector ¢*(k; + k,) we have a b

W) iTobe = geaiek,, b,

H,C
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Note the asymmetric appearance of this vertex. One should preserve a
consistent convention of entering the momentum of either the left or the
right ghost line at every vertex. The ghost only enters in closed loops.
Topologically for every diagram with a gauge-field closed loop there is
one with a ghost loop in the same place. Most importantly, like the case
of a fermion loop, we must insert an extra minus sign for every ghost
loop.

We note that only the propagator depends on the gauge parameter ¢ and
we can make suitable choices of ¢ for specific purposes. Within this class of
covariant gauges, the choice of & = 1 is called the 't Hooft—Feynman gauge;
¢ =0 is the Landau gauge.

(D) Fermions. It is straightforward to add fermions to the pure Yang-
Mills theory considered above: we merely insert in the Lagrangian all the
possible gauge-invariant terms that have dimension less than four

L = Y(y*D, — my (9.90)

where

Dy =0,y —igT°Asy.
T* is the representation matrix. For example, if ¢ is an SU(2) doublet,

T* = 1%/2. We then have the additional Feynman rules involving fermions
(with group indices n, m,...).

(vi) Fermion propagator

iA(k) = 8y —————— e
Yk —m+ie

(vil) Fermion gauge boson vertex

il = ig(T*)ymy* pa

R; gauges in spontaneously broken gauge theories

Finally we come to the covariant-gauge Feynman rules for gauge theories
with spontaneous symmetry breakdown. First, let us consider the case of
Abelian symmetry. Recalling the discussion of §8.3, it is desirable to
eliminate the mixing terms of eqn (8.89)

gvA* 0,¢, 9.91)

where ¢, is the would-be-Goldstone boson field. There, we choose a gauge,
the unitary gauge, so that ¢, is absent from the theory. Thus, ¢, can be
identified with the phase of the complex scalar field and this fictitious degree
of freedom can be eliminated by a gauge transformation. The advantage
of the unitary gauge is that the particle content of the theory is manifest; all
we have in the theory are the physical states of the real Higgs particle and the
massive gauge boson, which has the propagator normally expected for a



264 Quantum gauge theories 9.2
massive vector field (with mass M = gv)

_i(gﬂv - kukv/MZ) .
k? — M? +ie

iA,,(k) = (9.92)

We have already mentioned in Chapter 2 that a theory with such a spin-1
propagator seems to be unrenormalizable from the power-counting
arguments—unless there are hidden cancellations among Green’s functions.
However, from the observation that the original Lagrangian before spon-
taneous symmetry breaking is renormalizable by power counting, 't Hooft
(1971a,b) proved that the theory remains renormalizable even after the
symmetry breakdown. The key is to choose another set of gauges, the
renormalizable gauges, in which the theory has good high-energy behaviour.
The point is that in the unitary gauge, although the particle content is simple,
renormalizability is not transparent, as the finite S-matrix only results from
cancellations among divergent Green’s functions. But the theory should be
equivalent to that in the renormalizable gauge, where we obtain propagators
with mild high-energy behaviour at the expense of introducing fictitious
particles (the would-be-Goldstone bosons). Thus in the renormalizable
gauge, unitarity is not manifest and we have to check that the spurious
degrees of freedom do cancel in the physical amplitude. Such theories have
been described as being ‘cryptorenormalizable’.

A general class of renormalizable gauges may be represented by choosing
the gauge-fixing condition (9.64) as

J(Ays §) = (0#4, + CM¢p,) = 0 (9.93)

where ¢ is an arbitrary parameter. Then the gauge-fixing Lagrange density
(9.68) is generalized to

I
28

which is added to the original Lagrangian. In this way the mixing term (9.91)
is eliminated without transforming away the ¢, field. Not displaying the FP
ghost part, the free Lagrange density is given below where the ¢ and ¢}, are
the shifted scalar fields eqn (8.87),

Ly = (0"4, + EM¢,)? (9.94)

1 1
Zo =5 L@ — 22¢2] + 5 (@42 — EM¢7

1 1 1
~3 (0,4, — 0,4,)* + 7 M?4,4" — 2 (0"A4,)*. (9.95)
This yields

(viii) Higgs scalar propagator

. i
1A, (k) = m;

$——>——
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(ix) Would-be-Goldstone boson propagator

i
k* — EM? +i¢’
(x) Gauge boson propagator in the R, gauge
. _1 kukv
1A,,(k) = M+ |:guv -1-9 k—z——éﬁ—l_2:|

_ _i[g,w — kkJM? | kM ]

1Ay(k) =

$——>——

KM +ic TR M? tis

The interaction Lagrangian is given by
! 7 ! ! 1 ’ ’
L) = gA (0" P19 — 0"P391) + EQZA,,A“(@Z + ¢7
A
- Z((ﬁ’f + 09) + gPvA A, ¢, — wdi(PT + ¢F)  (9.96)

which yields the vertices

(xi) ¢)¢p5A-vertex Ay
g(py+py),
o
// P P
i ¢
AAQ'-vertex Au
2ig%0g,
AN
AN
AN
Ay ‘ﬁ;
AApp-vertex A, A,
K28 g
7/
/ AN
z, \I '
#1($7) $1($;)
PP p-vertices {v‘i 161
|
| |
A—2iAv A—6idv
/7 N\ VAR
// \\ // \\
/7 \ 1 ’/ N 1
¢,2 ¢2 4’1 4’1
dPpPp-vertices. é, é1(¢3) é1 (65)
AN / \ /
N , N /
AN / \ /
N N
)\\~2|/1 //\—\-61/1
// N // N

/ , / A
) 5 i (63) ! (43)
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This class of gauges, called the R,-gauge (Fujikawa, Lee, and Sanda 1972;
Yao 1973), is characterized by a gauge parameter . For any finite values of ¢
the vector boson propagator has the asymptotic behaviour

A (k) » O(k™2) as k —oo.

Hence, from the fact that the coupling constants in the interaction
Lagrangian have dimension O or 1 in units of mass, the theory is
renormalizable by power counting. For example the particular choice ¢ = 1
leads to the propagator form

: _lguv

Bl = e

On the other hand in the limit £ — oo, the propagator for the ¢3-field (ix)
vanishes and the would-be-Goldstone boson decouples. The vector meson
propagator (x) reduces to the standard form for a massive spin-1 particle
(9.92). Thus we recover the unitary gauge where there are no unphysical
fields.

For any finite values of & we have the unphysical singularities in the ¢3-
propagator (ix) at k* = éM? and in the gauge boson propagator (x) also at
k? = EM?. In order to preserve unitarity, these unphysical poles must cancel
in the S-matrix element involving only physical particles: 4, and ¢ . This is
indeed the case. We can illustrate this with the following example (Fujikawa
et al. 1972). For the process

di(ky) + ¢i(ky) — A(ks) + A(ks),

among the tree-level diagrams, we have those in Fig. 9.3 (as well as those with
the final 4-lines crossed). Fig. 9.3(a) due to 4-exchange is given by

- quqv/Mz quqv/M2 i
q2 _ M2 qZ _ €M2
At the unphysical pole g> = EM?, it may be written as

iTW = (k) (2ig?v)%e" (k,)(—1) [gllv

. —4ig? ,
ngc’,}e = qz——éjl—z [kl,‘g“(k3)][k2vs (ks)]. 9.97)
But the diagram in Fig. 9.3(b) due to ¢)-exchange contributes as
. i
iT€2 = g'(k3)g(k, + q).8"(ka)g(ks — q), 7= M
dig? .
= m [ky1,e"(k3)][kaye"(ka)]
Ayky) A, (ky) A (ky) Ay (ky)
4@ L%}_ $:(0)
/ T \
A N 7 N
/ \ / \
¢I(k|) ¢l(k2) ¢l(kl) ¢'|(k2)
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which will cancel the unphysical pole due to 4-exchange in (9.97). This type
of cancellation of unphysical poles is very general and can be proven to all
orders in perturbation theory by using the generalized Ward identities which
are a consequence of the gauge invariance of the theory. In practice a good
check on the gauge invariance of a calculation of some physical S-matrix
element is the disappearance of the arbitrary £-parameter in the final result.
An example of such an R, gauge calculation will be given in §13.3.

The generalization to non-Abelian symmetries is straightforward. For
example, the corresponding R, gauge-fixing term in the Lagrangian for the
SU(2) example with complex doublet ¢ will be

1 : T, T 2
Ly = 2 [G“Au - lg§<<¢>8 79— ¢ ! 3 <¢>o>j| : (9-98)
The R;-gauge Feynman rule for the SU(2) x U(1) standard theory of the
electroweak interaction is given in Appendix B.

9.3 The Slavnov-Taylor identities

Having outlined the quantization procedure and Feynman rules for gauge
theories in §§9.1 and 9.2, we can proceed to make perturbative calculations.
The regularization and renormalization procedure reviewed in Chapter 2 can
be applied. From the Feynman rules of §9.2 we see that all couplings are
dimensionless and that the high-energy behaviour of the propagators is such
that the theory should be renormalizable by power counting. The divergent
higher-order diagrams can be regularized by the dimension (d) continuation
scheme. We can thus identify the appropriate counterterms to be inserted in
the Lagrangian. They are of the same form as those in the original
Lagrangian but are multiplied by coefficients which diverge in the limit
¢ = (4 —d) —» 0. After the addition of these counterterms, the resultant
Lagrangian will generate, to all orders, Green'’s functions that are finite when
¢ — 0. In practice, it is a very complicated programme. The resurgence of
field theoretical studies of particle interactions in recent years was to a large
extent brought about by 't Hooft’s proof (1971a,b) that non-Abelian gauge
theory is renormalizable, and that renormalizability is not spoiled even if the
gauge symmetry is spontaneously broken. A detailed discussion of gauge
theory renormalization (Lee and Zinn-Justin 1972, 1973) is beyond the scope
of this book. Here we only study the generalized Ward identities of the
Yang-Mills theory, sometimes referred to in the literature as the Slavnov
(1972) and Taylor (1971) identities, which play an important role in the
renormalization programme.

The Ward identities are relations among different Green’s functions. They
reflect the theory’s (nontrivial) symmetry (here the gauge invariance of the
original action). These relations are important to the renormalization
programme as they restrict the number of independent ultraviolet diver-
gences to ensure that gauge-noninvariant counterterms are absent. Recall
that in the simple Abelian gauge theory of QED we have, because of the
Ward identities, the equality Z, = Z, which ensures that if two particles have
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the same bare charges then they will also have the same renormalized
charges. In non-Abelian theory we have many more renormalization
constants and many more such equalities are required to ensure that the
renormalized Lagrangian is still gauge invariant. Furthermore, as we shall
presently illustrate, Ward identities ensure that all the unphysical singular-
ities are cancelled in the physical amplitudes. The formal derivation of the
generalized Ward identities for non-Abelian gauge theory will be given at the
end of the section.

The Ward identities and unitarity

Consider a simple SU(2) gauge theory with fermions (f) in a doublet
representation. The requirement that the S-matrix must be unitary,

SST = STS =1 or Z SacS;‘c = 6ab

implies that the scattering amplitude T, which is related to S,, by
Snb = 5ab + 1(275)4 54(pa - pb)Tab> (999)

will satisfy the relation
1
Im Tab = 5 Z Tac ﬁc(zn)4 64(pa - pc) (9100)

In other words, the requirement that the S-matrix must be unitary implies
that the imaginary part of the scattering amplitude T, is directly related to a
sum over products of matrix elements connecting the initial and final states
to all physical states with the same energy—-momentum as the initial and final
states. For our calculation we shall consider the fermion and anti-fermion
scattering amplitude T'(ff — ff) with the intermediate states being the two
gauge boson states (see, for example, Feynman 1977; Aitchison and Hey
1982). This is represented schematically in Fig. 9.4.

Al
() (b)

FIG. 9.4. The unitarity condition relates (a) the absorptive part of the fT — fT amplitude to (b)
the sum of the squared amplitude for fT — A4 in the physical region of two gauge bosons.

The imaginary part of the scattering amplitude on the left-hand side of eqn
(9.100) can be calculated by replacing the propagators in the intermediate
states by their imaginary parts and multiplying them by the on-shell
scattering amplitudes T(ff — AA4) and T*(4A4 — {T) (Cutkosky 1960).

For the vector boson propagator (i) of §9.2 we take the 't Hooft-Feynman
gauge with the gauge parameter ¢ = 1,

Ay = %(—g,,)/(k* + ie). (9.101)
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It has the imaginary part
n 6%, 8(k*)0(w) (9.102)

where w = |k|. Similarly the imaginary part of the ghost propagator (ii) of
§9.2 is

7 6 8(k*)0(w). 9.103)

The step functions in (9.102) and (9.103) have the effect of constraining the
intermediate gauge particle states and ghost states to the same physical
region. The unitarity condition for the fourth-order amplitude then reads

Jdpz[%TZ’iTZ’?é'fg““'g”' — §®5]
=3 f dp, T TS P (k) P (k) (9.104)

where T4 and S are the fT — 424% and fT — ¢*'c® amplitudes where A4
and c¢* are the gauge and ghost fields, respectively. The dp, integration is over
the two (massless)-particle phase space. The P,,s are polarization sums of
gauge particles

Pk = ) #ilky, o) (ky, 0)

c=1,2

PV (k) = &3k, o) (k,, 0) (9.105)

c=1,2

where ¢f(k,, 0) and &}(k,, o) are polarization four-vectors of the two gauge
particles with momenta k; and k, respectively.

We note that in this case the left-hand side of (9.104) receives a
contribution coming from the ghost fields while the right-hand side does not
because ghosts are not physical states. This is the feature that makes the
demonstration of the unitarity relation nontrivial. As we shall see, what
ultimately allows the unitarity relation to hold is that the polarization sum
P* in (9.105) is not just g** and the effect of the ghost fields is just to make up
the difference.

We shall carry out the lowest nontrivial order calculation as in eqn
(9.104). The imaginary part of the amplitude fT — fT of eqn (9.100) (the cut-
diagrams of Fig. 9.5) has been written via eqns (9.102) and (9.103) as
squares of the fT — A4 amplitude (Fig. 9.6) and of the fT — c'c amplitude
(Fig. 9.7). The factor of 1/2 on the left-hand side in (9.104) arises because
there are nine diagrams when one squares the amplitude in Fig. 9.6, eight
of them are just twice those of Fig. 9.5(a)-(d) and the ninth one corres-
ponds to Fig. 9.5(e) with the closed gauge boson loop having a symmetry
factor of 1/2. The FP ghost field ¢ behaves like a fermion with ¢ # c'; hence
there is a minus sign and no symmetry factor in front of the SS* term.



270 Quantum gauge theories 9.3

T
T T
P i

FiG.9.5. Fourth-order cut-dlagrams for fT — T where the intermediate-state particles are gauge
particles and FP ghosts.

P)——>—\rDN\pa :]iz: M
P —>— DN N b

FIG. 9.6. Diagrams for T4 where the final state is two gauge bosons.

Py k;

)23 k,
FiG. 9.7. Diagram for S where the final state is two FP ghosts.

The lowest-order diagrams for T4, and S are shown in Figs. 9.6 and 9.7,
respectively

ab 2 T 1 a
T,, = —1ig U(Pz)?)’ (—*)—— P4(p1)
k) —
Tb
lg U(Pz) yu (k pz) —m 7 Vv“(Pl)

_glsabc[(kl - k2)}.guv + (kl + 2k2)ugvi.

1
- (2ky + k3),9,:] m U(Pz) v ‘u(p))  (9.106)
1 T°
ab _ __;,2cabc = —k . 9.107
S lg € (k1 + k2)2 v(p2) 2 lu(pl) ( 0 )
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Gauge-particle polarization. We now digress to a discussion on gauge-
particle polarization. First, concentrate on one of the particles. The gauge
particle being massless has only two physical polarization states, &*(k, 6),
o = 1, 2. Thus the three four-vectors k,, ¢,(k, 1), ¢,(k, 2) do not completely
span the four-dimensional space. We can furnish another vector #, such
that

n-elk, 6) = 0, g=12, (9.108)
where ¢,(k, o) satisfies the orthogonality condition
ek, 1) ek,2) =0, (9.109)

and the transverse condition
k-ek,0) =0. (9.110)

Since k* = 0 and 5, cannot be proportional to k,, we must have k - # 0. By
the usual procedure of establishing completeness relations, these orthogo-
nality conditions and the normalizations, ¢?(k, 6) = —1, yield the polariz-
ation sum

Puv = _guv + qu
with

Q,uv = [(k : n)(kp'lv + kvr’u) - nzkukv]/(k ' }1)2 . (91 1 1)

Clearly the extra term Q,,, subtracts out the nontransverse polarization states.
The task of checking the unitarity condition of (9.104) involves verifying that
the FP ghost term precisely compensates for the extra projection terms in the
polarization sum. Our calculation will be simplified if we adopt the
convenient choice #% = 0. Then the extra terms in the two polarization sums
of (9.105) take on the forms

0" (ky,ny) = (Kin + kin)/(ky - ny) (9.112a)
and

0™ (ky, 1) = (k3n3 + kyn3)/(kz - n2). (9.112b)

Ward identities from lowest-order diagrams. To evaluate the right-hand
side of (9.104) we need to study the contractions k% T‘,‘j’i, etc. The first two
terms of (9.106) do not vanish

g 1 —kl
~ig*o(p: )<2 SR

7 ky —p2) +m
+ ?'z_kl mz)—z‘—z 7y Ju(py1)

¢ b

= —ig?i(p,) [7 z]vvu(pl)

2 nabc

= g%6™0(p2) 5 1u(py) ©.113)
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where we have used

(p1 + miku(py) = [2p1ky — %1(pr — m)Ju(py) = 2p.k)u(py),

etc. We make the parenthetical remark that, for the case of Abelian gauge
theory (QED) in the covariant gauge, we would obtain a null result in this
contraction because ¢ = 0, yielding the familiar Ward identities: k4T,
= T,,k3 = 0. It follows immediately that for Abelian theory the Q** and
Q" terms in the polarization sums will not contribute, and unitarity can be
maintained without the presence of the FP ghosts in closed loops. The last
term in T4, of (9.106), which is present only in non-Abelian theories, when
contracted with kY yields

—g2e™[2k, - kyg,; + (ky — ka)iky,

1 - .
—(2ky + kj)uk,] m U(Pz)i Y*u(py)

_ ¢
= — g™ U(p,) 5 nlp1) (9.114)
—gle 1 i(p )A—Ei (ky + &y)u(p,) (9.115)
(ky + ko WP g e RN
_gzsﬂbCLﬁ(p )r_ck u(p,) (9.116)
(ky + ky)? )5k P1)- .

Now (9.114) cancels (9.113), and the second term (9.115) vanishes because
p1 + p2 = ky + k, and because of Dirac’s equation. The third term (9.116)
is proportional to the ghost amplitude S of (9.107). Thus we have

KiT® = —iS%k,,. (9.117)
Similarly,
Tdky = —iS%,,. (9.118)

From these relations we can also deduce k% 7%k} = 0. These are examples of
Ward identities for non-Abelian theories. (Their formal derivation will be
presented later on.)

It is then simple to check that the unitarity condition (9.104) is indeed
satisfied as the right-hand side reads

1 , , , _
EJdpz{TuvTvar[—g““ + (Kint + K nt)(kny) 1]
x [—g™ + (kyny + kyn3)(kany) ']
1
=3 Jdpz{TT*yy + [(kyTh,)(n, T*k,)

+ (1, Th,)(ky T*n5)1(kyny) ™ Hkan) ™!
— [k T)- (0, T*) + (0, T) - (ky T*)1(kyny) ™!
—[(Tky) - (T*n,) + (Tny) - (T*k,)1(kon2) ™'}
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- % J dp,{TT*gg + 25S* — 258* — 255*}

- % J dp,{TT*gg — 2SS*) (9.119)

where we have used eqns (9.117) and (9.118).

To summarize, the unitary condition (9.104) relates the left-hand side,
where we have used the covariant gauge Feynman rules of §9.2 with their
spurious states of longitudinal polarization and FP ghosts, to the right-hand
side where only the physical transverse polarization states appear because of
the (axial) gauge conditions of (9.108). The spurious states of covariant
gauge on the left-hand side do cancel among themselves and in the axial
gauge on the right-hand side there are only physical states. In short, the FP
ghost fields are needed in order to maintain the unitarity condition.

The BRS transformation and the Ward identities

In non-Abelian gauge theories with their FP ghost terms, the most efficient
way to derive the Ward identities is through the use of the BRS (Becchi,
Rouet, and Stora 1974) generalized gauge transformations. Again consider
simple SU(2) theory with a set of fermions in doublet representation

L = —LF8 F 4 §iy*D,y — mjy (9.120)
where
Dy = (@0, —igA,T*)W 9.121)
F4, = 0,45 — 0,45 + ge®™ AL A (9.122)
with
a=1,2,3 and T°=1%2. (9.123)
The Lagrangian is invariant under the local gauge transformation
oY = —iT°0% (9.124)
0As = e™0°4;, — ; 0,6°. (9.125)

When we include the gauge-fixing term and the Faddeev—Popov ghost term
according to (9.75) and (9.76), the effective Lagrangian density in the
covariant gauge (9.70) becomes

Fr=ZL + Ly + Lrr (9.126)
with
1
Lo = ~3 (0"A9)? (9.127)

PLrrg = ich 0*[04 Oy — GapcAy]Ch- (9.128)
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Instead of the complex ghost fields c and ¢! it turns out to be more convenient
to work with real Grassmann fields p and ¢ defined by

Cg = (pa + iaa)/ \/2
ch = (pa — i)/ V2. (9.129)

Using the anticommutivity properties of the Grassmann fields p? = ¢? = 0,
pe = —op, etc. we have

Frpg = —i0*p,(D,0,) (9.130)
with
D,¢* = 0,0° — ga“b‘o"Af‘. (9.131)

S, is not invariant under the general gauge transformation (eqns (9.124) and
(9.125)) with an arbitrary 67, but it is invariant under the BRS transform-
ation

045 = wD,¢° (9.132a)
S = iga(T YW (9.132b)
3p° = —iw O*A/E 9.132¢)
80° = —gwe™®oba¢/2 (9.1324d)

where o is a space-time-independent anticommuting Grassmann variable
and ¢ is the usual (covariant) gauge parameter.

S, is invariant under BRS transformations. As (9.132a) may be written as
wa®A5, (9.133)

the BRS transformation is in fact a gauge transformation with a specific
choice of the gauge function

abc

0A;, = i0,w0* — ige

0° = —gwe* (9.134)
Thus the original action S = [d*x.# is unchanged under this transform-
ation, 65 = 0. We need to show that, in eqn (9.67), (Sg + Sgps) = 0 also
5[2—15 (0*A42)* + ia“p“(Dua“)] = %(6‘A‘,{) 0,(6A™) + i0*(6p*)(D 0%
+10*p® 6(D,0°). (9.135)
Concentrate first on the change of the covariant derivative ¢°
d(D,0%) = 8(0,0° — g&e™ 6" AS)
= —gwe™ d,(c%0%)/2
+ e (wD,6%)0° + ge™ Ab( — gweaa®/2).  (9.136)
Terms linear in g and in g* separately cancel

—gwe™(0,6%)0° + gwe™(9,6%)0° = 0 (9.137)
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and
gzwo.co.dAz(aabcgbde _ Bcbdsbea _ gdbesbac) =0. (9138)

The last combination vanishes because of the Jacobi identity. Thus
o(D,e%) = 0. (9.139)
Using (9.132a) and (9.132c) in (9.135) we then have,

6(Sgr + SFp(‘,) = J‘ l:é (aAAa) 5,‘(wD"G“) + o ('(g alA?.)(D”O'a):I d4x

= J au[% (6*A‘,{)(wDua")] d*x = 0. (9.140)

This completes the proof that S, is invariant under the BRS generalized
gauge transformation (9.132).

Derivation of the generalized Ward identities. The generalized Ward
identities reflect the symmetry corresponding to the invariance of the
effective action under the BRS transformation. To obtain these relations
among Green’s functions we study the generating functional of the Green’s
functions by introducing the sources J,,, a1, B, 7 and y for the fields A, p, 6, ¢/,
and  respectively. It turns out that to obtain identities that are linear in
derivatives with respect to the sources, it is convenient to also introduce the
source terms k,, v, 4, and 4 for the composite operators D,6, 36 x o, T -6y
and YT ¢ which appear in the BRS transformation (9.132). Thus the
generating functional is of the form

W, o,B, x 1 % Vs 4, 4]
= J[dA“][dp][do][d\//][dnﬁ] exp{i fd‘x(,%cﬁ + Z)} (9.141)
where the source term X is given by
T=J,A+a'p+B-o+ iy +Py+x, D'e
+3v-(6 x 6) + AT oy + YT -64. (9.142)

Since S, is invariant under the BRS transformation, so is the generating
functional of the Green’s functions § W = 0, which implies

jd“x j[dA,J [dp][de][dyI[dP1(Z)
x exp{i Id“x’[ﬁfeﬁ(x') + E(x’)]} =0 (9.143)

where 6Z is the infinitesimal change of the source term due to the BRS
transformation

ST =J, 5A* + a-3p + B 66 + X oY + Sy

+k, - 8(D¥6) + ;-5(6 x 6) + T6(T 6y) + 6T -6)A.  (9.144)
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We shall first demonstrate that not only 6(D,6) = 0 as in (9.139); the changes
of the composite operators all vanish

8(c%® — a%¢%)
= (—gw/2)(e*ca%a® + 6% c? — e95°a90® — £*96%a°6?) = 0 (9.145)
and
(T o) =T 06y + T 0oy
. T-(—%wc x c>¢ —iga(T-6)T -0y =0  (9.146)
because

T 6T 6 = T°Tb¢%" = %(T"Tb — T*T%o"c®
= %s“b‘Tca“ab = %T ‘(o x o). (9.147)
Thus eqn (9.143) may be written
16 Jd“x J[dA#] ...[dy]1J, -D*6 + a-0"A, /¢ — gB -0 x 6/2

+ igyT oy — igyT - 6y) exp(i Jd“x’[.%n + Z]) =0 (9.148)

or

5 a8 g, 0
4 a -1} _ Y pa
@ Jd x<J“ s T E 5 P

oA

This equation is the generalized Ward identity which relates different types
of Green’s functions. To obtain relations for any particular set of Green’s
functions we simply differentiate (9.149) with respect to the external source
functions J,, a, f, ... and set them equal to zero afterwards. This is a rather
tedious procedure. A simpler way to get the content of (9.149) for the Green’s
functions at hand is to use the fact that 6 W = 0 also implies that Green’s
functions are invariant under the BRS transformation (see, for example,
Llewellyn Smith 1980). This can then be used to give relations that are
equivalent to (9.149). For instance,

50| T(A%(x)45(0))|0) = 0 (9.150)

N R B
+lgi——lggi-x>W[J,...,/1]=0. (9.149)

implies that
0| T(3A45(x)A50)I0> + <O|T(A5(x) 543(0)|0> = 0 (9-151)
or

w{0|T(D,a%(x)4%(0)|0> + w{0|T(4%(x)D,a"O)I0y = 0. (9.152)
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Clearly, if we differentiate (9.149) with respect to J%(x) and J%(0) and set all
source terms equal to zero, we also obtain (9.152) as the result. In practice
this method used in (9.150) and (9.151) is quite direct. However all the
information about gauge invariance is contained in eqn (9.149), which is
more compact and is very useful for formal manipulation.

Formal derivation of the Ward identity (eqn (9.117)). Finally we shall
demonstrate that the Ward identities (9.117) and (9.118) used in proving
unitarity in the illustrative example are contained in eqn (9.149). Consider
the four-point function <0|T(pA,Y)|0)>. Its invariance under the BRS
transformation yields

O[T (6pA)I0> + <OIT(p 6A,9)I0>
+ <0IT(p4, 5Y)I0) + <O|T(pA, P 5¥)I0> = 0. (9.153)

But when the ys are on-shell the composite operators corresponding to 6y
and &y will not contribute because they do not have a one-particle pole. To
see this more explicitly,

<OIT(p(x1) A, (62 (x3) 6Y(x4))I0>
= igw{0|T(p(x1)A,(x2 ¥ (x3)T - 6(x )Y (x,)I0>  (9.154)

which has the momentum space representation shown in Fig. 9.8. Clearly it
does not have a one-particle pole in the variable k, and will vanish when we
put ¥ on the mass shell by multiplying the inverse propagator (y -k, — m)

FiG. 9.8.

with £, — m. Therefore when all particles are on-shell, only those terms that
are linear in the field will survive. Eqn (9.153) reduces to the form

% OIT(* AR AWY)I0) + 0| (p* 8,0"P)I0) = 0.
For the choice of ‘t Hooft-Feynman gauge (9.101) with the gauge parameter
¢ = 1, this corresponds to
kT = —1S%k,,,
just the Ward identity of (9.117).
A final comment. We have illustrated the importance of Ward identities in

checking the proper cancellation of the unphysical singularities (the longitu-
dinal component of the gauge fields and FP ghosts) in the physical
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amplitudes. This issue of unitarity is particularly relevant for the spon-
taneously broken gauge theories. In a class of gauge choices for such
theories, one encounters further unphysical particles, the would-be-
Goldstone-bosons. One needs to check their decoupling by using Ward
identities. Thus we must be sure that Ward identities are satisfied to all orders
in perturbation theory. Since they are reflections of the theory’s symmetries,
it is important that we adopt regularization procedures that respect these
symmetries. One of the virtues of the dimensional regularization scheme is
that it clearly preserves invariance under the BRS transformation—hence its
consequence, the generalized Ward identities. However, as we studied in §6.2
the validity of certain axial-vector-current Ward identities is not automatic
even after the theory is regularized symmetrically. Thus for theories with
fermions one must check that the theory is free of the ABJ anomaly which
would spoil the renormalizability of the theory.



10 Quantum chromodynamics

HistorIcALLY the first successful application of the Yang—Mills theory was
the unification of the weak and electromagnetic interactions (see Chapter 11).
We choose to present first, however, the gauge theory of the strong
interaction, quantum chromodynamics (QCD), since the basic structure of
this theory is a somewhat simpler introduction to the subject as it does not
involve spontaneous breaking of the gauge symmetry.

QCD represents a remarkable synthesis of the various ideas we have
developed about hadronic physics: quarks, partons, colour, current algebra,
etc. The simple quark model was initially developed in early-1960s to account
for the regularities observed in the hadron spectrum, with hadrons inter-
preted as bound states of localized but essentially noninteracting quarks
(§4.4). This view of quarks as the fundamental constituents became more
plausible as relations abstracted from the quantum field theory of quarks, i.e.
the algebra of quark currents and their divergences were successfully applied
in the late 1960s (Chapter 5). It was also gradually realized that the above
picture needed to be augmented with quarks having a hidden three-valued
quantum number called colour. Then came a series of important experi-
mental measurements, starting with the ones performed by the SLAC-MIT
group at the end of the decade, on deep inelastic lepton—nucleon scatterings.
The cross-sections were revealed to satisfy Bjorken scaling which could be
successfully interpreted by Feynman’s parton model (Chapter 7). The
significance of scaling and the parton model picture is that although the
hadron constituents (quarks) are not produced as free particles in the final
states of deep inelastic scatterings, they behave as if they were weakly bound
inside the target nucleon. As we shall see, all these features can be elegantly
combined in the theory of QCD.

The property of QCD that led directly to its discovery in 1973 as a
candidate theory of the strong interaction is asymptotic freedom, i.e.
coupling strength decreases at short distances. In this chapter we shall
concentrate mainly on the short-distance properties where perturbative QCD
is applicable. Only in the last section will we touch upon the long-distance
feature of quark confinement as analysed by the non-perturbative method of
lattice gauge theory. It is a remarkable fact that here we have a theory of the
strong interaction in which we are reasonably confident as to the correctness
of the Lagrangian, but do not know how to deduce many of its dynamical
implications for low energy—momentum scales: confinement, spontaneous
breaking of chiral symmetries, and the hadron mass spectrum. It should be
pointed out that all indications are that the assumed properties are indeed
consistent with QCD.
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10.1 The discovery of asymptotic freedom

Gross and Wilczek (1973a,b) and Politzer (1973, 1974) discovered that, for
non-Abelian gauge theories, the origin of the coupling constant is a stable
fixed point in the deep Euclidean limit. ('t Hooft (1972) also noticed that
in Yang—Mills theories the slope of the renormalization group f-function at
the origin is negative.) Theories having this property are referred to as being
asymptotically free. This is remarkable as we shall show that no renor-
malizable field theory can be asymptotically free without non-Abelian gauge
fields (Zee 1973a; Coleman and Gross 1973). Thus in Yang—Mills theories,
contrary to the case in all other field theories, the coupling constant
decreases at short distances. In the familiar Abelian theory of QED, one
has an intuitive understanding of the decrease of the effective coupling
constant at long distance as being due to dielectric screening by the cloud
of virtual electron—positron pairs. Thus, for non-Abelian gauge theories,
we have to understand an anti-screening effect. As we shall discuss, the cloud
of virtual gauge particles, which are bosons carrying (colour) charge and
spin, makes the Yang—Mills vacuum behave like a paramagnetic substance
and, through relativistic invariance, this implies that the vacuum anti-
screens charges.

Theories without Yang—Mills fields are not asymptotically free

Let us recapitulate some of the relevant points made in Chapter 3 where the
renormalization group was illustrated with the simple A¢* theory

1 A
<=3 [(0.9)* — m*¢*] — ] ¢*. (10.1)

When all energy-momenta are scaled up ap;, ¢ — oo (the deep Euclidean
region), apart from trivial dimension factors, the Green’s function depends
on ¢ = In o only through the effective coupling constant A(4, ¢), which is in
turn governed by the renormalization group f-function (see eqns (3.104) and
(3.105))

dz
5 = AD. (10.2)

We are interested in the slope of the S-function at the origin 4 = 0 because,
for small couplings, f can be calculated perturbatively and because the sign
of the slope determines whether 4 = 0 is an ultraviolet or an infrared fixed
point. If the theory is asymptotically free with 4 =0 being a ultraviolet
fixed point, we recover the canonical (i.e. free field theory) light cone
singularities and the parton model with its free quarks at short distances as
given in Chapter 7.

The B-function can be calculated as follows. In a massless theory, the only
scale parameter u appears in the subtraction point which is needed to define
all the renormalized quantities. From eqns (3.32) or (3.71), the B-function in
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this case is given by

di

pA) = i (10.3)

where A is the renormalized coupling constant related to the bare coupling as
given by eqn (2.50)

A=Z7'Z3A. (10.4)
Z, is the scalar wavefunction renormalization constant,
d=Z;1"¢, (10.5)

or, equivalently, is defined in terms of the unrenormalized scalar propagator
at the subtraction point chosen to be, for example, some Fuclidean point
p2 = —M29
—iz

=—52 (10.6)
pz = _ ”z u
Similarly, the vertex renormalization constant Z, can be defined through the
unrenormalized four-point vertex function as in egn (2.38)

iA(p®)

Tpy,p2,P3sPa)

= —iko/Z;. (10.7)
pf=—u?
The one-loop contributions to the two-point and four-point Green’s
functions and hence to Z, and Z, are shown in Fig. 10.1. Thus the
renormalization constants are functions of the bare coupling 1, and the ratio
of the cut-off A to the subtraction parameter p.

NS \ /
X
- \\ /__\ // I/ \\ \ /
A X ><\ \ | /7 N\
\ ) N N A
—_—— - AN / \\
s/ N\ / \

(a) (b)

FiG. 10.1. Lowest-order scalar meson (a) self-energy and (b) vertex radiative correction graphs.

To obtain the f-function as in (10.3) one merely has to calculate the
divergent part of the Zs and differentiate with respect to the cut-off (see eqn
(3.44))

[2In Z,(Ao, A/p) —In Z; (Ao, A/w)]. (10.8)

d
B=—2ma

The one-loop contribution to Z, in Fig. 10.1(a) vanishes (Z, = 1), the
only nontrivial diagrams are those in Fig. 10.1(b) (see eqn (3.47)). We obtain
+322

PO = ezt 0(23). (10.9)



282 Quantum chromodynamics 10.1

As the A < 0 region is not allowed (since the Hamiltonian is unbounded from
below), the positive slope for A > 0 means that the simple 1¢* theory of
(10.1) does not exhibit free-field asymptotic behaviour at large Euclidean
momenta. This situation actually holds for the entire class of scalar field
theories with internal symmetries, i.e. eqn (10.1) is generalized to

¢ — ¢
/1¢4 - Aijkl¢i¢j¢k¢l

where A;j, is symmetric in its indices. The scalar fields ¢;(x) belong to some
(possibly reducible) representation of the symmetry group and in every term
all the internal symmetry indices are contracted. Now we have a whole set of
quartic couplings, satisfying equations generalized from (10.9).

ﬁ" - d’lijkl _ il_
UM dr T 16n?

[lijmnlmnkl + Aikmnlmnjl + Ailmn'lmnjk] . (1010)

The theory is still not asymptotically free because one can easily find that
there are f-functions having positive slopes. For example,

3
Bii11 =W111mnlmn11>0- (10.11)

We now consider theories with scalar bosons and fermions interacting
through the renormalizable Yukawa coupling

& =Yy" 0, — myW +3[(0,8)* — m3d*1 — Ad* + pYyd. (10.12)

We have two coupled renormalization group equations corresponding to the
graphs in Figs 10.2 and 10.3

da
Bl = -d7 = AAAZ + Blipz + C1p4 (10.14)
d
B, = d—’;’ = A,p° + B,i%p. (10.15)

It should be noted that the lowest-order terms are not necessarily all single-
loop diagrams. In particular, Fig. 10.3(b) is a two-loop term. However, in
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F1G. 10.2. Lowest-order contribution to the A-coupling renormalization constant.
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FiG. 10.3. Lowest-order contribution to the Yukawa coupling renormalization constant.
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order to have a negative f8, in eqn (10.14) with 4, positive, we must have p?
at least of the order of A, hence the A2p term of Fig. 10.3(b) may be dropped
when compared to the p* term of Fig. 10.3(a) which yields the result

1
ﬂpzl—%i(2+%+%+2)p3>0. (10.16)

Hence the theory (10.12) is also not asymptotically free. Again this statement
can be generalized to the entire class of renormalizable theories with spin-0
and spin-1/2 fields having all possible internal symmetries. Thus we have the
interaction Lagrange density

L= = hijimDi®j Ok bm + Y (AL, + 1Bl oy (10.17)

The combination pX, = A%, + iBX, satisfies the renormalization group
equation generalized from (10.16) as

dpt 1
By =3 = 1oz 207000 + 30716 + o'l
+ (tr p'p)p’ + (tr p'p))p7], (10.18)

repeated indices being summed over. We have used the property that, when
a (massless) fermion propagator is moved over, the gamma matrix com-
mutation is such that one has p — p'. From this, we get

d . 1 e
a7 (tr p"p’) = 32 [2(tr pp’p™p))

TP D
+5(tr p"plp ") + 3 (tr pp'p’p”)
+ Re(tr ppi)(tr p''p)) + (tr p™'p)(tr p'p].  (10.19)

The second and third terms on the right-hand side are positive definite since
they are traces of the square of hermitian matrices (p’p’"). The fourth term is
less than the last term because

Re[(tr p'p)(tr p™'p/)] < Itr(p™p/)|? = (tr p™p?)(tr p'p?").  (10.20)

Hence,
d .. L o
8n? < (tr p"p) 2 20(tr p"p’p"p?) + (tr p"p))(1x pp )]

= (pLpPla + Prapl)Plhplt + pitpll) = 0. (10.21)

to reach the last line we have written out the trace terms explicitly and
relabelled some of their indices. Thus all renormalizable theories with only
spin-0 and spin-1/2 fields are not asymptotically free. Finally we have the
familiar result that the QED f-function has a positive slope at the origin of
coupling space, since

e = Z;IZZZé/ZEO = Z:lw,/zeo (1022)
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where we have used the Ward identity Z, = Z, and Z; is the photon
wavefunction renormalization constant that can be calculated from the
vacuum polarization diagram Fig. 10.4(a)

2

Zy= 1 — — In(A/p). (10.23)
67

Thus, just as in (10.8), we have

Olln Z3(eo, A/p)]

Po=—e dIn A
3
- __1’;;2 + 0(e5). (10.24)

Similarly, for scalar QED with Z receiving a contribution from the charged
scalar meson loop diagram of Fig. 10.4(b), we obtain

+é3

= 1822 + 0(e%). (10.25)

Be

Non-Abelian gauge theories are asymptotically free
The general Yang—Mills theory has the Lagrange density given in §8.1
= —3tr(F,,F*) (10.26)
F,=0,A,-0,4,—ig[4,, A,]
where
A, =T°4;

is a matrix of hermitian vector fields with

[T% T*] = iC®T*

tr(7T°T") = § 6%. (10.27)

To quantize the theory we must fix the gauge. In §9.2 the covariant-gauge
Feynman rules are given, with its gauge-fixing terms and the Faddeev—Popov
ghosts. We have in particular the gauge boson propagator in the form

5ab
k? +ie

iA®(k) = i[ =g, + (1 — Ok, k,/k*] (10.28)
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where ¢ is the gauge parameter. The -function can then be calculated much
in the same manner as in all the other renormalizable theories considered
above. If we choose to define the gauge coupling through the vector three-
point function according to rule (iii) of §9.2

il"fj’\’,j(kl, ky, ks) = igcabc[guv(k1 — k)i + gualky — k3),

+ Gau(ks — k1)1 (10.29)
Then the renormalized coupling constant is related to the bare coupling as
9=23*2;g, (10.30)

where Z, is the vector wavefuntion renormalization constant
A, =Z;'"4,, (10.31)
or, equivalently, is defined in terms of the unrenormalized (transverse) vector

propagator at the (Euclidean) subtraction point k? = — pu?

GABTS e - — 2 = izA(g,,‘. + %"—) 5. (10.32)

Similarly, the vertex renormalization constant Z, can be defined through the
unrenormalized three-point vertex (10.29)

[Caky, kyy k3)lo = Z ;7 'goC® g (ky — k2); + gualky — ks3),
+ Gaulks — ky),] at kP = —p2. (10.33)
One may find it helpful to compare eqns (10.30), (10.31), (10.32), and
(10.33) to their 1¢* counterparts in eqns (2.40), (2.23), (2.21), and (2.38).

The one-loop contributions to Z, and Z, are shown in Figs. 10.5 and 10.6,
respectively. After a tedious calculation one finds

Z=1+9 (B _Nowvyma) (10.34
A4~ 167‘[2 3 2 n u . )

FIG. 10.6. Trilinear gauge-boson vertex correction.
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and
2
go (17 3¢
Z,=1 —-= .
g + 162 < 6 > t,(V)In A/u (10.35)
where
1,(V) 6% = CodCbed, (10.36)

As we have seen in §4.1 the structure constants C** themselves form the
adjoint representation matrix

C = [T*(V)]se (10.37)
and (10.36) may be written as
1,(V) 6% = tr{T*(V)T*(V)}. (10.38)

We have labelled these quantities with V, for vector, since the vector gauge
fields A4y, belong to the adjoint representation of the group. Hence (10.38)
shows that #,(V) can be interpreted as the sum of the squared symmetry
charges of the vector gauge particles. Also from the simple property of the
SU(n) adjoint representation discussed in §4.1, we obtain by using eqns (4.21)
and (4.134)

t,(V)=n for SU(®). (10.39)
From (10.34) and (10.35) we immediately obtain the famous result

0 3
ﬂgz —gm['z‘anA—ang]

3
g° 11
Ty t,(V) <0 (10.40)

which, at this one-loop level, turns out to be independent of the gauge
parameter £. If the gauge fields are coupled to fermions and scalar mesons
with representation matrices 7%(F) and T%(S), respectively, then we can make
use of results (10.24) and (10.25) directly

B, = %; [—% 1L,(V) + g t,(F) + % tz(S):| (10.41)
where
1,(F) 6° = tr{T*(F)T*(F)}
and
1,(S) 6% = tr{T“(S)T*(S)} (10.42)

are the sums of the squared symmetry charges for the fermions and scalars,
respectively. For fermions and scalars in the fundamental representation of
SU(n), we have T%S) = T%F) = A%/2 and

1,(F) = 1,(S) = 1/2. (10.43)
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If one uses the two component fermion fields or real scalars the coefficient of
t,(F) and ¢,(S) in (10.41) should have an additional factor of 1/2.

The Yang—Mills vacuum as a paramagnetic medium

One of the most remarkable features of quantum field theory is that Yang-
Mills theories are the only asymptotically free theories in four dimensions. As
it turns out there is a simple physical explanation of this phenomenon
(Nielsen 1981; Hughes 1981). This explanation ultimately has to do with the
fact that non-Abelian gauge fields have spin and obey Bose—Einstein statistics
and, unlike the Abelian photon, they carry the gauge symmetry charges
themselves.

As we have mentioned at the beginning of this section, asymptotic freedom
means that the vacuum anti-shields charges, i.e. it acts like a dielectric
medium with dielectric constant

e<1. (10.44)

Also the quantum field theory vacuum differs from the ordinary polarizable
medium on a very important point: it is relativistically invariant. This means
that the (relative) magnetic permeability u is related to the dielectric constant
by

pe =1 (10.45)

so that the velocity of light is 1 in the vacuum. This allows us to translate the
electric responses into its magnetic responses, which have two elements.

(1) Landau diamagnetism (u < 1). The charged particles in the medium, in
response to the external magnetic field, produce a current which itself induces
a magnetic field opposing the original field.

(2) Pauli paramagnetism (u > 1). If the particles have magnetic moments
they tend to align with the external field.

It turns out to be easier to visualize the magnetic response of the Yang—Mills
vacuum; the anti-screening of (10.44) means

u>1.

The Yang-Mills vacuum acts like a paramagnetic medium. We note that
such a correspondence does not exist for ordinary polarizable material which
can, for example, have both the properties of (¢ > 1) dielectric screening and
of (u > 1) paramagnetism.

It should be emphasized that the electromagnetic terminology is used here
only as an analogue to ordinary U(1) gauge theory. Thus by charge we really
mean the gauge symmetry charges. For example, in the SU(3) gauge theory
of QCD, they are the colour charges; by electric and magnetic responses we
mean the colour electric and magnetic responses, and so on. When we say
that the Yang—Mills fields of QCD (gluons) carry charge, magnetic moment,
electric quadrupole moment, etc. we mean they carry colour charge, colour
magnetic moment, etc. (In actual fact gluons are electrically neutral.) What
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are then the charge, magnetic moment, etc. of the Yang—Mills particle?
Consider the simple SU(2) theory. It has a trilinear gauge field coupling given
by the Feynman rule (iii) of §9.2.

irﬁi(h vky,ks) = iﬁabc[guv(k1 — k)i + goilky — k3),
+ gaulks — k)] (10.46)

which can be thought of as the vertex of a charged spin-1 particle and a
photon. For the purpose of this interpretation we assume that the SU(2)
gauge fields 45 have the correspondence

A} - A, corresponds to the photon field;
1
V2

Then the &®* factor gives

(A} + A2) > Vi corresponds to the charged spin-1 fields with mass M.
(10.47)

£—+'3 — %i(8123 _ 8213) = i. (1048)

We pick the momentum configuration such that (recall that all k;s are
supposed to point into the vertex)

k k
k’fﬁ(M, ——2'>, k’2‘2<—M, _5>s k3:(0’k)

for M > |k|; the polarization vectors for the charged particles are

sll_ _k_'ee 814— k—.e_,.e’
1= 2M’ ’ 2 = 2M’

so that &, -k, ~ &, -k, ~ 0. After contracting &%, & and 4% into (10.46) we
obtain

il 5 ey A* = 2M|:ge-e’A0 + —]% (e x ¢)-(k x A)] + O(k?).
(10.49)

Thus we can identify g with the electric charge and g/M with the magnetic
moment corresponding to a gyromagnetic ratio of

Py =2. (10.50)

We can calculate the vacuum energy density in the presence of an external
magnetic field

1
Uug = >— Bl (10.51)
2u
From this the magnetic permeability u can be extracted. Nielsen (1981) and
Hughes (1981) have shown that, for u =1 + y where y is the magnetic
susceptibility,

1
A~ (=1)¥¢ ), <—§ + v2s§) (10.52)
S3
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where g, y, and s are the charge, gyromagnetic ratio, and the projection of
spin in the direction of the external magnetic field, respectively. The two
terms correspond to diamagnetic and paramagnetic responses, respectively.
The factor (—1)% in front means that there is an extra minus sign for a
fermion system. When normal-ordering the creation and annihilation
operators in the Hamiltonian to isolate the vacuum energy term, the
anticommutation relations of the fermion fields give rise to this extra minus
sign. (This is the same reason that a fermion loop in Feynman graphs is
accompanied by a minus sign.) As a simple check one sees that for fermion
(ve=2)

te ~ —gR2(—4+ 1) = —4qt. (10.53)

That the susceptibility is negative means that the system is diamagnetic
(ur < 1) hence has the property of dielectric screening & > 1 as in QED.
Also note the well-known ratio of 3 for the relative paramagnetic and
diamagnetic contributions. Keeping in mind that the massless vector gauge
particles have only two helicity states s; = +1, we obtain, for the vector,
fermion, and scalar particles

X~ 34 —4qF — 343 (10.54)

To convert these to the gauge charges, the squared charge factors are
identified with the trace terms of (10.38) and (10.42)

gy - 31:(V)
g¢ - 15(F)
q§' = 1,(5). (10.55)

We then obtain a result identical to (10.41). The factor 1/2 in (10.55) reflects
the fact that in gauge theories the vector particles have been represented by
hermitian fields and each complex charged field actually has two real
components (see, for example, eqn (10.47)).

Gauge theories with scalar mesons

We now consider the possibility of giving all Yang-Mills vector bosons
masses through the Higgs mechanism (as in §8.3) without destroying
asymptotic freedom (Gross and Wilczek 1973b; Cheng, Eichten, and Li
1974). This appears to be very difficult. The problem has to do with the
quartic couplings of the Higgs scalars which tend to be ultraviolet unstable.
The modification of eqn (10.10) involves adding contributions from the
diagrams in Fig. 10.7

1
~ 1oz (1252089 A = 349" (10.56)

N
7
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FiG. 10.7.
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where
55(8) 6;; = (Ta(S)Ta(S))ij
Ay = {TS), T°S)}{T*S), T*S)}ua
+ two other terms by permutation. (10.57)
Thus basically we have renormalization group equations of the form

dg?

‘E = —bog4 bo > 0
d}' 2 2 4
P AA + B'Ag* + Cg*. (10.58)
Introducing the variable v = A/g?, eqn (10.58) becomes
1d
— S A+ B+ C=4, (10.59)
g* dt

with B = B’ — b,. Asymptotic freedom requires thatg - 0and 1 — 0, i.e. v
approaches a fixed point in the ultraviolet limit. Since the right-hand side of
(10.59) is a second-order polynomial, the condition for §, = 0 to have real
roots is simply

A =B?—44C>0. (10.60)

Let us call these two roots v; and v, with v, > v, . Since the slopes at these
two points

dg,
E}— v1=A(V1—V2)<0
and
dg,
av |, = A0 =) >0, (10.61)

the smaller v, is a stable fixed point. But 4 and v, are required to remain
positive (so that the classical potential is bound from below); this requires

B<0 (10.62)

because both 4 and C are positive and v, = (—B — JA)/44 < —B/2A4. In
all the cases examined, these asymptotic conditions (eqns (10.60) and (10.62))
always imply that only a small number of scalar mesons are allowed in the
theory, too small a number to do the job of breaking down the gauge
symmetry completely and giving all gauge bosons nonzero masses. This
situation is not changed even in the presence of Yukawa couplings: their
contributions to (10.58) are generally small. (An important exception is the
supersymmetric theory.) Thus gauge symmetry is not broken spontaneously
in an asymptotically free theory and this suggests that one should work with
such theories omitting elementary scalars altogether.
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Product groups

Up to this point we have restricted our considerations to simpe Lie groups,
i.e. theories with only one gauge coupling constant. The more general case
involves direct products of simple groups G; x G, x ... G,, each with its
own coupling constants g;. To lowest-order in g} the p-functions are
independent of each other and, therefore, the results can be deduced directly
from those for simple groups. In particular, if one of these factors, G;, is an
Abelian U(1) group, the associated gauge couplings will not be driven to zero
and the theory is not asymptotically free.

10.2 The QCD Lagrangian and the symmetries of the strong
interaction

The success of the quark—parton model in describing Bjorken scaling as
observed in deep inelastic lepton—hadron scattering clearly suggests that the
field theory of the strong interaction should be asymptotically free so that the
quark can interact weakly at short distances. We have shown in the last
section that only Yang-Mills theories can exhibit free-field asymptotic
behaviour at large Euclidean momenta.

Which symmetry of the quark model should be gauged? We have already
seen in §4.4 how, by postulating that quarks have a hidden three-valued
quantum number called colour, one can overcome the paradoxes of the
simple quark model. This idea of exact colour symmetry is strengthened by
the agreement with experimental measurements of the anomaly calculation
of the n° — 2y rate (§6.2) and of the parton-model calculation of o(e*e™
— hadrons) (§7.2). Furthermore, since we also need to assume that only
colour singlets are observable, it suggests that the forces between the
coloured quarks must be colour-dependent. In fact a colour-independent
strong interaction would imply the phenomenologically unacceptable result
that every hadron should have degenerate partners having different colours.
All this leads to the idea that it is the colour symmetry of the quark model
that should be gauged. Thus, the strong interaction should be described by
an SU(3) colour Yang—Mills theory with each flavour of quarks transform-
ing as the fundamental triplet representation. This, together with our
requirement that the strong interaction theory be renormalizable, fixes
(almost) completely the form of the Lagrangian. The theory is called
quantum chromodynamics (Gross and Wilczek 1973a; Weinberg 1973b;
Fritzsch, Gell-Mann, and Leutweyler 1973) with a Lagrangian usually
written as

nf
ZLaco = —3tr G,,G** + Y Gu(iy*D, — my)q, (10.63)
k

where
Guv = auAv - 6vAu - lg[A‘u Av]

Duqk = (au - lgAu)qk

8
4, = Zl A%29)2 (10.64)
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where the A% are the Gell-Mann matrices that satisfy the SU(3) commutation

relations
Ao Ay  rabe A
Za Tb | _ jfabe Z 10.
[2, 2] if > (10.65)
and the normalization condition
tr(A94%) = 2 6. (10.66)

The strong interaction gauge fields Aj are called gluons and the q,s are the
quark fields with the subscript & being the flavour index k = 1, 2,.. ., n; (n;is
the number of quark flavours)

qr:u,d,s,c, b, ... (10.67)

In (10.63) we have left out a possible SU(3)-invariant and dimension-4
renormalizable term

tr G,,G** with G" = $e"*G,,.

Such a term can be written as the divergence of a current tr GG ~ ¢“K,, hence
it contributes only as a surface term in the action. Making the usual
assumption of fields vanishing at infinity A3 — 0, one is normally justified in
discarding this term. As it turns out, for a class of gauge fields with nontrivial
topological properties, this justification may not hold. Experimentally we
know that, if the tr GG term exists in the QCD Lagrangian, it must be
multiplied by an extremely small coefficient. For the time being we shall
decree its absence and shall take up this whole area of instanton problems in
Chapter 16.

The QCD Lagrangian (10.63) clearly possesses all the well-known strong-
interaction symmetries. It conserves charge conjugation and parity. Because
the gluons are flavour-independent it conserves strangeness, etc, In fact eqn
(10.63) has all the flavour symmetries of a free quark model, particularly the
SU(3) x SU(3) chiral symmetry, broken explicitly by the quark mass term,
as discussed in Chapter 5 (see comments at the end of §5.5). If QCD dynamics
is such that chiral symmetry is realized in the Goldstone mode then all the
successes of PCAC and current algebra can be accounted for.

Gauge invariance, renormalizability, and QCD symmetries

It is important to realize that these symmetry properties are not put in eqn
(10.63) by hand; they are the consequences of gauge invariance and
renormalizability. In the following we shall show that (10.63) is equivalent to
the most general renormalizable SU(3) Yang-Mills theory of quarks and
gluons

z
£ = §(4 + Bys)iy*D,q +A(C + iDys)a — Tt GG (10.68)

where A4, B, C, and D are all hermitian matrices in the flavour space and Z is
a constant. We can rewrite (10.68) in terms of the left-handed and right-
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handed quark fields
w=31-7)a dr=%1+7s)q
with the result

£ = qu(4 + B)iy*D,q. + qr(4 — B)y*D,qx
. , z
+Qu(C +iD)ar + Gw(C ~ iD)qL — 5 r GG.  (10.69)

This can be transformed into eqn (10.63) by the following two steps.

(1) We will first rescale the gluon field and gauge coupling using
A‘l; - ZIIZAZ, g— Z—1/2g

so that Z — 1 in the gluon kinetic energy term without affecting the covariant
derivatives of the quark fields. Then introduce new q, and qy quark fields so
that the two independent matrices 4 + B and 4 — B both become unit
matrices. Now the Lagrangian takes on the form

P - C’lLi?“Dqu + qRiV“D,,CIR + quMqR + QRMTqL — %tl‘ GG
(10.70)

where
M=C+iD (10.71)
or, equivalently
L1 = giy*D,q + §(C + iDys)q — 3 tr GG. (10.72)

We have not bothered to introduce new labels for the new fields and matrices.

(2) We now make use of an important result of the linear algebra. (A
proof of this theorem will be presented in §11.3.) It states that a general
matrix such as M in (10.71), which is neither diagonal nor symmetric, can
always be diagonalized with positive eigenvalues by a bi-unitary transform-
ation. Thus,

SMT' = M, (10.73)
where S and T are unitary matrices and M, is diagonal with positive elements

tr My =Y m. (10.74)
k

We see immediately that this allows us to transform #*) of (10.70) into the
canonical form of (10.63). Thus, we can redefine the quark fields

q.— Sq. and qr — Tqg (10.75)

so that the mass term in (10.72) is diagonalized and free of y5 without at the
same time introducing yss into the D,q terms. The physics that makes this
possible is that strong interactions are mediated by flavour-neutral vector
gluons. Had it not been for the flavour-independence of the colour gluon
fields, we would not have the matrices 4, B, C, and D in (10.68) to commute
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with the generators of the gauge group; had it not been for the spin-1 nature
of the gluon, the symmetries of the strong interactions would be controlled
by other terms besides the quark mass matrices. Thus this is another
argument (besides the difficulties discussed in the last section on the Higgs
mechanism in an asymptotically free theory) against the presence of
elementary scalar fields in strong interaction theory.

Two more general comments on QCD symmetries follow.

(A) Chiral symmetries of QCD. We have already stated that, in the limit
my, =my =m; =0, Pocp, like that of the free-quark model, is invariant
under the chiral unitary transformations of eqns (5.39) and (5.47). In other
words, in the absence of the quark mass matrix, the theory is invariant under
the unitary transformations of (10.75), and we have a U(3). x UQ3)
symmetry. The diagonal subgroups SU(3) and U(1) are realized in the
normal mode; i.e. the vacuum is also invariant under the U(3)_,r trans-
formations. The hadrons form degenerate SU(3) multiplets and baryon
number is conserved. The remaining symmetries—the axial SU(3) and U(1)
symmetries, corresponding to the U(3)._p transformations—are not
manifest in particle degeneracies. Since we are not using any elementary
scalar fields in the theory, we must assume that the dynamics is such that the
QCD vacuum breaks these axial symmetries. (Whether this actually takes
place is a difficult dynamical problem that is still not completely settled yet;
but all indications are that this indeed takes place according to our
expectation.) The Goldstone theorem then informs us that there should be
approximately massless pseudoscalar mesons in the hadron spectrum. Eight
of them can indeed be identified readily 3 ns, 4 Ks, and 1 1. However, since
we need to break an axial U(3) symmetry, we are still one pseudo-scalar
short. This is the famous axial U(1) problem. Namely, in the massless limit
QCD (in fact any quark model) is invariant under the phase rotation

qi — €"'q, (10.76)

where we have the same 0 for all k, i.e. u., d,, s; are multiplied by a common
phase e and ug, dg, sg by €”. This approximate symmetry is not observed
in the strong interaction: it is not realized either in the normal or the
Goldstone mode. The resolution of this U(1) problem will be discussed in
Chapter 16 in connection with the instanton solutions of QCD mentioned at
the beginning of this section.

(B) Stability of QCD symmetries against weak radiative corrections. We
now discuss briefly the problem of symmetry violation terms as induced by
weak radiative corrections (Weinberg 1973b). Although the subject of gauge
theories of electroweak interactions has not been introduced, we can still
discuss this problem since we only need a few general properties of such
theories.

(i) The generators of the electroweak gauge group commute with all those

of QCD, i.e. gluons are flavour-neutral and weak intermediate vector bosons
(W-bosons) and currents are all colour singlets.



10.3  Renormalization group analysis of scaling and scaling violation 295

(ii) The weak interactions have an energy scale set by the W-boson masses
My, = 0(10% GeV).

(i) The weak gauge coupling constants are of order e and are related to
the familiar weak Fermi constant by G = O(a/M %), where o = ¢?/4r is the
fine structure constant.

Knowing that weak couplings are O(e), a priori one would fear that weak
radiative corrections would induce unacceptably large O(x) violations of
parity and strangeness conservations. However property (i) implies that these
radiative corrections themselves are all invariant under SU(3)co - In
particular the order o additions to the Lagrangian must be dimension-4
operators; hence (as we have demonstrated above), with suitable re-
definitions of the gluon and quark fields, the Lagrangian can be restored to
the canonical form of (10.63) with all its symmetries. Terms involving
operators of dimension D > 4 will, by dimensional analysis, be multiplied by
coefficients (My)~®~%. For example, a term of the form gy,(1 — 75)q3y"
(1 — y5)q has D = 6; hence it must have a coefficient O(2/M%) and, by
property (iii), of order Gg.

Thus QCD has the attractive feature that in zeroth order it automatically
possesses a set of global symmetries which match perfectly with the known
strong-interaction symmetries and which are stable against weak radiative
corrections.

10.3 Renormalization group analysis of scaling and scaling
violation

For the QCD Lagrangian (10.63), the renormalization group B-function
(eqn (10.41)) with #,(V) = 3, 1,(F) = 1/2, and ¢,(S) = 0 takes on the value

—1
By =1g2 11 = in)g® = —bg® (10.77)

where n; is the number of quark flavours. As one changes the momentum
scale p; — Ap;, the effective gauge coupling g(g, t) obeys the equation

dg 3
Frie —bg (10.78)
with
t=1InA. (10.79)

One can integrate eqn (10.78) to obtain

2

29
g°(0) 11 2bg’t (10.80)
where g = g(g, 0). Thus for n; < 17, i.e. b > 0, the denominator of (10.80)
cannot vanish. For large momenta Ap; with 4 — oo, we have g(¢t) — 0 and

asymptotic freedom. But we should note that the effective coupling decreases
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to zero very slowly, as a logarithm, § ~ (2b'In )~ '. For convenience, we can
choose the scaling parameter A as the ratio of the momentum of interest Q to
the subtraction scale u,i.e. 12 = Q?/u? or t = % In Q%/u®. Then we can rewrite
eqn (10.80)

o(4)
1 + 4nboy(u?) In Q?/u?
where o,(Q?) = g*(t)/4n and oy (u*) = g*/4n. We can further simplify this
equation by defining the parameter A through the equation
_
o,(p*)4nb

2(Q?) = (1081)

InA?=Inyu? -

to get

4n
(11 — 3n;) In Q*/A?

In this form, the strong gauge coupling constant a(Q?) is expressed in terms
of one single parameter A. From this we see that for small momenta, a(0?)
increases and in fact it diverges at Q% = A%. Even though eqn (10.82) is a
perturbative formula and breaks down for large couplings, the value of A is
still a useful measure for the energy scale where the strong-interaction
coupling constant becomes large. Hence A is the fundamental momentum
scale of the theory and is called the QCD scale parameter.

Since QCD is asymptotically free, at first sight one would think that this
allows us to use the renormalization group and perturbation theory to
calculate a large number of high-energy processes. Actually this is not the
case: the renormalization group analysis is a theory of scale transformations
and this involves uniform multiplication of all components of the four-
momenta; the ultraviolet asymptotic limit is the deep Euclidean region where
all particles are far away from their mass shell. Fortunately, there are
physical situations where some of the ‘external particles’ are infinitely off
their mass shell. In the lowest-order electroweak coupling approximation,
the semileptonic inclusive processes can be factorized into a known leptonic
part and a hadronic quantity that corresponds to a forward scattering
amplitude of a photon (or W-boson) with variable mass —g?. In particular
the cross-sections of e"e” annihilation and lepton—hadron scatterings
measure the absorptive part of the electroweak current product matrix
elements (see eqns (7.10) and (7.152)) between some state |4 )

CAIT(J ,(x)J,(0)]4). (10.83)

The high-energy and high-( — ¢*) limit does correspond to the deep Euclidean
region. (For general descriptions of applications of asymptotic freedom see
Politzer 1974 and Gross 1976.)

2(0?) = (10.82)

e*e” annihilation

According to eqn (7.152), for the case of e"e™ annihilation, |4) of eqn
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(10.83) is the vacuum state. Thus the photon mass g? is the only scale
and renormalization group analysis can be applied directly. Consider the
inverse photon propagator in QED

I'(g) = (—g" + q"¢"/¢")11(¢%) (10.84)

where the vacuum polarization I1(g?) has the naive dimension 2, so that the
relevant renormalization group equation (3.58) becomes

0 0
— — B, — + 295 — 2)=0 10.85
[61 ﬁgag+ YA Z]H(q) (10.85)
where 7, is the anomalous dimension of the photon field,
1 @
Ya = T37mA [In Z,(e, g, A/w)]. (10.86)

Z, is the usual photon wavefunction (i.e. vacuum polarization) renormaliz-
ation constant (with its one- and two-loop graphs shown in Fig. 10.8) which

yields
Ya = C<3 g e,3>[1 + 3;25:;) 9>+ ] (10.87)
FiG. 10.8.

For T%(V), the representation matrices of the vector gauge fields, we have
55(V) 5:’,’ = (Ta(V)Ta(V))ij
= (n* - 1)2n for SU(n). (10.88)

For SU(3) gluons s5,(V) = 4/3. ¢, is the electric charge of quark flavour k. We
have not written out the precise form of the proportional constant C since it
will be cancelled in the result that we shall quote. Solving (10.85) as in eqn
(3.68), we have for Q% = —¢?,

t

Q% ~ @* expl:—2 Jm(g(t')) dt’]
0

~ Qz[l - 2C<3 ¥ e,f><z + 312222 Int+.. >] (10.89)

The o(e*e” — hadrons) cross-section can be obtained by taking the
absorptive part

2y _ 0(e"e” — hadrons) o (0?) '
R(Q% = e o) - (3;4)[1 T ]
(10.90)
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Therefore the simple parton scaling result of eqn (7.104) is recovered
together with a QCD correction term (Appelquist and Georgi 1973; Zee
1973b) with «,(Q?) given by (10.81). Thus the ratio R(Q?) approaches
R(Q? = o) from above. This subasymptotic correction term, at least for the
region above the charm threshold, is still probably less than the experi-
mental uncertainties, so while the e*e™ annihilation total cross-section is
not an ideal place to measure «(Q?), the overall experimental data is
consistent with the QCD prediction of eqn (10.90).

Inelastic IN scatterings

According to eqn (7.10), |4) of (10.83) is the nucleon state for this case of IN
scatterings. Hence we will be studying a physical quantity with two mass
scales: the variable photon mass Q% = —g* — oo, but the nucleon must be on-
shell p2 = M2. One must devise methods to factorize the matrix into a
product of momentum-independent quantities (which will be identified with
the structure functions and the parton distribution function) and ¢*-
dependent functions which scale according to the renormalization group.
(For more explicit discussions of this factorization see §10.4.)

(A) Operator product expansions. The technique effecting such a factoriz-
ation is the operator-product expansion (Wilson 1969) in which the
singularities of the operator products are expressed as a sum of nonsingular
operators with the coefficients being singular c-number functions. The
physical basis for this expansion is that a product of local operators at
distances small compared to the characteristic length of the system should
look like a local operator.

(A1) Short-distance expansion.

AX)B(Y) ~ Y Clx = p)GGx + ) (10.91)

(x—y),~0 i

where A, B, and (), are local operators. The (s that can appear must have
quantum numbers which match those of 4B on the left-hand side. The C;(x)s
are singular c-number functions called the Wilson coefficients. It has been
proven for renormalizable theories that such expansions are valid as x — y
to any finite order of perturbation theory. The short-distance behaviour of
the Wilson coefficients is expected to be that obtained, up to a logarithmic
multiplicative factor, by naive dimensional counting
Ci(x) — (X)"“=%(In xm)?’[1 + O(xm)] (10.92)
x«l1/m
where d, dg, and d; are the dimensions (in units of mass) of A, B, and 0;,
respectively. The higher the dimension of @), the less singular are the
coefficients C(x); hence the dominant operators at a short distance are those
with the smallest dimensions.
The usefulness of this expansion derives from its universality—the Wilson
coefficients are independent of the processes under consideration. Process
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dependence is exhibited in the matrix element of the local operator ¢, which is
nonsingular at short distances. Another advantage is that in a given theory
the expansion usually involves a rather small number of operators. Hence the
ensuing calculation is relatively simple.

(A2) Light-cone expansion. We already encountered this type of expan-
sion in §7.3. Eqns (7.141) and (7.146) are examples of the generic light-cone

expansion
X X (* b 2
A<2>B< 2) =~ Ei Ci(x)@,<—2, ——2> for x*=0 (10.93)

with singular c-number functions and regular bilocal operators 0;(x, y).
Then one can expand the bilocal operators in a Taylor series (as in eqn
(7.157)) to write

x X -
a‘(i’ _§> ~ 3G, (0) (10.94)
J

so that the product of two local operators can also be expanded in terms of
local operators on the light cone

A(Z)B( -Z) ~ T COGxm . x40 ().  (10.95)
2 2) x2-0 57 bl
If we take the bases 0Y; ‘:)“uj to be symmetric traceless tensors with j indices,
they correspond to operators of spin j. The light-cone, x?> — 0, behaviour of
the Wilson coefficients (just as in (10.92)) can be obtained by naive
dimensional counting

CO(X) - (Jx?)I=d4=d(n x2m2)P (10.96)

x2-0

where d; ; is the dimension of ;" 4,(0). Hence unlike the case in (10.92) the
leading term corresponds to the lowest value of (d; ; — /), i.e. the dimension
of 0", minus the spin of OF:" u;- Such a combination is called the twist of
an operator

t—d—j (10.97)

which denotes twist = dimension — spin. The operators with lowest twist
dominate in the light-cone expansion.

The scalar field ¢, the fermion field , and the gauge field F,, all have twist-
one. Taking the derivative of these fields-cannot reduce the twist and at best
leaves it unchanged because taking the derivative will increase the dimension
by one unit while changing the spin by 1 or 0. Thus the minimum twist of an
operator which involves m fields is m. The most important light-cone
operators have twist-two, examples of which are listed below

scalar:
(9}{;?’_,”]. =¢* 0, 0,,. ..0”j¢ (10.98a)
fermions:

OFD =W, 5,‘2 ) ..5”],1// + permutations (10.98b)
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vector:

039 = Fu.D,,...D, _Fj + permutations. (10.98¢)
The derivatives in (10.98a,b) will be replaced by covariant derivatives D, in
gauge theory. We have seen in §7.3 that dominance of the canonical twist-two
operator in free-field theory leads to Bjorken scaling.

Now we can begin to see how the deep inelastic /N scattering cross-sections
can be factorized into two parts—one being momentum-independent and the
other scaling in a way controlled by the renormalization group, where the
cross-section is related to the absorptive part of the forward current—nucleon
scattering amplitude for which one then makes a light-cone expansion;
the maxtrix elements of the local operators will then give rise to the
momentum-independent part and the c-number Wilson coefficients satisfy
the renormalization group equation. We shall first show that these Wilson
coefficients are related to the integrated moments of the /N structure
functions.

(B) Moments of structure functions and Wilson coefficients. In order that
the principal festures of our manipulations not be obscured by complicated
Lorentz structures we shall first illustrate our procedure with scalar currents
J(x). Consider the forward scattering amplitude (Fig. 10.9)

T(q%, v) = f d4x e 5 p| T(J <§>J<——;>>I P> (10.99)

q q9

FiG. 10.9.

where v = p - q/M. (Details of the kinematics may be found in §7.1.) Writing
the operator-product expansion

X X . .
T<J<—2~>J< -—5>> xf»o ,2; Cl(x?)x* . .xllj@fll;.!)”“j(()) (10.100)

(with the index i ranging over all twist-2 operators), then the amplitude in
(10.99) becomes

T(g*, v) = Y, |d*xe™xh . xsCi(x*)plOY? |, (0)lp)

1
iJj

80 G
=Ny ——... —
Z, 0qu, 09u, 04

. [ j dtx e-*q'»*c{<x2>]<pw:z;f)..u,.<0)|p>. (10.101)
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The matrix element of the local operator @§:” , which is symmetric and
traceless can be parametrized as

(pl@f{;':)“”j(ONp) = 09[p,,Py,-- .Py; — trace terms]  (10.102)

where O is a constant and the trace term will contain at least one g,
factor. Replacing

0 0 0
aqﬂl aquz o aqﬂj

— qulllqllz . qllj Y
oq”

+ trace terms, (10.103)
we obtain for large —¢?, with —g?/2Myv fixed,
j
T v) ~ Y Qif(p-qy _af d*x e”*Ci(x*) (OY
—q2- j,j oq
209V i i
=22 p ClgHo? (10.104)
7T\
where
Jj
Ci(g?) = (—iqz)"<ai;2> J d4x e~ xCO(x?) (10.105)

which is essentially the Fourier transform of x*1 ... x*Ci(x?). Note that the
trace terms in (10.102) and (10.103) will have lower powers of (2p - ¢) and can
be safely neglected in the scaling limit. Thus for the amplitude T(g>, v),
decomposed in terms of spin projections

T(q* v) = Y. T{d" v), (10.106)

we have from (10.104) that

Tig*v) ~ x 1Y CPoY (10.107)
—q2-® i
for x = —g*/2Mv. This implies that to isolate an operator of a given spin j we

need just expand T(g?, v) in powers of x~ ! for large —q?. In deep inelastic
scattering, since one actually measures the absorptive part of the forward
amplitude T(g2, v),

1
Wg'v) = —Im T(g*,v). (10.108)

The amplitude can be reconstructed from the measured quantities by using
the dispersion relation

v dv'
T(4%v) = Jm W(g* V') + P;_1(q% V) (10.109)

where we have assumed s number of subtractions with P;_ (g%, v) being a
polynomial in v of order s — 1 for fixed g*. If we further assume that, for
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U of order

large —q?, we have P,_,(q* v) > P,_(x), a polynomial in x~
s — 1, then

+

T(¢*,v) = j

-1

1
() W, x') dx’
@) =)

+ Py (%)

+1

~ Py(x)+ ) x7’ J dx'(x) " 'W(g? x'). (10.110)
X J=5 kA

The first s terms in this expansion are undetermined because of the unknown
subtraction constants. However for J > s (comparing eqn (10.110) to eqns
(10.106) and (10.107)), we have

+1

J dxx’"'W(g? x) = ¥ CV(g)OY for J=s.  (10.111)

—g2-xi

-1
Thus the moments of the structure functions measure the (Fourier trans-
forms of) Wilson coefficient functions C;(Q?).

For the more realistic case of the electromagnetic current J — J;", we
can make a similar analysis. With the usual assumption about the high-
energy behaviour of the forward Compton amplitude, the relation (10.111)
will hold for all J > 2, when the t-channel of the Compton scattering (i.e. the
current x current channel) has the quantum number of the vacuum, and for
J > 1 in the non-vacuum channels. When decomposed in terms of the two
invariant eN inelastic structure functions F; ,(x, Q%) as in eqn (7.30) (we
have changed notation from that used in §7.1: G,(x, ¢*) — Fi(x, 0?)), the
result corresponding to eqn (10.111) reads

1

J dxx’"2F,(x, 0% ~ %Z CEJ)(QZ)Of-J) (10.112a)
1
J dxx’"'Fy(x, 0%) ~ %Z C(0* 0\ (10.112b)

-1

We have succeeded in isolating from the cross-section, which has two mass
scales p> = M ? and ¢?, a factor which depends only on g2, to which we can
apply the scale transformation g, — Ag, and renormalization group analysis.
We note that exact Bjorken scaling (eqn (7.32)) F;(x, q?) = F;(x) cor-
responds to free-field behaviour

C{(Q?) — constant as 0% — . (10.113)

In general we expect this to be modified by the interaction. The simplest
possible deviation from this scaling behaviour would be such that the
In(Q?/m?) powers in every order of the perturbation are summed up into
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some Q% powers as
N 1 \/2
CY(0?*) ~ <?> . (10.114)

This can be interpreted as an anomalous dimension y, acquired by the
operator @) due to the interaction. As conserved quantities are finite,
their renormalization constants do not depend on cut-off and their
anomalous dimension vanishes. The electromagnetic currents and the energy
momentum tensors are such quantities. If they can appear on the right-hand
side of the operator-product expansion, then (the Fourier transforms of)
their Wilson coefficients will scale as in free-field theory without anomalous
dimensions. For the general moments, eqn (10.114) however implies that

1

1 y12
JFZ(X’ 0Hx'2dx =~ <—Q—2> : (10.115)
0 oo

Since the structure functions F; are positive definite, the anomalous
dimension y, must monotonically increase with J and, since the energy—
momentum tensor @,, does appear in vacuum channel of the current
operator-product expansion, we have y, = 0 and

y, 20 for J=2. (10.116)

This means that the moments of the structure functions should in the vacuum
channel decrease with increasing Q*. Also experimentally observed ap-
proximate scaling implies that the anomalous dimensions must be very small.

(C) Renormalization group equations for the Wilson coefficients. In
Chapter 3 we introduced the renormalization group equation for a general
Green’s function. We can obtain similar equations for the Wilson coefficients
by comparing the renormalization group equations satisfied by Green’s
functions containing the operator product itself and containing the local
operators appearing in the expansion of the operator product (Christ,
Hasslacher, and Mueller 1972).

Schematically the operator-product expansion is of the form

AX)BO) x T Ci(x. 9. O(0) (10.117)

where g is the coupling constant and p is the reference (subtraction) point for
the renormalization. Or, in terms of n-point Green’s functions with insertions
of AB and 0;,

Iy ~ Y Cx, g, I (10.118)

X0

where .
TG = O0IT(Ax)BO) [] ¢y 10> (10.118a)
k=1

e = 0IT(0:(0) U Pk (YI0 . (10.118b)
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The Green’s functions separately satisfy the renormalization group equa-
tions (see eqn (3.58))

[D + ;vk(g) —74(9) — vB(g)]F%(g, W =0
and
[D + ;vk(y) - v.-(g)]F‘é?(g, 1w=0

where

B F
D=uz )5 (10.119)

and y,, 75, and y; are the anomalous dimensions of the operators of 4, B, and
0;, respectively; we have assumed that they do not mix under renormaliza-
tion. Using (10.118), clearly we have

[D + 74(9) + v8(9) — v(9)]1Ci(x, g, 1) = 0. (10.120)
Thus, the Wilson coefficient C; behaves as if it were a Green’s function of the
operators 4, B, and ¢,. The solution as given by eqn (3.68) takes on the form

t

Ci(e™'xo, g, p) = W7 47D exp{ jdf Tra(g(®)) + v5(g(2)
0

- vi(g‘(t’))]}ci(xo, 9(0), ) (10.121)

where d,, dp, and d; are the naive dimensions of 4, B, and ;. Similar
equations and solutions of course hold for the Fourier transforms of the
Wilson coefficients Ci(¢?, g, 1). For the case of deep inelastic scattering we
have the light-cone expansion which can be turned into sums of infinite
towers of local operators of increasing spin » with Wilson coefficients
C™(4?, g, ), which are related to the moments of the structure functions by
(10.112)

1

1
M, (0% = dex"'ZFz(x, 0 ~ 3 Y CHQ%, 9, WO}
0

t

- CH(Q3, 9(0) ) eXp[—Jvi(é(t’)) dt’}@? (10.122)

0

1

>

where 7! is the anomalous dimension of the operator ¢»? .

(D) Deep inelastic scattering in QCD. We will now apply this analysis of
deep inelastic scattering in QCD (Gross and Wilczek 1974; Georgi and
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Politzer 1974), where the electromagnetic current is given by
Ju(x) = i Gl(X)Y, exqi(x): (10.123)
k=1

where g,(x) is the quark field operator with flavour index %, ¢, is the charge
carried by g, and the sum over colour is implicit. Consider the forward
Compton scattering amplitude (averaging over nucleon spin is understood)

2n

+ s 1 p9q P9
= - T - T 10.125
( guv q > 1 M2 <pu qz qu>< v qz qv> 2 ( 0 2 )
The absorptive parts of the invariant amplitudes T are just the structure
functions W, measured in deep inelastic scattering

ro0 _ - [ oy i 0 10.124
59— (PITW,0)TO)Ip (10.124)

1
Wi, q2) = ;Im T, ,(v, ¢%). (10.126)

(D1) Operator-product expansion and moments of structure functions. The
operator-product expansion on the light cone is of the form

IT(Ju(y)Jv(O)) = Z { _guvyulyuz oo yu,,i"C(ln,)i(yzs B ,u)

+ GussGour Vs - Yud' 2CPi(P2, g, WHOWH 2~ 1(0).  (10.127)

In QCD there are three sets of gauge-invariant twist-2 operators (see eqns
(10.128a, b, ¢) below) which dominate expansion near the light cone y? ~ 0

a

} 11" ! A
O n(x) = q(x) —V"‘D"Z . D¥nq(x)

+ permutations of vector indices} (10.128a)

where the A% are the standard n; x n; hermitian traceless matrices in the
flavour group SU(ny); thus for a theory with three flavours u, d, and s they
are just the familiar SU(3) Gell-Mann matrices. This set of operators will
contribute to operator-product expansions for the flavour non-singlet
combinations of structure functions such as F§ — F5' or FY', for neutrino
scattering off an isoscalar target A. Here we will devote most of our effort to
the study of the more involved case of the flavour—singlet combinations.
They can receive contributions from two sets of operators

(n)ul M,.(x)
1 n—1

2 n!

{g(x)y"1D*2 ... D*g(x) + permutations} (10.128b)

(n)m “"(x)
n—2

tr{G**D*: ... D*-1GY4 + permutations}. (10.128c)



306 Quantum chromodynamics 10.3

Because 0" and 0% have identical quantum numbers, they can mix under

renormalization (see §2.4).
Substituting (10.127) into (10.124), we obtain

i (d*y
(pa q) m _z_elq yz { guvyulyuz yu,, "C(n)i(y25 9, /’l')
+ Gu I Wy - - Y, )CE, 9, )}
x {plOMELEO)p> + ... (10.129)

Writing the spin-averaged matrix element as
{plOP#s-- 1 (0)py = A (ph1p*>. .. p* + trace terms)  (10.130)

where A" is a constant, eqn (10.129) becomes
1 n a " 4 ig-y(n) 2
(P, q) 2M _guv(zpq) (—9? d ye Cl,i(y ’g’#)
n—2 4 4y ey (n)
+Pup (2P 9) el d*y 1 CP iy, g, W) oA

1 2p-q cm
_2M",i{—guv<_q2> 1(q g’#)

2p-g\"t 1 5
— AP+ . 10.131
+pupv< q) - P, g, 1w A" + (10.131)

where

q
CPUQ, g, 1) = (Q )"(6(] > f y e YCPUY2, g, 1)
CPAQ% 9. 1) = (QZ)"'1< ) J d*y e CP(3%, g, ). (10.132)
From (10.131) we can immediately read out the invariant amplitudes
Ty(x, Q%) = ﬁ Z x7"CPUQ?, g, WA™ (10.133a)
Ty(x, Q) = Z X" ICPUQ2, g, WA, (10.133b)
By the same route we took going from (10.106) to (10.112), we can obtain

relation between the moments of the structure functions and the (Fourier
transforms of) Wilson coefficients

1

dex"_ze(x, M=~ éZ CP(0% g, A" (10.134a)
O i
1
1 ~
jdxx"— IFi(x,0) ~ 1 Z CP(0% g, WAP. (10.134b)

0
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(D2) Renormalization group analysis and anomalous dimension matrix for
the singlet case. We shall concentrate on the flavour singlet case. Because of
mixing among twist-2 operators, the renormalization group equation for the
Wilson coefficients takes on the matrix form

D& —»NCM (g% g p) =0, a=1,2 (10.135)

where y™ is the 2 x 2 anomalous dimension matrix for the flavour singlet
operators O and OF. The solution to eqn (10.135) is

C(Q*/u*, g) ~ ZC‘"’(I g(t))eXP{ jdt’?}?(é(t'))} (10.136)
0
where

= L In(Q?/u?). (10.137)

In asymptotically free QCD one can calculate y™ perturbatively according to
the one-loop diagrams of Fig. 10.10

W =dPg* + 0(g%) (10.138)

(
oy o o
+
(a) (b)
0(71) 0(71) O(G") G(Gn)
+

G. 10.10. Graphs contributing to (a) yi; (b) y%); (c) y"') and (d) y¥%.

q4q°

with
(n) (n)
- (M)
y dy dgl
where
1 [8 2 "o
d" = f1-—"— 445 =
T _3( w1 ,.;j)]
i — 16n>+n+2
T 16r2 | 3 n(n? —1)
1 [ n>+n+2
) _ __— Y O ——
483 = 1672 T+ D + 2)}

1 1 4 4 " 4
486 = 1,2 {6[3 Thn=D nrDn+2) ; :l * 3'”} (10.139)
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n; is the number of quark flavours. This matrix can be diagonalized by
taking appropriate linear combinations of 0% and O and its eigenvalues
correspond to the anomalous dimensions of the linear combinations that are
multiplicatively renormalizable. Using the lowest-order expression (10.80) of
the effective coupling constant in (10.138), we have

t t

2 d(-',-') dr’
- j A = — f e
0 0

_dyiv) ) _dylp)l

The Wilson coefficient functions have the large-¢® behaviour
(n)

2 —dj;i’/2b
CoN@?/w*,9) ~ 2 CL (L, O)[ln<%>} ' (10.141)
J

where the Cﬁ‘,’j’j(— 1, 0)s are the Wilson coefficients in free-field theory. For
large Q?, (10.134) now reads
1

MEA(Q?) = f dxx""2Fy(x, Q*/u?)

~
~

0| —~ o

Y. C9,(1, 0)AP[In(Q%/u2)] 412 (10.1422)

M(Q%) = | dxx""'Fy(x, Q*/u?)

-

~ (n
x4 X O, AP In(@* k)] ~H72 (10.142b)

These are the principal QCD results on deep inelastic scattering. We have
obtained them by factoring the inclusive cross-section into a momentum-
independent part (the local operator) and a part that scales according to the
renormalization group (the Wilson coefficients). In the asymptotically free
QCD the leading singular (Q? — o) behaviour of the Wilson coefficients can
be calculated in terms of the renormalization group p-function and the
anomalous dimensions »{?, while the matrix elements A{" of the local
operator cannot be obtained without solving the (long-distance) bound-state
problem in QCD. While we cannot calculate the scaling functions them-
selves, nevertheless we do have enough information on the pattern of scaling
and scaling violation. QCD predicts that moments of the structure functions
have a very weak dependence on g <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>