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FOREWARD

Welcome to the 4
th

 International Workshop on Models and Analysis of Vocal Emissions for Biomedical

Applications, MAVEBA 2005, 29-31 October 2005,  Firenze, Italy.

In the light of previous editions,  held in 1999, 2001, and 2003 respectively, all in Firenze, the Workshop

aims at investigating into main aspects of voice modelling and analysis, ranging from fundamental research

to all kinds of biomedical applications and related established and advanced technologies. It offers the

participants an interdisciplinary platform for presenting and discussing new knowledge both in the field of

models and analysis of speech signals and in that of emerging imaging techniques.

Contacts between specialists active in research and industrial developments could take advantage from the

Workshop structure, comprising both Special Sessions devoted to a set of relevant topics, and standard

Sessions, covering a wide area of voice analysis research, for biomedical applications.

Four Special Session were organised and co-ordinated by specialists in the field, collecting contributions

about new and emerging techniques. Each Session is introduced by a review paper, presenting the state-of-

the-art in the field, pointing out present knowledge, limitations and future directions. The selected topics are:

1. Voice pathology classification

2. Physical and mechanical models and devices

3. Methods for voice measurements

4. Neurological dysfunctions

As for regular Sessions, the relevant topics are: voice recovering, enhancement of voice quality during

rehabilitation and after surgery, voice modelling and analysis of vocal emissions, newborn and infant cry

analysis, singing voice. A short Session is also devoted to non-human sounds, and their possible

relationships to humans.

All the papers collected in this book of Proceedings are of high scientific level, as they were reviewed by at

least two anonymous referees, and cover the most relevant fields of research in voice signals and images

analysis. We would like to thank the members of the organising committee and all the reviewers, who gave

freely of their time to assess the highly disparate work of the workshop, helping in improving the quality of

the papers.

We have also benefited from the efforts of the administrative staff within our University: office for Research

and International Relations, Logistic office, and the staff of the Faculty of Engineering and of the

Department of Electronics and Telecommunications, that devoted a lot of time and efforts to make this

workshop a successful one. Special thanks to our University Orchestra and Chorus, and to the members of

“Capriccio Armonico” dancing group for their generous participation.

Finally, our gratitude goes to the supporters and sponsors, who contribute much to the success of the

MAVEBA workshop.

Dott. Claudia Manfredi

Conference Chair

Prof. Piero Bruscaglioni

Conference Chair
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A COMPARATIVE STUDY OF INTELLIGENT VOICE QUALITY 
ASSESSMENT USING IMPEDANCE AND ACOUSTIC SIGNALS 

Carl Berry  & Tim Ritchings 

School of Computing, Science and Engineering,  
University of Salford, UK 

c.berry2@salford.ac.uk

Abstract: Objective assessment techniques for 
classifying voice quality for patients recovering 
from treatment for cancer of the larynx should 
lead to more effective recovery than the present 
approach, which is very subjective and depends 
heavily on the experience of the individual Speech 
and Language Therapist (SALT). This work 
follows an earlier study where an Artificial Neural 
Network (ANN) was trained on parameters 
derived from electrolaryngograph electrical 
impedance (EGG) signals recorded while a patient 
was phonating /i/ as steadily as possible, and gave 
an indication of voice quality inline with the 
standard UK Speech and Language Therapist 
(SALT) seven point scale. The applicability of this 
approach to voice quality assessment of acoustic 
signals is described, and the results are found to 
compare very well with those derived from the 
impedance signals. It was also noted that for both 
the impedance and the acoustic signals, the ANNs 
were able to classify the very good (recovered) and 
the very poor (abnormal) voices well, but 
performed quite badly with the mid-range 
classifications, raising questions about the 
accuracy of these classifications.  

Keywords: Voice quality, classification, Artificial 
Neural Network, acoustic, impedance. 

I.  INTRODUCTION 

 In the UK, voice quality assessment for patients 
recovering from treatment for cancer of the larynx  is 
undertaken by Speech and Language Therapists 
(SALT), who use a standard 7-point classification 
scale ranging from Lx0-Lx6, with Lx0 being a near 
normal (recovered) voice while Lx6 represents an 
abnormal, very poor quality voice. The approach 
taken to reach a classification is very subjective and 
depends to a large extent on the experience of the 
SALT. 

 This work is concerned with a series of 
investigations aimed at producing an intelligent 
computer-based system which can provide objective  
classifications of voice quality in patients recovering 
from cancer of the larynx patients in line with the UK 
standard 7-point classification scale. 

Previous work [1,2] has demonstrated that accurate 
classifications could be obtained from a Multi Layer 
Percepton (MLP) Artificial Neural Network (ANN) which 
was trained on a combination short-term and long-term 
parameters derived from electrolaryngograph electrical 
impedance (EGG) signals while a patient was phonating 
/i/ as steadily as possible.  Although, acoustic signals were 
recorded at the same time as the impedance signals, they 
were not analysed as they appeared much noisier than the 
EGG signals. However, classification of voice quality 
from the acoustic signals is advantageous,  if possible, as 
highly specialised and expensive equipment (the  
electrolaryngograph) will not be necessary, and this raises 
the possibility of screening in a GP’s practice, rather than 
in the secondary care centres. 

A preliminary assessment of the acoustic signals is 
described here, and the resulting classifications that have 
been achieved with the ANN approach are compared with 
those obtained for the impedance signals.  

II.  TREATMENT OF VOICE SIGNALS 

A.  Collection of Voice Signals 

The patient’s voice data was collected by the Christie 
Hospital and the South Manchester hospital using an 
electrolaryngograph PCLX system [3].  The equipment 
simultaneously records the electrical impedance signal via 
pads placed at specific positions on the patient’s neck at 
the same time as the acoustic voice signal using a 
microphone. In these studies, the patient was attempts to 
steadily phonate the /i/ sound.  This process means that 
two datasets are collected, one showing the EGG and a 
second showing acoustic variation, allowing for a direct 
comparison between the two sets.  In the work only the 
male voices were used as the number of female voices in 
the dataset was too small to give an accurate assessment, a 
feature of the dataset is that most cancer of the larynx 
patients are male. Voice quality was subjectively 
classified by a SALT for each patient using their 7-point 
scale. The number of patients in each of the 7 categories 
is shown in Table 1. 

Lx0 Lx1 Lx2 Lx3 Lx4 Lx5 Lx5 
22 36 25 33 26 25 11 

Table. 1.  Patients in each SALT category 
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B.  Signal Pre-processing 

 In order to be able to extract the short and long 
term parameters used in the classification process, a 
number of pre-processing stages were applied to the 
impedance and acoustic datasets.  Initially the signals 
were stationarised to remove drift, split into 50 ms 
frames (Hanning windows overlapping by 25 ms) and 
then converted to the autocorrelation form of the 
signal to remove some of the noise components.  
Once these processes were complete, the frames were
examined to check if they contained silence or sound. 
This involved comparing the frames with a sample of 
silence frame recorded under the same conditions, 
and used zero point crossing and short term 
amplitudes as checks.  Once the silence frames have
been removed,  the remaining frames were separated 
into voiced and unvoiced frames; voiced frames 
containing vocal phonation while unvoiced 

containing no recognisable speech. This was achieved 
using the cepstrum based approach as described in [4].  
The Fundamental Harmonic Normalisation (FHN) as 
described in [5] was then calculated from Power 
Spectrum Density (PSD) and then this structure (typical 
examples are shown in Fig 2) was modelled by fitting a 
Gaussian Mixture Model (GMM) in order to reduce the 
number of parameters needed to describe the signal.

C.  Parameter Extraction 

A total of 22 short and long term parameters are 
extracted for use with classification, as detailed in [1,2]. 
The short term parameters consist of 15 parameters 
relating to the mean, standard deviation and peak of the 
gaussians used to describe the fundamental frequency and 
first four harmonics in the frame (if they can be detected); 
the value of the fundamental frequency in each frame (F0), 
the noise threshold value (N0), the FHN Noise Energy 

Figure 2a FHN plot of good quality impedance signal Figure 2b FHN plot of good quality acoustic signal

Figure 2c FHN plot of poor quality impedance signal Figure 2d  FHN plot of poor quality acoustic signal 
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(FHNNE) and the Residual Harmonic Energy (RHE).  
The 3 long-term parameters were extracted from the 
speaker’s whole voiced speech. These included the 
mean fundamental frequency across all frames (MF0), 
a measure of jitter of the fundamental frequency 
between frames (J0) and the ratio of voiced to 
unvoiced frames.   

D. The classification technique 

Once the parameters have been extracted, a 3 layer 
feed-forward ANN with a sigmoidal activation 
function in the hidden layer, and using 
backpropagation of errors, is used for classification 
purposes. The ANN had 22 inputs, one for each of the 
short-term and long-term parameters derived from the 
voice signals, and 7 outputs, corresponding to the 
SALT categories. The “leave one out” cross 
validation strategy was used as it generally regarded 
as one of the most accurate methods and by leaving 
out a single patient’s voice sample we can ensure to 
avoid inter versus intra speaker effects [2]. 

3. COMPARISON OF IMPEDANCE AND 
ACOUSTIC SIGNALS 

A.  Observed differences between the signal types. 

When the FHN spectra of the impedance and 
acoustic signals were examined visually, a number of 
differences can be observed.  Figs. 2a and 2b show 
the spectra derived for of a good quality pathological 
voice (Lx0) for the impedance and acoustic signals 
respectively.  A clear difference it that for the 
impedance signal, the largest peak belongs to the 
fundamental frequency, whilst in the acoustic signal it 
is the 1st harmonic. This is normal and corresponds to 
the pattern that would be expected from a human 
voice. However, even in this good quality voice the 
acoustic signal only shows six harmonics, as 
compared for eleven for the impedance signal. It 
should also be noted that the peak of the fundamental 
frequency is very small in the acoustic signal, making 
it difficult to detect with the techniques used for the 
impedance signals. 

This figure also shows typical FHN impedance (Fig 
2c) and acoustic (Fig 2d) spectra for a poor quality 

voice (Lx5). Again, the impedance signal shows many 
more harmonic structures. This reduction of harmonics 
also has an impact on the number of parameters that are 
available for use with the classification algorithms, and in 
the case of fig 2b, for example, it would only be possible 
to extract short term parameters for the fundamental 
frequency and the first 2 harmonics meaning that the 
model would be missing 6 short term parameters relating 
to the 4th and 5th harmonics. In some cases the situation is 
even worse, and in the extremely bad voices or very poor 
frames, it is not unusual to find the fundamental 
frequency and a single harmonic as the only recognisable 
structures. 

Finally, it may be seen from Fig 2d that the acoustic 
signal suffers from far more noise between the harmonics 
than the impedance signal, making it much more difficult 
to fit the Gaussian Mixture Models. This also causes the 
centres of the harmonic structures to be shifted away from 
their correct positions in the FHN. 

B.  Classification differences between the signal types. 

Classifications were made for both the impedance and 
acoustic signals, using the same parameters and training 
and verification procedures. In the cases where harmonics 
were not found, these parameters were set to zero. The 
resulting classifications are shown in Table 2.  

As the acoustic signals are generally noisier than the 
impedance signals, with a poorer quality output, leading 
to typically fewer parameters, it was expected that the 
acoustic classifications would be less accurate that those 
obtained for the impedance signals. Surprisingly, this 
turns out to not be the case, and it can be seen in the Table 
that there is very little difference between the final 
classifications achieved for the two types of voice signal.   

It should also be noted that for both types of signal, the 
ANNs give the best classifications for the worst voices 
(Lx5-6), obtained good results for the best quality voices 
(Lx0-1), but had difficulty correctly classifying the mid- 
range of voices (Lx2-4). 

As results from other approaches to voice quality 
classification have found differences between the 
computer-based classifications and the SALT assessments 
in the upper middle categories [5], it was decided to 
repeat the training and classification of both the 

Impedance signal predicted class %

 0 1 2 3 4 5 6 

Lx0 50 17 13 8 12 0 0 

Lx1 25 48 15 5 7 0 0 

Lx2 2 12 12 27 30 8 10 

Lx3 5 7 10 28 40 8 2 

Lx4 13 5 8 27 37 7 3 

Lx5 0 0 8 13 20 43 15 

C
la

ss
 

Lx6 0 0 0 15 20 30 35 

Acoustic signal predicted class %

0 1 2 3 4 5 6 

Lx0 45 27 18 9 0 0 0 

Lx1 8 47 8 19 8 8 0 

Lx2 4 20 16 40 12 8 0 

Lx3 3 21 21 21 15 15 3 

LX4 8 15 8 30 35 4 0 

Lx5 0 12 4 24 4 32 24 

C
la

ss
 

Lx6 0 0 0 0 9 36 55 

Impedance Results : Overall accuracy = 36.2% Acoustic Results : Overall accuracy = 35.7% 

Table 2. Percentage of correctly classified voices on SALT 7-point scale for impedance and acoustic data. 
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impedance and acoustic using only three nodes in the 
ANN output layer, corresponding to “good” (Lx0-1), 
“medium” (Lx2-4) and “bad” (Lx5-6) classifications 
of voice quality. The results that were obtained are 
presented in Table 3. 

Again, it should be noted that similar classifications 
were obtained for the impedance and acoustic signals, 
and that the ANNs give the best classifications for the 
“bad” voices. 

V. CONCLUSIONS. 

A comparative study of voice quality assessment of 
patients recovering from cancer of the larynx has 
been made using impedance and acoustic signals. 
Following earlier work, a collection of short-term and 
long-term parameters were extracted from each type 
of signal and input to a ANN, which was successfully 
trained to match the SALT’s assessment of the 
patient’s voice quality using their 7-point scale. 

The impedance signal taken gained from the 
electrolaryngograph is a much cleaner signal than it’s 
equivalent acoustic version, and generally showed 
more harmonics and contains less noise in the signal.  
The acoustic signal was more difficult to work with, 
having fewer harmonics, and the pre-processing 
stages had to be carried out far more carefully and  
occasionally produced extra errors that didn’t occur 
with the impedance signal, such as badly fitting 
Gaussian Mixture Models. However the extra 
parameters that can be routinely derived from the 
impendence did not appear to lead to more accurate 
classifications. This was particularly encouraging as it 
may allow further research to be carried out using 
microphones instead of  the  more expensive and 
specialised electrolaryngograph.   

It was also noted that for both the impedance and 
the acoustic signals, the ANNs were able to classify 
the very good (recovered) and the very poor 
(abnormal) voices well, but performed quite badly 
with the mid-range classifications. This observation 
was reproduced when the signals were re-classified 

into a 3-point scale of “good”, “medium” and “bad” 
voices. 

  
The reason for the poor classifications in the mid-range 

categories of the 7-point scale and the “medium” 
category” in the 3-point scale is not yet clear. One 
possibility is that the SALT are more comfortable with 
classifying the extreme cases of abnormal and recovered 
voices, and are less consistent, or  possibly less able, to 
distinguish the intermediate (recovering) voices. If this is 
the case, then the accuracy and usefulness of the 7-point 
scale for voice quality assessment would need to be 
examined.   

Alternatively, these problems may be associated with 
the makeup of frames within a recovering voice, where it 
might be expected that some frames will be effectively 
normal, while other are still abnormal. The ANN training 
process would try and classify all these frames as being 
characteristic of one of the mid-range categories, as that is 
the SALT’s overall classification of the patient’s voice.  
This possibility is currently under investigation, and it 
may be necessary to classify individual frames within the 
voice signal, and then investigate ways of combine the 
results to achieve closer agreement with the SALT 
classifications in the mid-range categories. 
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Impedance % Acoustic %

Good (Lx0-1) 64 63 

Medium (Lx2-4) 26 32 

Bad (Lx5-6) 83 91 

Table 3. Percentage of correctly classified voices 
on 3-point scale for impedance and acoustic signals
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Abstract: Larynx cancer patients receive radiotherapy
as a non-invasive alternative to surgery and cure rates
are high. Inevitably this impacts vocal fold functional-
ity. Hence, voice recovery as a pre-requisite for re-
suming normal life is of special interest. Voicing re-
covery following radiotherapy is studied in this paper.

Complexity analysis, using approximate entropy to
concisely quantify the collective spectral pattern
derived from the electro-glottogram, has revealed a
double banded male normal voicing reference
standard. Forty-eight male larynx cancer patients
have been studied by applying this technique in
parallel with an unrestricted perceptual analysis
before and one year after radiotherapy.

Two thirds of radiotherapy patients had improved
voice quality one year after treatment. Approximate
entropy increased to reach normal population
reference levels. These patients were predominantly in
the less aberrant perceptual categories.  However, a
quarter of patients showed reduced approximate
entropy and were predominantly in the most aberrant
perceptual categories.

Complexity analysis has the potential to be a
reliable, single parameter measure of voicing quality
for use in monitoring radiotherapy patient recovery.

I. INTRODUCTION

United Kingdom cancer statistics for 2001 show that
the larynx is the site for nearly a third of all 7820 new
head and neck cancers and that well over 4 times as many
men than women suffered from the disease [1]. Hence, it
is as prevalent as cervix cancer in women, though it
attracts far less public attention. The five year survival of
larynx cancer patients following treatment is good, at
approximately two-thirds. Hence, quality of life in terms
of voice preservation is important for a large number of
individuals wishing to resume normal life.

Radiotherapy arguably has fewer side effects than
surgery, which is self evidently more invasive. However,
the measure of recovery of voice quality after
radiotherapy has not been concisely and objectively
quantified. Irradiation effects may leave the targeted
tissues intact but they do impact the tissue mechanics and
perturb vocal fold functionality for months after treatment
[2], which in turn directly influence voice quality [3-6]

Speech and Language Therapists (SALTs) working at
the Christie Hospital have been engaged to assess the
impact of radiotherapy one year after treatment. A
patient’s normal voice, prior to the appearance of cancer,
is rarely recorded. Hence, SALT subjective assessment
reflects experience and the audibility of aberrant voicing.
Inevitably this is complicated by differences in clinical
technique and opinion [7]. Assessment at the Christie,
requires patients to phonate vowels and provide a sample
of connected speech.  An electro-glottogram (EGG) and
acoustic digital recording form the core record of such an
examination [8]. The VPAS scheme guides assessment
with voice quality eventually binned into a multi-category
scale, which, at its most challenging, ranges from 0
(normal) to 6 (severely aberrant). Throughout assessment
a SALT knows the phase of treatment reached by the
patient, which, along with full knowledge of the stage of
the cancer itself and examinations such as endoscopy,
inevitably heightens expectations and introduces bias.

Mathematical analysis of the entire range of spectral
features in voicing is rarely deployed in the routine
cancer clinic. Most disconcertingly there is no definition
of what constitutes normal voicing and therefore no
scientific or physical reference standard. As a result, it
has not been possible to explain how cancer patients
subjected to intense vocal fold irradiation during
radiotherapy can recover vocal fold functionality to a
level that could be considered to be “normal”.

This paper shows that vocal fold vibration as
evidenced through the EGG impedance time series of
vowel phonation can be deployed to differentiate the
healthy normal population, quantify cancer patient
voicing and to track the pattern of cancer patient recovery
following radiotherapy. The approach reported is based
on the regularity statistic ‘approximate entropy’ (ApEn)
[9] applied for the first time to detect collective changes
across the entire EGG spectral pattern.

II. THEORY

Vowel phonation is predominantly driven by vocal
fold vibration. Vocal folds function is impaired by
physical damage arising from malignant disease and
associated therapy. Fold vibration is accompanied by
impedance variations across the thyroid area. These trans-
larynx impedance changes can be detected during
phonation using a laryngograph. Successive
measurements form a time series that usually has a
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distinctive waveform structure that is known as the EGG
[1,2]. This correlates well with vocal fold vibration and is
virtually free from tract resonance. The EGG has not
found widespread use amongst SALTs, at least in the UK.
Sustained vowel phonation produces a more or less
regular EGG waveform, which is ideally suited to
characterisation in the frequency domain via the changes
seen in the corresponding power spectral pattern [10,11].

To generate an EGG spectrum, the EGG time
series are segmented into short frames, stationarised by
finite differencing, variance reduced with a suitable
function such as the Hanning window, autocorrelated and
then fast Fourier transformed. This produces a sequence
of frame power spectral density estimate (fPSD) [3].
However, the dynamic effects of fundamental frequency
variation from frame to frame need to be removed in
order to maximally reveal spectral shape. Therefore, the
fPSD are individually normalised relative to the
frequency and power of the frame fundamental (F0) itself.
This fundamental harmonic normalisation approach
produces what the authors call the FHN-PSD for each
frame in which all features are on a common normalised
harmonic scale rather than frequency scale [12]. The
frame FHN-PSD can then be averaged to reinforce any
shared spectral pattern ready for characterisation.  A
normal individual would be expected to have vocal folds
that vibrate most regularly, producing rich harmonic
patterns within an envelope showing lengthy decay. If
these patterns have common characteristics, and the
literature is full of examples, then a suitable form of
regularity statistic  sensitive to the collective pattern will
resolve this into a useful normal population reference
standard.

In a single value ApEn quantifies the repeatability
of the pattern sampled from a time series itself.  No
assumptions need to be made about the shape or
functional basis of the patterns being sought. Given N
data points {u(i)}=u(1),u(2),..,u(N) and commencing with
the thi point, vector sequences ( )1x~ to ( )1mNx~ +−  are
formed from m values ( ) ( ) ( )[ ]1miu,...,iuix~ −+= .
The Pincus ApEn [9] is interpreted heuristically as a
measure of the average logarithmic likelihood, over all
sequences ( )1x~ to ( )1mNx~ +− , such that any sequence
in the data series ( ){ }iu , which is within a tolerance r of
the given sequence ( )ix~  of length m , remains within
the same tolerance when the length of both sequences is
increased by one data point.  Tolerance r is proportional
to the measured series standard  deviation σ , i.e. r = k σ
where k is a constant. It is necessary to determine k
empirically so that the widest range of complexity values
is achieved. ApEn had been used to study complexity
changes in cardiac ECG time series, which show the
presence or absence of vital, highly individual feedback
mechanisms placing demands on the heart.

ApEn was primarily developed for use in time series
analysis and was not used for characterising changes in
the spectral pattern, being reserved for comparing
fluctuations in a small number of pre-selected peaks. In
the realms of speech analysis Moore et al reported the
development of a vowel phonation reference standard in
for normal males using the ApEn of the truncated FHN-
PSD spectral pattern considered collectively [13].

Cancer patients with malignant lesions, possibly
infiltrating the vocal folds, would be expected to have
abnormal voicing characteristics. However, patients
present with cancer in different stages of development
and their treatment planned accordingly. Consequently,
their vowel FHN-PSDs and corresponding ApEn values
might reasonably be expected to vary from nearly normal
to completely aberrant. Moore et al [13] have shown that
this is indeed the case.  Clinical opinion [2] suggests that
the most obvious side effects of curative radiotherapy are
likely to resolve, leaving stabilised voicing, after one
year. In this paper pre-therapy and one year post-therapy
ApEn complexities, derived from vowel phonation, are
compared. The aim is to identify recovery patterns in
male larynx cancer patients, relative to the ApEn
reference standard already established for normal males.

III. METHODOLOGY

Eighty-nine male volunteers provided the reference
standard for this study. Each subject was connected to a
an electro-laryngograph and asked to phonate sustained
vowel /i/ for up to 4 seconds. The output impedance
signal was digitised at a sampling rate of at 20kHz. The
digital EGG data files, excluding 4 compromised files,
were subjected to ApEn complexity analysis using
software written in IDL from Research Systems
International (UK). This software first stationarised the
time series to remove background noise and mains
contamination. The resultant time series were then split
into consecutive data frames, each 1000 samples long.
The auto-covariance of each frame was computed and the
maximum used to determine F0. A multiplicative Hanning
window was applied to each frame to reduce the variance
at high lags before estimating the PSD by fast Fourier
transformation. Each frame PSD was then normalised
using the FHN approach described by Moore et al [12].
This left the harmonics as integer multiples of the frame
F0  with all other spectral components at non-integer
multiples. The frame FHN-PSD were then averaged for
each subject. Since, spectral shape variation in and
around the normalised F0 peak is minimal, by design, the
averaged FHN PSD was removed below the maximum of
the first true harmonic peak, H2, and above the maximum
of the seventh harmonic peak, H8. The logarithm of the
truncated FHN PSD was then taken in order to minimise
any trend in the spectral pattern. ApEn values were then
calculated as described by Moore et al. [13]
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Forty-eight male larynx cancer patients attending the

Christie Hospital for radiotherapy, volunteered and were

consented for approved study. EGG data was collected

prior to and one year after radiotherapy and ApEn

analysed as described for the normal voicing volunteers.

On both occasions each patient was also perceptually

assessed by an experienced SALT. No restriction was

imposed on the data used for the perceptual assessment,

which included acoustic data and access to patient

hospital records. Guided by VPAS, the SALT categorised

patient voice quality onto a seven point scale ranging

from normal (category-0, CAT0) to completely aberrant

(category-7, CAT7).

IV. RESULTS

Fig. 1 shows the ApEn complexity distribution for the

healthy male normals reported by Moore et al. The

bimodal nature of these data was tested by Gaussian

mixtures model fitting using maximum likelihood [28].

They concluded (p<0.001) that two normal groups G1

and G2 existed, characterised by complexity values 0.340

(+/- 0.035) and 0.183 (+/- 0.057) with relative weights

62% and 38% respectively. Members of G1 exhibited

strong EGG FHN-PSD features whilst those in G2 were

weak, especially in the higher frequency harmonics.

ApEn

0
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0.2

0.3

0.4

0.5

0 20 40 60 80

Subject Number

Fig. 1 

ApEn (crosses) for normal males. G1 (upper) and

G2 (lower) population means are full horizontal

lines.  Standard deviations are dashed lines above

and below.

Fig. 2 and Fig. 3 show the ApEn complexity results for

larynx cancer patients measured before and, health

permitting, one year after radiotherapy, arranged by pre-

treatment SALT perceptual category, CATn (n=1,2,…7).

Post treatment categorisation is indicated by single digit

numbers placed side-on and above the CAT indication.

Dashed boxes indicate the G1 and G2 standard deviation

boundaries as a complexity reference standard for normal

voicing. Patients showing increased ApEn after treatment

appear in Fig. 2 whilst patients showing reduced ApEn

appear in Fig. 3. ApEn values before treatment are

indicated using circular symbols, whilst triangular

symbols indicate those one year post treatment.
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Fig. 2

Patients with increased  ApEn 1 year after treatment.
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      Patients with decreased  ApEn 1 year after treatment.

V. DISCUSSION

Of the 48 cancer cases considered, ApEn analysis

indicated that one year after radiotherapy two-thirds

would develop improved vocal fold functionality and



the G1 and G2 reference standards). Only one quarter of
cases would be below normal voicing bounds and
distinctly pathological.

Fig. 2 demonstrates that patients assigned a less
aberrant pre-treatment category by SALT perceptual
analysis have improved ApEn post treatment. This takes
the individual into a normal voicing pattern, with spectral
features enhanced at least to the lower level of normality
seen in the G2 male population. Those individuals
already in the G2 normal band prior to treatment
predominantly improve after one year to become
members of the ideal G1 population characterised by well
developed harmonics in the vowel FHN-PSD.

Fig. 3 shows the converse is true for patients assigned
by SALT perceptual analysis to the most aberrant pre-
treatment categories. Whilst a handful show almost no
change, many deteriorate and actually fall below the
normal band defined by the G2 male population.

In 28 cases, the direction of complexity analysis
changes agreed with SALTs perceptual assessment. Out
of nine cases where the SALT indicated a large
improvement, only four showed a corresponding
improvement in complexity and five showed a reduction
in complexity. The ApEn spectral evidence for these
cases prompted SALT re-assessment of three individuals
and a reduced categorisation more in line with that
suggested by ApEn analysis.

What must not be forgotten, as mentioned in the
introduction, is that the direction of change in SALT
categorisation is undoubtedly biased since the SALTs
must be aware of the patients’ details including their
treatment stage and pre-treatment categorisation. They
expect an improvement in patients’ voice quality one-
year after radiotherapy. It is plausible that, in the context
of SALT dealings with cancer patients, the perceptual
definition of normal voicing equates to the lower ApEn,
G2 reference standard. This would explain how SALTs
could describe post-cancer, post-irradiation individuals as
entirely normal in CAT0.  These factors could be pursued
further if unlabelled recordings were used for normal
volunteers and patients taken pre and post treatment.

Most of the differences between SALT perception and
ApEn complexity analysis occur in CAT 4-5. The authors
believe that where patients present before radiotherapy
with poor voicing then it is simply easier to perceptually
detect, and as a result overate, voice improvements.
Furthermore, it should be remembered that the utility of
perceptual categorisation depends on reliability. In this
study there is some evidence, though not conclusive, that
perceptual categorisation onto a 7 point scale has a
standard deviation of at least 1 bin, i.e. a variation of up
to 2 bins, is highly likely.

VI. CONCLUSION

Spectral ApEn complexity analysis of trans-larynx
impedance measurements has allowed the recovery
pattern of vocal fold functionality and voicing in male
radiotherapy cancer cases to be examined. Using a single
objective parameter to quantify the collective spectral
pattern of vowel phonation, the majority of radiotherapy
patients are seen to recover to levels of normality seen in
the general, healthy population. Many patients recover to
the normal G2 band with its characteristically weak
harmonic structures. This probably reflects residual
damage that SALTs find entirely acceptable.
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Abstract: This paper describes some methodological 
issues to be considered when designing systems for 
automatic detection of voice pathology, in order to allow 
comparisons with previous or future experiments. 

The proposed methodology is built around Kay 
Elemetrics voice disorders database, which is the only one 
commercially available. Discussion about key points on this 
database is included. 

Any experiment should have a cross-validation strategy, 
and results should supply, along with the final confusion 
matrix, confidence intervals for all measures. Detector 
performance curves such as DET plots are also considered. 

An example of the methodology is provided, with an 
experiment based on short-term parameters and Multi-layer 
Perceptrons.  

Keywords: Voice pathology detection, pathological voice 
databases, cross-validation, Multi-Layer Perceptrons.  

 
I. INTRODUCTION 

 
In the last decade there has been a lot of work done on 

automatic detection and classification of voice pathologies, by 
means of acoustic analysis, parametric and non parametric 
feature extraction, automatic pattern recognition or statistical 
methods. A lot of research groups in speech technology have 
addressed in some moment these problems. However, there is a 
lack of uniformity in these approaches that makes very difficult 
to estate valid conclusions throughout the proposed methods. 

As it is impossible to compare results when the experiments 
are performed with a private database, we have decided to 
concentrate on works with Kay Elemetrics database [1], which 
is rather extended. But even when this database was employed 
in the state of the art, there were many differences in the way 
the files were chosen and handled. Also, the experiments were 
carried out with such different criteria, that comparisons were 
fruitless. We aim to develop a method that allows comparing 
results from different classifiers and features. 

Detection of voice pathology is much related to a speaker 
verification task, where a candidate sample is compared against 
two different models (target and impostors vs. normal and 
pathological). The system must provide a hard decision and a 
confidence score about to which model belongs the sample. So 

we have adopted some methodological issues that are usual in 
speaker verification [2]. 

The paper is organized as follows: Section II covers the Kay 
Elemetrics database and discusses some of its particularities. 
Section III contains an overview of previous work on 
pathological voice detection using this database. Sections IV 
and V present the proposed methodology and describe a simple 
experiment of detection based upon it. Finally, Section VI 
presents discussion and conclusions. 

 

II. KAY’S DATABASE OVERVIEW 
 

Kay Elemetrics database [1] was delivered in 1994. It was 
recorded by the MEEI Voice and Speech Lab. and in Kay 
Elemetrics. It contains recordings of sustained phonation of 
vowel /a/ (53 normal and 657 pathological) and continuous 
speech, (53 normal and 661 pathological). For this description 
we will focus on the former ones.  

The database also includes clinical and personal details of the 
subjects and acoustic analysis data for the recordings, extracted 
with the Multi-Dimensional Voice Program (MDVP). The 
recordings were performed in matching acoustic conditions, 
using Kay Computerized Speech Lab (CSL). Every subject was 
asked to produce a sustained phonation of vowel /a/ at a 
comfortable pitch at loudness for at least 3 seconds. The process 
was repeated three times for each subject, and a speech 
pathologist chose the best sample for the database. 

Although the database is the most widespread and available 
of all the voice quality databases, it has some key points that 
should be carefully taken into account when used for research 
purposes: 

• Not all the pathological patients have a corresponding 
recording nor diagnose, and there are some patients with 
more than one recording, from different visits to the clinic. 
Fig. 1 shows detailed information about the pathological 
subset of recordings of vowel /a/. 

• The files have different sampling frequencies. Normal and 
a small percentage of pathological files have 50 kHz, 
whereas most of the pathological ones have 25 kHz. All 
files should be down-sampled to 25 kHz before further 
processing. 
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• Normal and pathological recordings were made at different 
locations, assumedly under the same acoustic conditions, 
but there’s no guarantee that this fact has no influence in 
an automatic detection system. 

• Normal subjects were not clinically evaluated, although 
according to [3], none of them had “complaints or history 
of voice disorders”. 

• The files are already edited to include only the stable part 
of them. Several studies [4] consider that onset and offset 
parts of the phonation contain more acoustic information 
than stable parts. 

• Normal and pathological files have different lengths, 
maybe due to the fact that is difficult for some pathological 
subjects to phonate for a long time. When training 
automatic models, one has to assure that the length is not 
used as a parameter for discriminating between classes. 

• There is only one phonation per patient. Sometimes is 
useful to dispose of several samples of the same vowel to 
model intra-speaker variability or samples of different 
vowels [5]. 

• There are a heterogeneous number of pathologies in the 
database, probably because they were included as they 
were captured in the clinical practice. 

• There are a lot of files labelled with several diagnoses, 
pertaining sometimes to different categories (e.g. physical 
and neuromuscular). According to [6], the only mutually 
exclusive possible categorization is at the highest level (i.e. 
“normal” and “pathological”). 

• There are a scarce number of normal recordings, compared 
to the number of pathological ones. This is a problem for 
training supervised pattern recognition systems, which 
work best with large amounts of data and well balanced 
between the different classes. 

• There is no perceptual evaluation of the recordings, which 
would be very useful for research purposes. For this 
matter, there should be a similar number of recordings of 
each perceptual rank. 

• There are no video recordings (stroboscopy, endoscopy). 
The importance of this kind of material is highlighted in 
[7]. 

• There are no electroglottographic data with the voice 
registers. EGG signals have demonstrated to be an 
important complement for acoustic analysis and detection 
of pathology [8;9]. 

 

 # Visits # Patients 
Pathological data 720 617 

With audio recording 657 566 
Without diagnosis 306 253 
Diagnosis “normal” 6 6 

Remainder files 345 307 
Fig. 1: Pathological recordings of vowel /a/ in Kay database. 

 

III. PATHOLOGICAL VOICE DETECTION 
 

This section presents an overview of previous works in the 
literature using Kay Elemetrics database. The objective here is 

to concentrate on the way they handle the database and how 
they design and evaluate the results of the experiments. 

In [10], Qi and Hillman employed 48 voices from Kay to test 
an algorithm to compute a harmonics to noise ratio (HNR) in 
the spectral domain. They employed some of the original files, 
not publicly available, before being edited. 

In 1998, Cheol-Woo et al. [11] proposed two novelty 
measures, based on the wavelet transform, and compared their 
discriminative power against some MDVP features. 

In her paper of 1998, Wester [12] compared linear regression 
techniques and hidden Markov models to detect voice 
pathologies. She employed 36 normal and 607 pathological 
voices from the running speech files. Some HNR-based features 
were extracted by acoustic analysis every 10 ms. 80% of the 
data were used to train the system and the rest were for testing. 
The word “sunlight” was segmented from each file, and 
perceptually evaluated by two expert listeners. Results were 
favourable to HMMs yielding best results of nearly 65% of 
correct classification rate. 

Parsa and Jamieson, in 2000 [3] broached the detection task 
based on 6 different noise measurements. They employed 53 
normal and 173 pathological voices, enumerated in an appendix. 
All files were down-sampled at 25 kHz, were chosen to have a 
diagnosis and the age distributions of both groups were similar. 
They only used the first second in each file. Discrimination 
results were obtained comparing the histograms of the two 
classes and ROC curves were employed to compare them. They 
yield a best accuracy of 98.7%. 

Hadjitodorov and Mitev in 2002 [13] describe a system or 
acoustic analysis of voice, which also allows the automatic 
detection of pathology, using jitter, shimmer and noise 
measures. Classification is achieved by means of Linear 
Discriminant Analysis (LDA) and Nearest Neighbours 
clustering. They employed 106 normal (“two phonations by 
each non pathological speaker”) and 638 pathological files. The 
total accuracy of the system was 92.7%. 

Dibazar and Narayanan [14] presented some of the best 
results in pathology detection with this database. They used all 
the files in the database, along with MDVP parameters, and 
short-term MFCCs and F0. They classified the voices with 
HMMs, to achieve a best accuracy of 98.3%, though they don’t 
give many methodological details due to the great amount of 
experiments broached. 

Maguire et al., 2003 [15] propose a pathology detector, 
based on sustained phonation, combining long-term acoustic, 
spectral and cepstral parameters. They used 58 normal and 573 
pathological voices. The classifier was LDA with a 10 folds 
cross-validation strategy. They achieved 87.16% accuracy with 
a subset of the MDVP parameters. 

Godino et al. have several papers using Kay’s database. In 
[16] they employed 53 normal files and 82 pathological files, 
the latter chosen randomly among the whole database. All files 
were down-sampled to 25 kHz. The files were short-term 
parameterised using MFCCs and their derivatives, and the 
detector system was based on neural networks (MLP and LVQ). 
The training test was composed with 70% of the files from each 
class. Results were presented with confusion matrices, 
providing confidence intervals for the measurements. 

Moran et al. [6] presented a telephone system for detecting 
voice pathologies, with the same data and classifying scheme as 
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[15]. They used 36 short-term parameters based on jitter, 
shimmer and noise measures. The system yielded 89.1% 
accuracy for the original data and 74.15% for simulated 
telephone data. 

Marinaki et al. [17] implemented a system to distinguish 
between 21 normal voices and 42 voices with two different 
pathologies (vocal fold paralysis and edema). Patients had also 
others pathologies. They use short-term LPC parameters, 
Principal Components and LDA to classify the voices. Results 
yielded nearly 85% of accuracy and were presented through 
ROC curves. 

Although all these works represent novel contributions to 
pathological voice detection or voice quality assessment, using 
the same database also, their achievements and conclusions are 
not easily comparable, due to a lack of uniformity when 
computing and presenting the results. 

 

IV. METHODOLOGY 
 

Having in mind all of the considerations presented in the 
previous sections, we aimed to develop a fixed methodology for 
designing experiments to detect pathological voices from 
normal ones. This method should allow comparisons between 
different experiments, in order to outline the benefits of each 
approach. 

The first thing to fix is the database. We decided to use Kay 
Elemetrics’, due to its availability. We have considered only a 
subset of all the possible files, 53 normal and 173 pathological 
voices, according to [3]. Features sex and age are uniformly 
distributed between the two classes. 

Files are arranged in two sets, one for training and one for 
testing and validating the results. We have chosen a 70%-30% 
split for these sets. Feature extraction from the files is 
accomplished after these sets are built. 

Once the system is trained, the test set is employed to 
estimate the performance of the detector. The final results are 
presented through confusion matrices (Fig. 2), where we define 
the next measures: True positive (TP) is the ratio between 
pathological files correctly classified and the total number of 
pathological voices. False negative (FN) is the ratio between 
pathological files wrongly classified and the total number of 
pathological files. True negative (TN) is the ratio between 
normal files correctly classified and the total number of normal 
files. False positive (FP) is the ratio between normal files 
wrongly classified and the total number of normal files. The 
final accuracy of the system is the sum of TP and TN. 

 

Actual diagnosis 
 

Pathological Normal 
Pathological TP FP Detector’s 

decision Normal FN TN 
Fig. 2: Typical aspect of a confusion matrix. TP, FP, FN and 

TN stand for True Positive, False Positive, False Negative and 
True Negative respectively. See text for definitions. 

 
We have adopted a cross-validation scheme, namely the 

bootstrap method [18; chapter 9] to assess the generalization of 
the model. Each experiment is repeated N times, with a different 
test set, randomly chosen from the whole set of files. The final 

results are averaged across these repetitions, and confidence 
intervals are computed using the standard deviation of the 
measures. 

When we use short-term parameters, such as MFCCs, 
accuracies for both frames and files are presented. 

During the system testing, a score representing the likelihood 
of the input vector for belonging to the desired class (i.e. 
pathological voice) is produced. These scores are compared to a 
threshold value in order to compute the confusion matrix. If we 
move this threshold we obtain a set of possible operating points 
for the system, which can be represented through a Detector 
Error Tradeoff (DET) plot [19], widely used in speaker 
verification. In this plot, the false positives are plotted against 
the false negatives, for different threshold values (Fig. 3). 
Another choice is to represent the false positives in terms of the 
true positives in a Receiver Operating Characteristic (ROC) 
[20]. 

 

V. AN EXAMPLE DETECTOR 
 
The goal of the following experiment is not to improve the 

results of previous works in the state of the art, but to illustrate 
the proposed methodology with a brief example. We have 
designed an automatic system based on 18 short-term MFCCs 
parameters, following [16], using 20 ms windows with 50% 
overlapping. The detector is a basic MLP with a hidden layer of 
12 neurons. Learning is carried out by backpropagation 
algorithm with momentum [21, chapter 6]. The input layer has 
as many inputs as MFCC parameters and the output layer has 
two neurons.  

We repeat the experiment 10 times, combining the files 
detailed in [3] in the training and test sets randomly. Fig. 3 
shows the mean and standard deviation values of the confusion 
matrix. 

 

Actual diagnosis 
 

Pathological Normal 
Pathological 91.36±5.34 16.72±5.02 Detector’s 

decision Normal 8.64±5.34 83.28±5.02 
Fig. 3: Results of the classification (in %) given in a frame basis 

(mean ± std dev). 
 
The total accuracy of the system is 87.49%±2.80. The 

accuracy on file basis (percentage of recordings correctly 
classified) is 88.97%±4.12. The DET plot on Fig. 4 shows the 
overall performance of the detector, the chosen point of 
operation (marked with a star) and the point of minimum error 
rate (small circle). The DET is drawn from the scores obtained 
with the 10 test sets. 

 

VI. CONCLUSIONS 
 

The only way to improve and to profit from others works is 
to have objective means to measure the efficiency of different 
approaches. We have described a set of requirements that a 
detector of voice pathologies should meet to allow comparisons 
between systems. 
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As far as we know, there were no previous works in the 
literature addressing these issues. We intend to continue the 
research in pathological voice detection and classification using 
the presented methodology. 
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Fig. 4: DET plot for the designed detector. 
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Abstract: This paper presents a performance 
comparison for a voice pathology detection system 
dealing with different types of audio data.  Several 
files of sustained phonation of vowel /a/, from Kay 
Elemetrics database, were encoded with MP3 
algorithm with various bit rates (160, 48 and 24 kbps). 
A multilayer perceptron classifier is then used to 
automatically detect the normal from the pathologia 
files. Results are compared with those obtained for the 
original database, using confusion matrices and DET 
plots. 

 There are no significant differences between the 
designed detectors 

Keywords: Voice pathology detection, Multi-Layer 
Perceptrons, MPEG Audio layer 3 (MP3).  

 
I. INTRODUCTION 

 
There are several studies in the literature dealing with 

automatic detection of voice pathologies, based on speech 
databases gathered in matching acoustic conditions, 
which yielded high accuracy rates [1-3]. Recently, there 
has been some work done on voice pathology detection 
under non-ideal conditions, such as [4], where they 
evaluate the performance of a detector when the voices 
are transmitted over conventional telephone lines. 

In this work, we were interested in studying how MP3 
encoding of speech signals affects the capability of a 
system to detect voice pathologies. MP3 is an interesting 
format because of its capability for the transmission of 
speech samples over the Internet or through low speed 
data channels (like GSM). 

The paper is organized as follows: Section II describes 
the MP3 audio encoding process, Section III presents the 
database and the speech corpora used in this work. 
Sections IV to VII describe the detection system. Finally, 
Section VIII shows the results and Section IX presents 
some conclusions and discussion. 

 
II. TYPES OF DIGITAL AUDIO CODING 

 
PCM (Pulse Code Modulation) [5] is a common 

method for storing and transmitting uncompressed digital 
audio. Since it is a generic format, it can be read by most 
audio applications. PCM is a straight representation of the 
binary digits (1s and 0s) of sample values. 

WAV is the default format for digital audio on 
Windows PCs. WAV files are usually coded in PCM 
format, which means they are uncompressed and take up 
a lot of space (WAV files can also be coded in other 
formats, including MP3). 

MPEG is a working group established under the joint 
direction of the International Standards Organisation / 
International Electrotechnical Commission (ISO/IEC) to 
create standards for digital video and audiophonic 
compression [6]. More precisely, MPEG defines the 
syntax of audio and video format needing low data rates, 
as well as operations to be undertaken by decoders. 
MPEG Audio is based on perceptual encoding 
techniques, which take advantage of the characteristics of 
human hearing and remove sounds that most people can’t 
hear. The file extension for the audio layer (layer 3) of a 
MPEG file is MP3 [7;8]. This layer uses perceptual audio 
coding and psychoacoustic compression to remove 
redundant or irrelevant sound signals (Fig. 1). It uses a 
hybrid filter bank which consists of a polyphase filter and 
a Modified Discrete Cosine Transform (MDCT), to 
increase the resolution of the frequency at certain bands. 

 

Filter Encoding Frame
packing

Psychoacoustic
algorithm

PCM MP3Filter Encoding Frame
packing

Psychoacoustic
algorithm

PCM MP3

 
Fig. 1: Basic scheme of the MP3 encoding process. 
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The encoder first divides the signal into multiple sub-
bands, so the encoded signal can be better optimized to 
the response of the human ear. Sounds below the 
threshold of hearing at each band can be removed by the 
encoder. Furthermore, the ear is most sensitive to 
frequencies between 2 kHz and 4 kHz, so less 
information can be removed from this range without 
affecting the quality of the sound. Moreover, quiet sounds 
are “masked” by louder sounds that are close to them in 
frequency and time. Since you can’t hear these sounds, 
they can be removed from the signal without affecting the 
perceived quality. MPEG encoders rely on the resolution 
used in the uncompressed audio file to set the range of 
resolution that will be used for the encoded file. The 
resolution of the encoded file is varied according to the 
complexity of the signal to achieve compression. 

 
III. DATABASE 

 
Kay Elemetrics database [9] was employed for this 

work, due mainly to its availability. It was recorded by 
the Massachusetts Eye and Ear Infirmary Voice and 
Speech Lab. and contains recordings of sustained 
phonation of vowel /a/ (53 normal and 657 pathological). 
We have considered only a subset of all the possible files, 
53 normal and 173 pathological voices, according to [10]. 
This decision was adopted in order to avoid recordings 
without a diagnosis and because the selected files form a 
compact set: features sex and age are uniformly 
distributed between the two classes. The files were down-
sampled to 25 kHz when necessary. 

Based on these files, we have established four different 
corpora of voices for the experiments (Fig. 2). The first 
one comprises the original files, recorded in the standard 
WAV format. The three other sets were created through 
MP3 encoding of the former files, with different bit rates 
(160 kbps, 48 kbps and 24 kbps). For subsequent 
processing, the files were decoded back to WAV format. 

 
# Original (wav) Mp3 encoding Decoding (wav) 
1 25 kHz; 16 bits —  — 
2 25 kHz; 16 bits 24 kHz; 160 kbps 24 kHz; 16 bits 
3 25 kHz; 16 bits 24 kHz; 48 kbps 24 kHz; 16 bits 
4 25 kHz; 16 bits 24 kHz; 24 kbps 24 kHz; 16 bits 
Fig. 2: Summary of the four speech corpora used in this work. 

 

IV. FEATURE EXTRACTION 
 

It is well known that the acoustic signal contains 
information about the vocal tract and the excitation 
source. The idea for this research was to use a short-term 
non-parametric approach to model the effects of 
pathologies on both the excitation (vocal folds) and the 

vocal tract. The feature extraction procedure (Fig. 3) is 
described in the next paragraphs. 

The speech recordings are divided into 20 ms frames, 
applying a Hamming window to smooth the extremes. 
Windows are overlapped every 10 ms. At this point, the 
frames corresponding to silence or unvoiced fragments of 
speech are detected and marked for subsequent removal. 

 

Hamming
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Unvoiced speech
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Fig. 3: Overview of the feature extraction procedure. 

Afterwards, several mel cepstral coefficients are 
estimated from each frame using a non-parametric FFT-
based approach. MFCC parameters [11;12] are obtained 
calculating the discrete cosine transform (DCT) over the 
logarithm of the energy in several frequency bands, 
disposed in the “mel scale”. The number of bands is 
M=round(4·ln(sampling frequency)).  

Each band in the frequency domain is bandwidth 
dependant of the central frequency of the filter. The 
higher the frequency, the wider is the bandwidth. Such 
method is based on the human perception system, 
establishing a logarithmic relationship between the real 
frequency scale (Hz) and the perceptual frequency scale 
(mels) (Eq. 1). 

⎟
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⎜
⎝
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700
1·log2595 10
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mel

FF  (1) 

A better representation of the dynamic behaviour of 
speech can be obtained by including the first temporal 
derivatives of the parameters among neighbour frames 
[12]. The first derivative (delta) provides information 
about the dynamics of the time-variation in MFCC 
parameters. Their calculation is achieved by means of 
anti-symmetric moving-average Finite Impulse Response 
(FIR) filters to avoid phase distortion of the temporal 
sequence. 

The number of MFCCs parameters considered in this 
work ranges from 12 to 32 in order to find the optimal 
dimensionality for our purposes. 

After the calculation of features, vectors corresponding 
to silence or unvoiced sounds are removed. The total 
number of vectors obtained from the files is nearly 
32,000 (15,000 normal; 17,000 pathological). 

 

V. THE ANN DETECTOR 
 
Artificial neural networks (ANN) have been widely 

used in pattern recognition and voice pathology detection. 
A feedforward multilayer perceptron (MLP) with a single 
hidden layer has been chosen for this purpose. The 
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learning algorithm used is backpropagation with 
momentum [13, chapter 6]. 

The input layer has as many inputs as MFCCs 
parameters. The output layer has two neurons that map 
their outputs to a value in the range [0, 1] by means of a 
sigmoid function (Eq. 2). 

f x
e x( ) =

+ −

1

1  
(2) 

The network is trained by successive iterations of the 
algorithm, reducing the mean squared error over the 
training set. Generalization of the learning is assessed 
with the test set. 

 
VI. EVALUATION PROCEDURE 

 
Files are arranged in two sets, one for training and one 

for testing and validating the results. We have chosen a 
70%-30% split for these sets. Feature extraction from the 
files is accomplished after these sets are built. The 
vectors of the training set are normalised in the range [0, 
1]. The same transformation is then applied to the test set.  

Once the system is trained, the test set is employed to 
estimate the performance of the detector. The final results 
are presented through confusion matrices (Fig. 4), where 
we define the next measures: True positive (TP) is the 
ratio between normal files correctly classified and the 
total number of normal voices. False negative (FN) is the 
ratio between wrongly classified normal files and the 
total number of normal files. True negative (TN) is the 
ratio between pathological files correctly classified and 
the total number of pathological files. False positive (FP) 
is the ratio between pathological files wrongly classified 
and the total number of pathological files. The final 
accuracy or correct classification rate (CCR) of the 
system is the average of TP and TN. 

 
Actual diagnosis 

 
Normal Pathological 

Normal TP FP Detector’s 
decision Pathological FN TN 

Fig. 4: Typical confusion matrix. TP, FP, FN and TN stand for 
True Positive, False Positive, False Negative and True Negative 

respectively. See text for definitions. 
 
We have employed a cross-validation scheme, namely 

the bootstrap method [14; chapter 9] to assess the 
generalization of the model. Each experiment is repeated 
10 times, with a different test set, randomly chosen from 
the whole set of files. The final results are averaged 
across these repetitions, and confidence intervals are 
computed using the standard deviation of the measures. 
Accuracy for both frames and files is presented. 

During the system testing, a score representing the 
likelihood of the input vector for belonging to the desired 
class (i.e. pathological voice) is produced. These scores 
are compared to a threshold value in order to compute the 
confusion matrix. If we move this threshold we obtain a 
set of possible operating points for the system, which can 
be represented through a Detector Error Tradeoff (DET) 
plot [15], widely used in speaker verification. In this plot, 
the false positives are plotted against the false negatives, 
for different threshold values (Fig. 7).  

 
VII. RESULTS 

 
For each one of the speech corpora, several 

experiments were performed in order to achieve the best 
possible combination of input features (different number 
of MFCC parameters, with and without derivatives) and 
neural network paramenters (different number of nodes in 
the hidden, learning rates, etc.). 

Fig. 5 presents a summary of best results for the 
different corpora (wav and mp3, with different bit rates) 
given in a frame basis. Fig. 6 shows the corresponding 
results on a file basis. 

 

Corpus Features Confusion matrix 

83.34±4.32 9.30±3.37 
16.66±4.32 90.70±3.37 1 

16 MFCC + delta 
20 neurons 

CCR: 87.38±1.81 
85.01±7.81 12.12±4.26 
14.99±7.81 87.88±4.26 2 

16 MFCC + delta 
10 neurons 

CCR: 86.51±3.67 
83.28±7.71 10.54±2.91 
16.72±7.71 89.46±2.91 3 

20 MFCC + delta 
14 neurons 

CCR: 86.53±4.30 
79.24±8.96 ±3.99 
20.76±8.96 89.50±3.99 4 

28 MFCC + delta 
16 neurons 

CCR: 84.67±4.87 
Fig. 5: Results of the classification (in %) given in a frame basis 

(mean ± std dev) for the different corpora. 
 

Corpus Features CCR 

1 16 MFCC + delta; 20 neurons 87.79±2.86 

2 16 MFCC + delta; 10 neurons 87.5±4.06 

3 20 MFCC + delta; 14 neurons 87.94±4.21 

4 28 MFCC + delta; 16 neurons 86.76±4.80 
Fig. 6: Results of the best correct classification rate (in %) 

given in a file basis (mean ± std dev) for the different corpora. 
 
Fig. 7 shows four DET plots that represent the 

averaged individual systems described in Figs. 5 and 6. 
The curves are drawn from the scores obtained with the 
10 test sets of each experiment. 
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Fig. 7: DET plots comparing the performance of the averaged 

systems. 
 

VII. CONCLUSIONS 
 
As it can be seen from Fig. 7, the performance of the 

original WAV files seems to be better than the mp3. But 
if we considered the confidence intervals, as reflected in 
Fig. 5 by the standard deviations, we must conclude that 
there are no significant differences between such systems. 

MP3 coding transforms the energy in bands in a 
similar way than MFCCs. The part of the signal that is 
lost due to the compression seems to be not significant 
for pathology detection. Performance with MP3 may be 
somewhat inferior to that with the original WAV files, 
but MP3 needs less storage space. 

More experiments have to be carried out to confirm 
this conclusion. We have to test also the performance of 
this detector with maximum MP3 compression (bit rate of 
8 kbps). 
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The purpose of the presentation is to give an 
overview of phonatory features of disordered 
voices and propose a classificatory 
framework. Generally speaking, phonatory 
features are numerical cues that summarize 
properties of speech signals or other voice-
related signals that are obtained non-
invasively, and which are clinically relevant. 
The object of a classificatory framework is to 
ease the planning of future experiments and 
the exploitation of the existing literature, 
which is diverse with regard to pathologies 
studied, speaker tasks, speaker performance, 
speech material, vocal symptoms, sensors and 
sought for relations with other levels of 
description. 
 

I. INTRODUCTION 
 
 The purpose of the presentation is to give an 
overview of phonatory features of disordered 
voices and propose a classificatory framework. 
Generally speaking, phonatory features are 
numerical cues or measurements that are 
clinically relevant and that summarize properties 
of speech signals or other signals that are 
obtained non-invasively, and which report on a 
speaker’s voice. Typically, the acquisition of 
phonatory features involves the (non-invasive) 
recording of signals that are relevant to laryngeal 
function, the signal processing that discards 
irrelevant signal properties and the summary of 
the clinically-relevant properties by means of a 
handful of numbers. 
 The purpose of the extraction of 
phonatory features in a clinical framework is the 
documentation of the voice of patients, their 
longitudinal follow-up during treatment (e.g. 
before and after surgery) as well as comparisons 
with normophonic speakers. 
 The goal of the presentation is not to 
discuss a classification of the mathematical 
forms of clinical cues per se. This would be an 
ineffectual exercise because most of the extant 
features are heuristically defined and their 
mathematical or statistical properties have been 
explored superficially only. The goal is rather to 
classify phonatory cues in relation to the use they 
have been put to. 

 Indeed, the scientific as well as clinical 
literature devoted to phonatory features of voice 
disorders is abundant. However, its diversity is 
impressive with regard to the pathologies or 
handicaps that have been studied, the vocal 
symptoms that have been described, the vocal 
tasks speakers have been asked to carry out and 
the linguistic, paralinguistic and extralinguistic 
performances that have been examined, the 
sensors that have been used and the speech 
material that has been recorded, as well as the 
correlations that have been examined. 

As a consequence, it is difficult to distil 
general rules or compare results obtained in 
different frameworks. The purpose of a 
classification is therefore to ease the planning of 
future experiments and the exploitation of the 
existing literature. 
 

II. CLASSIFICATORY FRAMEWORK 
 
The following is a proposal of a grid that may be 
used to classify different feature-based 
approaches to the assessment of voice disorders.  
 
Etiology 
 
The types of pathologies or handicaps the effects 
on voice of which have been investigated are 
wide and varied. Typically, one distinguishes 
voice problems that are the consequences of 
organic alterations of the vocal folds from those 
that are dysfunctional, i.e. voice disorders that 
are not the consequence of observable structural 
changes of the vocal folds [1]. Voice problems 
caused by motor disorders are a third category. 
An example of the latter is the voice of 
Parkinson speakers. A separate category are 
substitution voices, the purpose of which is to 
enable speech communication by speakers who 
have lost the capacity of producing voice by 
means of the vibration of the true vocal folds. 
 Whether voice disorders that have 
different causes must be described by different 
sets of phonatory features is not clear at present. 
Generally speaking, speech and voice problems 
owing to motor disorders are kept separate from 
voice disorders that are the consequence of 
laryngeal pathologies [6]. A possible exception 
is vocal fold paralysis. 
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Speech material 
 
One major distinction between approaches to 
voice assessment rests on the speech material. 
Indeed, the speech material that is analyzed may 
be connected speech or sustained speech sounds. 
Sustained speech sounds may again be 
subdivided according to whether onsets and 
offsets are included in the analysis frame or not. 
Connected speech is often presented as ideal; 
analyses of stationary speech fragments are the 
rule, however [5]. The reason is that many signal 
processing schemes are based on assumptions of 
local stationarity and local periodicity. These 
assumptions may not be valid in the case of 
hoarse speakers emitting connected speech [2]. 
 
Speaker tasks 
 
Tasks refer to what is requested from a speaker 
during vocal assessment. Tasks that subjects are 
the most frequently asked to carry out are 
speaking, which includes sustaining speech 
sounds, singing (when appropriate), vocal 
loading, as well as profiling. 
 Vocal loading consists in recording the 
phonatory features of a speaker, followed by 
reading out loud a text for some time (e.g. 45 
minutes) and recording the same features again. 
The purpose is to track vocal alterations that are 
the consequence of burdening the larynx [7]. 
 Finally, profiling is the discovery of the 
limits of phonatory performance, e.g. loudest 
possible voice, softest possible voice, highest 
possible pitch, lowest possible pitch, maximum 
phonation time, etc [9]. 
 
Speaker performance 
 
Speaker performance refers to the actual capacity 
that is examined. Phonatory performance may be 
subdivided into registers, phonation types, 
voicing, prosody and vocal quality. 

Known speech registers are creak, 
modal voice and falsetto. Examples of phonation 
types are breathy voice, soft voice, modal voice, 
loud voice, pressed voice and so forth [3]. 

Voicing is the capacity of the speaker to 
voice and un-voice speech sounds. Prosody 
refers to the capacity to control intonation, 
accentuation, and rhythm, as well as speech rate. 
Voice quality, finally, designates vocal timbre, 
e.g. hoarseness, roughness, vocal tremor or 
quaver, and so forth. 
 
 

Instrumentation 
 
Instrumentation refers to the equipment that is 
used to obtain signals non-invasively that report 
on the phonatory performance of speakers. The 
microphone signal is the most often used; it 
evolves proportionally to acoustic pressure and 
therefore proportionally to the speech signal that 
is recorded by the ear of a listener. Other signals 
that can be obtained non-invasively are the 
electroglottogram and photoglottogram. The 
former is reported to evolve proportionally to the 
vocal fold contact surface and the latter to the 
glottal area. One other sensor that is used 
frequently is the flow mask that enables 
recording airflow rate, as well as, occasionally, 
intra-oral pressure. 
 
Signals 
 
One major distinction is the one between features 
that describe the phonatory source signal and 
those that describe the speech signal. The 
phonatory signal is the acoustic signal that is 
generated at the glottis via the vibration of the 
vocal fold and pulsatile airflow.  The speech 
signal is emitted at the mouth consequent to the 
propagation of the acoustic wave through the 
vocal tract. Observing the glottal source signal 
directly is difficult. Often, it is replaced by 
auxiliary signals such as the photoglottographic 
or electroglottographic signals that report on 
glottal properties directly. 
 
Transform domains 
 
 At present, a systematic classification of clinical 
signal processing schemes is not possible 
because most schemes involve a heuristic 
processing stage that may differ from task to task 
and from study to study. 
 A possible processing-related 
categorization is based on the type of signal 
transform that is involved. Examples are Fourier, 
Hilbert or Wavelet transforms. When no signal 
transformation is carried out, the corresponding 
phonatory features are temporal; otherwise they 
acquire properties that are typical of the 
corresponding transform domains [8].    
 
Vocal symptoms 
 
One core distinction between phonatory features 
is the one that pertains to vocal symptoms. Vocal 
symptoms are the speech properties that are 
believed to be clinically relevant, that report on 
the state of the glottis and that the signal 
processing is aimed at. Typically one 
distinguishes between signal dysperiodicity, 
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signal morphology, and supra-segmental as well 
as coordinative features. 

Coordinative features refer to the onset 
and offset of voicing in relation to supra-glottal 
events. Examples of relevant supra-glottal events 
are obstruent check and release or resonant onset 
and offset. The most often studied coordinative 
cue is vocal onset time, which is the signed time 
interval between the release of an obstruent and 
the onset of voicing, on which hinges the 
distinction between voiced and unvoiced 
obstruents. This language-typical interval, which 
may be short, requires a fine control of glottal 
adduction and abduction with regard to supra-
glottal articulation. Voice onset time is therefore 
frequently studied in relation to motor speech 
disorders or substitution voices, which are 
suspected to impede fine control of voicing [10]. 
 Supra-segmental features pertain to 
intonation, accentuation, rhythm, speech rate as 
well as average phonatory frequency, the 
variability of the phonatory frequency, and 
average loudness, i.e. sound pressure level. In a 
clinical framework, speech rate, the average and 
spread of phonatory frequency, as well as sound 
pressure level are the most popular. 
 Morphological features refer in practice 
to the shape attributes of the glottal source 
signal. Examples are the open quotient, closing 
quotient, speed quotient, the amplitude of the 
volume velocity as well as the amplitude of the 
negative peak of the differentiated volume 
velocity [3]. An example of a spectral 
morphological feature is the spectral balance, 
which quantifies harmonic richness. 
Morphological features have been mainly used to 
characterize phonation types. 
 Morphological, supra-segmental as well 
as coordinative features are not confined to 
clinical applications. These features have been 
widely studied by phoneticians, linguists, 
psychologists and engineers because they report 
on speech and voice production as well as 
perception in general. 

Features that are typically clinical are 
those that describe irregularities of the 
movement of the vocal folds. Generally 
speaking, one distinguishes between non-modal 
vibratory regimes that cause diplophonia, 
biphonation and random cycles, and external 
perturbations (i.e. modulation noise), turbulence 
noise and breathiness (i.e. additive noise), 
unsolicited vibrations of the false vocal folds or 
ary-epiglottal folds, as well as uncontrolled 
transients, such as voice breaks, register breaks, 
octave jumps and so forth. 
 External perturbations give rise to vocal 
jitter and shimmy, as well as vocal frequency and 
amplitude tremor. The main contribution to 
shimmy and amplitude tremor of the speech 

cycles is the modulation distortion by the vocal 
tract of phonatory jitter and phonatory frequency 
tremor. Other causes are the transfer of acoustic 
energy from cycle to cycle, as well as tremor of 
the speech articulators. Phonatory shimmy or 
phonatory amplitude tremor contribute only 
feebly to speech shimmy or speech amplitude 
tremor [4]. 
 
Correlation 
 
More often than not, clinicians attempt to 
correlate observed acoustic features with data 
recorded at other levels of description. Data, 
correlations with which are sought for, are 
typically diagnostic, glottal, aerodynamic or 
perceptual, with a preference for the latter. 
 
 

III. KNOWN PROBLEMS 
 
Known problems with extant phonatory features 
are the following. 
 
Signal processing 
 
The most popular acoustic features are those that 
quantify the degree of irregularity of the vocal 
cycles. Typical examples are the period 
perturbation quotient, amplitude perturbation 
quotient, jitter in %, harmonics-to-noise ratio and 
so forth. More often than not, the signal 
processing involves methods that are based on 
assumptions of local stationarity and local 
periodicity that enable heuristics to detect and 
isolate vocal cycles or spectral harmonics. These 
heuristics may fail in the case of severely hoarse 
voices. As a consequence, insertion or omission 
errors are frequent in the case of highly irregular 
signals. These errors bias the values of the 
calculated features. As a consequence, phonatory 
features that describe vocal perturbations are 
thought to be reliable only when extracted from 
sustained speech sounds uttered by feebly or 
moderately hoarse speakers. 
 Another issue is measurement precision. 
Indeed, perturbations of cycle length may be 
small, e.g. less than one percent for speech cycle 
lengths, less than ten percent for speech cycle 
amplitudes. As a consequence, signal processing 
request precautions with regard to measurement 
precision. Otherwise, measurements may be 
biased by quantization noise, for instance. 
 
Labelling 
 
Labelling refers to the custom of giving 
phonatory features names that allude to vocal 
symptoms rather than to the measurements that 
are actually performed. For instance, features 

Special session on voice pathology classification 21



that summarize the dysperiodicity of glottal 
cycle lengths are often referred to as vocal jitter, 
although cycle length dysperiodicity may also be 
influenced by average phonatory frequency, 
additive noise, frequency tremor, non-modal 
dynamic regimes of the vocal folds and non-flat 
intonation, for instance. 
 
Redundancy 
 
The number of phonatory features that have been 
proposed in the literature is large. Software that 
is sold for clinical assessment of voice typically 
comprises tens of numerical cues that can be 
computed for a single sustained sound. Studies 
have shown that sub-sets of phonatory features 
are correlated with each other. Sub-sets of 
correlated features are roughly coextensive with 
the groups of vocal symptoms that are discussed 
above [5]. 
 
Interpretation 
 
Even very simple measurements are influenced 
by multiple factors. Examples are given above 
for the perturbations of the speech cycle lengths, 
as well as for the perturbations of the speech 
cycle amplitudes, which are generated via 
modulation distortion. These observations 
suggest that phonatory features are difficult to 
interpret because they are determined by 
multiple causes that may be interdependent. 
 
Stationary fragments of sustained speech sounds  
 
One of the more frequently heard complaints is 
that many acoustic cues can only be obtained 
reliably for stationary fragments of sustained 
speech sounds. The reasons have been discussed 
in the section on signal processing. A 
consequence is that, at present, the effects of 
voice disorders on connected or natural speech 
are less well understood. Problems that are non-
resolved are not only issues in signal processing, 
but also the choice of the phonatory features, the 
choice of speech material, as well as the 
perceptual assessment of connected speech 
fragments that are short or phonetically complex. 
 

IV. SUMMARY 
 
 The following Table summarizes some of the 
factors that distinguish different approaches to 
voice assessment. 
 

Etiology organic, dysfunctional, and motor 
disorders, substitution voices 

Transforms Fourier, Hilbert, and Wavelet transforms 
(if applicable) 

Signals glottal source, speech signal 

Material connected speech, sustained speech 
sounds, stationary fragments of sustained 

speech sounds 

Symptoms dysperiodic, morphologic, supra-
segmental, coordinative 

Tasks speaking, singing, loading, profiling 

Performance registers, phonation types, voicing, 
prosody, voice quality 

Sensors microphone, electroglottograph, 
photoglottograph, flow mask 
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Abstract: Objective techniques for assessing and

classifying voice quality for patients recovering

from treatment for cancer of the larynx have

largely focussed on they use of Artificial Neural

Networks (ANN). The results of a preliminary

study are reported, where a Genetic Programming

(GP) has been trained to classify recovered

(normal) and abnormal voices in acoustic data,

and produced much more accurate results than an

ANN. In addition, the GP is able to provide impact

factors for the various voice parameters, and

suggests that only 6 of the 22 short-term and long-

term parameters used in the current ANN studies

are contributing significantly to the classifications.

Keywords: Voice quality, classification, Artificial

Neural Network, Genetic Algorithms, acoustic

signals.

I.  INTRODUCTION

The use of intelligent computer-based techniques to

support decision making in clinical applications, have

been investigated over the years for a wide variety of

clinical data.  Although Genetic Programming (GP)

has not been used extensively for medical

applications to date, the early results for cancer

diagnosis [1,2] were found to be better than with an

Artificial Neural Network (ANN). In another study

[3], a grammar-based GP variant was used for

knowledge extraction from medical databases, where

the rules for the diagnosis were derived from an

algorithm that uncovers relationships among data

attributes. The outcomes of different types of

classifiers, including ANNs and genetic programs

have also been reported [4].

This study is part of a larger project which is

concerned with developing objective techniques for

voice quality assessment in patients recovering from

cancer of the larynx. The earlier investigations have

concentrated on the use of Artificial Neural Networks

(ANN) to firstly distinguish recovered (normal) and

abnormal voices [5] on the basis of a collection of

short-term and long-term parameters derived from the

patient’s voice signals, and more recently, classify voices

on the 7-point scale for voice quality used by Speech and

Language Therapists (SALT) in the UK [6]. Similar

classifications have now been obtained for both electrical

impedance (EGG) and acoustic data, with the best results

for voices in the extremes categories on this scale (normal

and abnormal), while those for the mid-categories have

been poor [7].

A preliminary assessment of use of Genetic

Programming to classify normal (recovered) and

abnormal acoustic signals is described here. The resulting

classifications are compared with those obtained from an

ANN for the same signal parameters and training

regimes..

II. TREATMENT OF VOICE SIGNALS

A.  Collection of Voice Signals

The patient’s voice data was collected by the Christie

Hospital and the South Manchester hospital using an

electrolaryngograph PCLX system [8].  The equipment

simultaneously records the electrical impedance signal via

pads placed at specific positions on the patient’s neck at

the same time as the acoustic voice signal using a

microphone. In these studies, the patient was attempts to

steadily phonate the /i/ sound.  Although two datasets are

collected, only the acoustic data have been used to date in

this study. In the work only the male voices were used as

the number of female voices in the dataset was too small

to give an accurate assessment, a feature of the dataset is

that most cancer of the larynx patients are male.

Voice quality was subjectively classified by a SALT for

each patient using their standard 7-point classification

scale ranging from Lx0-Lx6, with Lx0 being a near

normal (recovered) voice while Lx6 represents an

abnormal, very poor quality voice. The approach taken to

reach a classification is very subjective and depends to a

large extent on the experience of the SALT In this study

the Lx0 and Lx1 voices were combined and considered as

the normals, while Lx5 and Lx6 voices were combined to

give the abnormals, The number of patients in these two

categories is shown in Table 1.
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Normal (Lx0,Lx1) Abnormal (Lx5,Lx6)

58 36

Table 1. Patient numbers used in this study

B.  Signal Pre-processing

 In order to be able to extract the short and long

term parameters used in the classification process, a

number of pre-processing stages were applied to the

voice signals. Initially the signals were stationarised

to remove drift, split into 50 ms frames (Hanning

windows overlapping by 25 ms) and then converted

to the autocorrelation form of the signal to remove

some of the noise components.  Once these processes

were complete, the frames were examined to check if

they contained silence or sound. This involved

comparing the frames with a sample of silence frame

recorded under the same conditions, and used zero

point crossing and short term amplitudes as checks.

Once the silence frames have been removed, the

remaining frames were separated into voiced and

unvoiced frames; voiced frames containing vocal

phonation while unvoiced containing no recognisable

speech. This was achieved using the cepstrum based

approach as described in [9].  The Fundamental

Harmonic Normalisation (FHN) as described in [10]

was then calculated from Power Spectrum Density

(PSD) and then this structure was modelled by fitting

a Gaussian Mixture Model (GMM) in order to reduce

the number of parameters needed to describe the

signal.

C.  Parameter Extraction

A total of 22 short-term and long-term parameters

are extracted for use with classification, as detailed in

[5,6]. The short term parameters consist of 15

parameters relating to the mean, standard deviation

and peak of the gaussians used to describe the

fundamental frequency and first four harmonics in the

frame (if they can be detected) ) (M0..4, SD0..4, P0..4);

the value of the fundamental frequency in each frame

(F0), the noise threshold value (N0), the FHN Noise

Energy (FHNNE) and the Residual Harmonic Energy

(RHE).  The 3 long-term parameters were extracted

from the speaker’s whole voiced speech. These

included the mean fundamental frequency across all

frames (MF0), a measure of jitter of the fundamental

frequency between frames (J0) and the ratio of voiced

to unvoiced frames (VS).

D. The GP classification technique

Linear Genetic Programming was used to classify the

normal and abnormal voices.  An experiment with 7

runs was performed using this technique, the runs only

differing in their choice of a random seed. The common

parameter settings used in the experiment are given in

Table 2.

Parameter Value

Population size 512

Max no of tournaments 150000

Mutation frequency 30

Crossover frequency 30

Max program size 256

Instruction set  + - * / sin() log()

Table 2. Parameter settings for the GP

 All 22 short-term and long-term parameters were

extracted from the voice signals and used for

classification. The dataset was split into a training (65%)

and test (35%) set, which equated to 38/20 for the normals

and 23/13 for the abnormals.

E The ANN classification technique

The same 22 parameters were used for the GP

classification and the same 65/35% spilt for the training

and test data sets. In this case, the parameters were input

to 3 layer feed-forward ANN with a sigmoidal activation

function in the hidden layer. Two different training

algorithms were used; gradient descent with momentum

backpropagation (TRAINGDM), and resilient

backpropagation (TRAINRP). The results were not found

to be dependent on the actual number of hidden nodes.

3. RESULTS AND DISCUSSION

A.  Classifications using the full parameter set.

The results obtained when the 22 short-term and long-

term parameters were used by the GP and the ANN are

given in Table 3.

The classifications for the ANN were slightly lower that

those obtained using the “leave one out” cross validation

strategy which is generally regarded as one of the most

accurate methods and by leaving out a single patient’s

voice sample we can ensure to avoid inter versus intra

speaker effects [6]. However, the GP was clearly found to

give the more accurate classifications.

Normal (Lx0,Lx1) Abnormal (Lx5,Lx6)

GP 99.6±2.4% 97.2±2.9%

ANN 90.2±2.1% 87.5±3.9%

Table 3. Classification accuracies using the GP and ANN
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B.  Classifications using the impact parameter set.

One of the advantages of using the GP is that it

provides the impact factor of each parameter on the

classification.  Table 4 shows how each parameter

contributed in the generated program. The Table

shows the frequency percentage of the best thirty

generated programs containing the referenced input;

the average effect of removing all instances of that

input, and the maximum impact of that input. In these

cases, the greater the value, the more impact removal

of that input had.

It may be seen from the Table that only 6 of the 22

parameters were found to have a significant impact on

the classification. These parameters were N0, M0, P0,

MF0, J0, and VS.

 Both the GP and the ANN were re-trained and

tested using just these 6 parameters, and the results

are shown in Table 5.

V. CONCLUSIONS.

A preliminary study has been made involving the use of

GP to classify recovered (normal) voices and abnormal

voices in acoustic signals taken from patients recovering

from cancer of the larynx. Initially, a collection of 22

short-term and long-term parameters were extracted from

the signal and used as input to the GP, and also an ANN.

The GP provided much more accurate classifications than

the ANN.

Examination of the impact factors for the voice

parameters suggests that there are only 6 significant

factors. The results obtained from both the GP and the

ANN using just these parameters were only slightly

poorer than for the full parameter set, again with the GP

providing the more accurate classifications.

One of the advantages of the ANN is the ability to

produce multiple outputs, enabling classifications to be

made corresponding to the 7-point scale for voice quality

used by SALTS. Work is now taking place to extend the

GP approach to multiple classifications.
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Abstract: Speech quality is an interesting and very
important aspect not only from linguistic and/or
phonetic viewpoint but also from the viewpoint of
speech technology. This study has been conducted
from the latter point of view. A method has been
developed based on the analysis-synthesis technique
which enables to control voice quality by
independently manipulating the voice source and the
vocal tract resonant characteristics. Through this
method, it is possible to investigate the amount of
contribution of individual acoustic parameters to a
certain voice quality including voice individuality.
Formant frequencies and their bandwidths are used
as the acoustic parameters to characterize the vocal
tract configuration and the pitch frequency as the
voice source. These acoustic parameters extracted
from a natural speech are modified or changed to
some extent and then a is synthesized making use of
the modified acoustic parameters. Speech
intelligibility and voice individuality are found to be
controlled by this method. An application to a
pathological voice has also been made to control the
voice quality. It has been found that the method is
capable of improving the so-called “roughness” or
“hoarseness” of the pathological voice to a certain
extent.

I. INTRODUCTION

Using the analysis-synthesis system we have developed
[1], voice quality of natural speech has been controlled
by changing formant trajectories that are supposed to
have a close relation with such voice qualities as
intelligibility, clearness, articulateness, and so on.
Correlation analysis between psychological and acoustic
distances reveals that the formant trajectory has the
largest correlation with the voice quality of announcer’s
speech sounds, followed by pitch frequency [2]. This
result suggests that the quality of speech sound of non-
professional speakers may possibly be improved by
altering the dynamics of formant trajectory patterns.
Based on the experimental evidence mentioned above, an
experiment has been performed to change and improve
the quality of natural speech making use of the analysis-
synthesis system.
Formant trajectories are extracted from voiced portions
by LPC method and the dynamics of these trajectories
are altered depending on the formant pattern itself. The

method for altering the formant pattern is the same as
that we have proposed earlier for the normalization of
coarticu-lated vowels in continuous speech. [3]. This
method is applied to the formant and pitch trajectories
extracted from a natural speech, and the quality-
controlled speech sounds are synthesized using the
analysis-synthesis system to present to listeners for
perceptual judgments.

II. ANALYSIS-SYNTHESIS SYSTEM

Fig. 1 illustrates the block diagram of the analysis-
synthesis system. Low-pass filtered input speech is
digitized in 12 bits at a rate of 15 kHz. A short time
LPC analysis based on the autocorrelation method is
performed to obtain LPC coefficients and the residual
signals. Formant frequencies and their bandwidths are
estimated by solving a polynomial equation. A
modification of the spectral envelope is equivalent to a
manipulation of the coefficients that would result in a
frequency response of the filter equal to the modified
envelope. These acoustic parameters (pitch periods, LPC
coefficients, formant frequencies, bandwidths, residual
signals) are stored for later synthesis. This analysis-
synthesis system is capable of analyzing input speech
either pitch synchronously or non-synchronously
dependent on the type of input speech and the aim of
speech analysis or synthesis. When we analyze a
pathological speech, as described in a later section,
which is difficult or impossible to define pitch periods
from the input speech, analysis is generally performed
with a fixed frame length.

III. METHOD OF FORMANT TRAJECTORY
MANIPULATION
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The method of formant modification has already been
reported in an article [4]. The outline of the method is
the following. For each pitch period, formant frequencies
and their bandwidths are calculated first by solving the
polynomial equation. Then, some modification is made
on the original formant frequencies and/or bandwidths
and accordingly on the predictor coefficients. A synthesis
filter (vocal tract resonance filter) is formed using the

modified coefficient. The residual signal has also been
used as the input to this filter.
After extracting formant trajectories using the method
proposed by Kasuya [5], modification of them has been
conducted in such a way that the preceding and

succeeding acoustic features contribute to the present
value with the same weight if the time differences from
the present are equal, and that the amount of contribution
is proportional to the difference from the present acoustic
feature [3]. This process is illustrated in Fig. 2. Suppose

x t( )  be the time-varying pattern of a formant frequency,

the new value y t( ) is defined as the sum of the original

value x t( )  and the additional term of contribution by

contextual information. The contribution is assumed to
be a weighted sum of differences between values at the

present time t  and at different time t ± . Thus, y t( )

is given by,

     }{y t x t w x t x t d
T

T

( ) ( ) ( ) ( ) ( )= + +     

   (1)

where w( )  is the weighting function which is given as

     w( ) exp( / )=
2 22 .    (2)

The time interval (-T, T) from which the contextual
information should be taken into account is theoretically
infinite. But actually it must take a finite number and is
not determined theoretically but is decided empirically or

experimentally. In this study, T ms=150  and

=52ms  have been experimentally determined. Given

0> , the dynamics of the original formant trajectory

is emphasized, while for 0< , it becomes de-

emphasized.
Equation (1) is applied to each of the three formant
trajectories without vowel/consonant distinctions except
for voiceless consonant. The time interval in equation (1)
during which the weighted sum is calculated is 300 ms,

Fig. 2 Graphic illustration for using time-varying
dynamic pattern of acoustic feature.
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Fig. 1 Block diagram of analysis-synthesis system for voice conversion.
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a 150 ms forward and backward each. This is the result

for =7 3.  which, in our previous study, represents a

proper value for the purpose of normalizing
coarticulation effects of vowels in continuous speech. It
is noticed from the figure that the new formant
trajectories are emphasized their up-and-down dynamic
movements as compared to those of the raw formants.
As far as we have tested, this method of incorporating
contextual information is capable of not only
normalizing the coarticulation effect of vowels in
continuous speech but also has some advantage for
vowel recognition using the formant frequencies with
conventional Euclidean distance from the reference
vowel. The method is also capable of improving the
intelligibility of some lazily spoken continuous speech.

IV. METHOD OF PITCH MANIPULATION

Pitch frequency manipulation is quite simple as
described in Fig.3. At the pitch synchronous analysis
stage, the residue signal obtained for each pitch period
has exactly the same data length as the pitch period. If
we give the residue signal as an input to the vocal tract
model, exactly the same waveform as the original speech

will be obtained. Thus, pitch frequency change can
basically be given by controlling the length of the
residual signal.
To raise pitch frequency, some data at the last part of the
residue are eliminated and to lower the frequency, zero

signals are added to the last part of the residue.
Of course there are some discrepancies on the frequency
domain between the pitch-modified speech and the
original speech. However, there is no serious voice
change in terms of perceptual voice quality when the
pitch frequency change is less than 50% form the
original.

V. ENHANCEMENT OF PATHOLOGICAL
SPEECH

An attempt has been made to improve the quality of a
pathological speech using the analysis-synthesis system
we have developed. The pathological speech used in this
experiment is a voice uttered by a patient who has a
disease in his vocal cord. Because of malfunction of the
vocal cord vibration, the resultant speech wave lacks
clear periodicity and its voice quality is “hoarse”. The
experiment has been designed to create the fundamental
frequencies into the pathological speech waves in order
to improve the quality as close to a normal speech as
possible.
Fig. 4 represents the block diagram to improve the
quality of pathological speech. It requires two kinds of
input speech: a pathological speech to be improved and a

normal speech utterance of the same
sentence from another speaker. From the
pathological speech inputted, voiced
portions are at first detected and the
spectral envelopes are extracted through
LPC analysis. Next, the normal speech
is analyzed by the same method and the
pitch frequencies are detected to combine
with the spectral information extracted
from the pathological speech. If the
normal speech of the same content can
not immediately be available, artificial
pulse trains could be used as the voice
source.
In the analysis stage, after making
voiced/voiceless distinction, the
voiceless portions (voiceless consonants
and devocalized vowels) are thoroughly
kept in memory and the LPC analysis is
performed for the voiced portions to
obtain the LPC coefficients that carry
spectral information and the residual
signals from which pitch periods can be
estimated. For the pathological speech,
the frame length (analysis window) is
set at 20 ms and the frame shift is a half
of the window length.
In the feature extraction stage, the
residual signals for the pathological
speech are discarded after obtaining
spectral information. Contrary to this,
only the pitch frequency contour is
needed from the normal speech.
For the normal speech, however, a

process of time alignment has been undertaken before
feeding to analysis in Fig.4. This process is shown in
Fig.5 . The voiced parts of the normal speech are
analyzed pitch synchronously and the length for each part

1/H1(f)

1/H2(f)

1/H3(f)

   Synthesis Filter
Residual Signal

T1

T2

T3

     Pitch
   Modified
Speech Wave

T1
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SYNTHESIS

Speech Wave

 H1(f)

 H2(f)

 H3(f)

   Analysis Filter Residual Signal

ANALYSIS

Fig.3  A method of manipulating fundamental frequency.
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is compared with the corresponding part for the
pathological speech in order to make the length equal to
that of the pathological speech with accuracy of less than
one pitch period. This has been done simply by
eliminating or inserting additional pitch periods.
The normal speech, after being time-aligned, is LPC
analyzed again and the pitch frequencies are extracted for
every voiced portion. The pitch frequencies or the
residual signals are fed into the synthesis filter as the
voice source. The synthesis filter is made from the
predictor coefficients obtained from the pathological
speech. The resultant output speech has, therefore, the
same spectral characteristics as the pathological speech
and the same source characteristics as the normal speech.
As far as we have tested, the quality of the synthesized
speech has been found to be far better than the original
speech, though it is not as good as the normal speech.

VI. CONCLUSIONS

Improvement of voice quality has been achieved using an
analysis-synthesis system capable of modifying pitch,
formant frequencies, and formant bandwidths. According
to the results of analysis for professional announcers’
speech sounds, it is obvious that speech intelligibility
closely relates to the dynamics of formant and pitch
patterns. It has been found to be possible to improve the
speech intelligibility without changing voice
individuality by emphasizing the movement of time-
varying pitch patterns. Another application of this

analysis-synthesis system
has also been made to
enhance a pathological
speech which has little
periodicity and “hoarse” in
voice quality. By adding
fundamental frequency
component taken from a
normal speaker, the voice
quality of the pathological
speech has been improved
to a great extent.
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Abstract: The paper shows the methods for imaging

power spectral density of speech and extracting

formant frequencies from continuous voice.

The methods will be used to improve the patients’

rehabilitation after the total laryngectomy surgery.

The adaptive algorithms and transversal filters were

implemented to estimate the transfer function

of human vocal tract model. The estimation methods

were based on statistical, Auto-Regressive model

of speech production. The pilot study on formant

frequencies, especially F1 and F2 formants, and their

linear separation for each vowel has been presented.

The method for recognition pathological voice

has been proposed.

Key words: Speech signal spectrum analysis, adaptive

filters, formant tracking and total laryngectomy

I. INTRODUCTION

Laryngectomy is a partial or complete surgical

removal of the larynx, usually performed as a treatment

for laryngeal cancer. After the loss of vocal cords patients

are not able to vocalize their speech. It is difficult

for them to generate phonation, which would be

understandable and communicative. Their voice is

hoarse, weak, and strained. The main goal of phoniatric

rehabilitation is to teach patients how to articulate

understandable speech. During the therapy subjects are

learning how to force pharyngo-esophageal segment

to induce resonance and articulate alternative voice.

Esophagus should become a vicarious source and substi-

tute vocal cords. A certain percentage of laryngectomees

never acquires an alaryngeal voice and is unable to use

an electronic larynx. They usually communicate

by silently articulated words with some ejectives

from intra-oral pressure. This voice called silent

mouthing is not a truly oesophageal voice.
To improve and simplify the medical analysis

the computer program has been written. It visualizes

power spectral density (PSD) of speech. The algorithm

presented in this paper has been implemented to estimate

PSD and to track formants from continuous speech in real

time. The estimation of vocal tract model parameters
and formants extraction was used for comparing natural
voice with oesophageal and silent mouthing speech.

II. METHODOLOGY

A. Linear prediction and adaptive filters

The algorithm proposed in this paper attempts

formant extraction from voice signals. The tracking
formant algorithms have been proposed e.g. in papers [1],
[2]. In presented applications the Auto-Regressive (AR)
statistical process models speech dynamics. It was
assumed that human speech is a linear transformation
of white noise.  AR process was used instead of Auto-
Regressive Moving Average (ARMA) model. Thus,
the voice spectrum analysis was simplified and nasal tract
transmittance influence was eliminated. The digital
Infinite Impulse Response (IIR) filter equivalent
to natural vocal tract transmittance [3] models the AR

process. The filter transmittance H estimated for n-th

sample, depends on signal frequency f, it is a function

of complex number Sf

f
j

ez =
2

, where fS is a sampling

frequency. According to [4, 5], the amplitude of H is
given by equation (1):
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H transmittance can be presented in time units, according

to equation Stfn = . Variable Q(n) is a temporary power

of prediction error, which is analogical to the power

of signal generated with larynx or noise produced by air

turbulences [6].

The linear prediction has been applied to estimate

the inversed transversal filter parameters. Linear

prediction coefficients (LPC) are the AR parameters hk.

The transversal filter was used instead of lattice filter

because of simpler numerical complexity. However the

PARCOR reflection coefficients can be computed from

the LPC [7].
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B. Recording Procedures

Fifty Polish-speaking patients who had undergone

the total laryngectomy and twenty subjects from control

group were recorded with the use of a digital camera,

Panasonic NV-DS65EGE. The recordings were made

in the sound-treated booth in order to minimize the back-

ground noises. An electret-condenser microphone was

connected to the camera and supplied with the R6, 1.5V

battery. A potentiometer between microphone and camera

input was used to adapt the signal power. The micro-

phone was positioned on a clip mounted around a neck.

The distance between mouth and microphone was about

15cm. The linguistic material was presented on cards.

Sentences were read twice.

The audio-video material was recorded on MiniDV

tape. The Pinnacle Studio video card was used to transfer

the recordings to computer for acoustic analyses.

The data was stored on MPEG format files. The audio

signals were digitized with 44,1 kHz sample rate.

The Signal-to-Noise ratio (SNR) of recorded tracks was

about 45dB, according to calculations on MatLab 6.0

application. The SNR was calculated as the proportion

of the power of silent and speech signals based on 1000

selected samples. The actual range of speech signal

power is about 60dB [8].

A computer program was written to visualize spectral

density and track the formants of human speech.

It processes the audio data from WAVE and MPEG

multimedia files. For WAVE format files audio signals

were decimated down to 8 kHz sample frequency using

CoolEdit Pro 2.0 software. For the vowels analysis based

on two first formats the 8kHz sample frequency was used

because these formats appear in the 4kHz range.

C. Spectrum estimation and tracking formants

The spectrum of speech signal is calculated from the

vocal tract filter coefficients. The number of estimating

filter parameters hk, can be changed in the program
according to the sampling frequency fs and the nature
of voice. For vowel analysis from signals sampled
with fs = 8kHz the number of LPC was set to k = 8.
According to the literature [3, 8], up to four formants
should be placed in the 0-4kHz-frequency range.
To check if formants are not blended the number of filter
coefficients was increased to k = 16. It was checked then
if one formant didn’t split into two. This method had
significant results especially for Polish vowels /o/ and /u/
where F1 and F2 formants are very closed.

Calculation of the filter estimated LPC parameters hk

in n-th sample is based on Recursive algorithm based

on Least-Squares error minimization (RLS). Haykin

listed detailed steps of algorithm in [9]. The constants

in algorithm were matched experimentally by authors

and set as: α = 0.05,  = 0.985.

By experimental research it is proven that RLS

algorithm is characterized by a fast rate of convergence.

According to the literature [9] the mathematical

formulation and therefore the implementation of RLS is

relatively simple and efficient in computation. In [9]

Haykin shows a numerical instability problem considered

in finite precision arithmetic. Applied method cures

the divergence of standard RLS algorithm.

According to experiments, listed algorithm is suitable

for a real time implementation on the personal computer

for sound data sampled with up to 44kHz frequency.

The amplitude of speech spectrum has an exponent-

tially falling character, about -12dB per octave [3].

To equalize the overall energy distribution the speech is

pre-emphasized using a high-pass FIR filter with para-

meter vector h = [1 -0.9735].

According to Christensen method [10] the local

minimums of second derivative of power spectrum

A(m,n) were searched for the formants extraction.

This method can separate some blended formants. It was

assumed in algorithm that the second derivate must be

negative.

III. RESULTS

A. Tracking formants results.

The time-frequency spectrograms are presented in

Figures 2, 3 and 4. The level of gray is proportional to the

amplitude. Local minimums were colored black for better

vision.

The comparison of pathological (Fig.2, 3) and natural

voice (Fig.1) shows the huge differences in the articula-

tion of speech. Shorter articulation of vowels, and higher

noise level can be seen for esophageal voice (Fig.2). The

pauses are longer. However the formants of esophageal

voice match (with little variation) the natural speech

spectrum (Fig.1).

Fig.1 Spectrogram of natural voice (Polish vowels /a/, /i/, /e/

/y/), X axis: time, Y axis: f/fS, fS= 8kHz.

For silent mouthing (Fig.3) the differences between

each vowel formants are insignificant Thus, it is hard
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to recognize each vowel from the spectrum. Presence

of noise is more evident than in the alaryngeal group.

Fig.2 Spectrogram of esophageal speech (Polish vowels /a/, /i/,

/e/ /y/), X axis: time, Y axis: f/fS, fS= 8kHz.

Fig.3 Spectrogram of silent mouthing voice (Polish vowels /a/,

/i/, /e/ /y/), X axis: time, Y axis: f/fS, fS= 8kHz.

It is evident that there are higher frequencies of first

formant for silent mouthing vowels articulation (Fig. 3).

In this speech no fundamental frequency excitation

sources are involved in speech production. Although the

vocal tract parameters are similar, the transfer function is

different because of other source of air turbulences [3].

Moreover, the speech is distorted and the spectrum

covered by the air turbulences noise from tracheotomy

tube and its spectrum with regular resonances. Thus, the

spectrum is distorted and the speech less intelligible.

B. Vowels classification.

It is well known that vowels are identified mostly

through their formant frequencies [9] and therefore

a major part of the perceptual information contained

in voiced speech is encoded in these formant frequencies

[7].  This paper is concerned with the differences between

the formant frequencies of normal and pathological voice.

Mean values and deviations of the first and second

formants of the vowels produced by normal, esophageal

and silent mouthing voices have been presented

in Figures 4, 5 and 6. The measurements were performed

for 3 subjects of each group.

The universal vowel production characteristics were

obtained for alaryngeal and normal speech. The acoustic

characteristics presented in Fig. 4 and 5, match the

theoretical frequencies of Polish vowels formants from

[3]. It can be seen, that for the normal speech the vowels

subspaces in F1 and F2 formants dimensions can be

linearly separated (Fig. 4). The relative positions

of formant frequencies were maintained for alaryngeal

voice (Fig. 5).
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The Fig. 6 shows how the pathology affects the

speech spectrum.  For the patients, who haven’t learned

the esophageal voice, it is impossible to recognize vowels

by two first formants. Moreover, it has been observed that

the formants of vowels in the silent mouthing are more

dispersed, unclear and less stable than in alaryngeal

voice. Significant deviations of temporal formant

frequencies are seen on Fig. 6.
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The figures with objective data prove how important

the rehabilitation and learning an esophageal voice is.

The pronunciation of vowels causes the biggest problems

to laryngectomees. Vowels should be articulated with the

use of low fundamental frequency. Patients should then

learn how to use the source of phonation alternative

to laryngeal voice, to acquire useful intelligible voice

production.

IV. DISCUSSION

Initial tests’ results show the field for the future work

on improving pathological speech with the computer

methods. A linear or nonlinear separation methods,

e.g. neural networks or SVM can be used for vowel

recognition. However, we are not able to recognize silent

mouthing speech based on two first formants; therefore

we use other parameters, e.g. lips and jaw expression

from image analysis.

V. CONCLUSION

It has been presented that formant frequencies
equivalent to vocal tract coefficients are very sensitive
to pathology of speech organs. This indicates that
formants are objective descriptors for evaluation
of rehabilitation after the laryngeal surgery and speech

intelligibility. Our approach is developed for efficient and

accurate tracking formants from the smooth AR

spectrum. Eliminating noise and fundamental frequency

with its harmonics due to the use of adaptive algorithm

allows extracting formants in a simple way.

The computer program on formant extraction can be used

for objective analysis of vicarious voice of larynge-

ctomees.
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Abstract: This paper concerns the problem of 
enhancing voice quality for people suffering from 
dysphonia, caused by airflow turbulence in the vocal 
tract, for irregular vocal folds vibration.  
A generalized subspace approach is proposed for 
enhancement of speech corrupted by additive noise, 
regardless of whether it is white or not. The clean 
signal is estimated by nulling the signal components in 
the noise subspace and retaining the components in 
the signal subspace. Two approaches are compared, 
taking into account both signal and noise, or signal 
only, eigenvalues. An optimised adaptive comb filter is 
applied first, to reduce noise between harmonics. 
Objective voice quality measures demonstrate 
improvements in voice quality when tested with 
sustained vowels or words corrupted with “hoarseness 
noise”. The intention is to provide users (disabled 
people, as well as clinicians) with a device allowing 
intelligible and effortless speech for dysphonics, and 
useful information concerning possible functional 
recovering. This will be of use to people in social 
situations where they interact with non-familiar 
communication partners, such as at work, and in 
everyday life. 
 
Keywords: hoarseness, voice denoising, GSVD, comb 
filtering, voice quality, pitch, noise, formants. 
 

I. INTRODUCTION 
 
Signal subspace methods are used frequently for 
denoising in speech processing, mainly with speech 
communication [1], [2]. Until now, few results are 
available concerning their application for voice quality 
enhancement in the biomedical field [3]. In this paper, the 
objective of noise reduction is to improve noisy signals 
due to irregular vocal folds vibration. This problem is of 
great concern, for rehabilitation and from the assistive 
technology point of view. Commonly, surgical and/or 
pharmacological treatments allow restoring voice quality, 
with patient’s recovering to an acceptable or even 
excellent level. However, sometimes patients can only 
partly recover, with heavy implications on their quality of 
life. 
The idea behind subspace methods is to project the noisy 
signal onto two subspaces: the signal subspace (since the 
signal dominates this subspace), and the noise subspace. 
The noise subspace contains signals from the noise 

process only, hence an estimate of the clean signal can be 
made by removing or nulling the components of the 
signal in the noise subspace and retaining only the 
components of the signal in the signal subspace. The 
decomposition of the space into two subspaces can be 
done using either the singular value decomposition 
(SVD) [4], [5] or the Quotient SVD (QSVD) or GSVD 
[1],[6],[11]. Though computationally expensive, GSVD 
was found robust and effective in reducing noise due to 
turbulences in the vocal tract, which is typically coloured. 
GSVD is implemented here with two choices for 
separating the signal and the noise subspaces, to compare 
performance. Specifically, the first choice is based on 
classical GSVD, where both the signal and the noise 
subspace eigenvalues are used for filtering [6]. The 
second one corresponds to retaining the signal subspace 
eigenvalues only [1]. 
An adaptive comb filter is applied first, as it was shown 
to significantly reduce noise between the harmonics in 
the spectrum. The comb filter is optimised, in the sense 
that it is applied on windows whose length varies 
according to varying pitch.  
Real data coming from dysphonic subjects are 
successfully denoised with the proposed approaches. 
 

II. MATERIALS AND METHODS 
 
Firstly, optimised adaptive comb filtering is performed on 
data windows of varying length, obtained with a new 
two-step robust adaptive pitch estimation technique [7]. 
The essence of comb filtering is to build a filter that 
passes the harmonics of the noisy speech signal y, while 
rejecting noise frequency components between the 
harmonics [8],[9]. Ideally, spacing between each “tooth” 
in the comb filter should correspond to F0 (1/T0) in Hz, 
which is often highly unstable in pathological voices. The 
proposed comb filter, based on an adaptive two-step pitch 
estimator, is capable to adapt to fast pitch variations and 
successfully reduces noise as evaluated by an adaptive 
implementation of the Normalised Noise Energy 
technique (ANNE) [7], thus being suited as a pre-filtering 
step. The filter that has been used in this paper has a 
Hamming window shape, which is obtained from the 
following equation (with K=3): 
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This step is followed by Generalised Singular Value 
Decomposition (GSVD) of signal and noise matrices, 
whose entries are suitably organised, as shown in eq. (4). 
GSVD-based voice denoising aims at diminishing the 
uncorrelated and added noise from the voice signal, 
weather it is white or not. The noisy signal y at time 
instant t, yt ,can be expressed as: 

yt = dt +nt  (2) 
Where d=clean signal, n=(coloured) noise. The goal is to 
estimate d from y. The noisy signal is segmented into 
frames yi, i=1, 2,…, of varying length Mi, obtained 
according to the previously cited robust adaptive pitch 
estimation procedure. The GSVD amounts to finding a 
non-singular matrix X and two orthogonal matrices U, V 
of compatible dimensions, which simultaneously 
transform both the Hankel noisy speech matrix Hy and the 
noise matrix Hn into nonnegative diagonal form matrices 
C and S such as: 
UTHyX = C = diag(c1,…,ck), c1≥c2≥…≥cK 
VTHnX = S = diag(s1,…,sk), sK≥sK-1≥…≥s1  
CTC+STS=IK     (3) 
Where L+K=M+1, K<L. The Hy matrix has the form: 
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Similarly for Hn. 
The values c1/s1≥c2/s2≥…,≥cK/sK are referred to as the 
generalised singular values of Hy and Hn. Notice that one 
can choose to work with Toepliz matrices instead of 
Hankel matrices. There are no fundamental differences 
between the two approaches. 
It was shown [1], [2], [6], [11] that the filtered signal can 
be obtained either from the matrix: 
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where U and X are as in eq. (3) and Cp=diag(c1,…, cp), 
Sp= diag(s1,…, sp), are sub-matrices of C and S 
respectively and p is the signal subspace dimension. Eq. 
(5) corresponds to classical GSVD, where both the signal 
and the noise subspace eigenvalues are used for filtering, 
and will be referred to as GSVD in what follows. Eq. (6) 
corresponds to retaining the signal subspace eigenvalues 
only, and will be referred to as OSV (Only Signal Values). 
Two problems were encountered with GSVD, i.e. the 
choice of the noise covariance matrix and that of the 
signal subspace dimension p. Commonly, in speech 
communication settings, the noise covariance matrix is 
computed using noise samples collected during speech-
absent frames. To deal with the problem under study, 
different choices were tested. Among them, one takes 

into account the signal noisy component as obtained from 
a preliminary SVD decomposition of the signal under 
study: the noise subspace is reconstructed and used to fill 
matrix Hn. While giving almost good results, this choice 
was disregarded, due to both the larger computational 
load and to better results obtained with the following 
approach: on each signal frame of varying length, an 
AutoRegressive (AR) model is identified, and the model 
residuals are evaluated. The residual variance is then used 
to construct the diagonal matrix S of eq. (3). 
The second problem is the optimal choice of the number 
p of retained singular values for denoised signal 
reconstruction. Classical order selection criteria were 
applied to GSVD, such as AIC, MDL [9], as well as a 
new criterion named DME [10], but best results were 
obtained with p=2. It will be named as GSVDfix in what 
follows. As for OSV, p was chosen such as [1]: 

cp>sp and cp+1<sp+1  (7) 
This was in fact the choice that gave the best results. 
Finally, three objective indexes are defined¸ closely 
related to the signal characteristics. A frequency 
threshold value fth=4kHz is defined, based on the usual 
range for voiced sounds (first four formants) in adults, as 
well as on experimental results obtained from threshold 
tuning in a dataset of voiced and unvoiced sounds. The 
subscript “non-filt” refers to the original signal, while 
“filt” refers to the denoised signal: 

(8)
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measures the ratio of the PSDs evaluated on the 
“harmonic range”; 

(9)
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is the ratio of the PSDs, evaluated on the “noise range”. A 

good denoising procedure should give PSDlow values near 
to zero (no loss of harmonic power), but high PSDhigh 
values (loss of power due to noise).  
Finally, a measure of the denoising effectiveness (quality 
enhancement ratio, QER) is defined as: 
QER is thus the ratio between the signal energy and that 
of the removed noise. QER>0 corresponds to good 
denoising [10].  
 

III. RESULTS 
 
A set of about 20 voice signals (word /aiuole/) coming 
from adult male patients were analysed with the proposed 
approach. All patients underwent surgical removal of 
T1A glottis cancer, by means of laser or lancet technique. 
Perceptual evaluation with GIRBAS scale showed good 
recovering, however, residual hoarseness was found in 

(10)M

1n
2(n))filty(y(n)

M

1n
(n)2y

1010logQER
∑
=

−

∑
==

38 MAVEBA 2005



Special session on

Physical and mechanical models and devices

Models and analysis of vocal emissions for biomedical applications. 4th international workshop. October 29-31, 2005 – Firenze, Italy. 
Edited by C. Manfredi.   ISBN 88-8453-320-1 (online)   © 2005 Firenze University Press





Abstract: The effects of velopharyngeal insufficiency 
(VFI) or clefting on acoustic frequency–modal 
characteristics of human supraglottal spaces are 
investigated. Finite element (FE) modelling is 
supported by experimental investigation using a 
physical model of the vocal and nasal tract fabricated 
by the rapid prototyping technique from the FE 
model. The FE model was developed from magnetic 
resonance images (MRI) of the subject during 
phonation. Finally the influence of the VFI on 
phonation of the vowel /a/ is numerically simulated in 
time domain and supported by clinical investigation. 
Keywords: biomechanics of voice, acoustics, cleft 

 
I. FE MODEL AND MATHEMATICAL FORMULATION 

 
The FE model of a male vocal tract for the Czech 

vowel /a/ was created by transferring the data directly 
from MRI images and adding afterward the nasal tract 
manually [1]. A connection of the nasal and oral cavities 
was considered in the back area of the soft palate 
modelling the velopharyngeal insufficiency. The FE 
model is presented in Fig. 1. A degree of the 
velopharyngeal insufficiency was modelled by varies 
sizes of the area joining the nasal and oral cavities. 

The wave equation for the acoustic pressure can be 
written as:  

2
2

2 2
0

1 pp
c t

∂
∇ =

∂
,   (1) 

where c0is the speed of sound. Equations of motion for 
the acoustic system after discretization can be written as  
 

+ + =MP BP KP F&& &                     (2) 
where M, B, K are the global mass, damping and 
stiffness matrices, P is the vector of nodal acoustic 
pressures and F is the effective “fluid load”. 
The acoustic modal and transient analysis were realised 
by the system ANSYS considering c0 = 343 ms-1 and the 
air density 0ρ = 1.2 kgm-3. Zero acoustic pressure (p=0) 
was assumed at the lips and nostrils. Other boundary 
walls of the acoustic spaces were considered acoustically 
absorptive. The acoustic damping was modelled by the 
boundary admittance coefficient ( µ = 0.005).  

 
    The supraglottal spaces were excited at the position of 
the vocal folds by pulses given by the derivative of the 
airflow volume velocity in accordance with the 
Liljencrants-Fant model [2]:  
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Fig. 2 Excitation L-F pulse used in transient analysis for 
modeling the phonation in time domain and its integral.  

Fig. 1 FE model of the supraglottal spaces for vowel /a/ 
with the nasal cavity joint by cleft model.  
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The parameters of the excitation pulses were adjusted 
according to the prescribed mean volume flow rate in the 
glottis (0.12 l/s) and the fundamental (pitch) frequency 
(F0=100 Hz) - see Fig. 2.  
 

II. PHYSICAL MODEL AND MEASUREMENT SET-UP 
 
    The model for experimental analyses was created from 
the FE model by the CAD program Unigraphics utilizing 
the triangular mesh that describes the inner surface of the 
supraglottal spaces. After adding some constructional 
elements the 3D computer model was the input for the 
Rapid Prototyping technology. The model made of 
thermoplast ABS was fabricated by the Fused Deposition 
Modelling technology on the machine FDM 1650-
STRATASYS with the accuracy ± 0.1 mm.  
 

The model construction enabled to change the 
magnitudes of the area A (cleft size) connecting the nasal 
cavities with the vocal tract (A=0, 42, 132 and 252 mm2). 
The model and the measurement set-up are schematically 
shown in Fig. 3. Random excitation was used in 
experimental modal analysis. 
 

 
III. RESULTS OF THE ACOUSTIC MODAL ANALYSIS 

 
     The resonance curves measured inside the model (in 
the points marked in Fig. 3b) are shown in Fig. 4. The 
results of the computational and experimental modal 
analysis are summarized in Fig. 5, where the calculated 
and measured natural frequencies are compared for fourth 
magnitudes of the area A. In the case of velopharyngeal 
insufficiency (A>0) new nasopharyngeal (oro-nasal) 
natural frequencies appeared between the formants F2 
and F3. Measured modes of vibration for the formants 
F1-F3 and the nasopharyngeal frequency fnaso.

 are shown 
in Fig. 6 for A=132mm2 and the corresponding calculated 
mode shapes are presented in Figs. 7 and 8. The first 
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Fig. 3 - a) measurement set up: 1- miniature 
loudspeaker, 2 – the model, 3 – B&K microphone probe 
4182, 4 and 5 - B&K front-end and PC with SW B&K 
PULSE, 6 – power amplifier LDS PA25E; b) schema of 
the physical model with 27 measurement points inside 
the supraglottal spaces. 
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Fig. 4  Measured reasonance curves for cleft areas:
 a) A=0, b) A=42, c) A=132mm2. 

44 MAVEBA 2005



calculated oro-nasal acoustic mode shape with the 
predominant vibrations in the horizontal direction (see 
Fig. 8a) was not excited in the experiments. 
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Fig. 5 Calculated (——) and measured (------) formant 
(F1-F3) and nasopharyngeal frequencies for the vowel /a/ 
for increasing area A of the cleft. 
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Fig. 6 Measured acoustic mode shapes of vibration for 
the cleft size A=132 mm2. The double amplitudes of the 
pressure are shown in 27 measurement points along the 
vocal and nasal tracts - a) F1= 679 Hz, b) F2= 884 Hz, c) 
fnaso= 1266 Hz, d) F3= 3042 Hz. 
 

 
Fig. 7 Computed acoustic mode shapes of vibration for 
the cleft size A=132mm2. 
 

 
Fig. 8 Computed acoustic oro-nasal modes of vibration 
for the cleft size A=132mm2 (fnaso= 1432 Hz and 1492 
Hz). 
 

IV. NUMERICAL SIMULATION OF PHONATION  
 

The behavior of the FE model was tested by a 
broadband frequency pulse. The power spectral density of 
this pulse is presented in the Fig. 9. 
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Fig. 9 Power spectral density of the broadband frequency 
pulse for testing the FE model by the transient analysis. 

Special session on physical and mechanical models and devices 45



The results of transient analysis in the frequency domain 
are presented in Fig. 10 for the broadband frequency 
pulse and in the Fig. 11 for L-F pulse model. 

Fig. 10 Power spectral density of the pressure near the 
lips for Czech vowel /a/ for broadband frequency pulse 
and the cleft size A=132mm2. 
 

Fig. 11 Power spectral density of the pressure near the 
lips for vowel /a/ for L-F pulse (A=132mm2).  

 

Fig. 12 Acoustic pressure near the lips for LF pulse. 
 
The formant frequencies F1≈630 Hz, F2≈987 Hz and 

F3≈2893 Hz can be found in the frequency response 
functions in Fig. 11. The formant frequencies are in good 
agreement with the data known for Czech vowels. 
Another resonant frequencies fnaso ≈1432, 1492 Hz 
appears in Fig. 5 and 11 due to the velopharyngeal 
insufficiency.  

V. CLINICAL INVESTIGATION 
 
 The theoretical results were compared with the results 

of the acoustic voice analysis. Eight adults with mild 
velopharyngeal insufficiency phonated vowel /a/ and 
pronounced the interconnection /ama/. The nasal and oral 
signals were picked up by microphones of the head part 
of Nasometer 6200-3 (Kay Elemetrics Corp.) and 
analysed by Multi-Speech (Kay El. Corp.) programme. 
The new resonant region (formant) was found between 
formants F2 and F3. Its position was located between 
1800 Hz to 2050 Hz, the relative intensity of harmonics 
in this region was between –7 dB to +3 dB with regard 
the formant F3. The example of the acoustic analysis is 
shown in Fig. 13. 

Fig. 13 Acoustic analysis of the pronounced 
interconnection /ama/. 

 
VI. CONCLUSIONS 

 
The time response functions for the pressure near the lips 
were obtained by the transient analysis of the FE models 
of the vocal tract for the model excited by a broadband 
frequency pulse and L-F pulse. The formant frequencies 
F1 – F3 evaluated from the resonances of the calculated 
frequency response functions are in good agreement with 
the experimental data. The existence of calculated oro-
nasal formant was verified by the measurements on 
physical model as well as on subjects suffered by the 
velopharyngeal insufficiency. 
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PHYSIOLOGICAL CONTROL OF LOW-DIMENSIONAL GLOTTAL
MODELS WITH APPLICATIONS TO VOICE SOURCE PARAMETER

MATCHING

Federico Avanzini1, Simone Maratea1, Carlo Drioli2
1 Department of Information Engineering, University of Padova, Padova, Italy
2 Institute of Phonetics and Dialectology, ISTC-CNR, Padova, Italy

A set of rules is proposed for controlling a 2-mass
glottal model through activation levels of laryngeal
muscles. The rules convert muscle activities into
physical quantities such as fold adduction, mass,
thickness, depth, stiffness. A codebook is constructed
between muscular activations and a set of relevant
voice source parameters, and its applications to voice
source parameter matching are explored.

I. I NTRODUCTION

Features of the voice source signal (i.e., the glottal
flow) are known to be relevant for characterizing voice
quality and speaker identity. Parametric models of the
voice source fit the glottal signal with piecewise analyt-
ical functions, using a small number of parameters. As
an example, the Liljencrants and Fant (LF) model [8]
characterizes one cycle of the flow derivative using as
few as four parameters (see sectionII and Fig. 1).
Physical models of the glottal system describe the vocal
fold with two [10] or more [14] coupled mechanical
oscillators, driven by the intraglottal pressure. Physical
models capture the basic non-linear mechanisms that
initiate self-sustained oscillations, and can simulate sub-
tle features (e.g. interaction with the vocal tract); how-
ever the large number of parameters typically involved
makes it hard to employ these models for voice source
matching purposes needed in many applications, rang-
ing from rule-based speech synthesis [13] to analysis
and assessment of voice quality, including the detection
and classification of voice pathologies [6].

We have addressed the issue of identification of
physically-based models in previous studies [3], [7]
using a hybrid approach in which the vocal fold is
treated as a linear oscillator, while a non-linear block
that accounts for interaction with glottal pressure is
modeled as a regressor-based mapping: given a target
glottal flow signal, weights for the regressors can be
estimated in order to fit the target.

In this study we explore a different approach, in
which the dimension of the control space of a 2-mass
model (see Fig.2) is drastically reduced by applying a
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Fig. 1. Glottal flow and derivative: time of glottal openingto; time
and valuetp, Ei of flow maximum; time and valuete, Ee of flow
derivative minimum; time of glottal closuretc; glottal periodP .

set of rules that map three muscular activation parame-
ters to the low-level physical parameters of the model.
The rules are developed after Titze and Story [18] and
are described in sectionIII .

Having a physiologically-motivated, low-dimensional
control space, we construct in sectionIV a codebook
between the muscle activation parameters and a set of
relevant voice source parameters, and we explore its
potentials in fitting target flow waveforms.

II. V OICE SOURCE PARAMETERS

Some cues of the glottal waveform have been rec-
ognized to be particularly relevant for the study of the
perceptual influence of the voice source characteristics,
and for comparing different voice qualities. Referring to
Fig. 1, typical [8], [1] voice source quantification pa-
rameters extracted from the flow and the differentiated
flow are:To = tp− to (opening phase duration),Tpp =
te − tp (positive to negative peak interval duration),
Tret = tc− te (return phase duration),Tc = to +P − tc
(closed phase duration),Topen = To + Tpp + Tret

(open phase duration). Derived parameters are thespeed

Models and analysis of vocal emissions for biomedical applications. 4th international workshop. October 29-31, 2005 – Firenze, Italy. 
Edited by C. Manfredi.   ISBN 88-8453-320-1 (online)   © 2005 Firenze University Press
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Fig. 2. The 2-mass model used in this work.

quotient SQ = To/(Tpp + Tret), the open quotient
OQ = Topen/T , theopening quotientOingQ = To/T ,
the closing quotientCingQ = (Tpp + Tret)/T , the re-
turn quotientRQ = Tret/T , the peak-to-peak quotient
PPQ = Tpp/T , and theamplitude quotientAQ =
Ei/Ee. The spectral tilt of the voice source can be
quantified by parameters such as theharmonic richness
factor HRF= (

∑N
i=2 Hi)/H1, where Hi denotes the

amplitude of theith harmonic partial.
A wide range of glottal configurations allows a

speaker to choose over different phonation modalities:
geometric and mechanical fold properties determine the
frequency and mode of vibration; vocal fold adduction
(i.e., relative distance) has an important role in deter-
mining the closed phase duration and the abruptness
of closure, and affects the perceived phonation quality.
As opposed to ”normal” voice quality,breathy, pressed,
creaky, are terms commonly found in the literature to
denote special phonation types. In breathy voice the
glottal closure is incomplete, the voicing is inefficient
and air leaks between folds throughout the vibration cy-
cle. A distinctive characteristic of breathy voice is hence
an audible friction noise. On the opposite side, pressed
voice occurs when vocal folds are pressed together and
the glottal cycle is characterized by an abrupt closure,
a reduced open phase duration, and a small vibration
amplitude. Creaky voice is characterized in a somewhat
similar way, additionally the tight compression of the
folds may occasionally produce irregular vibrations,
perceived as a crackling quality.

The analysis and matching of inverse filtered voice
samples from subjects with varying voice quality, age,
and sex, permitted to gain understanding of the rela-
tions between the voice source characteristics and the
perceived voice quality [11], [4], [5], [12], [15], [1].

TABLE I

RULES FOR PHYSIOLOGICAL CONTROL OF THE2-MASS MODEL.

Fold elongation ε = G(RaCT − aTA)−HaLC

Fold length L = L0(1 + ε)

Cover depth Dc =
Dmuc+0.5Dlig

1+0.2ε

Fold thickness T = T0
1+0.8ε

Nodal point position zn = (1 + aTA)T/3
Adduction ξ0 = 0.25L0(1− 2aLC)

III. A PHYSIOLOGICALLY CONTROLLED 2-MASS

MODEL

In this section we search a link between laryngeal
muscle activation and mechanical properties of the
low-dimensional 2-mass model depicted in Fig.2 and
based on the Ishizaka-Flanagan model [10]. Low-level
parameters (modal frequencies, effective mass in vibra-
tion, stiffness, fold thickness, fold length, rest position)
are not independently controlled by the vocalist: in
order to understand the oscillatory characteristics in a
physiologically motivated control space, a set of rules
has to be found that transforms muscle activations to
geometrical and viscoelastic parameters of the model.

We follow the analysis by Titze and Story [18] who,
based on experimentations and cadaveric examinations,
developed a set of rules for controlling parameters
of their 3-mass vocal fold model [14]. Specifically,
the model is controlled by the (normalized) activation
levels of three muscles: cricothyroid (aCT ), thyroary-
tenoid (aTA) and lateral cricoarytenoid (aLC).

The 3-mass model developed in [14] uses two masses
to describe the cover tissue and a third, larger mass
to describe the body. In this work we adapt Titze and
Story’s rules set to the 2-mass model by ignoring any
references to this third mass. Therefore we select the
rule subset given in tableI. Here Dmus, Dmuc, and
Dlig are the anatomical resting depths for thyroary-
tenoid muscle, mucosa, vocal ligament, respectively;T0

andL0 are the resting thickness and length, respectively.
The factorsG (gain of elongation),R (torque ratio),
andH (adductory strain factor) are empirical constants
(for this study we letG = 0.2, R = 3.0, H = 0.2
in accordance with [18]). Values forDmus, Dmuc,
Dlig are chosen after [14]. The low-level parameters
k1, k2, k12,m1,m2 of the 2-mass model are then de-
rived from the geometrical parametersDc, T, L, zn,
together with the tissue densityρ, the cover shear
modulusµc, and the cover fiber stressσc [18].

We have developed a MATLAB/Octave1 implemen-
tation of the 2-mass model, completed by the physi-

1Open source software, a high-level language for numerical com-
putations mostly compatible with MATLAB (www.octave.org).
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ological link between laryngeal muscle activation and
mechanical properties of the model, with the activations
aTA, aLC andaCT varying in the range[0, 1].

IV. N UMERICAL SIMULATIONS

The 2-mass model with physiological control was
used to run a set of simulations for the exploration of
the control space(aTA, aLC , aCT ). All the simulations
used a sampling rateFs = 22.05 kHz. The subglottal
pressureps was held fixed at the value0.8 kPa. The
anatomical resting depths of layers of vocal folds tissue
were chosen in accordance with Titze and Story [14].

A. Phonation regions

A first set of simulations was performed in order to
determine the phonation region in the control space.
Simulations were run using two configurations. First an
ideally open glottis (i.e., with zero supraglottal pressure)
was considered. Second, a vocal tract load was taken
into account by coupling the 2-mass glottis model with
a cylindrical vocal tract model.

The phonation region was searched for each of the
two configurations. Following Titzeet al. [18], at each
point (aTA, aLC , aCT ) the existence of self-sustained
stable phonation was determined by applying a zero-
crossing multiple-detector to the last 50 ms of the
simulated glottal area signal. In this way we arbitrarily
not consider “always-open glottis” phonation.

For both configurations, phonation regions are com-
parable with results by Titze and Story [18] on the 3-
mass model. In particular,aCT has little influence on
the shape of the self-sustained phonatory region. For the
open-glottis configuration, it simply acts as a switch that
restricts phonation in the rangeaCT ∈ [0, 0.7], while
for the cylindrical vocal tract configuration phonation
occurs in the entire rangeaCT ∈ [0, 1].

The 2-D phonation region in theaLC-aTA plane
(with aCT fixed) is wedge-shaped. For the open-glottis
configuration, the region is contained in the rectangle
aTA ∈ [0, 0.9] and aLC ∈ [0.35, 0.5], while for
the cylindrical vocal tract configuration the bounding
rectangle is given byaTA ∈ [0, 1] andaLC ∈ [0.2, 0.5].
Thus, following expectations the phonation region is
larger when a vocal tract load is coupled to the glottis.
Given the similarity between these results and those
reported in [18], we consider our selected rules a valid
link between laryngeal muscle activation and mechani-
cal properties of the 2-mass model.

B. A physiological-to-acoustic codebook

Having determined the phonation regions in the
control space, we analyze the properties of the
voice source signal in such regions. We chose
a set of relevant acoustic parameters, namely

TABLE II

PHYSIOLOGICAL-TO-ACOUSTIC CODEBOOK: RANGES FOR THE

RELEVANT VOICE SOURCE PARAMETERS.

F0 SQ OQ OingQ CingQ RQ
Open-glottis configuration

Mean value 251 1.36 0.63 0.36 0.26 0.02
Min. value 217 0.90 0.51 0.29 0.19 0
Max. value 367 2.01 0.94 0.52 0.43 0.13

Cyl. vocal tract configuration
Mean value 253 1.66 0.80 0.49 0.30 0.02
Min. value 179 1.13 0.35 0.23 0.12 0
Max. value 816 2.79 0.90 0.59 0.41

F0, SQ,OQ, OingQ, CingQ, RQ (see section II
for definitions) and developed a MATLAB/Octave
script for automatic analysis and extraction of these
parameters from the glottal flow signal. Using this tool,
the signals produced by every tripleaTA, aLC , aCT

in the phonation region were analyzed, resulting in a
physiological-to-acoustic codebook of the form

(aTA, aLC , aCT ) 7→ (F0, SQ,OQ, OingQ,CingQ,RQ).

Table II provides indications about the ranges of the
voice source parameters within the codebook. From
this, a few remarks can be made.

First, F0 values appear to be high, considering that a
set of parameters typical for males has been used. This
suggests that the choice of physical parameters made in
sectionIII (specifically, keeping the same values used
in [18] for the vocal fold cover tissue, while discarding
any description of the vocal fold body) is not optimal.

Second, values for the return quotientRQ are ex-
tremely low. This reflects a general limitation of low-
dimensional physical models of the glottis, in which
glottal closure always occurs abruptly and results in
poor modeling of the closing phase.

The codebook has been tested in order to verify
its potentials in fitting target flow waveforms. Target
signals were constructed by superimposing a noisy
component to synthetic glottal flow waveforms obtained
from the LF model [8]. The fitting procedure works as
follows:
1. The setF0, SQ, OQ,OingQ, CingQ, RQ of voice
source parameters is extracted from the target signal.
2. A triple aTA, aLC , aCT is determined in such a way
that it minimizes the distance between its image in the
codebook and the target voice source parameter vector.
3. A fitting signal is resynthesized with the 2-mass
model controlled by the selected tripleaTA, aLC , aCT .

Figure3 shows an example of the results. The open-
ing, closing, and flow maximum points (to, tc, te) are
accurately matched. On the other hand the opening and
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Fig. 3. Results from the fitting procedure. The target waveform is
constructed by superimposing a noisy component to synthetic glottal
flow waveforms obtained from the LF model.

especially the closing phases are poorly matched. As
already mentioned, this is an intrinsic limitation of the
2-mass model. As a consequence the time and value of
the negative peak of the flow derivative are mismatched.

V. D ISCUSSION

The results presented in this work are still very pre-
liminary. Among the points that need further discussion
and refinements, the following can be mentioned.

The codebook described in sectionIV does not
include the subglottal pressureps among the varying
physiological parameters. The parameterps is known
to have a major influence on relevant voice source
parameters, in particular the phonation fundamental
frequency is known to increase almost linearly with
ps [16]. For this reason the physiological control space
should be expanded to includeps.

A second limitation of the results comes from the
characteristics of the vocal tract load: neither the open
glottis nor the cylindrical vocal tract configurations
provide a realistic simulation of the load, while it
is known that the load characteristics also influence
relevant voice source parameters (e.g., the glottal flow
skeweness). Better simulations of voice source/vocal
tract interaction can be realized, see e.g. [17].

Finally, as already mentioned, the 2-mass model
provides a poor description of the glottal flow near
closure. While accurate finite-element models are able
to provide qualitative behaviors in agreement with
observations of glottal closure during normal voice
production [9], such behaviors are not easily simulated
with a low-dimensional model.

Nonetheless, the preliminary results suggests that the
proposed approach can be successfully used for voice
source parameters matching applications. The following
points can be mentioned.

First,the nuscle activation control space allow explo-
ration of a wide region of the voice source parameter
space. Second, with respect to our previous works [3],
[7], this approach leads to more robust resynthesis,
since no regressor-based black-box element is used and
consequently stability is guaranteed by construction.
Finally, the same approach can be extended to lower
dimensional glottal models (e.g., [2]), in order to con-
struct an efficient analysis/synthesis tool.
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It has been shown in previous work that 
biomechanical parameters related to the cord body 
dynamics can be indirectly estimated from the 
power spectral density of the mucosal wave correlate 
[4]. In the present study the use of these 
measurements to estimate the presence of parameter 
unbalance will be shown. The role of these 
parameters together with the classical distortion 
ones in relation to pathology detection and 
classification will be explored. Results using 
normophonic as well as pathologic voice will be 
presented and discussed. 

I. INTRODUCTION 

Classically, Voice Processing focused onto detecting 
pathological voice by means of distortion parameter 
estimation directly from the voice trace [7][2], albeit the 
detection process being masked by the vocal tract and 
other supra-structures of the vocal apparatus. More 
advanced methods remove the influence of the vocal 
tract, to obtain an indirect estimation of the glottal 
source [1]. The first and second derivatives of the glottal 
source are correlates of the glottal aperture and the 
relative speed between cord centers of mass [3][5]. The 
glottal aperture correlate can be seen as being composed 
of two main parts: a slow-varying average movement, 
which is referred to as “the average acoustic waveform” 
[8], and a fast-varying waveform, resulting from the 
mucosal wave traveling on the body-cover structure 
[10][11]. The dynamics of the body would be reflected 
in the average glottal aperture, whereas the dynamics of 
the cover would be retained by the mucosal wave 
correlate (see Figure 1).  
 

Body 

Cover 

Upper Lip 
(supraglottal) 

Lower Lip 
(subglottal) 

a) 
Body 
mass 

k-1 Cover 
masses 

b) 

 
Figure 1. a) Cross-section of the left vocal cord 

showing the body and cover structures (taken from [9]). 
b) k-mass model of the body and cover. 

It may be expected that the power spectral density (psd) 
of the average acoustic wave would be determined by 

the dynamics of the cord center of masses, whereas the 
power spectral density of the mucosal wave correlate 
would be mostly influenced by the cover dynamics. 
Moving one step ahead, separating both signals would 
become an important target for estimating vocal fold 
biomechanics. In a previous work [4] it was shown that 
estimates of the cord mass and stiffness could be 
obtained from the power spectral density of the average 
acoustic waveform. Through this paper the methodology 
for parameter unbalance estimation will be presented. 
Experiments using pathologic and normophonic samples 
will also be given. 

II. CORD BODY BIOMECHANICAL ESTIMATES 

Glottal source reconstruction by inverse filtering, as 
used in the present study, is due to Alku [1]. Relevant 
details on its recursive implementation by paired lattices 
are to be found in [5]. By removing the vocal tract 
influence a given voice trace can be processed to render 
the relative speed between cords, the glottal aperture and 
the glottal source as shown in Figure 2.  

 
Figure 2.  Glottal source estimation. a) input voice 

(sample 00B), b) second and c) first derivatives of the 
glottal source, d) glottal source (unlevelled). 

Detecting the cord body mass, stiffness and damping is 
based on the inversion of the integro-differential 
equation of the one-mass cord model 
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where the biomechanical parameters involved are the 
lumped masses Mlb, the elastic parameters Clb and the 
losses Rlb. The equivalent model is shown in Figure 4. 

 
Figure 3.  Estimation of the mucosal wave correlate: a) 

Levelled first derivative of the glottal source, b) 
Levelled glottal source, c) average acoustic waveform, 

d) mucosal wave correlate 

The estimation of the body biomechanical parameters is 
related to the inversion of this model, associating the 
force fxl on the body with the velocity of the cord centre 
of masses vlb in the frequency domain. 

 
Figure 4.  Electromechanical equivalent of a cord body 

The relationship between velocity and force in the 
frequency domain is expressed as the cord body 
admittance. It will be assumed that the power spectral 
density of the levelled glottal aperture (1st derivative of 
the glottal source) is related to the square modulus of the 
body admittance Ybl(s) as 
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acoustic waveform power spectral density and the 
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From this expression the following estimate for the body 
mass may be obtained  
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 could be derived from (4). The cu

a real trace (sample 00B) is shown in Figure 5. 

 
Figure 5.  Parametric fitting of a specific average 

acoustic waveform for sample 00B (full line) against th

A slight unb es may be 
observed in Figure 3.a) and c). Even cycles appear to be 

e 
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III. PARAMETER UNBALANCE 

alance between waveform cycl

larger than odd ones. As estimations of mass, stiffness 
and damping will be available on a cycle frame basis, 
the unbalance of these parameters (BMU – Body Mass 
Unbalance, BLU – Body Losses Unbalance and BSU – 
Body Stiffness Unbalance) may be defined as 
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where 1≤k≤K is the cycle window  
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 index and 
bkbkbk Ĉand,R̂,M̂  are the k-th cycle estimates of mass, 

parameters of in
losses and compliance on a given voice sample. Other 

terest are the deviations of the average 
values of mass, losses and compliance for the j-th 
sample bjbjbj Cand,R,M  relative to average estimates 
from a normophonic set of speakers (inter-speaker) as  square modulus of the cord body admittance. The value 

of the third harmonic will be given by 
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these parameters are know ass n as BMD (Body M
Deviation), BLD (Body Losses Deviation) and BSD 
(Body Stiffness Deviation).  

IV. RESULTS AND DISCUSSION 

The key tool in the classification into pathologic and 
normophoni is Principal c samples used in this research 
Component Analysis (PCA), conceived as the optimal 
solution to find the minimum order of a linear 
combination of random variables xj showing the same 
variance as the original set, where the components of xj 
correspond to different observations (samples) of a 
given input parameter (j-th parameter). A variant of 
Principal Component Analysis known as multivariate 
measurements analysis (see [6], pp. 429-30) has been 
used with the distortion parameters given in Table 1. 

Table 1. List of parameters produced from voice 
Coeff. Description 

x1 pitch 
x jitter 2

x3-5 shimmer-related 
x6-7 glottal closure-related 
x related 8-10 HNR-
x11-14 mucosal wave psd in energy bins 
x15-23 mucosal wave psd singular point values 
x24-32 mucosal wave psd singular point positions 
x33-34 mucosal wave psd singularity profiles 
x35-37 biomechanical parameter deviations (8) 
x38-40 biomechanical parameter unbalance (9) 

Thi tho ophonic 
and th polyps, 6 

s me dology has been applied to 20 norm
hologic samples (4 samples wi 20 pat

samples with bilateral nodules, 5 samples with Reinke's 
Edema, and 5 samples with reflux inflammation) as 
listed in Table 2. Sample conditions are  

N – Normophonic 
BP – Bilateral Polyp 
LVCP – Left Vocal Cord Polyp 
BRE – Bilateral Reinke’s Edema 
BN – Bilateral Noduli 
LR – Larynx Reflux 
RE – Reinke’s Edema 
RVCP – Right Vocal Cord Polyp 

These sa  extract the set of 40 
paramete  subsets were 

mples were processed to
rs listed in Table 1, of which two

defined for classification: S1={x2-39}, including most of 
the parameters available, and S2={x2, x3, x8, x35-39} 
including jitter, shimmer, HNR, deviations (BMD, BLD 
and BSD), and unbalances (BMU and BLU). The results 
of the clustering process are shown in Figure 6 as 
biplots against the two first principal components from 
PCA analysis. It may be seen that the clustering process 
assigned most of normophonic samples to one cluster 

(with the exception of 00B and 024) both for S1 as well 
as for S2. The results using S2 are given in Table 3. 

Table 2. Values of x35-39 for the samples studied 
Trace Condit. BMD BLD BSD BMU BLU 

001 N -0.632 -0.136 -0.540 0.027 0.039
003 N -0.154 -0.145  -0.137 0.079 0.056
005 N -0.039 -0.299 -0.213 0.078 0.044
007 N -0.492 -0.461 -0.573 0.036 0.046
00A N -0.542 -0.207 -0.567 0.065 0.064
00B N? 1.320 0.642 1.250 0.149 0.191
00E N -0.054 0.012 -0.128 0.159 0.098
010 N -0.408 0.164 -0.491 0.115 0.103
018 N -0.031 -0.205 -0.167 0.078 0.076
01C N -0.557 -0.315 -0.581 0.058 0.052
024 N? 0.631 1.330 1.200 0.120 0.124
029 N 0.101 -0.111 0.416 0.057 0.048
02C N -0.329 -0.253 -0.079 0.035 0.040
02D N -0.227 -0.193 0.022 0.116 0.053
032 N -0.507 -0.019 -0.367 0.038 0.071
035 N 0.424 -0.302 -0.021 0.099 0.065
043 N 0.219 0.156 0.466 0.059 0.030
047 N -0.497 1.070 -0.180 0.076 0.052
049 N -0.157 0.160 0.029 0.113 0.079
04A N -0.005 1.770 0.073 0.098 0.075
065 BP 0.240 7.490 3.220 0.835 0.712
069 L  VCP 0.560 3.490 2.460 0.408 0.318
06A BRE 0.142 2.860 1.760 0.300 0.331
06B BN 0.427 3.860 2.150 0.339 0.326
06D BN 0.573 3.540 2.160 0.338 0.339
071 BRE 0.417 3.210 1.870 0.306 0.348
077 LR 2.000 3.170 3.660 0.460 0.320
079 RE 0.658 2.860 2.170 0.396 0.333
07E BN 0.843 2.990 2.340 0.328 0.303
07F LR 0.420 2.850 1.950 0.332 0.309
083 LR 0.253 2.880 1.900 0.391 0.333
092 BRE 0.216 2.750 1.720 0.469 0.353
098 RE 0.187 2.830 1.720 0.360 0.339
09E BN 1.400 11.700 5.510 0.637 0.518
09F LR 0.062 2.920 1.660 0.309 0.334
0A0 R  VCP 0.156 3.020 1.720 0.333 0.338
0A9 L  VCP 0.012 3.600 1.660 0.293 0.311
0AA LR -0.091 2.970 1.600 0.268 0.315
0B4 BN 0.154 4.280 1.870 0.305 0.338
0CA BN -0.057 3.040 1.630 0.310 0.361

Table 3. eri ul S2Clust ng res ts for  
Cluster Samples 
c21 (o) , 01C, 029, 

02C, 02D, 032, 035, 043, 047, 049, 04A 
001, 003, 005, 007, 00A, 00E, 010, 018

c22 (◊) 00B, 024, 065, 069, 06A, 06B, 06D, 071, 077, 079, 
07E, 07F, 083, 092, 098, 09E, 09F, 0A0, 0A9, 0AA, 
0B4, 0CA 

To her c  
the three m vant input parameters in S  as 

furt larify the analysis a 3D plot of the results vs
ost rele 2

established by PCA is presented in Figure 7. The most 
relevant parameter according to this combination seems 
to be BSD (x37). The larger x37, the stiffer the cord and 
the less normophonic the production. The second most 
relevant parameter seems to be jitter (x2). The third 
most relevant parameter is BLD (x36) associated to the 
profile of the spectral profile peak (Q factor). 
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Figure 6.  Left) Clusters for S1. Right) Clusters for S2. 

 
Figure 7.  3D Clustering Plot showing the separation in 
the manifold defined by the parameter subset {x37, x2 

and x36} – ordered by relevance 

The behaviour of cases 00B and 024, classified as 
pathological by PCA analysis deserves a brief comment. 
These appear in Figure 7 (encircled) not quite far from 
normal cases 001-04A, but showing a stiffness that 
doubles those of normophonic samples. Apparently this 
detail was determinant in their classification as not 
normophonic by PCA. This fact was confirmed by their 
values for the BSD in Table 2, being 1.25 and 1.2 
respectively, or 225% and 220%. 

V. CONCLUSIONS 

The methodology presented detects biomechanical 
unbalance from voice records for pathology detection by 
common pattern recognition techniques. Normophonic 
samples show small unbalance indices, as opposed to 
pathologic ones. There is not a specific pattern of 
unbalance related to a given pathology (although more 
cases need to be studied). Biomechanical parameter 
unbalance is a correlate to pathology quantity rather 
than quality. Mild pathologies may appear as 
normophonic from subjective analysis. Adequately 
combining classical distortion parameters with deviation 

parameters renders fairly good results in pathology 
detection. These conclusions need to be confirmed by 
more experiments.   

VI. ACKNOWLEDGMENTS 

This research carried out under grant Nos. TIC2002-
2273, TIC2003-08756 and TIC2003-08956-C02-00,  
from Programa de las Tecnologías de la Información y 
las Comunicaciones, Ministry of Education and Science, 
Spain. 

VII. REFERENCES 

[1] Alku, P., “An Automatic Method to Estimate the 
Time-Based Parameters of the Glottal Pulseform”, 
Proc. of the ICASSP’92, pp. II/29-32. 

[2] Godino, J. I., Gómez, P., “Automatic Detection of 
Voice Impairments by means of Short Term 
Cepstral Parameters and Neural Network based 
Detectors”, IEEE Trans. on Biomed. Eng., Vol. 51, 
No. 2, 2004, pp. 380-384. 

[3] Gómez, P., Godino, J. I., Díaz, F., Álvarez, A., 
Martínez, R., Rodellar, V., “Biomechanical 
Parameter Fingerprint in the Mucosal Wave Power 
Spectral Density”, Proc. of the ICSLP’04, 2004, 
pp. 842-845. 

[4] Gómez, P., Martínez, R., Díaz, F., Lázaro, C., 
Álvarez, A., Rodellar, V., Nieto, V., “Estimation of 
vocal cord biomechanical parameters by non-linear 
inverse filtering of voice”, Proc. of the 3rd Int. 
Conf. on Non-Linear Speech Processing 
NOLISP’05, Barcelona, Spain, April 19-22 2005, 
pp. 174-183. 

[5] Gómez, P., Godino, J. I., Álvarez, A., Martínez, R., 
Nieto, V., Rodellar, V., “Evidence of Glottal 
Source Spectral Features found in Vocal Fold 
Dynamics”, Proc. of the ICASSP’05, 2005, pp. 
V.441-444. 

[6] Johnson, R. A., Wichern, D. W., Applied 
Multivariate Statistical Analysis, Prentice-Hall, 
Upper Saddle River, NJ, 2002. 

[7] Kuo, J., Holmberg, E. B., Hillman, R. E., 
“Discriminating Speakers with Vocal Nodules 
Using Aerodynamic and Acoustic Features”, Proc. 
of the ICASSP’99, 1999, pp. I.77-80. 

[8] Titze, I., “Summary Statement”, Workshop on 
Acoustic Voice analysis, National Center for Voice 
and Speech, 1994. 

[9] The Voice Center of Eastern Virginia Med. School: 
http://www.voice-center.com/larynx_ca.html. 

[10] Story, B. H., and Titze, I. R., “Voice simulation 
with a bodycover model of the vocal folds”, J. 
Acoust. Soc. Am., Vol. 97, 1995, pp. 1249–1260. 

[11] Titze, I. R., “The physics of small amplitude 
oscillation of the vocal folds”, J. Acoust. Soc. Am., 
Vol. 83, 1988, pp. 1436-1552. 

62 MAVEBA 2005

http://www.voice-center.com/larynx_ca.html


This study is an investigation of the effect of the presence of

the flow mask on voicing behaviour. Microphone and flow

recordings were inverse filtered and compared to examine

the  possible  effects  of  the  flow  mask.   Closing  quotient

(ClQ),  open  quotient  (OQ)  and  the  amplitude  difference

between the first  and second harmonics (H1-H2) were the

parameters used to characterise the inverse filtered signals.

The presence of the flow mask used for the recording of oral

flow had an effect on these parameters, which is interpreted

as being indicative of a more tense or more efficient voicing

behaviour in the presence of the mask.

I. INTRODUCTION

One source of objective characteristics of phonation is the

inverse  filtered  oral  flow  or  sound  pressure  wave,  e.g.

[1,2,3]. The former is registered with a flow mask [1] and

the latter with a pressure sensitive microphone at a short dis-

tance from the mouth.  Similar parameters can be extracted

from both, with the exception of DC flow, which cannot be

extracted from microphone recordings.

Each type of voice recording has its own advantages and

drawbacks.  Microphone recordings are non-intrusive, may

produce  more  natural  voicing,  and  are  more practical  for

field-work, but do not easily provide a measure of DC flow.

Flow recordings do provide DC flow, but the experimental

setup is  more complicated,  and the flow mask may affect

voicing behaviour.  Obvious practical advantages make the

microphone the instrument of choice for speech recordings

in voice research.  Furthermore, the information gained from

the DC flow measure is  not fully understood.

DC flow has been investigated by numerous researchers,

e.g [4.5.6], and is used in some measures of breathiness and

vocal efficiency [4,6].  However, the precise relationship of

DC flow to voice  quality  is  unclear.  Large values  of  DC

flow indicate insufficient glottal closure extending into the

membranous part of the vocal folds during maximum glottal

closure, while small values [6] may indicate glottal opening

in the cartilaginous part of the vocal folds during maximum

closure. In [7], it is suggested that there may be two types of

incomplete glottal closure, each of which has different im-

plications for the shape of the glottal waveform.

A glottal chink in both the membraneous and cartilagin-

ous parts of the vocal folds (diag. a in Fig. 1), may indicate

more gradual glottal opening/closing, leading to a more si-

nusoidal waveform.  When the glottal chink is found in only

the cartilaginous parts of the vocal folds, the glottal wave-

form may show abrupt changes in flow, despite presence of

DC flow (diag. b in Fig. 1). Thus, DC flow may  not be an

Fig. 1. Two ways to model glottal leakage: a) a linked leak

created  by  abduction  and  b)  a  parallel  chink  in  the  car-

tilaginous portion of the glottis.  Taken from [7].

 

 accurate means of determining voice efficiency.  It is even

suggested  [6]  that  small  amounts  of  DC  may  be  due  to

vertical  phasing  as a  result  of  a  mucosal  wave,  in voices

where there is complete closure.

As long as the relationship between DC and the glottal

waveform remains unclear and even contradictory, there is

no  reason to  prefer flow recordings  over   microphone re-

cordings for voice analysis, and it may be preferable to fo-

cus on the parameters which do indicate a consistent rela-

tionship, although this depends on assumptions made about

the relationship between flow and microphone recordings.

Theoretically, parameters extracted from either type of re-

cording should represent the same information [8]. In earlier

work [9], flow derivative and sound pressure were compared

for a group of 70 subjects. The recordings were made in a

loosely  controlled  situation,  where subjects  were asked to

phonate  as naturally  as  possible.  The recordings  were in-

verse filtered, and source parameters were extracted  from

each voicing condition for each subject. Since the subjects

produced the two recordings within a relatively short period

of time of about five minutes,  large between-session vari-

ance was not expected. Perceptual tests were not carried out,

as the mask distorts the acoustical signal so that perceptual

comparisons are not possible.

The  results  of  a  microphone/flow comparison  were not

similar.  When the data for each subject were analysed, the

flow  and  microphone  parameter  values  did  not  correlate.

Moreover,  analyses  of  variance  indicated  that  there  were

statistically significant differences between flow and micro-

phone results.  A number of possible reasons were suggested

for  this.   Normal  within-subject  variation  may  be  large

enough [4] that direct comparisons of separate utterances for

the same speaker cannot be made in a loosely controlled ex-

perimental setup. Subjects were sometimes perceived to be

uncomfortable with the mask, and this may have introduced

physical  tension  in  the  voicing  apparatus  in  general.  The

acoustic distortion produced by the mask may also have an

effect on the data. Auditory feedback for the subject wearing

the mask is muffled, and this could also lead to some change
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in voicing strategy in phonation production in the presence

of the mask.

While it is very difficult to make direct comparisons on

different utterances, such large differences between flow and

microphone data were not expected.  A more thorough un-

derstanding  of  the  comparability  of  flow and microphone

signals is important, as research on the voice source in the

speech community comes from both flow and microphone

data,  and  both  are  used  to  characterise  aspects  of  voice

quality for many purposes. The aim of this study then was to

compare,  under  more  controlled  circumstances,  phonation

produced with and without  a flow mask. A single  subject

experiment was designed to give maximal control over the

possible confounding factors suggested from the results  of

the  previous  work  and we present  here  the data  that  was

collected from such a setup.

II. METHODOLOGY

Subject: The subject was a female phonetician with experi-

ence in producing experimental speech, and who was famili-

ar  with the aims of  the experiment.  A single  subject  was

chosen for this analysis for three reasons.

Firstly, laryngeal settings for normal voice production can

differ considerably from subject to subject.  Distinctive indi-

vidual  differences  within  a  subject  group  may  make  the

comparison and interpretation of mean scores spurious for

this particular investigation.

Secondly,  a  speaker  with  some  experience  and  under-

standing of the production of different voice qualities was

required.  In order to get an impression of whether the in-

verse filtering produced realistic parameter values for both

flow and microphone utterances, the subject was required to

produce three different voice qualities for which relative val-

ues are already established in other published research.   If

the relative values produced for the different voice qualities

concur with those of other research, this would help to con-

firm that the signal processing procedure was robust.

Thirdly, it was necessary to control phonation in order to

limit within-speaker  variability as much as  possible.   The

production of voice tokens which are as similar as possible

requires insight and control which naïve subject groups may

not have. We therefore wanted a speaker who was properly

trained in the area of voice production.

Although the results of a single subject experiment cannot

be  generalised  to  the  population  as  a  whole,  if  a  single

trained speaker does not produce comparable voicing beha-

viour for mask and no-mask conditions, then we would reas-

on that an untrained speaker is even less likely to do so. 

Phonation  Task:  The  utterance  /paepaepaepae/  was  pro-

duced by  the subject,  at  a rate  of  about  1.5  syllables  per

second, using modal voice, and also using assumed breathy

and creaky voice.  For each voice quality, 20 repetitions of

the utterance were recorded first  with  a pressure sensitive

microphone and then with a Rothenberg mask. In total, 40

utterances  in  each  voice  quality  were  recorded.  A  voice

therapist was present during all recordings to ensure that the

required  voice  qualities  were  actually  produced.

Fundamental frequency was kept constant at around 173 Hz,

using a tuning fork for reference at the beginning of each

sequence of utterances.

Measurements:  Microphone recordings were made with  a

Bruel and Kjaer (B&K) microphone (4133) at approximately

10cm from the mouth and a B&K amplifier 2619.

Oral flow was measured with a circumferentially vented

pneumotachograph mask (Glottal Enterprises) with a heated

double  screen  wire  mesh,  in  combination  with  a  Glottal

Enterprises  amplifier  (MS-100A2).   Before  and  after  the

flow recordings, the flow sensors were calibrated in order to

get absolute flow measures and to ensure the consistency of

the measurements.

The signals were recorded synchronously on an analogue

14-channel  FM-recorder  (TEAC  XR510).  The  recordings

were made at a tape speed of 19.05 cm/s allowing  a flat

frequency response  up  to  5kHz.   The microphone  signals

were recorded on 3 different channels with low, medium and

high input gains.  In this way, at least one version of each

signal  would  have an acceptable  SNR.  Flow signals  were

similarly recorded at  two different  levels on  two different

channels.

Signal Processing: All signals were synchronously digitised

at a 10kHz sampling rate. 

The  microphone  signal,  which  prior  to  digitisation  had

already been filtered by means of an analogue high-pass fil-

ter (cut-off  frequency 22.4Hz) in the B&K amplifier,  was

treated with a second digital high-pass filter to eliminate any

remaining  low frequency  distortions,  using  a  linear  phase

filter and with a cut-off frequency of approximately 20 Hz

and  a  flat  frequency  response  above  70Hz.   It  was  then

phase-corrected  to  compensate  for  phase  distortion  intro-

duced  by  the analogue  high-pass  filter  of  the microphone

amplifier.  This signal was automatically inverse filtered by

means of pitch synchronous inverse filtering using covari-

ance LPC on the closed glottis interval (CGI).  The start of

the CGI was determined from the peak in the EGG derivat-

ive.  The inverse filtered signal was then low-pass filtered at

1500Hz, again using a linear phase filter.

The calibrated flow signal was inverse filtered in the same

way as the microphone signal and low-pass filtered with a

linear phase filter with a cut-off frequency of 1500Hz.

Characterisation of the acoustic voice source: OQ and ClQ

were extracted from each glottal  cycle over the stable sta-

tionary parts of the vowel in order to compare results from

the most reliably inverse filtered speech samples.  A modal

value was  determined for each utterance. Fig. 2 shows the

moments on the  source wave which were used to calculate

OQ and ClQ. The spectral parameter H1-H2 was calculated

from the sections at the start of the final vowel.  These 
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Fig.2  Moments  on  the  glottal  flow  waveform (upper  win-

dow)  and flow derivative  (lower  window)  from which  the

time-related parameters OQ and ClQ were derived. OQ is

derived as (Ci+1 –  Oi)/( Ci+1  – Ci)  and ClQ is derived as

(Ci+1 – Pi)/(Ci+1 – Ci)

selections were divided into equal length sections of 1024

samples.  The first harmonic peaks in the spectrum were de-

tected, and their frequencies and amplitudes were recorded.

H1-H2 repesents the difference in amplitude (dB) between f0

and the component with double that frequency.  The values

used in the comparison were average values from the 1024

sample sections.  As a mean value was used, we decided not

to include the dying out part of the last vowel, where vocal

effort would be reduced such that the laryngeal musculature

would  relax  and produce a  less efficient  voice.   This  ap-

proach was  tested  on  data  from earlier  work  [9],  and  the

spread of values per glottal cycle was smaller, giving more

representative values for the utterance.

III.  ANALYSIS

Fig.  3  shows  scatterplots  of  the  data  separated  for

flow/microphone  recordings  (mask/no-mask  conditions).

The visual data indicates that the mask has some effect on

the source parameters.  A statistical power calculation could

not be made for the estimation of an appropriate significance

level, as there is insufficient normative data for estimating  a

perceptually  relevant  difference  in  our  parameters.   We

chose  to  look  at  effect  size  �p
2, when  p� 0.01.  It  was

expected that, as the subject concentrated on maintaining a

stable  voice  quality,  much  of  the  variance  would  be

attribuatable to the experimental conditions,  and the effect

of the mask, if present, should be clear.  A real effect of the

flow  mask  was  considered  present  if,  for  an  analysis  of

variance1 (ANOVA),   there was a medium effect size  �p
2,

(0.15 > �p
2 > 0.06)  [10] for values of p � 0.01. Significant

results are shown in bold in Table 1.

1 Type II ANOVA, calculated according to the principle of margin-

ality, testing each term after all others, ignoring the term's higher

order relatives [11, 12]

V. RESULTS AND DISCUSSION

Relative parameter  values  mostly concur  with  other  re-

search. Breathy voice has larger OQ, smaller ClQ and larger

H1-H2  values  than  modal  voice.  Creaky voice  shows  a

greater range of values than modal voice and has larger ClQ

and smaller  H1-H2 values.   Modal   and  creaky OQ were

centred  around  similar  values,  but  were  more  spread  for

creaky voice.  Modal values are close to what has been ob-

served  for  pressed voice.   The  voice  therapist  who  was

present at the recordings  confirmed this perceptually . It is

reasonable to expect that if the known differences between

voice qualities are properly represented, then the unknown

effect of the mask will also be properly represented.

Table  1.  ANOVA results:  effects  of  the mask  factor,  with

means and standard deviations (sd)

F

(df=1)

mean(sd)

mask

mean(sd)

no-mask

p �p
2

breathy

H1-H2 0.00 -16.60(3.0) -16.59(5.57) 0.96 0.00

ClQ 39.69 0.36(0.02) 0.41(0.03) 0.00 0.42

OQ 98.60 0.73(0.03) 0.81(0.02) 0.00 0.71

modal

H1-H2 43.26 -0.87(0.8) -2.94(1.12) 0.00 0.54

ClQ 23.73 0.21(0.02) 0.24(0.03) 0.00 0.36

OQ 1.53 0.51(0.03) 0.53(0.01) 0.22 0.03

creaky

H1-H2 1.72 -0.85(2.43) -2.11(4.2) 0.20 0.04

ClQ 114.36 0.16(0.01) 0.21(0.02) 0.00 0.68

OQ 39.61 0.43(0.03) 0.57(0.11) 0.00 0.44

As  can  be  inferred  from Table  1,  values  for  the  three

chosen parameters were lower for  mask condition than for

no-mask condition.  Mask values were less spread than  no-

mask values. Of the nine combinations of voice quality and

source parameter, only two (H1-H2 for  creaky and breathy

voice)  showed  mask  values  that  did  not  conform  to  the

overall result. Another  combination,  OQ for  modal  voice,

followed the general trend of values, but did not represent a

significant result according to the set criteria. Although an

effect was not demonstrable for these three combinations of

dependent variable and mask factor, the effect is systematic-

ally present for the other six combinations.  This is suppor-

ted by the large effect size for  these combinations.  

The generally lower H1-H2, ClQ and OQ values could in-

dicate more deliberate and tense vocal behaviour.  Auditory

feedback of  muffled speech produced with the mask is a

likely cause of this effect.  Muffled auditory feedback may

influence  the  speaker  to  put  more  effort  into  accurately

producing the intended voice quality.   The smaller spread of
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mask values  may reflect extra focussing  on the phonation

task. It is interesting to note that the mask seems to reduce

parameter variability on a subconscious level,  but that the

speaker was not able to consciously limit variability.

V. CONCLUSION

There was a systematic difference between source para-

meters extracted from flow and microphone speech.  Flow

mask recordings produced lower parameter values than mi-

crophone  recordings.   This  may  indicate  increased  vocal

tension, more deliberate vocal behaviour caused by muffled

auditory  feedback,  or  a  combination  of  both.  This  effect

should be noted in  future comparisons of flow and micro-

phone data 
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Abstract 
This paper describes an original experimental 

procedure to measure the mechanical interaction between 
the tongue and teeth and palate during speech production. 
It consists in using edentulous people as subjects and to 
insert pressure sensors in the structure of their complete 
dental prosthesis. Hence, there is no perturbation of the 
vocal tract cavity due to the sensors themselves. Several 
duplicates are used with transducers situated at different 
locations of the complete denture according to 
palatography’s results, in order to carefully analyze the 
production of specific sounds such as stop consonants.. It 
is also possible to measure the contact pressure at 
different locations on the palate for the same sound.  

 
Index Terms—speech production, tongue/palate 

interaction, complete denture, pressure transducer 
 

I. INTRODUCTION 

 
Speech motor control has been often compared with 

the control of other skilled human movements such as 
pointing or grasping [1]. This approach was very helpful 
and permitted the elaboration of important hypotheses 
that were the basis of major speech production theories. 
However, a peculiarity of speech movement has been 
often overseen, namely the fact that speech articulators, 
and especially the tongue, are not moving in a free space. 
Indeed, the vocal tract is a very narrow space, and tongue 
is most of the time in mechanical interaction with 
external structures, such as the palate or/and the teeth. 
Hamlet & Stone [2] and Fuchs et al. [3] have found a 
number of evidences supporting the hypothesis that these 
external structures would be integrated in speech motor 
control strategies, and would, consequently, significantly 
contribute to the control of speech movement accuracy. 

Now, two questions can be raised: 
(1) What is the quantitative nature of the 

interaction between tongue and external 
structures? In other words, are these structures 
only geometrical limits of the space in which 
tongue is allowed to move, or are they 
mechanical objects that are actually used to 
position and shape the tongue? 

(2) What are the changes in speech motor control 
strategies induced by dramatic modifications 
of these external structures, as it is the case for 
instance for edentulous people? 

Quantitative measurements of the intensity of the force 
exerted by the tongue on the teeth provide an interesting 
basis to address these issues. In addition, this technique 
provides interesting information about the order of 
magnitude of the intensity of muscular forces involved in 
the generation of tongue movements during speech 
production.  

In this aim, a number of experimental set-ups have 
been developed in the past to measure tongue pressure 
against the palate in various experimental conditions [4]. 
The limits of these techniques, beside the inherent 
complexity of their calibration, lie in the fact that they 
actually induce slight perturbations of the speech 
production, because they modify the geometry of the 
vocal tract. Honda et al. [5] have shown that speakers can 
compensate quite easily and quite quickly for brutal 
changes in the thickness of an inflated palate, in that 
sense that they could adapt tongue positions in reference 
to the variable palatal shapes. However, it is not clear 
whether the intensity of the palate/tongue interaction was 
or not affected by these brutal changes.  

In this paper, we will present a new experimental 
procedure that aims  

(1) at measuring the interaction between tongue, teeth 
and palate without perturbing the production of speech, 
and  

(2) at studying how speech motor control strategies 
evolve for edentulous people, from the moment where an 
artificial denture is put back in the mouth. Finally, 
preliminary results of a pilot study will be presented. 
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II. EXPERIMENTAL DEVICE AND METHODS 

 
The basic principle and the originality of the method 
presented in this paper is to use edentulous people as 
subjects, and to insert pressure sensors in their complete 
dental prosthesis, in such a way that the geometry of the 
vocal tract remains exactly the same as when their normal 
dental prosthesis is in place.  
 
A. Experimental device 
General description 

The complete denture, in which the pressure sensor is 
included, is placed inside the mouth. A sheath goes from 
the premolar area to the connector placed outside the 
mouth, via the labial commissure. Then, a wire goes from 
the connector to the amplifier, from the connector to a 
data sampling board and then to the computer. 
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A microphone is also connected to an amplifier to 
record the acoustic speech signal simultaneously with the 
pressure exerted by the tongue against the palate and/or 
the teeth. This amplifier is in turn linked to the data 
sampling board. 
 
Description of the complete dental prosthesis 

The dental prosthesis is made of resin and consists of 
complete artificial denture and of an artificial palate. 
Artificial teeth are similar in shape and size to natural 
teeth. The artificial palate must be at least 3mm thick to 
avoid breakage. Hence, both the pressure sensor and the 
wires connecting it with the connector outside of the 
mouth can be easily inserted in the prosthesis, without 
creating any additional change of the oral cavity (fig. 1). 

For each edentulous patient, the dental prosthesis that 
is designed for obvious medical purposes is accurately 
duplicated thanks to a specific prosthesis design 
technique. Several duplicates are thus realized, in order to 
have different possible positions for the pressure sensor. 
Thus, the sensor can be inserted in the prostheses before 
the experiment with the patient, and no time is wasted 
during the experiment itself, when the tongue palate/teeth 
interaction is measured at different locations. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: Complete dental prosthesis with a sensor 
inserted in a front incisor. The wire connecting the 
sensor to the external connector can be seen on the 

right hand side of the picture, at the level of the first 
premolar. It goes then to the sensor inside the 

structure of the palate. 

 
Pressure sensor description 

The sensor is made of a strain gauge sensor which is 
composed of thirteen layers (fig. 2). Each layer plays an 
important role in measuring capabilities of the transducer. 

The intraoral area is a very difficult environment 
mainly because of three factors: 

• Permanent moisture due to saliva 

• Variable temperature 
• Mechanical constrains 

Therefore, the sensor must be electrically insulated and 
water proof. Moreover, it must be sturdy in order to go 
through several experiments. 

 

5mm3mm 5mm3mm 5mm3mm

Figure 2: The 13 layers of the pressure sensor 
 

The middle layer is made of a steel cantilever beam 
which is 10/100 mm thick. It supports on each side an 
active strain gauge. The gauges (Vishay, ref EA06 062 
AQ 350) are placed in a half Wheatstone bridge 
configuration.. This strain gauge has been chosen because 
of its stability in temperature.  

Gauges are bonded on a metallic support with M-
Bond 200 adhesive (Vishay measurement group). Wires 
of 0,1mm diameter are soldered with tin on the gauge. 
The area of solder is 1mm2 small and there are 4 points, 2 
by side. 

The two next layers are made of protective coating. M-
Coat A (Vishay measurement 
group). 

Sensor 

 
In any case, during the 

construction, the thickness of all 
the liquid components such as 
protective coating or bonding 
must be very small, in order to 
preserve the mechanical 
properties of the sensor. 
Consequently just one application 
of each component by layer can 
be done. 

3mm 

Wire inserted in the resin 

5mm

Figure 3 shows a detailed 
picture of such a sensor. 

 
 
 
 
 

Figure 3: The pressure sensor connected to its wire.  
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Associated instrumentation tools: 
 

Before sampling the signal goes through an amplifier 
(2100 series by Vishay Measurement) featuring a digital 
control display and different settings possibilities with 
2100 maximal gain range and a bandwidth of 5kHz (at 
0,5dB, and  15 kHz at -3 dB). It can hold up to two 
transducers. 

To record the acoustic signal, a microphone is placed 
near the patient. It is linked with an amplifier and then 
with the data sampling board (DT 9800 series by Data 
translation) that is connected directly to the host 
computer via an USB port. This board can accept up to 
16 analog inputs that can be simultaneously sampled at 
different rates (from 50 Hz to 20 000 Hz). For these 
experiments, 2 or 3 inputs are used: one for the acoustic 
signal and one or two for the tongue pressure. 
 
B. Methods 
 
Pressure sensor calibration 
 

Since the transducers are handmade, some differences 
can exist between them. Therefore, they have to be 
calibrated individually to convert electric signals into 
mechanical units such as strength or pressure. 

The soft body characteristics of the tongue suggests 
that pressure should be more appropriate. Indeed, due to 
the tongue deformation in contact with a solid structure, 
the contact area is always large and can't be reduced to a 
specific point. However, the transformation of the sensor 
displacement into mechanical pressure is not obvious, 
because of the visco-elastic properties of the tongue. 
Indeed, in case of contact with external structures, the 
shape of the tongue varies over time and this variation is 
strongly dependent of the visco-elastic properties of the 
tongue. Hence, establishing a good approximation of the 
relation between the strain exerted on the sensor and the 
contact pressure is not a simple task. In this aim, we 
designed and tested 2 different devices to calibrate the 
sensors: 

- The first device uses weights to convert electrical 
signals into strength. 

This is the fastest and easiest way to calibrate the 
transducer. Small lead beads hanging out of the middle 
of the edge of the steel cantilever beam were used. 
Since the weight of the lead is known, the electric 
signal can be converted into mechanical strength. This 
allows an evaluation of the intensity of the mechanical 
interaction, as well as a comparison of them under 
different experimental conditions. However, it is not a 
good approach to quantitatively asses their absolute 
values of the pressure at contact location. 

 

- The second device called “dried water column” 
converts electric signals into pressure. 
The weight of a water column is applied on the whole 

surface of the sensor. A latex membrane which is not 
tensed (to avoid signal due of it) is attached to the end of 
the column and is in contact with the sensor. The electric 
signal is compared to the level of water. This is a nice 
way to account for the soft body characteristics of the 
tongue, and to give an idea of the pressure at contact 
location. However, it does not model the true viscoelastic 
characteristics of the tongue. Consequently, the 
conversion from sensor displacement to contact pressure 
does not strictly apply to the contact between tongue and 
teeth and palate. 

In both cases, the calibration of the sensors has to be 
done very carefully and to be explained in order to know 
what kind of information can be extracted from the data. 

 
Palatography 
 

In order to know with enough accuracy where the 
sensors should be inserted to measure tongue-palate/teeth 
interaction during speech production, the exact locations 
of the main contact regions have to be determined. [6]. 
This is why, during a preliminary session, palatographic 
recordings are carried out, with the prosthesis in the 
mouth  

 

Figure 4: Tongue contacts regions on the prosthesis 
obtained with palatography for /t/ (left) and /d/ 

(right), and for a female subject in a pilot experiment. 

 
With complete dental prostheses, electropalatagraphy 

(EPG) can not be used because of obvious 
incompatibility reasons between the prosthesis and the 
EPG device [7]. Therefore, pink powder (occlusion spray 
red “okklufine premium™”) is applied on the teeth and 
on the artificial palate. When tongue is in contact with 
one of these structures, the powder is removed from the 
area of contact. Thus, when the subject is asked to 
pronounce a specific phoneme in isolation, the edges of 
the contact areas can be determined for this phoneme. 
These edges are highlighted with a black pen before 
removing the powder. This technique is not as accurate as 
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EPG, but accurate enough to determined where to set the 
sensor when tongue and palate/teeth interaction is 
investigated for this phoneme. 

Figure 4 shows an example of the results thus obtained 
during the production of the alveolar stops /t/ and /d/, for 
a female subject in a pilot experiment. 

 
 Data acquisition 

As exemplified above, for each subject, each prosthesis 
is dedicated to the measurement of tongue – palate/teeth 
interactions in a vocal tract region that  is strongly related 
to the production of a specific phoneme. Sounds are 
repeated several times by the subjects both in isolation 
and within short carrier sentences such as, for the alveolar 
stop /t/, “toto a têté sa tétine”. 

For each sound, according to the palatography results, 
the transducers are placed in the specified area.  

 
III. RESULTS 

 
Figure 5 shows an example of results obtained for /d/ 

in a pilot study carried out with an 80 years old female 
subject. The sensor was inserted in the most front contact 
area measured with palatography (see fig. 4, right panel). 
It can be seen that the acoustic release of the stops is 
well-synchronized with the abrupt decrease of tongue 
pressure in the palate. The vertical axis represents the 
intensity of force exerted by the tongue on the steel 
cantilever. 
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Figure 5: Acoustic speech signal (low panel) and 
tongue force in the alveolar region (upper panel) 

during two repetitions of [de] 
 
Obviously, the pressure patterns depict a noticeable 

variability. The origin of this variability has to be 
clarified, to know whether it is related to the experimental 
device or whether it reveals the intrinsic intra-speaker 
variability of speech production. The maximal order of 
magnitude of the force is around 0.003N which is in 
agreement with other kind of data published in the 
literature. 

 
IV. CONCLUSION 

 
An original device for the measurement of the 

mechanical interaction between tongue and teeth and/or 
palate was presented. It adapted to a specific kind of 
subjects, namely edentulous patients. Using the complete 
dental prosthesis to insert force sensors, the device 
permits the measurement of contact pressure without 
introducing any additional perturbation than the 
prosthesis it self.  

This experimental setup will permit to study speech 
production either by patients who have been wearing 
their prosthesis for years and have completed the 
adaptation process to it, or by patients that just received 
the prosthesis, in order to study how they adapt to its new 
denture.. 
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Performance of glottal inverse filtering (IF) is 
evaluated in this paper by using speech material 
produced with computational modelling of voice 
production represented by an aeroelastic model 
of vocal folds and a Finite Element (FE) model of 
the vocal tract. An inverse filtering algorithm 
was used in order to estimate the glottal flow 
from the speech pressure signal generated by the 
model. Comparison between the estimated 
glottal flow and the original flow generated by 
computational modelling shows that the IF 
method is able to yield an accurate estimate for 
the glottal flow. 

  
 

I. INTRODUCTION 
 
Inverse filtering (IF) is a non-invasive method to estimate 
the source of voiced speech, the glottal volume velocity 
waveform. In this technique, a model for the vocal tract 
transfer function is first computed. The effect of the vocal 
tract is then cancelled from the produced speech 
waveform by filtering this through the inverse of the 
model. As an input to IF, it is possible to use either the 
oral flow recorded in the mouth with a flow mask (e.g. 
[1]) or the pressure waveform captured by a microphone 
in free field outside the mouth (e.g. [2]).  
 Performance of an inverse filtering method is 
practically impossible to assess with natural speech. This 
comes from the fact that it is not possible to analyse how 
closely the estimated glottal flow given by an inverse 
filtering algorithm corresponds to the true glottal flow 
because the latter can not be measured. It is, however, 
possible to assess inverse filtering by using synthetic 
speech that has been created using a known, artificial 
waveform of the glottal excitation. This kind of 
evaluation, however, is not truly objective, because 
speech synthesis and inverse filtering analysis are 
typically based on similar models of the human voice 
production apparatus (e.g. the source filter model [3]). 
 In the current study, we combine physical modelling 
of voice production in order to synthesize speech with a 

known, realistic glottal flow waveform. By using the 
pressure signals given by the physical models as an input 
to an inverse filtering method, it is then possible to 
analyze how closely the obtained estimate of the voice 
source matches the original glottal flow.  
 The paper first describes in section II the 
methodology used both in physical modelling (sections 
IIA and IIB) and in inverse filtering (section IIC). The 
results obtained for a sustained male vowel are described 
in section III and the paper is finished with short 
conclusions in section IV. 
 

 
II. METHODOLOGY 

 
A. Aeroelastic model of the vocal folds 

 
Recently an aeroelastic model was developed by Horáček 
et al. [4, 5] that allows numerical simulation of self-
oscillations of the vocal folds. The incompressible 1-D 
fluid flow theory is used in the model for expressing the 
unsteady aerodynamic forces and the Hertz model is used 
for the impact forces. The parameters of the model, i.e., 
the mass, stiffness and damping matrices are 
approximately related to the geometry, size and material 
density of real vocal folds as well as to a prescribed 
fundamental frequency (F0) and damping. In this 
contribution, the output of the numerical simulation, i.e., 
the intraglottal airflow rate is used to excite an FE model 
of human vocal tract representing the vowel /a/.  
 Symmetric oscillations are assumed and hence the 
vibration of only one vocal fold is modelled. Vocal fold 
oscillations are simulated by a vibrating element of length 
L with mass m and moment of inertia I with two-degrees-
of-freedom supported by an elastic foundation in the wall 
of a channel conveying air (Fig. 1). The motion of an 
equivalent three mass system on two springs can be 
described by the following equation:  
 

0FVKVBVM =+++ &&& , (1) 

 
where KBM ,,  are the structural mass, damping and 
stiffness matrices, respectively, and TV=[V1(t),V2(t)] is the 
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vector for rotation and translation of the vibrating 
element. The vector for nonlinear aerodynamic and 
collision forces can be expressed as 
 
TF = [F1(t), F2(t)],         
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where the superscripts of V1 and V2 denote the order of 
time derivatives and Ki,j,k,l are constant coefficients. For 
the numerical simulations Eq. 1 was transformed into a 
system of four 1st order ordinary differential equations 
and 4th order Runge-Kutta method was used for the 
calculations. 
 The following parabolic function is used to 
approximate the geometry of the vocal folds: 
 
a(x) = 1.858 – 159.86 x2       (3) 
 
The airflow velocity U0 at the inlet (x=0) to the glottal 
region is simply related to the mean glottal volume 
velocity according to 0 02Q U H h= and to the static 
subglottal pressure according to: 
 

[ ]{ }22
sub 0 0 01/ 2 / ( )P U H H a Lρ= −     (4) 

 
During the vocal folds collision, the static subglottal 
pressure is constant that equals the pressure in the lungs 
(Plungs). H0 and h denote the height and width of the 
channel, respectively. Using tissue density 

hρ =1020kg/m3, thickness L=6.8mm and length of the 
vocal fold h=10mm, eccentricity (e), total mass (m) and 
moment of inertia (I) were calculated. As the value of air 
density we used ρ =1.2kg/m3.  A tuning procedure was 
used to adjust the stiffness of the elastic foundation of the 
vibrating element and the damping coefficients in order 
to approximate the fundamental frequency F0 by setting 
the natural frequencies f1=F0, f2=F0+5Hz and 3dB half-
power bandwidths ∆f1,2 of both resonances. The optimum 
distance between the two supporting springs was adjusted 
to l=0.344L, for which the real values of the stiffness 
coefficients c1, c2 can be calculated for the prescribed 
frequencies f1, f2. In the example studied in this paper, the 
following values were used for the input data: 
prephonatory glottal half-width g=0.2mm, F0≅100Hz,  
∆f1=23Hz, ∆f2=29Hz, U0=1.6m/s, Q=0.18l/s, 
Plungs=380Pa and the Hertz coefficient for the vocal folds 
collisions kH=730Nm-2/3. The following main output data 
resulted from the simulation: open quotient OQ=0.72, 
skewing (speed) quotient QS=1.56, closing quotient 
CQ=0.28, fundamental frequency F0=1/T=100.77Hz 

calculated from the period T of the self-oscillations, 
maximum glottis opening GO=1.27mm, maximum 
impact stress IS=1328Pa and supraglottal pressure 
SPL=124dB. 

 
Figure 1. Two-degrees of freedom model of the vocal 
fold.  
 
B. FE model of the vocal tract 
 
FE modelling was used in numerical simulation of the 
vocal tract filtering by using the Czech vowel /a/ 
produced by a male speaker. The model was designed 
based on MRI data described in [6]. The vocal tract 
geometry was obtained from a native Czech speaker 
during phonation. The MRI of the vocal tract for the mid-
sagittal cross-section and the designed FE model are 
shown in Fig. 2. The vocal tract was modelled by the 
ANSYS FE code using acoustics finite elements FLUID 
30 with speed of sound c0=343m/s and ρ =1.2kg/m3. 
 The acoustic pressure p is described by the equation: 
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and in FE formulation it can be written in the matrix form 
in the global co-ordinate system as 
 

)(tfPKPBPM =++ &&&
       (6) 

 
where M, B, K are the mass, acoustic boundary damping 
and stiffness matrices, respectively; P and f are the 
vectors of nodal acoustic pressures and excitation forces, 
respectively. The transient analysis with the Newmark 
integration method was used for numerical simulation of 
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the acoustic signal near the lips whereas the excitation 
was applied at the position of the vocal folds. The effect 
of outgoing acoustic energy was modelled by an 
absorption boundary condition at the lips, where a 
boundary admittance was prescribed in correspondence to 
the 3dB half-power bandwith known for formant 
(acoustic resonant) frequencies. The excitation signal was 
the intraglottal airflow volume velocity Q(t) resulting 
from the aeroelastic model of the vocal folds. 

/á/
 

 
Figure 2. MRI of the male subject during phonation 
(upper) and FE model of the vocal tract for the Czech 
vowel /a/ (lower). 
 
C. Inverse filtering 
 

The inverse filtering method used is based on our 
previous experiments in developing automatic methods to 
estimate the glottal flow from the speech pressure 
waveforms with the Iterative Adaptive Inverse Filtering 
(IAIF) method [7]. The current method, the flow diagram 
of which is shown in Fig. 3, is a slightly modified version 
from our previous ones. Parametric spectral models that 
are used in various blocks of the flow diagram are 
computed with the Discrete All-pole Modeling (DAP) 
method [8] instead of the conventional linear predictive 
analysis. This makes it possible to obtain estimates of the 
formant frequencies that are less biased by the harmonic 

structure of the speech spectrum. The detailed description 
of the IAIF-method can be found in [9].  

The IAIF method has limitations. It is based on 
straightforward linear modelling of speech production 
without taking into account, for example, the interaction 
between the glottal source and the vocal tract. Moreover, 
the digital model of the vocal tract is a pure all-pole filter, 
which is not accurate for nasals. Despite these inherent 
limitations, the proposed technique provides a promising 
method to estimate the glottal flow especially given the 
fact that the method can be implemented (if desired) in a 
completely automatic manner with a reasonable 
computational cost. 
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      filtering 

2. DAP-analysis
    (order 1) 

3. Inverse filtering 
4. DAP-analysis 
    (order p) 

5. Inverse filtering 6. Integration

7. DAP-analysis 
    (order g) 

8. Inverse filtering 9. Integration

10. DAP-analysis 
      (order r) 

11.Inverse filtering 12. Integration

Figure 3. Block diagram of the IAIF method 
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III. RESULTS 

 
The vowel sound produced by the physical modelling 

was inverse filtered with the IAIF method by using the 
following parameters (see Fig. 3): p = r = 12, g = 4. The 
sampling frequency was 10 kHz. The length of the 
analysis window was 50 ms. The lip radiation effect 
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(blocks no 6, 9 and 12 in Fig 3) was cancelled by a first 
order all-pole filter with its pole at z = 0.96. 

The glottal flow estimate computed by the IAIF 
method is shown together with the original flow 
generated by physical modelling in Fig. 4. Both of the 
two time-domain waveforms were parameterised using 
the Normalized Amplitude Quotient (NAQ) [10]. The 
value of the NAQ parameter equalled 0.2085 and 0.2038 
for the original and estimated flow, respectively. Hence, 
in terms of the NAQ parameter, the difference between 
the estimated glottal flow and the original one was 
approximately 2 %. 

 
 

Figure 4. Speech pressure signal (top) and glottal flow 
(middle) generated by physical modelling. Estimated 
glottal flow (bottom) given by inverse filtering. All 
signals are in the time-domain, length of panel 40 ms.  
 

IV. CONCLUSIONS 
 

Evaluation of inverse filtering methods is problematic 
because direct measurements of the glottal flow are 
difficult, if not impossible. In addition, using synthetic 
speech as test material does not make a fully objective 
evaluation possible, because voice synthesis and inverse 
filtering are typically based on the same voice production 
models.  

The present study aimed to avoid these fundamental 
limitations by using a vowel produced with physical 
modelling in evaluation of inverse filtering. The results 
were encouraging in showing that the difference between 

the original flow generated by physical modelling and 
estimated one was small. 

The experiments of the present study were based on 
single vowel sound. In order to better understand the 
limitations of inverse filtering, the characteristics of the 
test material should be expanded. In particular, the range 
of F0 values used in the evaluation should be expanded 
to cover the pitch range of female speech.  
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I. INTRODUCTION 
Coughing is one of the most frequent presenting 

symptoms of many diseases affecting the airways and the 
lungs of both humans and animals. In piggeries, the 
continuous on-line monitoring of cough sound can be 
used to build an intelligent alarm system for the early 
detection of diseases [1,2,3]. In a first study, with 
experiments under laboratory conditions, algorithms have 
been developed to detect cough sounds and to classify the 
animals whether they were ill or not. In this study, the 
algorithm was tested in field conditions. 

Sound analysis is an interesting method to monitor 
health status since it needs no physical contact with the 
animals. Moreover the used microphone in these tests is a 
very cheap type.  

When a pig is infected with a respiration disease, the 
respiration system is changing, causing the characteristics 
of the air going through the air pipe to produce a different 
sound. When it is possible to monitor and analyze the 
sound of a cough signal, an on-line disease monitor can 
be developed.  

A main application is early detection of disease to 
reduce the use of antibiotics. In previous studies, an 
accurate algorithm is presented to detect citric acid 
induced coughing originating from healthy individual 
piglets. An intelligent free field recognizer is proposed to 
distinguish between coughing, evoked in absence or 
presence of a respiratory infection. 

Health care management is a critical and demanding 
issue in current livestock production. Discarding the 
economic cost related to large scale diseases, early 
detection of diseases is important considering public 
health care issues like reducing antibiotics residuals. Also 
for reasons of animal welfare and monitoring and tracing 
of the food production chain, online disease monitoring is 
important. Therefore currently great effort is spent to the 
development and application of sensors and sensing 
techniques for diagnosis in the agricultural sector [4]. 
With respect to objective and automated detection of 
respiratory diseases in livestock, it has been shown that 
artificial intelligence is successfully applicable to obtain 
automated cough recognition from free field cough 
recognition.  

In the work of Van Hirtum and Berckmans [6] an 
accurate algorithm is presented to detect citric acid 
induced coughing originating from healthy individual 
piglets under laboratory test conditions. In their work an 
intelligent free field recognizer is proposed to distinguish 
between coughing evoked in absence or presence of a 
respiratory infection. A drawback of the developed 
algorithm is that it is time consuming to run, what can 
cause problems when applying it in practice. 
Furthermore, the results are obtained on a database which 
is registered on individual subjects housed in a laboratory 
test-installation consisting of a laboratory inhalation-
chamber. The test-installation, described by Van Hirtum 
and Berckmans [6] and Urbain et al. [7], allows to control 
environmental housing conditions, medical follow-up and 
to reduce environmental noises. So cough sounds are 
registered in optimal environmental sound conditions. 
Therefore the performance of the developed algorithms to 
recognize cough in field conditions needs to be assessed 
in order to validate the usage of sound analysis in 
livestock health management.  

To this purpose, in a previous study [8], coughs were 
registered in field conditions keeping one microphone 
near the animal. 

In that study, limiting the spectral frequency to the 
range from 2 kHz to 14 kHz allowed to eliminate low-
frequency noises from mechanical origin, while the 
cough sound exhibited an important energy-peak in this 
range. 

The main objective of this study was to evaluate the 
accuracy of cough recognition algorithm on labeled 
coughs from all other sounds, recorded simultaneously 
with background noises using two microphones, one for 
noise and one for cough recording. 

 
II. METHODOLOGY 

 
Animals: 350 pigs (commercial crosses) were in the first 
period of the finishing phase, their mean weight at the 
beginning of the trial was around 75 kg and their mean 
age was 170 days. The fattening room was wide 14 x 
21,10 m and was divided in 16 boxes with totally slatted 
floor.  
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The walls were made of concrete bricks and insulated 
(PVC thick sheet) and the roof is made of prefab plates of 
concrete. Roof inclination was 30 %. 
A serological assay on blood sample to verify the 
presence of Pleuropneumonitis antibodies has been 
conducted on sick pigs to verify the source of coughing. 
After the slaughtering, Pleuropolmonitis was confirmed 
by the autopsy examine performed by the farm 
veterinarian. 
Measurements: Pigs cough was recorded using a 
microphone linked to the PC sound card (Conexant, AC 
link audio16 bit).. This was done to record the cough 
sound in practical field conditions, without taking the 
acoustical characteristics of the stable into account. The 
recordings were made at a sample rate of 44100 Hz, with 
a resolution of 16bits.  The coughs were sampled with a 
frequency of 22050Hz to gain calculation time. 
The microphones where placed in the middle of the room, 
in the corridor, at 3 m and 18 m far from the entrance 
door. The data, collected in 5 days in a piggery, were 
labeled first by a veterinarian and then re-labeled in 
laboratory. The main objective of these tests was to 
evaluate the accuracy of cough recognition algorithm on 
labeled coughs from all other sounds.  In the dataset there 
was a total of 396 different sounds. 

Cough analysis: To visualize a sound the amplitude can 
be plotted in time.  This representation method doesn’t 
give any information about the frequency characteristics. 
In a spectrogram, the signal is analyzed using Fourier 
transformation in order to show how the frequencies 
change over time.   
An example of an amplitude-time representation of a 
cough is given in figure 1. 
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Figure 1. Amplitude variation in time (in samples)  of a 

cough signal 
 

The Spectrogram of the same signal is shown in figure 2. 
The signal represented in figure 1 was a typical cough 

sound of a pig, the duration is only 0.7s. 
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Figure 2. Spectrogram of the cough signal represented in 

figure 1. 
 
Classification of the sounds: 
 
In order to classify a sound, it has to be compared with a 
reference sound. 
 
This is done using a method called “dynamic time 
warping”, already used successfully in a previous work 
(Van Hirtum et al., 2003), in which each sound is divided 
into frames of equal length and the features of each frame 
are stored in a feature vector. Thus, each sound is 
represented by a sequence of data feature vectors that 
form a sound template. The different duration of the 
cough sound results from non-uniform stretching and 
compression of the various portions in the cough sound. 
Consequently simple linear time alignment is not 
appropriate to compare two sounds of unequal duration. 
In order to compare two sound templates, the DTW 
algorithm uses one of them as a test pattern and the other 
one as a reference pattern. Taking frame by frame of the 
test sound template, DTW looks for the frame-path in the 
training template that results in the minimum distortion.  
For each test frame a set of specified frames in the 
training template is allowed for comparison. 
Now, to test whether or not a certain sound is part of a 
specific class (cough, grunt, sneeze,…) the labeled 
sounds are divided into two groups: one test set and one 
training set.  
Every sound in the test set is compared with all the 
sounds in the training set. If, at least, half of the sounds in 
the training set classifies the tested sound as a cough, the 
tested sound is marked as cough. If, on the other hand, 
more than half of the sounds in the training set classify 
the tested sound as non-cough, the sound is assumed not  
cough.   
In order to have a good idea of the performance of the 
algorithm that was used to recognize the sounds, a 
method is required that shows how many sounds where 
classified in the correct way.  This involves the number of 
coughs that were classified as coughs out of the total set 
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of cough sounds as well as the number of other sounds 
(grunts, screams, sneeze)  that were classified as non-
coughs out of the total set of non-cough sounds. So the 
performance of correct cough classification (PCC) can be 
written as: 
 

PCC = Nr. of correct cough classifications/ Nr. of total 
cough sounds 

 
In the same way, the performance of the algorithm to 
classify other sounds as non-coughs (performance of 
correct non-cough classification, PNCC) can be written as: 
 

PNCC= Nr. of correct non-cough classifications/ Nr. of 
total non-cough classifications. 

 
The total performance (TP) can then be written as: 
 

TP= (PCC+PNCC)/2 
 
To have a representative performance of the algorithm, 
the test set and the training set are defined as followed:   
The test set consists of 10% of the total amount of sounds 
to be classified.  The training set consists of  90% of the 
cough sounds. With this 10 % of the test set, 10 % of the 
‘other’ sounds are mixed, to have a representative snap 
check. A permutation is applied 10 times, until all cough 
sound have been in the test class.  The number of 
miscalculations is counted in order to have an estimate of 
the performance of the algorithm.  
 

III. RESULTS 
 

An overview of recorded sounds is given in table 1.  
Although the average performance of the algorithm for 

cough sounds is about 72,6 % (see Figure 3), while the 
performance for other sounds, including sneezes, grunts, 
sounds of doors being opened and screams, is about 
61.7% (see Table 2), this is a first step in a fully 
automated cough recognition system for the monitoring 
of swine epidemics. 

 
Sound files:

coughs 186
grunts 67
screams 62
doors, noise.. 40
sneezes 41

Total 396  
Table 1: an overview of the data on which the cough 

recognition algorithm is tested. 
 

It is possible to see the variation in cough recording 
accuracy depending on the day of observation, due 
probably to different environmental conditions.  
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Figure3. Average performance of the algorithm for cough 

sound recognition. 
 

 

Days  
Sounds correctly 

classified / 
Total sounds 

Correct 
classification % 

Day 1 29/60 48,33% 
Day 2 19/42 45,24% 
Day 3 21/40 52,50% 
Day 4 104/157 66,24% 
Day 5 174/239 72,80% 
TOTAL 347/538 61,77% 

Table 2. Average performance of the algorithm for 
sounds recognition. 

 
The sounds of pig cough and noise background 

recorded of good quality are presented in figure and bad 
quality tracks in Figure 4 and 5 respectively. 

 
IV. DISCUSSION 

 
It is expected that better results will be obtained with 

different electronics.  
Although the algorithm is tested off-line in this study, a 
fully automated recognition system involves an on-line 
application of the algorithm. A possible method of doing 
so is by, simultaneously as the sound information is 
acquired, letting a window of a certain sample length 
slide across this incoming sound. By detecting energy 
within this time frame, the algorithm could decide 
whether or not the signal in the frame is of interest for 
further processing.  A method for classifying the different 
sounds may be a similar approach as the one that was 
followed in this study. Though, a drawback of this system 
is that the training set of the sounds should encounter as 
much as variability in order to have a good classification 
performance.  
 
 
 



 
 

Figure4: PSD of a signal acquired from a good  quality 
recording.  The black line represents  the cough signal,, 
the grey line represents the noise in that signal. 
 
 

Figure 5: PSD of a signal acquired from a bad  quality 
recording.  The black line represents  the cough signal, 
the grey line represents the noise in that signal. 
 

V. CONCLUSION 
 

In the future other methods for classification should be 
examined. For example, using sound models that serve as 
a “template” of a certain sound. 

These models can be “mapped” onto the specific sound 
and by adjusting the model parameters, it might be 
possible to search for the best model of a certain sound. 
One might conclude that online model based sound 
analysis has a high potential for animal monitoring, but 
there is much to be done before such a fully automated 
on-line sound classification system can reach the 
daylight.  

This research could lead, in future, to a real time 
automatic system of cough recognition in piggeries, that 
might be useful in preventing the spreading of respiratory 
diseases and lowering the excessive use of antibiotics in 
pig management. The algorithm presented here can be 
seen as a start to extrapolated existing techniques of voice 

analysis towards less conventional “sounds” as coughs, 
grunts and pig screams. Although some research has been 
performed on cough analysis, the applications remain 
poor. By applying such experiments in field conditions, it 
might bring this approach of bio-acoustics as a possible 
disease monitoring system closer to reality. In this case 
the object is the swine, but this can easily be expanded to 
other species like cattle and poultry. 
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GLOTTAL PULSE MODEL 

Julien Hanquinet1, Francis Grenez1 , Jean Schoentgen1,2

1Department "Signals and Waves", Université Libre de Bruxelles, 50, Avenue F.-D. Roosevelt, 1050 Brussels, 
Belgium, jhanquin@ulb.ac.be

2National Fund for Scientific Research, Belgium 
 

ABSTRACT 

The presentation concerns a method of wave-
morphing applied to a model of the phonatory 
excitation, the instantaneous frequency and the 
harmonic richness of which are controlled. This 
method is based on an interpolation between the 
Fourier coefficients of two template waveforms. 
The method enables morphing continuously 
from one waveshape to another. Possible 
applications are the simulation of diplophonia, 
biphonation and different phonation types. 

I. INTRODUCTION 

The presentation concerns a method of wave-
morphing based on Fourier series. It enables 
continuously changing one waveform into another. 
This method is applied to a model of the phonatory 
excitation signal, which is the acoustic signal 
generated by the vibrating vocal folds and pulsatile 
glottal airflow.  
 Conventionally, glottis signals are modeled 
by means of a concatenation of curves that 
approximate the glottal pulse shape. The most 
popular model based on this technique is the Fant-
Liljencrants model [1]. A sustained glottis signal is 
generated by repeating the basic pulse shape 
periodically. 
 We proposed here an alternative based on 
the Fourier signal representation, which offers a 
more flexible approach to phonatory excitation 
modeling. It enables controlling continuously the 
instantaneous frequency and harmonic richness of 
the synthetic phonatory excitation, as well as glottal 
pulse morphing. The morphing is carried out by 
interpolating the Fourier series coefficients between 
two different template glottal cycles. 

II. MODEL OF THE PHONATORY 
EXCITATION 

The model used to synthesize the phonatory 
excitation is based on Fourier coefficients. The 
Fourier coefficients are computed for a template 
cycle of the desired phonatory signal. The template 
cycle can be modeled or extracted from real speech. 
Here, we use the Fant-Liljencrants (LF) model [1] 
to synthesize the desired template. The LF 
parameters are chosen so that the condition of area 
balance is fulfilled, i.e. the cycle average is zero.  

A discrete periodic signal y of cycle length 
N can be approximated by its Fourier series 
truncated at Nh harmonics . 
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In expression (1), coefficients ak and bk encode the 
shape of the cycles of signal y and parameter N 
represents the cycle length. By changing the value 
of N, one can create signals with the same shape as 
y, but with different cycle lengths. Note that the 
following condition must be respected. 

2
NNh < . 

(2) 

If N is assumed to be real, expression (1) can be 
written as follows. 
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where ∆+= − fnn πθθ 21 , is the instantaneous 
frequency of signal  y(n) and ∆  is the sampling 
step. Condition (2) becomes the following. 

f

f
f

Nh sampling 1
2

< . 
(4)

The generalization of N to real values, because of 
letting assume  any real positive value, 
introduces a quantization error of one sample at 
most in the cycle length. For many applications, 
this error is negligible when the sampling frequency 
is chosen sufficiently high.  

f

Therefore, by means of a glottal cycle 
template, a signal with the same cycle shape, but 
the instantaneous frequency of which is controlled, 
can be synthesized by means of (3). Figure 1 shows 
an example of a phonatory excitation, for which the 
instantaneous frequency evolves continuously and 
linearly in time. 

 
Figure 1 : Synthetic phonatory excitation, the 
instantaneous frequency of which evolves linearly 
from 75 to 200 Hz. The vertical axis is in arbitrary 
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units, and the horizontal axis is labeled in number 
of samples. 
 

The harmonic richness of the synthetic 
signal can be controlled by modifying the Fourier 
coefficients as follows. This choice has been 
loosely inspired by [2]. 
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One sees in expression (5) that the harmonics 
decrease, when the parameter A is less than one, the 
faster the higher their order. 

 
Figure 2 : The graph to the left shows two different 
cycles of the phonatory excitation. The dashed line 
is obtained with parameter A  set to 1 and the solid 
line is obtained with parameter A set to 0.5. The 
vertical axis is in a.u. and the horizontal axis is 
labeled in samples. The graph to the right shows, 
dashed, the values in db of 

kk jba +  and, solid,  the 
values in db of 

kk jba '' +  with A set to 0.5. The 
horizontal axis is labeled in the values of Fourier 
index k. 
 
The control of the harmonic richness of the 
phonatory excitation may also be used to simulate 
onsets and offsets as illustrated in Fig.3. 

 
Figure 3 : Synthetic phonatory excitation where 
parameter A evolves linearly from 0 to 1 and from 1 
to 0. The vertical axis is in a.u. and the horizontal 
axis is labeled in number of samples. 

III. WAVE-MORPHING 

Given two sets of Fourier coefficients X1 and X2 ,in 
complex notation, computed for two different 
template cycles, intermediary shapes can be 
synthesized  by interpolating the Fourier 
coefficients as follows (Figure 4). 
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where Int is an interpolation coefficient comprised 
between 0 and 1. 
As a consequence, the Fourier phase and the 
logarithm of the Fourier magnitude are linearly 
interpolated. Therefore, coefficients ak and bk 
change as follows : 
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(7)

To avoid possible phase distortions in morphed 
signals, care should be exercised to respect the 
following condition.  
   )arg()arg()arg()arg( 121121 ++ −<− kkkk XXXX       
 

(8)

To satisfy this condition, one computes the 
arguments of the two sets of complex Fourier 
coefficients X1, X2, and subtracts 2π from the 
argument of X2 if condition (8) is not satisfied. The 
reason is that the phase of the morphed shape must 
be intermediary between the phases of the template 
cycles, which is possible provided that the 
arguments of coefficients X1 and X2 evolve quasi-
monotonously.  

 
 

 
Figure 4 : Above, the graphs show the magnitude in 
db (to the left) and  phase in radians (to the right) of 
the complex Fourier coefficients. Below, the dotted 
lines correspond to the template glottal cycles, and 
the solid line corresponds to the interpolated glottal 
cycle, with interpolation coefficient Int set to 0.5. 
Above, the horizontal axis is labeled in the values 
of Fourier index k. Below, the horizontal axis is 
labeled in number of samples. 

IV. RESULTS 

A. MORPHING 

Figure 5 illustrates the phonatory excitation signal 
while morphing from one cycle template to another, 
e.g. illustrating the transition from one phonation 
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type to another. The interpolation coefficient 
evolves, between samples 600 and 3600, linearly 
from zero to one. 

 
Figure 5 : Morphed synthetic phonatory excitation. 
The vertical axis is in a.u. and the horizontal axis is 
labeled in number of samples. 

B. DIPLOPHONIA 

Diplophonia refers to periodic phonatory excitation 
signals whose mathematical periods comprise 
several unequal glottal cycles. A repetitive 
sequence of different glottal cycle shapes can be 
simulated by modulating the interpolation 
coefficient, i.e. by continuously interpolating the 
Fourier coefficient between two sets of template 
coefficients X1, X2, computed from two different 
reference glottal cycles. Similarly, a modulation of 
the instantaneous frequency may simulate a 
repetitive sequence of glottal cycles of unequal 
lengths. The temporal evolution of the interpolation 
coefficient as well as phase may then be written as 
follows. 

))/sin(1(
2
1 QInt nn θ+=   (9)

))/sin((2 101 Qff nnn θπθθ +∆+=+   (10)

 
The instantaneous frequency oscillates between f0 – 
f1  and f0 + f1 . Parameter Q fixes the number of  
different glottal cycles within the mathematical 
period of the phonatory excitation. In practice, 
parameter Q is a small integer. 

Figure 6 shows an example of diplophonia 
obtained by modulating the interpolation coefficient 
as well as the phase according to expressions (9) 
and (10), with Q set to two. 

 
Figure 6 : Synthetic phonatory excitation 
demonstrating diplophonia. The vertical axis is in 
a.u. and the horizontal axis is labeled in number of 
samples. 
 

C. BIPHONATION 

Biphonation is also characterized by a sequence of 
glottal cycles of different shapes and lengths. But in 
this case, two glottal cycles are never identical. 
Biphonation reflects the presence in the spectrum of 
the signal of at least two harmonic series, the 
fundamental frequency of which form an irrational 
ratio. Biphonation is therefore characterized by 
discrete spectra with irrational ratios between the 
frequencies of some of the partials. Biphonation is 
also simulated by means of expression (9) and (10), 
with parameter Q equal to an irrational number. 

Figure 2 shows an example of biphonation 
obtained with Q set to the constant e ( 2.71).  

 
Figure 7 : Synthetic phonatory excitation 
demonstrating biphonation. The vertical axis is in 
a.u. and the horizontal axis is labeled in number of 
samples. 
 
Note that diplophonia and biphonation can also be 
simulated by modulating phase (10) and parameter 
A instead of interpolation (9). This is because 
parameter A controls the harmonic richness and 
therefore the shape of the cycle. The control is less 
flexible however. 

V. CONCLUSION 

This presentation concerns a model of the 
phonatory excitation based on Fourier series. This 
model enables the control of the instantaneous 
glottal cycle length, instantaneous harmonic 
richness and glottal cycle shape via distinct 
parameters. This model also enables  interpolating 
between two template cycle shapes. The shape of 
the cycles of the phonatory excitation may morph 
continuously from one shape to another. These 
possibilities are useful to simulate onsets and 
offsets, intonation, phonation type transients as well 
as diplophonia and biphonation.  

 REFERENCES 

[1]   Fant G., Liljentcrants J., Lin Q., " A four-     
parameter model of glottal flow ", STL-QSPR, 4: 1-
13, 1985. 
[2]  Schoentgen, J., "Shaping function models of 
the phonatory excitation signal", J.Acoust. Soc. 
Am. 114(5): 2906-2912, 2003.  
 





Abstract: Articulatory variation due to the production

of vowels at five pitch frequency (F0) levels (110 Hz,

123 Hz, 130 Hz, 146 Hz, and 164 Hz) was analyzed by

volumetric magnetic resonance imaging (MRI). Three

Japanese male subjects produced sustained Japanese

vowels /a/ and /i/. Observation of vocal tract area

functions extracted from the MRI data revealed that

F0 shift in vowel production affects not only the length

of the vocal tract but also its shape.  Analysis

employing coefficient of variation for length-

normalized area functions revealed that the shape of

the vocal tract does not change proportionately by F0

shift and that each subject adopt different strategies

for controlling F0 while maintaining the phonetic

identity of the vowel.

I. INTRODUCTION

The larynx and the supra-laryngeal articulators are

connected mechanically and interact with each other to

produce speech sounds [1]. Vocal tract shape is thus

affected by F0 change. Except for a few previous studies

[2][3], however, effects of F0 shift on vocal tract shape

have not been studied. In addition, differences of the

effects among individuals and their acoustic

manifestation have not been reported. The present study

therefore aims to investigate possible effects of F0 shift

on vocal tract shape and area function by examining

individual variations of the interaction and their

corresponding acoustic effects.

Effects on the shape of the vocal tract by changing F0

have been measured using several imaging systems. For

instance, Hirai et al. [2] described differences in vocal

tract shape during production of the Japanese vowel /a/

associated with 1.5-octave F0 falling by using magnetic

resonance imaging (MRI). They also investigated

mechanisms of F0 control in detail and proposed a

physiological articulatory model with tongue-larynx

coupling mechanism. Tom et al. [3] reported differences

in vocal tract area function during production of the

vowel /a/ under two registers, five F0 levels, and two

loudness levels by using electron-beam computed

tomography (EBCT).

However, those studies reported the results only for a

single vowel of a single subject. Because each vowel has

a different constriction location, effects on vocal tract

shape may be different among vowels. Also, each speaker

may adopt different strategies to control F0. In this study,

we thus investigated changes in articulation of a front and

a back vowel at different F0 levels for three male

subjects. Magnetic resonance images were acquired

during producing the Japanese vowels /a/ and /i/ at five

F0 levels, and analyzed for the effects on vocal tract

shapes and area functions, as well as for the

corresponding acoustic effects using a transmission line

model.

II. MRI DATA ACQUISITION

Magnetic resonance images of three Japanese male

subjects were obtained during sustained production of

Japanese vowels /a/ and /i/ with a Shimadzu-Marconi

ECLIPSE 1.5T Power Drive 250 at the ATR Brain

Activity Imaging Center. The subjects are denoted below

as A, B, and C. The imaging sequence was a sagittal

Fourier Acquired Steady State (FAST) series with 3.0-

mm slice thickness, no slice gap, a 256  256 mm field

of view (FOV), a 512  512 pixel image size, 18 slices,

90
o

 flip angle (FA), 9-ms echo time (TE), and 4,900-ms

repetition time (TR). The total acquisition time was

approximately 15 sec. These parameters were selected to

complete data acquisition in a single breath.

Each subject was positioned to lie supine on the

platform of the MRI unit and put on non-magnetic intra-

aural headphones. Harmonic complex tones whose

fundamental frequency was 110, 123, 130, 146, or 164

Hz were presented through the headphones during

scanning. The subjects were instructed to adjust their F0

to the fundamental frequency of the harmonic complex

tone while maintaining steady phonation during scanning.

Each subject's voice during the scan was recorded

through an optical microphone (phone-or FOMRI). After

the scan, each utterance was examined to confirm

whether the subjects adjusted their F0 as instructed. Any

MRI data outside a margin of F0 error of ± 5 Hz was

excluded from further analysis. The data for the lowest

F0, from subject B, were excluded on this basis.

III. METHOD

A. Morphological analysis

The effects of F0 on vowel articulation were analyzed

with reference to the rigid structures. When the subjects'

head position in the MR images was different across F0

levels, the MR images were aligned with reference to the
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line connecting the anterior nasal spine and the posterior

margin of the foramen magnum using an affine

transformation. Following the alignment, outlines of the

vocal tract, hyoid bone, and mandible were traced

manually on the mid-sagittal plane to be superimposed

together for each vowel.

B. Analysis of vocal tract area function

Cross-sectional areas along the mid-line of the vocal

tract were extracted at 2.5-mm intervals from the MRI

data set to obtain the area function. Intra-speaker

variations of the vocal tract with respect to F0 were

examined using the coefficient of variation as an index.

Each vocal tract area function was resampled by cubic-

spline interpolation in 44 equal-length sections [4], and

the coefficient of variation for each section cv(x) was

obtained by
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where A(x, f) is an interpolated vocal tract area functions

for a given F0, x is the index vector [1, 2, …, 44], N is

the number of F0 level, and s(x) is the standard deviation

of A(x, f).

C. Simulation using transmission line model

In order to estimate the acoustic effects of the changes

in area function due to F0 shift, the first two formant

frequencies were calculated by using a transmission line

model. Calculations of the velocity-to-velocity transfer

functions of the vocal tract were performed for the

frequency region up to 4 kHz. The first (F1), second (F2),

and third (F3) formant frequencies were then identified

from the transfer functions using a peak-picking method.

IV. RESULTS AND DISCUSSIONS

A. Morphological analysis

Figure 1 shows all the tracings to depict the

systematic change in the positions of the speech organs

with F0 shift. The changes of the vocal tract shape on the

mid-sagittal plane were considerably smaller than those

in the previous studies [2][5]. The larynx tended to rise

with F0 while the shape of the laryngeal cavity was

almost constant for subjects A and B. In contrast, subject

C did not exhibit obvious changes in larynx height, rather

showing expanding laryngeal cavity with rising F0.

(a) vowel /a/ of subject A (b) vowel /i/ of subject A

(c) vowel /a/ of subject B (d) vowel /i/ of subject B

(e) vowel /a/ of subject C (f) vowel /i/ of subject C

Figure 1: Superimposed mid-sagittal tracings for the

Japanese vowels /a/ and /i/ obtained from three male

Japanese subjects. F0 level corresponds to the degree of

line saturation of the tracings: the black lines show

outlines for the lowest F0 (110 Hz) and the lightest gray

lines show those for the highest F0 (164 Hz). The anterior

direction is to the left.
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Figure 2: Vocal tract area functions at all F0 levels for

the vowel /a/ of subject A.
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Table 1: Vocal tract length [cm] associated with

variations in F0 and Pearson's correlation coefficient r

between them.

Subject A Subject B Subject C

F0 /a/ /i/ /a/ /i/ /a/ /i/

110 Hz 16.6 16.8 --- --- 17.2 16.0
123 Hz 16.4 16.7 17.3 16.1 17.6 16.2
130 Hz 16.4 16.7 17.1 16.1 17.6 16.0
146 Hz 16.2 16.6 16.8 15.8 17.2 15.8
164 Hz 16.0 16.2 16.5 15.7 17.4 16.3

r -0.99 -0.93 -1.00 -0.96 -0.04 0.26

B. Analysis of vocal tract area function

Figure 2 depicts vocal tract area functions for the

vowel /a/ of subject A indicating that the F0 shift during

vowel production affects not only the length of the vocal

tract but also its shape. The areas of the oral cavity of the

subject tended to decrease with rising F0 for the subject,

although the changes of the vocal tract shape on the mid-

sagittal plane were considerably small. This tendency was

also found for the other subjects.

Figure 3 depicts the length-normalized mean area

functions and their coefficients of variation (CVs) for

each section. Non-uniform CV patterns demonstrate that

the shape of the vocal tract does not vary proportionately

with F0 shift, and sharp peaks of the CVs indicate large

changes of the cross-sectional area at the sections among

the data. The peak of the CV at the seventh section from

the glottis for the vowels of subject A indicates that the

junction between the lower pharyngeal and laryngeal

cavities varies in location with F0 shift. The peak near the

junction can also be found for the vowel /i/ of subject B.

The peak of the CV at the 23rd section for the vowel /a/

of subject B indicates that the ratio of oral and the

pharyngeal cavity lengths altered with F0 shift.

Additionally, the sharp peak near the 42nd section for the

vowel /i/ of all the subjects corresponds with movements

of the lips with F0 shift.

The CVs at constricted sections are relatively smaller

than those at non-constricted sections for the vowel /i/.

Because vowel acoustics are relatively sensitive to

changes in constriction area [7], this strategy contributes

to preserving vowel features regardless of the F0 level.

In contrast to the local change of the shape of the

vocal tract for subjects A and B, the lower pharyngeal

and the laryngeal cavities (from the first section to the

15th section) of subject C varied widely with F0 changes.

Thus, inter-speaker differences of the CV pattern indicate

that the strategy to control F0 and vowel articulation

varies from subject to subject.

Table 1 shows vocal tract length measured for each

condition and Pearson's correlation coefficients with F0.

These results indicate that there are strong negative

correlations between vocal tract length and F0 for

(a) subject A

(b) subject B

(c) subject C

Figure 3: Average and coefficient of variation (CV) of the

length-normalized area function for three male subjects.

subjects A and B, but not for subject C. The results are

consistent with the observation that the larynx position

rises with rising F0 for subjects A and B.



C. Simulation using transmission line model

Figures 4 and 5 depict the frequencies of the lower

three formant (F1, F2, and F3) obtained from calculated

transfer functions for the vowels /a/ and /i/ for the

subjects. The frequencies do not increase uniformly with

rising F0, indicating that the shape of the vocal tract does

not change proportionately by F0 shift.

There is a positive correlation between F0 and F2 for

the vowel /a/ of all the subjects (r = 0.83 for subject A, r

= 0.90 for subject B, and r = 0.56 for subject C). The

positive correlations are caused by the decrease of the

area of the oral cavity with rising F0 for the vowel /a/

mentioned above. In contrast to the vowel /a/, there is no

common positive or negative correlation between F0 and

the formant frequencies for the vowel /i/.
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Figure 4: First (F1), the second (F2), and the third (F3)

formants of velocity-to-velocity transfer functions for the

vowel /a/ associated with variations in F0.
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Figure 5: First (F1), the second (F2), and the third (F3)

formants of velocity-to-velocity transfer functions for the

vowel /i/ associated with variations in F0.

VI. CONCLUSIONS

Volumetric MRI was used to investigate changes in

vocal tract configuration during vowel production with by

F0 changes. The results for the Japanese vowels /a/ and /i/

of three male subjects demonstrated that F0 shift affects

not only the length of the vocal tract but also the shape.

The data also showed that the strategy for controlling F0

preserving vowel characteristics differs across

individuals. The results of the analysis of intra-speaker

variation of the vocal tract area functions indicated that

the shape of the vocal tract changes non-uniformly with

F0 and the regions of changes are different among vowel

types and subjects. The results from the acoustical

simulation indicated that the vowel /a/ tends to be

neutralized with F0 rising while the vowel /i/ is kept

constant over the F0 levels.
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Comparison of LPC analysis and impedance vocal tract measurements
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Pauwelsstr. 30, 52074 Aachen, Germany

1 Introduction

The acoustic measurement of the resonances in the space
between vocal folds and lips, the vocal tract, allows a
non-invasive, objective analysis of the spectral energy dis-
tribution for different articulatory cases. Whereas a con-
ventional LPC analysis is successful only when applied
to more or less stationary voice signals, an external ex-
citation with subsequent measurement of the vocal tract
impedance at the mouth can give reliable results when
the voice signal is not stable or even missing.

This contribution adresses the problem how to compare
results from impedance measurements with LPC mea-
surements. For a set of normal speakers, both measure-
ments have been performed simultaneously. Based upon
the evaluation of the LPC curves, similar values for reso-
nance frequency, amplitude and bandwidth were derived.
In a study of 81 normal speakers the results from the
evaluations are compared.

2 Method

The measurement set-up and the software used to eval-
uate the measurements allow a sequence of measure-
ments consisting of three parts: the LPC analysis of the
voice signal, the impedance measurement during phona-
tion, and the impedance measurement without phona-
tion. The concept for measurement of the vocal tract
impedance at the mouth, VTMI, is described in detail
in [2], and the procedure of clinical measurements is de-
scribed in [4].

Measurements were performed in a group of 35 female
and 46 male healthy speakers, using a simplified set-up
without velocity sensor. One reason is the problem of
clipping which can occur in the velocity sensor at high
sound velocities. Comparisons between this set-up and
the original 2-sensor set-up showed that results from both
methods yield comparable results for the performed task.

A sample rate of 22050 Hz was chosen, and subsequent
evaluations were limited to the frequency range 100..5000
Hz.

2.1 LPC measurement

The “linear predictive coding” method (LPC) is a well-
established method to identify the formant structure of

a voice signal. The LPC curves are derived from a win-
dowed part of the voice signal.

For the calculation of the LPC curves 28 coefficients were
used to achieve a rather high pole density but not too
many wrong identifications of formants. A Hamming
window of 9525 samples was applied to the voice sig-
nal. The onset of the voice signal was automatically dis-
carded.

2.2 Impedance measurement

All impedance measurements were performed using a lin-
ear swept sine from 250 Hz to 6000 Hz with a duration
of 0.74 seconds. The signal-to-noise ratio was improved
by application of a symmetric Hanning window of 15 ms
length.

3 Evaluation and normalisation

3.1 Parameters

From the LPC curves the formant frequency, the formant
bandwidth (3 dB decay), and the relative amplitude of
the formants were calculated. The amplitude difference
was calculated with respect to the highest formant in the
frequency range 150..5000 Hz.

The resonances frequencies of the impedance curve were
calculated from the minima of the impedance function
Z(f). Since no measures for the amplitude and band-
width of the resonances could be directly derived from
the impedance function, new measures had to be calcu-
lated: the slope between a local minimum and maximum
near a resonance was used, as well as the amplitude differ-
ence between these points. These values were normalised
as well by division of the local amplitude difference by the
difference between the absolute maximum and minimum
in the frequency range of the evaluation.

3.2 Normal ranges

From each three LPC measurements of the six phonemes
/a:/, /æ:/, /i:/, /o:/, /u:/, /l:/ the first four formants
were evaluated with respect to mean values standard de-
viations of the formant frequencies, amplitudes and the
bandwidths.

From the resonance and LPC curves the above parame-
ter were automatically calculated and stored in an XML
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Figure 1: Male reference group: Comparison of formants
and resonances from LPC and impedance analysis (automatic
analysis, error bar corresponds to ± 1 standard deviation

tree. Whereas the formant values of the LPC curves were
easily calculated and simply copied to the tree, the reso-
nance evaluation was more complicated. The number of
detected resonance frequencies was much higher than the
desired number of about four resonances between 100 and
5000 Hz. The reason is the presence of small variations in
the impedance curve which can easily be misinterpreted
as resonances. A selection of the four most probable reso-
nances was achieved by weighting the resonance features
according to scores for relative amplitude between maxi-
mum and minimum, slope between neighboured extrema,
and the relative distance to the LPC formant frequency.
For the four resonances with the highest scores the re-
lated bandwidth and frequencies were calculated.

In Figure 1 the frequencies of the formants (LPC) and
resonances (VTMI) are plotted for the male normal
group. The results indicate a high comparability of the
results from the LPC and from the impedance analysis
method, both with respect to the mean frequencies as
well for the standard deviations. The missing first reso-
nance for the vowel /i/ is caused by the weak excitation
of the vocal tract with the swept sine below 250 Hz.

4 Case study

Pathological alterations of the vocal tract configuration
can lead to a change in the resonance structure of the
vocal tract [5]. Examplarily for the results from an on-
going medical study we describe the application of the
impedance method to the acoustic vocal tract character-
isation of a 82 years old male patient (1.65 m, 55 kg),
status after tonsillectomie.

Diagnosis: Expanded malignant tumour in the lower
pharynx reaching down to the larynx on the left side
(lower pharyn-larynx carcinoma, T4).
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Figure 2: Comparison of vtmi measurement results of the
reference group and a male patient with supraglottal tumour

CT and endoscopy results: We observe a tumorous
process in the left lower part of the pharynx, beginning
on the lingual bone level, extending into the larynx over
a length of ca. 4.5 cm, crossing the median line ventrally.
A partial corrosion of the thyroid cartilage by the tu-
mour is seen. The endoscopy of the airways shows a big
exulcering tumour, extending from the vocal cord level
up over the ventricular folds side with infiltration of the
laryngeal epiglottis area. Tongue basis, tongue directed
epiglottis area and sinus piriformis visually clear of tu-
mour.

Particular aspects for LPC and impedance mea-

surements: The upper and lower jaw is toothless. A
distinctive disphonia (strong

”
hoarseness“) is heard, the

patient phonates with great effort and is not able to hold
phonation for longer. The voice has a very high pitch.
Figure 2 shows the results of the resonance frequency
analysis of this patient compared to the standard values
of the male reference group. It is evident that in several
phonemes the resonances are shift to higher frequencies.
For the phonemes /o/ and /u/, the third and fourth res-
onance are afflicted with high energy loss and have such
low amplitude that they cannot be surely detected.

5 Discussion

Investigation of a reference group shows differences both
in formant- and in resonance characteristics between
male and female as well as between the two methods.
The frequencies of LPC analysis and impedance mea-
surements at the same subject are stongly correlated.
Concerning the amplidue values, the impedance measure-
ments shows a systematic lowering of the resonance am-
plitudes at frequencies below ca. 800 Hz. The deviation
found in the patient’s increase of the resonance values
in the phomenes /a/ and /æ/ indicates an acoustical de-
crease of the length of the vocal tract by a tumour caused
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narrowed supraglottal space. The absence of higher for-
mants in /o/ and /u/ could be caused by a higher sound-
absorption of the alterated tissue. A systematic exami-
nation of further patients with similar diseases is planned
and should give additional clues in view of a correlation of
physiological and acoustical properties of the vocal tract.
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SOURCE VOICE CHARACTERISTICS OF THE ARTIFICIAL VOCAL

FOLDS
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Abstract: Specialised literature presents a number of

models describing the function of the vocal folds. In

most of those models an emphasis is placed on the

effect of Bernoulli’s air underpressure during the air

passage through the glottis. The author defines a

principle of the vocal folds function with a working

version name „principle of the compressed air

bubble“.  The paper deals with the experimental

analysis of these artificial vocal folds and, first of all,

with the properties and characteristics of the source

voices generated by them. The main forces acting on

the vocal folds during phonation are as follows :

subglottal air pressure, elastic and inertia forces of

the vocal folds structure.

I.  INTRODUCTION

There have been several modified versions of the

vocal folds function described in literature – [1], [2].

Most of them are based on the principle of the

myoelasto-dynamic theory. They share a common

predominant view whose central idea is that of an

expressive effect of what is called Bernoulli´s

underpressure (negative pressure) produced within the

space of the glottis at an increased speed of the airflow

which passes between the vocal folds in motion.

Due to the numerous weak points found in the

principles as defined by different authors in the

literature there has been another principle defined and

developed, preliminary called  „compressed air

bubbles“, in short „bubbles“  - [3]. The paper deals with

the experimental analysis of these artificial vocal folds

and, first of all, with the properties of the source voices

generated by them  [6].

II. DEFINITION OF THE „COMPRESSED AIR

BUBBLES“ PRINCIPLE

The transport of the compressed air bubbles (air

column, small air volume) through the glottis from the

subglottal to the supraglottal space are the fundamental

idea of this principle. The air bubbles with the higher

subglottal pressure  should be shifted as soon as

possible to the upper part of the glottis. After the glottis

opening the bubbles expand from the higher subglottal

air pressure so that the acoustic pressure amplitude to be

source voice generated has the highest value in this

case. This condition is very important for a higher

intensity of voice generation.

According to this  principle of the vocal folds function,

the main forces acting on the vocal folds during

phonation are as follows :

• the subglottal air overpressure acts on the

relatively large inner subglottal surface, producing a

considerable higher force opening the vocal folds,

• resilient forces of the vocal folds muscles which act

against the opening of the vocal folds,

• forces of inertia of the vocal folds structure.

The forces of inertia of the air bubbles cannot play a

significant role with regard to the low value of air

density, a small size of the moved bubbles and also to

small changes of the airflow speed.

The driving phenomenon for the vocal folds during

phonation is the compressed air in the subglottal space,

which always reaches a higher resulting air pressure

value here than within the supraglottal space, and is the

function of the glottis opening g. So that the basic

characteristics of the vocal folds motion and the model

function is the relation of the resulting subglottal air

pressure and the opening between the vocal folds in the

form defined by relation  pRSG(g) –  [6].

III. EXPERIMENTAL ANALYSIS OF THE

ARTIFICIAL VOCAL FOLDS

Based on the compressed air bubble principle there

have been artificial vocal folds developed for speaking

aloud [4], [5]. Their design allows for changing the

fundamental frequency of the source voice to match the

male or female voice.

In order to test and verify the above defined

principle of the bubbles there were some   experiments

carried out. Fig.1 represents a diagram of experimental

analysis of a specific type of artificial vocal folds

(geometry, arrangement, frequency tuning). The

substitute vocal folds are placed inside the vocal folds

box in the way dividing its space into two areas : the

subglottal area – 1, the supraglottal area  – 2. Into the

subglotal area 1 is taken compressed air from the

pressure vessel. In each area, a required acoustic

pressure is measured  with an appropriate microphone

M1, M2 .
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B.  Additional masses of vocal folds

Fig.1  Diagram of the vocal folds location in the vocal

folds box

The general measurement set is shown in Fig.2. In

addition, a static mean value of the subglottal air

pressure pSGS is measured in the subglottal area, using a

water column height, h. By setting of its mean value,

the intensity of the source voice during phonation may

be simulated by means of artificial vocal folds.

Fig.2  Measurement set of the vocal folds

experimental analysis

The following variables were recorded during the

phonation measurement  - Fig.2 :

• water column height, h, characterizing the set mean

value of the subglottal air pressure,  p SGS

• microphone M1 recorded variable air pressure in

the subglottal space (measured by PULSE), p SG(t)
• microphone M2 recorded acoustic pressure in the

supraglottal space (measured by PULSE), p SPG(t)
• the course of  the opening  g(t) between the two

vocal folds during their phonation (recorded by a

high-speed Olympus camera).

The synchronization of all variables to be measured

was ensured by means of trigger switch,  S.

IV.  MEASUREMENT RESULTS

The characteristics of the artificial vocal folds vary,

of course, depending on the type of the vocal folds

measured. The individual types are distinguished by

capital letters : C – basic type, M,  N. They differ in

geometry and in their additional masses, mj (j = C , M,
N) which in turn also changes their fundamental

frequency tuning  F0j .
The parameters of the individual vocal folds type :

a) type C – basic type: mC=0 , F OC = 240 Hz

b) type M : mM , F OM = 132 Hz

c) type N : mN  , F ON = 144 Hz.

Fig.4 represents the course of variable subglottal air

pressure pSG(t) of a type C vocal folds, measured at a

water column height of h = 119 mm, which corresponds

to value  pSGS = 1120 Pa.

Fig.5 represents the spectrum of supraglottal

acoustic pressure pSPG(t) behind the vocal folds. This

acoustic pressure presented is the source voice

generated by the type C  vocal folds. The spectrum

contains significant discrete components, which are

harmonic components to the fundamental  phonation

frequency (F0 = 240 Hz) of the vocal folds. All those

harmonic components  together form the „source voice“

of a given artificial vocal fold type.

Through the analysis of the high-speed camera

recordings we shall obtain the course of the openings

between the vocal folds as a time function - g(t). Fig.6

represents the evaluation of the course of opening g(t)
based on the high-speed camera recordings.

2 1

expanded

air outlet

vocal folds

140 mm

microphon M1microphon M2

compressed

 air inlet

pSGS  h =const.trigger switch

synchronization

M2 M1
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      A.  Scheme of the vocal folds

Fig.3  Types of the artificial vocal folds measured
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Fig.5  Spectrum of the artificial vocal folds

source voice

It also specifies a volume of air VSG(t) passing

through the specific value during phonation. A total

volume of air passing through the vocal folds (volume

of the bubble) during one period can then be obtained

by means of integrating the course of VSG(t) in time.

Fig.6  Course of the glottis opening g(t) and of the

air passing volume of  VSG(t).

Based on the known courses  pSG(t) – PULSE  and

g(t) – camera, a  pSG(g) relation needs to be established,

whereby we shall obtain a hysteresis loop

characterizing the vocal folds motion. In Fig.7 this

relation is shown for a type C vocal folds along with the

mean value of  h =119 mm and  it means pSGS= 1120 Pa

subglottal air pressure to be given.

Fig.7   Course of  pRSG(g)  for  pSGS value

V.  DISCUSION

The phonation period starts at point E  with the

increase of the air subglottal pressure continuing up to

point A, with the vocal folds closed during this phase.

At point A the vocal folds start opening and due to the

increased subglottal air pressure begin to move away

from each other. At the point where the elastic forces of

the vocal folds prevail over the air pressure forces, the

vocal folds start to come closer again at point C.

During part of ABCDE cycle the vocal folds are

open. The vocal folds opening occurs at a higher air

pressure pRSG(t) while their closing happens at lower

values. As a result we obtained a loop whose area

characterizes the energy supplied to the vocal folds by

the changing air subglottal pressure which causes the

vocal folds motion and consequently the acoustic

supraglottal pressure origin. So that the phonation and

generation of the source voice is created in this case.

The high-speed camera can also evaluate the flow

of air through the vocal folds. To make the air visible a

cigarette smoke was used. The recording in Fig.8 shows

that the air passing through the artificial vocal folds is in

the shape of sets of independent small volumes – air

bubbles.

The following conclusions result from the analysis of

the experimental data and the relations evaluated :

• the flow of air through the vocal folds may be

defined by means of the passing compressed air

bubbles (small air volumes) from the subglottal to
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the supraglottal areas,

             

Fig.8  The bubbles expanding in the supraglottal space

• these bubbles expand in the supraglottal space

beginning whereby generating acoustic waves,

whose fundamental frequency and corresponding

harmonic components define the source voice of

the vocal folds,

• relation  pRSG(g) is characterized by a loop of oval

shape, which is abruptly ended during the contact

of the vocal folds, i.e. at a g=0 value; during that

time the subglottal pressure significantly increases

as needed,

• as the value of mean subglottal pressure pSGS,i

increases, the area of the loops is enlarging, i.e. the

relevant subglottal pressures are growing

(primarily the upper branches) and also the values

of maximum opening of the vocal folds gmax  are

rising,

• this fact defines and explains the change to the

intensity of the source voice; it is only through this

parameter pSGS,i  that the change of voice intensity

may be achieved,

• the presence of bubbles (periodic action) is a

necessary conditions for generating a sufficient

number of harmonic components to excite

formants of individual vowels,

• fundamental frequency of the vocal folds

vibrations is given by their  mass-elastic  structural

properties only,

• main forces acting on the vocal folds during

phonation are as follows : subglottal air pressure,

elastic forces of the vocal folds structure, and

forces of inertia of the vocal folds system.

VI.  CONCLUSION

The experimental analysis of the artificial vocal

folds verifies the fact that the vocal folds function is

based on the sequential flow of the compressed air

bubbles through the phonating vocal folds – when

generating a loud voice. As a result of closing of the

vocal folds the subglottal air pressure increases

promptly, so that its value is high enough after the vocal

folds opening.  After expansion of such bubble in the

supraglottal space there are acoustic waves generated

with several harmonic components and with varied,

however falling amplitudes. The correctness of the

function of the artificial vocal folds is documented by

the experimental verification of the spectra of several

artificial vocal folds types.

The intensity of the generated source voice is

determined solely by the mean value of the subglottal

pressure whose value is set consciously by an individual

by the lung  activity. Humans also consciously set the

height of their fundamental voice tones. Those represent

the only two parameters that humans are able to define

by will when speaking aloud.
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3

1
Department of Automatics, AGH University of Science and Technology, Krakow, Poland

2
Computer Linguistic, Jagiellonian University, Krakow, Poland

3
Collegium Medicum, Jagiellonian University, Krakow, Poland

I. INTRODUCTION

The study presented in this publication is the first

from the planned complex, interdisciplinary studies. The

examination was carried out on patients of CM-UJ clinic

in Krakow who suffered from neurodegenerative disease

with the damage of the extrapiramidal system with

dysarthria-type changes in speech. Control examinations

of healthy persons have also been carried out. The

elements whose realization was tested had been chosen

based on the linguistic knowledge in the scope of

phonetics as well as on experience resulting from long-

term practice as a speech pathologist. The linguistic

material was selected in such a way as to pinpoint voice

changes characteristic for patients with dysarthria. During

the examination, phrases based on Polish idioms were

aslo recorded for further analyses.

II. VOICE PHYSIOLOGY

Voice and speech production requires close

cooperation of numerous organs which from the

phoniatric point of view may be divided into organs:

• producing expiration air stream necessary for

phonation (lungs, bronchi, trachea),

• amplifying the initaial tone (larynx),

• forming tone quality and forming speech sounds

(root of the tongue, throat, nasal cavity, oral cavity).

III. VOICE PATHOLOGY

Apart from typical changes caused by

neurodegenarative disease (e.g. shivering of the body,

limbs, muscle stiffness) changes in the voice may also be

observed. The research shown in work (Intensive voice

treatment LSVT® 2001) indicate the serious problem of

speech pathology occurance with as much as 75% of

patients. Thus it may be concluded that voice constitutes

one of the more crucial components of neurological

diagnosis.

Patients suffering from neurodegenerative diseases (and

such patients were examined by the authors) show

dysarthria-type speech alternations. Dysarthria is a group

phonation and articulation disorder which result from

damage to the movement control systems of the central or

peripheral nervous system also responsible for the speech

apparatus. The disorders occur although the speech plan

is preserved [3]. Other definitions characterize dysarthria

as handicapped production of articulated speech sounds

resulting from disturbances to nervous mechanisms of

voice production, modulation, intensity, timbre and

resonance [2]. Nowadays dysarthria is described as a

group of motor speech impairment result from a

disruption of muscular control due to lesions of either the

central or peripheral, or both, nervous systems.

Communication Independence for the Neurologically

Impaired CINI – 1994).

Due to the dominating symptom of disorder [3] 6 types of

dysarthria have been specified. In our study, patients

suffered from hypokinetic and hyperkinteic types.

Parkinson disease and Parkinson syndrome (damage to

the extrapramidal system; speech impairment related to

slowness) are accompanied by hypokinetic dysarthria-

type changes in speech. Its most important characteristics

in relation to isolated sounds are: distortions, loudness

limitations. Distorted articulation is caused by quick and

limited tongue and lips movements, sounds reduced down

to slurring. Impairment in the speech process consist in

sudden pauses in phonation. The voice is monotonous,

quiet, weak and vanishing. The other type of dysarthria

occurring in neurodegenerative diseases of the

extrapyramidal system is hyperkinetic dysarthria.

Phonation is distorted, sudden pauses in speech may

occur. Moreover, incorrect articulation occurs as well as

irregular breaks in articulation, sound elongation,

repetition of sounds caused by abnormal muscular

tension. Hypernasality may also occur, and the loss of air

caused by throat and palate impairment result in the

shortening of phrases. There are variations of speech

loudness, the voice is trembling, tense and stifled, weak,

with breaks.

IV. CHARACTERIZATION AND CLASSIFICATION OF SOUNDS

USED IN THE EXAMINATION

During the examination both consonants and

vowels were used. Patients were asked to pronounce the

sounds in isolation.
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The vowel group consisted of [a], [e] and [i]. This

particular choice was related to the difference in the

elevation of the tongue as well as to the gap between the

lips.

Division related

to the degree of

tongue elevation

Division related

to the degree of

mouth opening

[i] high ajar

[e] medium-high half ajar

[a] low open

Tab.1. Division of vowels.

The closer the tongue to the hard or soft palate, the

smaller the degree of the oral gap, the lower the tongue,

the bigger the gap. The position of the tongue in relation

to the horizontal axis of the oral tract constitutes the basis

for the division of vowels into more or less front or back.

In our examination we used front vowels. High front

vowel [i] is characterized by the very close position of the

middle part of the tongue moving up the oral cavity

towards the hard palate. In the case of the low front

vowel [a], both the hump on the low-situated tongue as

well as the spot on the harb palate, towards which the

tongue rises, are situated a bit more to the back.

The consonant group consisted of [s], [x], [p], [k]

and [g]. This category of sounds may also be divided into

groups and subgroups, based on various articulation

criteria. One of them is the manner of articulation,

limiting to a different degree the flow of air throught he

voice channel, up to a complete lack of flow.

[s] and [x] sounds are examples of fricatives. They are

consonants in the articulation of which particular parts of

the speech organ move closer together creating a narrow

gap. Airflow which has proper mass and speed passes

through the gap and is disturbed. This gap may be formed

in various places of the vocal tract under the larynx. The

[s] consonant belongs to front-tongue dental speech

sounds, whereas [x] belongs to back-tongue palatal

speech sounds.

Sounds [p], [k] and [g] are plosives. The first phase

of their duration consists in a solid obstruction built up

somewhere within the oral tract, initially completely

blocking the airstream coming up from the larynx. This

blockage is then usually released abruptly, so that the air

that was compressed behind the obstacle can escape with

a kind of explosive movement, producing a ‘cracking’ or

‘popping’ sound.

The [p] consonant is a bilabial, whereas [k] and [g] are

back-tongue palatal consonants.

5. EXAMINATION METHOD

The examinated group consisted of 18 patients between

the ages of 20 and 80 and a comparative group of healthy

persons with similar age range.  Patients suffered from

hypokinetic and hyperkinetic types of movement

disorders. The voice of the examined patients was

recorded with high-qiality digital equipment in a

soundproof room in order to eliminate any undesirable

factors which could negatively affect the results. First,

particular sounds were isolated from the recorded voice

and then they were processed (filtration and spectrum

analysis). Spectrum analysis contains numerous details,

thus parameterization was necessary for automatic

classification.

Firstly, the features of the spectrums of diagnostically

essential sounds were verified.

V.1. Changes in sounds realization

Voice signals consist of several waves with different

frequencies and amplitudes. The inner ear of humans

decomposes the incoming acoustical waves into separate

frequencies. Thus, it is appropriate to transform the PCM

data into the frequency domain before analyzing it

further. This can be achieved using Fourier

Transformations.

Using the linear Fourier transform, a continuous signal
can be transformed between its time domain
representation, denoted by h(t), and the frequency domain
representation H(f).

= dxethfH ftj2)()(       (1)

The audio signal is sampled at a fixed sampling rate, so
the function is not continuous h(t) but discrete x(k).

Consider a series x(k) with N samples of the form x0, x1,

… ,xN-1
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If N is a power of 2, the Fourier transform can be
calculated very efficiently. It is known as Fast Fourier
Transformation (FFT), and implemented in most of

languages of technical computing (e.g.  MATLAB®).

The power spectrum matrix P(n; t), where n is the index
for the frequency and t for the time frame:
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The index n ranges from 1 to N=2+1.

It is convenient to use the Bark Frequency Scale  instead

of Hz. The name has been chosen in memory of

Barkhausen, a scientist who introduced the phon to

describe loudness levels for which critical-bands play an

important role. The Bark scale ranges from 1 to 24 Barks,

corresponding to the first 24 critical bands of hearing

[Hz].
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frequency [Hz]

Fig.1. Charakteristic of Bark Frequency Scale

A critical-band value is calculated by summing up the

values of the power spectrum within the respective flow(i)

and fhigh(i) frequency limits of the i critical-band.
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where i, t, n are indexes, CB is a matrix containing the
power within the i-th criticalband at a specific time
interval t.

With the patients, changes in sounds articulation are

visible (precisely,  transition into another sound during

realization). It is both audible and detectable through

spectrum comparison. These changes were particularly

observable for the following consonants, for which the

occurring change has also been indicated:

• [k]  [a] / [k]  [y]

• [g]  [y] / [g]  [e]

• [s]  [y]

• [h]  [a]

Fig.2a. Voice signal [k] without changes

Fig.2b. Voice signal [k] with changes [k]  [a]

Fig.3a. Voice signal [s] without changes

Fig.3b. Voice signal [s] with changes [s]  [y]

Each piece of voice is represented by CB matrix. Firstly,

the information represented each group of people was

combined using median method. The median proved to

be the simplest approach with a comparable quality to

other more complex methods. Classification was done

using simple distance comparation between CB matrixes.

This distance can be used as another voice

characterization parameter.

Ther result of this distortion is caused by the weakening

of the elasticity of the larynx muscles, that is why a

consonant is followed by a vowel, which does not require

as much tension.

V.2. Intensity of sounds pronouced many times in

isolation

The patients were asked to repeat the same plosive four

or more times. The request was based on the knowledge

that during the realization of a sequence of the same

sounds, sound sequence distortions could be expected and

slurring could occur. By analysing the duration and

intensity of consecutive sounds, it was noticed with most

of the patients that the intensity of the last sounds was

respectively lower than the intensity of the first sound.

This is due to muscle stiffness, characteristic for

Prakinson disease. These sypmtoms were not observed

with most of the members of the control group.

Fig.4a. Last 3 sounds of the healthy person, [p]



Fig.4b. Last 3 sounds of patients with neurodegenerative diseas.

V.3. Continuous sound analysis

The patients were asked to pronounce the tested sounds

[a], [e], [i], [s] or [x] on one breath. The sound emitted

for a long period of time allowed for spectral analysis

aiming at observing the transition of frequency changes

related to pathological trembling. The values received

were compared with the values obtained in the control

group. With some patients, a slight difference in the voice

spectrum in the range between 4-8 [Hz] was observed.

This range is characteristic for Prakinson disease tremor.

However, at this stage of the study, the results are not

reliable enough and require further work, in order for this

element to be another element as another voice

characterization parameter.

With many patients, distinct and varying breaks in

phonation were observed. With healthy persons, gradual

quietening took occurred, whereas the patients ended the

emission abruptly.

Fig.5a. PCM of healthy person, continuous [a]

Fig.5b. PCM of person with neurodegenerative diseas.

The authors analyse differences within the range of

realization of vowels at different hights.

6. CONCLUSION

The results presented here constitute the beginning of

tests concentrated on automatic voice classification. The

authors refered both to the question of duration

parameterization as well as voice spectrum

parameterization. The main goal set for the future sudies

is such defining of deecriptors, which together with

particular search algorithms will enable proper

interpretation of a patient’s voice changes. The

proposition of recording, processing and analysis of

speech as a digital signal is also presented.

Further analysis of the isolated sounds is planned,

compared in realization between the patients and healthy

persons, taking sex, age and phrase analysis into

consideration. With patients the dynamics of disease

progression is also registered.

Moreover, some linguistic material on the level of

phrases was recorded and a technical analysis is being

prepared. In this study, the prosodic elements of speech –

rhythm, pace, intonation, accent and melody will be

analysed. The elements mentioned above are available in

subjective diagnostic (defining the type of dysarthria).

The authors wish to examine the characterization of

changes in speech unavailable in subjective examination

as well as to create a complex model of automatic

classification. In order to achieve this, the newest

methods of signal recording, processing and analysis will

be implemented.
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Abstract. Previous researches of the prelingual

period indicated that primal cry and the first cry

represent the inception of verbal communication.

The aim of this work was to study qualitative

characteristics of crying of newborns from risk

pregnancies and newborns from regular pregnancies

in the function of prediction of verbal

communication development.

The research was carried out on the sample of N=10

babies divided into two groups, aged 15 days. E

group (N=5) comprised newborns from risk

pregnancies, and C group (N=5) comprised

newborns from normal pregnancies. Crying in the

examined sample was digitally recorded and

spectrographically analyzed.

The research results point to the possibility that

certain acoustic characteristics of crying can be used

in the prediction of verbal communication

development and that the researches in this area

should be intensified and continued.

Key words: newborn's cry, verbal communication,

prelingual period, spectrographic analysis

1. INTRODUCTION

Newborn's cry, as an elementary particle of the

development of verbal communication, was the topic of

numerous scientific researches aimed not only at

broadening the knowledge of controlling the process of

crying production and brain organization itself, but only

at examining the possibilities of crying as a diagnostic-

differential instrument.

The firs baby's cry, as stated by Kostic (1991), appears

as a spontaneous physiological reaction that does not

depend on its communication with the social

environment [2]. The same author thinks that, during

the first two months of life, a newborn reacts to hunger,

discomfort and pain by crying. Physiological needs of a

child's organism are the means of sound expressed

through crying and thus they lie in the basis of

communication between a child and his parents (Kostic,

1980) [3].

Researches of Sovilj and Djokovic (1993) support the

fact that the development of speech communication is

commenced by the first cry. Proceeding from the

standpoint that the first cry contains all acoustic

elements of the speech acoustic structure: formant

forms, noise forms and combined formant-noise forms

of acoustic structure, which are normally present in

speech (Kostic, Stosic 1963) [4], Sovilj and Djokovic

analyzed the first cry-(ing) from birth until the end of

the first month, reaching the results that indicate the

existence of phases in the development of cry-(ing),

from the first cry to crying (30 days), which are

significant not only for the monitoring of the

development of hearing, and future speech and

language, but also for the development of

methodological procedure for early detection of speech

and hearing impairment and speech habilitation of

hearing impaired children, which is carried out from the

first month, in the prelingual phase [6].

Sovilj (1995) [7] also emphasizes that the first day after

birth global control connection between hearing and

voce is established. On the basis of spectrographic

analyses, Truby and Lind (1965) established three

important types of crying: basic phonation cry,

turbulent, dysphonic cry, and strongly expressed

hyperphonation cry [9].

The most complete model for the production of these

types of cries was developed by Golub (1980),

separating crying production into subglottal, glottal and

supraglottal production zone connecting muscle activity

with each type of crying [1].

Proceeding from the assumption that crying of hearing

impaired children differs from crying of their normally

hearing peers, due to the lack of auditory feedback,

Moller and Schonweiler (1997) reached the results that

coincided indicating that crying of normally hearing

babies differs from crying of those with profound

hearing impairment. Main statistically significant

differences were found in the distribution of energy in

different frequency ranges, duration of crying, and some

melodic parametres [5].

In this paper, which is a pilot research, crying was

studied through the analysis of ranging of the

movement of the basic laryngeal voice in newborns’

crying as the carrier of the quantitative monitors of

speech (QMS): intensity, frequency and duration. QMS

are the carriers of suprasegment speech structure and

their variation forms the matrix. In the later period of

speech-language development, sounds, syllables, words

and sentences, followed by the development of accents

of words, accents of melodies and melody sentence are

built into this matrix. Previous researches at the Institute
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for Experimental Phonetics and Speech Pathology

(Sovilj, 2002) as well as the results of foreign

researchers, indicated that suprasegment structure of

mother tongue develops as early as in the fetal period

[8]. This fact points even more to the necessity and

significance of researching the cry as a nucleus of

verbal communication and finding ways of its use in

early detection and diagnostics, i.e. early prediction of

hearing, speech and language development.

2.  AIM

The aim of this research was to study qualitative

characteristics of crying of newborns from risk

pregnancies and newborns from regular pregnancies in

the function of prediction of verbal communication

development.

3. METHODOLOGY

For the needs of spectrographic analysis of a

newborn's cry, crying before nursing was digitally

recorded in home conditions, on the 30
th

 day after birth,

because of the clear stabilization of the acoustic field of

crying when a child has physiological needs, compared

to the inception of vocalization, when a child is in

homeostasis. The research was carried out on the

sample of N=10 newborn babies, 15 days of age,

divided into two groups. The experimental group (E)

comprised N=5 newborns from risk pregnancies, and

the control group (C) comprised N=5 newborns from

normal pregnancies. Newborns from E group were born

from the pregnancies with the risk of a miscarriage from

6-7 month. All newborns were born normally in the 9
th

month.

During the recording, we used the directed

microphone that was positioned near newborn's mouth

on the defined distance of 10 cm. The recording lasted

for about 3 minutes, which was a sufficient time period

for obtaining the repeated stable characteristics of

crying. Digitalized recordings were transferred into

COOL program, from which the trained researcher, by

means of auditory control and visual control of the

recording, selected the signal (cry) that occurred most

frequently, and transferred it to PRATT program for

spectrographic signal analysis. The recorded cry was

digitalized by the speed of choice 22050 Hz, 16-bit

resolution, and it was recorded on one channel (mono).

Spectrographic analysis obtained: minimal, maximal

and mean values and their standard deviations of

duration (Du), intensity (I) and frequency (FFo) of basic

laryngeal tone.

Besides crying, for the psyhophysiological

assessment of newborns we provided the data on body

size at birth (body weight – BW and body length - BL).

The obtained data were statistically processed by the

application of T-test significance of the differences

between the examined groups.

4. RESULTS AND DISCUSSION

In order to obtain more reliable and objective indices

of crying characteristic in the monitored groups, we

proceeded from the fact that newborn's voice in the

monitored period (15 days) is not connected with the

control of the movement of speech organs meant for

speech production, but solely with its general

physiological state and needs.

In that sense, newborn’s body was observed from the

aspect of the complete resonatory and energy space,

whose influence on the voice (crying) can be

represented by longitudinal mass (LM), which

represents the relation of BW and BL  given in the

formula

            BW

LM=  ___

             BL

Having on mind that constitution plays an important

role in voice impostation, we normalized intensity and

frequency values on crying duration and newborn’s

longitudinal mass.

Normalized IFo and FFo values were calculated

according to the following mathematical formulas:

                      x IFo      (average crying intensity)

               CIFo=  ______

(coefficient of    DU• LM

 crying intensity)

                 x FFo (average crying frequency)

   CIFo  =  ______

  (coefficient of   DU• LM

    crying intensity)

Intensity

Table 1 Crying intensity in E and C group

Statisti

cal

parame

tres

dB-

min

dB-

max

dB-

avera

ge

dB-

SD

Experimental group

X 73.37 83.12 79.79 1.97

SD 4.87 3.90 5.45 0.95

Control group

X 78.83 88.22 83.94 2.20

SD 7.26 2.03 5.39 1.60
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Results of the movement of the laryngeal tone

intensity in newborns’ crying (Table 1) indicate that

mean value of Fo intensity in C group is 83.94 dB, and

79.79 dB in E group, which indicates that newborns’

crying from normal pregnancies (C group) is 5% more

intense.

Average value of Fo minimal intensity in C group is

(78.83 dB: 73,37 dB) 7% higher than in E group,

whereas average value of maximal intensity of Fo

crying in C group (88,22 dB: 83,12 dB) is 6.8% higher

than in E group.

Frequency

Table 2 Frequency of Fo crying in E and C group

Average Fo frequency
Statistical

parametres Hz

min

Hz

max

Hz

average

Hz

SD

Experimental group

X
245.2

6

500.9

9
369.17 71.18

SD 93.59 31.53 58.70 39.01

Control group

X
223.5

0

498.0

8
361.80 75.69

SD 79.80 44.01 72.20 24.79

Table 2 presents the results of laryngeal voice

frequency in newborns’ crying. Mean value of FFo

crying in C group is 361.80 Hz, and in E group it is

369.17 Hz, i.e. laryngeal voice of newborns’ crying

from risk pregnancies is 2% higher compared to

newborns from regular pregnancies.

Average minimal value of frequency in C group is

(223.50Hz : 245.26Hz) about 9% lower compared to E

group.

Average value of maximal frequency in C group

(498.08 Hz: 500.99 Hz), is about 0.6% lower compared

to E group.

Duration

Table 3  Crying duration in E and C group

DU in groupStatistical

parametres E group C group

X 1.08 1.70

SD 0.26 0.73

Results of laryngeal voice duration in newborns'

crying (Table 5) in the examined sample, indicate that

average duration of crying in C group is 1.7 sec, and in

E group it is 1.08 sec. i.e. that crying of newborns from

normal pregnancies is 36.5% longer.

The analysis of average BW values (Table 4)

indicated that newborns from C group had 19% higher

BW compared to E group, but the differences between

he groups are not statistically significant.

Table 4 Body weight in E and C group

             BWStatistical

parametres E group C group

X 2790 3440

SD 803 305

Table 5 Body length in E and C group

BLStatistical

parametres E group C group

X 48.00 51.40

SD 5.15 2.97

Results of the average value of BL (Table 5) indicate

that newborns from C group had about 7% greater BL

compared to E group.

Table 6 C- IFo E and C group

                     T-Test      C-FFo C and E group

 C group E group

X 3.375906279 6.508190577

df 4

Tab._ test -5.574036129

p(T<=t) 0.002538411

_ critical 2.131846486

Graph 1 C IFo in E and C group
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Data in Table 6 and Graph 1 indicate that C-IFo

average value in E group is 1.373, and in C group

0.741. Comparing mean C-IFo values in E and C group,

we obtained statistically highly significant difference on

the level p = 0.007, which indicates that this coefficient

can be a reliable parametre for assessment of newborns’

crying characteristics and further researches, on a larger

sample, will enable their use not only for the early

detection of difficulties in speech and language

development, but also for the assessment of the general

psychophysiological development.



Results in Table 7 and Graph 2 indicate that average

value C-FFo in E group is 6,508, and in C group 3,375.

Comparing mean values of C-FFo E and C group, we

obtained statistically highly significant difference on the

level p = 0,002, which indicates that this coefficient can

be a reliable parametre in the assessment of newborns’

crying characteristics, and further researches will enable

their use not only for the early detection of difficulties

in speech and language development, but also for the

assessment of the general psychophysiological status of

a newborn child.

Table 7 C-FFo in E and C group

Graph 2 C-FFo coefficient in E and C group
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On a more precise level, C-IFo and C-FFo indicated

the presence of regularities in the connection of three

parametres: intensity of crying frequency, duration, and

newborn’s longitudinal mass i.e. their interdependence,

as the expression of psychophysiological state of a

child, which classifies them as rather precise measures

for the prediction of speech development and

psychophysiological status.

CONCLUSION

The results obtained in our research, when comparing

the values of QMS parametres in newborns' crying on

the 15
th

 day after birth from E and C group, indicate the

following:

 - C-IFo and C-FFo represent valid parametres for the

assessment of newborn’s crying characteristics

- when the characteristics and tendencies of the

characteristics of laryngeal voice in newborns’ crying

are perceived globally, it is noted that crying of

newborns from normal pregnancies (C group) has the

tendency of: larger intensity, lower tone and longer

duration compared to crying of newborns from risk

pregnancies, whose crying, according to the movement

of QMS, can be characterized as crying of the shorter

expiratory fork, hypotonic and hypertensive.

- the obtained tendencies of crying characteristics

indicate that newborn’s crying can be relevant

parametre for the prediction of not only speech and

language development,  but also of the

psychophysiological status of a newborn child.

Further researches, on a larger sample, will enable

defining of limit values of coefficients for population of

newborns from normal and risk pregnancies.

This research was financed by the Ministry of

Science and Environment Protection of the republic of

Serbia, within the project of basic researches, N° 1784.
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COMPLEXITY ANALYSIS OF NORMAL AND DEAF INFANT CRY

ACOUSTIC WAVES

Kathiresan Manickam, Haizhou Li,
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2
R), 21 Heng Mui Keng Terrace, Singapore 119613

Abstract: This work describes the complexity found in

the normal and the deaf crying acoustic waves. Using

approximate entropy, in a single figure, the complexity

of the auto-covariance of the signal is computed. Thus,

using this complexity value, we are able to discriminate

the normal and the deaf infants crying domains with

(P<<0.01).

Keywords:  Infant Cry, Complexity, deaf infant

1. INTRODUCTION

The infant crying waves, seemingly chaotic, carry

useful and nevertheless essential information to establish

its culture. Such entity vividly clarifies an infant’s

physiological anatomy and psychological condition.

Physiological quantities from the laryngeal configuration,

i.e. the length of the vocal tract, in return exemplify the

resonance and formant effects. Psychologically, the

infant’s mental stamina correlates with the origins of a cry

type. Modes of cries are unequivocally classified as

normal, pathological, pain, hunger, etc. Hitherto, cry from

a “normal” and “deaf” infant has been notably studied in

literature [1]. Curiosity may result in the selection of the

deaf population as the target group. Deaf infants cry

exhibit contrasting acoustical characteristics compared to

their rivals, the healthy infant population. Following

investigation, it became apparent that the caseload for the

deaf population is ever increasing in most institutions. It

also came to light that both deaf and healthy infants

commonly share attributes like pain or hunger cry.  But,

the hearing impaired infants acquired anatomical

deficiency. Despite this setback, paediatricians have

expressed that infant’s cry is reciprocal to adult’s speech.

Modes of infant’s cry can be qualitatively

characterised with commonly employed acoustics cues.

Accordingly, normal crying features constitute of raising-

falling pitch pattern, ascending-descending melody and

high intensity seen from the spectrum [2-3]. Pathological

infant crying correlate well with some normal infant’s

acoustics features. Spectral intensity will be lower than

normal, rapid pitch shifts, generally glottal plosives, weak

phonations and silences during the crying. Parameters,

incorporating the pitch and formant descriptions, have

been well utilised in the infant cry analysis up till now.

Clement et al have substantiated that variations in the pitch

between hearing impaired and normal groups become

meaningful from 8.5 months onwards [1]. In reality,

this time gap is a result of lack of auditory feedback on

the speech. Thus, evidence proves that a deaf group

tends to voice louder since they want to hear

themselves.

Pitch, a famously captured feature, aids in

distinguishing cry types, as well as for a diagnostic

tool, etc. La Gasse states, “The cry has enormous

potential diagnostic”. His quotation suggests that

extremely high pitched cry indicates the pathological

status of the infant which needs urgent medical

attention [4]. A typical example is when infants

exposed to drugs tend to have high pitch with variation

at lower amplitude. The consequent effect of these

drugs is the instability of the neural control of the

vocal tract. Consequently, the vocal tract configuration

determines the structure of the formant. Nevertheless,

estimating the exact formant frequencies is complex

[5]. A Fort et al has incorporated a parametric model

using poles and zeros method to estimate fundamental

frequency and formants from an infant cry, the

conventional method involving the glottal pressure and

tract configurations.

Regardless of these scientific features, experts

in this field are able to distinguish the modes of cries.

Garcia has mentioned that parents are specialists who

were able to differentiate modes of cry solely using

their instincts and comparing different types of crises

[2-3]. However, uncertainty in the therapeutic service

has brought irrefutable questions. A professional has

quoted, “A deaf infant’s characteristic varies from one

another based on three factors: degree of loss; type and

period of rehabilitation and the age of pathology

identification”. Consequently, concrete answers are

unavailable scientifically (energy, pitch, duration, etc)

regarding cry prosodic information which has forced

us to lead this research in order to create an expert

system to verify the cry status. The expert system

should be able to analyse and classify modes of cry

signals and probably, being realistic, at a later stage,

diagnostic applications. Because the cry signals are

noisy and evidences are showing their chaotic features,

currently, analysing such signals itself has become

problematic.

Deaf infants revealed more variations in their

phonation using false vocal cords producing falsetto

Models and analysis of vocal emissions for biomedical applications. 4th international workshop. October 29-31, 2005 – Firenze, Italy. 
Edited by C. Manfredi.   ISBN 88-8453-320-1 (online)   © 2005 Firenze University Press



waveforms [1]. Emergence of these irregular signals is the

source for this paper. Since cry is an early form of adult

speech, it is acceptable to use the conventional speech

processing techniques to quantify these complex signals

[6]. In this paper, our aim is to analyse if there is any

complexity difference between the deaf and normal infant

crying populations. Thus this initial step might help us in

the diagnostic process.

II. CRY WAVE COMPLEXITY

Fig 1 below shows an example waveform of deaf

and normal infant. Cry breaks and amplitude variations are

often seen in the deaf infants. This propagates us to our

initial comment regarding irregularity, chaos and

complexity. Quantifying non-linear biological signals, due

to their complex structure, require a reliable approach.

Since we are aware of variability statistics like median,

mean, standard deviation etc, it is observed that such

methods are insufficient to quantify an erratic waveform. A

suitable candidate, using regularity statistics, approximate

entropy (ApEn), might rescue us from this problem [7].

One of our initial studies discriminates the phonation voice

quality changes seen in healthy and radiotherapy larynx

cancer patients using approximate entropy [8 - 9 ].  A

segment from the waveform will be used as reference to

identify a similar segment across the entire data.

(a)

(b)

Figure 1

Infant Cry Waveform

(a): Normal Infant Cry Waveform

(b): Deaf Infant Cry Waveform

Abscissa: Time Ordinate: Amplitude

Because of the temporal sliding window across the desired

signal of analysis, Fig 1 (dashed line); approximate entropy

has a possible potential for characterising the complexity

of a similar pattern. The complexity itself is expressed in a

single featured Fig that branched to either a large value

(that means more complicated pattern) or a small value

(with more determinable pattern). The single

parameter is so robust that the detailed medical

characteristics can be displayed in a simplistic

scientific means. Investigating time domain signals

requires suitable normalisation in order to compare

across all individual infants.

Auto-covariance function of a frame, 1024

points, might ease this criterion. By doing this, white

and other non-structured noises will result in low

lags. Non-cry or cry breaks may produce low lag

which is often seen in the deaf more than the normal

infant as in Fig 1. However, alternating burst of cries

and non-cries for the deaf groups will result in high

complexity estimate. Low or zero lags will produce

nil or low complexity. Fig 2 shows examples of auto-

covariance signals for both disciplines (normal and

deaf). More determinable features are normally

observed from the healthy infant with a low

complexity (0.148) as in Fig 2. A portion of the auto-

covariance function is a classic example of the low

complexity healthy infant’s crying since it retains a

sinusoidal waveform. Fig 3, demonstrates a typical

example of deaf cry which earns a higher complexity

estimate (0.719). The undeterminable irregular auto-

covariance waveform is the cause for high

computation.

III. COMPLEXITY ANALYSIS

The present corpus is a collection of infant

crying samples, from early born up to 7 months. A

total of 31 normal and 103 deaf infant cries were

analysed in this research. Cry signals were recorded

and sampled at 8 KHz. The data files were stored,

visualised and analysed using software written in

scientific language IDL from Research Systems. The

recorded signal is divided into frames of 1024 data

points each. To normalise the data frames, each frame

was performed with auto-covariance function.

Complexity value is calculated for each auto-

covariance frame based on N=1024, m=3 and r=0.2* .

Each frame produces a complexity value and these

complexities do not always conform to a normal

distribution. Subsequently, the median from the

collection of the complexities was calculated and used

for further analysis.

Fig 4 shows the distribution of the median

complexity for an individual infant. The ratio of a

normal infant below 0.6 and above 0.6 is nearly 5:1. A

reversed scenario is echoed in the deaf population. The

ratio of a deaf infant with below 0.6 to above 0.6 is

nearly 1:4.
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(a)

(b)

Figure 2

Normal Infant Cry Waveform

(a): Cry Waveform

(b): Auto-Covariance Cry Waveform

Top: Entire Frame Signal

Bottom: Portion of Frame Signal

Abscissa (a): Time Abscissa (b): Lag Ordinate: Amplitude

The distribution clearly shows a distinct separation

between the deaf and normal infant population. Assuming

that these two populations (deaf and normal) are

independent, Wilcoxon Rank Sum Test showed that these

two populations were indeed significantly different with

(P<<0.01). Deafness is the most common of all forms of

permanent damage following meningitis. Early detection

and therapy might reduce the effect or severity following

such disease.

(a)

(b)

Figure 3

Deaf Infant Cry Waveform

(a): Cry Waveform

(b): Auto-Covariance Cry Waveform

Top: Entire Frame Signal

Bottom: Portion of Frame Signal

Abscissa (a): Time Abscissa (b): Lag Ordinate:

Amplitude

IV. CONCLUSION

Despite successfully discriminating the

normal and deaf infant crying modes using complexity

analysis (approximate entropy), further research has to

be carried out in order to reduce the over-lapping

portion between the two domains. Nevertheless, this

initial study on the infant cry wave analysis is

encouraging but more features need to be incorporated

like pitch, formant, and energy to enhance the

findings.
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Figure 4

 (a): Histogram of Normal & Deaf Infant Cry Complexity
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most of them. By applying the proposed adaptive comb 
filter, followed by GSVD or OSV, voice quality results 
enhanced in most cases. The following figures are 
relative to one case (lancet operated). Each plot shows F0, 
noise and formants tracking, as obtained by means of the 
cited robust, adaptive, high-resolution tool, along with F0 
and noise mean values. 
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Figure 1 – Non-filtered signal: F0, noise and formant 
tracking (superimposed on the spectrogram). High noise 
level is found, also in the high-frequency region. 
 
Specifically, fig.1 is relative to the non-filtered signal: F0 
is almost stable, but the harmonics noise level is high 
(around -12 dB). The spectrogram shows strong noise 
also in the high-frequency region. 
Fig.2 concerns comb-filtered signal. It shows still stable 
F0, but harmonics noise is now lowered (from -12dB to 
about -18 dB). In the spectrogram, lower noise energy is 
shown also in the high-frequency spectral region. 
Fig.3 refers to the signal filtered with comb and GSVDfix. 
Harmonics noise is slightly raised (from -18 dB to about -
14 dB), but the spectrogram evidences very low noise in 
the high frequency region. 
Finally, fig.4 shows the results obtained for the signal 
filtered with comb and OSV with signal subspace as from 
eq.(7). Harmonics noise is lower than with GSVD 
(around -16.5 dB) and the spectrogram results 
comparable to the GSVD one. In all the figures (1)-(4) 
formant tracking is also reported, showing that the 
harmonics structure of the original signal is preserved 
with filtering. 
The last fig.5 compares the values of PSDlow, PSDhigh and 
QER for the applied denoising techniques, specifically 
comb, comb+GSVDfix, comb+OSV, relative to the non-
filtered signal. Best results are obtained with 
comb+GSVDfix. As shown in the figure, comb alone 
performs only a slight enhancement, while 

comb+GSVDfix gives the best results with respect to other 
methods, with PSDlow ≅0dB, PSDhigh>>0, and QER<0. 
Notice that previous results obtained with SVDfix gave: 
Mean F0=97.8Hz with std=28.6Hz, mean ANNE=-
11.1dB PSDlow=-2.1 dB, PSDhigh=16.5 dB, QER=3.1 dB 
[3]. With comb + SVD, we obtained: Mean F0= 92.6 with 
std= 7.3, mean ANNE=-16.5dB, PSDlow=-1.8dB, 
PSDhigh=17.2dB, QER=4.3 dB. 
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Figure 2 – Comb-filtered signal: F0, noise and formant 
tracking (superimposed on the spectrogram). Harmonics 
noise is lowered (from -12dB to about -18 dB).  
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Figure 3 – Signal filtered with comb and GSVDfix. F0, 
noise and formant tracking (superimposed on the 
spectrogram). The spectrogram evidences lowered noise 
in the high frequency region. 
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Figure 4 - Signal filtered with comb and OSV with signal 
subspace as from eq.(7): F0, noise and formant tracking 
(superimposed on the spectrogram). Spectrogram 
comparable to fig.3. 
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Figure 5 – Comparison among PSD and QER values 
obtained from eqs. (8)-(10) for comb, comb+GSVDfix, 
comb+OSV, related to the non-filtered signal. Best 
results are obtained with comb+GSVDfix. 
 
This means that with SVD alone F0 becomes more 
unstable and harmonics noise is increased. By pre-
filtering with adaptive comb, results become comparable 
to comb+GSVDfix and comb+OSV, although a little bit 
worse. Similar results were obtained over all the 
dysphonic voices data set. 
 

IV. FINAL REMARKS 
 
A hoarse voice denoising procedure is proposed, based on 
an optimised comb filtering and low-order GSVD 
decomposition of voice data matrices. An automatic tool 

is provided, for robust pitch, noise and formant tracking. 
The whole procedure was found effective in increasing 
the quality of voice, as measured by few but effective 
objective indexes, while preserving the harmonic 
structure of the original signal. A perceptual comparison 
of results with GIRBAS scale will be available in the next 
future. 
This tool could be of help both for clinicians, in order to 
follow patient’s rehabilitation, after surgery or drug 
treatment, and for dysphonic subjects, for testing and 
enhancing their fluent speech quality by means of a 
simple and cheap mobile device. As a drawback, GSVD 
has a significant computational load, and for time being it 
is only used as an off-line algorithm. Recursive updating 
of GSVD, instead of re-computing it on each data 
window, would be desirable for real-time voice signal 
processing and is a topic of current research.  
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I. INTRODUCTION 

 
The use of non-invasive electrical sensing, during fluent 
speech production, of vocal fold contact has especial 
research and clinical advantage in the definition of: 
●  contact closure epoch 
●  instantaneous period & intra period irregularity 
●  peak acoustic excitation 
●  closure duration value and variability 
●  precision stroboscopic trigger instants. 
The approach also makes it feasible to link objective 
measurement to pitch perceptual processing. 
 

II. METHODOLOGY 
Using pitch perception to guide voice measurement 
 
For most practical purposes the really important aspects 
of voice are those that can be heard, and the dominant 
dimension in hearing voice is pitch.  This simple concept 
leads to the possibility of using some simple quantitative 
criteria to detect and quantify the differences between 
“good” and “bad” voices.   
Classically, pure tones provide a basic reference for both 
the definition and perceptual investigation of pitch. 
Subjective psychophysical data have been stably 
established over many years.  Maximum discriminability 
is reached between 1 kHz, C6, near the top of the 
soprano register, and 2kHz with an average best just 
noticeable difference, jnd, of about 0.7% at 200Hz and 
0.4% or 4 Hz in the region of 1kHz with individual jnd 
sensitivities going down to 0.1% [2].  Auditory pitch 
detection for the frequency ranges of the speaking and 
singing voice appear to employ mechanisms which 
operate on the basis of temporal processing [2]. This 
level of pitch discrimination implies an average ability to 
detect temporal differences between successive periods 
of about 4 µs, and for some individuals, 1µs.  This 
temporal signal processing ability for pitch perception is 

paralleled in auditory lateralisation where interaural time 
differences of about 2µs to 10µs are detectable. 
 
For steady complex tones and vowels in the fundamental 
frequency range of conversational speech, the pitch 
discrimination jnds are even smaller than those obtained 
with pure tones.  Wier and Moore [2], within the range 
200 to 600 Hz, reported jnd values from about 0·15% to 
0·3%.  For vowel-like sounds with simple changing 
fundamental frequency contours, however, the ability to 
perceive differences in fundamental frequency is 
drastically reduced and the jnd may be 8% at about 100 
Hz .  This increase in, and magnitude of, jnd has also 
been found for whole word utterances with simple 
intonation contours, the  jnd here never being less than 
6%.  When more complex contours are used, the 
differences needed to achieve reliable detection may be 
as great as 20% .  The subjective results for these 
stimulus types are not as well established as for sustained 
sounds and there is a dependence on the duration of the 
tone.  There is, however, a good working consensus 
between a large number of reported observations [t’Hart, 
2].  These established observations give clear 
implications in respect of the accuracy criteria which 
should be aimed at for the analysis of the separate 
categories of sustained sounds and connected speech. 
 
A basic set of tools for accurate voice pitch 
measurement 
 
Tool 1 
Most methods of voice pitch analysis depend on the use 
of the acoustic signal of speech sampled at low rates 
which do not correspond to the requirements imposed by 
the pitch dL performance of the ear.  The essential need 
which has to be met is best defined by an example taken 
from the singing voice. At a voice frequency of 1000Hz 
in the soprano range the human ear can detect changes of 
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around 0.1% [2].  In order to do as well as this, but for 
only a single cycle, it is necessary to use a sampling 
frequency of 1MHz.  This is what is done for the 
following measurements. 
 
Tool 2 
A second basic problem associated with conventional 
approaches to voice analysis comes from the inadequacy 
of pitch extraction algorithms based on the acoustic 
signal.  A more reliable technique is to use the 
electrolaryngographic [Lx, positive peak corresponding 
to maximumclosure] output from the speaker’s voice 
activity.  This gives the basis for an accurate 
determination of each individual pitch period, Tx, that 
can be sampled at 1MHz to support measurements which, 
although very highly detailed  for many purposes, are 
linked to the best that the ear can do and that provide for 
considerable flexibility in the choice of bin widths in 
analysis and graphical displays. 
 
It is, of course, quite easy to deal with sustained sounds 
but the method must also be reasonably robust when 
applied to the rapidly changing waveform of running 
speech.  An output for a practical system is shown below. 

 
Figure 1 acoustic,Sp, and electrolaryngograph ,Lx, 
waveforms for a sample of pathological speech with 

automatically detected closure markers (55ms duration) 
 
The figure shows the process of marker generation used 
for the definition of Tx for a pathological voice sample; 
the excerpt is from a sample of fluent speech.  The speech 
acoustic waveform, Sp above, illustrates the difficulty of 
cycle definition if only acoustic data is available. 
 
The use of period by period sampling gives a very clear 
view of the difficulties that may be encountered by a 
speaker with a voice disability and shows the remarkable 
precision of normal voice pitch control.  This type of 
precision data analysis is also basic to the provision of 
measurements both for sustained sounds and for the 
analysis of running speech. 
 
 The current clinical techniques for the quantification of 
voice abnormality depend to an appreciable extent on the 
use of sustained sounds and the standard protocol uses 
the steady state in the centre of the sample.  Period by 

period analysis gives a clear indication of the onset and 
offset transients which this approach misses. The 
pathological speaker in general has difficulty in 
producing smooth voice onset and offset.  This is clearly 
seen initially, where diplophonic breaks in the voice 
precede more steady production, and in the voice breaks 
at the end.  As must be expected, perception leads 
production but it is striking and commonly observed, that 
the pathological voice does not have a jitter 
commensurate with the disability.  This small difference 
results partly from the choice of the centre interval of a 
sound sustained at a comfortable pitch − and partly from 
the speaker’s auditory monitoring ability for sustained 
sounds, and phonatory choice of a dominant mode.   
 

III RESULTS & DISCUSSION 
Connected speech and sustained vowels 
For the majority of the population, speech 
communication is at the heart of our daily lives.  Clinical 
voice measurement, however, is mostly directed towards 
the appraisal of the ability to produce a sustained vowel. 
Since there are quite substantial perceptual differences 
between our ability to hear pitch regularity in sustained 
vowel sounds as opposed to fluent speech, it would be of 
interest to make at least an initial appraisal of the ways in 
which perception and production may interact in the 
voice pitch structures of the two types of phonatory 
activity.  There may additionally be an advantage in 
comparing pitch regularity inspired analyses based on the 
two types of spoken material simply with a view to 
contributing to filling the gap between clinical indices of 
severity of dysphonia based on vowel measurement and 
those using a perceptual evaluation of continuous speech.  
Most important of all, however, is both to make use of 
pitch criteria and to take account of the nature of pitched 
sounds.  Regular repetition of an acoustic event and 
perceived pitch go hand in hand. 
 
Analyses of ordinary running speech 
 
 
 
 
 
 
 
 
 

Figure 2  Vocal fold frequency,Fx, distributions 
for a 2m sample of pathological connected speech — 

speaker B 
 
The two distributions in Fig 2 are very dissimilar.  DFx1, 
on the left, shows the distribution of Fx values for every 
vocal fold period in the whole 2m. sample.  DFx2 shows 
only those Fx values for which two successive periods 
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have been essentially the same.  Two modes of vocal fold 
vibration are shown.  The main at about 200 Hz is well 
defined.  At about an octave below, the lower mode is 
more diffuse and is evidently associated with 
considerable period to period irregularity since the values 
of DFx1 and DFx2 are so different.  Different pathologies 
give rise to different types of modal structural differences 
but for most cases the presence of voice pathology will be 
associated with marked discrepancies in magnitude and 
shape between these two forms of representation.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3  Overlaid Fx distributions for a normal 

sample (speaker A) AND for its “pitched” components 
 
The use of accurate period by period information makes it 
easy to plot the occasions when two successive pitch 
periods have essentially the same value.  For the normal 
voice this happens very often indeed.  The pathological 
voice, however, is very easily identified by the ear as 
having period to period irregularity.  This important 
feature is shown in the inner of the two distributions 
above in Figure 3.  The two distributions together give an 
immediate insight into important aspects of voice quality 
− pitch height and range, modal structure, and regularity.  
These first and second order distributions are especially 
useful in general in pathological voice analysis. 
 
Jitter and irregularity in connected speech 

 
Figure 4 Vocal fold period crossplots, CFx 

speaker A on the left, B on the right 
 

Jitter and intonation 
The procedure basic to the ordinary application of the 
jitter criterion is applied only to sustained sounds and 
requires that the voiced sound being measured is held at 
as constant a pitch as possible by the speaker.  The 

essential concept, however, is directed at obtaining a 
quantitative assessment of pitch variability.  The idea is 
just as applicable to ordinary connected speech so as to 
get an appraisal of the irregularity which may be inherent 
to the social use of a pathological voice.   
 
An obvious first approach to the measurement of pitch 
irregularity in a sample of running speech is to determine 
the standard deviation of the spread of cycle to cycle 
differences in regard to periods or frequencies.  A 
difficulty with this approach is that it will necessarily 
include ordinary intonational variations as part of the 
estimate of irregularity.  The problem is perhaps best 
illustrated with reference to actual data.  When vocal fold 
vibration is essentially regularly periodic the use of a 
period by period crossplot, as in Figure 4 A, gives a 
clearly defined diagonal line − since successive periods 
have almost the same values, apart from the variations 
arising from the intonational frequency related changes of 
connected speech.  For the pathological voice, however, 
the shape of the crossplot is not so simply defined 
because successive vocal fold periods are very often 
markedly different and are not totally under the speaker’s 
cognitive control.  This method of plotting the range of 
variability in period to period coherence is effectively 
similar to the application of the jitter criterion, used for 
sustained sounds, to the whole of a connected speech 
sample. 
The interpretation of jitter in running speech, however, is 
not at all the same as that for sustained sounds.  First, the 
pitch dLs are quite different in the two cases.  The bin 
sizes needed for the adequate representation of 
significant changes in the present data involves 6% steps.  
The 0·1% resolution required for the analysis of 
sustained sounds is not appropriate.  Second, the 
presence of intonational changes makes it necessary to 
ignore variations which are part of the normal patterning 
of vocal fold frequency change in running speech.  
Figure 4 A shows that there is indeed a centre continuous 
core of variation for the whole of the vocal fold 
frequency range and this is found for all normal 
speakers.   
 
If the pitch difference limen value of 6% is applied to 
this data then it becomes possible to apply a theoretically 
founded criterion which makes it feasible in practice to 
separate the variability arising from intonation from that 
due to other causes.  It is then only necessary to 
determine all the pitch deviations which are more than 
6% away from the centre line in the graph showing Fx1 
against Fx2 − where Fx1 is the frequency value of the 
first vocal fold cycle in any pair of cycles in the whole 
utterance and Fx2 is the frequency value of the 
immediately following cycle of the pair.  Fx is used to 
denote the frequency value of a single vocal fold cycle, 
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the period of this cycle being measured from point of 
closure to point of closure. 
Normal and pathological voice examples 
The comparison of Figure 4A with 4B shows how the 
relatively small jitter differences sustained sounds from 
these speakers, of .3% & .8%, is related to quite marked 
structural changes in their samples of connected speech.  
In these particular instances, irregularity is 3·2% for the 
normal speaker and 14·7% for pathological speaker B.  
Both values were measured in the way described above 
as a percentage of the number of vocal fold periods, 
outside the centre core of intonation-dependent pitch 
change, relative to the total number of vocal fold periods 
in the whole spoken sample. 
 
Loudness and Quality 
Connected speech phonetogram 
The standard phonetogram was designed to provide an 
overview of the dynamic range of a singer’s voice and 
was based on the separate production of sustained 
sounds.  The same principle can be applied to the 
analysis of the speaking voice to give first and second 
order “Dynamic Phonetogram” derived from the 
amplitude −frequency analyses of a complete sample of 
connected speech (also called Speech Range Profile).   
 
 
 
 
 
 
 
 

Figure 5 Second Order Dynamic Phonetograms 
derived from 2m. samples of connected speech: 

normal speaker A, left; abnormal voice speaker,  right 
In both Figure 5A and B, only the second order 
distributions are shown.  This has little effect on the 
presentation for speaker A; it does have a profound 
influence on the form and range of the data presentation 
for speaker B since the presence of a bimodal peak in 
loudness is very evident in the first order distribution but 
not in the “pitch” related second order plot. 
 
 
 
 
 
 
 
 

 
Figure 6 Period by period amplitude crossplots − CAx 
A factor contributing to our perception of hoarseness 
comes from the irregularity of successive amplitude 
peaks in the cycle to cycle excitation of the vocal tract.  

This is especially evident in connected speech and 
speaker A on the left, Fig. 6, has a smaller spread in these 
analyses than B.  Using a similar measure of irregularity 
to that employed for CFx gives values respectively of 
3·3% and 6·5%. 

IV IN CONCLUSION 
 

Voice quality, “closed” phase and pitch 
 
 
 
 
 
 
 
Figure 7 DQx 1&2 − distributions of first and second 

order “closed phase” as a function of vocal fold 
frequency, Fx 

Voice quality is a complex attribute of voice but one 
important additional aspect comes from the regularity and 
duration of the closed phase from vocal fold cycle to 
cycle.  First and second order plots can often give 
important information in regard to the physical nature of 
a pathological voice, in Fig 7 it is evident that speaker B 
has poor closed phase coherence, and range. 
 
 
 
 
 
 
 
Figure 8 “Closed phase” ratio Qx as a function of 
vocal fold frequency — A left, B right 
 
  The pathological voice, B Fig 8, is substantially deviant 
and gives a range of Qx [the closed phase measure based 
on trans-glottal conductance] which is never found in the 
normal voice and relates to the irregularity as a function 
of pitch which can be clearly heard in her speaking 
voice.  More generally, the Lx waveform can provide a 
sensitive basis for analysis that can be used effectively 
from the operatic voice to more extreme conditions [3]. 
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Julian McGlashan FRCS and Dr Evelyn Abberton. 
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FROM VOCAL QUALITY MEASUREMENT TO PERCEPTION

Rahul Shrivastav

rahul@csd.ufl.edu

Department of Communication Science & Disorders, University of Florida, Gainesville

Abstract: Quantification of vocal quality of a speech

signal is essential in a number of applications.

However, existing measures for this purpose are

often characterized by poor sensitivity and specificity

to perceptual judgments. These shortcomings may

have arisen because (1) these measures are often

validated against “noisy” perceptual data and (2) the

non-linear and multidimensional relationships

between the physical signal and perceptual

judgments have often been ignored. This paper

describes the psychometric principles underlying

quantification of subjective judgments and the use of

an auditory processing model as a signal processing

front-end when measuring “breathy” voice quality.

Preliminary data for quantification of “roughness” is

also discussed.

INTRODUCTION

The speech signal is rich in information and conveys a

large amount of information to a listener. For example,

apart from the meaning contained in the utterance, the

speech signal conveys such information as emotions,

speaker identity, age and gender. A number of

applications require accurate quantification of such

perceptual attributes of a speech signal. In the clinical

domain, one may need to quantify aspects such as

speech intelligibility, voice quality, nasality, etc. These

attributes are important because these are often affected

by disease and are frequently the target of surgical,

pharmacological or behavioral treatment. Precise

quantification of these attributes can enhance the

assessment and rehabilitation procedures by providing a

baseline against which any change can be measured.

Various techniques to quantify these perceptual

attributes have been developed over the years. Some of

these require listeners to make a subjective decision

using a particular rating scale (for example, the CAPE-V

developed by the American Speech-Language and

Hearing Association). Others use a variety of signal

processing techniques to quantify certain aspects of the

speech acoustic signal [1-4]. Unfortunately, all of these

methods have been compromised by a variety of

problems. The accuracy of subjective judgments has

been measured by calculating the reliability and

agreement within and across listeners. Reliability

measures the degree to which one listener’s ratings on a

set of stimuli follow the same trends as that of another

listener. Agreement, on the other hand is a measure of

the probability that two listeners give the same stimulus

the same exact rating. Unfortunately, both reliability and

agreement have been found to be poor for subjective

ratings of voice quality [5-7]. Similarly, the accuracy of

automated measures to quantify perception is measured

by calculating the correlation between these measures

and perceptual judgments of voice quality.

Unfortunately, most automated measures have been

observed to show poor to moderate correlation with

perceptual data. Additionally, these measures often lack

consistency and show poor sensitivity and specificity to

the perceptual construct that they intend to quantify [8].

When attempting to quantify attributes such as voice

quality, it is important to remember that these are

inherently perceptual constructs. Attributes such as

voice quality, nasality or “acceptability” of speech

essentially reflect a listener’s judgment about that

particular construct. The speech signal itself does not

possess quality; rather, it “evokes it in the listener” [8].

Therefore, any method to quantify such perceptual

attributes must be validated against perceptual

judgments made by listeners. These perceptual

judgments serve as the gold standard for any other

method to quantify perceptual attributes of speech.

Unfortunately, perceptual judgments made by a listener

are highly variable and are affected by a number of

factors [9, 10]. While some of these factors are related to

the stimulus characteristics, others are related to

extraneous variables such as listener experience and

training, instructions given to the listeners, nature of the

scaling task and the experimental design. These

extraneous variables introduce “noise” in the perceptual

data, thereby, making it difficult to interpret the true

perceptual magnitude of a given stimulus. However,

these errors can be minimized through the use of

appropriate experimental designs to obtain perceptual

judgments [11]. These procedural modifications include

multiple presentations of each stimulus to each listener,

randomizing the order of stimulus presentation,

modifying the instructions given to the listeners, etc.

Once a good estimate of the perceptual magnitude of an

attribute has been obtained for several stimuli, these

judgments may be used to develop a model that predicts

listener judgments based on various stimulus

characteristics. Such a model can be used to generate

automated measures of vocal quality or other perceptual

attributes of the speech signal. The development of such

a model requires attention to the sensitivity of the

human auditory system and the characteristics of the
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acoustic-auditory transduction process. Previous

research has shown that the relationship between a

physical stimulus and its perceptual consequence is

often non-linear. For example, the relationship between

intensity and loudness may be described with a power

law [12] and that between frequency and pitch is better

described using non-linear scales such as the Bark, Mel

or ERB-scales [13, 14]. In a similar manner, the

perception of complex attributes such as voice quality

may be best characterized by a non-linear function of

specific stimulus characteristics. When the goal of

measurement is to quantify perception, we need to (a)

determine what aspects of the speech acoustic signal are

perceptually relevant, and (b) determine the nature of

the relationship between these stimulus characteristics

and their perceptual consequences. One method to

account for some of these non-linear processes is

through the use of an auditory-processing model as a

signal processing front-end. The general form of such a

model is shown in Figure 1. The use of such front-ends

has been shown to give better estimates of the

perceptual judgments of voice quality [15, 16].

Figure 1: General form of an auditory processing

model.

This paper describes a series of experiments to

understand the perception of dysphonic voice quality.

The first section describes the psychometric principles

used to obtain a good estimate of the perceptual

magnitude of dysphonic voice quality. In the second

section, one particular auditory processing model and its

utility in the quantification of “breathy” voice quality is

described. And finally, preliminary data is presented on

the perception of “rough” voice quality.

PYSCHOMETRIC THEORY TO QUANTIFY SUBJECTIVE

JUDGMENTS OF VOICE QUALITY

A variety of techniques have been used for scaling

perceptual magnitude of a physical stimulus [17]. It is

necessary to differentiate two aspects in this process –

sensory capability and response proclivity [18]. Sensory

capability refers to the resolving power of the sensory

mechanism; it defines the limits of the sensory system.

On the other hand, response proclivity refers to the

tendency of a listener to respond in a specific manner

when encountering a specific stimulus. Since proclivity

is affected by several factors, many unrelated to the

stimulus itself, it is necessary to take appropriate steps

to minimize “noise” in perceptual judgments.

For example, inter- and intra-rater reliability (measured

as the correlation between ratings made within- or

across-listeners) in perceptual ratings can be minimized

by averaging multiple ratings of each stimulus by each

listener [11]. Such precautions can avoid errors such as

those arising due to “order-effects” and frequently seen

with rating scales. If measurement of “agreement” (i.e.

the probability that two raters would give the same

stimulus exactly the same rating) is essential, the ratings

from individual listeners should be normalized using

standardized scores (z-scores) or other procedures.

Figure 2 shows the improvement in reliability and

agreement for perceptual ratings of breathiness when

these procedures are used.

Figure 2: Improvement in reliability and agreement

when multiple ratings of each stimulus from each

listener are used. Each listener’s ratings were converted

to corresponding z-scores.
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Although these techniques help improve agreement and

reliability of rating scale data, these measures may not

necessarily indicate the true magnitude of the stimulus.

Rather, rating scale measures may only provide the rank

ordering of the stimuli tested in the experiment. Other

techniques, such as magnitude estimation, magnitude

production, matching or paired comparisons may be

better suited to obtain an accurate estimate of perceptual

“distance” between two stimuli.

AUDITORY PROCESSING MODEL AS A SIGNAL-PROCESSING

FRONT END TO QUANTIFY “BREATHY” VOICE QUALITY

Breathiness in voices has been found to correlate with a

number of acoustic measures, including aspiration noise,

Voice Spectrum

Band pass filter for external ear

Band pass filter for middle ear

Filter Bank:

Transform sound spectrum to excitation pattern

Compressive function to obtain specific loudness

Calculate area under specific loudness curve to obtain total

loudness
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frequency/intensity perturbation and spectral slope.

However, the correlation between these measures and

perceptual judgments of breathiness has been found to

be inconsistent across different experiments.

Auditory processing models can allow us to estimate

how acoustic signals may be represented in the auditory

system. Several such models have been proposed [19-

21]. One such model, proposed by Moore et al. (1997)

was implemented for the study of breathy voice quality

[15, 16]. This model simulates the outer and middle ear

as band pass filters. The cochlear filtering is simulated

with a filter-bank of asymmetric rounded-exponential

filters. Finally, the neural excitation is modeled as a

non-linear compressive function. The total neural

excitation for a given sound provides an estimate of the

loudness of that sound. The neural excitation within

each “channel” is called the specific loudness.

This auditory processing model can also be used to

simulate masking. Masking refers to the phenomenon

where the loudness of a sound is reduced if it is

presented along with a background noise. The loudness

of a specific component, when it is presented

simultaneously with an auditory masker is called the

partial loudness.

The utility of this auditory processing model in

predicting perceptual judgments of breathiness was

tested in separate experiments [15, 16]. One experiment

studied 13 voice stimuli, and compared the results to

perceptual judgments obtained using a multidimensional

scaling design. The other studied 27 stimuli and

compared the results to perceptual judgments made on a

5-point rating scale. In both these experiments, the voice

stimuli were first separated into a periodic component

representing the complex wave produced by vocal fold

vibration and an aperiodic component representing the

aspiration noise. The auditory processing model was the

used to estimate the partial loudness of the complex

wave, while treating the aspiration noise as an auditory

masker. In both these experiments, the partial loudness

of the complex wave was found to correlate highly with

the perceptual judgments of breathiness. This measure

accounted for greater variance in the perceptual ratings

of breathiness than any other acoustic measure of

breathiness. Figure 3 shows the relationship between

partial loudness of the complex wave and perceptual

judgments of breathiness.

The use of an auditory-processing model accounts for

multiple factors that may affect breathiness – the overall

intensity of the complex wave and aspiration noise, the

spectral shape of these components as well as the non-

linear interaction between the two. This, presumably,

accounts for greater variance in the perceptual data than

using conventional acoustic measures such as measures

of noise or spectral slope. The change in partial loudness

patterns for different voices is shown in Figure 4.

Figure 3: Linear  regression predicting ratings of

breathiness using partial loudness of the complex wave

(and assuming that aspiration noise acts as an auditory

masker).
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Figure 4: Partial loudness patterns for voices identified

as normal, mild-, moderate- and severely- breathy.
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ACOUSTIC CORRELATES FOR “ROUGHNESS” IN VOICES –

PRELIMINARY DATA

Many voices frequently observed in voice clinics are

described as “rough.” A number of acoustic correlates

for roughness have been proposed. These include,

frequency/intensity perturbation, estimates of noise in

the signal and the presence of subharmonics. However,

as with breathy voices, these findings lack sensitivity

and specificity.

From a psychoacoustic perspective, the perception of

roughness is related to the amplitude and frequency

modulation of a carrier wave. More specifically, the

roughness of a sound is related to the amplitude

modulation within a given critical-band [22]. The

perception of roughness of a carrier wave is most

sensitive to specific modulation frequencies.

A much simplified implementation of this model for

roughness is obtained by: (1) determining the

modulation frequencies in the vowel, (2) selecting a

subset of these modulating frequencies, (3) calculating

the “modulation amplitude” for these frequencies, and

(4) determining the average modulation due to these

frequencies.



The average modulation amplitude thus obtained was

first normalized to the fundamental frequency of each

stimulus, and was then used to predict perceptual

judgments of roughness for 34 vowel samples. An

exponential fit was found to account for 80.2% of the

variance in the perceptual data. These data are shown in

Figure 5. Measures such as shimmer, jitter and signal-

to-noise ratio accounted for considerably less variance

in the same perceptual data.

Figure 5: Perceptual ratings of roughness predicted by

the normalized modulation amplitude of selected

modulation frequencies.
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CONCLUSIONS

Voice quality is essentially a perceptual construct. Any

method to quantify perception must be validated against

perceptual judgments. However, since perceptual

judgments are highly variable, one needs to devise

experiments that minimize response variability

associated with non-stimulus factors. Additionally,

methods to quantify perception are more likely to be

successful if they simulate the mechanisms involved in

the auditory-perceptual process. One way to achieve this

is through the use of auditory-processing models as a

signal-processing front end. The success of this

approach is shown for quantification of “breathiness”

and “roughness” in dysphonic voices.
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Abstract: Kymographic imaging refers to a special

way of displaying vibrations by putting together a

great number of successive images of a vibrating

object viewed through a thin slit.  In medicine, the

method has been found particularly well suited for

imaging vibrations of the vocal folds, which are the

ultimate source of human voice.  Here we address the

question on which vibratory characteristics of the

vocal folds can be identified in high-speed

videokymographic images and used in clinical

practice when diagnosing origins of voice problems?

The ultimate long-term goal of the research is to relate

the displayed vibration characteristics to the tissue

properties of the vocal folds and design strategies how

undesirable tissue properties can be altered through

conservative or surgical treatment.
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Abstract - Vocal folds oscillation crucially influences

all the basic qualities of voice, such as pitch and

loudness, as well as the spectrum. Stroboscopy

provides the standard view of the larynx.

Videokymography is a new diagnostic tool developed

to overcome specific limitations of stroboscopy in

severely dysphonic patients with an aperiodic signal.

It registers the movements of the vocal folds with a

high time resolution on a line perpendicular to the

glottis.

The main focus of this paper is on measuring and

tracking quantitative parameters for objective vocal

fold function assessment from videokymographic

(VKG) examinations of subjects with normal and

pathological laryngeal function. Active contour

search is realised, by properly adjusted snake

algorithm. Examples are reported, showing the

robustness and reliability of the proposed technique.

I.  INTRODUCTION

Vibration of the vocal-folds is a highly relevant aspect

of voice production, both in normal and in pathological

voices. The periodicity, or lack of periodicity, critically

determines the quality of voice. It is typically described

in terms of jitter and/or shimmer, period to-period

correlation, or by spectral characteristics. Another

method for acquisition of physiological data is direct

visual inspection of the vocal folds vibration by means

of stroboscopy. An admitted limitation of the

stroboscopic image is that vocal fold vibration must be

relatively periodic to visualize a slow motion

representation of the phonatory cycle. In fact,

aperiodicities associated with some voice qualities make

stroboscopy inappropriate, since any disturbance of the

vibration distorts the resulting stroboscopic image.

The kymographic concept introduced by [1], [2] seems

to be an optimal solution, since each vibratory cycle is

documented in terms of a sequence of several images,

which can be acquired directly from a single-line

camera [1] or by extraction from high-speed image

sequences[3],[4]. Videokymography allows isolation of

specific portions of the glottic image (taken at up to

7812 images per second) to be analyzed for closure.

Such kymographic images give a good view of the

movements of the vocal folds, periodic or nonperiodic,

but only for part of the image, i.e., the single line. This

study aims at offering an automatic quantitative method

to obtain vibration properties of human vocal folds via

videokymography, by developing a digital image

processing algorithm optimized for the analysis of

videokymography (VKG) recordings, such as intensity

adjustment, noise removal and glottis identification. The

presented method extends previous work [5] and

combines an active contour model with a parameter

extraction algorithm that can accurately track the

vibrational wave in videokymograms and automatically

quantify its properties in terms of few parameters,

useful for clinicians. Tracking parameters, other than

simply measuring their mean value and std, is in fact

considered of utmost importance by clinicians, as

irregular patterns can be found at their instant of

occurrence during phonation and put into relation with

images and acoustic signal analysis. Specifically, the

amplitude and period ratios between right and left vocal

fold, as well as the ratio between opening and closing

phase are considered [6]. When required, more

parameters could be added, on analogy to [7].

Examples are given concerning pathological subjects,

that show the robustness of the contour detection

algorithm.

II.  MATERIALS AND METHODS

Videokymography (VKG) is based on a special camera,

which can operate in two different modes: standard and

high-speed. In the standard mode, the camera provides

standard images displaying the whole vocal folds at

standard video frame rate (30/25 frames/s, with

720x486/768x576 pixels of resolution). In the high-

speed mode, the video camera delivers images from

only a single line selected from the whole image, at the

speed of approximately 7875/7812.5 line-images/s and

720x1/768x1 pixels resolution. The resulting high-speed

image, called “videokymogram”, displays the vibratory

pattern of the selected part of the vocal folds.

Kymographic recording is divided into video frames,

i.e. segments of approx. 15/18 ms duration. Images are

not in colour, and continuous high-intensity light is

desirable.
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The vibratory pattern displayed in kymographic images

is dependent on the measuring position. There are two

factors which influence the resulting image:

1- position along the glottal axis

2- angle with respect to the glottal axis.

In normal cases, the position in the middle of the vocal

folds is usually considered to provide the representative

vibratory pattern of the whole vocal folds. In case of

vocal fold lesions, however, the vibration characteristics

generally differ along the glottal axis.

The angle of the measuring line is, as a standard,

adjusted to be perpendicular to the glottal axis. When

using  VKG, the measuring position is adjusted prior to

the examination.

Usually, there is only limited time available for the

examination. Therefore, phonation at comfortable pitch

and loudness is mostly targeted for kymographic

imaging.

Despite its usefulness, in our knowledge, until now no

quantitative analysis of VKG images is commercially

available, and only few work has been made towards its

fulfillment [6], [7]. At present, physicians perform only

qualitative evaluation of VKG parameters, basically by

visual inspection of subsequent frames, or by manual

measures from printed images. Such analysis prevents

from reliable comparison among wide sets of data, and

hence from finding and defining standard reference

values for classification and assessment of treatment

effectiveness.  Based on such requirements, this work

aims at providing first results that would allow filling

this gap.

Parameter extraction is obtained here by means of two

subsequent stages: image analysis, for vocal folds

contours detection, followed by signal analysis, for

parameter evaluation from data sets representing vocal

folds edges. Specifically, and with reference to Fig.2,

the parameters to be measured and tracked are:

• Ramp, the ratio between the right and left vocal fold

amplitudes, related to possible asymmetries

between the two folds;

• Rper, the ratio between the right and the left

vibratory periods, inversely related to possible

frequency variations due to pathology;

• Roc, the ratio between opening and closing phase

(Open and Closed, respectively), basically related

to glottal insufficiency.

For healthy voices, such parameters should be equal or

close to one, and almost constant during all phonatory

cycles. Any asymmetry due to pathology can thus be

quantified by evaluating and tracking the above-

mentioned parameters.

A First stage: Edge detection

The correct detection of the vocal folds contour is

carried out in a two-step process, the first one aiming at

finding an initial contour to which active snakes are

applied in the second step.

Figure 2: Main parameters for objective

videokymographic image analysis (from [1]).

A.1 First step: initial contour

The following routine, that handles some basic settings,

is executed before the snake. It normalises grey levels,

initialises contour, takes notice of black lines, to be

disregarded by the algorithm, thus finding the

significant rows in the image. Then, it sets to 0 the level

of the image outside the right and left edges, defined by

the user. This allows avoiding noisy fluctuations of the

grey levels not overlapped with the vocal folds. The

routine scans the significant rows and, for each of them,

determines the largest interval of pixels with a grey

level lower than a pre-specified threshold. A first

contour is thus obtained, by storing the interval co-

ordinates for each line in two separate arrays.

A.2 Second step: snake active contour

Snakes are planar deformable contours that are useful in

several image analysis tasks. They are often used to

approximate the locations and shapes of object

boundaries on the basis of the reasonable assumption

that boundaries are piecewise continuous or smooth [8].

Representing the position of a snake parametrically by

v(s)=(x(s),y(s)) with s in [0,1], its energy can be written

as:

(1)

where Eint represents the internal energy of the snake

due to bending and it is associated with a priori

constraints, Eext is an external potential energy which

depends on the image and accounts for a posteriori

information. The final shape of the contour corresponds

to the minimum of this energy.

In the original technique [9] the internal energy is

defined as:

 

E
int

v s( ) =
1

2

a s( )
v s( )

s

2

+ b s( )
2

v s( )

s
2

2

. (2)

This energy is composed of a first order term controlled

by a(s) (tension of the contour) and a second order term

controlled by b(s) (rigidityof the contour).
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The external energy couples the snake to the image. It is

defined as a scalar potential function whose local

minima coincide with intensity extremes, edges, and

other image features of interest:

 
Eext v s( ) = c Gs I x, y( )( (

2
(3)

where I(x,y) is the image intensity, Gs is a Gaussian of

standard deviation s, is the gradient operator and c a

weight associated with image energies [8], [9], [10].

As concerns the energy minimization, the original

model employs the variational calculus to iteratively

minimize the energy.  There may be a number of

problems associated with this approach such as

algorithm initialization, existence of local minima,  and

selection of model parameters. Among existing

methods, the greedy algorithm [10] exhibits a low

computational cost, provided the initial position of the

snake is relatively close to the desired contour. In our

application, the technique described in step 1 provides a

fairly good approximation of the real contour, therefore

allowing us to utilize the active contour and the snake

algorithm to perform a fine tuning of the contour on the

image. Each vocal fold has been modelled as an

independent snake, having its extreme point constrained

to belong to the first and the last scan line of the image,

respectively. Notice that, differently from [7], the snake

is applied on the whole contour and not on sequential

rows. This makes the search particularly efficient and

robust.

B      Second stage: parameter extraction and tracking

In this stage, data consist of (time, edge value) pairs, for

each fold, obtained as described in the previous steps.

As already said, three clinically relevant parameters are

extracted from data.

Ramp = ratio between the average amplitude of the left

vocal fold and that of the right vocal fold. The

amplitude is defined as the distance between each point

and a fictitious closed-fold point, chosen to be halfway

between the minimum values of the folds.

Rper = ratio between the right vocal fold period and the

left vocal fold period. The period is defined as the mean

value among all periods in the frame. Each period is

obtained by evaluating the distance between consecutive

maximum edge values, determined relatively to the

closed-fold point axis.

Roc = ratio between the opening and closing phase of the

folds, determined searching consistent, non noise-

generated interruptions of the time coordinate.

Following [7] as well as future clinicians suggestions,

more parameters could be easily added and extracted.

III.  EXPERIMENTAL RESULTS

Algorithms were applied to a set of VKG recordings

(Kay Elemetrics VKG Camera, Model 8900 ), ORL

Dept., Ospedale Maggiore, Milano, Italy, belonging to

both normal and pathological patients.  Specifically, 11

patients (6 male, 5 female, age 24-81, mean 52 years)

were analysed, affected by: leucoplachia, granuloma,

polyp, dysphonia, and possibile vocal fold paralysis.

The work was carried out under C++ development

environment.

Each image has been processed and visually inspected

to qualitatively assess the contour identification. Both

the results of the first step (before the application of the

snake algorithm), and of the second one, as optimized

through the active contour, are considered. Notice that

the first step works reasonably well in about 80% of the

test cases, although there is a considerable amount of

noise which reduces the reliability of the measured

parameters. In the remaining 20% of cases, the images

present few dark zones, which cause the detection

of artefacts appearing as anomalous contours. The

application of the active contour method, however,

greatly reduces the presence of both noise and artefacts,

achieving an accurate contour detection.

Fig.3 shows the results obtained with the first step

(Fig.3a) and the second step (Fig.3b) for one patient:

male, 75 years old, affected by leucoplachia on the left

vocal fold. The figure is relative to a single VKG frame

out of about 450, for about 2min. total duration of the

whole visit, which comprises laryngoscopic, VKG and

simultaneous audio recording of sustained /a/. Notice

that the first step gives almost irregular initial contours,

while the second one smoothes the lines and

successfully removes outliers.

(a)

(b)

Figure 3 – Edge contour deetection. (a) first step:

preliminary contour; (b) second step: final contour.

Fig.4 shows the tacking of the three parameters Roc,

Ramp, Rper on a set of about 90 subsequent frames.

Notice that, due to the length of the exam, the emission

slightly changed with time, ranging from /a/ to /ae/ and

/ao/ (F0 varied in the range 140Hz-230Hz).



Figure 4 - Roc, Ramp, Rper tracking along 90 VKG frames

This fact, in conjunction with pathology, and the

difficulty of the operator to keep the endoscope fixed on

the same line through the whole analysis, caused

possible changes in the VKG parameters, as pointed out

in fig.4 as far as Roc is concerned, which shows a mean

value Roc-mean=1.96, with 0.8 std. Instead, Ramp and Rper

are quite stable: Ramp-mean=0.99, std=0.2,  Rper-mean=1,

std=0.02, according to the pathology under study, that

does not causes strong irregularities in the vocal folds

oscillation.

Similar results were obtained with the other recordings.

Both visual inspection of contours and objective

parameters tracking have provided clinicians with useful

details and information, also in cases not clearly

distinguishable with stroboscopy alone.

IV.  FINAL REMARKS

Kymographic imaging provides valuable information on

the dynamic behaviour of the laryngeal tissues that is

not so clearly distinct in the classical stroboscopic

viewing, especially in case of early or non-specific

lesions, irregular closure patterns, vocal fold weakness,

paralysis, that may also allow for the differentiation of

weakness due to overuse, aging, paresis, or early stages

of neurological conditions. The information can be used

in basic research, vocal fold modelling, as well as in

clinical practice, as, for instance, in evaluating the

results achieved by phonosurgery.

Hence, the need for automatic evaluation and tracking

of objective parameters, extracted from VKG images, is

of great concern. This paper aims at providing a basic

set of such parameters, by means of active contour

techniques for edge detection. Specific adjustments

were made in a first step, in order to deal with high

varying and noisy images as those under study.

Current research focuses on refinements of the proposed

technique, as well as on the estimation of a wider set of

parameters. A user-friendly interface is also under

construction, with the aim of making the analysis fully

automatic and allowing easily storing and retrieving

patient’s data.
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Abstract: An experimental study of the vibratory 
deformation of the human vocal folds was conducted. 
Experiments were performed using model vocal folds made 
of soft silicone rubber, and an air supply system. The model 
self-oscillated at fundamental frequencies and flow rates 
typical of the human folds. Time-averaged mass flow rates 
and transglottal pressures were measured along with the 
sound pressure upstream of the orifice. The deformation of 
the vocal fold was measured using a high-speed three-
dimensional digital correlation system.  The imaging set-up 
is composed of a high-speed digital camera and a prism 
beam splitter allowing two images to be obtained from 
different viewpoints in every image frame. Commercially 
available digital image correlation software was used to 
analyze the images, and to calculate the strain fields at the 
vocal fold superior surface. Results were obtained for vocal 
folds made of isotropic material and two different vocal fold 
lengths. The deformed shape of the model vocal folds, 
strains on the superior surface, and the time-varying vocal 
fold wall displacement were obtained.  
Keywords: Digital image correlation (DIC), high-speed 
video, strain fields, collision 
 
 

I. INTRODUCTION 
 

Many techniques are available for the visualization of 
laryngeal pathology.  Methods based on inverse filtering of 
radiated voice sound pressure signals, for example, or 
electroglottography provide useful information about the mean 
flow rate and waveform of the glottal source.  Optical 
techniques for the study of vocal fold vibrations have become 
readily available following the widespread use of high-speed 
digital photography. Among these optical methods, 
videoendoscopy, stroboscopy and high-speed photography have 
shown to provide a good visual impression of the vocal fold 
dynamics [1].  In addition kymographic image sequences allow 
for a convenient visualization of vibration patterns [2].  These 
widely known methods, however, provide little quantitative 
insight into the fundamental deformation processes taking place 
in the tissue during self-oscillation of the vocal folds.  To 
obtain quantitative measures of deformation, a micro-suture 
technique was applied to study mucosal wave propagation [3].  

This method is invasive and allows for measurement of only a 
few discrete image points.  Another non-invasive method, laser 
triangulation, was used but this approach is again limited to 
only local measurement points [4]. 

 In the present paper, the application of a digital image 
correlation (DIC) technique to the study of vocal fold dynamics 
and deformation is described.  This method allows for 
noninvasive synchronous measurements of the entire 
displacement field of the deformed vocal folds. The capabilities 
of the technique were investigated using a physical model of 
the vocal fold system [5].  The results so far are encouraging, 
and suggest that the procedure can be successfully used 
provided a suitable speckle pattern can be applied onto the 
surface of the deformable body. 
 

II. THE VOCAL FOLD MODEL 
 

The physical models of the vocal folds were built for a 
generic vocal shape [5, 6] following procedures described in 
[7].  The material used to cast the model folds was a silicone 
rubber, Ecoflex, manufactured by [8].   The vocal folds were 
made of one single isotropic material.  The material was 
characterized by a hardness value of oooH =31 on an OOO 
durometer scale. Uniaxial tensile tests were conducted. The 
tangent modulus at 0ε =  was determined to be E=5 Kpa.  The 
magnitude of the elastic modulus is thus approximately within 
the lower range of the longitudinal elastic properties of the 
human vocal fold cover [9]. 

 
III. EXPERIMENTAL SET-UP 

 
The experimental set-up used in the investigation is 

depicted in Figure 1.  The main components included an air-
supply system connected to an air duct assembly.  The model 
larynx was assembled in a rigid frame with zero glottal 
opening.  The frame containing the model larynx was placed at 
the upstream exit of the air duct.  The experimental set-up was 
connected to a mass flow meter, a pressure transducer and a HP 
DAC system. Images of the superior surface of the model 
larynx were obtained by the use of a high-speed digital camera, 
Memrecam fx K3, NAC Image Technology, [10], at a frame 
rate of 3000 frames per second.  
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Figure 1: Experimental set-up. 
 

(a)    
 

(b)    
 

Figure 2: Tracking a point on the superior vocal fold 
surface from (a) a reference to (b) a deformed state through 

gray value patterns in subsets. 
 
A 3D-DIC system was employed.  The analysis consists of 

two steps: (a) a stereo correlation technique to determine in 
plane displacements (u, v) [11] and (b) stereo triangulation [12] 
to obtain the out-of-plane deformation (w). For the 
determination of the in-plane displacements through a DIC 
analysis, images of the object under consideration at two 
different stages of deformation were compared; see Fig. 2(a) 
for the image of the reference state and Fig. 2(b) for the image 
of the deformed state. The stereo correlation analysis requires 
that any point in the undeformed stage of the object, 0x  is 
matched with the corresponding point in the deformed 
stage, 0x x u= + .  In DIC, such a correlation is obtained by 
searching for matching gray scale patterns in corresponding 
images. So-called “subsets”, i.e. parts of digital images, are 
traced via their gray value distribution from the undeformed 
reference image to the deformed image, as shown Fig. 2.  The 
uniqueness of the matching lies on the creation of a non-
repetitive speckle pattern on the object’s surface.  To obtain the 
speckle pattern, first a white pigment was mixed into the 
silicone rubber material during model preparation. 
Subsequently, black enamel paint was used to obtain the 
speckle pattern on the superior surface of the pseudo vocal 
folds.  The application of the speckle pattern to the pseudo 
vocal folds is non-invasive and did not add any significant mass 
to the system. 

For the stereo triangulation, two images of the object at 
each stage of deformation are required in order to obtain the 
out-of-plane displacement information.   This was 
accomplished by obtaining two images of the object 
simultaneously in one single CCD frame at each time instant 
through the placement of a beam splitter in the optical axis 

between the camera and the model larynx, Fig. 3.  With this set-
up two images of the model larynx are obtained at offset image 
positions and are recorded on a common digital image frame.  
These images provide a “left” and “right” view of the model 
larynx. Thus, the deformed shape of the vocal folds can be 
obtained by triangulation.  

 

“Left” Image 
     CCD 
“Right” Image 

Mirror 

Vocal Folds

Prism 

Mirror 

Air

 
Figure 3: Image set-up with beam splitter. (Figure not to 

scale) 
 
The digital image correlation analysis was performed using 

the program VIC-3D [13].  In the specific version of the 
program employed here, the image correlation was 
accomplished using an iterative spatial domain-correlation 
algorithm [14].  Calibration for focal length, image center and 
lens distortion was performed using a calibration target.   

 
IV. RESULTS 

 
Experiments were conducted on two larynx models with 

lengths L = 17 mm and 22 mm, respectively.  First, for each 
model, the airflow rate was increased stepwise until self-
oscillation was detected.  Table 1 summarizes the phonation 
onset data.  Phonation frequencies and onset pressures were 
within the range of physiological values.  Six measurements 
were undertaken at higher mass flow rates, beyond the 
phonation threshold.  The phonation frequency changed slightly 
as the mass flow rate was increased, Fig. 4(a).  A maximum in 
the measured phonation frequency was reached for a flow rate 
of 550 cc/s.  As discussed in the following, this behavior is 
associated with the onset of the occurrence of vocal fold 
closure and collision.  Collision occurred at a vocal fold length 
dependent critical mass flow rate.  For both models a linear 
relationship between pressure and mass flow rate was obtained, 
Fig. 4(b).  

Kymographic images, shown in Figure 5, were obtained 
for L=22 mm at flow rates of 406 and 690 cm3/s.  These images 
clearly demonstrate the difference between the vibration 
processes at low and high flow rates.  At low flow rates, no 
closing or collision of the vocal folds was observed. At larger 
flow rates, significant closure and collision takes place. Low 
and high flow rate regimes are distinguished based on the flow 
rate – frequency response such that a drop in frequency was 
observed for flow rates beyond the onset of closure/collision.  

 
 L=17 mm L=22 mm 
Onset pressure 0.73 Kpa 0.87 Kpa 
Mass flow rate 165 cm3/s 406 cm3/s 
Phonation frequency 92.9 Hz 88.75Hz 

 
Table 1: Phonation onset data of model larynx. 

0x

0x
u

 
High Speed Digital 

Camera 

Beam Splitter Physical Model and the 
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(a) 

 
(b) 

 
Figure 4: (a) Phonation frequency vs. Subglottal Pressure;      

(b) Subglottal pressure vs. mass flow rate for the model with 
L=17 mm and 22 mm  

 
 

                
 

       (a)                          (b) 
 
Figure 5: Sequence of five kymographic images (produced 

from a single kymographic image) for (a) flow rate of 406 
cm3/s (the phonation threshold), and (b) flow rate of 690 cm3/s.  
The Kymographic image location indicated by a line in Figs. 

6(a) and (c). L=22 mm. 
 
Figure 6 shows typical digital image analysis results.  

Superior views of the model larynx are shown for a flow rate of 
690 cm3/s at maximum glottal opening, Fig. 6(a), and during 
the stage of glottal closure, Fig. 6(c).  Figures 6(b) and (d) 

shows the distribution of the transverse strain 
component, xxε obtained from DIC on the superior surface for 
the images in Fig. 6(a) and (c), respectively.  The strain 
contours are shown on the deformed superior surface.  In the 
position of maximum opening the vocal folds are deformed by 
a combination of a bulging-type deformation and the opening 
motion.  The maximum value of the out-of-plane displacement 
was determined to be maxw = 3.5 mm.  This value is larger than 
that reported in humans, e.g. in [4] maxw = 1.5 mm was 
reported.  At the point of maximum glottal opening, the 
transverse strain, xxε , is less than zero at the mid-section of the 
superior surface.  During the closing process vocal fold contact 
occurs, Fig. 6(c).  Closure of the glottal opening is not complete 
and two distinct open areas are visible during the closing stage.  
These open areas are located at the anterior and posterior ends 
of the model larynx; see Fig. 6(c).  Such incomplete closure has 
been observed in actual glottal measurements [15] and 3D finite 
element simulations [16].  Even during the closing stage the 
model larynx retains some of the bulging deformation.  A local 
minimum of the out- of-plane displacement is seen at the 
midsection of the superior surface, 1.65w = mm, while the two 
locations of maximum out-of-plane displacement, 1.81w = mm, 
coincide with the locations of partial opening.  During closure 
the characteristics of the strain fields changes significantly.  At 
the midsection of the vocal folds the strain, xxε , is positive 
(tensile stress) and significant in amplitude, 0.1xxε ≈ . 

 
   
 
 
 
  
 
 
 
 
 
               (a)                                             (b) 

 
     

          
                     (c)                                             (d)  

 
 
 

Figure 6: The model larynx ( L = 22 mm, flow rate of 690 
cm3/s) (a) Image at maximum open position; and (b) contour of 

xxε ; (c) image for closed state; and (d) contour of xxε . 
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Figure 7: Out-of plane (a, b) and in-plane (c,d) 
displacements along the medial surface. L=22mm 

 
The DIC method was also used to extract details of the 

time history of the wall displacement.  Figure 7 shows the out-
of-plane ( w ) and in-plane ( u ) displacements obtained for 
points along a line parallel to the medial surface at a position 
1.5 mm from the centerline of the undeformed larynx for a flow 
rate of 406 cm3/s.  Fig. 7(a) and (b) show that the model larynx 
remains in a bulged state due to the mean static pressure in all 
stages, maxw =2.63 mm and minw =1.72 mm.  The main out-of-

plane vibratory displacements occur in the center of the vocal 
fold over a span of around L/2 with the outer parts of the folds 
almost fixed during oscillation. The range of the out-of-plane 
displacement was found to be w∆ = 0.91 mm.  Figs. 7(c) and 
(d) illustrate the process of glottal opening.  The model larynx 
remains in an open state due to the mean static pressure in all 
stages, maxu =1.45 mm and min 0.40u = mm. The main 
vibratory displacement occurs again in the center section of the 
vocal fold over a length of 3L/4.  The range of the in-plane 
displacement was u∆ = 1.10 mm.  

 
V. CONCLUSION 

 
The application of a three-dimensional DIC method for the 

non-contact and non-invasive measurements of displacement 
and strain fields in self-oscillating vocal folds has been 
described.  The method was implemented and applied in the 
laboratory to measurements of the superior vocal fold surface 
of a rubber physical model.  It provided time-resolved, full field 
measurements of several parameters of interest in phonation 
studies, including the out-of-plane displacements (the so-called 
mucosal wave height), the glottal opening displacement, as well 
as the strain fields corresponding to these displacements. The 
study demonstrates the linear dependence of subglottal pressure 
over mass flow rate and also the effectiveness of DIC method 
in estimating the strain fields.  Furthermore, it was found that 
while the out-of-plane displacements exceed those of the in-
plane displacements, the vibration amplitudes of these two 
degrees of freedom are similar.  Stress will be obtained from 
measured mechanical properties of the solid in future studies.  
The outlook for applications in clinical studies is promising. 
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Abstract: Six methods for endoscopic motion com-
pensation for laryngeal high-speed videoendoscopy
(HSV) are compared. Two of them are based on
tracking the maximum of the cross-correlation func-
tion of two images; two are based on minimization of
the L2–norm and L2-like distance between two ima-
ges; and the other two make use of the peak present
in the cross-power FFT-based spectrum of two
images. All six methods are applied to compensate
the motion, at the sub-pixel level, of the endoscopic
lens relative to the vocal folds in HSV recordings. The
new motion compensation methods based on FFT
cross-power spectrum demonstrated remarkable
computational speed and acceptable accuracy. While
accuracy was best for the L2-minimization techni-
ques, they were slower and had a limited motion-
tracking range.

I. INTRODUCTION

Sub-pixel compensation of endoscopic (camera lens)
motion in high-speed videoendoscopy (HSV) is an
imperative preprocessing operation making further
automatic evaluation of vocal fold movement possible
[1]. Endoscopic motion affects the time alignment of the
HSV image pixels, which makes it difficult to track the
dynamic characteristics of the laryngeal anatomic
structures (Fig.1). Successful applications of HSV
motion compensation (MC) techniques have been
recently reported in [1], where the MC method was
based on minimizing the L2-distortion of the smooth
time differential of HSV using convolution. The results
demonstrated that sub-pixel endoscopic MC is a valid,
reliable, and accurate technique with immediate
possibility of implementation in laryngeal HSV and that
the MC technique can be further optimized for speed and
performance. No other studies specifically addressing
MC of HSV have been published.

This study proposed, implemented and tested several
techniques, optimized for speed, as an alternative to [1].
Of particular interest is a new, and very fast, FFT-based
method [2-6], which allows the estimation of the spatial
shift of two similar images. The different versions of this
method are compared in [7].

The problem of endoscopic MC for HSV is complex
due to the dynamics of the vocal folds during phonation
(Fig.1). Laryngeal HSV is essentially different from any
other medical image because it registers the motion of an
organ that moves very fast (70-400 Hz), affecting
practically all connected tissues and creating motion

across the whole image. The motion of the connected
tissues contains a fast component, comparable in speed
with the vocal folds, but also slower components, some
of which are comparable with the speed of the
endoscopic motion (less than 15 Hz). No clear spatial
outlier can show the motion relative to the camera lens
located on the tip of the endoscope. Fortunately, the
endoscopic motion and the changes in the glottis during
phonation have different dynamics. This dynamic
difference is used to build the missing outlier by
computing the time differentials of the HSV image
sequence pixel by pixel [1].

Fig. 1. Open and closed phase of the vocal
folds in two different x-y positions.

Fig. 2. Smoothed time-differential images of
vocal folds in two different x-y positions.

In order to dynamically separate the fast vocal fold
movements from the slow camera lens motion it is
necessary to smooth the HSV. Smoothing of the time
differential of the HSV image (Fig.2) has been found to
be very effective when building the missing spatial
outlier for endoscopic motion tracking [1]. Larger
smoothing enhances MC when low-pitch or irregular
vocal fold vibrations are present, however it might limit
the responsiveness of the MC techniques to fast
endoscopic motion.
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II. METHODOLOGY

A. Motion Compensation Methods

Given that f1(x, y ) and f2(x, y) are two continuous
functions, in this case two images, where the second
function is a shifted in space version of the first one:
f2(x, y) = f1(x−x0, y-y0), we can find the displacement
{x0, y0} making use of one of the following methods.
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Fig. 3. Detection matrices (similarity measures) for different
methods used for HSV motion detection: left – higher searching
range; right – lower searching range after interpolation (dx = a,
dy = b); a) maximum of correlation similarity; b) minimum of L2-

like similarity; c) peak for cross-power spectrum similarity.

Correlation function methods. The classic method for
{x0, y0} detection relies on the properties of the
convolution (cross-correlation) function of f1(x, y) and
f2(x, y), which is defined as follows:

   
DC (a,b) = f1(x, y) f2 (x + a, y + b)dxdy

-∞

∞

∫
-∞

∞

∫      (1)

The function DC(a, b) reaches its maximum for a = x0

and b = y0. However, the maximum is flat (as shown in
Fig.3a) and computation is time consuming. We can
observe that f2(x, y) is shifted back by x and y dimensions
by a and b, to fit the original image f1(x, y). This method
can be realized by computing the convolution function of
two images, which is slow. Speed optimization can be
achieved by defining equation (1a) D∆∆(a, b)=DC(a, b)
for a limited range of a  and b  [1]. Such approach is
appropriate when estimating small shifts within 5 pixels.
L2–norm and L2-difference minimization methods. The
spatial shifts can be determined simply by minimizing

the difference between two images while artificially
shifting one of them and computing a similarity measure
of their difference, such as:

  

   
D

|∆|2
(a,b) = f1(x, y) − f2 (x + a, y + b)

2
dxdy

-∞

∞

∫
-∞

∞

∫   (2)

  

   
D|∆|(a,b) = f1(x, y) − f2 (x + a, y + b) dxdy

-∞

∞

∫
-∞

∞

∫       (3)

where (2) represents the L2-norm measure of the image
difference, while (3) is a L2-like measure known as the
average magnitude difference function (AMDF). The
minima of such functions are flat as it is shown in
Fig.3b.

FFT-based cross-power spectrum method. It is known
that Fourier spectra of images f1(x, y) and f2(x, y) are
related as:

F2 (ωx ,ωy ) = F1(ωx ,ωy ) " e j (ωx .x0 +ωy .y0 )        (4)

where F1(ωx, ωy) and F 2(ωx, ωy) denote Fourier
transforms of both images. Since it can be shown that:

G12 (ωx ,ωy ) =
F2 (ωx ,ωy ) " ′F1(ωx ,ωy )

F2 (ωx ,ωy ) " ′F1(ωx ,ωy )
= e j (ωx .x0 +ωy .y0 )       (5)

the inverse Fourier transform of G12(ωx, ωy) results in:

  
g12 x, y( ) = Fourier−1 G12 ωx ,ωy( )#

$
%
&              (6)

characterized by a sharp Dirac delta function centered at
(x0, y0) (Fig.3c-left). This property is very useful for
motion detection. In the discrete case above, the property
still holds, and direct and inverse fast Fourier transform
algorithms can be applied. Thus, the Dirac impulse takes
a form of a 2D sinc function, the interpolation of which
is presented in Fig.3c-right.

  

φ x, y( ) =
sin π x + x0( )#

$
%
&

π x + x0( )
'
sin π y + y0( )#

$
%
&

π y + y0( )
        (7)

The project described herein studied a variety of sub-
pixel adaptations based on this method. Only the most
successful two of these are presented.

Sub-pixel extensions. Similarity matrices DC(a, b) (1),
D∆∆(a, b) (1a), D |∆|

2(a, b) (2), D |∆|(a, b) (3), and
Φ(x, y) (7) can be easily interpolated as it is shown in
Fig.3-right for sub-ranges (-amax, amax) and (-bmax, bmax)
around the extrema. Adaptive strategies for changing the
values of a and b can be applied.

Such strategy is to replace the interpolation of the 2D
sinc Dirac impulse (7) (Fig.3c-left) with more effective
techniques, as presented below.

For discrete images (4) can be presented as follows:

)//(2
12 ),(),( cr NccNrrjecrFcrF ∆"+∆""= π           (8)
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where r  and c  denote row and column index,
respectively, and Nr and N c designate number of rows
and columns. Phases of these spectra are related by:
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or equivalently:
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where:

  
α = 2π∆r / Nr ,  

  
β = 2π∆c / Nc

(9)

As shown, Φ[r, c] is a 2D discrete function describing
a plane in 3D space (i.e. points Φ(ri, ci) lay on a plane).
After estimation of α and β coefficients’ values on this
plane, we can calculate the shift between images from
(9). The computation of α and β is reduced to a simple
least square problem easily solvable when the values of
the function Φ[r, c] are known for at least two points
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 Ax = b

that can be solved in a least square (LS) sense:

   x = (AT A)−1AT b = pinv(A) "b                            (11)

In Matlab language (11) is equivalent to x = A\b.

B. Experimental Design

Initial Testing of Basic Methods: The first step toward
developing a robust MC algorithm was to test the
accuracy and speed performance of the basic functions
for detection of spatial shifts described in the previous
section. The performance of the following basic
functions was compared on artificially shifted by x and y
images at different shift directions and magnitudes:
Convolution DC(a, b) (1), Correlation D∆∆(a, b) (1a), L2-
norm D|∆|

2(a, b) (2), AMDF D|∆|(a, b) (3), FFT CP
Φ(x, y) (7), and FFT LS which is FFT CP with an LS
extension replacing the interpolation. Three parameters
were reported: average execution time (in ms); mean
absolute error εM (in pixels by x and y); and absolute
range of error εR (in pixels by x  and y ). These
measurements do not warrant accuracy of the whole MC
implementation.

MC Algorithm: The MC algorithm implemented in these
experiments was the same algorithm used in [1] with the

basic functions replacing the Convolution function. It
consists of the following main steps: (i) Establishing
dynamic vocal fold outliers for MC by computing pixel
by pixel the time differentials of the HSV image
sequence; (ii) Eliminating the high-frequency
components of the vibrating vocal folds via smoothing;
(iii) Suppressing the effect of the boundary
discontinuities of the image frames (only necessary for
Convolution); (iv) Detecting the displacement between
adjacent frames by using one of the six methods;
(v) Computing the displacement vectors (motion
trajectories); (vi) Subtracting the motion trajectories
from the spatial coordinates of the original HSV image
using two-dimensional spline interpolation.

Performance on Simulated Motion: To assess the
accuracy in extreme conditions, the MC method was
tested on simulated data with known motion trajectories.
These data are identical to and described in more detail
in [1]. Although the proposed methods are expected to
work better for lower motion frequencies, these data
allow for a thorough testing in extreme conditions, in
which all frequencies of the covered range 0.1 to 15 Hz
are equally represented. The data consisted of 2-second
long (4000 frames) HSV movies with exactly known
motion trajectories. Motion varied from 0 to 8 pixels by
x and y in nine different magnitudes. Two types of
motion curves, a random and a cyclic, were added to two
real HSV recordings, one of a male and one of a female
speaker, totaling 34 HSV recordings with simulated
motion. The data were analyzed by each modified
technique. The following parameters were reported:
average speed of computation SC (in seconds per one
second of HSV data); mean absolute error εM and
absolute range of error εR (in pixels) as defined in [1].
Assessing the MC method on data with simulated motion
was important to show whether the detected trajectories
really correspond to motion and to assess the accuracy of
the method in extreme motion conditions with known
characteristics.

Performance on Real Motion: Testing the MC methods
on real HSV data is important to account for factors
unaccounted for in simulated motion such as nonuniform
illumination, quality of the image, scaling, camera
artifacts, and differences in glottal shapes, which are
likely to affect the reliability of MC. The error is
computed by iterating the MC process since the
estimated motion trajectory at the second iteration is the
residual motion not compensated for during the first
iteration.

III. RESULTS AND DISCUSSION

Basic Methods: The results obtained from testing the
basic MC methods are presented in Table 1. The FFT-
based techniques were found to be several times faster
relative to the correlation and L2-based techniques. L2-



norm and FFT LS were found to be the most accurate.
Additional observations include: noise was not found to
be destructive for tracking shifts, and all methods except
for FFT CP were more sensitive to horizontal
movement, since vocal folds are vertical.

Table 1: Comparison of accuracy and speed of the newly
implemented basic methods for motion compensation.

εM

[pixels]
εR

[pixels]MC method
Time
[ms]

by x by y by x by y

Convolution 2700 0.07 0.07 0.16 0.12
Correlation 380 0.14 0.09 0.51 0.15
L2-norm 460 0.09 0.07 0.24 0.13
AMDF 460 0.20 0.17 0.27 0.21
FFT CP 140 0.23 0.22 0.52 0.57
FFT LS 60 0.08 0.07 0.40 0.22

Data with Simulated Motion: The results from testing
the MC algorithms on simulated motion are shown in
Table 2. They generally agree with the results from
testing the basic methods. All MC methods demonstrated
satisfactory sub-pixel accuracy and all alternative tech-
niques were significantly faster relative to Convolution.

Table 2: Accuracy (average with range in partheses) and
speed of computation results from testing six MC
algorithms on 34 HSV samples with simulated motion.

MC method
SC

[s/s]
εM

[pixels]
εR

[pixels]

Convolution 513.306
0.168

(0.000-0.331)
0.380

(0.000-0.931)

Correlation 33.556
0.064

(0.000-0.181)
0.221

(0.000-0.664)

L2-norm 35.259
0.064

(0.000-0.181)
0.221

(0.000-0.664)

AMDF 34.430
0.069

(0.000-0.188)
0.229

(0.000-0.677)

FFT CP 14.039
0.091

(0.000-0.351)
0.538

(0.000-2.904)

FFT LS 7.644
0.272

(0.002-0.577)
0.606

(0.003-2.241)

Correlation, L2-norm and AMDF had almost identical
performance and best accuracy of all methods. Their
mean absolute error was 0.065 pixels and their speed of
computation was 15 times higher relative to
Convolution. The serious disadvantage of these three
methods is their limited range of shift tracking, which
limits their implementation for certain types of HSV
material. They would have difficulties with recordings
including phonatory breaks, vocal offsets and onsets, or
intermittent obstructions in the view of the vibrating
vocal folds, making it difficult to recover when visible
vibration resumes. Convolution, FFT CP and FFT LS do
not have this limitation.

The fastest methods were FFT LS and FFT CP
outperforming C o n v o l u t i o n  67 and 37 times,
respectively. The accuracy of these two methods was
lower but still acceptable at the sub-pixel level. The
increased error was mainly due to the extreme frequency
testing conditions to which the methods were subjected.
Considering the exceptional robustness of the FFT LS
method, further investigation is necessary to understand
and eliminate the sources of errors in order to build a
practical tool for motion compensation, which is highly
necessary.

Data with Real Motion: A limited testing on real clinical
HSV recordings (14 samples) was performed. Results
were consistent with the data from Table 2. Speed ratios
and accuracy data were found to be in the same
proportions. On the 2nd iteration the residual errors were
found to be smaller relative to the data with simulated
motion. As expected, Correlation, L2-norm and AMDF
could not track over shifts including voice offsets, onsets
and breaks, while Convolution, FFT CP and FFT LS
could. No instances of data degradation were reported up
to the 4th iteration for Convolution, FFT CP and FFT LS.

IV. CONCLUSION

The fast FFT-based approach has been applied
successfully for the endoscopic motion compensation in
HSV recordings of vocal folds. Results demonstrated
that application of the FFT-based cross-power spectrum
approach is highly beneficial: the method is 67 times
faster than the convolution-based approach and offers
acceptable sub-pixel accuracy. Further improvement of
accuracy is possible and testing on a large dataset of real
HSV recordings is recommended.
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Abstract: Vertical motion of the vocal folds during

phonation is a possible diagnostically significant

feature. However, it is difficult to judge vertical

motion through the typical two-dimensional

stroboscopic display. Through high-speed videoendo-

scopy (HSV), the dynamics of vocal fold vibration are

easier to appreciate; however, the traditional HSV is

also two-dimensional. Recently, a method to display a

three-dimensional (3D) image of vocal fold vibration

was published. This method, as well as stroboscopy

and HSV, was utilized to study vertical motion

magnitude and symmetry during modal and pressed

phonations in normophonic speakers. Vertical motion

judgments were rated as at least 16% more possible

from the HSV-derived playbacks than from

stroboscopy. The assessments from the 3D playback

were different than those from the two-dimensional

HSV playback for magnitude, however a similar trend

was realized. The findings demonstrate consistently

greater magnitudes of vertical motion during pressed

phonations. Asymmetry of vertical motion was

appreciated in both modal and pressed phonations.

The results of this study concur with the concept of

increased vertical motion during pressed phonation

and recommend further investigations of the

typicality of this important feature of vocal fold

vibration in various modes and registers of normal

and pathologically influenced phonation.

I. INTRODUCTION

Visualizing vocal fold vibratory behavior is widely

accepted as an integral part of a complete voice

evaluation. This vibratory behavior is known to move in

three dimensions: laterally, longitudinally, and vertically.

The lateral movement of vocal fold vibration is the most

widely discussed and utilized in clinical voice evaluations

as an indication of vocal fold stiffness. The longitudinal

motion of vocal fold vibration has begun to be

investigated and used as part of the clinical visualization

protocol. However, the normal limits of variation in

longitudinal motion remain unclear. The third dimension

of vocal fold vibration, vertical motion is not a common

feature rated during the stroboscopic evaluation. While

furthering our knowledge of lateral and longitudinal vocal

fold vibratory deviations and their prevalence in various

disorders is an important task, this paper narrows its

scope to investigating the vertical motion of vocal fold

vibration.

 Vertical motion of vocal fold vibration has been

suggested to have an increased magnitude during pressed

or heavy phonations [1]. Hirano has related pressed

phonation to be a result of the contraction of the

thyroarytenoid muscle and relaxation of the vocal

ligament [2]. This relation of the physiological

components has been furthered to provide the concept

that the relaxed vocal ligament may lead to an increase in

pliable tissue, which may then be prone to move

vertically during pressed phonation [1]. Conversely, less

vertical motion may be appreciated during modal and,

especially, falsetto phonations due to increased tension in

the vocal ligament.

An increase in vertical motion during pressed

phonation is a suggested contributing factor in the vocal

fold pathologies of nodules and varices [1,3,4]. Pressed

phonation is often realized in persons with voice

disorders characterized by strain and muscle tension

dysphonia. Given the relation between these common

features of functional voice disorders and pressed

phonation, it is natural to continue the investigation of

vertical motion by studying the vibratory patterns during

differing modes of phonation.

An in-depth paper on the presence and hypothetical

detrimental impact of vertical motion in vocal fold

vibration was accomplished [1]. The increase of vertical

motion in pressed versus falsetto phonation was

demonstrated, as was the intra-cycle variability of vertical

motion during pressed phonation. These findings for

vertical motion rely on visualization techniques, such as

HSV, that provide true intra-cycle information.

Studies of the medial surface of the vocal folds in

excised larynges using HSV have allowed for the

observation of the vertical motion of vocal fold vibration

from a view not achievable clinically [5,6]. Within such

investigations, the presence of lateral, longitudinal, and

vertical components of vocal fold vibration have been

documented and relatively quantified.  The variation of

subglottal and supraglottal pressure as well as vocal fold

tension has been noted to impact these components of

vocal fold vibration in excised larynges.

While vertical motion appears to be a fundamental

feature of vocal fold vibration, the difficulty of rating a

three-dimensional behavior with intra-cycle variations

from stroboscopy, a two-dimensional representation

without intra-cycle information, remains. Recently, a

comprehensive set of representations and image
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processing techniques to extract significant vocal fold

features from HSV images was introduced [7]. Of

particular interest to this paper is the vertical motion

display, which allows for the observation of vertical

motion from a three-dimensional (3D) playback. This

technique capitalizes on the fact that the pixel intensity of

the image is a quadratic function of the distance between

the vocal folds, and the light source and camera lens.

Thus, allowing pixel intensity to provide information

regarding vertical motion. The specific implementation of

the 3D display was presented at the Voice Foundation

Symposium in June 2005.

The purpose of this study is to provide a preliminary

investigation of the vertical motion inherent in vocal fold

vibration. The research questions to achieve this goal

were:

1. Can vertical motion be assessed through a

three-dimensional display?

2. What is the variation in vertical motion and

vertical level of approximation for

normophonic speakers?

3. Does the amount of vertical motion vary with

mode of phonation?

II. METHODOLOGY

Participants: Fifty-two vocally normal participants

ranging in age from 18-65 years old were recruited from

Columbia, SC and Charlotte, NC. Twenty-four male and

twenty-eight female participants were divided among

three age ranges, 18-33, 34-49, and 50-65. The data

collection, storage, and use were in accordance with

human subjects regulations. The data for this study was

recorded at Presbyterian Hospital’s Voice Center in

Charlotte, NC. The speech-language pathologists

involved with data collection were specifically trained in

voice and followed a specified protocol. During the

process of accepting participation in the study through the

informed consent form, the participants completed a short

medical and voice history, as well as a modified voice

quality self-assessment. Speech-language pathologists

utilized the history, self-assessment, and perceptual

judgment to determine vocal normality.

Instrumentation and Procedures: Stroboscopy and

HSV were utilized during data collection. Data collection

from new methods and those routinely used in the clinic

allowed for a comparison between assessment methods.

Data collection occurred in quiet rooms typically

employed for the assessment of voice patients in the

hospital clinic.

Endoscopy and Stroboscopy: Standard clinical

procedures were utilized for endoscopy and stroboscopy.

The locating of the vocal folds and the initial phonation

were conducted with continuous halogen light.

Stroboscopy was used to capture phonation at habitual

pitch and loudness allowing both intensity and frequency

to be controlled for during each sample. A Kay

Elemetrics Rhino-Laryngeal Stroboscopic system Model

9100B coupled to a 70-degree rigid endoscope was used.

A laryngeal contact microphone was utilized to track

vocal fold vibratory frequency.

High-Speed Videoendoscopy: Kay Elemetrics High-

Speed Video System Model 9700 equipped with a camera

that captured 2,000 frames per second with 120 x 256

pixel resolution was utilized. A 70-degree rigid

endoscope (Kay Elemetrics Model 9106), the same as

that used in the above described procedures, and a 300 W

constant Xenon light source (Kay Elemetrics Model

7152) were coupled with the system. The recording of

HSV was synchronized with the acoustic recording,

captured via a head-mount condenser microphone, to

allow for comparisons between physiological and

acoustic events. Participants were instructed to phonate

the vowel /i/ at habitual pitch and during pressed

phonation. To achieve pressed phonation, participants

were asked to phonate “as if lifting a heavy box”. The

speech-language pathologists also provided models of

pressed phonation.

The HSV images were processed for motion

compensation [8] and removal of reflection spots

resulting in the HSV playback. Subsequently, the 3D

playback movie, a multi-colored image relating to the

extent of vertical motion of the vocal folds, was

produced, as seen below in Fig. 1.

 
Fig. 1. Three-dimensional graphic representations of a

closed and open phase within a single glottal cycle.

Visual Perceptual Judgments: Visual perceptual

parameters were developed to assess vertical motion from

the three playbacks, stroboscopy, HSV playback, and the

3D playback. Two voice scientists perceptually evaluated

the dynamic visual images obtained from the fifty-two

participants. The recordings of habitual phonation from

the three playbacks amounted to 156 images that were

judged by each perceptual rater. From HSV and 3D

playbacks, 104 pressed phonation recordings were also

rated. Twenty percent of the recordings were randomly

introduced into the data set to obtain intra-rater reliability.

Therefore, both perceptual raters judged 312 images for

the features of vertical motion and vertical level of

approximation. The entire data set was randomized prior

to perceptual ratings.

Vertical motion was assessed for presence or absence,

magnitude, and for left-to-right vocal fold symmetry of
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magnitude through stroboscopy, HSV playback, and 3D

playback. Magnitude  of vertical motion was rated,

separately for the left and right vocal folds, on a six-point

scale, with 0=absent, 1=severely decreased,

2=moderately decreased, 3=typical, 4=moderately

increased, and 5=severely increased. Presence of vertical

motion was understood if the magnitude was assigned a

rate of 1-5. Vertical motion symmetry was calculated by

the differences in magnitude ratings. If the ratings of the

left versus right vertical motion magnitude differed, then

the vertical motion magnitude was considered

asymmetrical. Additionally, vertical level of

approximation and ability to judge vertical motion from

the images were rated categorically, as present or absent

and able to judge or not able to judge, respectively.

Statistical Analysis: Measures from the visual-

perceptual judgment of the stroboscopic, HSV, and 3D

playbacks were compared. The instances and percentage

of typical and atypical ratings were calculated.

Correlation and paired t-tests were employed to

determine intra-rater and inter-rater reliability. A

correlation of above 0.70 and/or an alpha level above

0.20 on a paired t-test was considered to demonstrate a

substantial reliability. An alpha level above 0.20 was

utilized to determine the lack of statistically significant

variation between and within the perceptual raters.

III. RESULTS

Presence of vertical motion was noted bilaterally in

stroboscopy, HSV, and 3D playbacks for all instances of

modal and pressed phonations. No cases of unilateral or

absent vertical motion were rated from the recordings of

vocal fold vibration from normophonic speakers. No

differences between stroboscopy, HSV, or the 3D

playbacks was realized.

The magnitude of vertical motion was rated as typical

during modal phonation for 60, 49, and 54% of playbacks

for stroboscopy, HSV, and 3D playbacks, respectively.

For pressed phonation, magnitude of vertical motion was

less likely to be rated as typical, 34 and 42% of cases for

HSV and 3D playbacks. Reduced vertical motion was

realized in 15, 13, and 25% of modal phonations as

visualized through stroboscopy, HSV, and the 3D

playbacks. While during pressed phonations, vertical

motion was appreciated to be reduced in only 10 and 14%

of HSV and 3D playbacks.  Increased vertical motion was

apparent in 25, 38, and 21% of visualizations of modal

phonation as displayed by stroboscopy, HSV, and 3D

playbacks. Pressed phonations visualized through HSV

and 3D playbacks were rated as having increased vertical

motion in 56 and 44% of cases.

Asymmetry of vertical motion magnitude was noted in

22, 27, and 12% of modal phonations visualized through

stroboscopy, HSV, and 3D playbacks. For pressed

phonation, 22 and 14% of recordings were perceived as

revealing asymmetrical magnitudes of vertical motion

when viewed by HSV and 3D playbacks.

Vertical level of approximation was rated as unequal

in 14.5, 11, and 14% of modal phonations as viewed by

stroboscopic, HSV, and 3D playbacks. Similarly, for

pressed phonations 11 and 14% of cases rated from HSV

and 3D playbacks had perceivably unequal vertical levels

of approximation.

The ability to judge vertical motion was calculated

from each of the three playbacks. The raters reported not

being able to judge vertical motion for 19% of

stroboscopic files, 3% of 3D playback files, and 1% of

HSV playback files. Files rated as not able to be judged

were excluded from presence, magnitude, symmetry, and

vertical level results.

Intra-rater reliability, as assessed by correlation and t-

tests, was moderate to high for HSV playback and

stroboscopy over both pressed and modal phonation,

ranging from 0.52 to 0.94.  For correlations below 0.70,

the t-test had a p-value above 0.30 with the exception of

symmetry rated from stroboscopy by judge 2. Correlation

and t-tests revealed lower intra-rater reliability for

judgments of magnitude from the 3D playback. Inter-

rater reliability as assessed through percent agreement

within one scalar level ranged from 87 to 100%, with a

mean of 96.5%.

IV. DISCUSSION

Presence of vertical motion was apparent throughout

all evaluations of normophonic speakers. Presence was

equally likely during modal and pressed phonations.

Additionally, the three types of displays viewed were

equally sensitive and specific to the presence of vertical

motion. Given the consistency of vertical motion

presence in normophonic speakers, it would be

interesting to ascertain whether persons with voice

disorders, especially those resulting from or resulting in

decreased vocal fold mucosa pliability, demonstrate a

similar consistency.

Magnitude of vertical motion was rated as typical for

58% of the images across all displays for modal

phonation, and for 57% of the images rated from the two

HSV-derived playbacks. These centralized ratings give

credence to the ability to judge the vibratory feature of

magnitude of vertical motion for normophonic speakers

and the ability to utilize the ratings for preliminary

estimates of the typicality of magnitude variations. The

majority of participants exhibited increased magnitude of

vertical motion during pressed phonations. However,

normophonic speakers also demonstrated typical or

decreased vertical motion during pressed phonation.

Typical or decreased vertical motion may have been the

result of achieving the vocal quality of pressed phonation

by manipulating the laryngeal mechanism differently.

Since increased medial compression of the vocal folds



from the contraction of the thyroarytenoid muscles would

lead to an increased amount of pliable tissue, with the

inclusion of the vocal ligament available to move

vertically, it may be hypothesized that decreased medial

compression with increased respiratory volume was

utilized.

While symmetry of vertical motion magnitude has not

been specifically discussed in the literature, a number of

articles have discussed lateral and longitudinal

asymmetries. Given the possible significance of vertical

motion, assessing asymmetry allows for a more

comprehensive view of vibratory behavior. The results

indicate that an average of 19% of normophonic speakers

exhibited asymmetry of vertical motion. The cause of

variation in ratings from the 3D playback, versus the

stroboscopic and HSV playback should be further

explored. It is likely that the added dimension, allowing

for increased accuracy when judging vertical motion, and

the novelty of the 3D playback are the causes of the

differences.

Vertical level of approximation was found to be

unequal for at least 11% of normophonic speakers in

modal and pressed phonations. A difference of 3.5% was

noted between the playbacks. Vertical level was

perceived as unequal more often from the 3D playback

than for the HSV playback. This may be related to the

additional information available from the 3D playback

and the subsequent ability of the raters to use the

information when making judgments of vertical level.

The prevalence of unequal vertical level in normophonic

speakers was unexpected.

The relatively large amount of recordings rated as not

able to be judged from the stroboscopic as compared to

the other playbacks is indicative of the difficulty of rating

this vibratory feature through stroboscopic playbacks.

This difference in ability to judge vertical motion is likely

due to the fact that stroboscopy does not provide true

intra-cycle information. This difficulty is highlighted by

the clinical lack of reporting and utilization of vocal fold

vertical motion as an indicator of laryngeal function. The

widely used visual-perceptual vocal fold rating protocols

include vertical level of approximation, but not vertical

motion. Perhaps clinically important information is being

disregarded.

V. CONCLUSION

The increased magnitude of the vertical motion of

vocal fold vibration during pressed phonation for

normophonic speakers strengthens the hypothesis of the

detrimental impact of this type of phonation on the vocal

fold tissue. There is undoubtedly additional information

regarding vocal fold vibration available through the study

of vertical motion. It is important to understand the

typicality and variation of vertical motion for

normophonic speakers as well as persons with laryngeal

pathology through the clinical perspective of

videoendoscopy, as well as to further investigate vertical

motion using excised larynges.

Given the results of presence, magnitude, and

asymmetry of vertical motion of vocal fold vibration, the

clinical significance of these findings is compelling. An

additional feature of vocal fold vibration that provides

insight into the pliability of the vocal fold mucosa would

be valuable. The finding of unequal vertical level of

approximation in normophonic speakers questions the

typicality of variation in vertical level. Further research to

ascertain the normal limits of vertical level differences

should be undertaken. Additionally, further investigation

of the influence of mode and register of phonation on

vertical motion should be conducted. Studying the effect

of manipulating subglottal pressure during these

productions in vivo will increase our knowledge of the

mechanisms driving vertical motion during phonation.

Since observing vertical motion is reliant on the ability to

visualize intra-cycle information, it is likely that

technological advancements leading to the ability to

capture vocal fold vibration at higher frame rates would

be beneficial. Refinement of the 3D playback to eliminate

the artifacts of light reflection is also necessary.
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Abstract: Visualization of the vocal fold structure and

function is imperative for accurate diagnoses and

optimal treatment for persons with voice disorders.

With the advent of commercial High-Speed Video-

endoscopy (HSV) systems, an increased amount of

variation has been appreciated in the diagnostically

relevant features of mucosal wave presence, magni-

tude, and symmetry. This study presents findings

from the assessment of mucosal wave from strobo-

scopy, HSV playback, mucosal wave playback, and

mucosal wave kymography playback. The results

from this study demonstrate the prevalence of featur-

es of ‘atypical’ mucosal wave during modal produc-

tions of /i/ by normophonic persons. Utilizing modal

and pressed phonations, an increased understanding

of the effect of medial compression and increased

subglottal pressure on mucosal wave was realized.

I. INTRODUCTION

One diagnostically significant feature of vocal fold

vibration is the mucosal wave. The mucosal wave is the

propagation of the epithelium and superficial layer of the

lamina propria from the inferior to the superior surface of

the vocal folds during phonation. A typical mucosal

wave, as viewed through stroboscopy, should travel one-

half of the width of the superior surface of the vocal fold

during modal phonation [1]. The mucosal wave of vocal

fold vibration is an accepted indicator of tension and

pliability of the vocal fold tissue. The mucosal wave is

usually reduced during high pitch phonations due to the

excessive tension on the tissues.  A reduced mucosal

wave during modal phonation signifies stiffness, which

may result from a lesion, edema, or scar. Conversely, a

larger than normal mucosal wave signifies flaccidity of

the laryngeal musculature underlying the vocal fold

tissue, possibly indicating paresis or muscle atrophy due

to aging. Thus, the importance of assessing mucosal wave

during functional evaluations and for medical diagnoses

is evident. For example, mucosal wave has been the sole

feature of vocal fold vibration that could provide visual

information upon which cysts and polyps could be

differentiated [2].

The characteristics of normal mucosal waves have

been investigated via stroboscopy. Multiple research

articles have included mucosal wave as a dependent

variable to answer various questions regarding normal

and pathological vocal fold movement. Two main areas

of research have investigated the impact of vocal fold

elongation, such as that seen in high frequency

productions, and the impact of variations in subglottal

pressure on mucosal wave magnitude and velocity.

Of interest is a conclusion regarding the typicality of

lateral phase of mucosal wave symmetry in normophonic

speakers in [3]. The results of reviewing fifty-seven

videostroboscopic laryngeal examinations indicated that

asymmetry was appreciated in 10.5% of normophonic

participants during modal and falsetto phonations and in

36.5% of participants during falsetto phonations only.

The conclusion was that the degree of magnitude and not

merely presence of asymmetry should be considered the

diagnostically significant feature. This conclusion leads

to the necessity of further investigation of the symmetry

and magnitude of mucosal waves.

The findings of a prevalent ‘normal’ amount of

asymmetry may lead to an increase in over-diagnoses of

laryngeal pathology, unless the typicality of variation is

understood. Additionally, there is a possibility that

symmetrical mucosal waves with supposed atypical

magnitude may be present in persons with and without

laryngeal pathologies. This finding would modify the

conclusions from [3,4]. Given the prevalence of

asymmetry seen in stroboscopic images and the increased

amount of laryngeal dynamics visible through HSV, it is

intuitive that an even larger population of normophonic

speakers would have apparent variations in mucosal wave

as viewed through HSV in comparison to stroboscopy.

Preliminary studies of the horizontal and vertical

displacements, velocity, and vertical phase of the

mucosal wave have been accomplished utilizing excised

canine larynges [5,6,7]. The results are commensurate

with the findings from in vivo human stroboscopic

studies of mucosal wave. No further investigations of the

typicality of variation in mucosal magnitude or symmetry

have been published.

The purpose of this research was to investigate the

normality of variation of mucosal wave presence,

magnitude, and symmetry and to compare modal and

pressed phonation across these features. The specific

research questions were:

1. What is the variation in mucosal wave

magnitude for normophonic speakers?

2. What degree of mucosal wave magnitude

asymmetry can be appreciated in normophonic

speakers?

3. How do the features of mucosal wave compare

across modal and pressed phonations?

MUCOSAL WAVE MAGNITUDE:

PRESENCE, EXTENT, AND SYMMETRY IN NORMOPHONIC SPEAKERS

Heather S. Shaw,  Dimitar D. Deliyski
Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina, USA
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II. METHODOLOGY

Participants: Fifty-two vocally normal participants

ranging in age from 18-65 years old were recruited from

Columbia, SC and Charlotte, NC. Twenty-four male and

twenty-eight female participants were divided among

three age ranges from 18-33, 34-49, and 50-65. The data

collection, storage, and use were in accordance with

human subjects regulations. The data for this study was

recorded at Presbyterian Hospital’s specialized voice

center in Charlotte, NC. The speech-language

pathologists involved with data collection were

specifically trained in voice. During the process of

accepting participation in the study through the informed

consent form, the participants completed a short medical

and voice history, as well as a modified voice quality

self-assessment. Speech-language pathologists utilized

the history, self-assessment, and perceptual judgment to

determine vocal normality.

Instrumentation and Procedures: Data collected for

this study included: information from case history

reports, stroboscopy, and high-speed videoendoscopy

(HSV). Data collection from methods routinely used in

the clinic and those that are new, allowed for a

comparison between assessment methods. Data collection

occurred in quiet rooms typically employed for

assessment of voice clients in the hospital clinic.

Endoscopy and Stroboscopy: Standard clinical

procedures were utilized for endoscopy and stroboscopy.

The locating of the vocal folds and the initial phonation

were conducted with continuous light. The stroboscopic

light was used to capture phonation at three different

pitch levels, habitual, low, and high, held at a near-

constant intensity. The participants were asked to phonate

at their habitual loudness while varying their pitch over

samples. This allowed both intensity and frequency to be

controlled for during each sample. A Kay Elemetrics

Rhino-Laryngeal Stroboscopic System Model 9100B

coupled to a 70-degree rigid endoscope was used. A

laryngeal contact microphone was utilized to track vocal

fold vibratory frequency.

High-Speed Videoendoscopy: Kay Elemetrics High-

Speed Video System Model 9700 equipped with a camera

that captures at 2000 frames per second (fps) with 120 x

256 pixel resolution was utilized. High-speed cameras

require an intense light source for visualization of the

vocal folds to be realized. A 70-degree rigid endoscope

(Kay Elemetrics Model 9106), the same as that used in

stroboscopy and a 300 W constant Xenon light sources

(Kay Elemetrics Model 7152) were coupled with the

system. The recording of HSV was synchronized with the

acoustic recording, captured via a head-mount condenser

microphone, to allow for comparisons between physical

and acoustic events. Participants were instructed to

phonate /i/ at habitual pitch and during pressed

phonation. To achieve pressed phonation, participants

were asked to phonate “as if lifting a heavy box”.

Additionally, auditory examples of pressed phonation

were provided.

Image Processing: Image processing included: motion

compensation [8] and removal of reflection spots. These

pre-processing techniques allowed for valid and accurate

results from the kymographic playbacks. The

compensation techniques were necessary to secure that

anatomical structures subjected to kymography are time-

aligned. It has been noted that if endoscope motion is

unaccounted for it may affect the validity of the data [9].

The image processing techniques allowed for the

evaluation of mucosal wave from the visual image.

Fig. 1. Frames of Mucosal Wave (MW) playback (top) at

different phases of the intra-glottal cycle and the

corresponding HSV frames (bottom). The opening phase

velocity on the MW images is encoded in shades of

green, and the closing phase velocity is displayed in red.

Fig. 2. Mucosal Wave Kymography (MKG) of consecutive

glottal cycles during sustained phonation. The mucosal wave

extent appears as a double edge during the closing phase.

Images were obtained using both stroboscopy and

HSV. From stroboscopy, one image, the stroboscopy

playback was rated. Stroboscopy provides a view of

mucosal wave without true cycle-to-cycle information.

From HSV, three playbacks were rated: the high-speed

videoendoscopy playback, the mucosal wave (MW)

playback, and the mucosal wave kymography (MKG)

playback. HSV playback was defined as the typical
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playback of the recording after motion compensation.

The HSV playback provided a view of mucosal wave,

which allowed for the visualization of true cycle-to-cycle

information. Playback of the image with the mucosal

wave highlighted in green for opening phase and red for

closing phase was defined as MW playback (Fig. 1). The

MW playback utilized velocity, encoded as intensity, to

highlight the medial edges of the vocal folds and possibly

provide easier magnitude ratings. The image from the

mucosal wave playback presented as a movie from

posterior to anterior was termed MKG playback. The

MKG playback provides a view in which mucosal wave

propagation and magnitude variations in the time domain

may be more easily judged (Fig. 2).

Visual Perceptual Judgments: The motion images

obtained from the fifty-two participants were visually

evaluated and rated for specific features of the mucosal

wave by two voice specialist. Images from fifty-two

participants in four different views for two modes of

phonation amounted to 394 images that were rated. In

addition, 20% of the images were randomly repeated to

obtain intra-rater reliability. Therefore, a total of 473

images were judged for features of mucosal wave.

Mucosal wave magnitude was rated, separately for the

left and right vocal folds, on a six-point scale, with

0=absent, 1=severely decreased, 2=moderately decreased,

3=typical, 4=moderately increased, and 5=severely

increased. Presence of mucosal wave was understood if

the magnitude was assigned a rate of 1-5. Mucosal wave

asymmetry was calculated by the differences in

magnitude ratings. If the ratings of the left versus right

mucosal wave magnitude differed, then the mucosal wave

magnitude was considered asymmetrical. Mild

asymmetry was characterized by a rating difference of

one-point, moderate asymmetry by a difference of two-

points, severe asymmetry by a difference of three-points,

and profound asymmetry by a difference of four or more

points.

III. RESULTS

The results for bilateral presence of mucosal wave,

mucosal wave magnitude of the right and left vocal folds,

and symmetry of mucosal wave magnitude are displayed

in Tables 1-3, respectively.

Strobe HSV MW MKG

Habitual 79 72 66 65

Pressed 79 88 71

Table 1. Mean percent of recordings rated as having

present mucosal wave bilaterally.

Rating Strobe HSV MW MKG

Typical 24 14 14.5 13

Decreased 61 49 58 55Right

Increased 5 4 2 2

Typical 32 15 17 10.5

Decreased 60 39 58 50Left

Increased 5 5 3 2

Table 2. Mean percent of habitual phonation recordings

rated as having typical, decreased, or increased mucosal

wave magnitude for the right and left vocal folds.

Rating HSV MW MKG

Typical 14 16 15

Decreased 40 58 53Right

Increased 13 4 26

Typical 20 25 16

Decreased 45 58 50Left

Increased 11 4 2

Table 3. Mean percent of pressed phonation recordings

rated as having typical, decreased, or increased mucosal

wave magnitude for the right and left vocal folds.

Rating Strobe HSV MW MKG

Asymmetrical 24 27 21 21
Habitual

(Mild) (7) (23) (19) (18)

Asymmetrical 39 37 21
Pressed

(Mild) (39) (33) (19)

Table 4. Mean percent of recordings rated as displaying

any asymmetry of mucosal wave magnitude, and mean

percent of recordings rated as displaying only mild

asymmetry of mucosal wave magnitude.

Intra-rater reliability was judged high with a mean

agreement of 94.8 and 93.8% for raters 1 and 2,

respectively. Inter-rater reliability was similarly high with

percent agreement within one scalar level of 82, 88, 91,

and 73% for HSV, MW, MKG, and stroboscopy. Due to

these results, the mean ratings were reported for presence,

magnitude, and symmetry.



IV. DISCUSSION

Mucosal wave absence was noted for at least 22% of

vocal fold vibration samples from normophonic speakers

across all displays, as seen in Table 1. Whether the

playback viewed was kymographic or not appeared to

decrease the ratings of presence from habitual phonation

samples by at least 8%. Ratings of pressed phonation

demonstrated an increase in likelihood of allowing for the

visualization of mucosal wave. The limitation of 2000 fps

capturing of the HSV images can help to explain the

absence of mucosal wave noted via HSV-derived

playbacks. However, a similar absence of mucosal wave

was noted via stroboscopy.

The narrow definition of mucosal wave used for this

experiment was inclusive only of the differential between

the lower and upper margins of the vocal fold. Since

ratings of absent mucosal wave are not thought to be

typical even with mild voice disorders, it is apparent that

clinicians are utilizing additional visual features to rate

mucosal wave. It is probable that clinicians are also

utilizing the vertical motion of the surface propagation.

Alternatively, it is possible that ratings of mucosal wave

are confounded with ratings of glottal width or amplitude

of vocal fold vibration.

Mucosal wave magnitude was overall reduced for

ratings from HSV and HSV-derived playbacks, as seen in

Table 2 and 3. It is likely that the norm for stroboscopy

does not apply to HSV. The capture rate of the

commercially available HSV camera, of 2000 fps was not

sufficient to provide multiple samples within the closing

phase of vibration for persons with Fo above 200 Hz.

This insufficient sampling may reduce the perception of

mucosal waves as well as reduce their perceived

magnitude. However, a significant number of recordings

were rated as exhibiting decreased magnitude through

stroboscopy.

Mucosal wave asymmetry of vocal fold vibration was

realized in a more than one-fifth of the normophonic

participants for habitual phonation, as seen in Table 4.

Differences between pressed and habitual phonations

were less evident during the MKG playback, than during

HSV and MW playbacks.  All of the asymmetries, from

HSV-derived techniques, were rated as mild or moderate.

That is, the vocal folds did not vary more than two points

in magnitude. The magnitude of asymmetry may be a

future guideline for assessment. The results of this study

are consistent with previously reported results from

stroboscopy [4] in that mucosal wave asymmetry was

perceived in normophonic speakers. However, an

increased percent of asymmetries were perceived in this

study for all playbacks. The asymmetry of mucosal wave

magnitude via the HSV playback was consistently

increased in comparison to the other playbacks for both

habitual and pressed phonations.

V. CONCLUSION

The results of this study reinforce the presence of

asymmetrical mucosal waves in the vocal fold vibration

of normophonic speakers. This asymmetry was noted in

both pressed and modal productions. Additionally,

‘atypical’ findings were abundant for mucosal wave

magnitude. These findings should be referred to when

determining the abnormality of mucosal wave variations

during clinical visualization procedures. The variation of

ratings across the HSV-derived playbacks demonstrates

the strength of utilizing different views providing a

balance between specificity and sensitivity. Thus, the

HSV-derived playbacks should be used as an ensemble to

maximize the benefit of visualization. A major

conclusion of this investigation is the finding that 2000

fps is insufficient to record the intra-cycle information

necessary to assess features of mucosal wave.
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This study investigates the actions of the cricothyroid 
joint for F0 changes based on high-resolution 
MRI and 3D image analysis. The data from a male 
speakerʼs phonation at two fundamental frequencies 
were analyzed with a 3D pattern matching method to 
obtain displacement and angular changes of the thyroid 
and cricoid cartilages. Results show displacement of the 
two cartilages relative to each other in 3D. The largest 
difference between 110 Hz and 165 Hz was found to 
be 1.2 mm horizontally and 0.6 mm vertically with 
respect to the translation of the cricothyoroid joint. This 
action is interpreted to be caused by the contraction of 
the cricothyroid muscle which draws the thyroid and 
cricoid cartilages together, and results in stretching of 
the vocal folds.

I. INTRODUCTION

It has been widely acknowledged that the cricothyroid joint 
offers a biomechanical basis for fundamental frequency 
(F0) control and that its action consists of two components, 
rotation and translation (gliding). While joint rotation has 
been believed to be an effective factor for stretching the 
vocal folds, the contribution of joint translation has been 
in question [1, 2]. This is because the measurement of the 
3D actions of the cricothyroid joint during phonation is so 
difficult that it has never been examined.
  Many researchers have investigated the actions of 

the cricothyroid joint both from laryngeal observation 
during phonation and examination of the mechanical 
mobility of excised cartilages. Using X-ray photography, 
Sonninen [3] reported that the cricothyroid joint translates 
anteroposteriorly by 3 mm for a three-octave change in 
F0. On the other hand, observations on laryngeal specimen 
reached two different conclusions. Mayet and Mundnich [4] 
and Maue [5] reported that the cricothyroid joint does not 
translate because the ligaments connecting the joint prevent 
it. On the other hand, Fink [1] noted that the cricothyroid 
joint does translate 1-2 mm by manually applying force on 
the excised larynx. Also, Vilkman et al. [2], basing on their 
examination on joint mobility, showed that joint translation 
is greater when its rotation is less extreme.
  Since the cricothyroid joint involves bilateral articulation 

on both sides of the cricoid cartilage, its mobility can be 
three-dimensional and asymmetric. Therefore, observation 
of joint actions in vivo requires volume imaging techniques, 
such as magnetic resonance imaging (MRI). The use of MRI 
has been limited to morphological studies of the excised 
larynges [6] because its application to laryngeal observation 
in vivo faces two problems: insufficient image resolution 
due to the small size of the laryngeal structure and motion 
artifact due to respiratory and phonatory movements of 
the larynx. To solve these problems, the present authors 
attempted laryngeal MRI with a custom larynx coil for 
higher resolution and phonation-synchronized scan to 
minimize motion artifacts [7]. Preliminary experiments with 
these techniques showed that the cricothyroid joint exhibits 
both rotation and translation between two frequencies in 
half an octave range and further suggested that accurate 
measurement of joint actions requires 3D image analysis. 
This study therefore investigates actions of the cricoid and 
thyroid cartilages using a 3D pattern matching algorithm to 
describe six degrees of freedom of joint actions.

II. METHOD

MRI experiments were conducted to measure relative 
movement of the thyroid and cricoid cartilages during 
sustained phonation at two fundamental frequencies (F0). 

MEASUREMENT OF CRICOTHYROID ARTICULATION 
USING 

HIGH-RESOLUTION MRI AND 3D PATTERN MATCHING

Sayoko Takano1, Keisuke Kinoshita1, and Kiyoshi Honda1
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Fig. 1 Tracings and 3D reconstruction of the thyroid and 
the cricoid cartilages based on high-resolution MRI.

mid-sagittal 6 mm right 12 mm right 16 mm right

Projection of tracings
(A: anterior) 3D reconstruction

A
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A custom larynx coil and phonation-synchoronized 
MRI were combined to acquire laryngeal images with 
necessary resolution[7]. A 3D pattern matching program 
was developed to analyze the movement of the thyroid 
and cricoid cartilages in six degrees of freedom.

A. MRI acquisition
  A Japanese male subject (54 y.o.) joined the MRI 

experiment using a clinical MRI scanner (Shimazu-
Marconi, Magnex Eclipse 1.5T). The subject took a 
supine posture with fixed head position so as to measure 
the geometry in the absolute coordinate system. The 
task for the subject was to regularly repeat a sustained 
vowel production listening a guide tone. High-resolution 
MRI data were acquired for the vowel /a/ in two levels 
of F0: low F0 (110 Hz) and high F0 (165 Hz). The 
larynx coil, modified from a commercial surface coil, 
was placed over the neck at a natural head position 
[7]. The phonation-synchronized method was used to 
obtain static laryngeal images only during phonation by 
synchronizing MRI scan to each phonation [7].
  The MRI scan settings were RF-FAST (TE=3.5 ms, 

TR=390 ms, and NEX=2), with  0.25 × 0.25 mm pixel 
size, 21 slices and 2 mm thick. In the images, cartilages 
were observed as darker regions than the surrounding 
tissue because they have been calcified. Fig. 1 shows a 
3D model of the thyroid and cricoid cartilages.

B. 3D registration
  A 3D registration method by pattern matching was 

developed to measure displacements and angular 
changes of the thyroid and cricoid cartilages from the 
data obtained at low and high F0. This analysis enables 
the estimation of the relative displacements of each 
cartilage from the “template” (low F0) to the “target” 
(high F0) in six degrees of freedom. The axes for the 
analysis were defined, as shown in Fig 2: x-axis: head/
foot, y-axis: front/back, z-axis: right/left. The center for 
image displacement and anglular changes was set to the 
centroid of the region of interest (ROI). To determine the 
action components of the cricothyroid joint, the data for 
the displacement and angular changes of each cartilage 
were converted into translation and rotation of the two 
cartilages at the cricothyroid joint.
  As a “template” in 3D pattern matching, the dark 

region of the cartilages with the surrounding tissue was 
selected as ROI by manual tracing on the low F0 images 
(Fig. 3). Since the original data had nonisotopic voxels 
in the volume, each sagittal image was downsampled 
to have isotopic dimensions. Then the images were 
smoothed by a Gaussian filter (low-pass filter) to obtain 
a smooth correlation function over the search space.
  The  3D reg is t ra t ion  of  each  car t i l age  was 

accomplished by finding the maximum correlation 
coefficient between the “template” and “target,” while 
applying image translation and rotation on the templateʼs 
ROI. This correlation method is often used for unclear 
or noisy data such as MRI. To avoid capturing a 
searched maximum in the local maximum, 30 random 
initial parameters were set to seek the global maximum. 
The output from this method was visually verified by 
comparing the template and matched target images 
in each slice. The maximum correlation coefficient 
between low and high F0 was 0.94 for the thyroid 
cartilage and 0.92 for the cricoid cartilage, respectively.

III. RESULTS AND DISCUSSION

  The 3D reconstructioned views of the thyroid and 
cricoid cartilages are shown in Fig. 4. As seen, the two 
cartilages are elevated from low to high F0, while the 

θz =10[deg]

θzθx

θy

Fig. 2  Axis definition. Figure on the right illustrates the 
angluar change around z-axis:θz;

mid-sagittal 6 mm right 12 mm right 16 mm right
Fig. 3 Region of interst (ROI) for 3D pattern matching.

Table 1 Displacement and angular changes of the 
thyroid and cricoid cartilages estimated by 3D pattern 
matching.

x y z θx θy θz

thyroid -6.0 -1.1 0.2 -0.7 2.2 -0.9
cricoid -6.5 0.4 -0.4 -1.0 1.8 -7.9

[mm] [degree]
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cricoid cartilage rotates in the direction to stretch the 
vocal folds. The narrowing of the cricothyroid space 
from low to high F0 visually indicates joint rotation. 
Also, left/right asymmetry can be observed to be 
associated with the joint actions.

A. Displacement of each cartilage
  Displacement of each cartilage obtained from the 3D 

pattern matching is shown in Table 1.  The magnitude 
of these changes of both cartilages was the largest in 
the x-axis (sagittal plane) and smaller in the other axes. 
The thyroid and cricoid cartilages moved in the same 
direction in the x-axis, but not in the y- and z-axes.
  Table 1 indicates that elevation of the cartilages from 

low to high F0 is most remarkable among the changes 
observed: vertical displacement (x-axis) of the thyroid 
cartilage was 6.0 mm and the cricoid cartilage was 6.5 
mm. This means that vertical displacement of the cricoid 
cartilage is greater than the thyroid cartilage.
  Horizontal displacement (y-axis) of the thyroid 

cartilage was 1.1 mm between low and high F0, while 
the cricoid cartilage was 0.4 mm. The horizontal 
displacement of the thyroid cartilage was larger than the 

cricoid cartilage, which was in opposite directions of 
each other. These changes take place in the direction to 
stretch the vocal folds, agreeing with previous studies 
[3, 7]. In comparison to the data for low F0, lateral 
displacement of the thyroid cartilage in high F0 was 0.2 
mm to the left and the cricoid cartilage was 0.4 mm to 
the right. These movements were also in the opposite 
direction of each other, which also contributed to 
changes in vocal fold length.

B. Angular change of each cartilage
  Angular changes of each cartilage are also shown in 

Table 1. Between low and high F0, the angular change 
of the thyroid cartilage are -0.7, 2.2, and -0.9 degree in 
the x-, y-, and z-axis, respectively, while the angular 
change of the cricoid cartilage are -1.0, 1.8, and -7.9 
degree in the x-,  y-, and z- axes, respectively.
  The angular change of the cricoid cartilages around 

the z-axis was found to be the greatest among the data, 
which was in the direction to stretch the vocal folds. The 
angular changes of the both cartilages are in the same 
direction, and the cricoid cartilage rotated more than the 
thyroid cartilage. 
  All these results suggest that movements of the 

thyroid and cricoid cartilages are three-dimensional and 
asymmetrical.

c. Actions of the cricothyoroid joint
  The values for displacement and angular changes of 

Table 2 Translation of the cricothyroid joint from low  to 
high F0.

low F0

low F0

high F0

high F0

low F0 high F0

low F0 high F0

oblique

front

side

top

Fig. 4 3D reconstruction of the thyroid and cricoid catrilages with low and high F0.

x y z
left 0.5 -1.2 0.0

right 0.4 -0.5 0.0

 [mm]
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Abstract: We offer two tools for automated vocalization

analysis. The Syllable tool uses the Stevens landmark

theory to find landmarks in vocalizations digitized as

"wav" files.  The landmarks are grouped to identify

syllable-like productions in these vocalizations and the

results are summarized.  The Vocalization-Age tool is

intended for pre-speech vocalizations.  It uses the

landmark and syllable information to yield a vocaliza-

tion age that has been shown to clinically distinguish

typically-developing children from children who are at-

risk for later speech impairment.

I. INTRODUCTION

Many speech-related studies result in voluminous

acoustic data and our projects are no exception.  We have

therefore developed two tools for automated vocalization

analysis.  One tool extracts and summarizes features from

acoustic waveforms.  The other tool computes a perform-

ance level of pre-speech productions.  Beta-test versions

of our software are now available for Matlab users.

Examples:

We have applied these tools to recordings collected in

several studies.

• In the Early Vocalization Analysis (EVA) project

[1], typically and atypically developing infants were

recorded for 45 minutes at a time, for a total of more

than 100 sessions.

• In a study of emotional stress in voice [2], we ana-

lyzed about 400 single-word, pre-existing audio

recordings [SUSAS] of several subjects speaking

many tokens in sometimes noisy environments.

• In the visiBabble project [3], 30 ten-minute in-home

audio recordings of several children with severe

speech delays were processed in real-time in a

single-case-study design.

• In the UCARE project [4], 40 hours of pre-existing

[5] video-taped sessions of children with physical or

neurological impairments were analyzed with these

tools.

Most of these recordings were made in less-than-ideal

environments.  Babies crawled on the floor and played

with toys.  Mothers, siblings, and graduate students were

present and sometimes talked.  The recordings also con-

tain other environmental sounds such as air-conditioners

or vacuum cleaners.  Because our tools use knowledge-

based speech-processing, they are robust to many of these

contaminating sounds.  For more subtle cases, e.g. a sib-

ling talking nearby, the researcher can specify recording

sections to ignore.

II. THE SYLLABLE TOOL

The Syllable tool uses the Stevens landmark theory [6]

to find acoustically abrupt events, consonantal land-

marks, in vocalizations digitized as "wav" files.  The tool

also determines voicing intensity and fundamental

frequency (F0) contours.

Figure 1: Syllable Analysis of "two" spoken by an adult

female.  The waveform (top) is shown with labeled landmarks

(onset/offset of: b, bursts/frication; g, voicing; s, syllabicity) and

strength of voicing; V denotes the nominal vocalic center of the

syllable.  The spectrogram (bottom) is shown with the F0

contour and its 10th harmonic (dashed line).  Voice onset time

VOT is measured by the interval between start of burst +b and

onset of voicing +g.

Figure 2: Syllable Analysis of "seven" spoken by an adult

female.  In the waveform (top), V denotes the nominal vocalic

center of each syllable.  Notice that voicing persists without a

complete oral closure between the syllables.  The second sylla-

ble is identified by a landmark-based rule, i.e., a syllable onset

(+s) that is not closely preceded by a voicing onset (+g).

VOCALIZATION ANALYSIS TOOLS

H. J. Fell
1
 and J. MacAuslan

 2
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College of Computer and Information Science, Northeastern University, MA, USA

2
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The landmarks are grouped to identify syllable-like

productions in these vocalizations and the results are

summarized.

III. THE VOCALIZATION AGE TOOL

The Vocalization Age (or vocAge) tool is specifically

intended for pre-speech vocalizations.  The digitized

recording of a single session with a child is first analyzed

by the syllable tool.  The resulting information is then

summarized and compared against data collected in ~100

sessions with six to 15 month-old, typically-developing

infants.  The tool thus derives a "vocalization age".

In an application of the vocAge, we found two specific

screening rules [7] that clinically distinguish infants who

may be at risk for later communication or other develop-

mental problems from typically developing infants:

• An infant is (or is not) in the atypical group accord-

ing as any session (respectively, no session) shows a

"delay", i.e., difference between chronological and

vocalization age, of at least 3.1 months.

• An infant is (is not) in the atypical group according

as any (respectively, no) two consecutive sessions both

show delays of at least 2.3 months.

IV. HOW THE TOOLS WORK

A. Landmarks

Landmark processing begins by analyzing the signal

into several broad frequency bands (widths of 400-2000

Hz) selected to detect important speech features such as

the second formant.  Because of the different vocal-tract

dimensions, the appropriate frequencies for the bands are

different for adults and infants; however, the procedure

itself does not vary.  First, an energy waveform is

constructed in each of the bands.  Then the rate of rise (or

fall) of the energy is computed, and peaks in the rate are

detected.  These peaks therefore represent times of abrupt

spectral change in the bands.  Simultaneous peaks in

several bands identify consonantal landmarks.

B. Syllables and Utterances

The program identifies sequences of landmarks, e.g.,

+g-g or +s-g-b, as syllables based on the landmark order

and inter-landmark timing.  Among other constraints,

syllables must contain a voiced segment of sufficient

length.  Figure 4 shows an example of this rule.

An utterance is a sequence of syllables in which gaps

between syllables are no more than (nominally) 200 mil-

liseconds long.

Both syllables and utterances may have properties of

their own, such as a pitch template (rise/fall/rise) or a

peak zero-crossing rate.

Figure 3: Initial spectral analysis of an infant utterance:

voicing, i.e., presence of strong harmonic content, (bottom)

and five frequency bands' energy waveforms.  Landmarks are

identified by large, abrupt energy increases or decreases that are

simultaneous in several bands.  (a) Too few bands show large,

simultaneous changes in energy.  (b) All bands show large,

simultaneous energy increases immediately before the onset of

voicing, identifying a +b (burst) landmark. (c) All bands show

large, simultaneous energy increases during ongoing voicing,

identifying a +s (syllabic) landmark.

Figure 4:  Ignored noise vs. recognized syllable.  (Left seg-

ment) Noise marked by only +b and -b landmarks; (right seg-

ment) a faint babble marked by +g-s-g.  Because any syllable

must contain a voiced segment, the loud, noise segment is

automatically ignored in subsequent processing.  The babble, in

contrast, has well defined voicing and sufficient duration and is

hence retained.

C. Vocalization Age

There are many syllable and utterance measurements

that the tool uses in forming the vocalization age:

• Number of syllables per utterance

• Number of occurrences and mean duration for each

syllable type

• Number of syllables starting with a given onset land-

mark: +g, +s, etc.

• Number of syllables ending with a given offset land-

mark: -b, -g, etc.

• Number of syllables with n landmarks, n = 2 to 7.

• Standard deviations of related quantities, when they

apply.

a b c
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The Syllable tool can be set to extract and summarize

exactly those measurements that are needed to compute

the vocalization age.

V. USING THE TOOLS

We have applied these tools to recordings collected in

several studies and we hope that other researchers will

use the tools on their own data.  Also, as we improve the

feature collection capabilities of our tools, we, and per-

haps others, will want to use them repeatedly on previ-

ously collected recordings.  These tools can be run on all

the recordings for a single "wav" file, a complete session,

all the sessions of a subject, or an entire study with a sin-

gle invocation.  (See Figure 5.)

A. System Requirements

Currently, our software requires Matlab and the Matlab

Signal Processing Toolbox.  We run it under the Win-

dows XP operating system.

B. Preparing Data

All sound files must be in "wav" format.  Because

much of our own data was collected using Entropic's

ESPS-WAVES and saved in "sd" files, we also provide

software to convert Entropic "sd" files to "wav" format.

A user can run the Syllable and Vocalization Age tools

on a single recording or on a directory tree containing

recordings of (see Figures 5 and 6):

• a single session with a subject,

• all sessions of a subject,

• an entire study.

A simple text file may be included for any recording to

indicate sections that should not be analyzed.

Figure 5:  Arrangement of session data in a study.  This

figure represents a study with two sessions for each of three

subjects.

Figure 6:  A session directory.  This figure shows a folder

containing three audio files from a single session, a text ("ax")

file that marks segments to be ignored in one of the "wav" files,

and a text file with the researcher's comments about the session.

C. Single-Subject Experiments

Single case study designs [8] are particularly suited to

studies on a small heterogeneous group of subjects.  For

example, in our preliminary tests of visiBabble, a real-

time visual-feedback system, we ran sessions in a variety

of formats:

 1) Baseline (recording, no graphic display);

2) Response (graphic display is always present, while

recording);

3) A-B-A (display off-on-off).

Data was collected during all phases of all formats to

allow a comparison of behavior during the baseline and

feedback phases.  The Syllable tool can analyze the

landmarks and syllables for the A and B phases combined

or separately.

D. Reports

A dialog box allows the user to select particular fea-

tures to be summarized by the Syllable tool (see Figure

7).  The tool will then generate, in the data directory, a

tab-delimited report that can be easily copied into a

spreadsheet for future analysis (see Table 1).

Figure 7:  Dialog box for selecting report features.



VI. FURTHER DEVELOPMENT

We anticipate adding capabilities over the next two

years while our visiBabble project is under development.

We encourage other researchers to try a beta-test version

and to suggest enhancements that would be useful to

them.
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Table 1:  Summary of a Short Sample Session

The report summarizes the landmark, syllable, and utterance statistics of a sample, 30-second session.

These statistics are among those used in the vocAge tool.

Total

SyllableType Count Mean StdDev

+g-g 3 704.000 532.626

+s-g 1 408.000 0.000

+g-g-b 3 96.000 36.368

+g+s-g 1 48.000 0.000

+b+g-g-b 1 344.000 0.000

+g+s-g-b 1 64.000 0.000

+g+s-s-g 1 160.000 0.000

+g+s+s 1 696.000 0.000

Total 12 343.333 382.559

2 lm/syl 4

3 lm/syl 5

4 lm/syl 3

5 lm/syl 0

6 lm/syl 0

7 lm/syl 0

Avg 2.917

DiffSyl 8

Utts Count AvDur StDev

8 531.000 486.982
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Abstract: Aim of this study is to numerically examine

the effect of tonsillectomy on production of Czech

vowels /a/ and /i/. Similar experimental studies are not

easily realisable on living subjects. The finite element

(FE) models of the acoustic spaces corresponding to

the human vocal tract for the Czech vowels /a/ and /i/

and acoustic space around the human head are used

in numerical simulations of phonation. The acoustic

resonant characteristics of the FE models are studied

using modal and transient analyses (excitation by a

short pulse). The production of vowels is simulated in

time domain using transient analysis of FE model

excited by Liljencrants-Fant’s (LF) glottal signal

model. Calculated results show that tonsillectomy

causes significant frequency shifts down to lower

frequencies for 2
nd

 (down by ~40Hz) and 4
th

 (down by

~120Hz) formants for the vowel /a/, and similar shifts

for 2
nd

 (down by ~100Hz) and 4
th

 (down by ~50Hz)

formants for the vowel /i/. The frequency shifts of

formants after tonsillectomy significantly depends on

position and size of the tonsils.

I. INTRODUCTION

The effects of tonsillectomy on the voice
production were experimentally studied in several papers
[1, 2]. Their main drawback is that the patients are not
able to repeat the same manner of voice production
during experiment before and after tonsillectomy. The
results can be evaluated statistically only. Numerical
modelling of this problem is not limited by these
difficulties.

In the previous papers of the authors [3-5] acoustic
characteristics of the human vocal tract of a healthy man
and a man with velofaryngeal insufficiency were studied
by FE modelling. Here, the FE models are used to
examine the effect of tonsillectomy on production of
Czech vowels /a/ and /i/. The FE models of the acoustic
spaces of the vocal tract were created using magnetic
resonance imaging technique. The FE mesh of a hollow
sphere, representing an acoustic space around the human
head, was added manually to the FE model of the vocal
tract. The designed FE model is shown in Fig. 1. A single
layer of infinite elements was matched onto the FE mesh
of the outer surface of the sphere, for modelling the
acoustic radiation into the infinite acoustic space. The
infinite elements are based on an infinite geometry
mapping, extending the elements to infinity, and on
special shape functions.

The FE models were modified by adding acoustic
spaces that arise in the vocal tract after tonsillectomy, see
Fig. 2. Three basic FE models were created for each
vowel, one for the vocal tract with tonsils, and two FE
models for the vocal tract after tonsillectomy with added
acoustic space 1.5 cm3 per one tonsil and with a reduced
volume 0.7 cm3 per one tonsil considering a constriction
of living tissue after operation.

II. MATHEMATICAL FORMULATION

Wave equation for the acoustic pressure can be
written as

  

2
p =

2
p

c
0

2
t

2

, (1)

Fig 2: Detail of FE model of the vocal tract for the vowel /a/
a) vocal tract with tonsils  b) vocal tract after tonsillectomy.

Fig. 1: FE model of the vocal tract for the vowel /a/ including
an acoustic space around the human head.

NUMERICAL MODELLING OF EFFECT OF TONSILLECTOMY ON

PRODUCTION OF CZECH VOWELS /A/ AND /I/

P. fivancara1, J. Horáæek2
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where c0 is the speed of sound, with boundary conditions
as follows
• on acoustically hard area 

   p / n = 0 ,

• on acoustically absorptive area a normal impedance

  
Z = p / v

n
 can be prescribed,

where n is the normal to the boundary area and vn is
normal velocity.

Equations of motion after discretization can be
written as

   
M p t( ) +C p t( ) +K p t( ) = f t( ) , (2)

where M, C, K are mass, damping and stiffness matrices,
p is the vector of nodal acoustic pressures and f is the
vector of nodal acoustic forces. Newmark integration
method was used for solution in time domain.

The acoustic transient and modal analysis were
realized by the software code SYSNOISE 5.5 considering
the speed of sound c0 = 353 ms-1 and the air density

0 = 1.2 kgm-3. Boundary walls of the vocal tract were
considered acoustically absorptive with normal
impedance Z = 83 666 kgm-2s-1 assuming for the soft
tissue the Young modulus E  = 5 MPa and density
_ = 1400 kgm-3 [6].

III. FREQUENCY MODAL AND RESONANT
CHARACTERISTICS

Firstly the eigenfrequencies of the FE models of the
vocal tract without the acoustic space around the head
were studied using modal analysis, assuming zero
acoustic pressure at the nodes belonging to the area of the
lips and acoustically hard boundary walls. Calculated
formant frequencies for both vowels and all three FE
models are summarized in Table 1.

Then the resonant characteristics of the FE models
with acoustic space around the head, infinite elements
and absorption on the vocal tract walls were computed by
transient analysis in time domain. The FE models were
excited by a very short pulse of differential glottal flow
(duration 0.25 ms) at the faces of FE elements in position

of the vocal folds. The spectra of the excitation pulse and
the sound pressure calculated near the lips are shown in
Figs. 3 and 4, respectively. The evaluated acoustic
resonant frequencies were close to the formant
frequencies obtained by the modal analysis.

Results calculated by both methods for FE models with
the tonsils are in good agreement with experimental data
known for formants of the Czech vowels /a/ and /i/ [7, 8].
Tonsillectomy for the vowel /a/ caused the biggest
decrease of formants F2 and F4 of about 40 Hz and
120 Hz, respectively. And for vowel /i/, the tonsillectomy
caused the biggest frequency shift down of about 100 Hz
for the formant F2, and about 50 Hz for the formants F4
and F5. For the model with consideration of constriction
of tissue after operation the frequency shifts of the

Fig. 3: Spectrum of the excitation pulse.

Fig. 4: Spectrum of the pressure response near the
lips for the vowel /a/.

Table 1: Calculated resonant frequencies.

Vowel /a/

formant
With
tonsil.
[Hz]

After
tonsill.
[Hz]

Diff.
[Hz]

After
tonsill.
reduced
vol. [Hz]

Diff.
[Hz]

F1 678 683 5 686 8

F2 1177 1137 -40 1150 -27

F3 2869 2875 6 2904 35

F4 4113 3992 -121 4038 -75

F5 4286 4308 22 4312 26

F6 4442 4494 52 4492 50

Vowel /i/

formant
With
tonsil.
[Hz]

After
tonsill.
[Hz]

Diff.
[Hz]

After
tonsill.
reduced
vol. [Hz]

Diff.
[Hz]

F1 258 248 -10 251 -7

F2 2374 2267 -107 2307 -67

F3 3188 3213 25 3198 10

F4 3809 3763 -46 3794 -15

F5 4778 4722 -56 4741 -37
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formants are approximately two times smaller. We should
note that the eigenfrequency F5 for the vowel /a/ is
associated with a lateral acoustic mode shape of vibration
in the horizontal direction.

As a next step a sensitivity of formants frequency
shift on the position and size of tonsils were examined.
Firstly, a penetration of the volumes of the tonsils and the
vocal tract was changed, i.e., the portion of tonsil volume
interference with the acoustic space of the vocal tract.
Three cases of tonsil-vocal tract volume interference were
considered: 1/2 (this case was used in previous
calculations), 3/4 and 1/4. The results are summarized in
Fig. 5.

Then for case of 1/2 of the tonsil-vocal tract volume
interference, the volume of the tonsils was varied, and
again three cases were analyzed for the tonsil volumes
1.5 cm3 (as in the previous calculations), 2 cm3 and 1 cm3

per one tonsil. The obtained differences in formant
frequencies are shown in Fig. 6.

The results show that some formant frequencies are
very sensitive to the change of position and size of the
tonsils. For example, the difference in formant frequency
F3 for the vowel /a/ changed from -137 Hz to +168 Hz
with changing the portion of the tonsil volume
interference with the acoustic space of the vocal tract.

The frequency changes of the most formants are more or
less proportional to the size of the tonsils.

IV. NUMERICAL SIMULATION OF PRODUCTION OF VOWELS

The production of the vowels was simulated using
transient analysis of FE model in time domain with
excitation by Liljencrants-Fant’s (LF) glottal signal
model [9]. The LF model describes differentiated airflow
in time domain. Each fundamental period of the glottal
signal can be expressed as

  

dU
g

t( )
dt

=

 E
0
e t

sin
g
t                     ,   0 t < t

e

E
e

t
a

e
t t

e( )
e

t
c

t
e( )( )   ,   te

t < t
c

, (3)

where t  is in the range [0,tc], tc is equal to the
fundamental period T 0. The so-called waveshape
parameters tp, te, ta, and Ee together with T0 completely
determine the shape of differential flow dUg(t). Figure 7
illustrates these waveshape parameters. Here, the
following normalized parameters derived from the
waveshape parameters were used:
• Ra the ratio of ta to tc-te ,

• Rk the ratio of te-tp to tp ,

• Rg the ratio of half fundamental period T0/2 to tp.

The parameters corresponding to a normal phonation
were used (R a = 0.05 ms, R k = 0.34, R g = 1.12,
Ee = 0.4 m3s-2). The FE models were excited at the faces
of FE elements in position of vocal folds by fifteen
subsequent pulses of differential glottal flow with the
period corresponding to the fundamental (pitch)
frequency F0 = 100 Hz. The numerical solution was
realised by the transient analysis within the software
SYSNOISE with the time step   nt = 1.10-5 s. The time
responses – sound pressures and their spectra were
calculated at distance 0.2 m in front of the lips (see the
example in Fig. 8).
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Fig. 5: Difference of formant frequencies before and after
tonsillectomy for different positions of tonsils for the vowel /a/.
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Fig. 7: Derivative glottal flow wave shape used for
acoustic excitation of the vocal tract.
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IV. DISCUSSION

Formant frequencies after tonsillectomy determined
from the calculated spectra of the sound pressure near the
lips show the same frequency shifts as results of the
modal analysis. Solution in the time domain allows
creating sound (audio) files for an acoustic checking of
the quality of numerically produced vowels by listening.
To achieve longer time duration of the sound files, the
computed time sequences of sound pressure are repeated
many times. Comparison of these sound files for the
models with and without the tonsils shows a different
colour of the phonated vowels. For the models with
consideration of constriction of tissue after operation
(reduced tonsil volume) the differences between the
sounds before and after the tonsillectomy are not nearly
audible.

V. CONCLUSION

Finite element (FE) models of the acoustic spaces
corresponding to the human vocal tract for the Czech
vowels /a/ and /i/ incorporating the acoustic spaces
around the human head was created and the production
of these vowels was simulated using the transient
analysis in time domain with Liljencrants-Fant’s (LF)
glottal signal model. Designed FE models allow
observing radiation of acoustic waves from the lips to the
outer acoustic space. The time domain solution allows
creating sound files for verification of the quality of
numerically produced vowels by listening. This
methodology can be used for an on-line subjective
evaluation of the effects of tonsillectomy on the human
voice production.

The formant frequencies evaluated from the
calculated spectra of the acoustic pressure near the lips
correspond well with the results of the performed
acoustic modal analysis. The formants F2, F4 for the
vowel /a/, and formants F2, F4 and F5 for the vowel /i/
are significantly lowered by the tonsillectomy. For the
vowel /a/, the formant F2 was shifted down to the lower

frequencies by 40 Hz and the formant F4 by 121 Hz. For
the vowel /i/, the formant F2 was decreased by 107 Hz
and formants F4 and F5 were shifted down of about
50 Hz. However, the frequency changes of formants after
the tonsillectomy significantly depend on position and
size of the tonsils. For example, for the vowel /a/ the
formant F3 was changed from -137 Hz to +168 Hz by
changing a portion of the tonsil volume interference with
the acoustic space of the vocal tract.

Consequently, it can be concluded that the effects of
tonsillectomy on the voice production are very individual
for each subject depending on a concrete anatomy of his
vocal tract and position and size of the tonsils inside.
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A generalized variogram is used to track vocal 
dysperiodicities in connected speech, which are 
summarized by means of a signal-to-dysperiodicity 
marker. To evaluate the variogram-based analysis, 
signal-to-dysperiodicity estimates are correlated with 
scores obtained by means of perceptual ratings of the 
degree of hoarseness, which are based on comparative 
judgments of pairs of speech samples.  The corpora 
comprise four French sentences as well as vowels [a] 
produced by 22 male and female normophonic and 
dysphonic speakers.   
 

I.  INTRODUCTION 
 
Many voice disorders cause voiced speech to deviate 
from perfect cyclicity. Dysperiodicities may be caused by 
additive noise owing to turbulence and modulation noise 
owing to external perturbations of the glottal excitation 
signal, as well as irregular dynamics of the vocal folds 
and involuntary transients between different dynamic 
regimes.  

Techniques that have been proposed to estimate 
vocal dysperiodicities have been applied to sustained 
vowels, mainly. Indeed, many techniques lack robustness 
and accuracy when they are used  to estimate vocal 
dysperiodicities in continuous speech or vowels including 
onsets and offsets spoken by severely hoarse speakers. 
The lack of robustness is a consequence of the 
assumptions of local stationarity and periodicity that are 
at the base of many speech analysis methods, and which 
are not valid in the case of speech produced by hoarse 
speakers. Up to date, there exists a comparatively small 
number of studies devoted to vocal dysperiodicities in 
continuous speech [2, 3]. 

In [4], we have proposed a generalized form of the 
variogram, as an alternative to the long-term prediction-
based approach proposed in [5], to estimate speech signal 
dysperiodicities due to vocal disorders.  The generalized 
variogram is derived from the conventional one. It 
enables tracking cycle length and cycle shape 
dysperiodicities and is unaffected by waveform changes 
that are segmental or suprasegmental in origin. In [4], 
synthetic vowels have been used to investigate the 

performance of the generalized variogram while 
measuring dysperiodicities caused by jitter, shimmer and 
additive noise.  

In the framework of this presentation, the variogram-
based approach is evaluated by correlating signal-to-
dysperiodicity estimates (SDR) with scores obtained by 
means of a perceptual rating of the degree of hoarseness, 
which is based on comparative judgments of pairs of 
speech samples.  
 

II.  METHODS 
 
A
 

. Corpora 

Speech data comprise sustained vowels [a], including 
onsets and offsets, and four French sentences produced 
by 22 normophonic  or dysphonic speakers (10 male and 
12 female speakers). The corpus includes 20 adults (from 
20 to 79 years), one boy aged 14 and one girl aged 10. 
Five speakers are normophonic, the other are dysphonic.  

The sentences are the following: “Le garde a endigué 
l’abbé”, “Bob m’avait guidé vers les digues”, “Une poule 
a picoré ton cake” and “Ta tante a appâté une carpe”. 
Hereafter, they are referred to as S1, S2, S3 and S4, 
respectively. They have the same grammatical structure, 
the same number of syllables and roughly the same 
number of resonants and plosives. Sentences S1 and S2 
are voiced by default, whereas S3 and S4 include voiced 
and unvoiced segments. 

Speech signals have been recorded at a sampling 
frequency of 48 kHz. The recordings were made in an 
isolated booth by means of a digital audio tape recorder 
(Sony TCD D8) and a head-mounted microphone (AKG 
C41WL) at the laryngology department of a university 
hospital in Brussels, Belgium. The recordings have been 
transferred from the DAT recorder to computer hard disk 
via a digital-to-digital interface. Silent intervals before 
and after each recording have been removed. 
 
B
 

. Generalized Variogram 

For a periodic signal x(n) of period T0, one can write: 
 
       x(n) = x( n + kT0),    k = . . .- 2, - 1, 0, 1, 2, . . .       (1) 
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A measure of the departure from periodicity over an 
interval of length N is an indication of the amount of 
signal irregularity. For stationary signals, the 
dysperiodicity energy may be estimated via the minimum 
of the following expression. The expression between 
accolades is known as the variogram of the speech signal.  
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Formally, the bracketed expression in (2) is equivalent to 
the difference between the contents of the current and a 
lagged analysis frame of length N. Index n positions 
speech samples within the analysis frame. When lag T is 
positive, the lagged frame is positioned to the right of the 
current frame, otherwise it is positioned to the left. Note 
that lag T is not requested to be equal to the glottal cycle 
length. Expression (2) is defined irrespective of whether 
the signal is voiced or unvoiced, regular or irregular.  

Boundaries Tmin and Tmax are, in number of samples, 
the shortest and longest acceptable glottal cycle lengths. 
They are fixed to 2.5 ms and 20 ms, respectively (i.e. 50 
Hz ≤ F0 ≤ 400 Hz). 
The search for the minimum of (2) is performed to the 
left and right of the current window position, because 
comparing speech frames across phonetic boundaries is 
meaningless. In the case of cross-boundary comparisons, 
deviations from periodicity are due to differences in 
segment identity rather than dysperiodicity. The analysis 
frame length is fixed to 2.5 ms to include one cycle at 
most. Another reason, for choosing a short frame, is that 
cycle lengths are expected to evolve owing to intonation 
and segment-typical phonatory frequencies.     

Speech signals are expected to be locally stationary 
at best. The signal amplitude evolves from one speech 
frame to the next owing to onsets and offsets, segment-
typical intensity, as well as accentuation and loudness. 
Introducing a weighting coefficient to account for these 
slow changes in signal amplitude, definition (1) becomes: 

 
                     x(n)= ax(n + T 0),  0 ≤ n ≤ N – 1.               (3)                                                                                                   
Accordingly, the generalized empirical variogram may be 
written as follows. 
                                                                                                                                                                                                                     

The perceptual assessment exploits the ability of listeners 
to compare two stimuli in terms of grade, i.e., perceived 
overall degree of deviance of the voice. The aim is to 
hierarchize a set of recordings from the least to the most 
anomalous via comparative judgments of all possible 
sample pairs within the set. The procedure is the 
following. 

  
 
 
 
 
Definition (4) is interpreted as the local energy of the 
signal dysperiodicities in a frame of length N. Weight a is 
constrained to be  positive. It is defined to equalize the 

signal energies in the current and shifted analysis 
windows: 
 
                                                                                                      
                                                                                                              

(5)                                 

 
T are the signal energies of the current 

and lagged frames,     
                                                                                                              

 
                                                                                  
                                                                                                              

The analysis is carried out frame by frame. The analysis 
frame is shifted by 2.5 ms. Together with the choice of 
the analysis frame length, this guarantees that each signal 
fragment is included exactly once. The instantaneous 
value of the dysperiodicity is estimated as follows, with 
Topt equal to the lag that minimizes generalized variogram 
(4) for the current frame position. Lag Topt may be 
positive or negative. 
 
               e(n )= x(n) - ax(n + Topt),  0≤ n ≤N – 1            (6) 
 
C. Signal-to-Dysperiodicity Ratio 
 
The marker that summarizes the amount of dysperiodicity 
within an utterance is defined as follows [7]. 
 
                                                                                                               
 
 
 
 
 
where L is the number of samples in the analysis interval 
and  = x(n) – e(n) is an estimate of the clean signal.  )n(x̂
The approximation of the optimal lag by an integer 
number of the sampling period introduces quantization 
noise, which has been reduced by over-sampling the 
signal by a factor of 8 and analysing the over-sampled 
signal. 
 
D. Perceptual Ratings by Comparative Judgment of 
Speech Samples    
 

  
1. The list of all possible different pairs of items is 
formed. An item is a recording belonging to a set of 
identical stimuli.  
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2.  All scores are initialized to zero. 
 
3. A randomly selected pair of speech recordings is 
presented to the listener, who is asked to point out the 
recording with the highest perceived hoarseness. The 
listener has also the option to label both recordings of a 
pair as equally hoarse. 
 
4. The total score of the recording labeled as the most 
hoarse is increased by one. If both items of the pair are 
judged to be equally hoarse, the score of both recordings 
is increased by 0.5. 
 
5. Steps 3 and 4 are repeated until all possible pairs that 
belong to a same session have been presented. 
 
6. The samples are hierarchized on the base of their 
scores. 

Sound samples have been presented via a digital-to-
analog audio interface (Digidesign Mbox) and dynamic 
stereo headphones (Sony MDR-7506). Loudness has 
been fixed at a comfortable level by the listener. 
Listening sessions have been held in a quiet room.  Each 
session has taken about one hour. At half-time, listeners 
have taken a rest of about five minutes. 
 
The group of judges has been comprised of six naive 
listeners (one female, five males), i.e. listeners without 
training in speech therapy or laryngology. All reported 
normal hearing. Their ages ranged from 24 to 57. One 
listening session was devoted to a set of 22 stimuli. The 
total number  of  sessions   has   therefore   been   equal  
to 6 listeners x 5 stimuli = 30. The same experiment has 
been repeated by three listeners after a period of a day at 
least to gauge intra-judge reliability. The total number of 
retest sessions has therefore been equal to 3 x 5 = 15. 
 

III.  RESULTS 
 
A
 

. Scores of Perceived Hoarseness 

Concordance between judges has been expressed by 
means of Pearson’s product moment correlation (ρP) 
between listener scores. The scores of the four sentences 
have been arranged for a given judge into a single series 
by stacking the sentence scores. Correlation coefficients 
have been calculated by means of the score series of each 
listener. The values for sustained vowel [a] and sentences 
S1 to S4 are given below and above the diagonal of Table 
1, respectively. While testing for the statistical 
significance of the Pearson product moment correlations, 
the method of Bonferroni has been used to account for 
multiple comparisons [6]. The number of independent 
measures involved in the test has been set equal to 22. 
The null hypothesis (ρP = 0) has been rejected for all 
table entries (one-tailed test, ρcrit = 0.56, p < 0.05).    

Table 1: Pearson’s product moment correlation values between 
scores obtained via comparative judgments by six listeners for 
sustained vowel [a] (below the diagonal) and sentences S1 to S4 
(above the diagonal). 
 

  J1 J2 J3 J4 J5 J6 

J1  ⎯ 0.91 0.83 0.86 0.76 0.86 

J2 0.87   ⎯ 0.86 0.90 0.82 0.91 

J3 0.90 0.87   ⎯ 0.83 0.74 0.84 

J4 0.96 0.80 0.91   ⎯ 0.90 0.94 

J5 0.84 0.69 0.80 0.89 ⎯  0.92 

J6 0.91 0.90 0.94 0.92 0.85   ⎯ 
 
 
Intra-judge agreement has been examined by calculating 
Pearson’s product moment correlation between the scores 
obtained during the test and retest sessions of three 
judges. For each judge, the scores of the four sentences 
have been stacked into a single series. The results are 
listed in Table 2. To account for multiple comparisons, 
Bonferroni’s method has been used. The number of 
independent realizations involved in the test has been set 
equal to 22. The null hypothesis (ρP = 0) has been 
rejected for all table entries (one-tailed test, ρcrit = 0.46,  p 
< 0.05).  
 
Table 2: Pearson’s product moment correlation values between 
scores obtained via comparative judgments during test and 
retest sessions for three listeners. 
 

  J1 J2 J3 
[a]  0.96 0.98 0.90 

S1 to S4  0.92 0.95 0.95 
      
B
 

. Measured Signal-to-Dysperiodicity Ratios 

The SDR values of the speech signals corresponding to 
vowel [a] and four sentences have been computed for 
corpora comprising 22 speakers. The quartiles of the SDR 
values are given in Table 3. Fig. 1(a) shows as an 
example phonetic segments [lœ] of French sentence S1 
that has been assigned a median hoarseness score of 20 
and a SDR value of 8.9 dB. Fig. 1(b) shows the 
corresponding sample-by-sample dysperiodicity (6).  
 
C. Correlation Between Scores of Perceived Hoarseness 
and Measured Signal-to-Dysperiodicity Ratios 
 
Pearson’s product moment correlation values between 
SDR estimates and listener scores are given in Table 4 for 
sustained vowels [a] as well as sentences S1 to S4. 
Bonferroni’s method has been applied to account for 
multiple comparisons (one-tailed test, ρcrit = 0.60,  p < 
0.05). The number of independent realizations involved 
in the statistical test has been set equal to 22.  



 
 
 
 
 
 
 
 

 
 

(a) 
 
 
 
 
 
 
 
 

 
     

 (b) 
 

Fig. 1: Segments [lœ] of sentence S1 spoken by a hoarse 
speaker (SDR = 8.9 dB) (a) and its sample-by-sample 
dysperiodicity (b). 
 
 
Table 3: Quartiles  of  SDRs  estimates in dB obtained 
via generalized variogram  analyses of vowel [a] and 
sentences S1-S4    produced by 22 speakers. 
 

 [a] S1 S2 S3 S4 
Min (dB) 5.61 8.3 7.1 8.6 7 

Quartile 1 (dB) 18 15.7 17.2 16.4 13.9 
Median (dB) 20 17.3 18 18 15.7 

Quartile 3 (dB) 22.6 18.2 19.5 18.9 17.1 
Max (dB) 26.3 20.6 22.6 22.4 19.4 

 
 
Table 4: Pearson’s product moment correlation between 
SDR values and hoarseness scores assigned by six judges 
for sustained vowel [a] and sentences S1 to S4. Median 
correlations are given in the last column. 
 

  J1 J2 J3 J4 J5 J6  Med. 
[a] 0.75 0.61 0.67 0.76 0.76 0.67 0.72 
S1 0.74 0.71 0.79 0.66 0.53 0.65 0.69 
S2 0.72 0.67 0.71 0.64 0.61 0.6 0.66 
S3 0.66 0.66 0.73 0.62 0.55 0.59 0.64 
S4 0.58 0.66 0.66 0.64 0.61 0.63 0.64 

 
 
 

IV.  DISCUSSION AND CONCLUSION 
 

0 1 2 3 4 5 6 7

x  1 0 4

Experiments demonstrate the validity of perceptual rating 
of hoarseness based on comparative judgments of pairs of 
speech samples. Inter-listener and intra-listener agreement 
is well above statistical significance for both sustained 
vowel [a] and sentences S1 to S4 (Tables 1 and 2).  

Correlation analyses show that the generalized 
variogram obtains SDR estimates that are statistically 
significantly correlated with the hoarseness scores 
assigned perceptually for vowel [a], as well as sentences 
S1 to S4. One sees in Table 4 that the highest correlation 
values are associated with sentences S1 and S2 as well as 
vowel [a], which are voiced throughout.  Smallest 
correlations are observed for sentences S3 and S4 which 
include voiced and unvoiced segments. This observation 
agrees with the report of the listeners who designated 
sentences S3 and S4 as more difficult to assess than 
sentences S1 and S2. A possible explanation is that SDR 
values are determined by the vocalic segments in 
connected speech [5]. SDR values are therefore expected 
to correlate better with perceived hoarseness of all-voiced 
speech fragments, which are perceptually more prominent 
and more relevant to perceived hoarseness. The 
interquartile ranges of the correlation values between 
hoarseness scores and signal-to-dysperiodicity ratios are 
0.66 – 0.76 for vowel [a] and 0.61 – 0.71 for sentences S1 
to S4. These compare favourably with published values 
which are in the range 0.4 – 0.7 for typical phonatory 
features extracted from sustained vowels [a] [1]. 
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In contrast to the endoscopic examination of a 
stationary phonation, the examination of a non-
stationary phonation screens a broader spectrum of 
vocal fold oscillations. For this reason, vocal fold 
vibrations are investigated and recorded with a high-
speed camera system in eight normal and in eight 
pathological voices during a pitch raise. A 
quantitative analysis of the observed vocal fold 
dynamics in terms of symmetry and regularity is done 
with a time-dependent two-mass model of the vocal 
folds. The model's parameters are numerically 
optimized to emulate the observed non-stationary 
vocal fold vibrations. These parameters permit an 
objective interpretation of vocal fold oscillating 
asymmetries and allow a classification in normal and 
pathological cases. The practicability of the 
optimization algorithm is demonstrated with a set of 
242 synthetically generated data sets. By applying the 
optimization procedure to the recordings of the 16 
subjects a correct classification into groups of normal 
and pathological cases was achieved.  

 
I. INTRODUCTION 

 
Vocal fold examination in clinical routine is based on 

laryngeal endoscopic techniques. Conventionally, the 
examination condition for the assessment of vocal fold 
oscillation is a stationary sustained phonation, i.e. 
phonating a vowel at a constant pitch and intensity. Only 
fractions of the voice disorder that appear at this pitch 
and intensity level can be registered. This limits the 
diagnosis of voice disorders. To overcome this drawback 
a non-stationary phonation is investigated that screens a 
broad phonation range. A "monotonous pitch raise" 
(MPR) paradigm is explored, where the proband is free to 
choose the starting and the end pitch of phonation [1]. 

High-speed glottography (HGG) is the state of the art 
real-time recording technique, which allows to observe 
the non-stationary vocal fold vibrations [2]. Objective 
medical diagnosis demands to extract parameters from 
the observed HGG vibrations that describe symmetry and 
regularity of vocal fold oscillations. These parameters 
enable a classification of vocal fold oscillation patterns. 
Quantitative parameters can be derived by adapting a 
biomechanical two-mass model (2MM) of vocal folds to 
the HGG vibration patterns. Recently, the adaptation of 
the vibration behavior of a 2MM succeeded in stationary 

vibration patterns of normal voices and in cases of 
unilateral recurrent laryngeal nerve paralysis [3, 4]. 
However, the 2MM is restricted to the steady state 
section after the vocal onset i.e. on a stationary 
phonation. In order to model a pitch raise a time-
dependent 2MM for the interpretation of MPR-based 
high-speed recordings is presented. The model's dynamic 
is adjusted with five time-dependent parameters, which 
are used to determine asymmetries in vocal fold 
vibrations. These parameters are numerically optimized 
in the sense that the vibration behavior of the 2MM is 
adapted to the HGG observed vocal fold vibrations. The 
performance of the proposed algorithm is tested with 242 
predefined data sets and is applied to eight normal and to 
eight pathological cases. 
 

II. METHODOLOGY 
 

A. Examination Conditions 
 

 Eight young female subjects (average age of 20.3 
years with standard deviation of 3.7 years) served as 
subjects for the endoscopic investigations. The subjects 
had a normal voice and exhibited no history or clinical 
signs for voice disorders. Eight further subjects 
(38.3 ± 13.4 years) suffered from different voice disorders 
as functional dysphonia (3), Reinke's Edema (1), 
unilateral vocal fold paralysis (3), and vocal fold polyp 
(1). All subjects were instructed to increase 
monotonically the pitch during the phonation of the 
vowel /a/ from a comfortable frequency up to an arbitrary 
higher one (MPR). No more instructions about pitch shift 
duration or frequency range were given.  

For each subject a MPR-HGG sequence was recorded 
with a frame rate of 4.000 frames per second (High-
Speed Endocam, Wolf corp., Knittlingen, Germany) [2].  

The dynamics of the vocal folds are represented by the 
motions of the vocal fold edges. Their movements are 
extracted from the HGG sequences by image processing 
at the medial glottal third, as the oscillation amplitude of 
the vocal folds is largest in this region [5]. The time-
varying deflections of two opposing vocal fold edge 
points from glottal midline are regarded as experimental 
trajectories da

HGG(t) for the left (a = l) and right (a = r) 
side. In the following all characteristics that are marked 
by superscript HGG refer to the experimental trajectories. 
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B. Two-Mass Model, its Time-Dependent 
Extensions, and Symmetry Factors 

 
To emulate experimental trajectories da

HGG(t) a 2MM is 
chosen, since the model is able to represent the dominant 
modes of vocal fold vibrations [3], [6]. In the following a 
brief summary of the time-dependent extensions of the 
2MM is depicted. Within the 2MM one vocal fold is 
represented by two coupled oscillators, which are set into 
vibrations by a subglottal air pressure Ps(t). Incorporated 
nonlinearities are the driving Bernoulli force and the 
impact forces. These impact forces, which are represented 
by spring constants cia (t), act as additional restoring 
forces when the model's masses get into contact. Indices 
used for the parameters indicate the lower (i = 1) and 
upper (i=2) plane of the model. The vibrating masses and 
spring tensions of the model are denoted by the 
parameters mia(t) and kia(t). The coupling between the 
lower and upper masses is represented by the spring 
constants kca(t). The rest positions x0,a(t) of the upper and 
lower spring constants are assumed to be equal and the 
glottal length of the model is signed as l(t). The model is 
described by a system of differential equations: 
 

d/dt(x) = A(t) x + b(x,t) .      (1) 
 

Matrix  A(t) contains the aforementioned tissue 
properties while the non-linear parts are captured in 
vector b(x,t). The vector x contains positions and 
velocities of the left, right, lower and upper masses (T 
transposed vector)  
 

xT = [x1l v1l x2l v2l x1r v1r x2r v2r] .     (2) 
 

In accordance with the vocal fold oscillations the model 
dynamic is described by the minimum opening formed by 
the vibrating masses. These 2MM oscillations are called 
theoretical trajectories da(t). In equation (1) the more 
general form of Newton's second law  
 

Fia = mia(t) d/dt( via(t) ) + via(t) d/dt( mia(t) )  (3) 
 

has been accounted for. Hence, the time derivatives of 
masses mia(t) are incorporated in the equations of motion. 
Equation (1) is numerically solved by a fourth order 
Runge-Kutta method with a step size h fixed to the frame 
rate of the HGG recordings h=1/4000. 

The time-dependent parameters summarized in A(t) 
and b(x,t) influence the oscillation behavior of the model. 
The subglottal pressure Ps(t) mainly affects the amplitude 
of the model's oscillation and to some minor extend the 
oscillation frequency [1]. Ps(t) can be seen as a measure 
for the energy flowing into the system [3]. Furthermore, 
the masses mia(t) and tensions kia(t) predominantly 
influence the frequency as well as the amplitude of the 
oscillation [1]. In the model the parameters mia(t), kia(t), 

..., are expressed in terms of Ishizaka's and Flanagan's [8] 
standard parameters k0,ia, m0,ia, ..., by introducing factors 
Qa(t), Ra(t), and U(t): 
 

kia(t) = k0,ia Qa(t),  kca(t) = k0,ca(t) Qa(t), 
mia(t) = m0,ia/Qa(t), cia(t) = c0,ia(t) Qa(t),   (4) 
x0,a(t) = x0,a Ra(t),  Ps(t) = Ps0 U(t). 

 
As a measure of asymmetry between the oscillations of 
the left and right side of the model the ratios 
 

Q(t) = Ql(t) / Qr(t)  and R(t) = Rl(t) / Rr(t)  (5) 
 

are introduced [7]. If Ql(t) and Qr(t), respectively Rl(t) 
and Rr(t) differ from each other the model's oscillation 
become asymmetric. Time-varying irregularities within 
non-stationary vocal fold vibrations are captured in time 
variations of the two symmetry factors. These 
irregularities can be described and visualized by a curve  
 

C(t) := C( Q(t), R(t) )      (6) 
 

in the Q(t)—R(t) plane. A curve C(t) that represents 
symmetric and regular vibrations is close to the point of 
perfect symmetry (1,1), while a wide dithering of the 
curve indicates oscillating irregularities. Thus, from this 
curve C(t) two characteristics can be derived that describe 
the degree of asymmetries in vocal fold vibrations: 
 

• The distance dg of the center of gravity of the 
curve C(t) to the point (1,1) describes the 
mean degree of oscillation symmetry. 

• The radius rc of a circle that encloses 90 % of 
C(t) is a measure of the oscillation stability 
over time. 

 
A rating value Rv for vocal fold oscillation asymmetries 
is defined by the combination of both criteria: 
 

Rv := dv+rc .       (7) 
 

C. Parameter Optimization of Time-Dependent 
Two-Mass Model 

 
In order to derive the curve C(t) a parameter set of the 
2MM S(t) = [Ql(t) Qr(t) Rl(t) Rr(t) U(t)] has to be 
determined by an optimization procedure. Here, 
optimization means to find proper values of the parameter 
set S(t) that adapts the model dynamics da(t) to 
experimental trajectories da

HGG(t). Due to the time-
dependency of non-stationary vibrations, for each 
sampling point the parameter set S(t) has to be optimized. 
The optimization of an entire non-stationary trajectory of 
about one second (number of samples N = 4.000) spans 
an optimization space of 20.000 parameters. The change 
of the parameters S(t) is continuous over time. 
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Fig. 1. Schematic overview of the period by period ASA (Adaptive Simulated Annealing [8]) optimization. The
periods overlap by one sample. The number of samples in period κ  is N κ . The parameters in gray-filled boxes are
optimized, while the others are obtained by linear interpolation. 

In the following an algorithm is introduced that takes 
advantage of the continuous parameter variation and 
reduces the dimensionality of the solution space. A 
schematic overview of the algorithm is depicted in Fig. 1. 
The algorithm divides the trajectories da

HGG(t) in K 
blocks. Each block κ  represents one period of oscillation 
with N κ  samples. The time samples of the parameters 
and trajectories are indexed as tn, κ , where κ  represents 
the period and n the time sample within the period κ . 
The time constants of the parameter set S(t) can be 
assumed to be beyond the period length. Thus, it is 
sufficient to optimize just the first S(t0, κ ) and the last 
S(tN κ , κ ) values of the parameter set of one period. The 
parameter values in between are obtained by linear 
interpolation. The continuity of the parameters of 
consecutive periods is ensured by an overlap of one 
sample, see Fig. 1. 

The optimization of the parameter set S(t) starts at 
period κ =0 of the experimental trajectories da

HGG(t). 
Initial values for the parameters Qa(tn,0) with n={0, N0} 
are derived by using a simple mass-spring oscillator 
equation [3] 
 

Qa(t0,0) = Qa(tN0,0) = 2 π fa ( m0,1a / k0,1a )1/2    (8) 
 
where fa is the frequency of period κ =0. The factors Ra(t) 
and U(t) are set to one. Following initialization the 
parameter optimization is performed. Therefor, the error, 
also called objective function, 
 
e κ =1/N κ ∑ |da(tn, κ ) - da

HGG(tn, κ )|2, κ = 0, ..., K-1 (9) 
 
between experimental and theoretical trajectories is 
minimized. Since the behavior of the 2MM is non-linear 
and the objective function is non-convex, a stochastic 
optimization procedure, ASA [8], is used to find the best 
fit. ASA adjusts the ten optimization parameters so that 
the objective function e0 gets minimal. 

 

After the optimization of the first period κ =0 all the 
consecutive periods are processed. Due to the periods' 
overlap of one sample, the end state S(tN κ -1, κ -1) of 
period κ -1 is identical to the start state S(t0, κ ) of 
period κ . Only one parameter set S(tN κ , κ ) at the last 
time index of the following periods is needed for 
optimization. Hence, the optimization space has just five 
dimensions compared to the first period. Finally, a  
lowpass filter is applied to the elements of S(t) to remove 
artifacts caused by the period by period processing. 
 

D. Verification and Accuracy of the Optimization 
 
In order to estimate the performance of the proposed 
optimization algorithm, 242 synthetically non-stationary 
trajectories with the 2MM where produced. For this, 
different predefined parameter sets S*(t) with varying 
slopes of pitch increase, subglottal pressure levels, and 
rest positions were generated. These sets were compared 
to the outcome of the ASA period by period optimization 
S(t), The objective function is more sensitive to variations 
of Qa(t) than to variations of Ra(t). Hence, the factors 
Qa(t) match very closely with a relative error of about 
2.7%, whereas the factors Ra(t) show a relative error of 
about 17.9%. 
 

III. RESULTS 
 
The optimization algorithm was applied to the 
experimental trajectories da

HGG(t) of 16 subjects. For each 
subject the curve C(t) (solid line) within the Q(t)—R(t) 
plane is depicted in Fig. 2. The curves C(t) of the normal 
voices are located closer to the symmetry point (1,1) and 
they spread less across the plane than for the pathological 
cases. The resulting rating value Rv is shown for the 
normal and for the pathological cases in Fig. 3. The mean 
rating value of the normal voices is 0.25 and 0.51 for the 
pathological ones, respectively. Furthermore, the mean 
values of dg and rc are increased for the pathological 
vocal fold vibrations. 



Fig. 2. Plots of the curve C(t) for normal and
pathological cases in the Q(t)–R(t) plane. Perfect
symmetry is located at the point (1,1). A circle is 
drawn around the center of gravity for each curve. The
radius rc is determined so that 90% of the curve C(t) lies
inside the circle. The subject number is printed in the
lower left corner. 

IV.  DISCUSSION 
 

The adaptation of a time-dependent 2MM to non-
stationary vocal fold oscillations enables to derive a two 
dimensional parameter curve C(t) = C( Q(t), R(t) ). From 
the curve C(t) a rating Rv is calculated that quantifies 
different degrees of vocal fold asymmetries. Within this 
rating the mean degree of asymmetry is captured by the 
distance dg of the point of gravity to the symmetry point 
(1,1). The distance dg can be regarded as counterpart of 
the asymmetries that are observable in stationary 
phonation. In contrast, the value rc describes irregularities 
resulting from non-stationary vocal fold vibrations. In 
Fig. 3 a clear distinction between normal and pathological 
vocal fold vibrations is only possible by the combined 
evaluation of dg and rc. The rating value rc —  that can not 
be revealed in case of a stationary phonation — makes an 
important contribution to describe irregularities in non-
stationary vocal fold vibrations. The rating Rv can be 
used as an objective measurement of voice quality in 
terms of vocal fold oscillation symmetries and 
regularities. It enables the classification of healthy and 
pathological voices in non-stationary phonation. 

Further investigations will focus on the potential to 
classify even different kinds of voice disorders, the 
severity of dysphonia, and to quantify the outcome of 
voice therapy.  

 
V. CONCLUSION 

 
Dynamical changes of the vocal folds can be accessed by 
phonating a pitch increase during an endoscopic high-
speed recording. Voice quality in terms of vocal folds' 
oscillation symmetry and regularity is expressed by a two 

dimensional parameter curve. This time-dependent curve 
gives quantitative information on the dynamical state  
changes of the vocal folds. A classification of vocal fold 
vibrations into a healthy and a pathological group is 
possible. 
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Fig. 3. Rating Rv of the normal and pathological
subjects. Small values indicate a symmetrical and
regular vibration. The rating is composed out of the
distance dg (light gray) from the center of gravity from
the point (1,1) and of the 90% radius rc (dark gray), see
Fig. 2. 
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In speech, the sounds involved in an utterance are not 
produced independently of one another, but rather 
reflect the result of a complex process of sound 
concatenation. It is important to study these 
coarticulation effects in representations of speech 
signals since, for example, their cues can be helpful in 
the development of robust speech recognition systems. 
Representational tools, such as the spectrogram, are 
useful for visualizing spectral characteristics along the 
time axis; most of these tools are based on second-
order statistics, and it is interesting to consider other 
methods which might be useful in studying the 
problem of coarticulation. In recent years, sparse 
signal representations using suitable dictionaries of 
functions seem to provide an attractive alternative. 
With this alternative in mind, the present paper 
applies spectral and basis pursuit techniques to 
spanish synthesized signals. The results on a reduced 
vocabulary show that some prosodic and 
coarticulatory cues can be obtained from the basis 
pursuit method compared to the spectral 
representation. 

 
I. INTRODUCTION 

 
In speech, it is well known that sounds are not 

produced in isolation, but influence and affect one other. 
This complex process of sound concatenation is called 
coarticulation. Coarticulation is related to the speed and 
the coordination of the movements of the vocal fold. For 
example, a vowel (V) produced between two nasal 
consonants (C), such an /m/, presents modifications in its 
spectral representation due to the effects of these adjacent 
consonants. In a CV segment with a stop consonant, the 
spectral representation shows the obstruction of the air 
flow and then the release of the accumulated air at the 
moment of the closing and opening of the vocal fold. 
Graphical representations of these acoustic events 
sometimes lack clarity when analyzing changes within 
the same speaker, so different types of analysis and 
representation methods could prove useful.  

In the field of speech processing there are several 
methods of analysis and representation.  The spectrogram 
is an efficient tool to visualize the spectral characteristics 
of the signal along the time axis; it is based on second-
order statistics. Alternative representations might 
improve this one, for example, by showing ‘hidden’ 
elements hard to identify in the spectrograms. The 
information obtained by higher order statistics, for 

example, might be useful since it may provide clues 
about new model configurations of speech signals that 
could be better than existing ones [1]. The most important 
problem with this kind of alternative signal analysis is a 
lack of understanding of their properties when applied to 
speech signals. Furthermore, the computational load is 
usually greater compared to the traditional second-order 
statistics based analysis [1], [2].  

In a preliminary exploration of alternative techniques, 
this paper presents spectral and basis pursuit  
representations of  speech signals using two different 
synthesized voices, spanish and mexican; spectrogram 
and basis pursuit algorithms were applied to the signals in 
order to study coarticulation effects.  

The paper is organized as follows: in the next section 
the words selected, the effects to be analyzed and the 
speech representation methods are described. Results are 
presented and a discussion and conclusions are given. 
 
 

II. METHODOLOGY 
 

 The data selected and the representation methods are 
described in this section.  

 
A. Data 
  

A set of two spanish words was selected. These words 
presented different combinations of spanish sounds, e.g. 
CV segments (stop-vowel or fricative vowel), CVV 
segments (liquid semivowel-diphthong) or CVC 
segments (liquid-vowel-fricative, stop-vowel-fricative, 
nasal-vowel, nasal).  
 For each word three different synthesized utterances 
were produced using mbrola [3]; tables 1 and 2 shows the 
acoustic characteristics of each utterance for the figures 
presented in this paper. The idea of studying synthesized 
utterances was because of the control available for 
specifying  certain acoustic events precisely.   
 
Table 1: Acoustic characteristics of the synthesized word 

‘areas’ 
phoneme 
name 

duration (ms) position  of  
the  pitch 
target (%) 

pitch value 
(Hz) 

a 108/108/108 30/30/30 130/130/130 
r 50/50/50 - /50/ - - / - / - 
e 90/90/90 -/100/- -/150/130 
a 90/90/130 -/99/30 - / - / - 
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s 110/110/110 99/99/99 80/80/80 
 
Table 2: Acoustic characteristics of the synthesized word 

‘gatos’ 
 
phoneme 
name 

duration (ms) position  of  
the  pitch 
target (%) 

pitch value 
(Hz) 

g 50/50/50 - / - / - - / - / - 
a 120/90/90 - /90/90 - /100/150 
t 85/85/85 - / - / - - / - / - 
o 90/35/35 90/60/60 100/123/350 
s 110/110/110 - / - / - - / - / - 

 
For each utterance the spectrogram and the basis 

pursuit representations were obtained. 
 
B. Spectrogram 
 

The spectrogram algorithm splits the signal into 
overlapping segments and applies a window [4]. For each 
segment it computes the discrete-time Fourier transform 
for a given length (nfft) to produce an estimate of the 
short-term frequency contents. The matlab algorithm to 
compute the spectrograms was applied to the signals [5].  
The spectrogram is computed from 

( ) ∑
∞

−∞=






 −=Γ

k
ky N

kC πωδπω 22 2
 

where ( )ωyΓ  is the power density spectrum for a 
periodic signal y(n), Ck the associated coefficients [6] 

The set of parameters used is the following:  
- sampling frequency = 16 KHz 
- nfft = 256 
- hamming window of nfft length 
- no overlap between windows. 

 
C. Basis Pursuit 

 
In the last few years a number of papers have been 

devoted to the study of different ways of representing 
signals using dictionaries of suitable functions [7], [8]. A 
dictionary D is a collection of parameterized waveforms 
( )

Γ∈γγφ , and a representation of the signal s in terms of 

D is a decomposition of the form 

∑
Γ∈

=
γ

γγφas   (1) 

Some commonly used dictionaries are the traditional 
Fourier sinusoids (frequency dictionaries), Dirac 
functions, Wavelets (time-scale dictionaries), Gabor 
functions (time-frequency dictionaries), or combinations 
of these. In this paper a wavelet symmlet was employed. 
 An important criterion for choosing a method consists 
in obtaining a sparse representation of the signal; Here, 

this means that ‘a few’ of the coefficients γa  in (1)  are 
to be different from zero. 

Chen et al [9] propose a method, called Basis Pursuit 
(BP), which is designed to produce such a sparse 
representation. A suitable representation is found by  
optimization with respect to the l1 norm. More precisely 
if the signal s has length n and there are p waveforms in 
the dictionary, then the problem to solve is:   

1
min a subject to sa =Φ   (2) 

where a is a vector in nℜ  representing the coefficients 
and Φ is a p x n matrix giving the values of the p 
waveforms in the dictionary. 
 It can be shown that the problem can be converted to 
a standard linear program, with only positive coefficients, 
by making the substitution a ← [u,v] and solving  

[ ]vulT ,min  subject to [ ][ ] svu =Φ−Φ ,, , 
vu,0 ≤      (3) 

This formulation can be solved efficiently and exactly 
with interior point linear programming methods. 
 

III. RESULTS 
 
    Figs 1 and 2 show the spectrogram and BP 
representations of the synthesized utterances of the word 
‘areas’ produced by a spanish voice. Figs 3 and 4 show 
the spectrogram and BP representations of the 
synthesized utterances of the word ‘gatos’ produced by a 
mexican voice.  
 In each of the figures the segment to be analyzed is 
selected between the lines: the fricative-diphthong (CVV) 
segment for the word ‘areas’ and the vowel-stop-vowel 
(VCV) segment for the word ‘gatos’. 
 

 
Fig.1 Spectrogram of the word “areas”  (spanish synthesized voice) 
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Fig.2 Phaseplane Basis Pursuit of the word “areas”  

(spanish synthesized voice) 
 
 

 
Fig.3 Spectrogram of the word “gatos”   

(mexican synthesized voice) 
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Fig.4 Phaseplane Basis Pursuit of the word “gatos”  

(mexican synthesized voice) 
 
 

IV. DISCUSSION 
 
The spectral representations show a very similar 

behavior for the three utterances in both examples. In the 
case of ‘areas’ (Fig 1) the CVV segment presents changes 
in energy and the effect of the diphthong (/ea/) can be 
seen in the vowel formants. In Fig 3, the spectral VCV 
segment remains without changes in the three utterances 
and the vowel configurations do not seem to be different. 

The basis pursuit diagrams (Figs 2 & 4) show 
noticeable changes among the utterances for the same 
word. In Fig 2 the diphthong segment BP coefficients are 
presented in different arrays while in Fig 4, the VCV 
segment clusters its BP coefficients in different locations 
of time. It is important to notice that the number and 
energy level of  the coefficients are also different for each 
utterance even for the same word. 

One of the disadvantages that the basis pursuit interior 
point algorithm presents is the amount of processing time, 
since there are an important number of calculations 
involved. Table 3 presents the BP-Interior algorithm time 
durations (in seconds) for the example words.  
 

Table 3: Time duration (secs) of BP-Interior Algorithm 
applied to the speech signals 

 
Word Spanish 

voice 
mexican 

voice 
Areas 539.8 302.47 
Gatos 526.3 250.99 

 
 

V. CONCLUSION 
 
    Spectral and basis pursuit representations were applied 
to synthesized speech signals in order to identify 
differences in coarticualtory effects among three 
utterances of the same word. 

The study of basis pursuit applied to speech analysis 
shows possible advantages of the method over traditional 
approaches. These advantages present themselves in 
terms of the adequate localization of acoustic cues, 
obtained from a sparse representation. It is necessary to 
understand the effect of the dictionary on the acoustic 
cues for speech signals and to develop efficient methods 
to  obtain the BP coefficients. 
 Further work in the development of atomic 
decompositions and higher order analysis tools will be 
addressed in the future.  
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Voiced excitation as entrained primary response of
a reconstructed glottal master oscillator 
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The transmission protocol of sustained voiced speech is hypothe-
sized to be based on a fundamental drive process, which syn-
chronizes the vocal tract excitation on the transmitter side and 
evokes the pitch perception on the receiver side. A band limited 
fundamental drive is extracted from a voice specific subband 
decomposition of a speech signal. When the near periodic drive 
is used as fundamental drive of a two-level drive-response model, 
a more or less aperiodic voiced excitation can be reconstructed 
as a more or less aperiodic trajectory on a low dimensional syn-
chronization manifold described by speaker and phoneme 
specific coupling functions. In the case of vowels and nasals the 
excitation depends on a single phase of the fundamental drive. In 
the case of other sustained voiced consonants the excitation may 
include an additional coupling function, which depends on a 
delayed fundamental phase with a phoneme specific time delay. 
The delay may exceed the length of the analysis window. The 
resulting long range correlation cannot be analysed by methods 
assuming stationary excitation.

Keywords: voiced speech, fundamental drive, two-level drive-
response model, generalized synchronization, delayed excitation  

I.  INTRODUCTION

The vocal tract excitation of voiced speech is generated by a pulsa-
tile airflow, which is strongly coupled to the oscillatory dynamics of 
the vocal fold. The excitation is created immediately in the vicinity 
of the vocal fold and/or delayed in the vicinity of a secondary con-
striction of the vocal tract [1-3]. As has been pointed out by Titze 
[4], a mechanistic model of a dynamical system suitable to describe 
the self-sustained oscillations of the glottis cannot be restricted to 
state variables of the vocal fold alone.

Due to the strong nonlinearities of the coupled dynamics, non-
pathological, standard register phonation dynamics is characterized 
by a stable synchronization of several oscillatory subsystems 
including the two vocal folds. The synchronization can furthermore 
be assumed to have the effect that some of these subsystems become 
topologically equivalent oscillators, whose states are one to one 
related by a non-singular invertible mapping (conjugation) [5]. Due 
to the pronounced mass density difference of about 1:1000 the 
coupling between the airflow and the glottal tissue is characterized 
by a dominant direction of interaction, such that the glottal oscilla-
tors can affirmatively be assumed to be a subset of those topological-
ly equivalent oscillators. Therefore a glottal master oscillator can be 
defined, which enslaves (synchronizes) or drives the other oscillators 
including the higher frequency acoustic modes.  

In the case of non-pathological voiced speech the observation of 
the air pressure signal or of the electro-glottogram reveals a unique 
frequency of phonation, the fundamental frequency. Time series of 
successive cycle lengths of oscillators, which are (implicitly) 
assumed to be equivalent to the glottal master oscillator show an 
aperiodicity with a wide range of relevant frequencies reaching from 
half of the pitch down to less than 0.1 Hz [6, 7]. Except at the high 
frequency end the deviation of the glottal cycle length from the long 

term mean forms a non-stationary stochastic process. More or less 
distinct frequency bands or time scales have been described as: 
subharmonic bifurcation [8], jitter, microtremor and prosodic 
variation of the pitch [6, 7]. As a general feature, cycle length 
differences increase with the time scale (the relative differences 
ranging from less than 1 % up to more than 20%). In spite of the 
partially minor amplitudes of aperiodicity all or most of these 
frequency bands appear to be perceptionally relevant. Some of them 
are known to play a major role for the non-symbolic information 
content of speech.

The relevant frequency range of the excitation of voiced speech 
extends at least one order of magnitude higher than the fundamental 
frequency. It is therefore common practice to introduce a time scale 
separation, which separates the high frequency acoustic phenomena 
of speech signals above the pitch from the subharmonic, subacoustic 
and prosodic ones below the pitch. A simple approach towards time 
scale separation starts with the assumption of a causal frequency gap, 
which separates the frequency range of the autonomous, lower 
frequency degrees of freedom from the dependent degrees of 
freedom (modes) in the acoustic frequency range.

In the main stream approach of speech analysis this has lead to 
the more or less explicit assumption that the excitation is wide sense 
stationary in the analysis window, which is usually chosen as 20 ms 
[2, 3]. The latter assumption is closely related to the assumption that 
the excitation process can be described as a sum of a periodic 
process and filtered white noise with a time invariant, finite impulse 
response filter. In the case of voiced excitation there exists multiple 
evidence that this assumption is not fulfilled [9, 10].  In a first step of 
improvement the voiced excitation has been described as stochastic 
process in the basin of attraction of a low dimensional nonlinear 
dynamical system [9, 10]. The assumption of a low dimensional 
dynamical system, however, is in contradiction to the observed 
complexity of the glottal cycle lengths.  

The present study introduces an analysis of (sustained) speech 
signals, which does not assume a periodic fundamental drive nor an 
aperiodic drive, which obeys a low dimensional dynamics. The 
assumption of a causal frequency gap is avoided by treating the more 
or less aperiodic voiced broadband excitation as an approximately 
deterministic response of a near periodic, non-stationary fundamen-
tal drive, which is extracted continuously from voiced sections of 
speech with uninterrupted phonation [11-12]. The extraction of the 
fundamental drive includes a confirmation that the drive can be 
interpreted as a topologically equivalent reconstruction of the glottal 
master oscillator which synchronizes the vocal tract excitation [11]. 
As an important property of non-pathological, standard register 
voiced speech the state of the fundamental drive is assumed to be 
described uniquely by a fundamental phase, which is related to pitch 
perception, and a fundamental amplitude which is related to loudness 
perception [11-12].

As result of a detailed study of the production of vowels (with a 
sufficiently open vocal tract to permit the manipulation of airflow 
velocity sensors) Teager and Teager [14] pointed out that the con-
version of the potential energy of the compressed air in the subglottal 

Models and analysis of vocal emissions for biomedical applications. 4th international workshop. October 29-31, 2005 – Firenze, Italy. 
Edited by C. Manfredi.   ISBN 88-8453-320-1 (online)   © 2005 Firenze University Press



airduct to convective, acoustic and thermal energy happens in a 
highly organized cascade. They observed that the astonishingly com-
plex convective airflow pattern within the vocal tract (flow separa-
tions, vortex rings, swirly vortices along the cavity walls, …) show a 
degree of periodicity in time, which is comparable to the one of the 
corresponding far field acoustic response. In the case of the sustained 
voiced consonants it is plausible to assume that at least a part of the 
convective flow pattern will show a similar periodicity in time. In 
the case of the voiced fricatives the vowel type periodicity is 
obviously restricted to the upstream side of the secondary constrict-
tion of the vocal tract and/or to the lower frequency bands. As an 
important feature of the highly organized energy cascade the
irreversible conversion to acoustic and thermal energy occurs at 
different sites of the vocal tract and happens with distinctly different
delays with respect to the primary convective pulse.

Assuming an average convection speed of less than 5 m/s [1, 15] 
the delay of the seconddary excitation may exceed 20 ms. This is in 
contradiction to the mainstream assumption that the correlation of 
the excitation is restricted to the analysis windows. The continuous 
reconstruction of the glottal master oscillator for segments of 
uninterrupted phonation opens the possibility to describe the excita-
tion as superposition of a direct and a delayed phase locked response 
with correct long range correlation. The excitation is reconstructed 
as part of a two-level drive-response model, which extends the 
validity range of the classical source-filter model and which is suited 
to bring additional light to the complex airflow pattern of voiced
consonants, which are extremely difficult to analyse in vivo [14], in 
vitro [15] and in silico [15].

II.  EXTRACTION OF THE FUNDAMENTAL DRIVE

The amplitude and phase of the fundamental drive are extracted from
subband decompositions of the speech signal. The decompositions
use 4th order complex gammatone bandpass filters with roughly 
approximate audiological bandwidths F  and with a subband inde-
pendent analysis - synthesis delay as described in Hohmann [16].

The extraction of the fundamental phase t  is based on an adap-
tation of the best filter frequencies j  of the subband decomposition
to the momentary frequency of the glottal master oscillator (and its 
higher harmonics). At the lower frequency end of the subband 
decomposition the best filter frequencies j  are centred on the 
different harmonics of the analysis window specific estimate of the
fundamental frequency. In the next higher frequency range the best 
filter frequencies are centred on pairs of neighbouring harmonics.
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It is further assumed that voiced sections of speech are produced
with at least two subbands, which are not distorted by vocal tract 
resonances or additional constrictions of the airflow. In the case of 
subbands with separated harmonics, 61 j , the absence of a 
distortion is detected by nearly linear relations between the 
unwrapped phases of the respective subband states. For sufficiently 
adapted centre filter frequencies such subbands show an (n:m) phase 
locking. The corresponding phase relations can be interpreted to 
result from (n:1) and (m:1) phase relations to the fundamental drive. 
The latter ones are used to reconstruct the phase velocity of the 
fundamental drive. In the case of a subband with paired harmonics, 

, the phase relation to the fundamental drive is obtained by 

determining the Hilbert phase of the modulation amplitude of the
respecttive subband.

116 j

The phase velocity of the fundamental drive is used to improve
the centre filter frequencies. For voiced sections of speech the
iterative improvement leads to a fast converging fundamental phase 
velocity t  with a high time and frequency resolution. Based on a, 
so far, arbitrary initial phase, successive estimates of t  lead to a 
reconstruction of the fundamental phase t , which is uniquely 
defined for uninterrupted segments of voiced phonation.

The fundamental amplitude t  is assumed to be related to loudness
perception [17] by a power law. The exponent 

A
/1  is chosen such 

that the fundamental amplitude represents a linear homogenous 
function of the time averaged amplitudes tiA ,  of a synthesis suited 
set of subbands,
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The weights j  are proportional to inverse hearing thresholds. In the 
range up to 3 kHz they can be roughly approximated by the power 
law , where jh  represents the (integer) centre harmonic 
number, which approximates the ratio 1 .  The present study 
uses

g

jj hg
/ FFj

3.0  [18] and 1 [3]. The synthesis suited set of subbands 
is generated by replacing the over complete subband set 116 j
by a set Nj6 , which is spaced equidistantly on the logarithmic
frequency scale with 4 filters per octave,
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The feasibility of the extraction of the fundamental drive as well as
the validity of its interpretation as a reconstruction of a glottal master
oscillator of voiced excitation is demonstrated with the help of
simultaneous recordings of a speech signal and an electro-glotto-
gram, which have been obtained from the pitch analysis database of 
Keele University [19]. The upper panel of figure 1 shows the
analysis window for a segment of the speech signal, which was taken 
from the /w/ in the first occurrence of the word “wind” spoken by the 
first male speaker. The lower panel shows the reconstruction of the
fundamental phase (given in wrapped up form), based on the set of 
separable subbands with the harmonic numbers 2, 3 and 5.  The near 
perfectly linear phase locking of these subbands, which is used for 
the reconstruction of the drive, is demonstrated in figure 2. The
subband phases j  are given in a partially unwrapped form, depen-
ding on the respective centre harmonic number . The enlarged jh

Figure 1, upper panel: 45 ms of a speech signal, which was taken
from the /w/ in the word “wind” representing part of a publicly 
accessible pitch analysis data base [19]. The lower panel shows the 
reconstruction of the fundamental phase  in units of . The time
scale (in units of seconds) corresponds to the original one.
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Figure 2: Relation of subband phases j , )6...,,2,1( j , obtained 
from the speech signal of figure 1, to the fundamental phase . The
subbands 2, 3 and 5 are characterized by near perfectly linear phase 
relations, whereas the other subbands are found to be unsuited for 
the reconstruction of the fundamental phase. 

Figure 3: Relation between the wrapped up fundamental phase s ,
obtained from the speech signal, and the fundamental phase e ,
obtained from the electro-glottogram.

range of the subband phases is normalized by the same centre 
harmonic number.  Alternatively the fundamental phase can also be 
obtained from a subband decomposition of the electro-glottogram.
The exchangeability of the two phases is demonstrated in figure 3,
which shows the relation between the two fundamental phases for
the speech segment, which covers the “win” part of the word “wind”, 
uttered by the first female speaker. The phase shift between the two
phases did not change significantly during the 160 ms being covered.

In spite of the arbitrariness of the initial fundamental phase, the 
reconstruction of the glottal master oscillator can be used as funda-
mental drive of a two level drive – response model, which is suited 
to describe voiced speech as secondary response. The additional sub-
system describes the excitation of the vocal tract as primary response 
of the fundamental drive and the classical secondary response sub-

system describes the more or less resonant “signal forming” on the 
way through the vocal tract as action of a linear autoregressive filter. 
The subband decomposition (1) and (3) being used for the recon-
struction of the fundamental drive can also be used with advantage to 
achieve a numerically robust reconstruction of the excitation.

III.  ENTRAINMENT OF THE PRIMARY RESPONSE

Due to the slow velocity of the glottal tissue (compared to the velo-
city of sound) the excitation tj  of a voiced subband with indexE ,

Nj1  can be assumed to be restricted (enslaved or entrained) to 
a generalized synchronization manifold (surface) in the combined
state space of drive and response [20-22]. In the simplest case the 
time dependence of subband excitation tj  can thus be replaced by 
a dependence on the simultaneous state of the fundamental drive. 
More generally, the dependence of the state of the primary response 
on the state of the fundamental drive may degenerate to a multi-
valued mapping, which can, however, be expressed by a unique 
function of the unwrapped fundamental phase 

E ,

t  [11-12],

pjSk

t
kjttpjttj p

kicAGAE
,

)exp()( ,,, . (4) 

As part of the improved time scale separation the generalized syn-
chronization manifold is assumed to be the product of the slowly 
variable fundamental amplitude  and the potentially fast varying
complex coupling function 

tA
)(, tpjG , the real part of which describes

the subband excitation. In its general form, )(, tpjG  represents a 
p2  periodic function of the unwrapped fundamental phase t

with an integer period number  and can thus be well approxi-
mated by the finite Fourier series in equation (4). Voiced excitations
are characterized by values of p, which are distinctly smaller than the
number of fundamental cycles within the analysis window. The case 

1p

1p  corresponds to the normal voice type characterized by a 
unique mapping [20], whereas 2p  is suited to describe the period
doubling voice type [4]. The unwrapped fundamental phase can be
assumed to be approximately proportional to time. When p2
exceeds the length of the analysis window, equation (4) is therefore 
suited to describe a fully general excitation, including the unvoiced 
case.

The excitation parameters kj  cannot be determined indepen-
dently from the parameters, which characterize the vocal tract reso-
nances. In the standard approach the parameter estimation is per-
formed hierarchically, by making the higher level assumption that 
the excitation has a nearly white (or tilted) spectrum. To achieve a
comparable numerical robustness, the parameter estimation is done 
separately for the different frequency bands. The band limitation can 
be used to reduce the number of resonances (poles of the auto-
regressive filter), which are relevant for the respective subband. The
complex subband 

c ,

tjX ,  can thus be described by the following 
nonlinear conditional stochastic process with a two-level drive –
response model as deterministic part (skeleton) [11-12],

tjjttpjttjjtj AGAXbX ,,,, )( , (5) 

where  denotes the subband specific prediction step length, jb  the
complex subband specific resonator parameter, tj ,  a (0,1) Gaussian
complex white noise process and j  the time independent part of the 
standard deviation. As an important computational advantage the
estimation of the complex excitation and resonator parameters kjc ,

and j  can be reduced to multiple linear regression. The summation
index set pj  of equation (4) is chosen in accordance to the respect-
tive bandpass filter. The decomposition into subbands is used to 
estimate equation (5) with a subband specific integer time step 
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length .  The aggregated coupling function, which results from the 
sum of all subband specific coupling functions, can be compared to 
the excitation of the (single level) broadband source - filter model.

Vowels and nasals are characterized by the fact that the time
points of the glottal closure can be detected as a unique pulse (or as a 
unique outstanding slope). Since there is no syllable without a vowel 
kernel, such kernels can be used to resolve the arbitrariness of the 
initial fundamental phase.

In the case of voiced speech segments, which contain other sus-
tainnable voiced consonants, the continuous reconstructtuion of the
fundamental phase can be used advantageously to extend equation 
(5) by a second excitation term )(, tpjt GA  with a coupling func-
tion, which depends on a delayed fundamental phase. According to 
Teager and Teager [14] the delay  can be interpreted as result of
the comparatively slow subsonic convective transport of kinetic 
energy to the site of the phoneme specific secondary constriction of 
the vocal tract, where the conversion to acoustic energy takes place.

IV.  DETERMINISTIC APERIODICITY AMPLIFICATION
OF VOICED CONSONANTS

As a striking result, the assumption of generalized synchronization 
of the primary response does not only hold in the case of vowels but 
also in the case of many sustained voiced consonants. In the case of 
the voiced approximant /l/ the aggregated coupling function shows
several steep slopes which indicate a sensitive dependence on the 
phase of the fundamental drive (figure 4). The sensitive dependence 
can be interpreted as effect of the superposition of the response of 
the direct excitation and the one of the delayed excitation resulting 
from an intermittently turbulent airflow. The interference between
the two responses may lead to a sensitive dependence on the recent 
history of the fundamental phase. First results show that the 
deterministic aperiodicity amplification is a widespread feature of 
voiced speech. Its occurrence shows a marked dependence on the 
speaker and on the fundamental phase.

Figure 4: Aggregated fundamental phase dependent coupling func-
tion reconstructed with period  for the voiced approximant /l/ 
of the word “along” uttered by the first male speaker. The two curves 
correspond to the odd and even periods. The disagreement of the two 
curves shows a marked dependence on the fundamental phase.

2p

The continuous reconstruction of the fundamental phase for speech
segments with uninterrupted phonation opens the possibility to 
complement the analysis of the spectral properties of the speech
signal by a run time analysis. The run time differences may refer 
either to a travel time difference of the primary acoustic pulse or to a 
build up time of the turbulence at the seconddary constricttion of the
vocal tract. The coupling functions with periodicity 2p  are suited 
to describe a voice type, which cannot be classified uniquely by 
using cycle lengths differences (figure 4). It is hypothesized that the 
fundamental phase dependent coupling functions are suited to serve 
as additional cue for phoneme recognition and as fingerprint for 
speaker identification.

V.  CONCLUSION

The transmission protocol of voiced human speech is based on the 
production and analysis of complex airflow pattern in the vocal tract 
of the transmitter. The present study demonstrates that the analysis
on the receiver side can be focussed on the mode locking of the 
pulsed airflow by replacing the time dependence of the excitation of 
the classical source - filter model by a fundamental phase depen-
dence, which can be described by a low dimensional generalized 
synchronization manifold (surface or coupling function). The
evolution of speech has lead to many voiced phonemes and syllables
which can be distinguished by properties of one dimensional
coupling functions and of a closely related two-level drive - response 
model. To make the coupling functions visible with increased 
precision, a voice specific subband decomposition of the speech 
signal has been proposed, which is suited to extract a precise fun-
damental phase. The extraction relies on the fact that non-patho-
logical voiced speech leaves at least two subbands undistorted by
vocal tract resonance or secondary constriction.

The author would like to thank V. Hohmann, B. Kollmeier, J. Nix,
Oldenburg, M. Kob, C. Neuschaefer-Rube, Aachen, G. Langner, 
Darmstadt, N. Stollenwerk, Porto, P. Grassberger, M. Schiek and P. 
Tass, Jülich for helpful discussions.
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Speech analysis for identification and recognition 
purposes is a demanding task, especially to find 
recognition parameters for some consonants. In this 
paper, we show the initial analysis results of speech 
corpus, sampled with two sampling rates, 22050 and 
8000 Hz, using Higuchi fractal dimension. The study 
shows that it might be possible to use fractal dimension 
value for classification of for example plosives /k/, /p/ 
and /t/. However, the analysis seems to be very sensitive 
to the sampling frequency in speech analysis. 

 
I. INTRODUCTION 

 
Linear speech analysis and models has served 

successfully the speech processing areas for decades. 
However, there has also been an interest to research and 
evaluate nonlinear methods in order to find better way to 
model speech, especially for speech recognition 
purposes.  

Several studies have found evidences for nonlinear 
behavior in speech. Different nonlinear techniques have 
been tested with time series over several decades in order 
to improve modeling and estimation when compared to 
linear methods. For example, the logarithmic a-law/µ-
law compression in Pulse Code Modulation (PCM) 
coding has worked successfully over the years. However, 
the precise “practical” nonlinearity form for vocal tract 
model is not known and the search for good alternatives 
for the describing the human vocal tract with linear 
methods is currently going on. The Hammerstein model, 
Volterra series and Wiener filters have been tested 
experimentally as well as the chaotic time series 
modeling with very good results. However, the 
disadvantages are, when compared to the linear models, 
the more complex parameter computations and in some 
cases, the stability preservation. Also, different types of 
neural networks have been tested for several purposes in 
speech processing. Neural network is easy to design, 
train and test but there still remains a fear that the unique 
and documented experiment is unrepeatable even with 
the same data [1-17]. 

The nonlinear signal processing field is enormous, in 
that sense that the number of different functions, 
equations and/or systems that can be used for speech 
modeling and analysis is practically infinite.  

The chaotic models have worked successfully for 
vowels and nasals [4, 5] and Teager energy operator [18  

,19] has been used to indicate several features of speech, 
for example speech resonances and modulations. 

In this paper we study the effect of Higuchi Fractal 
dimension for different phonemes. 
 

II. METHODS AND DATA 
 

Higuchi fractal dimension [20] is a method developed 
for estimating the amount of self-similarity of the data. 
Higuchi [20] used his method for magnetic field data and 
in [21, 23-25] Higuchi’s method was used for 
electroencephalography data.  

Method described in [20], defines the discrete time 
series: 

X[1], X[2], … ,X[n] 
 

to be constructed to a new time series: 
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where m is the initial time and k is the interval time, N is 
the total number of samples. For example if k=3 and 
N=100, three time series are obtained as follows: 
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The length of the curve, defined in [20] is: 
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Lm(k) represents normalized sum of “segment length”. 
Each “segment length” represents the absolute value of 
difference between magnitude values of pair of points 
distant k samples, starting from mth . sample. The length 
of the curve L(k) is mean of k values Lm(k), for 
m=1,2,…k. The fractal dimension D is the least square 
estimate of the slope of the curve evaluated on 1..kmax 
values on L(k). If the curve is plotted on doubly 
logarithmic scales, for 1..kmax in ln(1/k) and L(k) in 

SPEECH ANALYSIS USING HIGUCHI FRACTAL DIMENSION 
 

Jari Turunen, Tarmo Lipping & Juha T. Tanttu 

Tampere University of Technology, Pori 
P.O.Box 300, Pohjoisranta 11, FIN-28101 Pori 

{jari.turunen, tarmo.lipping, juha.tanttu}@pori.tut.fi 

Models and analysis of vocal emissions for biomedical applications. 4th international workshop. October 29-31, 2005 – Firenze, Italy. 
Edited by C. Manfredi.   ISBN 88-8453-320-1 (online)   © 2005 Firenze University Press



ln(L(k)), the data should fall on a straight line with a 
slope (-D). It should be noted that Higuchi fractal 
dimension is not related with chaotic attractor dimension. 

For example, the Higuchi value of white noise, with 
maximum amplitudes [-1,1] with kmax =10, is 1, and 
straight line with slope is zero. 

The algorithm and evaluation was performed using 
Matlab environment. In our preliminary experiments, 
several kmax  values were tested. If the kmax values was 
increased beyond 25 the Higuchi fractal dimension values 
tend to get closer to one as the kmax increases. Similarily, 
if the kmax value was decreased below 8, the Higuchi 
values tend to progress towards zero. The kmax value 10 
gave best results in our experiments.  

Table 1. Phonemes and their corresponding example words. 

phon. word phon. word phon word 
/p/  pin /tS/ chin /i/  see 
/b/  bay /dZ/ jam /a/  father 
/t/  toy /m/  me /O/  sort 
/d/  die /n/  not /Î/  bird 
/k/  key /N/  sing /u/  too 
/g/  get /l/  light /ei/ day 
/f/  five /r/  ring /ai/ fly 
/v/  van /w/  win /Oi/ boy 
/T/  thick /j/  yes /ou/ go 
/D/  then /I/  sit /au/ cow 
/s/  see /e/  get /i«/ ear 
/z/  zinc /Q/  cat /u«/ tour 
/S/  ship /Ã/  hut /e«/ air 
/Z/  measure /A/  hot /q/  [silence] 
/h/  he /U/  put /«/  banana 

Table 2. Number of different phonemes in each phoneme 
category. 

phon. # phon. # phon # 
/p/  83 /tS/ 89 /i/  154 
/b/  61 /dZ/ 52 /a/  96 
/t/  191 /m/  72 /O/  162 
/d/  66 /n/  236 /Î/  92 
/k/  140 /N/  48 /u/  145 
/g/  60 /l/  61 /ei/ 156 
/f/  211 /r/  152 /ai/ 216 
/v/  107 /w/  106 /Oi/ 96 
/T/  138 /j/  48 /ou/ 151 
/D/  61 /I/  153 /au/ 95 
/s/  205 /e/  173 /i«/ 44 
/z/  115 /Q/  72 /u«/ 37 
/S/  80 /Ã/  130 /e«/ 68 
/Z/  38 /A/  72 /q/  3 
/h/  48 /U/  48 /«/  30 

The OTAGO speech corpus [22] was used in the 
tests. The phonemes were manually checked and 
identified. The data, which was used in experiments, is 
presented in Table 1 and Table 2. The sampling 
frequency was 22050 Hz and total number of samples 
was 4661. 

The phoneme lengths varied from minimum of 143 
samples in /b/ to 10949 samples in /a/ sampled with 
22050 Hz frequency. The /q/ is a silence “phoneme” 
recorded by the microphone (background noise). We 
preformed two tests with Higuchi analysis: the first one 
with 22050 sampling frequency and the second one with 
8000 Hz sampling frequency. The lower sampling 
frequency was obtained by resampling the data from the 
original data by using Matlab “resample” command. 

 
III. RESULTS 

 
The results are shown in Figures 1-6. The Figures 1-3 

show the fractal dimension values for phonemes sampled 
at 22050 Hz and Figures 4-6 show the fractal dimension 
values for 8000 Hz data. 

In the figures, the boxes show the lower quartile, 
median and the upper quartile of all sampled phoneme 
values. The lines show the deviation for the rest of 
phoneme data and outliers are presented with ‘+’ sign. 
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Figure 1. The fractal dimension values for phonemes /p/ to /h/ 
sampled at 22050 Hz frequency 
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Figure 2. The fractal dimension values for phonemes /tS/ to 
/U/ sampled at 22050 Hz frequency 
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Figure 3. The fractal dimension values for phonemes /i/ to 
/«/ sampled at 22050 Hz frequency 
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Figure 4. The fractal dimension values for phonemes /p/ to 
/h/ sampled at 8000 Hz frequency 
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Figure 5. The fractal dimension values for phonemes /tS/ to 
/U/ sampled at 8000 Hz frequency 

/i/ /a/ /O/ /Î/ /u/ /ei/ /ai/ /Oi/ /ou/ /au/ /i«/ /u«/ /e«/ /q/ /«/
0

0.2

0.4

0.6

0.8

1

1.2

V
al

ue
s

Phoneme  

Figure 6. The fractal dimension values for phonemes /i/ to 
/«/ sampled at 8000 Hz frequency 

 
IV. DISCUSSION 

 
When looking the Figures 1-3 with Fs=22050 Hz, the 
Higuchi Fractal dimension reveals interesting things from 
the phonemes. For example plosives /p/, /t/ and /k/ has 
been very difficult to separate from each other by using 
other methods, but is seems that they are possible to 
separate by using Higuchi fractal dimension. The quartile 
bars and the whole data deviation in plosive /k/ does not 
separate from /t/ as well as the /p/, although the median is 
different by visual inspection. In addition, the grouping of 
the fricatives can be seen from the figures 1-2. The 
fricatives /s/, /z/, /f/, /Ts/, /Tz/ and /q/ (that means 
background noise) medians are concentrated near one 
(from 0.8 to 1.2). This may also be interpreted that the 
Higuchi fractal dimension is very sensitive to background 
noise. 

The nasals /n/ and /m/, semivowels /v/ and /w/ and all 
vowels have median values below 0.5. The Higuchi 
values of vowels, interestingly, seem to correlate with the 
vowel production mechanism somehow, in the sense of 
tongue position in the mouth. For example, lower 
fundamental frequency vowel /U/ has smaller Higuchi 
value when compared to higher fundamental frequency 
vowel /i/. 

All seems to separate nicely with 22050 Hz 
recordings but unfortunately speech is usually sampled 
and transferred with much lower, 8000 Hz sampling 
frequency. The interesting phenomena do not appear in 
same depth anymore in lower sampling frequency. When 
looking the figures 4-6 the phonemes do not show similar 
behavior as they did in figures 1-3. The plosives /t/ and 
/p/ do separate in figure 4, but the quartile bars are much 
closer (and slightly overlapping) to each other than in 
figure 1. The values of phoneme /k/ are higher than in 
previous analysis. The fricatives /s/, /z/, /f/, /Ts/, /Tz/ and 
/q/ show overall dropping in median values especially in 

Voice modelling and analysis 173



the case of /z/. Also phonemes seem to have overall 
increase in the median values. The Higuchi values for 
vowels have higher values than in 22050 Hz sampling 
frequency, but in the case of vowel /i/, the fractal 
dimension values are dropped. 
When thinking the Higuchi fractal dimension value 
computation, the differences between two sampling 
frequency results seems to follow the filtering properties. 
The Higuchi fractal dimension measures the amount of 
self-similarity by searching the difference between 
adjacent samples. The downsampling will smooth the 
fine structure of the signal. 
The selection of kmax. parameter is also very important for 
the analysis. In our case the both sampling frequencies 
22050 and 8000 Hz the kmax=10 seems to be good for 
speech analysis purposes. Several kmax values were tested, 
well beyond 50, because in vowels the fundamental cycle 
repetition is approximately 50-140 samples in 8000 Hz 
sampling frequency. kmax values beyond 50 provided 
fractal dimension values that are all approaching one 
rather than providing better separation between 
consonants and vowels. With lower sampling frequencies 
some critical information may be lost, which may be 
useful for recognition purposes with this method. 
Higuchi fractal dimension is useful tool, and the 
algorithm is very simple and easy to compute providing 
single number for example analysis and recognition 
purposes. 
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Vocal tremor is encountered in different neurological
diseases and could be used for their characterisa-
tion. In this paper, vocal tremor features have been
extracted for speakers with Parkinson’s disease and
control speakers. It is shown that Parkinson’s disease
has significant effects on vocal tremor features. For
speakers with Parkinson’s disease, the average vocal
frequency is higher and the vocal tremor frequency is
higher. This can be explained by higher vocal tremor
components in the frequency band8 − 12Hz.

I. I NTRODUCTION

The objective of this paper is to report data about the
vocal tremor features of parkinsonian and control speakers,
as well as an improvement to the vocal tremor analysis
presented in [1].

Vocal tremor is a narrow-band low-frequency pertur-
bation of the vocal frequency. It is characterised by its
average amplitude and average frequency. The amplitude
of the perturbation is about a few percent of the average
vocal frequency. The tremor frequency range is subject to
discussion. A definition including most of the frequency
ranges is given by Titze who defines the vocal tremor as
the 1-15Hz modulation of the vocal frequency [2]. The
origins of vocal tremor are reported to be neurologic or due
to an interaction between neurological and biomechanical
properties of the vocal folds [2]. Influence of blood flow,
heartbeat and breath are also reported [3]. The lower
frequency limit should be chosen in accordance with the
effects that should be taken in account.

In this paper, the estimation of vocal tremor features
has been obtained by means of an improvement of the
analysis developed in [1]. The vocal frequency trace is first
calculated. The vocal frequency estimates are obtained for
each time sample by means of the instantaneous frequency
calculated in an automatically selected frequency-band ofa
wavelet transform of the speech signal. Using this method,
no windowing of the signal is necessary and instantaneous

∗The first author is a fellow with the FRIA (Belgium).
†The second author is a Senior Research Associate with the Fonds

National de la Recherche Scientifique (Belgium).

F0 variations can be tracked. A second wavelet transform
has been introduced, in order to improve the precision
and robustness of the method. This is necessary to track
correctly fastF0 variations and to handle speech signals
from a clinical environment, where older and dysphonic
speakers are encountered. Instantaneous values of the vocal
tremor features are then obtained by means of a wavelet
transform of the vocal frequency trace.

In this paper, the vocal tremor features have been ex-
tracted for parkinsonian and control speakers and statistical
results about the differences between both groups are
presented.

II. V OCAL FREQUENCY ESTIMATION

The instantaneous frequencyIF (t) of a band-pass signal
s(t) is usually defined by means of its Hilbert transform
H[s(t)] and its associated analytical signalsa(t)[4].

sa(t) = s(t) + jH[s(t)] (1)

Φ(t) = arg[sa(t)] (2)

IF (t) =
dΦ(t)

dt
(3)

The IF can also be defined by means of a continuous
wavelet transformCWT (λ, t) using an analytical wavelet
ψa(t) [5]. The continuous wavelet transform of a signal
x(t) is defined as

CWT (λ, t) =

∫ +∞

−∞

x (u)
1
√

λ
ψ∗

(

u − t

λ

)

du, (4)

whereψ(t) is an analytical mother wavelet andCWT (λ, t)
is the wavelet transform coefficient for a scale factor
λ, at time t. The amplitude and phase of the complex
CWT coefficients thus obtained are the envelope and
instantaneous phase of the spectral components of the
signal in the frequency-band centred on the central fre-
quencyfc of the wavelet [6]. The time-derivative of the
phase of the complex CWT coefficients is therefore an
estimate of the instantaneous frequency (IF) of the signal
in that frequency-band. The evolution of the IF in different
frequency-bands of the signal can thus be studied by means
of the CWT coefficients.
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Here, the complex Morlet wavelet is used (Fig. 1) [7]:
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The scaleλ of the wavelet is determined by the central

real part
imaginary part

Fig. 1. Complex Morlet wavelet forωcσt = 5.

frequencyfc = ωc

2π
, which is the frequency of oscillation of

the wavelet. The parameterσt fixes its decay. The product
ωcσt must be constant for a wavelet family.C normalizes
the energy. The effective duration of the wavelet can be
defined as2σt.

A F0 estimate can be given by the IF based on the
phase of the CWT coefficients whose amplitudes are at a
maximum in the interval from 50 Hz to 500 Hz [1].

To minimize the smoothing of the IF on the wavelet
effective duration, this effective duration2σt should be as
small as possible for each wavelet central frequencyfc

and the wavelet parameterωcσt should therefore also be
small. On the other hand, whenωcσt decreases, the spectral
bandwidth of the wavelets increases and it becomes more
difficult to localize the CWT amplitude peak around the
vocal frequency.

To obtain a high sensitivity to theF0 variations and have
a robust method, two wavelet transforms are thus com-
bined. At first, a wavelet transform with a fine frequency
resolution is computed to identify the maximum in the
CWT and secondly a wavelet with a fine time resolution
is used to estimate the IF.

The procedure is as follows:
1) A first wavelet transform is computed, with a high

ωcσt parameter, for the reliability, where the wavelet
central frequencyf̂c corresponding to the maximal
amplitude of the CWT is obtained. The wavelet
parameterωcσt is chosen equal to5.

2) A second wavelet transform is computed, with a low
ωcσt parameter, for the sensitivity to high frequency
perturbation, where theF0 value is estimated by the
IF corresponding to the wavelet central frequency
f̂c obtained at the first step. The wavelet parameter
ωcσt is chosen equal to2.5. This second wavelet
transform must be computed only for the wavelet
central frequencies associated with the maximum in
the first step.

3) Finally, a filtering is necessary to eliminate the
residual oscillations, which appear at a frequency
equal to the vocal frequency.

III. T REMOR FEATURE ESTIMATION

To analyse theF0 features, another CWT is performed
on the F0 trace extracted in the first stage in order to
determine the tremor frequency and tremor amplitude.

A. Tremor amplitude

In the literature, the tremor amplitude is defined as
the maximal or the standard deviation of the F0 trace,
normalized by the averageF0 [8]. A definition of the
tremor amplitude is used, based on the wavelet transform
coefficients [1]:

TA(t) =

√

∑

fc>fmin
CWT 2(2πfc, t)

F̄0

(6)

whereF̄0 is the averageF0.

B. Tremor frequency

The perturbation of the vocal frequency usually presents
more than one frequency component. To take all the
frequency components into account, the tremor frequency
is obtained by the weighted sum of all instantaneous
frequencies higher thanfmin, for which the amplitude of
the CWT energy is higher than a threshold. The weight is
given by the corresponding wavelet transform energy. An
instantaneous tremor frequency can thus be obtained [1]:

TF (t) =

∑

fc>fmin
[CWT 2(2πfc, t)IF (2πfc, t)]

∑

fc>fmin
[CWT 2(2πfc, t)]

(7)

whereIF (2πfc, t) is the instantaneous tremor frequency
based on the phase of the CWT coefficients in thefc band.

C. Tremor energy distribution

Differences have been observed in the spectral energy
distributions of theF0 traces for control and parkinsonian
speakers. To emphasize this difference, a ratioR of the
spectral energy of theF0 trace in the frequency-bands
(fmin − fmid) and (fmid − fmax) has been calculated.

R =
∑

t

∑fmid

fc=fmin
CWT 2(2πfc, t)

∑fmax

fc=fmid
CWT 2(2πfc, t)

(8)

IV. EXPERIMENTAL RESULTS

The proposed analysis has been carried out on a corpus
of 28 parkinsonian and 28 control speakers (all male).
The parkinsonian speakers have reported speech problems
and are under treatment. The control speakers are healthy
normophonic speakers in the same age-range. The speech
signals are sustained vowel [a], sampled at 25kHz.

Fig. 2 and Fig. 3 show the vocal frequency, theCWT 2

coefficient, the tremor frequency and the tremor amplitude
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Fig. 5. Distributions of the average vocal frequency and of
the average vocal tremor features, for a 5-sec-long speech
segment (C: control, P: parkinsonian).

TABLE I. Effects of the health state on average vocal
frequency, average vocal tremor amplitude, average vocal
tremor frequency and average vocal tremor energy ratio
(3Hz − 7Hz/7Hz − 15Hz).

F p
Av. vocal frequency 11.874 .001
Av. VT amplitude .718 .401
Av. VT frequency 16.277 .000
Av. VT energy ratio 9.575 .003

Fig. 4, where the spectrum of the control speaker decreases
above5Hz and where an energy peak is present around
10Hz for the parkinsonian speaker.

This is also confirmed by the statistical analyses: the
multivariate analysis of variance of the vocal tremor fea-
tures shows that there is a significant difference between
the features of parkinsonian and control speakers. The
univariate analyses of variance show that there are sig-
nificant differences for the average vocal frequency, the
average vocal tremor frequency and the average vocal
tremor energy ratio (3Hz − 7Hz/7Hz − 15Hz), taken on
their own. The vocal tremor amplitude is not significantly
different for parkinsonian and control speakers.

For parkinsonian speakers, the average vocal tremor
frequency is significantly higher and the average vocal
tremor energy ratio is significantly lower. These features
are highly correlated,PearsonCorrelation : −.653, p <

.001. Both show that higher frequency components are
present in the spectrum of the vocal frequency for parkin-
sonian speakers than for control speakers.

VI. CONCLUSION

In this paper, we have improved an analysis method of
vocal tremor and applied it to the extraction of the vocal
tremor features for parkinsonian and control speakers. Sta-
tistical test have show a significant difference between both
groups: parkinsonian speakers present a higher average
vocal frequency and higher tremor frequency. Observation
of the tremor energy spectrum has emphasized the presence
of spectral peaks around8− 12Hz, that could explain the
higher tremor frequency. The average tremor amplitude
is not significantly different between parkinsonian and
control speakers.
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Abstract: When reviewing his clinical experience in

treating suicidal patients, one of the authors

observed that successful predictions of suicidality

were often based on the patient’s voice

independent of content. Using the Gaussian

mixture model to represent the mel-cepstral

features of voiced speech, speech of suicidal

persons can be distinguish from that of depressed

and control persons. The question then becomes

can warping of the frequency axis improve the

classification. The results show that warping of the

frequency axis using the third format or Gaussian

mixture model technique produces the best

classification results.

Keywords: Speech, suicide, mel-cepstrum, frequency

warping, classification

I. INTRODUCTION

Identification of individuals at imminent suicidal

risk requires gathering and weighing a variety of

information and data from numerous sources by

experienced clinicians [1]. Our own studies are

showing that near-term suicidality is associated with

changes in speech production and articulation that

differ from non-suicidal persons [2],[3]. One of the

challenges that immediately arose is what speaker

normalization method best improves speaker

categorization? While studies on normalization

mostly concentrate on reducing error rates in word or

speaker recognition systems, none have been

conducted on emotionally disturbed patients. Vocal

tract length normalization (VTLN) is an acoustic

normalization aiming at decreasing speech variability

due to differing vocal tract lengths among speakers.

VTLN performs a transformation in the frequency

domain known as frequency warping in order for the

formants of all the speakers to be located at the same

frequency in the spectrum [4]. There are two main

methods; formant-based normalization, and

maximum-likelihood-based normalization. The

former determines the warping factor directly based

on the location of the formant frequencies. The latter,

generates a model and designates the warping factor

that maximizes the likelihood of the test data given

the statistical model. Eide et al. [5] and Zhan et al. [6]

also proposed that a nonlinear warping may be more

effective than linear warping.

The model of VTLN is crucial for the

implementation of the normalization method

correctly. For the formant-based normalization, the

models will be based on the median of the formants of

the training speakers, while for the maximum-

likelihood based normalization; Gaussian Mixture

Models (GMM) will model the form of the standard

speaker. Gender dependant and gender independent

models of VTLN  and the effects of linear and

nonlinear warping are also investigated.

II. DATABASE FORMULATION

Analyses were performed on sets of audio

recordings for 15 males and 15 females. Each set

contained 5 near-term suicidal patients, 5 depressed

patients, and 5 non-depressed control subjects

collected from existing databases. All the patients

used in this research were white Caucasians between

the ages of 25 and 65.  Because of the inability to

record psychiatric speech in controlled settings, all of

the speech samples were recorded during real-life

situations. A high-risk, near-term suicidal patient was

defined as one who has committed suicide or

attempted suicide and failed within minutes to weeks

from the time of their voice recordings. The audio

recordings of the depressed and control groups were

extracted from the database of an ongoing study in the

Vanderbilt University Department of Psychiatry. The

selected non-depressed control subjects met the

following criteria: 1) a Hamilton rating scale (17 item

version) for a depression score of 7 or less [7]; 2) a

Beck depression score of 7 or less [8]. The depressed

patients met the following criteria: 1) major

depressive disorder as defined by the research

diagnostic criteria [9]; 2) a Beck depression score of

20 or greater; 3) a Hamilton rating scale for

depression score 14 or greater.

All of the selected audio recordings were

digitized using a sixteen-bit analog to digital

converter. The sampling rate was 10 KHz, with an

anti-aliasing filter (i.e., 5KHz low-pass) precisely

matched to the sampling rate. The digitized speech

waveforms were then imported into a MicroSound

Editor where silence pauses exceeding 0.5 seconds

were removed to obtain a record of continuous
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speech. Thirty seconds of continuous speech from

each subject were stored for analyses.

III. METHODS

A. General Procedures

For all audio recordings, the formants were

estimated by taking the roots of the autocorrelation

LPC function of each voiced sample segment of the

waveform. Subsequently, the speech was divided into

overlapping segments of 30 ms per segment sample.

The sample segments went through a voiced/unvoiced

classification process and the unvoiced segments were

discarded.

Three different normalization procedures were

compared: normalization based on median of the third

formant; normalization based on the first three

formants; and normalization based on the Gaussian

Mixture model (GMM). The features used for

classification were the cepstral coefficients. A GMM

was used to model the features and each was trained

using the hold-out procedure [10]. The Maximum

Likelihood (ML) classifier was used to classify each

pattern in pair-wise comparisons and assess the

effectiveness of the normalizations.

B.  Mel-Cepstral Feature Extraction

The mel-cepstral features were extracted using

the following procedure:

1. Each signal is divided into segments of 30

ms of voiced speech,

2. The logarithm of the discrete Fourier

transform (DFT) of each segment is

computed,

3. Each log-spectrum is filtered with 16

triangular filters whose center frequencies

are based on the mel-scale,

4. The frequency scale is normalized to account

for variations in vocal tract length,

5. The inverse DFT is calculated to obtain the

cepstral coefficients,

6. The first four coefficients are retained as

features [10].

C. Normalization based on median of F3

In order for a segment to be included in the

warping factor estimation, the following criteria had

to be met:

1. The probability that the segment is voiced is

(pv > 0.8),

2. F1 > 400 Hz

3. 2000 Hz < F3 < 3000 Hz

For the sequence of Ti segments that meet these

requirements for a speaker i, the median of the third

formant is calculated and stored. This process was

repeated for all 30 speakers. The normalization factor

i, for a given speaker i, would be the median of

his/her third formant over the median of the third

formant of the remaining speakers. This is represented

by the following equation:

  

i
=

median F
3 i

{ }
t=1

Ti

median F
3 i

{ }
t=1

T
i

i=1

30

               (1)

where the numerator is a representation of the speaker

i’s vocal tract length and the denominator is a

representation of the baseline vocal tract length.

D. Normalization based on median of F1, F2, F3

The median of the first three formant frequencies

for each speaker was recorded. The warping function

_i, for a given speaker i, was subsequently computed

by calculating the slope of a plot with the median of

the formant frequencies F1, F2 and F3 of speaker i, on

the abscissa, over the average of the median of each

formant of all remaining speakers in the training set

on the ordinate.  These formants are represented by

the following equations:

for new speaker i;

  

[F
n
]
i
= median F

n{ }
t=1

T
i              (2)

for the standard speaker:

  

F
n
= median [F

n
]
i{ }

i=1

30
            (3)

For n = 1, 2 ,3, where Ti is the number of sample

segments for speaker i, and Fn are the formant

frequencies. The best-fit line is set to intercept at zero,

and the calculated slope represents the warping factor

for that given speaker. This process is repeated for all

30 recordings in the database.

E. Normalization based on one GMM model for all

warping factors

The acoustic vectors used to train and test the

model are the Mel-cepstral coefficients of speech as

described in A1.  The procedure used to determine the

best warping factor is a multi-step procedure

developed by Welling et al. [11].

1. For each class, one Gaussian probability

density function is trained on all

unnormalized features for that class.

2. Using the class conditional density functions

determined in step 1, the warping factor that

maximizes the maximum likelihood function

for each subject is chosen as the first

estimate of the subject's i. Warping factors

ranging from 0.80 to 1.12 with an increment

of 0.02 were used [12].
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3. Using the warping factors in step 2 a four

component GMM was developed for each

class. Using the GMM, step 2 was repeated

to determine the best warping factor for each

subject.

F. Gender Dependant and Independent Normalization

Two sets of warping factors were calculated for

each subject. One set was gender-dependant and

constructed from two subsets of 15 females and 15

male speakers considered separately. The gender-

independent set was determined by combining the

male and female data into one data base.

G. Nonlinear Warping

For nonlinear warping the warping equation is

                   
  f ' = f 3 f 8000

            (4)

IV. RESULTS AND DISCUSSION

Table 1 presents the sample statistics of the

warping factors derived from the three techniques.

Female speakers are shown to have lower warping

factors when compared to the male speakers in the

gender-independent computations.

Table 1. Average, Ave, and standard deviation, Std, of

warping factors for male, m, and female, f, subjects for the

three methods and gender independence and dependence.

Independent Dependant

GMM F3
1-3

F2,
GMM F3

1-3

F2,

Ave-f 1.04 1.00 0.99 1.06 1.01 1.00

Std-f 0.02 0.04 0.06 0.02 0.05 0.07

Ave-m 1.05 1.02 1.02 1.04 1.00 1.00

Std-m 0.02 0.04 0.05 0.02 0.05 0.05

These results are somewhat inconsistent with that of

the researches who proposed this technique [13].

Females, due to their shorter vocal tracts are expected

to present higher warping factors (greater than 1.00).

This is slightly true for the gender dependent factors.

However, there is no clear distinction between the

warping factors of males and females in both gender

dependant and gender independent computation of the

warping factor. Both genders exhibit warping factors

around the 1.00 value.

Table 2 tabulates the classification performance

results using the baseline system with no VTLN, the

various speaker normalization techniques grouped

under gender dependant and gender independent

models, and implementation of these techniques

through linear or nonlinear warping functions,

whenever possible. The first row reports the

classification rate observed when testing with

unwarped feature vectors.

Table 2: Results of Classification rates. Highest in each main category is highlighted

% Correct Classification

Warping Factor

Derivation

Warping Function Control-Depressed Control-Suicidal Depressed-Suicidal

Baseline (No VTLN) 85 80 75

GENDER INDEPENDENT

Linear 80 85 80
1. GMM

Non-linear 85 85 85

Linear 85 80 80
2. F3 Non-linear 80 85 85

3. Slope F1, F2, F3 Linear 85 75 85

Average F3+ F4 [24] Linear 75 80 80

Gender Dependant

Linear 80 85 75
1. GMM

Non-linear 80 80 80

Linear 80 85 80
2. F3

Non-linear 80 85 85

3. Slope F1, F2, F3 Linear 90 80 85



Implementation of the various normalization

techniques yielded encouraging results. The ML

classifier yielded a classification as high as 90%

between control and depressed patients and 85%

between depressed and suicidal subjects.

Surprisingly, for our baseline investigation, the results

obtained were relatively higher than some obtained

with normalization. In a comparison between gender

independent and gender dependant normalizations,

gender independent normalizations showed superior

classification performance. Except for the formant-

based technique via the use of the first three formant

frequencies, all classification rates using gender

independent models are consistently high (up to 85%)

for all three diagnostic classes. The Maximum-

likelihood technique with nonlinear warping seems to

be the best, yielding 85% in all cases. Although

warping with the third format is slightly less effective

but its simplicity makes the arguement for its use on a

large scale. In a comparison between linear and

nonlinear frequency warping, nonlinear frequency

warping showed an overall superior classification

performance for all diagnostic classes.
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Infant cry – Singing voice
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INTRODUCTION

Melody, the time function of the fundamental frequency is a

key quantity for characterizing infants’ utterances during the

first months of life. However, additional quantities, describing

the voluntary control of the vocal tract become increasingly

important during pre-speech development. From a

physiological point of view laryngeal phonation and vocal tract

based articulation are anatomically different and independently

controlled systems. For speech acquisition these two systems

have to interact systematically. For instance, melody

movements increasingly influence resonance frequencies of the

vocal tract and vice versa.

A prominent phenomenon of a melody - resonance frequency

interaction is the increasing occurrence of periods of close

parallel synchronous movements of melodies and lower

resonance frequencies. We call such movements ‘tuning

periods’ when a resonance frequency moves inside a close

neighborhood, a ‘vicinity tube’, of one of the lower harmonics

and when this situation lasts for at least 20 ms. Vicinity is

given by our analysis bandwidth. Tuning develops either by

movements of resonance frequencies to track the melody, or

conversely, by movements of the melody to approach certain

resonances, or by both processes taking place simultaneously.

Here, the term ‘tuning’ is used in a purely descriptive sense,

without considering the mechanisms that are producing this

phenomenon as well as without considering what is cause or

effect. It is not yet clear, how much mechanical couplings

inside the vocal system contribute, and how much intentional

neuro-physiological control contribute to the production of

longer tuning periods.

Another prominent feature of melody-resonance interaction is

resonance frequency transition. Here, transition is defined as

coherent and smooth movements of a resonance frequency

from the vicinity of one harmonic to the vicinity of another

harmonic. The duration of a transition depends on several

factors, e.g., neuro-physiological maturity and integrity of the

underlying control systems, achieved training level, type of

utterance or syllable-structure.

Such well-formed and smooth transitions and the above-

mentioned coherent tuning periods represent probably the

predispositions for fast couplings (and de-couplings) of

phonation and articulation and for acquiring the necessary

flexibility for producing fast sequences of phonological

structures in later fluent speech. At about babbling age,

phonation and articulation are acting completely in concert.

The production of babble - syllables is characterized by fast

formant transitions which lay already within the time range of

fluent speech (e.g. Oller 2000).

METHODS

Data Acquisition. Spontaneous cry utterances were recorded

from the 8
th

 week until the 25
th

 week of life in home

environment by trained persons using SONY-DAT-recorders

(TCD-D100, 48 KHz/16 bit, mono) and SONY-microphones

(ECM-MS957).

Data Analysis. We selected for analysis a set of 800 voiced

utterances with a high signal-to-noise ratio out of our cry

database. Beside broad- and narrow-band spectrograms high

resolution melody computations were made using a CSL-

Speech Lab 4400/ MDVP (KAY Elemetrics) in combination

with a post-processing and interactive removal of outliers and

macro-pitch errors. Our basic resolution in time was down to

one pitch period and the frequency resolution was about 3 Hz

at 500 Hz. An additional low-pass (Gaussian~40 Hz) filtering

of the melody was applied to reduce the short-time variability

of the melody. Resonance frequency estimation was performed

by means of the LPC analysis tool of the CSL (adaptive

coefficient estimation, frame length 10-20 ms, frame step 5

ms). If necessary, an interactive frame by frame check was

done with different frame lengths and polynomial degrees in

order to exclude critical cases with overlapping resonances.

Our standard analysis bandwidth (10 ms frame ÷ 100 Hz) in

resonance frequency estimation corresponds to a theoretical

relative error band of ±20% at 500 Hz or ±0.2 / # for the

resonance in the vicinity of the #-
th

 harmonic. However, in

analyzing pre-speech data with mean fundamental frequencies

not higher than 350 Hz and in case of a smooth sequence of

consecutive resonance points (from LPC-frames) we got a

much lower uncertainty than formally given by the frame-

window related analysis bandwidth. For statistical evaluations

of the transition times and tuning durations the analysis was

confined to signals with fundamental frequencies under 450 Hz

in order to avoid uncertainties of the LPC coding algorithms

for higher F0.  Recordings with overlapping broad resonances

were checked using the bandwidth graphics provided by the

CSL-speech Lab and resonances which could not be separated

were excluded from further analysis Here, the focus was set to

the two lowest resonance tracks in the frequency range up to

4000 Hz (R1, R2).

For a quantitative characterization of melody-resonance

interactions we measured and evaluated two quantities, tuning

times and transition times. Tuning time was defined as the

duration of a parallel synchronous movement of a resonance

within the vicinity tube of a harmonic that lasts longer than 20

ms. Transition time between two tuning phases was defined as

the residence time of a resonance in the intermediate space

between the two vicinity tubes.

DIAGRAMS

The displayed time-frequency diagrams contain  the melody

and its harmonics on a linear frequency scale. The diagrams are

designed in order to visualize the interaction of resonance

tracks with the harmonics of the melody. The maximum

intensity of a resonance frequency is drawn as a  point in the

diagram. Consecutive points yield frame by frame the

resonance track synchronous to the melody.

In the diagrams  a resonance frequency point with a distance 

100 Hz from the nearest harmonic at a given time point is

marked red. The (red-coloring) vicinity tube around each

harmonic coincides precisely with our analysis bandwidth.

Only periods of more than four successive red points (>20 ms)

are considered as tuning periods. Resonance points in the

intermediate space deviating more than 100 Hz from both
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adjacent harmonics     were marked by blue points. So,

transitions consist of a relatively smooth sequence of blue

points  meeting at both ends the tuning periods at two different

harmonics.

Note that in the black and white printed version red and blue

points appear grey and black in the diagrams.

SUBJECTS

Subjects were eight infants, six healthy infants and two infants

suffering from a cleft-lip-palate (CLP-infants). All infants were

term-born German infants.

The six healthy infants were participants of the German

Language Development Study (www.glad-study.de),

established at the Children’s Hospital Lindenhof / Charité,

Berlin. These infants were without neurological or

developmental disorders. Within the GLaD-study, regular

medical and developmental check-ups were carried out. The

status of language acquisition at 24 months was assessed by

standardized tests for German children. Children below the

critical values in both tests at two years, were regarded as SLI-

at-risk infants (N=2) in the present investigation. Children

above the critical values in both tests form the normal language

development group (N=4). Specific language impairment (SLI)

is defined as an impairment of oral language despite of having

normal intelligence, and adequate learning environment, and

despite of having physical or emotional or hearing problems

(Bishop & Edmundson 1987). Hence, four of the six healthy

infants had a normal language outcome, whereas two of them

were retarded at two years (SLI-at-risk infants).

The two CLP-infants, suffering from a unilateral cleft-lip-

palate were treated at the Department of Orthodontics of the

University Würzburg. CLP-infants exhibit different resonance

conditions mainly caused by an open oro-nasal space and a

velum dysfunction. The CLP-infants had no other

malformations and no neurological disorders.

RESULTS

The interactive tracking method of resonance frequencies and

the analysis of their interaction with the melody using a special

visualization concept allowed an assessment of the stepwise

development of articulatory activity in very young infants. Two

characteristic patterns of interaction of melody and resonance

could be detected and investigated, namely tuning and

transition phenomena.

Developmental changes exhibiting an increasing perfection of

tuning between melody and the two lowest resonance

frequencies were found. Moreover, increasingly faster

resonance transitions were observed.

Averaging over the observation period, the mean duration of

transitions between tuning phases for the four healthy infants

with normal language development was 61.5 ms (range 20 –

148 ms). Compared to these infants, the two infants exhibiting

an at-risk state for SLI at 24 months showed significantly

longer mean transition times (mean 75 ms; range 35 – 470 ms).

Distributions of observed transition times and developmental

changes will be shown  at the conference. In contrast to SLI-at-

risk infants, the two CLP-infants produced resonance

frequency transitions as fast as the normal infants, but only

when carrying a special palatal plate, which separates the oral

space from nasal space.

From our observation period, representative examples are

presented for typical interaction patterns between melodies

having low resonance frequencies.

As a representative example of early melody-resonance-

interaction, in Figure 1 a mitigated cry of a healthy infant

about 9 weeks old is displayed. The cry has a relatively simple

melody in form of a single rising-falling arc and shows

already longer periods of tuning with stable and coherent

tracks of R1 and R2 following the melody. This seems to be a

first trace of intentional ‘playing’ with the resonances. At this

early age, a coupling between melody and resonances

occurred regularly in healthy infants. But, the resonances R1

and R2 often still show a swing in behavior at the beginning

of an utterance. This is interpreted as a sign for a yet immature

control capacity for phonatory - articulatory couplings.

The example in Figure 1 demonstrates also a behavior

observed in many other utterances, a tendency to correct

larger deviations from a preceding tuning not in the direction

to the instantaneously nearest harmonic, but to force a

restoration toward the former tuning situation. This points to

an underlying neuro-pysiological re-directional control

process instead to mechanical forces. R1 and R2 seem to

stabilize each other, which is particularly effective in cases

where the resonances have octave distance (Fig. 1).

Fig.1: This cry contains relatively long periods of tuning with stable

and coherent tracks of R1 and R2 following the melody. A kind of

‘playing’ with the resonances possibly released by nearby laying

strong harmonics is observable. At this age, many utterances still

show a tendency to correct stronger deviations from the tuning

condition not by moving resonances in direction to the nearest

harmonic but to force a back-movement to the former tuning situation.

In Figure 2, a more developed interaction feature in form of

coherent and well-formed resonance transitions of R1 and/or

R2 is displayed.

Figure 3 demonstrates that resonance transitions occur not

only between consecutive harmonics, but also over two

harmonics. The observed strong and parallel movements of

R1 and R2 as well the aptitude to climb two harmonics

upwards or downwards straightforwardly in only one step are

interpreted as an advanced transition feature.

Fig.2: An important feature of articulatory development: In R1 and R2

a transition from one harmonic to another (3rd – 2nd and 7th – 6th)

occurs at the same time. R2-transitions exhibit higher fluctuations and

are less stable. After a long tuning period of about 600 ms a relatively

soft, but coherent R1-transition downward follows. After a short

tuning period at the 2nd harmonic the cry ends with a free running R1.
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A subsequent stage of pre-speech development is shown in

Figure 4. In this babbling utterance complex interactions in

form of fast transitions and accurate tunings occur and

produce fast changes of the resonances with short residence

times on certain harmonics. The interaction processes in R2

proceed essentially parallel to R1, but often with somewhat

lower stability and coherency.

Fig. 3: A two-step R1-transition upwards is followed by a one-step

transition downwards. After a longer perfect tuning a further

downward R1-transition occurs. The melody consists of two arcs

with the frequency maximum of the first arc occurring about 80 ms

later than the R1-resonance maximum.

The two investigated SLI-at-risk infants exhibited a kind of

poverty of melody complexity and a sparseness of resonances

in their pre-speech utterances. Particularly, R1-transitions

were prolonged and unstable. Compared to the healthy infants

with normal language development, the SLI-at-risk infants

had a significantly longer mean transition time of 75 ms

(range 35 – 470 ms). Here a typical example for such a more

instable and longer lasting transition is displayed (Fig. 5).

Fig. 4: In syllable-like utterances fast transitions in R1 and R2

alternate with tuning intervals.

In Figure 6 an example is displayed for demonstrating the

observation that CLP-infants carrying a palatal plate are

capable of exhibiting transition processes comparable to those

found in healthy infants with normal language development.

However, it was found that CLP-infants more often show

instable R2 or higher resonances.

Fig. 5: In SLI-at-risk infants prolonged and unstable transitions of R1 and

R2 were regularly observed. Here, the second R1-transition is considerably

prolonged and unstable, even in this relatively simple transition from the

first to the second harmonic. The development of R2 is also disturbed.

Fig. 6: This mitigated cry consists of a vibrato-like melody

modulation while the lowest resonance frequency (R1) moves two

times up and down, like in non-cleft infants at this age. The

movement of R1 is adjusted to the melody by transitions from the

second to the third harmonic of the melody wile exhibiting strong

tuning phases at both harmonics.

DISCUSSION

The present investigation confirmed and complemented earlier

results concerning a systematic training and a first

establishment of articulation activity during infants’ crying at a

very early age (Wermke et al. 2002, 2005). The establishment

of tuning between melody and resonance frequencies and a

mastering of fast transitions seems to require a training period

before being at disposal for intentional use in vocal production.

At about the fourth month of life, a rapid expansion of the

infant’s pre-speech repertoire occurs. Utterances contain more

vowel-like elements and near-syllables. So, it was anticipated

that voluntary articulatory activity has to be trained step by step

well before this age. The presented results strongly supported

this hypothesis.

Here, characteristic interaction phenomena, namely transitions

of resonance frequencies between harmonics of the melody

could be identified for the first time in infants younger than

four months. The mastering of such advanced transitions is an

essential prerequisite for performing fast and accurate shifts

between vowel formants in speech. Based on our experience,



we interpret the systematicity in the production of advanced

transitions as a training phase enabling the brain to establish a

prospective time organization in vocal sound production

necessary for fluent speech: Vocal tract articulators often have

to be pre-adjusted to anticipated, but nevertheless in parallel

threads planned melody movements. The observed time

organization, were resonance movements often lead the course

of the melody, points to  higher cerebral control mechanisms

underlying sound production already in young infants (see Fig.

3 for the 80 ms time lead of resonances).

It is hypothesized that the observed interaction patterns are not

produced by chance. Particularly, the investigated transitions of

lower resonance frequencies share many features with later

formant transitions necessary for vowel articulation in speech-

like babbling and word production. The observed

developmental changes suggest that the fast resonance

transitions are necessary presuppositions for the extremely

short transitions between the phonological units in later speech.

The identification of such transitions as well as the

demonstration of increasingly stronger tunings between

phonation and articulation supports the idea of learning and

training of language-related features during infants’ crying and

points to a continuous developmental path from crying to word

production. This hypothesis is also supported by the finding,

that fast switches between tuning and resonance transition are

generally learnt in healthy infants with normal language

outcome within a short time span. In contrast to them, infants

being at risk for developing SLI exhibit the displayed training

phases over a much longer time span; sometimes they need

even several months. Moreover, the longer mean resonance

transition times observed in SLI-at-risk infants point to a

relation of these early articulatory activities to later language

performance. Concerning processing auditive information in

the brain, a disturbed time organization is reported for SLI-at-

risk infants and is interpreted as an important component in

developing a Specific Language Impairment (e.g. Tallal 1989,

Jusczyk 1997, Weber et al. 2004). The present findings suggest

the idea that also in controlling vocal production a disturbed

time organization may characterize SLI-at-risk infants.

In CLP-infants, the finding that a palatal plate seems to enable

the infants to produce transition phenomena comparable to

those in healthy non-cleft infants is very important for

treatment strategies to minimize later speech and language

impairments caused by the malformation. Both infants received

a special palatal plate during the first days after birth and the

plates were only removed by the parents to clean them after

feeding. For a next investigation to be conducted, it is

hypothesized that CLP-infants who were not supplied with a

palatal plate will exhibit more deviations in the observed

melody-resonance-interaction patterns.

However, in face of the high variability between infants, the

cases studied here were not yet sufficient to and further work is

necessary to confirm the formulated hypotheses and to

generalize the presented results..

CONCLUSION

The present paper provided time functions (tracks) of the

resonance frequencies and investigated the interaction between

these tracks and harmonics of the melody. This approach

allowed to investigate pre-articulatory activity at a very early

age and to observe early developmental processes directed

toward speech and language acquisition. An increasing

unfolding of tuning between melody and lower resonance

frequencies as well as resonance frequency transitions were

found in utterances of 2- to 3-months-old infants. This vocal

behavior was interpreted as an early articulatory activity in

infant’s crying. In a broader perspective, it is seen as a

language-related behavior, preparing formant tuning and

focalization in later speech. Far reaching medical applications

are seen for infants with disturbances of the time organization

of vocal production and for CLP-infants.  .
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Abstract: First cry has been much

studied especially from an acoustical

point of view. However, the mechanisms

of sound production are unclear. Thus,

following studies we previously

performed, we extend in this present

work our simulations to a more realistic

geometry obtained by MRI images of a

fetal larynx. This work confirms the

major role of vortices and may be that

of the supraglottis and the fluid flow

interactions.

Introduction: Vocal folds of newborns are

histologically different from children and

adults. Reinke’s space is not clearly

individualized. As shown by Titze, this

structure is absolutely needed for vocal

fold vibration [1]. The hypothesis for vocal

production in newborn is that the air

column generates itself the acoustic waves

from which the voice appears. Some other

possible vibrators within the mammalian

production system include the vocal tract

[2].

Anatomical measurements were performed

and a preliminary virtual model was

designed to modelize turbulences with

vocal folds in phonatory position [3].

Despite acoustic waves were not detected

through this simplified geometry, those

results however suggested that newborn

phonation is a vortex effect coupled with a

vibration of supraglottic structures.

Fig. 1: Saggital view of a MRI acquisition of a

human fetal larynx. Those data were used for

computing a realistic geometrical model

exported to Fluent®

Material and methods: Therefore, in the

present study, we have undertaken a much

more realistic geometrical model based on

3D MRI images (fig. 1) of a fetal human

laryngotracheal tract. These frames

allowed us to build a 3D numerical model

using 18 horizontal slices with 50 points on

each perimeter. It was exported to Gambit
®

in order to build up the mesh (fig. 2) to be

computed with Fluent
®
. Moreover, based

on this 3D geometry, a 2D axisymmetric

model was also built to be used with

Fluent
®
 and CARBUR. The later is a

Models and analysis of vocal emissions for biomedical applications. 4th international workshop. October 29-31, 2005 – Firenze, Italy. 
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research code developed in our laboratory

and is dedicated to the study of

compressible fluid flows [4]. This code is

based on the discretization of the Navier-

Stokes equations by a finite volume

method. A second order scheme, for both

space and time, with a Van Leer slope

limiter has been used to solve the set of

compressible Navier-Stokes nd energy

equations.

Fig. 2: Example of mesh obtained after

exporting MRI slices to Gambit
®
.

Results: The fluid flow computations

performed with Fluent
®
 consider the flow

as fully compressible and unsteady for the

duration of the cry. The fluid flow is driven

by a pressure drop of 6000 Pa, imposed

between the inlet and the outlet of the

computational domain. Furthermore, a no-

slip boundary condition is imposed on the

laryngotracheal wall. Several probe points

have been considered in the computational

domain in order to extract fluid flow

characteristics such as acoustical waves,

dynamical vortices, etc.

In this first step, the ability of a rigid wall

configuration to produce acoustic waves is

studied as well as the amplification by the

supraglottic structures.  In order to validate

numerical results obtained on the realistic

model, calculations were also performed

with both CARBUR and Fluent
®
 on a

simplified geometry.

Thus, on the simplified geometry, we

found highly unsteady flow with vortex

generation upon the vocal folds. The main

source of vortices is the Kelvin-

Helmholtz’s instability which appears on

the shear layer. Fig. 3 shows a Schlieren of

the fluid flow obtained with CARBUR

where typical vortices structure are

displayed. Moreover, the time evolution

shows that subglottic pressure waves

increase vortices shedding.

          
Fig. 3: Vortex structure induced by the

instability behind the sharp channel expansion

over the vocal folds.

We confirm with this realistic model the

presence of vortices structures we observed

in our previous study with a simplified

geometric shape. Fig. 4, where are plotted

streamlines coloured by velocity

magnitude, shows the acceleration of the

fluid flow in the glottic area and the
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creation of vortices. One can note a

boundary detachment just upon the

posterior part of the glottis, where two

counter rotative vortices are generated.

Whatever the code and the geometrical

model, the maximum velocity just upon the

glottis is about 110 m/s.

Computations are actually in process to

determine the implication of these vortices

in sound generation.

Fig. 4: Streamlines coloured by the velocity

magnitude on the 3D realistic model.

In a second step of our study, fluid-

structure interaction will be considered

using a dedicated research code we have

developped [4]. This code is based on the

coupling of CARBUR and MARCUS. The

later, another research code developed in

our laboratory, deals with the dynamics of

deformable structures [4]. The space

discretization is carried by a finite element

method, whereas, the temporal time

discretization is achieved with the

Newmark’s algorithm. The numerical

coupling between the fluid flow and the

structural dynamics models is performed

through boundary conditions. The fluid

flow imposes a pressure distribution on the

structure boundary, which in return

imposes a new geometry to the fluid

domain [4].

Conclusion and perspectives: Sound

production by the neonatal larynx is a

multifactorial problem, which needs the

understanding of multiphysic phenomena

such as the vortex sound generation, the

coupling between the aerodynamic and the

supraglottic structures.  Our numerical

simulations have pointed out the vortex

generation upon the glottis and an

amplification of the vortex shedding by the

pressure waves. We also observed a high

degree of instability of the outflow, which

let us suppose that fluid-structure

interaction phenomena may occur. The

next step will be to calculate the sound

radiation due to source terms previously

identified [5].

Keywords: newborn, phonation, vocal

folds, aerodynamic, modelization, fluid-

structure interaction.
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HIGH-PITCHED VOICE SIMULATION USING A TWO-DIMENSIONAL
VOCAL FOLD MODEL
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Voiced sounds were simulated with a computer model
of the vocal fold composed of a single mass vibrating
both parallel and perpendicular to the airflow. The
major improvement of the present model over the two-
mass model is that it has a wider continuous frequency
range where self-excitation is possible both below and
above the first formant frequency of the vocal tract.
The two-dimensional model can therefore successfully
be applied to the sound synthesis of a high-pitched so-
prano singing, where the fundamental frequency some-
times exceeds the first formant frequency.

I. I

An acoustic tube generally yields an inductive load in
the frequency below a resonance peak, while the load turns
out to be capacitive in the frequency above the peak. In
speech, the fundamental frequency (F0) is usually lower
than the first formant frequency (F1) of the vocal tract.
Therefore, the vocal folds always vibrate with an inductive
load.

In high-pitched soprano singing, however, F0 enters
the range of F1 in normal speech. The soprano singer
then raises F1 as F0 approaches F1 by increasing the jaw
opening.[1] As a result, F1 is always tuned close to F0. A
more recent measurement of the vocal tract resonance[2, 3]
confirms this effect in the middle range of soprano singing.
It also shows that F1 cannot be raised above a certain point
(roughly 1 kHz), and the order of F0 and F1 is reversed
in the high range. These observations imply that the vocal
folds should vibrate in the vicinity of the frequency region
near F1 where the acoustic load can be both inductive and
capacitive.

In speech synthesis by simulating all the processes in
the voice production, the two-mass model of the vocal fold
vibration[4] has been widely used. It was shown that this
model can simulate self-sustained oscillation with a capac-
itive acoustic load of the vocal tract. As shown in Section
IV, however, self-sustained oscillation can not be obtained
in a large frequency range just above F1. This means that
musical tones in this range can not be synthesized. The
voice range simulated by the two-mass model, therefore,
becomes narrower.

†sadachi@atr.jp

This paper proposes a model of vocal fold vibration
that can successfully simulate self-excited oscillation in a
wide frequency range on both sides of F1 with no disconti-
nuity of vibration. The model approximates the vocal folds
as a pair of single masses that can vibrate both parallel
and perpendicular to the airflow. The high-pitched singing
voice is simulated as well as the normal speech voice in
this paper. In addition, the mechanism for self-excitation
both in the capacitive and inductive acoustic loads is dis-
cussed.

II. T-    

The proposed model was originally developed to sim-
ulate the vibration of a brass player’s lips.[5] The model
is a combination of two earlier models: the swinging-door
model and the transverse model.[6] The former employs
a valve (lips or vocal folds) that operates by the pressure
difference between the upstream and downstream regions.
The latter employs a valve that operates by the Bernoulli
pressure generated by a flow passing through the valve
aperture.

The complete description of the model including the
equation of motion can be found in [7]. The pair of mod-
eled vocal folds are schematically represented by parallel-
ograms with two sets of a spring and a damper as shown
in Fig. 1 (a). The left and right vocal folds are assumed
to vibrate symmetrically. The vocal fold simultaneously
executes both swinging and elastic motions. The former
is driven by the trans-glottal pressure difference, and the
latter is driven by the Bernoulli pressure generated at the
glottis. The swinging motion implies that the motions par-
allel and perpendicular to the airflow are not independent
but coupled with each other. This differentiates the current
model from other two-dimensional models, such as those
proposed by Liljencrants[8] and Flanagan and Ishizaka[9].
During one cycle of oscillation depicted in Fig. 1 (b), the
tip of the vocal fold makes an elliptic trajectory, while the
glottis retains a rectangular shape.

Forces acting on the vocal fold are illustrated in Fig. 1
(c). These are Bernoulli force ~fB(t) in the glottis, force
due to the pressure difference ~f∆p(t), contact force ~fC(t),
and restoring force ~fR(t) from both springs. Figure 1 (c)
also shows the lateral dimension (width) w and the length
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Figure 1: The two-dimensional model of vocal fold vibration: (a) Schematic diagram of the model. (b) Motion of the vocal
folds allowed in this model. Four different phases in a single cycle of oscillation are shown. (c) Forces acting on the vocal
fold and the dimensions of the vocal fold.

l and thickness d of the vocal fold. To simulate vocal fold
vibration, we have to know the external forces ~fB(t) and
~f∆p(t), both acting on the vocal folds. These forces are
determined by the acoustic response of the vocal tract and
fluid dynamics.

Synthesized sound can be obtained by solving the equa-
tion of motion for the vocal fold vibration, a modeled equa-
tion for the air flowing through the glottis and the input
impedance of the vocal tract that can be determined from
the shape of the vocal tract by the transmission line method.
The parameters that can control the system of the voice
production are the rest position of the vocal fold (x0, y0),
subglottal pressure p0 and the resonance frequency of the
vocal fold fr.

III. V 

As a typical sound generated by the two-dimensional
vocal fold model, simulation result of vowel /e/ is shown
in Fig. 2. The control parameters are set to x0 = 0.2 mm,
y0 = −0.02 mm, p0 = 800 Pa and fr = 120 Hz.

The trajectory of the vocal fold has a smooth oval shape,
and the oscillation is in the counter-clockwise direction for
the upper mass. This result is in accord with common
observations of vocal fold vibration.[10] The glottal area
waveform has a symmetric shape in the opening and clos-
ing phases with the duty ratio of 0.68. The simulated glot-
tal flow is a more symmetric shape than that assumed by
the Rosenberg model[11]. This may be due to the inclu-
sion of the flow generated by the mechanical motion of the
vocal folds. The simulated pressure waveforms both at the
entrance and at the exit of the vocal tract resemble those by
the two-mass model.

The five Japanese vowels /i/, /e/, /a/, /o/ and /u/ are sim-
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Figure 2: Simulation results for vowel /e/ showing trajec-
tory of the vocal fold, glottal area, volume flow, pressure at
entrance of vocal tract, and output pressure.

ulated with the vocal tract shapes obtained from a Japanese
male speaker. The sound spectra of the simulated vow-
els are shown in Fig. 3. F0’s of the simulated sounds are
126.3, 133.7, 134.1, 130.8 and 127.7 Hz for vowels /i/, /e/,
/a/, /o/ and /u/, respectively. Each simulated vowel has the
typical first and second formant frequencies. A simple lis-
tening test also confirms that the simulated vowels have
the same quality as those synthesized with the two-mass
model.
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Figure 3: Simulated sound spectra for vowels /i/, /e/, /a/,
/o/ and /u/. The solid lines show the spectrum envelopes
estimated by LPC analysis.

IV. H-  

The response of the two-dimensional and two-mass mod-
els with a capacitive acoustical load was investigated by
driving the oscillation frequency to values between the first
resonance frequency (F1) and the first anti-resonance fre-
quency (F1′).

A. Straight tube load

The two vocal fold models were attached to a cylinder
of 17 cm length and 5 cm2 cross-sectional area. Calculated
F1 and F1′ are 516 and 977 Hz, respectively, the capac-
itive region lies between F1 and F1′. The models were
then driven at the range of the vocal fold resonance fre-
quency fr, and the sound frequency was measured. When
increasing the fr, the subglottal pressure p0 should also be
increased to obtain self-excitation. The other parameters x0

and y0 are set to 0.2 and −0.05 mm, respectively, in this ex-
periment. The relationship between sound frequency and
fr for the two-dimensional model is plotted with a solid
line in Fig. 4 (a). The relationship for the two-mass model
is shown in Fig. 4 (b). In these figures, p0 change is also
plotted with dash-dot lines.

When the sound frequency increases beyond F1, the
acoustic load changes from the inductive to capacitive be-
havior. The sound frequency of the two-dimensional model
increases smoothly with fr. Self-excitation is possible in
the capacitive region continuously nearly up to F1′. On the
other hand, the two-mass model has a jump in frequency at
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Figure 4: Straight-tube simulation. (a) Two-dimensional
model. (b) Two-mass model.

F1. The jump covers about the lower half of the capacitive
region. Therefore, no self-excitation can be generated be-
tween 506 and 735 Hz. Hence, the two-dimensional model
is capable of producing a wider continuous range of fre-
quencies for self-excitation than the two-mass model.

B. Vocal tract load

The same experiment was performed with an acousti-
cal load of an actual vocal tract of a female speaker pro-
nouncing vowel /a/. F1 and F1′ of this vocal tract are cal-
culated to be 874 and 1014 Hz, respectively. The result
of the two-dimensional model is shown in Fig. 5 (a). The
result of the two-mass models is shown in Fig. 5 (b).

We can observe similarities with the previous experi-
ment. The two-dimensional model is capable of continuing
self-excitation beyond F1. The sound frequency increases
smoothly over F1 and falls into the capacitive region. On
the other hand, the two-mass model again has a jump in
the frequency when it reaches F1. In this case, however,
the frequency jump is between 842 and 1106 Hz, and no
self-excited oscillation can be generated in the entire ca-
pacitive region.

V. D

The circular motion of the vocal fold is schematically
illustrated in the left panel of Fig. 6. This section clarifies
that this motion makes possible the self-sustained oscilla-
tion both with an inductive and capacitive vocal tract load.

The glottis is maximally opened at phase 2 and com-
pletely closed near phase 4. Therefore, a glottal area wave-
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Figure 5: /a/ vowel simulation. (a) Two-dimensional
model. (b) Two-mass model.
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Figure 6: Schematic vocal fold trajectory and waveforms
of glottal area, volume flow and pressure at the vocal tract
entrance. Solid lines are for the case where the acoustic
load is resistive (F0 ≈ F1), dashed lines are for the induc-
tive load (F0 < F1) and dash-dot lines are for the capacitive
load (F0 > F1).

form A(t) shown in the upper-right panel is generated. When
F0 is well below F1, the vocal tract acoustic load is induc-
tive. In this case, according to [12], the volume flow U(t)
has a waveform with the slower rise and the abrupt fall as
indicated by the dashed line in the middle-right panel. Be-
cause the phase of pressure p(t) at the vocal tract entrance
leads U(t) up to 90 degree, p(t) has a waveform as plotted
by the dashed line in the lower-right panel. We then find
that the glottal pressure, which is not very far from p(t),
pushes the vocal fold at phase 1 and sucks it at phase 3.
Because the direction of the pressure is the same as that of
the velocity of the vocal fold, the pressure becomes a driv-
ing force. This is the same mechanism for the one-mass

vocal fold model to maintain self-sustained oscillation.
When F0 is close to F1, the vocal tract acoustic load

becomes large and resistive. In this case, volume flow
and pressure waveforms become symmetrical as indicated
by the solid line. In this case, the glottal pressure does
not drive the oscillation. Instead, p(t) pushes the vocal
fold upstream at phase 2 and downstream at phase 4 and
becomes a driving force. This mechanism works even if
the acoustic load becomes capacitive when F0 exceeds F1.
The waveforms of volume flow and pressure are depicted
in the dash-dot line. Pressure p(t) takes its maximum be-
tween phase 2 and 3 and its minimum between phase 4
and 1. This causes a force in the direction of the vocal fold
velocity.
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EFFECT OF VOCAL LOUDNESS VARIATION ON THE VOICE SOURCE

J. Sundberg

Abstract: The physiological correlate of

perceived vocal loudness is the overpressure of

air under the glottis, or the subglottal pressure

Psub. Variation of vocal loudness, i.e., of Psub

has strong effects on the waveform of the

transglottal airflow, also called the voice source.

As the voice source is the primary sound itself,

which after filtering by the vocal tract resonator

is radiated through the lip opening, variation of

Psub has strong effects on the voice timbre. The

waveform of the voice source , called the flow

glottogram, can be obtained by inverse filtering,

which implies that the vocal sound is filtered by

the inverted frequency curve of the vocal tract.

A flow glottogram is characterized by triangular

air pulses, occurring when the vocal folds open

the glottis and allows an airstream to pass. These

air pulses are interleaved by episodes of zero

airflow occurring when the vocal folds close the

glottis, arresting the air stream. Important flow

glottogram characteristics are (1) the relative

duration of the closed phase, or Qclosed, (2) the

peak amplitude of the flow pulse and (3) the

maximum flow declination rate corresponding to

the steepness of the trailing end of the flow pulse.

These voice source characteristics show a

reasonably simple relationship to acoustic

properties of vocal sounds. The peak-to-peak

amplitude of the flow pulse is strongly correlated

with the amplitude of the lowest spectrum

partial, the fundamental.

The maximum flow declination rate determines

the sound level and Qclosed is strongly

correlated with the dominance of the

fundamental in the spectrum.

When Psub is increased from very low to low,

Qclosed increases markedly, but an increase

from a high to a very high Psub does not affect

Qclosed appreciably. An increase of Psub also

leads to an increase of maximum flow

declination rate and generally also of the peak-

to-peak amplitude. Another consequence of an

increased Psub is that the higher partials in the

spectrum gain more in sound level than the

lower partials. Thus, a 10 dB increase of the

overall sound level of a vowel is typically

accompanied by a 15 dB increase of the partials

near 300 Hz. This means that the slope of the

spectrum, and hence also of a long-term-average

spectrum varies with. All these effects of Psub

variation on the voice source imply that

comparisons of acoustic spectrum characteristics

of a voice, e.g., before and after treatment, must

be made for the same degree of vocal loudness. If

this condition is not met, the effect of the

loudness difference between the recordings

compared must be compensated for.
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Many studies have been carried out on vibrato in the 
singing voice, though usually on singing of 
professional singers. In the present study we examine 
vibrato quality in sustained notes as sung by students, 
rather than professionals, in an attempt to find 
objective measures for assessing vibrato quality in 
singing students. A set of 78 notes was assessed 
subjectively by 5 experiences musicians. A set of 
acoustic measures was then extracted, and analyzed 
statistically to obtain two indicators: presence or 
absence of vibrato, and in the case of presence – an 
indication of vibrato quality. Discrimination between 
presence and absence of vibrato was 82% correct; the 
predictor of vibrato quality achieved a significant 
correlation coefficient of 0.7395 with the subjective 
judgments. 

 
I. INTRODUCTION 

 
Vibrato in the singing voice has been the subject of 

several previous studies. Recent studies have focused on 
quantitative analysis of vibrato parameters, examining the 
rate of pitch modulation, changes in this rate, and depth 
of pitch variation [1,2]. 

Some of these studies have tried to find correlations 
between acoustical parameters and perception of vibrato 
quality. These were conducted on the vibrato of 
accomplished singers. From their conclusions, it seems 
that perceptual evaluation of vibrato quality in these cases 
is strongly influenced by individual musical taste, since 
these singers usually have very good control over their 
vibrato parameters.  

A previous study we carried on the effect of vocal 
warm-up on singer's voices [3], on the other hand, left us 
with the impression that amongst students of singing, 
quality of vibrato varies to a very large extent. This 
motivated us to examine whether some acoustic measures 
could be found, that would correlate well with perceptual 
judgments made by singing teachers. Eventually, this 
could lead to a form of visual feedback that would aid 
these students in assessing their vibrato quality.  

In the present study we used the same recordings that 
were used in the warm-up study [3], and submitted them 
for judgment of vibrato quality to 5 singing teachers. We 
then carried out a detailed acoustic analysis of the pitch 
over the closing two seconds of each recording, using 
various quantitative measures extracted from the raw 
pitch contour. Statistical analyses were then applied to 

find the acoustic measures which correlated best with the 
subjective assessment of vibrato quality. 
 

II. METHODOLOGY 
 

Participants: Twenty young female singers 
participated in this study. All participants had 
professional classical voice training for a mean period of 
5.4 years (SD = 2.9). Sixteen singers were conservatory 
students, and the remaining four were graduates of a 
music academy. Overall mean age was 18.62 years (SD = 
3.2), mean weight was 61.5 kg. (SD = 13.4) and mean 
height was 164.9 cm. (SD = 6.1). All singers were 
healthy, with no remarkable medical history.  

 
Recording procedures: Participants were recorded 

individually in a quiet room while sustaining the vowel 
/a/ in three different pitches: 20, 50 and 80% of their 
vocal range. Each reference tone was presented by a 
piano in a random order, and the singer was asked to 
sustain the produced vowels (target tones) as accurately 
as possible for 3-5 seconds. The singers were not 
specifically instructed to produce vibrato in their sung 
tones. All vocal productions were recorded through a 
microphone (ACO Pacific, Inc.) situated approximately 
15 cm from the subject’s mouth, using a Sony-TCD D7 
digital recorder (Sony, Tokyo, Japan). Sampling rate for 
the recording was set for 48 kHz (16 bits per sample). 
Vocal productions of duration less than 2 seconds were 
also excluded from the analysis, leaving 78 recordings 
that were analyzed in all. 

 
Subjective Evaluation: The 78 recordings that were 

chosen for this study were presented, in a random order, 
to five judges for evaluation. Of the judges, three were 
singers and two were musicians with extensive 
experience in accompanying singers. Mean age of the 
judges was 23 years (SD = 2.12). 

Each judge was, independently, presented with a 
simple computerized questionnaire. For each recording, 
the judges were, first, required to decide whether it 
contained vibrato or no. If a recording was judged to 
contain vibrato, the judge was asked to rate its quality on 
a 4-point scale, where 1 represents “poor”, 2 “fair”, 3 
“good”, and 4 “very good”. The judges were allowed to 
listen to each recording only once, yet they could advance 
through the recordings at their own pace. Recordings that 
were judged by four or more listeners as containing 
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vibrato were considered, for the purpose of this study, as 
containing vibrato. 

 
Acoustic Analysis: Vibrato is defined as a periodic 

variation in fundamental frequency. It is most often found 
to be closely sinusoidal, with a frequency in the range of 
5 to 7 Hertz (see, for example, Prame's papers, [1,2]). We 
implemented a Pitch Detection Algorithm (PDA) in 
Matlab, based on the autocorrelation method. Although 
the original recorded productions varied in length 
between 5 seconds and 1.5 seconds, only the last two 
seconds of each recording were analyzed. Pitch detection 
was performed over successive 20 ms windows, with 
overlap of 10 ms, with a worst-case frequency resolution 
of 0.12 Hz. For the windowing scheme described, this 
resulted in 200 pitch points for each file. 

Most previous studies performed relatively basic 
analyses on the raw data, usually measuring vibrato rate 
and extent. Evidently, when studying the vibrato of 
professional singers, the vibrato is steady enough for 
these to be the dominant factors in determining its 
quality. In contrast, in the present study, we found these 
features to be insufficient, and in some cases even 
inapplicable. In fact, the wide range in pitch contours 
produced by the students examined here, required the use 
of more generalize measures that would be able to detect 
whether vibrato exists at all, and assess its quality if it is 
present. 

In order to do so, we implemented the methods used 
in detecting pitch itself. Since pitch is defined as periodic 
oscillation in the voice signal, periodic oscillation of the 
pitch can be measured with the same methods. We 
therefore applied two further analyses to the pitch 
contour: autocorrelation (after removal of DC) and the 
Fourier transform. Several illustrative examples are 
provided in Figures. 1-3. Figure 1 demonstrates a pitch 
curve, which was rated by the listeners, as not containing 
vibrato, Figure 2 demonstrates an unsteady vibrato, which 
was rated by the listeners at 1.4, and Figure 3 
demonstrates an example of a steady vibrato, rated at 
2.75. Each figure includes (from top to bottom): (a) the 
pitch contour, after average has been removed; (b) the 
autocorrelation of the pitch contour; (c) the Fourier 
transform of the pitch contour.  
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File 27 - vibrato rated at 0
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Fig. 1 – An example of a production with no vibrato 
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File 17 - vibrato rated at 1.4
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Fig. 2 – An example of a production with poor vibrato 
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File 13 - vibrato rated at 2.75
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Fig. 3 – An example of a production with good 

vibrato 
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From this raw data, a series of several potential measures 
were then calculated: 

1. Energy between 4.5 and 7.5 Hz as compared to 
energy between 1 and 10 Hz. 

2. Energy between 5 and 7 Hz as compared to 
energy between 1 and 10 Hz. 

3. Index and height of the first peak in the 
autocorrelation of the pitch contour. 

4. Index and height of the first trough in the 
autocorrelation. 

5. Variance of the pitch contour. 

6. Mean and standard deviation of a curve 
representing local extent of vibrato 

7. Several additional measures of peak height and 
width in the FFT of the pitch contour 

 
III. RESULTS 

The analysis was carried out in two stages: the first to 
determine a measure for presence/absence of vibrato, and 
the second to find a measure that correlates with the 
perceptual judgment of vibrato. 
 
A. Presence of vibrato 

Logistic analysis was applied to the raw measures 
presented in the previous section, in order to find a 
predictor that would be in optimal agreement with the 
perceptual judgments. The results obtained by this 
predictor are summarized in table 1. 

 
Table 1 – Classification results for vibrato existence 

 Predicted 
 No Yes Total 

No 20 8 28 
Yes 6 44 50 A

ct
ua

l 

Total 26 52 78 
 
Table 1 shows an overall recognition rate of 82%. 

False positives are more prevalent (28%) than false 
negatives (12%).  

 
B. Rating of vibrato 

The acoustic measures were analyzed statistically in 
order to find a predictor that would correlate well with 
the judges’ average rating of those recordings judged to 
contain vibrato. Eventually, it was found that a linear 
regression analysis applied to four measures gave a 
predictor that has a statistically significant correlation of 
0.7395 with the judge's subjective ratings. These four 
measures were: 

1. Height of the first autocorrelation peak 

2. Absolute height of highest peak above 2 Hz in the 
FFT of the pitch contour 

3. Width of the highest peak in the FFT 
4. The number of spectral peaks above a third the 

height of the highest peak 
 

C. Agreement between judges 
Agreement among judges’ ratings of vibrato quality 

was assessed using Kendall’s coefficient of concordance, 
and yielded a value of 0.619 (p < 0.001). This analysis 
was based on the productions which were identified as 
demonstrating vibrato. 
 

IV. DISCUSSION 
 

The present results show that relatively good 
agreement can be obtained between subjective and 
automated assessment of vibrato quality of singing 
students. Obviously, the agreement between the 
subjective and objective measures is bounded by the 
inter-judges subjective agreement variability.  

The methods utilized here, on singing students can be 
expected to demonstrate a ceiling affect, when applied to 
recordings of professional singers – this will be 
examined, in the future, in further detail.  
 

V. CONCLUSION 
 

Acoustic measures of vibrato, which were conceived 
specifically for identification and evaluation of vibrato 
among singing students were shown, here, to provide a 
relatively reliable predictor of vibrato presence and 
quality as evaluated by listeners. 
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Abstract: The island of Madagascar is one of the
planet’s foremost biodiversity hotspots and it is
threatened with large-scale destruction by
unsustainable human activities. The ruffed lemur, like
all other lemurs, is endemic to Madagascar and
inhabits the eastern rainforests of the island. A captive
breeding project for this species has been underway
since the Sixties and lead to a relatively great
population of captive ruffed lemurs. Part of this
population was recorded for the purpose of this study
and phonetic analysis of the ruffed lemur calls is
presented in this paper. As reported from studies on
human and non-human primate vocal
communication, ruffed lemurs show acoustic cues on
actual (or even exaggerated) vocalizer body size when
emitting inter-group and agonistic vocalizations. The
vocal repertoire of Varec ia  sp. also features
submissive, affinitive and pre-copulation calls,
showing different formant patterns that contradict the
use of the uniform, or flared, tube system as a valid
model of non-human primate phonation.

I. INTRODUCTION

Like other primates, including humans, lemurs are
conspicuously vocal and are capable of modifying both
the shape of the airway and the oscillation of the vocal
fold [11]. Previous studies have shown lemurs of
Madagascar produce a wide range of vocalizations,
comprising alarm calls, several contact calls, mating calls
and screams [12][11]. The thesis that speech differs from
non-human primates vocal communication because of the
lack of a continual articulation, often caused an under
evaluation of non-human primates phonatory processes.
Thus the fact that non-human primates can produce rapid
changes in the vocal tract shape and length has been
rarely investigated. Recent evidences emerging from
studies of various primate species demonstrate that
formants are meaningful acoustic features of non-human
primate calls [16][17][3] and that rapid changes in vocal
tract shape and length are not uniquely human as they can
be assessed from the dynamic pattern of certain acoustic
parameters [15]. First (F1) and second (F2) formants of
non-human primates calls can distinguish, when plotted,
different vocal types, as it happens for human vowels.
This is particularly interesting, although it has been never
investigated, in lemurs. If it is true that non-human
primates share, to a certain degree, with humans the
ability to act voluntary changes in vocal tract shape
during vocalisation, by articulation of the tongue, the
mandible and the larynx, lemurs could represent a
simplified model, as lip protrusion is absent. This paper

provides the first phonetic analysis of a wide range of
calls by ruffed lemurs, previously classified on the basis
of on-screen subjective recognition. We will show ruffed
lemur calls can be described as discrete categories and
how the variation in the first two formants may
characterise vocal type differences.

II. METHODOLOGY

Study animals were captive ruffed lemurs kept in several
institutions across Europe and United States. We
recorded natural occurring vocalization emitted by
Varecia variegata variegata at Parco Natura Viva
(Bussolengo-Vr, Italy), Mulhouse Zoo (France), Rheine
Der Naturzoo and Koln Zoo (Germany), Apenheul
(Apeldoorn, The Netherlands), St. Louis Zoo (USA),
Twycross Zoo, Drusillas Park (Alfrinston) and Banham
Zoo (UK).
The vocal repertoire of the black and white ruffed lemur
is the most studied among lemurs. Previous works [12]
[8] have recognised 16 vocal types, 8 of which we
considered in this study because of their vowel like
acoustic structure and because emitted by adult males.
Pereira and colleagues [12] offered a detailed qualitative
description of both behavioural and vocal repertoire of
the black and white ruffed lemur. Additional works
[11][8] provided important elements that are summarised
in the following brief descriptions. According to Pereira
and colleagues [12], we could consider these
vocalizations as part of 3 broad categories: Loud (High
Amplitude) Call (HA), Moderate Amplitude Calls (MA)
and Low Amplitude Calls (LA).
Roar Shriek Chorus [Roar (HA, abbr. R), Shriek (HA,
abbr. S)] - The chorus is a structurally complex and
variable group call, including simultaneous contributions
by all the adults in the group. This composite vocalization
lasts from 5 to 30 seconds [12] and features two types of
emission. One is a wide-band noisy sound called “roar”
and the other is a frequency modulated narrow-band
component called “shriek”. Both these emissions are
characterized by great amplitude. The roar shriek
choruses resemble the inter-group spacing calls of other
primates (e.g. Alouatta sp., [19]). In captivity, these call
were frequently evoked by sudden extra-group noises,
therefore the fall of metallic boxes, birds’ calls, loud
voices has been recorded as eliciting the chorus.
Bray (MA, abbr. B) - This vocalization is mainly emitted
by males and is more frequent in the breeding season than
in the rest of the year. Black and white ruffed lemurs in
captive semi-free ranging groups emitted brays only in
the reproductive season [12].

VOCAL PRODUCTION MECHANISMS IN RUFFED LEMURS: A
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Wail (MA, abbr. W) - This call denotes urgency for re-
aggregation [12]. This vocalization is present only at the
end of the roar shriek chorus. Wail is particularly rich in
harmonic overtones and can appear as a tonal or noisy-
tonal vocalization.
Abrupt Roar (HA, abbreviated AB) - This roaring
vocalization shows a rapid series of 2-5 roar-like sounds.
It was recorded mainly from adult males and often
follows a sudden disturbance or the presence of large
birds particularly in the breeding season [12] [7].
Observations by Simons (in [12]) and Petter (in [13])
showed that abrupt roars could be exchanged during
inter-group communication.
Appeasement call (MA, abbr. AP) - The appeasement call
(the “whine” in [12], assertion/courtship call in [11] is a
vocalization exclusively emitted by males during the
breeding season. Males are emitting this call when
approaching the female to mate. This call is usually
characterized by a clear tonal structure with harmonics
over a noisy variable pattern.
Chatter (MA, abbr. C) - The chatter is a high-pitched
vocalization comprising a rapid series of brief narrow
units. According to Pereira and colleagues [12], this call
is directed towards dominants. The call varies in duration
and in number of units according to the severity of the
agonistic encounter. This call can be referred to a general
voiced bared-teeth display (common in many other
primate species, e.g. Pan sp., [20]) both because of its
acoustic structure and phonation mechanism and its
contextual use. During the emission of the chatter there is
a strong horizontal and vertical retraction of the lips, so
that the teeth are maximally exposed.
Mew (LA, abbr. M) - This vocalization is a tonal
emission and usually shows a moderate to absent
frequency modulation. A slow rise in pitch is often
present in adults. The mew can vary in duration but it
lasts on average 0.8 s [7]. All group members were seen
emitting mews in relaxed context but this emission plays
a key role in the mother-offspring communication since
the early stages after birth [8].
Recordings were made on TDK DA-RXG tapes using a
Sony TCD-D100 Digital Audio Tape recorder and a
Sennheiser ME66 directional microphone with K3U
power module. The sample available for acoustic analysis
consisted of 8750 sounds. For the purpose of conducting
this research, we have chosen 80 high-quality
vocalizations, 10 per vocal type.
Acoustic analyses were performed in Praat 4.3.04, a
toolkit to do phonetic analysis by computer [1]. Praat use
was combined with Akustyk 1.7.6, which is a
comprehensive vowel analysis software package by B.
Plichta (Michigan State University). To characterize
source we measured several features of the fundamental
frequency (F0), by using the F0 contour extraction in
Praat. The F0 contour and formant pattern fitting were
both inferred during a step by step monitored process,
where operator could interrupt the analysis and modify
the analysis parameters. A Praat script was used to
automate file opening and editing as well as file saving of

the measurements. Typical preset values were changed
according to acoustic properties of the different vocal
types, for example 650-1100 Hz was the pitch analysis
range in Chatter, while 180-440 Hz was the range used
for Mews. To characterize vocal tract (filter), we
measured first 2-5 formants, depending on the number of
formants detectable from the spectrogram, using Linear
Predictive Coding (LPC). Formant presets were modified
as well per type. Extensive on-screen examination of all
the vocal types was necessary to determine intra- and
inter-individual variation. Formant analysis in this study
is the result of an application of the Burg’s method [2],
with superimposition over the signal spectrogram. A
number of autocorrelation-based LPC spectra was
overlaid independently derived FFT spectra of the same
vocalization to ensure the goodness of the LPC analysis.
Typical maximum formant was 12000 Hz and number of
formants 3-7. Window length was 0.05 s and dynamic
range 22.0 Hz.

III. RESULTS

Articulatory manoeuvres characterize abrupt roars,
appeasement calls, brays, chatters, shrieks, roars and
wails. Mews, even presenting a different acoustic
structure, are emitted with mouth closed and in absence
of detectable articulation. For each vocalization we
selected a stable portion and calculated mean values of F1
and F2 using LPC coefficients in Praat. Mean values and
standard deviations are shown in Table 1. ANOVA,
applied over data from the acoustic analysis, showed a
significant difference among the first formants [F1 (N =
80, R2 = 0,931, p < 0.001); F2 (N = 80, R2 = 0,925, p <
0,001)] measured in the considered vocal types.
According to Tukey's HSD test for post-hoc comparisons,
F1 and F2 values of this sample differed significantly
between vocal types. Matrixes of pair wise comparison
probabilities are shown in Tables 2 and 3.
Following previous studies [9] [18], we assumed that a
prosimian vocal tract could be simplified as a uniform
tube with cylindrical section and a certain length.
Applying the formula published by Lieberman and
Blumstein [10], we calculated formant values from
different vocal tract lengths. The black line in Figure 1
indicates predicted values of F1 and F2 in case of a
uniform tube model. If Varecia’s vocal tract could be
modelled as a uniform tube, we should expect all of the
vocal types situated along the black line (Fig. 1).

Table 1. Mean values and Standard Deviations for each
vocal type.

F1 (Hz) F2 (Hz)Vocal Type
Mean Std.Dev. Mean Std.Dev.

R 850 124 2010 343

B 1019 91 2085 164

W 1141 83 2694 299

AB 1206 130 3327 377

S 1492 217 5183 301
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AP 2452 191 5110 300

C 2807 143 5118 524

M 3472 631 5855 845

Table 2. Matrix of pair wise comparison probabilities for
the first formant (F1). Significant results for p < 0.05.
 R B W AB S AP C M

R 1,000        

B 0,000 1,000       

W 0,523 0,000 1,000      

AB 0,000 0,063 0,000 1,000     

S 0,000 0,000 0,000 0,000 1,000    

AP 0,062 0,000 0,578 0,000 0,000 1,000   

C 0,164 0,000 0,003 0,000 0,000 0,000 1,000  

M 0,694 0,000 0,671 0,000 0,000 0,151 0,069 1,000

Table 3. Matrix of pair wise comparison probabilities for
the second formant (F2). Significant results for p < 0.05.
 R B W AB S AP C M

R 1,000        

B 0,000 1,000       

W 0,000 0,000 1,000      

AB 0,000 1,000 0,000 1,000     

S 0,000 0,007 0,000 0,008 1,000    

AP 0,000 0,000 1,000 0,000 0,000 1,000   

C 0,000 1,000 0,000 1,000 0,022 0,000 1,000  

M 0,039 0,000 0,053 0,000 0,000 0,018 0,000 1,000

Roar and Bray are reasonably fitting the line, and this
also happens for Wails and Abrupt Roars. We estimated
that these signals are resonating in vocal tracts that
measure respectively 11,68   +  1,69 cm, 10,59   +   0,92 cm,
8,71   +   0,93 cm, 7,57   +  0,75 cm. The Shriek still partially
overlay the uniform tube model predictive line, where a
5,46   +   0,27 cm vocal tract length could be estimated.
Appeasement calls and Chatters are both showing higher
F1 values when compared to Shrieks, with Mews
showing slightly increased F2 and a remarkable increase
in F1. These four vocal types should be emitted from a
vocal tract that is 4,35   +  0,28 cm, 4,12   +  0,40 cm, 3,50   +  0,49
cm, 3,36   +   0.36 cm. At least for 4 of the vocal types, the
uniform tube model does not provide a satisfactory
explanation for vocal tract resonance.

Figure 1. Formant chart of F1 and F2 in hertz-scale. An
elliptically contoured distribution of the data is shown per
vocal type.

IV. DISCUSSION

Vocalization emitted by ruffed lemurs may be properly
characterised by the first formants, F1 and F2. The
formant chart in Fig. 1 shows a clear separation of the
uttering in 2 broad categories, Agonistic, long distance
calls (Bray, Abrupt Roar, Roar and Wails) and Contact,
intra-interaction calls (Mews, Chatter, Appeasement call).
Shrieks show F1 values similar to the first group of calls
but F2 resembles the intra-group ones. In these attempts
to decode phonation mechanism across different vocal
types in lemurs, we show evidence of the ability in these
species to modify vocal tract length at least between
different vocal types. As reported from studies in human
and in non-human primates [4] [6] [14], there could be a
functional value in providing information on actual (or
even exaggerated) vocalizer body size through acoustic
features of vocalization. This could be the case the
Varecia’s vocal behavior in agonistic and inter-group
contexts. On the other hand, it is extremely interesting to
note appeasement calls, usually emitted by male before
copulation, and chatter, denoting submission, share
similar F1 and F2 values; this fact also occurs in Shrieks,
with the all three showing F1 values between 5000 and
6000 Hz. For Shrieks it is plausible to have a vocal tract
length around 5 cm, and the same is possible for
Appeasement calls and Chatters.
The uniform tube vocal tract model seems to explain
properly only part of the vocalisations emitted by ruffed
lemurs. Recent studies about other non-human primates
show that a 3-segment tube model with variable
diameters is predicting better formant pattern in alarm
calls [15]. The evident shift from the uniform tube model
prediction showed by Mews suggests a different
phonation mechanism. In fact this vocalization is always
emitted with mouth closed.



V. CONCLUSION

The vocal repertoire of the ruffed lemurs shows these
prosimians possess the ability to change the configuration
of the vocal tract. Each vocal type is characterized by the
values of formants F1 and F2 and vocalizations within a
given type usually show similar formants. According to
the model suggested in previous studies, we considered
the primate vocal tract during vocalization as a uniform
(or flared) tube and calculated F1 and F2 as the model
would predict. Predicted formants were plotted against
the one we measured. Agonistic long distance calls,
showing longer vocal tract estimation, are situated along
the line (Fig. 1). Other vocalization, whose contextual use
is different, showed higher values in both formants.
These calls show F1 values higher than predicted and do
not fit the black line in Fig.1.
Prosimian primates diverged from the anthropoid branch
(monkeys, apes, and humans) more than 60 million years
ago and these results suggest that, even in lemurs, the
flared tube model do not provide valid predictions when
applied across the vocal repertoire.
This research was supported by the Università degli Studi
di Torino and by grants to M.G. from the Parco Natura
Viva – Centro Tutela Specie Minacciate.
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Abstract. More objective and automated detection of

respiratory diseases in pig houses should be possible

by on-line sound analysis of cough monitoring. To

develop automatic algorithms for pig cough

recognition, experiments and well-labeled cough data

are needed. The objectives of this article are: (1) to

give a short overview of the attained results in cough

recognition, and (2) to define a methodology to label

the cough data in a pig house. Human observers

labeled coughs by audiovisual observation in a

laboratory test installation with ten pigs during

periods ranging from two days to two weeks.

Simultaneously, sound registration was done with

audio equipment. The sound registrations were

listened to by another observer to compare the

number of coughs in the registration with the number

labeled during the experiment. It was found that

there were underestimations of up to 94% in the

number of coughs. The underestimation in the

number of coughs could be reduced to 10% when the

observer used an additional labeling sound signal on

the scene each time coughing was observed. In

addition, differences were found between two

independent observers scoring pig's coughs in an

audiovisual manner on the scene. For future

research, we suggest an investigation of how an

observer using software labeling could improve the

labeling results.

I. INTRODUCTION

is not only crucial for the animals' health and welfare

[6,7], but also for the consumer because early detection

of animal diseases can reduce residuals of antibiotics in

meat products [8].  Therefore, great effort is spent to the

development and application of sensors and sensing

techniques for diagnosis in livestock farming [9]. Sound

production by animals is a candidate bio-signal that can

be measured easily at a distance and without causing

additional stress. Research has been reported on sound

analysis applied to animal sounds in general

[10,11,12,13,14,15] and to farm animals in particular

[16,17,18,19]. Sounds produced by pigs have been

analyzed in relation with communication [20,21,22,23]

stress [24,25], welfare [10,17], pain [26,27], and health

[19].  Because respiratory diseases cause important

economic losses in pig production [19], several

researchers in recent years have focused on cough

detection algorithms. Examples can be found in the work

of [28,18,13]. A common characteristic of the developed

algorithms is that they are trained based on data sets

(training data sets) in order to classify the measured

sounds (e.g., with neural networks). As a consequence,

the failure or success of the development of an algorithm

depends highly on the quality of the training data set. In

order to quantify the success rate of such algorithms, the

data sets (training as well as validation) are labeled. This

means that the recorded files are listened to by a human

and every sound is marked and described. However, the

person who labels the sound files in the laboratory is not

necessarily the same person who attends the experiments

on the scene (observer). In some cases, e.g.,

measurements at night, an observer is not even present

during the experiments. Because listening to sounds in

general and cough sound files in particular is prone to

subjectivity and human error, questions have arisen

about the accuracy of the classical labeling procedure. In

the reported research, the objective was to analyze the

accuracy of the labeling of cough sounds in pig and to

improve the labeling procedure for cough sounds.

II. METHODOLOGY

Animals and Housing

Throughout the experiments, the same group of ten

piglets (Belgian Landrace) was used. They weighed

about 9 kg at the start of the experiment. The pigs were

housed in a 2  5 m pen with a partially slotted floor that

was situated in the test facilities of the Faculty of

Veterinary Medicine, Université de Liège (Belgium).

Room air temperature was 20°C ±2°C. The ventilation

rate was 8 m
3
 h

-1
 per pig. A light scheme of 16 h of light

and 8 h of darkness was applied. Light intensity was 60

lx during the light period. During the experiments, the

piglets were fed a commercial feed, and water was freely

available.

Digital Sound Recording

The sounds were recorded by using a standard

multimedia microphone (U.S. Blaster, 20 Hz to 20 kHz

frequency response), connected to a sound card (Sound

Models and analysis of vocal emissions for biomedical applications. 4th international workshop. October 29-31, 2005 – Firenze, Italy. 
Edited by C. Manfredi.   ISBN 88-8453-320-1 (online)   © 2005 Firenze University Press



Blaster, 16 bit). The microphone was positioned 0.3 m

above the pen. The sound files were recorded as .wav

files (plain sound file) with a frequency of 22.050 Hz. In

the laboratory, the sound files were listened to by Cool

Edit Pro (version 1.2a).

Experiments

In total, four experiments were carried out. During the

first three experiments (Exp1, Exp2, and Exp3), the pigs'

coughs were scored during one hour a day (0830 h to

0930 h) in the test installation by an observer. The

experiments lasted 22, 19, and 17 days for Exp1, Exp2,

and Exp3, respectively (see table 1). During the

recording time, an observer was present in the test

facility in order to score (count) the coughs. The

recorded sound files were then scored by a second

person in the laboratory by looking at the shape of the

signal (in the time domain) on a computer screen and by

listening to the sound file by headphone at the same time

(i.e., audiovisual scoring).

In the fourth experiment (Exp4), the listening time was

extended to five 1 h periods a day (0830 h to 0930 h,

1330 h to 1430 h, 1830 h to 1930 h, 2330 h to 0030 h,

and 0430 h to 0530 h), during five non-consecutive days

(see table 1). Each time a cough was observed, the

observer produced a typical sound, called a "ping," to

label the sound as a cough. The "ping" was made by

hitting a glass bottle with a metal stick. The hypothesis

was that this typical sound could be easily recognized by

the person scoring the sounds afterwards in the

laboratory.

The first day of Exp4 was carried out with two observers

in the test installation. They could both see and hear the

piglets, but they could not see each other. For this part of

the experiment, no labeling sound ("ping") was used.

Statistics Used

Statistical significance between mean values of coughs

counted was tested using a two-sample t-test. Since the

observations on the two populations of interest were

collected in pairs, a paired t-test was used [29]. In order

to test the hypothesis on the equality of the mean

numbers of coughs counted on the scene and in the

laboratory (see table 1), the data from Exp1, Exp2, and

Exp3 were used. The data from Exp4 were not used for

this analysis since the observations were made in a

different way (labeling sound). For testing the hypothesis

on the equality of the mean numbers of coughs counted

by observer 1 and observer 2 during the first 24 h of

Exp4 (see table 2), the data of the five observation

periods were used.

III. RESULTS AND DISCUSSION

Table 1 gives an overview of the counted coughs in the

four experiments. In this research, we used a total of 83 h

of audiovisual observations of the pigs' coughs.

Table 1. Scoring of the cough sounds by observer present in

the test installation compared with audiovisual scoring

afterwards in the laboratory on the recorded audio file.

From table 1, we see clearly that it is not possible to

make a well-labeled reference data set just by

audiovisual scoring of the recorded files in the laboratory

because underestimations of up to 94% occur. It could be

demonstrated that the average number of coughs counted

by audiovisual scoring in the laboratory was

significantly different from the number of coughs

counted by the observer in the test installation (P < 0.2).

This implies that reliable labeling demands at least one

observer in the pig house, which is a time-consuming

and mentally exhausting job. When the coughs are

marked by a well-recognizable sound ("ping") in the

audio file (Exp4), an underestimation of about 10%

between the different scoring methods was observed.

This deviation could be the result of an over- (or under-)

estimation of the number of coughs in a series (bout).

When, in practice, a bout of coughing occurs, the

observer could only make his labeling sound at the end

of the series.

Another possible problem, which cannot be put easily

into figures, is the conditioning aspect of the labeling

sound. Since the pigs could hear the labeling sound

themselves, it is possible that, by hearing the labeling

sound each time they cough, the pigs get used to it and

after a while begin to cough voluntary to hear the

labeling sound. Studies with humans have shown that

voluntary cough sounds have different features from

"normal" cough sounds [14]. Indications for this

conditioning effect might be found in the fact that the

average counted number of coughs per hour of

observation in Exp4 (with labeling sound) was on

average 10, whereas the average counted number of

coughs (on the scene) per hour for Exp1, Exp2, and

Exp3 (without labeling sound) ranged between 2 and 5.

However, for a more in-depth analysis of the possible

conditioning effects of labeling sounds, more

experiments should be performed. Although the use of a

typical labeling sound reduced the underestimation to

10%, this is not the way a reliable reference data set of

cough sounds can be achieved.

Number of Coughs Counted

by Audiovisual Scoring:Experiment Listening

Protocol

Duration

(days)

On the Scene In the Lab

Under-

Estimation

(%)

Exp1 1 h/day 22 47 18 62

Exp2 1 h/day 19 97 6 94

Exp3 1 h/day 17 43 17 61

Exp4 5 h/day[a] 5 265 239 10
[a] During Exp4, a labeling sound ("ping") was used.
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When looking at table 2, we see that there is a difference

(but not statistically significant) between the two

observers counting the coughs of the same animals at the

same time. This gives rise to the thought that there is no

real completely objective way to label pigs' cough

sounds in practice. We could approach a more objective

labeling by mixed subjective observations, but then we

would need a number of observers in the pig house,

which leads to other problems (e.g., increased costs).

Table 2. Number of cough sounds counted of the same

animals at the same time by two different observers in the

pig house during the first 24 h of Exp4.

Number of Coughs Counted by:No. of

Observations

Time of the

Observation Observer 1 Observer 2

1 0830 h - 0930 h 8 10

2 1330 h - 1430 h 13 12

3 1830 h - 1930 h 7 8

4 2330 h - 0030 h 0 0

5 0430 h - 0530 h 12 7

An alternative to the auditory labeling of cough sounds

is software labeling. While recording the sounds in a pig

house on a portable computer, we can run an extra

program. Whenever a cough sound is heard, a key on the

portable computer is pressed, and the program keeps

record of the relative time in the recorded audio file. This

way, we could get around the problem that pigs might

cough to hear the label sound, and we can label each

cough, even when coughs come in a series.

In general, it is not easy to reliably distinguish between

different animal vocalizations (classification). In order to

solve this problem, several authors used signal analysis

techniques in combination with classification procedures

to identify individual vocalizations in a more objective

way [21,25,27]. They used classification techniques

based on training data sets. Most of the time, individual

sounds are labeled by ethologists listening to the

recorded data in the laboratory (e.g., [16,17]). Due to

(mechanical) background noises, it is not always easy to

reliably label individual sounds [16]. As described in the

reported research, labeling individual cough sounds of

pigs can be performed most reliably by at least one

observer on the scene in the pig house. However, in most

cases described in the literature, labeling was performed

on recorded sound data, and no indication is given of the

accuracy of the labeling procedure compared with

labeling results of observers during the experiment.

Accuracy of the labeling procedure is sometimes

expressed as the correlation between the scores of two

independent persons listening to the recorded sound data.

Weary and Fraser [17] used this method for labeling the

calls of piglets at weaning and found a correlation

between two independent scorers of 0.98. In our

experiments, the correlation between the scores of two

independent observers in the pig house was 0.85.

All together, we can state that labeling individual sounds

in an audio file, to use as a reference set in algorithm

training, is a difficult task and must be done very

carefully.

IV. CONCLUSION

With the rising interest in animal vocalizations as a

valuable biological response variable, there is a growing

need for good labeling methods. Cough recognition

algorithms cannot satisfy in-field situations when they

are not developed, or trained, by a stable, reliable

reference set.

Audiovisual observation on a recorded pig sound file is

clearly insufficient for accurate labeling of cough

sounds. Up to 94% underestimation of the number of

cough sounds was scored in an audiovisual way on the

computer. Audiovisual observation of the animal on the

scene, together with a typical labeling sound, reduced the

underestimation to 10%. Since the labeling sound can

possibly stimulate the pigs to cough (due to

conditioning), this method is probably not suited for

generating high-quality data sets (for training and

validation). Therefore, we suggest performing additional

research to test alternative labeling methods. One of the

possible alternatives is to put at least one audiovisual

observer in the pig house with a portable computer.

While recording the sound file, another program could

keep track of the elapsed time. When a cough sound is

heard, the observer could press a key on the portable

computer. As a result, we could get a sound file and a

relative time for all cough sounds during the period of

observation, without influencing the animals with

labeling sounds.

There were also differences between two independent

observers who labeled pigs' cough sounds in an

audiovisual way on the scene in the pig house.
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the thyroid and cricoid cartilages were converted into 
the translation of the cricothyroid joint, as shown in 
Table 2.
  The translation of the left cricothyroid joint are 0.5, 

-1.2, and 0.0 mm in the x-, y-, and z-axes, respectively. 
In the same way, the translations of the right cricothyroid 
joint are 0.4, -0.5, and 0.0 mm in the x-, y-, and z-axis, 
respectively.
  The  anteroposterior translation (y-axis) of the 

cricothyroid joint was found to be the largest (-1.2 mm), 
the vertical translation (x-axis) of the cricothyroid joint 
was found to be of some extent (0.5 mm), and the lateral 
translation (z-axis) of the cricothyroid joint was found 
to be zero (0.0 mm). These results apparently show that 
both translation and rotation of the cricothyroid joint 
contribute to stretch the vocal folds, as shown in Fig. 5. 
These results agree with previous studies [1,2,3, and 7], 
not [4,5].
  Translation of the cricothyroid joint is caused by 

forward movement of the thyroid cartilage. This 
joint action has left/right asymmetry, and horizontal 
translation was larger than vertical translation. Although 
the contribution of the vertical translation to F0 control 
is still unclear, this action is presumably caused by the 
constriction of the cricothyroid muscle to approximate 
the thyroid and cricoid cartilage for stretching the vocal 
folds.

IV. CONCLUSION

The action of the cricothyroid joint was observed by 
estimating the displacement and angular changes of the 
laryngeal cartilages using high-resolution MRI and a 3D 

pattern matching method.
(1) The movement of the thyroid and cricoid cartilages 

had left/right asymmetry, suggesting six degrees 
of freedom in the motion of thyroid and cricoid 
cartilages.

(2) The angular change of the thyroid cartilage was in 
the same direction as the cricoid cartilage, but left-
right and front/back displacement was inconsistent 
between the thyroid and cricoid cartilages.

(3) The anteroposterior translation of the cricothyroid 
joint was 1.2 mm, and vertical translation was 0.5 mm 
in the vertical direction.

ACKNOWLEDGEMENTS
We would like to give special thanks to the members of 

the ATR Brain Activity Imaging Center. This research 
was supported in part by the National Institute of 
Information and Communications Technology. This 
work was also supported in part by a Grant-in-Aid for 
Scientific Research No. 16791035, Japan Society for the 
Promotion of Science. 

REFERENCES
[1] Fink, R. B., and Demarest, R. J. (1978). Laryngeal 

Biomechanics. Harvard University Press.
[2] Vilkman, E. A., Pitkanen, R., and Suominen, 

H. (1987). Observation on the structure and the 
biomechanics of the cricothyroid articulation. Acta 
Oto-laryngol, 103, pp. 117-126.

[3] Sonninen, A. (1956). The role of the external 
laryngeal muscles in length-adjustment of the vocal 
cords in singing. Acta Oto-laryngol, 130, pp. 9-97.

[4] Mayet, A. and Mundnich, K. (1958). Beitrag zur 
anatomie und zur funktion des M. cricothyroidus und 
der cricothyreoidgelenke, Acta Anat. 33, pp.  273-288.

[5] Maue, W. M. (1971). Cartilages and Ligaments of 
the Adult human larynx, Arch. Otolaryngol, 94, pp. 
432-439.

[6] Selbie, W. S., Gewalt, S. L., and Ludlow, C. (2002). 
Developing an a anatomical model of the human 
laryngeal cartilages from magnetic resonance imaging. 
J. Acoust. Soc. Am, 112(3). pp. 1077-1090.

[7] Takano, S., Honda, K., Masaki, S., Shimada, Y., and 
Fujimoto, I. (2003). Translation and rotation of the 
cricothyroid joint revealed by phonation-synchronized 
high-resolution MRI. Proc. EuroSpeech. Geneva, pp. 
2397-2400.

[8] Masaki, S., Tiede, M., and Honda, K. (1999). MRI-
based speech production study using a synchronized 
sampling method, J. Acoust. Soc. Jpn. (E). 20(5). pp. 
375-379.

Fig 5. Actions of the cricotyroid joint beween low and 
high F0.

rotation
(7.0 degrees)

horizontal translation
(left: 1.2 mm
right: 0.5 mm)

vertical translation
(left: 0.5 mm
right: 0.4 mm)

144 MAVEBA 2005




