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Foreword

It is an honor and a pleasure to write the foreword to this overview of beam-
based methods for improving the performance of particle accelerators.

The timing of this book is excellent. The new generation of particle acceler-
ators now proposed or in construction have taken full advantage of the latest
improvements in accelerator design and engineering, including magnet con-
struction, survey and alignment, vacuum technology, RF, beam diagnostics,
and lattice design, both linear and nonlinear. The result is accelerator perfor-
mance pushed well beyond that which would have been reasonable to pursue
only a decade ago. Advanced techniques in beam-based accelerator control will
be required to commission and realize the full potential of these advanced new
machines. This book gives a review of experimental techniques used to find and
correct errors and maximize accelerator performance. These techniques range
from well-known, basic measurements to the latest innovations in beam-based
optimization and machine learning. The focus is on algorithms that efficiently
get results and have been proven to make measurable improvements to the
performance of existing accelerators. This book provides an essential guide for
the physicists who commission and operate these accelerators.

Dr. Xiaobiao Huang is well-suited to present this material. I have had the
good fortune to work with Dr. Huang for the past 13 years, since he came to
the Stanford Linear Accelerator Center to work at SSRL early in his career
as an accelerator physicist. He had already established a name for himself
in developing beam-based accelerator control techniques in his previous work
as a graduate student with S.Y. Lee at Indiana University and as a research
associate at Fermilab, in particular for his work using independent compo-
nent analysis (ICA) to debug accelerator linear optics. Since then, he has
made many additional important contributions, including improving the or-
bit response matrix analysis (LOCO) so it produces more stable and reliable
results for fitted accelerator linear optics; developing a number of beam-based
optimization algorithms, including robust conjugate direction search (RCDS),
that have succeeded in improving nonlinear optics; and, most recently, ap-
plying machine learning techniques for online accelerator optimization. Dr.
Huang’s work brings the full power of the latest computational algorithms
to accelerator optimization. His combined expertise in experimental measure-
ment, mathematical analysis, and computer programming have naturally led
to his playing a central role in this rapidly developing field.

James Safranek

ix



http://taylorandfrancis.com


Preface

Particle accelerators have played a critical role in the history of scientific dis-
covery. They provide a controlled means to probe the atomic and sub-atomic
world by boosting charged particles to high energies and colliding them with
a fixed target or another beam of charge particles. Within the last 90 years,
accelerators with ever higher energy reach were built, enabling the discoveries
of a series of fundamental particles and leading to the establishment of the
Standard Model. Accelerator development in the energy frontier culminated
in recent years, with the completion of the Large Hadron Collider (LHC) and
the discovery of the Higgs boson.

On a different front, accelerators have been used to generate intense X-
rays for the studies of atomic and molecular structures or processes in ordinary
matter. In these accelerators, which are called light sources, high energy elec-
tron beams, under the forces of strong magnetic fields, emit highly directional,
high flux photon beams. Research conducted at light source facilities is critical
to solving many of the challenges that the human society faces today in, for
example, the environment, energy, and medicine.

High energy particle accelerators in high energy physics or light source
applications are mostly synchrotrons or linacs. Both synchrotrons and linacs
are complex and delicate machines. The geometric footprint of a synchrotron
or a linac can vary from meters to kilometers, while the required precision of
beam control is typically sub-micron. A machine is often composed of hun-
dreds or thousands of components, such as magnets, RF cavities, vacuum
pumps, kickers, and diagnostic pick-ups, all of which impact the beam mo-
tion, either actively or passively. An accelerator works properly only when all
of its components work precisely and cooperatively.

While accelerators are always built according to well studied design mod-
els, it is unrealistic to expect a new accelerator to realize the design perfor-
mance when it is first turned on. During the commissioning period, adjust-
ments of the machine setting have to be made to achieve the desired high
performance. During the lifetime of an accelerator, when the machine config-
uration is intentionally modified, or if the environment conditions change, the
machine setting also has to be adjusted accordingly.

The machine setting adjustments are necessary because the actual accel-
erator is different from the design model in many ways. Manufacturing errors,
calibration errors, alignment errors, power supply fluctuation, etc., affect ev-
ery component of the machine. Human errors and component malfunctions

xi



xii � Preface

can also occur, resulting in, for example, cable swaps, reversed polarities, or
short circuits. Sometimes these errors are very difficult to detect and correct.
On the other hand, the design model almost always employs some simplifi-
cations in the treatment of the physical processes involved and makes some
omissions of the less significant effects. The small errors on the many indi-
vidual components can add up to cause substantial differences to the beam
dynamics behavior between the model and reality.

Beam-based methods are essential to detect the errors in the machine
and to suggest the adjustments necessary to achieve high performance. These
methods can be classified into two categories: beam-based correction and beam-
based optimization. The correction methods rely on the diagnostics to probe
the behaviors of the machine and advanced data analysis techniques to extract
useful information. The optimization methods, however, treat the machine as
a black-box; they probe the parameter space by trying out new settings and
use the result to guide the search for the optimal setting.

In this book we will systematically examine the two beam-based ap-
proaches for accelerators. Part I aims at providing the theoretical background
for the discussion of accelerator operation challenges. Part II of the book
is dedicated to beam-based correction. It covers orbit correction, linear op-
tics measurement and correction, and linear coupling and nonlinear dynamics
correction. Part III is dedicated to beam-based optimization, which includes
general considerations, optimization algorithms, and examples of online opti-
mization experiments.

Beam-based methods are an extensively researched area with a long his-
tory. This book is focused on the techniques that are deemed useful in practical
accelerator operations, instead of the historical development of the methods.
Although I tried to properly reference past works on the topics, inevitably
some may have been inadvertently neglected. I apologize for any such cases.

I would like to take this opportunity to thank many colleagues who helped
to make this work possible. My PhD advisor, Prof. S. Y. Lee, provided wise
guidance in my early research that led me into the study of beam-based meth-
ods. Eric Prebys, Ray Tomlin, and Chuck Ankenbrandt supported my work
at Fermilab. At SLAC, Dr. James Safranek has been a constant source of
support. I benefited greatly from him through many inspiring discussions.
Bob Hettel, Jim Sebek, and Jeff Corbett have also been very helpful. Special
thanks go to SPEAR3 operators for their support during many accelerator
physics experiments. Xi Yang of BNL provided BPM data from NSLS-II that
are used in Chapters 5 and 6. Jim Sebek read Chapters 1 and 2 of the draft
and provided valuable editing suggestions.

Last but not least, I would like to thank my wife, Suyan Ling, for her
unwavering support on the home front.

Xiaobiao Huang
Palo Alto, CA
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A particle beam consists of particles that move roughly with the same speed
and in the same direction within a finite cross-section. In an accelerator, elec-
tromagnetic fields of various distributions in space and time are placed along
the path of the beam through the accelerator components to guide the beam
motion, change the beam energy, and provide focusing. Beam motion is also
affected by the electromagnetic fields generated by the beam itself, directly
or through the interactions with the environment. The study of beam motion
under the influence of electromagnetic fields in accelerators is called beam
dynamics.

It is necessary to understand the basics of beam dynamics in linacs and
synchrotrons as it is the foundation for the discussions of the operation re-
quirements and the methods of fulfilling the requirements through beam-based
methods. Only single particle dynamics is covered here. The transverse dy-
namics describes beam motion in its deviation from the design orbit in the
plane perpendicular to the design orbit. The longitudinal dynamics describes
the motion in the direction along the design orbit, which involves oscillations
of beam energy and arrival time.
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4 � Beam-based Correction and Optimization for Accelerators

The transverse motion of a beam in accelerators is determined by the
magnetic fields in the various types of magnets. The magnets along the beam
path in the accelerator constitute its lattice. Dipole magnets in the lattice
determine the orbit geometry. Transverse motion is described by the deviation
of particle motion from the reference orbit, which is typically the design orbit.
Imperfections in the accelerator often cause the beam in an actual machine to
travel on an orbit different from the reference orbit. Correction of the beam
orbit toward the ideal orbit is called orbit steering or orbit correction.

Particles in a beam tend to diverge from each other as they travel along
the orbit due to their slightly different directions of motion. If no intervention
is taken, the transverse beam size will indefinitely grow, causing beam loss
on the vacuum chamber. Quadrupole magnets provide a magnetic field that
varies linearly with transverse position. Such a field bends the stray particles
back toward the design orbit as particles with larger excursions receive larger
correcting kicks. This is called focusing. However, a quadrupole magnet that
focuses the beam in the horizontal direction necessarily defocuses it in the
vertical plane and vice versa. To keep the beam focused in both transverse
directions, quadrupole magnets with opposite polarities are placed alternately
along the beam path. This is the alternating gradient focusing scheme, also
called the strong focusing scheme. A properly designed strong focusing scheme
maintains the orbit stability and keeps a compact beam size.

Steering and focusing are two basic requirements for the transverse beam
motion. Magnets responsible for steering and focusing, namely dipole and
quadrupole magnets, have magnetic fields that are constant or linear with
the transverse position coordinates. The beam motion under such fields is
linear. With a proper focusing scheme, the periodic linear motion in a circular
accelerator is stable. However, synchrotrons and, in particular, storage rings,
typically need sextupole magnets to correct the focusing errors for particles
with energy errors (referred to as chromatic errors). The magnetic fields in
sextupoles have nonlinear dependence on transverse position coordinates and
hence the periodic motion becomes nonlinear. The nonlinearity causes the
motion to be unstable for particles with sufficiently large offsets from the
design orbit. Ensuring a large stable area is another critical requirement for
the transverse motion in circular accelerators.

In this chapter we will briefly introduce the theory of transverse and lon-
gitudinal beam motion in accelerators.

1.1 BEAM MOTION IN MAGNET LATTICES
1.1.1 Hamiltonian and the equations of motion
In an accelerator the particles in a beam are expected to closely follow the
design path. It is the deviations of the particles from the design path that are
of our concern. Therefore, typically we adopt a moving curvilinear coordinate
system to describe the particle motion, using the design orbit as the reference



Basics of beam dynamics � 5

x

y

s

o

X

Y

Z

O

r0(s)

Figure 1.1 The curvilinear coordinate system for the description of beam motion.

orbit and the deviations from the reference orbit to measure the positions
and directions of the particles. This coordinate system is called Frenet-Serret
coordinate system, which is illustrated in Figure 1.1.

The design path is represented by a curve, r0(s), in the global Cartesian
coordinate system (O-XY Z), where s is the path length. At any point along
the design path, the position of a particle is measured in the local coordinate
system, o-xys, with the unit vectors along x, y, and s directions given as
follows: ŝ is the tangent unit vector of the design path, x̂ is the normal unit
vector, and ŷ is the cross product of ŝ and x̂. x and y are the two transverse
directions and s is the longitudinal direction. Usually the design path is a
planar curve on the horizontal plane, hence x is referred to as the horizontal
direction and y the vertical direction. The design path could consist of sections
that bend in the vertical direction or in a plane that is at an arbitrary angle
with the horizontal plane. In such cases, the local coordinate system can rotate
about the s direction at the transition points in and out of those sections.

In general, the motion of charged particles in external electromagnetic
fields is governed by the Hamiltonian [68]

H = qΦ + c
√
m2c2 + (P− qA)2, (1.1)

where c is the speed of light in vacuum, q and m are the charge and mass of the
particle, respectively, Φ and A are the scalar and vector potentials of the fields,
respectively, P = p+qA is the canonical momentum, and p is the mechanical
momentum. The transverse motion is typically determined by static magnetic
fields, for which Φ = 0 and ∂A

∂t = 0. In principle, after the vector potential is
specified over the space, the motion of a particle is completely determined by
the initial conditions of the position and the canonical momentum.
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It is customary to change the coordinates from the global system to the
local system through a series of canonical transformations and a change of free
variable from the time t to the path length s. The details of the procedure are
omitted here; interested readers can find the details in Ref. [121]. A reference
particle is assumed to travel on the reference path, with a constant canonical
momentum, P0, and its arrival time at location s is t0(s). The dynamical
system is measured with canonical coordinates (x, px, y, py, ∆z, δ), with the
transverse momentum coordinates normalized by the canonical momentum of
the reference particle

px =
Px
P0
≈ x′(1 + δ), py =

Py
P0
≈ y′(1 + δ), (1.2)

where Px are Py projections of the canonical momentum, P, on the x and y

directions, respectively, x′ = dx
ds , y′ = dy

ds , and the longitudinal coordinates are

∆z = −β0c(t− t0), δ =
P − P0

P0
, (1.3)

where β0c is the velocity of the reference particle. Coordinate ∆z is the dis-
tance between the particle and the reference particle, with ∆z < 0 indicating
that the particle is behind the reference particle.

The new Hamiltonian in these coordinates is

H = −(1 + hx)

√
(1 + δ)2 − δ2

γ2
0

− (px − ax)2 − (py − ay)2

−(1 + hx)as + (1 + δ), (1.4)

where h = 1
ρ is the local curvature of the reference path, ρ is the bending

radius, γ0 is the Lorentz energy factor for the reference particle, and

axys ≡
qAxys
P0

, (1.5)

are the components of the vector potential on the x, y, and s directions nor-
malized by the magnetic rigidity of the reference particle, Bρ = P0

q .

The Hamiltonian in Eq. (1.4) is exact, but may not be easy to solve. Since
in reality the quantities px,y and ax,y are often small, the square root in the
equation can be expanded in a Taylor series, keeping only the leading terms.

Small px and py correspond to the para-axial condition because
√
p2
x + p2

y is

approximately the angle between the direction of motion and the reference
path. In addition, the magnetic fields in an accelerator are typically in the
transverse plane, which can be derived from vector potentials with only the
As component, i.e., ax = ay = 0 can be assumed. Under these conditions, the
Hamiltonian can be significantly simplified, to the form

H = (1 + hx)

(
p2
x + p2

y + δ2/γ2
0

2(1 + δ)
− as

)
− hx(1 + δ). (1.6)
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With the Hamiltonian in Eq. (1.6) and a vector potential as(x, y, s) given in
the local coordinate system, the beam motion can be determined.

The equations of motion for the transverse plane can be derived from the
Hamiltonian, using Hamilton’s equations

x′ =
∂H

∂px
, p′x = −∂H

∂x
, y′ =

∂H

∂py
, p′y = −∂H

∂y
, (1.7)

from which we obtain

x′′ = − (1 + hx)2

1 + δ

By
Bρ

+ h(1 + hx), (1.8)

y′′ =
(1 + hx)2

1 + δ

Bx
Bρ

, (1.9)

where ′ and ′′ denote taking the first and second order derivatives with respect
to s, respectively, and Bx,y are magnetic field components. In the derivation
we have used the formulas to calculate the magnetic fields for the curvilinear
coordinate system

Bx
Bρ

=
∂

∂y
[as],

By
Bρ

= − 1

1 + hx

∂

∂y
[(1 + hx)as], (1.10)

which are applicable when ax = ay = 0 (see the next section).
The motion in the longitudinal plane can be derived from

z′ =
∂H

∂δ
, δ′ = −∂H

∂z
, (1.11)

which give

z′ ≈ (1 + hx)

(
−x
′2 + y′2

2
+

δ

γ2
0

(1− 3

2
δ)

)
− hx, (1.12)

and δ′ = 0. The momentum coordinate is a constant because the Hamiltonian
Eq. (1.4) does not contain any time dependent electromagnetic fields.

1.1.2 Magnets and magnetic fields
In the current free region of a static magnetic field, the vector potential satisfies
the Laplace equation, ∇2A = 0 (using the Coulomb gauge ∇ · A = 0). At
locations where the reference path is a straight line (i.e., h = 0), the local
coordinate system is Cartesian, in which case ∇2As = 0. When there are only
transverse magnetic fields, a solution with Ax = Ay = 0 can be found, for
which ∂As

∂s = 0 under the Coulomb gauge condition. Therefore, we have

∇2
⊥As =

∂2As
∂x2

+
∂2As
∂y2

= 0. (1.13)
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The solutions to Eq. (1.13) can be expanded in the form

As = −Re
∞∑

n=0

Bn + iAn
(n+ 1)!

(x+ iy)n+1, (1.14)

where Re indicates taking the real part. The corresponding magnetic field can
be calculated from As with B⊥ = ∇⊥ ×Asŝ, which is given by

By + iBx =
∞∑

n=0

Bn + iAn
n!

(x+ iy)n, (1.15)

where the terms corresponding to each integer, n, describe the fields for the
n’th multipoles, with coefficient An for the skew multipole and Bn for the
normal multipole. The vector potentials and magnetic fields of a few low order
multipole components are listed below,

Horizontal dipole (n = 0):

As = −B0x, Bx = 0, By = B0 (1.16)

Vertical dipole (n = 0):

As = A0y, Bx = A0, By = 0 (1.17)

Normal quadrupole (n = 1):

As = −B1
x2 − y2

2
, Bx = B1y, By = B1x (1.18)

Skew quadrupole (n = 1):

As = A1xy, Bx = A1x, By = −A1y (1.19)

Normal sextupole (n = 2):

As = −B2
x3 − 3xy2

6
, Bx = B2xy, By = B2

x2 − y2

2
(1.20)

Skew sextupole (n = 2):

As = A2
3x2y − y3

6
, Bx = A2

x2 − y2

2
, By = −A2xy (1.21)

The multipole expansion in Eqs. (1.14-1.15) is valid for magnets with a
straight geometry (h = 0), including multipoles with n ≥ 1 (quadrupoles and
higher order multipoles) and orbit corrector magnets (weak dipole magnets
that do not change the design path). However, the straight geometry condition
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(a)
Dipole

(b)
Quadrupole

Figure 1.2 Magnetic fields in dipole and quadrupole magnets.

does not apply to dipole magnets in which the reference orbit is curved. With
nonzero curvature (|h| > 0), the multipole expansion can be derived from the
Laplace equation in the curvilinear system. If there are only vertical fields on
the midplane (y = 0), which is given by

By(x) = B0 +B1x+B2
x2

2!
+ · · · , (1.22)

the vector potential As takes the form [67]

As = −B0

(
x− hx2

2(1 + hx)

)
−B1

(
1

2
(x2 − y2)− h

6
x3 + · · ·

)

−B2

(
1

6
(x3 − 3x2y) + · · ·

)
+ · · · , (1.23)

and Ax = Ay = 0. A pure dipole consists of only the B0 term, while a
combined-function dipole magnet has both B0 and B1 terms.

The magnetic field distributions in the transverse plane in dipole and
quadrupole magnets are illustrated in Figure 1.2.

1.2 TRANSVERSE DYNAMICS
1.2.1 Beam motion in linear components
Knowing the magnetic fields, the particle motion through an accelerator com-
ponent can be solved from Eqs. (1.8-1.9) and Eq. (1.12). The equations of mo-
tion in three types of components - drift space, dipole magnet, and quadrupole
- are linear and hence can be readily solved. The motion in these components
determines the linear optics of the accelerator beam line.
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Drift space: In a drift space, h = 0 and Bx = By = 0. The equations of
motion in the transverse directions are reduced to

x′′ = 0, y′′ = 0. (1.24)

The solution is given by the initial conditions,

x(s) = x0 + x′0s, x′(s) = x′0, (1.25a)

y(s) = y0 + y′0s, y′(s) = y′0, (1.25b)

where subscript 0 indicates values at the entrance face. The phase space co-
ordinates of a particle at the exit face, X = (x, x′, y, y′)T (with T denoting
the transpose for a vector or matrix), are related to the values at the entrance
face, X0 = (x0, x

′
0, y0, y

′
0)T , through a linear transformation

X = MX0, (1.26)

where matrix M is referred to as the transfer matrix for the element. For the
drift space with length L, the transfer matrix is

Mdrift =




1 L 0 0
0 1 0 0
0 0 1 L
0 0 0 1


 . (1.27)

In a drift space, the particle simply moves along a straight line specified by its
initial direction. Particles with different initial angle coordinates will diverge
in the position coordinates as they travel in a drift space.

Dipole magnet: In a dipole magnet, the equations of motion can be
derived from the Hamiltonian Eq. (1.6) and the vector potential Eq. (1.23).
Typically the reference orbit in the dipole magnet is the circular orbit defined
by the dipole component, B0, for which the curvature satisfies h = b0 ≡ B0

Bρ .
In the case of a combined-function dipole magnet with quadrupole component
B1, the equations of motion to the linear order of the coordinates are

x′′ + (b1 + h2)x = hδ, y′′ − b1y = 0, (1.28)

where b1 ≡ B1

Bρ is the normalized gradient. Labeling Kx = b1 + h2 and Ky =

−b1, the solution to Eq. (1.28) can be written in the matrix form as

X(s) = M(s|0)X0 + δd(s), (1.29)

where M(s|0) is the transfer matrix from the entrance point (s = 0) to point
s, and δd(s) is the particular solution that accounts for the inhomogeneous
term hδ in Eq. (1.28). The term δd(s) represents the trajectory deviations for
off-energy particles, which give rise to dispersion.
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For a pure dipole, b1 = 0, and the solution for the transfer matrix is

M(s|0) =




cos θ ρ sin θ 0 0
− sin θ

ρ cos θ 0 0

0 0 1 ρθ
0 0 0 1


 , (1.30)

d(s) =
(
ρ(1− cos θ) sin θ 0 0

)T
, (1.31)

where θ = hs, and the bending radius is ρ = 1/h. The pure dipole magnet
provides horizontal focusing and behaves like a drift space in the vertical plane.

For the case with Kx > 0 and Ky < 0, the transfer matrix and the partic-
ular solution are given by

M(s|0) =




cos kxs
sin kxs
kx

0 0

−kx sin kxs cos kxs 0 0

0 0 cosh kys
sinh kys
ky

0 0 ky sinh kys cosh kys


 , (1.32)

d(s) =
(

1−cos kxs
k2xρ

sin kxs
kxρ

0 0
)T

, (1.33)

where kx =
√
Kx and ky =

√
−Ky. In the above case, the magnet focuses in

the horizontal plane and defocuses in the vertical plane. The solution for the
case with Kx < 0 and Ky > 0 is similar; the magnet now defocuses in the
horizontal plane and focuses in the vertical plane.

In the case −h2 < b1 < 0, both Kx and Ky are positive; hence the dipole
magnet provides focusing for both transverse planes. It is customary to define
the focusing index n = −b1ρ2. Then the equations of motion become

x′′ + (1− n)h2x = 0, y′′ + nh2y = 0. (1.34)

This is the case of weak focusing. Because the transverse beam size in weak-
focusing accelerators tends to be very large, modern accelerators usually em-
ploy the strong focusing scheme instead.

The magnetic field in the transition region at the edges of a dipole magnet
can provide additional focusing or defocusing if the beam orbit is not perpen-
dicular to the magnet face. If the reference orbit enters the dipole magnet with
an angle, δ1, with respect to the normal of the entrance face of the magnet,
as illustrated in Figure 1.3, a particle that comes to the entrance point of
the reference orbit with a horizontal offset x will see more bending (than the
reference particle) if x < 0 and less bending if x > 0. Therefore the entrance
edge gives the beam defocusing in the horizontal plane.

The magnetic field has a component, BZ ∝ y, in the direction normal to
the entrance face in the transition area in which the bending field By goes
from zero to full strength, as is required by the condition ∂BZ

∂Y − ∂BY
∂Z = 0. This

BZ field has a projection onto the x direction, which gives the beam vertical
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Z

X

δ1 δ2

x

Figure 1.3 Edge focusing at the entrance and exit faces of a dipole magnet. The y

and Y directions point out of the paper.

focusing. The edge focusing effect at the entrance face is represented by the
transfer matrix

X+ = MX−, M =




1 0 0 0
h tan δ1 1 0 0

0 0 1 0
0 0 −h tan δ1 1


 , (1.35)

where the subscripts + and − stand for the coordinates before and after the
edge, respectively.

Edge focusing at the exit face is similar. The transfer matrices are the
same as in Eq. (1.35), except with δ2 substituted for δ1, when the definition
of the entrance and exit angles follow the convention in Figure 1.3.

Quadrupole magnet: Including the effect of energy errors, the equations
of motion in a quadrupole magnet are

x′′ +
b1

1 + δ
x = 0, y′′ − b1

1 + δ
y = 0. (1.36)

Defining K = b1
1+δ , the solution for the case K > 0 is represented by the

transfer matrix

MFQ(s) =




cos
√
Ks sin

√
Ks√
K

0 0

−
√
K sin

√
Ks cos

√
Ks 0 0

0 0 cosh
√
Ks sinh

√
Ks√

K

0 0
√
K sinh

√
Ks cosh

√
Ks


 .

(1.37)

The transfer matrix for the case with K < 0 can be obtained by swapping the
2-by-2 blocks for the horizontal and vertical planes and replacing K with |K|.

Typically for a quadrupole magnet
√
|K|L is much less than unity. For

example, in the SPEAR3 storage ring, the typical value of
√
|K|L for QF

magnets is about 0.45. For the purpose of a rough estimate, the transfer
matrix is often approximated with the thin-lens limit, by taking

√
|K|L→ 0
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Figure 1.4 Illustration of a thin-lens focusing quadrupole which (a) focuses in the

horizontal plane (b) and defocuses in the vertical plane.

while keeping KL constant. The quadrupole transfer matrix for K > 0 in the
thin-lens limit is

M(K > 0) =




1 0 0 0
− 1
f 1 0 0

0 0 1 0
0 0 1

f 1


 , (1.38)

with the focal length f = 1
KL . Across a thin-lens quadrupole, the position

coordinates do not change, but the angle coordinates will change according to
the initial position coordinates. For the K > 0 case,

∆x′ = −x
f
, ∆y′ =

y

f
, (1.39)

which indicates that the quadrupole focuses the beam in the horizontal plane
and defocuses the beam in the vertical plane. This is the case illustrated in
Figure 1.4. By convention, a quadrupole that focuses in the horizontal plane
is called a focusing quadrupole. Conversely, when K < 0, the quadrupole
defocuses on the horizontal plane and is called a defocusing quadrupole.

1.2.2 Transfer matrix and transfer map
Drift spaces, dipole magnets, and quadrupole magnets are the basic building
blocks of accelerator lattices. The placement of these components in a beam
line determines the transformation of the phase space coordinates to the linear
order. The properties of such linear transformations are called the linear optics
of the beam line. Transfer matrices are a basic representation of linear optics.

The transfer matrix between two points in the lattice, points 0 and n, re-
lates the phase space coordinate vectors at the two points through the equation

Xn = M(n|0)X0. (1.40)
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Alternatively, Xn can be obtained by successively applying the transfer ma-
trices of accelerator sections between the two points, i.e.,

Xn = Mn · · ·M2M1X0, (1.41)

where point 0 is at the entrance of section M1 and point n is at the exit of sec-
tion Mn. Therefore, the transfer matrix between two points can be calculated
by concatenating the transfer matrices of the components in between,

M(n|0) = Mn · · ·M2M1. (1.42)

The transfer matrix is the Jacobian matrix of the canonical transformation
that relates the phase space coordinate vectors at the two points, i.e.,

M(n|0)ij =
∂(Xn)i
∂(X0)j

. (1.43)

It is well known that the Jacobian matrix of a canonical transformation is
symplectic, which means it satisfies the condition

MTSM = S, (1.44)

with the anti-symmetric matrix for the case of 2-dimensional motion given by

S =

(
S2 0
0 S2

)
, S2 =

(
0 1
−1 0

)
. (1.45)

The symplectic condition, Eq. (1.44), requires the determinant of the trans-
fer matrix to be unity,

det M = 1. (1.46)

This indicates that the volume enclosed by a surface in the phase space will
be preserved as the surface evolves according to the Hamiltonian.

For a full description of the transverse motion, 4 × 4 transfer matrices
are used for the transformation of coordinates (x, x′, y, y′). However, when
there is no coupling between the horizontal and vertical planes, the 2× 2 off-
diagonal blocks of the transfer matrix are zeros. In this case, the horizontal
and vertical motion are decoupled and can be described separately, with the
top and bottom 2 × 2 diagonal blocks, respectively. These transfer matrices
also satisfy the symplectic condition. It can be shown that a 2 × 2 matrix is
symplectic if and only if its determinant is unity.

The transfer matrix does not describe the effects of the nonlinear fields in
the accelerator elements. Including the nonlinear motion, the general effect of
an element or an accelerator section can be represented by a map between the
phase space coordinates at the entrance and exit faces

Xf = M(Xi) ≡MXi, (1.47)
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where MXi denotes the full map, not just the transfer matrix. The map can
be expanded into a Taylor series

Xf = ∆X0 + RXi + XT
i TXi + · · · , (1.48)

where ∆X0 is a constant coordinate shift that represents the accumulated
effects of dipole kicks throughout the section, R is the linear transfer matrix,
and T is the second order map. It is conventional to denote the Taylor map
up to the second order the TRANSPORT map [17].

The map of a composite section can be obtained by concatenating the map
of the individual elements sequentially.

1.2.3 Strong focusing principle and orbit stability
As pointed out previously, a quadrupole magnet always focuses in one trans-
verse plane and defocuses in the other. This is unlike a convex lens for light
optics, which focuses simultaneously in both transverse planes. Therefore, ac-
cording to the strong focusing principle, focusing and defocusing quadrupoles
are alternately placed along the beam path to keep the particle beam focused
in both planes.

Alternate focusing is often implemented with repetitive, identical magnet
lattice cells. The FODO cell is a basic cell structure, which consists of one fo-
cusing quadrupole and one defocusing quadrupole, separated by a drift space,
as illustrated in Figure 1.5. The transfer matrix for the cell, starting from the
center of the focusing quadrupole (QF) to the center of the next QF, can be
calculated using the transfer matrices of the individual components

MF = M 1
2 QFMDMQDMDM 1

2 QF, (1.49)

where subscript “D” stands for the drift space. Using the thin-lens approx-
imation for the quadrupoles and assuming the defocusing quadrupole (QD)
and the QF have the same focal length, the horizontal transfer matrix for the
FODO cell at the QF center is found to be

Mx,F =

(
1 0
− 1

2f 1

)(
1 L
0 1

)(
1 0
1
f 1

)(
1 L
0 1

)(
1 0
− 1

2f 1

)

=


 1− L2

2f2 2L
(

1 + L
2f

)

− L
2f2

(
1− L

2f

)
1− L2

2f2


 , (1.50)

where L is half the length of the cell and f is the focal length.
The transfer matrix for the vertical plane at the QF center can be obtained

from Eq. (1.50) by reversing the sign of f . It can be seen that if 2f is consider-
ably larger than L, the FODO cell provides focusing in both transverse planes
since the (2, 1) elements of the horizontal and vertical transfer matrices will
both be negative, while the diagonal elements remain positive.
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Figure 1.5 Illustration of the strong focusing principle with FODO cells.

The stability of beam motion is an important requirement for the design
of periodic lattices. For a stable lattice, a particle launched in the vicinity of
the phase space origin (representing the reference orbit) will stay around the
origin after traveling through many periods. The orbit stability of a periodic
linear lattice can be analyzed through the transfer matrix of one periodic
cell. Considering the motion in one plane, the cell transfer matrix can be
transformed to the form

M = VΛV−1, Λ = diag(λ,
1

λ
), (1.51)

where, as a consequence of the symplecticity of M, λ and 1
λ are both eigen-

values of M, Λ is a diagonal matrix with diagonal elements λ and 1
λ , and

columns in V are the corresponding eigenvectors. For a particle with initial
coordinates X0, the coordinates after m cells will be

Xm = MmX0 = VΛmV−1X0. (1.52)

Because Λm = diag(λm, 1
λm ), the particle motion in the lattice is stable if and

only if |λ| = 1.
The eigenvalues of matrix M can be found by solving the equation det(M−

λI) = 0. For the case of one-dimensional motion, this becomes

λ2 − Tr(M)λ+ 1 = 0, (1.53)

where Tr(M) = M11 +M22 is the trace of the 2× 2 matrix, and we have used
det(M) = 1. The eigenvalues are

λ1,2 =
1

2

(
Tr(M)±

√
Tr(M)2 − 4

)
, (1.54)

which, combined with the |λ| = 1 requirement, leads to the stability condition

|Tr(M)| ≤ 2, (1.55)

in which case the eigenvalues of the transfer matrix are a pair of complex
conjugates, λ1 = eiΦ and λ2 = e−iΦ, where Φ is a real angle satisfying

cos Φ =
1

2
Tr(M). (1.56)
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Applying the stability condition to the FODO cell of Eq. (1.50), we find
that the beam motion is stable if and only if

f ≥ L

2
. (1.57)

1.2.4 Courant-Snyder parametrization
The 2× 2 transfer matrix of a stable periodic lattice cell can be parametrized
as follows [26]

M =

(
cos Φ + α sin Φ β sin Φ
−γ sin Φ cos Φ− α sin Φ

)
, (1.58)

where γ = 1+α2

β and Φ is defined as the betatron phase advance over the

period. Parameters α, β, and γ are called Courant-Snyder (C-S) parameters.
The C-S parameters are the main characteristics of the linear optics, which
are often called the linear optics functions. The β parameter is referred to as
the beta function. The cell transfer matrix can be further rewritten as

M = BR(Φ)B−1, (1.59)

with

B =

( √
β 0

− α√
β

1√
β

)
, and R(ψ) =

(
cosψ sinψ
− sinψ cosψ

)
. (1.60)

The transverse coordinate of a particle oscillates in the lattice. This is
called the betatron oscillation. The betatron phase advance for a full revolu-
tion of a circular accelerator, Φ, is used to define the betatron tune,

ν =
Φ

2π
. (1.61)

The tune is the number of oscillations the beam executes in one revolution.
If we observe the motion of a particle traveling through a periodic lattice

in each cell, the coordinates observed at sn = s0 + nL, will be related to the
initial coordinate, X0, via

Xn = MnX0 = BR(nΦ)B−1X0, (1.62)

where s0 is the initial location and L is the cell length. In the (y, y′) phase
space the points representing the successive observed coordinates will trace
out an ellipse

y2 + (αy + βy′)2 = 2βJ, (1.63)

where J is an invariant of motion given by the initial coordinates. The shape
and orientation of the ellipse are determined by the C-S parameters.
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Figure 1.6 Phase space traces of a particle traveling in periodic cells. (a) in (y, y′)

coordinates; (b) in normalized coordinates (ȳ, P̄y).

Eq. (1.62) indicates that we can define the normalized coordinates, (ȳ, P̄y),

X̄ ≡
(
ȳ
P̄y

)
= B−1X =

1√
β

(
y

αy + βy′

)
. (1.64)

The cell transfer matrix in the new coordinates represents a simple rotation
through the angle Φ. In the normalized coordinates, the particle traces out
a circle of radius

√
2J in the phase space. The motion of a particle through

periodic cells observed at a fixed location in each cell is illustrated in Figure 1.6
in both the (y, y′) coordinates and (ȳ, P̄y) coordinates.

Applying the Courant-Snyder parametrization to the FODO cell in
Eq. (1.50), the phase advances is found to be

Φx,y = Φ = sin−1 L

2f
, (1.65)

and the beta functions at the quadrupole centers are

βx,QF = βy,QD = 2L
1 + sin Φ

2

sin Φ
, (1.66a)

βy,QF = βx,QD = 2L
1− sin Φ

2

sin Φ
. (1.66b)

In the horizontal plane, the maximum beta function is at the QF and the
minimum beta function is at the QD; the opposite is true for the vertical
plane.

1.2.5 Propagation of linear optics functions
The cell transfer matrix depends on the location. The cell transfer matrices
at two locations are connected through the transfer matrix between the two
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Figure 1.7 Connection of cell transfer matrices at two locations.

locations. Suppose the cell transfer matrices at points 1 and 2 are M1 and
M2, respectively, and the transfer matrix from point 1 to point 2 is M21, as
illustrated in Figure 1.7. The coordinate vectors at points 1 and 2 and one
cell length downstream are related by

X1′ = M1X1, X2′ = M2X2,

X2 = M21X1, X2′ = M21X1′ .

Therefore

X2′ = M2X2 = M2M21X1, X2′ = M21X1′ = M21M1X1.

Comparing the right hand side of the two equations, we obtain

M2M21 = M21M1,

and in turn

M2 = M21M1M
−1
21 . (1.67)

Eq. (1.67) means M2 and M1 are related through a similarity transforma-
tion. Therefore, their eigenvalues are the same and, consequently, the phase
advances for a cell are the same measured from any location.

However, the C-S parameters vary with location. The transfer matrix from
point 1 to point 2 can be written in the form

M21 = B2R(ψ21)B−1
1 , (1.68)

where B1,2 are the B matrices defined in Eq. (1.60) using the C-S parameters
for the two locations and R is the rotation matrix with the rotation angle ψ21,
the phase advance from point 1 to point 2. Using Eq. (1.68), the relationship
between the C-S parameters at the two locations is found to be

B2B
T
2 = M21B1B

T
1 MT

21. (1.69)

Explicitly, the relations are given in terms of the elements of M21 by


β2

α2

γ2


 =




M2
11 −2M11M12 M2

12

−M11M21 M11M22 +M12M21 −M12M22

M2
21 −2M21M22 M2

22





β1

α1

γ1


 . (1.70)
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Eq. (1.68) also gives a formula for the phase advance

ψ21 = tan−1 M12

M11β1 −M12α1
. (1.71)

It is worth pointing out that the phase advance through a lattice section is not
uniquely determined by the transfer matrix of the section itself. It requires
that the C-S parameters be given at one location on the section (such as the
entrance point). In a ring lattice, the C-S parameters are naturally defined
through the periodic condition. However, in a one-pass system such as a linac
or a transport line, especially short ones that lack periodicity, the definition
of the phase advance through the line is somewhat arbitrary.

Eqs. (1.70-1.71) can be applied to the case when the section between points
1 and 2 is an infinitesimal slice of a general linear lattice element. If the length
is ds and the focusing gradient is K, the transfer matrix from point 1 to 2 is
(see Eq. (1.37))

M21 =

(
1 ds

−Kds 1

)
+O(ds2), (1.72)

where O(ds2) stands for terms of ds2 or higher. From Eq. (1.70) we obtain

β′ = −2α, α′ = Kβ − γ, γ′ = 2αK, (1.73)

where ′ stands for taking the derivative d
ds . The first two equations lead to a

differential equation for the beta function

β′′

2
+ βK(s)− 1

β

(
1

4
β′2 + 1

)
= 0. (1.74)

If the focusing function, K(s), is given on the cell, the beta function can be
calculated by solving for the periodic solution of Eq. (1.74).

Eqs. (1.71) and (1.72) give another useful result,

dψ

ds
=

1

β
, (1.75)

which states that the rate of phase advance accumulation through the lattice
is inversely proportional to the beta function.

Applying Eqs. (1.70-1.71) to a lattice element, we can find out how the
C-S parameters change within or across the element. For example, in a drift
space, we have

β(s) = β0 − 2α0s+ γ0s
2, α(s) = α0 − γ0s, γ(s) = γ0, (1.76)

where the subscript 0 indicates values at the point with s = 0. If s = 0 is a
“waist”, a symmetry point where α0 = 0 and β0 = β∗, the beta function and
phase advance are given by

β(s) = β∗ +
s2

β∗
, ψ(s) = tan−1 s

β∗
. (1.77)
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Figure 1.8 Evolution of the phase space ellipse in (a) a drift space and (b) a thin

focusing quadrupole.

Across a focusing (K > 0) thin quadrupole, the C-S parameters are related
through

β2 = β1, α2 = α1 +
β1

f
, γ2 = γ1 + 2

α1

f
+
β1

f2
, (1.78)

where the subscript 1 indicates the entrance face, 2 the exit face, and f = 1
|K|L

is the focal length. For a defocusing thin quadrupole, simply reverse the sign
of f in the above equation. The phase advance does not change across a thin
quadrupole.

The changes of C-S parameters in the elements correspond to changes of
the phase space ellipse. Figure 1.8 shows the changes across a drift space
and a thin focusing quadrupole. In a drift space, the angle coordinate does
not change while the position coordinate shifts linearly with y′. Therefore
the ellipse is sheared along the position axis. Across a thin quadrupole the
situation is the opposite: the position coordinate does not change while the
angle coordinate shifts linearly with y and hence the ellipse is tilted in the y′

direction.
In an accelerator with strong focusing, quadrupoles and drift spaces play

dominant roles in laying out the linear optics. Knowing how the phase space
ellipse and the optics functions change in these two types of elements is very
useful for understanding the linear optics in accelerators. As an example, the
beta functions in a FODO cell are shown in Figure 1.9.

1.2.6 Beam distribution
The linear optics of an accelerator beam line is closely related to the evolution
of the transverse beam distribution. The beam distribution in the phase space
(y, y′) can be described by the probability density function ρ(y, y′), which
can be characterized by its first and second order moments. The first order
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s = 0 2L

βx βy

Figure 1.9 Beta functions in a FODO cell.

moments are the center of the distribution defined as

〈y〉 =

∫
yρ(y, y′)dydy′, 〈y′〉 =

∫
y′ρ(y, y′)dydy′. (1.79)

We assume a distribution centered on the reference orbit, i.e., with 〈y〉 =
〈y′〉 = 0. The second-order moments are given by

Σ ≡
(
σ2
y σyy′

σyy′ σ2
y′

)
=

∫
ρ(y, y′)dydy′

(
y2 yy′

yy′ y′2

)
. (1.80)

The second order moment matrix can be parametrized as follows,

(
σ2
y σyy′

σyy′ σ2
y′

)
= εrms

(
β̄ −ᾱ
−ᾱ γ̄

)
, (1.81)

where the rms emittance is defined as

εrms ≡
√

det(Σ), (1.82)

and hence β̄γ̄ = 1 + ᾱ2 is required. The second order moment matrix defines
an ellipse in the phase space, YTΣ−1Y = 1, with Y = (y, y′)T , which can be
written as

y2 + (ᾱy + β̄y′)2 = β̄εrms. (1.83)

The area of the ellipse is the rms emittance. The β̄, ᾱ, and γ̄ parameters
represent the shape and orientation of the ellipse in the same manner as
β, α, and γ for the phase space ellipse in Figure 1.6. If the beam distri-
bution is Gaussian, the probability density function is given by ρ(y, y′) =

1
2πεrms

exp(− 1
2YTΣ−1Y). In this case, an enlarged ellipse with an area of

6σrms will cover 95% of the particles in the beam [78].
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Figure 1.10 Distributions of a mismatched beam (dashed ellipses) at the QF center

of a FODO cell. Left: at injection; right: one period later. Solid ellipses are defined

by the periodic lattice.

In an accelerator, the ellipse representing the beam distribution is often
the same as the ellipse defined by the periodic lattice. In circular accelerators,
the beam tends to settle, due to various diffusion processes, to an equilibrium
distribution that matches the linear optics functions. For example, in electron
storage rings, the equilibrium distribution is determined by radiation damping
and quantum diffusion.

When a beam is injected into a machine with a periodic lattice, such as
a long linac or a storage ring, the distribution of the incoming beam might
not match the ellipse determined by the periodic optics. With such an “op-
tics mismatch”, the beam distribution at a periodic observation point will
exhibit oscillatory behavior. Figure 1.10 illustrates the beam distribution at
two successive passes of the QF center in a FODO cell for a mismatched beam.

1.3 LONGITUDINAL DYNAMICS
In the previous sections we studied the transverse beam motion. The central
theme of the transverse beam dynamics is the alternating gradient, strong
focusing scheme which provides stability in both x and y planes. In the lon-
gitudinal direction, there is also a requirement for stability. The longitudinal
stability is provided by radio-frequency (RF) focusing, which is to be discussed
in this section.

The principle of RF focusing is based on two aspects: (1) the revolution
time of an off-momentum particle differs from that of the reference particle
(on-momentum) and the difference is proportional to the momentum devia-
tion; (2) the RF cavities exchange energy with the particle and the energy gain
by the particle depends on its arrival time. The reference particle, referred to
as the synchronous particle, is chosen to be an imaginary particle that arrives
at the RF cavities with the same RF phase on every pass. It must have a
specific combination of energy and RF phase to remain synchronous.
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The revolution time of a particle is determined by the path length of one
revolution and its speed, T = C

v , hence

∆T

T
=

∆C

C
− ∆v

v
= (αc −

1

γ2
)δ, (1.84)

where γ is the Lorentz energy factor, δ = ∆p
p , and αc = ∆C

δC is the momentum

compaction factor. The ratio between ∆T
T and δ is the phase slippage factor,

η = αc −
1

γ2
. (1.85)

When the beam energy satisfies γ = γT ≡ 1√
αc

, the revolution time does

not depend on the momentum deviation to the first order. The corresponding
energy factor, γT , is referred to as the transition gamma. There is no longitu-
dinal focusing in this case as the phase coordinate is “frozen”. If η < 0, higher
energy particles complete a revolution in less time than the synchronous par-
ticle, and the opposite is true for η > 0. The η < 0 case is said to be below
transition, and η > 0 is above transition.

There is an oscillating electric field along the longitudinal direction across
the gap of an RF cavity. This electric field accelerates or decelerates the par-
ticles by adding or removing energy from them, respectively, as they traverse
the cavity gap. The net effect of the electric field across the gap can be char-
acterized by an oscillating voltage

V (t) = Vg sin(ωrft+ φs), (1.86)

where ωrf is the angular resonant frequency of the cavity, φs is the RF phase
when the synchronous particle crosses the gap, and Vg is the RF gap voltage.
Vg is related to the peak electric field, E , and the gap length g via

Vg =

∫ g/2

−g/2
E cos

ωrfz

βc
dz. (1.87)

The resonant frequency of the RF cavity must be a multiple of the revolution
frequency, ωrf = hω0, with ω0 = 2π/T0. T0 is the revolution time for the
reference particle and h is an integer which is defined as the harmonic number.

In a synchrotron the beam energy changes with time as the beam picks
up energy from the RF cavity. The revolution frequency may vary with beam
energy for low or medium energy proton or heavy ion synchrotrons, which
requires the RF frequency to change accordingly. The RF voltage may also
ramp with time as the beam energy changes.

The longitudinal motion of an arbitrary particle can be described by its
energy and the RF phase at the time it traverses the RF cavity. The total
energy change of the particle in one revolution is determined by the energy
gain or loss in the RF cavity along with other energy losses, such as due to
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radiation or coupling impedances. The energy of the synchronous particle on
successive turns satisfies

Es,n+1 = Es,n + eVn sinφs − U0,n, (1.88)

where subscripts n, n + 1 are turn numbers, V is the RF voltage, and U0

contains all other energy losses. Similarly, the energy of a given particle over
the two turns satisfies

En+1 = En + eVn sinφn − U0,n, (1.89)

where φn = φs+ωrfτn, with the arrival time error τ = T−Ts and Ts the arrival
time of the synchronous particle. Therefore, the energy errors, ∆E = E−Es,
of this particle over two successive turns are related through

∆En+1 = ∆En + eVn[sin(φs + ωrf,nτn)− sinφs]. (1.90)

On the other hand, the arrival time errors of the particle on the two suc-
cessive turns are related through

τn+1 = τn + ∆Tn+1 = τn + ηδT0,n+1,

where ∆Tn+1 is the arrival time error accumulated over turn n + 1. Using
ωrfT0 = 2πh and δ = 1

β2
∆E
E , the above equation can be rewritten in terms of

the energy error coordinate,

τn+1 = τn +
2πhη(Es,n+1)

ωrf,n+1β2
s,n+1Es,n+1

∆En+1. (1.91)

Eqs. (1.90) and (1.91) are the two mapping equations that describe the
longitudinal motion of particles in a synchrotron in (τ , ∆E) coordinates. Given
the ramping curves of the reference beam energy, the RF voltage, and the
RF frequency, the trajectory of a particle in the (τ , ∆E) phase space can
be determined by applying the equations over successive turns. Eq. (1.90)
describes the energy change at the RF cavity, and Eq. (1.91) describes the
arrival time change accumulated throughout the ring. They can be seen as
two maps that are applied sequentially. In each revolution one first calculates
the energy change at the cavity, followed by the calculation of the arrival time
change in the ring. Both maps are kick maps, i.e., maps in which an increment
is made only to one of the two conjugate coordinates. The determinant of the
Jacobian matrix of a kick map is unity, which means that the phase space
area of a beam distribution is preserved as it evolves with time.

The stability of the particle motion around the reference particle can be
analyzed after linearizing Eq. (1.90) with respect to the τ coordinate, which
becomes

∆En+1 = ∆En + τnωrf,neVn cosφs. (1.92)
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Combining Eqs. (1.91)-(1.92), the linear longitudinal motion can be described
by a one-turn transfer matrix,

(
τn+1

∆En+1

)
=

(
1 + 2πhηeV cosφs

β2E
2πhη
ωrfβ2E

ωrfeV cosφs 1

)(
τn

∆En

)
, (1.93)

where we have dropped the subscripts for parameters in the transfer matrix for
notation simplicity. The stability of motion requires the trace of the transfer
matrix to be between −2 and 2 (see Eq. (1.55)), hence

−4 <
2πhηeV cosφs

β2E
< 0. (1.94)

In reality, the value of the RF voltage is low compared to the beam energy in
electron-volts, such that |2πhηeV/E| � 1. Therefore, to ensure the longitudi-
nal stability, one only needs to choose the RF phase according to the sign of
the phase slippage factor such that

η cosφs < 0, (1.95)

is satisfied.
Within the stability region, the longitudinal coordinates oscillate about

the synchronous particle. The stable oscillation in the longitudinal direction
is called synchrotron motion. The synchrotron tune, defined as the number of
oscillations per turn, can be found with the trace of the transfer matrix in the
same manner as the analysis of transverse motion.

Another commonly used set of coordinates for the longitudinal motion is
the (φ, δ) coordinates, in which the mapping equations become

δn+1 =
β2
s,nEs,n

β2
s,n+1Es,n+1

δn +
eVn

β2
s,n+1Es,n+1

(sinφn − sinφs), (1.96a)

φn+1 =
ωrf,n+1

ωrf,n
φn + 2πhη(δn+1)δn+1. (1.96b)

In this case the determinant of the Jacobian matrix for the transformation
from turn n to n+ 1 is

||∂(δn+1, φn+1)

∂(δn, φn)
|| = β2

s,nEs,n

β2
s,n+1Es,n+1

ωrf,n+1

ωrf,n
. (1.97)

The non-unity result means that the phase space area of a closed contour in
(φ, δ) coordinates will change. Using Eq. (1.97), it is easy to show that the
phase space area in (φ, δ) coordinates, A, scales with the beam energy and
the RF frequency such that

A(φ, δ)
β2E

ωrf
= const. (1.98)
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In a storage ring, beam energy and the RF frequency do not change. The
RF voltage is typically also held constant. The mapping equations are simpli-
fied to

δn+1 = δn +
eV

β2E
(sinφn − sinφs), (1.99a)

φn+1 = φn + 2πhη(δn+1)δn+1. (1.99b)

Usually the synchrotron motion is slow (one synchrotron oscillation takes
tens to hundreds of turns), hence the discrete motion described by the above
difference equations can be approximated with a smooth, continuous motion
described by differential equations. Using the average values in one turn to
approximate the derivatives,

δ̇ ≡ dδ

dt
≈ δn+1 − δn

T0
, φ̇ ≡ dφ

dt
≈ φn+1 − φn

T0
, (1.100)

Eqs. (1.99a-1.99b) become

δ̇ =
ω0eV

2πβ2
sEs

(sinφ− sinφs), φ̇ = hω0ηδ. (1.101)

These equations can be derived from the Hamiltonian

H =
1

2
hω0ηδ

2 +
ω0eV

2πβ2
sEs

[cosφ− cosφs + (φ− φs) sinφs] , (1.102)

with canonical coordinates (φ, δ) and free variable t. Eq. (1.102) is the Hamil-
tonian for synchrotron motion.

The characteristics of the synchrotron motion can be studied with the
Hamiltonian. The motion of a particle with any given initial condition will
follow a path in the phase space determined by the Hamiltonian. For the
Hamiltonian in Eq. (1.102), there are two fixed points in the phase space,
which can be determined from Eq. (1.101) by setting δ̇ = φ̇ = 0. Under the
condition η cosφs < 0, the fixed point at (φ = φs, δ = 0) is stable, and the
other fixed point, located at (φ = π−φs, δ = 0), is unstable. When a particle
is launched with an initial condition in the vicinity of the stable fixed point,
it will move on an ellipse centered at the fixed point. On the other hand, the
Hamiltonian contour that passes the unstable fixed point defines the boundary
of stable and unstable motion. This contour, defined by the equation,

H(φ, δ) = H(π − φs, 0), (1.103)

is referred to as the separatrix. The equation can be written as

sgn(η)δ̄2 + cosφ+ φ sinφs = − cosφs + (π − φs) sinφs, (1.104)

with the normalized momentum deviation coordinate defined by

δ̄ = δ

√
πh|η|β2

sEs
eV

. (1.105)
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Figure 1.11 Examples of RF buckets above and below transition. Top: (η > 0,

φs = 165◦), above transition; Bottom: (η < 0, φs = 15◦), below transition. The

small ellipses represent the stable synchrotron motion.

The closed area within the separatrix is the stable region where beam can
be stored or accelerated. This area is called the RF bucket. Outside of the RF
bucket, particles will fall out of phase with the RF waveform and eventually
get lost. The RF buckets for the two cases, below and above transition, are
shown in Figure 1.11.

The height, length, and area of the RF buckets are important measures
of the stability region. These can all be derived from Eq. (1.104). The bucket
length is the distance from the unstable fixed point to the other end of the
bucket, the point (φu, 0), where φu can be found with

cosφu + φu sinφs = − cosφs + (π − φs) sinφs. (1.106)

The bucket height is the maximum momentum deviation on the separatrix,
which is given by

δ̄m =
√

2
∣∣∣cosφs + (φs −

π

2
) sinφs

∣∣∣
1
2

. (1.107)

The bucket area is given by [78]

Ā =

∮

spx

δ̄dφ = 8
√

2α(φs), with α(φs) ≈
1− sinφs
1 + sinφs

. (1.108)
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Figure 1.12 The RF bucket length, height, and area as represented by scaled pa-

rameters φLen/2π, δ̄m/
√

2, and α(φs), respectively, with φLen = |φs + φu − π|.

The dimensions of the RF buckets as a function of sinφs are given in
Figure 1.12. The bucket size is at its maximum when the synchronous phase
is φs = 0 or π. In this case, there is no net energy transfer to the beam; such
an RF bucket is called the stationary bucket.

With sufficiently small oscillation amplitudes, the synchrotron motion
around the stable fixed point is essentially linear. Introducing the phase devi-
ation variable

ϕ = φ− φs, (1.109)

the Hamiltonian can be expanded to give

H =
1

2
hω0ηδ

2 − ω0eV cosφs
4πβ2

sEs
ϕ2, (1.110)

when keeping only the lowest order terms. The equation of motion of this
Hamiltonian is

ϕ̈+ ω2
sϕ = 0, (1.111)

with ωs = νsω0, and νs is the synchrotron tune, given by

νs =

(
heV |η cosφs|

2πβ2
sEs

)1/2

. (1.112)

The solution to Eq. (1.111) is

ϕ = ϕ̂ cos(ωst+ χ), δ = −sgn(η)δ̂ sin(ωst+ χ), (1.113)
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where ϕ̂ and δ̂ are the oscillation amplitudes in the ϕ, δ directions, respectively.
The phase space ellipses of the stable longitudinal motion are illustrated in
Figure 1.11. The ratio of the momentum and phase oscillation amplitudes is

δ̂

ϕ̂
=

νs
h|η| . (1.114)

In a storage ring, the beam typically settles down to an equilibrium dis-
tribution. In phase space, the equilibrium distribution must conform to the
Hamiltonian contour in order not to exhibit any change with time while the
individual particles move along the contours. Therefore, the equilibrium dis-
tribution has the form of

ρ(ϕ, δ) ∼ ρ(H(ϕ, δ)) ∼ ρ(ϕ̂), (1.115)

where ϕ̂ is related to the Hamiltonian through H = 1
2
ω0ν

2
s

hη ϕ̂2. In an electron
storage ring, the combination of radiation induced damping and diffusion cre-
ates a Gaussian distribution, which can be written as

ρ(ϕ̂) =
1

2πσ2
ϕ̂

exp

(
−1

2

ϕ̂2

σ2
ϕ̂

)
, (1.116)

or expressed in the phase space coordinates φ and δ, rather than the phase
amplitude φ̂,

ρ(ϕ, δ) =
1

2πσϕσδ
exp

[
−1

2

(
ϕ2

σ2
ϕ

+
δ2

σ2
δ

)]
, (1.117)

where σϕ is the rms bunch length and σδ is the rms momentum deviation.
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In Chapter 1 we studied the linear beam motion in an ideal lattice. A real
accelerator has all sorts of errors, which cause the beam motion to deviate
from the design, in terms of the beam orbit, linear optics, and linear coupling.
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actual beam orbit to deviate from the design. Correction of orbit errors is a
basic requirement in accelerator operation.

Magnet misalignment introduces unintended multipole field components
on the beam through the so-called “feed-down” effects. Quadrupole and sex-
tupole magnets are typically placed to have the magnetic axes on the design
orbit, such that a particle traveling on the design orbit sees no magnetic field.
When the magnet centers are shifted transversely to (−x0, −y0), so that the
point (x, y) has coordinates relative to the magnet center

X = x0 + x, Y = y0 + y,

the magnetic fields in a quadrupole at the point will be

By = b1X = b1x0 + b1x, Bx = b1Y = b1y0 + b1y, (2.1)

and similarly the field in a sextupole will be

By =
b2
2

(
(x2

0 − y2
0) + (2x0x− 2y0y) + (x2 − y2)

)
, (2.2)

Bx = b2(x0y0 + xy0 + x0y + xy). (2.3)

The constant terms (independent of x and y) in the By and Bx are dipole
field errors. Dipole field errors give the beam angular kicks (i.e., changes to x′

and y′ coordinates),

θx =
By∆s

Bρ
, θy = −Bx∆s

Bρ
, (2.4)

where ∆s is length of the field error. The angular kicks propagate downstream
and alter the beam orbit.

In a one-pass system (linac or transport line), the beam orbit change due
to a kick is calculated with the transfer matrix between the kick and the
observation points. Initial orbit errors at the entrance point of the line will
also propagate through the transfer matrix. The overall orbit error at any
location, P , can be obtained by summing up contributions from all upstream
kicks and the effects of the initial steering errors

∆X = M(P |0)X0 +
∑

i

M(P |i)θi, with θi =




0
θxi
0
θyi


 , (2.5)

where M(P |0) is the transfer matrix from the entrance to point P , M(P |i) is
the transfer matrix from location i to P , X0 is the launching orbit, and θxi
and θyi are the horizontal and vertical angular kicks at location i, respectively.
Figure 2.1 shows the trajectory deviation due to a vertical kick in the Linac
Coherent Light Source (LCLS) as an example.
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Figure 2.1 Trajectory deviation in a section of LCLS due to a vertical kick of

0.1 mrad.

In a circular accelerator, the orbit kicks from persistent dipole field errors
act on the beam on every revolution. The net effect is that the stationary orbit,
or closed-orbit, is changed. The closed orbit is a fixed point of the one-turn
transfer map, M, which satisfies

Xco = M(Xco). (2.6)

Up to the linear order, the closed-orbit condition is (see Eq. (1.48))

Xco = MXco + ∆, (2.7)

from which the closed orbit can be solved, giving

Xco = (I−M)−1∆. (2.8)

Eq. (2.8) can be used to calculate the orbit response due to a local angular
kick. Using the Courant-Snyder parametrization, Eq. (1.58), for the 2×2 one-
turn transfer matrix at the point immediately downstream of the kick θ, the
closed orbit is found to be

Xco =

(
1− cos Φ− α0 sin Φ −β0 sin Φ

γ0 sin Φ 1− cos Φ + α0 sin Φ

)−1(
0
θ

)
,

where Φ = 2πν, ν is the betatron tune, and thus

Xco =

(
y0

y′0

)
=

θ

2 sinπν

(
β0 cosπν

sinπν − α0 cosπν

)
. (2.9)
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Figure 2.2 Horizontal (top) and vertical (bottom) closed orbit deviation in SPEAR3

(νx = 14.106, νy = 6.177) by one kick of 0.1 mrad in each plane. The location of the

kick is marked by the arrows.

The closed orbit at other locations can be found with the transfer matrix. The
closed orbit position coordinate at location s is given by

yco(s) =
θ
√
β(s)β0

2 sinπν
cos(|ψ(s)− ψ0| − πν), (2.10)

where β0 and ψ0 are beta function and betatron phase advance at the location
of the kick, respectively. Starting from the location of the kick, the orbit varies
as a sinusoidal function of the betatron phase advance with its amplitude
scaled by the factor

√
β(s).

The closed orbit shift due to a localized angular kick by an orbit corrector
is called the orbit response of the corrector. As shown in Eq. (2.10), the orbit
response is closely related to the linear optics. Therefore, the measured orbit
responses can be used to determine the linear optics errors of the ring. These
are to be discussed in Chapter 4. Figure 2.2 shows the closed orbit deviation
in the SPEAR3 storage ring due to an orbit kick in each of the transverse
planes.

In reality there would be many sources of dipole field errors distributed
around the ring that give kicks to the beam. Considering only the linear
lattice, the closed orbit is the sum of the contribution of all errors, which can
be written as [26]

yco(s) =

√
β(s)

2 sinπν

∫ s+C

s

θ(s′)
√
β(s′) cos(πν + ψ(s)− ψ(s′))ds′, (2.11)

where θ(s′)ds represents the kick from the section between s and s+ ds.
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Introducing the transformation ψ(s) = νφ(s), and using ds = βdψ =
βνdφ, the closed orbit, Eq. (2.11) can be rewritten as

yco(s) =
ν
√
β(s)

2 sinπν

∫ φ+2π

φ

θ(ξ)β
3
2 (ξ) cos ν(π + φ− ξ)dξ. (2.12)

Because the function θ(φ)β
3
2 (φ) is periodic (with the period 2π), it can be

Fourier expanded

θ(φ)β
3
2 (φ) =

∞∑

n=−∞
fne

inφ, (2.13)

with the Fourier coefficients fn given by

fn =
1

2πν

∮
θ(s)β

1
2 (s)e−inφ(s)ds =

1

2πν

∑

k

θkβ
1
2

k e
−inφk , (2.14)

where in the last equation discrete dipole kicks are assumed, with a kick
angle θk = θ(sk)∆sk. The Fourier coefficients in Eq. (2.14) are called integer
stopband integrals. Inserting Eq. (2.13) into Eq.(2.12), we obtain the Fourier
expansion of the closed orbit deviation

yco(s) =
√
β(s)

∑

n

ν2fn
ν2 − n2

einφ(s),

=
√
β(s)

(
f0 +

∞∑

n=1

2ν2|fn|
ν2 − n2

cos(nφ(s) + χn)

)
, (2.15)

where we have used fn = f∗−n = |fn|eiχn . The closed orbit can be approxi-
mated with only a few Fourier terms with n near the betatron tune, ν. Keeping
the leading term only, we have an approximation

yco(s) ≈
√
β(s)

ν|f[ν]|
ν − [ν]

cos([ν]φ(s) + χ[ν]), (2.16)

where [ν] is the integer closest to ν.
Eq. (2.16) shows that, unless the orbit kicks are specifically arranged, the

closed orbit deviation in a ring accelerator tends to appear as an amplitude
modulated sinusoidal function of the phase advance, with the number of peaks
around the circumference given by the integer part of the betatron tune. It also
indicates that if the betatron tune is close to an integer, a small perturbation
could cause very large orbit deviations.

Orbit errors of the beam in accelerators generally need to be corrected.
Depending on the purpose of the accelerator, the precision requirement for
orbit correction may vary. The orbit at the interaction points of colliders or at
the photon beamline source points of light sources needs to be held constant
with a high precision at the sub-micron level for hours.
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2.2 LINEAR OPTICS ERRORS
In this section we discuss the effects of quadrupole field errors [26]. Since
quadrupole magnets determine the linear optics of the accelerators, deviations
of the quadrupole fields from the design will distort the linear optics. In other
words, the propagation of phase space coordinates through the beam line will
be changed.

We consider a localized quadrupole field error, which can be represented
by a thin-lens quadrupole. Its transfer matrix can be written as

Mq =

(
1 0
−k0 1

)
, (2.17)

where k0 = k(s)∆s is the integrated gradient error, with k(s) the gradient
error and ∆s the length of the field error.

In a one-pass system, the localized quadrupole error has no impact to
the beam motion upstream. It also has no impact to the propagation of or-
bit errors located downstream. However, it will affect how coordinate de-
viations upstream of the error are propagated to downstream locations.
This effect is described by the change to the transfer matrix. Suppose
point 1 is upstream of the quadrupole error and point 2 is downstream.
The transfer matrix from point 1 to 2 without the quadrupole error is
M0(s2|s1) = M(s2|sq)M(sq|s1). With the quadrupole field error, it becomes
M(s2|s1) = M(s2|sq)MqM(sq|s1). The changes to the transfer matrix due to
the quadrupole error are

M(s2|s1)−M0(s2|s1) = −k0

(
M

(2)
12 M

(1)
11 M

(2)
12 M

(1)
12

M
(2)
22 M

(1)
11 M

(2)
22 M

(1)
12

)
, (2.18)

where M(1) = M(sq|s1) and M(2) = M(s2|sq). With the changes to the trans-
fer matrix, if the optics functions are specified at the point 1, the changes to the
optics functions at point 2 can be calculated using Eq. (1.70). A quadrupole
error in a one-pass system only affects the optics functions downstream.

In a circular accelerator, since the optics functions are derived from the
parametrization of the one-turn transfer matrix and a quadrupole error any-
where in the ring will change the one-turn transfer matrix, a quadrupole error
changes the optics functions everywhere. For example, right at the downstream
face of the quadrupole error, the one-turn transfer matrix becomes

M = MqM0 =

(
1 0
−k0 1

)(
cos Φ0 + α0 sin Φ0 β0 sin Φ0

−γ0 sin Φ0 cos Φ0 − α0 sin Φ0

)
. (2.19)

From the trace of matrix M, we find

cos Φ− cos Φ0 = −1

2
k0β0 sin Φ0, (2.20)
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and hence the change of betatron tune is given by

∆ν ≡ ν − ν0 =
1

2π
(Φ− Φ0) ≈ 1

4π
k0β0. (2.21)

For quadrupole errors distributed around the ring, with gradient errors given
by k(s), the total tune change can be obtained by integrating the contributions
of all errors, which leads to the formula

∆ν =
1

4π

∮
k(s)β(s)ds. (2.22)

Parametrization of matrix M yields the new Courant-Snyder parameters
at the exit face of the quadrupole error. Courant-Snyder parameters at other
locations can be obtained by the propagation formula, Eq. (1.70). The frac-
tional change to the beta function is found to be

∆β(s)

β(s)
= − k0β0

2 sin Φ0
cos(2|ψ(s)− ψ(s0)| − Φ0). (2.23)

The fractional deviation of beta function from the design, ∆β
β , is referred to

as beta beating. Eq. (2.23) shows that the beta beating caused by a single
quadrupole error is a sinusoidal function that propagates at twice the fre-
quency of betatron oscillation. Figure 2.3 shows the beta beating for SPEAR3
due to a localized quadrupole error.
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For distributed quadrupole errors, the contributions from all error sources
are integrated, which give [26]

∆β(s)

β(s)
= − 1

2 sin Φ0

∫ s+C

s

k(s′)β(s′) cos(2ψ(s′)− 2ψ(s)− Φ0)ds′,

= − ν0

2 sin 2πν0

∫ φ+2π

φ

k(ξ)β2(ξ) cos 2ν0(ξ − φ− π)dξ, (2.24)

where we used ψ(s) = ν0φ(s) and ds = βν0dφ in the second equality. The
periodic function ν0k(φ)β2(φ) can be Fourier expanded,

ν0k(φ)β2(φ) =
∞∑

n=∞
Jne

inφ, (2.25)

with the Fourier coefficients given by

Jn ≡ |Jn|eiχ =
1

2π

∮
ν0k(φ)β2(φ)e−inφdφ,

=
1

2π

∮
k(s′)β(s′)e−inφ(s′)ds′. (2.26)

The Fourier coefficients Jn are called half-integer stopband integrals. Inserting
Eq. (2.25) into the integral in Eq.(2.24), beta beating can now be expressed
in Fourier series as

∆β(s)

β(s)
= −ν0

2

∑

n

Jne
inφ(s)

ν2
0 − 1

4n
2

= − J0

2ν0
+
∞∑

n=1

ν0|Jn|
1
4n

2 − ν2
0

cos(nφ(s) + χn).

(2.27)

The beta beating in a ring is usually dominated by the Fourier harmonics
close to 2ν0. Keeping only the leading term, with n = [2ν0], the integer closest
to 2ν0, the beta beating is approximately

∆β(s)

β(s)
≈ |J[2ν]|

2ν0 − [2ν]
cos
(
[2ν]φ(s) + χ[2ν]

)
. (2.28)

Eq. (2.28) shows that the betatron tune cannot be too close to a half integer,
otherwise the beta beating will diverge. It can be shown that the beam motion
in the periodic lattice becomes unstable if the distance between the betatron
tune and a half-integer is less than a half of |J[2ν]|, i.e., when

|ν0 −
1

2
[2ν]| ≤ 1

2
|J[2ν]|. (2.29)

|J[2ν]| is called the width of the half-integer stopband.
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The betatron phase advance is closely related to the beta function via
dψ = ds

β . The errors to the phase advance due to quadrupole errors can be
calculated from the beta beating, which gives

∆ψ = ∆

∫
ds

β
= −

∫
∆β

β2
ds = −

∫
∆β

β
ν0dφ,

=
J0ψ(s)

2ν0
+
∞∑

n=1

1

n

ν2
0 |Jn|

ν2
0 − 1

4n
2

sin(nφ(s) + χn). (2.30)

The n = 0 term gives the betatron tune shift, ∆ν = J0
2 .

Linear optics errors have many detrimental effects and correction of the
optics errors is usually desired. By increasing the beta function at locations
of limiting apertures, beta beating may reduce the acceptance of the machine
and in turn cause a reduced tuning range, scrape off the beam on the vacuum
chamber, or reduce the injection efficiency. Deviations of beta functions from
the design may cause radiation protection issues as the beam loss distribution
in the machine is changed. In transport lines, errors of optics functions at the
extraction point cause a mismatch of the beam distribution with the optics of
the downstream accelerator and may reduce the injection efficiency. In a free
electron laser (FEL), optics mismatch in the undulator will reduce the FEL
power.

In a storage ring, optics errors may significantly impact the nonlinear beam
dynamics performance, resulting in a reduced dynamic aperture and local mo-
mentum apertures, which may in turn decrease the injection efficiency and the
Touschek lifetime, respectively. Typically the nonlinear beam dynamics of a
storage ring design makes use of a cancellation scheme of the nonlinear ef-
fects by the sextupoles. The cancellation scheme relies on the phase advances
between certain pairs of sextupoles being close to an odd multiple of π. As
optics errors distort the betatron phase advances, the cancellation scheme
does not work as expected. This may lead to increases of the nonlinear reso-
nance strengths and changes to the tune footprint. The excitation of certain
nonlinear resonances may reduce the dynamic aperture or local momentum
apertures.

2.3 DISPERSION
Dipole fields, including the fields in dipole magnets and the feed-down dipole
components in quadrupoles and sextupoles, determine the beam orbit in an
accelerator. Because the bending angle of a dipole magnet for a beam is in-
versely proportional to the beam energy, the beam orbit depends on the beam
energy. The dependence of beam orbit on beam energy is called dispersion.

Eqs. (1.29) describes the particle motion through a dipole magnet, in-
cluding the effect of energy errors. This form of equation can be extended to
describe the particle motion in a general accelerator section,

X = MX0 + δd, (2.31)
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with phase space coordinate X = (x, x′)T , transfer matrix M, and d a 2-
element column vector such that δd represents the accumulated orbit shift
induced by the momentum deviation over the section. The vertical plane is
not considered here because there is no vertical dispersion in an ideal planar
accelerator. The same treatment can be extended to include the vertical plane.

Eq. (2.31) shows that a part of the phase space coordinate, X, is linearly
dependent on the momentum deviation. It is possible and desirable to separate
this part out from the usual betatron motion, with

X = Xβ + Dδ, (2.32)

where the dispersion vector D=(D, D′)T , and D is the dispersion function,
D′ = dD

ds . Inserting Eq. (2.32) into Eq. (2.31) and separating the terms de-
pendent on δ, we obtain

Xβ = MXβ,0, (2.33)

D = MD0 + d, (2.34)

where X0 = Xβ,0 + D0δ was used. The Xβ term represents the betatron
motion and is called the betatron coordinate.

Eq. (2.34) specifies how the dispersion vector is transported through an
accelerator section. At the exit face the dispersion vector consists of a term
that is transported from the initial dispersion vector by the transfer matrix
and a term that represents the contributions from the dipole fields in the
section itself.

In a one-pass system, the choice of the initial values of the dispersion
functions is somewhat arbitrary. Usually the initial dispersion is chosen to
match the expected beam distribution at the entrance point. In this case,
the dispersion vector obtained with Eq. (2.34) will be consistent with the
dispersion derived from the beam distribution at a downstream location. For a
transport line, the initial dispersion is usually given by the dispersion function
values at the extraction point of the upstream machine. For a linac, the initial
dispersion may be set to zero, assuming the initial transverse distribution
has no correlation with the momentum deviation. In general, given an initial
distribution, f(X, δ), the dispersion function can be found from

Dσ2
δ =

∫
δxf(X, δ)dXdδ, D′σ2

δ =

∫
δx′f(X, δ)dXdδ, (2.35)

where σ2
δ =

∫
δ2f(X, δ)dXdδ and σδ is defined as the rms momentum spread.

In a circular accelerator, there is a natural choice for the separation of the
betatron coordinates and the dispersion terms, which is to impose the periodic
condition on the dispersion function,

D(s+ C) = D(s), D′(s+ C) = D′(s), (2.36)
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where C is the circumference. Applying the periodic condition to Eq. (2.34),
with M being the one-turn transfer matrix and d the derivative of the orbit
shift with respect to δ, the dispersion vector is found to be

D = (I−M)−1d. (2.37)

The periodic dispersion function in circular accelerators is essentially the
derivative of the closed orbit for an off-momentum particle with respect to the
momentum deviation, i.e.,

D =
dXc(δ)

dδ
, (2.38)

where the closed orbit satisfies the periodic condition

Xc(δ) = MXc(δ) + δd. (2.39)

The calculation of d can be done by sequentially applying Eq. (2.31) to all
elements of the ring. This calculation can be facilitated by using the extended
transfer matrix for the Xe = (x, x′, δ)T coordinates, for which Eq. (2.31) can
be rewritten as

Xe = MeXe,0, with Me =

(
M d
0 1

)
. (2.40)

The extended transfer matrix of an accelerator section can be obtained by
concatenating the matrices of the individual elements,

Me = Me,nMe,n−1 · · ·Me,2Me,1. (2.41)

From Eq. (2.34), we see that the dispersion vector transports in the same
manner as phase space coordinates, except there are perturbations if the ac-
celerator section contains bending fields. This is understandable because the
dispersion function is a part of the phase space coordinates. In fact, the dis-
persion function can be seen as orbit errors due to distributed dipole field
errors 1/ρ(s). Outside of dipole magnets, there are no orbit error sources and
hence the transportation of the dispersion follows D = MD0, which is iden-
tical to the transportation of betatron coordinates. Therefore, there exists an
invariant of motion similar to J in Eq. (1.63), which is defined by

H =
1

β

[
D2 + (αD + βD′)2

]
. (2.42)

H is called the dispersion invariant, which is constant in regions without dipole
fields. Figure 2.4 shows the dispersion function and the dispersion invariant
in the SPEAR3 storage ring.

In a storage ring with a periodic lattice structure, the design dispersion
function is also periodic. However, if the bending fields or the linear optics have
errors, the dispersion function will deviate from the design. Like the closed
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Figure 2.4 The dispersion function (top) and the dispersion invariant (bottom) in

the SPEAR3 storage ring.

orbit errors, the errors to the dispersion function are typically dominated by
the Fourier harmonics close to the betatron tune.

In a flat accelerator, by design all bending occurs on the horizontal plane.
Hence there is no vertical dispersion in the ideal scenario. However, vertical
orbit correctors and feed-down effects due to orbit offsets in quadrupole and
sextupole magnets give the beam small vertical orbit kicks, which generate
vertical dispersion. The horizontal dispersion is also coupled to the vertical
plane through skew quadrupoles located at dispersive regions or sextupoles
with both vertical orbit offsets and horizontal dispersion. The vertical disper-
sion generated due to these unintended sources is called the spurious vertical
dispersion. In electron storage rings, the spurious vertical dispersion increases
the vertical beam emittance.

The path length traveled by an off-momentum particle is closely related
to the horizontal dispersion function. The path length over an infinitesimal
distance along the reference orbit ds is given by

dl =
√

(1 + hx)2 + x′2 + y′2ds ≈ (1 + hx)ds, (2.43)

where h = 1
ρ is the curvature of the reference orbit. For an off-momentum

particle with momentum deviation δ, from Eq. (2.32), we have x = xβ +
Dδ. The path length difference between an off-momentum particle and the
reference particle is

∆C =

∮
(dl − ds) ≈

∮
hDδds, (2.44)
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where we have dropped the xβ term since it is oscillatory and should largely
cancel in the integration. The momentum compaction factor is defined as the
derivative of the fractional path length change with respect to the momentum
deviation,

αc ≡
dC

Cdδ
=

1

C

∮
hDds. (2.45)

The momentum compaction factor is very important for the longitudinal mo-
tion as it affects the arrival time of off-momentum particles at the RF cavities.

The impact of the dispersion function and the momentum compaction
factor to the longitudinal motion is naturally described by the transfer matrix
for the 6-dimensional phase space coordinates. To simplify the notation, we
omit the vertical plane here. Considering the coordinates X = (x, x′, z, δ),
where z = −βc∆t, the one-turn transfer matrix can be written in the form

R =




M 02×1 d
fT

01×2

1 R56

0 1


 , (2.46)

where the subscripts of the 0 matrices indicate their dimensions, R56 is the
(5, 6) element of the full 6-dimensional transfer matrix, which represents the
dependence of the z coordinate on the momentum deviation, and f is a column
vector that represents the impact of the horizontal motion on the z-coordinate.
Symplecticity of the R-matrix requires that

MS2f = d, (2.47)

where S2 is defined in Eq. (1.45). The momentum compaction factor can be
derived from the transfer matrix in Eq. (2.46) by calculating the one-turn shift
of the z-coordinate for the off-momentum closed orbit, (D,D′, 1, 0)T δ,

∆z = −∆C = −αcCδ = fTDδ +R56δ. (2.48)

Using Eq. (2.37) and the Courant-Snyder parametrization of the one-turn
transfer matrix M, it can be shown that [53]

−αcC = R56 −H sin 2πνx. (2.49)

Because the dispersion invariant is usually small compared to R56, it is often
assumed −αcC = R56.

Eq. (2.46) can also be used to calculate the path length change due to a
horizontal corrector kick. The closed orbit shift due to such a corrector kick
is given in Eq. (2.8), with which we obtain

∆z = fTXc = fT (I−M)−1

(
0
θ

)
= −Dθ, (2.50)

where D is the dispersion at the corrector location. Therefore the path length
changes by ∆C = Dθ.
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2.4 LINEAR COUPLING
In an ideal lattice that consists of drift spaces, dipoles, and quadrupoles,
the beam motion in the horizontal plane is independent of the motion in
the vertical plane, and vice versa. However, if skew quadrupole field compo-
nents are present in the lattice, the motion in the two planes will be coupled.
Because magnetic fields in skew quadrupoles are linearly dependent on the
transverse coordinates, the coupled beam motion is linear. Main sources of
skew quadrupole components are rolls of quadrupole magnets and vertical
orbit offsets in sextupole magnets. Solenoid fields also cause linear betatron
coupling, although they are not common in high energy accelerators.

Knowing the magnetic fields in a skew quadrupole as given in Eq. (1.19),
the equations of motion in a skew quadrupole field are found to be

x′′ = a1y, y′′ = a1x, (2.51)

where a1 = 1
Bρ

∂Bx
∂x is the normalized skew quadrupole gradient. The motion

in the skew quadrupole field can be solved. In the thin-lens approximation, the
solution can be represented by a transfer matrix that relates the coordinate
vectors at its entrance and exit faces

Tsq =




1 0 0 0
0 1 a1∆s 0
0 0 1 0

a1∆s 0 0 1


 , (2.52)

where a1∆s is the integrated gradient of the skew quadrupole field. The
nonzero elements in the 2×2 off-diagonal blocks couple the (x, x′) coordinates
and the (y, y′) coordinates and hence the motion in the two planes.

The thin-lens skew quadrupole transfer matrix can be written as

Tsq = I + χW4, (2.53)

with the integrated strength χ = a1∆s,

W4 =

(
0 W
W 0

)
, and W =

(
0 0
1 0

)
. (2.54)

Suppose a point S is located between points 1 and 2 and the transfer matrix
from point 1 to point 2 is T0 = T2STS1, with

TS1 =

(
M1 0
0 N1

)
, T2S =

(
M2 0
0 N2

)
,

when the skew quadrupole is introduced at point S, the new transfer matrix
will become

T = T2STsqTS1 = T0 + χT2SW4TS1

=

(
M2M1 χM2WN1

χN2WM1 N2N1

)
. (2.55)
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Using the transfer matrix decomposition in Eq. (1.68) for the unperturbed
horizontal and vertical transfer matrices, the off-diagonal blocks of T can be
written as

χM2WN1 = χ
√
βxβyBx,2R(ψx,2S)WR(ψy,S1)B−1

y,1,

χN2WM1 = χ
√
βxβyBy,2R(ψy,2S)WR(ψx,S1)B−1

x,1,

where βx,y are the beta functions at the skew quadrupole, matrices B and R
are as defined in Eq. (1.60), and the subscripts indicate the plane and the loca-
tion. The composition of the upper-right off-diagonal block describes the prop-
agation of the vertical coordinates from point 1 to the skew quadrupole, the
application of the horizontal kick to the particle according to its y-coordinate,
and the subsequent propagation of the horizontal kick to point 2. Similarly,
the lower-left block represents the component of vertical motion at point 2
that comes from the initial horizontal motion at point 1.

When there are multiple skew quadrupoles in the beam line, the transfer
matrix can be calculated by concatenating the transfer matrices of all sections
and that of the skew quadrupoles. If the coupling strengths, χ

√
βxβy, of the

skew quadrupoles are weak, the higher order terms resulting from the changes
of skew quadrupole kicks by the effects of other skew quadrupoles can be
neglected. In such cases, the new transfer matrix may be written as the un-
perturbed transfer matrix plus a summation of the perturbations of all skew
quadrupoles in the beam line, i.e.,

T ≈ T0 +
∑

l

χlT2SlW4TSl1, (2.56)

where l indicates the l’th skew quadrupole. To first order in χl, the skew
quadrupoles only change the off-diagonal blocks.

Using the coupled transfer matrix, T, the impact of skew quadrupole
components to the beam motion can be described. The non-zero off-diagonal
blocks will cause vertical motion for a particle initially launched on the hori-
zontal plane, and vice versa.

In a circular accelerator, the coupled one-turn transfer matrix can be used
to track the beam motion for multiple turns. With linear coupling, the hori-
zontal and vertical betatron oscillations will show up in the motion observed
on both planes. Figure 2.5 shows the coupled motion observed on the x and
y coordinates in a ring for a particle launched with initial offsets of 0.1 mm
in both planes. The Fourier spectrum of the x motion includes a component
with the vertical tune, while the y spectrum includes the horizontal tune.

Linear coupling also causes the closed orbit to be coupled between the two
transverse planes. With linear coupling, a kick on the horizontal plane causes
orbit deviations not only in the horizontal plane, but also in the vertical plane.
Similarly, a vertical kick causes both horizontal and vertical orbit deviations.
The orbit deviations in the other plane are small if the coupling is weak.



46 � Beam-based Correction and Optimization for Accelerators

x
 (

m
m

)

-0.2

0

0.2

FFT(x)

turn

0 100 200

y
 (

m
m

)

-0.2

0

0.2

0.1 0.15 0.2

FFT(y)

Figure 2.5 The coupled motion in the SPEAR3 storage ring for a particle launched

with initial offsets of x = y = 0.1 mm. The coupling is introduced by 15 skew

quadrupoles with integrated strengths randomly chosen from a Gaussian distribution

with σχ = 0.012 m−1. The uncoupled betatron tunes are νx = 14.106 and νy = 6.177.

As shown in Figure 2.5, the coupled motion in a ring consists of two fre-
quency components in both transverse planes. These two frequency compo-
nents correspond to two independent modes, which are called decoupled modes
or normal modes. The normal mode coordinates, X̂ = (ua, u

′
a, ub, u

′
b)
T are

related to the usual coordinates X = (x, x′, y, y′)T through a linear transfor-
mation,

X̂ = V−1X, (2.57)

where V is a 4 × 4 symplectic matrix. The one-turn transfer matrix for the
normal coordinates, X̂, is block diagonal, i.e.,

T̂ = V−1TV =

(
Ma 0
0 Mb

)
. (2.58)

The one-turn transfer matrices for mode a and b, Ma and Mb, respectively,
can be Courant-Snyder parametrized.

It has been shown that for a general 4× 4 coupled transfer matrix [105]

T =

(
M m
n N

)
, (2.59)

the linear transformation matrices to and from the decoupled coordinates are
given by

V =

(
rI C
−C+ rI

)
, V−1 =

(
rI −C
C+ rI

)
, (2.60)
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where C+ is the symplectic conjugate of C, defined as

C+ ≡ ST2 CTS2 =

(
C22 −C12

−C21 C11

)
, (2.61)

and the matrix C is defined as

C = − Hsgn[Tr(M−N)]

r
√

[Tr(M−N)]2 + 4||H||
, (2.62)

with H ≡m + n+, ||H|| is the determinant of H, sgn(·) gives the sign, and

r =

√√√√1

2
+

1

2

√
[Tr(M−N)]2

[Tr(M−N)]2 + 4||H|| , (2.63)

respectively. Parameter r and the determinant of the matrix C satisfy

r2 + ||C|| = 1. (2.64)

Eqs. (2.59-2.63) give a procedure to decouple the linearly coupled motion
between two the planes. Knowing the V matrix, the usual phase space coor-
dinates can be expressed in terms of the decoupled coordinates,

(
x
x′

)
= r

(
ua
u′a

)
+ C

(
ub
u′b

)
,

(
y
y′

)
= −C+

(
ua
u′a

)
+ r

(
ub
u′b

)
. (2.65)

Clearly, the motion in the x or y plane contains the components of both
normal modes. If we can separate the normal mode components in the turn-
by-turn motion observed in the two planes, we can obtain information about
the decoupling matrix C, which in turn can be used to derive information
about the coupling sources.

Conversely, the transformation also allows us to calculate the projection
of the motion given in the x and y planes onto the two normal modes. This
can be used to calculate the excitation of the normal modes by, for example,
photon emissions. When a photon is emitted, the betatron coordinates change
by ∆xβ = −uDx and ∆x′β = −uD′x, where u is the fractional momentum loss
of the particle due to the photon emission. The changes of the normal mode
coordinates will be

(
∆ua
∆u′a

)
= (−u)r

(
∆D
∆D′

)
,

(
∆ub
∆u′b

)
= (−u)C+

(
∆D
∆D′

)
. (2.66)

The increment of the b-mode (vertical) action is

∆Jb =
1

2βb

(
∆u2

b + (αb∆ub + βb∆u
′
b)

2
)
,

which can then be used to calculate the betatron coupling contribution to the
equilibrium vertical emittance in electron storage rings.
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The elements of the decoupling matrix C can be related to the distribution
of the coupling sources. To that end we first need to calculate matrix H. For
simplicity, we define matrix

H̄ = B−1
x HBy, (2.67)

which is the equivalent of H for the normalized coordinates (x̄, x̄′, ȳ, ȳ′) (see
Eq. (1.64)). From Eq. (2.56), it can be shown that if we define

h− = 2i sinπ(νx + νy)eiπ(νx−νy)
∑

l

χl
√
βx,lβy,le

−i(Ψx,l−Ψy,l), (2.68)

h+ = 2i sinπ(νx − νy)eiπ(νx+νy)
∑

l

χl
√
βx,lβy,le

i(Ψx,l+Ψy,l), (2.69)

the elements of H̄ are given by

H̄11 =
1

2
Im(h− + h+), H̄12 =

1

2
Re(h− − h+), (2.70a)

H̄21 = −1

2
Re(h− + h+), H̄22 =

1

2
Im(h− − h+). (2.70b)

The determinant of H is thus (since ||Bx,y|| = 1)

||H|| = ||H̄|| = 1

4
(|h−|2 − |h+|2). (2.71)

Defining the coupling coefficients

G± =
1

2π

∑

l

χl
√
βx,lβy,le

±i(Ψx,l±Ψy,l), (2.72)

we have

r2 =
1

2
+

1

2

(
1 +

π2|G−|2
sin2 π(νx − νy)

− π2|G+|2
sin2 π(νx + νy)

)− 1
2

. (2.73)

Eq. (2.73) indicates that if the betatron tunes satisfy the linear difference
resonance condition, i.e., νx − νy = p, where p is an integer, the G− term
dominates and r2 = ||C|| = 1

2 . In this case the excitation of motion is equally
split between the two normal modes. If the tunes are near the linear sum
resonance, with νx+νy ≈ p, theG+ term dominates. As |νx+νy−p| approaches
|G+|, r2 and Abs(||C||) tend to infinity, where Abs(·) stands for the absolute
value. The beam motion near the linear sum resonance is unstable.

In a typical storage ring, the betatron tunes are closer to the linear dif-
ference resonance than the linear sum resonance, i.e., the fractional parts of
νx and νy tend to be both in the [0, 0.5] zone, or the [0.5, 1] zone. The linear
coupling is usually weak, with

|G−| � |νx − νy − p|, (2.74)
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satisfied and, correspondingly, Abs(||C||)� r2 ≈ 1. However, for the next gen-
eration storage ring light sources with the natural emittance at the diffraction
limit, it is desirable to operate near or on the linear difference resonance. In
this case, |νx−νy−p| ≤ |G−|, and hence the horizontal and vertical emittances
are nearly equal. The beam in this condition is called a round beam.

2.5 CHROMATIC EFFECT
As discussed in Section 2.3, the energy dependence of the bending angles by
dipole fields gives rise to dispersion, the orbit dependence on beam energy. As
the multipole field one order higher than the dipole, quadrupole fields deter-
mine the linear optics of the lattice. The focusing strength of a quadrupole
also depends on the beam energy. The dependence of the linear optics on the
beam energy is called the chromatic effect.

From Eq. (1.36) we see that the focusing gradient for an off-momentum

particle is K = b1
1+δ , where b1 = 1

Bρ
∂By
∂x is the focusing gradient for the refer-

ence particle, and δ is the momentum deviation of the off-momentum particle.
Therefore, the transfer matrix of the quadrupole for the off-momentum parti-
cle is different from that of the reference particle. In a circular accelerator, the
one-turn transfer matrix depends on the momentum deviation, which means
the betatron tunes, betatron phase advances, and Courant-Snyder parameters
all depend on the beam energy.

The focusing error of a quadrupole for an off-momentum particle is

∆Kx = −(b1 + 2h2)δ ≈ −Kxδ, ∆Ky = b1δ = −Kyδ, (2.75)

where Kx = b1 + h2, Ky = −b1 are the horizontal and vertical focusing func-
tions, respectively, and h is the curvature of the reference orbit. The focusing
errors for off-momentum particles affect the linear optics of the off-momentum
particles in the same manner as the quadrupole errors we previously studied.
For example, the betatron tune of a ring would be changed by

∆ν ≈ 1

4π

∮
β(−Kδ)ds, (2.76)

where −Kδ is the error of the focusing function for a particle with momen-
tum deviation δ. The derivative of the momentum dependent tune shift with
respect to the momentum deviation is called the chromaticity,

C ≡ dν

dδ
. (2.77)

The uncorrected chromaticity is called natural chromaticity,

Cnat ≈ −
1

4π

∮
Kβds. (2.78)

The natural chromaticity is a negative quantity because a particle with higher
momentum receives less focusing by the quadrupoles.
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For example, the horizontal transfer matrix for a FODO cell for an off-
momentum particle would need to change from Eq. (1.50) by replacing the
focal length, f , with f(1 + δ). The betatron tune contribution of the cell will
change accordingly. From Eqs. (1.65) and (2.77), the natural chromaticity of
a FODO cell is found to be

CFODO = −ν tan Φ/2

Φ/2
≈ −ν, (2.79)

where the approximation is valid when the phase advance on the cell is small.
High intensity bunched beams in a storage ring can suffer from the head-

tail instability if the ring has a large, negative chromaticity (if above transi-
tion). The large tune spread in the beam due to a large chromaticity can also
cause difficulties. The correction of the natural chromaticity is usually neces-
sary for storage rings. Typically the horizontal and vertical chromaticities are
corrected to slightly positive numbers (above transition).

Chromaticity correction is achieved by placing sextupole magnets in the
lattice at dispersive locations. At such locations an off-energy particle travels
on an orbit with a horizontal offset from the magnet center. On this orbit the
particle sees a quadrupole field component from the feed-down effect (see the
illustration in Figure 2.6). For a particle with momentum deviation δ which is
on the dispersion orbit of ∆x = Dδ at the sextupole location, the quadrupole
component it sees is

∆K(δ) = b2Dδ, (2.80)

where b2 is the normalized sextupole strength. This momentum dependent
quadrupole error affects the chromaticities. Including the corrections, the hor-
izontal and vertical chromaticities are

Cx ≈ −
1

4π

∮
βx(Kx − b2D)ds, (2.81a)

Cy ≈ −
1

4π

∮
βy(Ky + b2D)ds, (2.81b)

respectively. Because the momentum dependent quadrupole error is focusing
in one transverse plane and defocusing in the the other plane, at least two
sextupole families are required for chromaticity correction in both planes. One
sextupole family is located where βx > βy, while the other sextupole family
is located where βy < βx. A large disparity in the horizontal and vertical
beta functions at the sextupole locations helps reduce the required sextupole
strengths for chromaticity correction.

The focusing errors for off-momentum particles by the quadrupole magnets
not only change the off-momentum betatron tunes, but also the off-momentum
beta functions and phase advances. The beta beating for off-momentum par-
ticles is called chromatic beta beating. A large chromatic beta beating could
lead to a reduced momentum acceptance. Since the focusing errors cannot
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Figure 2.6 Illustration of chromaticity correction with sextupole magnets. Top: fo-

cusing error of a quadrupole for off-momentum particles. Bottom: the feed-down

quadrupole field from a sextupole magnet provides correction to the focusing errors.

be corrected exactly at the locations of the error sources, correction of the
chromaticities usually does not completely eliminate chromatic beta beating.
The chromatic beta beating due to quadrupoles and sextupoles in the lattice
is a systematic error. It is important to properly arrange these magnets in the
lattice design in order to avoid excessive chromatic beta beating.

2.6 NONLINEAR BEAM DYNAMICS
Sextupole magnets are introduced into circular accelerators to correct chro-
maticities. The magnetic fields in sextupoles are nonlinear with respect to
transverse positions of the beam particles. The nonlinear forces can lead to
unstable beam motion and beam loss when the transverse offsets are suffi-
ciently large as the particle motion can be driven onto nonlinear resonances
and become unstable under large oscillation amplitudes. A large stability re-
gion is critical for storage ring lattice designs.

The nonlinear beam motion in circular accelerator lattices can be analyzed
with the Hamiltonian dynamics approach or the Lie map approach.

2.6.1 Hamiltonian dynamics approach
In general, the Hamiltonian that describes the beam motion in an accelerator
lattice can be split into two parts, one representing the ideal linear motion by
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design and the other a perturbation term including all other effects,

H(x, px, y, py, δ) = H0 +H1, (2.82)

where H0 consists of the effects of the ideal linear elements, namely, drift
spaces, quadrupole magnets, and dipole magnets as designed,

H0(x, px, y, py) =
1

2
(p2
x +Kx(s)x2) +

1

2
(p2
y +Ky(s)y2), (2.83)

with Kx = b1 +h2, Ky = −b1, h the bending curvature, and b1 the normalized
quadrupole gradient. The perturbation term, H1, includes linear errors, the
sextupole effect, and all other nonlinear errors. In general, H1 can be expressed
in polynomials of the phase space coordinates. For example, the Hamiltonian
perturbation due to the sextupoles is

H1,sext = b2(s)
x3 − 3xy2

6
. (2.84)

The linear terms in a sextupole Hamiltonian are the same as a drift space and
are included in H0.

The linear motion represented by H0 can be described by 4×4 transfer ma-
trices. By introducing a few canonical coordinate transformations, the stable
linear beam motion can be cast into two uncoupled harmonic oscillations. In
the action-angle coordinates of the oscillations, the new Hamiltonian becomes

H̃0 = RH0 = vxJx + vyJy, (2.85)

with

x = xβ +Dδ, px = pxβ +D′δ,

xβ =
√

2βxJx cos Φx, βxpxβ + αxxβ = −
√

2βxJx sin Φx, (2.86)

y =
√

2βyJy cos Φy, βypy + αyy = −
√

2βyJy sin Φy,

where Φxy = φxy + ψxy − νxyθ, (φx,y, Jx,y) are action-angle coordinate pairs,
ψx,y are betatron phase advances, and θ = s/R is used as the free variable
(with 2πR the ring circumference). The factor of R in the new Hamiltonian
comes from the change of free variable from s to θ. If we further introduce
coordinates

z1 =
√

2βxJxe
iΦx , z̄1 =

√
2βxJxe

−iΦx ,

z2 =
√

2βyJye
iΦy , z̄2 =

√
2βyJye

−iΦy ,
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the perturbation Hamiltonian can be rewritten as

H̃1 = R
∑

jklmn≥0

Hjklmn(θ)zj1z̄
k
1z
l
2z̄
m
2 δ

n,

= R
∑

Hjklmn(θ)β
j+k
2

x β
l+m

2
y J

j+k
2

x J
l+m

2
y δn

ei[(j−k)(ψx−νxθ)+(l−m)(ψy−νyθ)]ei[(j−k)φx+(l−m)φy ],

≡
∑

hjklmn(θ)J
j+k
2

x J
l+m

2
y ei[(j−k)φx+(l−m)φy ]δn, (2.87)

where

hjklmn(θ) = RHjklmn(θ)β
j+k
2

x β
l+m

2
y ei[(j−k)(ψx−νxθ)+(l−m)(ψy−νyθ)]. (2.88)

The Hamiltonian H̃1 is said to be given in the resonance basis.
The functions hjklmn(θ) are periodic with respect to θ with the period of

2π and can be Fourier expanded,

hjklmn(θ) =
∞∑

p=−∞
h

(p)
jklmne

ipθ, (2.89)

with the Fourier coefficients given by

h
(p)
jklmn =

1

2π

∮
dθhjklmn(θ)e−ipθ. (2.90)

With the Fourier expansion, the perturbation Hamiltonian is now written as

H̃1 =
∑

jklmn≥0

∞∑

p=−∞
h

(p)
jklmnJ

j+k
2

x J
l+m

2
y ei[(j−k)φx+(l−m)φy+pθ]δn. (2.91)

The various terms in the perturbation Hamiltonian have different impact
on the beam motion. The terms with n > 0 affect off-momentum particles and
can be referred to as chromatic terms, while the n = 0 terms affect the on-
momentum particle motion and are called geometric terms. The terms with
j = k and l = m are independent of the angle coordinates. Among these
terms, the ones with p = 0 cause the tunes to change, which can be seen from
the Hamilton’s equation

∆νx =
∂H̃1

∂Jx
, ∆νy =

∂H̃1

∂Jy
. (2.92)

For example, the terms h
(0)
11000 and h

(0)
00110 correspond to betatron tune changes

due to quadrupole errors around the ring,

∆νx = h
(0)
11000, ∆νy = h

(0)
00110. (2.93)
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The terms h
(0)
11001 and h

(0)
00111 correspond to tune changes for off-momentum

particles, namely, the chromaticities.

∆Cx = h
(0)
11001, Cy = h

(0)
00111. (2.94)

The tune changes due to the above terms are independent of the action vari-
ables. For most terms, the tune shifts depend on the action variables, or equiv-
alently, the oscillation amplitudes; such effects are called tune shifts with am-
plitude, amplitude-dependent detuning, or nonlinear detuning. The leading
terms in the perturbation Hamiltonian that give rise to nonlinear detuning
are

∆H̃1 = h
(0)
22000J

2
x + h

(0)
11110JxJy + h

(0)
00220J

2
y . (2.95)

The tune shifts with amplitude from these terms can be characterized by the
following coefficients.

∂νx
∂Jx

= 2h
(0)
22000,

∂νx
∂Jy

=
∂νy
∂Jx

= h
(0)
11110,

∂νy
∂Jy

= 2h
(0)
00220. (2.96)

There are also higher order terms that cause tune shifts dependence on the
action variables to higher orders.

The terms in Eq. (2.91) that have either j 6= k or l 6= m or both depend on
the angle coordinates φx or φy. Most of these terms have little impact over the
motion of the particles because they oscillate quickly with time and hence the
average effect is negligible. However, for some terms, the phase factor may be
slowly varying. The effect from these terms can build up and fundamentally
change the behavior of particle motion. These terms satisfy the resonance
condition

(j − k)
dφx
dθ

+ (l −m)
dφy
dθ

+ p = (j − k)νx + (l −m)νy + p,

= n1νx + n2νy + p ≈ 0, (2.97)

where n1 = j − k and n2 = l −m. The order of the resonance is defined as
|n1| + |n2|. Beam motion around nonlinear resonances can become unstable,
as the resonances can drive the particles to large oscillation amplitudes and
cause beam loss. To alleviate the impact of the nonlinear resonances, it is

desirable to minimize the strengths of the resonance harmonics, h
(p)
jklmn.

Periodicity in a lattice can automatically set many systematic (i.e., inher-
ent in the design) resonance terms to zero. If a ring consists of N repetitive,
identical cells, the resonance harmonics reduce to

h
(p)
jklm =

1

2π

(∫

cell

hjklme
−jpθdθ

)N−1∑

q=0

e−i2πq
p
N ,

=
1

2π

(∫

cell

hjklme
−jpθdθ

)
e−iπp

N−1
N

sin pπ

sin(pπ/N)
, (2.98)
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which vanish, unless p is either 0 or a multiple of N . Therefore, it is beneficial
to retain high periodicity in the design of a storage ring lattice.

In a typical storage ring, the main sources of nonlinearity in the beam mo-
tion are the sextupole magnets. From Eq. (2.84), it is straightforward to show
that in the resonance basis the sextupole Hamiltonian consists of the follow-
ing geometric terms: h3000, h0300, h2100, h1200, h1011, h0111, h1020, h0102, h1002,
and h0120 (here the fifth index, 0, is suppressed in the subscript). Each of these
terms contributes to driving a corresponding resonance. These resonances in-
clude 3νx = p, νx = p, νx+2νy = p, and νx−2νy = p. The above resonances are
driven by sextupoles through their direct impact on the linear motion, which
corresponds to the first order perturbation to the linear motion. The effect of
sextupole fields on the nonlinear beam motion perturbed by other sextupoles
or themselves on previous passes gives rise to additional resonances, which cor-
respond to terms from the second or higher order perturbations. Resonances
driven by sextupoles through the second order perturbation include 4νx = p,
2νx = p, 2νy = p, 4νx ± 2νy = p, and 2νx ± 2νy = p.

Aside from the systematic nonlinear resonances driven by sextupoles in the
design, a lattice always has field errors that are systematic or random devia-
tions from the design. The field errors will drive many nonlinear resonances.
When the tunes of oscillating particles are shifted onto certain nonlinear res-
onances due to nonlinear detuning or linear and nonlinear chromaticities in
a storage ring, the particles can get lost. Particle loss from the nonlinear
beam motion limits the dynamic aperture and the local momentum aperture.
Sufficiently large dynamic aperture and local momentum aperture are basic
requirements for the operation of a storage ring. The lattice design of a storage
ring often relies on extensive optimization of the linear and nonlinear optics
to achieve the desired nonlinear dynamics performance. However, linear and
nonlinear errors in the real machine cause the operation conditions to deviate
from the design. During the commissioning phase, it is necessary to correct the
errors in the machine in order to restore the lattice performance. Beam-based
optimization may be used to compensate the effects of the errors when direct
correction methods are not available.

2.6.2 Lie map approach
The Hamiltonian dynamics approach gives a continuous description of the
beam motion. In the accelerator context, it often suffices to know the transfer
map between two locations. The transfer map can be given by a Taylor expan-
sion of the coordinates at location 2 in terms of the coordinates at location
1, as shown in Eq. (1.48). The Taylor map is easy to evaluate, but it quickly
becomes large and cumbersome when it is extended to higher orders. More
importantly, the truncated Taylor map is generally not symplectic and hence
not ideal for the study of long term stability of beam motion. The Lie map is
an alternative representation of the transfer map, which is not only symplectic
but also compact.
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In a Hamiltonian system, the time derivative of a function of the phase
space coordinates, f(X), is given by

f ′ =
∂f

∂s
+
∑

i

[
∂f

∂xi
x′i +

∂f

∂pi
p′i] =

∂f

∂s
+ [f,H], (2.99)

where ′ represents derivative with respect to the free variable, s, summation
is over pairs of conjugate coordinates, H(X; s) is the Hamiltonian, and the
Poisson bracket for functions f and g is defined as

[f, g] =
∑

i

∂f

∂xi

∂g

∂pi
− ∂f

∂pi

∂g

∂xi
≡: f : g, (2.100)

where : f : g is simply another notation for the Poisson bracket. Assuming no
explicit time dependence in both f and H, the higher order time derivatives
of f can be readily obtained

f ′ = : −H :f, f ′′ = : (−H)2 :f, · · · , f (n) = : (−H)n :f, (2.101)

where −H is used because [f,H] = [−H, f ]. For an accelerator element with
constant magnetic field profile over length L, the function f at the exit face
can be expressed in a Taylor series of coordinates at the entrance face

f(X2) = f1 + f ′1L+
1

2
f ′′1 L

2 + · · · = e:−HL:f(X)|X=X1 , (2.102)

where subscript 1 indicates values at the entrance face and e:g: is defined as a
Lie map with the generating function g,

e:g: ≡ 1+ : g : +
1

2
: g :2 + · · · 1

n!
: g :n + · · · . (2.103)

When Eq. (2.102) is applied to the phase space coordinates, X, it gives the
transfer map. Hence, for a typical accelerator element the transfer map is a Lie
map with generating function g = −H(X)L. For linear optics elements, the
generating functions are quadratic functions of the phase space coordinates.
For example, the Lie map for a drift space is exp(: − 1

2 (p2
x + p2

y)L :). The map
for the linear elements can be expressed in closed forms. However, the maps
for nonlinear elements, such as a sextupole,

fsext = −
(p2

x + p2
y

2
+
K2

6
(x3 − 3xy2)

)
L, (2.104)

do not have closed forms.
When two elements are joined together, the Lie map for the section con-

sisting the two elements can be obtained by concatenating the two individual
Lie maps using the Baker-Campbell-Hausdorff (BCH) formula,

e:f :e:g: = e:h:, (2.105)
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where f and g are the generating functions for the first and second elements
(noting the order), respectively, and

h = f + g +
1

2
: f : g +

1

12
: f :2 g +

1

12
: g :2 f + · · · . (2.106)

With concatenation, the Lie map for any section with multiple elements can
be obtained. The one-turn map at a location in a ring is a special example.

The terms in the generating function can be grouped by their orders in
the polynomial,

e:h: = e:f2:e:f3:e:f4: · · · , (2.107)

where f2 contains all quadratic terms, f3 all third order terms, etc. Note that
f3, f4, and higher order terms differ from terms in h because extra terms are
generated when the BCH formula is used to separate the map in Eq. (2.107).
The quadratic terms in f2 are the same as in h and can be expressed in terms
of the Courant-Snyder parameters,

f2 = −πνx
βx

(x2 + (αxx+ βpx)2)− πνy
βy

(y2 + (αyy + βpy)2). (2.108)

The f2 map represents the linear motion, while the f3, f4, and higher order
terms give rise to nonlinear detuning and resonances.

The Lie map can be brought into a simple form called the normal form [31,
11, 12] through a coordinate transformation. As a first step, the resonance
basis coordinates are introduced, using the normalized coordinates defined in
Eq. (1.64),

h±x = x̄± ip̄x =
√

2Jxe
∓iφx , h±y = ȳ ± ip̄y =

√
2Jye

∓iφx , (2.109)

where (Jx, φx) and (Jy, φx) are action-angle variables for the two transverse
planes, respectively. Beside the terms that describe the ideal linear motion, the
remainder of the generating function, including linear errors and all nonlinear
terms, can be expressed in the resonance basis

∆h =
∑

jklm

hjklmh
j
xh
−k
x hlyh

−m
y . (2.110)

The terms with both j = k and l = m do not involve the angle coordinates
and hence will not cause variations to the action variables. Instead, they will
change the betatron tunes. The terms with either j 6= k or l 6= m will drive
resonances and are referred to as resonance driving terms (RDTs).

The coordinate transformation to the normal form coordinates can be cast
into a Lie map,

ζ = e−:F :h, with F =
∑

jklm

fjklmζ
j
xζ
−k
x ζlyζ

−m
y , (2.111)
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where h = (h+
x , h

−
x , h

+
y , h

−
y )T are the original coordinates, ζ = (ζ+

x , ζ−x , ζ+
y ,

ζ−y )T are the normal form coordinates, and

ζ±x,y =
√

2Ix,ye
∓iψx,y , (2.112)

with new action-angle coordinates (Ix, ψx) and (Iy, ψy). The generating func-
tion, F , is chosen to make the motion in the new coordinate as simple as
possible. In the non-resonant case, the beam motion in the new resonance
basis will be a simple rotation. It can be shown that the coefficients, fjklm
and hjklm, are connected through [36]

fjklm =
hjklm

1− ei2π[(j−k)νx+(l−m)νy ]
, (2.113)

where only the resonance driving terms (j 6= k or l 6= m or both) are kept.
The beam motion in the original coordinates can be determined from the

inverse coordinate transformation, i.e., e:F :ζ−x , hence [10]

h−x ≈ ζ−x + [F, ζ−x ] = ζ−x − 2i
∑

jklm

jfjklm(ζ+
x )j−1ζ−kx (ζ+

y )lζ−my , (2.114)

and similarly for the vertical plane. The new resonance basis coordinates after
N turns will be

ζ−x,y(N) =
√

2Ix,ye
i(2πνx,yN+ψx0,y0), (2.115)

where the tunes may include any nonlinear detuning. Therefore, the original
resonance basis coordinates after N turns are given by [10]

h−x (N) =
√

2Ixe
i(2πνx+ψx0) − 2i

∑

jklm

jfjklm(2Ix)
j+k−1

2 (2Iy)
l+m

2

· ei[(1−j+k)(2πνxN+ψx0)+(m−l)(2πνyN+ψy0)], (2.116)

h−y (N) =
√

2Iye
i(2πνy+ψy0) − 2i

∑

jklm

lfjklm(2Ix)
j+k
2 (2Iy)

l+m−1
2

· ei[(k−j)(2πνxN+ψx0)+(1−l+m)(2πνyN+ψy0)]. (2.117)

With Eqs. (2.110), (2.113), and (2.116)-(2.117), the observed beam motion
is related to the RDTs in the generating function of the one-turn Lie map. Each
term in Eqs. (2.116)-(2.117) corresponds to a spectral line on the turn-by-turn
orbit data, while a spectral line typically has contributions from many terms.
For example, the third order RDT h3000, which is proportional to sextupole
strengths, drives the resonance 3νx = p and its corresponding spectral line on
the horizontal turn-by-turn orbit data is 1− 2νx.
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2.7 LATTICE MODELING AND PARTICLE TRACKING
While beam dynamics theories are very useful for understanding the nature
of the beam motion, the design and operation of an accelerator often demand
more precise and more detailed description of the beam motion and beam
properties of the particular machine, which can only be provided by a thor-
ough lattice model. A lattice model consists of all the accelerator elements
that affect the beam motion and markers of critical locations at which beam
parameters may need to be evaluated. Beam motion in the machine can be
predicted with the lattice model by sequentially calculating the effects of the
individual elements on the particles. One only needs to improve the accuracy
of the modeling of the individual elements in order to accurately describe the
beam motion and the beam properties in a complex machine.

The beam motion through an element can be described either with a trans-
fer map, or by directly tracking phase space coordinates of particles. For the
transfer map approach to achieve a high accuracy, it is necessary to expand
to the higher orders, which makes the map cumbersome and slow to evalu-
ate. Transfer maps can also be used to track particles. However, the tracking
results are not symplectic as either the map is not symplectic (e.g., Taylor
maps) or the map needs to be truncated during evaluation (Lie maps). Hence
tracking with transfer maps is not suitable for the study of long-term stability.
In practice, it is more common to use element-by-element particle tracking.

In element-by-element particle tracking, the 6-dimensional phase space
coordinates, (x, px, y, py, z, δ)T (or 4-dimensional if the longitudinal motion
is not included), are passed through each element from the entrance face to
the exit face. The coordinate changes in an element depend on the physical
process involved, the element parameters, and the initial coordinates. Using
particle tracking, the lattice features and beam properties can be evaluated.

2.7.1 Tracking different types of accelerator elements
Linear elements:

Tracking through the linear elements, namely, drift spaces, dipole mag-
nets, and quadrupole magnets, is straightforward. The transfer matrices in
Eqs. (1.27), (1.32), and (1.37) (or the corresponding forms with negative gra-
dients) can be directly applied. In these equations, the transfer matrices are
given for x′ and y′ coordinates, instead of px and py. Eq. (1.2) can be used to
convert between the coordinates for each particle before and after the matri-
ces are applied. The gradients and the curvature in Eqs. (1.32) and (1.37) are
scaled with 1

1+δ , hence the effects of chromatic errors on the beam motion are
included in the tracking.

The only effect on the longitudinal coordinates by these linear elements
is a shift in z. This can be derived by integrating Eq. (1.12). The z shift
in drift spaces and quadrupoles are second order functions of the transverse
coordinates at the entrance. For dipole magnets, the transverse motion in the
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bending plane (typically horizontal) is coupled to the longitudinal motion.
The 6 × 6 transfer matrix has non-zero R16, R26 elements, as given by d in
Eq. (1.33). R51 and R52 are non-zero and are connected with R16 and R26

through Eq. (2.47). The R56 element is also non-zero. For example, the linear
terms of ∆z for a pure sector dipole are given by

∆z =
δs

γ2
0

− x0 sin(hs)− x′0
h

(1− cos(hs)) + δ(s− 1

h
sin(hs)), (2.118)

where subscript 0 indicates coordinates at the entrance face.
Edge focusing for the dipole magnets can be included by applying the

transfer matrix in Eq. (1.35) with the proper entrance and exit angles. To
account for the finite extent of the fringe field, the vertical angle may be
corrected using the fringe field integral and the bending radius [17]. Effects of
fringe fields in quadrupoles may also be included. The dominant effect of the
soft-edge gradient variation is to scale up one transverse coordinate and scale
down its conjugate coordinate [66].

Symplectic integration:
Sextupole magnets and higher order multipoles are nonlinear elements.

There is no closed-form analytic solution to the motion in these elements.
Application of ordinary numeric integration to solve the equations of motion
through such elements can yield accurate results for one pass. However, the
solution does not preserve symplecticity of the particle motion and is thus not
ideal for long-term tracking simulation. Symplectic integration [101, 38] has
to be used for particle tracking in nonlinear elements.

The general idea of explicit symplectic integration is to split the Hamil-
tonian into two integrable parts, such as a drift space and a lumped kick. In
each integration step, a number of drifts and kicks are alternately applied to
the particles. Since transporting through drifts and thin-lens kicks are both
symplectic, the total transport is automatically symplectic. If the lengths of
the drifts, the strengths of the kicks, and the order of application are prop-
erly chosen (independent of the actual Hamiltonian), the integration will be
accurate as well as symplectic. A simple case is the second order symplectic
integrator illustrated in Figure 2.7. Each integration step consists of a drift,
a kick, and another drift. The lengths of the drifts are equal to one half of
the step length and the kick corresponds to the integrated magnetic field over
the step length. The symmetric configuration eliminates the first order errors
such that the leading error terms are O(L2). Slicing the element into many
integration steps will increase the accuracy of the solution.

The commonly used fourth order symplectic integrator [38] is composed
of four drifts and three kicks in each step. The lengths of the four drifts
(in the order of occurrence) are α1L, α2L, α2L, and α1L, respectively, with
α1 = 1

2(1+ζ) , α2 = ζ
2(1+ζ) , and ζ = 1 − 21/3. The three kicks are inserted

between the drifts and their strengths corresponds to integration lengths of
β1L, β2L, and β1L, with β1 = 2α1 and β2 = 2(α2 − α1). Note α2 < 0 and
β2 < 0 and hence the corresponding drift and field lengths are negative.
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L/2 L/2

0 1− 1+ 2

drift kick drift

Figure 2.7 A second order integrator that consists of two drifts and a lumped kick

in the middle. The kick strength corresponds to the integrated field over the length.

To model higher order multipole components in quadrupole and dipole
magnets due to systematic or random errors, symplectic integration is also
used. Application of the symplectic integrators to straight elements (i.e., h =
0) is straightforward as the drift space terms and the magnetic field terms are
naturally separated. The Hamiltonian (with the hard-edge field model) is in
the form

H = H1 +H2 = (1 + δ)−
√

(1 + δ)2 − p2
x − p2

y − as(x, y), (2.119)

where H2 = −as(x, y) represents the magnetic fields and H1 represents the

drift space. Typically the small angle approximation, H1 ≈ p2x+p2y
2(1+δ) , can be

used.
The separation of the Hamiltonian in a dipole magnet is more involved.

The Hamiltonian for a dipole element is given by

H = (1 + δ)− (1 + hx)
√

(1 + δ)2 − p2
x − p2

y − (1 + hx)as(x, y), (2.120)

which can also be split into the potential H2 = −(1+hx)as(x, y) and the drift

space, with H1 = (1 + δ)− (1 + hx)
√

(1 + δ)2 − p2
x − p2

y. The solution to the

motion in a drift space in the curved reference system is [37],

x2 = (ρ+ x)
cosφ

cos(φ+ hL)
− ρ, (2.121a)

px2 =
√

(1 + δ)2 − p2
y sin(φ+ hL), (2.121b)

y2 = y + py
(ρ+ x)√

(1 + δ)2 − p2
y

(cosφ tan(φ+ hL)− sinφ), (2.121c)

z2 = z + (1 + δ)
(ρ+ x)√

(1 + δ)2 − p2
y

(cosφ tan(φ+ hL)− sinφ)− L, (2.121d)

where subscript 2 indicates values at the exit face and

φ = tan−1 px√
(1 + δ)2 − p2

y

.



62 � Beam-based Correction and Optimization for Accelerators

The approximation of the continuous bending in the curved coordinate sys-
tem with the propagation on a straight line introduces errors. Notably, an
on-energy particle at the phase space origin will be transported to non-zero
coordinates at the exit face, with

∆x0 =
1

coshL
− ρ, ∆px,0 = sinhL, ∆z0 = ρ tanhL− L. (2.122)

These errors need to be subtracted from Eq. (2.121). There are other ways
to separate the dipole Hamiltonian for symplectic integration. Sometimes the
simple approach of replacing Eq. (2.121) with the solution of a drift space in
the straight coordinate system is used. The evaluation is faster, although it
comes with some loss of accuracy.

RF cavities:
An RF cavity can be modeled as a thin-lens element in which the mo-

mentum deviation coordinate is modified according to the z-coordinate of the
particle and the RF parameters, which gives

δ2 = δ +
eV

β2E0
sin(

2πhf0z

c
+ φs), (2.123)

where V is the RF voltage, f0 the revolution frequency, h the harmonic num-
ber, and φs is the synchronous phase.

Radiation damping and quantum excitation:
Radiation damping and quantum excitation occur in electron storage rings

in which particles emit photons due to synchrotron radiation [106]. Since
higher energy particles lose more energy to photons, lower energy particles
lose less, and all particles on average gain the same amount of energy each
turn, the energies of all particles tend to converge to the same value. Simi-
larly, as particles lose the transverse momenta to photon emissions and only
gain energy through work done in the longitudinal direction, the transverse
oscillations gradually decrease toward zero. Radiation damping can be imple-
mented in the dipole symplectic integrator by making the particles lose the
correct amount of energy after each kick, and scale px and py to keep the x′

and y′ coordinates unchanged. With radiation damping, the beam motion is
no longer symplectic.

The emission of each photon gives the particle a kick in the momentum
coordinate. The kicks by the emission of photons put the particle on a ran-
dom walk in the longitudinal phase space, resulting in increasing longitudinal
action variable. When photon emissions occur in a dispersive region, the par-
ticle will start to oscillate around the off-energy closed-orbit corresponding
to the new energy; hence the particle is excited in the transverse plane. The
excitation of beam motion by the impulsive kicks of photon emissions is called
quantum excitation or quantum diffusion. Quantum excitation causes particle
to deviate from the closed-orbit. It is balanced by radiation damping, leading
to an equilibrium beam distribution. To simulate quantum excitation, the en-
ergy loss of the particle at each kick is given by a random variable, which can
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be drawn from a Gaussian distribution with the proper mean and standard
deviation. Since the use of kicks with negative field lengths introduces extra
excitation, the second order symplectic integrator, in which the kick length is
positive, is preferred.

Misalignment:
There are always errors in the positions and orientations of the accelerator

elements in a real machine as compared to the ideal design. These errors
are referred to as misalignment. Misalignment of magnets can significantly
impact the accelerator performance. For example, transverse position shifts
of quadrupole magnets produce dipole kicks to the beam through the feed-
down effects. The kicks cause closed orbit offsets, typically much larger than
the alignment errors themselves. The ratio of the induced rms orbit offset
to the rms misalignment of magnets is called the amplification factor, which
typically ranges from 10 to 100. Small misalignment errors, such as 100 µm,
can cause large orbit errors on the order of 1 to 10 mm and in turn optics
errors, coupling, and degradation of nonlinear dynamics performance.

Modeling of small alignment errors can be done by performing coordinate
transformations at the entrance and exit faces of the misaligned elements.
For example, for a horizontal alignment error of ∆x, the x-coordinate of the
particle is first shifted by −∆x at the entrance, and after tracking through
the element, shifted back by ∆x at the exit. When multiple alignment errors
are modeled for one element, the transformations are applied in the opposite
order at the exit and entrance faces.

2.7.2 Calculation of lattice functions and beam parameters
With the ability to track phase space coordinates of particles through the
lattice, various lattice functions can be calculated.

Closed-orbit:
The closed-orbit can be found by solving for a coordinate vector that

satisfies the fixed-point condition M(Xc) = Xc, where M represents the one-
turn map, here executed by particle tracking simulation.

There are two scenarios. First, the lattice consists of no RF element and
a closed-orbit is found for the on-energy particle or a particle with a given
momentum deviation, δ. The 4-dimensional closed-orbit vector, Xc=(x, px, y,
py)Tc , can be found iteratively. At each iteration, the present solution, Xn, is
tracked for one-turn. The solution for the next iteration is then given by

Xn+1 = Xn + [I−R4(Xn)]−1(M(Xn)−Xn), (2.124)

where R4(Xn) is the 4×4 transfer matrix on orbit Xn (which can be approx-
imated with R4(X0)), and the longitudinal coordinates of (0, δ) are used in
tracking. The initial solution may be set to X0 = (0, 0, 0, 0)T .

In the second scenario, the lattice can have RF elements and other elements
that change the beam energy, for example, radiation damping or impedance
elements. The goal is to find the 6-dimensional closed-orbit. A particle on this
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closed-orbit is synchronous with the RF cavities. The same iterative procedure
as in Eq. (2.124) can be used, except now the one-turn transfer matrix and
the orbit vectors are now 6-dimensional.

Linear optics functions:
The transfer matrix between any two locations in the lattice can be com-

puted with numeric differences of the particle coordinates. For example, the
i’th column of the transfer matrix (i.e., the linear dependence of the exit co-
ordinates on the i’th coordinate at entrance) is calculated by tracking two
particles whose initial i’th coordinate is shifted by ±∆, respectively,

R:i =
M(X2)−M(X1)

2∆
, (2.125)

where X2 and X1 are equal to the reference orbit, X0, except their i’th com-
ponents are given by X2(i) = X0(i) + ∆, X1(i) = X0(i) − ∆. Numerically
∆ = 1× 10−8 may be used for double-precision computers.

The one-turn transfer matrix for a ring lattice can be similarly computed.
The matrix is usually calculated on the closed-orbit. For uncoupled lattices
(or with weak x-y coupling), the 2×2 matrices for the horizontal and vertical
planes can be used to calculate the betatron tunes and the Courant-Snyder
parameters, using Eq. (1.58). The C-S parameters at other locations and the
phase advances can be calculated with Eq. (1.70) and (1.71), respectively, us-
ing the transfer matrix between the two locations. Parametrization of coupled
motion can be done with the procedure described in Eqs. (2.59-2.63).

The dispersion functions at one location can be calculated from the one-
turn transfer matrix using Eq. (2.37). Dispersion functions elsewhere can be
obtained by transporting the dispersion vector with the extended transfer
matrix. The momentum compaction factor can be calculated from the R56

element of the one-turn transfer matrix with Eq. (2.49).
By calculating the transfer matrix with a small fixed momentum devia-

tion and in turn the corresponding betatron tunes, the chromaticities can be
obtained. Chromatic beta beating can also be calculated with the off-energy
transfer matrix.

Nonlinear beam dynamics performance:
The nonlinear beam dynamics of a circular accelerator can be characterized

with particle tracking simulation. Basic nonlinear dynamics features, such as
betatron tune shifts with oscillation amplitudes and momentum deviation, are
typically computed for fixed-momentum particles (with RF cavities turned off
in the lattice). In these calculations, particles with a series of initial x, y, or δ
coordinates (while all other 5 coordinates are equal) are launched and tracked
for a number of turns (e.g., 1024 turns). For example, for tune shifts with the x-
amplitude, particles with initial coordinates y = 0.1 mm, px = py = z = δ = 0,
and x = −10 mm to 10 mm with a step size of 0.25 mm may be launched for a
ring with a dynamic aperture around 10 mm. A small initial y offset is used for
the purpose of evaluating the vertical tune from the orbit oscillations. Betatron
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Figure 2.8 The DA (left) and LMA (right) for the SPEAR3 7-nm lattice. The dots

in the left plot show the lost particles. The LMA gives the maximum momentum

deviation error for a particle launched from a location without being lost.

tunes can be determined from turn-by-turn position data with high precision
methods such as NAFF [75] and interpolated FFT [7] (see Chapter 5).

Frequency map analysis (FMA) [74] is often performed to study the non-
linear beam dynamics for storage rings. To compute the x-y frequency map,
particles are launched from a grid on the x-y plane (typically with y ≥ 0) that
extends to beyond the edge of the dynamic aperture. The betatron tunes are
evaluated for each particle. Also evaluated is the betatron tune diffusion rate,
defined as 1

2N log10(∆ν2
x + ∆ν2

y), where ∆νx,y are tune differences from the
first N turns to the second N turns for the two transverse planes, respectively.
Plotting the tune diffusion rate in the x-y plane and the tune diagram can re-
veal the nonlinear resonances that limit the dynamic aperture (DA). The x-δ
frequency map can be similarly computed to study the motion of off-energy
particles.

Ultimately the nonlinear beam dynamics performance of a storage ring
concerns the DA and local momentum apertures (LMA). To evaluate the DA
and LMA, the lattice conditions are made as realistic as possible, with RF
cavities and radiation damping included. Typically, the dynamic aperture is
computed by launching particles equally distributed on a number of rays in
the x-y plane extending from the origin and tracking for many turns. For elec-
tron storage rings, the number of turns is usually comparable to the damping
time. Physical apertures may be included in the lattice to intercept parti-
cles with large position offsets. The boundary defined by connecting the last
surviving particle before the first lost particle on each ray is the dynamic
aperture.

The LMA usually is calculated for a variety of representative locations in
a periodic cell. At each location, particles with initial momentum deviations
covering the potential aperture boundary are launched and tracked for many
turns. The boundaries at both the negative side and the positive side are
obtained by connecting the initial δ-coordinate of the last surviving particle
before the first lost particle. Figure 2.8 shows the DA and LMA for a SPEAR3
upgrade lattice.
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Beam distribution parameters:
The 6-dimensional second order moment matrix (also known as the Σ-

matrix) defined by

Σ = 〈XXT 〉 =

∫
XXT ρ(X)dX, (2.126)

completely characterizes a beam in Gaussian distribution, ρ(X) =
1

(2π)3
√

det Σ
exp(− 1

2XTΣ−1X) (assumed to be centered on the reference or-

bit for notation simplicity, i.e., with 〈X〉 = 0). The Σ-matrix is also often
used to characterize beams in other distributions. If M is the transfer ma-
trix between two locations, X2 = MX1, it is straightforward to show that
Σ2 = MΣ1M

T . For a symplectic matrix M (see Eq. (1.44)), it follows that
Σ2S = MΣ1SM−1 and hence the eigenvalues of ΣS do not change in sym-
plectic transportations [120]. It can be shown that the 6 eigenvalues are ±iεk,
k = 1, 2, 3, and det Σ = ε21ε

2
2ε

2
3, where εk are the eigen-emittances for the three

degrees of freedom of particle motion. In the typical case of weak coupling,
the eigen-emittances correspond to the three planes, x, y, and z, respectively.

In electron storage rings, the beam reaches an equilibrium distribution due
to radiation damping and quantum excitation. For an uncoupled lattice, the
emittances can be calculated from radiation integrals, which are determined
by the linear lattice functions [106]. However, it becomes more complicated
when there exists linear coupling between the horizontal and vertical planes.
A general procedure can be applied to track through the lattice elements
to obtain the transfer matrix with radiation damping and the accumulated
quantum diffusion effects, which are then used to solve for the Σ-matrix [90].

The equilibrium distribution can also be found by long-term multi-particle
tracking. Radiation damping, quantum excitation, and RF cavities are turned
on in the lattice. A large number of particles (e.g., ≥ 1000) are launched
with random initial coordinates and are tracked for a few damping times. The
particles will settle down to an equilibrium distribution independent of the
initial conditions. The 6-dimensional Σ-matrix can be evaluated by replacing
the integral in Eq. (2.126) with a summation over all particles, from which
the emittances and beam sizes can be calculated.
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The path of the beam through an accelerator lattice may be called the orbit
or the trajectory. In circular accelerators, there exists a closed beam path,
which is called the orbit. In one-pass lattices, such as linacs or transport lines,
the beam path varies from shot to shot, depending on the launching angles
and positions. The beam path in one-pass systems is the trajectory, which is
often loosely referred to as the orbit.

The beam orbit or trajectory is important to the beam performance. Most
beam applications require precise positioning of the beam in order to be ef-
fective. For example, in collider experiments, the two colliding beams have
to overlap in space for collisions to happen. In synchrotron light sources, the
electron beam orbit has to be precisely controlled for the photon beam to
be focused on the sample. In a free electron laser (FEL), trajectory errors in
the undulators not only affect the photon beam positioning on the samples,
but also can severely reduce the FEL power. Orbit or trajectory errors may
cause a reduction of the effective aperture when the beam is driven toward the
vacuum chamber and cause beam losses. In circular accelerators, orbit errors
in nonlinear magnets (e.g., sextupoles) cause optics errors and linear coupling
and can impact the nonlinear beam dynamics performance. Typically, orbit
or trajectory control is a high priority in accelerator operation.

69

C H A P T E R 3

Orbit and trajectory
correction

CONTENTS

3.1 Accelerator components for orbit correction . . . . . . . . . . . . . . 70
3.1.1 Beam position monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.1.2 Orbit correctors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Beam-based alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3 Orbit correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.1 Orbit correction with SVD . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.2 Orbit correction with weights on BPMs . . . . . . . . . . 84
3.3.3 Other methods for global orbit correction . . . . . . . . . 86
3.3.4 Local orbit correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

The path of the beam through an accelerator lattice may be called the orbit
or the trajectory. In circular accelerators, there exists a closed beam path,
which is called the orbit. In one-pass lattices, such as linacs or transport lines,
the beam path varies from shot to shot, depending on the launching angles
and positions. The beam path in one-pass systems is the trajectory, which is
often loosely referred to as the orbit.

The beam orbit or trajectory is important to the beam performance. Most
beam applications require precise positioning of the beam in order to be ef-
fective. For example, in collider experiments, the two colliding beams have
to overlap in space for collisions to happen. In synchrotron light sources, the
electron beam orbit has to be precisely controlled for the photon beam to
be focused on the sample. In a free electron laser (FEL), trajectory errors in
the undulators not only affect the photon beam positioning on the samples,
but also can severely reduce the FEL power. Orbit or trajectory errors may
cause a reduction of the effective aperture when the beam is driven toward the
vacuum chamber and cause beam losses. In circular accelerators, orbit errors
in nonlinear magnets (e.g., sextupoles) cause optics errors and linear coupling
and can impact the nonlinear beam dynamics performance. Typically, orbit
or trajectory control is a high priority in accelerator operation.

69

C H A P T E R 3

Orbit and trajectory
correction

CONTENTS

3.1 Accelerator components for orbit correction . . . . . . . . . . . . . . 70
3.1.1 Beam position monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.1.2 Orbit correctors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Beam-based alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3 Orbit correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.1 Orbit correction with SVD . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.2 Orbit correction with weights on BPMs . . . . . . . . . . 84
3.3.3 Other methods for global orbit correction . . . . . . . . . 86
3.3.4 Local orbit correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

The path of the beam through an accelerator lattice may be called the orbit
or the trajectory. In circular accelerators, there exists a closed beam path,
which is called the orbit. In one-pass lattices, such as linacs or transport lines,
the beam path varies from shot to shot, depending on the launching angles
and positions. The beam path in one-pass systems is the trajectory, which is
often loosely referred to as the orbit.

The beam orbit or trajectory is important to the beam performance. Most
beam applications require precise positioning of the beam in order to be ef-
fective. For example, in collider experiments, the two colliding beams have
to overlap in space for collisions to happen. In synchrotron light sources, the
electron beam orbit has to be precisely controlled for the photon beam to
be focused on the sample. In a free electron laser (FEL), trajectory errors in
the undulators not only affect the photon beam positioning on the samples,
but also can severely reduce the FEL power. Orbit or trajectory errors may
cause a reduction of the effective aperture when the beam is driven toward the
vacuum chamber and cause beam losses. In circular accelerators, orbit errors
in nonlinear magnets (e.g., sextupoles) cause optics errors and linear coupling
and can impact the nonlinear beam dynamics performance. Typically, orbit
or trajectory control is a high priority in accelerator operation.

69



70 � Beam-based Correction and Optimization for Accelerators

Orbit or trajectory correction needs several prerequisites. First, there must
be diagnostics to measure the beam orbit. This is usually done with beam po-
sition monitors (BPMs). It is possible to use beam screens, scanning wires,
cameras, or other diagnostics. Second, there must exist steering magnets that
can effectively alter the beam orbit. The steering magnets can be dedicated
short dipole magnets, correction windings on the main bending magnets, or
the main bending magnets themselves. The steering magnets are the actuators
or knobs for orbit and trajectory correction. Third, the target orbit or trajec-
tory must be determined. This could be done empirically. Finally, and very
importantly, there need to be effective algorithms to calculate the required
changes on the actuators for the orbit to move toward the target.

Orbit correction for circular accelerators in the early days was based on the
harmonic analysis of the orbit errors (HARMON) or by iteratively applying
the most effective knobs (MICADO) [5]. These methods target the global dis-
tribution of orbit errors. Orbit stability for photon beams in synchrotron light
sources was initially achieved with local orbit bumps [46]. Real-time global
orbit correction in light sources was first implemented with the harmonics
correction approach [127, 126]. Singular value decomposition (SVD) [41, 42]
was introduced for global orbit correction later [21, 23]. With a large num-
ber of precise and fast BPMs and correctors distributed throughout the beam
line, orbit stability can be achieved with high precision in modern accelerators
using the SVD-based method.

In this chapter we first briefly discuss orbit measurement, steering mag-
nets, and the determination of orbit target. The main focus is the SVD-based
method for orbit and trajectory correction.

3.1 ACCELERATOR COMPONENTS FOR ORBIT CORRECTION
3.1.1 Beam position monitors
Beam positions in the vacuum chamber of accelerators are typically measured
with BPMs. Position measurement with BPMs is non-invasive to the beam.
A BPM uses electromagnetic pick-ups attached to the vacuum chamber to
detect the image current of the beam. The strengths of the image current
signals depend on the proximity of the beam to the pick-ups. When the pick-
ups are arranged symmetrically about chamber center, any deviation of the
beam position from the center will be reflected on the signal strengths of the
pick-ups. The signal difference normalized by the total signal strength can
thus serve as a measurement of the beam position.

The pick-ups for BPMs can be button shaped or strip-lines. Button BPMs
are common in electron accelerators. A button BPM may consist of four elec-
trodes diagonally arranged on the vacuum chamber. The buttons are typically
rotated by 45◦ from the horizontal mid-plane in electron storage rings to avoid
synchrotron radiation damage. This is illustrated in Figure 3.1 for a round
vacuum chamber.
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The signal strength on each button when a beam with an offset from the
center passes can be calculated by integrating the surface charge density over
the extent of the button. The image charge density on a circular vacuum
chamber is given by

σ(φ) = − λ

2πR

R2 − r2

R2 + r2 − 2rR cos(φ− θ) , (3.1)

where R is the radius of the vacuum chamber, λ is the line density of the beam
current, and (r, θ) is the beam center in polar coordinates. The sum signal,
defined as the sum of signals on all four buttons,

Σ = A+B + C +D, (3.2)

is proportional to the beam intensity and the sum of the angles subtended by
the buttons. The horizontal and vertical difference signals are defined as

∆x = A+D −B − C, ∆y = A+B − C −D, (3.3)

respectively. The difference signals depend on the position of the beam center
and the beam intensity. It can be shown that the ratio of the difference and
sum signals are related to the position of the beam center by

∆x

Σ
=
√

2
sin ∆

R∆
x+O(r3),

∆y

Σ
=
√

2
sin ∆

R∆
y +O(r3), (3.4)

where ∆ is one half of the angle subtended by each button and O(r3) represent
terms of r3 or higher. Therefore, the beam position can be calculated from the
ratios with a linear conversion. This works well in the vicinity of the center
of the vacuum chamber. However, when the beam is far from the center, the
higher order terms in Eq. (3.4) will become important and hence the beam
position reading obtained with the linear conversion will deviate from the
actual beam position. The “measured” beam position vs. the actual beam
position for a round circular chamber is shown in the right plot of Figure 3.1.

In synchrotron light sources, the cross section of the vacuum chamber in
the arcs is typically not circular. In that case the signals on the BPM buttons
need to be calculated with the proper boundary conditions. The ratio of the
difference and sum signals will still be a good indication of the beam position
in the vicinity of the chamber center, although the conversion coefficient may
differ. The nonlinear response of the BPM reading to a large beam position
offset from the chamber center will also be different. Figure 3.2 shows the
configuration of the BPM buttons in the SPEAR3 vacuum chamber (left) and
the nonlinear response of the BPMs to the horizontal position offset [112].

The raw signals from the pick-up electrodes consist of a series of pulses
that correspond to the beam bunch passes. When processed through fast elec-
tronics, these signals could potentially yield the beam position of each bunch.
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In linacs or transport lines, the BPMs report beam positions on each beam
pass. In storage rings, the repetition rate of bunches is typically on the order
of a few hundred MHz. Modern BPM electronics on most of the new rings
can resolve the beam position on turn-by-turn basis. The turn-by-turn BPM
readings report the average position of all bunches in the ring on the same
pass. Turn-by-turn BPMs can monitor the beam motion of bunches moving in
phase, such as in the typical case of betatron oscillations when the bunches in
the beam are launched with common position and angle coordinates, or when
the beam is kicked by a pinger. The turn-by-turn beam positions measured by
the BPMs for a beam undergoing betatron oscillations contains information
of the linear optics of the machine.

The BPMs also report the average beam position over many turns. This is
the typical mode of operation for BPMs during beam delivery to users. The
average positions can be reported at a high frequency (e.g., 10 kHz), which can
be used for fast orbit correction. When the beam is not in an excited state
(synchrotron motion, betatron motion, or instability), the orbit is typically
dominated by low-frequency motion. Because the beam in betatron motion
oscillates around the closed orbit in high frequency, the time averaged position
is a good measurement of the closed orbit as the oscillation is cancelled out.
The average beam position have a high precision. It is common for the position
readings to have a standard deviation (noise sigma) at or below 1 µm.

In an accelerator, BPMs are distributed throughout the beam path. BPMs
are required at certain critical locations in the machine, for example, near
the interaction points in a collider, or at the ends of straight sections that
host undulators in synchrotron light sources. In other areas, BPMs are placed
to sufficiently sample the orbit errors in order to prevent undetected orbit
drifts. Orbit responses or betatron oscillations measured by BPMs can also
be used for linear optics calibration. It is advisable to have a few BPMs in
each betatron period. In a periodic lattice, the BPMs are usually located at
identical positions in each cell.

3.1.2 Orbit correctors
Orbit correctors are used to steer the beam orbit toward the desired target
orbit or trajectory. The steering is achieved by generating or changing a dipole
field on the path of the beam. The dipole field deflects the direction of the
propagation of the beam. The deflection is called a kick. The trajectory down-
stream of the kick is thus modified. In a circular accelerator, a kick changes
the closed orbit all around the ring.

An orbit corrector can be a standalone magnet, a set of wires on a multi-
purpose magnet, or trim coils on a main dipole magnet. Orbit correction can
also be achieved by modifying the setpoint of the main dipoles. Trim coils
or main dipoles have slow responses to changes due to the large magnetic
inductance of the main dipole magnets. It could take seconds for the mag-
nets to settle on the new setpoints. Therefore they cannot be used to correct



74 � Beam-based Correction and Optimization for Accelerators

fast orbit disturbances. In machines that require high orbit stability, such as
synchrotron light sources, orbit correctors with fast responses are needed.

Orbit errors are caused by deviations of the bending fields along the beam
path from the design condition. The bending field deviations are the sources of
orbit errors. Ideally, the error sources should be corrected locally at the source
points, such that no orbit distortion occurs elsewhere. However, in reality, local
correction is often not practical. This is because the error sources cannot be
identified or no adjustment to the bending field can be made to compensate
the errors at the locations. In such cases, global orbit correction through a
distribution of orbit correctors is desired.

The differential orbit shift caused by a small change to the corrector
strength is the orbit response of the orbit corrector. Orbit responses at the
BPMs can be measured by changing the corrector current by a small amount
and monitoring the orbit shifts. The orbit responses at multiple BPMs of mul-
tiple orbit correctors can be arranged in a matrix, called the orbit response
matrix, whose element is given by

Rij =
∆xi
∆θj

, (3.5)

where ∆xi is the orbit change at BPM i for a kick angle, ∆θj , at corrector
j. With M BPMs and N correctors, the dimension of the orbit response
matrix is M ×N . The orbit response matrix can be used to predict the orbit
changes when the orbit correctors are varied. Conversely, knowing the desired
orbit changes, the orbit response matrix can be used to calculate the required
changes to the orbit corrector strengths.

3.2 BEAM-BASED ALIGNMENT
For orbit correction, a target orbit given in terms of BPM readings is needed.
The design orbit would be the natural choice for the target orbit. However,
it is not straightforward to determine the design orbit on the BPMs. The
vacuum chambers, to which the BPMs are attached, have alignment errors.
The BPM buttons have mechanical errors in the sizes and positions. The BPM
electronics also have errors in signal processing. Therefore, a BPM reading of
zero does not represent the design orbit, nor does it represent the mechanical
center of the BPM.

On the other hand, since all the magnets have alignment errors from their
design positions, the design orbit is not necessarily the ideal orbit for the beam
for the purpose of optimizing beam performance. At certain locations of the
beam line, the beam position affects the experiments that use the beam. For
example, the position and angle of the electron beam in an insertion device
affect the photon beam position. For such locations, the target particle beam
orbit on the BPMs would be determined by the requirements of the user
experiments. In other areas of the beam path, however, there is some freedom
in choosing the target orbit. In general, the target orbit should be chosen for
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the beam to go through the good field regions of the magnets and to maintain
a large acceptance by the physical apertures.

A good choice of the target orbit is to steer the beam through the magnetic
centers of the quadrupole magnets. The magnetic center of a quadrupole is
where the magnetic field crosses zero. It is typically the center of the good field
region in the magnet. When the beam goes through the quadrupole center,
it receives no angular kick from the magnet and hence the beam orbit is not
altered, regardless of the strength of the quadrupole magnet. One benefit of
such an orbit is that the strength of the quadrupole magnet, and hence the
linear optics, can be changed, without perturbing the beam orbit. In other
words, the control of linear optics is decoupled from the control of the beam
orbit.

The magnetic center of a quadrupole can be found through a procedure
called beam based alignment (BBA) [94]. BBA is based on the very fact that
the beam receives no kick at the quadrupole center. In the procedure the BPM
nearest to the quadrupole is used to register the quadrupole center. An orbit
corrector in the machine is used to change the orbit at the quadrupole. The
betatron phase advance between the corrector and the quadrupole needs to
be at an appropriate value for the corrector to be effective. At each orbit, the
strength of the quadrupole is changed to I0 − ∆I and then I0 + ∆I, while
the orbit shifts due to the quadrupole strength step change are recorded by
all available BPMs. For each observing BPM j, the orbit shifts induced by
the quadrupole modulation, ∆xij , can be plotted against the orbit reading
on the nearest BPM, xi, for the i’th corrector induced orbit. The data points
will form one line for each BPM if the orbits are not far from the quadrupole
center. With a selection of observing BPMs, there will a collection of lines in
the plot, all of which cross at one particular point. The cross point indicates
the BPM reading that corresponds to the quadrupole center. Such a plot is
called a “bow tie” plot, an example of which is shown in Figure 3.3.

The BBA procedure described in the above does not need a calibration for
the quadrupole magnet or the BPMs. Nor does it utilize a lattice model. It
finds the quadrupole center directly as measured by the raw reading on the
nearest BPM. This procedure works in a circular accelerator as well as in a
one-pass lattice. In the latter case, a corrector upstream of the quadrupole is
used to change the orbit at the quadrupole, and BPMs downstream are used
to detect the orbit shifts due to the quadrupole modulation. The horizontal
and vertical offsets are determined separately.

Sometimes there is no corrector magnet conveniently located to alter the
orbit at the quadrupole of interest, or sometimes there is no BPM located
next to the quadrupole. This would more likely happen in a transport line.
In such a situation, it is still possible to find the quadrupole center by step-
ping its strength and monitoring the orbit changes at downstream BPMs.
Using a lattice model between the quadrupole and the BPMs, the kick angle
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corresponding to a step change of the quadrupole current can be derived with

∆θ =
∆xi
Riq

, (3.6)

where ∆xi is the orbit shift at BPM i and Riq is the orbit response for a kick at
the quadrupole location to the BPM. BPMs close to the quadrupole yet with
a sufficiently long lever arm are preferred to avoid effects of lattice errors.
Multiple BPMs can be used to derive the kick angle ∆θ for a quadrupole
current change ∆I. If the current to gradient conversion rate, r = ∆K

∆I , and
the effective length of the quadrupole, Lq, are known, the orbit offset, xq, at
the quadrupole can be calculated from

∆θ

∆I
= rLqxq. (3.7)

This approach can also be applied to storage rings, although in this case
the accuracy may be impacted by the linear optics errors introduced by the
quadrupole strength modulation.

3.3 ORBIT CORRECTION
The goal of orbit correction is to steer the beam orbit with correctors toward
the target orbit. The target orbit may be specified only at one or a few selected
locations, or throughout the beam path. The former case is referred to as local
orbit correction and the latter global orbit correction.
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In the earlier days of accelerators, the ability to control beam orbit was
limited for reasons such as the lack of orbit monitors and corrector mag-
nets and the lack of effective orbit correction schemes. Global orbit correction
could only reduce the overall orbit distortion to a certain level. Local orbit
correction was often used to steer the beam at important locations such as the
interaction region for a collider, or the source points of light sources. Presently
accelerators are equipped with many high precision BPMs and fast and well
regulated corrector magnets. The calculation of corrector strengths from the
measured orbit errors in global orbit correction with the singular value de-
composition (SVD) has been very successful. The beam orbit can often be
precisely controlled on target by a global orbit feedback system. Creating a
local orbit bump can be as easy as specifying the desired orbit and leaving the
rest to the orbit feedback. Local orbit bump can also be easily created using
the orbit response matrix with the SVD method. Therefore, we will be focused
on the SVD-based global orbit correction method in the following. Early day
global orbit correction methods and local orbit correction are discussed briefly
toward the end of the section.

There are typically multiple BPMs and multiple correctors, e.g., with M
BPMs and N correctors. All three situations, M > N , M = N , or M < N ,
are possible. When there are more BPMs than correctors (i.e., M > N), the
system is over-constrained; the orbit target may not be met on all BPMs. As
will be discussed later, because of the potential degeneracy in the system, even
when M ≤ N , it is possible that the orbit errors will not be completely elim-
inated. Therefore, in general, the objective of orbit correction is to minimize
the difference between the measured beam orbit and the orbit target in the
least square sense, i.e., to minimize

χ2 =

M∑

i=1

(xi − x̂i)2, (3.8)

where xi and x̂i are the measured orbit and the target orbit on BPM i, respec-
tively. Defining the corresponding column vectors x and x̂ and the residual
vector,

r = x− x̂, (3.9)

the objective function can be expressed as

χ2 = rT r. (3.10)

When the orbit is measured to be x0, we need to find the desired changes
to the corrector magnets, θ, to minimize the objective function, χ2. Here θ
is a column vector with N elements, whose j’th element, θj , represents the
desired change of kick angle on corrector j. After the correction θ is applied
to the machine, the orbit will change. Using the orbit response matrix, the
new orbit is predicted to be

x = x0 + Rθ, (3.11)
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and hence the residual vector will become

r = x0 + Rθ − x̂ = Rθ −∆x, (3.12)

where ∆x ≡ x̂−x0 is the difference between the target orbit and the measured
orbit. The objective of the least-square problem, χ2, is a function of θ,

f(θ) = χ2 = (θTRT −∆xT )(Rθ −∆x). (3.13)

The condition for f(θ) to be at a minimum is for its derivatives with all
variables θj to be zero, i.e.,

∂f

∂θj
= 2

N∑

k=1

(RTR)jkθk − 2

M∑

i=1

Rij∆xi = 0, (3.14)

for j = 1, 2, · · · , N . This can be written in the vector form

∂f

∂θ
= 2RTRθ − 2RT∆x = 0. (3.15)

The solution for θ is thus

θ = (RTR)−1RT∆x. (3.16)

3.3.1 Orbit correction with SVD
Eq. (3.16) can be used to calculate the desired changes to the corrector mag-
nets for orbit correction when the orbit errors and the orbit response matrix
are known. The matrix RTR is N×N in dimension. Eq. (3.16) gives a unique
solution for θ if and only if the inverse matrix of RTR exists. In reality, this
might not be the case. For example, when the number of correctors is larger
than the number of BPMs, matrix RTR has a rank M < N and does not
have an inverse matrix. Even if mathematically the inverse matrix exists, the
solution by Eq. (3.16) might not always be appropriate for orbit correction
since matrix RTR could be nearly degenerate, i.e., some of its eigenvalues are
very close to zero. In such a case, the solution would be very sensitive to noise
in the orbit measurement and can result in large corrector changes in response
to small orbit errors. Therefore, a method to solve the least-square problem
in Eq. (3.13) with considerations of the realistic conditions is needed.

Singular value decomposition (SVD) [42] of the orbit response matrix pro-
vides the answer to the above challenge [21, 23]. The method based on SVD
to solve the least-square problem is very powerful and is widely applied to
orbit corrections in accelerators. The SVD of the orbit response matrix is in
the form of

R = USVT , (3.17)
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with orthogonal matricies U and V and diagonal matrix S. With the dimen-
sion of R being M ×N , the dimensions of U and V are M ×M and N ×N ,
respectively. The dimension of matrix S is M × N and its only non-zero el-
ements are Sii = si, i = 1, 2, · · · , min(M,N), where min(·) represents the
smaller of the two numbers. The values si are called singular values (SV). The
singular values are real numbers greater than or equal to zero. By convention
the singular values are ordered in a descending sequence such that

s1 ≥ s2 ≥ s3 ≥ · · · ≥ smin(M,N) ≥ 0. (3.18)

With R given in Eq. (3.17), we have

RTR = V(STS)VT , (3.19)

with

(STS) = diag(s2
1, s

2
2, · · · , s2

min(M,N), 0, · · · , 0), (3.20)

where diag(·) defines a diagonal matrix using the given parameters as its
diagonal elements. Here 0’s are patched to the end to make the diagonal
matrix N ×N in dimension if M < N .

In the case N ≤ M and all of the singular values of R are non-zero, then
the inverse matrix of RTR exists and is given by

(RTR)−1 = V(STS)−1VT , (3.21)

where we used the fact VT = V−1 for orthogonal matrix V, and

(STS)−1 = diag(s−2
1 , s−2

2 , · · · , s−2
N ). (3.22)

The solution in Eq. (3.16) can now be written

θ = VS−1UT∆x, (3.23)

where by definition S−1 is an N ×M matrix given by

S−1 ≡ (STS)−1S, (3.24)

whose only non-zero elements are on the diagonal and are simply s−1
i , i = 1,

2, · · · , N . In this case, the SVD of R leads to an explicit form of the unique
solution to the desired corrector changes, as given in Eq. (3.23).

When N > M , or if at least one of the singular values of R is zero,
Eq. (3.22) does not hold since there would be 1/0’s on the diagonal. In this
case, the inverse matrix of RTR does not exist and hence Eq. (3.16) cannot be
used. Correspondingly, there is no unique solution to the least-square problem.
However, the SVD approach can be used to find an appropriate solution. In
Eq. (3.22), we only need to replace the diagonal elements that would be 1/0’s
with zeros, i.e., defining the N ×N pseudo-inverse matrix of STS,

(STS)−1 = diag(s−2
1 , s−2

2 , · · · , s−2
min(M,N), 0, · · · , 0), (3.25)
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and replacing s−2
i with zeros in the above for any si = 0. Then Eqs. (3.23)-

(3.24) can be used to calculate the solution, θ, in the general case.
The solution Eq. (3.23) can be better understood if we examine the SVD

of matrix R closely. The SVD of R can be rewritten in the expanded form

R =

min(M,N)∑

i=1

siuiv
T
i , (3.26)

where ui and vi are the i’th column in matrix U and V, respectively. Each
term in the summation corresponds to an SVD mode, which consists of the
singular value, si, and the ui and vi vectors. The ui vector represents the pat-
tern over all BPMs and the vi vector represents the pattern over all correctors.
The calculation of the predicted orbit shift by a given corrector variation can
be written as

∆x = Rθ =

min(M,N)∑

i=1

siui(v
T
i θ), (3.27)

where (vTi θ) is the dot product of the two vectors vi and θ. This dot product
is a scalar value that represents the projection of the corrector changes to the
i’th SV mode. Eq. (3.27) indicates that the projection vTi θ, multiplied by the
vector siui, gives the orbit changes due to the i’th SV mode. Since all the ui
and vi vectors are normalized to ||ui|| = ||vi|| = 1, where || · || represents the
Euclid norm of a vector, the amount of orbit changes with a given projection
to the SV mode is determined by the singular value, si. A large singular value
means the corrector pattern corresponding to the vi vector is very effective
in changing the orbit (yet only producing changes to BPMs by the pattern as
given by the corresponding u vector). A small singular value means the SV
mode is not effective in making orbit changes. In the extreme case, when the
singular value is zero, the projection of corrector changes in that mode does
not cause any orbit change on the BPMs at all. For a small or zero singular
value, the effects of corrector changes with the particular pattern tend to
cancel, resulting in small or no net orbit shifts on the BPMs.

The SVD of the orbit response matrix reveals that with a given set of orbit
correctors, it is easy to make orbit changes in some patterns, while it is difficult
or impossible to make orbit changes in some other patterns. The orbit response
matrix can be seen as a map from the N -dimensional corrector space to the
M -dimensional BPM space. A vector in the corrector space, θ, is mapped to a
vector in the BPM space, ∆x. The column vectors in the V matrix represent
an orthogonal basis of the corrector space, while the column vectors in the
U matrix represent an orthogonal basis of the BPM space. Corrector changes
along the basis vector vi result in an orbit shift only along the ui vector.
The corresponding singular value, si, represents the effectiveness of making
orbit changes in this mode. Conversely, an orbit shift in the ui pattern can
only be made through corrector changes in the vi pattern (since corrector



Orbit and trajectory correction � 81

changes in any other pattern result in an orbit shift that is orthogonal to ui).
Therefore, if we want to make an orbit shift ∆x, we can first calculate the
decomposition of ∆x over the BPM modes, and then use the projection on
each mode to calculate the required corrector changes. In fact, this is exactly
what Eq. (3.23) stands for, which can be re-written as

θ =

min(M,N)∑

i=1

1

si
vi(u

T
i ∆x), (3.28)

where (uTi ∆x) is the dot product between ui and ∆x that represents the
projection of the desired orbit shift over the i’th SV mode.

In the case of N > M , SVD of the orbit response matrix finds only M
basis vectors for the N -dimensional corrector space. There is an extra N −M
dimensional subspace of the corrector space that has no impact to the BPM
space. In other words, any corrector changes in this subspace do not result
in an orbit shift observed on the BPMs. The basis vectors of this subspace
are similar to the basis vectors that have zero singular values in terms of not
being able to make orbit changes observable on the BPMs. Because corrector
changes in the extra subspace do not change the orbit, there is no point of
making such corrector changes. This is why we patch zeros to the end in
Eq. (3.25). For the same reason, we do not allow corrector changes along the
vi vectors corresponding to zero singular values. Hence we replace 1

si
with 0

when si = 0 in Eq. (3.25) and Eq. (3.28).
While in both cases corrector changes cannot cause an orbit shift on the

BPMs, there is a subtle difference between the case with a zero singular value
and the case with corrector changes in the N −M dimensional subspace. In
the latter case, there is a redundancy in the correctors for the set of BPMs. In
other words, there are too many correctors and thus there is no unique solution
to the orbit correction least-square problem. However, in the former case, with
a zero singular value, there is a true deficiency in the orbit correction system
such that we lack the ability to make orbit shifts in a certain pattern (i.e., the
corresponding ui vector).

Similarly, when a singular value is very small, our ability to make orbit
shifts in the corresponding BPM pattern is limited. For a small orbit shift in
the pattern, large corrector changes are needed, as is evident in Eq. (3.28) by
the 1

si
coefficient. Sometimes a singular value is so small, the required corrector

changes for an orbit correction could exhaust the strengths of some correctors
and cause the orbit correction system to fail. To prevent such a scenario, it is
necessary to limit the corrector changes in the SV modes with small singular
values. This could be done by choosing a threshold for the singular values and
setting 1

si
to zero in Eq. (3.28) for all singular values si below the threshold.

In doing this we give up the attempt to make orbit shifts in certain patterns
in exchange for the stability of the orbit correction system. It is not so much
a loss because our ability to make such orbit shifts is limited in the first place.
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Figure 3.4 shows the singular value spectra of the orbit response matrices
of the horizontal and vertical planes for the SPEAR3 (top plot) and NSLS-II
(bottom plot) storage rings. SPEAR3 has 58 horizontal correctors, 56 vertical
correctors, and 57 BPMS, distributed over 18 cells. NSLS-II has 180 hori-
zontal correctors, 180 vertical correctors, and 180 BPMs over 30 cells. The
betatron tunes are [14.106, 6.177] for SPEAR3 and [33.22, 16.26] for NSLS-II.
Each SV spectrum has a pair of leading modes with comparable SV values.
The u- and v-vectors of these leading modes resemble betatron orbits of free
oscillating particles. Figure 3.5 shows the first SV mode for the SPEAR3 orbit
response matrix for both transverse planes. In the leading modes, the corrector
strengths vary according to the betatron phase to result in additive contribu-
tions to the orbit. The two leading modes have similar spatial patterns but
are out of phase by 90◦. These two modes contribute strongly to the real
and imaginary components of the integer stopband nearest to the betatron
tune. At the lower end of the SV spectrum, there is a floor of small singular
values. The ratio of the leading SV to the SVs on the floor is about 500 for
SPEAR3. The same ratio for NSLS-II is about 2000. The SPEAR3 horizontal
orbit response matrix has one extremely small singular value, despite having
one more corrector than the BPMs in the plane. This SV mode represents a
singularity of the orbit correction system. It corresponds to a local pattern in
the double-waist chicane area of the lattice. The singular mode needs to be
removed from the calculation of the pseudo-inverse matrix in Eq. (3.25).

An example of storage ring orbit correction with SVD is shown in Fig-
ure 3.6. In this example orbit errors were generated in the SPEAR3 lattice
by introducing random misalignment errors to all quadrupole magnets, with
the rms horizontal offset of 100 µm. The horizontal orbit errors are shown in
the top plot. Orbit correction was done with 6 SVs or 56 SVs in the calcu-
lation of the pseudo-inverse matrix. The resulting orbits after the corrections
are applied to the lattice model are shown in the middle plot. The bottom
plot shows the kick angles on all 58 correctors. Using 6 SVs, the rms kick
angle of all correctors is 0.29 mrad, which brings the rms orbit distortion from
2.35 mm to 0.71 mm. Using 56 SVs, the rms kick angle is 5 times stronger
(at 1.62 mrad), only to bring the rms orbit further down to 0.19 mm. The
example shows that the bulk of the orbit errors can be suppressed with only
a few SV modes; yet many SV modes are required in order to correct the fine
details of the orbit errors.

It is worth pointing out that the predicted residual orbit errors, x0 +R∆θ,
have rms values of 0.72 mm for the 6-SV case and 0.004 mm for the 56-SV
case, respectively. The prediction was accurate for the few SV case, but not
as good for the 56-SV case. This is because the orbit response matrix depends
on the linear optics, which varies with the closed orbit due to the feed-down
effect of sextupoles. The orbit response matrix measured around the reference
orbit is different from the one around a closed orbit with large distortions.
In this case, typically several iterations are applied to correct the orbit. The
orbit response matrix does not need to be updated for each iteration. As long
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as the calculated kick angles are not substantially altered by the errors in the
small SVs, in each iteration the orbit distortion will be reduced and hence
the relative accuracy of the orbit response matrix will improve, resulting in
a converging sequence. To prevent large kick angles due to inaccurate small
SVs, sometimes it is necessary to restrict the number of SVs for the first few
iterations.

3.3.2 Orbit correction with weights on BPMs
Often times the required precision of orbit control is not the same at different
BPMs. For example, in a light source, the orbit precision at the photon source
points needs to be high, but not as stringent at some other locations. If the
orbit correction system does not have the capability to completely eliminate
orbit distortions at all locations, e.g., due to corrector strength limitations,
it is sensible to assign weights to the BPMs in the orbit target, such that
better orbit control is achieved at the more important locations. This can be
achieved by modifying the least-square objective function to

χ2 =
M∑

i=1

w2
i (xi − x̂x)2, (3.29)

where wi is the weight for BPM i. If the BPMs have different precision, the
weight of each BPM could be given as wi = 1

σi
, where σi is the noise sigma of
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BPM i. Additional weight factor could be applied to emphasize the importance
of the orbit at certain locations.

In terms of the residual vector, the objective function can now be written

f(θ) = rTWTWr, (3.30)

with the diagonal matrix

W = diag(w1, w2, · · · , wM ). (3.31)

Following the same process leading up to Eq. (3.16), the desired corrector
change is found to be

θ = (RTWTWR)−1RTWTW∆x. (3.32)

If we define the weighted orbit response matrix,

Rw = WR, (3.33)

the solution can be rewritten as

θ = (RT
wRw)−1RT

wW∆x. (3.34)

Using Rw and W∆x in place of R and ∆x, respectively, Eqs. (3.17)-(3.28)
can be used for the weighted BPM case.

In the case of N ≤M where all singular values of Rw are greater than zero
and are used in the calculation of the pseudo inverse matrix, the solution to
the correctors, θ, is not changed by the weighting factors. However, if N > M ,
or if not all singular values of Rw are used, then the weighting factors can
change the solution to put more emphasis on the BPMs with higher weights.

One application of weighting BPMs in orbit correction is to make large
local bumps. To make an orbit bump on a single BPM, the target orbit,
∆x, is set to zero on all BPMs except the target BPM, which is set to the
desired value. Eq. (3.34) can then be used to calculate the corrector changes.
If the adjacent BPMs are very close to the target BPM, it could be difficult
to make an exact local bump. There are times when we only want to make
a large bump at the target, and are not very concerned of the small orbit
distortion on the nearby BPMs. In such cases, we can reduce the weights on
the adjacent BPMs. Figure 3.7 shows an example, in which we want to make
a 1 mm horizontal orbit bump on one of the BPMs in SPEAR3. If all BPMs
have the same weights, the solution found with 50 SVs requires kick angles
as large as 0.25 mrad. Because the maximum kick angle for one corrector is
1.5 mrad, the maximum bump would be 6 mm. However, if we set the weights
of the four nearby BPMs (two on each side) to 20% of the other BPMs, the
maximum required kick angle is only 0.125 mrad; the bump on the target
BPM can now reach 12 mm.

It is worth pointing out that in the above example, if all 56 SVs are used
in the calculation, there will be no difference between the solutions of the
no-weight and with-weight cases. It can make a difference if the weights of the
nearby BPMs are set to zero, though.
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3.3.3 Other methods for global orbit correction
Before the orbit correction method based on SVD became popular, some other
methods were used for global orbit correction. One method is called harmonics
correction (or HARMON), which is aimed at the correction of the harmonic
components of the closed orbit. This method is applicable to circular acceler-
ators. Another method is called MICADO [5], which tries to solve the same
least-square problem as defined in Eq. (3.8) with an iterative approach, using
the most effective knob in each step. This method is applicable to both rings
and one-pass systems.

The harmonic correction method is based on the observation that the
closed orbit distortions are dominated by a few leading Fourier harmonics, as
was shown in Eq. (2.15). The correctors can be changed in a certain pattern
to target a specific orbit harmonic. According to Eq. (2.14), the corrector
patterns on correctors k = 1, 2, · · · , N given by

θcn(k) =
cos nψkν√

βk
, θsn(k) =

sin nψk
ν√
βk

, (3.35)

will change the real and imaginary parts of the n’th orbit harmonic, fn, re-
spectively. The patterns affecting the real and imaginary parts can be consid-
ered independent knobs. With knobs that target a few harmonics around the
betatron tune, the global orbit distortion can be substantially reduced.

The real and imaginary knobs for the harmonic f[ν] are usually the most
effective in changing the closed orbit, where [ν] is the closest integer to the
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betatron tune, ν. These knobs are closely related to the two leading SVD
modes of the orbit response matrix. Figure 3.8 compares the v1 and v2 vec-
tors of the horizontal orbit response matrix to the real and imaginary knobs
for harmonic f[ν], respectively, for the SPEAR3 storage ring. The correlation
coefficients between the v1,2 vectors and the corresponding harmonic knobs
are 0.94 for both SV modes. An adjustment of the initial phase advance was
made to align the v vectors and the harmonic knobs.

With a large number of distributed BPMs to measure the closed orbit, the
orbit harmonics can be approximately computed with

Fn =
v2fn
ν2 − n2

=
1

M

M∑

k=1

xke
−inψk/ν
√
βk

, (3.36)

where βk and ψk are the beta function and the phase advance at BPM k,
respectively. In a test example, the same closed orbit errors as in Figure 3.6
are corrected with the real and imaginary knobs of harmonic f14 to minimize
the orbit distortion. The orbit harmonics before and after the orbit correction
are shown in Figure 3.9. The rms orbit error becomes 0.90 mm after correction.

The MICADO method [5] for orbit correction has the same objective of
minimizing the orbit errors in the least-square sense (i.e., Eq. (3.8)). It takes
an iterative approach to find a solution for corrector changes. At the first
step, it searches for the most effective orbit corrector knob by calculating the
predicted residual vector for every knob after the orbit correction with that
knob is done. At the second step, it looks for the most effective knob that, when
combined with the first knob, reduces the predicted residual vector the most.
Before the (k+ 1)’th step, it has identified k effective knobs. The order of the
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knobs in vector θ is shuffled to move all the selected knobs to the beginning.
The columns in the orbit response matrix are rearranged correspondingly. At
the (k + 1)’th step, it looks for the most effective knob among the remaining
N − k knobs for orbit correction. Including the k selected knobs and one
additional knob, corrector j, with k + 1 ≤ j ≤ N , the solution to the k + 1
included knobs is

θk,j = (RT
1k,jR1k,j)

−1RT
1k,j∆x, (3.37)

where θk,j = (θ1, θ2, · · · , θk, θj)T , and R1k,j is the orbit response matrix for
the k + 1 included knobs. The vector θk,j is used to compute the predicted
residual vector. The knob j that results in the lowest objective function, χ2,
is then selected for the (k + 1)’th step.

If the MICADO procedure is carried out for all corrector knobs, the so-
lution is the same as using Eq. (3.16), and it would equally have difficulties
with the near degeneracy in the orbit response matrix. The key point here is,
however, to use only a few knobs for orbit correction. When only the most
effective knobs are selected and the number of selected knobs is far fewer than
N , the matrix RT

1k,jR1k,j is usually invertible.
The MICADO method had been a useful global orbit correction method in

the early days of synchrotrons, when orbit correctors were not as reliable and
precisely controlled as today. Concentrating the correction on a few selected
correctors with relatively large strengths helped achieve better reliability for
the orbit correction system. With the modern technologies in corrector control,
the SVD method is now the preferred method for global orbit correction in
most cases.
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3.3.4 Local orbit correction
As we have seen in the example in Section 3.3.2, local orbit bump can be
created with the SVD method by specifying a target orbit that contains orbit
changes only at the desired location(s). The desired orbit bump can involve
multiple locations. For example, to make an angle bump at a location between
two BPMs, the target beam positions on the two BPMs can be shifted in
opposite directions. Even though all BPMs and corrector magnets are used in
the calculation, typically only the correctors in the nearby region are changed.
Changing the weights on the BPMs could help ease up the demand on the
corrector strengths, at the cost of giving up the orbit control at some BPMs.
This method should be able to meet the need of creating local orbit bumps
whenever the orbit response matrix is available.

When an orbit bump is needed at a location without a BPM, the orbit
response matrix can be extended to include an additional row for the target
location. The elements for the row can be calculated with the lattice model.
The SVD method can then be applied to calculate the required corrector
pattern for the local bump.

The traditional method of creating local orbit bump does not rely on
the orbit response matrix or the use of SVD. It is useful to understand the
traditional approach as it would provide helpful insights. The requirement of
a local bump is that the orbit change does not propagate outside of the last
corrector. Suppose N correctors are involved in creating the local bump, this
requirement amounts to

N∑

i=1

M(N |i)
(

0
θi

)
=

(
0
0

)
, (3.38)

where the summation is over all involved correctors, i = 1 for the first cor-
rector, i = N for the last corrector, and M(N |i) is the transfer matrix from
corrector i to the exit face of corrector N .

The desired orbit bump can be a position change, an angle change, or
both, at the target location, T . The target location needs not to be one of the
correctors. In the general case, this can be specified with

N1∑

i=1

M(T |i)
(

0
θi

)
=

(
x
x′

)
, (3.39)

where N1 is the number of correctors before the target location, x and x′ are
the desired position and angle changes, respectively.

Conditions in Eqs. (3.38)-(3.39) contain four equations. In general, at least
four correctors are required to satisfy these conditions, with at least two cor-
rectors before the target location. If the angle requirement in Eq. (3.39) can
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be ignored, three correctors would be enough. In this case, Eq. (3.38) leads to

θ1

√
β1 sinψ31 + θ2

√
β2 sinψ32 = 0, (3.40a)

θ2

√
β2 sinψ21 + θ3

√
β3 sinψ31 = 0. (3.40b)

For the simplicity of discussion, we assume the target location is at corrector
2. The position condition in Eq. (3.39) becomes

x = θ1

√
β1β2 sinψ21. (3.41)

Therefore, to make a large bump, it is desirable to have ψ21 close to π
2 +

kπ, with integer k. The kicks provided by correctors 2 and 3 are needed to
eliminate the angle and position coordinate changes after corrector 3. If both
ψ21 and ψ32 are equal to π

2 modulo π, then ψ31 is a multiple of π, and the
strength for corrector 2 is zero.
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There are many error sources that can cause deviations of the linear optics
from the design. Quadrupole magnets could have strength errors due to man-
ufacturing errors, magnetic field calibration errors, or power supply regulation
errors. Horizontal orbit offsets in sextupole magnets, which can be caused by
magnet misalignment, introduce quadrupole components from the feed-down
effect. Other types of magnets, such as dipole or sextupole magnets, could
have random quadrupole errors due to manufacturing errors. Inaccurate lat-
tice modeling could introduce discrepancies between the model and the real
machine. Insertion devices could contribute to linear optics errors through the
quadrupole components in their residual field integrals or the dynamical effects
that arise from the transverse field roll-off and the sinusoidal trajectories [103].
Impedances could also cause optics errors for an intense beam.

With linear optics errors, the betatron tunes are usually shifted from the
design values. The lattice functions lose the periodicity. Because of the beta
beating and betatron phase beating, the sextupole cancellation scheme could
lose effectiveness, causing degradation of the nonlinear beam dynamics per-
formance. Correction of the linear optics toward the design has many benefits.

Similar to orbit correction, correction of linear optics requires a correction
target, measurements that characterize the optics errors, and knobs to com-
pensate the errors. The correction target is typically the design optics, which
is often represented by a lattice model with which the linear optics functions,
such as the Courant-Snyder parameters, the betatron phase advances, and the
dispersion functions, can be computed.

To correct the linear optics errors, measurements must be conducted to
sample the linear optics and determine the errors. Magnetic field measurement
on an operating accelerator is not realistic; even if it can be done, it cannot
resolve all differences between the machine and the design as some differences
are visible only to the beam (e.g., the dynamic ID effect and the impedance
effect) and some differences come from the model (e.g., hard-edge approxima-
tion of the magnetic field profiles). Beam-based measurements can reveal the
linear optics of the machine as the beam experiences. Using information de-
rived from beam-based measurements to correct the linear optics can restore
the optics condition for the beam.

In the case of orbit correction, the errors that need correction can be read-
ily determined since the orbit is measured directly with BPMs. The linear
optics, however, cannot be directly obtained. Indirect measurements are gen-
erally necessary to determine the linear optics. Processing data taken in these
measurements to extract the optics errors and to derive the required knob
changes for correction is a fundamental challenge in linear optics correction.
Closed-orbit response matrix [77, 76, 44, 25, 21, 102] and turn-by-turn BPM
data [15, 19, 119, 118, 58, 61, 116, 125, 117] are two basic types of mea-
surements that are used for linear optics measurement and correction. The
measured dispersion function is often used as supplemental data.

Beta functions in circular accelerators can also be determined by mea-
suring tune shifts due to quadrupole modulation [48]. In this method, the
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strength of a quadrupole is varied and the corresponding betatron tune shifts
are measured. Knowing the length of the quadrupole magnet and the current
to gradient conversion rate, the beta function at the location of the quadrupole
can be calculated with Eq. (2.22). The accuracy of the method is affected by
the hysteresis of the quadrupole magnet and calibration errors.

Because of the large number of potential error sources, it is not feasible to
correct all linear optics errors at the error sources. Instead, quadrupole mag-
nets are used as knobs to compensate the linear optics errors globally. In early
accelerators, quadrupole magnets are often powered in series. The strengths
of individual quadrupoles can be changed with shunt resistors that divert a
fraction of the current. Quadrupole magnets in newer machines are often indi-
vidually powered. Their strengths can be changed by adjusting the setpoints of
the corresponding power supplies. Some machines have quadrupole correctors
beside the main quadrupole magnets.

In this chapter we will discuss the optics correction method that uses orbit
response matrix [102] as the input data. The methods that are based on turn-
by-turn BPM data [58, 61, 116, 125] will be discussed in the next chapter.

4.1 BEAM MEASUREMENTS FOR LINEAR OPTICS
4.1.1 Sampling linear optics with transverse beam profile
The primary goal of the linear optics of a magnet lattice is to keep the beam
focused in both transverse planes, i.e., to preserve small beam sizes through the
beam line. Linear optics concerns the transformation of the transverse beam
profile from one location to another. The transverse distribution of a particle
beam is characterized by its second order moment matrix, Σ, (see Eq. (1.80)).
The propagation of the transverse distribution through the lattice is specified
by the transfer matrix between locations. The Σ-matrices at two locations,
points 1 and 2, are related via

Σ2 = M21Σ1M
T
21, (4.1)

where M21 is the transfer matrix from point 1 to point 2. Transfer matrices
are fundamental representation of the linear optics of a lattice. The Courant-
Snyder optics functions (α, β, and γ) and the betatron phase advances are
an equivalent form of the linear optics description as they can be used to
construct the transfer matrix.

In principle, the linear optics properties can be determined by beam profile
measurements, using Eq. (4.1). This is the basis of the quadrupole scan method
for emittance measurement, which is widely used in linacs or transport lines.
In this method, the transverse beam profile is measured with a screen or a
wire scanner while the strength of an upstream quadrupole magnet is varied.
The quadrupole is separated from the screen by a drift space of length L.
Letting the entrance of the quadrupole be point 1 and the screen be point 2,
the transfer matrix from point 1 to 2 can be readily calculated as a function
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of the quadrupole strength. The beam distribution at point 1 can be given in
terms of the beam emittance and the Courant-Snyder parameters by

Σ1 =

(
σ2

1 σ12

σ12 σ2
1′

)
= ε

(
β1 −α1

−α1 γ1

)
. (4.2)

Σ1 is not affected by the quadrupole strength. From Eq. (4.2), the measured
rms beam size at point 2, σ2

2 , is related to the integrated quadrupole gradi-
ent, k = K1Lq (with quadrupole gradient K1 and length Lq), and the beam
parameters at point 1 by

σ2
2 = (L2σ2

1)k2 + (2Lσ2
1 + 2L2σ12)k + (σ2

1 + 2Lσ12 + L2σ2
1′). (4.3)

By fitting σ2
2 to a quadratic function of k and identifying the coefficients, the

second order moments at point 1 can be determined, which in turn can be
used to calculate the emittance and Courant-Snyder parameters.

The quadrupole scan method can determine the beam profile and optics
functions at one location of a one-pass system. The measured optics functions
can be used to calculate the required quadrupole strength adjustments to meet
the desired optics matching conditions. It is not suitable for rings because
in a ring the beam profile at the entrance of the quadrupole is changed by
its own strength and is thus not fixed. Equilibrium beam sizes in electron
storage rings can be measured with pinhole cameras that image the beam
profile in a dipole magnet through synchrotron radiation, which can be used
to determine the beta functions at the radiation source points (up to a scaling
constant). However, because beam profile measurements are available only at
few locations, this method cannot be used to measure the global linear optics.

4.1.2 Sampling linear optics with beam orbit
Another way to sample the linear optics is through the beam trajectory or
orbit. The transfer matrix directly relates the phase space coordinates of a
single particle at two locations through

X2 = M21X1, (4.4)

where X = (x, x′)T or (y, y′)T . The BPMs measure the average position of all
particles in the beam, i.e., the beam center.

When the beam is kicked, in some cases all particles in the beam move with
the beam center, without changing the phase space distribution around the
beam center. In such cases, the beam center behaves like a single particle. For
example, one such case is when the strength of a corrector magnet is changed
in a transport line or a storage ring.

The beam may also be kicked by a kicker or a pinger in a storage ring during
only one pass. After the kick all particles in the beam will start to oscillate.
Because the betatron tunes of the particles may differ, due to amplitude or
chromatic detuning, the particles will gradually move out of phase. The beam
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center will move toward the closed orbit as particles populate along ellipses
centered on the closed orbit, even though the individual particles are still
oscillating with large amplitude. This phenomenon is called decoherence. The
beam center for a beam undergoing decoherence does not behave like a single
particle. However, the decay of the apparent motion of the beam center takes
tens to hundreds of turns. Orbit data taken during this period can still be seen
as representing the motion of a single particle. Therefore, orbit data taken with
both orbit corrector changes or one-pass kicks can be used to sample the linear
optics.

Since BPMs can only directly measure the position coordinates, x or y,
not the angle coordinates, Eq. (4.4) usually cannot be used to measure the
transfer matrix. However, if two BPMs are separated by a beam line of which
the transfer matrix is known, then the angle coordinates at the two BPMs can
be calculated using the position coordinates and the transfer matrix between
the two BPMs,

x′1 =
x2 −M11x1

M12
, x′2 = M21x1 +M22x

′
1, (4.5)

where M11, M12, M21, and M22 are the four elements of the transfer matrix
from BPM 1 to BPM 2. For the special case when the beam line between the
two BPMs is a drift space, the transfer matrix is known with a high accuracy.
In this case, we have

x′1 = x′2 =
x2 − x1

L
, (4.6)

where L is the distance between the BPMs.
If the phase space coordinates can be determined at two locations (with a

pair of BPMs for each location) using the above method, the transfer matrix
between the two locations can be determined from Eq. (4.4). In principle,
only two different orbits are needed to determine the four matrix elements.
In reality, more orbit data can be used to achieve a higher accuracy under
random noise in the data. The orbit data with N orbit measurements can be
arranged in the form of

X1 =

(
x1(1) x1(2) · · ·x1(N)
x′1(1) x′1(2) · · ·x′1(N)

)
, X2 =

(
x2(1) x2(2) · · ·x2(N)
x′2(1) x′2(2) · · ·x′2(N)

)
,

(4.7)

for BPMs 1 and 2, respectively. Using the least-square method to fit the matrix
elements, it is straightforward to show that the transfer matrix can be found
with

M21 = X2X
T
1 (X1X

T
1 )−1. (4.8)

Because of random errors, the transfer matrix obtained with Eq. (4.8)
is not strictly symplectic. An equivalent symplectic transfer matrix can be
obtained from M using a procedure given in Ref. [45]. The symplectic matrix
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can also be obtained by fitting a set of parameters from which the symplectic
matrix is constructed. The Courant-Snyder parameters can be used for the
2 × 2 transfer matrix. A 4 × 4 transfer matrix, can be constructed with 10
parameters using the procedure described in Eqs. (2.59-2.63) [105, 61].

In the case of storage rings, phase space orbit data at one location over
successive turns can be used to fit the one-turn transfer matrix with the above
method. The orbit for turn n can be seen as the data from BPM 1 and the
orbit for turn n + 1, the data from BPM 2, with n = 1, 2, · · · , N − 1. In a
storage ring light source, there is usually one pair of BPMs separated by a long
drift space for each period (where the drift space is used to house insertion
devices). Therefore, the one-turn transfer matrix at the straight section of
each period and the transfer matrix across the period can be determined. The
transfer matrices can be used to calculate the Courant-Snyder parameters and
phase advances.

The method of measuring the transfer matrix with pairs of BPMs sepa-
rated by drift spaces is applicable only to a limited number of locations and
may not provide enough sampling for global optics correction. Even for stor-
age ring light sources, the BPMs in the straight sections account for a small
fraction of BPMs. The optics information for the BPMs in the arcs is missing.
Other methods that make use of the orbit data at all BPMs are needed in
order to measure and correct the linear optics throughout the lattice.

Depending on the type of orbit data in use, these methods can be put in
two categories: methods of turn-by-turn (or pass-by-pass for one-pass systems)
BPM data and the orbit response methods.

For the turn-by-turn (TbT) methods, BPM data are taken with the beam
shifted away from the normal orbit. The beam orbit deviations propagate
through the lattice to downstream locations and are recorded by the BPMs.
Because the deviations at different locations are related through the linear
optics (Eq. (4.4)), it is possible to extract optics information from the BPM
data. In a circular accelerator, after the beam motion is excited, the subse-
quent free betatron oscillation moves the orbit along the phase space ellipse
according to

x(n) =
√

2βJ cos(2πνn+ ξ), (4.9a)

x′(n) = −
√

2J

β
sin(2πν + ξ)− α

β
x(n), (4.9b)

where ν is the betatron tune, n is the turn number, and J and ξ are the action
and phase variables given by the initial condition, respectively. Because the
fractional betatron tune is typically not equal to a low order rational number,
within a few hundreds of turns, the beam will spread out over the entire
ellipse and hence sample the phase space from all angles, as illustrated in
Figure 4.1 (a).

In a one-pass system, the sampling of the betatron phase space can be
achieved by scanning two upstream corrector magnets [33, 128]. The two
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(a)

x

x′

n = 0

(b)
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Figure 4.1 Sampling the betatron phase space by kicking the beam away from the

origin of the phase space. (a): beam kicked in a ring; (b): scanning two upstream

correctors in a one-pass system.

correctors will shift the position and angle coordinates of the beam on down-
stream BPMs. Varying the kicks by the two correctors, the beam orbit can
scan the entire phase space. This is as illustrated in Figure 4.1 (b).

Turn-by-turn or pass-by-pass BPM data can be used to determine the
optics errors in the lattice. This can be done by comparing the BPM data to
tracking data produced by a lattice model and using a fitting method to adjust
the quadrupole parameters in the model to minimize the differences between
the measured and tracking data [61]. This method is applicable to both rings
and one-pass systems. Turn-by-turn BPM data taken from a storage ring
contain temporal oscillations of the beam position. The oscillation signals on
different BPMs are correlated but with different amplitudes and phases. The
differences reflect the beta functions and betatron phase advances. There are
multiple methods to extract the optics functions by analyzing turn-by-turn
BPM data. These methods will be discussed in the next chapter.

The second category of linear optics sampling with beam orbits uses the
orbit responses. In a one-pass system, the orbit response for a thin-element
corrector is simply the (1, 2) element of the transfer matrix, i.e.,

Rij ≡
dxi
dθj

= M
(ij)
12 , (4.10)

where Rij is defined as the orbit response at BPM i for a kick at corrector j,
and M(ij) is the transfer matrix from the corrector to the monitor. The orbit
response in a one-pass system is non-zero only if the monitor is downstream
of the corrector magnet.
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In a circular accelerator, the orbit response at a BPM is given by (see
Eq. (2.8))

Rij ≡
dx

(c)
i

dθj
= [M(ij)(I−M(j))−1]12, (4.11)

where M(j) is the one-turn transfer matrix at the exit edge of the correc-
tor magnet and [·]12 indicates the (1, 2) element of the matrix in the square
bracket. Since the orbit response in a ring is determined by the transfer ma-
trix, it is closely related to the linear optics. In fact, the orbit response is given
explicitly by the beta functions at the BPM and the corrector, the betatron
phase advance in between, and the betatron tune by Eq. (2.10) for the case
without linear coupling.

Each column of the orbit response matrix is a differential orbit from the
original orbit. It corresponds to one sampling point of the betatron phase space
in the same sense as the orbit shift from the origin for the turn-by-turn or pass-
by-pass BPM data (see Figure 4.1). There is no difference between the pass-
by-pass BPM data with corrector scans and the orbit response data (or more
accurately, trajectory response) for one-pass systems. For the case of rings, the
only difference between turn-by-turn BPM data and closed orbit responses is
that the closed orbit is abruptly changed at the location of the corrector by
the kick it applies. At all other locations, the closed orbit response represents
the free betatron motion. The closed orbit measurement is typically much
more accurate than the turn-by-turn orbit measurement as the former employs
averaging of beam signals over many turns. However, turn-by-turn BPM data
of hundreds or more turns could be collected. By properly processing the multi-
turn BPM data, the same precision could be achieved with turn-by-turn BPM
data as the closed orbit data in linear optics measurement.

With the measured orbit data that sample the betatron phase space, the
next step is extract the linear optics from the data. Typically this is done by
fitting a lattice model with the data. In the next section we will describe the
fitting method for the orbit response matrix.

4.2 FITTING ORBIT RESPONSE MATRIX TO LATTICE MODEL
There are two goals in analyzing the orbit data for linear optics: optics mea-
surement and optics correction. The linear optics in a storage ring is often
described by the beta functions and the betatron phase advances. The pur-
pose of optics measurement is to derive these functions from the data. For
optics correction, the goal is to compensate the errors in the linear optics
such that the linear optics is as close to the design optics as possible.

It would seem natural to accomplish these two goals in two steps: first
derive the optics functions with optics measurement, then use the optics func-
tions to determine the required changes to the quadrupoles for optics correc-
tion. This is actually the case for several methods that use the turn-by-turn
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BPM data (to be discussed in the next chapter). Given the connection between
the orbit responses and the optics functions (see Eq. (2.10)), it is possible to
derive the optics functions directly from the orbit response data, for example,
by fitting the data for the beta functions and the phase advances at all BPMs
and correctors. However, this is an unnecessary step if the final goal is optics
correction and it could introduce errors. The typical approach of extracting
linear optics information from the orbit response matrix data is to fit for the
quadrupole errors with a lattice model. Through fitting, the lattice model is
calibrated, which means that it is made consistent with the measurements. It
can then be used to calculate the optics functions or other lattice parameters.

When there are linear optics errors, the dispersion function will also be
distorted. Measuring the dispersion function and including it in the fitting will
help determine the optics errors and make the fitting results more effective
for restoring the design dispersion.

The method of measuring and correcting storage ring linear optics by fit-
ting orbit response matrix data and dispersion data is commonly referred to
as Linear Optics from Closed Orbit (LOCO). It was first successfully demon-
strated on the NSLS rings [102]. The method was later implemented in an
easy-to-use program [104, 95] and its fitting algorithm was updated to handle
the degeneracy issue [49, 52, 50]. It has become a widely used tool, especially
in the synchrotron light source community.

4.2.1 Measured orbit response matrix
Because quadrupole magnets affect the optics functions in both transverse
planes, the orbit response matrices in both planes are used to fit the
quadrupole errors. The orbit responses in both planes can be arranged in
one matrix

R =

(
Rxx Rxy

Ryx Ryy

)
, (4.12)

where the first x or y in the subscript indicates the plane of the BPMs and the
second indicates the plane of the orbit correctors. For example, Rxx contains
the horizontal orbit responses of the horizontal correctors, and Rxy contains
the horizontal orbit responses of the vertical correctors,

Rxx =
dx

dθx
, Rxy =

dx

dθy
, (4.13)

where x is a column vector of all horizontal BPM readings, θx,y are the column
vectors for the horizontal and vertical kick angles, respectively, and similarly,

Ryx =
dy

dθx
, Ryy =

dy

dθy
. (4.14)

The off-diagonal blocks Rxy and Ryx are non-zero if there is linear coupling
between the x and y planes or rolls of BPMs or correctors about the s-axis.
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Typically, a BPM measures the horizontal and vertical beam positions simul-
taneously. Suppose there are M BPMs, Nx horizontal correctors, and Ny ver-
tical correctors, the dimension of Rxx and Ryx is M ×Nx and the dimension
of Rxy and Ryy is M ×Ny. The dimension of R is thus 2M × (Nx +Ny).

The orbit response of an orbit corrector is measured on the machine by
stepping the strength of the corrector and measuring the orbit shift. Because
of the presence of nonlinear magnets in the lattice, the orbit response is non-
linear to some extent. The impact of the nonlinearity to the accuracy of the
orbit response matrix can be minimized by using the bipolar scheme in the
measurement, in which the corrector strength is changed in both the negative
and positive directions by the same step size, ∆θ. The orbit responses are
then calculated with

Rx =
x+ − x−

2∆θ
, Ry =

y+ − y−
2∆θ

, (4.15)

where subscripts + and − indicate the orbits for the positive and negative
steps, respectively. The step size of the corrector change is preferred to be
small in order to reduce the impact of the nonlinearity. On the other hand, a
large orbit shift relative to the BPM noise is desired for high data precision.
A good trade-off between the two conflicting requirements may depend on the
specific machine. Corrector step changes that causes orbit shifts of 1-2 mm
are usually a reasonable choice for a typical third generation light source.

In the measurement of the orbit response matrix, orbit correctors are used
to change the beam orbit and the BPMs are used to detect the orbit changes.
In reality, the correctors and BPMs can both have calibration errors. They
could also have rotations about the s-axis. These errors will cause the mea-
sured orbit response matrix to differ from the actual response matrix and
hence need to be accounted for. The actual kicks by a corrector are related to
the apparent kick values by

(
θx
θy

)
=

(
cosφ sinφ
− sinφ cosφ

)(
kxθ̃x
ky θ̃y

)
, (4.16)

where kx,y are the horizontal and vertical gains of the corrector kicks, φ is

the rotation about the s-axis, and θ̃ and θ represent the actual and apparent
kicks, respectively.

In addition to the calibration and rotation errors, BPMs could have an-
other type of errors that arises from the deviation of the button positions from
the ideal configuration. With these errors, the actual beam positions (x̃ and
ỹ ) and the apparent positions (x and y) reported by the BPMs are related
via [102]

(
x
y

)
=

1√
1− C2

(
cosφ sinφ
− sinφ cosφ

)(
1 C
C 1

)(
gxx̃
gy ỹ

)
, (4.17)
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where gx,y are the horizontal and vertical BPM gains, respectively, φ is the
rotation angle about the s-axis, and C is called the crunch coefficient, which
represents the effect of button configuration distortion. Eq. (4.17) can be writ-
ten in an equivalent form

(
x
y

)
=

(
gx cx
cy gy

)(
x̃
ỹ

)
, (4.18)

where the gx and gy are redefined BPM gains and cx and cy are the coupling
coefficients.

For the purpose of extracting optics errors in the machine, we should com-
pare the actual orbit response matrix to the model orbit response matrix. To
calculate the actual orbit response matrix from the raw measured data, error
parameters (gains, roll, and crunch) of the correctors and BPMs are used in
Eqs. (4.16) and (4.17). In general, these parameters are not known in advance
and need to be included as fitting parameters.

The dispersion function is often included in the orbit response matrix
fitting. The dispersion is measured by shifting the RF frequency by a small
amount, ∆f , and observing the closed orbit changes. In a storage ring, when
the RF frequency is shifted, the beam momentum has to change in order
for the beam to stay synchronous with the RF cavity, with the momentum
deviation given by

δ = − ∆f

αcfrf
, (4.19)

where frf is the RF frequency. The closed orbit dependence on beam energy
also has nonlinear terms. The bipolar scheme with an appropriate step size
can help minimize the impact of the nonlinear dispersion to the measurement
accuracy. The measured horizontal and vertical dispersion functions are

Dx = −αcfrf
x+ − x−

2∆f
, Dy = −αcfrf

y+ − y−
2∆f

, (4.20)

where subscripts + and − indicate orbits measured with the positive or nega-
tive frequency shifts, respectively. BPM gains, rolls, and geometric distortion
errors also affect the dispersion measurements.

4.2.2 Model orbit response matrix
With a lattice model, the closed orbit can be numerically computed by look-
ing for the orbit that satisfies the fixed-point condition, Eq. (2.6). The orbit
response of an orbit corrector can be calculated using the bipolar scheme in
the same manner as in the measurement. It is desirable to also choose the
same corrector step size as in the measurement.

If the corrector magnet is located in a dispersive region, a change of the
corrector kick will change the path length of the closed-orbit, as described in
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Eq. (2.50). In a storage ring the path length of the beam orbit is at a fixed
ratio with the RF frequency. Therefore, after the corrector kick the beam
energy will change by

∆E

E
=

Dθ

αcC
, (4.21)

in order for the beam to stay synchronous with the RF cavity. The energy
shift will cause orbit shifts at dispersive locations and will be reflected in the
measured orbit response matrix.

The calculation of the orbit response matrix from the lattice should in-
clude the effect of the energy shifts due to horizontal corrector kicks. If the
closed orbit is calculated considering the transverse planes only (i.e., satisfying
the closed orbit condition only in (x, x′, y, y′) coordinates), the beam energy
is equal to the design energy and is constant. Thus the energy shift is not
included in the orbit response matrix. In this case, an additional term should
be added to each element of the horizontal block Rxx,

Rij → Rij +
DiDj

αcC
, (4.22)

for the element corresponding to BPM i and corrector j.
If the closed orbit is calculated for the 6-dimensional coordinates with the

requirement ∆z = 0, the path length of such a closed orbit is not changed by
the corrector kick as it will automatically include the proper energy shift.

4.2.3 Least-square fitting setup
The differences between the measured and model orbit response matrices are
due to the linear optics errors in the actual machine, systematic errors in the
measurements (such as BPM and corrector gain errors), and random noise in
the BPM readings. The linear optics and systematic measurement errors could
be determined by adjusting the corresponding parameters in the lattice model
or the measurements to minimize the differences. The lattice parameters are
the quadrupole gradients. The differences between the measured and model
orbit response matrices can be characterized by

χ2 =
∑

ij

1

σ2
ij

(Rmeas
ij −Rmodel

ij )2, (4.23)

where σij is the rms noise level of the matrix element Rmeas
ij . The correc-

tor current is often very precisely regulated and its noise can be neglected.
Therefore, the element noise sigma is

σij =
σi
θj
, (4.24)

where σi is the noise sigma for the monitor i and θj is the kick angle step
change for the orbit response measurement of corrector j. It may be convenient
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to define the step kick angle change as the unit angle. Then in Eq. (4.23) σij
is replaced with σi and the matrix elements are interpreted as orbit shifts in
length unit (mm or m). The function χ2 depends on the lattice parameters
through Rmodel and on the measurement parameters (gains and rolls) through
Rmeas. The objective of the least-square fitting is to minimize χ2.

When the dispersion functions are included in the fitting problem, the
objective function includes additional terms

χ2 =
∑

ij

1

σ2
i

(Rmeas
ij −Rmodel

ij )2 +

(
αcfrf

∆f

)2∑

i

1

σ2
i

(Dmeas
i −Dmodel

i )2,

(4.25)

where i goes from 1 to 2M to include both horizontal and vertical dispersion
functions. The dispersion function terms can be seen as one column of the
orbit response matrix.

The terms in Eq. (4.23) can be arranged by defining the residual vector,
r, with its k-th element being

rk =
1

σi
(Rmeas

ij −Rmodel
ij ), k = 2(j − 1)M + i, (4.26)

where 2M is the number of rows in the orbit response matrix. Including the
dispersion functions, the length of the residual vector is 2M(Nx + Ny + 1).
The objective function can thus be written in the standard form

f(p) ≡ χ2 = rT r, (4.27)

where the parameter vector p contains all of the fitting parameters.
The fitting parameters may include Nq quadrupole parameters, Nsq skew

quadrupole parameters, horizontal and vertical BPM gains and coupling co-
efficients (4M BPM parameters in total), horizontal corrector gains and
rolls (2Nx), vertical corrector gains and rolls (2Ny). There are a total of
Nq +Nsq + 4M + 2Nx+ 2Ny fitting parameters. The skew quadrupole param-
eters, BPM roll and shape distortion, and corrector rolls are used to account
for the cross-plane coupling (the off-diagonal blocks of the response matrix).
To first order, the linear optics affects only the diagonal blocks. If we are
concerned only of the linear optics, then the skew quadrupoles and BPM and
corrector rolls can be left out. In this case, there are Nq + 2M + Nx + Ny
fitting parameters.

4.2.4 Gauss-Newton method
The function f(p) is generally nonlinear with respect to p. An iterative ap-
proach is usually applied to find the solution that minimizes the objective
function. The initial solution, p0, may be given by the ideal values of the
fitting parameters. The initial quadrupole strengths can be the design values.
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The initial BPM and corrector gains are all set to unity. The initial BPM and
corrector coupling coefficients are set to zero.

Suppose the residual vector corresponding to p0 is r0, the residual vector
after the fitting parameters are changed to p = p0 + ∆p can be linearly
expanded to give

r = r0 + J∆p, with Jij =
∂ri
∂pj

, (4.28)

where J is the Jacobian matrix of the residual vector with respect to the
parameter vector p, whose matrix elements are as defined in the above. Each
column of J represents the differential impact of the corresponding fitting
parameter to the residual vector. The objective function can also be expanded
around p0, which is approximately given by

f(p) ≈ f(p0) + 2rT0 J∆p + ∆pTJTJ∆p, (4.29)

where we neglected the quadratic and higher order dependence of r on the
fitting parameters. At the present solution, p0, the gradient is 2JT r0 and the
approximate Hessian matrix is given by 2JTJ. Because the gradient of the
objective function, ∇pf(p) = 2JT r0 + 2JTJ∆p, is zero at a minimum of
f(p), the solution for the step change toward the minimum from the present
solution is found to be

∆p = −(JTJ)−1JT r0. (4.30)

This solution is the same as Eq. (3.16), here with the Jacobian matrix in
place of the orbit response matrix. In fact, the orbit response matrix is the
Jacobian matrix of the beam orbit with respect to the corrector strengths.
Solving least-square problems by iteratively applying Eq. (4.30) is called the
Gauss-Newton method.

Similar to the orbit correction case, Eq. (4.30) is applicable only if the
square matrix JTJ is invertible. This condition is equivalent to require that
all singular values of J be nonzero, with the SVD of the Jacobian matrix
given in the form, J = USVT . However, in general, this condition is not met.
Consider a simple case without roll and crunch errors to BPMs or correctors.
If the residual vector contains only the orbit response matrix terms (i.e., not
including the dispersion terms), the Jacobian matrix is degenerate with two
zero singular values, one for each transverse plane. The degeneracy comes
from the fact that if all corrector gains and all BPM gains of the same plane
are raised by a common factor, the measured orbit response matrix does not
change (since in Rij = ∆xi/∆θj both the nominator and denominator change
by the same ratio). Including the dispersion terms in the residual vector alle-
viates the degeneracy because these terms are not dependent on the corrector
gains and RF frequency measurement is very accurate. It is more helpful in
the horizontal plane as the orbit shift due to horizontal dispersion is much
larger than the spurious vertical dispersion.
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Because of the degeneracy in the Jacobian matrix, it is necessary to com-
pute the pseudo-inverse of the square matrix JTJ. This can be done in the
same fashion as was done in Chapter 3 for the orbit correction case, which
results in the solution of ∆p in the form of

∆p = −
Nth∑

i=1

1

si
vi(u

T
i r0), (4.31)

where ui and vi are column vectors in matrices U and V for the i’th singular
value, respectively, and Nth stands for the number of singular values to be
kept in the calculation of the pseudo-inverse matrix. In orbit response matrix
fitting, the number of rows of the Jacobian matrix is often significantly larger
than the number of columns (i.e., the number of fitting parameters). For
example, for a ring with 180 BPMs, 180 horizontal correctors, and 180 vertical
correctors, the dimension of the full orbit response matrix, and hence the
number of rows, is 360 × 360. The U-matrix in the SVD of the Jacobian
matrix would have 3604 = 1.68 × 1010 elements. The space needed to store
such a matrix exceeds the memory size of an ordinary computer. Fortunately,
in Eq. (4.31) we only need the columns of the U-matrix that correspond to
the non-zero singular values. This can be obtained without computing the full
U-matrix.

Starting from an initial solution p0 and applying Eq. (4.31) to move the
solution in the parameter space iteratively, the objective function may be
brought down to an acceptable level. The final solution p contains the fitted
values of the parameters such as quadrupole gradients and BPM and corrector
gains.

4.2.5 Error analysis
It is important to check the validity of the results when using the least-square
method to fit data to a model. A common measure of the goodness-of-fit is
the value of the final χ2. If the fitted model is an exact representation of
the experimental system, any deviation between a measured data point and
the model prediction can only be due to random measurement errors. The
random measurement errors can be assumed to obey Gaussian distributions.
If the standard deviations of the error distributions are used to normalize the
error terms in the χ2 definition, the final value of χ2/(N − P ) after fitting
should approach unity, where N is the number of data points and P is the
number of fitting parameters.

Substantial deviation of the final χ2/(N − P ) from unity indicates that
the fitted model is a not a true representation of the system. This is the case
when the model has systematic errors. Systematic errors can be caused by the
omission of some relevant physical processes in the model, or inconsistencies
in the data due to drifting experimental conditions during the time span of
data taking. It could also mean the fitting algorithm has not converged to the
true, global minimum.
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In the ideal scenario when the model is accurate and all deviations are
random, the uncertainties of the fitted parameters can be derived from mea-
surement errors using error propagation from Eq. (4.30), which relates errors
in the fitting parameters, ∆p, to measurement errors in r0. It is straight-
forward to see that the covariance matrix of the fitting parameters is given
by

Σp ≡ 〈∆p∆pT 〉 = (JTJ)−1JT 〈∆r0∆rT0 〉J(JTJ)−1 = (JTJ)−1, (4.32)

where 〈·〉 denotes ensemble averaging over many possible data sets. It is as-
sumed that 〈∆r0∆rT0 〉 is the identity matrix because ∆r0 is normalized by
the noise sigma in the measurement and the data points in r0 are assumed to
be uncorrelated. The covariance matrix Σp contains information of the un-
certainties of the fitting parameters. For example, its diagonal elements give
the error bars of the fitting parameters,

σ2
pi = [Σp]ii, i = 1, 2, · · · , P. (4.33)

As discussed earlier, the Jacobian matrix J may be degenerate or near
degenerate and hence the inversion of JTJ can be done only after some small
singular values are eliminated. The error sigmas of the fitting parameters
calculated this way under-estimate the uncertainties as errors in the directions
(in the parameter space) corresponding to the eliminated singular values are
not included. In fact, we could calculate the error propagation with Eq. (4.31),
which gives

Σp =

Nth∑

i=1

1

s2
i

viv
T
i . (4.34)

Therefore, the error bars of the fitting parameters can be given by

σ2
pi =

Nth∑

j=1

1

s2
j

v2
j (i), (4.35)

where vj(i) is the i’th element of vector vj .

4.2.6 Optics correction and an example
After the least-square fitting, we obtain calibrated values for the fitting pa-
rameters, including BPM and corrector gains, BPM and corrector rolls, and
quadrupole and skew quadrupole strengths. The BPM and corrector parame-
ters can be used to update the calibration of the corresponding variables in the
control system. The lattice model can be updated with the fitted quadrupole
and skew quadrupole gradients. The actual lattice parameters that correspond
to the conditions of the machine at the time of data taking can be calculated
with the calibrated lattice model. The updated lattice model can also be used
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in tracking simulation to better predict the nonlinear dynamics or collective
effects of the real machine.

More importantly, the fitted quadrupole and skew quadrupole parameters
give the errors of these parameters relative to their design values, which can
be eliminated by adjusting the magnet power supply setpoints. By eliminat-
ing the quadrupole errors, the machine linear optics will be corrected toward
the ideal condition. Linear optics errors in a storage ring can cause a reduc-
tion of the dynamic aperture and the local momentum apertures. Correction
of linear optics can lead to improvement in the injection efficiency and the
Touschek lifetime. The skew quadrupole errors represent the linear coupling
errors and spurious vertical dispersion in the machine lattice. Correction of
skew quadrupole errors suppresses the linear coupling and vertical disper-
sion. In an electron storage ring, this will lead to an reduction of the verti-
cal emittance. In this section we consider only linear optics correction with
quadrupole parameters. The BPM and corrector rolls and skew quadrupole
parameters are not required in the fitting setup, although they can be
included.

In optics correction, the required setpoint change for a quadrupole can be
obtained by converting the design gradient, K0, and the fitted gradient, Kf ,
to currents using magnet calibration data. The difference of the two currents
is the step change required for the quadrupole parameter for optics correction.
If the fitting quadrupole parameter corresponds to a power supply that has a
non-zero setpoint value, the correction can also be done by scaling the present
setpoint by the ratio K0/Kf .

The application of orbit response matrix fitting for optics correction can
be illustrated with a simulated example on the SPEAR3 ring. In the simula-
tion environment [93] all BPM gains are given a random error drawn from a
Gaussian distribution with σ = 0.02. Gradient errors are introduced to three
QF magnets and three QD magnets. Orbit response matrix data are taken
with the simulator using the method of fixed path length. The corrector kick
corresponding to the step change in the measurement is 0.15 mrad for both
horizontal and vertical correctors. Dispersion is measured by changing the RF
frequency by 1 kHz, corresponding to a momentum deviation of ∆δ = 0.0013.
Both orbit response matrix and dispersion measurements are done in the bipo-
lar mode. Gaussian random BPM errors are added to all measurements. The
BPM noise sigma is assumed to be 1 µm for all BPMs.

There are 57 BPMs, 58 horizontal correctors, and 56 vertical correctors.
The combined orbit response matrix is 114 × 114 in dimension. In this test
we focus on the linear optics correction; the off-diagonal blocks, Rxy and
Ryx, are not included in the fitting. The horizontal dispersion is included.
Hence the length of the residual vector in the LOCO fitting setup is 6555.
The fitting parameters are BPM gains (57 × 2), corrector gains (58 + 56),
and 78 quadrupole gradients. The quadrupole gradient parameters include 28
QF magnets, 28 QD magnets, 1 QFC serial power supply, and a number of
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Figure 4.3 Final fitted values in the SPEAR3 LOCO test. Left: BPM gains; right:

quadrupole gradient errors, ∆K.

quadrupole magnets in the matching cells and the chicane straight. The total
number of fitting parameters is 306.

The singular values of the Jacobian matrix are plotted in Figure 4.2 (left).
There is one near-zero singular value, which corresponds to the singularity
caused by the simultaneous shifts in BPM and corrector gains in the vertical
plane. The inclusion of the horizontal dispersion function has removed the
singularity in the horizontal plane. The rest of the singular values range from
40 to 4× 105. The initial values for all fitting parameters are the ideal values:
the BPM and corrector gains are 1.0 and the quadrupole gradients are the
design values. The initial normalized χ2 (per degree of freedom) is 3.27× 105.

The Gauss-Newton fitting method is applied to the least-square problem
(Eq. 4.31), using all but the last singular values. Figure 4.2 (right) shows the
normalized χ2 over 7 iterations. The final value of the normalized χ2 is 0.89.
Figure 4.3 shows the fitted BPM gains and the fitted quadrupole gradient
errors ∆K (relative to the design values) in comparison to the target values.
The error bars are estimated with error propagation using Eq. (4.35). The
fitted BPM gains agree with the gain errors planted in the system when the
orbit response matrix data were generated. The fitted quadrupole gradients
also successfully recover the errors planted in the lattice. The quadrupole
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Figure 4.4 Beta functions before (top row) and after optics corrections (bottom row)

with LOCO fitting results. The distorted linear optics due to the quadrupole errors

is restored toward the periodic optics in the design lattice.

parameters with large error bars correspond to magnets in the chicane long
straight section, which are less constrained by the data.

The betatron tunes of the fitted lattice model are νx = 14.0937 and νy =
6.1844, which agrees with the calculated values for the lattice with the planted
quadrupole errors. The beta functions of the lattice with quadrupole errors
are severely distorted, as shown in the top row of Figure 4.4. The beta beating
relative to the design optics is up to 45% in the horizontal plane and 15% in the
vertical plane. After the quadrupole errors are corrected by scaling the setpoint
using the fitting results, the betatron tunes are restored to νx = 14.1065 and
νy = 6.1753, very close to the design values of νx = 14.106 and νy = 6.177.
The beta functions also recover the periodicity in the standard cells (bottom
row in the figure). The beta beating (in amplitude) of the corrected optics is
less than 1.5% in both planes. The residual optics errors in the lattice could
be further reduced after a second round of orbit response matrix data taking,
fitting, and optics correction.

4.2.7 Constrained least-square fitting
Degeneracy in linear optics fitting problems:

The Gauss-Newton method for orbit response matrix data fitting was suc-
cessful for many storage rings, including NSLS VUV and X-ray rings [102],
ALS, and SPEAR3. However, it failed to work for many other rings, espe-
cially the newer storage rings, such as CLS, SOLEIL, DIAMOND, NSLS-II,
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and ALBA. Even for SPEAR3, for which it initially worked, after modification
to the ring was made to add a chicane in a long straight section, it started
having difficulties. The difficulties are due to the similarities in the optics
perturbation between the errors of certain quadrupole parameters. When the
patterns of optics perturbation by the errors of two quadrupoles are nearly the
same, the deviations of the measured orbit response matrix from the design
lattice due to the errors will also be nearly the same. Therefore, it is diffi-
cult or even impossible to discern the optics error contributions by the two
quadrupoles using the orbit response matrix data.

In the SPEAR3 case, when the lattice was changed to accommodate the
chicane, the betatron phase advances between the two pairs of quadrupoles
next to the chicane straight section were reduced. The two pairs of quadrupole
magnets are located at the two ends of the chicane straight, respectively, and
each pair consists of a QFX magnet and a QDX magnet. The betatron phase
advances between the first pair are ∆ψx = 0.095 and ∆ψy = 0.222, while the
other pair has ∆ψx = 0.060 and ∆ψy = 0.251. The small differences in phase
advances in each pair mean that the two magnets have nearly the same impact
to the linear optics and in turn the orbit response matrix. This can be seen
from the similarity between the two column vectors in the Jacobian matrix
corresponding to the two quadrupole parameters in each pair. The similarity of
two column vectors, v1 and v2, can be measured by the correlation coefficient,

r ≡ vT1 v2

‖v1‖‖v2‖
, (4.36)

where ‖ · ‖ is the Euclid norm of the vector. The correlation coefficient for the
first pair is r = 0.9904, and for the second pair it is r = 0.9984.

High correlation coefficients between the columns of a matrix necessarily
cause small singular values. In the extreme case, when one column is lin-
early proportional to another, the correlation coefficient is ±1 and the matrix
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becomes rank deficient. If this happens to the Jacobian matrix of the least-
square problem, there is a degeneracy involving the corresponding fitting pa-
rameters. Figure 4.5 (left) shows the SVs of the Jacobian matrix for the 78
fitting quadrupoles of SPEAR3. The two smallest SVs correspond to the two
pairs of correlated quadrupoles. The V -vectors for these two SV modes are
shown in the right plot. The last SV mode (V78) primarily represents a near-
degeneracy involving quadrupole parameters 60 (QDX) and 63 (QFX) - when
these two quadrupoles change in opposite directions, the net impact to the
orbit response matrix is small, hence the small SV. Similarly, the second-to-
last SV mode (V77) represents another degeneracy the involves quadrupole
parameters 59 (QDX) and 62 (QFX). Quadrupole parameters 76-78 are three
quadrupole magnets in the chicane straight, which are right between the two
pairs of QDX-QFX magnets. There are also correlations between these pa-
rameters.

The orbit response matrix data cannot effectively constrain the poten-
tial variations of the fitting parameters in the patterns represented by the
V -vectors that correspond to small SVs. As shown in Eq. (4.31), a small pro-
jection of the residual vector to such an SV mode will generate a large step
change to the fitting parameter along the V -vector. Conversely, a large step
in the V -vector of the mode only causes a small change to the χ2 function.
SV modes with small SVs may be referred to as under-constrained directions.
Consequently, parameters that have large footprints in the under-constrained
directions have large error bars, as indicated in Eq. (4.35). In the SPEAR3
case, because of the correlations as discussed in the above, there are large error
bars to quadrupole parameters 59, 60, 62, 63, 76, and 78 (see Figure 4.3).

The error bar estimation by Eq. (4.35) only considers the random noise in
BPM measurements. Real orbit response matrix data may contain additional
errors due to orbit drifts and machine optics fluctuations and other systematic
errors. Before the fitting converges, the Jacobian matrix calculated with the
model differs from the Jacobian matrix for the measured optics. For example,
the differences between the SVs of the Jacobian matrices of the ideal model
and that of the actual lattice are up to 60% in the SPEAR3 test case. Further-
more, the expansion of the objective function based on the linearized model
of the residual vector (see Eq. (4.29)) may not be accurate when the present
solution is far from the minimum. Therefore, during the Gauss-Newton it-
erations, especially the initial iteration, there could be erroneous projections
to the SV modes with small SVs. These projections cause significant changes
to the fitting parameters, ∆p. The resulting solution for the iteration could
further deviate from the actual minimum, instead of converging toward it. In
some cases, the solution will eventually converge to the minimum. However,
if the deviation is large, the fitting method may fail to converge. In an ex-
treme case, the changes to the quadrupole gradients can be so large such that
the lattice is not stable (e.g., no closed orbit can be found with the updated
model) and hence no further iteration can be carried out [49, 52].

The approach often used in the Gauss-Newton method to deal with small
SVs is to set a cut-off threshold and to eliminate all the SVs below the
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threshold in the calculation of the pseudo-inverse matrix. This approach may
work if there are only a few prominent near-degeneracy SV modes, whose
SVs are substantially lower than the other SV modes. However, it is common
that a large stretch of SV modes all have small SVs. These SV modes can
cause large deviations to the fitting parameters. Typically such a solution will
have large, unrealistic errors in the quadrupole gradient (e.g., with ∆K

K at or
above a few percent). Because of the large false gradient errors in the solution,
when it is applied for optics correction, it could actually increase the optics
errors in the machine. On the other hand, removing all the small SVs prevents
finding the quadrupole errors in the subspace spanned by the corresponding
V -vectors, which in turn will limit the precision of optics correction. Optimiz-
ing the cut-off threshold can help balancing the above two detrimental effects;
but it does not cure them since either keeping or dropping a small SV can
cause problems.

The initial optics correction for the SOLEIL storage ring is a classic ex-
ample that demonstrates the dilemma of fitting orbit response matrix data
with the original LOCO algorithm [88]. There are 56 correctors in each of
the two transverse planes and a total of 120 BPMs in the SOLEIL ring. The
fitting lattice parameters include 160 quadrupole gradients. When fitting the
uncoupled orbit response matrix, there are 512 fitting parameters total. Since
there is no clear-cut step on the SV spectrum of the Jacobian matrix, the
cut-off threshold had to be found by painstakingly trying out many options.
The best option, with 410 SVs kept, predicted ∆K

K up to 6%, far exceeding
the expected gradient errors according to magnet calibration measurements.
The beta beating in the machine could not be brought below 5%.

Another approach to combat the near-degeneracy difficulty in orbit re-
sponse matrix fitting is to reduce the number of fitting quadrupole parame-
ters. By removing some quadrupole parameters that are correlated with other
quadrupoles, a set of quadrupole parameters with small correlations between
each other can be selected. This approach would work in some cases, but
could not address the problem in general. In essence, the approach of re-
moving quadrupole parameters is the same as the approach of removing SV
modes: both apply a hard cut to reduce the dimension of the parameter space;
the only difference is how to select the dimensions to remove. It could be ar-
gued that the approach of removing SV modes is superior because the SV
modes are orthogonal and can remove the degeneracy with the least number
of dimensions.

Constraints over individual fitting parameters:
In order to use the orbit response matrix data to correct linear optics, a

new method is needed to derive a set of reasonable quadrupole errors that
can represent the optics errors in the orbit response matrix and are appli-
cable for optics correction. The applicability requires the quadrupole errors
to contain only small strays to the SV modes with small singular values.
This can be achieved by modifying the Gauss-Newton method with addi-
tional constraints to the fitting parameters to prevent large excursions in the
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under-constrained directions. To introduce constraints on the quadrupole pa-
rameters, the least-square objective function is modified to [49, 52, 50]

χ2
c =

∑

ij

1

σ2
ij

(Rmeas
ij −Rmodel

ij )2 +
1

σ2
K

Nq∑

i=1

w2
i∆K

2
i , (4.37)

where σK is the uncertainty level of the quadrupole gradients, serving as an
overall normalization constant, wi is the weight factor for the i’th quadrupole
parameter, Nq is the number of quadrupole fitting parameters, and ∆Ki is
the element in ∆p for the i’th quadrupole parameter. For simplicity, the dis-
persion function terms are not shown in Eq. (4.37). The new terms in the χ2

definition are called the cost functions. They limit the changes of quadrupole
gradients in each iteration. For any change, ∆Ki, to be justified, it needs to
cause a considerable reduction to the original χ2 terms. The cost functions are
constraints imposed on the fitting parameters. Changing the weight factors is
to change the level of constraints. Because of the constraints, the predicted
step change to the fitting parameter vector, ∆p, will not take large excursions
to the under-constrained directions as such excursions tend not to produce
significant reduction of χ2.

With the modified objective function, the residual vector and the Jacobian
matrix are changed accordingly. The residual vector is extended to

rc =

(
r

rw

)
, with rw,i =

wi
σK

∆Ki, (4.38)

and the Jacobian matrix becomes

Jc =

(
J
W

)
, with W =

∂rw
∂p

=
(
0 WK

)
, (4.39)

where WK is a Nq × Nq diagonal matrix corresponding to the quadrupole
gradient fitting parameters, whose diagonal elements are WK,ii = wi

σK
, i = 1,

2, · · · , Nq, and the 0-matrix corresponds to the other fitting parameters.
Following Eq. (4.30), the solution of ∆p to move from the present solution to
the minimum is now

∆p = −(JTc Jc)
−1JTc rc0 = −(JTJ +W TW )−1JT r0. (4.40)

Compared to the solution by the original Gauss-Newton method (Eq. (4.30)),
the constraint terms add a diagonal matrix, WTW, to the matrix JTJ. The
addition of the positive definite diagonal terms of WTW (for the quadrupole
parameters) to JTJ helps eliminate the near-degeneracy - the singular values
of the new Jacobian matrix generally move higher.

The weight factors can be determined empirically. A common factor may
be given to most of the quadrupole parameters. Elevated weight factors can
be assigned to quadrupoles that have high correlations with neighboring
quadrupoles. Starting from a low level, all weight factors are then scaled up
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in steps while observing the ∆K values in the fitting solution and the result-
ing χ2. A set of weight factors can be accepted if the fitting solution brings
χ2 down to the same level as the case without constraints (or the case with
very weak constraints if no solution can be found without constraints) with
reasonable values of ∆K

K . Unless there is a justifiable reason, the fitted ∆K
K

for a quadrupole parameter (relative to the magnet calibration measurement)
typically should not exceed the 1% to 2% level. A 1% deviation would be
considered high by magnet engineers. However, in practice it is common to
see such a level of ∆K

K in optics fitting results and usually it is applicable for
optics correction.

Imposing constraints with Levenberg-Marquardt method:
Adding a positive definite diagonal matrix to the covariance matrix in

Eq. (4.40) to improve the convergence is a common practice in nonlinear
least-square fitting problems. This method was first proposed by Levenberg
and later rediscovered by Marquardt and is referred to as the Levenberg-
Marquardt (L-M) method [79, 85]. In nonlinear least-square problems, when
the present solution is far away from the minimum, the Gauss-Newton method
could fail to converge because the linear expansion of the residual vector may
not be sufficiently accurate. In such a case, a sensible approach is to use the
gradient-descent method to advance the solution toward the local direction of
χ2 reduction.

The original Levenberg method proposes to modify the Gauss-Newton
solution to

∆p = −(JTJ + λI)−1JTr0, (4.41)

where I is the identity matrix and λ is a scalar coefficient, which is to be
adjusted in each iteration. In an iteration, if the increment ∆p does not lead
to a reduction of χ2, the λ value is increased (e.g., by ×10); if it brings down χ2

by a reasonable amount, λ is reduced. With a large λ, the algorithm behaves
like the gradient-descent method since the gradient of χ2 with respect to ∆p
is 2JT r0 (see Eq. (4.29)). When λ shrinks to near zero, the algorithm becomes
the Gauss-Newton method.

A modified version of the L-M method is in the form

∆p = −(JTJ + λdiag(JTJ))−1JTr0, (4.42)

where diag(JTJ) is a diagonal matrix that keeps only the diagonal elements
of the matrix JTJ while setting all other elements to zero. The modified L-M
method scales the increment in each axis, such that a larger step can be made
in a direction with a smaller gradient.

Comparing the solutions of the L-M method to Eq. (4.40), it is clear that
the L-M method is equivalent to imposing constraints to the individual fitting
parameters. The corresponding cost functions for the two forms of L-M method
are

Original: λ
∑Nq
i=1 ∆p2

i ,

Modified: λ
∑Nq
i=1 JTi Ji∆p

2
i ,
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respectively (note that JTi Ji is a scalar). In the original form, the coefficient
λ needs to serve the role of a scaling constant with the dimension of p−2

i

for the i’th parameter. Since the parameters may have different dimensions,
using a single coefficient for all parameters may not be appropriate. Multiply-
ing each term in the cost function by a scaling constant, e.g, 1

σ2
pi

, would be

necessary (with σpi being the expected level of uncertainty of parameter pi).
On the other hand, the λ coefficient in the scaled (i.e, modified) L-M method
is a dimensionless number independent of the parameters or the least-square
problem. Therefore, it is more convenient to use the scaled L-M method.

It is important to note that for the sake of preventing the final solution from
taking large excursions to the under-constrained directions, the λ coefficient
cannot be allowed to decrease to near zero [50]. If λ is too small, the constraints
disappear and the solution may again acquire large ∆K for little reduction
of χ2. Based on the acceptable level of ∆K

k , for any given storage ring, a
minimum value of λ may be specified; or simply a constant λ can be used.
For the scaled L-M method, λ = 0.001 is often a good starting point for the
initial trial of λ for the orbit response matrix fitting problem.

Constraints over combinations of parameters:
Constraints can also be applied in ways other than adding individual ∆K

terms to the χ2 definition, as was done in Eq. (4.37) or through the L-M meth-
ods. For example, if we know a combination of quadrupole parameters are not
constrained well by the optics data, a constraint can be imposed to require
the stray of the solution in the corresponding direction to be the minimal.
A common under-constrained combination is for the gradient of two adjacent
quadrupoles to go in opposite directions, if the betatron phase advances be-
tween the quadrupole magnets are small. Suppose quadrupole i and i+ 1 are
such a pair of neighboring magnets, the term

w2

σ2
K

(Li∆Ki − Lj∆Kj)
2,

can be added to the χ2 definition to prevent large excursions in the direction
represented by Li∆Ki−Lj∆Kj = 0, where Li and Lj are the effective lengths
of the two magnets, respectively. The residual vector and the Jacobian matrix
are then similarly extended, with the difference being that the rows of the
Jacobian extension, W, consists of the coefficients that define the direction,
e.g., the row for the above constraint term (say, the n’th row of W) would be

Wn: =
wn
σK

(0, · · · , Li, 0, · · · , 0,−Lj , 0, · · · ).

A general under-constrained direction can be described as

Nq∑

i=1

ci∆Ki = 0, or cT∆K = 0, (4.43)
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where the coefficients ci, i = 1, 2, · · · , Nq, define the vector c in the
quadrupole parameter space. It is not easy to intuitively come up with under-
constrained directions that are more complex than the simple case with adja-
cent quadrupoles. However, it is straightforward to determine these directions
computationally. In fact, the SV modes of the Jacobian matrix with low singu-
lar values are the ultimate representation of the under-constrained directions.
To put on constraints to the SV modes, the χ2 definition can be modified with
new terms as follows

χ2
c = χ2 +

Nq∑

i=1

w2
i

σ2
K

(vTK,i∆K)2, (4.44)

where vK,i are the columns of the V-matrix of the Jacobian matrix (of
quadrupole parameters only). The corresponding extended residual vector and
Jacobian matrix are in the same form as Eq. (4.38) and Eq. (4.39), with

WK = ΛVK , and Λii =
wi
σK

, (4.45)

where Λ is a diagonal matrix with its diagonal elements as given.
In the above we only consider constraints to the quadrupole parameters.

This is reasonable as in most cases the difficulties in fitting optics data are
caused by the correlation between quadrupole magnets. However, in principle,
the constraints can be extended to all fitting parameters. To add constraints
on all SV-modes, the least-square objective is modified to

χ2
c = χ2 +

P∑

i=1

λ2
i (v

T
i ∆p)2 = χ2 + (VTΛ∆p)2, (4.46)

where V is the V-matrix of the full Jacobian matrix, Λ is a diagonal matrix
whose diagonal elements, λi, i = 1, 2, · · · , P , are the weights on the SV-modes.
Correspondingly, the extension to the Jacobian matrix becomes

W = ΛV , (4.47)

and, by inserting J = USVT to Eq. (4.40), the solution to ∆p for the iteration
is now given by

∆p = −V(S2 + Λ2)−1SUT r0 = −
P∑

i=1

si
s2
i + λ2

i

vi(u
T
i r0). (4.48)

Compared to Eq. (4.31), the constraints to the SV modes replace 1/si with
si/(s

2
i + λ2

i ) in the calculation of the projected component of ∆p in the i’th
SV mode. Because of the introduction of the weights, no cut-off threshold of
SVs is necessary and all modes can be kept.
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It is interesting to note that when the weight factors are the same for
all SV modes, i.e., λi =

√
λ for i = 1 through P , Eq. (4.48) is equivalent

to Eq. (4.41) (because I = VTV). In other words, when the weights are
identical across all terms, adding constraints through individual parameters
and through SV modes produces the same results.

4.2.8 Application of constrained fitting for optics correction
As an illustration of the constrained fitting method and also as a demonstra-
tion of optics correction with orbit response matrix fitting, in the following
we show an example of applying the method to the SPEAR3 storage ring
experimentally.

In the test example, the setpoints of a number of QF and QD quadrupole
magnets were intentionally changed to introduce optics errors to the machine.
Orbit response matrix and dispersion data were taken and fitted with the
constrained fitting method. The off-diagonal elements of the orbit response
matrix are included in the fitting. In addition to the BPM and corrector
gains and 78 quadrupole parameters, BPM coupling coefficients, corrector
rolls, and 13 skew quadrupoles are also fitted in order to account for the
cross-coupling between the two transverse planes and the vertical dispersion.
There are a total of 547 fitting parameters. The constraints are applied to
the individual quadrupole and skew quadrupole parameters using the scaled
Levenberg-Marquardt scheme.

Figure 4.6 (a) shows the SV spectrum with the weighting factor set to
three levels, λ = 0 (no constraints), 0.001, and 0.1. With the constraints given
at a level of λ = 0.001, the SVs at the low end (e.g., the last 10 SVs) are
substantially increased, yet without significant relative changes to the other
SV modes. When the weights are increased to λ = 0.1, however, most of the
SVs are significantly increased, leaving only about 15 relatively unchanged.
While the modifications made with λ = 0.001 are essential to prevent excur-
sions to the under-constrained (low-SV) modes, the changes to the SV modes
by λ = 0.1 may have been too large for the solution to quickly converge.

Figure 4.6 (b) shows the convergence history of the normalized χ2 vs.
the Euclid norm of the ∆K

K vector for several λ levels (with the additional
case of λ = 1 × 10−5). The λ value for each case is fixed in all iterations.
The Euclid norm of ∆K

K serves as an indication of the stray into the under-
constrained directions. Without constraints (λ = 0), the algorithm converges
in four iterations, reaching χ2 = 2382 with ||∆K

K || = 0.20. Its first iteration
goes beyond the final solution in terms of the ∆K excursion. The case with
λ = 1 × 10−5 similarly takes a large first stride in ∆K before returning to a
lower level at the second iteration. After it has reached χ2 = 2382 at the third
iteration, it continues on with two more iterations, each resulting in a tiny
reduction of χ2 with a sizable step in ∆K. ||∆K

K || for the case with λ = 0.001
does not have an initial overshoot. After χ2 comes down to 2388 on the third
iteration, the fitting algorithm continues to converge with small steps, reaching
χ2 = 2383 on the eighth iteration with ||∆K

K || = 0.066. When the weight is
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Figure 4.6 Fitting measured orbit response matrix data with the constrained least-

square method. (a) The SV spectrum in the first iteration; (b) the history of the

normalized χ2 vs. the norm of ∆K
K

throughout the iterations; (c) fitted quadrupole

gradient errors, ∆K, in the final solution for λ = 0 and 0.001 along with planted

errors (9 quadrupoles indicated by circles); (d)
√

∆χ2, square root of the partial χ2

contribution for each quadrupole parameter.

increased to λ = 0.1, the constraints slow down the convergence considerably.
After 8 iterations, χ2 only reaches 2773.

Analysis of χ2 vs. the level of ∆K excursions such as shown in Figure 4.6
(b) can be used to select the λ value for a given storage ring. In the present
example for SPEAR3, it is clear that λ = 0.001 serves well as it allows quick
convergence to the same χ2 level as the no-constraint case with much smaller
∆K values in the solution. A smaller λ leads to unnecessarily large ∆K excur-
sions, while a large λ causes slow convergence and may distort the solution.

The fitted quadrupole gradient errors for the two cases with λ = 0 or 0.001
are shown in Figure 4.6 (c). In both cases the quadrupole errors intentionally
introduced are found (indicated by circles). But the solution for λ = 0 has
large unexpected errors in quadrupole parameters 59-60, 62-63, and 76-78,
which appear in the most severely under-constrained directions. These errors
are not found in the solution for λ = 0.001. Clearly, the latter solution is
better suited for optics correction.

The partial χ2 contribution of a fitting parameter can be used as an in-
dication of the significance of the parameter in the solution. It is defined as
the χ2 variation when the parameter is set to its initial value while all other
parameters are at the final fitted values. Figure 4.6 (d) shows

√
∆χ2 for all

quadrupole parameters. Substantial χ2 changes are seen for the ∆K drifts
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Figure 4.7 Beta beating obtained from fitting orbit response matrix data before and

after applying the first round of optics correction to the machine. Left: horizontal;

right: vertical.

of the few quadrupoles that dominate the under-constrained directions. How-
ever, when all these quadrupoles are restored to the initial values, the total χ2

change is small, as can be seen from the fact the χ2 values for the λ = 0.001
and λ = 0 cases are practically identical. This reveals that the ∆K drifts are
along directions that are inefficient in causing χ2 changes.

In the present test example, the final χ2 per degree of freedom is 2382, far
greater than 1 as expected in the ideal case. This is because of the systematic
errors in the orbit response matrix that are not accounted for by the fitting
model. A big part of the residual χ2 comes from the off-diagonal elements be-
cause the 13 skew quadrupoles in the fitting model cannot completely account
for the linear coupling in the machine. If the number of skew quadrupoles in
the model is increased to 42, the final χ2 for the data set is reduced to 414.
The remaining systematic errors could come from the limited number of lat-
tice parameters that cannot fully account for the actual error sources. Part
of it can also come from the inconsistencies in the data as during the time of
data taking, the machine conditions (e.g., orbit and optics) could have drifted.
Despite the large residual systematic errors, the fitting results are still valid.

For the example in Section 4.2.6, errors in the simulated data set are either
from the errors given to the same model parameters being fitted or from the
random noise added to the beam orbit. There are no systematic errors that
are not accounted for by the fitting model. In this case, χ2 does converge
to the level of 1 as all the residual errors are from the random noise. There
is no excessive excursion to the under-constrained directions even though no
constraint is applied.

The difference between the fitting results of the simulated example and
the experiments (for the no-constraint case, with λ = 0) suggests that the
large excursions in the under-constrained directions in the experiment may
be driven by the need to reduce the residual systematic errors, instead of the
much smaller share of random errors.

With the fitted lattice model, the linear optics errors can be evaluated.
With the quadrupole errors intentionally planted in the machine, the beta
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beating (amplitude) is as high as 40% in the horizontal plane and 18% for the
vertical plane. The quadrupole gradient results of the constrained fitting were
applied to the machine for optics correction. Orbit response matrix data were
taken and fitted again. The beta beating after correction, as obtained from
the second data set, was found to be reduced to below 3.5% and 2% for the
two planes, respectively (see Figure 4.7). The correction did not completely
eliminate the linear optics errors, probably because magnet hysteresis in the
quadrupoles with large changes (up to 3% in ∆K

K ) caused deviations from the
expected gradient correction. A second round of correction was applied and
the beta beating was brought down to below 1% in both planes.



DOI: 10.1201/9780429434358-5

C H A P T E R 5

Linear optics
measurement and
correction - II

CONTENTS

5.1 Optics measurement with harmonic analysis . . . . . . . . . . . . . . 122
5.1.1 Phase advance measurement . . . . . . . . . . . . . . . . . . . . . . . 122
5.1.2 Precise tune determination from turn-by-turn

BPM data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.1.3 Determination of beta functions with phase

advances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2 Global analysis of turn-by-turn BPM data . . . . . . . . . . . . . . . . 129

5.2.1 A model for the turn-by-turn BPM data . . . . . . . . . . 130
5.2.2 Principal component analysis (PCA) . . . . . . . . . . . . . . 131
5.2.3 Independent component analysis (ICA) . . . . . . . . . . . 137

5.3 Optics correction with turn-by-turn data . . . . . . . . . . . . . . . . . 143
5.3.1 Fitting optics functions to lattice model . . . . . . . . . . . 143
5.3.2 Fitting turn-by-turn data directly to lattice model 147

5.4 Other methods for optics correction . . . . . . . . . . . . . . . . . . . . . . . 151
5.5 Summary for linear optics correction . . . . . . . . . . . . . . . . . . . . . . 152

As discussed in the previous chapter, turn-by-turn BPM data taken with co-
herent beam motion sample the lattice similarly as the closed-orbit response
matrix. Compared to the latter, turn-by-turn BPM data can be collected
within seconds, instead of tens of minutes. There is no complication from
calibration errors or rolls of corrector magnets. In addition, linear optics pa-
rameters, such as beta functions and phase advances, can be directly measured
from the data, before fitting the data to the model. Advanced algorithms can
be used to process the data taken by BPMs distributed around the ring in
a consistent manner, which allows the separation of random noise, contam-
inating signals, and unrelated processes from the betatron motion signals.

121

C H A P T E R 5

Linear optics
measurement and
correction - II

CONTENTS

5.1 Optics measurement with harmonic analysis . . . . . . . . . . . . . . 122
5.1.1 Phase advance measurement . . . . . . . . . . . . . . . . . . . . . . . 122
5.1.2 Precise tune determination from turn-by-turn

BPM data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.1.3 Determination of beta functions with phase

advances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2 Global analysis of turn-by-turn BPM data . . . . . . . . . . . . . . . . 129

5.2.1 A model for the turn-by-turn BPM data . . . . . . . . . . 130
5.2.2 Principal component analysis (PCA) . . . . . . . . . . . . . . 131
5.2.3 Independent component analysis (ICA) . . . . . . . . . . . 137

5.3 Optics correction with turn-by-turn data . . . . . . . . . . . . . . . . . 143
5.3.1 Fitting optics functions to lattice model . . . . . . . . . . . 143
5.3.2 Fitting turn-by-turn data directly to lattice model 147

5.4 Other methods for optics correction . . . . . . . . . . . . . . . . . . . . . . . 151
5.5 Summary for linear optics correction . . . . . . . . . . . . . . . . . . . . . . 152

As discussed in the previous chapter, turn-by-turn BPM data taken with co-
herent beam motion sample the lattice similarly as the closed-orbit response
matrix. Compared to the latter, turn-by-turn BPM data can be collected
within seconds, instead of tens of minutes. There is no complication from
calibration errors or rolls of corrector magnets. In addition, linear optics pa-
rameters, such as beta functions and phase advances, can be directly measured
from the data, before fitting the data to the model. Advanced algorithms can
be used to process the data taken by BPMs distributed around the ring in
a consistent manner, which allows the separation of random noise, contam-
inating signals, and unrelated processes from the betatron motion signals.

121

C H A P T E R 5

Linear optics
measurement and
correction - II

CONTENTS

5.1 Optics measurement with harmonic analysis . . . . . . . . . . . . . . 122
5.1.1 Phase advance measurement . . . . . . . . . . . . . . . . . . . . . . . 122
5.1.2 Precise tune determination from turn-by-turn

BPM data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.1.3 Determination of beta functions with phase

advances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2 Global analysis of turn-by-turn BPM data . . . . . . . . . . . . . . . . 129

5.2.1 A model for the turn-by-turn BPM data . . . . . . . . . . 130
5.2.2 Principal component analysis (PCA) . . . . . . . . . . . . . . 131
5.2.3 Independent component analysis (ICA) . . . . . . . . . . . 137

5.3 Optics correction with turn-by-turn data . . . . . . . . . . . . . . . . . 143
5.3.1 Fitting optics functions to lattice model . . . . . . . . . . . 143
5.3.2 Fitting turn-by-turn data directly to lattice model 147

5.4 Other methods for optics correction . . . . . . . . . . . . . . . . . . . . . . . 151
5.5 Summary for linear optics correction . . . . . . . . . . . . . . . . . . . . . . 152

As discussed in the previous chapter, turn-by-turn BPM data taken with co-
herent beam motion sample the lattice similarly as the closed-orbit response
matrix. Compared to the latter, turn-by-turn BPM data can be collected
within seconds, instead of tens of minutes. There is no complication from
calibration errors or rolls of corrector magnets. In addition, linear optics pa-
rameters, such as beta functions and phase advances, can be directly measured
from the data, before fitting the data to the model. Advanced algorithms can
be used to process the data taken by BPMs distributed around the ring in
a consistent manner, which allows the separation of random noise, contam-
inating signals, and unrelated processes from the betatron motion signals.

121



122 � Beam-based Correction and Optimization for Accelerators

These methods enable accurate determination of the linear optics. Therefore,
turn-by-turn BPM data are ideal for optics measurement and correction.

In this chapter we will discuss various methods of processing turn-by-turn
BPM data for linear optics correction. These include the harmonic analysis
for betatron phase determination and the 3-BPM method for beta function
measurement [19], the model independent analysis (MIA) [65, 119] and inde-
pendent component analysis (ICA) methods [58], and the method of direct
fitting of tracking data [61].

5.1 OPTICS MEASUREMENT WITH HARMONIC ANALYSIS
5.1.1 Phase advance measurement
When the beam undergoes coherent betatron oscillation, the turn-by-turn
beam orbit on either the horizontal or the vertical plane seen by a BPM is the
discrete sampling of a sinusoidal signal. For example, the turn-by-turn orbit
at BPM i is given by

xi(n) = Ai sin(2πνn+ ψi + χ), (5.1)

where n is the turn number, Ai and ψi are the oscillation amplitude and the
phase advance at the BPM, ν is the betatron tune, and χ is a phase constant
common to all BPMs for the motion. The amplitude is related to the beta
function at the BPM, βi, and the action variable, J , via Ai =

√
2βiJ . Other

frequency components can also show up in the data, for example, the betatron
oscillation coupled from the other transverse plane, the synchrotron oscilla-
tion through the dispersion function, and potentially signals due to nonlinear
coupling resonances. The dominant frequency component is typically the in-
plane betatron tune if betatron motion is excited in both planes. Figure 5.1
shows turn-by-turn orbit data on a BPM in the SPEAR3 storage ring during
an experiment.

With continuous sampling of the orbit for multiple consecutive turns, the
amplitude and phase at the BPM can be determined by calculating the pro-
jections of the raw data to the cosine and sine components of the betatron
oscillation [19],

Ci =
N∑

n=1

xi(n) cos(2πνn), Si =
N∑

n=1

xi(n) sin(2πνn), (5.2)

where N is the number of turns. With a large N , the amplitude and phase
are given by

Ai =
2

N

√
C2
i + S2

i , (5.3)

ψi = tan−1 Ci
Si
, (5.4)
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Figure 5.1 Turn-by-turn BPM data taken on SPEAR3 with beam undergoing beta-

tron oscillation in both transverse planes. The right plots show the Fourier spectra

of the x and y orbit data.

where we have absorbed the phase constant χ in ψi. With simultaneous orbit
measurements at all BPMs, the beta functions can be determined from the
amplitudes Ai, short of a scaling constant related to the action variable. The
calibration errors of the BPMs affect the amplitudes. However, the precision
of phase measurement is not affected.

The orbit measurements have errors due to random noise in the diagnos-
tics. The errors will affect the accuracy of the phase measurements. Assuming
the BPM noise level is σx, by the propagation of errors, it can be shown the
phase noise sigma is given by

σψ =

√
2

N

σx
Ai
. (5.5)

The accuracy of phase measurements can be improved by increasing the os-
cillation amplitude and increasing the number of turns.

The use of a finite number of turns in Eq. (5.2) introduces errors to
the cosine and sine projections, Ci and Si, and in turn errors to the phase
measurements as the summations in these equations are only approxima-
tions to the integrals over a full period. For example, the assumption of∑N
n=1 sin(2πνn) cos(2πνn) = 0 is not exact with a finite N for an arbitrary

tune. The error due to a finite N can easily exceed the error due to random
noise in the orbit and is not mitigated by increasing the oscillation amplitude.
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The oscillation amplitude on experimental turn-by-turn BPM data typi-
cally decreases with the turn number. The amplitude decrease can come from
radiation damping (for electron rings) and head-tail damping (a collective ef-
fect). However, the decoherence of the bunched beam due to the tune spread
among the particles in the beam is often a bigger factor. Decoherence causes
the particles to gradually oscillate out of phase and results in a small average
position as measured by the BPMs. The amplitude decrease due to damping
and decoherence has a negative impact on the accuracy of phase measurement
using Eq. (5.4). The method works better for data without a significant am-
plitude change. Therefore, a proper choice of the number of turns in the data
is desired for the application of the above method.

If the BPM data contain only the betatron oscillation, the phase advance
between two BPMs can also be directly calculated from the raw data, using

ψij = cos−1

∑N
n=1 xi(n)xj(n)

(∑N
n=1 x

2
i (n)

) 1
2
(∑N

n=1 x
2
j (n)

) 1
2

. (5.6)

An advantage of this approach is that the betatron tune is not needed. How-
ever, the other frequency components are not separated out and thus will
affect the accuracy of the phase measurement. It also suffers from the finite
number of turns in the data.

5.1.2 Precise tune determination from turn-by-turn BPM data
To apply Eqs. (5.3)-(5.4), it is important to use an accurate betatron tune in
the evaluation of the Ci and Si coefficients with Eq. (5.2). The tune can be
determined from the turn-by-turn orbit with several methods.

Finding peak spectral line: The betatron oscillation recorded on the
turn-by-turn BPM data is the same as the discrete sampling of a sinusoidal
signal. The frequency spectrum of the data sample can be calculated with the
discrete Fourier transform (DFT),

F (k) =
N∑

n=1

x(n)e−i2π
(k−1)(n−1)

N . (5.7)

DFT is usually evaluated with the fast Fourier transform (FFT) algorithm.
The coherent betatron oscillation corresponds to a peak at k = [νN+1] on the
Fourier spectrum |F (k)|, where [·] denotes the closest integer. The betatron
tune can be determined up to the accuracy of 1

2N by locating the peak spectral
line. The precision may not be adequate if there are only tens or a few hundred
turns of data.

Fitting in time domain: High precision in the tune determination can
be achieved by fitting the turn-by-turn data to a sinusoidal signal as this
will accurately locate the tune between two discrete DFT spectral lines. The
decaying amplitude due to decoherence and damping can also be included to
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further improve the accuracy, resulting in the model

x(n) = x0 +Ae−αn sin(2πνn+ ψ), (5.8)

with fitting parameters x0, A, α, ν, and ψ. The fitting can be done with
the least-square method. The initial values of the fitting parameters can be
obtained by applying simple analysis to the raw data. For example, the tune
can be estimated with FFT and the amplitude and phase by Eqs. (5.3)-(5.4).

The fitting method for tune and phase determination from turn-by-turn
orbit data with Eq. (5.8) can yield accurate results and is not sensitive to the
finite number of turns. A formula of the phase error due to the finite number
of turns is given in Ref. [43]. With the fitting method, the phase is obtained
directly as a fitting parameter.

NAFF: The tune can also be determined from the DFT spectrum with
other methods that give high accuracy, such as Numerical Analysis of Funda-
mental Frequency (NAFF) [75] and the interpolated FFT [7]. NAFF is based
on the observation that the DFT of discrete samples of a pure sinusoidal sig-
nal has spectral lines distributed around the actual tune, which serve as a
signature of the tune. The spectrum of a pure sinusoidal signal with the cor-
rect tune should be the same as the spectrum of the measured signal in the
vicinity of the corresponding spectral line. The similarity can be measured by
the projection of the measured signal over a pure sinusoidal signal, e−i2πνn,

F (ν) =

∣∣∣∣∣
N∑

n=1

e−i2πνnx(n)

∣∣∣∣∣ . (5.9)

Therefore, the tune can be determined by finding the ν that maximizes the
function F (ν). This is a simple 1-dimensional optimization problem that
can be solved using a searching algorithm such as the Nelder-Mead simplex
method [89].

Amplitude decay is not considered in Eq. (5.9). This could be included
in the model of the pure signal, resulting in a 2-dimensional optimization
problem to maximize

F (ν, α) =

∣∣∣
∑N
n=1 e

−(i2πν+α)nx(n)
∣∣∣

√∑N
n=1 e

−2αn

, (5.10)

where the denominator is the Euclid norm of the reference signal. Essentially,
NAFF is to find the tune through data fitting in the frequency domain.

The precision of tune determination with NAFF is 1
N2 , which is a signif-

icant improvement over the simple approach of identifying the peak spectral
line. The precision can be further improved by multiplying the raw data by a
window function before applying Eq. (5.9) or (5.10). A commonly used window
function is the Hanning window

W (n) = sin2 πn

N − 1
. (5.11)
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Theoretically, NAFF with Hanning window can achieve the tune precision of
1
N4 . But that is typically not the case with random noise in the data.

Interpolated FFT: When the tune of the signal does not fall exactly on
a spectral line (with interval of 1

N ), the neighboring spectral lines will have
nonzero heights. For a pure sinusoidal signal, the heights of the spectral lines
can be calculated, which gives [7],

|F (νj)| =
∣∣∣∣
sinNπ(ν − νj)
N sinπ(ν − νj)

∣∣∣∣ , (5.12)

where νj = j−1
N . Using the heights of the peak spectral line and its highest

neighbor, the tune can be determined with the formula

ν =
k − 1

N
+

1

π
tan−1 |F (νk+1)| sin π

N

|F (νk)|+ |F (νk+1)| cos π
N

, (5.13)

where k is the peak and k + 1 its highest neighbor. For a large N , the above
formula can be approximated very well by

ν =
k − 1

N
+

1

N
· |F (νk+1)|
|F (νk)|+ |F (νk+1)| , (5.14)

which is essentially a linear interpolation between the two highest lines.
The precision of tune measurement with interpolated FFT is also 1

N2 and
it can be improved by data windowing to 1

N4 using the Hanning window.
The precision of the tune determination methods can be tested in simula-

tion. In a test, 256 turns of oscillation data with an amplitude of A = 1 mm
are generated and the tune is determined with 5 methods: fitting in the
time domain, NAFF, interpolated FFT (iFFT), NAFF with Hanning window
(NAFF+W), and interpolated FFT with Hanning window (iFFT+W). The
results are shown in Table 5.1. The top row shows tune errors when no noise
is added to the data. The fitting method has the highest precision, followed
by NAFF+W and iFFT+W. Random noise with σ = 0.01 mm is then added
to the data. The tune is evaluated for 1000 error seeds. The error sigma of the
tune results, σν , is listed in the second row. It is found that data windowing
does not improve the precision with noise in the data.

TABLE 5.1 Comparison of the precision of tune determination methods.
The methods are applied to 256 turns of data generated with the formula
x(n) = A sin(2πνn+ψ), and A = 1 mm, ν = π− 3, and ψ = π

6
. Top row:

tune error without noise; Bottom row: the tune error sigma, σν , with
noise (σ = 0.01 mm) added to the data evaluated with 1000 error seeds.

σ/A Fitting NAFF iFFT NAFF+W iFFT+W
0 0 2.0E-7 1.1E-5 5.3E-9 3.3E-9
0.01 2.0E-6 1.9E-6 2.3E-6 3.0E-6 3.4E-6
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Figure 5.2 Harmonics in simulated horizontal turn-by-turn orbit data are extracted

with NAFF. The SPEAR3 lattice is used.

Iterative extraction of harmonics: After the tune is found, the corre-
sponding frequency component in the data can be determined by calculating
the projection of the raw data to the component,

Ã =
1

N

N∑

n=1

x(n)e−i2πν(n−1). (5.15)

The frequency component is then given by 2Re(Ãei2πν(n−1)), which can be
subtracted from the raw data. The raw data may have many different fre-
quency components. By iteratively applying the procedure of identifying and
subtracting the leading frequency component, the harmonics that represent
the various resonances in the beam motion can be extracted [74].

As an example, Figure 5.2 shows the Fourier spectrum of the simulated
horizontal turn-by-turn BPM data before and after 15 leading harmonics are
extracted with NAFF. The oscillation amplitude is 5 mm on both planes.
After the major harmonics are removed, the variance of the residual data is
substantially reduced.

5.1.3 Determination of beta functions with phase advances
As pointed out earlier, beta function measurement based on the oscillation
amplitude at BPMs is not reliable because of the BPM calibration errors. In
some cases, it is necessary to determine the beta function to a very high accu-
racy, for example, for the beta function at the interaction region of a collider.
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Given the connection between the beta function and the phase advance (see
Eq. (1.75)), it is possible to derive the beta function using the accurate phase
advance measurement [19].

If the transfer matrix between BPM 1 and 2 is A, from Eq. (1.68), we have

A11

A12
=

cosψ12 + α1 sinψ12

β1 sinψ12
, (5.16)

where α1 and β1 are the Courant-Snyder parameters at BPM 1 and ψ12 is the
phase advance between the two BPMs. Eq. (5.16) indicates that the optics
functions at a location, α1 and β1, which are determined by the global lattice,
are related to the local transfer matrix and the phase advance between two
locations. While the errors in the optics functions can be large as any lattice
error around the ring contributes to them, the errors in the local transfer
matrix are expected to be small, if the two locations are next to each other
and have few magnets in between. If the transfer matrix between BPM 1 and
another location, BPM 3, B, and the phase advance between BPMs 1 and 3,
ψ13, are also known, the Courant-Snyder functions at BPM 1 can be solved,
using the Eq. (5.16) and its counterpart for BPMs 1 and 3. The beta function
is given by

β1 =
cotψ13 − cotψ12

B11/B12 −A11/A12
. (5.17)

The transfer matrices A and B can be calculated with the design lattice
model. Using the model lattice functions, Eq. (5.17) can also be rewritten in
the form

βmeas
1 = βmodel

1

cotψmeas
13 − cotψmeas

12

cotψmodel
13 − cotψmodel

12

, (5.18)

where subscripts “meas” and “model” are used to indicate the measured and
model values. An expression for the measured α1 can be similarly obtained.
BPM 3 can be upstream of BPM 1, in which case, ψ13 should be interpreted as
−ψ31 in Eq. (5.18) and the same applies to BPM 2. The method of determining
the beta function with phase advance measurement on three BPMs is called
the 3-BPM method.

The use of model values of β and ψ in Eq. (5.18) may raise questions
about the accuracy of the measured beta function as the model values of these
global optics functions differ from the actual values before optics correction.
This should not be a concern because the ratio of β1 and cotψ13 − cotψ12 is
locally determined. Hence, as long as the differences between the local transfer
matrices in the actual machine and the design model are small, measurement
of phase advances can be used to deduce the beta function. It is worth noting
that for the use of Eq. (5.18), the phase advances ψ12 and ψ13 should not be
close to 0 or π

2 modulo π because the ratio of β1 and cotψ13− cotψ12 cannot
approach either zero or infinity. The optimal choice is to have phase advances
near π

4 or 3π
4 modulo π.
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Three BPMs are used in the above scheme as this is the minimum number
of BPMs in order to solve for α1 and β1 with Eq. (5.16). To obtain the beta
function at one BPM, typically its two immediate neighbors are used if the
phase advances satisfy the requirements. Sometimes an immediate neighbor
has to be skipped if the phase advance is too close to 0, π2 , or π.

Using multiple 3-BPM combinations with the two other BPMs going be-
yond the immediate neighbors can improve the beta measurement accuracy
as it brings in a statistical advantage [73]. The measured beta function will be
a weighted sum of the selected combinations. The weights are not equal be-
cause the phase advance measurement errors of the different combinations are
correlated through the common BPMs and also the systematic errors (due
to differences in the measured and model transfer matrices) depend on the
lattice section between the BPMs. The ideal weights should be derived from
the covariance matrix of the measured beta of all 3-BPM combinations, with
contributions from both the random phase noise and the systematic errors
included. In this case, the method is called the N-BPM method.

The beta functions measured with the 3-BPM or N-BPM methods are
not affected by BPM calibrations. By comparing the

√
β measured this way

to the betatron oscillation amplitudes, the BPM gains could be calibrated.
However, because the beta functions are derived from the phase measurement
and thus do not bring in any new information, including these beta functions
as input data (in addition to the phase advance measurement) in the linear
optics model fitting does not necessarily improve the fitting result.

5.2 GLOBAL ANALYSIS OF TURN-BY-TURN BPM DATA
In the harmonic analysis of the turn-by-turn BPM data, data on different
BPMs are analyzed separately. Because of the random noise and the effect
of the finite number of turns, the betatron frequency and phase advances
obtained from the BPMs may be inconsistent. The results can be substantially
improved if all BPM data are analyzed together. This will lead to significantly
improved accuracy not only by producing consistent results among all BPMs,
but also by taking advantage of the statistics offered by the multiple samples
of the same physical processes.

Model independent analysis (MIA) [65, 119] is such a method of global
analysis of all BPM data. The statistical analysis method it employs is the
principal component analysis (PCA) [97]. In the ideal scenario, through PCA,
the various oscillation harmonics in the raw BPM data can be automatically
identified and separated. All BPMs share the same time evolution of the har-
monics and are thus inherently consistent. Typically there are only a few PCA
components that contain information of the beam motion. Since the random
noise is distributed over all PCA components, the signal-to-noise ratios in the
actual beam motion signals can be improved after the relevant PCA compo-
nents are isolated. Because the term “model independent analysis” has a very
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broad meaning and could lead to misunderstanding, in the following we will
refer it as the PCA method.

The PCA method can fail to separate the beam motion harmonics when
the variances of the harmonics are nearly equal. This could happen when
there are bad BPMs, or when there are contamination signals leaked into the
BPM electronics. The independent component analysis (ICA) [58] method
uses additional features of the underlying beam signals to achieve successful
separation despite the above scenarios. Hence it is a much more reliable and
robust method to process the BPM data for the global analysis.

In this section we will describe both the PCA and ICA methods and com-
pare the performances.

5.2.1 A model for the turn-by-turn BPM data
BPMs are designed to record the transverse positions of the beam centroid. In
a storage ring, ideally, the beam is centered on the closed orbit and there is no
orbit change on the turn-by-turn basis. When the beam is displaced from the
ideal orbit, the beam will be “excited” and starts to oscillate. The turn-by-
turn orbit readings on the BPMs are discrete samples of a continuous motion.
Depending on the lattice conditions and the way the beam motion is excited,
the beam motion may contain various components, including synchrotron os-
cillation, betatron oscillations of both transverse planes, and motion from
nonlinear resonances. These components are considered source signals. The
source signals represent the different physical processes that drive the beam
motion. They are considered independent from each other. All BPMs detect
the same motion and hence the BPM data contain the same source signals;
but the strengths and phases of each component vary with the BPM location.

Considering the orbit signals as linear combinations of the source signals,
the raw signal of a BPM can be decomposed as

xi(t) = aijsj(t) + ξi(t), (5.19)

where subscript i indicates the i’th BPM, j = 1, 2, · · · , P with P being the
number of source signals, and ξi is the random noise on the BPM. The orbit
oscillation is centered on the closed orbit, which is not of interest here since
it is the orbit variation that contains information about the dynamics of the
beam motion. For this reason the closed orbit is subtracted from the orbit
signal, such that the ensemble average of many turns, 〈xi(t)〉, is zero. The aij
coefficients can be scaled up while scaling down sj(t) by the same factor. The
ambiguity can be eliminated by requiring that the row vector aj = (a1j , a2j ,
· · · , aPj) to have a unit Euclid norm, i.e., ||aj || = 1.

The raw signals and source signals can be arranged in vectors, respectively.
In a matrix form, Eq. (5.19) becomes

x(t) = As(t) + ξ, (5.20)
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where vectors x(t) and ξ have M elements, one for each BPM, s has P
elements, one for each source signal, and the matrix A contains all the aij
coefficients. Matrix A is called the mixing matrix and is M ×P in dimension.

Turn-by-turn BPM data for T turns on all BPMs can be put in a matrix

X =




x1(1) x1(2) · · · x1(T )
x1(1) x1(2) · · · x1(T )

...
...

. . .
...

xM (1) xM (2) · · · xM (T )


 , (5.21)

where xi(n) indicates the orbit reading on BPM i for the n’th turn.
Pulse-by-pulse orbit data collected on one-pass systems can be similarly

cast into the model of Eq. (5.20). The difference is that the time variation of
the source signals does not represent beam motion as each data point is for
a different beam pulse. The drifting of the machine conditions with time and
the shot to shot jitter will show up on the time variation.

With all turn-by-turn BPM data put in one matrix, the challenge is to
separate out the source signals without any additional input.

5.2.2 Principal component analysis (PCA)
Principal component analysis (PCA) is a statistical method for multi-variate
data reduction. Suppose the data are samples of M potentially correlated vari-
ables, the goal of PCA is to find an orthogonal transformation of the variables
to a new set of M variables that are mutually uncorrelated. Furthermore, the
new variables are sorted in the descending order in their variances, with each
new variable having the maximum possible variance in the remaining sub-
space after the preceding variables are excluded. In other words, the first new
variable is the linear combination of the original variables with the highest
variance; the second new variable is the linear combination with the highest
variance in the subspace that is orthogonal to the first new variable; and so
on.

Mathematically, with the data arranged in a form like Eq. (5.21), PCA is
achieved by performing SVD on the data matrix [97],

X = UΛVT , (5.22)

with orthogonal matrix U and V, and diagonal matrix Λ = diag(λ1, λ2, · · · ,
λM ) (padded with zeros to make an M × T matrix). The column vectors in
U represent the distribution of the SVD modes over the BPMs and are called
the spatial patterns. The column vectors in V represent the turn-by-turn
variation of the modes and are called the temporal patterns. The orthogonal
transformation from the original variables to the new variables is given by

Z = UTX, (5.23)

where Z is the data matrix in the new variables.
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The covariance matrix of the raw BPM data is a measure of the distribution
of the variance in the multi-variate data space, which is defined as

Cx = XXT, (5.24)

noting that each row vector in X is already zero mean. The covariance matrix
of the new variables is a diagonal matrix given by

CZ = ZZT = UTCxU = ΛΛT = diag(λ2
1, λ

2
2, · · · , λ2

M ), (5.25)

which shows that λ2
i , i = 1, 2, · · · , M , are the eigenvalues of the covariance

matrix Cx and the columns vectors in the U matrix are the corresponding
eigenvectors.

The new variables found by PCA are not correlated with one another. This
is consistent with the requirement for the underlying source signals. According
to Eq. (5.20), the covariance matrix Cx is related to the covariance matrix of
the source signals, Cs = 〈ssT 〉, via

Cx = ACsA
T + Σn, (5.26)

where Σn = 〈ξξT 〉 = diag(σ2
1 , σ

2
2 , · · · , σ2

M ) is the covariance matrix of the
BPM noise. As the source signals are independent of each other, they are
necessarily also uncorrelated, and consequently, the covariance matrix Cs is
a diagonal matrix. Eq. (5.26) can be rearranged to give

Cs = A−1(Cx −Σn)(A−1)T = diag(s2
1, s

2
2, · · · , s2

P , 0, · · · , 0), (5.27)

where s2
i is the variance of the i’th source signal.

Comparing Eqs. (5.25) and (5.27), we see that if the BPM noise is negli-
gible, i.e., Σn = 0, we can simply identify the mixing matrix

A = U, (5.28)

and the rows in Z as samples of the source signals.
Betatron oscillation is typically the dominant component in turn-by-turn

BPM data. If we consider only betatron oscillation in one of the transverse
planes, the (i, j) element in the BPM data matrix X is given by

xij =
√

2Jβi sin(2πνj + ψi), (5.29)

where βi and ψi are the beta function and phase advance at BPM i, respec-
tively, and J is the action variable. SVD of X will find only two non-zero
singular values [119],

X = λ1u1v
T
1 + λ2u2v

T
2 . (5.30)
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In the case with many turns, the spatial and temporal patterns of the two
modes are given by

u1i =

√
JTβi
λ1

cos(ψi + χ), u2i =

√
JTβi
λ2

sin(ψi + χ), (5.31)

v1j =

√
2

T
sin(2πνj + φ0), v2j =

√
2

T
cos(2πνj + φ0), (5.32)

respectively, where χ and φ0 are phase constants. The phase constant χ can
be determined from the orthogonality condition u1 · u2 = 0 and in turn the
singular values from the conditions ||u1|| = ||u2|| = 1, which give

λ2
1, λ

2
2 =

JT

2




M∑

i=1

βi ±
√

(
∑

i

βi cos 2ψi)2 + (
∑

i

βi sin 2ψi)2


 , (5.33)

where + is for λ1 and − for λ2.
From the spatial patterns of the two SV modes, the beta functions and

phase advances at the BPMs can be calculated,

βi =
1

JT
(λ2

1u
2
1i + λ2

2u
2
2i), ψi = tan−1 λ2u2i

λ1u1i
, (5.34)

where we have dropped the phase constant χ.
When random noise is not neglected in Eq. (5.27), the mixing matrix A

would only slightly differ from the eigenmatrix U, provided that the signal to
noise ratio is high, i.e., σi � λ1, λ2 for all BPMs. Because the BPM noise is
uncorrelated with the source signals, it is expected that the noise variance is
equally distributed among the new variables (the SV modes). On the other
hand, the source signals are concentrated in the few leading modes. Therefore,
by reconstructing the data matrix with only the leading modes, the random
noise will be reduced. If only the P leading modes are kept, the reconstructed
data matrix would be

Xre = UPΛPVT
P , (5.35)

where subscript P indicates only the first P columns in the matrices are kept
while the remaining elements are set to zero. The random noise sigma in the
reconstructed data will be

σr = σ

√
P

M
, (5.36)

where for simplicity we have assumed all BPM noise sigmas are equal to σ.
Figure 5.3 shows an example of the application of PCA to turn-by-turn

BPM data. The BPM data are simulated with the SPEAR3 model by tracking
1000 particles randomly generated according to the nominal distribution plus
a horizontal position offset of 0.6 mm (w/ βx = 5.0 m) and a vertical position
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over 256 turns for SPEAR3. The SVs (top left), leading spatial patterns (top right),

first temporal pattern (bottom left), and the FFT power spectrum of the temporal

pattern (bottom right) are shown.

offset of 1.2 mm (w/ βy = 9.1 m). The data matrix of the vertical centroid
position on 57 BPMs over 256 turns is analyzed with SVD. Random BPM
noise is added to all data points, with a noise sigma of 10 µm. There are only
two SVs that stand out from the continuous band of small SVs. The small
SVs are due to random BPM noise. The two leading SVs correspond to the
two orthogonal modes for the betatron motion, which may be referred to as
the sine and cosine modes, respectively.

The horizontal and vertical BPM data matrices can be stacked to make a
2M × T overall matrix. With betatron oscillations in both planes, the data
matrix will have four non-zero singular values. If the variances in the horizontal
and vertical oscillations are not close to equal, the four SV modes consist of
two pairs of normal modes - each normal mode represents the motion in a
single frequency. In the case of weak linear coupling, the two normal modes
can be identified as the horizontal and vertical betatron motions according to
their frequencies. The spatial patterns of the horizontal modes contain mostly
large amplitudes on horizontal BPMs, and the spatial patterns of the vertical
modes mostly on vertical BPMs.

However, if the variances of the two normal modes are about equal, the nor-
mal modes may be mixed. This is because if two eigenvalues of the covariance
matrix are equal, the corresponding eigenvectors are not uniquely determined.
Given the existence of random BPM noise in the data, the normal modes can
be more easily mixed in the SVD modes. For example, when the horizontal
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Figure 5.4 PCA for simulated turn-by-turn BPM data in both x and y planes on 57

BPMs over 256 turns. The SV spectrum (top left, partial), the FFT power spectra

of the temporal patterns (top right), and the spatial patterns of the first two SV

modes are shown. The simulated motion is uncoupled between the two transverse

planes, but the horizontal and vertical normal modes are mixed.

and vertical turn-by-turn BPM data of the above simulated case are stacked
and analyzed with PCA, the betatron normal modes are mixed in the SV
modes, as shown in Figure 5.4. The FFT spectra of the two leading SV modes
contain both the horizontal and vertical tunes. The spatial patterns of the two
SV modes have substantial amplitudes in the other planes, even though there
is no linear coupling in the simulation lattice.

Another common cause of mode mixing in the PCA analysis of turn-by-
turn BPM data is bad BPMs. A bad BPM could be very noisy, or have contam-
inating signals. If the variances of bad BPMs are nearly equal to or larger than
those of the source signals, the source signals tend to be mixed with the noise
or contaminating signals on the bad BPMs. Figure 5.5 shows the PCA results
of an experimental data set taken on SPEAR3 with 8 turn-by-turn BPMs. A
contaminating signal with a tune near 0.07 on one of the BPMs causes the
failure of separation. A large synchrotron motion component can also cause
the failure to separate out the betatron motion. Figure 5.6 shows the results
for a horizontal turn-by-turn BPM data set with a longitudinal excitation.
The synchrotron motion is not separated from the betatron motion.

When the betatron motion is mixed with other signals, the PCA result is
not useful for optics measurements. For a large ring, it could take a consider-
able effort to identify and remove the bad BPMs before the PCA method can
be successfully used.
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5.2.3 Independent component analysis (ICA)
By diagonalizing the covariance matrix of the BPM data, PCA finds an or-
thogonal basis of the multi-variate data space. The new variables defining the
orthogonal basis are uncorrelated and would be the underlying source signals
if the covariance matrix is not degenerate and there are no noise or bad BPMs.
However, in reality there is always noise and it is not uncommon to have bad
BPMs. The variances of the source signals can also be nearly equal. Under
these circumstances, the uncorrelated variables found by PCA may not nec-
essarily be the source signals. More advanced methods are needed to identify
the source signals.

What PCA achieves is the uncorrelatedness in the new variables after a
linear transformation. Uncorrelatedness is a requirement for the independent
source signals. However, in general, uncorrelatedness does not guarantee in-
dependence between the new variables. Two random variables, x1 and x2,
are uncorrelated if the covariance 〈x1x2〉 = 〈x1〉〈x1〉. By definition, the two
variables are statistically independent when their joint probability distribu-
tion is the product of their respective probability distribution functions, i.e.,
p(x1, x2) = p(x1)p(x2), from which one can show that for any two functions
h1(·) and h2(·), 〈h1(x1)h2(x2)〉 = 〈h1(x1)〉〈h2(x2)〉 is satisfied. Therefore, in-
dependence is a much stronger condition than uncorrelatedness. Uncorrelated-
ness implies independence if and only if the probability distribution functions
are Gaussian [64].

The source signals can be identified from the original data by utilizing the
additional requirements for the independent variables. This process is referred
to as independent component analysis (ICA) [70, 24, 64, 63]. A major category
of ICA methods relies on the assumption that the probability distributions
of the independent variables are non-Gaussian. These methods try to maxi-
mize the non-Gaussianity of the new variables after a linear transformation,
using appropriate parametric measures of the non-Gaussianity of the random
variables [62].

Other ICA methods exploit the time dependence in the source signals. The
time dependence can be fast oscillations or long-term, slow drifts. Separation
of source signals from mixed signals recorded on multiple sensors using only
the recorded signals without the use of any a priori information is called blind
source separation (BSS) [20, 13]. The fast oscillations of the source signals
can be characterized by their frequency spectra. ICA methods based on the
spectral features are very suitable for the application to turn-by-turn BPM
data because the source signals of beam motion in circular accelerators are
typically oscillations of certain frequencies. The power spectra of the source
signals can be assumed to be narrow-band, for example, a single frequency
or with a narrow frequency spread. The mutual independence of two source
signals requires their frequency contents to have no overlap – otherwise the
two are correlated in the temporal pattern.
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The time shifted covariance of two source signals is a way to characterize
their spectral correlation. It is defined as

C12(τ) = 〈s1(t)s2(t+ τ)〉 =

∫
s1(t)s2(t+ τ)dt, (5.37)

where τ is the time shift. For continuous signals, we have

C12(τ) =
1

2π

∫
F1(ω)F ∗2 (ω)eiωτdω, (5.38)

where F1,2(ω) are the Fourier transforms of s1,2, respectively, and ∗ indicates
the complex conjugate. Clearly, if the power spectra of the two source signals
have no overlap, C12(τ) = 0 for any time shift τ . If s2 = s1, C12(τ) becomes
the auto-correlation of the source signal, which is equal to the inverse Fourier
transform of its power spectrum. Similar results are valid for discrete samples
of the source signals. In this case, the time shifted covariance is evaluated by
shifting the series of one source signal by τ units and summing up the product
s1(k)s2(k + τ).

From Eq. (5.20), we have

Cx(0) = ACs(0)AT + Σn, (5.39a)

Cx(τ) = ACs(τ)AT , for τ 6= 0, (5.39b)

where the first equation is the ordinary covariance matrix we have seen in
Eq. (5.26), the second equation utilizes the fact that the time shifted covari-
ance of the white noise is zero for τ 6= 0. As discussed in the above, the
time shifted covariance matrices of the source signals are diagonal matrices.
Eq. (5.39b) provides additional information regarding the connection between
the data signals and the source signals, which states that the mixing matrix
A not only diagonalizes the usual equal-time covariance matrix, but also di-
agonalizes all time shifted covariance matrices of the data signals. This extra
condition can be used to determine the mixing matrix. Mathematically, the
challenge becomes finding a matrix that simultaneously diagonalizes a few
time shifted covariance matrices with selected time shifts.

Tools for joint diagonalization of a few matrices have been developed and
applied for identification of source signals from mixed data samples. An ICA
algorithm, called second order blind identification (SOBI) [13], utilizes this
approach and was found to be effective for the application to turn-by-turn
BPM data in accelerators. The algorithm consists of two steps. The first step
is data whitening, in which PCA is performed to achieve dimension reduction
and a normalized, orthogonal representation of the data. The new data matrix
becomes

z = Λ−1
P UT

PX, (5.40)

where P SVD modes are kept. The new data matrix satisfies 〈zzT〉 = IP, with
the P -dimensional identity matrix IP . The second step is to find an orthogonal
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matrix W that joint diagonalizes the time shifted covariance matrix of z for
a few selected time shifts,

Cz(τ) = WCŝ(τ)WT , for τ = τ1, τ2, · · · , τk, (5.41)

where Cŝ(τ) are diagonal matrices as they are the covariance matrices of the
scaled source signals, ŝ = Λ−1s. The choice of the time shifts may depend on
the frequency contents of the source signals. For turn-by-turn data, typically
no special care is needed. A simple choice such as τ = 0, 1, 2, 3 would work
for most cases. Because of noise in the data, joint diagonalization can be
achieved only approximately. The numeric algorithm for approximate joint
diagonalization is found in Ref. [18]. The source signals and the mixing matrix
are then determined by

A = UPΛPWΛ−1
P , (5.42)

s = ΛPWT z = ΛPWTΛ−1
P UT

PX. (5.43)

When the horizontal and vertical data are processed together in one data
matrix, there are two pairs of betatron modes. From the mixing matrix, the
beta functions and betatron phase advances can be calculated,

βi = a(A2
i,c +A2

i,s), ψi = tan−1 Ai,s
Ai,c

, (5.44)

where subscripts c and s indicate the cosine and sine modes for the betatron
motion, respectively, i is the BPM index, and a is an overall scaling factor
which can be approximately determined by requiring the average beta function
over all BPMs to be the same as the model value. There is only one synchrotron
mode because typically the phase of synchrotron motion has little change over
one turn. The dispersion function can be determined by

Di = bAi,d, (5.45)

where subscript d indicates the synchrotron mode and b is a scaling constant.
Figure 5.7 shows two of the ICA modes for the tracking data plotted in

Figure 5.4 where PCA fails to separate the horizontal and vertical betatron
oscillations due to their equal variances. With ICA, the betatron modes are
now completely separated out.

ICA is also applied to the data shown in Figures 5.5 and 5.6. The results
are shown in Figure 5.8 and 5.9, respectively. In both cases, the betatron
modes are now separated from the contaminating signals or the synchrotron
motion.

To evaluate the accuracy of phase advance determination of the ICA
method, the betatron phase advances determined from the ICA modes of the
simulated data in Figure 5.7 are compared to the values calculated with the
lattice model. Betatron phase advances obtained with the harmonic analysis
method (using NAFF for tune determination) and the direct sinusoidal fitting
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Figure 5.9 ICA is applied to the data in Figure 5.6. The synchrotron motion (“mode

1”) and betatron motion (“mode 3”) are completely separated out.

are also compared. The results are shown in Figure 5.10 and Table 5.2. Fig-
ure 5.10 shows the differences of the measured phase advances from the model
values for the three methods for the case with BPM noise sigma of 10 µm.
The rms phase errors for the ICA method are 2.5 mrad and 1.7 mrad for the
horizontal and vertical planes, respectively. The results by fitting sinusoidal
functions are similar. Both are better than the results by the harmonic anal-
ysis. The errors in the harmonic analysis results mainly come from the effect
of the finite number of turns. As shown in Table 5.2, when the BPM noise is
reduced to 1 µm in the simulated data, the errors from the harmonic analysis
are about the same as the 10 µm case. However, when the BPM noise is raised
to 50 µm, the phase errors are dominated by contributions from the random
noise. In this case, the errors for the harmonic analysis and the sinusoidal fit
are about the same. The phase errors for the ICA method are lower because
of the noise reduction through SVD.

The betatron tune differences between the lattice model and the values
derived from the tracking data with NAFF and sinusoidal fitting are shown in
Figure 5.11 for all BPMs. The standard deviations of the measured tunes by
NAFF are 4.4× 10−6 and 10.8× 10−6 for the horizontal and vertical planes,
respectively, compared to 2.5×10−6 and 2.2×10−6 for the fitting method. The
tunes derived from the ICA source signals are also plotted. The tune shifts
from the lattice model, with ∆νx = 5.9× 10−4 and ∆νy = 5.0× 10−4, are due
to the nonlinear detuning from the finite oscillation amplitude.



142 � Beam-based Correction and Optimization for Accelerators

0 10 20 30 40 50
BPM index

-0.02

0

0.02

y
 (

ra
d

)

ICA HA w/ NAFF Sine fit

-0.01

0

0.01

x
 (

ra
d

)

Figure 5.10 Comparison of phase determination accuracy for three methods: ICA,

harmonic analysis with NAFF, and the sinusoidal fitting, using simulated data as

shown in Figures 5.4 and 5.7. Data consist of 256 turns of turn-by-turn orbits on 57

BPMs with BPM noise sigma of 10 µm. Oscillation amplitude is about 1 mm.

0 10 20 30 40 50
BPM index

4.8

5

5.2

y

10-4 NAFF Sine fit

5.8

5.9

6

x

10-4

Figure 5.11 Betatron tune differences between the measurement and the model for

NAFF, the sinusoidal fitting method, and ICA (straight line).



Linear optics measurement and correction - II � 143

TABLE 5.2 Comparison of the accuracy of phase advance determination by
three methods, with BPM noise sigma set to 1, 10, 50 µm in the tracking
data.

σ (µm) ICA HA with NAFF Sine fit
σ∆ψx σ∆ψy σ∆ψx σ∆ψy σ∆ψx σ∆ψy

1 2.3 1.4 5.6 8.8 1.7 1.0
10 2.5 1.7 5.9 9.3 2.9 2.7
50 5.6 5.2 11.6 14.9 10.4 11.4

5.3 OPTICS CORRECTION WITH TURN-BY-TURN DATA
Measurement of the optics functions is typically not the final goal. The goal is
to identify the error sources that cause the optics errors, compensate them, and
hence bring the machine optics toward the ideal setting. With turn-by-turn
BPM data, two approaches can be used to determine the optics error sources
for correction: fitting the measured optics functions to the lattice model, and
fitting the turn-by-turn data directly.

5.3.1 Fitting optics functions to lattice model
Beta function and phase advance measurements are direct representation of
the linear optics of the machine lattice. The differences between the measured
and model values of beta functions and phase advances are optics errors.
However, the optics errors do not directly point to the sources of the errors.
To correct the optics errors, it is necessary to fit the measured optics functions
to the lattice model. This can be done by adjusting the quadrupole gradients in
the model to minimize the differences between the measured and model optics
functions using the least-square method. This fitting approach is similar to
LOCO, the fitting of the orbit response matrix for linear lattice calibration,
which was studied in Chapter 4.

In addition to the beta functions and the phase advances, the measured
dispersion function can also be included as fitting data. This is necessary
if errors in the dispersion function also need to be corrected. The objective
function to be minimized is [58]

χ2 =
∑

i

w2
βx

σ2
βx,i

(βm
x,i − βc

x,i)
2 +

w2
βy

σ2
βy,i

(βm
y,i − βc

y,i)
2 +

w2
ψx

σ2
ψx,i

(ψm
x,i − ψc

x,i)
2+

w2
ψy

σ2
ψy,i

(ψm
y,i − ψc

y,i)
2 +

w2
Dx

σ2
Dx,i

(Dm
x,i −Dc

x,i)
2, (5.46)

where superscripts ‘m’ and ‘c’ indicate the measured and calculated values,
respectively, the σ’s are the error sigmas of the measured values, and the w’s
are the weights assigned to the data types. The error sigmas can be estimated
by evaluating the standard deviation of the results from multiple data sets.
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Error propagation may also be used, for example, for beta functions and phase
advances obtained through fitting the sinusoidal model. The weights are in-
cluded to adjust the relative importance of the data types. This is necessary
because there could be systematic errors in the data types. For example, beta
functions obtained with the sinusoidal fitting method and the ICA method are
subject to BPM calibration errors. In some cases, the beta functions can be
excluded by setting wβx = wβy = 0. This is acceptable because the errors in
the beta functions and the phase advances are closely related (see Eqs. (2.27)
and (2.30)) – to some extent the beta beating data could be seen as redundant
information. The weight of the dispersion function can be increased to achieve
a high precision of dispersion control.

The fitting parameters are the quadrupole gradients. These can usually
be the same quadrupole parameters as the orbit response matrix fitting. The
terms in χ2 can be represented by the residual vector, r, such that the ob-
jective function takes the standard form, χ2 = f(p) = rT r. The least-square
fitting methods discussed in the previous chapter can then be applied. The
degeneracy problem due to the cross-coupling between adjacent quadrupole
magnets is common to all optics fitting, including the present case with op-
tics functions as input data. Therefore, the constrained fitting technique in
section 4.2.7 is generally needed.

Optics correction with ICA for turn-by-turn BPM data analysis has been
experimentally demonstrated on the RHIC collider [109] and on the NSLS-II
storage ring [51, 125]. In the NSLS-II experiment 1024 turns of orbit data from
180 BPMs are decomposed into two pairs of betatron normal modes and the
synchrotron mode. The Fourier spectra of the data from one BPM (located
at a dispersive region) and the temporal patterns of the normal modes are
shown in Figure 5.12 (top plots). The amplitudes of the normal modes on the
horizontal (middle plot) and vertical (bottom plot) BPMs are also shown. The
oscillation amplitude is about 0.2 mm. Because of linear coupling, the vertical
betatron oscillation shows up on the horizontal orbit and vice versa.

From the spatial patterns, the betatron phase advances of the normal
modes are calculated. The differences of the measured phase advances with
the ideal model are shown in Figure 5.13. The values measured by ICA are
compared to the lattice model calibrated with the orbit response matrix data
taken at the same time as the turn-by-turn BPM data. The differences between
the measurements by the two methods are small. The beta functions, phase
advances, and the dispersion function are used to fit the lattice model using
Eq. (5.46). The fitted BPM gains and quadrupole gradient errors are compared
to the orbit response matrix fitting results in Figure 5.14 and 5.15, respectively.
The fitting results between the two methods are very similar. Because of the
different constraints applied, the fitted ∆K

K by ICA is slightly smaller than
LOCO, while the two fitted lattices have almost the same optics errors.

The fitted quadrupole errors by ICA were applied to the machine for optics
correction. After three iterations of corrections, each time using a new data
set of turn-by-turn BPM data taken on the updated machine, the optics errors
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Figure 5.16 Fitting the lattice model directly with BPM data: deriving the angle

coordinates with BPMs 0 and 1, predicting beam positions with particle tracking,

and comparing the measured and predicted positions.

were substantially reduced. The rms beta beating decreased from 7% (H) and
9% (V) to 0.5% (H) and 0.4% (V), respectively, while the rms phase advance
beating decreased from 30 mrad (H) and 40 mrad (V) to 8 mrad (H) and
7 mrad (V). The rms horizontal dispersion errors also decreased from 17 mm
to 5 mm. The precision of optics correction could have been better if the
signal-to-noise ratio was higher in the turn-by-turn BPM data (oscillation
amplitude was only 0.2 ∼ 0.3 mm).

5.3.2 Fitting turn-by-turn data directly to lattice model
Turn-by-turn BPM data can also be directly fitted to the lattice model if
the data can be predicted with particle tracking simulation. Full phase space
coordinates are needed for tracking simulation. The BPMs only measure the
position coordinates. However, the angle coordinates can be calculated from
the position coordinates at two BPMs with a known transfer matrix in be-
tween, as shown in Eqs. (4.5) and (4.6). With the full transverse phase space
coordinates at one BPM, X=(x, x′, y, y′)T , the coordinates at all BPMs over
subsequent turns can be obtained from tracking and compared to the mea-
sured data. The BPM layout in the lattice is as illustrated in Figure 5.16,
where BPMs 0 and 1 are separated by a drift space. To avoid large errors to
the angle coordinates, it is desirable to have a large distance between the two
BPMs. Since we are trying to extract the optics information from the coherent
beam motion, the closed orbit is subtracted from the BPM readings.

Lattice parameters can be adjusted to minimize the difference between the
measurement and the tracking data, which is characterized by the least-square
objective function

χ2 = f(p) =

M,T∑

i=1,k=1

(xm
i (k)− xc

i (k; p)2

σ2
xi

+
(ym
i (k)− yc

i (k; p)2

σ2
yi

, (5.47)

where i and k are the BPM and turn indices, respectively, σxi and σyi are
the horizontal and vertical BPM noise levels, xm and ym are measured beam
positions, and xc and yc are positions obtained with tracking. The phase space
coordinates can be tracked for multiple turns and used for comparison, hence
the summation of turns in Eq. (5.47). The measured orbits at multiple BPMs
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over multiple turns are self consistent, which puts a constraint on the initial
phase space coordinates. Therefore, potentially, the initial phase space coor-
dinates can also be fitted. However, since the oscillation amplitudes decrease
with time due to damping and decoherence in the experimental data, the
number of turns to be tracked with one initial coordinate should be limited.

The fitting parameters can include the quadrupole gradients and the BPM
gains when only the linear optics is concerned. Skew quadrupole gradients and
BPM rolls and crunch coefficients can also be fitted to account for the cross-
plane coupling.

The direct fitting scheme can also be applied to one-pass lattices. In this
case there is no summation over turns and the summation over BPMs starts
with i = 2 in Eq. (5.47). To adequately sample the phase space, a pair of
corrector magnets upstream of BPMs 0 and 1 for each transverse planes are
required to scan the beam trajectory. In each plane, it is necessary to scan
many combinations of (x, x′) or (y, y′) with phase angles that cover the full
range of [0, 2π). Different phase angles are needed because the data points with
the same phase angle, as obtained by scaling the strengths of both correctors in
proportions, are redundant information. Lattice fitting for rings can be treated
in the same manner as for the one-pass systems by considering the ring as a
transport line, using BPM data of each turn as an independent sample.

Because of the lack of temporal betatron oscillations, the methods of de-
riving phase advances and beta functions described earlier in this chapter do
not apply to one-pass lattices. The direct fitting scheme is particularly impor-
tant for transport lines and linacs. It can also be applied to the commissioning
of storage rings before the stored beam is established. The BPM data fitting
method has been experimentally demonstrated using a section of the SPEAR3
storage ring [61] and the LCLS linac and transport lines [128].

In the LCLS linear optics fitting study [128], both horizontal and verti-
cal trajectories are scanned on a phase space grid with two pairs of corrector
magnets upstream of the lattice of concern. For the linac section, backward
tracking was used as the pair of BPMs separated by a long drift are located
downstream of the linac. As the beam energy increases in the linac, the action
variables for (x, x′) or (y, y′) decrease. This effect is accounted for in the
tracking model. The fitted quadrupole gradients successfully recovered the
strengths of the matching quadrupoles. There were substantial differences be-
tween the fitted quadrupole gradients and the ideal model for a few magnets
as they were manually tuned during operation. For the transport lines after
the linac, both forward and backward tracking were used and the results were
consistent with the operation setting.

The direct fitting method for storage ring optics measurement can be tested
with the NSLS-II turn-by-turn BPM data discussed in the previous section.
The pair of BPMs separated by the first long straight section are used to
calculate the initial phase space coordinates. The two BPMs are separated
by a distance of 9.87 m and there are two harmonic sextupoles (SH1) in be-
tween, next to the BPMs. The nonlinear kick by the second sextupole is not
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Figure 5.17 The initial phase space coordinates on BPM 1 derived from a pair of

BPMs for the NSLS-II lattice fitting.

included in the calculated angle coordinate. It can be corrected with the mag-
net strength and the position coordinates. The horizontal and vertical kicks
are up to 0.1 µrad and 0.2 µrad, respectively, compared to the maximum angle
coordinates of 10.8 µrad (H) and 42.3 µrad (V). In one test, 256 turns of orbit
data are used and the coordinates are tracked for one turn for comparison. In
this setup the ring is treated almost as a transport line, except the next-turn
positions on BPM 0 and 1 are also compared. The initial 256 turns of phase
space coordinates on BPM 1 are as shown in Figure 5.17. The BPM noise
sigma is estimated to be 2.6 µm, using the last 350 SVD modes (out of 360
total modes). Noise reduction with SVD could improve the fitting result, but
was not used in the test.

Fitting with the Levenberg-Marquardt method with an initial λ = 0.01
for two iterations reduced the normalized χ2 from 62 to 5.1. The fitted BPM
gains differ from the ICA fitting results (see Figure 5.14) by only 0.009 (H) and
0.007 (V) (rms values) for the two planes, respectively. The fitted quadrupole
gradient errors are shown in Figure 5.18. The results are very similar to the
ICA fitting results. The phase advance errors of the fitted lattice are shown
in Figure 5.19. The phase advance differences between the lattices fitted with
the ICA results and the direct BPM data are 4.6 mrad (H) and 4.0 mrad (V)
(rms), respectively. The rms beta beatings between the two fitted lattices are
only 1.5% (H) and 0.7% (V), respectively. Optics correction with the direct
position fitting would have achieved the same level of beta beating reduction
as fitting the ICA results.
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5.4 OTHER METHODS FOR OPTICS CORRECTION
Other methods can also be used to extract the linear optics errors from the
turn-by-turn BPM data for lattice model calibration and optics correction.

Segment-by-segment optics function fitting: With the 3-BPM or N-
BPM method, the Courant-Snyder parameters can be determined from the
simultaneous turn-by-turn BPM data at the BPM locations. For a large ring,
the lattice can be divided into several segments and treated separately. Using
the α and β functions at the beginning of the segment, the Courant-Snyder
parameters and phase advances at downstream BPM locations can be calcu-
lated with the lattice model. The differences of these optics functions between
the measurements and the calculation can be used to fit the quadrupole gradi-
ent errors in the lattice segment, from which the model can be calibrated and
the results can be used for optics correction. This method was used for the
LHC optics measurement and correction [3, 116] and has also been extended
to electron storage rings [73, 84].

Resonance driving terms (RDTs): In general, turn-by-turn beam mo-
tion can be decomposed into a series of harmonics of the betatron tunes, as
is shown in Eqs. (2.116)-(2.117). If the beam motion is purely linear and the
linear optics is the same as the design model, the turn-by-turn motion in the
resonance basis coordinate (using the design optics functions to obtain the
normalized betatron coordinates) is a simple rotation. However, with linear
optics errors, the motion of the resonance basis coordinates will be distorted.

The linear optics errors in the horizontal and vertical planes are charac-
terized by the f2000 and f0020 terms, respectively, which are related to the
quadrupole errors distributed throughout the ring via [10, 39]

f2000 =

∑
k ∆b1,kLkβx,ke

i2ψx,k

8(1− ei2πνx)
, f0020 = −

∑
k ∆b1,kLkβy,ke

i2ψy,k

8(1− ei2πνy )
, (5.48)

where ∆b1,k and Lk are the normalized gradient errors and the lengths of the
quadrupole error sources, respectively, and βxy,k and ψxy,k are the beta func-
tions and the phase advances (between the error sources and the observation
point), respectively. The corresponding spectral lines are 1−νx on h−x for f2000

and 1− νy on h−y for f0020, respectively.
By using two adjacent BPMs to determine the angle coordinates, the turn-

by-turn resonance basis coordinates h−x,y can be calculated (see Eq. (2.109)).
The amplitude and phase of f2000 are subsequently determined from the com-
ponent corresponding to the 1 − νx tune line on the Fourier spectrum of h−x
(see Eq. (2.116)) using NAFF or interpolated FFT. Similarly f0020 is deter-
mined from the 1− νy tune line on h−y . If this can be done at many locations
around the ring, the RDT data can be used to fit the quadrupole errors in the
lattice with Eq. (5.48) [39, 47].

Transfer matrices: When the angle coordinates are calculated with po-
sition data from two adjacent BPMs, the phase space coordinates can be used
to determine the transfer matrices, using Eq. (4.8). From the one-turn transfer
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matrix the Courant-Snyder parameters can be calculated. Using the transfer
matrices between two locations, the phase advances can also be determined.
These derived data can then be fitted to the lattice model to determine the
quadrupole errors. One may also fit the lattice by directly comparing the
transfer matrices between the model and the measurements.

5.5 SUMMARY FOR LINEAR OPTICS CORRECTION
Linear optics correction for storage rings has been an extensively researched
area. LOCO, the method of fitting the orbit response matrix [102], was an
early success, which became the standard method for optics correction on
electron storage rings. The constrained fitting technique was an important
development [49, 50] for the method as it solved the degeneracy problem
that caused the original fitting method to fail for many machines and limited
the precision of optics correction. The improved fitting method is the default
method in the LOCO code [95] in the form of the scaled Levenberg-Marquardt
method.

One limitation of the LOCO method is that the measurement of the orbit
response matrix is time consuming. For the SPEAR3 ring it takes 10 minutes
to measure one data set. For large rings or rings with slow ramping correc-
tors, the time would be considerably longer. A new approach that uses fast
correctors to modulate the beam orbit at different frequencies can substan-
tially reduce the data taking time (e.g., from 1 hour reduced to 2 minutes
for NSLS-II) as the responses of multiple correctors can be simultaneously
measured [124].

In recent years, as turn-by-turn BPMs are widely used on new rings, meth-
ods based on simultaneous turn-by-turn BPM data have been developed and
studied at many facilities [58, 3, 61, 116, 109, 125, 47]. Most methods rely
on the accurate phase measurements from the turn-by-turn BPM data, which
are used to fit the lattice model. There have been a number of studies that
compare the performances of LOCO and turn-by-turn BPM data-based meth-
ods [1, 110, 84]. The ICA-based fitting method was found to have a comparable
accuracy with LOCO in the NSLS-II study [110].

In one-pass systems, the betatron phase advance-based methods cannot be
applied as there is no temporal betatron oscillation. The method of directly
fitting the beam position data to the lattice model can be used in this case [61].
It has been demonstrated with experiments on the LCLS [128].
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methods for linear coupling measurements include fitting (the off-diagonal
blocks of) the orbit response matrix, fitting the amplitudes and phase ad-
vances of the normal modes in the cross-plane, fitting the resonance driving
terms for the sum and difference resonances, and direct fitting of the turn-by-
turn BPM data. The coupling errors can be corrected with skew quadrupole
magnets. Skew quadrupole magnets are often coils on multi-function magnets.

In electron storage rings the linear coupling contributes to the equilibrium
vertical emittance. Another source of the vertical emittance is the spurious
vertical dispersion, which can be generated by vertical bending or coupled
from the horizontal dispersion. Sources of vertical bending include the vertical
correctors and vertical orbit offsets in quadrupoles. Skew quadrupoles and
vertical orbit offsets in sextupoles located in dispersive sections couple the
horizontal dispersion to the vertical plane. The vertical dispersion can be
corrected with skew quadrupole magnets located in dispersive regions.
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Because the vertical dispersion and the linear coupling both contribute to
the vertical emittance and are both corrected with skew quadrupoles, the cor-
rections of the two are often combined and are referred to as vertical emittance
correction or coupling correction.

Errors in a storage ring lattice also cause the nonlinear beam dynamics
behavior to deviate from the design, resulting in a reduction of the dynamic
aperture and the local momentum apertures. It would be ideal to correct the
errors and restore the nonlinear beam dynamics performance.

In this chapter we discuss the methods of coupling correction. Ideas for
nonlinear beam dynamics correction are also discussed.

6.1 COUPLING MEASUREMENT AND CORRECTION METHODS
6.1.1 Off-diagonal blocks of orbit response matrix
If there is no linear coupling, the one-turn 4× 4 transfer matrix at a location
in a circular accelerator consists of two diagonal 2 × 2 blocks that represent
the motion of the two transverse planes, respectively. The off-diagonal blocks
are all zeros. Accordingly, the closed-orbit response of an orbit corrector is
limited in the plane of the kick. However, when linear coupling error sources
are introduced to the lattice, the one-turn transfer matrix will have non-zero
off-diagonal blocks. The values of the off-diagonal block elements are related to
the strengths and locations of the error sources. Consequently, the off-diagonal
blocks of the orbit response matrix, Rxy and Ryx (Eq. (4.12)), will also be
non-zero and the values of these blocks are connected to the error sources.

By fitting the skew quadrupole parameters in the lattice model to mini-
mize the differences between the off-diagonal blocks of the measured and model
orbit response matrices, a lattice model that reproduces the linear coupling
behavior of the machine can be obtained [102]. The skew quadrupole param-
eters can be the gradients of actual skew quadrupoles. Corrections can be
applied to these magnets to compensate the coupling error sources, resulting
in a reduction of linear coupling in the machine. The fitting parameters can
also be the rolls of the normal quadrupole magnets. This is equivalent to fit-
ting skew quadrupole components at the locations of the normal quadrupoles.
If large rolls on quadrupoles are found, the magnets could be realigned.

The rolls of corrector magnets and BPMs also cause cross-plane orbit re-
sponses in the measurements. These effects are not related to the linear cou-
pling in the lattice. Because the orbit response patterns of the corrector and
BPM rolls are different from those of the skew quadrupole components, these
parameters can be determined by fitting.

In practice the off-diagonal orbit responses are almost always fitted to-
gether with the diagonal blocks such that the linear optics and coupling errors
are determined simultaneously. This is appropriate as linear optics errors have
an impact over the effects of the coupling sources, and vice versa.
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By including the measured vertical dispersion data in the fitting objective
χ2, a skew quadrupole setting that produces both the measured vertical dis-
persion and the cross-plane orbit responses can be determined. Both types of
errors can be corrected simultaneously after applying the corresponding cor-
rections to the skew quadrupoles. The weight of the vertical dispersion in the
χ2 definition can be increased in order to achieve the desired level of accuracy
of dispersion control.

6.1.2 Amplitude and phase of normal modes via ICA
With linear coupling, the coherent beam motion on the transverse planes can
be decomposed into two normal modes. In the case of weak coupling, one of
the normal modes can be identified as the horizontal betatron mode and the
other the vertical mode. The normal modes will be present on the measured
turn-by-turn orbits on both planes. The vertical betatron mode on the hor-
izontal plane and similarly the horizontal mode on the vertical plane at any
location are related to the off-diagonal blocks of the one-turn transfer ma-
trix, which in turn are related to the coupling error sources. Using the ICA
method to analyze the turn-by-turn BPM data, the normal modes can be
separated and their phases and amplitudes at each BPM location can be cal-
culated. By comparing the measured phases and amplitudes to the predictions
made by the lattice model, the coupling error sources can be determined and
corrected.

At one BPM location, the coupled beam motion on the horizontal and
vertical readings can be separated into two pairs of ICA modes, which can be
written as [51, 125],

xn = A cos Ψ1n −B sin Ψ1n + c cos Ψ2n − d sin Ψ2n, (6.1a)

yn = a cos Ψ1n − b sin Ψ1n + C cos Ψ2n −D sin Ψ2n, (6.1b)

where n is the turn number, Ψ1n = 2πν1n + ψ1, Ψ2n = 2πν2n + ψ2, ν1,2 are
the tunes for the two normal modes, mode 1 and 2 are the horizontal and
vertical betatron motion, respectively. The phase offsets ψ1,2 are common to
all BPMs as they share the same temporal patterns.

The coupled motion can be predicted by the 4×4 one-turn transfer matrix
at the BPM, T, via X(n) = TnX0, with the initial phase space coordinate
X0. Matrix T can be block diagonalized in the form

T = VUR4(ν1, ν2)U−1V−1, (6.2)

where V is the same as in Eq. (2.58), and U and R4 are

U =

(
Ba 0
0 Bb

)
, R4(ν1, ν2) =

(
R(2πν1) 0

0 R(2πν2)

)
, (6.3)
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with B and R as defined in Eq. (1.60). The beam motion can then be related
to the normal mode coordinates, Θ, through [83]

X(n) = PΘ(n), with Θ(n) =




√
2J1 cos Φ1(n)

−√2J1 sin Φ1(n)√
2J2 cos Φ2(n)

−√2J2 sin Φ2(n)


 , (6.4)

where P ≡ VU, Φ1,2(n) = 2πν1,2n + φ1,2, and J1,2 and φ1,2 are action
and angle coordinates for the two normal modes as determined by the initial
conditions. The values of φ1,2 at different BPMs differ by the phase advances
of the normal modes.

By comparing Eq. (6.1) and (6.4), it can be seen that the amplitudes of
the ICA modes and predicted motion are related by [51, 125]

√
A2 +B2 =

√
2J1p11,

√
c2 + d2 =

√
2J2

√
p2

13 + p2
14, (6.5a)

√
C2 +D2 =

√
2J2p33,

√
a2 + b2 =

√
2J1

√
p2

31 + p2
32, (6.5b)

where pij are elements of the P matrix and the phase coordinates give

tan−1 B

A
= Mod2π(φ1), tan−1 d

c
= Mod2π(φ2 + tan−1 p14

p13
), (6.6a)

tan−1 b

a
= Mod2π(φ1 + tan−1 p32

p31
), tan−1 D

C
= Mod2π(φ2), (6.6b)

where tan−1 gives function values in the range of [0, 2π) using the nominator
and denominator of its argument, Mod2π(·) denotes modulo of 2π and we
have dropped the initial phase offsets by requiring the phases of the primary
modes on the first BPM to be equal between the measured and model values.
In Eqs. (6.5)-(6.6), equations relating A, B, C, and D are for the primary
normal modes of the two planes, which represent the linear optics. Equations
relating a, b, c, and d are for the secondary modes coupled from the other
plane, which contain the information of linear coupling.

The differences between the two sides in the equations in Eqs. (6.5)-(6.6)
can be characterized by a χ2 function to be minimized with the least-square
method. The action variables, J1,2, may be determined by requiring the av-
erage beta function values determined from the primary modes for the two
planes to be equal to the corresponding model values. Instead of comparing
the phase advances differences, their sine and cosine values are compared as it
helps eliminate the potential problems due to the discontinuity in the modulo
calculation. Horizontal and vertical dispersion functions are also included in
the χ2 function. Each data type can be given a weight factor, in addition to
the normalization factor by the corresponding error sigma. The χ2 function is
defined by

χ2 =
∑
i,k

w2
k

σ2
ik

(dm
ik − dc

ik)2, (6.7)
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where i is the BPM index, k is the data type, and wk is the weight factor
for the data type. There are 14 data types (4 amplitude functions, 8 phase
advance related values, 2 dispersion functions) for each BPM, covering the
linear optics, linear coupling, and dispersion errors.

The fitting parameters in the lattice model are the quadrupole gradients
and skew quadrupole gradients. BPM gains and rolls (or coupling coefficients)
are fitted as they are used to scale and rotate the spatial vector elements with
Eq. (4.17) or Eq. (4.18). For example, the (A, a) pair will be modified with

(
Ã
ã

)
=

(
gx cx
cy gy

)−1(
A
a

)
. (6.8)

The same transformation applies to (B, b), (c, C), and (d,D) pairs.
As the linear optics and coupling least-square fitting problem typically

suffers from the degeneracy difficulty due to the similarities between the effects
of the fitting parameters, the constrained fitting method is needed to find a
reasonable solution that can be used for correction [50].

6.1.3 Other methods of coupling correction
The linear coupling information can also be uncovered from the turn-by-turn
BPM data with other data analysis methods.

Direct fitting of turn-by-turn BPM data: The direct fitting of turn-
by-turn BPM data discussed in Section 5.3.2 can simultaneously determine the
linear optics and coupling errors. The fitting setup only needs to be modified
to add BPM rolls (or coupling coefficients) and skew quadrupole gradients as
fitting parameters. This approach has been demonstrated in simulation with
the SPEAR3 lattice model [61].

Resonance driving terms: The cross-plane motion can be characterized
by the resonance driving terms for the linear sum and difference resonances.
Correction of the resonance driving terms should lead to the correction of the
linear coupling [39, 47].

The RDTs that drive the linear difference and sum resonances are f1001

and f1010, respectively, which are related to skew quadrupole errors through

f∓ =

∑
k ∆a1,kLk

√
βx,kβy,ke

i(ψx,k∓ψy,k)

4(1− ei2π(νx∓νy))
, (6.9)

where f− ≡ f1001 drives the linear difference resonance, f+ ≡ f1010 drives the
linear sum resonance, ∆a1 and L are the gradients and lengths of the skew
quadrupole error sources, respectively. The corresponding spectral lines for
f1001 are νy on h−x and νx on h−y , respectively. The spectral lines for f1010 are
1− νy on h−x and 1− νx on h−y , respectively.

Using a pair of adjacent BPMs to derive the angle coordinates, the turn-
by-turn resonance basis coordinates, h−x,y, can be calculated, from which the
linear coupling RDTs can be determined. Knowing the amplitudes and phases
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of the linear coupling RDTs, the skew quadrupole errors in the lattice model
can be fitted with the least-square method, using Eq. (6.9) to calculate the
model RDT values. The measured vertical dispersion function at the BPMs
also needs to be included in the fitting input data in order to reduce the
vertical emittance contribution from the vertical dispersion.

Transfer matrices: With the full phase space coordinates determined
from two adjacent BPMs, the one-turn transfer matrices at the BPMs can be
calculated with Eq. (4.8) or by fitting parameters to construct a symplectic
transfer matrix. The two BPMs can be separated by a simple drift space, or a
short section with a few magnets. In the latter case, the model transfer matrix
between the two BPMs can be used to calculate the angle coordinates, x′ and
y′ (Eq. (4.5)).

The one-turn transfer matrices contain both linear optics and coupling
information. The lattice model can be fitted by minimizing the differences
between the measured and model one-turn transfer matrices at multiple BPM
locations. The skew quadrupole gradients are the fitting parameters for the
lattice model. BPM calibration errors and rolls are also included as fitting
parameters.

6.2 COUPLING CORRECTION EXPERIMENTS
Coupling correction with orbit response matrix has become a standard prac-
tice at many electron storage rings. Typically the vertical emittance can be
corrected to the level of a few picometer (pm)-rads. In some cases, the vertical
emittance has reached the sub-pm level [30].

In the NSLS-II optics correction experiment discussed in the previous chap-
ter, BPM coupling coefficients and skew quadrupoles were also fitted for the
data sets before and after the corrections (using the ICA method) were ap-
plied to the machine. Figure 6.1 shows the ratio of the rms orbit response in
the vertical plane to that of the horizontal plane due to horizontal correctors
(H), or similarly the ratio of horizontal responses to vertical responses due to
vertical correctors (V), before and after the corrections were applied. The av-
erage value of such ratios was reduced from 0.054 to 0.025 by the corrections.

Linear coupling is also observed in the turn-by-turn BPM data. A direct
measure of the level of coupling is the amplitude ratios of the normal modes
in the cross-plane and in the primary plane, defined as

r1 =

√
a2 + b2√
A2 +B2

, r2 =

√
c2 + d2

√
C2 +D2

. (6.10)

Figure 6.2 shows the r1 and r2 ratios for the turn-by-turn BPM data taken
before and after corrections in the same experiment as in Figure 6.1. The
average ratios were reduced from r1 = 0.094 and r2 = 0.107 to 0.046 and
0.052, respectively.
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Figure 6.1 The ratios of cross-plane and in-plane rms orbit responses for the correc-

tors, before and after the ICA-based optics and coupling corrections were applied in

an NSLS-II experiment.
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Figure 6.2 The amplitude ratios of betatron normal modes (obtained by ICA) in

the cross-plane and the primary plane (see Eq. (6.10)) before and after corrections

were applied in the NSLS-II experiment.
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Figure 6.3 An example of resonance driving term identification on the Fourier spec-

tra of turn-by-turn resonance basis coordinates. Top: horizontal; bottom: vertical.

There are two BPMs located in each of the straight sections in NSLS-
II. The full phase space coordinates can be calculated from the turn-by-turn
BPM data at these locations, from which the resonance basis coordinates can
be obtained. Figure 6.3 shows the Fourier spectra of h−x and h−y at one straight-
section BPM, on which the spectral lines that represent linear optics errors,
the linear difference and sum resonances are indicated. The amplitudes and
phases of the RDTs can be determined by the ratios of the resonance spectral
lines and the corresponding primary betatron lines (νx or νy), as can be seen
from Eqs. (2.116)-(2.117). The strengths of the linear difference resonance
RDT, |f1001|, at the straight sections are plotted in Figure 6.4 before and
after the corrections were applied. The reduction of the linear coupling level
is consistent with the orbit response matrix and the ICA results. The RDTs
can be measured at other locations using the model transfer matrix between
adjacent BPMs and are used to fit the lattice model.

The orbit response matrix was fitted to the lattice model with BPM cou-
pling coefficients and skew quadrupoles included (along with BPM gains, cor-
rector gains, and quadrupole errors). The turn-by-turn BPM data have also
been fitted to the lattice model using the ICA method and the direct orbit
fitting method. Both methods include BPM gains and quadrupole errors in
the fitting parameters. The fitted integrated skew quadrupole gradients for
the three methods are shown in Figure 6.5. While there are some differences
in the fitted skew gradients, the linear coupling ratios of the resulting fitted
lattices are very similar, which are 1.29% (LOCO), 1.50% (ICA), and 1.42%
(fit X/Y) for the three methods, respectively. The distribution of the vertical
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Figure 6.4 Strengths of the linear difference resonance spectral line, |f1001|, from

turn-by-turn BPM data on both planes (x or y) before and after corrections.

emittance around the ring for the three fitted lattice are shown in Figure 6.6.
The corrections with the ICA result led to a reduction of the coupling level as
seen in the model independent measures shown in Figures 6.1, 6.2, and 6.4, as
well as in the fitted lattices. The coupling ratio was corrected to about 0.3%.

6.3 CORRECTION OF NONLINEAR DYNAMICS ERRORS
Correction of linear errors in accelerators, i.e., orbit errors, optics errors, and
linear coupling, has generally been successful on accelerators equipped with
modern diagnostics. This may be adequate for many applications, such as
linacs, transport lines, and some synchrotrons.

However, as storage rings keep pushing toward lower emittances, it has
become a big challenge to ensure the rings have sufficient nonlinear beam dy-
namics performance. A large dynamic aperture is required for the injection
of beams into the ring and large local momentum acceptances are needed
for a long beam lifetime for high current beams. Large rings with low emit-
tances tend to have small horizontal dispersion and large natural chromatici-
ties (negative). Chromaticity correction requires more and stronger sextupole
magnets, and consequently, the lattices become more nonlinear and their dy-
namic apertures become smaller. The design of the sextupole scheme is a crit-
ical component of a low emittance rings lattice. Typically, the design lattice
achieves an acceptable dynamic aperture and momentum apertures only after
an extensive numeric optimization, using multi-objective genetic algorithms
(MOGA) [16, 122] or particle swarm optimization (PSO) [59].
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Realizing the design performance of the nonlinear beam dynamics on the
real machine is also very challenging and will be more challenging for the
future diffraction limited storage rings as these rings will be more nonlinear
and have more error sources. Developing methods to compensate the negative
impact of lattice errors to the nonlinear beam dynamics is critical for the
success of future storage rings and can also benefit the operation of existing
rings.

The nonlinear beam dynamics performance of a storage ring depends
strongly on the linear optics. Correction of linear errors is essential. For third
generation light sources, optics correction often leads to improvements in the
dynamic aperture and the momentum acceptances. However, there will always
be residual optics errors. Even when the beta functions and phase advances
at the BPMs are at the ideal design values, their values at the sextupoles
may differ from the design. The strengths of the nonlinear magnets in the real
machine may be different from the design model due to calibration errors.
The nonlinear fields in dipole and quadrupole magnets and the higher order
multipoles in sextupoles due to systematic and random errors may not be
included in the model. Therefore, correction of the nonlinear lattice features
toward the design is necessary.

Nonlinear beam dynamics measurement and correction:
Naturally, it is desirable to apply the beam-based correction approach to

correct the nonlinear beam dynamics toward the design. As for the cases of
linear errors correction, this requires

• control parameters (i.e., knobs) that have a direct impact to the nonlin-
ear dynamics,

• beam diagnostics that can effectively measure the nonlinear beam dy-
namics behavior, and

• a method that deduces the required adjustments of the knobs from the
measurements.

The knobs are typically the strengths of the nonlinear magnets in the lattice,
i.e., sextupoles and octupoles (if present in the lattice). The fitting results
for these knobs can be used to correct the machine. If the goal is to identify
sources of discrepancies between the model and the machine, additional mul-
tipole components in the model (such as sextupole, octupole, and decapole
components of the dipole and quadrupole magnets) can be included as fitting
parameters. The diagnostics need to detect features of the beam dynamics
that are relevant to the nonlinear beam dynamics performance and can be
compared to the design model. These features could be higher order chro-
maticities, the tune shifts with amplitudes, and the resonance driving terms
(RDTs). The least-square fitting approach can be used to calibrate the lattice
model with the measurements [9, 8].

Tune shifts with amplitudes and RDTs can be measured with turn-by-turn
BPMs. As shown in Eqs. (2.116)-(2.117), the spectral lines of the turn-by-turn
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orbits are related to the RDTs. Each RDT drives a specific resonance and cor-
responds to a specific spectral line. Conversely, each resonance is driven by
many RDTs, which may come from different multipole fields through various
perturbation mechanisms. The strengths of the nonlinear RDTs depend on
the oscillation amplitudes to various orders of power according to the orders
of the RDTs. To effectively sample the nonlinear fields, the beam needs to
be excited to coherent oscillations with a relatively large amplitude. However,
when measuring the lower order RDTs, it is desirable to suppress the contri-
butions of the higher order terms by using a moderate amplitude. In theory,
it is possible to determine the lower order RDTs and in turn the correspond-
ing generating function terms, which are then used to remove the lower order
contributions to the spectral line in subsequent experiments with larger am-
plitudes, allowing the separation of the RDTs order by order [6]. In practice
this is very difficult as there would be considerable errors even in the lowest
order RDTs.

In experiments, it has been demonstrated that the leading order RDTs
by sextupoles and octupoles can be determined from the measured turn-by-
turn BPMs [40]. The spectral lines on the horizontal and vertical turn-by-
turn resonance basis orbits (i.e., h−x and h−y ) corresponding to the leading
order RDTs for normal sextupoles are listed in Table 6.1. For example, the
f3000 coefficient drives a spectral line (-2, 0) on the horizontal orbit, whose
fractional tune is 1 − 2νx and the amplitude is 12Ix|f3000|. The phase of the
RDT coefficient φjklm = Argfjklm can also be determined as the phase of the
spectral line is simply φjklm + ψx/y,0 − π/2, where ψx/y,0 is the phase of the
betatron tune line on the corresponding plane [10].

The strengths of the leading order RDTs by sextupoles are linearly pro-
portional to the integrated gradients of the sextupoles. For example, the f3000

coefficient is related to sextupole strengths via

f3000 = −
∑
i b2,iLiβ

3
2
x,ie

i3∆φx,i

48(1− ei6πνx)
, (6.11)

where b2,iLi is the integrated strengths of sextupole i and ∆φx,i is the hori-

TABLE 6.1 Identification of leading order RDTs driven by
normal sextupoles on spectral lines of horizontal and vertical
turn-by-turn orbit. The HSL and VSL show the locations of
the spectral lines and |H/fjklm| and |V/fjklm| are the ratios
of the corresponding amplitudes over the fjklm coefficients.

fjklm HSL |H/fjklm| VSL |V/fjklm|
f3000 (-2,0) 12Ix N/A
f1200 (2,0) 4Ix N/A
f1020 (0,-2) 4Iy (-1, -1) 8

√
IxIy

f0120 N/A (1, -1) 8
√
IxIy

f0111 N/A (1, 1) 4
√
IxIy
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zontal phase advance between the sextupole and the observation point. The
phase of the complex RDT coefficient changes with location in the ring but its
amplitude does not change except at the locations of the multipole magnets
that drive the resonance. Across a multipole magnet, the RDT coefficient has
a step change as the contribution from the multipole magnet changes phase.
If the RDTs can be measured before and after the multipole magnet, the
strength of the magnet could be determined directly.

In reality, there are not so many observation points to directly measure
the strengths of all multipole magnets. However, the connections between the
RDTs and the multipole magnets provide a way to resolve the multipole errors.
This can be done by fitting the measured RDTs to the lattice model. Other
observed features of the nonlinear dynamics can also be included. In general,
the objective function may be defined as

χ2 = f(p) =
2M∑

i

w2
k

∑

k∈Φ

(f
(m)
i,k − f

(c)(p)
i,k )2, (6.12)

where p contains all fitting parameters, the summation of i is over all horizon-
tal and vertical BPMs, k represents a feature parameter in Φ, the collection of
selected features (e.g., RDTs), wk is the weight assigned for the feature, and
superscripts (m) and (c) stand for measurements and calculations, respec-
tively. Global parameters, such as detuning coefficients, and chromaticities,
and higher order chromaticities, can also be included in Eq. (6.12).

The determination of the resonance basis coordinates needs to use a pair
of adjacent BPMs and the lattice errors between the two BPMs can introduce
errors to the angle coordinates. To avoid this complication, the spectral lines
of the turn-by-turn positions can be used directly to fit the nonlinear lattice
model. In this case the spectral lines are typically combined effects of two or
more RDTs. Details of the combined RDTs for the typical spectral lines can
be found in Ref. [40].

The nonlinear response of BPMs to beam positions due to the geometric
configuration of the buttons as discussed in Chapter 3 has a significant im-
pact to the nonlinear dynamics measurements. Signal processing in the BPM
electronics that produces the turn-by-turn position may involve samples from
multiple turns. This will change beam position reading from the actual value
and need to corrected before the data are used for the physics analysis [8].

Challenges for nonlinear lattice correction:
The method of nonlinear lattice correction with RDTs faces many serious

practical challenges. First, beam decoherence due to chromaticity and nonlin-
ear detuning may limit the number of turns of usable data and in turn the
precision of RDT measurements. While chromaticity can be easily set to zero,
it is usually not easy to simultaneously set nonlinear detuning to zero. Even if
it can be done, the nonlinear lattice would have been changed so much from
the design lattice such that the correction may not be useful for the operation
of the machine. Nonlinear detuning will become substantially more severe in
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the diffraction limited storage rings, making it more difficult for the method to
work where it is needed the most. Radiation damping in high energy storage
rings also limits the number of usable turns.

Second, the imperfections of the BPMs will affect the RDT measurements.
These include the nonlinear response of the BPMs to beam position and the
random BPM noise or other contaminating noise sources. The nonlinear BPM
response distorts the apparent nonlinear beam motion and interferes with
the spectral lines. The random BPM noise introduces errors to the RDTs or
even completely swamps the weak spectral lines. The decoherence and BPM
imperfections affect the precision of RDT measurements. The errors in the first
order RDTs driven by sextupoles could be high enough to make the results
not useful for correction. The relative errors in higher order RDTs originated
from interactions of multiple sources would be much larger.

Third, there are not enough independent knobs for the correction of the
many RDTs. In theory, if linear and nonlinear lattice elements in the machine
are identical to the design model, RDTs of all orders are automatically equal
between the machine and the model. In reality, there are residual optics errors
in the machine and there are also physics effects not accounted for in the
model (such as fringe fields, insertion device perturbations, etc.) and hence
the RDTs will be different. Compensation of all the relevant RDTs will likely
require more nonlinear magnets than are available.

Another issue for the RDT-based correction approach is that the correction
of measurable RDTs would not necessarily bring improvement to the nonlin-
ear dynamics performance. The dynamic aperture of a storage ring may be
limited by one or more higher order resonances which are not visible on the
BPM signals. For example, one limiting resonance in the APS-U lattice is
the 6th order resonance 2νx + 4νy = p. The correction may likely introduce
changes to the lattice such that other resonances become performance limit-
ing. Furthermore, chromatic resonances are difficult to measure and correct
and hence the local momentum apertures may not be under control.
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dial in the trial solutions and to perform analysis on the diagnostic data and
employing advanced online optimization algorithms, automated tuning can
deal with bigger and more complex problems. It not only can expedite the
routine tuning processes, but more importantly, can solve accelerator tuning
problems that cannot be accomplished with other methods.

Online optimization algorithms are essential to the strength of automated
tuning. Because of the measurement errors that enter the performance met-
rics and other characteristics of the online application environment, online
optimization algorithms need to address special challenges. Traditional op-
timization algorithms that are powerful for smooth functions might not be
suitable for online problems. New algorithms that were modified from tradi-
tional algorithms with simple-minded improvements may be powerful tools.

In this chapter we will first discuss the general considerations of the on-
line optimization approach. This is followed by a review of the optimization
algorithms for continuous functions. Analytic functions with added random
errors are used to test the performance of the algorithms for online applica-
tions. The robust conjugate direction search (RCDS) method is introduced
and compared to the other algorithms through the tests.

7.1 GENERAL CONSIDERATIONS OF ONLINE OPTIMIZATION
7.1.1 Need for online optimization of accelerators
Beam-based correction is a satisfying approach. It seems natural to accelerator
physicists as it employs the physics principles that govern the machines. The
correction process is deterministic. The success of the correction approach
signifies that accelerator physicists understand and have control over the inner
workings of the machine.

However, the correction approach is not always applicable. For some ma-
chines or some applications, there are no diagnostics available to detect the
discrepancies between the machine and the ideal target. In some cases, the
diagnostics cannot provide the detailed information needed to solve for the
required parameter adjustments. In other cases, the diagnostics simply do
not exist. There may be a lack of a target for correction. If there are ma-
jor differences between the model and the real machine, the target suggested
by the model may not be applicable. In this case, the target itself needs to
be discovered. It is also possible that both diagnostics and the target exist,
but there is no reliable, deterministic method to deduce the solution for the
correction toward the target. In these circumstances, empirically tuning the
control parameters for the optimal performance is a sensible choice.

Manual tuning is frequently employed in accelerator control rooms by ac-
celerator physicists and operators. During manual tuning, one or a few control
parameters (i.e., knobs) are adjusted while the machine performance is moni-
tored. Depending on the applications, the machine performance indicator may
be beam intensity, transmission or capture efficiency, beam sizes, beam loss,
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beam lifetime, etc. Guided by the response of the machine performance to the
knob changes, the human tuner makes further knob adjustments in order to
maximize the machine performance.

Manual tuning is essentially an optimization process. The function to be
optimized is the machine performance evaluated on the operating machine
through measurements. The knobs are the input variables of the function.
The human tuner executes an optimization algorithm to search the param-
eter space for the optimum of the performance function. Manual tuning has
many limitations. It is typically slow for humans to dial in the new setpoints,
to process the measured data, and to make decisions on the next move. The
complexity of the optimization problem is usually limited by the ability of
humans to analyze and comprehend the data taken from a high dimension
parameter space in real time. Typically only one knob is tuned at a time.
Efficient search directions that involve multiple knobs cannot be taken advan-
tage of. It is not practical to tune problems with a large number of knobs.
Small trends over a long parameter range could be overlooked, which may
prevent the convergence toward the optimum in some cases. The successful
execution of the manual tuning depends on the tuner’s experience, training,
and familiarity with the system. This could pose a challenge to the training
and retaining of a competent operation team.

In the age of computerized accelerator control, it is clearly desirable to
automate the tuning process. Automated tuning integrates all the three com-
ponents – knob adjustments, performance monitoring, and decision making –
in one computer program. This not only speeds up the data taking and the
data processing, but also opens up the possibility of using efficient optimiza-
tion algorithms. Optimization of large scale problems with complex parameter
space (e.g., with strong coupling between the parameters) becomes feasible.
Simultaneous optimization of multiple performance measures is also possible.

Automated tuning has been attempted at many places [35, 32, 34, 2]. The
algorithms employed in these studies include one-dimensional scans, random
optimization, Nelder-Mead simplex, etc. Despite these efforts, automated tun-
ing has not gained much popularity until recently. This was likely due to the
challenges of online optimization that were not met by the traditional opti-
mization algorithms. The power of automated tuning will be manifested only
when algorithms suitable for online optimization are adopted. There is an
ongoing campaign to develop new algorithms for the online tuning of acceler-
ators. As more research is carried out in the area, more effective and efficient
algorithms will appear, which may change the landscape in this emerging field.

7.1.2 Formulating online optimization problem
Online optimization is similar to ordinary mathematical optimization in that
it looks for the maximum or minimum of the objective function(s) within a
certain parameter space. We consider the minimization problem only as any
maximization problem can be turned into minimization by flipping the sign
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Figure 7.1 In beam-based optimization, the system is a black box that evaluates the

objective function(s) using the input variables.

of the objective function. Unlike the ordinary cases, the objective function
is not given in an analytic form or calculated through a computer program.
Instead, the function is evaluated through measurements on a machine. The
relevant operating conditions of the machine are controlled through the input
variables; all other conditions either have no impact to the objective function
or remain unchanged during the course of the optimization. In other words, a
set of input variables uniquely determine the values the objective functions,
apart from the inevitable random measurement errors. Knowing the working
principle of the machine is not essential to online optimization. The system to
be optimized can be considered as a black-box, as illustrated in Figure 7.1.

Normalization of parameter range: For a real machine, every tuning
parameter has a finite valid range. The numeric ranges for the different input
variables can vastly differ, as the parameters are often different physical quan-
tities. Large differences in the scales of parameter ranges can cause numeric
difficulties in some cases. Implementation of the optimization algorithms may
become complicated by the need to accommodate the scale differences, for
example, in terms of assigning the initial step sizes. Therefore, it is sensible
to normalize all input variables to a standard range, which we choose to be
[0, 1]. For a parameter p with the physical range of [pmin, pmax], the conversion
between the normalized value, x, and the physical value is simply

x =
p− pmin

pmax − pmin
, p = pmin + (pmax − pmin)x. (7.1)

For a multi-variable problem with n input variables, the normalized parameter
space is the n-dimensional unit hypercube. For some applications, the param-
eter space may be limited through other forms of constraints. For example,
a corner of the hypercube may be excluded, or the point representing the
vector of input variables, x=(x1, x2, · · · , xn)T , may be required to be within
a sphere. These cases are not very common in accelerator applications. Such
constraints can be enforced through the definition of the objective functions,
e.g., by returning unusually large values when the constraints are violated.
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Single-objective optimization: Under most circumstances, only one
objective function is optimized at a time. This is the case as long as tuning
the related control parameters does not negatively impact the machine perfor-
mance in other measures. With the normalized parameters, the optimization
problem for one objective function can be expressed as

xmin = arg min
x∈[0,1]n

f(x). (7.2)

In accelerator tuning problems, the objective function, f(x), can be consid-
ered a smooth function. However, the function value evaluated through mea-
surement, f̄(x), is not smooth, as there is always a random deviation in the
measurement from the true performance function,

f̄(x) = f(x) + ξ, (7.3)

where ξ is a random variable that denotes the measurement error.
The random error has a significant impact over the behaviors of the opti-

mization algorithms. Many traditional algorithms assume the objective func-
tion to be smooth. Depending on the working principle of the algorithms and
the nature of the optimization problems, with noise in the objective function,
the algorithms may have slow convergence or fail to converge to the mini-
mum. Robustness against noise is a main requirement for online optimization
algorithms.

Multi-objective optimization: There are cases when the machine per-
formance in terms of multiple measures needs to be simultaneously optimized,
while the optimal setting for one measure may not be the best condition for
the other(s). As a gain made in one measure by adjusting the knobs could lead
to the loss in another measure, a trade-off between the performance measures
is needed in selecting the operation condition.

A common approach is to combine these measures into one objective by
assigning weights to the individual objectives,

fw =
M∑

i

wifi, (7.4)

where M is the number of objectives and the weights, wi, i = 1–M, account
for both the scale differences of the objectives and their relative importance.
The combined objective can also be defined with normalized values

fw =
M∑

i

wi
fi − f target

i

Li
, (7.5)

where f target
i is the target performance for the i’th performance metric, and

Li’s are scale constants that bring the metrics to comparable numeric values.
In the above approach the assigned weights in the definition of the com-

bined objective function have a big impact to the optimal solution. This is
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not ideal since the choice on the weights is made before all possibilities are
presented. Sometimes it is desirable to find a distribution of optimal solutions
before choosing the solution to operate with. Multi-objective optimization is
needed in such cases. The goal here is to find solutions x in the unit hypercube
that simultaneously minimize multiple objective functions,

min(f1(x), f2(x), · · · , fM (x)). (7.6)

Comparison of two solutions for the single objective case is straightforward.
In the minimization problem that we are considering, the solution with a
lower value for the objective is the better one. However, comparison of two
solutions in a multi-objective optimization is more complicated since there
can be additional outcomes – solution A can be better than solution B in one
objective but worse in another. Non-dominated sorting is used to classify the
solutions by their performances in this case. Solution A is said to dominate
solution B if A is at least equal to B in all objectives and is strictly better
than B for at least one objective, i.e.,

∀i ∈ [1,M ] : fi(xA) ≤ fi(xB), and

∃j ∈ [1,M ] : fj(xA) < fj(xB), (7.7)

where [1,M ] stands for all integers from 1 to M . Using non-dominated sorting,
a group of solutions can be ordered in different fronts, from best to worst,
labeled, F1, F2, · · · , such that any solution in Fi dominates any solution in
Fj if i < j, but no solution dominates another solution if they are in the same
front. The leading front for all valid solutions in the parameter space is called
the Pareto front. Solutions in the Pareto front represents the best possible
solutions. The goal of multi-objective optimization is to find the Pareto front.
The M = 2 case is the most common for multi-objective optimization.

Unless noted, in the following we consider single-objective optimization.

7.1.3 Practical considerations for online optimization implementation
Automated online optimization is executed by computer programs. The com-
puter programs need to implement the optimization algorithms, define the
optimization problem, provide an appropriate interface with the users and
the control systems of the machine, and manage and process the data col-
lected during the optimization process. While the algorithms are common to
all applications, the problem setup can be very different from application to
application. By utilizing a proper interface between the algorithm implemen-
tation and the problem setup in the online optimization program, the users
can be shielded from the details of the algorithms and can thus be focused on
the particular application. In the same time, the developers of the optimiza-
tion algorithms can be isolated from the details of the specific applications.
Such an interface not only makes the program easy to use for users, but also
makes the program easy to maintain, support, and extend.
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In the following we describe a general framework that has been demon-
strated to be easy to use through many real-life applications. Pseudo code
scripts are used as illustrations. Typically a script is used as the main con-
trol, in which the initialization of the environment variables, the initial setup
of the machine conditions, the launching of the optimization algorithm, and
the post-processing may be conducted. The objective function is defined in a
separate function. The same principles can be applied for the implementation
in other programming environments.

Setup of the optimization problem: In the optimization problem
setup, several global variables are defined. These include the number of objec-
tive functions, the number of knobs, and the ranges of the knobs. For example,
for a single objective function problem with 4 knobs, the variables are defined
with

Global_Variable Nobj Nvar VRange

Nobj = 1;

Nvar = 4;

VRange = [1, 1, 1, 1]’*[-2,2]; #a 4-by-2 matrix

where ‘VRange’ is a n × 2 matrix, the two numbers on each row of which
give the low and high limits of the corresponding knob. In this example the
parameter range is set to [-2.0, 2.0] for all knobs. Other parameters that are
used in the optimization algorithms or for changing the machine conditions can
also be defined here. For example, the noise sigma for the objective function
is needed for some algorithms.

The parameter range may be given in terms of the actual limits, or it can
be given relative to the initial value of the parameter. In the latter case, the
initial value needs to be passed into the objective function, in which it is used
to convert the normalized parameter to the physical value. The initial values
can be passed as global variables.

The optimization problem is defined through the objective function. The
interface of the objective function is

Function y = func_obj(x)

where ‘x’ is a vector of the normalized parameter values and ‘y’ is the return
value of the objective function. The function handle will be passed to the opti-
mization algorithm. Inside the objective function, the normalized parameters
in ‘x’ are first converted to the physics parameters with the global variable
‘VRange’. The physics parameters are then set to the machine. Typically a
pause is needed for the machine to settle to the new condition. For example,
it may take a few seconds for a magnet to settle to a new setpoint. The code
may also check the readbacks of the parameters and wait until the readbacks
are equal to the setpoints within a certain tolerance. After that, the machine
performance is measured. This could be as easy as reading a process variable
(PV) served by the control system, or the code may need to take data, ana-
lyze the data, and derive the objective function value. Multiple readings may
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be taken for averaging to reduce the noise level, especially if the noise is a
big issue and the measurement of the performance is fast relative to the time
needed to change the machine conditions. The performance measure is then
returned as the value of the objective function.

Inside the objective function, the code may need to monitor the machine
conditions for any anomaly that could arise. It should also be able to pause
the experiment and alert the user if an action needs to be taken by the user
before the experiment can continue. For example, in an injection efficiency
optimization experiment, the code needs to stop when the beam has reached
the maximum current, at which point the beam needs to be dumped.

Interface to optimization algorithms: The interface between an op-
timization algorithm and the specific application is the function call to the
optimizer. The required information is passed as arguments to the optimizer
function, which may be defined as

Function [xm,ym,dout]=optimizer(func,x0,MaxEval,OtherInput)

#Input parameters:

# func, function handle to the objective function

# x0, the initial normalized parameter vector

# MaxEval, maximum number of evaluations

#Output parameters:

# xm, parameter vector for the optimal solution

# ym, the corresponding objective function value

where ‘OtherInput’ represents additional input arguments and ‘dout’ is a
structure that holds additional outputs that are specific to the optimizer.

The optimizer searches the n-dimensional unit cube for a solution that
gives the minimum value of the objective function, starting from the initial
solution ‘x0’. The algorithm will keep track of the number of evaluations of
the objective function and check it against the ‘MaxEval’ value frequently
(e.g., at the end of each iteration). It will exit the optimizer if the number
of evaluations exceeds ‘MaxEval’. Other termination conditions can also be
implemented.

Depending on the nature of the optimizer, additional input parameters
may be needed. Some examples include the noise sigma of the objective func-
tion, the initial step size, the initial conjugate direction set, etc.

Data management: During the course of an online optimization run,
many data points will be evaluated and at each data point, many machine
condition and performance parameters will be recorded. It is desirable to save
these data for post processing. Since online optimization often exits prema-
turely, before a pre-determined termination condition is met, it is essential to
store the data frequently so that no loss of data occurs.

A good place to manage the optimization data is in the objective function
as this is where data are taken. At each function evaluation, all relevant data
can be put in a structure and appended to a data file. A simple way of data
keeping is to save data to a global variable. The global variable may be a list
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of the data structures, one entry for each function evaluation. Or the global
variable can be a data array, each row of which is a data entry.

The data variable is reset in the setup script, by, e.g.

Global_Variable g_cnt g_data

g_cnt=0; #reset the counter

g_data=[];

Inside the objective function, after the measurements are done, the data entry
is entered, with

g_cnt=g_cnt+1;

g_data=[g_cnt, p(:)’, ym, OtherParas];

where ‘p(:)’ is a row vector with all physical values for the knobs and ‘Oth-
erParas’ represents any other parameters that need to be saved. Time stamp
can also be saved for each entry.

The global variable will persist in the workspace even after a forced quit
(e.g., with Ctrl+C). After the optimizer is stopped, the data variable can then
be saved to a file. The saved data can be processed to find the best solution
among all evaluated solutions.

In the above scheme global variables are used to share data between the
setup script and the objective function. This should pose no problem because
usually the optimization program is small in scale. In the scripting environ-
ment it has an advantage in that the data are immediately available for post-
processing in the same workspace.

An alternative scheme is to use the object-oriented programming practice,
with which all setup and data variables are defined as member variables of
a class object, along with the optimizer and data processing functions. The
setup variables are specified at the time the object is created or initiated. The
objective function is defined as a standalone function, whose handle is passed
to the class object at initialization and to be saved as a member variable. A
member function of the class serves the role of the objective function for all
evaluations internal to the class. Inside this member function the parameter
range conversion is done and then the external objective function is called.
The parameter ranges need not to be passed outside the object.

Optimization progress monitoring: Monitoring the progress of the op-
timization process is important for online applications. With real time mon-
itoring, any unexpected or undesired behaviors of the optimization program
can be discovered for the program to be terminated in time. The optimization
program may report the progress by printing and/or plotting the history data
of knob variables and objective function values. Algorithm behaviors can also
be reported.

A graphic user interface (GUI) can be used to set up the optimization
problem. The progress data can be printed and plotted on the GUI. It is also
possible to provide the ability for interrupting and resuming the algorithm.
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7.2 REVIEW OF OPTIMIZATION ALGORITHMS
Function optimization is an extensively researched area. There are numerous
optimization algorithms, which cannot be thoroughly reviewed in the scope
of this book. Here we only intend to discuss some well known algorithms that
are potentially applicable to online optimization.

The optimization problem defined in Eq. (7.2) has constraints on the input
variables, while many of the classical optimization algorithms are for uncon-
strained cases. However, the convergence path from the initial solution to the
optimum is often not affected by the parameter boundary. The parameter
ranges may serve as a sanity check, as well as a safety insurance. The simple
constraints on the parameter ranges in Eq. (7.2) are easy to enforce. For ex-
ample, when the trial solution is outside the boundary, the objective function
is not evaluated on the machine; instead, a large function value is assigned ac-
cording to its distance from the boundary. Since most optimization algorithms
will steer away from areas with large function values, the trial solution will
likely move back into the valid parameter space. A not-a-number (NaN) value
may also be assigned when the trial solution is outside of the valid parameter
range, although in this case the algorithms have to be implemented to handle
the NaN value properly. A simpler approach would be for the algorithm to
stop when the boundary is reached.

Here we will consider general unconstrained optimization algorithms for
multi-variable, nonlinear functions. The traditional optimization algorithms
in this area can be classified into two groups, deterministic and stochastic
algorithms. The development of machine learning has introduced new tech-
niques to the optimization field, which may be characterized as model-based
algorithms. For noise free functions, the convergence path from any initial
point is fixed for the deterministic algorithms. On the contrary, the stochastic
algorithms have different paths every time as they employ some randomness in
the choice of the trial solutions. Model-based algorithms build models with the
measurement data and use the models to guide the search for the optimum.

7.2.1 Deterministic optimization algorithms
The deterministic algorithms may be divided into two camps,

• gradient-based methods, and

• gradient-free methods.

7.2.1.1 Gradient-based methods

The gradient-based methods include those that require the calculation of the
derivatives of the objective function. The objective function in the vicinity of
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the present solution can be approximated by

f(x) ≈ f(x0) + bT∆x +
1

2
∆xTA∆x, (7.8)

where ∆x = x − x0, b ≡ ∇f(x)|x=x0
is the gradient at x0 and A is the

Hessian matrix, with Aij = ∂2f
∂xi∂xj

|x=x0
. The derivatives provide information

of the function distribution around the present solution and hence can be used
to guide the search for the minimum.

Gradient-descent: Some methods use only the first order derivatives, i.e.
the gradient. One example is the steepest descent algorithm, also known as the
gradient descent algorithm. Starting from an initial solution x0, it looks for the
minimum iteratively. At each iteration, it performs a line minimization along
the gradient direction, −∇f(xi), i.e., to find αi such that f(xi − αi∇f(xi))
is minimized, and makes a step change to the new solution from the present
solution xi,

xi+1 = xi − αi∇f(xi). (7.9)

The line minimization needs not to be exact; it suffices to find a step that con-
siderably reduces the objective function and the gradient. The gradient descent
method guarantees the convergence toward the local minimum. However, for
nonlinear functions, the local gradient direction is often not the shortest di-
rection to the local minimum. Therefore, the method may result in a zig-zag
convergence path with many small steps, which could be very inefficient.

Extremum Seeking (ES): Extremum Seeking is a group of adaptive con-
trol methods that attempt to optimize the performance of a dynamic system
and maintain a steady state on the extremum [113]. The ES methods opti-
mize functions by approximating the gradients through function evaluations,
although the gradients are not formally computed.

In an ES scheme that has recently found applications in the accelerator
community, the knob parameters are varied from iteration n to iteration n+1
by adding an oscillatory term that is modulated by the objective function [108,
107],

xi(n+ 1) = xi(n) + ∆
√
αωi cos(ωin∆ + kf(xn)), (7.10)

where ∆, α, k, and ωi, i = 1–N , are parameters that control the behavior of
the algorithm. ωi is the rotation rate of parameter xi. Each knob parameter
should have a different ωi value. ∆ is a small number that can be considered
as the step size. A typical choice of its value may be ∆ = 2π

20 max(ωi)
, such

that it takes at least 20 iterations to complete one rotation if the objective
function is at the extremum. k > 0 is required for a minimization problem
and its value should be chosen according to the objective function value and
the step size. α controls the rotation amplitude of the knob parameters.

For the knob parameter xi, the oscillation phase increment in iteration n
is ωi∆ + k∆fn, where ∆fn = f(xn+1) − f(xn). If the phase is in a proper
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value such that the objective function is being reduced, hence k∆fn < 0, the
phase rotation will be slowed down and the objective function will continue
to decrease. It can be shown that in the limiting case of large ωi and small
∆, the average behavior of the knob parameters is to follow the direction of
gradient descent. If the extremum is reached, all knob parameters will continue
to rotate with a constant amplitude and rotation rate, at which point the α
parameter can be decreased or set to zero to effectively turn the algorithm off.

One advantage of the ES method is that it can be applied to an objec-
tive function that is dynamically varying, in which case the algorithm will
automatically chase the drifting extremum. This has been demonstrated in an
experiment on the SPEAR3 ring [107]. However, generally the ES method is
not very efficient. And for any application problem the algorithm parameters
need to be carefully adjusted in order for the method to work. Finding the
appropriate algorithm setting for a new application can be time consuming.

Newton method: Some algorithms require the calculation of the second
order derivatives, i.e., the Hessian matrix. These include the Newton method,
in which the step change from the present solution to the local minimum is
calculated using a quadratic approximation of the function, which gives

xi+1 = xi −A−1
i ∇f(xi). (7.11)

The Newton method converges fast when the starting point is close to the
minimum. In the area where the quadratic approximation is not valid, the
predicted step change may be unreasonable. In such cases, modifications may
be made to Eq. (7.11). For example, the step change may be scaled down by a
factor λi < 1, in which case the method is called the relaxed Newton method.
Another possible modification is to add a diagonal, positive definite matrix to
the Hessian, as is done in the Levenberg-Marquardt method,

xi+1 = xi − (Ai + λiI)−1∇f(xi), (7.12)

where I is the unit matrix.
Quasi-Newton methods: Quasi-Newton methods use the Hessian ma-

trix but do not require the explicit calculation of it. Instead, an approximate
Hessian matrix or its inverse is built up using the previous solutions and the
gradients. For example, for the Davidon-Fletcher-Powell (DFP) method, the
inverse Hessian matrix at iteration i+ 1, Hi+1, is updated with [97]

Hi+1 = Hi +
∆xi+1∆xTi+1

∆xTi+1∆gi+1
− Hi∆gi+1∆gTi+1Hi

∆gTi+1Hi∆gi+1
, (7.13)

where ∆xi+1 = xi+1 − xi and ∆gi+1 = ∇f(xi+1) −∇f(xi). Another widely
used quasi-Newton method is the BFGS algorithm, which uses a slightly dif-
ferent updating formula for H. Eq. (7.11) is used to update the solution,
with A−1 replaced with H. The initial inverse Hessian matrix may be set to
the identity matrix. It can be shown that for quadratic functions, after some
iterations, H will be a good approximation of the inverse Hessian matrix.
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Conjugate-gradient method: The conjugate gradient method achieves
a similar performance with the quasi-Newton methods without building up
the inverse Hessian matrix. It starts with a line search in the steepest descent
direction at the initial solution, x0, to find parameter α0 that minimizes f(x0+
α0h0), where h0 = g0 = −∇f(x0). It subsequently moves to the solution
x1 = x0 + α0h0. Later at each iteration, it computes the local gradient gi =
−∇f(xi), and updates the conjugate direction with hi = gi +βihi−1, with βi
given by [97]

βFR
i =

gTi gi
gTi−1gi−1

or βPR
i =

gTi (gi − gi−1)

gTi−1gi−1
, (7.14)

where βFR is by the Fletcher-Reeves formula and βPR by the Polak-Ribiere
formula. βi is often set to zero if the calculated value is negative. A line search
is then performed to find αi that minimizes the objective function in the
conjugate direction, i.e., to minimize f(xi + αihi), and the solution moves to
xi+1 = xi + αihi.

The above optimization algorithms require the calculation of the gradients,
which typically cannot be done for online optimization since analytic forms of
the objective functions are not available. The gradients can be approximated
with numeric differences in these algorithms. In such cases, we still consider
them gradient-based methods because the same principles are used.

Traditional implementations of the gradient-based methods usually do not
work for online applications because they often assume smooth objective func-
tions and hence use a tiny step size in numeric difference calculations, for which
the corresponding changes of the function value may be easily overwhelmed
by the measurement noise. The step size has to be carefully controlled such
that the variation of the actual function value dominates the random noise
and in the same time remains in the linear region in order to obtain a valid
approximation of the gradient. This may not be easy to do without prior
knowledge of the objective function. Errors in the gradients will distort the
convergence path and can cause the algorithms to fail. Obviously, errors in
the Hessian matrix or the conjugate directions due to measurement noise will
be even bigger than errors in the first derivatives and are likely to have big
impact over the performance of the algorithms. It would be worthwhile to
study the impact of the measurement noise to the gradient-based methods for
online optimization and to develop ways of mitigation.

7.2.1.2 Gradient-free methods

Gradient-free deterministic algorithms include direct search methods and
other methods [80]. Direct search methods follow pre-specified routines to
search the parameter space and in the routines new trial solutions are chosen
only according to the ranking (i.e., comparison results) of the previously eval-
uated function values; the numeric values are not used. Direct search methods
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include pattern search, Nelder-Mead simplex search [89], and methods with
adaptive search directions.

Nelder-Mead simplex method: The Nelder-Mead simplex method, also
known as the downhill simplex method, is probably the most well-known direct
search method. This method maintains a non-degenerate simplex during the
course of the search. A simplex is an n+ 1 polytope in an n-dimension space.
For example, a simplex in the 2-dimensional space is a triangle and a simplex
in a 3-dimensional space is a tetrahedron. The algorithm first builds a simplex
around the initial solution, typically with it as one vertex and generating the
other n vertices by taking a step in one of the n parameters each. During an
iteration, it performs the following operations

1. Sorts the function values on the vertices. Label the vertices 1 through
n + 1 with the corresponding function values in the ascending order,
i.e., f1 ≤ f2 ≤ · · · ≤ fn+1, where fi ≡ f(xi) and xi is the i’th vertex.
Calculate the center point of the simplex face opposite to vertex xn+1

(which has the largest function value), xc ≡ 1
n

∑n
i=1 xi. On the line

connecting xn+1 and xc, the following points are defined:

Reflection point: xr = xc + (xc − xn+1).

Expansion point: xe = xc + 2(xc − xn+1).

Inner contraction: xic = xc − 1
2 (xc − xn+1).

Outer contraction: xoc = xc + 1
2 (xc − xn+1).

2. Reflection: Evaluate the function value at the reflection point, fr =
f(xr). If the value at the reflection point is better than the second
worst, but not better than the best vertex, i.e., f1 ≤ fr < fn, replace
vertex xn+1 with xr and finish the iteration.

3. Expansion: If the reflection point is better than the best vertex, i.e.,
fr < f1, evaluate the expansion point. Replace xn+1 with the better of
the reflection point and the expansion point and finish the iteration.

4. Outer contraction: If fn < fr < fn+1, evaluate the outer contraction
point. If foc = f(xoc) < fr, replace vertex xn+1 with xoc and finish the
iteration.

5. Inner contraction: If fr > fn+1, evaluate the inner contraction point. If
fic = f(xic) < fr, replace vertex xn+1 with xic and finish the iteration.

6. Shrink: If none of the above operations terminates the iteration, shrink
the size of the simplex toward the best vertex, x1, by replacing all other
vertices with x′i = x1 + 1

2 (xi − x1), with i = 2, 3, · · · , n + 1. Evaluate
the function values on all new vertices and go on to the next iteration.

The operations of the downhill simplex method are illustrated in Figure 7.2
for the 2-dimensional case. In the above procedure, in each iteration the worst
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Figure 7.2 Illustration of the downhill simplex method in the 2-dimensional case.

Function values on the vertices are ordered f1 ≤ f2 ≤ f3.

vertex is replaced with a new point, which is selected according to a series
of trial and comparison operations. The Nelder-Mead simplex method works
in most times and it is very efficient when it does. However, there are cases
when the method fails, with symptoms like slow convergence or premature
convergence to non-optimal points.

Direction search algorithms tend to be sensitive to the noise in the function
evaluations as they completely rely on the comparison results of function
values to make decisions on the search paths. The noise will likely change
the comparison results and hence in turn change the convergence path or
cause the algorithm to randomly wander around without converging.

Besides the direct search algorithms, other gradient-free deterministic al-
gorithms use the numeric function values to guide the selection of new trial
solutions. This is done, for example, by modeling the objective function within
the neighborhood of the best solution. One such method is Powell’s conjugate
direction method [96].

Powell’s method: Powell’s method performs iterative one dimensional
optimization over a set of directions that are linearly independent and mu-
tually conjugate. In the parameter space a direction is represented by a unit
vector. Two directions, u and v, are mutually conjugate for the optimization
problem if they satisfy

uTAv = 0, (7.15)

where A is the Hessian matrix. The benefit of searching along the conjugate
directions is that a move along one direction does not change the position
of the best solution in the other directions (to the extent that the quadratic
approximation of the objective function is valid). Suppose a step α is taken
to minimize the objective function along the u direction, after that a second
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step β along v is made, the function is approximately

f(x0 + αu + βv) ≈ f(x0 + αu) + βbTv +
1

2
β2vTAv, (7.16)

where we have used the fact that the gradient at x0 + αu is b + αA · u and
the conjugate condition, Eq. (7.15). It is clear that the minimum in the u
direction is not changed after the step along v. On the other hand, if the two
directions are not conjugate, then an additional term αβuTAv will appear
on the right hand side of Eq. (7.16), which will change the minimum in one
direction after a step is made on another.

This is illustrated in Figure 7.3 for a 2-dimensional case. Starting from
point 0, if the search is along orthogonal, but non-conjugate directions, for
example, x1 and x2, the convergence path will consist of many small segments
in the corridor leading to the minimum. However, if the search is along the
conjugate directions, u1 and u2, the minimum will be found in only two steps.

If the Hessian matrix can be calculated and is positive definite, the con-
jugate directions can be determined from its eigenvectors. If the conjugate
directions cannot be calculated, Powell’s method can construct the conjugate
direction set from the successive line minimizations with a non-degenerate ini-
tial direction set. The initial directions may be simply the unit vectors along
the parameter axes. Suppose at the beginning of an iteration, the solution is
labeled x0 and f0 = f(x0), and the directions are uk, k = 1, 2, · · · , n. During
the iteration, the algorithm executes the following steps [97],

1. Perform line minimizations along all n directions and record the biggest
function value drop during one line minimization, call it ∆ and mark
the corresponding direction ud. The final new solution is labeled xm,
with fm = f(xm).

2. Evaluate the function value at the extension point, xt = 2xm−x0, with
ft = f(xt).

3. If ft > f0 or 2(f0 +ft−2fm)(f0−fm−∆)2 > ∆(f0−ft)2, terminate the
iteration without replacing a direction; otherwise, replace the direction
ud with the new direction um = xm−x0

||xm−x0|| . Perform the line minimization

along um and terminate the iteration.

Replacing a direction with the direction that goes from the initial solution
to the final solution is desired because the latter is likely a more efficient
search direction. For example, in Figure 7.3, the direction from point 0 to 2
is much better aligned with the corridor leading to the local minimum. The
direction with the largest function value drop is chosen to be replaced because
it is likely to have a large overlap with the new direction; removing it from the
direction set reduces the likelihood of introducing degeneracy. In Step 2 the
extension point is evaluated as a way to check the validity of the new direction.
If either of the two conditions in Step 3 is met, there is not much to gain in this
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direction and the replacement is skipped. In general, for a quadratic function,
a conjugate direction set will be obtained after n iterations.

A critical component of Powell’s method is the line minimization, which
performs the task of minimizing the 1-dimensional problem of g(α) = f(x0 +
αu). One of two derivative-free line optimizers, the golden section search
method and Brent’s inverse parabolic interpolation method, is often used. For
both line optimizers, the local minimum is first bracketed in a zone α ∈ [a, b].
This is ensured if a third point c is found between points a and b for which
g(c) < g(a) and g(c) < g(b) are both satisfied.

With the initial three points, a < c < b, the golden section search then
samples a new point t in one of the two subdivisions, say t ∈ (a, c). If f(t) <
f(c), then [a, c] becomes the new bracket; if f(t) > f(c), [t, b] becomes the new
bracket. It can iteratively proceed until the minimum is found with the desired
tolerance. For the highest efficiency, the distance from the inside sample point

to the bracket boundary is chosen to be
√

5−1
2 ≈ 0.618. For Brent’s method,

the function values at point a, c, and b are used to construct a parabola and
the location corresponding to the minimum of the parabola is used as the new
sample point. The golden section method has linear convergence, while the
inverse parabola interpolation has quadratic convergence. The latter is used
more often for smooth functions. With noise in the function values, both the
golden section search and inverse parabola interpolation methods could fail.

When the golden section search method is used, Powell’s method can
still be characterized as a direct search method. However, with the inverse
parabolic interpolation, it no longer qualifies as a direct search method since
the function values are used to construct a model. Powell’s method is espe-
cially efficient for convex functions.

The Nelder-Mead simplex method and Powell’s method are both popu-
lar and powerful optimization algorithms for smooth functions. Noise in the
function values has a big impact to the performance of both methods. Mod-
ifications to the original algorithms can be made to mitigate the impact of
noise. This will be discussed in Section 7.3.

7.2.2 Stochastic optimization algorithms
Some optimization algorithms make use of random operations in the course of
searching for the optimal solutions. The random operations could be choosing
the parameter values of the trial solutions or making a decision of accept-
ing or rejecting a solution. Because of the randomness, the convergence path
is different every time. These algorithms are called stochastic optimization
algorithms.

Stochastic optimization algorithms often have poorer efficiency than the
deterministic methods in terms of the number of required function evaluations
to converge to the optimum. This is understandable as these methods are not
“greedy”: they do not intend to take the shortest paths toward the minimum.
As the new trial solutions are somewhat randomly chosen, the outcome of
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Figure 7.3 Illustration of iterative line minimization with or without conjugate di-

rections. Starting from the initial solution at point 0, the algorithms try to converge

to the minimum at point M with non-conjugate directions x1 and x2, or the conju-

gate directions, u1 and u2.

function evaluations is not always an improvement. However, there is a benefit
at the cost of the efficiency loss – the stochastic algorithms often have a
better chance of finding the global optimum. By allowing taking steps in bad
directions and using random sampling, the stochastic algorithms are not as
easily attracted to the local minima as the deterministic algorithms are.

Random search: One of the simplest stochastic optimization algorithms
is to sample the parameter space with randomly selected solutions. This
method is not efficient, but it can be very useful in some cases. For exam-
ple, it can be used to find working solutions from which a starting point for
other algorithms is chosen.

Random search [99] is a method with a little more sophistication. It
searches in the vicinity of the present solution with a random trial solution,
e.g.,

xi+1 = xi + ∆x, with ||∆x|| ≤ r, (7.17)

where ∆x is randomly selected within the hyper-sphere with a radius r. The
algorithm moves to the new solution if it is better, otherwise tries a new one.

Simulated annealing [97]: Simulated annealing is a method that mimics
the slow cooling process through which hot materials settle to the state with
the lowest energy. The system is characterized by its energy E and tempera-
ture T . The system energy normally tends to decrease; but it can also increase
with a certain probability. The probability for the system energy to change
from E0 to E is given by p(E,E0, T ) = exp(−E−E0

kT ) for E > E0 and p = 1 for
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E ≤ E0. When kT is large, there is a large probability for the system energy to
increase. This allows the system to jump out of local minima. However, when
temperature is cooled down, the system energy will more likely decrease.

When simulated annealing is applied to function minimization, the func-
tion value is analogous to the system energy. The temperature is a controlled
parameter which dictates the probability distribution of function value in-
crease, p(f, f0, T ). In each step, a new temperature T is chosen. A trial solu-
tion around the present solution is evaluated. The new solution is accepted if
its function value is lower (i.e., f < f0). If the function value is higher, the
new solution is accepted if p(f, f0, T ) is larger than a random number drawn
from the uniform distribution of [0, 1]. The variation of temperature with the
steps, the way to choose the trial solution, and the choice of the probability
function have a large impact to the performance of the algorithm.

Genetic algorithms (GA) [28, 27]: Genetic algorithms became pop-
ular in accelerator design optimization in recent years. A genetic algorithm
manipulates a population of solutions over many generations. In each gen-
eration, a portion of the population is replaced with good solutions selected
from new solutions that are generated through cross-over or mutation oper-
ations. In the cross-over operation two “children” solutions are spawned by
combining the parameter values of two “parent” solutions. The mutation op-
eration generates a new solution by randomly modifying the parameter values
of an existing solution. The new solutions are first mixed with the existing
population of solutions, from which the fittest solutions (i.e., the ones with
the lowest objective function values) are selected to enter the next generation.
The solutions that survive the selection operation are generally better and
they tend to produce better new solutions. Therefore, the fitness (i.e., the
objective function) of the solutions will improve over time and the population
gradually converges to the minimum. The NSGA-II algorithm is a popular
multi-objective genetic algorithm (MOGA) [27].

The parameter vector for a solution is called a chromosome, which can be
represented by a bit string or an array of floating numbers. For a bit string,
the cross-over can be done by swapping bits between the two chromosomes.
In the case of an array of floating numbers, cross-over of two solutions can be
performed with simulated binary cross-over (SBX) [29],

x′1,k =
1

2
[(1− βk)x1,k + (1 + βk)x2,k], (7.18a)

x′2,k =
1

2
[(1 + βk)x1,k + (1− βk)x2,k], (7.18b)

where x1 and x2 are the parent solutions, x′1 and x′2 are the children solutions,
subscript k indicates the k’th parameter, and βk is a random number given
by

β(u ≤ 1

2
) = (2u)

1
µc+1 , or β(u >

1

2
) = (2(1− u))−

1
µc+1 , (7.19)
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where u is a random number drawn from the uniform distribution in (0, 1)
and µc is a control parameter.

The mutation operation is performed by adding a random variation to
each parameter,

x′k = xk + Lkδk, (7.20)

where Lk is the range of the xk parameter and δk is a random number calcu-
lated with

δ(v <
1

2
) = (2v)

1
µm+1 − 1, or δ(v >

1

2
) = 1− (2(1− v))

1
µm+1 , (7.21)

with random variable v drawn from the uniform distribution in (0, 1) and µm
is another control parameter.

For problems with a single objective function, the selection of solutions
to enter the next generation is done by simple sorting. Genetic algorithms
can be conveniently extended to multi-objective problems by applying non-
dominated sorting to select the fittest solutions. Solutions in the leading fronts
enter the next generation until the quota is filled up. When the last front with
qualified solutions yields more solutions than needed, the solutions can be ran-
domly picked or chosen to maximize the diversity of the surviving population,
using the so-called crowding distance as the criterion. Constraints are easy to
implement for genetic algorithms as they can be considered as a part of the
fitness criteria; solutions that violate the constraints are given lower fitness.

The initial population can be generated randomly throughout the parame-
ter space. However, it often works better if it is randomly generated in a small
neighborhood around a good solution.

Genetic algorithms are powerful methods for design optimization, yet they
also have limitations. The algorithms may have low efficiency as many of the
children solutions are similar to the parent solutions that have been previ-
ously evaluated. It may be difficult to apply the genetic algorithms for high
dimension problems as it would require a large population of solutions for the
algorithms to work and the corresponding computational cost for evaluating
these solutions could be prohibitive. The algorithms can converge prematurely
to a non-optimal region when all surviving solutions are similar. Improving the
percentage of mutation can alleviate the problem of premature convergence,
but it will also slow down the speed of convergence.

When used for the online optimization, genetic algorithms suffer an ad-
ditional limitation. Negative values in the measurement noise will give some
solutions an advantage over the others. These solutions tend to survive the
selection operation, driving out the real good solutions and thus defeat the
working principles of the algorithm. Re-sampling for the population can mit-
igate the noise problem [14].

Particle swarm optimization (PSO) [71, 92, 59]: Particle swarm op-
timization is similar to the genetic algorithms in that it also manipulates a
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population of solutions. Here the solutions are considered as moving “parti-
cles” in the parameter space. The coordinates of the particles are the param-
eter values. The coordinates of each particle change in every iteration by an
increment called its “speed”,

xk+1
i = xki + vki , (7.22)

where vki is the speed for particle i at iteration k. The speed consists of
contributions from three terms,

vk+1
i = wvki + c1r1(pki − xki ) + c2r2(gki − xki ), (7.23)

where on the right hand side the first term represents the previous speed,
the second term represents the acceleration toward the best solution on the
trajectory (denoted by pki ) traversed by the particle, and the third term rep-
resents the acceleration toward the overall best solution (denoted by gki ). r1

and r2 are random numbers drawn from the zone [0, 1]. The best solutions on
the trajectories and the overall best solution are updated in each iteration. In
case of a multi-objective optimization, a population of global best solutions
is kept and a randomly selected one is used for gki every time. The control
parameters w, c1, and c2 can be changed to adjust the algorithm behavior.
The values of w = 0.4 and c1 = c2 = 1 can be used. A small percentage of the
new particle coordinates can also be generated from the previous coordinates
with a mutation operation as is done in genetic algorithms.

The initial swarm of particles can be generated randomly around a known
good solution or throughout the parameter space. The initial speed is also
randomly specified. The magnitude of the initial speed may be chosen to be
a small fraction, e.g., 10%, of the parameter ranges. After the initial swarm
of particles is launched, it will sweep through the parameter space and be
attracted toward the optima.

Particle swarm optimization is also suitable for multi-objective problems.
One only needs to use non-dominated sorting in the selection of personal and
global best solutions.

Experiences of applying PSO and GA algorithms on the same problems
indicate that the PSO method is often more efficient than the GA method [92,
59]. It converges faster because it has high diversity in the new solutions and
hence there is less waste of time spent on re-evaluating known solutions.

7.2.3 Machine learning (ML) methods
Machine learning is the collection of advanced computer algorithms that can
analyze sample data to extract patterns or build models, which in turn are
to be used to make predictions or decisions with new data. Machine learning
techniques can be classified into three categories: supervised learning, unsu-
pervised learning, and reinforcement learning. These techniques can be used
in function optimization by modeling the parameter space and providing ef-
fective strategies in exploring the parameter space.
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Some traditional optimization algorithms employ simple modeling of the
sample data. For example, the derivatives or parabolic fitting can be consid-
ered local models around one point. But these algorithms do not attempt to
build models in an extended area of the parameters space. There are algo-
rithms that take all or a significant subset of previously evaluated data points
into account in order to build a model that represents the objective function,
which is in turn used to guide the search for the optimum. These algorithms
are considered machine learning methods as they actually learn about the
objective function through probing the parameter space.

Gaussian Process (GP) optimizer: Gaussian Process optimization is
a type of Bayesian optimization [72, 129, 87, 69, 98]. Bayesian optimization
combines prior assumptions and the observed data to establish a posterior
model of the objective function, based on Bayes’ theorem of conditional prob-
abilities. Specifically, given the prior probability distribution of the objective,
P (f), and the likelihood of measuring the sample data under function f , the
posterior function can be obtained with

P (f |Dt) = P (Dt|f)P (f), (7.24)

where P (a|b) denotes the conditional probability of a under condition b, Dt =
{(xi, f(xi)|i ∈ (1, 2, · · · t)}, and t is the number of data points. P (f |Dt) is a
surrogate function that approximates the actual objective, which can be used
to help find the optimum, for example, by predicting the next trial solution
that has the best chance to minimize the objective.

In a GP optimizer the prior and posterior distributions of the objective
function are both Gaussian processes. A Gaussian process is a multi-variate
normal distribution of variables distributed over space or time. The function
values over all points in the parameter space is a Gaussian process, which is
characterized by the mean value function, m(x), and the covariance function
between any pair of points, k(x,x′). The prior mean function is usually as-
sumed m(x) = 0. The covariance, known as the kernel function, is commonly
chosen to be the squared exponential function,

k(x,x′) = Σ2
f exp

(
− 1

2
(x− x′)TΘ−2(x− x′)

)
, (7.25)

where Σ2
f is the prior variance of f over the parameter space, Θ =

diag(θ1, θ2, · · · , θn), and θi is a parameter that characterizes the correlation
length of the objective function over parameter xi. A large θi indicates that
the function values at two points separated with a large distance in the xi
parameter are still highly correlated.

After the data sample Dt is obtained, we would like to know the posterior
distribution of function value ft+1 = f(xt+1) at an arbitrary trial solution
xt+1. This can be derived from the joint distribution of ft+1 and the function
values on the previous data points, ft+1 = (ft, ft+1), with ft = (f1, f2, · · · , ft).
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Figure 7.4 The Gaussian process model for the Bessel J0(x) function with four data

points. Shaded area indicates the ±2σ confidence.

The prior joint distribution of ft+1 is a normal distribution given by

N (0,

(
K k
kT k(xt+1,xt+1),

)
), (7.26)

where the kernel matrix, K, is a t× t matrix with elements, Kij = k(xi,xj),
and k is a t × 1 row vector whose elements are ki = k(xi,xt+1). From the
joint distribution and the evidence of the measured data set, Dt, the posterior
distribution of ft+1 (the conditional distribution with the given data set) is
found to be a normal distribution [98],

P (f |Dt) = N (µt+1, σ
2
t+1), (7.27)

where

µt+1 = kTK−1ft, σ2
t+1 = k(xt+1,xt+1)− kTK−1k. (7.28)

The expected mean value, µt+1, is an approximation of the function f , while
the standard deviation σt+1 gives an estimate of the uncertainty, for any point
xt+1 throughout the parameter space.

Figure 7.4 shows an example of approximating a 1-dimensional function
with a Gaussian process. Four data points sampled from the Bessel J0(x)
function are used to build a posterior model, with θ = 1 assumed for the
prior. The true function, the sample points, and the expected mean value are
plotted. The shaded area shows the 2σ confidence region for the Gaussian
process.

In GP optimization, the posterior model is used to choose a new trial
solution by optimizing the acquisition function. There are multiple ways
to define the acquisition function, for example, by maximizing the prob-
ability of improving from the best evaluated solution (PI, probability of
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improvement) [86], or by maximizing the expected amount of improvement
(EI, expected improvement) [82], or by minimizing the lower confidence bound
(LCB) [4]. The GP-LCB acquisition function is defined as

GP-LCB(x) = µ(x)− κtσ(x), (7.29)

where the value of κt is chosen to balance between the the exploration strategy
(with a large κt) and the exploitation strategy (with a small κt). After evalua-
tion, the new trial solution enters the sample data set, Dt, which is then used
to update the model. As more data are collected, the approximation of the
objective function becomes more accurate, which would lead the algorithm to
converge to the optimum.

Evaluation of the acquisition function requires the inversion of the kernel
matrix. Subsequent calculations with the Gaussian process model involve ma-
trix multiplications. As the number of data points increases, the computation
time will also increase. This is acceptable if the number of data points is on
the order of hundreds. But the computation would become too slow if the
data sample size is much larger.

When noise is present in the function evaluations, the diagonal elements
of the kernel matrix change as the random noise enters the variance, but the
off-diagonal elements do not change (as the noise at different sample point is
independent), hence in Eq. (7.28) the kernel matrix is replaced with,

K→ K + σ2I. (7.30)

Noise affects the accuracy and even the validity of the Gaussian process model
and in turn the performance of the optimizer.

Multi-generation Gaussian process optimizer (MG-GPO): The
ability of predicting function values with the posterior GP model can sub-
stantially enhance the efficiency of the stochastic optimization algorithms.
The MG-GPO [56] algorithm is a method that utilizes this ability to select
trial solutions with high potential for the actual function evaluation. It oper-
ates iteratively and maintains a fixed number of good solutions, in the same
manner as the GA and PSO algorithms. In the case of a multi-objective opti-
mization, a GP model is built for each objective function. Many new solutions
are generated for each good solution using cross-over and mutation operations.
These solutions are tested with the posterior GP models and are ranked with
non-dominated sorting according to the corresponding acquisition function
values. Only a fixed number of solutions in the leading fronts are evaluated on
the real system. The evaluated solutions are then combined with the existing
good solutions, from which a new population of good solutions are selected
for the next generation.

The GP models are rebuilt at each generation using only the good solution
population and the recently evaluated solutions. Therefore, the size of the
sample data set does not grow indefinitely. In simulation, it was shown that
the GP-GPO method outperforms both the NSGA-II and MOPSO methods.
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7.3 ALGORITHMS FOR ONLINE OPTIMIZATION
An algorithm that is efficient for smooth functions may be unsuitable for online
applications if it is sensitive to noise. In this section we first perform tests for
some of the algorithms by adding noise to analytic objective functions.

Modifications of two of the popular derivative-free algorithms are de-
scribed. The robust conjugate direction search (RCDS) method [57] is modified
from Powell’s method by replacing its 1-dimensional optimizer with a robust
optimizer that is aware of the noise level in the functions. The robust simplex
(RSimplex) [55] is a modification of the Nelder-Mead simplex method. With
the modifications, the algorithms become more tolerant of noise.

7.3.1 Testing of traditional algorithms
A simple analytic function is used to test the performance of the traditional
optimization algorithms under noise. The test function has 4 variables and is
in the form of

f1(x) = 1− e−(x3+x4)2J0(2
√
r) + 2(x3 − 0.5)2, with (7.31)

r = 0.5(x1 + x2 − 1)2 + 2(x1 − x2)2 + 0.1(x1 − x4 − 1)2.

The parameter ranges are xi ∈ [−2, 2] for all 4 variables (i = 1-4). The
initial solution is chosen to be x0 = (−0.5, 0,−0.5, 0)T . Function f1(x) has
one minimum located at xm = (0.5, 0.5, 0.5,−0.5)T , with ym = f1(xm) = 0.

To simulate the effect of measurement noise in online optimization, the
function values passed on to the optimization algorithms are modified by
adding a Gaussian random variable, ξ, whose standard deviation (referred to
as the noise sigma) is σ. Three levels of noise sigmas are used, with σ = 0.001,
0.01, and 0.1.

Test of the gradient descent method:
We implemented the gradient descent method with an adaptive step

length, α, which is increased when the objective function is reduced in a step,
and conversely, decreased if the new solution is out of the parameter range or
if the function value actually increases. With this we can avoid performing a
1-dimensional optimization for each direction as it will come up with a suit-
able step length in a few steps, despite the potentially substantial difference
in the magnitude of the gradient at different locations and between different
objective functions. The initial value of α = 0.001 is used. The gradient is cal-
culated with numeric differential. The step size for numerical differentiation
in normalized coordinates is chosen to be ∆ = 0.001.

In Figure 7.5 the left plot shows the history of the function values for the
evaluated solutions during the course of the optimization run for the three
noise levels. The number of evaluations is set to 300. Because of the random
noise, the convergence path is different every time. The right plot shows the
minimum function value reached over the course of 300 evaluations for 100
runs. The curves shown in the left plot correspond to the case for which the
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Figure 7.5 Testing of the gradient descent method with the analytic function, f1(x),

defined in Eq. (7.31). Gaussian random noise is added to the function evaluation dur-

ing optimization, but is not included in the plots. The left plot shows the convergence

histories for the typical cases of three different noise levels. The right plot shows the

minimum function values for 100 runs in each noise level.

final minimum ranks the 30th for each noise level. The noise term is not
included in the function values in both plots.

The gradient descent method works well for the test function when the
noise level is low. However, for a high noise level such as σ = 0.01 or 0.1, it
fails to converge to the minimum. A relative large step size (∆ = 0.001) in
numerical differentiation is important in this test. If the step size is reduced
to ∆ = 0.0001, the performance for the σ = 0.01 cases will be similar to the
higher noise cases shown in the figure.

A proper differentiation step size would be important in the application of
the gradient descent method to real online optimization problems. The step
size may be chosen by requiring the ratio of the noise sigma to the function
value change to be less than a certain level, such as 10%. It may not always
be possible to satisfy such a condition, though. For example, in the vicinity
of the minimum, the slope decreases toward zero.

In the presence of noise, it would be more difficult to properly compute the
second order derivatives with numerical differentiation. Therefore, the Newton
method or quasi-Newton methods are not considered in the following.

Test of Nelder-Mead simplex method:
The Nelder-Mead simplex method is tested with the same analytic func-

tion. The initial simplex is built around the same initial solution, with the
initial side lengths set to 0.02 (in normalized coordinates). Figure 7.6 shows
the performance for the three noise levels in the same manner as in Figure 7.5,
with the left plot for the convergence histories of three typical cases (whose
final minimum ranks the 30th) and the right plot for the final minimum for
100 runs. Within 300 evaluations, the algorithm has come to a stop and is no
longer making gains in reducing the function value.

With a low noise level (σ = 0.001), the algorithm successfully converges
to the minimum for about 80% of all cases. However, it fails for the other
cases. With a higher noise level, σ = 0.01, it has poorer performance. At the
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Figure 7.6 Testing of the Nelder-Mead simplex method with function f1(x) and

three random noise levels. Noise is added in function evaluations during optimization,

but is not included in these plots. The initial simplex side length is 0.02 in normalized

coordinates.

level of σ = 0.1, the N-M simplex method generally cannot find the minimum.
A closer examination shows that when the noise level is comparable to the
differences between the function values on the vertices of the simplex, the
algorithm starts to deviate from the ideal convergence path. Increasing the
initial size of the simplex would help alleviate the issue as it delays the time
when that happens.

Test of Powell’s method:
Function f1(x) in Eq. (7.31) is also used to test Powell’s method. The

original direction set consists of simply the directions along the parameter
axes. Figure 7.7 shows the test results. The golden section method is used
as the 1-dimensional optimizer for the results shown. Although the golden
section method converges more slowly than the Brent’s method for smooth
functions, it performs better than the latter when there is noise in the function
evaluations. This is understandable as the noise could render the quadratic
fits invalid and hence lead to wrong predictions. With a relatively low noise
level, Powell’s method converges to the minimum. However, for the high noise
level case (σ = 0.1), it cannot find the minimum in most cases.

Test of Gaussian Process optimizer:
A GP optimizer has been implemented and tested with the test function in

Eq. (7.31). The initial data points used to train the GP model are the vertices
of a simplex with side length equal to 0.02 (in normalized coordinates). The
acquisition function is chosen to be the GP-LCB with κt = 1.8. The Nelder-
Mead simplex method is used to search for the minimum for the acquisition
function at each step. The search starts from a random point in the vicinity
of the solution with the current minimum.

The kernel function used for the GP is the squared exponential, Eq. (7.25),
with Σ = 1.0 and θi = 0.1 for i = 1-4. The maximum number of function
evaluations is set to 300 for each optimization run. Figure 7.8 shows the test
results for the three noise levels. With medium or low noise levels (σ = 0.001
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Figure 7.7 Testing of Powell’s method with function f1(x) in Eq. (7.31) and three

random noise levels. The golden section method is used as the line optimizer. Left:

typical convergence histories (for cases whose final minimum ranks the 30th); right:

minimum function values within 300 evaluations for 100 runs.
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Figure 7.8 Testing of the Gaussian Process optimizer with function f1(x) and three

random noise levels. Left: typical convergence histories; right: minimum function

values within 300 evaluations.

and 0.01), the GP optimizer can successfully find the minimum. However, with
a high noise level (σ = 0.1), it fails to converge to the minimum.

It is worth noting that the GP optimizer becomes slow as the number of
data points grows. For example, it takes 9 hrs to complete 100 runs for the
test while on the same computer it takes only a few seconds for all other
algorithms. It would be even slower if the number of function evaluations is
larger.

Summary of test results:
From the test results shown in Figures 7.5 – 7.8, it is clear that noise can

significantly impact the behaviors of the optimization algorithms. At low noise
levels, the algorithms may have similar performances as for smooth functions.
However, noise at high levels usually will disrupt the actions of the algorithms
and cause failures to converge to the minimum. The level of noise that leads
to failures depends on the working principles of the algorithms as well as
the nature of the objective functions. For example, for a function with a large,
monotonic drop between the starting point and the minimum, it would require
a high noise level to cause the algorithms to fail. If the terrain between the
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starting point and the minimum is more complex, a small noise level could
suffice to defeat the algorithm.

7.3.2 RCDS algorithm
Powell’s method is powerful for the optimization of smooth functions. How-
ever, its performance is sensitive to noise, as seen in Figure 7.7. A close ex-
amination of the algorithm reveals that the negative impact of noise comes
in through the 1-dimensional optimizer. For both the golden section method
and the inverse quadratic interpolation method, the first step is to bracket the
minimum within a finite zone. The bracketing procedure relies on the com-
parison of function values at the boundary points and a point inside. Noise
in the function values can change the comparison results and lead to a false
bracket. Noise can also change the next step of the 1-dimensional optimizer.
For the golden section method, it changes the selection of the subdivision to
move in; for the inverse interpolation method, it changes both the prediction
of the trial solution and the selection of the subdivision.

The 1-dimensional optimizers suffer from noise because they have no con-
sideration of the existence of the noise. Small changes to the optimizers could
significantly suppress the noise effect. The robust conjugate direction search
(RCDS) [57] algorithm makes the 1-dimensional optimizer aware of the noise
level and takes measures to ensure the decisions in the bracketing and inter-
polation steps are valid under noise. The resulting 1-dimensional optimizer is
called the robust line optimizer. It is substantially more robust against noise.

Starting from the present solution, g0 = g(α = 0), the robust line opti-
mizer first finds the boundary in one direction (say, the positive direction)
by sampling new solutions with increasingly longer steps. The step length is
increased by a factor of 1.618 after each new data point, but is capped at
a certain level, say, 0.1 (note normalized coordinates are used). During the
search it keeps updating the current minimum, gmin. The search continues
until the boundary of the parameter range is reached, or a point α = b is
found which satisfies

g(b) > gmin + κσ, (7.32)

where σ is the noise sigma and κ represents the required confidence level,
which can usually be chosen to be 3. After the bracket boundary at the positive
direction is determined, it then starts from α = αmin and goes in the opposite
direction to find the lower bracket end, a.

After the minimum is bracketed, all the sample points on the line are fitted
to a parabola. If very large steps are taken and hence there are large gaps be-
tween the sample points, intermediate points inside the gaps can be evaluated.
The fitted parabola is used to predict the position of the minimum, which is
then sampled as the next trial solution. Figure 7.9 illustrates the procedure
executed by the robust 1-dimensional optimizer, in which the indices beside
the sample points indicate the order in which the date points are evaluated.
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Figure 7.9 Illustration of the robust line optimizer. The sample point indices repre-

sent the order of data taking, starting with the initial solution (point 0).

In this case, 7 data points are taken, with point 0 for the initial solution,
points 2 and 5 define the bracket boundary, and point 6 is an extra sample
point to fill the gap.

The RCDS algorithm combines the management of the conjugate direc-
tion set of Powell’s method and the robust line optimizer described in the
above. Because of its awareness of noise and the measures taken to avoid be-
ing misled by the noise, the performance of the algorithm is not sensitive to
noise. Figure 7.10 shows the test results of RCDS with the analytic function
in Eq. (7.31). For all three noise levels, the algorithm can successfully find
the minimum. The left plot shows that the minimum function value typically
reaches the level f(x) < 0.01 within 60 evaluations, much faster than the
other algorithms shown previously.

7.3.3 RSimplex algorithm
An effort has also been made to modify the Nelder-Mead simplex method in
order to improve its performance under noise, which resulted in the robust
simplex algorithm [55]. The modifications are based on the observations on
how noise impacts the operations of the Nelder-Mead simplex method.

An important step in an iteration of the Nelder-Mead simplex algorithm is
to find the vertex with the worst function value – the subsequent operations
are a search along the line from this vertex to the center point of its opposite
simplex face. The worst vertex is chosen by sorting the function values on all
vertices. The sorting results can be changed by noise in the function values.
The decision of accepting or rejecting the result of an operation (i.e., reflection,
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Figure 7.10 Testing of the RCDS method with function f1(x) defined in Eq. (7.31)

and three levels of noise. The algorithm can find the minimum reliably and efficiently.

Left: the cases whose final minimum rank the 30th among 100 runs; right: the sorted

final minima of the 100 runs.

expansion, and contraction) also depends on the comparison of function values.
Therefore, improving the reliability of function value comparisons would have
a big impact.

With Gaussian noise, the function value sampled at any point, y = µ+ ξ,
follows a normal distribution, N (µ, σ2), where µ = f(x) and σ is the standard
deviation of the noise variable ξ. The comparison of function values at two
points is to determine the sign of µ1 − µ2 using y1 − y2, where subscripts
stand for the two points. The comparison result would be usually correct if
|µ1−µ2| � σ. Conversely, it would be often incorrect if |µ1−µ2| is smaller or
comparable to σ. To ensure reliable comparisons, it is desirable to maintain
an appropriate simplex size. It will also help if multiple samples are taken
at each point and the average values, ȳ1 and ȳ2, are used for comparison. If
the numbers of samples at the two points are N1 and N2, respectively, the
distribution of ȳ1 − ȳ2 is

N (µ1 − µ2,Σ
2), with Σ2 = (

1

N1
+

1

N2
)σ2.

The distribution can be used to determine the number of samples required
in order to obtain reliable comparison results, based on the observation that

ȳ1−ȳ2 and µ1−µ2 have the same sign with the probability of 1
2 + 1

2erf( |µ1−µ2|√
2Σ

),

where erf(·) is the Gaussian error function. If we use |ȳ1 − ȳ2| as an estimate
of |µ1 − µ2|, we can require

|ȳ1 − ȳ2| > M1σ

√
1

N1
+

1

N2
, (7.33)

for a certain level of confidence in the comparison results. For example, for
M1 = 1.4, the comparison results would be correct with a 92% probability.
In the RSimplex method, the number of samples for each evaluated solution
is recorded. More samples will be taken if necessary in order to resolve the
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Figure 7.11 Testing of the RSimplex method with function f1(x) (Eq. (7.31)) and

three noise levels. Left: typical cases (ranking the 30th) for the three noise levels;

right: sorted final minimum values for 100 runs.

ambiguity of a comparison result. However, an upper limit is given to the
number of samples to avoid excessive refinement.

A number of other modifications are also made to the original simplex
method. When there are several contenders for the worst vertex, the algorithm
will select one from them and perform the usual sequence of operations; if it
does not lead to the replacement of the vertex and the termination of the
present iteration, it will sequentially use the other candidates as the worst
vertex.

If the sequence of operations along the line does not lead to the replacement
of the worst vertex, the solution at the center of its opposite simplex face is also
evaluated and the five points on the line are fitted with a quadratic function.
The fitting result is used to select between the inside contraction and the
outside contraction point.

The shrink operation leads to a substantial decrease of the simplex size
and can cause the simplex method to prematurely converge to a non-optimum.
This is especially the case for noisy functions. To prevent the shrinking of the
simplex size to a level when the noise dominates the comparison of function
values, the RSimplex method allows the shrink operation only if the difference
between the maximum and the minimum vertices is larger than M2σ, where
M2 is a constant which can be set to 2 or larger. The algorithm can optionally
rebuild the simplex around the minimum vertex after the other operations fail
to reduce the minimum or the maximum vertex values.

Figure 7.11 shows the test results for the RSimplex method with the test
function f1(x). A substantial improvement is made by the RSimplex from
the N-M simplex method for most cases under medium or high noise levels.
However, at low noise level, the original simplex and RSimplex may have
similar performance in terms of the final minimum achieved. The original
simplex method could converge faster sometimes as RSimplex may take extra
evaluations to confirm certain comparisons.
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7.3.4 Performance comparison for single-objective algorithms
The tests with function f1(x) in Eq. (7.31) demonstrate the impact of noise on
the performances of a few selected single-objective optimization algorithms.
Figure 7.12 summarizes the test results. It shows the comparison of the sorted
minimum function values found in 300 evaluations for 100 runs by the algo-
rithms under three noise levels. Under low noise (σ = 0.001), almost all algo-
rithms can locate the minimum (with final minimum fmin < 0.1), except the
N-M simplex method occasionally fails. Under medium noise (σ = 0.01), the
gradient descent method and the N-M simplex often fail to achieve fmin < 0.1,
while the others usually can. When the noise level is high (σ = 0.1), all other
algorithms fail to reach fmin < 0.1, except for the RCDS method. The RCDS
is the least sensitive to noise among all tested algorithms. The RSimplex
method outperforms the original simplex in all three noise levels, although it
falls behind the RCDS method.

To further characterize the performances of the algorithms, additional tests
are done with the Rosenbrock function [100]. The Rosenbrock function is a
non-convex function, given in the form

f2(x) =
N−1∑

i=1

[
100(xi+1 − x2

i )
2 + (1− xi)2

]
, (7.34)

where N is the number of dimensions in x. In the test we choose N = 4,
in which case the Rosenbrock function has one global minimum located at
xm = (1, 1, 1, 1)T , with f2(xm) = 0, and a local minimum at (−1, 1, 1, 1)T

with the function value of 4. The parameter ranges are chosen to be the same
as the tests for the function in Eq. (7.31), with xi ∈ [−2, 2] for i = 1-4. The
initial solution is also chosen to be the same, with x0 = (−0.5, 0,−0.5, 0)T ,
where the function value is f(x0) = 43.

The tests are run with three noise levels, with σ = 0.001, 0.01, and 0.1.
The number of evaluations is limited to 500 for all algorithms except for the
GP optimizer. For the GP the number of evaluations is limited to 300 as it
becomes too time consuming and there is no clear gain with more evaluations
(see Figure 7.14). The final minimum function values achieved in 100 runs are
sorted and plotted in Figure 7.13 for all algorithms and the three noise levels.
With low noise (σ = 0.001), the RSimplex and N-M simplex methods have
similar performance, and both of them outperform the other methods. With
medium noise (σ = 0.01), the RSimplex shows better resistance to noise than
the N-M simplex method. The RCDS method also performs better than the
original simplex method for most of the cases. At a high noise level (σ = 0.1),
while RSimplex is still better than the original simplex method, it is not as
good as the RCDS method. The performance of the RCDS method for the
three noise levels was similar, but its efficiency was not high. This is due to the
nature of the Rosenbrock function, for which the valley in the parameter space
leading to the minimum is banana-shaped, such that the direction toward the
minimum is constantly changing. Figure 7.14 shows the convergence histories
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Figure 7.12 Comparison of optimization performances for selected algorithms using

the function in Eq. (7.31). The noise levels are σ = 0.001, 0.01, and 0.1 from top to

bottom. The sorted final minima for 100 runs are shown for each algorithm.
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of the RCDS, RSimplex, N-M simplex, and GP methods for the Rosenbrock-4
function, using the cases ranking the 30th out of the 100 runs for each noise
level as examples.

While the Rosenbrock function is challenging for the RCDS method in
terms of the convergence efficiency, real-life online optimization applications
typically do not have such a behavior in the parameter space. For many prob-
lems, the design operation condition corresponds to an extremum of the objec-
tive function, around which the performance behaves as a quadratic function
of the control parameters. The RCDS method would be an ideal algorithm
to bring the machine toward the design performance in such cases, especially
when the starting point is close to the optimum.

7.3.5 Testing of multi-objective optimization with stochastic algorithms
Deterministic optimization algorithms usually converge to the nearby local
minimum. If in an application the objective function has local minima that
could intercept the convergence path of the deterministic algorithms toward
the global minimum, stochastic algorithms can be used to look for the global
minimum. Stochastic algorithms may not be as efficient, but typically have
better ability to overcome the attraction of local minima.

The NSGA-II genetic algorithm and the particle swarm optimization
(PSO) algorithm are two popular stochastic algorithms that are used for ac-
celerator designs. The MG-GPO algorithm is a new stochastic optimization
method. These algorithms naturally apply to multi-objective problems. We
tested their performances under noise with a multi-objective problem, using
the two objective functions, f1(x) in Eq. (7.31) and the Rosenbrock-4 function.
The parameter range is the same as used in the previous tests. For all three
methods, the population of solutions is set to N = 50 and the algorithms are
run for 40 generations in the tests. The initial population is randomly chosen
from the entire parameter space with a uniform distribution.

In the NSGA-II setup, 90% of the new solutions are generated through
crossover and the 10% by mutation. The control parameters for random num-
ber generation in Eq. (7.19) and Eq. (7.21) are set to µc = µm = 20.

For the PSO setup, the weight factors for velocity calculation in Eq. (7.23)
are set to w = 0.4 and c1 = c2 = 1. The components of all initial velocities
are drawn from the uniform distribution between 0 and 0.1.

The MG-GPO setup assumes θ = 0.4 for the correlation length parameter.
The GP-LCB acquisition function uses κ = 0.5. There are 40N trial solutions,
half generated with crossover and the other half with mutation, before the
selection by the GP model is applied.

Three levels of noise are applied to the function evaluations as was done
in the single-objective tests. About 2000 solutions are evaluated for each algo-
rithm, out of which the best 100 solutions are selected through non-dominated
sorting. The results are shown in Figure 7.15 for NSGA-II and PSO. The final
fronts of MG-GPO (not shown) are similar to that of PSO. At the low noise
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Figure 7.14 The convergence histories over 500 function evaluations of RCDS (top
left), RSimplex (top right), and N-M simplex (bottom left) and over 300 evaluations
for GP (bottom right) for the Rosenbrock-4 function with three noise levels.

level (σ = 0.001), all algorithms converge toward the Pareto front, although
the NSGA-II front is narrow and incomplete. With higher noise (σ = 0.01
or 0.1), the NSGA-II method fails to converge to the Pareto front, while the
PSO and MG-GPO algorithms converge to the same front for the medium or
high noise levels.

The Figure 7.16 left plot shows the minimum values for the two objective
functions over the course of optimization for the three algorithms for the low-
noise case (σ = 0.001). The convergence speed of MG-GPO is much faster
than PSO, which is in turn much faster than NSGA-II. The cause of the slow
convergence for NSGA-II is the low diversity of its new trial solutions. The
diversity can be measured by the distribution of the crowding distance, here
defined as the distance of a solution to its nearest neighbor in the parameter
space among all previous solutions. The right plot shows the distribution of
the crowding distances for the three algorithms. Interestingly, the diversity of
MG-GPO is even lower than NSGA-II. It still leads to high efficiency because
the MG-GPO solutions are selected with the posterior model and are not
entirely random.

Since MG-GPO and PSO are not sensitive to noise and are more effi-
cient than genetic algorithms, they are preferred for problems where stochastic
algorithms are required to search the global optima.
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Figure 7.15 The 100 best solutions by non-dominated sorting out of 2000 evaluations

in the multi-objective tests for NSGA-II (left) and MOPSO (right) with three noise
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PSO. Noise is not included in the function values shown in the plots.
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The applications to be described are
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erators, including experiments similar to the ones to be discussed here. Some
of these experiments will also be described.
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8.1 LINAC-TO-BOOSTER TRAJECTORY STEERING
The linac-to-booster (LTB) transport line is the part of the SPEAR injector
that connects the 120-MeV linac to the Booster synchrotron. The steering of
the beam trajectory in the LTB is important for achieving a good capture
efficiency for the beam injected into the Booster. It is frequently tuned during
operations.

The Booster has a finite transverse acceptance. For the best capture effi-
ciency, the LTB beam trajectory at the injection point should have the proper
position and angle such that beam is at the center of acceptance in both
transverse planes. There are a number of steering knobs that can affect the
trajectory at the end of the LTB, including corrector magnets in the linac,
corrector magnets and the trim coils on the bending magnets in the LTB, the
injection kicker, the injection septum, and the power of the linac klystron K3.
The K3 power knob changes the beam energy and in turn the trajectory due
to dispersion in the transport line.

A pair of steering magnets located near the end of the transport line are
chosen for the steering experiment for each plane. In the horizontal plane, the
trim coils on the B3 bending magnet (B3trim) and the injection septum are
used. The correctors COR3V and COR5V are used for the vertical plane. The
two knobs in each plane can effectively change both the position and angle
coordinates of the beam at the injection point.

The tuning of one steering magnet shifts the beam trajectory along a line
in the (x, x′) or (y, y′) phase space. Ideally, the lines traced by the two knobs
in each plane should be orthogonal; in such a case, the steering of one knob
is independent of the other. Such knobs can be formed by combining the
two steering magnets with a proper ratio of the strengths. For example, one
combined knob is for the x coordinate, and the other for the x′ coordinates,
and similarly for the vertical plane. However, in this experiment we simply
used the setpoints of the individual magnets as knobs. The parameter ranges
are (−1, 1) A for the three steering magnets, B3trim, COR3V, and COR5V,
and (−0.5, 0.5) A for the injection septum, relative to the initial setpoints. The
ranges are large enough such that the deviation of any knob can significantly
reduce the capture efficiency before reaching the limit.

The Booster beam current (the monitor is referred to as the Q-meter)
measured near the end of the ramping cycle is used as the optimization ob-
jective. The intensity of the linac beam is stable in a short period of time.
The injection loss only occurs near the beginning of the cycle. Therefore, any
change to the capture efficiency will be reflected on the Q-meter reading.

After the knobs are changed, the code waits for 3 seconds for the magnets
to settle to the new setpoints. The beam is then turned on and monitored
for 2 seconds. Since the injector runs with a 10-Hz repetition rate, there are
20 valid Q-meter data points. The average value, with a minus sign added, is
used as the objective function. The minus sign is inserted to make maximizing
the beam current a minimization problem.
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Figure 8.1 Optimization of the beam trajectory at the end of the LTB transport

line to increase the capture efficiency of the Booster, using two horizontal steering

magnets and two vertical steering magnets. Top plot: Q-meter reading as a measure

of the Booster beam intensity at a beam energy near 3 GeV; bottom plot: the

normalized values of the four tuning knobs. The RCDS algorithm was used.

At the beginning of the experiment, the noise sigma of the objective func-
tion was evaluated by taking 20 measurements, while the LTB was in the stan-
dard operation setting. The average value for the Q-meter was−0.354 V (beam
intensity in uncalibrated, raw data) and the noise sigma was σ = 0.009 V.

In the experiment, two corrector magnets upstream of the tuning knobs
in use were first changed to reduce the Q-meter reading to about −0.15 V.
The RCDS algorithm was used to tune the two pairs of steering magnets. The
results are shown in Figure 8.1. After the first iteration (about 30 evaluations),
the Q-meter was restored to the level of −0.35 V. In two more iterations, the
performance continued to slowly increase. The Q-meter reached −0.426 V for
the best solution.

The trajectory with the best capture performance can be recorded with
the BPMs and is used as the target for a trajectory correction program, which
can maintain the LTB trajectory. However, the ideal trajectory may drift with
time as the Booster beam orbit at the injection point may change. Since one
iteration of RCDS run for the LTB steering takes about 2.5 minutes, and
the injection for SPEAR3 occurs every 5 minutes, it is possible to tune the
trajectory for one iteration between two fills.
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8.2 STORAGE RING INJECTION KICKER BUMP MATCHING
The injection system of the SPEAR3 storage ring consists of three kickers
that are located in three consecutive straight sections. During injection, the
three kickers are powered by current pulses over a short period of time. The
corresponding kicks produce a horizontal orbit bump for the stored beam,
moving it toward the injected beam and facilitating the capture of the latter.
Ideally, the orbit bump starts at the first kicker, K1, reaches the maximum
position offset at the septum magnet (located next to the second kicker, K2),
and terminates at the last kicker, K3; the orbit remains unchanged beyond K3
(see Figure 8.2). However, the pulse shapes, the timing of the kickers, and the
magnetic fields in the sections between the kickers are not perfect. In reality,
there are always some residual horizontal oscillations on the stored beam.

The septum magnet bends the injected beam vertically with a horizontal
dipole field which, ideally, leaves the stored beam unaffected. However, there is
a small leakage field in the stored beam side near the metal wall that separates
the two beams. When kicked to the orbit bump, the stored beam sees the
leakage field and gets a vertical kick, causing vertical betatron oscillations.

The horizontal and vertical residual oscillations persist in a duration of
about two damping times (∼10 ms). The oscillations may become a visible
perturbation to the user experiments if the amplitudes are large. Therefore,
it is desirable to minimize the residual oscillations due to the kickers and the
septum leakage field. The horizontal oscillation can be minimized by matching
the amplitudes, pulse widths, and the timing of the three kicker pulses. The
vertical oscillation can be minimized by compensating the leakage field with
the two skew quadrupoles located within the orbit bump. The desired kicker
amplitude at the target beam bunch is determined by the parameters of the K1
pulse. Hence the K1 parameters are not to be varied. Instead, the parameters
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Figure 8.2 Illustration of the injection kicker bump for SPEAR3. The locations of

the three kickers and the septum manget are indicated.
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of K2 and K3 are varied to match the K1 parameters. There are 8 control
parameters in total: the pulse voltage (amplitude), the pulse width, and the
pulse timing of K2 and K3, and the two skew quadrupoles [57].

Betatron oscillations can be measured with a turn-by-turn BPM. Because
of the different pulse shapes of the three kickers and the potential time shifts
between the kickers, for a given kicker setting, the amplitudes and phases of
residual oscillations at different bunches in a bunch train are not the same.
Since the turn-by-turn BPM measures the average position of all bunches, it
could happen that some bunches are oscillating in opposite phases and their
motion is not detected by the BPM. A likely case is for the timing of one kicker
to be shifted from the perfectly matched setting, which causes the bunches
in the head and the tail of the kicker pulse to see net kicks of opposite signs.
The goal of kicker bump matching is to minimize the average of oscillations at
all bunches, as measured by the sum of squares of their amplitudes. To avoid
the cancellation in the measured beam motion, a bunch train much shorter
than the pulse width can be used. To measure the residual oscillations at a
different position in the bunch train, the kicker timing is shifted to align with
the certain bucket. The objective of optimization is the sum of the oscillation
amplitudes of the short bunch train with a few kicker timing selections. For
the 372 buckets in SPEAR3, a bunch train of 186 bunches can be used and
the kicker pulses can be aligned with buckets 1, 93, 187, and 280.

The objective function is defined as

f =
1

4

4∑

i

(σix + 3σiy), (8.1)

where subscript i = 1–4 indicates the four timing selections, σx,y are the rms
orbit of the first 256 turns of the horizontal and vertical oscillations, respec-
tively. The vertical oscillation is given a high weight because user experiments
are more sensitive to vertical orbit disturbance, due to the small vertical emit-
tance of the beam.

The parameter range was [0.5, 1.9] kV for the kicker amplitudes, [0, 100] ns
for kicker pulse delays, [600, 800] ns for kicker pulse widths, and [−15, 15] A
for the skew quadrupoles. The noise sigma was first measured by taking 20
readings under the initial setting and was found to be σf = 4.3 µm.

In the experiment the eight parameters were first intentionally shifted to
create a poorly matched kicker bump. The RCDS algorithm was used to mini-
mize the objective function. All initial search directions are simply the param-
eter axes. It took three iterations (each iteration covers 8 directions) in about
180 total function evaluations. The history of the optimization run, including
the evolution of both the objective function and the control parameters, is
shown in Figure 8.3. The objective was reduced from 1300 µm to 300 µm in
about 80 evaluations. In Figure 8.4 the left plot shows the measured turn-by-
turn betatron oscillations before and after the optimization. After optimiza-
tion, the horizontal and vertical rms orbits in the first 256 turns are about
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Figure 8.3 Minimization of the residual oscillations of the stored beam due to the

injection kicker bump with the RCDS method: evolution of the objective function

(top) and the eight normalized parameters (bottom) are shown.

150 µm and 50 µm, respectively. The right plot shows the kicker pulses for
the optimized solution.

The Nelder-Mead simplex method was also used to minimize the residual
oscillations in the same experiment. The evolution of the objective function
and the knob parameters are shown in Figure 8.5. While the algorithm initially
reduced the objective function efficiently, it converged to a non-optimum pre-
maturely. The objective function did not reach the same value as the RCDS
method. The size of the initial simplex is 5% of the parameter range. In such
cases, using a larger initial simplex size, or relaunching the simplex from the
new solution could help.
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8.3 VERTICAL EMITTANCE MINIMIZATION
An ideal electron storage ring would have a very small vertical emittance,
arising only from the excitation by the vertical photon divergence within the
angular range of θ . 1

γ . In reality, there are lots of error sources that cause
linear coupling between the horizontal and vertical planes and the spurious
vertical dispersion, both of which contribute to the vertical emittance. The
vertical to horizontal emittance ratio can easily reach a few percent or higher
if no action is taken to compensate the errors.

Both the linear coupling and the vertical dispersion can be corrected with
skew quadrupoles. In Chapter 6 we discussed coupling correction with var-
ious beam-based correction techniques. The vertical emittance can also be
minimized with beam-based optimization. The latter approach is simple to
implement: one only needs to provide a measure of the vertical emittance to
serve as the objective function; the same skew quadrupoles used in coupling
correction are to be used as the optimization knobs.

The vertical emittance can be determined through vertical beam size mea-
surements, e.g., using a pinhole camera or an interferometer to measure the
radiated photon beam at a beamline. As the projected emittance may vary
with locations due to linear coupling, minimization of the vertical beam size
at one location could potentially result in a change of the local coupling an-
gle rather than a global reduction of the vertical emittance. It is desirable
to have simultaneous beam size measurements at multiple locations, which is,
however, usually not available. Nonetheless, minimization of the vertical beam
size at one location is still useful since it can target the emittance contribution
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from the vertical dispersion as well as a significant fraction of the emittance
coming from linear coupling.

An indirect measure of the vertical emittance can be obtained through
the dependence of the Touschek scattering beam loss on the vertical beam
size. Touschek scattering is the process of electron-electron collisions in the
beam bunch that results in a large energy loss or gain on the two colliding
electrons and the subsequent loss of both particles to the momentum aper-
ture. Beam loss due to Touschek scattering is the main mechanism that limits
the beam lifetime of low emittance, high charge beams in storage rings. The
Touschek scattering rate is proportional to the density of the electrons in the
configuration space,

1

τT
∝ Ib
σxσyσz

, (8.2)

where τT is the Touschek lifetime, Ib is the bunch current, and σxyz are the
beam sizes in the three dimensions. Since σx and σz are mostly not affected
by skew quadrupole variations, any change of the Touschek loss rate by skew
quadrupoles must come through a change of the average inverse vertical beam
size, 〈 1

σy
〉, throughout the ring.

The Touschek loss rate can be measured by observing the beam current
change, ∆I, over a short period of time, ∆t, for a beam with a high bunch
charge. For a Touschek loss dominated beam, we have ∆I = − I∆tτT

. Hence,
the objective function may be defined as

f(x) =
I2
0 ∆I

I2∆t
∝ −〈 1

σy
〉, (8.3)

where I0 is a reference current. Note the minimization of the objective function
is equivalent to minimizing the vertical emittance.

Vertical emittance minimization with beam-based optimization has been
applied to the SPEAR3 storage ring in both simulation and experiments [57,
115]. This problem is ideal for testing online optimization algorithms as it is a
real-life application with sufficient challenges in the number of knobs, the noise
level, and the parameter space complexity. In the following both simulation
and experimental tests are discussed.

8.3.1 Simulation
With a storage ring lattice model, the equilibrium distribution of the electron
beam can be obtained by calculating the one-turn transfer matrix with radia-
tion damping included and the radiation-induced diffusion matrix integrated
throughout the ring and solving for a self-consistent second order moment
matrix [90]. The horizontal and vertical emittances can be readily calculated
from the second order moment matrix. This calculation has been implemented
in the lattice modeling code Accelerator Toolbox (AT) [114], which is used in
this simulation.
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The SPEAR3 storage ring has 72 sextupole magnets, each of them has
a set of skew quadrupole coils. Only 15 of these skew quadrupoles are pow-
ered. Not using the two skew quadrupoles within the injection kicker bump
(see Section 8.2), there are 13 skew quadrupoles available for vertical emit-
tance minimization. In simulation, skew quadrupole errors are added to 29
sextupoles, not including the 13 knobs. The coupling ratio (i.e., r = εy/εx) is
0.88% initially. Assuming that for a 500 mA total beam current, the gas scat-
tering lifetime is 40 hrs and the Touschek lifetime is 10 hrs for the coupling
ratio of 0.2%, the total lifetime can be calculated with

1

τ
[hr] =

1

40
+

I

10I0

√
0.002

r
. (8.4)

The current loss over ∆t is calculated with ∆I = −I ∆t
τ +
√

2σIξ, where σI is
the error sigma of beam current measurement, ξ is a random number drawn
from the Gaussian distribution,N (0, 1). The random term is added to simulate
the measurement error. The objective function is calculated with Eq. (8.3),
using I0 = 500 mA and scaled to the beam loss over one minute. The loss
rate for the initial lattice is −0.61 mA/min. Assuming σI = 0.002 µA, and for
the beam current change measured over a period of ∆t = 6 seconds, the noise
sigma for the objective function is 0.03 mA/min.

For the application of the RCDS method, it is preferable to provide a con-
jugate direction set as the initial directions. Although the method has the
ability to build up a conjugate direction set from the convergence history, it
takes many iterations to replace all the directions. In online applications, there
is typically not enough time to wait for the conjugate direction set to emerge.
The initial conjugate direction set may be calculated with a model. The final
direction sets of past RCDS runs may also be used. For the vertical emittance
minimization problem, we use the Jacobian matrix of the orbit response ma-
trix fitting with respect to the skew quadrupoles to calculate the conjugate
directions. Each column of the Jacobian matrix consists of the derivatives of all
orbit response matrix elements (including dispersion functions in both planes)
with respect to one skew quadrupole. The off-diagonal matrix elements and
the vertical dispersion dominate the response of skew quadrupoles. Because
the Jacobian matrix contains sufficient information of the dependence of the
distributions of the linear coupling and the vertical dispersion on the skew
quadrupoles, it can represent the functional dependence of the vertical emit-
tance on the skew quadrupoles. By the use of singular value decomposition
(SVD) of the Jacobian matrix, J = USVT , the conjugate direction set, given
by the column vectors in matrix V, can be found. The combined knobs rep-
resented by the directions in V are ordered by the sensitivity in changing the
linear coupling and the vertical dispersion, and in turn the vertical emittance.
The left plot in Figure 8.6 shows the singular values of the Jacobian matrix
and the square root of the coupling ratio caused by a fixed step in each knob.
The right plot shows the first two conjugate directions.
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first two conjugate directions, v1 and v2.

The range of the skew quadrupole gradient is set to K1 ∈[−0.3, 0.3] m−2.
The magnet lengths may be 21 cm or 25 cm. The initial solution is with
all 13 knobs turned off. The RCDS method is applied to the problem with
the calculated conjugate direction set or using the unit vectors as the initial
direction set. The Nelder-Mead simplex and the RSimplex methods are also
tested. The initial simplex side length is 5% of the full range for each knob.
The algorithms run 100 times each with different random seeds.

Figure 8.7 shows the sorted best objective function values in 1000 evalua-
tions (left plot) or 500 evaluations (right plot). Within 1000 evaluations, the
RCDS method with the initial conjugate direction set reached the loss rate
below −2.5 mA for most cases. The corresponding coupling ratio is about
0.025%. In many cases, the RCDS method has reached the −2.5 mA level
within 500 evaluations. RCDS with the unit vectors initially (“RCDS-Imat”)
is not as efficient as with the initial conjugate direction set; but it still out-
performs the simplex methods. The RSimplex method does better than the
N-M simplex method with 1000 evaluations; but within 500 evaluations the
two have similar performances.

Figure 8.8 shows the convergence histories of the cases with the 30th final
minimum value for the four methods. The objective function and the first 8
skew quadrupoles are shown. It can be seen that the N-M simplex method
has a fast convergence initially, but stopped making any further gains after
reaching the −1.5 mA/min level as the simplex has shrunk to a tiny size. The
other three methods continue to explore the parameter space and make gains
throughout the runs.

8.3.2 Experiments
Experimental tests of vertical emittance minimization have been done on
SPEAR3 [57]. The knobs are the same 13 skew quadrupoles as used in sim-
ulation. The initial solution is with all knobs turned off. The corresponding
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Figure 8.9 Vertical emittance minimization experiments with RCDS. The objective

functions are (negative) the beam loss over 6 seconds (left) or the photon beam size

σy measured by the pinhole camera (right).

emittance ratio as determined by fitting the orbit response matrix (with 42
skew quadrupoles as fitting parameters) is 1.1%. The parameter range for the
skew quadrupoles is [−20, 20] A in power supply setpoints. After a new solu-
tion is dialed in, the program waits for 2 seconds for the magnets to settle to
the new setpoints.

Multiple choices of performance measures have been used for the test of the
RCDS algorithm, including the beam loss over a 6-second period, the vertical
beam size measured by a pinhole camera, and the reading of a loss monitor.
In the tests RCDS can successfully reduce the coupling ratio to below the
level achieved by the coupling correction method with orbit response matrix
fitting, typically with about 200 function evaluations, or about two iterations
of all 13 directions. The final solutions are similar to the solution found by the
coupling correction method. Figure 8.9 shows two examples of RCDS runs,
one with the beam loss rate as the objective function (left), the other using
the vertical beam size (right). The noise sigma was 0.045 mA/min for the loss
rate and 0.3 µm for the vertical beam size.

Tests with the Nelder-Mead simplex method had mixed results. Because
of the high noise level, the method may fail to reduce the coupling ratio from
the beginning if the initial simplex size is small. However, with a large initial
simplex size, it can make fast gains. In Figure 8.10 the left plot shows a case
when the initial simplex size is 15% of the parameter range. After converging
to the minimum, the simplex has shrunk to nearly a size of zero and no more
gain can be made. The right plot shows the data for an RSimplex run. It took
more evaluations to reach the same level in this case. However, it was still
reducing the vertical emittance at the end.

The particle swarm optimization algorithm has also been tested on the
vertical emittance minimization problem, using the loss monitor reading as
the objective. The loss monitor measurement is much faster than waiting
for a sizable beam charge decrease. The algorithm converged to the mini-
mum with about 3000 function evaluations [54]. As a comparison, using the
same setup, the NSGA-II method took 20,000 evaluations to reach the same
coupling level [115].
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Figure 8.10 Vertical emittance minimization experiments on SPEAR3 with the N-M

simplex (left) and the RSimplex (right) methods.

8.4 OPTIMIZATION OF NONLINEAR BEAM DYNAMICS
The operation of a storage ring requires a large dynamic aperture (DA) for a
high injection efficiency and large local momentum apertures (LMA) for a high
Touschek lifetime. For low emittance storage rings, the strong nonlinear fields
of sextupole magnets in the lattice can severely limit the DA and the LMA.
A storage ring lattice design relies on a delicate scheme for the cancellation of
the contributions of the sextupoles to the various nonlinear resonances. The
sextupole scheme is sensitive to the magnetic field errors in the lattice; the
DA and LMA performance typically degrade when errors are introduced to
the machine. Since a real machine will always differ from the design lattice,
even after linear optics correction, the nonlinear beam dynamics performance
of an actual storage ring usually is not as good as the design performance.

The effects of the field errors can be compensated with knobs that affect the
nonlinear beam dynamics of the beams, e.g., the sextupole strengths. Beam-
based correction of nonlinear beam dynamics has been discussed in Chapter 6.
As pointed out there, beam-based correction for nonlinear dynamics is very
difficult as the RDT signals are very weak and there is no clear connection
between the signals and the DA and LMA. Beam-based optimization of the
nonlinear beam dynamics performance has been proven to be an effective
method. With this approach, the nonlinear dynamics knobs are varied by
optimization algorithms to directly improve the injection efficiency or the
Touschek lifetime, which automatically leads to a better DA or LMA.

Optimization of the DA and the LMA has been demonstrated experi-
mentally [60, 91, 123, 81]. While it is desirable to optimize DA and LMA
simultaneously, so far in experiments the two are optimized separately. This
is because during a DA optimization the beam current changes due to injec-
tion or beam loss, while the LMA optimization prefers a steady beam current.
However, in practice this has not been a problem since a lattice with a good
DA often also has good LMAs and vice versa, even though there exist lattices
that are good in one of the two metrics but not the other.
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One way to optimize DA and LMA simultaneously is to inject into a single
bunch to a fixed amount of current at which the Touschek lifetime is dominant.
The lifetime can be measured and after that the DA is measured by kicking the
beam with an increasing kick angle, until the beam is lost. Each data point may
take 15-30 seconds, but it would still be acceptable. In an experiment at the
MAX-IV storage ring, the DA optimization was done by minimizing the beam
loss for a beam under a fixed kick [91]. In this approach, the measurement for
each data point will be faster since not all beam is lost.

In the next we will discuss the DA and LMA optimization separately.

8.4.1 Dynamic aperture optimization
General considerations: As mentioned in the above, the DA can be mea-
sured by kicking a low charge beam with an increasing kick strength and
recording the kick strength when the beam loss occurs. The measured DA
can then be used as the objective function. The beam charge can be as low as
∼ 10 µA, which helps limit the accumulated beam loss during the experiment.
This approach would be particularly useful for the commissioning of a new
ring before high current beams can be stored.

An alternative approach is to optimize the injection efficiency directly. If
the tuning knobs change only the DA and not the other factors in the injection
process that affect the injection efficiency, optimizing the injection efficiency
is equivalent to optimizing the DA. Since the injection efficiency cannot go
above 100% or below 0%, if the DA is so small such that no beam is captured,
or if the DA is so large such that the injection efficiency is already 100%,
the optimization algorithms could fail since the objective function may not
respond to the tuning knob changes. In such cases, changes may be made to
bring the injection efficiency to the medium range. If the DA is initially too
small, random settings of the tuning knobs may be tried until one solution is
found to allow some injected beam to be captured. If the DA is large enough to
have a high initial injection efficiency, yet it is still desired to further increase
the DA, the injected beam can be mis-steered from the ideal trajectory to lower
the injection efficiency. In the case of off-axis injection, which is the injection
scheme adopted for the existing storage rings, the injection efficiency can be
lowered by reducing the kicker bump.

Figure 8.11 illustrates the horizontal off-axis injection of a storage ring. The
centers of the stored beam and the injected beam are normally separated by
a distance D. During injection, the stored beam is kicked toward the septum
wall. To fully capture the injected beam, the DA needs to be larger than the
distance between the injected beam and the kicked stored beam plus half of
the size of the injected beam. If the DA is smaller, the part of the injected
beam beyond the DA will be lost. If the kicker bump is reduced, the DA
boundary will shift with the stored beam and the loss of the injected beam
will occur if the boundary moves into the injected beam. For the injection
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Figure 8.11 Illustration of off-axis injection for a storage ring.

efficiency to have the highest sensitivity over the DA, the boundary should
better be in the dense part of the beam.

The tuning knobs for the DA are usually the power supply setpoints for
the sextupole magnets. Sextupoles are the sources of the nonlinearity in the
beam motion and are hence effective knobs to change the DA. The purpose of
including sextupoles in the lattice is to correct the chromaticities. Any change
to the sextupole setting should not significantly change the chromaticity val-
ues. Some storage rings have harmonic sextupoles, which are located in areas
with a zero dispersion. The harmonic sextupoles do not change the chromatic-
ities and are free tuning knobs for the nonlinear beam dynamics. More often
is the case in which all sextupoles are at dispersive locations; in some cases
harmonic sextupoles become chromatic sextupoles after the linear lattices are
modified for emittance reduction. In such cases, care should be taken to not
change the chromaticities during the DA optimization.

There are usually a small number of sextupoles in each lattice cell placed
symmetrically about the cell center. Sextupoles at the symmetric points of
the same cell and sextupoles at the same location of different cells may be
powered by a serial power supply. Sextupoles on the same power supply are
collectively referred to as a sextupole family. At the minimum, there are only
two sextupole families, which are required for chromaticity correction and
leave no free knobs for DA optimization. In the other extreme, all sextupoles
could be powered individually. There would be tens or hundreds of sextupole
knobs, potentially more than the optimization algorithms can handle in online
applications. In such a case, the sextupoles need to be grouped for the number
of knobs to be reduced to an acceptable level (e.g., 10 to 30). Typically the
sextupoles are grouped such that the each family consists of a number of
magnets that are symmetrically distributed around the ring. In some cases, the
sextupoles may be already grouped and powered in several families according
to their locations. Some storage rings have octupole magnets in the lattice for
controlling the nonlinear dynamics behavior [91]. They should also be included
as nonlinear dynamics tuning knobs.
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Since a major path for lattice errors to affect the nonlinear beam dynamics
performance is by introducing betatron phase advance errors between the
sextupoles, the linear optics knobs may also be used for tuning the DA and
LMA. Linear optics can be controlled to below 1% beta beating through beam-
based correction. However, for the low emittance rings with a large number
of strong sextupoles, even at such a low level, optics errors can still have a
significant impact on the DA. In addition, optics correction normally only
targets the optics functions at the BPMs; there can be larger optics errors at
the sextupoles. Quadrupoles could be combined into groups to form tuning
knobs that affect the phase advances on the sextupoles with various patterns,
using the phase advance response matrix with respect to the quadrupoles.

The SPEAR3 DA optimization experiment: In the beam-based DA
optimization for the SPEAR3 storage ring [60], the injection efficiency was
used as the objective function and the injection kicker bump was reduced.
The SPEAR3 storage ring has 18 double-bend achromat (DBA) cells, 14 of
which are standard cells and the remaining 4 are matching cells. There are
two pairs of sextupoles in each cell. Originally SPEAR3 had only 4 sextupole
families: the SF/SD families for the standard cells and the SFM/SDM families
for the matching cells. For the purpose of optimizing DA/LMA for a lattice
upgrade, the SF/SD families were split into 4 families each, 3 of which consist
of SF (SD) magnets in 4 cells symmetrically distributed around the ring, while
the last one only consists of sextupoles in the two cells at the centers of the
two arcs. The sextupole family distribution in half of the ring may be labeled
M-X2-X3-X4-X5-X4-X3-X2-M, where M stands for the matching cells and Xi

for the standard cells. The other half is in the mirror symmetry. For example,
all the SF sextupoles in X2 cells make one family. There are a total of 10
sextupole families.

To be able to freely change the sextupole settings without changing the
chromaticities, combined knobs were created by applying singular value de-
composition (SVD) to the chromaticity response matrix, Rchrom = USVT .
The chromaticities, (Cx, Cy)T , depend on the sextupole families through lin-
ear relationships. The derivatives of the chromaticities with respect to the sex-
tupole families constitute the chromaticity response matrix, which is a 2× 10
matrix for the SPEAR3 case. It has two non-zero singular values, which cor-
responds to the sextupole combinations that can change chromaticities. The
other 8 singular values are zeros and the corresponding column vectors in
V form the basis vectors for the null space; any sextupole changes in the
null space do not change the chromaticities. The eight null space basis vec-
tors are used as tuning knobs in the SPEAR3 DA optimization experiments.
Some SVD modes of the SPEAR3 chromaticity response matrix are shown in
Figure 8.12.

The injection efficiency was measured through the beam current change
in the storage ring and the intensity of the injected beam. Each data point
was collected with injection for 10 seconds to reduce the noise level. The
noise sigma for injection efficiency is about 3%. Figure 8.13 shows the evolu-
tion of the injection efficiency and 4 out of the 10 sextupole families for an
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optimization run with RCDS, starting with the solution when all standard
cell SF and SD families are at equal strengths, respectively. Because SPEAR3
normally had good injection efficiency, the kicker bump was reduced to 85%
of the nominal size initially for the injection efficiency to drop to about 35%.
During the optimization, the injection efficiency approached 100% after about
90 evaluations. To make room for more gains in the DA, the kicker bump was
reduced further to 77% and the RCDS was re-launched. With a total of 230
evaluations, the DA was significantly improved. The kick angle for kicker K1
required to kick out the beam was increased from 1.55 mrad to 2.13 rad af-
ter the optimization, corresponding to a dynamic aperture of 15.1 mm and
20.6 mm, respectively. The performance of the optimized solution was also
verified by measuring injection efficiency with a reduced kicker bump. As
shown in the left plot of Figure 8.14, full capture of the injected beam can
be achieved with a kicker bump that is smaller than the nominal sextupole
solution by about 5 mm. In Figure 8.14 the right plots compare the currents
of the sextupoles before and after the optimization.

The chromaticities were measured before and after the optimization and
were at +3 for both planes with little changes. The Touschek lifetime of the
beam was characterized for the initial and optimized solutions using beam
lifetime vs. RF voltage scans [111]. In both cases, the Touschek lifetime was
limited by the RF bucket height and the measured beam lifetime was equal
when the coupling ratio was equal. Therefore, there was no negative impact
on the beam lifetime.

The particle swarm optimization (PSO) method was also applied to DA
optimization of SPEAR3. Starting with an intermediate solution found by
RCDS for which the DA improved by about 2 mm from the original lattice, it
was able to find a lattice solution similar to the final RCDS solution in about
300 evaluations.
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DA optimization at MAX-IV and NSLS-II: DA optimization with
RCDS was also successfully applied on the MAX-IV storage ring [91]. MAX-
IV is the first storage ring light source that adopted an multi-bend achromat
(MBA) lattice. It currently has the lowest emittance among all storage ring
light sources. In the MAX-IV experiments, the objective function was the frac-
tional beam loss of the stored beam under a fixed horizontal kick. The tuning
knobs are five sextupole families and three octupole families. The chromaticity
response matrix of the sextupoles was used to construct three combined knobs
that do not change chromaticities. There were a total of 6 free knobs. RCDS
steadily improved the DA over 4 iterations. The DA was increased roughly
from 5 mm to 7 mm (measured at the center of a long straight section), while
the chromaticities remained about the same. The optimized lattice also has
an significantly improved momentum acceptance, which reached the design
goal of 4.5%.

On the NSLS-II storage ring, DA optimization with RCDS using sextupole
knobs improved the DA by more than 20% [123]. It was found that the hori-
zontal tune shift with amplitude was reduced by more than a factor of two in
the optimized lattice.

8.4.2 Local momentum aperture optimization
If the local momentum aperture (LMA) is smaller than the RF bucket height,
it becomes the limiting factor for the Touschek lifetime. In such cases, online
optimization may be done to enlarge the LMA. The tuning knobs for the LMA
are usually the same as those for the DA optimization. The objective function
can be the beam loss rate for a Touschek scattering dominated beam. The
Touschek loss rate is strongly dependent on the momentum aperture, δA, with
1
τT

roughly proportional to δ−3
A . As shown in Eq. 8.2, it is also proportional

to the charge density. In the LMA optimization experiment, it is critical to
separate the charge density factor out from the loss rate in order to target
only the LMA.

In an experiment, the bunch charge constantly changes as a consequence of
the beam loss that causes a finite lifetime. In addition, the bunch length varies
with the bunch charge due to bunch lengthening through the longitudinal
impedance. To avoid a significant impact from bunch lengthening, the bunch
charge may be replenished frequently so that it is roughly constant. When
sextupole strengths are changed, the vertical emittance could also be altered,
as vertical orbit offsets in sextupoles are a source of linear coupling errors. To
mitigate the impact of vertical emittance variation, it is desirable to keep a
constant orbit (with orbit feedback) that is as close to the sextupole centers
as possible. It would also be helpful to slightly increase the coupling ratio with
skew quadrupoles, such that coupling variations due to sextupoles are small
compared to the initial vertical emittance. If the diagnostics are available,
a preferred approach is to measure the vertical emittance and factor out its
effect from the objective function.
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Beam-based optimization of LMA was first demonstrated on the ESRF
storage ring [81]. In the experiment, the objective function was defined as

f(x) = −τ(x)
Iσz0σy,0
I0σz(I)σy

, (8.5)

where σz(I) is the bunch length calculated with an impedance model, σz0 =
σz(I0), σy is the average vertical beam size for the measurements at 13 loca-
tions distributed around the ring. Care was also taken to wait for at least 30
minutes after each injection of a fresh beam injection to allow the beam spin
polarization distribution to settle in an equilibrium state as it could affect
the Touschek lifetime by up to 15%. With the beam density factor separated
out from the objective function and spin polarization effect stabilized, the
optimization targets only the LMA.

Two sets of sextupole knobs were used in the experiments. In one setup, 12
sextupole correctors were used for a fill pattern with many low-charge bunches.
The lifetime was increased from 47.5 hr to 75.5 hr by RCDS with about 5
iterations in 40 min. In the other setup, 10 sextupole knobs that consisted
of 5 main sextupole families and additional sextupoles with individual power
supplies were used on a fill pattern with 16 high-charge bunches. The lifetime
was increased from 11 hr to 17 hr. The optimized lattice had been used in
operation.
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Random search, 186
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Hamiltonian, 53
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Stopband integrals
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Strong focusing principle, 4, 15
Symplectic integration, 60
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Synchrotron motion, 26
Synchrotron tune, 26, 29

Taylor map, 15
Thin-lens limit, 12
Three-BPM method, 128
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Transfer map, 14, 56
Transfer matrix, 13, 64, 95
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edge focusing, 12
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