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Preface
 
This book is intended for scientists and engineers working in the field of radar and computational 
electrodynamics. 

The contents of the book is the result of the compilation of works by group of authors who rep­
resent the scientific school of applied electrodynamics established in the 1960s by Professor I.V. 
Sukharevsky within the Govorov Military Radiotechnical Academy. Representatives of this school 
studied electromagnetic wave scattering from objects of various natures in the Kharkiv Military 
University, United Scientific Research Institute of Ukrainian Armed Forces, and Kharkiv Ivan 
Kozhedub University of Air Force. 

An important place that the study of radar scattering from airborne and ground objects occupies 
in the whole radar field predetermined the book’s main content. In the first place, it was the number 
of generalizations of the key postulates of classical electrodynamics theory that needed to be intro­
duced in order to provide grounds for the methods of radar object scattering computation developed 
later on. The basic results regarding development of both the electrodynamics theory and numerical 
computation methods are original and are presented in the first two chapters of the book. 

Chapter 3, intended as a reference, is for consumers who are engineers pursuing the design of 
radar detection and identification algorithms with regard to airborne and ground objects. The chap­
ter contains a great deal of reference material obtained by computation: circular diagrams of radar 
backscattering; mean and median RCS values of various objects; probability distributions of echo 
signal amplitude given various parameters of illumination and various kinds of underlying surface 
(for ground objects); and impulse responses of various airborne and ground objects given their illu­
mination with wideband signals. 

The book can be useful to a wide audience: scientists concerned with the development of 
electromagnetic wave scattering theory, computational electrodynamics specialists, as well as to 
radio physics engineers pursuing development of radar detection and identification algorithms of 
radar objects. 

The authors’ contributions to the book have been as follows: Chapter 1 has been written by Oleg I. 
Sukharevsky; Sections 2.1 through 2.3 and 2.5 are the combined work of Vitaly A. Vasilets and 
Oleg I. Sukharevsky; Section 2.4 has been written by Sergey V. Nechitaylo and Oleg I. Sukharevsky 
(except for Section 2.4.2, which has been written by Vitaly A. Vasilets and Oleg I. Sukharevsky); 
Chapter 3 has been written by the mutual effort of Vitaly A. Vasilets, Sergey V. Nechitaylo, Oleg I. 
Sukharevsky, and Valery M. Orlenko. 
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Introduction
 
Analysis of existing and future weapon systems, of available scientific publications, of research 
programs (stealth program for instance), as well as of the local war experiences shows the special 
place that scattering (secondary radiation) characteristics of different air assault means (aircraft, 
cruise missiles, etc.) and of ground military objects (tanks, armored personnel carriers, etc.) take 
in the process of armaments and military equipment development. Sometimes the term radar vis­
ibility is used with regard to these objects [1]. It is worth mentioning that for military radar aimed at 
detecting aerial objects, information on scattering characteristics of not only air assault means but 
also of civilian aircraft is vital. 

One of the mainstreams of up-to-date assault means and military equipment design is the creation 
of cruise missiles, aircraft, ground objects (armored vehicles) with low radar cross section (RCS). 

Lowering of the radar visibility of air and ground objects is usually achieved by streamlining 
them in special ways and applying radar absorbing materials (RAM) to those local parts of their 
surfaces that provide the most intense scattering, the latter being caused by geometry-optical specu­
lar reflections and scattering at the surface fractures. Measures taken to lower radar visibility not 
only reduce the power of scattered signals but also lead to significant changes in other scattering 
characteristics, polarization ones in particular, which make it harder to predict the detection and 
recognition performance by radar. An important theoretical and applied problem is also to find and 
account for scattering peculiarities introduced by use of a separate transmitter and receiver placed 
at some distance from one another (bistatic or multistatic radar), which provides for some benefits 
when solving the target identification tasks [2]. 

Therefore, to solve the target detection and identification tasks, modern radar requires a priori 
information to be obtained about the target scattering characteristics that would take into account a 
complex of complicating factors such as irregularities of the target surfaces, presence of RAM, and 
multistatic radar configuration. 

Since satisfactorily accurate and statistically consistent experiments on the scattering charac­
teristics are hard to organize and are very expensive, development of methods for the theoretical 
prediction of scattering characteristics of air vehicles and for their computer simulation taking into 
account the complicating factors mentioned above becomes vital. 

Let us also note that mathematical simulation of the signals scattered from complex radar objects 
that account for multistatic transmission and reception and other complications is very helpful when 
analyzing target identification performance in future radar systems. Such simulation allows one to 
determine the optimal placement of radar sites over the area of interest together with the require­
ments of the characteristics of the radars themselves. 

The well-known short-wave diffraction methods that have long since become classical— 
geometrical optics (GO), geometrical diffraction theory (GDT), physical optics (PO), and physical 
diffraction theory (PDT)—cannot be used directly without significant correction and generaliza­
tion to solve the radar scattering problems in this complicated formulation. 

Development of improved methods adapted to specifics of radar scattering problems formulated 
here is the main aim of this book. Development of such methods and performance of a considerable 
amount of research based on these methods, in its turn, required further development of the radar 
scattering electrodynamics theory for different kinds of scattering object structures. 

Chapter 1 contains generalizations of such basic electrodynamics statements as the Lorentz 
reciprocity theorem and the image principle with regard to the fields corresponding, respectively, 
to different material fillings of the same space area, and to a space containing different type 
irregularities—dielectric, conductor, or magnetic. These generalizations allow obtaining integral 
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field representations, based on which one can study the influence of underlying surface, radar 
absorbing and heat-insulating materials, as well as other layered structures on electromagnetic fields 
scattered from radar targets. 

Among other general theoretical results presented in the chapter, there is the generalization on 
the case of nonflat region (and corresponding stationary phase points of not only the elliptical but 
also the hyperbolic kind) of the well-known formula by M.I. Kontorovich in the two-dimensional 
stationary phase method. Combined with its nonstationary analog, this result allows significant 
improvement to the physical optics method when applied to computing secondary radiation from 
radar targets for both monostatic and multistatic radar. When doing so, we provide regularization of 
solutions obtained, the latter being based on elimination of “terminator discontinuities” appearing 
due to inadequate description, in physical optics approximation, of the surface current density in the 
vicinity of the “light-shadow” border. 

Computation  of  such  an  important  parameter  as  RCS  of  radar  object  is  related,  in  general,  to  con
siderable  theoretical  and  computational  difficulties.  In  this  book,  RCS  computation  is  described  conse
quently  in  two- and  three-dimensional  formulations  within  bounds  of  strict  theory  and  approximations 
of  physical  optics.  Besides,  for  some  classes  of  objects,  there  are  practical  useful  RCS  estimates,  which 
are  expressed  for  the  three-dimensional  problem  through  the  values  of  RCS  per  unit  length  in  the  cor
responding  two-dimensional  problem  for  the  two  orthogonal  polarizations  of  incident  wave  [3]. 

An important theoretical issue considered in Chapter 1 is whether the reciprocity principle 
[4] holds for the case of approximating fields, in particular, of those appearing in physical optics 
approximation. It is shown that in this case the reciprocity principle holds for monostatic radar, yet 
in the case of multistatic radar the reciprocity principle does not hold in general, which should be 
accounted for in practical calculation. 

Chapter 1 also contains the original method for computing impulse responses (IR) or smoothed 
out IRs of smooth objects in the general case of multistatic radar using the physical optics approach. 
It is worth mentioning that the physical optics approximation of IR in the known work [5] is received 
for the very narrow limits, which include the following: (1) only monostatic radar configuration is 
considered; and (2) the terminator (shadow boundary) is assumed to be a flat curve with its plane 
being perpendicular to the direction of incidence. However, it is easy to bring forward simple exam
ples of smooth closed (even convex) surfaces that would have a nonflat terminator. Moreover, in the 
case of scattering from ellipsoid, illumination from any direction R


  
0  by electromagnetic wave cre

ates the flat terminator curve (ellipse), and this terminator plane is perpendicular to R

  

0  only if the 
incidence direction R


  
0 is parallel to one of the ellipsoid’s semi axes. 

In the work [6] (assuming the same conditions as in clauses (1), and (2) above), the sum members 
are singled out that are brought into the high-frequency asymptotic of the IR Fourier image by the 
break in surface current density at terminator in physical optics approximation. Let us note that the 
research methods in the works cited above are essentially based on the conditions (1), and (2) and 
these methods cannot be used when either one is violated. 

The method proposed in this book for the bistatic radar case is applicable for arbitrary orientation 
of the terminator’s plane relative to the incident wave direction (in principle, the same method works 
in the case of a nonflat terminator too). We also consider a characteristic example of scattering from 
a smooth convex object and we study the specifics of its IR structure in the bistatic case. We single 
out and eliminate from the IR solution the major sum members of asymptotic contribution from the 
surface current density break at the terminator. The latter makes the IR solution regularized and, as 
a result, increases significantly the accuracy of physical optics approximation over the time span up 
to arrival of the diffraction “creeping” wave that goes over the shadow area. 

In Chapter 2, methods are developed for computing the scattering from the radar objects with 
surface fractures and those covered with RAM. 

We propose in this chapter the asymptotic method for solving the scattering problem for perfectly 
conducting objects with toroidal RAM covering the surface fractures in the case of the arbitrary 

­
­

­

­

­
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multistatic radar configuration. The method is based on integral representations by Stratton-Chu and 
their asymptotic expression for the far-field zone. The solution to the simulative problem of oblique 
incidence of a plane electromagnetic wave on a perfectly conducting wedge with a radar absorbing 
cylinder at its edge is used to facilitate the method. Such an approach, unlike the edge wave method 
[7,8], turns out to be well adjusted to the presence of nonperfectly conducting scatterers of resonant 
dimensions and to the general case of the multistatic radar configuration. 

To elaborate the estimate of the contribution from the perfectly conducting vicinity of a “specu­
lar” point of elliptical type to the total scattered field in the case of the multistatic radar configuration, 
we obtained two sum members of the ray asymptotic for this field and estimated the contribution of 
such a local scatterer to the total field also in the case when it contains the RAM coating. 

Verification of the methods developed for computing the scattering characteristics is also done 
here using objects of simple shapes such as a cylinder, a cone, and so on. Our computation results 
have been compared here to those obtained using the “FEKO” software package [9] as well as to the 
measurement results obtained in an anechoic chamber for a finite-length cylinder. 

Verification of the computational methods developed here is finalized by comparing the cruise 
missile model RCS’s computation results to the experimental measurement data. 

The electromagnetic-wave-scattering computation method for airborne objects is spread over 
ground radar objects. While doing this, we took into account the “four-ray” propagation of incident 
and scattered waves in integral field representations the method is based upon. The latter four-ray 
representation appears because of onefold reflections between the object and the homogeneous half-
space boundary. 

Bearing in mind that the contribution from reflector antennas to the total field scattered from 
aircraft is usually significant, we have dedicated Section 2.4 to developing methods for computing 
scattering from reflector antenna systems (including those under pointed-nose radomes). 

As a result, based on the method developed in the chapter for computing the scattering from 
complex objects with surface fractures and RAM coatings, we further developed a method for 
computing the scattering characteristics of electrically large reflector-type antennas with toroidal 
RAM coating at their edges. 

We have also provided an approximate (engineering) approach to computation of the field scat­
tered from a three-dimensional model of the reflector (parabolic) antenna under the pointed (cone-
shaped) radome. The method is based on geometrical and physical optics approximations and takes 
into account the current density over the reflector induced by an electromagnetic wave that has just 
passed through the radome wall and by the wave that has been reflected once from the radome inner 
surface. 

Chapter 2 concludes with the introduction of a definition for the smoothed impulse response 
approximation of a radar object (i.e., a nonstationary response to the probing signal with a rect­
angular amplitude spectrum) along with some examples of this transient scattering characteristic 
computed for simple shape objects such as a cylinder and a cone. 

Chapter 3 can be used as a reference. It contains all-round RCS diagrams (including smoothed 
or noncoherent ones) for a wide assortment of airborne objects (military and civil aircraft, cruise 
missiles) and for three specimens of ground armored machines. The diagrams are given for different 
oblique incidence angles and polarizations. These all-round RCS diagrams of the ground specimens 
also take into account different types of underlying surfaces. 

When designing radar-target-detection and -identification algorithms, there appears the need 
to know the target’s RCS probability distribution in various sectors of their aspect angles. In this 
regard, this chapter contains corresponding data on various target RCS probability distributions, 
their mean and median values. 

There are also examples of smoothed impulse responses (IR) of aerial and ground objects for a 
variety of illumination conditions. The importance of IR in radar is conditioned by the fact that it 
reveals the changes in target reflectivity index along the radar line-of-sight, which bears additional 
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information on targets of interest and provides a basis for their radar imaging and recognition. Such 
IRs are also known among the radar community as high-range resolution profiles (HRRPs). 

So, as a whole, this book puts together theoretical grounds, original computation methods, and 
a great deal of computational results on the scattering characteristics of aerial and ground radar 
targets. 
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1 Elaboration of Scattering 

Electrodynamics Theory
 
Studying Secondary Radiation 
from Radar Targets 

Oleg I. Sukharevsky 

Contents 

Mathematical simulation of radar scattering (secondary radiation) from aerial and ground objects 
requires development and elaboration of some principles and methods of applied electrodynamics. 
The latter would allow obtaining the instrument for studying the electromagnetic wave scattering 
problems given such complicating factors as radar absorbent material (RAM) coatings coupled 
with bistatic radar configuration, pulsed, and, particularly, ultrawideband target probing, presence 
of underlying surface, and so on. 

This chapter contains generalizations of such basic issues of electrodynamics as Lorentz reci­
procity theorem and image principle aimed at expanding them over to the presence of irregularities 



             
              

               
             

  

 
  

  
  

 

  

 

  

  

 

    

      

       	     

                

       	     

                

rot E = jωµ H , * 
α α α 

(1.1) 

rot H = j E + J e , α = ,− ωε 1 2.α α α α 

Given usual assumptions on the smoothness of functions in Equations 1.1 over the region V up to 
its boundary surface L, we have equality following from Equation 1.1: 

div[ (E × µ H ) + (E × µ H )] = jω ε µ − ε µ )−	 ( E ⋅ E1 2 2 2 1 1 1 1 2 2 1 2 

J e	 e+ µ (	 [ + ∇µ ×[	 ++ ∇µ × H )] ⋅ E − µ J ( H )] ⋅ E . (1.2)2 2 2 2 1 1 1 1 1 2 

Using the Ostrogradsky–Gauss theorem [10], we receive the following: 

T ⊥ T ⊥µ E	 ⋅ H − µ E ⋅ H ⎤⎦ d S = jω ε µ − ε µ∫ ⎡⎣ 2	 1 2 1 2 1 ∫ ( 1 1 2 2 )E1 ⋅ E2 dV 
L	 V 

e	 ⎡ e ⎤+ [µµ J ( H )] ⋅ E − µ J + ∇µ × H ) E dV . (1.3)+ ∇µ ×	 (∫ {	 2 2 2 2 1 ⎣ 1 1 1 1 ⎦ ⋅ 2 }
V 

* Time dependence of the fields throughout the book is assumed to have the form of exp(−jωt). 

 	   
 	      	     

   	   
 	   

2 Electromagnetic Wave Scattering by Aerial and Ground Radar Objects 

in space of various kinds, or to the electromagnetic fields corresponding to different material 
fillings of space of interest. Based on these generalizations, which are interesting scientifically for 
their own sake, it is possible to receive special integral equations allowing study of influence of 
the RAM coatings or other layered structures (including underlying surface) onto the radar target 
scattering. 

Another set of issues considered in this chapter provides further development of the stationary 
phase method and of physical optics with practical aim at radar problems with transient target illu­
mination and bistatic configurations. 

Besides, some new results are obtained regarding RCS in three-dimensional problems expressed 
via two-dimensional models of various objects, which makes them much easier to compute. 

1.1	 Generalization of lorentz reCiproCity theorem onto 
the Case of fields CorrespondinG to different material 
fillinG of a reGion in spaCe 

Integral representations are efficient means for studying and solving numerically a number of prac­
tical problems in applied electrodynamics and radar. The basic and auxiliary electromagnetic fields 
in these representations may correspond to different and, in general, nonhomogeneous filling of 
some regions in space. The latter facilitates the use of properly generalized Lorentz reciprocity 
theorem to form such a representation. 

In this chapter, we give such a generalization of the Lorentz reciprocity theorem [10], using 
which, for instance, one can form and study integral field representations that provide corrections 
due to dielectrics and radar absorbent irregularities into the total diffraction field at a system of 
metallic scatterers (Section 1.2). 

Let us take the region V in space filled with isotropic but nonhomogeneous, in general, medium 
with permittivity ε1( ), and permeability µ1( ) and let this region contain extraneous currents withx	 x 
density J1 

e ( ), then electromagnetic field E x H ( )x appears in this region. However, another fieldx	 ( ),  	   1 1 

E x	 H ( )x corresponds (another boundary conditions are possible) to permittivity ε2 ( ), perme­( ),	 x2	 2   
ability µ2 ( ),x  and extraneous current density J e x2 ( ). Thus, for the region V we have 



  

 

 

  

    

          

        

       	     

                 

The symbols AT , B⊥ here have the following meaning: 

    
AT = A − n ( n ⋅A), B⊥ = n × B.	 (1.4) 

where n
  

is the unit vector of external normal to V. 
Let us mention here that expression (1.3) becomes the usual Lorentz integral representation given 

ε = ε = const, µ = µ = const .2 1 2 1 

Using the following substitution in Equation 1.3 

e mE ↔ H , J ↔ −J , ε ↔ −µ ( = 1 2),α α α α α α α ,

we derive the equality expressing the fields excited by magnetic currents 

T ⊥ T ⊥[ε E	 ⋅ H − ε E ⋅ H ]d S = jω ε µ −ε µ )∫ 2	 2 1 1 1 2 ∫ ( 1 1 2 2 H1 ⋅ H2 dV 
L	 V 

m	 m+ [ε J − ∇ ε × E )] ⋅ H1 − ε J1 − ∇ε × E1)] ⋅ H2 dV (1.3′)∫ { 2 2 ( 2 2 [ 1 ( 1 } . 
V 

 

  
 

 
 

   

  

 

  

 

  

   	     
 	       

  

    

    

    

3 Elaboration of Scattering Electrodynamics Theory 

Formulas of Equation 1.3 type are generalization of the Lorentz reciprocity theorem [4,11] onto 
the case of nonhomogeneous media and the fields corresponding to two different material filling 
inside the region of interest V. 

If the region V is infinite, then (as in usual Lorentz reciprocity theorem) to ensure the validity of 
expressions (1.3), (1.3′) one must put a requirement upon extraneous currents to be concentrated in 
some limited area and upon the fields to satisfy the radiation conditions [4,11]. 

Another form of generalization for the Lorentz reciprocity theorem was obtained in later works 
[12,13]. 

1.2	 appliCation of Generalized lorentz reCiproCity theorem 
to obtaininG inteGral representations of sCattered field 
disturbanCes introduCed by radio transparent and 
radar absorbent layered struCtures 

Let us assume that L be a set of boundary surfaces cutting out the perfectly conducting scatterers 
+ + +V1 , V2 , …, VM from the rest of space; and in the external region V, characterized by permittivity 

ε ( )x and permeability µ ( ), there be extraneous currents with known density J xx	 e ( ) or equivalent to 

them magnetic currents with density J m ( ). Total resulted field ,x	 E H  satisfies the condition 

ET	 (1.5)|L = 0. 

Our goal is to find such integral representations of the field E H, which would allow to single out, 
and estimate the contributions from individual scatterers or the influence of physical parameters of 
the medium filling the region V onto this field. To achieve this, we compare the field E H with some, 
additional auxiliary (“standard”) fields using the generalized Lorentz reciprocity theorem (1.3).             

We introduce the auxiliary field (of “electric kind”) E e ( |x x0 , p), H e ( |x x0 , p) into region V, the 
latter satisfying the following equations within V: 

e erot E	 = jωµ0 H ,
  
e 

  
e    	 (1.6) 

rot H = j E j p (x − x0− ωε0 − ω δ ), 



 
 

 
    

  
  

  

  
  

  

      
    

  

  

  

  

  
    

  

  

 ∂µ   + −  
) ( ) ( ),∇µ = n = n(µ − µ δ n = n Δµ δ ni i i∂n 

(1.7)
 ∂ε   + −  

∂n i i )) ( ) i ( ).∇ε = n = n (ε − ε δ n = n Δε δ n 

Here, n is the unit normal vector to Si; n is the coordinate along the normal, n = 0 at Si, n > 0 in 
+the direction of n,δ( ) is the delta-function; µ µ− are the marginal values of µ( ) on Si respec­n , xi i 

tively at positive and negative ends of n. 
Then, from Equation 1.3, we receive the following expression: 

              
( ) xjωµ0 p ⋅[E (x0 ) − E(x0 )] = ∫ µ x E eT (x | x0 , p)⋅ H ⊥ ( )d S 

L 

                + jjω ε x µ x − ε µ ] ( ) ⋅ E (x x , p)dV − Δµ E eT (( | 0 , p)⋅ H ⊥∫ 0 0 E x e | 0 ∑ 
N

i ∫ x x 
  

x S. (1.8)[ ( ) ( ) ( )d 
i=1T Si 

Similar integral representation of magnetic field intensity H  is received from Equation 1.3′: 

              
m      jωε q ⋅ [ ( ) − H (x )] = jω ε x µ x − ε µ ] H x ⋅ H (x|x0 ,q)d0 H x0 0 [ ( ) ( ) 0 0 ( ) V∫ 

T 

  
mT       ⊥   

N   
mT       

0 ∫ x x0 , q) ⋅ H x dS + ∑Δεi ∫H (x||x0 , q) E ( )d S. (1.8′)− ε E ( | ( ) ⋅ ⊥ x 
i=1L Si 

 
  

  

 

   

    
                      

  

        

        

    

4 Electromagnetic Wave Scattering by Aerial and Ground Radar Objects 

(ε0, μ0 are the permittivity and permeability of free space, and x 
  

0 ∈V ) and the other boundary condi­
tions at L (formulated specifically for every problem at hand). Similarly, one can introduce the field 
of “magnetic kind.” 

We consider here the case where material media (homogeneous or piecewise homogeneous) 
are only distributed over some part T of the whole region V, and its complementary to the whole 
region V − = V\T being the free space. The homogeneous parts of the medium are separated from 
one another and from the V − by smooth surfaces S1, S2 , …, SN 

*, and in this manner they form a 
layered structure. Moreover, we consider distribution of extraneous sources only within region V −, 
where µ( )x ≡ µ ε0 , ( ) ≡ ε0 . Now, in the region V we apply the generalized Lorentz reciprocityx 

E x ( ), for which ε = ε ( ), Jtheorem to the field E = ( ), H = H x ( ),x µ = µ x e = J e ( );x and to the   1   1 1 1               1     e e ex x0 | 0 for which ε = 2 ε µ = µ0 ω δ 0field E2 = E ( | , p), H2 = H (x x , p), 0 , 2 , J2 = − j p (x − x ) (given 
arbitrary orientation of p). While doing so, we use the superposition principle and the fact that in 
the vicinity of Si  we have 

Here, E(x0 ), H (x0 ) are the vectors of electric and magnetic field intensities for the standard field 
excited in the space region V by the same extraneous sources that in real medium filling V excite the 
field E x( 0 ), ( ), although given different boundary conditions at L the latter being determined byH x0 

the structure and boundary properties of the chosen auxiliary field of a point source. For example, 
E(x0 ) is set according to formula 

           − ω ⋅p E(x ) = J x ⋅ E ( | , pj 0 
e ( ) e x x0 )dV.∫ 

−V 

* Si are the closed surfaces, those coming into infinity or those with an end (boundary line) belonging to the boundary L of 
region V. 



  

  

  

 

  

 
 

  

             
             

 
 

  

  

   

  

    
   

  

  

  

  
  

        

    

0 0ω ε µ 

0If, we assume now x 
  

0 = x r   and put → ∞ in representation (1.8), we receive integral repx00 

resentation for complex vector directivity diagram E r( 0 ): 

               0 0 eT 0 ⊥jωµ0 p ⋅ [E r( ) − E(r )] = µ( )x E x r , p) ⋅ H ( )d S( | x∫ 
  

L 

            N         ∫ [ ( ) ( ) 0 0 E x e ( | 0 ∑Δ i ∫ x r ( )d S. (1.9)+ jjω ε x µ x − ε µ ] ( ) ⋅ E x r , p)dV − µ E eT (( | 0 , p) ⋅ H⊥ x 
i=1T Si 

          e 0 e 0The field E ( |x r , p),H ( |x r , p) in representation (1.9) is excited by plane wave: 

       e 0 2ω µ0   0   0  0  E0 ( |x r , p) = k0 [ p − r ( p ⋅ r )] exp(− jk0 (r ⋅ x)),ε0 (1.10)
   
e     0 2  0   0  H 0 ( |x r , p) = k0 (r × p) exp(− jk0 (r ⋅ x)),− ω 

where k0 = . 
If, as an auxiliary field in Equation 1.9, we choose the solution of Equations 1.6 that, given x0 ∈V , 

satisfies the boundary condition 
    

E eT (x x| , p)| = 0, (1.11)0 x ∈L 

or, in other words, as an auxiliary field we choose that of a point source placed at the point x0 and 
having the vector-moment p in the presence of perfectly conducting scatterers with shape described 
by surface L, then representation (1.9) takes the following form: 

                 0 0 e 0jωµ0 p ⋅[E r( ) − E(r )] = jω ε[ ( )x µ( )x − ε µ0 0 ] ( )E x ⋅ E ( |x r , p)dV∫ 
T 

N         − ∑Δµi ∫E eT (x r| 0 , p) ⋅ H ⊥ x S (1.12)( ) d . 
i=1 Si 

In this manner, E (x0 ) and H (x0 ) describe the field excited by these sources when any mate
rial media are absent, and representation (1.12) expresses the far-field correction due to material 
medium T. 

In the simplest case where µ ≡ µ ε( ) ≡ ε const, representation (1.9) takes especially simple0 , x = 
form given arbitrary p and x0 ∈V : 

                
0 E x e | 0 . (1.13)p ⋅ [E (x0 ) − E (x )] = (ε − ε0 ) ( ) ⋅ E (x x , p) dV∫ 

T 

From Equation 1.13, we obtain corrections to the complex directivity diagram: 

               0 0 e 0p ⋅ [E r ) − E ( )] = (ε − ε ) E x ⋅ E ( | , p( r 0 ( ) x r ) dV . (1.14)∫ 
T 

          
If the fields E(x0 ) and E( |x x0 , p) are known, then, given x0 ∈T equality (1.13) becomes the 

integral equation with respect to the field excited in medium T. 
So, when the variety of T is a set of thin dielectric layers (their thickness δ being small), asymp

totic formulas can be obtained from Equation 1.13, the latter being the more accurate the lesser the 
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value of dimensionless parameter δ = /δ λ0. Given small δ, integral term in Equation 1.13, as it 
follows from physical considerations, must become small. It can be shown that this integral, as any 
other integral of the form 

          
( ) e x x 0 )d VI(x0 ) = F x ⋅ E ( | , p∫ 

T 

with smooth over region T (up to its boundary) vector function F ( ), allows existence of the follow-x
ing estimate given x0 ∈T : 

| ( x 
  

)| ≤ const δ. * 
(1.15) I 0 

From equality (1.13) and estimate of Equation 1.15 type, it follows that given x ∈T 

E x = E( ) x + O δ( ) ( ), 

therefore, we obtain from Equation 1.14 that 

                0 0 e 0 
0 x | + o δp ⋅ [E (r ) − E (r )] = (ε − ε ) E( ) ⋅ E (x r , p)d V ( ). (1.16) ∫
 

T 

Equalities of Equation 1.16 type can serve as computation formulas along with the estimate of 
computation error o( ).δ 

Below, we consider another application of generalized Lorentz theorem. Let some perfectly 
conducting surface L be covered with layer T of RAM (Figure 1.1) with permittivity ε1 and perme
ability μ1. 

e − ω δ xLet us further assume that the field (E2 ,H 2 ) excited by electric dipole J2 = j p (x − 0 )† is 
known in presence of the scattering surface specified above, however with the permittivity and per
meability ε2, μ2 of the layer T. We need to find the field E1 excited by extraneous sources (with the 
current density J1 

e ) situated in the region V − in the presence of radar absorbent layer T over metallic 
base L. It is additionally known that value of ε1 is close to ε2 and value of μ1 is close to μ2.   −Let the observation point satisfy the condition x0 ∈V . We apply generalized Lorentz reciprocity 

theorem (1.3) to the fields (E1, H1) and (E2 ,H 2 ) in the region V = V − with boundary ∂V = S. As a 
result, we get the following expression: 

T ⊥ T ⊥− ω ⋅ p [E (x ) − E (x )] = (E ⋅ H − E ⋅j 1 0 2 0 1 2 2 H1 )d S. (1.17) ∫
 
S 

• x0 

V − 

T 
S 

L 
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­

­

 

fiGure 1.1  Perfectly conducting surface covered with the layer of RAM. 

*  Estimate (1.15) is nontrivial since it is based on eventual computation of singular integrals of the 
∫ Φ( x )( −p

  
T  + 3(  p

  
 ⋅ R
  
 0 )R
  
 0 )/R 3 dV  kind, where R

  
 = x
  

− x
  

0 ,  R = |R
  
|,  R 
  

0 = R
  

/ R .
†  It is worth mentioning that using the superposition principle, the field E

  
2  excited by a preset extraneous current distribu

tion J
  
e 
1  can be expressed as: − j ω pE

    
(x
  

) = ∫ J
  
e ⋅ E
 

( x
 

0 | 
   

2 1 2 x 0 , p)d V ,  where V  contains all the extraneous sources of radiation. 
V 

­



     

  

 

  

 

  

  
  

  

  

       	     

         	     

  
  

    

    

            

Let, further, region V = T and its boundary be ∂V = S ∪ L. Application of theorem (1.3) to the 
same fields in this case gives us the following: 

T ⊥ T ⊥{ E	 ⋅ H − µ E ⋅ H }d S = jω ε µ − ε µ ) E ⋅ E dV . (1.18)∫ µ2	 1 2 1 2 1 ( 1 1 2 2 ∫ 1 2 

S	 T 

Multiplying Equation 1.17 by μ1 and subtracting the equality thus received from Equation 1.18, 
we arrive at the following expression: 

[ 
  	 T ⊥ − ω ε µ − ε µ ) E dV . (1.19)jωµ p E (x ) − E (x )] = (µ − µ ) E ⋅ H d S j ( ∫ ⋅ E1 1 0 2 0 2 1 ∫ 1 2 1 1 2 22 1 2 

S	 T 

Having done similar transformations for the case of x0 ∈T , we receive integral equation for the 
field E1 inside layer T: 

        
T 
  

⊥	 
   

− ω µ E (x ) − µ E (x )} = (µ − µ ) E ⋅ H d S − ω ε µ −j p{	 j ( εε µ ) E E dV . (1.20)2 1 0 1 2 0 2 1 ∫ 1 2 1 1 2 2 ∫ 1 ⋅ 2 

S	 T 

Having accounted for the smallness of values |µ − µ | and |ε − ε |2 , one can obtain from   1	 2 1 

Equation 1.20 the asymptotic representation of field E1(x0 ) given x0 ∈T . The major term of this 
asymptotic has evidently the following form: 

  	 ∼ µ1 
  

E (x ) E (x ).	 (1.21)1 0 2 0µ2 

Having integrated once Equation 1.20 while substituting expression (1.21) into the right-hand 
side integrand of Equation 1.20, one obtains an elaborated asymptotic representation of the field 
E1( x0 ) inside layer T: 

⋅ µ1− ω ⋅j p E (x ) ∼ − ω ⋅ Ej p (x )1 0 2 0 µ2 

⎛ − µ1 ⎞ µ1 E
  
T 
  

⊥ ⎛ 1 ⎞ µ1 
   

+ 1 ⋅ d S j − ε E ⋅ E dV. (1.22)H 22 − ω ε µ 
2	 1 2 2 2⎝⎜ ⎠⎟ ∫	 ⎝⎜ ⎠⎟ ∫µ µ	 µ µ2 2	 2 2

S	 T 

7 Elaboration of Scattering Electrodynamics Theory 

Having used expression (1.22) on the right-hand side of Equation 1.19, we come to the expres­ 	   
sion of field E1 ( x

  
 0	 )  given x

  
0 ∈V − ,  which, in its turn, allows expressing the field E1  in the region

external to the scattering surface via fields E
 

2 , E
  

2 ,H
  
 2  obtained given another material filling of the 

region T. 
Finally, let us note that practical applications of generalized Lorentz reciprocity theorem is not 

by any means limited by examples presented above in Section 1.1. The generalization can be applied 
to quite a number of practical tasks. For instance, integral representation (1.8) can be applied not 
only to the scattering structures consisting of perfectly conducting scatterers and radar absorbent 
media, but also to evaluating the influence of radomes onto the propagation and scattering of elec­
tromagnetic waves. 

1.3	  G eneralized imaGe prinCiple and its appliCation to solvinG  
some eleCtromaGnetiC Wave sCatterinG p roblems 

Major content of this section is the description of rigorous and physically interpretable mathemati
cal models for the EM wave scattering from different types of scatterers (perfect conductors, perfect 

­



  

  

  

  

  

   

   
 

  

 
  

  
   

  

  

  

  

  

    

  
    
 

  

    

    

a. Perfectly conducting scatterers with a set of boundary surfaces denoted as SE, so that 

ET = 0; (1.23) 
SE 

b. Scatterers that are perfect magnetics, at the boundary surface (SH) of which we have 

HT = 0; (1.24) 
SH 

at the same time, the part Ω1 
+ of half-space Ω+ ( 3 = 0, boundary of which consists of plane S x ), SE, 

and SH, is filled with isotropic and, generally, nonhomogeneous medium with complex permittivity 
ε ( ) and permeability µ ( ) that may have also the discontinuity surfaces (interfaces). x x

Let us denote also the image Ω1 
− of the region Ω1 

+ in plane S and consider the “symmetrized” 
region Ω = Ω+ ∪ S ∪ Ω− with symmetrical, by geometry and physical properties, scatterers and 
the filling medium, in which 

1 1 1 

⎧ε (x , x ,−x ) ≡ ε (x , x , x )1 2 3 1 2 3
⎨ (1.25) 
⎩µ (x1, x2 ,−x3 ) ≡ µ (x1, x2 , x3 ) . 

Let us introduce the necessary symbols: if A = {A1, A2 , A3} is any vector field, then 
A′ = {A , A , −A }; particularly, if the radius-vector of the point x = (x , x , x ), then 1 2 3 1 2 3 

x′ = (x , x , −x ).  Thus, the following statement holds true (generalized image principle). 1 2 3            
Let E (x x | , p), H (x x | , p) be the field excited in the symmetrized region Ω1 by the electrical 0 0 0 0 

dipole with the moment p placed at point x
  

0 ∈ Ω1. Then, for every point x 
  ∈ Ω1 the following equali

ties hold true: 

         
E (x x | ′ , p′) = E ′ (x′|x , p), (1.26) 0 0 0 0 

           
H (x x | ′ , p′) = −H ′ (x′|x , p), (1.27) 0 0 0 0 

that express the generalized image principle. 
Rigorous derivation of these equalities (quite evident from the standpoint of physical intuition) 

can be based upon the following expression that can be easily verified: 

  
x 
  

x 
(1.28) rot A′ (x ′) = − (rot A( )) ′| ⇒ ′ x   

8 Electromagnetic Wave Scattering by Aerial and Ground Radar Objects 

magnetics, perfectly absorbing objects) placed over underlying surface, as well as of mathematical 
model of antenna aperture under radio transparent covering (fairing, radar dome, and so on). It 
is with regard to this later problem that we give generalization of the equivalent currents method 
interpretation by Ya.N. Pheld [14], which is of fundamental importance when computing the field 
excited by antenna aperture radiating into the half-space that contains scatterers—dielectrics, con­
ductors, magnetic, and so on. In this context, it turned necessary to generalize also the classical 
image principle. 

1.3.1 Generalized imaGe PrinciPle 

Let us denote a half-space Ω+ (x3 > 0)  and its reflection (image) Ω− (x3 < 0).  Region Ω+ contains: 

­



  

 

 

 

 

 
 

 

  

  

  

 

  
  

 

        
  

        

          

                

                         

                

                  

          
                    

    

            

(the symbol x ⇒ x ′ means that having computed the vector − (rot A( )) ,x ′ one must replace vector   
′x by vector x ). Let us introduce the abbreviated symbols: 

                 
E ( ) = E (x x , p); H ( ) = Hx | x (x x| , p),0 0 0 0 0 0 

             (1) 1 
0 0 0 0 0 0x ′ ( ) x (x′|x , p).E ( ) = E ′(x |x , p); H ( ) = −H ′ 

Then, from Maxwell’s equations we have 

rot E0 ( ) = jωµ x H 0 ( ),x ( ) x 

rot H 0 ( ) = j x E0 ( ) j p (x − x0 ).x − ωε ( ) x − ω δ 

Using expressions (1.25), (1.28), we obtain 

( ) 1rot E0
1 ( ) = rot E0 (x ) = (rot E0 x ′|

x 
 ⇒x ′ = j (x )H 0 (x ) = jωµ ( )H 0

( ) ( ). (1.29)x ′ ′ ( ))   − ωµ ′ ′ ′ x x 

In the same manner, we obtain that 

( )1 ( )rot H ( ) = j x E 1 ( ) j p (x x ). (1.30)x − ωε ( ) x − ω ′δ − ′ 0 0 0 

(1) (1) x ( ) j − ′ 
we can directly verify that boundary conditions at SE, SH and at their images are satisfied. 

Thus, the field E0 ( ),x H 0 ( ) is the one excited by the current J0 x = − ω p′ δ (x x0 ). Next, 

For instance, since E ( )x = nE x (where is the unit normal vector) at SE, then( ) n0 0n 
1 ′   (1)E ( ) ′ ), ( ) ( ) ′ x T |′ x = n E (x ′ from where we get E x | =E (x ) =nE ( ) and, accordingly, = 0.0 0n       0 SE 0 0n E0 SE

(1) (1)Finally, the field E0 ( ),x H 0 ( ) evidently satisfies the radiation condition (in case of unlimitedx 
region Ω1). 

Because of uniqueness of the boundary problem considered here, from Equations 1.29, 1.30 
and boundary conditions at SE, SH and at their images (as well as from radiation condition, if Ω1 is                 ( )1 1 

0 0 0 0 0 0 
( ) x | x x )unlimited), we get that the field E ( ),x H ( ) coincides with the field E (x x ′ , p′), H ( | ′ , p′ 

that proves the statement formulated above. 
We need to make some remarks regarding the latter statement. First, the same statement holds 

true for the fields excited by magnetic dipoles too. 
Second, using the superposition principle and integral representation of the following kind: 

J ( )x = ∫ J (x0 ) (x − x0 xδ )dV ,
0 

Ω1 

one can extend the image principle of the form presented above (and used in [15–17]) onto the fields 
excited by arbitrary extraneous currents. 
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1.3.2 On the influence Of underlyinG Surface OntO the ScatterinG PrOPertieS 

Of a tarGet 

Let the plane Σ (we assume it perfectly conducting) to be bounding a half-space containing the 
scattering object outlined by the boundary surface S (perfect conductor or perfect magnetic). 



 

   

 

 

  

  

 

 

  
   

   

  

  

 

        
        
        

  

    
    

      

      

      

  

  

        
     	    	   
 	            	       

 	   

                  

                  

   

Ei	 x Hi ( )x  is the incident wave; ( ), 

E1	 x H1( )x  is the scattered field; ( ), 

E	 x H ( )x  is the total field; ( ),  	           e eE	 (x x | 0 , p), H (x x | 0 , p) is the field of point electric dipole in the half-space bounded by plane 
Σ given the object S is absent;               m mE	 (x x | 0 , q), H (x x | 0 , q)  is similar field of the point magnetic dipole. 

It is worth mentioning that using the field E0 ,H 0 introduced in Section 1.3.1 (the one excited in 
e ethe symmetrized region Ω1 in the absence of object S), one can express the field E , H  as follows: 

          eE	 = E (x x | , p) − E (x x | ′ , p′), (1.31) 0 0 0 0 

e          
H = H (x x | , p) − H (x x | ′ , p′).	 (1.32) 0 0 0 0 

The latter is a consequence of the fact that according to Equations 1.31 and 1.26, 

          eE	 = E (x x | , p) − E ′(x′|x , p); 0 0 0 0 

from where, given x ∈Σ, we obtain 

E eT = 0. 
Σ 

Having applied the Lorentz reciprocity theorem to the fields (E1, H1) and (E e ,H e ) as well to the 
m m	 e efields (E1, H1), and (E , H ), and having accounted for the fact that field (E ,H ) is created by the 

e	 m m mcurrent J = j p (x − x E ,H ) is created by current J = j q (x − x− ω δ 0 ) and the field (	 − ω δ 0 ) 
(in the former case J m = 0 and in the latter case J e = 0), we arrive at the expressions: 

e e *j	 p E (x ) = [( E H n) − ( H n )]d Sω ⋅ 1 0 ∫ 1 E 1 ,	 (1.33) 
S +Σ 

j	 q m E m− ω ⋅ H (x ) = [( E H n) − ( H n )] dS.	 (1.34) 1 0 ∫ 1 1 

S +Σ 

* Here and further on the symbol (abc)  means the mixed vector product. 

10	 Electromagnetic Wave Scattering by Aerial and Ground Radar Objects 

Standard method of obtaining an integral equation for the surface currents excited by known set 
of extraneous sources situated in the half-space under consideration (the one based on the Stratton– 
Chu integral equations [11]) leads to equations containing not only integral over the scatterer’s sur­
face S, but also over unlimited plane Σ that complicates dramatically numerical computation of its 
solution. Use of generalized image principle, in this context, allows obtaining the integral equation 
with regard to currents that involves integration only over S, which can be used as basis for stable 
and efficient computation algorithms. Below, we give the corresponding considerations. 

Let us denote as Ω1 
+ the region in space bounded by surfaces S and Σ. Region Ω1 

+ may contain 
both nonhomogeneities and other scatterers. 

Let us introduce the following symbols: 



  

  

  

  

  

  

  

  

  

  

 

 

 

 

        
        

        

                  

                      

    
  

  

                

                

        

      

  

    

i i e eHaving applied the Lorentz reciprocity theorem to the fields (E , H ) and (E ,H ),as well to the 
i i m mfields (E , H )  and (E ,H ),, we obtain the following: 

∫ 
   
i (e m ) (e m , , ) i[( E H n) − (E H n)]d S = 0. (1.35) 

S +Σ 

Having combined expressions (1.33), (1.34) with (1.35), we get the total field representation: 

   
0 ∫i e ej p [E (x00 ) − E (x )] = [( E H n) − ( H n )]d Sω ⋅ E , (1.36) 

S +Σ 

i m m− ω ⋅ [H (x0 ) − H (x0 )] = [( E H n) −j q (E H n )]d S. (1.37) ∫
 
S +Σ 

We consider two options here: 

A. S is the perfectly conducting surface and then  ET = 0, ET = 0;
Σ   S 

B. S is the perfect magnetic surface and then HT = 0, ET = 0. 
S Σ 

If option A is the case, the expressions (1.36) and (1.37) take the following form given x0 ∈Ω1 
+: 

j p [E (x ) − Ei(x0 )] = ( e H n )d S, (1.38) ω ⋅ 0 −∫ E 
S 

− ω ⋅ [H (x0 ) − Hi (x0 )] = −∫ ( m H n j q E )d S. (1.39) 
S 

If option B is the case, then: 

      
i      

e  jω ⋅ p [E (x0 ) − E (x0 )] = (E H n)d S, (1.40) ∫ 
S 

      
i      

m  − ω ⋅ [H (x0 ) − H (x0 )] = (E H n)d Sj q . (1.41) ∫ 
S 

e e m mThe fields (E ,H ),( E , H ) contain, as an additive component, the field of electric (magnetic) 
dipole in free space. So, for instance, 

e scatH e = H0 + H , 

H scatwhere  is the regular field and 

  
e    

H0 = jω ( p × ∇ g), 

exp( j k 0 |x − x0 |)
g =    .

4π − |x x0 | 

11 Elaboration of Scattering Electrodynamics Theory 



 

 

 

   

 

  

  

 

 

   
 

   

  

  

    

  

  

          

        

Then, 

   
e   ⎛  ∂g       ⎞

(E H 0 n) = j E p − ( p n)− ω ⋅ ∇ g
⎝⎜ ∂n ⎠⎟ 

and, if we present the operator ∇  in the following form: 

  ∂∇ = n + D,∂n 

where D  is tangential differential operator, then 

   
e    ⎛  T ∂ g      ⎞

(E H 0 n) = j E p − ( p ⋅ n) Dg .− ω ⋅ 
⎝⎜ ∂n ⎠⎟ 

Let us note that function ∂ ∂g/ n  is the kernel of the double-layer potential. 
If we use now the fact that at the surface S Hn = 0 for the option A; and En = 0 for the option 

S S 
B (these follow from Maxwell equations and boundary conditions at the boundary surface S); and 
use the boundary property of the double-layer potential while letting the point x0 to tend to the sur
face S, then from Equations 1.39 and 1.40 we can obtain integral equations: 

1            T i m T− jω ⋅ H (x0 ) j q H (x0 ) = −∫q + ω ⋅ (E H n)d S , (1.42) 
2 

S 

1            T i T ejω ⋅ p E (x0 ) j p E (x0 ) = (E H n− ω ⋅ )d S. (1.43) 
2 ∫ 

S 

Equations 1.42 and 1.43 contain only integration over limited surface S and they, therefore, are 
Fredholm integral equations of second kind, which can be reduced effectively to the well-defined 
systems of linear algebraic equations. 

Having solved integral Equation 1.42, we find H 
  
T (x 
  

0 ) and, having substituted it into the right-

hand side of Equations 1.38 and 1.39, we find the field EA (x0 ), H
A (x0 ) for any x0 ∈ Ω1 

+ in case 
where S is the surface of perfect conductor. In the same way, using integral Equation 1.43 and 

representations (1.40) and (1.41), we find the field EB (x0 ), H
B (x0 ) in case where S is the surface of 

perfect magnetic. 
Next, applying the Macdonald model [18] of perfect “black” body, one can obtain the field scat

tered by the object under consideration (with underlying surface present) given the assumption that 
its surface S possesses the properties of perfect “black” body. This field 

� 1 � � � 1 � � 
C A B C A BE = (E + E ), H = (H + H ) (1.44) 

2 2 

 
    
i iappears as result of illumination by primary incident wave E H of perfectly absorbing (according , 

to Macdonald) object in presence of underlying surface and the medium nonhomogeneities. 
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(x3 > 0)Let an aperture S0 to be placed in the plane S(x3 = 0) and let it radiate into the half-space Ω+ 

the field ( ) excited by extraneous sources situated in the half-space Ω−E
 H
 (x3 0). The <
x( ), x 
region Ω+  contains the following: 

a. Perfectly conducting scatterers, a set of boundary surfaces, which we denote as SE so that 

ET |SE 
= 0;	 (1.45) 

b. Scatterers being perfect magnetics, at the boundary surface (SH) of which 

HT |SH 
= 0; (1.46) 

In this case, the part Ω1 
+ of the half-space Ω+, boundary of which consists of S, SE, and SH is 

filled with isotropic but, in general, nonhomogeneous medium with complex permittivity ε ( )
that may have the discontinuity surfaces (interfaces). Particularly, one may 

x 
xand permeability µ ( )

relate this to the presence in Ω+ of radio transparent antenna radome G+ of some design (Figure 
1.2). 

Our goal here is to derive and interpret physically rigorous and approximated computation 
formulas expressing the radiated field via distributions over aperture of tangential components of 

vectors E and H (or, that is equivalent, via densities of equivalent surface currents—magnetic and 
electric) under following different assumptions on physical properties of the surface Σ = S S0 , the \ 
symbol S S0  meaning complementation of region S0 to the total region S:\ 

A. Σ is the surface of perfect conductor, ET = 0; 
Σ 

B. Σ is the surface of perfect magnetic, HT = 0. 
Σ 

Extraneous sources and all the boundary conditions for the options A and B above are the 
same except the conditions at the surface Σ adjoining the region Ω+ (the latter being as stated 
above). 
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1.3.3	 calculatiOn Of field excited by radiatinG aPerture in PreSence 

Of arbitrary SyStem Of ScattererS 

x3 

G+ 
Ω + 

∑ S0 ∑ 

fiGure 1.2  Radio transparent antenna radome. 



   

  

  

               
                 
                 

                

  

  

  

  

  

 

  

  

  

        

            

    

    

  

  

    
    

        

                

        

            

            

A A B BHere, we denote by (E , H ) and (E , H ) the fields excited in the region Ω1 
+ by the extrane

ous sources at hand for the options A and B, respectively. Along with these fields, we consider their 
half-sums 

1 1
EC = (EA + EB ), HC = (HA + HB ), (1.47) 

2 2 

which provide for some “averaging” of fields radiated by aperture S0 in situations where Σ is the 
surface of perfect conductor (option A); and it is the surface of perfect magnetic (option B). The 
field averaged by means of Equation 1.47 can be considered as the one formally corresponding to 
Macdonald’s model of perfect black surface Σ. 

Now, we apply the Lorentz reciprocity theorem to the field of our concern E H (for both ,            
options A and B), as well as to the field E (x x | 0 , p), H (x x | 0 , p) excited in the region Ω1 

+ by an 
electric dipole with the moment p placed at point in case where all the surface S x3 = 0)x ∈ Ω1 

+ ( 
is one of the material interface surfaces of region
satisfied: 

ET (1.48) |S = 0 (for option A ), 

H T (1.49) |S = 0 (for option B ). 

Since all the extraneous currents that excite the field E H are distributed over Ω− , , and the density 
of current exciting the field E H  is ,

J0 = j p (x − x0 ), − ω δ (1.50) 

then 

ω ⋅ E x Ej p ( ) = + + (( E × H ) − ( × H)) ⋅ d S. (1.51) 0 ∫ ∫ ∫ 
S S SE H 

According to boundary conditions of the (1.45), (1.46) kind, we have 

ET = ET = 0, HT = H T = 0. 
S SS SE HE H 

Therefore, integrals over SE, SH, and Σ = \S S0 in Equation 1.51 are equal to zero. For the options 
A and B, we have, respectively: 

jω ⋅ p EA (x ) = (EA × H A ) ⋅ d S, (1.52) 0 ∫ 
S0 

jω ⋅ p EB (x ) = − (E B × HB ) ⋅ d S. (1.53) 0 ∫ 
S0 

Ω+ with one of the following conditions being ,1 
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Having computed the half-sums of right- and left-hand sides of equalities (1.52) and (1.53) and 
having used the notation of Equation 1.47, we get the following: 

    1         
C A A B Bjω ⋅p E (x0 ) = ((E × H ) − (E × H )) ⋅ d S. (1.54)

2 ∫ 
S0 

Equality (1.54) obtained in this way expresses the “averaged” (in sense of Equation 1.47) field 
radiated by aperture S0 at any point x ∈ Ω1 

+ via distribution over S0 of tangential components of 
A B A B +vectors E , H , and the fields of point source (electric dipole) E , H that are excited in region Ω1 

with perfect (in sense of Equations 1.48 or 1.49) interface plane S. 
Further considerations are aimed at some transformation and interpretation of formula (1.54).           
First of all, we substitute the vector fields E (x x| , p), H (x x| , p) introduced in Section 1.3.10 0 0             0   

for the fields E B (x x0 , p), H A (x x , p) in Equation 1.54. Let , 0   | | 0 x x ∈Ω1 
+ , then electromagnetic field 

E H , where, 

         
E = E 0 (x x0 , p) + E0 (x x| 0 ′ , p′| ), (1.55) 

             
| ) (1.56)H = H 0 (x x0 , p) + H 0 (x x| 0 ′ , p′ 

         
is the field E B (x x| 0 , p), H B (x x| 0 , p). To make it sure for oneself, one should just check the condition 
(1.49) to be satisfied. According to Equations 1.56 and 1.27 

             
H = H ( | , p) − H ′ (x′ | x , p),x x0 0 0 0 

from where, given x ∈S, we have 

H T = 0. (1.57)
S 

In this manner, the field (1.55), (1.56) is indeed the field of the point source corresponding to          
option B above. Therefore, accounting for Equation 1.26 we have E B = E (x x| , p) + E ′(x′|x , p)0 0 0 0 

from where, given x ∈S, we receive at once the following: 

  T   
T     E B = 2E0 (x x0 , p)|   . (1.58)

x ∈SS 

In the same way, we find that 

                 
H A = H 0 (x x| 0 , p) − H 0 (x x| 0 ′ , p′) = H 0 (x | x0 , p) + H 

0 

′ (xx′|x0 , p), 

due to which we have 

T     H A
T = 2 H 0 (x x0| , p)   . (1.59) 

x ∈SS 

15 Elaboration of Scattering Electrodynamics Theory 



 

  

  

 
  

   
  

   

  

 

  

  

  
  

         	   

      

        

    

    

                

 	   

Combining results of Equations 1.54, 1.58, and 1.59 together, we find that for any point x0 ∈ Ω1 
+ 

and any vector-moment p there is exact equality 

               C A	 Bjω ⋅p E (x0 ) = ∫ ((E x × H 0 ( | 0 , p)) − (H x × E0 (x x , p))) ⋅ d S, (1.60)( ) x x ( ) | 00 

S0 

where dS = n dS, n is the unit normal vector to S pointed toward Ω− . 
So, the averaged field radiated by aperture S0 into the half-space Ω+ filled with nonhomogeneous 

medium and different scattering objects (containing, for instance, a radome) is expressed by formula 
A	 H B x(1.60) via distribution over aperture of tangential components of vector fields E ( ),x ( ) excited 

by sources spread over Ω− if Σ is the surface of perfect conductor or perfect magnetic, respectively; 
the field E 0 , H 0 in this expression is the field excited in the symmetrized region Ω1 by point source 
(electric dipole) given that any material screens in the plane x3 = 0 are absent. 

If, for instance, there is some dielectric radome G+ present in region Ω+ (Figure 1.2), then E0 , H 0 

is the field excited by point source in space occupied only by closed dielectric envelope (Figure 1.3) 
symmetrical (by geometry and physical properties) with respect to plane x3 = 0. 

Finally, to conclude our consideration, we transform the exact formula (1.60) into approximate 
one corresponding to physical optics approximation where edge effects (fringe radiation) of the 
aperture are relatively small so that one may assume (as it is usually done in theoretical and practical 
antenna calculations) that for S0 the following approximate equalities hold true 

A B A BE x ≈ E ( ),x H x ≈ H ( ).x( ) ( ) 

Then, having omitted the indices A and B (while retaining the exact equality sign instead of 
approximate one in Equation 1.54), we arrive at the following: 

                    
jω ⋅p EC (x ) = ((E x × H ( | , p)) − (H xx x ( ) × E (x x , p))) ⋅ d S.( )	 |0	 ∫ 0 0 0 0 

S0 (1.61) 

16 Electromagnetic Wave Scattering by Aerial and Ground Radar Objects 

x3 

x0 

x1 

G+ 

p 

Plane of symmetry 

fiGure 1.3  Closed dielectric envelope. 



 

 

 

 

 

  

  

 

 

 

 

            

        

    

                
  

        

      

              
0 A 0 B 0p ⋅ E R ) = ∫ ((E x × H 0 ( , , p)) − (H x × E0 (x R , pp))) ⋅ d S,( ( ) x R ( ) ,	 (1.62) 

S0 

(exact formula); 

                 
0 T 0 T 0p ⋅ E R ) = ((E x × H 0 ( , , p)) − (H x × E0 (x R , pp))) ⋅ d S,( ( ) x R ( ) ,∫	 (1.63) 

S0 

(approximate formula; ET , HT are the distributions over aperture of tangential components of field 
vectors in Kirchhoff’s approximation). 

In formulas (1.62) and (1.63), E0 (x, R0 , p), H 0 (x, R0 , p) is the diffracted field of aligned system 

of scatterers excited by the propagating in direction (−R0 ) plane wave 

0 0 0E0 = (R × ( p 
  × R )) exp (− jk0 (R ⋅ x  )), 

H0 = ( p × R0 ) ε0 µ0 exp(− jk0 (R 
  

0 ⋅ x  )), 
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The right-hand side of integral in Equation 1.61 expresses the field of radiating aperture by means 
of equivalent currents method via distributions of ET , HT over aperture that can be set directly. This 
formulation differs from the usual problem of the free space radiation by an aperture (antenna 
aperture particularly) in the way that the field E0 , H 0 in formula (1.61) is the field diffracted at 
aligned system of scatterers (instead of explicit expression of the field by electric dipole in unlim­
ited free space). Equality (1.61) itself means that, given the presence of nonhomogeneous medium 
and arbitrary set of scatterers, the field computed using the equivalent current (or aperture) method 
coincides (within accuracy of physical optics) with the averaged field corresponding formally to 
Macdonald’s model, the latter meaning that result by Ya.N. Pheld [14] can be extended onto the 
more general case being considered here. 

In case where all nonhomogeneities of the propagation medium and all the scatterers of Ω+ are 
situated within limited distance from S0, one can derive from Equations 1.60 and 1.61 the formulas 

expressing complex directivity diagram of the radiating system under consideration, E R0 ),(	 where 

R0 is the unit vector showing direction to the observation point in far-field (Fraunhofer) zone: 

where  ε0,  μ0  are  the  permittivity  and  permeability  of  free  space,  and  k0  is  the  wave  number  of  free  space. 
It is worth mentioning that formulas (1.38) through (1.44) and (1.60) through (1.63) are of not 

only practical computation interest but they are also of instructional value: calculations presented 
above along with physical interpretations allow estimating their applicability limits in every specific 
class of computational task at hand. It is out of any doubt that use of formula (1.63) for calculating 
directivity diagrams of antenna systems with radomes is more preferable than the use of such coarse 
computing methods as, for instance, the one of remote apertures (“false aperture method” [19]). 

1.4	 reGularization of solutions to nonstationary sCatterinG 
problems in Case of physiCal optiCs approximation 
in bistatiC radar 

If one applies the physical optics method to compute fields scattered from smooth perfectly con­
ducting bodies, the errors occur due to inadequate description of surface currents in the vicinity of 
terminator (the “light-shadow” boundary). In the work [6], these “terminator discontinuities” have 



 

 

 

 

 

 

  

 
 

F x y z( , , ) = 0, 

where 

F = y2 + z2 − u x ( ), 

1 2u x = (x + ) ( − x ), x( ) 3 2 1 | | ≤ 1 .
4 

Let this surface be illuminated by plane wave with the wave vector k = (−1 0 1 ; ; ); then the termi
nator curve equations 

⎧⎪
⎨
⎪⎩


F x y z , , )( =
 0,
 

k ⋅
 grad F x y z ( , , ) =
 0
 

can be presented in the following form: 

⎧ ± u ( ) − v ( ), ⎪y = x 2 x
( ) : ⎨T 

z = v ( ), ⎪ x⎩

where v x = ( / )( x + )( 2 x2 + 3 x( ) 1 4 3 − 1). 

 

k 

x 

Incident 
wave front 

–1 1 

y 

z 
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been eliminated for a handful of very special cases of stationary scattering (monostatic radar, two-
dimensional problems, or three-dimensional problems but given terminator being a flat curve and 
its plane being perpendicular to the incidence direction). In [6], the summands have been singled 
out that are responsible for these false discontinuities, these summands being then subtracted from 
physical optics integral, which improved the result significantly. It should be noted that the compu
tation method in [6] is based essentially on the limited assumptions listed above and it cannot be 
used if any of the assumptions do not apply. 

However, it is easy to give examples of smooth closed convex surfaces with nonflat terminator. 
One such example of smooth closed convex surfaces with nonflat terminator is an egg-shaped 

surface (Figure 1.4) defined by the equation: 

­

­

fiGure 1.4  The egg-shaped surface. 
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Assume that line (T) belongs to some plane 

Ay + Bz + Dx + C = 0, 
2 2 2(A + B + D ≠ 0). 

Then, we have an identity: 

2 2	 2A (u − v ) ≡ (C + Bv + D) . 

Since 

u x ( ) =
 −
 1
 
4
 
x4 +
 ,
 v x( ) =
 1
 3−
 +
 ,
x

2
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then, it follows from this identity that: (1/ 4 )( A
 2 + B
 2	) x 6 +
 �
 =
0,  from where A  =  B  =  0 and we 
have x  ≡  const at the terminator, which contradicts the terminator equations (T). 

The contradiction thus received lets us to draw a conclusion that terminator curve (T) is nonflat.   
Besides, even the ellipsoid illuminated from arbitrary direction R0  forms the terminator, which     

is a flat curve (ellipse) with its plane being perpendicular to R0  only in case where R0  is parallel to 
one of the ellipsoid’s principal axes. 

In this section, we develop the method for finding the summands introduced by terminator dis­
continuity of surface current density due to physical optics approximation into the object’s impulse 
response asymptotic and into its Fourier image*  for the case of bistatic radar, and in case where this 
flat terminator being arbitrarily oriented with respect to incidence direction, or even being nonflat. 

To move further, we need the well-known formula by M.I. Kontorovich [20,21], which gives us 
the contribution from a boundary contour in two-dimensional stationary phase method, to be gen
eralized in such way that it would include nonflat region and nonsingular stationary phase point of 
any type (and not only elliptical). 

In this manner, asymptotic method that we are about to obtain would give us the edge asymptotic 
for practically important case of amplitude function with singularity at the contour. 

1.4.1	   Surface  inteGral  aSymPtOtic Given  arbitrary  tyPe  Of  nOnSinGular StatiOnary  
PhaSe POint  and SinGular, at  the  edGe  cOntOur, amPlitude  functiOn 

Integral representations of high-frequency electromagnetic fields contain the surface integrals of 
the following form: 

I = ∫∫ exp( jk Φ ( x1  , x 2 , x3  )) F ( x1  , x 2 , x3  )d S, (1.64) 

 S  

given k  ≫  1. 
If the surface S  is not closed (wave diffraction at finite screen or aperture antenna radiation, for 

instance), then asymptotic of the integral I  consists of contributions brought in by surface (two
dimensional) stationary phase points and the edge contour L. The case, where surface S  is a part of 
plane, functions Φ  and F  being smooth enough, has been considered in [20,21]. The method used 

*  We deal here with high-frequency asymptotic of the impulse response Fourier transform (Fourier image) asymptotic and 
the corresponding asymptotic representation of the object impulse response in the vicinity of wave front. 

­

­
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here relies on the vector analysis theorems. It allowed us to single out the scattering contribution 
from the stationary phase point of elliptical type only. 

Below, we consider the 

a. Integral over nonflat (in general) surface S given smooth phase Φ and amplitude F func­
tions; the asymptotic representation of integral (1.64) in form of sum of contributions from 
L as well as from isolated stationary phase point of any type [22]; 

b. Contribution from edge contour L of flat region S given the amplitude function (as is the case 
in practically important classes of diffraction theory and radiating system theory problems) 

F0 (x1, x2 )
F = p , 0 < p < 1. (1.65)

d (x1, x2 ) 

Here, function F0 is continuous over S ∪ L, and d(x1, x2) is the distance from point 
M x1, x ∈ to the contour L. It is worth mentioning that the method used in [21] cannot( 2 ) S 
be applied in this case; 

c. Asymptotic formulas for some nonstationary fields, which can be used in the vicinity of 
wave fronts, obtained by recovering original functions from operational representations of 
the short wave asymptotic received. 

Asymptotic of integral (1.64) given absent surface stationary points and edge singularities. Let 
f(x1, x2, x3) = 0 be the surface S equation, the surface having relatively smooth edge contour L. We 
consider functions f, Φ, F as being smooth enough at the surface S and in its vicinity. Let us intro
duce the normal unit vector 

n = n ( ) = n (x , x , x ) =∇fx ∇f (1.66)1 2 3 

and tangential differential operators D = ∇ − n 
 

(∂ ∂ n), D⊥ = n 
  × D ./ 

⊥ Φ ≠The assumption of stationary points absence at the surface means that |D Φ| = |D | 0 all 
over S ∪ L. 

Let us introduce the vector function 

  D⊥ Φ D⊥ Φ 
(1.67) 

Then, n ⋅ rot(exp( jkΦ) Fu) = j k exp( jkΦ) F (D⊥ Φu) + exp( jkΦ) D⊥ (F u), and, accounting for 
(1.67), 

   u 
D D 

= 
Φ 

= 
Φ⊥ 

2 2 
. 

⎛
 ⎞
⎛
 ⎞
Φ⊥ ⊥⊥ Φ


jk exp( jkΦ
)
F
=
 n ⋅
 rot 
D
 D
⎜

⎜
⎝
 

⎟
⎟
⎠
 

⎜
⎜
⎝
 

⎟
⎟
⎠
 

⊥exp( jkΦ
)
F
 −
 exp( jkΦ
)
 D
 F
 .
 (1.68)
2 2
Φ
 Φ
D
 D
 

From where, according to Stokes integral theorem, 

� � ⎛ � ⎞⊥ � ⊥τ⋅D Φ D ΦΦ
jk exp ( jkΦ)F dS = exp ( jkΦ) F d l − exp ( jkΦ) D⊥ ⎜F 

2 
⎟ d S, (1.69)∫∫ �∫ 2 ∫∫ ⎜ ⎟DΦ D ΦS L S ⎝ ⎠ 
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where τ is the unit vector of a tangent to L (direction of circulation about edge contour L is coordi
nated with the unit normal vector to surface S defined according to Equation 1.66). Let us note (to 
use it later on) that 

   ∂ Φτ ⋅ D⊥Φ = ,∂ ν 

where ν = (τ × n ) is the unit normal vector to L that lies in the plane tangent to S. Expression (1.69), 
therefore, can be put in the following form: 

1 1
I = K − I . (1.70)0 0 1j k j k 

Here, 

I0 = exp( jkΦ)F dS; I1 = exp( jkΦ) T F dS∫∫ ∫∫ 
S S 

2 ⎤⎡⎛ ∂ Φ⎞
K0 = exp( jkΦ) F ⎢ / DΦ d l,⎥�∫ 

L ⎣⎝⎜ ∂ν ⎠⎟ 
⎦

⊥ ⊥ |2and TF = D ( ( Φ/ |DF D Φ )) is the operator acting on function F.
 
Having applied several times transform (1.70), we obtain for any m that
 

m−1 
(−1) (−1)

I0 = ∑
s 

Ks + 
m

I , (1.71)s+1 m m( jk) ( j k)
s=0 

where Ks, Im are the results of replacing in K0, I0 the function F by TsF, TmF, respectively. From 
Equation 1.71 follows asymptotic formula for the surface integral (1.70) given the assumptions made 
above: 

⎡⎛ ∂Φ⎞ 2 ⎤ ⎛ 1 ⎞⎞ 
exp( jkΦ)F d S = exp( jkΦ) DΦ ⎥Fm d l + o (1.72)⎢ ⎝⎜ m ⎠⎟

,∫∫ �∫ ⎝⎜ ∂ν ⎠⎟ k⎦
S L 

⎣

where 

m−1 s(−1) sFm = Fm (x1, x2 , x3,k) = ∑ s+1T F. (1.73)
( jk)

s=0 

Contour integral in Equation 1.72, if necessary, can be replaced by a sum of squares of contribu
tions from the contour stationary phase points known to be existing in advance. If at some simple 
closed contour encircled by edge contour L the condition 0 ≤ ≤ l holds, then Φl = = Φl 0 , and, 
therefore, the interval 0 < <l lmax contains points with dΦ/dl = 0.

max 
l max l = 
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Let, for instance, these points be l1, l2, …, lN and Φ′′ ( )li ≠ 0, (i = 1, …, N) (the latter condition 
can be replaced by a more general assumption). Then, integral in the right-hand part of Equation 
1.72 can be represented as 

⎛ ⎞N 
2 π ∂Φ ∂ν ⎛ jπ ⎞⋅Fm ( )li ⎜ 2 

⎟ 
⎝⎜
jkΦ li + sg Φ′′ ( )li ⎠⎟

.⋅ exp ( ) gn
⎟ 4∑ k 

⎜ 
Φ′′ li( ) D Φi=1 ⎝ ⎠

l = li 

Method of “neutralizers,” localization of asymptotic contributions. Let us assume that surface 
S and its edge contour L are infinitely smooth, and functions f, F, and Φ are infinitely differentiable 

at the surface S and in its vicinity, the condition ∇f ≠ 0 being held true all over S ∪ L, and the 
0 0 0condition DΦ = 0 being held true at the only point M (x ) = M (x , x , x ) situated at surface S at0 0 0 1 2 3 

distance R > 0 from the edge contour L. 
Having transformed coordinates back into Cartesian system (ξ ξ ξ, , ) with origin at M (x )1 2 3 0 0 

and axis M0 ξ3 coinciding with the direction of the unit normal vector n (x0 ), we get the following: 

ξ ξ ξ ( ξ ξ ξ , x , xx3 ) = ( , , ).f (x , x , x ) = f ( , , ), F x , x , x ) = F( , , ), Φ (x Φ ξ ξ ξ1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2 3 

3 2 
i=1 i 0Surface S, according to [23] (given ρ = ∑ ξ < R0 , where R0 is relatively small, and R < R), 

is described by equation of the form ξ = g(ξ ξ = g3 1, 2 ). At point M0, we have that g = 0, gξ1 ξ2 = 0. 
Now, we introduce the function γ ρ( ), the so-called “neutralizer,” which is infinitely smooth all over 
the semiaxis 0 ≤ ρ < +∞, and 

⎧1 0 ≤ ρ ≤ ε0,
γ ρ( ) = ⎨ ,

0, ρ ≥ ε⎩ 1 

where 0 < ε < ε < R .0 1 0 

Let us “split the unit” as 1 = γ ρ + 1 ( )] in the integral I( ) [ − γ ρ 

I = ∫∫ exp ( jkΦ) F d S = J + J . (1.74)1 0 

S 

Here, J = ∫ ∫ exp ( jkΦ) F dS, S = S ∩ {|x − x | ≤ ε }, F = Fγ , J = ∫ ∫ exp( jkΦ)F d S,1 1 1 0 1 1 0 0 
S S1 0 

S = S ∩ {|x − x | ≥ ε }, F = F(1 − γ ).0 0 0 0   
The edge contour of surface S0 consists of line L and the intersection line L0 of sphere |x − x0 | = ε0 

and S. Function F0 and all its derivatives are equal to zero at line L0, and at line L they coincide with 
corresponding values of function F and its derivatives. Besides, at S0 ∪ L ∪ L0 , there are no surface 
stationary phase points, therefore, according to results obtained above we have 

⎡⎛ ∂Φ⎞ 2 ⎤ ⎛ 1 ⎞
J0 = ∫ exp ( jkΦ) ⎢⎝⎜ ⎠⎟ D Φ ⎥ Fm d l + o 

⎝⎜ m ⎠⎟
, (1.75)� ∂ν k⎦

L 
⎣

where Fm is represented by Equation 1.73. 
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We proceed now with the integral J1 asymptotic. Since ε1 < R0 , then surface S1 is described 
by equation ξ = g( , ), and its edge contour L1ξ ξ is the intersection of surface S and sphere3 1 2 

|x − x | = ε , as1. Let us denote the contour and surface projection onto the coordinate plane (ξ ξ )0 1 2 

L1 ′  and S1 ′, respectively. Then, 

J = exp( j k Φ)F d S ′,1 1 1∫∫ (1.76) 
S ′ 1 

� � 2 2( , ξ ξ F ( , ) = γ ρ F( 1, , g ( , )) 1 + g 1 2 
ρ =ξ ξ ξ ξ g ,where Φ ξ ξ( , ) = Φ ξ ξ , g( , )), 1 1 2 ( ) ξ ξ2 1 2 ξ +1 2 1 2 1 2 ξ 

2 2 2ξ + ξ + g (ξ ξ, ).1 2 1 2 

Multiplier γ ρ L1 ′ and all its partial derivatives of any( ) at contour makes the function F1 

order to vanish given ρ = ε1. Under these conditions and given nonsingular stationary phase 
point M0, double integral in Equation 1.76 allows [24,25] asymptotic representation of the form 

+∞ 
−1 −m 

1 0 mJ ~ k exp[ j k Φ(M )]∑ a k . (1.77) 
m=0 

The major value approximation of integral is 

⎡ ⎤
2π exp(( j π/4) sgn Φ) ⎛ 1⎞⎢ 

⎝⎜ k ⎠⎟ ⎥
⎥⎥ ,J1 = exp( jkΦ(M0 )) ( ) + OF M0 (1.78)

k ⎢ detΦ⎣ ⎦ 

⎡
 ⎤
Φ 2ξ1 1
Φξ ξ2⎢
 + −⎥ given ξ1 = ξ = 0, and sgn Φ = µ − µ2where Φ
 =
 is the difference 

Φξ ξ Φξ⎢⎣ ⎥⎦2
21

between the numbers of positive and negative eigenvalues λ λ of matrix Φ. In elliptical case,1 2 

((λ λ > 0 ), sgn Φ = ±2, and in hyperbolic case λ λ < 0, sgn Φ = 0. 
Elements of matrix Φ can be expressed (as it can be shown) via derivatives of functions Φ� and f� 

depending on ξ ξ ξ,  at the point M0 (0, 0, 0) given l, m = 1,2 as follows: 

1 2 1 2 

,1 2 3 

⎡ ⎤�−1 � �(Φξ ξ )ξ =ξ =0 = fξ ⎢Φξ ξ fξ − fξ ξ Φξ ⎥ (1.79)l m 1 2 3 l m 3 l m 3⎣ ⎦M0 

In this manner, there is no necessity to solve the equation f�(ξ ξ ξ, , ) = 0 with respect to ξ31 2 3 

and to find the explicit expression of function g ( 1, 2 in order to represent integral J1 accordingξ ξ ) 
to Equation 1.78. 

So, the asymptotic of integral I has been localized in form of contributions from the edge L of sur
face S (1.75), and from stationary phase point M0 (1.77), (1.78). This result can be spread onto the case of 
several surface phase points. Besides, the method of “neutralizers” used above allows us, relying upon 
results presented in [24–26], to receive also asymptotic contributions from isolated stationary phase 
points in various cases of their singularity. For example, if, after proper rotation of coordinate system 

in f̂  1, 2 , 3 ) =(ξ ξ ξ 0 about axis M0ξ3, the phase function can be expanded (in the vicinity of point M0) as 

2 p qΦ ξ ξ ) = Φ (M ) + λ ξ + ∑( , λ ξ ξ ,1 2 0 1 1 pq 1 2 

p+ ≥q 3 
p q, ≥0 

2
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and if λ1 ≠ 0, λ03 ≠ 0, then [26] 

1 π Γ(1 3/ ) exp(( jπ/4) sgn λ )
F M0 )J1 ~ exp ( jkΦ(M0 )) ( 

/ 

1 . (1.80)
k5 633 λ1 λ03 

If, now, one considers integral I as a spectral image, then its original will be the integral 

∫∫   
I = δ (t − Φ ( )) F xx ( ) dS. 

S 

Taking inverse Fourier transform of the right-hand part of Equation 1.74 (taking into consider
ation (1.75) and (1.77)), we get the ray expansion for I , the latter being the more accurate the closer 
value t − Φ( )x is to zero. Principle member of this expansion has the form: 

I t x F x S j j 
F M 

S 

= δ − Φ − π π Φ⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

Φ∫∫ ( ( )) ( )d ~ exp sgn 
( 

det 

� � 
2 

) 
4 

0 

� �χ −Φ 
⎤2�� t x D F x l 

L 

( ( )) ( ) .− ∂Φ 
∂ν 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ Φ

⎡ 

⎣
⎢ 

⎦
⎥∫ d 

χ −Φ(t (x)) 

(1.81) 

Here, M0 is the stationary phase point (the one, in which D Φ = 0) at the surface S; δ(t) is the 
Dirac delta-function; χ(t) is the Heaviside step function. So, formula (1.81) can be considered as 
transient analog to the generalization of the M.I. Kontorovich formula [21] considered above in this 
chapter. 

Asymptotic of integrals with edge singularity. Integrals with the edge singularity appear in some 
electrodynamics problems such as the following: 

1. The total diffracted field H ( ) is sought from the primary wave xx H0 ( ) incident on flat 
perfectly conducting infinitely thin screen S bounded by contour L. In this case, Green’s 
formula [27] gives integral representation of the magnetic field strength vector at any point 
x0 outside the screen: 

0 0 
  

0 ∫∫ g x . (1.82)H(x ) = H (x ) + (∇ × J ( )) d S 
S 

  −Here, J x = g x0 , x) = exp ( jkr / 4πr); r( ) is the surface current density; g ( ) ( = x x ;0 

and the scattered field has the form 

      *H x0 ) − H0 (x0 ) =∫∫ exp ( j kΦ) ( 0 , x( F x ) d S, (1.83)* 

S 

given phase function Φ = Φ(x0 , x) = r. 
2. Integrals of the same kind as in Equation 1.83 and with the same phase function are 

obtained for the radiation of aperture antenna in rigorous mathematical model [16,17]. 

* Without restricting generality, hereinafter we assume F to be a component of vector F, as well as we assume k to be 
dimensionless parameter equal to wave number k0 times characteristic screen size. 
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In each of the examples given earlier, the physically necessary condition at the edge is applied 
in order to ensure the energy to be finite in the vicinity of the surface fracture [27]. Because of this, 

the amplitude function F may have singularity at infinitely thin edge i.e. F = F0 / d , where F0 is 
continuous in the vicinity of edge contour, and d = d(x1, x2) is the distance from a point in region S 
to the edge contour. 

In a more general case of fractures with interior angles θ ∈ [0, π], we have F = F0/d
p and 

p = (π − θ)/2π ∈ [0, 1/2]. 
Method for obtaining the short wave asymptotic given edge singularities is presented below as 

applied to integral P over flat and strictly convex region S with relatively smooth edge contour L 
and function F0: 

F x
P =∫∫ exp( jkr) 0 ( )

  d S, (1.84)
d x 

S 
( ) 

0 2 0 2 2 0where r = (x − x ) + (x − x ) + h , (h = x ≠ 0).1 1 2 2 3 

Point M (x0 , x0 , 0) ∈S is separated from the edge contour L by distance R1 > 0. Then, complex0 1 2 

directivity diagram is as follows: 

  F0 x  ( )
( 0  Q = ∫∫ exp (− jk R ⋅ x)) d S, (1.85)

d x
S 

( ) 

where R0 = (0,− cos ψ, sin ψ). 
Integral P is convenient to be analyzed if we set the edge contour L by an equation in polar coor

dinates (ρ, θ) with the center at point M0: 

ρ = ω θ( ), 0 ≤ θ ≤ π2 . (1.86) 

In this case (as it can be shown), the amplitude function in integral P can be represented as a ratio 

ω θ − ρF1( ,ρ θ)/ ( ) with numerator, having no singularities. We thus obtain 

2π ω θ 
F ρ θ ρ ρd

( ) 
( , )2 2 1P = d θ exp( jk ρ +h ) . (1.87)∫ ∫ ω ( ) − ρθ

0 0 

2 2Let us substitute new variable r = ρ + h into integral P: 

2 π Ω 

∫ ∫ −1 2P = dθ exp( jk r)(Ω − r) Gr d r, (1.88) 
0 h 

2 2 2 2 2 2 1 2where Ω Ω θ = ω θ +( ) h , G = G ( ,r θ) = F1 ( r − h , θ [( ( ) r − h )/(Ω( ) r)]]= ( ) ) ω θ + θ + . 

Given h ≤ r ≤ Ω(θ), we introduce infinitely differentiable by r (given every fixed value 
⎧ , h ≤ ≤ ε1of θ) neutralizers γ0(r, θ) and γ1(r, θ), such that γ = 1 − γ , γ ( ,r θ) = ⎨ 
1 r 

1 0 0 , ε ≤ ≤ Ω θ0 r ( ) 

h < ε < ε < min θ1 0 Ω ( ) .Given the condition that 1 = γ0 (r, θ) + γ1 (r, θ), we obtain P = P0 + P1.( ) 
⎩ 0 

0≤θ≤ π2 
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Let us consider the asymptotic of integral P. The stationary phase point ρ = 0 (r = h) contribution 
is as follows: 

∫ ∫
2π ε0 

−1 2P0 = dθ exp ( jk r)(Ω − r) / G γ 0 r d r. (1.89) 
0 h 

Since function G0(r, θ) = (Ω − r)−1/2 Gγ0r, given every fixed value of θ, is continuous by r ∈ [h, 
ε0] along with all its derivatives (they equal to zero given r = ε0), then integrating by parts gives us 
the following expression: 

N 2π 
m m−1(−1) exp( jkh) ∂ G (h, θ) ⎛ 1 ⎞

P0 = ∑ ( jk)m ∫ ∂r 
0 
m−1

d θ + O 
⎝⎜ kN +1 ⎠⎟

. (1.90) 
m==1 0 

In principle value approximation, we have 

2π 
h exp( jkh) dθ ⎛ 1 ⎞

P = − F (M ) + O . (1.91)0 1 0 ∫ ( ) ⎝⎜ 2 ⎠⎟jk ω θ k 
0 

Given asymptotic expansion of integral 

2π Ω 
−1 2P = d θ exp ( jkr)(Ω − r) / G γ r dr, (1.92)1 ∫ ∫ 1 

0 ε1 

our goal is achieved by integrating the inner integral by parts. However, due to singularity of func­
tion (Ω − r)−1/2 at point r = Ω, it cannot be differentiated under the integral sign. So, instead of 
ejkr/jk and ejkr/(jk)2, one must use the sequence of special kind of antiderivatives to the product 
ejkr(Ω − r)−1/2 = U0(r, θ) or, in other words, one must use the sequence of functions 

+ ∞ 
m(−1) 

j 

m −1 −1 2Um ( ,r θ) = ∫ (t − r) exp( jkt)(Ω − t) t (m = , ,……), (1.93)d , 1 2
(m − 1)! 

r 

that possess the following properties: 

∂Um ( ,r θ)
1. = Um−1( ,r θ), (m = 1,2,. . .),∂r 

− 1 2)(−1) Γ(m /
2. U ( , ) = exp (π j (m + 1 2)/2) exp ( jkΩ),Ω Ω 

m 

/m m−1 2(m − 1)! k 
1 Γ (m − /1 2)

3. , (h ≤ r ≤ Ω).Um ( ,r Ω) ≤ 
m −1 2(m − 1)! k 

The following asymptotic representation stems from these properties: 

2 π 
m−1N − π ) Γ(m − 1 2) ⎛ 1 ⎞−1) exp ( j (m − 1 2/ )/2 /

P = 
m−1 2/ ∫ exp( jkΩ Ψ θ O 

⎝⎜ kN +1 2/ ⎠⎟∑ ( 
) (( ) d θ + , (1.94)1 m−1k 

m=1 0 
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w y x( ) , 2 2− in 

where 

m −1∂ [G r θ r( , ) ]Ψ ( )θ = .m −1 m −1∂r 
r = Ω ( )θ 

In the principle value approximation 

2 π 
exp ( j /4− π ) π ⎛ 1 ⎞

P1 = exp( jkΩ) F ( , ) ωΩ d θ + O1 ω θ 
3 2 

.
⎠⎟⎝⎜ kk ∫ 

0 

Now, we are ready to consider asymptotic representation of integral Q (1.85). We restrict our
selves with the case of edge contour L being symmetrical with respect to one of coordinate axes, as 
well as by obtaining only two major members of asymptotic representation. 

Let L in coordinates (x, y) be set by equations x = ±w(y) (a ≤ y ≤ b) and, in the vicinity of points 
a, b w (y), to have the following asymptotic: 

⎪p y y − a , (y a 0⎧ ( ) → + ) 
w y ⎨( ) ~ . 

⎪q y b − y , (y b 0( ) → − )⎩

In this case, p(y), q(y), w2(y) are smooth enough within [a, a + ε), [b − ε, b), and [a, b], respec­
tively (given ε < (b − a)/2). 

Amplitude function in Equation 1.85 can be represented as the ratio f (x y, ) 
which f(x, y) does not have any singularities. Let us assume that this function is satisfactorily smooth 
over S ∪ L. After some math, we obtain the following: 

b 

Q = ∫ exp ( jky U y( ) y, (k = k cosψ) d ), (1.95) 
a 

∫ 
1

d ξ 
2 

U y = f (ξ ( ), y)( ) w y , (1.96) 
−1

1 − ξ 

2 2 2
1 

∂ ξw y y d ξ 1 ∂w y 
1 

∂ f (θ ξw yf ( ( ), ) ( ) ( ), y) ξ dd ξ
( )U ′ y = + (0 < θ < 1). (1.97) 

−
∫ 

1 
∂y 1 − ξ2 2 ∂y 

−
∫ 

1 
∂x2

1 − ξ2 

From Equations 1.96 and 1.97, it follows that 

U a = f ( , a)π, U b = f ( , b( ) 0 ( ) 0 )π, 

⎛ ∂ f (0,a) 1 ∂2 f (0, a) ⎞
U ′ a = + 

2 
A

⎠⎟
π,( ) (1.98)

⎝⎜ ∂y 4 ∂x 

⎛ f 0, b 2 ⎞∂ ( ) 1 ∂ f (0, b)
U ′ b = + 

2 
B 

⎠⎟
π,( ) 

⎝⎜ ∂y 4 ∂x 
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where 

⎡ ⎤
2 

⎡ ⎤
2 

w y( ) w y( )
A = lim ⎢ ⎥ , B = lim ⎢ ⎥ . 

y a 0→ + ⎢⎣ y − a ⎦⎥ y→ −b 0 ⎣⎢ b − y ⎥⎦ 

Integrating by parts twice into Equation 1.95, we obtain the following asymptotic formula: 

2⎡ ⎛ f 0, b ⎞ ⎤1 1 ∂ ( ) 1 ∂ f (0, b)
Q = π exp( jkb) ⎢ f (0, b) − + B ⎥2 2 

⎣⎣⎢ jk ( jk ) ⎝⎜ ∂y 4 ∂x ⎠⎟ ⎦⎥ 

⎡ 1 1 ⎛⎛ ∂ f (0, a) 1 ∂2 f (0, a) ⎞ ⎤ ⎛ 1 ⎞− π exp( jka) ⎢ f (0, a) − + A ⎥ + O . (1.99) 
⎣ jk ( jk )2 ⎝⎜ ∂y 4 ∂x2 ⎠⎟ ⎦ ⎝⎜ k 3 ⎠⎟ 

In this manner, the asymptotic representation of integral Q obtained above is of discrete nature 
and it consists of contributions from vicinities of points (0, a) and (0, b) of edge contour. Such 
phenomenon is known well in the short wave diffraction theory and it is related with the “specular 
point” concept in radar. 

Methods used above to compute integrals P and Q allow us to obtain asymptotic representation 
of integrals with other phase functions and other types of edge singularities. 

Let us apply Kontorovich’s formula generalization (1.81) obtained above to solve the prob
lem of electromagnetic wave diffraction at perfectly conducting convex body (in physical optics 
approximation). 

1.4.2 imPulSe reSPOnSe Of Perfectly cOnductinG SmOOth cOnvex bOdy in 

biStatic radar (PhySical OPticS methOd). eliminatiOn Of terminatOr 

diScOntinuitieS 

Using asymptotic expression (1.81), one can obtain impulse response of perfectly conducting smooth 
convex body in general case of bistatic radar. 

Let the object with surface S be illuminated with plane monochromatic electromagnetic wave 

E0 = p exp( jk0 (a + R0 ⋅ x)), 

ε   0 0 0 0H = (R × p) exp( jk0 (a + R ⋅ x)). (1.100)µ0 

Here, a is the distance from the zero phase plane to the coordinate origin, p is the polarization 

unit vector, R0 is the wave unit vector of incident wave. 
Operational original for the field (1.100) is the pulsed plane wave 

E 0 0 0( , | ) = p 
 δ ( t a R ⋅ x  ),t x R − − 

     ε   
H 0 0 0 0 0( , | )t x R = (R × p) (t a R ⋅ x).δ − − (1.101)µ0 
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Field scattered from the body in the direction of unit vector r 0, when the body is illuminated with 
wave (1.100), can be presented in the form: 

   exp( jk r )      scat 0 0 0 0H (rr ) ≈ jk0 ∫∫∫ (H⊥ × r ) exp (− jk0 (r ⋅ x)) d S,
4 π r 

S 

where H is total field at the surface S. Physical optics approximation gives us the following expres­
sion for the scattered field: 

scat 0H (rr 
  

) ≈ jk0 ∫∫ exp ( jk0 Φ)A d S, (1.102) 
Sillum 

where Sillum is the object surface part that illuminated with the wave (1.100), 

1 ε        0 0 0 0 0( n × (R × p) ) × r , Φ = a + r + (R − r ) ⋅ x.A = 
2 π r µ0 

Impulse response of the object, in its turn, is the original, spectral image of which in high-
frequency approximation is represented by expression (1.102): 

     ∂    
H scat 0( , | ( ))t x r ) ≈ − δ (t − Φ x Ad S . (1.103)∂t ∫∫ 

Sillum 

In this manner, expression for the impulse response can be obtained using formula (1.81) simply 
by differentiating it by t. 

By the way, we are going to get a representation for the solution estimate to stationary diffraction 
problem described by expression (1.102). 

To achieve this, we evaluate, first, the contribution from stationary phase point. The stationary 
phase point M0 is determined by the following equality at point M0: 

   T   
T T0 0 0 0D Φ = R − r = R − r = 0 

or 

0 0R ⋅ n = − ⋅ n,r 

where n is the normal to Sillum at the stationary phase point M0. 
In the vicinity of point M0, we introduce local coordinate system ξ1, ξ2, z described above in 

Section 1.4.1 (here, z = ξ3). In the vicinity of point M0 at Sillum 

⎛ a a ⎞11 2 22 2 2 2ζ= − ξ + a ξ ξ + ξ + o(ξ + ξ ),1 12 1 2 2 1 2⎝⎜ 2 2 ⎠⎟ 
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or, within accuracy of the higher-order infinitesimal, 

1 ⎛a11 a12 ⎞ζ = − ξ 
 ′ Aξ 
  
, A = .

2 ⎝⎜a a ⎠⎟ 
21 22 

In this case, in the vicinity of M0 we have 

1   ⎛ ⎞0 0 0Φ ξ ξ , ) = a + r + l l 
2 ( l ⋅ )⎝⎜

ξ′ 
⎠⎟

( ξ + ξ − n Aξ ,1 2 1 1 2 2 M0 

0 0 0where l = R − r ,  so that 

2  ⎛ ∂ Φ ⎞ 1 0   = − l ⋅ n a ,M i k 0⎝⎜ ∂ξ ∂ξ ⎠⎟ 2 ( )
i k M0 

1   0   
M 2 MΦ = − (l ⋅ n )A. 

0 0 

Taking into account that 

0 0 0( l ⋅ nM ) = 2( R ⋅ nM ) = −2 ( r ⋅ nM ),
0 0 0 

we get 

 0  ΦM = (r ⋅ nM )A. 
0 0 

  0  Since nM0
 is the unit vector of external normal to Sillum, then, evidently, (r ⋅ nM ) > 0. 

0 

Let λ1, λ2 be the eigenvalues of matrix A. Then, 

sgn ΦM = sgn A,
0 

 0   2  0   2 
det ΦM0 

= (r ⋅ n ) det A = (r ⋅ n ) λ λ .M M 1 20 0 

Next, given proper rotation of coordinate system about axis z, we get equation for Sillum in the 
vicinity of M0 

1 2 2ζ = − (λ η + λ η ) +�,1 1 2 22 

from which it follows that λ1, λ2 are the principal curvatures of Sillum at point M0: 

λ = æ , λ = æ ; 1 1 2 2 

2  0  det ΦM = cos ( r , nM ) ⋅ æ æ .1 20 0 
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To move on further, we need to assume that æ æ1 2 ≠ 0. Particularly, if surface S around point M0 

is strictly convex, then æ1 > 0, æ2 > 0 and 

det ΦM = æ æ cos2 r 0 , n ,1 2 ( M )0 0 

sgn ΦM0 
= 2. 

If, in its turn, M0 is the saddle point, then æ æ < 0, sgn Φ = 0. For definiteness, we give all the 
considerations below for the case of æ1 > 0, æ2 > 0. Using expression (1.78), we get contribution 
from the stationary phase point into the scattered field: 

1 2 M0 

ε [nM × (R0 × p)] × r 0   0 0 0scat 0H (r r ) ~ − ⋅ exp( jk0 (a + r + l ⋅ xM )). (1.104)st ph.. µ    0 
0 r æ æ cos(r 0 ,nMM )1 2 0 

Boundary of the surface Sillum is terminator L, which determines the “light-shadow” border line. 
We estimate its contribution into the scattered field asymptotic using (1.75): 

   /  ∂Φ ∂νscat 0 jk(H (rr )) . ~ ∫ e 0Φ A   2
dl. (1.105)cont L 

L D Φ 

Here, 

∂ Φ   
0 
   

0 
   = l ⋅ ν = l ⋅ τ × n ,∂ ν ( ) 

  
T 2 2    22 

0D Φ = l 0 = l 0 −(l ⋅ n) . 

Let us assume that contour L is defined parametrically: 

x = x ( ).t 

Then, contour points of stationary phase can be found from equation 

0l 
  

⋅ x 
 
′ ( )t = 0, 

and let these points be Mi (i = 1, . . ., N). Then, integral in Equation 1.105 can be computed 
asymptotically: 

  2 (A 
 ) M 

(l 0 τ n ) Mscat 0(H 
  

(r r )) . ~ ∑ 
N 

cont L 2     
m 

m 
0   2l 0  

0 ⎛ d τ⎞m=1 − (l ⋅ nM )
mk0 l ⋅

⎝⎜ d l ⎠⎟ 
Mm 

⎛   
0   jπ ⎛   0 dτ⎞ ⎞ 

⋅ exp⎜ jk0 (a + r + l ⋅ xM ) + sgn l ⋅ ⎟ . (1.106)
4 ⎝⎜ dll ⎠⎟⎝ m 

Mm ⎠ 
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It is taken into account here that 

  ⎛ dτ
 

⎞( Φ′′( )l )M 
= l 0 ⋅ , 

m ⎝⎜ d l ⎠⎟ 
Mm 

where 

  x ′( )t d τ   d t τ′ ( )t 
, = t  τ ( )t =   τ′( ) = .

d l d lx ′( )t x ′ ( )t 

So, having combined formulas (1.104) and (1.105), we get the following: 

� � ε [nM × (R0 × p)] × r 0 
scat 0 0 0H (rr ) ~ − �0 �µ0 r ⋅ æ æ (r ⋅ nM0

)1 2 

2 ⎞� ⎛ ∂Φ0 jk0Φ dl. (1.107)× exp( jjk0 (a + r + l ⋅ xM0 
)) + �∫ e A

⎝⎜ DΦ 
⎠⎟∂ν 

L 

Formula (1.107) gives solution to the stationary diffraction problem, where perfectly conducting 
smooth convex body is illuminated by plane wave (1.100). 

Expression of the impulse response, in its turn, for the object under consideration (scattered field 
in case of transient pulsed illumination of the object by the field (1.101)) can be considered as the 
original, spectral image of which is given by formula (1.107): 

� � � ε [nM × (R0 × p)] × r 0 � �
H scat 0 0 0 0( ,t x r| ) ~ − δ((t a r l ⋅ x 

0 
− − − )� � Mµ0 r ⋅ æ æ (r 0 ⋅ nM )1 2 0 

0 � � ⎛ ∂Φ 2 ⎞
(t a r l ⋅ )+ δ − − − x A DΦ dl. (1.108)�∫ ⎝⎜ ⎠⎟∂ν 

L 

So, in the physical optics approximation of impulse response, we have singled out the members 
responsible for terminator discontinuities appearing due to inadequate description of surface current 
density in the vicinity of “light-shadow” boundary in physical optics approximation. Solution obtained 
above for the stationary diffraction problem can be improved, like that of [6], by subtracting the major 
members of terminator asymptotic described by (1.106) from physical optics solution obtained above. 

Impulse response (1.108) can be smoothed out by subtracting the operational original, which cor
scat 0responds to the operational image (H (r r )) . :cont L 

0     N 
2   (l τn 

  
)

H scat 0( ,t x r| ) ~ ∑ (A) Mm 

Mm 

2  cont L. 0   2  
0 ⎛ d τ

 
⎞m=1 l 0 − (l ⋅ nMm 

)l ⋅
⎝⎜ ⎠⎟d l 

Mm 

⋅ exp 
⎛
⎜⎜
j 

π ⎛
⎜sgn 

⎛
⎝⎜
l 
  

0 ⋅ dτ
  

⎠⎟
⎞ − 1 

⎞
⎟
⎞
⎟⎟

χ(t − − −a r l 
  

0 ⋅ x  

  
Mm 

) 
, (1.109)

4 d l 0⎝⎝ ⎝ Mm ⎠ t − − −r l ⋅ xMm 
⎠ a 

from the right-hand part of Equation 1.108. 
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�	 � � 

� 

Φ( )|L constx = 

and, consequently, 

l 0 ⋅ x 
  = c at L, 

where c is some constant. 
It follows from here that 

2 ⎞�	 ⎛ ∂Φ
H scat 0(	 (rr )) . ~ exp( jk0 (a + r + c)) A DΦ d ,lcont L �∫ ⎝ ∂ν ⎠ 

L 

2 ⎞�	 � � � ⎛ ∂Φ
HH scat 0(	 ( ,t x r| )) . ~ (t a r cδ − − − ) A D Φ dl.cont L ⎠�∫ ⎝ ∂ν 
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Representation of the impulse response obtained in such way does not have spurious peaks, 
absent in reality, and which appear due to discontinuous character of surface current density adopted 
in physical optics approximation. 

Let us mention also a special case, where terminator L belongs to the plane with normal vector 

l 0. In this case 

It can be seen that intense spurious “terminator” peak appears in this case in impulse response, 
which is needed to be eliminated. 

In some cases, slightly different approach can turn out to be more preferable for estimating 
impulse responses of complex scatterers in bistatic radar. Such approach (also developed by the 
authors of this book) uses the physical optics approximation too, but it passes by the need of estimat­
ing scattering contributions from stationary phase points [28–30]. 

Therefore, in this chapter, we presented the method for computing impulse responses of perfectly 
conducting smooth objects in bistatic radar case. 

In the asymptotic representation obtained below, we also singled out the summands respon­
sible for appearance of spurious peaks that were expressed by contour integral. The major mem­
bers of this integral asymptotic have been obtained, which are needed to be eliminated from the 
impulse response representation in order to smooth it out. The latter allowed us to increase the 
computation accuracy over time period up to arrival moment of creeping wave traversing the 
shadow zone. 

All these results rely upon the generalization of M.I. Kontorovich formula obtained above, which 
gave us the scattering contribution from edge contour in two-dimensional method of stationary 
phase in case of nonflat region and nonsingular stationary phase points of any type. 

1.5	 remarks on reCiproCity prinCiple for the sCattered fields 
in physiCal optiCs approximation 

As it is known, the reciprocity principle holds true with respect to the fields satisfying the Maxwell 
equations and, in general, any boundary conditions at the surface of a scatterer. However, when we 
deal with the fields approximating real ones (such as high-frequency asymptotic solutions to the 
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⎠
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⎟
⎠ 

) 

) 

E (x a p|
     

(x a p| 

2 E
exp( jk a)0k p,
 ,,
0 

0 

(1.110)
=
 ⎜
⎝
 

,
ε
 4
π
 0    0  a (x R|H
 H
 p,
 ,
 

where 

x⎛
 ⎞
⎟
⎟
⎟⎠

)) 

,
 
x R0| 

−
 0 ⋅
 0 0 ⋅
(
 (
 ))exp( 0 ((R
 R
 jk R
p p⎛
 ⎞
⎟
⎠
 

0 (
 )
 

)
 

E
 ⎜
⎜
⎜⎝


, p 
0ε (1.111)
=
⎜

⎝
 0 0 ⋅
0    0   (
 )exp( ( ))
R
 jk R
(x R|H
 ×
 p x, p 0µ
0 

which is the plane wave field. 
It follows from vector integral equations of Green’s kind for electromagnetic fields [11] and 

formula (1.110) that the field scattered from object V in far-field zone at a point with radius-vector 
r = r ⋅ r 0 has the asymptotic representation (given a → +∞, r → +∞): 

     
 scat 0 0⎛
 ⎞
 ⎛
 ⎞
scat E
(
 )
 (
 |
 )
E
 2 R
 
⎟
⎠ 

+ 
⎟
⎠ 

exp ( 0 ( r)) 

) ) 

E scatin which vectors , H scat constitute the complex scattering diagram that is the field scattered in 
direction r 0 (in far-field zone) given incidence of plane wave (1.110) onto V. In this case, 

E 
  
scat  0 

  
0   µ0       0 0 0(r |R , p) = − jk0 (K − r (r ⋅ K))exp(− jk0 (r ⋅ x))d S,ε0 

∫ 
S (1.113) 

scat 0 0 0 0H (r |R , p) = − jk0 ∫ (r × K)exp(− jk0 (r ⋅ x))dd S, 
S 

Htotalwhere K = n ×  and Htotal is the total field excited by plane wave (1.110). 
From the reciprocity principle in its usual formulation 

           scat scatq ⋅ E r a p) = p ⋅ E (a r q (1.114)( | , | , ), 

as well as from asymptotic formula (1.112), and the following expressions: 

r = r ⋅ r 0 , a = − ⋅ R0a 

k0 jk 
(44 

r |a p, r pa 
ar 

,
 (1.112)
=
⎜
⎝


⎜
⎝


   
 ,
ε
 π
 2)
  0 
  

0  scat H scat(
 (
 |
H
 R
0r |a p, r p,
 

  
      

  

34 Electromagnetic Wave Scattering by Aerial and Ground Radar Objects 

Maxwell equations), it turns out that reciprocity principle may not hold true. We consider this issue 
in more detail with respect to physical optics method used in Section 1.4. 

Let the perfectly conducting scatterer V to be bounded by closed surface S and let the Cartesian 
coordinate system origin to be placed inside the region V. 

We consider the object V as being illuminated by electric dipole, with vector-moment p 
          

that is localized at the point with radius-vector a = −a R0 . Primary field E (x a p), H (x a p| ,| , ) 

excited by the dipole has the following asymptotic representation given fixed unit vector R0 and 
a → +∞: 



  

 

    

  

  

   

  

  

  

 

 
  

                    

              

           
  

          

  

            

    
                

                

                

    

        

  
    

follows the reciprocity principle for the complex scattering diagrams: 

scat 0 0 scat 0 0q ⋅ E (r |R , p) = p ⋅ E (−R | − r ,q). (1.115) 

Equalities (1.114) and (1.115) are strict, which rigorously follows from Maxwell’s equations. Let 
us study the satisfiability of equality (1.115) in case of scattered fields computed in physical optics 
approximation given Kirchhoff’s approximation in formulas (1.113) of equivalent surface current 
density 

K x ≈ 2n × H 0 (x R0 , p)( ) | 

⋅ R0 K x( ) ≈0 ) ⊂over that part of S ′(R
 S
 where 0 (
 is the unit vector of inner normal), and 0
>
n n
over complementary part S S\ ′(R0 ). Under this approximation, we have 

       
E scat 0 0 0 0 0 0(r |R , p) = −2 jk0 ∫ [(R − r (r ⋅ R ))(n ⋅ p) 

S ′ (R0 ) 

           0 0 0 0 0−− ( p − r (r ⋅ p)(R ⋅ n))]exp( jk0 (R − r ) ⋅ x)d S, (1.116) 

     
E scat 0 0 0 0 0 0(−R | − r ,q) = −2 jk0 [ − (r − R (R ⋅ r ))(n ⋅⋅ q) +∫ 

S ′ (−r  0 )
             0 0 0 0 0+ (q − R (R ⋅ q)(r ⋅ n))]exp( jk0 (R − r ) ⋅ x)d S. (1.117) 

  00 0 0For the monostatic radar, where −r = R , the surfaces S ′(R ) and S ′(−r ) coincide, and 
0 0 0 0 0 0 0 0R − r (r ⋅ R ) = r − R (R ⋅ r ) = 0, so that 

E scat 0 0 0 0(r |R , p) = 2 jk0 ( p − r (r ⋅ p)) ⋅ I, (1.118) 

E scat 0 0 0 0(−R | − r ,q) = 2 jk0 (q − r (r ⋅ q)) ⋅ I, (1.119) 

where 

  
0    

0  I = (R ⋅ n)exp(2 jk (R ⋅ x))d S. (1.120)∫  0 

S ′(R0 ) 

From Equations 1.118 and 1.119 follow the equalities (for the case −r 0 = R0 

                  scat 0 0 scat 0 0 0 0q ⋅ E (r |R , p) = p ⋅ E (−R | − r ,q) = 2 jk0[( p ⋅ q) −− (r ⋅ q)(r ⋅ p)] ⋅ I. 

So, in the monostatic radar case, equality (1.115) holds true also for the scattered fields computed 
in physical optics approximation. 

0 0Yet in case of bistatic radar (−r   ≠ R ), integration in Equations 1.116 and 1.117 is done over dif
ferent noncoinciding varieties (the scalar products of integrands with q and p respectively do not 
coincide in this case either). 
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E0 x	 = p exp(− jk0 (R0 ⋅ x( )	 )), 

      ε   0 0 0H x	 = ( p × R µ exp(− jk0 (RR0 ⋅ x)),( ) ) 
0 

where −R0 is the unit vector of ray from radar to a target, and p = p ⋅ p0 is the unit vector of polar
0 ⊥	 0ization, p R . 

The RCS is determined as [31] 

2 
rec	 scatp ⋅ E 

σ = lim 4πR2
2 ,	 (1.121)

R→∞  0	 0p ⋅ E 

precwhere R is the distance from scatterer to the receiving antenna, 
  

is the unit vector determin

ing polarization of receiving antenna, Escat is the field scattered by the object toward the receiving 
antenna. 

EscatSo, computation of the scatterer RCS reduces to finding scattered field at the reception 
point. 

scat ( ) 0If E x H x
 	

E x 
  = E x − E ( ),x 

 
( ), ( ) is the total field, then scattered field ( ) as it follows from 

the Lorentz reciprocity theorem, can be expressed as 

           scat ⊥ eT T e⊥j q	 E (x0 ) = ∫ (H x ⋅ E0 ( | 0 ,q) − E x 0 | 0 (1.122)ω ⋅	 ( ) x x ( ) ⋅ H ((x x ,q))d S, 
S 

           	   
where e (x x| ,q), e (x x| ,q) is the field of point electric dipole with vector-moment q placedE0	 0 H 0 0 

at point x0 , the point being situated anywhere outside S and q having arbitrary amplitude and 
direction. 

We assume that q = p and let the radius-vector of observation point be x0 = RR0.
 
We substitute in Equation 1.122 asymptotic expressions, given R → ∞, for vector-functions 
            
eE0 (x x|	 0 , p), H 0 

e (x x| 0 , p) 

        e	 e 0 
0 | 0 ) (x R , pE (x x0 , p) ~ Ω(k R E0 | ),
         e	 e 0x x k ( | , pH 0 ( | 0 , p) ~ Ω( 0 RR)H 0 x R ), 

1.6	 rCs of three-dimensional objeCts and its relation 
to the rCs of tWo-dimensional objeCts 

Let the finite size object bounded by surface S be illuminated with plane wave (from radar) 

36 Electromagnetic Wave Scattering by Aerial and Ground Radar Objects 

So, the reciprocity principle in bistatic radar case (given physical optics approximation) does not 
hold in general. 

This conclusion is of even more practical value since bistatic radar is an important part of mod­
ern radar; and physical optics approximation together with reciprocity principle is the common 
approach used in electrodynamics, sometimes without thorough grounding. 

­

­



  

  

 
      

 

 

 

 
 

  

 
 

 

  

  

 

              

  

  

        

              
  

    

      
              

      

      

    

where 

exp( jk R)Ω(k R) = 0 ,0 4πk R0 
(1.123) 

E 
  
e      2 0    
0 (x R| 0 , p) = k0 ω µ

ε0 

pT exp(− jk0 (R 
   

0 ⋅ x)), 

e 0 2 ⊥ 0H 0 | k0 0 ⋅ x)),(x R , p) = − ωp exp(− jk (R 
     (1.124) T   0 0    0   

p = p − R (R ⋅ pp), p⊥ = R × p. 

Formulas (1.123) and (1.124) represent the field of linearly polarized plane wave with wave vec­

tor (−R0 ) that is arriving from infinite distance. These asymptotic representations hold true given 
x ∈ S and R ≫ D, where D is the diameter of the object being illuminated by radar (i.e., its largest 
linear measure). 

Now, scattered field Escat ( )  in far-field zone has the following form:x 

jω p ⋅ Escat (RR0 ) ~ Ω( 0 ) 0
2ω∫ exp(− jk0 (R0 ⋅ x  k R k )) 

S 

   ⊥   µ0 
  

0    ⋅ [ p ⋅ H (xx) (R × p) E ( )]dS− ⋅ ⊥ x , (1.125)ε0 

where H ⊥ = n × H, E⊥ = n × E, and n is the unit normal vector to S. 
Once we assume dealing with perfectly conducting objects, i.e., ET |S = 0 then equality (1.125) 

reduces to the following: 

          µ0scat 0 2 0 ⊥  Ω k R k xjω ⋅p E (RR ) ~ ( 0 ) 0 ω∫ exp(− jk0 (R ⋅ x))( p ⋅ H ( ))) d S. (1.126)ε0
S 

Nonetheless, it is worth mentioning that representation similar to expression (1.126) follows from 
Equation 1.125 also for a wider class of scatterers, boundary conditions for which can be (with sat
isfactory accuracy) expressed by an impedance type condition: 

µ
ET = 0 Z H⊥ at S. (1.127)

ε0

Indeed, given boundary condition of the kind (1.127) (satisfied, for instance, at the surface of a 
body with great but finite conductivity, or at the surface of some kinds of RAMs used for camou

scat ( 0 )flage, etc.), representation of vector E R R can be obtained by replacing vector p by vector 
0 ) H⊥ ( ) of formula (1.126).pZ = p + (R × p Z in scalar product p ⋅ x 

From formula (1.126) follows rigorous expression for RCS of perfectly conducting object. Since 

p ⋅ E0 ( )x = p, then, given R/D ≫ 1, the following asymptotic equality takes place: 

2 2 
scat 0p ⋅ E (RR ) π    1     µ2 0 ⊥⊥ 04 πR 

2 2 
~ exp(− jk0 (R ⋅ x)) ( p ⋅ H ( ))x d S ,∫ p ελ 0p ⋅ E0 

S 

37 Elaboration of Scattering Electrodynamics Theory 

­

­



  

  

             

              
             

  

 

  

 

  
 

  

   

 

  

  

  

        

      

    

 	     
    

    

   	    	   µ   

from where we derive the strict expression for RCS: 

2 
   1    πσS

III ~ 2 exp(− jk0(R0 ⋅ x)) ( p ⋅ H⊥( ))x d S . (1.128)∫	 pλ 
S 

µ 
ε 

0 

0 

The use of exact formula (1.128) requires the surface current density H ⊥ over S to be found in 
advance by means of any rigorous method (eigenfunction method, integral equation, etc.). 

In practical RCS computations for the objects of large dimensions, far beyond resonant scattering, 

it is common to express the surface current density H ⊥ according to physical optics approximation, 
which leads to replacement of formula (1.128) by the widely known computational expression [7,8]: 

2 

4πσS
III ~ 2 exp(−2 jk (R0 ⋅ x))(n ⋅ R0 )d S ,	 (1.129)∫ 0λ 

Sillum 

where Sillum is the part of the surface S illuminated by incident plane wave. 
In the same way, in case of two-dimensional model of cylindrical body with the directrix l that 

is not restricted along generating lines and that is illuminated by plane wave, front of which being 
parallel to generatrix, the RCS value per unit length of generatrix is as follows: 

2 
0 scat 0p ⋅ E	 (RR )

IIσ = lim 2πR 2 .	 (1.130)l 
R→∞ p0 ⋅ E0 

This value, as it will be shown duly in rigorous theory, is expressed differently for E- and 
H-polarizations. 

We introduce Cartesian coordinate system Ox1x2x3 with axes tied to the cylindrical scatterer 

in such manner that unit vector e3 be parallel to generatrix, and unit vector e1 = R0 (which is the 
unit vector of ray coming from target to radar). We assume for E-polarization that p0 = e3 , and 

0	 0 0p = −e2 for H-polarization. Let us note that given R → ∞ and p 
  ⊥ R 

  
, 

∞   	     
∞ 
k e 0 0E0 ( | 3 0 3x RR , p)d x ~ p Ω(k R)d x∫	 ∫ ε0

2 

−∞	 −∞ 

  k0
2	 

(11   II ω µ0 
  

0   
0 0 0 0 = −p H ) (k R) pΩ ( )~ k R k exp(− jk (R ⋅ x)), (1.131)

4 jε0 R→∞ ε0
0 

where 

1 2 ⎛ π j ⎞
(k R) = − exp jk R − .0 0ΩII 

4 j π k R ⎝⎜ ⎠⎟ 
0 4 

From Equations 1.122 and 1.131, it follows that 

∫ ε0 

  
0 scat 0 II 0 ⊥ 0 0p ⋅ E	 (R R ) ~ Ω (k R k ( p ⋅ H) ) exp(− jk0 (R ⋅ x)))d ,l (1.132)0 0 

l 
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where, given E-polarization 

p0 = e3 , E = e3 u, 

 0 
  

⊥ 1 ∂u
( p ⋅H ) = − , (1.133) 

jωµ 0 ∂n 

and given H-polarization 

p0 = −e , H = e v, 
   2 

  
3 

0 ⊥ 0( p ⋅ H ) = (n ⋅ R )v. (1.134) 

So, according to Equations 1.130 and 1.132 

2 

II πσ = ( p0 ⋅ H⊥ ) exp(− jk 0(R0 ⋅ x))d l , (1.135) ∫  
  

l 2λ 
l 

µ 
ε 

0 

0 

where ( p 
 0 ⋅ H 
  

⊥ ) are determined by expressions (1.133) or (1.134), depending on polarization (paral
lel or perpendicular). 

In physical optics approximation, at the illuminated surface of object we have 

        ε  0 ⊥ 0 0 ⊥ 0 0 0p ⋅ H ≈ 2 p ⋅H = 2(n ⋅ R ) exp(− jk 0 (R ⋅ x)), µ0 

and formula (1.135) reduces to 

2 

2πσl
II ≈ (n ⋅ R0 )exp( −2 jk (R0 ⋅ x))d l . (1.136) ∫ 0λ 

lillum 

If the scatterer is the infinitely thin perfectly conducting screen, then one may integrate over 
S+ and S− (over l+ and l− respectively) in exact formulas (1.128), (1.135) given fixed direction of the 

⊥ + − ⊥ ⊥normal. As a result, these formulas will include K = (H ) (H ) instead of H : 

σ ≈ S 
III π 

λ2 − ⋅ ⋅∫ 
S 

jk R x p K0 
0 0exp( ( ))( ) 
        

S 

2 

d , (1.137) 

σ ≈ l 
II π 

λ − ⋅ ⋅∫ 
l 

jk R x p K
2 0 

0 0exp( ( ))( ) 
        

l 

2 

d . (1.138) 

µ 
ε 

0 

0 

µ 
ε 

0 

0 

In their turn, formulas (1.129) and (1.136) evidently stay unchanged. 
RCS computation of infinite (by generating lines) cylindrical bodies, both approximate and 

exact, requires much less computation power than that of real three-dimensional objects and, at the 
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0 1      

0    
1 1 1 2 2 2 3 3 2 3R = (e cos θ + e cos θ ), R = e cos θ + e sin θ . 

sin θ3 

Then, according to physical optics approximation 

2 

∫ 
  4πσS

III ≈ exp(−2 jk0 (R0 ⋅ x))(R0 ⋅ n)d S
λ2 

S 

22 d 2 
4π = ∫ exp(−2 jk0 sin θθ3 (R 

  
1
0 ⋅ x))(R 

  
1
0 ⋅ n)d l ⋅ exp(−2 jk x cosθ )sin θ d x∫∫ 0 3 3 3 3λ2 

l −d 2 

22 d 2   1 2π 2π 0    0  0   0   = exp(−2 jk (R ⋅ x))(R ⋅ n)d l ⋅ exp(−2 jjk (R ⋅ e )x )(R ⋅ e )d x ,∫ 1 

  
1 

  
1 ∫ 0 2 3 3 2 2 3π sin θ λ λ3 1 

l −d 2 

where k1 = k0 sin θ3, λ1 = λ/sin θ3 and, therefore, 

1III II 0 II 0σ = σ (R , λ ⋅ σ (R , λ).	 (1.139))S 1 1 1 2 2πsin θ3 

Here, σ II (R0 , λ ) is the RCS of infinitely long cylindrical surface, its directrix l and generating1 1 1 

lines being parallel to Ox3, that is illuminated by radar at the wavelength λ1 = λ/sin θ3 in the direc­

tion −R1
0  (Figure 1.5). 

In this case, 

cos θ cos θ 
cosϕ = 1 , sin ϕ = 2 . 

sin θ3 sin θ3 

40 Electromagnetic Wave Scattering by Aerial and Ground Radar Objects 

same time, provides qualitatively accurate scattering characteristics of different objects, as well as 
their RCS dependencies on frequency and other parameters. 

At the same time, as it will be shown below, the quantitatively accurate estimates of real object 
RCS can also be obtained under specific conditions by their two-dimensional values. We demon­
strate such possibility, first, by analyzing expressions for RCS of perfectly conducting cylindrical 
screen S with arbitrary (open) directing line l. Let us assume that l is placed in plane x1Ox2, and that 

  
0

3   
at S holds the condition −d/2 ≤ x3 ≤ d/2, and the unit vector R = ∑ ei cosθi . 

i=1Now, we introduce another two unit vectors such that 

R0 
1 

x1 

l 

O 

ϕ 

x2 

fiGure 1.5  Illumination geometry of infinite cylindrical surface. 
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III π 0 0 II 0σS = ∫ exp(− jk0 (R ⋅ x))( p ⋅ K ) ε0

d l ∫ d x3λ2 

l −d 2 

2 

1 π 2π 20 0 II 0= ∫ exp(− jk0 (R 
  

⋅ x))( p ⋅ K 
  

) d l ⋅ d .π 22λ λε0
l 

The latter means that according to the approximation considered here 

1   III II 0 0 IIσ = σ (R , λ,p ) ⋅ σ (e , λ), (1.141)S 1 2 2π 
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R0 
2 

x1–d/2 d/2O 

θ3 

x2 

fiGure 1.6  Illumination geometry of infinite strip. 

In its turn, value σ II (R
  

0
2 2 ,λ)  is the RCS of a strip (x2  =  0, −d/2  ≤  x3  ≤  d/2, −∞ <   x1  < + ∞) illumi

−
  

nated by radar in direction R0
2  at the wavelength λ (Figure 1.6). 

Practically, expression (1.139) is useful given rather large values of angle θ3. Assume, for instance, 
that π/6  ≤ θ3  ≤ π/2, then (1/πsin θ3 ) ∈ (1/π, 2/π).  When the object S  is illuminated by wave, front of 
which is parallel to the cylinder generatrix, we have θ3  = π/2 and, therefore, 

λ = λ
      

, R0 = R 0 , R0   
1 1 2 = e2 , 

  (1.140)
σ III 1 II  
S = σ (R 0 

1 ,λ ) ⋅ σ II2 (e2 ,λ).
 π  

It is important to note that an equation similar to Equation 1.129 derived, given physical optics 
approximation still holds true even if other, more accurate methods than physical optics one, are     
used to express the surface current density K( x).

We consider here that only parameter k0d  is large (linear dimensions characterizing l  must not be     
necessarily large), and we assume that, given −d/2  ≤  x3  ≤  d/2, the function K( x)  at surface S  coin-  
cides with the surface current density KII (x1, x2 )  that is excited at corresponding infinite cylindrical 

surface. We assume also that θ3  = π
  

 ( /2), the unit vector R0  being oriented arbitrarily in plane x1Ox2;   
and vector p

  
, in its turn being, oriented arbitrarily in the plane normal to R0 . 

Then, using exact expression (1.137) we get 

­

but, unlike Equation 1.139, σ1 
II here is the exact value of two-dimensional RCS, and σ2 

II is the same 
as in Equation 1.139 approximate RCS value of flat strip given its normal illumination. It is essential 
to note that in formula (1.141) the value σ1 

II and, therefore, the RCS value σS
III of real object appear­

0ing in left-hand part depends on polarization unit vector p
  

, which, as it was shown, can be chosen 

arbitrarily (provided that condition p 
 0 ⊥ R 

  
0 is satisfied). 



 

 

 

  

 

  

d /2  
II 1   

K (x , x ) = K x dx ( ) . (1.142) 1 2 3d ∫ 
−d /2 

 
 

  

  
  

  

   

 

  

III 2 
S 0σ = 2πq (1 − cos 2k d ), * (1.143) 

where d = a2/2q is the elevation of edge points of the screen (paraboloid) under consideration over 
plane x1Ox2. 

Yet in corresponding two-dimensional problem given illumination along the axis of parabolic 
cylinder with directrix l, defined by equation 2qx3 = x1

2 , we get (under the same physical optics 
approximation) specific RCS value with respect to the unit length of generatrix 

2 
2kd 

j t σl
II = 4q ∫ e 2

d t = 4π [ 2 ( 2k d ) + S ( 2k d )], (1.144) q C 0 
2

0 

0 

where C(x), S(x) are the Fresnel integrals [32]. 
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Therefore, having computed exact RCS value σ1 
II of two-dimensional model (having solved 

for this purpose corresponding integral equation with respect to induced surface current density 

K xII ( )), we find then, by formula (1.141), a more accurate and more informative (particularly with 
respect to the incident wave polarization dependence) expression for the real object RCS. 

In the same manner as we have derived expression (1.140), we can receive another expression of 
the same structure, in the left-hand part of which appears exact value of σS

III computed by formula 

(1.137) given true distribution of K ( ); and the two-dimensional model RCS σ1 

  
x
  II being computed by 

II (exact formula (1.138) yet using approximate expression for the current density K x1, x2 ) obtained 

by averaging K( ) over coordinate x3:x

The latter remark has rather theoretical than practical sense: equality (1.141) turns to be exact 
if the surface current density in two-dimensional model is replaced by its integral average (1.142). 
Practically, however, the more important approximate equality (1.141) takes precedence in its origi­
nal formulation described above. 

Finally, we note that in all the considerations related to formula (1.141), the line l may not only 
be single one but it may represent a set of arcs and, in its turn, the surface S may represent a set of 
cylindrical surfaces with their generating lines parallel to axis Ox3. For instance, using (1.141), we 
can compute the RCS of a double reflector antenna given its illumination from the outside: having 
solved the system of integral equations with respect to currents over the system of reflectors l1, l2, 

KII KII and having computed current densities 1 , 2 while accounting for all the interactions and reso­
nances inside the system, we get the antenna system RCS σS 

III  by formula (1.141). 
In case of scatterers, which are the “double curvature surfaces” and which posses such character­

istic that none of their principal curvatures is identical to zero (unlike cylindrical surfaces), the reso­
nant effects of RCS dependence on frequency cannot be computed using two-dimensional models. 

The difficulties appearing in such computational problems and some approaches to their reso­
lution are considered below using simple example of computing RCS of infinitely thin perfectly 
conducting paraboloid of revolution in case of its illumination along the axis. 

2
1x 

k0a ≫ 1, leads (in approximation of physical optics) to RCS: 

2
2 

2 2 2 
1 + 2 ≤Axial illumination of paraboloid S, defined by equation 2 , where x and +
=
qx x x a3 

* We omit simple calculations leading to expression (1.143) and expression (1.144) presented below for the two-dimensional 
RCS model. 



 

  

   
  

 

 

  

  

  

  

As functions of frequency (or wave number k0 = ω ε µ ), the values (1.143) and (1.144) are0 0 

of fast oscillating nature, the amplitude of oscillations in two-dimensional case (formula (1.144)) 
damping as the frequency increases and, given k0d ≥ 10, they settle down at value σl

II ≈ πq. 
Yet, in case of three-dimensional object, these RCS oscillations described by equality (1.143) 

do not dump even in high-frequency zone, small changes in frequency being able to change sig
nificantly the value of σS 

III ; resonant effects taking place here given k0a ≫ 1 are due to the second 
parameter, k0d, and, given k0d → 0, they disappear. 

However, instead of such unstable characteristic as σS
III, which is subject to random fluctuations, 

one can introduce the value averaged over certain frequency interval 

k 
1 

2	 
sin (2k dd) − sin (2k d)⎞⎛ 2 1σ III (k ,k ) = 2 π q2 1 − cos(2k d) d k = 2 πq2 1 −	 ,1	 ( 0 )S 2	 0k − k ∫	 ⎝⎜ 2(k − k ) d ⎠⎟ 

2 1	 2 1
k1 

which, given significantly large values of parameter 2(k2 − k1)d, is quite close to the constant: 

III 2σS (k1,k2 ) ≈ 2 π q .	 (1.145) 

In the same manner, we have also the averaged value of 

σ II (k , k ) ≈ π q,	 (1.146)l 1 2 

so that the following expression takes place: 

2III II 2	 (1.147)σS (k1,k2 ) ≈ [ σl (k1,k2 ) ] .π 

 

 

 

2 

4 π 4 π 4 πσ III = 2 2 2 2d S = 
2 

S = 
2 

γ d d ,
2 ∫∫S λ λ λ 1 2 

S 
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­

Equalities (1.139)*, (1.140), (1.141), (1.147) expressing RCS of different objects, which have been 
obtained using different methods, share the same structure and follow similar quantitative pattern: 
RCS of three-dimensional object (fixed frequency one if the case is nonresonant, and frequency 
averaged one if the resonance is present) can be expressed as the product of corresponding† “two­
dimensional” RCS (or frequency averaged ones) multiplied by a dimensionless parameter of the 
order of few tenths, which depends, in general, on the scattering object configuration, illumination 
direction, and radar signal polarization. 

This quantitative pattern can be shown to hold for a large number of RCS examples computed 
using both physical optics approximation and more accurate approximations of surface currents 
(particularly, using the edge wave method [7,8]). 

For example, in physical optics approximation, the RCS of plane body S (of arbitrary shape) 
given its illumination along the normal is 

*  Given large enough values of θ3; for instance, θ3 ≥ π 6. 
†	  We mean here the RCS per unit length of two cylindrical surfaces, the generating lines of which are perpendicular to each 

other, and their directing lines being determined by geometry of the object of interest. 



  
     

 

  

2 π 2 πII II σ = d , σ = d ,1 1 2 2λ λ 

and, therefore, 

γ 2 
III II II σ = σ σ (1.148) S 1 2 .π 
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where d1, d2 are the measures of any rectangular enveloping the object S, and parameter γ being the 
ratio of the S area to d1d2, so that 0 < γ ≤ 1. However, two-dimensional RCSs of strips (“bands”) of 
the widths d1 and d2, which are tangent to S, are 

In special case of circular or elliptical disk, this dimensionless parameter is γ2/π = π/16. 
Finally, it must be emphasized that quantitative dependence formulated with respect to three-

dimensional RCS, which relates it to that of two-dimensional model, is rigorously proved only for 
a limited number of scatterers illuminated under exactly specified conditions as to illumination 
direction and the surface current density approximation method. In other situations that are beyond 
the rigorous considerations presented here, this quantitative dependence can be considered as a 
heuristic approach to computation of the RCS rough estimates. 
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Radar information gathering on numerous objects of interest by means of full-scale and physical 
experiments involves considerable amount of expense in the form of materials, time, and manage­
ment. Therefore, one can consider mathematical simulation as one of the most affordable ways of 
getting scattering characteristics data. Classical asymptotic methods of high-frequency diffraction 
do not allow, unless proper improvements and generalizations are introduced, to compute scatter­
ing characteristics given such complicating factors as the object shape, presence of various radar 
absorbing materials on the object’s surface (including fractures), influence of underlying surface, 
and multistatic radar configuration. Accordingly, the need to obtain scattering characteristics on a 
variety of real airborne and ground objects requires electromagnetic scattering theory to be elabo­
rated, and generalized methods for computing scattering characteristics to be developed for the 
complex-shaped objects with nonperfectly reflecting surface. 

This chapter presents the method developed by the authors for computing scattering characteristics 
of airborne objects having complex shape and nonperfectly reflecting surface [33,34]. The method is 
based on separate evaluation of contributions that smooth surface part and edges (fractures) brought 
into total scattered field. In this case, total field over smooth parts of the object’s surface is computed 
by Kirchhoff’s method or by its generalization onto the case of present radar absorbing materials. 
The field scattered by edges (fractures) is computed using a solution to the simulative problem of 
plane monochromatic wave diffraction at perfectly conducting wedge with radar absorbing cylinder 
placed over its edge in case of oblique wave incidence. The method proposed here allows computing 
RCS of ideally conducting airborne object completely or partially covered with RAM (Figure 2.1). 
The object itself may have surface irregularities in the form of fractures that may be covered with 
RAM too. The object RCS can be computed for both monostatic and bistatic radar configuration. 

It should be mentioned that the method presented here allows computing RCS of the objects 
completely made of dielectrics or composites. 

In case of ground objects (Figure 2.2), we propose here the computation method that accounts for 
the presence of underlying surface with known electromagnetic characteristics [35–39]. Presence of 
the “air–ground” interface leads to the appearance of two mutually overlapping illuminated regions 
at the object’s surface. The first one is due to direct incident wave from radar; the second one is due 
to the wave reflected from the ground. 

Integral representations obtained here allow us to single out four basic paths of electro­
magnetic wave propagation through the system under consideration as follows: “transmitter– 
object–receiver,” “transmitter–object–ground–receiver,” “transmitter–ground–object–receiver,” 
“transmitter–ground–object–ground–receiver.” As applied to ground objects, this method pro­
vides computation of scattering characteristics also in case of radar absorbing materials presence 
at the object’s surface. 



 

  

  

  
    

47 Methods for Computing Scattering Characteristics of Complex-Shaped Objects 

fiGure 2.1  The airborne object model. 

fiGure 2.2  The ground object model. 

In this chapter, we also consider the method for approximating the smoothed impulse response 
(IR) of the object given definite spectrum range of illumination signal. The method is applicable for 
computing impulse responses (high-resolution range profiles) for various radar objects. 

2.1 surfaCe Geometry modelinG for the Complex-shaped objeCts 

Vitaly A. Vasilets and Oleg I. Sukharevsky 

Scattering characteristics computation for a complex-shaped object requires its surface to be math­
ematically described [40]. Besides, the information on electromagnetic properties of materials, 
which the objects consist of, must be available too. 

As the methods for computing scattering characteristics progressed and computation means 
steadily improved, various methods were used for the object surface description that involved less 
manual labor. However, even today, mathematical description of the complex radar object’s surface 
involves a great deal of manual work. 

The following methods for such object surface description are still the basic ones [41–45]: 

1. Bodies of revolution method. It is useful, for instance, for the aircraft or missile body 
description since its shape can usually be approximated with a body of revolution. 

2. Method of analytical surface description. It can be applied to the simple shape bodies, sur­
face of which is described, for instance, by the equations of second order (sphere, cylinder, 
ellipsoid). 

3. The simplest component method. It is applicable to the electrically large objects, for which 
holds the inequality L ≫ λ, where L is characteristic object size, and λ is the illumination 
signal wavelength. The whole object gets split into separate parts, each being described 
by the mostly fit part of the simple shape object (disk, cylinder, cone, etc.) with the well-
known value of RCS. In this manner, the whole surface of the object under consideration 
can be represented by a set of the simple shape body parts. Disadvantage of the latter 
approach is its high manual labor input and insufficient surface description accuracy (espe­
cially at junctions between the simple shape bodies). 



  

  

 

 

 1.  Ellipsoid’s semi axes: a,b,c. 
 2.  Rotation angles of the local coordinate system O′x′y′z′  tied to ellipsoid with respect to that 

tied to the object, Oxyz: αX,αY,αZ. 
 3.  Coordinates of the ellipsoid center O′(x0, y0, z0) in the coordinate system Oxyz. 
 4.  Electromagnetic properties of the object’s surface element described by the depth of RAM 

δ  and its RAM relative permittivity and permeability ε′, μ′. If the surface element is consid­
ered to be perfectly conducting, then depth of its RAM is assumed to be zero. If the object’s 
surface element is made completely of composite material, then negative value of δ  for the 
ellipsoid is used to indicate this fact. 
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4. Wire models. The method is based on representing the object surface by a set of thin wires. 
It is widely used for computing scattering characteristics of complex objects in resonant 
and Rayleigh scattering regions. 

5. Method of direct surface description by a set of elementary flat regions (triangular or rect­
angular plates), the so-called facet model. Basic advantages of the method are the fol­
lowing: any limitation on the surface geometry is absent; elaborate evaluation of phase 
relations in radar scattering characteristics is possible. It is facet method that is now the 
most popular in the object’s surface geometry description. Among the basic drawbacks 
of the method are the following: surface of the object of interest has to be digitized; algo­
rithms for determining illuminated and shadowed parts of the object are complex and 
not cost-effective; and very large number of facets is needed to describe the surface. For 
example, for the model of perfectly conducting ellipsoid with semiaxes of 1, 2, and 3 m, 
one would need the number of facets ranging from 60,000 through 80,000 to compute the 
scattered field using Kirchhoff’s integral (by preset current density over the surface) within 
accuracy of 2–4% given the object illumination in centimeter wave band. For the models 
of real flying vehicles, such number can reach the value of several hundred thousands. 
Therefore, such computation itself is a high burden. 

In this chapter, scattering simulation method is proposed that accounts for the presence of sur­
face fractures. Right from the beginning, the method presumes splitting of all scattering surfaces 
and elements of the object into several groups: smooth surface part, local scatterers of the edge 
kind, forward-looking antenna system under the nose radome (if present at the object under consid­
eration). Let us consider the simulation of these scatterer groups one by one. 

Smooth part of the surface is approximated by parts of three-axial ellipsoids. The number of 
ellipsoids used in every specific case is determined individually depending on the surface complex­
ity and the level of its elaboration, which, in its turn, is determined by the radar signal wavelength 
implied for mathematical simulation of the object’s scattering characteristics. 

Every ellipsoid is described by the following parameters (Figure 2.3): 
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fiGure 2.3  Geometric parameters of ellipsoid. 



  

  

  
  

 

 1.  Coordinates (x1, y1, z1) of the fracture edge beginning in the coordinate system Oxyz  tied to 
the object. 

 2.  Coordinates (x2, y2, z2) of the fracture edge end. 
 3.  Coordinates of vector g

  
, which is the unit-vector orthogonal to one of the fracture faces. 

 4.  Angle ϕπ, which is external angle of the wedge introduced in such way that it is to be tan
gent to the fracture. 
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η = −1 η = 1 

x 

(xn, yn, zn) 
z y 

O 

fiGure 2.4  To determination of the cutting plane. 

5. Part of ellipsoid to be used for modeling part of the object’s surface is singled out by 
means of cutting planes. Every such plane is set by the coordinates (xn, yn, zn) of the vector 
normal to its surface and by parameter η (Figure 2.4). Parameter η determines the choice 
of the ellipsoid fragment cut out by the plane. Cutting plane divides the space into two 
half-spaces. If η = 1, then the half-space containing the coordinate origin is taken, and 
otherwise if η = −1. Proper part of ellipsoid is taken together with the proper half-space. 
Intersection of half-spaces obtained in this manner with ellipsoid determines the ellip­
soid’s part that is to be used for modeling fragment of the object’s smooth surface. The 
number of cutting planes for every ellipsoid is not limited. 

The use of three-axial ellipsoid as the surface approximating element allows modeling a wide 
range of the object surfaces with considerable accuracy. 

Local edge parts of the object’s surface are modeled by means of mathematical description of 
the fracture line. We assume the fracture line to be a fragment of plane curve. In this case, curved 
fracture edge is approximated with a part of ellipse, and the straight fracture edge is approximated 
with a line segment. 

Every straight fracture edge of the surface is described by the following parameters (Figure 2.5): 

­
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fiGure 2.5  Straight fracture edge modeling. 



 5.  Unit-vector w 
  

 that is orthogonal to both vector g 
  
 and the fracture edge, the vector w 

  
 being 

directed toward the free space and away from the fracture. 
 6.  Parameters of the edge RAM toroidal coating, which include its radius r  along with its 

relative permittivity and permeability ε′, μ′. 
 7.  Radius of the integrating surface r0  enclosing the fracture edge. The value of r0  is deter

mined in such a manner that condition r  ≤  r0  < λ  would be satisfied (λ  is the wavelength of 
incident monochromatic wave). 

Every curved fracture edge of the surface is described by the following parameters (Figure 2.6): 

 1.  Coordinates (x0, y0, z0) of the center of ellipse approximating the fracture edge in coordi
nate system Oxyz tied to the object. 

 2.  Coordinates of unit-vector g
  
 orthogonal to the edge plane. 

 3.  Semiaxes a, b of ellipse approximating the fracture. 
 4.  Unit-vector w 

  
 being orthogonal to the fracture edge line and parallel to one of the ellipse’s 

semiaxes (Figure 2.6). 
 5.  Angle θ  between the edge (ellipse) plane and inner face of fracture, the angle lying in the 

plane containing vectors g
  
 and w

 
 
. 

 6.  Angle ϕπ, which is the external angle of wedge introduced so as to be tangent to the edge. 
 7.  Radius r  of toroidal RAM coating, its relative permittivity and permeability ε′, μ′, as well 

as the radius r0  of integrating surface enclosing the fracture edge that is determined in the 
same way as for the straight fracture edge (Figure 2.5). 

 8.  Part of the ellipse used for modeling the curved surface fracture is singled out by means of 
cutting planes in the same way as for the smooth parts of object’s surface (Figure 2.4). The 
number of cutting planes is limited, however usually it takes one or two planes to cut the 
proper ellipse part out. 

It is worth noting that the most important parameters of the edge fragments are their angle 
measures and vector g 

  
 that determine the fracture edge orientation with respect to incident wave 

direction. Character of the field scattered by fractures has been thoroughly studied in Ref. [7]. In 
Refs. [29,46], there are also dependencies of scattered field intensity versus the fracture aspect for 
different values of external wedge angle, as well as different values of radius, permittivity, and per
meability of its toroidal RAM coating. 

Forward-looking antenna system under the dielectric radome (nose fairing)  is described by the 
following parameters (Figure 2.7): 

 1.  Coordinates of the radome cone base center (x0, y0, z0) in the coordinate system Oxyz  tied 
to the object. 
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fiGure 2.6  Curved fracture edge modeling. 



 2.  Vector s 
  

 that determines inclination of the radome axis in the coordinate system Oxyz  tied 
to the object. 

 3.  Radome cone half-angle θ. 
 4.  Radome cone height h  and the distance d  from the cone’s tip to the top of antenna reflector. 
 5.  Radome wall thickness δ along with relative permittivity of its material ε′. 
 6.  Antenna reflector aperture radius r  along with its focal parameter p, the antenna being 

shaped as finite (along the axis) paraboloid of revolution.
 
 7.  Unit-vector g

  
 directed along the antenna axis and determining its orientation.
 

Modeling of scattering elements of the complex object’s surface described above is done manually 
so far, since automation of this procedure is hindered by scatterer variety and surface complexity. 

When actual computation of scattering characteristics is carried out, the smooth fractions of the 
complex-shaped object surface are split into triangular facets in order to implement the computation 
method proposed in this chapter. The “lighted” part of the object’s surface is found using modified 
method based on ray tracing [47]. In this case, every jth facet is checked for its being “lighted” in 
two steps: 

 1.  The jth facet is checked for its belonging to that part of lth ellipsoid used for the com
plex object surface approximation, in other words it is checked for its belonging to the 
“working” part of ellipsoid. At the same time, the jth facet is checked for its being on the 
“lighted” part of lth ellipsoid given that other ellipsoids are absent. 

 2.  The  jth  facet  is  checked  for  its  shadowing  by  other  parts  of  the  whole  object.  We  draw  the 
straight  line  M  through  the  center  of  jth  facet  in  the  direction  of  unit-vector  R

  
0,  this  line 

connecting  the  facet  with  the  source  of  electromagnetic  illumination  (reception).  Every 
ellipsoid  used  for  approximating  the  object’s  surface  is  checked  for  whether  this  line 
crosses  it  or  not  (Figure  2.8).  Unlike  the  ray  tracing  method  [47],  the  visibility  check  for 
jth  facet  is  carried  out  not  with  regard  to  every  other  facet  of  kth  “obscuring”  ellipsoid 
but  with  regard  to  the  whole  kth  ellipsoid.  To  achieve  this  we  transform  linearly  the  coor
dinate  system  in  such  a  manner  that  corresponding  kth  ellipsoid  becomes  the  sphere  of 
unity  radius  with  center  at  the  coordinate  system  origin.  Now,  if  the  distance  from  the 
line  M  in  the  new  coordinate  space  to  the  origin  is  less  than  unity  then  we  conclude  that 
kth  ellipsoid  can  obscure  (shadow)  the  jth  facet.  In  this  case,  we  compute  the  coordinates 
of  crossing  point  between  line  M  and  kth  ellipsoid.  Further  on,  the  coordinates  of  cross
ing  points  are  checked  for  their  getting  into  the  “working”  part  of  kth  ellipsoid.  If  they 
do  get  into  the  “working”  part  of  the  ellipsoid  being  checked,  then  we  conclude  that  jth 
facet  is  obstructed  and  we  remove  it  from  computation  of  scattered  field.  The  procedure 
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fiGure 2.7  Model of antenna system under the dielectric cone radome. 
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fiGure 2.8  Visibility check for the facets. 

described  above  is  carried  out  with  regard  to  every  ellipsoid  we  used  for  approximating 
the  object’s  surface.  Such  approach  provides  much  less  computation  burden  while  finding 
the  “illuminated”  part  of  the  object’s  surface  compared  to  classical  ray  tracing  method. 

In a similar manner, every edge local scatterer is checked for its “visibility” from the electromag
netic illumination point. In this case, we also consider smooth parts of the object’s surface as those 
obscuring the edge scatterers. 

When designing mathematical model of scattering from edges, one should consider the implied 
wavelength band of illumination signal. The latter can be explained by a simple example. The 
contribution from local edge scatterer of 0.01–0.03 m  size given the 3 cm  illumination signal wave
length into the field scattered by the whole object would be quite small (for the T-90 tank, it would 
account for less than 0.1% of the total field). However, it is these edge elements of size comparable 
to the signal wavelength in millimeter and centimeter wave band that dominate in the design of 
modern ground objects (brackets, bolts, technological hatches, etc.). Accounting for such elements 
in the object’s surface model significantly increases computational burden but with no significant 
improvement in the scattered field computation accuracy. So, the small surface fractures and small 
elements at the external object’s surface were not taken into account in the current computer model. 
If, on the contrary, one needs the maximum possible accuracy of scattering characteristics computa­
tion, then all the surface elements with scattering contributions comparable to the needed accuracy 
level must be accounted for. 

Inaccuracy of the object’s surface description may lead to errors in the resulted scattered field 
computation. These errors can manifest themselves as shifted and altered peaks of the scattering 
intensity diagram. Therefore, surface description of radar objects must be done with all possible 
thoroughness. 

In order to check the feasibility of the surface description method for the complex-shaped objects, 
we provided scattering simulation for some types of military vehicles. Figure 2.9 shows surface 
description of the MiG-29 aircraft, consisting of 29 surface fragments of three-axial ellipsoids, 
42 wedge fragments, and antenna system under the nose dielectric radome. Figure 2.10 shows the 
surface description of the T-90 tank consisting of 89 surface fragments of three-axial ellipsoids and 
34 wedge fragments. 

The method described in this chapter allows representing in mathematical form the surfaces of 
different radar objects. Accuracy of surface description can be improved by means of increasing the 
number of ellipsoids and wedges used for mathematical representation of the surface. The method 
introduced here blends in advantages of the simplest component method while finding illuminated 
part of the surface and of the facet method while describing the surface mathematically and com
puting the scattering characteristics. 
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­

­
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fiGure 2.9  Surface description example of MiG-29 aircraft. 

fiGure 2.10  Surface description example of T-90 tank. 

2.2	 method for ComputinG sCatterinG CharaCteristiCs of aerial 
objeCts With imperfeCtly refleCtinG surfaCe 

Vitaly A. Vasilets and Oleg I. Sukharevsky 

Computation method introduced here allows computing the scattering characteristics of standalone 
objects with imperfectly reflecting surface. Object’s surface can be smooth or it can have surface 
fractures in the form of sharp edges covered with RAM. Particularly, the surface of such kind (com­
bination of smooth surfaces intermeshed with RAM-coated edges) pertains to the objects made 
by “Stealth” technology [48]. Therefore, aerial objects with imperfectly reflecting surface scatter 
electromagnetic waves by their smooth parts and edge fractures (Figure 2.11). 

It is well known [11] that having computed tangential components of total electromagnetic field 
at any closed surface encompassing the scatterer, one can, using integration, obtain the value of 
the field scattered by the object at any point outside this closed surface. The method for computing 
scattering characteristic of the objects with surface fractures is based on splitting a surface encom­
passing the whole object into some neighborhoods of fractures (lateral dimensions of which corre­
spond to resonant scattering region) and into the smooth parts of the object surface (outside of these 
neighborhoods). Field scattered by the object is computed by Kirchhoff’s kind integral equations. 
In this case, the surface of integration in those equations that encompasses the whole scatterer is 
chosen to be coinciding with the object’s surface anywhere except some neighborhood of fractures. 



 
 

 

 
   

  
 

  

    

          

  
    

Let us consider plane monochromatic electromagnetic wave of unit amplitude with the polariza­
tion unit-vector p0 that propagates in the direction of unit-vector R0. 

E0 ( )x = p0 exp( jk0 (R0 ⋅ x)), 

  
0   ε0 

  
0  0 

    (2.1)
H x = µ (R × p ) exp( jk0(R

0 ⋅ x)).( ) 
0 

This wave is being incident on the surface of the object in free space (Figure 2.11). Here, k0 is the 
wave number for free space (k0 = 2π/λ, λ is the wavelength of incident monochromatic wave), ε0, 
μ0 are the permittivity and permeability of vacuum, x is the radius vector of a point in space. The 
field scattered by the object in the direction r 0 in far-field zone (projection onto direction p) can be 
represented by means of Lorentz reciprocity theorem in the following form [29]: 

   0 
⎛ 

0    ⊥   0 
  

⊥
⎞  0  exp( jk R) µ

p ⋅ ES = − jk ( p ⋅ H ) + ( p × r ) ⋅ E exp (−− jk (r ⋅ x))dS, (2.2)⎟ 00 4πR ∫ ⎝⎜ ε0 ⎠
S 
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fiGure 2.11  Example of the standalone object’s surface description. 

where  R  is  the  distance  from  the  object  to  an  observation  point;  E
  

⊥ = n   × E
  
;  H
  
 ⊥ = n   × H

  
; (E
  
,H
  

)  
is  the  total  field;  and  n 

  
 is  the  unit-vector  of  the  external  normal  to  the  integration  surface  S  that 

encompasses  the  object  under  consideration.  Let  us  choose  S  in  such  a  manner  that  it  coincides 
with  the  object  surface  everywhere  but  in  the  fracture  neighborhoods,  where  it  passes  over  toroidal 
surface  of  circular  cross  section  “pulled  over”  the  fracture  (Figure  2.11).  Toroidal  surface  then 
envelopes  both  the  edge  and  the  RAM  covering  it.  Radius  of  torus  tube  is  set  in  such  a  way  that 
the  field  at  the  points,  where  toroid  meets  the  wedge  faces,  to  contain  practically  no  contributions 
from  the  edge,  so  it  could  be  computed  using  physical  optics  approximation  as  if  we  were  deal
ing  with  smooth  surface.  In  this  case,  surface  S  can  be  represented  as  a  sum  S  =  S1  +  S0,  where  S1  
coincides  with  smooth  (nonperfectly  reflecting,  in  general)  parts  of  the  surface,  and  S0  is  a  set  of 
toroidal  neighborhoods  of  the  edges.  Finally,  the  integral  in  Equation  2.2  is  a  sum  of  integrals  over 
surfaces  S1  and  S0. 

2.2.1  radar ScatterinG  at SmOOth PartS  Of  the Object’S Surface 

The field scattered from smooth surface can be computed by means of integration given that the 
tangential components of total field (E

  
T , H
  
T)  are known over the object’s surface [11]. Taking into 

account that characteristic size of the smooth surface parts in radar case is large compared to the 
wavelength (high-frequency scattering), it is only logical to compute the values of E

  
T , H
  
T , approxi

mately. For instance, for smoothly curved parts of perfectly conducting surface coated with a layer 
of RAM, the vectors E

  
T , H
  
T  are assumed to be equal to those at the surface of plain layer of the 

same RAM on top of perfectly conducting plate substituted for the curved surface part at any 

­

­
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definite point. Field scattered from the smooth part S1  of the object’s surface in the direction r 0  can 
be represented using part of expression (2.2) 

   exp( jk R) ⎛ µ        ⎞   
p ⋅ E = − jk 0 ∫ ⎜ 

0 ( p ⋅ H ⊥ 
S1 0 ) + ( p × r 0 ) ⋅ E ⊥ exp((− jk (r 0 ⋅ x))dS. (2.3)4 ⎟πR ε 0

0 
 S1 

⎝ ⎠
 

In common radar cases, smooth parts of the object’s surface are electrically large and has small         
curvatures. In physical optics approximation [29], tangential field components E⊥ ( x ), H⊥ ( x )  in
Equation 2.3 shifted by 90° with respect to each other in the plane tangent to the surface can be �� �
replaced by corresponding values E ⊥

� � � ( x), H⊥   
( x)  at the plane tangent to surface S1  at point x. If

the surface part of interest consists of RAM coating on top of perfectly conducting base, then this 
tangent plane consists of uniform layer of RAM over perfectly conducting plate too. If a part of the   
object is made of composite material completely, then, at points x  of the surface enveloping these 
parts of the object, the tangent plane is replaced by a half-space with electrodynamic properties cor
responding to the composite. The latter is justified by the fact that electromagnetic wave entering 
deep enough region filled with composite material fades away almost completely. For example, the 
leading edge of the B-2 bomber aircraft consists of multiple layer RAM of more than 200 m m thick
ness covering the metallic honeycomb structure, the cells of which being filled with radar absorb
ing material of density smoothly increasing from the cell’s front to its bottom [49]. This results in 
significant wave absorption starting from the front RAM layer and cells’ filling and ending at final 
wave absorption due to multiple reflections from the cell walls. The aircraft wings are made of 
composites. Therefore, in order to compute the field scattered from the smooth part of the object’s 
surface in physical optics approximation, we need to solve two typical (simulative) problems. They 
are as follows: (1) problem of the plane monochromatic wave (2.1) scattering at perfectly conducting 
plane covered with uniform layer of radar absorbing material (Figure 2.12a); and (2) problem of the 
same wave scattering at half-space made of composite material (Figure 2.12b). 

Standard approach to solving such problems [50] is reduced to finding scattered field for two   
mutually orthogonal polarizations of incident wave related to vector R0  and the unit-vector of axis 
Ox2. This makes it more difficult to receive solutions that would be uniformly applicable for arbi
trary angles of incidence and polarizations of illuminating wave. For instance, for the wave inci
dence close to normal, the field decomposition in two orthogonal components leads to ambiguities. 
But, it is this close-to-normal wave incidence onto the object surface that causes the strongest con
tributions into total field scattered by the object. In this regard, we need to have a solution that could 
be used given a wide range of angles of incidence (the uniformly applicable solution), including 
those approaching normal incidence. 

We now consider the solution to the problem of plane monochromatic wave scattering at plain 
uniform absorbing layer backed by perfectly conducting plate (Figure 2.12a). The problem solution 
will be sought in the following form [33]: 

­

­
­

­
­

­

(a) (b)x2 x2 

δ 
ε1, µ1 ε1, µ1 

O O 
x1 x1 

R0 R1 R0 R1 
θ θ 

fiGure 2.12  Wave scattering at nonperfectly reflecting surface. 
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x2 exp( (jk R
0
H (
x2 

1 0 0 0T 0 0where R = R − 2n R ⋅ n R = R − n R ⋅ n) .( ), ( 
It is essential for the solution of this problem to find only scattered back field, therefore solution 

reduces to finding complex vector p1. 
Having substituted the expression for the total field inside the layer into the Helmholtz wave 

equation, we obtain standard differential equations for tangential components of vectors E(x2 ) and 
H (x2 ): 

d2ET   ⎫2 2 T 
2 

+ k1 cos θ1 E = 0, ⎪dx2 ⎪
  ⎬ (2.5)

d2 H T 

dx2 
+ k1

2 cos2 θ1 H T = 0.⎪⎪
⎪ 

2 ⎭ 

Here, cos2 θ1 = (1 − (sin2 θ/ε′µ1 ′)) ; k1 = k0 ε′ , µ1 ′ are the relative permittivity and per
1 1 

meability of absorbing material; θ is the angle of wave incidence upon the layer. 
Let us write down the boundary conditions for tangential components of field vectors 

( (x2 ), H (x2 ))E at perfectly conducting surface (x2 = δ): 

  
T dH T ( )δ
E ( ) 0 = 0. (2.6)δ = , 

dx2 

Using boundary conditions (2.6), from expression (2.5), we can obtain the following: 

ET (x ) = UT sin (k1 cos θ δ − x2 )),⎪2 1  ( ⎫ 
   ⎬ (2.7)
H T (x ) = VT cos(k cos θ δ − x22 )),⎪2 1 1  ( ⎭

where vectors UT ,VT are to be found. It follows from Maxwell’s equations that vectors UT  and V ⊥ 

are linearly related: 

   0⊥ 0⊥ Tµ1 ⊥ T R (R ⋅U )
j cos θ1V = U − , (2.8)

ε1 ε1 ′ µ1 ′ 

0⊥ 0 ⊥ VTwhere R = (n × R ), V = (n × ). 
Let us write down the boundary conditions for the surface of absorbing layer (x2 = 0): 

0T 1T Tp + p = U sin(k1 cos θ δ), ⎫1 ⎪ 
ε � � � � � ���⊥ ⎬ (2.9)

0 0 0 1 1n × [(R × p ) + (R × p )] = V cos(k1 cos θ δ1 ).⎪µ0 ⎭ 

11 
′ε ′µ ; 

�
 �
 

56 Electromagnetic Wave Scattering by Aerial and Ground Radar Objects 

­



:
             

 

  

  

   

 

  

  
 

  

 
   

    

  

  

    

    

    

  

  

  

    
 
   

Then, from Equation 2.8 and boundary conditions (2.9), we receive the equation with respect 
to p1T 

⎡    1    ⎤1T 0T 0T 1T 0T 0Tjc ( p − p )cos θ + R ⋅ (( p − p ) ⋅ R )
⎣⎢ cos θ ⎦⎥ 

   1    = ( p1T ++ p0T ) − R0⊥ ⋅ (( p1T + p0T ) ⋅ R0⊥ ), (2.10)ε1 ′ µ1 ′ 

µ′ 
where c = 1 ( ).cosθ tg k δcosθ1 1 1ε′ 

1 

Having solved Equation 2.10, we finally obtain 

⎡ ⎤ 
⎢    ⎥  0T 0   0⊥ 0 1 jc cosθ + 1   T 2 jc 0 (R ⋅ p ) (R ⋅ p )T 0 ⎢ T 0⊥ ⎥p = p − R ++ R . (2.11)

2 

⎢ ε1 ′µ1 ′ jc − ⎥ 
jc cosθ − 1 jc cosθ − 1 ⎢ jc − cosθ ⎛ cos θ1 ⎞ ⎥ 

⎣ ⎝⎜ cosθ ⎠⎟ ⎦ 

Accounting for relationship between tangential and normal components of the vector p, we get the 
following: 

1 )   ( p 
  T ⋅ R 

  
0 

1 1Tp = p − n . (2.12) 
cosθ 

Let us note that a similar procedure can be followed when solving the simulative problem of the 
plane monochromatic wave scattering at a half-space made of composites (Figure 2.12b). In this 
case, we should assume the absorbing layer thickness to be tending to infinity, or δ → ∞. Such 
assumption leaves all the expressions unchanged except for expression (2.11) for p1T , which would 
take the following form: 

⎡ ⎤
  

0 
   ⎥⎢ T  0 0 0 1T c cosθ − 1  0T 2c ⎢   0T (R ⋅ p )   

0⊥ ((R ⊥ ⋅ p ) ⎥p = p + R + R , (2.13)
c cosθ + 1 c cosθ + 1 ⎢ c + cosθ ⎛ cos2 θ1 ⎞ ⎥ 

⎢ ε1 ′µ′ c + ⎥ 
⎣ 

1 ⎝⎜ cosθ ⎠⎟ ⎦ 

µ′ 
where c = 1 cosθ .ε′ 1
 

1
 

Expressions (2.11) through (2.13) are now applicable to computing scattered field according to 
Equation 2.4 given any polarization of incident wave and any incidence direction (except those 
approaching tangent ones). Particularly, for angles θ close to zero, expression (2.10) for the complex 
(in general) reflection coefficient p1 does not contain any ambiguity and, given θ = 0, expressions 
(2.11) through (2.13) become the well-known ones [50] for the normal incidence. Finding the vec­
tors E
 and H
 is not a prerequisite to finding the field at the radar absorbing layer surface (x2 = 0), 
therefore we will not consider computing E
and H
 below. 

According to physical optics approximation, the field over “unlit” part of the object’s surface 
is identical to zero. Therefore, having replaced the whole surface S1 by its illuminated part S1 ′ and 
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having substituted the expressions for E x ( ) derived above into Equation 2.3, we arrive at the( ), H x
following approximate expression for the scattered field: 

     exp( jk R)   
( 0 0 x x , (2.14)p ⋅ E R r ) ≈ − jk0 f ( )exp(ik0Ω( ))dS

4 πR ∫ 
S′ 1 

                    0 0 0	 0 0 1 1where 	 f ( ) = h x ⋅ + e x ⋅ p × r ), ( ) = (R − r ) ⋅ x, h x = n × [(R × p ) + (x ( ) p ( ) ( Ω x ( )	 R × p )], 
e x = n × ( p p1( ) 0 + ). 

Computation of the integral entering into Equation 2.14 necessitates application of special cuba
ture formulas since its integrand is a fast oscillating function. In Ref. [51], the cubature formulas 
were obtained for similar integrals that were based on linear approximations of functions f x( )
and Ω( )x . 

2.2.2	 cubature fOrmula fOr cOmPutinG Surface inteGralS Of faSt 

OScillatinG functiOnS 

Let us define a compact set of points Ai(i = 1,2,. . .,n) at the surface S1 ′. The points themselves may be 
spread irregularly over the set, which is sometimes helpful and sometimes necessary condition for 
approximation of smooth parts of real objects. The values of functions f x and Ω( ) are known in( ) x 
advance for these points. Given all the aforementioned, one can provide “triangulation” or, in other 
words, cover the region S1 ′ with a system of triangles (Δ1),. . .,(Δm) that would have vertices at points 
{Ai}. Having done this, one can approximately replace the integral M in Equation 2.14 by a sum of 
integrals over {Δi}: 

   m   
M = ∫ f ( )exp jk Ω( )) dS ≈ ∑ ∫ f x (jk0 Ω x	 (2.15)x ( 0 x ( )exp ( )) dS.. 

′	 i=1 (Δi )S1 

Accuracy of approximation (2.15) is conditioned by two major factors: replacement of S1 ′ by flat 
triangles given that the surface itself is not plain, and approximation errors occurring due to replace
ment of S1 ′ by a system of triangles {Δi} in the vicinity of the S1 ′ boundary, the latter being caused, 
for instance, by the object’s surface irregularity (Figure 2.13). 

Let us consider integral MΔ over flat triangle Δ with vertices A0, A1, A2, radius-vectors of the latter 
being a , a , a . We describe, at first, an arbitrary point position x ∈ Δ by means of its “barycen
tric” coordinates: 

0 1 2 

x = W a0 + W a1 + 20 1 W a2 ,	 (2.16)   

�� � �� � 
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fiGure 2.13  To the accuracy of smooth surface approximation by a set of triangles. 
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where W0, W1, W2 are nonnegative parameters such that W0 + W1 + W2 = 1. Expression (2.16) can be 
rewritten in the following form: 

x = W (a − a ) + W (a − a ) + a . (2.17) 1 1 0 2 2 0 0 

In the integral under consideration 

M = ∫ f ( )exp (jk ( )) d S,x 0Ω x
Δ (2.18) 

(Δ) 

we can use expression (2.17) in order to transform it into barycentric coordinates W1, W2: 

∂ x ∂ x
M = × f W W , ] exp( jk Ω , ]) d W[ [W W dW ,∫∫ 1 2 0 1 2 1 2 (2.19) Δ ∂W1 ∂W2 Σ 

where 

f W W ] = f W (a − a ) + W (a − a ) + a[ , ( ), (2.20) 1 2 1 1 0 2 2 0 0 

Ω[W W , ] = Ω(W (a − a ) + W (a − a ) + a ), 1 2 1 1 0 2 2 0 0 (2.21) 

Σ is the unit triangle shown in Figure 2.14. 
Multiplier of the integral in Equation 2.19 equals to the double area of triangle Δ 

∂x ∂x× = 2SΔ . (2.22) ∂W1 ∂W2 

Cubature formula for the integral MΔ can be obtained by way of approximating surfaces f[W1,W2], 
Ω[W1,W2] by planes passing through three points: (1, 0, f[1,0]), (0, 1, f[0,1]), (0, 0, f[0,0]), and (1, 0, 
Ω[1,0]), (0, 1, Ω[0,1]), (0, 0, Ω[0,0]), respectively. In this case, we have 

[ , ( [ , ] 0 0 ]) f 1 0 0 0 W [0 0 ], f W W ] ≈ f 1 0 − f [ , W + ( [ , ] − f [ , ]) + f , (2.23) 1 2 1 2 
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fiGure 2.14  Unit triangle in barycentric coordinates. 



  

        

   

  

  

  

k Ω W W ] ≈ pW + qW + k Ω 0 0],[ ,	 [ ,0 1 2 1 2 0	 (2.24) 

where p = k0 (Ω[1,0] − Ω[0,0]) and q = k0 (Ω[0,1] − Ω[0,0]). 

The integral MΔ, in its turn, can be expressed as follows: 

M ≈ 2S exp(jk Ω[0 0]) (( [ ,f 1 0] −	 f [0 0])I + ( [f 0 1, ] − f [0 0])I + f [0 0, ]I ),Δ Δ 0 ,	 , 10 , 011 00 (2.25) 

where the values I00, I01, I10 can be computed by means of the following integrals: 

1 1−W1 

I00 = ∫ dW1 ∫ exp( ( 1 + qW2 2j pW )) dW , 
0 0 

1 1−W1 

I = W dW exp( j pW + qWW )) d	 (2.26)( W ,10 ∫ 1 1 ∫ 1 2 2 

0 0 

1 1−W2 

I01 = ∫W2dW2 ∫ exp( j pW1 + qW2 )) d W1( . 
0 0 

Having computed these integrals and assuming φ(x) = −j(exp(jx) − 1)/x, we receive the following 
expressions: 

I = j( ( )p − ϕ q p − q00 − ϕ ( ))/( ), ⎫
 
2 ⎪


I10 = − ϕ q − ϕ( ) − (q − p) ( ))/(q	 (2.27)( ( ) p ϕ′ p − p) ,,	⎬

⎪
I01 − ϕ − ( ))/( − 2 ⎭= ( ( )p − ϕ( )q ( p − q)ϕ′ q p	 q) , 
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which, taken together with expression (2.25), represent the integral MΔ by means of cubature 
formulas. 

Next, using representation (2.14) and formulas (2.15), (2.25), and (2.27), one can compute the 
field scattered from smooth part S1 of the object’s surface. Approximate density of triangular facets 
can be evaluated as shown in Ref. [52]. 

In high-frequency domain considered here, the field scattered from smooth part of the object’s 
surface is a fast oscillating function versus frequency, which is due to considerable change of 
Fresnel zones distribution over the object surface given even the smallest changes in the illumina­
tion signal frequency. So, in order to receive robust values of the scattered field amplitude (used 
later on for the RCS computation), one should provide averaging of this value over some frequency 
range. Also, it is worth mentioning that besides definite advantages of the cubature formula, there 
is an expected drawback related with the necessity of increasing the facet density at the surface 
of integration when the illumination signal wavelength decreases. The problem is that for the 
very large (electrically) object (such as aircraft, for instance) it is quite difficult to introduce the 
fine enough mesh of facets. Therefore, we have to content ourselves with the frequency averaged 
values of scattered field amplitudes and RCS. According to our calculations for the simple shape 
bodies (sphere, ellipsoid), we can arbitrarily put some fixed mesh of facets over surface and then 
it is possible to select the frequency range (with preset central frequency) for the RCS value to be 
averaged over in such a manner that the average RCS would be close enough to the true mean RCS 
of real surface. 



        
      

  

  

 

  

               
                
                   

  

     
  
  
  
  
 

    

        

  

    

    

2.2.3	 aSymPtOtic methOd fOr cOmPutinG radar ScatterinG frOm SmOOth PartS 

Of the Object in biStatic radar caSe 

The method presented in Sections 2.2.1 and 2.2.2 for numerical computation of radar scattering 
from smooth parts of the object was based on special cubature formulas designed for calculating 
integrals from fast oscillating functions. The method is a variation of “current” method. 

In this section, we consider an alternative computation method based on “ray” asymptotic of cor
responding integrals for general bistatic radar configuration. 

From Equation 2.3 (Section 2.2.1), one can get the following expression for the field scattered 
from the smooth part S1 of the object’s surface in far-field zone: 

  µ exp( jk R)   
ES1 

= − jk0
0 0 I (r ), (2.28)

ε0 4 πR 0 

where 

0ε⎡

⊥ ×
 r 0 

⎤
⎥
⎥⎦ 

) exp(−
 jk0 (
r 
0 ⋅
I ( ∫
 ⊥ −
)
=
 H
 (
E
 ))dS . (2.28′)
⎢

⎢⎣
 
r0 x µ
0

S1 

Therefore, contribution from the “smooth” parts of the object’s surface into total scattered field can 
be evaluated by computing integral I (r 0 ). Since all the geometrical parameters (linear dimensions, 
curvature radii) of “smooth” object parts are large compared to the incident field wavelength, and 
boundary contours lying closest to the edges are outside of that neighborhood, in which irregular 
component of surface current density is significant, then it is possible to account for contribution of 
such object’s parts by means of any asymptotic method of short wave diffraction. 

In this section, we consider the surface of a scatterer containing, in bistatic radar case, elliptical 
stationary phase points of both perfectly conducting and RAM-coated kinds. 

Let us consider, first, the case of smooth convex perfectly conducting surface part containing 
elliptical point of stationary phase in case of bistatic radar and let us evaluate its contribution into 
total scattered field. For the perfectly conducting surface part S1, expression (2.28′) transforms into 
the following: 

       
I (r 0 ) = exp(− jk0 (r 0 ⋅ x v x k0)) ( ,	 )dS,∫	 (2.29) 

S1 

where v x k, 0 ) = [nx × H( ]. 
For the sake of simplicity, we choose the coordinate origin to coincide with the stationary phase 

point at S1 (point x = 0). Iterative method for finding solution to the magnetic field integral equation of   
V.A. Fock [53] in the region S1 enables us to present v x k, in form of asymptotic (for great k0) formula:( 0 ) 

   ⎛    ⎡ ∂g x,ξ            ⎤ ⎞ 
0 0	 0v(x k, ) ~ 2⎜v (x k, ) + v (ξ k ) − ∇ g x, ξ)(nn ⋅ v (ξ k )) d0 0 ∫ ⎢ 

( ) 
, 0 x ( x , 0 ⎥ S ⎟ , (2.30)

⎜ ∂nx	 ξ ⎟⎝ S1 ⎣⎢	 ⎦⎥ ⎠ 

  	 1 exp jk (|x −ξ|)
( , ξ = ⋅ .where g x )  

0   
4π |x −ξ| 
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By means of iterating the equation of V.A. Fock, we can get, one by one, the summands of ray 
asymptotic for the surface current density. Following this as a guideline, below we present com  
putation of the first two summands of asymptotic v x k, introduced by stationary phase point of( 0 ) 
elliptical type. 

Taking into account that 

0 0 0v (x k ) = (n × p ) exp( jk (R ⋅ (a + x, ))),0 x 0 

  ε0 
     

where p0 = (R0 × p), and a is the radius-vector of stationary phase point in coordinate sys­µ0 

tem tied to the illumination source, it is easy to conclude from Equation 2.30 that 

          
, 0 v x k, (2.31)V (x k ) = exp( jk R ⋅ (a + x)) ( ),0 0 0 

besides 

     0 1     ⎛ 1 ⎞      
0 
   

, 0 x π ∫ ξ ⎜ ⎟ ( ))) dSξ, (2.32)V (x k ) ~ 2(n × p ) + Z( , x) jk0 −    exp( jk0(||ξ−x| + R ⋅ ξ−x
 
⎝ |ξ−x|⎠


S1 

where 

    ∂ln | ξ−x|    ξ−x    
Z(ξ, x) = (n × p0 ) −    ((n × n ) ⋅ p00 ). (2.33)ξ x ξ∂nx | ξ−x| 

It follows from here that 

      1   
V (x k ) ~ V ( ) + V, x ( ),x0 0 1jk0 

where 

V0 x (nx × p0( ) ~ 2 ), 

and V1( )/jk0x is the basic member of the integral asymptotic in Equation 2.32. 
From Equations 2.29, 2.31, and 2.33, it follows that given great k0 the following asymptotic 

representation takes place: 

          ⎡    1     ⎤0 0 0 0 
0 a 0 0 x + W1( ) dx S (2.34)I (r ) × r ~ exp( jk | |) exp( jk ((R − r ) ⋅ x)) W ( ) ,∫ ⎣⎢ jk0 ⎦⎥ 

S1 

in which 

W0 x = 2(nx × p0 ) × r 0 ,( )
      (2.35) 
W1( )x = V1 x × r0.( ) 
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Let us introduce cylindrical coordinates (ρ, φ, z): ξ1 = ρ cos φ, ξ2 = ρ sin φ. Then, the surface S1 in 
the vicinity of x = 0 becomes represented by the following equation: 

4 
g ϕ( )m m 4ζ =ζ ρ ϕ =) ρ + o(ρ ),( , (2.36)∑ m! 

m=2 

where, for instance 

g2( ) æ1 cos2 ϕ + æ2 sin2ϕ = ϕ 

(æ1 and æ2 are the principal curvatures of S1 at x = 0). Since x = 1, 2, ),(ξ ξ ζ then 

      
(R0 − r 0 ) ⋅ x = 2cos , , (x ⋅ n ) ,θζ ρ ϕ = ζ ρ ϕ , (2.37)( ) 0 ( ) 

where θ is the half-angle of spacing between receiver and transmitter, and n0 is the inner normal to 
the surface S1 at point x = 0. 

Further on 

⎛ ∂ζ ⎞
2 

⎛ ∂ζ ⎞
2 

⎛ 1 2 2 ⎞
dS = 1 + 

⎠⎟
+ d d = 1 + h2 ϕ ρ + (ρ (2.38)( ) o ) d d

⎠⎟
ρ ρ ϕ ⎟⎟ ρ ρ ϕ,

⎝⎜ ∂ξ1 ⎝⎜ ∂ξ2 ⎝⎜ 2 ⎠ 

where 

h2( )ϕ = æ1 cos2 ϕ + æ2 sin2 ϕ. 

Additionally, in the vicinity of point x = 0 

W x 
  = W 0 + ρW ( ) 2W ( ) o 2 ), (2.39)( ) ( ) ϕ + ρ ϕ + (ρ0 0 01 02 

W1 x = W1 0 + O( ),( ) ( ) ρ (2.40) 

where 

            0 0 0 0 0W 0 = 2(n × p ) × r = 2cos θ −p + 2( p ⋅ n )n ) = −2cos θ p ,( ) (0 0 0 0 reff 

  ⎛ ∂W 
  

0 
⎞ ⎛ ∂W 

  
0 ⎞ (2.41)

ρW01( ) cosϕ +ϕ = sin ϕ. 
⎝⎜ ∂ξ1 ⎠⎟ ρ 

⎝⎜ ∂ξ2 ⎠⎟ ρ 
0 0 

Using the Frenet formula, we finally obtain from Equation 2.39 that 

0 0 0 0 
01 1 1 2 2ϕ = ⎡⎣W ( ) 2 æ (τ × p ) × r cos ϕ + æ (τ × p ) × r sin ϕ⎤⎦ , (2.42) 

W ( ) h2 ϕ  0 cos . (2.43)02 ϕ = ( )pref θ 
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1, x τ τ2Here, τ τ2 are the unit-vectors of basic directions at point = 0, the vector triplet ( 1, ,n0) 
forming the right-hand triad. Vector W1( ) shall be computed below. In our case, we have æ1, æ2 > 0.0
Then, accounting for expressions (2.36) through (2.43), we apply the stationary phase point method 
to evaluate asymptotically the integral (2.34) multiplied by jk0 

0
0 0 

0 | 2cos ( , ))jk I (r ) × r ~ jk0 exp( jk |a ) exp( jk0 θζ ρ ϕ ×∫ 
S1 

⎡ 1 ⎤ ⎛ 1 2 ⎞× ϕ + 0 ( ) d d .W (00) + ρW ( ) W ( ) 1 + ρ h ϕ +�
⎠⎟

ρ ρ ϕ (2.44)0 01 1 2
⎣⎢ j k0 ⎦⎥ ⎝⎜ 2 

Having introduced some asymptotic estimates and transformation in Equation 2.44, we obtain 

      ⎛ 2π   1    ⎞ 
0 0 0 0jk I (r ) × r ~ exp( jk | |a ) pref + T r( )⎟ , (2.45)0 0 ⎜ jk0⎝ æ æ1 2 ⎠

where 

   
2π    h ( )ϕ 2 ⎛   g ϕ   g ( ) ⎫ dϕ⎧ ( ) ϕ ⎞0 2 4 3( ⎨ 1 0 0 0 00( ) 01 ϕ ⎬ .T r ) = − W ( ) −W ( ) + W 0 +W ( )∫ g2( )cosϕ θ g2( )cosϕ θ ⎝⎜ 12 3 ⎠⎟ 2g2( )cos θ2 ϕ⎩ 2 ⎭0 

If the surface z can be represented by the second-order polynomial, that is, g3 = g4 = 0, then 

2π 22π 
W ( )0 d ϕ W ( )0 h ( )ϕ0 1 0 2T r( ) = − + 2 2 d ϕ. (2.46) 

   
2 cos θ ∫ g2( )ϕ 4cos θ ∫ g2 ( )ϕ 

0 0 

Integrals in Equation 2.46 can be computed explicitly and then 

T r( 0 )
=

⎧
⎨
⎩
 

0pref (
æ1 +
 æ2 )
 
⎫
⎬
⎭
 cosθ
 

π
−W1( )0 −

2
 

1 2æ æ 
.
 (2.47)
 

0Expression (2.47) contains vector W1( ), explicit value of which has not yet been found. 
Since 

W1( )0 = V1( ) × r 0 ,0 

then we need to find the principal asymptotic member V1 0 jk0 of integral( )/ J in Equation 2.32 at 
point x = 0. This integral can be evaluated asymptotically as 

  2π   1 ⎛ 1⎞ ρ +(1 c ( ))) d , (2.48)J ~ d ϕ Z (ξ,0) jk − exp( jk ϕ ρ ρ0 0 0π ∫ ∫ ⎝⎜ ρ⎠⎟ 
0 0 

where c0(φ) = sin θ cos(φ − α), and α is the measure of angle formed by the projection of unit-
vector R0 onto plane ξ1Oξ2 and the axis Oξ1. Next, having made a replacement 

Z(ξ,0) = Z( ,ρ ϕ), 
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and having carried out all the necessary transformations, we obtain 

1 0 2 2 0lim Z(ξ 0) = Z ϕ = τ [ p (æ sin ϕ − æ cos ), ( ) ϕ + p æ sin 2ϕϕ]0 1 2 2 1 1 2ρ→0 2 

1     0 2 2 0 0 0) p+ τ [ p (æ1 cos ϕ − æ sin ϕ − p2æ sin 2ϕ], p = τ ⋅ .2 1 2 1 l l2 

Therefore 

� 2π �1 2 + c0( )
J ∼ ∫ Z ( )ϕ ϕ 

dϕπk0 
0 1 + c0( ))2j ( ϕ 

0 

and, consequently, 

  2π  1 2 + c ( )ϕ
V1 0 = 0 Z0 ( )d . (2.49)( ) ∫ ϕ 2 ϕ ϕπ (1 + c0 ( ))

0 

Having computed integral in Equation 2.49 explicitly, we obtain 

V 0 = τ V ( ) V ( ), (2.50)( ) θ + τ θ1 1 11 2 12 

where 

0 0 0⎡ p æ p (æ + æ ) ⎤ p1 2 2 1 2 2V11( )θ = Φ0( ) ⎢ sin 2α − cos2α⎥ + (æ2 − æ1) θθ ΦΦ1( ), (2.51)
2 4 4⎣ ⎦

0 0 0⎡ p æ p (æ + æ ) ⎤ p2 1 1 1 2 1V ( ) = Φ ( ) sin 2α − cos2α⎥ + (æ − æ ))Φ1( ),θ (2.52)θ θ −12 0 ⎢ 2 12 4 4⎣ ⎦

⎡ 2 2 ⎤tg θ 2 1 3sin θ − 2 ⎞( / ) ⎛Φ0( ) = 2 ⎢ + 2 2 + 3 ⎥ ,θ
⎣ cosθ sin θ ⎝⎜ cos θ ⎠⎟ ⎦ 

1 + cos2 θΦ0 , 1 θ 3(0)) = 0 Φ ( ) = 2 . 
cos θ 

Accounting for expressions (2.50) through (2.52), we obtain the following: 

W 0 = −τ cos θV ( ) cos θV ( ) n sin θ(sin αV θ − cos αα θ (2.53)( ) θ + τ θ + ( ) V12( )).1 1 12 2 11 0 11 

So, expressions (2.45), (2.47), and (2.50) through (2.53) represent the sought for value of the integral 
(2.29). 

Let us assume, next, that radius-vector of the stationary phase point in some coordinate system 
related to the target is y0, and |a| = d1, R = d2 . Then, using expression (2.28), we obtain the contribu
tion of surface S1 into total scattered field: 
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0 0 0  
− µ exp( jk (d + d + (R − r ) ⋅ y ))0 0 1 2ES ~
 

1
0 2d æ æ
ε 

2 1 2 

⎡  0 1 11× pref θ ((τ1 cos θV12( ) 2 cos θV11 ( ))+ θ − τ θ 
⎣⎢ jk0 2 cos 

 0 

)⎤  pref− n0(sin αV11 ( ) cos αVV12 θ θ − (æ1 + æ2 ) ⎥. (2.54)θ − ( ))sin 
2 ⎦ 

Let, now, the surface S1 (either all or some part of it that contains the stationary phase point) to be 
covered with thin uniform layer of RAM coating. In this case, the surface S1 itself is not perfectly 
reflecting anymore (at least in the vicinity of the stationary phase point), and E⊥ ≠ 0 in the integral 
(2.28′). The issue of the integral (2.28′) evaluation, in its turn, depends in the first place on finding 
the values of vectors E⊥ , H ⊥ entering the integrand. Let, further, the radius-vector X of a point at 
the scatterer surface’s vicinity of stationary phase point (i.e., such point that (R0 ⋅ n) = −(r 0 ⋅ n)) to 
be presented as vector sum 

0X = y 
  + x 

  
, (2.55) 

where y0 is the radius-vector of stationary phase point in some coordinate system related to the 
target. Then, the primary incident field (2.1) can be presented as 

⎛
 ⎞
0 exp ( 0( 0 ⋅
 ))
jk R
p x⎛
 ⎞
0( )E X 
⎟
⎠) 

0 ⋅
 y0 ))
⎜⎜
⎜⎝


⎟
⎟
⎟⎠


exp( (jk R
 .
 (2.56)
⎜
⎝
 

=
 ε000 
0 0 0 ⋅
0 (
 ) exp( ( ))
R
 jk R
(
H
 X
 ×
 p x0µ
0 

Due to linearity of the problem, the equivalent current densities around specular reflection point can 
be presented in similar form: 

⎛E⊥ (X) ⎞   ⎛E⊥ ( )x ⎞ 
0  0   = exp( jk (R ⋅ y ))   .. (2.57)⎜ ⊥ ⎟ 0 ⎜ ⊥   ⎟⎝H (X)⎠ H x ⎠⎝ ( ) 

x xThe values E⊥ ( ), H⊥ ( ) can be approximately (asymptotically) determined as corresponding field 
components at the surface of tangent (at stationary phase point) plane uniform layer of covering 
material backed by metal plate [54,55]. The corresponding expressions have the following form: 

⊥ 0 0 1 1E x = (n × p )exp( jk0 (R ⋅ x)) + (n × p ) exp( jk0 (R ⋅ x( ) )), (2.58) 

  ε         ⊥ 0 0 0 0 1 1 1exp( (2.59)H ( )x = [[n × (R × p )]exp( jk0 (R ⋅ x)) + [n × (R × p )] e jk0 (R ⋅ x))]. µ0 

Here, n is the unit-vector of external normal to the surface S1 at specular reflection point: 

1 0 0R = R − 2n R ⋅ n 
 

( ); 
1T 0    ( p ⋅ R )1 1Tp = p − n , (2.60)
cos θ 
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where 

⎡ ⎤ 
⎢    ⎥  0T 0   0⊥ 0  jc cos θ + 1   2 jc (R ⋅ p ) (R ⋅ p )1T 0T ⎢ 0T 0⊥ ⎥p = p − R ++ R ;

2jc cos θ − 1 jc cos θ − 1 ⎢ jc − cos θ ⎛ cos θ1 ⎞ ⎥
ε′ µ′ jc − (2.61)⎢ 1 1 ⎥

⎢ ⎝⎜ cos θ ⎠⎟ 
⎣ ⎦ 

µµ′ sin2 θ1c = θ ⋅tg k ε′ µ δ cos θ ⎤
⎦; cos θ = 1 − 1 ;cos ⎡ ′1 0 1 1 1 1⎣ε1 ′ ε1′ µ1 ′ 

δ is the absorbent layer depth, and ε1 ′, µ1 ′ are the relative permittivity and permeability of absorbing 
material. 

Let us note that in the vicinity of specular reflection point the following condition holds: 

0 0T 1(R ⋅ x) ≈ (R ⋅ x) = (R ⋅ x). (2.62) 

Using expression (2.62), we can rewrite Equations 2.58 and 2.59 in the next form: 

⎛
 )
 ⎞
0 +
 1×
 (
n p p 

(( 

⎛
 ⎞
⎟
⎠
 

( )x⊥E
 ⎟
⎟⎟⎠

))] 

Since the major contribution into the integral (2.28′) is from the stationary phase point vicinity, then 
substituting consequently expression (2.63) into expression (2.57) and then into expression (2.28′), 
we can reduce this integral to the following form: 

  0 ε0 
         0 0 0 0I (r ) ≈ µ exp( jk0((R − r ) ⋅ y0 ))∫ A exp( jk0((R − r ) ⋅ x))dS, (2.64) 

0 
S1 

where 

     0 0 1 1 1 0 1 0A = R ( p ⋅ n) − 2 p cosθ + R ( p ⋅ n) + ( ⋅ Rn p ), cosθ = −(R ⋅⋅ n). 

Amplitude multiplier A in the integrand is the slow oscillating function versus point position at 
the scatterer’s surface, so it can be replaced, within acceptable accuracy margin, by its value at the 
stationary point itself and be placed outside the integral. It is evident that in this case R1 = r 0 and, 
therefore, we have 

   ε         0 0 0 0 0 0I (r ) ≈ exp( jk0(R − r ) ⋅ y0 )Ast exp ( jk (R − r ) ⋅ x)dSS. (2.65)0µ0 
∫ 
S1 

Having computed asymptotically the integral in the right-hand part of Equation 2.65 (by means 
of stationary phase point) and having done corresponding transformations for the expression of 
vector A at the stationary phase point ( ), we finally receiveAst 

   ε     2π  0 0 0 0 1I (r ) = − exp( jk (R − r ) ⋅ y ) ⋅ p , (2.66)µ0
0 0 

jk æ æ0 1 2 

⎜
⎜⎜⎝


≈
 ε0 
0 ⋅
 

R 
exp ( ( )).
jk R
 (2.63)
⎜

⎝
 
x00 0 1 pp1⊥ [
 )
 (
R
×
 ×
 +
 ×
H
 n px( ) µ
0 
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   µ 0 exp( jk 0R)      
p ⋅ ES0  

= − jk 0 ( p ⋅ F(r 0 )),ε0 4πR 
(2.67)   ∫ 

⎡   ε     
F(r 0 

⎤   
) = ⎢H ⊥ − 0 (E⊥ × r 0 )⎥ exp(− jk 0

0(r ⋅ x))dS. µ⎢⎣ 0 
0  

⎥ ⎦ S  
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where æ1  and æ2  are the principal curvatures of the surface at its specular reflection point. Next, 
using expressions (2.28) and (2.66), we can evaluate the contribution from elliptical local scattering 
center covered with absorbent into total scattered field. 

2.2.4  radar ScatterinG  at  the  lOcal  edGe  fractureS  cOvered  with  abSOrbent 

Scattering characteristic computation for the object surface singularities such as fractures is con­
nected with solving diffraction problems. Getting an exact solution to the problem of electromag
netic wave diffraction at a fracture is a very complicated (both mathematically and computationally) 
task. Therefore, the practical way to solve such problems is to use the high-frequency asymptotic 
diffraction methods [56,57]. 

The  problems  of  high-frequency  diffraction  at  the  objects  with  ribs  are  solved  using,  in  the  first 
place,  the  edge  wave  diffraction  method  (physical  diffraction  theory  by  P.  Ya.  Ufimtsev  [7,8]). 
Using  this  method,  we  can  find  the  field  produced  by  the  irregular  part  of  the  current  excited  on 
geometrical  singularities  of  the  object  surface  such  as  edges  and  fractures.  This  field,  which  is 
the  correction  to  Kirchhoff’s  approximation,  is  found  directly  for  the  far-field  zone.  The  latter 
necessitates  all  the  considerations  to  be  carried  out  in  every  geometrical  optics  sector  and,  mostly 
challenging,  in  every  boundary  region  between  them.  All  the  aforementioned  factors  condition 
the  necessity  of  getting  solution  to  the  key  problem  of  diffraction  at  the  wedge  in  far-field  zone. 
Consequently,  the  conditions  listed  above  complicate  the  use  of  edge  wave  diffraction  method 
given  such  real-world  configurations  as  multistatic  radar  and  nonperfectly  reflecting  surfaces 
(those  covered  with  absorbent).  Thus,  the  edge  wave  diffraction  method  needs  modification,  which 
is  the  change  of  principle  (simulative)  problem. 

We  now  present  the  computation  method  that  is  to  be  used  for  evaluating  the  contribution  from 
edge  local  scatterers  covered  with  RAM  into  secondary  radiation  of  the  object  [34,55].  While 
doing  this,  we  rely  on  the  solution  of  the  simulative  problem  of  arbitrary  incidence  of  plane  elec
tromagnetic  wave  onto  perfectly  conducting  wedge  with  cylindrically  shaped  absorbent  coating  of 
its  edge  [46]. 

In case of multistatic radar, this problem (of oblique incidence of plane wave onto the wedge 
with cylindrically shaped RAM coating of its edge) cannot be reduced to superposition of two 
independent two-dimensional problems as it was the case in Ref. [7]. It should be noted that the 
solution to simulative problem has been obtained for the wedge’s rib vicinity, which allowed us to 
use representations uniformly applicable in all angular sectors. The latter has also conditioned the 
absence of splitting the surface current density into regular and irregular constituents. This is the 
basic methodological difference of the method proposed from the edge wave diffraction method. 

Expression for the field scattered from the edge local scatterers can be presented in the following 
form: 

Let us choose toroidal surface “pulled upon” the edge as the surface of integration S0. As it is 
shown in Figure 2.15, integration surface, in cross section orthogonal to the edge, is the part of cir
cumference with radius z0 and center at O that encompasses the absorbent covering the edge. 

In all our further considerations, we assume that absorbent is bounded, in this same cross sec­
tion, by a part of circumference of radius z  ≤  z0, its center being at point O. The values of z  and z0  
are conditioned by the inequality z  ≤  z0  < λ (λ is the wavelength of incident monochromatic wave). 
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In order to find the value of F r( 0 ) in Equation 2.67, we need to know the tangential component 
distribution of total field (E = n × , ⊥ = n × H⊥ E H ) over surface S0. Let us introduce Cartesian 
coordinate system Ox1x2x3 tied to the edge (Figure 2.15) so that 

X = x( ) (z0 θ), (2.68)υ + τ , 

where x( ) τ( ,θ) isυ is the radius-vector of a point at the edge Y with the arc coordinate υ, and z0 

the vector orthogonal to the edge at this point, this vector having constant norm z0 and direction 
determined by angle θ (0 ≤ θ ≤ ϕπ). Here, ϕπ is the aperture angle of wedge placed to be tangential 
to the edge at the point with corresponding arc coordinate υ. 

Let the object be illuminated with plane wave (2.1). Due to the problem of nonlinearity, the val
ues H ⊥ ,E⊥ over S0 at point (υ, τ) can be presented in the following form: 

� � �� �⊥ ⎛ ⊥ ⎞ �τ⎛ E (X)⎞ E ( ) �
� � = ⎜ ⎟ exp( j k0(R ⋅ υ (2.69)0 xx ( ))),

⎝⎜H⊥(X)⎠⎟ ⎜H 
�� ⊥ τ
� 

⎠⎟⎝ ( ) 

where 
�� � �� τ

� 
are the intensity vectors of field excited at surface S0 by plane waveH( ),τ E( ) 

�� 0 
� �0 

� 
0 
� 

E ( ) p exp( j k0(Rτ = ⋅τ)), 

� � ε � � � � (2.70) 
0 0 0 0H ( )τ = (R × p )exp( j k0((R0 ⋅τ)). µ0 

  
0 )Now, accounting for Equation 2.69, the integral F r( can be presented as 

0 x( ))] (υ,r )d ,F r( 0 ) = exp[ j k ((R − r 0 ) ⋅ υ D 0 υ∫ 0 (2.71) 
Y 

where 

 0  0D(υ,r ) = exp[− jk0 r ⋅ τ)] ( )d c,( B τ∫ (2.72) 
S′ 0 
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fiGure 2.15  Cross section of the integration surface S0 in the vicinity of fracture. 
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S0 ′ is the line (part of circumference) at the surface S0 that lies in plane orthogonal to Y, and 
dc = z0 dθ is the element of S0 ′  arc length 

� � ε � � �⊥ 0 ⎡ ⊥ 0 ⎤B( ) H τ −τ = ( ) E ( ) r (2.73)τ × . µ0 ⎣⎢ ⎦⎥ 

Having evaluated the integral (2.71) by means of stationary phase method, we can show that at 
least for the edge, which is convex closed plane curve, there should always be two stationary phase 
points (except for the “singular case,” which shall be discussed later). Such edges (fractures) are 
usually present at the surface of revolution bodies. In general, equation for finding the stationary 
phase points υ0 looks as follows: 

′(υ0 ) = (R0 − r 0 ) q( 0 ) =y ⋅ υ 0, (2.74) 

where q(υ0 )  is the unit-vector of the tangent to Y at point υ0. Let us note that at point υ0 we have 

′′(υ ) = æ(υ (R 
  

0 − r  0 ) ⋅ν υy )[ 
  
( )], (2.75)0 0 0 

where æ( 0 ν υ0 ) is the unit-vector of principal normal to theυ ) is the curvature of Y at point υ0, and ( 
Y at point υ0. Further on, we assume for definiteness that æ( 0 )υ > 0 . So, the “singular case,” where 
the stationary phase point cannot be applied, occurs when the following condition holds: 

( � 1 (2.76)(R0 − r 0 ) ⋅ ν υ0 ) 

(for instance, given the body of revolution with edges, this corresponds to the wave incidence along 
the axis and monostatic radar configuration). In this case, the value of F r( 0 ) can be computed using 
numerical integration, which is not hard if one accounts for condition that z0/λ is less than unit. 
Having found the stationary phase points using (2.74), we need to check them for their “visibility” 
from the direction of plane wave incidence determined by wave parameter R0 and from the direc­
tion of scattered wave reception (−r 

 0 ). To achieve this, we find the terminator (the light-shadow 
boundary line) and, consequently, the illuminated surface regions for both incident and scattered 
waves, and then we check the stationary phase points one by one for getting into both illuminated 
regions. If the point does not get into one of these illuminated regions, then contribution from it 
into the scattered field is not computed and not accounted for. Such analysis is given for every edge 
(fracture). Having applied the stationary phase method to the integral (2.71), we receive the final 
computation formula: 

   ⎡     π ⎤    2π0 0 0 0F r ) ≈ ∑ exp jk0 ((R − r ) x( 0 )) + δj D(υ0 ,r  ( ⋅ υ )    , (2.77)
0 04 ⎦⎥ k æ(( ) (R − r ) (⎣⎢ υ | ⋅ ν υ |)(υ ) 0 0 00 

where δ = sgn[(R0 − r 0 ) ⋅ ν υ( 0 )], and symbol (υ0) meaning that summation is done over all the 
“visible” stationary phase points. Since the integrand of Equation 2.72 is respectively slow oscillat
ing function, the value of D(υ0,r 0 ) can be found by means of one-dimensional numerical integra­
tion. Taking into account that the objects we consider are electrically large and curvatures of their 

surfaces are small, we can assume the values H⊥ ( ),τ E⊥ ( ) at the surface S0 ′τ to be approximately 
equal to corresponding values at the surface of cylindrically shaped absorbent covering the rib of 
perfectly conducting wedge (z = z0) placed so as to be tangent to the edge at point υ0. So, finally the 
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simulative problem that needs to be solved for evaluating the contribution from edge local scatter
ers into total scattered field is the problem of oblique incidence of plane electromagnetic wave onto 
perfectly conducting wedge with cylindrically shaped radar absorbent at its rib. 

This problem is three-dimensional in principle. Its solution cannot be represented as a superposi
tion of two independent two-dimensional problems as in case of the problem of oblique incidence 
of plane wave onto perfectly conducting wedge, or in case of the problem of normal (with respect to 
the edge) incidence of plane wave onto the structure under consideration. However, it can be shown 
that this problem can be reduced to a system of two two-dimensional problems, solutions of which 
being related through boundary conditions (by means of some matrix differential operator) [29,46]. 

⎛u⎞ 
If E = u x , x )exp( jk x R 0 ), H = v x , x )exp( jk x R 0 ), and ( (3 1 2 0 3 3 3 1 2 0 3 3 ⎝⎜
 v⎠⎟

, then vector =
w w can 

be developed into the Fourier–Bessel series with (2 × 2) matrix coefficients. For instance, for the 
region outside the absorbent cylinder we have 

∞ 

w = ( ) 1∑[ m γ (η0 ) + m γ (η0 θ( ), r)]
 A J
 C H
 f (2.78)
 r mm m 

m=0 

1where Jγ  is the Bessel function, Hγ 
( )
m 
 is the Hankel function, 

m 

⎛ sin( γ θ )⎞m 0 2( ) , η = 1 − (R ) , γ = /φ,ϕ = 0 0 3 mf k m 
⎝⎜ )⎠⎟
m cos( γ θ m 

ϕπ is the wedge aperture angle (0 ≤ θ ≤ ϕπ). The matrix coefficients Am, Cm are derived from bound­
ary conditions for functions u, v, and their derivatives at the surface of absorbent cylinder. The series 
of Equation 2.78 type converge well given small values of r (z ≤ r ≤ z0) [46]. 

It is worth mentioning that expression (2.77) cannot be used for straight edges since the curva
ture æ(υ0 ) of fracture line becomes zero. Let us write parametric equation for the straight edge 
(Figure 2.16): 

⎧a0 +υ 10 t, 
⎪

( ) υ = ⎨b0 +υ 0 
2 t,
 (2.79)
 x 

⎪ 0
⎩c0 +υ 3 t, 

where α ≤ t ≤ β, and α, β are the endmost points of straight edge. 
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fiGure 2.16  Straight edge covered with RAM cylinder. 



 
 

  

  

  

  

  

 

  

        

        

      

  

   

If we assume that such straight edge is at least few wavelengths long and we can neglect the 
influence of the ends, then the value of function D(υ,r 0 ) can be assumed approximately constant 
along all the edge Y and this value can be computed using solution to the simulative problem of 
plane monochromatic wave scattering given its oblique incidence onto perfectly conducting wedge 
with cylindrically shaped absorbent at its rib [46]. In this regard, expression (2.71) can be presented 
as follows: 

0	 0 0( 0 ∫ 0 

  ⋅ υ ( ))]dυ.	 (2.80)F r ) = D exp[ jk ((R − r ) x 
Y 

0 0 0If we express the vector difference R − r 0 as R − r = (r ,r ,r ) and then account for Equation1 2 3 

2.79, the integral (2.80) takes the following form: 

F r( 0 ) = D0 ∫ exp[ jk0(l + qt)]d ,υ	 (2.81) 
Y 

2 2 20 0 0 0 0 0where l = r a + r b + r c , q = r1υ + 2 υ +r3υ , υ = υ + υ + υ2 dt = 1 0 2 0 3 0 1 r 2 3 and d 1 3 d .t So, com
putation of expression (2.81) reduces to evaluating one-dimensional integral: 

     β 

F r( 0 ) = D exp( jk l) exp( jk qt0 0	 ∫ 0 )d t 
α 

exp( jk qα)= D exp( jk l) 0 (exp( jk q( )) 1 (2.82)β − α − ).0 0	 0jjk q0 

Expression (2.82) allows computing integral F r( 0 ) and, later on, it allows us to compute, using 
Equation 2.67, the field scattered from local scatterers in the form of straight edge covered with 
RAM for the general case of bistatic radar configuration. 
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2.2.5 verificatiOn Of methOdS fOr cOmPutinG ScatterinG characteriSticS Of SimPle 

ShaPe ObjectS 

2.2.5.1	 Comparison of rCs Computation results with the data observed 
in an anechoic Chamber 

The correspondence of results obtained using the computation methods developed here to those 
observed in real-life scattering of plane electromagnetic wave with respect to simple shape objects 
has been checked by means of comparing our results with experimental data obtained using radar 
measurement system based on an anechoic chamber (AnC). 

The radar measurement system consisted of anechoic chamber, target modeling, and measure­
ment subsystems. 

The anechoic chamber in the system was to represent the free space. It was the chamber with 
curved “pillow”-shaped walls. Its walls were covered with the spiky wide frequency range radar-
absorbent material. Besides, the level of wall reflections in the chamber was below −45 dB, so the 
anechoic chamber could be used for precise measurements of the most parameters of antennas, 
radio electronic systems, and most of the target scattering characteristics. 

The target modeling subsystem included the low reflecting support (foam plastic) upon the rota­
tor with index dial providing the azimuth aspect reading of the object under study. 

The distance to the object was set according to the following considerations: first, the object must 
be in the anechoic zone of the chamber; second, the distance must be larger than (2L2 /λ) [58–60], 
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where L is the maximum lateral dimension of the object or transmitting antenna and λ the wave­
length of wave incident onto the object. 

Structural diagram of the measurement system is shown in Figure 2.17. It consisted of the trans­
mit signal generator (TSG), high-frequency amplifier (HFA) of transmitter, transmit, and receive 
antennas (TrA, RecA), receiver’s HFA, squared envelope detector (ED), low-frequency amplifier 
(LFA), analog-to-digit converter (ADC), timing pulse generator (TPG), and computer. 

TSG generated periodic sequence of LFM pulses with the frequency starting at 9.25 GHz and 
stopping at 9.45 GHz. After amplification in HFA, the signal was transmitted into the chamber’s 
space by means of transmit horn antenna. The echo signal from target was received by the receive 
horn antenna. At the same time, the signal leaked from transmit antenna to the receive antenna 
input was used as a heterodyne voltage. Received signal, after amplification in corresponding 
HFA, came to ED, which extracted the differential signal component between the return and 
leaked signals. 

Next, after its amplification in the LFA, the signal was converted into digital form via ADC and 
came to the computer. Here, it was processed with discrete Fourier transform (DFT), which was 
used to compute the received signal’s power spectrum density. The latter spectrum density provided 
us with the value of frequency difference (proportional to the object range); we also retrieved the 
value of power spectrum density reading at this frequency difference value. 

Power of echo signal was measured in relative units. In order to calibrate the radar measurement 
system and provide actual measurement of RCS, we computed in advance the RCS of simple scat­
terers (spheres and triangular corner reflectors) to be used as standards. Relative power levels of 
echoes from these standards provided us with the RCS measurement units and the RCS calibration 
curve (echo signal power in relative units versus scatterer’s RCS in square meters). For every aspect 
position of the object we took 150 echo power measurements, which, after averaging, were put into 
table and transformed into the RCS values via the calibration curve. As an object of study, we used 
the cylinder of 0.1 m diameter and 0.32 m length. The backscattering RCS diagrams corresponding 
to the experiment and to the computation by method presented above are shown in Figure 2.18. The 
computation and measurement were done for the signal wavelength λ = 0.032 m. 

Figure 2.18 shows the backscattering RCS diagrams, i.e. RCS σ of the cylinder versus its aspect 
angle θ counted off the cylinder’s axis. Incident field polarization vector was perpendicular to the 
plane formed by the cylinder axis and the wave incidence direction. The bold line is for experimen­
tal RCS values, the thin line is for the RCS by computation. 

As can be seen from the figure, RCS computation coincides quite well with experimental 
data. 

Scattering object 

AnC 

Comp. ADC LFA 

EDHFA HFA 

TSG 

TPG 

TrA RecA 

fiGure 2.17  Structural diagram of measurement system. 
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fiGure 2.18  Backscattering RCS diagram of cylinder. 

The mismatch between the two curves is due to the following: first, imperfect alignment in 
vertical plane of the cylinder axis with the reception direction; second, aspect angle θ increment 
in measurement was 2.5°, therefore some notches of backscattering diagram could be missed; and 
third, the LFM signal was used for RCS measurement that smoothed out the backscattering diagram 
to some degree. 

2.2.5.2	 rCs Computation results for the Cylinder obtained using different 
Computation methods 

The cylinder RCS was evaluated by the following methods: 

•	 Proposed in the book combination of the physical optics method with the method for scat
tering computation from local edge object parts 

•	 Methods of moments applied in the “FEKO” software [9] 

As the first object taken for comparison, we chose the cylinder of 0.66 m  radius and 0.28 m  
height. Illumination signal wavelength was 1 G Hz (30 cm w avelength). 

Figure 2.19 shows the cylinder RCS versus azimuth aspect of illumination. Bold line is for the 
dependence obtained by means of the proposed method presented above (computation time ~10 m in 
given azimuth aspect increment of 0.5°). Thin line is for the dependence obtained by means of the 
“FEKO” software (computation time is more than 9 h g iven azimuth aspect increment of 1°). 

Analysis of dependence in Figure 2.19 shows that computation results for both methods coincide 
quite well for a wide range of aspect angles. 
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fiGure 2.19 Cylinder RCS versus azimuth aspect angle. 
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2.2.5.3	   rCs Computation results for the Cone–sphere object obtained using different 
Computation methods 

RCS of the cone–sphere object was evaluated by the following methods: 

•	 Proposed in the book combination of the physical optics method with the method for scat
tering computation from local edge object parts 

•	 Methods of moments applied in the “FEKO” software 

The cone–sphere object for RCS comparison was chosen in the form of truncated cone termi
nated with part of the sphere, the sphere radius being 0.16 m , truncated cone height being 1.8 m , and 
the cone bases being 0.16 m  and 0.35 m , respectively. Illumination signal wavelength was 1 G Hz 
(30 cm w avelength). 

Figure 2.20 shows the cone–sphere RCS versus its azimuth aspect angle. The bold line is for the 
computation method proposed in the book for the cone–sphere objects (computation time ~10 m in 
given azimuth aspect increment of 1°). The thin line is for the computation by means of “FEKO” 
software (computation time is about 14 h g iven azimuth aspect increment of 1°). 

Analysis of dependence in Figure 2.20 shows that computation results for both methods coincide 
quite well for the whole range of aspect angles. 

Verification of the proposed method provided in this manner shows that our method is opera­
tional and precise. Small deviations seen in Figures 2.19 and 2.20 are due to the different approaches 
to the current density estimation over the object surface. 

2.2.6  rcS cOmPutatiOn  fOr  the  cruiSe  miSSile  mOdel 

First, we would like to clear up the radar system that we bear in mind when studying scattering by 
different objects. Schematic of radar configuration assumed in book is shown in Figure 2.21. 

We assume the Cartesian coordinate system Ox1x2x3  to be tied to the object, its axis Ox3  
coinciding with the object’s axis, axis Ox1  being perpendicular to the wing plane, and the unit-
vector of axis Ox2  complementing the system to the right-hand triad. In this coordinate system, 
the illumination direction denoted by vector R

  
0  is determined by its elevation angle φ  (the angle 

between this vector and plane Ox2x3) and by its azimuth θ  (the angle between axis Ox3  and projec­
tion of vector −R

  
0  onto the plane Ox2x3). In this case, this vector has the following components: 

R
 
 

0 = {−sin ϕ, − cos ϕ sin θ, − cos ϕcos θ} Vector that characterizes the receiving direction r 
  0 is 

determined by its elevation angle φ1  and the bistatic angle β  of spacing between projections of − R
 
 

0  
and r 
  0  onto the plane Ox2x3, so r 

  0 = {sin( ϕ1 ), cos( ϕ1 )sin( θ +β ), cos( ϕ1 ) cos( θ +β )}.  Horizontal 
polarization vector of illumination signal p

  
h  is parallel to the plane Ox2x3, and the vertical polariza­

tion vector of illumination signal p
 
 
v  complements the vectors ( p

 
 , p
 
 ,R
  

 0v h )  to the right-hand triad. 
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fiGure 2.20  The cone–sphere RCS versus azimuth aspect. 
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fiGure 2.21  Radar system configuration assumed for studying scattering objects. 

In the same way, we define the horizontal and vertical polarizations for the reception direction r 0 

(Figure 2.21). 
We now show some RCS computation results for the model of cruise missile presented in Figure 

2.22 versus illumination and reception aspect in case of monostatic radar, and versus bistatic angle 
in case of bistatic radar. 

RCS was computed for both the model with perfectly conducting surface and the model covered 
with RAM. The smooth parts of the latter model were assumed to be covered with thin (1.3 mm) 

1 j0 1 µ1 ′ . . RAM layer, its relative permittivity and permeability being ε′= 20 + . and = 1 35 . + j0 8 
The edges of the model’s wings were assumed to be covered with the same RAM of toroidal shape, 
its radius being 1 mm. The model was assumed to be illuminated with the signal at λ = 3 cm wave­
length (frequency f = 10 GHz). The missile model length along its longitudinal axis was 6300 mm, 
the wingspan was 3400 mm. 

Figure 2.23 shows RCS dependencies versus azimuth aspect given monostatic radar configura­
tion. Elevation angle is φ = 0°. Both model illumination and signal reception were done at vertical 
polarization (purple line) and horizontal one (blue line). The model RCS is small at nose-on aspects 
(θ ≈ 0°) and gradually increases to the maximum when the angle approaches side-on aspects 
(θ ≈ 90°). As can be seen from the Figure 2.23, the RCS values for two polarizations coincide 
for almost all aspects. The only exception is the azimuth aspects, at which local edge scatterers 

fiGure 2.22  Cruise missile model. 
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fiGure 2.23  (See color insert.)  RCS of the cruise missile model versus azimuth aspect given its illumina
tion in the plane of wings. 

­

contribute significantly to the model RCS. For instance, given aspect angles θ ≈ 10° and θ ≈ 24°, the 
RCS at horizontal polarization is higher than that at vertical one. The latter is due to intense echoes 
from horizontal edges of wings and tail planes. Given the aspect angles greater than 75°, the RCS 
values at vertical polarization can go above those at horizontal one, which is due to echoes from the 
edges of vertical stabilizer. 

In the high-frequency domain under consideration, the object’s RCS and its scattered field are 
fast oscillating functions versus frequency (Figure 2.24). This is due to the frequency dependence 
of phase differences between fields scattered from different parts of the model as well as by signifi­
cant change in the Fresnel zone pattern over the object’s surface given even the slightest changes in 
the illumination signal frequency. Therefore, obtaining reliable RCS estimates necessitates averag­
ing over frequency range that is several times wider than the oscillation period of RCS frequency 
dependence (Figure 2.24). 

Figure 2.25 shows averaged RCS dependencies similar to those shown in Figure 2.23. Averaging 
was carried out by RCS values at 50 fixed frequencies evenly spread over frequency range of f = 9.95– 
10.05 GHz. Both here and in Figures 2.26 and 2.27 below, the thin line is for illumination and recep­
tion at vertical polarization, and the bold line is for illumination and reception at horizontal one. 

It is worth mentioning that the larger part of computation time in numerical RCS evaluation by 
the methods proposed here is spent on calculating the field scattered from smooth surface parts. In 
this regard, the necessity of frequency averaging (in order to get reliable RCS estimates) leads to 
further increase in computation burden. One of the factors that make RCS the fast oscillating func­
tion versus frequency and illumination aspect is the corresponding dependence on these parameters 
of phase differences between echoes from different parts of the object surface. To decrease the 
influence of this factor, we propose below to use the sum of separate object parts’ RCSs as a reliable 
RCS estimate of the RCS of object of interest. Since such sum does not account for phase differ­
ences of fields scattered from different object’s parts, then such RCS estimate is hereinafter called 
the “noncoherent” RCS. In its turn, the common sense coherent RCS (accounting for phase differ­
ences) is called hereinafter the “instantaneous” RCS. 
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fiGure 2.24  RCS of cruise missile model versus frequency (φ =  0°, θ =  20°). 
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fiGure 2.25  Frequency averaged RCS of cruise missile model versus azimuth aspect given its illumination 
in the plane of wings. 
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fiGure 2.26  Noncoherent RCS of cruise missile model versus azimuth aspect given its illumination in the 
plane of wings. 

Particularly, the surface of cruise missile model (Figure 2.22) is split into 11 smooth and 15 edge 
scattering parts (elements). For instance, the missile body is split into six elements, three of them 
form the upper surface part (nose, fuselage, and tail) and other three complete the lower part of the 
body. Separate smooth parts are also the surfaces of wings and empennage except for some vicinity 
of sharp edges. 

Figure 2.26 shows noncoherent RCS of cruise missile model versus azimuth aspect given its 
illumination in plane of wings. 

The noncoherent RCS versus azimuth aspect is practically the same as the frequency averaged 
instantaneous one shown in Figure 2.25. We can state that values of noncoherent RCS are good 
and quite reliable RCS estimates given certain frequency and aspect ranges. Besides, the values of 
noncoherent RCS are obtained by computation at single frequency that lightens computation burden 
and saves time. 

Figure 2.27 shows the noncoherent RCS versus azimuth aspect (for monostatic radar) and versus 
bistatic angle (for bistatic radar). Figure 2.27a shows the RCS versus azimuth aspect given eleva­
tion angle −20° (target illumination from below), and Figure 2.27b shows similar dependence given 
elevation angle +20° (target illumination from above). In case of illumination from below, the mean 
RCS value is lower than in case of illumination from above. The peaks of dependencies are close 
by amplitude, which is determined by scattering of radar wave at local edge scatterers. The RCS 
outside these peaks is determined by wave scattering at smooth part of the object surface. Since 
the lower part of the missile model body is of smaller curvature than that of upper part, then the 
echo signal is weaker given the target illumination from below than that given its illumination from 
above. Figure 2.27c shows the RCS versus elevation angle given azimuth aspect of 0°. 

Figure 2.27d shows the RCS of the model versus bistatic angle given elevation angle of illumina­
tion and reception equal to 0° and azimuth angle of illumination also equal to 0° (radar illumination 
is along the object’s axis and signal reception is in plane of wings). 
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fiGure 2.27  Noncoherent RCS dependencies for different aspects and bistatic angles. 

The latter plot practically coincides with the one shown in Figure 2.26 except that it is stretched 
along the argument axis by the factor of two. For instance, in Figure 2.26 the main peaks of the 
plot that are determined by scattering at local edge parts appear at azimuth aspects of 10° and 24°. 
Similar peaks in Figure 2.27d appear at aspects of 20° and 48°, respectively. Given target illumina­
tion at azimuth aspect of 0°, such values of bistatic angle correspond to specular reflection from the 
edges, which provide sharp RCS increase at azimuth aspects of 10° and 24° given monostatic radar 
configuration. The latter means that given target illumination along its axis and bistatic radar con
figuration the RCS peaks appear at bistatic angles that are twice as great as azimuth aspect angles 
given monostatic radar configuration. 

Figure 2.28 presents the noncoherent RCS of the model versus azimuth aspect of its illumination 
given horizontal polarization of transmit and receive wave. RCS of perfectly conducting model is 
shown by bold line; the thin line is for the model with nonperfectly reflecting surface. Application 
of RAM to the smooth parts of the model surface provides significant (by one order of magnitude) 
decrease in RCS level. 
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fiGure 2.28  RCS versus azimuth aspect for the model with perfectly conducting surface and the model 
covered with RAM. 
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Application of RAM to the edge parts of the model surface provides decrease in RCS by factor 
of 2–3 in corresponding angular sectors. 

Figure 2.29 shows noncoherent RCS for different aspect, elevation, and bistatic angles given 
absent and present RAM coating at the model surface. Azimuth aspect of illumination and bistatic 
angles are the same as for Figure 2.27. Model illumination and signal reception were at horizontal 
polarization. The bold line is for the model with perfectly conducting surface; the thin line is for the 
model provided with RAM coating. 

Analysis of plots presented in Figure 2.29 shows that application of RAM to the smooth parts 
of the model surface in monostatic radar leads to the RCS decrease approximately by factor of 10. 
In case of bistatic radar (Figure 2.29d), application of RAM is less effective in reducing RCS given 
bistatic angles greater than 50°. Application of toroidal RAM coatings to the edge parts of the model 
surface reduces their reflections by factors of 1.4–5. 

Computation results presented above show that the methods proposed here provide RCS evalua­
tion of standalone objects that have surface irregularities and RAM coatings in cases of monostatic 
and bistatic radar configuration. 

Ref. [42] described the computer software RECOTA by Boeing Aerospace that was designed 
for computing RCS of complex radar objects. Verification of the aforementioned software has been 
carried out using experimental RCS dependencies of cruise missile on the aspect of illumination. 
Cruise missile model presented in Figure 2.30 had perfectly conducting surface. By the data avail
able in the reference and by using our technique (described in Section 2.1), we designed similar 
model of the missile surface that is presented in Figure 2.31. The surface of the model was repre
sented by parts of 12 ellipsoids and 15 straight edges. 

Figures 2.32 and 2.33 show RCS computation results obtained using our method presented in 
this chapter (black line) and those measured by Boeing Aerospace for the same model (gray line). 
The results have been obtained for the signal carrier frequency of 12 G Hz. 

­

­

fiGure 2.29  Noncoherent RCS dependencies for different aspects of its illumination and different bistatic 
angles for perfectly conducting model and that provided with RAM coating. 
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fiGure 2.30  Model of the Boeing Aerospace cruise missile. 

fiGure 2.31  Model of the cruise missile used in computer simulation. 

Azimuth aspect (degree) 

fiGure 2.32  Computed (black line) and measured (gray line) RCS of cruise missile model versus azimuth 
aspect given its illumination in plane of wings at vertical polarization. 
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fiGure 2.33  Computed (black line) and measured (gray line) RCS of cruise missile model versus azimuth 
aspect given its illumination at the angle –10.5° with respect to the plane of wings (from the lower half-sphere) 
at horizontal polarization. 

Comparison of dependencies presented above shows good coincidence between the results of 
computer simulation and physical modeling. Some variations that take place (for instance, for azi­
muth aspects greater than 100°) can be explained by incomplete correspondence between the mis­
sile’s dummy and its computer model especially in the region of the missile’s tail group and rear end 
of fuselage. The same reasons were pointed out in Ref. [42] as causing the difference in results of 
experiment and computation by means of RECOTA software. 

It is worth mentioning that computation results of the missile scattering characteristics by our 
method coincide quite well with those obtained by RECOTA software. This is another indirect 
proof of the proposed method adequacy to real physical processes taking place in radar scattering 
of electromagnetic waves by the complex-shaped objects. 

2.2.7	 rcS reductiOn Of the cOmPlex-ShaPed Object by meanS Of OPtimal 

diStributiOn Of limited ram SuPPly Over itS Surface 

Significant contributions into RCS of complex-shaped object are brought from regions of strong 
scattering at smooth convex parts of the object surface [33,34]. It is these parts of the object surface 
that are covered with RAM for the sake of radar camouflage. However, these RAM coatings are of 
considerable weight and cost. In this regard, there appears the problem of the most efficient RAM 
distribution over the object’s surface in order to reduce its RCS in certain aspect sectors of illumina­
tion and reception given limitations on the volume of RAM that can be applied. 

In this section, we develop the method for distributing RAM coating over the complex object’s 
surface that provides RCS reduction in the preset sector of illumination and reception directions 
given limitations applied to the object’s surface percentage that can be covered with RAM. Quasi-
optimal RAM distribution method proposed here is based on a whole-numbered linear program­
ming problem. We also present some results of RAM distribution optimization for the simplified 
aircraft model, as well as evaluate the decrease in its RCS in various sectors of its illumination and 
reception of echoes. 

The object design peculiarities and technology of RAM application suggest that surface to be 
split into regions, each of which being either RAM-coated or perfectly conducting. In this case, the 
object’s RCS (noncoherent) can be approximately expressed as a sum of partial RCS of these regions: 
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σ θ = ∑ i ( ),	 (2.83) ( )	 σ θ 
i =1 
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Having averaged expression (2.83) in the sector of angles as specified above, we obtain 

N 

σ = ∑σi .	 (2.86) 
i=1 

It is this expression (2.86), which is the sum of local area (partial) RCSs of the object averaged 
in certain aspect sector of illumination and reception, that becomes subject to minimization we are 
about to carry out. Let us introduce some notations for the partial RCS of ith part of the complex 
object’s surface: σi1 is the mean partial RCS of ith surface part given that this part is perfectly con
ducting for this specific angle sector; σi2 is the mean partial RCS of the same surface part given 
that its surface is provided with RAM coating. Now, we can represent the RCS of complex object 
fully covered with RAM as 

N 

σ2 = ∑σi2. (2.87) 
i =1 

Subtracting Equation 2.87 from Equation 2.86, we obtain 

N N N 

σ − σ = (σ − σ ) = ( ) =κ σ − σ κ σ Δ . (2.88) 2	 ∑ i i2 ∑ i i1 i2 ∑ i i 

i=1 i=1 i=1 

Here, κi is the whole numbered coefficient, which equals to zero if the corresponding ith sur
face part is covered with RAM, and, otherwise, equals to unit if the ith surface part is perfectly 
conducting. 

Let S0 denote the maximum possible value of the object’s surface area that can bear RAM coat
ing, and S denote the total surface area of the object (S0 < S), so that the local parts adding up to 
make the whole surface 

N 

S = ∑ Si .	 (2.89) 
i=1 
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where N is the number of parts the surface is split into, and θ is the aspect angle of the object illu­
mination or echo signal reception, which is argument of RCS function. Since our ultimate goal is 
to receive the RCS values that were averaged over some sectors of aspect angles, then such RCS 
approximation expressed by Equation 2.83 is acceptable for our computations. So, here we use the 
method described in Section 2.2.1 for computing the partial RCSs of separate object parts. 

Let us introduce the mean RCS of the whole object and mean partial RCS of the ith surface part, 
both corresponding to the angle sector of θ1 ≤ θ ≤ θ2, as follows: 

­

­

­



  

  

  

We can express the limitation onto the maximum area of RAM coating using κi(i = 1,. . .,N): 

N 

∑(1 − κ i )Si ≤ S0 (2.90) 
i=1 

or in another form 
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∑κ iSi ≥ S − S0. (2.91) 
i=1 
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Thus, the problem of quasi-optimal distribution of RAM coating over the object’s surface has 
been reduced to the problem of whole numbered linear programming, i.e. the problem of finding 
binary set of coefficients κi that minimize expression (2.88) and satisfy the limitation (2.91). This 
problem can be solved by any of standard methods. For instance, it can be the additive algorithm or 
the method of branches and boundaries [61]. 

As an illustration of this method applicability, we used a simplified aircraft model (Figure 2.34) 
that consisted of only four three-axial ellipsoids. Ellipsoid axes were as follows: fuselage: a = 1.25 m, 
b = 1.25 m, c = 9 m; wings: a = 0.5 m, b = 11 m, c = 2 m; horizontal stabilizers: a = 0.3 m, b = 3 m, 
c = 1 m; vertical stabilizer: a = 3 m, b = 0.3 m, c = 1 m. Centers of ellipsoids that model fuselage 
and wings are aligned and shifted by distance of 7.6 m with respect to the centers of ellipsoids that 
model stabilizers. 

Illumination signal frequency was assumed to be 10 GHz for the aircraft model RCS computa­
tion. We also assumed the RAM coating to have thickness of 1.3 mm, its relative permittivity and 
permeability being ′ 20 + . and µ′ = 1 35 . + j . ,ε = 1 j 0 1 1 0 8 respectively. Material with such proper­
ties provides the 15 dB reduction in the RCS of conducting plate given normal wave incidence and 
the carrier frequency specified above. 

To estimate the partially coated aircraft model RCS, we have split its surface into 140 parts, each 
having area from 0.3 to 4.5 m2. Next, we computed the values of mean partial RCS of every surface 
part given it being covered and not covered with RAM for various aspect sectors of object illumina­
tion and echo signal reception. 

Figure 2.35 shows mean RCS of the aircraft model versus area of optimally distributed RAM 
coating in the azimuth aspect sector from −10° through +10° with respect to the aircraft axis and 
the elevation angle sector from 0° through −8° with respect to the wing plane (monostatic radar, 
illumination from below). 

Figure 2.36 shows similar dependence of mean RCS for bistatic radar configuration given direct 
nose-on illumination and echo signal reception at bistatic angles varying by azimuth aspect from 
−10° through +10°; elevation aspect from 0° through −8°. The mean RCS in bistatic radar decreases 
faster than that in monostatic radar case. 

The latter is evidently due to the smaller distances the local scattering centers move along the 
object’s surface and, consequently due to the slightly different optimal distribution of RAM coating 

fiGure 2.34  The aircraft model. 
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fiGure 2.35 Mean RCS versus area of optimally distributed RAM coating in monostatic radar. 
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fiGure 2.36  Mean RCS versus area of optimally distributed RAM coating in bistatic radar. 

over the model’s surface. Quite acceptable values of reduced RCS can be achieved while only 
20–25% of the model surface is covered with RAM. 

Results similar to those presented above but obtained given a wider solid angle sectors taken for 
averaging are given in Figures 2.37 and 2.38 for monostatic and bistatic radar, respectively. 

In the latter case, the RCS was averaged over the sector of azimuth aspects from −20° through 
20°, and over the sector of elevation aspects from 0° through −20°. It is worth mentioning that appli­
cation of RAM coating over 50–60 m2 of the object’s surface given its optimal distribution provides 
almost the same reduction in the RCS as for the fully covered aircraft model. 

As an example of quasi-optimal RAM coating distribution over the aircraft model’s surface, we 
consider the two variants differing only by the aspect sectors taken for RCS averaging. 

Figure 2.39 shows optimal placement of RAM-coating given monostatic radar and RCS aver­
aging in azimuth aspects over the sector from −5° through +5°, and averaging in elevation aspects 
over the sector from −3° through +3°. The aircraft view, as seen from above, is presented in Figure 
2.39a, and its view, as seen from below, is presented in Figure 2.39b. Placement of RAM coating is 
highlighted by gray and framed out. 
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fiGure 2.37  Mean RCS versus area of optimally distributed RAM coating in monostatic radar obtained 
given a wider solid angle of averaging. 
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fiGure 2.38  Mean RCS versus area of optimally distributed RAM coating in bistatic radar obtained given 
a wider solid angle of averaging. 

(a) (b) 

fiGure 2.39  Optimal placement of RAM coating given monostatic radar and RCS averaging in azimuth 
aspects over the sector from –5° through +5°, and in elevation aspects over the sector from –3° through +3°. 

Area of the RAM coating is 40 m2. Mean RCS of aircraft model with such RAM distribution as 
observed nose-on is 0.68 m2, the mean RCS of the fully covered model being 0.26 m2 and the mean 
RCS of perfectly conducting model being 8.11 m2. 

Figure 2.40 shows optimal placement of RAM coating given monostatic radar and RCS averag­
ing in azimuth aspects over the sector from −20° through +20°, and averaging in elevation aspects 
over the sector from 0° through −20°. 

Area of the RAM coating is also 40 m2. Mean RCS of the aircraft model given such solid angle 
of averaging and optimal RAM distribution is 0.74 m2, mean RCS of fully covered model being 
0.23 m2, and mean RCS of perfectly conducting model being 6.81 m2. Comparison of the two fig­
ures reveals significant difference between the variants of optimal distribution of limited volume of 
RAM given different angle sectors of aircraft observation by radar. 

This method for optimizing the RAM-coating distribution over the surface of complex-shaped 
objects is quite simple and can be easily programmed. Using this method, we obtained approximate 
estimate of the level, which the RCS can be reduced to in specific aspect sectors of the object obser­
vation given optimal distribution of RAM over the part of object’s surface. We came to a conclusion 
that in a wide aspect sector of the object observation one can significantly reduce its RCS applying 
RAM coating to only 20–25% of the object’s surface. 

(a) (b) 

fiGure 2.40  Optimal placement of RAM coating given monostatic radar and RCS averaging in azimuth 
aspects over the sector from –20° through +20°, and in elevation aspects over the sector from 0° through –20°. 
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2.2.8	   reductiOn  Of  the  radar ScatterinG  level  frOm  a  lOcal  edGe Scatterer  
by OPtimizinG  itS ShaPe 

In this section, we develop the method for reducing the level of radar scattering from local edge 
scatterers. Method is based on the scattering characteristics computation of the object’s surface 
fractures presented in Section 2.2.4 and on the analysis of the model fracture (edge) RCS depen
dence on its shape. 

Practically every radar object (both ground and airborne) has surface fractures (sharp edges). 
Presence of such fractures can lead to an increase in the object’s RCS. In this regard, it is necessary, 
first, to account for contribution from local edge scatterers into total field scattered by the object; 
and, second, to take all possible measures for decreasing the scattering level from edges. 

In our computations here, we use the method for evaluating the contribution from local edge 
scatterers provided with RAM coating into total field scattered from the object [34,55]. The method 
is based on solution of the simulative problem of arbitrary incidence of plane electromagnetic wave 
onto perfectly conducting wedge with cylindrically shaped radar absorbent on its rib [46]. 

To illustrate the method, let us consider the straight sharp edge 0.6 m  long (Figure 2.41). External 
angle of the wedge representing this edge equals to 360° (the wedge is flat). Wave incidence is in 
plane of wedge’s faces, azimuth angle of 0° corresponding to normal incidence of wave onto the 
edge. Azimuth angles of −90° and 90° correspond to the wedge illumination along the straight edge. 
Incident wave polarization vector p 

  
 is parallel to the wedge’s faces. Illumination signal wavelength 

is 3 cm . Figure 2.42 shows the RCS of straight edge versus azimuth aspect angle of its radar obser
vation in monostatic radar configuration. 

The highest peak of RCS dependence corresponds to normal incidence of illuminating wave onto 
the edge (0.08 m 2). The major lobe width by the half power level is about one-and-a-half degrees. 
Despite the relatively narrow angle sector, in which this edge can contribute significantly into total 
scattered field, the problem of reducing the maximum RCS level of the edge given arbitrary aspect 
of its radar observation or given certain sector of aspects (for instance, RCS reduction at zero azi
muth aspect) can arise. 

As an alternative to the straight edge, we consider the following variants: single saw tooth-
shaped edge (Figure 2.43a), triple saw tooth-shaped edge (Figure 2.43b), the edge shaped as a circu
lar segment (Figure 2.43c), the edge shaped as triple circular segment (Figure 2.43d). In every case 
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fiGure 2.41  Straight edge. 
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fiGure 2.42  Straight edge RCS versus azimuth aspect. 
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fiGure 2.43  Variants of shaping the local edge scatterer. 

to be considered, the distance between the edge ends d is constant. As a variable parameter in every 
of four examples given below, we set the height of saw tooth (or circular segment) h. 

Figure 2.44 shows the RCS of edge shaped as single saw tooth (Figure 2.43a) versus azimuth 
aspect. Thin line is for the tooth height h = 0.05 m, the bold line is for tooth height h = 0.10 m. 
Maxima of scattering correspond to the directions of normal wave incidence onto the edge segments. 

As it follows from the plots, replacement of straight edge with the saw tooth-shaped one leads 
to fourfold decrease in its maximum RCS and to shift of the maximum scattering direction to the 
side aspects. The “payment” for this decrease in appearance of two maximum scattering directions 
instead of one as well as the major lobe spread up to 4°. The amplitude and spread of the scattering 
lobes keep their values despite the change of the saw tooth height h since they are determined by 
edge segment length. 

Figure 2.45 shows the RCS of edge shaped as triple saw tooth (Figure 2.43b) versus azimuth 
aspect. This is the edge shaping type that is used for decreasing the radar scattering level from edges 
of the B-2 bomber air intakes [48]. The thin line is for the tooth height h = 0.02 m, and the bold line 
is for the tooth height h = 0.05 m. As in case of single saw tooth-shaped edge, scattering maxima 
correspond to normal wave incidence onto partial edge segments. The RCS maxima themselves are 
lower than in previous case. Difference in the major lobe amplitudes in Figure 2.45 is due to the 
constructive interference of echoes from partial edge segments. The spread of RCS lobes now is 
about 10°, which is due to further decrease in straight segment length. 

While evaluating the contribution from rectilinear and curved (elliptical) fractures into total field 
scattered by the complex-shaped object [34], we figured out that curved surface fractures contribute 
less by RCS absolute value but in the wider angular sectors. 

Figure 2.46 shows the RCS of edge shaped as single circular segment (Figure 2.43c) versus azi­
muth aspect. The gray line in Figure 2.46a is for the segment height of 0.02 m, the thin line is for 
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fiGure 2.44 RCS of edge shaped as single saw tooth versus azimuth aspect. 
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fiGure 2.45  RCS of edge shaped as triple saw tooth versus azimuth aspect. 

the segment height of 0.05 m, and the black bold line is for the segment height h = 0.07 m. The black 
bold line in Figure 2.46b is for the RCS dependence given the circular segment height of 0.09 m, the 
thin line is for the segment height of 0.10 m, and the gray line is for the segment height of 0.15 m. 

As it seen from the dependencies shown above, the use of segment with h = 0.02 m height already 
leads to eightfold reduction in the edge’s RCS as compared to that of straight edge, but it occurs at 
the expense of the major lobe spread increase up to 12°. Further increase of the segment height leads 
to further widening of the angular sector, in which the edge’s RCS exceeds the value of 0.001 m2. 

Analysis of plots in Figure 2.46 shows that the most acceptable segment height is h = 0.07 m. The 
angular sector width, in which the edge’s RCS exceeds the level of 0.001 m2, is about 50°. However, in 
this case the RCS value oscillates around 0.002 m2 level almost everywhere except in the two regions 
of local maxima (reaching 0.0035 m2). It is worth mentioning that the segment height must be chosen 
with regard to design features of the object bearing the local edge scatterer of interest. Besides, the use 
of rounded edges with the segment height greater than 5 cm is also acceptable from the RCS reduction 
viewpoint since its RCS at any aspect of radar observation does not get greater than 0.005 m2. 

Figure 2.47 shows the RCS of edge shaped as triple circular segment (Figure 2.43d) versus 
azimuth aspect of observation. The thin line in Figure 2.47 is for the segment’s height of 1 cm, the 
black bold line is for segment’s height of 2 cm, and the gray line is for the segment’s height of 5 cm. 
All the three dependencies are of oscillating nature, which is due to interference of partial echoes 
from separate segments. The RCS maxima for most of the dependencies do exceed the level of 
0.01 m2, which is higher than those for edge shaped as single circular segment. The spread of lobes 
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fiGure 2.46 RCS of edge shaped as single circular segment. 
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fiGure 2.47  RCS of the edge shaped as triple circular segment versus azimuth aspect. 

does not exceed the value of 2°, and given the sector of observation aspects from −40° through 40° 
the RCS dependence has 17 peaks, most of which go higher than 0.005 m2. Besides, all the maxima 
of RCS dependence given the segment’s height of 2 cm are concentrated within azimuth aspects 
from −15° through +15° and their absolute value does not exceed 0.01 m2. 

If the edge consists of three circular segments, each one of them having the local scattering center 
(“specular point”) at almost any illumination aspect, then we can state that values of RCS maxima 
would also change significantly given even small variations in the illumination signal wavelength. 
In this regard, the edge shaping as multiple circular segments leads to its RCS reduction in a narrow 
frequency range of illumination signal. 

Shaping of the local edge scatterer provides significant decrease in its maximum RCS level. 
Shape selection for the edge is determined by the requirements to its maximum RCS and to the 
angular dependence of its RCS. 

2.3	 method for ComputinG sCatterinG CharaCteristiCs 
of Ground Complex-shaped objeCts 

Vitaly A. Vasilets and Oleg I. Sukharevsky 

The method proposed here is basically based on the scattering characteristic computation method 
developed above in Section 2.1 for standalone objects, but it additionally provides taking into 
account the underlying surface with given electromagnetic properties. Due to the presence of the 
“air–ground” interface, there are two mutually overlapping illuminated regions, the first being cre­
ated by the direct incident wave, and the second being created by the wave scattered from the 
ground surface. Integral representations obtained below allow us to single out the four basic wave 
propagation paths in the system formed due to the object’s standing on the ground (Figure 2.48): 
“transmitter–object–receiver,” “transmitter–object–ground–receiver,” “transmitter–ground– 
object–ground–receiver,” and “transmitter–ground–object–receiver.” The method is also applicable 
for the ground objects provided with RAM coating and for the objects with surface fractures. 

2 

1 

3 
4 

fiGure 2.48  Basic paths of electromagnetic wave propagation for the case of ground object illumination. 
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2.3.1 Plane electrOmaGnetic wave ScatterinG at Perfectly cOnductinG Object 

Placed in the vicinity Of hOmOGeneOuS half-SPace 

We present here the approximate method for computing characteristics of plane wave backscattering 
from electrically large object with perfectly conducting surface that also has small curvatures, the object 
itself being in the interface vicinity of homogeneous half-space (possibly having complex parameters). 

An importance of such problem formulation is conditioned particularly by the necessity of get­
ting a priori information on backscattering characteristics of ground objects for the sake of their 
detection and identification by radar. 

The method is based on integral field representations that follow from the Lorentz reciprocity 
theorem when electromagnetic interaction is accounted for between perfectly conducting scatterer 
and the interface of homogeneous half-space. 

Computation of scattering from the object placed above the underlying surface must account for 
their mutual interaction, that is, one must consider the “perfectly conducting object—half-space 
with the ground properties” system (Figure 2.49) and account for the intrasystem interactions. 

In order to account for the underlying surface influence on the scattering, one has to consider four 
basic paths of electromagnetic wave propagation. Multiple reflections of backscattered wave can be 
neglected, in first approximation, as the second-order effects.             Let E(x x | 0 , p), H (x x | 0 , p) be the field excited by the point dipole placed at point x0, the field        
being characterized by the vector-moment p in the presence of half-space V1. The field E(x x | 0 , p),     
H (x x | 0 , p)  satisfies the Maxwell equation system: 

rot E = jωµ 0 H ⎫⎪
         ⎬, (2.92) 

rot H = j E j p ( 0 ⎭⎪− ωε − ω δ x − x ) 

⎧⎪
⎨
⎪⎩


ε
0 , x0 ∈
V 0 ,

where ε =
 

1ε
It should be noted that if the main part of illumination signal spectrum is situated above the 

50 MHz mark, then dispersive properties of the propagation medium with parameters of the ground 
can be neglected [62]. 

Equation system (2.92) is complemented with boundary conditions at the propagation media 
interface D: 

+T −T +T −TE = E ; H = H . (2.93) 

∈
V1 , x .
0 

D 

Q0 ⊂ S 

Q1 ⊂ S 

R 
→0 

R 
→1 

V 0 (ε0, µ0) 

V1 (ε1, µ1) 

fiGure 2.49  The “object–ground” system. 
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Let us consider field E x H( )x excited by the definite volume current density( ), J in V0 given pres­

ence of half-space V1 and perfectly conducting object S in it. Given all these conditions, the Maxwell 
equations take the following form: 

rot E = j ω µ0 H ⎫⎪
� � �⎬. (2.94) 

rot H = − ω εj E + J ⎪⎭

Let us note that the region V0 is bounded by D ∪ S (Figure 2.49). Boundary conditions at the 
interface D, which are as follows: 

+T −T +T −TE = E , H = H , (2.95) 

are complemented with requirement to the tangential component of electric field intensity to be 
equal to zero at the surface S, that is 

ET = 0. (2.96)
S 

Now, we are ready to apply the Lorentz reciprocity theorem to the fields E x ( ), and( ), H x
         

E(x x| 0 , p),H (x x| 0 , p) in the region V0 given that x0 ∈ V0 

               
−T −⊥ −T −⊥ −T −⊥(E ⋅ H − E ⋅ H )dS − E ⋅ H dS = − ( j ωδ(x − x0 )p ⋅ E ++ J ⋅ E)dV. (2.97)∫ ∫ ∫ 

0D S V 

Now, using the superposition principle and filtering property of δ-function, we get the following: 

T ⊥ −T −⊥ −T −⊥jω p E x ) − E(x )) = E ⋅ H ( )dS − (E ⋅ H − E ⋅ H ))dS,( ( 0 0 ∫ x ∫ (2.98) 
S D 

where E(x0 ) is the field excited in half-space V0 by the predetermined distribution of extraneous 
currents J  given that scatterer S is absent. 

Having applied the Lorentz reciprocity theorem to the same fields in the region V1, we obtain 

+T +⊥ +T +⊥∫ (E ⋅ H − E ⋅ H )dS = 0. (2.99) 
D 

Here, AT = A − n A ⋅ n), B⊥ = (n × B( ), and n is the unit-vector of the normal to the correspond­
ing boundary. 

Summing expressions (2.98) and (2.99) term by term and accounting for the boundary conditions 
(2.93), (2.95), and (2.96), we can obtain the following integral representation: 

             ⊥jω ⋅p ( ( ) − E(x )) = E( | , p) ⋅ H xE x x x ( )dS.0 0 ∫ 0 (2.100) 
S 

Let the vector x0 be directed toward the illumination source, −R0 , and let it have the length r: 

0x 
  

0 = −rR . (2.101) 
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Assuming that r → ∞, we can represent Equation 2.100 in the following form: 

            
0 0 T 0 ⊥jω ⋅p ( ( ) − E(R )) = ∫E ( | , p) ⋅ H x (2.102)E R x R ( )dS, 

S 

ET 0where (x R , p) is the field excited by plane wave| 

E 0(x R| 0 , p) = k0
2ω µ0 p 

 0 exp( j k (R 
  

0 ⋅ x  )) Ω(k r), (2.103)
ε 0 0 

0 

1 exp( jk r)         0 0 0 0Ω(k r) = , p = p − R ( p ⋅ R ),0 4π k r0 

that propagates in the direction R0 given that only half-space V1 is present (scatterer S being absent); 
E R0 ),E(R0( ) are the backscattering diagrams of the system under consideration given that scatterer 
S is present and absent, respectively. 

Expression for the incident wave (2.103) has been obtained as a result of proceeding to the limit 
in the form of vector function: 

      1     2      exp( j k0|xx − x |)
E (x x| , p = ⎡ ( p g) + k pg⎤ , g x x, ) =    0 ,) ∇ ⋅ ∇ (0 0 0ε0 ⎣ 4π −x 0⎦ | x | 

which expresses the field of electrical dipole placed in free space and localized to the point x0 ∈ V0 

given that x0 goes away infinitely. Here, we use asymptotic representation of function g x x( , 0 ) given 
that r → ∞: 

      
g x x ) ~ k Ω(k r)exp( j k (R0 ⋅ x)).( , 0 0 0 0 

In general case, plane wave (2.103) is incident obliquely onto the interface D between the two 
media. In this case, the field scattered in the direction −R0 can be assumed to be equal to zero. So, 
the field above surface D given absent scatterer S can be expressed as follows: 

0 2 ω µ0 0 
  

0 1 
  

1E(x R , p) = k0| p exp( j k (R ⋅ x)) + p exp( j k (R ⋅ xx)) (k r), (2.104)⎡⎣ 0 0 
⎤⎦Ω 0ε0 

1 0 0where R = R − 2n R ⋅ n) is the propagation direction of wave reflected from the plane of surface( 
D, and p1 is the vector coefficient of reflection from underlying surface, this coefficient being com
puted using Equations 2.12 and 2.13 according to method presented in Ref. [29]. 

Finally, we consider that the scatterer’s surface S is illuminated by, first, direct plane wave propa­
gating in direction R0 and, second, the wave reflected from the plane D. 

While doing so, we need also to account for phase differences of the illumination wave that 
occur due to reflection from the interface D. To illustrate this, we assume, in some coordinate sys­
tem Ox1x2x2, the point M at the object’s surface to be determined by the radius-vector x and let the 
point A be the point of wave reflection at the plane D, from which reflected ray arrives to point M 
at S (Figure 2.50). 

The plane D is determined by the equality 

(x ⋅ n) + h = 0, (2.105) 
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where h is the distance from plane D to the coordinate system origin along the unit-vector of normal 

n to the plane D, and x is the radius vector of a point at the plane. 

  →   →   
Let us introduce the following notation a = OA = x − ρR1, ξ = AM = x − a = ρR1, where the 

value ρ is determined from condition of point A belonging to plane D: 

(x ⋅ n) + hρ =   
1   . (2.106)

(R ⋅ n) 

Now, the incident wave (2.103) can be presented as 

� � � � 0 � � � � 
E0 | 0 p) = k0

2ω µ 
p0 exp( j k (R0 ⋅ (a + ξ)))Ω(k r)(x R , ε0

0 0 

2 0 0 0 0 �� 0= k0 ω Ω(k r)p exp( j k (R ⋅ a))exp( jk (R ⋅ ξ))0 0 0 = p exp( j k0((R0 ⋅ ξ)),ε0 

and the wave reflected from the plane D accordingly takes the form 

1 1 �1 1 
� 

2ω µ0 1 0 1E(x R , p ) = p exp( j k0(R ⋅ ξ)) = k0 ε 0 0 0| Ω(k r)p exp( j kk (R ⋅ a))exp( j k (R ⋅ ξ)) 
0 

0 � � � � � � = k0
2ω µ Ω k r)p exp( j k ((R0 −− R1) a R( 0

1 
0 ⋅ + 1 ⋅ x)).ε0 

So, the resulted field at point x of the object’s surface S that accounts for phase differences 
between direct wave and wave reflected from plane D can be written as 

0 2ω µ0 0 0 1 0 1 1k r 0 a (2.107)|E(x R , p) = k0 Ω( 0 ) ⎡⎣p exp( jk (R ⋅ x)) + p exp( jk0(((R − R ) ⋅ + R ⋅ x))⎤⎦.ε0 

Then, having accounted for Equation 2.107, from expression (2.102), we get 

� � � 0 2 µ0 �0 
� 

0 � p ⋅ E R ) = − j Ω(k r k( ) [ p exp( j k (R ⋅ x))0 0 ε0 
∫ 0 

s 
� � � � � � � �1 0 1 1 ⊥+ 00 ⋅ + xp exp( j k ((R − R ) a R ⋅ x))] ⋅ H ( )dS. (2.108) 

M 
O 

R
→1 

R
→0 

n 
→ 

h 

θ 

A 
D 

fiGure 2.50  To the issue of incident wave reflection from underlying surface.
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H
⊥ x( ) =
 
⎧⎪
⎨
⎪⎩


0 ∈
2
 H1 Q0×
nS , x ,
 
(2.109)


0 � ∈
2
 H
 Q1×
nS , x ,
2 

where 

� ε �0 0 0 0 0H1 = (R × p ) exp( j k0(R ⋅ x)),µ0 (2.110)
� � 

0 
� � � � 

0 1 �1 ε 0 1 1 �H2 = (R × p ) exp( j kk0(R − R ) ⋅ a)exp( j k0(R ⋅ x)). µ0 

So, the right-hand part of Equation 2.108 can be represented as a sum of four integrals of the 

Γ = ∫ f x   jk Θ( ))d
  

S kind:( )exp( 0 x 
Q 

� � � exp( jk r) µ ⎪⎧ � � � � � � ε � �0 0 0 0 0 0 0 0 0p ⋅ E R ) = −( jk0 ⎨ p exp( jk0(R ⋅ x)) (⋅ nS × (RR × p )) exp( jk0(R ⋅ x))dS
2πr ε0 ⎪Q 

∫ µ0
⎩ 0 

�1 0 11 � 1 � � 0 �0 ε0 0 � p exp( jk0((R − R ) ⋅ + R ⋅ x ⋅ nS × (R × p ))+ a )) ( exp( jk0(R ⋅ x))dS∫ µ 
� 

0 
Q0 

� � � � � � ε0 � �0 0 1 1 0 1 1+ pp exp( jk0(R ⋅ x)) (n × (R × p ))∫ ⋅ S µ exp( jk0((R − R )) ⋅ +a R ⋅ x))dS 
0 

Q1 

� � � � � � � � �1 0 1 1 11 1+ p exp( jk0((R − R ) ⋅ + R ⋅ x)) (a ⋅ nS × (R × p ))∫ 
Q1 

� � � � � ⎫⎪0 1 1 
0 R − R ) ⋅ + R ⋅ x))dS ⎬exp( jk (( a . (2.111) 

⎪⎭
0 

0 
× ε 

µ 
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Let us note that H
� 

⊥ ( x
� 
 )  is the current density over surface S  excited by the plane wave propagating

along R
� 

0  given that boundary D  of half-space V1  is present. Presence of half-space V1  in the system 
under  consideration  leads  to  the  appearance  of  additional  wave  incident  on  the  object  surface  S  that is 
the direct wave reflection from surface D  and that propagates in the direction R

� 
1.  Therefore, there 

are two mutually overlapping (in general) illuminated regions Q0  and Q1  that appear at the object’s 
surface (Figure 2.49). In the physical optics approximation, the surface current density over illumi
nated smooth part of S can be presented as 

­

Here, the two first integrals are to be integrated over illuminated region Q0, and the other two 
integrals are to be integrated over illuminated region Q1. 

The functions corresponding to f (x
  
) and Θ( x 

  
) in every integral are slow oscillating. In their

turn, the functions in the integrand of Equation 2.111 are fast oscillating and they necessitate appli
cation of cubature formulas described in Section 2.2.2. 

In a similar manner, we can obtain the expression for computing the field scattered from local 
edge scatterers that accounts for underlying surface. However, in this case we need the bistatic solu
tion of the problem of wave scattering at local edge scatterer [31]. 

­

­
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In Section 2.3.3, we shall also present the method for evaluating contributions from local edge 
scatterers provided with RAM coating into the RCS of ground object with nonperfectly reflecting 
surface. 

Using expressions obtained for the fields scattered from smooth parts of the surface and from 
local edge scatterers, we can evaluate total field scattered from the object placed close to the under­
lying surface. 

2.3.2 ScatterinG characteriSticS Of Perfectly cOnductinG mOdel Of a GrOund Object 

To prove the applicability of method developed above, we simulated the process of plane electro­
magnetic wave scattering from the model of tank (Figure 2.51) standing on the ground. 

The model’s length was 8 m, its width was 3 m, and its height was 2 m. We assumed the underly­
ing surface to consist of brown loam of equivalent dry density of 1.2 g/cm3. The dry soil properties 
were as follows (moisture content was 1%): ε′ = 3 + j0.38, μ′ = 1 + j0; and the moist soil properties 
were as follows (moisture content was 20%): ε′ = 17 + j0.9, μ′ = 1 + j0. 

As the elevation angle, we consider the angle between the normal to ground and the incidence 
direction vector. So, in case of the object illumination parallel to the ground this elevation angle is 0°. 
Azimuth aspect is counted off the head-on direction. 

RCS computation for the model was carried out in the azimuth aspect sector from 0° through 90°. 
The elevation angle was 30°. Illumination signal frequency was assumed equal to 10 GHz (λ = 0.03 m). 

Figure 2.52 shows instantaneous RCS of perfectly conducting tank model standing on dry soil 
versus azimuth aspect. RCS dependence at horizontal polarization is shown with bold line, and the 
thin line is for the RCS dependence at vertical polarization. Figure 2.53 shows similar dependencies 
for the tank standing on moist soil. 

fiGure 2.51  The model of a tank. 
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fiGure 2.52  Instantaneous RCS of the tank model standing on dry soil versus azimuth aspect. 
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fiGure 2.53  Instantaneous RCS of the tank model standing on moist soil versus azimuth aspect. 

Maximum RCS values take place at head-on and side-on model illumination regardless of inci­
dent wave polarization and soil type. The RCS at vertical polarization is lower than that at horizon­
tal polarization through almost all the aspects. This can be explained by the smaller contribution 
from underlying surface given vertical polarization of illumination signal. At some aspects, the 
vertical polarization RCS goes higher than that at horizontal polarization. The latter is due to the 
stronger scattering from vertical edges of the model surface than that from the horizontal ones. In 
case of wet soil, the model RCS is higher than that in case of dry soil; the difference is especially 
observable at horizontal polarization of illumination signal. 

In the high-frequency range being considered, the RCS of an object, like scattered field itself, is 
the fast oscillating function of frequency. 

When objects get sounded by real radar signals, their RCS values become somewhat averaged 
over the frequency ranges corresponding to the signal bandwidths. As it is shown in Figure 2.24, 
reliable estimates of RCS can only be obtained given their averaging in the frequency range at 
least 5 MHz wide. Figure 2.54 shows the plot of tank model RCS versus azimuth aspect given that 
it stands on dry soil, which correspond to those shown in Figure 2.52. The RCS values were aver­
aged in the frequency range of f = 9.95–10.05 GHz. To achieve this, we took 50 RCS values at fixed 
frequencies evenly spaced over this range. Figure 2.55 shows the averaged RCS of the tank model 
standing on moist soil versus azimuth aspect, these dependencies corresponding to those shown in 
Figure 2.53. The bold line is for the RCS at horizontal polarization, and the thin line is for the RCS 
at vertical polarization. 

The plots of Figures 2.54 and 2.55 are smoother than those in Figures 2.52 and 2.53. This is due 
to RCS averaging in frequency and due to corresponding decrease in the influence of coherent sum­
mation of contributions from different parts of the model’s surface. 

To save the computation time when computing reliable RCS estimates, we computed the corre­
sponding values of noncoherent RCS for the same model. Figure 2.56 shows the noncoherent RCS 
of the tank model standing on dry soil versus azimuth aspect. Figure 2.57 shows the same depen­
dencies for the model standing on moist soil. 

The latter dependencies of noncoherent RCS are even more smoothed out than those averaged in 
frequencies (Figures 2.54 and 2.55). Therefore, these noncoherent RCSs values are good and quite 
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fiGure 2.54  Averaged RCS of the tank model standing on dry soil versus azimuth aspect. 
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fiGure 2.55  Averaged RCS of the tank model standing on moist soil versus azimuth aspect. 
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fiGure 2.56  Noncoherent RCS of the tank model standing on dry soil versus azimuth aspect. 
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fiGure 2.57  Noncoherent RCS of the tank model standing on moist soil versus azimuth aspect. 

reliable estimates of the object RCS given certain sector of aspects and certain range of illumination 
frequencies. It is worth noting that noncoherent RCS value is obtained by scattering computation at 
single frequency, which lightens the computation burden considerably. 

Figures 2.58 through 2.60 show these dependencies of noncoherent RCS of the tank model given 
different elevation angle of its illumination. 
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fiGure 2.58  Noncoherent RCS of the tank model versus azimuth aspect given 0° elevation angle, the 
model was standing on: (a) dry soil; (b) moist soil. 
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fiGure 2.59  Noncoherent RCS of the tank model versus azimuth aspect given 10° elevation angle, the 
model was standing on: (a) dry soil; (b) moist soil. 
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fiGure 2.60  Noncoherent RCS of the tank model versus azimuth aspect given 75° elevation angle, the 
model was standing on: (a) dry soil; (b) moist soil. 

RCS dependencies presented above show that when the model is illuminated along the ground 
surface, then there is no difference in RCS values at vertical and horizontal polarization. The latter 
is due to the fact that given illumination directions close to those being tangent to the ground, ground 
reflection coefficient approaches unit at any polarization of incident wave and along any propaga­
tion path considered of incident wave. The surface fractures, in their turn, are either obscured or 
they do not backscatter. Given object sounding at elevation angles close to 90°, the RCS values for 
the two polarizations are close to each other again since the wave propagated along the “radar– 
object–radar” path contributes most to the scattered field and ground reflections are almost absent. 
The largest difference between the RCS at two polarizations takes place given elevation angles of 
10° and 30° (Figures 2.56, 2.57, and 2.59) when the difference in reflection coefficients at the two 
polarization is significant. This is why the RCS of tank model standing on moist soil is higher than 
that of standing on dry soil given these elevation angles of 10° and 30°. When the elevation angles 
are approaching 0° or 90°, the influence of the soil type is much smaller. 

2.3.3	   methOd  fOr  cOmPutinG  rcS Of GrOund Object  with  nOnPerfectly  
reflectinG Surface 

The method developed here is based on integral representations of fields derived from the Lorentz 
reciprocity theorem while taking into account electromagnetic interactions between the scat
terer and the interface between free space and homogeneous half-space. Besides this, the method 
accounts for the presents of discontinuities (sharp edges and radar absorbents) at the surface of the 
object of interest. 

Let us consider the plane monochromatic wave (2.1) incidence onto nonperfectly reflecting 
ground object. Using the Lorentz reciprocity theorem [11], we can express the field scattered by the 
object with surface S as 
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   1         
( 0 ∫ ⊥( ) x x0 

⊥( ) x x0 x (2.112)p ⋅ E x ) = [H x ⋅ E( | , p) + E x ⋅ H ( | , p)]dS ,
jω 

S 

where E H (x x0 , p) is the field of electrical dipole placed at point x0, the dipole having the vector, |   ⊥moment p given the presence of interface D of half-space V1 (Figure 2.49), and (E⊥ ,H ) are, 
as before, the 90° rotated tangential components of resulted total field at the object’s surface S. 
Particularly, if the object’s boundary discontinuity is due to the presence of uniform radar absorbent 
layer backed by perfectly conducting object’s surface, then the field (E,H) can be found by using 
solution to the simulative problem presented in Section 2.1. Let us note that for the case of backscat
tering x0 = − ⋅ R0r . If we put now r → ∞, then the dipole field can be asymptotically expressed as 

          
E(x x , p) ~ Ω(k r E 0| 0 0 ) (x R| , p),
          (2.113)

| 0 0 ( | 0, pH (x x , p) ~ Ω(k r)H xx R ), 

where 

jk r0eΩ(k r) = .0 4πk r0 

The field E(x R0 , p), H (x R| 0 ,| p) is excited by plane wave 

E0(x R| 0, p) = k0
2 ω µ0 p 

 Τ exp( jk0(R 
  

0 ⋅ x  )),ε0 (2.114) 
0 2 ⊥ 0H (x R , p) = −−k ω exp( jk (R ⋅ x)),| p0 0 0 

0 0 0where p⊥ = R × p, pΤ = p − R (R ⋅ p) . 
Consequently, the field over interface D given that scatterer S is absent can be expressed as 

E( |x R0, p) = k0
2 ω µ0 ⎡⎣p

0 exp( jk0(R 
  

0 ⋅ x)) + p1 exp( jk0(R 
  

1 ⋅ xx))⎤⎦ , (2.115)
ε0 

0 2 0⊥ 0 1⊥ 1H ( |x R , p) = k p exp( jk (R ⋅ x)) + p exp( jk (R ⋅ x (2.116)− ω⎡⎣ )))⎤⎦ ,0 0 0 

         �0⊥ 0 0 1⊥ 1 1 0where p = R × p , p = R × p , p = pT , and p1 is the vector calculated by expressions (2.12) 
and (2.13). 

So, like it was in Section 2.3.1, we consider that the object’s surface S is illuminated, first, by 
direct plane wave propagating in direction R0 and, second, by the wave reflected from the plane D, 
the latter propagating in direction R1 (Figure 2.49). 

Phase differences that appear due to wave reflection from the interface D are accounted for in the 
same manner as for the perfectly conducting object. For instance, the electrical field component of 
resulted incident field at point x of the object’s surface S that accounts for phase differences due to 
primary wave reflection from plane D can be written as 

|E (x R0, p) = k0
2 ω µ

ε0

0 Ω(k r0 ) ⎡⎣p
0 exp( jk0(R0 ⋅ x)) + p1 exp( jk0(((R0 − R1) ⋅ +c R1 ⋅ x))⎤⎦ , (2.117) 
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   (x ⋅ n) + h    
where c = x −   

1   R1; n is the normal to the plane D; and h is the distance from the center 
(R ⋅ n) 

of coordinate system tied to object down to the surface D (Figure 2.50). In the same manner, we can 
write expression for H (x R0 , p)| . 

Now, accounting for the fields E (x R0, p), H (x R| 0,| p) from the expression (2.112), we can obtain 
expression for total field scattered in direction −R0 (above the surface D) given that object S is 
present: 

     0 
⎡ µ0  0 0   1 0 1   1   ⊥   p ⋅ E R ) = − j k0 Ω(k0 ⎢( r) p exp( jk0(R ⋅ x)) + p exp( jk0((RR − R ) ⋅ + R ⋅ x))⎤⎦ ⋅ H x⎡ c ( )∫ 

S ⎣ ε ⎣⎢ 0 

0⊥ 0  1⊥ 0 1 1   ⊥ ⎤p exp( jk (R ⋅ x))) + p exp( jk ((R − R ) ⋅ + R ⋅ x)) E ( ) dS+ c x .⎡⎣ 0 0 
⎤⎦ ⋅ ⎦ 

(2.118) 

We note here that H ⊥ ( ) is the equivalent current density of electric current over surface S of non-x 
perfectly reflecting object. This surface current density H⊥ ( ) is excited by plane wave propagatingx 
in direction R0 given that the interface D of the half-space V1 is present (Figure 2.49). In the physical 
optics approximation, the value of H⊥ ( ) for smooth parts of the surface S can be expressed asx 

� � ⎪⎧ nS ×H1, x ∈Q0 ,
H⊥ ( )x = ⎨ � (2.119) 

⎩ nS ×H2 , x ∈Q ,⎪ 1 

where 

ε � ε0 �0 0 0 01 �01 0 01 �H1 = (R × p ) exp( j k0 (R ⋅ x)) + (R × p ) exp( j k0 (RR ⋅ x)),µ µ0 0 

� � � ε0 
� � � � �0 1 1H2 = (R1 × p1) exp( j k0 (R −R ) ⋅ c)exp( j k0 (R ⋅⋅ x))µ0 

� � ε � � � � �11 11 0 0 1 11+ (R × p ) µ exp( j k0( R −R ) ⋅ c)exp( j k0 (R ⋅ x))). (2.120) 
0 

01 0 0 11 1 1Here, nS is the normal to the object’s surface S; R = R − 2nS (R ⋅ nS ), R = R − 2nS (R ⋅ nS );  01   and p , p11 are the complex vector coefficients of reflection from nonperfectly reflecting object’s 
surface given its illumination in directions R0 и R1, respectively. Vectors p01 and p11 can be com
puted using the method described in Section 2.1.1. 

In expression (2.112), the value of E⊥ ( ) describes an equivalent density of magnetic current overx 
surface S. In the physical optics approximation, the value of E⊥ ( ) can be written asx 

E
⊥ x( ) =
 
⎧⎪
⎨
⎪⎩


×
E1nS , x ,
∈Q0 
(2.121)
 

×
E
nS , x ,
2 ∈Q1 

where 

0 0 01 01E = p exp( j k (R ⋅ x)) + p exp( j k (R ⋅ x)),1 0 0
� � � � � � �� � � � � �1 0 1 1 11 0 1 11E = p exp( j kk (R −R ) ⋅ c)exp( jk ( R ⋅ x)) + p exp( j k (R −R ) ⋅ c)exp(x j k (R ⋅ x)) .2 0 0 0 0 

(2.122) 
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Taking into account Equations 2.119 through 2.122, expression (2.118) can be presented as 

⎧� �	 � � � �� exp( jk r) ⎪ � � � �	 �0 0 0 0 0	 0p ⋅ E R ) = − jk0 ⎨ p ⋅ (nS × H1) + (R × p ⋅ nS × E11 0( ⎡⎣	 ) ( )⎤⎦exp( jk (R ⋅ x))dS
2πr	 ⎪Q 

∫
 
⎩ 0
 

�	 � � � � �� � � �	 � �1 1 1	 0 1 1∫ ⋅ (nS × H1) + (R × p ) ⋅ ((nS × E1 
⎤⎦ jk0((R − R ) c R ⋅ x+ ⎡⎣p	 ) exp( ⋅ + ))dS 

Q0 

0 0 0	 0+ ⎡⎣p 
� ⋅ (nS × H2 ) + (R × p ) (nS × E2 )⎤⎦ exp( jk0(R ⋅ x �))dS∫	 ⋅ 

Q1 

⎫�	 � � � � �� � � �	 � � ⎪1 1 1	 0 1 1+ ⎡⎣ ) (	 S ⎬.p ⋅ (n × H ) + (R × p ⋅ n × E ) ⎤⎦exp( jk ((R − R ). c + R ⋅ x)))d∫ SS 2 S 2 0 

⎪Q1	 ⎭
(2.123) 

The first two integrals are over illuminated region Q0, the other two integrals are over illumi
nated region Q1. Integrands in Equation 2.123 are fast oscillating functions, which necessitates the 
cubature formulas to be applied as described in Section 2.2. 

Having applied the cubature formula (Section 2.2.2) to the integrals in Equation 2.123, we can 
compute the field scattered from smooth part of the object’s surface. 

For the field scattered from local edge scatterers of ground object, we use the same expression 
(2.112). The expression for resulted total field at point X of the surface S enveloping the object that 
accounts for phase differences due to reflection of primary wave from the interface plane D can be 
written in the same manner as in Equation 2.117: 

     0 2ω µ0  0 0  1 0 1 1E ( | , p) = 0X R k Ω(k r) ⎡p exp( jk (R ⋅ X)) + p exp( jk (((R − R ) ⋅ +C R ⋅ X))⎤ , (2.124)0 0	 0ε0 
⎣	 ⎦ 

   	           
0 2 0⊥ 0 1⊥ 0 1 1H (X R| , p 
 
) = k ωΩ(k r) ⎡p 

  
exp( jk (R ⋅ X)) + p exp( jk ((RR − R ) ⋅ + R ⋅ X))⎤ , (2.125)C0	 0 0 0⎣	 ⎦ 

exp( jk r)    (X ⋅ n) + h           0	 1 0⊥ 0 0 1⊥ 1 1where Ω(k r) = , C = X −    R , p = R × p , p = R × p ; n is the normal0 4πk r 1 ⋅ n)0 (R 
to the plane D; and h is the distance from the coordinate system tied to object down to the plane D 
(Figure 2.50). 

Now, the field scattered from local edge scatterers of ground object in the backward direction 
−R0 can be expressed as 

� � � exp(jk r0 )
(	 (2.126)p ⋅ E R0 ) = −jk (F + F ),0 0 12 πr 

⎡ µ               
0 a ⊥ ⎡ 0 0 1 0 1 1 ⎤F0 = ⎢ H ( )x ⋅ p exp( jk0(R ⋅ X)) + p exp( jk0((R − R ) ⋅CC + R ⋅ X))
 

W 
∫

⎣⎢ ε0 ⎣ ⎦
 
0 

    	 ⎤ 
a ⊥ 0⊥ 0 1⊥ 0 1 1+ E	 x ⋅ ⎡⎣p exp( jk0(R ⋅ X)) + p ex jk0((R − R )⋅C + R ⋅ X))⎤⎦( )	 xp( ⎥ dS, (2.127) 

⎦ 
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⎡ µ     0 b ⊥ 0 0 1 0 1 1F1 = ∫ ⎢ H ( ) ⋅ p exp( jk (R ⋅ X)) + p exp( jk ((R − R ) ⋅CC + R ⋅ X))⎤x ⎡⎣ 0 0 ⎦⎢ ε0 
W ⎣1 

     ⎤
b ⊥ 0⊥ 0 1⊥ 0 1 1 ⎤+ E x ⋅ ⎡p exp( jk (R ⋅ X)) + p xp( jk ((R − R ) ⋅C + R ⋅ X)) ⎥d( ) 0 ex 0 S . (2.128)⎣ ⎦ ⎦ 

Here, W0 is the whole set of toroidal surfaces enveloping the edges that are illuminated by 
wave propagating in direction R0 (Figure 2.61); W1 is the whole set of toroidal surfaces envel

a ⊥ aoping the edges illuminated by wave reflected from the interface plane D; E = (n0 × E ) and 
a ⊥ aH = (n × H ) are the surface densities of equivalent magnetic and electric currents over the sur0         bface W0 (n0 is the normal to the surface W0) given its illumination in direction R0; Eb ⊥ = (n × E )      1 

and Hb ⊥ = (n1 × Hb ) are the surface densities of equivalent magnetic and electric currents over the 
surface W1 (n1 is the normal to the surface W1) given its illumination in direction R1. 

Let us consider the integral F0 over surface W0. To do so, we need to express coordinates of the 
points X  at the surface W0 as follows: 

  υ + τ (2.129)X = x ( ) , 

where x ( )υ is the radius-vector of a point at the surface fracture Y given its edge line’s parameter 
equal to υ, and τ is the vector orthogonal to the edge at this point that has constant length z0, and 
which direction is determined by vector θ(0 ≤ θ ≤ φπ) (Figure 2.15). 

It is convenient to split the phase correcting vector coefficient C  in two parts: 

C = c0 x 
  υ + c1( ), (2.130)( ( )) τ 

     ( ( )υ ⋅ n) + h      (τ ⋅ n)  x   
where c x υ = x( )   R1 ; c1 τ = τ − 1 

0 ( ( )) υ −   ( )    R . 
(R1 ⋅ n) (R1 ⋅ n) 

Then, the Ea and Ha  can be represented as follows: 

a ⎛ �� a ⎞⎛E ⎞ E � 
0 � ⎜ � ⎟ = ⎜ � ⎟ exp( jk0(R ⋅ υx( ))), (2.131)

⎝Ha ⎠ ⎜ � a ⎟⎝H ⎠ 

where Ea , Ha  are the intensity vectors of the field excited at W0 by plane wave 
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fiGure 2.61  To the determination of surfaces W0 and W1. 



 

 

   
  

 

  

  

 

  

  

 

� � � � � � 

� � 

µ         

           

� � � � 

� � � � �� � 

� � � � � � � 

�� � � � �
0a 0 0E ( ) p exp( jk0(Rτ = ⋅τ)), 

� 0a ε0 0 0 0H ( )τ = (R × p )exp( jk0(R ⋅τ)). µ0 

Taking into account all that we stated above, the integral F0 over surface W0 can be written as 

µ ⎡ � � � ε � � � � ⎤ � � � �0 � a⊥ 0 0 � a⊥ 0 0 0 0F0 = ⎢H ( )τ ⋅ p + E τ ⋅ R × p )⎥ exp( jk00(R ⋅ X))exp( jk0(R ⋅ x υ( ) ( ( )))dSε ∫ µ0 ⎢ 0 ⎥W ⎣0 ⎦ 

µ ⎡ �� � � ε ��� � � � ⎤ � � � � � 
0 a⊥ 1 0 a 1 1 0 1 1+ ⎢H ( ) +τ ⋅ p E ⊥ τ ⋅ R × p )⎥ exp( jk0 ((R − R ) ⋅C + R ⋅ X( ) ( ))ε0 
W 
∫ 

00 
⎢⎣ µ0 ⎥⎦ 

× exp( jk0(R0 ⋅ x υ (2.132)( ))) dS. 

Having replaced the surface integral by the double one, we write integral F0 in the following 
form: 

0 0 0F0 = 0 υ D00 dp ⋅ exp( jk 2(R ⋅ x ( ))) υ∫ε0 
Y0 

      1 0 1 0 1∫ 0 0( ( )) ⋅ υ D01 d , (2.133)p ⋅ exp( jk ((R − R ) ⋅ c x υ + (R + R ) x( ))) υ 
Y0 

D00 = ∫ exp( jk0(R0 ⋅τ)) B00 d ,z 
′ W0 

� ε �a⊥ 0 a⊥ 0) (2.134)B00 = H ( )τ + (E (τ × R ),µ0 

∫∫ �0 1 1( ) B dz,D01 = exp( jk0((R − R )⋅c1 τ + R ⋅ τ)) 01 

′ W0 

dz = z0 dθ being the element of the arc W0 ′  length; 

� �� � ε0 
�� � � 
a⊥ 1B01 = Ha⊥ ( ) µ ( ( )τ + E τ × R ). (2.135) 

0 

Here, Y0 is the whole set of edge lines that are enveloped by the surface W0, and W0 ′ is the crossing 
line between surface W0 and the plane perpendicular to the edge. 

We can see that the first summand in expression for integral F0 is the same as the corresponding 
expression for the field scattered from the local edge scatterer of standalone object. 

0 

0 
+ µ 

ε 
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Let us consider the integral F1 over surface W1. The field (Eb , Hb ) can be represented in the fol
lowing form: 

b ⎛ b ⎞⎛E ⎞ E � � � � � � 
⎜ � ⎟ = � exp( jk0[(R0 − R1) ⋅ c0 x υ + ((R x( ))]), (2.136)⎜ ⎟ ( ( )) 1 ⋅ υ 
⎝H ⎠ ⎜ � b ⎟b ⎝H ⎠ 

where Eb , Hb are the intensity vectors of the field excited at W1 by plane wave 

0b 1 0 1 1E ( ) p exp[ jk0((R − R ) ⋅ c1 ( )τ + (Rτ = ⋅τ))], 

�� � ε � � � � � � � �
0b 0 1 1 0 1 1H ( )τ = (R × p )exp[ jk0((R − R ) ⋅ c1( ) (R ⋅ τ))]].τ + µ0 

Taking into account Equation 2.136, we can write expression (2.128) for the integral F1 as follows: 

� � ⎤ � �µ
ε ∫

⎡ �� � 
µ
ε � �0 b ⊥ 0 0 b ⊥ 0 0 0F1 = ⎢H ⋅ p + E ⋅ (R × p ) exp( jk (R ⋅ X)))⎥ 0 

0 ⎢ 0 ⎥W ⎣1 ⎦ 
0 1 1 

0 0 x υ + R ⋅ x ( )))d× exp( jk ((R − R ) ⋅ c ( ( )) υ S
 

⎡ �
 � � ⎤ � � � � � 
+ µ0 � b ⊥⊥ �1 ε0 � b ⊥ 1 �1 0 1 1⎢H ⋅ p + E ⋅ (R × p ) exp( jk0 ((R − R ) ⋅C +⎥ R ⋅⋅ X))ε ∫ 

1 

µ ⎦0 ⎢ 0 ⎥W ⎣ 
0 1 1× exp( jk0 ((R − R ) ⋅ c0 x υ + R ⋅ x υ (2.137)( ( )) ( )))dS. 

Having replaced the integral over surface by double integral, we can rewrite expression for F1 

as follows: 

µ              
0 0 0 1 0 1F1 = ( ( )) ) ⋅ x ( )))DD d υp ⋅ exp( jk ((R − R ) ⋅ c x υ + (R + R υ0 0 10ε0 

∫ 
Y1 

      1 0 1 1υ + ( ))))D d , (2.138)p ⋅ exp( jk 2((R − R ) ⋅ c ( x ( )) R ⋅ x υ υ∫ 0 0 11 

Y1 

� � � � � �� � ε �0 b⊥ 0 b⊥D = exp( jk (R ⋅ τ)) B dz, B = H ( )∫ τ + µ (E × R0 ), (2.139)10 0 10 10 
0′ W1 

0 1 1D = ∫ exp( jk ((R − R ) ⋅ c τ + R ⋅ τ)) B d z( ) ,11 0 1 11 

′ 
1W 

(2.140)
�� � ε0 E

� b⊥ 1B11 = Hbb⊥( ) µ ( × R ),τ + 
0 

0 

0 
+ µ 

ε 

where Y1 is the whole set of fracture lines that are enveloped by the surface W1, and W1 ′ is the cross­
ing line between the surface W1 and the plane perpendicular to the fracture line. 
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Now, the problem is reduced to finding four vector coefficients: D
  

, D
  

00 D
  

01, 
  

10, D11, which can be 
solved in the same manner as it was done in Section 2.2.4 by numerical integration procedure for 
the vector coefficient D

 
 
. 

As it follows from Equations 2.133 and 2.138, computation of scattering from local edge scatter
ers of ground object can be interpreted by terms of the four path wave propagation picture as it was 
done for the case of electromagnetic wave scattering from the smooth part of the object’s surface. 
By adding together components scattered from smooth surface part and local edge scatterers of the 
object, one can estimate the field scattered from the object standing on the underlying surface. 

2.3.4	   ScatterinG  characteriSticS  Of  nOnPerfectly  reflectinG  mOdel  
Of  a GrOund Object 

Applicability of the method developed here was verified by computer simulation of plane electro
magnetic wave scattering from nonperfectly reflecting model of a tank (Figure 2.51), which was 
provided with RAM coating and put on the ground. 

The model length was 8 m , its width was 3 m , and its height was 2 m . In simulation we assumed 
RAM with the following properties: relative permittivity and permeability were ε ′ =   20  +  j0.1 and 
μ′ =   1.35  +  j0.8, respectively, coating thickness over smooth parts of the surface was 1.3 m m, radius 
of radar-absorbing toroid at the fracture ribs was 1 m m. As underlying surface, we took the soil with 
properties of brown loam. Relative permittivity and permeability of dry soil (given moisture content 
of 1%) were ε′ =   3  +  j0.38 and μ′ =   1  +  j0, respectively; the moist soil (given moisture content of 
20%) had the following relative permittivity and permeability: ε′ =   17  +  j0.9, μ′ =   1  +  j0. 

RCS  computation  was  provided  for  the  azimuth  aspects  from  0°  through  90°  with  increment  of  1°. 
Illumination signal wavelength was assumed to be 10 G Hz (λ =  0.03 m). RCS estimations presented 
in Figures 2.62 through 2.65 were provided for the elevation angle of 30°. 

Figure 2.62 shows instantaneous RCS of the tank model standing on dry soil versus azimuth 
aspect of its radar observation. RCS at horizontal polarization is shown with bold black curve, and 
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­
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fiGure 2.62  Instantaneous RCS of the RAM-coated tank model standing on dry soil. 
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fiGure 2.63  Instantaneous RCS of the RAM-coated tank model standing on moist soil. 
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the RCS at vertical one is shown with thin black curve. Figure 2.63 shows similar RCS dependen­
cies for the tank model standing on moist soil. Gray curves at these plots show corresponding RCS 
dependencies for the perfectly conducting model. 

All basic qualitative relationships of RCS for the tank model provided with RAM coating were 
practically the same as for the perfectly conducting model at both polarizations of illumination 
signal (Section 2.3.2). 

In order to save computation time when obtaining reliable RCS estimates, we computed also the 
noncoherent RCS values. Figure 2.64 shows such noncoherent RCS of the tank model standing on 
dry soil versus azimuth aspect of its observation. Figure 2.65 shows similar dependencies of nonco­
herent RCS of the tank model standing on moist soil. RCS of the RAM-coated model is shown with 
black curves; the gray curves are for the perfectly conducting model. Bold lines are for the RCS at 
horizontal polarization, and the thin lines are for RCS at vertical polarization. 

RCS of the RAM-coated model is, in average, 10-fold less than that of the perfectly conducting 
model. RCS values at vertical polarization are lower than those at horizontal polarization, which is 
even more evident for the case of moist soil (Figure 2.65). 

The noncoherent dependencies of RCS presented above are smoother compared to instantaneous 
RCS dependencies, and they provide reliable estimate for the RCS given specific frequency range 
and sector of observation aspects. 

Figures 2.66 through 2.68 show dependencies of noncoherent RCS of the tank model given vari­
ous elevation angles of its illumination. Dependencies presented above show that behavior of nonco­
herent RCS of perfectly conducting model correlate strongly with RCS behavior of the RAM-coated 
model. The dependencies are almost the same for all the azimuths and elevation angles except that 
the RCS of RAM-coated model is about 10-fold lower compared to RCS of perfectly conducting 
model given the use of this specific RAM coating. 

The level of RCS reduction goes as high as 16 dB. Variations in the RCS levels given different 
kinds of underlying surface become more evident as the elevation angle increases. Main qualitative 
RCS relationships for the ground model, which has perfectly conducting and nonperfectly reflecting 
surface, practically coincide with each other. Particularly, given target illumination along the ground 
surface, there is almost no difference between the RCS at vertical and horizontal polarization. These 
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fiGure 2.64  Noncoherent RCS of the tank model standing on dry soil. 

1000
 
100
 

RC
S 

(m
2 ) 10
 

1
 
0.1 

0.01 
0.001 

Azimuth aspect (degree) 
0 10 20 30 40 50 60 70 80 90 

fiGure 2.65  Noncoherent RCS of the tank model standing on moist soil. 
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fiGure 2.66  Noncoherent RCS of the tank model versus azimuth aspect at elevation angle of 0° (a – dry 
soil, b – moist soil). 
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fiGure 2.67  Noncoherent RCS of the tank model versus azimuth aspect at elevation angle of 10° (a – dry 
soil, b – moist soil). 

RCS  values  are  practically  the  same  since,  for  the  illumination  directions  approaching  those  being 
tangent  to  the  ground  surface,  the  reflection  coefficient  approaches  unit  given  any  signal  polarization. 

When the tank model is illuminated at elevation angles approaching 90°, then the values of its 
RCS at horizontal and vertical polarization are close to each other since the direct wave propagating 
without reflecting from the ground contributes mostly into total scattered field. As it was the case 
for the perfectly conducting model, the maximum difference between the RCS values at vertical 
and horizontal polarizations is observed at elevation angles of 10° and 30°. At these elevation angles 
of the model illumination, the ground reflection coefficients at the two polarizations differ from 
each other, and the waves propagating via ground reflection contribute significantly to total field 
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fiGure 2.68  Noncoherent RCS of the tank model versus azimuth aspect at elevation angle of 75° (a – dry 
soil, b – moist soil). 
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scattered from the object. As it was the case for the perfectly conducting model, for the elevation 
angles of 10° and 30° the RCS of the RAM-coated tank model standing on moist soil is higher than 
that of standing on dry soil. At the elevation angles approaching 0° and 90°, the influence of the soil 
type on the RCS level decreases significantly. 

2.4 sCatterinG CharaCteristiCs of refleCtor antenna systems 

Sergey V. Nechitaylo and Oleg I. Sukharevsky 

In last few decades, the detection capabilities of radar means have increased considerably with 
respect to both airborne and ground (marine) targets. Therefore, special attention is paid now to the 
measures as to decreasing the radar visibility (RV) of weapon systems. 

Many studies were dedicated to solving this problem [63–69]. We have shown earlier that by 
applying RAM coating and shaping the surface of weapon systems in a specific way, one can achieve 
significant reduction in its RV. In this case, the antenna systems (AS) of weapons may become one 
of its unmasking elements. The latter is due to the fact that based on basic functional assignment of 
the antenna (transmission and reception of radio waves) its surface cannot be nonreflecting. 

So, considering the importance of antenna systems one needs to be capable of evaluating their 
scattering characteristics. In this section, we consider the way for computing scattering character­
istics of reflector antennas including those under radio transparent radomes as well as the way for 
reducing their RV at specific aspects of their observation by means of applying RAM coating to 
some of the antenna elements. 

Reflector antennas (RA) are used widely in different specimens of military equipment and arma­
ment. The latter is due to their high performance achieved given simple design and low cost. In this 
regard, the armament designers are interested in the methods for reducing radar visibility of such 
antennas by means of applying RAM coating to some of their elements. 

Onboard forward-looking antennas installed onboard modern combat aircraft significantly increase 
their RCS, especially when observed nose-on. Development of general RCS computation method 
introduced below includes quantitative evaluation of contribution from such antennas into the field 
scattered from the whole airborne object. In this section, we also consider the method for computing 
scattering characteristics of reflector antenna systems placed under dielectric radomes (Figure 2.69). 

The field scattered in the backward direction from the antenna is presented in the form of a sum, 
first summand of which corresponds to the scattering from the radome only (given that antenna 
itself is absent) and the second integral summand corresponds to the contribution from the antenna 
into the field scattered by the “antenna–radome” system. The latter summand includes all the intra­
system interactions. While doing this, we assumed that current density over antenna reflector is 
induced by the primary wave propagated directly through the radome wall, and by the secondary 
wave reflected once from the inner surface of the radome wall. 

fiGure 2.69  Model of reflector antenna system under the cone radome. 
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The  use  of  asymptotic  methods  of  short  wave  diffraction  allows  us  to  provide  computations  for  the 
radomes  with  small  surface  curvature.  The  ogive-shaped  radomes  used  in  practice,  which  take  the 
middle  position  between  the  radomes  with  conically  and  spherically  shaped  tips,  do  not  satisfy  the  lat
ter  condition.  Besides,  the  use  of  asymptotical  ray  and  current  methods  is  complicated  by  the  necessity 
of  accounting  for  multiple  wave  reflections  inside  the  radome.  In  this  case,  one  should  use  the  method 
of  integral  equations  [70–76].  However,  these  issues  are  beyond  the  scope  of  this  book. 

2.4.1	   cOmPutatiOn  Of ScatterinG  characteriSticS  Of  electrically  larGe  antennaS  
and  the  meaSureS  fOr  reducinG  their  radar  viSibility 

Reduction in radar visibility of antenna by giving it specific shape is unacceptable since the form of 
reflector is determined by the necessity of providing the antenna with specific directivity pattern. In 
this regard, application of RAM coating to the antenna surface fractures comes to the foreground. 
The main surface fracture present in any reflector antenna is the rim of its reflector. Therefore, 
in this section, we consider computational expressions providing scattering characteristics of the 
antennas, reflector’s rim of which is covered with RAM. 

Let  us  consider  a  reflector  antenna  in  free  space.  We  assume  that  antenna  dimensions  are  greater  than 
illumination  signal  wavelength  (this  condition  holds  for  the  pencil  beam  antennas).  We  also  assume  the 
antenna  reflector  to  be  an  infinitely  thin  screen  D  shaped  as  paraboloid  of  revolution,  the  rim  of  which 
being  provided  with  toroidal  RAM  coating.  Properties  of  the  coating  are  characterized  by  εA,  μA,  and  its 
cross  section  in  the  plane  orthogonal  to  the  rim  is  a  circle  with  radius  ρ  (Figure  2.70). 

We assume that plane monochromatic wave (2.1) is incident onto the antenna reflector. 
Here, as in the rest of the book, we consider that time dependence of the field has the form of 

exp(−jωt). 

2.4.1.1	  b asic mathematical expressions for Computing electromagnetic field scattered 
from electrically large reflector antenna with ram Coating at its rim 

To solve the problem formulated above, we use the integral representation of scattered field of the 
Stratton–Chu type [29] (which, in its turn, can be obtained using the Lorentz reciprocity theorem 
[11,77]): 

  
scat   ⎡	  

H x0	 = ∫
    1    ⎤

(  ) −⎢	 (H ⊥ × ∇g) + j ωε gE ⊥ − (E ⊥ ⋅ ∇)∇  g ⎥ ds,, (2.141)
S 

⎣
0 jωµ0 ⎦

  

where x
  

0  is the radius-vector of observation point, S  is any closed surface enveloping the screen D  
(Figure 2.70), E

  
⊥ = n   × E

  
, H
  

⊥ = n   × H
  
  are the tangential components of total field at the surface S, 

­

x 
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fiGure 2.70  Reflector antenna geometry. 
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n is the inner, with respect to S, normal, g = exp( jk r)/4πr, r = x0 − x , and x is the radius vector0 

of a point at the surface S. 
We now assume the surface S to be tending to D (Figure 2.71) everywhere except the rim vicinity. 

In the vicinity of the rim, we assume the surface S to be tending to toroidal surface S′ that envelopes 
the absorbent surface S″. 

As a result, we get the following expression for the scattered field: 

              
scat ( 
  ⎡ ⊥ ⊥ 1 ⊥ ⎤

H x ) = −(H × ∇g) + ωε gE − (E ) g (2.142)0 j 0 ⋅ ∇ ∇ d s − KK × ∇g d ,s∫ ⎣⎢ jωµ0 ⎦⎥ ∫ 
S′ D′ 

where D′ is such part of surface D that excludes the rim vicinity bounded by surface S′ (in Figure 
2.71 this surface D′ is highlighted with bold line). The variable K , which enters expression (2.142), 
is the jump in surface current density induced at D′: 

⊥ + − ⊥ −K = (H ) (H ) , (2.143) 

where ( ) )−  are the surface densities of electric current over illuminated and obscuredH ⊥ +  and (H ⊥ 

sides of the screen, respectively. 
Let us find expressions for computing field scattered by the screen in the far-field zone. To do 

this, we use asymptotic of the functions g and ∇g  given r → ∞  [77]: 

 0   exp ( jk0 x )exp ⎡⎣− jk0(r ⋅ x)⎤⎦0 (2.144)g ~ , 
r→∞ 4π x0 

0  exp ( jk0 x )exp[
  

− jk0(r ⋅ x)]  0 0 (2.145)∇g ~ − jk0 r , 
r→∞ 4π x0 

where r 
 0 is the unit-vector directed to the observation point. 

Taking into account expressions (2.144) and (2.145), we get the following: 

   exp( jk0 x0scat 0H (r ) ≈ jk (I + I ) × r 0, (2.146)S′ D′0 4π x0 
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fiGure 2.71  Cross section of the screen by plane xOz. 
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where 

  ⎡   ε0 
   ⎤   ⊥ 0 0I = H⊥ −S′ ∫ ⎢ µ (E × r ) exp[− jk (r ⋅ x)]d ,s (2.147)⎥ 0

⎢ 0 ⎥⎦S′ ⎣ 

  ε0 
  0  I = K exp[− jk0(r ⋅ x)] d .s (2.148)D′ µ0 

∫ 
D′ 

Since geometrical dimensions of surface D′ are large compared to signal wavelength, and the 
surface itself does not include the vicinity of the reflector rim where the irregular component of 
surface current density plays significant role, then contribution of the surface D′ into scattered field 
is computed in approximation of physical optics. Particularly, 

⊥ + 0 ⊥ −(H ) = 2(n 
  × H ), (H ) = 0. (2.149) 

Once expression (2.149) is used, then Equation 2.148 takes the form 

ε      0 0 0 0 0I = 2 n × (R × p )exp[ jk (R − r ) ⋅ x]d ,s (2.150)D′ 0µ0 
∫ 
D′ + 

where D+′ is the illuminated part of surface D′. 
Since the integrand in Equation 2.150 has fast oscillating exponential multiplier, then this inte

gral should be computed using cubature formula (2.15) obtained above in Section 2.2.2 for the 
integral of the form: M = ∫ f ( )exp jk ( ) d) s, in which the amplitude and phase function ofx ( Ω xS ′ 0             0 0 0 0 

1 

n x and Ω( ) 0integrand have the following form: f ( )x = ( ) × (R × p ) x = jk (R − r ) ⋅ x , respec­
tively. It is worth noting that the use of cubature formula requires the surface D+′ to be triangulated, 
that is, replaced by a set of flat triangles {Δ j }. Within every triangle, the amplitude and phase func­
tions are linearly interpolated. Then, the integral M is represented by a sum of integrals over all the 
triangles Δj. 

In Ref. [51], the estimate of the cubature formula (2.15) residual was found. It can be used either 
as accuracy estimate for the integral (2.14) or as an indicator of required number of triangles, which 
the surface D+′ to be split into in order to provide the needed calculation accuracy. 

Contribution from the vicinity of reflector rim into total scattered field is determined by expres­
sion (2.147). Let us represent radius-vector of a point at surface S′ in expression (2.147) in the form 
of the sum (see Figure 2.72): 

x = X l ( ), (2.151)( ) + ξ ϕ

where X l ξ ϕ( ) is the radius-vector of a point at the rim that has the arc coordinate l, and ( ) is the vec­
tor orthogonal to the rim at point l that has the length R ≥ ρ and orientation of which is determined 
by angle φ(0 ≤ φ ≤ 2π). Angle φ is counted off the half-plane that is tangent to the reflector rim at 
point l. 

Based on Equation 2.151, the values H ⊥ and E⊥ at point with radius-vector x at the surface S′ 
can be expressed as follows: 

⊥ � ⊥ 0H = H ξ jk0(R ⋅ X l( ))),( )exp(
� � (2.152) 

⊥ � ⊥ 0E = E ξ jk (R ⋅ X(( ))),( )exp( 0 l 
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where HH ⊥ ( ) and EE⊥ ( ) are the surface densities of electric and magnetic currents, respectively, at 
points of surface S′ that are excited by incident wave: 

ξ ξ

     H 0 0 0E ( ) p exp( jk0(Rξ = ⋅ ξ)), 
 (2.153)     0 0 0HH 0( ) / (R × p )exp( jk (R ⋅ ξ)).ξ = ε µ0 0 00 

So, the surface integral entering the expression (2.147) can be represented as a double one like it 
was done in Ref. [31]. External integral is along the rim line L:

       0 0 0 0IS ′ (r ) = ∫ exp[ jk0 ((R − r ) ⋅ X l ( , l( ))] M l r )d , (2.154) 
L 

where dl is the arc element of L. Internal integral, in its turn, is along the line S0, which is the cross­
ing line between the integration surface S′ and the plane orthogonal to the reflector rim at point l.   
In our case, this S0 is the circumference of radius R (Figure 2.72). Expression for M l r 0) takes the( , 
form:

      ⎛   ε  ⎞ 
0 0  ⊥ 0  ⊥ 0( , 0 r ⎜ ξ −M l r ) = exp[− jk ( ⋅ ξ)] H ( ) (E ( )ξ × r )⎟ d ,q (2.155) 

S 
∫ ⎝ µ0 ⎠⎠

0 

where dq = Rdφ is the arc element of circumference S0. In our computations, we assumed the radius 
R to be equal to half the wavelength of incident field. Such choice of R is conditioned by the fact 
that, as is shown in Ref. [29], at the distances larger than half the wavelength from the wedge’s edge 
the values of total field at the wedge’s faces are close to those computed in approximation of physi
cal optics. 

Integral (2.154) can be evaluated by the stationary phase method [25]. The equation for finding 
stationary phase points l0 at the rim L has the following form: 

   
( ) . (2.156)h′ l0 = (R0 − r 0 ) ⋅ X ′( )l0 = 0

However, for the circular edge, which is the reflector’s rim in our model, there is a situation 
when it is impossible to apply the stationary phase method. This situation corresponds to the axial 
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fiGure 2.72  To explanation of the integration over surface S′. 
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=
z z0 

2 2 −
 4
 fz =
 0,
+
x y 

where R0, R0, R0 are the projections of vector R0 onto axes x, y, and z, respectively, and f is the focalx y z 

distance of the antenna reflector. 
In simultaneous Equations 2.157, the first three expressions describe parametrically the straight 

line passing through point (x0, y0, z0) in the direction R0, the fourth equation describes the reflector 
geometry. Having solved simultaneous Equations 2.157 with respect to t, we obtain the second-
order equation with roots t1, t2. One of the roots always equals to 0. If the nonzero root is negative, 
it means that ray being considered crosses the antenna reflector at some point that obscures point 
(x0, y0, z0). In the same manner, we check the point for its visibility from the receiving direction. If 
this stationary point is not visible from at least one of these directions, its contribution into scattered 
field is not accounted for. In case of monostatic radar, only one check is necessary. Having provided 
such check for every stationary phase point and having applied the stationary phase point method 
itself, we obtain the following expression: 

⎡⎡ π ⎤0 0 0 0 0IS′ r ) ~ ∑exp jk0(R − r ) ⋅ x l0 + sgn[(R − r ) ⋅ nL l0( ( ) ( )] j 
vis ⎣⎢ 4 ⎦⎥ 
l0 

0 2π⋅ M l( 0,r ) , (2.158)
k0æ l0( ) 0 − r 0 ) ⋅ L l0(R n ( ) 
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illumination of reflector in case of monostatic radar, where the whole rim becomes “specular” 
region. The value of integral IS ′ (r 0 ) can be obtained by numerical integration (in our computations, 
results of which will be presented below, we used the five-point Gaussian integration formula [78]). 

Once the stationary phase points have been found, they need to be checked for “visibility” from 
both the transmitter and receiver directions. We provided such check using the ray tracing method 
described in Ref. [47]. The essence of the method can be explained by example of checking the 
stationary point with coordinates (x , y ,z ) for its visibility from the direction set by R0. The check0 0 0 

is provided by solving simultaneous equations: 

where nL (l0 ) is the unit-vector of major normal to L at point l0, the symbol l0 
vis means that summa­

tion is done over all “visible” stationary phase points at the rim, and æ(l0 ) is the curvature of curve 
L at point l0. 

When the integral (2.154) is to be computed using expression (2.158), one need to know the value 
of function M l r 0 ) at point l0. Due to the fact that integrand in Equation 2.155 is smooth enough,( , 
the M l( 0 , r 0 ) can be evaluated using one-dimensional numerical integration. In our computation, 
we used the five-point composite Gauss formula [78]. For this purpose, we needed to find the val­

ues for H� ⊥ ξ E⊥ ( ) along the line S0. Taking into account the large electric dimensions of the( ) and � ξ
reflector and small curvature of its rim, we can assume the values of H� ⊥ ξ E⊥ ξ( ) and � ( ), like it was 
explained in Section 2.2.4, to be equal approximately to those values that would have been excited 
at the surface of absorbent cylinder if the latter had been covering the edge of perfectly conducting 
half-plane that was tangent to the reflector surface at point l0. 

As in Section 2.2.4, we computed the values of � ξ E⊥ ( ) using solution to the simula­H ⊥ ( ) and � ξ
tive problem of oblique incidence of plane electromagnetic wave onto perfectly conducting wedge 
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provided with RAM coating at its edge [46], the only difference being in the value of external angle 
of the wedge, which became equal to 2π. In this case, the wedge itself turned into a half-plane 
(Figure 2.73). 

Like it was in Section 2 .2.4, we represent the E�3  and H� 3  as E�3  = u(x1 ′ , x2′ ) exp( jk0 x3 ′ R 03 ),
 ⎛ u( x1 ′ , x2′ )

H�  0 ⎞
3 = v (x ′, x ′   
 1 2 )exp( jk0 x3 ′ R3  ), and introduce the vector w = ⎜ . In our case, the value of w  

⎝ v( x1 ′ , x′ )⎟2 ⎠
outside the absorbent cylinder can be decomposed into series (2.78), but with respect to the Bessel 
functions of half-integer index. The latter is so because we took the parameter ϕ  determining the 
angular aperture of the wedge to be equal to two. So, the series is as follows: 

 ∞  
w ⎡ = ∑ AmJ m (η 0 r) + CmH (1) ⎤

m (η 0 r) f m ( ϕ ), (2.159) 
⎣⎢ 2 

 
2 ⎥

m=0 
⎦

 

where J m (η 0 r) is the Bessel function, H ( 1)  
m (η 0 r)  is the Hankel function, η0 = k0 1 − (R0 2

3 ) , and 
2 2 

 ⎛ sin( ϕm /2)
⎞
fm (ϕ) = ⎜⎝cos( ϕ m/2)⎟

.
 
⎠ 

Expressions for the matrix (2  ×  2) coefficients Am, and Cm were received in Ref. [46].
 
Having known the values of u( x1 ′ , x2′  )  and v(x1 ′, x 2′  ), we can use the Maxwell equations to find all 


other components of the sought field. 
Finally, using expression (2.159) for computing M

 
(l, r
 
 0 )  by formula (2.155) and taking into � � � � � 

that H�
� � � �

o nt ⊥ �  
acc u (ξ ) = n ×
 H� ( ξ)  and E� ⊥(ξ ) = n ×
 E� ( ξ), we find the resulted contribution from all 
visible parts of the reflector rim into resulted scattered field. 

In order to prove the applicability of the method described above, we compared the compu
tational results to the results of real scattering of plane wave at the antenna reflector in anechoic 
chamber. 

As antenna reflector, we took the paraboloid of revolution with aperture of 0.3 m  and focal dis­
tance of 0.137 m . Computation was carried out for the wavelength of λ =  0.032 m. 

The results of computation and experiment are shown in Figure 2.74. 
The figure shows RCS of paraboloid of revolution versus observation angle θ  that is counted off 

the reflector’s axis of revolution in plane yOz  (refer to Figure 2.70). Polarization vector of incident 
field was oriented along the axis Ox  (hereinafter, we refer to such vector orientation as vertical 
polarization, and we refer to the case of polarization vector being perpendicular to axis Ox  as hori
zontal one). The bold line is for experimental RCS values, and the thin line is for computed RCS 
values. 
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fiGure 2.73  The half-plane with radar absorbent cylinder at its edge. 
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fiGure 2.74  Backscattering diagram of paraboloid of revolution. 

As seen from the plot, the results of computation agree quite well with the experiment. Small 
deviation of the two curves is due to, first, some misalignment of vertical plane containing the axis 
of paraboloid with the direction toward the receiving antenna that took place in measurements 
and, second, value of the observation aspect θ increment was equal to 2.5°, because of which some 
ravines of the dependence could have been missed. 

2.4.1.2	 study of the possibility to reduce rCs of reflector antennas by means 
of applying radar absorbent Coating to the reflector rim 

Reflector antennas are installed on a wide range of airborne objects (forward-looking radar antenna 
of aircraft, radar seeker antennas of different purpose missiles). Therefore, in this section we pres­
ent computation results for backscattering diagrams of parabolic reflector antennas of different geo­
metrical dimensions in case of application of different thickness RAM coating to their reflectors’ 
rims. 

In Section 2.4.1.1, we gave the expression for RCS of finite paraboloid of revolution in conditions 
of its axial illumination, monostatic radar configuration, and physical optics approximation: 

σ = 2πq2(1 − cos( 2k d )),	 (2.160) 0 

where q is the parameter of parabolic reflector equal to double focal distance of paraboloid, and d 
is the paraboloid depth. 

It is seen from Equation 2.160 that RCS is oscillating function versus frequency (or wave number 
k) of incident field. Therefore, small frequency deviation can lead to considerable change in the RCS 
value. So, this instantaneous RCS must be averaged over some frequency range in order to obtain 
reliable RCS estimate. It is advisable to match the frequency range used for averaging the antenna 
RCS of airborne objects to the signal bandwidth of surveillance (warning) radar. 

One of the basic means for detecting airborne objects today is the Airborne Warning and Control 
System (AWACS) aircraft. The radar of AWACS aircraft operates in S-band (from 7.5 cm through 
15 cm). So, we set the frequency range for averaging RCS of antennas considered below to be 
lying inside the S-band, namely it shall be from 8.5 cm through 9.5 cm. It is worth mentioning that 
with this operating frequency band in mind, the onboard antennas considered below can indeed be 
regarded as passive scatterers, since the operating wavelengths of AWACS radar are, in average, two 
to three times as large as operating wavelengths of the most of these antennas. 

Geometric parameters of parabolic reflectors, for which we computed scattering characteristics, 
are presented in Table 2.1. 

Computation results for backscattering diagrams of the three AS under consideration are pre­
sented in Figures 2.75 through 2.77. Figure 2.75 corresponds to AS #1, Figure 2.76 corresponds to 
AS #2, and Figure 2.77 corresponds to AS #3. In all of these three figures, the plots marked as (a) 
correspond to antenna illumination at vertical polarization and the plots marked as (b) correspond 



table 2.1 
Geometric parameters of parabolic reflectors of onboard antennas 

antenna number reflector diameter (m) reflector focal distance (m) 

 AS #1 0.63 0.233 

 AS #2 0.33 0.15 

 AS #3 0.365 0.166 
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to horizontal polarization. Thin lines are for backscattering diagrams of perfectly conducting reflec­
tor, the bold lines are for the reflector, whose rim is provided with toroidal RAM coating of 0.016 m  
radius, and the dashed lines are for the reflector, whose rim is provided with toroidal RAM coating 
of 0.008 m r adius. 

Properties of absorbent were assumed to be as follows: ε′ =   1  +  j10, μ′ =   1  +  j10. These properties 
correspond to the so-called Zommerfeld-type absorbent. Such absorbents are described in [18,79]. 
Electromagnetic field inside such absorbent fades very quickly as the wave propagates inside the 
material, since the imaginary parts of ε′  and μ′, which condition the losses, are great. When the 
incident field hits the absorbent’s surface at right angle, the absorbent material’s impedance matches 

that of free space, that is, Z = µ a / ε a = µ 0 /ε 0 = Z0  (Z0  is the impedance of free space; Z  is 
impedance the surface; εa, μa are the absolute permittivity and permeability of RAM). 

In order to analyze the backscattering diagrams in Figures 2.75 through 2.77, it is convenient 
to split the whole sector of antenna observation aspects θ  into three subsectors (Figure 2.70). The 
first subsector would include the aspects θ  close to axial illumination of antenna system. In this 
subsector, we observe either peak or ravine of backscattering diagram. In Figure 2.75, this subsector 
includes aspect angles 0  ≤ θ ≤  5°; in Figure 2.76, it includes aspects 0  ≤ θ ≤  7°; and in Figure 2.77, 
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fiGure 2.75  Backscattering diagrams of antenna system #1 (a – vertical polarization, b – horizontal 
polarization). 
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fiGure 2.76  Backscattering diagrams of antenna system #2 (a – vertical polarization, b – horizontal 
polarization). 
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it includes aspects 0 ≤ θ ≤ 8°. If antenna system is observed at aspect angles lying in this subsector, 
then application of RAM coating to the antenna reflector rim can decrease its RCS (Figure 2.75), but 
such RAM application can increase the antenna system RCS as well (Figure 2.76). 

Such RCS increase can be explained by the fact that given axial illumination of finite paraboloid 
of revolution by a monostatic radar, its RCS is the oscillating function versus wavelength of inci­
dent field. Such property of this function can already be seen from Equation 2.160, which does not 
account for irregular current component (due to the reflector’s rim). Figure 2.78 shows the RCS of 
paraboloid versus wavelength of incident field computed using expression (2.160). Here, bold solid 
line corresponds to RCS dependence of AS #1, thin solid line corresponds to the RCS dependence 
of AS #2, and thin dashed line corresponds to the RCS dependence of AS #3. Analysis of Figure 
2.78 shows that given the signal wavelength lies between 0.085 m and 0.095 m the values of RCS 
for AS #1 approach their maxima. 

Our computations show that fields scattered by the smooth surface part and edge local scatterers 
interfere constructively for antenna system #1 given this wavelength band, which explains the maxi­
mum in its RCS. Application of RAM coating to the antenna reflector’s rim leads to the antenna 
RCS decrease in the first subsector of observation aspects θ. 

In case of AS #2, we observe destructive interference of the fields scattered by the smooth sur­
face part and edge local scatterers of antenna reflector, which results in minimal antenna RCS for 
the aspect angle of θ = 0. In this situation, application of RAM to the reflector’s rim decreases the 
contribution into resulted scattered field from the edge local scatterers, but the resulted field scat­
tered from paraboloid in direction of θ = 0 goes up (Figure 2.76). 

RCS of AS #3 (dashed line in Figure 2.78) does not reach its minimum in this first angle 
subsector and in the wavelength band under consideration. Therefore, application of toroidal 
RAM coating with radius 0.008 m leads to decrease in RCS level (Figure 2.77) and increase in 
the RAM-coating radius up to 0.016 m, on the contrary, leads to increase in RCS level (bold line 
in Figure 2.77). 

Analysis of Figure 2.78 shows that in the first subsector of aspects θ we should expect the reduc­
tion in antenna RCS due to RAM coating at the reflector’s rim within those wavelength bands, in 
which the antenna RCS approaches its maximum (Figure 2.78). For instance, results of backscat­
tering diagram computation for AS #2 given the averaging over the wavelength band from 0.055 m 
through 0.065 m presented in Figure 2.79 (the lines designation being the same as in Figure 2.76) 
show the efficiency of RAM-coating application to the antenna reflector’s rim. 

The second subsector of aspect angles θ would include observation aspects, at which the specular 
reflection region appears at smooth part of reflector’s surface that contributes mostly into the field 
scattered backward. For the AS #1, this subsector includes aspect angles 5° < θ ≤ 28°; for AS #2, it 
includes the aspects 7° < θ ≤ 18°; and for AS #3, it includes the aspects 8° < θ ≤ 17°. It can be seen 
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fiGure 2.78  RCS of antenna systems versus incident field wavelength given axial illumination of their 
reflectors computed in physical optics approximation (bold solid line – AS # 1, thin solid line – AS # 2, thin 
dashed line – AS # 3). 
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fiGure 2.79  Backscattering diagrams of antenna system #2 given averaging in the wavelength band of 
incident wave from 0.055 m t hrough 0.065 m ( a – vertical polarization, b – horizontal polarization). 

from Figures 2.75 through 2.77 that application of RAM coating to reflector’s rim in this case does 
not have any significant influence on reduction in the backscattered field level. 

In  the  third  subsector  of  observation  aspects,  this  specular  reflection  region  at  smooth  part  of 
the  reflector’s  surface  is  absent,  so  the  edge  local  scatterers  (reflector’s  rim)  contribute  significantly 
into  backscattered  field.  For  the  case  of  AS  #1,  this  third  subsector  of  observation  aspects  includes 
the  angles  28° < θ ≤  90°;  for  AS  #2,  it  includes  aspects  18° < θ ≤  90°;  and  for  AS  #3,  it  includes 
the  aspects  17° < θ ≤  90°.  Therefore,  in  this  third  subsector  of  antenna  observation  aspects  θ,  appli
cation  of  toroidal  RAM  coating  to  the  reflector’s  rim  again  leads  to  significant  reduction  in  the 
antenna  RCS. 

Computation results presented above indicate that for every specific reflector antenna, one should 
evaluate the properties and parameters of RAM coating at its rim while bearing specific sector of 
aspect angles in mind. 

2.4.2	  r adar ScatterinG  Of  three-dimenSiOnal  mOdel  Of OnbOard  reflectOr  antenna  
under  the  cOne  radOme 

Here, we seek for engineering expressions to compute backscattering characteristics of radar equip
ment situated in the nose part of air vehicle. In this regard, we consider the three-dimensional model 
of reflector antenna system placed under the conical radome (Figure 2.80), which is illuminated 
from outside by plane electromagnetic wave (2.1) (given p

 0 = p
 
). 

Application of the Lorentz reciprocity theorem to the sought total field ( E
 
,H
 

)  and to auxiliary 

(
 
ˆ
 
ˆ    field E, H ( x| x 0 , p)),  the latter corresponding to that of electric dipole placed at point x

 
0  that has 
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� � � � � � � 

� � � 

the vector-moment p given that only radome is present, allows us to obtain integral representation 
of the field we seek 

scat . ˆj p E (x ) = j p E (x ) + (K x E
T
x x , pp))d ,ω ⋅ ω ⋅ ( ) ⋅ ( | S (2.161)0 radome 0 ∫ 0 

L 

scat.where Eradome (x0 ) is the field scattered by the radome only, K ( ) is the surface current density overx
the antenna reflector’s surface. Integral summand of expression (2.161) represents the response of 
antenna reflector onto incident wave that takes into account electromagnetic wave interaction with 
the radome. Having placed x0 = −rR0 and having further assumed that r → ∞, we receive expres­
sion for resulted field scattered from the “antenna–radome” system in the far-field zone: 

( 
e jk r0 

0 scat . 0p ⋅ E R ) ~ p ⋅ E (R ) − jk (Ê ( )x ⋅ K x S.(( ))d (2.162)radome 0 ∫4πr 
L 

Here, Ê ( ) is the field excited by primary incident plane wave (2.1) in points over the reflector’sx 
surface L given that only radome is present. We are going to compute this field by method of geo
metrical optics. 

Under approximation assumed above, we represent (E( ), H xˆ x ˆ ( )) as a sum of field that passes to 
reflector directly through the illuminated part of radome (propagation path 1 in Figure 2.81) and the 
field that passes to reflector via single reflection from the inner wall of radome (propagation path 2 
in Figure 2.81). 

The field corresponding to propagation path 1 in Figure 2.81 can be presented as 

ˆ ( ) = [τ p e + τ p (R × e )] exp( jk (R ⋅ x)), (2.163)E x 0 0 
1 ⊥ ⊥ ⊥ � � ⊥ 0 

� ε � � �0 0 0Ĥ1( )x = µ [τ p (R × e ) − τ p e ] exp( jk (R ⋅ x)), (2.164)⊥ ⊥ ⊥ � � ⊥ 0 
0 

µ 
ε 

0 

0 
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fiGure 2.80  The “antenna–radome” system. 
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� R0 × n � � � �
where e⊥ = , e� = (R0 × e⊥ ), p = ( p ⋅ e ), p = ( p ⋅ e ), and n is the vector of the normal ⊥ ⊥ � � 

R0 × n 
to the radome surface. 

Complex-valued coefficients τ⊥ ,τ|| describe propagation of plane electromagnetic wave through 
flat uniform layer with the properties of radome at two mutually orthogonal polarizations. As paral
lel polarization marked by sign ǁ, we consider the situation where electric field intensity vector of 
incident wave belongs to the plane passing through vector R0 and normal n at every particular point 
of the radome surface. Accordingly, the perpendicular polarization, marked by sign ⊥, corresponds 
to situation where electric field intensity vector is orthogonal to the plane specified above. General 
expression for the propagation coefficient can be presented as follows: 

⎛⎛ j ⎞ ⎛ j ⎞ ⎞
τ = cos κδ + sin κδ + cos κδ− sin κδ 

⎠⎟
ρ exp(− jk 0 δco θ), (2.165) os 

⎝⎜⎝⎜ c ⎠⎟ ⎝⎜ c ⎠⎟ 

where ρ is the complex-valued coefficient of reflection from plain uniform layer of material that has 
the properties of radome. This coefficient can be expressed as 

( 2 − )sin κδ j c 1ρ = . (2.166) 
2c cos κδ − j c 2 + 1( )sin κδ 

′ sin 2 θε − 2 0 2 0 2Here, c = , κ = k0 ε − ′ sin θ ,cos θ = |(R ⋅ n) , | sin θ = 1 − (R ⋅ n) , ε′ is relative 
βcos θ 

permittivity of the radome material, and δ is the radome thickness. 

in case ⊥
 polarization, ⎧
⎨
⎩ 

1 

In case of polarization ⊥, we have ρ = ρ⊥ , τ = τ⊥; and in case of polarization ǁ, we have ρ = ρ �, 
τ = τ� . 

=
β

ε′ in case � polarization. 
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fiGure 2.81  Propagation paths of incident wave. 
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If the ray passing through radome at some point x0 does not hit the reflector, then it must pass 
through radome once again at some point x1. If we find, in this case, the values for τ τ||, ρ ρ ||,⊥ , ⊥ , 
e⊥ ,e|| , at point x0 , then we can compute the intensity vector of electric field that has propagated 
through radome at point x0 and that is incident onto its inner surface at point x1 

p exp( jk (R0 ⋅ x )), p = τ p e p e . (2.167)1 0 1 1 ⊥ ⊥ ⊥ + τ|| || || 

Vector p1, wave incidence direction R0 , and the normal n (x1) to inner surface of radome S1 at 
point x1 can be used for finding τ1⊥ , τ1� , ρ1⊥ , ρ1� , e1⊥ , e1|| by means of formulas (2.165) and (2.166). 
The field that has reflected from inner surface of radome at point x1 and that is incident onto anten
na’s reflector (path 2 in Figure 2.81) can be represented as follows: 

� � � 
1 � � 

0 � � �
Ê ( ) = [ p e + ρ p (R × e )]exp( jk [(R ⋅ x )x ρ + (RR1 ⋅ x)]), (2.168)

2 1⊥ 1⊥ 1⊥ 1� 1� 1⊥ 0 1 

� ε � � � �0 1 0 1ˆ
2 ( ) = µ [−ρ p e +ρ p (R × e1 )]exp( jk [(R ⋅ x11) + (R ⋅ x)]), (2.169)H x 1� 1� 1⊥ 1⊥ 1⊥ ⊥ 0 

0 

1 0 0where R = R − 2n (x1)(R ⋅ n (x1)). 
It should be noted that once plane electromagnetic wave bounces off the inner surface of radome, 

then caustic surface may form. Computation of such caustic surface that appears in case of oblique 
incidence of plane wave onto the radome cone has been carried out in Refs. [80,81]. The ray passing 
through such caustic surface changes its phase by π/2 [82,83], which has to be taken into account 
for the wave hitting the antenna after reflection from the radome inner surface. 

Surface current density K x( ) over antenna reflector in expression (2.162) is computed in the 
form of sum of currents excited on the reflector’s surface by “direct” and “reflected” waves (path 
1 and path 2 in Figure 2.81). In the physical optics approximation, current surface density can be 
expressed as 

K x = 2(N × Ĥ (2.170)( ) ), 

ˆwhere N is the vector of normal to the reflector’s surface at point x, and H can be computed as a 
sum of magnetic field intensities for the first and second paths of incident wave propagation accord­
ing to expressions (2.164) and (2.169), respectively. 

⋅ scatThe field p E (R0 ) scattered by radome can be computed using Kirchhoff’s approximationradome 

jk r 
scat 0p ⋅ Eradome (R ) ≈ − jk0

0 

⎡⎣( p ⋅ (n × H x′( )))
e 
4πr ∫∫ 

Sillum.. 

( ) (n × ( p × R0 )) exp( jk0(R0 ⋅ x S. (2.171)+ E′ x ⋅ ⎤⎦ ))d 

Here, (E ′, H ′) is the field at (or close to) illuminated surface of radome, which in Kirchhoff’s 
approximation can be expressed as 

⎡ 1 1 1 ⎤� � � � (R × n 
�
�
) � � R × (R × n 

�
)) � 

1 �E ′( )x ≈ ρ⎢ ⊥ ( )x p⊥ ( )x � + ρ � ( )x p� ( )x � � � ⎥ exp( jk0 (R ⋅ x)), (2.172)
⎢ ⎥R1 × n R1 × (R1 × n)⎣ ⎦ 

µ 
ε 

0 

0 
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1
H ( ) ∇ ×′ x = E′( ),x (2.173)

jωµ0 

1 0 0n R ), and n = n xwhere R = R − 2 ( ⋅ n ( ) is the normal to the outer radome surface S2. For dielec­
tric radome of conical shape, representation (2.171) can be simplified and reduced to single integral 
by angular coordinate α tied to the illuminated part of radome: 

α
jk r 1 

0e sinθscat . 0p ⋅ Eradome (R ) ≈ − jk0 2 ∫ Ψ α α, (2.174)( )d
4πr cos θ 

α0 

where 

exp( j2k h ( )) exp( j k hϕ α −( ))⎡⎡h 0 ϕ α 2 0 1⎤Ψ( ) F( ) +α = α 
⎣⎢ 2 jk0 ( ) 0

2 2( ) ⎦⎥
,ϕ α 4k ϕ α 

2 2 0F( ) ( ⊥( )p⊥( ) || ( )p|| ( ))(R ⋅ αα = ρ α α − ρ α α n( )), 

0 0 0ϕ α = tgθ(R cosα + R sin α +( ) ) R ,1 2 3 

η tgθα = arcctg , α1 = 2π α0− , η = ,0 2 tgγ1 − η 

h is the radome height, θ is half-angle of the cone, γ is the angle between the cone axis and the 

vector R0, n( )α  is the vector of normal to outer surface of radome S2. 
For numerical computation, we take the antenna model with the following characteristics (Figure 

2.82): the tip of radome cone is placed at the coordinate system origin, its axis coinciding with the 
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fiGure 2.82  To the description of computer model of reflector antenna. 
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axis Oz. The rest of the parameters are as follows: radome height h = 1 m, half-angle of the cone (the 
angle between the cone’s axis and generatrix) θ = 20°, relative permittivity of the radome material 
ε′ = 7 + j0, distance between the cone tip and the center of parabolic reflector d = 0.75 m, reflector’s 
radius a = 0.25 m. Antenna can turn under the radome around axis Oy. Unit-vector of the wave 
incidence direction R0 belongs to the plane Oxz (R0 = {sin γ , 0, cos }). γ 

In the process of our computer simulation, we considered three kinds of reflector antennas: the 
first one has almost flat reflector (focal parameter q = 10 m, reflector depth is about 3 mm), the sec­
ond one has focal parameter q = 1 m with reflector depth of 3 cm, and the third one is the so-called 
“deep” reflector antenna (focal parameter q = 25 cm, reflector depth is 12 cm). 

Figure 2.83 shows RCS of antenna with focal parameter q = 1 m versus its illumination angle γ 
given that radome is absent. Illumination signal wavelength was λ = 3 cm. Antenna reflector posi­
tion was shifted by angle α = 45° in plane Oxz. Figure 2.84 shows RCS of the same antenna versus 
its illumination angle γ given that 5.6 mm thick radome is present (the radome wall thickness was 
matched to the incidence angle of 20°). Polarization vector of incident wave was perpendicular 
to plane Oxz (u-polarization). Thin black line shows contribution into antenna RCS from the field 
that was directly incident onto the antenna reflector (path 1 in Figure 2.81). The dashed gray line 
shows contribution into antenna RCS from the field that was incident onto the antenna reflector after 
bouncing off the inner wall of radome (path 2 in Figure 2.81). Bold black line shows the resulted 
RCS of antenna reflector that takes into account its electrodynamic interaction with radome. 

Figure 2.85 shows RCS of the “antenna–radome” system. Thin black line shows resulted RCS of 
antenna reflector that takes into account its electromagnetic interaction with radome. Gray dashed 
line shows contribution into the “antenna–radome” system RCS from radome itself, resulted RCS of 
the system being shown by solid bold line. Analysis of Figures 2.84 and 2.85 and their comparison 
to the RCS dependence of antenna reflector without any radome shows that matched radome does 
not influence, in general, the antenna reflector RCS in quite wide angular sector. However, at some 
illumination angles, the presence of radome changes the resulted value of reflector RCS consider­
ably. For instance, given reflector illumination at the angle of 45° (antenna reflector was illuminated 
along its axis), the influence of radome leads to sevenfold reduction in the RCS of whole system. 
The influence of field that was incident on the reflector after reflection from the inner radome wall 
led to considerable change in the reflector RCS given angles of its illumination greater than 60°. 
Reflections from the radome provide significant contributions into the system RCS given small val­
ues of illumination angles γ as well as given illumination angle γ = 70°, which corresponds to the 
wave incidence perpendicularly to the radome cone generatrix. 

Dependencies similar to those shown in Figures 2.84 and 2.85, but for the situation where polar­
ization vector of incident wave belongs to plane Oxz (v-polarization), are presented in Figures 2.86 
and 2.87, respectively. 

Given v-polarization of incident wave, the influence of radome onto the RCS of whole system 
decreases. The latter is due to decrease in field reflection from the inner wall of radome, decrease 
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fiGure 2.83  RCS of antenna reflector given that radome is absent. 
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fiGure 2.84  RCS of antenna reflector given that radome is present (u-polarization case). 
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fiGure 2.85  RCS of the “antenna–radome” system (u-polarization case). 
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fiGure 2.86  RCS of antenna given that radome is present (v-polarization case). 
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fiGure 2.87  RCS of the “antenna–radome” system (v-polarization case). 
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in  scattering  from  the  radome  itself,  and  the  behavior  of  the  whole  “antenna–radome”  system, 
which,  given  the  v-polarization,  comes  closer  to  that  of  antenna  without  any  radome  compared 
to  the  case  of  u-polarization.  For  instance,  given  the  v-polarization  of  wave  and  its  incidence  at 
γ =  45°,  RCS  of  the  system  is  almost  the  same  as  that  of  antenna  without  any  radome  for  this  aspect 
of  illumination. 

To  evaluate  the  influence  of  radome  on  the  whole  system  RCS  given  axial  illumination  of  antenna 
reflector,  we  consider  here  the  dependence  of  RCS  on  the  antenna  reflector  depth  (Figure  2.88). 
Reflector  depth  δ  changes  from  3  cm  (illumination  signal  wavelength)  through  10.5  cm  (3.5  times 
the  wavelength),  which  corresponds  to  change  in  focal  parameter  from  q  =  1 m  to  q  =  0.3  m.  Gray 
solid  line  shows  RCS  dependence  on  the  antenna  reflector  depth  given  that  radome  is  absent.  Black 
solid  line  corresponds  to  the  RCS  dependence  of  antenna  under  radome  given  v-polarization  of  inci
dent  wave,  and  the  dashed  line  corresponds  to  RCS  dependence  of  antenna  under  radome  given 
u-polarization. 

RCS dependencies of antenna under radome are shifted to the right with respect to those of 
standalone antenna without any radome. Particularly, the dependence given u-polarization is shifted 
even more than others. Axial illumination of parabolic reflector leads to formation of Fresnel zones 
at its surface similar to those formed at the surface of convex objects (sphere for example). Its RCS is 
determined in this case by summation of fields scattered from the first and the last Fresnel zones at 
reflector’s surface. The change in reflector’s depth leads to periodic appearance or disappearance of 
Fresnel zones at the reflector’s rim. Consequently, this periodicity of RCS variations is related to the 
wavelength of illumination signal. As it is seen from dependencies of Figure 2.88, the presence of 
radome influences considerably the formation of Fresnel zones. Given u-polarization, particularly, 
this influence gets even stronger. 

Analysis of RCS computation results for the system with flat reflector (q  =  10 m ) shows the same 
tendencies as for the antenna with q  =  1 m , that is, significant contribution into RCS of scattering 
from radome as well as from wave bouncing off the radome’s inner wall given some aspect angles of 
illumination. RCS dependence in this case has sharp peak at illumination aspect of 45°, which is due 
to geometrical optics reflection from almost flat round screen the antenna reflector degenerates into. 
RCS of the system with “deep” antenna reflector (q  =  0.25 m ) is of oscillating (from 1 m  to 10 m 2) 
nature in the whole sector of aspects (from 0° to 90°). Besides, presence of wave bounced off the 
inner wall of radome does not have any significant influence on the RCS of antenna. 

Accounting for electromagnetic interactions between antenna and its radome provides much 
more accurate prediction of the “antenna–radome” system RCS and, as a result, it increases the 
accuracy of RCS prediction for the whole object bearing antenna under a radome. Angular and other 
dependencies of RCS are of oscillating nature and they change in wide range. Therefore, one should 
provide averaging of RCS values in corresponding sectors of aspect angles in order to receive reli
able estimates of RCS for airborne objects with antennas under the radomes. 
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fiGure 2.88  Antenna RCS versus its reflector depth. 



 

      

        

 

  

 

  
  

 

    

 

  
  

 

 

 

    

 

0 0 0E ( ,	 | R ) = p (t R ⋅ x),t x δ − 
(2.175)

0 0 ε0 0H ( ,t x | R ) = δ − R(R × p) (t 0 ⋅ x),µ0 

considered as primary incident field for obtaining the IR, we chose the short Gaussian video pulse: 

�~ � �0 0 � 0 �E (R , t) = pQ t( − R ⋅ x), 

�� � ε � � � ��0 0 0 0 0H (R , t) = (R × ) ( − Rp Q t ⋅ x),µ0	 (2.176) 

Q t( ) =	 1 
exp(−t2 /τ2 

p ) (τ p � 1). 
π τ p 

If we use the following representation: 

0 2 2(t −R ⋅x ) ∞ (t − z)− − 
τp τp 0e	 

2 
= e 

2 
δ − R ⋅ x)d ,z(z∫ 

−∞ 

then, due to the problem linearity and superposition principle (we could also use the theorem of the 
convolution’s Fourier transform), the object’s response on the incident field (2.176) can be presented 
as the Fourier transform 

∞ 
10 0 − jktH (r , t) = ( , ) ( ) kH r	 k S k e d , (2.177)

2π ∫ 
−∞ 

−βk2 2	 0where S k( ) = e , (β = τ p /4 �1) is the spectrum density of function Q t( ), and H r( , k) is the 
frequency response of scattering object given its radar observation from the direction set by unit

0vector r	 . 
However, IR of the object is used practically for obtaining the object’s scattering response on a 

signal specified by spectrum density occupying certain frequency range [k1, k2 ]. 
So, we can use the following function as a smoothed approximation for object’s impulse response: 

k 

0 0 − jktH (r , t) = ( , ) kH r	 k e d , (2.178)2
1 
π ∫ 

2 

k1 

(since β� 1  and S(k) is close to unit within frequency band bounded by [k1, k2]). 
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2.5	   approximation of smoothed impulse response for objeCts 
illuminated by siGnals oCCupyinG Certain frequenCy bands 

Vitaly A. Vasilets and Oleg I. Sukharevsky 

In many up-to-date radar tasks, one comes across the need to obtain impulse responses (high-range 
resolution profiles of various objects [84]). Such high-range resolution profiles (HRRPs) provide us 
with scattering data regarding separate local regions of intense scattering at the object’s surface. 
HRRP can be used for solving the radar recognition problems for various objects. In Chapter 3, we 
shall present HRRP examples for complex aerial and ground objects. 

It is convenient to use impulse response (IR) approximation of an object in order to obtain the 
object’s HRRP, which is the object’s scattering response onto impulse plane wave. 

As a smoothed approximation of impulse plane wave 
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The function H (r 0 , t) is computed by fast Fourier transform (FFT) algorithm. Besides, in all 
computation examples in this book, we set the frequency increment of ≈ 10 MHz, which provides 
correct estimation of variations in H (r 0 , t)  for all the cases considered in the book. 

In the following, we use the amplitude–frequency response (AFR) of the object, which is fre
quency f ( f = ck 2π , c is the speed of light) dependence of normalized value of projection of mag
netic field intensity at reception point onto unit-vector of receiving (transmitting) antenna p 

( ) ( H r 0F k = 2πR p ⋅ ( , k)), (2.179) 

where R is the distance from the object to observation point. We shall present also the quadrature 
components of AFR. 

Consequently, we consider the following value as smoothed IR: 

k 

− jkt A t ( ) = 1 ∫ 
2 

F k e d . (2.180) ( ) k
2π 

k1 

As a matter of fact, the dependence |A(t)| is the HRRP of the object given its illumination with 
the signal with rectangular amplitude spectrum. 

Computation results. As examples of objects for computing their smoothed IR, we consider here 
the following: two cylinders and the cone–sphere. Their view is presented in Figure 2.89. 

Both perfectly conducting objects and those having RAM coating at their fractures and smooth 
parts of surface are considered below. RAM coating assumed here had the following properties: 
ε′ = 20 + j0.1, μ′ = 1.35 + j0.8, coating thickness at smooth parts of surface was 0.0013 m, radius of 
toroidal RAM coating for the fractures was 0.01 m. Horizontal polarization for all the objects cor
responded to the vector of electric field intensity belonging to the plane passing through the object’s 
axis and containing the wave vector of incident wave. Vertical polarization corresponded to the 
electric field intensity vector orthogonal to that plane. 

Figures 2.90 through 2.96 show scattering computation results for the first cylinder (Figure 
2.89a), radius of which (0.66 m) is considerably greater than its length (0.28 m). 

Figure 2.90 shows amplitudes of the scattered field quadrature components versus frequency of 
illumination signal changing from 0.75 MHz through 1.25 GHz, the observation aspect being 45° 
with respect to the cylinder axis and illumination signal polarization being horizontal. Surface of 
the cylinder was perfectly conducting. 

Absolute value of smoothed impulse response of perfectly conducting cylinder for its observation 
aspect of 45° with respect to cylinder’s axis is shown in Figure 2.91, illumination signal occupy
ing the range from 0.75 GHz through 1.25 GHz. Bold line corresponds to the cylinder response 
at horizontal polarization and the thin line corresponds to its response at vertical one. It is worth 
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­
­

­

­

fiGure 2.89  Example of the objects: (a) cylinder with radius 0.66m and length 0.28m; (b) cylinder with 
radius 1.66m and length  3.28m; (c) truncated cone caped with the half-sphere (sphere radius is 0.16m, cone 
height is 1.8m, bases radii are 0.16m and 0.35m). 
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fiGure 2.90  Amplitude–frequency response of the object model given its observation aspect of 45° and 
illumination frequency ranging from 0.75 M Hz through 1.25 G Hz. 
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fiGure 2.91  Absolute value of the smoothed impulse response of the object model given its observation 
at the aspect of 4 5° and illumination signal spectrum occupying the range from 0.75 G Hz through 1.25 G Hz. 

mentioning that these two responses differ from each other significantly by the peak amplitudes. 
The latter is due to scattering differences at the edge local scatterers of the cylinder. 

Figure 2.92 shows the same dependencies as in Figure 2.90, but for illumination signal frequency 
ranging from 9.35 G Hz through 10.65 G Hz. 

Absolute values of the smoothed impulse responses given its observation aspect of 10° (with 
respect to cylinder’s axis) and illumination spectrum occupying the range from 9.35 G Hz through 

fiGure 2.92  Amplitude–frequency response of the object given its observation aspect of 45° and illumina
tion frequency ranging from 9.35 G Hz through 10.65 G Hz. 
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10.65 GHz are shown in Figures 2.93 and 2.94 for horizontal and vertical polarizations, respec­
tively. Bold lines in these figures correspond to the response of perfectly conducting cylinder, the 
thin lines correspond to the response of cylinder provided with RAM coatings as described above. 
The responses (HRRPs) of Figures 2.93 and 2.94 have two major peaks. The first peaks in these 
figures correspond to the return from the first edge local scatterer at the front base of cylinder, and 
the second peaks correspond to superpositions of returns from second edge local scatterer at the cyl­
inder’s front basis and the visible part of edge scatterer at rear cylinder’s base. The peak amplitude is 
lowered due to application of RAM coating at both polarizations, but, practically, it mostly happens 
for the first peak. The amplitude of second peak is somewhat lowered only at horizontal polariza­
tion. It is worth mentioning that given the use of RAM with such properties, the amplitude of peaks 
can even go up (sometimes significantly) when the cylinder is observed at broadside aspects. The 
latter is due to the fact that scattering from the toroidal RAM coating itself exceeds that from the 
clear edge local scatterer. Besides, one must bear in mind that this RAM coating is quite narrow­
band, that is, it is designed for the illumination signal wavelength of 3 cm, and the actual signal 
bandwidth for the smoothed IR is 1.3 GHz. 

Typical results illustrating this phenomenon are presented in Figures 2.95 and 2.96. These fig­
ures show the same dependencies as in Figures 2.93 and 2.94, but for the aspect angle of 45°. 
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fiGure 2.93  Absolute value of the smoothed IR of the object model given its observation at the aspect of 
10° and the horizontally polarized illumination signal’s spectrum occupying the range from 9.35 G Hz through 
10.65  GHz. 
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fiGure 2.94  Absolute value of the smoothed IR of the object model given its observation at the aspect of 
10° and the vertically polarized illumination signal’s spectrum occupying the range from 9.35 G Hz through 
10.65  GHz. 
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fiGure 2.95  Absolute value of the smoothed IR of the object model given its observation at the aspect of 
45° and the horizontally polarized illumination signal’s spectrum occupying the range from 9.35 G Hz through 
10.65  GHz. 
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fiGure 2.96  Absolute value of the smoothed IR of the object model given its observation at the aspect of 
45° and the vertically polarized illumination signal’s spectrum occupying the range from 9.35 G Hz through 
10.65  GHz. 

The first (t ≈ −3 ns) and third (t ≈ 3 ns) peaks of these responses correspond to echoes from edge 
local scatterers at front base of the cylinder and the second peak (t ≈ −2 ns) of these responses cor­
responds to echo from the visible part of edge scatterer at rear cylinder’s base. 

Figures 2.97 through 2.100 show the smoothed IR of the cylinder presented in Figure 2.89b. This 
cylinder has the base with 1.66 m radius and its length is 3.28 m. Parameters of simulation are the 
same as for Figures 2.93 through 2.96. 
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fiGure 2.97  Absolute value of the smoothed IR of the object model given its observation at the aspect of 
10° and the horizontally polarized illumination signal’s spectrum occupying the range from 9.35 G Hz through 
10.65  GHz. 
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fiGure 2.98  Absolute value of the smoothed IR of the object model given its observation at the aspect of 
10° and the vertically polarized illumination signal’s spectrum occupying the range from 9.35 G Hz through 
10.65  GHz. 
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fiGure 2.99  Absolute value of the smoothed IR of the object model given its observation at the aspect of 
45° and the horizontally polarized illumination signal’s spectrum occupying the range from 9.35 G Hz through 
10.65  GHz. 

It should be noted that unlike the previous object observed at the aspect of 10° (Figures 2.97 
and 2.98) the echoes from all the three visible local edge scatterers are evidently separate from one 
another. Besides, given the object illumination at vertical polarization (Figure 2.98), the amplitude 
of echo from the edge at rear cylinder’s base (t  ≈  19.5 ns) is very small. Application of RAM coat
ing to the edges provides considerable decrease in the amplitude of second peak (t  ≈  2 ns) and 
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fiGure 2.100  Absolute value of the smoothed IR of the object model given its observation at the aspect of 
45° and the vertically polarized illumination signal’s spectrum occupying the range from 9.35 G Hz through 
10.65  GHz. 
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significant increase in the amplitude of third peak (t ≈ 19.5 ns) given the cylinder illumination at 
horizontal polarization. In case of vertical polarization, the amplitude of first peak of the cylinder’s 
smoothed IR (t ≈ −2 ns) gets considerably lower. 

Results obtained for the observation angle of 45° (Figures 2.99 and 2.100) show that the second 
peak of smoothed IR (t ≈ 8 ns) is formed by superposition of echoes from the second local edge 
scatterer at front cylinder’s base and the visible part of the edge at its rear base. Application of RAM 
coating to the cylinder bases’ rims leads to significant increase of second peak (t ≈ 8 ns) of the 
smoothed IR for both polarizations. 

The object shown in Figure 2.89c is the truncated cone caped with the half-sphere. Sphere radius 
is 0.16 m, the cone height being 1.8 m and its bases having radii of 0.16 m and 0.35 m. 

The smoothed IR of the object observed at the aspect angle of 45° given illumination signal occu­
pying the range from 0.75 GHz through 1.25 GHz is shown in Figure 2.101. The bold line shows the 
object response at horizontal polarization and the thin line is for vertical one. The main difference 
between the responses at different polarizations is observed in the echo from the visible part of local 
edge scatterer (the second highest peak, t ≈ 7 ns, at the plot). The first highest peak (t ≈ −1 ns) is due 
to scattering from the half-sphere, so the echoes at both polarizations are the same. 

The absolute value of smoothed IR of the object model given its observation at the aspect of 45° 
and the illumination signal’s spectrum occupying the range from 9.35 GHz through 10.65 GHz is 
shown in Figure 2.102, illumination signal polarization being horizontal. Bold line represents the 
response of perfectly conducting cone–sphere object, and the thin line is for the response from the 
same object provided with RAM coating (as described above). The first highest peak (t ≈ −1 ns) is 
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fiGure 2.101  Absolute value of the smoothed IR of the object model given its observation at the aspect of 
45° and the illumination signal’s spectrum occupying the range from 0.75 G Hz through 1.25 G Hz. 
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fiGure 2.102  Absolute value of the smoothed IR of the object model given its observation at the aspect of 
45° and the horizontally polarized illumination signal’s spectrum occupying the range from 9.35 G Hz through 
10.65  GHz. 
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fiGure 2.103  Absolute value of the smoothed IR of the object model given its observation at the aspect of 
45° and the vertically polarized illumination signal’s spectrum occupying the range from 9.35 G Hz through 
10.65  GHz. 

due to scattering from the front half-sphere. It goes down given that RAM coating is applied to its 
surface. The peak around t  ≈  6.4 ns delay time is due to scattering from the rear local edge scatterer, 
and it goes up if the RAM coating is applied. 

The same computational results for the case of vertical polarization of illumination signal are 
shown in Figure 2.103. 

So, the method developed in this section allows us to evaluate the HRRPs (the smoothed IRs for 
certain frequency ranges) of both perfectly conducting objects and objects provided with RAM coat
ing. As it turned out, application of RAM does not always lead to suppressing echoes the HRRPs 
consist of. However, the RAM-coating presence does always change the form of HRRP. 

­
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Figure 2.23  RCS of the cruise missile model versus azimuth aspect given its illumination in the plane of 
wings. 

Figure 3.4  Circular diagrams of instantaneous RCS given radar observation of B-2 aircraft model at car
rier frequency of 10 G Hz (3 c m wavelength). 

­

Figure 3.9  Circular diagrams of noncoherent RCS given radar observation of B-2 aircraft model at carrier 
frequency of 10 G Hz (3 c m wavelength). 
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Figure 3.15 Circular diagrams of noncoherent RCS of B-2 aircraft model given its radar observation at 
carrier frequency of 3 GHz (10 cm wavelength). 
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Figure 3.10  Circular diagrams of instantaneous RCS given radar observation of B-2 aircraft model at car
rier frequency of 3 G Hz (10 c m wavelength). 
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Figure 3.16  Circular diagrams of instantaneous RCS given radar observation of B-2 aircraft model at car
rier frequency of 1 G Hz (30 c m wavelength). 
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Figure 3.21  Circular diagrams of noncoherent RCS of B-2 aircraft model given its radar observation at 
carrier frequency of 1 G Hz (30 c m wavelength). 

Figure 3.33  Circular diagrams of instantaneous RCS given radar observation of Tu-22M3 aircraft model 
at carrier frequency of 10 G Hz (3 c m wavelength). 

Figure 3.38  Circular diagrams of noncoherent RCS given radar observation of Tu-22M3 aircraft model at 
carrier frequency of 10 G Hz (3 c m wavelength). 
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Figure 3.39  Circular diagrams of instantaneous RCS given radar observation of Tu-22M3 aircraft model 
at carrier frequency of 3 G Hz (10 c m wavelength). 

Figure 3.44  Circular diagrams of noncoherent RCS of Tu-22M3 aircraft model given its radar observation 
at carrier frequency of 3 G Hz (10 c m wavelength). 

Figure 3.45  Circular diagrams of instantaneous RCS given radar observation of Tu-22M3 aircraft model 
at carrier frequency of 1 G Hz (30 c m wavelength). 
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Figure 3.50  Circular diagrams of noncoherent RCS of Tu-22M3 aircraft model given its radar observation 
at carrier frequency of 1 G Hz (30 c m wavelength). 

Figure 3.62  Circular diagrams of instantaneous RCS given radar observation of Boeing-737-400 aircraft 
model at carrier frequency of 10 G Hz (3 c m wavelength). 

Figure 3.67  Circular diagrams of noncoherent RCS given radar observation of Boeing-737-400 aircraft 
model at carrier frequency of 10 G Hz (3 c m wavelength). 
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Figure 3.68  Circular diagrams of instantaneous RCS given radar observation of Boeing-737-400 aircraft 
model at carrier frequency of 3 G Hz (10 c m wavelength). 

Figure 3.73  Circular diagrams of noncoherent RCS of Boeing-737-400 aircraft model given its radar 
observation at carrier frequency of 3 G Hz (10 c m wavelength). 

Figure 3.74  Circular diagrams of instantaneous RCS given radar observation of Boeing-737-400 aircraft 
model at carrier frequency of 1 G Hz (30 c m wavelength). 
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Figure 3.79  Circular diagrams of noncoherent RCS of Boeing-737-400 aircraft model given its radar 
observation at carrier frequency of 1 G Hz (30 c m wavelength). 

Figure 3.91  Circular diagrams of instantaneous RCS given radar observation of An-26 aircraft model at 
carrier frequency of 10 G Hz (3 c m wavelength). 

Figure 3.96  Circular diagrams of noncoherent RCS given radar observation of An-26 aircraft model at 
carrier frequency of 10 G Hz (3 c m wavelength). 
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Figure 3.97  Circular diagrams of instantaneous RCS given radar observation of An-26 aircraft model at 
carrier frequency of 3 G Hz (10 c m wavelength). 

Figure 3.102  Circular diagrams of noncoherent RCS of An-26 aircraft model given its radar observation 
at carrier frequency of 3 G Hz (10 c m wavelength). 

Figure 3.103  Circular diagrams of instantaneous RCS given radar observation of An-26 aircraft model at 
carrier frequency of 1 G Hz (30 c m wavelength). 



RCS (m2) 0 
345 1000 15 

330 100 30 

315 10 45 

300 1 60 

285 
0.1 

75 

270 90 

255 105 

240 120 

225 135 

210 150 
195 180 

165 

RCS (m2) 0 
345 1000 15 

330 100 30 

315 10 45 

300 1 60 
0.1 

285 0.01 75 

270 90 

255 105 

240 120
 

225 135
 

210 150
 
195 165
 

180
 

 
  

Figure 3.122 Circular diagrams of instantaneous RCS given radar observation of MiG-29 aircraft model 
at carrier frequency of 10 GHz (3 cm wavelength). 
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Figure 3.108  Circular diagrams of noncoherent RCS of An-26 aircraft model given its radar observation 
at carrier frequency of 1 G Hz (30 c m wavelength). 

Figure 3.127  Circular diagrams of noncoherent RCS given radar observation of MiG-29 aircraft model at 
carrier frequency of 10 G Hz (3 c m wavelength). 
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Figure 3.128  Circular diagrams of instantaneous RCS given radar observation of MiG-29 aircraft model 
at carrier frequency of 3 G Hz (10 c m wavelength). 

Figure 3.133  Circular diagrams of noncoherent RCS of MiG-29 aircraft model given its radar observation 
at carrier frequency of 3 G Hz (10 c m wavelength). 

Figure 3.134  Circular diagrams of instantaneous RCS given radar observation of MiG-29 aircraft model 
at carrier frequency of 1 G Hz (30 c m wavelength). 
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Figure 3.139  Circular diagrams of noncoherent RCS of MiG-29 aircraft model given its radar observation 
at carrier frequency of 1 G Hz (30 c m wavelength). 

Figure 3.151  Circular diagrams of instantaneous RCS given radar observation of F-16 aircraft model at 
carrier frequency of 10 G Hz (3 c m wavelength). 

Figure 3.156  Circular diagrams of noncoherent RCS given radar observation of F-16 aircraft model at 
carrier frequency of 10 G Hz (3 c m wavelength). 
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Figure 3.157  Circular diagrams of instantaneous RCS given radar observation of F-16 aircraft model at 
carrier frequency of 3 G Hz (10 c m wavelength). 

Figure 3.162  Circular diagrams of noncoherent RCS of F-16 aircraft model given its radar observation at 
carrier frequency of 3 G Hz (10 c m wavelength). 

Figure 3.163  Circular diagrams of instantaneous RCS given radar observation of F-16 aircraft model at 
carrier frequency of 1 G Hz (30 c m wavelength). 
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Figure 3.168  Circular diagrams of noncoherent RCS of F-16 aircraft model given its radar observation at 
carrier frequency of 1 G Hz (30 c m wavelength). 

Figure 3.179  Circular diagrams of instantaneous RCS given radar observation of AGM-86 ALCM model 
at carrier frequency of 10 G Hz (3 c m wavelength). 

Figure 3.184 Circular diagrams of noncoherent RCS given radar observation of AGM-86 ALCM model 
at carrier frequency of 10 GHz (3 cm wavelength). 
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Figure 3.185  Circular diagrams of instantaneous RCS given radar observation of AGM-86 ALCM model 
at carrier frequency of 3 G Hz (10 c m wavelength). 

Figure 3.190  Circular diagrams of noncoherent RCS of AGM-86 ALCM model given its radar observa
tion at carrier frequency of 3 G Hz (10 c m wavelength). 
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Figure 3.191  Circular diagrams of instantaneous RCS given radar observation of AGM-86 ALCM model 
at carrier frequency of 1 G Hz (30 c m wavelength). 
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Figure 3.196  Circular diagrams of noncoherent RCS of AGM-86 ALCM model given its radar observa
tion at carrier frequency of 1 G Hz (30 c m wavelength). 

­

Figure 3.210  Circular diagrams of instantaneous RCS given radar observation of T-90 tank model (ε =  1°, 
underlying surface – dry soil). 

Figure 3.215  Circular diagrams of noncoherent RCS given radar observation of T-90 tank model (ε =  1°, 
underlying surface – dry soil). 
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Figure 3.216  Circular diagrams of instantaneous RCS given radar observation of T-90 tank model 
(ε =  10°, underlying surface – dry soil). 

Figure 3.221  Circular diagrams of noncoherent RCS of T-90 tank model (ε =  10°, underlying surface – 
dry soil). 

Figure 3.222  Circular diagrams of instantaneous RCS of T-90 tank model (ε =  10°, underlying surface – 
moist soil). 
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Figure 3.227  Circular diagrams of noncoherent RCS of T-90 tank model (ε =  10°, underlying surface – 
moist soil). 

Figure 3.228  Circular diagrams of instanteneous RCS of T-90 tank model (ε =  30°, underlying surface – 
dry soil). 

Figure 3.233  Circular diagrams of noncoherent RCS of T-90 tank model (ε =  30°, underlying surface – 
dry soil). 
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Figure 3.234  Circular diagrams of instanteneous RCS of T-90 tank model (ε =  30°, underlying surface – 
moist soil). 

Figure 3.239  Circular diagrams of noncoherent RCS of T-90 tank model (ε =  30°, underlying surface – 
moist soil). 

Figure 3.262  Circular diagrams of instantaneous RCS given radar observation of Leopard-2 tank model 
(ε =  1°, underlying surface – dry soil). 
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Figure 3.267  Circular diagrams of noncoherent RCS given radar observation of Leopard-2 tank model 
(ε =  1°, underlying surface – dry soil). 

Figure 3.268  Circular diagrams of instantaneous RCS given radar observation of Leopard-2 tank model 
(ε =  10°, underlying surface – dry soil). 

Figure 3.273  Circular diagrams of noncoherent RCS of Leopard-2 tank model (ε =  10°, underlying sur
face – dry soil). 

­
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Figure 3.274  Circular diagrams of instanteneous RCS of Leopard-2 tank model (ε =  10°, underlying sur
face – moist soil). 

­

Figure 3.279  Circular diagrams of noncoherent RCS of Leopard-2 tank model (ε =  10°, underlying sur
face – moist soil). 

­

Figure 3.280  Circular diagrams of instanteneous RCS of Leopard-2 tank model (ε =  30°, underlying sur
face – dry soil). 

­
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Figure 3.285  Circular diagrams of noncoherent RCS of Leopard-2 tank model (ε =  30°, underlying sur
face – dry soil). 

­

Figure 3.286  Circular diagrams of instanteneous RCS of Leopard-2 tank model (ε =  30°, underlying sur
face – moist soil). 

­

Figure 3.291  Circular diagrams of noncoherent RCS of Leopard-2 tank model (ε =  30°, underlying sur
face – moist soil). 

­
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Figure 3.311  Circular diagrams of instantaneous RCS given radar observation of M1A1 Abrams tank 
model (ε =  1°, underlying surface – dry soil). 

Figure 3.316  Circular diagrams of noncoherent RCS given radar observation of M1A1 Abrams tank 
model (ε =  1°, underlying surface – dry soil). 

Figure 3.317  Circular diagrams of instantaneous RCS given radar observation of M1A1 Abrams tank 
model (ε =  10°, underlying surface – dry soil). 
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   Figure 3.323 Circular diagrams of instantaneous RCS of M1A1 Abrams tank model (ε = 10°, underlying 
surface – moist soil). 
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Figure 3.322  Circular diagrams of noncoherent RCS of M1A1 Abrams tank model (ε =  10°, underlying 
surface – dry soil). 

Figure 3.328  Circular diagrams of noncoherent RCS of M1A1 Abrams tank model (ε =  10°, underlying 
surface – moist soil). 
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Figure 3.329  Circular diagrams of instanta-
neous RCS of M1A1 Abrams tank model (ε =  30°, 
underlying surface – dry soil). 

Figure 3.334  Circular diagrams of noncoherent 
RCS of M1A1 Abrams tank model (ε =  30°, underly
ing surface – dry soil). 

­

Figure 3.335  Circular diagrams of instanta-
neous RCS of M1A1 Abrams tank model (ε =  30°, 
underlying surface – moist soil). 

Figure 3.340  Circular diagrams of noncoherent 
RCS of M1A1 Abrams tank model (ε =  30°, underly
ing surface – moist soil). 

­



137 

               
              

              

3 Scattering Characteristics 

of Some Airborne and 
Ground Objects 

Vitaly A. Vasilets, Sergey V. Nechitaylo, Oleg I. Sukharevsky, 
and Valery M. Orlenko 

Contents 

3.1  Scattering Characteristics of Airborne Objects .................................................................... 138
 
3.1.1  Scattering Characteristics of B-2 Strategic Bomber Aircraft ................................... 139
 
3.1.2  Impulse Responses of B-2 Strategic Bomber Aircraft  ............................................. 148
 
3.1.3  Scattering Characteristics of Tu-22M3 Long-Range Bomber Aircraft .................... 151
 
3.1.4  Impulse Responses of Tu-22M3 Long-Range Bomber Aircraft ............................... 160
 
3.1.5  Scattering Characteristics of Boeing 737-400 Medium-Range Airliner .................. 162
 
3.1.6  Impulse Responses of Boeing 737-400 Medium-Range Airliner  ............................ 171
 
3.1.7  Scattering Characteristics of An-26 Multipurpose Transport Aircraft  .................... 174
 
3.1.8  Impulse Responses of An-26 Multipurpose Transport Aircraft ............................... 183
 
3.1.9  Scattering Characteristics of MiG-29 Front-Line Fighter ........................................ 186
 
3.1.10  Impulse Responses of MiG-29 Front-Line Fighter ................................................... 196
 
3.1.11  Scattering Characteristics of F-16 Multirole Fighter ................................................ 199
 
3.1.12  Impulse Responses of F-16 Multirole Fighter...........................................................208
 
3.1.13  Scattering Characteristics of AGM-86 ALCM  ........................................................ 210
 
3.1.14  Impulse Responses of AGM-86 ALCM  ................................................................... 219
 

3.2  Scattering Characteristics of Ground Objects ...................................................................... 221
 
3.2.1  Scattering Characteristics of T-90 Main Battle Tank ............................................... 222
 
3.2.2  Impulse Responses of T-90 Main Battle Tank  ......................................................... 238
 
3.2.3  Scattering Characteristics of Leopard-2 Main Battle Tank ......................................242
 
3.2.4  Impulse Responses of Leopard-2 Main Battle Tank ................................................ 258
 
3.2.5  Scattering Characteristics of M1A1 Abrams Main Battle Tank  .............................. 262
 
3.2.6  Impulse Responses of M1A1 Abrams Main Battle Tank ......................................... 277
 

This chapter is intended for reference and it basically concludes theoretical studies presented in the first 
two chapters. It contains results of the radar scattering characteristic computer simulation for a number 
of airborne and ground objects that were obtained using methods developed in the previous chapters. 

We present the following radar scattering characteristics: circular diagrams of instantaneous 
RCS, as wells as mean and median RCS values in specific angular sectors of the object illumination. 
Such scattering characteristics were computed for a number of airborne objects (B-2, Tu-22M3 stra­
tegic bombers, Boeing-737 passenger aircraft, An-26 transport aircraft; MiG-29, F-16 fighter jets, 
and AGM-86 cruise missile given their radar observation at elevation angles close to the plane of 
wings) as well as ground objects (Russian main battle tank—T-90, German tank—Leopard-2, and 
American tank—M1A1 Abrams given their radar observation at different elevation angles). 
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Besides, we present circular diagrams of the so-called “noncoherent” RCS. As in Chapter 2, we 
consider the noncoherent RCS to be computed as a sum of RCSs of all parts of ellipsoids and edges 
constituting the object surface model. 

Since  the  radar  target  aspect  can  be  regarded  as  random  value,  its  RCS  at  any  given  moment  can 
be  regarded  as  random  value  too.  Probability  distribution  of  such  random  value  can  be  evaluated  by 
diagrams  of  instantaneous  RCS  obtained  as  a  result  of  computation  or  experiment.  Along  with  RCS 
σ,  its  square  root  σ  is  often  used  in  radar  theory,  the  latter  being  proportional  to  the  radar  echo 
amplitude.  Therefore,  this  chapter  features  the  distribution  histograms  of  radar  echo  amplitude  mul
tiplier  σ  given  the  object  observation  at  the  most  common  aspect  angles.  From  a  number  of  possible 
probability  distributions  (normal,  Rayleigh,  lognormal,  Weibull,  β-distribution,  Γ-distribution),  we 
chose  the  ones  that  fit  best  empirical  probability  distributions  according  to  Kolmogorov–Smirnoff 
criterion  (while  doing  this  we  also  determined  the  parameters  of  theoretical  probability  distributions). 

Commonly  adopted  in  radar  technique  of  evaluating  range  of  target  detection  with  probability 
equal  to  0.5  requires  that  median  RCS  value  be  available.  Therefore,  for  every  radar  target  considered 
in  this  chapter  we  provide  median  RCS  values  for  specific  sectors  of  the  radar  observation  azimuth 
aspects.  As  median  RCS,  we  consider  such  nonrandom  RCS  value,  which  corresponds  to  condition 
that  probabilities  of  random  RCS  being  below  and  above  this  median  in  specific  angular  sector  of  the 
object  observation  are  equal  to  0.5. 

All the characteristics mentioned above are presented for monostatic radar configuration. 

3.1  sCatterinG CharaCteristiCs of airborne objeCts 

Scattering  computation  results  for  airborne  objects  were  obtained  at  the  following  illumination  fre
quencies: 1 0  GHz ( radar s ignal w avelength i s a bout 3   cm), 3   GHz ( wavelength i s 1 0  cm), a nd 1   GHz 
(wavelength  is  about  30  cm).  Other  parameters  of  illumination  were  as  follows:  azimuth  aspect  incre
ment  was  0.02°,  azimuth  aspect  β  (Figure  3.1)  being  counted  off  from  the  nose-on  aspect  (0°  corre
sponds  to  the  nose-on  radar  observation,  180°  corresponds  to  the  tail-on  observation).  Considering  the 
fact  that  aircraft  aspect  in  elevation  plane  may  vary  during  flight,  we  chose  this  elevation  angle  aspect 
to  be  random  value  distributed  uniformly  in  the  range  −3°  ±  4°  with  respect  to  the  wing  plane  (eleva
tion  angle  aspect  of  −3°  corresponds  to  the  radar  observation  from  the  lower  hemisphere  [Figure  3.1]). 
Computation  results  were  obtained  for  monostatic  radar  configuration  and  two  mutually  orthogonal 

 
polarizations  of  illumination  signal:  horizontal—electrical  field  intensity  vector  of  incident  wave  p0 

h 
 

lying  in  the  plane  of  wings;  and  vertical—electrical  field  intensity  vector  of  incident  wave  p0 
v  being 

 
orthogonal  to  vector  p0 

h and  belonging  to  the  plane  that  is  perpendicular  to  the  wing  plane  and  passes 
through  the  incidence  direction  vector.  Hereinafter,  blue  curves  correspond  to  horizontal  polarization 
of  incident  wave  and  red  curves  correspond  to  its  vertical  polarization. 

Computation  of  mean  RCS  may  result  in  very  large  values  when  the  air  vehicle  is  observed  at  side-
on  aspects  due  to  scattering  from  idealized  (almost  flat)  surface  in  directions  close  to  normal.  Such 
anomalously  great  values  can  distort  the  corresponding  histograms  of  mean  RCS.  Therefore,  to  obtain 
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fiGure 3.1  Geometry of airborne object illumination. 
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mean RCS values close to real ones, we discarded 0.2% of the largest instantaneous RCS values in the 
azimuth aspect averaging sector from 45° through 135°; in the azimuth aspect averaging sector from 
80° through 100°, we discarded, in the same manner, 1% of the largest instantaneous RCS values. 

Distribution histograms of the echo signal’s amplitude multiplier (square root from RCS) are 
given for the azimuth aspect sector of object illumination from −20° through +20° (nose-on aspects 
of airborne radar objects) and horizontal polarization of incident electromagnetic wave. 

Along with histograms, we also present theoretical probability densities for the radar echo amplitude 
multiplier (selected from the ones mentioned above), which fit best the empirical probability distribu­
tions by the Kolmogorov–Smirnov criterion. Black lines in figures containing histograms correspond 
to probability densities (specified in the side notes) multiplied by the area of corresponding histograms. 

It is worth mentioning that in some cases, despite the fact that theoretical curves fit empirical 
distributions quite well by Kolmogorov–Smirnov criterion, these curves of theoretical probability 
distributions can deviate considerably from the histogram envelopes. In this situation, the end user 
may try to find other theoretical probability distributions that better fit the histograms presented 
below or use the histograms themselves. 

Also, there are examples of high-range resolution profiles (HRRPs) computed for the airborne 
objects given various central frequencies and various widths of illumination signal spectrum. 

3.1.1 ScatterinG characteriSticS Of b-2 StrateGic bOmber aircraft 

The contract for creation of “stealth” bomber aircraft under the code name ATB was given to 
Northrop company in 1981 [48]. Along with Northrop, other companies also contributed to the pro­
gram: Boeing (radio electronics), Ling-TeamCo Wout (new materials and structures), and General 
Electric (engines). The first flight of aircraft officially designated as B-2 Spirit in 1987 was in 1989. 
In 1993, the first B-2 aircraft was put into service in the US Air Force. Today only 15 of 21 aircrafts 
are in service; the other four being used as trainers, and one being made into a flying laboratory for 
testing perspective precision weapons. On February 23, 2008, B-2 Spirit of Kansas, 89-0127 crashed 
on the runway shortly after takeoff from Andersen Air Force Base in Guam. Total cost of all B-2s 
produced (not accounting for the infrastructure build for their testing and maintenance) was US$46.4 
billion. Today, the work for upgrading the aircraft is being carried out; they plan to complete by 2014. 

B-2 aircraft is designed according to the “flying wing” scheme and it does not have vertical sta­
bilizers (Figure 3.2). Conventional rudders were replaced by the so-called split brake-rudders and 

fiGure 3.2  External view of B-2 bomber. 
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differential thrust. The split brake-rudders are pairs of flaps at the trailing edge of wings that are 
simultaneously deflected up and down. The planform of B-2 is generated by 12 straight lines that 
enable concentration of all intensive radar signatures in few basic narrow angular sectors. Aircraft 
design features the use of the so-called “four leaf” scattering layout: parallel sections of leading and 
trailing edges and of hatch covers, landing gear bay and engine compartment covers, as well as air 
intake cowlings lead to the formation of four X-shaped sectors of major backscattering on circular 
backscattering diagram (two sectors in front hemisphere and other two in rear hemisphere). When 
observed nose-on or side-on, the aircraft is practically devoid of straight edges and flat surfaces. 
The inside of the leading edge of the wing is filled with spiky radar absorbent honeycomb structure. 

The aircraft airframe is basically made of titanium and aluminum alloys with wide use of 
carbon–graphite composites [49]. The basic load-bearing element of the aircraft hull is the single 
longeron titanium torsion box situated in the central front part of the body and adjacent intermedi­
ate sections. Carbon–graphite wing consoles with no taper are attached to this central torsion box. 

According to available data on the B-2 aircraft structure, we designed the model of its surface 
(Figure 3.3) suitable for computing the aircraft radar scattering; parameters of the model being 
presented in the Table 3.1 below. We also considered the B-2 aircraft model with suppositional 
distribution of RAM over its surface. Let us note that since the actual properties of RAM coating 
have not been known to us, we assumed the model to be covered with RAM having unchanging 
relative permittivity and permeability: ε ′ = 1 + j5, μ′ = 1 + j5. The latter values correspond to the 
radar absorbent of Sommefeld’s type, and they correspond to some forms of existing ferromagnetic 
RAM coatings [85,86]. Leading wing’s edge (shown in black in Figure 3.3) is the front boundary of 
the airframe region that is made of long metallic tubes filled with radar absorbent. In the aircraft 
surface model, we accounted for this circumstance in the following way. Tangential components of 

field E and H at points of the wing surface marked black in Figure 3.3 were assumed to be equal 
to those at the interface of half space consisting of the tube filling material (ε ′ = 1 + j5, μ′ = 1 + j5) 
and being tangential to the corresponding point of the wing. In case of the model with nonperfectly 
reflecting surface, the depth of RAM coating was assumed to be variable. It varied from 3 mm for 
the frontal airframe part to 2.5 mm for its rear part and to 2 mm for the rest of model’s surface. 
Besides, the surface of the cockpit canopy and the upper wing’s wedge behind the engines’ nozzles 
were assumed to be perfectly conducting in the model. 

Figures 3.4 through 3.21 show diagrams of mean and median RCS given the B-2 aircraft model 
illumination at vertical and horizontal polarization, the latter having been averaged over different 
angular sectors, as well as circular diagrams of instantaneous and noncoherent RCS for the fre­
quency ranges of our interest. 

Figures 3.22 through 3.24 show the amplitude distributions of echo signals for the frequency 
ranges of interest given horizontal polarization of illumination wave. 

Table 3.2 summarizes the parameters of empirical probability distributions that mostly fit the 
simulation data for square root of RCS. 

fiGure 3.3  Model of the B-2 bomber surface. 



table 3.1 
Geometrical Characteristics of b-2 strategic bomber aircraft 

airframe Characteristics (figure 3.2) aircraft surface model Characteristics (figure 3.3) 

Aircraft length  20.9 m Number of parts of ellipsoids in the model 26 

Aircraft height  5.45 m Number of straight wedge parts in the model 22 

Wing span  52.4 m 

Wing’s area  464.5 m2 
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fiGure 3.4  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of B-2 
aircraft model at carrier frequency of 10 G Hz (3 c m wavelength). 

In Section 3.1.2, there are examples of HRRPs computed for the aircraft given various central 
frequencies of signal spectrum and its widths. 

Table 3.2 contains expressions and parameters of probability distributions that fit best empirical 
distributions of the RCS square root given various carrier frequencies and polarizations of illumina­
tion signal. 

0.08 

0.19 

0.04 0.05 

0.130.14 

0.01 

0.10 

1.00 

RC
S 

(m
2 )

 

Nose on: 0–45 Side on: 45–135 Tail on: 135–180 
β (deg) 

Mean RCS Median RCS 

fiGure 3.5  Diagrams of mean and median RCS of the B-2 aircraft model in three sectors of azimuth aspect 
given its radar observation at horizontal polarization and carrier frequency of 10 G Hz (3 c m wavelength). 
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fiGure 3.7  Diagrams of mean and median RCS of the B-2 aircraft model in 20-degree sectors of azi
muth aspect given its radar observation at horizontal polarization and carrier frequency of 10 G Hz (3 c m 
wavelength). 
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fiGure 3.8  Diagrams of mean and median RCS of the B-2 aircraft model in 20-degree sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 10 G Hz (3 c m wavelength). 
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fiGure 3.6  Diagrams of mean and median RCS of the B-2 aircraft model in three sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 10 G Hz (3 c m wavelength). 
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fiGure 3.9  (See color insert.) Circular diagrams of noncoherent RCS given radar observation of B-2 air
craft model at carrier frequency of 10 G Hz (3 c m wavelength). 
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fiGure 3.10  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of B-2 
aircraft model at carrier frequency of 3 G Hz (10 c m wavelength). 

fiGure 3.11  Diagrams of mean and median RCS of the B-2 aircraft model in three sectors of azimuth aspect 
given its radar observation at horizontal polarization and carrier frequency of 3 G Hz (10 c m wavelength). 
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fiGure 3.14  Diagrams of mean and median RCS of the B-2 aircraft model in 20-degree sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 3 G Hz (10 c m wavelength). 

fiGure 3.13  Diagrams of mean and median RCS of the B-2 aircraft model in 20-degree sectors of azi
muth aspect given its radar observation at horizontal polarization and carrier frequency of 3 G Hz (10 c m 
wavelength). 

­

fiGure 3.12  Diagrams of mean and median RCS of the B-2 aircraft model in three sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 3 G Hz (10 c m wavelength). 
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fiGure 3.15  (See color insert.) Circular diagrams of noncoherent RCS of B-2 aircraft model given its 
radar observation at carrier frequency of 3 G Hz (10 c m wavelength). 
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fiGure 3.16  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of the 
B-2 aircraft model at carrier frequency of 1 G Hz (30 c m wavelength). 

fiGure 3.17  Diagrams of mean and median RCS of the B-2 aircraft model in three sectors of azimuth aspect 
given its radar observation at horizontal polarization and carrier frequency of 1 G Hz (30 c m wavelength). 
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fiGure 3.18  Diagrams of mean and median RCS of the B-2 aircraft model in three sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 1 G Hz (30 c m wavelength). 

fiGure 3.19  Diagrams of mean and median RCS of the B-2 aircraft model in 20-degree sectors of 
 azimuth aspect given its radar observation at horizontal polarization and carrier frequency of 1 G Hz (30 c m 
wavelength). 

fiGure 3.20  Diagrams of mean and median RCS of the B-2 aircraft model in 20-degree sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 1 G Hz (30 c m wavelength). 
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fiGure 3.21  (See color insert.) Circular diagrams of noncoherent RCS of B-2 aircraft model given its 
radar observation at carrier frequency of 1 G Hz (30 c m wavelength). 

fiGure 3.22  Amplitude distribution of echo signal from B-2 aircraft model at carrier frequency of 10 G Hz 
given its horizontal polarization. 

fiGure 3.23  Amplitude distribution of echo signal from B-2 aircraft model at carrier frequency of 3 GHz  
given its horizontal polarization. 
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table 3.2 
parameters of probability distributions for the echo signal amplitudes for 
b-2 aircraft 

Wavelength polarization distribution kind distribution parameters 

 3 cm Horizontal β-distribution: ν = 2.4491 

Γ(ν + ω ) ν− 1 ω− 1p x ( ) = x ( 1 − x) ,
( ) (Γ ν  Γ ω)

 ω = 14.612

where Γ (ν) is the gamma-function 

 3 cm Vertical β-distribution   ν = 2.39636 
  ω = 13.48536 

 10 cm Horizontal Weibull distribution:   b = 0.1854 
c−1 ⎛ x ⎞ c

c ⎛ x ⎞ −
⎝⎜ b ⎠⎟ 

p x ( ) = e
⎠⎟ b ⎝⎜ b 

  c = 1.7822

 10 cm Vertical β-distribution   ν = 2.37642 
  ω = 10.81251 

 30 cm Horizontal Weibull distribution   b = 0.36701 
  c = 2.344988 

 30 cm Vertical Weibull distribution   b = 0.37423 
  c = 2.306958 
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fiGure 3.24  Amplitude distribution of echo signal from B-2 aircraft model at carrier frequency of 1 G Hz 
given its horizontal polarization. 

3.1.2  imPulSe  reSPOnSeS  Of  b-2 StrateGic  bOmber  aircraft 

As an example, we consider HRRPs of the B-2 aircraft observed at the elevation angle of −3° (illu
mination from below) and azimuth aspect of 35° (perpendicularly to the wing’s leading edge). 

Figures 3.25 and 3.26 show HRRPs of B-2 aircraft given its illumination with signals at car
rier frequency of 10 G Hz (3 cm  wavelength) for the cases of horizontal and vertical polarizations, 
respectively. Solid line corresponds to HRRP obtained using signal with rectangular amplitude 
spectrum of 1 G Hz bandwidth. Dashed line corresponds to HRRP obtained using signal with rect
angular spectrum of 250 M Hz bandwidth. 
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fiGure 3.25  HRRPs of B-2 aircraft given its illumination by signal with center spectrum frequency of 
10 G Hz (3 c m wavelength), horizontal polarization. 

t (ns) 

fiGure 3.26  HRRPs of B-2 aircraft given its illumination by signals with center spectrum frequency of 
10 G Hz (3 c m wavelength), vertical polarization. 

Peaks #1 correspond to scattering from the leading edge of aircraft’s wing. The amplitude of 
echo from the wing’s leading edge is higher for the case of horizontal polarization. Peaks #2 corre
spond to scattering from trailing edge of aircraft’s body. Peaks #3 correspond to scattering from the 
trailing edge of the further wing’s rear extension. Peaks #4 correspond to scattering from straight 
wing’s tip of the further wing. It is worth mentioning that amplitudes of peaks #2, #3, and #4 are 
higher in case of vertical polarization of illumination signal. The later is due to scattering peculiari
ties of edge local scatterers given their illumination along the face of scattering wedge and toward 
its edge. Peaks #5 in Figure 3.26 correspond to scattering from air intake situated at the upper sur
face of the nearer wing. It should be noted that air intake does not provide any echo at horizontal 
polarization. This can be probably explained by destructive interference of partial echoes from 
horizontally oriented parts of “saw-tooth”-shaped upper edge of the air intake. 

Figures 3.27 and 3.28 show HRRPs of B-2 aircraft given its illumination by signals with spectra 
centered at 3 G Hz (10 cm  wavelength) for the cases of horizontal and vertical polarization, respec­
tively. Bold solid line corresponds to HRRP obtained using signal with rectangular spectrum of 
1 G Hz bandwidth. Thin dashed line corresponds to HRRP obtained using signal with rectangular 
spectrum of 250 M Hz bandwidth. 

HRRPs shown in Figures 3.27 and 3.28 contain the following peaks marked with numbers. 
Peaks #1 are due to scattering from the leading edge of the aircraft’s wing. Amplitude of the 

response from wing’s leading edge is higher for the case of horizontal polarization. Peaks #2 are due 
to scattering from the air intake. Peaks #3 are due to scattering from the trailing edge of the nearer 
wing’s rear extension. Peaks #4 are due to scattering from trailing edge of aircraft’s body. Peaks 
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fiGure 3.29 HRRPs of B-2 aircraft given its illumination by signals with center spectrum frequency of 
1 GHz (30 cm wavelength), horizontal polarization. 
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fiGure 3.27  HRRPs of B-2 aircraft given its illumination by signals with center spectrum frequency of 
3 G Hz (10 c m wavelength), horizontal polarization. 

fiGure 3.28  HRRPs of B-2 aircraft given its illumination by signals with center spectrum frequency of 
3 G Hz (10 c m wavelength), vertical polarization. 

#5 are due to scattering from trailing edge of the further wing’s rear extension. Peaks #6 are due to 
scattering from the straight edge tip of the further aircraft wing. Amplitude of peaks #3, #4, #5, and 
#6 is higher in case of vertical polarization. 

Figures 3.29 and 3.30 show corresponding HRRPs of B-2 aircraft given its illumination by sig
nals with spectra centered at 1 G Hz (30 cm  wavelength) for the cases of horizontal and vertical 
polarization, respectively. Bold solid line corresponds to HRRP obtained using signal with rectan
gular spectrum of 1 G Hz bandwidth. Thin dashed line corresponds to HRRP obtained using signal 
with rectangular spectrum of 250 M Hz bandwidth. 
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fiGure 3.30  HRRPs of B-2 aircraft given its illumination by signals with center spectrum frequency of 
1 G Hz (30 c m wavelength), vertical polarization. 

Peaks #1 are due to scattering from the wing’s leading edge. Besides, peak #1 is the only one 
that can be singled out in HRRP given horizontal polarization of illumination signal (Figure 3.29). 
Peaks #2 in Figure 3.30 are due to the scattering from air intake. Peaks #3 in Figure 3.30 are due to 
scattering from trailing edge of the nearer wing’s rear extension. Peaks #4 in Figure 3.30 are due to 
scattering from trailing edge of the aircraft body. Peaks #5 in Figure 3.30 are due to scattering from 
trailing edge of the further wing’s rear extension. Peaks #6 in Figure 3.30 are due to scattering from 
the straight edge tip of the further aircraft wing. 

It is worth mentioning that despite radar absorbent materials present in the wing’s construc­
tion, its illumination in the direction perpendicular to leading wings’ edge results in considerable 
(several units of relative amplitude) increase of the echo amplitude due to significant extent of the 
leading edge. For the rest of the aspect angles of the aircraft illumination, maximum amplitude of 
such echoes, according to our computation results, is of the order of tenth and hundredth fraction of 
relative amplitude unit. 

3.1.3 ScatterinG characteriSticS Of tu-22m3 lOnG-ranGe bOmber aircraft 

The first prototype of Tu-22M3 long-range bomber aircraft was developed as a result of deep 
upgrade of the Tu-22M bomber aircraft. In 1978, the aircraft had been put in for mass production. 
However, new armaments installed on it required additional time for testing and refinement, and 
hence the final version of Tu-22M3 had officially entered service only in March 1989 [87]. 

The Tu-22M3 was designed according to standard aerodynamic scheme and had the variable 
sweep wing, it also featured an all-moving horizontal stabilizer and single fin vertical stabilizer 
(Figure 3.31). The airframe was basically made of aluminum alloys. The wing consisted of a fixed 
wing part and consoles that swept back and forth (the consoles at Tu-22M3 could be set to the sweep 
angle values of 20°, 30°, and 65°, at the earlier prototypes the sweep back angle had been limited to 
60°). Theoretical studies and flight tests revealed the following advantages of heavy strike aircraft 
having such wing design: aerodynamic quality as averaged over flight significantly increased due to 
its increase on a subsonic flight speed given moderate wing sweep that provided an increase in flight 
range; the aircraft obtained an improved capability of landing and taking-off with the minimum 
sweep angle; with the wing swept back, the aircraft became optimized for the flight at high super­
sonic speeds, at maximum angle of wing sweep the aircraft could accelerate faster and, as a result, 
the time of passing through the transonic region decreased; the vertical G-force in the ground vicin­
ity was lower, which provided aircraft with supersonic penetration speeds at extremely low level. 
In the zone of wing-turning mechanism, there were wing fences preventing air overflow to the con­
soles. The variable wing sweep aircraft design led to new approach to the placement and use of aero­
dynamic controls: ailerons were removed from the wing; the spoilers and differentially deflecting 



 

 

  

  

  

  

table 3.3 
Geometrical Characteristics of tu-22m3 long-range bomber aircraft 

airframe Characteristics (figure 3.31) aircraft surface model Characteristics (figure 3.32) 

Aircraft length 41.46 m Number of parts of ellipsoids in the model 50 

Aircraft height 11.05 m Number of straight wedge parts in the model 25 

Wing span: Sweep back angle of the turning consoles 65° 

Maximum (20°) 34.28 m 

Minimum (65°) 23.3 m 

Wing’s area: 

Maximum (20°) 183.57 m2 

Minimum (65°) 175.8 m2 
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fiGure 3.31  Tu-22M3 long-range bomber aircraft. 

stabilizers were installed instead; take-off and landing characteristics were farther improved by 
leading edge flaps running along the whole wingspan length. 

For the scattering characteristics computation, we used the perfectly conducting model of the 
aircraft surface (Figure 3.32). Parameters of computer model are summarized in Table 3.3. 

Figures 3.33 through 3.50 show diagrams of mean and median RCS given the Tu-22M3 aircraft 
model illumination at vertical and horizontal polarization, the latter having been averaged over dif­
ferent angular sectors, as well as circular diagrams of instantaneous and noncoherent RCS for the 
frequency ranges of our interest. 

fiGure 3.32  Surface model of the Tu-22M3 aircraft. 
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fiGure 3.33  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of 
Tu-22M3 aircraft model at carrier frequency of 10 G Hz (3 c m wavelength). 
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fiGure 3.35  Diagrams of mean and median RCS of the Tu-22M3 aircraft model in three sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 10 G Hz (3 c m wavelength). 
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fiGure 3.38  (See color insert.) Circular diagrams of noncoherent RCS given radar observation of 
Tu-22M3 aircraft model at carrier frequency of 10 G Hz (3 c m wavelength). 
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fiGure 3.36  Diagrams of mean and median RCS of the Tu-22M3 aircraft model in 20-degree sectors 
of azimuth aspect given its radar observation at horizontal polarization and carrier frequency of 10 G Hz 
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fiGure 3.37  Diagrams of mean and median RCS of the Tu-22M3 aircraft model in 20-degree sectors of 
azimuth aspect given its radar observation at vertical polarization and carrier frequency of 10 G Hz (3 c m 
wavelength). 
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fiGure 3.39  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of 
Tu-22M3 aircraft model at carrier frequency of 3 G Hz (10 c m wavelength). 
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fiGure 3.41  Diagrams of mean and median RCS of the Tu-22M3 aircraft model in three sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 3 G Hz (10 c m wavelength). 
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fiGure 3.44  (See color insert.) Circular diagrams of noncoherent RCS of Tu-22M3 aircraft model given 
its radar observation at carrier frequency of 3 G Hz (10 c m wavelength). 

fiGure  3.43  Diagrams  of  mean  and  median  RCS  of  the  Tu-22M3  aircraft  model  in  20-degree  sectors  of  azi
muth  aspect  given  its  radar  observation  at  vertical  polarization  and  carrier  frequency  of  3  GHz  (10  cm  wavelength). 
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fiGure 3.42  Diagrams of mean and median RCS of the Tu-22M3 aircraft model in 20-degree sectors of 
azimuth aspect given its radar observation at horizontal polarization and carrier frequency of 3 G Hz (10 c m 
wavelength). 
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fiGure 3.45  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of 
Tu-22M3 aircraft model at carrier frequency of 1 G Hz (30 c m wavelength). 

fiGure 3.46  Diagrams of mean and median RCS of Tu-22M3 aircraft model in three sectors of azi
muth aspect given its radar observation at horizontal polarization and carrier frequency of 1 G Hz (30 c m 
wavelength). 

­

fiGure 3.47  Diagrams of mean and median RCS of Tu-22M3 aircraft model in three sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 1 G Hz (30 c m wavelength). 
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fiGure 3.50  (See color insert.) Circular diagrams of noncoherent RCS of Tu-22M3 aircraft model given 
its radar observation at carrier frequency of 1 G Hz (30 c m wavelength). 

fiGure 3.48  Diagrams of mean and median RCS of Tu-22M3 aircraft model in 20-degree sectors of 
azimuth aspect given its radar observation at horizontal polarization and carrier frequency of 1 G Hz (30 c m 
wavelength). 

fiGure 3.49  Diagrams of mean and median RCS of Tu-22M3 aircraft model in 20-degree sectors of 
azimuth aspect given its radar observation at vertical polarization and carrier frequency of 1 G Hz (30 c m 
wavelength). 
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Figures 3.51 through 3.53 show the amplitude distributions of echo signals for the frequency 
ranges of interest given horizontal polarization of illumination wave. 

Table 3.4 summarizes the parameters of empirical probability distributions that mostly fit the 
simulation data for square root of RCS. 

In Section 3.1.4, there are examples of HRRPs computed for the aircraft given various central 
frequencies of signal spectrum and its widths. 

fiGure 3.51  Amplitude distribution of echo signal of Tu-22M3 aircraft model at carrier frequency of 
10 G Hz given its horizontal polarization. 

fiGure 3.52  Amplitude distribution of echo signal of Tu-22M3 aircraft model at carrier frequency of 
3 G Hz given its horizontal polarization. 

fiGure 3.53  Amplitude distribution of echo signal of Tu-22M3 aircraft model at carrier frequency of 
1 G Hz given its horizontal polarization. 
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table 3.4 
parameters of probability distributions for the echo signal amplitudes for 
tu-22m3 aircraft model 

Wavelength polarization distribution kind distribution parameters 

3 cm Horizontal Lognormal distribution: μ = 0.483656 

(log x − µ 2 ⎞ σ = 0.5322131 ⎛ ( ) )
p x = exp − ,( ) 

2 x ⎝⎜ 2σ ⎠⎟π σ 2 

3 cm Vertical Lognormal distribution μ = 0.478054 
σ = 0.537757 

10 cm Horizontal Lognormal distribution μ = 0.490824 
σ = 0.532442 

10 cm Vertical Lognormal distribution μ = 0.477216 
σ = 0.550485 

30 cm Horizontal Lognormal distribution μ = 0.557202 
σ = 0.528223 

30 cm Vertical Lognormal distribution μ = 0.517806 
σ = 0.556563 
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3.1.4 imPulSe reSPOnSeS Of tu-22m3 lOnG-ranGe bOmber aircraft 

As an example, we consider HRRPs of the Tu-22M3 aircraft observed at the elevation angle of −3° 
(illumination from below) and azimuth aspect of 65° (perpendicularly to the wing’s leading edge 
given its maximum sweep back—supersonic flight). 

Figures 3.54 and 3.55 show HRRPs of Tu-22M3 aircraft given its illumination with signal at 
central frequency of 10 GHz (3 cm wavelength) for the cases of horizontal and vertical polarization, 
respectively. Bold solid line corresponds to HRRP obtained using signal with rectangular amplitude 
spectrum of 1 GHz bandwidth. Thin dashed line corresponds to HRRP obtained using signal with 
rectangular spectrum of 250 MHz bandwidth. 

Peaks #1 are due to scattering from the nose part of aircraft body. Peaks #2 are due to scatter­
ing from wing’s leading edge. Peak amplitude of the echo from wing’s leading edge is significantly 
higher for the case of horizontal polarization. Peaks #3 are due to scattering from the aircraft’s 
empennage. Peaks #4 in Figure 3.55 are due to scattering from the air intake. It is worth noting 
that in Figure 3.54 the peak that is due to scattering from air intake is barely seen since it is hidden 
behind the intense echo from the wing’s leading edge. 

fiGure 3.54  HRRPs of Tu-22M3 aircraft given its illumination by signal with center spectrum frequency 
of 10 G Hz (3 c m wavelength), horizontal polarization. 
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fiGure 3.55  HRRPs of Tu-22M3 aircraft given its illumination by signals with center spectrum frequency 
of 10 G Hz (3 c m wavelength), vertical polarization. 

Figures 3.56 and 3.57 show HRRPs of Tu-22M3 aircraft given its illumination by signals with 
spectra centered at 3 GHz (10 cm wavelength) for the cases of horizontal and vertical polarization, 
respectively. Solid bold line corresponds to HRRP obtained using signal with rectangular spectrum 
of 1 GHz bandwidth. Thin dashed line corresponds to HRRP obtained using signal with rectangular 
spectrum of 250 MHz bandwidth. 

HRRPs shown in Figures 3.56 and 3.57 contain the following peaks marked with numbers. The 
view of these HRRPs is similar to those shown above for the case of illumination signals with spec­
tra centered at 10 GHz frequency (3 cm wavelength). 

Peaks #1 are due to scattering from the nose part of aircraft body. Peaks #2 are due to scattering 
from wing’s leading edge. Peaks #3 are due to scattering from the aircraft’s empennage. 

Figures 3.58 and 3.59 show HRRPs of Tu-22M3 aircraft given its illumination by signals with 
spectra centered at 1 GHz (30 cm wavelength) for the cases of horizontal and vertical polarization, 
respectively. Solid bold line corresponds to HRRP obtained using signal with rectangular spectrum 

fiGure 3.56  HRRPs of Tu-22M3 aircraft given its illumination by signals with center spectrum frequency 
of 3 G Hz (10 c m wavelength), horizontal polarization. 

fiGure 3.57  HRRPs of Tu-22M3 aircraft given its illumination by signals with center spectrum frequency 
of 3 G Hz (10 c m wavelength), vertical polarization. 
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fiGure 3.58  HRRPs of Tu-22M3 aircraft given its illumination by signals with center spectrum frequency 
of 1 G Hz (30 c m wavelength), horizontal polarization. 

fiGure 3.59  HRRPs of Tu-22M3 aircraft given its illumination by signals with center spectrum frequency 
of 1 G Hz (30 c m wavelength), vertical polarization. 

of 1 GHz bandwidth. Thin dashed line corresponds to HRRP obtained using signal with rectangular 
spectrum of 250 MHz bandwidth. 

Peaks #1 are due to scattering from the nose part of aircraft’s body. Peaks #2 are due to scattering 
from the pilot’s cabin. Peaks #3 are due to scattering from the wing’s leading edge. Peaks #4 are due 
to scattering from the wing-to-body joint. 

3.1.5 ScatterinG characteriSticS Of bOeinG 737-400 medium-ranGe airliner 

The development of Boeing 737 airplane began in February 1965 [88, 89]. Right from the begin­
ning, Boeing developed two variants: 737-100 with capacity of 100–103 seats, and 737-200 with 
capacity of 115 seats. The first prototype of 737-100 started the flight test program on April 9, 1967, 
and the first Boeing 737-200 performed its maiden flight on August 8, 1967. Certification of the 
737-100 model was completed in December 1967; however it was not very popular, and only 50 
airplanes were shipped to the customers. More attention was paid to the 737-200 model, which had 
also been certified in December 1967. 

As a result of further upgrade, the Boeing 737-200 Advanced variant was developed that served 
as basis for the development of a large family of very different airplanes. Maiden flight of this air­
plane modification was performed on April 15, 1971, and the first lot was shipped to the customer 
by the end of May. Originally, the take-off weight of the 737-200 Advanced was 54.2 tons, which 
was soon increased, first to 56.47, and then to 58.1 tons. Convertible variant of Boeing 737-200C 
Advanced also featured the 2.14 × 3.4 m freight door right behind the cockpit. 

Up-to-date modifications of Boeing 737 medium-range airliner are based on the Boeing 737-200 
Advanced variant. First flight of the Boeing 737-300 prototype was performed in 1984. Boeing 737­
300 differs from the 737-200 model by elongated 2.64 m body, by somewhat larger wingspan that 
provided more lift, better performance at low speed, improved short-field capability, and fuel economy 
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at cruise speed. Boeing 737-300 has become the basis for the creation of a wide family of short- and 
medium-range airliners (737-400, -500, -600, -700, and -800). In April 2001, the certification proce­
dure was completed for the new modification—737-900 with capacity increased up to 190 passengers. 

Currently, Boeing 737 is the most mass produced civil aircraft. Besides, by the year 2001 the num­
ber of Boeing 737 airplanes of different modification that have been sold achieved the level of 4300. 

For our scattering computation, we chose the Boeing 737-400 variant (Figure 3.60). Basic geo­
metrical characteristics of the plane and computer model of its surface are given in the Table 3.5 
below (Figure 3.61). 

Figures 3.62 through 3.79 show diagrams of mean and median RCS given the Boeing 737-400 
aircraft model illumination at vertical and horizontal polarization, the latter having been averaged 
over different angular sectors, as well as circular diagrams of instantaneous and noncoherent RCS 
for the frequency ranges of our interest. 

fiGure 3.60  Boeing 737-400 airliner. 

table 3.5 
Geometrical Characteristics of boeing 737-400 medium-range airliner 

airframe Characteristics (figure 3.60) aircraft surface model Characteristics (figure 3.61) 

Aircraft length 36.04 m Number of parts of ellipsoids in the model 58 

Aircraft height 11.13 m Number of straight wedge parts in the model 25 

Wing span 28.88 m 

Wing’s area 105.4 m2 

fiGure 3.61  Computer model of the Boeing 737-400 surface. 
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fiGure 3.62  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of 
Boeing 737-400 aircraft model at carrier frequency of 10 G Hz (3 c m wavelength). 
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fiGure 3.63  Diagrams of mean and median RCS of Boeing 737-400 aircraft model in three sectors of 
azimuth aspect given its radar observation at horizontal polarization and carrier frequency of 10 G Hz (3 c m 
wavelength). 
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fiGure  3.64  Diagrams  of  mean  and  median  RCS  of  Boeing  737-400  aircraft  model  in  three  sectors  of  azimuth 
aspect  given  its  radar  observation  at  vertical  polarization  and  carrier  frequency  of  10  GHz  (3  cm  wavelength) 
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fiGure 3.67  (See color insert.) Circular diagrams of noncoherent RCS given radar observation of Boeing 
737-400 aircraft model at carrier frequency of 10 G Hz (3 c m wavelength). 
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fiGure  3.65  Diagrams  of  mean  and  median  RCS  of  Boeing  737-400  aircraft  model  in  20-degree  sectors 
of  azimuth  aspect  given  its  radar  observation  at  horizontal  polarization  and  carrier  frequency  of  10  GHz  (3  cm 
wavelength). 

fiGure  3.66  Diagrams  of  mean  and  median  RCS  of  Boeing  737-400  aircraft  model  in  20-degree  sectors  of  azi
muth  aspect  given  its  radar  observation  at  vertical  polarization  and  carrier  frequency  of  10  GHz  (3  cm  wavelength). 
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fiGure 3.68  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of 
Boeing 737-400 aircraft model at carrier frequency of 3 G Hz (10 c m wavelength). 
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fiGure 3.69  Diagrams of mean and median RCS of Boeing 737-400 aircraft model in three sectors of 
azimuth aspect given its radar observation at horizontal polarization and carrier frequency of 3 G Hz (10 c m 
wavelength). 
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fiGure  3.70  Diagrams  of  mean  and  median  RCS  of  Boeing  737-400  aircraft  model  in  three  sectors  of  azimuth 
aspect  given  its  radar  observation  at  vertical  polarization  and  carrier  frequency  of  3  GHz  (10  cm  wavelength). 
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fiGure 3.71  Diagrams of mean and median RCS of Boeing 737-400 aircraft model in 20-degree sectors 
of azimuth aspect given its radar observation at horizontal polarization and carrier frequency of 3 G Hz (10 c m 
wavelength). 

fiGure 3.72  Diagrams of mean and median RCS of Boeing 737-400 aircraft model in 20-degree sectors 
of azimuth aspect given its radar observation at vertical polarization and carrier frequency of 3 G Hz (10 c m 
wavelength). 

fiGure 3.73  (See color insert.) Circular diagrams of noncoherent RCS of Boeing 737-400 aircraft model 
given its radar observation at carrier frequency of 3 G Hz (10 c m wavelength). 
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fiGure 3.74  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of Boeing 
737-400 aircraft model at carrier frequency of 1 G Hz (30 c m wavelength). 
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fiGure  3.75  Diagrams  of  mean  and  median  RCS  of  Boeing  737-400  aircraft  model  in  three  sectors  of  azimuth 
aspect  given  its  radar  observation  at  horizontal  polarization  and  carrier  frequency  of  1  GHz  (30  cm  wavelength). 

fiGure  3.76  Diagrams  of  mean  and  median  RCS  of  Boeing  737-400  aircraft  model  in  three  sectors  of  azimuth 
aspect  given  its  radar  observation  at  vertical  polarization  and  carrier  frequency  of  1  GHz  (30  cm  wavelength). 
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fiGure 3.79  (See color insert.) Circular diagrams of noncoherent RCS of Boeing 737-400 aircraft model 
given its radar observation at carrier frequency of 1 G Hz (30 c m wavelength). 

fiGure 3.78  Diagrams of mean and median RCS of Boeing 737-400 aircraft model in 20-degree sectors 
of azimuth aspect given its radar observation at vertical polarization and carrier frequency of 1 G Hz (30 c m 
wavelength). 

fiGure 3.77  Diagrams of mean and median RCS of Boeing 737-400 aircraft model in 20-degree sectors 
of azimuth aspect given its radar observation at horizontal polarization and carrier frequency of 1 G Hz (30 c m 
wavelength). 
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fiGure 3.81  Amplitude distribution of echo signal of Boeing 737-400 aircraft mode at carrier frequency 
of 3 G Hz given its horizontal polarization. 
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Figures 3.80 through 3.82 show the amplitude distributions of echo signals for the frequency 
ranges of interest given horizontal polarization of illumination wave. 

fiGure 3.80  Amplitude distribution of echo signal of Boeing 737-400 aircraft model at carrier frequency 
of 10 G Hz given its horizontal polarization. 

fiGure 3.82  Amplitude distribution of echo signal of Boeing 737-400 aircraft model at carrier frequency 
of 1 G Hz given its horizontal polarization. 



   
  

   
  

   
  

   
  

 

 
  
  

   
  

table 3.6 
parameters of probability distributions for the echo signal amplitudes for boeing 
737-400 aircraft model 

Wavelength polarization distribution kind distribution parameters 

3 cm Horizontal Lognormal distribution: μ = 0.987449 

1 ⎛ ( ( ) 
2 ⎞ σ = 0.789057 

( ) 
log x − µ )

p x = exp ⎜ − ⎟
2 x ⎜ 2σ2 ⎟π σ ⎝ ⎠ 

3 cm Vertical Lognormal distribution μ = 0.984423 
σ = 0.800425 

10 cm Horizontal Lognormal distribution μ = 0.965987 
σ = 0.795971 

10 cm Vertical Lognormal distribution μ = 0.965978 
σ = 0.796419 

30 cm Horizontal c −1 ⎛ x ⎞ b = 1.598166 
⎝⎜ b ⎠⎟⎛ x ⎞ − 1 

Γ-Distribution: p x c = 2.330455( ) = e
b ⎠⎟ b ( ) ⎝⎜ Γ c 

where Γ(c) is the gamma-function 
30 cm Vertical Γ-Distribution b = 1.592673 

c = 2.340167 
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Table 3.6 summarizes the parameters of empirical probability distributions that fit mostly the 
simulation data for square root of RCS. 

In Section 3.1.6, there are examples of HRRPs computed for the aircraft given various central 
frequencies of signal spectrum and its widths. 

3.1.6  imPulSe  reSPOnSeS  Of  bOeinG 737-400 medium-ranGe  airliner 

As  an  example,  we  consider  HRRPs  of  Boeing  737-400  aircraft  observed  at  the  elevation  angle  of  −8° 
(illumination  from  below)  and  azimuth  aspect  of  17.2°  (perpendicularly  to  the  wing’s  trailing  edge). 

Figures 3.83 and 3.84 show HRRPs of Boeing 737-400 aircraft given its illumination with signal 
at central frequency of 10 G Hz (3 cm  wavelength) for the cases of horizontal and vertical polariza­
tion, respectively. Bold solid line corresponds to HRRP obtained using signal with rectangular 
amplitude spectrum of 1 G Hz bandwidth. Thin dashed line corresponds to HRRP obtained using 
signal with rectangular spectrum of 250 M Hz bandwidth. 

Peaks #1 are due to scattering from the nose part of aircraft body. Peaks #2 are due to scattering 
from the engine nacelle at the nearer wing. Peaks #3 are due to scattering from the engine air intake 
at the nearer wing. Peaks #4 are due to scattering from the engine nacelle at the farther wing. Peaks 
#5 are due to scattering from the engine air intake at the farther wing. Peaks #6 are due to scattering 
from the trailing edge of the nearer wing as well as from the nacelle-to-wing joint. Amplitude of 
the echo from trailing edge is significantly higher in case of vertical polarization. Peaks #7 are due 
to scattering from the wing-to-body joint. Peaks #8 are due to scattering from the joint of engine 
nacelle to the farther wing. Small peaks at the lag time t  between 75 and 100 n s are due to scattering 
from the empennage of the airplane. 

Figures 3.85 and 3.86 show HRRPs of Boeing 737-400 aircraft given its illumination by signals 
with spectra centered at 3 G Hz (10 cm  wavelength) for the cases of horizontal and vertical polar
ization, respectively. Solid bold line corresponds to HRRP obtained using signal with rectangular 
spectrum of 1 G Hz bandwidth. Thin dashed line corresponds to HRRP obtained using signal with 
rectangular spectrum of 250 M Hz bandwidth. 
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fiGure 3.83  HRRPs of Boeing 737-400 aircraft given its illumination by signal with center spectrum 
frequency of 10 G Hz (3 c m wavelength), horizontal polarization. 

fiGure 3.84  HRRPs of Boeing 737-400 aircraft given its illumination by signals with center spectrum 
frequency of 10 G Hz (3 c m wavelength), vertical polarization. 

fiGure 3.85  HRRPs of Boeing 737-400 aircraft given its illumination by signals with center spectrum 
frequency of 3 G Hz (10 c m wavelength), horizontal polarization. 

HRRPs shown in Figures 3.85 and 3.86 contain the following peaks marked with numbers. 
Peaks #1 are due to scattering from the nose part of aircraft body. Peaks #2 are due to scattering 
from the engine nacelle at the nearer wing. Peaks #3 are due to scattering from the engine nacelle at 
the farther wing. Peaks #4 and 6 are due to scattering from the wing-to-body joint. Peaks #5 are due 
to scattering from trailing edge of the nearer wing as well as from the nacelle-to-wing joint. Peaks 
#7 are due to scattering from the joint of engine nacelle to the farther wing. 

Figures 3.87 and 3.88 show HRRPs of Boeing 737-400 aircraft given its illumination by sig
nals with spectra centered at 1 G Hz (30 cm  wavelength) for the cases of horizontal and vertical 
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fiGure 3.87 HRRPs of Boeing 737-400 aircraft given its illumination by signals with center spectrum 
frequency of 1 GHz (30 cm wavelength), horizontal polarization. 
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fiGure 3.86  HRRPs of Boeing 737-400 aircraft given its illumination by signals with center spectrum 
frequency of 3 G Hz (10 c m wavelength), vertical polarization. 

fiGure 3.88  HRRPs of Boeing 737-400 aircraft given its illumination by signals with center spectrum 
frequency of 1 G Hz (30 c m wavelength), vertical polarization. 

polarization, respectively. Solid bold line corresponds to HRRP obtained using signal with rectan
gular spectrum of 1 G Hz bandwidth. Thin dashed line corresponds to HRRP obtained using signal 
with rectangular spectrum of 250 M Hz bandwidth. 

The view of these HRRPs is similar to those obtained for illumination signals with spectra cen
tered at frequency of 3 G Hz (10 cm w avelength). 

Peaks #1 are due to scattering from the nose part of aircraft body. Peaks #2 are due to scattering 
from the engine nacelle at the nearer wing. Peaks #3 are due to scattering from the engine nacelle 
at the farther wing. Peaks #4 and #6 are due to scattering from the wing-to-body joint. Peaks #5 are 
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due to scattering from the trailing edge of the nearer wing as well as from the nacelle-to-wing joint. 
Peaks #7 are due to scattering from the joint of engine nacelle to the farther wing. Small peaks at 
the end of HRRP are due to scattering from the empennage of the airplane. 

3.1.7 ScatterinG characteriSticS Of an-26 multiPurPOSe tranSPOrt aircraft 

An-26 multipurpose transport aircraft is the military version of An-24 passenger airplane. It is 
designed for tactical airlifting or airdropping personnel, military goods in standard packs including 
fuel and lubricants in barrels and canisters, as well as for transporting injured or sick people. An-26 
is designed as a cantilever monoplane with high-set wing (Figure 3.89) equipped with extension 
flaps of large span—double slit outside of engine nacelle and single slit at the wing root [90, 91]. 

Rear part of fuselage has large cargo door that is closed by original cargo ramp. Empennage is 
traditional, however, it has additional fin under the fuselage. Fuselage itself is of semimonocoque 
type. Hydraulically operated landing gear consists of three legs each having two wheels. Power plant 
contains two Ivchenko AI-24VT turbo-prop engines equipped with variable-pitch propellers, as well 
as RU19A-300 auxiliary turbojet engine mounted into the right engine nacelle. The aircraft has many 
modifications operated both in Armed Forces and national economy. Among them, there are elec­
tronic warfare variants, airborne command posts, medivacs, firefighting aircraft, and so on. Computer 
model of An-26 aircraft is shown in Figure 3.90. Parameters of the model are shown in Table 3.7. 

fiGure 3.89  An-26 multipurpose transport aircraft. 

fiGure 3.90 Computer model of the An-26 surface. 

table 3.7 
Geometrical Characteristics of an-26 multipurpose transport aircraft 

airframe Characteristics (figure 3.89) 

Aircraft length 23.8 m 

Aircraft height 8.58 m 

Wing span 29.2 m 

Wing’s area 74.98 m2 

aircraft surface model Characteristics (figure 3.90) 

Number of parts of ellipsoids in the model 

Number of straight wedge parts in the model 

40 

25 
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Figures 3.91 through 3.108 show diagrams of mean and median RCS given the An-26 aircraft 
model illumination at vertical and horizontal polarization, the latter having been averaged over dif
ferent angular sectors, as well as circular diagrams of instantaneous and noncoherent RCS for the 
frequency ranges of our interest. 

Figures 3.109 through 3.111 show the amplitude distributions of echo signals for the frequency 
ranges of interest given horizontal polarization of illumination wave. 
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fiGure 3.91  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of An-26 
aircraft model at carrier frequency of 10 G Hz (3 c m wavelength). 
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fiGure 3.92  Diagrams of mean and median RCS of An-26 aircraft model in three sectors of azimuth aspect 
given its radar observation at horizontal polarization and carrier frequency of 10 G Hz (3 c m wavelength). 
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fiGure 3.93  Diagrams of mean and median RCS of An-26 aircraft model in three sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 10 G Hz (3 c m wavelength). 

fiGure 3.94  Diagrams of mean and median RCS of An-26 aircraft model in 20-degree sectors of azi
muth aspect given its radar observation at horizontal polarization and carrier frequency of 10 G Hz (3 c m 
wavelength). 
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fiGure 3.95  Diagrams of mean and median RCS of An-26 aircraft model in 20-degree sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 10 G Hz (3 c m wavelength). 
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fiGure 3.96  (See color insert.) Circular diagrams of noncoherent RCS given radar observation of An-26 
aircraft model at carrier frequency of 10 G Hz (3 c m wavelength). 

fiGure 3.97  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of An-26 
aircraft model at carrier frequency of 3 G Hz (10 c m wavelength). 
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fiGure 3.98  Diagrams of mean and median RCS of An-26 aircraft model in three sectors of azimuth aspect 
given its radar observation at horizontal polarization and carrier frequency of 3 G Hz (10 c m wavelength). 
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fiGure 3.99  Diagrams of mean and median RCS of An-26 aircraft model in three sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 3 G Hz (10 c m wavelength). 
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fiGure 3.100  Diagrams of mean and median RCS of An-26 aircraft model in 20-degree sectors of azi
muth aspect given its radar observation at horizontal polarization and carrier frequency of 3 G Hz (10 c m 
wavelength). 
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fiGure 3.101  Diagrams of mean and median RCS of An-26 aircraft model in 20-degree sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 3 G Hz (10 c m wavelength). 

Table 3.8 summarizes the parameters of empirical probability distributions that fit mostly the 
simulation data for square root of RCS. 

In Section 3.1.8, there are examples of HRRPs computed for the aircraft given various central 
frequencies of signal spectrum and its widths. 
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fiGure 3.102  (See color insert.) Circular diagrams of noncoherent RCS of An-26 aircraft model given its 
radar observation at carrier frequency of 3 G Hz (10 c m wavelength). 
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fiGure 3.103  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of 
An-26 aircraft model at carrier frequency of 1 G Hz (30 c m wavelength). 
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fiGure 3.104  Diagrams of mean and median RCS of An-26 aircraft model in three sectors of azi
muth aspect given its radar observation at horizontal polarization and carrier frequency of 1 G Hz (30 c m 
wavelength). 
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fiGure 3.105  Diagrams of mean and median RCS of An-26 aircraft model in three sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 1 G Hz (30 c m wavelength). 
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fiGure  3.106  Diagrams  of  mean  and  median  RCS  of  An-26  aircraft  model  in  20-degree  sectors  of  azimuth 
aspect  given  its  radar  observation  at  horizontal  polarization  and  carrier  frequency  of  1  GHz  (30  cm  wavelength). 

fiGure 3.107  Diagrams of mean and median RCS of An-26 aircraft model in 20-degree sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 1 G Hz (30 c m wavelength). 
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fiGure 3.108  (See color insert.) Circular diagrams of noncoherent RCS of An-26 aircraft model given its 
radar observation at carrier frequency of 1 G Hz (30 c m wavelength). 



    

 
 

180 

b = 0.760676; c = 2.19614 
;p(x) = 

Γ-Distribution: 

x c–1 

b bΓ(c) 
x 
be 

– 1 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

160 

140 

120 

100 

80 

60 

40 

20 

N
um

be
r o

f r
ea

liz
at

io
ns

0 

Square root of RCS (m) 

182 Electromagnetic Wave Scattering by Aerial and Ground Radar Objects 

fiGure 3.109  Amplitude distribution of echo signal of An-26 aircraft model at carrier frequency of 
10 G Hz given its horizontal polarization. 
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fiGure 3.110  Amplitude distribution of echo signal of An-26 aircraft model at carrier frequency of 3 G Hz 
given its horizontal polarization. 
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fiGure 3.111  Amplitude distribution of echo signal of An-26 aircraft model at carrier frequency of 1 G Hz 
given its horizontal polarization. 



      

  

 
 

   
  

   
  

   
  

   
  

   
  

   
  

table 3.8 
parameters of probability distributions for the echo signal amplitudes of an-26 
aircraft model 

Wavelength polarization distribution kind distribution parameters 

3 cm Horizontal Γ-Distribution: b = 0.760616 
c −1 ⎛ x ⎞ c = 2.19614−⎛ x ⎞ ⎝⎜ b ⎠⎟ 1 

p x = e( ) 
b ⎠⎟ b ( ) ⎝⎜ Γ c 

where Γ (c) is the Gamma-function 

3 cm Vertical Γ-Distribution b = 0.761035 
c = 2.18595 

10 cm Horizontal Γ-Distribution b = 0.782157 
c = 2.282556 

10 cm Vertical Γ-Distribution b = 0.777077 
c = 2.260024 

30 cm Horizontal Γ-Distribution b = 0.987631 
c = 2.23962 

30 cm Vertical Γ-Distribution b = 1.012708 
c = 2.13088 
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3.1.8 imPulSe reSPOnSeS Of an-26 multiPurPOSe tranSPOrt aircraft 

As an example, we consider HRRPs of An-26 aircraft observed at the elevation angle of −1° (illumi­
nation from below) and azimuth aspect of 18.7° (perpendicularly to the leading edge of horizontal 
stabilizer). 

Figures 3.112 and 3.113 show HRRPs of An-26 aircraft given its illumination with signal at cen­
tral frequency of 10 GHz (3 cm wavelength) for the cases of horizontal and vertical polarization, 
respectively. Bold solid line corresponds to HRRP obtained using signal with rectangular amplitude 
spectrum of 1 GHz bandwidth. Thin dashed line corresponds to HRRP obtained using signal with 
rectangular spectrum of 250 MHz bandwidth. 

Peaks #1 are due to scattering from the nose part of aircraft body. Peaks #2 are due to scattering 
from the engine at the nearer wing. Peaks #3 are due to scattering from the engine at the farther 
wing. Peaks #4 in Figure 3.112 are due to scattering from the leading edge of aircraft’s horizontal 
stabilizer. In Figure 3.113 (HRRP of An-26 aircraft given vertical polarization of illumination sig­
nal), the corresponding peak is absent. 
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fiGure 3.112  HRRPs of An-26 aircraft given its illumination by signal with center spectrum frequency of 
10 G Hz (3 c m wavelength), horizontal polarization. 
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fiGure 3.113  HRRPs of An-26 aircraft given its illumination by signals with center spectrum frequency 
of 10 G Hz (3 c m wavelength), vertical polarization. 

Figures 3.114 and 3.115 show HRRPs of An-26 aircraft given its illumination by signals with 
spectra centered at 3 GHz (10 cm wavelength) for the cases of horizontal and vertical polarization, 
respectively. Solid bold line corresponds to HRRP obtained using signal with rectangular spectrum 
of 1 GHz bandwidth. Thin dashed line corresponds to HRRP obtained using signal with rectangular 
spectrum of 250 MHz bandwidth. 

fiGure 3.114  HRRPs of An-26 aircraft given its illumination by signals with center spectrum frequency 
of 3 G Hz (10 c m wavelength), horizontal polarization. 

fiGure 3.115  HRRPs of An-26 aircraft given its illumination by signals with center spectrum frequency 
of 3 G Hz (10 c m wavelength), vertical polarization. 
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HRRPs shown in Figures 3.114 and 3.115 contain the following peaks marked with numbers. 
Peaks #1 are due to scattering from the nose part of the aircraft body. Peaks #2 are due to scat­
tering from the engine at the nearer wing. Peaks #3 are due to scattering from the engine at the 
farther wing. Peaks #4 are due to scattering from the leading edge of aircraft’s horizontal stabilizer. 
Amplitude of the echo from leading edge of horizontal stabilizer is significantly higher for the case 
of horizontal polarization. 

Figures 3.116 and 3.117 show HRRPs of An-26 aircraft given its illumination by signals with 
spectra centered at 1 GHz (30 cm wavelength) for the cases of horizontal and vertical polarization, 
respectively. Solid bold line corresponds to HRRP obtained using signal with rectangular spectrum 
of 1 GHz bandwidth. Thin dashed line corresponds to HRRP obtained using signal with rectangular 
spectrum of 250 MHz bandwidth. 

Peaks #1 are due to scattering from the nose part of the aircraft body. Peaks #2 are due to scatter­
ing from the pilot’s cockpit. HRRPs computed given different carrier frequencies have these peaks 
missing or their amplitudes are very low. Peaks #3 are due to scattering from engine at the nearer 
wing. Peaks #4 are due to scattering from engine at the farther wing. It is worth mentioning that in 
the latter HRRPs the echoes from individual propeller blades can be singled out. Peaks #5 are due 
to scattering from the leading edge of aircraft’s horizontal stabilizer. Besides, the echo from leading 
edge of horizontal stabilizer given vertical polarization of illumination signal (Figure 3.117) is well 
observable and it has amplitude comparable to the echoes from the aircraft’s engines. 

fiGure 3.116  HRRPs of An-26 aircraft given its illumination by signals with center spectrum frequency 
of 1 G Hz (30 c m wavelength), horizontal polarization. 

fiGure 3.117  HRRPs of An-26 aircraft given its illumination by signals with center spectrum frequency 
of 1 G Hz (30 c m wavelength), vertical polarization. 
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3.1.9 ScatterinG characteriSticS Of miG-29 frOnt-line fiGhter 

MiG-29 fighter is the one seat twin engine all-weather aircraft of the front-line. The aircraft was 
designed as mean for gaining the air superiority in the tactical battlefield zone and its main goal 
is to fight the enemy aviation, to cover the troops and logistics objects against air strikes, and 
to counter the enemy air reconnaissance day and night both in visual and instrument meteoro­
logical conditions [92, 93]. High thrust-to-weight ratio, good aerodynamics provide for aircraft 
high performance including fast acceleration, high climb rate, instantaneous and sustained high 
g-turns. 

The aircraft is designed as integral monoplane featuring the swept wing blended with the leading 
edge root extensions, and two vertical fins (Figure 3.118). The load-bearing body is of semimono­
coque design and it consists of three main sections: front, engine, and rear; it contributes about 40% 
of the whole lift. The RD-33 engines are installed in separate nacelles placed in the rear fuselage 
section. The aircraft is mainly made of aluminum, but it includes also titan, steel, and composites 
based on carbon and honeycombs [93]. 

The N-091EA onboard radar fits into the nose fuselage section and is covered with ogive radome. 
The radar units are placed into the compartment right behind the antenna followed by airtight pilot’s 
cockpit. The cockpit features the bubble-type canopy. The canopy is of two sections, the fixed wind­
screen and the segment that opens up and back. The canopy frame is made of magnesium alloy. 
Canopy glass is made of three layers that envelop the wires of electrical anti-icing system. 

Wedge-type intakes with variable ramp are in the front sections of engine nacelles. Being opti­
mized for flight at transonic and supersonic speeds, they form the four pressure jumps. 

The three slit louvers on the upper side of the leading edge root extensions (right behind the 
upper auxiliary air intakes) alter the auxiliary air flow to the engines. The upper auxiliary intakes 
have five slits that open during engine start, taxiing, take-off, and landing. When auxiliary air 
intakes are open, then main intakes are closed preventing ingestion of ground debris into turbofan 
engines. The main air intakes open once the aircraft gains speed of 200 km/h during take-off and 
close once the aircraft slows down to 200 km/h during landing. 

Central fuselage section (behind the cockpit) houses main fuel tanks. The engines are slightly 
turned in vertical plane and they are mounted at the angle of 4° with respect to the aircraft longitu­
dinal axis. Rear fuselage section bears the empennage, afterburners, airbrakes, and a drogue-chute 
container. MiG-29 aircraft has two vertical fins with rudders, the fins being inclined outwards by 
angle of 6° with respect to the vertical. 

Parameters of the model are summarized in Table 3.9. 
Computer model of the aircraft surface used for the scattering computation is presented in Figure 

3.119. It is worth mentioning that once the MiG-29 fighter is illuminated from the front hemisphere it 
has the two sources of scattering that can neither be modeled by smooth parts nor by edge scatterers. 
Such sources of scattering are the antenna under the nose radome and the air intakes. Since these two 

fiGure 3.118  MiG-29 front-line fighter jet. 



                
               

             
           

                
            
  

  

 

 

 

 

table 3.9 
Geometrical Characteristics of miG-29 front-line fighter 

airframe Characteristics (figure 3.118) aircraft surface model Characteristics (figure 3.119) 

Aircraft length 17.32 m Number of parts of ellipsoids in the model 29 

Aircraft height 4.73 m Number of straight wedge parts in the model 42 

Wing span 11.36 m 

Wing’s area 38.06 m2 
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fiGure 3.119  Computer model of MiG-29 surface. 

types of scatterers can contribute significantly to total scattered field, we need to account for such ele­
ments in our computer model in order to receive adequate scattering characteristics for the whole plane. 

Antenna system under the radio transparent radome is an integral part of Doppler radar 
N-091EA “Ruby” (included into radar aiming system RLPK-29E) onboard of MiG-29 fighter 
plane. The radar provides simultaneous tracks of up to 10 air targets, allowing to choose the most 
dangerous object, and generates data necessary to launch single R-27R missile equipped with 
semiactive radar seeker. 

Antenna system is designed as the reverse Cassegrain architecture [94]. The front concave reflec­
tor (Figure 3.120a) has been inclined downwards by 9° with respect to antenna axis and it contains 
a system of vertical parallel conductors mounted into its surface. This allows signals of only single 
polarization to pass through the reflector. The main antenna reflector (Figure 3.120b) is shaped as a 
part of paraboloid of revolution that has the diameter of 71 cm and depth of 1 cm. Besides, at the dis­
tance equal to quarter of the radar-operating wavelength from metallic reflector inside the dielectric 

fiGure 3.120  Antenna system of N-091EA “Ruby” radar. 
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medium there are half-wave conductors, whose orientation is shifted by 45° with respect to those of 
the front reflectors. So, when the transmitted signal first hits the front reflector, it bounces back to 
the main reflector. Once reflected from it, transmitted signal changes its polarization to cross one 
and passes unobstructed through the front reflector. Signal reception is done in reverse order. Such 
antenna design saves space, however as a result of trade-off the antenna system becomes quite nar­
rowband. The angles of scan of ±65° in azimuth and +56° through −36° in elevation are provided by 
rotation of the whole antenna module along circular rails mounted to the front fuselage section as 
well as by turn of main reflector in vertical plane by ±20°. 

Antenna radome (Figure 3.121) is made of glass cloth and it has the following properties: length 
is 1.91 m, diameter at the basis is 0.9 m, wall thickness is 9 mm, and permittivity is ε ≈ 3. The 
radome axis has been inclined downwards by 9° with respect to the fuselage axis. 

Proceeding from the antenna design of N-091EA radar, we can assume that given radar scat­
tering computation at its operating frequency (10 GHz) the signal, whose polarization coincides 
with orientation of conductors at the front reflector (vertical polarization given zero degree angle 
of antenna module rotation with respect to its axis), bounces off front antenna reflector only. In its 
turn, the horizontally polarized signal gets fully consumed by the equivalent load of radar receiver. 
Given the illumination frequencies outside the radar operating frequency range, we can assume that 
horizontally polarized illumination wave passes without any loss through the front reflector and 
scatters at the main antenna reflector without getting consumed by the equivalent antenna load, yet 
the vertically polarized illumination wave bounces off the front reflector totally. 

Contribution from the nose radome into scattering characteristics of antenna system was 
accounted for under the assumption that radome was cone shaped. Scattering computation has been 
conducted using solution to the simulative problem of wave scattering at three-dimensional model 
of onboard reflector antenna under the radome presented in Section 2.4.2. 

Accounting for scattering contribution from the air intakes of MiG-29 fighter plane. In works by 
Kisel’ and Fedorenko [95,96], the following approach has been offered to account for scattering from 
air intakes of aircraft. Air intake gets split into two parts: the waveguide one (from inlet to the fan) and 
the load of this waveguide (the fan itself). In its turn, the waveguide part is farther split into several sec­
tions, the number of which depends on the total length of the airflow channel. Electromagnetic fields 
in the waveguide part are computed by elaborated iterative physical optics method based on integral 
field representations. Computation of scattering at the fan is conducted based on integral equation 
method. As shown in [97], this method can be used for computing scattering characteristics of air 
intakes that have various configurations, its accuracy being proved by results of physical simulation. 

So, the scattering contribution from air intakes of MiG-29 aircraft has been accounted for in 
our computer model by way of replacing actual intakes by equivalent scatterers shaped as parts of 
second-order surfaces but having the same RCS as the actual air intakes over wide range of illumina­
tion aspects. Besides, we used here the data on RCS of standard air intakes from [97] as a reference. 

Figures 3.122 through 3.139 show diagrams of mean and median RCS given the MiG-29 aircraft 
model illumination at vertical and horizontal polarization, the latter having been averaged over 

fiGure 3.121  The nose radome of MiG-29. 
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fiGure 3.122  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of MiG
29 aircraft model at carrier frequency of 10 G Hz (3 c m wavelength). 
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fiGure 3.124  Diagrams of mean and median RCS of MiG-29 aircraft model in three sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 10 G Hz (3 c m wavelength). 
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fiGure 3.125  Diagrams of mean and median RCS of MiG-29 aircraft model in 20-degree sectors of azi
muth aspect given its radar observation at horizontal polarization and carrier frequency of 10 G Hz (3 c m 
wavelength). 

­

fiGure  3.126  Diagrams  of  mean  and  median  RCS  of  MiG-29  aircraft  model  in  20-degree  sectors  of  azimuth 
aspect  given  its  radar  observation  at  vertical  polarization  and  carrier  frequency  of  10  GHz  (3  cm  wavelength). 
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fiGure 3.127  (See color insert.) Circular diagrams of noncoherent RCS given radar observation of MiG
29 aircraft model at carrier frequency of 10 G Hz (3 c m wavelength). 
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fiGure 3.128  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of MiG
29 aircraft model at carrier frequency of 3 G Hz (10 c m wavelength). 
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fiGure  3.129  Diagrams  of  mean  and  median  RCS  of  MiG-29  aircraft  model  in  three  sectors  of  azimuth 
aspect  given  its  radar  observation  at  horizontal  polarization  and  carrier  frequency  of  3  GHz  (10  cm  wavelength). 
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fiGure 3.130  Diagrams of mean and median RCS of MiG-29 aircraft model in three sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 3 G Hz (10 c m wavelength). 
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fiGure 3.131  Diagrams of mean and median RCS of MiG-29 aircraft model in 20-degree sectors of azi
muth aspect given its radar observation at horizontal polarization and carrier frequency of 3 G Hz (10 c m 
wavelength). 

­

β (deg) 

Mean RCS Median RCS 

0–
20

20
–4

0

40
–6

0

60
–8

0

80
–1

00

10
0–

12
0

12
0–

14
0

14
0–

16
0

16
0–

18
0 

6.
17

2.
19 3.

56

8.
67

 

46
7.

88
 

4.
94

3.
15

2.
85 3.
20

2.
37

2.
042.
293.

13
 

36
.8

5 

4.
43

2.
55

1.
66

3.
75

 

1 

10 

100 

1000 

RC
S 

(m
2 )

 

fiGure 3.132  Diagrams of mean and median RCS of MiG-29 aircraft model in 20-degree sectors of 
azimuth aspect given its radar observation at vertical polarization and carrier frequency of 3 G Hz (10 c m 
wavelength). 
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fiGure 3.133  (See color insert.) Circular diagrams of noncoherent RCS of MiG-29 aircraft model given 
its radar observation at carrier frequency of 3 G Hz (10 c m wavelength). 
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fiGure 3.134  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of MiG
29 aircraft model at carrier frequency of 1 G Hz (30 c m wavelength). 
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fiGure  3.135  Diagrams  of  mean  and  median  RCS  of  MiG-29  aircraft  model  in  three  sectors  of  azimuth 
aspect  given  its  radar  observation  at  horizontal  polarization  and  carrier  frequency  of  1  GHz  (30  cm  wavelength). 
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fiGure 3.136  Diagrams of mean and median RCS of MiG-29 aircraft model in three sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 1 G Hz (30 c m wavelength). 
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fiGure 3.139  (See color insert.) Circular diagrams of noncoherent RCS of MiG-29 aircraft model given 
its radar observation at carrier frequency of 1 G Hz (30 c m wavelength). 

fiGure  3.138  Diagrams  of  mean  and  median  RCS  of  MiG-29  aircraft  model  in  20-degree  sectors  of  azimuth 
aspect  given  its  radar  observation  at  vertical  polarization  and  carrier  frequency  of  1  GHz  (30  cm  wavelength). 
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fiGure 3.137  Diagrams of mean and median RCS of MiG-29 aircraft model in 20-degree sectors of azi
muth aspect given its radar observation at horizontal polarization and carrier frequency of 1 G Hz (30 c m 
wavelength). 
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different angular sectors, as well as circular diagrams of instantaneous and noncoherent RCS for 
the frequency ranges of our interest. 

Figures 3.140 through 3.142 show the amplitude distributions of echo signals for the frequency 
ranges of interest given horizontal polarization of illumination wave. 

Table 3.10 summarizes the parameters of empirical probability distributions that fit mostly the 
simulation data for square root of RCS. 

In Section 3.1.10, there are examples of HRRPs computed for the aircraft given various central 
frequencies of signal spectrum and its widths. 

fiGure 3.140  Amplitude distribution of echo signal of MiG-29 aircraft model at carrier frequency of 
10 G Hz given its horizontal polarization. 

fiGure 3.141  Amplitude distribution of echo signal of MiG-29 aircraft model at carrier frequency of 
3 G Hz given its horizontal polarization. 



     

 

 

  
  

   
  

   
  

   
  

   
  

   
  

100
 

80
 

60
 

40
 

20
 

0 

 

Γ-Distributi
x c–

on: 
–1 x 

b 1 ; 

b =1.049

p(x) = b 
921; c

e 

= 2.291
bΓ(c) 
626 

0 1 2 3 4 5 6 7 8 9 
Square root of RCS (m) 

N
um

be
r o

f r
ea

liz
at

io
ns

 

 
 

196 Electromagnetic Wave Scattering by Aerial and Ground Radar Objects 

fiGure 3.142 Amplitude distribution of echo signal of MiG-29 aircraft model at carrier frequency of 
1 GHz given its horizontal polarization. 

table 3.10 
parameters of probability distributions for the echo signal amplitudes of 
miG-29 aircraft model 

Wavelength polarization distribution kind distribution parameters 

3 cm Horizontal Γ-Distribution: b = 0.957488 

p x 
x 
b 

e 
b c 

c x 
b( ) 

( ) 
= ⎛ 

⎝⎜ 
⎞ 
⎠⎟ 

− 
−⎛ 

⎝⎜ 
⎞ 
⎠⎟ 

1 
1 

Γ 

c = 2.456989 

where Γ(c) is gamma-function 

3 cm Vertical Weibull distribution: b = 2.580824 

p x ( ) = c 
b 

x 
b 

e 
c x 

b 

c 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

− 
−⎛ 

⎝⎜ 
⎞ 
⎠⎟ 

1 c = 1.891905 

10 cm Horizontal Γ-Distribution b = 0.734123 
c = 2.86766 

10 cm Vertical Weibull distribution b = 2.339237 
c = 1.816584 

30 cm Horizontal Γ-Distribution b = 1.049921 
c = 2.291626 

30 cm Vertical Γ-Distribution b = 0.899074 
c = 2.517632 

3.1.10 imPulSe reSPOnSeS Of miG-29 frOnt-line fiGhter 

As an example, we consider HRRPs of MiG-29 aircraft observed at the elevation angle of −3° (illu­
mination from below) and azimuth aspect of 10°. 

It should be noted that given radar observation of MiG-29 aircraft from its rear hemisphere the 
HRRPs obtained at two different polarization of illumination signal can differ quite frequently 
even though they correspond to the same observation aspect. The reason for that would be different 
scattering properties of local edge scatterers given different polarizations of illumination signal. 
At the plots shown below, these differences in HRRPs at the two polarizations are caused also by 
scattering properties of onboard antenna system at MiG-29 aircraft, design of which together with 
polarization peculiarities was mentioned in the previous section. 
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Figures 3.143 and 3.144 show HRRPs of MiG-29 aircraft given its illumination with signal at 
central frequency of 10 GHz (3 cm wavelength) for the cases of horizontal and vertical polarization, 
respectively. Bold solid line corresponds to HRRP obtained using signal with rectangular amplitude 
spectrum of 1 GHz bandwidth. Thin dashed line corresponds to HRRP obtained using signal with 
rectangular spectrum of 250 MHz bandwidth. 

Peaks #1 are due to scattering from the aircraft’s air intakes. Peaks #2 in Figure 3.144 are due to 
scattering from the front (auxiliary) reflector of onboard radar antenna. It is worth mentioning that 
antenna system does not give any echo at horizontal polarization of illumination signal. The latter 
is due to polarization and frequency properties of the antenna system as well as due to its assumed 
orientation with respect to basic polarization directions. 

Figures 3.145 and 3.146 show HRRPs of MiG-29 aircraft given its illumination by signals with 
spectra centered at 3 GHz (10 cm wavelength) for the cases of horizontal and vertical polarization, 
respectively. Solid bold line corresponds to HRRP obtained using signal with rectangular spectrum 
of 1 GHz bandwidth. Thin dashed line corresponds to HRRP obtained using signal with rectangular 
spectrum of 250 MHz bandwidth. 

HRRPs shown in Figures 3.145 and 3.146 contain the following peaks marked with numbers. 
Peaks #1 are due to scattering from the aircraft’s air intakes. Peaks #2 in Figure 3.145 are due to 

scattering from the main antenna reflector (wavelength of 10 cm is beyond the operating frequency 
range of the radar). Peaks #2 in Figure 3.146 are due to scattering from the front (auxiliary) reflector 
of onboard antenna system. 

The two reflectors of antenna system have different dimensions and polarization properties as 
well as are spaced apart, so these facts account for different amplitudes and lags of echoes at dif­
ferent polarization. 

fiGure 3.143 HRRPs of MiG-29 aircraft given its illumination by signal with center spectrum frequency 
of 10 GHz (3 cm wavelength), horizontal polarization. 

fiGure 3.144 HRRPs of MiG-29 aircraft given its illumination by signals with center spectrum frequency 
of 10 GHz (3 cm wavelength), vertical polarization. 
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fiGure 3.145  HRRPs of MiG-29 aircraft given its illumination by signals with center spectrum frequency 
of 3 G Hz (10 c m wavelength), horizontal polarization. 

fiGure 3.146  HRRPs of MiG-29 aircraft given its illumination by signals with center spectrum frequency 
of 3 G Hz (10 c m wavelength), vertical polarization. 

Figures 3.147 and 3.148 show HRRPs of MiG-29 aircraft given its illumination by signals with 
spectra centered at 1 G Hz (30 cm  wavelength) for the cases of horizontal and vertical polarization, 
respectively. Solid bold line corresponds to HRRP obtained using signal with rectangular spectrum 
of 1 G Hz bandwidth. Thin dashed line corresponds to HRRP obtained using signal with rectangular 
spectrum of 250 M Hz bandwidth. 

Peaks #1 are due to scattering from the aircraft’s air intakes. Peaks #2 in Figure 3.147, like those 
in Figure 3.145, are due to scattering from the main reflector of onboard antenna (wavelength of 
30 cm  is beyond the operating frequency range of the radar). Peaks #2 in Figure 3.148, like those in 
Figure 3.146, are due to scattering from the front (auxiliary) reflector of onboard antenna system. 

fiGure 3.147  HRRPs of MiG-29 aircraft given its illumination by signals with center spectrum frequency 
of 1 G Hz (30 c m wavelength), horizontal polarization. 
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fiGure 3.148  HRRPs of MiG-29 aircraft given its illumination by signals with center spectrum frequency 
of 1 G Hz (30 c m wavelength), vertical polarization. 

We should note that amplitude difference between the peaks corresponding to different polariza­
tions at this wavelength is higher (three times). 

3.1.11 ScatterinG characteriSticS Of f-16 multirOle fiGhter 

The F-16 Fighting Falcon fighter originally developed by General Dynamics (now Lockheed 
Martin) is the high-performance multirole aircraft. It is operated by the Air Forces of more than 22 
countries around the world. F-16 is a very nimble aircraft. It can perform the g-turns with up to 9-g 
force. Pilot’s frameless bubble canopy provides for all-round visibility [98]. 

The prototype of F-16 “Falcon” family, experimental YF-16, has performed its maiden flight on 
February 2, 1974, and in March 2000 the 4000-th fighter of this type was produced. Despite its sig­
nificant age, F-16 is kept to be dynamically upgraded and it is still among the world best fighters. 
Originally developed as cost-effective air superiority day fighter (a little bit delayed American response 
to the MiG-21 aircraft), it evolved into the all-weather multirole aviation complex with air strike capa­
bilities. Thanks to its capabilities and versatility, the F-16 platform had been put through a number of 
upgrades and modifications: F-16A—single-seat multirole day fighter; F-16B—two-seat combat and 
training version of F-16A; F-16C—single-seat improved multirole fighter; F-16D—two-seat combat 
and training version of F-16C; F-16ADF—antiaircraft defense fighter designed for US National guard; 
RF-16C (F-16R)—reconnaissance version fitted with ATARS container system. Evidently, even after 
the fifth-generation fighter enters the world’s aviation market the F-16 aircraft will find its customers. 

In the second half of 1980s, the F-16C/D aircraft has been fitted with the means for reducing 
their radar visibility (the canopy has been metalized from the inside, RAM coatings have been 
placed in the air intake zone). These measures alone (by some sources) provided for 40% reduction 
of frontal RCS. 

In our RCS computations, we used the perfectly conducting model of the aircraft surface (Figure 
3.150). Parameters of computer model are summarized in Table 3.11. 

Figures 3.151 through 3.168 show diagrams of mean and median RCS given the F-16 aircraft 
model illumination at vertical and horizontal polarization, the latter having been averaged over 

table 3.11 
Geometrical Characteristics of f-16 multirole fighter 

airframe Characteristics (figure 3.149) aircraft surface model Characteristics (figure 3.150) 

Aircraft length 15.03 m Number of parts of ellipsoids in the model 42 

Aircraft height 5.09 m Number of straight wedge parts in the model 20 

Wing span 9.45 m 

Wing’s area 27.87 m2 
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fiGure 3.150  Computer model of F-16 surface. 

fiGure 3.151  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of F-16 
aircraft model at carrier frequency of 10 G Hz (3 c m wavelength). 
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fiGure 3.149  F-16 multirole fighter. 
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fiGure 3.152  Diagrams of mean and median RCS of F-16 aircraft model in three sectors of azimuth aspect 
given its radar observation at horizontal polarization and carrier frequency of 10 G Hz (3 c m wavelength). 

fiGure 3.153  Diagrams of mean and median RCS of F-16 aircraft model in three sectors of azimuth aspect 
given its radar observation at vertical polarization and carrier frequency of 10 G Hz (3 c m wavelength). 

fiGure 3.154  Diagrams of mean and median RCS of F-16 aircraft model in 20-degree sectors of azi
muth aspect given its radar observation at horizontal polarization and carrier frequency of 10 G Hz (3 c m 
wavelength). 
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fiGure 3.155  Diagrams of mean and median RCS of F-16 aircraft model in 20-degree sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 10 G Hz (3 c m wavelength). 

fiGure 3.156  (See color insert.) Circular diagrams of noncoherent RCS given radar observation of F-16 
aircraft model at carrier frequency of 10 G Hz (3 c m wavelength). 

fiGure 3.157  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of F-16 
aircraft model at carrier frequency of 3 G Hz (10 c m wavelength). 
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fiGure 3.158  Diagrams of mean and median RCS of F-16 aircraft model in three sectors of azimuth aspect 
given its radar observation at horizontal polarization and carrier frequency of 3 G Hz (10 c m wavelength). 
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fiGure 3.159  Diagrams of mean and median RCS of F-16 aircraft model in three sectors of azimuth aspect 
given its radar observation at vertical polarization and carrier frequency of 3 G Hz (10 c m wavelength). 

different angular sectors, as well as circular diagrams of instantaneous and noncoherent RCS for 
the frequency ranges of our interest. 

Figures 3.169 through 3.171 show the amplitude distributions of echo signals for the frequency 
ranges of interest given horizontal polarization of illumination wave. 

Table 3.12 summarizes the parameters of empirical probability distributions that fit mostly the 
simulation data for square root of RCS. 

fiGure  3.160  Diagrams  of  mean  and  median  RCS  of  F-16  aircraft  model  in  20-degree  sectors  of  azimuth 
aspect  given  its  radar  observation  at  horizontal  polarization  and  carrier  frequency  of  3  GHz  (10  cm  wavelength). 
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fiGure 3.161  Diagrams of mean and median RCS of F-16 aircraft model in 20-degree sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 3 G Hz (10 c m wavelength). 
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fiGure 3.162  (See color insert.) Circular diagrams of noncoherent RCS of F-16 aircraft model given its 
radar observation at carrier frequency of 3 G Hz (10 c m wavelength). 
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fiGure 3.163  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of F-16 
aircraft model at carrier frequency of 1 G Hz (30 c m wavelength). 
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fiGure 3.164  Diagrams of mean and median RCS of F-16 aircraft model in three sectors of azimuth aspect 
given its radar observation at horizontal polarization and carrier frequency of 1 G Hz (30 c m wavelength). 
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fiGure 3.165  Diagrams of mean and median RCS of F-16 aircraft model in three sectors of azimuth aspect 
given its radar observation at vertical polarization and carrier frequency of 1 G Hz (30 c m wavelength). 

fiGure  3.166  Diagrams  of  mean  and  median  RCS  of  F-16  aircraft  model  in  20-degree  sectors  of  azimuth 
aspect  given  its  radar  observation  at  horizontal  polarization  and  carrier  frequency  of  1  GHz  (30  cm  wavelength). 
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fiGure 3.167  Diagrams of mean and median RCS of F-16 aircraft model in 20-degree sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 1 G Hz (30 c m wavelength). 

fiGure 3.168  (See color insert.) Circular diagrams of noncoherent RCS of F-16 aircraft model given its 
radar observation at carrier frequency of 1 G Hz (30 c m wavelength). 

fiGure 3.169  Amplitude distribution of echo signal of F-16 aircraft model at carrier frequency of 10 G Hz 
given its horizontal polarization. 
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table 3.12 
parameters of probability distributions for the echo signal amplitudes of f-16 aircraft model 

Wavelength polarization distribution kind distribution parameters 

3 cm Horizontal Lognormal distribution: μ = 0.6714 

(log x − µ 2 ⎞ σ = 0.68671 ⎛ ( ) )
p x = exp − 2( ) 

2 x ⎝⎜	 2σ ⎠⎟π σ 

3 cm Vertical Lognormal distribution μ = 0.6706 
σ = 0.6875 

10 cm Horizontal Lognormal distribution μ = 0.6385 
σ = 0.6945 

10 cm Vertical Lognormal distribution μ = 0.6381 
σ = 0.6945 

30 cm Horizontal Lognormal distribution μ = 0.3616 
σ = 0.7128 

30 cm Vertical Lognormal distribution μ = 0.3503 
σ = 0.725 
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fiGure 3.170  Amplitude distribution of echo signal of F-16 aircraft model at carrier frequency of 3 G Hz 
given its horizontal polarization. 

fiGure 3.171  Amplitude distribution of echo signal of F-16 aircraft model at carrier frequency of 1 G Hz 
given its horizontal polarization. 
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In Section 3.1.12, there are examples of HRRPs computed for the aircraft given various central 
frequencies of signal spectrum and its widths. 

3.1.12  imPulSe  reSPOnSeS  Of  f-16 multirOle  fiGhter 

As an example, we consider HRRPs of F-16 aircraft observed at the elevation angle of −3° (illumi
nation from below) and azimuth aspect of 40°. 

Figure 3.172 shows HRRPs of F-16 aircraft given its illumination with signal at central fre
quency of 10 G Hz (3 cm  wavelength). Since there is practically no difference in HRRPs obtained 
for horizontal and vertical polarization, we present here only the corresponding impulse responses 
for the case of horizontal polarization of illumination signal. Bold solid line corresponds to HRRP 
obtained using signal with rectangular amplitude spectrum of 1 G Hz bandwidth. Thin dashed line 
corresponds to HRRP obtained using signal with rectangular spectrum of 250 M Hz bandwidth. 

Peaks of HRRPs in Figure 3.172 are numbered from 1 through 4. 
Peaks #1 are due to scattering from the Pitot tube, which is placed at the front of radar antenna 

radome. Peaks #2 are due to scattering from the aircraft air intake. Peaks #3 are due to scattering 
from horizontal stabilizer. Peaks #4 are due to scattering from vertical rudder. 

Figures 3.173 and 3.174 show HRRPs of F-16 aircraft given its illumination by signals with 
spectra centered at 3 G Hz (10 cm  wavelength) for the cases of horizontal and vertical polarization, 
respectively. Solid bold line corresponds to HRRP obtained using signal with rectangular spectrum 
of 1 G Hz bandwidth. Thin dashed line corresponds to HRRP obtained using signal with rectangular 
spectrum of 250 M Hz bandwidth. 

­

­

fiGure 3.172  HRRPs of F-16 aircraft given its illumination by signals with center spectrum frequency of 
10 G Hz (3 c m wavelength). 

fiGure 3.173  HRRPs of F-16 aircraft given its illumination by signal with center spectrum frequency of 
10 G Hz (3 c m wavelength), horizontal polarization. 
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fiGure 3.174  HRRPs of F-16 aircraft given its illumination by signals with center spectrum frequency of 
10 G Hz (3 c m wavelength), vertical polarization. 

The peaks of HRRPs in Figures 3.173 and 3.174 are numbered. The peaks #1 are due to scatter­
ing from the Pitot tube, which is placed at the front of radar antenna radome. Peaks #2 are due to 
scattering from the pilot’s cockpit. Peaks #3 are due to scattering from the aircraft air intake. Peaks 
#4 are due to scattering from the horizontal stabilizer. Peaks #5 are due to scattering from vertical 
rudder. The peak amplitude of echo from the wing’s leading edge is significantly lower in case of 
vertical polarization as compared to that for the case of horizontal one. The latter is due to different 
polarization properties of scattering from the edge. Therefore, in Figure 3.174 the peak due to scat­
tering from the wing’s leading edge is not marked out. In Figure 3.173 (horizontal polarization), the 
peaks #6 correspond to the echo from the leading edge of wing. It is worth mentioning that peaks 
#4 in these two figures differ in amplitude too. 

Figures 3.175 and 3.176 show HRRPs of F-16 aircraft given its illumination by signals with 
spectra centered at 1 GHz (30 cm wavelength) for the cases of horizontal and vertical polarization, 
respectively. Solid bold line corresponds to HRRP obtained using signal with rectangular spectrum 
of 1 GHz bandwidth. Thin dashed line corresponds to HRRP obtained using signal with rectangular 
spectrum of 250 MHz bandwidth. 

The amplitudes of HRRP peaks in Figures 3.175 and 3.176 are so different that in HRRP 
obtained for the case of horizontal polarization (Figure 3.175) only two major peaks can be 
singled out. Peaks #1 are due to scattering from the wing’s leading edge. Peaks #2 are due to 
scattering from the leading edge of horizontal stabilizer. Amplitudes of these two peaks domi­
nate those of other peaks. HRRP obtained for the case of vertical polarization (Figure 3.176) 
contains more peaks of the lower amplitude. Peaks #1 are due to scattering from the Pitot tube, 
which is placed at the front of radar antenna radome. Peaks #2 are due to scattering from the 

fiGure 3.175  HRRPs of F-16 aircraft given its illumination by signals with center spectrum frequency of 
1 G Hz (30 c m wavelength), horizontal polarization. 
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fiGure 3.176  HRRPs of F-16 aircraft given its illumination by signals with center spectrum frequency of 
1 G Hz (30 c m wavelength), vertical polarization. 

pilot’s cockpit. Peaks #3 are due to scattering from the aircraft air intake. Peaks #4 are due to 
scattering from the wing’s leading edge. The latter peak amplitude is ten times lower than that of 
corresponding peak #1 in Figure 3.175. Peaks #5 are due to scattering from horizontal stabilizer. 
Peak #6 is due to scattering from the vertical rudder. 

3.1.13 ScatterinG characteriSticS Of aGm-86 alcm 

The AGM-86 air launch cruise missile (ALCM) (Figure 3.177) is the main long-range weapon 
system of B-52H bomber aircraft. With their nuclear warheads having been replaced by conven­
tional ones, the AGM-86 is kept in the armament inventory in foreseeable future as a very effective 
weapon [99]. 

The first launch of AGM-86B has been performed in 1979, and in August 1981 the missiles 
were put into the inventory of B-52G/H bomber aircraft. The AGM-86B cruise missile has single 
F107-WR-100 or -101 turbojet engine and it is able to carry the W-80-1 variable power thermo­
nuclear warhead. Prior to launch the wings and empennage are stowed in the fuselage, they are 
deployed in 2 s after the launch. 

A total of 1715 specimens of AGM-86B cruise missile were produced by 1986 at the Boeing 
factories, and then the production was stopped. In 1986, the Boeing Company started to refit 
part of the AGM-86B missiles to the standard named AGM-86C. The basic change consisted in 
replacing thermonuclear warhead by the 900 kg high-explosive fragmentation one. AGM-86C 
missiles have also been equipped with GPS navigation receiver and digital scene matching area 
correlator (DSMAC) that significantly improved its accuracy (mean circular deviation reduced 
to 10 m). 

In November 2001, the flight tests of AGM-86D Block II cruise missile were carried out that was 
equipped with the new 540 kg advanced unitary penetrator (AUP) warhead, which was designed to 
destroy heavily fortified targets or those placed deep in the ground. 

fiGure 3.177  AGM-86 cruise missile. 
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In our scattering computation, we used the perfectly conducting surface model of the missile 
shown in Figure 3.178. Parameters of computer model are summarized in Table 3.13. 

Figures 3.179 through 3.196 show diagrams of mean and median RCS given the AGM-86 model 
illumination at vertical and horizontal polarization, the latter having been averaged over different 

fiGure 3.178  Computer model of AGM-86 surface. 

table 3.13 
Geometrical Characteristics of aGm-86 alCm 

airframe Characteristics (figure 3.177) 

Missile length 6.32 m 

Diameter 0.62 m 

aircraft surface model Characteristics (figure 3.178) 

Number of parts of ellipsoids in the model 

Number of straight wedge parts in the model 

12 

15 

Wing span 3.66 m 
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fiGure 3.179  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of 
AGM-86 ALCM model at carrier frequency of 10 G Hz (3 c m wavelength). 
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fiGure 3.180  Diagrams of mean and median RCS of AGM-86 ALCM model in three sectors of azi
muth aspect given its radar observation at horizontal polarization and carrier frequency of 10 G Hz (3 c m 
wavelength). 
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fiGure 3.181  Diagrams of mean and median RCS of AGM-86 ALCM model in three sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 10 G Hz (3 c m wavelength). 

fiGure 3.182  Diagrams of mean and median RCS of AGM-86 ALCM model in 20-degree sectors of 
azimuth aspect given its radar observation at horizontal polarization and carrier frequency of 10 G Hz (3 cm  
wavelength). 
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fiGure  3.183  Diagrams  of  mean  and  median  RCS  of  AGM-86  ALCM  model  in  20-degree  sectors  of  azimuth 
aspect  given  its  radar  observation  at  vertical  polarization  and  carrier  frequency  of  10  GHz  (3  cm  wavelength). 
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fiGure 3.184  (See color insert.) Circular diagrams of noncoherent RCS given radar observation of 
 AGM-86 ALCM model at carrier frequency of 10 G Hz (3 cm w avelength). 
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fiGure 3.185  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of 
AGM-86 ALCM model at carrier frequency of 3 G Hz (10 c m wavelength). 
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fiGure 3.186  Diagrams of mean and median RCS of AGM-86 ALCM model in three sectors of azi
muth aspect given its radar observation at horizontal polarization and carrier frequency of 3 G Hz (10 cm  
wavelength). 
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fiGure 3.187  Diagrams of mean and median RCS of AGM-86 ALCM model in three sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 3 G Hz (10 c m wavelength). 

fiGure 3.188  Diagrams of mean and median RCS of AGM-86 ALCM model in 20-degree sectors of 
azimuth aspect given its radar observation at horizontal polarization and carrier frequency of 3 G Hz (10 cm  
wavelength). 
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fiGure 3.189  Diagrams of mean and median RCS of AGM-86 ALCM model in 20-degree sectors of 
azimuth aspect given its radar observation at vertical polarization and carrier frequency of 3 G Hz (10 cm  
wavelength). 

fiGure 3.190  (See color insert.) Circular diagrams of noncoherent RCS of AGM-86 ALCM model given 
its radar observation at carrier frequency of 3 G Hz (10 c m wavelength). 

fiGure 3.191  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of 
AGM-86 ALCM model at carrier frequency of 1 G Hz (30 cm w avelength). 
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fiGure 3.192  Diagrams of mean and median RCS of AGM-86 ALCM model in three sectors of azi
muth aspect given its radar observation at horizontal polarization and carrier frequency of 1 G Hz (30 cm  
wavelength). 

­

fiGure 3.193  Diagrams of mean and median RCS of AGM-86 ALCM model in three sectors of azimuth 
aspect given its radar observation at vertical polarization and carrier frequency of 1 G Hz (30 c m wavelength). 

fiGure  3.194  Diagrams  of  mean  and  median  RCS  of  AGM-86  ALCM  model  in  20-degree  sectors  of  azimuth 
aspect  given  its  radar  observation  at  horizontal  polarization  and  carrier  frequency  of  1  GHz  (30  cm  wavelength). 
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fiGure 3.195  Diagrams of mean and median RCS of AGM-86 ALCM model in 20-degree sectors of 
azimuth aspect given its radar observation at vertical polarization and carrier frequency of 1 G Hz (30 cm  
wavelength). 
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fiGure 3.196  (See color insert.) Circular diagrams of noncoherent RCS of AGM-86 ALCM model given 
its radar observation at carrier frequency of 1 G Hz (30 cm w avelength). 

angular  sectors,  as  well  as  circular  diagrams  of  instantaneous  and  noncoherent  RCS  for  the  fre
quency  ranges  of  our  interest. 

Figures 3.197 through 3.199 show the amplitude distributions of echo signals for the frequency 
ranges of interest given horizontal polarization of illumination wave. 

Table 3.14 summarizes the parameters of empirical probability distributions that fit mostly the 
simulation data for square root of RCS. 

­
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fiGure 3.197  Amplitude distribution of echo signal of AGM-86 ALCM model at carrier frequency of 
10 G Hz given its horizontal polarization. 

fiGure 3.198  Amplitude distribution of echo signal of AGM-86 ALCM model at carrier frequency of 
3 G Hz given its horizontal polarization. 

fiGure 3.199  Amplitude distribution of echo signal of AGM-86 ALCM model at carrier frequency of 
1 G Hz given its horizontal polarization. 
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In Section 3.1.14, there are examples of HRRPs computed for the missile given various central 
frequencies of signal spectrum and its widths. 

3.1.14  imPulSe  reSPOnSeS  Of  aGm-86 alcm 

As an example, we consider HRRPs of the AGM-86 ALCM observed at the elevation angle of −3° 
(illumination from below) and azimuth aspect of 23° (illumination perpendicularly to the leading 
edge of horizontal empennage). 

Figures 3.200 and 3.201 show HRRPs of AGM-86 ALCM given its illumination with signals 
at carrier frequency of 10 G Hz (3 cm  wavelength) for the cases of horizontal and vertical polar
izations, respectively. Solid line corresponds to HRRP obtained using signal with rectangular 

­

fiGure 3.200  HRRPs of AGM-86 ALCM given its illumination by signal with center spectrum frequency 
of 10 G Hz (3 cm w avelength), horizontal polarization. 
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fiGure 3.201  HRRPs of AGM-86 ALCM given its illumination by signals with center spectrum  frequency 
of 10 G Hz (3 cm w avelength), vertical polarization. 

amplitude spectrum of 1 GHz bandwidth. Dashed line corresponds to HRRP obtained using signal 
with rectangular spectrum of 250 MHz bandwidth. 

Peaks #1 are due to scattering from the nose part of fuselage. Peaks #2 are due to scattering 
from the wing. Peaks #3 are due to scattering from the leading edge of horizontal empennage. The 
echo amplitude for the leading edge of horizontal empennage is significantly higher for the case of 
horizontal polarization. 

Figures 3.202 and 3.203 show HRRPs of AGM-86 ALCM given its illumination by signals with 
spectra centered at 3 GHz (10 cm wavelength) for the cases of horizontal and vertical polarization, 
respectively. Bold solid line corresponds to HRRP obtained using signal with rectangular spectrum 
of 1 GHz bandwidth. Thin dashed line corresponds to HRRP obtained using signal with rectangular 
spectrum of 250 MHz bandwidth. 

fiGure 3.202  HRRPs of AGM-86 ALCM given its illumination by signals with center spectrum fre
quency of 3 G Hz (10 cm w avelength), horizontal polarization. 

­

fiGure 3.203  HRRPs of AGM-86 ALCM given its illumination by signals with center spectrum fre
quency of 3 G Hz (10 cm w avelength), vertical polarization. 

­
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fiGure 3.204  HRRPs of AGM-86 ALCM given its illumination by signals with center spectrum fre
quency of 1 G Hz (30 c m wavelength), horizontal polarization. 

­

fiGure 3.205  HRRPs of AGM-86 ALCM given its illumination by signals with center spectrum fre
quency of 1 G Hz (30 c m wavelength), vertical polarization. 

­

HRRPs shown in Figures 3.202 and 3.203 contain the following peaks marked with numbers. 
The view of these HRRPs is similar to those obtained for the illumination signals with spectra cen
tered at 10 G Hz (3 cm w avelength). 

Peaks #1 are due to scattering from the nose part of fuselage. Peaks #2 are due to scattering from 
the wing. Peaks #3 are due to scattering from the leading edge of missile’s horizontal empennage. 

Figures 3.204 and 3.205 show HRRPs of AGM-86 ALCM given its illumination by signals with 
spectra centered at 1 G Hz (30 cm  wavelength) for the cases of horizontal and vertical polarization, 
respectively. Bold solid line corresponds to HRRP obtained using signal with rectangular spectrum 
of 1 G Hz bandwidth. Thin dashed line corresponds to HRRP obtained using signal with rectangular 
spectrum of 250 M Hz bandwidth. 

Peaks #1 are due scattering from the nose part of fuselage. Peaks #2 are due to scattering from 
the wing. Peaks #3 are due to scattering from the leading edge of missile’s horizontal empennage. 

3.2  sCatterinG CharaCteristiCs of Ground objeCts 

When  computing  scattering  characteristics  of  ground  objects,  we  assumed  the  following  elevation 
angles  ε  of  their  radar  illumination  (Figure  3.206):  1°  (illumination  by  the  ground-based  radar  sys
tems);  10°  and  30°  (illumination  by  the  airborne  radar  systems).  Increment  in  azimuth  aspect  was  set  to 
0.02°,  the  azimuth  aspect  angle  β  itself  being  counted  off  counterclockwise  from  the  head-on  direction 
(0°  corresponds  to  the  head-on  illumination,  180°  corresponds  to  the  stern-on  illumination).  Scattering 
computation  results  are  presented  for  the  illumination  frequency  of  10  GHz  (3  cm  wavelength). 

Computation results are given for the case of monostatic radar given two orthogonal polariza­
tions of illumination signal: the horizontal one, for which the vector of electrical field intensity of 
illumination wave p

 0 
h is parallel to the underlying surface; and the vertical one, for which the vector 

of electrical field intensity of illumination wave p
 0 

v  is orthogonal to p
 0 

h and belongs to the plane that 

­

­
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fiGure 3.206  Geometry of the ground object illumination. 

fiGure 3.207  Modulus of reflection coefficient for the dry and moist soil given horizontal (a) and vertical 
(b) polarization of illumination wave. 

is perpendicular to the underlying surface plane and that includes at the same time the propagation 
direction vector of plane incident wave. Below, all the curves corresponding to horizontal polariza­
tion are blue and those corresponding to vertical polarization are red. 

We present the computation results obtained in assumption of two types of underlying surface 
that possess the most common values of relative permittivity. These two types are the following: dry 
soil (ε′ =   3  +  j0.4); moist soil (relative moist content being 20%) ε′ =   17  +  j0.9. Relative permeability 
was equal to unity for the both soil types. When the illumination elevation angle ε =  1°, the modules 
of reflection coefficients |P| are close to one another and they approach the unit irrespectively of 
underlying surface characteristics (Figure 3.207). Therefore, in this case only scattering diagrams 
corresponding to dry soil are presented. The difference in scattering diagrams given the different 
types of soil becomes more prominent when the elevation angle of the object illumination increases. 

The histograms of echo signal amplitude distribution (distribution of the square root from RCS) 
are shown for the two values of elevation angles: ε =  1° and ε =  30° given averaging in the two main 
sectors of azimuth aspects: from −10° through 10 and from 10° through 30°. Such diagrams were 
obtained by the scattering data computed given azimuth aspect angle increment of 0.02°. As in case 
of airborne objects, we compared the echo signal amplitude histograms to a number of empirical 
probability distributions and found those that fitted our computation data the most. 

There are also examples of HRRPs computed for the tank models given various illumination 
signal spectrum widths. 

3.2.1  ScatterinG  characteriSticS  Of  t-90 main  battle  tank 

The Russian T-90 tank is the latest modification of the T-72 machine, it entered service in 1993 
[100]. T-90 tank keeps up with Soviet tradition of tank construction—the classical layout, in which 
its major weapons are housed in the turret, power plant and transmission are in the aft section, and 
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the crew is accommodated separately: tank commander and gunner occupying the fighting com­
partment, and the driver occupying the driving compartment. The exterior of the T-90 tank (Figure 
3.208) is practically the same as of T-72B one. The T-72 tank, in its turn, has been developed by 
the “Uralvagonzavod” design bureau as an upgrade of T-64A tank designed and produced by the 
Malyshev plant in Kharkiv [101]. 

In our computations, we used the perfectly conducting computer model of the tank surface shown 
in Figure 3.209. Parameters of computer mode are summarized in Table 3.15. 

Figures 3.210 through 3.239 show diagrams of mean and median RCS and circular diagrams 
of instantaneous and noncoherent RCS obtained for the T-90 tank model. The results are given for 
vertical and horizontal polarization, two types of underling surface and three elevation angles. 

Figures 3.240 through 3.247 show the amplitude distributions of echo signals for two azimuth 
aspect angle sectors and two elevation angles. 

Tables 3.16 and 3.17 summarize the parameters of distributions that fit mostly the simulation data 
for square root of RCS. 

In Section 3.2.2, there are examples of HRRPs computed for the tank model given various illu­
mination signal spectrum widths. 

fiGure 3.208  T-90 main battle tank. 

fiGure 3.209  Computer model of T-90 surface. 

table 3.15 
Geometrical Characteristics of t-90 main battle tank 

hull Characteristics (figure 3.208) tank surface model Characteristics (figure 3.209) 

Tank length (gun included) 9.53 m Number of parts of ellipsoids in the model 89 

Width 3.46 m Number of straight wedge parts in the model 34 

Height 2.23 m 

Combat weight 46.5 tonne 
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fiGure 3.210  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of T-90 
tank model (ε =  1°, underlying surface – dry soil). 
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fiGure 3.211  Diagrams of mean and median RCS of the T-90 tank model in three sectors of azimuth 
aspect given its radar observation at horizontal polarization (ε =  1°, underlying surface – dry soil). 
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fiGure 3.212  Diagrams of mean and median RCS of the T-90 tank model in three sectors of azimuth 
aspect given its radar observation at vertical polarization (ε =  1°, underlying surface – dry soil). 
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fiGure 3.214 Diagrams of mean and median RCS of the T-90 tank model in 20-degree sectors of azimuth 
aspect given its radar observation at vertical polarization (ε = 1°, underlying surface – dry soil). 

 

90 

RCS (m2) 0 
345 1000 15 

330 30 
100 

315 45 
10 

300 1 60 

0.1 
285 75 

270 

255 105
 

240 120
 

225 135
 

210 150
 
195 165
 

180
 

fiGure 3.215  (See color insert.) Circular diagrams of noncoherent RCS given radar observation of T-90 
tank model (ε =  1°, underlying surface – dry soil). 

fiGure 3.213  Diagrams of mean and median RCS of the T-90 tank model in 20-degree sectors of azimuth 
aspect given its radar observation at horizontal polarization (ε =  1°, underlying surface – dry soil). 
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fiGure 3.216  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of T-90 
tank model (ε =  10°, underlying surface – dry soil). 
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fiGure 3.217  Diagrams of mean and median RCS of the T-90 tank model in three sectors of azimuth 
aspect given its radar observation at horizontal polarization (ε =  10°, underlying surface – dry soil). 
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fiGure 3.218  Diagrams of mean and median RCS of the T-90 tank model in three sectors of azimuth 
aspect given its radar observation at vertical polarization (ε =  10°, underlying surface – dry soil). 
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fiGure 3.219  Diagrams of mean and median RCS of the T-90 tank model in 20-degree sectors of azimuth 
aspect given its radar observation at horizontal polarization (ε =  10°, underlying surface – dry soil). 

fiGure 3.220  Diagrams of mean and median RCS of the T-90 tank model in 20-degree sectors of azimuth 
aspect given its radar observation at vertical polarization (ε =  10°, underlying surface – dry soil). 
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fiGure 3.221  (See color insert.) Circular diagrams of noncoherent RCS of T-90 tank model (ε =  10°, 
underlying surface – dry soil). 
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fiGure 3.222  (See color insert.) Circular diagrams of instantaneous RCS of T-90 tank model (ε =  10°, 
underlying surface – moist soil). 
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fiGure 3.223  Diagrams of mean and median RCS of the T-90 tank model in three sectors of azimuth 
aspect given its radar observation at horizontal polarization (ε =  10°, underlying surface – moist soil). 
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fiGure 3.224  Diagrams of mean and median RCS of the T-90 tank model in three sectors of azimuth 
aspect given its radar observation at vertical polarization (ε =  10°, underlying surface – moist soil). 
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fiGure 3.227  (See color insert.) Circular diagrams of noncoherent RCS of T-90 tank model (ε =  10°, 
underlying surface – moist soil). 

fiGure 3.226  Diagrams of mean and median RCS of the T-90 tank model in 20-degree sectors of azimuth 
aspect given its radar observation at vertical polarization (ε =  10°, underlying surface – moist soil). 

fiGure 3.225  Diagrams of mean and median RCS of the T-90 tank model in 20-degree sectors of azimuth 
aspect given its radar observation at horizontal polarization (ε =  10°, underlying surface – moist soil). 
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fiGure 3.228  (See color insert.) Circular diagrams of instanteneous RCS of T-90 tank model (ε =  30°, 
underlying surface – dry soil). 
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fiGure 3.229  Diagrams of mean and median RCS of the T-90 tank model in three sectors of azimuth 
aspect given its radar observation at horizontal polarization (ε =  30°, underlying surface – dry soil). 
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fiGure 3.230  Diagrams of mean and median RCS of the T-90 tank model in three sectors of azimuth 
aspect given its radar observation at vertical polarization (ε =  30°, underlying surface – dry soil). 
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fiGure 3.231  Diagrams of mean and median RCS of the T-90 tank model in 20-degree sectors of azimuth 
aspect given its radar observation at horizontal polarization (ε =  30°, underlying surface – dry soil). 
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fiGure 3.232  Diagrams of mean and median RCS of the T-90 tank model in 20-degree sectors of azimuth 
aspect given its radar observation at vertical polarization (ε =  30°, underlying surface – dry soil). 
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fiGure 3.233  (See color insert.) Circular diagrams of noncoherent RCS of T-90 tank model (ε =  30°, 
underlying surface – dry soil). 
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fiGure 3.234  (See color insert.) Circular diagrams of instanteneous RCS of T-90 tank model (ε =  30°, 
underlying surface – moist soil). 
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fiGure 3.235  Diagrams of mean and median RCS of the T-90 tank model in three sectors of azimuth 
aspect given its radar observation at horizontal polarization (ε =  30°, underlying surface – moist soil). 
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fiGure 3.236  Diagrams of mean and median RCS of the T-90 tank model in three sectors of azimuth 
aspect given its radar observation at vertical polarization (ε =  30°, underlying surface – moist soil). 
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fiGure 3.239  (See color insert.) Circular diagrams of noncoherent RCS of T-90 tank model (ε =  30°, 
underlying surface – moist soil). 

fiGure 3.238  Diagrams of mean and median RCS of the T-90 tank model in 20-degree sectors of azimuth 
aspect given its radar observation at vertical polarization (ε =  30°, underlying surface – moist soil). 
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fiGure 3.237  Diagrams of mean and median RCS of the T-90 tank model in 20-degree sectors of azimuth 
aspect given its radar observation at horizontal polarization (ε =  30°, underlying surface – moist soil). 
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fiGure 3.240  Amplitude distribution of echo signal given radar observation of T-90 tank model in the 
azimuth aspect sector from −10° through +10°, horizontal polarization (ε =  1°, underlying surface – dry soil). 

fiGure 3.241  Amplitude distribution of echo signal given radar observation of T-90 tank model in the 
azimuth aspect sector from −10° through +10°, horizontal polarization (ε =  1°, underlying surface – moist soil). 

fiGure 3.242  Amplitude distribution of echo signal given radar observation of T-90 tank model in the 
azimuth aspect sector from 10° through 30°, horizontal polarization (ε =  1°, underlying surface – dry soil). 
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fiGure 3.243  Amplitude distribution of echo signal given radar observation of T-90 tank model in the 
azimuth aspect sector from 10° through 30°, horizontal polarization (ε =  1°, underlying surface – moist soil). 

fiGure 3.244  Amplitude distribution of echo signal given radar observation of T-90 tank model in the 
azimuth aspect sector from −10° through +10°, horizontal polarization (ε =  30°, underlying surface – dry soil). 

fiGure 3.245  Amplitude distribution of echo signal given radar observation of T-90 tank model in the azi
muth aspect sector from −10° through +10°, horizontal polarization (ε =  30°, underlying surface – moist soil). 
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table 3.16 
parameters o
model Given

azimuth 
aspect range 

  −10° … +10° 

f probabilit
 elevation 

soil type 

Dry soil 

y distributio
angle of illum

polarization 

Horizontal 

ns for the echo signal ampl
ination equal to 1° 

distribution kind 

Lognormal distribution: 

1 ⎛ ( (log  x) − µ 
p ( x ) = exp − 

⎝⎜ 22 x π σ 2σ  

itudes 

2 ) ⎞ 
⎠⎟ 

of t-90 tank 

distribution parameters 

  μ = 1.44945 
 σ =1.06818 

Vertical Lognormal distribution   μ = 1.40716 
  σ = 1.09705 

(continued) 
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fiGure 3.246  Amplitude distribution of echo signal given radar observation of T-90 tank model in the 
azimuth aspect sector from 10° through 30°, horizontal polarization (ε =  30°, underlying surface – dry soil). 

fiGure 3.247  Amplitude distribution of echo signal given radar observation of T-90 tank model in the 
azimuth aspect sector from 10° through 30°, horizontal polarization (ε =  30°, underlying surface – moist soil). 



table 3.17 
parameters of 
Given elevatio

azimuth aspect 
range 

  −10° … +10° 

probability
n angle of 

soil type 

Dry soil 

 distributions for the echo signal amplitudes of
illumination equal to 30° 

polarization distribution kind 

Horizontal Lognormal distribution: 
2 1 ⎛ ( (log  x) − µ ) ⎞ 

p ( x ) = exp − 
⎝⎜ 2 ⎠⎟ 2 x π σ 2σ  

Vertical Normal distribution: 
2 1 ⎛ (x − µ ) ⎞ 

p ( x ) = exp − 
⎝⎜ 22 ⎠⎟σ 2π  σ 

 t-90 tank model 

distribution 
parameters 

  μ = 1.117329 
  σ = 0.96877 

  μ = 1.588124 
  σ = 0.732297 

Moist Horizontal Lognormal distribution   μ = 1.48526 
soil   σ = 1.01046 

Vertical lognormal distribution   μ = 0.71735 
  σ = 1.04842 

  10° … 30° Dry soil Horizontal Weibull distribution:   b = 1.782212 
c c − 1 ⎛ x ⎞ 

c ⎛ x ⎞ −
⎝⎜ b ⎠⎟ 

p ( x ) = e 
⎝⎜ ⎠⎟ b b 

  c = 2.149668 

Vertical Weibull distribution   b = 1.381546 
  c = 2.163581 

Moist Horizontal Weibull distribution   b = 2.171357 
soil   c = 2.171995 

Vertical Rayleigh distribution:   b = 0.927724 
2x ⎛ x ⎞ 

p ( x ) = exp −
b2 ⎝⎜ 2 ⎠⎟ 2b 

 

 table 3.16 (continued)
 
parameters of probability distributio
model Given elevation angle of illumination equal to 1°
 

azimuth 
aspect range soil type polarization 

Moist soil Horizontal 

Vertical 

  10° … 30° Dry soil Horizontal 

ns for the echo signal amplitude

distribution kind 

Lognormal distribution 

Lognormal distribution 

Normal distribution: 
2 1 ⎛ (x − µ ) ⎞ 

p ( x ) = exp − 
⎝⎜ 22 ⎠⎟σ 2π  σ 

s of t-90 tank 


distribution parameters 

  μ = 1.45733 
  σ = 1.06933 
  μ = 1.36692 
  σ = 1.09704 
  μ = 2.57101 
  σ = 1.148921 

Vertical Weibull distribution:   b = 2.75873 
c c − 1 ⎛ x ⎞ 

c ⎛ x ⎞ −
⎝⎜ b ⎠⎟ 

p ( x ) = e 
⎝⎜ ⎠⎟ b b 

  c = 2.32431 

Moist soil Horizontal Normal distribution   μ = 2.58899 
  σ = 1.15612 

Vertical Weibull distribution   b = 2.671515 
  c = 2.320417 
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3.2.2 imPulSe reSPOnSeS Of t-90 main battle tank 

As an example, we consider HRRP of the T-90 main battle tank observed at the azimuth aspect of 
15° and carrier frequency of 10 GHz (3 cm wavelength). 

Bold solid lines in all figures below correspond to HRRPs obtained using signal with rectangular 
amplitude spectrum of 1 GHz bandwidth. Thin dashed lines correspond to HRRP obtained using 
signal with rectangular spectrum of 250 MHz bandwidth. Both wideband signals are centered at the 
same carrier frequency. 

Figures 3.248 and 3.249 show HRRPs of T-90 tank standing on the dry soil given its illumination 
at the grazing elevation angle of 1° for the cases of horizontal and vertical polarization of illumina­
tion wave, respectively. 

Figures 3.250 and 3.251 show HRRPs of T-90 tank standing on the moist soil given its illumina­
tion at grazing elevation angle of 1° for the cases of horizontal and vertical polarization of illumina­
tion wave, respectively. 

Peaks #1 are due to scattering from the right track cover. Peaks #2 are due to scattering from the 
left track cover. Peaks #3 correspond to the earliest time of wave incidence upon the tank’s turret. 
Peaks #4 correspond to the latest time of wave incidence upon the tank turret’s front panel. Peaks 
#5 are due to scattering from the machine-gun superstructure. 

It should be noted that edge local scatterers of the turret surface contribute somewhat into the 
amplitude of peaks #3 and #4. So, there is some difference in the amplitudes of peaks #3 and #4 
given horizontal and vertical polarization of incident wave, respectively. Such difference in the 
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fiGure 3.248  HRRP of T-90 tank model standing on dry soil given its radar observation at elevation of 
1°, horizontal polarization. 
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fiGure 3.249  HRRP of T-90 tank model standing on dry soil given its radar observation at elevation of 
1°, vertical polarization. 
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fiGure 3.250  HRRP of T-90 tank model standing on moist soil given its radar observation at elevation of 
1°, horizontal polarization. 

fiGure 3.251  HRRP of T-90 tank model standing on moist soil given its radar observation at elevation of 
1°, vertical polarization. 

amplitudes of peaks #3 and #4 cannot be accounted by influence of underlying surface since, given 
radar observation of the tank model at grazing elevation of 1°, the surface reflection coefficients 
approach unit irrespectively of polarization and soil type. 

Figures 3.252 and 3.253 show HRRPs of T-90 tank standing on the dry soil given its illumina­
tion at the elevation angle of 10° for the cases of horizontal and vertical polarization of illumination 
wave, respectively. 

fiGure 3.252  HRRP of T-90 tank model standing on dry soil given its radar observation at elevation of 
10°, horizontal polarization. 
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fiGure 3.253  HRRP of T-90 tank model standing on dry soil given its radar observation at elevation of 
10°, vertical polarization. 

Figures 3.254 and 3.255 show HRRPs of T-90 tank standing on the moist soil given its illumina­
tion at the elevation angle of 10° for the cases of horizontal and vertical polarization of illumination 
wave, respectively. 

The peaks of HRRPs in Figures 3.252 through 3.255 are numbered. Peaks #1 are due to scat
tering from the right track cover. Peaks #2 are due to scattering from the left track cover. Peaks #3 
and #4 are due to scattering from the turret’s front panel, the influence of underlying surface being 
accounted for. Peaks #5 are due to scattering from the turret’s machine-gun superstructure, the 
influence of underlying surface being also accounted for. 

Amplitude of HRRP peaks at horizontal polarization (Figures 3.252 and 3.254) is larger for the 
case of moist soil. This is conditioned by the greater reflection coefficient of moist soil at horizontal 
polarization given 10° angle of wave incidence (elevation angle). At the same time, the amplitudes 
of HRRP peaks at vertical polarization (Figures 3.253 and 3.255) are greater for the case of dry soil. 
This is conditioned by the fact that, given moist soil, the incidence (elevation) angle of 10° is close to 
the Bruster angle and the reflection coefficient at vertical polarization approaches zero. 

Some of the peaks (#3, #4, and #5) correspond to the echoes that could be obtained only if the 
influence of underlying surface had been accounted for. Such peaks are of negligible amplitude or 
absent altogether in HRRPs obtained given vertical polarization of incident wave, where the ground 
reflection coefficient is significantly less than unit. 

Figures 3.256 and 3.257 show HRRPs of T-90 tank standing on the dry soil given its illumina­
tion at the elevation angle of 30° for the cases of horizontal and vertical polarization of illumination 
wave, respectively. 

­

fiGure 3.254  HRRP of T-90 tank model standing on moist soil given its radar observation at elevation of 
10°, horizontal polarization. 
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fiGure 3.255  HRRP of T-90 tank model standing on moist soil given its radar observation at elevation of 
10°, vertical polarization. 

fiGure 3.256  HRRP of T-90 tank model standing on dry soil given its radar observation at elevation of 
30°, horizontal polarization. 

fiGure 3.257  HRRP of T-90 tank model standing on dry soil given its radar observation at elevation of 
30°, vertical polarization. 

Figures 3.258 and 3.259 show HRRPs of T-90 tank standing on the moist soil given its illumina­
tion at the elevation angle of 30° for the cases of horizontal and vertical polarization of illumination 
wave, respectively. 

The peaks of HRRPs in Figures 3.256 through 3.259 are numbered. Peaks #1 are due to scat
tering from the right track cover. Peaks #2 are due to scattering from the left track cover. Peaks 
#3 are due to scattering from left track (ground scattering is accounted for). Peaks #4 are due to 
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fiGure 3.258  HRRP of T-90 tank model standing on moist soil given its radar observation at elevation of 
30°, horizontal polarization. 

fiGure 3.259  HRRP of T-90 tank model standing on moist soil given its radar observation at elevation of 
30°, vertical polarization. 

scattering from the side panel of tank’s track skirt (ground scattering is accounted for). Peaks #5 are 
due scattering from the hatch on top of turret. Peaks #6 are due to scattering from the front panel 
of turret, ground influence being accounted for. Peaks #7 are due scattering from the machine-gun 
superstructure of the turret, ground influence being also accounted for. It should be noted that some 
of the peaks (#3, #6, and #7) correspond to the echoes that could be obtained only if the influence 
of underlying surface had been accounted for. Such peaks are of negligible amplitude or absent alto
gether in some HRRPs (Figure 3.257). The time shift of peaks #4 is also observable at the HRRP 
obtained given vertical polarization of incident wave (Figures 3.257 and 3.259). This apparently is 
due to the fact that, given horizontal polarization, the main scattering contribution is provided by 
the smooth part of side panel of tank’s track skirt, whereas given vertical polarization the main con
tribution into these echoes is due to vertically oriented local edge scatterers of the same side panel. 

Amplitude of peaks, both given horizontal (Figures 3.256 and 3.258) and vertical (Figures 3.257 
and 3.259) polarization of incident wave, is greater for the case of moist soil. The latter is due to the 
greater reflection coefficients of moist soil for both horizontal and vertical polarizations given wave 
incidence angle (elevation) of 30°. 

3.2.3  ScatterinG  characteriSticS  Of  leOPard-2 main  battle  tank 

The Leopard-2 is apparently one of the most successful projects for developing the latter generation 
of battle tanks. Total number of specimens produced by now exceeds 3200. The Leopard-2 tanks 
are in service of the armies of Austria, Denmark, Germany, the Netherlands, Switzerland, Swiss, 
Finland, and so on. In March 2003, the contract had been put forward for furnishing 170 specimens 

­

­



 
                 
                  

                
              

  

  
 

 

 

243 Scattering Characteristics of Some Airborne and Ground Objects 

of Leopard-2 tanks of 2A6EX modification to the armed forces of Greece. In March 2006, the 
government of Chile made a contract for furnishing the 118 specimens of Leopard-2 tanks of 2A4 
modification that had been decommissioned from the German army [102]. 

The tank has classical layout (Figure 3.260). Driver’s compartment hatch is in the hull’s forepart 
and it is slightly shifted to the right. It gets partially closed by the turret when the gun points straight 
forward. Despite the large inclination of the glacis armor (81°), the driver is still in sitting position 
while driving. The inside volume of driver’s compartment is 2.4 m3. 

Tank commander and the gunner take their positions to the right of the gun; the loader takes his 
position to the left of it. The height of the fighting compartment from the turning floor up to ceiling 
inside the turret is 1650 mm, which is the lower margin providing the normal operating conditions for 
the loader in standing position. The inside volume of the fighting compartment is 10.1 m3. 

The engine and transmission compartment with the diesel engine placed along the tank’s axis 
occupies the volume of 6.9 m3 in the aft hull’s section. It is separated by the fire-proofed bulkhead 
from the fighting compartment. 

Considerable volume of the machine’s inside space (19.4 m3) conditioned its heavy weight (55.2 t) 
and overall width of 3700 mm. The latter, in its turn, necessitated the use of removable side armor 
screens to make it possible to ship the tank by railway. 

The main tank’s weapon is its 120 mm smoothbore gun by “Reinmetal.” The gun barrel is 
equipped with thermal sleeve and bore evacuator made of glass-reinforced plastic. 

Forehead of the hull and turret is protected by the multilayered combined spaced armor. The hull 
and turret are made up by welding. The turret’s front armor plates have special hatches for mounting 
and dismounting the packs of combined armor barriers. The side armor is enforced by the remov­
able anti-hollow-charge armor screens that consist of multiple layers and that are 110 mm thick in 
their frontal area. The front plates of turret’s armor are vertical. 

In our computations, we used the perfectly conducting computer model of the tank surface 
(Figure 3.261) that consisted of 57 smooth surface parts and 24 local edge scatterers. Parameters of 
the model are summarized in Table 3.18. 

Figures 3.262 through 3.291 show diagrams of mean and median RCS and circular diagrams of 
instantaneous and noncoherent RCS obtained for the Leopard-2 tank model. The results are given 
for vertical and horizontal polarization, two types of underling surface and three elevation angles. 

Figures 3.292 through 3.299 show the amplitude distributions of echo signals for two azimuth 
aspect sectors and two elevation angles. 

Tables 3.19 and 3.20 summarize the parameters of distributions that fit mostly the simulation 
data for square root of RCS. 

In Section 3.2.4, there are examples of HRRPs computed for the tank model given various illu­
mination signal spectrum widths. 

fiGure 3.260  Leopard-2A4 basic combat tank. 
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fiGure 3.261  Computer model of Leopard-2 surface. 

table 3.18 
Geometrical Characteristics of leopard-2 main battle tank 

hull Characteristics (figure 3.260) tank surface model Characteristics (figure 3.261) 

Tank length (gun included) 9.67 m Number of parts of ellipsoids in the model 57 

Width 3.70 m Number of straight wedge parts in the model 24 

Height 2.48 m 

Combat weight 55.15 t 
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fiGure 3.262  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of 
Leopard-2 tank model (ε =  1°, underlying surface – dry soil). 
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fiGure 3.263  Diagrams of mean and median RCS of the Leopard-2 tank model in three sectors of azimuth 
aspect given its radar observation at horizontal polarization (ε =  1°, underlying surface – dry soil). 
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fiGure 3.264  Diagrams of mean and median RCS of the Leopard-2 tank model in three sectors of azimuth 
aspect given its radar observation at vertical polarization (ε =  1°, underlying surface – dry soil). 

fiGure 3.265  Diagrams of mean and median RCS of the Leopard-2 tank model in 20-degree sectors of 
azimuth aspect given its radar observation at horizontal polarization (ε =  1°, underlying surface – dry soil). 
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fiGure 3.266  Diagrams of mean and median RCS of the Leopard-2 tank model in 20-degree sectors of 
azimuth aspect given its radar observation at vertical polarization (ε =  1°, underlying surface – dry soil). 

fiGure 3.267  (See color insert.) Circular diagrams of noncoherent RCS given radar observation of 
Leopard-2 tank model (ε =  1°, underlying surface – dry soil). 

fiGure 3.268  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of 
Leopard-2 tank model (ε =  10°, underlying surface – dry soil). 
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fiGure 3.269  Diagrams of mean and median RCS of the Leopard-2 tank model in three sectors of azimuth 
aspect given its radar observation at horizontal polarization (ε =  10°, underlying surface – dry soil). 
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fiGure 3.270  Diagrams of mean and median RCS of the Leopard-2 tank model in three sectors of azimuth 
aspect given its radar observation at vertical polarization (ε =  10°, underlying surface – dry soil). 

fiGure 3.271  Diagrams of mean and median RCS of the Leopard-2 tank model in 20-degree sectors of 
azimuth aspect given its radar observation at horizontal polarization (ε =  10°, underlying surface – dry soil). 
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fiGure 3.272  Diagrams of mean and median RCS of the Leopard-2 tank model in 20-degree sectors of 
azimuth aspect given its radar observation at vertical polarization (ε =  10°, underlying surface – dry soil). 
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fiGure 3.273  (See color insert.) Circular diagrams of noncoherent RCS of Leopard-2 tank model (ε =  10°, 
underlying surface – dry soil). 
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fiGure 3.274  (See color insert.) Circular diagrams of instanteneous RCS of Leopard-2 tank model 
(ε =  10°, underlying surface – moist soil). 
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fiGure 3.275  Diagrams of mean and median RCS of the Leopard-2 tank model in three sectors of azimuth 
aspect given its radar observation at horizontal polarization (ε =  10°, underlying surface – moist soil). 
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fiGure 3.276  Diagrams of mean and median RCS of the Leopard-2 tank model in three sectors of azimuth 
aspect given its radar observation at vertical polarization (ε =  10°, underlying surface – moist soil). 

fiGure  3.277  Diagrams  of  mean  and  median  RCS  of  the  Leopard-2  tank  model  in  20-degree  sectors  of 
azimuth  aspect  given  its  radar  observation  at  horizontal  polarization  (ε =  10°,  underlying  surface – moist  soil). 
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fiGure 3.278  Diagrams of mean and median RCS of the Leopard-2 tank model in 20-degree sectors of 
azimuth aspect given its radar observation at vertical polarization (ε =  10°, underlying surface – moist soil). 

fiGure 3.279  (See color insert.) Circular diagrams of noncoherent RCS of Leopard-2 tank model (ε =  10°, 
underlying surface – moist soil). 

fiGure 3.280  (See color insert.) Circular diagrams of instanteneous RCS of Leopard-2 tank model 
(ε =  30°, underlying surface – dry soil). 



251 Scattering Characteristics of Some Airborne and Ground Objects 

0.34 

47.37 

421.41 

1.53 
0.78 

0.20 
0.1 

1.0 

10.0 

100.0 

1000.0 

RC
S 

(m
2 )

 

Head on: 0–45 Side on: 45–135 Stern on: 135–180 
β (deg) 

Mean RCS Median RCS 
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fiGure 3.283  Diagrams of mean and median RCS of the Leopard-2 tank model in 20-degree sectors of 
azimuth aspect given its radar observation at horizontal polarization (ε =  30°, underlying surface – dry soil). 
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fiGure 3.284  Diagrams of mean and median RCS of the Leopard-2 tank model in 20-degree sectors of 
azimuth aspect given its radar observation at vertical polarization (ε =  30°, underlying surface – dry soil). 
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fiGure 3.285  (See color insert.) Circular diagrams of noncoherent RCS of Leopard-2 tank model (ε =  30°, 
underlying surface – dry soil). 
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fiGure 3.286  (See color insert.) Circular diagrams of instanteneous RCS of Leopard-2 tank model 
(ε =  30°, underlying surface – moist soil). 
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fiGure 3.287  Diagrams of mean and median RCS of the Leopard-2 tank model in three sectors of azimuth 
aspect given its radar observation at horizontal polarization (ε =  30°, underlying surface – moist soil). 

fiGure 3.288  Diagrams of mean and median RCS of the Leopard-2 tank model in three sectors of azimuth 
aspect given its radar observation at vertical polarization (ε =  30°, underlying surface – moist soil). 

fiGure  3.289  Diagrams  of  mean  and  median  RCS  of  the  Leopard-2  tank  model  in  20-degree  sectors  of 
azimuth  aspect  given  its  radar  observation  at  horizontal  polarization  (ε =  30°,  underlying  surface  – moist 
soil). 
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fiGure 3.290  Diagrams of mean and median RCS of the Leopard-2 tank model in 20-degree sectors of 
azimuth aspect given its radar observation at vertical polarization (ε =  30°, underlying surface – moist soil). 
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fiGure  3.292  Amplitude  distribution  of  echo  signal  given  radar  observation  of  Leopard-2  tank  model  in  the 
azimuth  aspect  sector  from  −10°  through  +10°,  horizontal  polarization  (ε =  1°,  underlying  surface – dry  soil). 
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fiGure 3.294 Amplitude distribution of echo signal given radar observation of Leopard-2 tank model in 
the azimuth aspect sector from 10° through 30°, horizontal polarization (ε = 1°, underlying surface – dry soil). 
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fiGure  3.293  Amplitude  distribution  of  echo  signal  given  radar  observation  of  Leopard-2  tank  model  in  the 
azimuth  aspect  sector  from  −10°  through  +10°,  horizontal  polarization  (ε =  1°,  underlying  surface  – moist  soil). 

fiGure  3.295  Amplitude  distribution  of  echo  signal  given  radar  observation  of  Leopard-2  tank  model  in  the 
azimuth  aspect  sector  from  10°  through  30°,  horizontal  polarization  (ε =  1°,  underlying  surface – moist  soil). 
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fiGure 3.297 Amplitude distribution of echo signal given radar observation of Leopard-2 tank model in the 
azimuth aspect sector from −10° through +10°, horizontal polarization (ε = 30°, underlying surface – moist soil). 
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fiGure  3.296  Amplitude  distribution  of  echo  signal  given  radar  observation  of  Leopard-2  tank  model  in  the 
azimuth  aspect  sector  from  −10°  through  +10°,  horizontal  polarization  (ε =  30°,  underlying  surface – dry  soil). 

fiGure  3.298  Amplitude  distribution  of  echo  signal  given  radar  observation  of  Leopard-2  tank  model  in 
the  azimuth  aspect  sector  from  10°  through  30°,  horizontal  polarization  (ε =  30°,  underlying  surface  – dry  soil). 
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table 3.19 
parameters of probability distributions for the echo signal amplitudes of leopard-2 tank 
model Given elevation angle of illumination equal to 1° 

azimuth aspect distribution 
range soil type polarization distribution kind parameters 

  −10° … +10° Dry soil Horizontal Normal distribution:   μ = 3.68522 
 1 ⎛ (x − µ )2 ⎞ 

p x ( ) = exp −
⎝⎜ 2σ2 ⎠⎟σ 2π 

  σ = 1.793628 

Vertical Normal distribution   μ = 3.518374 
  σ = 1.710021 

Moist soil Horizontal Normal distribution   μ = 3.740518 
  σ = 1.821332 

Vertical Normal distribution	   μ = 3.28975 
  σ = 1.595294 

  10° … 30° Dry soil Horizontal Γ-distribution:   b = 1.814148 
c −1 ⎛ x ⎞ ⎛ x ⎞ ⎝⎜ − 

b ⎠⎟ 1
p x ( ) = e

⎝⎜ ⎠⎟ b b ( )Γ c  

  c = 2.206866

, 
where Γ(c) is the gamma-function 

Vertical Γ-distribution   b = 1.7225911 
  c = 2.21231 

Moist soil Horizontal Γ-distribution   b = 1.845529 
  c = 2.205043 

Vertical Γ-distribution	   b = 1.594283 
  c = 2.220279 
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fiGure  3.299  Amplitude  distribution  of  echo  signal  given  radar  observation  of  Leonard-2  tank  model  in  the 
azimuth  aspect  sector  from  10°  through  30°,  horizontal  polarization  (ε =  30°,  underlying  surface – moist  soil). 



      

  

 
 

    
  

  
  

  
  

  
  

    
  

  
  

  
  

 
  

table 3.20 
parameters of probability distributions for the echo signal amplitudes of leopard-2 tank 
model Given elevation angle of illumination equal to 30° 

azimuth aspect 
range soil type polarization distribution kind distribution parameters 

–10° … +10° Dry soil Horizontal Normal distribution: μ = 2.385831 

p x ( ) = x( ) 

σ π 
− − µ 

σ 
⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

1 

2 2 

2 

2exp 
σ = 1.106391 

Vertical Normal distribution μ = 2.171519 
σ = 0.98248 

Moist soil Horizontal Weibull distribution: b = 2.811256 

p x ( ) = c 
b 

x 
b 

e 
c x 

b 

c 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

− 
−⎛ 

⎝⎜ 
⎞ 
⎠⎟ 

1 c = 1.955078 

Vertical Normal distribution μ = 1.89439 
σ = 0.838508 

10° … 30° Dry soil Horizontal Γ-distribution: b = 0.52747 
c−1 ⎛ x ⎞ c = 2.158628⎛ x ⎞ − 1⎝⎜ b ⎠⎟ 

p x = e( ) ,
⎝⎜ b ⎠⎟ b ( ) Γ c 

where Γ(c) is Gamma-function 

Vertical Lognormal distribution: μ = − 1.04413 

(log x − µ 2 ⎞ σ = 0.7098011 ⎛ ( ) )
p x = exp − 2( ) 

⎝⎜ ⎠⎟2 x 2σπ σ 

Moist soil Horizontal Γ-distribution b = 0.815589 
c = 2.088607 

Vertical Γ-distribution b = 0.42271 
c = 2.362732 
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3.2.4 imPulSe reSPOnSeS Of leOPard-2 main battle tank 

As an example, we consider HRRPs of the Leopard-2 main battle tank observed at the azimuth 
aspect of 15° and carrier frequency of 10 GHz (3 cm wavelength). 

Bold solid lines in Figures 3.300 through 3.308 below correspond to HRRPs obtained using 
signal with rectangular amplitude spectrum of 1 GHz bandwidth. Thin dashed lines correspond to 
HRRP obtained using signal with rectangular spectrum of 250 MHz bandwidth. Both wideband 
signals are centered at the same carrier frequency. 

Figure 3.300 shows HRRPs of Leopard-2 tank model illuminated at grazing elevation angle of 
1° (illumination almost along the ground). Unlike the T-90 tank model, the surface fractures do 
not contribute significantly into total echo from Leopard-2 tank model given this elevation. So, the 
difference between this tank model’s HRRPs obtained given horizontal and vertical polarization 
of illuminating wave as well as given dry and moist soil as underlying surface is almost absent. 
Therefore, we present only impulse responses of the Leopard-2 tank model standing on dry soil 
given its illumination at horizontal polarization. 

Peaks #1 are due to scattering from the right track cover. Peaks #2 are due to scattering from the 
side surface of right track skirt. Peaks #3 are due to scattering from the left track cover. Peaks #4 
are due to scattering from the main gun mantlet. Peaks #5 are due to scattering from side surfaces of 
the turret and the right track cover. Peaks #6 are due to scattering from the turret’s rear edge. Peaks 
#7 are due to scattering from the tank’s stern. 



1.6 
1.4 
1.2 

5 
2 

3 41 6 7 

|A
(t)

| 1.0 
0.8 
0.6 
0.4 
0.2 
0.0–30 –20 –10 0 10 20 30 

t (ns) 

 fiGure 3.300 HRRPs of Leopard-2 tank model standing on dry soil given its radar observation at eleva
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­

Figures 3.301 and 3.302 show HRRPs of Leopard-2 tank model standing on dry soil (as underly­
ing surface) given its illumination at the elevation angle of 10° by the waves with horizontal and 
vertical polarizations, respectively. 

Figures 3.303 and 3.304 show HRRPs of Leopard-2 tank model standing on moist soil (as under­
lying surface) given its illumination at the elevation angle of 10° by the waves with horizontal and 
vertical polarizations, respectively. 

Some peaks in Figures 3.301 through 3.304 are numbered. Peaks #1 are due to scattering from 
the right track cover. Peaks #2 are due to scattering from the left track cover. Peaks #3 are due to 
scattering from the side surface of right track skirt. Peaks #4 are due to scattering from the turret’s 
rear edge. Peaks #5 are due scattering from the tank’s stern. 

fiGure 3.301  HRRPs of Leopard-2 tank model standing on dry soil given its radar observation at eleva
tion of 10°, horizontal polarization. 

­

2.5 

fiGure 3.302  HRRPs of Leopard-2 tank model standing on dry soil given its radar observation at eleva
tion of 10°, vertical polarization. 
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fiGure 3.303  HRRPs of Leopard-2 tank model standing on moist soil given its radar observation at eleva
tion of 10°, horizontal polarization. 
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fiGure 3.304  HRRPs of Leopard-2 tank model standing on moist soil given its radar observation at eleva
tion of 10°, vertical polarization. 

­

It is worth mentioning that the peaks are the superpositions of echoes propagated along different 
paths and shifted by different time delays thereof. Therefore, some peaks (for instance peaks #5) 
start to split. The amplitudes of peaks obtained at horizontal polarization (Figures 3.301 and 3.303) 
are greater in case of tank standing on moist soil. The latter is conditioned by the greater reflection 
coefficient of moist soil given illumination elevation angle of 10° at horizontal polarization. At the 
same time, given vertical polarization of illumination wave (Figures 3.302 and 3.304), the peak 
amplitudes are greater for the case of dry soil. The latter is due to the fact that elevation angle of 
illumination equal to 10° is close to the Bruster angle in case of moist soil, which leads to the surface 
reflection coefficient at vertical polarization approaching zero. 

Amplitudes of most of HRRP peaks are greater in case of horizontal polarization than of those 
in case of vertical one given any soil type. The latter indicates the fact that electromagnetic energy 
bounced off the underlying surface significantly influences the HRRP formation. 

Figures 3.305 and 3.306 show the HRRPs of Leopard-2 tank model standing on dry soil (as 
underlying surface) given its illumination at the elevation angle of 30° by the waves with horizontal 
and vertical polarizations respectively. 

Figures 3.307 and 3.308 show the HRRPs of Leopard-2 tank model standing on moist soil (as 
underlying surface) given its illumination at the elevation angle of 30° by the waves with horizontal 
and vertical polarizations, respectively. 

Some HRRP peaks in Figures 3.305 through 3.308 are numbered. Peaks #1 are due to scatter­
ing from the right track cover. Peaks #2 are due to scattering from the left track cover and from 
the right tank’s track (surface reflection is accounted for). Peaks #3 are due to scattering from the 
right tank’s track (surface reflection is accounted for). Peaks #4 and #5 are due to scattering from 
the left tank’s track (surface reflection is accounted for). Peaks #6 are due to scattering from the 
hatch on turret’s top. Peaks #7 are due to scattering from the tank’s stern, surface scattering being 
accounted for. It should be noted that some peaks are due to echoes that could be received only via 
mediation of underlying surface. So, such peaks (for instance peaks # 3, #4, #5, and #7) can have 
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fiGure 3.305  HRRPs of Leopard-2 tank model standing on dry soil given its radar observation at eleva
tion of 30°, horizontal polarization. 

­

fiGure 3.306  HRRPs of Leopard-2 tank model standing on dry soil given its radar observation at eleva
tion of 30°, vertical polarization. 

­

fiGure 3.307  HRRPs of Leopard-2 tank model standing on moist soil given its radar observation at eleva
tion of 30°, horizontal polarization. 

­

fiGure 3.308  HRRPs of Leopard-2 tank model standing on moist soil given its radar observation at eleva
tion of 30°, vertical polarization. 
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negligible amplitudes or can be absent altogether (Figure 3.306). Amplitudes of peaks given hori­
zontal (Figures 3.305 and 3.307) and vertical (Figures 3.306 and 3.308) polarization of illumination 
wave are greater for the case of moist soil. This is due to the greater surface reflection coefficients 
of moist soil for both polarizations given illumination elevation angle of 30°. 

3.2.5 ScatterinG characteriSticS Of m1a1 abramS main battle tank 

Although the first specimens of series produced M1 Abrams tanks were made in 1980 at the gov­
ernment-owned Lima Army Tank Plant, the series production itself had not started until September 
1981. Production of the baseline variant of M1 was stopped in January 1985, when a total of 2374 
tanks of this modification had been produced [103]. 

The front hull part houses the driver’s compartment of 2.5 m3 volume. Fighting compartment 
of the 10.4 m3 volume includes the hull center and circularly rotating turret. The turret houses pri­
mary and secondary weapons—the M68E1 stabilized in two planes 105 mm rifled gun with coaxial 
M240 7.62 mm machine gun. In front of the commander’s hatch, there is a 12.7 mm Brauning M2 
machine gun, and in front of the loader’s hatch there is a MAG-58 machine gun. 

The M1 Abrams tank design was aimed at the drastic increase in its protection against variety of 
weapons as compared to its predecessors (the M60). This aim has been achieved by the complex of 
design solutions: tank visibility reduction, application of heavy armor of new type, decrease in the 
heavy armor surface and use of armor cutouts, and designing rational internal layout. The low tank 
visibility is facilitated by the low tank’s silhouette and disruptive pattern paint job that provided 
better masking capability compared to plain olive drab color scheme of M60 tanks. 

The tank’s hull and turret are made by welding (Figure 3.309). The hull consists of five large 
blocks. The turret consists of outer and inner armor shells tied together by stiffening ribs, the space 
between them being filled with combined armor packs consisting of steel and nonmetallic materi­
als. Transmission is protected with sectional skirt screens (seven sections per side) made of spaced 
armor with filling. Each section thickness (except the first one) is about 70 mm, their total weight 
on both sides being 1.5 tons. Thickness of armor plates varies over the whole tank’s surface accord­
ing to statistics of hits by rounds: the glacis plate thickness goes up from 50 mm in its lower part to 
125 mm at the turret’s barbette; armor thickness around power plant and transmission compartment 
varies from 25 mm to 32.5 mm, that of turret varies from 25 mm to 125 mm, and that of hull’s sides 
varies from 45 mm to 60 mm. In total, armor accounts for about 56% of the tank mass. The armor 
itself is based on the British-designed “Chobham” armor. 

Computer model of the tank surface used in our scattering computations (Figure 3.310) consisted 
of 53 parts of ellipsoids and of 22 local edge scatterers. Parameters of computer model are sum­
marized in Table 3.21. 

Figures 3.311 through 3.340 show diagrams of mean and median RCS and circular diagrams of 
instantaneous and noncoherent RCS obtained for the M1A1 Abrams tank model. The results are 
given for vertical and horizontal polarization, two types of underling surface and three elevation 
angles. 

fiGure 3.309  M1A1 Abrams main battle tank. 



table 3.21 
Geometrical Characteristics of m1a1 main battle tank 

hull Characteristics (figure 3.309) tank surface model Characteristics (figure 3.310) 

Tank length (gun included)  9.828 m Number of parts of ellipsoids in the model 53 

Width  3.65 m Number of straight wedge parts in the model 22 

Height  2.438 m 

Combat weight  57.15 t 
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fiGure 3.310  Computer model of M1A1 Abrams tank surface. 

Figures 3.341 through 3.348 show the amplitude distributions of echo signals for two azimuth 
aspect sectors and two elevation angles. 

Tables 3.22 and 3.23 summarize the parameters of distributions that fit mostly the simulation 
data for square root of RCS. 

In Section 3.2.6, there are examples of HRRPs computed for the tank model given various illu
mination signal spectrum widths. 
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fiGure 3.311  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of 
M1A1 Abrams tank model (ε =  1°, underlying surface – dry soil). 
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fiGure 3.312  Diagrams of mean and median RCS of the M1A1 Abrams tank model in three sectors of 
azimuth aspect given its radar observation at horizontal polarization (ε =  1°, underlying surface – dry soil). 

fiGure 3.313  Diagrams of mean and median RCS of the M1A1 Abrams tank model in three sectors of 
azimuth aspect given its radar observation at vertical polarization (ε =  1°, underlying surface – dry soil). 

fiGure 3.314  Diagrams of mean and median RCS of the M1A1 Abrams tank model in 20-degree sectors 
of azimuth aspect given its radar observation at horizontal polarization (ε =  1°, underlying surface – dry soil). 
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fiGure 3.315  Diagrams of mean and median RCS of the M1A1 Abrams tank model in 20-degree sectors 
of azimuth aspect given its radar observation at vertical polarization (ε =  1°, underlying surface – dry soil). 
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fiGure 3.316  (See color insert.) Circular diagrams of noncoherent RCS given radar observation of M1A1 
Abrams tank model (ε =  1°, underlying surface – dry soil). 
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fiGure 3.317  (See color insert.) Circular diagrams of instantaneous RCS given radar observation of 
M1A1 Abrams tank model (ε =  10°, underlying surface – dry soil). 
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266 Electromagnetic Wave Scattering by Aerial and Ground Radar Objects 

fiGure 3.318  Diagrams of mean and median RCS of the M1A1 Abrams tank model in three sectors of 
azimuth aspect given its radar observation at horizontal polarization (ε =  10°, underlying surface – dry soil). 

fiGure 3.319  Diagrams of mean and median RCS of the M1A1 Abrams tank model in three sectors of 
azimuth aspect given its radar observation at vertical polarization (ε =  10°, underlying surface – dry soil). 

fiGure  3.320  Diagrams  of  mean  and  median  RCS  of  the  M1A1  Abrams  tank  model  in  20-degree  sectors 
of  azimuth  aspect  given  its  radar  observation  at  horizontal  polarization  (ε =  10°,  underlying  surface  – dry  soil). 
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fiGure 3.321  Diagrams of mean and median RCS of the M1A1 Abrams tank model in 20-degree sectors 
of azimuth aspect given its radar observation at vertical polarization (ε =  10°, underlying surface – dry soil). 

fiGure 3.322  (See color insert.) Circular diagrams of noncoherent RCS of M1A1 Abrams tank model 
(ε =  10°, underlying surface – dry soil). 

fiGure 3.323  (See color insert.) Circular diagrams of instantaneous RCS of M1A1 Abrams tank model 
(ε =  10°, underlying surface – moist soil). 
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fiGure 3.324  Diagrams of mean and median RCS of the M1A1 Abrams tank model in three sectors of 
azimuth aspect given its radar observation at horizontal polarization (ε =  10°, underlying surface – moist soil). 

fiGure 3.325  Diagrams of mean and median RCS of the M1A1 Abrams tank model in three sectors of 
azimuth aspect given its radar observation at vertical polarization (ε =  10°, underlying surface – moist soil). 

fiGure  3.326  Diagrams  of  mean  and  median  RCS  of  the  M1A1  Abrams  tank  model  in  20-degree  sectors  of 
azimuth  aspect  given  its  radar  observation  at  horizontal  polarization  (ε =  10°,  underlying  surface – moist  soil). 
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fiGure 3.327  Diagrams of mean and median RCS of the M1A1 Abrams tank model in 20-degree sectors 
of azimuth aspect given its radar observation at vertical polarization (ε =  10°, underlying surface – moist soil). 
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fiGure 3.328  (See color insert.) Circular diagrams of noncoherent RCS of M1A1 Abrams tank model 
(ε =  10°, underlying surface – moist soil). 
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fiGure 3.329  (See color insert.) Circular diagrams of instantaneous RCS of M1A1 Abrams tank model 
(ε =  30°, underlying surface – dry soil). 
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fiGure 3.330  Diagrams of mean and median RCS of the M1A1 Abrams tank model in three sectors of 
azimuth aspect given its radar observation at horizontal polarization (ε =  30°, underlying surface – dry soil). 

fiGure 3.331  Diagrams of mean and median RCS of the M1A1 Abrams tank model in three sectors of 
azimuth aspect given its radar observation at vertical polarization (ε =  30°, underlying surface – dry soil). 

fiGure  3.332  Diagrams  of  mean  and  median  RCS  of  the  M1A1  Abrams  tank  model  in  20-degree  sectors 
of  azimuth  aspect  given  its  radar  observation  at  horizontal  polarization  (ε =  30°,  underlying  surface  – dry  soil). 
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fiGure 3.333  Diagrams of mean and median RCS of the M1A1 Abrams tank model in 20-degree sectors 
of azimuth aspect given its radar observation at vertical polarization (ε =  30°, underlying surface – dry soil). 
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fiGure 3.334  (See color insert.) Circular diagrams of noncoherent RCS of M1A1 Abrams tank model 
(ε =  30°, underlying surface – dry soil). 
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fiGure 3.335  (See color insert.) Circular diagrams of instantaneous RCS of M1A1 Abrams tank model 
(ε =  30°, underlying surface – moist soil). 
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fiGure 3.336  Diagrams of mean and median RCS of the M1A1 Abrams tank model in three sectors of 
azimuth aspect given its radar observation at horizontal polarization (ε =  30°, underlying surface – moist soil). 

fiGure 3.337  Diagrams of mean and median RCS of the M1A1 Abrams tank model in three sectors of 
azimuth aspect given its radar observation at vertical polarization (ε =  30°, underlying surface – moist soil). 

fiGure 3.338  Diagrams of mean and median RCS of the M1A1 Abrams tank model in 20-degree sectors 
of azimuth aspect given its radar observation at horizontal polarization (ε =  30°, underlying surface – moist 
soil). 
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fiGure 3.339  Diagrams of mean and median RCS of the M1A1 Abrams tank model in 20-degree sectors 
of azimuth aspect given its radar observation at vertical polarization (ε =  30°, underlying surface – moist soil). 
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fiGure 3.340  (See color insert.) Circular diagrams of noncoherent RCS of M1A1 Abrams tank model 
(ε =  30°, underlying surface – moist soil). 

fiGure  3.341  Amplitude  distribution  of  echo  signal  given  radar  observation  of  M1A1  Abrams  tank  model  in 
the  azimuth  aspect  sector  from  −10°  through  +10°,  horizontal  polarization  (ε =  1°,  underlying  surface  – dry  soil). 
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fiGure  3.342  Amplitude  distribution  of  echo  signal  given  radar  observation  of  M1A1  Abrams  tank  model  in 
the  azimuth  aspect  sector  from  −10°  through  +10°,  horizontal  polarization  (ε =  1°,  underlying  surface  – moist  soil). 

fiGure  3.343  Amplitude  distribution  of  echo  signal  given  radar  observation  of  M1A1  Abrams  tank  model 
in  the  azimuth  aspect  sector  from  10°  through  30°,  horizontal  polarization  (ε =  1°,  underlying  surface  – dry  soil). 

fiGure  3.344  Amplitude  distribution  of  echo  signal  given  radar  observation  of  M1A1  Abrams  tank  model  in 
the  azimuth  aspect  sector  from  10°  through  30°,  horizontal  polarization  (ε =  1°,  underlying  surface  – moist  soil). 
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fiGure  3.345  Amplitude  distribution  of  echo  signal  given  radar  observation  of  M1A1  Abrams  tank  model  in 
the  azimuth  aspect  sector  from  −10°  through  +10°,  horizontal  polarization  (ε =  30°,  underlying  surface  – dry  soil). 

fiGure  3.346  Amplitude  distribution  of  echo  signal  given  radar  observation  of  M1A1  Abrams  tank  model  in 
the  azimuth  aspect  sector  from  −10°  through  +10°,  horizontal  polarization  (ε =  30°,  underlying  surface  – moist  soil). 

fiGure 3.347  Amplitude distribution of echo signal given radar observation of M1A1 Abrams tank model 
in the azimuth aspect sector from 10° through 30°, horizontal polarization (ε =  30°, underlying surface – dry 
soil). 
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table 3.22 
parameters of probabili
tank model Given eleva

azimuth 
aspect range soil type 

  −10° … +10° Dry soil 

Moist soil 

  10° … 30° Dry soil 

ty distributio
tion angle of

polarization 

Horizontal 

Vertical 

Horizontal 

Vertical 

Horizontal 

ns for the echo signal amplitudes
 illumination equal to 1° 

distribution kind 

Weibull distribution:	 
c c−1 ⎛ x ⎞	 

c ⎛ x ⎞ −
⎝⎜ b ⎠⎟p x ( ) = e

⎠⎟ b ⎝⎜ b 

Weibull distribution	 

Weibull distribution 

Weibull distribution 

Normal distribution: 
 1 ⎛ (x − µ )2 ⎞ 

p x ( ) = exp − 
⎝⎜ 22σ ⎠⎟σ 2π 

 of m1a1 abrams 

distribution 
parameters 

  b = 3.858086 
  c = 1.865993 

  b = 3.683428 
  c = 1.873687 
  b = 3.915371 
  c = 1.862784 
  b = 3.444218 
  c = 1.884252 
  μ = 3.236452 
  σ = 1.77658 

Vertical Normal distribution   μ = 3.085798 
  σ = 1.69432 

Moist soil Horizontal Normal distribution   μ = 3.283558 
  σ = 1.80324 

Vertical Normal distribution   μ = 2.878823 
  σ = 1.5822 
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fiGure 3.348  Amplitude distribution of echo signal given radar observation of M1A1 Abrams tank model 
in the azimuth aspect sector from 10° through 30°, horizontal polarization (ε =  30°, underlying surface – moist 
soil). 



       

  

 
 

    
  

  
  

  
  
  
  

    
  
  
  
  
  

  
  

table 3.23 
parameters of probability distributions for the echo signal amplitudes of m1a1 abrams 
tank model Given elevation angle of illumination equal to 30° 

azimuth aspect 
range soil type polarization distribution kind distribution parameters 

−10° … +10° Dry soil Horizontal Weibull distribution: b = 2.018514 
c c −1 ⎛ x ⎞ c = 1.48781 

c ⎛ x ⎞ −
⎝⎜ b ⎠⎟ 

p x = e( ) 
b ⎝⎜ b ⎠⎟ 

Vertical Γ-Distribution: b = 0.988648 
c −1 ⎛ x ⎞ c = 1.84323−⎛ x ⎞ ⎝⎜ b ⎠⎟ 1 

p x = e( ) 
b ⎠⎟ b ( ) ⎝⎜ Γ c 

, 
where Γ is Gamma-function 

Moist soil Horizontal Weibull distribution b = 2.502363 
c = 1.552444 

Vertical Γ-Distribution μ = 1.133567 
σ = 1.817716 

10° … 30° Dry soil Horizontal Γ-Distribution b = 0.244365 
c = 2.673187 

Vertical Γ-Distribution b = 0.200213 
c = 2.838689 

Moist soil Horizontal Γ-Distribution b = 0.360052 
c = 2.762984 

Vertical Γ-Distribution b = 0.230819 
c = 3.47689 
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3.2.6 imPulSe reSPOnSeS Of m1a1 abramS main battle tank 

As an example, we consider HRRPs of the M1A1 Abrams main battle tank observed at the azimuth 
aspect of 15° and carrier frequency of 10 GHz (3 cm wavelength). 

Bold solid lines in Figures 3.349 through 3.357 below correspond to HRRPs obtained using 
signal with rectangular amplitude spectrum of 1 GHz bandwidth. Thin dashed lines correspond to 
HRRPs obtained using signal with rectangular spectrum of 250 MHz bandwidth. Both wideband 
signals are centered at the same carrier frequency. 

Figure 3.349 shows HRRPs of M1A1 Abrams tank model illuminated at grazing elevation angle 
of 1° (illumination almost along the ground). Unlike the T-90 tank model, the surface fractures do 
not contribute significantly into total echo from M1A1 Abrams tank model given this elevation. So, 
the difference between this tank model’s HRRPs obtained given horizontal and vertical polarization 
of illuminating wave, as well as given dry and moist soil as underlying surface, is almost absent. 
Therefore, we present only impulse responses of the M1A1 Abrams tank model standing on dry soil 
given its illumination at horizontal polarization. 

Peaks #1 are due to scattering from the right track cover. Peaks #2 are due to scattering from the 
left track cover. Peaks #3 are due to scattering from the gun’s mantlet. Peaks #4 are due to scattering 
from the hatch on top of turret. Peaks #5 are due to scattering from the tank’s stern. 

Figures 3.350 and 3.351 show HRRPs of M1A1 Abrams tank model standing on dry soil (as 
underlying surface) given its illumination at the elevation angle of 10° by the waves with horizontal 
and vertical polarizations respectively. 
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Figures 3.352 and 3.353 show HRRPs of M1A1 Abrams tank model standing on moist soil (as 
underlying surface) given its illumination at the elevation angle of 10° by the waves with horizontal 
and vertical polarizations respectively. 

Some  peaks  in  Figures  3.350  through  3.353  are  numbered.  Peaks  #1  are  due  to  scattering  from  the 
right  track  cover.  Peaks  #2  are  due  to  scattering  from  the  left  track  cover.  Peaks  #3  are  due  to  scat
tering  from  the  turret’s  mantlet.  Peaks  #4  are  due  to  scattering  from  the  hatch  on  top  of  the  t urret.  It 
is  worth  mentioning  that  the  peaks  are  the  superpositions  of  echoes  propagated  along  different  paths 
and  shifted  by  different  time  lags  thereof.  So,  some  peaks  (for  instance  peaks  #3  and  #4)  start  to  split. 
The  amplitudes  of  peaks  obtained  at  horizontal  polarization  (Figures  3.350  and  3.352)  are  greater 
in  case  of  tank  standing  on  moist  soil.  The  latter  is  conditioned  by  the  greater  reflection  coefficient 
of  moist  soil  given  illumination  elevation  angle  of  10°  at  horizontal  polarization.  At  the  same  time, 
given  vertical  polarization  of  illumination  wave  (Figures  3.351  and  3.353),  the  peak  amplitudes  are 
greater  for  the  case  of  dry  soil.  The  latter  is  due  to  the  fact  that  elevation  angle  of  illumination  equal  to 
10°  is  close  to  the  Bruster  angle  in  case  of  moist  soil,  which  leads  to  the  surface  reflection  coefficient 
at  vertical  polarization  approaching  zero. 

Figures 3.354 and 3.355 show the HRRPs of M1A1 Abrams tank model standing on dry soil (as 
underlying surface) given its illumination at the elevation angle of 30° by the waves with horizontal 
and vertical polarizations respectively. 

Figures 3.356 and 3.357 show the HRRPs of M1A1 Abrams tank model standing on the moist 
soil (as underlying surface) given its illumination at the elevation angle of 30° by the waves with 
horizontal and vertical polarizations respectively. 

Some peaks in Figures 3.354 through 3.357 are numbered. Peaks #1 are due to scattering from 
the right track cover. Peaks #2 are due to scattering from the left track cover. Peaks #3 are due to 

­

fiGure 3.349  HRRPs of M1A1 Abrams tank model standing on dry soil given its radar observation at 
elevation of 1°, horizontal polarization. 

fiGure 3.350  HRRPs of M1A1 Abrams tank model standing on dry soil given its radar observation at 
elevation of 10°, horizontal polarization. 
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fiGure 3.351  HRRPs of M1A1 Abrams tank model standing on dry soil given its radar observation at 
elevation of 10°, vertical polarization. 

fiGure 3.352  HRRPs of M1A1 Abrams tank model standing on moist soil given its radar observation at 
elevation of 10°, horizontal polarization. 

fiGure 3.353  HRRPs of M1A1 Abrams tank model standing on moist soil given its radar observation at 
elevation of 10°, vertical polarization. 

fiGure 3.354  HRRPs of M1A1 Abrams tank model standing on dry soil given its radar observation at 
elevation of 30°, horizontal polarization. 
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280 Electromagnetic Wave Scattering by Aerial and Ground Radar Objects 

fiGure 3.355  HRRPs of M1A1 Abrams tank model standing on dry soil given its radar observation at 
elevation of 30°, vertical polarization. 

fiGure 3.356  HRRPs of M1A1 Abrams tank model standing on moist soil given its radar observation at 
elevation of 30°, horizontal polarization. 

fiGure 3.357  HRRPs of M1A1 Abrams tank model standing on moist soil given its radar observation at 
elevation of 30°, vertical polarization. 

scattering from the right track (surface scattering is accounted for). Peaks #4 are due to scattering 
from the turret’s mantlet. Peaks #5 are due to scattering from the left track (surface scattering is 
accounted for). Peaks #6 are due to scattering from the hatch on top of the turret. Peaks #7 are due 
to scattering from the turret via mediation of underlying surface. It should be noted that some peaks 
are due to echoes that could be obtained only via mediation of underlying surface. So, such peaks, 
(for instance peaks #3, #5, and #7) can have negligible amplitude or be absent altogether in some 
HRRPs (Figures 3.355 and 3.357). Amplitudes of peaks given horizontal (Figures 3.354 and 3.356) 
and vertical (Figures 3.355 and 3.357) polarization of illumination wave are greater for the case of 
moist soil. This is due to the greater surface reflection coefficients of moist soil for both polariza­
tions given illumination elevation angle of 30°. 



281 

 1.  Lvova, L.A. 2003. Radar visibility of air vehicles, Russian Federal Nuclear Center - the All-Russian 
Research Institute of Theoretical Physics (RFYaC–VNIITPh), Snezhinsk (in Russian). 

 2.  Chernyak, V.S., Zaslavky, L.P., and Osipov, L.V. 1987. Multi-site radar stations and systems, Zarubezhnaya 
radiolektronika, 2, 9–69 (in Russian). 

 3.  Sukharevsky, O.I., Gorelyshev, S.A., and Sazonov, A.Z. 2000. On the strict and approximated computa­
tion of radar cross-section (RCS) of three dimensional objects, Collection of Papers, Kharkiv Military 
University, 4(30), 53–63 (in Russian). 

 4.  Nikolsky, V.V. and Nikolskaya, T.I. 1989. Electrodynamics and Propagation of Radio Waves, Nauka, 
Moscow (in Russian). 

 5.  Kenaugh, E.M. and Moffatt, D.L. 1965. Transient and impulse response approximation, Proceedings of 
the IEEE, 53(8), 893–901. 

 6.  Gupta, I.J. and Burnside, W.D. 1987. A physical optics correction for backscattering from curved sur
faces, IEEE Transactions of the AP, 35(5), 553–561. 

 7.  Ufimtsev, P.Y. 1971. Method of edge waves in the physical theory of diffraction, Foreign Technology Div 
Wright-Patterson AFB Ohio, No. FTD-HC-23-259-71. 

 8.  Ufimtsev, 	 P. 2003. Theory of Edge Diffraction in Electromagnetics, Tech Science Press, Encino, 
California. 

 9.  http://www.feko.info. 
 10.  Sukharevsky, O.I. 1987. Generalized Lorentz lemma and integral representations of some electro dynam­

ical problems, Soviet Journal of Communications Technology and Electronics, 32(11), 2255–2262 (in 
Russian). 

 11.  Silver, S. 1949. Microwave Antenna Theory and Design, MIT Radiation Laboratory Series, 12, McGraw-
Hill, New York. 

 12.  Benenson, L.S. and Pheld, Ya. N. 1993. Some new quadratic lemmas for electro dynamic fields, Soviet 
Journal of Communications Technology and Electronics, 38(7), 1179–1187 (in Russian). 

 13.  Bakhrah, L.D., Benenson, L.S., and Zelkin, E.G. et al. 1997. Antenna Technology Handbook, Pheld, Ya. 
N. and Zelkin, E.G. (eds), 5 Vols., Vol. 1, IPRZhR, Moscow (in Russian). 

 14.  Pheld, Ya. N. 1981. On computation of field excited by aperture antenna, Soviet Journal of Communications 
Technology and Electronics, 26(1), 178–179 (in Russian). 

 15.  Sukharevsky, O.I. 1983. Radiation of antenna array under dielectric radome in the presence of perfectly 
conducting underlying surface Radiotekhnika,  Kharkiv Institute of Radio electronics, Kharkiv, 60, 43–49 
(in Russian). 

 16.  Sukharevsky, I.V. 	 and Sukharevsky, O.I. 1985. About the field excited by radiating aperture in the 
presence of scattering objects, Waves and Diffraction-85. Short Thesis of Paper for the IX All-Union 
Symposium on Diffraction and Propagation of Radio Waves, Tbilisi, 1, 270–273 (in Russian). 

 17.  Sukharevskiy, I.V. and Sukharevsky, O.I. 1986. Calculation of the field excited by a radiating aperture 
in the presence of an arbitrary system of scatters, Soviet Journal of Communications Technology and 
Electronics, 31(5), 8–13. 

 18.  Zakhariev, L.N. and Lemansky, A.A. 1972. Wave Scattering by Black Bodies, Soviet radio, Moscow (in 
Russian). 

 19.  Kaplun, V.A. 1974. UHF Antenna Radomes, Soviet radio, Moscow (in Russian). 
 20.  Vakman, D.E. 1962. Asymptotic Methods in Linear Radio Techniques, Soviet radio, Moscow (in Russian). 
 21.  Kontorovich, M.I. and Muraviev, Yu. K. 1952. Derivation of geometrical optics reflection laws on the 

basis of asymptotic consideration of diffraction problems, Journal of Technical Physics, 22(3), 394–409 
(in Russian). 

 22.  Sukharevsky, I.V. and Sukharevsky, O.I. 2000. The determination of shortwave asymptotics of scattered 
fields by the stationary-phase method, Telecommunications and Radio Engineering, 54(7), 14–22. 

 23.  Goursat, E. 1959. A Course in Mathematical Analysis, Vol. 1, Dover, New York. 
 24.  Fedoryuk, M.V. 1963. The stationary phase method for multidimensional integrals, USSR Computational 

Mathematics and Mathematical Physics, 2(1), 152–157 (in Russian). 
 25.  Fedoryuk, M.V. 1977. Saddle-Point Method, Nauka, Moscow (in Russian). 

References
 

­

http://www.feko.info


 26.  Povzner,  A.Y.  and  Sukharevsky,  I.V.  1962.  On  finding  the  asymptotes  to  the  solutions  of  short-wate  diffrac
tion  problems,  USSR  Computational  Mathematics  and  Mathematical  Physics,  1(2),  249–276  (in  Russian). 

 27.  Honl, H., Maue, A.W., and Westpfahl, K. 1961.  Handbuch  der  Physik,  Springer-Verlag,  Berlin,  25(1),  218–573. 
 28.  Sukharevsky, O.I. and Vasilets, V.A. 1996. Impulse characteristics of smooth objects in bistatic case, 

Journal of Electromagnetic Waves and Applications, 10(12), 1613–1622. 
 29.  Sirenko, Yu. K., Sukharevsky, I.V., Sukharevsky, O.I., and Yashina, N.P. 2000. Fundamental and Applied 

Problems of Electromagnetic Wave Scattering, Krok, Kharkiv (in Russian). 
 30.  Shirman, Y.D., Gorshkov, S.A, Leschenko, S.P., Orlenko, V.M., Sedyshev, S.Y., and Sukharevsky, O.I. 

2002. Computer Simulation of Aerial Target Radar Scattering, Recognition, Detection, and Tracking, 
Shirman (ed.), Artech House, London, Boston. 

 31.  Sukharevsky, O.I. and Dobrodnyak, A.F. 1989. Scattering of a finite ideally conducting cylinder where the 
discontinuity lines have absorption coatings in the bistatic case, Radiophysics and Quantum Electronics, 
32(12), 1126–1131. 

 32.  Gradshteyn, I.S. and Ryzhik, I.M. 2000. Table of Integrals, Series and Products, 5th edition, Academic, 
New York. 

 33.  Sukharevsky, O.I., Vasiets, V.A., Sazonov, A.Z., and Tkachuk, K.I. 2000. Computation of scattering of 
electromagnetic wave on perfectly conducting object partially covered with radar absorbent material by 
means of triangulation formulas. Radio Physics and Radio Astronomy, 5(1), 47–54 (in Russian). 

 34.  Sukharevsky, O.I., Vasilets, V.A., Gorelyshev, S.A., Nechitaylo, S.V., and Tkachuk, K.I. 2001. Radar 
cross-section of the objects with non-perfectly conducting surface that has fractures, Zarubezhnaya 
Radioelektronika, 6, 41–48 (in Russian). 

 35.  Sukharevsky, O.I., Vasilets, V.A., Gorelyshev, S.A., and Shramkov, A. Yu. 1998. Impulse signal scatter
ing at perfectly conducting object situated in the vicinity of interface between two media, Collection of 
Papers, Kharkiv Military University, Kharkiv, 16, 78–85 (in Russian). 

 36.  Sukharevsky, O.I., Gorelyshev, S.A., Vasilets, V.A., and Muzychenko, A.V. 1998. Pulse signal inverse 
scattering by perfectly conducting object located near uniform half-space, Radio Physics and Radio 
Astronomy, 3(2), 136–145. 

 37.  Sukharevsky, O.I., Vasilets, V.A., Gorelyshev, S.A., and Muzychenko, A.V. 2000. Pulse signal scattering 
from perfectly conducting complex object located near uniform half-space. Progress in Electromagnetic 
Research, PIER 29, 29, 169–185. 

 38.  Vasilets, V.A. 2001. Method for computing RCS of perfectly conducting ground object, Collection of 
Papers, Kharkiv Military University, Kharkiv, 7(37), 90–92 (in Russian). 

 39.  Sukharevsky, O.I., Vasilets, V.A., Sazonov, A.Z., and Tkachuk, K.I. 2003. Method for computing RCS 
of ground object with non-perfectly conducting surface, Interservice Subject Collection of Papers 
Electromagnetic Wave Scattering, TGRU, Taganrog, 12, 9–15 (in Russian). 

 40.  Klimov, V.E. and Klishin, V.V. 1983. Axiomatization of the three dimensional object geometry synthesis 
problem, Izvestiya Academii Nauk, USSR, Technical Cybernetics, 4, 57–62 (in Russian). 

 41.  Mittra, R. 1973. Computer Techniques for Electromagnetics, 7. Pergamon Press, Oxford and New York. 
 42.  Youssef, N.N. 1989. Radar cross section of complex targets, Proceedings of the IEEE, 77(5), 722–734. 
 43.  Varganov, M.E. et al. 1985. Radar Characteristics of Air Vehicles, Tuchkov, L.T. (ed.), Radio i svyaz, 

Moscow (in Russian). 
 44.  Shtager, E.A. 1986. Wave scattering at the bodies of complex shape, Radio i svyaz, Moscow (in Russian). 
 45.  Shirman, Ya. 	 D., Gorshkov, S.A., Leshchenko, S.P., Bratchenko, G.D., and Orlenko, V.M. 1996. 

Simulation of radar scattering, detection, recognition, and tracking, Zarubezhnaya Radioelektronika, 11, 
3–63 (in Russian). 

 46.  Sukharevsky, O.I. and Dobrodnyak, A.F. 1988. Three-dimensional problem of diffraction by an ideally 
conducting wedge with a radio-absorbing cylinder on the edge, Radiophysics and Quantum Electronics, 
31(9), 763–769. 

 47.  Rogers, D.F. 	 and Adams, J.A. 1989. Mathematical Elements for Computer Graphics, 2nd edition, 
McGraw-Hill, Inc, New York, NY. 

 48.  Sweetman, B. 1992. Northrop B-2 Stealth Bomber: The Complete History, Technology, and Operational 
Development of the Stealth Bomber (Mil-Tech Series), Motorbooks Intl., USA. 

 49.  Sweetman, B. and Dorr, R.F. 1997. B-2 Stealth Bomber, World Air Power Journal, 31, 50p. 
 50.  Brekhovskikh, L.M. 1980. Waves in Layered Media, Academic Press, New York. 
 51.  Sukharevsky, I.V. and Semenyaka, E.N. 1999. Additional Chapters of Higher Mathematics. Issue 5: 

Quadrature and Cubature Formulas (Classics and Modern Developments), Kharkov Military University, 
Kharkov (in Russian). 

282	 References 

­

­



 52.  Zamyatin,  V.I.,  Bakhvalov,  B.N.,  and  Sukharevsky,  O.I.  1978.  Computer  calculation  of  directivity   patterns 
of  curved  radiating  surfaces,  Journal  of  Communication  Technologies  and  Electronics,  23(6),  1289–1293 
(in  Russian). 

 53.  Fok, V.A. 1945. Diffraction at a convex body, Journal of Experimental and Theoretical Physics, 15(12), 
693–698 (in Russian). 

 54.  Vasilets, V.A. and Tkachuk, K.I. 2004. Electromagnetic scattering characteristics of aerial and ground 
radar objects, in: Proceedings of International Conference on Mathematical Methods in Electromagnetic 
Theory MMET-2004, Dniepropetrovsk, 589–591. 

 55.  Sukharevsky, O.I., Vasilets, V.A., and Gorelyshev, S.A. 2001. RCS of the objects with non-perfectly scat­
tering surface that has fractures, in: Proceedings of the All-Russian Conference Radiation and Scattering 
of EMW IZEMV-2001, TGRU, Taganrog, 46–48 (in Russian). 

 56.  Ruck, G.T., Barrick, D.E., Stuart, W.D., and Krichbaum, C.K. 1970. Radar Cross Section Handbook, 
Ruck, G.T. (ed.). Plenum Press, New York. 

 57.  Knott, E.F. 2004. Radar Cross Section, Knott, E., Shaeffer, J., Tuley, M. (eds), 2nd edition, SciTech 
Publishing, Inc. Raleigh, NC 27613. 

 58.  Kouyoumjian, R.G. and Peters, L., Jr. 1965. Range requirements in radar cross-section measurements, 
Proceedings of the IEEE, 53(8), 920–928. 

 59.  Mayzel’s, E.N. and Torgovanov, V.A. 1972. Measurement of the Scattering Characteristics of Radar 
Targets, Kolosov, M.A. (ed.), Soviet Radio, Moscow (in Russian). 

 60.  Barton, D.K. and Ward, H. R. 1984. Handbook of Radar Measurement. Prentice-Hall, Englewood Cliffs, 
NJ1969; Artech House, Dedham, MA. 

 61.  Romanovsky,  V.O.  1977.  Algorithms  and  Solutions  to  the  Extremum  Problems,  Nauka,  Moscow  (in  Russian). 
 62.  King, R.W. and Smith, G.S. 1981. Antennas in Matter-Fundamental, Theory and Applications, MIT 

Press, Cambridge, MA. 
 63.  Anan’in, E.V., Vaksman, R.G., and Patrakov, Yu. M. 1994. Methods for reducing radar visibility, 

Zarubezhnaya Radioelektronika, 4–5, 5–21 (in Russian). 
 64.  Mikhaylov, G.D., Sergeev, V.I., Solomin, E.A., and Voronov, V.A. 1994. Methods and means for reducing 

radar visibility of antenna systems, Zarubezhnaya Radioelektronika, 4–5, 54–59 (in Russian). 
 65.  Masalov, S.A., Ryzhak, A.V., Sukharevsky, O.I., and Shkil, V.M. 1999. Physical grounds of wide-band 

stealth technologies, Mozhaysky Higher Engineering and Command School, St. Petersburg, Russia (in 
Russian). 

 66.  Ufimtsev, P. 1996. Comments on diffraction principles and limitations of RCS reduction techniques, 
Proceedings of the IEEE, 84(12), 1830–1851. 

 67.  Petrov, B.M. and Semenikhin, A.I. 1994. Controlled impedance coatings and structures, Zarubezhnaya 
Radioelektronika, 6, 9–16 (in Russian). 

 68.  Nebabin, V.G. and Belous, O.I. 1987. Methods and techniques for countering radar recognition, 
Zarubezhnaya Radioelektronika, 2, 38–47 (in Russian). 

 69.  Martynov, N.A. and Mironenko, G.N. 1996. Evaluation of electromagnetic wave scattering characteris­
tics of complex shape bodies, which are partially covered with radar absorbent material, Radiotekhnika, 
6, 102–105 (in Russian). 

 70.  Kukobko, S.V., Sazonov, A.Z., and Sukharevsky, I.O. 2005. Electro dynamical method for simulating 
two-dimensional model of the two-reflector antenna system under the nose dielectric radome, Radiofizika 
i Radioastronomiya, 10(2), 157–162 (in Russian). 

 71.  Kukobko, S.V., Sazonov, A.Z., and Sukharevsky, I.O. 2004. Iterative calculation method for two-
dimensional model of reflector-type antenna with sharp nose radome, in: Proceedings of International 
Conference on Mathematical Methods in Electromagnetic Theory MMET-2004, Dniepropetrovsk 
(Ukraine), 409–411. 

 72.  Sukharevsky, 	 O.I., Kukobko, S.V., and Sazonov, A.Z. 2005. Volume integral equation analysis of 
two-dimensional radome with a sharp nose, IEEE Transactions on Antennas and Propagation, 54(4), 
1500–1506. 

 73.  Kukobko, S.V., Sazonov, A.Z., and Sukharevsky, I.O. 2005. Mathematical simulation of reflector-type 
antenna with sharp nose radome scattering (two-dimensional problem), in: Proceedings of International 
Conference on Antenna Theory and Techniques ICATT-2005, Kiev (Ukraine), 180–183. 

 74.  Kozakoff, D.J. 2009. Analysis of Radome-Enclosed Antennas, Artech House, Boston, London. 
 75.  Gibson, W.C. 2008. The Method of Moments in Electromagnetics, Boca Raton: Chapman & Hall CRC. 

Taylor & Francis Group. 
 76.  Volakis, J.L. and Sertel, K. 2012. Integral Equation Methods for Electromagnetics, Raleigh, NC. 

References	 283 



 77.  Goldshtein, L.D. and Zernov, N.V. 1971. Electromagnetic Fields and Waves, Soviet radio, Moscow (in 
Russian). 

 78.  Booth, A.D. 1957. Numerical Methods, Butterworth Scientific Publications, London. 
 79.	  Stepanov, Y.G. 1971. Antiradar camouflage. Army Foreign Science and Technology Center, Charlottesville, 

VA,  USA,  Report  No.  FSTC-HT-23-442-70. 
 80.  Sukharevsky, O.I., Vasilets, V.A., Sazonov, A.Z., and Tkachuk, K.I. 2004. Computer simulation of caus­

tic surface appearing due to scattering from the cone’s inner surface, Radiotekhnika: All-Ukrainian 
Interservice Collection of Papers, 139, 56–59 (in Russian). 

 81.  Sukharevsky, I.V. and Vashinsky, S.E. 1998. About the stationary phase points and caustic influence 
on lateral radiation of antenna systems with radomes, in: Proceedings of International Conference on 
Mathematical Methods in Electromagnetic Theory MMET-98, Kharkov (Ukraine), Vol. 2, 537–539. 

 82.  Borovikov, V.A. and Kinber, B. Ye. 1994. Geometrical theory of diffraction, IEE Electromagnetic Wave 
Series 37, Institution of Electrical Engineers, London. 

 83.  Sukharevsky, I.V., Vazhinsky, S.V., and Sukharevsky, I.O. 2010. 3-D radome-enclosed aperture antenna 
analyses and far-side radiation, IEEE Transactions on Antennas and Propagation, 58(9), 2843–2849. 

 84.  Wehner, D.R. 1995. High Resolution Radar, 2nd edition, Artech House, Boston, London. 
 85.  Gabrielyan, D.D., Zvezdina, M. Yu., and Sinyavsky, G.P. 2005. Diffraction problems for the surfaces with 

radar absorbent coatings, Uspekhi Sovremennoy Radioelektroniki, 12, 3–15 (in Russian). 
 86.  Alimin, B.F. and Torgovanov, V.A. 1976. Methods for computing the properties of electromagnetic wave 

absorbers, Zarubezhnaya Radioelektronika, 3, 29–57 (in Russian). 
 87.  Lake, J. 2002. The Great Book of Bombers: The World’s Most Important Bombers from World War I to 

the Present Day, MBI Publishing Company, St. Paul, Minnesota. 
 88.  Sharpe, M. and Shaw, R. 2001. Boeing 737–100 and 200,MBI Publishing Company, Osceola, Wisconsin. 
 89.  Bowers, P.M. 1989. Boeing Aircraft Since 1916, Naval Institute Press, Annapolis, Maryland. 
 90.  Gordon, Y. 	 2010. Dmitriy Komissarov and Sergey Komissarov, Antonov’s Turboprop Twins: An-24, 

An-26, An-30, An-32. Red Star Vol. 12, Midland Publishing Ltd., Hinckley. 
 91.  Robert, J. (ed.) 2004. The Encyclopedia of Aircraft: Over 3,000 Military and Civil Aircraft from the 

Wright Flyer to the Stealth Bomber, 1st edition, Thunder Bay Press, San Diego, CA. 
 92.  Eden, P. 	 (ed.) 2004. Mikoyan MiG-29 Fulcrum. Encyclopedia of Modern Military Aircraft,  Amber 

Books, London. 
 93.  Spick, M. (ed.) 2000. MiG-29 Fulcrum. The Flanker. Great Book of Modern Warplanes, MBI Publishing, 

St. Paul, Minnesota. 
 94.  Gordon, Y. and Davison, P. 2005. Mikoyan Gurevich MiG-29 Fulcrum, Specialty Press, North Branch, 

Minnesota. 
 95.  Kisel’, V.N. and Fedorenko, A.I. 2000. Electromagnetic scattering from cavities with complex objects 

inside, in: Proceedings of International Conference on Mathematical Methods in Electromagnetic Theory 
MMET-2000, Kharkov (Ukraine), Vol. 2, 447–449. 

 96.  Kisel’, V.N. and Fedorenko, A.I. 2002. Electromagnetic modeling of the jet aircraft intake with the interior 
impeller, in: Proceedings of the International Conference on Mathematical Methods in Electromagnetic 
Theory (MMET-2002), Kiev, Ukraine, 2, 508–510. 

 97.  Lagarkov, A.N. and Kisel, V.N. 2007. Electromagnetic energy absorption within extensive impedance 
structures, in: Proceedings of the International Conference on Materials for Advanced Technologies 
(ICMAT 2007)  (SUNTEC, Singapore, 2007), Hock, L., Matitsine, S., Beng, G.Y., and Bing, K.L. (eds), 
World Scientific, Singapore, 3–10. 

 98.  Peacock, L. 1997. On falcon wings: The F-16 story. The Royal Air Force Benevolent Fund Enterprises, 
RAF Fairford, United Kingdom. 

 99.  The New Weapons of the World Encyclopedia. 2007. An International Encyclopedia from 5000 B.C. to 
the 21st Century. St. Martin’s Press, New York, NY. 

 100.  Mallika, J. 2006. Issue Brief No. 19: T-90S Bhishma. Institute of Peace and Conflicts Studies. URL 
accessed July 24. 

 101.  Zaloga, S. and Markov, D. 2000. Russia’s T-80U Main Battle Tank, Hong Kong, Concord. 
 102.  Frank  Lobitz.  2009.  Kampfpanzer  Leopard  2—Entwicklung  und  Einsatz  in  der  Bundeswehr  (Leopard  2 

Main  Battle  Tank—Development  and  German  Army  Service).  Tankograd  Publishing,  Erlangen,  Germany. 
 103.  Zaloga, S.J. and Sarson, P. 1993. M1 Abrams Maine Battle Tank 1982–1992. Osprey Military, Reed 

International Books Ltd, New Vanguard. 

284	 References 



285 

       
       

 

 

         

 

Index
 

a 

ADC, see Analog-to-digit converter (ADC)
 
Advanced unitary penetrator warhead (AUP warhead), 210
 
Aerial objects, 53; see also Ground complex-shaped objects
 

asymptotic method, 61–68
 
cruise missile model, 75–82
 
cubature formula, 58–60
 
local edge scatterer, 87–90
 
optimal distribution, 82–86
 
radar scattering, 54–58
 
scattering characteristics, 53
 
simple shape objects, 72–75
 
standalone object’s surface description, 54
 

AFR, see Amplitude–frequency response (AFR)
 
AGM-86 air launch cruise missile (ALCM), 210; see also
 

Airborne objects
 
amplitude distribution of echo signal, 218
 
computer model, 211
 
geometrical characteristics, 211
 
HRRPs, 219, 220, 221
 
impulse responses, 219
 
instantaneous RCS, 211, 213, 215
 
mean and median RCS, 212, 213, 214, 215, 216
 
noncoherent RCS, 213, 215, 217
 
parameters of probability distributions, 219
 

Airborne objects; see also Ground objects
 
geometry, 138
 
Kirchhoff’s method, 46
 
model, 47
 
reflector antennas, 116
 
scattering characteristics of, 138
 

Airborne Warning and Control System (AWACS), 116
 
Aircraft model, 84
 

quasi-optimal RAM coating distribution, 85
 
RAM distribution optimization, 82
 

ALCM, see AGM-86 air launch cruise missile (ALCM)
 
Amplitude–frequency response (AFR), 129, 130
 
An-26 multipurpose transport aircraft, 174; see also
 

Tu-22M3 long-range bomber aircraft
 
amplitude distribution of echo signal, 182
 
computer model, 174
 
geometrical characteristics, 174
 
HRRPs, 183, 184, 185
 
impulse responses, 183
 
instantaneous RCS, 175, 177, 180
 
mean and median RCS, 175, 176, 178, 179, 180
 
noncoherent RCS, 177, 181
 
parameters of probability distributions, 183
 
scattering characteristics, 174
 

Analog-to-digit converter (ADC), 73
 
Analytical surface description method, 47
 
Anechoic chamber (AnC), 72
 

backscattering RCS diagrams, 73, 74
 
comparison of RCS computation results, 72, 115
 
measurement system, 73
 

“Antenna–radome” system, 109, 121
 
behavior, 127
 
prediction, 127
 
RCS, 125, 126
 

Antenna systems (AS), 109; see also Reflector antennas (RA)
 
forward-looking, 50
 
model under dielectric cone radome, 51
 
of N-091EA “Ruby” radar, 187
 
under radio transparent radome, 187
 

AS, see Antenna systems (AS)
 
Asymptotic method, 19, 61, 110
 

amplitude multiplier, 67
 
classical, 46
 
estimation and transformation, 64
 
using Frenet formula, 63
 
smooth parts of object, 61
 
specular reflection point, 66, 68
 
stationary phase point, 65, 66
 
surface current density, 62
 

AUP warhead, see Advanced unitary penetrator 

warhead (AUP warhead)
 

AWACS, see Airborne Warning and Control 

System (AWACS)
 

b 

B-2 strategic bomber aircraft, 139; see also Airborne 

objects; Tu-22M3 long-range bomber aircraft
 

amplitude distribution of echo signal, 147, 148
 
external view, 139
 
“four leaf” scattering layout, 140
 
geometrical characteristics, 141
 
HRRPs, 149, 150, 151
 
impulse responses, 148
 
instantaneous RCS, 141, 145
 
mean and median RCS, 142–146
 
noncoherent RCS, 143, 145, 147
 
probability distributions parameters, 148
 
scattering characteristics, 139
 

Bistatic radar
 
asymptotic method, 61–68
 
mean RCS, 84, 85, 86
 
reciprocity principle, 36
 
smooth convex body in, 28–33
 
solution regularization, 17–19
 
surface integral asymptotic, 19–28
 

Boeing 737–400 medium-range airliner, 162, 163;
 
see also Airborne objects
 

amplitude distribution of echo signal, 170
 
computer model, 163
 
geometrical characteristics, 163
 
HRRPs, 172, 173
 
impulse responses, 171–174
 
instantaneous RCS, 164, 166, 168
 
mean and median RCS, 164, 165, 166, 167, 168, 169
 
noncoherent RCS, 165, 167, 169
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Boeing 737–400 medium-range airliner (Continued)
 
parameters of probability distributions, 171
 
scattering characteristics, 162
 

Boeing Aerospace cruise missile, 81
 

C 

Complex-shaped objects, 82; see also  
Ground complex-shaped objects
 

aircraft model, 84
 
antenna system model, 51
 
curved fracture edge modeling, 50
 
cutting plane determination, 49
 
ellipsoid, 48
 
local edge parts, 49–50
 
MiG-29 aircraft, 53
 
object surface description method, 47–48
 
optimal distribution, 82
 
quasi-optimal distribution, 84
 
RAM coating, 86
 
RCS values, 83, 85, 86
 
smooth part of surface, 48–49
 
straight fracture edge modeling, 49
 
surface geometry modeling, 47
 
T-90 tank, 53
 
visibility check for facets, 52
 

Complex-valued coefficients, 122
 
Cruise missile model, 75, 76
 

azimuth aspect vs., 77, 79, 81
 
Boeing Aerospace cruise missile, 81
 
in computer simulation, 81
 
frequency averaged RCS, 78
 
frequency vs., 77
 
instantaneous RCS, 77
 
missile scattering characteristics, 82
 
noncoherent RCS, 78, 79, 80
 
RCS computation for, 75
 
RECOTA software, 80
 

Cubature formula, 58, 112
 
computing surface integrals, 58
 
RCS, 60
 
smooth surface approximation, 58
 
unit triangle in barycentric coordinates, 59
 

Curved fracture edge modeling, 50
 

d 

“Deep” reflector antenna, 125
 
Digital scene matching area correlator (DSMAC), 210
 
Discrete Fourier transform (DFT), 73
 

e 

Edge wave diffraction method, 68
 
Electromagnetic  wave  propagation,  basic  paths  of,  46,  90,  91
 
Ellipsoid, 48
 

parameters, 48, 49
 
three-axial, 49
 

Envelope detector (ED), 73
 

f 

F-16 multirole fighter, 199, 200; see also Airborne 

objects; MiG-29 front-line fighter
 

amplitude distribution of echo signal, 206, 207
 

computer model, 200
 
geometrical characteristics, 199
 
HRRPs, 208, 209, 210
 
impulse responses, 208
 
instantaneous RCS, 200, 202, 204
 
mean and median RCS, 201–206
 
noncoherent RCS, 202, 204, 206
 
parameters of probability distributions, 207
 
scattering characteristics, 199
 

Fast Fourier transform algorithm (FFT algorithm), 129
 
“FEKO” software, 74, 75
 
“Four leaf” scattering layout, 140
 

G 

Generalized image principle, 8–9; see also Scattering 
electrodynamics theory
 

arbitrary system of scatterers, 13–17
 
closed dielectric envelope, 16
 
electromagnetic wave scattering problems, 7
 
influence of underlying surface, 9–12
 
radio transparent antenna radome, 13
 

Ground complex-shaped objects, 90
 
electromagnetic wave propagation, 90
 
nonperfectly reflecting surface, 99–106
 
perfectly conducting model, 96–99
 
plane electromagnetic wave scattering, 91–96
 
scattering characteristic computation method, 90
 

Ground objects, 222
 
computation method, 46
 
method for computing RCS, 99–106
 
model, 47
 
modern, 52
 
paths of electromagnetic wave propagation, 90
 
reflection coefficient modulus, 222
 
scattering characteristics, 106–109, 221
 

h 

High-frequency amplifier (HFA), 73
 
High-range resolution profile (HRRP), 128, 135, 139
 

AGM-86 ALCM, 219–221
 
An-26 aircraft, 179, 183–185
 
of B-2 aircraft, 148–151
 
Boeing 737–400 aircraft, 170–173
 
dependence, 129
 
F-16 aircraft, 208–210
 
Leopard-2 main battle tank, 258–261
 
M1A1 Abrams main battle tank, 277–280
 
MiG-29 aircraft, 196–199
 
T-90 main battle tank, 238–242
 
Tu-22M3 aircraft, 160–162
 

i
 

Impulse response (IR), 29, 47, 128
 
AGM-86 ALCM, 219–221
 
An-26 multipurpose transport aircraft, 179–185
 
approximation of smoothed, 128–135
 
of B-2 strategic bomber aircraft, 148–151
 
Boeing 737–400 medium-range airliner, 170–174
 
of complex scatterers, 33
 
expression, 32
 
F-16 multirole fighter, 208–210
 
Leopard-2 main battle tank, 258–262
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M1A1 Abrams main battle tank, 277–280
 
MiG-29 front-line fighter, 196–199
 
physical optics approximation, 32
 
smooth convex body, 28
 
T-90 main battle tank, 238–242
 
Tu-22M3 long-range bomber aircraft, 160–162
 

l 

Leopard-2 main battle tank, 242, 243; see also
  
Ground objects; T-90 main battle tank
 

amplitude distribution of echo signal, 254–257
 
computer model, 244
 
geometrical characteristics, 244
 
HRRPs, 259, 260, 261
 
impulse responses, 258
 
instantaneous RCS, 244, 246, 248, 250, 252
 
mean and median RCS, 245–251, 253
 
noncoherent RCS, 246, 248, 250, 252, 254
 
probability distributions parameters, 257, 258
 
scattering characteristics, 242
 

LFA, see Low-frequency amplifier (LFA)
 
Local edge scatterer, 87
 

circular segments, 90
 
RCS of edge shaped, 88, 89
 
reduction of radar scattering level, 87
 
straight edge, 87
 
variants of shaping, 88
 

Lorentz reciprocity theorem, 2, 10, 11, 14, 54, 92, 99–100
 
applications, 7
 
auxiliary field, 3
 
directivity diagram, 5
 
generalization, 2–3
 
layer of RAM, 6
 
magnetic kind, 4
 
scattered field of Stratton–Chu type, 110
 

Low-frequency amplifier (LFA), 73
 

m 

M1A1 Abrams main battle tank, 262; see also
  
Ground objects
 

amplitude distribution of echo signal, 273–276
 
computer model, 263
 
geometrical characteristics, 263
 
HRRPs, 278–280
 
impulse responses, 277–280
 
instantaneous RCS, 263, 265, 267, 269, 271
 
mean and median RCS, 264–271
 
noncoherent RCS, 265, 267, 269, 271, 273
 
probability distributions parameters, 276, 277
 
scattering characteristics, 262
 

MiG-29 aircraft, 186
 
surface description, 52, 53
 

MiG-29 front-line fighter; see also Airborne objects
 
amplitude distribution of echo signal, 195–196
 
computer model, 187
 
geometrical characteristics, 187
 
HRRPs, 197, 198, 199
 
impulse responses, 196
 
instantaneous RCS, 189, 191, 193
 
mean and median RCS, 189–194
 
N-091EA “Ruby” radar, 187
 
noncoherent RCS, 190, 192, 194
 

nose radome, 188
 
parameters of probability distributions, 196
 
scattering characteristics, 186
 

n 

N-091EA “Ruby” radar, 187
 
Neutralizer, 22, 23
 
Nonperfectly reflecting surface, 99; see also Perfectly 


conducting model, ground object
 
instantaneous RCS, 106
 
Lorentz reciprocity theorem, 99
 
noncoherent RCS, 107, 108
 
phase differences, 100, 102
 
physical optics approximation, 101
 
toroidal surfaces, 103
 
vector coefficients, 106
 

Nonstationary scattering problems
 
nonflat terminator, 18
 
physical optics method, 17
 

o 

Object surface description method, 47–48
 
Onboard reflector antenna, 120
 

“antenna–radome” system, 121
 
antenna RCS, 127
 
complex-valued coefficients, 122
 
propagation paths of incident wave, 122
 
radar scattering of three-dimensional model, 120
 
RCS, 119, 125, 126
 

p 

Perfectly conducting model, ground object, 96
 
averaged RCS, 97, 98
 
instantaneous RCS, 96, 97
 
model of tank, 96
 
noncoherent RCS, 98, 99
 
scattering characteristics, 96
 

Physical optics approximation; see also Scattering 

electrodynamics theory
 

edge singularities, 20–22, 24–28
 
egg-shaped surface, 18
 
impulse response, 28–33
 
neutralizer, 22
 
nonstationary scattering problems, 17
 
reciprocity principle, 33–36
 
stationary points, 20–22
 
surface integrals, 19
 

Pitot tube, 208, 209
 
Plane electromagnetic wave scattering, 91
 

interface vicinity of homogeneous half-space, 91
 
issue of incident wave reflection, 94
 
“object–ground” system, 91
 
physical optics approximation, 95
 
superposition principle and filtering property, 92
 

r 

RA, see Reflector antennas (RA)
 
Radar absorbent material (RAM), 1, 2
 

coating, 119, 131, 134, 140
 
edge RAM toroidal coating, 50
 
noncoherent RCS dependencies, 80
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Radar absorbent material (RAM) (Continued)
 
perfectly conducting surface, 6
 
RCS reduction of complex-shaped object, 82–86
 
RCS vs. azimuth aspect, 79
 
straight edge covered with, 71
 
uniform layer, 55
 
in wing’s construction, 151
 

Radar measurement system, 72, 73
 
Radar scattering, 54
 

asymptotic method for computation, 61–68
 
boundary conditions, 56
 
integration surface, 69
 
local edge fractures, 68–72
 
mathematical simulation, 1
 
onboard reflector antenna model, 120–127
 
in physical optics approximation, 55
 
reduction from local edge scatterer, 87–90
 
smooth surface, 54–56
 
wave scattering, 55, 58
 

Radar visibility (RV), 109, 199
 
reduction in electrically large antennas, 110
 

Radio transparent antenna radome, 13
 
RAM, see Radar absorbent material (RAM)
 
Radar cross-section (RCS), 36
 

computation results comparison, 72–74
 
for cone–sphere object, computation results, 75
 
cruise missile model, computation for, 75–82
 
for cylinder, computation results, 74
 
reduction of complex-shaped object, 82–86
 
of three-dimensional objects, 36–44
 

Receive antennas (RecA), 73
 
Reciprocity principle, 33
 

bistatic radar, 36
 
complex scattering diagrams, 35
 
scattered fields, 33
 
vector integral equations, 34
 

Reflector antennas (RA), 109
 
AWACS, 116
 
backscattering diagrams, 117, 118, 120
 
cone radome, 109
 
description of computer model, 124
 
in free space, 110
 
half-plane with radar absorbent cylinder, 115
 
integration over surface, 113
 
mathematical expressions, 110
 
onboard reflector antenna, 120–127
 
parabolic reflectors properties, 117
 
paraboloid of revolution, 116
 
RCS, 119, 125, 126
 
reflector antenna geometry, 110
 
scattering characteristics, 109
 
screen by plane, 111
 
stationary phase points, 114
 

Revolution method, bodies of, 47
 
RV, see Radar visibility (RV)
 

s 

Scattering electrodynamics theory, 1; see also
 
Generalized image principle
 

Lorentz reciprocity theorem, 2–3
 
mathematical simulation, 1
 

Simple shape objects, 72; see also Complex-shaped objects
 
AnC, 72–74
 

Index 

backscattering RCS diagram, 74
 
cone–sphere object, 75
 
cylinder RCS, 74
 
measurement system, 73
 
verification of methods for, 72
 

Simplest component method, 47, 52
 
Smoothed impulse response approximation, 128
 

absolute value, 130–135
 
amplitude–frequency response, 130
 
computation results, 129
 
HRRP, 128
 
objects example, 129
 

Surface geometry modeling
 
antenna system model, 51
 
complex-shaped objects, 47
 
curved fracture edge modeling, 50
 
cutting plane determination, 49
 
ellipsoid, 48
 
local edge parts, 49–50
 
MiG-29 aircraft, 53
 
object surface description method, 47–48
 
smooth part of surface, 48–49
 
straight fracture edge modeling, 49
 
T-90 tank, 53
 
visibility check for facets, 52
 

t 

T-90 main battle tank, 222, 223; see also
 
Ground objects
 

amplitude distribution of echo signal, 234, 235, 236
 
computer model, 223
 
geometrical characteristics, 223
 
HRRPs, 238–242
 
impulse responses of, 238
 
instantaneous RCS, 224, 226, 228, 230, 232
 
mean and median RCS, 224–229, 231, 233
 
noncoherent RCS, 225, 227, 229, 231, 233
 
probability distributions parameters, 236, 237
 
scattering characteristics, 222
 

Timing pulse generator (TPG), 73
 
Transmit antennas (TrA), 73
 
Transmit signal generator (TSG), 73
 
TSG, see Transmit signal generator (TSG)
 
Tu-22M3 long-range bomber aircraft, 151, 152; see also
 

Airborne objects
 
amplitude distribution of echo signal, 159
 
geometrical characteristics, 152
 
HRRPs, 160–162
 
impulse responses, 160
 
instantaneous RCS, 153, 155, 157
 
mean and median RCS, 153–158
 
noncoherent RCS, 154, 156, 158
 
parameters of probability distributions, 160
 
scattering characteristics, 151
 
surface model, 152
 

W 

Wire models, 48
 

z 

Zommerfeld-type absorbent, 117
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