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Preface

This book is intended for scientists and engineers working in the field of radar and computational
electrodynamics.

The contents of the book is the result of the compilation of works by group of authors who rep-
resent the scientific school of applied electrodynamics established in the 1960s by Professor LV.
Sukharevsky within the Govorov Military Radiotechnical Academy. Representatives of this school
studied electromagnetic wave scattering from objects of various natures in the Kharkiv Military
University, United Scientific Research Institute of Ukrainian Armed Forces, and Kharkiv Ivan
Kozhedub University of Air Force.

An important place that the study of radar scattering from airborne and ground objects occupies
in the whole radar field predetermined the book’s main content. In the first place, it was the number
of generalizations of the key postulates of classical electrodynamics theory that needed to be intro-
duced in order to provide grounds for the methods of radar object scattering computation developed
later on. The basic results regarding development of both the electrodynamics theory and numerical
computation methods are original and are presented in the first two chapters of the book.

Chapter 3, intended as a reference, is for consumers who are engineers pursuing the design of
radar detection and identification algorithms with regard to airborne and ground objects. The chap-
ter contains a great deal of reference material obtained by computation: circular diagrams of radar
backscattering; mean and median RCS values of various objects; probability distributions of echo
signal amplitude given various parameters of illumination and various kinds of underlying surface
(for ground objects); and impulse responses of various airborne and ground objects given their illu-
mination with wideband signals.

The book can be useful to a wide audience: scientists concerned with the development of
electromagnetic wave scattering theory, computational electrodynamics specialists, as well as to
radio physics engineers pursuing development of radar detection and identification algorithms of
radar objects.

The authors’ contributions to the book have been as follows: Chapter 1 has been written by Oleg 1.
Sukharevsky; Sections 2.1 through 2.3 and 2.5 are the combined work of Vitaly A. Vasilets and
Oleg I. Sukharevsky; Section 2.4 has been written by Sergey V. Nechitaylo and Oleg I. Sukharevsky
(except for Section 2.4.2, which has been written by Vitaly A. Vasilets and Oleg 1. Sukharevsky);
Chapter 3 has been written by the mutual effort of Vitaly A. Vasilets, Sergey V. Nechitaylo, Oleg I.
Sukharevsky, and Valery M. Orlenko.
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Introduction

Analysis of existing and future weapon systems, of available scientific publications, of research
programs (stealth program for instance), as well as of the local war experiences shows the special
place that scattering (secondary radiation) characteristics of different air assault means (aircraft,
cruise missiles, etc.) and of ground military objects (tanks, armored personnel carriers, etc.) take
in the process of armaments and military equipment development. Sometimes the term radar vis-
ibility is used with regard to these objects [1]. It is worth mentioning that for military radar aimed at
detecting aerial objects, information on scattering characteristics of not only air assault means but
also of civilian aircraft is vital.

One of the mainstreams of up-to-date assault means and military equipment design is the creation
of cruise missiles, aircraft, ground objects (armored vehicles) with low radar cross section (RCS).

Lowering of the radar visibility of air and ground objects is usually achieved by streamlining
them in special ways and applying radar absorbing materials (RAM) to those local parts of their
surfaces that provide the most intense scattering, the latter being caused by geometry-optical specu-
lar reflections and scattering at the surface fractures. Measures taken to lower radar visibility not
only reduce the power of scattered signals but also lead to significant changes in other scattering
characteristics, polarization ones in particular, which make it harder to predict the detection and
recognition performance by radar. An important theoretical and applied problem is also to find and
account for scattering peculiarities introduced by use of a separate transmitter and receiver placed
at some distance from one another (bistatic or multistatic radar), which provides for some benefits
when solving the target identification tasks [2].

Therefore, to solve the target detection and identification tasks, modern radar requires a priori
information to be obtained about the target scattering characteristics that would take into account a
complex of complicating factors such as irregularities of the target surfaces, presence of RAM, and
multistatic radar configuration.

Since satisfactorily accurate and statistically consistent experiments on the scattering charac-
teristics are hard to organize and are very expensive, development of methods for the theoretical
prediction of scattering characteristics of air vehicles and for their computer simulation taking into
account the complicating factors mentioned above becomes vital.

Let us also note that mathematical simulation of the signals scattered from complex radar objects
that account for multistatic transmission and reception and other complications is very helpful when
analyzing target identification performance in future radar systems. Such simulation allows one to
determine the optimal placement of radar sites over the area of interest together with the require-
ments of the characteristics of the radars themselves.

The well-known short-wave diffraction methods that have long since become classical—
geometrical optics (GO), geometrical diffraction theory (GDT), physical optics (PO), and physical
diffraction theory (PDT)—cannot be used directly without significant correction and generaliza-
tion to solve the radar scattering problems in this complicated formulation.

Development of improved methods adapted to specifics of radar scattering problems formulated
here is the main aim of this book. Development of such methods and performance of a considerable
amount of research based on these methods, in its turn, required further development of the radar
scattering electrodynamics theory for different kinds of scattering object structures.

Chapter 1 contains generalizations of such basic electrodynamics statements as the Lorentz
reciprocity theorem and the image principle with regard to the fields corresponding, respectively,
to different material fillings of the same space area, and to a space containing different type
irregularities—dielectric, conductor, or magnetic. These generalizations allow obtaining integral

Xix
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field representations, based on which one can study the influence of underlying surface, radar
absorbing and heat-insulating materials, as well as other layered structures on electromagnetic fields
scattered from radar targets.

Among other general theoretical results presented in the chapter, there is the generalization on
the case of nonflat region (and corresponding stationary phase points of not only the elliptical but
also the hyperbolic kind) of the well-known formula by M.I. Kontorovich in the two-dimensional
stationary phase method. Combined with its nonstationary analog, this result allows significant
improvement to the physical optics method when applied to computing secondary radiation from
radar targets for both monostatic and multistatic radar. When doing so, we provide regularization of
solutions obtained, the latter being based on elimination of “terminator discontinuities” appearing
due to inadequate description, in physical optics approximation, of the surface current density in the
vicinity of the “light-shadow” border.

Computation of such an important parameter as RCS of radar object is related, in general, to con-
siderable theoretical and computational difficulties. In this book, RCS computation is described conse-
quently in two- and three-dimensional formulations within bounds of strict theory and approximations
of physical optics. Besides, for some classes of objects, there are practical useful RCS estimates, which
are expressed for the three-dimensional problem through the values of RCS per unit length in the cor-
responding two-dimensional problem for the two orthogonal polarizations of incident wave [3].

An important theoretical issue considered in Chapter 1 is whether the reciprocity principle
[4] holds for the case of approximating fields, in particular, of those appearing in physical optics
approximation. It is shown that in this case the reciprocity principle holds for monostatic radar, yet
in the case of multistatic radar the reciprocity principle does not hold in general, which should be
accounted for in practical calculation.

Chapter 1 also contains the original method for computing impulse responses (IR) or smoothed
out IRs of smooth objects in the general case of multistatic radar using the physical optics approach.
It is worth mentioning that the physical optics approximation of IR in the known work [5] is received
for the very narrow limits, which include the following: (1) only monostatic radar configuration is
considered; and (2) the terminator (shadow boundary) is assumed to be a flat curve with its plane
being perpendicular to the direction of incidence. However, it is easy to bring forward simple exam-
ples of smooth closed (even convex) surfaces that would have a nonflat terminator. Moreover, in the
case of scattering from ellipsoid, illumination from any direction R° by electromagnetic wave cre-
ates the flat terminator curve (ellipse), and this terminator plane is perpendicular to R° only if the
incidence direction R is parallel to one of the ellipsoid’s semi axes.

In the work [6] (assuming the same conditions as in clauses (1), and (2) above), the sum members
are singled out that are brought into the high-frequency asymptotic of the IR Fourier image by the
break in surface current density at terminator in physical optics approximation. Let us note that the
research methods in the works cited above are essentially based on the conditions (1), and (2) and
these methods cannot be used when either one is violated.

The method proposed in this book for the bistatic radar case is applicable for arbitrary orientation
of the terminator’s plane relative to the incident wave direction (in principle, the same method works
in the case of a nonflat terminator too). We also consider a characteristic example of scattering from
a smooth convex object and we study the specifics of its IR structure in the bistatic case. We single
out and eliminate from the IR solution the major sum members of asymptotic contribution from the
surface current density break at the terminator. The latter makes the IR solution regularized and, as
a result, increases significantly the accuracy of physical optics approximation over the time span up
to arrival of the diffraction “creeping” wave that goes over the shadow area.

In Chapter 2, methods are developed for computing the scattering from the radar objects with
surface fractures and those covered with RAM.

We propose in this chapter the asymptotic method for solving the scattering problem for perfectly
conducting objects with toroidal RAM covering the surface fractures in the case of the arbitrary
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multistatic radar configuration. The method is based on integral representations by Stratton-Chu and
their asymptotic expression for the far-field zone. The solution to the simulative problem of oblique
incidence of a plane electromagnetic wave on a perfectly conducting wedge with a radar absorbing
cylinder at its edge is used to facilitate the method. Such an approach, unlike the edge wave method
[7,8], turns out to be well adjusted to the presence of nonperfectly conducting scatterers of resonant
dimensions and to the general case of the multistatic radar configuration.

To elaborate the estimate of the contribution from the perfectly conducting vicinity of a “specu-
lar” point of elliptical type to the total scattered field in the case of the multistatic radar configuration,
we obtained two sum members of the ray asymptotic for this field and estimated the contribution of
such a local scatterer to the total field also in the case when it contains the RAM coating.

Verification of the methods developed for computing the scattering characteristics is also done
here using objects of simple shapes such as a cylinder, a cone, and so on. Our computation results
have been compared here to those obtained using the “FEKO” software package [9] as well as to the
measurement results obtained in an anechoic chamber for a finite-length cylinder.

Verification of the computational methods developed here is finalized by comparing the cruise
missile model RCS’s computation results to the experimental measurement data.

The electromagnetic-wave-scattering computation method for airborne objects is spread over
ground radar objects. While doing this, we took into account the “four-ray” propagation of incident
and scattered waves in integral field representations the method is based upon. The latter four-ray
representation appears because of onefold reflections between the object and the homogeneous half-
space boundary.

Bearing in mind that the contribution from reflector antennas to the total field scattered from
aircraft is usually significant, we have dedicated Section 2.4 to developing methods for computing
scattering from reflector antenna systems (including those under pointed-nose radomes).

As a result, based on the method developed in the chapter for computing the scattering from
complex objects with surface fractures and RAM coatings, we further developed a method for
computing the scattering characteristics of electrically large reflector-type antennas with toroidal
RAM coating at their edges.

We have also provided an approximate (engineering) approach to computation of the field scat-
tered from a three-dimensional model of the reflector (parabolic) antenna under the pointed (cone-
shaped) radome. The method is based on geometrical and physical optics approximations and takes
into account the current density over the reflector induced by an electromagnetic wave that has just
passed through the radome wall and by the wave that has been reflected once from the radome inner
surface.

Chapter 2 concludes with the introduction of a definition for the smoothed impulse response
approximation of a radar object (i.e., a nonstationary response to the probing signal with a rect-
angular amplitude spectrum) along with some examples of this transient scattering characteristic
computed for simple shape objects such as a cylinder and a cone.

Chapter 3 can be used as a reference. It contains all-round RCS diagrams (including smoothed
or noncoherent ones) for a wide assortment of airborne objects (military and civil aircraft, cruise
missiles) and for three specimens of ground armored machines. The diagrams are given for different
oblique incidence angles and polarizations. These all-round RCS diagrams of the ground specimens
also take into account different types of underlying surfaces.

When designing radar-target-detection and -identification algorithms, there appears the need
to know the target’s RCS probability distribution in various sectors of their aspect angles. In this
regard, this chapter contains corresponding data on various target RCS probability distributions,
their mean and median values.

There are also examples of smoothed impulse responses (IR) of aerial and ground objects for a
variety of illumination conditions. The importance of IR in radar is conditioned by the fact that it
reveals the changes in target reflectivity index along the radar line-of-sight, which bears additional
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information on targets of interest and provides a basis for their radar imaging and recognition. Such
IRs are also known among the radar community as high-range resolution profiles (HRRPs).

So, as a whole, this book puts together theoretical grounds, original computation methods, and
a great deal of computational results on the scattering characteristics of aerial and ground radar
targets.
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Mathematical simulation of radar scattering (secondary radiation) from aerial and ground objects
requires development and elaboration of some principles and methods of applied electrodynamics.
The latter would allow obtaining the instrument for studying the electromagnetic wave scattering
problems given such complicating factors as radar absorbent material (RAM) coatings coupled
with bistatic radar configuration, pulsed, and, particularly, ultrawideband target probing, presence
of underlying surface, and so on.

This chapter contains generalizations of such basic issues of electrodynamics as Lorentz reci-
procity theorem and image principle aimed at expanding them over to the presence of irregularities
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in space of various kinds, or to the electromagnetic fields corresponding to different material
fillings of space of interest. Based on these generalizations, which are interesting scientifically for
their own sake, it is possible to receive special integral equations allowing study of influence of
the RAM coatings or other layered structures (including underlying surface) onto the radar target
scattering.

Another set of issues considered in this chapter provides further development of the stationary
phase method and of physical optics with practical aim at radar problems with transient target illu-
mination and bistatic configurations.

Besides, some new results are obtained regarding RCS in three-dimensional problems expressed
via two-dimensional models of various objects, which makes them much easier to compute.

1.1  GENERALIZATION OF LORENTZ RECIPROCITY THEOREM ONTO
THE CASE OF FIELDS CORRESPONDING TO DIFFERENT MATERIAL
FILLING OF A REGION IN SPACE

Integral representations are efficient means for studying and solving numerically a number of prac-
tical problems in applied electrodynamics and radar. The basic and auxiliary electromagnetic fields
in these representations may correspond to different and, in general, nonhomogeneous filling of
some regions in space. The latter facilitates the use of properly generalized Lorentz reciprocity
theorem to form such a representation.

In this chapter, we give such a generalization of the Lorentz reciprocity theorem [10], using
which, for instance, one can form and study integral field representations that provide corrections
due to dielectrics and radar absorbent irregularities into the total diffraction field at a system of
metallic scatterers (Section 1.2).

Let us take the region V in space filled with isotropic but nonhomogeneous, in general, medium
with permittivity €, (x), and permeability I (X) and let this region contain extraneous currents with
density 4 J (X), then electromagnetic field E (X), H (X) appears in this region. However, another field
Ez(x) H2 (X) corresponds (another boundary conditions are possible) to permittivity €, (X), perme-
ability W, (X), and extraneous current density jf (X). Thus, for the region V we have

rotE, = jou,H,,"
(1.1)
rotH, = —jog, E, +J¢, o=12.

Given usual assumptions on the smoothness of functions in Equations 1.1 over the region V up to
its boundary surface L, we have equality following from Equation 1.1:
div[—(E, X WH,) + (B, X L, H)] = jo (e, — &,)E, - E,
+[W,J¢ + (Vu, x H)]- E, —[W,J¢ + (Vu, x H)]- E,. (1.2)

Using the Ostrogradsky—Gauss theorem [10], we receive the following:

J‘[Uzﬁr - HY —WE! -Flﬁ]dS = ij(Slul - &,l,)E, - E,dV
v

L

+ [{tnads + Vo x 1 By = [wds + Vi, x )] B Jav. (13)

Vv

* Time dependence of the fields throughout the book is assumed to have the form of exp(—jwr).
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The symbols A”, B* here have the following meaning:

AT = A—ji(ii-A), B' =i xB. (1.4)

where 7 is the unit vector of external normal to V.

Let us mention here that expression (1.3) becomes the usual Lorentz integral representation given
€, = € =const,l, = I, = const.

Using the following substitution in Equation 1.3

E, & fla, fg > —jgl, g, & M, (o=12),
we derive the equality expressing the fields excited by magnetic currents

J[Ezég -Hi —¢E] - Hy1dS = jmj(£1”1_gzuz)ﬁ1 -H,dV
v

L

+H[82‘75" ~ (Vey x E) - H, ~ [e,J7 - (Ve, x E)]- H, }V. (1.3

Vv

Formulas of Equation 1.3 type are generalization of the Lorentz reciprocity theorem [4,11] onto
the case of nonhomogeneous media and the fields corresponding to two different material filling
inside the region of interest V.

If the region V is infinite, then (as in usual Lorentz reciprocity theorem) to ensure the validity of
expressions (1.3), (1.3”) one must put a requirement upon extraneous currents to be concentrated in
some limited area and upon the fields to satisfy the radiation conditions [4,11].

Another form of generalization for the Lorentz reciprocity theorem was obtained in later works
[12,13].

1.2 APPLICATION OF GENERALIZED LORENTZ RECIPROCITY THEOREM
TO OBTAINING INTEGRAL REPRESENTATIONS OF SCATTERED FIELD
DISTURBANCES INTRODUCED BY RADIO TRANSPARENT AND
RADAR ABSORBENT LAYERED STRUCTURES

Let us assume that L be a set of boundary surfaces cutting out the perfectly conducting scatterers
Vir, Vi, ..., V;; from the rest of space; and in the external region V, characterized by permittivity
€(X) and permeability LL(X), there be extraneous currents with known density J*(X) or equivalent to

them magnetic currents with density Jm (X). Total resulted field E ,ﬁ satisfies the condition
E"l, = 0. (1.5)

Our goal is to find such integral representations of the field E, H, which would allow to single out
and estimate the contributions from individual scatterers or the influence of physical parameters of
the medium filling the region V onto this field. To achieve this, we compare the field E,H with some
additional auxiliary (“standard”) fields using the generalized Lorentz reciprocity theorem (1.3).

We introduce the auxiliary field (of “electric kind”) £¢(¥IX,, p), H*(¥IX,, p) into region V, the
latter satisfying the following equations within V:

rot E¢ = jop, 7,
B ol (1.6)
rotH*¢ = —jwe, E — jopd(xX — X,),
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(€, U, are the permittivity and permeability of free space, and X, € V') and the other boundary condi-
tions at L (formulated specifically for every problem at hand). Similarly, one can introduce the field
of “magnetic kind.”

We consider here the case where material media (homogeneous or piecewise homogeneous)
are only distributed over some part 7 of the whole region V, and its complementary to the whole
region V- = V\T being the free space. The homogeneous parts of the medium are separated from
one another and from the V- by smooth surfaces S;, S,, ..., Sy", and in this manner they form a
layered structure. Moreover, we consider distribution of extraneous sources only within region V-,
where W(X) = Wy,&(X) = €,. Now, in the region V we apply the generalized Lorentz reciprocity
theorem to the field El = E(Yc),ljl1 = H(X), for which € = &(X), 1, = Wx), jf = J¢(¥); and to the
field E, = E¢(XI%,, p),H, = H*(XI%,, p), for which &, = £, 1, = Wy, JS = —j0Opd (X — X,) (given
arbitrary orientation of p). While doing so, we use the superposition principle and the fact that in
the vicinity of S; we have

B TR B}

Vu = na% = 7i(u; — 1;)d(n) = 7 Ap,d(n),

- p) (1.7)
Ve = ﬁa—z = ji(er —£)d(n) = i A&, 3(n).

Here, 7 is the unit normal vector to S;; n is the coordinate along the normal, n =0 at S;, n >0 in
the direction of 7,8(n) is the delta-function; W}, \; are the marginal values of L(X) on S, respec-
tively at positive and negative ends of n.

Then, from Equation 1.3, we receive the following expression:

jouy BLE o) = BT = [U@HET R 15,,5)- A (S
L

N
+ jo j [E(F)U(E) — €y Mo E(F) - £ (X, p)dV — ZAuJ@T (¥l%,, p)- H(¥)dS. (1.8)
T

i=1 S;

Similar integral representation of magnetic field intensity H is received from Equation 1.3"
joog, G - TH(E,) = )] = jo [Te@RE) - &) HE - 77 (F,§)dV
T

N
- eoj@” (71%,, §) - H-(F)dS + ZAE,-Jf{"‘T(?chO, d)- EX(0)dS. (1.8")
L

i=l1 S;

Here, £(X,), H (X,) are the vectors of electric and magnetic field intensities for the standard field
excited in the space region V by the same extraneous sources that in real medium filling V excite the
field E ()?0),1:1 (%), although given different boundary conditions at L the latter being determined by
the structure and boundary properties of the chosen auxiliary field of a point source. For example,
E(X,) is set according to formula

_jop E(G,) = If“(i)-ﬁ“(ilio,ﬁ)dv.

V-

* S, are the closed surfaces, those coming into infinity or those with an end (boundary line) belonging to the boundary L of
region V.
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If, we assume now X, = ‘FCO‘FO and put ‘XO‘ — oo in representation (1.8), we receive integral rep-
resentation for complex vector directivity diagram E(7°):

jougp - [EGY) — EG0)] = _[ WE)E (FF, p) - H(X)dS
L
— N —_
+ jmj[e(sc) W(F) — &, W 1ER) - B (R0, p)dV — ZAHJ@T 7, p) - H-(F)dS. (19)
T i=1 S;
The field E¢(¥17°, f)),f[ ¢(XIF°, p) in representation (1.9) is excited by plane wave:

o - o o o, = 0o -
ES(XIF0, p) = Ko, = [p—7°(p - 7*)] exp(—jk, (7° - X)),
0 p 0 £ p p p(=JKy (1.10)

HE (R, B) = — kG (FOx ) exp(—jk, (FO - %)),

where k; = /gL, -
If, as an auxiliary field in Equation 1.9, we choose the solution of Equations 1.6 that, given X, €V,
satisfies the boundary condition

ET (XX, p)l .oy = 0, (L.11)

or, in other words, as an auxiliary field we choose that of a point source placed at the point X, and
having the vector-moment p in the presence of perfectly conducting scatterers with shape described
by surface L, then representation (1.9) takes the following form:

joup LEG) = £ = jo e - et EG) - E (7, 5)dV
! ]
- ZAHJ@T(W), ). H-F)dS. (1.12)
i=1 S;

In this manner, £ (X,) and # (¥,) describe the field excited by these sources when any mate-
rial media are absent, and representation (1.12) expresses the far-field correction due to material
medium 7.

In the simplest case where [ = l,,,€(x) = € = const, representation (1.9) takes especially simple
form given arbitrary p and X, €V :

BIEGy) - G = (€ - &) EG) - & (35, ) V. (113)
T
From Equation 1.13, we obtain corrections to the complex directivity diagram:
p-[EGF®) —EGFE")] = (e — eo)_[E(fc) S EC(XIF0,p)dV. (1.14)
T

If the fields €(%,) and E(¥IX,,p) are known, then, given ¥, € T equality (1.13) becomes the
integral equation with respect to the field excited in medium 7.

So, when the variety of T is a set of thin dielectric layers (their thickness 8 being small), asymp-
totic formulas can be obtained from Equation 1.13, the latter being the more accurate the lesser the
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value of dimensionless parameter S = 8/A,. Given small §, integral term in Equation 1.13, as it
follows from physical considerations, must become small. It can be shown that this integral, as any
other integral of the form

15,) = J'F(?c) CE(RE,, pdV

with smooth over region T (up to its boundary) vector function F (X), allows existence of the follow-
ing estimate given X, €7':

11 (%,)! < const 3. ' (1.15)
From equality (1.13) and estimate of Equation 1.15 type, it follows that given xeT
E(X) = £(X) + 0(3),
therefore, we obtain from Equation 1.14 that

p-[EGFY) - EGFE)] = (e - so)_[oé(fc) CEC(XFO, p)dV + o(d). (1.16)

Equalities of Equation 1.16 type can serve as computation formulas along with the estimate of
computation error o(d).

Below, we consider another application of generalized Lorentz theorem. Let some perfectly
conducting surface L be covered with layer 7 of RAM (Figure 1.1) with permittivity €, and perme-
ability ;.

Let us further assume that the field (&,,%,) excited by electric dipole J¢ = —jopd(¥ — ¥,)" is
known in presence of the scattering surface specified above, however with the permittivity and per-
meability €,, |, of the layer 7. We need to find the field El excited by extraneous sources (with the
current density J ¢) situated in the region V- in the presence of radar absorbent layer T over metallic
base L. It is additionally known that value of g, is close to €, and value of |, is close to LL,.

Let the observation point satisfy the condition X, € V~. We apply generalized Lorentz reciprocity
theorem (1.3) to the fields (E,, H,) and (E,,%,) in the region V = V- with boundary 9V = S. As a
result, we get the following expression:

~jop B () - Ey G)) = [(E] -9 — & - A{)ds. (1.17)

FIGURE 1.1 Perfectly conducting surface covered with the layer of RAM.

* Estimate (1.15) is nontrivial since it is based on eventual computation of singular integrals of the
[ ®@)(=p +3(p - R%)R")/R3dV kind, where R =X - Xo, R =IRI, R® = R/R.

T Itis worth mentioning that using the Guperposmon principle, the field E excited by a preset extraneous current distribu-
tion J, can be expressed as: —j(DpEz(}CO) = f J¢ - E,(¥|X,, p)dV, where V contains all the extraneous sources of radiation.
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Let, further, region V=T and its boundary be oV =S U L. Application of theorem (1.3) to the
same fields in this case gives us the following:

J‘{HzElT CHF - W EL - HE S = jo(ep, - ezuz)Jél'@de' (L.18)
s T

Multiplying Equation 1.17 by U, and subtracting the equality thus received from Equation 1.18,
we arrive at the following expression:

JOL, f’[a (Xp) — Ez (X)) = (u, — MI)J‘EIT : f[zL ds — jo(gu, — ezuz)J.El - E,dV. (1.19)
s T

Having done similar transformations for the case of X, €T, we receive integral equation for the
field E, inside layer T¢

—joPAE, (o) — By G)} = (1 — )| B - #3 dS = jole, — &) [ B £V, (120)
N T

Having accounted for the smallness of values |u; — .| and ¢, — &,|, one can obtain from
Equation 1.20 the asymptotic representation of field E,(X,) given X, € T. The major term of this
asymptotic has evidently the following form:

E\(%) ~ %E} (%)) (1.21)

2

Having integrated once Equation 1.20 while substituting expression (1.21) into the right-hand
side integrand of Equation 1.20, one obtains an elaborated asymptotic representation of the field
E|(X,) inside layer T:

—jop- E (F) ~ —jop - E, (%) ﬁ—
2

+(1 HIJ”IJET HEdS - ]m(sl—ez)“J (122)
l‘l‘ T

Having used expression (1.22) on the right-hand side of Equation 1.19, we come to the expres-
sion of field E,(X,) given X, €V~, which, in its turn, allows expressing the field El in the region
external to the scattering surface via fields Ez, &,,9, obtained given another material filling of the
region T.

Finally, let us note that practical applications of generalized Lorentz reciprocity theorem is not
by any means limited by examples presented above in Section 1.1. The generalization can be applied
to quite a number of practical tasks. For instance, integral representation (1.8) can be applied not
only to the scattering structures consisting of perfectly conducting scatterers and radar absorbent
media, but also to evaluating the influence of radomes onto the propagation and scattering of elec-
tromagnetic waves.

1.3 GENERALIZED IMAGE PRINCIPLE AND ITS APPLICATION TO SOLVING
SOME ELECTROMAGNETIC WAVE SCATTERING PROBLEMS

Major content of this section is the description of rigorous and physically interpretable mathemati-
cal models for the EM wave scattering from different types of scatterers (perfect conductors, perfect
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magnetics, perfectly absorbing objects) placed over underlying surface, as well as of mathematical
model of antenna aperture under radio transparent covering (fairing, radar dome, and so on). It
is with regard to this later problem that we give generalization of the equivalent currents method
interpretation by Ya.N. Pheld [14], which is of fundamental importance when computing the field
excited by antenna aperture radiating into the half-space that contains scatterers—dielectrics, con-
ductors, magnetic, and so on. In this context, it turned necessary to generalize also the classical
image principle.

1.3.1 GEeNErALIZED IMAGE PRINCIPLE

Let us denote a half-space Q*(x; > 0) and its reflection (image) Q~(x; < 0). Region Q* contains:

a. Perfectly conducting scatterers with a set of boundary surfaces denoted as S, so that

ET

=0; (1.23)

SE
b. Scatterers that are perfect magnetics, at the boundary surface (S}) of which we have

HT| =0, (1.24)

SH

at the same time, the part f of half-space Q*, boundary of which consists of plane S(x; = 0), S,
and S, is filled with isotropic and, generally, nonhomogeneous medium with complex permittivity
€(X) and permeability W (X) that may have also the discontinuity surfaces (interfaces).

Let us denote also the image Q| of the region Qf in plane S and consider the “symmetrized”
region Q, = Qf U S U Q with symmetrical, by geometry and physical properties, scatterers and
the filling medium, in which

(1.25)
WXy, X0,—X3) = W(Xp, X, X3) -

{8 (X1, %5, —X3) = €(xp, X5, X3)
Let us introduce the necessary symbols: if A= {A,A), Ay} is any vector field, then
A= {A,A,,—As}; particularly, if the radius-vector of the point X = (x, x,, x;), then
X" = (x;, Xy, —x3). Thus, the following statement holds true (generalized image principle).
Let &, (¥|%,. ), H,(¥|%,. p) be the field excited in the symmetrized region Q, by the electrical
dipole with the moment p placed at point x,, € ,. Then, for every point X € Q, the following equali-
ties hold true:

Ey (X%, p7) = Ef (1%, ), (1.26)
Hy (I, ') = =95 (X%, p), (1.27)

that express the generalized image principle.
Rigorous derivation of these equalities (quite evident from the standpoint of physical intuition)
can be based upon the following expression that can be easily verified:

rot A’ (¥') = —(rot A (X))’l (1.28)

i=x
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(the symbol X = X’ means that having computed the vector —(rot;\(?c))’, one must replace vector
X by vector X”). Let us introduce the abbreviated symbols:

Eo(¥) = Bo(XX0. ;I (X) = Hy (3%, ).
£ (%) = (X%, P); HG (%) = =H (|5, P)-
Then, from Maxwell’s equations we have
rot £, (X) = jou(¥) H, (%),

rot #, (X) = —joe (X) Ey(X) — jopd (X — X,).

Using expressions (1.25), (1.28), we obtain

rot £§(¥) = rot £ (¥') = (rot £(H))'],_,, = —jou(F)H; (¥) = jopn®#H" (%).  (1.29)

X=X

In the same manner, we obtain that

rot #H(X) = —joe(X) ESP (X) — jop'd(X — ). (1.30)

Thus, the field " (X), %" (¥) is the one excited by the current J,(¥) = —jwp’ 8 (¥ — ¥;). Next,
we can directly verify that boundary conditions at S, S, and at their images are satisfied.

For instance, since (%)= i, (X¥) (where 7 is the unit normal vector) at S, then
E(X) = it By, (¥), from where we get EV (X5, =Ey (X) =nE,, (¥) and, accordingly, £""l; = 0.

Finally, the field £{" (X), " (¥) evidently satisfies the radiation condition (in case of unlimited
region Q).

Because of uniqueness of the boundary problem considered here, from Equations 1.29, 1.30
and boundary conditions at S, S, and at their images (as well as from radiation condition, if €, is
unlimited), we get that the field " (¥), #" (¥) coincides with the field &, (X}, p"), #o (XX, ")
that proves the statement formulated above.

We need to make some remarks regarding the latter statement. First, the same statement holds
true for the fields excited by magnetic dipoles too.

Second, using the superposition principle and integral representation of the following kind:

@ = [7G)8G - 5)av,,

Q

one can extend the image principle of the form presented above (and used in [15—17]) onto the fields
excited by arbitrary extraneous currents.

1.3.2 ON THE INFLUENCE OF UNDERLYING SURFACE ONTO THE SCATTERING PROPERTIES
OF A TARGET

Let the plane £ (we assume it perfectly conducting) to be bounding a half-space containing the
scattering object outlined by the boundary surface S (perfect conductor or perfect magnetic).
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Standard method of obtaining an integral equation for the surface currents excited by known set
of extraneous sources situated in the half-space under consideration (the one based on the Stratton—
Chu integral equations [11]) leads to equations containing not only integral over the scatterer’s sur-
face S, but also over unlimited plane X that complicates dramatically numerical computation of its
solution. Use of generalized image principle, in this context, allows obtaining the integral equation
with regard to currents that involves integration only over S, which can be used as basis for stable
and efficient computation algorithms. Below, we give the corresponding considerations.

Let us denote as € the region in space bounded by surfaces S and X. Region Q may contain
both nonhomogeneities and other scatterers.

Let us introduce the following symbols:

Ei(¥),H!(X) is the incident wave;

El ()"c),IjIl (X) is the scattered field;

E (%), H (%) is the total field;

E(X|X,y, P), H(X]X,, p) is the field of point electric dipole in the half-space bounded by plane
X given the object S is absent;

E™(X|%y, G), H™(X|%,, §) is similar field of the point magnetic dipole.

It is worth mentioning that using the field E,, %, introduced in Section 1.3.1 (the one excited in
the symmetrized region Q, in the absence of object S), one can express the field ¢, #¢ as follows:

—y =

£ = &y (3%, P) — Eo(X1X5, P (1.31)
H = Hy(Xy. p) = Ho (5. P). (132)
The latter is a consequence of the fact that according to Equations 1.31 and 1.26,
£ = &y (3%, P) — By (X%, P);
from where, given X € X, we obtain

£ =o0.

Having applied the Lorentz reciprocity theorem to the fields (El, H ) and (fe ) as well to the
fields (El, H ), and (€™, ™), and having accounted for the fact that field (£¢, H¢) is created by the
current J¢ = —jopd(X — X,) and the field (E™, 7—[”‘) is created by current J” = —j0g & (¥ — X,)
(in the former case J” = 0 and in the latter case J¢ = 0), we arrive at the expressions:

jop- EiGy) = [ B 91 ) - (B Fyids,” (133
S+Z

oG -H () = J-[(E,f[’"ﬁ)—(@”‘ H,77)]dS. (1.34)
S+X

* Here and further on the symbol (él;E) means the mixed vector product.
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Having applied the Lorentz reciprocity theorem to the fields (E',H') and (£¢,#*),as well to the
fields (E*,H') and (£",9™), we obtain the following:

j (B! g7tem iy — (Eem Fiii)]dS = 0. (1.35)

S+X

Having combined expressions (1.33), (1.34) with (1.35), we get the total field representation:

Jop-[E(%0,) — E'(%))] = j [(E gt i) — (E€ Hii)]dS, (1.36)
S+X

—joq (A Gy) - B Gl = [ (EF" i) - & Hi)ds. (1.37)
S+Z

We consider two options here:

A. S is the perfectly conducting surface and then ET‘ =0, ET ‘S =0;

L
0,E" =0.

B. S is the perfect magnetic surface and then H T‘ .

s_

If option A is the case, the expressions (1.36) and (1.37) take the following form given X, € Q;:

Jop-1E (%) - E'(%)] = —j(fe Hii)ds, (1.38)
S

—jog-[H (%) — H (%,)] = —j(@" Hii)dS. (1.39)
N

If option B is the case, then:

jop [EF,) - B (G)] = I(E"ﬁe i)ds, (1.40)
S

—jog-[H (%) — H (3,)] = _[(Ef[m i)dS. (1.41)
S

The fields (fe,f[ e),(@",ﬁ ") contain, as an additive component, the field of electric (magnetic)
dipole in free space. So, for instance,

7:2‘8 o ﬁg + FISC(U,
where H* is the regular field and
Hi =jo (5 % Vg),

_exp(jkylx — Xol)
h 4nlx — Xl
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Then,

and, if we present the operator V in the following form:

Vol

+D
on ’

where D is tangential differential operator, then
L (08 . =
(EHjn) = —joE-| p" 5 —(p-n)Dg|.

Let us note that function dg/dn is the kernel of the double-layer potential.

If we use now the fact that at the surface S H, |, =0 for the option A; and E,| - =0 for the option
B (these follow from Maxwell equations and boundary conditions at the boundary surface §); and
use the boundary property of the double-layer potential while letting the point X, to tend to the sur-
face S, then from Equations 1.39 and 1.40 we can obtain integral equations:

—%jwq.ﬁT(xo)Jrjmz]-ﬁf(xo) = —J(@mﬁfﬁ)ds, (1.42)
S
| e = o
E]OJp'ET(XO)—]G)IJ’EL(XO)ZJ(ETﬂel’l)dS. (1.43)

N

Equations 1.42 and 1.43 contain only integration over limited surface S and they, therefore, are
Fredholm integral equations of second kind, which can be reduced effectively to the well-defined
systems of linear algebraic equations.

Having solved integral Equation 1.42, we find H T(X,) and, having substituted it into the right-
hand side of Equations 1.38 and 1.39, we find the field EA (%, ). HA (X,) for any X, e Qf in case
where S is the surface of perfect conductor. In the same way, using integral Equation 1.43 and
representations (1.40) and (1.41), we find the field EB (fco),ljl B(X,) in case where S is the surface of
perfect magnetic.

Next, applying the Macdonald model [18] of perfect “black” body, one can obtain the field scat-
tered by the object under consideration (with underlying surface present) given the assumption that
its surface S possesses the properties of perfect “black” body. This field

E€ =%(EA +E®), HC =%(HA + H?) (1.44)

appears as result of illumination by primary incident wave E.H' of perfectly absorbing (according
to Macdonald) object in presence of underlying surface and the medium nonhomogeneities.
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1.3.3 CarcuLATiON OF FieLD ExciTeED BY RADIATING APERTURE IN PRESENCE
OF ARBITRARY SYSTEM OF SCATTERERS

Let an aperture S, to be placed in the plane S(x; = 0) and let it radiate into the half-space Q* (x; > 0)
the field E (X),H (X) excited by extraneous sources situated in the half-space Q~ (x; < 0). The
region Q* contains the following:

a. Perfectly conducting scatterers, a set of boundary surfaces, which we denote as S, so that

ETl5, = 0; (1.45)

b. Scatterers being perfect magnetics, at the boundary surface (S,) of which

H'lg, =0; (1.46)

In this case, the part QF of the half-space Q*, boundary of which consists of S, S, and S}, is
filled with isotropic but, in general, nonhomogeneous medium with complex permittivity €(X)
and permeability L (X) that may have the discontinuity surfaces (interfaces). Particularly, one may
relate this to the presence in Q* of radio transparent antenna radome G* of some design (Figure
1.2).

Our goal here is to derive and interpret physically rigorous and approximated computation
formulas expressing the radiated field via distributions over aperture of tangential components of

vectors E and H (or, that is equivalent, via densities of equivalent surface currents—magnetic and
electric) under following different assumptions on physical properties of the surface X = S\S,, the
symbol S\S, meaning complementation of region S to the total region S:

A. T is the surface of perfect conductor, E” ‘z =0;
B. X is the surface of perfect magnetic, H” ‘z =0.

Extraneous sources and all the boundary conditions for the options A and B above are the

same except the conditions at the surface X adjoining the region Q* (the latter being as stated
above).

X3

Gt Q+

FIGURE 1.2 Radio transparent antenna radome.
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Here, we denote by (E4, H*) and (E®, H?) the fields excited in the region ©F by the extrane-
ous sources at hand for the options A and B, respectively. Along with these fields, we consider their
half-sums

EC= L(EN+ B%), AT = (" + A7) (1.47)

which provide for some “averaging” of fields radiated by aperture S, in situations where X is the
surface of perfect conductor (option A); and it is the surface of perfect magnetic (option B). The
field averaged by means of Equation 1.47 can be considered as the one formally corresponding to
Macdonald’s model of perfect black surface X.

Now, we apply the Lorentz reciprocity theorem to the field of our concern E,H (for both
options A and B), as well as to the field & (XI%,,p), H (¥I%,, p) excited in the region Q} by an
electric dipole with the moment p placed at point X€ Qf in case where all the surface S(x; =0)
is one of the material interface surfaces of region 2}, with one of the following conditions being
satisfied:

"1y =0 (for option A), (148)
H'l; =0 (for option B). (1.49)

Since all the extraneous currents that excite the field Z, 91 are distributed over Q7 and the density
of current exciting the field &, # is

Jy = —jOpd(F — X)), (1.50)
then
jmﬁ-E(xo)=f+J+j((Exﬁ)—(ixH))~d§. (1.51)
S Sg Su

According to boundary conditions of the (1.45), (1.46) kind, we have

_%T

=0, HT
Sg

=i’ =0.
Sy Sy

Therefore, integrals over Sg, Sy, and £ = S\S, in Equation 1.51 are equal to zero. For the options
A and B, we have, respectively:

Jop - EA(%y) = _[ (E*x #H*)-dS, (1.52)

So

Jjop - E(%,) = —J(ﬁﬂ x H?)-dS. (1.53)

So
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Having computed the half-sums of right- and left-hand sides of equalities (1.52) and (1.53) and
having used the notation of Equation 1.47, we get the following:

jmﬁEC(Sco):%j((EAxy?A)-(@BxﬁB)de‘. (1.54)

So

Equality (1.54) obtained in this way expresses the “averaged” (in sense of Equation 1.47) field
radiated by aperture S, at any point X€ € via distribution over S, of tangential components of
vectors E4, H® and the fields of point source (electric dipole) £, #® that are excited in region Q;
with perfect (in sense of Equations 1.48 or 1.49) interface plane S.

Further considerations are aimed at some transformation and interpretation of formula (1.54).

First of all, we substitute the vector fields @O(XI)?O, D), K, o(XIx,, p) introduced in Section 1.3.1
for the fields EB (X%, p), H*(I%,, p) in Equation 1.54. Let ¥,%, € Qf, then electromagnetic field
E, H, where

E = Eo(¥1%y, p) + Eo (X%, P, (1.55)
H = Hy (X%, p) + Hy (X155, ) (1.56)

is the field 2 (X%, p), H ?(¥I%,, p). To make it sure for oneself, one should just check the condition
(1.49) to be satisfied. According to Equations 1.56 and 1.27

H = H, (R1%y, p) — H{ (¥1%,. p),
from where, given X€ S, we have

HT . =0. (1.57)

In this manner, the field (1.55), (1.56) is indeed the field of the point source corresponding to
option B above. Therefore, accounting for Equation 1.26 we have E% = &, (¥I%,, p) + E¢(X'IX,, P)
from where, given X €S, we receive at once the following:

E5 .= 2EL (%1%, D) \M. (1.58)
In the same way, we find that
HA = Hy (3%, p) — Ho (355, p') = Hy(5 | %y, p) + H (¥15,, P),
due to which we have

HA | = 2HL(R1%,,p)| . (1.59)
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Combining results of Equations 1.54, 1.58, and 1.59 together, we find that for any point X, € Q7
and any vector-moment p there is exact equality

jop ECGy) = [ (B x 9, (5, P)) - (H (0) X Ey (5, ) - S, (160)

So

where dS = 7idS, i is the unit normal vector to S pointed toward Q.

So, the averaged field radiated by aperture S into the half-space Q* filled with nonhomogeneous
medium and different scattering objects (containing, for instance, a radome) is expressed by formula
(1.60) via distribution over aperture of tangential components of vector fields EA (fc),?? B(X) excited
by sources spread over Q~ if X is the surface of perfect conductor or perfect magnetic, respectively;
the field £°, 90 in this expression is the field excited in the symmetrized region €, by point source
(electric dipole) given that any material screens in the plane x; = 0 are absent.

If, for instance, there is some dielectric radome G* present in region Q* (Figure 1.2), then &,, #,
is the field excited by point source in space occupied only by closed dielectric envelope (Figure 1.3)
symmetrical (by geometry and physical properties) with respect to plane x; = 0.

Finally, to conclude our consideration, we transform the exact formula (1.60) into approximate
one corresponding to physical optics approximation where edge effects (fringe radiation) of the
aperture are relatively small so that one may assume (as it is usually done in theoretical and practical
antenna calculations) that for S, the following approximate equalities hold true

EAX) = EB(X), HA(X) = HE(X).

Then, having omitted the indices A and B (while retaining the exact equality sign instead of
approximate one in Equation 1.54), we arrive at the following:

job ECGy) = [ (B G x 7,315, 5) = (B (D) X £, (F15,, 5) - dS.
S0 (1.61)

X3

G+
o

Plane of symmetry

X1

FIGURE 1.3 Closed dielectric envelope.
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The right-hand side of integral in Equation 1.61 expresses the field of radiating aperture by means
of equivalent currents method via distributions of E7, H” over aperture that can be set directly. This
formulation differs from the usual problem of the free space radiation by an aperture (antenna
aperture particularly) in the way that the field &, #, in formula (1.61) is the field diffracted at
aligned system of scatterers (instead of explicit expression of the field by electric dipole in unlim-
ited free space). Equality (1.61) itself means that, given the presence of nonhomogeneous medium
and arbitrary set of scatterers, the field computed using the equivalent current (or aperture) method
coincides (within accuracy of physical optics) with the averaged field corresponding formally to
Macdonald’s model, the latter meaning that result by Ya.N. Pheld [14] can be extended onto the
more general case being considered here.

In case where all nonhomogeneities of the propagation medium and all the scatterers of Q" are

situated within limited distance from S, one can derive from Equations 1.60 and 1.61 the formulas
expressing complex directivity diagram of the radiating system under consideration, E(R"), where

R is the unit vector showing direction to the observation point in far-field (Fraunhofer) zone:

P E(R) = [(B* ()% 7, RO, B) = (P (D) % Ey (£ R, p) - 5, (1.62)

So
(exact formula);

p-ER") = j«ET ()X Ho(%,R°, p)) — (H” () X £o(%,R", p))) - dS, (1.63)

So

(approximate formula; ET,HT are the distributions over aperture of tangential components of field
vectors in Kirchhoff’s approximation).
In formulas (1.62) and (1.63), &, (%, R°, p), (%, R°, p) is the diffracted field of aligned system

of scatterers excited by the propagating in direction (—R°) plane wave
E, = (R° X (p x R%)) exp (—jk,(R" - X)),
Hy = (px R")\J&o /My exp(=jko(R" - 3),

where €, L1, are the permittivity and permeability of free space, and &, is the wave number of free space.
It is worth mentioning that formulas (1.38) through (1.44) and (1.60) through (1.63) are of not
only practical computation interest but they are also of instructional value: calculations presented
above along with physical interpretations allow estimating their applicability limits in every specific
class of computational task at hand. It is out of any doubt that use of formula (1.63) for calculating
directivity diagrams of antenna systems with radomes is more preferable than the use of such coarse
computing methods as, for instance, the one of remote apertures (“false aperture method” [19]).

1.4 REGULARIZATION OF SOLUTIONS TO NONSTATIONARY SCATTERING
PROBLEMS IN CASE OF PHYSICAL OPTICS APPROXIMATION
IN BISTATIC RADAR

If one applies the physical optics method to compute fields scattered from smooth perfectly con-

ducting bodies, the errors occur due to inadequate description of surface currents in the vicinity of
terminator (the “light-shadow” boundary). In the work [6], these “terminator discontinuities” have
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been eliminated for a handful of very special cases of stationary scattering (monostatic radar, two-
dimensional problems, or three-dimensional problems but given terminator being a flat curve and
its plane being perpendicular to the incidence direction). In [6], the summands have been singled
out that are responsible for these false discontinuities, these summands being then subtracted from
physical optics integral, which improved the result significantly. It should be noted that the compu-
tation method in [6] is based essentially on the limited assumptions listed above and it cannot be
used if any of the assumptions do not apply.

However, it is easy to give examples of smooth closed convex surfaces with nonflat terminator.

One such example of smooth closed convex surfaces with nonflat terminator is an egg-shaped
surface (Figure 1.4) defined by the equation:

F(x,y,z) = 0,
where

F =+ —u(x),

u(x) = %(x +3)2(1=x?), k<1,

Let this surface be illuminated by plane wave with the wave vector k = (—1;0;1); then the termi-
nator curve equations

F(x,y,2) =0,
k- grad F(x,y,z) =0

can be presented in the following form:

. {y = £Ju(0) = (),

z=v(x),

where v(x) = (1/4)(x + 3)(2x*> +3x —1).

Incident
wave front

FIGURE 1.4 The egg-shaped surface.
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Assume that line (7') belongs to some plane

Ay+ Bz+ Dx+C =0,
(A2 + B* + D*> 2 0).

Then, we have an identity:

A?(u—v?)=(C+ Bv + D)~
Since
__ 1y __1
u(x) = 4x+ , vix)= 2x+ s

then, it follows from this identity that: (1/4)(A% + B*)x% + --- = 0, from where A =B =0 and we
have x = const at the terminator, which contradicts the terminator equations (7).
The contradiction thus received lets us to draw a conclusion that terminator curve (7) is nonflat.

Besides, even the ellipsoid illuminated from arbitrary direction R forms the terminator, which

is a flat curve (ellipse) with its plane being perpendicular to R° only in case where R° is parallel to
one of the ellipsoid’s principal axes.

In this section, we develop the method for finding the summands introduced by terminator dis-
continuity of surface current density due to physical optics approximation into the object’s impulse
response asymptotic and into its Fourier image” for the case of bistatic radar, and in case where this
flat terminator being arbitrarily oriented with respect to incidence direction, or even being nonflat.

To move further, we need the well-known formula by M.I. Kontorovich [20,21], which gives us
the contribution from a boundary contour in two-dimensional stationary phase method, to be gen-
eralized in such way that it would include nonflat region and nonsingular stationary phase point of
any type (and not only elliptical).

In this manner, asymptotic method that we are about to obtain would give us the edge asymptotic
for practically important case of amplitude function with singularity at the contour.

1.4.1 SuURFACE INTEGRAL AsYMPTOTIC GIVEN ARBITRARY TYPE OF NONSINGULAR STATIONARY
PHASE POINT AND SINGULAR, AT THE EDGE CONTOUR, AMPLITUDE FUNCTION

Integral representations of high-frequency electromagnetic fields contain the surface integrals of
the following form:

I= Ijexp(jk¢(xl,x2,x3))F(xl,xz,x3)dS, (1.64)
S

given k> 1.

If the surface S is not closed (wave diffraction at finite screen or aperture antenna radiation, for
instance), then asymptotic of the integral / consists of contributions brought in by surface (two-
dimensional) stationary phase points and the edge contour L. The case, where surface S is a part of
plane, functions @ and F being smooth enough, has been considered in [20,21]. The method used

* We deal here with high-frequency asymptotic of the impulse response Fourier transform (Fourier image) asymptotic and
the corresponding asymptotic representation of the object impulse response in the vicinity of wave front.
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here relies on the vector analysis theorems. It allowed us to single out the scattering contribution
from the stationary phase point of elliptical type only.
Below, we consider the

a. Integral over nonflat (in general) surface S given smooth phase @ and amplitude F func-
tions; the asymptotic representation of integral (1.64) in form of sum of contributions from
L as well as from isolated stationary phase point of any type [22];

b. Contribution from edge contour L of flat region S given the amplitude function (as is the case
in practically important classes of diffraction theory and radiating system theory problems)

_ F 0(xl’x2)
= o)’ O0<p<l. (1.65)
Here, function F, is continuous over S U L, and d(x,, x,) is the distance from point

M(x,,x,) € S to the contour L. It is worth mentioning that the method used in [21] cannot
be applied in this case;

c. Asymptotic formulas for some nonstationary fields, which can be used in the vicinity of
wave fronts, obtained by recovering original functions from operational representations of
the short wave asymptotic received.

Asymptotic of integral (1.64) given absent surface stationary points and edge singularities. Let
f(x,, x,, x;) = 0 be the surface S equation, the surface having relatively smooth edge contour L. We
consider functions f, @, F as being smooth enough at the surface S and in its vicinity. Let us intro-
duce the normal unit vector

i =i (x) = 7 (X, Xy, X3) :ﬁf/\ ﬁf\ (1.66)

and tangential differential operators D = V — 7i(9/0 n), D* = ii x D.

The assumption of stationary points absence at the surface means that ID @I = ID*+ @I # 0 all
over SUL.

Let us introduce the vector function

. D'® D'o
u= ‘DL q)‘z - ‘D(D‘z' (1.67)

Then, 7i - rot(exp(jk®) Fui) = jkexp(jk®)F (ﬁLd) u) + exp(jk®) D*(Fii), and, accounting for
(1.67),

Nl NL

—exp(jk®)D*| F b

\Dcp\z L

From where, according to Stokes integral theorem,

Jjkexp(jk®)F =n - rot| exp (jkD)F

‘2 . (1.68)

) Lo D'®
22 d1 - [[exp (k) B F 2 lds, (169)
D | ; D @

jk”exp (jkD)F dS = <_[>exp (jk®) F
S L
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where 7 is the unit vector of a tangent to L (direction of circulation about edge contour L is coordi-
nated with the unit normal vector to surface S defined according to Equation 1.66). Let us note (to
use it later on) that

where v = (T X 71) is the unit normal vector to L that lies in the plane tangent to S. Expression (1.69),
therefore, can be put in the following form:

1 1
I, =—K,——1,. 1.
0 ]k 0 ]k 1 ( 70)

Here,

I =[[expGr@)F ds; 1, = [[exp(jk@) T F as
S N

K, = Cﬁexp( kD) F{(aaf)/[)cbz}dz,

L

and TF = D*(F(D*®/ID®P)) is the operator acting on function F.
Having applied several times transform (1.70), we obtain for any m that

m—1
(_1)5 (_1)m
I, = E K I,, 1.71
0 =0 (jk)x+1 * " (.]k)m " ( )

where K, I, are the results of replacing in K, I, the function F by T°F, T"F, respectively. From

Equation 1.71 follows asymptotic formula for the surface integral (1.70) given the assumptions made
above:

”exp(]kcp)Fds @exp(]kcb)K )/DCD }F dl+o(klmj, (172)

where

IS
F (X0, %3,k) = Z(( k)?ﬂ °F. (1.73)

Contour integral in Equation 1.72, if necessary, can be replaced by a sum of squares of contribu-
tions from the contour stationary phase points known to be existing in advance. If at some simple
closed contour encircled by edge contour L the condition 0 </ </, holds, then ®,_;, =®,_,,and,

therefore, the interval 0 < [ < [, contains points with d®/d/ = 0.
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Let, for instance, these points be /,, L,, ..., [yand ®”(l,) # 0, (i =1, ..., N) (the latter condition
can be replaced by a more general assumption). Then, integral in the right-hand part of Equation
1.72 can be represented as

od/dv
I
£ lh) Do

N
2 k\op"(z)

i=

xp(jde (l,-)+%sgn ®” (1,.)).

Method of “neutralizers,” localization of asymptotic contributions. Let us assume that surface
S and its edge contour L are infinitely smooth, and functions f, F, and ® are infinitely differentiable
at the surface S and in its vicinity, the condition ﬁf # 0 being held true all over S U L, and the
condition D® = 0 being held true at the only point M, (x,) = M, (x?,x?,x?) situated at surface S at
distance R > 0 from the edge contour L.

Having transformed coordinates back into Cartesian system (§,,&,,&;) with origin at M (x,)
and axis M, &, coinciding with the direction of the unit normal vector 7 (x,), we get the following:

S(xi,x0,x3) = ]2@1’&_»2’%3), F(x;,xy,%3) =ﬁ(§1,§z,<‘=3), D(x;, x5, X3) = é(§1’§2’§3)~

Surface S, according to [23] (given p = /23, &? < R,, where R, is relatively small, and R, < R),
is described by equation of the form &; = g(§,.&,). At point M, we have that g =0, g;; = g, = 0.
Now, we introduce the function y (p), the so-called “neutralizer,” which is infinitely smooth all over
the semiaxis 0 < p < +oo, and

©) = LO<p<eg,
VP = 0,p>g

where 0 < g, < g, <R,.
Let us “split the unit” as 1 = y(p) + [1 — y(p)] in the integral /

I = j_[exp (kD) FdS = J, +J,. (174)

Here, J, =Hexp (k®)F dS, S, =SN{i-%l<¢e}, F =Fy, J,=]]exp(jk®)F,dS,
So

So=8N{x - xo' 2 g}, Fy = F(l-17).

The edge contour of surface S, consists of line L and the intersection line L, of sphere IX — X,| = €,
and S. Function F, and all its derivatives are equal to zero at line L, and at line L they coincide with
corresponding values of function F and its derivatives. Besides, at S, U L U L,, there are no surface
stationary phase points, therefore, according to results obtained above we have

JO:qSexp(Jde){( )/an }F dl+o(k1mj, (1.75)

where F,, is represented by Equation 1.73.
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We proceed now with the integral J; asymptotic. Since € ,<R,, then surface S, is described
by equation &;= g(&,,&,), and its edge contour L, is the intersection of surface S and sphere
IX —X,| = €,. Let us denote the contour and surface projection onto the coordinate plane (§,,&,) as
L7 and S/, respectively. Then,

5 = [Jexp(k®)F as;, (1.76)

where (i)(&:l’gz) = ®@,.5,,86,.5)), RE..&) = Y(ﬁ)F(énﬁz,g ELENY1+ g§1 + gé s p=
JE+E + 2 €5 )

Multiplier y(p) at contour L; makes the function F; and all its partial derivatives of any
order to vanish given p = ¢,. Under these conditions and given nonsingular stationary phase
point M, double integral in Equation 1.76 allows [24,25] asymptotic representation of the form

+oo

Jy ~ k7 exp[jk@(M)] Y a, k. (1.77)

m=0

The major value approximation of integral is

5y = 2T expjiaimy | SPUTDIEND) iy 0(}() , (178)
‘detd)‘
— &)éz &)iléz —
where ®=| " _ given & =&,=0, and sgn® =pu* —pu- is the difference

(I)il & (I)&,z
between the numbers of 2positive and negative eigenvalues A;,A, of matrix ®. In elliptical case
((MA, > 0),sgn ® = +2, and in hyperbolic case A,A, <0, sgn ® = 0.
Elements of matrix ® can be expressed (as it can be shown) via derivatives of functions ® and f
depending on &,,&,,&, at the point M, (0, 0, 0) given I, m = 1,2 as follows:

(&)il Em )§1=é2 =0 = f‘&;l |:q)§t Em f;w - f‘:;I Em éﬁs i| (1.79)

My

In this manner, there is no necessity to solve the equation f(&,,,,&;) = 0 with respect to &,
and to find the explicit expression of function g(&,,&,) in order to represent integral J, according
to Equation 1.78.

So, the asymptotic of integral I has been localized in form of contributions from the edge L of sur-
face S (1.75), and from stationary phase point M,, (1.77), (1.78). This result can be spread onto the case of
several surface phase points. Besides, the method of “neutralizers” used above allows us, relying upon
results presented in [24-26], to receive also asymptotic contributions from isolated stationary phase
points in various cases of their singularity. For example, if, after proper rotation of coordinate system

in f (&.€,.8;) = 0 about axis M,&;, the phase function can be expanded (in the vicinity of point M) as

DEE) =D (M) + A&+ D A, ENEL,

p+q=3
p-q20
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and if A, # 0, Ay; # 0, then [26]

JrT(1/3) exp((jm/4) sgn \,)

. (1.80)
\/m i/‘ 7¥03‘ £5/6

If, now, one considers integral  as a spectral image, then its original will be the integral

J~ = exp (jkO(M,))F(M,)

NG

7= Hsa _®()F(F) dS.
S

Taking inverse Fourier transform of the right-hand part of Equation 1.74 (taking into consider-
ation (1.75) and (1.77)), we get the ray expansion for I, the latter being the more accurate the closer
value ‘ t— <D(7c)‘ is to zero. Principle member of this expansion has the form:

7= j j 5 (t—D(E)F(F)dS ~ — j2nexp( j”sgncb) FMy) ¢~
s 4 ‘detfl)
_ @x(f —d)()?)){(%c\l})] /B(DZ}F(TC) dl. (1.81)
L

Here, M, is the stationary phase point (the one, in which DO = 0) at the surface S; 8(7) is the
Dirac delta-function; y(?) is the Heaviside step function. So, formula (1.81) can be considered as
transient analog to the generalization of the M.I. Kontorovich formula [21] considered above in this
chapter.

Asymptotic of integrals with edge singularity. Integrals with the edge singularity appear in some
electrodynamics problems such as the following:

1. The total diffracted field H (X) is sought from the primary wave H, (¥) incident on flat
perfectly conducting infinitely thin screen S bounded by contour L. In this case, Green’s
formula [27] gives integral representation of the magnetic field strength vector at any point
X, outside the screen:

AGy) = Hy (%) +”(?g x J(3))dS. (1.82)
N

Here, J(X) is the surface current density; g=g(X,, X) = exp (jkr)/(4nr); r = ‘fco - X
and the scattered field has the form

Ay — Hy (i) =H exp (k@) F (5, %) dS,’ (1.83)°
S

given phase function ® = ®(x,, X) = r.
2. Integrals of the same kind as in Equation 1.83 and with the same phase function are
obtained for the radiation of aperture antenna in rigorous mathematical model [16,17].

* Without restricting generality, hereinafter we assume F to be a component of vector F', as well as we assume k to be
dimensionless parameter equal to wave number k, times characteristic screen size.
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In each of the examples given earlier, the physically necessary condition at the edge is applied
in order to ensure the energy to be finite in the vicinity of the surface fracture [27]. Because of this,

the amplitude function F may have singularity at infinitely thin edge i.e. F = F, /Jd, where F,is
continuous in the vicinity of edge contour, and d = d(x,, x,) is the distance from a point in region S
to the edge contour.

In a more general case of fractures with interior angles 6 € [0, w], we have F = Fy/d’ and

=(m-0)2ne [0, 1/2].

Method for obtaining the short wave asymptotic given edge singularities is presented below as
applied to integral P over flat and strictly convex region S with relatively smooth edge contour L
and function F;:

(O 4

p= Hexp( k) m (1.84)

where r = \/(xlo —x)?+ (XY= x)*+ k%, (h=x) #0).
Point M,(x?, x9, 0) € S is separated from the edge contour L by distance R, > 0. Then, complex
directivity diagram is as follows:

Fy(X)
O=||exp (- jk(R - %) =222 d S, (1.85)
Il e

where R° = (0,—cos V, siny).
Integral P is convenient to be analyzed if we set the edge contour L by an equation in polar coor-
dinates (p, 0) with the center at point M,

p=w®), 0<0<2m (1.86)

In this case (as it can be shown), the amplitude function in integral P can be represented as a ratio
F (p, 0)/\/®(0) — p with numerator, having no singularities. We thus obtain

2n ()

=£ ! exp(jkyfp i) 1 %‘)’(?)‘idp (187)

Let us substitute new variable r = /p* + h? into integral P:

2n Q
p= J' dejemp(jkr)(g—r)-l/2 Grdr, (1.88)

0 h

where Q = Q6) = J02(®) + i2,G =G (.8) = F, ( 2 _n, e) [(©(0) + /12 — K )I(Q(®) + r)]".

Given h<r<€Q(0), we introduce infinitely differentiable by r (given every fixed value
Lh<r<eg

0,e, <r<Q(0)
(h <g <g <Ongi121 Q(G)).Given the condition that 1 =7, (r, 6) + 7, (r, 8), we obtain P = P, + P,.

of 0) neutralizers Y,(r, 0) and v,(r, 0), such that v, =1-v,, v,(,0) :{
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Let us consider the asymptotic of integral P. The stationary phase point p = 0 (+ = /) contribution
is as follows:

2n €y
P, = Jde j expGk P(Q = 1 2G y, rdr. (1.89)

0 h

Since function G(r, 0) = (Q — r)™> Gvy,r, given every fixed value of 6, is continuous by r € [A,
€,] along with all its derivatives (they equal to zero given r = €;), then integrating by parts gives us
the following expression:

N 2n
(=D exp(jkh) [ 0"'G,(h, 0) 1
P, = do+0 . 1.90
° 2 Gor 4 K (1.50)
In principle value approximation, we have
2n
h exp(jkh de 1
P, = —".,E’)E<Mo)j+0(2j. (1.91)
J ¢ \(6) k
Given asymptotic expansion of integral
2n Q
P = jd ef exp (kr)(Q — 1 2G y, r dr, (1.92)
0 €

our goal is achieved by integrating the inner integral by parts. However, due to singularity of func-
tion (QQ —r)""2 at point r = Q, it cannot be differentiated under the integral sign. So, instead of
e*[jk and e*/(jk)>, one must use the sequence of special kind of antiderivatives to the product
e (Q — r)™12 = Uy(r, 0) or, in other words, one must use the sequence of functions

+jeo
J (1 = Py exp(ike)(Q — 12 d1, (m = 1,2,...), (1.93)

r

(=D
(m-1!

U, (r,0)=

that possess the following properties:

U, (r,0
120 g0 = 12,0,
—1y" , T(m —1/2 ,
2. U, (Q,Q)= (; _)1)! exp (nj(m +1/2)/2) %exp (JkQ),
3. U, Q)| < n L _Tm=172) <, <q)

R ZEE

The following asymptotic representation stems from these properties:

P = i (=" exp (—jm(m — 1/2)/2) T(m
m=1

kmfl/Z

2n
—172) Jexp( Q)W (0)de + 0(1} (1.94)
0

kN+I/2
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where

0" ' [G(r,0)r]

orm-!

‘.Ilmfl (e) =

r=Q(0)
In the principle value approximation

1

P = xp(jkQ) F, (@, 0) JoQ d6 + 0().

k3/2

exp (—jn/4) Jn Te
Jk )

Now, we are ready to consider asymptotic representation of integral Q (1.85). We restrict our-
selves with the case of edge contour L being symmetrical with respect to one of coordinate axes, as
well as by obtaining only two major members of asymptotic representation.

Let L in coordinates (x, y) be set by equations x = w(y) (@ <y < b) and, in the vicinity of points
a, b w (y), to have the following asymptotic:

w(y) ~ pWJy—a, (y—a+0)
g\ b=y, (y—b-0)

In this case, p(y), (), w*(y) are smooth enough within [a, a + €), [b — €, b), and [a, b], respec-
tively (given € < (b — a)/2).

Amplitude function in Equation 1.85 can be represented as the ratio f(x, y)/ Jw?(y)—x*, in
which f(x, y) does not have any singularities. Let us assume that this function is satisfactorily smooth
over S U L. After some math, we obtain the following:

b
0 = [exp ) Uy, (K = kcosy), (1.95)
1 d&
Uy) = | fEw().y) : (1.96)
e 2o

1

1
Ay dE 1w 1O,y A8 (o (g

vo = J. oy 1-g 2 dy ox? 1 - g2

-1 -1

From Equations 1.96 and 1.97, it follows that

U(a) = f(0,a)r, Ub) = f(0,b)r,

o= (M0 1200 )y

af(0,b 2
v ( /0h) 12/ B)n,
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where

2 2
. w(y) . w(y)

A= lim , B= lim .
y—>a+0|: }y —a :| )‘%b0|: b -y

Integrating by parts twice into Equation 1.95, we obtain the following asymptotic formula:

O=nm exp(jkb){_lkf((), b) — 1 [8f(0, b) L 9°f(0, b) Bﬂ
J

Gk oy 4 ax
~ RS 1 (9f(0,a)  10°f(0,a) 1
T exp(]ka){jk f(0,a) kY ( o T o AH + 0(k3 ) (1.99)

In this manner, the asymptotic representation of integral Q obtained above is of discrete nature
and it consists of contributions from vicinities of points (0, a) and (0, b) of edge contour. Such
phenomenon is known well in the short wave diffraction theory and it is related with the “specular
point” concept in radar.

Methods used above to compute integrals P and Q allow us to obtain asymptotic representation
of integrals with other phase functions and other types of edge singularities.

Let us apply Kontorovich’s formula generalization (1.81) obtained above to solve the prob-
lem of electromagnetic wave diffraction at perfectly conducting convex body (in physical optics
approximation).

1.4.2 ImpuLse RespoNSE OF PERFECTLY CONDUCTING SMOOTH CoNVEX BoDy IN
BistaTic RADAR (PHYSICAL OPTICS METHOD). ELIMINATION OF TERMINATOR
DISCONTINUITIES

Using asymptotic expression (1.81), one can obtain impulse response of perfectly conducting smooth
convex body in general case of bistatic radar.
Let the object with surface S be illuminated with plane monochromatic electromagnetic wave

E® = pexp(jk, (a + R" - %)),

A = /;—0 (R° x p) exp(jk(a + R - %)). (1.100)
0

Here, a is the distance from the zero phase plane to the coordinate origin, p is the polarization

unit vector, R is the wave unit vector of incident wave.
Operational original for the field (1.100) is the pulsed plane wave

E° (1,X|R°) =pd(t —a — R - %),

HO (1,3 1R) = /fTO (RO X p)8(t—a—R°-%). (1.101)
0
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Field scattered from the body in the direction of unit vector 7°, when the body is illuminated with
wave (1.100), can be presented in the form:

Hocar (170) = %ijo‘”(ﬁL X %) exp (—jko (F° - X)) d S,
S

where H is total field at the surface S. Physical optics approximation gives us the following expres-
sion for the scattered field:

e (79 = jk, j J exp (jk,®)A dS, (1.102)

Sittum

where S,

illum

is the object surface part that illuminated with the wave (1.100),

A:ﬁ i—i(ﬁx(ﬁ"xﬁ))x?", ®=a+r+(R-7) %

Impulse response of the object, in its turn, is the original, spectral image of which in high-
frequency approximation is represented by expression (1.102):

st (1, 570) ~ _% [[Js¢-o@nias. (1.103)

Sittum

In this manner, expression for the impulse response can be obtained using formula (1.81) simply
by differentiating it by z.

By the way, we are going to get a representation for the solution estimate to stationary diffraction
problem described by expression (1.102).

To achieve this, we evaluate, first, the contribution from stationary phase point. The stationary
phase point M,, is determined by the following equality at point M:

Bo = (R -7) =R —7" =0

or

where 7 is the normal to S, at the stationary phase point M,
In the vicinity of point M,, we introduce local coordinate system &, &,, { described above in

Section 1.4.1 (here, { = &;). In the vicinity of point M, at §

illum

{4 an & 4282 ofet 482,
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or, within accuracy of the higher-order infinitesimal,

In this case, in the vicinity of M, we have
o 1 . - -7 =
OE L) =a+r+1 €1+l§)§2_§(10 'nMo)[é Ai),

where ° = R® — 7, so that

Taking into account that

we get

Since 7y, is the unit vector of external normal to S then, evidently, (?0 : ﬁMO) > 0.

Let A;, A, be the eigenvalues of matrix A. Then,

illum»

sgn &)Mo =sgn A,
det By, | = (70 -7y, ) ldet A = (7 - sy, ) 1y 2sl-

Next, given proper rotation of coordinate system about axis {, we get equation for S;;,,, in the

vicinity of M

illum

g= —%(me + 7‘271%) +oee

from which it follows that A;, A, are the principal curvatures of S, at point M,

illum

M=, A =&,

B | = o2 (70 7
‘det D, ‘ = cos (r ,rzj\,,())~‘zztﬂ:1 &2‘.
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To move on further, we need to assume that @, &, # 0. Particularly, if surface S around point M|,
is strictly convex, then &, > 0, &, > 0 and

‘det @, ‘ =&, cosz(Fo,ﬁMO),
sgn&)MO: 2.

If, in its turn, M, is the saddle point, then &2, < 0, sgn CT)MO = 0. For definiteness, we give all the
considerations below for the case of &, > 0, &, > 0. Using expression (1.78), we get contribution
from the stationary phase point into the scattered field:

gy Ly, X (R" X p)] x 7

st.ph. T T AT PR :
Ho rye e, ‘cos(r",nMO )‘

Hewr (r70) exp(iky(a+r+1° %, )).  (1.104)

Boundary of the surface S;,,,, is terminator L, which determines the “light-shadow” border line.
We estimate its contribution into the scattered field asymptotic using (1.75):

~ 0d/dv

(Iflsmt(rfO))me - J'ejkuq)A — dl. (1.105)
. Do)
Here,
90 oy =T0 (ex).
ol =10 [ =[] (i &)

Let us assume that contour L is defined parametrically:
X=X().

Then, contour points of stationary phase can be found from equation

193 (1) =0,
and let these points be M, (i=1, ..., N). Then, integral in Equation 1.105 can be computed
asymptotically:
y , [°%ii
2 ( A) . ("tn)y,

2 -
_(lo'ﬁMm )2

lO

m=1

(PO i~

m

s (d7
(8
i),
dt

~exp(jk0 (a+r+i0 -)?Mm)+]litsgn(i° ‘dl) J (1.106)
MIH
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It is taken into account here that

= (dT
"), =1 () :
( )Mm d/ Ny

m

where

el

T(t) =

So, having combined formulas (1.104) and (1.105), we get the following:

— 50 - -0
ﬁscat(rFO) - 870 [nMo X (R X P)] Xr

Mo f. \/‘z}:lmz‘(FO Tiy,)

X exp(jko(a+r+1° - %y ) + gSefanA(%(f / D(I)zjdl. (1.107)

L

Formula (1.107) gives solution to the stationary diffraction problem, where perfectly conducting
smooth convex body is illuminated by plane wave (1.100).

Expression of the impulse response, in its turn, for the object under consideration (scattered field
in case of transient pulsed illumination of the object by the field (1.101)) can be considered as the
original, spectral image of which is given by formula (1.107):

. [ i X (R X p)] x i° -
}[‘Wm ([’5“?0) ~ — % [nMO ( p)] 4 6(l —a-—r— lO . XMO)
0

r- ,Mael aez‘ (FO - fip,)

w0 =(0D /= _p
+(JLS6(t—a—r—l°-x)A(av/D(D jdl. (1.108)

So, in the physical optics approximation of impulse response, we have singled out the members
responsible for terminator discontinuities appearing due to inadequate description of surface current
density in the vicinity of “light-shadow” boundary in physical optics approximation. Solution obtained
above for the stationary diffraction problem can be improved, like that of [6], by subtracting the major
members of terminator asymptotic described by (1.106) from physical optics solution obtained above.

Impulse response (1.108) can be smoothed out by subtracting the operational original, which cor-
responds to the operational image (ﬁ seat (r ¥0Y)

cont.L*

N

’ R 1%
cont.L - ZJ 2—~ (A) My~ ( Tn)M”'

j_—[‘scar(t,)‘c‘li.’O)

2 -
o TO-(MJ 10\ — (0 iy,
ar ),

@ R [
- exp jE sgn l(’-g -1 wr-a-r — xM”’), (1.109)
4 di )y, \/t—a—r—loﬁcMm

from the right-hand part of Equation 1.108.
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Representation of the impulse response obtained in such way does not have spurious peaks,
absent in reality, and which appear due to discontinuous character of surface current density adopted
in physical optics approximation.

Let us mention also a special case, where terminator L belongs to the plane with normal vector
[°.In this case

O(X)l, = const

and, consequently,

where ¢ is some constant.
It follows from here that

- - ' (0D /1~ 2
(7)) com.. ~ eXP(jko(a + 1 + C)“]SA(W/ D) jdl’
L

(j?[scur(z,)—clfo Ve, ~Ot—a—r1— 0)45;‘(88;?/‘5 (D‘zj dl.
L

It can be seen that intense spurious “terminator” peak appears in this case in impulse response,
which is needed to be eliminated.

In some cases, slightly different approach can turn out to be more preferable for estimating
impulse responses of complex scatterers in bistatic radar. Such approach (also developed by the
authors of this book) uses the physical optics approximation too, but it passes by the need of estimat-
ing scattering contributions from stationary phase points [28-30].

Therefore, in this chapter, we presented the method for computing impulse responses of perfectly
conducting smooth objects in bistatic radar case.

In the asymptotic representation obtained below, we also singled out the summands respon-
sible for appearance of spurious peaks that were expressed by contour integral. The major mem-
bers of this integral asymptotic have been obtained, which are needed to be eliminated from the
impulse response representation in order to smooth it out. The latter allowed us to increase the
computation accuracy over time period up to arrival moment of creeping wave traversing the
shadow zone.

All these results rely upon the generalization of M.I. Kontorovich formula obtained above, which
gave us the scattering contribution from edge contour in two-dimensional method of stationary
phase in case of nonflat region and nonsingular stationary phase points of any type.

1.5 REMARKS ON RECIPROCITY PRINCIPLE FOR THE SCATTERED FIELDS
IN PHYSICAL OPTICS APPROXIMATION
As it is known, the reciprocity principle holds true with respect to the fields satisfying the Maxwell

equations and, in general, any boundary conditions at the surface of a scatterer. However, when we
deal with the fields approximating real ones (such as high-frequency asymptotic solutions to the
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Maxwell equations), it turns out that reciprocity principle may not hold true. We consider this issue
in more detail with respect to physical optics method used in Section 1.4.

Let the perfectly conducting scatterer V to be bounded by closed surface S and let the Cartesian
coordinate system origin to be placed inside the region V.

We consider the object V as being illuminated by electric dipole, with vector-moment p

that is localized at the point with radius-vector d = —a R°. Primary field E (X4, p), H (X1d, p)

excited by the dipole has the following asymptotic representation given fixed unit vector R and
a —> +oo:

E(#a.p) | _ K exp(kya) [ E° (RIR". ) (1.110)
H(®a,p)) & 4ma | HOFIR,p)) '

where

[EO (FIR°, p)

(p— R*(p - R%))exp (jk, (R - X))
H° (XIR°, 13)]

=1 [eg 5 - o , (1.111)
L (R X Pexplky(R? - )
0

which is the plane wave field.

It follows from vector integral equations of Green’s kind for electromagnetic fields [11] and
formula (1.110) that the field scattered from object V in far-field zone at a point with radius-vector
7 = r - 7% has the asymptotic representation (given a — +oo, 1 — +oo):

E‘scat (Fla, p) ~ ﬁ exp (jko(a +7) Eseat (70 |RO,]3) (L112)
ﬁsult (7|ﬁ,]3) € (4n)2ar ﬁ‘.\'cur (;:() |1—€()’]3) ’

in which vectors E*“, 77 constitute the complex scattering diagram that is the field scattered in
direction 7° (in far-field zone) given incidence of plane wave (1.110) onto V. In this case,

B IR, ) = = ko |50 [ (R = 706 ) exp(=jky (7 - )4,
0
N

(1.113)
T GIR, B) = =k, [ (70 % K)exp(=jiy (70 - ),
N
where K = 7i x H“ and H""“ s the total field excited by plane wave (1.110).
From the reciprocity principle in its usual formulation
G+ E<(71a, p) = p- £ @F,g), (1.114)

as well as from asymptotic formula (1.112), and the following expressions:

F=r-7 da=-a-R°
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follows the reciprocity principle for the complex scattering diagrams:
G- E<(FOIR°, p) = p - % (—R"| — 70, ). (1.115)

Equalities (1.114) and (1.115) are strict, which rigorously follows from Maxwell’s equations. Let
us study the satisfiability of equality (1.115) in case of scattered fields computed in physical optics
approximation given Kirchhoff’s approximation in formulas (1.113) of equivalent surface current
density

K(%) = 27 x H*(ZIR°, p)

over that part of S’(R°) c § where 7 - R" > 0 (7 is the unit vector of inner normal), and K(X) = 0
over complementary part S\S’(R°). Under this approximation, we have

@"““’(?‘)Iﬁo,ﬁ) = 2 jk, J' [(f?o _ -’0(;;0 . I_éo))(ﬁ - D)
§7(RY)

—(p = PG - PR - i)lexp(jky(R® = F°) - $)dS, (1.116)

B (-RI-709) = 27k [ [=G0 = ROR" - FO))Gi- ) +
857

+ (G — RO(R° - §)(F° - ii))]exp(jky (R® — 7) - ¥)dS. (1.117)

For the monostatic radar, where —7° = R°, the surfaces S’(R°) and S’(-7°) coincide, and
R® —7°(F° - R) = ¥* = R°(R* - #°) = 0, so that

Esat (FOIRY, b)Y = 2jky(p — FOFO - p)) - 1, (1.118)
Esat (=R = 79,G) = 2jko (G — FOFO - §)) - I, (1.119)
where
I = J' (R - 7i)exp(2jk, (R - X))dSS. (1.120)
S"(RO)

From Equations 1.118 and 1.119 follow the equalities (for the case —y0 = RO
G- E<(FIR, p) = p EX(-R1=F7°.9) = 2jky[(p - §) = - @) - p)] - L.

So, in the monostatic radar case, equality (1.115) holds true also for the scattered fields computed
in physical optics approximation.

Yet in case of bistatic radar (=7 # R?), integration in Equations 1.116 and 1.117 is done over dif-
ferent noncoinciding varieties (the scalar products of integrands with ¢ and p respectively do not
coincide in this case either).
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So, the reciprocity principle in bistatic radar case (given physical optics approximation) does not
hold in general.

This conclusion is of even more practical value since bistatic radar is an important part of mod-
ern radar; and physical optics approximation together with reciprocity principle is the common
approach used in electrodynamics, sometimes without thorough grounding.

1.6 RCS OF THREE-DIMENSIONAL OBJECTS AND ITS RELATION
TO THE RCS OF TWO-DIMENSIONAL OBJECTS

Let the finite size object bounded by surface S be illuminated with plane wave (from radar)
E°(X) = pexp(—jky (R - %)),

H' (%) = (p R°)\/E° exp(—jky (R - %)),
0

where —R° is the unit vector of ray from radar to a target, and p = p - p° is the unit vector of polar-
ization, p° L R°.
The RCS is determined as [31]

— 2
prec . Escat

6 = lim4nR> L, (1121)
TR

where R is the distance from scatterer to the receiving antenna, p" is the unit vector determin-

ing polarization of receiving antenna, Es is the field scattered by the object toward the receiving
antenna.

So, computation of the scatterer RCS reduces to finding scattered field Esa at the reception
point.

If E(¥), H(X) is the total field, then scattered field E*“ (¥) = E(¥) — E°(X), as it follows from
the Lorentz reciprocity theorem, can be expressed as

jod - B< ) = [ () £ (5,,9) - BT (D) - A5 (35, )4, (L122)
N

where &¢(¥1%,,G), HE(XI%,,qG) is the field of point electric dipole with vector-moment § placed
at point X,, the point being situated anywhere outside S and g having arbitrary amplitude and
direction.

We assume that ¢ = p and let the radius-vector of observation point be x° = RR".
We substitute in Equation 1.122 asymptotic expressions, given R — oo, for vector-functions
E¢ (X%, p), Hi (XIXy, P)

E§ (¥1%). p) ~ Qk,R)E (XIR°, ),
H (1%, p) ~ QUky R (FIRC, p),
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where
_ exp(jk,R)
QkoR) = 4nk,R
(1.123)
E§ (AR, p) = Ko, |50 5T exp(=jk, (R - ),
0
I GFRY, p) = —ki @p* exp(—jky (R” - ), (124

P' =p-RR"-p). p'=R"xp.

Formulas (1.123) and (1.124) represent the field of linearly polarized plane wave with wave vec-

tor (—R") that is arriving from infinite distance. These asymptotic representations hold true given
x € S and R > D, where D is the diameter of the object being illuminated by radar (i.e., its largest
linear measure).

Now, scattered field £°“ (x) in far-field zone has the following form:

joo - E*(RR?) ~ Qk RGO [ exp(= ko (R - )
S
1p- ﬁL(x')\/;TO —(R° x p)- EX(3)]dS, (1.125)
0

where HY = 7i x H, E* = ii X E, and 7 is the unit normal vector to S.
Once we assume dealing with perfectly conducting objects, i.e., ETlg = 0 then equality (1.125)
reduces to the following:

jop - E<“(RR) ~ Q(kOR)kga)J'exp(— jko(R® - X))(p - Erl(fc))\/;TO ds. (1.126)
0
N

Nonetheless, it is worth mentioning that representation similar to expression (1.126) follows from
Equation 1.125 also for a wider class of scatterers, boundary conditions for which can be (with sat-
isfactory accuracy) expressed by an impedance type condition:

ET = /%Zﬁll at S. (1.127)
0

Indeed, given boundary condition of the kind (1.127) (satisfied, for instance, at the surface of a
body with great but finite conductivity, or at the surface of some kinds of RAMs used for camou-
flage, etc.), representation of vector E*@(RR") can be obtained by replacing vector p by vector
p, = P+ (R° x p)Z in scalar product p - H* (¥) of formula (1.126).

From formula (1.126) follows rigorous expression for RCS of perfectly conducting object. Since

‘ p- E° (56)‘ = p, then, given R/D > 1, the following asymptotic equality takes place:

- - 2 2
TERZ ‘13 . Escat(RRO)‘ .

B SO S,
4 ‘2 2 ‘!exp(—Jko(RO : x));(p : HL(X))\/gdS

il

b
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from where we derive the strict expression for RCS:

2

m~£ . ”0.—l~.*l~ b
ol ~ % [expCiig (R 3 (p- H ), K0 as

N

. (1.128)

The use of exact formula (1.128) requires the surface current density H* over S to be found in
advance by means of any rigorous method (eigenfunction method, integral equation, etc.).

In practical RCS computations for the objects of large dimensions, far beyond resonant scattering,
it is common to express the surface current density H+ according to physical optics approximation,
which leads to replacement of formula (1.128) by the widely known computational expression [7,8]:

2

ol ~ 4n J exp(—ijO(I—QO X)) - ]_éo)ds , (1.129)

Sittum

where S;,,,,1s the part of the surface S illuminated by incident plane wave.
In the same way, in case of two-dimensional model of cylindrical body with the directrix / that
is not restricted along generating lines and that is illuminated by plane wave, front of which being

parallel to generatrix, the RCS value per unit length of generatrix is as follows:

- - 2
1‘50 . Escat(RRO)
o/ = lim 2ERQ

lim B (1.130)

This value, as it will be shown duly in rigorous theory, is expressed differently for E- and
H-polarizations.

We introduce Cartesian coordinate system Ox,x,x; with axes tied to the cylindrical scatterer
in such manner that unit vector &, be parallel to generatrix, and unit vector ¢, = R° (which is the
unit vector of ray coming from target to radar). We assume for E-polarization that p° = ¢;, and

p° = —é, for H-polarization. Let us note that given R — o and p° L R°,

s R L2
f@g(ﬂRRO, Bydx, ~ ﬁj l;—OQ(kOR)de
0
kg
4je,

1 [ 2 , nj
Q" (kR) = = 1 /nkOR exp(]kOR - 4])

From Equations 1.122 and 1.131, it follows that

= —B g HP(koR) ~ PO (ko ROk, |5 exp(—jky(RY - $)), (113D
R—oo 0

where

p° - E*“(RR") ~ Q”(kOR)kOJ(ﬁO -HY) /% exp(—jky (R - ¥))d, (1.132)
0
1
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where, given E-polarization

. 1 Jdu
20 'HJ‘ — .
(p ) Foug an’ (1.133)
and given H-polarization

P =-¢, H=év,

(p° - HY) = (7i - RO)v. (1.134)
So, according to Equations 1.130 and 1.132
2
am_ T f50. g1y Mo (R0
of = o | (B° - H),[E2 exp(—jky (R - $))d1] (1.135)
2A ’ €

where (p° - H*') are determined by expressions (1.133) or (1.134), depending on polarization (paral-
lel or perpendicular).

In physical optics approximation, at the illuminated surface of object we have
PR =2 B = 20 RO, expl- (R - ).
0

and formula (1.135) reduces to

2

of = 7| [ i+ RYexp(-2 k(R - )l (1136)

Littum

If the scatterer is the infinitely thin perfectly conducting screen, then one may integrate over
S*and S~ (over I and I respectively) in exact formulas (1.128), (1.135) given fixed direction of the
normal. As a result, these formulas will include K = (H*)* — (H*) instead of H*:

2
cé”zlf exp(—jky (R - iN(p° - K),[E2 ds| (L137)
A? . €
2
b1 a0 B0 =m0 B
/' = 55 _l[eXp(—Jko(RO~X))(p°-K)\/§dl : (1.138)

In their turn, formulas (1.129) and (1.136) evidently stay unchanged.
RCS computation of infinite (by generating lines) cylindrical bodies, both approximate and
exact, requires much less computation power than that of real three-dimensional objects and, at the
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same time, provides qualitatively accurate scattering characteristics of different objects, as well as
their RCS dependencies on frequency and other parameters.

At the same time, as it will be shown below, the quantitatively accurate estimates of real object
RCS can also be obtained under specific conditions by their two-dimensional values. We demon-
strate such possibility, first, by analyzing expressions for RCS of perfectly conducting cylindrical
screen S with arbitrary (open) directing line /. Let us assume that [ %s placed in plane x,0x,, and that

at S holds the condition —d/2 < x5 < d/2, and the unit vector RO=Y ¢; cos;.
Now, we introduce another two unit vectors such that =

sin 0,

R} = (¢,cos 0, +¢,co80,), R =¢&,cos0; + ¢, sin 0;.

Then, according to physical optics approximation

2

47
A7

ol =

Jexp(—Z ko (RO - B))(RY - 71)d S

N

2 lap 2
- i’; J-exp(—2 jky sin@ (RO - DR - fydl| - J' exp(=2 jkox; c0s 03 )sin By d x;
1 —dj2
2 d/2 2
- 2—RJ-ex (—2,jk, (RY - $))(RC - 7i)dl 2n Iex (—2jky (RY - )%,)(RY - &,)d x
_nsin637ullp J (Y 1 }‘d P=2JKo Iy - €3)X3)(1; - €, 3
—d2
where k, = k, sin 0;, A, = A/sin 0, and, therefore,
1 - -
oy = mcfl(&o, A) - 05 (R, M). (1.139)

Here, 6/ (R", A,) is the RCS of infinitely long cylindrical surface, its directrix / and generating
lines being parallel to Ox;, that is illuminated by radar at the wavelength A, = A/sin 6 in the direc-
tion —R? (Figure 1.5).

In this case,

cos cos 0, i cos 0,
= inge = — .

?= Sin 0,’ sin 0,

xZ

R

l
¢
(0] x

FIGURE 1.5 Tllumination geometry of infinite cylindrical surface.
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-d/2 (0] dl2 *1

FIGURE 1.6 Illumination geometry of infinite strip.

In its turn, value 6% (RY,A) is the RCS of a strip (x, =0, —d/2 < x; < d/2, —e0 < x, < +00) illumi-
nated by radar in direction —RY at the wavelength A (Figure 1.6).

Practically, expression (1.139) is useful given rather large values of angle ;. Assume, for instance,
that /6 < 0, < /2, then (1/msin 05) € (1/m, 2/m). When the object S is illuminated by wave, front of
which is parallel to the cylinder generatrix, we have 6, = /2 and, therefore,

ok BB R -
- (1.140)
of = _of (R*.1)- 0¥ (&.).

It is important to note that an equation similar to Equation 1.129 derived, given physical optics
approximation still holds true even if other, more accurate methods than physical optics one, are

used to express the surface current density K(%).
We consider here that only parameter k,d is large (linear dimensions characterizing / must not be

necessarily large), and we assume that, given —d/2 < x, < d/2, the function K(X) at surface S coin-
cides with the surface current density K" (x,,x,) that is excited at corresponding infinite cylindrical
surface. We assume also that 6, = (7t/2), the unit vector R° being oriented arbitrarily in plane x,Ox.,;

and vector p, in its turn being, oriented arbitrarily in the plane normal to R°.
Then, using exact expression (1.137) we get

a2
ot = fexp= ko (R - )" - K5 dl [ dx,
A? €,
[ —df2
2
= L fexptikg(R )" - K M0 a2
T 2A 1 0 g, A

The latter means that according to the approximation considered here
1 = - _
off = o (R". 1) 0! &. M), (1.141)

but, unlike Equation 1.139, 6/ here is the exact value of two-dimensional RCS, and ¥ is the same
as in Equation 1.139 approximate RCS value of flat strip given its normal illumination. It is essential
to note that in formula (1.141) the value " and, therefore, the RCS value 6% of real object appear-
ing in left-hand part depends on polarization unit vector p°, which, as it was shown, can be chosen

arbitrarily (provided that condition p° L R is satisfied).
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Therefore, having computed exact RCS value o} of two-dimensional model (having solved
for this purpose corresponding integral equation with respect to induced surface current density
K" (%)), we find then, by formula (1.141), a more accurate and more informative (particularly with
respect to the incident wave polarization dependence) expression for the real object RCS.

In the same manner as we have derived expression (1.140), we can receive another expression of

the same structure, in the left-hand part of which appears exact value of 6 computed by formula

/4

(1.137) given true distribution of K (¥); and the two-dimensional model RCS 6/ being computed by

exact formula (1.138) yet using approximate expression for the current density K” (x,,x,) obtained
by averaging K(X) over coordinate X5

dl2
K’f(xl,x2)=$ I K()dx,. (1.142)

—d/2

The latter remark has rather theoretical than practical sense: equality (1.141) turns to be exact
if the surface current density in two-dimensional model is replaced by its integral average (1.142).
Practically, however, the more important approximate equality (1.141) takes precedence in its origi-
nal formulation described above.

Finally, we note that in all the considerations related to formula (1.141), the line / may not only
be single one but it may represent a set of arcs and, in its turn, the surface S may represent a set of
cylindrical surfaces with their generating lines parallel to axis Ox;. For instance, using (1.141), we
can compute the RCS of a double reflector antenna given its illumination from the outside: having
solved the system of integral equations with respect to currents over the system of reflectors [, ,,

and having computed current densities K, K while accounting for all the interactions and reso-
nances inside the system, we get the antenna system RCS ¢’ by formula (1.141).

In case of scatterers, which are the “double curvature surfaces” and which posses such character-
istic that none of their principal curvatures is identical to zero (unlike cylindrical surfaces), the reso-
nant effects of RCS dependence on frequency cannot be computed using two-dimensional models.

The difficulties appearing in such computational problems and some approaches to their reso-
lution are considered below using simple example of computing RCS of infinitely thin perfectly
conducting paraboloid of revolution in case of its illumination along the axis.

Axial illumination of paraboloid S, defined by equation 2gx; = x7 + x3, where x? + x3 < a” and
koa > 1, leads (in approximation of physical optics) to RCS:

o = 2ng*(1 — cos2k,d),” (1.143)

where d = a*/2q is the elevation of edge points of the screen (paraboloid) under consideration over
plane x,0Ox,.

Yet in corresponding two-dimensional problem given illumination along the axis of parabolic
cylinder with directrix /, defined by equation 2¢gx; = xZ, we get (under the same physical optics
approximation) specific RCS value with respect to the unit length of generatrix

2
N2kd

ol =4q J' e/ dr = 4ng[C?({2kod) + S>(\2kyd)], (1.144)

0

where C(x), S(x) are the Fresnel integrals [32].

* We omit simple calculations leading to expression (1.143) and expression (1.144) presented below for the two-dimensional
RCS model.
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As functions of frequency (or wave number k, = ®./€,L, ), the values (1.143) and (1.144) are
of fast oscillating nature, the amplitude of oscillations in two-dimensional case (formula (1.144))
damping as the frequency increases and, given k,d > 10, they settle down at value 677 = ng.

Yet, in case of three-dimensional object, these RCS oscillations described by equality (1.143)
do not dump even in high-frequency zone, small changes in frequency being able to change sig-
nificantly the value of 6¥7; resonant effects taking place here given kya > 1 are due to the second
parameter, k,d, and, given k,d — 0, they disappear.

However, instead of such unstable characteristic as 6%, which is subject to random fluctuations,

one can introduce the value averaged over certain frequency interval

ky

o5 (ki ky) = 2mg” o ! . j(l ~ cos(2kyd))d k, = 2nq2(1
2 T M

ky

_sin (2k,d) — sin (2k,d)
2(ky —ky)d '

which, given significantly large values of parameter 2(k, — k,)d, is quite close to the constant:

S (k. ky) = 21 q>. (1.145)

In the same manner, we have also the averaged value of

o/ (k.k,) = mq, (1.146)
so that the following expression takes place:
~ 2 ~1 2
o§ (ki k) = E[G, (ki ky)] . (1.147)

Equalities (1.139)%, (1.140), (1.141), (1.147) expressing RCS of different objects, which have been
obtained using different methods, share the same structure and follow similar quantitative pattern:
RCS of three-dimensional object (fixed frequency one if the case is nonresonant, and frequency
averaged one if the resonance is present) can be expressed as the product of corresponding’ “two-
dimensional” RCS (or frequency averaged ones) multiplied by a dimensionless parameter of the
order of few tenths, which depends, in general, on the scattering object configuration, illumination
direction, and radar signal polarization.

This quantitative pattern can be shown to hold for a large number of RCS examples computed
using both physical optics approximation and more accurate approximations of surface currents
(particularly, using the edge wave method [7,8]).

For example, in physical optics approximation, the RCS of plane body S (of arbitrary shape)
given its illumination along the normal is

[]as

S

2
ur — 4n

41 4m
S_}\‘z _752_ 2

=2 T did;,

* Given large enough values of 0;; for instance, 6; > /6.
© We mean here the RCS per unit length of two cylindrical surfaces, the generating lines of which are perpendicular to each
other, and their directing lines being determined by geometry of the object of interest.
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where d,, d, are the measures of any rectangular enveloping the object S, and parameter y being the
ratio of the S area to d,d,, so that 0 <y < 1. However, two-dimensional RCSs of strips (“bands”) of
the widths d, and d,, which are tangent to S, are

2T 2T
off = d,, ol = d,,
and, therefore,
Y
ol = o ol'cl. (1.148)

In special case of circular or elliptical disk, this dimensionless parameter is Y/ = 7t/16.

Finally, it must be emphasized that quantitative dependence formulated with respect to three-
dimensional RCS, which relates it to that of two-dimensional model, is rigorously proved only for
a limited number of scatterers illuminated under exactly specified conditions as to illumination
direction and the surface current density approximation method. In other situations that are beyond
the rigorous considerations presented here, this quantitative dependence can be considered as a
heuristic approach to computation of the RCS rough estimates.
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Radar information gathering on numerous objects of interest by means of full-scale and physical
experiments involves considerable amount of expense in the form of materials, time, and manage-
ment. Therefore, one can consider mathematical simulation as one of the most affordable ways of
getting scattering characteristics data. Classical asymptotic methods of high-frequency diffraction
do not allow, unless proper improvements and generalizations are introduced, to compute scatter-
ing characteristics given such complicating factors as the object shape, presence of various radar
absorbing materials on the object’s surface (including fractures), influence of underlying surface,
and multistatic radar configuration. Accordingly, the need to obtain scattering characteristics on a
variety of real airborne and ground objects requires electromagnetic scattering theory to be elabo-
rated, and generalized methods for computing scattering characteristics to be developed for the
complex-shaped objects with nonperfectly reflecting surface.

This chapter presents the method developed by the authors for computing scattering characteristics
of airborne objects having complex shape and nonperfectly reflecting surface [33,34]. The method is
based on separate evaluation of contributions that smooth surface part and edges (fractures) brought
into total scattered field. In this case, total field over smooth parts of the object’s surface is computed
by Kirchhoff’s method or by its generalization onto the case of present radar absorbing materials.
The field scattered by edges (fractures) is computed using a solution to the simulative problem of
plane monochromatic wave diffraction at perfectly conducting wedge with radar absorbing cylinder
placed over its edge in case of oblique wave incidence. The method proposed here allows computing
RCS of ideally conducting airborne object completely or partially covered with RAM (Figure 2.1).
The object itself may have surface irregularities in the form of fractures that may be covered with
RAM too. The object RCS can be computed for both monostatic and bistatic radar configuration.

It should be mentioned that the method presented here allows computing RCS of the objects
completely made of dielectrics or composites.

In case of ground objects (Figure 2.2), we propose here the computation method that accounts for
the presence of underlying surface with known electromagnetic characteristics [35-39]. Presence of
the “air—ground” interface leads to the appearance of two mutually overlapping illuminated regions
at the object’s surface. The first one is due to direct incident wave from radar; the second one is due
to the wave reflected from the ground.

Integral representations obtained here allow us to single out four basic paths of electro-
magnetic wave propagation through the system under consideration as follows: “transmitter—
object-receiver,” ‘“transmitter—object—ground—receiver,” “transmitter—ground—object—receiver,’
“transmitter—ground—object—ground-receiver.” As applied to ground objects, this method pro-
vides computation of scattering characteristics also in case of radar absorbing materials presence
at the object’s surface.

LTIT3
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FIGURE 2.1 The airborne object model.

FIGURE 2.2 The ground object model.

In this chapter, we also consider the method for approximating the smoothed impulse response
(IR) of the object given definite spectrum range of illumination signal. The method is applicable for
computing impulse responses (high-resolution range profiles) for various radar objects.

2.1 SURFACE GEOMETRY MODELING FOR THE COMPLEX-SHAPED OBJECTS
Vitaly A. Vasilets and Oleg I. Sukharevsky

Scattering characteristics computation for a complex-shaped object requires its surface to be math-
ematically described [40]. Besides, the information on electromagnetic properties of materials,
which the objects consist of, must be available too.

As the methods for computing scattering characteristics progressed and computation means
steadily improved, various methods were used for the object surface description that involved less
manual labor. However, even today, mathematical description of the complex radar object’s surface
involves a great deal of manual work.

The following methods for such object surface description are still the basic ones [41-45]:

1. Bodies of revolution method. 1t is useful, for instance, for the aircraft or missile body
description since its shape can usually be approximated with a body of revolution.

2. Method of analytical surface description. It can be applied to the simple shape bodies, sur-
face of which is described, for instance, by the equations of second order (sphere, cylinder,
ellipsoid).

3. The simplest component method. It is applicable to the electrically large objects, for which
holds the inequality L > A, where L is characteristic object size, and A is the illumination
signal wavelength. The whole object gets split into separate parts, each being described
by the mostly fit part of the simple shape object (disk, cylinder, cone, etc.) with the well-
known value of RCS. In this manner, the whole surface of the object under consideration
can be represented by a set of the simple shape body parts. Disadvantage of the latter
approach is its high manual labor input and insufficient surface description accuracy (espe-
cially at junctions between the simple shape bodies).
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4. Wire models. The method is based on representing the object surface by a set of thin wires.
It is widely used for computing scattering characteristics of complex objects in resonant
and Rayleigh scattering regions.

5. Method of direct surface description by a set of elementary flat regions (triangular or rect-
angular plates), the so-called facet model. Basic advantages of the method are the fol-
lowing: any limitation on the surface geometry is absent; elaborate evaluation of phase
relations in radar scattering characteristics is possible. It is facet method that is now the
most popular in the object’s surface geometry description. Among the basic drawbacks
of the method are the following: surface of the object of interest has to be digitized; algo-
rithms for determining illuminated and shadowed parts of the object are complex and
not cost-effective; and very large number of facets is needed to describe the surface. For
example, for the model of perfectly conducting ellipsoid with semiaxes of 1, 2, and 3 m,
one would need the number of facets ranging from 60,000 through 80,000 to compute the
scattered field using Kirchhoff’s integral (by preset current density over the surface) within
accuracy of 2—4% given the object illumination in centimeter wave band. For the models
of real flying vehicles, such number can reach the value of several hundred thousands.
Therefore, such computation itself is a high burden.

In this chapter, scattering simulation method is proposed that accounts for the presence of sur-
face fractures. Right from the beginning, the method presumes splitting of all scattering surfaces
and elements of the object into several groups: smooth surface part, local scatterers of the edge
kind, forward-looking antenna system under the nose radome (if present at the object under consid-
eration). Let us consider the simulation of these scatterer groups one by one.

Smooth part of the surface is approximated by parts of three-axial ellipsoids. The number of
ellipsoids used in every specific case is determined individually depending on the surface complex-
ity and the level of its elaboration, which, in its turn, is determined by the radar signal wavelength
implied for mathematical simulation of the object’s scattering characteristics.

Every ellipsoid is described by the following parameters (Figure 2.3):

1. Ellipsoid’s semi axes: a,b,c.

2. Rotation angles of the local coordinate system Ox’y’z” tied to ellipsoid with respect to that
tied to the object, Oxyz: Oy, 0,0.

3. Coordinates of the ellipsoid center O’(x,, y,, z,) in the coordinate system Oxyz.

4. Electromagnetic properties of the object’s surface element described by the depth of RAM
d and its RAM relative permittivity and permeability €, . If the surface element is consid-
ered to be perfectly conducting, then depth of its RAM is assumed to be zero. If the object’s
surface element is made completely of composite material, then negative value of § for the
ellipsoid is used to indicate this fact.

FIGURE 2.3 Geometric parameters of ellipsoid.
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FIGURE 2.4 To determination of the cutting plane.

5. Part of ellipsoid to be used for modeling part of the object’s surface is singled out by
means of cutting planes. Every such plane is set by the coordinates (x,, y,, z,) of the vector
normal to its surface and by parameter 1 (Figure 2.4). Parameter 1 determines the choice
of the ellipsoid fragment cut out by the plane. Cutting plane divides the space into two
half-spaces. If n = 1, then the half-space containing the coordinate origin is taken, and
otherwise if 1 = —1. Proper part of ellipsoid is taken together with the proper half-space.
Intersection of half-spaces obtained in this manner with ellipsoid determines the ellip-
soid’s part that is to be used for modeling fragment of the object’s smooth surface. The
number of cutting planes for every ellipsoid is not limited.

The use of three-axial ellipsoid as the surface approximating element allows modeling a wide
range of the object surfaces with considerable accuracy.

Local edge parts of the object’s surface are modeled by means of mathematical description of
the fracture line. We assume the fracture line to be a fragment of plane curve. In this case, curved
fracture edge is approximated with a part of ellipse, and the straight fracture edge is approximated
with a line segment.

Every straight fracture edge of the surface is described by the following parameters (Figure 2.5):

1. Coordinates (x,, y,, z;) of the fracture edge beginning in the coordinate system Oxyz tied to
the object.

2. Coordinates (x,, y,, 2,) of the fracture edge end.

3. Coordinates of vector g, which is the unit-vector orthogonal to one of the fracture faces.

4. Angle ¢m, which is external angle of the wedge introduced in such way that it is to be tan-
gent to the fracture.
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FIGURE 2.5 Straight fracture edge modeling.
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5. Unit-vector w that is orthogonal to both vector g and the fracture edge, the vector w being
directed toward the free space and away from the fracture.

6. Parameters of the edge RAM toroidal coating, which include its radius r along with its
relative permittivity and permeability €/, L.

7. Radius of the integrating surface r, enclosing the fracture edge. The value of r, is deter-
mined in such a manner that condition r < r, < A would be satisfied (A is the wavelength of
incident monochromatic wave).

Every curved fracture edge of the surface is described by the following parameters (Figure 2.6):

1. Coordinates (x,, y,, z,) of the center of ellipse approximating the fracture edge in coordi-
nate system Oxyz tied to the object.

2. Coordinates of unit-vector g orthogonal to the edge plane.

. Semiaxes a, b of ellipse approximating the fracture.

4. Unit-vector w being orthogonal to the fracture edge line and parallel to one of the ellipse’s
semiaxes (Figure 2.6).

5. Angle 6 between the edge (ellipse) plane and inner face of fracture, the angle lying in the
plane containing vectors g and w.

6. Angle ¢m, which is the external angle of wedge introduced so as to be tangent to the edge.

7. Radius r of toroidal RAM coating, its relative permittivity and permeability €/, |, as well
as the radius r, of integrating surface enclosing the fracture edge that is determined in the
same way as for the straight fracture edge (Figure 2.5).

8. Part of the ellipse used for modeling the curved surface fracture is singled out by means of
cutting planes in the same way as for the smooth parts of object’s surface (Figure 2.4). The
number of cutting planes is limited, however usually it takes one or two planes to cut the
proper ellipse part out.

[O8]

It is worth noting that the most important parameters of the edge fragments are their angle
measures and vector ¢ that determine the fracture edge orientation with respect to incident wave
direction. Character of the field scattered by fractures has been thoroughly studied in Ref. [7]. In
Refs. [29,46], there are also dependencies of scattered field intensity versus the fracture aspect for
different values of external wedge angle, as well as different values of radius, permittivity, and per-
meability of its toroidal RAM coating.

Forward-looking antenna system under the dielectric radome (nose fairing) is described by the
following parameters (Figure 2.7):

1. Coordinates of the radome cone base center (x,, y,, z,) in the coordinate system Oxyz tied
to the object.
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FIGURE 2.6 Curved fracture edge modeling.
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FIGURE 2.7 Model of antenna system under the dielectric cone radome.
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. Vector § that determines inclination of the radome axis in the coordinate system Oxyz tied
to the object.

. Radome cone half-angle 6.

. Radome cone height /2 and the distance d from the cone’s tip to the top of antenna reflector.

. Radome wall thickness 8 along with relative permittivity of its material €.

. Antenna reflector aperture radius r along with its focal parameter p, the antenna being
shaped as finite (along the axis) paraboloid of revolution.

7. Unit-vector g directed along the antenna axis and determining its orientation.

N bW

Modeling of scattering elements of the complex object’s surface described above is done manually
so far, since automation of this procedure is hindered by scatterer variety and surface complexity.

When actual computation of scattering characteristics is carried out, the smooth fractions of the
complex-shaped object surface are split into triangular facets in order to implement the computation
method proposed in this chapter. The “lighted” part of the object’s surface is found using modified
method based on ray tracing [47]. In this case, every jth facet is checked for its being “lighted” in
two steps:

1. The jth facet is checked for its belonging to that part of /th ellipsoid used for the com-
plex object surface approximation, in other words it is checked for its belonging to the
“working” part of ellipsoid. At the same time, the jth facet is checked for its being on the
“lighted” part of Ith ellipsoid given that other ellipsoids are absent.

2. The jth facet is checked for its shadowing by other parts of the whole object. We draw the
straight line M through the center of jth facet in the direction of unit-vector R, this line
connecting the facet with the source of electromagnetic illumination (reception). Every
ellipsoid used for approximating the object’s surface is checked for whether this line
crosses it or not (Figure 2.8). Unlike the ray tracing method [47], the visibility check for
Jjth facet is carried out not with regard to every other facet of kth “obscuring” ellipsoid
but with regard to the whole kth ellipsoid. To achieve this we transform linearly the coor-
dinate system in such a manner that corresponding kth ellipsoid becomes the sphere of
unity radius with center at the coordinate system origin. Now, if the distance from the
line M in the new coordinate space to the origin is less than unity then we conclude that
kth ellipsoid can obscure (shadow) the jth facet. In this case, we compute the coordinates
of crossing point between line M and kth ellipsoid. Further on, the coordinates of cross-
ing points are checked for their getting into the “working” part of kth ellipsoid. If they
do get into the “working” part of the ellipsoid being checked, then we conclude that jth
facet is obstructed and we remove it from computation of scattered field. The procedure
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FIGURE 2.8 Visibility check for the facets.

described above is carried out with regard to every ellipsoid we used for approximating
the object’s surface. Such approach provides much less computation burden while finding
the “illuminated” part of the object’s surface compared to classical ray tracing method.

In a similar manner, every edge local scatterer is checked for its “visibility” from the electromag-
netic illumination point. In this case, we also consider smooth parts of the object’s surface as those
obscuring the edge scatterers.

When designing mathematical model of scattering from edges, one should consider the implied
wavelength band of illumination signal. The latter can be explained by a simple example. The
contribution from local edge scatterer of 0.01-0.03 m size given the 3 cm illumination signal wave-
length into the field scattered by the whole object would be quite small (for the T-90 tank, it would
account for less than 0.1% of the total field). However, it is these edge elements of size comparable
to the signal wavelength in millimeter and centimeter wave band that dominate in the design of
modern ground objects (brackets, bolts, technological hatches, etc.). Accounting for such elements
in the object’s surface model significantly increases computational burden but with no significant
improvement in the scattered field computation accuracy. So, the small surface fractures and small
elements at the external object’s surface were not taken into account in the current computer model.
If, on the contrary, one needs the maximum possible accuracy of scattering characteristics computa-
tion, then all the surface elements with scattering contributions comparable to the needed accuracy
level must be accounted for.

Inaccuracy of the object’s surface description may lead to errors in the resulted scattered field
computation. These errors can manifest themselves as shifted and altered peaks of the scattering
intensity diagram. Therefore, surface description of radar objects must be done with all possible
thoroughness.

In order to check the feasibility of the surface description method for the complex-shaped objects,
we provided scattering simulation for some types of military vehicles. Figure 2.9 shows surface
description of the MiG-29 aircraft, consisting of 29 surface fragments of three-axial ellipsoids,
42 wedge fragments, and antenna system under the nose dielectric radome. Figure 2.10 shows the
surface description of the T-90 tank consisting of 89 surface fragments of three-axial ellipsoids and
34 wedge fragments.

The method described in this chapter allows representing in mathematical form the surfaces of
different radar objects. Accuracy of surface description can be improved by means of increasing the
number of ellipsoids and wedges used for mathematical representation of the surface. The method
introduced here blends in advantages of the simplest component method while finding illuminated
part of the surface and of the facet method while describing the surface mathematically and com-
puting the scattering characteristics.
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FIGURE 2.9 Surface description example of MiG-29 aircraft.

FIGURE 2.10 Surface description example of T-90 tank.

2.2 METHOD FOR COMPUTING SCATTERING CHARACTERISTICS OF AERIAL
OBJECTS WITH IMPERFECTLY REFLECTING SURFACE

Vitaly A. Vasilets and Oleg I. Sukharevsky

Computation method introduced here allows computing the scattering characteristics of standalone
objects with imperfectly reflecting surface. Object’s surface can be smooth or it can have surface
fractures in the form of sharp edges covered with RAM. Particularly, the surface of such kind (com-
bination of smooth surfaces intermeshed with RAM-coated edges) pertains to the objects made
by “Stealth” technology [48]. Therefore, aerial objects with imperfectly reflecting surface scatter
electromagnetic waves by their smooth parts and edge fractures (Figure 2.11).

It is well known [11] that having computed tangential components of total electromagnetic field
at any closed surface encompassing the scatterer, one can, using integration, obtain the value of
the field scattered by the object at any point outside this closed surface. The method for computing
scattering characteristic of the objects with surface fractures is based on splitting a surface encom-
passing the whole object into some neighborhoods of fractures (lateral dimensions of which corre-
spond to resonant scattering region) and into the smooth parts of the object surface (outside of these
neighborhoods). Field scattered by the object is computed by Kirchhoff’s kind integral equations.
In this case, the surface of integration in those equations that encompasses the whole scatterer is
chosen to be coinciding with the object’s surface anywhere except some neighborhood of fractures.
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FIGURE 2.11 Example of the standalone object’s surface description.

Let us consider plane monochromatic electromagnetic wave of unit amplitude with the polariza-
tion unit-vector p° that propagates in the direction of unit-vector R°.

E°(X) = p° exp(jky (R - %)),

H(3) = \/f?(k(’ X P") exp(ky(R® - ). oD
0

This wave is being incident on the surface of the object in free space (Figure 2.11). Here, k, is the
wave number for free space (k,=21/A, A is the wavelength of incident monochromatic wave), €,,
U, are the permittivity and permeability of vacuum, X is the radius vector of a point in space. The
field scattered by the object in the direction 7° in far-field zone (projection onto direction P) can be
represented by means of Lorentz reciprocity theorem in the following form [29]:

= .. exp(jk,R)
5 Es = —jk PUKo [ Mo
s

o 80(iyHL)+(ﬁ><F°)»EL]exp (—jko(FO - X))dS, (2.2

where R is the distance from the object to an observation point; Et=1x E; HY=1iix H; (E,ﬁ)
is the total field; and 7 is the unit-vector of the external normal to the integration surface S that
encompasses the object under consideration. Let us choose S in such a manner that it coincides
with the object surface everywhere but in the fracture neighborhoods, where it passes over toroidal
surface of circular cross section “pulled over” the fracture (Figure 2.11). Toroidal surface then
envelopes both the edge and the RAM covering it. Radius of torus tube is set in such a way that
the field at the points, where toroid meets the wedge faces, to contain practically no contributions
from the edge, so it could be computed using physical optics approximation as if we were deal-
ing with smooth surface. In this case, surface S can be represented as a sum S =S, + S,, where S,
coincides with smooth (nonperfectly reflecting, in general) parts of the surface, and S, is a set of
toroidal neighborhoods of the edges. Finally, the integral in Equation 2.2 is a sum of integrals over
surfaces S, and S,

2.2.1 RADAR SCATTERING AT SMOOTH PARTS OF THE OBJECT’S SURFACE

The field scattered from smooth surface can be computed by means of integration given that the
tangential components of total field (ET, H™) are known over the object’s surface [11]. Taking into
account that characteristic size of the smooth surface parts in radar case is large compared to the
wavelength (high-frequency scattering), it is only logical to compute the values of ET, HT, approxi-
mately. For instance, for smoothly curved parts of perfectly conducting surface coated with a layer
of RAM, the vectors E7, H” are assumed to be equal to those at the surface of plain layer of the
same RAM on top of perfectly conducting plate substituted for the curved surface part at any
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definite point. Field scattered from the smooth part S, of the object’s surface in the direction 7° can
be represented using part of expression (2.2)

e, . jkoR L= - o\ = ooy =
P Es =-Jjk exa(:tlg)f[ /%z(p “HY) + (p X r“)-El]exp(—]ko(r" - ¥))dS. 2.3)
S

In common radar cases, smooth parts of the object’s surface are electrically large and has small
curvatures. In physical optics approximation [29], tangential field components E+(X), H*(X) in
Equation 2.3 shifted by 90° with respect to each other in the plane tangent to the surface can be

replaced by corresponding values E*(X), H-(X) at the plane tangent to surface S, at point X. If
the surface part of interest consists of RAM coating on top of perfectly conducting base, then this
tangent plane consists of uniform layer of RAM over perfectly conducting plate too. If a part of the
object is made of composite material completely, then, at points X of the surface enveloping these
parts of the object, the tangent plane is replaced by a half-space with electrodynamic properties cor-
responding to the composite. The latter is justified by the fact that electromagnetic wave entering
deep enough region filled with composite material fades away almost completely. For example, the
leading edge of the B-2 bomber aircraft consists of multiple layer RAM of more than 200 mm thick-
ness covering the metallic honeycomb structure, the cells of which being filled with radar absorb-
ing material of density smoothly increasing from the cell’s front to its bottom [49]. This results in
significant wave absorption starting from the front RAM layer and cells’ filling and ending at final
wave absorption due to multiple reflections from the cell walls. The aircraft wings are made of
composites. Therefore, in order to compute the field scattered from the smooth part of the object’s
surface in physical optics approximation, we need to solve two typical (simulative) problems. They
are as follows: (1) problem of the plane monochromatic wave (2.1) scattering at perfectly conducting
plane covered with uniform layer of radar absorbing material (Figure 2.12a); and (2) problem of the
same wave scattering at half-space made of composite material (Figure 2.12b).

Standard approach to solving such problems [50] is reduced to finding scattered field for two
mutually orthogonal polarizations of incident wave related to vector R° and the unit-vector of axis
Ox,. This makes it more difficult to receive solutions that would be uniformly applicable for arbi-
trary angles of incidence and polarizations of illuminating wave. For instance, for the wave inci-
dence close to normal, the field decomposition in two orthogonal components leads to ambiguities.
But, it is this close-to-normal wave incidence onto the object surface that causes the strongest con-
tributions into total field scattered by the object. In this regard, we need to have a solution that could
be used given a wide range of angles of incidence (the uniformly applicable solution), including
those approaching normal incidence.

We now consider the solution to the problem of plane monochromatic wave scattering at plain
uniform absorbing layer backed by perfectly conducting plate (Figure 2.12a). The problem solution
will be sought in the following form [33]:

(a) x, (b) x,
)
Eply Eply
(0] (0]
X1 X1
1
R g R R" g R

FIGURE 2.12 Wave scattering at nonperfectly reflecting surface.
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30

p p'
B L exp(jky (R - X)) +| . exp(jk, (R - X)), x, <0,
E@) || R x p")\/i ' (R' x ') ETZ ' ’
i) 24)
H(Z _

9;[();22))] exp(ky (R - %)), 0< x, <8,

where R' = R” - 27i(R° - 7i), R = R° — 7i(R" - 7i).

It is essential for the solution of this problem to find only scattered back field, therefore solution
reduces to finding complex vector p'.

Having substituted the expression for the total field inside the layer into the Helmholtz wave
equation, we obtain standard differential equations for tangential components of vectors E(x,) and
H(x,):

d*ET
dx?

d> A"
dx?

+ k? cos’0, €7 =0,

2.5)

+ k2 cos?0, #T = 0.

Here, cos*0, = (1 - (sin®6/e’u))); k = ko\J€/U] ; €, W] are the relative permittivity and per-
meability of absorbing material; 0 is the angle of wave incidence upon the layer.

Let us write down the boundary conditions for tangential components of field vectors
(f(x2 ), H (x,)) at perfectly conducting surface (x, = d):

d#HT(8) _

2.6
i, 0. 2.6)

E'(8) =0,
Using boundary conditions (2.6), from expression (2.5), we can obtain the following:

&7 (x,) = U” sin (k cos 0, (8 — x, )),} o)

HT(x,) = V7 cos(k, cos 8, (8 — x,)),

where vectors U7, VT are to be found. It follows from Maxwell’s equations that vectors U7 and V*
are linearly related:

~ ~ ROL pROL 77T
R cos 0,7t = gr - BB -UD) 2.8)
S S

where RO = (7i x R°), V+ = (7i x V7).
Let us write down the boundary conditions for the surface of absorbing layer (x, = 0):

T + p'T = U7 sin(k, cos 8, §),

B} B} _ 29
/;—Oﬁ X [(R® x p°) + (R' x p1)] = V' cos(k, cos 8, 8). @9
0
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Then, from Equation 2.8 and boundary conditions (2.9), we receive the equation with respect

to p'T

jc|:(l31T _ [307)(:08 0+ ﬁk’or . ((ﬁlT _ ﬁ()T) . E()T)j|

L ROL (7T + pT)- RO, (2.10)
€l

= (" +p") -

where ¢ = %cos(-)l tg(k, dcosh)).
1

Having solved Equation 2.10, we finally obtain

Sy _ JecosO+ 1 P 2jc ~or (RT - %) . L (R - p%) o
jecos® —1 jecosO —1 jc —cosB e cos?0, ) | .
L P

Accounting for relationship between tangential and normal components of the vector p, we get the
following:

B B _.([3” RO)
1 #IT _ 2.12
P P n Cose . ( )

Let us note that a similar procedure can be followed when solving the simulative problem of the
plane monochromatic wave scattering at a half-space made of composites (Figure 2.12b). In this
case, we should assume the absorbing layer thickness to be tending to infinity, or & — co. Such
assumption leaves all the expressions unchanged except for expression (2.11) for p'7, which would
take the following form:

ccos6 — 11301 L2 Ror (R" - p°) L oL (R - p°)
ccosO + 1 ccosO + 1 ¢+ cosO ( cos2 0 J ’
Y 1
Ui e+ ———
cos0

AT _—

(2.13)

u/
where ¢ = 8—}00591.
1

Expressions (2.11) through (2.13) are now applicable to computing scattered field according to
Equation 2.4 given any polarization of incident wave and any incidence direction (except those
approaching tangent ones). Particularly, for angles 0 close to zero, expression (2.10) for the complex
(in general) reflection coefficient p' does not contain any ambiguity and, given 6 = 0, expressions
(2.11) through (2.13) become the well-known ones [50] for the normal incidence. Finding the vec-
tors € and 97 is not a prerequisite to finding the field at the radar absorbing layer surface (x, = 0),
therefore we will not consider computing E and # below.

According to physical optics approximation, the field over “unlit” part of the object’s surface
is identical to zero. Therefore, having replaced the whole surface S, by its illuminated part S| and
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having substituted the expressions for E (fc),ﬁ (X) derived above into Equation 2.3, we arrive at the
following approximate expression for the scattered field:

5 E(RF) = — jko%fgm j F(E)explik,Q(F))dS, (2.14)
Nt

where f(¥)=h(Z) p+ &) (px7°), QF)=(R" —7°)- %, h(x) =i x[(R*x p°)+ (R' x p")],
e(x)y=nx(p’+phH.

Computation of the integral entering into Equation 2.14 necessitates application of special cuba-
ture formulas since its integrand is a fast oscillating function. In Ref. [51], the cubature formulas
were obtained for similar integrals that were based on linear approximations of functions f(X)
and Q(X).

2.2.2 CuBATURE FORMULA FOR COMPUTING SURFACE INTEGRALS OF FasT
OscILLATING FUNCTIONS

Let us define a compact set of points A,(i = 1,2.. . .,n) at the surface S;. The points themselves may be
spread irregularly over the set, which is sometimes helpful and sometimes necessary condition for
approximation of smooth parts of real objects. The values of functions f(X) and €(x) are known in
advance for these points. Given all the aforementioned, one can provide “triangulation” or, in other
words, cover the region S| with a system of triangles (A)),.. .,(A,) that would have vertices at points
{A,}. Having done this, one can approximately replace the integral M in Equation 2.14 by a sum of
integrals over {A/}:

M= J-f(?c)exp(jk(, Q) ds =Y J F(&)exp ik, Q(F)) dS. 0.15)

N =l (A

Accuracy of approximation (2.15) is conditioned by two major factors: replacement of §; by flat
triangles given that the surface itself is not plain, and approximation errors occurring due to replace-
ment of S/ by a system of triangles {A;} in the vicinity of the S boundary, the latter being caused,
for instance, by the object’s surface irregularity (Figure 2.13).

Let us consider integral M, over flat triangle A with vertices A, A,, A,, radius-vectors of the latter
being d,, d,, d,. We describe, at first, an arbitrary point position X € A by means of its “barycen-
tric” coordinates:

x = Wod, + Wa, + Wa,, (2.16)

FIGURE 2.13 To the accuracy of smooth surface approximation by a set of triangles.
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where W,, W,, W, are nonnegative parameters such that W, + W, + W, = 1. Expression (2.16) can be
rewritten in the following form:

¥ = W@, — ay) + Wy(d, — dy) + dy. @.17)

In the integral under consideration

M, = J F(®)exp(jk,Q(F)) dS, 0.18)

(4)

we can use expression (2.17) in order to transform it into barycentric coordinates W,, W,:

M = ;—; x aav;i jzjf[wl,wzlexp(jkoﬂ[wl,wz])dwl aw, @.19)

where
S W1 = WG — ) + Walas — ) + ). (220
QW ,W,] = QW,(a, — ay) + W,(a, — d,) + a,), (2.21)

Y is the unit triangle shown in Figure 2.14.
Multiplier of the integral in Equation 2.19 equals to the double area of triangle A

aw, = aw,

X  O%|_ 28, . (2.22)

Cubature formula for the integral M, can be obtained by way of approximating surfaces f[W,,W,],
Q[W,,W,] by planes passing through three points: (1, 0, f11,0]), (0, 1, f10,1]), (0, 0, f10,0]), and (1, O,
Q[1,0]), (0, 1, [0,1]), (0, 0, [0,0]), respectively. In this case, we have

JIWL, Wy 1 = (f11,0] = f10,0DW, + (f11,0] = f10,0DW; + f10,0], (2.23)

W,

FIGURE 2.14 Unit triangle in barycentric coordinates.
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ko QIW, W1 = pW, + gW, + k,Q[0,0], (2.24)

where p = k, (Q[1,0] — Q[0,0]) and g = k, ([0,1] — [0,0]).

The integral M, in its turn, can be expressed as follows:
M, =28, exp(jky €[0,0]) (11,01 = f10,0D1}y + (f10,1] = f10,01)1; + f10,01Lo), (2.25)

where the values 1, [, I,, can be computed by means of the following integrals:

=W,

1
I = [aW, | expGoW, + gW)) d W,
0 0
1 1-W
Lo = [Waw, [ exp((pW, + qW,) dws, 226)
0 0
1 1-W,
I = [wadw, [ expGiepW, + gwo) d .
0

0

Having computed these integrals and assuming @(x) = —j(exp(jx) — 1)/x, we receive the following
expressions:

Iy = —j(@(p) — ¢(g)(p — q),
iy = —(0(q) — 9(p) — (g — P)’(P)Ng — p)*, 2.27)
Iy, = =(o(p) = 9(q@) — (p — DO’ (D(p — q)*,

which, taken together with expression (2.25), represent the integral M, by means of cubature
formulas.

Next, using representation (2.14) and formulas (2.15), (2.25), and (2.27), one can compute the
field scattered from smooth part S, of the object’s surface. Approximate density of triangular facets
can be evaluated as shown in Ref. [52].

In high-frequency domain considered here, the field scattered from smooth part of the object’s
surface is a fast oscillating function versus frequency, which is due to considerable change of
Fresnel zones distribution over the object surface given even the smallest changes in the illumina-
tion signal frequency. So, in order to receive robust values of the scattered field amplitude (used
later on for the RCS computation), one should provide averaging of this value over some frequency
range. Also, it is worth mentioning that besides definite advantages of the cubature formula, there
is an expected drawback related with the necessity of increasing the facet density at the surface
of integration when the illumination signal wavelength decreases. The problem is that for the
very large (electrically) object (such as aircraft, for instance) it is quite difficult to introduce the
fine enough mesh of facets. Therefore, we have to content ourselves with the frequency averaged
values of scattered field amplitudes and RCS. According to our calculations for the simple shape
bodies (sphere, ellipsoid), we can arbitrarily put some fixed mesh of facets over surface and then
it is possible to select the frequency range (with preset central frequency) for the RCS value to be
averaged over in such a manner that the average RCS would be close enough to the true mean RCS
of real surface.
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2.2.3 AsymptoTiC METHOD FOR COMPUTING RADAR SCATTERING FROM SMOOTH PARTS
of THE OBJECT IN BistaTiIC RADAR CASE

The method presented in Sections 2.2.1 and 2.2.2 for numerical computation of radar scattering
from smooth parts of the object was based on special cubature formulas designed for calculating
integrals from fast oscillating functions. The method is a variation of “current” method.

In this section, we consider an alternative computation method based on “ray” asymptotic of cor-
responding integrals for general bistatic radar configuration.

From Equation 2.3 (Section 2.2.1), one can get the following expression for the field scattered
from the smooth part S, of the object’s surface in far-field zone:

Fo— (Mo exp(kR) 7
Es = —jk e, 4R 1(7y), (2.28)
where
7(70) = J‘{Fli - /f’l—o(ﬁL X ?0):|exp(—jko(70 - X))dsS. (2.28")
0
Sy

Therefore, contribution from the “smooth” parts of the object’s surface into total scattered field can
be evaluated by computing integral 1(7°). Since all the geometrical parameters (linear dimensions,
curvature radii) of “smooth” object parts are large compared to the incident field wavelength, and
boundary contours lying closest to the edges are outside of that neighborhood, in which irregular
component of surface current density is significant, then it is possible to account for contribution of
such object’s parts by means of any asymptotic method of short wave diffraction.

In this section, we consider the surface of a scatterer containing, in bistatic radar case, elliptical
stationary phase points of both perfectly conducting and RAM-coated kinds.

Let us consider, first, the case of smooth convex perfectly conducting surface part containing
elliptical point of stationary phase in case of bistatic radar and let us evaluate its contribution into
total scattered field. For the perfectly conducting surface part S,, expression (2.28") transforms into
the following:

1G°) = [exp(-jky (- D)F(E S, (2.29)

S

where ¥(%,k,) = [ii, x H].

For the sake of simplicity, we choose the coordinate origin to coincide with the stationary phase
point at S, (point X = 0). Iterative method for finding solution to the magnetic field integral equation of
V.A. Fock [53] in the region S, enables us to present v(X, k) in form of asymptotic (for great k,) formula:

B k) ~ 2 v°<x,ko>+j{&"(—g’z@v‘)(é,ko)—?xg(x,é)(ﬁx~v°<%,ko>> as. |, @30

S

where g(, &) = ﬁ . e)(l){]—(()(lg_al)‘
¥ —
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By means of iterating the equation of V.A. Fock, we can get, one by one, the summands of ray
asymptotic for the surface current density. Following this as a guideline, below we present com-
putation of the first two summands of asymptotic v(X,k,) introduced by stationary phase point of
elliptical type.

Taking into account that

V0%, ko) = (i, x p°) exp(jky (RO - (d@ + X)),

~ €y, 5 - ~ . . . L. .
where p° = }M—O(R0 X p), and a is the radius-vector of stationary phase point in coordinate sys-
0

tem tied to the illumination source, it is easy to conclude from Equation 2.30 that

V(E.ky) = exp(jkoR® - (@ + X))V (X.ky), 2.31)

besides

- o sz 1 o= oL

V(X ko) ~ 2071, X p°) + n_[Z(ﬁ,x)[jko i ql]eXP(jko(lﬁ—xl + R’ - (&-X))) dS,, (2.32)

—X
S
where
e olnIE-3I E-%

ZE) = T iy x B = 2 (G i) ) (233)

— x|

It follows from here that
~ ~ 1 -
V(x,ky) ~ Vo(X) + 7y Vi(x),
JKo

where

Vo (%) ~ 207, x p°),

and ‘71 (X)/jk, is the basic member of the integral asymptotic in Equation 2.32.
From Equations 2.29, 2.31, and 2.33, it follows that given great k, the following asymptotic
representation takes place:

- - - — - | 1 -
TG) X 7 ~ exp(jklah [ exp(iky (R - °)-x>)[wo(x>+jkovvl(x>}ds, (2.34)

NI
in which

Wy (%) = 2(i, x p°) x 7°,

- B (2.39)
Wi(X) = V(%) x r°.
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Let us introduce cylindrical coordinates (p, @, {): &, = p cos @, &, = p sin @. Then, the surface S, in
the vicinity of X = 0 becomes represented by the following equation:

4
¢ =Cp.9) = Z&”T(,(p)p’” +o(p"), (2.36)

m=2
where, for instance
2, () = &, cos? @ + &, sin’ @
(@, and @, are the principal curvatures of S, at X = 0). Since X = (§,,&,,( ), then
(R —7°)- % =2cos 04(p,¢), (¥ -7ig) =C(p. ¢). (2.37)

where 0 is the half-angle of spacing between receiver and transmitter, and 7, is the inner normal to
the surface S, at point X = 0.
Further on

’ 1
¥ \/ (aé) (é) pdpde= (1 5 (@) +0(pz)) pdpde, (2.38)

where
hy (@) = &, cos® @ + &, sin® Q.
Additionally, in the vicinity of point X = 0
Wy(X) = Wo(0) + pWyr () + p*Wos (0) + 0(p), (2.39)
Wi(3) = Wi(0) + 0(p), (2.40)

where

W, (0) = 2(ii, x p°) X F* = 2cos e(—po +2(p° - iig)iiy) = —2cos 0 pl,

- d W (2.41)
pVV()l((P) = aé pCOS(P+ a& PSIH(P
Using the Frenet formula, we finally obtain from Equation 2.39 that
WOI(([)) = 2[&,(%] X p?) X FOcos @ + &, (T, x p°) X FOsin (p], (2.42)

Wia (@) = hy(9) Bl cos 6. 2.43)
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Here, T,,T, are the unit-vectors of basic directions at point X = 0, the vector triplet (T,,%,,7)
forming the right-hand triad. Vector Wl (0) shall be computed below. In our case, we have ®,, &, > 0.
Then, accounting for expressions (2.36) through (2.43), we apply the stationary phase point method
to evaluate asymptotically the integral (2.34) multiplied by jk,

jkoi(FO) x 70 ~ jko exp(jkolél)J. exp(jk,2cos 0L (p, 9)) x
Sy
. , 1 - 1
X {WO(O) +p Woi(9) + jkW‘(O)} (1 + 592’72((9) + j pdpde. (2.44)
0

Having introduced some asymptotic estimates and transformation in Equation 2.44, we obtain

= N . 2 - 1 = _
koI (F) X FO ~ exp(]k0|a|)[\/$pfef + jkOT(rO)J, (2.45)
where
2n
Fo0N 7 0 hy (¢) 2 e 84(9) = &(0) do
@)= J{W‘(O) W03, (@)cos 6 +g§((p)cose[WO(0) 1 TWa@%5 )} 26,(@)cos 8

0

If the surface { can be represented by the second-order polynomial, that is, g, = g, = 0, then

WO T de | W0 Thi9),

T(%) = : 2.46
™ 2cos 0 ) & ()  4cos’0 ) g (o) ¢ (2.46)
Integrals in Equation 2.46 can be computed explicitly and then
. - P T
T(F%) = 1-Wi(0) = (e + ) f—————. 2.47)
2 cos,/x, @,

Expression (2.47) contains vector W] (0), explicit value of which has not yet been found.
Since

W, (0) = V;(0) x 7,

then we need to find the principal asymptotic member ‘71 (0)/jk, of integral J in Equation 2.32 at
point X = 0. This integral can be evaluated asymptotically as

2n
-1 N | .
J~= I d(PJZ (é,o)(ﬂco - p)eXP(Jkop(l +co(9)))pdp, (2.48)

0 0

where ¢y(@) = sin 8 cos(¢ — o), and o is the measure of angle formed by the projection of unit-
vector R° onto plane &, 0&, and the axis O&;. Next, having made a replacement

Z(E,0) = Z(p.0),
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and having carried out all the necessary transformations, we obtain

limZE,0) = Z(9) = 5[ p(e,5in* @ - 2,02 0) + i sin20]
p—>

1. . . L
+ 5 Tlp) (& cos® @ — e, sin @) — plesin2ql, pf =7, p.

Therefore

2n

J. Zo ()

0

~ 1

] - 2+CO((|))
Jmky

(1+ o (9))°

and, consequently,

2n
- 17 2 -
0 = L[ 2@ 70 de. (2.49)

n 0 (1 + ¢y (9))?

Having computed integral in Equation 2.49 explicitly, we obtain

Vi(0) = T,V,,(0) + T,V,,(6), (2.50)
where
ple, . Py, + ;) 2
V,1(8) = @, (0) Tstoc ——=————=%cos20. |+ T(Ez —2,)®,(0), (2.51)
P?(&’l + &)

P j28
V,(0) = ®,(0) —Tsm20t - cos2a |+ T(af:2 —&,)D,(0), (2.52)

4

cosf sin’0 cos’0

2 020
() = 2[1‘g ®/2) 1 (2+ 3sin%0 2)}
1 + cos’0
®,0)=0, D@ =2 D7
W0 =0, ®) =2

Accounting for expressions (2.50) through (2.52), we obtain the following:

W, (0) = —T,cos BV,,(0) + T,cos 8 V;,(8) + 7, sin O(sin 0.V}, (0) — cos o V},(6)). (2.53)

So, expressions (2.45), (2.47), and (2.50) through (2.53) represent the sought for value of the integral
(2.29).

Let us assume, next, that radius-vector of the stationary phase point in some coordinate system
related to the target is y°, and |d| = d,, R = d,. Then, using expression (2.28), we obtain the contribu-
tion of surface S, into total scattered field:
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Eo ~— Mo exp(jky(d, +d, + (]_é" —79)- 39
N € 2d2\/331 x,

- 1 1
X |:p)(')ef k 7cos O ((Tl cos 0V,,(0) — 1, cos 6V}, (8))

-0
Jiy(sin 0.Vi, (8) — cos oV, (6))sin 6 — (e, + aez))}. 2.54)

Let, now, the surface S, (either all or some part of it that contains the stationary phase point) to be
covered with thin uniform layer of RAM coating. In this case, the surface S, itself is not perfectly
reflecting anymore (at least in the vicinity of the stationary phase point), and E* # 0 in the integral
(2.28’). The issue of the integral (2. 28’) evaluation, in its turn, depends in the first place on finding
the values of vectors EX, H* entering the integrand. Let, further, the radius-vector X ofa pomt at
the scatterer surface’s vicinity of stationary phase point (i.e., such point that (RO n) =—(F°- 1)) to
be presented as vector sum

X =)' +7%, (2.55)

where y° is the radius-vector of stationary phase point in some coordinate system related to the
target. Then, the primary incident field (2.1) can be presented as

EO(X) C [PPexp k(R )
_ | = exp(jky (R - 3)) € 5 B S £ (2.56)
H(X) LT(RO x p°) exp(jky(R® - X))

0

Due to linearity of the problem, the equivalent current densities around specular reflection point can
be presented in similar form:

Loy Loy
(Elf{)] = exp(jko(RO-yO»(? (f)]. @.57)
H(X) HA(X)

The values E* (%), H(X) canbe approximately (asymptotically) determined as corresponding field
components at the surface of tangent (at stationary phase point) plane uniform layer of covering
material backed by metal plate [54,55]. The corresponding expressions have the following form:

EL(X) = (7i x p*)exp(jky (R - X)) + (7i x p') exp(jky(R" - %)), (2.58)

H(X) = \/f?[[ﬁ X (R® x p*)]exp(jky(R® - X)) + [/ X (R' x p")] exp(jky(R" - ¥))]. (2.59)
0

Here, 7 is the unit-vector of external normal to the surface S, at specular reflection point:

R' = R - 2ii(R" - :

—— (”IT )

p'=p cos 0 (2.60)
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where

Ly _ jecosB+1 o7 _ 2je _ o (RT - j°) L oL (R - p%) _
jecos O —1 jecosB—1 jc—cos® , . cos?8, )|
Gl Je =050 (2.61)

’ in2
c= }% cos Ol-tg[km/e]'uf dcos 91]; cos0,= [1— S:} ?1 ;
1 1t

d is the absorbent layer depth, and €, || are the relative permittivity and permeability of absorbing
material.
Let us note that in the vicinity of specular reflection point the following condition holds:

(R"- %)= (RT-X) = (R"-X). (2.62)

Using expression (2.62), we can rewrite Equations 2.58 and 2.59 in the next form:

E(¥) o
exp (Jko(R” - X)). (2.63)

i X (p° + p')
PIL(%)J

i \/f?[ﬁ X (R x )+ (R x )]
0

Since the major contribution into the integral (2.28”) is from the stationary phase point vicinity, then
substituting consequently expression (2.63) into expression (2.57) and then into expression (2.28"),
we can reduce this integral to the following form:

1) = \/E exp(jko (R ~7°) wjﬁ exp(jky(R” —7°) - ))dS, 2.64)
S

where
A=ROp-1)—2p'cos®+ R(P' - 7i) +i(p° - RY), cos® = —(R- 7).

Amplitude multiplier A in the integrand is the slow oscillating function versus point position at
the scatterer’s surface, so it can be replaced, within acceptable accuracy margin, by its value at the
stationary point itself and be placed outside the integral. It is evident that in this case R' = 7 and,
therefore, we have

1(7°) = ,/% exp(jiky (R = 7) - Yo) A, | exp (jko(R® — 7°) - X)dS. (2.65)
0

Si
Having computed asymptotically the integral in the right-hand part of Equation 2.65 (by means

of stationary phase point) and having done corresponding transformations for the expression of
vector A at the stationary phase point (A4,,), we finally receive

- € - 2n
TG0) = = [ 2% exp(iky(R® = 7°) - 5g)—f—" P, (2.66)
Mo JkorJ® 12,



68 Electromagnetic Wave Scattering by Aerial and Ground Radar Objects

where @, and @, are the principal curvatures of the surface at its specular reflection point. Next,
using expressions (2.28) and (2.66), we can evaluate the contribution from elliptical local scattering
center covered with absorbent into total scattered field.

2.2.4 RADAR ScCATTERING AT THE LocAL EDGE FRACTURES COVERED WITH ABSORBENT

Scattering characteristic computation for the object surface singularities such as fractures is con-
nected with solving diffraction problems. Getting an exact solution to the problem of electromag-
netic wave diffraction at a fracture is a very complicated (both mathematically and computationally)
task. Therefore, the practical way to solve such problems is to use the high-frequency asymptotic
diffraction methods [56,57].

The problems of high-frequency diffraction at the objects with ribs are solved using, in the first
place, the edge wave diffraction method (physical diffraction theory by P. Ya. Ufimtsev [7,8]).
Using this method, we can find the field produced by the irregular part of the current excited on
geometrical singularities of the object surface such as edges and fractures. This field, which is
the correction to Kirchhoff’s approximation, is found directly for the far-field zone. The latter
necessitates all the considerations to be carried out in every geometrical optics sector and, mostly
challenging, in every boundary region between them. All the aforementioned factors condition
the necessity of getting solution to the key problem of diffraction at the wedge in far-field zone.
Consequently, the conditions listed above complicate the use of edge wave diffraction method
given such real-world configurations as multistatic radar and nonperfectly reflecting surfaces
(those covered with absorbent). Thus, the edge wave diffraction method needs modification, which
is the change of principle (simulative) problem.

We now present the computation method that is to be used for evaluating the contribution from
edge local scatterers covered with RAM into secondary radiation of the object [34,55]. While
doing this, we rely on the solution of the simulative problem of arbitrary incidence of plane elec-
tromagnetic wave onto perfectly conducting wedge with cylindrically shaped absorbent coating of
its edge [46].

In case of multistatic radar, this problem (of oblique incidence of plane wave onto the wedge
with cylindrically shaped RAM coating of its edge) cannot be reduced to superposition of two
independent two-dimensional problems as it was the case in Ref. [7]. It should be noted that the
solution to simulative problem has been obtained for the wedge’s rib vicinity, which allowed us to
use representations uniformly applicable in all angular sectors. The latter has also conditioned the
absence of splitting the surface current density into regular and irregular constituents. This is the
basic methodological difference of the method proposed from the edge wave diffraction method.

Expression for the field scattered from the edge local scatterers can be presented in the following
form:

5 B = _ ik Mo exXPUKR) o 2
p ESO - JkO 80 4TER (p F(r ))7

(2.67)
FG°) = J [HL - \/E (E* x f”}exp(—jko(?" - X))ds.

So

Let us choose toroidal surface “pulled upon” the edge as the surface of integration S,. As it is
shown in Figure 2.15, integration surface, in cross section orthogonal to the edge, is the part of cir-
cumference with radius z, and center at O that encompasses the absorbent covering the edge.

In all our further considerations, we assume that absorbent is bounded, in this same cross sec-
tion, by a part of circumference of radius z < z,, its center being at point O. The values of z and z,
are conditioned by the inequality z < z, < A (A is the wavelength of incident monochromatic wave).
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FIGURE 2.15 Cross section of the integration surface S, in the vicinity of fracture.
In order to find the value of F(¥°) in Equation 2.67, we need to know the tangential component
distribution of total field (E* = i x E, H* = ii x H) over surface S,- Let us introduce Cartesian
coordinate system Ox,x,x; tied to the edge (Figure 2.15) so that

X = X(0) + (2,.,0), (2.68)

where X(v) is the radius-vector of a point at the edge Y with the arc coordinate v, and T(z,,0) is
the vector orthogonal to the edge at this point, this vector having constant norm z, and direction
determined by angle 6 (0 < 0 < ¢m). Here, 0m is the aperture angle of wedge placed to be tangential
to the edge at the point with corresponding arc coordinate .

Let the object be illuminated with plane wave (2.1). Due to the problem of nonlinearity, the val-
ues H+, E* over S, at point (v,7) can be presented in the following form:

B (B o
S o= . ky(R° - R .
[HL (X)j FIpe exp(j ko (R” - X(0))) (2.69)

where I-:] (1), E(%) are the intensity vectors of field excited at surface S, by plane wave

E°(7) = P exp(jiky (R 7)),
= e = _ (2.70)
HO(7) = ,/H—WRO x p*)exp(jky(R® 7).

0

Now, accounting for Equation 2.69, the integral F(°) can be presented as

F7) = [expljky (RO = 7°)- F)ID(,7)dv, @7

Y
where

D(v,7) = _[exp[ ik, (P - D1B(F)de,

5o

2.72)
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S; is the line (part of circumference) at the surface S, that lies in plane orthogonal to ¥, and
dc =z, d0 is the element of S; arc length

B(t) = H @) — |50 | EXR) x 7 |, 273
Bt = (D) J;[E (r)xr] 2.73)

Having evaluated the integral (2.71) by means of stationary phase method, we can show that at
least for the edge, which is convex closed plane curve, there should always be two stationary phase
points (except for the “singular case,” which shall be discussed later). Such edges (fractures) are
usually present at the surface of revolution bodies. In general, equation for finding the stationary
phase points v, looks as follows:

V() = (R = 7) - (vy) = 0, (2.74)
where g(v,) is the unit-vector of the tangent to Y at point v,. Let us note that at point v, we have
Y(0g) = @(V)[(R® = 7°) -V(vy)], 2.75)

where &(v,) is the curvature of Y at point v, and V(v,) is the unit-vector of principal normal to the
Y at point v,. Further on, we assume for definiteness that &(v,) > 0. So, the “singular case,” where
the stationary phase point cannot be applied, occurs when the following condition holds:

(RO —7%) - V(v,) < 1 (2.76)

(for instance, given the body of revolution with edges, this corresponds to the wave incidence along
the axis and monostatic radar configuration). In this case, the value of F (¥°) can be computed using
numerical integration, which is not hard if one accounts for condition that z,/A is less than unit.
Having found the stationary phase points using (2.74), we need to check them for their “visibility”
from the direction of plane wave incidence determined by wave parameter R® and from the direc-
tion of scattered wave reception (—7°). To achieve this, we find the terminator (the light-shadow
boundary line) and, consequently, the illuminated surface regions for both incident and scattered
waves, and then we check the stationary phase points one by one for getting into both illuminated
regions. If the point does not get into one of these illuminated regions, then contribution from it
into the scattered field is not computed and not accounted for. Such analysis is given for every edge
(fracture). Having applied the stationary phase method to the integral (2.71), we receive the final
computation formula:

21
k()ae(l)())|(1_é0 —7%) - V()| '

F() = Zexp[jko((ko = F9) - X(vy)) + Sjﬂﬁwo,f")\/ @77

(V)

where & = sgn[(R° — 7°) - ¥(v,)], and symbol (v,) meaning that summation is done over all the
“visible” stationary phase points. Since the integrand of Equation 2.72 is respectively slow oscillat-
ing function, the value of D(v,,7°) can be found by means of one-dimensional numerical integra-
tion. Taking into account that the objects we consider are electrically large and curvatures of their
surfaces are small, we can assume the values H(T), EX(T) at the surface S/ to be approximately

equal to corresponding values at the surface of cylindrically shaped absorbent covering the rib of
perfectly conducting wedge (z = z,) placed so as to be tangent to the edge at point v,. So, finally the
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simulative problem that needs to be solved for evaluating the contribution from edge local scatter-
ers into total scattered field is the problem of oblique incidence of plane electromagnetic wave onto
perfectly conducting wedge with cylindrically shaped radar absorbent at its rib.

This problem is three-dimensional in principle. Its solution cannot be represented as a superposi-
tion of two independent two-dimensional problems as in case of the problem of oblique incidence
of plane wave onto perfectly conducting wedge, or in case of the problem of normal (with respect to
the edge) incidence of plane wave onto the structure under consideration. However, it can be shown
that this problem can be reduced to a system of two two-dimensional problems, solutions of which
being related through boundary conditions (by means of some matrix differential operator) [29,46].

If E5 = u(x;,x,)exp(jkyx;RY), Hy = v(x;,x,)exp(jk,x;RY), and w = ! , then vector w can

v
be developed into the Fourier—Bessel series with (2 X 2) matrix coefficients. For instance, for the
region outside the absorbent cylinder we have

W= z(;[Ava,,,(nOr) + CmHg,?(ﬂoV)lfm(e), (2.78)

where J, is the Bessel function, H'" is the Hankel function,

~ [ sin(y,,9)
fm((p) - (COS('Yme)

J’ Mo = ko1 = (R))*, v, = ml9,

om is the wedge aperture angle (0 < 0 < ¢m). The matrix coefficients A,,, C,, are derived from bound-
ary conditions for functions u, v, and their derivatives at the surface of absorbent cylinder. The series
of Equation 2.78 type converge well given small values of r (z < r < z,)) [46].

It is worth mentioning that expression (2.77) cannot be used for straight edges since the curva-
ture ®(v,) of fracture line becomes zero. Let us write parametric equation for the straight edge
(Figure 2.16):

a, +odt,
X(v) = {b, +vi1, (2.79)
¢y 031,

where o <7 < 3, and o, B are the endmost points of straight edge.

FIGURE 2.16 Straight edge covered with RAM cylinder.
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If we assume that such straight edge is at least few wavelengths long and we can neglect the
influence of the ends, then the value of function D(v,7%) can be assumed approximately constant
along all the edge Y and this value can be computed using solution to the simulative problem of
plane monochromatic wave scattering given its oblique incidence onto perfectly conducting wedge
with cylindrically shaped absorbent at its rib [46]. In this regard, expression (2.71) can be presented
as follows:

F) = Dy [ expl jly (R = 7) - F(o))]dv. (2.80)

Y

If we express the vector difference R° — 7° as R’ — F° = (1,,1,,7;) and then account for Equation
2.79, the integral (2.80) takes the following form:

F) = Dy expl ko + g, (2.81)

Y

where [ = ra, + rb, + ¢y, g = ;Y + 1 VI+r0Y, and dv= v?” +v9" +v?° dr = dr. So, com-
putation of expression (2.81) reduces to evaluating one-dimensional integral:

B
F(7) = By exp(jky)) | explikyan dr

1y EXPURAD) (0o g — ) — 1. (2.82)

= Dy exp(jk, Jkoq

Expression (2.82) allows computing integral F(¥°) and, later on, it allows us to compute, using
Equation 2.67, the field scattered from local scatterers in the form of straight edge covered with
RAM for the general case of bistatic radar configuration.

2.2.5 VERIFICATION OF METHODS FOR COMPUTING SCATTERING CHARACTERISTICS OF SIMPLE
SHAPE OBJECTS

2.2.5.1 Comparison of RCS Computation Results with the Data Observed
in an Anechoic Chamber

The correspondence of results obtained using the computation methods developed here to those
observed in real-life scattering of plane electromagnetic wave with respect to simple shape objects
has been checked by means of comparing our results with experimental data obtained using radar
measurement system based on an anechoic chamber (AnC).

The radar measurement system consisted of anechoic chamber, target modeling, and measure-
ment subsystems.

The anechoic chamber in the system was to represent the free space. It was the chamber with
curved “pillow”-shaped walls. Its walls were covered with the spiky wide frequency range radar-
absorbent material. Besides, the level of wall reflections in the chamber was below —45 dB, so the
anechoic chamber could be used for precise measurements of the most parameters of antennas,
radio electronic systems, and most of the target scattering characteristics.

The target modeling subsystem included the low reflecting support (foam plastic) upon the rota-
tor with index dial providing the azimuth aspect reading of the object under study.

The distance to the object was set according to the following considerations: first, the object must
be in the anechoic zone of the chamber; second, the distance must be larger than (212/1) [58-60],
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where L is the maximum lateral dimension of the object or transmitting antenna and A the wave-
length of wave incident onto the object.

Structural diagram of the measurement system is shown in Figure 2.17. It consisted of the trans-
mit signal generator (TSG), high-frequency amplifier (HFA) of transmitter, transmit, and receive
antennas (TrA, RecA), receiver’s HFA, squared envelope detector (ED), low-frequency amplifier
(LFA), analog-to-digit converter (ADC), timing pulse generator (TPG), and computer.

TSG generated periodic sequence of LFM pulses with the frequency starting at 9.25 GHz and
stopping at 9.45 GHz. After amplification in HFA, the signal was transmitted into the chamber’s
space by means of transmit horn antenna. The echo signal from target was received by the receive
horn antenna. At the same time, the signal leaked from transmit antenna to the receive antenna
input was used as a heterodyne voltage. Received signal, after amplification in corresponding
HFA, came to ED, which extracted the differential signal component between the return and
leaked signals.

Next, after its amplification in the LFA, the signal was converted into digital form via ADC and
came to the computer. Here, it was processed with discrete Fourier transform (DFT), which was
used to compute the received signal’s power spectrum density. The latter spectrum density provided
us with the value of frequency difference (proportional to the object range); we also retrieved the
value of power spectrum density reading at this frequency difference value.

Power of echo signal was measured in relative units. In order to calibrate the radar measurement
system and provide actual measurement of RCS, we computed in advance the RCS of simple scat-
terers (spheres and triangular corner reflectors) to be used as standards. Relative power levels of
echoes from these standards provided us with the RCS measurement units and the RCS calibration
curve (echo signal power in relative units versus scatterer’s RCS in square meters). For every aspect
position of the object we took 150 echo power measurements, which, after averaging, were put into
table and transformed into the RCS values via the calibration curve. As an object of study, we used
the cylinder of 0.1 m diameter and 0.32 m length. The backscattering RCS diagrams corresponding
to the experiment and to the computation by method presented above are shown in Figure 2.18. The
computation and measurement were done for the signal wavelength A = 0.032 m.

Figure 2.18 shows the backscattering RCS diagrams, i.e. RCS ¢ of the cylinder versus its aspect
angle 6 counted off the cylinder’s axis. Incident field polarization vector was perpendicular to the
plane formed by the cylinder axis and the wave incidence direction. The bold line is for experimen-
tal RCS values, the thin line is for the RCS by computation.

As can be seen from the figure, RCS computation coincides quite well with experimental
data.

WAWWYWVWVWWY Scattering object
= /N
% v v AnC
M
TrA RecA
HEA HFA |—>| ED |
!
TSG | Comp. |— ADC [ 1ea |
TPG

FIGURE 2.17  Structural diagram of measurement system.



74 Electromagnetic Wave Scattering by Aerial and Ground Radar Objects

0.1

0.01

RCS (m?)

0.001

.0001
0000 0 10 20 30 40 50 60 70 80 90

6 (degree)

FIGURE 2.18 Backscattering RCS diagram of cylinder.

The mismatch between the two curves is due to the following: first, imperfect alignment in
vertical plane of the cylinder axis with the reception direction; second, aspect angle 6 increment
in measurement was 2.5°, therefore some notches of backscattering diagram could be missed; and
third, the LFM signal was used for RCS measurement that smoothed out the backscattering diagram
to some degree.

2.2.5.2 RCS Computation Results for the Cylinder Obtained Using Different
Computation Methods
The cylinder RCS was evaluated by the following methods:

* Proposed in the book combination of the physical optics method with the method for scat-
tering computation from local edge object parts
e Methods of moments applied in the “FEKO” software [9]

As the first object taken for comparison, we chose the cylinder of 0.66 m radius and 0.28 m
height. Illumination signal wavelength was 1 GHz (30 cm wavelength).

Figure 2.19 shows the cylinder RCS versus azimuth aspect of illumination. Bold line is for the
dependence obtained by means of the proposed method presented above (computation time ~10 min
given azimuth aspect increment of 0.5°). Thin line is for the dependence obtained by means of the
“FEKO” software (computation time is more than 9 h given azimuth aspect increment of 1°).

Analysis of dependence in Figure 2.19 shows that computation results for both methods coincide
quite well for a wide range of aspect angles.
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FIGURE 2.19 Cylinder RCS versus azimuth aspect angle.
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2.2.5.3 RCS Computation Results for the Cone-Sphere Object Obtained Using Different
Computation Methods
RCS of the cone—sphere object was evaluated by the following methods:

* Proposed in the book combination of the physical optics method with the method for scat-
tering computation from local edge object parts
* Methods of moments applied in the “FEKO” software

The cone—sphere object for RCS comparison was chosen in the form of truncated cone termi-
nated with part of the sphere, the sphere radius being 0.16 m, truncated cone height being 1.8 m, and
the cone bases being 0.16 m and 0.35 m, respectively. Illumination signal wavelength was 1 GHz
(30 cm wavelength).

Figure 2.20 shows the cone—sphere RCS versus its azimuth aspect angle. The bold line is for the
computation method proposed in the book for the cone—sphere objects (computation time ~10 min
given azimuth aspect increment of 1°). The thin line is for the computation by means of “FEKO”
software (computation time is about 14 h given azimuth aspect increment of 1°).

Analysis of dependence in Figure 2.20 shows that computation results for both methods coincide
quite well for the whole range of aspect angles.

Verification of the proposed method provided in this manner shows that our method is opera-
tional and precise. Small deviations seen in Figures 2.19 and 2.20 are due to the different approaches
to the current density estimation over the object surface.

2.2.6 RCS CoMpUTATION FOR THE CRUISE MIssILE MODEL

First, we would like to clear up the radar system that we bear in mind when studying scattering by
different objects. Schematic of radar configuration assumed in book is shown in Figure 2.21.

We assume the Cartesian coordinate system Oxx,x; to be tied to the object, its axis Ox;
coinciding with the object’s axis, axis Ox, being perpendicular to the wing plane, and the unit-
vector of axis Ox, complementing the system to the right-hand triad. In this coordinate system,
the illumination direction denoted by vector R’ is determined by its elevation angle ¢ (the angle
between this vector and plane Ox,x;) and by its azimuth 6 (the angle between axis Ox; and projec-
tion of vector —R° onto the plane Ox,x;). In this case, this vector has the following components:
R = {—sin @,—cos @sin 0,—cos @cos B} Vector that characterizes the receiving direction 7° is
determined by its elevation angle @, and the bistatic angle B of spacing between projections of —R°
and 7° onto the plane Ox,x;, so 7 = {sin(@,), cos(@,)sin(0+p), cos(9;)cos(0+p)}. Horizontal
polarization vector of illumination signal p, is parallel to the plane Ox,x;, and the vertical polariza-
tion vector of illumination signal p, complements the vectors (p,, [)h,ko) to the right-hand triad.
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FIGURE 2.20 The cone—sphere RCS versus azimuth aspect.
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B %

X3

FIGURE 2.21 Radar system configuration assumed for studying scattering objects.

In the same way, we define the horizontal and vertical polarizations for the reception direction 7°
(Figure 2.21).

We now show some RCS computation results for the model of cruise missile presented in Figure
2.22 versus illumination and reception aspect in case of monostatic radar, and versus bistatic angle
in case of bistatic radar.

RCS was computed for both the model with perfectly conducting surface and the model covered
with RAM. The smooth parts of the latter model were assumed to be covered with thin (1.3 mm)
RAM layer, its relative permittivity and permeability being €/= 20 + j0.1 and p;=1.35+ j0.8.
The edges of the model’s wings were assumed to be covered with the same RAM of toroidal shape,
its radius being 1 mm. The model was assumed to be illuminated with the signal at A =3 cm wave-
length (frequency f'= 10 GHz). The missile model length along its longitudinal axis was 6300 mm,
the wingspan was 3400 mm.

Figure 2.23 shows RCS dependencies versus azimuth aspect given monostatic radar configura-
tion. Elevation angle is ¢ = 0°. Both model illumination and signal reception were done at vertical
polarization (purple line) and horizontal one (blue line). The model RCS is small at nose-on aspects
(6 =0°) and gradually increases to the maximum when the angle approaches side-on aspects
(6 =90°). As can be seen from the Figure 2.23, the RCS values for two polarizations coincide
for almost all aspects. The only exception is the azimuth aspects, at which local edge scatterers

FIGURE 2.22 Cruise missile model.
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FIGURE 2.23 (See color insert.) RCS of the cruise missile model versus azimuth aspect given its illumina-
tion in the plane of wings.

contribute significantly to the model RCS. For instance, given aspect angles 6 = 10° and 0 = 24°, the
RCS at horizontal polarization is higher than that at vertical one. The latter is due to intense echoes
from horizontal edges of wings and tail planes. Given the aspect angles greater than 75°, the RCS
values at vertical polarization can go above those at horizontal one, which is due to echoes from the
edges of vertical stabilizer.

In the high-frequency domain under consideration, the object’s RCS and its scattered field are
fast oscillating functions versus frequency (Figure 2.24). This is due to the frequency dependence
of phase differences between fields scattered from different parts of the model as well as by signifi-
cant change in the Fresnel zone pattern over the object’s surface given even the slightest changes in
the illumination signal frequency. Therefore, obtaining reliable RCS estimates necessitates averag-
ing over frequency range that is several times wider than the oscillation period of RCS frequency
dependence (Figure 2.24).

Figure 2.25 shows averaged RCS dependencies similar to those shown in Figure 2.23. Averaging
was carried out by RCS values at 50 fixed frequencies evenly spread over frequency range of f= 9.95—
10.05 GHz. Both here and in Figures 2.26 and 2.27 below, the thin line is for illumination and recep-
tion at vertical polarization, and the bold line is for illumination and reception at horizontal one.

It is worth mentioning that the larger part of computation time in numerical RCS evaluation by
the methods proposed here is spent on calculating the field scattered from smooth surface parts. In
this regard, the necessity of frequency averaging (in order to get reliable RCS estimates) leads to
further increase in computation burden. One of the factors that make RCS the fast oscillating func-
tion versus frequency and illumination aspect is the corresponding dependence on these parameters
of phase differences between echoes from different parts of the object surface. To decrease the
influence of this factor, we propose below to use the sum of separate object parts’ RCSs as a reliable
RCS estimate of the RCS of object of interest. Since such sum does not account for phase differ-
ences of fields scattered from different object’s parts, then such RCS estimate is hereinafter called
the “noncoherent” RCS. In its turn, the common sense coherent RCS (accounting for phase differ-
ences) is called hereinafter the “instantaneous” RCS.
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FIGURE 2.24 RCS of cruise missile model versus frequency (¢ = 0°, 6 = 20°).
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FIGURE 2.25 Frequency averaged RCS of cruise missile model versus azimuth aspect given its illumination
in the plane of wings.
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FIGURE 2.26 Noncoherent RCS of cruise missile model versus azimuth aspect given its illumination in the
plane of wings.

Particularly, the surface of cruise missile model (Figure 2.22) is split into 11 smooth and 15 edge
scattering parts (elements). For instance, the missile body is split into six elements, three of them
form the upper surface part (nose, fuselage, and tail) and other three complete the lower part of the
body. Separate smooth parts are also the surfaces of wings and empennage except for some vicinity
of sharp edges.

Figure 2.26 shows noncoherent RCS of cruise missile model versus azimuth aspect given its
illumination in plane of wings.

The noncoherent RCS versus azimuth aspect is practically the same as the frequency averaged
instantaneous one shown in Figure 2.25. We can state that values of noncoherent RCS are good
and quite reliable RCS estimates given certain frequency and aspect ranges. Besides, the values of
noncoherent RCS are obtained by computation at single frequency that lightens computation burden
and saves time.

Figure 2.27 shows the noncoherent RCS versus azimuth aspect (for monostatic radar) and versus
bistatic angle (for bistatic radar). Figure 2.27a shows the RCS versus azimuth aspect given eleva-
tion angle —20° (target illumination from below), and Figure 2.27b shows similar dependence given
elevation angle +20° (target illumination from above). In case of illumination from below, the mean
RCS value is lower than in case of illumination from above. The peaks of dependencies are close
by amplitude, which is determined by scattering of radar wave at local edge scatterers. The RCS
outside these peaks is determined by wave scattering at smooth part of the object surface. Since
the lower part of the missile model body is of smaller curvature than that of upper part, then the
echo signal is weaker given the target illumination from below than that given its illumination from
above. Figure 2.27c shows the RCS versus elevation angle given azimuth aspect of 0°.

Figure 2.27d shows the RCS of the model versus bistatic angle given elevation angle of illumina-
tion and reception equal to 0° and azimuth angle of illumination also equal to 0° (radar illumination
is along the object’s axis and signal reception is in plane of wings).
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FIGURE 2.27 Noncoherent RCS dependencies for different aspects and bistatic angles.

The latter plot practically coincides with the one shown in Figure 2.26 except that it is stretched
along the argument axis by the factor of two. For instance, in Figure 2.26 the main peaks of the
plot that are determined by scattering at local edge parts appear at azimuth aspects of 10° and 24°.
Similar peaks in Figure 2.27d appear at aspects of 20° and 48°, respectively. Given target illumina-
tion at azimuth aspect of 0°, such values of bistatic angle correspond to specular reflection from the
edges, which provide sharp RCS increase at azimuth aspects of 10° and 24° given monostatic radar
configuration. The latter means that given target illumination along its axis and bistatic radar con-
figuration the RCS peaks appear at bistatic angles that are twice as great as azimuth aspect angles
given monostatic radar configuration.

Figure 2.28 presents the noncoherent RCS of the model versus azimuth aspect of its illumination
given horizontal polarization of transmit and receive wave. RCS of perfectly conducting model is
shown by bold line; the thin line is for the model with nonperfectly reflecting surface. Application
of RAM to the smooth parts of the model surface provides significant (by one order of magnitude)
decrease in RCS level.
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FIGURE 2.28 RCS versus azimuth aspect for the model with perfectly conducting surface and the model
covered with RAM.
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Application of RAM to the edge parts of the model surface provides decrease in RCS by factor
of 2-3 in corresponding angular sectors.

Figure 2.29 shows noncoherent RCS for different aspect, elevation, and bistatic angles given
absent and present RAM coating at the model surface. Azimuth aspect of illumination and bistatic
angles are the same as for Figure 2.27. Model illumination and signal reception were at horizontal
polarization. The bold line is for the model with perfectly conducting surface; the thin line is for the
model provided with RAM coating.

Analysis of plots presented in Figure 2.29 shows that application of RAM to the smooth parts
of the model surface in monostatic radar leads to the RCS decrease approximately by factor of 10.
In case of bistatic radar (Figure 2.29d), application of RAM is less effective in reducing RCS given
bistatic angles greater than 50°. Application of toroidal RAM coatings to the edge parts of the model
surface reduces their reflections by factors of 1.4-5.

Computation results presented above show that the methods proposed here provide RCS evalua-
tion of standalone objects that have surface irregularities and RAM coatings in cases of monostatic
and bistatic radar configuration.

Ref. [42] described the computer software RECOTA by Boeing Aerospace that was designed
for computing RCS of complex radar objects. Verification of the aforementioned software has been
carried out using experimental RCS dependencies of cruise missile on the aspect of illumination.
Cruise missile model presented in Figure 2.30 had perfectly conducting surface. By the data avail-
able in the reference and by using our technique (described in Section 2.1), we designed similar
model of the missile surface that is presented in Figure 2.31. The surface of the model was repre-
sented by parts of 12 ellipsoids and 15 straight edges.

Figures 2.32 and 2.33 show RCS computation results obtained using our method presented in
this chapter (black line) and those measured by Boeing Aerospace for the same model (gray line).
The results have been obtained for the signal carrier frequency of 12 GHz.
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FIGURE 2.29 Noncoherent RCS dependencies for different aspects of its illumination and different bistatic
angles for perfectly conducting model and that provided with RAM coating.
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FIGURE 2.30 Model of the Boeing Aerospace cruise missile.
FIGURE 2.31 Model of the cruise missile used in computer simulation.
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FIGURE 2.32 Computed (black line) and measured (gray line) RCS of cruise missile model versus azimuth
aspect given its illumination in plane of wings at vertical polarization.
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FIGURE 2.33 Computed (black line) and measured (gray line) RCS of cruise missile model versus azimuth
aspect given its illumination at the angle —10.5° with respect to the plane of wings (from the lower half-sphere)
at horizontal polarization.

Comparison of dependencies presented above shows good coincidence between the results of
computer simulation and physical modeling. Some variations that take place (for instance, for azi-
muth aspects greater than 100°) can be explained by incomplete correspondence between the mis-
sile’s dummy and its computer model especially in the region of the missile’s tail group and rear end
of fuselage. The same reasons were pointed out in Ref. [42] as causing the difference in results of
experiment and computation by means of RECOTA software.

It is worth mentioning that computation results of the missile scattering characteristics by our
method coincide quite well with those obtained by RECOTA software. This is another indirect
proof of the proposed method adequacy to real physical processes taking place in radar scattering
of electromagnetic waves by the complex-shaped objects.

2.2.7 RCS RebucTioN OF THE COMPLEX-SHAPED OBJECT BY MEANS OF OPTIMAL
DistriBUTION OF LiMiTED RAM SuppLy OVER ITS SURFACE

Significant contributions into RCS of complex-shaped object are brought from regions of strong
scattering at smooth convex parts of the object surface [33,34]. It is these parts of the object surface
that are covered with RAM for the sake of radar camouflage. However, these RAM coatings are of
considerable weight and cost. In this regard, there appears the problem of the most efficient RAM
distribution over the object’s surface in order to reduce its RCS in certain aspect sectors of illumina-
tion and reception given limitations on the volume of RAM that can be applied.

In this section, we develop the method for distributing RAM coating over the complex object’s
surface that provides RCS reduction in the preset sector of illumination and reception directions
given limitations applied to the object’s surface percentage that can be covered with RAM. Quasi-
optimal RAM distribution method proposed here is based on a whole-numbered linear program-
ming problem. We also present some results of RAM distribution optimization for the simplified
aircraft model, as well as evaluate the decrease in its RCS in various sectors of its illumination and
reception of echoes.

The object design peculiarities and technology of RAM application suggest that surface to be
split into regions, each of which being either RAM-coated or perfectly conducting. In this case, the
object’s RCS (noncoherent) can be approximately expressed as a sum of partial RCS of these regions:

N
() = ) 6,(6), (2.83)

i=1
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where N is the number of parts the surface is split into, and 0 is the aspect angle of the object illu-
mination or echo signal reception, which is argument of RCS function. Since our ultimate goal is
to receive the RCS values that were averaged over some sectors of aspect angles, then such RCS
approximation expressed by Equation 2.83 is acceptable for our computations. So, here we use the
method described in Section 2.2.1 for computing the partial RCSs of separate object parts.

Let us introduce the mean RCS of the whole object and mean partial RCS of the ith surface part,
both corresponding to the angle sector of 6, < 0 < 0,, as follows:

1
62_61

0,
c= _[6(6) de, (2.84)
6

6,

1
R J' 5,(0) d6 (2.85)

0

Having averaged expression (2.83) in the sector of angles as specified above, we obtain
N
G=)0, (2.86)
i=1

It is this expression (2.86), which is the sum of local area (partial) RCSs of the object averaged
in certain aspect sector of illumination and reception, that becomes subject to minimization we are
about to carry out. Let us introduce some notations for the partial RCS of ith part of the complex
object’s surface: G;, is the mean partial RCS of ith surface part given that this part is perfectly con-
ducting for this specific angle sector; G,, is the mean partial RCS of the same surface part given
that its surface is provided with RAM coating. Now, we can represent the RCS of complex object
fully covered with RAM as

N
G,= ) G- (2.87)
i=1
Subtracting Equation 2.87 from Equation 2.86, we obtain

N N N
G-0,= 2(61' —0;,) = ZKi(ail —GCp) = ZKiAGi' (2.88)
i=1 i=1

i=1

Here, x; is the whole numbered coefficient, which equals to zero if the corresponding ith sur-
face part is covered with RAM, and, otherwise, equals to unit if the ith surface part is perfectly
conducting.

Let S, denote the maximum possible value of the object’s surface area that can bear RAM coat-
ing, and S denote the total surface area of the object (S, < S), so that the local parts adding up to
make the whole surface

S = is,.. (2.89)

i=1
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We can express the limitation onto the maximum area of RAM coating using x,(i = 1,...,N):

N
Y a-x)s; <8, (2.90)

i=1

or in another form
N
Y kS zs-5, 2.91)
i=1

Thus, the problem of quasi-optimal distribution of RAM coating over the object’s surface has
been reduced to the problem of whole numbered linear programming, i.e. the problem of finding
binary set of coefficients ¥; that minimize expression (2.88) and satisfy the limitation (2.91). This
problem can be solved by any of standard methods. For instance, it can be the additive algorithm or
the method of branches and boundaries [61].

As an illustration of this method applicability, we used a simplified aircraft model (Figure 2.34)
that consisted of only four three-axial ellipsoids. Ellipsoid axes were as follows: fuselage: a = 1.25 m,
b=125m,c=9 m; wings: a=0.5m, b = 11 m, ¢ = 2 m; horizontal stabilizers: a = 0.3 m, b =3 m,
¢ =1 m; vertical stabilizer: a=3 m, b=0.3 m, ¢ =1 m. Centers of ellipsoids that model fuselage
and wings are aligned and shifted by distance of 7.6 m with respect to the centers of ellipsoids that
model stabilizers.

Illumination signal frequency was assumed to be 10 GHz for the aircraft model RCS computa-
tion. We also assumed the RAM coating to have thickness of 1.3 mm, its relative permittivity and
permeability being €/ = 20 + j0.1 and p; = 1.35 + j0.8, respectively. Material with such proper-
ties provides the 15 dB reduction in the RCS of conducting plate given normal wave incidence and
the carrier frequency specified above.

To estimate the partially coated aircraft model RCS, we have split its surface into 140 parts, each
having area from 0.3 to 4.5 m2. Next, we computed the values of mean partial RCS of every surface
part given it being covered and not covered with RAM for various aspect sectors of object illumina-
tion and echo signal reception.

Figure 2.35 shows mean RCS of the aircraft model versus area of optimally distributed RAM
coating in the azimuth aspect sector from —10° through +10° with respect to the aircraft axis and
the elevation angle sector from 0° through —8° with respect to the wing plane (monostatic radar,
illumination from below).

Figure 2.36 shows similar dependence of mean RCS for bistatic radar configuration given direct
nose-on illumination and echo signal reception at bistatic angles varying by azimuth aspect from
—10° through +10°; elevation aspect from 0° through —8°. The mean RCS in bistatic radar decreases
faster than that in monostatic radar case.

The latter is evidently due to the smaller distances the local scattering centers move along the
object’s surface and, consequently due to the slightly different optimal distribution of RAM coating

FIGURE 2.34 The aircraft model.
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FIGURE 2.35 Mean RCS versus area of optimally distributed RAM coating in monostatic radar.
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FIGURE 2.36 Mean RCS versus area of optimally distributed RAM coating in bistatic radar.

over the model’s surface. Quite acceptable values of reduced RCS can be achieved while only
20-25% of the model surface is covered with RAM.

Results similar to those presented above but obtained given a wider solid angle sectors taken for
averaging are given in Figures 2.37 and 2.38 for monostatic and bistatic radar, respectively.

In the latter case, the RCS was averaged over the sector of azimuth aspects from —20° through
20°, and over the sector of elevation aspects from 0° through —20°. It is worth mentioning that appli-
cation of RAM coating over 50—60 m? of the object’s surface given its optimal distribution provides
almost the same reduction in the RCS as for the fully covered aircraft model.

As an example of quasi-optimal RAM coating distribution over the aircraft model’s surface, we
consider the two variants differing only by the aspect sectors taken for RCS averaging.

Figure 2.39 shows optimal placement of RAM-coating given monostatic radar and RCS aver-
aging in azimuth aspects over the sector from —5° through +5°, and averaging in elevation aspects
over the sector from —3° through +3°. The aircraft view, as seen from above, is presented in Figure
2.39a, and its view, as seen from below, is presented in Figure 2.39b. Placement of RAM coating is
highlighted by gray and framed out.
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FIGURE 2.37 Mean RCS versus area of optimally distributed RAM coating in monostatic radar obtained
given a wider solid angle of averaging.
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FIGURE 2.38 Mean RCS versus area of optimally distributed RAM coating in bistatic radar obtained given
a wider solid angle of averaging.

FIGURE 2.39 Optimal placement of RAM coating given monostatic radar and RCS averaging in azimuth
aspects over the sector from —5° through +5°, and in elevation aspects over the sector from —3° through +3°.

Area of the RAM coating is 40 m?. Mean RCS of aircraft model with such RAM distribution as
observed nose-on is 0.68 m?, the mean RCS of the fully covered model being 0.26 m? and the mean
RCS of perfectly conducting model being 8.11 m?.

Figure 2.40 shows optimal placement of RAM coating given monostatic radar and RCS averag-
ing in azimuth aspects over the sector from —20° through +20°, and averaging in elevation aspects
over the sector from 0° through —20°.

Area of the RAM coating is also 40 m2. Mean RCS of the aircraft model given such solid angle
of averaging and optimal RAM distribution is 0.74 m?, mean RCS of fully covered model being
0.23 m?, and mean RCS of perfectly conducting model being 6.81 m?2. Comparison of the two fig-
ures reveals significant difference between the variants of optimal distribution of limited volume of
RAM given different angle sectors of aircraft observation by radar.

This method for optimizing the RAM-coating distribution over the surface of complex-shaped
objects is quite simple and can be easily programmed. Using this method, we obtained approximate
estimate of the level, which the RCS can be reduced to in specific aspect sectors of the object obser-
vation given optimal distribution of RAM over the part of object’s surface. We came to a conclusion
that in a wide aspect sector of the object observation one can significantly reduce its RCS applying
RAM coating to only 20-25% of the object’s surface.

(a) (b)

FIGURE 2.40 Optimal placement of RAM coating given monostatic radar and RCS averaging in azimuth
aspects over the sector from —20° through +20°, and in elevation aspects over the sector from 0° through —20°.
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2.2.8 RebpucTiON OF THE RADAR SCATTERING LEVEL FROM A LocAL EDGE SCATTERER
BY OPTIMIZING ITS SHAPE

In this section, we develop the method for reducing the level of radar scattering from local edge
scatterers. Method is based on the scattering characteristics computation of the object’s surface
fractures presented in Section 2.2.4 and on the analysis of the model fracture (edge) RCS depen-
dence on its shape.

Practically every radar object (both ground and airborne) has surface fractures (sharp edges).
Presence of such fractures can lead to an increase in the object’s RCS. In this regard, it is necessary,
first, to account for contribution from local edge scatterers into total field scattered by the object;
and, second, to take all possible measures for decreasing the scattering level from edges.

In our computations here, we use the method for evaluating the contribution from local edge
scatterers provided with RAM coating into total field scattered from the object [34,55]. The method
is based on solution of the simulative problem of arbitrary incidence of plane electromagnetic wave
onto perfectly conducting wedge with cylindrically shaped radar absorbent on its rib [46].

To illustrate the method, let us consider the straight sharp edge 0.6 m long (Figure 2.41). External
angle of the wedge representing this edge equals to 360° (the wedge is flat). Wave incidence is in
plane of wedge’s faces, azimuth angle of 0° corresponding to normal incidence of wave onto the
edge. Azimuth angles of —90° and 90° correspond to the wedge illumination along the straight edge.
Incident wave polarization vector p is parallel to the wedge’s faces. Illumination signal wavelength
is 3 cm. Figure 2.42 shows the RCS of straight edge versus azimuth aspect angle of its radar obser-
vation in monostatic radar configuration.

The highest peak of RCS dependence corresponds to normal incidence of illuminating wave onto
the edge (0.08 m?). The major lobe width by the half power level is about one-and-a-half degrees.
Despite the relatively narrow angle sector, in which this edge can contribute significantly into total
scattered field, the problem of reducing the maximum RCS level of the edge given arbitrary aspect
of its radar observation or given certain sector of aspects (for instance, RCS reduction at zero azi-
muth aspect) can arise.

As an alternative to the straight edge, we consider the following variants: single saw tooth-
shaped edge (Figure 2.43a), triple saw tooth-shaped edge (Figure 2.43b), the edge shaped as a circu-
lar segment (Figure 2.43c), the edge shaped as triple circular segment (Figure 2.43d). In every case

FIGURE 2.41 Straight edge.
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FIGURE 2.42  Straight edge RCS versus azimuth aspect.
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(a) (b)

(c) (d)

FIGURE 2.43 Variants of shaping the local edge scatterer.

to be considered, the distance between the edge ends d is constant. As a variable parameter in every
of four examples given below, we set the height of saw tooth (or circular segment) 4.

Figure 2.44 shows the RCS of edge shaped as single saw tooth (Figure 2.43a) versus azimuth
aspect. Thin line is for the tooth height 4 = 0.05 m, the bold line is for tooth height 4 = 0.10 m.
Maxima of scattering correspond to the directions of normal wave incidence onto the edge segments.

As it follows from the plots, replacement of straight edge with the saw tooth-shaped one leads
to fourfold decrease in its maximum RCS and to shift of the maximum scattering direction to the
side aspects. The “payment” for this decrease in appearance of two maximum scattering directions
instead of one as well as the major lobe spread up to 4°. The amplitude and spread of the scattering
lobes keep their values despite the change of the saw tooth height /4 since they are determined by
edge segment length.

Figure 2.45 shows the RCS of edge shaped as triple saw tooth (Figure 2.43b) versus azimuth
aspect. This is the edge shaping type that is used for decreasing the radar scattering level from edges
of the B-2 bomber air intakes [48]. The thin line is for the tooth height 2 = 0.02 m, and the bold line
is for the tooth height 42 = 0.05 m. As in case of single saw tooth-shaped edge, scattering maxima
correspond to normal wave incidence onto partial edge segments. The RCS maxima themselves are
lower than in previous case. Difference in the major lobe amplitudes in Figure 2.45 is due to the
constructive interference of echoes from partial edge segments. The spread of RCS lobes now is
about 10°, which is due to further decrease in straight segment length.

While evaluating the contribution from rectilinear and curved (elliptical) fractures into total field
scattered by the complex-shaped object [34], we figured out that curved surface fractures contribute
less by RCS absolute value but in the wider angular sectors.

Figure 2.46 shows the RCS of edge shaped as single circular segment (Figure 2.43c) versus azi-
muth aspect. The gray line in Figure 2.46a is for the segment height of 0.02 m, the thin line is for
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FIGURE 2.44 RCS of edge shaped as single saw tooth versus azimuth aspect.
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FIGURE 2.45 RCS of edge shaped as triple saw tooth versus azimuth aspect.

the segment height of 0.05 m, and the black bold line is for the segment height /2 = 0.07 m. The black
bold line in Figure 2.46b is for the RCS dependence given the circular segment height of 0.09 m, the
thin line is for the segment height of 0.10 m, and the gray line is for the segment height of 0.15 m.

As it seen from the dependencies shown above, the use of segment with # = 0.02 m height already
leads to eightfold reduction in the edge’s RCS as compared to that of straight edge, but it occurs at
the expense of the major lobe spread increase up to 12°. Further increase of the segment height leads
to further widening of the angular sector, in which the edge’s RCS exceeds the value of 0.001 m2.

Analysis of plots in Figure 2.46 shows that the most acceptable segment height is /2 =0.07 m. The
angular sector width, in which the edge’s RCS exceeds the level of 0.001 m?, is about 50°. However, in
this case the RCS value oscillates around 0.002 m? level almost everywhere except in the two regions
of local maxima (reaching 0.0035 m?). It is worth mentioning that the segment height must be chosen
with regard to design features of the object bearing the local edge scatterer of interest. Besides, the use
of rounded edges with the segment height greater than 5 cm is also acceptable from the RCS reduction
viewpoint since its RCS at any aspect of radar observation does not get greater than 0.005 m?.

Figure 2.47 shows the RCS of edge shaped as triple circular segment (Figure 2.43d) versus
azimuth aspect of observation. The thin line in Figure 2.47 is for the segment’s height of 1 cm, the
black bold line is for segment’s height of 2 cm, and the gray line is for the segment’s height of 5 cm.
All the three dependencies are of oscillating nature, which is due to interference of partial echoes
from separate segments. The RCS maxima for most of the dependencies do exceed the level of
0.01 m?, which is higher than those for edge shaped as single circular segment. The spread of lobes
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FIGURE 2.46 RCS of edge shaped as single circular segment.
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FIGURE 2.47 RCS of the edge shaped as triple circular segment versus azimuth aspect.

does not exceed the value of 2° and given the sector of observation aspects from —40° through 40°
the RCS dependence has 17 peaks, most of which go higher than 0.005 m?. Besides, all the maxima
of RCS dependence given the segment’s height of 2 cm are concentrated within azimuth aspects
from —15° through +15° and their absolute value does not exceed 0.01 m?2.

If the edge consists of three circular segments, each one of them having the local scattering center
(“specular point™) at almost any illumination aspect, then we can state that values of RCS maxima
would also change significantly given even small variations in the illumination signal wavelength.
In this regard, the edge shaping as multiple circular segments leads to its RCS reduction in a narrow
frequency range of illumination signal.

Shaping of the local edge scatterer provides significant decrease in its maximum RCS level.
Shape selection for the edge is determined by the requirements to its maximum RCS and to the
angular dependence of its RCS.

2.3 METHOD FOR COMPUTING SCATTERING CHARACTERISTICS
OF GROUND COMPLEX-SHAPED OBJECTS

Vitaly A. Vasilets and Oleg I. Sukharevsky

The method proposed here is basically based on the scattering characteristic computation method
developed above in Section 2.1 for standalone objects, but it additionally provides taking into
account the underlying surface with given electromagnetic properties. Due to the presence of the
“air—ground” interface, there are two mutually overlapping illuminated regions, the first being cre-
ated by the direct incident wave, and the second being created by the wave scattered from the
ground surface. Integral representations obtained below allow us to single out the four basic wave
propagation paths in the system formed due to the object’s standing on the ground (Figure 2.48):
“transmitter—object-receiver,” “transmitter—object—ground-receiver,” “transmitter—ground—
object—ground—receiver,” and “transmitter—ground—object-receiver.” The method is also applicable
for the ground objects provided with RAM coating and for the objects with surface fractures.

99 <

FIGURE 2.48 Basic paths of electromagnetic wave propagation for the case of ground object illumination.
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2.3.1 PLANE ELECTROMAGNETIC WAVE SCATTERING AT PERFECTLY CONDUCTING OBJECT
PLAceD IN THE VICINITY OF HOMOGENEOUS HALF-SPACE

We present here the approximate method for computing characteristics of plane wave backscattering
from electrically large object with perfectly conducting surface that also has small curvatures, the object
itself being in the interface vicinity of homogeneous half-space (possibly having complex parameters).

An importance of such problem formulation is conditioned particularly by the necessity of get-
ting a priori information on backscattering characteristics of ground objects for the sake of their
detection and identification by radar.

The method is based on integral field representations that follow from the Lorentz reciprocity
theorem when electromagnetic interaction is accounted for between perfectly conducting scatterer
and the interface of homogeneous half-space.

Computation of scattering from the object placed above the underlying surface must account for
their mutual interaction, that is, one must consider the “perfectly conducting object—half-space
with the ground properties” system (Figure 2.49) and account for the intrasystem interactions.

In order to account for the underlying surface influence on the scattering, one has to consider four
basic paths of electromagnetic wave propagation. Multiple reflections of backscattered wave can be
neglected, in first approximation, as the second-order effects.

Let E(XIX, p), (31X, p) be the field excited by the point dipole placed at point x,, the field
being characterized by the vector-moment p in the presence of half-space V'. The field E(xIx,, p),
H(XI%,, ) satisfies the Maxwell equation system:

rotE = jou,H
JOHo } 2.92)

rotH = —jweE — jOpS(X — X,)

€9, Xo € VO,
where € =
€, x, € V9.

It should be noted that if the main part of illumination signal spectrum is situated above the
50 MHz mark, then dispersive properties of the propagation medium with parameters of the ground
can be neglected [62].

Equation system (2.92) is complemented with boundary conditions at the propagation media
interface D:

ET =T, /T =97, (2.93)
RO Q,cS
1?1 Q,cS
C
! Vo (g Mo)
D
V(e 1y)

FIGURE 2.49 The “object—ground” system.
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Let us consider field E(¥), H(¥) excited by the definite volume current density J in V° given pres-
ence of half-space V! and perfectly conducting object S in it. Given all these conditions, the Maxwell
equations take the following form:

tE = j H
rots = JoHko } (2.94)

rotH = —jweE +J

Let us note that the region V° is bounded by D U S (Figure 2.49). Boundary conditions at the
interface D, which are as follows:

ETT=ET, HT=HT, (2.95)

are complemented with requirement to the tangential component of electric field intensity to be
equal to zero at the surface S, that is

ET| =0. (2.96)

N

Now, we are ready to apply the Lorentz reciprocity theorem to the fields E(¥), H(X), and
E(XIX,, p), H (¥I%,, p) in the region VO given that x, & V°

_[(E”T L E T CHL)dS — ji*f CHdS = —f(jmﬁ(fc —i)p-E+T-E)dv.  (2.97)
D N yo

Now, using the superposition principle and filtering property of d-function, we get the following:

JoBEG) — EGo) = [+ AHRdS = [(ET - 50+ —E7 )4, .05
S D

where QTZ(_?CO) is the field excited in half-space V° by the predetermined distribution of extraneous
currents J given that scatterer S is absent.
Having applied the Lorentz reciprocity theorem to the same fields in the region V!, we obtain

J (E*T - g7+ — E+T . f+1)dS = 0. (2.99)
D

Here, AT = A — i(A - ii), B* = (i1 X B), and 7 is the unit-vector of the normal to the correspond-
ing boundary.

Summing expressions (2.98) and (2.99) term by term and accounting for the boundary conditions
(2.93), (2.95), and (2.96), we can obtain the following integral representation:

jo - (EGy) = Gy = [EG5,, 5 H (1S, 2.100)
N

Let the vector X, be directed toward the illumination source, —E", and let it have the length 7:

X, = —rR°. (2.101)
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Assuming that r — oo, we can represent Equation 2.100 in the following form:

jop- (E(RY) — E(R)) = _[@T(xu?(’, 5)- H-(x)ds, (2.102)
N
where E” (xR, p) is the field excited by plane wave

E(xIR°, p) = k2o /% 70 exp(j ko (R - %)) Q(kyr), (2.103)
0

1 exp( jkor

. P'=p-R(p- R,

that propagates in the direction R° given that only half-space V! is present (scatterer S being absent);
E(R"),E(R") are the backscattering diagrams of the system under consideration given that scatterer
S is present and absent, respectively.

Expression for the incident wave (2.103) has been obtained as a result of proceeding to the limit
in the form of vector function:

By 5 = = _ exp(jkylx — Xy

(X%, p) = » [V(p Veg) + kopg], 8 Xo) =~ o FN

which expresses the field of electrical dipole placed in free space and localized to the point x, € V°
given that x, goes away infinitely. Here, we use asymptotic representation of function g(x,Xx,) given
that r — oo:

g(%, %) ~ kyQu(kyr)exp(j ko (RO - X)).

In general case, plane wave (2.103) is incident obliquely onto the interface D between the two
media. In this case, the field scattered in the direction —R° can be assumed to be equal to zero. So,
the field above surface D given absent scatterer S can be expressed as follows:

E(FIR, p) = ko %[ﬁ%xpuko@~x>>+ialexp<jko<kl B Q) (2104)
0

where R' = R” — 27(R" - i) is the propagation direction of wave reflected from the plane of surface
D, and p' is the vector coefficient of reflection from underlying surface, this coefficient being com-
puted using Equations 2.12 and 2.13 according to method presented in Ref. [29].

Finally, we consider that the scatterer’s surface S is illuminated by, first, direct plane wave propa-
gating in direction R° and, second, the wave reflected from the plane D.

While doing so, we need also to account for phase differences of the illumination wave that
occur due to reflection from the interface D. To illustrate this, we assume, in some coordinate sys-
tem Ox,x,X,, the point M at the object’s surface to be determined by the radius-vector x and let the
point A be the point of wave reflection at the plane D, from which reflected ray arrives to point M
at S (Figure 2.50).

The plane D is determined by the equality

(x-n)+h =0, (2.105)
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M

FIGURE 2.50 To the issue of incident wave reflection from underlying surface.

where £ is the distance from plane D to the coordinate system origin along the unit-vector of normal
7 to the plane D, and X is the radius vector of a point at the plane.

Let us introduce the following notation G = OA = ¥ — PR, E —AM =%-d= PR', where the
value p is determined from condition of point A belonging to plane D:

_(&-m+h

& (2.106)

Now, the incident wave (2.103) can be presented as
Eo(XIR", p) = kgw\/gﬁo exp(jiky(R® - (@ + £)Q(kr)
= kéw\/gﬁ(kmﬁ” exp(jiky (R - @)exp(iky(R” - §)) = 5 exp(jky(R'- E)),
and the wave reflected from the plane D accordingly takes the form
EFIRP") = P exp(jky(R'-§)) = k&m\/g‘)’sz(kor)ﬁ‘ exp(jky(R" - @)exp(jky(R' - §))
= kgw\/gg(kor) P exp(jk,(R° = R")-a + R' - X)).

So, the resulted field at point X of the object’s surface S that accounts for phase differences
between direct wave and wave reflected from plane D can be written as

E(XIR°, p) = k3o /%Q(kor)[ﬁo exp(jky (R - X)) + p'exp(jk,(R" — R") - G + R .;c))]. (2.107)
0
Then, having accounted for Equation 2.107, from expression (2.102), we get

P B(RY) = = Qg |52 [15° exp(ky (R - ©)
0
S

+ plexp(jky((R® — RY)-d + R' - %))]- H-(X)ds. (2.108)
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Let us note that H*(X) is the current density over surface S excited by the plane wave propagating
along R° given that boundary D of half-space V" is present. Presence of half-space V! in the system
under consideration leads to the appearance of additional wave incident on the object surface S that is
the direct wave reflection from surface D and that propagates in the direction R'. Therefore, there
are two mutually overlapping (in general) illuminated regions Q, and Q, that appear at the object’s
surface (Figure 2.49). In the physical optics approximation, the surface current density over illumi-
nated smooth part of S can be presented as

_ 2iiy, X HY, X € Q,,
Hi(f):{ o O (2.109)
2ng X HY, X €@,

where

HY = (R x 1‘70)\/a exp(jko(R" - X)),
Ho (2.110)

HY = (R' x ﬁl)JiTexp(jko(Ro — R - @)exp(jky(R" - %)).
0

So, the right-hand part of Equation 2.108 can be represented as a sum of four integrals of the
I'= ff (¥)exp(jk,©(¥))dS kind:
0

p-E(RY) = —jkoe"p(ﬂ‘(’”\/‘zo [ P expika (R - -y x (R 130»\/37 exp(jko (R 1))dS
0 0

2nr
Q

+ [ Prexp(ky(RY = R) -G+ R %)) Gis x (R x ") /fl—(’ exp(jky(R” - ¥))dS
0
[

+ _[ﬁO exp(jky(R - X)) - (iig X (R' x p")) fl—‘) exp(jk,(R” = R')- @ + R' - ))dS
0

0
+ [ BexpUky (R = R+ R ) g x (R x p)
o
X \/Eoexp(jko((ko -RY-a+R'- )E))dS}. (2.111)
0

Here, the two first integrals are to be integrated over illuminated region Q,, and the other two
integrals are to be integrated over illuminated region Q,.

The functions corresponding to f(X) and ©(X) in every integral are slow oscillating. In their
turn, the functions in the integrand of Equation 2.111 are fast oscillating and they necessitate appli-
cation of cubature formulas described in Section 2.2.2.

In a similar manner, we can obtain the expression for computing the field scattered from local
edge scatterers that accounts for underlying surface. However, in this case we need the bistatic solu-
tion of the problem of wave scattering at local edge scatterer [31].
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In Section 2.3.3, we shall also present the method for evaluating contributions from local edge
scatterers provided with RAM coating into the RCS of ground object with nonperfectly reflecting
surface.

Using expressions obtained for the fields scattered from smooth parts of the surface and from
local edge scatterers, we can evaluate total field scattered from the object placed close to the under-
lying surface.

2.3.2  ScATTERING CHARACTERISTICS OF PERFECTLY CONDUCTING MODEL OF A GROUND OBJECT

To prove the applicability of method developed above, we simulated the process of plane electro-
magnetic wave scattering from the model of tank (Figure 2.51) standing on the ground.

The model’s length was 8 m, its width was 3 m, and its height was 2 m. We assumed the underly-
ing surface to consist of brown loam of equivalent dry density of 1.2 g/cm?. The dry soil properties
were as follows (moisture content was 1%): € =3 +;0.38, ' = 1 + j0; and the moist soil properties
were as follows (moisture content was 20%): € = 17 +j0.9, W = 1 + 0.

As the elevation angle, we consider the angle between the normal to ground and the incidence
direction vector. So, in case of the object illumination parallel to the ground this elevation angle is 0°.
Azimuth aspect is counted off the head-on direction.

RCS computation for the model was carried out in the azimuth aspect sector from 0° through 90°.
The elevation angle was 30°. Illumination signal frequency was assumed equal to 10 GHz (A = 0.03 m).

Figure 2.52 shows instantaneous RCS of perfectly conducting tank model standing on dry soil
versus azimuth aspect. RCS dependence at horizontal polarization is shown with bold line, and the
thin line is for the RCS dependence at vertical polarization. Figure 2.53 shows similar dependencies
for the tank standing on moist soil.

FIGURE 2.51 The model of a tank.
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FIGURE 2.52 Instantaneous RCS of the tank model standing on dry soil versus azimuth aspect.
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FIGURE 2.53 Instantaneous RCS of the tank model standing on moist soil versus azimuth aspect.

Maximum RCS values take place at head-on and side-on model illumination regardless of inci-
dent wave polarization and soil type. The RCS at vertical polarization is lower than that at horizon-
tal polarization through almost all the aspects. This can be explained by the smaller contribution
from underlying surface given vertical polarization of illumination signal. At some aspects, the
vertical polarization RCS goes higher than that at horizontal polarization. The latter is due to the
stronger scattering from vertical edges of the model surface than that from the horizontal ones. In
case of wet soil, the model RCS is higher than that in case of dry soil; the difference is especially
observable at horizontal polarization of illumination signal.

In the high-frequency range being considered, the RCS of an object, like scattered field itself, is
the fast oscillating function of frequency.

When objects get sounded by real radar signals, their RCS values become somewhat averaged
over the frequency ranges corresponding to the signal bandwidths. As it is shown in Figure 2.24,
reliable estimates of RCS can only be obtained given their averaging in the frequency range at
least 5 MHz wide. Figure 2.54 shows the plot of tank model RCS versus azimuth aspect given that
it stands on dry soil, which correspond to those shown in Figure 2.52. The RCS values were aver-
aged in the frequency range of f=9.95-10.05 GHz. To achieve this, we took 50 RCS values at fixed
frequencies evenly spaced over this range. Figure 2.55 shows the averaged RCS of the tank model
standing on moist soil versus azimuth aspect, these dependencies corresponding to those shown in
Figure 2.53. The bold line is for the RCS at horizontal polarization, and the thin line is for the RCS
at vertical polarization.

The plots of Figures 2.54 and 2.55 are smoother than those in Figures 2.52 and 2.53. This is due
to RCS averaging in frequency and due to corresponding decrease in the influence of coherent sum-
mation of contributions from different parts of the model’s surface.

To save the computation time when computing reliable RCS estimates, we computed the corre-
sponding values of noncoherent RCS for the same model. Figure 2.56 shows the noncoherent RCS
of the tank model standing on dry soil versus azimuth aspect. Figure 2.57 shows the same depen-
dencies for the model standing on moist soil.

The latter dependencies of noncoherent RCS are even more smoothed out than those averaged in
frequencies (Figures 2.54 and 2.55). Therefore, these noncoherent RCSs values are good and quite
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FIGURE 2.54 Averaged RCS of the tank model standing on dry soil versus azimuth aspect.
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FIGURE 2.55

FIGURE 2.56

FIGURE 2.57
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Averaged RCS of the tank model standing on moist soil versus azimuth aspect.
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Noncoherent RCS of the tank model standing on dry soil versus azimuth aspect.
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Noncoherent RCS of the tank model standing on moist soil versus azimuth aspect.

reliable estimates of the object RCS given certain sector of aspects and certain range of illumination
frequencies. It is worth noting that noncoherent RCS value is obtained by scattering computation at

single frequency, which lightens the computation burden considerably.
Figures 2.58 through 2.60 show these dependencies of noncoherent RCS of the tank model given

different elevation angle of its illumination.
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FIGURE 2.58 Noncoherent RCS of the tank model versus azimuth aspect given 0° elevation angle, the
model was standing on: (a) dry soil; (b) moist soil.
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FIGURE 2.59 Noncoherent RCS of the tank model versus azimuth aspect given 10° elevation angle, the
model was standing on: (a) dry soil; (b) moist soil.
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FIGURE 2.60 Noncoherent RCS of the tank model versus azimuth aspect given 75° elevation angle, the
model was standing on: (a) dry soil; (b) moist soil.

RCS dependencies presented above show that when the model is illuminated along the ground
surface, then there is no difference in RCS values at vertical and horizontal polarization. The latter
is due to the fact that given illumination directions close to those being tangent to the ground, ground
reflection coefficient approaches unit at any polarization of incident wave and along any propaga-
tion path considered of incident wave. The surface fractures, in their turn, are either obscured or
they do not backscatter. Given object sounding at elevation angles close to 90°, the RCS values for
the two polarizations are close to each other again since the wave propagated along the “radar—
object-radar” path contributes most to the scattered field and ground reflections are almost absent.
The largest difference between the RCS at two polarizations takes place given elevation angles of
10° and 30° (Figures 2.56, 2.57, and 2.59) when the difference in reflection coefficients at the two
polarization is significant. This is why the RCS of tank model standing on moist soil is higher than
that of standing on dry soil given these elevation angles of 10° and 30°. When the elevation angles
are approaching 0° or 90°, the influence of the soil type is much smaller.

2.3.3  MEetHOD FOR CoMPUTING RCS oF GROUND OBJECT WITH NONPERFECTLY
REFLECTING SURFACE

The method developed here is based on integral representations of fields derived from the Lorentz
reciprocity theorem while taking into account electromagnetic interactions between the scat-
terer and the interface between free space and homogeneous half-space. Besides this, the method
accounts for the presents of discontinuities (sharp edges and radar absorbents) at the surface of the
object of interest.

Let us consider the plane monochromatic wave (2.1) incidence onto nonperfectly reflecting
ground object. Using the Lorentz reciprocity theorem [11], we can express the field scattered by the
object with surface § as
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- = 1 = ~ - ” -
P B = 5o j [H*(x) - Exlxg, p) + E(x) - H(xlxy, P)IAS., 2.112)
s

where E, (x]xy, p) is the field of electrical dipole placed at point x,, the dipole having the vector-
moment p given the presence of interface D of half-space V' (Figure 2.49), and (E+,H*Y) are,
as before, the 90° rotated tangential components of resulted total field at the object’s surface S.
Particularly, if the object’s boundary discontinuity is due to the presence of uniform radar absorbent
layer backed by perfectly conducting object’s surface, then the field (E,H) can be found by using
solution to the simulative problem presented in Section 2.1. Let us note that for the case of backscat-
tering X, = —r - RO. If we put now r — oo, then the dipole field can be asymptotically expressed as

E(3%y, p) ~ Qkyr)E(IRC, p),

. o (2.113)
H (XX, p) ~ Qkor)H (XIRC, P),
where
ejkor
Q(kor) = Fkor
The field E(ZIR,, p), H(XIR,, p) is excited by plane wave
E(FIR", P) = k20, |20 5T exp(iky (R - $)),
’ " e, ? 0 (2.114)

H o (ZIR’, p) = —ky?@ p* exp(jiko(R° - X)),

where pt = R® x p, pT = p— R°(R - p).
Consequently, the field over interface D given that scatterer S is absent can be expressed as

E(FIR, p) = k&w,/% [ 5° expliky (R - ) + p' exp(iky (R' - )], (2.115)
0
HER', p) = ~k3 o] p* exp(jky (R - ) + p' exp(iky (R - ¥)) ], (2.116)

where p%t = R® x p°, p't = R' x p', p° = p”, and p' is the vector calculated by expressions (2.12)
and (2.13).

So, like it was in Section 2.3.1, we consider that the object’s surface S is illuminated, first, by
direct plane wave propagating in direction R° and, second, by the wave reflected from the plane D,
the latter propagating in direction R' (Figure 2.49).

Phase differences that appear due to wave reflection from the interface D are accounted for in the
same manner as for the perfectly conducting object. For instance, the electrical field component of
resulted incident field at point X of the object’s surface S that accounts for phase differences due to
primary wave reflection from plane D can be written as

EFIR, p) = k&w@ﬂ(km[ﬂ) exp(jky(R? - ) + ' exp(jky (R = R) - ¢ + R 5], .117)
0
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(xq- n) j— h 7
. R - 7i) . .
of coordinate system tied to object down to the surface D (Figure 2.50). In the same manner, we can
write expression for # (XIR°, p). - L

Now, accounting for the fields & (XIR°, p), H (! 130, p) from the expression (2.112), we can obtain
expression for total field scattered in direction —R° (above the surface D) given that object S is
present:

where ¢ = X — ! 7 is the normal to the plane D; and 4 is the distance from the center

P ER")=— jk,Q(k, r)JI: /LE*O [,30 exp(jky(R" - ¥) + p'exp(jko((R” = R)- ¢ + R'- %)) |- H*(¥)
0
N

+[ 5 exp(iky (RO - ) + pH exp(jky((R° = RY- & + R' - %) |- Ei(})}ds.
(2.118)
We note here that H* (X) is the equivalent current density of electric current over surface S of non-
perfectly reflecting object. This surface current density H+ (X) is excited by plane wave propagating

in direction R° given that the interface D of the half-space V' is present (Figure 2.49). In the physical
optics approximation, the value of H* (¥) for smooth parts of the surface S can be expressed as

H* (x)z{'fsxél’ %GQ‘” 2.119)
ngxH,, xe€Q,),
where
H, = (R xpO)Ji exp(jky (R® - X))+ (R™ x p™) \/fj exp(jky (R"' - %)),
i = x50 explk (B0 R ©pexpik R
+(R" x ﬁ”)\/i exp(jky(R® —=R") - &)exp(jk, (R" - X)). (2.120)

Here, i, is the normal to the object’s surface S; R®' = R — 2iig (R - fis ), R" = R' — 2iig(R" - iiy);
and p°, p'' are the complex vector coefficients of reflection from nonperfectly reflecting object’s
surface given its illumination in directions R° u R!, respectively. Vectors p°' and p'' can be com-
puted using the method described in Section 2.1.1.

In expression (2.112), the value of E* (%) describes an equivalent density of magnetic current over
surface S. In the physical optics approximation, the value of E* (¥) can be written as

- ﬁxE, x€Q,,
Ei(;c):{ so ol (2.121)

igxE,, x€Q,,
where
E, =p° exp(jiky (R* - X)) + p” exp(jk, (R" - %)),

,=p'exp(jky (R” —R") - ¢)exp(jk, (R' - X)) + p" exp(jky (R® —R") - ¢)exp(jk, (R" - X)).
(2.122)
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Taking into account Equations 2.119 through 2.122, expression (2.118) can be presented as

exp(jkor)

prE(R) = —jky=5"

J[7° - Gig > H)+ (RO x 5 - Gis x ) expGiky (R $)dS
%

+ J[f)l (s x Hy) + (R'x pY) - (s x E)) Jexp(jko((R® = RY- ¢ + R - $))dS
2

+ [[B" - Gis x o) + (RO x 5 Gis X En) | expliky (R - $)dS
3

+j[pl (s % Hy) + (R X P) - (s % Ey) [exp(jko((R® = RY). € + R' - £)dS .
o
(2.123)

The first two integrals are over illuminated region Q,, the other two integrals are over illumi-
nated region Q,. Integrands in Equation 2.123 are fast oscillating functions, which necessitates the
cubature formulas to be applied as described in Section 2.2.

Having applied the cubature formula (Section 2.2.2) to the integrals in Equation 2.123, we can
compute the field scattered from smooth part of the object’s surface.

For the field scattered from local edge scatterers of ground object, we use the same expression
(2.112). The expression for resulted total field at point X of the surface S enveloping the object that
accounts for phase differences due to reflection of primary wave from the interface plane D can be
written in the same manner as in Equation 2.117:

E(XIR’,p) = kgm\/EQ(kOr)[ P° exp(jky(R° - X)) + p'exp(jky(R° = R)-C+ R - X)) |, (2.124)
0

I XIR, p) = G0 Q(kyr)| P exp(jky (R - X)) + p' exp(jky (R = R)-C+ R -X)) |, (2.125)

where Q(kyr) = %ﬁf‘}j’ﬁ), C=X- (}((Rlni)’;th P = RO x p°, p't = R' x p'; i is the normal
to the plane D; and 4 is the distance from the coordinate system tied to object down to the plane D
(Figure 2.50).

Now, the field scattered from local edge scatterers of ground object in the backward direction

—R° can be expressed as
5 E(R) = —jk, Lp(’k‘)’) (F, + F), (2.126)

k= .[I:\/Egal(f).[ijoexp(jko(ko )})) + ﬁleXp(jkO((ko _kl) . 6+K’I X)):|
0

Wo

+ B () - [ 5O exp(jky (RO - X)) + p' exp(jko (R — RN)-C + R' - )2))] } s,  (2.127)
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1 J. \ 80 b ( ) ’ |:PO exp(j‘CO(leO : ‘()) Pl exp(jko ((RO - Rl) -C+ Rl . X))
0
W

+ EP(3) - [ 5O exp (ko (RO - X)) + p' exp(jko (R — R") - C + R - i())] ds.  (2.128)

Here, W, is the whole set of toroidal surfaces enveloping the edges that are illuminated by
wave propagating in direction R® (Figure 2.61); W, is the whole set of toroidal surfaces envel-
oping the edges illuminated by wave reflected from the interface plane D; E‘* = (i, X E*) and

Het = (ny % H*) are the surface densities of equivalent magnetic and electric currents over the sur-
face W, (7, is the normal to the surface W,) given its illumination in direction R®; E** = (7, x E”)
and H"* = (n, x H") are the surface densities of equivalent magnetic and electric currents over the
surface W, (#, is the normal to the surface W,) given its illumination in direction R'.

Let us consider the integral F;, over surface W,. To do so, we need to express coordinates of the
points X at the surface W, as follows:

X=3%(0)+7, (2.129)

where X (V) is the radius-vector of a point at the surface fracture Y given its edge line’s parameter
equal to v, and T is the vector orthogonal to the edge at this point that has constant length z,, and
which direction is determined by vector 8(0 < 6 < ¢n) (Figure 2.15).

It is convenient to split the phase correcting vector coefficient C in two parts:

C = ¢, (X(0) + ¢,(7), (2.130)
o - - ) - +hs o~ . (TR 5
h V) =XV)-—%—R; D) =T- = !
where & (F(0)) = ¥(0) = = SR G = T o
Then, the E¢ and H* can be represented as follows:
_ =1 = |exp(jko(R - X())), (2.131)
H¢ He¢

where E¢, H* are the intensity vectors of the field excited at W, by plane wave

W, =K, UK,
R0 K, W =KUK;

FIGURE 2.61 To the determination of surfaces W, and W,.
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E%(%) = 5 exp(iky(R0-7)),

F:I(M(:E) — \/E(RO X ﬁo)exp(]ko(koi))

Taking into account all that we stated above, the integral F, over surface W, can be written as

Fo= e J{H @)+ [ LB ) (R x ﬁO)}exp(jko(EO - X))exp(ky(R” - £(v)))dS
0 0
Wo

+\/K‘l.|:[-:[aL(%).i)l +\/géal(%).(kl % ﬁl)i|exp(jk0((1§0 _kl).é_'_k] X))
€o W Ho

x exp (ko (R® - X (v))) dS. (2.132)

Having replaced the surface integral by the double one, we write integral F; in the following
form:

F, = “;—:))ﬁo . jexp(jko 2(R° - X(U)))Boo dv
Yy

#eoP [expUR (R = R 60w + (RO + R) -0 Dy do, - 2133
0
Y

Dy = _[ exp(jky (R0-%)) By dz,

Wo
By, = ﬁai(%) + /S—O(EM(%) x R%), (2.134)
0

Dy = [[exp(jko(R? = R)-G, (B + R - 2By dz,

Wo

dz =z, dO being the element of the arc W length;

By = H* () + \/f?’(l:f“l(%) x RY). (2.135)
0

Here, Y, is the whole set of edge lines that are enveloped by the surface W, and W is the crossing
line between surface W, and the plane perpendicular to the edge.

We can see that the first summand in expression for integral F), is the same as the corresponding
expression for the field scattered from the local edge scatterer of standalone object.
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Let us consider the integral F, over surface W,. The field (E’,H") can be represented in the fol-
lowing form:

Er) (E B .
( gb] =| = |exPUkL(R? = RY) - G(X(0)) + (R Z(0)D), (2.136)
H

where Ii" b, I-:I b are the intensity vectors of the field excited at W, by plane wave
E™(%) = pexpliky(R ~ R)- &, (F) + (R )],
HO(7) = \/E(ﬁl x p1expljky(R® = R") - &,(%) + (R' - D).
Taking into account Equation 2.136, we can write expression (2.128) for the integral F as follows:

F = \/?I {H P BB (R x 13")}"1)(11«0 (R*- X))
0 W Mo

x exp(jky (R” = R") - &, (¥ (0)) + R - ¥(v)))dS
+ \/EI[;I“ i FE“ (R x ﬁl):|exp(jk0 (R = RY)-C+ R X))
€y o o
x exp(jk, (R = R") - &, (X(v)) + R' - ¥(0)))dS. (2.137)

Having replaced the integral over surface by double integral, we can rewrite expression for F,
as follows:

F = Jgﬁ‘) Jexp ko (R = R) - & E (o) + (R + R) - #0))D d v
Y

+ [E0B [exp(ka2((RY = R) - Go(E (o) + R - $0))D, d, 2.138)
0
Y
Dy = [ exp(jty (R - D) Byydz, By, = HP(B) + Jf?(éﬂ x R0) (2.139)
, 0
W

Dy, = fexp(jko (R*=R"-& () +R' - 1) B, dz,

.
B, = H*(3) + /S—O(Ebi x RY),
0

where Y, is the whole set of fracture lines that are enveloped by the surface W,, and W;” is the cross-
ing line between the surface W, and the plane perpendicular to the fracture line.

(2.140)
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Now, the problem is reduced to finding four vector coefficients: 500, 50,, D,O, D,,, which can be
solved in the same manner as it was done in Section 2.2.4 by numerical integration procedure for
the vector coefficient D.

As it follows from Equations 2.133 and 2.138, computation of scattering from local edge scatter-
ers of ground object can be interpreted by terms of the four path wave propagation picture as it was
done for the case of electromagnetic wave scattering from the smooth part of the object’s surface.
By adding together components scattered from smooth surface part and local edge scatterers of the
object, one can estimate the field scattered from the object standing on the underlying surface.

2.3.4 SCATTERING CHARACTERISTICS OF NONPERFECTLY REFLECTING MODEL
oF A GROUND OBJECT

Applicability of the method developed here was verified by computer simulation of plane electro-
magnetic wave scattering from nonperfectly reflecting model of a tank (Figure 2.51), which was
provided with RAM coating and put on the ground.

The model length was 8 m, its width was 3 m, and its height was 2 m. In simulation we assumed
RAM with the following properties: relative permittivity and permeability were £¢” =20 + j0.1 and
W = 1.35 + 0.8, respectively, coating thickness over smooth parts of the surface was 1.3 mm, radius
of radar-absorbing toroid at the fracture ribs was 1 mm. As underlying surface, we took the soil with
properties of brown loam. Relative permittivity and permeability of dry soil (given moisture content
of 1%) were € =3 +;0.38 and W' = 1 + O, respectively; the moist soil (given moisture content of
20%) had the following relative permittivity and permeability: € = 17 +j0.9, W’ = 1 + 0.

RCS computation was provided for the azimuth aspects from 0° through 90° with increment of 1°.
Ilumination signal wavelength was assumed to be 10 GHz (A = 0.03 m). RCS estimations presented
in Figures 2.62 through 2.65 were provided for the elevation angle of 30°.

Figure 2.62 shows instantaneous RCS of the tank model standing on dry soil versus azimuth
aspect of its radar observation. RCS at horizontal polarization is shown with bold black curve, and
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FIGURE 2.62 Instantaneous RCS of the RAM-coated tank model standing on dry soil.
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FIGURE 2.63 Instantaneous RCS of the RAM-coated tank model standing on moist soil.
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the RCS at vertical one is shown with thin black curve. Figure 2.63 shows similar RCS dependen-
cies for the tank model standing on moist soil. Gray curves at these plots show corresponding RCS
dependencies for the perfectly conducting model.

All basic qualitative relationships of RCS for the tank model provided with RAM coating were
practically the same as for the perfectly conducting model at both polarizations of illumination
signal (Section 2.3.2).

In order to save computation time when obtaining reliable RCS estimates, we computed also the
noncoherent RCS values. Figure 2.64 shows such noncoherent RCS of the tank model standing on
dry soil versus azimuth aspect of its observation. Figure 2.65 shows similar dependencies of nonco-
herent RCS of the tank model standing on moist soil. RCS of the RAM-coated model is shown with
black curves; the gray curves are for the perfectly conducting model. Bold lines are for the RCS at
horizontal polarization, and the thin lines are for RCS at vertical polarization.

RCS of the RAM-coated model is, in average, 10-fold less than that of the perfectly conducting
model. RCS values at vertical polarization are lower than those at horizontal polarization, which is
even more evident for the case of moist soil (Figure 2.65).

The noncoherent dependencies of RCS presented above are smoother compared to instantaneous
RCS dependencies, and they provide reliable estimate for the RCS given specific frequency range
and sector of observation aspects.

Figures 2.66 through 2.68 show dependencies of noncoherent RCS of the tank model given vari-
ous elevation angles of its illumination. Dependencies presented above show that behavior of nonco-
herent RCS of perfectly conducting model correlate strongly with RCS behavior of the RAM-coated
model. The dependencies are almost the same for all the azimuths and elevation angles except that
the RCS of RAM-coated model is about 10-fold lower compared to RCS of perfectly conducting
model given the use of this specific RAM coating.

The level of RCS reduction goes as high as 16 dB. Variations in the RCS levels given different
kinds of underlying surface become more evident as the elevation angle increases. Main qualitative
RCS relationships for the ground model, which has perfectly conducting and nonperfectly reflecting
surface, practically coincide with each other. Particularly, given target illumination along the ground
surface, there is almost no difference between the RCS at vertical and horizontal polarization. These
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FIGURE 2.64 Noncoherent RCS of the tank model standing on dry soil.
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FIGURE 2.65 Noncoherent RCS of the tank model standing on moist soil.
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FIGURE 2.66 Noncoherent RCS of the tank model versus azimuth aspect at elevation angle of 0° (a — dry
soil, b — moist soil).
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FIGURE 2.67 Noncoherent RCS of the tank model versus azimuth aspect at elevation angle of 10° (a — dry
soil, b — moist soil).

RCS values are practically the same since, for the illumination directions approaching those being
tangent to the ground surface, the reflection coefficient approaches unit given any signal polarization.

When the tank model is illuminated at elevation angles approaching 90°, then the values of its
RCS at horizontal and vertical polarization are close to each other since the direct wave propagating
without reflecting from the ground contributes mostly into total scattered field. As it was the case
for the perfectly conducting model, the maximum difference between the RCS values at vertical
and horizontal polarizations is observed at elevation angles of 10° and 30°. At these elevation angles
of the model illumination, the ground reflection coefficients