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Foreword

The International Commission on Mathematical Instruction (ICMI) was established 
at the Fourth International Congress of Mathematicians held in Rome in 1908. It 
was initiated to support active interests in school education which were widespread 
among mathematicians at the time. ICMI is crucial for the International Mathematical 
Union (IMU), because education and research cannot be separated from each other. 
ICMI and the IMU function together for mathematics like the two wheels of a cart, 
since ICMI develops education systems which enable mathematics to prevail in 
society, while the IMU contributes to society through the development of pure and 
applied mathematical sciences.

I have been serving the IMU as President since January 2015. Since I served the 
IMU previously (1995–2002), I have noticed that ICMI and the IMU are working 
together to establish collaborations given that mathematics education is a major 
preoccupation of most scientific organisations nowadays.

My first physical involvement with ICMI as IMU President started with my par-
ticipation in the ICMI Study 23 Conference in Macao in May/June 2015. The ICMI 
Study 23 was planned and run jointly by its local and foreign co-chairs, with support 
from the University of Macau. The International Program Committee (IPC) meeting 
of ICMI Study 23 in Berlin was also supported by the IMU Secretariat. I saw that 
the support and cooperation of ICMI and the IMU have been essential throughout 
these activities.

I was very pleased to learn that ICMI Study 23 addressed, for the first time, 
mathematics teaching and learning in primary school (and pre-school as well) for 
all, and I believe that it will have a larger impact for later mathematics knowing. I 
hope the volume supports the whole of mathematics education.

Kyoto University� Shigefumi Mori 
Kyoto, Japan

http://www.mathunion.org/
http://www.mathunion.org/
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Preface

I am particularly proud of the publication of this 23rd volume in the series of ICMI 
Studies, not only since this means that a long scientific and organisational work has 
been happily accomplished, but also for the outstanding quality of its content and 
for the absolute relevance of the theme. ICMI Study 23 fully realises the objectives 
of ICMI ‘to offer a forum for promoting reflection, collaboration and the exchange 
and dissemination of ideas on the teaching and learning of mathematics from pri-
mary to university level’. Concentrating on whole numbers in primary grades repre-
sents a relevant signal of interest for a crucial moment in educational programmes 
everywhere in the world. Never as in this case it is truer that the study addresses a 
theme of particular significance to contemporary mathematics education.

The content of the volume is in perfect consonance with the overall ICMI pro-
grammes, according to which ‘ICMI works to stimulate the creation, improvement 
and dissemination of recent research findings and of the available resources for 
instruction (e.g curricular materials, pedagogical methods, the appropriate use of 
technology, etc.). The objective is of providing links among educational research-
ers, curriculum designers, educational policy makers, teachers of mathematics, 
mathematicians, mathematics educators and others interested in mathematical edu-
cation around the world’.

The people of this study have worked on a project that is challenging both scien-
tifically and culturally: the topics in the chapters and in the panel reports of the 
book, the commentaries on them written by eminent scholars, and the two appendi-
ces face a large horizon of themes that go well beyond mathematics and show how 
focusing on the learning and teaching of whole numbers is an immensely demand-
ing task that requires a wide range of competencies in addition to mathematics, 
from linguistics to ethnomathematics, to neuroscience and more. The processes 
according to which kids learn and elaborate whole numbers and their properties are 
incredibly rich and intermingled with the culture where they live and with which 
they can speak and think, as well as with the artefacts, which the tradition of their 
countries or the most recent technology allows them to use.
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The book builds, in this sense, a real-world map of whole number arithmetic: 
even if it is far from being complete, it does cover many regions of the world, from 
East to West, from North to South, including many non-affluent countries. The con-
tributions from the different cultures illustrate the fascinating enterprise of the 
mathematics teachers at the primary level, who from the one side speak the univer-
sal language of mathematics, but from the other side can link it to the specific lan-
guage and cultural environment of their own countries, in order to make it accessible 
to their students. This amazing synthesis emerges clearly from the research and 
practice described in the volume, which has the not-common capacity of intertwin-
ing the rigour of mathematics, linguistics, cognitive sciences, etc. with the extraor-
dinary different ways according to which numbers are alive in the different regions.

It is particularly significant that the study and the volume also had the contribu-
tions of invited people from another relevant IMU-ICMI programme, the ‘Capacity 
and Networking Project (CANP)’, aimed to enhance mathematics education at all 
levels in developing countries so that their people are capable of meeting the chal-
lenges these countries face. Their inputs have been important, since they empha-
sised the problems and the specificities of teaching whole numbers in those countries 
and contributed to the richness and variety of voices in the volume.

The 536 pages of the book demonstrate the incredibly intense work of this study, 
which lasted almost five years, from the appointment of the International Program 
Committee and its two co-chairs at the end of 2012, to the preparation and organisa-
tion of its Conference, which was held in Macao in June 2015, to the last intense 
work for the preparation and editing of this book, which, as it is usual for the ICMI 
Study volumes, does not consist of the proceedings of the meeting, but is a further 
elaboration of the discussions and results reached during the meeting itself.

I followed all these phases, and I must say that without the incredible work of the 
IPC and particularly of the two co-chairs, Profs. Maria G.  Bartolini Bussi and 
Xu Hua Sun, we could not have now so nice a book, which is really a reference and 
a source of inspiration for theory, research and practice to all the community of 
researchers, practitioners and policymakers in mathematics education, especially, 
but not only, those interested in mathematical education at the primary level.

On behalf of the ICMI EC and of the ICMI larger family, I wish to thank all of 
them here for their remarkable work. As well, I take this opportunity to thank the 
University of Macau and the Education and Youth Affairs Bureau and especially its 
Rector Wei Zhao, Vice Rector Lionel Ni, Director Lai Leong, Dean Xitao Fan and 
Associate Dean Timothy Teo and Director of Global Affairs Da Hsuan Feng, who 
generously supported the organisation of the Conference; the President of the IMU, 
Prof. Shigefumi Mori, who attended the meeting in Macao, thereby underlining the 
relevance of this study for the community of mathematicians; and the Springer 
Publisher for its accurate work of editing.

Turin, Italy� Ferdinando Arzarello
December 31, 2016

Preface
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Il ne s’agit pas là de philosophie comparée, par mise en 
parallèle des conceptions; mais d’un dialogue philosophique, 
où chaque pensée, à la rencontre de l’autre, s’interroge sur son 
impensé 
(‘This is not about comparative philosophy, about paralleling 
different conceptions, but about a philosophical dialogue in 
which every thought, when coming towards the other, questions 
itself about its own unthought’ (Jullien 2006, p. vi))

他山之石,可以攻玉 (tā shān zhī shí, kěyǐ gōng yù)
(‘The stone from another mountain can be used to polish one’s 
own jade’ (Xiao Ya, Shijing: He Ming, 1000 A. C.))

1.1  �Introduction

After more than five years of collaboration on whole number arithmetic (WNA), we 
summarise our experiences, focusing on the process, the merits and the limits of the 
ICMI Study 23, together with the potential for future activity and for addressing 
different kinds of audience. We have not worked alone. A very knowledgeable and 
helpful International Program Committee (IPC) shared the whole process of prepa-
ration of this volume. We wish to thank them all for their long-lasting (and not yet 
finished) collaboration; although, obviously, the responsibility for some delicate 
choices and possible mistakes and misunderstandings is left to the two of us.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63555-2_1&domain=pdf
http://orcid.org/0000-0002-3257-1348
http://orcid.org/0000-0002-5515-0669
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The two epigraphs above, from the French philosopher and sinologist François 
Jullien and from an ancient Chinese saying, summarise our attitude now. This inter-
national study has offered us the opportunity to increase our knowledge and start 
two complementary processes:

–– Becoming aware of some deep values of our own culture (our ‘unthought’) 
which we may have considered in the past the only possible choice or, at least, 
the most suitable choice for an ideal ‘human nature’.

–– Considering the possibility of introducing into our own practices, beliefs and 
values (our ‘jade stone’) the processes of innovation, not copied from but influ-
enced by practices, beliefs and values of another culture.

The Study Volume is an account of the collective memory of participants offered 
to the wider community of primary mathematics educators, including researchers, 
teachers, teacher educators and policymakers. It is a product of fruitful collabora-
tion between mathematicians and mathematics educators, in which, for the first time 
in the history of ICMI, the largely neglected issue of WNA in primary school has 
been addressed. The volume reports all the activities of the Conference. Many co-
authors, who were involved in a collective co-authorship, are listed at the end of the 
volume.

1.2  �The ICMI Study 23

1.2.1  �The Rationale of the Study

Primary schooling is compulsory in all countries, with different facilities and oppor-
tunities for children to take advantage of it. Mathematics is a central subject in pri-
mary mathematics education, and the delivery of the mathematics curriculum is 
important in all countries for the different kinds of citizens and the different kinds 
of competences each seeks to produce. In the proceedings of a recent workshop 
organised by the National Academies of Science, Engineering and Medicine, held 
in November 2016, to explore the presence and the public perception of the Social 
and Behavioural Science (SBS) in K-12 education, a research survey was conducted 
that compared public knowledge and attitudes towards the natural sciences and 
social sciences, using a representative national sample of 1000 adults (balanced in 
terms of age and gender). Besides questions on SBS, the survey included questions 
about STEM (Science, Technology, Engineering and Mathematics). More than 30% 
of respondents opined that mathematics and science education should begin in ele-
mentary school or earlier with a strong preference for mathematics in both pre-
school and elementary school.1

1 http://nap.us4.list-manage.com/track/click?u=eaea39b6442dc4e0d08e6aa4a&id=99397b4537&
e=f0cb5232c5
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WNA and related concepts form the basis of mathematics content covered in 
later grades. WNA in primary school lays the foundation for secondary school. It is 
one of the goals of education for all and a part of the UN Global Education First 
Initiative (UNESCO 2012). Consistently, the volume titled Building the Foundation: 
Whole Numbers in the Primary Grades aims to convey the message of the impor-
tance of laying a solid foundation of WNA as early as possible for further mathe-
matics learning.

1.2.2  �The Launch of the Study

A reflection on primary school mathematics was considered timely by the ICMI 
Executive Committee (EC) (term 2010–2012). The theme of the study was defined 
as follows:

The beginning of the approach to whole numbers, including operations and rela-
tions, and the solution of arithmetic word problems, in schools (and possibly pre-
school environments), up to Grade 3 or more, according to the various education 
systems

Although it is not the only topic relevant to primary school mathematics, WNA 
was chosen by the EC of ICMI to focus on a shared centrality in primary school 
mathematics curricula all over the world.

The study was launched by ICMI at the end of 2012, with the appointment of two 
co-chairs and the IPC, which, on behalf of ICMI, was responsible for conducting 
the study:

Maria (Mariolina) G. Bartolini Bussi, Italy, and Xu Hua Sun, Macao SAR, China 
(co-chairs);

Berinderjeet Kaur, Singapore; Hamsa Venkat, South Africa; Jarmila Novotná, 
Czech Republic; Joanne Mulligan, Australia; Lieven Verschaffel, Belgium; Maitree 
Inprasitha, Thailand; Sybilla Beckmann, USA; Sarah Inés González de Lora Sued, 
Dominican Republic; Abraham Arcavi, Israel (ICMI Secretary General); Ferdinando 
Arzarello, Italy (ICMI President); Roger E. Howe, USA (ICMI liaison)

1.2.3  �The Discussion Document

During 2013, an intense mail exchange within the IPC established and shared the 
rationale, the goals and the steps of the forthcoming study. In January 2014, an IPC 
meeting took place in Berlin, at the IMU Secretariat, which generously supported 
the costs. The IPC members were welcomed by Prof. Dr. Jurgen Sprekels, Director 
of the Weierstrass Institute for Applied Analysis and Stochastic (WIAS, Berlin), and 
by the then ICMI President Prof. Ferdinando Arzarello, who participated in the 
meeting and, later, in the entire Study Conference.

The meeting in Berlin took place in a productive and collaborative atmosphere.

1  Building a Strong Foundation Concerning Whole Number Arithmetic in Primary…
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A Discussion Document (this volume, Appendix 2) including a call for papers 
for the Study Conference was prepared, with the Study Conference announced for 
June 2015  in Macao (SAR China). This document summarised issues that were 
considered important to discuss in the study. Emphasis was given to the importance 
of cultural diversity and its effects on the early introduction of whole numbers. In 
order to foster understanding of the different contexts in which authors had devel-
oped their studies, each applicant for the study was required to fill a specific context 
form in order to include background information about their submission’s context 
(this volume, Chap. 2).

Five themes (each corresponding to a working group in the Conference) were 
identified and assigned to pairs of members of the IPC:

	1.	 The why and what of whole number arithmetic
	2.	 Whole number thinking, learning and development
	3.	 Aspects that affect whole number learning
	4.	 How to teach and assess whole number arithmetic
	5.	 Whole numbers and connections with other parts of mathematics

Three plenary panels were identified:

	1.	 Traditions in whole number arithmetic, chaired by Ferdinando Arzarello
	2.	 Special needs in research and instruction in whole number arithmetic (WNA), 

chaired by Lieven Verschaffel
	3.	 Whole number arithmetic and teacher education, chaired by Jarmila Novotná

Three plenary speakers were invited: Hyman Bass, Brian Butterworth and Liping 
Ma.

The intention of the IPC was to offer a map of some important issues related to 
WNA, crossing the borders of countries and regions. The aim was to foster reflec-
tions among participants (and, subsequently, among the readers of the volume) on 
their own cultural contexts, with representation in the Conference and the volume of 
sources from a wide range of geographical and socio-economic contexts. Cole’s 
(1998) book on Cultural Psychology affirms the need for this kind of range:

In recent decades many scholars whose work I discuss have sought to make the case for a 
culture-inclusive psychology. They argue that so long as one does not evaluate the possible 
cultural variability of the psychological processes one studies, it is impossible to know 
whether such processes are universal or specific to particular cultural circumstances. For 
examples, John and Beatrice Whiting, anthropologists with a long-term interest in human 
development, wrote: ‘If children are studied within the confines of a single culture, many 
events are taken as natural, or a part of human nature, and are therefore not considered as 
variables. It is only when it is discovered that other people do not follow these practices that 
have been attributed to human nature that they are adopted as legitimate variables’. (p. 2)

The temptation of a narrow and local perspective is a risk for mathematics educa-
tors too, given the enormous advantages that mathematics developed in the West in 
recent centuries has had on the development of science, engineering and technolo-
gies. This study aimed at challenging some of these beliefs with a short, yet lively, 
immersion in an atmosphere where a more open mind is needed, at least when 

M.G. Bartolini Bussi and X.H. Sun
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discussing early year mathematics and where the strong links with everyday life and 
cultural traditions come into play.

1.2.4  �The Study Conference

By the end of the selection process, 67 papers were accepted and distributed over 
the five themes. For each accepted paper, a maximum of two co-authors were invited 
to participate in the Study Conference. A volume of proceedings was edited by Xu 
Hua Sun, Berinderjeet Kaur and Jarmila Novotná (Sun et al. 2015).

Thanks to generous support from the University of Macau, the Education and 
Youth Affairs Bureau, Macao SAR and ICMI, for the first time the ICMI Study 23 
was able to invite observers from developing countries. A choice was made to privi-
lege Capacity and Networking Project (CANP) participants who comprise the 
major developmental focus of the international bodies of mathematicians and math-
ematics educators (this volume, Appendix 1). Other observers came from the Great 
Mekong Area and China. The total number of participants was 91 from 23 
countries.

The Study Conference was held on June 3–7, 2015, in Hengqin Campus, 
University of Macau, leased to Macao by the State Council of the People’s Republic 
of China in 2009 for the construction of the new campus. The Conference was 
opened by Prof. Zhao Wei, Rector of the University of Macau. Addresses were 
given by Mr. Wong Kin Mou, Representative of Director of the Education and Youth 
Affairs Bureau and Chief of Department of Research and Educational Resources of 
Macao SAR; Prof. Shigefumi Mori, President of IMU; Prof. Ferdinando Arzarello, 
President of ICMI; and the co-chairs (the co-authors of this chapter).2

1.2.5  �The Study Volume

The ICMI Study Conference served as the basis for the production of this Study 
Volume, edited by the two co-chairs of the study. The five themes identified in the 
Discussion Document (this volume, Appendix 2) were assigned to pairs of members 
of the IPC, who took part in the selection of the submitted papers and the organisa-
tion of the five working groups in the conference. As is the tradition with the ICMI 
studies, the IPC members who led the working groups proceeded to lead the writing 
of the corresponding chapter and to synthesise and integrate the papers presented in 
the group alongside the subsequent discussions. Unfortunately, due to health rea-
sons, Sarah Inés Gonzáles de Lora Sued was not able to take part in the Conference. 
During the writing process, Christine Chambris kindly accepted to take Sarah’s role.

2 A gallery of photos from the Study Conference is available at: www.umac.mo/fed/ICMI23/photo.
html.
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A short summary of the volume follows.
The introductory part addresses some background issues.
The diversity of contexts (Chap. 2) addresses the growing importance of under-

standing the role of the social and cultural context in which the teaching and learn-
ing of mathematics is situated. The process that led the IPC to prepare a context 
form for each submitted paper is reported, together with a short analysis of the col-
lected forms. This information is important to understand the perceptions of the 
contributors involved in writing this volume.

The diversity of languages (Chap. 3) addresses a feature that emerged in working 
groups and plenary panels as well. The richness of cultural contexts allowed partici-
pants to discuss possible linguistic supports or limitations that may interfere with 
students’ mathematics learning and teacher education. The participants were 
informed by the working group leaders (when appropriate) that their contribution to 
the language discussion would have been summarised in an editorial chapter by the 
co-chairs, mentioning their contribution in the proceedings. A large part of the chap-
ter is devoted to the Chinese case that is different from many other languages.

Chapter 4 is a commentary paper prepared by an acknowledged scholar in the 
field, David Pimm. He was not able to participate in the Conference, but was kindly 
willing to write a commentary chapter.

The working groups’ part comprises 10 chapters, organised in pairs. The work-
ing groups’ chapters are co-authored by the IPC members who led the group 
together with listed participants, and the different levels of collaboration during the 
writing process are acknowledged as mutually agreed. The odd-numbered chapters 
(Chaps. 5, 7, 9, 11 and 13) report, in order, the outputs of the discussions of the five 
working groups. Each of these chapters is followed (in the even-numbered chapters) 
by a commentary paper authored by an acknowledged scholar with expertise in the 
field of whole number arithmetic, who did not take part in the Conference and thus 
offered a different perspective on the study’s key themes: Roger Howe (Chap. 6), 
Pearla Nesher (Chap. 8), Bernard Hodgson (Chap. 10), Claire Margolinas (Chap. 
12) and John Mason (Chap. 14).

The panel part includes three panels (Chaps. 15, 16 and 17), which aimed to 
address some transversal issues (traditions, special needs and teacher education) 
that cut across the working group foci, with the participation of most members of 
the IPC exploiting their areas of expertise and of some other invited participants, 
including a discussant for each panel.

The plenary presentation part includes three plenary presentations (Chaps. 18, 19 
and 20) which aimed at addressing WNA from three different perspectives: that of 
a professional mathematician and past ICMI president (Hyman Bass), that of a neu-
rocognitive scientist with research on developmental dyscalculia (Brian Butterworth) 
and that of a scholar in mathematics education with expert knowledge of Chinese 
and US traditions (Liping Ma).

Three appendixes are included in the volume – the first related to the CANP 
participants’ reflections, the second related to the Discussion Document of the ICMI 
Study 23 and the third related to the electronic supplementary material (videos).

M.G. Bartolini Bussi and X.H. Sun
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1.3  �Merits of the Study

The ICMI Study 23 has seen merits from both organisational and scientific 
perspectives.

The Study Conference was located in Macao SAR, the right place for many rea-
sons. First, in recent years, the outstanding performance of Chinese students in the 
OECD PISA mathematics assessment was debated all over the world. In particular, 
Macao SAR’s performance rose from 15th position in 2009 to 3rd position in 2015. 
Knowing more about this performance is of interest to all mathematics educators.

But there are other reasons. Macao is known as the place of a dialogue between 
Portugal and China, between European and Eastern cultures. Contacts between Asia 
and the West started along the Silk Road even before the Common era (BCE).3 As 
from the thirteenth century, numerous traders – most famously the Italian Marco 
Polo – had travelled between Eastern and Western Eurasia. In the sixteenth century 
(1552), St Francis Xavier, a Navarrese priest and missionary and co-founding mem-
ber of the Society of Jesus, reached China. Some decades later, the Italian Jesuit 
Matteo Ricci reached Macao. He introduced Western science, mathematics, astron-
omy and visual arts into China and carried on significant intercultural and philo-
sophical dialogue with Chinese scholars, particularly representatives of 
Confucianism.

Matteo Ricci (1552–1610) is known as the initiator of the Catholic missions in China and 
one of the earliest members of the Society of Jesus. Others before him ventured towards 
China, but did not succeed in remaining there for life, let alone to receive the respect and 
admiration from the Chinese people that Ricci enjoys even to this day. The root of Ricci's 
success lies in his achieved integration as a human person that made it possible for him to 
enter so fully into another culture without losing himself. The Society of Jesus and Macao, 
in many ways, share together a common beginning and 450 years of history. The Jesuits in 
Macao have always been at the service of the human person, either in need of education or 
material help, but always at the very deepest level of ideals and hopes, where culture finds 
its roots. This Jesuit tradition continues even today in Macao at the Macao Ricci Institute.4

The Ricci Institute was visited by the participants in the Study as a part of the 
social programme, with lectures by Man Keung Siu about the role of Matteo Ricci 
in introducing elements of European mathematics into China. Among these were 
the first six books of Euclid’s Elements and the first arithmetic book on European 
pen calculation. These translations changed Chinese mathematics education and 
gave Chinese people their first access to real images of Western mathematics 
(Chap. 15).

This intercultural dialogue is evident not only in the architecture of the old city, 
the parallel entrance corridor of the Macao museum5 and the road signs (written in 
Chinese and Portuguese), but also on the new Hengqin Campus,6 where the Study 

3 www.ancient.eu/Silk_Road/
4 www.riccimac.org/eng/introduction/index.htm
5 www.macaumuseum.gov.mo/w3ENG/w3MMabout/MuseumC.aspx
6 www.umac.mo/about-um/introduction/about-the-university-of-macau.html
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Conference was held. Hence, the participants were physically embedded in intercultural 
dialogue. We believe that this heritage of mixed traditions under the influence of the 
Confucian educational heritage can provide a resource for new thinking in global 
mathematics education development. In all the working groups and the panels, the 
discussion was lively, and the presence of the Chinese culture was evident: the col-
leagues from the Chinese areas discussed their own perspectives, often different 
from the others’ and still connected with the classical tradition. Interestingly, a spe-
cial gift was offered to all participants: a suàn pán (算盘), the famous Chinese 
abacus, added in 2013 to UNESCO’s intangible heritage list (see Fig. 1.1).

A central part of the social programme was the visit to two first grade classrooms 
to observe lessons on addition and subtraction, according to the typical Chinese 
tradition of open classes (guānmó kè, 观摩课), where many observers (several doz-
ens in our case) observed a lesson, with a carefully organised teaching plan distrib-
uted in advance, and discussed with the teachers later in order to improve the lesson 
for the future. The participants showed great interest in this lively observation of a 
Chinese classroom, it is described at length in one chapter of the Study Volume 
(Chap. 11), and commented on from a Western perspective (Chap. 12). The immer-
sion in a culture so different from that of most participants led to a sharing of some 
features of a range of different traditions, providing a much broader and deeper air-
ing of what is known in the literature. Comparisons between Chinese and Western 
cultures of education have become relatively common in the international literature 
(e.g. Gardner 1989; Stevenson and Stigler 1992), but most participants at the Study 
Conference had never had personal experience in this field. The meeting of different 
cultural traditions was reconsidered in a specific panel chaired by Ferdinando 
Arzarello (Chap. 15).

An innovation related to our central attention to culture was that during the Study 
Conference, in some working groups, short video clips about classroom episodes 
were shown by the participants, who had agreed to prepare them with English sub-
titles. The vivid impression that a video clip can give of classroom life and of the 
implicit culture is different from what is discernible in a written paper. While access 
to video clips was constrained by the need to meet permission, privacy and ethical 
rules (where these too are culturally dependent on different countries’ laws and 

Fig. 1.1  The customised 
suàn pán for the 
participants in the 
conference
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norms), and by the resources available to prepare the English transcripts required to 
make the video clips understandable in the context of an international conference, 
we collected a small gallery of video clips that can be enlarged in the future. 
References to particular video clips appear across the volume as electronic supple-
mentary material (see also Appendix 3) and are available on the publisher website.

Our attention to contexts and different cultural traditions is one of the major 
merits of this study, in place from the beginning in the Discussion Document (this 
volume, Appendix 2). It is worth noting our increased emphasis on what previously 
was considered more as a ‘special interest’ rather than a core feature: for instance,  
a plenary panel on Cultural contexts for European research and design practices in 
mathematics education (Jaworski et  al. 2015) was hosted by CERME 9 (the 
Conference of the European Society for Research on Mathematics Education, held 
in Prague in 2015) and a plenary address was given by Bill Barton on Mathematics 
education and culture: a contemporary moral imperative at ICME 13.7 The direc-
tion seems to be right but the way remains long.

The issue of languages and their influence on WNAs was considered in different 
working groups and was summarised in a specific chapter (Chap. 3). Perspectives 
on WNA in relation to history, language and societal changes were also discussed in 
Chap. 5 and Chap. 6.

During the process, the IPC felt that the traditional limits on how WNA is per-
ceived did not afford adequate recognition to the connections existing between dif-
ferent mathematical areas, for instance, the connection between arithmetic and 
algebra. Two chapters (Chaps. 13 and 14) address this issue.

Teacher education and development in relation to WNA was addressed in a panel 
(Chap. 17), complementing the ICMI Study 15 (Even and Ball 2009), thereby filling 
a gap in that the earlier study made little reference to primary level in the Study 
Volume.

Special needs were addressed in a panel (Chap. 16) that drew on the contribution 
of Chap. 7, reporting on neurocognitive, cognitive and developmental approaches. 
It represents a first step into a desirable and better dialogue between scholars from 
different communities, that is mathematics educators and (neuro-)cognitive scien-
tists. WNA has been a hot topic in the field of psychology. Yet, studies carried out 
from the perspective of classroom teaching are relatively rare, and most studies are 
conducted in experiment rooms, with risks of limited application to classroom 
teaching and instruction. This study has thus started to build important 
discussions.

The issue of early childhood settings is considered in the chapters focusing on 
observation studies (Chap. 7) and intervention studies (Chap. 9). The importance of 
supporting literacy in these early childhood settings is widely accepted; but, histori-
cally, mathematics has often been viewed by many as unimportant to, or develop-
mentally inappropriate for, young children’s learning experiences: for example, 
current US state standards for early childhood do not include much mathematics 
(National Research Council 2009). More generally, many early childhood pro-

7 https://lecture2go.uni-hamburg.de/l2go/-/get/v/19757
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grammes spend little focused time on mathematics and are accompanied by con-
cerns of low instructional quality. Many opportunities are therefore missed for 
learning mathematics. A key exception is represented by the proactive stance of the 
European Society for Research in Mathematics Education, which has, from 2009, 
included a specific working group on Early Years Mathematics meeting every sec-
ond year (Levenson et al. in preparation). A plenary talk on Towards a more com-
prehensive model of children’s number sense by Lieven Verschaffel, member of the 
IPC of the ICMI Study 23, was also presented at CERME 108 in Dublin.

Last but not least, a further merit of the Study is the involvement of CANP rep-
resentatives as observers. This group has acknowledged (Appendix 1) the impor-
tance of the Study Conference where each of them was assigned to a working group, 
ensuring dialogue between them and the other participants. They also had a formal 
meeting with the ICMI President, Ferdinando Arzarello, during which, for the first 
time, experiences across CANPs were shared. Veronica Sarungi (personal commu-
nication), representative of CANP4, noted in her reflections:

One of the major contributions of the ICMI Study 23 was to enable the CANPs to build 
networks beyond their regions. As a result of connections formed in Macao, a discussion 
group proposal was submitted and accepted for ICME-13 that will focus on CANPs. Apart 
from networking, the meeting in Macao enhanced the individual capacity of the representa-
tives that had an effect on their respective institutions, national and regional associations.

This friendly and supported introduction into the international community of 
mathematics educators has already contributed to broadened participation in other 
ICMI activities and regional conferences and meetings of affiliated organisations 
such as CERME.

1.4  �Impact of the Study

Overall, the impact of the study is promising. Some communities indicated their 
interest before the Study Conference (e.g. Bartolini Bussi and Sun 2014; Beckmann 
2015). After the Conference, reports (by invitation) have appeared in key journals 
(European Mathematical Society Newsletter, in English; Mathematics Education 
Journal, in Chinese; the Bulletin of CFEM, in French) and conference proceedings 
(Copirelem, Bartolini Bussi and Sun 2015; SEMT 2015, Novotná 2015). An official 
report has been published by L’Enseignement Mathématique (Bartolini Bussi and 
Sun 2016). A report on “ICMI Study 23 on Whole Number Arithmetic” was given 
by Roger Howe at NCTM 2017. A presentation of the Study Volume was also held 
in 2016 in a special timeslot at ICME 13 in Hamburg.9

The intercultural dialogue between mathematics educators interested in WNA 
for the primary school continues in international conferences (such as SEMT, taking 

8 www.cerme10.org
9 https://lecture2go.uni-hamburg.de/l2go/-/get/v/19768

M.G. Bartolini Bussi and X.H. Sun

https://doi.org/10.1007/978-3-319-63555-2_BM1
http://www.cerme10.org
https://lecture2go.uni-hamburg.de/l2go/-/get/v/19768


13

place every second year in Prague10) and at ICME, where specific groups are organ-
ised every fourth year. Moreover, the Inter-American Conference on Mathematics 
Education (IACME), taking place every 4 years, has a special section on primary 
mathematics education, and WNA is an important part of it.

1.5  �Limits of the Study

The aim of constructing a map of the main educational aspects of WNA has been 
partially fulfilled in the Study Conference and in this Volume, with a wide multicul-
tural approach. Some themes have been deepened and some others have been 
opened up as new avenues that currently are simply sketched.

The issue of textbooks within the teaching of WNA is touched upon in some of 
the chapters (Chaps. 9 and 11), but would deserve a whole study in its own (Jones 
et al. 201411).

The issue of assessment of and for WNA learning too has been touched (Chap. 
11), but the theme deserves further exploration. The ICMI Study 6 on assessment is 
as yet not updated (Niss 1993a, b) with changes internationally influencing prac-
tices at the country and classroom levels (see, for instance, Suurtamm et al. 2016).

The issue of gifted students’ needs was only skimmed within the consideration of 
challenging mathematical tasks (Chaps. 9, 10 and 14). Hence, in this case too, there 
is space for further development (see, for instance, Singer et al. 2016).

The participation in the Study Conference deserves some comments. It was not 
surprising that China was well represented in the Conference, because of the prox-
imity to the venue. Yet, in spite of the significant efforts of the IPC members, a 
limitation of the study was the failure to involve mathematics educators from a 
wider range of countries and regions (e.g. Russia, India, Japan, Korea, several parts 
of Africa and Latin America). Equity imperatives for participation in the ICMI 
Study 23 therefore remained far from being reached, although the themes of the 
Study had the potential to involve mathematics educators and policymakers from 
developing countries. Key obstacles that we identified included:

–– Ineffective dissemination (international mailing lists and journals continue to 
reach a limited portion of the mathematics education community across the 
world).

–– Language issues (the choice of English as the study language, although inescap-
able, may well have inhibited some authors from applying).

–– Costs (while airfares tend not to be strictly related to the distance from countries, 
commercial constraints continue to apply).

10 www.semt.cz
11 www.sbm.org.br/icmt2/
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1.6  The Implications of This Study

1.6.1  �A Message for Practitioners

The multifaceted aspects considered in the many chapters of the Study Volume have 
the potential to attract mathematics teachers and teacher educators from all over the 
world: there are collections of tasks, activities and artefacts (see, for instance, 
Chaps. 9 and 10), addressing WNA. Approaches and models for teacher education 
and development are also broadly represented in the study, with input from many 
acknowledged scholars in the field of mathematics education, making the study 
attractive for researchers in primary school arithmetic.

From the many examples, we pick up some:

–– Balancing ordinal, cardinal and measurement aspects of (and approaches to) 
number sense.

–– Connecting the three core concepts of addition, subtraction and number together.
–– Exploiting the potential of cultural artefacts (e.g. abaci, Dienes blocks, Cuisenaire 

rods, pascalines, devices from multitouch technologies).
–– Focusing on structural approaches to early number development.
–– Focusing on the make-a-ten method of addition and subtraction within 20.
–– Storytelling to borrow the completely regular number names in those cultures 

where irregular names are present.
–– Emphasising the importance of figural and spatial representations.
–– Fostering bodily involvement such as counting with fingers, dancing or jumping 

on the number line.

1.6.2  �A Message for Curriculum Developers and Policymakers

The attention to the social and cultural contexts and to the importance of native 
languages in mathematics learning has the potential to attract curriculum developers 
and policymakers. Around the world, 250 million children either fail to complete 
more than 3  years of basic education or lack basic numeracy skills for ongoing 
learning despite finishing 3  years of basic education (Matar et  al. 2013). In one 
region of Morocco, one assessment showed that 20% of Grade 2 students could not 
solve any simple addition problems and 44% could not answer any simple subtrac-
tion problems (Matar et al. 2013). Furthermore, children who start school with a 
poorly developed understanding of number tend to remain low achievers throughout 
school (Geary 2013). This contrast between acknowledged needs and existing 
instructional programmes should be a major preoccupation of curriculum develop-
ers and policymakers.

M.G. Bartolini Bussi and X.H. Sun
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Some policies and approaches that this study offers as suggestions include:

–– Taking seriously the influence of early grade instruction on success in later 
education.

–– Promoting early childhood mathematics in schools.
–– Considering globalisation and the roots of mathematics in  local cultures in a 

dialectic way.
–– Taking the particular language and cultural constraints into account.
–– Addressing the use of cultural artefacts and cognitively demanding tasks as 

teaching aids.
–– Acknowledging the professional status of primary school teachers.
–– Designing primary teacher education and development in order to make them 

highly educated professionals.

1.7  �Concluding Remarks

Our hope is that the special focus on WNA in primary school mathematics within 
ICMI Study 23 lays the ground for further attention to primary mathematics topics, 
curricula and pedagogies to be addressed in future studies and in the conferences of 
organisations affiliated to ICMI, because building the foundation, as the title of 
volume reads, is critically important for the development of mathematics teaching 
and learning in secondary/high schools and beyond.

The interest shown by the participants from many different countries and regions 
and their engagement in authoring parts of this volume, as well as the early impact 
of the study, suggest strong potential and opportunities for organising a follow-up 
study in a few years’ time. We, as co-chairs of the ICMI Study 23, will continue to 
collaborate in order to ensure a long-lasting influence of this study in our regions 
and, more generally, at the international level.

ICMI conferences and studies are examples of attempts to improve communica-
tion between different communities. However, it is misleading to claim that ICMI 
Study 23 achieved a shared perspective. This volume does not present a single 
coherent discourse, nor did the mathematics educators and the mathematicians con-
verge to a common discourse of teaching WNA. A better description would be shar-
ing perspectives, in the following sense: the various communities were given ample 
opportunities to present and elaborate their perspectives; others listened attentively 
and respectfully; there were opportunities for participants to discuss commonalities 
and differences and to develop new insights, yet eventually each participant was 
free to adopt, reject, modify or integrate parts of the others’ perspectives into his/her 
own discourse of WNA.

In a world increasingly driven by questions about borders and migrations across 
them, what this volume has succeeded in collecting are overviews and discussions 
that are of interest to mathematics educators across phases and across borders. The 
volume provides illustrations of interventions and developments that share, across 
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different cultural contexts, a concern with broadening access to foundational math-
ematical ideas that are important if we are to contribute to progress and participation 
into higher-level mathematics. Diversity of language, artefacts and approaches to 
this endeavour of broadening access strengthens the field’s ability to address this 
goal. We conclude by offering our thanks for the cross-cultural interaction processes 
that have culminated in this work. The broader global discourses that prevail at the 
time of the publication of this volume resonate with talk of walls and of borders. 
This volume stands as a testament to the strength of cross-national and cross-cul-
tural collaboration – the dissolution of borders – and this study, like previous ICMI 
studies, is enriched by the international collaboration.

1.8  �Processes and Acknowledgements

The chapters were reviewed internally by the IPC and by the co-chairs. Through this 
process, cross-referencing was developed as much as possible, and there was care-
ful examination of any overlaps. Where different chapters have treated similar ideas, 
we have tried as far as possible to indicate cross-references.

We want to acknowledge the particular roles played by three members of the 
IPC, Xu Hua Sun, Jarmila Novotná and Berinderjeet Kaur, who carefully edited the 
online proceedings (Sun et al. 2015), and the role played by Hamsa Venkat, who 
was helpful in editing many chapters of the volume. Xu Hua Sun, as a Macao co-
convenor, took care of many financial and practical matters, which made the study 
possible. We are also grateful to Bill Barton who, as President of ICMI when the 
proposal was submitted, was encouraging and supportive; Lena Koch who managed 
many ICMI matters; Ferdinando Arzarello, the President of ICMI; and to Abraham 
Arcavi, the ICMI Secretary General, during the whole study, who were present in 
many phases of the process, from the first IPC meeting in Berlin to the entire 
Conference in Macao and to the presentation at ICME 13. The process went through 
the terms of three Presidents of ICMI: Bill Barton, Ferdinando Arzarello and Jill 
Adler. We thank Jill Adler, the President of ICMI from January 1 2017, who devoted 
much energy to a thoughtful reading of the manuscript with new eyes and to the 
agreement for the contract with Springer that allowed, for the first time, to have an 
Open Access publication in the Niss series. Thanks are given also to Natalie Rieborn 
(Springer) and the whole SPI staff who were very supportive and patient in the very 
long process of book preparation. We also wish to thank Shigefumi Mori, the 
President of IMU, who showed in many ways his deep interest in primary mathe-
matics education.

The ICMI Study co-chairs and the IPC members are very grateful to the partici-
pants of the conference for their written papers which appear in the conference 
proceedings (Sun et al. 2015) and for their significant contributions to the discus-
sions, which highly enriched the contents of this study. Special thanks are for 
David Pimm who collaborated in a very generous way to the final editing of the 
volume.

M.G. Bartolini Bussi and X.H. Sun



17

References

Bartolini Bussi, M. G., & Sun, X. (2014). The twenty-third ICMI study: Primary mathematics 
study on whole numbers. Educational Studies in Mathematics, 86(3), 307–309.

Bartolini Bussi, M.  G., & Sun, X. (2015). Learning from the world: The teaching and learn-
ing of whole numbers arithmetic in the ICMI study 23. In Copirelem (Ed.), Actes du 42e 
Colloque International des formateurs de mathématiques chargés de la formation des maîtres 
(pp. 39–51). Besancon: ARPEME.

Bartolini Bussi, M. G., & Sun, X. (2016). ICMI study 23: Primary mathematics study on whole 
numbers. L’Enseignement Mathématique, 61(3), 505–517.

Beckmann, S. (2015) The twenty-third ICMI study: Primary mathematics study on whole numbers 
Retrieved February 10, 2016, from http://www.stemeducationjournal.com/content/1/1/5

Cole, M. (1998). Cultural psychology. A once and future discipline. Cambridge, MA: Harvard 
University Press.

Even, R., & Ball, D. L. (Eds.). (2009). The professional education and development of teachers of 
mathematics. The 15th ICMI study. New York: Springer.

Gardner, H. (1989). To open minds. Chinese clues to the dilemma of contemporary education. 
New York: Basic Books.

Geary, D. (2013). Early foundations for mathematics learning and their relations to learning dis-
abilities. Current Directions in Psychological Science, 22(1), 23–27.

Howe, R. (2017). Report on ICMI study 23 on whole number arithmetic. NCTM 2017 annual 
meeting and exposition (April 05, 2017–April 08, 2017). San Antonio, TX.

Jaworski, B., Bartolini Bussi, M.  G., Prediger, S., & Nowinska, E. (2015). Cultural contexts 
for European research and design practices in mathematics education. In K.  Kreiner & 
N. Vondrova (Eds.), CERME9. Proceedings of the Ninth Congress of the European Society for 
Research in Mathematics Education (pp. 7–35). Prague: Charles University in Prague, Faculty 
of Education and ERME.

Jones, K., Bokhove, C., Howson, G. & Fan, L. (2014). Proceedings of the International Conference 
on Mathematics Textbook Research and Development (ICMT-2014). Southampton: Education 
School, University of Southampton. http://eprints.soton.ac.uk/374809/1/ICMT-2014_proceed-
ings150331.pdf

Jullien, F. (2006). Si parler va sans dire: Du logos et d’autres ressources. Paris: éditions du Seuil.
Levenson, E., Bartolini Bussi M. G., & Erfjord I. (in preparation, 2018). Early years mathematics.
Matar, M., Sitabkhan, Y., & Brombacher, A. (2013). Early primary mathematics education in Arab 

countries of the Middle East and North Africa. Bonn and Eschborn: Deutsche Gesellschaft für 
Internationale Zusammenarbeit (GIZ) GmbH.

National Research Council. (2009). Mathematics learning in early childhood: Paths toward excel-
lence and equity. Washington, DC: National Academies Press.

Niss, M. (1993a). Investigations into assessment in mathematics education: an ICMI study (Vol. 
2). New York/Berlin: Springer.

Niss, M. (1993b). Cases of assessment in mathematics education: an ICMI study (Vol. 1). 
New York/Berlin: Springer.

Novotná, J. (2015). Presentation of the ICMI study 23. Retrieved February 10, 2016, from www.
semt.cz

Singer, F. M., Sheffield, L. J., Freiman, V., & Brandl, M. (2016). Research on and activities for 
mathematically gifted students authors. New York: Springer.

Stevenson, W., & Stigler, J. W. (1992). The learning gap: Why our schools are failing, and what we 
can learn from Japanese and Chinese education. New York: Summit Books.

1  Building a Strong Foundation Concerning Whole Number Arithmetic in Primary…

http://www.stemeducationjournal.com/content/1/1/5
http://eprints.soton.ac.uk/374809/1/ICMT-2014_proceedings150331.pdf
http://eprints.soton.ac.uk/374809/1/ICMT-2014_proceedings150331.pdf
http://www.semt.cz
http://www.semt.cz


18

Sun, X., Kaur, B., & Novotna, J. (2015). (eds.). Conference proceedings of the ICMI study 23: 
Primary mathematics study on whole numbers. Retrieved February 10, 2016, from www.umac.
mo/fed/ICMI23/doc/Proceedings_ICMI_STUDY_23_final.pdf

Suurtamm, C., Thompson, D. R., Kim, R. Y., Moreno, L. D., Sayac, N., Schukajlow, S., Silver, E., 
Ufer, S., & Vos, P. (2016). Assessment in mathematics education large-scale assessment and 
classroom assessment. Cham: Springer.

UNESCO. (2012). Challenges in basic mathematics education, by Michèle Artigue. Retrieved 
January 30, 2017, from http://unesdoc.unesco.org/images/0019/001917/191776e.pdf

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

M.G. Bartolini Bussi and X.H. Sun

http://www.umac.mo/fed/ICMI23/doc/Proceedings_ICMI_STUDY_23_final.pdf
http://www.umac.mo/fed/ICMI23/doc/Proceedings_ICMI_STUDY_23_final.pdf
http://unesdoc.unesco.org/images/0019/001917/191776e.pdf
http://creativecommons.org/licenses/by/4.0/


19© The Author(s) 2018 
M.G. Bartolini Bussi, X.H. Sun (eds.), Building the Foundation: Whole 
Numbers in the Primary Grades, New ICMI Study Series,  
https://doi.org/10.1007/978-3-319-63555-2_2

Chapter 2
Social and Cultural Contexts  
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2.1  �Introduction

At the first meeting of the ICME 23 IPC group, held in Berlin in January 2014, there 
was unanimous agreement on the relevance of cultural diversity in ICMI Studies. 
The Discussion Document for the study noted that:

It was decided that cultural diversity and how this diversity impinges on the early introduc-
tion of whole numbers would be one major focus. The Study will seek contributions from 
authors from as many countries as possible, especially those in which cultural characteris-
tics are less known and yet they influence what is taught and learned. In order to foster the 
understanding of the different contexts where authors have developed their studies, each 
applicant for the Conference will be required to prepare background information (on a 
specific form) about this context. (see this volume, Appendix 2, “Introduction and Rationale 
for ICMI Study 23”)

This statement was based, on the one hand, on the awareness of the increasing 
participation of scholars from developing countries in international conferences and 
of the number of submissions to international journals of manuscripts from all over 
the world and, on the other hand, on the ICMI aim to improve the quality of math-
ematics teaching and learning worldwide. Most IPC members, including the first 
author of this chapter, have experience in reviewing papers for international 
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conferences and journals: in many papers, there is an implicit belief that the reader-
ship knows enough about the context in which a study has been carried out (espe-
cially if it concerns European or North American countries) and that the transposition 
of findings from one country to another is possible and natural, if the theoretical 
framework and methodology are sound enough.

However, as early as the ICMI Study 8 (1992–1998) on Mathematics Education 
as a Research Domain: A Search for Identity (Sierpinska and Kilpatrick 1998), 
working group 4, led by Susan Pirie, Tommy Dreyfus and Jerry Becker, was raising 
questions about the issue of results and their validity. An interesting question was 
raised:

To what extent can research results from one environment or culture (e. g. Japan) be linked 
to those from another culture (e.g. the USA) and to what extent are results culture specific? 
(p. 27)

Although the issue was raised about 20 years ago, at the ICMI Study Conference 
in Washington, DC, in 1994, the acknowledgement of the issue of cultural context 
in major international journals and conferences remains uncommon (Bartolini Bussi 
and Martignone 2013). In support of this claim, it is enough to quote some excerpts 
from the information given to prospective authors of empirical studies by one of the 
major international journals, i.e. the Journal for Research in Mathematics Education 
(NCTM n.d.).

The Journal for Research in Mathematics Education seeks high quality manuscripts that 
contribute knowledge to the field of mathematics education. For an author’s work to be 
publishable, it needs to exhibit qualities that characterize well-conceived and well-reported 
research studies. The following information illustrates characteristics of strong manuscripts 
that have been submitted to JRME.

The following items are then elaborated:

appropriate purpose and rationale
clear research questions
an informative literature review
a coherent theoretical framework
clearly described research methods
sound research design and methods
claims about results and implications that are supported by data
contribution to the field of mathematics education
clearly explained and appropriately used terms
high quality writing
mathematical accuracy.

An abridged version of the same document appears in the PME 39 (2015) guide-
lines for research reports of empirical studies.

Observational, ethnographic, experimental, quasi-experimental, and case studies are all 
suitable.

Reports of empirical studies should contain, at minimum, the following:

–– a statement regarding the focus of the submitted paper;
–– the study’s theoretical framework;
–– references to the related literature;
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–– an indication of and justification for the study’s methodology; and
–– a sample of the data and the results (additional data can be presented at the confer-

ence but some data ought to accompany the proposal)

In both cases, no reference to the social and cultural context is explicitly men-
tioned. Hence, the limited space allowed either for manuscripts or (even more lim-
ited) for research reports is likely to inhibit the author’s intention of framing the 
empirical study within its context. Moreover, it implicitly conveys the idea that 
every relevant scientific communication must follow the above structure, where 
there is no reference to the social and cultural context. It seems a limiting rather than 
a proactive statement.

For example, open-class activities/lesson studies that view the classroom as an 
open or public space, which has been a major influence in the professional develop-
ment of teachers in China and Japan for many years, may be contrasted with the 
view of the private and autonomous classroom that has been described as common 
in the Western tradition (see, for instance, Sztein et al. 2010).

Instead, the evidence of some ongoing changes may be found in the guidelines 
for reviewers in two subsequent Conferences of the European Society for Research 
in Mathematics Education. The CERME 8 (2013) guidelines read:

Reports of Studies (Empirical or Developmental)
Surveys, observational, ethnographic, experimental or quasi-experimental studies, case 

studies are all suitable. Papers should contain at least the following:
a statement about the focus of the paper;
an indication of the theoretical framework of the study reported, including references to the 

related literature;
an indication of and justification for the methodology used (including problem, goals and/

or research questions; criteria for the selection of participants or sampling; data collec-
tion instruments and procedures);

results;
final remarks or conclusions

The CERME 9 (2015) guidelines added a new indicator:

an indication on the scientific and cultural context in which this study is embedded (explain-
ing crucial assumptions and the possible contingency of the relevance of the study for a 
specific cultural context)

What happened between the CERME 8 and CERME 9 guidelines? Both co-
chairs of this ICMI23 Study were present at CERME 8, and the first author of this 
chapter was invited by the organising committee to introduce a forum discussion 
about the neglected importance of the social and cultural context. The CERME 
board was favourably impressed and accepted the challenge to adapt the widespread 
tradition mentioned above. CERME 9’s scientific committee not only introduced a 
small change in the instruction (for authors and reviewers), but also decided to host 
a panel chaired by Barbara Jaworski on Cultural Contexts for European Research 
and Design Practices in Mathematics Education (Jaworski et al. 2015). The panel 
was held very successfully in Prague in February 2015. This panel represents a 
milestone in making explicit international awareness of the importance of the social 
and cultural context in the teaching and learning of mathematics.

2  Social and Cultural Contexts in the Teaching and Learning of Whole Number…



22

Another milestone is represented by the explicit request for contextual detail in 
the ICMI Study 23. The ICMI Study IPC unanimously agreed to highlight the role 
of the social and cultural context and to design a specific form (see below) for col-
lecting relevant information about this context, in order to leave the limited space of 
the paper (eight pages) for the scientific report according to the usual formats. The 
aim was twofold: not only to collect relevant information for understanding the dif-
ferent contexts (as explicitly written in the Discussion Document), but also to foster 
authors’ awareness about the relevance of their own cultural contexts.

2.2  �The Context Form: Design

The form designed by the IPC tried to address some very basic issues about the situ-
ation in the country where either the empirical research study or the theoretical 
reflections were carried out. The IPC was aware that a complete answer to all the 
questions would have been very demanding, and akin to a study itself, unless the 
authors knew some already existing documents at the national level (e.g. ICMI 
2011).

The form designed by the IPC follows (Table 2.1).
Some applicants expressed surprise at this unexpected additional task, asking the 

reasons for completing such a form with information that should already be known 
by all mathematics educators: this was further evidence, if any were needed, that the 
awareness of the relevance of the social and cultural context and the need to offer 
information about these are far from being shared in the field.

The following story of the Macao Conference, with the visit to Chinese schools 
and with the discovery of the differences between Western and Eastern mathemati-
cal traditions, provided further evidence that this awareness is really needed and 
useful in order to understand and to start a fruitful dialogue between different cul-
tural contexts. This aspect will be further elaborated in this chapter and in the whole 
volume.

2.3  �The Context Form: Data

Sixty-six context forms were collected, concerning 29 countries (counting sepa-
rately China and SARs Hong Kong and Macao). The distribution by country is 
detailed in Table 2.2.

Three submitted papers concerned cross-cultural studies (Cyprus – Netherlands, 
Germany – Australia, England – Sweden, where the context forms for both coun-
tries were filled (and, hence, were counted twice in the above table). In one case, the 
submitted paper concerned a cross-cultural study where all the Francophone coun-
tries were analysed for a study commissioned by the World Bank: a single context 
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Table 2.1  The context form

Please fill in as many of the following as completely as possible so that we understand the 
context of your paper

General (objective data) Give a rough idea of the numbers of:
 � Students up to the age of 11 years
 � Teachers for pre-primary and primary 

education
A short description of the National Education 
System (please match grades with pupils’ age)
If relevant, please explain whether the system is 
inherited from colonial period or is related to 
local traditions
Give information about what you consider an 
important feature in your country (e.g. the pillar 
of the network of monastic schools in Burma)

Inclusiveness Is the system totally inclusive?
Are there special schools/classrooms for
sensually impaired students (blind, deaf)?
Are there special schools for students with 
disabilities?

National language(s) List the national language(s) of the country
List the local languages (minorities)
Is pre-primary/primary school carried out in the 
local languages?

Migrant/refugee/marginalised students Is there a significant minority of migrating 
students (coming from other countries), of 
refugee students and of marginalised students?
Are there specific rules for schools which take 
care of these students? Is there some help from 
the national/local government?

Pre-primary general Is pre-primary education extended to the whole 
country?
Which percentage of students are expected to 
enrol in pre-primary education?

Pre-primary textbooks Do they exist?
In what language (in the case of more local 
languages)?
Is there only one national textbook? Or a limited 
number?
Is there only one teachers’ guide? Or a limited 
number?

Primary general Is primary education extended to the whole 
country?
Which percentage of students are expected to 
enrol in primary education?

(continued)
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form was filled for all the Francophone countries, with reference to the colonial 
influence of the French system.

The applicants were encouraged to fill the form as completely as possible, draw-
ing on their own knowledge. Hence, rather than on objective data, in most cases, the 
information drew on applicants’ knowledge and perceptions of their national con-
texts. Moreover, the sample was a convenience sample involving the selection of the 
most accessible subjects (Marshall 1996), limited to the applicants in the study, 

Table 2.1  (continued)

Please fill in as many of the following as completely as possible so that we understand the 
context of your paper

Primary textbooks Do they exist? In what language (in the case of 
more local languages)?
Is there only one national textbook? Or a limited 
number?
Is there only one teachers’ guide? Or a limited 
number?

Primary teachers’ qualification Generalists or specialists?
Assessment Is there a national system of assessment?

At what ages/grades are students assessed in 
mathematics (focus on both pre-school and 
primary school)?

Standards Is there a governmental/national document for 
standards?

Teacher education and development What are the national rules?
Is there some shared practice you consider 
relevant (e.g. Lesson Study in Japan, guānmó kè 
in China)?
Do you have forms of distance learning for 
teacher development?

Teacher education and development: 
pre-primary

How is organised pre-primary teacher education?
Please distinguish (if relevant) the governmental 
rules and what happens in practice?

Teacher 
education and development – primary

How is organised primary teacher education?
Please distinguish (if relevant) the governmental 
rules and what happens in practice?

Contents (limiting the focus to whole 
numbers)

Local languages
Place value: do you have tradition of system of 
representation in base not ten?
Problems: which kind of problems are typical of 
school practice? (e.g. China: problems with 
variation)
Problems: which kind of problem-solving 
strategies? (e.g. Singapore: model method)?

Any other information related to the context 
of your paper
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hence excluding or limiting the contribution of some major areas (e.g. India, Russia, 
Latin America, much of Africa, Southeast Asia).

In the following, we briefly outline the main outcomes of an early analysis of the 
collected data.

2.3.1  �The General Structure of Education Systems for Early 
Years Mathematics

The data reported by the applicants have been matched with Education Database 
(n.d.). Although in some countries (e.g. Australia, Brazil, Canada, Cyprus, Germany, 
Switzerland, USA) there are differences between the different states/provinces/
regions/territories, the models may be summarised as follows. While primary school 
or elementary school is the accepted wording, in some cases pre-primary school is 
named in different ways. Usually pre-primary is not mandatory but attended by 
many students (in some cases up to 95%) at least in the last year before entering 
primary school.

In some cases primary school is split into different steps including also what is 
elsewhere called middle school. Although our convenience sample is limited to 29 
countries, there is a large variety, concerning both the duration and the entry age. In 
Europe too different models exist. This institutional diversity has implications for 
this study: for instance, when the entry age is postponed, it is likely that WNA is 
approached at pre-school level, and when the duration is extended (up to sixth 
grade, as in many Eastern countries), it is likely that pre-algebraic thinking is fos-
tered before high school level. As these institutional differences cannot be cancelled, 

Table 2.2  The countries

Country Number of forms Country Number of forms

Algeria 1 Australia 5
Belgium 1 Brazil 1
Canada 4 China 5
China HK SAR 2 China Macao SAR 2
Cyprus 1 Czech Republic 1
Denmark 1 Dominican Rep. 1
England 1 France 4
Germany 4 Israel 3
Italy 4 Jordan 1
Netherlands 2 New Zealand 2
Serbia 1 Singapore 1
South Africa 3 Sweden 2
Switzerland 1 Taiwan 4
Thailand 1 USA 5
Vietnam 1 All Francophone countries 1
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in this study we chose to focus on the contents rather than on the grades or the stu-
dents’ age (Table 2.3).

The influence of colonial heritage is reported in some countries: Algeria, 
Australia, China HK, China Macao, New Zealand, Taiwan (from Japan and China). 
This influence in some cases emerges also in the choice of school language different 
from family language. This issue was reported and discussed also in the Conference 
(this volume, Chap. 3).

2.3.2  �Inclusiveness in Education

The focus on inclusive education has a long story in UNESCO’s documents (e.g. 
UNESCO 2009a; see the historical summary on p. 9) and dates back to the Universal 
Declaration of Human Rights (1948), but it is still actual (see, for instance, the ple-
nary speech by Bill Barton in ICME 131). Inclusive education was taken into account 
in the Millennium Developmental Goals criteria (UNESCO 2010), where Universal 
Primary Education (UPE) is mentioned (Millennium Developmental Goal 2). It is 
considered also in the most recent document (UNESCO 2017) on Education for 
Sustainable Development Goals, where it is included in the learning objective 4: 
‘Quality Education | Ensure inclusive and equitable quality education and promote 
lifelong learning opportunities for all’ (UNESCO 2017, p. 18 ff.).

UNESCO (2009a) states that inclusion addresses not only students with special 
needs2 (e.g. disable students), but also those from diverse backgrounds (cognitive, 
ethnic and socio-economic). Hence, this issue is related to some other questions 
posed in the context form (i.e. national languages and school languages, provisions 
for migrant, refugee and marginalised students).

This broad approach was assumed by the IPC of the study which included in the 
context form three different items (see above) concerning students with special 
needs, students with school language different from family language and students 
with diverse background.

The presence of different national languages has been reported by applicants, 
mentioning also local languages. There are countries where home languages are 
different from national language (or languages), for instance, in Algeria, Arabic and 
Berber–Tamazight; in Australia, Australian English and aboriginal languages; in 
Belgium, Dutch, French and German; in Canada, English and French; in the Chinese 

1 https://lecture2go.uni-hamburg.de/l2go/-/get/v/19757)
2 We are aware that there is a growing trend towards abandoning the wording ‘special needs’ and 
using ‘special rights’ or ‘educational rights’. For instance, Runswick-Cole and Hodge (2009) have 
argued for abandoning the language of ‘special education needs’ in the UK, based on the claim that 
it has led to exclusionary practices, mentioning an Italian rights-based approach developed in 
Reggio Emilia that refers to ‘children with special rights’ drawing on the United Nations 
Convention of the rights of the child (UNICEF 1989). Yet we decided to maintain the most com-
mon wording ‘special needs’ as it is shared in literature and better known by mathematics 
educators.
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area, Mandarin, Cantonese and minorities languages; in Cyprus, Greek and Turkish; 
in Israel, Hebrew and Arabic; in New Zealand, English, Te Reo Maori and New 
Zealand Sign Language; in Serbia, Serbian, Hungarian and Romanian; in Singapore, 
English, Malay, Tamil and Mandarin; in South Africa, Afrikaans, English, Zulu, 
Xhosa, Swati, Tswana, Southern Sotho, Northern Sotho, Tsonga, Venda and 
Ndebele; in Sweden, Swedish, Finnish, Meankeli, Samic, and so on; in Switzerland, 
French, German, Italian and Romansh; in Thailand, Thai and Esann; and in the 
USA, English and Spanish. In most cases, the language of teaching (or school lan-
guage) is different from home languages with the well-known critical consequences 
(Barwell et al. 2016). There are countries with acknowledged minorities (e.g. Czech 
Republic, France, Italy, New Zealand) where teaching in the minority language is 
encouraged with special funds and programmes. For instance, in New Zealand, 
Maori schools are very well developed and address about 15–20% students.3

The issue of migrant, marginalised and refugee students is mentioned by some 
applicants, although only in a few countries (e.g. Australia, Belgium, Cyprus, 
Germany, Jordan, Netherlands, New Zealand) official governmental support is men-
tioned. In other cases (e.g. France, Italy, UK), municipal support is mentioned 
together with the involvement of volunteers and charities.

According to the data reported in UNESCO (2017) and confirmed by some par-
ticipants, there has been significant progress towards ensuring UPE in terms of 
access, and the conversation has now shifted from aiming for access to goals for 
quality UPE.

The question of students with disabilities or special needs seems to be ill-posed 
or, maybe, ill-interpreted by the applicants to the Conference. In many cases, appli-
cants answered YES (i.e. the system is inclusive) probably meaning that all the 
students are allowed to go to primary school, but in many cases (at least 12 out of 
29), special schools for disabled students were mentioned as the only provision.

According to UNESCO (2009a):

In most countries, both developed and developing, the steps towards achieving the right to 
education for students with disabilities have followed a common pattern, with some local 
variations. Progress has tended to follow the pattern of steps outlined below:

Exclusion from school, based on negative attitudes and a denial of rights, justified by 
the belief that students with disabilities cannot learn or benefit from education

Segregation, reflecting the emphasis on ‘difference’, combined with a charity-based 
approach, where separate education centres and schools were and are still provided by 
local, regional and international charitable NGOs and, more recently, by development-
focused NGOs

Integration, reflecting some degree of acceptance for some disabled students, depend-
ing on their degree of disability, allowing them to attend local regular national schools, as 
long as they can fit in to the school and the school does not have to make significant adjust-
ments for them

Inclusion in education, acknowledging the fact that all students, including those with 
disabilities, have the right to education, that all schools have the responsibility to teach 
every child and that it is the responsibility of the school to make the adjustments that may 
be necessary to make sure that all students can learn (p. 51)

3 www.education.govt.nz/ministry-of-education/our-role-and-our-people/education-in-nz/
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Following this definition, if the system of special schools is widespread in a 
country, it is a segregation model and not an inclusive model.

To sum up the data, most countries are reported to have special schools only; 
some countries (e.g. Australia, Brazil, Canada, Czech Republic, Denmark, France, 
Germany, Israel, Netherlands, New Zealand) have started a process of integration, 
and some countries have stated by law complete inclusion in mainstream classes 
with support teachers. A relevant case, worthwhile to be mentioned, is Italy. 
D’Alessio (2011) reconstructs the historical and legislative backgrounds of the inte-
gration policy in Italy, mentioning the promulgation of the Italian Constitution 
(Senato della Repubblica 1947), where the spirit and ethos for integration were 
already encapsulated.

Since the Fascist dictatorship had denied individual freedom, one of the first targets of the 
democratic Constitution was to put the dignity of the person and the rights of minorities at 
the centre of the constitutional charter. (D’Alessio 2011, p. 6)

In the following years, legislation went in this direction. According to Ferri 
(2008), for Italian teachers, inclusion was considered ‘a moral issue which is more 
important than a legal mandate’ (p. 47). A discussion about the possible distance 
between laws and implementation is made by Booth and Ainscow (2011) which 
have designed a tool to support and assist with the process of developing inclusive 
education.

At the international level, inclusive education is considered to be:

a key vehicle through which the right to an equal education opportunity for all can be 
ensured. For this to become a reality it is necessary to provide a system in which all persons, 
including persons with disabilities, can access education at all levels on an equal basis with 
others in the communities in which they live. They should not be excluded on the basis of 
any disability and should get the support they require. (EASPD 2012, p. 6)

It must be said, however, that the issue of exclusion-segregation-integration-
inclusion is far from being agreed upon at the international level. It is not only a 
matter of clear definitions; it is rather a matter of ethical consensus. A recent paper 
by Reindal (2016) summarises different positions, reconstructing the history of the 
inclusion debate from the ‘World Conference on Special Needs Education’ in 
Salamanca in 1994. Reindal claims:

Inclusive education as presented in documents from UNESCO was indefinite from the start 
in relation to both the target group and those whose responsibility was to implement inclu-
sive education for that group. Reviews of the research also support several interpretations 
of responsibility and elucidations of inclusive education. In a recent study based on prior 
reviews and a recent search of databases covering the period 2004–2012, Goransson and 
Nilholm (2014a) found four different interpretations of inclusion which gave rise to four 
qualitatively different categories of definitions. These definitions were related hierarchi-
cally to each other employing stricter criteria concerning what counts as inclusive education 
as one goes from A to D:

	(A)	 Placement definition – inclusion as the placement of pupils with disabilities in mainstream 
classrooms.

	(B)	 Specified individualised definition – inclusion as meeting the social/academic needs of pupils 
with disabilities.

2  Social and Cultural Contexts in the Teaching and Learning of Whole Number…
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	(C)	 General individualised definition  – inclusion as meeting the social/academic needs of all 
pupils

	(D)	 Community definition – inclusion as creation of communities with specific characteristics.

Reindal (2016) suggests to tackle this issue from the perspective of a capability 
approach (Walker and Unterhalter 2007), as that:

has the potential to emphasise the ethical aspects of inclusion because it builds on an under-
standing of difference as a specific variable of human diversity, and because it understands 
human dignity as the development of capabilities. The capability approach defends an 
understanding of difference as a specific variable of human diversity with an objective real-
ity. […] If the central purpose of special education and inclusion is to treat all students as 
the same while at the same time aiming to treat them differently then one must deal with the 
problem of difference in a way that comes to grips with the attendant challenges – as well 
as those faced particularly by developing countries. (Reindal 2016, p. 6)

The issue of the diversity of school language and family language was discussed 
during the Conference and finds place in this Volume (e.g. Chap. 3, 4 and 9). The 
issue of students with special needs was discussed during the Conference and 
reported in some chapters (e.g. Chaps. 7, 8, 9, 16 and 20).

The capability approach, one that is very interesting, was not picked up in the 
Study and may suggest future developments in mathematics education.

2.3.3  �Textbooks

Most applicants reported that no textbook for pre-primary exists: rather, some avail-
able collections of learning resources, working sheets and teachers’ guides are 
mentioned.

As far as primary school is concerned, textbooks exist everywhere, although in 
some cases (e.g. Australia) the adoption of a textbook is not mandatory. In most 
countries there is a free-market system with no official overlooking agency. In some 
countries only one or a limited number of approved textbooks is available (e.g. 
Chinese area, Algeria, Germany, Singapore and Thailand). In Vietnam, textbooks 
are written by specialists of the Ministry of Education. In South Africa, there are 
textbooks in all the national languages, though harder to access in the smaller lan-
guage groups. In China too, there are textbooks in all the minority languages.

In this Study, the issue of textbooks was just skimmed in the Chaps. 9 and 11 but 
would deserve a study in its own.

2.3.4  �National Curriculum Standards and Assessment

In nearly all the countries of this convenience sample, there are national standards. 
They do not exist in Algeria and are identified with the sole national textbook in 
Jordan. An interesting case is represented by the USA.  There is no national 
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curriculum in the USA, but National Council of Teachers of Mathematics (NCTM) 
Standards are widespread. Yet, locally, states, school districts and national associa-
tions recommend some curriculum standards be used to guide school instruction. 
The Common Core Standard initiative4 is in progress. In nearly all the countries, 
there is a national system of assessment (in progress in New Zealand) consistent 
with curriculum standards. However, the grades in which assessment takes place are 
not the same. Usually they are every second or third year and depend also on the 
structure of the education system (see Sect. 2.3.1).

2.3.5  �Teachers’ Qualification and Teacher Education 
and Development

All the applicants reported a generalist trend for primary teacher education in their 
countries, with some limited exceptions: Germany, with the encouragement to get 
further qualification in German or Mathematics, and Italy, with testing of specialist 
mathematics teachers in some schools, according to autonomous choices of the 
school council. Only in Denmark and in the Chinese area a trend towards specialist 
mathematics teachers is reported. In China, this choice is common in big cities but 
not in rural areas. Where there are specialist mathematics teachers, it is common 
to form a Mathematics Teaching Research Group in the school, for in-service 
development according to the model of ‘open classes’, called in Chinese guānmó kè 
(观摩课), which means ‘to observe for imitating a lesson’ and has some similarities 
to the Japanese lesson study (Sun et al. 2015).

In our convenience sample, pre-service teacher education at universities (or, in 
some cases, teachers’ colleges) seems well established. In most cases for pre-
primary and primary school, the length of the programme (bachelor) is the same:

3-year bachelor in Belgium and New Zealand
4-year bachelor in Australia, Canada, Chinese area, South Africa, Switzerland
5-year master in Italy
6-year master in Thailand
In other countries, the length is different for pre-primary and primary school 

teachers:
2–3 years in Singapore (at the National Institute of Education)
3–4 years in Denmark, Serbia
3 1/2–4 years in Sweden
In some cases the length of the bachelor degree is not reported.
In Germany no university programme for pre-primary teachers is reported, while 

the programme for primary teachers is at masters level (5 years).
In France there is no information provided for pre-primary, while the programme 

for primary teachers is at masters level (5 years).

4 www.corestandards.org
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In the USA the rules are different in different states. For primary teachers, bachelor 
degrees are mentioned.

In the UK, different agencies are involved with programmes of different lengths 
(e.g. school-led teacher training, university programmes).

Practicum (internship) is mentioned with very different organisations and durations, 
for instance, a 600 hours practicum is required in Italy alongside the 5-year master 
programme, while in Israel, the practicum is at the end of the university programme. A 
year of practicum is required in Macao alongside the 4-year bachelor degree. In 
Australia 80 hours of mandatory practicum is prescribed for bachelor programmes.

Distance learning is mentioned especially for in-service teacher development. 
However, for in-service development, different models are described from inspector-
led programmes, to mandatory programmes (60 hours per year in Israel, 5 days per 
year in Switzerland). In Australia, there is a programme for accreditation according 
to well-described professional standards. In some cases in-service development is 
appointed to municipalities (Sweden). In many cases in-service development is 
reported as not effective. It seems that, in general, there are not well-organised mod-
els. A relevant exception is the model of ‘open classes’ in China (see Sect. 2.3.3).

For teacher education and development, besides the panel on teacher education 
(this volume, Chap. 17), it is worthwhile to mention the ICMI Study 15 (Even and 
Ball 2009).

2.4  �Conclusion

In this chapter we have briefly explored mainly structural features of the instruction 
systems including inclusiveness, curricula, standards and assessment and teacher 
education and development. We had just a glance to the many different choices 
existing in the countries of our convenience sample.

Our limited analysis shows that even in Europe, a small continent, many different 
organisations of the education systems exist. Education systems are cultural arte-
facts that could be studied, on the one hand, as products of socio-cultural contexts 
and, on the other hand, as sources of information about the society that constructed 
or adopted them. We do hope that, in the future, a sensitive attitude for cultural con-
texts will become more and more shared, in international journals and conferences. 
As stated by Bartolini Bussi and Martignone (2013):

The question of cultural background applies to every study in mathematics education […] 
It is necessary to explain in more depth how the research design and implementation is 
related to the cultural background: the results and success (if any) of the project may depend 
on implicit values which are not likely to be found in other contexts. (p. 2)

In this spirit, the investigation of the different social and cultural contexts contin-
ued throughout the whole study and is mirrored in the Study Volume.

M.G. Bartolini Bussi and X.H. Sun
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Chapter 3
Language and Cultural Issues  
in the Teaching and Learning of WNA

Xu Hua Sun  and Maria G. Bartolini Bussi 

3.1  �Introduction

3.1.1  �Reflections on Language and Culture Before, 
During and After the Macao Conference

Language is an artefact used to communicate and think (see Chap. 9). Languages 
differ not only in pronunciation, vocabulary and grammar, but also the different 
‘cultures of speaking’. Language plays a common, key role in conveying mathemat-
ics concepts for learning and teaching and the development of mathematical think-
ing. The features of language can help to make numerical concepts transparent and 
support the understanding that occurs in learning discourse. A cross-cultural exami-
nation of languages should thus allow us to understand the linguistic support and 
limitations that may foster/hinder students’ learning and teachers’ teaching of math-
ematics. This study examines number naming and structure across languages and 
language issues related to whole number structure, arithmetic operations and key 
concepts, and thus has important educational implications for whole number 
arithmetic.
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As reported in Chap. 2, this study aims to foster awareness of the relevance of 
cultural diversity in the teaching and learning of whole number arithmetic and in 
related studies. As stated in ICMI Study 21 (Barwell et al. 2016, p. 17), ‘language 
and culture are closely and intimately related and cannot be separated’. Language 
and culture influence each other. Language is part of culture and plays an important 
role in it. A language not only contains a nation’s cultural background, but also 
reflects a national view of life and way of thinking. Hence, no discussion of lan-
guage issues in whole number arithmetic can be separated from cultural 
background.

In this chapter, we address language and cultural issues based on different exam-
ples reported by the conference participants, which can be roughly divided as 
follows:

–– The language of whole number arithmetic in Indo-European languages
–– The colonial case in Africa
–– The Chinese case

We also consider some of the educational implications.
A short outline of Chinese grammar for numbers is collected for the interested 

reader, who may in this way become acquainted with some background of the 
Chinese mathematics education. This special focus on the Chinese language and 
culture depends on:

–– The ‘perfect’ match between everyday Chinese arithmetic and the mathemati-
cian’s arithmetic (Sun 2015).

–– The very interesting organisation of Chinese curricula that has seemingly pro-
ceeded uninterrupted since classic times (see Chap. 5).

–– The presence of some original strategies (e.g. variation problems) (Sun 2011, 
2016).

–– The performance of Chinese students and teachers (e.g. Geary et al. 1993; Ma 
1999).

–– The circumstance of us meeting together in China and seeing a Chinese first-
grade lesson in person (see Chap. 11).

The presence of different cultural and linguistic traditions makes participants and 
readers aware of the choices that have been made throughout history regarding the 
teaching and learning of whole number arithmetic, creating an improved awareness 
of cultural diversity in mathematics. This diversity does not allow for the simple 
adoption of curricula developed by others, unless a careful process of cultural trans-
position (see Chap. 13) is started. An example at the end of the chapter (Sect. 
3.4.5.2) illustrates this point.

X.H. Sun and M.G. Bartolini Bussi
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3.1.2  �Some Everyday Language Issues in Number 
Understanding

An assumption of the universality of whole number arithmetic has been predomi-
nant for both curriculum reformers and international evaluators. The so-called 
Hindu-Arabic system of numerals as number signs is considered the most effective 
computation tool and has consequently been adopted by countries around the world 
during the last century. However, in this chapter, we discuss how whole number 
arithmetic is not culture-free, but rather deeply rooted in local languages and cul-
tures, and present the inherent difficulty of transposition from language and culture 
perspectives.

Information about how words are connected with whole number arithmetic may 
be found in many books (e.g. Menninger 1969; Zaslavsky 1973; Ifrah 1981; Lam 
and Ang 2004). We do not aim to summarise what can easily be found elsewhere. 
Our intention is to systematically collect some of the information and reflections 
shared between the conference participants who represented many cultural contexts 
and report on some of the features of their languages/cultures that have important 
educational implications.

Before approaching the topic of whole number arithmetic, we examine some of 
the studies conducted in the linguistic field, particularly in the field of pragmatics, 
where the contrast within the same culture between figurative meaning in everyday 
language and literal meaning in school arithmetic language is investigated. As the 
examples (Bazzanella, personal communication) come from very different lan-
guages and cultures, this phenomenon seems universal despite having different 
features.

The roots of this phenomenon may be found in ancient ages. In Poetics, Aristotle 
himself introduces the idea of the metaphor, which consists of giving a thing a name 
that belongs to something else. Among the different examples, one concerns num-
bers: “‘Indeed ten thousands noble things Odysseus did,’ for ten thousand, which is 
a species of many, is here used instead of the word ‘many’” (Levin 1982, p. 24).

In ancient China, ‘ten thousand’ (wàn, 万) was used in a figurative way, as in the 
proper name for ‘the Great Wall’ (万里长城, wàn lĭ chángchéng). This name liter-
ally means ‘ten thousand lĭ long wall’, where lĭ is an ancient unit of length used to 
highlight the immense length of the wall.1

In the last decades, linguistic scholars have started to investigate the use of num-
bers (whole numbers) in everyday language. There are several issues involved in 
this usage, such as indeterminacy and approximation. Indeterminacy in language is 
commonly resorted to for a variety of reasons and takes several different forms 
(Krifka 2007; Bazzanella 2011). In some applications of numerals, exact numbers 
are used systematically to denote indefinite quantities. Such uses are linked to cer-
tain very specific numerals, either rather low ones (2, 3, 4, 5) or high but ‘round’ 
ones (100, 1000). They are hyperbolic in the sense that the number indicated cannot 

1 https://en.wikipedia.org/wiki/Great_Wall_of_China
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be true; moreover, several variants of one expression (100, 1000, 10,000, etc.) often 
coexist (Lavric 2010). Lavric (2010) collects several examples from European lan-
guages (English, French, German, Italian and Spanish) where the meaning of whole 
numbers is not the same as the numerals learnt in counting. Some expressions in 
some languages must be interpreted in an approximate way. For instance, the sen-
tence ‘vuoi due spaghetti?’ (do you wish to have two spaghettis?) among Italian 
speakers means ‘do you wish to have some spaghetti?’ Hence, ‘two’ is not used in 
its cardinal meaning but means a general number of things. Round numbers (i.e. 
powers of ten, such as ten, a hundred, a thousand, ten thousand, a hundred thousand, 
a million) are also used in hyperbolic meaning: ‘I have told you a thousand times 
that you have to be prudent’. Fractions may be used to mean a very small number 
(‘half’ also sometimes means a part when the original is divided into two parts that 
may not be equal), with the numerator ‘one’, and a high and round numerator (e.g. 
‘even a millionth of a second’) is used to minimise or a very close numerator and 
denominator used to maximise (e.g. ‘it is ninety-nine point nine percent certain’). 
Apart from European languages, in Mandarin Chinese, approximate numerical 
expressions are classified into two main types with different meanings: one with the 
discourse marker bā (吧) denoting the approximate quantity and the other without 
an explicit marker denoting the exact quantity (Ran 2010). These aspects are studied 
in linguistics for their effects on translations from one language to another, when 
literal translation is impossible. They are not usually considered in the literature on 
mathematics education, although they are important to the connection (continuity 
vs discontinuity) between everyday language and school language.

3.2  �Place Value in Different School Languages and Cultures

3.2.1  �Some Reported Difficulties in Understanding Place Value

How is number naming in daily language related to the structure of numbers in 
school mathematics? How do listeners in the mathematics classroom recognise 
numerical concepts? What are the cognitive bases of approximate uses? What are 
their effects on cognitive processes? We discuss these language issues related to the 
comprehension of place value in the following.

Place value is the most important concept in the so-called Hindu-Arabic system, 
as it has a long-term effect on the comprehension of number structure and calcula-
tions. It denotes the value of a digit depending on its place or position in the number. 
Each place has a value of ten times the place to its right. In Chinese literature, place 
value is emphasised as an understanding of numeration with different units (計數单
位). Recording magnitude with different units in counting is called place value in 
English-speaking communities or positional notation in French-speaking commu-
nities. In place value, there are two inseparable principles (Houdement and Tempier 
2015):

X.H. Sun and M.G. Bartolini Bussi
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–– The positional principle, where the position of each digit in a written number 
corresponds to a unit (e.g. hundreds stand in the third place)

–– The decimal principle, where each unit is equal to ten units of the immediately 
lower order (e.g. one hundred = ten tens)

However, a range of studies shows that the teaching and learning of place value/
numeration units is difficult. For example, Tempier (2013) finds low percentages of 
success of 104 French third graders (8- to 9-year-olds) in tasks involving relations 
between units: ‘1 hundred = … tens’ (48% success), ‘60 tens = … hundreds’ (31% 
success) and ‘in 764 ones there are …tens’ (39% success). Even in the fourth and 
fifth grades, no more than half of the students demonstrate an understanding that the 
‘5’ in ‘25’ represents five of the objects and the ‘2’ the remaining 20 objects (Kamii 
1986; Ross 1989).

Bartolini Bussi (2011) mentions a similar difficulty (see Sect. 9.3.2):

When 7-year-old students are asked to write numbers, a common mistake in transcoding 
from number words to Hindu-Arabic numerals shows up: some students write ‘10,013’ 
instead of ‘113’ as the zeroes on the right (100) are not overwritten by tens and units. (p. 94)

It should not be surprising that these students cannot grasp multi-digit addition 
and subtraction. Many curricula in the West list place value as positional knowledge 
only. For instance, Howe (2010) offers a critique of elementary curricula in the 
USA:

Place value…is treated as a vocabulary issue: ones place, tens place, hundreds place. It is 
described procedurally rather than conceptually.

Bass (see Chap. 19) uses the problem of counting a large collection to stimulate 
the development of grouping with multiple units, according to the concept of place 
value. Young-Loveridge and Bicknell (2015) advise supporting the comprehension 
of place value by providing meaningful multiplication and division at the same 
time. Place value is inherently multiplicative (Askew 2013; Bakker et al. 2014) and 
usually introduced as part of the addition and subtraction of multi-digit numbers 
before children have experienced meaningful multiplication and division. In 
Chap. 9, we report on artefacts designed and used to overcome some difficulties in 
the introduction of place value. Based on the studies that have been conducted, a 
language perspective on place value is rare in the mathematics education field. In 
this chapter, we wish to reconstruct some part of the history of place value while 
looking at it from the language perspective.

3.2.2  �Transparency and Regularity of Number Languages: 
Some European Cases

In Europe, place value was introduced in the thirteenth century through the Arabic 
tradition and came into conflict with previous traditions (Menninger 1969; Lam and 
Ang 2004). This explains why the principle of place value continues to be a specific 
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part of school curricula (Fuson and Briars 1990). Units of hundreds and thousands 
are always explicit, but units of ones and tens are always implicit and often missing 
in spoken languages. For example, units of ones and tens are not visible in 
‘thirty-one’.

Examples in European languages show that many irregularities appear in their 
languages; they depend on the existence of more ancient representation (with non-
ten bases) or on other linguistic properties where the combination of two words 
forces an abbreviation. Furthermore, the order of units may be different.2

In English, French and German, numbers have independent names up to 12, 
while in Italian the suffix dici appears with 11 and becomes a prefix with 17 (as in 
French). English and German are similar from 13 to 20 (with the suffix teen or zehn, 
meaning 10). But from 21 the order of reading units and tens in German is opposite 
to that in English until 99. In French there is the memory of base 20, e.g. 70 is 
soixante-dix; 80 is quatre-vingts. A similar yet more complex irregularity is present 
in Danish: the irregularity involves the number names between 10 and 20, the inver-
sion of units and tens (as in German) and a memory of a base 20 system (see Chap. 
5 and Ejersbo and Misfeltd 2015).

When expressing 76  +  83, for example, different languages hint at different 
words that make the column calculation more or less difficult.

English: seventy-six plus eighty-three
French: sixty-sixteen plus four-twentys-three
Italian: seventy-six plus eighty-three
Danish: three-and-a-half-twenty-six plus four-twenty-three
Chinese: seven tens six plus eight tens three.

The transparency of the Chinese names is likely to foster students’ understanding 
of place value.

3.2.3  �Post-colonial Cases: Africa and Latin America

Zaslavsky (1973) wrote her fundamental books on African mathematical tradition 
to contrast the scarce (if any) references to Africa in Menninger (1969). In a later 
study, Verran (2001) reports on the Yoruba approach to whole number arithmetic. At 
the Macao Conference, there were two scholars from Northern Francophone (Nadia 
Azrou) and South-Eastern Anglophone Africa (Veronica Sarungi) who reported on 
the story of whole number arithmetic in the schools in their postcolonial regions.

2 Funghi (2016) prepared a review of many different languages.
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3.2.3.1  �Algeria

Azrou (2015) reports the language situation in Algeria, where many different lan-
guages are spoken with different status: classical Arabic, Berber and French together 
with many different local dialects (see Chaps. 5 and 15). Besides the different num-
ber words, Azrou reports the different meanings of ‘digit’ vs ‘number’. Consider the 
following examples:

A- 1,2,3,…,9
B- 2781
C- a series of digits to design a phone number, a car number and an address, e.g. the 

contact number for ICMI-49 30 20 37 24 30...
In English, A are called digits, B numbers and C numbers.
In Arabic, A are called مقر raqm (digit) or ماقرأ arqam (digits, the plural).
In French, A are called chiffres, B nombres and C numéro.
In Berber (Tamazight is one of the oldest languages of humanity), only one word 

(numro) is used for everything.

The relationship between the French dialect and Berber language (languages 
used in everyday life) presents a problem. The dialect and Berber language have 
kept one word (numro) to express everything. This is a problem for students, who 
confuse the mathematical concepts they learn at school (for both Arabic and French) 
with the street mathematics used in Berber in everyday life.

3.2.3.2  �The Guatemalan Case

In Guatemala, the official language is Spanish, and the indigenous population com-
prises 41% of the total population. There are 25 linguistic communities grouped in 
4 ‘pueblos’ (different groups of people), i.e. Ladino, Maya, Grifúna and Xinka, each 
with a unique identity, culture and language. Mayans comprise 81% of the indige-
nous population and have four linguistic communities. The formal recognition of 
the complex ethnic composition of this country was made in 1996 through the 
‘Agreement of Peace’, which recognised people’s right to their cultural identities. 
As a consequence, the Ministry of Education set up a bilingual programme in which 
the teaching must be done bilingually, respecting the culture and values of the indig-
enous people. In 2005, there were 3800 bilingual schools, and many of their teach-
ers could speak the indigenous language but could not write or read it. Because of 
the characteristics of this country, primary schools work with two number systems: 
vigesimal (base 20) for Mayan mathematics and decimal. Numbers are read and 
written according to the two systems and various languages. The Mayan numeration 
system uses three symbols: the dot to represent a unit (●), the bar to represent five 
units ( ) and a third symbol to represent the zero, also called a shell or cocoa 
bean ( ). With the combination of these three symbols, the first 19 numbers are 
written using three rules. First, from one to four, points are combined. Second, five 
points form a bar. Third, bars are combined up to three.

3  Language and Cultural Issues in the Teaching and Learning of WNA
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3.2.3.3  �Tanzania and Other East African Countries

Sarungi (personal communication) reports on the complex situation in the part of 
Africa colonised by the British Empire (East African countries). The diversity in 
learners’ first languages makes teaching mathematics in those languages difficult. 
For example, Tanzania has over 120 ethnic tribes with their own languages, although 
these belong to major language groups such as Bantu, Nilotic and Cushitic. At the 
same time, Kiswahili, which is a mixture of Bantu, Arabic and other languages such 
as Portuguese and English, has become the first language of tribes along the coast 
and islands of Zanzibar. In fact, Kiswahili is the national language of Tanzania and 
Kenya and is widely spoken in other East and Central African countries such as 
Burundi, Rwanda, Uganda and Democratic Republic of Congo.

In Tanzania, the language policy is to use Kiswahili as the medium of instruction 
in pre-primary and primary education (MOEVT 2014), even though Kiswahili is 
not the first language of many children, especially those in rural areas (Halai and 
Karuka 2013) and is learnt formally when entering school. In Uganda, the policy is 
to use ethnic or local languages in the first 3  years of primary school, although 
English is used in settings in which learners have diverse local languages (National 
Curriculum Development Centre n.d.). Research conducted in African contexts has 
pointed to the challenges of using a language that is not easily accessible to learners 
and even teachers in some cases, while the use of first languages in mathematics 
classrooms has been shown to foster more interactions between learners and teach-
ers (Sepeng 2014).

Apart from the benefits of increased participation, the names of numbers in eth-
nic languages usually point to a base 10 structure (see Funghi 2016). Most African 
languages have a similar structure for numbers between 10 and 20, namely, ‘ten’ 
and ‘digit’, where digit stands for a number from one to nine inclusive. Moreover, 
the decades from 20 to 90 have a logical structure. The wording constitutes either 
‘tens digit’ to signify how many tens are taken or ‘decade digit’, such as in Simbiti. 
Thus, a number like 34 in African ethnic language is literally formed as ‘tens three 
and four’ or mathematically ‘three tens and four’. Many children encounter the 
names of numbers to around 30 in a non-formal way by the time they start attending 
school. Thus, learning whole numbers in such ethnic languages could help learners 
to make sense of the structure of the numbers. However, there are challenges in tak-
ing advantage of these affordances. First, teachers may not be equipped to assist 
learners, due to unfamiliarity with the local language and its mathematical register 
(Chauma 2012). Moreover, the language policy may not be favourable to promoting 
the use of ethnic languages, as is the case for Tanzania, where Kiswahili is encour-
aged for purposes of national unity.

When widely spoken in a community, Kiswahili can bridge the gap between the 
multiplicities of languages, although its use for learning whole numbers can be a 
potential source of confusion for children, even if it is their first language. This is 
due to the origins of number names from Arabic and Bantu words, which results in 
an inconsistency in the naming of decades (for a comparison between Awahili and 
Arabic, see Funghi 2016).
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For Bantu speakers, numbers from 1 to 20 present little problem, except for the 
names of 6, 7 and 9. However, non-Bantu speakers have to learn most of the names, 
although the structure from 11 to 20 is familiar. For most learners, there is an addi-
tional cognitive demand in learning the names of decades, which no longer adhere 
to the structure of Bantu or other ethnic languages but instead borrow words from 
Arabic. For example, there is very little link between the names for 30 and 3. In 
effect, children are required to learn new names for 20, 30, 40 and 50 in Kiswahili. 
It is only 60, 70 and 90 that have some link to 6, 7 and 9, respectively. Thus, asking 
children to write down a given two-digit number in words can result in confusion if, 
for instance, the child needs to remember the name for 30 (thelathini) and cannot 
infer it from its name, which is linked to its value (three tens). On a related point, 
the use of English in private pre-primary schools in Tanzania further complicates 
the matter, as the structure of numbers from 11 to 19 does not follow the known 
structure of Bantu and Kiswahili. Ultimately, even in contexts in which both learn-
ers and teachers speak the same language as the language of instruction, it is impor-
tant to take into account the features of the common language that hinder or promote 
the learning of whole numbers in early years of schooling.

3.2.4  �Towards Transparency: The Chinese Approach

Chinese young children perform better at facets of basic arithmetic, such as generat-
ing cardinal and ordinal number names (Miller et al. 2000), understanding the base 
10 system and the concept of place value (Fuson and Kwon 1992), using decompo-
sitions as their primary backup strategy to solve simple addition problems (Geary 
et al. 1993) and calculation (Cai 1998). A comparative study (Geary et al. 1992) 
indicates that the addition calculating scores of Chinese students is three times that 
of American students. Specifically, Chinese students use more advanced strategies 
and exhibit faster retrieval speeds. American students use counting strategies (e.g. 
counting fingers or verbal counting) more frequently than their Chinese counter-
parts. Chinese students use retrieval strategies more frequently than their American 
counterparts (He 2015). However, most studies have provided various explanations 
for these findings, such as parents’ high expectations for education, the diligence of 
the students and the effectiveness of the teachers. Ni (2015) argues that elementary 
school curricula, textbooks, classroom instruction and the cultural values related to 
learning mathematics have contributed to the arithmetic proficiency of Chinese chil-
dren and the establishment of arithmetic as a social-cultural system.

The 2013 PISA results in mathematics (from the test taken in 2012) showed that 
the highest performers were located in Asian countries, placing in the following 
order: (1) Shanghai (China), (2) Singapore, (3) Hong Kong (China), (4) Taiwan, (5) 
South Korea, (6) Macao (China) and (7) Japan. All of these countries have used 
languages that share the same ancient Chinese number tradition.

Some authors have studied the Chinese language and culture in mathematics 
education in the last few decades. For instance, ICMI Study 13 (Leung, Graf and 
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Lopez-Real 2006) first focused on a comparison of East Asia and the West. It was 
followed by a trend of studies and volumes about Chinese tradition in mathematics 
education (Fan et al. 2004, 2015; Li and Huang 2013; Wang 2013). The specific 
issue of language has been addressed by many authors such as Galligan (2001) and 
Ng and Rao (2010), and other authors such as Fuson and Li (2009) and Xie and 
Carspecken (2007) have compared educational materials in China and the USA.

This phenomenon relates to a large number of teachers and students. In China, 
there are nearly 2.63 hundred million primary school students. Moreover, the 
ancient Chinese literature affected the development of mathematics in most East 
Asian countries (e.g. Japan, Korea, Vietnam) (Lam and Ang 2004) in terms of the 
convention of place value.

3.3  �The Chinese Approach to Arithmetic

3.3.1  �The Ancient History

The Chinese approach to numerals in primary schools shows consistency among the 
features of Chinese language, the names of numbers and the use of artefacts for 
representing numbers and computing (Chap. 5), which can be traced back to the 
tradition of teaching numbers in China in fourteenth century BCE (Guo 2010). The 
long tradition is reflected in a range of ancient Chinese arithmetic works, such as the 
official mathematical texts for imperial examinations in mathematics used a thou-
sand years ago:

The Suàn shù shū, Writings on Reckoning (算数书) (202–186 BCE)
Zhoubi Suanjing (周髀算经) (100 BCE)
The Nine Chapters on the Mathematical Art (九章算术) (100 BCE)
The Sea Island Mathematical Manual (海岛算经) (about 225–295 CE)
The Mathematical Classic of Sun Zi (孙子算经) (500 CE)
The Mathematical Classic of Zhang Qiujian (张丘建算经) (500 CE)
Computational Canon of the Five Administrative Sections (五曹算经) (1212 CE)
Xia Houyang’s Computational Canons (夏侯阳算经) (1084 CE)
Computational Prescriptions of the Five Classics (五经算术)
Jigu Suanjing (缉古算经) (625 CE)
Zuisu (缀术) (500 CE)
Shushu jiyi (数术记遗) (about 200 CE)

In this section, we offer a short outline of Lam and Ang’s (2004) Fleeting 
Footsteps, a long history drawing on an important reference.

In the general history of numbers, the importance of the Chinese tradition is not 
always acknowledged. For instance, Ifrah (1981) claims that place value is an Indian 
invention. Dauben (2002) strictly criticises this error:
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One Chinese source of which Ifrah is apparently unaware is the Sun Zi Suanjing 孙子算经 
(The Mathematical Classic of Sun Zi), written around 400 CE. (p. 37)

This text has been available in an English translation since 1992  in Fleeting 
Footsteps, an edition prepared with extensive commentary by Lam and Ang, who 
later published a more extended edition (Lam and Ang 2004). This source not only 
gives a complete description of Chinese rod numerals, but also describes in detail 
ancient procedures for arithmetic operations. The most ambitious part of Lam and 
Ang’s study argues that the Hindu-Arabic number system had its origins in the rod 
numeral system of the Chinese. The most persuasive evidence Lam and Ang offer is 
the fact that the complicated, step-by-step procedures for carrying out multiplica-
tion and division are identical to the earliest but later methods of performing multi-
plication and division in the West using Hindu-Arabic numerals, as described in the 
Arabic texts of al-Khwārizmī, al-Uqlīdisī and Kūshyār ibn Labbān (see the exten-
sive review in Lam and Ang 2004). Guo (2010) explains that the Chinese system 
was transmitted to India during the fifth to ninth centuries, to the Arabic empire in 
the tenth century and then to Europe in the thirteenth century through the Silk Road. 
In 1853, Alexander Wylie, Christian missionary to China, refuted the notion that 
‘the Chinese numbers were written in words at length’ and stated that in ancient 
China calculation was carried out by means of counting rods and that ‘the written 
character is evidently a rude presentation of these’, showing both the arithmetic 
procedure and the decimal place value notation in their numeral system through the 
use of rods. Wylie believed that this arithmetic method invented by the ancient 
Chinese played a vital role in the advancement of all fields that required calcula-
tions. After being introduced to the rod numerals, he wrote:

Having thus obtained a simple but effective system of figures, we find the Chinese in actual 
use of a method of notation depending on the theory of local value [i.e. place value], several 
centuries before such theory was understood in Europe, and while yet the science of num-
bers had scarcely dawned among the Arabs. (p. 85)

In a review of the first edition of the Archives internationales d’histoire des sci-
ences, Volkov (1996) writes that the book ‘may provoke a strong reaction from 
historians of European mathematics’. Nevertheless, Volkov emphasises one of the 
book’s great strengths:

The emphasis made by the authors on the great importance of studying Chinese methods of 
instrumental calculators as well as numerical and algorithmic aspects of Chinese mathemat-
ics, which otherwise cannot be understood properly. (p. 158)

Chemla (1998) suggests adopting a prudent attitude towards this controversy:

The nine chapters share with the earliest extant Indian mathematical writing (6th c.) basic 
common knowledge, among which is the use of a place-value decimal numeration system. 
Such evidence allows no conclusion as to where this knowledge originated, a question 
which the state of the remaining sources may prevent us forever answering. Instead, it 
suggests that, from early on, communities practicing mathematics in both areas must have 
established substantial communication. (p. 793)

This historic origin could be helpful for understanding why the Chinese (Eastern 
individuals) have found it so easy to grasp this concept, why it is so late to develop 
in Europe, how number heritage has been shaped and how we can advise on the 
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number practices or tools used to strengthen the comprehension of place value. In 
the following, we elaborate on the Chinese approach to arithmetic as representative 
of East Asia. We begin by considering some elements of the Chinese approach to 
numbers and computation and then discuss some of the educational implications.

Although ancient Chinese mathematicians did not develop a deductive approach, 
they made advances in inductive algorithm and algebra development (Guo 2010). 
The Zhoubi Suanjing (周髀算經), the oldest complete surviving mathematical text 
compiled between 100 BCE and 100 CE, contains a statement highlighting the anal-
ogy nature of Chinese tradition:

In relation to numbers, you are not as yet able to generalize categories. This shows there are 
things your knowledge does not extend to, and there are things that are beyond the capacity 
of your spirit. Now in the methods of the Way [that I teach], illuminating knowledge of 
categories [is shown] when words are simple but their application is wide-ranging. When 
you ask about one category and are thus able to comprehend a myriad matters, I call that 
understanding the Dao. … This is because a person gains knowledge by analogy, that is, 
after understanding a particular line of argument they can infer various kinds of similar 
reasoning …Whoever can draw inferences about other cases from one instance can general-
ize. (Quoted in Cullen 1996, pp. 175-176)

Since antiquity, the major focus of Chinese mathematics has been on numbers 
and computations as collections of prescriptions similar to modern algorithms. 
Mathematics is called shùxué 数学 (“shù” meaning ‘number’) in Chinese. Knotted 
cords and tallies (see Sect. 9.2.2) were mentioned in ancient Chinese literature 
(Martzloff 1997, p. 179), following multiplicative-additive rules. The Chinese used 
bamboo rods to count (see the information about counting rods in Sect. 9.2.2), and 
this activity fostered the creation of a systematic way to represent numbers. The first 
nine numerals formed by the rods are presented in Fig. 3.1.

According to Lam and Ang (2004), the number presentation principle was ini-
tially introduced as follows:

Numerals in tens, hundreds and thousands were placed side by side, with adjacent digits 
rotated, to tell each apart. For example, 1 was represented by a vertical rod, but 10 was 
represented by a horizontal one, 100 by a vertical one, 1000 by a horizontal one and so 
forth. Zero was represented by a blank space so the numerals 84,167 and 80,167 would be 
as shown [see Figure 3.2]. … Although most books on the early history of mathematics, 
especially the recent ones, have mentioned the Chinese rod numerals, they have failed to 
draw attention to a very important fact that the ancient Chinese had invented a positional 
NOTATION.  Any number, however large, could be expressed through this place value 
notation which only required the knowledge of nine signs. I should add that in the current 

1 2 3 4 5 6 7 8 9

Fig. 3.1  The Chinese Rod 
representation of the first 
nine numerals

Fig. 3.2  Rod 
representation of multi-
digit numbers
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more sophisticated written form, a tenth sign, in the form of zero, is required (Lam and 
Ang 2004, p. 1)

The translation of the computation principle was initially introduced as follows:

In the common method of computation [with rods] (fán suàn zhĭ fǎ, 凡算之法), one must 
first know the positions (wèi, 位) [of the rod numerals]. The units are vertical and the tens 
horizontal, the hundreds stand and the thousands prostrate; thousands and tens look alike 
and so do ten thousands and hundred. (Lam and Ang 2004, p. 193)

A feature of Chinese mathematics is the ancient use of the counting rods (算筹, 
suàn chóu) on a table (counting board, jìshù bǎn, 计数板, Fig. 3.3). The counting 
board was used to make computations (arithmetic operations, extracting roots) and 
solve equations. The rules for using the counting board are carefully described by 
Lam and Ang (2004), who highlight the feature of introducing procedures in pairs: 
the procedure for subtraction is the inverse of that for addition, and the procedure 
for division is the inverse of that for multiplication. Chemla (1996) highlights that 
the position in the counting board is stable (see Sect. 3.3.4, which reports on the 
wording of the elements of arithmetic operations).

3.3.2  �Chinese Language Foundation to Place Value

The concept of place value is dominantly used in counting rod or suàn pán (算盘) 
and written numerals (Sun 2015). Moreover, place value can be traced to the use of 
base 10 and conversion rates for measurements, classifier grammar and the part-
part-whole structure with radicals and characters in local language. This language 
origin can be helpful in understanding why Western students find it so difficult to 
grasp the concept of place value and why it has developed so late in Europe from a 
language perspective.

3.3.2.1  �Base 10 and the Conversion Rate for Measurement

The Chinese system had a base 10 convention for representing quantities (Lam and 
Ang 2004; Martzloff 1997; Sun 2015). This was consistent with the conversion rate 
between the measurement units of length and volume, since the first emperor (qin 

Fig. 3.3  An ancient 
drawing of a suàn pán 
(算盘) with measurement 
units (https://commons.
wikimedia.org/wiki/
File:Ming_suanpan.JPG)
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shi huang 秦始皇) who unified the whole of China in third century BCE introduced 
a metric system for measurements.3 Except for weight units, units of length and 
volume had base 10 conversion rates. For example, the conversion rate of length 
units was expressed as follows (Lam and Ang 2004):

1 yin(引) = 10 zhang (丈) = 100 chi (尺) = 1000 cun (寸) = 10,000 fen (分) = 100,000 
li (釐) = 1,000,000 hao (毫).

The conversion rate of weight units was:

1 liang (两) = 10 qian (钱) = 100 fen (分) = 1000 li (釐) = 10,000 hao (毫) = 100,000 
si (丝).

The conversion rate of volume units was:

1 gong (斛) = 10 dou (斗); 1 dou (斗) = 10 sheng (升).

The ancient conversion rate of time units was 100 before the Western Zhou 
dynasty:

1 shi (时) = 100 ke (刻); 1 night (晝夜) = 5 geng (更).

The first money conversion rate was 10 in ancient China:

1 peng (朋) = 10 ke (貝).

Besides the measurement unit systems, the Chinese system had a base 10 con-
vention for representing numerals using number characters and corresponding num-
ber units (Zou 2015). This can be ascribed to the Yellow Emperor in the sixth century 
book by Zhen Luan, Wujing suanshu (五經算術 Arithmetic in Five Classics) (Guo 
2010). The first five number units, i.e. ge (個), shí (十), bǎi (百), qiān (千) and wàn 
(萬), always represent 1, 10, 102, 103 and 104, respectively. The other number units 
vary with different systems of number notation.

Shushu jiyi 《数术记遗》 written by XuYue (徐嶽) during the Eastern Han 
dynasty (50–200 CE) recorded the early number naming principle: the conversion 
rate of the down number (xiashu 下数), i.e. the standard number, was 10; the con-
version rate of the middle number (zhongshu 中数), i.e. the large number, was 
10,000; and the conversion rate of the up number (shangshu 上数), i.e. the largest 
number, was the square of the number unit.

Looking at decimal and fraction numbers, the following spoken numeration units 
were used to denote small orders of magnitude in Sunzi Suanjing (Lam and Ang 
2004) in ancient China. The negative power of 10 was stressed in daily spoken 
numerals: 10−4絲 si, 10−3 毫 hao, 10−2 釐 li and 10−1分 fen.

3 It may be interesting to compare the situation in China with the situation in Europe, where the 
metric system was introduced at the end of the eighteenth century, and the situation in the USA and 
UK, where metricisation is still controversial. For example, the conversion rates of inches, feet, 
yards and miles are non-10: 12 inches = 1 foot, 3 feet = 1 yard, 5280 feet = 1 mile. One US fluid 
ounce is 1⁄16 of a US pint, 1⁄32 of a US quart and 1⁄128 of a US gallon.
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3.3.2.2  �Classifiers

All number units in the Chinese language are called classifiers (Liàngcí 量詞). In 
English, it is natural to use measurement words to describe the quantity of a con-
tinuous noun (i.e. to identify a specific unit to make the quantity countable). For 
example, in 1 m of cloth, 1 ml of water and 1 kg of meat, the measurement units of 
m, ml and kg are, respectively, required. However, it is natural not to use measure-
ment words to describe the quantity of countable nouns (e.g. one apple, five ducks 
and three desks). There are hundreds of different classifiers, all of which reflect the 
objects to be counted. In Chinese, both uncountable and countable nouns need mea-
surement words known as classifiers. Consider one ge (個) apple, five zhi (只) ducks 
and three zhang (張) desks, in which ge (“unit of fruit”), zhi (“unit of animal”) and 
zhang (“unit of object”) play the role of measurement word as units. This is a kind 
of Chinese grammar used to describe quantity (數量), which requires numbers and 
classifiers. The classifiers are called number units (Zou 2015), numeration units 
(Houdement and Tempier 2015), number ranks (Lam and Ang 2004) or number 
markers (Martzloff 1997).

The column units left of the suàn pán (算盘) shown in Fig. 3.4 read from left to 
right as follows:

Wan (萬 ten thousand), qian (千 thousand), bai (百 hundred), shi (十 ten), liang (兩 
weight unit 1 liang = 1/16 jin), 錢 qian (10 qian = 1 liang), 分 fen (weight unit, 
10 fen = 1 qian).

The column units right of the suàn pán shown in Fig. 3.4 read as follows from 
left to right:

一 ones, 石 shi (volume unit, 10 dou = 1 shi); 斗 dou, 升 sheng, 合 (1 斛 = 10 斗, 1 
斗 = 10 升, 1 升 = 10 合).

The units are used as column units. Weight, volume and numeration units have 
the same position in a functioning calculation. This indicates that numeration units 
have the same role as that of measurement units in Chinese (Martzloff 1997).

Fig. 3.4  The number 
71,824, written by the 
mathematician Jia Xian 
during the Song dynasty 
(960–1279)
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Following Allan (1977), there are about 50 languages in the world with this fea-
ture, some in the Far East and some in other parts of the world. We discuss the case 
of the Chinese language, where numeral classifiers are systematically used, in detail 
as follows. Following Senft (2000), numeral classifiers are defined in the following 
way:

In counting inanimate as well as animate referents the numerals (obligatorily) concatenate 
with a certain morpheme, which is the so called ‘classifier’. This morpheme classifies and 
quantifies the respective nominal referent according to semantic criteria. (p. 15)

There are many classifiers in Chinese, as each type of counted object has a par-
ticular classifier associated with it. This is a weak rule, as it is often acceptable to 
use the generic classifier (gè, 个) in place of a more specific classifier. The generic 
classifier (gè, 个) is not translated into English, but may be considered as a kind of 
unit (a ‘one’). The generic classifier may be considered the prototype of units in 
place value representation.

Besides the generic classifier (gè, 个), other units of higher value have been 
introduced in Chinese to represent numbers: ten (shi 十), hundred (bǎi 百), thou-
sand (qiān 千) and ten thousand (wàn 万). A very interesting example from ancient 
Chinese is given in Figure 1 in the Yongle Encyclopedia (1408).4 In the example 
shown in Fig. 3.4, the number 71,824 is represented to indicate the digit and number 
(or measurement) unit. In this case, the unit is 步 (bù, i.e. step, an ancient length 
unit).

In particular:

–– The first line ‘七一八四二’ represents the number value ‘71,824’.
–– The second line represents the units 萬 (wàn, ten thousand), 千 (qiān, thousand), 

百 (bǎi, hundred), 十 (shí, ten) and 步 (bu, or ‘step’, an ancient length unit).
–– The third line represents the number using the ancient rod numerals, hinting at 

the counting rods discussed previously. The number units have the same position 
as the measurement unit (bu).

Classifiers are used also in the recitation of numerals when counting objects, so 
that both oral and written numerals are kept consistent with each other.

In Fig. 3.5, ten-two hints at an addition procedure of 10 + 2, while two tens hints 
at a multiplication procedure of 2 × 10. Hence, the Hindu-Arabic number 24 is 
translated into the Chinese language as ‘two tens and four ones’ (二十四个).

The legend shows a literal translation into English (numeral and classifier). In the 
translation, there is ambiguity between one (number) and one (classifier or unit), 

4 https://en.wikipedia.org/wiki/Yongle_Encyclopedia. See also http://www.wdl.org/en/item/3019/

一个、二个、……; 一十一个、一十二个、……; 二十个，二十一个….

Fig. 3.5  The oral counting in Chinese. One ones, two ones …; ten ones, one ten and one ones, one 
ten and two ones, …; two ten ones, two tens and one ones …
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which in Chinese are written (一, 个) and said (yī and gè) in two different ways. The 
same happens for 10, which in English is both a number and a unit.

In other languages (e.g. Italian), the situation may be less ambiguous, as ‘uno’ 
and ‘dieci’ (numbers 1 and 10) are different from ‘unità’ and ‘decina’ (unit), but the 
use of terms like the latter in the reading of numbers is limited to school practice 
(decomposition of a given number in unit, ten, hundred and so on).

In Chinese, classifiers are also used in interrogative questions, e.g. 多少 
(duōshǎo), which means ‘How much? How many?’, and the right classifier must 
follow. When this term is used in an arithmetic word problem, e.g. in additive prob-
lems, the same classifier is used for both the data and question. For example, if five 
zhi (只) ducks swim in a river, and then two zhi (只) ducks join them, how many zhi 
(只) ducks are there altogether? This example shows that zhi (只) must be used for 
both the data and question.

By identifying classifiers of quantity, concrete numbers with units of the same 
name (same classifiers) are defined like numbers (see Chap. 18 of this volume). A 
principle for arithmetic operations with like numbers is also constructed in everyday 
language (see Chap. 18 of this volume).

Principle of addition/subtraction: only like numbers can be directly added or 
subtracted. Two zhi (只) ducks can be added to three zhi (只) ducks. Two zhi (只) 
ducks cannot be added to three dozen da (打) or groups of ducks.

Principle of multiplication: only unlike numbers can be directly multiplied. For 
example, three groups of zhi (只) ducks swim at the river. Each group comprises 
four zhi (只) ducks. How many zhi (只) ducks are there in total? The answer is  
4 zhi (只) ducks * 3 groups = 12 zhi (只) ducks.

Principle of division:

–– With like numbers (measure division): for example, 12 zhi (只) ducks swim in the 
river. Each group comprises four zhi (只) ducks. In this case, 12 and 4 are like 
numbers. How many groups are there in total? The answer is 12 zhi (只) ducks/4 
zhi (只) ducks = 3 groups.

–– With unlike numbers (partitive division): for example, 12 zhi (只) ducks swim in 
the river. We plan to group them into three groups. Here, 12 and 3 are unlike 
numbers. How many zhi (只) ducks are in each group? The answer is 12 zhi (只) 
ducks/3 groups = 4 zhi (只) ducks per group.

Classifiers are one of the most important elements required in word problem-
solving. Generally, Chinese curricula do not need a section to differentiate partitive 
division from measure division, as the grammar of classifiers is enough to introduce 
the distinction.

3.3.2.3  �Radicals and the Part-Part-Whole Structure

Radicals (部首 bù shǒu ‘section headers’) constitute the basic writing unit. Most 
(80–90%) of Chinese characters are phonetic-semantic compounds, combining a 
semantic radical with a phonetic radical. Chinese words have a compound or 
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part-part-whole structure. The compound can be seen in the structure of Chinese 
number words. For example, as shown previously, the Chinese refer to the number 
12 as ‘ten-two’ rather than as a single word such as ‘twelve’.

The idea of a part-part-whole structure appears in a more general way in number 
computations. A number (a whole) may be conceived as the sum of two parts in dif-
ferent ways (see Fig. 3.6).

This idea may be connected with the use of artefacts (either counting boards 
jìshù bǎn, 计数板 with rod numerals 算筹; suàn chóu or suàn pán 算盘). For 
instance, in the suàn pán, it is important to ‘make a ten’ by replacing two groups of 
five beads with one bead in the tens place if one has to calculate the following while 
also exploring the associative and commutative properties of addition:

15 + 7 = (10 + 5) + (5 + 2) = 10 + 5 + 5 + 2 = 10 + 10 + 2

The practice of composing/decomposing numbers is exploited to carry out very 
fast calculations (for a didactical example, see Chap. 11, Sect. 11.2).

3.3.3  �Conceptual Naming of Fractions

The Nine Chapters on the Mathematical Art (九章算術; Jiǔzhāng Suànshù) was 
composed by several generations of scholars from the tenth to second century BCE, 
with its latest stage composed from the second century CE.  According to Guo 
(2010), it gave the first fraction theory in the world. These are the procedures called 
he fen (addition 合分: Problems 7–9), jian fen (subtraction 減分: Problems 10–11), 
ke fen (comparison 課分: Problems 12–14), ping fen (arithmetic mean 平分: 
Problems 15–16), cheng fen (multiplication 乘分: Problems 19–25) and jing fen 
(division 經分5: Problems 17–18) (Sun and Sun 2012).

Martzloff (1997) observes, ‘In Chinese mathematics, by far the most common 
notion of fraction is that which comes from the notion of dividing a whole into an 
equal number of equal parts (sharing)’ (p. 192). He quotes examples such as 三分
之二 (sān fēn zhī èr), meaning ‘two thirds’. The word 分 (fēn) suggests the idea of 

5 Like 徑分 in The Nine Chapters on the Mathematical Art, in ancient times, 徑 and 經 were 
regarded as the same word.

6

5 1

6 6

6 6

Fig. 3.6  The decomposition of 6 in many different ways as 5 + 1, 4 + 2 and so on (Mathematics 
Textbook Developer Group for Elementary School 2005, p. 42)

X.H. Sun and M.G. Bartolini Bussi

http://www.chinese-tools.com/tools/sinograms.html?q=算
http://www.chinese-tools.com/tools/sinograms.html?q=盘


53

sharing, as etymologically its upper component bā (八) means ‘to share’, while its 
lower component represents a knife (刀, dāo). The order of reading (and writing) is 
denominator first and numerator second and may be literally translated as ‘of three 
parts, one’. Martzloff (1997) continues:

The denominator and the numerator are then respectively called fēn mǔ (分母 the ‘mother’ 
of the sharing) and fēn zǐ (分子 the ‘son’ of the sharing). The inventor of these expressions 
was thinking of a pregnant mother and her child, thus highlighting both the difference in 
size and the intimate link between the two terms. (p. 103)

According to Needham and Wang (1959) and Guo (2010), decimal fractions 
were called tiny numbers (微數 wēi shù), first developed and used by the Chinese 
in first century BCE by Liuhui (劉徽) (Guo 2010).

3.3.4  �Arithmetic Operations

Here, we explain how addition and subtraction were introduced into Chinese tradi-
tion. The links between addition and subtraction were highlighted in the ancient 
textbooks. In 1274, Yang Hui observed, ‘Whenever there is addition there is sub-
traction’ (quoted in Siu 2004, p. 164).

This strict link is evident in the wording of operations. The strong regularity is 
evident in the following list:

加 – jiā – addition.
加数 – jiā shù – addend.
减 – jiǎn – subtraction.
减数 – jiǎn shù – subtrahend, literally ‘subtracting number’.
被减数 – bèi jiǎn shù – minuend, literally ‘subtracted numbers’.
乘法 – chéngfǎ – multiplication.
被乘数 – bèi chéng shù – literally ‘multiplied number’.
乘数 – chéng shù – literally ‘multiplying number’.
除法 – chúfǎ – division.
被除数 – bèi chú shù – dividend, literally ‘divided number’.
除数 – chúshù – divisor, literally ‘dividing number’.
被 (bèi) is the most common word used in Chinese to create the passive verb form.

This regularity is meaningful, especially when compared with the wording in 
Western languages. Schwartzman (1994) points out that many English mathematics 
terms are borrowed from Greek and that Latin-derived terms bear no inherent 
meaning. For example, the English words ‘minuend’ and ‘subtrahend’, which come 
from Latin words and thus have little meaning today for English-speaking children 
in contrast with Chinese subtracted and subtracting numbers, directly embody the 
subtraction relationship without the exchange law. (The same is true in other 
Western languages.)

Addition and subtraction are carried out using counting rods (算筹 suàn chóu) 
(see Sect. 9.2.2) by simply grouping (組合 zǔhé making the bundle) or ungrouping 
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(解組 jiě zǔ opening the bundle) the rods (see Figs.  3.7 and 3.8) (Mathematics 
Textbook Developer Group for Elementary School 2005).

When the abacus (suàn pán 算盘) is introduced, fingering is complex (Fig. 3.12) 
and wording may become different (Fig. 3.10):

进一 – jìn yī – forward (towards the unit of higher value, e.g. when 10 units becomes 
a ten

退一 – tuì yī – backward (towards the unit of lower value, e.g. when a ten becomes 
10 units

How do we
operate 6-8
when 6 is
small than 8?

"Just open a
bundle
(a ten)  " ?

Fig. 3.8  Subtraction in the Chinese textbook (Mathematics Textbook Developer Group for 
Elementary School, 2005, vol. 2, p. 68.)

Fig. 3.7  Addition in the Chinese textbook (Mathematics Textbook Developer Group for 
Elementary School, 2005, vol. 2, p. 62.)
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Fig. 3.9  Representation of 123456789 in a Chinese suàn pán (Kwa 1922, p. 6)

– jìn yī – forward one (ten)– jìn yī – forward one (ten)

– tuì yī – backward one (ten)

Fig. 3.10  Wording on 
suàn pán: forward and 
backward

The following images are taken from Kwa (1922), an old handbook of the 
Chinese abacus that was included as a gift for participants at the Macao Conference.

These features are interesting, as in both cases they emphasise the inverse rela-
tion between addition and subtraction, which are described by means of inverse 
verbs. Division is based on multiplication, as it is the inverse of multiplication and 
uses a scheme that is symmetric with respect to the multiplication performed in rod 
calculations (adapted from Martzloff 1997, p. 217) (Table 3.1).

We analyse the differences from Western languages where this link is not high-
lighted as follows.

3.3.5  �Mathematical Relational Thinking: Equality

A range of studies has advised emphasising not only numerical computation but also 
quantitative relationships (Ma 2015; Bass 2015; see also Chaps. 6 and 9 of this vol-
ume). The relational thinking of equality constitutes a central aspect of equations and 
algebra thinking (Cai and Knuth 2011). Equality is a key concept, but sometimes prob-
lems are presented in Western curricula. Li et al. (2008) show that Chinese curricula 
introduce the equal sign in a context of relationships and interpret the sign as ‘bal-
ance’, ‘sameness’ or ‘equivalence’. In the following, we review the history of the equal 
sign and address the approach to the relational view of the equal sign and equality.
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3.3.5.1  �The History of the Equal Sign ‘=’ in Europe

The equal sign (‘=’) was invented (and used in its relational meaning) in 1557 by 
Welsh mathematician Robert Recorde (in his work The Whetstone of Witte), who 
was fed up with writing ‘is equal to’ in his equations. He chose the two lines because 
‘no two things can be more equal’ (Cajori 1928, p. 126).

The etymology of the word ‘equal’ is from the Latin words ‘aequalis’ (meaning 
‘uniform’, ‘identical’ or ‘equal’) and ‘aequus’ (meaning ‘level’, ‘even’ or ‘just’).

The symbol ‘=’ was not immediately popular. The symbol ‘||’ was used by some, 
and ‘æ’ (or ‘œ’), from the Latin word ‘aequalis’ meaning ‘equal’, was widely used 
into the 1700s.

3.3.5.2  �The History of the Equal Sign ‘=’ in China

It seems there was no ancient symbol for ‘=’ in Chinese, but the Chinese characters 
等 děng (equality) for relational meaning and dé 得 (get the result) for procedural 
meaning were used broadly in ancient texts. Equality is related to the balance rule 
of yin-yang and the invariant principle of the I Ching. The basic procedures of sub-
stituting in the Chinese rod/suàn pán, substituting 5 by 5 ones, substituting two 5s 
by 10, substituting 10 by 1 ten, substituting 100 by 10 tens, substituting 1 thousand 
by 10 hundreds, etc., reflect the spirit of equality used in a broader, flexible way to 
some extent.

Such is the fundamental ancient Chinese mathematics spirit. ‘Simultaneous 
equations’ appears as one of the nine chapters of The Nine Chapters on the 
Mathematical Art (九章算术; Jiǔzhāng Suànshù) (Guo 2010). Spirit of equality is 
reflected in the ‘equalising’ and ‘homogenising’ theory (齐同原理), the first basic 
principle to deduce fractions, and ‘cutting and paste’ theory (割补原理), an explicit 
principle used when solving geometry problems involving area and volume in 
Liuhui’s commentary on The Nine Chapters (Guo 2010).

There are 256 instances of the character 得 (dé) and 11 instances of the character 
等 (děng) in The Nine Chapters. The fifth problem in 方田 fangtian – rectangular 
fields – reads as follows:

The method for simplifying parts: What can be halved, halve them. As for what cannot be 
halved, separately set out the numbers for the denominator and numerator. Then alternately 
reduce them by subtraction. This is seeking for the equality. Simplify using this equal num-
ber. (Guo 2010, p. 99)

Table 3.1  The symmetric scheme in Sunzi Suanjing

Multiplication Multiplication Division Position

Multiplicand Multiplier Quotient (shang 商) Upper
Product Product Dividend (shi 實) Central
Multiplier Multiplicand Divisor (fa 法) Lower
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3.3.5.3  �Chinese Approaches to the Relational Meaning of Equality

Ni (2015) reports that Chinese teachers are intolerant of errors where the relational 
(or conceptual) meaning of ‘=’ is replaced by a procedural (or operational) mean-
ing, while US teachers consider such errors minor. She mentions Chinese textbooks 
in which one-to-one correspondence is used from the beginning to assist students in 
better understanding the equal, greater-than and less-than symbols to enhance the 
relational meaning of ‘=’ in contrast with ‘<’ and ‘>’ (Fig. 3.11).

This strategy is widespread in other countries (Alafaleq et al. 2015).
In general, the English expression ‘how many’ is translated into Chinese as 

‘more or less’ (duōshǎo, 多少), which hints at the relational meaning and denotes a 
comparison of more than or less than (the imagined number). This expression is 
very common in arithmetic word problems. Like numerals, such expressions need a 
classifier (Sect. 3.3.2.2), highlighting the explicit connection between data and 
unknown values.

Fig. 3.11  Comparing 
numbers in the first grade: 
the prior content of the 
textbook (Mathematics 
Textbook Developer Group 
for Elementary School 
2005, p. 5)

Fig. 3.12  Fingering in 
suàn pán: the correct 
method of moving the 
beads (Kwa 1922, p. 8)
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The variation approach to word problems presents another way to cope with the 
conceptual meaning of equality in China. Variation (变式, biàn shì) is a widely used 
approach that aims to discern the variance, invariance and sameness behind a group 
of problems and is regarded as the foundation of algebraic thinking and equations 
(Sun 2011, 2016). This approach is also closely related to the features of the Chinese 
language. Chinese is a tonal and logographic language, where each character has 
multiple meanings (一詞多義) and each word plays multiple roles in its context (一
词多性). Teaching by variation is consistent with the needs of teaching the Chinese 
language. To learn to write Chinese and to increase their orthographic awareness, 
students must distinguish the similarities and differences of different characters that 
very often look similar to each other (Marton et al. 2010).

As variation problems enhance perceptions of variance and invariance or equal-
ity to solve word problems in Chinese curricula, they are regarded as one of the 
most important and explicit task design frameworks in China (Sun 2016). They 
refer to the ‘routine’ daily practice commonly accepted by Chinese teachers (Sun 
2007, 2011; see also Cai and Nie 2007). Following Sun (2011), Bartolini Bussi et al. 
(2013, p. 550) describe a typical feature of these problems:

One distinctive feature of word problems is to develop the ability to identify the invariant 
category of word problems (识类) it belongs to and discern different categories (归类), 
namely, discern the invariant elements from the variant elements between problems and 
recognize the ‘class’ every problem belong to. This pedagogy is generally called as 
biànshì (变式) in Chinese, where ‘biàn’ stands for ‘changing’ and ‘shì’ means ‘form’, 
can be translated loosely as ‘variation’ in English (Sun 2011). Some categories of biàn-
shì are the following:

OPMS (One Problem Multiple Solutions), where, for instance, the operation to solve the 
problem is carried out in different ways, with different grouping and ungrouping: 
8 + 9 = (8 + 2) + 7; 8 + 9 = 7 + (1 + 9) and so on.

OPMC (One Problem Multiple Changes, see the variation problem below in Italy 
(Bartolini Bussi et  al. 2013)), where in the same situation some changes are 
introduced.

MPOS (Multiple Problem One Solution), where the same operation can be used to solve 
different problems, as in summary exercises (Sun 2011).

Western curricula use various models (e.g. models of taking away and compar-
ing) to introduce meanings of addition/subtraction, as well as strategies to solve 
word problems. On the contrary, in Chinese curricula, rather than approaching word 
problems separately, problem variation permits them to be introduced in a holistic 
way without the use of multiple models (Sun 2015). Cai and Nie (2007, p. 467) 
report on the frequency of teaching with variation in the Chinese classroom through 
a survey of 102 teachers (see Table 3.2).

Table 3.2  The frequency of teaching with variation in the Chinese classroom

Used very often Used occasionally Never used

OPMS (n = 102) 84 18 0
OPMC (n = 102) 69 33 0
MPOS (n = 100) 52 48 0
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An example of OPMS of addition with two digits is discussed in Chap. 11. 
Section 3.4.5.2 considers a transposition of additive variation problems to Italy.

3.4  �Educational Implications

The above observations clearly point out some of the features of the Chinese arith-
metic tradition:

–– The inductive approach, where general principles of representing numbers and 
calculation are consistent with and derived from the specific case of the ones 
place (e.g. number operations in the tens/hundreds place are similar to number 
operations in the ones place).

–– The tradition of calculation using specific cultural artefacts that also leave traces 
in the language.

–– The variation tradition in word problems.

These features have important educational implications. Ma (1999) finds that the 
content knowledge of American and Chinese teachers is different. In particular, the 
strength of mathematics content knowledge is related to profound understanding of 
fundamental mathematics. According to Ma (1999):

The US teachers tended to focus on the particular algorithm associated with an operation, 
for example, the algorithm for subtraction with regrouping, the algorithm for multi-digit 
multiplication, and the algorithm for division by fractions. The Chinese teachers, on the 
other hand, were more interested in the operations themselves and their relationships. In 
particular, they were interested in faster and easier ways to do a given computation, how the 
meaning of the four operations are connected, and how the meaning and the relationships 
of the operations are represented across subsets of numbers – whole numbers, fractions, and 
decimals. When they teach subtraction with decomposing a higher value unit, Chinese 
teacher start from addition with composing a higher value unit. (p. 112)

Similar reflections may be applied to other Western curricula. Chinese curricula 
do not have a chapter on place value similar to American or European curricula; 
rather, place value appears in all chapters, along with reading and writing number 
activities as an overarching principle. Place value involves implicit core knowledge 
of the number unit in ancient literature (Zou 2015) and in Chinese curricula (Sun 
2015), which is different from the calculation vocabulary or extended number pro-
cedures in chapters on calculation in the mandatory practices of American curricula 
(Howe 2011, 2015).

3.4.1  �Place Value and Whole Number Operations

Chinese verbal counting is transparent and completely regular for place value rep-
resentation. However, in the West, place value may be perceived as an artificial 
construct for written purposes, as communities do not use it in ordinary 
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conversation; for Western students, it can be a learned concept, but not a native one. 
The abbreviation of ‘-teen’ numbers in English (13 to 19) and in other European 
languages cannot be easily decoded in terms of the place value of tens and ones, 
which hinders understanding of the ten-structured regroup aspects of a multi-digit 
calculation, i.e. addition with moving up a place/subtraction with moving back a 
place. This is consistent with the findings of Ho and Fuson (1998), who argue that 
the structure of the English language makes it more difficult to understand that 
‘-teen’ numbers are composed of a ten and some ones. It also makes it more difficult 
to learn the advanced make-a-ten method of single-digit addition and subtraction 
that is taught to first graders in China and other East Asian countries (Fuson and 
Kwon 1992; Geary et  al. 1993; Murata 2004; Murata and Fuson 2001, 2006). 
Actually, the positional and decimal principles mentioned in Chap. 5 (WG1) have 
been naturally embedded in Chinese numeration and everyday language since the 
third century BCE. Some scholars (e.g. Butterworth 1999) have interpreted this as a 
reason why Chinese students are at ease with place value for large numbers from the 
beginning. From ancient times until now, spoken Chinese whole numbers have been 
the same as written numbers, implying that the written numeral directly reflects its 
pronunciation and thus has not diverged from the spoken language. Place value is an 
unlearned activity, but it is an inherited concept like a mother language, where 
native speakers are often unaware of the complexities of their language. This may 
explain why all current Chinese curricula do not include the topic of place value (for 
a discussion, see Sect. 15.3).

3.4.2  �Cardinal Numbers and Measure Numbers

From a conceptual perspective of numbers, Bass (see Chap. 19) points out that num-
bers and operations have two aspects: conceptual (what numbers are) and nominal 
(how we name and denote numbers). At least two possible pathways exist for the 
development of whole numbers: counting and measurement. Conceptually, num-
bers arise from a sense of quantity of some experiential species of objects: count (of 
a set or collection), distance, area, volume, time, rate, etc. To develop a conceptual 
understanding, Bass supports an approach to developing concepts of numbers using 
general notions of quantity and their measurement, in which the measurement ‘unit’ 
is key to knowing how much (or many) of the unit is needed to constitute the given 
quantity while measuring one quantity by another. Cardinal and measure numbers 
in Western languages appear very different from each other, as measure numbers 
require the choice of a unit. This is not the case in the Chinese language, where both 
are considered in the same way.
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3.4.3  �Fraction Names

The order of writing (and reading) a fraction in Western languages is ‘first numera-
tor, then denominator’, and the denominator is usually named with ordinal (not 
cardinal) numbers, such as ‘two thirds’ (2/3) of three parts. (In Chinese naming, 
taking two parts indicates a part-whole relationship rather than ‘two thirds’.) This 
method of fraction naming generates some difficulties for learning the part-whole 
relationship. The names for fractions in Western languages are not so clear. Bartolini 
Bussi et al. (2014) and Pimm and Sinclair (2015) analyse this difficulty and make 
proposals for overcoming it.

3.4.4  �Arithmetic Operations

Research studies have identified several difficulties that Western students have with 
algorithms. For instance, Fuson and Li (2009) point out that many students in the 
USA make the error of subtracting the smaller number in a column from the larger 
number even if the smaller number is on the top:

  346
–157

  211

This error may be reinforced by language confusion, as the names ‘minuend’ and 
‘subtrahend’ do not emphasise the passive relationship between them (see above). 
However, this seems to be only a part of the story. Written algorithms for addition 
and subtraction were introduced in Europe by Leonardo Fibonacci in the thirteenth 
century. They hint at the actions performed on some kind of abacus (the Chinese 
suàn pán, the Japanese soroban, the Roman abacus or similar; see Menninger 1969). 
More recently, the spike abacus was introduced for teaching (see the figures in 
Chap. 9). In English and other Western languages, the operations in Figs. 3.7 and 
3.8 are described using terms like ‘carrying’6 and ‘borrowing’.7 The same was not 
true when algorithms were introduced in ancient textbooks. In Liber abaci, the term 
‘borrow’ is not used. Rather, a kind of compensation or invariance is suggested: to 
increase by 10 the units in the minuend and to increase by 10 the units of the subtra-
hend. In this process, the 10 to be added to the subtrahend must be ‘kept in hands’ 
(reservare in manibus, in Latin). This strategy was maintained in many method 
textbooks for primary schoolteachers in Italy until at least 1930.

6 Riporto - riportare in Italian; Übertrag in German; llevar in Spanish; retenue in French.
7 Prestito in Italian, anleihe in German, prestar in Spanish; retenue in French.
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Ross and Pratt-Cotter (2000, 2008) reconstruct the story of the word ‘borrowing’ 
in North America. They find the first occurrence in a textbook by Osborne in 1827, 
but observe that ‘the term borrow may be a misnomer since it suggests that some-
thing needs to be returned’ (p. 49). Fuson and Li (2009) criticise this word (which 
was used for more than one century), and Fuson uses the words ‘grouping’ (for 
addition), ‘ungrouping’ (for subtraction) and ‘regrouping’ (if necessary in both 
cases) in the Math Expression project.8

The situation is quite different in China. In teaching subtraction with regrouping, 
the majority of the Chinese teachers interviewed in Ma (1999) describe the so-
called ‘borrowing’ step in the algorithm as ‘a process of decomposing a unit of 
higher value instead of saying “you borrow 1 ten from the tens place”’ (p. 8). One 
third-grade teacher explained why she thought the expression ‘decomposing a unit 
of higher value’ was conceptually accurate:

The term ‘borrowing’ can’t explain why you can take 10 to the ones place. But ‘decompos-
ing’ can. When you say decomposing it implies that the digits in higher places are actually 
composed of those at lower places. They are exchangeable. The term ‘borrowing’ does not 
mean the composing-decomposing process at all. (p. 9)

The English terms ‘carrying’ and ‘borrowing’ are not related to each other. The 
French term ‘retenue’ is the same for both operations. ‘Retenue’ literally means 
‘keep in mind’ (or ‘keep in hand’ in French) and hence hints at memory and not a 
concrete action. The origin may be traced back to the term used in medieval arith-
metic ‘reservare in manibus’ (‘to keep in hands’). The use of the same term for 
different actions creates many difficulties for pupils (Soury-Lavergne, personal 
communication). This simple example shows that different cultures/languages may 
foster or hinder the understanding of meaning.

3.4.5  �Mathematical Relational Thinking: Equality or 
Sameness

3.4.5.1  �Some Reported Difficulties in the Understanding of Equality

Several studies have been carried out to examine the use of the equality symbol ‘=’ 
in mathematics education. Kieran (1981) studies the interpretation of the equality 
symbol in the early grades. In preschool, two intuitive meanings appear: the first 
(conceptual or relational meaning) concerns the relation between two sets with the 
same cardinality (hence an equivalence relation, according to the historical genesis), 
while the second concerns the set resulting from the union of two sets. The second 
is related to the interpretation of ‘+’ and ‘=’ in terms of actions to be performed 
(procedural or operational meaning). This latter view is reinforced through the use 

8 http://www.hmhco.com/shop/education-curriculum/math/elementary-mathematics/math-expressions
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of pocket calculators and the transcription of the additions and results as they appear 
on the display. For instance, to add the following numbers in a notebook:

15 + 31 + 18

it is common to see the following:

15 + 31 = 46 + 18 = 64

This discussion was carried out in a third-grade classroom in Italy. Only some 
excerpts are reported. The teacher (Rosa Santarelli) posed the following problem:

How many days for holidays last summer?
Two pupils have solved the problem as follows:
30 – 10 = 20 + 31 = 51 + 31 = 82 + 15 = 97
Do you think that this calculation is correct?
STE: Yes, it is correct. They have thought about the months of holidays. Hence, this month 

has so many days, and they have put that month. In June we were at school for 10 days, 
hence 30 – 10. … [T]hen they have written the equal sign and then 20 and from that 20 
they have started to count all the holidays. They have written +31, then 51, + 31 equals 
82, + 15 (the days in September) equals 97. Then they have understood the result, they 
have written it. What they have done is right.

Many pupils agree and reword the same process.
TEACHER: But what does the sign ‘=‘mean in mathematics?
GIO: Equal means that if you have 20 + 30 you put the equal sign and you get the result. 

The equal sign tells the result of an operation …
CAR: If you wish to use this sign in an operation, you must put it at the end. If you make 

5 + 5 = then you write 10.
Other pupils reword the same statements.
TEACHER: What does it mean ‘to be equal to’ in mathematics?
ILA: It means that you get the result.
SAM: Equal, in mathematics, is usually in the operations. It is used to get the result.
…
TEACHER: Is it correct to write ‘8 = 8’?
GIO: No, it isn’t. You must write ‘+0’ or else one doesn’t understand. You need to put 

something.
TEACHER: Hence, I make a mistake if I write ‘8 = 8’.
GIO: Yes, you do. You should write ‘8 + 0 = 8’ or ‘8 – 0 = 8’. (Zan 2007, p. 79 ff., our 

translation)

This short excerpt confirms that the procedural meaning of the equality symbol 
is often dominant in primary schools, at the expense of the relational meaning. Ni 
(2015) argues that student errors such as considering the equal sign as an order to 
‘do something’ for an answer probably contribute to the difficulty they experience 
later when learning algebra; students treat an algebraic equation as indicating not a 
mathematical relation, but an order to ‘do something’ to obtain an answer. This may 
have very bad consequences in secondary school, when algebraic expressions are in 
the foreground. It is not possible to interpret the following equation according to the 
conceptual meaning:

x + 3 = 4
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Teachers tacitly reinforce the procedural meaning when they do not take care of 
this issue.

3.4.5.2  �Variation Problems in China and Italy

Bartolini Bussi et  al. (2013) report an example of variation problems from the 
OPMC category, where all of the problems are collected in one 3 × 3 table (see also 
Sullivan et al. 2015, p. 88). In China, a collection of variation problems was given 
to second graders at the end of the school year as a kind of summary, with several 
different examples of problems presented during the school year. It was expected 
that the task would be solved in just one lesson due to the background knowledge of 
the students. Bartolini Bussi et al. used this task in some Italian schools, but a pro-
cess of cultural transposition was needed (see Chap. 13 of this volume) (Table 3.3).

The most evident effect of this transposition was the time needed. It was not pos-
sible to solve the task in just one lesson. The task was the source of a longer process, 
where the students had to become familiar with this surprising way of considering 
several problems together and using schemes to find/represent the solution. During 
the process, the students started to focus on the relationships between operations 
rather than on the execution of operations and hence started reasoning algebraically. 
Some further experiments (Mellone and Ramploud 2015) are in progress now.

3.5  �Concluding Remarks

The attention to differences in whole number approaches is increasing. It is worth-
while to mention at least the book by Owens (2015), with a chapter on visuospatial 
reasoning with numbers, and the book by Owens et  al. (2017) on the history of 
number in Papua New Guinea and Oceania that details number systems other than 
base 10 systems.

The examples discussed in this chapter show that language plays a common, key 
role in conveying concepts in the teaching and learning of whole number arithmetic. 
A cross-cultural examination of languages should thus allow us to understand lin-
guistic supports and limitations that may foster or hinder students’ learning and 
teachers’ teaching of mathematics.

The above discussion highlights that in many cases the Chinese way to develop 
whole number arithmetic seems to offer advantages for the construction of mathe-
matical meanings: the attention to mathematical consistency and coherence seems 
larger than in the Western curricula. Yet the Chinese case shows that the difference 
is strongly related to linguistic and cultural features not shared by other cultural 
groups. This observation suggests that caution must be taken when trying to apply 
some of the Chinese methods in other countries, unless a careful process of cultural 
transposition is established.
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Chapter 4
On Number Language: A Commentary  
on Chapter 3

David Pimm 

4.1  �Introduction

I start with a policy statement, pretty unrelated to the previous chapter. I am always 
a little taken aback to see numbers or other mathematical symbols (e.g. ‘7’ rather 
than ‘seven’, ‘+’ rather than ‘plus’) presented inside classroom transcripts, which 
supposedly provide a written account of what was said. Everything that is said is 
said by someone in some natural language (or natural language mix – cf. code-
switching, e.g. Setati 1998 – such as where a somewhat bilingual speaker may know 
how to say the higher number words in one language only). Non-verbal numerals 
(of whatever sort) are not part of any natural language,1 so they require ways to be 
read aloud into such a language. Because of this, I believe it is important to be very, 
very precise about marking such distinctions. In Pimm (1987), for instance, I distin-
guished between what I termed a ‘spelling’ reading and an ‘interpretative’ reading 
of written mathematics: for example, is the Biblical ‘number of the beast’ (666) to 
be said as ‘six six six’ or is it ‘six hundred and sixty-six’ (in British English) or ‘six 
hundred sixty-six’ (in the North American version)? What it is not, however, is ‘six 
hundreds (and) sixty-six’, something I will come back to later on.2

1 Chrisomalis asserts, ‘Over 100 structurally different numerical notation systems are known to 
have been used between 3500 BCE and the present day […] Unlike number words, they represent 
numbers translinguistically, and do not follow the language or lexicon of any specific language. 
Unlike tallies, they represent completed enumerations, and unlike computational technologies, 
they create permanent records of numerals’ (Chrisomalis 2009, pp. 506–7).
2 Note this is not true when saying decimals in English: ‘666.66’ can be read aloud as six hundred 
(and) sixty-six and sixty-six hundredths. The negative whole number powers of ten are always read 
in terms of plural-marked units.
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Is ‘six six six’ even a spoken number or simply a time-ordered string of digits 
being listed in turn (one no different from a reading into English of ‘6, 6, 6’ rather 
than ‘666’), one that ignores the positional structure? In French, certain numbers 
(such as phone numbers) whose cardinal value is seldom of interest are frequently 
read (and written) as sequences of two-digit numbers: 02 65 47 23 46. I will come 
back to this later too when querying whether the number-word system of any lan-
guage reflects place value (or better put perhaps, in relation to speech, ‘temporal 
value’). My broader point is that there are significant differences between speaking 
and writing in relation to numbers, most particularly when it comes to engaging 
with the written symbolism of mathematics (not least of number), differences that 
are forgotten at our peril.

As numerical anthropologist Stephen Chrisomalis claims, ‘The linkages between 
number words, computational technologies, and number symbols are complex, and 
understanding the functions each serves (and does not serve) will help illustrate the 
range of variability among the cognitive and social systems underlying all mathe-
matics’ (Chrisomalis 2009, p. 496).

4.2  �What Is Written and What Is Said

I start by echoing the claim from early on in Chap. 3 that ‘whole number arithmetic 
is not culture-free, but deeply rooted in local languages and cultures with the inher-
ent difficulty of transposition and culture perspective’ (this volume, Sect. 3.1.2). As 
mathematician René Thom once observed:

when learning to speak, a baby babbles in all the phonemes of all the languages of all the 
world, but after listening to its mother’s replies soon learns to babble in only the phonemes 
of its mother’s language. (cited in Ziman 1978, p. 18)

Also, from Chap. 3’s opening page, the expression ‘cultures of speaking’ brought 
to mind the fact that there are ‘cultures of writing’ too (e.g. the order of writing of 
the two numerals within a single fraction – see Bartolini Bussi et al. 2014) and that 
these two may not perfectly align within a single ‘culture’ (see later for a further 
example involving grouping of digits within a large number in relation to how they 
are read). And these both influence and are influenced by the physical actions and 
gestures implicated in counting and computation (a fact worthy of the historical and 
geographical term ‘cultures of gesture’, such as varied forms of finger counting and 
finger calculation3 – for many examples and a classification scheme, see Bender and 
Beller 2012). It is important to remember that, in many times and places, these two 
mathematical actions (counting and computation) were barely connected at all – 

3 One instance is recorded in the writings of the Northumbrian monk Bede (674–723 CE): for 
example, in De temporum ratione. O’Daly (2014) writes: ‘The hand, the most portable device of 
all, was a powerful tool for symbolic representation, calculation, and mental processing in the 
Middle Ages, and indicates the presence of a comprehensive, but elusive, gestural vocabulary, the 
full meaning of which we can only guess’.
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e.g. the combined but unrelated use of Roman numerals to hold numbers and count-
ing boards with which to calculate (see Tahta 1991; Chrisomalis 2010).

In response to the piece about fraction writing order by Bartolini Bussi et  al. 
(2014), I wrote:

With fractions written by hand, the composite symbol is produced in a given, temporal 
order. How might that gestural order relate either to what is said or to how what is said is 
conventionally written? In English, the first word spoken in time is the numerator: is this so 
for any language? When a fraction word is written down in English, left to right, the numer-
ator is again the first word to be written. (Ditto the question about other languages.) But 
when the composite symbol for the fraction is produced, there are variations possible, as 
their terrific vignettes from China and Burma attest. But both examples point to the arbi-
trary nature of manual symbol formation (in Hewitt’s 1999 use of that word) and to the fact 
that, once made, the symbol retains (almost) no trace of its making [not least its order]. 
(Pimm 2014, p. 15)

The many cultures of number are fascinating and intricate, and the particularities 
of language vis-à-vis time and place, in interaction with computational technologi-
cal devices (which have existed for at least 5000 years), offer a most worthwhile 
focus for profound attention. In relation to very recent work concerned with what 
might be termed ‘tangible technological gestures’ (see Sinclair and de Freitas 2014, 
not least in regard to Jackiw and Sinclair 2014), languages themselves at times 
encode forms of gesturing that have their own transparencies and opacities, their 
own generalities and idiosyncrasies, all of which form part of the complex symbolic 
world into which all children are born.

For Wittgenstein, language is, initially but fundamentally, reactive, the word not 
being the origin:

The origin and the primitive form of the language game is a reaction; only from this can 
more complicated forms develop. Language – I want to say – is a refinement, ‘im Anfang 
war die Tat’ [in the beginning was the deed]. (Wittgenstein 1937/1976, p. 420)4

In relation to the deed of counting, the specific pedagogic language of computa-
tional practice (e.g. the English arithmetic metaphor in addition of ‘borrowing’ and 
‘paying back’) brings with it the possibility that it was at one point literal. One 
potential example taken from Chap. 3 relates to the suggested link between the 
medieval Latin expression reservare in manibus (‘to keep in the hands’) and the 
more contemporary French term à retenir (‘to keep in mind’). It crossed my mind 
that the former, in relation to abaci and counting boards, might literally refer to what 
the hands had to do. Elsewhere, Wittgenstein also commented, ‘Remember the 
impression one gets from good architecture, that it expresses a thought. It makes 
one want to respond with a gesture’ (Wittgenstein 1932, p. 22e). This observation 

reminded me of the Egyptian hieroglyph for million ( ), plausibly a human whole-
body gesture at the large size of the number.

Language is not separable from culture nor from gesture (especially not in the 
context of counting). Gestures perhaps have evolved over a longer period and 

4 For much more on this, see Zwicky (1992).
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perhaps have left their trace on the language.5 There is also the possibility of tempo-
ral slippage of one system in relation to a development within the other, not dissimi-
lar to those identified by Lakoff and Núñez (2000) with regard to the calculus, 
whereby the (static) talk is mid-nineteenth century, while associated (dynamic) ges-
tures are more seventeenth century in nature (more fitting to the notion and language 
of a moving variable, a language that is returning with dynamic geometry 
environments).

In particular, Raphael Núñez examined the co-production of gestures and speech 
of Guershon Harel proving a result from real analysis. Núñez observes:

The study of gesture production and its temporal dynamics is particularly interesting 
because it reveals aspects of thinking and meaning that are effortless, extremely fast, and 
lying beyond conscious awareness (therefore not available for introspection). (2009, p. 319)

But it is also true that the gestures are co-produced when counting (and that in 
certain circumstances constitute counting), phenomena that are equally worthy of 
study as their higher mathematical counterparts. Nevertheless, the focus of this 
chapter as well as its predecessor is on number language and not number gestures, 
even though I do not wish to dismiss the latter as epiphenomenal, the way labelling 
them ‘paralinguistic’ does.

4.3  �On Place Value

With regard to place value, one of Chap. 3’s central themes, I have three main obser-
vations to make.

First, I would like to consider whether the phenomenon of place value exists 
solely in relation to written numerals (i.e. written marks, nowadays usually, but not 
always, employing what are termed Hindu-Arabic numerals6) and not in respect of 
written words or characters from a natural language and whether it also could 
describe aspects of spoken number words in a natural language as well (or even 
gestural language – query: what is the structure of number signs in British, American 
or Chinese sign language?). This question reflects my increasing uncertainty as to 
what place value actually is, as well as echoing Tahta’s (1991) informed assertion 
that place value is appreciably overemphasised in Western mathematics teaching – 

5 Numeration systems are among the most linguistically stable systems that exist: the pronuncia-
tion split within proto-Indo-European languages into classes labelled centum and satem (two dif-
ferent words for ‘hundred’, in Latin and Avestan, respectively) is a surface reflection of this. For an 
intriguing account of zero, see Rotman (1987).
6 Chrisomalis (2009) helpfully observes, “I use the term ‘western’ to refer to the signs 0123456789 
instead of ‘Arabic’ and ‘Hindu-Arabic’, not to deny that this innovation was borrowed from a 
Hindu antecedent through an Arabic intermediary, but to avoid confusion with the distinct Indian 
and Arabic numerical notations used widely to this day. Rendering these latter notations ‘invisible’ 
through nomenclature is counterproductive and potentially ethnocentric.” (p. 496). In response to 
this, hereafter I use single quotation marks around ‘Hindu-Arabic’ in this chapter.
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and the discussion of Chinese numeration in Chap. 3 relates to this, when the authors 
claim, ‘The transparency of Chinese [number] names is likely to foster students’ 
understanding for place value’ (this volume, Sect. 3.2.2). Though if, as I argue 
below, place value is simply a convention, then there is a strong question as to 
whether it is something that is amenable to being ‘understood’, rather than simply 
complied with (see Hewitt 1999).

My questioning arose from reading Chap. 3. The authors claim that traces (which 
they nicely term ‘memories’) exist within many spoken numeration systems within 
natural languages. But these are, at best, ordinal traces, with regard to how number 
names are said in a conventional order (in English, in decreasing powers of ten, 
although exceptions like four-and-twenty still exist; in German, the decades are 
systematically said after the units, e.g. 54 is vier-und-fünfzig, ‘four-and-fifty’). This 
raised two sub-questions: does it make sense even to ask whether written (or spo-
ken) natural language numeration systems are or are not place value and, in regard 
to written numeration systems that were not place value (e.g. the ancient Egyptian 
one), what were their spoken counting systems like?

In regard to the first question, my (admittedly strong, potentially over-strong) 
conjecture is no spoken language-based numeration system is place value (not even 
Asian ones, which would be the most likely contenders). This is because the struc-
ture of how number words are formed ensures that their decimal value is encoded as 
part of the string, thus changing either the written order (of language-specific sym-
bols on the page) or (temporally) the spoken order in which the various parts of the 
numeral are said aloud does not alter the combined total. It may go against conven-
tion (as ‘four-and-twenty’ does), but it does not produce a different number. (Of 
course it is true that simply interchanging the ‘six’ and the ‘seven’ in ‘sixty-seven’ 
and ‘seventy-six’ changes the value but that ignores the fact that ‘six’ is part of 
‘sixty’.) So possibly place value is solely a phenomenon of written, non-language-
based numeration systems, and whichever natural language is used cannot help with 
this.

My second place value observation, which relates to the first, has particular force 
because of the particularities and peculiarities of manipulatives such as Dienes 
blocks (also known as multibase arithmetic blocks – see this volume, Sect. 9.3.1.2), 
which are regularly promulgated as a means to assist with acquiring the concept of 
place value. See Fig. 4.1.

It is a commonplace pedagogic move in English-language primary schools to use 
large sheets of paper and columns labelled (from left to right), thousands (or Th), 
hundreds (or H), tens (or T) and units (or U).7 The blocks are collected and placed 
in the respective columns and then ‘Hindu-Arabic’ digits are used to record the 
number of them in each column, hugely finessing the fact that it is actually the paper 
columns and not the blocks themselves that are both ‘holding’ the places and, con-
sequently, carrying ‘place value’.

7 And these too can go on, TThs for tens of thousands, HThs for hundreds of thousands, Ms for 
millions, etc. Note how both words for TThs and HThs are plural, but in the notation, only the latter 
is marked symbolically. For more on this, see Sect. 4.4 on ‘units’.
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However, as with the instance mentioned in Chap. 3 where a 7-year-old writes 
10013 instead of 113, an accurate (as opposed to conventionally correct) notating 
from a corresponding Dienes block paper configuration would be 1H, 1T, 3Us = 100, 
10, 3 = 100103. The question of quantity versus place is an intricate and arbitrary 
one (again in Hewitt’s 1999 sense), and there is no necessary reason why there can-
not be any number of blocks of any size in a single column (something an abacus 
masks by each spike having a set, uniform height relative to the diameter of the 
beads). Indeed, a higher (and linear-algebra-influenced) mathematical perspective 
has any whole number generated by the basis consisting of powers of 10 (and 
includes decimal fractions, if negative powers of 10 are permitted) with the coeffi-
cients 0–9. It is partly for this reason that I mentioned the six, six, six reading of 
‘666’ in the opening paragraphs of this commentary (as well as linking to David 
Fowler’s 1987 historical reconstruction, via the arithmetic process of anthyphaire-
sis, of a pre-Euclidean functioning definition of ratio).

Before raising further difficulties, there are three more observations I wish to 
make about Dienes blocks themselves. The first is that they can actually be modified 
to display any whole number or decimal fraction. To have ten thousand, for instance, 
one simply needs to stick together ten of the large cube size; for hundred thousand, 
a square array of a hundred of the large cube size; and for million, a cube array of a 
thousand the large cube size. For decimal fractions, merely rename one of the larger 
blocks (e.g. the larger cube or the ‘long’ or the ‘flat’ as they are sometime called) as 
‘one’.8 Secondly, this visuo-geometric repetition every 103 exactly fits the SI 
(Système Internationale) emphasis on grouping whole number digits into triples, as 
well as reflecting the standard metric naming structure of measures (though if we 

8 As is so often the way of these things, having figured this out for myself, I then came across the 
paper by Kim and Albert (2014) which purports both to give an account of and to account for the 
history of base-ten blocks. While disagreeing profoundly with much of their accounting for, they 
did remind me that in Dienes’ (1963) book An Experimental Study of Mathematics Learning – a 
book which I read in 1972 as part of a very early mathematics education course taught by David 
Tall in the University of Warwick mathematics department – Dienes makes the same observation, 
on his p. 28.

Fig. 4.1  Dienes blocks (1000, 100, 10 and 1)
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wanted to use this to refer to a kilo-something, a milli-something or a micro-
something, we would need a word for a standard counting unit – other than ‘unit’). 
My third observation is straightforward: there is a ‘natural’ and directly observable 
sense of decimal equivalence between each power of ten and the next one.

However, it strikes me that Dienes blocks are at least as good a fit to the base-ten 
system of Egyptian hieroglyphic numerals (which uses the repetition of vertical 
lines, hoops, scrolls, lotus flowers, etc. where there are no links whatsoever among 
the symbols for 1, 10, 100, 1000 and so on, either to record numbers or to calculate 
with them).9 (See Fig. 4.2.) And this numeration system is decidedly not a place 
value one.

In general, there are two alternate principles for generating words or other sym-
bols for numbers: repetition (related to tallying) and cypherisation, namely, the use 
of distinct and independent symbols for each number. Many older symbolic systems 
use repetition as the primary principle. For example, below (see Fig. 4.3) depicts an 
example using the ancient Egyptian numeration system: on the left is the conven-
tional order and on the right in a scrambled order. (Whole-number adding is totally 
unproblematic as the symbols themselves are simply combined, and any excess over 
nine of one power of ten is converted into one of the next power up.)

9 This is not always the case historically. With Roman numerals, for instance, they are perfectly 
competent for recording numbers. However, due to a variety of principles being combined (both 
additive and subtractive, the use of 5, 50, 500, etc. as an intermediate resting place sometimes 
called a sub-base, etc.), they are not easily used for calculation (particularly multiplication and 
division). But the companion use of counting boards was perfectly adequate for that.

Fig. 4.2  A depiction of Dienes blocks (with ancient Egyptian hieroglyphs for 1000, 100, 10 and 1 
appended)

Fig. 4.3  An ancient Egyptian numeral (in conventional and scrambled order)
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‘Full’ cypherisation means every initial numeral up to one less than the base has 
a different symbol (think 1, 2, 3, 4, 5, 6, 7, 8, 9). Chinese rod numerals (discussed 
in Chap. 3) reflect enormous flexibility with very limited cypherisation (the vertical 
rod and the horizontal rod), akin to Roman numerals I and V, only without the 
latter’s subtractive principle10 and much repetition, likely because they became 
traces of actual piles of rods used on counting boards, where an attribute of the 
board (lines, positions) took care of the place value. Likewise, ancient Babylonian 
numeration consists in its entirety of only two distinct stylus edge marks (one the 
same as the other only rotated through 90°), together with a mixed-base system (ten 
and sixty), repetition, a form of place value and contextual ‘floating point’.

One pragmatic test for any written system (presuming it makes repeated use of 
the same set of symbols or objects) with regard to its being place value or not is 
whether one can generically scramble the order of the marks and not affect the 
numerical value represented: this is true with Dienes blocks and also with ancient 
Egyptian numerals. In passing, it is also true of early Greek (Ionian) numerals (and 
are still used today for depicting ordinals), where the numeral for 1 bears no relation 
to that of 10 or 100, being different letters of the alphabet. The Egyptian numerals 
(as do the Greek) retain their specific decimal value, even when rearranged – see 
Pimm (1995) for more on these complexities of symbol/object manipulation. 
Consequently, Dienes blocks cannot ‘contain’ place value. So, if they do ‘work’, 
how do they ‘work’? The ‘value’ is there, but the ‘place’ is not.

Caleb Gattegno (e.g. Gattegno 1974) repeatedly proposed systematising 
language-based counting systems in elementary schools in different European lan-
guages, in order to make them easier to learn by being a far closer fit to the standard 
Western written numeration system. In particular, in English he wanted ten to be 
said as ‘one-ty’, eleven as ‘one-ty-one’ and twelve as ‘one-ty-two’11 and then twenty 
as ‘two-ty’, thirty as ‘three-ty’ and so on. With the later decades (sixty, seventy, 
eighty, ninety), the changes merge with the actual empirical system. There is a 
samizdat-style community within Anglophone mathematics education (especially 
within the UK, but in North America and Western Europe too), which works exten-
sively with Gattegno’s ideas (and the teaching aid of the Gattegno number chart, 
among others), in order to support the acquisition of structured fluency in number 
naming (for one recent instance, see Coles 2014).12 The Chinese numeration system 
detailed in Chap. 3 (which presents in several other Asian languages too) has these 
properties already.

My third place value observation relates to the notion of linguistic/conceptual 
transparency as employed in Chap. 3, the generation of number terms for powers of 

10 For example, instead of IIII, they used IV = V – 1; instead of XXXX, they used XL = L – X, but 
this shortening only occurred in mediaeval times.
11 The etymology of eleven and twelve is quite singular, deriving from old Norse words ‘einlief’ 
and ‘twalief’, meaning, respectively, ‘one-left’ and ‘two-left’ (presumably after taking away ten, a 
trace subtractive principle that can also be seen in Roman numeration).
12 There is also a far greater emphasis in this community on the value of acquiring ordinal elements 
of counting: see Tahta (1998) or Coles and Sinclair (2017).
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ten and how they relate to the standard (SI) means of writing large whole numbers 
using ‘Hindu-Arabic’ numerals. In Chinese, 千 (qiān13) is the character for ‘thou-
sand’ although none is needed, as it is not in English either, based on the principle 
that a new power-of-ten name is only needed when the same two terms would oth-
erwise be next to each other. ‘Ten tens’ gives rise to ‘hundred’, but ten hundreds 
(‘thousand’) should cause no difficulty (and does not in naming centuries, e.g. ‘the 
seventeen hundreds’) and need not exist, while ‘hundred hundreds’ is the next one 
that should generate a new term. In Chinese, that character is 万 (wàn), while 
English speakers just say ‘ten thousand’. (To belabour the point, notice it is not said 
as ‘ten thousands’, as conventional pluralisation rules of English would demand – 
though see the next section on the distinction between mass and count nouns.14) It is 
this same principled issue that causes divergent interpretations of ‘billion’ (‘hun-
dred million’ in North America, ‘million million’ in the UK, at least historically): 
likewise with ‘trillion’. But the generation of these new words for certain powers of 
ten allows the use of the same number words from one to nine to be combined to 
name every whole number.

The SI number convention declares:

The digits of numerical values having more than four digits on either side of the decimal 
marker are separated into groups of three using a thin, fixed space counting from both the 
left and right of the decimal marker. Commas are not used to separate digits into groups of 
three. (http://physics.nist.gov/cuu/Units/cheklist.html)

Thus, for example, 213 154 163 is how this number should be written. However, 
this convention makes a (false, universal) presumption in relation to every natural 
language on the planet with regard to the structure of number words within each 
language, because, as I mentioned at the outset, written numerals are not part of any 
natural language.

So in relation to transparency and Chap. 3’s claimed ‘perfect’ match of Chinese 
numeration and ‘the mathematician’s arithmetic’, this is one place where the 
Chinese language numeration system does not match SI at least, namely, with regard 
to delimiting (whether by means of commas, full stops or spaces) numerals with 
more than four digits. For instance, twelve thousand is written in Chinese as 一万两
千 (yīwàn liǎngqiān; in other words, one wàn two qiān – one ten-thousand and two 
thousand), which does not match 12 000. The written symbolic form of numbers can 
thus aid or interfere with generating the corresponding correct, language-specific 
spoken form.

In an article about this particular mismatch, Arthur Powell opens his account as 
follows:

In May and June of 1984, while conducting a series of mathematics teacher education 
workshops in Beijing, capital of the People’s Republic of China, I was introduced to some 
pedagogical problems in Chinese numeration. They involve the teaching and learning of 

13 Throughout this chapter, and indeed this volume, Hanyu Pinyin (a standardised Romanisation 
system for Mandarin Chinese) is used to represent Chinese characters.
14 The Greek word for ten thousand – myriad – is used in English as a ‘round’ number word for a 
very large number (for much more on the linguistics of round numbers, see Channell 1994).
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how to speak numerals with fluency in Chinese, using Hindu-Arabic written numerals. A 
salient feature of these problems manifests itself when Chinese students attempt to read 
numerals longer than four digits. For example, even graduates of senior middle schools find 
it necessary to read 6,721,394 by first pointing at and naming from right to left the place 
value of each digit before knowing how to read the “6” in the millionth place and the rest of 
the numeral. (Powell 1986, p. 20)

Powell’s proposals with regard to a way of ameliorating this difficulty in this 
article relate to a suggestion generated by Gattegno’s ideas of the power of peda-
gogic modification of certain elements of number-naming systems in order to 
emphasise structure:

[this proposed alternative approach] allows learners to become aware of the regularity of 
Chinese numeration. It also helps learners to develop strategies for by-passing reading dif-
ficulties caused by the employment of a convention of delimiting digits which is contradic-
tory to the linguistic structure of Chinese. (p. 20)

So, by putting a space or comma after every four digits (rather than three) and 
reading the delimiter as wàn, correctly spoken Mandarin Chinese numeration fol-
lows, rather than it having to be memorised.15 But this does raise the question of 
where, in regard to mathematics, does a specific language ‘stop’.

Finally, I was led to wonder, if place value can be so transparent in some sys-
tems, whether it becomes hard to think about change of base. But I cannot go into 
this here. The next core element of this commentary relates to the complex issue of 
numerical units.

4.4  �Count Nouns and Mass Nouns: The Question of Units

The motivation for exploring the issues of this section arose in part from the inter-
esting and important discussion of number classifiers in Chinese provided in Chap. 
3, but also from my simple curiosity wondering why in lots of settings English 
number words have features of nouns that reflect both singular and plural forms: for 
instance, in the everyday expression ‘hundreds and hundreds’ compared with ‘two 
hundred (and) fifty-three’. Or, the spoken number following ‘ninety-nine’ is ‘one 
hundred’ or ‘a hundred’, yet the number following one hundred ninety-nine is ‘two 
hundred’). Why is it that ‘hundred’, when used as a power-of-ten unit, is singular 
(e.g. two hundred and forty-two, rather than two-hundreds and forty-two)? Why do 
number words put pressure on the straightforward singular/plural distinction in 
English? How does this play out in the units for the countable noun and are numbers 
themselves such units? As Wittgenstein observed, ‘Grammar tells what kind of 

15 To illustrate how devastating this can be, I noticed today that my ticket for the Vancouver 
SkyTrain has a twenty-digit identification number, presented in groups of four: 0001 1570 5839 
8568 8326. Had I to read this aloud as a single number (were I concerned, say, about its cardinal-
ity), rather than as simply a string of digits with a pause for each space, I would be rendered 
speechless.
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object anything is’ (Wittgenstein 1953, p. 116); hence, this uncertainty (present also 
in singular or plural verbs) potentially reflects an ontological instability at the heart 
of (English-language) number.

The earlier discussion of Dienes blocks and the paper tabular presentation also 
had column headings that were called ‘thousands’, ‘hundreds’, ‘tens’ and ‘units’. 
Yet once numerals were used to replace the (multiple) blocks, the differentially 
marked plural forms vanished in both the corresponding spoken and written English. 
(With regard to fractions words in English, not least the question of whether ‘three-
fifths’ is a singular or plural noun and how it differs syntactically from ‘three fifths’, 
see the next section.)

In order to pursue some of the challenges that were mentioned in the previous 
section, I wish to examine certain morphosyntactic aspects of number words in 
English. One broad distinction in English grammar (which has commented upon in 
the literature since at least the early 1900s16) is the distinction between count nouns 
and mass nouns (the latter is sometimes referred to as ‘non-count’ nouns, though the 
two categories are not the same – see Laycock 2010), albeit one currently eroding 
(as is the case with round numbers) in interesting ways.

Edward Wisniewski begins his chapter on the potential cognitive basis for such a 
distinction as follows:

English and other languages make a grammatical distinction between count nouns and mass 
nouns. For example, “dog” is primarily used as a count noun, and “mud” is primarily used 
as a mass noun. Count nouns but not mass nouns can be pluralized and preceded by numer-
als (as in “three dogs” but not “three muds”). Count nouns but not mass nouns can appear 
with the indefinite determiner “a” (as in “A dog ate the chicken” but not “A mud covered the 
chicken”). On the other hand, mass nouns can appear with indefinite quantifiers, such as 
“much” or “little” (as in “much mud” but not “much dog”), whereas count nouns can appear 
with indefinite quantifiers such as “many” and “few” (as in “many dogs” but not “many 
muds”).17 (2010, p. 166)

There are many things to be said about this distinction. One key observation 
concerns the potential that any English noun, in certain circumstances, can come to 
take on both count and mass aspects, rather than, as suggested above, that these are 
two disjoint noun categories. This is also marked by the failing distinction between 
fewer (count) or less (mass), likewise many and much. In a mathematics context, 
this flexibility can be seen in the nineteenth century with the terms ‘algebra’ or 
‘geometry’, where mathematical developments (non-Euclidean geometry, Boolean 
algebra) subsequently enabled ‘an algebra’ or ‘two geometries’ to be spoken of (and 
related to highly significant shifts in the perception of the underlying mathematics 
being referred to). In the late twentieth century, ‘technology’ has morphed to allow 

16 This distinction is certainly not limited to English but is far from universally employed across 
languages. In particular, the various forms of Chinese do not distinguish these categories, instead 
using classifiers as described in Chap. 3.
17 There is a footnote in Wisniewski’s chapter at this precise point, which begins, ‘Some languages 
such as classifier languages (e.g. Japanese) do not make a distinction between count and mass 
nouns. Nevertheless, they do have mechanisms for indicating that an entity is or is not individu-
ated’. As explored at length in Chap. 3, Chinese is also a classifier language.
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‘a technology’ or ‘digital technologies’. All instances of conventionally mass nouns 
admit count possibilities and characteristics, and vice versa.18

A second observation has to do with the way that mass nouns are quantified: 
traditionally, this was by using various instances of the ‘a unit of’ construction (e.g. 
‘a slice of’ or ‘a loaf of’ bread, ‘a grain of’ rice), where the unit could always be 
quantified, i.e. was itself a count noun. (Though, contrariwise, seeing four as ‘a 
quartet of’19 permits all count nouns to be seen as mass nouns – albeit in the plural 
form – where the number words themselves can be quantified: two quartets of, three 
septets of, and so on.20)

However, the most educationally significant thing by far that this distinction 
relates to in regard to this chapter and the previous one is the extent to which num-
ber words themselves (in English or other languages), when functioning as nouns 
(as they do in arithmetic), do so as mass or count nouns. This is centrally related to 
the passing comments I have repeatedly made so far about whether it should be 
‘hundred’ or ‘hundreds’.

In the specific context of this chapter, however, my interest lies with English 
number words themselves in their nominal form, one, two, three, etc., and the cor-
responding ordinals, first, second, third (which may or may not function as nouns), 
and the somewhat bewildering connection in some languages between ordinals and 
fraction terms (see Pimm and Sinclair 2015, as well as the next section). With all of 
these sets of number words, the question is: mass or count?

Consider the English word count sequence ‘one, two, three, etc.’. One of the 
ambiguities in English in respect of multiplication has to do with whether it ‘should 
be’ four twos is or four twos are eight.21 Notice the distinct pluralisation of ‘two’ 
marks it as a count noun, as does the ‘count’ word ‘four’, as does the verb agree-
ment of ‘are’ with the pluralised noun form ‘twos’. The presence of a count noun 
permits the question ‘How many?’ to be asked in relation to it (for much more on 
this, see Sinclair and Pimm 2015a). Yet in the count sequence one, two, three, etc., 
the number words act more like mass nouns. And, as always, what cognitive shifts 
or chasms underlie such linguistic uncertainties?

Look at the ordinal terms: first, second, third, fourth, etc. While it is possible to 
imagine scenes where a count noun perspective is possible (e.g. in an athletic meet-
ing, asking a runner: how many firsts, and how many seconds?, meaning first places 
and second places), these act more like mass than count nouns. But notice what 
happens when we shift to the related fraction forms: again, we get two sevenths and 

18 As a potential example of nouns going the other way, consider ‘I returned to the car and there was 
bird all over the windshield’, though this also could be seen as an anti-synecdoche, using the whole 
for the part.
19 With regard to Ancient Greece, David Fowler refers to arithmoi as cardinals, but helpfully 
observes, ‘a much more faithful impression of the very concrete sense of the Greek arithmoi is 
given by the sequence: duet, trio, quartet, quintet, …’ (Fowler 1987, p. 14).
20 Cf T. S. Eliot’s Four Quartets as well as the earlier mention of Fowler and arithmoi, specifically 
in the previous footnote.
21 Though here the question, in relation to the calculator and what is said when pressing the ‘=’ 
button, is perhaps whether the verb should not be ‘is (are)’ but rather ‘make(s)’ or ‘give(s)’.
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three tenths, which are plural and count nouns (and would encourage this syntax for 
statements like ‘two sevenths are bigger than three tenths’). But then the unifying 
hyphen may show up (two-sevenths, three-tenths), with the effect of singularising 
these composite forms.22

Once again, this section simply contains some brief comments and observations 
about number language in certain contexts. In the next section, I move towards 
aspects of a range of number word systems.

4.5  �Cardinal, Ordinal and Fractional: Three Interlocking 
Linguistic Subsystems

Whole numbers are not the only game in town. Languages also have systematic 
ways of naming (of summoning, of calling into being) ordinals and fractions (deci-
mals or otherwise) as well. Most of what follows specifically concerns the English 
language, though a more diverse discussion (concerning some twenty different lan-
guages) can be found in Pimm and Sinclair (2015), which explored variations 
among these three sets of number words across a variety of languages and language 
groups. The motivation to do so arose from the two papers in For the Learning of 
Mathematics (Bartolini Bussi et al. 2014; Pimm 2014), most specifically in relation 
to close links (in some languages near identical) between how ordinal words and 
fraction words are formed (and why this might be).

In an attempt to summarise some of what was found, here are four diagrams that 
reflect different relationships among cardinal (C), ordinal (O) and fraction (F) words 
within specific languages from my dataset. The arrows indicate ‘adding’ a suffix to 
the previous sets of words to form the new set. Figure 4.4(a) captures, e.g. Norwegian, 
while (b) exemplifies one common relationship (e.g. German): (c) is the ‘degener-
ate’ case of (b) that fits some Western European languages (e.g. English, French, 
Italian and Spanish), while (d) reflects Hungarian.

22 Pedagogically, Hewitt (2001, pp. 47–8) explores fraction operations based primarily on linguistic 
parallels between invented non-number noun names (that he gives compound number name pat-
terns to, such as ‘flinkerty-floo’ or ‘zipperly-bond’) and number nouns, asking not only ‘how many 
twenty-fourths are there in one?’ and ‘how many four-hundred-and-twentieths are there in nine?’ 
but also ‘how many flinkerty-flooths are there in one?’ and ‘how many flinkerty-flooths are there 
in zipperly-bond?’. Note his use of ‘How many?’ questions and plural number nouns and plural 
verbs throughout.

Fig. 4.4  (a–d) Various relationships among sets of number words within a single natural 
language
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As I mentioned at the outset, one question I was led to examine was how these 
naming systems relate one to another within a given language, as well as how they 
relate to gestures on the one hand and to trans-linguistic written numerals on the 
other. Ordinality primarily concerns the sequential aspect of whole numbers, as 
opposed to their quantitative (cardinal) one. And there is a key and fundamental 
question about which came first, cardinal or ordinal. (For much more on this, see 
Seidenberg 1962 and Sinclair and Pimm 2015a.) But spoken ordinal terms carry a 
significant difference from cardinal terms in that the core issue becomes which one 
comes before or is said before or after another, rather than which one is bigger or 
smaller. Thus, ordinality is strongly related to temporality rather than magnitude.

Here are two minute observations. First, there is a commonly employed, hybrid 
written notation that seems both to pull ‘Hindu-Arabic’ numerals into a specific 
language and to privilege the cardinal over the ordinal: 1st, 2nd, 3rd, 4th, 5th, etc. 
(even though in French it is 1er, 2ième, 3ième, 4ième, 5ième, etc.). The second one is spe-
cific to English and relates to the supposed cardinal counting decade words: both 
‘thirty’ and ‘fifty’ show explicit ordinal over cardinal traces – ‘thir-ty’ as the third 
‘-ty’, ‘fif-ty’ as the fifth ‘-ty’ – a visible (and audible) trace, not least because of the 
distinction between the English words ‘three’ and ‘third’ and ‘five’ and ‘fifth’ (from 
the two closely related English language systems of cardinal and ordinal words), 
whereas neither ‘four’ and ‘fourth’ exactly ‘fit’ ‘forty’.

There is an ordinal regularity in English after five, both of forming ordinals ‘from’ 
cardinals and the presumed economy (and greater ease of pronunciation) of poten-
tially dropping the ‘-th’ suffix from a possible, historical sixthty, seventhty, eighthty 
and ninethty. But in regard to my discussion in Pimm (2014) of ‘the fifth part’ (in 
regard to the singularity of unit fractions in Ancient Egyptian arithmetic), there is 
some appreciable specificity implied, in that ‘the sixthty’ (seen as ‘the sixth ‘-ty’’) 
would have to be unique and ‘a sixthty’ or ‘two sixthtys’ would not be feasible.

4.6  �A Few Concluding Remarks

The main focus of this commentary piece has been to draw attention to certain fea-
tures of number language, both language-specific ones (mostly in regard to English) 
and across certain classes of language (in terms of the presence or absence of certain 
distinctions, such as mass/count or classifiers) that may have some pertinence or 
significance in learning to number and to count. But underneath it has been an 
attempt to keep an ear and an eye out for ‘traces’ (‘memories’ in the terminology of 
Chap. 3) of what has passed before or en route (both within individuals and within 
cultures) to our present-day set of practices and forms with regard to number.

In particular, in my attempt to localise place value away from natural language 
and primarily into written symbolic notation systems (though it is important not to 
forget physical manifestations of the same, such as with khipu – see Chrisomalis 
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2009), I have endeavoured to make distinctions among the interlinked systems of 
language, notation and the world. In regard to mathematics education, far more 
generally, the potential overvaluing of cardinal number as the pedagogically pre-
sumed dominant form with regard to arithmetic and mathematics has some serious 
consequences, as has the consequent downplaying of ordinality and its significant 
role in learning how to count (see Tahta 1991, 1998; Sinclair and Pimm 2015a, b; 
Coles 2017).

In Fig. 4.5, there is my first attempt at trying to depict this (even though I already 
can see problems, oversimplifications, omissions and errors). It draws on the dis-
tinction between metaphoric and metonymic relations, as outlined in Tahta (1991, 
1998), which he links with the abacist and the algorist, respectively: the use of 
physical objects (which become metaphors for number) versus the ‘manipulation’ 
of numerals.

Tahta writes:

Metaphor and metonymy are not necessarily distinct polarities, but more like aspects that 
can be stressed or ignored as desired. One of our problems in teaching arithmetic is the 
move from the stress on metaphor to the stress on metonymy. We offer children counters 
and rods and so on, in order to mimic processes which we eventually want them to transfer 
to written or spoken numerals. (1998, p. 6)

As an individual becomes more and more numerically fluent, the separation 
between number words and numerals becomes less and less: but this does not mean 
that those distinctions and separations cease to leave their traces.

One final observation: Chrisomalis’s (2010) fascinating book on the history of 
numerical notation is over five hundred pages long. The world and its (linguistic) 
history in regard to whole number is a very complex and sophisticated mix. But also 
an engaging and, at times, fascinating one.

Fig. 4.5  Metaphor and metonymy in relation to the interlinked systems of natural language, nota-
tion and the world
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5.1  �Introduction

Mathematics learning and teaching are deeply embedded in history, language and 
culture (e.g. Barton 2008). Yet what historical, linguistic and cultural foundations 
are necessary for the early years of school to adequately prepare children for math-
ematics learning? To address this question, we summarise work on these three 
aspects of WNA to frame the entire volume and identify the historical, linguistic and 
cultural bases on which other aspects of learning, teaching and assessment are 
based. The chapter provides a meta-level analysis and synthesis of what is known 
about WNA’s foundations of history, language and societal changes, which serves 
as a useful base from which to gauge any gaps and omissions. This foundation also 
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provides an opportunity to learn from the practices of different times and languages 
and from societal changes.

5.1.1  �Conference Presentations: Overview

Thirteen papers written by authors from 11 countries were presented for Theme 1. 
For presentation and discussion, these papers were divided into four subgroups 
exploring several overlapping aspects of the why and what of WNA: the historic 
background of WNA, the language foundations of WNA, the foundational ideas that 
underlie WNA and the support for societal changes to the teaching and learning of 
WNA.

5.1.1.1  �Historical Background

Zou (2015) summarised findings from historical investigations of arithmetic in 
ancient China, including how number units were derived and named and how num-
bers were represented with rod or bead calculation tools and with symbols. Siu 
(2015) studied the book of Tongwen Suanzhi (同文算指) (Rules of Arithmetic 
Common to Cultures, 1614) and reviewed how counting rods and the abacus were 
gradually replaced with written calculations in China. Sun (2015), also discussing 
early Chinese development, presented the use of advanced number names and 
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calculation tools (counting rods and the suàn pán or Chinese abacus) and empha-
sised how place value is still the most overarching principle of WNA based on 
Chinese linguistic habit. Traces of this influence can still be found in contemporary 
core curriculum practices in many countries today.

5.1.1.2  �Language Foundation of WNA: Regularity, Grammar 
and Cultural Identity

Azrou (2015) reported how the historical and linguistic colonisation of Algeria 
affected the learning of WNA and presented the first step of an intervention for 
teacher education, which can also promote students’ cultural identities. Chambris 
(2015) showed how changes related to place value that were introduced by the New 
Math in France (1955–1975) continue to be influential today.

Houdement and Tempier (2015) reported on two experiments for strengthening 
the decimal (base ten) principle of numeration, assigning a key role to the use of 
numeration units in France. Changsri (2015) explored first grade students’ ideas of 
addition in two Thai schools in the context of lesson study and an open approach 
and found that the students used a variety of representations to express addition 
ideas.

5.1.1.3  �Foundational Ideas Underlying WNA

Dorier (2015) gave an overview of the development of numbers, showing how 
Brousseau’s theory can be used in accordance with this historical context to develop 
the key stages of a teaching sequence using the concept of numbers. Thanheiser 
(2015), also studying teacher education, adopted the perspective of variation theory 
and used historical number systems as a tool, finding that prospective teachers 
developed a more sophisticated concept of the base-ten place value system by 
examining, comparing and contrasting different aspects of historical systems. 
Ejersbo and Misfeldt (2015) described research introducing a regular set of number 
names in primary schools in Denmark. Sayers and Andrews (2015) summarised an 
eight-dimensional framework called foundational number sense (FoNS) that char-
acterises necessary learning experiences for young children. They demonstrated 
how to use the framework by analysing learning opportunities in first grade in five 
European contexts.

5.1.1.4  �Different Expected Learning and Teaching Goals for WNA

Cooper (2015) discussed how a university mathematician and a group of elementary 
school teachers, working together in a professional development course, revealed 
new insights into division with remainders. McGarvey and McFeetors (2015) 
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identified the Canadian public’s concerns about the goals of WNA and the support 
required for students to reach them.

5.1.2  �Working Groups’ Discussions

The eight one-hour sessions were organised in different ways. Examining variation 
in WNA across history and language and across different communities, working 
group 1 discussed the implications of different views on the why and what of WNA 
for instruction and teacher education. Place value in the so-called Hindu-Arabic 
system was discussed extensively in the working group sessions. In addition to the 
background discussion and questions posed in the Discussion Document (this vol-
ume, Appendix 2), the papers for Theme 1 can facilitate discussions of the follow-
ing questions:

	1.	 How has the place value concept developed across numeral systems?
	2.	 What are the issues of language and culture in WNA?
	3.	 How did/do different communities change past/current teaching of WNA?

5.1.3  �The Structure of This Chapter

This chapter describes number representations and their foundational ideas beyond 
the variations in WNA across history, language and culture. As the world becomes 
more unified and previously separate cultures interact and begin to merge, incom-
patibilities become visible and separations arise between different traditions and 
practices. Many of these incompatibilities can be seen in WNA. Particularly notable 
is the accommodation needed when traditional language is adapted to deal with the 
nearly universal decimal place value system for naming and calculating. Approaches 
to instruction and teacher education are affected by these incompatibilities, as this 
chapter discusses.

Historical evolution can provide a deeper understanding of the past and present 
in science as a means of consolidating and clarifying foundations (e.g. Jankvist 
2009). We begin with a historical survey of the numeration knowledge development 
of pre-numeral systems and the conceptual development of numeral systems. We 
then track the foundational epistemological and pedagogical insights from history. 
Section 5.2 highlights the differences between cultural practices, especially lan-
guage, and their links with the universal decimal features of WNA. Post-colonial 
tensions, where the inconsistency between spoken and written numbers and the 
incompatibility between numeration and calculation appear, are also explored. 
Section 5.3 discusses the influence of multiple communities within societies 
throughout history when attempts at changes are made. Different stakeholder groups 
in a given society may hold different goals for WNA and thus create different expec-
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tations and support within the society. Various examples are given and key compari-
sons are made, especially for understanding how and why curricula change.

In parallel with tendencies towards teaching mathematics in globalised ways, a 
shared awareness has recently evolved among teachers and researchers about the 
nature of mathematics through the study of its history, traditions and culture. By 
‘culture’, we mean a set of meanings that have been historically constructed, socially 
transmitted and continually modified and that are embodied in our symbols and 
language (e.g. Barton 2008). Through this set of meanings, people communicate, 
perpetuate and develop their knowledge and understanding of life (see also this 
volume, Chaps. 3 and 9). History and culture shape not only number names and 
concepts but also the use of numbers in measurement and operations. Different 
languages have their own syntax and semantics, which emphasise different aspects 
of numbers; these may foster or hinder a deep understanding of number concepts, 
especially ideas about base ten, place value and operations. While a purpose of 
education is to support the continuity of the structures and functions that are unique 
to a culture and to maintain cultural identity (e.g. Leung et al. 2006), local cultures 
need to link to universal cultures to avoid isolation in global development. A critical 
issue, then, is how a cultural system reflects on its own history, language and cul-
ture, identifies the disadvantages and advantages of its system, and overcomes its 
disadvantages and promotes its advantages. What lessons do we learn from these 
reflections and from the interventions that are based on them?

5.2  �Foundational Ideas that Stem from History

5.2.1  �Introduction: The Hindu-Arabic Numeral System

According to some historians, the story of the Hindu-Arabic system (e.g. Lam and 
Ang 2004) is derived from the Chinese story. See (Chemla 1998) for a different 
historical perspective and more details in this volume, Chap. 3. This system and its 
use, which was systematically presented in the Sunzi Suanjing, was transmitted 
through India during the fifth to ninth centuries, to the Arab Empire in the tenth 
century and then to Europe in the thirteenth century via the Silk Road (see Guo 
2010). Mathematics historians have debated the origins of the Hindu-Arabic 
numeral system for years. For example, French mathematics historian Georges 
Ifrah (2000) argued that as the Brahmi notation of the first nine whole numbers was 
autochthonous and free of any outside influence, the decimal place value system 
must have originated in India and was the product of Indian civilisation alone. In 
contrast, Lam and Ang (2004) argued that there is no early Indian text or evidence 
to show that it was used earlier there than in China. Early texts and evidence show 
that the Chinese used the rod numeral system continuously for almost 2000 years. 
This historical fact is not well known in either the Western or Eastern communities 
of math education because of the limited dissemination of the conceptualisation 
history of place value of the Hindu-Arabic system.
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According to Lam and Ang (2004), in Western Europe, before the advent of the 
Hindu-Arabic numeral system, few mathematicians would have been able to per-
form multiplication. In contrast, in ancient China, the operation of multiplication 
would have been commonly known as far back as the Warring States period (475–
221 BCE), not only among mathematicians but also among officials, astronomers, 
traders and others. This could be because the Chinese rod number system used the 
concept of place value. It is not surprising that the Nine Chapters on the Mathematical 
Art includes common fractions, areas, the rule of three, least common multiple, 
extraction of square and cube roots, volumes, proportion and inverse proportion, 
relative distance and relative speed, surplus and deficit, rule of false position, the 
matrix notation, negative numbers, simultaneous linear equations and right-angle 
triangles because it was grounded in the advanced decimal place value system 
(Chemla, 2007).

A culture’s arithmetic development may be confined or promoted by the numeral 
system used. For example, multiplication with large numbers could not be well sup-
ported by a simple tally system. The Hindu-Arabic numeral system is much more 
complex than others: it includes a principle for naming numbers, which is ten based 
with multiple units, and the additive and multiplicative relationships are embedded 
implicitly, with only the digits recorded. It is universally used in the world because 
every number, however large, can be easily represented and computations can be 
easily realised.

According to the Discussion Document (this volume, Appendix 2), historical 
reconstruction was in the foreground of WNA. For a better understanding of this 
system, a brief conceptual development of the numeral system1 is examined, and 
associated epistemological and pedagogical analyses are carried out below. This 
study has two motivations: to understand the foundations of established whole num-
ber arithmetic (product) by studying the historical origins (process) and to provide 
insights for modern teaching by investigating epistemological obstacles (this vol-
ume Chap. 9, esp. Sect. 9.3.2). Jankvist (2009) argued that ‘history can not only 
help to identify these obstacles, it can also help to overcome them: an epistemologi-
cal reflection on the development of ideas in the history can enrich didactical analy-
sis by providing essential clues which may specify the nature of the knowledge to 
be taught, and explore different ways of access to that knowledge’ (p. 237).

We examine the foundational idea of number representation development and do 
not describe all of the historical facts. The conceptual development of numeral sys-
tems can be classified into four types based on conceptual development progress: 
the tally system, additive system, multiplicative-additive system and decimal place 
value system. In each case, different strategies to realise operations were invented; 
these are explained below. Progress could better mirror the development of number 
structuring and some epistemological obstacles in history/learning (e.g. Jankvist, 
2009).

1 A numeral system (or system of numeration) is a writing system for expressing numbers – that is, 
mathematical notation for representing numbers of a given set using digits or other symbols in a 
consistent manner.
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5.2.2  �Knowledge of Pre-numeral Systems

5.2.2.1  �Early Numeration Practices

Many anthropologists (e.g. Ifrah 2000; Menninger 1969) have found that some 
ancient cultures did not develop numbers at all. Some had names only for one and 
two and some up to three or four. Larger numbers were described as ‘many’. In 
many ancient languages, words for ‘two’ or ‘three’ exist between singular and plu-
ral as a means to distinguish one from many, which is the beginning stage of the 
development of numeration.

One-to-one correspondence between an organised list of words – that is, the list 
of number names – and the units of a collection is typically considered an elemen-
tary process in counting, and it is the most fundamental stage. In many cultures (e.g. 
Menninger 1969), parts of the human body have been used to make one-to-one cor-
respondence, often starting with fingers. Despite having limited sets of number 
names, some cultures developed quantitative practices that go beyond the greatest 
number available, such as the use of tally systems, and partitioned large quantities 
into smaller countable quantities (Baxter 1989). A society’s early numerical prac-
tices are embedded in its development of a tally system, which is built on ordinal 
numbers, cardinal numbers and the counting principle – namely, one-to-one corre-
spondence (Seidenberg 1962). Beyond tally numeral systems, various cultures 
developed different numeration systems, yet all had in common a symbol for one, 
the unit of ones and other symbols for collections of that unit (May 1973).

5.2.2.2  �The Invention of the Counting Principle

Knowing whether quantities have increased or decreased was likely a key problem 
for many ancient tribal peoples. To recognise more or fewer, one of the earliest 
methods directly stimulated the invention of one-to-one correspondence with an 
intermediate collection of stones (Dorier 2015). Before representing and naming 
numbers, people developed several ways to evaluate quantities beyond rough esti-
mation. For example, we can imagine that shepherds were concerned about the 
possibility of losing sheep when they returned from the fields at night. We can only 
speculate how the use of stones became tokens in one-to-one correspondence, but 
there is clear evidence that tokens were used in one-to-one correspondence by the 
use of ‘envelopes holding counters to represent sets’ of numbers (Schmandt-
Besserat 1992, p. 190). Illustrations of artefacts were used to form records of num-
ber of tokens as representations. Several other artefacts, some dating to Palaeolithic 
times (15,000 BCE), such as notches and bones, are indicators of human activity 
related to the building of corresponding collections with specific cardinal numbers 
to record quantities. This may have been the beginning of the invention of the count-
ing principle.
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5.2.2.3  �The Pre-structures of Number Naming

Because of rhythmic demands of oral pronunciation, no language represents num-
bers by articulating the same sound more than two times. That is, there are no known 
examples such as ‘one one one one’ for four or ‘three three three’ for nine. Words 
are sometimes repeated but not more than once (Cauty 1984; Guitel 1975). This 
implies that number names are not based on the principles of a tally system (a 
numeration system of keeping a record of quantities and amounts by using single 
strokes to represent the objects being counted) (see Sect. 5.2.2 and this volume 
Chaps. 9 and 10). If number names exist in a given language, the list of the names 
of the smallest numbers is a sequence of words that is more or less long, and the 
words are more or less independent. Conversely, if a given language presents num-
ber names for large numbers, sequences of number names beyond a threshold 
always have a multiplicative structure. The threshold is almost always under 100 
(Cauty 1984; Crump 1990; Menninger 1969). In Chinese, and other languages such 
as Chunka (González and Caraballo 2015), the threshold is ten.

We consider the sequence before the threshold, as its structure is of interest. 
Cauty (1984) identified several types of sequences within spoken numbers:

	1.	 Ordinal – a list of words independent of each other.
	2.	 Ordinal with benchmarks – as described above, it begins with a list of words and 

is followed by benchmarks on a scale, e.g. the Panare language has benchmarks 
for 5, 10, 15 and 20 and counts from 1 to 4 between the benchmarks (Cauty 
1984).

	3.	 Cardinal with addition – where a number is represented by juxtaposed number 
names whose sum is the given number (such as how XXIII means two 10s and 
three 1s in Roman numerals).

	4.	 Cardinal with multiplication – where a number is represented as a sum of prod-
ucts of small numbers (‘digits’) times units (such as how three hundred two 
means three times one hundred and two in Chinese spoken and written 
numerals).

The Oksapmin people (Saxe 1981) use body parts to recognise numbers, moving 
from the right-hand fingers up to the right eye – the first finger is 1 and the eye is 13. 
The nose is 14, and they move symmetrically from the left eye to the left-hand fin-
gers to count from 15 to 27. This can be considered a long ordinal list. According to 
Cauty (1984), the ordinal-with-benchmarks type above is often confused with the 
cardinal type with addition/multiplication. The difference between the two lies in 
the grammar, which indicates movement in relation to the benchmarks. Benchmark 
and additive numeration may be the beginning of the idea of a base (as in base ten). 
However, in some languages, the names of larger numbers may be expressed in 
terms of smaller numbers and arithmetic operations, which may be the beginning of 
the exploration of number structure, e.g. 3 = 2 + 1 and 5 = 2 + 2 + 1, and even mul-
tiplicative forms such as 6 = 2 × 3 and 18 = 3 × 6. However, it is rare for 2 to be 
expressed as 1 + 1 (Crump 1990). In Nigeria, the Yoruba numeral system is based 
on 20, and other numbers may be expressed by subtraction, e.g. 35 = (20 × 2) – 5. 
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This can also be seen in Roman numerals, where, for example, CX means 110, but 
XC means 90.

To meet the need for counting, various cultures developed the counting principle 
and one-to-one correspondence and named numbers with some regularity, some-
times using addition and/or multiplication, to specify quantity. From these prac-
tices, we can learn about the conceptual development of number systems, as naming 
and operations (addition/multiplication) were developed at the same time. The 
counting principle, invented number names and written number symbols are needed 
for the development of a formal numeral system. However, the coordination between 
cardinal numbers and ordinal numbers could be considered too trivial, too easy to 
explicitly design in many curricula and lessons. These could be reasons for long-
term learning difficulty in later number development and operations.

5.2.3  �The Conceptual Development of Numeral Systems

5.2.3.1  �Tally Systems

The Ishango bone2 notches (about 18,000 to 20,000 BCE), ancient Chinese knots in 
string and Sumerian marks on a clay tablet show what appear to document quantity 
as an ‘early stone or agricultural age’ vision of numerals (Mainzer 1983/1991) in 
almost all ancient cultures (see also Sect. 9.2.2). Ifrah (2000, p. 64) points out that 
tally systems could be an early vision of systematic counting numbers ‘first used at 
least forty thousand years ago’. These could be the origins of Roman or Etruscan 
numerals (Ifrah 2000, pp. 191–197). Such marks clearly point to the development of 
ancient written number representations. Tally numeral systems are among the most 
primitive means of recording quantity (Hodgson and Lajoie 2015). Counting up and 
down might be the natural calculation of sums and differences. It is the simplest 
(unary) numeral system, and it plays an important role in the fundamental counting 
action of building one-to-one correspondence between objects and names, forming 
a set of reciting numbers in ascending order. This could be how the first systematic 
conceptualisation of numbers in a set of numerals developed. Tally systems directly 
reflect the fundamental idea of counting for small numbers: one-to-one correspon-
dence. Once tallying becomes an established practice, establishing a set of standard 
names for small numbers might be the next step, as it affords the ideas of both car-
dinal numbers and ordinal numbers and allows the description of a collection of 
objects arranged in a particular order. The analysis above indicates that counting 
principles could be key to the conceptual development of numeral systems. Their 
absence could result in counting by rote memorisation, skipping objects, counting 
randomly and counting an object twice or multiple times.

2 The arithmetic interpretation of the Ishango bone has been recently contrasted by Keller (2016), 
claiming that further studies and references to archaeological finds would be needed.
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5.2.3.2  �Additive Systems

As counting needs for large numbers increased, the difficulty of remembering many 
number names led people in many societies to the idea of grouping ones, using 
special abbreviations for repetitions of symbols and inventing a new object or sym-
bol to signify this quantity (Groza 1968). This grouping may be the first step in 
coherently combining the different records to make structural organisation common 
across counters (Bass 2015). It denotes the mathematical abstraction of the numera-
tion system in which the number represented by written numerals is simply the sum 
of the value each numeral represents. It also requires new symbols for different 
groups of ones and new strategies to enumerate the new collections. The different 
sized groups could be the beginning of the idea of multiple units. This kind of 
grouping  – or re-counting different cardinal collections  – was developed in all 
ancient civilisations to count large numbers (e.g. Bass 2015). Sumerians 
(~3500 BCE) initially used a tally system comprised of collections of small cones 
to represent collections of items (Schmandt-Besserat 1992). Over time, they 
replaced 10 small cones with a small ball, 6 small balls (or 60 small cones) with a 
larger cone and 10 larger cones with a cone of the same size with a round hole in its 
centre, thus using a mix of bases 10 and 60. These objects were packed in a spheri-
cal clay container that had to be broken to identify the inside number. Later, these 
objects were represented with marks on the surface. Eventually, the objects were 
abandoned and only their representations were used. Using cuneiform features, 
marks of wedges and corners – specifically, one vertical wedge for 1 and one corner 
for 10 – were written on a clay tablet. Dating to around 3300 BCE, this could be the 
first known written additive numeral system. An updated numeration system was 
constructed with a set of symbols, called numerals, together with a set of rules for 
writing to represent numbers.

Around 1500  BCE, the Egyptians invented a hieroglyphic written additive 
numerical system in base ten. Around the fourteenth century BCE, the main concept 
used in most Chinese numerals in the oracle bone script found on tortoise shells and 
animal bones was grouping, which partly formed an additive system. It is interest-
ing to note the numerals for 2 and 3, are still used in daily language. Ancient Roman 
numerals, such as CXXXV for 1 hundred, 3 tens and five, recorded numbers using 
the concept of grouping ones and regrouping into higher units. Although they used 
different grouping approaches at each step, many cultures (Sumerian, Babylonian, 
Egyptian, Greek, Roman, Arabic, Chinese, Mayan, Aztec, etc.) developed or used 
many-levelled additive numeral systems based on the principle of successive group-
ing. Thus, historically, many numeral systems were developed by progressing from 
tally systems to additive (grouping) systems in which multi-units with additive rela-
tions (no multiplication relations) were developed. The analysis above indicates the 
understanding of multi-units as necessary to deal with large numbers and of the 
possibility of learning difficulty in counting because of the different units and unit 
conversions from the tally system.
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5.2.3.3  �Multiplicative-Additive System

The additive systems above have been rather common inventions. Many historical 
examples indicate that the multiplicative concept, most often with irregular forms at 
the beginning, has also been a common invention for representing larger numbers 
with a simpler approach. Counting the signs in the additive form and then naming 
the value of the sign lead roughly to a multiplicative-additive system. For example, 
the Roman numeral CCC (300) is called trecenti in Latin, from tres (three) and 
centum (hundred). It is a numeration system in which the number value should be 
the sum of the products of units indicating how many of each unit are considered, 
where the multiplicative notion is added. Here, C is a unit rather than a number in 
an additive system. In such systems, there is a different symbol for each power of 
ten and for each number from one to the base minus one.

The ancient Chinese numeral system found on bones and tortoise shells of the 
late Shang dynasty in the fourteenth century BCE was the first multiplicative-addi-
tive system based on the decimal system and was both additive and multiplicative in 
nature. Here is a selection of Shang oracle bone numerals (Martzloff 1997; Needham 
1959) (Fig. 5.1).

Here, 200 is represented by the symbol for 2 and the symbol for 100, 3000 is 
represented by the symbol for 3 and the symbol for 1000, etc. (Fig. 5.2). The addi-
tive nature of the system means that symbols were juxtaposed to indicate addition, 
so 4359 was represented by the symbol for 4000 followed by the symbol for 300, 
the symbol for 50 and the symbol for 9 (Fig. 5.3).

As this was not a positional system, there was no need for a zero (Fig. 5.4).
Guitel (1975) classified this as a hybrid system. A number of additive systems 

evolved into multiplicative-additive systems (Chinese, Mayan, etc.), but most 

Fig. 5.1  Shang oracle bone numerals from the fourteenth century BCE
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remained additive (e.g. Roman written numerals, Egyptian, Greek). Multiplicative 
systems improve calculation speed. However, the difference between multiplication 
and addition could cause concept confusion and learning difficulty, and number 
naming using both multiplication and addition could present an epistemological 
obstacle.

5.2.3.4  �Decimal Place Value System

Both the decimal numeral system and positional notation or place value notation 
can further simplify arithmetic operations because of the use of the same symbol for 
different orders of magnitude (e.g. the ‘ones place’, ‘tens place’, ‘hundreds place’). 
By using 1, 10 and 100 as numeration units (not number names in an additive 
numeral system) and both multiplicative and additive concepts, a much more 
advanced numeral system, the decimal place value system, was invented, in which 
a number can represent quantity with multiple decimal units. Both the digit itself 
and its referring numeration unit determine the value that a digit represents. The 
numeration unit that a symbol occupies determines the value of the unit, and the 
symbol itself determines how many of these units are being represented (Groza 
1968). Using numeration units, calculations in the place value system are quite dif-
ferent from those in the tally and additive numeral systems. The numeration units 
and their conversions are the key to calculations. Addition should be carried out 
with two numbers with the same units, and numbers with different units should be 
converted to the same units using the following conversion rate: 1 thousand = 10 
hundreds; 1 hundred = 10 tens (1 in the third place); 1 ten = 10 ones (1 in the second 
place); etc.

The Chinese counting rod system and the Hindu-Arabic numeral system are 
decimal place value systems (Japan, Korea and Thailand imported the Chinese deci-
mal system (Lam and Ang 2004)). About the fourth century BCE (the West Zhou 
dynasty), the first place value system using counting rods came into use (Guo 2010; 
Martzloff 1997). Numbers were represented by small rods made from bamboo (Zou 
2015) and used on a counting board (this volume, Chap. 3). A number was formed 
in a row with the units placed in the rightmost column, the tens in the next column 
to the left, the hundreds in the next column to the left, etc. (Fig. 5.4).

Fig. 5.3  Representation of 
4359

Fig. 5.4  Representation of 
5080

Fig. 5.2  Representation of 
1234 on a horizontal 
counting board
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A zero on the counting board was simply a blank square. Sun Zi’s Suanjing (孫
子算經500 CE), the earliest extant treatise, described how to perform arithmetic 
operations on the counting board and gives instructions on using counting rods to 
multiply, divide and compute square roots. Though humans have always understood 
the concept of nothing or having nothing, the symbol of zero was used to represent 
the ‘zero’ first in the Hindu-Arabic numeral system. This was the first time in the 
world that zero was recognised as a number of its own, as both an idea and a symbol 
(Martzloff 1997). That place-value notation with the same ideas of zero emerging in 
two very different settings aimed to make more efficient systems to represent any 
number. Xiahou Yang’s Suanjing (夏侯陽算經500 CE) explains not only positive 
powers of 10, but also decimal fractions as negative powers of 10 (Martzloff 1997), 
applying positional notation to the decimal fraction ring. Thus, decimal place-value 
notation emerged as a more efficient system for calculations of both whole numbers 
and fractions.

5.2.3.5  �Modern Theoretical Approaches

Below, two schemes or ‘theories’ of place value numeral systems are proposed to 
describe written positional systems. The first is classical theory. It belongs to tradi-
tional arithmetic treatises, such as those of Bezout and Reynaud (1821) and Ryan 
(1827). This theory has been used in France to teach positional notation for centu-
ries. The second theory belongs to academic mathematics.

The words for units used in numeration – that is, the words ‘ones’, ‘tens’, ‘hun-
dreds’ and so on – are henceforth called numeration units. Numeration units are 
built one after the other in the following way. (1) The first ten numbers are built one 
after another, starting with the unit one and then adding one to the previous number, 
forming the numbers one, two, etc. (2) The set of ten ones forms a new order of 
units: the ten. (3) The tens are numbered like the ones were numbered before, from 
one ten to ten tens: one ten, two tens, etc. (4) Then the first nine numbers are added 
to the nine first tens: one ten, one ten and one one, one ten and two ones,… two tens, 
two tens and one one, and so on, forming the first 99 numbers. (5) The set of ten tens 
forms a new order of units: the hundred and so on. Numbers’ names are presented 
as a literal translation built on units’ names (adapted from French): ‘Say the tens, 
then the ones’. For example, as three tens is thirty and four ones is four, then three 
tens and four ones is thirty-four. The rules have exceptions, however. For instance, 
the usual name of ten-one is eleven. Finally, after building the numbers, the posi-
tional notation is stated. To write numbers without writing the units’ names, it is 
sufficient to juxtapose the numbers of units of each order with the ones on the right 
side; then, each place represents a unit that is ten times larger than the one on its 
right. Places that are not represented are marked with the sign 0.

The current reference knowledge for place value in academic mathematics is 
based on the polynomial decomposition of a whole number n in a given base r: 
n =  ∑ airi, 0 ≤ ai < r, which is a much more generalised expression of classic theory 
with the particular formal abstractions that characterise modern mathematics. The 
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current proof of the existence and uniqueness of the decomposition in a formal way 
involves Euclidian division. The positional notation is defined as the juxtaposition 
of the coefficients of the polynomial. This theory, which belongs to advanced alge-
bra, is henceforth called academic theory (following Bezout and Reynaud 1821).

Both of the approaches presented above provide multiplicative descriptions of 
positional notation. The multiplicative description and the recourse to exponents are 
not necessary when devices for computing, such as the suàn pán or abacus, are used 
(see this volume, Sect. 9.2.2), as the device itself embodies this convention.

In sum, the decimal place value system and computation were handed down to 
us by our ancestors and underwent improvements over time. It is worth determining 
which aspects were improved and the reasons for the changes. We have described 
several steps, each requiring concept and relation development. From the tally sys-
tem to the additive system, multiunit notions – that is, the grouping of units – are 
critical. Grouping units simply means a counting process using larger units, which 
must also rebuild the multiplicative relation with lower units. Multiplication also 
further simplifies the repeated addition relation, which advances the abstraction pro-
cess of counting. The development of this elegant positional base-ten system took 
place over a long time; therefore, the fact that understanding numbers is compli-
cated should not be surprising. Without this notation, one would encounter the same 
difficulties that peoples of ancient cultures encountered in large number and frac-
tion development.

5.2.4  �Epistemological and Pedagogical Insights from History

5.2.4.1  �Pedagogical Insights from the Pre-history of Numbers

The pre-history of numbers and the invention of small numbers can provide insights 
into the beginning of the teaching of numbers and learning by young children. One-
to-one correspondence is likely an essential step towards the concept of numbers: 
the recognition of quantity as a property of collections. History as described in the 
previous section(s) shows a double role of one-to-one correspondence: the interme-
diate collection of objects such as stones and the intermediate collection of words, 
e.g. the number names. As Dorier (2000) advised, history can be used to reconstruct 
an epistemologically controlled genesis that takes into account the specific con-
straints of the teaching content. The fundamental situation of numbers conceived by 
El Bouazzaoui (1982) and Brousseau (1997) belongs to such a programme. It has to 
do with quantity (not yet numbers) and can be expressed as building the same car-
dinal number collection to a given collection. Typically, the task is, ‘Look, there are 
rabbits here. Go and bring carrots so that each rabbit can eat. That is: each rabbit 
should have one carrot, no more, no less’. It can be observed that spontaneously, a 
young child does not count even if she knows a sequence of number names. From 
this general situation, several steps can be conceived, taking into account didactical 
variables (Brousseau 1997) – that is, conditions on the tasks to be achieved that can 
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change what children learn. For example, are paper and pencil available? If so, chil-
dren can draw carrots, thus making a list of what is needed, which is an intermediate 
collection. How is the size of the collection – e.g. [2–6], [6–12] and [12—100] – 
related to children’s knowledge of the sequence of number names? Are the rabbits 
visible from where the carrots are? They can be drawn and arranged in specific 
ways, such as on a die or in several areas of a sheet of paper to foster concepts of, 
for example, three in one area, two in another and so on (Briand et  al. 2004; 
Margolinas and Wozniak 2012).

5.2.4.2  �Understanding Numerals’ Uses: To Write, to Compute, to Talk

Not all systems have followed the same development. For example, China never had 
a recorded additive system. It is interesting to note that in the West, written Roman 
numerals are additive, while the corresponding spoken number names are multipli-
cative. For example, XXX is trīgintā in Latin, where tres is 3 and decem is X (ten). 
Spoken numerals, especially for large numbers, belong to a pre-multiplicative-addi-
tive system. However, in contrast to speaking and writing, the number concept for 
computation is positional.

The positional principle for the Old Babylonians (ca. 2000–1600 BCE) was in 
base 60. Its digits are of the written additive system in base ten as they are all under 
60. In the scribal school of south Mesopotamia (ca. 2000–1800 BCE), positional 
notation was only used for computation, never to express measurements, which 
used only rather small numbers, written in additive form, associated with a devel-
oped system of units (Proust 2008, 2009). The ancient Romans and medieval 
Europeans did not write positional numbers but used the additive system of Roman 
numerals even though they computed with a positional abacus, which embodies the 
positional principle used by the Greeks, Old Babylonians (Høyrup 2002) and 
Chinese (Fernandes 2015). The position of each digit within a number denotes the 
multiplier (power of 10) multiplied by that digit. These tools were constructed using 
principles similar to the abacus: a board with columns into which identical objects 
are put, where all of the objects in a given column indicate the same value, which is 
generally that of a digit of the additive system (or of the unit if it is a numeration unit 
system), where adjacent columns contain objects representing two successive digits 
(two successive units in a numeration unit system). A key feature is that if the ratio 
of the digits between two adjacent columns (with the lesser on the right) is n, n 
objects in the right column can be replaced by one object in the adjacent left column 
without changing the number. If the ratio between the columns is n (which would 
thus be the base of the system), one simply moves the objects in the adjacent left 
column and multiplies by n.

The case of the Incas features incompatibilities between written numbers and 
calculations. The Mayans and Aztecs developed a base-20 numerical system, while 
most of the cultures in the Andean region developed a base-ten system. The Incan 
civilisation used a cord system to make alphanumeric records to code information 
and solve numerical problems. These quipus are systems of strings with different 
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colours and knots. The position of the cords, the types of knots and the colours of 
the strings are elements of its logical-numerical nature (Ascher and Ascher 1981). 
However, the Incas used the yupana to make calculations using a base-ten system 
(González and Caraballo 2015).

When using a counting board, the successive steps of a computation in progress 
disappear. In the Old Babylonian case (ca. 2000–1600 BCE), as in the Chinese one, 
it seems that the positional notation was not used to record quantities. In the Old 
Babylonian tablets of Nippur (school of scribes), positional notation writing seems 
to have been used to indicate computational algorithms (Proust 2009) or to record 
the steps of a computation on a tool (Høyrup 2002; Proust 2008). In ancient Chinese 
books, writing with positional notation was used to explain the locations of the rods 
or beads on the tool and especially to explain computational algorithms (Chemla 
1996; Lam and Ang 2004).

From the survey above, we come to the surprising conclusion that in many 
Western civilisations, to express large numbers, the written systems are additive, 
and the spoken systems are multiplicative, while the tools used for computations 
embody a positional principle. In other words, a large number written in an ‘addi-
tive’ way is often ‘spoken’ in a multiplicative way and, if used in a computation, is 
expressed in a ‘positional’ way using physical structure rather than written symbols. 
The invention and subsequent widespread adoption of the Hindu-Arabic system 
changed this, as this unique system is used to write and compute both positionally 
and multiplicative additively.

5.2.4.3  �Understanding the Conceptual Changes in the Development 
of the Decimal Place Value System

Memorising the Multiplication Table

Ancient Egypt, ancient India and ancient Rome did not develop multiplication 
tables because of the additive systems they used. However, ancient China, Greece 
and Old Babylon did (Høyrup 2002; Menninger 1969). It is reasonable to  
imagine that the multiplication concept could be difficult in the current Western cur-
riculum (Beckmann et  al. 2015). In 1989, the National Council of Teachers of 
Mathematics (NCTM) developed new standards recommending reduced emphasis 
on the teaching of traditional methods relying on the rote memorisation of multipli-
cation tables. NCTM made it clear that basic multiplication facts must be learned in 
the Common Core State Standards for Mathematics in the USA (Common Core 
State Standards Initiative, 2012). Historically, in China, the multiplication table has 
been a more stable part of the base-ten rod and abacus calculation curriculum, and 
there has been no controversy about memorising it (Cao et al. 2015). It is regarded 
as the foundation of multiplication/division column calculation and plays an impor-
tant role in calculating rapidly and accurately (Cao et  al. 2015). It includes the 
essential facts of column multiplication, which are similar to the function of number 
naming 1–9 for addition and subtraction. Therefore, the importance of memorising 
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the multiplication table for multiplication/division calculation curriculum develop-
ment and instruction should not be underestimated.

Unit Conversions

According to the above analysis, the one-to-one relationship of adjacent unit types 
in the additive system needs to change to the ten-to-one relationship of the place 
value system. In a simple additive system, each symbol has a fixed face value. 
Because in the base-ten place value system, the value that a digit represents is deter-
mined by a combination of two factors, its own face value and its reference unit 
within a numeral, a single symbol can represent different values depending on its 
referent unit. By this use of numeration units, calculations in a place value system 
are quite different from those in tally and additive numeral systems. The numeration 
units and their conversions are the key to calculations: addition should be carried 
out with two numbers with the same units. Numbers with different units need to be 
converted into the same units by the conversion rate 1 thousand = 10 hundreds, 1 
hundred = 10 tens (1 in the third place), 1 ten = 10 ones (1 in the second place). 
Therefore, the composition and decomposition of a higher unit is a key procedure 
for addition/subtraction that cannot be realised by the counting approach in tally 
and additive numeral systems. Thanheiser (2015) designed an intervention based on 
a history of numeration with successive steps – tally, additive and positional base-
ten systems – and then performing computations with these systems to reinforce 
place value for teacher education. Thanheiser argued that the unit conversions can 
be difficult because they do not develop naturally in calculations in the additive 
system: counting on, counting down and the doubles approach.

5.3  �Foundational Ideas from Language and Culture

Number language is the first cultural symbol a human encounters in mathematics, 
and it appears more salient than other teaching and learning factors in relation to 
WNA. The notions of numbers are first learned as a linguistic routine of counting 
through which the number names are perceived as sign systems or cultural semiotic 
systems that enable the symbolic representation of knowledge (Goswami 2008). 
There are few studies on conflicts among number naming, cultural identities and 
universal decimal features and how local languages are linked to universal Hindu-
Arabic numerals. In the following, these two questions are discussed.
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5.3.1  �Whole Number Naming: Universal vs Cultural

A clear example of such conflict is in whole number naming, where history and 
culture shape not only number names and conceptualisations but also their use in 
measurement and operations. When analysing this phenomenon, two situations 
emerge: the first one is what remains from ancient times, which contaminates a 
more recent and coherently organised cultural system at the oral level, such as the 
case of spoken numbers in Denmark. The second situation relates to the lively colo-
nial process related to different uses of language fed by political and social interac-
tions that continuously develop over the years, such as spoken and written numerals 
in post-colonial areas such as Algeria and Guatemala. Analysis of the two situations 
is possible thanks to direct reports in the working group and provides interesting 
insights into the historical evolution of elementary arithmetic and how it can affect 
number names and result in learning difficulties. Importantly, both situations may 
offer opportunities to enhance the learning and teaching of numbers and contribute 
to the awareness of a cultural identity if sensitively handled by teachers.

5.3.1.1  �The Danish Case: The History of Number Names in Denmark

As presented by Ejersbo and Misfeldt (2015), in a typical situation, the effects of the 
past on spoken number names in Denmark have led to problems for many children. 
Some number labels are rooted in ancient names, reflecting a primitive non-decimal 
system. One hundred years ago, ‘eighty’ was said as ‘four times twenty’, but in 
daily speech, it became ‘firs’, which is close to ‘fire’ or ‘four’ in Danish. About 
50 years ago, this abbreviation was made official, as ‘times twenty’ was dropped for 
counting numbers, although it was retained for ordinal numbers. ‘Seventy’ in 
Danish is said as ‘half four’ and previously as ‘half four times twenty’. ‘Half four’ 
is actually a half taken to four (from three), so it means ‘three and a half’ (as in 
German time counting, where ‘half four’ means ‘half past three’). Thus, as Danish 
practices inversion for spoken numbers between 13 and 99, ‘seventy-three’ is said 
literally as ‘three and half-four’. As the old roots are unknown to most students, the 
names of the tens up to 100 are taught through rote learning, and the underlying 
rules are not addressed. This has caused difficulties for Danish students, many of 
whom are insecure about reading and writing two-digit numbers for their first 3 or 
4 years of schooling (Ejersbo and Misfeldt 2015).

Thirty years ago, it was common practice to address these difficulties at a cul-
tural level by offering opportunities both for teachers and for children to reflect on 
the roots of the mathematical notion. Examples were used at cognitive and peda-
gogical levels to highlight relevant features, such as the present decimal positional 
system (base 10 in comparison with base 20) and the additive nature of representa-
tion in a given base. Today, these opportunities are not exploited in the first years of 
school, as there was little evidence to support the learning of the number names 
(possibly due to how the teaching had been organised). Danish students continue to 
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struggle with combining the words for a number, its cardinal value and its digit 
representation. Thus, while, a language changes according to how it is spoken in 
everyday life, it seems difficult to change number names because of cultural contin-
uums, even though doing so would help students better understand numbers.

5.3.1.2  �The Algerian Case: Language Diversity in the Post-colonial Era

Many previously colonised countries retain the influences of their old political mas-
ters, which are often reflected in their educational systems, such as in the organisa-
tion of schools, the content of the curriculum and the languages in which specific 
subjects are taught. Young children learn to count in their native language, and this 
is encouraged until they begin formal schooling. Thus, in their early years, when 
teachers seek to develop a strong number sense, they can find it challenging to learn 
WNA in a ‘foreign’ language. Unfamiliar words and new conceptualisations often 
lead to identity problems for children.

Azrou (2015) studied the situation in Algeria. Over the last 50 years, as the power 
and cultural relationship between France and Algeria changed, a range of decisions 
were made by the authorities regarding the teaching of mathematics at different 
levels. For example, at the university level, all mathematics is taught in French, but 
at the school level, while formulae are written in the Latin alphabet and read left to 
right, mathematical terms are written and spoken in Arabic (right to left). The dif-
ficulties young children experience are exemplified in the Algerian context. Four 
languages are spoken (classical Arabic, dialect, Berber and French), and oral and 
written words are shared differently by different social groups. For example, 
although numbers are taught in classical Arabic in schools, some children from 
particular communities speak only a dialect and/or Berber. At this stage of school-
ing, because of inversion, children are expected to write numbers from the lowest-
value digit to the highest  – that is, from right to left like word writing. This 
expectation changes at grade three, at which point all children are expected to 
engage with numbers not only in Arabic but also in French, where words are written 
from left to right and where there is no inversion above 16. Some children write 
numbers from the lowest to the highest-value digits in the direction of word writing 
for both languages.

The analysis of these two situations provides some insight into the language 
evolution of elementary arithmetic and how it can affect number naming and result 
in learning difficulties. Obviously, whole number language conflicts between uni-
versal, cultural and colonial naming can cause meta-level learning difficulty. 
Therefore, a bridge between curriculum and instruction is needed to link local lan-
guages to universal Hindu-Arabic numerals.
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5.3.2  �The Incompatibilities Between Spoken Numbers, Written 
Numbers and Numeration Units Within 100

When Anglophone speakers learn how to tell quantities and then write (in digits) 
‘what they hear’, they are faced with the difficulties of two changes in the number 
structure: 11 and 12 sit outside the ‘teen’ numbers, 13–19, where an inversion struc-
ture in the spoken names (the ones-place digit, not the tens-place digit, is spoken 
first) is used (thirteen, fourteen, fifteen, sixteen, seventeen, eighteen and nineteen). 
There seems to be no logic to this disturbance to what is otherwise a strong pattern 
in English’s number system in English. Thus, these words have to be learned and 
remembered. In contrast, the Chinese system provides a logical way of reading: 11, 
12 and the ‘teen’ numbers (ten-one, ten-two, ten-three, ten-four, ten-five, ten-six, 
ten-seven, etc.) do not need learning or remembering in quite the same way. Another 
difficulty is the inversion structure (as demonstrated in the Algerian and Danish 
cases above) between spoken numbers (e.g. the ones are said before the tens in 14) 
and written numbers (e.g. the tens are written before the ones in 14), which could 
cause learning difficulties. The cognitive challenges of the number learning of 
11–19 have long been recognised as ‘the trouble with teens’ (Miller and Zhu 1991). 
This might relate to the controversial question of place value or quantity value in the 
Western curriculum (e.g. at what stage should the 3  in 38 be identified as 3 tens 
rather than 30 (Askew and Brown 2001)?).

Houdement and Tempier (2015) identified three number systems in the process 
of knowing numbers: written numbers (written as 56, showing face value), spoken 
numbers (spoken as fifty-six, showing quantity value, number size made of ones) 
and numeration unit numbers (presented as 5 tens and 6 ones, showing place value, 
number size made of numeration units). Generally, a spoken number system is 
rooted in local oral language, and it naturally follows the grammar of local language 
and thus directly shows cultural identity. It is often irregular in Western languages 
(72 = soixante-douze in French, i.e. sixty-twelve). It is mainly learned at home as an 
inherited mother language. The spoken names are developed as sounds connected to 
the numbers of objects in the sets. Written numbers are mainly learned at school as 
a second language. Teaching the third system (the numeration unit numbers, show-
ing place value) specifically and gradually in relation to the two others might facili-
tate understanding of (1) the base-ten place value system (Tempier 2013), (2) 
computation algorithms (Ma 1999) and (3) the decimal form of rational numbers. In 
English, numbers’ names are those of the units, but not in French. In France, the 
names of the second, third and fourth decimal numeration units for whole numbers 
are not used in the everyday language (Chambris 2015).

In many languages of East Asia and elsewhere throughout the world (such as 
several African languages), spoken numbers are similar to numeration unit num-
bers. Written numbers are numeration unit numbers without the numeration units, 
so the relationships among them are simpler than the European ones. In the Hindu-
European language area, students must memorise many spoken, written and numer-
ation unit names without connecting them logically with the written names (‘ten’ is 
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not heard between 11 and 16). A way to achieve a logical link is to translate written 
names into numeration unit names and vice versa. This is related to the role of 
numeration units in the curriculum in many countries. For example, in America, 
Fuson, Smith and Lo Cicero (1997) explored ‘tens’ and ‘ones’ in English (and 
‘decenas’ and ‘unidades’ in Spanish), but did not refer to ‘units’ but to ‘tens-and-
ones words’ and also to ‘position’ in Spanish. In French textbooks, numeration unit 
names  – e.g. ones, tens and hundreds  – disappeared from the curriculum in the 
1970s; they may remain as place names. It is frequent not to find the relation 1 hun-
dred = 10 tens in current French second and third grade textbooks (Chambris 2015). 
Tempier (2013) observed three third grade teachers and found that only one of them 
explicitly referred to the relations among units, although all three used the units’ 
names to describe places. Numeration units completely disappeared as units in the 
1980s, but they remained as places (position) and may have reappeared in other 
forms and practices since 1995.

5.3.3  �Links and Incompatibilities Between Numeration 
and Calculation

It seems that hundreds and thousands play a more visible role in spoken Western 
languages than ones and tens because the latter do not function as units in many 
spoken languages within 100. Thus, an opportunity to build an understanding of the 
numeration structure is lost. As mentioned above, the Chinese language stresses that 
spoken numeration recalls both the number name and numeration unit based on the 
language categories of classifiers (Sun 2015), which specifies the value of digits in 
a clearer way. The corresponding teaching and learning of numbers and calculations 
emphasises how to compose/decompose a numeration unit by using a composition 
or decomposition approach (e.g. 1 ten = 10 ones). Compared with many Western 
curricula, counting and memorising number facts is emphasised, especially in the 
teaching and learning of 1–2 digit calculations. In Chinese, the result of 8 + 7 is said 
as ten-five. The number name fosters the use of the make-a-ten method: eight plus 
two, ten plus five as the result is given in the procedure. In the same manner, to 
compute 40 + 10, one has to say that four tens and (one) ten is five tens. If the lan-
guage does not stress the unit of tens, children will obtain various answers. For 
example, in French, 8 + 7 may be 7 + 7 (double) fourteen and one. Young children 
memorise ‘doubles’ rather quickly, and then there is only one (easy) step left to find 
15. To make a ten to compute 8 + 7 requires the following: (1) to make ten with 8 
(take 2), (2) take 2 from 7 (5 left) and (3) transform 10 and 5 into 15. This last step 
does not exist in Chinese, but it does exist in languages that do not use ten to com-
pose the names of numbers between 11 and 19. In many European languages, the 
cognitive cost of counting addition up to 20 with doubles (with additional counting 
up to 3) is probably often less than that of using the make-a-ten method. For exam-
ple, Portuguese textbooks suggest ‘doubles’, ‘doubles plus 1’, ‘compensation’ (e.g. 
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6 + 8 = 7 + 7 = 14) and ‘reference numbers’ (6 + 7 = 5 + 1 + 5 + 2 = 10 + 3 =  
13) in addition calculation and ‘counting back’, ‘the use of tables for the addition to 
subtraction’ and ‘identifying inverse operation of subtraction as addition’ in the 
subtraction calculation (Sun et al. 2013). In contrast to the Chinese curriculum, the 
make-a-ten method, a core concept of addition and subtraction within 20, is often 
regarded as the foundation of the place value of tens (Sun 2015). It lays the founda-
tions for multi-digit calculation by maintaining coherence between two-digit and 
multiple-digit addition/subtraction, which may not be the case in most Western cur-
ricula because the tens in a teen number name do not play the role of the tens place 
but are a quantity value role (e.g. 10 + 3 is said as thirteen). Most European lan-
guages break away from clear regularity in respect to the base-ten place value sys-
tem, especially with the numbers from 11 to 19 and 19 to 99 (Ejersbo and Misfeldt 
2015). Fuson et al. (1997) found that English-speaking children perform badly with 
the make-a-ten method but suggested that material showing tens in teen numbers 
might be fruitful.

The Chinese curriculum uses the make-ten method in the first grade to develop the 
concept of place value and generally assigns at least 30 hr (1/2 time of the first term) 
for the conceptual foundation of addition/subtraction, with regrouping as its core 
practice. Specifically, the make-ten method has been designed critically for the com-
position of a tens unit, which is also an important aspect of the concept of place value 
(Ma 1999) and in understanding the concept of addition with regrouping inherited 
from the principle of the bead calculation tradition (Sun 2015). Ruthven (1998), like 
many Western scholars, argued that close scrutiny of the mental calculation strategies 
used by children for the four basic operations suggests that there is no evidence of 
what is normally understood by place value in their methods. Thompson (1999) 
claims that mental calculation strategies utilise what has been described as the quan-
tity value aspect of place value (56 seen as 50 and 6), whereas standard written cal-
culations necessitate an understanding of the column value aspect (56 seen as 5 tens 
and 6 ones). This subtle but important difference has implications for teaching, as it 
could provide a possible reason why Chinese teachers demonstrate greater concep-
tual understanding of subtraction in regrouping when decomposing a higher value 
unit compared with their American counterparts (Ma 1999).

5.3.4  �How to Bridge the Incompatibility: Some Interventions

Because of the numerous difficulties in number names in many languages, interven-
tions for bridging the incompatibilities between spoken numbers, written numbers 
and numeration unit numbers are critical. Numeration unit number language in 
many Eastern countries uses place notion, which is fundamental to the computation. 
What kinds of didactical language inventions can we use for WNA to better support 
the conceptual development of numbers and computations?

Several kinds of intervention on this issue were reported at the Macao 
conference:
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	1.	 Ejersbo and Misfeldt (2015) introduced a didactical linguistic invention: regular 
number names. These more ‘logical’ number names are formed with the names 
of the powers of ten, which are those of units in Danish, like in Chinese. This 
enhanced the acknowledgement of number structure/regularity and improved the 
rote learning of number names and computation. A similar invention (Fuson 
et  al. 1997) ‘allowed all children to enter the conversation about place-value 
meanings and 2-digit addition with regrouping before some of them had fully 
mastered the English number word sequence to 100’ (Fuson 2009, p. 346).

	2.	 Sun (2015) introduced a Chinese approach to enhance reasoning by connecting 
the three core concepts of addition, subtraction and numbers together in the 
Chinese curriculum. This approach is used in all chapters of addition and sub-
traction. a. Adding one to a number obtains its adjacent number. b. Subtracting 
one from the adjacent number gives the original number. By this approach, not 
only are the three concepts of addition, subtraction and number tied closely 
together, but connections are formed between them, and the concepts of inverse 
and equation are developed. This promotes not only doing and memorising but 
also reasoning. In contrast, in some Western curricula, the ideas of numbers, 
addition and subtraction are presented in three separate chapters, isolated from 
one another. This might influence mathematics learning attitudes at the 
beginning.

	3.	 Considering the French curriculum, Houdement and Tempier (2015) proposed a 
complete system with a focus on numeration units with which all numbers – 
whole and decimal fractions – can be linked. Among other tasks, they introduced 
various ways of quantity counting, including one by one and ten by ten in tens.

	4.	 Awareness of the teacher education curricula situation is poor. Azrou (2015) pre-
sented the initial step of an intervention project to use difficulties as educational 
resources. For example, by comparing the French wording of numbers between 
11 and 16 with their Arabic or Berber counterparts, students may better realise 
the anomalous nature of French spoken numbers. By analysing their structure 
between 60 and 100 in base 20, they may engage in stimulating conversion exer-
cises. From a teaching perspective, developing a clear understanding of these 
patterns of learning numbers and acknowledging their different characteristics 
would facilitate effective and meaningful communication between teachers and 
students and might thus help teachers deal with diversity in the classroom and 
more effectively scaffold children’s learning.

Finally, Sayers and Andrews (2015) developed a simple, eight-dimensional frame-
work through a systematic review of the literature on number sense. Teachers in the 
Anglophone world often refer to the importance of developing a strong number 
sense of WNA in elementary school to prepare learners for the adult world (McIntosh 
et al. 1992). However, psychologists consider number sense innate in all humans 
(Ivrendi 2011), indicating a gap between what a human is born with and what needs 
to be taught in elementary school. Sayers and Andrews (2015) developed and tested 
a new theoretical framework that bridges this spectrum, which they call founda-
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tional number sense, identifying key whole number concepts that require instruction 
during the first year of schooling.

In short, the foundational ideas that stem from languages and cultures indicate 
that local number naming can be used to build cultural identities. However, it also 
causes conflicts between local languages and universal Hindu-Arabic numerals, 
leading to learning difficulty. Therefore, curriculum and instruction must be bridged 
to link local languages to universal Hindu-Arabic numerals and calculations. The 
bridges between the incompatibilities of spoken numbers, written numbers and 
numeration unit numbers are critical to solutions. In particular, linking numeration 
unit numbers with spoken numbers, written numbers and the make-a-ten method 
within 100 may be fundamental for such interventions.

5.4  �Foundational Ideas Influenced by Multiple Communities

In the previous sections, we provided insights into WNA from both historical and 
language perspectives. We highlighted how WNA developed from ancient times and 
how traditional cultural roots can influence and perhaps conflict with the process of 
learning and teaching mathematics today. According to Morrish (2013), contempo-
rary education must actively seek change for rapid development of the economy, 
science and technology once they lose their advantage. Attempts at change, often 
triggered by international comparative studies of mathematics achievement, have 
had diverse reactions and consequences (Feniger et al. 2012). Such changes by pol-
icy makers and educators are interpreted and negotiated through a series of pro-
cesses framed by a variety of principles and practices (Kanes et al. 2014; Leung 
2014; Wiseman 2013).

Mathematics education is embedded in the four major contexts of economics and 
business, academic mathematics, science and technology and public and private 
stakeholders, and their influence should not be neglected. In the following, we focus 
on how the teaching and conceptualisation of WNA have been changed by academic 
mathematics, science and technology, and the public and stakeholders. The first 
case concerns the influence of economic and business and ancient China. The other 
cases concern the influence of academic mathematics, science and technology and 
public and private stakeholders in modern times in Israel, France and Canada, 
respectively. These cases seek to understand the how and why of curriculum 
changes, with a focus on the fundamental losses and gains. The choice of examples 
is related to reports made by participants at the Macao Conference.
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5.4.1  �The Influence of Economics and Business:  
A Case from Ancient China

Sun (2015) discusses how the early Chinese invented number names and calculation 
tools (counting rods and, later, the suàn pán or Chinese abacus), in which place 
value is the overarching principle that captures the spirit of WNA (Lam and Ang 
2004). This advanced the development of Chinese mathematics. However, rod cal-
culation speed is slow and inconvenient for calculation with large numbers, which 
is often necessary to calculate labour, capital and products in the markets. To meet 
the need for efficiency for economics and business development, the Chinese aba-
cus replaced the ancient counting rods, improving calculation speed and efficacy 
(Sun 2015). The replacement of rods caused a significant deterioration in calcula-
tion rationale from the time of rod calculation (Lam and Ang 2004), because the 
step-by-step procedures using rods were replaced by the ‘calculation songs’ of bead 
calculation.

In Tongwen Suanzhi (同文算指 literally meaning ‘rules of arithmetic common to 
cultures’), compiled by the official scholar Li Zhi-zao (李之藻1565–1630) of the 
Ming court in collaboration with the Italian Jesuit Matteo Ricci (利瑪竇1552–
1610), written calculation that had been in common practice in Europe since the 
sixteenth century was introduced into the Chinese system. Compared with the meth-
ods of traditional bead calculations, the main advantage of written calculation lies 
in keeping a record of the intermediate steps, enabling easy checking afterwards. It 
also allows viewing of the procedure, facilitating the understanding of the underly-
ing reasoning without having to memorise what is going on during the calculation. 
This is difficult to attain in calculation using counting rods or an abacus. Siu (2015) 
argued that the rationale for learning written calculation, at least once in a person’s 
lifetime, seems to be the acquisition of understanding of the underlying principle of 
the basic operations in arithmetic, which is essential in future learning. He further 
warned that using electronic calculators in current primary schools is similar to bead 
calculation, where the intermediate calculation rationale is hidden. ‘Ironically we 
would be turning back the wheel of history in some sense in that we erase the inter-
mediate steps if we depend on an electronic calculator too much’(p. 137). To meet 
the growing need for a quick analytical and quantitative approach to problem solv-
ing, changes in calculation tools were needed. However, the associated calculation 
rationale was becoming weaker and thus needed to be addressed.

5.4.2  �The Influence of Academic Mathematics:  
A Case from the Mathematics Community in Israel

Considering the depth of their mathematical understanding, it is natural to assume 
that mathematicians should have a role in the professional development of elemen-
tary school teachers. However, mathematicians have little experience of teaching 
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WNA. Furthermore, the discourse of university mathematics and its teaching is 
quite different from its elementary school counterpart. What might happen if 
members of these communities were to meet and interact? This question was 
investigated in a professional development (PD) course for in-service elementary 
school teachers in Israel that was conceived and taught by a professor of 
mathematics.

Cooper (2015) analysed mathematical and pedagogical discourse as related to a 
particular mathematical topic – division with remainder (DWR). In school mathe-
matics, DWR is transient: it becomes redundant once students are familiar with the 
field of rational numbers. In advanced mathematics, DWR is generalised to 
Euclidian domains. Remainders of DWR are also important as representatives of the 
ring Z/nZ. In view of such differences, Cooper asks, how can the meeting of a math-
ematician and in-service elementary school teachers foster mutual professional 
growth?

The instructor (Rick) was struck by the problematic aspect of standard notation. 
The = sign denotes equality, which should be transitive. If we write 25:3 = 8(1) and 
41:5 = 8(1), transitivity of equality demands that 25:3 = 41:5, which Rick consid-
ered ‘complete nonsense’. His proposed solution was to change the notation:

Standard notation in Israel: 25:3 = 8(1). Proposed notation: 25:3 = 8(1:3)

The new notation is read ‘eight with remainder 1 which needs to be divided by 3’. 
To justify the new notation, Rick claimed that 8(1) has no meaning as a quantity 
when the divisor is not known. However, some teachers challenged this, claiming 
that the 8 and the 1 are ‘quantities’ and that the equality 25:3 = 41:5 is an equiva-
lence. Indeed, there is nothing intrinsically wrong with this equivalence relation-
ship, where 8(1) represents a class of DWR exercises that have the same result 
(quotient and remainder). Thus, the equality is ‘complete nonsense’ only because it 

is not consistent with the mathematical horizon of fractions, where 
25

3

41

5
=  is 

indeed incorrect. Although they did not agree with Rick regarding the standard nota-
tion’s deficiencies, the teachers did endorse the new notation for its pedagogical 
affordance in providing a smooth transition from whole numbers to fractions. Rick 
emphasised this affordance in presenting the remainder as having the potential to be 
divided, a potential that can be realised in fair sharing situations in which the unit 
can be split and will be mathematically realised in fraction arithmetic. Pedagogical 
affordances were further explored. One teacher attending to procedures at the peda-
gogical horizon appreciated how the new notation might offer a smooth transition to 
decimal long division, where students often neglect to divide the remainder. She felt 
that the new notation, in signalling an unfinished division, would help overcome this 
difficulty. This episode, one of many described by Cooper (2015), shows how two 
communities with conflicting perspectives on DWR and its notation jointly explored 
the mathematical and pedagogical aspects of mathematical notation and worked 
together to gain a deeper understanding of this surprisingly complex topic, gaining 
insight that was new to all parties involved. In this way, the community of academic 
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mathematics contributed to the professional development of elementary school 
teachers while at the same time deepening their own understanding of school math-
ematics and its teaching.

5.4.3  �The Influence of Science and Technology:  
A Case from the New Math Reform in France

Science and technology also affect WNA. After the Sputnik crisis, to boost science 
education, technological development and mathematical skill in the population, 
New Math was introduced in many countries. Chambris (2015) reported on the New 
Math reform in France. This international phenomenon (ICMI 2008; Kilpatrick 
2012) affected all levels of mathematics teaching in the 1960s and the early 1970s 
and has had lingering effects. It had two major focuses: (1) teaching ‘new’ math, 
including renewing of the mathematical fundamentals of teaching (e.g. Griesel 
2007) and (2) taking into account psychological features related to learning and 
child development. Two famous subjects were introduced in WNA: set theory, an 
aspect of contemporary math, and numeration bases other than ten (hereafter called 
bases) (to teach base-ten principles), an aspect of psychology (Kilpatrick 2012; 
Bruner 1966). This phenomenon may be interpreted in terms of the construct of 
didactical transposition (Chevallard 1985) – the transformation and adaptation of 
knowledge produced by the scientific community to make it suitable for use as 
learning objects. This transformation occurred at the end of the 1970s.

In France, from 1900 to 1960, the classical theory (history section above) was 
adapted in close terms in textbooks. Tasks such as ‘Write in figures: 3 H 4 T 5 O’ 
and ‘convert 3 hundreds into tens’ – both using the symbolic register of the numera-
tion units  – were basic and current. They disappeared as the ‘bases’ appeared. 
Students interpreted the positional notation in ‘bases’ as a procedure, grouping and 
ungrouping, and they struggled when they had no manipulatives left (ERMEL 1978; 
Perret 1985). The process is as follows: ∑riai becomes ∑ri10i; then, a x 1000 + b x 
100 + c x 10 + d or a000 + b00 + c0 + d. Such ‘writings’ as 40 + 7 + 50 + 43 + 25 
also appeared. ‘The key issue is to familiarise children with a direct work with the 
writings’ (our translation; ERMEL 1978, p. 17): 1, 10, 100, 1000, etc. played an 
increasing role. Within a few years, ‘write in figures: 3 H 4 T 5 O’ was replaced by 
‘compute 3 x 100 + 4 x 10 + 5’ or ‘compute 300 + 40 + 5’. Conversions were not 
replaced. A new symbolic register – that of the powers of ten written in figures – had 
emerged, and the number 1 became the only unit to be taught.

Within the transposed academic theory, the technique to obtain positional nota-
tion from 3 x 100 + 4 x 10 + 5 x 1 is to ‘juxtapose 3, 4, 5’. The present implicit rules 
to obtain it are to (1) multiply by 100 (resp. 10) (write two (resp. one) zeroes on the 
right) and (2) add numbers (use a ‘column algorithm’). That is, put them one under 
the other, aligned from the right side. In 1995, decompositions with numeration 
units began to come back. The way to achieve them is 3 H = 300 (due to the hun-
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dreds place), 4 T = 40, 5 O = 5; then, compute 300 + 40 + 5, that is, 345. Thus, in 
the contemporary period, there is a kind of hybridisation by the units of the trans-
posed academic theory. However, numeration units indicate only the digits’ places 
and their units, and it is common not to find the relation 1 hundred = 10 tens in 
present second and third grade textbooks. This provides three interpretations of 
positional notation: it sums up an additive relation in the latter case, the numbers of 
units in the classical theory, and serves as a polynomial algebraic relation within the 
transposed academic theory.

The influence of academic mathematics is apparent within the use of the aca-
demic theory. As in the previous case, two kinds of tension between school and 
academic mathematics arise: (1) different needs (units vs advanced algebra) and (2) 
different perspectives on a shared sign symbolism (positional notation).

5.4.4  �The Influence of Public and Private Stakeholders: 
A Case from Current Curriculum Reform in Canada

Public and private stakeholders also affect WNA. The implementation of interna-
tional achievement tests such as TIMSS in 1995 and OECD’s PISA in 2000 
prompted widespread curriculum reform, which often focused extensively on 
WNA. Multiple stakeholders, including educators, school personnel, business lead-
ers and parents, often expressed conflicting arithmetic goals and pedagogical expec-
tations (Brown and Clarke 2013). These conflicts, called the ‘Math Wars’, occurred 
in North America (e.g. Klein 2007), Europe (e.g. Prenzel et al. 2015) and China 
(Zhao 2005).

Although Canada performs well in international tests, the public and private 
stakeholders of current curricula have sparked public debate. For example, students 
are expected to develop flexible and mental mathematics strategies through the use 
of compensation methods (e.g. 54 – 37 = 54 – 40 + 3) and properties of numbers and 
operations (e.g. 8  ×  6  =  8  ×  3  ×  2) to compute. Through an analysis of online 
responses to newspaper articles reporting Canada’s faltering PISA scores, McGarvey 
and McFeetors (2015) sought to understand public perspectives. The following quo-
tation is an example of an online comment posted in response to a national news 
article written by mathematician opposing today’s elementary curriculum:

I learned things by rote in grade school and then later on in high school I learned how to do 
abstract problem solving in topics like algebra. From what I understand, the system is 
unnecessarily complicating kids’ minds by saying they shouldn’t memorize basic multipli-
cation or learn how to do long division or carry numbers. I don’t see the usefulness in that. 
(McDonald 2013)

Keywords in this comment such as ‘by rote’, ‘memorise’, ‘long division’ and ‘carry’ 
tend to trigger negative reactions from mathematics educators in much the same 
way that ‘mathematics for understanding’, ‘strategy-based learning’ and ‘student-
centred approaches’ often trigger negative reactions from the public.
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Rather than dichotomising the arguments, the analysis revealed two sets of 
shared goals: (1) students need the opportunity to reach expected mathematics goals 
(e.g. develop computational skills and problem-solving), and (2) essential supports 
must be in place for students to reach the goals of mathematics learning (e.g. knowl-
edgeable teachers, clearly written teaching resources). Reframing criticism into 
mutual concerns offers a starting place for conversation that empowers communi-
ties to see commonalities in their perspectives of children’s mathematics learning. 
In short, public and private stakeholders in Canada and in other countries have 
affected WNA by changing policies and goals.

5.4.5  �Foundational Ideas Summary: Understanding 
the Unpredictable Long-Term Effects of Change

The four reports above describe the influence of economics and business, academic 
mathematics, science and technology, the public and stakeholders and the various 
changes in the conception of WNA and its teaching. For example, in the wake of 
New Math, the incorporation of academic mathematics as foundational knowledge 
into school mathematics may lead to fundamental loss of various elements, includ-
ing numeration units. In contrast, Cooper’s example demonstrates how the mathe-
maticians’ perspective must undergo didactic transposition to fit the teaching and 
learning of WNA. Thus, to foster change, school mathematics and academic math-
ematics should be combined. The professional development described by Cooper 
can be seen as an important step in the enactment of such a transposition. However, 
taking the mathematicians’ perspective into account in WNA curriculum design is a 
complex matter. While these examples may not be applicable outside their specific 
contexts, they may lead us to reflect upon ways in which new goals for WNA might 
be defined and implemented. However, a number of themes emerge when consider-
ing the four cases as a whole related to issues that are likely to arise when defining, 
implementing and communicating new goals for WNA.

Deep changes seem to occur slowly, perhaps because some features of prior 
practices persist, but once change has begun, it seems impossible to stop. This is 
evident in the lingering effects of New Math long after its apparent failure. The 
arguments used to introduce bases in the New Math curriculum came from psychol-
ogy. Yet after the turbulent period of reform, during the so-called counter-reform, 
the “new” mathematics – here represented by an academic theory that is, in fact, not 
so new – became a mathematical foundation for the teaching of place value. The 
effects of the changes were probably neither anticipated nor mastered. This also 
seems to be the case in the changes in China, especially the replacement of rods 
with beads. When change is implemented, awareness by educators and policy mak-
ers is needed because where there are gains, there can also be fundamental losses to 
elements once taken for granted. This is important because key aspects of a complex 
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system may be almost invisible to observers and may be lost when changes are 
made.

New Math was partly directed by economic issues linked with the growing needs 
of engineers and scientists in Western societies. PISA studies from the Organisation 
for Economic Co-operation and Development aim to determine the extent to which 
15-year-old students are prepared to face the demands of the society they will live 
in. Does society need globalised mathematics education and, if so, how will it mani-
fest itself in the future? Are the PISA tests the Tongwen Suanzhi (above) of modern 
times? Where will the changes develop in relation to the economic needs of society 
(Siu 2015)? One might suppose that history repeats itself in the redesigning of a 
WNA curriculum, as it must take into account the evolution of economic societal 
needs, thus causing tensions such as those described above.

In the examples described above, one or more of the operating communities 
engaged in a genuine attempt to understand the other’s perspective and to promote 
productive communication. Despite decades of efforts to explain the benefits of cur-
rent approaches in whole number arithmetic, the arguments have not been convinc-
ing for many stakeholders. Seeking ways to identify common goals and to address 
unfamiliarity with current approaches is an essential step in re-engaging parents and 
the community in children’s learning. A certain failure of New Math reform is 
acknowledged (Kilpatrick 2012), despite some cooperation between mathemati-
cians, psychologists, math educators and teachers. A lack of teacher education, a 
lack of resources and incompatibility between academic math and school math are 
often cited as reasons for this failure. Finally, recurring themes arise as means to 
achieve changes: bridging communities to share goals and means between stake-
holders and the adaptation of teacher education and resources to the new goals.

5.5  �The What and Why of WNA:  
Towards a Cognitive Dimension

The historical, cultural and linguistic foundations of WNA set out in this chapter 
have influenced how an educational system develops its WNA.  How students 
develop fundamental ideas about WNA and what is needed by teachers to nurture 
such ideas remain themes in the following chapters. However, several papers in this 
group have examined some of the different representations of how teachers might 
present WNA at different stages of children’s development. The discussions in these 
papers have provided important insights into the processes that can be evoked in 
different communities from different perspectives. Other influential aspects, such as 
humans’ innate cognitive abilities, are detailed in Chap. 7, while language, artefacts 
and tasks used by teachers are instantiated in Chap. 9. The delicate question of 
teacher education is addressed in Chap. 17.
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Chapter 6
Reflecting on the What and Why of Whole 
Number Arithmetic: A Commentary 
on Chapter 5

Roger Howe 

6.1  �Introduction

Whole number arithmetic is a basic part of mathematics education everywhere, and 
there is a tendency, among mathematicians especially, but also I believe among 
mathematics educators, to think of it as ‘easy’ or ‘simple’, and in comparison to 
later parts of the curriculum  – fractions, algebra, etc.  – this attitude has some 
validity.

But, even WNA is not simple! At least, if history can be a guide to what is simple 
and what is hard, then Chap. 5 shows that our current, essentially universal, formu-
lation of arithmetic in terms of base-ten place value notation (PVN) is not simple. It 
is the product of a very long historical development, some parts of which are still 
little understood. PVN has won its worldwide acceptance and use, not because it is 
simple, but for the power it brings to numeration and calculation; because once you 
understand it – or at least, can work with it – many other things are simple. Although 
PVN has that characteristic feature of a great idea – that after you learn it, you can’t 
imagine not knowing it – it presents considerable obstacles to the learner, and many 
students master it only partially. PVN is not obvious. Chapter 5 gives us some per-
spective on why this is so.
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6.2  �Problematics of Place Value Notation

As we learn in Chap. 5, the ancient or classical civilisations  – Mesopotamian 
(Sumerian, Babylonian, etc.), Egyptian, Chinese, Indus Valley, Greek and Roman – 
although they used a lot of mathematics and did complicated calculations, none of 
them developed positional notation (although, in some sense, the Chinese came 
close). It seems to have come into being in South or Southeast Asia, perhaps not 
until the early centuries of the CE, as a result of interactions between Chinese mer-
chants and various neighbours of China, more specifically as a result of trying to 
adapt Chinese computational methods to written form. The Chinese certainly had a 
highly developed base-ten arithmetic, and they already had many of the components 
of place value notation, especially as embedded in their computational tools, but 
their written numbers included explicit symbols for each base-ten unit. They had no 
symbol for zero; if the multiple of a particular unit needed to express a given num-
ber was zero, the unit was just omitted from the writing. The Romans used a base-
ten system, but their notation was more or less what is designated in Sect. 5.2.3.2 as 
a system of ‘additive type’, with no digits. They had separate symbols for each 
base-ten unit and also one for five of each unit, and they used subtraction as well as 
addition to express numbers. Although we think of the classical Greeks as strong 
mathematicians and they did marvellous things in geometry, their conception of 
number was not as advanced. The Greek numeration system was quite ad hoc and 
limited. It used combinations of up to three letters to express numbers up to 999. (As 
related in a draft version of Chap. 5, the Hebrew and early Arabic systems were 
similar – was this perhaps a common legacy from Phoenician practice, as with their 
alphabets themselves?) So the late development of place value notation, along with 
the gradual evolution of the computational algorithms after it was invented, pro-
vides convincing historical evidence that PVN is far from obvious.

Carl Friedrich Gauss (1777–1855) is often named as the best post-Renaissance 
European mathematician. Although pure mathematicians today revere him espe-
cially for his contributions to number theory, he also was an accomplished applied 
mathematician. He did massive calculations by hand, including a determination of 
the orbital motion of the large asteroid/dwarf planet Ceres, from only a very few 
observations of its position. His prediction of where in the sky to find it again led to 
its rediscovery and its establishment as a notable member of the solar system.

Gauss’s experiences with computation made him highly sensitive to the virtues 
of place value notation. He is quoted (Eves 1969) (Newman 1956, p.  328) as 
saying:

The greatest calamity in the history of science
was the failure of Archimedes
to invent positional notation.

Here, the main point is that even Archimedes, perhaps the best of classical Greek 
mathematicians, had not come up with the idea of place value notation. This was not 
because Archimedes never thought about large numbers: he wrote a paper called 
The Sand Reckoner, whose theme was precisely how to express large numbers (such 
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as the number of grains of sand in all the beaches of the world), and which discussed 
ways of constructing and naming such numbers. Nevertheless, the concept of an 
efficient, all-purpose, unlimited system for writing numbers, such as is provided by 
place value notation, did not figure in his proposals. One might wonder whether the 
very limited ad hoc system (described above) in common use by classical Greeks 
and, in particular, its lack of use of multiplication, somehow inhibited Archimedes’ 
thinking.

6.3  �Algebraic Structure and the Power of Place Value 
Notation

If PVN was so highly valued even by Gauss, it is worth looking at carefully. As 
noted in Sect. 5.2.1, positional notation harnesses many concepts, including essen-
tially all of basic polynomial algebra, in the service of simply writing numbers. 
Moreover, it owes it computational efficacy to its compatibility with algebraic struc-
ture. It also relies on numerous conventions that must be understood by the reader 
in order to interpret base-ten numbers correctly. Three different interpretations or 
elaborations of place value notation are mentioned in Sect. 5.2.3.6 of Chap. 5 as 
having been taught in France in recent years (in addition to the ‘academic theory’ 
promoted by the New Math). My paper for the Study Conference (Howe 2015) 
describes a slightly more elaborated sequence of interpretations, five in all, that 
includes all of these in a single developmental scheme that might be taken as five 
stages of place value understanding and that could describe the progression of a 
learner through a carefully designed arithmetic curriculum. They are illustrated by 
the following sequence of equations:

456 = 400 + 50 + 6
= 4 × 100 + 5 × 10 + 6 × 1
= 4 × (10 × 10) + 5 × 10 + 6 × 1
= 4 × 102 + 5 × 101 + 6 × 100

The first interpretation of ‘456’ mentioned in Sect. 5.2.3.6 is more or less the way 
‘456’ is read out loud in English. (Apparently, the practice is different in France, 
with the base-ten units suppressed.) The second and third interpretations agree with 
the second and third stages above.

The second stage breaks the number up into a sum of pieces. In terms of PVN, 
each of these pieces involves only one non-zero digit. This stage displays the basic 
strategy of expansion in a given base: every number can be expressed as a sum of 
pieces of a special kind. Remarkably, there appears to be no standard short name for 
these pieces in the mathematics or mathematics education literature. For present 
purposes, we will refer to them as base-ten pieces.
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Thus, the base-ten pieces of 456 are 400, 50 and 6. This explicit decomposition 
of a number into the sum of its base-ten pieces is often presented in US classrooms 
under the name expanded form.

The base-ten pieces of a number themselves have substantial structure, which are 
to be understood in terms of multiplication. The third to fifth stages of PVN reveal 
successive features of this multiplicative structure.

The first aspect of this structure is that each base-ten piece is a multiple of an 
even more special quantity, a base-ten unit. These are the base-ten pieces whose 
non-zero digit is just 1. A general base-ten piece is a multiple of a base-ten unit, and 
the non-zero digit tells us what that multiple is. Thus, 400 = 4 × 100, 50 = 5 × 10 
and 6 = 6 × 1. Thus, the base-ten units here are 100, 10 and 1.

With this terminology, we can say:

Each base-ten piece is a digit times a base-ten unit.

This is what the third stage is telling us. It might be called the ‘second expanded 
form’.

We should not stop with this stage. The base-ten units themselves have multipli-
cative structure, and this structure is really the key to the efficacy of the idea of 
base-ten expansion, so it should be made explicit.

Each base-ten unit is itself a product: a repeated product of 10s. The base-ten unit 
1 indicates the basic unit of the whole system. It stands for whatever quantity you 
are counting. As revealed already by prehistoric tally systems, all whole numbers 
are obtained by iterating the basic unit sufficiently many times. The next base-ten 
unit, 10, is the key to the whole system. It reveals the base or grouping ratio: each 
successive base-ten unit is obtained by combining 10 of the previous unit. Thus, 
10  =  10  ×  1 is the first base-ten unit beyond unity. The next base-ten unit is 
10 × 10 = 100. The next one is 10 × 100 = 1000, and on and on, for as long as we 
need to go. For most everyday purposes, we don’t have to go too far: since each 
base-ten unit is ten times the next smaller one, these numbers get large fast! In our 
example, we only need the first three units – 1, 10 and 100. The standard Greek, 
Hebrew and Arabic notational system was content with representing numbers only 
up to 999. Roman numerals went somewhat farther but not much.

Finally, the last expression summarises the previous one by expressing the iter-
ated products of 10 with itself in exponential notation. It is the ‘academic theory’ 
(see Sect. 5.2.3.6) specialised to base ten. The expression bears strong resemblance 
to the way polynomials are written in algebra and indeed can be thought of as 
expressing the given number as a ‘polynomial in 10’, with the understanding that 
the ‘coefficients’ of the ‘polynomial’, i.e. the digits in the first expression, are all 
whole numbers less than 10.

From an educational perspective, a key point to realise about the five stages of 
place value is that although to a mature understanding all these expressions are more 
or less obviously equivalent, each stage represents a substantial intellectual advance 
on the previous one. For example, exponential notation is justified using the associa-
tive rule for multiplication, which is arguably the deepest of the rules of arithmetic. 
Correspondingly, exponential notation is usually not introduced until late elementary 
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school – not in the primary grades – and well after PVN has already been in use by 
students with 3–5-digit (or more) numbers. (However, this late introduction is prob-
ably not done to allow a principled discussion of the role of the associative rule in 
defining exponential notation!) Taken all together, understanding the five stages 
implies a lengthy intellectual development that requires, if it is achieved at all, the 
full span of elementary education.

6.4  �Possible Lessons for Education

All this is well known to mathematics educators, but it seems worthwhile to rehearse 
it again here, for several reasons.

First, it can help us to see to what may be some omissions in educational dis-
course and in WNA instruction. The first example of this would be the lack of a 
short name for talking about the basic building blocks of the notation, what we are 
here calling the ‘base-ten pieces’. A short name would facilitate discussion of them 
and their role in PVN, thereby promoting conceptual understanding of PVN.

Further on, we should ask to what extent the full structure revealed in the fifth 
expression, that is, the algebraic structure implicit in PVN, is made clear to students. 
Some evidence suggests that, in the United States, even the third stage, the ‘second 
expanded form’, does not become part of the thinking of a large segment, perhaps a 
majority, of students (Thanheiser 2009, 2010). We should consider how to structure 
our curricula so that the ideas embodied in the five stages of place value, and the 
algebraic structure underlying it, are absorbed by students. This would be consistent 
with the ‘higher-order thinking’ mantra of twenty-first century education.

Second, the unlimited nature of place value notation is brought home when we 
use exponential notation to express base-ten pieces as d × 10k, where we understand 
that k can be any whole number. The WNA curriculum as we have inherited it from 
previous centuries might be described as ‘small-number-centric’ (which was appro-
priate for many of its primary justifications, e.g. ‘shopkeeper arithmetic’). It starts 
with single digits, proceeds to two-digit numbers, then to three- and four-digit num-
bers, and then perhaps with a little attention to five- and six-digit numbers, tends to 
think its job is done. This is probably fine if the main goal of instruction is to enable 
people to calculate correctly with medium-sized numbers, but it does not convey a 
sense of the system as a whole. This small-number focus may be part of the reason 
many people have little appreciation for the difference between a million and a bil-
lion, thinking of both of them simply as ‘very big numbers’.

But one can argue that today, it is an important civic skill to understand the dif-
ference between a million and a billion. To understand, for example, that a billion-
aire is equivalent to a thousand millionaires.1 If a billionaire spends 10 million 
dollars on a house and takes a million dollar vacation each year, he still has about 
$950 million left to do other things with. When Bill Gates built his house, everyone 

1 This is in the USA. In England, ‘billion’ means ‘million million’.
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was agog that he spent 40 million dollars on it. But Gates’ net worth at the time was 
40 billion dollars, so he was spending 0.1% of his net worth on the house. What kind 
of a house could you buy for 0.1% of your net worth? In this context, it should also 
be taken into account that rich people do not keep their money under their pillows, 
they invest it: their money makes more money. If Gates’ fortune was increasing at 
just 1% per year (in fact, it was increasing much faster), he was richer after he paid 
for the house than when he signed the contract to have it built.

Furthermore, to discuss intelligently economic constructs such as gross national 
product, billions are not enough; one needs at least trillions. For example, the GDP 
of the United States in 2015 was about 18 trillion dollars.

Discussion of issues like climate change involves comparing numbers that are 
substantially larger than this. For example, how big is Earth’s atmosphere? The 
weight of the atmosphere is about 15 pounds per square inch (atmospheric pressure) 
times the area of Earth in square inches. How many pounds is that? Computations 
like this one also bring home the point that, not only would it be very cumbersome 
to attempt to compute all the digits in a large number, it would be a waste of time.

With some effort, one can compute by hand that the number of square inches in 
a square mile is 4,014,489,600. (This computation does not exceed the capacity of 
many hand calculators, so a modern child can find it with a few keystrokes – if she/
he knows what to do.) Then all we have to do is multiply this by the area of Earth in 
square miles. But how accurately can we know this? Do we want to try to find the 
exact true area of Earth in all its glorious roughness? This does not even make sense. 
Most of the surface of Earth is water, which is constantly being jostled by the wind 
to form waves. Waves change the surface area of water, sometimes quite drastically. 
(Think of ‘The Great Wave off Kanagawa’ in Hokusai’s woodblock print. Some 
would put this forward as an example of a fractal, with infinite surface area.) A 
simpler approach might be to pretend that Earth is a sphere and use the formula 
A = 4πr2 for its area. To carry out this strategy, you have to confront the facts that (i) 
Earth is not in fact a sphere and, in particular, (ii) its ‘radius’ is not exactly defined. 
In fact, the ‘radius of Earth’ does not make sense to much more accuracy than 
±5 miles.2 Since it is approximately 4000 miles, this means that we know the radius 
of Earth to less than three significant figures. Keeping in mind the principle that a 
product is only known as accurately as the least accurate of its factors, it does not 
make sense to report more than the three largest base-ten pieces in describing the 
area of Earth or the weight of the atmosphere. So our lovely calculation above of the 
number of square inches in a square mile could (and should) just be replaced by 
‘approximately 4 billion’. The corresponding figure for the area of Earth in square 
inches is quite adequately represented by 800,000,000,000,000,000 or 800 quadril-
lion (in US numeration).

To successfully teach children to comprehend and work with numbers this large, 
we have to get away from focusing on the digits and work hard to understand the 
sizes of the pieces: to focus more attention on the base-ten pieces, especially the 

2 There are several reasons for this: oblateness (flattening at the poles), the bulge in the North 
Pacific, mountains and ocean trenches, etc.
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base-ten units and their relative sizes. Furthermore, students need to learn that, as in 
the example of ‘radius of Earth’, in the real world, it is rare either to need to know, 
or even to be able to know, more than the two or three largest base-ten pieces in the 
number describing some quantity. For most practical purposes, a number is a two- 
or three-digit number times a (perhaps large) power of 10. This might be a goal for 
WNA in the twenty-first century.

It is tempting to speculate why the New Math reform of the 1960s did not articu-
late the process of learning place value as completely as the five-stage description 
offered above. Perhaps it was a lack of pedagogical insight on the part of participat-
ing mathematicians or, more precisely, failure to appreciate the intellectual advances 
and the years of development needed to progress from one stage to the next. Perhaps 
it was a residue of the somewhat contemptuous attitude some mathematicians har-
bour towards base-ten notation, since it involves arbitrary choices and, especially, 
selection of a base, for which there is no clear mathematical reason. This might 
explain the introduction of arbitrary bases in the New Math. Perhaps it was because 
they were still so starry-eyed about the triumph of set theory in establishing founda-
tions for mathematics that mundane classroom issues such as arithmetic did not 
engage their attention. Whatever the reason(s) behind it, this failure can serve as an 
exhibit for the claim that mathematical expertise is not the only prerequisite for 
understanding and positively influencing mathematics education.

6.5  �Comments on Particular Sections of Chapter 53

6.5.1  �Comments on Section 5.3.1

The linguistic issues of teaching the base-ten place value system are perhaps the 
feature of WNA that benefits most from cross-national comparisons. In the USA, 
we have been aware since the paper (Miller and Zhu 1991) pointing out the strict 
compatibility of Chinese spoken number names with PVN and the comparative 
disadvantage English speakers have in learning the principles of place value, since 
they are obscured at the beginning by the irregularity of the -teen numbers and, to a 
somewhat lesser extent, of the -ty numbers. However, we learn in Sect. 5.3.1.1 that 
English presents relatively mild problems and that several European languages such 
as French and Danish are much worse in this regard. My heart goes out to Danish 
school children trying to make sense of 70 when the name for it is ‘three and a half 
four’!

3 The section numbers refer to sections of Chap. 5.
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6.5.2  �Comments on Section 5.3.1.2

In Sect. 5.3.1.2, we learn that children in Algeria have the added burden of trying to 
translate between several different vernaculars with contradictory conventions, 
compounded by translational ambiguities.

Perhaps a way to help children get around this kind of linguistic obstacle is to 
treat the base-ten system for what it is in almost all countries – an imported piece of 
a foreign language – and to make the translation from traditional number names to 
‘structural names’, or ‘mathematics names’, that explicitly describe the base-ten 
structure of each number, a topic of study. This would include explicitly discussing 
the -teen numbers as being made from one 10 and some 1s and making sure that 
students could translate between their traditional names and the structural descrip-
tions. Likewise, the -ty numbers (20, 30, …, 90) would be explicitly identified as a 
certain number of tens and the general two digit numbers as being the sum of some 
10s and some 1s. The work of Fuson (e.g. Fuson and Briars (1990), Fuson et al. 
(1997)) gives some support to this approach.

Beyond helping children to translate between their traditional names and the 
quantity meanings of numbers with two or three digits, this approach would have 
the advantage of permitting explicit attention to be paid to the base-ten pieces and 
how the base-ten structure facilitates computation. General rules could be enunci-
ated that describe what needs to be done to add or to multiply.

When adding two base 10 numbers, we add the 1s (from the two numbers) together, we add 
the 10s together, we add the 100s together, etc. Then, if we get more than 10 of any base 
10 unit, we convert 10 of it to 1 of the next higher unit.

When multiplying two numbers, we multiply each base 10 piece of one factor, with each 
base 10 piece of the other factor. Then we sum all these products.

The multiplication of two base 10 pieces amounts to multiplying their digits, and multiply-
ing the base 10 units, and taking the product of these.

These descriptions can be stated briefly or more completely, as appropriate for the 
context. Besides encapsulating the main principles of base-ten computation in com-
pact form, these general rules have the advantage that they can be taught progres-
sively, starting with two-digit addition and one-digit by two-digit multiplication, 
and can be formulated more and more generally as students work with larger num-
bers. The standard column-wise procedures for paper-and-pencil calculation can 
then be presented as mechanically simple ways to actualise the principles of addi-
tion and multiplication formulated as above. This approach would also easily afford 
discussion of the role of the rules of arithmetic in ensuring that the general recipes 
formulated above are valid. All this would in turn prepare students for learning the 
later stages of place value, in the list of five stages given above, and give them a 
chance of understanding the whole system, which currently seems to be a rare 
accomplishment.
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6.5.3  �Comments on Section 5.4.2

The misunderstanding, between the university mathematician Rick and several 
K-12 mathematics teachers, mentioned by Cooper (2015), makes an interesting 
study for another mathematician. The miscommunication may have occurred in the 
interpretation of ‘numerical expression’. Rick may have meant this to mean, ‘Does 
this symbol “8(1)” signify a number?’, while the teachers may have taken it to 
mean, ‘Is this a well-defined expression involving numbers?’ It is the latter, but it is 
not the former.

The situation is primed for confusion by the frequent use of the word ‘division’ 
to signify either division in the usual sense of rational numbers or division with 
remainder (DWR).

DWR is not an operation on whole numbers in the same sense that addition or 
multiplication is an operation. That is to say, DWR does not take a pair of whole 
numbers and return a single whole number: it produces a pair of whole numbers, 
which play very different roles in the process of DWR. One number is the DWR 
‘quotient’ and the other number is the remainder. Considered in this way, DWR 
defines a somewhat complicated function from pairs of whole numbers to pairs of 
whole numbers. It is a rather different animal from rational number division, which 
takes a pair of rational numbers and returns a single rational number.

The confusion is further encouraged by the use of the notation 25:3, which is 
very similar to the usual fraction notation 25/3 (and probably intended to be simi-
lar!). The symbol 25/3 denotes the (rational) number x such that 3x = 25. However, 
the notation 25:3 stands for the pair of whole numbers q and r, such that 3q + r = 25, 
with r understood to satisfy 0 ≤ r < 3. These numbers are of course 8 and 1.

To emphasise the difference between DWR and the operation of division for 
rational numbers, instead of writing 25:3 = 8(1), which is trying to make DWR look 
as much as possible like actual rational number division (RND), we might try to 
emphasise the distinction and try to make DWR look different from RND. To do 
this, we might define the ‘DWR function’, which would take a pair of whole num-
bers (n,d) to the pair of numbers (q,r) such that n = qd + r, with the remainder r 
understood to satisfy the key condition 0 ≤ r < d. Thus, we would write

	
DWR , ,25 3 81( ) = ( ) 	

to emphasise the function aspect of DWR. (This notation might not be so student-
friendly, however!) The DWR function is not one-to-one (in fact, it is infinite-to-
one), is not RND and indeed is not compatible with RND, or with multiplication in 
the whole numbers, so there should not be any expectation that, just because

	
DWR , , DWR , DWR , DWR , DWR ,25 3 81 33 4 415 49 6 57 7( ) = ( ) = ( ) = ( ) = ( ) = ( ), 	
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etc., that we can conclude that 25/3 = 41/5 = 57/7, etc. But the notation DWR(25,3) 
 = 25:3 tries to make DWR look like RND and sets things up for the confusion that 
Rick and his teachers experienced.

Besides the definition of the DWR relation as deriving from the equation 
n = qd + r, there is another conventional notation that can adequately express the 
relationships involved in DWR – the notation of mixed numbers. This would allow 
us to write

	

25

3
8
1

3
=

	

Here the conventional interpretation of the right hand side is as a sum:

	
8
1

3
8

1

3
= +

	

This notation is more or less equivalent to the notation that Rick proposed to the 
teachers, but avoids the tricky sign, whose interpretation is at the core of the confu-

sion. Understanding that 25:3 = 8(1) means that 
25

3
8
1

3
=  and that 41:5 = 8(1) 

means that 
41

5
8
1

5
=  should help cure people from wanting to conclude equality of 

the left-hand sides implies equality of the right-hand sides. The main point to be 
clear on is that, while it might be defensible to call 8(1) a ‘numerical expression’, it 
is not a number.

6.6  �Conclusion

In these comments, I have tried to reinforce the theme of Chap. 5 that WNA is not a 
simple matter. This can be seen in the historical development of the base-ten place 
value system, which was at best incompletely realised by early civilisations that 
began using mathematics heavily. It can also be seen in the conceptual structure, 
which is at best rather incompletely taught in many countries. Finding better, more 
effective and more conceptually complete ways of teaching WNA should be a focus 
of research. Finally, the fact that many issues of current importance (national bud-
gets, climate science, big data) require dealing with large numbers that are known 
only approximately indicates placing more instructional emphasis on a global 
understanding of base-ten structure and, in particular, on the base-ten pieces and 
their relative sizes.
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Chapter 7
Whole Number Thinking, Learning 
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Cognitive and Developmental Approaches
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Nathalie Sinclair , Yanling Wang , Shu Xie, and Der-Ching Yang 

7.1  �Introduction

7.1.1  �What Was Presented at the Conference: Overview

The participants of working group 2 presented a broad range of studies, 11 papers 
in total, related to whole number learning representing research groups from 11 
countries as follows.

Two large cross-sectional studies focused on developmental aspects of young 
children’s number learning provide a lens for re-examining ‘traditional’ features of 
number acquisition. van den Heuvel-Panhuizen (the Netherlands) presented a co-
authored paper with Elia (Cyprus; Elia and van den Heuvel-Panhuizen 2015) on a 
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cross-cultural study of kindergartners’ number competence focused on counting, 
additive and multiplicative thinking. Second, Milinković (2015) examined the 
development of young Serbian children’s initial understanding of representations of 
whole numbers and counting strategies in a large study of 3- to 7-year-olds. 
Children’s invented (formal) representations such as set representation and the num-
ber line were found to be limited in their recordings.

In a South African study focused on early counting and addition, Roberts (2015) 
directs attention to the role of teachers by providing a framework to support teach-
ers’ interpretation of young disadvantaged learners’ representations of number 
when engaging with whole number additive tasks.

Some papers reflected the increasing role of neuroscientific concepts and meth-
odologies utilised in research on WNA learning and development. Sinclair and 
Coles (2015) drew upon neuroscientific research to highlight the significant role of 
symbol-to-symbol connections and the use of fingers and touch counting exempli-
fied by the TouchCounts iPad app.

Gould (2015) reported aspects of a large Australian large study of children in the 
first years of schooling aimed at improving numeracy and literacy in disadvantaged 
communities. A case study exemplified how numerals were identified by relying on 
a mental number line by using location to retrieve number names. This raised the 
question addressed in the neuroscientific work of Dehaene and other papers focused 
on individual differences in how the brain processes numbers.

The Italian PerContare1 project (Baccaglini-Frank 2015) built upon the collabo-
ration between cognitive psychologists and mathematics educators, aimed at devel-

1 The PerContare project was coordinated by Fondazione ASPHI onlus, with the support of 
Compagnia di San Paolo and the operative support of Fondazione per la Scuola of Compagnia di 
San Paolo of Torino.
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oping teaching strategies for preventing and addressing early low achievement in 
arithmetic. It takes an innovative approach to the development of number sense that 
is grounded upon a kinaesthetic and visual-spatial approach to part-whole 
relationships.

Mulligan and Woolcott (2015) provided a discussion paper on the underlying 
nature of number. They presented a broader view of mathematics learning (including 
WNA) as linked to spatial interaction with the environment; the concept of connec-
tivity across concepts and the development of underlying pattern and structural rela-
tionships are central to their approach.

One group of papers presented studies about other computational aspects of 
WNA such as the variation, efficiency and flexibility of representations and strate-
gies for counting, mental arithmetic, written algorithms, computational estimation 
and word problems. Obersteiner and colleagues (Obersteiner et al. 2015) proposed 
a coherent five-level competence model for WNA in the lower grades of elementary 
school. In another study Verschaffel and colleagues (Verschaffel et al. 2015) com-
pared two kinds of strategies for processing mental subtraction, namely, subtraction-
by-addition. Another three different studies provided new insights into mental and 
written WNA strategies and errors by students in the middle elementary grades: He 
(2015) focused on cognitive strategies for solving addition and subtraction prob-
lems; Yang (2015) highlighted the conceptual difficulties of students’ judging the 
reasonableness of results in whole number calculations; Ma et al. (2015) analysed 
students’ systematic errors for three-digit multiplication and linked these errors to 
teaching strategies. While these studies generated rich discussion about the range of 
research questions that focused on computational processes linked to WNA, these 
studies were not considered the main focus of this chapter, which instead articulates 
the ICMI23 (Theme 2) position paper.

7.1.2  �The Discussion of the Working Group

As in most other working groups, the eight 1-hour sessions were organised in two 
different forms. Whereas the first five sessions were devoted to the presentation and 
discussion of the participants’ accepted papers, the last three whole-group sessions 
involved discussions, wherein two major themes were discussed. First, to what 
extent can the currently influential neuro-cognitive perspective, as elaborated in 
Butterworth’s plenary lecture, act as an appropriate theoretical scope to think about 
early mathematical development (and stimulation of that development) or whether 
this perspective needs to be nuanced and enriched by other perspectives? The sec-
ond major point of discussion addressed the potentialities and limitations of the 
methodologies utilised in the studies on children’s whole number learning and 
development being presented in the working group (and in some other working 
groups) and, more specifically, of (a) the design of the cross-sectional, longitudinal 
and intervention studies aiming at understanding how children develop competen-
cies with whole numbers, as well as (b) the tasks that are common to many studies 
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measuring the understanding of magnitude of numbers, such as number comparison 
and number-line estimation tasks.

Obviously, the topics dealt with in working group 2 were related to those 
addressed in the other working groups and panels, as will become clear through the 
numerous cross-references that will be provided in this chapter. However, working 
group 2 tried to tackle these common topics from the two perspectives mentioned 
above, namely, the psychological and the methodological perspectives.

7.1.3  �About the Chapter

The chapter focuses essentially on two key aspects of the Theme 2 discussion (as 
presented in the Discussion Document, see the Appendix 1 to this volume) that 
discussed neuro-cognitive, cognitive and developmental analyses of whole number 
learning. Its aim is to bring these perspectives into our discussion by acknowledging 
the realisations and promises of neuroscientific research while adopting a critical 
approach from a mathematics education perspective. The structure and content of 
the chapter are an outcome of our synthesis of key ideas following our discussions 
in working group 2. Thus, the chapter will (1) present, discuss and illustrate per-
spectives complementary to neuro-cognitive research and (2) discuss methodolo-
gies utilised in studies on children’s whole number learning and development. There 
are five main sections.

The bulk of the first section (Sects. 7.1.1 and 7.1.2) provides an overview of the 
ICMI Study 23 Conference presentations and the working group 2 discussion.

The second section (7.2) focuses on two neuro-cognitive perspectives: first, 
Butterworth’s ‘starter kit’ is discussed in light of Butterworth’s plenary paper (see 
Chap. 20) and his contribution to the working group discussions. Second, some 
related research on the triple-code model of Dehaene and colleagues (Dehaene et al. 
2003; see also Dehaene 2011) is presented. Gould (2015) then draws upon some 
examples from the research of how quantities and numbers are transcoded and 
represented.

The third section (7.3) provides an overview of related research from cognitive 
perspectives that informs the discussion for working group 2. Verschaffel and 
Mulligan develop this overview of the literature to complement the examples pro-
vided by working group 2 participants. Cross links with examples from other themes 
are highlighted.

The fourth section (7.4) describes some pertinent examples of studies presented 
to working group 2 and applications of the perspectives described in Sect. 7.3: ordi-
nality (Sinclair and Coles 2015), part-whole relations (Baccaglini-Frank 2015), 
additive relations (Roberts 2015), number competence (Elia and van den Heuvel-
Panhuizen 2015) and counting and representational structures (Milinković 2015).

The fifth section (7.5) discusses methodological issues common to neuro-
cognitive, cognitive and developmental analyses of studies on children’s 
WNA. Cross-sectional, longitudinal and intervention studies are discussed in terms 
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of their appropriateness for investigating children’s competence with whole num-
ber. In that section, we also discuss task design in cognitive neuroscience research 
pertinent to number learning.

In the sixth section (7.6), some tentative conclusions are drawn and implications 
for teaching and learning and further research are discussed.

7.2  �Neuro-cognitive Perspectives

7.2.1  �A ‘Starter Kit’ for Early Number

The components of Butterworth’s ‘starter kit’ (Butterworth 2005) for early number 
learning are primarily focused on cardinal aspects of number and its importance for 
later mathematical development. In most cognitive neuroscientific studies, children’s 
foundational competencies are related to children’s general mathematical achieve-
ment as measured by standard school achievement tests of number and computation 
rather than other aspects of mathematical development such as spatial processes.

From a very young age, humans have an inherited core capacity for numerical 
processing. For example, the process of subitising refers to the immediate and accu-
rate estimate of one to four objects without serial enumeration. Another core pro-
cess is described as representing non-symbolic numerical magnitudes on a mental 
number line. Symbolic representations (3, 100, ½, 3.17…) are gradually mapped 
onto these non-symbolic representations. These magnitude representations are com-
monly assessed by means of subitising, magnitude comparison and number line 
estimation tasks. Examples are shown in Figs. 7.1 and 7.2, respectively.

Butterworth (see Chap. 20) describes these two foundational ‘core systems’. 
Deficiencies in these core systems may contribute to low numeracy. He refers to an 
‘object tracking system’ that has a limit of three or four objects and is thought to 
underlie ‘subitising’. Another core system is the ‘analogue number system’ (ANS). 
‘The internal representations of different numerical magnitudes can be thought of as 
Gaussian distributions of activation on a ‘mental number line’. It is typically tested 

Fig. 7.1  Which is the 
larger set?

Fig. 7.2  The line begins at 
0 and ends at 10. Where is 
the number 6 located?
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by tasks involving clouds of dots (or other objects) typically too numerous to enu-
merate exactly in the time available’ (p. 480).

Butterworth refers to the study of Australian Aboriginal children that exploited 
their known visual strengths to solve accurately non-standard arithmetic tasks where 
they had no number words to describe the quantities (Butterworth and Reeve 2008). 
These children matched the spatial patterns of the addend and augend sets. The 
findings suggested that there are various models for number that are not necessarily 
one-dimensional such as in the mental number line and these can be two-dimensional 
in nature.

Some key findings are drawn from Butterworth’s research: (1) numerical 
magnitude understanding is positively and predictively related to (general) 
mathematics achievement and (2) numerical magnitude understanding can be 
improved by means of game-based intervention programmes, although the transfer 
effects from those games to mathematics learning more broadly is still rather small 
(see Chap. 20).

7.2.2  �Neuropsychology and the Triple-Code Model

Neuropsychologists have sought to understand how brain functioning influences 
cognition, including mathematics and whole number learning (Dehaene 2011). 
Simple models associated with number processing have been proposed and tested, 
and the main areas of the brain identified as being activated in number processing 
have been refined.

Dehaene et al. (2003) proposed a triple-code model of working with number, 
consisting of three components: verbal, visual (numerals) and magnitude. The 
model postulates three main representations of numbers:

A verbal code in which numbers are represented as a parsed sequence of words.
A visual Arabic code in which numbers are represented as identified strings of 

digits.
An analogical quantity or magnitude code.

Each part of the model has been associated with increased activity in a particular 
part of the brain. For example, the horizontal segment of the intraparietal sulcus has 
been suggested as the region involved in encoding the analogical representation of 
numerical magnitude (Dehaene et al. 2003).

7.2.3  �Transcoding Numerals (Symbols) to Number Words

Dehaene et al. (2003) proposed two major coordinated routes: a direct asemantic 
route that transcodes written numerals, i.e. the symbolic notations, to verbal repre-
sentations and an indirect semantic route for quantitative processing. Alternative 
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semantic routes are those that go through an intermediate step of activation of quan-
tity associated with the target numeral.

In the working group 2 presentation and subsequent discussion, Gould raised the 
question of whether transcoding numerals to number words is limited to either 
semantic or asemantic pathways. Gould (2015) drew upon an example of a 7-year-
old child’s alternative strategy for locating and naming numerals on the number 
line. The discussion centred on a videoed interview with a child (Electronic 
Supplementary Material: Gould 2017), identified as Jed, indicating that these are 
not the only pathways used to transcode numerals to words. Instead of using a direct 
asemantic route to transcode written numerals to verbal representations, Jed used a 
more laborious transcoding pathway to identify numerals. Jed attempted to visual-
ise the location of numerals on an ordered line of numbers. He would then seek the 
corresponding number word by counting from one. His process for identifying 
numerals was purposeful and time intensive, but clearly not asemantic. Gould’s 
pertinent example shows that coding pathways associated with number may be 
more complex than the neuro-cognitive triple-code model currently allows. Whereas 
previously it was thought that Arabic numerals might activate representations of 
magnitude automatically, other research suggests that this is not the case (Rubinsten 
and Henik 2005). Gould proposes that learning to identify numerals is a learnt pro-
cess. For most students, transcoding Arabic numerals to words is an asemantic pro-
cess, but for some, it can rely upon a process that is not instant. For example, 
Frederick, a 7-year-old student in his second year of formal schooling, would regu-
larly confuse 12 and 20. Over a period of 10 weeks, he learnt to correctly identify 
12 and 20. However, to identify 12, that is, to say twelve in response to seeing it, 
Frederick counted from one to twelve subvocally.

Assessments of young children’s counting often reveal the need to rely on the 
count from 1 (often subvocally) as the reliant strategy to ‘reach’ the required num-
ber name. These children are unable to move flexibly between different positions in 
the number sequence to count either forwards or backwards. When children move 
from producing an ordered sequence of counting words from ‘one’ to developing 
cardinal meaning, their understanding of the quantity is described as the count-to-
cardinal transition (Fuson 1988, p. 266). What is important here is whether these 
children possess either cardinal or ordinal understanding of quantity or both, e.g. 
‘12’. The findings highlighted by Sinclair and Coles (this chapter) raise further 
questions about ordinality  – could Jed explain how numerals are ordered in a 
sequence? Another important observation is that the verbal processes concerned 
with learning the labels for Arabic numerals appear to be critical for arithmetic 
development between the ages of 6 and 7 years (e.g. see Göbel et al. 2014).

7  Whole Number Thinking, Learning and Development: Neuro-cognitive, Cognitive…



144

7.3  �Beyond Neuro-cognitive Approaches: Quantitative 
Relations, SFOR and an Awareness of Patterns 
and Structures

This section provides an overview of current research that informs the research 
perspectives of working group 2. In this section, we will address the importance of 
reasoning about quantitative relations, children’s spontaneous tendency to do so and 
their awareness of patterns and structures.

7.3.1  �Children’s Early Competencies in Quantitative Relations

It is apparent that the analysis of early mathematics-related competencies has capi-
talised on measures that emphasise children’s numerical competencies, i.e. their 
subitising skills (Schleifer and Landerl 2011), counting skills (Geary et al. 1992), 
ability to compare numerical magnitudes (Griffin 2004) and ability to position 
numerical magnitudes on an empty number line (Siegler and Booth 2004). While 
such measures provided empirical evidence for the multicomponential nature and 
importance of young children’s early numerical competencies (Dowker 2008), they 
imply a restricted view on children’s early mathematical competencies and their 
importance for later mathematical development. Starting from Piaget’s logical oper-
ations framework (e.g. Piaget and Szeminska 1952), there is a recent renewed 
research attention to children’s quantitative reasoning skills, such as their under-
standing of the additive composition of number or their multiplicative reasoning 
skills, as well as to their importance for later mathematical learning at school (e.g. 
Clements and Sarama 2011; Nunes et al. 2008, 2012).

Several authors have explored the emergence and early development of these two 
forms of quantitative reasoning. As far as additive reasoning is concerned, various 
principles including the additive composition of number but also the commutativity 
(a + b = b + a), the addition-subtraction inverse (a + b – b = a) and the addition-
subtraction complement principle (a  – b =  . → b +  . = a) have been intensively 
studied (Baroody et al. 2009; Bryant et al. 1999; Gilmore and Bryant 2006; Robinson 
et al. 2006), sometimes also in relation to children’s actual use of these principles in 
their mental arithmetic (Baroody 1999; Peters et al. 2010). However, only few stud-
ies have explicitly addressed the question of how children’s understanding of these 
principles affects their (later) achievement in whole number arithmetic. The limited 
available evidence from these few studies suggests that quantitative reasoning of 
this sort makes a specific contribution to achievement in whole number arithmetic. 
These studies highlight the importance of focusing on the relational aspects of 
quantitative reasoning as critical principles that contribute to strong mental compu-
tational flexibility.
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7.3.2  �Spontaneous Focusing on Numbers (SFON) 
and Quantitative Relations (SFOR)

The studies on the early development of children’s quantitative reasoning reviewed 
in Sect. 7.3.1 take a typically cognitive perspective. They hardly address children’s 
attention to, and feeling for, quantitative relations. Quantitative reasoning in these 
studies often relates to multiplicative thinking. Recently, researchers have started to 
explore children’s spontaneous focusing on quantitative relations (SFOR), as a fol-
low-up of their investigations on children’s spontaneous focusing on numerosity 
(SFON), which has already shown to have predictive power in explaining children’s 
later mathematical achievement (Hannula and Lehtinen 2005). McMullen, Hannula-
Sormunen and Lehtinen (McMullen et al. 2014) describe SFOR as ‘the spontaneous 
(i.e. undirected) focusing of attention on quantitative relations and the use of these 
relations in reasoning’ (p. 218).

A central idea underlying these SFON and SFOR tendencies is that there are 
individual differences not only in how learners reason about mathematics and use 
their numerical skills in learning or testing situations, wherein children are guided 
to the mathematical elements or relations in the situation, but also how often they 
spontaneously focus on mathematical aspects of informal everyday situations. In 
these situations, the recognition and use of quantitative aspects of the situation are 
done at the child’s own initiative and thus undirected and spontaneous (e.g. Hannula 
and Lehtinen 2005; McMullen et al. 2013, 2014). Therefore, studies on SFON and 
SFOR do not examine whether learners are able to recognise or count exact number 
but rather whether they spontaneously use their available number recognition or 
quantitative reasoning skills in situations where they are not explicitly guided or 
instructed to do so.

7.3.3  �An Integrated Perspective Focused on Patterns 
and Structures

Mulligan and Mitchelmore (2009) looked beyond research on early numeracy and 
single mathematical content domains such as counting to identify and explain com-
mon underlying bases of mathematical development. Drawing on their seminal 
studies of multiplicative reasoning and representations of number, they investigated 
the cognitive development of mathematics through the assessment of children’s 
conceptual structures. A strong body of research on patterning, early algebraic 
thinking and the role of spatial structuring in mathematical representations sup-
ported their integrated theoretical approach that young children could develop cog-
nitively sophisticated mathematical concepts. Based on a series of related studies 
with diverse samples of 4–8-year-olds, they identified and described a new con-
struct, awareness of mathematical pattern and structure (AMPS), that generalises 
across mathematical concepts and processes and can be reliably measured (Mulligan 
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and Mitchelmore 2013; Mulligan et al. 2015). Interestingly, just as McMullen et al. 
discuss (see Sect. 7.3.2), in their conceptualisation of AMPS, Mulligan and 
Mitchelmore (2009, p. 39) also look beyond children’s ability in developing early 
numerical competence, by stating that AMPS may consist of ‘two interdependent 
components: one cognitive (knowledge of structure) and one meta-cognitive, i.e., 
“spontaneous” (a tendency to seek and analyze patterns)’. Both are likely to be 
general features of how students perceive and react to their environment, according 
to these authors. In line with this construct of AMPS is the discussion in working 
group 5 on structure, also referring to the notion of structuring for mathematical 
competence and the work of John Mason (see working group 5, Chap. 13).

Mathematical pattern involves any predictable regularity involving number, 
space or measure such as number sequences and geometrical patterns. Structure 
refers to the way in which the various elements are organised and related such as 
iterating a single ‘unit of repeat’ (Mulligan and Mitchelmore 2009). AMPS involves 
structural thinking based on recognising similarities and differences and relation-
ships, but also a deep awareness of how relationships and structures are connected. 
Spatial structuring abilities provide the essential structural organisational features 
supporting numerical processes such as estimation of group size, multiplicative 
awareness of an array, iterating a unit of repeat in a repetition or equal partitions on 
a number line.

An interview-based assessment instrument was developed and validated, the 
Pattern and Structure Assessment  – Early Mathematics (PASA) (Mulligan et  al. 
2015), across a wide range of concepts including patterning, spatial visualisation 
and early graphical representation. Responses included drawn representations and 
verbal explanations of patterns and relationships. Five broad levels of structural 
development were identified and described: prestructural, emergent, partial, struc-
tural and advanced structural (e.g. see Mulligan and Mitchelmore 2013). Further 
validation studies indicated that high levels of AMPS were correlated with high 
performance on standardised achievement tests in mathematics with young students 
(Mulligan et al. 2015). The PASA yields an overall AMPS score as well as scores on 
five individual structures (sequences, shape and alignment, equal spacing, struc-
tured counting and partitioning). All of these structures are highly interrelated. 
Repeating pattern sequences, equal spacing and structured counting all involve the 
idea of equal groups or units; shape and alignment considerations often result in 
equal groups; and partitioning requires the construction of equal groups or parts. In 
Chap. 16, a description of these structural groupings is provided in view of identify-
ing common characteristics of AMPS that are often lacking in children with math-
ematics learning difficulties (MLD).

In alignment with the assessment of AMPS, an innovative, highly challenging 
alternative learning programme, the Pattern and Structure Mathematics Awareness 
Program (PASMAP), was developed and evaluated longitudinally in the kindergar-
ten (the first year of formal schooling in Australia). This study provided the empiri-
cal evidence that young children are capable of representing, symbolising and 
generalising mathematical patterns and relationships, albeit at an emergent level 
(Mulligan et al. 2013). These findings suggest that restricting early learning to basic 
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counting, simple arithmetic and informal notions of measure and geometry limits 
the development of AMPS. The study also tracked and described children’s indi-
vidual profiles of mathematical development, and these analyses showed that core, 
underlying mathematical concepts are based on AMPS and that some students 
develop these more readily and in more complex ways than others.

The PASMAP programme develops integrated learning experiences aimed at 
promoting visual memory, abstraction and generalisation, suitable for young stu-
dents. Each PASMAP learning ‘pathway’ is directed mainly towards one or more of 
the five core structural groupings described above. The initial pathways include 
pattern as unit of repeat and growing patterns, grid structure, two-dimensional and 
three-dimensional relationships, structuring base ten, partitioning and sharing, 
equal grouping, unitising in measurement and symmetry and transformations. The 
first pathways are followed by more challenging tasks that link with the previous 
pathways and extend to multiplicative patterns, metric measurement, patterns in 
data and angles, direction and perspective taking. Clearly there is a strong thread of 
spatial structuring inherent in the pathways of learning.

In summary, there are strong connections among the theoretical approaches dis-
cussed in this section. They all highlight the importance of quantitative relations, 
patterns and structures as fundamental to whole number arithmetic. Recognising 
children’s spontaneous attention to quantities can be linked to the development of 
AMPS that also focuses on children’s natural tendency to seek structure in forming 
numerical relationships. In this respect, it is interesting to point to the paper pre-
sented by Sayers and Andrews (2015), which was presented in working group 1, but 
which also addressed the question of the foundations of number sense in a remark-
ably broad way. By summarising the recent research work in this domain, these 
authors arrived at a multidimensional framework, which they have called founda-
tional number sense (FoNS), that comprises the following eight categories: number 
recognition, systematic counting, awareness of the relationship between number 
and quantity, quantity discrimination, an understanding of different representations 
of number, estimation, simple arithmetic competence and awareness of number pat-
terns. This framework provides us, to some extent, with a comprehensive picture of 
early number competence that was also discussed in working group 2. The features 
that are not evident in this framework, i.e. awareness of mathematical patterns and 
structure (AMPS) and spontaneous focusing on number (SFON) and on relations 
(SFOR), are taken up in the working group 2 discussion.

7.4  �Exemplars of Classroom Studies from Cognitive 
Perspectives

In this section, we describe some pertinent examples of intervention studies pre-
sented to working group 2 or other applications of the perspectives described in 
Sect. 7.3: ordinality (Sinclair and Coles 2015), the Italian PerContare project 
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focused on structural relationships in arithmetic (Baccaglini-Frank 2015), improv-
ing early numeracy through additive relations (Roberts 2015), a cross-cultural study 
of kindergartners’ number competence (Elia and van den Heuvel-Panhuizen 2015) 
and counting and representational structures (Milinković 2015).

7.4.1  �Ordinal Awareness in Learning Number

For studies on ordinality, we draw on the work of Sinclair and Coles (2015). This 
raises an important question concerning typical developmental sequences posited 
by theories of early number learning, where what is given emphasis in the first years 
of schooling is training children to associate numbers with counting and matching 
sets of objects. Their research has led to the hypothesis that what is significant in the 
learning of number (and mathematics more generally) is not being able to link sym-
bols to objects in a manner that is often considered accessible or natural but being 
able to link symbols to other symbols.

Sinclair and Coles (2015) make a distinction, in relation to number, between 
ordinal and cardinal aspects. They refer to ordinality as the capacity to place number 
words and numerals in sequence: for example, to know that 4 comes before 5 and 
after 3 in the sequence of natural numbers. Other aspects of ordinality, such as the 
use of ordinal names and symbols such as ‘first’ and ‘1st’, may be common, for 
instance in the French tradition. Cardinality refers to the capacity to link number 
symbols to collections, e.g. to know that ‘4’ is the correct representation to denote a 
group of four objects. They assert that the current emphasis on cardinal awareness 
in learning number may be misplaced (Coles 2014) and they have been exploring 
what is involved in developing greater ordinal awareness of number and what are 
the potential benefits?

Recent neuroscientific studies (e.g. Lyons and Beilock 2011) have challenged the 
dominant cardinal view of numerical cognition. Lyons and Beilock found a ‘dis-
tance effect’ persisted with the order comparison of groups of dots, but, importantly, 
when judging the order of numerals, the distance effect is reversed. In other words, 
when asked if three numerals are in order, the closer they are together, the quicker 
it is found that subjects can typically make the judgement of correct ordering or not. 
Lyons and Beilock used this reversal of the distance effect to suggest that the brain 
is doing something different when making ordinal comparisons of numerals, com-
pared with both cardinal comparisons (of numerals or dots) and compared with 
ordinal comparisons of dots.

A common approach to working on ordinality in schools involves practising the 
number song; children are invited to count in ones up to 5 or 10, then 20 and then 
100. While Sinclair and Coles see much value in this practice, as a first way of intro-
ducing children to the language and sounds of numbers, working on the successor 
function for integers does not exhaust the potential of ordinal awareness. This has 
already been made evident in the work of Gattegno (1974), whose curriculum for 
early number was based on developing awareness of relations among lengths, where 
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what is symbolised are relations between objects (greater than, less than, double, 
half), rather than, say, using numerals to label ‘how many’ objects are in a collec-
tion. Gattegno introduced work on place value as a linguistic ‘know-how’ and not 
something that required ‘understanding’. Similarly, the research discussed in work-
ing group 1 (Chap. 5) and also in Chap. 3 refers to the important role of language in 
labelling numbers. Gattegno also made extensive use of fingers (both the teacher’s 
and the children’s) as haptic symbolic devices for working on number relations, 
with a focus on correspondence and complementarity. Sinclair and Coles see aware-
ness of number, in this curriculum, arising out of linguistic skill and awareness of 
relations in a manner that does not emphasise nor require a cardinal focus on count-
ing collections.

Sinclair and Coles direct attention to the importance of ordinality in researching 
the use, in the context of the early learning of number, of an innovative iPad app, 
TouchCounts (Sinclair and Jackiw 2011). The discussion in Chap. 9 also refers to 
the use of TouchCounts as a tool for learning. TouchCounts was initially designed as 
a counting environment, to help children learn about one-to-one correspondence. 
Every time a finger touches the screen, a yellow disc appears, labelled with a 
numeral, and that numeral is spoken aloud. Each subsequent touch produces a yel-
low disc with the next numeral on it. With the gravity mode turned on, taps that are 
made by the child below the ‘shelf’ fall away, much in the same way that turning the 
page of a book makes that page number disappear. If one taps above the shelf, the 
yellow disc is ‘caught’ and remains on the shelf. It is thus possible to see just the 
yellow disc labelled ‘6’ on the shelf if the previous five taps have been below the 
shelf. Notice that this task requires being aware of the fact that 5 comes before 6, but 
does not require any sense of cardinality. In both the temporal dimensions, but also 
because of the lack of cardinal reference, this Enumerating World emphasises ordi-
nality. With the use of the aural feedback, as well as the numerals, there is also a 
strong emphasis on language and symbol, as per Lyons’ recommendation (see 
Sinclair and Pimm 2015).

We draw upon this example of Sinclair and Coles from TouchCounts that points 
to the potential for ordinality in learning number (this volume, Sect. 9.3.5.3). In a 
kindergarten classroom, the children are sitting on the carpet, with the overhead 
projector hooked up to TouchCounts. The teacher has asked the children to count by 
5s. They do this by tapping with four fingers (simultaneously) below the shelf and 
then once above. This leaves the multiples of 5 on the shelf. The children take turns 
doing the 4 + 1 tapping, but were asked to announce the number that would be on 
the shelf before starting tapping. Note that instead of hearing ‘five, ten, fifteen…’, 
the children hear ‘four, five, nine, ten, fourteen, fifteen…’.

The teacher had intended to only get up to about 25, but the children wanted to 
keep going. At 125, they began to predict what number would appear on the shelf – 
chanting it out, chorus style – and ended up going all the way to 200. At this point, 
the following interaction took place:

Cam:	 I thought that two hundred was right after one hundred, but it’s not.
Teacher:	 No, how far is it away from one hundred?
Cam:	 It’s, it’s, it’s one more hundred away.

7  Whole Number Thinking, Learning and Development: Neuro-cognitive, Cognitive…



150

Significant in this episode is the fact that the children were involved in a skip-
counting activity that had no explicit connection to a quantity of objects. Instead of 
seeing five objects as a cardinal quantity, they only saw the numbered object 5, as 
with all the multiples of 5. The attention was focused on the structure of the num-
bers, which is what enabled the children to begin to chant out the multiples. When 
the class reached 200, there had been no connection made between the number word 
and a quantity (of, say, two hundred objects). Indeed, Cam’s realisation about the 
relation between 200 and 100 is not a cardinal one; he is instead basing his under-
standing of the relation on the observation that all the same multiples of 5 have to 
be done again in order to get from 100 to 200. In this sense, the relation seems to be 
deeply temporal, assembled as it is with the time it takes to create all the numbers 
up to 100 and then to 200. The relation is also entangled with TouchCounts’s pro-
nouncements (‘one hundred’, ‘one hundred and forty-seven’, ‘two hundred’), some 
of which these children would never had heard before and which they could not 
have read from the symbolic forms (100, 147, 200), but could now begin to associ-
ate with those forms.

The discussion above suggests it is important to balance ordinal and cardinal 
aspects of number sense development in the primary grades. This will require some 
reflection on the ingrained ways in which cardinality is now privileged, as well as 
further creative explorations of how ordinality can be mobilised to promote the 
development of other number-related awareness such as place value.

7.4.2  �Part-Whole Relations and Structure Sense

The Italian project (Baccaglini-Frank and Scorza 2013; Baccaglini-Frank and 
Bartolini Bussi 2015) builds upon a collaboration between cognitive psychologists 
and mathematics educators, aimed at developing teaching strategies for preventing 
and addressing early low achievement in arithmetic (also see papers by Young-
Loveridge and Bicknell 2015, and Gervasoni and Parish (2015). This project takes 
an innovative approach to the development of number sense, that is, being grounded 
on a kinaesthetic and visual-spatial approach to part-whole relationships.

The project focuses on the importance of perceiving part-whole relationships 
and of becoming aware of structure (Baccaglini-Frank 2015; Electronic 
Supplementary Material: Baccaglini-Frank, 2017a). This demonstrates that part-
whole relations arise from what Resnick and colleagues (Resnick et al. 1991) have 
described as proto-quantitative part-whole schemas ‘that organize children’s knowl-
edge about the ways in which material around them comes apart and goes together’ 
(p. 32). For example, part-whole thinking helps students recognise that numbers are 
abstract units that can be partitioned and then recombined in different ways to facili-
tate numerical calculation (Britt and Irwin 2011). Moreover, part-whole thinking is 
fundamental for higher mathematical reasoning. For example, the pre-algebra lit-
erature highlights how if attention is drawn to the development of part-whole rela-
tions, no longer do ‘addition and subtraction appear as separate operations, but 
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rather as dialectically interrelated actions that arise from the part-whole relation 
between quantities’ (Schmittau 2011, p. 77).

Baccaglini-Frank (2015) refers to the part-whole relationship as a construct, 
highly resonant with the research on awareness of mathematical pattern and struc-
ture (AMPS) (Mulligan and Mitchelmore 2009, 2013). She refers to the critical 
feature of AMPS that is characterised by the child’s structuring of groups to repre-
sent quantities; this involves part-whole relationships. Similarly, the ability to 
structure quantities is discussed in working group 5 (see Chap. 13) where the focus 
is on instruction that needs to provide opportunities for structural relationships to be 
associated with fundamental properties.

The following examples illustrate the use of hands and fingers to represent struc-
ture and the use of partitioning in the context of multiplication.

7.4.2.1  �Hands and Fingers: An Important Embodied Structure

Various studies have highlighted how sensorimotor, perceptive and kinaesthetic-
tactile experiences are fundamental for the formation of mathematical concepts – 
even highly abstract ones. For example, the key role attributed to the use of fingers 
in the development of number sense seems to be highly resonant with the frame of 
embodied cognition. Fingers and hands naturally embody part-whole relationships 
with respect to 5 and 10 and therefore can and should be used to foster such aware-
ness. The didactical potential of hands and fingers in their natural positions can be 
exploited in many different ways (e.g. see Baccaglini-Frank 2015), including 
through multitouch technology, well before formal schooling starts (e.g. Baccaglini-
Frank and Maracci 2015).

7.4.2.2  �Use of Artefacts for Fostering the Development of Structure 
Sense: The Importance of Sharing Strategies

Various studies in mathematics education have focused on the design and imple-
mentation of didactical activities significantly based on bodily experience and on 
the manipulation of concrete objects with the aim of fostering the development of 
particular mathematical meanings. For example, in Chap. 9 (Sect. 9.2.1), within a 
semiotic perspective, Bartolini Bussi and colleagues describe how the student’s use 
of specific artefacts in solving mathematical problems contributes to his/her devel-
opment of mathematical meanings, in a potentially ‘coherent’ way with respect to 
the mathematical meanings aimed at in the teaching activity (Bartolini Bussi and 
Mariotti 2008). However, they argue that it is important to keep in mind that in fos-
tering the development of mathematical meanings an essential component is the 
students’ sharing, comparing and evolving of strategies (which can be accomplished 
in a number of different ways). These mathematical meanings, of course, can 
include structure sense, and this can be promoted through a variety of different 
mathematical content.
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As an example, Baccaglini-Frank (2015) shows how 7-year-old students learned 
to think about (and perform) products (up to 10 × 10) within the Italian PerContare 
project. The children were introduced to rectangle diagrams, cardboard rectangles 
with a grid of 1cm2 squares marking its dimensions, which represent the numbers to 
be multiplied. The area of the rectangle (and its unit of measure) is the number of 
squares that make it up. Various activities with the rectangles are proposed with the 
didactical goal of fostering the students’ production of visual and kinaesthetic-tactile 
manipulative strategies for calculating products using number facts they already 
know. Typically, students in the experimental second grade classes already knew the 
sequences of the first 10 multiples of 1 (from counting), 2 (they had learned to 
‘double’), 5 (they could quickly add ‘hands’) and 10 (they could quickly count up 
bundles of straws). So the activities aimed at developing strategies of decomposition 
and composition based on such knowledge. For example, to calculate 7 × 3, children 
could think of 7 as 5 + 2 and use the known rectangles 5 × 3 and 2 × 3 to build the 
total rectangle. Figure 7.3 shows an example.

The different strategies used by the children were compared and discussed. By 
the end of the school year, many children were able to perform calculations without 
the support of the physical rectangle diagrams any longer. For example, below is the 
verbal description produced by Marco (7 years 8 months) of the mental (and highly 
visual) strategy he uses to figure out 7 × 8 when he is called on by the teacher.

Teacher:	 Without drawing the ‘building2 seven times eight, can you tell me how 
you break it and count it?

Marco:	 So, seven times eight… I break it into five and two, and I count it: five, 
ten, fifteen, twenty, twenty-five, thirty, thirty-five, forty… and I already 
have forty. Then I count the twos: two, four, six, eight, ten, twelve, four-
teen, sixteen. Then I do forty plus, uh, I break the sixteen into ten and 
six, and I do forty plus ten, fifty, then I add those six and it is fifty-six.

Teacher:	 Wow! You are tremendous!

2 In this class the teacher took on the class’ idea to refer to the rectangle diagrams as (apartment) 
‘buildings’ which could be split and put back together.

Fig. 7.3  A possible 
decomposition of 
7 × 3 into 5 × 3 + 2 × 3
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As he speaks, Marco frequently gazes into space, as if he were seeing the dia-
gram he is decomposing and recomposing. Mulligan et al. (2013) refer to this as 
visualising the structure, a central component of AMPS.

The examples provided by Baccaglini-Frank (2015) turn our attention to the 
critical role of the structure of artefacts and the ways that young students interpret 
and construct representations. In the case of Marco, he has internalised the visualised 
‘structure’ of the diagram, and we can infer that he had internalised the structure of 
the grid. The use of structure sense is embedded within this example. The ability to 
decompose or partition mathematical representations is directly linked to the child’s 
strategies for calculating, often articulated by the child’s strong visual imagery of 
buildings to be broken up and through verbalisation of ‘I break… into parts’. The 
key process here is not counting by ones or repeated addition but structuring by 
partitioning or ‘breaking up’. Some knowledge of base-ten structure is also evident 
here. Here we see similarities with the work of Young-Loveridge and Bicknell in 
their paper discussing the role of structure in terms of place value and grouping 
(working group 3, Chap. 9, this volume).

7.4.3  �Additive Relations

The study by Roberts (2015) complements the work of Baccaglini-Frank (2015) 
pertaining to part-whole and structure sense. Roberts presented to working group 2 
a conceptual framework for interpreting children’s external representations of whole 
number additive relations in the early grades (Roberts 2015). She bases her approach 
on growing evidence from classroom studies in South Africa that one of the major 
factors inhibiting learners’ mathematical progression is continued using of counting 
by ones strategies for mathematical calculations. This concern is not exclusive to 
studies with South African teachers and young children; for example, Young-
Loveridge highlights the same concern in her studies from New Zealand reported in 
Chap. 13 (this volume).

Roberts explores young learners’ representations of additive relationships and 
provides insights into underlying structure linked to grouping. She presents an 
adapted framework focusing on shifts within modes of representation that denote a 
move from counting to calculating. Based on the work of Ensor et al. (2009), she 
presents the adapted framework moving from concrete apparatus to iconic images, 
to indexical images (generic), to symbolic (number-based) and to the abstract 
symbolic-syntactical level. What the study suggests is that progression within these 
dimensions varies when various modes of representation are used for different tasks 
and at different times over the 10-day intervention period. What Roberts proposes is 
that it is important for teachers to attend to both structure (arrangement and group-
wise) and action within a particular mode of representation, when interpreting 
learners’ representations of additive relations.

Roberts’ approach that articulates the need for children to work flexibly with 
multiple modes of representation is exemplified; particular representational types 
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are not automatically mapped to a particular calculation strategy. How the interplay 
of the various modes of representation interrelates with the developing sense of 
structure and the complexity of the structural features of the tasks at hand is exem-
plified. However, what we see here is the attempt to integrate complex aspects of 
structural development with more traditional, broad levels of progression from con-
crete to abstract thinking, as well as consideration of embodied action. What is dif-
ficult to assess is whether the structure dimensions direct or dominate the influence 
of other dimensions. There is clearly emphasis on the use of colinearity (left-right, 
top-bottom), linear directions and partitioning. This complex matrix approach raises 
relevant research questions about how the internalisation of the structural features 
occurs within and across the four dimensions over time and how this promotes 
abstraction and generalisation in developing arithmetic relationships such as equiv-
alence or commutativity.

7.4.4  �Cross-Cultural Study of Number Competence

Elia and van den Heuvel-Panhuizen investigated the number competence of kinder-
gartners from the Netherlands (n = 334) and Cyprus (n = 304). The study supported 
the multidimensional nature of kindergartners’ number development. Although the 
study did not include assessment items from the full domain of number and opera-
tions, four structures were found to be central to number competence: counting, 
subitising, additive and multiplicative reasoning. The children from the Netherlands 
outperformed those from Cyprus, demonstrating competence across the four com-
ponents. The number competence of the children from Cyprus reflected two compo-
nents, including extended counting and additive reasoning. The discussion focused 
on possible reasons for differences in competence where it was considered that the 
Cyprus kindergarten’s mathematics curriculum and teaching practices may have 
been restricted to counting and additive reasoning and less attention was placed on 
subitising and multiplicative reasoning. Counting strategies may have dominated 
the Cyprus children’s strategies. It was clear that young kindergarten children could 
solve multiplicative items and they connected multiplication and divisions pro-
cesses, although the multiplicative items were the most difficult. This was consis-
tent with other studies presented to working group 2.

Mulligan and colleagues reported similar findings to those of the Netherlands 
sample in their assessment of counting, subitising and multiplicative reasoning with 
kindergarten students from Australia using the interview-based Pattern and Structure 
Assessment (PASA). The possible over-reliance on counting was also described in 
the studies by Roberts and Milinković. Here we refer to the study of Gervasoni and 
Parish (2015), where they used individual interviews to assess over 2000 Australian 
primary-aged children from grades 1–4. Counting, place value, additive and multi-
plicative tasks were administered with gradual increase in competence, but an over-
reliance on counting strategies even at grade 4 level was found. The working group 
2 also questioned the limitations of some early number competency assessments 
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that may restrict items to counting and additive processes and argued for more 
assessments to probe mental calculation strategies.

7.4.5  �Counting and Representations of Number

Milinković examined the development of young Serbian children’s initial under-
standing of representations of whole numbers and counting strategies in a large 
cross-sectional study of 661 children aged 3–7 years. Individual interviews were 
conducted with a consistent set of 24 tasks across the sample so that developmental 
patterns in performance based on age categories could be ascertained. Although 
many of the tasks replicated a traditional approach, such as focusing on counting, 
set representation and one-to-one correspondence, there were some tasks that 
focused on structure through different spatial arrangements of groups of objects. 
Further there were tasks that required children to complete a two-dimensional draw-
ing to show a quantity (box task) and to extend numbers on a number line that did 
not include equidistant points to assist in this process.

Although the research report is limited to performance data across the sample, 
there are some critical features inherent in some tasks that relate to other research 
discussed in working group 2. Milinković highlights the analysis of children’s 
understanding of different graphical representations – the box diagram and number 
line – and presents some pertinent examples. Representations such as sets and the 
number line were found to be limited in their recordings. The ability to use equal 
spacing or a composite unit (equal size) to represent number appeared most difficult 
in the sequence of tasks developmentally.

7.5  �Methodological Issues and Recommendations

In this section, we examine methodologies utilised in the type of studies on chil-
dren’s whole number learning and development being reviewed in this section. 
Evidently, these methodologies do not cover the whole range of research methods 
being used in the domain of WNA. Rather than providing a broad overview of the 
topic, we focus on two issues. First, we discuss study designs and their potentialities 
and limitations for understanding how children develop competencies with whole 
numbers. The discussion is restricted to cross-sectional, longitudinal and interven-
tion studies. Second, we discuss task designs in cognitive neuroscience research 
pertinent to number learning. Here, we focus on the validity of tasks that are com-
mon to many studies measuring the understanding of magnitude of numbers. Such 
discussion reflects some of the issues raised in the previous ICMI Study 22 in 2014 
(Watson and Ohtani 2015). To illustrate methodological issues, we refer to key 
aspects of whole number learning, such as strategy use, developmental aspects and 
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the effectiveness of instructional approaches. We conclude with some recommenda-
tions for further research on whole number learning.

7.5.1  �Study Designs

7.5.1.1  �Assessing Strategy Use with Cross-Sectional Studies

Whole number learning requires, among other things, learning increasingly 
advanced strategies. For example, young children might initially use counting strat-
egies to solve addition tasks, but they might later use stepwise addition strategies or 
they might be able to retrieve the results from memory by retrieval of known num-
ber facts. Cross-sectional studies allow insights into children’s performance and 
strategy use at a particular point in time. They also allow for investigation of how 
performance and strategy use depend on specific types of tasks and how perfor-
mance and strategy use vary between students with different educational and socio-
cultural backgrounds (e.g. He 2015; Ma et al. 2015; Milinković 2015; Verschaffel 
et al. 2015; Yang 2015). Chapter 3 on language aspects, Chap. 5 on reporting the 
discussion of working group 1 and the commentary paper by David Pimm (Chap. 4) 
each address the role of language and culture, also from a historical perspective in 
the development of whole number arithmetic. Here, we turn attention to the work-
ing group 1 discussion that shows how differences in number names according to 
culture may lead to wide differences in learning and pedagogical strategies.

An important issue in studying strategy use is the interplay between individual 
strategy use, individual ability and the affordances of a specific task. For example, 
children might not always use the most sophisticated strategy they could possibly 
use if less sophisticated strategies are more efficient for the specific task at hand. On 
the other hand, students might not be able to adapt their known strategy to the spe-
cific task. For that reason, researchers have argued that if in the assessment situation 
students are allowed to select their preferred strategy, we cannot draw valid conclu-
sions concerning strategy efficiency (Siegler and Lemaire 1997). To draw such con-
clusions, it is necessary to compare students’ performance in a choice condition 
wherein they are free to select their preferred strategy to their performance in a no-
choice condition wherein students are forced to use a particular strategy. Many 
researchers have used this choice/no-choice method to study strategy efficiency and 
strategy flexibility (e.g. Verschaffel et al. 2015). This line of research has produced 
interesting and sometimes surprising results. For example, it seems that students do 
not always use the most efficient strategies that they may have acquired through 
instruction at school. Students also rely on strategies they have not been taught, and 
they might even invent their own strategies.

There is a rich and diverse range of studies that have examined strategy develop-
ment and strategy use in early arithmetic development (e.g. see the papers by He on 
Chinese students’ cognitive strategies to addition/subtraction problems (He 2015) 
and Yang on students’ ability to judge the reasonableness of computational strate-
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gies (Yang 2015)). Many studies on strategy use have also focused particularly on 
promoting numeracy programmes or frameworks. However, to date, the complex 
interplay between the factors that influence strategy use on WNA tasks is not fully 
understood.

An important limitation of cross-sectional studies is that they do not allow con-
clusions to be drawn with respect to individual development or causal relations to 
be determined between foundational or natural abilities and mathematical learning. 
For that purpose, we need longitudinal studies, intervention studies and those that 
track, possibly from the origins, the growth of individuals’ strategy development in 
WNA.

7.5.1.2  �Tracing Individual Development with Longitudinal Studies

Longitudinal studies rely on data from individual children assessed over a longer 
period of time. In the case of numerical development, such studies allow for identi-
fying those variables assessed early in development that are most predictive of later 
arithmetic achievement. While longitudinal studies on arithmetic development have 
been relatively scarce until two decades ago, an increasing number of longitudinal 
studies have been carried out since (e.g. see the above-mentioned synthesis of 
research on early number sense by Sayers and Andrews 2015). Many of these stud-
ies have produced converging results. For example, several studies found that at 
pre-school age, counting and linking quantity to number words are important pre-
dictors of mathematical achievement in the first years of primary school (Aunio and 
Niemivirta 2010; Krajewski and Schneider 2009). Other researchers have combined 
several measures basic understanding of numbers with the concept of number sense. 
Number sense, measured at the beginning of schooling, predicted achievement in 
school mathematics in the first and third grades (Jordan et al. 2010). In a 6-year 
longitudinal study, Reeve, Reynolds, Humberstone and Butterworth (2012) clus-
tered children at the age of 6 years according to their basic numerical abilities such 
as dot enumeration and number comparison. The authors found that the clusters 
were relatively stable over the period of the study and that membership to a cluster 
was a robust predictor of arithmetic ability 5 years later.

Although longitudinal studies have contributed to our understanding of how cer-
tain arithmetic abilities develop over time, most of these studies have focused 
strongly on cognitive variables related to mathematics while paying less attention to 
general cognitive variables (such as IQ and working memory) or environmental 
variables (such as school environment, classroom teaching or socio-economic vari-
ables) (but see Skwarchuk et  al. 2014). From a mathematics education point of 
view, this is problematic, because these more distal variables might strongly influ-
ence children’s development.

The benefit for mathematics education of identifying the most relevant early pre-
dictors of arithmetic competencies is that we can develop teaching approaches that 
specifically address these predictors. Yet, we need further research to evaluate 
whether the developed teaching approaches are actually effective and to identify the 
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most effective one(s) among competing teaching approaches. Intervention studies 
are suitable for that purpose.

7.5.1.3  �Evaluating Teaching Approaches with Intervention Studies

Intervention studies have the advantage that, if properly designed, they allow con-
clusions about the causal effects of specific factors. This is at least the case when the 
intervention conditions are highly similar with respect to non-relevant factors. 
When designing an intervention study, an important question is how to design the 
control group condition. The challenge is that the question of what we want the 
experimental condition to be compared with to is not always obvious. Consider a 
game-based intervention study in which the experimental group uses a computer 
game that includes carefully designed number tasks. As a control condition, one 
might want to vary the method of instruction (computer-based versus not computer-
based), the specific tasks (innovative tasks versus traditional tasks), the entertaining 
nature of instruction (game versus no game), the instructional setting (collaboration 
versus individual) or other factors. However, it is often impossible to vary all these 
factors within the same study. In addition, there might be theoretical reasons why 
combining certain factors is not reasonable from a mathematics education point of 
view. For example, collaborative learning might be more reasonable when the stu-
dents work on problem-solving tasks than when they try to memorise arithmetic 
facts. Moreover, instructional factors are often closely related to one another, so that 
manipulating one factor can affect another factor.

Although strictly controlling the intervention conditions is necessary to draw 
conclusions about the causal effects of specific factors, doing so might reduce the 
external or ecological validity of the study. The reason is that the effectiveness of 
teaching approaches under controlled conditions might not transfer to regular, much 
more complex learning situations. Ideally, we need both highly controlled interven-
tion studies and less strictly controlled classroom evaluation studies in order to 
compensate for the disadvantages of each. This will require replicating studies in a 
variety of settings and combining a variety of research methods (Schoenfeld 2007; 
Stokes 1997).

7.5.2  �Task Designs

As discussed earlier in the first section of this chapter, neuroscience studies have 
addressed the brain mechanisms that underlie number processing. A main conclu-
sion from this research field is that the human brain seems well prepared for pro-
cessing (numerical) magnitudes. Although understanding number magnitudes has 
been a matter of research long before neuroscience studies identified the relevant 
brain areas, this conclusion increased the attention researchers paid to processing 
numerical magnitudes. Likewise, although the relation between mathematical 
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abilities and other cognitive abilities has been studied for a long time, the fact that 
the intraparietal sulcus is a brain region responsible for magnitude processing as 
well as spatial thinking has influenced a number of studies addressing the relation-
ship between numerical and spatial abilities (e.g. Mulligan and Woolcott 2015).

Although there is no doubt that understanding numerical magnitudes is an impor-
tant facet of whole number arithmetic abilities, its particular role for arithmetic 
development is not completely clarified yet. One reason among others is that the 
tasks (measures) that have been used in previous studies for assessing magnitude 
understanding may not be as valid as many have thought them to be. Most studies 
have used number comparison tasks or number line estimation tasks to assess mag-
nitude understanding. In number comparison tasks, one has to decide which of two 
numbers is numerically larger. In number line estimation tasks, one has to place a 
given number in the correct position on an empty number line. Performance on both 
the number comparison task and the number line estimation task has proven to be 
highly predictive of mathematical learning (e.g. Booth and Siegler 2008). Many 
researchers have concluded that processing numerical magnitudes is essential for 
learning of numbers and they have used either task to assess magnitude understand-
ing. Surprisingly, studies that addressed the relation between different measures 
challenged the assumption that these different measures rely on the same cognitive 
mechanisms. Studies documented that the correlation between performance on 
number comparison tasks and number line estimation tasks was very small 
(Sasanguie and Reynvoet 2013) and that performance on symbolic and non-sym-
bolic number comparison tasks was virtually unrelated (Gilmore et  al. 2011). 
Meanwhile, there is converging evidence that the association between number com-
parison and arithmetic competence is much stronger for symbolic than non-sym-
bolic measures (Sasanguie et al. 2014; Schneider et al. 2017), suggesting that it is 
the proficient use of number symbols that has a strong association with arithmetic 
competence.

Recent studies question the assumption that number comparison and number line 
estimation are ‘pure’ measures of magnitude understanding. A possible explanation 
could be that depending on the specific numbers involved, these tasks can be solved 
by strategies that vary in how strongly they require magnitude understanding. For 
example, for comparing two-digit numbers, one can rely on digit-by-digit compari-
son without taking into account the magnitudes of the numbers as a whole. Likewise, 
researchers have argued that non-symbolic number comparison tasks may not only 
measure magnitude understanding as such, but also the capacity to suppress irrele-
vant visual cues (Clayton and Gilmore 2015) or to switch the focus on reliable cues 
(Gebuis and Reynvoet 2012). For number line estimation tasks, the strategies one 
can use also depend strongly on the specific numbers. Finding the correct position 
of 50 on a number line from 0 to 100 is easy (because finding the midpoint of the 
line is a visually simple task), while finding the correct position of 83 is more dif-
ficult, because there is no clear benchmark that can be used. Recent research has 
documented that already second grade children use a variety of strategies for solv-
ing number line estimation tasks and that these strategies depend on modes of pre-
sentations and the availability of benchmarks (Peeters et al. 2015).
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More generally, most cognitive and neuroscience studies have used very simple 
tasks. For example, studies on the neural underpinnings of mental arithmetic have 
often used single-digit addition tasks. Although these are important first steps, and 
although performance of these tasks might be related to mathematical achievement 
later on, studying these tasks is not sufficient to explain mathematical thinking, 
which is typically much more complex. Accordingly, we should be cautious about 
interpreting neuroscience findings in terms of educational implications. In particu-
lar, we should not consider neuroscientific data as more convincing or informative 
than behavioural data (Beck 2010; De Smedt et al. 2011).

7.5.3  �Conclusions: Methodological Issues

Some tentative conclusions and implications can be gleaned from the discussion 
provided in the above section. Studies that aim to provide predictive factors for 
math-related competencies may need to take into account the influence of a broader 
range of variables such as IQ, working memory and socio-contextual factors. The 
analyses of specific tasks such as number line estimation do not reflect the wide 
variation in children’s own strategies that they may impose on the tasks. For exam-
ple, the type and size of numbers may vary, but solutions may also depend on modes 
of presentation and the availability of benchmarks. Most cognitive and neuroscience 
studies have used very simple tasks limited to one area of competence. The limita-
tions of these findings should be acknowledged in view of the much more complex 
relationships between concepts and processes that contribute to mathematics learn-
ing and thinking. Further, we need longitudinal studies to understand better how 
numerical abilities develop over time.

7.6  �General Conclusions and Implications

7.6.1  �General Conclusions

This chapter has highlighted the need to review neuro-cognitive, cognitive and 
developmental approaches to number learning and the measurement of numerical 
abilities. While critical components of WNA may differ between disciplines, some 
important commonalities have been found between approaches. Butterworth’s 
research (2015) focused on the ‘starter kit’ for number also reflected conceptual foci 
on studies on early number from a cognitive mathematics education perspective. 
Tasks that incorporate subitising and numerical estimation are common to mathe-
matics education psychological studies but differ methodologically. Although these 
neuro-cognitive studies provided convincing evidence of specific features of early 

J. Mulligan, L. Verschaffel et al.



161

number development, these were limited to numerical magnitude and cardinality, 
assessed in clinical studies. Cognitive studies on early numerical and general math-
ematical competencies have received inadequate attention in the neuroscience field.

From various cognitive perspectives, key components and processes integral to 
mathematics learning and related to WNA were described: spatial reasoning and 
spatial sense, reasoning about quantities and relationships, SFON and SFOR, struc-
tural relations and patterns (AMPS), ordinality, partitioning and representing 
numerical relationships. These studies, together, provide evidence that young chil-
dren are capable of quantitative reasoning from a young age. In particular, Sect. 7.3 
highlighted recent research on young children’s capacity to reason about quantita-
tive relations (SFOR), as well as their spontaneous tendency to do so. This line of 
research shows strong synergies with the structural approach to early number devel-
opment that focuses on awareness of mathematical patterns and structures (AMPS). 
In their conceptualisation of AMPS, Mulligan and Mitchelmore also go beyond the 
idea of early numerical competence based on ability. AMPS consists of two interde-
pendent components: one cognitive (knowledge of structure) and one metacognitive 
(a tendency to seek and analyse patterns). It seems that reasoning about quantities 
and relationships, SFON and SFOR, structural relations and patterns (AMPS), ordi-
nality, partitioning and representing numerical relationships are related to structural 
development in mathematics.

The exemplars of studies presented in Sect. 7.4 each reflect the need to take a 
more integrated approach to early WNA development. The studies point to a com-
mon approach that seeks to reveal the deep interconnected structural features of 
conceptual development of number. The studies of Baccaglini-Frank and colleagues 
turn attention to the critical role of the structure of artefacts and the ways that young 
students interpret and construct representations. The use of structure sense is embed-
ded within most examples. The ability to decompose or partition mathematical rep-
resentations is also featured in the work of Milinković and colleagues. Several 
studies reflected that importance of varying models of representation supporting the 
idea of complexity of the learning process that is often absent from neat theoretical 
frameworks of likely learning progression. The discussion of methodological issues 
in Sect. 7.5 raises questions for future research and practice.

There were several papers in this working group which focused on learners with 
special needs: Butterworth (2015) drew attention to the prevalence and diagnosis of 
dyscalculia; Baccaglini-Frank’s paper (2015) reported on an intervention study in 
Italy designed to redirect Italian learners at risk of dyscalculia diagnosis; Gould’s 
study (2015) focused on one child who used an atypical way of counting; and the 
Roberts (2015) paper was motivated by the prevalence of South African children 
aged 10–12 years using such inefficient unit counting strategies (long after this was 
developmentally appropriate). These papers depicted groups and individual chil-
dren not progressing mathematically as expected in relation to their peers and/or the 
national mathematics curriculum. Issues concerning children with special learning 
needs are discussed further in Chap. 16.
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7.6.2  �Implications for Further Research and Practice

The chapter has highlighted three issues that lead to recommendations for further 
research. Firstly, we need longitudinal studies to better understand how numerical 
abilities develop over time. These studies should take into account not only math-
related variables but also other variables that have crucial effects on development, 
such as IQ, working memory and contextual variables such as socio-economic fac-
tors and school environments. This would be helpful in putting the relevance of 
specific, math-related predictors into perspective. Although cross-sectional studies 
can hint at relevant relationships between specific sub-competencies, only longitu-
dinal studies support conclusions about children’s individual development and the 
causal relations between foundational math-related abilities and whole number 
arithmetic learnt at school.

Second, there is a need for intervention studies to develop evidence-based 
instructional tasks, tools and techniques. This would enhance educational practice 
and also contribute to our better understanding of the causal effects of arithmetic 
development. Combining both strictly controlled experimental studies and less 
strictly controlled field studies allows us to overcome the drawbacks of each 
(Schoenfeld 2007).

Third, we need more studies that systematically evaluate the validity of simple 
number tasks that have been used frequently in (neuro-)cognitive studies. A multi-
method approach (as used in the study by Peeters et al. 2015) seems promising for 
that purpose. Once appropriate tasks and methods are available, future neuroscience 
studies could address more complex mathematical thinking.

A less (neuro-)psychologically dominated and more interdisciplinary approach 
might bring a broader, more balanced perspective that takes into account both 
empirically based and classroom-oriented research from cognitive and developmen-
tal views of WNA. Classroom intervention studies do not easily permit generalisa-
tion, nor do they reflect the highly controlled experimental settings of the 
neuro-cognitive studies, but these studies are critical to informing further research, 
mathematics teaching practice and curriculum development.

Several chapters in the volume have centred on teaching practices and tools for 
learning whole number arithmetic. For example, working group 3 (Chap. 9) dis-
cusses cultural artefacts and tasks and working group 4 (Chap. 11) teaching and 
assessment approaches. While this chapter has delved into the cognitive and neuro-
cognitive bases of research related to concept development in number, there are 
clearly synergies between this chapter and teaching approaches.

Some important messages emanating from the working groups have been articu-
lated for teachers so that they develop their professional knowledge and improved 
awareness of the complexities of whole number learning. Cognitive and neuro-
cognitive approaches can enable new insights to be incorporated into teaching prac-
tices. Aligned with new insights is the need for effective professional learning 
programmes to enable teachers to implement and review new approaches, tasks or 
assessment practices that they adopt. Developing a better understanding of the wide 
variations in students’ strategies and the difficulties students experience in acquisi-
tion of number concepts is critical to improving mathematics learning overall.
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The research discussed in this chapter can provide to some extent explanations 
and possible interventions to assist teachers to focus on core mathematical founda-
tions such as numerical magnitude representation and the mental number line, 
structures and relationships in developing number sense, promoting multiplicative 
thinking rather than restricting focus on counting and additive computations and 
attention to the role of spatial origins of number learning. The role of students’ rep-
resentations and interpretations of those representations has been exemplified. 
These examples may assist teachers in selecting appropriate representational tools 
and tasks to promote better understanding of whole number relationships. In con-
clusion this chapter has raised new questions from a range of perspectives, both 
neuro-cognitive and cognitive, but with a common goal of providing new insights 
into the complex and dynamic nature of young students’ whole number learning.
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Chapter 8
Whole Number Thinking, Learning 
and Development: A Commentary  
on Chapter 7

Pearla Nesher 

8.1  �Introduction

The previous chapter titled Whole number thinking, learning and development 
embraces many theoretical issues that enrich our understanding of the early attain-
ment of arithmetic skills, followed by a description of concrete applications that 
teachers can implement in the classroom. I would like to focus this commentary on 
two issues: (a) cardinal and ordinal numbers and (b) patterns and structure. 
Additionally, I will add some comments that go beyond the scope of the chapter, but 
are relevant to the study of whole numbers and their operations at the early stages of 
arithmetic learning.

8.2  �Cardinal and Ordinal Numbers

8.2.1  �Philosophical Musings

Sinclair and Coles (2015) challenge current emphases on cardinal awareness in 
learning number and suggest focusing on the development of ordinality. Their 
hypothesis states that what is significant in the learning of number (and more gener-
ally in mathematics) is not being able to link symbols to objects but being able to 
link symbols to other symbols. They also challenge the emphasis that is put on link-
ing number symbols to collections of objects (i.e. on cardinality) in the first years of 
schooling. I will discuss these points from two perspectives: the philosophical point 
of view and the child development point of view.
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From a philosophical point of view, cardinality is based on sets and the basic 
concept involved is the ‘one-to-one correspondence’ (Fraenkel 1942). The limita-
tion of this approach is that it signifies that the sets are equal in number but does not 
specify the number of items in a set (Russell 1919). The exact number of a set is 
based on counting, which is based on order (this will be elaborated on later).

The basis for numbers from an ordinal point of view was made by Peano (in 
Russell 1919) who suggested three primitive notions: ‘0’, ‘number’ and ‘successor’ 
along with five axioms:

0 is a number.
The successor of any number is a number.
No two numbers have the same successor.
0 is not the successor of any number.
Any property which belongs to 0, and also to the successor of every number which has the 

property, belongs to all numbers.			           (Russell 1919/1971, p. 5)

However, as Russell (1919) wrote, these axioms can serve for any progression and 
not rather for the series of natural numbers. This leads me to elaborate on another 
important point made by Sinclair and Coles (2015):

There is an intriguing parallel, however, between our hypothesis and the (perhaps neglected) 
work of Gattegno (1961) and Davydov (1975) both of whose curriculum for early number 
were based on developing awareness of relations between lengths (Dougherty 2008), where 
what are symbolized are relations between objects (greater than, less than, double, half), 
rather than, say, using numerals to label ‘how many’ objects are in a collection. (Sinclair 
and Coles 2015, p. 253)

Bearing in mind Russell’s comment, we can notice that Gattegno (1961) and his 
use of Cuisenaire rods (this volume Sects. 9.3.1.1 and 10.3.3) provides an analogy 
to Peano’s axioms (Nesher 1972). Cuisenaire rods are a didactic tool consisting of 
coloured rods in which the difference in lengths of two consecutive rods is exactly 
the length of the white rod (the unit rod). The children recognise these rods by 
colour. If we let ‘the white’, ‘a rod’ and the ‘follower in length’ be the primitive 
concepts, then the analogous reading of Peano’s axioms will be as follows:

	1.	 ‘The white’ is ‘a rod’.
	2.	 The ‘follower in length’ of any rod is ‘a rod‘.
	3.	 No two rods have the same ‘follower in length’.
	4.	 ‘The white’ is not a ‘follower in length’ of any rod.
	5.	 Any property that belongs to ‘the white’ and also to the ‘follower in length’ of 

every rod that has the property belongs to all the rods.

Of course, one does not teach these axioms to children, yet noticing the isomor-
phism between the Cuisenaire rods and the axioms of natural numbers guarantees 
that all properties of natural numbers can be demonstrated accurately with tangible 
objects.

Cuisenaire rods have an additional important property. Going back to philoso-
phy, it was Frege (1884/1980) who elaborated on the definition of ‘number’ and 
came to the conclusion that ‘number’ in general is a concept, and individual num-
bers (such as ‘4’, ‘9’, etc.) are singular objects falling under this concept. It is hard 
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to visualise that the meaning of the number ‘4’ is an object and that it does not 
represent a set four objects. However, as a mathematical object, the number ‘4’ 
represents the set of all sets of four objects (Russell 1919).

It might be interesting to note that in natural language (in English, as well as in 
many other languages, including Hebrew) one says ‘4 is an even number’ and not ‘4 
are an even number’, which conveys the notion of a singular object. We often hear 
in natural language, as well as in word problems in mathematics, expressions such 
as ‘4 apples are on the table’. However, here the number 4 is employed as a quanti-
fier to the subject of the sentence which is the apples, while in the sentence ‘4 is an 
even number’, ‘4’ is in the nominative position and refers to a mathematical object.

8.2.2  �A Note About Number and Counting

The development of counting is inherently dependent on the advancement through 
various levels, for example, having a stable list of number names and the ability to 
tag objects of a set by the ‘one-to-one correspondence’ abilities that are culminated 
by the process of encapsulation at the notion of a number as an object of mathemat-
ics. By fully completing this process, the child is ready to perform symbolically 
mathematical operations and master more complex mathematical concepts.

Thus, the difficulties of the early stages of arithmetic learning lie not in teaching 
too many cardinal aspects of number, but rather in the fact that we sometimes con-
fuse counting with cardinal number. Mathematics literature is full of examples in 
which the child counts (‘all’ the entities in two collections or ‘on’, starting from the 
number of entities in the first collection and going on with the second collection) 
and describes it as if it was an addition operation, while it is actually a continuation 
of counting. The use of the ‘+’ sign among numbers (i.e. 5 + 3) symbolises the 
mathematical operation of addition with numbers which are themselves objects of 
mathematics. We frequently observe children who are given a symbolic exercise 
such as ‘5 + 3’ and solve it by counting. Some explain: ‘they have not yet mastered 
‘number facts’’. I would like to suggest that they have not yet made the encapsula-
tion of number as a mathematical object and have not learned the real mathematical 
interpretation of the symbols in the ‘additive structure’ as being something different 
in principle from counting, to which I will refer in the next section.

Learning mathematics is a long process and is achieved in an individual manner. 
I do not suggest forcing those who have not yet progressed beyond counting to jump 
ahead. However, I think that teachers should be aware of the difference between 
counting and the cardinal number as an object of mathematics. Saying that the last 
number in counting is the cardinal number is half of the story; splitting the cardinal 
number from counting and encapsulating it into a mathematical object is the one-
step jump into mathematics. This is, of course, resonant with Piaget’s (1941/1965) 
notion of number and addition becoming operational:
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It is operations that are the essence of thought, and it is of the nature of operations continu-
ously to construct something new. Thus, if 1 + 1 + 1 = 3, the three units that are added are 
identical with three in the sense that the total three can again give, by enumeration, the three 
units identical with the original three, but the additive operation has created a new entity, 
the totality three [italics added]. (p. 202)

Without intending to trouble kids or people who are not interested in the philo-
sophical grounds of number (or linguistics), it is good to know that each of the 
Cuisenaire rods is a tangible continuous object, one that masks counting (though 
enables counting by measuring the length of each rod by units), and can help in this 
transition. Since young children use concrete materials for exemplification, it is 
advantageous that there are such materials, as recommended by Sinclair and Coles 
(2015), which enable the child who already counts reliably to relate to numbers as 
mathematical objects.

8.2.3  �Psychological Considerations

Mounds of psychological and neuroscience research in the last 20  years were 
devoted to the question of whether the count-based representation of the natural 
numbers is the work of evolution or that of human culture (Butterworth 2005, 2015; 
Dehaene 1997; Feigenson et  al. 2004). While all agree on the core capacity for 
numerical processing (e.g. subitising – this volume Sect. 7.2.1., representing non-
symbolic numerical magnitudes, etc.), there are theoretical disagreements as to 
whether these core endowments with which young children (babies and toddlers) 
are equipped are analogue in nature (Dehaene 1997) or characterised by a distinc-
tion of object files as evident by subitising (Carey 2004; Le Corre and Carey 2007).

While Dehaene, Piazza, Pinel and Cohen (2003) in their neuroscience studies 
map regions in the brain to three distinct numerical capabilities (i.e. a visual Arabic 
mode, an analogical magnitude code and a verbal code), Le Corre and Carey (2007) 
examine young children’s first experiences in counting and trace its progression. 
Though their experiments examined mainly cardinality, they point to the ordinal 
development of number concepts.

Before attending to Carey’s (2004) theory, let us recall Piaget’s (1941/1965) 
seminal work, The child’s conception of number, in which after delving into detailed 
levels of seriation and cardinality, and after elaborating on the nature of symmetrical 
relations that form classes (hence, cardinality) and the asymmetric relation of order 
that forms ordinality, he writes:

There is then no doubt as to the explanation of the coordination between ordinal and cardi-
nal numbers…Finite numbers are therefore necessarily at the same time cardinal and ordi-
nal, since it is the nature of number to be both a system of classes and of asymmetrical 
relations blended into one operational whole. (p. 157, Piaget 1965 edition)

Returning to Carey (2004), most researchers agree upon the range of subitising 
(quantities of one to three or four) in which the comprehension of a set’s quantity is 
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fast and seems to be performed perceptually without counting. Carey, who studied 
the emergence of cardinal numbers, describes the process of very young children 
who when asked to give one item give the one object but when asked to give two 
will give any bunch of objects. She names them ‘one-knowers’. Six months later, 
they can distinguish ‘one’ and ‘two’ (these she calls ‘two-knowers’; they give 
exactly two objects, but fail for the exact amounts of other number names). Carey 
suggests that the within this range, children learn the numbers the way they learn the 
meaning (the extension) of other quantifiers such as ‘many’ and ‘all’ in natural lan-
guage, and numbers beyond this range are taken as ‘many’. This, according to her 
theory, changes for greater cardinals such as 7 or 12 (Carey 2004; Nesher 1988).

Carey (2004) suggests that in the meantime the child learns the list of counting 
words that initially has no meaning to it and is recited as a ritual. Fuson and Hall 
(1983) have described in detail the process of learning how to count. She describes 
how the child progresses in mastering the order of the numerals. At each stage, the 
child acquires some knowledge about numbers that comprises a stable ordered list, 
followed by numbers recited in the right order, but with skips. Then, from not know-
ing the right order or missing larger number names, the child starts to repeat the 
previous known number names. These stages are of course dynamic and the ranges 
of stable lists grow with age and experience. Similarly, Gelman and Gallistel (1978) 
have described the principles underlying counting including a stable ordered list of 
number names, the one-to-one principle of attaching the number words as tags to 
every counted object (without repeating or omitting objects), that the order of count-
ing objects is not important and comprehending that the last counted number name 
is the cardinal number of the counted set.

However, Carey suggests that the knowledge of the stable ordered list of number 
words in natural language is the key for learning the concept of a successor. The 
successor principle, operationalised as the knowledge that adding one object to a set 
(i.e. n) results in an increase of exactly one unit on the count list (i.e. n + 1). It is this 
knowledge that enables coordination between the ordered list of words and the sets 
to be enumerated, in order to establish their cardinal number.

It should be noted that the stable string of number words holds an asymmetrical 
relation between the words and necessarily fosters ordinality in counting the sets. 
This occurs according to researchers such as Fuson and Hall (1983) and Gelman 
and Gallistel (1978) before the child acquires cardinality. As soon as the child suc-
ceeds in tagging the sets correctly (i.e. mastering one-to-one correspondence 
between the ordered words and the objects), he is already in the mode of ordinality, 
which is embedded in the notion of cardinality.

In sum, though Sinclair and Coles (2015) are saying ‘it is important to balance 
ordinal and cardinal aspects of number sense development in the primary grades’, it 
seems that they call more attention to the aspect of patterns in mathematics and 
overlook the aspect of structure and as a result also missed a central aspect of 
Gattegno’s (1962) work with the Cuisenaire rods.
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8.3  �Structure

8.3.1  �Structure in Mathematics

Structure refers to the way in which the various elements are organised and related, 
and to the essence of operations between numbers. In starting the section on struc-
ture (this volume Sect. 7.3.3), the author mentions additive principles such as com-
mutativity (a + b = b + a) and the addition-subtraction inverse (a + b – b = a). These 
principles and others are derived from the structure of additive relations as stressed 
by many researchers (e.g. Mulligan and Mitchelmore 2009; Nesher 1989; Roberts 
2015; Schmittau 2011; Vergnaud 1982). The notion of structures is central in math-
ematics and is stressed in higher education (e.g. in learning about groups, fields, 
rings). The interest in structure in primary grades has had its revival recently with 
the attempts to teach pre-algebra as early as possible (see Cai and Knuth 2005; see 
also this volume Chaps. 13 and 14).

This brought attention back to Davydov’s (1975) work. Davydov’s (1975) 
approach starts with quantities symbolised in lengths and derives the notion of num-
ber from a unit of measurement. Children use letters to express the relationships 
between quantities, learn to express part-whole relationships between quantities, 
transform inequalities into equalities and find missing wholes and parts using addi-
tion and subtraction. The relation of the whole-part additive structure is presented 
before numbers.

A similar approach is taken by Gattegno (1962) who used the coloured rods to 
probe the additive structure. Like Davydov (1975), who uses letters before numbers, 
Gattegno employs colours to distinguish between lengths. And since the set of rods 
up to ten are constructed under the idea of ‘successor in length’ (which forms mono-
tonic steps for the child), the rods serve as a concrete apparatus that can be easily 
manipulated and is isomorphic to the numbers yet emphasises first structures and 
relations.

Let us consider the following exemplification suggested by Gattegno (Gattegno 
1971 and Fig. 8.1): Putting rods ‘end to end’ will exemplify addition and the symbol 
‘+’ (see A in the drawing), putting rods ‘side by side’ (B) will exemplify subtraction 
and will be symbolised by the ‘−’ sign, and finally, completing the structure to two 
equal lengths of rows (C) will justify the ‘=’ sign.

Thus, the sentence ‘A + B = C’ has a full concrete analogy, and the child can 
absorb that symbols such as ‘+’, ‘−’ and ‘=’ have a distinct, though currently lim-
ited, meaning within a structure. This structure will be elaborated on and enriched 
in the future. The alternation between instructions in natural language, well under-
stood by the child (e.g. ‘end to end’, ‘equal lengths’, etc.), exemplification by con-
crete materials and introducing the symbolic signs of arithmetic as analogy to these 
structures supports the learning of the language of arithmetic. In a way, the above 
exemplification of the additive structure of the rods represents the semantics of the 
signs ‘+’, ‘−’ and ‘=’ (to be discussed in the next section).

P. Nesher



175

8.3.2  �School Practice

This approach is entirely different from the practice in many schools. Recently, 
Bruun, Diaz, and Dykes (2015) suggested teaching the language of mathematics 
and the meaning of the arithmetic operations in a detached manner. The children in 
their classes learn to define mathematical words and give an example and a non-
example. So, for instance, the following definition of addition is given: ‘A mathe-
matical operation in which the sum of two numbers or more is calculated, usually a 
plus sign (+)’. A non-example is given: ‘9 – 3’ (p. 532). Then, the following defini-
tion of subtraction is given: ‘The operation or process of finding the difference 
between two numbers using the (-) minus sign’. A non-example is given: ‘2 + 2’. 
(p. 533).

Instead of teaching the full structure of the additive relations, the ‘+’ and the ‘–’ 
operations are not connected and even stand as negative examples. What then might 
a student do with an open sentence such as: ‘3 +    = 9?’ Is it ‘addition’ or ‘subtrac-
tion?’ In fact, answering this question by adding 3 + 9 and replying 12 is a most 
common error performed by children – clear evidence of the misunderstanding of 
the additive structure and the full meaning of ‘+’ and ‘−’. Many children also inter-
pret the ‘=’ sign as a non-symmetric command: ‘do it’ rather than a symmetric sign 
of equivalence.

The Cuisenaire rods are by no means the only tool that can be used to acquire the 
semantics of the mathematical signs. One can develop manipulative materials with 
discrete models of numbers such as grids of rectangles or sets of circles or a number 
line as well.

Put rods end to end

A

Equal
lengths

The three rods configuration

Put rods side by side

B

C

The examplification of the additive relation.

Fig. 8.1  Example elaborated by the author: exemplification according to Gattegno’s approach to 
the additive relation (See Gattegno 1971, p. 24.) (Note: This is a simplified version of the original 
figure.)
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For example, let’s consider the approach proposed by Carraher and Schliemann 
(2015). They suggest, and even experimented with, learning pre-algebra in third to 
fifth grade. They consider the four operations learned as functions and suggest 
approaching ‘+ 3’ as a function that can be employed in open sentences such as 
‘n + 3’, where ‘n’ can receive any number. Carraher and Schliemann claim that this 
approach enables children to integrate arithmetic with algebra and geometry. The 
major concrete exemplification they employ is the number line, though they’ve tried 
their ideas in other contexts such as a box of candies or heights. This approach, too, 
departs from counting and relates, like Davydov (1975), to numbers as units of 
measurements. Their interpretation of the ‘+’ sign is as a one-argument function of 
‘adding’ or ‘advancing’, and the ‘=’ sign is the comparison of two functions 
(Carraher and Schliemann 2015).

8.3.3  �Concrete Materials

I would like to emphasise that it is not sufficient to introduce concrete materials that 
represent numbers, but rather, a sound pedagogy needs to support the learning of the 
semantics of the mathematical signs such as ‘+’, ‘−’ and ‘=’, because these signs 
have semantics and knowing them means understanding the relevant structure. By 
the semantics in early arithmetic learning I mean the following.

In addition to the concrete materials, numbers on the two sides of the ‘+’ sign 
refer to the parts (named ‘addends’), and the number after the ‘=’ sign refers to the 
equivalent whole amount (the ‘sum’). In subtraction, the role of the numbers differs. 
The number to the left of the ‘−’ sign refers to the sum, and the number to the right 
of the ‘−’ sign is one of the addends. The number to right of the ‘=’ sign in subtrac-
tion refers to the second addend. However, both ‘+’ and ‘−’ refer to the same under-
lying structure.

The rods’ additive construction with its language game offers even young chil-
dren a microworld (or a model) that implements relations such as parts and whole 
similar to the semantics of the mathematical additive structure of natural numbers. 
A child who works according to the rules of the exemplification can realise a tem-
porary meaning of the symbols ‘+’, ‘−’ and ‘=’, and for him or for her, a string of 
symbols such as ‘3 = 4 + =’ is meaningless. All the relations mentioned in Chap. 7 
(this volume), such as commutativity (a + b = b + a) and the addition-subtraction 
inverse (a + b – b = a), also (c > a) and (b < a) from Davydov (1975), etc. are visible 
in the model and can be understood.
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8.4  �Final Remarks

To sum up, one should be aware that shifting from counting, which is learned within 
natural language, and acting within the arithmetical discipline is an enormous step 
for the child and its difficulty is not fully appreciated.

Sometimes the child adds or subtracts correctly by non-arithmetical means such 
as counting, and we mistakenly regard it as if he or she understands the ‘+’ operation 
of arithmetic. The ‘+’ operation is between numbers, and as long as the child did not 
grasp the cardinal numbers, he or she essentially did not learn the meaning of the ‘+’ 
sign, which gets its true meaning within the context of additive structure.

The nature of the shift from counting to arithmetical operations is semantic as 
well as ontological, though it is not yet fully understood. However, we can and 
should smooth the way for this shift by engaging young children with tangible 
objects as substitutes for the true reference of the abstract objects of mathematics. 
However, these exemplifications should represent the true nature of the objects and 
relations of arithmetic.

Mathematical symbolism has developed as a need to express ideas that were 
ambiguous in natural language or to symbolise new ideas that were advanced. The 
uniqueness of mathematical symbolism is in its being a condensed language – a 
rigorous sign language that has a strict interpretation. Moreover, mathematical lan-
guage makes more subtle distinctions that the natural language cannot make (unless 
intonation is involved). Let us take the following written phrase: ‘A fifth of a number 
decreased by 4’. Is the intention 1/5x – 4 or 1/5(x – 4)? Mathematical symbolism 
clearly makes the distinction between the two interpretations (meanings).

Another example is the interpretation of the word ‘is’. In natural language, its 
interpretation is derived from the given context. However, this word receives further 
distinctions in the formal language of mathematics and logic (Ayer, 1936/1972):

‘Is’ in the case of equality: A  =  B
‘Is’ in the case of class membership a ε B
‘Is’ in the case of class inclusion A ⊃ B
‘Is’ in the case of existence ∃X (p. 63)

This is the power of formal language vs natural language that made it so power-
ful in all sciences and many applications. It is also true of arithmetic and its simple 
operations, and we should not underestimate the precision of these expressions.

Admittedly, it is a problematical task to convey the meaning of the rigorous signs 
of arithmetic by translation to natural language. Neither ‘put end to end’, ‘put 
together’ or ‘go forward’ for the ‘+’ sign nor ‘take away’, ‘put side to side’ or ‘go 
back’ or ‘descend’ for the ‘–’ sign stands for the semantics of the mathematical 
additive relationships. It is important that teachers understand that the symbols of 
whole numbers, their operations and relations in arithmetic are not merely a new 
syntax for concepts learned in the past in the everyday environment, but rather a 
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difficult jump into a new symbolic domination. Mastering the symbolic language 
can be afterwards enriched and applied in everyday contexts via word problems 
given in natural language or other inquiry projects.

It is my conviction that acknowledging the big step the child must accomplish 
and devising new learning environments to assist in bridging the gap will avoid the 
failure of so many children who already feel alienated from mathematics in the 
early primary grades.
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and Mathematical Tasks

Maria G. Bartolini Bussi , Maitree Inprasitha   
Ferdinando Arzarello , Hyman Bass , Ulrich Kortenkamp ,  
Silke Ladel , Caroline Lajoie , Yujing Ni, Thomas Rottmann , 
Veronica Sarungi , Sophie Soury-Lavergne , and Jenny Young-Loveridge 

9.1  �Introduction

9.1.1  �What Was Presented at the Conference: Overview

In this chapter, discussion of key socio-cultural aspects that affect learning will be 
considered from two complementary perspectives:

•	 Aspects that may help learning, especially if adequately exploited by the teacher.
•	 Aspects that may hinder learning, especially if not adequately contrasted by the 

teacher.

Thirteen papers written by authors from ten countries were accepted for Theme 3. 
For presentation and discussion, the papers accepted for Theme 3 were divided into 
subgroups according to their main focus. We are aware that it is not possible to make 
distinct groups of papers as there are several overlaps in the classification, but in 
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order to focus the group discussion, the main ideas from the papers are used to dic-
tate the different time slots.

9.1.1.1  �Language and Institutional Contexts

The contribution of participants from many different contexts offers a unique pos-
sibility to have first-hand reports about issues which may foster or hinder the con-
struction of mathematical meanings.

Transparency vs Opacity  Some papers addressed the transparency of language for 
Chinese (Ni 2015), Thai (Inprasitha 2015) and Maori (Young-Loveridge and 
Bicknell 2015) that was contrasted with the opacity of European languages such as 
French and German (Peter-Koop et al. 2015).

Pimm and Sinclair (2015) analysed the grammar of 20 different languages about 
fractions, discussing the information conveyed by each of them.

The Institutional Context  Mercier and Quilio (2015) analysed the differences 
between primary school education about whole number arithmetic in four French-
speaking countries, showing that language is only one of the variables to be consid-
ered when addressing the functioning principles of education systems.

9.1.1.2  �Artefacts

A cluster of papers addressed different kinds of artefacts:

•	 The number line (Bartolini Bussi 2015; Electronic Supplementary Material: 
Bartolini Bussi 2017).

•	 Tallies and sequences of tallies (Hodgson and Lajoie 2015).
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•	 Multibase arithmetic blocks and arithmetic rack or Slavonic abacus (Rottmann 
and Peter-Koop 2015; Electronic Supplementary Material: Rottmann 2017).

•	 Cuisenaire rods (Ball and Bass 2015), with a special challenging task for eco-
nomically disadvantaged fifth graders.

•	 Artefacts from everyday life (Inprasitha 2015).
•	 Computer games (Bakker et al. 2015).
•	 Virtual manipulatives (Soury-Lavergne and Maschietto 2015; Ladel and 

Kortenkamp 2015).

9.1.1.3  �Teacher Education

An overarching issue that encompasses the conditions for the learning of WNA 
concerns teachers’ education and the effects it may have on their future students’ 
processes. All the above papers, in some sense, hint at the importance of teacher 
education for the effective use of either language or other artefacts.

Two specific programmes for teacher education were reported:

•	 An approach developed in Canada (Laval University, Québec) for establishing 
the foundations of WNA with pre-service primary school teachers that highlights 
the role of mathematicians in the preparation of teachers in arithmetic and that 
also stresses the complementary role of mathematicians and mathematics educa-
tors in such an endeavour (Hodgson and Lajoie 2015)

•	 A programme developed in Thailand in order to adapt the Japanese Lesson Study 
to the Thai context (Inprasitha 2015, Electronic Supplementary Material: 
Inprasitha 2017)

9.1.2  �The Discussion in the Working Group

The eight one-hour sessions were organised in different ways. At the beginning, two 
small groups were organised: (1) language to focus on different wording of ‘ten’ 
and (2) artefacts and mathematics to focus on relationships between epistemology 
and the choice/design of artefacts.

The language group discussed language for grouping, unitising into units and 
groups. In some countries (e.g. in England), the word ‘unit’ is used to refer to ones, as 
well as being a general collective term for different groups (e.g. hundreds, tens, ones). 
In some languages (e.g. French, German, Italian), there is a particular term used to 
label the unit for a particular group (e.g. dizaine, zehner or decina for ten). In contrast, 
English uses ten for the number of items and for the unit name. Moreover, they also 
discussed about language and wording in fractions and cardinal and ordinal names.

The artefact group discussed both traditional and ICT artefacts. They expressed 
the need to clarify the terminology according these questions: What is a representa-
tion? What is a model? What is an artefact? What is a tool? Furthermore, they 
discussed about artefacts which are designed and used with different intentions. 
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They stressed the importance of guidance (by the teacher) and the exploration of the 
artefacts by the students.

In the last session, there was only a mathematical task group.
The CANP observer, Veronica Sarungi (Tanzania), offered a lively report on the 

problems in South-East Africa, where the local languages are in conflict, in most 
cases, with the school language (see also this volume, Chap. 3). The three young 
observers from the Great Mekong Area (Weerasuk Kanauan, Visa Kim and 
Chanhpheng Phommaphasouk) were very active in videotaping all the sessions and 
preparing the report of the group discussion.

At the end the participants agreed that the language issue could have been 
enriched by the confrontation with participants in other working groups, in order to 
exploit the presence of more linguistic contexts (see Chap. 3). The participants 
rather chose to focus on artefacts (that was considered the true core of the working 
group discussion) and on mathematical tasks, whose careful choice may well foster 
or hinder learning of WNA. For the artefacts, they expressed the hope to collect 
together examples of artefacts presented in other working groups. This collective 
choice, reported in plenary session, determined the structure of this chapter.

9.1.3  �The Structure of This Chapter

The core of this chapter is the notion of artefact, from the discussion of the meaning 
of the word in the literature to a gallery of cultural artefacts from the participants’ 
reports and the literature. The use of cultural artefacts as teaching aids is then 
addressed. A special section is devoted to the artefacts (teaching aids) from 
technologies.

The issue of tasks was simply skimmed, as it was not possible to discuss about 
artefacts without considering the way of using artefacts with suitable tasks. There 
was no intention to overlap with the ICMI Study 22 (Watson and Ohtani 2015) that 
was attended by some participants in the ICMI Study 23, including the co-chairs 
(only the volume of proceedings was available at the time of the Conference). Some 
examples of tasks were reported to elaborate on aspects that may foster learning 
WNA, and some examples of tasks that might hinder learning were also reported. 
Artefacts and tasks appear as an inseparable pair, to be considered within the system 
of cultural and institutional constraints.

In the concluding remarks, some challenges are outlined, in order to contend 
with this complex map.
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9.2  �Cultural Artefacts

9.2.1  �The Use of Different Terms with Similar (Not the Same) 
Meaning

9.2.1.1  �The Historic-Cultural School

In the literature, many different words have been used to describe artefacts. One of 
the difficulties comes from the existence of literature in different languages, with 
various challenges of translation. The case of translations from Vygotsky’s original 
papers in Russian is emblematic. Vygotsky is the founder of the so-called historic-
cultural school, where the notion of mediation by cultural artefacts is central. 
According to Russian scholars (Anna Stetsenko, personal communication), the 
major term used by Vygotsky in his papers is sign (or symbol interchangeably), in 
Russian знак (znak in transliteration), so that the construct of semiotic mediation is 
expressed in this way ‘znakovaya kulturnaya mediatsija’ (знаковая, культурная 
медиация), meaning symbolic cultural mediation. In the English translations, sev-
eral different terms were used with related yet different meanings.

In 1930, Vygotsky gave a talk on The Instrumental Method in Psychology at the 
Krupskaya Academy of Communist Education that was later included in different 
readings. The English version of the transcript reads:

In the behavior of man we encounter quite a number of artificial devices for mastering his 
own mental processes. By analogy with technical devices these devices can justifiably and 
conventionally be called psychological tools or instruments. […] Psychological tools are 
artificial formations. By their nature they are social and not organic or individual devices. 
They are directed toward the mastery of [mental] processes – one’s own or someone else’s – 
just as technical devices are directed toward the mastery of processes of nature. The follow-
ing may serve as examples of psychological tools and their complex systems: language, 
different forms of numeration and counting, mnemotechnic techniques, algebraic symbol-
ism, works of art, writing, schemes, diagrams, maps, blueprints, all sorts of conventional 
signs, etc. (Rieber and Wollock 1997, p. 85)

In this translation, different kinds of terms are used: (psychological) tool, instru-
ment, artificial formation or device. The idea of ‘artificial device’, whence the short 
name ‘artefact’, was used by Yrio Engeström (1987) and subsequently by Michael 
Cole (1996). Cole argued in favour of using ‘artefacts’, as a more generic term 
(1996, p. 108). Cole connected artefact mediation to Dewey’s analysis of tools and 
works of art, claiming that Dewey’s works were ‘well known among Russian educa-
tors and psychologists’ (p. 109). This direct scientific connection between Dewey 
and Vygotsky is intentional, as Cole claims that his ‘focus will be on an attempt to 
formulate an approach to psychology that draws upon both national traditions’ 
(p. 115). This choice makes Vygotskian ideas closer to US scholars, but not every-
body agrees on the mutual consistency of the two national traditions. For instance, 
Stetsenko (2008) writes:

Whereas both Dewey and Piaget (and many of their contemporary followers in the rela-
tional ontology approach) treated human beings as no different than other biological 
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organisms—thus keeping up with the Darwinian notion that ‘nature makes no drastic 
leaps’— Vygotsky and his followers postulated precisely such a leap and turned to explor-
ing its implications. In doing so, these scholars followed with the Marxist dialectical mate-
rialist view according to which “…[the] base for human thinking is precisely man changing 
nature and not nature alone as such, and the mind developed according to how human 
being[s] learned to change nature” (Engels quoted in Vygotsky 1997, p. 56; italics in the 
original). (p. 482)

In the same manner, Xie and Carspecken (2007), in their comparative analysis of 
US and Chinese mathematics curricula, contrast Dewey and Marx as representatives 
of two very different paths of departure from Hegelian idealism with strong influ-
ence on educational choices.

The notion of artefact was elaborated in the so-called activity theory approach 
(e.g. Engeström 1987) and exploited in mathematics education by other authors (see 
Bartolini Bussi and Mariotti 2008 for a review).

In the further literature on the instrumental approach, an artefact is meant ‘as 
the – often but not necessarily physical – object that is used as a tool’ (Hoyles and 
Lagrange 2010, p. 108), while:

[an instrument requires a relationship] between the artefact and the user for a specific type 
of task. Besides the artefact, the instrument also involves the techniques and mental schemes 
that the user develops and applies while using the artefact. To put it in the form of a some-
what simplified ‘formula’ we can state: Instrument = Artefact + Schemes and techniques, 
for a given type of task. (p. 108)

In this case, the reference is to Rabardel’s (1995) instrumental approach.
In this chapter, however, we shall not strictly use this distinction, and in most 

cases we shall refer to artefacts in a more generic way, as mathematics educators, 
anthropologists and historians do not always adhere to either of the above theoreti-
cal frameworks.

9.2.1.2  �The Theory of Semiotic Mediation: The Teacher’s Side

The notion of artefact (in the Vygotskian sense) is central in the theory of semiotic 
mediation as developed by Bartolini Bussi and Mariotti (2008). In this framework, 
there are two main foci: the function of cultural artefacts, developed by mankind, 
and the teacher’s role as cultural mediator.

The teacher is in charge of two main processes: the design of activities and the 
functioning of activities. In the former, the teacher makes sound choices about the 
artefacts to be used, the tasks to be proposed and the pieces of mathematics knowl-
edge to be addressed, taking into account the curricular choices. This means that 
mathematics knowledge is, in this framework, the taught knowledge to be distin-
guished from the scholarly knowledge (Chevallard and Bosch 2014). In the latter, 
the teacher exploits, monitors and manages the children’s observable processes, to 
decide how to interact with them and what and how to fix in the individual and 
group memory. The design process is encapsulated by the left triangle of Fig. 9.1, 
where the semiotic potential of the artefact is described. The semiotic potential 
concerns the double semiotic link defined by the use of the artefact to accomplish 
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the task and the mathematical meanings related to the artefact and its use. The other 
parts of the scheme concern the functioning in the classroom. When students are 
given a task, they start a rich and complex semiotic activity, producing traces (ges-
tures, drawings, oral descriptions and so on). The teacher’s job is first to collect all 
these traces (observing and listening to children), to analyse them and to organise a 
path for their development towards mathematical ‘texts’ that can be put in relation-
ship with the pieces of mathematics knowledge into play. In this process, the teacher 
organises the alternation (in what is called a didactical cycle) of individual and 
small group use of the artefact and production of signs to solve the task and of large 
group mathematical discussion.

In this way, artefacts become teaching aids as they are used in knowledge trans-
mission (e.g. in schools) with didactical intentions. In the literature very often some 
kinds of teaching aids are named manipulatives, in order to highlight the possibility 
to manipulate them in the process of construction of mathematical meanings 
(Bartolini Bussi and Martignone 2014; Nührenbörger and Steinbring 2008). 
Recently, many virtual manipulatives have been produced thanks to the increasing 
distribution of technologies, sometimes without a careful investigation of the cogni-
tive difference (and distance) between a direct manipulation and a mediated manip-
ulation, for instance, by means of the digital mouse (http://nlvm.usu.edu/en/nav/
vlibrary.html). For relevant exceptions, see Sect. 9.3.4.

9.2.1.3  �Artefacts and Representations: The Learner’s Side

When artefacts are in play, what is in the foreground is not the mathematical con-
cept itself but an external representation (or a model) of it. In this sense, artefacts 
‘allow children to establish connections between their everyday experiences and 

Fig. 9.1  Semiotic mediation
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their nascent knowledge of mathematical concepts and symbols’ (Uttal et al. 1997, 
p. 38). Nevertheless, the role of an artefact to be a representation is not necessarily 
obvious for children. In this context, Uttal et al. (1997, p. 43) mention a ‘dual-rep-
resentation hypothesis’: Any artefact can be thought of as a representation that 
stands for something else or as an object on its own. The latter view might provide 
a reason for children’s learning difficulties:

Concrete objects can help children gain access to concepts and processes that might other-
wise remain inaccessible. However, there is another side to the use of concrete objects: 
children may easily fail to appreciate that the manipulative is intended to represent some-
thing else – that it is a symbol. If so, the manipulative will be counterproductive. (Uttal et al. 
1997, p. 52)

Similar concerns about the focus of attention in using manipulatives are expressed 
by Nührenbörger and Steinbring (2008), with the same problem applying to virtual 
manipulatives as well (see Sect. 9.3.4).

Monaghan, Trouche and Borwein (2016) have an ambitious approach with a cov-
erage from prehistory to future directions in the field, with a major emphasis on mod-
ern technologies, addressing the areas of curriculum, assessment and policy design.

After this short review about the function of artefacts in the literature on mathe-
matics education, it is worthwhile to present some examples of cultural artefacts, 
drawing on the examples mentioned by the participants.

9.2.2  �Cultural Artefacts for WNA

The history of mathematics is replete with the creation of artefacts, some dissemi-
nated all over the world, while others are related to a particular culture. Hence, cul-
tural artefacts are important in both the history and geography of mathematics and 
reveal something about the cultures that have produced and used them, as well as 
about the image of mathematics in that culture. Some of them may be exploited to 
reconstruct the cultural identity of learners or to construct mathematical concepts.

According to Vygotsky’s list quoted in Sect. 9.2.1, language is the first example 
of artefact (sign) directed towards the mastery of mental processes. Language is at 
work in both everyday and school contexts. The connection between language and 
numbers (including whole number arithmetic) is far from being natural or universal. 
In this volume (Chaps. 3 and 5), the variation of different forms of numeration and 
counting are explored with reference to the history and geography of whole number 
arithmetic. In some cases language can foster learning; in some cases it can hinder 
learning. In this chapter, we analyse a typical example where language (and culture) 
makes the difference (see the case of epistemological obstacle in Sect. 9.3.2). 
Language enters also in the activity with other artefacts, when tasks are given by 
language or to be answered by language. The gallery of examples is organised in the 
following way:

•	 Ancient artefacts to represent numbers and compute (tallies, counting rods, 
quipus and yupana)

•	 Abaci
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•	 Artefacts for multiplication (pithy tables, Napier bones, ‘gelosia’ scheme)
•	 The number line
•	 Songs, poems and dance
•	 Games
•	 Everyday artefacts
•	 Textbooks and d-books

9.2.2.1  �Ancient Cultural Artefacts to Represent Numbers and Compute

Tallies (this volume, Sects. 5.2.3.1 and 10.4.1) are, according to historians 
(Menninger 1969), the most ancient representations of numbers (Fig. 9.2).

Tallies are still used in election poll counting (Fig. 9.3).
Tallies were used for centuries also in double tally sticks (Menninger 1969, 

p. 223) for commercial exchanges:

A long piece of wood is cut lengthwise almost the end; the part with the large end is the 
‘stock’ (the main stick) and the split-off portion is the ‘inset’ (the piece laid on the main 
stock). […] When a payment or delivery is either made or received, the debtor insert his 
inset in the stock, which the creditor generally keeps, and notches are cut into or removed 
from both pieces at once. Then both parties take back their own pieces and keep them until 
the final settlement. In this marvelously simple fashion, the ‘double bookkeeping’ makes 
any cheating impossible. (p. 231)

According to Menninger (1969, p. 233), the Chinese character for ‘contract’ (契, 
qìjù) is very meaningful.

The word for ‘contract’ in Chinese is symbolized by two characters at the top, one for a tally 
stick (stick with notches) and one for a knife, and another at the bottom which means 
‘large’. A ‘contract’ or ‘agreement’ in Chinese is thus literally a ‘large tally stick’.

Sequence of tallies is among the founding elements of an arithmetic course that 
was developed in Canada (Laval University, Québec) for the preparation of pre-
service elementary school teachers (this volume, Chap. 10). In that course, tallies 
are used to fully define natural numbers and operations on those numbers; capture 

Fig. 9.2  The Ishango bone 
(http://www.cs.mcgill.
ca/~rwest/link-suggestion/
wpcd_2008-09_
augmented/
images/234/23448.jpg.
htm)

Fig. 9.3  Tallies for ballot 
counts
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the notion of equality; prove some fundamental properties, such as the commutativ-
ity of addition; and more (Hodgson and Lajoie 2015).

Counting rods (筹; chóu, this volume, Chaps. 3 and/or 5) were used in ancient 
China (Zou 2015), with the possibility of distinguishing positive (red) and negative 
(black) numbers too, and gave rise also to the ancient Chinese characters for num-
bers (Fig. 9.4) (see this volume, Chap. 3).

Later they were spread all over the world and are one of the most effective strate-
gies to introduce place value by means of bundles. Figure 9.6 shows an ancient 
method textbook for teachers, published in Italy in 1920. A comparison between 
Figs. 9.5 and 9.6 shows that the Chinese rods are bamboo, while the Italian sticks 
represent other European species of trees.

Quipu (González and Caraballo 2015) is a system of strings (Fig. 9.7), used by 
Incas, with different colours and different knots, where the position of knots and the 
colours of the strings determine the number to be represented. According to Jacobsen 
(1983):

Documented evidence, however, provides that early Hawaiians and ancient Chinese pre-
dated the Incan usage. Studies concentrating on the quipu as an accounting device rather 
than as an element in the evolution of the writing process might provide valuable contribu-
tions to the solution of the mystery surrounding this artifact. Insight into the development 
of mankind in the Pacific may be gained by understanding the use of the quipu in the East 
and West, and in Hawaii—the “meeting place” of the Pacific. (p. 53)

Fig. 9.4  Chinese counting 
rods from excavation

Fig. 9.5  Chinese counting 
rods from Mekong area 
(personal collection of the 
first author)
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In Fig. 9.8, besides quipus also a yupana is represented. According to Gonzales 
and Caraballo (2015), it draws on a base-ten system. It was used by Incas to do 
arithmetical operations. It is still used as a teaching aid in Peru in intercultural edu-
cation programmes.

9.2.2.2  �Abaci

Different kinds of abaci are present in the history and geography of arithmetic. The 
Roman abacus, suàn pán (算盘), soroban (そろばん) and schoty (счёты) share 
some features of bead arithmetic:

•	 In each column, one bead is equal to ten beads of the adjacent column on the 
right.

•	 Each column is divided into two parts: each bead of the top part is equivalent to 
five beads on the bottom.

Fig. 9.6  Counting rods from Conti (1920)

Fig. 9.7  An Inca quipu 
from the Larco Museum in 
Lima (https://commons.
wikimedia.org/wiki/
File:Inca_Quipu.jpg)
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The Chinese 算盘 (suàn pán) and the Japanese そろばん (soroban) have a simi-
lar structure but with a different number of beads (Sun 2015; see also Chap. 5).

The Russian счёты (schoty) is not organised in columns but in rows, where one 
bead is equivalent to the bead of the adjacent row below, with one exception (the 
row for quarter kopek, an ancient coin) (Figs. 9.9, 9.10, 9.11 and 9.12).

Inspired by the Russian abacus, the so-called Slavonic abacus (or arithmetic 
rack) was introduced in Europe by Kempinsky (1921) who gave it the name of 
Russische Rechenmaschine (Rottmann and Peter-Koop 2015); see also Sect. 9.2.3.

Yet, during time, the positional value, where rows represent units, tens, hun-
dreds, thousands and so on, was replaced by the convention that each bead repre-
sents a unit, whichever is the column or row (see also Sect. 9.4.1) (Fig. 9.13).

9.2.2.3  �Artefacts for Multiplication

Pithy tables (or nine times tables or multiplication tables) are popular all over the 
world with different names. For instance, in Italy, the table of Fig. 9.14, printed in 
the last page of notebooks until 50 years ago, was named ‘tavola pitagorica’, but it 
is not clear why Pythagoras is mentioned.

Fig. 9.8  Quipu and 
yupana (By Felipe 
Guaman Poma de Ayala 
(https://commons.
wikimedia.org/wiki/
File:Yupana.jpg)
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According to historians (Lam and Ang 2004, p. 73 ff.) in China, this table was an 
integral part in the rudiments of counting, as from the seventh century BCE (this 
volume, Sect. 15.5). Later, it was known as the ‘nine nines song’, as the learner had 
to recite the numbers in a singing manner to memorise the table. The reduced forms 
in Chinese textbooks (Fig. 9.15) draw on commutative property (Cao et al. 2015).

Fig. 9.9  Roman abacus 
(https://commons.
wikimedia.org/wiki/
File:RomanAbacusRecon.
jpg)

Fig 9.10  A precious 
ancient jade suàn pán 算盘 
(personal collection of the 
first author)

Fig 9.11  A soroban 
(personal collection of the 
first author)

Fig 9.12  A schoty 
(personal collection of the 
first author)
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Fig. 9.13  The arithmetic rack (Kempinsky 1921)

Fig. 9.14  ‘Tavola 
pitagorica’ from an Italian 
notebook (around 1960, 
personal collection of the 
first author)
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In each line, only the case of a < b for a × b is written.
An original way of approaching the multiplication table is suggested by 

Baccaglini-Frank et al. (2014) within the PerContare project, drawing on Pythagoras’ 
studies on figurate numbers and Euclid’s further development of geometric algebra 
(this volume, Chap. 7). The product of two numbers a × b is represented in the table 
by a rectangle with sizes a and b. In this way, the construction of the table is justified 
by a spatial approach, and some properties of multiplication (e.g. commutative, 
distributive) are evident.

Napier’s bones (or rods) are an artefact for multiplication, drawing on nine times 
table. Each rod is a strip of wood, metal or heavy cardboard. A rod’s surface com-
prises ten squares: the first holds a single digit, while the others comprise two halves 
divided by a diagonal line. In each square there are the multiples of the number on 
the top. In Fig. 9.16, there is a collection of Napier’s rods together with an example 
of application.

A similar approach, on paper and pencil without rods, is in the Gelosia (or lat-
tice) multiplication (Siu 2015; see Fig.  9.17). It is an algorithm, probably from 
Arabic culture, but later spread also in Europe (through Italy): the advantage of this 
method in the classroom is that every result from the nine times table is written and 
only later combined with others. Hence, the control of the single steps of the process 
is fostered.

9.2.2.4  �Number Line

The number line (Bartolini Bussi 2015, and this volume, Chaps. 15 and 19) draws 
on the Euclidean tradition of representing numbers with line segments. It was trans-
formed into a teaching aid in Europe in the seventeenth century. Now number lines 
are part of everyday experience of pupils, either in games (e.g. the board game of the 
Goose especially popular in Southern Europe) or in everyday tools (e.g. the graded 
ruler or scales in measuring instruments with direct reading).

Fig. 9.15  The reduced pithy table from an old Chinese textbook
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9.2.2.5  �Songs, Poems and Dance

The recitation of nine times table as a song was already mentioned above. The tradi-
tion of recitation in mathematics learning was widespread in many parts of the 
world too. For instance, in India (Karp and Schubring 2014):

The recitation involved knowing how to chant Vedic verses following many systematic 
combinations of their syllables, first in order, then inverting one verse/syllable after another, 
then reciting it backwards, and so on, so that the recitation itself could be seen as an applica-
tion of a systematical “mathematical” combination”. (p. 71)

There are also cultures in Africa where dancing and singing together is a way to 
recite and learn numbers (Electronic Supplementary Material: Sarungi 2017; see 
also Zaslavsky 1973, Chap. 10).

Meaney, Trinick and Fairhall (2012) report an activity about whole number arith-
metic, taken from a New Zealand television programme and based on the principles 
of kapa haka, a traditional team dance where actions emphasise the sung or chanted 
words, using the body as the instrument for delivery.

Fig. 9.17  Gelosia 
multiplication: 
323 × 12 = 3876

Fig. 9.16  Left: Napier’s bones. Right: instruction
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The role of the body is evident also in a video clip (Electronic Supplementary 
Material: Arzarello 2017) about a project developed in an Italian first-grade class-
room (this volume, Chap. 15). Students learn to recite the numbers according to the 
regular and transparent Chinese structure that is different from the Italian one. 
Hence, they say: ‘nine, ten, ten-one, ten-two, ten-three…’ accompanying this recita-
tion with large-size arm gestures, which help them to keep up the pace.

9.2.2.6  �Games

Many games embody number properties. Some examples follow.

•	 Traditional games (e.g. the goose game; see above); mancala (Fig.  9.18), an 
African game with seeds (Zaslavsky 1973, Chap. 11).

•	 Magic squares (in China, Africa, Europe) (Fig. 9.19).
•	 Playing cards with special patterns fostering subitising (see Sect. 7.2.1).
•	 Games from recreational mathematics.

Recreational mathematics has been popular all over the world, since ancient 
times (see also Zaslavsky 1973, Sect. 9.4). Singmaster has collected a large set of 
sources, many of which concern WNA.1 Gardner has published hundreds of col-
umns in Scientific American and other books.2 Famous collections have been pub-
lished in the former Soviet Union (Kordemsky 1992) and in Latin America. The 
book by Malba Tahan (1996), the pen name of Júlio César de Mello e Souza, tells 
the fictitious story of an Arab mathematician of the fourteenth century, as a series of 

1 http://www.puzzlemuseum.com/singma/singma-index.htm
2 http://martin-gardner.org

Fig. 9.18  A mancala 
(personal collection of the 
first author)

Fig. 9.19  Playing cards 
(personal collection of the 
first author)
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tales in the style of the Arabian Nights, but revolving around mathematical puzzles. 
The book was very popular in Brazil and was translated into many languages includ-
ing Arabic.

Games have been implemented also in devices of computer technology, as com-
puter games (Bakker et al. 2015) and applets for multitouch technologies (see Sect. 
9.3.4).

9.2.2.7  �Everyday Artefacts

Everyday artefacts reflect mathematical ideas. Some examples:

•	 Banknotes and coins.
•	 Cake boxes (like the ones used in the Hou Kong School, this volume Chap. 11) 

or egg boxes with regular organisation of places.
•	 Stamp sheets (organised in ten lines of ten stamps each) (see Inprasitha 2015).

9.2.2.8  �Textbooks

Mathematics textbooks have been for centuries the most widespread artefacts all 
over the world. In this chapter, we wish to put only a signpost for this issue that is 
considered elsewhere in this volume (Chap. 11). We shall devote some space to 
d-book only (see Sect. 9.3.4.4).

9.3  �When Artefacts Are Teaching Aids:  
The Construction of Mathematical Meanings

A cultural artefact may become a teaching aid when it is used in schools with didac-
tical intentions. In the previous section, we have collected a gallery of examples, 
most coming from the history of mathematics. We have also briefly mentioned some 
didactical use of them. In this section, we shall deepen this point, discussing some 
issues relating to the teaching and learning process.

9.3.1  �Some Modern Artefacts

A teacher or a mathematics educator may design an original artefact with specific 
intentions. Some examples from the history of mathematical instruction follow.
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9.3.1.1  �Cuisenaire Rods

Cuisenaire rods (this volume, Chaps. 8 and 10) are used to represent numbers with 
coloured rods of different length, in the trend already introduced by Froebel and 
Montessori. They were designed in the 1920s by the wife of Georges Cuisenaire, a 
Belgian educator, in order to make arithmetic visible. Some decades later Caleb 
Gattegno named them Cuisenaire rods and started to popularise them. In this case, 
the number is approached through measuring. Nesher (this volume, Chap. 8) analy-
ses them according to Peano’s axioms. These rods may be used also to create chal-
lenging tasks (Ball and Bass 2015). They have also inspired some apps like number 
bonds by Diana Laurillard.3

9.3.1.2  �Multibase Arithmetic Blocks

MAB (multibase arithmetic blocks) are one of the most popular teaching aids to 
introduce place value (see Chap. 4). They provide concrete representations for the 
number bases (Dienes 1963). They model numbers with objects hinting at different 
dimensions (see Ladel and Kortenkamp 2015; Rottmann and Peter-Koop 2015). In 
spite of the diffusion, they have been criticised from an epistemological and cogni-
tive perspective (Stacey et al. 2001), suggesting, instead, of using Linear Arithmetic 
Blocks (LAB) that model numbers with length, showing the position of numbers on 
a number line.

9.3.1.3  �Spike Abacus

The spike abacus is inspired by the abaci of the past containing different wires with 
beads referring to units, tens, hundreds and similar (Fig. 9.20). In some traditions 
(e.g. Baldin et al. 2015), it is common to use different colours for units, tens and so 
on and to transcribe multi-digit numbers using pens of different colours, with the 
purpose of making differences more evident. This choice seems not advisable, as 
attention is focused on colours and exchange conventions rather than on order and 
position.

9.3.2  �Artefacts for Place Value:  
The Cultural Roots of Epistemological Obstacles

Some of the examples of our gallery address a crucial issue in WNA, which is place 
value (this volume, Chaps. 3 and 5). Counting rods (筹; chóu) and all the kinds of 
abaci, for instance, are strongly related to place value. As argued in this volume 

3 http://thinkout.se/thinkout-products/number-bonds/
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(Chap. 5), place value, at least in the Western culture, hints at an epistemological 
obstacle, with influences on the teaching and learning processes.

An epistemological obstacle may be described, after Brousseau and Bachelard, 
as follows:

Brousseau’s approach is based on the assumption that knowledge exists and makes sense 
only because it represents an optimal solution in a system of constraints. […] In Brousseau’s 
view knowledge is not a state of the mind; it is a solution to a problem, independent of the 
solving subject. (Fauvel and van Maanen 2000, p. 162)

Usually epistemological obstacles are related to the historical process of con-
structing mathematical knowledge by mankind and are likely to appear anew in the 
mathematics classrooms. But, as we show below, this idea has to be carefully anal-
ysed with a lens of cultural and language relativism. The cultural roots of 
epistemological obstacles have been discussed by Sierpinska (1996) and Radford 
(1997; see also D’Amore et al. 2016). In a recent study on language impact on the 
learning of mathematics, Dong-Joong et al. (2012) observed:

More generally, this study brings to the fore the importance of teachers’ awareness of the 
unique, language-dependent properties of the discourse to which they are going to usher 
their students. The teachers need to be cognizant of those language-specific features of the 
discourse that may support learning and of those that may hinder successful participation. 
Thus, to support meaningful learning in English-speaking classes, instructors may wish to 
deliberately capitalize on the existing lexical ties between students’ informal talk and for-
mal mathematical discourse on infinity. But these teachers should also remember that the 
continuity has its dark side, in that it may hinder the necessary change: at different levels, 
the same words are used in different ways, but the required transformation may be difficult 
for the students not just to implement, but even to see. (p. 106)

The study was about infinity with secondary school students in the USA and 
Korea, but the same observation might be applied to place value in WNA. From a 
Western perspective, we know (Menninger 1969, p. 39 ff) that the early representa-
tions of whole numbers were in most cases based on additive rules (this volume 
Chap. 5). Representation of numbers and computing seemed to be quite different 
issues: numbers were represented in additive form, and the operation to solve arith-

Fig. 9.20  A monochrome 
spike abacus (personal 
collection of the first 
author)
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metic problems were solved by some artefacts before transcribing the results. In the 
previous section, we have mentioned the Roman abacus, which worked on a posi-
tional rule, while numbers were written drawing on additional system.

The situation was different in China (this volume, Chaps. 3 and 5), where the 
links between the representation of whole numbers (in both words and symbols) and 
the artefacts for computing (e.g. counting rods and suàn pán) was very strict from 
the beginning and with no interruption between them.

In Europe, when representation of numbers according to non-positional (addi-
tive) systems was in use, no need for ‘zero’ to represent the empty positions on the 
abacus emerged. When eventually ‘zero’ was introduced in Europe from the East 
through the Arabic tradition together with the so-called Hindu-Arabic digits, the 
advantage of this introduction was not immediately acknowledged.

The medieval Italian manuscript of Fig. 9.21 shows the problems in shifting from 
the Roman notation to the new one (Fauvel and van Maanen 2000, p. 151).

What happens today in the (Western) mathematics classrooms?

When 7-year-old students are asked to write numbers, a common mistake in transcoding 
from number words to Hindu-Arabic numerals shows up: some students write ‘10,013’ 
instead of ‘113’ as the zeroes on the right (100) are not overwritten by tens and units. […] 
This mistake is stable and resists direct teaching of place value. […] rather than using place 
value conventions, the students seem to use digits to transcribe oral numerals. (Bartolini 
Bussi 2011, p. 94)

The (Western) epistemological obstacle requires recourse to specific activities to 
be overcome. It is necessary to reconstruct the link between representing numbers 
orally and in written forms, which seems so natural in Chinese classrooms (this vol-
ume, Chap. 15). This may be done using some kind of artefacts and tasks. For 
instance, it is possible to use cultural artefacts such as abaci or counting rods (inher-
ited from the history of mathematics and strictly linked to place value development) 
or artefacts from everyday life. This last case is reported in a study by Young-
Loveridge and Bicknell (2015), who assert that ‘place value understanding is inher-
ently multiplicative’ and that ‘multiplicative thinking involves working with two 
variables (number of groups and number of items per group) and these are in a fixed 
ratio to each other, in a many-to-one relationship’ (p. 379). This implies that ‘a key 
feature of place-value development is the shift from a unitary (by ones) way of think-
ing about numbers to a multi-unit conception, e.g., tens and ones’ (p. 381). Drawing 

Fig. 9.21  An ancient 
Italian manuscript
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on these results, the authors have designed and carried out a study with 35 5-year-old 
children who solved word problems including multiplication, division and place 
value. Place value was approached by using everyday artefacts (e.g. egg carton with 
exactly ten eggs; gloves with five fingers). The study showed that most children were 
able to work with fives and tens by the end of the programme.

In both cases, artefacts become teaching aids: in the former case, they are taken 
from the history of culture; in the second case, they are taken from everyday life. 
The choice depends on the implicit systems of values and on the image of mathe-
matics: to construct the cultural identity by referring to the (local) history of math-
ematics or to highlight the links between arithmetic and everyday life. The difference 
is not so strict, as in some cases, the use of cultural artefacts from the history of 
mathematics is still extant in everyday life, as Chinese 算盘 (suàn pán) and Japanese
そろばん (soroban).

Other very simple artefacts may be used, like place value charts or foldable 
strips. A foldable strip shows the number as a sum of thousands, hundreds, tens and 
units (when opened) and as a four-digit number when folded as the zeroes are over-
written (Fig. 9.22).

9.3.3  �Artefacts for Low Achievers:  
Another Example of Cultural Difference

We have mentioned the number line, a cultural artefact, whose history in Europe 
may be traced back to the importance of geometry since the classical age (Bartolini 
Bussi 2015). The number line is very often used in the Western mathematics 

Fig. 9.22  Place value chart and a foldable strip representing 5376; folded it shows the four-digit 
number; unfolded it shows the sum of thousands, hundreds, tens and ones
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education to introduce addition and subtractions by motion forwards and back-
wards, but it is not so popular in China (this volume, Chap. 15).

Figure 9.23 is taken from a video clip (Electronic Supplementary Material: 
Bartolini Bussi 2017), where a student jumps on the floor, exploring a big-size num-
ber line.

A smaller-size number line drawn on a sheet of paper (Bartolini Bussi 2015) may 
be used with low achievers (e.g. dyscalculic children) to introduce addition and 
subtraction. The following is the prototype of a dialogue (one-to-one interaction) 
between a low achiever and a caregiver. The child can read numbers but cannot 
retrieve from memory simple arithmetic facts. There is a number line drawn as a 
linear sequence of positions numbered from 0 to 10. The pawn to be moved is called 
Tweety. The task is to calculate 4 + 3.

Adult: ‘Put Tweety on the 4.’
(done)
Adult: ‘Keep Tweety steady and count on 3 with your finger.’
(done)
Adult: ‘Read the number.’
Child: ‘Seven.’
Adult: ‘Good job! 4 + 3 = 7.’

The activity aims at constructing a very simple procedure to be used by the low 
achiever first in a guided way and then independently, to acquire autonomy in the 
construction of simple number facts (addition in this case). The signs + and – on the 
top are reminders for the direction for addition and for subtraction (Fig. 9.24).

We may compare this activity with the more common activity of tracing small 
arches on the number line, as in Fig. 9.25.

Teachers report difficulties with low achievers as they are not able to coordinate 
counting with tracing small arches: sometimes they count twice the vertical seg-
ments pointing at each number (both up and down) and become confused.

Fig. 9.23  A child jumping 
on a floor number line
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9.3.4  �Artefacts and Mathematical Meanings

An artefact is never neutral. It always ‘contains’ the aims and the knowledge of its 
designers. This is true for both the artefacts coming from the history of mathematics 
(whose designers are sometimes lost in the mists of time) and the modern artefacts, 
designed with specific didactical intentions. The design of an artefact depends on 
the designers’ background knowledge about the mathematics involved and on the 
intentions about what to mediate. Later, the teachers’ background and intention will 
determine the classroom use.

9.3.4.1  �Strings with Beads and Arithmetic Racks

In many pre-schools in Italy, there is a custom/tradition to hang strings with moving 
beads (similar to Greek worry beads) on the wall to trace the passing of time (e.g. 
seven beads for a week) or the situation of present/absent pupils (e.g. 28 beads for 
the whole class). The number of beads on the string depends on the context: 7 beads 
for a week, 28 beads for the class and so on. The manipulation reminds one of the 
manipulation of an arithmetic rack (Slavonic abacus) where beads are dragged for 
counting. But there is a difference: the strings with beads are dependent on the con-
text (7 days in a week; 28 pupils in a class), while the arithmetic rack is decontextu-
alised and can be used to count every small collection. Rather the number of beads 
depends on the choices made in mathematics, to use base ten to count. In other 
words, it is a cultural artefact, where culture is here referring to mathematics culture. 
Even before being introduced to place value, pupils use a rack with ten beads in 
every line (see Sect. 9.4.1.1). Hence, they may practise counting and notice that 
when you go to the next row, some kind of language regularity happens: 21, 22, …, 
31, 32 and so on. This approach does not require the convention of substituting one 
bead with ten beads on another wire (as in other abaci; see Sect. 9.2.2.2) as each bead 
is a unit. In other words, the collection of beads is similar to tallies (Sect. 9.2.2.1).

Fig. 9.24  Moving Tweety 
on the number line

Fig. 9.25  Drawn arches 
on the number line
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9.3.4.2  �Artefacts and the Learner’s Processes

Each artefact drives the actions of the user and is driven by the user in a coextensive 
process. This coextensive process changes the users’ thinking. This is consistent 
with the quotation from Vygotsky in Sect. 9.2.1. In that way the design of an artefact 
influences the way the student will use it, the knowledge a student will learn and 
internalise while working with the artefact and also the student’s image of mathe-
matics. In the process, not only the design of an artefact but also the task and the 
acting influence the student’s processes (see Sect. 9.3).

The arithmetic rack may be improved, with particular mathematical aims. A 
designer who knows that we are usually able to recognise numbers up to five simul-
taneously and larger numbers only in a quasi-simultaneous way can colour the balls 
of the arithmetic rack with a structure of five and also add black and white labels 
(Fig. 9.13). Such design improvements have been refined over decades and are still 
visible in some modern artefacts.

The exclusive use of an artefact as an ‘object on its own’ could lead to sticking 
with direct modelling activities and using only counting strategies instead of using 
structural features of an artefact (like a structure by fives and tens) and developing 
more sophisticated mental calculation strategies.

We use the arithmetic rack as an example. It should support children to replace 
counting as an arithmetic strategy with more advanced strategies. Children can con-
tinue to slide the balls one by one, still counting, whereas it is possible to move 
several balls at once. The children have to understand at least implicitly what the 
artefact was made for and to try to follow the intentions of whoever created the 
artefact. These assumptions about the designer’s intentions play an important role in 
how they should use an artefact, and it is the responsibility of the teacher to guide 
students in the appropriate use. Therefore, it is essential that the teacher is highly 
competent in mathematics and mathematics education. He or she is responsible for 
the right and good choice of an artefact, and is the one who has to show the children 
how to work with it. To use an artefact in a constructive way, it is necessary for a 
child to become familiar with the artefact and its structure (see the example of the 
giant Slavonic abacus for pre-school in Sect. 9.4.1.1). The teacher’s instruction is 
needed (at least for some children) to support the development of mathematical 
meanings and strategies; so teachers have a role as cultural mediators with respect 
to mathematical content.

9.3.4.3  �From Concrete to Thought Experiment

Whereas ‘smaller’ numbers (in particular numbers up to 100) can easily be pre-
sented as sets of items by artefacts or physical objects, the situation fundamentally 
changes with bigger numbers (like 123,456). With the extension of the number 
range, artefacts become less and less important as concrete representations of num-
bers. Instead, mental ‘enlargements’ of artefacts are used frequently. For instance, 
how would one million look like if we use base-ten MAB (Schipper et al. 2000)?  
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In this case, artefacts tend ase tend less to be used as manipulatives and auxiliaries 
for solving calculation problems but rather are used as reference points for English 
(1997). So, for instance, the steps on the number line are equal for 58 + 37 and 
12,358 + 37. The wires in a spike abacus may be duplicated to reach thousands and 
millions (see the representation of a second grader in Fig. 9.26).

A successful teaching and learning process depends on the ability to focus upon 
the ‘relevant’ aspects of the actions and thereby to link the symbolic representation 
and the enactive representation (in terms of concrete actions on manipulatives).

A specific Four-Phases-Model (see the Table 9.1) to assist the gradual shift from 
material to mental images was reported by Rottmann and Peter-Koop (2015; cf. 
Wartha and Schulz 2012) to support the development of mathematical concepts and 
mental strategies especially for students that experience severe learning difficulties, 
assisting such internalisation processes. Mental images and representations should 
increasingly replace concrete actions on manipulatives over time, although working 
at any single point usually still involves moving between concrete and mental 
images (Roberts 2015).

This model is based on initial ideas of Bruner and the further development of Bruner’s 
theory by the Swiss psychologist Aebli (1976). Bruner (1973) distinguished three types of 
representational systems: the enactive, the iconic and the symbolic representation. While 
the enactive representation is based upon actions, the iconic representation comprises both, 
pictures and mental images. The symbolic representation involves mathematical symbols 
(as written numbers or operation symbols) as well as language. Bruner strongly links learn-

Fig. 9.26  A second grader 
draws two exemplars of 
spike abacus close to each 
other to represent an 
eight-digit number by 
juxtaposing them

Table 9.1  Four-Phases_Model to support the development of basic computational ideas

Phase 1 Concrete usage of manipulatives and verbalisation of operations
Teacher and child actively use the material and verbally describe their operations and 
their meaning. When the child is confident in working with the material, the child 
takes over and verbalises the operation itself.

Phase 2 Verbal description of the imaginative use of the manipulative in sight
With the manipulative in sight, the child describes the operations on the manipulative 
to the teacher or a fellow student who performs the according operations following 
the child’s descriptions.

Phase 3 Verbal description of the imaginative use of the covered manipulative
With the manipulative covered by a screen/shield, the child describes the operations 
on the manipulative to the teacher or a fellow student who performs the according 
operations following the child’s descriptions.

Phase 4 Verbal description of the mental operation
The child verbally describes the operations without the manipulative being present in 
any form other than the child’s imagination. The tasks are given in a symbolic 
representation
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ing processes to translations of one representational system into another. And Aebli in addi-
tion describes gradual internalization processes from enactive to mental actions, which 
focus on the transition from one representation to another.

With emphasis on verbal descriptions of enactive and mental actions, the Four-Phases-
Model stresses the relevance to assist the development of mental images by a gradual and 
systematic removal of the manipulatives. (Rottmann and Peter-Koop 2015, p. 366)

This Four-Phases-Model acknowledges the need for verbal descriptions when 
using concrete manipulatives and a transitional phase from manipulating with mate-
rial to mental operations that activate a mental concept which allows the child to 
imagine the actions required in order to solve an addition or subtraction problem 
(Electronic Supplementary Material: Rottmann 2017).

9.3.4.4  �Not Only Counting

The examples above are mainly based on counting, although there is an intentional 
shift later towards mental strategies. According to Zhou and Peverly (2005), 
‘Overreliance on counting strategies at this age will hinder children’s development 
of abstract mathematical reasoning abilities’ (p. 265). Surely counting risks Putting 
measuring into the shade (see this volume, Chaps. 13 and 19), but this is not the only 
possible risk.

An interesting approach in Chinese kindergartens and early primary classrooms 
was reported (Ni et  al. 2010; Cheng 2012). Children are given a multiple-
classification task with sets of 2,3,4,5,6,7,8,9 small faces. For instance, children are 
shown four faces and asked to identify attributes that may be used to classify the 
faces into different groups. These four faces feature three attributes: one face has a 
hat and three do not; three happy faces and one angry face; two yellow faces and two 
red faces.

Teachers ask their students to observe and analyse the attributes and relation-
ships of the four faces. Then, they guide the students’ use of black and white beads 
to model the relationships as they solve addition and subtraction problems within 
this universe of 4 (e.g. 1 + 3 = 4, 3 + 1 = 4, 2 + 2 = 4; 4 – 1 = 3, 4 – 3 = 1, 4 – 2 = 2). 
Next, the students develop their understanding of part-whole relations for the other 
numbers (from 2 to 10), by doing classification tasks with these numbers. In this 
way, children are led to practise decomposition in additions and subtractions. They 
makes notes on a 10 × 10 grid.

This example refers to combinatorial thinking and reasoning (this volume, Chap. 
13). The use of a 10 × 10 grid is consistent with the pattern and structure approach 
as discussed in this volume (Chap. 7).

The activity of composition/decomposition is described also by Inprasitha (2015) 
as shown in Fig. 9.27. How many? is an activity for learning decomposition for first 
grade students. They drop the balls in the box and guess ‘How many are there?’, 
‘How many are hidden?’. Then they fill the number of balls on the card with the 
correct number. For example, drop five balls in the box, and fill two and three balls 
on the card (Inprasitha 2015). It is also consistent with the activity for first graders 
practised in China (Fig. 9.28).
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Fig. 9.27  The drop-box 
game extracted from 
Inprasitha and Isoda (2010)

Fig. 9.28  Activity for first 
graders (a Chinese 
textbook)

M.G. Bartolini Bussi, M. Inprasitha et al.
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9.3.5  �Concrete and Virtual Manipulatives

9.3.5.1  �A Possible Contrast

The previous sections have introduced different examples of artefacts, with a special 
focus on those that are concretely manipulable. In the last decades, the plentiful 
supply of technologies has fostered the production of virtual manipulatives. The 
contrast between concrete and virtual artefacts has been addressed in 2009 by 
Sarama and Clements (2009), who analysed several studies. Their conclusion is that 
the contrast is not between concrete and virtual manipulatives:

Manipulatives are meaningful for learning only with respect to learners’ activities and 
thinking. Physical and computer manipulatives can be useful, but they will be more so when 
used in comprehensive, well planned, instructional settings. Their physicality is not 
important – their manipulability and meaningfulness make them educationally effective. In 
addition, some studies suggest that computer manipulatives can encourage students to make 
their knowledge explicit […] but rigorous causal studies have not been conducted to our 
knowledge. Such research, using randomized control trials, must be conducted to investi-
gate the specific contributions of physical and computer manipulatives to particular aspects 
of mathematics teaching and learning. (pp. 149–50)

In ICMI Study 17 (Hoyles and Lagrange 2010), only one example of a project for 
primary school with technologies is described, i.e. the SYL Project (Sketchpad for 
Young Learners, p. 66). A task is reported, i.e. the jump-along activity, for grades 
3–5, with jumps along a basic number line on the screen, where students choose 
different parameters for the number of the jumps and the size of each jump. This 
project aims at supporting the existing curriculum, reifying the existing teaching 
practice on the number line.

With a similar aim, a library of virtual manipulatives was created in the USA.4 
On the home page of the NLVM website, one reads:

The National Library of Virtual Manipulatives (NLVM) is an NSF-supported project that 
began in 1999 to develop a library of uniquely interactive, web-based virtual manipulatives or 
concept tutorials, mostly in the form of Java applets, for mathematics instruction (K-12 
emphasis). […] Learning and understanding mathematics, at every level, requires student 
engagement. Mathematics is not, as has been said, a spectator sport. Too much of current 
instruction fails to actively involve students. One way to address the problem is through the use 
of manipulatives, physical objects that help students visualize relationships and applications. 
We can now use computers to create virtual learning environments to address the same goals.

The view that a virtual manipulative may address the ‘same goal’ as concrete 
manipulatives may be contentious first, concrete manipulation may be different 
from mediated manipulation (e.g. by means of a mouse); second, the facilities 
offered by technologies may allow to produce manipulatives which are not simula-
tions of the concrete ones, but completely new artefacts instead, with their own 
intentional designs. Some examples follow.

4 http://nlvm.usu.edu
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9.3.5.2  �The Pascaline and the e-Pascaline

Soury-Lavergne and Maschietto (2015) reported an international experiment, car-
ried out in France and Italy, with a pair of artefacts: a concrete one (pascaline) and a 
virtual one (e-pascaline). The pascaline (Fig. 9.29, left) is an arithmetic machine 
made of gears, named after the historical machine of Blaise  Pascal, while the 
e-pascaline (Fig. 9.29, right), developed with the Cabri Elem technology,5 is close 
enough to the pascaline to enable students to transfer some schemes of use (Fig. 9.30).

The pascaline displays three-digit numbers and enables arithmetic operations to 
be performed. Each of its five wheels has ten teeth and can rotate in two directions. 
Teeth of the three lower wheels have digits from 0 to 9 and display units, tens and 
hundreds from the right to the left. The upper wheels automatically drag the lower 
wheels when needed for place-value notation. The jerky motion of the wheels, rotat-

5 http://educmath.ens-lyon.fr/Educmath/recherche/equipes-associees-13-14/mallette/
cabri-elem-logiciels

Fig. 9.29  The pascaline (left) and the e-pascaline in a Cabri Elem e-book (right), both displaying 
number 122

Fig. 9.30  The tablet 
version of the e-pascaline

M.G. Bartolini Bussi, M. Inprasitha et al.
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ing one tooth at a time, mediates the recursive approach to number, adding or sub-
tracting one unit according to the clockwise or anticlockwise direction. It also links 
addition and subtraction as inverse operations.

The e-pascaline is close enough to the pascaline to enable students to transfer 
some schemes of use. Yet it is also different as some procedures with the physical 
pascaline may be inhibited with the e-pascaline (details in Soury-Lavergne and 
Maschietto 2015). For instance, the e-pascaline aims to provoke the evolution from 
the iteration procedure to the decomposition procedure in addition. The two arte-
facts are combined to help students to overcome some of their limitations and to 
offer the possibility of a rich experience leading to a flexible understanding of math-
ematical notions. The e-pascaline may work also on tablets. Using the e-pascaline 
on tablets (Fig. 9.30), with a touchscreen, gives students a more direct access to the 
action on the wheels even through the use of the action arrows (Soury-Lavergne and 
Maschietto 2015). This issue leads us to the further section where multitouch tech-
nologies are addressed.

9.3.5.3  �Multitouch Technologies

Multitouch technologies introduce new possibility in the design of virtual artefacts. 
According to Sinclair and Baccaglini-Frank (2015):

With multitouch technology, the interaction becomes more immediate, as the fingers con-
tact the screen directly, either through tapping or a wide variety of gestures. Further, the 
screen can be touched by multiple users simultaneously at the same time, which invites 
different types of activity structures than the computer or laptop. [The authors refer to the 
extended neuroscientific literature pointing to the importance of fingers in the development 
of number sense and continue as follows.] Basic component abilities that can be powerfully 
mediated through multi-touch technology are: 1) subitising; 2) one-to-one correspondence 
between numerosities in analogical form and fingers placed on screen/raised simultane-
ously/counting with fingers, and in general finger gnosis; 3) fine motor abilities; and, 4) the 
part-whole concept. (p. 670)

Some examples below indicate the potentialities of multitouch technologies.
TouchCounts is an iPad app (designed by Nathalie Sinclair) where children use 

their fingers, eyes and ears to learn to count, add and subtract. By using simple ges-
tures to create and manipulate their own numbers, children develop a strong number 
sense at least for some early steps. TouchCounts is aimed at the use of fingers in 
order to positively affect the formation of number sense and thus also the develop-
ment of calculation skills. There are two sub-applications in TouchCounts, one for 
counting (1, 2, 3, …) and the other for operations (addition and subtraction). In the 
former the first tap produces a disc containing the numeral ‘1’. Subsequent taps 
produce sequentially numbered discs. In the latter, children create arbitrary whole 
numbers and explore basic number operation concepts by pushing (squeezing) 
numbers together (into new, larger numbers) or by splitting numbers apart (into 
new, smaller numbers). The strong relationship between fingers and numbers has 
the potential to address the issue of finger gnosis (literally ‘finger knowledge’), 
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defined as the ability to differentiate one’s own fingers without any visual clues 
when they are touched (Sinclair and Pimm 2014) (Fig. 9.31).

For subitising (Sect. 7.1.1), Baccaglini-Frank and Maracci (2015) analyse other 
apps: Ladybug Count6 and Fingu7 drawing on a study carried out in a public pre-
school in Northern Italy. The study is based on the analysis of children’s interactions 
with these apps in the context of a sequence of activities centred on the use of the 
iPad. The activity fosters subitising that is the ability to quickly identify the number 
of items in a small set without counting.

Ladybug Count (finger mode) shows the top view of a ladybug sitting on a leaf, 
and the aim of each playing turn is to make the ladybug walk off the leaf. This hap-
pens when the child places on the screen (in any position) as many fingers as the 
dots that are on the ladybug’s back. Fingu shows a room in which different kinds of 
floating fruits appear. The objects appear in one group or in two groups that float 
independently, but within each group the arrangement of the objects remains unvar-
ied. The child has to place on the screen, simultaneously, as many fingers as the 
objects that are floating within a given amount of time. With these activities the 
ability to use fingers to represent numbers in an analogical format is fostered 
(Fig. 9.32).

Stellenwerttafel (place value chart) is a dynamic place value chart designed as an 
app for the iPad by Ulrich Kortenkamp.8 It enables children to create tokens in a 
place value chart and to drag them between places. When moving a token from a 
place to another, the unbundling and bundling are carried out automatically. 
Simultaneously the token counts are displayed in the title bar (Fig. 9.33).

The behaviour of the virtual manipulative has no equivalence in the manipulation 
of physical MABs (see Sect. 9.3.1). MABs for units and tens are different objects (a 
small cube vs a column of ten small cubes).

6 https://itunes.apple.com/us/app/ladybug-count/id443930696?mt=8
7 https://itunes.apple.com/en/app/fingu/id449815506?mt=8
8 https://itunes.apple.com/de/app/stellenwerttafel/id568750442?mt=8

Fig. 9.31  TouchCounts

M.G. Bartolini Bussi, M. Inprasitha et al.
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Ladel and Kortenkamp (2015) have tested the use of MAB and Stellenwerttafel 
to build a didactical sequence for a flexible understanding of place value, in order to 
be able to switch between different possibilities to split a whole in parts where the 
parts are multiples of powers of ten. The path consists of three steps:

In step one, the child is bundling and unbundling with base ten blocks and learns that there 
are ones and tens and that 10 ones have the same value as 1 ten. In step two, we introduce 
the place value chart with the bundling material in the title bar. The amount of ones and tens 
has to be illustrated by homogeneous counters (or tokens) like tally marks or points. The 
children learn that if the counters are homogeneous and they want to change the place they 
have to bundle or unbundle. In that way they connect bundling and place value by bundling 
in the place value chart. In step three, the children only move the counters and experience 
the bundling and unbundling by an automatic multiplication and division of the counters. 
This automation can only be provided by special virtual manipulatives. (Ladel and 
Kortenkamp 2015, p. 325)

This gallery of examples is by no means exhaustive. This is really a new avenue 
which has also the potential to be useful for low achievers.

Fig. 9.32  Ladybug Count (left) and Fingu (right)

Fig. 9.33  Stellenwerttafel 
(place value chart)
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9.3.5.4  �Digital Textbooks

Further development in the field of digital technologies is expected in the near 
future. We can mention, for instance, the potential of d-books (digital textbooks9), 
developed at the University of Tsukuba, for the APEC Lesson Study Project. Digital 
textbooks can be created by importing existing textbooks as image files. Furthermore, 
interactive drawing tools can be embedded in the digital textbooks. The textbook 
data, together with the drawing tools, can be used interactively in classrooms. An 
example for primary school is Inprasitha and Jai-on (2016); see Fig. 9.34.

9 http://math-info.criced.tsukuba.ac.jp/software/dbook/dbook_eng

Fig. 9.34  An image from a d-book with students’ drawings

M.G. Bartolini Bussi, M. Inprasitha et al.
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9.4  �Mathematical Tasks

Artefacts have the potential to foster students’ construction of mathematical con-
cepts in WNA. This potential, connected with both designers’ and teachers’ back-
ground and intentions, may be fulfilled by the activity. Hence, mathematical tasks 
come to the foreground. Some time in the working group was devoted to the discus-
sion of task. The theme is very large, as a whole study on task design has been 
realised (Watson and Ohtani 2015). In this section, only a few examples are reported.

9.4.1  �Cognitively Demanding Tasks

Doyle (1988 cited in Shimizu and Watanabe 2010) argues that tasks with different 
cognitive demands are likely to induce different kinds of learning. Mathematics tasks 
are important vehicles for classroom instruction that aim to enhance students’ learn-
ing. To achieve quality mathematics instruction, then, the role of mathematical tasks 
to stimulate students’ cognitive processes is crucial (Hiebert and Wearne 1993).

Kaur (2010) classified levels of cognitive demands in mathematical tasks by 
adapting from Stein and Smith (1998, Table 9.2).

The very high level is problem-solving, that is, the heart of mathematics. For 
instance, it is one of the fundamental processes in the NCTM Standards.10 In Japan, 
the problem-solving approach is the preferred method for achieving the objective of 
teaching (Isoda 2012). Some examples of problem-solving tasks are reported in the 
following, using different kinds of artefacts, concrete ones (the giant Slavonic aba-
cus) and textual ones with images and texts.

10 http://www.nctm.org/Standards-and-Positions/Principles-and-Standards/Process/

Table 9.2  Levels of cognitive demands

Levels of cognitive demand Characteristics of tasks

Level 0 – [very low] memorisation 
tasks

Reproduction of facts, rules, formulas
No explanations required

Level 1 – [low] procedural tasks 
without connections

Algorithmic in nature
Focused on producing correct answers
Typical textbook word – problems
No explanations required

Level 2 – [high] procedural tasks 
with connections

Algorithmic in nature
Has a meaningful/‘real-world’ context
Explanations required

Level 3 – [very high] problem-
solving/doing mathematics

Non-algorithmic in nature; requires understanding of 
mathematical concepts and application of
Has a ‘real-world’ context/a mathematical structure
Explanations required
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9.4.1.1  �Example: The Big Size Slavonic Abacus

We start with a short example concerning the exploration of an artefact (a giant 
Slavonic abacus) by pre-school students.

A big-size Slavonic abacus (Fig. 9.35; see also Sect. 9.2.2.2) with 40 beads has 
been introduced into more than 20 pre-schools in Modena (Italy) in the project 
Bambini che contano (Counting children, see Bartolini Bussi 2013). The way to 
explore it, agreed with the teachers, is based on the following questions, each of 
which asks the pupils to take a different perspective:

Task 1: The first impact (the narrator perspective). What is it? Have you seen it 
before? What’s its name?

Task 2: The structure of the artefact (the constructor perspective). How is it made? 
What do we need to build another one? How to give instructions to build another 
one?

Task 3: The use of the artefact (the user perspective) to fulfil a task while playing 
skittles or counting the present children and similar. How do you use it to keep 
the score? How do you use it during the call?

Task 4: The justification for use (the mathematician perspective). Why does it work 
to keep score? and similar.

Task 5: New problems (the problem-solver perspective). As this Slavonic abacus 
contains only four lines (40 beads). What to do if we needed more?

The last task highlights that an artefact may be used even in situations that go 
beyond its capabilities. We might consider some hypothetical artefacts through 
thought experiments, which may transfer the mathematical meaning into areas that 
are out of reach of the original artefacts. In particular, in the example above, the 
children added a new line on the floor with small blocks, in order to simulate an 
additional line to count up to 50, if needed.

Fig. 9.35  Young children 
counting the beads of a 
giant Slavonic abacus 
(http://memoesperienze.
comune.modena.it/
bambini/index.htm)

M.G. Bartolini Bussi, M. Inprasitha et al.
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9.4.1.2  �Example: A Combinatorial Task with Cuisenaire Rods

Ball and Bass (2015) have described a demanding combinatorial task for disadvan-
taged students, ‘to find an order in which to list the five numbers 1,2,3,4 and 5, 
without repetition, in such a way that when subsets of adjacent numbers in the spe-
cific list are added together, every number, from the smallest to the largest, is pos-
sible’ (p.  292). The majority of students are economically disadvantaged fifth 
graders. This abstract task is given to the students in a story called ‘the train prob-
lem’ where Cuisenaire rods (see Sect. 9.3.1.1) are used to represent cars on a ‘train’. 
The goal of this task that is neither traditional nor standard is to encourage the 
experience of mathematical perseverance in solving a problem about WNA. This 
kind of attitude is supposed to be very important for low achievers and disadvan-
taged students. Other studies address motivation and learning strategies as long-
term predictors of growth (Murayama et al. 2013).

9.4.1.3  �Example: A Combinatorial Task with Digits

Bass suggested a combinatorial task with digits: Using the numbers 1, 3 and 4, each 
one exactly once:

•	 Find all the three-digit numbers you can make. How do you know that you have 
them all?

•	 Which one is largest? Smallest? How do you know?
•	 Which pair of them is closest together? How do you know?
•	 Find the sum (or the average) of all of these numbers. Can you find clever ways 

to do this?

9.4.1.4  �Example: A Combinatorial Task on Paper and Pencil

Bass suggested another combinatorial task. In this 3 × 3 grid square, colour three of 
the little squares blue so that there is exactly one blue square in each row and in each 
column. How many ways are there to do this? How do you know that you have 
found them all (Fig. 9.36)?

9.4.1.5  �Example: Finding Patterns on the Calendar

The calendar of October 2015 looks like the one in Fig. 9.37. The shaded part is an 
example of what we will call a ‘square of days’. If we have any square of days, we 
can calculate the number bc – ad. Try a few examples. Do you notice any pattern? 
Do you think this is always true? If so, can you explain why? Would the same thing 
be true for other months?
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None of these examples involves a pure memorisation of procedure task. They 
are very high-level tasks which can be posed in pre-primary and primary school. 
Other examples of cognitively demanding tasks may be found in recreational math-
ematics (Sect. 9.2.2.6).

9.5  �Artefacts and Tasks in the Institutional and Cultural 
Context

In the previous sections, we have considered separately artefacts (Sects. 9.2 and 9.3) 
and tasks (Sect. 9.4), although it is evident that they are an inseparable pair. An arte-
fact is usually explored to contend with a mathematical task; a mathematical task is 

Fig. 9.36  A 3 × 3 grid 
square

Fig. 9.37  The calendar

M.G. Bartolini Bussi, M. Inprasitha et al.
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performed by some artefact (including language, text or concrete or virtual objects). 
In the theory of semiotic mediation (Sect. 9.2.1.2), artefacts and tasks are, together 
with mathematics knowledge, the element of the design process and the starting 
point of classroom activity. But artefacts and tasks strongly depend on the cultural 
and institutional constraints that determine the mathematics that is taught (Chevallard 
and Bosch 2014).

9.5.1  �Institutional Constraints: The Number Range

The number range, in school, contributes to define the feature of tasks in WNA. It is 
an internationally shared approach to start with small numbers and to extend the 
number range in steps. In detail and application, however, there are considerable 
differences between countries. Examples from countries of five different continents 
are given in Table 9.3 (MOEST 2002; MSW 2008; CCSSO 2016; MOE 2011a, b; 
ACARA 2013).

While children in the other countries deal with numbers up to 100 (or 99), in 
Germany the focus is on understanding numbers up to 20 and on the development 
of addition and subtraction strategies within this number range. Although bigger 
numbers are used in grade 1, in some countries calculation strategies are empha-
sised later or are focused on numbers up to 20 or at most on special types of prob-
lems with bigger numbers (e.g. in Australia and in the USA; cf. Peter-Koop et al. 
2015). By contrast, in Germany a strong tendency exists towards using the same 
number range both for calculation and for other activities (such as representing, 
composing and decomposing numbers). Tasks in textbooks and in the classrooms 
are usually designed according to the number range. Kenya and Australia usually 
use numbers (approximately) ten times bigger than in the previous grade.

Some research studies indicate considerable differences in children’s whole 
number knowledge after completing the first grade in different countries. In a com-
parison of 7-year-old Australian and German children, Peter-Koop et  al. (2015) 
refer to greater knowledge of counting and place value ideas for Australian students, 
whereas German children appear to develop more advanced calculating strategies. 
A follow-up comparison of the same children at the end of grade 2, however, indi-
cates the same level of knowledge, especially in understanding the place value 
system.

Table 9.3  Number ranges within grades 1–4

Grade
Asia: Mainland 
China

Africa: 
Kenya Australia

Europe: 
Germany

North America: 
USA

1 100 99 100 20 100
2 10,000 999 1000 100 1000
3 > 10,000 9999 10,000 1000 1000
4 100,000,000 99,999 >10,000 1,000,000 1,000,000
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9.5.2  �Cultural Constraints: Language Transparency

Table 9.3 shows an incredible continuing gap between the Chinese situation and the 
others. It is likely that the number range for early grades is linked in a dialectical 
way to the most common artefacts (including abaci and language). For instance, 
most artefacts for place value described in the previous sections are able to represent 
numbers with at the utmost three (or four) digits, while the number of wires in suàn 
pán (算盘) are many more. In accordance with this, in China the number range 
increases faster. It is likely that there is a connection between the transparency of 
Chinese wording of number according to place value (this volume, Chap. 3), the 
faster increase of number size in primary grades and the available artefacts for rep-
resenting numbers and computing.

The familiarity with big numbers in early grades does not necessarily increase 
the possibility of coping with more demanding mathematical tasks. According to Ni 
(2015):

The strengths of Chinese children’s mathematics proficiency are accompanied with notable 
weakness. For example, there could be an inherent problem with the curriculum system in 
the basic approach to mathematics thinking. Factors such as trial and error, induction, imag-
ination and hypothesis testing are not significant part of mathematics curriculum and 
instruction. Probably as a consequence, for example, Chinese students appeared less toler-
ant for ambiguity in mathematics classroom, less willing to take risks when solving math-
ematical problems. The interest and confidence in learning mathematics of Chinese students 
was shown to deteriorate over the years as they moved up to higher grades. (p. 343)

The transparency of language may be not the only important variable. A similar 
issue was addressed, in a very different context, by Young-Loveridge and Bicknell 
(2015), who reported that, in a study about place value in New Zealand, Maori stu-
dents did not perform as well as either of the other groups:

Although the counting words used in the Maori language have a transparent decade struc-
ture, only children who are taught through the medium of Maori develop the fluency to 
speak and think in the Maori language. In reality, many teachers and students learn Maori 
as a second language, rather than being truly bilingual. (p. 383)

A further study (Theodore et al. 2015) added more results about this issue:

We found that more Maori graduates were females than males. Previous research has also 
shown that Maori males are less likely to gain both tertiary and school qualifications com-
pared to Maori females and non-Maori students, suggesting that disparities in educational 
participation begin early. Identified barriers to participation include lack of cultural respon-
siveness, difficulties transitioning from primary to secondary schooling and lower expecta-
tions of students. There were also differences found in what (e.g., commerce) and how (e.g., 
full-time status) Maori males studied compared to Maori females. (p. 10)

The quoted studies show that focusing only on language transparency is not enough 
to interpret results of research work.

M.G. Bartolini Bussi, M. Inprasitha et al.
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9.5.3  �Cultural Constraints: Bilingual Communities

Linguistic issues have been addressed by the ICMI Study 21 (Barwell et al. 2015), 
where specific chapters are devoted to the problems of students with the school 
language different from everyday language. A direct account of similar problems 
were discussed in the group by Veronica Sarungi (personal communication) who 
reported about the situation in Tanzania and other close countries (for a deeper dis-
cussion of this issue, see this volume, Chap. 3):

The issue around language and the learning of whole numbers in Tanzania and other East 
African countries is complex. The diversity in the first language of learners makes teaching 
of mathematics in learners’ first language difficult. For example, Tanzania has over 120 
ethnic tribes with their own language, although these belong to major language groups such 
as Bantu, Nilotic and Cushitic.

Verbal language is sometimes not the best artefact to be used in classrooms. A 
study (Miller and Warren 2014) has analysed the performance of Australian stu-
dents from disadvantaged contexts (in most cases with English as second language) 
showing that low performance on national numeracy testing can be overcome with 
a programme that focuses on specific mathematical language with rich figural rep-
resentations. The importance of figural representation for Australian aboriginal chil-
dren was highlighted also by Butterworth in the plenary sessions of the Conference 
(see also Butterworth et al. 2008; this volume Chap. 20).

9.6  �Concluding Remarks: Future Challenges

In the group discussion, different designers’ or teachers’ intentions were identified 
to explain or orient the choices of the pair artefact and task. The following list is 
expressed in positive terms, meaning that paying attention to each issue may foster 
learning, while not paying attention to some issues may hinder learning. This is by 
no means exhaustive, but highlights some shared beliefs of the participants in the 
group discussion.

Epistemological Issues  In this case, the mathematical consistency is in the fore-
ground: promote students’ personal reconstruction of elementary arithmetic; pro-
mote students’ engagement in meaningful mathematics; promote students’ 
flexibility between different modes of representation; promote insight.

Cognitive Issues  In this case, the students’ processes are in the foreground: make 
the maths more familiar and more user-friendly; assist mathematical inquiry, explo-
ration, defining and proving; foster body involvement such as counting with the 
fingers or jumping on the number line.
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Affective Issues  In this case, the students’ motivations and beliefs are in the fore-
ground: create motivating learning environments; encourage, support and develop 
perseverance.

In this chapter we have addressed some aspects that affect whole number learn-
ing, offering examples of artefacts and mathematical tasks that may foster or hinder 
learning of WNA. We have collected a rich (although not complete) gallery of cul-
tural artefacts and of teaching aids, including several realised by means of virtual 
technologies, and we have offered some examples of mathematical tasks concern-
ing WNA. Artefacts and tasks have to be considered as an inseparable pair within 
a given cultural and institutional context.

We have mentioned some features of languages and cultures that sometimes hide 
mathematical meanings and produce the risks of didactical obstacles. The cultural 
roots of the epistemological obstacle represented by classical additive systems for 
the development of place value have been discussed.

The map is very complex. Future challenges seem to be related to teacher educa-
tion. Two specific programmes for pre-primary and primary teacher education have 
been discussed in the working group (see Sect. 9.1.1.3), one from Canada and one 
from Thailand. The way of coping with epistemological and cultural issues in either 
programme has enriched the discussion, forcing the participants to wonder every 
time how teachers might cope with the complexity of designing and implementing 
in the classrooms teaching and learning of WNA, keeping account of the peculiar 
language and cultural constraints. This issue was always in the background of the 
discussion, although a specific panel in the Conference (this volume, Chap. 17) 
addresses teacher education and development.
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Chapter 10
Artefacts and Tasks in the Mathematical 
Preparation of Teachers of Elementary 
Arithmetic from a Mathematician’s 
Perspective: A Commentary on Chapter 9

Bernard R. Hodgson  

10.1  �Introduction

The main focus of this paper is the mathematical preparation of primary school 
teachers in relation to the teaching of elementary – whole number – arithmetic. My 
comments are based mostly on my experience and reflections as a mathematician 
involved in the education of pre-service teachers, but with occasional inspiration 
from development activities for in-service teachers with whom I collaborated.

As a consequence, the prime intent of the paper is not to examine what may be 
happening about the learning of arithmetic by actual pupils in classrooms but rather 
to concentrate on the kind of ‘adult experiences in mathematics’ that, in my opinion, 
prospective teachers ought to encounter in order to better prepare for their role as 
guides accompanying their pupils in the acquisition of concepts and skills related to 
whole number arithmetic.

The context that induced the department of mathematics at my university to cre-
ate two mathematics courses specifically for future primary school teachers – one of 
them being devoted to arithmetic  – is briefly described in Hodgson and Lajoie 
(2015). Suffice it here to recall that this involvement has been ongoing now for more 
than four decades and that the responsibility of preparing prospective teachers for 
their mathematical duties is shared, and it goes without saying, with the Faculty of 
Education, where student teachers take three mathematics education courses (didac-
tique des mathématiques, in French). The classroom reality and the pupils’ needs 
are of course more significantly integrated in this didactical environment. An under-
lying theme of Hodgson and Lajoie (2015) is to stress the complementary roles 
played by mathematicians and mathematics educators (didacticiens) in this endeav-
our. It should however be noted, as indicated in the survey by Bednarz (2012, Tables 
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1 and 2), that the model adopted at my university in that connection is rather unusual 
in the Canadian context (including in the province of Québec).

In order to provide an insight into the arithmetic course (entitled Arithmétique 
pour l’enseignement au préscolaire/primaire) that we have developed for primary 
school teachers and crystallise its main intents, I wish in this paper to examine both 
its spirit and some of its components. This will bring me to consider the two central 
themes at the heart of Chap. 9 (Aspects that Affect Whole Number Learning: Cultural 
Artefacts and Mathematical Tasks): the importance and variety of artefacts (often of 
a cultural and historical nature) that can be used to support the learning of whole 
number arithmetic, as well as the role played by mathematical tasks proposed in 
order to foster the ‘mathematical message’ that may be conveyed through the arte-
facts. I will discuss here concrete examples taken from our arithmetic course, 
intending by so doing to illustrate a crucial observation strongly emphasised in 
Chap. 9, namely that artefacts and tasks form an inseparable pair. However, I will 
first present some general observations about the mathematical preparation of pri-
mary school teachers with regard to whole number arithmetic.

10.2  �Preparing Mathematically for the Teaching 
of Arithmetic

One should not […] delay too late the moment when abstraction shall become the form and 
the condition of the whole teaching: finding for each pupil and for each study the right 
moment when it is advisable to move from the intuitive form to the abstract form is the great 
art of a true educator.1 (Buisson 1911) 

The philosophy underlying our arithmetic course is based on the conviction that in 
order to adequately fulfil their role as guides and become efficient communicators, 
primary school teachers should have developed such a level of mathematical com-
petency that they see themselves as being in full possession of the mathematical tool 
with which they will be working, in other words that they feel autonomous with 
respect to their mathematical judgements concerning primary school arithmetic. We 
thus offer to the student teachers an opportunity for a personal reconstruction of 
elementary arithmetic through a mathematical pathway intended to allow them to 
clarify and develop basic notions underlying the teaching and learning of arithmetic 
at the primary level. This enterprise can be interpreted as aiming to both demystify 
and demythicise mathematics in general, but especially arithmetic, for prospective 
teachers.

1 Original French text: ‘Il ne faut (…) pas reculer trop tard le moment où l’on fera de l’abstraction 
la forme et la condition de tout l’enseignement: trouver pour chaque élève et pour chaque étude le 
moment précis où il convient de passer de la forme intuitive à la forme abstraite est le grand art 
d’un véritable éducateur’.
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Hopefully, such an experience will allow them to gain confidence in their own 
expertise – of a very specific nature – about mathematics as seen in relation to the 
education of primary school pupils.

Part of what we aim at achieving on the subject of arithmetic with our student 
teachers is well captured by a quotation from the illustrious mathematician Leonhard 
Euler, the author, it should be reminded, of many influential textbooks intended for 
students. In the preface of an arithmetic textbook for Russian schoolchildren pub-
lished in 1738 under the auspices of the St Petersburg Academy of Sciences, 
Einleitung zur Rechenkunst (The Art of Reckoning), Euler wrote:

The learning of the art of reckoning without some basic principles is sufficient neither for 
solving all cases that may occur nor to sharpen the mind, as should be our specific aim. […] 
Thus when one not only grasps the rules [of reckoning], but also clearly understands their 
causes and origins, then one will to some extent be enabled to invent new rules of one’s 
own, and to use these to solve such problems, for which the usual rules would not be suffi-
cient. One should not fear that the learning of arithmetic might thus become more difficult 
and require more time than when the raw rules are presented without any explanation. 
Because any individual understands and retains much more easily those matters, whose 
causes and origins he clearly comprehends.2 (Euler 1738, pp. 3–4)

It is far from me to suggest that the aims or means of our arithmetic course are in 
any way new or revolutionary. For a very long while, a number of authors have been 
reflecting on the need to improve the mathematical preparation of pre-service school 
teachers and proposing varied and at times highly innovative approaches. One out-
standing example is given by Felix Klein, the very first President of ICMI (1908–
1920), who presented in the early twentieth century a famous series of lectures 
intended for teachers (Klein 1932). Although Klein was then mainly addressing 
secondary school teachers of mathematics, parts of his comments, especially in the 
very first chapter devoted to ‘calculating with natural numbers’, can be seen as per-
taining directly to elementary arithmetic, and the needed mathematical background 
and vision with which primary school teachers, in his opinion, should be familiar. 
Another example, having as a setting my own university but at the time of the ‘New 
Math’ era, is given by Wittenberg, Sister Sainte Jeanne de France and Lemay 
(Wittenberg et al. 1963) – the three authors were then all connected to the mathe-
matics department. Resisting the ‘bourbakised’ vision of mathematics teaching 
(p. 91) then quite fashionable, the authors reflect on the numerous reform move-
ments of those days which, they claim:

2 Original German text: ‘Die Erlernung der Rechenkunst ohne einigen Grund weder hinreichend 
ist, alle vorkommenden Fälle aufzulösen, noch den Verstand schärfet, als dahin die Absicht inson-
derheit gehen sollte. […] Dann wann man auf diese Art nicht nur die Regeln begreift, sondern auch 
den Grund und Ursprung derselben deutlich einsieht, so wird man einigermassen in Stand gesetzt, 
selbsten neue Regeln zu erfinden und vermittelst derselben solche Aufgaben aufzulösen, zu 
welchen die sonst gewöhnlichen Regeln nicht hinreichend sind. Man hat auch im geringsten nicht 
zu befürchten, dass die Erlernung der Arithmetik auf diese Art schwerer fallen und mehr Zeit 
erfordern werde, als wann man nur die blossen Regeln ohne einigen Grund vorträgt. Dann ein jeder 
Mensch begreift und behält dasjenige im Gedächtnis viel leichter, wovon er den Grund und 
Ursprung deutlich einsieht’.
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at times seem to lock themselves into a surprising and naïve conviction that it is enough, in 
that domain, to meditate on the thinking of a single man (multiplicatively reincarnated, it is 
true), and that: whoever has read Bourbaki, has read everything.3 (Wittenberg et al., p. 11)

The authors propose a ‘genetic approach’ as a way to allow practising and prospec-
tive teachers to see elementary mathematics with new eyes – so to say, to see it as 
their pupils will – and to reflect on its internal structure (p. 13).

We do not aim, in our arithmetic course for teachers, at presenting a fully fledged 
‘genesis’ of the basic concepts related to whole numbers. Still we wish to adhere to 
a vision that remains as primitive as possible. For that purpose our arithmetical 
journey relies, to a large extent, on a rudimentary yet very fruitful numerical artefact 
for tackling numbers: sequences of tallies (Sect. 10.4). This allows us to gradually 
build a body of knowledge about the (set of) whole numbers, a patent emphasis 
being put on establishing, with a certain level of rigour, the basic properties at stake. 
It is thus a structural perspective on elementary arithmetic that we propose to our 
student teachers, which brings into the discussion a level of abstraction possibly 
rather new, maybe even strange, to some of them. But as expressed by the renowned 
French educator Ferdinand Buisson at the turn of the twentieth century (see the 
quotation as epigraph to this section), such an abstract perspective is at the heart of 
the teaching and learning process.

Our mathematical approach to ‘arithmetic for teachers’ has clear links to several 
current or recent research works, such as that of Grossman, Wilson and Shulman 
(1989), stressing the importance of a teachers’ sound knowledge of mathematical 
content. It also has connections with the famous study of Ma (1999) concerning a 
‘profound understanding of mathematics’, as well as with the work of Ball and Bass 
(2003) about ‘mathematical knowledge for teaching’. In that context, I think it is of 
interest to comment, from a mathematician’s perspective, on some of the mathemat-
ical artefacts and tasks used in our teaching of arithmetic.

10.3  �Accesses to the Concept of Number

‘How do numbers emerge?’ Such is the question raised by Hans Freudenthal, the 
eighth President of ICMI (1967–1970), at the very outset of a chapter entitled ‘The 
Number Concept: Objective Accesses’ from his monumental Mathematics as an 
Educational Task (1973, p. 170). He proposes a fourfold distinction, discussing suc-
cessively  – from a mixture of mathematical and didactical vantage points  – the 
emergence of the number concept under the disguises of counting number, numer-
osity number, measuring number and reckoning number.

3 Original French text: ‘alors que prolifèrent des entreprises de réforme [qui] semblent parfois 
s’enfermer dans une surprenante et naïve conviction que c’est assez, dans ce domaine, de méditer 
la pensée d’un seul homme (multiplicativement réincarné, il est vrai), et que: qui a lu Bourbaki, a 
tout lu’.
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(Another way of reacting to the question put forward by Freudenthal is found 
under the heading ‘The Logical Foundations of Operations with Integers’ of Klein 
(1932), notably pp. 11–13. While Klein sees issues of psychology and epistemology 
being at stake, he chooses, as indicated by the title of that section, to propose a 
mathematical reflection based on a spectrum of perspectives and arguments from 
logic, including a purely formal theory of numbers.)

Space prevents me here from entering into all the nuances of Freudenthal’s very 
rich discussion of the various accesses he discusses in relation to the concept of 
number. But I would like to use his framework as a basis for my reflections and for 
establishing connections to some of the core ingredients of our arithmetic course for 
primary school teachers.

10.3.1  �Counting Number

Freudenthal characterises the notion of counting number as being connected to ‘the 
reeling off in time of the sequence of natural numbers’ (1973, p. 170). He observes 
that grasping ‘the whole unlimitedly continuing sequence’ of numbers is for chil-
dren ‘a conceptual seizure that has no analogue in learning the names of colours and 
letters’ (1973, pp. 170–171). At stake here is the notion of successor, at the heart of 
the axiomatic approach to arithmetic proposed by Giuseppe Peano, jointly with the 
principle of mathematical induction. As a consequence of the successor is de facto 
an order implicitly introduced: we are thus in presence of the general notion of 
ordinal number.

One possible implementation of the idea of counting numbers is via an artefact 
that actually plays a fundamental role in our course, sequences of tallies. The idea 
of successor is then readily perceived as the simple adjunction of a new tally to a 
given sequence, and this can ‘obviously’ be repeated indefinitely, at least in princi-
ple. I shall return to this particular artefact in Sect. 10.4.

One very early encounter of children with counting numbers is when learning a 
counting list, the successive terms being either written as numerals or expressed as 
words in their mother tongue. The memorising of the usual oral counting list is often 
supported by nursery rhymes. A possible task that may be proposed to teachers in 
that connection is to examine if an actual poem or a song could really be used for 
counting. What are the qualities that a good ‘counting song’ (or list) should possess? 
How far could one go with a particular song like Au clair de la lune (see https://
en.wikipedia.org/wiki/Au_clair_de_la_lune)  – for instance, in order to count the 
number of pupils in the classroom? (Other aspects of songs and poems being used 
in arithmetic are discussed in Sect. 9.2.2.5.)

One particular task I like to give to my student teachers on the very first day of 
the course is to build a written counting list using the symbols from some given 
alphabet. (It is understood here that the alphabet comes with a specific order among 
the symbols it contains.) Without having yet discussed the notion of positional-
value numeration system, I propose to restrict the available digits to, say, 0, 1, 2 and 
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3 (in that order), and invite them to build a counting list, in the same spirit as our 
usual list of numerals, but using only these symbols. While some may come back 
with rather original lists, most of them would have built a list ‘in base four’, analo-
gous to the usual base ten list. But given the alphabet comprising the symbols A, B, 
C and D, the typical answer

A, B, C, D, AA, AB, AC, AD, BA, BB, …, DD, AAA, AAB, …

clearly illustrates that the usual counting list they know very well (base ten) brings 
into play one symbol having a rather special behaviour: 0.

The learning of the usual oral counting list may introduce some linguistic pecu-
liarities, usually specific to a given language. For instance, an interesting cultural 
task (in French) is to observe the distinction, when counting by tens, between the 
‘regular’

cinquante, soixante, septante, octante, nonante

and the more usual (but depending on countries)

cinquante, soixante, soixante-dix, quatre-vingts, quatre-vingt-dix

the latter being (partly) a remnant of vigesimal numeration (see this volume, Sect. 
3.2.2).4

10.3.2  �Numerosity Number

Using even animals as cas de figure for small numerosities, Freudenthal notes that 
‘perhaps the numerosity number is genetically earlier than the counting number’ 
(1973, p. 171). His comments point to the fact that recognising at a glance – without 
counting – the number corresponding, say, to four dots (even if placed randomly), is 
an easy task (this capacity, called subitising, is described in this volume, Sect. 
7.2.1): one can instantly ‘see’ the four dots. But the same is possibly not true for 
most people when looking quickly at the dots in Fig. 10.1a. However, the pattern 
used in Fig. 10.1b is such that the numerosity of the dots is immediate. (See also 
Sect. 9.3.4.2 for comments about strategies related to artefacts with a structural 
feature such as that of Fig. 10.1b.)

Numerosity rests on the possibility of identifying the ‘number’ corresponding to 
a certain situation without numbering the objects one by one. The idea is to associate 
the given situation with another one, the question at stake then being not ‘how 
many?’ but rather ‘is it as many as?’. While the notion of equipotency (or one-to-one 
correspondence) on which rests this approach to whole numbers is a very natural one 
(and it will play a central role when discussing sequences of tallies in Sect. 10.4), 

4 One may be reminded here, for instance, of Molière’s L’Avare (1668), when one of Harpagon’s 
servants, fawning over him about his longevity, says: ‘Par ma foi, je disais cent ans, mais vous 
passerez les six-vingts’ (Act II, Scene 5).
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its formalisation via the general notion of cardinal number à la Cantor is definitely 
questionable, according to Freudenthal. (It may be noted here that Klein (1932, 
p. 12) speaks on the contrary in enthusiastic terms of this ‘modern’ approach due to 
Cantor.) The criticism made by Freudenthal (1973, p. 181) is as strong as can be:

	(1)	 The opinion that the numerosity number, that is the potency, suffices as a foundation of natural 
numbers is mathematically wrong.

	(2)	 The numerosity aspect of natural numbers is irrelevant if compared with the counting aspect.
	(3)	 The numerosity aspect is insufficient for the didactics of natural numbers.

Freudenthal then spends more than fifteen pages expounding his objections.
Hodgson and Lajoie (2015, p. 309) mention that the first versions of our arithme-

tic course, in the 1970s, used a set-theoretic context to introduce natural numbers as 
cardinalities of finite sets, operations on numbers being defined via set-theoretic 
operations. This was in accordance with the spirit of the times, as can be seen 
through a quotation from a report of an ICMI-supported workshop organised by 
UNESCO in 1971, in a chapter on ‘Primary Mathematics’:

All modern reformed programs have introduced the study of sets into mathematical instruc-
tion. This topic is perhaps the most visible trait of an actual change in primary mathematics 
teaching. […] There is a universal trend to use sets to develop the concept of cardinal or 
natural numbers, and the four rational operations on natural numbers. (UNESCO 1973, 
pp. 5–6)

It was eventually decided to approach whole numbers in our course not on the basis 
of a possible prior idea of sets, but more intrinsically as ‘primitive’ objects of their 
own, as well as the operations defined on them: sequences of tallies thus entered the 
picture.

10.3.3  �Measuring Number

Freudenthal discusses the notion of measuring number in a general context, com-
parison with a given unit leading sometimes to exhaustion of the magnitude to be 
measured and sometimes to incomplete exhaustion. The latter case can be seen as 
giving rise either to division with remainder (most appropriately called Euclidean 
division) or, when the unit is divided, to fractions. Eventually issues of commensu-
rability and incommensurability, in an ancient Greek spirit, may come into play.

Fig. 10.1  Numerosity of 
dots aggregates  
(a): Randomly displayed 
dots (b): A pattern of dots
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Central notions of elementary theory of numbers (the αριθμητική arithmētikē of 
the Greece of Antiquity) can be brought to the fore via the notion of measure: this is 
precisely how divisibility is introduced in Euclid’s Elements. Two most fruitful arte-
facts to be used here are Cuisenaire rods (this volume, Sects. 8.2.1 and 9.3.1.1) and 
the number line (Sect. 9.2.2.4).

Although strongly attached, in the collective memory, to the ‘New Math’ era, the 
Cuisenaire rods have a strong merit of their own, and it may be seen as still pertinent 
for future teachers to be familiar with this artefact. It is thus a pity that many of our 
student teachers have never encountered them earlier in their own schooling (as if 
legions of boxes of Cuisenaire rods were left sleeping in school basements). The 
simple fact of observing with the rods how a ‘train’ of length, say, 18 (one orange 
rod and one brown rod), can be divided into series of identical ‘wagons’ in five dif-
ferent ways (eighteen white, nine red, six light green, three dark green, two blue) is 
without any doubt a most inspiring way of addressing the notion of factors (see 
Fig. 10.2).

A most relevant distinction can be made here, considering, for instance, the fac-
torisation 18 = 2 x 9, between the ‘unit’ 2 being repeated nine times and the ‘unit’ 9 
repeated twice.

Transfer, in more generality, to the number line is then immediate. As stressed in 
Sect. 9.2.2.4, line segments are precisely how Euclid ‘saw’ numbers, including 
whole numbers. And the issue of a number ‘measuring’ or not another one can read-
ily be addressed via segments on the number line.

I wish to stress here another fertile artefact from ancient Greece for approaching 
elementary theory of numbers: the use of figurate numbers, that is, of certain geo-
metrical arrangements of collections of dots. This vision of whole numbers does not 
emphasise an idea of measure, as I just discussed. Going back to the Pythagorean 
school, it provides a dynamic context revealing rich relations between given family 
of numbers. For instance, passing from a given square of side n to a square of side 
n + 1 involves the adjunction of a ‘gnomon’ (γνώμων) made of twice the length n 
and a unit. Fig. 10.3a presents the situation, for the case n = 4, in a figurate number 
style, while Fig.  10.3b uses a more traditional image based on area. It may be 
pointed out here that the latter artefact has as well a very long history, being present 
in essentially all the ancient mathematical traditions. Both artefacts of Fig. 10.3 can 
serve as supports for visual proofs – in the present case, of the fact that 
(n + 1)2 = n2 + (2n + 1).

Fig. 10.2  The factors of 
18, à la Cuisenaire
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10.3.4  �Reckoning Number

Freudenthal (1973, p. 171) uses the expression reckoning number in order to high-
light the algorithmic aspect attached to whole number arithmetic. This is the 
logistikē (λογιστική) of ancient Greece, that is, actual calculations involving opera-
tions of elementary arithmetic and, in particular, of course, the ‘four operations’. We 
are now in the same ballpark as with Euler’s Rechenkunst mentioned above.

Reckoning is considered from two different perspectives in our arithmetic course 
for teachers. One encounter with reckoning happens after about a month of the 
course, once the basic laws of arithmetic have been introduced and that positional-
value numeration (base ten) has been fully reviewed, so that it is then possible to 
discuss and justify in a thorough manner the functioning of algorithms. A specific 
task proposed to teachers, concerning standard algorithms, is to identify minutely 
the way the arithmetic laws enter into action in a given algorithm. For example, 
concerning the multiplication 23 x 15, we provide them with a truly detailed com-
putation (see Fig. 10.4) where the first ten lines from a series of twenty one are 
reproduced. A single mathematical basic event is enacted on each of these lines, and 
the students’ task is to identify it.

Of course, we do not ask our students to construct by themselves calculations of 
such a type, as this is not really a task on which we would want them to devote 

Fig. 10.3  Passing from the 
square of a whole number 
to the next

Fig. 10.4  Fragment of the calculation of 23 x 15 (detailed style)
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energy and time. Nor do we have in mind them later using such a level of scrutiny 
with their own pupils. But for a teacher, seeing precisely (at least once in one’s life-
time) the way the basic arithmetic laws intervene in standard algorithms is, we 
believe, a most valuable experience.

Another task part of the same discussion is to have our students look for, look at 
and understand non-standard algorithms for the four operations. We also present 
them other artefacts of a historical flavour, such as, for multiplication, the gelosia 
method or Napier’s bones (Sect. 9.2.2.3) or the Egyptian algorithm.5

The other perspective we introduce in our course concerning reckoning happens 
on the very first day of the course: we give them as a task (to be done before the next 
class) to use their knowledge of algorithms for the four operations – these algo-
rithms then play the role of artefacts – so to be able to compute in bases other than 
ten. We launch the task with them, reminding very briefly the idea of base ten 
numeration and asking then what if we were using, say, base eight. We make sure 
that they will go back home on that day having a reasonable intuition of what it 
means for a numeral to be expressed in a non-usual base such as eight, so that ‘all 
that remains’ for them is to do the calculations, using the knowledge they already 
have of basic arithmetic algorithms. Along the way we make them aware that in 
order to play the game fully in base eight (and not to ‘cheat’ via base ten), they will 
need to have access to information about additions and multiplications of one-digit 
numbers. An extra implicit task is thus for them to construct by themselves the arte-
facts for calculations in this new environment, namely, the Pythagorean tables for 
addition and multiplication in base eight. (See Sect. 9.2.2.3 for comments on 
Pythagoras tables from the perspective of an artefact.) The next class rests on the 
work they will have done in the meanwhile.

We eventually tell them explicitly that an aim behind this task is to destabilise 
them to a certain extent with regard to basic arithmetic skills that may seem, at first 
sight, trivial. This way a context is created enticing them to get into a deep reflective 
mode about algorithms that they already know how to perform but are probably not 
in a position to explain or justify. Many students later testify to this ‘non-base-ten 
calculation’ task as a genuine thought-provoking moment for them.

10.4  �Defining and Representing Whole Numbers

In passages about basic arithmetic laws in the literature for teachers, one may find 
comments linking, say, the commutativity of addition to expressions such as

345 + 67 = 67 + 345.

While this equality may be seen as a fine illustration of the property, the use of such 
a vision introduces a confusion between many aspects related to numbers, in par-
ticular between the nature or essence of natural numbers (or of the operations 

5 https://en.wikipedia.org/wiki/Ancient_Egyptian_multiplication
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defined on them) and the representation of these numbers via a numeration system – 
however important the latter may be in practice.

It is for us of crucial importance in our course for teachers to introduce the natu-
ral numbers ‘in themselves’, without any reference to a system for representing 
them. In the early days of the course, they were introduced as cardinalities of (finite) 
sets. A major shift occurred in our approach to basic arithmetic when it was decided 
to restrict sets to a role of ‘linguistic’ tools for communication, instead of primitive 
concepts on which the whole arithmetical building should be based (see Sect. 10.3.2 
above) and to use the (historically primitive) notion of a tally (see this volume, Sect. 
9.2.2.1) to introduce whole numbers.

10.4.1  �Tallies: A Fruitful Artefact for Whole Numbers

All writing may be put down, and nothing used but the score and the tally. Shakespeare 
(1594), Henry the Sixth, Part 2, Act IV, Scene vii (OED 2016)

Natural numbers, it was mentioned earlier, can be captured in a robust way by think-
ing of them as counting numbers (see Freudenthal’s comments in Sect. 10.3). In a 
written form, this vision can be rendered concretely through a basic artefact, the 
notion of tally,6 as well as sequences of tallies.

A natural number is ‘naturally’ defined as a sequence of tallies – a finite sequence, 
of course. Accepting such a sequence to be eventually empty is not a major issue 
(especially with adults) and allows the introduction of 0, of fundamental importance 
when addition enters into the picture. The set of natural numbers is thus constituted 
of all the finite sequences of tallies, and this can be accepted as a working definition 
with prospective teachers.

Leaving aside for the moment the empty sequence of tallies (a special symbol, 
such as an inverted triangle, could be introduced for that purpose), the (unlimited) 
sequence of counting numbers thus begins

 

This artefact explicitly allows the notion of successor to be fully seen in action.
In order to gain a necessary level of generality, a notation such as

 

may be introduced in order to represent a sequence of tallies of arbitrary length, n.

6 Other words traditionally used in a same sense include notch, score or stroke. A tally is to be 
considered simply as a mark, typically a short line segment. In our course, we speak of the ‘bâton’ 
(in French), i.e. the stick.

10  Artefacts and Tasks in the Mathematical Preparation of Teachers of Elementary…



238

Once we have such concrete models for natural numbers, a fundamental notion 
to discuss is the equality of two given natural numbers, which is to be captured 
through the verification that the corresponding sequences of tallies are identical. 
The natural way to render this idea is via the establishment of a bijective link 
between the two sequences. In the present context, this scheme of one-to-one cor-
respondence between sequences of tallies appears as a most natural artefact, requir-
ing no sophisticated set-theoretic support. It also leads to the definition of order 
among natural numbers, when one sequence happens to be exhausted before the 
other in a search for a one-to-one correspondence.

Such a setting in turn allows for operations on natural numbers to be introduced 
through operations on sequences of tallies which, in that context, can be accepted as 
natural and primitive. For instance, the addition of two given numbers n and m is 
defined as the juxtaposition of the corresponding sequences of tallies:

 

(with equality here being per definition). The sum n + m is readily seen to be a natu-
ral number. In a similar vein, the multiplication of n and m can be defined as the 
result of replacing each tally in the sequence for n by a replica of the sequence for 
m. For matters of convenience, the natural number n x m obtained as the product 
sequence can be displayed as a rectangular array (or matrix) of tallies:

 

From these definitions (using the notion of the empty sequence of tallies) follow 
immediately, for instance, two basic arithmetical facts: when a sum n + m is 0, then 
both terms are 0; and when a product n x m is 0, then at least one of the factors is 0.

It may be noted that a similar artefact for counting numbers is the model of boxes 
of aligned dots used by Courant and Robbins (1947, p. 2 et seq.) in their study of the 
laws governing the arithmetic of whole numbers. Addition then corresponds to 
‘placing the corresponding boxes end to end and removing the partition’ (p. 3):

 

while the multiplication n x m is defined via a box with n rows and m columns of 
dots (eventually reorganised as a box of aligned dots).
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10.4.2  �Establishing the Basic Laws of Arithmetic

The tally artefact has as a bonus the feature that the basic properties of arithmetic 
can be actually proved and not merely stated or illustrated. For instance, the prop-
erty of commutativity of addition, mentioned at the beginning of this section, then 
amounts to the following: given two arbitrary sequences of n and m tallies, one 
shows that the order of juxtaposition does not matter by an appeal to the obvious 
one-to-one correspondence – the rightmost tally of m in the sequence n + m is linked 
to the leftmost tally of m in m + n and so forth. Both sequences n + m and m + n will 
then be exhausted simultaneously.

In turn all other fundamental properties of addition and multiplication can be 
proved similarly, thus leading to the establishment of ‘the fundamental laws of reck-
oning’ (associativity and commutativity of + and x, identity elements, compatibility 
of = with + and x, simplification for + and x, distributivity x/+, laws concerning 
order) (see, e.g. Klein (1932), p. 8, where such rules are simply stated). It is impor-
tant, with teachers, to stress that these properties speak of the behaviour per se of 
numbers and certain operations defined on them and, as such, are totally indepen-
dent of numeration, i.e. of ways of ‘writing down’ the numbers in a given system.

It may be noted that the artefact of tallies, as a concrete model for whole num-
bers, comes with practical limitations: for instance, given two sequences made, 
respectively, of, say, one thousand and one thousand and one tallies, it would be 
quite cumbersome to compare their size by searching for a possible one-to-one cor-
respondence. But such is not the main point behind this artefact: the really crucial 
aspect is that we have a precise agreement about what any given natural number ‘is’. 
Such a vision, independent of any numeration system, is a fundamental awareness 
for a teacher.

The interested reader will have noticed that we are now very close to the princi-
ple of mathematical induction and the full set of Peano axioms. While mentioning 
this en passant, we do not see it as appropriate to insist on such an abstract vision in 
our course for primary school teachers.

10.4.3  �Representing Whole Numbers

Of course, the time comes, in our arithmetic course for teachers, when the concept 
of number emerging from the preceding tally-wise definition should be related to 
standard arithmetic practice, and in particular to our usual positional-value numera-
tion system in base ten. The many devices and variants for representing numbers 
developed throughout history turn out to be very informative artefacts in order to 
distinguish between two fundamental issues at stake when writing or recording 
numbers: establishing a numeration scheme for memory or communication pur-
poses, and establishing one for reckoning purposes.
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Many interesting artefacts are available, often of a strongly cultural nature, as 
regards memory or communication devices for numbers: tallies, Egyptian numera-
tion, Roman numeration, quipus, etc. When emphasis is put on devices facilitating 
calculations, a different set of artefacts may come to mind – in particular abaci – 
where the notion of position is part of the artefact itself. (See Sect. 9.2.2 for a rich 
catalogue of artefacts for whole number arithmetic used throughout history.)

The power of the positional nature of our usual numeration system should not be 
underestimated when it comes to consider it from a reckoning perspective.7 Devices 
emphasising position thus play a crucial role in that connection. Many such arte-
facts are discussed in Chap. 9, in particular in Sects. 9.3.1.2 (multibase arithmetic 
blocks) and 9.3.1.3 (spike abaci). In the case of the blocks, the position is transmit-
ted via the size of blocks, while for the abaci it is the place of a given spike on the 
physical device that indicates position.

Mention is made in Sect. 9.3.1.3 of the possibility of using beads of different 
colours being piled on the various spikes of an abacus in order to make more evident 
the difference in the roles played by the beads. The authors then observe that such a 
use of colours ‘seems not advisable, as attention is focused on colours and exchange 
conventions rather than on order and position’.

While agreeing fully with the importance of stressing order and position when 
learning about positional value, I would suggest that an artefact integrating colours, 
and even emphasising exchanges through a colour code, may be of interest on its 
own, at least when working with teachers.

I wish to briefly describe here an artefact, due to Lemay (1975), based on the 
Cuisenaire rods and using both the lengths and the colours of the rods in order to 
develop the core for a positional-value system. The so-called ‘cargo method’ of 
Lemay (méthode des cargaisons, in French) leads to a mechanical way for exchang-
ing, without counting, a certain sets of rods for a rod of the ‘next type’.

We first agree on a certain rod serving as a basis for numeration – the word basis 
being taken here as well in a truly physical sense. In the example of Fig. 10.5, we 
use the pink rod (of length four) as the basis, lain horizontally. The exchange pro-
cess rests on the following rule: if a number of rods of the same colour can be placed 
upright side by side so as to cover it completely, it can be exchanged for a rod whose 
length matches the total height of the freight (still standing vertically on the basis). 

7 One may be reminded here of a famous engraving from Gregor Reisch’s Margarita philosophica 
(1503), where an allegorical figure of Arithmetic appears to express her preference in a kind of 
calculation contest between the ‘Ancient’ and the ‘Modern’ (see Swetz and Katz 2011).

Fig. 10.5  The ‘cargo 
method’ of F. Lemay
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Figure 10.5a shows a cargo of white rods being exchanged for one red rod, and 
Fig. 10.5b, a cargo of red rods replaced by a light green one.

This method clearly leads to a fully fledged positional-value numeration system 
(base four in the example), the length of the successive rods corresponding to the 
position of digits in a given numeral.

Such an artefact could be related to one involving strictly a colour code, the 
Cuisenaire rods being simply replaced by colour tokens. The exchange rule then 
requires grouping the tokens of a given colour (e.g., by counting) so as to form a 
heap to be exchanged for one token of the next colour. Although possibly consid-
ered more abstract, as no physical indication for the ‘weight’ of a digit (i.e. its posi-
tion) is conveyed by the colour itself, such a system appears of unquestionable 
importance. It corresponds, for instance, to two important historical artefacts, the 
(additive) Egyptian and Roman numeration systems. The fact, in the latter case, that 
the symbol L, say, corresponds to fifty has no (immediate) physical connection – 
although the history of the Roman characters may be of interest on its own, as 
plainly shown by Ifrah (2000, pp. 187–200).

It is thus of importance to convey the idea that the value of a given element may 
depend strictly on the agreement made about it and not on its physical size. While 
clearly of fundamental interest for positional numeration, multibase arithmetic 
blocks, for that matter, do not convey the whole story of numeration. Non-physical 
(or abstract, if one wishes) exchange codes are also present in concrete artefacts 
(and daily situations), such as monetary systems. Among the Canadian coins, for 
instance, the 10¢ coin is smaller than the 5¢ coin, but children have no problem 
agreeing to this arbitrary value. (The fact that the ‘unit’, namely, the 1¢ coin, has 
recently disappeared from physical monetary transactions in Canada raises other 
interesting numerational issues, as the 5¢ does not really correspond to a heap of 
five 1¢ but rather takes its value from an abstract agreement.)

10.4.4  �Historical, Logical and Didactical Background 
to the Tallies

Hodgson and Lajoie (2015) offer comments on the long and diverse history of the 
use of tallies as an artefact for counting numbers, from ‘early stone age’ to more 
recent centuries. Using passages from Ifrah (2000), they recall how present this 
approach to numbers is among many cultures.

Sequences of tallies can also be seen as a practical artefact of ancient times, but 
one still largely in use even today when counting a not-too-large population, often 
implemented by means of groupings by five:
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In a modern context, this ‘unary’ vision of natural numbers is often encountered 
in works pertaining to logic, be it in an epistemological context, as ‘a primitive form 
of notation for natural numbers’ (Steen 1972, p. 4), or in relation to the notion of 
computability as defined via Turing machines (Kleene 1952, p. 359) (Davis 1958, 
p. 9). It may be of interest to note in the latter case that in order to have access to a 
simple notation for 0, a sequence of n + 1 tallies is used to represent the natural num-
ber n as a ‘tape expression’ on the Turing machine. Steen emphasises the generative 
aspect of sequences of tallies, starting with the sequence made of a single tally  
and accepting as a construction rule the adjunction of a tally to a given sequence (see 
also Lorenzen (1955, p.  121 et seq.), under a chapter entitled ‘Concrete 
mathematics’8).

As an example of a recent didactical application, this ‘constructive (or operative) 
foundation of natural number’ presented by Lorenzen, and in particular the ‘calcu-
lus of counting actions’ just described, is acknowledged by Wittmann (1975, p. 60) 
as the basis of the reflections he proposes about the teaching and learning of natural 
numbers.

10.5  �A Miscellany of Artefacts and Tasks for Elementary 
Arithmetic

I now mention briefly a few other artefacts and tasks pertinent to elementary arith-
metic and used in our course.

10.5.1  �An Artefact for Focusing on Remainders: Clock 
Arithmetic

Today is Tuesday. What day of the week will it be in 18 days from today? Or: It is 
now 15:30. What time will it be in 1000 hours from now? Such questions, connected 
to daily basic arithmetic, emphasise the fact that in many contexts related to divi-
sion, the remainder may be seen as more relevant that the quotient. Being familiar 
with the 12-hour (and the 24-hour) clock is an important basic learning. And this in 
turn may be the starting point supporting the main ideas of modular arithmetic in 
general, using as an artefact so-called clock arithmetic.

8 It may be noted that another artefact for natural numbers found in logic, of a more advanced 
nature, is provided by the so-called von Neumann ordinals (von Neumann 1923). They amount to 
have each ordinal be defined as the set of ordinals that precede it (the empty set being taken as the 
starting point, ordinal 0). In such a context, we have, for instance, 3 = {0,1,2}, that is, 3 is a specific 
set with three elements. A nice feature of this definition of ordinal numbers is that it allows easily 
the transfer to transfinite ordinals. But we are then a bit beyond primary school arithmetic.
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Figure 10.6 shows a slightly special clock, namely, a ‘7-hour’ clock (with 0 used 
instead of 7, in distinction from a standard clock). It is easy to define basic arith-
metical ‘clock operations’ in this environment, such as addition: 2 + 18 = 6 (which 
may be read as today being Tuesday, it will be Saturday in 18 days). Subtraction and 
multiplication are as well easily implemented: we are thus in the vicinity of the ring 
Z/nZ.

10.5.2  �An Artefact for Finding Prime Numbers:  
The Six-Column Sieve

The sieve of Eratosthenes is a well-known device for finding prime numbers. 
Experience shows that students will very frequently list the natural numbers in ten 
columns in order to do the sieving. However, using as an artefact a six-column sieve 
(Fig. 10.7) immediately reveals a nice phenomenon, once the proper multiples of 
the first two primes have been eliminated: with the exception of 2 and 3, all prime 
numbers are of the form 6k + 1 or 6k – 1. This is a fine example of a visual proof: 
the artefact in itself ‘is’ the proof of this result. The sieving process is then made 
considerably easier due to the format of the sieve. See Hodgson (2004, pp. 334–
335) for further details.

A crucial related task here is of course to ask: why six columns? A bit of elemen-
tary theory of numbers – either using 6-hour clock arithmetic or examining a prime 
p jointly with its two neighbours, p – 1 and p + 1 – will be helpful in bringing out 
the fact that ‘we knew’ already that any prime, besides 2 and 3, is the neighbour of 
a multiple of 6. However, the artefact in itself is still of interest in primary 
education.

Fig. 10.6  The 7-hour 
clock

Fig. 10.7  The six-column 
Eratosthenes sieve (for 
primes up to 50)
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10.5.3  �An Artefact for Observing Divisors: A Brick in the Wall

I have mentioned above (see Sect. 10.3.3) how Cuisenaire rods may be used for 
showing in action, so to say, the divisors of a given number. The same artefact may 
be used for finding concretely common divisors of two numbers, and this way ‘see’ 
the GCD. A similar remark applies to common multiples and LCM of numbers.

10.5.4  �An Artefact for Applying Divisors: The Long Hotel

A well-known problem in the literature for primary school teachers is the ‘Long 
Hotel’ problem, using the parlance of Cassidy and Hodgson (1982). The underlying 
artefact is set as follows: there are n rooms along a long corridor, and the n guests 
consecutively apply an ‘open/close’ process on the doors, Guest #k changing the 
position of every k-th door (starting with door #k). The question of determining which 
doors are left open and which ones are closed at the end of the process boils down to 
identifying the divisors of a given door number, and more precisely the parity of the 
number of divisors: the perfect squares here stand out as of special interest.

10.5.5  �An Artefact for Applying GCD and LCM:  
The Circle Hotel

Cassidy and Hodgson (1982) introduce a variant to the preceding problem, using 
the ‘what-if-not’ strategy in problem posing and transferring the process to a circu-
lar corridor. The ‘Circle Hotel’ problem provides a nice context to see clock arith-
metic in action. It turns out in this case that a single door remains open at the end of 
the process, the precise nature of the door number depending on the parity of n.

Various additional questions can be asked in this context, related, for instance, to 
the number of times Guest #k will go round the corridor before stopping (i.e. before 
touching the same doors again) or the number of doors Guest #k will have touched 
during the process. The answers to these questions have to do with the GCD and the 
LCM of n and k and are connected to a famous artefact from a few decades ago, the 
so-called Spirograph. Figure 10.8a shows the figure generated with the Spirograph 
by rolling a small wheel of 30 teeth inside a big wheel of 105 teeth, which corre-
sponds to the action of Guest #30, when the Circle Hotel has 105 rooms.

Considered as an artefact, the Spirograph is of special interest on its own, as the 
elegance and beauty of the figures it can generate may play the role of ‘attention-
catcher’ and invite to indulge in further investigation, for instance, about the family 
of star polygons {n/d} (Fig. 10.8b). These are (generalised) polygons obtained by 
connecting with line segments every d-th point on a circle where n equally spaced 
points are marked. Such aspects are discussed in Hodgson (2004, pp. 324–328).
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10.5.6  �An Algorithmic Artefact: The Euclidean Algorithm

Understanding and applying the Euclidean algorithm for finding the GCD of two 
numbers can be seen as a task appropriate for prospective primary school teachers. 
It has a very positive impact, as this algorithm is totally new to most student teach-
ers. This algorithm provides the occasion for a nice learning experience, as prospec-
tive teachers are then in the same situation as their future pupils with respect to 
encountering a certain algorithm for the first time.

This algorithm, via Bézout’s identity, then becomes a fine artefact for solving 
‘popular’ problems, such as whether it is possible or not to obtain a certain quantity 
of water using two pails whose capacity is known.

10.5.7  �Visual Artefacts: Proofs Without Words

The use of a figure for supporting the proof of – or even for ‘proving’ by itself – a 
given arithmetic identity has a long history. Already in Euclid’s Elements, for 
instance, are results with a substantial visual component (but such was not of course 
the spirit of Euclid’s approach). A classical example is about the area of the square 
of side a + b (proposition II.4, accompanied by a figure similar to Fig. 10.3b above). 
Another result of Euclid (proposition II.1) concerns the area of a large rectangle that 
has been divided into smaller rectangles (Fig. 10.9a). In modern terms, the situation 
can be interpreted as corresponding to the distributivity of multiplication over 
addition.

In a similar spirit, Klein (1932, p. 26) proposes Fig. 10.9b as a support for the 
formula:

	
a b c d ac ad bc bd– – – – .( )( ) = +

	

Fig. 10.8  The Spirograph curve 105/30 and the star polygon {7/2}
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As an additional example, the reader may wish to consider how a ‘loaf’ of balls 
packed in the shape of a rectangular prism of edges a, b and c may be seen as prov-
ing the associativity of multiplication: a(bc) = (ab)c. (Hint: One can imagine slices 
being cut vertically on the one hand and horizontally on the other.)

10.5.8  �Tasks Supporting Positional Numeration

I end this brief survey of additional artefacts and tasks by considering a few tasks 
intended to foster the understanding of positional-value numeration systems (in par-
ticular ones in base ten).

10.5.8.1  �Trading Bases

A natural question, when considering a numeration system in a base other than ten, 
is to consider how to transfer a given (base ten) numeral to the new base, and vice 
versa. Eventually such a question could be addressed considering arbitrary bases a 
and b, going directly from one system to the other without transiting via base ten. 
Necessary artefacts would then be the Pythagorean tables for the bases at stake. 
Experience shows that if student teachers are left on their own facing such a task, 
the following three methods will eventually appear:

•	 Dividing the given number by the grouping order of the target base (computa-
tions then take place in the source base).

•	 ‘Exhausting’ the number by multiples of powers of the target base (computations 
also take place in the source base).

•	 Evaluating the number in the target base (computations now take place in the 
target base).

Understanding the principles behind each of these methods sheds light on important 
aspects of numeration.

Fig. 10.9  Visual proofs of basic rules of arithmetic
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10.5.8.2  �Paginating a Book

Here are problem-solving tasks providing nice insights into numeration:

•	 How many digits (i.e. printed characters) will one use in order to paginate a book 
of, say, 789 pages?

•	 Reciprocally, if so many characters have been used to paginate a book, how 
many pages does it have?

•	 In a similar spirit, how many times does one use the digit 7 when writing down 
all the numbers from 1 to 99,999?

10.5.8.3  �Factorials and Fractions

Two problems emphasising the role played by the prime factors of the base are:

•	 By how many 0s does 77! end?
•	 Moving to rational numbers, one may ask when does a fraction a/b (given in its 

lowest terms) correspond to a terminating decimal expansion?

10.5.8.4  �Casting Out Nines

A nice artefact with a long history is the ‘casting out nines’ procedure for testing the 
validity of a given reckoning, for instance, the computation of a product. Examining 
the functioning of this algorithm on the basis of clock arithmetic provides a rich 
context for entering into the functioning of our numeration system. A nice aspect 
that can be raised about this test is the issue of ‘false positives’. And what about 
‘casting out threes’ or ‘casting out elevens’?

More generally, understanding divisibility criteria is a task fostering the under-
standing of positional numeration.

10.6  �Conclusion

A central aim of the arithmetic course we propose to prospective primary school 
teachers is to help them develop a solid ‘conceptual understanding’ allowing to 
perceive mathematics not as a mere bunch of facts to be memorised, but rather as a 
coordinated system of ideas. We hope this way to contribute to the growth of their 
autonomy and critical analysis skills.

This paper has concentrated on the competency of teachers in mathematics (and 
especially in basic arithmetic), a crucial aspect of their preparation – but, it goes 
without saying, not the whole story (see Sect. 9.3.4.2). The interested reader will 
find in Hodgson and Lajoie (2015) brief comments about how the approach to 
whole number arithmetic described here can serve as a basis for other numerical 
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contexts (Z and Q), as well as a discussion on how the didactical component of the 
preparation of primary school teachers can make use of artefacts such as sequences 
of tallies.

A crucial point raised at different places in Chap. 9 is the fact that artefacts and 
tasks are intimately linked together. While ‘artefacts have the potential to foster 
students’ construction of mathematical concepts in whole number arithmetic’ 
(beginning of Sect. 9.4), they do not exist by themselves, pedagogically speaking. 
They must be related to some mathematical tasks. And reciprocally, as shown 
repeatedly in this paper, a given mathematical task is typically based on a certain 
artefact, be it a physical tool, an algorithm, or a device such as a sequence of tallies, 
coming both with a facet of concrete implementation and one of abstract conceptual 
object.

In spite of a comment made in the introduction, namely, that the learning of 
arithmetic by actual pupils is not an immediate aim of the work we do with our 
student teachers, I would maintain that many of the artefacts and tasks discussed in 
our arithmetic course (and in this chapter) can be transferred to pupils, but of course 
with a necessary adaptation, as our target audience comprises adults with already a 
substantial, even if at times frail, mathematical background and not young children 
new to such notions.
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11.1  �Introduction

11.1.1  �About the Chapter

In accordance with the programme components at the ICMI Study 23 Conference in 
Macao (Theme 4), this chapter focuses on the diverse theoretical and methodological 
frameworks that capture the complex relationship between whole number learning, 
teaching and assessment. Its aim is to bring these diverse perspectives into conversation.

The importance of the theme for students’ development of understanding mathe-
matics, and their overall learning, is obvious. This is highlighted in the Discussion 
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Document (this volume, Appendix 2) as well as in other chapters of the book. There 
are many approaches to WNA teaching and assessment throughout the world and 
within countries. Describing all approaches cannot be presented in one chapter of the 
book. Instead, the authors present one concrete example of school practice – the les-
son observed by ICMI23 participants at a primary school in Macao – and use the 
lesson as a stimulus for discussing ideas about teaching, learning and assessing WNA.

The chapter is divided into seven sections (including this introductory text with the 
overview of the Theme 4 programme). The focus for all sections is how teachers pro-
mote the development of students’ metacognitive strategies during their learning of 
WNA. Each section develops an important aspect of the theme. A description of the 
Macao Primary School lesson is first presented (Sect. 11.2). This provides the context 
for the subsequent sections, except for the one focusing on textbooks (as during the 
lesson textbooks were not explicitly used). The two versions of the variation theory 
(Sect. 11.4) and the theory of didactical situations (Sect. 11.5) are used as lenses to 
interpret the lesson. How teachers’ knowledge is related to their teaching approaches 
is discussed in Sect. 11.3, while Sects. 11.6 and 11.7 focus, respectively, on assessment 
and textbooks which are significant domains for the teaching and learning of WNA.

The topics discussed in this chapter each have important implications for teacher 
education. These are discussed in Chap. 16. Furthermore, there were several ques-
tions from the Discussion Document (this volume, Appendix 2) discussed during 
the working group 4 sessions and published in the conference proceedings. In order 
to show the richness of discussions among the working group 4 participants, the 
descriptions of all contributions to the topic are summarised in Sect. 11.1.2. Readers 
interested in more detailed information about any discussed aspect can find the cor-
responding papers in the ICMI Study 23 Proceedings.

11.1.2  �What Was Presented at the Conference: Overview

Theme 4 addressed general and specific approaches to teaching and assessing 
WNA. In the thematic group, theoretical and methodological frameworks that could 
capture the complex relationship between whole number learning, teaching and 
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assessment were considered. The background question for all contributions to 
Theme 4 was the same as for this chapter: how can teachers promote the develop-
ment of students’ metacognitive strategies during the learning of WNA?

Fourteen papers written by authors from 13 countries were accepted for this theme. 
They addressed the issues of teaching and assessing WNA from different perspec-
tives. The contributions by participants from many countries offered a unique oppor-
tunity to compare and contrast different approaches to teaching and assessing WNA.

For presentation and discussion, the papers accepted for Theme 4 were divided 
into five subgroups according to their main focus. The summary that follows uses 
these subgroups as an organisational structure. We are aware that it is not possible 
to make disjoint groups of papers when attending to their main focus. Note: there is 
no ranking in the order of topics.

11.1.2.1  �Teaching Approaches

Askew (2015) focused on place value in Grade 2 in South Africa. He argued that 
within a context focused around whole-class teaching, it is still possible to engage 
learners with mathematics in ways that go beyond merely reproducing procedures 
demonstrated by the teacher.

Cao et al. (2015) presented the characteristics of the Chinese traditional approach 
from the perspectives of content, organisation, the arrangement of teaching, ways of 
presenting and cognitive demand level with a special emphasis given to multiplica-
tion tables.

11.1.2.2  �Knowledge of Teachers

Ekdahl and Runesson (2015) examined shifts in the nature of responses of three South 
African Grade 3 teachers to students’ incorrect answers when teaching the part-whole 
relationship in additive missing number problems and discuss consequences.

Lin (2015) focused on teaching the structure of standard algorithms for multipli-
cation with multi-digit multipliers via conjecturing as one of effective instructional 
approaches to teaching multiplication with multi-digit multipliers.

Barry et al. (2015) investigated the variables that determine the difficulty of an 
additive problem. They showed that the knowledge of variables that determine it 
differs considerably from one teacher to another. They justified that the roots of 
these differences are in the differences of teachers’ pedagogical beliefs.

11.1.2.3  �Curriculum

This group of contributions is not fully homogeneous. It includes papers focusing 
on WNA curricula in different countries, on the outcomes when applying curricula 
and on the influence of using different types of textbooks.
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Kaur (2015) presented the primary school mathematics curriculum in Singapore, 
focusing on the model method, a tool for representing and visualising relationships. In 
Singapore, it is a key heuristic that students use for solving WNA word problems.

Wong et  al. (2015) reported on Macao’s 15  years of experiences of primary 
mathematics education, after the official handover of the former Portuguese enclave 
to China in 1999. They argued that no educational system can provide Macao with 
a ready-made curriculum model.

Sensevy et al. (2015) analysed the principles and rationale of a curriculum for 
WNA teaching in the first grade in France.

Brombacher (2015) reported on the situation in Jordan. He suggested that delib-
erate and structured daily focus on foundational whole number skills can support 
the development of children’s ability to do mathematics with understanding.

11.1.2.4  �Textbooks

Alafaleq et al. (2015) examined how equality and inequality of whole numbers are 
introduced in primary mathematics textbooks in China, Indonesia and Saudi Arabia.

Zhang et al. (2015) investigated four sets of primary mathematics textbooks used 
in Hong Kong using content analysis.

11.1.2.5  �Assessment and Evaluation of WNA

Zhao et al. (2015) discussed challenges that Chinese primary teachers faced when 
supposed to implement classroom assessment techniques.

Gervasoni and Parish (2015) presented the results of one-to-one assessment with 
nearly 2000 Australian primary school students. They highlighted the challenge of 
meeting each student’s learning needs, and demonstrated the complexity of class-
room teaching.

Pearn (2015) compared the reactions of the Grade 4 teachers in one school (with 
the same curriculum) with their students’ results on a WNA test.

11.1.3  �The Discussion in the Working Group

The eight 1-hour sessions in the working group were organised in two different 
forms. The first five sessions were devoted to the discussion of the participants’ 
accepted papers. The papers were grouped according to their topics dealt with: 
teaching approaches, knowledge of teachers, curriculum, curriculum and textbooks 
and assessment of WNA. Then three discussion sessions followed. Their themes of 
discussion were: teachers’ knowledge of their students’ understanding, performance 
and personality traits that can help teachers plan for effective teaching strategies; 
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multicultural approaches and traditions of teaching WNA; the role of textbooks and 
artefacts in teaching WNA; and the role of custom-made curriculum to improve the 
learning of WNA. The work was organised partly in the mixture of small group and 
plenary discussions.

The programme was enriched by the contribution of Marianela Zumbado Castro 
from Costa Rica (CNAP). Her presentation covered the information about the 
important development of number meaning in the Costa Rican mathematical pro-
gramme. She highlighted approaches to calculations and approximations and the 
use of multiple representations in troubleshooting. These domains were covered 
from an eminently pragmatic perspective that emphasised student action. She 
emphasised that numbers occupy a big place from first to sixth graders, in order to 
promote mathematical processes and positive attitudes for its proximity to the con-
text and its close connection with the other areas.

It is obvious that the topics dealt within WG4 were not disjoint with other WGs. 
There were overlaps with other working group topics as well as with the panel about 
teacher education. However, the common topics were tackled from different perspec-
tives in each part of the programme and can be seen as complementing each other.

11.2  �A Mathematics Lesson Focused on Addition 
Calculations with Two-Digit Numbers at a Primary 
School in Macao

11.2.1  �Introduction

Teachers in Macao in common with primary school teachers across the world are 
working to transform their approach to teaching mathematics. They have a strong 
focus on students learning mathematics with deep conceptual understanding and 
developing creative thinking. In this chapter, we aim to explore issues in the teach-
ing of arithmetic with reference to an illustrative lesson that we observed at a pri-
mary school in Macao in June 2015. The Grade 1 class we observed were all 
enthusiastic and well focused on the activities and learning throughout the lesson. 
This school, we were told, aims to ensure that the students will be well behaved, 
enjoy their lives and be good at creative thinking for the future. The mathematics 
team of 14 teachers was described by the principal as progressive and innovative. 
They meet together in different levels at least once per week to share their objectives 
and activities. They also engage in research practices focused on school-based stud-
ies of teaching aimed to promote positive changes in teaching and learning. Every 
teacher is responsible for teaching one demonstration lesson and observing 20 les-
sons in an academic year so that the mathematics teachers can learn from each other. 
The school also organises training for elite mathematics teams from the kindergar-
ten to the grade 9 who join mathematics competitions. This activity aims to enhance 
logical thinking and project-based practice.
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Seating organisation for the lesson See Fig. 11.1
The class of 22 Grade 1 children (6-year-olds) sat in pairs at their desks.
Introduction and welcome See Fig. 11.2
The lesson began with a warm greeting from the teacher and a respectful bow 
from the students.
Stage 1 lead in: fluency with number facts See Fig. 11.3
The first activity in the lesson (the lead in stage) focused on the students 
practising number facts – number combinations for ten. The students were 
shown a set of number facts to solve and recorded their answers. This practice 
was timed with students recording when they completed all the calculations. 
The teacher roved around and observed the students as they worked.
The answers were corrected as a group with the stated aim being for the 
students to improve their previous score and time. The teacher enthusiastically 
encouraged the students to improve and asked them to state if they had 
improved their time and score.
Stage 2 situation setting: addition of a two-digit number and a one-digit 
number without regrouping – using pictorial representations of realistic 
contexts

See Fig. 11.4

In this section of the lesson (situation setting), the teacher presented a realistic 
situation for the students to explore. The first problem showed a pictorial 
representation of four packets of ten candies and three single candies. They 
needed to work out the total: 40 + 3 = 43.

11.2.2  �The Lesson

The Grade 1 students we observed have five mathematics lessons per week and 
one mathematics reading lesson per week (a mathematics reading lesson involves 
stories and written problem-solving, mathematical games, project-based activities 
and hands-on activities). The lesson began with a lead in stage during which stu-
dents engaged in 3 min of mental calculation practice. The lesson proceeded with 
several stages during which the students explored a range of situations and strate-
gies for adding two-digit numbers. Throughout the lesson, the teacher circulated 
to observe and discuss the students’ strategies and to select students to describe 
and explain their calculation strategy to the whole class. In one stage of the lesson, 
the students worked in fours to use models to represent the calculation and solu-
tion. A variety of real-world calculations and bare number calculations were 
investigated and solved and discussed. The Grade 1 students we observed were all 
enthusiastic and well focused on the activities and learning throughout the lesson 
(Electronic Supplementary Material: Sun 2017b).

The setting and sequence of activities of the lesson are summarised in  
Table 11.1 shown below.

Table 11.1  Setting and sequence of activities of the lesson

(continued)
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The next situation presented was a pictorial representation of candies 
organised onto trays of ten and loose candies. The calculation was 
25 + 2 = 27. Once the problem was solved the teacher guided a discussion 
about the calculation strategies used. The photo shows splitting the 25 into 
tens and ones and then grouping the ones to calculate the total easily.

See Fig. 11.5

Finally, the students considered a situation involving pencils organised into 
boxes of ten and some loose pencils. The calculation involved two-digit 
numbers. The solution discussed by the teacher and students considered 
grouping the boxes of ten together and adding the number of loose pencils.

See Fig. 11.6

�25 + 20 = 45
�20 + 20 + 5 = 45
Stage 3 group counting and sharing: addition with two-digit numbers and 
one-digit number (with regrouping ones)

See Fig. 11.7

This stage of the lesson was described as the group counting and sharing stage 
during which the students were expected to communicate, conceptualise and 
inquire. The context was ‘party time’; materials (candies) were used to represent 
the situation and the calculation strategies for 24 + 9 = 33. The students worked 
in groups of four to discuss the possible strategies for this calculation, while the 
teacher moved between the groups to observe, listen in and discuss the 
strategies. Students were selected to come to the front of the class and explain 
their strategies using the document camera and interactive white board. The 
teacher explored three different strategies with the class. She had anticipated 
these strategies before the lesson and prepared the posters for display.
�23 + (1 + 9) = 33
20 + (4 + 9) = 33
(24 + 6) + 3 = 30 + 3
Stage 4 Practice Stage: calculation competition See Fig. 11.8
This stage of the lesson had three components. During Practice Stage 1, the 
student found solutions to a set of problems while the teacher circulated to 
observe and discuss the strategies. The teacher again selected several students to 
come to the front to explain their calculation strategies. The teacher highlighted 
carefully the different strategies used. However, after only completing one of 
the four calculations on the board, the teacher moved to Stage 2. In Practice 
Stage 2 the students worked in pairs and were asked to choose their favourite 
digits from an envelope to make a new two-digit number. The teacher gave them 
another card with the addition sign and a single digit number (9 followed by 7). 
The students had to add the one-digit number to their two-digit number. Several 
strategies were shared with the class.
One child explained a calculation that bridged 100: 95 + 9 = 104. She had 
some difficulty describing her strategy to the class and the teacher assisted her.

See Fig. 11.9

Practice Stage 3 was a return to the calculating competition (Practice Stage 1) 
where the students were encouraged to share their answers and their strategies.

See Fig. 11.10

Lesson summary

The conclusion of the lesson was a summary by the teacher about what they 
had explored and learnt during the lesson. The teacher emphasised that the 
students could use the ‘making 10’ strategy to add a two-digit number and a 
one-digit number.

Table 11.1  (continued)
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Fig. 11.1  Seating organisation

Fig. 11.2  Introduction and 
welcome

Fig. 11.3  Lead in: fluency 
with number facts
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Fig. 11.5  Second situation 
setting

Fig. 11.6  Third situation 
setting

Fig. 11.4  First situation 
setting
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Fig. 11.8  Practice stage 1

Fig. 11.9  Practice stage 2

Fig. 11.7  Group counting 
and sharing
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11.3  �The Impact of Teachers’ Knowledge of Pedagogy, 
Learning Trajectories, Mathematics and Students 
(Cognitive, Social, Emotional, Context, etc.) 
on Children’s Learning of Whole Number Arithmetic

11.3.1  �Introduction

Many everyday calculations involve adding combinations of one-digit and two-digit 
numbers. This is so whether we are shopping, measuring for sewing or a building 
project or analysing data in a rainfall graph. This partly explains why adding one- 
and two-digit numbers is a key focus in primary school mathematics education. 
However, approaches to teaching this type of calculation vary within and between 
countries. The teaching approach in many countries today emphasises children 
learning a variety of arithmetic strategies so that they can successfully and effi-
ciently perform calculations mentally. However, other approaches draw upon text-
books that focus on children learning standard written methods for performing these 
calculations. It is important for teachers to understand the affordances and limita-
tions of various teaching approaches for children’s arithmetic learning.

11.3.2  �Responding to Children’s Current Knowledge of Whole 
Number Addition and Subtraction

The Macao lesson vignette described earlier in this chapter provides an example of 
an approach to teaching children to perform calculations with one-digit and two-
digit numbers that would be recognised in many countries (e.g. Singapore, Germany, 
Australia, Canada, Thailand). The teacher used her knowledge (assessment) of the 
students’ current mathematics knowledge and pedagogy to select tasks with an 
appropriate level of challenge and that aligned with the curriculum expectations. 

Fig. 11.10  Practice stage 3
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She made a concerted effort to motivate the students to engage in the lesson activi-
ties and work hard to improve their knowledge, and she was encouraging of the 
students’ efforts to learn. The teacher provided the children with time to work on 
their own, time to work in small groups to discuss ideas and solutions and time to 
observe and listen to the solutions presented by several students. This suggests that 
she may be influenced by social-cultural perspectives (e.g. Vygotsky 1980) in 
designing the lesson structure. However, this may be the teaching norm in her school 
community. With respect to the tasks, the teacher provided a balance between tasks 
that involved bare number calculations and those that were connected to everyday 
situations. There was also the opportunity in the lesson for children to use materials 
and pictures to model their solutions processes to support their mathematical rea-
soning. There was an overarching focus on the children understanding the solution 
strategies they were using or viewing. However, in contrast to the approach in 
Singapore (Kaur 2015) and advocated by Bruner (1960), there was little use of 
materials being used to assist individual children’s learning progress from arithme-
tic reasoning based on concrete representations through to pictorial and abstract 
representations. In contrast, the approach in the Macao lesson required all the chil-
dren to engage with concrete, pictorial and abstract models at set points in the les-
son. There was no sense that the teacher was using formative assessment to select 
concrete, pictorial or abstract models for individual children based on their current 
understanding or to encourage the children to select these different representations 
themselves.

One set of tasks in this lesson involved the students performing calculations with 
numbers such as 25 + 9. Pictures of snacks in boxes of ten and loose ones were used 
to represent the quantities and to model the various solution processes that were 
predetermined by the teacher. This set of solutions was elicited from the children 
and discussed as a class group to build understanding and provide children with 
examples of strategies they may not have spontaneously considered. This enabled 
the class to discuss the advantages of various strategies in relation to the numbers 
involved. This teaching approach of inviting children to demonstrate and discuss 
various solutions is widely used in countries such as Japan (Murata and Fuson 
2006), the Netherlands (RME; van den Heuvel-Panhuizen and Drijvers 2014), 
Germany (Selter 1998) and Australia (Clarke et al. 2002).

One advantage of all the children in a class performing the same calculations is 
that they can all participate in a meaningful discussion about the various arithmetic 
strategies used. However, tasks such as 25 + 9 do little to develop creativity, chal-
lenge or persistence. An alternative approach is to use an open task that enables 
children to create and discuss a range of solutions. For example, the students may 
be asked to create a set of solutions for the task, ‘Ivy added two numbers and the 
sum was more than 32. What might the numbers be?’ This open task encourages the 
students to persist in producing a range of solutions that are creative and complex 
enough to challenge them to think hard. The solutions and arithmetic strategies can 
then be discussed as a class to extend the understanding of all. This approach is 
advocated by Sullivan et al. (2015).
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The challenge for a teacher during a lesson such as the one described earlier is to 
plan how the learning may be differentiated and how the lesson can develop creativ-
ity, which was a stated aim of Hou Kong Primary School in Macao and is high-
lighted as an important goal of mathematics education in many international 
settings. In the observed lesson, it seemed that all students were able to successfully 
perform the calculations, but some were clearly more confident than others, and 
some children may have been able to solve more complex problems, given the 
opportunity. However, the tasks and teaching actions were not adapted to respond to 
any formative assessment data collected by the teacher during her observations or 
discussion with children. This issue of task differentiation and developing creative 
mathematical thinking are important considerations when considering highly effec-
tive teaching of whole number arithmetic. Further, in many countries, where class 
sizes are very large, the differences in the knowledge of the students may pose the 
teacher with challenges. Thus differentiating tasks and instruction is an important 
role for the teacher when children are learning whole number arithmetic.

11.3.3  �Differentiating Instruction Based on Children’s Current 
Knowledge

Children’s development of heuristic strategies for addition and subtraction has been 
well described (e.g. Steffe et  al. 1988; Murata and Fuson 1997). Such research 
formed the basis for describing the six addition and subtraction strategies growth 
points established during the Early Numeracy Research Project (Clarke et al. 2002) 
to describe children’s learning in this domain. Growth points are established for a 
child following assessment by the teacher using a detailed scripted one-on-one 
assessment interview (Clarke et al. 2002). This is a common assessment approach 
in Australia and New Zealand (Bobis et al. 2005). A feature of assessment inter-
views is that they enable the teacher to observe children as they solve problems to 
determine the strategies they used and any misconceptions (Gervasoni and Sullivan 
2007). They also enable teachers to probe children’s mathematical understanding 
through thoughtful questioning (Wright et  al. 2000) and observational listening 
(Mitchell and Horne 2011).

Growth point results for nearly 2000 Grade 1 to Grade 4 students (Fig. 11.11) 
collected during the Bridging the Numeracy Gap Project (Gervasoni et al. 2011) 
confirm that there is a wide distribution of children’s addition and subtraction strate-
gies growth points in each class. These data indicate that 96% of Australian Grade 
1 children, 75% of Grade 2 children, 46% of Grade 3 children and 30% of Grade 4 
children used counting-based strategies for calculations, such as 4 + 4 and 10 − 3. 
The fact that so many Grade 4 children remain reliant on counting strategies and 
concrete models for calculating and that almost no Grade 4 students could solve 
mental calculations involving two-digit and three-digit numbers (growth point 6) is 
at odds with the tasks typically found in Grade 4 textbooks that involve calculations 
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with much larger numbers. Data such as these demonstrate the need for teachers to 
understand the current knowledge of students through observation of their calcula-
tion strategies, understand the typical developmental pathway in this domain and 
understand the teaching strategies that respond to the individual needs of students so 
that they can differentiate tasks. This is not possible if teachers only use written tests 
(Clements and Ellerton 1995) or one textbook for a class that does not differentiate 
learning and extend understanding. Rather, if teachers observe that a child uses a 
count-all strategy (growth point 1) and refer this to a learning framework, then they 
can appreciate that a child’s shift to using a count-on strategy (growth point 2) or 
abstract reasoning strategies (growth point 4) requires the teacher to hide some of 
the physical models to prompt children to produce a mental image that enables them 
to count-on or reason abstractly.

In summary, there is no single ‘formula’ for describing children’s whole number 
knowledge or the instructional needs of children in a particular grade. Meeting the 
diverse learning needs of children requires teachers to be knowledgeable about how 
to identify each child’s current mathematical knowledge and how to customise their 
teaching accordingly. This calls for rich initial and formative assessment tools capa-
ble of revealing the extent of children’s whole number knowledge and calculation 
strategies and an associated framework of growth points capable of guiding teach-
ers’ curriculum and instructional decision-making. Assisting children to learn math-
ematics is complex, but teachers who are equipped with the pedagogical knowledge 
and actions necessary for responding to the diverse needs of individuals are able to 

Fig. 11.11  Addition and subtraction growth point distribution for Grade 1–4 children
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provide children with the opportunities and experiences that will enable them to 
thrive mathematically.

11.4  �View of Lesson through the Lens of Variation Theory

Variation theory has come to the foreground in the last decade in different parts of 
the world (Huang et al. 2006) as a lens through which the classroom learning can be 
designed, described and analysed. First we look at the ‘indigenous’ approach to 
variation problems (Sun 2011a, b, 2016), in order to give an insider’s perspective on 
the lesson (design and functioning), and second we situate the lesson within the 
international debate (e.g. Marton et al. 2004) about the observed lesson.

11.4.1  �The Insider’s Perspective: ‘Indigenous’ Variation 
Practice

In this section, we examine the lesson through a lens of ‘indigenous’ variation prac-
tice as a means of providing the insider perspective, in order to enhance comprehen-
sive understanding of the lesson. In this section, we mainly focus on the situation of 
the candy box problem. In order to understand the classroom process, it is necessary 
first to describe the past experience of the students, which followed the Chinese cur-
riculum as it is described in Chinese textbooks. The importance of textbooks in 
Chinese curriculum must be emphasised, as teachers follow the textbooks’ direc-
tions (which draw on the standards) very carefully. As said in the previous sections, 
this lesson took place close to the end of the school year; hence, students were 
already familiar with the previous content.

11.4.1.1  �The Prior Students’ Knowledge

The students’ previous knowledge about different cases of addition and subtraction 
had been developed, fostering grouping, regrouping and ungrouping, following the 
Chinese tradition. Consider the following examples of activities taken from their 
textbook for the first months of the first grade (Fig. 11.12).

The image on the left provides a good example of explicit variation. In the first 
line, there is the standard notation for decomposing 10 in different ways. Then, in 
each of the following lines, there is a scheme (the problem situation, given in iconic 
form) referring to one of the above decomposition. Each problem is interpreted in 
different ways, according to the indigenous variation practice (OPMC, i.e. one prob-
lem, multiple changes, Sun 2011b), hinting at addition and subtraction together. The  
same problem is focused at the same time with different interpretations, creating a 
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very strict link between addition and subtraction and a focus on algebraic thinking 
(relations between numbers). In the same image, another explicit variation appears 
increasing the quantity of missing numbers to be detected and changing their posi-
tion in the mathematical expressions. This is expected to be done in the same lesson 
as one textbook page is used in one lesson. This approach is very different from 
other ones practised in some Western countries, where addition and subtraction may 
be taught separately (see Sun et al. 2013 for Portugal; Bartolini Bussi et al. 2013 for 
Italy).

The image on the right exploits the standard notation for decomposing 10  in 
order to solve, in different ways, the addition 9 + 5 with regrouping (OPMS, i.e. one 
problem, multiple solutions, Sun 2011b).

Besides that, students know already how to add tens and how to add two-digit 
numbers without regrouping. Hence, the students knew what was necessary to han-
dle the situation of the day, concerning the candy boxes and the addition with 
regrouping 24 + 9.

11.4.1.2  �The Lesson Plan: The Situation of the Day

According to the framework of Chinese open classes (Chap. 16), the lesson plan 
was given to the international observers a few days in advance. It contained details 
about the organisation, the teaching topic (addition within two-digit numbers and 
one-digit number with regrouping), the learning objectives and the students’ previ-
ous knowledge (Bartolini Bussi and Sun 2015).

The situation of the day was the problem of the candy boxes: it was carefully 
described in the lesson plan (excerpt) (Table 11.2).

Fig. 11.12  Examples introducing the decomposition of 10 in the Chinese textbook (Mathematics 
Textbook Developer Group for Elementary School, 2005, vol. 1)
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The three mentioned ways of ‘putting candies altogether’ hint at different ways 
of ‘making 10’:

–– To increase 24 to 30 (3 tens).
–– To increase 9 to 10 (1 ten).
–– To decrease 24 to 20 (2 tens).

The teacher knew in advance that some students might have difficulties; hence, 
she was ready to encourage students, forcing the grouping strategy, using the con-
cept of ‘making 10’.

Table 11.2  The lesson plan (excerpt)

Situation setting (a) Teacher gives a situation to the class. ‘There are many 
guests in our school today. So, Miss Amanda prepares 
some food for them. Class, can you help me count the 
food as fast as you can?’

15 min

Problem solving (a) Students work in groups.
(b) Provide some candies to each group and let them count.

Group counting and 
sharing 
(communication, 
conceptualising, 
inquiring)

(a) T invites some group to report their finding about how 
to count the candies altogether.
(b) Give comments to the groups and use the multimedia to 
show three different ways to count the candies.
The first way of putting candies altogether

There are 24 candies on the left, and then there are 9 
candies on the right.
Next, encourage students to investigate and move 4 candies 
on the left and 6 candies on the right to ‘making 10’. 
Finally, 30 candies plus 3 candies equals 33 candies 
altogether.
The second way of putting candies altogether

There are 24 candies on the left, and then there are 9 
candies on the right.
Next, encourage students to investigate and move 1 candy 
on the left and 9 candies on the right to ‘making 10’. 
Finally, 23 candies plus 10 candies equals 33 candies 
altogether.
The third way of putting candies altogether

There are 24 candies on the left, and then there are 9 
candies on the right.
Next, encourage students to investigate and move 4 
candies on the left plus 9 candies on the right equals 13 
candies. Then, there is a ‘making 10’ in 13. Finally, 20 
candies plus 13 candies equals 33 candies altogether.
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11.4.1.3  �The Functioning in the Classroom

The time planned for the solution was very short (15 min). However the students 
succeeded in solving the problem finding the three solutions anticipated by the 
teacher in a shorter time. The process may be outlined looking at the transcript 
(translated from Cantonese). The final solutions produced by the groups are in the 
figure of the Stage 3.

00.00	 Here you have some candies, we can count how many candies, each group has 
candies boxes. Put on the table and calculate. Think how to use the candies and find 
the result. You can split candies and move between the boxes on the left and on the 
right.

…	 Students work in small groups.
02.14	 Have you finished? Good job! And you? Have you finished? And you? Good job!
02.32	 Very fast! Very good!
02.39	 Let’s look together. Turn to this direction (the whiteboard).
… 	 The first solution: 24 + 9 = 23 + (1 + 9) = 33
03.07	 Let’s look how she did. Hang to the board. Tell them how and why you did this way. 

To take away the group of 4 and put there. Why? I understand, in this way you have 
on the right the sum 10, on the right is three groups of 10, 30, right? All together is 33.

04.00	 Do you have different methods? Did you think another way? Raise your hands. Did 
you think another way? Please, come here, carry your boxes.

… 	 The second solution is given: 24 + 9 = 20 + (4 + 9) = 33
06.05	 Good job! Are there other methods? Have you thought in a different way?
… 	 The third solution: 24 + 9 = (24 + 6) + 3 = 33
08.03	 Many solutions, many different solutions. Are there different solutions? How did 

you move the candies? This is the same as the first method. Other solutions? How 
did you do? It’s the same. You also. Other solutions? Do you have other methods? 
Let me know.

09.00	 In mathematics is there only one solution?
Voices	 No no no.
	 We may have many different solutions. Yes, you have made different solutions for 

this problem. To make the addition of a two-digit number and a one-digit number 
we may use different ways to group and move and get the same result.

Later …
31.43	 In mathematics is there only one solution? You may use any method, you have only 

to find the same result and you look for the fastest method.
(Electronic Supplementary Material: Sun 2017a, b)

It is worthwhile to observe how the teacher highlights the variation (one prob-
lem, multiple solutions (OPMS)) that seems to be the most important global mes-
sage of the lesson, besides the technique of grouping-ungrouping. Variation of the 
‘making 10’ solution is emphasised and reinforced in other episodes of the lesson, 
when other problems to be solved orally or in writing are given and are reconsidered 
at the end (min. 31.43). The coherence between the lesson plan and the realised 
interaction is very high. According to some scholars (Wang et  al. 2015), ‘recent 
international studies in mathematics education have identified a high degree of 
instructional coherence as a distinguishing feature in classrooms in China’ (p. 112). 
The teacher’s discourse showed a high degree of coherence throughout the lesson 
and, apparently, the students developed a sense of what was going on, showing 
choral answers to some questions.
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11.4.1.4  �A Short Summary

In this section we have tried to give an insider perspective of an ‘indigenous’ peda-
gogical practice. The practice, namely, variation problems, is known widely in 
Chinese mathematics curricula as ‘one problem, multiple solutions’ (OPMS, 一題
多解, varying solutions), ‘one problem, multiple changes’ (OPMC,一題多變, vary-
ing conditions and conclusions) and ‘multiple problems, one solution’ (MPOS, 多
題一解, varying presentations). We have seen examples of the first two above. A 
more comprehensive summary of this kind of variation problems is in Chap. 3. A 
complete discussion and comparison with Marton’s variation theory is in Sun 
(2011b). Variation practice aims at abstracting and generalising, focusing on rela-
tionships between numbers rather than on arithmetic operations. This is consistent 
with the aim of developing algebraic thinking (Cai 2004; Sun 2016). This ‘indige-
nous’ pedagogical practice has clear boundaries that allow one to uncover how 
variation practice has been and is now used in Chinese classrooms and a true opera-
tional effectiveness that might be used to transpose it to other contexts (Bartolini 
Bussi et al. 2013). An example of transposition from China to Italy is discussed in 
this volume (Chap. 3).

11.4.2  �A Westerner’s Perspective: Marton’s Variation Theory

It must be emphasised that the following account is a particular ‘reading’ of the les-
son and in particular a reading of deliberate intent behind the selection and structur-
ing of the examples offered to the students to consider. Such a post hoc interpretation 
is not meant to be ‘reading the mind’ of the teacher – it could well be that the actual 
rationale behind the choice of examples bears no resemblance to the interpretation 
presented here. The intent, however, is not to definitively pronounce what was 
behind the design of the lesson, but to use the lesson as a starting point for thinking 
about lesson design and how variation theory (in the sense developed by Ference 
Marton) might be helpful in designing lessons that provide sound opportunities for 
learning whole number arithmetic and inform the conversation on what mathemati-
cal knowledge for teaching needs to be brought to lesson design.

The starting point is the definition of an exercise as put forward by Watson and 
Mason (2006a), that is, an exercise is ‘a collection of procedural questions or tasks’. 
Thus, rather than examining the separate questions that learners work on in a lesson, 
these are collectively regarded as contributing towards a set, an exercise, that may 
be more or less mathematically and pedagogically structured. Thus, the lesson 
observed had as a major exercise a number of discrete questions all based around 
adding a single digit to a two-digit number and that the selection, ordering and ways 
of working within this exercise led to a coherence in the lesson that amounted to 
more than the sum of the parts.

To examine this, two particular episodes in the lesson are looked at in detail: the 
working on the problem of 24 sweets plus 9 sweets and the sequence of calculations 
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where learners chose their own two-digit number to work with. Central to this anal-
ysis is an exploration both of how the teacher worked with highly interrelated exam-
ple sequences (Watson and Mason 2006a) and of the ways of simultaneously 
working with horizontal relationships within examples and vertical patterns between 
examples (Watson and Mason 2006b).

11.4.2.1  �Variation Theory

Variation theory (VT) as developed by Ference Marton and colleagues (Marton 
et al. 2004) is a theory of learning, not an all-encompassing theory of pedagogy. VT, 
for example, sheds no light on whether group work is better than individual work or 
whether physical materials are more useful than pictures or images, although VT 
theorists acknowledge that these other features of the learning environment are 
important. The overall aim of VT as developed by Marton and colleagues is to 
attend to aspects of learning that focus on the specific mathematical content, distin-
guishing VT from other theories of learning that provide accounts of how learning 
occurs that are independent of what actual content is expected to be learnt. As a 
group of teachers and researchers in Hong Kong engaged in ‘learning studies’ that 
draw on VT to look at how diverse classroom communities can learn particular 
content note:

Contrary to the belief of some educational theorists, therefore, we believe that one simply 
cannot develop thinking in isolation from the objects of thought. Learning is always the 
learning of something, and we cannot talk about learning without paying attention to what 
is being learnt. (Lo et al. 2005, p. 14)

It is beyond the scope of this chapter to go into all the details of VT, but central 
to the argument here are the constructs of objects of learning, discernment and 
variation.

VT acknowledges the intentionality of teaching: teaching is always directed 
towards specific learning ends or, in the language of VT, objects of learning. An 
object of teaching is never unitary: any teaching activity is always, and inevitably, 
directed towards at least two objects of learning. There is the direct object of learn-
ing – in this lesson, the addition of two numbers. It is this that learners are usually 
most focused upon as revealed through their answers to the question, ‘What did you 
learn today’? Answer: ‘How to add’. But every teaching activity also encompasses 
one or more general capabilities that are broader than the specific object of learning, 
for example, interpreting or generalising. These comprise the indirect object of 
learning (Marton et al. 2004).

According to Bowden and Marton (1998), our learning is a result of what we are 
able to discern, distinguish. But we can only distinguish between things when there 
is variation in our experiences:

When some aspect of a phenomenon or an event varies while another aspect or other aspects 
remain invariant, the varying aspect will be discerned. In order for this to happen, variation 
must be experienced by someone as variation. (Bowden and Marton 1998, p. 35)
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Variation is the key to being able to discern. As Watson and Mason (2006a) argue, 
any aspect of a task or situation that it is hoped learners will discern (the lived object 
of learning) ‘is more likely to be discerned if its variation is foregrounded against 
relative invariance of other features’ (p. 98). In other words, what is not varied is as 
important to attend to as what is varied. So the teacher is in control of the ‘enacted 
object of learning’ through the structuring of the ‘example space’ (Watson and 
Mason 2005), that is, a collection of examples that fulfil a specific function (Zazkis 
and Leikin 2007). And equally, if too much is varied, then either nothing may be 
discerned or inappropriate or irrelevant features attended to. As Runesson (2005,  
p. 72) notes, ‘studies have shown that exposure to variation is critical for the possi-
bility to learn, and that what is learnt reflects the pattern of variation that was present 
in the learning situation’.

11.4.2.2  �Variation Within the Lesson

The first example in the exercise of adding a single digit to a two-digit number with 
carrying in the main teaching part of the lesson was based around the party time 
problem of adding 9 sweets to 24 sweets. Groups of learners were given 24 candies 
as two full boxes of ten and a box with only four, together with a box of nine. As the 
groups worked on solving the problem practically, the teacher roamed around not-
ing the different methods and selecting which groups she was going to invite to 
share their approach with the class. As noted in the account, the teacher had already 
prepared posters for three strategies and so was, presumably, looking for groups 
whose strategy fitted with what she had anticipated.

Each group asked to demonstrate their solution started by putting up on the board 
the two boxes of ten and the four units and the box of nine to the right of these and 
modelling with the candies what they had done. In this way, three different parti-
tionings of one of the numbers was elicited: partitioning the 24 into 23 + 1 and 
effectively doing 24 + 9 = (23 + 1) + 9 = 23 + (1 + 9) = 23 + 10 (although recorded 
differently, but consistently across the three solutions, by the teacher). Similarly, 
there was 24 + 9 = (20 + 4) + 9 = 20 + (4 + 9) = 20 + 13 and 24 + 9 = 24 + (6 + 3) 
= (24 + 6) + 3 = 30 + 3.

Here in one example we see careful variation and non-variation. What was kept 
constant was the calculation and the partitioning of one of the numbers in a way that 
anticipated creating a multiple of ten to be added to another number. Thus, while the 
direct object of learning was to calculate the sum, indirect objects implicitly worked 
with included the associative rule for addition, equivalence and the simplifying of 
calculations by creating a multiple of ten. All of this, we suggest, was enacted 
through carefully working horizontally within one example and carefully deter-
mined variation within this horizontal working. So while it might be argued that the 
teacher, in predetermining the solution methods that she sought, limited the oppor-
tunity for attending to other things such as learner creativity, from a VT perspective, 
the control exercised by the teacher here is central to directing what might be dis-
cerned by the learners.
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The next set of examples in the exercise that we want to examine is the sequence 
where learners used digit cards to make their own two-digit number. While the 
teacher made some play of appearing to randomly select a digit for them to add to 
their number, it seemed from her actions that the pulling out of 9 was not entirely 
random. Again, as the learners were working, the teacher moved around and chose 
three to come and show, now using a visualiser, their working (recreating this, not 
simply showing the final working). The fact that the third example – 95 + 9 – drew 
gasps of delight from the class suggests again that the choice and sequencing of the 
three children invited to share their solutions were carefully considered by the 
teacher. From the perspective of VT, what was now varied was the choice of two-
digit number, but adding 9 (and subsequently 7) kept constant. The choice of 9 again 
not only, in being close to ten, may have encouraged attention to making a multiple 
of ten, but also only made a small vertical move from the three methods of adding 
24 + 9 still displayed on the board. Thus, learners were encouraged to attend to how 
they can build on what they have just done, rather than having to deal immediately 
with both numbers being varied.

So although this lesson can be read as being very tightly controlled by the teacher, 
that control can be read as located in a carefully thought out exercise, a carefully 
constructed example space, designed to help learners develop effective methods of 
calculating.

11.4.3  �Comparison

When comparing the two approaches to variation theory presented in Sects. 11.4.1 
and 11.4.2, there are many similarities. But there can also be found substantial dif-
ferences, the roots of which can be briefly summarised as follows: Marton’s theory 
is a theory of learning (Kullberg 2010), while indigenous variation practice is a 
method of task design for teaching. More information about variation theory can be 
found in Chap. 3. A comprehensive book on teaching with variation has been pub-
lished by Huang and Li (2017).

11.5  �View Through the Lenses of the Theory of Didactical 
Situations

One efficient tool for analysing teaching episodes is Brousseau’s (1997) theory of 
didactical situations (TDS). In TDS, two different types of knowledge are distin-
guished: connaissance (a knowing) and savoir (knowledge). In the text of this sec-
tion, we use the English translations of the French terms introduced in Brousseau 
(1997, p. 72, Editors’ note): ‘The former refers to individual intellectual cognitive 
constructs, more often than not unconscious; the latter refers to socially shared and 
recognised cognitive constructs, which must be made explicit’.
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11.5.1  �Didactical Situations

Let us summarise the main characteristics of a didactical situation as used in TDS 
(Brousseau 1997; Brousseau and Sarrazy 2002). In didactical situations, the teacher 
organises a plan of action which makes clear her intention of modifying or causing the 
creation of some knowledge for the student, for example, and which permits her to 
express herself in actions. Certain didactical situations, the so-called a-didactical situ-
ations, are (intentionally) partially liberated from the teacher’s direct interventions. 
An a-didactical situation is the autonomous part of an individual or collective activity 
of students; and student’s adaptation to this situation shows the knowing involved.

The theory classifies situations according to their structure (action, formulation, 
validation, etc.) which determines different types of knowledge (implicit models, 
languages, theorems, etc.). Figure 11.13 schematically records the structure of a 
didactical situation.

The a-didactical situation of action is a situation in which a knowing is mani-
fested only by decisions and by regular and effective actions on the milieu1 and 
where it is of no importance to the evolution of the interactions with the milieu 
whether the actor can or cannot identify, make explicit or explain the necessary 
knowing.

The a-didactical situation of formulation puts at least two actors into relationship 
with the milieu. Their common success requires that one of them formulates the 
knowing in question for the use of the other, who needs it in order to convert it to an 
effective decision about the milieu.

The a-didactical situation of validation is a situation whose solution requires that 
the actors establish together the validity of the characteristic knowledge of this 
situation.

1 The word ‘milieu’ denotes everything which acts on the student and/or on which she acts.

Fig. 11.13  Scheme of a didactical situation

11  How to Teach and Assess Whole Number Arithmetic: Some International…



274

The institutionalisation of a knowing reveals itself by the passage of this know-
ing from its role as a means of resolving a situation of action, formulation or valida-
tion to a new role, that of reference for future personal or collective uses and, thus, 
as a piece of knowledge.

Devolution is the process by which the teacher manages in an a-didactical situa-
tion to put the student in the position of being a simple actor in an a-didactical 
situation.

11.5.2  �Elements of Didactical Situations in the Lesson

For tracing the features of TDS in the lesson, let us analyse Stage 3 (group counting 
and sharing: addition with two-digit numbers and one-digit number with regrouping 
ones). It followed the stage during which children got acquainted with a scheme 
describing adding two numbers without regrouping (Fig. 11.14).

The objective of Stage 3 was represented by adding 24 + 9. The expected activity 
was explained by the teacher on the interactive board in front of the classroom. Tens 
were represented by a box with ten rounds in a rectangle. Therefore 24 and 9 
occurred as the scheme on Fig. 11.15 (devolution).

Fig. 11.14  Representations on the whiteboard

Fig. 11.15  Representation 
of 24 and 9
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Students worked in groups. They were provided with boxes for ten candies. 
Twenty-four violet candies were placed in two full boxes and the third box con-
tained four candies and six empty slots (Fig. 11.16). In another box, nine yellow 
candies were stored. When looking for the sum, students tried to add more candies 
in one box that was not full to have complete it to ten candies (of candies of both 
colours). Thus, there are three valid procedures to deal with the boxes (see Fig. 11.7). 
The teacher circulated through the classroom and recorded procedures applied by 
individual groups. From time to time, she interfered in the work of a group. By act-
ing, students built the knowing of regrouping for the addition of 24 + 9. The a-didac-
tical part of the situation is rather limited and does not offer too much freedom for 
students to act in relationship with the milieu (even filling in the boxes is already 
predetermined by providing groups with the given number of boxes and placing 
candies in a certain way in them).

The formulation and validation of the developed knowing were organised 
together as a whole class activity managed by the teacher. She asked representatives 
of groups to come to the front and model their procedure with the boxes of candies 

Fig. 11.16  Candies in 
boxes

Fig. 11.17  Different representations of 24 + 9
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they used. At the same time, she projected a schematic description of the presented 
procedure and added the symbolic record of the solving strategy under the boxes 
fastened on the board (Fig. 11.17).

Institutionalisation was realised in the form of solving similar problems. This 
time, students worked in their exercise books. Individual students presented then 
their calculations (projected their record and explained it). The teacher did not finish 
with the presentation of one procedure but elicited the occurrence of others. She 
pushed children to work as fast as possible (the speed of solving looks to be an 
important factor in Chinese classrooms). The teacher insisted on students’ indepen-
dent description and explanation of each step of their solving procedure.

The process from the work with models to the ‘abstract’ way of solving the prob-
lem using mathematical symbols showed to be smooth and understandable for 
students.

11.6  �Classroom Assessment in Whole Number Arithmetic

Mathematics teachers need to assess their students’ learning progress in whole 
number arithmetic to be able to provide pertinent guidance during the learning pro-
cess. Not only is this knowledge necessary, it is even impossible to teach without it, 
because teachers’ teaching should build on and link to what the students already 
know. In other words, teachers need to have insight into students’ solution strategies 
reflecting their mathematical thinking (Gearhart and Saxe 2005). The guidance 
teachers provide in their mathematics classes can be more or less effective for stim-
ulating students’ understanding, depending on whether their instruction is attuned 
to students’ needs and possibilities for further development (cf. Butterworth 2015: 
‘[g]etting the correct assessment is fundamental for selecting the appropriate inter-
vention’ (p. 28)). In a continual striving for providing the best possible explanations 
to students, teachers need to know at practically every particular moment in their 
classes of every single student where they are in their understanding. This echoes 
Schoenfeld (2014) statement that, ‘[p]owerful instruction ‘meets students where 
they are’ and gives them opportunities to move forward’ (p.  407). Teachers can 
acquire insight about students’ whole number arithmetic abilities by qualitative and 
holistic assessments, such as observing students in class and giving them open-
ended tasks, providing a reliable window for knowing students’ progress (cf. Black 
2014). Taking this formative perspective in assessment offers teachers the possibil-
ity to adequately assess students’ understanding in such a way that it directly 
informs their teaching of whole number arithmetic. Teachers can use the results of 
such formative classroom assessment to make instructional decisions, for example, 
to decide whether they need to adapt instruction to fit students’ current mathemati-
cal understanding, repeat a particular exercise or explanation or, if students have 
reached a satisfactory insight, continue with their previously planned further instruc-
tion. This type of assessment is completely in ‘the hands of teachers’ (van den 
Heuvel-Panhuizen and Becker 2003, p. 683).
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11.6.1  �Reflection on the Possible Assessment Fragment 
of the Lesson in Macao

During the lesson observed in Macao there were some instances where the teacher 
appeared to be assessing her students’ skills; she did not, however, seem to make 
formative use of the information that she could gather from the students’ responses. 
The lead-in stage of the lesson could have functioned as a formative assessment 
technique, in the sense that through the students’ answers to the different number 
combinations of 10 the teacher could have found out whether the students had mem-
orised these number facts. Subsequently, she could have used this information to 
decide how to proceed with her further instruction. Checking students’ knowledge 
of the combinations of 10, as she did in this lesson, is a very insightful starting point, 
as this understanding/knowledge is a prerequisite underlying the more complex cal-
culations that were planned later in this lesson, i.e. addition with regrouping (cross-
ing 10) until 100. However, as a formative assessment technique, it could have 
provided only limited useful information, as merely confirmatory evidence was 
gathered: all the different combinations were provided, ordered from 9 + 1, 8 + 2, 
etc. to 2 + 8, 1 + 9 and 10 + 0. Students had to write, as fast as possible, the result of 
every ‘calculation’, i.e. 10, next to each member of the list of combinations. 
Evidently, this can be done in several ways, of which only one really concerns the 
use of previously memorised number facts. Other solution strategies are, for exam-
ple, the recognition of the minor variation in the problems, and thus concluding that 
all answers must be 10, without calculating, or calculating all of the combinations 
one by one, but fairly quickly, as they are, even for Grade 1 students, relatively easy. 
As a fun exercise – it was a timed competition where students could register their 
elapsed time themselves – this activity had its merits, but it could possibly have 
been more informative if it were used by the teacher with a formative assessment 
purpose in mind. For this, to inform further instruction, it would not be necessary to 
neglect the memorisation and speed objectives of the calculation competition, but it 
would be necessary for the teacher to change her perspective from teaching or test-
ing for the correct answer to assessing with the purpose of better adjusting her fur-
ther teaching to her students’ skills, level of understanding and knowledge of 
number facts.

11.6.2  �Alternative Lead-in Activity by Using Classroom 
Assessment

An alternative task that could be used as a classroom assessment technique in this 
same context is the following. To find out if students really have learned the combi-
nations of 10 and memorised them as number facts, an informative and interactive 
technique could be the classroom activity in which all the students have a red and a 
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green card with which they can show their (dis)agreement with a series of state-
ments. The statements can be ‘Are these numbers together more than 10, yes (green) 
or no (red)? 2 and 7, 5 and 4…’ and so on, to which all the students respond instan-
taneously by showing a red or green card (see, for experiences with such an assess-
ment technique in third grade in the Netherlands, Veldhuis and van den 
Heuvel-Panhuizen 2014, and, for the effects on student achievement, Veldhuis and 
van den Heuvel-Panhuizen 2015). This classroom assessment technique immedi-
ately provides the teacher with an overview of students’ understanding, not only 
about the correctness or speed of their answers, but also whether they are able to 
show their answers without hesitation or if they change their minds when looking at 
the cards their peers show (peer feedback). Also, through the interactive nature of 
this activity, room for a classroom discussion on strategies students used to decide 
on their agreement with the statements is created, as such enabling the teacher to 
provide feedback on these to the students. A further possibility provided by this 
assessment technique is the opening for further investigation, in the same way, of 
students’ understanding or knowledge of the analogous combinations of 100 or 
even 1000. Through this, the teacher could become more assessment aware, mean-
ing that she could distinguish students practising from assessing them. With only 
this slight adaption of the lead-in activity and the teacher using a formative assess-
ment perspective, she could have adjusted her instruction to the students’ needs 
even more than she already did. A different approach, focusing more on individual 
students, without changing the lead-in stage, is of course also possible. Such an 
approach was used in Australia (Gervasoni and Parish 2015) where teachers per-
form clinical individual assessment interviews. These interviews can provide valu-
able additional information on students’ instructional needs in whole number 
arithmetic. Likewise, the Journal of Number (Sensevy et al. 2015), in which indi-
vidual students are regularly prompted to write down what they know about the 
mathematics they encountered in the preceding lessons, could be used to further 
enlighten the teacher about her students’ understanding.

11.6.3  �Classroom Assessment and the Lesson Plan

For the teacher to use the gathered assessment information formatively, she would 
need to be flexible in the use of her lesson plan. When comparing the pre-estab-
lished lesson plan to the lesson we observed, there appears to be a one-to-one cor-
respondence in content, order and type of activities she proposed. Everything was 
very well prepared, from the concrete materials, the posters on the whiteboard, until 
the hidden answers to the different problems on the video-projected slides. The 
questions the teacher posed appeared to be mainly focused on steering the students’ 
responses in the direction of the prepared materials. All problems the students had 
to solve clearly had one, and only one, correct response. This was remarkably exem-
plified by the way the teacher uncovered the correct responses to the exercises; the 
correct answers were hiding in the presentation slides, clearly predetermined and 
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appeared not to be open for discussion. As such, the teaching and learning were 
deterministic, focused on getting the only right answer and not really open for dif-
ferent interpretations of the problems and different solutions. In South Africa, com-
parable teacher behaviour in the teaching of whole number arithmetic, consisting of 
mostly ignoring incorrect answers and rarely juxtaposing correct and incorrect 
answers, has also been observed (Ekdahl and Runesson 2015). Such an approach is 
quite reasonable for a scripted demonstration lesson, but is contrary to the idea of 
formative assessment in which lesson plans are necessarily adaptable, because the 
information the teacher collects about students’ understanding is used to adjust the 
actual teaching following the assessment. The use of lesson plans in this observed 
Macao lesson reflects a recent finding in Nanjing, China (Zhao et al. 2015), in which 
Chinese mathematics teachers’ lesson plans on division prevailed over the possible 
influence of newly gathered information on students’ understanding. These Chinese 
teachers did use (formative) classroom assessment techniques, but seemed to be 
unable to divert from their lesson plans and as such did not use the assessment infor-
mation formatively.

11.7  �The Role of Textbooks Related to Teaching of WNA

Researchers have generally agreed that textbooks play a dominant and direct role in 
what is addressed in instruction. Robitaille and Travers (1992) noted that a great 
dependence upon textbooks is ‘perhaps more characteristic of the teaching of math-
ematics than of any other subject’ (p. 706). This is due to the canonical nature of the 
mathematics curriculum. Teachers’ decisions about the selection of content and 
teaching strategies are often directly set by the textbooks they use (Freeman and 
Porter 1989; Reys et al. 2004). Therefore, textbooks are considered to determine 
largely the degree of students’ opportunity to learn (OTL) (Schmidt et  al. 1997; 
Tornroos 2005). This means that if textbooks implementing a specific curriculum 
differ students will get different OTL (Haggarty and Pepin 2002). Consequently, 
different student outcomes result, as confirmed by several studies which found a 
strong relation between the textbook used and the mathematics performance of the 
students (see, e.g., Tornroos 2005; Xin 2007).

There is no doubt about the influence of textbooks on teachers’ practices related 
to the teaching of WNA in the primary school. Knowledge about approaches to 
teach WNA presented in textbooks in different educational systems can provide 
deep insights about the diverse ways of how WNA is taught. The WNA curriculum 
varies across educational systems. The degree of coupling of the intended curricu-
lum presented in textbooks with the prescribed curriculum in official documents 
also varies across educational systems in the world. For example, in Mainland China 
(Ni 2015) and Singapore (Kaur 2015), textbooks and the corresponding teaching 
materials are the most important vehicles used to implement the nationally man-
dated curriculum. The development and publishing of textbooks is closely regulated 
and monitored by the central government, the Ministry of Education, and there are 

11  How to Teach and Assess Whole Number Arithmetic: Some International…



280

only a few officially designated publishers who are allowed to develop textbooks 
and teaching manuals. However, this is not the case in some countries like the 
Netherlands (van Zanten and van den Heuvel-Panhuizen 2014) and France 
(Chambris 2015), where the respective governments only prescribe the content to be 
taught and publishers are left to develop textbooks without any restrictions. 
Likewise, in Australia and Germany, the curriculum is set by the states and follows 
a framework agreed by all the states, and textbooks are developed by publishers 
without any involvement of the authorities who prescribe the curriculum (Peter-
Koop et al. 2015). At times, when publishers are left to produce the books with no 
guidance, a mismatch may occur, as Yang (2015) found that although the national 
curriculum in Taiwan emphasises number sense, few activities related to number 
sense are found in the elementary textbooks.

Furthermore, in some educational systems, teachers do use textbooks more often 
than others. In most countries where education authorities are involved in the pro-
duction of the textbooks, e.g. Singapore (Kaur 2015), Hong Kong SAR (Zhang 
et  al. 2015) and China (Cao et  al. 2015), teachers use textbooks in teaching the 
WNA curriculum in the elementary grades. In other systems, for example, Australia, 
there may be a variety of textbooks used in the schools, but it is also common for 
teachers not to use a textbook at all, but rather devise their own tasks or draw on a 
variety of resources, including textbooks. In Germany, the vast majority of the 
teachers use one of the major textbooks, available for primary schools, to teach 
WNA (Peter-Koop et al. 2015). The same is true for Thailand (Inprasitha 2015). 
Changsri (2015) and Inprasitha (2015) noted that the use of textbooks that consist 
of mainly routine exercises, by teachers in Thailand, may be the cause of poor per-
formance of Thai students in mathematics.

It is inevitable that cultural and traditional perspectives are present in textbooks 
for the teaching of WNA. In China, the 同文算指 Tongwen Suanzhi (a treatise com-
piled by a Chinese scholar Li Zhi-zao and an Italian Jesuit Matteo Ricci) has had 
significant influence on the teaching and learning of arithmetic and pedagogical 
design of textbooks (Siu 2015). Likewise, the number line as found in textbooks 
appears to be a Western aid for teaching WNA, as traces of its use can be found in 
the early teaching practices of most Western countries (Bartolini Bussi 2015).

The teaching of WNA has evolved with time and this is clearly evident from 
textbooks. In France, the classical theory of numbers which was adapted in close 
terms in textbooks disappeared from the textbooks and teacher books for teacher 
education during the 1980s (Chambris 2015). In Singapore, since the 1980s, text-
books have adopted the concrete-pictorial-abstract approach for the learning of 
WNA. In addition, the model method – a tool for representing and visualising rela-
tionships – has been a key heuristic students use for solving whole number arithme-
tic (WNA) word problems (Kaur 2015).

Comparative studies of textbooks, both within and between countries, have also 
shed light on the depth and breadth of the WNA curriculum across the world. Zhang 
et al. (2015) found that the four sets of textbooks they studied in Hong Kong fol-
lowed the same curriculum guide for the design of the teaching units, and therefore 
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there were only subtle differences in the structure and sequencing of content for 
two-digit subtraction of numbers in the books. However, van Zanten and van den 
Heuvel-Panhuizen (2014) in their study of two Dutch textbook series found that the 
textbook series reflected divergent views on subtraction up to 100 as a mathematical 
topic, which were subtraction up to 100 bridging a ten and subtraction up to a 100 
without bridging a ten. The research by Inprasitha (2015) and Changsri (2015) on 
the teaching of WNA in Thai schools, adopting the Lesson study and open approach 
using Japanese mathematics textbooks, show how the Japanese textbooks are influ-
encing the curriculum materials and teaching approaches for the teaching of WNA 
in classrooms of Thailand. Alafaleq et al. (2015) found that generally there was a 
high level of uniformity in the way the comparison of whole numbers was intro-
duced in textbooks in China, Indonesia and Saudi Arabia.

Lastly, textbooks too may have their weaknesses. At times, they use notations 
that give rise to erroneous conclusions. For example, Cooper (2015) noted that in 
Israel elementary mathematics textbooks when 25 was divided by 3, the result 8 
remainder 1 was written as 8(1), that is, 25:3 = 8(1). Similarly, when 41 was divided 
by 5, it was written as 41:5  =  8(1). This leads to a nonsensical deduction that 
25:3 = 41:5. Cooper suggests that if the notation was revised as 25:3 = 8(1:3), it 
would circumvent any wrong conclusions of the equivalence relationship. 
Textbooks also tend to treat topics as isolated units with little connection to other 
units (Sowder et al. 1998). Shield and Dole (2013) found that often textbooks show 
the algorithmic way that topics requiring proportional reasoning are addressed with 
little or no connection made to related topics such as decimals, ratio, proportion 
and percent.

The limited focus on the connections between topics inside as well as outside 
mathematics and the emphasis on algorithms, closed answer form and simple con-
nections in textbooks are hot topics addressed in many documents. For example, 
findings in several contributions at the International Conference on Mathematics 
Textbook Research and Development 2014 (ICMT-2014) highlighted this problem; 
see, e.g. Veilande (2014) who in his comparative study of WNA problems in Latvian 
fifth grade mathematics textbooks and the same in Mathematics Olympiads found 
that generally textbook problems focused on mathematical operations and under-
standing, while Olympiad problems on properties and mathematical thinking. The 
presentation and solving of problems in textbooks has also been the main topic of 
the work carried out by the Nordic Network of Research on Mathematics Textbooks 
(Grevholm 2011).

11.8  �Concluding Remarks

The teaching and assessing of WNA is a relatively large domain. It is not possible 
to cover all its aspects in a chapter. Therefore, it was necessary to select some 
aspects which may be addressed, as we have done in this chapter.
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The choice of lenses used in this chapter was guided by several aspects: the main 
focus was formulated in the Discussion Document (this volume, Appendix 2) and 
represents the agreement of all the IPC members. The second strong influence was 
the development of the debates in Theme 4 sessions at the ICMI Study 23 Conference 
in Macao, the richness of which is documented in the survey of contributions at the 
beginning of this chapter. The third was the decision of the team of authors to 
develop ideas that emerged from the lesson that they observed in Macao as part of 
the conference. The purpose of using the lesson to contextualise the discussion in 
this chapter on aspects of teaching and assessing WNA was not to critique any par-
ticular approach nor use of resource of the lesson, but rather to show how the lesson 
may be interpreted using various theoretical and methodical frameworks.
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Chapter 12
How to Teach and Assess Whole Number 
Arithmetic: A Commentary on Chapter 11

Claire Margolinas 

12.1  �Preliminary Considerations About Teaching 
and Assessing

Teachers are accountable for classroom interactions and pupils’ work assessment. 
However, those visible actions (for instance, during the lesson observed by working 
group 4 participants in Macao) are only a part of teachers’ work, and include also:

•	 Planning not only a single lesson but also a sequence of lessons and more gener-
ally thinking about and designing the entire mathematical theme (for instance, 
WNA as a whole). This usually depends on use of resources that are selected by 
the teacher.

•	 Selecting the physical objects to be used during the lesson (or the sequence of 
lessons), the textbook which can be used by the pupils and/or by the teacher as a 
source of inspiration, the tasks that might be designed by others and are available 
(by sharing with colleagues, by browsing the Internet, etc.), the items for the 
assessment, etc.

These aspects of teaching require teacher knowledge, which is not easily 
observed, since it is accessible only by means of what the teacher might say about 
her activity, which is always a reconstruction on her part, and what the teacher is 
doing in the classroom, which is subject to diverse interpretations.

Various aspects of teacher knowledge have been considered within different 
frameworks that all take into account pedagogical content knowledge (Shulman 
1986). This model has been refined by Deborah Ball and her colleagues (Ball et al. 
2008), who have examined the impact mathematical knowledge for teaching on the 
quality of instruction (Hill et  al. 2008). It is thus my purpose to highlight some 
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aspects of whole number arithmetic knowledge for teaching which seem important 
to promote interest-dense situations (Bikner-Ahsbahs et  al. 2014) and thus the 
development of pupils’ metacognitive strategies.

12.2  �Whole Number Arithmetic and Mathematical 
Knowledge for Teaching

Chapter 11 and working group 4 of the conference refer to ‘teaching and assessing 
whole number arithmetic’; this formulation leads to consider WNA as a homoge-
neous domain. However, some very different aspects have been investigated in the 
conference papers:

•	 Understanding of numbers
•	 Place value and written numbers
•	 Understanding of operations
•	 Written operations (standard and non-standard)
•	 Memorisation of numerical facts: additive or multiplicative

In the book, the main topic has been the one chosen for the observed lesson: under-
standing of addition with carrying.

However, making coherent choices about WNA teaching requires organised 
knowledge of WNA (Askew 2015) and specific knowledge of concepts (see Barry 
et al. 2015 for a study about additive problems):

•	 Which sub-matters are related?
•	 How these sub-matters are linked together?
•	 What are the vital choices for teaching numbers?

In order to approach those questions related to the teaching and assessing of 
WNA, I will take three examples and then return to the Macao lesson.

12.3  �Memorising Numerical Facts

During early primary school, pupils are engaged in various memorisation activities: 
they memorise nursery rhymes and poems, the number name file, the days of the 
week, the name of the months, the names of their friends, etc. Some years later, they 
will memorise a lot of facts and rules: grammatical, historical, mathematical rules 
and facts, etc.

What specific knowledge do teachers need in order to help pupils to memorise 
numerical facts? Is this different from the memorisation of nursery rhymes? What 
about grammatical rules? Are all numerical facts alike in terms of memorisation?

C. Margolinas
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Let’s begin with the first numerical memorisation: oral number names. This 
sequence of words share some properties with all songs and rhymes: some parts are 
made from words without links (one, two, like Humpty Dumpty); some parts are 
similar (twenty-one is similar to thirty-one, like a chorus) and you have to say it in 
the right order. However, number names are special: because of their use for count-
ing, in particular, the words have to be clearly separated (one/two/three and not 
onetwothree), and the exact words and order of the words are crucial. If the oral 
number file is a base-ten language (a lot of languages across the world are in base 
twenty, also known as vigesimal1), you have thus at least ten different terms to mem-
orise. Those terms are not different from any other list of terms (days of the week, 
song, etc.). The following names depend on the language you use (see this volume, 
Chap. 3). If you are very lucky, you may live in a country where the oral numeration 
is regular: ten-one, ten-two, etc. If you are not so lucky, you will have to memorise 
other terms, for instance, eleven and twelve in English (and up to the name for 16 in 
French, etc.). The rest of the list will have some regularity and irregularity, thirteen 
instead of third-ten, for instance, or a vigesimal system at some point (for instance, 
from 60 up to 99 in France). Teachers have to be aware of nuances of language in 
order to understand when they have to treat the number name file exactly like a song 
and when they might help the children understand how it is built. This is clearly 
mathematical knowledge for teaching: it is not mathematical common knowledge. 
For instance, a majority of persons in France are not aware of a base twenty (it is 
different in Belgium, Canada or Switzerland), but for teachers it is vital knowledge 
to understand that it is quite strange to say soixante-dix (sixty-ten), but if you do, it 
is normal to proceed and say soixante-et-onze (sixty-and-eleven).

If we now take the memorisation of numerical facts about addition and subtrac-
tion, it is first to be noted that it is not obvious to know when you really enter ‘addi-
tion’. For instance, you have to teach very early that if you say six after five in the 
oral number file, in consequence if you have five objects and another one, you will 
have six in all. This will be related later to 5 + 1 = 6. However, it means that those 
additive facts (+1) are learned in a totally different way as, for instance, 5 + 3 = 8.

If we proceed on our reflection about the memorisation of additive facts, there 
are different ways to give the answer promptly (see Cao et al. 2015 about memorisa-
tion of multiplication table). The first is to memorise every additive fact. For num-
bers less that ten, you have 10 × 10 facts to memorise, but we have already stated 
that perhaps you may not have to memorise +1 as an additive fact, which takes off 
ten results to memorise. If you know 6 + 1 = 7, do you have to learn that 1 + 6 = 7, 
or do you have to know that you can exchange the numbers in addition (commuta-
tivity)? There is a balance to be found between the memorisation of facts and the 
memorisation of properties (which is the very first element of algebraic thinking; 
see Wong et al. 2015 for other algebraic problems).

If we return to 6 + 7, you may have memorised the answer among the 90 or 45 
facts that remain in your list, or you can think that ‘six and four, ten and three:  
thirteen’. In order to obtain 13 very rapidly, you should memorise the ten comple-

1 https://en.wikipedia.org/wiki/Vigesimal
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ments (five facts only if you consider commutativity) and the procedure to count 
with ten or multiples of ten. There is, thus, also a balance to be found between the 
memorisation of facts and the memorisation of procedure.

Furthermore, the choice of procedures is crucial. For the same addition, if you 
have learnt to calculate using 5 as a step, you will think ‘five and five and one and 
two: thirteen’ and not ‘six and four and ten and three’.

Those mathematics reflections have a big impact on the teaching and assessing 
of additive facts. For instance, if you want to induce 5 as a step, you will teach all 
the decomposition of numbers using 5 as a step from the beginning of the teaching 
of number: 6 will be considered as 5 and 1, 7 as 5 and 2, etc., and those relationships 
to 5 will be memorised. To assess the memorisation of additive results will be con-
sidered with those results and subsequent procedures in mind. For instance, it would 
be considered as a really basic task to give the answer to 12 + 13, but more difficult 
to give the answer to 16 + 14 and even more 17 + 18. On the other hand, if you have 
memorised additive results using 10 as a step, 16 + 14 should be the easiest.

The role of researchers in mathematics education may have a great impact on 
teaching and assessing if they help teachers to understand how special mathematics 
considerations will impact their decisions when they plan their teaching and select 
their materials and also highlight the different aspects of ‘memorisation’.

12.4  �Writing Numbers and Numerical Sentences

Some aspects of mathematical writing are specific, and some are shared with all 
writing language experiences (see Sensevy et al. 2015 for a design which is based on 
writing mathematics). The aspect which is present in both cases is the possibility 
that writing offers to avoid painstaking memorisation of facts. Writing is thus always 
in concurrence with oral memorisation. Another common aspect of writing is the 
possibility to communicate to others with a spatial or temporal gap. Yet another is 
the bureaucratic function of writing: when you write, you can organise the objects, 
for instance, in columns and lines, in ways you cannot reproduce orally (Goody 
1986). What is totally different is the lack of connection between sounds and writ-
ing: 216 is not read two-one-six, etc. Furthermore, 21 is read twenty-one but when 
you read 216 you do not hear twenty-one (it is not easy to understand that there are 
21 somethings in this number: 21 tens). Another notable disparity is that between the 
quite universal understanding of written numbers and that of mathematical writing 
in general. Thus the use of writing in mathematics should be a specific part of teach-
ing mathematics (and not only written standard algorithms; see Zhao et al. 2015).

For instance, suppose that you want to associate eggs with egg cups with a tem-
poral gap (see Alafaleq et al. 2015 for equality problems in textbooks). You have the 
eggs one day and the egg cups the day after. It is difficult to memorise the number 
of eggs, and you might use writing for this task. When you implement this situation 
for pupils (5–6 years old), the use of numerical writing is required in this situation. 
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Depending on the number of eggs and pupils’ knowledge of writing numbers with 
digits, they may struggle to find a suitable way to use writing.

Some pupils will try to draw eggs, using the right colour and the right shape, but 
not the right quantity. They will realise that their writing does not give any informa-
tion when confronted with the egg cups. A successful procedure might be to use the 
spatial organisation of the eggs and try to draw a ‘map’ with the places of the eggs, 
drawing for instance round shapes. Another procedure is to draw little straight lines: 
one for each egg. Teachers should consider this procedure as a very interesting 
attempt at symbolisation and thus encourage this behaviour and not only consider 
writing with digits. There are different ways to write quantities, and the efficacy of 
writing depends on the situations you are dealing: in particular situations, even an 
adult might write IIII IIII IIII in order to keep a record of 15 objects.

It is not enough to acknowledge that writing mathematics is an important part of 
whole number arithmetic. How this process is approached will vary according to the 
teacher’s interpretation, whether they see writing as a fixed set of rules or as a way 
to think mathematically. I will illustrate this with an example (Laparra and 
Margolinas 2009). During a session observed in class 1, pupils were asked to solve 
the following problem ‘There are 12 squares in a box. There are red and blue 
squares. There are 5 red squares. How many blue squares?’ Pupils had some diffi-
culties to solve this problem: they had not studied subtraction previously, and it was 
the first time they had to solve a word problem. At some point during the lesson, 
when all pupils were convinced that 7 blue squares was the solution, the teacher 
asked them to write or draw something in order to explain their solutions. Hamdi 
(Fig. 12.1) had drawn 12 squares and crossed 5 squares: there are 7 non-crossed 
squares. The representation of the problem is particularly accurate.

If you read the mathematical sentence, 12 + 5 = 7, you might think that Hamdi 
has made a big error (that is what the teacher thought), but it is highly improbable 
that Hamdi thought twelve and five are seven. In writing this wrong sentence, 
Hamdi demonstrates his current knowledge of written operation. He has written the 
numbers in the order of the given problem (12, 5, 7) and also in the order he has 
made use of those numbers in the schema, which is wrong for mathematical sen-
tences but right for linguistic sentences, although the sentence is mathematically 
well formed. Hamdi certainly knows that the result of calculation is normally after 
the equality sign, but he doesn’t know how to combine the only signs he had already 
learned (+ and =) in order to explain his reasoning.

On the other hand, if you consider Floriane’s production (Fig. 12.2), it is difficult 
to understand Floriane’s solving procedure, but it is very interesting to discover a 
kind of prefiguration of an equation: 5 + x = 12.

Fig. 12.1  Hamdi’s 
representation of the 
squares problem
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Both productions have their own qualities, and they reveal the difficulty to assess 
the production of written mathematical sentences. Unfortunately, the teacher was 
only interested in the correctness of the written addition.

There is certainly an important need for collective work in mathematics educa-
tion in order to convey coherent knowledge about writing numbers and numerical 
sentences, since this is crucial for teaching and asserting WNA in general, at all 
levels of teaching.

12.5  �The Field of Additive Structures

The expression ‘field of additive structures’ is taken from Vergnaud (1983, p. 31), 
whose work is of paramount importance in order to understand together addition 
and subtraction (for Chinese tradition, see Sect. 11.4.1).

The first comment based on Vergnaud’s work is about subtraction – comparison 
between quantities is only one meaning for subtraction:

The very first conception of subtraction for a young child is a “decrease” of some initial 
quantity […]

 

Example 1: John had 5 sweets, he eats 3 of them. How many sweets does he have now?
�It is not straighforward, with such a conception in mind, to understand 
–subtraction as a relation of complements.

Fig. 12.2  Floriane’s 
representation of the 
squares problem
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�Example 2: There are 8 children around the table for Dorothy’s birthday. 3 of them are 
girls. How many boys are there? (Vergnaud 1983, pp. 31–32)

In the following pages of the paper, Vergnaud enumerates and exemplifies the 
other conceptions of subtraction, as the inverse of an increase and as a difference 
relationship between states, between compared quantities and between transforma-
tions, and he concludes with: ‘One can easily imagine the difficulties that children 
may meet in extending the meaning of subtraction from their primitive conception 
of a ‘decrease’ to all these different cases’ (p. 32). Vergnaud has shown that pupils 
are able to solve the first problems from a young age, but the more difficult ones 
only at the end of primary school (even if the calculation, 8–3, remains the same). 
The same kind of differences of conception exists also for addition, both operations 
being regrouped in the additive structure field.

Those distinctions are essential for teacher mathematical knowledge, since they 
have to be aware of the nature of the problems which are proposed, in order to teach 
or assess addition and subtraction. The predominance of comparison has to be ques-
tioned (Sect. 11.4.1, Kaur 2015, Zhang et  al. 2015), in particular in textbooks, 
because it will impact implicitly on teacher’s conception (Sect. 11.7).

12.6  �The Macao Lesson: A Commentary

In this last part of this paper, I will give an overview of the points of the Macao les-
son on addition, using the different aspects I have introduced earlier.

My first remark is about the subject matter of the lesson: it is well known that 
addition, even with carrying, is very easy, compared with subtraction (see Pearn 
2015), and I would have been very interested to know how the skilful teachers of 
this school would have taught this challenging subject matter.2 Even if I understand 
that the choice was not due to the working group, it is important to reflect on the 
most favourable environment of a scientific discussion about teaching and assessing 
WNA.

2 Another group of participants (from other working groups) actually observed a lesson on subtrac-
tion in another school.
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However, the lesson is very interesting in itself, and it is in a certain sense a 
model of mastery of a kind of lesson which can be observed also in other 
countries:

•	 The lesson begins with the oral recollection of numerical facts (number combi-
nation for ten), during which students are encouraged to give answers very 
rapidly.

•	 The teacher has introduced a material (candies and boxes of candies), pupils are 
mostly working with the material, they express their ideas orally, and they write 
with the scaffolding of the teacher.

•	 Different problems of addition of increasing difficulties are introduced with both 
representation of material and mathematical sentences (40 + 3; 25 + 2; 25 + 20) 
before the core topic of the lesson, which is to study an addition with carrying 
(24 + 9).

•	 The teacher is aware of a variety of possible answers for this problem, she has 
determined three procedures, and those procedures are represented by numerical 
sentences which are written in advance and ready to show to the pupils.

•	 The ‘making-ten’ strategy is clearly emphasised at the end of the lesson during 
the ‘lesson summary’.

The calculations (Stage 1) in the oral phase represent nearly all the combinations 
for ten (only 0 + 10 is missing); thus, the answer is always ten. The first five ques-
tions are given in order (one number in the addition increases by one at every step). 
Thus, this first part of the lesson can be considered as a systematic presentation of 
the combinations for ten, but not as an episode of working on fluency. It is interest-
ing to note that, in my experience, this is very common (in France, at least): oral 
fluency of number facts is very frequently underestimated. More generally, orality 
(Goody 1977; Ong 2002), which has its own mode of knowing and organising facts, 
is not considered as really important. In this lesson, the very fact that the questions 
were presented as written sentences and organised in two columns, more (first col-
umn) or less (second column) organised by increasing one number, is somehow 
‘transparent’ (Margolinas and Laparra 2011). There is frequently little awareness on 
the part of the teachers that oral mathematical facts and written ones are very differ-
ent. For instance, in the Macao lesson, there was clearly a choice to be made: work-
ing on oral facts (and in this case giving questions orally and choosing questions 
with results not always ten) or working on organising facts about combinations for 
ten using writing. For some reason, oral calculation is not seriously considered, 
even if rapid oral calculation is still useful, whereas written calculation cannot com-
pete with the use of a calculator: you will find more easily your phone in your 
pocket than paper and pencil.

The use of material (Stages 2–3) is also interesting because it might be found in 
different countries around the world, where base-ten material is generally used. The 
material used here has a property which is not always found: there is a ten-place grid 
composed of five and five places and you can take out or put elements in this grid. 
In some other classes, groups of ten cannot be decomposed: you thus have units and 
tens and if you have ten units you have to exchange those for a ten. There are 
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discussions, around the world, on the differences between the two conceptions of 
place value: a ten is the first group in base-ten numeration (101) or a ten is a unit in 
itself. Choosing this material leads clearly to the first conception, but you can 
manipulate for at least two very different reasons. The first is purely material: if, for 
24 + 9, a pupil shows two complete ten grids, one grid with four candies and one 
grid with nine candies, the teacher might say: ‘you know that you are not allow to 
do that: you must complete the grid before taking another one’. In this case, pupils 
are only manipulating objects with a very loose relationship to base-ten operations, 
which is different if the teacher says: ‘In order to organise the candies in base ten, 
you always have to make a group of ten when it’s possible. Can you make another 
group of ten with your candies?’. The different solutions, which have been shown 
by the teacher in Stages 2 and 3, were clearly aimed at the second version, because 
they demonstrate different ways to regroup the candies in tens, using a schematisa-
tion. However, we do not know how to consider the relationship between boxes, 
candies and written numbers on the one hand and the role played by oral numeration 
on the other. This is particularly important when oral numeration is not congruent to 
written numeration (which is the case in the major European languages: you say 
twenty and not two-tens, where in most Asian languages oral numeration is regular). 
For instance, you can count ten, twenty, twenty-three (see figure in Stage 3) and 
write 23 as the cultural way to write twenty-three, or you can say two tens and 
directly write 2 in the left place which is the place value for tens and three units and 
write 3 in the right place (place value for units). With the same material, both deci-
sions are possible, which are very different from a teaching point of view.

The selection of the introductory additions (40 + 3; 25 + 2; 25 + 20) highlights 
the teacher’s choices and the mathematical knowledge of the team: in the first, a 
number with only tens and a number with only units are dealt with independently, 
in the second, you have to combine the units of the second number with those of the 
first and, in the last one, this is the same but with tens. Thus, the environment of the 
last problem, which is the core of the lesson (24 + 9), is not only material; it is also 
made of mathematical knowledge, which has been carefully introduced by the 
teacher. In focusing on more general considerations (existence of material, familiar-
ity with the material, etc.), those calculations are components of the milieu 
(Brousseau 1997; Brousseau et al. 2014), which is never only material.

The teacher has determined in advance the possible procedures for 24 + 9. What 
is striking is that she has written everything in advance (Sect. 11.6). In this case, 
mathematical writing cannot emerge as a way to understand a solution, and there is 
no place for false solutions (see Ekdahl and Runesson 2015). Pupils might know the 
answer, either because other pupils have said it was 33 or because they have counted 
the candies one by one. Therefore, they might have the mathematical sentence right 
(24 + 9 = 33), but not the right base-ten properties. Wrong solutions might trigger the  
occasion to recall what base-ten is about: when you have ten, you regroup (which is 
true for units but will be true also for tens and so on). For example, with 4 and 9 you 
can make a ten, either with 4 + 6 (and leave 3) or with 9 + 1 (and leave 3), or you 
can know that 4 + 9 = 13, which is a ten and 3 units. Thus, it is an opportunity for 
the teacher to state the reasons for the three different solutions. This demonstrates 
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the downside to having everything written in advance: the reasoning that underpins 
these solutions might remain unexplained.

The last remark relates to the conclusive part of the lesson. Task designers 
(Watson and Ohtani 2015) usually carefully describe the ‘active’ part of the task: the 
problem to solve and the environment of the problem. However, they usually avoid 
to enter into considerations about what you might tell pupils regarding what they 
have learned and what they have to memorise. If we use Brousseau’s words (Sect. 
11.5), task designers are usually more concerned by the devolution process than by 
the institutionalisation process (Brousseau 1992; Margolinas 2005; Margolinas and 
Laparra 2008). The conclusive part in the Macao lesson shows clearly what the 
teacher expects of the pupils in the future: to learn the ten complements and to learn 
how to use them. The whole lesson appears, at this moment, as a whole, for students 
and for the observers.

12.7  �Some Concluding Comments

Chapter 11 and working group 4 have taken into consideration some important pro-
cesses in teacher work. In an attempt to complement this work, I have focused on 
mathematical knowledge for teaching, in order to stress the need to consider our 
own conception of whole number arithmetic and the way it impacts our research 
and our analysis of teacher work.

If we take seriously the very interesting suggestion made in Sect. 11.3.2 to trans-
form a closed question into an open one (Sullivan and Lilburn 2004), we have thus 
to consider not only the shift in role it implies, but also the mathematical knowledge 
which might be learned by pupil difficulties and the mathematical knowledge neces-
sary for the teacher. The intent of the Macao lesson, as clearly revealed in the con-
cluding part, was to teach the use of the ten complements in order to give the result 
of any addition with carrying, which is useful either for mental or written calcula-
tions. The purpose of the study of the open problem proposed is completely differ-
ent: it is true that it involves pupils doing additions and reflecting upon addition as 
an operation (and even as a function, since it can be modelled using the linear func-
tion y = 33 – x). The challenge for researchers might also be to find better problems 
with the same purpose, which is a very different question: that is, to focus also on 
‘daily routine’ (see Brombacher 2015).

In general, I think that we often underestimate teacher knowledge required not 
only for selecting challenging and dense tasks but also, within a determined task, for 
responding to the diverse needs of individuals (Sect. 11.3.3) and to assess this need 
(see Gervasoni and Parish 2015). It is certainly not a little challenge for mathemat-
ics education research to describe the knowledge at stake, even within the field of 
WNA and even if we take a single lesson (see Lin 2015 for a development about the 
algorithm for multiplication). This book is certainly a very important step in this 
direction.
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Chapter 13
Connecting Whole Number Arithmetic 
Foundations to Other Parts of Mathematics: 
Structure and Structuring Activity

Hamsa Venkat , Sybilla Beckmann  
Kerstin Larsson , Yan Ping Xin , Alessandro Ramploud , 
and Limin Chen 

13.1  �Introduction

The focus of this chapter is on the use of structure and structuring activities as key 
means through which whole number arithmetic (WNA) can be connected to other 
areas of mathematics. As with the other chapters in this volume, several of the stud-
ies that we use to exemplify attention to structure and structuring in this chapter are 
drawn from contributions to ICMI Study 23: Primary Mathematics Study on Whole 
Numbers that was the key precursor to this volume. We begin this chapter with an 
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introductory preface of contributions to the working group focused on the connec-
tions between WNA and other parts of mathematics, and use this overview to 
explain why attention to structure and structuring came to figure as a key overarch-
ing theme for looking across these connections. In this preface, we also note the 
ways in which our focus in this chapter connects with the focus of broader discus-
sions in the other working groups and in the panel presentations at ICMI Study 23, 
which are also taken up across a range of the chapters in this volume.

13.1.1  �What Was Presented at the Conference: Overview

Several of the contributions to the theme focused on connections between WNA and 
other areas were centrally concerned with the ways in which structuring activity and 
structure figured in supporting these connections. These studies attend to structur-
ing and structure at the levels of learning, teaching and teacher education, and cur-
ricula and were drawn from research studies undertaken across the Americas, 
Europe, Africa, Asia and Australia, including input from ICMI CANP observer 
Estela Vallejo, from Peru.

At the conference, the presentations were organised into five sessions: two on 
whole number arithmetic and early algebra; two on whole number arithmetic and 
multiplicative reasoning, at the learner level and at the teacher level; and one session 
on whole number arithmetic competence as it relates to language ability and teacher 
development.

13.1.1.1  �Whole Number Arithmetic and Early Algebra

Two papers concerned ways to visually depict and organise relationships. Mellone 
and Ramploud (2015) analysed the ‘pictorial equation’, which is used in Russian 
and Chinese primary schools to teach additive relationships. They discussed the 
cultural transposition that is involved in using this tool with Italian students. The 
authors found increased visibility of structural and algebraic approaches to additive 
relationships. Xin (2015) reported on substantial improvements in the mathematics 
performance of U.S. children with learning difficulties when using an approach that 
models the grammar of additive and multiplicative situations. The approach draws 
attention to the algebraic structure of such situations.

Two papers concerned tasks about patterns. Eraky and Guberman (2015) found 
that 5th and 6th grade Israeli learners working with numerical patterns were better 
able to generalise than those working with visual-pictorial patterns. These authors 
emphasised the need to push for more complex structural generalisations and mul-
tiple stages of generalisation. Ferrara and Ng (2015) reported on 3rd grade Italian 
students working with a figural pattern task. Working from a framework of assem-
blage, in which learning is an output of agency distributed between body and mate-
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rial, they explore arithmetic awareness within the development of algebraic 
thinking.

13.1.1.2  �Whole Number Arithmetic and Multiplicative Reasoning

Looking at the learning level, Venenciano et al. (2015) reported on a study in Hawaii 
in which place value understandings were developed through ideas of measurement. 
They found that learners’ initial attention to comparing quantities grew into an 
awareness of the need for intermediate regrouped units. Larsson and Pettersson 
(2015) investigated how Swedish learners solved mixed sets of additive and multi-
plicative covariation problems. They found that stronger performance was associ-
ated with inferring distance relationships from information about speed relationships, 
whereas weaker performance was associated with reliance on single procedures and 
attention to superficial contextual differences. Chen et  al. (2015) investigated 
Chinese learners’ performance on learning and assessment tasks about multiplica-
tion and division by rational numbers. The learning tasks were of three different 
types: computation, problem solving or problem posing. The findings point to per-
formance on problem-posing tasks as important.

Moving to the teacher level, Beckmann et  al. (2015) discussed their use of a 
quantitative definition of multiplication to help future middle grades teachers in the 
USA organise their thinking around topics including ratio and proportional relation-
ships. Dole et al. (2015) reported on a curriculum analysis in Australia and the find-
ing that teachers are often unaware of how many topics from the early grades 
through grade 9 offer opportunities for proportional reasoning. Venkat (2015) dis-
cussed research on a teacher education project in South Africa showing how repre-
sentational approaches used with whole number scaling up can simultaneously 
support teachers’ mathematical learning and their mathematics teaching.

13.1.1.3  �Whole Number Arithmetic Competence: Language/Teacher 
Development

Zhang et al. (2015) presented the results of an investigation into how Chinese kin-
dergarteners’ language ability is related to their mathematical skills. They found 
that language ability was more strongly associated with informal mathematical 
skills (e.g. counting) than with more formal ones (e.g. addition and subtraction).

Baldin et  al. (2015) shared data on an in-service teacher development model 
based on pedagogical content knowledge frameworks. The model was used in Brazil 
to strengthen teachers’ knowledge and practice with whole number arithmetic.
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13.1.2  �The Discussion in the Working Group

The presentations and discussions in the working group sessions were lively, and 
the group developed a real sense of community and friendship while discussing the 
presentations and thinking together about next steps. A central focus of the discus-
sions was on environments in which key ‘glueing’ ideas of mathematics related to 
WNA are featured. Across the papers and discussion sessions, these ideas encom-
passed multiplicative thinking and proportionality, measurement, generalising and 
mathematical models that attended to structure and generality. Central to some con-
tributions, and implied or assumed in others, was the need to further develop teacher 
education in ways that promote understanding of connections and relations within 
and beyond WNA. The presentations and discussions emphasised the importance of 
creating representations such as actions, gestures, mental models and diagrams to 
construct mathematical relations.

In synthesising the presentations and discussions, the working group identified 
and developed crosscutting themes. A concept map was produced that organised the 
presentations into seven themes: justification; additive versus multiplicative think-
ing; structural relations; language; models, modelling and representations; general/
specific; and teacher education. From these themes, the overarching theme of struc-
ture and structuring emerged as one that could organise and tie the presentations and 
discussions together into a coherent whole.

13.1.3  �Connections to Other Working Groups, Panels 
and Plenary Presentations

The ubiquity of connections between mathematical topics and the overarching 
nature of mathematical processes makes it both difficult and unhelpful, in many 
ways, to compartmentalise discussions about mathematical thinking, learning and 
teaching into discrete categories. Thus, there are numerous connections between the 
ideas discussed in working group 5 and the other working groups, panels and ple-
nary sessions at the conference. We note here a few that stand out as particularly 
pertinent to our focus.

On the surface, a tension is possible to discern relating to the timelines of intro-
duction of attention to early algebra. In Ma’s plenary presentation (this volume, 
Chap. 18), she expressed concern over pushing algebra down into the early grades 
of elementary school. In contrast, a number of presentations in the working group 
focused on attending to algebraic structure in the context of early WNA. Ma pointed 
to the theoretical core of school mathematics as (1) the basic concept of a unit and 
(2) two basic quantitative relations (adding and multiplying). However, as some of 
the papers that we discuss in the body of this chapter make clear, several of the 
‘early algebra’ approaches discussed in the presentations seem also to be in the 
service of developing the concept of a unit and an understanding of the structure of 
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arithmetic operations. Thus, the extent of the tension perhaps relates more to issues 
of what comes to be named as early algebra, rather than of its substance.

Taking a pattern-oriented route to focus on early algebra, Mulligan, in the panel 
on special needs (this volume, Chap. 16), reported on a long-term research project 
investigating the role of pattern and structure in mathematics learning. Findings 
included (1) an awareness of mathematical pattern and structure can be taught and 
(2) early school mathematics achievement is associated with children’s level of this 
awareness. Mulligan concluded that mathematics curricula should promote struc-
tural thinking.

As with any issue concerning teaching and learning, connections between whole 
numbers and other topics will necessarily relate to teacher education. It is therefore 
no surprise that issues of teacher education arose repeatedly throughout the presen-
tations and discussions of working group 5. The panel on teacher education (this 
volume, Chap. 17) connected to working group 5 in several ways. As one example, 
Kaur discussed the model method used in Singapore. This method relates directly to 
(1) the ‘pictorial equation’ approach discussed by Mellone and Ramploud (2015), 
(2) the measurement approach taken by Venenciano et al. (2015) and (3) one of the 
approaches to proportional relationships taken by Beckmann et al. (2015). Bass’ 
plenary presentation (this volume, Chap. 19) also connected to this theme in high-
lighting the role of the number line and the idea that numbers can be viewed as an 
outcome of measurement activities.

We highlight one additional paper related to working group 5 because it indicates 
just how deep the connections are across mathematical ideas and how much every-
one, even professional mathematicians, stand to learn about them. Cooper (2015), 
in his paper for working group 1, discussed how a mathematician – in his role as the 
instructor of a professional development course for teachers  – gained a deeper 
understanding of division with remainder and its connection to topics beyond whole 
number arithmetic, including fractions and tests for divisibility.

13.1.4  �The Structure of This Chapter

Connections between whole number arithmetic (WNA) and other parts of mathe-
matics as a title suggest, at first glance, a focus on the need to, and ways in which 
to, build bridges between other content areas and WNA. This focus remains impor-
tant in the face of ongoing evidence of frequently localised and highly fragmented 
and inflexible approaches to problem solving. This fragmentation has been described 
as an outcome of encounters with content in highly compartmentalised ways 
(Schoenfeld 1988). Given that WNA is, in mathematics curricula in most parts of 
the world that we have seen, the area in which induction into mathematics occurs, it 
is particularly important that this induction occurs in ways that allow for expansion 
into, and connections between, mathematical topics. In this chapter, we attend to 
this concern with a more general proposal about the ways in which the traditional 
contents of WNA instruction might be approached: attending, on the one hand, to 
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mathematical structures that begin in the context of WNA but transcend these 
boundaries and, on the other hand, to providing openings to teachers and to students 
to engage in structuring activity as a key mathematical practice that again can begin 
in the context of, and also transcend, WNA. In this chapter, we begin by using litera-
ture to describe what we mean by attending to structure and structuring activity. In 
the body of the chapter, we present and discuss examples of ways in which attention 
to structure and engagement with structuring can support moves beyond WNA. These 
examples work across student mathematical working in classrooms, the teaching of 
mathematics and teacher education and curricula.

13.2  �Mathematical ‘Structure’ and ‘Structuring’

While there is broad agreement of the importance of ‘structure’ within mathematics, 
what structure refers to is frequently less clear. Sfard (1991) has contrasted ‘struc-
tural’ conceptions with ‘operational’ conceptions, with the former described in 
terms of processes that come to be solidified into encapsulating objects that have a 
‘static structure’ (p.  20). Mason et  al. (2009) describe mathematical structure in 
terms of:

the identification of general properties which are instantiated in particular situations as 
relationships between elements. (p. 10)

Mathematical properties are important in this formulation in that, for these authors, 
recognising relationships between elements is not, in itself, a marker of structural 
thinking. Rather, it is when these relationships are recognised as ‘instantiations of 
properties’ that the onset of structural thinking is marked. Thus, while building 
attunement to pattern- and relation-recognition is critical within ‘structuring’ activ-
ity and viewed as a valuable precursor to attending to structure, instruction needs to 
provide openings for these relationships to be associated with fundamental proper-
ties. In the context of WNA, a range of fundamental properties are introduced. 
These include, for example, ideas related to equivalence, associativity and compen-
sation and the nature of and distinction between additive and multiplicative struc-
tures. All of these properties are usually initially exemplified in natural number 
contexts, but can be extended beyond the boundaries of WNA. Rational number 
provides a key ground for studies focused on these extensions, with the expanded 
terrain providing grounds for looking at the ways in which the impacts of opera-
tional properties shift – e.g. multiplication no longer necessarily ‘making bigger’ 
and, conversely, division no longer necessarily ‘making smaller’.

Given the centrality of linking specific relationships to more general properties, 
approaches focused on structure and structuring activity are commonly linked to 
algebraic thinking. Algebra topics and algebraic thinking are predictably, therefore, 
key foci for looking at connections between WNA and other areas.

Two broad positions on mathematical structure can be inferred within the litera-
ture base. These can be distinguished on the basis of structures that are presented 
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‘ready-made’ to support problem-solving activity or structures that emerge through 
structuring activity. In mathematics education, particular approaches have tended to 
align more within one, or other, of these camps. Bourbakian approaches, for exam-
ple, have worked from the vantage point of emphasis on structure (Corry 1992), 
while Realistic Mathematics Education placed more emphasis on structuring activ-
ity as the means through which mathematical structures are reinvented (van den 
Heuvel-Panhuizen and Drijvers 2014). Working from the basis of definitions linked 
to properties therefore provides a key hallmark of working with structure. Working 
in more emergent ways for ‘taken as shared’ reinventions of structure provides, in 
contrast, a key hallmark of structuring activity. In either case, Mason et al. (2009) 
note that it is awareness of general properties, rather than awareness of internal rela-
tions within instances, that indicates, for them, possible presences and potential for 
structures to figure as thinking tools.

While both of these positions have advocates, there are also critiques that are 
important to be mindful of within operationalisation of the positions and their ensu-
ing claims. A key issue that Freudenthal (1973) pointed to as problematic about 
traditional mathematics teaching was what he described as the ‘anti-didactical’ use 
of models in a ‘top-down instructional design strategy in which static models are 
derived from crystallized expert mathematical knowledge’ (Gravemeijer and 
Stephan 2011, p. 146). Artigue (2011) has more recently echoed this critique, noting 
that ‘pupils do not know which needs are met by the mathematical topics intro-
duced’ and, concomitantly, that they therefore have ‘little autonomy in their math-
ematical work’ (p. 21). Presenting structures in a ‘ready-made’ format can be 
construed as incorporating some elements of this orientation. Venkat et al. (2014) 
have noted that within early primary years’ teacher education in South Africa, atten-
tion to definitions of properties – key markers of structural relations – may not be 
sufficient without supporting attention to the example spaces in which the proper-
ties can be strategically applied. They point to data drawn from a small study in 
which early primary teacher educators, when asked to propose a set of examples for 
working on commutativity, included examples with the first number larger than the 
second number alongside examples where the second number was larger. One 
excerpt they point to includes the following explanation from a teacher educator 
with the offer of 9 + 3:

‘We can say that this is the same as 3 + 9 using commutativity’.

In this response, there is clearly awareness of the commutativity property and 
what it means to apply the commutativity property to an addition example, but per-
haps more limited attention to when it might be useful to apply this property. There 
was also no explanation of the distinctions between the totality of the space of all 
additive examples to which the former general definition applies as a structural 
property and the latter subspace in which useful application holds. Venkat et  al. 
(2014) described these shortcomings in terms of a ‘definitional’ rather than a ‘stra-
tegic’ orientation to structural properties. These findings point to limitations of deal-
ing with definitions as the sole source of structure and point to additional features 
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that need to be part of the discussion if flexible and strategic working with mathe-
matical properties is sought.

Conversely, the focus on individual reinvention activity has also been critiqued 
from several perspectives: these include arguments that the approach has always 
been more a function of political ideology than educational effectiveness and, there-
fore, dependent for its suitability on a broader political climate of autonomy 
(Tabulawa 2003), to reviews of key areas of education research arguing that there is 
more support for the efficacy of:

direct, strong instructional guidance rather than constructivist-based minimal guidance dur-
ing the instruction of novice to intermediate learners. […] Not only is unguided instruction 
normally less effective; there is also evidence that it may have negative results when stu-
dents acquire misconceptions or incomplete or disorganized knowledge. (Kirschner et al. 
2006, pp. 83–84)

In relation to structuring activities specifically, Schifter (2011) – while not arguing 
for the direct instruction position – does indicate that attention to structure is devel-
oped through experience with tasks that promote attention to structure and empha-
sises that this attention can begin in the context of WNA.  She provides useful 
contrastive examples of two ways of dealing with the following task:

Oscar had 90 stickers and decided to share some with his friends. He gave 40 stickers away. 
Becky also had 90 stickers. She gave away 35 stickers. Who has more stickers now? (p. 207)

In one class, no further discussion follows, and the children proceed to calculate 
Oscar and Becky’s remaining stickers and then compare the two answers in order to 
answer the question. In the second class, after checking that the children are aware 
that the subtraction sentences 90 – 40 and 90 – 35 can be used to represent the two 
scenarios, the teacher explicitly tells her class that she wants them to consider who 
would be left with more stickers without calculating. She proceeds to orchestrate a 
discussion which is focused on comparing the effects of ‘taking away more’ and 
‘taking away less’ from a quantity. Considering and articulating the properties of 
subtraction, rather than the operation of subtracting, are therefore at the fore here. 
Other writers have echoed this broadly ‘cultural’ position in that skill with structur-
ing is seen as dependent upon, and an outcome of, participating in structuring activi-
ties (e.g. Wright et al. 2006). In parallel, though, there are also studies that have 
pointed to the need for teachers, at least, to have prior cultural familiarity with WNA 
structures  – such as WNA representations based on the decimal number system 
structure – as a precursory support for being able to work with these structures con-
structively in mathematics classrooms if the mathematical ideality of these arte-
facts, inlaid into their material structure, is to be realised (Bakhurst 1991).

In this chapter, our focus is on studies that exemplify these two positions. The 
studies themselves encompass links between WNA and a range of other mathemati-
cal topic areas, including rational number and measurement, but our focus in this 
chapter is specifically on the position they take in relation to working with struc-
tures and structuring activity. The approaches used within these two positions, and 
differences specifically in the ways in which models are viewed and produced, are 
explored. We do this in order to explore overlaps and contrasts between the two 
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positions in terms of the ways in which connections between WNA and algebraic 
thinking can be achieved via an emphasis on structures and structuring. We also 
attend to whether there is evidence that one or other of these approaches may be 
more appropriate when focusing on primary mathematics teacher education.

13.3  �Investigating and Supporting Structuring Activity

Pattern and sequence tasks are commonly promoted in mathematics curricula across 
the world as contexts in which attention to structure and generalisation can be 
encouraged (Driscoll 1999). Hewitt (1992) has pointed to openings for linking spa-
tially based orientations to pattern (rather than numerically based orientations) to 
openings for generalising. He also notes the latter ‘pattern-spotting’ orientation 
through translating spatial arrangements into tabular numerical summaries as limit-
ing openings for attending to the various ways in which a particular spatial structure 
can be constructed and considering constructions that have structural similarities 
across instances. Spatial approaches to visual-pictorial patterns are seen in Eraky 
and Guberman’s (2015) inclusion of sequences presented in this format. While 
these authors note that primary students in Israel largely found it harder to make 
general statements in visual-pictorial pattern formats in comparison with numerical 
formats, their claim of the need to ‘go deeper into the rules of building a sequence’ 
(p. 548) at least partially reflects Hewitt’s argument that spatial pattern formats and 
attention to pattern construction and verbalisation of this construction provide better 
routes into attending to structure than the more common numerically oriented 
routes.

Of broader interest for us is the linking here between numerical, algebraic and 
spatial approaches to working with structuring. Ferrara and Ng (2015) provide a 
more distributed notion of the development of algebraic thinking in the context of 
visual pattern tasks, focusing on the ways in which two Grade 3 children’s identifi-
cations of mathematical structures develop in the assemblage of human and material 
resources. In looking at the emergence of structuring, rather than at children’s com-
petence with identifying a correct overall generalised functional representation, 
these authors emphasise the ways in which specific spatial arrangements give rise to 
increasing emphasis on the numerosity of partial elements, or more holistic views 
of these arrangements and numerical relations between elements in children’s talk. 
Ferrara and Ng note also the ways in which the assemblage of material artefacts 
including the task and task conditions, and the children’s gestures and talk, all feed 
into supporting moves into WNA and functional thinking.

Warren and Cooper (2009) introduced two complementary representations, the 
balance scale and the number line, to model equivalence in a longitudinal study 
through Grades 2–6. From their study, they suggest a theory for a learning/teaching 
trajectory which supports generalised understanding of equivalence. Their conjec-
tures propose that the act of translation between effective representations is one of 
the key points for constructing structured understanding of WNA that can be gener-
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alised beyond WNA. They offer the construction of superstructures, where multiple 
models are nested and integrated, as elucidation and conclude that ‘the role of 
superstructures cannot be underestimated’ (p. 92).

A small cluster of work involved studies working at the interface of structures 
and structuring. In these studies, tasks incorporating situations underscored by dif-
ferences in their structure or tasks in which the emergent introduction of structure 
and relation produces substantial efficiencies in calculation are used to encourage 
children to focus on structural aspects. In the Measure Up programme in Hawaii, 
teaching begins with general ideas in a measurement context without using num-
bers, based on ideas from Davydov (Venenciano et al. 2015). Venenciano and her 
colleagues reported on first grade students’ learning and conceptual understanding 
of place value by measurement of continuous quantities with different bases rather 
than focusing on special cases of the decimal structure and discrete numbers. They 
demonstrate students’ ability to focus on the constant ratio between the units of 
adjacent places and emphasise that the unit of measure is a ‘critical tool for both the 
conceptual and the physical development of partial units (e.g. thirds in base three or 
tenths in base ten)’ (p. 581). By approaching place value in the measurement con-
text through this approach, these authors noted that children were provided with 
opportunity to experience the notion of referent units as a general idea as well as 
instances of different bases as the measure unit. Tasks and tools underlain by a peda-
gogic awareness of the importance of structure are seen as central in this work to 
support children’s structuring activity.

Paying attention to distinguishing multiplicative situations from additive situa-
tions, Larsson and Pettersson’s (2015) paper presented details of a study in which 
Swedish sixth grade students were engaged in solving and comparing two covaria-
tion problems, one multiplicative and one additive, both set in the same context of 
children swimming lengths in a pool. They found that children who successfully 
solved both problems discerned the mathematically significant feature of the inten-
sive quantity speed. These students further inferred from the speed what impact the 
speed had on the distance between the swimmers – indicating understanding of the 
properties that could be associated with this structural relation. These authors pro-
vide examples of this understanding in excerpts drawn from the talk of two stu-
dents – Jonathan and Marcus (all names are pseudonyms):

Jonathan: Because he swims faster [Jonathan moved two fingers simultaneously along the 
table with one finger moving faster]

Marcus: If they are equally fast then of course she keeps that distance. [Marcus holds his 
hands on a fixed distance from each other and moves them forward at the same pace.] 
(p. 562)

Less successful students did not discern the speed as significant or, in spite of dis-
cerning it, did not make any inference from the speed about the distance between 
the swimmers. Matilda and Hanna expressed these differences when they compared 
the two problems, but that did not lead them to question their solutions, which were 
to treat both problems as if they were of an additive nature:

Matilda: They start at the same time and they do not start at the same time.
Hanna: And those two do not swim equally fast and those two swim equally fast. (p. 563)
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Here, the ability to discern and distinguish the nature of structural relations between 
quantities in given situations is noted as central to successful mathematical problem 
solving.

The ability to distinguish between additive and multiplicative situations, but also 
to reason about the mathematical structure of a problem in terms of different addi-
tive or multiplicative situations, is discussed by Nunes et al. (2012) as what they 
denote to be mathematical reasoning. An example from their longitudinal study, 
involving 1680 children over a 5-year time period, is based on two similar problems 
where the distance between two persons is to be calculated, where one problem is 
solved by subtraction and the other by addition, since the persons travelled in the 
same or different directions along a road. They found the ability to recognise the 
mathematical structure to be a strong predictor for later achievement in mathemat-
ics, much stronger than arithmetic skills, logical thinking or working memory, 
hence recommending more emphasis on reasoning about the mathematical structure 
in mathematics instruction. This study’s results coincide with findings from van 
Dooren et al. (2010), where students who categorised problems before solving simi-
lar problems were more successful than those who solved problems before cate-
gorising. The problems were similar to the problems in Larsson and Pettersson’s 
(2015) study, i.e. additive and multiplicative covariation problems and also no varia-
tion problems formulated in the same format, such as if it takes 8 mins to boil 5 
eggs, how much time do you need to boil 10 eggs concurrently. The amount of time 
it takes to boil the eggs does not vary here no matter how many eggs there are. The 
students who first categorised and later solved problems were not only better at 
distinguishing the mathematical structure and solved more problems correctly; they 
were also better at the categorisation task than their peers who solved problems 
before categorising.

This finding links with Ellis’ (2007) distinction between arithmetic operations 
and quantitative operations. While arithmetic operations are driven towards evaluat-
ing quantities, quantitative operations are driven towards evaluating the structural 
relationships between quantities in a given situation. Working with quantitative 
operations, in these terms, is therefore at the fore of Larsson and Petterson’s tasks 
rather than arithmetical operations, with this orientation reflected too in the empha-
sis on identifying structural similarity that is seen across task sequences in Askew’s 
(2005) ‘Big Book of Word Problems’ series. Of further interest in relation to struc-
turing activity more generally is Ellis’ finding that different types of ‘generalising 
actions’ were prevalent in classrooms promoting one or other of these two 
approaches. Her notion of ‘relating’ as one key aspect of generalising activity – 
described in terms of the creation of relationships between:

two or more problems, situations, ideas, or mathematical objects. Relating includes recall-
ing a prior situation, inventing a new one, or focusing on similar properties or forms of 
present mathematical objects. (p. 454)

– was much more prevalent in classrooms promoting attention to quantitative rather 
than arithmetical operations.

13  Connecting Whole Number Arithmetic Foundations to Other Parts of Mathematics…



310

Chen et al.’s (2015) study adds a further dimension to this work by adding in 
consideration of students’ problem-posing competence, alongside attention to their 
calculation and problem-solving competence. Aligning with the earlier work of 
Dole et al. (2012), Chen et al. (2015) emphasise that variations in the emphases in 
their classroom learning experiences (across calculation, contextualised problem 
solving and problem posing), and the specific numbers and number relations in the 
problem sets, impact upon the ways in which children interpret structural relation-
ships in problem situations. In the calculation activities, students were required to 
compute eight number sentences represented in different combinations of number 
types (i.e. combining a multiplier/divisor and multiplicand/dividend smaller and 
larger than 1): four decimal multiplications (i.e. 1.3 × 2.7, 2.4 × 0.9, 0.8 × 3.6 and 
0.6 × 0.7) and four decimal divisions (i.e. 3.6 ÷ 1.2, 5.4 ÷ 0.9, 0.8 ÷ 1.6 and 0.6 ÷ 
0.2). In the contextualised problem-solving activities, students had to solve eight 
word problems on decimal multiplication and division containing the number sen-
tences from the calculation (e.g. A kilo of bananas costs 1.3 Yuan. I buy 2.7 kilos. 
How much do I pay?). In the contextualised problem-posing activities, students 
were required to pose problems according to the same eight number sentences as in 
the calculation. For example, students were required to pose problems according to 
the number sentence:

1.3 × 2.7

Chen et al. (2015) found that students did well in interpreting the structural relation-
ships in terms of multiplication/division operations in calculation and contextual-
ised problem-solving activities but not in contextualised problem-posing activities. 
Alongside this, they also found that across the three different learning experiences, 
it was more difficult to interpret the structural relationships in terms of multiplica-
tion/division operations with a decimal multiplier/divisor smaller than 1 than those 
with a decimal multiplier/divisor larger than 1. Additionally, it was more difficult to 
interpret the structural relationships with a dividend smaller than the divisor than 
those with a dividend larger than the divisor. For example, quite a few students (7%) 
gave a wrong answer ‘2’ for the calculation item ‘0.8 ÷ 1.6’, and a substantial pro-
portion of students (33%) provided a wrong answer ‘1.6 ÷ 0.8 = 2’ for the problem-
solving item:

1.6 kilos of carrots is 0.8 Yuan. How much are carrots per kilo?

Another sizeable proportion of students (15%) provided a wrong answer such as 
‘Xiao Hua bought 0.8 kg of bananas, and she spent 1.6 Yuan. How much are bananas 
per kilo?’ in response to the problem-posing item ‘0.8 ÷ 1.6 = 0.5’.

Taken together, these findings suggest that there may be a useful distinction to be 
made within Ellis’ (2007) quantitative operations category, between tasks geared 
more towards problem solving and those geared more towards problem posing. This 
suggests that Watson and Mason’s (2005) emphasis on encouraging students to gen-
erate examples given specific constraints and/or relations as a way of encouraging 
attunement to structure and a move away from the calculation orientations that 
dominate more traditional mathematics instruction may be particularly important. 
While the examples presented in their work range across several mathematical top-
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ics and levels, there are a number of examples presented of tasks and approaches 
that encourage attention to structure in the context of WNA and to the ways in 
which properties and relations shift in the moves beyond WNA boundaries. 
Examples include tasks such as (adapted slightly for our purposes):

Write a pair of numbers that multiply to give 100.
And another pair…
And another pair…
Now write a pair of numbers that multiply to give 100, but one of your numbers has 

to be between 50 and 100.
Now write a pair of numbers that multiply to give 100, but one of your numbers has 

to be bigger than 100.

Attention to structural relations and equivalence are at the fore here, with an explicit 
focus on the boundaries of the example spaces that are usually constructed around 
multiplication. In this approach, attention to the ways in which properties shift and 
need reconstruction in order for more general conceptions to be created is opened 
up for students to work with.

Another example of a route into attention to structural and quantitative opera-
tions that stimulated students to find general relations was to prompt sixth grade 
students to evaluate suggested but erroneous strategies (Larsson 2015). Among the 
suggested strategies was the idea that 19 × 26 can be calculated as 20 × 25 instead, 
based on the reasoning that you can move one from 26 to 19, just as in addition. This 
calculation strategy came from earlier interviews in the same group of students who 
participated in the study. When the students investigated the strategy rather than the 
numerical example (and hence working quantitatively and not arithmetically), some 
succeeded not only in finding the strategy invalid, but also building explanations for 
why the strategy was invalid. These explanations included structural arguments as 
well as elaborations of the conditions under which the answer would get bigger than 
the original task. After an elaborated discussion with a peer, one student concluded 
thus:

if you increase the smaller number and decrease the larger number, then it always gets 
bigger.

This student also stated that he had only investigated the strategy in WNA and that 
his statement was not yet tested with rational numbers. Students who solved the  
task by only checking the two answers by calculation (and hence construing the task 
as an arithmetic operation exercise) practised their calculation skills and could tell 
that the strategy was invalid but without any reasoning of why. They typically stated 
that it became another task when you moved one from one factor to the other. This 
example can be linked to what Smith and Thompson (2008) have distinguished as 
‘numerical/computational solutions’ and ‘quantitative/conceptual solutions’ 
(p. 107). In their discussion of what early algebra should focus on, they argue that 
quantitative reasoning in WNA during the early school years prepares students in 
much broader and more flexible ways for algebra in the later school years. In their 
argumentation for more focus on quantitative reasoning, they describe the border 
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between numerical and quantitative reasoning as indistinct and note that numerical 
reasoning can and should serve as a starting point to think about relations.

Reasoning in the context of numerical examples with a focus on structure is pre-
dominant in the ‘Peter’s method’ activity, which Stephens (2004) employed in a 
study with elementary students. Peter’s method was to avoid subtraction that 
involves renaming, or carrying over, by adding the number that can be followed by 
subtracting ten. It was presented to students with the example of subtraction of 5 
from a two-digit number, shown as involving the adding of five and then subtracting 
of ten, as in 43 – 5 = 43 + 5 – 10. If the students demonstrated structural reasoning 
when this and similar examples were discussed, the task was elaborated to include 
other numbers, for example, subtraction by 6, with the challenge to find what num-
ber to add in order to then subtract ten to evaluate the answer, for example:

	 34 6 34 ? 10– –= + 	

The findings from his study indicated that students who could ignore the starting 
number (the minuend quantity) could also answer why and how Peter’s method 
always worked, in contrast to students who first undertook the calculation of the left 
side of the equality sign. The desire to find a numerical answer rather than a general 
explanation appeared to be associated with hindering students to reason quantita-
tively. Nevertheless, it is an example of quantitative reasoning that originated in the 
context of a numerical operations task, with an adaptation that encouraged the struc-
ture to be brought into focus. In this sense, the approach overlaps with the approach 
discussed in the study about evaluation of erroneous calculation strategies that 
Larsson (2015) presented. Similar activities and classroom observations starting in 
investigations of WNA examples (but engaging young students to discern relational 
and structural properties) are described by Bastable and Schifter (2008) as a way to 
prepare for the transfer of operations beyond WNA into rational numbers.

13.4  �Working with Presented Structures with Students

Attention to structure is seen within the presentation and discussion of generalised 
definitions, models and representations of relations between quantities, with simi-
larities between the artefacts offered to learners and teachers but often differences 
in the emphases of the ensuing conversations around these artefacts. In this section, 
we discuss studies that have foregrounded structure at the student level and at 
teacher level.

Mellone and Ramploud (2015), using the working concept of cultural transposi-
tion, explored the processes involved in providing Italian children with a figural 
equation model representing an additive relation structure that has commonly been 
used in Russia and China. Cultural transposition is a process where ‘the different 
cultural backgrounds generate possibilities of meaning and of mathematics educa-
tion perspectives that, in turn, organise the contexts and school mathematics prac-
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tices in different ways’ (Mellone and Ramploud 2015, p. 571). The authors argue 
that there are differences in emphases and role of the diagrammatic part-part-whole 
model in the Russian and Chinese contexts that link with cultural and linguistic dif-
ferences in orientations to meaning, distinction and categorisation. In their analyses 
of the common practice in China of presenting sets of ‘variation problems’, the 
figural equation is explicitly presented as a unifier across variations and, thus, an 
explicit representation of a generalised property of additive relation situations. In 
contrast, they argue that Davydov’s (1982) presentations of the part-part-whole 
model functions instead as a transition step between a graphic (non-quantified) situ-
ation and a symbolic algebra-based model. This ‘intermediary’ role for the figural 
equation has, though, been disputed within Davydov-linked approaches in the work 
of Dougherty and Slovin (2004), who argue the need for the simultaneous, rather 
than sequential, presentation of graphic, figural and symbolic models of structure in 
order to support student meaning-making. Both approaches though emphasise a 
push towards algebraic thinking from the outset of work in the context of WNA, 
rather than the more common deferral of algebraic work to a subsequent point.

Analysis of the ways in which a Grade 5 Italian primary school class solved the 
following problem provides empirical data related to both structural attention and 
the cultural transpositions involved in taking on approaches with origins in different 
contexts:

Grandmother gifts 618 euros to her grandchildren, Franca, Nicola and Stefano. Franca 
receives twice Nicola’s amount; Stefano receives 10 euros more than Nicola. How many 
euros will each grandchild receive?

Children solved this problem in activity groups. Given the focus in this chapter on 
working with structure, an important feature of the data presented by Mellone and 
Ramploud (2015) relates to the ways in which children developed and used figural 
equations to help themselves to find the solution. A key aspect, documented in the 
dataset (Electronic Supplementary Material: Ramploud et al. 2017), dataset, shows 
one group’s sharing of their solution approach with the whole class. It is evident from 
the movement of the child’s hand (Fig. 13.1) that the amount for Nicola is used as a 
measure to draw the figural equation. Of importance to us is that there is an abandon-
ment of the focus on an arithmetical problem and that this is replaced by a focus on 
structures in ways that are related to informal algebra. The writing of the expression N 
× 2 (Fig. 13.2) is an important part of this shift in orientation. In this example, we can 
see the Italian cultural transposition of the Russian tradition, which emphasises 

Fig. 13.1  The child’s hand
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continuous representations of quantity, and of the Chinese tradition in which the 
emphasis on numerical size is retained.

Mellone and Ramploud (ibid.) report positive results in their cultural transposi-
tion of the figural additive relations equation into an Italian Grade 5 classroom, 
noting that the structural rather than numerical emphasis of this model was associ-
ated with supporting pupils towards a more natural and flexible recourse to alge-
braic language in this context. This result supports and adds cultural nuance to 
earlier work pointing to the importance of encouraging attention to structure and 
generality in the context of WNA as a means of supporting both numerical calcula-
tion and later transitions into more formal algebra (Cai and Knuth 2011; Schifter 
2011).

Building further on cross-cultural curriculum evaluation, Xin and colleagues 
developed the conceptual, model-based, problem-solving (COMPS) programme (Xin 
2012) that is consistent with the theoretical framework of mathematical modelling and 
conceptual models (e.g. Blomhøj 2004; Lesh et  al. 1983). The COMPS approach 
places emphasis on algebraic representation of generalised mathematical relations in 
equation models. For instance, ‘Part + Part = Whole’ is a conceptual model for addi-
tive word problems; ‘Unit Rate × Number of Units = Product’ (Xin 2012, p. 5) is a 
conceptual model for multiplicative equal-group (EG) problems. Giving the gener-
alised mathematical models provided by COMPS, a range of arithmetic word prob-
lems involving the four basic operations can be represented and modelled in an 
algebraic equation, which can be used to help students solve problems.

To this end, Xin developed a set of word problem (WP) story grammar questions 
(see Figs. 13.3, 13.4, 13.5 and 13.6) to facilitate students’ efforts in representing 
various word problems in the model equation. The algebraic equation then drives the 
solution process, that is, solve for the unknown quantity in the equation. During this 
process, the choice of operation for solving various arithmetic word problems is 
determined by the model equation (Part + Part = Whole; or Factor × Factor = Product). 
In the case of EG problem-solving (see Fig. 13.3), for instance, when the number of 
units is the unknown (e.g. Dan has a total of $114 for buying gifts for his friends. If 
each gift costs $19, how many gifts can he buy?), the model equation (19 × a = 114) 
indicates that dividing the product (114) by the known factor (19) will solve for the 
unknown factor (a = 6). In the case of multiplicative compare (MC) problem solving 
(see Fig. 13.4), for instance, when the referent unit is the unknown (e.g. Pat has 204 
marbles. Pat has 17 times as many marbles as Bob. How many marbles does  
Bob have?), the model equation (a × 17 = 204) shows that dividing the product  

Fig. 13.2  The expression 
N × 2
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Unit Rate # of Units Product

Fig. 13.3  Conceptual model of equal groups problems (Xin 2012, p. 105)

Unit Multiplier Product

Fig. 13.4  Conceptual model of multiplicative compare problems (Xin 2012, p. 123)
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Part Part Whole

Fig. 13.5  Conceptual model of part-part-whole problems (Xin 2012, p. 47)

Part

Smaller

Part Whole

Bigger
Difference

Fig. 13.6  Conceptual model of additive compare problems (Xin 2012, p. 67)
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(204) by the multiplier (17) will solve for the unknown quantity (a = 12). Students 
no longer need to ‘gamble’ on the choice of operation or experience risk on the 
‘keyword’ strategy.

As shown in Figs. 13.3, 13.4, 13.5 and 13.6, Xin (2015) presents structure in the 
form of algebraic representations of generalised conceptual models of additive and 
multiplicative situations and uses them as a heuristic model to support the problem-
solving activities of elementary and middle school students with learning difficul-
ties. Empirical data drawn from using this approach indicate that students who used 
the COMPS programme showed significant improvement in mathematics problem-
solving performance (Xin et al. 2011).

13.5  �Working with Presented Structures with Teachers

At the level of teacher education, a range of approaches driven by the need for 
teachers to make greater use of the power of structure in their pedagogy has been 
presented in recent studies. We discuss several studies that investigated how teach-
ers reasoned about multiplicative and proportional relationships using presented 
structures. Quite predictably, there are also overlaps in this section with the chapter 
on teacher education in this publication (Chap. 17).

In their work with future middle grades teachers (Grades 4–8), Beckmann et al.1 
(2015) view multiplicative structure quantitatively in terms of multiplier, multipli-
cand and product and use the different roles taken by the multiplier and multipli-
cand as a route into thinking about proportional relationships in two different ways, 
as either ‘multiple batches’ or ‘variable parts’ (Beckmann and Izsák 2015). In their 
approach, multiplication is defined by an equation:

	 M N P• = 	

where M, the multiplier, is a number of groups; N, the multiplicand, is the number 
of units in 1 group; and P, the product, is the number of units in M groups. The 
future teachers in the study adopted the definition as a class norm. This definition is 
quantitative, as opposed to purely numerical, because the multiplier, multiplicand 
and product have measurement units attached to them (‘groups’ and ‘units’) and 
therefore refer to quantities. Because the definition is quantitative, the multiplier 
and multiplicand play different roles and, using the definition, requires teachers to 
look for and identify structure in situations. The rationale for a presented structure 
is therefore to foster close examination of situations and attention to detail in con-
structing arguments.

For example, Figs.  13.7 and 13.8 show two ways that a future teacher in 
Beckmann et al.’s (2015) study reasoned to solve a proportion problem: A fertiliser 

1 Research was supported by the National Science Foundation under Grant No. DRL-1420307. The 
opinions expressed are those of the author and do not necessarily reflect the views of NSF.

13  Connecting Whole Number Arithmetic Foundations to Other Parts of Mathematics…



318

is made by mixing nitrogen and phosphate in an 8:3 ratio and the question is how 
much phosphate to mix with 35 kg of nitrogen. The teacher’s first solution (Fig. 13.7) 
takes a multiple-batches perspective. She views the fertiliser as some number of 
batches of an 8 kg nitrogen and 3 kg phosphate mixture, structures the 35 kg of 
nitrogen as a number of groups of 8  kg of nitrogen and structures the required 
amount of phosphate as that same number of groups of 3 kg of phosphate.

The same teacher’s second solution to the same fertiliser problem (Fig. 13.8) 
takes a variable-parts perspective. This time the teacher views the fertiliser as eight 
parts nitrogen and three parts phosphate, where all parts are the same size. She 
determines the size of each part by structuring the eight parts nitrogen as eight 
groups that contain a total of 35 kg and structures the required amount of phosphate 
as three groups of that size.

Although the results are preliminary and part of a larger, ongoing project, in 
Beckmann et al.’s (2015) study, many pre-service teachers were similarly able to 
present well-constructed arguments for solving proportionality problems from two 
perspectives. We also note that a presented structure could be a useful organiser for 
the field. Although a multiple-batches perspective on proportional relationships has 
been well known in mathematics education research for many years, the existence 
of a separate variable-parts perspective was only recently discussed in mathematics 
education research (Beckmann and Izsák 2015). This is even though limitations of 
a multiple-batches perspective were recognised (Kaput and West 1994) and vari-
able-parts solution methods were known. For example, the model method used in 
Singapore (see Kaur 2015) lends itself to a variable-parts perspective. By structur-
ing proportional relationships through a quantitative definition of multiplication, we 
see the existence of two distinct quantitative ways of conceptualising proportional 
relationships.

Venkat (2015) similarly pointed to improvements in in-service teacher perfor-
mance in South Africa on a ratio task following exposure to generalisable double 
number line models, introduced in the context of whole number situations but 
usable and used in decimal number (money) contexts as well. Structure, in her 
approach, was presented in the form of key representations of the structure of mul-
tiplicative situations – double number lines and ratio or ‘T-tables’ – that were intro-
duced, discussed and used in their in-service teacher education programme. 
Evidence drawn from teacher assessment tasks in the course indicated that for some 
teachers, these ‘structured’ representations were taken up as tools that facilitated 
moves towards successful mathematical problem solving that allowed for the pro-
duction of correct answers, while for other teachers, the same structured representa-
tions were taken up as pedagogic objects with associated explanations that could 
better support students to produce correct answers. Across both groups, there was 
evidence of greater elaboration of problem-solving processes, in ways that broader 
literature suggests are useful for teaching.

This finding is of interest in relation to the literature base on primary mathemat-
ics teacher knowledge where there is broad evidence that being able to do mathe-
matics for oneself provides limited promise for competence with teaching 
mathematics to others. Essentially, the argument is that the latter competence 
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requires an additional, ‘specialised’ knowledge base (Ball et al. 2008). As a group, 
we concur with this argument, but note from Venkat’s (2015) work that a focus on 
key representations, introduced and discussed in the context of WNA, appeared to 
be an important component that worked simultaneously to support the development 
of competences related to teachers’ working with mathematics and their teaching of 
mathematics. In a South African context marked by discursive gaps in pedagogy, 
this kind of approach, focused on generalised representations of structure, serves to 
address development in what a trajectory of work, of which Adler and Ronda’s 
(2015) paper is the most recent, has described as teachers’ ‘mathematical discourse 
in instruction’.

Dole et  al. (2015) attribute problems for students in recognising and working 
with multiplicative reasoning to ‘the limited capacity of primary school curricula to 
promote multiplicative structures’ (p. 535). In trying to address this shortcoming 
through an in-service teacher development project, Dole et al.’s team presented and 
discussed a range of proportional relation situations drawn from the Australian cur-
riculum document, from other subject areas and from real life, encouraging focus 
on their structural similarity and their contrast with the structure of additive relation 
situations. Through this approach, they noted shifts in teachers’ awareness of links 
between topic areas in the curriculum that had previously been viewed as separate 

Fig. 13.7  Reasoning about proportional relationships from a multiple-batches perspective
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and competence with pointing to this similarity when working with situations 
underpinned by a multiplicative structure.

13.6  �Conclusions, Implications and Future Directions

Across the papers in the two broad sections focused on ‘structures’ and ‘structuring 
activity’, there is general agreement that incorporating attention to developing 
awareness of structure should be an important component of work in WNA, in order 
to support early algebraic thinking. There are also several useful pointers towards 
approaches that appear to hold promise for the development of attention to structure 
in the WNA context in ways that have longevity beyond the boundaries of 
WNA. Given the evidence of students’ cognitive difficulties in the transition from 
natural numbers to rational numbers (van Hoof et al. 2013), and the concomitant 
evidence of ‘natural number bias’ (Ni and Zhou 2005), the latter aspect is particu-
larly important. We summarise these approaches here, noting emphases on particu-
lar features and phases within this evidence:

•	 There are indications that situations involving spatial awareness can provide use-
ful springboards for WNA working in ways that relatively ‘naturally’ and use-
fully include attention to structural relations.

Fig. 13.8  Reasoning about proportional relationships from a variable-parts perspective
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•	 Distinguishing between additive and multiplicative situations, as well as between 
different structures within additive and multiplicative situations, appears to be an 
important avenue into developing understanding of the different underlying 
structures of these situations. Problem posing in relation to given structures 
appears to be particularly complex and, therefore, openings for encouraging stu-
dents to engaging with linking or constructing problems with given structural 
relations would seem to be an important area for further attention.

•	 For older children and for teachers, more ‘top-down’ presentations of structure 
in generalised word sentence or algebraic formats seem to have purchase in 
drawing attention to the nature of quantitative relations being worked with. This 
could well be related to, and acknowledging of, extensive prior encounters with 
additive and multiplicative situations. Parallel approaches for younger children 
appear to be better supported by the presentation of pictorial models of underly-
ing structure that can be used in similar ways to develop more powerful dis-
courses about the nature of quantitative relations in additive, multiplicative and 
other patterned situations involving some structural relations.

The importance of awareness of structural relations in a range of problem contexts 
has been widely acknowledged in mathematics education research. Our focus in this 
chapter has been on distinguishing between two key alternatives into developing 
this awareness. Whether working with offered structures or being invited to con-
struct relations through structuring activity, the common centrepiece is inviting stu-
dents and/or teachers to think more deeply about the mathematical structure of 
problems. Nunes et al. (2012) have noted that this kind of thinking can and should 
be developed in the context of WNA, with work in additive and multiplicative rela-
tion situations providing fertile ground from the earliest stages of mathematical 
learning for both learning about structure and learning to distinguish between struc-
tures. Both approaches provide the means for seeing numerical and spatial situa-
tions (and quite possibly mathematical situations more generally) as contexts that 
are open to structuring and to seeing in terms of structure. Mathematical activity in 
this orientation is viewed as fundamentally concerned with identifying structure and 
possible generality. At one level, this focus opens possibilities for seeing WNA as a 
ground with continuities into rational and real number arithmetic. A larger outcome, 
though, of the focus on structure and structuring is a breaking down of some of the 
high walls of arithmetic operations around WNA contexts, which so many children 
(and, importantly, many teachers) in so many parts of the world appear to have such 
difficulty in scaling and seeing beyond.
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Chapter 14
Structuring Structural Awareness: 
A Commentary on Chapter 13

John Mason 

14.1  �Introduction

It was a great pleasure to read Chap. 13 with its wide-ranging scope concerning dif-
ferent ways in which mathematical structure can play out in primary classrooms in 
the context of whole numbers and with its wide-ranging suggestions for structuring 
tasks so as to foster significant encounters with mathematical structure.

As Towers and Davis (2002) observe, the term structure, etymologically linked 
to ‘strew’ and ‘construe’, has been used in mathematics education in two rather 
contrasting senses. Its biological use, which underpins Piaget’s genetic epistemol-
ogy, refers to complex, constantly evolving, co-emergent, contingent and co-impli-
cated forms; its architectural use refers to static interlocked components. Steffe and 
Kieren (1996) suggest that educational research has been impeded by conflation of 
these two meanings.

My aim here is to augment Chap. 13 with some examples of tasks which seem to 
me to promote encounters with mathematical structure and to suggest some direc-
tions for future development. The first section offers some observations concerning 
the recognition of relationships and transition to generalisation through attending to 
properties being instantiated, drawing on my own experience in supporting the 
teaching of mathematics. I mention them because they capture something of the 
growth of my awareness of how mathematical structure can be avoided or circum-
vented unwittingly through inappropriate pedagogic choices. This segues into a few 
remarks about attention and structured variation. The final section draws explicitly 
on Chap. 13 to suggest some potentially worthwhile directions for further study and 
development.

J. Mason (*) 
The Open University, Milton Keynes, UK
e-mail: john.mason@open.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63555-2_14&domain=pdf
http://orcid.org/0000-0003-0906-7458
mailto:john.mason@open.ac.uk


326

14.2  �Detecting Mathematical Structure as Recognising 
Relationships

In the 1970s, as I became more and more involved in the issues and concerns of 
teaching and learning mathematics, I was inspired by the Midland Mathematics 
Experiment (1964). There I found sequences of figures made variously out of 
matchsticks and shapes such as squares and circles. I was excited by them because 
they seemed to me to offer multiple opportunities for learners to imagine what was 
not present, but which extended what was present according to some fixed relation-
ships, multiple opportunities to express those relationships and multiple opportuni-
ties to develop algebraic expressions for the number of elements required to make a 
specific but as yet unknown figure in that sequence.

14.2.1  �Expressing Generality

I developed and incorporated dozens of tasks involving sequences of figures in 
materials designed to support teachers of mathematics at all ages, from early years 
to secondary school (Mason 1988, 1996). One of the most important principles for 
me was the necessity that learners formulate a verbal statement of how a pattern 
continued or how the instances presented fitted into some extendable pattern. Only 
then is it worth counting the number of objects required. One of my favourites was 
a figure that we used for an assessment question for would-be and practising teach-
ers upgrading their qualifications (Fig. 14.1).

The reason for choosing 50 and 32 is to see whether the action of scaling (multi-
ply columns by 10) is either invoked before they have really thought about the situ-
ation or used because they want an easy calculation. Then we can talk about parking 
the first action that becomes available and considering whether other actions might 
be more appropriate or effective. Thus, the task affords possibilities for work on 
inner and meta tasks as well as the outer task (Tahta 1981; see also Mason and 
Johnston-Wilder 2004, 2006).

If I were using the task myself, I would exploit the fact that different people may 
‘see’ the configuration differently, and I might even extend it to include asking peo-

Here you see a configuration of 5 columns and 2 rows of cells.
Each cell has a diagonal stick in it. There are 37 sticks altogether.

    How many sticks would be needed to make a corresponding
figure with 50 columns and 32 rows? What about c columns and r
rows?

Fig. 14.1  A stick configuration
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ple to find at least three different-looking expressions for the number of sticks and 
to indicate how these express different ways of seeing how to build such figures. 
This is about seeking structure through recognising relationships (one of the forms 
of attention). The reason is to promote multiplicity in ways of seeing and expressing 
those ways of seeing symbolically. Not only does this multiplicity lead naturally to 
the rules of algebra, in order to manipulate different looking expressions that are 
known to express the same thing, but it is allied to and reinforces parking.

On the original assessment, we found that many of the teachers could cope with 
generalisation in one direction (number of columns), but not with generalising two 
things at once. This led me to promote making a copy of the figure for yourself and 
watching how your body naturally finds an efficient way of doing it (perhaps by 
doing all the horizontals first or by building column by column). The slogan Watch 
What You Do (WWYD) emerged as a way to be reminded to do this and applies 
whenever you are specialising, that is, constructing a simpler specific example of 
something in order to get a sense of structural relationships. This too was encapsu-
lated in a slogan as Manipulating–Getting-a-sense-of–Articulating (Floyd et  al. 
1981; see also Mason and Johnston-Wilder 2004, 2006).

Seeking several expressions of the same generality in lots of different situations 
eventually leads to the question of whether there is a way to move between equiva-
lent expressions without going via the verbal description that they express. We 
called this multiple expressions and promoted it as a route to algebra, because the 
‘rules’ for manipulating letters can be developed and expressed by learners them-
selves when the desire to do so arises (Mason et al. 1985, 1996).

Some years later, I realised what Mary Boole (Tahta 1972) might have meant 
when she talked about a particular route to generalisation. I called it tracking arith-
metic, and it involves carrying out calculations without actually touching one or 
more of the initial numbers. In the case of the matchsticks, this means finding a way 
to count the number of sticks but not touching the 5 (for columns) or the 2 (for 
rows). It requires expressing everything in terms of these two numbers. Thus, the 
horizontal sticks are counted by 5 × (2 + 1), the vertical sticks by 2 × (5 + 1) and the 
diagonal sticks by 2 × 5. Overall, this means that 3 × (2 × 5) + 5 + 2 sticks are 
needed. The untouched 2s and 5s can now be replaced by r and c, respectively, to 
give the expression 3rc + r + c for the number of sticks required, perhaps by first 
going through and marking all the occurrences of 2 as a row count and 5 as a column 
count. Note also the symmetry between r and c.

Tracking arithmetic (Mason et al. 2005) has proved a powerful route into algebra 
when working with ‘algebra-refusers’: learners who have decided that algebra is not 
for them. Instead of letters, I use a cloud to stand for some as-yet-unknown number 
that someone outside of the room is thinking of. Then I proceed to get them to 
express some relationships, and to their surprise, they find that what they have done 
is actually algebra!

A further development (particularly but not exclusively at secondary level) is to 
ask whether there is a figure corresponding to some specified number S of sticks. 
Since S = 3rc + r + c, it turns out that 3S + 1 = 9rc + 3r + 3c + 1 = (3r + 1)(3c + 1). 
Thus, S sticks can be used to make such a figure if and only if 3S  +  1 can be 

14  Structuring Structural Awareness: A Commentary on Chapter 13



328

expressed as the product of two numbers both of the form one more than a multiple 
of 3. Furthermore, this structural reasoning can be generalised. It can be used on any 
expression of the form axy + bx + cy + d with suitable adjustments to take into 
account b, c and d. Not that this reasoning is accessible to young children, but it is 
worthwhile at least raising the undoing question so as to immerse learners in the 
ubiquitous and creative theme of doing and undoing: whenever you find you can 
perform some action, the doing, ask whether or in what circumstances you can undo 
it (Mason 2008).

The importance of deciding how all the figures are to be drawn, even those not 
yet displayed, before embarking on counting, cannot be overstated. In other situa-
tions, it is vital that there is some predetermined rule or structure for generating the 
terms of the sequence. For example, the figure 14.2 is part of a frieze pattern, but 
without any further information, you cannot be certain how it continues. However, 
if you are told that it is generated by a repeating block of cells and that the repeating 
block appears at least twice, you can extend the frieze in only one way (Mason 
2014; Fig. 14.2).

Only when you have decided how it continues does it make sense to ask ques-
tions such as the shading of the 100th cell (the nth cell) and the cell number of the 
100th occurrence (the nth occurrence) of a lightly shaded cell, which are the doing 
and the undoing questions. WWYD is still pertinent.

This sort of task has been exploited with pre-school children, where they make 
up their own intricate patterns and extend their own and those made by others (e.g. 
Papic and Mulligan 2007; Ferrara and Sinclair 2016). Slightly older children can, 
with suitable support, proceed to count the numbers of objects required in general 
and even to extend their thinking to negative numbers (e.g. Moss and Beatty 2006). 
Zazkis and Liljedahl (2002) report various studies indicating that learners may not 
find such tasks straightforward, but usually this can be explained by unfamiliarity 
with expressing generality as part and parcel of thinking mathematically. As Chap. 13 
points out, it all has to do with a pedagogy that is in alignment and consistent with 
a teacher’s ways of thinking about mathematics as a creative endeavour rather than 
as a process of training behaviour to carry out mindless procedures. Thus, effective 
teaching is not simply about the mathematical structure and the structural relation-
ships that govern a situation, and it is not simply about the choice of task or how it 
is structured. It is also about sequence and structure of pedagogical moves made by 
the teacher in setting up the task and in interacting with the learners. It is all of these, 
informed by a perspective on and experience of mathematics that values mathemati-
cal thinking as much as it does answers.

It was only after many years that I realised how easily learners’ behaviour can be 
trained and how learners conspire (often unwittingly) to circumvent thinking (active 
cognition). For example, I used always to present the first three or four figures in a 
sequence, but eventually I realised that this led to learners paying more attention to 

Fig. 14.2  A part of a 
frieze pattern
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how the figures change from one to the next than to the internal structure of each 
individual figure (Stacey 1989; Stacey and MacGregor 1999, 2000). Sometimes this 
inductive approach is powerful, and indeed the only way to proceed, but the main 
purpose of inviting learners to generalise from sequences was to get them to express 
generality, counting the number of objects needed to make the nth picture without 
recourse to the previous ones. These tasks were intended to develop students’ pow-
ers so that the teaching of every topic intimately involved learners expressing gen-
erality for themselves and justifying it. Offering sporadic instances or even a single 
‘generic’ instance is one way to avoid falling into the trap of learners becoming 
dependent on a particular format for such tasks.

There arose for me the question of what students were attending to when they 
did, and when they did not, detect and express generality in different situations.

14.2.2  �Attention

Having spent a long time trying to get to grips with what it means to attend to some-
thing, I eventually discerned five forms or structures of attention, building on ideas 
of Bennett (1966; see also 1993), only to find that they were in close alignment with 
the van Hiele levels (van Hiele-Geldof 1957; van Hiele 1986). Where I differ rather 
significantly is that in my experience the different ways of attending to something 
are highly mutable. They are not levels to be climbed like some staircase. I describe 
these forms of attention as holding wholes (gazing at some ‘thing’ which may be 
visible or imagined), discerning details (some details may become a whole to be 
gazed at), recognising relationships in a particular situation, perceiving properties 
as generalities being instantiated in the particular and reasoning on the basis of 
agreed properties (Mason 2003).

At the core is the movement back and forth between recognising relationships (a 
sense of structure in the form of structural relationships, but only in the particular) 
and perceiving properties as general structural relationships being instantiated. I 
conjecture that, in mathematics, many students rarely if ever explicitly experience 
properties being instantiated, and consequently the world of mathematics remains 
closed to them. I popularised this in the UK with the slogan ‘A lesson without the 
opportunity for learners to generalise mathematically is not a mathematics lesson’ 
(Mason et al. 2005). In other words, generalisation is the life and soul, the heart of 
mathematical thinking. So when we promoted figural generalisations, it was only to 
provide learners with experience of generalisation. Our main proposal is, was and 
always has been that teaching mathematics means immersing learners in a culture 
of generalisation, prompting learners to express generalities as conjectures and try-
ing to convince themselves and others that their conjectures (suitably modified) are 
actually correct. This applies to each and every topic and each and every lesson. It 
aligns with a Davydov-inspired approach to number which focuses on units before 
introducing number.
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14.2.3  �Structured Variation Grids

The notion of structured variation arose from a situation in the town of Tunja in 
Colombia, in which I was asked how to teach factoring of quadratic expressions to 
learners who were unsure about the answer to (−1) × (−1). I came up with what I 
called Tunja sequences (Mason 2001a). The idea is to call upon learners’ natural 
powers to extend familiar sequences and then to get them to interpret what they have 
done, using what Anne Watson (2000) has called with and across the grain. A sim-
plified version for use with young children in a whole number context might be the 
above (Table 14.1).

Going with the grain means being able to predict what will be in each cell by 
detecting and exploiting the familiar sequence of natural numbers, by analogy with 
splitting wood. Going across the grain is about recognising why it is that the two 
calculations in each cell always give the same answer, by analogy with seeing the 
structure of the rings of a tree stump.

Having an applet which enables you to reveal one or other side of the equal sign 
in any cell makes it easy to show a few parts of a few cells and then to invite learners 
to conjecture and justify and then check other cells. It is a format in which to pro-
voke generalisation. Learners can then be asked to make up a similar grid for them-
selves. On a different day, the multiplier 3 can be changed. It doesn’t take long for 
learners to conjecture and articulate the distributive law of arithmetic and, when 
expressed as a generality, the distributive law for algebra. Similar grids can be used 
in upper primary or lower secondary for expanding brackets and factoring (Mason 
2015). Note that the effectiveness of structured variation grids lies not in the struc-
ture of the grids themselves, though this plays an important role, but in the peda-
gogic choices that are made, either in preparation or in the moment by moment 
unfolding of a lesson, informed by a perspective on mathematics conducive to 
learners taking initiative.

Here, the structural relationships which underpin arithmetic are brought to the 
surface, articulated and then internalised through direct personal experience. 
Similarly, the multiplication of negative numbers can be addressed by a multiplica-

Table 14.1  A grid

3 × (1 + 1) 
= 

3 × 1 + 3 × 1

3 × (1 + 2) 
    = 
3 × 1 + 3 × 2

3 × (1 + 3) 
    = 
3 × 1 + 3 × 3

…

3 × (2 + 1) 
    = 
3 × 2 + 3 × 1

3 × (2 + 2) 
    = 
3 × 2 + 3 × 2

3 × (2 + 3) 
    = 
3 × 2 + 3 × 3

…

3 × (3 + 1) 
    = 
3 × 3 + 3 × 1

3 × (3 + 2) 
    = 
3 × 3 + 3 × 2

3 × (3 + 3) 
    = 
3 × 3 + 3 × 3

…

… … … …
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tion grid that extends to the left and down into negative numbers. Going with the 
grain along rows and columns fills in the cells; going across the grain recognises 
why multiplying negative numbers works as it does. Recognising that the calcula-
tions are correct in each cell and that the left-to-right presentation could be reversed 
involves attention to specific structural relationships, perceiving the entries in cells 
as the instantiation of general properties. There are other grids which involve opera-
tions on fractions.

14.2.4  �Comment

The reason for presenting some historical developments in my appreciation of 
obstacles to learning was to provide some specific examples of mathematical struc-
ture and to indicate how the shift from recognising relationships in the particular to 
perceiving properties as being instantiated lies at the heart of school mathematics. 
Arithmetic is most usefully seen as the study of properties of numbers; getting 
answers to specific calculations could become a by-product rather than the focus of 
attention.

14.3  �Possible Directions of Development

To my mind, it would be really helpful if mathematicians and mathematics educa-
tors could come to some sort of agreement on how to think about mathematical 
topics, both as experiences in themselves and in relation to other mathematical top-
ics and to mathematical thinking as a whole. I preface some of my suggestions with 
a pertinent extract from Chap. 13, marked by an attention point.

14.3.1  �Expressing Generality

There are indications that situations involving spatial awareness can provide useful 
springboards for WNA working in ways that relatively ‘naturally’ and usefully 
include attention to structural relations.

As Chap. 13 indicates, there is growing evidence that young children can detect, 
copy and extend patterns and can create complex patterns for themselves. Teachers 
can initiate such tasks in the midst of almost any other work (e.g. during theme work 
on the polar regions, making sequences from polar bears, penguins and seals or 
whatever is the focus of attention). What matters is the rich way in which pedagogic 
choices promote the development of children’s natural powers to think mathemati-
cally, moving from pattern repetition to counting what is visible to counting what is 
only imagined and, so, to expressing generality (Mason 1996). It would be helpful 
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to teachers to have more clear descriptions of how teachers have done this with 
pupils and how pupils have created their own.

14.3.2  �Additive and Multiplicative Reasoning

Distinguishing between additive and multiplicative situations, as well as between 
different structures within additive and multiplicative situations, appears to be an 
important avenue into developing understanding of the different underlying struc-
tures of these situations. Problem posing in relation to given structures appears to be 
particularly complex and, therefore, openings for encouraging students to engaging 
with linking or constructing problems with given structural relations would seem to 
be an important area for further attention.

Chapter 13 reports research which indicates that structures such as the double 
number line and the empty number line can be useful for presenting a visual struc-
ture which can inform number calculations. To these could be added Numicon, 
Cuisenaire rods and Exercise Elastics (to manifest multiplication as scaling, of 
which repeated addition is a special case; see Harvey 2011). What seems to matter 
most is not the apparatus itself, but how it is used. Mathematics is only embodied in 
physical objects when someone ‘sees’ it as embodied, so it is all down to pedagogic 
choices. More work is needed concerning how pedagogic choices influence learn-
ers’ seeing mathematics as embodied.

14.3.3  �Mathematical Vision

Ball (1993) points to the importance of teachers’ mathematical vision (mathemati-
cal horizon), which includes connections to other topics, relationships to ubiquitous 
mathematical themes, exploitation of learners’ natural powers to think mathemati-
cally and, most specifically, places where a topic has found use or application in the 
past. In Chap. 13, it is observed that rarely do learners have any sense of where what 
they are doing fits into a bigger picture, and possibly this is because teachers are 
similarly unsure about a bigger picture. Artigue (2011) is quoted as echoing this, 
noting that ‘pupils do not know which needs are met by the mathematical topics 
introduced’ and, concomitantly, that they therefore have ‘little autonomy in their 
mathematical work’ (p. 21). Autonomy can be fostered by taking every opportunity 
to get learners to make significant as well as routine choices.

Connections and vision are enriched through awareness of mathematical themes, 
such as invariance in the midst of change, doing and undoing, and freedom and 
constraint (Mason and Johnston-Wilder 2004, 2006). This is part of a framework for 
preparing to teach any topic. At the Open University, we developed such a frame-
work, called in its later manifestations SoaT (Structure of a Topic). It brings to the 
surface six aspects of any mathematical topic corresponding to some degree with 
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three aspects of the human psyche as recognised by Western psychology, namely, 
cognition, affect and enaction.

The cognitive axis concerns aspects such as concept images (the associations and 
images that are usefully associated with the topic; the concept images) together with 
classic confusions and uncertainties that arise for learners in the topic. The enactive 
axis includes looking for how terms used technically in the topic are based on or 
derived from everyday words and the ‘inner incantations’ or ‘patter’ (Wing 2016) 
that can usefully accompany the carrying out of techniques and procedures, as well 
as the procedures themselves. The affective axis, being connected with emotions 
and motivation. And hence with desire and disposition, includes the sorts of 
problem(s) that the topic resolves, the problems that historically gave rise to the 
topic and in what contexts the topic has proved to be useful. It also includes ques-
tions about how the pedagogic choices are likely to support the development of a 
positive disposition towards the topic, its language, its concepts and its techniques.

Because different groups of students in different situations are different, it does 
not seem reasonable to try to find one perfectly effective way to introduce students 
to algebra. An alternative is to see that there are several routes into algebra (gener-
alising structural relationships and expressing these; tracking arithmetic; multiple 
expressions for the same thing; axioms of arithmetic expressed generally so as to be 
the rules of algebra). What is worth dwelling on in any particular lesson depends on 
the people and the situation, so this is where the art of the teacher is required. 
Lessons based on textbooks which are in turn based on a single hypothetical learn-
ing trajectory (Simon and Tzur 2004) are likely to succeed sometimes, but not 
always. Successful teaching requires sensitivity both to the mathematics (topic and 
thinking) and to learners, because teaching mathematics is a caring profession. 
Balancing care for mathematics and for learners is not at all easy. As is well known, 
two people co-planning a lesson and then teaching it very often end up doing quite 
different things because of all the differences. Fundamentally, the issue is what the 
teacher is aware of (what pedagogical and mathematical actions become available) 
and what they are currently sensitised to notice. That is what makes the difference 
between effective (in the long term) and successful (in the short term) teaching.

When teachers are themselves thinking mathematically, whether alone or col-
lectively, there is an ethos and a sensitivity to learners that fades when teachers stop 
doing mathematics themselves.

14.3.4  �Word Problems

The use and abuse of word problems has been much discussed (Gerofsky 1996; 
Greer 1997; Verschaffel et al. 2000, Mason 2001a, b). Since word problems seem to 
be unavoidable, it seems sensible to work with them structurally. Some people have 
tried to teach learners to analyse verbal statements, to locate keywords and, from 
these, to work out how to find an answer, while the so-called Singapore method is 
to depict quantities using a bar diagram and then work with them. Ultimately, what 
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has to happen is that the learner uses their mental imagery to enter into the situation 
to recognise and express relationships in the situation using whatever support 
devices and modes of presentation are recommended for this purpose. Word prob-
lems cannot be solved effectively at ‘arm’s length’ so as to avoid thinking.

As Bednarz et al. (1996) noted, in arithmetic you proceed from the known to the 
unknown, whereas in algebra you start with the unknown and proceed towards the 
known. But, as Mary Boole (Tahta 1972) pointed out, what you do is acknowledge 
your ignorance and denote what you do not yet know by some symbol, and then you 
express what you do know using that symbol. This is tantamount to tracking arith-
metic, when you start by trying to check whether some guess is actually the answer 
but track that guess so that it can be replaced by a symbol, in order to reach some 
equations to solve.

If word problems are treated as a domain of play and exploration, so that learners 
construct their own, changing the context as well as numerical parameters, then the 
power to imagine a situation, to locate structural relationships and to express them 
can be enjoyed rather than feared. For example, take the simple context of sharing 
marbles:

If Anne gives 3 of her marbles to John, they will then have the same number. How many 
more marbles did Anne have than John to start with?

Of course, you could also be told how many marbles one or the other has after-
wards. But look at all the potential dimensions of possible variation, all the features 
that can be changed: the number of marbles Anne gives away, the effect of her giv-
ing them away (maybe she then has twice as many, or half as many, or 5 more than, 
or 6 less than John), the number of people involved, the number of actions of giving 
and receiving involved (perhaps John then gives Anne some marbles or gives some 
to someone else, etc.), the nature of the actions (perhaps Anne exchanges each of 
her red marbles for two of John’s blues, etc.) and the things being exchanged 
(sweets, counters, teddy bears, penguins, etc.). Pleasure can be obtained from mak-
ing up your own variations and trying to resolve them, not simply in the particular, 
but in the general. This can be done (in simple instances) with very young children, 
inducting or enculturating them into the ways of mathematical thinking.

Again, it is not the mathematical structure alone (how daunting is a page full of 
‘problems’ to be required to ‘do’?), and it is not the pedagogical structure of the task 
and the interactions, but the two of these together, mediated or held together by the 
sensitivity of the teacher both to opportunities for mathematical thinking and the 
particular thinking of her learners.

14.3.5  �Pedagogic Choices

For older children and for teachers, more ‘top-down’ presentations of structure in 
generalised word sentences or algebraic formats seem to have purchase in drawing 
attention to the nature of quantitative relations being worked with. This could well 
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be related to, and acknowledging of, extensive prior encounters with additive and 
multiplicative situations. Parallel approaches for younger children appear to be bet-
ter supported by the presentation of pictorial models of underlying structure that can 
be used in similar ways to develop more powerful discourses about the nature of 
quantitative relations in additive, multiplicative and other patterned situations 
involving some structural relations.

Chapter 13 covertly acknowledges that terms like ‘direct instruction’ are far from 
being unambiguous, being used to refer to a wide range of practices. For example, 
they quote Kirschner et al. (2006 pp. 83–84) to the effect that ‘unguided instruction 
[is] normally less effective’ than strong instructional guidance. But surely no-one 
proposes ‘unguided instruction’. Even the much maligned ‘discovery learning’ 
espoused by Bruner (1966) never meant learners being left on their own to ‘dis-
cover’ without any intervention or guidance. The delicacy and importance of an 
informed awareness, including awareness of awareness (Mason 1998), cannot be 
overstated.

‘Top-down’ or ‘direct instruction’ is often interpreted as the teacher telling learn-
ers what to do, perhaps on a worked example, perhaps as a sequence of instructions. 
But working in a whole-class plenary mode need not be like this. Rather, the teacher 
can draw out learners’ ideas and can focus and direct attention while calling upon 
learners to make use of and develop their own powers. Teachers can shepherd 
(Towers 1998; Towers and Proulx 2013). Teachers can summon learners’ past expe-
rience. Then a little bit of ‘telling’ can indeed be telling, can be effective when it 
occurs at an appropriate moment (Love and Mason 1992, 1995). Time for learners 
to work for themselves, to develop a personal narrative or self-explanation (Chi and 
Bassok 1989), and time for learners to try out their articulations with colleagues and 
to hear other learners’ narratives is also important. What seems most important is 
not to be prescriptive as to how a lesson should go. Rather, teachers need to be sup-
ported in developing sensitivities to notice, to be aware of, what and how learners 
are thinking, so that the tasks are used richly. Retaining the complexity of teaching 
is vital, responding to and making use of the rich complexity of the human psyche, 
rather than trying to simplify acts of teaching as if on an assembly line. A contribu-
tion to structuring teacher-learner interactions can be found in the six modes 
described in Mason (1979), which outline six modes of interaction based on the 
systematics of Bennett (1966, 1993). To these can be added the five strands of math-
ematical proficiency proposed by Kilpatrick et al. (2001), the five dimensions of 
mathematically powerful classrooms proposed by Schoenfeld (2014) and the habits 
of mind articulated by Cuoco et al. (1996). There are probably many others. More 
work is needed on simplifying and coordinating the many different ways of prepar-
ing oneself to make effective pedagogic choices when planning and, in the moment, 
preserving the complexity of the human psyche but not overcomplicating it.

For example, Davis (1996) introduced the notion of hermeneutic listening in 
which the teacher listens to what learners are saying and watches what learners are 
doing, rather than listening for what they want to hear or watching for what they 
want to see. One way to sensitise yourself to listening to is through what Malara and 
Navarra (2003) called babbling, by analogy with a young child in a cot making the 
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sounds of sentences without yet having the words. The label babbling can alert you 
to trying to hear what may be behind the words, what learners may be trying to 
express, even though they may not be using terms correctly. So babbling can serve 
as a trigger for hermeneutic listening. The didactic tension (Mason and Davis 1989), 
which arises from the work of Brousseau (1997), suggests that the more clearly and 
precisely a teacher specifies the behaviour they want learners to display, the easier 
it is for learners to display that behaviour without actually generating it for them-
selves. This explains why hermeneutic listening, ‘teaching by listening’, is so 
important. It is so easy to fall into ‘training learner behaviour’ rather than providing 
conditions in which learners ‘educate their awareness’ (Gattegno 1970; Mason 
1998). As Towers and Davis (2002, p. 338) write:

These attentive and tentative modes of engagement are offered in contrast to those that 
frame classroom interaction in terms of causal actions and control – which, once again, we 
might characterise in terms of a shift from architectural to biological senses of structure. An 
important element in this manner of pedagogy is its embrace of ambiguity and 
contingency.

One domain of pedagogic choices that seems not to be mentioned very often has 
to do with learner involvement in making choices. By getting learners to make sig-
nificant mathematical choices, and by getting them to construct mathematical 
objects, exercises and examples, they can push themselves just as much as they feel 
capable of, rather than depending on the teacher to provide a range of examples 
suitable for different learners (Watson and Mason 2005). These and other pedagogic 
strategies could be brought to teachers’ attention more widely, through engaging 
them in effective personal experiences.

14.3.6  �Reasoning, Justification and Proof

‘Proof’ is another aspect of mathematics that is experiencing a revival in mathematics 
education. But proving things, justifying conjectures by means of mathematical rea-
soning, is probably not so easily ‘taught’ as enculturated into. When learners discover 
that they can ‘know things for certain’ in mathematics, not because someone told 
them so or because they have seen a convincing number of instances to believe it is 
always true, but because they can reason it out for themselves, their interest and 
engagement and their disposition towards mathematical thinking can be enriched. 
Probing learners’ recognition of relationships, in particular, and perception of proper-
ties, in general, such as in Molina et al. (2008), Molina and Mason (2009) and Mason 
et al. (2009), among many others, can enhance sensitivity to which experiences might 
be useful for learners and hence what pedagogic choices might be effective, concern-
ing the development of their contact with mathematical reasoning. Alerting teachers 
to pedagogic possibilities for promoting reasoning and for learners becoming aware 
of their reasoning in the midst of teaching is an ongoing process.
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To reason successfully requires awareness of generality, of properties being 
instantiated rather than simply some relationships holding in some particular 
situation(s). Only then is it possible to reason making use of previously agreed prop-
erties to reach fresh conclusions. But not all reasoning has to be original to the 
learner: at first, learners can be shepherded towards such reasoning through partici-
pation. They can be immersed in such reasoning and invited to engage in such rea-
soning for themselves. They can also be shown examples of reasoning that is more 
complex than they might be expected to construct for themselves, so they are 
immersed in extending and enriching their experience of reasoning. Examples of 
teachers doing this are always welcome.

14.4  �Beyond Whole Numbers

As Bob Davis pointed out (Davis 1984), if children experience the operations of 
addition over a long period of time, followed only then by subtraction, followed 
then by multiplication and finally by division, and only then encounter ‘numbers’ 
that are not whole numbers, it is not surprising that they revert to addition whenever 
they are faced with a situation in which they do not know what to do. Naturally, they 
enact the first action that becomes available. If they have learned to park the first 
action, then they have a chance of probing beneath the surface to find out what is 
really involved; otherwise, they are likely to disappoint their teachers.

Treating number as a complex whole, incorporating all four operations as early 
as possible, and drawing on Davydovian ideas by introducing number in the con-
text of units, of some feature being measured, is more likely to lead to an apprecia-
tion of arithmetic as the study of properties of numbers rather than as the calculating 
of answers (Thompson et al. 2014). If they are exposed to scaling as well as repeti-
tion, so that multiplication is not identified with repetition, then they have a chance 
of appreciating and comprehending, if not understanding, the basics of mathemat-
ics. Complexity is not best taught through oversimplification, through isolating 
components and then expecting learners to recompose them into a complex 
appreciation.

Teachers’ mathematical ‘being’ is manifested moment by moment in the class-
room and is picked up subliminally by learners. By participating in mathematical 
thinking themselves, by enriching and complexifying their sense of mathematical 
structure, by exhibiting mathematical ‘habits of mind’ (Cuoco et al. 1996), by get-
ting to grips with underlying structures in mathematics such as covariation 
(Thompson and Carlson 2017) and by enriching the range of pedagogical actions to 
which they have access, teachers can keep themselves fresh and so provide learners 
with an immediate and enriching experience from which they can learn. What is 
needed in the future is evidence for and examples of a truly humane way for humans 
to teach each other.
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15.1  �General Introduction

Ferdinando Arzarello

The Merriam-Webster Dictionary1 defines tradition (Definition 1) as:

a: an inherited, established, or customary pattern of thought, action, or behavior (such as a 
religious practice or a social custom);

b: a belief or story or a body of beliefs or stories relating to the past that are commonly 
accepted as historical though not verifiable.

The dictionary also states that tradition concerns the ‘handing down of information, 
beliefs, and customs by word of mouth or by example from one generation to 

1 http://www.kamous.com/translator/merriam-webster.asp?book=Dictionary&va=tradition
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another without written instruction’ (Definition 2) and represents ‘cultural continu-
ity in social attitudes, customs, and institutions’ (Definition 3).

It is apparent from these definitions that the ways in which whole numbers are 
spoken, written, thought, taught and learnt sum up what we can address as a part of 
tradition. Hence, researchers and teachers need to consider these factors from the 
many different perspectives that make up the multifaceted cultural, epistemological, 
psychological and neurological nature of tradition.

Some of these components have a more or less strong ‘local’ connotation because 
they are linked to different cultures and traditions. However, other components are 
more general and seem to have universal traits. Hence, the concept of so-called near-
universal conventional mathematics (NUC: Barton 2008, p. 10) may conflict with 
such local instances. This possible contrast can represent a significant problem for 
teachers because a reasonable learning trajectory for whole numbers cannot avoid 
discussing their traditional roots, while addressing the NUC as its main goal.

This general background shaped the panel discussions, which aimed to scientifi-
cally deepen the analysis of some of these different cultural roots, consider old and 
new findings from research and practice, and make explicit the main consequences 
of possible concrete didactical trajectories.

In the following sections, some general issues are considered before introducing 
the panellists’ contributions.

15.1.1  �Different Semiotic Representations of Numbers

The historically and culturally different systems of whole number representation 
encompass a large variety of semiotic systems, including but not limited to 
language.

15.1.1.1  �Numbers and Words

The manner in which numbers are articulated in different languages raises a com-
plex issue that has been examined in a large body of research. From the pioneering 
book of Menninger (1969) to more recent works (Zaslavsky 1973; Ifrah 1985), all 
of these studies provide evidence of what Bishop has called the mathematical encul-
turation (Bishop 1991) of numbers (see also Ascher (1991), Selin and D’Ambrosio 
(2000) and Barwell et al. (2015)).

The manner in which whole numbers are articulated and written is a significant 
feature that can reveal various different cultural factors. This issue needs to be con-
sidered when teaching early arithmetic. Some well-known examples are sum-
marised below (see also, this volume, Chap. 3).

In many languages, the numbers from 11 to 20 are spelled according to specific 
rules that differ from those for the following sequences, e.g. from 20 to 30. These 
rules may hide the mathematical structure of those numbers [12 vs ‘twelve’ (~two 
left); 14 vs ‘quattordici’ (~ four-ten); 17 vs ‘diciassette’ (~ ten-seven)]. Similarly, 
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the French numbers from 60 to 99 are spelled according to an old base 20 root that 
is typical of some Celtic languages. For example, to say 97, a French girl/boy must 
learn to say ‘quatre-vingt-dix-sept’, that is, ‘four (times) – twenty – ten – seven’, 
whereas a German child must learn ‘Siebenundneunzig’ (seven and ninety) and an 
Italian child must say ‘novantasette’ (ninety-seven), and so on. In contrast, in 
Chinese the grammar of numbers is more regular, which may provide an advantage 
in learning numbers. An Italian teacher, Bruna Villa (2006), has developed an effec-
tive learning design for grade one children to teach them how to grasp the machin-
ery of whole numbers (see this volume Sect. 15.3.3). She based her design on what, 
following Brissiaud, Clerc and Ouzoulias (2002), she called the method of the 
‘small Chinese dragon’ (Villa 2006; Electronic Supplementary Material: Arzarello 
2017), in which the children articulate numbers based on a uniform Chinese-like 
structure (e.g. 11 is ‘ten-one’ and not ‘undici’; 21 is two (times) ten-one and not 
‘ventuno’) before passing to the Italian system. In this way, she has been able to 
shorten the time needed to master the whole numbers from one to 100 (in Italian 
words and standard arithmetic representation) and to use them to carry out arithme-
tic. In Sect. 15.3.3, this process is illustrated and discussed in more detail.

A further fascinating example, which shows strong differences between the way 
numbers are spelled in a language and their mathematical structure, is illustrated in 
Barton (2008), where he discusses the way numbers are articulated in Maori. Prior 
to European contact, numbers in Maori were similar to verbs in that they expressed 
actions, e.g. saying that ‘there were two persons’ was similar to saying that ‘those 
persons two-ed’. This difference was even more dramatic when negation was 
involved: ‘To negate a verb in Maori the word kaore is used. […] Unlike English, 
where negating both verbs and adjectives requires the word “not”, in Maori, to 
negate an adjective a different word is used, ehara’ (p. 4). Hence, when this verbal 
feature of Maori number words was ignored, in English translation the mathematics 
vocabulary process acted against the original ethos of the Maori language (this vol-
ume, Chap. 3).

Other researchers have indicated the ways in which the use of numbers in every-
day language interferes with the mathematical meaning of numbers. In an excellent 
book, unfortunately available only in Italian, a researcher in linguistics, Carla 
Bazzanella (2011), points out that the expression of numbers in everyday language 
can convey an indeterminate and largely vague meaning rather than the canonical 
cardinal denotation (see other examples in this Sect. 15.2.2 and 15.4.2 and in Chaps. 
3 and 4 of this volume).

15.1.1.2  �Non-verbal Representations of Numbers

Researchers have also discussed the ways in which numbers are represented in dif-
ferent nonlinguistic ways in different cultures (Joseph 2011), e.g. using parts of the 
body (typically digits, but not only; see Saxe 2014) or spatial arrangements in 
complex arithmetical calculations when number words are lacking (this volume, 
Chap. 4).
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Many researchers have pointed out that there are some typical steps in the ways 
in which children progress in building up numbers by intertwining language and 
gesture, e.g. using their digits for counting and adding. For example, Vergnaud uses 
an adaptation of the Piagetian notion of the schème [which he defines as, ‘the invari-
ant organization of behaviour for a certain class of situations’ (Vergnaud 1997, 
p. 12)]. He discusses how, when a child uses a counting scheme, a cognitive shift, 
related to gesture, may occur:

Une autre caractéristique du schème concerne la marque énonciative de la cardinalisation: 
le dernier mot-nombre prononcé représente le cardinal de tout l’ensemble et non pas le 
dernier élément. Cette marque énonciative consiste soit dans la répétition (1, 2, 3, 4, 5,… 
5), soit dans l’accentuation (1, 2 3, 4…5). On voit clairment avec ce premier example que 
l’activité langagière est étroitement associée au fonctionnement du schème, et qu’elle prend 
sa fonction dans un assemble de gestes perceptivomoteurs dont l’organisation dépend de la 
disposition des objects et de leur nature, et d’un problème à résoudre: associer un nombre 
invariant à une collection donnée. (Vergnaud 1991, p. 80)

[Another characteristic of schemes concerns the way cardinalisation is marked in speech: 
the last number pronounced represents the cardinality of the whole collection and not just 
the last object. This marking with speech comprises not only the repetition (1, 2, 3, 4, 5,.. 5) 
but also the accentuation (1, 2, 3, 4…5). One can clearly see from this example that lan-
guage is closely associated with the functioning of a scheme, and that it plays a role in 
producing perceptuo-motor gestures whose organisation depends on both the nature and 
arrangement of the objects, and the problem to solve; associating an invariant number with 
a given collection.]

Butterworth et al. (2011) describe a similar multi-step process for addition strate-
gies that is based on a more neurological stance:

Where two numbers or two disjoint sets, say 3 and 5, are to be added together, in the earliest 
stage the learner counts all members of the union of the two sets – that is, will count 1, 2, 3, 
and continue 4, 5, 6, 7, 8, keeping the number of the second set in mind. In a later stage, the 
learner will ‘count-on’ from the number of the first set, starting with 3 and counting just 4, 
5, 6, 7, 8. At a still later stage, the child will count on from the larger of the two numbers, 
now starting at 5, and counting just 6, 7, 8. It is probably at this stage that addition facts are 
laid down in long term memory. (p. 631)

Recent studies in ethnomathematics and neurology have introduced a fresh and 
wider perspective on the issue of language and its role as a resource for arithmetic 
activities (for a survey from a neuroscientific perspective, see Dehaene and Brannon 
(2011)). An intriguing example is given in Butterworth et al. (2011), who point out 
that word counting strategies are not the only methods that people can use for devel-
oping arithmetic competencies:

We tested speakers of Warlpiri and Anindilyakwa aged between 4 and 7 years old at two 
remote sites in the Northern Territory of Australia. These children used spatial strategies 
extensively, and were significantly more accurate when they did so. English-speaking chil-
dren used spatial strategies very infrequently, but relied on an enumeration strategy sup-
ported by counting words to do the addition task. The main spatial strategy exploited the 
known visual memory strengths of Indigenous Australians, and involved matching the spa-
tial pattern of the augend set and the addend. These findings suggest that counting words, 
far from being necessary for exact arithmetic, offer one strategy among others. They also 
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suggest that spatial models for number do not need to be one-dimensional vectors, as in a 
mental number line, but can be at least two dimensional. (p. 630)

Further research in neurology has supported these claims in relation to the wider 
characteristics of mathematics. For example, Varley et al. (2002) show that:

once these resources [mathematical ones] are in place, mathematics can be sustained with-
out the grammatical and lexical resources of the language faculty. As in the case of the 
relation between grammar and performance on ‘theory-of-mind’ reasoning tasks (42), 
grammar may thus be seen as a co-opted system that can support the expression of mathe-
matical reasoning, but the possession of grammar neither guarantees nor jeopardizes suc-
cessful performance on calculation problems. (p. 470)

Monti et al. (2012) also point out that:

Our findings indicate that processing the syntax of language elicits the known substrate of 
linguistic competence, whereas algebraic operations recruit bilateral parietal brain regions 
previously implicated in the representation of magnitude. This double dissociation argues 
against the view that language provides the structure of thought across all cognitive 
domains. (p. 914)

Finally, some studies have pointed out that the sense of numbers is not only based 
on discrete approaches that rely on the one-one correspondence between external 
symbols and numerical representations, but also on approximate number of systems 
(e.g. the estimation of the numbers of two sets when subitising is not possible) that 
are based on the ratio between their cardinality and not on their difference (see 
Gallistel and Gelman (2000)). According to these studies, this continuous, analogic 
system emerged during our evolution and became encoded in our brains prior to the 
discrete approach.

These findings have introduced a fresh perspective on the issues of tradition and 
language and their roles as resources for arithmetic activities.

In particular, some major questions for the panel are:

–– How can teachers base their task designs for arithmetic on the linguistic and 
cultural roots of numbers?

–– Does the embodied traditional approach to arithmetic need to be modified/
extended by the findings of the neurological research on numbers?

15.1.1.3  �Representing Numbers in Artefacts

In the research on the semiotic representation of numbers, a specific stream of anal-
ysis concerns the calculation tools (typically, but not only, abaci) that incorporate 
both the specific representations of numbers and the corresponding practices for 
completing arithmetical operations (for a survey see Ifrah 2001). These tools are 
deeply intertwined with language and can be incorporated in the didactical designs 
used in primary school. Many teachers use the tools alongside modern technology 
to introduce concrete artefacts and their simulations in a virtual technological class-
room environment. For example, Sinclair and Metzuyanim (2014) integrated such 
embodied and traditional representations using tablets based on the hypothesis that 
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the touch-screen devices enable an intuitive, embodied interface for conducting 
arithmetic. The devices are also suitable for young learners because they allow them 
to use their fingers and gestures to explore mathematics ideas and express mathe-
matical understandings. Furthermore, Soury-Lavergne and Maschietto (2015) use 
an old Pascal machine to approach arithmetic in concrete and virtual ways in pri-
mary school. These and further examples are discussed in Chap. 9 of this volume.

These types of research pose the following interesting questions for the panel:

•	 How are traditional instances embodied in the current technology?
•	 Does the possible integration of cultural roots within a technological environ-

ment allow the gap between the ‘old-fashioned’ tradition and the NUC to be 
bridged?

The panel consists of four scholars2 who are representative of the different cul-
tural traditions of teaching numbers, namely, Nadia Azrou (mathematics teacher at 
the University of Yahia Fares in Medea, Algeria, and a PhD student in math educa-
tion), Maria G.  Bartolini Bussi (full professor in mathematics education at the 
University of Modena and Reggio Emilia, Italy), Sarah Inés González de Lora Sued 
(full professor in mathematics education at Pontificia Universidad Católica Madre y 
Maestra, República Dominicana) and Xu Hua Sun (assistant professor in education 
at the University of Macau, China). Man Keung Siu (honorary fellow, The University 
of Hong Kong) acted as the discussant.

15.2  �Spoken and Written Arithmetic in Different Languages: 
The Case of Algeria

Nadia Azrou

15.2.1  �Post-colonial Countries: The Case of Algeria

At the elementary level, numbers are learnt along with several technical concepts 
(e.g. the place value of digits, number line and decimal position system) that support 
learning or weaken it if not effectively acquired. Learning numbers and other basic 
arithmetic notions is also affected by culture and particularly by language. This is 
more visible in multicultural classes in schools that host migrants of different 
nationalities, but also in post-colonial countries such as Algeria, where history, cul-
tural evolution and external and internal power influences have a direct influence on 
the school system.

2 Sarah Inés González de Lora Sued was unable to take part in the panel for health reasons. 
However, she provided a text, which appears in this chapter.
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How do we deal with such phenomena? The globalisation of school mathemat-
ics, which aims to unify the curricula in countries that have different cultural and 
linguistic backgrounds, and the assumption that learners have to submit to a coun-
try’s dominant language, have been shown to have their limitations. From a different 
perspective, Usiskin (1992) claims that differences provide the best situation for 
curriculum development and implementation. Gorgorió and Planas (2001) point out 
that if language is the main carrier of a culture, then the ‘language of the mathemat-
ics class’ conveys the culture of the classroom as a social group doing mathematics, 
along with its norms and legitimate roles.

For teachers, this clearly represents a challenge, particularly for those who teach 
in a traditional, transmissible way. Most teachers presume that the ‘normal’ learning 
context is a monolingual classroom, that learners know the ‘norms’ of the school 
(which are usually shaped by the dominant culture) and that children already master 
the language of instruction. Given this situation, teachers should acknowledge the 
relevance of the issues related to cultural and linguistic diversity, understand how 
they influence the learning process and manage them to scaffold the children’s 
learning in an effective way. In particular, teachers should be able to identify the 
possible difficulties that children experience when learning numbers in a language 
different from their mother tongue and to create opportunities to turn these difficul-
ties into advantages. Moreover, I share the view of Gorgorió and Planas (2001) who 
believe that there is no classroom in which linguistic capital is equitably distributed. 
As a consequence, what may appear as an extremely ‘different’ setting not relevant 
for mainstream practice may be relevant for communication issues in all 
classrooms.

Further research is needed to clarify how mathematical language can be taught 
and to investigate the relationships among the ‘language of the mathematics class’, 
mathematical language and the process of construction of mathematical knowledge 
(Gorgorió and Planas, 2001). However, some elements and insights can already be 
provided to address the question of how teachers can concretely develop their task 
designs for basic notions of arithmetic by taking the linguistic characteristics and 
cultural roots of numbers into account. Some answers may be suggested by the 
analysis of the situation.

15.2.2  �Number Naming, Place Value and Decimal Position 
System

It is not unusual for a language to have irregularities in regard to number naming, 
and these irregularities are not the same in different languages. In Europe, for 
instance, every language possesses its own number naming system with its own set 
of irregularities. For example, similar to French, Spanish and Italian, the numbers 
between 13 and 19 in English have names that position the lowest place value digit 
first, in contradiction to the written form, which goes from left to right according to 
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the decreasing place value of digits and the other spoken numbers. Moreover, 
although in English the word ‘ten’ is nearly present in thirteen (13) to nineteen (19) 
as in Italian, this is not the case in French where ‘ten’ (‘dix’) does not appear in the 
numbers 12 to 16 (e.g. quatorze 14, seize 16), although 17 is pronounced ‘dix-
sept’). In Arabic, the numbers from 11 to 99 are pronounced from the lowest place 
value digit to the highest and are in complete correspondence with the written form, 
which is presented from right to left. In Danish, seventy is named halvfjerds, which 
is a short for halvfjerd-sinds-tyve, meaning “fourth half times twenty”, or “three 
score plus half of the fourth score” [3½ * 20]. Moreover, as in German, there is no 
correspondence between the written and spoken forms for the numbers from 13 to 
99, which are pronounced from the lowest place value digit to the highest. In French, 
the numbers between 81 and 99 are expressed as ‘four-twenty’ plus a number 
between 1 and 19. Traces of the contamination between different languages and the 
historical roots in old number systems can be detected in these irregularities and 
differences. However, irregularities, in the same oral language or when shifting 
from one language to another, may be a source of difficulty for children. Research 
suggests that in some Asian countries, Asian speaking children perform better with 
place value, counting and decimal system tasks due to their regular number naming 
systems (Miura et al. 1994). Nonetheless, irregularities and differences also provide 
students (under the guidance of the teacher) with opportunities to notice important 
characteristics of the decimal position system of writing of numbers, such as the 
position value of digits and reflect on them. For instance, with reference to the 
above examples, the teacher may exploit the differences between the irregular forms 
of spoken numbers within the same language (in the case of most European lan-
guages) and between how numbers are spoken in one language and another.

The case of Algeria is interesting. About 10 years ago, a political decision was 
made to write formulas and symbols from left to right with the Latin alphabet (in the 
past they were written from right to left with the Arabic alphabet) when teaching 
mathematics at all levels, while maintaining comments and names in classical 
Arabic (from right to left). This change has subsequently influenced how children 
conceive, understand and learn arithmetic. Thus, teachers should use this as an 
opportunity to allow children to realise that mathematics is not separate from cul-
ture and language and to understand that its evolution is also affected by the histori-
cal and political dynamics.

15.2.3  �Mathematics Register

As defined by Halliday & Hasan (1985), the mathematical register records how 
everyday language is used in new ways to serve the meanings of mathematical 
words, even though words such as ‘double, less, more’ may have different meanings 
in ordinary language from those in mathematics. These differences may have 
resulted in some children failing to solve problems caused by misunderstanding the 
text. For example, in Arabic, the verb used to express the multiplication operation is 
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to ‘beat’ (thus scaring the children), that is, ‘we multiply 2 by 4’ is ‘we beat 2 to 4’. 
In English, expressions such as ‘twice as much as’ or ‘twice as less as’ may sound 
ambiguous. Accordingly, children need to learn the language patterns associated 
with these words, how to construct concepts in mathematics and the implicit logical 
relationships, because when children construct mathematics concepts in everyday 
language, the relationships they come up with are often technically incorrect. 
Learning mathematics and the language of mathematics, that is, the mathematics 
register, is a challenge for all children. Teachers can facilitate the learning process 
by using the mathematical register effectively and working to build language in 
deliberate ways, moving from everyday to technical linguistic expressions of math-
ematical knowledge and using spoken language, reading and writing. If learners 
have difficulties in verbalising a mathematical process, the teacher can promote 
mathematical thinking by using their mother language to tackle mathematical prob-
lems (Adler 1997). Thus, it is highly recommended that teachers have some knowl-
edge about their learners’ languages and consider the norms and contexts in which 
words are used. Teachers should aim to develop the mathematics register in the 
languages in which the children are instructed. However, until this is done, teachers 
need to face and overcome the difficulties in translating mathematics concepts into 
students’ home languages (Schleppegrell 2007).

15.3  �From the Number Line to the Productive Dialogue 
Between Different Cultural Traditions: Italy and China

Maria G. Bartolini Bussi

15.3.1  �The Number Line

The number line is a very popular teaching aid (Bartolini Bussi 2015; Electronic 
Supplementary Material: Bartolini Bussi 2017). Italian teachers can find specific 
references to the number line in the standards (MIUR 2012) for the mathematics 
curriculum. To begin with, the number line comprises whole numbers and it is then 
expanded to contain rational numbers. The following goals are stated at the end of 
the third grade (the first time the goals are explicitly listed):

To read and write whole numbers in base ten, being aware of the place value; to compare 
and to order them, representing them on the number line. (p. 61)

To read, write and compare decimal numbers, to represent them on the number line …. 
(p. 61)

The goals are summarised and reinforced at the end of primary school (fifth grade):

To represent the known numbers on the line and to use graduated scales in contexts that are 
meaningful for science and technique. (p. 62)
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The last goal hints at a possible use of the number line as a modelling tool. A similar 
use is stated in the history curriculum, where, at the end of primary school (fifth 
grade), the following goal is stated:

To use the timeline to organize information, pieces of knowledge, periods and to detect 
sequences of events, concurrent events, duration of events. (p. 53)

The representation of numbers on a line is emphasised (at all levels) in the frame-
work for the national assessment in mathematics (INVALSI 2012).

The general approach to the mathematics curriculum in Italy is stated in the pro-
grammes (MIUR 1985) for primary school:

The development of the concept of whole numbers must be roused exploiting the previous 
experience of students, like counting and recognizing numerical symbols in play and in 
family and social life. It is advisable to consider that the idea of whole number is complex 
and requires a multifaceted approach (order, cardinality, measuring, …); it is acquired at 
higher and higher levels of internalisation and abstraction during primary school and 
beyond.

This idea is widely shared and has been confirmed in other curriculum documents 
(e.g. MIUR-UMI 2001), which have strongly influenced the elaboration of the more 
recent standards (e.g. MIUR 2012).

In the number line, order and measuring are in the foreground. However, the 
other properties of whole numbers (e.g. cardinality, place value representation) are 
not supported by the number line and must be taught independently. This choice is 
consistent with a multifaceted approach in which different routes are explored in 
parallel to develop a complex concept of whole numbers.

In contrast, as argued by Sun (2015), the Chinese tradition of whole number 
arithmetic appears to place less emphasis on the number line and to foreground 
other properties of whole numbers (e.g. the part-part-whole and associative law) in 
constructing a consistent teaching path in which these properties are pursued in a 
systematic way, step by step and without deflection.

15.3.2  �The Dialogue Between Cultures:  
Towards Cultural Transposition

The panel discussion on the number line is a paradigmatic example of the process 
that occurs when scholars from different cultural backgrounds engage in a true dia-
logue. The point is not to determine the best, ‘universal’ choice but to understand 
how and why the mathematics curriculum was developed in one’s own context. 
Jullien (1996) stated that, ‘every thought, when coming towards the other, questions 
itself about its own unthought’ (p. iii). In this sense, noticing the different approaches 
used in Italy and China serves as a prompt to start a cultural analysis of the content 
(Boero and Guala 2008). Cultural artefacts, when carefully analysed, reveal a lot of 
things about the culture that has produced them. To implement activities by using 
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cultural artefacts in a different culture, it is necessary to enter a process of cultural 
transposition, where:

the different cultural backgrounds generate possibilities of meaning and of mathematics 
education perspectives, that, in turn, organize the contexts and school mathematics prac-
tices in different ways. (Mellone and Ramploud 2015, p. 578)

15.3.3  �Examples of Cultural Transposition

The first example concerns the use of counting rods for the development of place 
value. Some years ago, we analysed some Chinese textbooks for the first grade and 
noticed the use of counting rods and bundles of rods to link numbers and quantities. 
The book for the first semester of the first grade comprised 120 pages (from 
September 1 to the end of January). After having presented the numbers from 1 to 
10 together with addition, subtraction and word problems, the numbers between 10 
and 20 were introduced. On p. 85, the following activity was presented (Fig. 15.1). 
This was the first activity in which numbers with two digits (from 11) were 
introduced.

The teacher says: ‘First count ten little rods and bind them to get one bundle. 
How can you go on counting?’ The boy answers: ‘To combine together one ten and 
one, it is ten-one‘. The right classifier is always used: 个(gè) for rods and 捆(kǔn) 
for bundles; 个(gè) again for one and for ten, which is the origin of place value (this 
volume, Chap. 3).

The process is supposed to be very fast, as if the student is able to produce the 
right name without any help from the teacher. This natural process is possible in 
China, because the way of recognising numbers in Chinese is part of everyday expe-
rience and completely transparent in relation to the place value (this volume, 
Chap. 3). No specific teaching processes are needed in school. In contrast, a specific 
teaching process is needed to design school practices in other languages/cultures. 
For instance, the names of numbers in Italian are irregular and not transparent, and 
hence it is not possible for a student to name a number with one bundle and one rod 
(‘undici’ in Italian, ‘eleven’ in English). It is necessary to plan two parallel pro-
cesses before linking the rod and bundle representations to the names and the sym-
bols in which the bundles are bound to construct the concept of ten as a higher order 
unit, and the Italian names for the numbers are learnt. Only later is it possible to link 
these processes to one another. Thus, more instruction time is needed than in the 
Chinese classroom.

An Italian teacher, Bruna Villa, produced another example of cultural transposi-
tion in the same content (see this chapter Sect. 15.1.1.1; Electronic Supplementary 
Material: Arzarello 2017). She also introduced two parallel processes. At the begin-
ning of the first grade, the teacher told a fairy tale of a small Chinese dragon who 
was visiting the classroom to teach the children how to say numbers. Hence, the 
students learnt to say the numbers in two ways:
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The completely regular Chinese-like names: 11 is ten-one; 21 is two ten-one.
The Italian irregular names: 11 is ‘undici’, that is, ‘eleven’; 21 is ‘ventuno’, that is, 

‘twentyone’.

The teacher evoked the images of two imaginary characters, the ‘small Chinese 
dragon’ (with narratives, drawings and even hats to wear when acting as a dragon) and 
the ‘mom’, representing the (Italian) adult voice from the students’ everyday experi-
ence, for some months to avoid ambiguity and help the students to make sense of the 
experience. In this way, the teacher succeeded in teaching place value in an exciting 
but robust way while introducing some ideas about different cultural contexts.

Another example concerns the planned transposition to Italian classrooms of the 
word problem of cakes observed in the first grade of the Hou Kong School (this 
volume, Chap. 11). In this case, the task draws on Chinese practice to consider a 
number as a system of part-part-wholes in different ways (a variation of the ‘one 
problem, multiple solutions’ (OPMS) approach, Sun (2011)). Italian students are 
not accustomed to these kinds of tasks, hence the cultural transposition to Italian 
classes requires additional tasks to be introduced in parallel to the existing ones.

There are other examples of variation problems (e.g. Bartolini Bussi et al. 2013). 
After being examined in pilot studies, some curriculum material has been developed 
in Italy (see the Italian project PerContare, this volume, Chap. 7) in which the cul-
tural analysis has been made explicit for teachers. This is a possible answer to the 
last question posed to the panel, namely, where do the ‘traditional‘activities of dif-

Fig. 15.1  The introduction of tens in the Chinese textbook (Mathematics Textbook Developer 
Group for Elementary School, 2005)
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ferent cultural traditions come from? We were able to exploit the cultural transposi-
tion because the Italian standards leave some freedom for teachers to conduct pilot 
experiments. My questions are now: Is it possible to conduct pilot experiments in 
China that exploit new activities? And how can cultural differences be incorporated 
into the established approach, which is mainly based on textbooks with fixed con-
tent for each lesson?

15.4  �The Role of Using the Cultural Roots of Numbers 
and Artefacts for Children Learning Whole Number 
Arithmetic in Latin America

Sarah Inés González de Lora Sued

15.4.1  �The Design of Learning Tasks for Arithmetic Based 
on the Linguistic and Cultural Roots of Numbers

Most of the time, whole number arithmetic learning is not related to the reality in 
which children live, because the design of the learning tasks is divorced from the 
local cultural environment. Referring to the weak relationship between culture and 
mathematics in the classrooms, D’Ambrosio (2001) stated that:

when teachers do acknowledge a connection between mathematics and culture often they 
engage their students in multicultural activities merely as a curiosity. Such activities usually 
refer to a culture’s past and to cultures that are very remote from that of the children in the 
class. (p. 308)

And he also pointed out:

As our students experience multicultural mathematical activities that reflect the knowledge 
and behaviors of people from diverse cultural environments, they not only may learn to 
value the mathematics but, just as important, may develop a greater respect for those who 
are different from themselves. (p. 308)

However, when mathematics, and whole number arithmetic in particular, is pre-
sented to students using examples that are a lively part of their culture (e.g. by 
introducing mathematical concepts and procedures through problematic situations 
drawn from their reality), the concepts become meaningful to them.

D’Ambrosio stresses that:

We can help students realize their full mathematical potential by acknowledging the impor-
tance of culture to the identity of the child and how culture affects how children think and 
learn. We must teach children to value diversity in the mathematics classroom and to under-
stand both the influence that culture has on mathematics and how this influence results in 
different ways in which mathematics is used and communicated. We gain such an under-
standing through the study of Ethnomathematics. (p. 308)
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Moreover, if whole number arithmetic is taught in isolation from the culture of seg-
regated populations, such as the many indigenous populations of Latin America, the 
situation becomes more complex. In the 2013 report ‘Intercultural citizenship: 
Contributions from the political participation of indigenous peoples in Latin 
America’, the United Nations Development Programme (UNDP) indicated that 
there are approximately 50 million indigenous people in Latin America, about 10% 
of the total population. However, in countries such as Peru and Guatemala, indige-
nous people account for almost half of population, while in Bolivia they comprise 
over 60% of the total population. These indigenous peoples speak their own lan-
guages and many are marginalised because they do not speak Spanish. These cul-
tures also have their own ways of conceptualising whole numbers. Many studies 
have been conducted on the mathematics of indigenous Latin American cultures. To 
teach the children of these populations, teachers need to be able to understand these 
mathematical approaches to whole number arithmetic. In the case of Guatemala, by 
law, all children must be taught using the Mayan number system and the base 10 
system.

15.4.2  �Numbers and Words

Table 15.1 lists the names of the numbers from 1 to 20 in Mayan, Quechua Collao 
and Spanish. The fourth column lists the Latin words from where the Spanish names 
proceed, according to the Real Academy of the Spanish Language. It is interesting 
to note the patterns in the table. For example, from 1 to 10, the names within each 
language do not have any relationships among them. For Mayan numbers, this is 
also the case for numbers 11 and 12. However, from 13 to 19, the names are com-
posite words of the names 3 to 9 and the name of 10 (lahun). In the case of Quechua 
Collao, from 11 to 19, the names are composite words with the name of 10, 
‘Chunka’, the names of the numbers from 1 to 9 and the word ‘niyuk’. In this case, 
the word for 10 comes first. In the case of Spanish names, from 11 to 15, the rela-
tionships between the names and the numbers are not clear. However, when you see 
the Latin roots of the words, as described in the dictionary of the Real Academy of 
Spanish Language, it seems the meaning is ‘one and ten’ for 11, ‘two and ten’ for 
12, and so on. The dictionary of the Real Academy of Spanish Language does not 
include the roots of numbers 16 to 19 but their meaning is clearer and easier for 
children to understand (ten and six, ten and seven, and so on).

Moreover, in Quechua Callao, 30 is kimsa chunka, 40 tawa chunka, 50 pichqa 
chunka and so on, which can be interpreted as having the multiplicative meanings 
of three times ten, four times ten and so on. In Spanish, 30 is treinta and its Latin 
root is triginta, 40 is cuarenta and its Latin root is quadraginta, 50 is cincuenta and 
its Latin root is quinquaginta and so on with the same meaning. It seems that it 
would be easier for Quechua Collao children to learn the names of numbers from 
the patterns of the names.
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15.4.3  �The Role of Semiotic Representation in Learning Whole 
Number Arithmetic

Radford (2014) discussed the influence of representation and artefacts on knowing 
and learning, indicating that:

the problem of the epistemic and cognitive role of tools and signs continues to haunt us—
perhaps now more than ever by virtue of the unprecedented technological dimensions of 
contemporary life. And so here we are still trying to make sense of how we think and learn 
with and through signs and artefacts. We assume that interaction with reality plays a crucial 
role in learning. Meanings constructed from one’s experience lead to a deeper understand-
ing of theoretical constructions. From this perspective, human perception and action and, 
more generally, interaction with artefacts, are of crucial importance for learning and doing 
mathematics. (p. 406)

Arzarello et al. (2005) pointed out:

The embodied point of view of our ‘acting is learning’ stresses the importance of relating 
action and language to mental activity. Although such a claim is widely acknowledged from 
a theoretical point of view, our provocation consists in fostering its transposition in school 
practice. (p. 56)

In the Dominican Republic, for example, the use of concrete manipulatives, such as 
base-ten blocks and Cuisenaire rods, for learning whole numbers was only 

Table 15.1  Some pre-Columbian names of numbers

Mayan names of 
numbers Quechua Collao Spanish Latin root

1 Hun Huk Uno Unus

2 Caa Iskay Dos Duo

3 Ox Kimsa Tres Tres

4 Can Tawa Cuatro Quattuor

5 Hoo Pichqa Cinco Quinque

6 Uac Suqta Seis Sex

7 Uuc Qanchis Siete Septem

8 Uaxac Pusaq Ocho Octo

9 Bolon Isqun Nueve Novem

10 Lahun Chunka Diez Decem

11 Buluc Chunka hukniyuq Once Undecim

12 Lahca Chunka iskayniyuk Doce Duodecim

13 Oxlahun Chunka kimsaniyuk Trece Tredecim

14 Canlahun Chunka tawaniyuk Catorce Quattuordecim

15 Hoolahun Chunka pichqaniyuk Quince Quindecim

16 Uaclahun Chunka suqtaniyuk Dieciseis

17 Uuclahun Chunka qanchisniyuk Diecisiete

18 Uaxaclahun Chunka pusaqniyuk Diecioho

19 Bolonlahun Chunka isqunniyuk Diecinueve

20 Hun Kal Iskay chunka Veinte Viginti
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introduced in public schools around two decades ago (85% of schools in the coun-
try). This approach has been shown to motivate students and teachers to represent 
number concepts and operations and has produced higher levels of achievement 
when accompanied with teachers’ professional development activities (González 
et al. 2015). In the case of Peruvian indigenous children, the use of the Yupana, an 
artefact used by the quipucamayos (accounting people in the Inca Empire), is more 
appropriate because it is grounded in their culture. There are several hypotheses 
with respect to how the Yupana was used by the Incas. Based on the hypothesis of 
Willliam Burns, in the 1980s Martha Villavicencio Ubillús (1990) developed a 
methodological sequence for the comprehensive learning of the decimal numeration 
system and the algorithms of the basic operations using the Yupana, which was first 
applied in the bilingual education experimental project of the Puno and is now used 
widely in bilingual schools in Perú. There are also technological applications for 
children to simulate arithmetic operations using the Yupana through computers, 
cellphones and tablets (Rojas-Gamarra and Stepanova 2015).

15.5  �Chinese Arithmetic Tradition and Its Influence 
on the Current Curriculum3

Xu Hua  Sun

15.5.1  �Chinese Arithmetic Tradition

The ancient Chinese called mathematics arithmetic (算術 an art of computation), 
which possibly reflects China‘s long history and tradition of arithmetic. It is inter-
esting to note that the Chinese traditional approach to whole numbers was mainly 
cardinal rather than ordinal. Ordinal numbers are formed by adding 第 dì (‘sequence‘) 
before the number. The Chinese use cardinal numbers in certain situations in which 
English and other Western languages use ordinals. For example, whereas a person 
lives on the fourth floor in a building in English, in Chinese, it is said the person 
lives on four floor, not the fourth floor. In Chinese, the 20th of July is expressed as 
20 July.

Figure 15.2 shows the world‘s earliest decimal multiplication table. Made from 
bamboo slips, the table dates from 305 BCE, during the Warring States period in 
China. Place value is the most overarching principle used in Chinese numerals and 
calculation tools (counting rods and the Chinese abacus), which could provide 
advantages as a regular system (foundation) for whole arithmetic/algebra 
development.

3 This study was  supported by Research Committee, University of  Macau, Macao, China 
(MYRG2015–00203-FED). The opinions expressed in the article are those of the author.
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The Chinese term for mathematics is shuxue (數學) or suanxue (算學), which 
mean research on number or computation. Geometry was not included in the 
Chinese mathematics school curriculum until Euclid’s Elements was introduced in 
the seventeenth century by Matteo Ricci (1552–1610) and Guangqi Xu (徐光啟)). 
The Elements mirrored the Chinese calculation tradition and was derived from the 
local world view. The ancient Chinese believed that the only way of knowing the 
world is through calculation, which is reflected in the I Ching (易經) in general. 
This is also expressed in the following quotation from the preface of Sunzi Suanjing 
(孫子算經):

Calculation is the whole of heaven and earth, the origins of all life, the beginning and end 
of all laws, father and mother of yin-yang, the beginning of all stars, the inner and outer of 
three lights, the standards of five elements, the beginning of four seasons, the origins of ten 
thousands matters, and the general principles of six arts. (Lam and Ang 2004, p. 29)

Fig. 15.2  The world’s 
earliest decimal 
multiplication table
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Shushu Jiyi (數術記遺) (the first Chinese book – 220 CE – about calculation and its 
tools) systematically recorded 14 calculation approaches and 13 calculation tools. 
Among them, only bead calculation and base two (related to the computer) calcula-
tion have been handed down to today. All mathematics books are based on the deci-
mal place number system, in which place value is the most overarching principle 
used in Chinese numerals and calculation tools (this volume, Chap. 3).

15.5.2  �The Chinese Arithmetic Curriculum

Chinese mathematics education is famous for its stable basic education (Zhang 
2006). The number line is rarely used in the Chinese curriculum, which may reflect 
some cultural trends in understanding number in China (Sun 2015).

The cardinal approach to whole numbers is embedded in the suàn pán (算盘, this 
volume, Chap. 9). The current Chinese curriculum standards mention suàn pán as a 
traditional tool for representing place value.4 Bead calculation is not required, 
although some books for students are available. However, the spike abacus (which 
is similar to the suàn pán) is widely used in the current curriculum as a heritage item 
(Fig. 15.3).

4 http://www.pep.com.cn/xxsx/jszx/xskcbj/201202/t20120224_1103348.htm

Fig. 15.3  Spike abacus with rods in a Chinese textbook (Mathematics Textbook Developer Group 
for Elementary School, 2005)

F. Arzarello et al.
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It is worth noting that the Chinese curriculum aims to develop a system of 
numerative reasoning at an early stage. In addition to being closely related, implicit 
connections are made between the three concepts of addition, subtraction and num-
ber and the inverse relation between addition and subtraction (a −  b  =  c equals 
a = b + c). The authors of Chinese textbooks link the concept of subtraction to that 
of addition even in the first calculation lesson (Sun 2011). Figure 15.4 shows the 
paradigmatic example of 1 + 2 = 3, 3 – 1 = 2 (Mathematics Textbook Developer 
Group for Elementary School 2005, pp. 20–21). The aim of the problem is to help 
learners understand the relationship between addition and subtraction and the mean-
ing of ‘equal’. The prototypical example from the Chinese textbook is an example 
of a variation problem. Further details of variation problems can be found in this 
volume (Chap. 11).

Chinese curriculum developers have connected the three core concepts of addi-
tion, subtraction and number in all of the chapters on addition and subtraction using 
the following explicit principles:

	1.	 Adding one into a number obtains its adjacent number.
	2.	 Subtracting one from the adjacent number gives the original number again.

This approach not only promotes rote counting and memorising but also reason-
ing. In contrast, in many Western curricula, the ideas of number, addition and sub-
traction are presented in separate chapters, isolated from one another.

Drawing on 1 + 2 = 3; 3 – 1 = 2 (Fig. 15.4), Chinese curriculum designers also 
aim to elicit a similar property for tens and thousands (Fig. 15.5).

1ten + 2tens = 3tens; 3tens – 1ten = 2tens.
1thousand + 2thousands = 3thousands; 3thousands – 1thousand = 2thousands.

This kind of inductive generalisation is widely used in the Chinese curriculum 
(Sun 2016a, b) and represents a further example of the variation problem from units 
to tens to thousands (Mathematics Textbook Developer Group for Elementary 
School 2005).

Fig. 15.4  Addition and subtraction with concept connection in a Chinese textbook (Mathematics 
Textbook Developer Group for Elementary School, 2005, vol. 1)

15  Tradition in Whole Number Arithmetic



362

The Chinese curriculum for teaching number avoids counting as much as possi-
ble and is, therefore, different from the Western style of number teaching. The 
curriculum highlights the approach of composition/decomposition, which may have 
been inherited from ancient bead calculation. The approach is used seven times with 
1–10 (decomposition of 4, 5, 6, 7, 8, 9, 10 in 7 lessons) in the Chinese curriculum 
(Sun 2013), which implicitly forms a core practice for learning number (Sun 2015). 
This approach aims to develop an implicit understanding of the associative and 
commutative laws, number properties and foundation of addition/subtraction opera-
tional flexibility. The partitions of ten are intensely studied, and numbers such as 12 
are thought of from the beginning as one ten and two ones. The number names in 
Chinese are consistent with this method (for details see Chap. 3). The emphasis on 
partitioning and regrouping lends itself naturally to written algorithms.

The speed and accuracy of oral calculation are important requirements in the 
assessment of the Chinese curriculum standards. Great importance is traditionally 
attached to calculation because whole number is considered to be ‘the first founda-
tion of the whole subject’ (Elementary Mathematics Department 2005, p. 1). This 
statement is consistent with the current Chinese curriculum standards, which state 
that:

Oral calculation is the basis for learning mathematics. It should have very important influ-
ence on students’ basic written calculation capacity. Its training can help students develop 
capability of observation, capability of comprehensive thinking, capability of creativity, 
and capability of reaction.

Fig. 15.5  From units to tens (the left) and thousands (the right) in the Chinese textbook 
(Mathematics Textbook Developer Group for Elementary School, 2005)
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This heavy emphasis on calculation skills is reflected in the higher requirements for 
speed and accuracy in oral (mental) and paper-and-pencil calculations. For exam-
ple, addition and subtraction between 1 and 20 should be completed at 8–10 opera-
tions per minute and from 20–100 at 3–4 per minute, whereas multiplication within 
1–10 should be conducted as a rate of 3–4 per minute and two-digit multiplication 
at 1–2 per minute, all with 90% accuracy.

Chinese mathematics evolved in relation to the problems of land measurement, 
commercial trade, architecture, government records and taxes. The systematic word 
problems in the current curriculum include simple and complex problems called 
variation problems. These problems aim to deepen the concept connections and oper-
ations and increase flexibility (举一反三) (e.g. Bartolini Bussi et al. 2013; Sun 2011, 
2016a, b). Further discussion of the variation problem can be found in Chap. 11.

15.5.3  �Concluding Remarks

This brief presentation has highlighted the significant differences between the 
Chinese and Western curricula (in the USA and Europe) inherited from tradition. 
Further details on this topic can be found in this volume (Chap. 3). The aim of this 
contribution is to start a dialogue between cultures. Bartolini Bussi, Sun and 
Ramploud (2013) have argued that the goal of a true dialogue between scholars with 
different cultural backgrounds is not to determine the best ‘universal’ choice but to 
understand the development of one’s own mathematics curriculum, which is helpful 
for questioning the unthought characteristics of the educational context.

15.6  �Discussion

Man Keung Siu

15.6.1  �Introduction

Most of the speakers on this panel have talked about the linguistic and cultural char-
acteristics of the topic. As a mathematician, I will try to supplement the discussion 
by focusing more on the mathematical context. First, let me sketch a general frame-
work of the teaching and learning of mathematics.

We begin with a world ‘without mathematics’. This statement is to be taken with 
a grain of salt because mathematics is everywhere in our world and comes up fre-
quently and unavoidably in our daily lives, perhaps even without our noticing it. You 
would know what I mean by that if you put yourself in the shoes of an infant who 
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knows no ‘formal mathematics’. Later, we come to see the world after learning 
some elementary mathematics and forming the ideas of mathematical objects, 
notions, theories and techniques. Then we come to understand more ‘formal’ math-
ematical concepts as we refine our ideas of these mathematical objects, notions, 
theories and techniques. This is what Bill Barton labels NUC (near-universal con-
ventional) mathematics (see also Sect. 15.1.1.1). Finally, we try to apply the math-
ematics we have acquired to solve different kinds of problems. In some senses, 
NUC is culturally independent. However, when teaching mathematics, cultural 
transposition (as discussed in Sect. 15.3.2) is also a helpful concept.

Relatively few basic concepts are learnt in primary and secondary school, and 
these basic concepts come up time and again throughout a child‘s primary, sec-
ondary and even undergraduate education. Thus, I would like to extend the scope 
of whole number arithmetic and talk about other number systems. Here, my inter-
vention is connected to the discussion of the Davydov approach in this volume 
(Chap. 19).

15.6.2  �Numbers

Let us begin with the notion of the number tree that often appears in school text-
books. Recalling our own learning experience, we can see that the concept of the 
number system is not presented in such a neatly packaged way in one stroke but is 
acquired in a vague and spiral fashion. Personally, I had been using the real numbers 
without much effort for many years in my secondary school days, but I did not know 
(and was not even aware that I did not know!) what real numbers were until I studied 
the subject as an undergraduate, and only gained a sufficient understanding when I 
came to teach mathematics as a young PhD student. The same process occurred in 
history as mankind went through the process of acquiring knowledge. Thus, it is 
likely that the number tree reveals itself in stages from kindergarten to primary 
school to secondary school to university as depicted below (Fig. 15.6).

The French mathematician Joseph-Louis Lagrange (1736–1813) referred to 
arithmetic and geometry as ‘the wings of mathematics’. Another French mathemati-
cian, Henri Poincaré (1854–1912), commented on the construction of the real num-
ber system:

If arithmetic had remained free from all intermixture with geometry, it would never have 
known anything but the whole number. It was in order to adapt itself to the requirements of 
geometry that it discovered something else. (Poincaré 2003, p. 135)
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15.6.3  �The Chinese Translation of Euclid’s Elements

Here, I will try to address the issues raised by the other panellists about arithmetic 
and geometry. The panellists mentioned the discrete/continuous and algebraic/geo-
metric characteristics of the number system and asked why the number line does not 
feature as prominently in the Chinese classroom as in the Western classroom. What 
M. Bartolini Bussi (Sect. 15.3) has in mind is the discrete number line, but allow me 
to extend the discussion to the real number line.

When the Ming official scholar Xu Guang-qi (徐光啟1562–1633) collaborated 
with the Italian Jesuit Matteo Ricci (利瑪竇1552–1610) in translating Euclid’s 
Elements into Chinese at the beginning of the seventeenth century, the title of the 
book was set as Jihe Yuanben (幾何原本literally ‘source of quantities’). ‘Jihe’ is 
now the modern translation in Chinese of the term ‘geometry’. Some people assume 
that this translation arose as a transliteration of the Greek word ‘geometria’. There 

Fig. 15.6  Different number systems
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are ample reasons to refute this assumption. Indeed, the Chinese translation of 
Book V of Elements makes it clear that ‘jihe’ is used as a translation of a technical 
term for magnitude, while its connotation for Xu Guang-qi is the term ‘how much 
or how many’ that appears frequently in ancient Chinese mathematical classics (Siu 
2011). Thus, from the beginning, Xu Guang-qi noticed the significance of magni-
tude in Western mathematics and the metric nature of Euclidean geometry, so much 
so that he selected this term and incorporated it as part of the title of the translated 
text.

15.6.4  �Jiuzhang Suanshu (九章算術 Nine Chapters 
on the Mathematical Art)

In the ancient Chinese tradition, geometry and algebra, or shapes and numbers, 
were integrated. Let us look at Problem 12 in Chap. 4 of the Chinese mathematical 
classic Jiuzhang Suanshu (九章算術Nine Chapters on the Mathematical Art) com-
piled between the first century BCE and first century CE (Chemla & Guo, 2004). 
The problem states, ‘Now given an area 55,225 [square] bu. Tell: what is the side of 
the square?’ The text offers and explains an algorithm for extracting the square root. 
The following picture may explain the method more clearly (Fig. 15.7).

The text goes on to explain: ‘If there is a remainder, [the number] is called unex-
tractable, it should be defined as the side on which the square has the area of the 
shi’. It would be too much to claim that this indicates the awareness of an irrational 
number in this ancient epoch, but apparently it is the name of what is now called a 
surd. Thus, Chinese mathematicians in this ancient epoch knew about the estimate 
of the square root of an irrational number.

Let me cite another example in Jiuzhang Suanshu to show how algebra and 
geometry were integrated in the ancient Chinese mathematical tradition. Problem 
20 in Chap. 9 states, ‘Now given a square city of unknown side, with gates opening 
in the middle. 20 bu. from the north gate there is a tree, which is visible when one 
goes 14 bu. from the south gate and then 1775 bu. westward. Tell: what is the length 
of each side?’ (Fig. 15.8). In modern-day mathematical language, we can solve this 
as a quadratic equation, x2 + 34x = 71,000.

The method outlined in Jiuzhang Suanshu is an extension of the extraction of the 
square root, known as the extraction of the square root with an accompanying num-
ber (帶從開方法). Again, the following picture may explain the method more 
clearly (Fig. 15.9).

Even more interesting is the way the equation is set up in a geometric context 
(Fig. 15.10).

In offering these examples, my aim has been to let you see how algebra and 
geometry, shapes and numbers, come together in the ancient Chinese tradition. 
However, the number line does not seem to be a familiar representation in this tradi-
tion, perhaps as a result of its algorithmic nature.
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15.6.5  �Tongwen Suanzhi (同文算指)

Primary mathematics education is important and difficult. It is difficult because no 
academic subject is easy; in particular, no one subject is easier than another. 
However, there is an additional reason, in my humble opinion, why it is difficult. 
Most people are affected by this difficulty, not just the primary school teachers and 
their pupils but most people, particularly those who are parents of primary school 
pupils. However, most people think that they know what primary mathematics 
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education is and how it should be dealt with, because they were once primary school 
pupils. In other words, everybody considers themselves experts in this field! They 
do not think that they can learn from each other! As a semi-layman in this field, I am 
glad I have attended the ICMI Study 23. I have come to learn and, as the ancient 
Chinese classical text Xueji (學記) states, ‘Teaching and learning help each other 
[…] Teaching is the half of learning’. I am particularly glad to have joined the WG1 
(Chap. 5) with culture as an emphasised component, and of course tradition, the 
subject of this panel.

My presentation in WG1 (Siu 2015a, b) concerns the book Tongwen Suanzhi (同
文算指), compiled under the collaboration of the Italian Jesuit missionary Matteo 
Ricci and the Ming scholar official Li Zhi-zao (李之藻1565–1630). This book first 
transmitted into China the art of bisuan (筆算 written calculation) (Siu 2015a, b). 
The term tongwen, meaning literally ‘common cultures’, indicates a deep apprecia-
tion of the common cultural roots of mathematics despite the different mathematical 
traditions.

In the preface of Tongwen Suanzhi, Xu Guang-qi wrote that:

The origin of numbers, could it not be at the beginning of human history? Starting with one, 
ending with ten, the ten fingers symbolise them and are bent to calculate them, [numbers] 
are of unsurpassed utility! Across the five directions and myriad countries, changes in cus-

Fig. 15.9  Extraction of 
the square root with 
accompanying number
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toms are multitudinous. When it comes to calculating numbers, there are none that are not 
the same; that all possess ten fingers, there are none that are not the same.

In the preface to a reprinting of Matteo Ricci’s Tianzhu Shiyi (天主實義The True 
Meaning of the Lord of Heaven), Li Zhi-zao wrote: ‘Across the seas of the East and 
the West the mind and reasoning are the same [tong]. The difference lies only in the 
language and the writing’.

15.7  �Conclusion

The quotation from Li Zhi-zao that concludes the previous section deeply illustrates 
the rationale and problems of teaching/learning whole numbers in primary school. 
In fact, language and writing incorporate different cultural meanings according to 
which numbers are processed and conceived in different cultures. This is further 
reflected in the ways in which representations are used and interpreted in different 
cultural environments.

Many basic concepts of mathematics and whole numbers show the dramatic 
duality between mathematics as a universal language and its specific features of 
enculturation. The contributions from this panel widely illustrate this point.
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Fig. 15.10  Setting up a quadratic equation in a geometric context
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This situation poses a great didactic challenge, which has the flavour of a para-
dox. On the one hand, the abstract universal concepts of mathematics are the goals 
of teaching and learning, but on the other hand, this goal can only be achieved by 
dealing with the concrete ways in which the concepts have been shaped by specific 
cultural tools, from oral and written words, to a variety of forms of representation 
(drawings, bodily expressions, etc.). This challenge constitutes the fascinating main 
feature of our work as mathematics educators and makes conducting research on 
this problem worthwhile.

Acquiring new knowledge on this issue is crucial because of the great social and 
economic changes the world is now facing. In recent years, economic globalisation, 
universal technological development and the related needs for manpower skills have 
provided strong historical motivations for introducing unified standards for mathe-
matics in school. However, only a multicultural perspective allows us to consider 
the existence of different epistemological and cultural positions concerning mathe-
matics and its cultural relevance and to realise the distance of the proposed curricu-
lar reforms from the mathematical cultures of different countries. It is important to 
base any teaching programme on its relationships with the cultures of the students 
and the personal contributions that they bring to the classroom. This will help avoid 
alienating the students from their cultural environment and allow them to engage in 
learning in a productive way.

The contributions of this panel pinpoint the crucial issues that need to be 
addressed to avoid the dangers of both the cultural refusal of innovation and of cul-
tural alienation and of losing the cultural richness that exists in the different regions 
of the world.
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16.1  �General Introduction

Lieven Vershaffel

Many children have difficulties or problems with learning mathematics. While these 
difficulties or problems may occur at any stage in learners’ mathematical develop-
ment, by far the most attention of researchers and practitioners goes to the domain 
of early and elementary mathematics and, more specifically, to the domain of whole 
number arithmetic (WNA). Even though the issues of diagnosis of and instruction 
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for children with special mathematical learning needs are getting increasing research 
attention, research in this area is still lagging behind compared with other academic 
subjects such as reading. Hereafter, we list some major open questions for research 
and practice.

First, there is the terminological issue. Defining mathematical learning difficul-
ties, problems or disabilities (hereafter abbreviated as MLD) is not an easy task 
(Berch and Mazzocco 2007). Despite the solid knowledge base that has been 
achieved in this field, more substantial progress in understanding and addressing 
MLD would be facilitated by establishing agreement on consistently used terminol-
ogy and use of standardised criteria concerning the nature and seriousness of the 
disability. While certain definitions explicitly refer to a biologically based disorder, 
others emphasise the discrepancy between the child’s mathematical achievement 
and his/her general intelligence as the main criterion, and others still focus on the 
response to intervention. But the field of MLD also lacks coherence and consensus 
about what constitutes ‘mathematics’ in MLD. Within MLD research, there is a his-
tory of predominance to focus on memorisation of arithmetic facts and automatisa-
tion of arithmetic procedures. A less (neuro)psychologically dominated and more 
interdisciplinary approach might bring a broader, more coherent and balanced per-
spective that takes into account both the views about mathematics learning as arith-
metic and other equally important perspectives such as spatial and geometrical 
reasoning, mathematical relations and patterns and other forms of mathematical 
thinking with more potential towards abstraction and generalisation (Hord and Xin 
2015; Mulligan 2011). Evidently, besides children with MLD, there are also other 
children requiring special mathematics educational support, but they are not diag-
nosed as MLD, such as children with intellectual disabilities; children with audi-
tory, visual or motoric impairments; children with serious emotional and/or 
behavioural problems; or, finally, children with long-standing inappropriate instruc-
tion or environmental deprivation (De Smedt et al. 2013).

A second major concern of researchers in the field is to characterise the various 
cognitive mechanisms that are implicated in the development of MLD. Several cog-
nitive explanations for the presence of MLD have been put forward. Most of the 
available research on MLD has dealt with domain-general cognitive factors, such as 
poor working memory and difficulties with the retrieval of phonological informa-
tion of long-term memory. More recently (and against the background of findings 
from neuroimaging research), it has been proposed that MLD arises as a conse-
quence of domain-specific impairments in number sense or the ability to represent 
and manipulate numerical magnitudes (Butterworth 2005; Landerl et al. 2004). For 
example, children with MLD have particular difficulties in comparing two numeri-
cal magnitudes and in putting numbers on a number line, both of which are thought 
to measure one’s understanding of numerical magnitude. Although various cogni-
tive candidates have been put forward to explain MLD, the existing body of data is 
still in its infancy. According to Karagiannakis et al. (2014), although the field has 
witnessed the development of many classifications, no single framework or model 
can be used for a comprehensive and fine interpretation of students’ mathematical 
difficulties, not only for research purposes but also for informing mathematics edu-
cators. Starting from a multi-deficit neurocognitive approach and building on the 
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available literature, these authors have recently proposed a classification model for 
MLD describing four cognitive domains within which specific deficits may reside.

Third, initial accounts of MLD in the 1970s suggested that MLD was due to brain 
abnormalities. With the advent of modern neuroimaging techniques, researchers 
have begun to address this issue. There is converging evidence for the existence of a 
frontoparietal network that is active during number processing and arithmetic 
(Ansari 2008). Studies that examine this network in children with MLD are currently 
slowly but steadily emerging. These few studies consistently indicate that children 
with MLD have both structural and functional alterations in the above-mentioned 
frontoparietal network, particularly in the intraparietal sulcus, which is the brain 
circuitry that supports the processing of numerical magnitudes, and (pre)frontal cor-
tex, which is assumed to have an auxiliary role in the maintenance of intermediate 
mental operations in working memory. Furthermore, it has been suggested that these 
brain abnormalities in children with MLD are probably of a genetic origin, yet the 
genetic basis of MLD remains largely unknown and no genes responsible for math-
ematics (dis)abilities have been identified. Studies in the field of medical genetics 
have revealed that some disorders of a known genetic origin, such as Turner syn-
drome and 22q11 deletion syndrome, show a consistent pattern of MLD. Furthermore, 
there is some early evidence of links to autism spectrum disorders and Asperger’s.

The fourth and final issue relates to the question: what are appropriate educa-
tional interventions for children with MLD? Originally, general perceptuo-motor 
training was the dominant way of remediating learning disorders, but the effects of 
this type of training have been discounted. Interventions that target those specific 
components of mathematics with which a child with MLD has difficulty appear to 
be the most effective (Dowker 2008). Such intervention involves the assessment of 
a child’s strengths and weaknesses in mathematics, and this profile is taken as an 
input to remediate specific components of mathematical skill. However, several 
major questions remain: what is the appropriate moment to diagnose MLD and to 
start specific interventions? Do MLD children profit more from individualised inter-
ventions organised out of the regular mathematics class or do they profit more from 
being integral part of the regular mathematics class? Do these children need a spe-
cial kind of intervention or do they profit most from the same kind of instruction as 
children without MLD? More specifically, is conceptually based and constructivist-
oriented mathematics instruction also suitable for children with learning disabilities 
(Xin and Hord 2013; Xin et al. 2016)? Another issue is whether we do not have a 
blind spot when making assumptions about what children with MLD can do, rather 
than what they cannot do (Peltenburg et al. 2013). Finally, does the remedial instruc-
tion of children with MLD pay enough attention to other aspects of mathematics 
than whole number sense, such as to conceptual relationships that may develop 
from spatial reasoning? Clearly, it may not be productive to try to answer these 
major educational questions for all categories of children who have serious trouble 
with learning mathematics.

So, although the last decades have witnessed a serious growth in research into the 
diagnosis, remediation and prevention of MLD, much work remains to be done. 
Longitudinal research is needed to identify developmental precursors and to delin-
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eate developmental trajectories of MLD. The neural basis of these difficulties and 
their association with classroom performance certainly need to be further explored. 
Understanding the different characteristics of MLD at different levels – the behav-
ioural, the cognitive and the neurobiological – will inform appropriate educational 
interventions. The design and evaluation of these remedial interventions needs to be 
a priority on the agenda for future research. These interventions may not only treat 
the difficulties but also prevent them. And, finally, there is a great need to look 
beyond diagnoses and interventions that are merely focused on counting and arith-
metic to those also involve other aspects of mathematical thinking which hold more 
promise for abstraction and generalisation.

The goal of the ICMI Study 23 panel on special needs was to explore and discuss 
the above issues and challenges, with a strong emphasis on the last issue, namely, 
instructional goals and interventions for children with MLD. The panel consisted of 
four scholars with complementary specialisations in the domain of children with 
MLD and other special needs in the curricular domain of whole number arithmetic, 
namely, Anna Baccaglini-Frank (‘La Sapienza’ University, Rome, Italy), Joanne 
Mulligan (Macquarie University, Sydney, NSW, Australia), Marja van den Heuvel-
Panhuizen (Utrecht University, Utrecht, The Netherlands) and Yan Ping Xin (Purdue 
University, West Lafayette, IN, USA), complemented by one of the keynote speak-
ers of the ICMI Study 23 Conference, Prof. Brian Butterworth (University College, 
London, UK), a world-leading scholar in the domain of the (neuro)cognitive roots 
of dyscalculia and its treatment, who acted as discussant.

16.2  �Does ‘Dyscalculia’ Depend on Initial Primary School 
Instruction?1 

Anna Baccaglini-Frank

In this contribution, I address the questions of whether (1) MLD children profit 
more from individualised interventions organised out of the regular mathematics 
class or from being an integral part of the regular mathematics class; (2) these chil-
dren need a special kind of intervention or whether they profit most from the same 
kind of instruction as children without MLD; (3) the answers to the above questions 
are the same for all categories of children with MLD.

Let me start with the last question. Assuming that ‘categories of children with 
MLD’ is a well-defined construct (though I do not believe it yet is), in my opinion 
the answer is ‘no’.

First of all, for the same child, the answers may vary at different stages of his/her 
life. For example, before any diagnosis is made (and some would argue, even after), 
many would probably claim that, at least initially (and perhaps always), the child 
should be in the ‘regular’ classroom and experience conceptually based, 

1 The study was  possible thanks to  the  PerContare Project, coordinated by Fondazione ASPHI 
onlus, with the support of Compagnia di San Paolo and the operative support of Fondazione per la 
Scuola of Compagnia di San Paolo of Torino.
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constructivist-oriented instruction (to use the same terms as in questions 2 and 3). 
But what if during a whole year, or even worse a whole school cycle (5–6 years), the 
child – for a variety of reasons – does not participate in the classroom discourse 
during the mathematics hours? This can be the case, for example, if the classroom 
culture is heavily based on written language and the child has not overcome difficul-
ties related to the use of this medium, a frequent condition in cases of dyslexia. The 
child will have wasted years of his/her life, or even worse, he/she will have devel-
oped aversion for the discourse he/she failed to become a part of. Perhaps the child’s 
environment would have been more aware of his/her difficulties with written lan-
guage, if the child had spent time in a special education classroom, offering a con-
text in which participation was fostered in a more appropriate way, leading to 
experiences of participation and success in mathematics.

However, after many years of (induced or voluntary) exclusion from mathemati-
cal discourse, throughout which the child – now adolescent – has never actually 
done mathematics, is it still appropriate to place him/her in a ‘regular’ classroom 
involving constructivist-oriented instruction that heavily builds on notions our stu-
dent has never constructed? He/she will almost definitely fail mathematics for good.

On the other hand, it is possible that with an individualised remedial intervention 
that takes into account the student’s (well-known) difficulties, he/she will rapidly 
regain confidence and start participating in a mathematical discourse that uses dif-
ferent means for acquiring and producing information and that can be appreciated 
by the teacher and by all the other participants in the mathematical discourse, even 
those within the ‘regular’ classroom. Throughout my experience in helping students 
learn mathematics in different settings, I have witnessed a number of cases similar 
to the prototypical one just described.

In the example, I mentioned difficulties in using written language; however, there 
can be many other cognitive conditions, such as a difficulty to remember procedures 
or facts, difficulties in encapsulating processes, difficulties in logical reasoning and 
many others that lead to experiencing failure and eventually to exclusion from the 
mathematical discourse produced in ‘regular’ classrooms. I believe it is fundamen-
tal (for the teacher, clinician or other educator) to identify these difficulties and 
‘work around’ them, helping the student become aware of them while addressing 
and overcoming whichever ones are possible. Of course this is no trivial task and 
each student is quite different!

Returning to the last question, it also seems to be the case that, at a given point in 
time, different students can have different characteristics. For example, taking a 
cognitive perspective, it seems possible to regroup existing hypotheses on MLD into 
a fourfold model that can be used for describing students’ mathematical (cognitive) 
learning profiles (Karagiannakis et al. 2014). Studies based on this assumption are 
showing that the profiles of students with similar (or identical) low scores on math-
ematical achievement tests (also those used for diagnosing MLD) are in fact differ-
ent (Karagiannakis and Baccaglini-Frank 2014; Karagiannakis et al. 2018). In other 
words, the studies are suggesting that failure to overcome difficulties in mathemati-
cal learning, at a cognitive level, cannot always be associated with a single deficit  
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in a particular domain of the model, nor can it be considered the consequence of one 
particular finalised combination (that is the same for all students) of deficits. This 
supports the claim that looking for a cognitive characterisation of all students with 
low achievement specifically in mathematics is not necessarily a fruitful direction of 
research.

What we can (and should) ask is, ‘why do some children fail to overcome diffi-
culties in mathematical learning that others do overcome?’ Reasons may include 
students’ cognitive characteristics, as a result of ‘innate’ inclinations that are shaped 
by immersion in society (as mentioned above), students’ mathematical learning his-
tory, affective components of both the students and their teachers, teachers’ choices 
about what mathematical content to present and the means they choose (or do not 
choose) to introduce it, the way MLD is viewed within school policies and teachers’ 
perspectives, implicit or explicit assumptions on ‘what’ or ‘how much’ MLD stu-
dents can learn, etc.

I believe that research conducted by mathematics educators should address how 
to minimise failure in mathematics due to children’s individual specific learning 
characteristics, as early as possible – starting at least at the beginning of formal 
instruction (kindergarten or first grade in most countries). This is what we attempted 
to do in a 3-year project recently carried out in Italy (2011–2014). For this project, 
a team of mathematics educators and psychologists designed curricular material for 
mathematics, framed within the theories of semiotic mediation (Bartolini Bussi and 
Mariotti 2008) and embodied cognition (Gallese and Lakoff 2005), with the aim of 
providing all students (in first and second grade) with ‘hands-on’ (kinaesthetic-
tactile) experiences that involve manipulation of physical artefacts to develop math-
ematical meanings (including procedures) from these and from consequent 
mathematical discussions.

For example, to help children learn what are known in English as the ‘multiplica-
tion tables’, children were introduced to the manipulation of rectangles cut out of 
squared paper (see Sect. 7.4.2 of Chap. 7). Children learned to cut and paste these 
rectangles together to figure out unknown products. The physical procedures were 
then carried out simply by drawing (in notebooks or on the blackboard), and eventu-
ally children started to use them with no further external support, as strategies of 
mental calculation (see the example in Sect. 7.4.2 of Chap. 7). A fundamental aspect 
of the mathematical activity stemming from activities such as the ones described is 
the sharing and discussing of strategies, during which all students were invited to 
(and did!) contribute.

In the episodes shown in part 4 of the video (Electronic Supplementary Material: 
Baccaglini-Frank 2017b), the teacher has asked the children to share strategies they 
used to figure out 8 × 6, showing their procedure on the blackboard. One student has 
decided to break the segment 8 into three parts (5, 2 and 1), which for him ‘make it 
easy’ because they are numbers he knows how to count by. He then counts up by 5s 
to obtain the first piece, mentally rotates the second piece and remembers that 
6 + 6 = 12 and recognises the last piece as 1 × 6. So he finally adds 30 + 12 + 6. The 
student in general performs at an average-low level, but he was able to keep up with 
the class using the proposed activities and occasional extra practice at home. 
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Another student had decided to decompose 8 into 10 − 2 and describes her reason-
ing through ‘ghost rectangles’,2 a terminology that very quickly catches on in the 
classroom. These are rectangles that appear to make the calculation easier, but then 
they need to be taken away. She uses ghost rectangles to think of 8 as a part of 10, 
to reach the product 10 × 6 (= 60), and then subtract off 2 × 6 (= 12). In the final 
mental calculation (60 – 12), she makes a mistake: at first, she forgets to take a sec-
ond 10 from 60 and ends up with 58 instead of 48. Then, prompted by the teacher, 
she quickly corrects the mistake. Both students seem to be very much at ease when 
implicitly using the distributive property (it was not presented formally).

An important finding of the project was that working with the experimental 
materials through first and second grade significantly reduced the number of chil-
dren who could be classified as MLD by third grade (Baccaglini-Frank and Scorza 
2013; Baccaglini-Frank and Bartolini Bussi 2015; Baccaglini-Frank 2015). 
Moreover, the children exposed to the PerContare teaching-learning experience 
developed a variety of strategies for addressing different mathematical situations. In 
particular, with respect to calculation, for these children, the acquisition of numeri-
cal facts occurred with greater accuracy, variety of strategies and eventually speed. 
The ‘cost’ was a 3-month lag in fact and automatisation compared with the higher 
performing children in the control classes.

Insisting on the finding that persistent use of particular curricular materials can 
significantly reduce the number of children who tested positively for dyscalculia in 
third grade, we find an apparent contradiction with the literature claiming that 
dyscalculia is an innate deficit. Indeed, our sample of students seems to show that 
testing positively for dyscalculia can depend on initial primary school instruction, 
an extremely ‘cultural’ experience. Of course, one can solve the dilemma in a num-
ber of ways, for example by attacking the effectiveness of diagnostic test batteries 
(at least those used in Italy) or the diagnostic criteria more in general, or by speak-
ing more loosely of MLD without giving a clear definition, which indeed, unsurpris-
ingly, has not yet been agreed upon across groups of research (e.g. Mazzocco and 
Räsänen 2013).

This brings me back to my earlier plea: as educators, we should continue study-
ing why fewer students fail in mathematics when they participate in particular types 
of early mathematical experiences. Let us call these good practices. I believe that 
particular effort should be put in developing good practices and studying their effect 
with different samples of children. At this point, when a set of good practices has 
been identified, we can ask whether there are students who still fail in mathematics 
and set up studies to explore why this is the case, then possibly use such knowledge 
to further ameliorate the practices or, in parallel, develop ad hoc remedial interven-
tions. My personal belief is that it is unlikely that many students now classified as 
MLD will benefit more from individualised interventions than from whole-class 
learning situations where they make use of good practices which afford multiple 

2 This may also be seen as a pivot sign according to the Theory of Semiotic Mediation (Bartolini 
Bussi and Mariotti 2008) and was exploited as such by the teacher.
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means of participation in the mathematical discourse and which are considerate of 
the learning inclinations of all students. But of course this is yet an open question.

16.3  �Are MLD Linked to a Lack of Underlying Awareness 
of Mathematical Patterns and Relationships that Are 
More Linked to Spatial Ability than Development 
of Number? 

Joanne Mulligan

To address some of the issues articulated in the introduction of this chapter, I will 
adopt an integrated perspective, in order to provide a more coherent view of the 
underlying cognitive bases of mathematical development and MLD based on an 
awareness of mathematical ‘pattern and structure’. Rather than focusing on the 
domain of WNA, my research has focused on supporting the development of math-
ematical generalisation – through early identification of patterns and relationships 
and the development of interrelated spatial processes.

In recent years, mathematics education research has turned increasing attention 
to other research domains and interdisciplinary studies to explain and describe the 
wide variation in mathematical competence in the early years.

Studies of early mathematical competencies have largely emphasised children’s 
numerical competencies, e.g. counting, subitising, representing number, numerical 
magnitudes and positioning on an empty number line (De Smedt et al. 2013; Fias and 
Fischer 2005). Another approach has focused on children’s spontaneous focusing on 
number and quantitative relations (Hannula and Lehtinen 2005) found to be predic-
tive of later achievement. Related studies highlight the critical role of perceptual 
subitising (McDonald 2015) and the spatial structuring of groups in arrays (Starkey 
and McCandliss 2014). Neurocognitive studies (Butterworth et al. 2011) also pro-
vide complementary evidence of the connection between the development of number 
and arithmetic and spatial processes. Number concepts depend on processes such as 
subitising (the rapid and accurate perception of small numerosities), comparison of 
numerical magnitudes, location on a number line, axis differentiation and symmetry 
(e.g. Dehaene 2009). Some interventions have incorporated some of these aspects for 
students with MLD and those performing below specified benchmarks, but with a 
focus on counting and arithmetic rather than underlying mathematical attributes.

The relative influence of the various components and how they interrelate in 
mathematical development, especially for students with MLD, remains unclear. 
Moreover the influence of one or more of these components on the individual’s 
mathematical development may vary widely.

Recent developmental studies have indicated the positive impact of the early 
development of spatial skills on mathematical development (Verdine et al. 2014). 
Other studies in mathematics education highlight the sustained development of spa-
tial reasoning skills from an early age – these are malleable and can be augmented 
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over time but can weaken if not supported (Davis 2015). Spatial ability has also 
been linked to development of patterning and early algebraic skills (Clements and 
Sarama 2011; Papic et al. 2011) and the relationship with other concepts such as 
number and measurement (Mulligan et al. 2013; Mulligan et al. 2015). This raises 
critical questions about the need for differentiated teaching, assessment and inter-
vention programmes for learners with poor spatial skills, not exclusive to those 
identified with MLD.

The Australian Pattern and Structure Mathematics Awareness Project (see also 
Sect. 7.3.3 of Chap. 7) is a suite of related studies with 4–8-year-olds focused on the 
assessment of mathematical structures for children representing a wide range of 
abilities including children with MLD (Mulligan et al. 2013). These studies have 
taken into account the complexity of various components of mathematical compe-
tency by adopting a more integrated view: what are common salient features of 
early mathematical development? Does the ability to recognise patterns and struc-
tures reflect innate ability or can it be developed? Why do some children with MLD 
lack this ability? What is the role of spatial reasoning?

The project, spanning over a decade, involved the development and validation of 
an interview-based assessment instrument the Pattern and Structure Assessment – 
Early Mathematics (PASA) (Mulligan et al. 2015) and the evaluation of the Pattern 
and Structure Mathematics Awareness Program (PASMAP) (Xin et al. in press). On 
the basis of students’ PASA responses drawn from a range of studies, five levels of 
structural development were identified and described: prestructural, emergent, par-
tial, structural and advanced structural (see Mulligan et al. 2013). Students with low 
AMPS operated generally at the prestructural or emergent level: for example, they 
had difficulty subitising larger sets, recognising a unit of repeat in simple patterns or 
utilising the structural features of arrays. They were most likely to represent idio-
syncratic or superficial features in their models, drawings and explanations.

Based on early studies on patterning, counting, the numeration system and mul-
tiplicative thinking, the research focused on identifying and describing common 
characteristics, later coined as the construct Awareness of Mathematical Pattern and 
Structure (AMPS). AMPS has two interdependent components: one cognitive 
(knowledge of structure) and one meta-cognitive (a tendency to seek and analyse 
patterns). The AMPS construct involves the following structural components:

•	 Sequences: recognising a (linear) series of objects or symbols arranged in a defi-
nite order or using repetitions, i.e. repeating and growing patterns and number 
sequences.

•	 Structured counting and grouping: subitising, counting in groups, such as count-
ing by 2s or 5s or on a numeral track with the equal grouping structure recog-
nised as multiplicative.

•	 Shape and alignment: recognising structural features of two- and three-
dimensional (2D and 3D) shapes and graphical representations, constructing 
units of measure, such as colinearity (horizontal and vertical coordination), simi-
larity and congruence and such properties as equal sides, opposite and adjacent 
sides, right angles, horizontal and vertical parallel and perpendicular lines.
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•	 Equal spacing: partitioning of lengths, other 2D or 3D spaces and objects into 
equal parts, such as constructing units of measure. It is fundamental to represent-
ing fractions, scales and intervals.

•	 Partitioning: division of lengths, other 2D or 3D spaces, objects and quantities, 
into unequal or equal parts, including fractions and units of measure.

Remedial or intervention initiatives in early numeracy for students with MLD 
typically focus on number and arithmetic without paying attention to patterning and 
spatial processes. Yet increasing evidence from a number of disciplines points to 
other components contributing to numerical competence. Our studies have traced 
the early development of number and other mathematical concepts to the develop-
ment of AMPS. The PASMAP intervention studies, which examine the develop-
ment of spatial aspects of patterns and spatial structures across mathematics 
concepts, indicated that such features as differentiation of foreground/background, 
alignment (collinear or axis), unitising and equal grouping, transformation and rec-
ognition of shape and equal areas are critical to mathematical development. It was 
found that these aspects can be improved through intervention for some children 
with MLD (Mulligan et al. 2013).

The design of the PASMAP intervention takes account of the assessment (PASA) 
which measures the child’s level of AMPS; however, the programme can be utilised 
in conjunction with other assessments and intervention strategies. The PASMAP 
intervention programme was designed and trialled with students with wide-ranging 
abilities including those with MLD. PASMAP focused on five structures described 
above and is flexible in its implementation because the teacher can target specific 
mathematical structures with which a child with MLD has most difficulty. The ped-
agogy is designed to move students towards identifying similarities and differences, 
with a view to representing and abstracting core structural elements. The use of 
visual memory to record spatial representations is emphasised.

I propose that development of the various components of mathematical compe-
tence described in the literature earlier must have interrelated influences on mathe-
matical development, but there is a common underlying thread. I am not suggesting 
that components are simply amalgamated into the construct that we call AMPS. Our 
empirical evidence supports the promotion of structural features rather than empha-
sis on counting and arithmetic. Fine-grained analysis of children’s development 
over time suggests a complex network of these PASMAP components: the common 
denominator is the ability to see patterns and structural features that are essentially 
or initially spatial in nature. Hence the importance of focusing on children’s devel-
opment of structures such as grouping and partitioning, unitising, subitising, colin-
earity and benchmarking numerical magnitudes.

Conceptual relationships in mathematics depend on AMPS: spatial structuring 
and recognising patterns may provide the inextricable link between spatial and 
number development. Our recent studies have linked a measure of AMPS to stan-
dardised measures of early numeracy (Mulligan et al. 2015). Further analysis utilis-
ing network analysis (Woolcott et al. 2015) provides visual links between AMPS 
structures as a map of connectivity. However, the role of spatial reasoning in the 
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development and use of AMPS is not fully understood; what our studies have 
described are domain-specific aspects of AMPS such as spatial structuring, parti-
tioning and structuring linear, two-dimensional and three-dimensional space and 
relations between pattern and number.

Our future studies focus on evaluating the impact of various structures within the 
PASMAP intervention with children with MLD, moreover identifying critical dif-
ferences for individuals in terms of AMPS over time. This may require a considered 
review of what constitutes critical components in early mathematical development 
and improved cross-disciplinary collaboration to inform research agendas and more 
effective pedagogical innovations.

16.4  �It Is Time to Reveal What MLD Students Know, Rather 
than What They Do Not Know

Marja van den Heuvel-Panhuizen

Good teaching starts with getting to know what students know. Although this applies 
to all students, it is particularly true for students who have mathematical learning 
difficulties (MLD). Unfortunately, the problem with these students is that they usu-
ally have low scores on mathematics tests, which may automatically lead to the 
conclusion that they are ignorant, that they are unable to solve demanding mathe-
matical problems and that it cannot be expected that they can come up with their 
own solution methods. Unmasking these and other prejudiced ideas is of vital 
importance for MLD students, because it may open new opportunities for teaching 
them mathematics. However, the burning question is how we can reveal what MLD 
students do know. In this contribution, I will discuss some research findings that 
give rise to reconsidering the presumed limitations of MLD students.

My research activities in this field started at the beginning of the 1980s when I 
got acquainted with an approach to mathematics education that proposes to start 
from students’ informal and context-related mathematical knowledge, to offer stu-
dents models to eventually reach more general and formal levels of understanding, 
to go beyond the sole focus on whole number operations, but also includes other 
mathematical domains, to give students an active role in the learning process, to 
elicit reflection, to stimulate classroom interaction about different solution strate-
gies and to aim not only at learning facts and skills, but also at gaining insight.

As a former special education teacher, I was surprised that special educational-
ists rejected this kind of teaching for students in special education. According to 
these educationalists, it would be better to teach MLD students only a fixed solution 
strategy; otherwise, they would get confused. Also, it would be better to teach MLD 
students bare number problems, because problems situated in contexts would make 
problems too complex for them. Furthermore, building on students’ own informal 
solution methods would be an illusion, because MLD students can hardly come up 
with solutions by themselves (see more about these assumptions of special educa-
tionalists in van den Heuvel-Panhuizen 1986, 1996).
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To challenge these, in my view, incorrect assumptions, in 1990, I set up a study 
(van den Heuvel-Panhuizen 1996) in two special education schools for mildly men-
tally retarded students. The age of the students was between 10.5 and 13 years. The 
students’ mathematical levels were far behind their peers and lay between grades 2 
and 4 of regular primary school. The topic I chose for this study was ratio, which is 
generally considered beyond the reach of students in schools for mildly mentally 
retarded students and which accordingly was not taught to the students who partici-
pated in the study. In order to provide evidence that this was an underestimation of 
their mathematical ability, I administered a test on ratio including 16 ratio problems 
all referring to contextual situations familiar to the students and not including for-
mal notations of ratio. Instead, as Freudenthal suggested to me when I designed the 
test, I made use of the visual roots of ratio. The results revealed that the MLD stu-
dents, without having had instruction on ratio, were quite able to solve the prob-
lems. The percentage of correct answers for the problems ranged from 13% to 64%. 
Both the teachers of these students and the experts (two special education school 
inspectors and two special educationists) who were asked to predict the students’ 
scores in many cases underestimated them. Moreover, the scrap papers added to the 
test sheets showed clear traces of self-invented strategies and notations.

The often-heard claim that students who are weak at mathematics can be better 
taught only one fixed standard strategy for every operation (e.g. see Gelderblom 
2008, p. 36: ‘Letting students who are weak in mathematics discover strategies by 
themselves is fatal. Lead them by the hand, tell them which strategies they have to 
use’; translation into English by author) induced me and my PhD student Marjolijn 
Peltenburg in 2010 to set up a study in which we investigated how special education 
students solve subtraction problems up to 100. The standard strategy that MLD 
students are taught for this type of problems is the take-away strategy. On purpose, 
we also included in the subtraction test for this study problems that might elicit an 
adding-on strategy (e.g. bare number problems such as 62 − 58 and context prob-
lems with an adding-on context). What we found was that the MLD students, with-
out being taught, made spontaneous use of the adding-on strategy. Moreover, they 
were rather flexible in what strategy they applied, and they were quite successful 
when applying the adding-on strategy (Peltenburg et al. 2012).

Besides offering MLD students assessment problems in which they could show 
their competence on topics that belong to the regular mathematics curriculum, we 
also did further research on a topic that is far beyond what is taught in special pri-
mary school education and even is lacking in regular primary school. In this research 
we investigated what happened when MLD students were asked to solve a number 
of combinatorics problems. Here we found that the MLD students in our study were 
equally successful in solving the combinatorics problems as their comparable peers 
in regular education, who were younger but at the same level of understanding num-
ber and operations. Moreover, on average the MLD students equally often applied a 
systematic strategy to find all possible combinations as the students in regular edu-
cation, and in both school types, a significant increase in the use of systematic strat-
egies could be observed (Peltenburg et al. 2013; Peltenburg 2012, Chap. 6).
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Another avenue in our search for possibilities to make the hidden mathematical 
potential of MLD students visible is the use of a technology-enhanced assessment. 
For this we put a series of subtraction problems from a standardised test into an ICT 
environment and extended them with optional auxiliary tools. In one study, we used 
a digital interactive 100-board on which the students could represent the problems 
to be solved by dragging counters. In the other study, the optional auxiliary tool 
consisted of a digital interactive number line. Both studies showed that the propor-
tions of correct answers were higher in the ICT-based test than on the standardised 
test (Peltenburg et al. 2010). This result appears rather obvious, but for teachers a 
test that not only tells them which students got which problems correct, but also 
which students made use of the auxiliary tools and how they used them, contains 
very valuable indications for further instruction. In fact, in this way the zone of 
proximal development of the students is opened. Moreover, we found that the MLD 
students were quite aware of whether they needed the help of the auxiliary tools. 
Students who made the most mistakes in the later administered standardised test 
more often chose to use an auxiliary tool in the earlier administered ICT-based test.

As a result of these positive experiences with optional auxiliary tools, this 
approach to assessment is now being further explored in the EU-funded FaSMEd 
project, which aims to research the use of technology in formative assessment class-
room practices in ways that allow teachers to respond to the emerging needs of 
low-achieving students. The Dutch team of this project developed the Digital 
Assessment Environment (DAE) for mathematics education in the upper grades of 
primary school. Figure 16.1 shows an item on percentages with the optional auxil-
iary tools that can be chosen to solve this problem.

Fig. 16.1  Percentage problem in the DAE with optional auxiliary tools
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16.5  �Conceptual Model-Based Problem-Solving: 
An Integration of Constructivist Mathematics Pedagogy 
and Explicit Strategy Instruction

Yan Ping Xin

The question whether students with learning disabilities should be educated in the 
inclusive classroom or in a segregated instructional environment has always been a 
hot topic. Here, I use the term ‘students with learning disabilities or difficulties in 
mathematics’ (LDM) to include all students whose mathematics performance is 
ranked below the 35th percentile (Bryant et al. 2011), so not necessarily only stu-
dents with a biologically based disorder. With this broad definition in mind, a more 
pertinent question would be: ‘Do these children need a special kind of intervention 
or do they profit most from the same kind of instruction as children without LDM?’ 
In particular, ‘is conceptually-based and constructivist-oriented mathematics instruc-
tion also suitable for children with learning disabilities?’ For the most part, it depends 
on (a) how we support these students with instructional strategies that address their 
needs and (b) how much support or scaffolding we provide for these students so that 
they are able to make sense of the mathematical concept or relations or, from the 
instructional point of view, whether we can make the mathematical discourse or rea-
soning process explicit to the students so they can grasp the concept or knowledge. 
To this end, regardless of the placement, it is more important to consider whether the 
instructional strategies we employ will provide the needed support or scaffolding that 
will allow these students to have meaningful access to mathematics.

As the outcome of a collaborative piece of work that integrates research-based 
practices from math education and special education, Xin, Tzur and Si (2008), with 
the project team, have developed an intelligent tutor, PGBM-COMPS © (Xin, Tzur 
and Si 2017), to support the learning of multiplicative problem solving for students 
with LDM. The intelligent tutor draws on three research-based frameworks: a con-
structivist view of learning from mathematics education, data (or statistical) learning 
from computer science, and conceptual model-based problem solving (COMPS) (Xin 
2012), from special education, that generalises word problem underlying structures. 
Rooted in a constructivist perspective on learning, we focused on how a student-
adaptive teaching approach (Steffe 1990), which tailors goals and activities for stu-
dents’ learning to their available conceptions, can foster advances in multiplicative 
reasoning. This approach is not based on a deficit view of students with learning dis-
abilities; rather, it focuses on and begins from what they do know and uses task-based 
activities to foster transformation into advanced, more powerful ways of knowing.

The PGBM-COMPS tutor is made of two parts: (a) ‘Please Go Bring Me…’ 
(PGBM) turn-taking games designed to nurture a learner’s construction of funda-
mental ideas in multiplicative reasoning (Tzur et al. 2013) and (b) COMPS (Xin 
2012) that emphasises understanding and representation of word problem structures 
in mathematical model equations. In particular, the PGBM turn-taking games were 
designed to nurture a learner’s construction of fundamental ideas such as ‘number 
as a composite unit’. A basic version of the PGBM platform game involves sending 
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a student to a box with Unifix Cubes to produce and bring back a tower made of a 
few cubes. After taking two-to-nine ‘trips’ for bringing same-sized towers, students 
are asked how many towers (i.e. composite units, CU) they brought, how many 
cubes each tower has (i.e. unit rate, UR) and how many cubes (1s) there are in all. 
The PGBM game was devised to promote learners’ anticipated creation of and dif-
ferentiation among 1s and CUs (Tzur et al. 2013). These two anticipations are cru-
cial if the learner is to construct the mental operation of multiplicative double 
counting, which is fundamental to multiplicative reasoning. Multiplicative double 
counting integrates two counting sequences in a multiplicative problem situation 
(e.g. ‘Please bring me a tower with 6 cubes in each…. If you brought me 5 such 
towers; how many cubes in all?’): one sequence that quantifies how many CUs (i.e. 
towers) were produced and one sequence that monitors the corresponding accumu-
lation of 1s (i.e. total # of cubes) contained within those CUs (i.e. towers). Double 
counting is considered to be ‘an advance over the more basic direct representation 
because it requires more abstract processing’ (Kouba 1989, p. 152).

A variety of activities following a PGBM format were designed to promote stu-
dents’ construction of basic multiplicative concepts on the basis of continuous 
assessment of their existing knowledge and experiences. The learner will progress 
from a low to high level of tasks along the dimensions of (a) numerical numbers 
(e.g. 2, 5 or 10 - level I; 3 or 4 - level II and 6, 7, 8 or 9 - level III) involved in the 
problem and (b) cognitive demands of the task (i.e. operating with visible objects or 
invisible/covered objects with mental system).

On the other hand, COMPS generalises the understanding of multiplicative rea-
soning to the level of mathematical models. At this stage, students no longer rely on 
concrete models (such as cubes and towers) or drawing pictures or tally marks; the 
mathematical models directly drive the solution plan. The COMPS programme 
emphasises (a) the connection between the PGBM games (in the contexts of cubes 
and towers for instance) and the symbolic mathematical model equations, (b) stu-
dents’ representation of various multiplicative problem situations in the mathemati-
cal model equations and (c) development of the solution plan that is directly driven 
by the model equations. Figure  16.2 presents two sample screenshots from the 
PGBM-COMPS programme. The upper panel shows how the programme engages 
students in making the connection between the concrete modelling (cubes and tow-
ers) and the mathematical expression; the lower panel shows how the problem 
should be represented in the COMPS model to find a solution.

To evaluate the effect of the PGBM-COMPS © intelligent tutor, Xin et  al.  
(2017) compared the effectiveness of the PGBM-COMPS programme with school 
teacher-delivered instruction (TDI) on enhancing the multiplicative reasoning and 
problem-solving skills of students with LDM. Results indicated that the improve-
ment rate of the PGBM-COMPS group was much greater than that of the TDI group 
(effect size [ES]  =  1.99 on researcher-developed multiplicative reasoning tasks; 
ES = 2.26 on a range of multiplication and division word problem-solving tasks 
involving large numbers). In addition, the group difference was shown on a 
commercial/published standardised test, the Stanford Achievement Test (SAT, 
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Harcourt Assessment Inc. 2004): Mathematics Problem Solving subtest, favouring 
the COMPS group (ES = 1.23).

Given that the Common Core State Standards for Mathematics (National Council 
of Teachers of Mathematics 2012) demand much deeper content knowledge from 
teachers of mathematics, the preliminary findings of the above study are encouraging. 
The PGBM-COMPS intelligent tutor, which integrates the best practices from gen-
eral mathematics education and special education, seems to yield better outcomes in 
enhancing participating students’ multiplicative problem solving. Through the inte-
gration of heuristic instruction (that facilitates concept construction) and the explicit 

Fig. 16.2  Sample screenshots of the PGBM-COMPS intelligent tutor system (Xin, Tzur and Si 
2017)
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model-based problem-solving instruction, it seems that the PGBM-COMPS pro-
grammes have promoted generalised problem-solving skills of students with LDM.

From the foregoing, here comes my answer to the question “whether concetually 
based and constructivist-oriented mathematics instruction also suitable for children 
with learning disabilities? With appropriate scaffolding and support, students with 
LDM are able to engage in conceptually based and constructivist-oriented mathe-
matics instruction. The promising outcome of the PGBM-COMPS intervention pro-
gramme (Xin, Tzur and Si 2017) is just one example.

16.6  �Discussion

Brian  Butterworth
If you want to get ahead, get a theory.

Verschaffel raised two fundamental issues in his introductory remarks to the panel. 
First, he asks what constitutes the ‘mathematics’ that MLD should address. Here I 
would like to start with a very simple approach. What constitutes ‘a billable ICD-
10-CM code that can be used to indicate a diagnosis for reimbursement purposes’? 
That is, what diagnosis will ensure that a child is entitled to special help for his or 
her mathematical difficulties? I take ICD 10 (The World Health Authorities list of 
diseases) because it is the clearest and most specific of the widely used classifica-
tions. In Sect. F81.2, the term used is a ‘specific disorder of arithmetical skills’. This 
‘involves a specific impairment in arithmetical skills that is not solely explicable on 
the basis of general mental retardation or of inadequate schooling. The deficit con-
cerns mastery of basic computational skills of addition, subtraction, multiplication, 
and division rather than of the more abstract mathematical skills involved in alge-
bra, trigonometry, geometry, or calculus’. So, in this context, the answer to 
Verschaffel’s question is simple: arithmetic. However, there are problems.

Notice that the ICD definition excludes an impairment in arithmetical skills that 
is solely explicable on the basis of general mental retardation. That is, the child can-
not be both stupid and have MLD.  Moreover, it excludes, in a later paragraph, 
‘arithmetical difficulties associated with a reading or spelling disorder’. Thus, the 
child cannot be both dyscalculic and dyslexic.

Spatial Abilities
ICD 10 does not mention spatial abilities, though it is known that, especially in the 
early years, there is a close link between them and arithmetical development (Rourke 
1989). However, how this link operates is far from clear. Mulligan focuses on a 
specific set of spatial competences. In particular, she argues that a set of these 
underpins makes the conceptual relationships critical to arithmetical understanding. 
Specially designed interventions for weaknesses in this set of competences can 
make a big difference to the development of arithmetic.
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‘Mental Retardation’
Mental retardation does not prevent high levels of mathematical skill. We know 
from the study of savants, with very low measured IQ or with other indicators of 
limited cognitive ability, that they can be superb calculators (Butterworth 2006). We 
also know that IQ measures are poor predictors of mathematical competence, such 
that even individuals with very high measured IQ can be dyscalculic (Butterworth 
et al. 2011). In an original approach to this issue, van den Heuvel-Panhuizen reported 
studies she had carried out on the mathematical abilities in schools for children with 
special educational needs. Now these children will have low scores on standard tests 
and would be classified as MLD but would be excluded from a ‘billable code’ 
because of their measured IQ. Now it may well be that these children can be drilled 
to perform moderately well on arithmetical problems, but the question addressed is 
much more interesting: do they have the conceptual basis and cognitive ability to 
develop their own valid strategies for calculation?

van den Heuvel-Panhuizen has a clear answer to this question. ‘What we found 
was that the MLD students, without being taught, made spontaneous use of the 
adding-on strategy. Moreover, they were rather flexible in what strategy they 
applied, and they were quite successful when applying the adding-on strategy.’ They 
were also ‘equally successful in solving the combinatorics problems’.

Verschaffel’s second issue is what is the appropriate intervention for children 
with special needs, and this raises the ICD 10 exclusion criterion  – ‘inadequate 
schooling’. Now ICD 10 does not define this term, so it is not possible to determine 
whether the child is classified as MLD because of poor teaching. Baccaglini-Frank 
notes that this raises an important problem for the definition of MLD. She writes, 
‘Insisting on the finding that persistent use of particular curricular materials can 
significantly reduce the number of children who are positive to diagnostic tests for 
dyscalculia in third grade, we find an apparent contradiction with literature claim-
ing that dyscalculia is an innate deficit’. I will return to this point below.

She also notes, quite properly, that ‘if the classroom culture is heavily based on 
written language and the child has not overcome difficulties related to the use of this 
medium’, then this could cause the child to fall behind in maths. The child, she says, 
would be better served in a ‘special education classroom’. This would be another 
example of inadequate schooling.

Xin has developed an intelligent tutoring system designed to help all students 
with ‘learning disabilities or difficulties in mathematics’, by which she means stu-
dents below the 35th percentile. For her, the nature of those difficulties, or their 
causes, appears not to be relevant. She argues that a conceptually based and 
constructivist-oriented mathematics instruction, developed for more typical stu-
dents, is also suitable for children with learning disabilities. Her findings suggest 
that the intelligent tutoring system is more effective than teacher-delivered 
instruction.

L. Verschaffel et al.
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A Theory-based Approach
At the root of the confusions about the criteria for MLD and about the appropriate 
intervention is the lack of theoretical perspective, and this is critical for understand-
ing why a child fails to reach an expected level in maths.

Of course, what the expected level is will depend on social, economic and, 
importantly, political factors. One example is whether the educational authority – 
usually a government agency – recognises MLD as a ‘billable’ category. It may fail 
to do so out of ignorance, since mathematical competence is a proxy for intelligence 
or out of indolence, for example, if there is no parent pressure group to prod it into 
action. In the UK, and in many other countries, dyslexia is recognised precisely 
because there exist organisations that insist on its recognition. The authorities may 
not recognise MLD because it could entail a commitment to provide support for 
those assessed as MLD.

Without a theory, one is left with a criterion that could be set for economic or 
political reasons or could simply be arbitrary: 35th percentile, for example, or 1, 1.5, 
2, 2.5 or 3 SDs below the population mean on a standardised test of arithmetic. 
None of these criteria tells you what the learner needs. The problem is compounded 
when one considers different populations. Consider an international comparison, 
for example, the PISA 2012 study. The proportion of children below level 2 in top 
ten countries was around 10%, but in the worst performing countries, it was between 
60% and 75%. So what would count as MLD in Macao will be very different from 
what would count in Indonesia in terms of what the learner can and cannot do.

Here is the question that should be addressed: why is this child failing to under-
stand what his or her classmates can understand? This is a theoretical question. For 
perhaps 5% of learners, the answer is that there is a deficit in very basic numerical 
concepts. That is, they will do poorly on tests that depend very little on the appro-
priateness of schooling or on social and economic status and even home back-
ground. These learners do poorly on tests of the enumeration of small sets of objects, 
typically displays of dots. They will be slower and less accurate than their peers, and 
this is a stable measure of individual difference and is a reliable predictor of the ease 
or difficulty of acquiring arithmetical competence (Reeve et al. 2012). Other very 
simple tests that rely little on education arrive at similar conclusions (Piazza et al. 
2010). These are tests of a crucial component in the learner’s ‘starter kit’ for acquir-
ing basic numerical competence that I have called ‘numerosity processing’ and 
means the ability to estimate the number of objects in a set. Poor performance on 
tests of this ability points to a congenital core deficit in numerosity processing. Not 
only is performance on these tests independent of schooling, it is independent of 
intelligence, of working memory and of literacy (Landerl et al. 2004). We call this 
special need ‘dyscalculia’.

The identification of a deficit in this core capacity has implications for interven-
tion: more of the same, more slowly and with more repetition, does not work. As 
with dyslexia, specially designed interventions are needed, preferably using concrete 
materials, and adaptive digital games with virtual concrete materials, for much lon-
ger than would be needed with typically developing learners (Butterworth et  al. 
2011).
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This approach also sheds light on the relationship between dyscalculia and other 
neurodevelopmental disorders. Dyslexia on this account cannot be a cause of 
dyscalculia, because it is due to a quite distinct core deficit, in most cases a phono-
logical deficit (Butterworth and Kovas 2013; Landerl et al. 2009). This means that 
we must reject the ICD 10 exclusion criterion of reading disability and test for both 
core deficits.

Our approach also means that it is possible to have a core numerical deficit 
despite being highly intelligent, or indeed having low cognitive abilities. This is not 
to say that MLD may not have other causes, including inadequate schooling (an 
international problem), prematurity, poor diet and a difficult home environment 
(Benavides-Varela et al. 2016). In these cases, a different approach to intervention 
will be needed. In mathematical education, as in so many other things, one size does 
not fit all. Measure the customer first and then find the garment that fits best.
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17.1  �General Introduction1

Jarmila Novotná

This chapter proceeds from the plenary panel on teacher education presented at the 
ICMI Study 23 conference in Macao (Novotná 2015). The main goal of the panel, 
as well as of this chapter, was to explore approaches to, and within, primary math-
ematics teacher education in different parts of the world and to discuss commonali-
ties and differences in relation to broader cultural and curricular traditions.
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The ICMI Study 23 was focused on the mathematical domain of WNA. There is 
broad agreement that deep understanding of school mathematics in general, and 
WNA in particular (for primary teachers), is critical. It follows from this that WNA 
provides a critical context for developing understandings and constructing arguments 
that adhere to the practices and norms of more advanced mathematics. One thrust of 
this chapter is to present and discuss examples from several parts of the world that 
approach this theme through a focus on primary mathematics teacher education on 
developing, discussing and applying mathematical models. But this thrust is set 
within the broader terms of different curricular approaches to WNA in different 
countries and regions and different cultures and structures regulating the ways in 
which primary mathematics teacher education (and primary teacher education more 
generally) is organised. In this broader curricular and cultural terrain, we take up two 
issues specifically. In the curricular approaches to WNA, we take up the issue of two 
ways of thinking about early number – in terms of length or location on a number line 
(where ordinality can be more emphasised, alongside cardinality) versus in terms of 
base ten structure (where place value structure and relationships can be more empha-
sised, alongside cardinality) – and use specific examples to point to number being 
presented in different ways in different countries. Secondly, we take up an issue that 
emerged from looking at the foci of different presentations at the ICMI Study 23 
conference with antecedents in prior writing: of more individualist, decentralised and 
autonomous cultures and views of teacher learning versus more collective and cen-
tralised views of teacher learning. These latter differences have consequences for the 
models of teacher education that are possible in different contexts and for the ways 
in which teacher education is structured within the timetables of schooling.

In this chapter, we begin our discussion in the terrain of cultures associated with 
teacher education, before moving into curricular approaches to WNA. Key models 
for teacher education are then introduced and discussed to exemplify key contrasts. 
We then move into the detail of mathematical models that have been used within 
primary mathematics teacher education and use these examples to highlight atten-
tion to differences relating to length (i.e. models focusing on the ordinal aspects of 
number) and base ten structure (focusing on the cardinal aspects), as well as the 
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broader organisation of teacher education across these contexts. The key questions 
that we address in this chapter can therefore be summarised thus:

•	 What broad similarities and differences can be seen in relation to cultural views 
of primary teacher learning in different parts of the world? How do these differ-
ences play out in models of primary teacher development?

•	 What are the key differences between curricular approaches that foreground 
more ordinal versus place value structural relations views of early number?

•	 What key mathematical models are promoted in primary mathematics teacher 
development in different parts of the world? How do cultural and curricular dif-
ferences play out within these mathematical models and the professional devel-
opment models of primary mathematics development that these mathematical 
models are couched within?

The panel consisted of six scholars representing different parts of the world, 
complemented by two discussants. All of them have rich experience with mathemat-
ics teacher education in their countries/regions. The panellists were (in alphabetical 
order) Maria G. Bartolini Bussi (University of Modena and Reggio Emilia, Italy), 
Sybilla Beckmann (University of Georgia, USA), Maitree Inprasitha (Khon Kaen 
University, Thailand), Berinderjeet Kaur (National Institute for Education, 
Singapore), Xu Hua Sun (University of Macau, China) and Hamsa Venkat 
(University of the Witwatersrand, South Africa). The discussants were Deborah 
Loewenberg Ball (University of Michigan, USA) and Mike Askew (University of 
the Witwatersrand, South Africa).

17.2  �Cultural Views of Primary Teacher Learning and WNA

Jarmila Novotná and Hamsa Venkat

Alexander (2009) proposes a view of pedagogy as profoundly cultural, while at the 
same time, exhibiting some continuities that appear to transcend place and time:

pedagogy does not begin and end in the classroom. It is comprehended only once one 
locates practice within the concentric circles of local and national, and of classroom, school, 
system and state, and only if one steers constantly back and forth between these, exploring 
the way that what teachers and students do in classrooms reflects the values of the wider 
society. (p. 924)

It follows from this that examining teacher development in the context of WNA also 
entails attention to broader curricular and cultural ideologies, in order to more com-
pletely understand their contents and approaches to supporting primary mathemat-
ics teaching.

Some broad differences in the emphasis of mathematics education research 
between the East and West have been noted in the papers presented in this ICMI 
study and in prior work. For example, Ma (1999) has noted the central role, and 
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study by teachers, of carefully developed, standardised textbooks in Chinese pri-
mary mathematics education. This contrasts with a much more critical view of the 
standardisations inherent in textbook sequences, sometimes set within a broader 
culture that celebrates and emphasises the varied individualism of children’s inter-
ests, understandings and learning pathways (Triandis and Trafimow 2001) and 
which was prevalent in much of the literature on the need for learner-centred 
education.

Moving into the terrain of WNA, Sun et al. (2013), comparing the ways in which 
addition and subtraction are presented in Chinese and Portuguese textbooks, noted 
the central role of textbooks in the Chinese professional education of teachers. They 
point to carefully varied sets of problems in which structural similarities of part-
whole relations are at the fore and combinations of and with ten are collectively 
viewed as the key conceptual idea to be foregrounded in order for these ideas to 
become problem-solving tools for working with subsequent mathematical content. 
In base ten-oriented models of number, stick bundles or Dienes block-type manipu-
latives, triad diagrams representing a whole with its constituent parts and symbolic 
number sentences are commonly juxtaposed. Length- and location-based models 
using the number line predominate in early number tasks in the Portuguese text-
books in focus in this study, emphasising the direction and extent of motion associ-
ated with operations and quantities. There is less overt connection between addition 
and subtraction in the early examples shown in the Portuguese textbooks, with later 
work pointing to these as operations connected through the idea of inverse opera-
tions. Of interest is that while multiple methods are expected and promoted in the 
Chinese textbooks, all of these depend on ideas of decomposition, with specific 
selections often based around decimal structure. Beishuizen’s (1993) emphasis on 
using number line models with compensatory steps as important higher-level effi-
ciency moves, e.g. solving 65 – 38 with a jump backwards of 40 and a compensa-
tory forward jump of 2, tends not to feature in the Chinese approach. The forward 
trajectories in the Chinese approach are seen as preparation for the focus on struc-
ture and relations needed for algebraic working, as well as for the decimal number 
structure. In contrast, the Realistic Mathematics Education approach emphasises 
the number line model as having strong associations backwards into counting and 
forwards into models and methods in the real number terrain (Anghileri 2006). 
These differences in goals and trajectories within the WNA context can be seen 
more broadly in the contrasts drawn between counting-based and structure-based 
approaches to early number (see for example Schmittau 2003).

Bartolini Bussi and Martignone (2013) have also pointed out the ways in which 
both mathematical models and structures had to be adapted in schooling in order to 
explore the ‘transposition’ of models beyond the ground of their cultural origins. 
The broader point we can make based on the ICMI study contributions is that some 
national traditions, more than others, foreground studies in which there is a broad 
focus on teaching and particular pedagogic tools and how such tools have both been 
developed and refined over the years. In these traditions, there are indications of 
greater homogeneity and ‘taken as shared’ views of both trajectories of mathemati-
cal content and approaches to support its learning. Backgrounded in these papers 

J. Novotná et al.



403

from the ICMI Study 23 Proceedings was how teachers subsequently work with and 
make sense of such tools, with this occurrence perhaps reflecting the expectation of 
buy-in to the theories and models being promulgated, rendering a study of differ-
ences in take up less culturally normal.

The foci in these papers stand in stark contrast to those written by authors with a 
more typically ‘Western’ sensibility. For example, Askew (2015) presented a case 
study of a teacher in South Africa, focusing on how, in a lesson on place value, the 
teacher’s actions, representations and discourse achieved coherence and connec-
tions. Similarly, Tempier (2013), cited in Chambris (2015), explores overlaps and 
contrasts in three teachers’ handling of place values ideas in France, and Venenciano 
et al. (2015) present detailed excerpts of a teaching approach designed to support 
children’s appropriation of ideas of unit and structural relations between units. 
While cardinality and place-value relations are at the fore of these studies, we draw 
attention to these studies here because of their common focus on to the ways in 
which mathematical ideas are taken up within teaching and learning.

This brief overview of culture and WNA models and approaches feeds into the 
range of cases that we present below dealing both with models of teacher education 
and mathematical models of WNA in teacher education. In some of these contexts, 
the professional development and mathematical models have broad cultural and 
historical support and are often accompanied by systemic sanction in the form of 
structural support for their take up in teacher development. In other countries, the 
cases reflect take up of approaches and models in more local initiatives, often 
accompanied by the need to build structural affordances for supporting take up. In 
each of the cases that follow, we provide an overview of the national/provincial 
context in relation to the extent of standardisation of curricula/textbooks and the 
structure of teacher education, with this data gathered from contributing authors, 
prior studies and the context forms that were collected with submissions for the 
ICMI 23 Study conference.

All themes dealt with during the ICMI Study 23 conference and in the volume 
are deeply linked with teacher education and development. This was both inten-
tional and a natural property of the whole WNA domain. In the discussion docu-
ment for the study conference, one of the basic questions was: how can each of the 
themes be effectively addressed in teacher education and professional development? 
In order to teach elementary mathematics effectively, there is a need for sound pro-
fessional knowledge, both in mathematics and in pedagogy. In Theme 1 (‘The why 
and what of whole number arithmetic’), the topic was explored from the perspective 
of teachers’ mathematical content knowledge. Theme 2 (‘Whole number thinking, 
learning and development’) addressed cognitive aspects of WNA with attention 
paid to, among other aspects, integrating different perspectives into a more coherent 
view with consequences for teacher education and development. In Theme 3 
(‘Aspects that affect whole number learning’), teacher education played a central 
role and included examples of impact of the topic in teacher education and develop-
ment (Canada and Thailand). In Theme 4 (‘How to teach and assess whole number 
arithmetic’), teacher education and development were present explicitly or implic-
itly in all contributions, including examples of various pedagogic approaches, text-
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book organisation and used artefacts and a broader study explicitly acknowledging 
teachers’ didactical or pedagogical knowledge and noting that neither teachers’ 
extent of teaching experience nor their teacher education accounted for observed 
differences. Theme 5 (‘Whole numbers and connections with other parts of mathe-
matics’) included the study of avenues through which whole number arithmetic 
learning might be supported in teacher education.

17.3  �Primary Teacher Education Across the World

17.3.1  �US Experience2

Sybilla Beckmann

17.3.1.1  �Organisation of Primary Teacher Education in the USA

General or local organisation: Primary teacher education is developed locally. Each 
state has its own guidelines or regulations for the preparation, certification and 
licensing of teachers. However, there are influential non-governmental accrediting 
bodies that operate nationally and issue standards for teacher education.

Teacher qualification: Primary teachers are usually generalists although there is 
growing interest in building specialist development.

Curriculum for primary mathematics: There is no national curriculum. Since 
2010, the Common Core State Standards for Mathematics have been adopted by 
most states.

17.3.1.2  �Key Questions About Teacher Knowledge in the USA

A key concern in the mathematical education of primary and middle-grade teachers 
in the USA is how teachers can further their own disciplinary knowledge of math-
ematics while also studying deeply the mathematics that they will teach. According 
to a report issued jointly by national mathematical societies in the USA (Conference 
Board of the Mathematical Sciences 2012), teachers should know the mathematical 
topics they will teach and how these topics connect to others in earlier and later 
grades. Teachers should also know the ways of reasoning and constructing argu-
ments in mathematics, how these ways of reasoning and argumentation apply at the 
elementary level and how to teach these ways reasoning and argumentation to 
students.

2 Research was  supported by the National Science Foundation under Grant No. DRL-1420307. 
The opinions expressed are those of the author and do not necessarily reflect the views of the NSF.
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In the USA, the Common Core State Standards for Mathematics document 
(Common Core State Standards Initiative 2010), which has been adopted by most 
states, describes standards for mathematical practice for students in kindergarten 
through Grade 12. In particular, according to these standards, mathematically profi-
cient students should be able to understand and use stated assumptions, definitions 
and previously established results in constructing arguments, and they should try to 
use clear definitions in discussion with others and in their own reasoning. Therefore 
even students in elementary school are expected to understand suitable definitions 
and use them in explaining and arguing for the validity of mathematical 
statements.

Several aspects of definition have been studied in mathematics education research 
including the distinction for students and teachers between concept image and con-
cept definition (Edwards and Ward 2004; Tall and Vinner 1981; Tsamir et al. 2015; 
Vinner 1991), students’ and teachers’ conceptions of definition and their under-
standing of definitions and alternate definitions for a given concept (Zaslavsky and 
Shir 2005; Zazkis and Leikin 2008), students’ difficulties in using definitions the 
way mathematicians do (Edwards and Ward 2004) and how to lay a foundation for 
understanding definitions (Bartolini Bussi and Baccaglini-Frank 2015). Throughout, 
there is special concern about teachers’ knowledge of definitions and the role of 
definitions in mathematics.

Research in mathematics education has considered definitions mainly within 
geometry (e.g. definitions of shapes, such as squares and rectangles) and topics 
related to functions (e.g. limits). However, there is a clear need to use definitions 
within other mathematical domains. For example, how could a student construct a 
mathematical argument demonstrating that 1/2 • 1/3 is equal to 1/6 without defini-
tions for multiplication and fractions? Careful mathematical arguments should 
appeal to definitions of multiplication and fractions rather than leaving those defini-
tions implicit.

Beckmann and Izsák (2015) defined multiplication, M • N = P, for non-negative 
quantities M, N and P by interpreting the multiplier, M, as a number of equal groups; 
the multiplicand, N, as a number of units in 1 (or each) group; and the product, P, as 
the number of units in M groups. They argued that this quantitative definition of 
multiplication organises not only multiplication and division, but also proportional 
and inversely proportional relationships between covarying quantities. Thus, the 
multiplicative conceptual field (e.g. Vergnaud 1988), which encompasses multipli-
cation, division, fraction, ratio and proportion, and is a foundation for such critical 
topics as linear functions, rates of change and slope, should be an excellent domain 
in which to hone the skill of arguing from a definition.

Preliminary results of Beckmann et al. (2015) indicate that future middle-grade 
teachers can construct viable arguments to devise solutions to missing-value pro-
portion problems using the quantitative definition of multiplication. In their study, 
future teachers were also asked to generate equations in two variables to relate 
quantities covarying in a proportional relationship. On a written test, the teachers 
were given a scenario in which a type of fertiliser was made by mixing nitrogen and 
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phosphate in an 8 to 3 ratio and asked to use math drawings and the definition of 
multiplication to generate and explain an equation of the form:

	
fraction( ) =• P N

	

given that N and P are unspecified numbers of kilogrammes of nitrogen and phos-
phate, which could vary. Figure 17.1 shows part of one teacher’s explanation. The 
drawing indicates that the teacher views the nitrogen as consisting of eight parts, 
which encompass a total of N kilogrammes or one group of N, and views the phos-
phate as consisting of three parts, which encompass a total of P kilogrammes or one 
group of P. The teacher formulates the equation:

	 ?• P N= 	

and interprets it as ‘asking how much of group P is in 1 group of N’. From the draw-
ing, the teacher deduces that the answer is 2 2/3 because ‘2 whole groups of P and 
an additional 2/3 group of P “fits” or makes up 1 group of N’, thus concluding with 
the equation 2 2/3 • P = N.

Notice how the teacher uses the definition as an organisational framework for a 
coherent mathematical argument. In the given problem, the goal is to explain a lin-
ear equation in two variables. Because the coefficient (the multiplier) in that equa-
tion is not given, it must be found. The teacher uses the definition of multiplication 
as a vehicle for finding the coefficient. To do so requires that the teacher think about 
one quantity flexibly in multiple ways: she views the phosphate simultaneously as P 

Fig. 17.1  Using a definition of multiplication and a strip diagram to explain an equation
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kilogrammes, as one group of P and as three parts. Thus, the definition of multipli-
cation may function not only as an organising framework, but also as a vehicle for 
thinking more deeply about coordinating the fixed and varying aspects of 
quantities.

The teacher’s argument relies critically on her drawing in Fig. 17.1. This drawing 
is an example of a strip diagram, also known as a tape diagram, which is one kind 
of diagram or ‘math drawing’ that Beckmann and Izsák (2015) presented in explain-
ing how a quantitative definition of multiplication applies to interpreting and rea-
soning about proportional relationships between covarying quantities. These math 
drawings represent quantities with lengths and show relationships between quanti-
ties. For example, a longer length implies a greater quantity; a length that is three 
times as long as another implies one quantity is three times the other. Strip diagrams 
are also the representation used in the model method, which has been used effec-
tively in Singapore with primary students studying whole number arithmetic (Kaur 
2015).

In mathematics, definitions have a scientific function rather than an everyday 
one. Definitions provide technical power – they ‘have the potential of saving you 
from many traps which are set by the concept image’ (Vinner 1991, p. 69). But to 
use definitions, they must be understandable to students while also being mathemat-
ically accurate. Representations may be a key tool that helps students and teachers 
use definitions in constructing mathematical arguments. Representations may be 
even more important in teacher education. As argued by Venkat (2015, p.  587), 
‘attention to representational competence can provide a bridge that allows for con-
current attention to teachers’ learning of mathematics and their teaching of 
mathematics’.

17.3.2  �Singapore: The Model Method

Berinderjeet Kaur

17.3.2.1  �Organisation of Primary Teacher Education in Singapore

General or local organisation: There are common teacher education standards as all 
the teachers are trained in the sole teacher education institute in Singapore.

Teacher qualification: Generalists.
Curriculum for primary mathematics: There is a common national curriculum 

developed by mathematics curriculum specialists at the Ministry of Education and 
revised periodically so that it remains relevant.
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17.3.2.2  �Examples

The primary school mathematics curriculum in Singapore places emphasis on quan-
titative relationships when students learn the concepts of number and the four oper-
ations. The model method (Kho 1987), an innovation in the teaching and learning of 
primary school mathematics, was developed by the primary school mathematics 
project team at the Curriculum Development Institute of Singapore in the 1980s. 
The method, a tool for representing and visualising relationships, is a key heuristic 
students’ use for solving whole number arithmetic (WNA) word problems.

The concrete-pictorial-abstract (CPA) approach of the primary school mathemat-
ics curriculum in Singapore is congruent with the concepts of the part-whole and 
comparison models. In the CPA approach, students make use of concrete objects, 
while in the model approach they draw rectangular bars to represent the concrete 

Fig. 17.2  Use of models to solve a two-part word problem (Chan and Cole 2013a, p. 4)
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objects. The rationale for the choice of rectangular bars is that they are relatively 
easy to partition into smaller units when necessary compared with other shapes.

The part-whole model illustrates a situation where the whole is composed of two 
or more parts. When the parts are given, the students can determine the whole. 
Sometimes the whole and some parts are given and other parts are unknown. The 
comparison model demonstrates the relationship between two or more quantities 
when they are compared, contrasted or described in terms of differences.

When students make representations using the part-whole (shown in Fig. 17.2 – 
part a) and comparison models (shown in Fig. 17.2 – part b), the problem structure 
emerges and students are able to visualise the relationship between the known and 
unknown and determine what operation to use and solve the problem.

17.3.2.3  �Primary School Mathematics Textbooks Used in Singapore 
Schools

Textbooks used in Singapore schools must be approved by the Ministry of Education. 
In addition, textbook writers work very closely with the Ministry of Education 
Mathematics specialists when writing the books. Therefore it may be said that text-
books are vehicles for the intended curriculum prescribed by the Ministry of 
Education. Teacher guides accompanying the textbooks make explicit the pedagogy 
the textbooks support. A significant pedagogical strategy is the model method 
(Ministry of Education 2009). It is introduced in the textbooks from Grade 1 
onwards. Figures 17.3 and 17.4 illustrate how the idea of models is implicitly and 
explicitly introduced in Grades 1 and 2 respectively.

Fig. 17.3  Implicit 
introduction of the 
part-part-whole concept in 
Grade 1 (Chan and Cole 
2013b, p. 27)
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17.3.2.4  �Preparation of Primary School Mathematics Teachers to Teach 
the Model Method

Prospective primary school mathematics teachers are introduced to the model 
method as part of their curriculum studies (mathematics) during their pre-service 
teacher education at the National Institute of Education in Singapore. As part of 
their pre-service course work, they use textbooks that are approved by the Ministry 
of Education which adopt the method of models as a pedagogical strategy for the 
learning of mathematics. Since the method has been used widely in Singapore 
schools from the 1980s, many of the prospective teachers since the late 1990s are 
very familiar with the strategy as they themselves used it to solve problems in their 
primary school days.

Fig. 17.4  Explicit introduction of part-part-whole models in Grade 2 (Chan and Cole 2013c, 
p. 52)
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17.3.2.5  �What Does Research Say About the Effectiveness of the Model 
Method?

The model method has proved to be effective for building number sense and solving 
arithmetic word problems in Singapore schools. A rigorous study by Ng and Lee 
(2009) of the model method clarified that the method engages students in capturing 
the inputs, the relationships between the inputs and the output of the problem. Once 
students have constructed a model, they use it ‘to plan and develop a sequence of 
logical statements, which allows for the solution of the problem’ (p. 291). Their 
study also noted that ‘average ability children’s solution of word problems involv-
ing whole numbers could be improved if they learn to exercise more care in the 
construction of related models’ (p. 311).

However, when very challenging questions are posed, in Grades 5 and 6 such as 
the following:

Mr Lim had a total of 540 long and short rulers. After selling an equal number of both types, 

he had 
1

3
of the long rulers and 

1

6
of the short ones left. What was the total number of rulers 

left? (Singapore Examinations and Assessment Board 2014)

students often have difficulties drawing models to work through the solution pro-
cess. They have difficulty constructing the before-after models and also determining 
the basic unit (Goh 2009). This certainly has implications for teacher education.

17.3.3  �South Africa: Models of Situations

Hamsa Venkat

17.3.3.1  �Organisation of Primary Teacher Education in South Africa

General or local organisation: There are national standards for teacher education, 
but these are at the generic, rather than subject-specific, level.

Teacher qualification: Primary teachers are usually trained as generalists, 
although some higher education institutions include optional ‘elective’ courses for 
training to be a mathematics specialist.

Curriculum for primary mathematics: There is a national curriculum for the pri-
mary mathematics years and, indeed, for all years of school mathematics. In recent 
iterations, mathematics curricula have seen an increase in the extent of specification 
of content and prescription of sequencing and pacing.
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17.3.3.2  �Recent Studies

The post-apartheid context in South Africa is one that is marked by a range of con-
cerns: some focused within education and others focused on the broader socio-
cultural terrain. Within education, there are ongoing concerns about mathematical 
performance and teachers’ mathematical knowledge. In the broader society, praise 
for the extent of social mobility into the emerging and broadening ‘middle class’ 
has been tempered by alarm at the increasing extent of socio-economic inequality, 
which plays through into significant differences between the mathematical perfor-
mance of students in elite schools and the rest of the population. In the early years 
of schooling, the predominance of unwieldy concrete counting-based methods has 
been widely reported (Schollar 2008; Ensor et al. 2009), with standardised curricula 
seeking increasingly to prescribe pacing and sequencing as one way of pushing 
progression to more sophisticated methods.

A recent study located in Intermediate Phase (Grades 4–6) pre-service teacher 
education has noted broad differences in the nature and extent of the mathematical 
content and pedagogic knowledge emphases within different courses, in spite of a 
broad national framework of standards for teacher education (Taylor 2011). 
In-service options for primary mathematics teaching development remain limited 
and piecemeal. In this context, the Wits Maths Connect-Primary project, a 5-year 
linked research and development project, established a 20-day in-service primary 
mathematics for teaching course. Responding to the need to encourage teachers to 
attend to structural relations between quantities rather than quantities solely as 
counted entities, the course focused particularly on key models of structural rela-
tions for additive and multiplicative situations. In other work, we have noted the 
ways in which teachers’ representational and communicative repertoires have 
broadened through an approach in which recognition of the nature of relations 
between quantities and familiarity with key models that represent these relations 
can be used to simultaneously develop both mathematical and pedagogical compe-
tence (Venkat 2015; Venkat et al. 2016). Here, we note in relation to the WNA focus 
that we have discussed and used part-whole models similar to those promoted in the 
Singapore approach to represent a range of additive relations situations and used 
number lines as ‘models for’ calculating the relevant missing values. Similarly, 
double number lines, T-tables and area models have been discussed as models of a 
range of multiplicative situations. In relation to the earlier discussion of base ten 
(structural relation-oriented) and number line (ordinal) models, our use of both 
structural part-whole models and more operational number line models is directed 
at balancing the emphasis on counting and ordinal approaches that tend to be in the 
foreground of the early grades’ curriculum (DBE 2011), by promoting attention to 
the relationships between quantities. This combination is purposively driven by evi-
dence also of frequently algorithmic and error-prone ‘columnwise’ approaches seen 
in the Intermediate Phase years, showing limited carrying through of a quantified 
sense of number in increasing number ranges (Graven et al. 2013).
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17.3.4  �Thailand: Traditional vs Open Approach3

Maitree Inprasitha

17.3.4.1  �Organisation of Primary Teacher Education in Thailand

General or local organisation: Following the Education Act in 1999, Thailand 
implemented national curricula for basic education in 2001 and national standards 
for teacher education in 2005. However, these standards focus primarily on 
knowledge with less emphasis on practical or professional competency.

Teacher qualification: Since 2004, K–12 teachers have been trained as specialists 
categorised into eight subjects such as mathematics and sciences, but there are also 
some optional programmes for those majoring in elementary education in a few 
institutions.

Curriculum for primary mathematics: There is a national curriculum for the pri-
mary mathematics years and for all years of school mathematics. These curricula 
focus on six domains: number and operation, measurement, geometry, algebra, data 
analysis and skills for mathematical processes.

17.3.4.2  �Reforms in the New Century

While a new national agenda of ‘Reforming Learning Process’ of the 1999 Education 
Act was declared more than a decade ago, pre- and in-service mathematics teacher 
education programmes at most universities in Thailand have struggled to respond to 
this demand. Most teacher education programmes still emphasise subject matter 
(i.e. mathematics content at the university level in programmes for mathematics 
teachers) with little or no emphasis on courses associated with pedagogical content 
knowledge (Inprasitha 2015). This subject emphasis is viewed as exerting strong 
influence on the traditional teaching approach of school teachers, involving trans-
mission of content-based approaches to the students.

Moreover, within these traditional teaching approaches, most Thai teachers 
heavily rely on using textbooks as key instructional media for classroom teaching 
practices. IEA results during the 1980s showed that more than 90% of Thai mathe-
matics teachers used textbooks as a tool for teaching: they taught the content that 
appeared in the textbook and set student exercises from those textbooks. Currently, 
the exercises and the instruction guidelines in these textbooks still emphasise com-
putation skills and techniques focused on rapid completion (Anderson et al. 1989). 
Mathematics teachers commonly use either the national textbook provided by the 

3 The study was supported by the Centre of Excellence in Mathematics, the Commission on Higher 
Education, Thailand; the  Students’ Mathematical Higher Thinking Development Project 
in Northeastern Thailand; Centre for Research in Mathematics Education, Faculty of Education, 
Khon Kaen University.
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Institute for the Promotion of Teaching Science and Technology (IPST) or private 
publishing company textbooks.

The traditional approach to teaching mathematics typically starts with teachers 
explaining new content through some examples related to rules or formula and then 
giving students a worksheet on some related examples and exercises (Kaewdang 
2000; Khemmani 2005; Inprasitha 2011). As noted already, this teaching approach 
is teacher centred with the emphasis on teachers transmitting or transferring the 
contents to students (Inprasitha 2011).

Since 2004, the Faculty of Education at Khon Kaen University has run a new 
mathematics teacher education programme that has 57% of credits focused on PCK 
courses and 43% of credits for collegiate mathematics courses across the total 170 
credits. The ‘open approach’, as a new mathematics teaching approach focused on 
teaching through problems, has been implemented both in the programme and also 
in the project schools collaborating with the Faculty of Education, Khon Kaen 
University, since 2006. This approach is described next.

17.3.4.3  �An Exemplar of How Teachers Use the Approach

Teachers’ understandings of school mathematics from the textbook have influenced 
the way they teach mathematics in their classrooms. As Dossey (1992) has men-
tioned, comprehension for mathematical conceptual understanding is extremely 
important in development and success in mathematics teaching and learning in 
school and research understanding in school mathematics. An understanding of 
mathematical knowledge as ‘outside’ the teachers and students (Plato 1952 cited in 
Dossey 1992) can be linked to Thai mathematics teachers’ transmission orientation 
to knowledge to the students (Office of the Education Council 2013).

By contrast, in the Lesson Study project introduced by the Centre for Research in 
Mathematics Education (CRME) since 2006, the open approach (Inprasitha et al. 
2003) has been introduced for developing rich mathematical activity based on open-
ended problems (Nohda 1991; Inprasitha 1997). A group of student teachers did 
their practicum teaching in the 2002 academic year in seven secondary schools in 
Khon Kaen and found that these kinds of mathematical activities could change the 
way teachers interact with students and interacting among students themselves. 
Being engaged in the activity provides a chance for students to produce and generate 
various ways of thinking. This phenomenon was influential for teachers to become 
aware of their pedagogical beliefs about teaching mathematics (e.g. students cannot 
think by themselves unless the teachers provide the way for them to think first).

During 2003–2005, the open approach has been widely used by some 800 school 
teachers in Khon Kaen province through training by CRME. Between 2006 and  
2009, four lesson study project schools implemented innovative mathematics teach-
ing by incorporating three steps of lesson study into four steps of open approach 
(Fig. 17.5). In this project, the Japanese textbook of Gakko Tosho (Inprasitha and 
Isoda 2010, 2014) has been mainly used by the teachers in the project schools 
(Fig. 17.6).
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17.3.4.4  �An Exemplar of How Teachers Learn Through the Four Steps 
of Open Approach

Topic: Teaching 9 + 4.
The objective of this learning unit (12 periods): The students can understand 

addition in terms of ‘together’ and ‘add up’ and use ‘base ten’ for addition.
Content in textbook – see Fig. 17.6.
Typically, in traditional teaching approaches, most Thai teachers teach 9  +  4 

using ‘count all’ or ‘count on’ techniques and focus on producing 13 as the answer 
to this situation. They tend to ignore the development of meaningful number sense 
through using students’ real-world experiences to teach addition. From previous 
classes, students know how to write 9 + 4 as a number sentence for this situation. 
However, they might not know the meaning or number sense of 9 + 4. Since this is 
the first time students will consider ‘addition in which the result is greater than 10’, 
then encouraging them to discover whether ‘9 + 4’ is greater or less than 10 is as 
important as simply getting the answer of 13.

In the project schools use the tasks and steps shown in the textbook in Fig. 17.6. 
According to step ①, after interpreting the real-world situation as 9 + 4, typically 
most school teachers focus on getting the answer, while in this textbook, the yellow 
cartoon provides a hint to the teacher to ask the question ‘Is the answer greater than 
10?’ In order to answer this question, the students need to decompose 9 or 4 to mak-
ing 10 according to step ②.

The textbook also provides models of students’ ideas to help beginner teachers 
anticipate students’ responses to the given questions as in Fig. 17.7.

Some beginner teachers raise questions about why we need to ask the question in 
step ① because they think students know earlier that 9 students together with 4 stu-

Students’ Self 
Learning

Posing Open-ended 
Problem

Summarise through 
Connecting Students’ 
Mathematical Ideas 

Emerged in the classroom

Whole Class 
Discussion

Collaboratively
Design Research
Lesson (Plan)

Collaboratively
Reflection on

Teaching Practice
(See)

Collaboratively
Observe the 

Research Lesson 
(Do)

Fig. 17.5  Lesson study incorporating open approach (Inprasitha 2011)

17  Professional Development Models for Whole Number Arithmetic…



416

Fig. 17.6  Contents and steps for teaching 9  +  4 (Extracted from Study with Your Friends: 
Mathematics for Elementary School 1st grade (in Thai))
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dents becomes 13 students. But this knowing is completely different from knowing 
‘how to know’ what the 9 + 4 number sentence means. Once students have obtained 
insight into making a 10, they can see that 4 can be decomposed into 1 and 3 and 
that this 1 can be associated with the 9 to make a 10. Students then notice they still 
have 3 left (using blocks or other materials). This discovery of ‘using decompose/
compose and making ten strategy’ as a tool to do further addition is meaningful and 
has broader mathematical value.

Thus, for teachers, teaching using open approach helps them to extend their 
understanding of students’ ideas as useful for bridging the students’ real-world 
understandings into the mathematical world. For students, learning to solve given 
real-world situations by themselves accumulates their ‘how to learn’, which is more 
important for engaging in new problem situations.

17.3.5  �Chinese Open-Class Approach4

Xu Hua Sun

17.3.5.1  �Organisation of Primary Teacher Education in Macao

General or local organisation: Common teacher education standards are locally 
developed, but there is broad overlap in standards as all the teachers are mainly 
trained in University of Macau and a small part by Great China area.

4 This study was  supported by Research Committee, University of  Macau, Macao, China 
(MYRG2015-00203-FED). The opinions expressed in the article are those of the author.

Fig. 17.7  Students’ 
responses for 9 + 4 
(Extracted from Study with 
Your Friends: Mathematics 
for Elementary School 1st 
grade (in Thai))
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Teacher qualification: This depends on school tradition. Some schools inheriting 
the mainland tradition require specialists, but the schools inheriting the Portuguese 
or British tradition require generalists.

Curriculum for primary mathematics: There are common Macao curriculum 
standards developed by the Ministry of Education of Macao, but schools have the 
freedom to develop school-based curricula based on their educational visions and 
students’ abilities.

17.3.5.2  �Some Findings

The international literature base continues to both emphasise and discuss the math-
ematics content knowledge, pedagogical content knowledge and curriculum knowl-
edge needed for effective primary mathematics teaching (Shulman 1986). The unity 
of these knowledge bases in action tends to receive less attention, appearing – par-
ticularly in Western traditions – to be largely assumed as automatically realised. The 
need for unification is the missing gap addressed by lesson study (or learning study 
or open class) in the East and is represented in Chinese and Japanese traditions as 
the main concern and question to be solved in the field of teacher education. Open 
class is a typical Chinese approach for teacher professional development which uses 
a single teaching circle, in which teachers are required to teach for 40 mins with half 
an hour for discussion; the open-class approach is more flexible than Japanese les-
son study in terms of organisation, budgeting and timetabling (Sun et  al. 2015). 
Learning study is a collaborative action research approach which aims to improve 
the effectiveness of student learning by enhancing the professional competence of 
teachers through joint construction of pedagogical content knowledge to help stu-
dents to learn specific objects of learning based on variation theory, which origi-
nated in Hong Kong, and is now also a significant mode of practice in countries such 
as Sweden and Brunei (Cheng and Lo 2013). Lesson study is a Japanese model of 
teacher-led research in which a triad of teachers work together to target an identified 
area for development in their students’ learning: using existing evidence, partici-
pants collaboratively research, plan, teach and observe a series of lessons, using 
ongoing discussion, reflection and expert input to track and refine their interven-
tions. This section focuses on the open-class approach, a key strength of the Chinese 
system of teacher education. Key principles underlying the open-class approach in 
China are described below:

–– For primary teacher education, a typical belief in Asia is that mathematics teach-
ers should possess specific subject knowledge, which might be not known by lay 
people.

–– Professional knowledge must be public and communicated among colleagues 
through collaboration.

–– Professional knowledge must be storable and shareable.
–– Professional knowledge requires a mechanism for verification and 

improvement.
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This is one of the reasons why primary mathematics teachers in Mainland China are 
required, commonly, to be specialists, not generalists. A key antecedent for this 
belief may be Confucius’ establishment of a tradition of deep respect for teachers in 
China – similar to lawyers and doctors in the West – but that is not common in the 
West with respect to teachers. However, this belief could also relate to an exam-
driven teaching and learning culture, in which teacher professional knowledge, like 
student’s knowledge, is expected to be examined through given lessons. The exam-
driven culture in China can be linked to its great population and more limited 
resources. Similar to student examinations, there is a strict professional assessment 
system for practising teachers as part of career ladders in China. There are four 
formal hierarchical grades for teachers that indicate professional status in China, 
and promotion is based on school-based evaluation of the open class. In this way, 
teacher professional ranks (three ranks) are clearly defined. Compared with other 
systems, Chinese teachers’ working time (about ten classes in each week) is low, but 
their research time is strictly stipulated/controlled. Open class is one of the windows 
to reflect their research results. This professional development tool is currently 
underrepresented in international research (lesson study is more well-known in the 
global context than open class; so far, open class is well-known within China only). 
It plays critical and different roles in teacher recruitment, professional assessment 
and professional research and development in primary teacher education to meet the 
goals of specialists (not generalists). How this tool has been transposed and applied 
in Macao and Italy are presented next.

17.3.5.3  �The Goal of Open Class

The open-class approach was established in the early 1950s by the Chinese Ministry 
of Education with the primary purpose of organising teacher study groups in 
schools. There are two general categories of open classes, those for outside audi-
ences and those for internal audiences. The classes for outside audiences are divided 
into three categories: open classes to publicly demonstrate new education ideas (e.g. 
new curriculum/textbook use and expert-level classroom instruction demonstra-
tions), open classes for research (e.g. research lessons for new thought 觀摩課, 
‘same content-different-approach’ 同課異構) and open classes for evaluation pur-
poses (e.g. recruitment, teacher promotion and teaching competitions). These open 
classes generally involve a single teaching cycle of planning-designing-teaching-
reflecting either by the conducting teachers or a school-based research group.

The open classes for internal audiences include single-circle open classes for 
mentor-mentee training (師徒公開課) and multiple-circle open classes for mentor-
mentee training (校本培訓公開課). The multiple-circle open classes, which involve 
co-planning, co-designing, co-teaching and co-reflecting, are supported by school-
based mentor-mentee programmes. This more complex open-class system is similar 
to the Japanese lesson study approach. Compared to those for outside audiences, the 
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internal training open classes are more effective for professional development, 
although they are also organisationally more demanding. These internal training 
open classes, which involve a series of different goals and are mainly organised by 
the teaching research group as a routine research activity, have played a role in 
securing incremental, accumulative and sustainable improvements in China (e.g. 
Huang et  al. 2011). In these group classes, the teachers reflect on their teaching 
practice, design innovative activities based on class observations and engage in 
practitioner-driven research. These activities were originally aligned with the pro-
motional criteria for teachers in Mainland China, where teachers are required to 
conduct research and publish practice-oriented papers in education journals or mag-
azines and undergo regular teaching evaluations. This approach, which is also 
known as ‘learning study’ in Hong Kong (Sun 2007; Lo 2005) and ‘public class’ in 
China (Liang 2011; Shen et  al. 2007), is a popular method for developing and 
enhancing the teaching profession in many countries. In practice, in an open class a 
group of teachers first observe a lesson taught by a colleague and then discuss its 
merits (Miyakawa and Winsløw 2013).

17.3.5.4  �Open-Class Roles in Primary Teacher Professional Life

Open-class model:

–– Has exploited the Chinese conception of teaching as a public activity with norms 
and structures that favour a collaborative spirit.

–– Has exerted a major influence in the professional development of teachers in 
China for many years.

–– Has played a major role in fostering learning communities within Chinese 
schools.

–– Has proven to be an effective way to induct new and inexperienced teachers into 
the teaching profession.

This approach is simpler and more economical than the ‘lesson study’ method. 
When used in teacher education, the open-class approach enables pre-service teach-
ers to observe more experienced teachers as part of their professional training. 
According to the literature, the open-class approach is used in many teacher prepa-
ration programmes to induct pre-service teachers into the practice of teaching 
(Wang and Paine 2003). The approach is also used for professional development 
and teacher evaluation in schools (Liang 2011).

In Mainland China, teachers are required to attend public classes (open classes) 
as part of the professional development activities in their school- or district-based 
research groups. This approach is largely shaped by Eastern traditions in which 
teaching is regarded as a public activity with norms and structures that favour col-
lectivism (Liang 2011; Shen et al. 2007).
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The open-class approach is an integral part of the educational audit culture in 
China. Accordingly, the open-class approach has been a major influence in the pro-
fessional development of teachers in China for many years. Ecologically, the 
approach has also played a major role in fostering learning communities within 
Chinese schools. However, compared with Mainland China, the open-class approach 
is rarely employed in Macao.

17.3.5.5  �The Difference: Open Class vs Lesson Study

These open classes generally require:

–– Single cycles (planning-designing-teaching-reflecting) vs multiple cycles in les-
son study.

–– Involves within-school or research group teachers vs outside teacher/researcher 
in lesson study.

–– More frequency daily practice vs non-daily practice in lesson study.
–– Simpler/more economical vs complex procedure in daily practice.

17.3.5.6  �Difficulties in transposing to Macao

A Portuguese colony for more than 400  years, Macao was returned to China in 
1999. As part of the legacy of the decentralised governing style of the Portuguese 
era, 90% of the schools in present-day Macao are privately run and have their own 
diverse curricula. Given its colonial past, the culture of teaching in Macao schools 
has largely been shaped by Western traditions in which teaching is regarded as a 
private activity with norms and structures that favour individualism and autonomy 
(Li 2003). In addition, Macao’s decentralised and fragmented education system 
does not have a common curriculum within and across grade levels.

Accordingly, there is no national framework to guide teachers and each school 
designs its own curriculum, assessment tasks and standards and grade progression 
criteria. Coupled with a heavy teaching load (more than 20 classes a week), it is 
almost impossible for teachers to engage in curricular improvement and participate 
in professional development. Consequently, there is little or no opportunity for 
experienced teachers to share their experience with beginning and new teachers. For 
example, in an interview, a teacher stated that without a class visit tradition, teachers 
regard their own classrooms as a private space and, therefore, tend to work alone: 
‘They are usually doing their own thing’ (各忙各的).

Traditionally, pre-service teacher training in Macao is divided into ‘theory’ (sub-
ject matter, curriculum, educational theory and pedagogy) and ‘practice’. The unity 
of theory and practice is considered unimportant, as it is supposed to be realised 
automatically in teaching practice. As a result, no pre-service teaching courses 
focus on the connections between theory and practice. None of the literature on 
teaching addresses the central questions on how the unity or integrity of theory and 
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practice is realised. Similarly, no research has examined whether particular theories 
are appropriate when they are applied in a classroom context (even though this 
question has become the central issue of teacher education). The lack of research on 
the role of unity within the teacher education curriculum can be regarded as a ‘miss-
ing paradigm’ (Day 1991, 1997; Cuban 1992).

Taking on board the idea that pedagogy is a culturally specific enterprise, we 
acknowledge that transposition requires adaptation. Here we present and discuss an 
instance of transposition of the open-class approach to Italy.

17.3.6  �Open Class in Italy

Maria G. Bartolini Bussi

17.3.6.1  �Organisation of Primary Teacher Education in Italy

General or local organisation: General organisation within governmental regula-
tions. Some limited choices may be made locally.
Teacher qualification: Usually generalists. Some limited experiments of specialist 
mathematics teacher preparation are carried out in some primary schools.
Curriculum for primary mathematics: Common, with national standards.

17.3.6.2  �Some Features of the Italian School System

The Italian mathematics curriculum is national (centralised) with weak control on 
processes: there is independent school management with governmental control 
(national assessment) at the end of the 2nd and 5th grades. Teachers are usually 
generalists (although some limited testing of specialist teachers is ongoing drawing 
on school independent management) (see the Table 17.1). Primary school teachers 
usually spend 5 years (the whole period of primary school) with the same group of 
students. The school system is totally inclusive, as all students (including students 
with special needs) are in mainstream classrooms.

17.3.6.3  �Primary School Teacher Education and Development

A university master’s degree has been compulsory for primary school teachers since 
1998. However, most current teachers in primary schools (especially the older ones) 
have only a secondary school degree, with, in general, little experience of in-service 
development activity (a law about compulsory in-service development activity was 
issued only in September 2015). Hence, in many schools, there are still teachers with 
limited preparation: relevant exceptions are represented by teachers who have been 

J. Novotná et al.



423

in touch with a university research group. This happened in Reggio Emilia, thanks to 
the efforts of the Department of Education and Human Studies and to a generally 
positive attitude towards education issues, realised by means of a programme of 
early childhood education that has gained international repute in the last quarter 
century (the so-called Reggio approach, http://www.reggiochildren.it/?lang=en).

17.3.6.4  �Some Local Studies

In Italy (University of Modena and Reggio Emilia, Department of Education and 
Human Studies at Reggio Emilia) we started an experiment 4 years ago with some 
dozen schools, in order to implement a ‘lesson study style’ process. The principal 
investigator is Maria G.  Bartolini Bussi, with the collaboration of Alessandro 
Ramploud and others (doctoral students, post-doc scholars from different universi-
ties, teachers, principals, educators coordinated by the branch of the Municipality of 
Reggio Emilia ‘Officina Educativa’, i.e. ‘Educational Workshop’).

17.3.6.5  �The ‘Open-Class Model’ Programme

In this general situation, the principal investigator and collaborators launched a new 
programme for pre-service teacher education and in-service teacher development in 
2012 that was inspired by the ‘lesson study’ model, as developed in Japan. The 
principal investigator had the opportunity to visit classrooms in Far East (Japan, 
China, Thailand). Hence, she came in contact with different implementations of 
similar (although not identical) models. The most important differences between the 
Italian schools and the Eastern schools may be summarised as follows:

–– The presence of generalist vs specialist teachers.
–– The permanence of the same teacher with the same group of students for many 

years vs for 1 year only.
–– The attention to students with special needs in the mainstream classes (according 

to the totally inclusive model in Italy).
–– The conception of the classroom as a private space vs. a public space where also 

critical observers are welcome.

Table 17.1  International comparison

China Macao Italy

Language Chinese (Mandarin/Cantonese) Italian

Standard National (centralised) 
standard strong control

Fragmented 
curriculum

National (centralised) 
standard weak control

Primary 
teachers’ beliefs

Teaching as public 
activity

Teaching as private activity

Specialist Generalist
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The research group eventually chose the Chinese model of ‘open classes’, as it 
seemed more school centred than University centred. The intention, discussed also 
with teachers, educators and principals, was to disseminate a model that was under 
the responsibility of the education agencies of the zone, with no special role (except 
the starter one) for the University research group.

We chose the title (English acronym DOR):

to design – to observe – to redesign
a Mathematics lesson

in order to capture the meaning of the Chinese expression.

 

Until now we have completed three summer schools and some dozen DOR pilot 
examples.

The three summer schools were held in September 2012, 2013, 2014 with pri-
mary school teachers and general educators (who support teachers with the organ-
isation of classroom activities and afterschool workshops for students with special 
needs). A further public event was realised in December 2015, in order to dissemi-
nate the last outcomes, with a further event held in November 2016.

At the beginning (2012 and 2013), the summer schools aimed at introducing 
participants to some activities typical of other cultures, mainly from the Far East, in 
order to foster discussion about cultural factors that are beyond the choices that are 
considered ‘universal’. We were inspired by Jullien’s statement:

This is not about comparative philosophy, about paralleling different conceptions, but about 
a philosophical dialogue in which every thought, when coming towards the other, questions 
itself about its own unthought. (Jullien 2006, p. iii)

The approach was very successful: from the first to the second summer school, we 
had an increase of participants from about 80 to more than 200.

We then started a cooperation with some selected schools, discussing with prin-
cipals the possibility of realising in their schools pilot examples of DOR for math-
ematics lessons with a structure that may be roughly summarised as follows:

–– 3 hours: design (for a group of teachers, educators and student teachers).
–– 1 hour: lesson (with observers, including educators in charge of video documen-

tation of the lesson).
–– 3 hours: analysis and redesign (for a group of teachers, educators and student 

teachers).

The trickiest issue from the beginning was to force teachers to focus on the limited 
time of a lesson (about 45/60 mins). Italian teachers are not accustomed to controlled, 
careful, short-term processes, tending instead to work as long as needed on a particu-
lar issue, without focusing on the time span of a single lesson. With these experiments 
we wished to introduce attention to the careful design of short-term processes. 
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Long-term processes, in our approach, are designed and controlled by the semiotic 
mediation framework (Bartolini Bussi and Mariotti 2008).

The first pilot examples were publicly presented and discussed in the 3rd sum-
mer school (September 2014) with the invitation of more teachers.

Proceedings and documentation of all the three summer schools have been pub-
lished in Italian and partially discussed in the doctoral thesis of Alessandro 
Ramploud (2015). More experiments are currently ongoing (Table 17.2). A research 
study concerning one of the teaching experiments has been published (Bartolini 
Bussi et al. 2017).

Also, some student teachers are involved in the experiments, as part of their 
practicum (internship) and, in some cases, as part of their master’s dissertations, and 
some new teachers are involved.

The strength of the programme may be summarised as follows:

–– Links with international programmes, with attention to the cultural aspects.
–– Participation of principals in the definition of aims and goals.
–– Extensive spread over the province and beyond.
–– Mixed experience group (expert teachers, new teachers, students teachers, 

educators).

17.3.7  �Czech Republic: Critical Places in School Mathematics

Jarmila Novotná

17.3.7.1  �Organisation of Primary Teacher Education in the Czech 
Republic

General or local organisation: Locally developed, each faculty providing teacher 
education has individual curricula accredited by the Ministry of Education, Youth 
and Sports.

Teacher qualification: Generalists, possibility to extend the qualification by one 
subject.

Curriculum for primary mathematics: A general national framework education 
programme, individual school education programmes.

Table 17.2  Summary of experiments

Number of DOR 
experiments

Number of schools 
involved

Number of 
teachers

Number of 
educators

67 41 205 8
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17.3.7.2  �Critical Places: The Case of Word Problems

Future teachers’ ideas about school mathematics and its teaching strategies are sig-
nificantly influenced by their previous experiences from their home, school and 
society (see, e.g. Pasch et al. 1995). Their previous experience can have a consider-
able impact on their ability to get insight into the cognitive processes of pupils, who 
meet new, and for them, often surprising concepts, properties and relations or obsta-
cles. As noted by Even and Ball (2009):

future elementary teachers in general use only weak mathematical conceptions, which often 
do not help them to realise their educational ambitions. On a general educational level, 
many of these students advocate discovery learning and collective problem solving, but 
when it comes down to the mathematical activities that have to be prepared, their experi-
ence of ‘traditional’ school mathematics is of little help. […] For both future teachers, ele-
mentary as well as secondary, building conceptions of mathematically rich and cognitively 
and socially stimulating school mathematical activities is at the heart of the process of their 
professional formation. (p. 35)

Teacher education in the Czech Republic is based on the idea that changes in math-
ematical education are substantially dependent on changes in teacher education. 
These changes must take into account the needs of practice. Resources from prac-
tice are collected in different ways, from official educational documents for schools 
through data collection organised by educational management to research organised 
at universities and research institutions such as the Czech Academy of Science. In 
this text we present information gathered from the research project Kritická místa 
matematiky základní školy, analýza didaktických praktik učitelů (Critical places of 
basic school mathematics, analysis of teachers’ didactical practices). The project 
ran from 2011 to 2014 in the Czech Republic, and its results are being transferred 
into teacher education. The aim of the project was to discover which issues in com-
pulsory school mathematics cause the main obstacles for further learning of Czech 
pupils.

In this text, we will restrict our focus to the primary school (the first 5 years of 
compulsory school attendance). The results from the project were published among 
others in two monographs: Rendl et al. (2013) and Vondrová (2015). While in Rendl 
et  al. (2013), teachers’ views and experiences are collected and analysed, in 
Vondrová (2015) these results are further elaborated and verified with pupils.

For data collection, in-depth interviews with individual respondents were used. 
The interviewer posed open questions and had the opportunity to add further spe-
cific questions in case of necessity.

The aim of the research with teachers (Rendl et al. 2013) was to find out which 
domains of school mathematics teachers evaluated as critical, how they dealt with 
them and what they saw as the reasons for pupils’ difficulties. Textbooks that 
respondents used in his/her teaching were used as supporting material. From the 
domains related to WNA teachers evaluated rounding and estimating, arithmetical 
operations and word problems as the most difficult for primary pupils (Jirotková 
and Kloboučková 2013). The in-depth interviews were followed up with a 
questionnaire-based survey aimed at enriching some of the information gained in 
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the interviews. In the research with pupils, during the in-depth interviews, pupils 
solved selected problems and described their mental processes (Vondrová 2015).

We present here only the results dealing with word problems as a part of the 
results linked directly with WNA (for more detailed information, see Havlíčková 
et al. 2015). The research showed that in the domain of word problems at the pri-
mary level, the most difficult aspects for pupils were:

–– Understanding of text and grasping the problem.
–– Recording the problem structure, pictures, schemes and models.
–– Words in the function of an ‘antisignal’, i.e. that cues an operation different to the 

one required.
–– States and their transformation in problems of comparison.
–– Sets and their parts.
–– Mathematical ‘craft’ – numerical errors and errors in algorithms.
–– ‘Chaining’ numerical operations and pieces of information in the assignment.
–– Fractions in a word problem.
–– Conversion of units.

According to teachers, reading comprehension was a key issue. They pointed out 
pupils’ inability to choose essential pieces of information in a text, to formulate the 
answer to the question in the assignment and several other problems they had 
encountered during their teaching practice.

In the questionnaire survey (Havlíčková et al. 2015), it was found that the text-
book was the most important support for teachers in their teaching although they 
sometimes also used additional materials (other textbooks, collections of problems, 
own materials, etc.). The survey also provided other information directly linked 
with word problems in primary mathematics, concerning issues that teachers con-
sider as important for their successful solving. For example, most participating 
teachers put emphasis on the need to automate pupils’ calculations. For successful 
problem solving of a word problem, they considered working with ‘problem types’ 
and creating records of their differing structures to be very important. Nearly all 
teachers guided their pupils to choose words in the assignment that signalled the 
arithmetical operation. They believed that success in solving word problems was 
associated with pupils with higher cognitive dispositions, with weaker pupils facing 
difficulties when solving word problems. When discussing differences between suc-
cessful and less successful solvers of word problems, teachers mostly mentioned 
differences in transforming a word problem text into a mathematical structure (i.e. 
with mathematisation) and differences in the ability to work systematically and to 
firstly determine a suitable solving procedure. Small differences were reported in 
the speed of performing arithmetical operations.

Although the findings from the survey do not speak directly about teacher educa-
tion, they do provide useful pointers. Teachers need to be well prepared to work in 
an environment of diversity of pupils in all aspects. Preparing them for working for 
inclusion is one of the important tasks for teacher education, with teacher responses 
to word problems as demarcating between strong and weak students providing evi-
dence of current beliefs standing against this view (Brousseau and Novotná 2008). 
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It is broadly accepted that during their pre-service, as well as in-service, education 
teachers’ attention should be directed to structural relations; focus on keywords and 
operations is not sufficient (Hejný 2012).

In order to help their pupils to develop their knowledge of mathematics as well 
as positive attitudes towards mathematics, teachers will need a good command of 
mathematical and pedagogical knowledge. When entering the practice after gradu-
ating as primary teachers, they will not only work with their pupils but will also, 
importantly, cooperate and learn from (experienced) colleagues. Teacher education 
should prepare future teachers for all aspects of their teacher professional life; 
knowing the subject is not the only necessity. The results from the project are impor-
tant for primary mathematics teacher education. Future teachers must undergo a 
suitable education for opening for them the possibility of helping their pupils to 
overcome critical obstacles. Lastly, teachers’ approaches to overcoming their 
pupils’ difficulties when learning mathematics are influenced not only by their 
mathematical and pedagogical content knowledge (which is a common part of all 
primary teacher education), but also by their personal characteristics.

17.4  �Discussion

Mike Askew

In the presentations given at the conference, several common themes emerged that 
included, first, the recognition of the need for teaching WNA to have increased 
emphasis on problem solving (as opposed to simply focusing on teaching arithmeti-
cal fluency) and, second, the importance of the working with concrete and pictorial 
representations. Interested readers are likely not to be surprised to learn of these 
themes. Such issues have been on the mathematics education agenda for many 
years. Yet the evidence, both within the conference (see, e.g., the contribution by 
Mulligan and Woolcott 2015) and in the mathematics education literature, more 
generally (see, e.g., Cai 2003) suggests that we, the teacher education community, 
have had mixed success in achieving such changes.

For example, with regard to the role of representations, a discussion that emerged 
during a panel session at the conference illustrates how work still needs to be done 
on the balance and relationship between using ordinal (number line) and cardinal 
(base ten blocks) models as representation for WNA. A number of European partici-
pants argued strongly for the number line as a core model for WNA, but the more 
local speakers, while not dismissing using the number line altogether, clearly were 
less enamoured of it, being keener on cardinal images of number. Why might there 
be differences of opinion on this?

One argument put forward emphasising the use of number lines is that they pro-
vide learners with reinforcement of core whole number fluencies, such as making 
numbers up to the next multiple of ten or partitioning single digits. For instance, in 
adding 9 onto 24 on an empty number line, making a jump of 6 from 24 to 30 rein-

J. Novotná et al.



429

forces making 24 up to the next multiple of ten and simultaneously reinforces the 
bond of 9 = 6 + 3. There is also the argument that working with the number line 
encourages strategic thinking, through it being amenable to different approaches. 
Taking 25 + 9, jumping 10 on the number line to 35 can encourage thinking in terms 
of a compensation strategy by then subtracting 1 from 35.

Yet observing a demonstration lesson in Macao (see Chap. 11, this volume), the 
approach taken in the lesson was based on a cardinal model of 24 + 9 and yet still 
reinforced similar fluencies. In one method put forward by the learners, 9 was par-
titioned into 6 and 3  in anticipation of making 24 up to 30. And again, strategic 
thinking was encouraged – the learners produced at least three different solution 
methods. In contrast to the methods that emerge using the number line, all these 
methods were based on partitioning – in addition to partitioning 9 into 6 + 3, 24 was 
partitioned into 23 + 1 to create 23 + (1 + 9) or into 20 + 4 to create 20 + (4 + 9). 
This latter method, although recorded horizontally in this lesson, lends itself to 
being linked to the standard vertical algorithm, so it may be that the preference for 
a cardinal model is rooted in an eye to the mathematical horizon.

Thus, it could be argued that the Western preference of the number line model is 
based on a preference for encouraging flexible efficiency, developing and using 
methods that are related to the numbers in the calculation, thus using compensation 
to add, say, 9 or 19. This flexibility is often linked back to individual differences that 
the number line explicitly promotes as a model that allows for emergent approaches 
at a range of levels of sophistication. In contrast, while multiple methods are encour-
aged within cardinal models, there is much more reference in this work to strategies 
that relate to the underlying mathematical structure of the task situation than to 
individual differences.

The conference presentations thus point to the need for further research into how 
the two models of whole number – ordinal (number line) and cardinal (base ten 
blocks) – complement each other, rather than teacher educators across the globe 
‘agreeing to disagree’ on which is the more favourable representation. But these 
bodies of research also suggest that it may be necessary to look ‘through’ such 
research to the basic aims and philosophy of education that guide the choice and use 
of models. And, importantly, could the mathematics teacher education community 
then come to some agreement on how best to work with pre-service teachers on both 
models, rather than privileging one over the other, or, as seems to be the case in 
many teacher education programmes, leaving it up to prospective teachers to choose 
for themselves which model they prefer to work with.

Such distinctions go to the heart of different perspectives of what it means to be 
a professional. For example, in many teacher education programmes in English-
speaking nations, the approach is to introduce pre-service teachers to a range of 
pedagogical approaches and representations in the expectation that they, as profes-
sionals, can decide for themselves which they think may be most effective. In con-
trast, in places like Singapore and Shanghai, it is clear that there is more consensus 
on which approaches to use. In part, such consensus may be the result of structural 
and historical circumstances. Being a small nation, Singapore has only one teacher 
education institution and a small community of educators working with both pre- 
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and in-service teachers. China has a long history of careful curriculum development 
and long-standing use of textbooks linked to the curriculum.

At the time of writing, there are initiatives in England to encourage teachers to 
adopt pedagogies based on those from Singapore and Shanghai, together with more 
use of textbooks. While teachers are welcoming these initiatives, there is less enthu-
siasm in some parts of the mathematics education community. Objections range 
from the argument that these initiatives are downplaying the good practices that 
already exist in England through to arguing that ‘training’ teachers to teach in par-
ticular ways is a threat to their professionalism.

Thus it would seem that difficulties in promoting, say, more problem solving and 
better use of representations may lie as much in the beliefs and practices of the 
mathematics education community as it does in the school and teaching community. 
While there is no shortage of research into teacher change, or the lack of it, are we, 
as mathematics educators and researchers, sufficiently self-reflective on whether or 
not our beliefs and practices need to change? Much of the research into teacher 
education addresses the question ‘What do teachers need to do differently?’, but do 
we pay sufficient attention to the parallel question ‘What could we (the teacher 
educators) do differently?’ We might begin to address this question by looking at 
some of our beliefs and, in particular, at our theory of knowledge.

Since Shulman’s seminal work on the distinction between content knowledge 
and pedagogic content knowledge, there has been a plethora of studies into knowl-
edge for teaching, most of which theorise different models and try to tease apart 
exactly what the difference between content knowledge and pedagogic content 
knowledge might look like. In many higher education institutions, there is contesta-
tion over where the mathematics for teaching should be taught – should it be taught 
in education departments or in faculties of mathematics? And we know from 
research that the relationship between studying higher mathematics in contexts 
divorced from addressing issues of pedagogy is only weakly associated with later 
success as a teacher (see, e.g., Wilson et al. 2001) (which, of course, is not to say 
that knowledge of mathematics is not important, but that it is a particular sort of 
mathematical knowledge that matters). So there is a political dimension to the 
research in knowledge for teaching, but has that research now established a sound 
body of findings as to exactly what mathematics pre- and in-service teachers need 
to be taught? Does the culture of research in teacher education encourage the cumu-
lative building of knowledge into effective teacher education, with each other’s 
work being built on and developed? Or is our culture one of individual reputations 
needing to be established? As Michael Billig argues, much writing in social sci-
ences generally now has overtones of the culture of advertising, with different theo-
ries ‘positioning themselves’ in the field rather than complementing each other 
(Billig 2013).

Thus, a theory of knowledge that underpins much of the research in places like 
the USA and UK has at its heart the development of the individual (teacher and 
researcher). Knowledge is in the mind of the individual; it is the personal, individual 
knowledge and skills of the teacher that needs to be ‘developed’. Other traditions of 
development, for example lesson study in Japan (Lewis 2002), focus more, how-
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ever, on teaching than on teachers. And, as the papers in Topic Group 4 suggest, 
within such cultures there may be less of a tradition of teachers choosing pedagogic 
approaches for themselves – the ‘technology’ of teaching is more in the hands of 
textbook and curriculum developers. The knowledge is not only in the heads of 
teachers, but also in the resources made available to them.
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Chapter 18
The Theory of School Arithmetic: Whole 
Numbers

Liping Ma  and Cathy Kessel 

18.1  �Introduction

There are at least two different perspectives on whole number arithmetic in primary 
school. In the USA, the tendency is to consider it as only learning to compute the 
four basic operations with whole numbers (e.g. asking students 1 + 1 = ?). In China, 
however, whole number arithmetic involves much more. For example, it is expected 
that students explore the quantitative relationships among the operations (e.g. given 
that 1 + 1 = 2, then 2 – 1 = ?) and represent these (sometimes quite sophisticated) 
relationships with (sometimes quite complicated) numerical equations.

As mentioned in the article ‘A critique of the structure of U.S.  elementary  
school mathematics’ (Ma 2013), part of this difference in perspectives is due to a 
theory that underlies school arithmetic in China and several other countries.1 
Although this theory underlies present-day school arithmetic in China, an important 
stage of its development occurred in Europe and the USA, initiated by the spread of 
mass education in the middle of the nineteenth century. This significant social 

1 Textbook analyses point out specific aspects of this general difference (Ding and Li 2010; Ding 
et al. 2013).
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change initiated a significant change in arithmetic, which we briefly outline here.2 
Mid-nineteenth-century primary school textbooks such as Warren Colburn’s First 
Lessons in Intellectual Arithmetic included Arabic numerals and notation for whole 
numbers, fractions and operations on them, inherited from commercial arithmetic 
textbooks for adults such as Cocker’s Arithmetick (first published in 1677), which 
focused on efficient computation.

From this school arithmetic, mathematical scholars began to forge an academic 
subject more closely connected to the rest of mathematics. They introduced two 
important new features:

•	 Horizontal expressions. These allowed significantly more sophisticated quantita-
tive relationships to be expressed than did the vertical columns used for the cal-
culations of commercial arithmetic.3

•	 A system of definitions and axioms modelled on that of Euclid’s Elements.4 
These included the definition of a number as a collection of units. Most included 
‘rules of likeness’ such as the rule that ‘only like numbers can be added’. Some 
included compensation principles or the commutative, associative and distribu-
tive properties, but not necessarily both.5

The significance of this system in connecting arithmetic with the rest of mathemat-
ics is hard to underestimate. In assessing the impact of the Elements, the mathemati-
cian Bartel van der Waerden (1978/2015) wrote:

Almost from the time of its writing, the Elements exerted a continuous and major influence 
on human affairs. It was the primary source of geometric reasoning, theorems, and methods 
at least until the advent of non-Euclidean geometry in the 19th century. It is sometimes said 
that, other than the Bible, the Elements is the most translated, published, and studied of all 
the books produced in the Western world. Euclid may not have been a first-class mathemati-
cian, but he set a standard for deductive reasoning and geometric instruction that persisted, 
practically unchanged, for more than 2,000 years. (emphasis added)

At the beginning of the twentieth century, the system of definitions and axioms was 
almost complete, as can be seen by examining US textbooks. Its development in the 
USA did not continue, possibly due to decreased emphasis on ‘mental discipline’ 
and increased concern about high failure rates (Stanic 1986; Stanic and Kilpatrick 
1992). However, as evidenced in textbooks of other countries, development of the 
system continued outside the USA.6

2 Ma (in preparation) gives a detailed account.
3 The prolific textbook author and translator Charles Davies seems to have initiated this change in 
US primary mathematics textbooks; see his Common School Arithmetic (1834, pp. 17, 33). Use of 
horizontal expressions was further developed in later textbooks such as Robinson’s Progressive 
Practical Arithmetic (1875) and Sheldons’ Complete Arithmetic (1886).
4 The first instance in US arithmetic textbooks may be in School Arithmetic: Analytical and 
Practical (Davies 1857). Further developments can be seen in Sheldons’ Complete Arithmetic.
5 For example, The Normal Elementary Arithmetic (1877) states, ‘The sum is the same in whatever 
order the numbers are added’ (p. 208) and ‘If the multiplicand be multiplied by all the parts of the 
multiplier, the sum of all the partial products will be the true product’ (p. 223).
6 Xu notes that, in the first major period of textbook development after 1950, China was ‘translating 
and modifying textbooks from the Soviet Union’ (Xu 2013, p. 725). Before 1950, China’s school 
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During the twentieth century, school arithmetic evolved in three ways:

•	 The system of definitions and rules was augmented by the commutative, associa-
tive and distributive properties.

•	 Prototypical word problems with variants were added, e.g. pursuit, cistern, or 
work problems (see Ma 2013, Appendix).

•	 Instructional approaches advanced (see Ma n.d.).

This chapter discusses the first item in this list. In it, we present the central pieces of 
the theory – the definition system and axioms for whole numbers – distilled from 
the textbooks of the nineteenth-century USA and twentieth-century China listed in 
the references. (Details of this development are discussed by Ma in preparation.) 
The theory built around these central pieces explains all the computational algo-
rithms in whole number arithmetic. Moreover, it can foster primary students’ ability 
to deal with quite sophisticated quantitative relationships.

18.2  �Characteristics of the Theory

Like the Elements, the theory has definitions, postulates and theorems. It presents a 
small number of fundamental definitions and shows how other definitions can be 
derived from those in order to avoid circularity. Its analogue to the postulates of the 
Elements is ‘basic rules and basic laws’. Its analogue for theorems is rationales for 
computational algorithms. The theory differs from the Elements in not giving 
explicit analogues to Euclid’s ‘common notions’ (e.g. ‘Things which are equal to 
the same thing are also equal to each other’). As will be illustrated in this chapter, 
the common notions were implicitly assumed and used.

The theory differs from modern mathematical theories in several other ways.
First, it follows the Elements in style, using only words and diagrams. The advan-

tage of this formulation is its closeness to everyday life. Pedagogical instantiations 
of this theory, i.e. textbooks, can act as a bridge between lay experiences and the 
abstractions of formal mathematics.

Second, like the Elements, this theory is less precise than modern approaches. 
Instances of this lack of precision are noted and discussed in this article.

A third difference is that the theory is not intended to be entirely parsimonious. 
It is parsimonious in giving a small number of fundamental definitions; however, 
some of the basic laws are redundant. In particular, the laws of compensation can be 
derived from other basic laws.

mathematics textbooks were influenced by those of other foreign countries. For example, The 
Arithmetic Series by the Japanese mathematician Tsuruichi Hayashi (1926/1933) was translated 
into Chinese and used in schools during the 1920s and 1930s. There were also Chinese textbooks 
that were strongly influenced by US ‘progressive education’, for example, The New Ideology 
Arithmetic Series (Yang and Tang 1931) and The New Curriculum Standard Arithmetic Series 
(Zhao and Qian 1933). In all of these textbooks with various foreign impacts, however, important 
features of the theory of school arithmetic, such as emphasis on the relationships among the four 
operations, can be identified.
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18.3  �Content and Organisation of This Chapter

We present the definitions and basic laws for whole numbers. The definitions are 
presented in order, that is derived definitions appear after those on which they 
depend, followed by a list of the basic laws in the Appendix. The general definitions 
are numbered.

Definitions like those presented here were given in nineteenth-century US text-
books. After the pedagogical advances of the twentieth century, however, explicit 
(and sometimes complicated) definitions like these were not presented to children. 
The numbered pedagogical remarks that follow each definition note ways in which 
it may be presented to children. Historical remarks that discuss sources and variants 
are given in the footnotes.

18.4  �The Arena of Primary School Arithmetic

18.4.1  �Units

Definition 1  A single thing, or one, is called a unit or unit one.
A group of things or a group of units, if considered as a single thing or one, is 

also called a unit, a unit one or a one (Fig. 18.1).
One or one thing is a primitive conception that we are born with. The definition 

of unit is abstracted from this conception. This is the starting point of the definition 
system.

In this definition, we see two types of unit. The first type we call ‘one-as-one 
unit’ and the second ‘many-as-one unit’.

Although the concept is called ‘unit’, use of the terms ‘unit one’ and ‘one’ in 
teaching helps to connect ‘unit’ with students’ conception of ‘one’.

Students’ understanding of the concept of unit deepens step by step through 
arithmetic learning. They shouldn’t be expected to read or know abstract definitions 
such as the definition above.

As students progress through primary mathematics, their concept of unit becomes 
more abstract. Although this deepening of the concept of unit occurs throughout 
primary mathematics, the term ‘unit’ is generally not used until middle and upper 

Unit one

A group of things, if considered as a single thing or one, is also called a unit or unit one.  

Fig. 18.1  The definition of unit
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primary grades. In those grades, students may need to use the terms ‘unit’ and ‘unit 
one’ when solving certain kinds of word problems, some of them involving multi-
plication and division of fractions.

18.4.2  �Numbers

Definition 2  A number is a unit (one) or a collection of units (ones).
This definition of number is given in terms of the definition of unit. It generates 

one set of numbers, the natural numbers (1, 2, 3, etc.). This chapter does not discuss 
how the definition of unit will expand to generate a second set of numbers, expand-
ing the number system of primary mathematics. Together, the two sets of numbers, 
natural numbers and positive rational numbers, form the arena of school 
arithmetic.

The symbol 0 has two features: as a digit in the notation system and as a number. 
As a digit, it plays an important role in the notation system. But, as a number, 0 is 
not part of the arena of school arithmetic.7

This definition generates the natural numbers, the set of numbers already famil-
iar to students. Primary students are not expected to learn a separate definition for 
‘number’.

Definitions 3 and 4  An abstract number is a number whose units are not named.
A concrete number is a number whose units are named.
To classify numbers as concrete and abstract is a need specific to school arithme-

tic. The terms abstract number and concrete number were created after a long-term 
effort of primary teachers with the assistance of mathematical scholars.8

When they begin school, most primary school students do not have conceptions 
of abstract numbers such as ‘five’, ‘six’ or ‘seven’. Instead, their conceptions are 
concrete numbers such as ‘five friends’, ‘six books’ and ‘seven apples’. An impor-
tant task of primary mathematics is to lead students to complete their transition from 
concrete number to abstract number and be able to compute with abstract numbers. 
During this process, students’ original conception of concrete number serves as an 

7 How many aspects of the number zero should be taught in primary school is an issue which needs 
further discussion. Consider Alfred North Whitehead’s remark: ‘The point about zero is that we do 
not need to use it in the operations of daily life. No one goes out to buy zero fish. It is in a way the 
most civilized of all the cardinals, and its use is only forced on us by the needs of cultivated modes 
of thought’ (1948, p. 43).
8 Smith wrote: “The distinction between abstract and concrete numbers is modern. The Greek 
arithmeticians [who studied number theory] were concerned only with the former, while the writ-
ers on logistic [arithmetic] naturally paid no attention to such fine distinctions. It was not until the 
two streams of ancient number joined to form our modern elementary arithmetic that it was thought 
worth while to make this classification, and then only in the elementary school. […] The terms 
‘abstract’ and ‘concrete’ were slow in establishing themselves. The mathematicians did not need 
them, and the elementary teachers had not enough authority to standardize them” (1925/1953, 
pp. 11–12).
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important resource for instruction.9 The concept of concrete number can also serve 
as cornerstone in learning to analyse quantitative relationships.

The terms ‘abstract number’ and ‘concrete number’ are not terms that students 
should be expected to know. However, they denote concepts that are important for 
teachers, curriculum designers, and textbook authors in describing students’ math-
ematical development and in designing instruction to help students develop more 
abstract thinking.

Definition 5  Like numbers
If two concrete numbers have units with the same name, they are called like 

numbers.
The concept of like numbers is a useful support for students as they learn to 

analyse quantitative relationships.

18.5  �Notation: Base-Ten Positional Numeral System

18.5.1  �Digits and Numerals

Digits are symbols used to represent numbers. There are nine significant digits and 
one non-significant digit.

Each of the nine significant digits represents a different number of units:

  1   2     3   4   5   6     7     8     9

One Two Three Four Five Six Seven Eight Nine

The non-significant digit is 0. It represents no units.
A sequence of digits is called a numeral.
A numeral can have one or more digits. A number represented by a numeral with 

only one digit is called a one-digit number. A number represented by a numeral with 
two digits is called a two-digit number. A number represented by a numeral with 
three digits is called a three-digit number, and so on.

Because there are only nine significant digits, one digit cannot represent more 
than nine units.

9 For example, the book First Lessons in Intellectual Arithmetic, by Warren Colburn (1793–1833), 
a Harvard mathematics baccalaureate, gave examples of how this resource could be used. It was 
published in 1821 and was in ‘almost universal use’ for several decades (Monroe 1912, p. 424). By 
1890, 3,500,000 copies had been sold in the USA (Cajori 1890). Ninety years after its publication 
in 1912, it was still being used in the USA (Monroe 1912, p. 424). The impact of First Lessons was 
not confined to the USA. First Lessons was translated into several European languages and distrib-
uted in Europe (Scientific American Supplement, No. 455, September 20, 1884). Missionaries 
translated it into Asian languages and distributed it in some Asian countries. During the mid-
nineteenth century, the book sold 50,000 copies per year in England (Monroe 1912, p. 424).
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Although there are only ten different digits, every natural number can be repre-
sented as a numeral.

18.5.2  �Place of a Digit, the Unit Value of a Digit, the Name 
of a Place and Place Value

The position of a digit in a numeral is called the place of a digit. The largest digit in 
any place represents nine units. Each ten units is written as one unit in one place to 
the left.

Digits at different positions have different unit values. For numerals with two or 
more digits, the unit value of a place is ten times the unit value of the place imme-
diately to its right.

The places are named according to the value of the unit they represent. From 
right to left: ones place, tens place, hundreds place, etc.

The unit value determined by the position of the digit is also called the value of 
the place or place value. In arithmetic with natural numbers, these values are powers 
of ten: 1, 10, 100, 1000, etc.

The digits in a numeral are named according to their positions: ones digit, tens 
digit, hundreds digit, etc.

Positional notation is one of several kinds of notation for numbers.10 A key fea-
ture of positional notation is that the place of a digit determines the unit value rep-
resented by the digit. In school arithmetic, only one kind of positional notation is 
taught, base-ten notation. Concepts of positional notation are introduced in the spe-
cific context of this notation rather than in a general way (Fig. 18.2).

10 In addition to positional notation, there are other types of notation systems for numbers such as 
Roman numerals and Chinese notation.

First number Second number

Sum (Third number)

The sum of two numbers is a third number which contains as many units as the
other two numbers taken together.

Fig. 18.2  The definition of the sum of two numbers
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18.6  �Addition and Subtraction

18.6.1  �Addition

Definition 6  The sum of two numbers11 is a third number which contains as many 
units as the other two numbers taken together.

The operation of finding the sum of two numbers is called addition.12

The definition of ‘sum’, one of the two basic quantitative relationships in school 
arithmetic, is given in terms of the definitions of ‘unit’ and ‘number’.

The quantitative relationship formed by three numbers has the following feature. 
If two of the three numbers are known, the third is determined. Because of this, it is 
possible to define addition and subtraction in terms of this quantitative 
relationship.

Although the definition of the sum of two numbers may seem obscure, it reveals 
the key relationship that underlies addition and subtraction in school arithmetic. The 
line segment diagram in Fig. 18.2 represents this definition in a form that is suitable 
for teaching.

After the quantitative relationship of sum is defined, then addition can be defined 
in terms of this relationship. In a similar way, subtraction can be defined. In this 
way, the connection of sum, addition and subtraction is given explicitly, using a 
small collection of fundamental concepts.

It is very likely that the concept of addition is closely related to a primitive con-
ception that we are born with. A contemporary cognitive science researcher Karen 
Wynn (1992, 1995) has published research to demonstrate that several weeks after 
birth, infants can recognise the quantities 1, 2 and 3 and do computations such as 
1 + 1 and 2 – 1 (see also, National Research Council 2009, p. 65). By the time pri-
mary children come to school, they may have developed a variety of strategies for 
addition: counting all, counting on or using known sums (National Research Council 
2001, p. 169). Often, they find it easier to convert subtraction computations to addi-
tion computations by counting on, e.g. to compute 8 – 5, count up from 5, ‘6, 7, 8. 
So 3 left’ (National Research Council 2001, p. 190). The nineteenth-century text-
book author Warren Colburn may have been noting this phenomenon when he 
wrote, ‘It is remarkable that a child, although he is able to perform a variety of 
examples which involve addition, subtraction, multiplication, and division, recog-
nizes no operation but addition’ (1821/1863, p. 9).

The task of teaching is to make a bridge from the inborn conception to the 
abstract quantitative relationship sum of two numbers.

11 Natural numbers do not include zero.
12 Addition and subtraction are binary operations. A binary operation is a calculation involving two 
input quantities. While the sum of three and more numbers can be computed, it needs to be found 
step by step, at each step computing the sum of two numbers.
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18.6.1.1  �Addends

Definition 7  The two numbers summed are called addends.13

The two terms ‘addend’ and ‘sum’ are important thinking tools to understand 
and work with the quantitative relationship ‘sum of two numbers’. Students should 
be exposed to them at the beginning of their addition and subtraction learning. 
Figure 18.3 is an example from a Grade 1 Russian mathematics textbook (the addi-
tion on the right (8+2) is a new problem to be solved). It introduces the definition of 
the sum of two numbers, the definition of addition and the definitions of ‘addend’ 
and ‘sum’ in a form suitable for young children. (For more details of how this may 
occur in teaching, see Ma n.d., pp. 15–16.)

Some early primary teachers tell their students that because the sum is greater 
than the addends, if we see that the result of a word problem will be greater than the 
known numbers in the problem, we use addition to solve the problem. This approach, 
when compared with the approach of looking for keywords such as ‘left’, ‘together’, 
‘more’ or ‘less’, is more conceptual. However, it needs to be noted that this approach 
is only useful for one-step word problems.14 Therefore, at an appropriate point, we 
need to lead students to notice the limitations of this statement. By noticing these 
limitations, students gain the experience of developing new knowledge by under-
standing limitations of knowledge developed earlier.

18.6.1.2  �The Rule of Like Numbers for Addition

When two addends are concrete numbers, they must be like numbers. Their sum and 
the two addends are like numbers.

13 Terms of the definition system such as ‘like numbers’ in section I, in this section, ‘sum’ and 
‘addends’, and in the next section ‘product’, ‘multiplicand’ and ‘multiplier’ all first appeared in 
arithmetic textbooks during the past 400 years. Over the years, various definitions have been given 
for these terms. These definitions were not always given as part of a system in which definitions 
depend on a few fundamental definitions but instead as definitions that were independent of each 
other.
14 When we solve multi-step word problems, when the result is larger than the known numbers, we 
may need to use operations other than addition.

Fig. 18.3  Example of introducing definition and terms of addition to first-grade students (Moro 
et al. 1992, p. 38) (Reprinted with the permission of the University of Chicago School Mathematics 
Project)
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There are two rules of likeness: rule of like number and rule of like unit. Of these 
two, the rule of like numbers is more closely connected with quantitative 
relationships.

The rule of like numbers for addition seems very simple. It is easily ignored. Its 
importance is more noticeable from the perspective of the entire theory.

In teaching, this rule can be said as ‘addends must be like numbers’ or ‘only like 
numbers can be added’.

18.6.1.3  �The Rule of Like Unit Value for Addition

In computing the sum of two numbers, their representations as numerals are used. 
Only digits of like unit value can be added.

This rule is part of the explanation of the algorithm for multi-digit addition. For 
example, the digit 5 in the ones place and the digit 3 in the ones place have the same 
unit value so they can be added. The digit 5 in the ones place and the digit 3 in the 
tens place do not have the same unit value and cannot be added.

This rule is also an important part of the explanation of the algorithm for multi-
digit multiplication.

In teaching, we can say ‘only digits with the same units can be added’ or ‘only 
the same units can be added’, omitting the word ‘value’ which is not relevant to 
students and omitting the distinction between number and numeral.

18.6.2  �Subtraction

Definition 8  If a sum and one addend are known, the operation of finding the 
unknown addend is called subtraction.

Subtraction is the inverse of addition in the sense that it ‘undoes’ addition.
Defining subtraction and addition in terms of ‘the sum of two numbers’ connects 

the two operations of subtraction and addition with one quantitative relationship. 
However, there is a difference between the conceptions of subtraction that students 
already have developed on their own and this definition of subtraction. Teaching 
needs to start from these conceptions and gradually lead students to see the quantita-
tive relationship that underlies the operations of addition and subtraction.

It is possible to introduce this definition of subtraction early in arithmetic learn-
ing in a form suitable for students (see Ma, n. d., pp. 18–20). Figure 18.4 illustrates 
two stages of the path between students’ conceptions of subtraction and the quanti-
tative relationship in first grade (Moro et al. 1992/1982, pp. 15, 55).

At early stages of learning subtraction, there are two instructional approaches: 
learning the operation of subtraction and also leading students to pay attention to the 
relationship between addition and subtraction. These different approaches will have 
different impacts on students’ later learning.
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18.6.2.1  �Minuend, Subtrahend, Difference

Definition 9  The known sum in subtraction is called the minuend. The known 
addend is called the subtrahend. The unknown addend, which is the result of the 
operation of subtraction, is called the difference.

Like the concepts ‘addend’ and ‘sum’, the concepts ‘minuend’, ‘subtrahend’ and 
‘difference’ are important thinking tools for understanding and working with the 
quantitative relationship ‘sum of two numbers’. Students do not need to memorise 
the definitions, but they need to have terms to use for the things described in the 
definitions, allowing them to describe how the terms are related. For example, the 
sum in an addition equation corresponds to the minuend in a subtraction equation15 
(Fig. 18.5).

Because a minuend is greater than a corresponding difference, early primary 
teachers tend to tell students that if we see that the result of a word problem will be 
smaller than the known numbers in the problem, we use subtraction to solve the 
problem. However, as with addition, it needs to be noted that this approach is only 
useful for one-step word problems.

15 This is an example of two definitions that depend on a more fundamental definition. Rather than 
being defined independently, subtraction and addition are both defined in terms of the relationship 
‘sum of two numbers’. Figure 18.5 illustrates one consequence: terms for parts of an addition 
equation have an explicit correspondence with terms for parts of a subtraction equation.

Fig. 18.4  Two stages in first-grade subtraction (Reprinted with the permission of the University of 
Chicago School Mathematics Project)

Addend  + Addend = Sum

Minuend – Subtrahend = Difference

Fig. 18.5  The 
correspondence between 
terms in addition and 
subtraction
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18.6.2.2  �The Rule of Like Numbers and the Rule of Like Units 
for Addition Applied to Subtraction

When minuend and subtrahend are concrete numbers, they must be like numbers. 
Their difference, the minuend and the subtrahend are also like numbers.

This is the rule for subtraction that corresponds to the rule of like numbers for 
addition. In teaching, this rule can be said as ‘minuend and subtrahend must be like 
numbers or only like numbers can be subtracted’.

When computing a difference, only digits of like unit value can be subtracted.16

This is the rule for subtraction that corresponds to the rule of like unit value for 
addition.

This rule is part of the explanation of the algorithms for multi-digit subtraction 
and for long division. In teaching, we can say ‘only digits with the same units can 
be subtracted’ or ‘only the same units can be subtracted’.

18.6.3  �The Three Cases for Unknown Number 
in the Relationship ‘Sum of Two Numbers’

The quantitative relationship ‘sum of two numbers’ concerns three numbers. When 
two are known, the third can be found. The three cases are:

A.	 The two addends are known, to find the sum. (In terms of subtraction: the 
subtrahend and difference are known, to find the minuend.)

B.	 The sum and the first addend are known, to find the second addend. (In terms 
of subtraction: the minuend and subtrahend are known, to find the 
difference.)

C.	 The sum and the second addend are known, to find the first addend. (In terms 
of subtraction: the minuend and subtrahend are known, to find the 
difference.)

In Fig. 18.6, the diagram on the left represents the relationship ‘sum of two num-
bers’. On the right are the three possible cases for one number to be unknown in this 
relationship. All addition and subtraction word problems in school arithmetic, 
whether single- or multi-step, that ask students to find one unknown can be built 
from these three forms.

16 Because the Arabic numeral system can only represent one ten but not ten ones, the explanation 
of the rationale for subtraction with borrowing cannot be represented completely in Arabic numer-
als. For example, 235 − 117 the five ones in the ones place of the minuend are insufficient for 
conducting the operation. The first step is to convert one unit at the tens place of the minuend into 
ten ones. The next step can occur in two ways. One is to subtract the seven ones from the ten ones, 
resulting in three ones, and add the five ones, to find the digit (8) in the ones place of the difference. 
The second way is to combine the ten ones and the five ones, making fifteen ones, and then sub-
tracting the seven ones from fifteen ones. The ten ones and fifteen ones cannot be represented with 
Arabic numerals without additional conventions or notation.
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According to the Common Core State Standards (2010), there are four main 
categories of one-step addition and subtraction word problems. In China, there are 
five categories for such problems.17 No matter how word problems are categorised 
or named, each kind is a direct or indirect representation of one of the three forms. 
Those represented indirectly use the approach of ‘equivalent substitution’  
(Fig. 18.7), illustrated by the following example:

James caught three fish, Henry caught five fish, how many more fish did Henry 
catch?

At first glance, this problem does not correspond to any of the three cases in  
Fig. 18.6. But, if we analyse the quantitative relationship in the problem, we will 
find that the problem corresponds to the second case. (Here Euclid’s first common 
notion, ‘Things which equal the same thing also equal one another’, is implicitly 
used.)

17 The five categories are finding the sum, finding an amount that remains, finding an unknown 
which is a given amount larger than a known number, finding an unknown which is a given amount 
smaller than a known number and finding a difference. (See Research and Practice in Teaching 
Elementary Arithmetic Word Problems, 1994.) The Common Core State Standards list four main 
categories, each with three subcategories that depend on the position of the unknown. The catego-
ries are Add To (result unknown, change unknown and start unknown); Take From (result unknown, 
change unknown and start unknown); Put Together/Take Apart (total unknown, addend unknown, 
both addends unknown); and Compare (difference unknown, bigger unknown and smaller 
unknown, each with two language variants: how many more? vs how many fewer?).

Addend Addend

(Sum)

4 + 3 = 

Subtrahend ? (Difference)

Minuend

7 – 4 = 

? (Difference) Subtrahend

Minuend

7 – 3 = 

First number Second number

Sum (third number)

The sum of two numbers

Fig. 18.6  Addition and subtraction derived from the quantitative relationship ‘sum of two num-
bers’; terms used in addition and subtraction
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18.7  �Multiplication and Division

18.7.1  �Multiplication

Definition 10  The product of two numbers is a third number which contains as 
many units as one number taken as many times as the units in the other.

The operation of finding the product of two numbers is called multiplication. 
(For example, how much is three taken four times?)

This quantitative relationship is obviously more sophisticated than that of the 
sum of two numbers. First of all, there is a new type of unit in this relationship: in 
Fig. 18.8, each copy of the first number is a new ‘many-as-one’ unit created by 
considering a group of units as a single thing.18

Second, unlike the relationship ‘sum of two numbers’, the product of two num-
bers involves two types of units: ‘one-as-one’ and ‘many-as-one’ units. This is illus-
trated by Fig. 18.8.

Third, in Fig. 18.8, the units of the second number determine the number of cop-
ies of the first number. The ‘one-as-one’ units in the collection of copies form the 
third number, which is the product.

The definition of product of two numbers above is not equivalent to considering 
the product as the result of repeated addition. This definition is also not equivalent 
to the definition of Cartesian product because it involves the creation of a new type 
of unit rather than a collection of pairs of units.

In teaching, multiplication is often introduced with repeated addition. When stu-
dents see 4 + 4 + 4 as ‘4 added to 4, added to 4’, they are using the concept of addi-
tion. When students can recognise 4 + 4 + 4 as three 4s, they start to develop the 
concept of multiplication. We should help students to accomplish this transition as 
soon as possible.

Although it is likely that the concept of addition is closely related to an inborn 
primitive conception, the concept of multiplication is not. In forming the concept of 

18 This ‘many-as-one’ unit is a unit, due to Definition 1: ‘A group of things, if considered as a single 
thing or one, is also called a unit’.

(The fish caught by Henry)5

More fish caught by Henry than James, or,
less fish caught by James than Henry

The fish caught
by James 3

Fig. 18.7  Example of ‘equivalent substitution’ in ‘sum of two numbers’
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multiplication, there are three stages of learning. First, being able to consider many 
as one, such as one group, one class and one basket of things. Second, being able to 
imagine several many-as-one units, such as several groups, classes or baskets of 
things (all of the same size). Third, when analysing quantitative relationships, being 
able to manage the two types of units at the same time.

In human history, there is a long gap between the development of addition and 
the development of multiplication. For students, there is also a gap. One task of 
school arithmetic is to give students a pathway across that gap.

18.7.1.1  �Multiplicand, Multiplier and Factors

Definition 11  Multiplicand is the number to be taken. The multiplier is the number 
that indicates how many times the multiplicand is taken.

Multiplicand is the number represented by the first term in a multiplication 
expression. It is represented by the term at the left of the multiplication sign.

The multiplicand is the number being taken. Its copies are the newly formed 
many-as-one units. For students, this is their earliest use of many-as-one units.

For the past few hundred years, the multiplicand has traditionally been repre-
sented as the first term in multiplication.19 This tradition of giving the multiplicand 

19 According to the Oxford English Dictionary, the terms ‘multiplicand’ and ‘multiplier’ first 
appeared in 1592 and 1542. In early arithmetics, multiplication was often written vertically with 
the multiplicand above the multiplier. One very widespread textbook, Cocker’s Arithmetic, first 
published in 1677, said, ‘Multiplication has three parts. First, the multiplicand. . . . Second, the 
multiplier. . . . And thirdly, the product’ (1677, p. 32). In the nineteenth century, this description 
was repeated by Charles Davies in his textbook (Davies 1857, p.  45). Davies used horizontal 
expressions, writing the multiplicand to left of the multiplication sign (Davies 1834, p. 33).

The product of two numbers is a third number which contains as many
units as the first number taken as many times as the units in the second.

Second number (3)
(The number of its units decides how many of the

other number being taken)

Product (Third number) 

First number (4) as the number being taken

Fig. 18.8  The definition of product of two numbers
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first is consistent with its role in commercial arithmetic.20 In the definition system, 
giving the multiplicand first is consistent with the emphasis on the concept of unit.

When introducing multiplication with repeated addition, students should notice 
that the multiplicand is the addend.

The multiplier is represented by the third term in a multiplication expression. It 
is represented by the term at the right of the multiplication sign.

The multiplier is always an abstract number.
A multiplication expression is read as ‘multiplicand multiplied by multiplier’ or 

‘multiplier times multiplicand’ (e.g. 5 × 3 read as ‘5 multiplied by 3’ or ‘3 times 5’).
The multiplier indicates how many copies of the multiplicand are in the 

product.
Some think that distinguishing between multiplicand and multiplier or reading 

the expression as described above burdens students with unnecessary detail. But this 
temporary complication is the price of a simpler future.

When both multiplicand and multiplier are abstract numbers, they are also called 
factors.

In school arithmetic, there are two situations where the distinction between mul-
tiplicand and multiplier is irrelevant. First, when factoring. Second, in formulas 
such as area of a rectangle or triangle, volume of a cube. The latter is the last step of 
a process that begins by depending on the distinction between multiplier and 
multiplicand.

Although the distinction between multiplicand and multiplier does not remain 
throughout primary mathematics, it is important because it helps students to be 
aware of the new type of unit, thus helping to expand their conception of unit.

18.7.1.2  �The Rule of Like Numbers for Multiplication

When the multiplicand is a concrete number, the multiplicand and the multiplier are 
not like numbers. In that case, the product and the multiplicand are like numbers.

Analysing quantitative relationships in school arithmetic is practised mainly by 
solving word problems. Most numbers in word problems are concrete numbers. For 
example:

A.	 There are 24 books on the shelf. Bill puts six more books on the shelf. How 
many books are there now? The solution is 30 books.

B.	 There are 24 books on a shelf. How many books are there on six shelves? The 
solution is 144 books.

Problem A is to find the sum. The solution and the addends are all like numbers.
Problem B is to find the product of two numbers. The two concrete numbers 

presented in the problem, 24 books and 6 shelves, are not like numbers. The former 
is the number being taken, the multiplicand. The latter, the multiplier, determines 

20 In commerce, the seller first sets the price per unit, then the total price of multiple units is  
computed each time a sale is made.
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that there are six 24-book groups. The product, 144 books, and the multiplicand are 
like numbers. This is consistent with the like number rule for multiplication: When 
the multiplicand is a concrete number, the multiplicand and the multiplier are not 
like numbers. In that case, the product and the multiplicand are like numbers.

Although 6 shelves is a concrete number, as a multiplier, it is treated as an 
abstract number.

18.7.2  �Division

Definition 12  If a product and one of the multiplicand or multiplier are known, the 
operation of finding the unknown multiplier or, respectively, multiplicand is called 
division.

Division is also the operation of finding the unknown factor when the product 
and one factor are known.

Division is the inverse of multiplication in the sense that it ‘undoes’ 
multiplication.

Defining multiplication and division in terms of ‘product of two numbers’ con-
nects the two operations of division and multiplication with one quantitative rela-
tionship, in a way that is similar to the connection between subtraction and addition. 
However, because multiplicand and multiplier may be different types of numbers, 
there are several possible forms for the inverse operation.

Definition 13  To find an unknown multiplicand is called partitive division.
For example, 12 apples are equally shared among 3 children. How many does 

each child get? (Partition 12 into three pieces. How many in each piece?)
To find an unknown multiplier is quotitive division.
For example, there are 12 apples. Give each child 4 apples. How many children 

can get apples? (How many 4s are there in 12? 12 is how many times as many as 4?)
To find an unknown factor is neither quotitive nor partitive division.
For example, the area and length of a rectangle are known. Find the width.
We may say, ‘For example, the product of two factors is 15. One factor is 5, what 

is the other factor?’

18.7.2.1  �Dividend, Divisor, Quotient, Remainder

Definition 14  The known product in division is called the dividend.
A known multiplicand, multiplier or factor is called the divisor.
The unknown, which is the result of the operation of division, is called the 

quotient.
The correspondence between terms in multiplication and division is illustrated in 

Fig. 18.9.
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The dividend may be the sum of a product where one factor is the divisor and a 
number smaller than the divisor. The latter is called the remainder. In this case, the 
result of division has two parts: quotient and remainder.

Remainder is a temporary term in school arithmetic. After fractions are intro-
duced, there is no longer a need for this term.

18.7.2.2  �The Rule of Like Numbers for Multiplication Applied to Division

In partitive division, dividend and quotient are like numbers.
In quotitive division, dividend and divisor are like numbers.
The rule of like numbers can help students recognise quantitative relationships.

18.7.3  �The Three Cases for Unknown Number 
in the Relationship ‘Product of Two Numbers’

The quantitative relationship ‘product of two numbers’ concerns three numbers. 
When two are known, the third can be found (Fig. 18.10). The three cases are:

	(a)	 The multiplicand and multiplier are known, to find the product. (In terms of 
division: the divisor and quotient are known, to find the dividend.)

	(b)	 The product and the multiplicand are known, to find the unknown multiplier.  
(In terms of division: the dividend and quotient are known, to find the unknown 
divisor.)

	(c)	 The product and the multiplier are known, to find the multiplicand. (In terms of 
division: the dividend and divisor are known, to find the unknown quotient.)

18.8  �Concluding Remarks

The definition system and basic laws for whole numbers discussed above form the 
core of the theory of school arithmetic. The remaining content in this theory – the 
definition system for fractions and theorems in school arithmetic (analogous to the 
propositions in the Elements) – is built on this foundation.

Multiplicand  × Multiplier = Product

Dividend ÷ Divisor = Quotient

Fig. 18.9  The 
correspondence between 
terms in multiplication and 
division
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Returning to the puzzle of the US and Chinese teachers’ responses, we briefly 
sketch examples of connections – or lack thereof – with the theory.

The teachers responded to the question of what students needed to know about 
subtraction with regrouping in two ways. Nineteen of the 23 US teachers focused on 
the procedure of borrowing, speaking of taking one ten from the tens place and 
exchanging it for ten ones (Ma 2010, p. 2). Their explanations did not connect the 
procedure with a correct rationale and sometimes suggested that the digits 
representing ones and tens were two independent numbers rather than representa-
tions of two parts of a number. In contrast, the other four teachers noted that stu-
dents should understand that exchanging one ten for ten ones did not alter the value 
of the minuend. The rationale for such exchanges relies on Definition 2 – ‘a number 
is a collection of units’ – and the notational conventions described in Section II 
about how these units are represented as tens and ones. Like their US counterparts, 
some Chinese teachers focused on the procedure of borrowing (p. 7). Most, how-
ever, focused on the idea of regrouping, describing the exchange of one ten for ten 
ones as ‘decomposing a unit of higher value’ (pp. 8–10). This description expresses 
a general feature of base ten notation and can be used not only for exchanges of 1 
ten for 10 ones but many others, e.g. 1 hundred for 10 tens and 1 one for 10 tenths.

In discussing 123 × 645, many US and few Chinese teachers gave only a proce-
dural account of the multiplication algorithm. Conceptual explanations from both 
countries fell into two categories: place value system and meaning of multiplication 
and – implicitly or explicitly – the distributive property. Two US teachers explained 
the rationale for the multiplication algorithm in terms of the meanings of base ten 

Quotitive division
(How many fours are in 

twelve?)

Partitive division
Partition twelve into three equal shares, 

how large is each share?

Multiplication

4  (Multiplicand)

How much is three fours?

(Product)

(Multiplier)3

12 (Dividend)

4 (Divisor)

(Quotient)

(Divisor)

(Quotient)

3

12 (Dividend)

Fig. 18.10  Multiplication, partitive and quotitive divisions
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notation and multiplication. Five other US teachers noted that the problem of com-
puting 123 × 645 could be reduced to the problem of computing the sum of 123 × 600, 
123 × 40 and 123 × 5, but none justified this transformation in any way (Ma 2010, 
pp. 35–36). It may be that the US teachers had encountered the distributive property 
at some point, perhaps in an algebra course. However, it was not evident in their 
responses. In contrast, about one third of the Chinese teachers used a similar approach 
(pp. 39–42). A difference was that they presented the transformation in a more for-
mal way, and over half referred to the distributive property. The other Chinese teach-
ers gave explanations in terms of the place value system and the units of a number 
(pp. 42–45), echoing the definitions of unit value of a digit, place value and multipli-
cation presented in this article. A few mentioned both approaches (p. 45).

This is consistent with findings of more recent studies. US primary textbooks 
and teachers guides published in 2004 and 2005 treat the distributive property in 
less depth than their Chinese counterparts (Ding and Li 2010). Prospective US pri-
mary teachers sometimes confuse the associative property with the commutative 
property, and the textbooks that they use in preparation and practice teaching pro-
vide little support in this matter (Ding et al. 2013).

More such connections could be traced, and more details could be given (Ma in 
preparation). However, we wish to end by emphasising the point that teachers’ 
knowledge may reflect the substance of the school mathematics that they learned as 
students and teach as teachers. The theory presented in this article was distilled from 
textbooks of nineteenth-century USA and twentieth-century China (see the text-
books listed in the references). It is not surprising that we can recognise features of 
the theory in the responses of the Chinese teachers. In contrast, the US teachers’ 
responses seem to reflect an absence of underlying theory in US school arithmetic. 
Given this absence, it is remarkable that any of the US teachers gave conceptual 
explanations and not surprising that their explanations were not as well elaborated 
as those of the Chinese teachers.

�Appendix: Basic Laws

�Commutative Property of Addition and Corresponding Property 
for Subtraction

Commutative property of addition: if two addends are exchanged, their sum is 
unchanged.

	 Since then or5 3 8 3 5 8 5 3 3 5+ = + = + = +, ; . 	

The corresponding property for subtraction is: the positions of subtrahend and dif-
ference can be exchanged.

	 Since then8 5 3 8 3 5– , – .= = 	
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�Associative Property of Addition and Corresponding Property 
for Subtraction

Associative property of addition: when three numbers are added, the sum of the first 
two added to the third is the same as the first number added to the sum of the last 
two. For example, 5 + 3 + 2:

	 (5 ) 2 = 5 (3 2).+ + + +3 	

The corresponding property for subtraction is: when two numbers are subtracted 
from a third number, the difference of the sum of the two numbers and the third is 
the same as the difference of the difference of the first number and the third and the 
second number. For example, 12 – 3 – 4:

	 12 3 4 12 3 4– ( ) ( – ) – .+ = 	

�Compensation Property for Addition

If an addend is increased and the other addend is decreased by the same amount, 
their sum is unchanged. For example, 5 + 3:

	 5 3 5 2 3 2 5 2 3 2+ = + + = + +( ) ( ) ( ) ( ).- - 	

Therefore, if one addend increases (or decreases) by a given amount and the other 
addend is unchanged, then their sum increases (or decreases) by the same amount. 
For example, 5 + 3 = 8:

	 Since then and5 3 8 5 2 3 8 2 5 3 2 5 3 2+ = + + = + + + = + +, ) ( ).( ) ( 	

The corresponding property for subtraction is: if the minuend and subtrahend 
increase (or decrease) by a given amount, their difference is unchanged. For exam-
ple, 12 – 7 = 5:

	 Since then and12 7 5 12 2 7 2 5 12 2 7 2 5– , – ( ) – – ( – ) .( ) ( )= + + = = 	

If the minuend increases (or decreases) by a given amount and the subtrahend is 
unchanged, their difference increases (or decreases) by the same amount. For exam-
ple, 12 – 7 = 5:

	 Since then and12 7 5 12 2 7 5 2 12 2 7 5 2– , – – – – .( ) ( )= + = + = 	

If the minuend is unchanged and the subtrahend increases (or decreases) by a given 
amount, their difference decreases (or increases) by the same amount. For example, 
12 – 7 = 5:
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	 Since then and12 7 5 12 7 2 5 2 12 7 2 5 2– , – ( ) – – ( – ) .= + = = + 	

�Commutative Property of Multiplication and Corresponding 
Property for Division

Commutative property of multiplication: if multiplier and multiplicand exchange 
positions, their product is unchanged. For example, 3 × 5:

	 Since then or5 3 15 3 5 15 5 3 3 5´ = ´ = ´ = ´, ; . 	

The corresponding property for division is: if divisor and quotient exchange posi-
tions, their dividend is unchanged. For example, 15 ÷ 5 = 3:

	 Since then15 5 3 15 3 5¸ = ¸ =, . 	

�Associative Property of Multiplication

Associative property of multiplication: when three numbers are multiplied, the 
product of the first number with the product of the last two numbers is the same as 
the product of the product of the first two numbers with the last number. For exam-
ple, 5 × 3 × 2:

	 Since then( ) , ( ) .5 3 2 30 5 3 2 30´ ´ = ´ ´ = 	

The corresponding property for division is: the result of division by one number 
then dividing by a second number is the same as the result of dividing by the product 
of the two numbers. For example, (30 ÷ 3) ÷ 2:

	 Since then( ) , ( ) .30 3 2 5 30 3 2 5¸ ¸ = ¸ ´ = 	

Distributive Property

A number multiplied by a sum is the same as the sum of the products of the number 
with each addend. For example, 5 × (4 + 3):

	 Since then5 4 3 35 5 4 5 3 35´ + = ´ + ´ =( ) , . 	

	 Since then5 4 3 2 45 5 4 5 3 5 2 45´ + + = ´ + ´ + ´ =( ) , . 	

There is no corresponding property for division.
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�Compensation Property of Multiplication

If the multiplicand is multiplied by and the multiplier is divided by the same amount, 
their product is unchanged. For example, 12 × 9:

	 Since then and12 9 108 12 3 9 3 108 12 3 9 3 108´ = ´ ´ ¸ = ¸ ´ ´ =, ( ) ( ) .( ) ( ) 	

	 Equivalently,12 9 12 3 9 3 12 3 9 3´ = ´ ´ ¸ = ¸ ´ ´( ) ( ) ( ) ( ). 	

Therefore, if the multiplicand is enlarged (or diminished) by a given amount and the 
multiplier is unchanged, then their product is enlarged (or diminished) by the same 
amount.

	 Since then:12 9 108´ = , 	

	 ( )12 3 9 108 3´ ´ = ´ 	

	 12 9 3 108 3 12 3 9 108 3 12 9 3 108 3´ ´ = ´ ¸ ´ = ¸ ´ ¸ = ¸( ) ( ) ( ) .and and 	

If both the dividend and the divisor are enlarged (or diminished) by a given amount, 
then their quotient is unchanged. For example, 36 ÷ 4:

	 Since then and36 4 9 36 2 4 2 9 36 2 4 2 9¸ = ´ ¸ ´ = ¸ ¸ ¸ =, ( ) ( ) .( ) ( ) 	

Therefore, the dividend is enlarged (or diminished) by a given amount and the divi-
sor is unchanged, and then their quotient is enlarged (or diminished) by the same 
amount.

If the dividend is unchanged and the divisor is enlarged (or diminished) by a 
given amount, their quotient is enlarged (or diminished) by the same amount.

	 Since then:24 6 4¸ = , 	

	

( ) ( )
( ) ( ) .

24 2 6 4 2 24 2 6 4 2
24 6 2 4 2 24 6 2 4 2
´ ¸ = ´ ¸ ¸ = ¸

¸ ´ = ¸ ¸ ¸ = ´
and

and and 	
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Chapter 19
Quantities, Numbers, Number Names 
and the Real Number Line

Hyman Bass 

19.1  �Introduction

The starting point of this paper is a quotation from Davydov’s Types of generaliza-
tion in instruction: Logical and psychological problems in the structuring of school 
curricula, whose original edition in Russian dates back to 1972 and was translated 
into English in 1990.

When we designed a mathematics course, we proceeded from the fact that the students’ 
creation of a detailed and thorough conception of a real number, underlying which is the 
concept of quantity, is currently the end purpose of this entire instructional subject from 
grade 1 to grade 10. Numbers (natural and real) are a particular aspect of this more general 
mathematical entity. (Davydov 1990, p. 167)

In our course the teacher, relying on the knowledge previously acquired by the children, 
introduces number as a particular case of the representation of a general relationship of 
quantities, where one of them is taken as a measure and is computing the other. (Davydov 
1990, p. 169)

19.2  �Two Conceptions of Quantity: Counting and Measure

Number and operations have two aspects: conceptual (what numbers are) and nomi-
nal (how we name and denote numbers). Conceptually, numbers arise from a sense 
of quantity of some experiential species of objects – count (of a set or collection), 
distance, area, volume, time, rate, etc. And in fact before children enter school, they 
have already acquired a sense of quantity, of rough comparison of size, as well as of 
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counting. Number is not intrinsically attached to a quantity; rather it arises from 
measuring one quantity by another, taken to be the ‘unit’: How ‘much’ (or many) of 
the unit is needed to constitute the given quantity? This is the measurement frame-
work in which fractions are often introduced, via part-whole relations, the whole 
playing the role of the unit, which is a choice to be made and has to be specified. The 
discrete (counting) context in which whole numbers are often developed is distin-
guished by the use of the single-object set as the unit, so that the very concept of the 
unit, and its possible variability, is not necessarily subject to conscious consider-
ation. This choice is so natural, and often taken for granted, that the concept of a 
chosen unit of measurement need not enter explicit discussion. If number is first 
developed exclusively in this discrete context, then fractions, introduced later, might 
appear to be, conceptually, a new and more complex species of number quite sepa-
rate from whole numbers. This might make it difficult to see how the two kinds of 
numbers eventually, coherently, inhabit the same real number line. Indeed, this inte-
gration entails seeing the placement of whole numbers on the number line from the 
point of view (not of discrete counting, but) of continuous linear measure.

This distinction is further reinforced by the fact that fractions have their own 
notational representation, distinct from the base-ten place value of whole numbers. 
The operations on numbers likewise have conceptual models, but notational repre-
sentations of number are needed in order to construct computational algorithms. To 
calculate, say, a sum of two numbers is not to ask about what the sum means. Instead, 
given two numbers A and B in notation system S, a calculation is a construction of 
a representation of A + B in same notation system S. That is why ‘2 + 11’, though a 
logically correct answer to ‘What is ‘5 + 8?’, is not the correct answer, 13, to the 
question: ‘calculate 5 + 8’. At the same time, important as the notation is, its empha-
sis without links to the conceptual foundations can make it seem that quantities are 
the same as their number names, which is false, and potentially misleading.

Two possible pathways exist for the development of whole numbers:

Counting
Using the discrete context of finite sets, introduce whole numbers as cardinals, and 
addition as the cardinal of a disjoint union, and the experience of enumerating and 
comparing sets. (This rests on a discrete model of quantity.)

Measure
One uses the general context of quantity of various species of experiential objects 
and addition as disjoint union or concatenation (composition and decomposition). 
This allows discussion of comparison of quantities (‘which one is more?’), and 
implicitly that the larger quantity equals the smaller plus some complementary 
quantity. This can be done before any numerical values have been attached to the 
quantities, with the relations expressed symbolically.

Then number is introduced by choice of a unit, and the number attached to a 
quantity is how much of the unit is needed to constitute the given quantity. Whole 
numbers then are represented in the form of quantities that are measured exactly by 
a set of copies of the unit.
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The measure pathway was articulated in detail by Davydov (1975). My first pur-
pose here is to discuss the measure pathway and cite some possible virtues that 
merit our attention. In particular, I will note that it makes available from the begin-
ning the continuous number line as a coherent geometric environment in which all 
numbers of school mathematics eventually reside.

My second purpose is to discuss our base-ten place value notation for whole 
numbers (and finite decimals) and their operations, emphasising its extraordinary 
power and its impact on the progress of mathematics and science. I will also describe 
a particular instructional model1 for the introduction of place value. This model can 
be seen to provide an activity context for not only conceptual understanding of place 
value, but also one that models the ‘intellectual need’ (Harel 2003/2007) to invent 
some version of number notation based on hierarchical grouping.

19.3  �Implications for the Development of the Real Number 
Line

19.3.1  �Two Narratives

I propose here some affordances of developing number in the measure context. 
Most importantly, this approach offers a productive context for developing the real 
number line across the grades. Relying exclusively on the discrete model of count-
ing leads to what I will call the ‘construction narrative’ of the number line, in which 
the new kinds of numbers, their notations and their operations are added incremen-
tally without sufficient interconnection. In this narrative, whole numbers and their 
verbal names and symbolic base-ten representations predominate. New kinds of 
numbers are added  – fractions, negative numbers, a few irrational numbers and 
eventually infinite decimals. This process of bringing in these new types of number 
can lead to ‘immigration stress’ and difficulties of assimilation of the new numbers 
into one coherent context. In particular, the real number line as a coherent connected 
number universe with uniformly smooth arithmetic operations is not as explicit as it 
could be.

In the ‘measure narrative’, the number line, at least as a geometric continuum, is 
featured as the environment of linear measurement. A premise of this trajectory is 
that the mathematical resources that children bring include not only discrete count-
ing, but also a sense of measurement of continuous quantity. A possible metaphor 
for geometric number line is an (indefinitely long) string, flexible but inelastic. Then 
linear quantities would be ‘measured’ by a segment of string. This would permit 
comparison of size even before such measures acquire numerical names. An exam-
ple of an activity drawing on this metaphor is to engage students in considering how 

1 This is based on work by Deborah Ball with teacher candidates, representing work done with 
primary grade children.
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far two toy cars travel from a starting point by examining where each car stops along 
a strip of tape on the floor. In order to compare measures of two things that are 
remote, one adopts a standard unit of measure, against which both quantities can be 
compared. And then whole number quantities appear as iterated composites of that 
unit.

To situate numbers on the number line, the ‘oriented unit’ is specified on the 
geometric line by the choice of an ordered pair of points, called 0 and 1, the unit of 
linear measure then being the segment, [0, 1], between them. The direction from 
0 to 1 then also specifies a positive orientation to the number line (which has an 
intrinsic linear order defined by the fact that, given any three points, one lies in the 
interval between the other two), whereupon the whole numbers (and eventually all 
real numbers) can be located on the number line by juxtaposing replicas of [0, 1] in 
the positive direction.

Of course the counting approach to whole numbers can be interpreted in measure 
terms, since cardinal is one particular context of measurement. However, counting 
is only one such (discontinuous) context, and the unit (a set with one member) must 
be made explicit to extend to the general concept of unit. Other units in the discrete 
context are made visible when one later encounters (skip) counting in groups. More 
general continuous measurement environments for whole numbers are robustly rep-
resented with materials such as Cuisenaire rods. Eventually, whole numbers (as 
cardinals) are so well conceptually assimilated that they seem to become (abstract) 
entities in their own right.

Fractions are often developed from a measure perspective, with fractions, from 
the start, being conceived as part-whole relationships, and applied to a wide variety 
of species of quantities: round food; lengths of ribbon; containers of sugar, or of 
milk; sets of objects; periods of time; etc. In contrast with whole numbers, it is less 
common to name a fraction without adding the word ‘of’. Moreover, we do not hesi-
tate to compare the size of whole numbers, while, with fractions, we are more prone 
to first ask, ‘fractions of what?’ – attending to specification of the unit (or whole).

19.3.2  �Operations and the Real Number Line

Addition and subtraction appear to be conceptually similar in both the counting and 
measure regimes, addition corresponding to combination (composition and decom-
position of quantities) and subtraction to taking away or comparison.

Multiplication is more subtle and more complex. One model is repeated addition 
of some fixed quantity, as if applying the counting regime to fixed-size groups of 
unit quantities. One difficulty with this model is that it obscures the commutativity 
of multiplication. This is sometimes repaired by use of rectangular arrays, eventu-
ally evolving into area models. The difficulty of the area model, from a measure 
perspective, is that numbers and their products then have different units of measure 
(e.g. length and area), so that it is problematic to assign meaning to an expression 
like a  • b  + c. One resolution of this is to use a continuous version of repeated 
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addition, which is scaling (magnification and shrinking). This has the advantage of 
maintaining the species of quantities involved. These are complex conceptual issues, 
which I do not pursue here.

Suffice it to say here that, from the point of view of quantity (measurement), we 
can combine (simplify) additive expressions only when they are quantities of the 
same species (we do not add apples and oranges, unless combined into some larger 
category, like ‘fruit’), expressed with a common unit and then the sum or difference 
is a quantity expressed with that same unit. When dealing with fractions, a quantity 
like 3/5 is understood to be three one-fifths, where the latter corresponds to a rescal-
ing of the unit. In adding fractions, finding a ‘common denominator’ is then a pro-
cess of measuring two quantities with a common unit in order to make simplification 
of the sum possible. Similarly, in multi-digit addition, the alignment of the base-ten 
representations of the summands assures that the addition in each column is adding 
digits with the same base-ten units attached.

On the other hand, for multiplication and division, the units of measurement are 
not restricted but simply parallel the operation, leading to compound units, like: 
kilometres/hour, foot • pounds, pounds per square inch and class • hours.

Once numbers are named and denoted (in base-ten or with fraction notation), 
then we develop algorithms for the operations in that notational system. The power 
of the base-ten system is that addition, subtraction and multiplication can be per-
formed on any pair of whole numbers, knowing only how to perform single-digit 
operations (‘basic facts’) plus how to keep track of positional notation. This puts 
extraordinary computational power instructionally within reach of young children, 
a major historical development.

Once fractions and integers have been developed, one has the rational numbers, 
which are densely distributed on the number line: between any two points there is a 
rational number. The example of irrational numbers, like √2, shows that many 
points remain to be named. Informal arguments of approximation can indicate how 
all points can eventually be specified by possibly infinite decimal representations. 
Moreover, informal assurance can be given that the operations extend by continuity 
to all real numbers, preserving the basic rules of arithmetic. This synthesis of the 
real number line sets the stage for higher mathematics, for example calculus.

19.4  �The Davydov Curriculum

Davydov, a Vygotskian psychologist and educator, and his colleagues in the Soviet 
Union developed, in the 1960s and 1970s, a curriculum based on the measure 
approach (1990).

In order to develop the concept of number, the Davydov curriculum delayed the 
introduction of number in school instruction until late in the first grade. Early les-
sons concentrate on ‘pre-numerical’ material: properties of objects such as colour, 
shape and size and then quantities such as length, volume, area, mass and amount of 
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discrete objects (i.e. collections of things, but without yet using number to enumer-
ate ‘how many’).

According to Davydov, the fundamental problem solved by the invention of 
number is the task of taking a given quantity (length, volume, mass, area, amount of 
discrete objects) and reproducing it at a different time or place. Moxhay (2008) 
describes the following activity that illustrates this.

On one table is a strip of paper tape. The task is to go to another table (in a dif-
ferent room) and cut off, from the supply of paper tape, a piece that is exactly the 
same length as the original one. But one is not allowed to carry the original paper 
strip over to the other table. In Davydov’s experiments, children sometimes just 
walked over to the second table and cut off a piece of paper of a random size, hoping 
that it would be the same length as the original one. In such cases, conditions of the 
task seemed to the children to make a correct solution impossible (except by luck).

Davydov and his colleagues explained that a solution might involve taking a 
third object, such as string, and cutting it to be just precisely the length of the paper 
strip and then carrying this intermediary object (the string) to the other table, where 
it can be used to lay off a new paper strip of the required length. In this case, the 
intermediary is equal in length to the object to be reproduced. The curricular 
approach showed children how to take a given third object, say a piece of wood, 
and, if it is longer than the paper strip, mark it to show the length of the paper strip. 
This solution was equivalent to the first one, with the children performing just a dif-
ferent set of operations. But if the only available intermediary object was smaller 
than the paper strip – for example, a wooden block – this was an interesting case, for 
then the children could learn that they could use the block as a unit, as an intermedi-
ary that could be placed repeatedly (each time marking the paper with a pencil) and 
then counting up how many times the unit has been laid down. The unit could then 
be carried to the other table (together with the number), where it would be laid down 
on the paper tape the number of times that is necessary to reproduce, by cutting, a 
paper strip of the required length. Note that, only with this last method – selection 
of a unit and counting how many of it are needed – that number names make an 
appearance.

Although this is a particular task, solved by a particular discovery on the part of 
the children, it is said to lead ‘genetically’ to the solution of all analogous tasks. If 
the children, working as a collective, grasp the meaning of the construction they 
have made, then they should (again, collectively, at least at first) be able to attack all 
analogous problems. Davydov argues that children thus recreate, in brief, the inven-
tion of number as a human tool that enables any quantity to be reproduced at a dif-
ferent place or time. It is worth noting that this task would lose its force in the 
discrete context of counting, in which the portability of the unit is much simpler to 
achieve, but therefore is also invisible and tacit.

Davydov argued that it was important for children to reflect on, become con-
scious of, the ideas developed through this activity. He develops this as a collective 
process, with the teacher guiding the children to ask one another questions like, 
‘How did you do this? Why did you do this? Does your method work? Is that the 
best method for solving the task?’
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19.4.1  �Algebra in the Context of Davydov

In the Davydov curriculum (see Schmittau 2005), children were to study scalar 
quantities such as the length, area, volume and weight of real objects, which they 
can experience visually and tactilely, thus gaining a first access to the real number 
continuum. Early in the first grade, for example, children were shown that they 
could make two unequal volumes equal by adding to the smaller or subtracting from 
the larger the difference between the original quantities. They determined that if 
volume A is greater than volume B, then A = B + C, where C is the quantity comple-
mentary to B in A.  The children would be led to schematise their result with a 
‘length’ model and symbolise it with equations and inequalities (Fig. 19.1).

The following problem, occurring approximately half-way through the first 
grade curriculum, provides another example of the role of the schematic in problem 
solving: N apples were in a bowl on the table. R people entered the room and each 
took an apple. How many apples remained? Children first analyse the structure of 
the problem, identifying it as a part-whole structure, with N as the whole and R as a 
part. They schematise the quantitative relations expressed in the problem as 
follows:

 

Beyond the visibly algebraic form of these equations and relations, introduced 
quite early, there are further noteworthy features, having to do with the very nature 
of the ‘=’ sign. When equations are introduced numerically, the first exercises often 
have the format 8 + 4 = _, with the result that students gain the habit of reading ‘=’ 

Fig. 19.1  Exercises from 
Davydov’s curriculum
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as ‘calculate what is on the left, and put the answer on the right’. Thus, they will 
validate the equation 8 + 4 = 12, but question the truth of 12 = 8 + 4. Moreover, they 
may fill the blank in 8 + 4 = _ + 7 with 12. I expect that these common confusions 
would be mitigated with the balancing of the quantities approach of the Davydov 
curriculum. Of course, other curricula have ways of accomplishing this as well.

19.4.2  �Place Value

The greatest calamity in the history of science was the failure of Archimedes to invent posi-
tional notation. Carl Friedrich Gauss (as quoted by Bell 1937, p. 256)

Davydov emphasised the notion of quantity as being primary, the concept of num-
ber being later derived as a measure of one quantity by another (the unit). There then 
arises the task of providing names and notations for numbers. Although the notion 
of quantity is in some sense cognitively primordial, the naming of numbers, in con-
trast, is a cultural construct, and it has been accomplished historically in many dif-
ferent ways (see, for example, ICMI Study 13 2006). But the naming of numbers is 
much more than a cultural convention. It is itself a piece of conceptual technology 
with huge bearing on the progress of science. Our current Hindu-Arabic system of 
(base-ten) place value notation, now universally used in science, was solidified rela-
tively late in history. It puts within reach of even young children a quantitative 
power not reached even by the mathematical genius of ancient Greece. (See the 
above quotation from Gauss.)

Howe (2011) offers a critique of elementary curriculum in the USA, ‘Place 
value […] is treated as a vocabulary issue: ones place, tens place, hundreds place. 
It is described procedurally rather than conceptually’. How can one produce in 
young children and their teachers a robust conceptual understanding of place 
value? I describe here a method developed by Deborah Ball, one that is now an 
integral part of the teacher education programme at my university. Teacher candi-
dates experience this sequence for several purposes, among them to appreciate the 
structure and meaning of a numeration system, in this case, the base-ten system. 
This approach fits here since its design echoes the instructional approach of 
Davydov (1975, 1990), Brousseau (1986) and others, who like to introduce a con-
cept using a mathematical problem context whose solution necessitates discovery 
of that concept.

In this case, the problem is to collectively count a large collection. The size of the 
count is sufficient to require some structural organisation for record-keeping and to 
make this common across the individual counters so as to be able to coherently 
combine the different records. It is this need that precipitates the idea of grouping, 
which leads to a hierarchal structure akin to place value.

The setting here is a methods class for some 25 elementary teacher interns. (The 
activity is a compressed approximation of what would be done with primary grade 
children over much longer period of time.) About half of the interns sit in a circle on 
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the floor with the teacher, the others observing and taking notes. On the floor, the 
teacher pours out a container of over 2000 wooden sticks. She first invites the interns 
to guess/estimate how many sticks there are. After a wide range of guesses, she 
asks, ‘How could we find out?’ and it is suggested that they count them. So the 
counting begins, each intern gathering individual sticks from the pile and lining 
them up. However, their individual collections quickly become so numerous that 
they feel a need to somehow consolidate. After some discussion the idea of group-
ing the sticks emerges (see, this volume, Sect. 9.2.2). Note that this arises, not as a 
mathematical suggestion but as a practical necessity, given the large size of the 
counting task. And with rubber bands that are available, they begin to form what 
they call ‘bundles’ of sticks. But then the question arises, ‘How many sticks should 
be in a bundle?’ Several choices are considered (e.g. 2, 5, 10, 25, 60). The small 
values are judged not to achieve enough efficiency to be worthwhile and the larger 
to be possibly unwieldy. It is nonetheless clear that this is a choice to be made; it is 
not mathematically forced. (This opens the space to later contemplate place value in 
bases other than 10.) More importantly, this choice should be the same for each 
person. Otherwise, there would be no coherent way to count the amalgamated col-
lections at the end. The teacher eventually encourages as consensus making bundles 
of ten sticks each.

Then the counting continues, and the interns make a bundle as soon as ten loose 
sticks are available to do so. At any given moment, an intern’s collection has the 
form of a certain number of bundles, together with at most nine loose sticks. 
However, the big pile is so numerous that the interns confront the same problem 
again, this time with their bundles instead of individual sticks. A discussion similar 
to the earlier one then ensues about grouping the bundles, to form ‘bundles of bun-
dles’, or ‘super-bundles’, as they came to be called. Again the question arose: ‘how 
many bundles should there be in a super-bundle?’ It was noted that this choice 
could, in principle, be independent of the first. But it was decided that there would 
be some mathematical merit in again choosing ten for the number of bundles in a 
super-bundle. And these could again be bound together with rubber bands. At this 
point, each intern’s collection consists of a modest number of super-bundles, at 
most nine bundles and at most nine loose sticks.

Finally, when the big pile was exhausted, the collections of the different interns 
were brought together. Then the many loose sticks were bundled until at most nine 
loose sticks remained. In turn, then, the bundles were super-bundled until at most 
nine bundles remained. Finally, there being over 20 super-bundles, it was decided to 
make 2 ‘mega-bundles’, each composed of 10 super-bundles. In the end, then, the 
original pile had been organised into two mega-bundles, four super-bundles, seven 
bundles and six loose sticks. Thus, the cardinal of this huge collection of could be 
specified by a list of just four small numbers, (2, 4, 7, 6), specifying the numbers of 
mega-bundles, super-bundles, bundles and loose sticks, respectively. By construc-
tion, the number of sticks in a bundle is 10, in a super-bundle 102 = 100 and in a 
mega-bundle, 103 = 1000. Thus the very concise ‘coding’ (2, 4, 7, 6) tells us that the 
total number of sticks is 2000  +  400  +  70  +  6  =  2476 (in base-ten notation) 
(Fig. 19.2).
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This activity, with modest scaffolding, simulated the invention of the place value 
system of recording numbers. Moreover, it dramatically and physically presented 
the compressive power of the system: four small digits suffice to specify this per-
ceptually very large quantity. In the course of the activity, the teacher could pose a 
number of questions, about representing particular numbers with the sticks and their 
bundles and also about how to identify numbers represented by various configura-
tions of bundled sticks, modelling the sorts of interactions that would be carried out 
with children.

Attention was further drawn to the fact that the bundled sticks remained an 
authentic representation of quantity, since they could be unbundled to reproduce the 
original collection. This was put in contrast with other physical representations of 
number, such as Dienes blocks (see this volume, Sect. 9.3.1.2) for which the ten-rod 
could not be decomposed into to ten little cubes; rather, this would require a trade.

These physical models of base ten provide concrete models for the arithmetic 
operations. The correspondence with the symbolic base-ten notation can then be 
extended to provide concrete meaning to the algorithms for arithmetic 
computation.

19.5  �Conclusion

I have argued that the measure-based introduction to number, as developed for 
example by Davydov, supports a possibly more coherent development of the real 
number line. Moreover, I suggest that it allows a smooth transition from whole 
numbers to fractions and it provides an early introduction to algebraic thinking. 
Finally, I have described an instructional activity, developed by Ball, that simulates 
the conceptual development of place value.

Acknowledgements  I am greatly indebted to Deborah Ball for critical feedback and for helpful 
framing of the ideas and perspectives presented here, not all of which we share.

Fig. 19.2  Making bundles
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Chapter 20
Low Numeracy: From Brain to Education

Brian Butterworth 

20.1  �Introduction

Leopold Kronecker is quoted famously as making the ontological claim that ‘God 
made the integers, all else is the work of man.’1 This is not a testable hypothesis. 
Kronecker may or may not have been a believer in the supernatural when he made 
this statement. He was born a Jew but converted to Christianity a year before his 
death. He apparently believed that only integers and objects constructed from them 
actually existed. This included rational numbers but excluded the reals, π, transcen-
dental numbers more generally, and infinities, all of which may be mathematically 
useful, but didn’t really exist.

If God did make the integers, how did we come to know them? This is a problem 
that has exercised the best philosophical minds since the time of Plato. However, if 
we take his apothegm more metaphorically, he may be arguing that our knowledge 
of maths depends on our knowledge of integers. That is, we recast his ontological 
claim as an epistemological one. We can go further, and recast God as evolution. 
That is to say, is there an evolutionary basis for our knowledge of integers? Here we 
need to step back from the term ‘integer’, which includes negative numbers, and 
restrict ourselves to positive whole numbers, the so-called ‘natural numbers’.

It is now widely acknowledged that the typical human brain is endowed by evolu-
tion with a mechanism for representing and discriminating numbers. It is important to 
be clear right at the outset, that when I talk about numbers I do not mean just our 
familiar symbols – counting words and ‘Arabic’ numerals, I include any representa-
tion of the number of items in a collection, more formally the cardinality of the set, 
including unnamed mental representations. Evidence comes from a variety of sources.

1 http://www-history.mcs.st-andrews.ac.uk/Biographies/Kronecker.html
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Human infants notice changes in the number of objects they can see, when other 
dimensions of the objects are controlled. In the first study of this kind, infants of 
5–6  months noticed when successive displays of two dots were followed by a  
display of three dots and when successive displays of three dots were followed by a 
display of two dots. However, they did not notice a change from four to six dots or 
from six to four dots (Starkey and Cooper 1980). With larger numbers of dots, 
infants need a ratio of 2:1 to notice a change in the number of dots (Xu and Spelke 
2000). Recently, studies have shown that infants notice the matches between the 
number of sounds and the number of objects on the screen (Izard et al. 2009; Jordan 
and Brannon 2006), suggesting that the infant’s mental representation of number is 
relatively abstract – that is, independent of modality of presentation.

There is also evidence for individual differences in various measures of this abil-
ity, at least in older children (Geary et  al. 2009; Piazza et  al. 2010; Reeve et  al. 
2012). Twin studies suggest that differences appear to be at least partly genetic 
(Geary et al. 2009; Piazza et al. 2010; Reeve et al. 2012). The genetic factor is rein-
forced by the finding that certain kinds of genetic anomaly, such as Turner’s 
Syndrome, affects numerical abilities, including very basic abilities such as select-
ing the larger of two numbers or giving the number of dots in an array, even when 
general cognitive ability is normal or even superior (Bruandet et  al. 2004; 
Butterworth et al. 1999; Temple and Marriott 1998).

Another line of evidence comes from the studies of other species. Many of those 
in which numerical abilities have been tested show performance comparable with or 
significantly better than human infants. Chimpanzees are able to match the correct 
digit to a random display of dots up to at least ten (Matsuzawa 1985; Tomonaga and 
Matsuzawa 2002). Monkeys are able to select the larger numerosity of two displays 
even when the elements in the display are novel. Moreover, they show a very similar 
‘distance effect’ to humans – that is, the more different the numbers, the more likely 
they are to select the larger correctly (Brannon and Terrace 1998). Birds have been 
known to be good at number tasks for 80 years or more. Numerical abilities have 
been demonstrated in elephants, cats, rats, salamanders and even fish (Agrillo et al. 
2012).

Neuropsychological studies of patients with brain damage reveal a complex net-
work in the brain that supports arithmetical processes. Damage to the frontal lobes 
affects the ability to solve novel problems, while damage to the parietal lobes, usu-
ally the left parietal lobe, affects the ability to do routine tasks or to recall previously 
learned facts (Cipolotti and van Harskamp 2001; see Butterworth 1999, Chap. 4 for 
reviews). Neuroimaging shows that the parietal lobes are activated by very simple 
tasks, such as selecting the larger of two numbers or the display with more dots 
(Dehaene et al. 2003; Pinel et al. 2001). In fact, small regions in the left and right 
parietal lobes (the intraparietal sulci) are specific for processing the numerosity of 
displays (Castelli et al. 2006). These regions are part of a brain network involving 
both the parietal and frontal lobes that are activated almost every time we carry out 
a numerical calculation, routine or novel (Andres et al. 2011). These findings link 
numerosity processing and arithmetical calculation in the brain. See Butterworth 
and Walsh (2011) for a review of the neural basis of mathematics. I will return to the 
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question of whether individual differences in brain structure and functioning can be 
linked to individual differences in arithmetical competence.

Various environmental factors can all be associated with lower mathematics 
attainment, including socioeconomic status and minority ethnic status, as well as 
gender, which should perhaps be considered a social rather than genetic factor in this 
context (Royer and Walles 2007). Although it is difficult to assess the role of poor or 
inappropriate teaching, the fact that the introduction of a detailed new national pri-
mary school strategy for numeracy in the UK had only a minor and possibly nonsig-
nificant effect on numeracy for the group studied is indicative (Gross et al. 2009). It 
should also be noted that there are wide individual differences on even very simple 
tasks that depend relatively little on the quality of educational experience, such as 
comparison of the magnitude of two single-digit numbers or enumerating a small 
array of objects (Reigosa-Crespo et al. 2012; Wilson and Dehaene 2007).

Taken together, the evidence presented here suggests that factors specific to the 
domain of numbers and arithmetic make a major independent contribution to low 
arithmetic attainment. This is supported by findings from studies that have found 
low attainment in learners matched for IQ and working memory. In a longitudinal 
study by Geary and colleagues, tests on understanding the numerosity of sets and on 
estimating the position of a number on a number line were two important predictors 
of low achievement in mathematics, affecting some 50% of the sample, and of 
mathematics learning disability, affecting approximately 7% of the sample (Geary 
et al. 2009). In a sample of 1500 pairs of monozygotic (MZ) and 1375 pairs of dizy-
gotic (DZ) 7-year-old twins, Kovas and colleagues found that approximately 30% 
of the genetic variance was specific to mathematics (Kovas et al. 2007). In another 
genetic study, this time of first-degree relatives of dyslexic probands, it was found 
that numerical abilities constituted a separate factor (Schulte-Körne et al. 2007). In 
fact, recent reviews have proposed that developmental dyscalculia follows from a 
core deficit in this domain-specific capacity (Butterworth 2005; Rubinsten and 
Henik 2009; Wilson and Dehaene 2007).

One obvious question arises: how do our numerical innate capacities relate to the 
learner’s ability to acquire arithmetic?

20.2  �Innate Capacities

Now it will come as no surprise to teachers of the first 3 years of school that chil-
dren’s numerical competence begins with whole numbers. However, recent research 
on the innate mechanisms available to humans (and many other species) propose 
two foundational ‘core systems’ that do not involve whole numbers. Deficiencies in 
these core systems – it has been argued – could contribute to low numeracy.

	1.	 A mechanism for keeping track of the objects of attention. This is sometimes 
referred to as the ‘object-tracking system’ (OTS) and has limit of three or four 
objects. It is thought to underlie the phenomenon of ‘subitising’ – making an 
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accurate estimate of one to four objects without serial enumeration (Feigenson 
et al. 2004). It is proposed that the objects to be enumerated are held in working 
memory and that they constitute a representation with ‘numerical content’ 
(Carey 2009; Le Corre and Carey 2007).

	2.	 A mechanism for the analogue representation of the approximate number objects 
in a display. This is referred to as the ‘analogue number system’ (ANS). The 
internal representations of different numerical magnitudes can be thought of as 
Gaussian distributions of activation on a ‘mental number line’. It is typically 
tested by tasks involving clouds of dots (or other objects), typically too numer-
ous to enumerate exactly in the time available. One common task is to compare 
two clouds of dots. (Addition and subtraction tasks for which the solution is 
compared with a third cloud of dots are also used.) Individual differences are 
described in terms of a psychometric function, such as the Weber fraction, the 
smallest proportional difference between two clouds that can be reliably distin-
guished by the individual (Feigenson et al. 2004).

There has been considerable interest, indeed excitement, in many studies that show 
the performance on tasks designed to measure competence in the approximate num-
ber system correlates significantly with arithmetical performance in both children 
and adults (Barth et al. 2006; Gilmore et al. 2010; Halberda et al. 2008, 2012). But 
as we all know, correlation is not cause, and no plausible mechanism for the rela-
tionship has been proposed and accepted.

Now there are various problems with both core systems from the point of view 
of learning arithmetic. In the case of 1, there is an upper limit of 4. Now one key 
property of the number system is that a valid operation on its elements always yields 
another element in the same system. If one such operation is addition and if 3 is an 
element, then 3 + 3 should yield an element in the system, but it cannot, since the 
limit is 4. To get round this, it has been proposed that noticing the number of objects 
being tracked can be linked to the number words a child hears and that they will be 
able to generalise – ‘bootstrap’ – from these experiences to numbers above the limit 
(Carey 2009; Le Corre and Carey 2007). The problem is that the object-tracking 
system is designed to keep track of particular objects with as much detail as is 
required by the task, not abstract away from them (Bays and Husain 2008).

The problem with 2 is that it deals only in approximate quantities, whereas ordi-
nary school arithmetic deals with exact quantities, and the transition from approxi-
mations to exact whole number arithmetic is still mysterious. These problems are 
well known.

While we do not doubt that these systems exist in the brains of human infants and 
other species, we have argued that a quite different core system underlies the devel-
opment of arithmetic. We and others have proposed a mechanism that can represent 
the ‘numerosity’ of a collection of objects, that is the number of objects exactly, not 
approximately, up to a limit imposed by the developing brain. In a pioneering 
exploration, Gelman and Gallistel called these representations ‘numerons’ and 
argued that learning to count is a process of learning how to map number words 
consistently onto numerons (Gelman and Gallistel 1978). I have argued, following 
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Gelman and Gallistel, that humans inherit a ‘number module’ to deal with sets and 
their numerosity and that some developmental weaknesses in arithmetical develop-
ment can be traced to deficiencies in the module (Butterworth 1999, 2005).

We have shown that a neural network computer simulation of the number mod-
ule using what we have called a ‘numerosity code’ accurately models the ‘size 
effect’ in addition. This is where accuracy and speed are a function of the addends – 
that is, the larger the addends or their sum, the longer it takes to retrieve or calculate 
the answer (Butterworth et al. 2001; Zorzi et al. 2005).

In the next section, I describe briefly some studies we have carried out that stress 
the importance of whole number competence in the subsequent development of 
arithmetic, using a very simple test: how quickly and accurately the child can enu-
merate a display of dots and say the answer.

20.3  �Longitudinal Study of Arithmetical Development 
from Kindergarten to Grade 5

This is a study carried out in Melbourne, Australia, led by Robert Reeve and his lab. 
The sample comprised 159 5.5–6.5-year-olds (95 boys). The children attended one 
of seven independent schools in middle-class suburbs of a large Australian city and, 
at the beginning of the study, were halfway through their first year of formal school-
ing. The children were interviewed individually on seven occasions over a 6-year 
period as part of a larger study. On each occasion they completed a series of tests, 
including those reported here. The mean ages for the test times were (a) 6 years 
(5.5–6.5 years) kindergarten, (b) 7 years (6.5–7.5 years), (c) 8.5 years (8–9 years), 
(d) 9 years (8.5–9.5 years), (e) 9.5 years (9–10 years), (f) 10 years (9.5–10.5 years) 
and (g) 11 years (10.5–11.5 years). For full details, see Reeve et al. (2012). Here, I 
will focus on two aspects of the study: competence in numerosity processing as 
measured by the speed and accuracy of dot enumeration and age-appropriate arith-
metic accuracy.

Using cluster analysis, dot enumeration competence revealed three clusters at 
each age, which we labelled fast (31% of the children), medium (50%) and slow 
(19%). These were relatively stable on retesting over the period of the study. That is, 
although children in each cluster improved with age, each tended to stay in the same 
cluster.

It turns out that the cluster established in kindergarten predicts age-appropriate 
arithmetic up to the age of 11 at least. I give below the results for three-digit calcula-
tions at ages 10–11 years (Table 20.1).

Our recent analyses show that from kindergarten to Year 2, the clusters are the 
main predictors of the strategies used in single-digit addition, with fast clusters 
more likely to recall answers from memory and use decomposition for sums over 
10 in kindergarten, whereas the slow cluster children are only recalling the answers 
and decomposing in Year 2 and then less than 30% of the time.
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20.4  �The Neural and Genetic Basis of Low Numeracy

This is a study of 104 monozygotic twins and 56 same-sex dizygotic twins aged 
8–14 years. (Zygosity was assessed using molecular genetic methods.) For more 
further details, see Ranpura et al. (2013, submitted). All the twins in the study had 
brain scans and carried out a battery of 40 cognitive and numerical tests. Using fac-
tor analysis, we extracted four factors, with numerical processing accounting for 
24% of the variance and having the highest loading. It comprised three timed arith-
metic scores (addition, subtraction, multiplication), together with dot enumeration 
speed and the standardised WOND Numerical Operations (Wechsler 1996) score. 
Thus, a second factor (19% of the variance) included measures of general intelli-
gence and working memory; a third factor (12%) included processing speed and 
performance IQ; while the fourth factor (9%) included tests of motor praxis and 
finger gnosis. Thus, the factor analysis reveals that that core number skills and arith-
metic correlate well with each other and segregate from general cognitive and per-
formance measures.

We replicated other research in finding a difference in grey matter in the brains 
of children with low numeracy or dyscalculia in the brain region of interest for 
numerosity processing (Isaacs et al. 2001). See Fig. 20.1.

We were also able to establish the heritability of both competence and grey mat-
ter density by comparing MZ with DZ twins: if the concordance between pairs of 
MZ twins is significantly higher than between pairs of DZ twins, this indicates a 
genetic factor.

	1.	 Grey matter density is moderately heritable (h2 = 0.28), but common environ-
mental and unique environmental factors are also significant. Shared environ-
ment (c2) is usually thought of as home background and schooling, which applies 
to both twins; unique environment (e2) is thought of as factors specific to one of 
the twins.

	2.	 Arithmetical competence and dot enumeration are both heritable. See Table 20.2.
	3.	 The link between dot enumeration and both arithmetical competence and the 

region of interest is heritable. Using a different way of analysing the heritability 
data, called ‘cross-twin, cross-trait correlation’, we found that the correlation of 
dot enumeration with timed addition was substantially heritable, with over 50% 
of that correlation attributable to genetic factors (h2h2rG  =  0.54, rho  =  0.76, 
p < 0.05). Moreover, the links between the region of interest and dot enumera-
tion, as well as arithmetical competence, were also heritable.

Table 20.1  Three-digit subtraction, three-digit multiplication and three-digit division accuracy at 
age 10–11 years

Dot enumeration cluster established in kindergarten
Slow Medium Fast
M SD M SD M SD

Subtraction 46.67 7.38 81.25 2.90 90.65 2.58
Multiplication 60.56 6.53 85.10 2.15 87.07 3.57
Division 41.67 7.02 75.62 2.88 84.86 2.97
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20.5  �Implications for Mathematics Education

The starting point for intervention should be a recognition that some children begin 
with a disadvantage and that their disadvantage lies in their capacity to deal with 
sets and their numerosities. This, of course, is the basis of arithmetic both from a 
logical and a developmental point of view. As we show here, low numeracy has a 

Fig. 20.1  Voxel-based morphometry (structural brain imaging) identifies a left parietal cluster that 
correlates with core number skill (35 voxels with a peak at MNI –48, −36, 34, pFWE-corrected 
<0.05)

Table 20.2  Heritability of arithmetic and dot enumeration

h2 c2 e2

Genetic factor Shared environment Unique environment

Timed addition 0.54 0.28 0.17
Timed subtraction 0.44 0.38 0.18
Timed multiplication 0.55 0.31 0.15
Dot enumeration 0.47 0.15 0.38
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heritable component, which confirms recent genetic studies as noted above (e.g. 
Kovas et al. 2007).

We can use dot enumeration in diagnostic assessments. Because these numerosity-
based assessments depend much less on educational experience than tests of arith-
metic, they minimise noise from instructional and motivational factors, not to 
mention family and environmental stressors that can also lead to low math attain-
ment scores. Getting the correct assessment is fundamental to selecting the appro-
priate intervention.

Early attempts to develop new instructional interventions were based on neuro-
science findings and the best practices of skilled teachers (e.g. Butterworth and Yeo 
2004; Griffin et al. 1994). An important limitation of these interventions is that they 
required detailed instructional schemes and one-to-one teaching. It is difficult to 
implement these interventions in the typical math classroom, which has a whole-
class age-related curriculum that makes little allowance for atypically developing 
children who require more attention and practice. In theory, remediation requires an 
approach personalised to individual learners. In practice, it is difficult to afford such 
instruction for even a small proportion of pupils in publicly funded education. In the 
UK, it has been estimated that effective intervention for 5–7-year-olds in the lowest 
10th percentile, using one-to-one teaching, would cost about £2600 per learner.

The result is that many learners are still struggling with basic arithmetic in sec-
ondary school (Shalev et al. 2005). And yet effective early remediation is critical for 
reducing the later impact on poor numeracy skills. Although very expensive, it 
promises to repay 12–19 times the investment (Gross et al. 2009).

As I have argued elsewhere, one approach to the problem of delivering person-
alised instruction to individual learners is to make use of technology. Personalised 
adaptive learning technology solutions emulate the guidance of the special educa-
tional needs teacher, focusing on manipulation of numerosities (Butterworth and 
Yeo 2004; Räsänen et al. 2009; Wilson et al. 2006). These solutions go far beyond 
the educational software currently in use for numeracy teaching, which mainly tar-
gets mainstream learners. Commercial software does little more than rehearse stu-
dents in what they already know, perhaps building automaticity and efficiency, but 
it does not foster understanding, and it does not address the numerosity processing 
deficit in many learners and, especially, in dyscalculics. Rarely are commercial 
games founded on good pedagogy.

Of course, there is no clear logical pathway from assessment to educational rem-
edy, so our software seeks to use ideas from the best practitioners, such as Dorian Yeo 
(Butterworth and Yeo 2004), and established pedagogical principles, including:

	1.	 Constructionism – construct an action to achieve goal (Harel and Papert 1991).
	2.	 Informative feedback (Dayan and Niv 2008).
	3.	 Concept learning through contrasting instances and generalising concepts 

through attention to invariant properties (Marton and Pong 2007).
	4.	 Direct attention to salient properties (Frith 2007). This entails ensuring that 

everything on the screen is relevant to the task in hand.
	5.	 The zone of proximal development  – adapt each task to be just challenging 

enough (Vygotsky 1978).
	6.	 Use intrinsic rather than extrinsic reinforcement (Laurillard 2012).
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Examples of the games following these principles have been developed by Diana 
Laurillard and Baajour Hassan and can be found at http://number-sense.co.uk (see 
Fig. 20.2).

Their Dots2Track game exemplifies these principles. The task is to type the num-
ber of dots in a display. At level 1, these are arranged as in dominoes. In the case of 
an error, learner’s dots are counted onto a line above it and the correct number of 
dots on the line below it, exploiting principles 2 and 3. There is an opportunity to 
construct the correct answer by increasing or decreasing the number the learner 
chose (1). Everything on the screen is relevant (4), and game is adaptive, becoming 
more difficult depending on the accuracy and speed of the responses (5). The only 
reward is getting the right answer (6). There is preliminary data on the effectiveness 
of these games (Butterworth and Laurillard 2010).

Even if a learner has an inherited deficiency in the number module that is reflected 
in brain structure and functioning, this does not mean a life sentence of low numer-
acy. It may be that the right interventions over sufficient time can strengthen the 
number competence to a typical level and indeed modify the brain to a more typical 
structure, as has been shown in the case of phonological training for dyslexic learn-
ers (Eden et al. 2004). This will require a longitudinal study that has not yet been 
carried out.

20.6  �Conclusions

I have argued here that the genetic research is supported by neurobehavioural 
research identifying the representation of numerosities – the number of objects in a 
set – as a foundational capacity in the development of arithmetic. Where this capac-
ity is weak, education should seek to strengthen this capacity using sets of real or 
virtual objects and linking the sets to the spoken and written numbers until the 
learner can use numbers fluently and confidently. This will provide a sound basis for 
developing arithmetic.

Fig. 20.2  Dots2Track (for an explanation see text)

20  Low Numeracy: From Brain to Education

http://number-sense.co.uk


486

References

Agrillo, C., Piffer, L., Bisazza, A., & Butterworth, B. (2012). Evidence for two numerical sys-
tems that are similar in humans and guppies. PloS One, 7(2), e31923. doi:10.1371/journal.
pone.0031923.

Andres, M., Pelgrims, B., Michaux, N., Olivier, E., & Pesenti, M. (2011). Role of distinct parietal 
areas in arithmetic: An fMRI-guided TMS study. NeuroImage, 54(4), 3048–3056. doi: http://
dx.doi.org/10.1016/j.neuroimage.2010.11.009.

Barth, H., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E. (2006). Non-symbolic 
arithmetic in adults and young children. Cognition, 98(3), 199–222.

Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human 
vision. Science, 321(5890), 851–854. doi:10.1126/science.1158023.

Brannon, E. M., & Terrace, H. S. (1998). Ordering of the numerosities 1 to 9 by monkeys. Science, 
282, 746–749.

Bruandet, M., Molko, N., Cohen, L., & Dehaene, S. (2004). A cognitive characterization of dyscal-
culia in turner syndrome. Neuropsychologia, 42, 288–298.

Butterworth, B. (1999). The mathematical brain. London: Macmillan.
Butterworth, B. (2005). Developmental dyscalculia. In J. I. D. Campbell (Ed.), Handbook of math-

ematical cognition (pp. 455–467). Hove: Psychology Press.
Butterworth, B., & Laurillard, D. (2010). Low numeracy and dyscalculia: Identification and inter-

vention. ZDM Mathematics Education, 42(6), 527–539. doi:10.1007/s11858-010-0267-4.
Butterworth, B., & Walsh, V. (2011). Neural basis of mathematical cognition. Current Biology, 

21(16), R618–R621. doi:10.1016/j.cub.2011.07.005.
Butterworth, B., & Yeo, D. (2004). Dyscalculia guidance. London: nferNelson.
Butterworth, B., Granà, A., Piazza, M., Girelli, L., Price, C., & Skuse, D. (1999). Language and 

the origins of number skills: Karyotypic differences in Turner’s syndrome. Brain & Language, 
69, 486–488.

Butterworth, B., Girelli, L., Zorzi, M., & Jonckheere, A. R. (2001). Organisation of addition facts 
in memory. Quarterly Journal of Experimental Psychology, 54A, 1005–1029.

Carey, S. (2009). Where our number concepts come from. Journal of Philosophy, 106(4), 220–254.
Castelli, F., Glaser, D. E., & Butterworth, B. (2006). Discrete and analogue quantity processing in 

the parietal lobe: A functional MRI study. Proceedings of the National Academy of Sciences of 
the United States of America, 103(12), 4693–4698.

Cipolotti, L., & van Harskamp, N. (2001). Disturbances of number processing and calculation. In 
R. S. Berndt (Ed.), Handbook of neuropsychology (Vol. 3, 2nd ed., pp. 305–334). Amsterdam: 
Elsevier Science.

Dayan, P., & Niv, Y. (2008). Reinforcement learning: The good, the bad and the ugly. Current 
Opinion in Neurobiology, 18(2), 185–196. doi: http://dx.doi.org/10.1016/j.conb.2008.08.003.

Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number process-
ing. Cognitive Neuropsychology, 20, 487–506.

Eden, G., Jones, K., Cappell, K., Gareau, L., Wood, F., Zeffiro, T., et al. (2004). Neural changes 
following remediation in adult developmental dyslexia. Neuron, 44, 411–422.

Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive 
Sciences, 8(7), 307–314.

Frith, C.  D. (2007). Making up the mind: How the brain creates our mental world. Oxford: 
Blackwell Publishing.

Geary, D. C., Bailey, D. H., Littlefield, A., Wood, P., Hoard, M. K., & Nugent, L. (2009). First-
grade predictors of mathematical learning disability: A latent class trajectory analysis. 
Cognitive Development, 24, 411–429.

Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: 
Harvard University Press.

Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and 
mathematics achievement in the first year of formal schooling. Cognition, 115(3), 394–406.

B. Butterworth

https://doi.org/10.1371/journal.pone.0031923
https://doi.org/10.1371/journal.pone.0031923
https://doi.org/10.1016/j.neuroimage.2010.11.009
https://doi.org/10.1016/j.neuroimage.2010.11.009
https://doi.org/10.1126/science.1158023
https://doi.org/10.1007/s11858-010-0267-4
https://doi.org/10.1016/j.cub.2011.07.005
https://doi.org/10.1016/j.conb.2008.08.003


487

Griffin, S., Case, R., & Siegler, R. (1994). Rightstart: Providing the central conceptual prerequi-
sites for first formal learning of arithmetic to students at risk for school failure. In K. McGilly 
(Ed.), Classroom learning: Integrating cognitive theory and classroom practice (pp. 25–50). 
Boston: MIT Press.

Gross, J., Hudson, C., & Price, D. (2009). The long term costs of numeracy difficulties. London: 
Every Child a Chance Trust/KPMG.

Halberda, J., Mazzocco, M.  M. M., & Feigenson, L. (2008). Individual differences in non-
verbal number acuity correlate with maths achievement. Nature, 455, 665–668. doi:10.1038/
nature07246.

Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the 
lifespan as revealed by a massive internet-based sample. Proceedings of the National Academy 
of Sciences, 109(E28), 11116–11120. doi:10.1073/pnas.1200196109.

Harel, I., & Papert, S. (1991). Constructionism: Research reports and essays, 1985–1990. 
Norwood: Ablex Publishing Corporation.

Isaacs, E. B., Edmonds, C. J., Lucas, A., & Gadian, D. G. (2001). Calculation difficulties in chil-
dren of very low birthweight: A neural correlate. Brain, 124, 1701–1707.

Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract num-
bers. [10.1073/pnas.0812142106]. Proceedings of the National Academy of Sciences, 106(25), 
10382–10385.

Jordan, K. E., & Brannon, E. M. (2006). The multisensory representation of number in infancy. 
Proceedings of the National Academy of Sciences of the United States of America, 103(9), 
3486–3489.

Kovas, Y., Haworth, C., Dale, P., & Plomin, R. (2007). The genetic and environmental origins 
of learning abilities and disabilities in the early school years. Monograph of the Society for 
Research in Child Development, 72(3), 1–144.

Laurillard, D. (2012). Teaching as a design science: Building pedagogical patterns for learning 
and technology. New York/London: Routledge.

Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: An investigation of the con-
ceptual sources of the verbal counting principles. Cognition, 105(2), 395–438. doi:10.1016/j.
cognition.2006.10.005.

Marton, F., & Pong, W.  Y. (2007). On the unit of description in phenomenography. Higher 
Education Research & Development, 24(4), 335–348.

Matsuzawa, T. (1985). Use of numbers by a chimpanzee. Nature, 315, 57–59.
Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., et  al. (2010). 

Developmental trajectory of number acuity reveals a severe impairment in developmental 
dyscalculia. Cognition, 116(1), 33–41.

Pinel, P., Dehaene, S., Rivière, D., & Le Bihan, D. (2001). Modulation of parietal activation by 
semantic distance in a number comparison task. NeuroImage, 14, 1013–1026.

Ranpura, A., Isaacs, E., Edmonds, C., Rogers, M., Lanigan, J., Singhal, A., … Butterworth, 
B. (2013). Developmental trajectories of grey and white matter in dyscalculia. Trends in 
Neuroscience and Education, 2(2), 56-64. doi: http://dx.doi.org/10.1016/j.tine.2013.06.007.

Ranpura, A., Isaacs, E. B., Edmonds, C., Rogers, M., Lanigan, J., Singhal, A., …, Butterworth, B. 
(submitted). The neural and genetic basis of low numeracy.

Räsänen, P., Salminen, J., Wilson, A., Aunio, P., & Dehaene, S. (2009). Computer-assisted inter-
vention for children with low numeracy skills. Cognitive Development, 24, 450–472.

Reeve, R., Reynolds, F., Humberstone, J., & Butterworth, B. (2012). Stability and change in mark-
ers of core numerical competencies. Journal of Experimental Psychology: General, 141(4), 
649–666. doi:10.1037/a0027520.

Reigosa-Crespo, V., Valdes-Sosa, M., Butterworth, B., Estevez, N., Rodriguez, M., Santos, E., … 
Lage, A. (2012). Basic numerical capacities and prevalence of developmental dyscalculia: The 
Havana survey. Developmental Psychology, 48(1), 123-135. doi: 10.1037/a0025356.

Royer, J. M., & Walles, R. (2007). Influences of gender, ethnicity, and motivation on mathematical 
performance. In D. B. Berch & M. M. M. Mazzocco (Eds.), Why is math so hard for some chil-

20  Low Numeracy: From Brain to Education

https://doi.org/10.1038/nature07246
https://doi.org/10.1038/nature07246
https://doi.org/10.1073/pnas.1200196109
https://doi.org/10.1016/j.cognition.2006.10.005
https://doi.org/10.1016/j.cognition.2006.10.005
https://doi.org/10.1016/j.tine.2013.06.007
https://doi.org/10.1037/a0027520
https://doi.org/10.1037/a0025356


488

dren? The nature and origins of mathematical learning difficulties and disabilities. Baltimore: 
Paul H. Brookes Publishing.

Rubinsten, O., & Henik, A. (2009). Developmental dyscalculia: Heterogeneity might not mean 
different mechanisms. Trends in Cognitive Sciences, 13(2), 92–99.

Schulte-Körne, G., Ziegler, A., Deimel, W., Schumacher, J., Plume, E., Bachmann, C., et  al. 
(2007). Interrelationship and familiality of dyslexia-related quantitative measures. Annals of 
Human Genetics, 71(2), 160–175.

Shalev, R. S., Manor, O., & Gross-Tsur, V. (2005). Developmental dyscalculia: A prospective six-
year follow up. Developmental Medicine and Child Psychology, 47(2), 121–125.

Starkey, P., & Cooper, R. G., Jr. (1980). Perception of numbers by human infants. Science, 210, 
1033–1035.

Temple, C. M., & Marriott, A. J. (1998). Arithmetical ability and disability in Turner’s syndrome: 
A cognitive neuropsychological analysis. Developmental Neuropsychology, 14, 47–67.

Tomonaga, M., & Matsuzawa, T. (2002). Enumeration of briefly presented items by the chim-
panzee (Pan troglodytes) and humans (Homo sapiens). Animal Learning and Behavior, 30, 
143–157.

Vygotsky, L.  S. (1978). Mind in society: The development of higher psychological processes. 
Cambridge, MA: Harvard University Press.

Wechsler, D. (1996). Wechsler objective numerical dimensions (WOND). London: The 
Psychological Corporation.

Wilson, A., Dehaene, S., & Joliot, F. (2007). Number sense and developmental dyscalculia. In 
D. Coch, G. Dawson, & K. W. Fischer (Eds.), Human behavior, learning and the developing 
brain: Atypical development (pp. 212–238). New York: The Guilford Press.

Wilson, A., Revkin, S., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment of 
“the number race”, an adaptive computer game for remediation of dyscalculia. Behavioral and 
Brain Functions, 2(20). doi:10.1186/1744-9081-2-20.

Xu, F., & Spelke, E. (2000). Large number discrimination in 6-month-old infants. Cognition, 74, 
B1–B11.

Zorzi, M., Stoianov, I., & Umilta, C. (2005). Computational modelling of numerical cognition. In 
J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 67–84). Hove: Psychology 
Press.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

B. Butterworth

https://doi.org/10.1186/1744-9081-2-20
http://creativecommons.org/licenses/by/4.0/


489© The Author(s) 2018
M.G. Bartolini Bussi, X.H. Sun (eds.), Building the Foundation: Whole 
Numbers in the Primary Grades, New ICMI Study Series, 
https://doi.org/10.1007/978-3-319-63555-2

�Appendices

�Appendix 1: The 23rd ICMI Study at the University of Macau 
and the Capacity and Network Projects (CANP)

Yuriko Yamamoto Baldin
Universidade Federal de São Carlos, Brazil
e-mail: yuriko.baldin@uol.com.br

Veronica Sarungi
Institute for Educational Development
The Aga Khan University, Tanzania
e-mail: veronica.sarungi@aku.edu

�Introduction

The 23rd ICMI Study at the University of Macau was not only the first ICMI Study 
that focused on primary mathematics but was also the first such study to bring 
together representatives from the Capacity and Network Projects (CANPs), an ini-
tiative of ICMI that focuses on developing countries. By June 2015, when the ICMI 
Study was held in Macao, there had been four CANPs and a fifth was being pre-
pared. This document presents the experience of the various CANP representatives, 
observers and one of the coordinators during the ICMI Study at the University of 
Macau as well as the impact after the meeting. The first part presents the views of 
representatives and observers, while the second part is a description of how the 23rd 
ICMI Study influenced CANP5 in 2016 as described by the general coordinator and 
chair of the IPC.

mailto:yuriko.baldin@uol.com.br
mailto:veronica.sarungi@aku.edu


490

�Strengthening and Linking CANPs

Representatives of each CANP were invited, but due to problems with visa, the 
CANP1 representative could not attend and so finally only members of CANP2, 
CANP3, CANP4 and CANP5 participated in the study thanks to the generous sup-
port of the University of Macau and ICMI. The CANP representatives were each 
assigned to a working group of their choice thus ensuring that other participants had 
an opportunity to interact and learn about the countries and regions represented by 
the CANP observers. Moreover, in smaller informal meetings, the CANP representa-
tives also networked with each other and had an opportunity to have a formal meeting 
with Prof. Ferdinando Arzarello (president of ICMI) during which for the first time 
experiences across CANPs were shared. Hence, one of the major contributions of the 
23rd ICMI Study was to enable the CANPs to build networks beyond their regions. 
As a result of connections formed in Macao, a discussion group proposal was submit-
ted and accepted for ICME-13 that will focus on CANPs. Apart from networking, the 
meeting in Macao enhanced the individual capacity of the representatives that had an 
effect on their respective institutions, national and regional associations.

CANP2

Zumbado Castro Marianela, Costa Rica

‘The ICMI Study 23 allowed the positioning of the historical moment in which 
the Costa Rican Educative Reform is located, in relation to the worldwide job that is 
being done in the area of Numbers. It also allowed to catch a glimpse about the dif-
ferences in the way of approaching and analysing this topic in different continents. 
The representatives of the different CANP, thanks to the auspice of the University of 
Macau, had the opportunity to share learning and experiences about Whole Numbers 
and the advances in each one of the networks; it was a unique and invaluable experi-
ence to strengthen the Worldwide Mathematical Education on the topic.’

CANP3

Mongkolsery Lin, Cambodia

‘Attending ICMI Study 23 is a professionally rewarding experience. It gave me a 
chance to meet and discuss with many well-known people in the field of mathemat-
ics education and also some other CANP representatives. I gained a lot of new ideas 
from them, not only the knowledge from the group that I attended but also the way 
of the workshop organised. I learnt that each member in the group had shared their 
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useful experiences related to the topic sessions. I had shared these ideas with my 
colleagues in Cambodia after return from the conference. We found that some meth-
ods are really applicable to the secondary school mathematics in Cambodia. Finally, 
I have to thank the University of Macau that supported me to attend in this great 
event.’

CANP4

Veronica Sarungi, Tanzania

‘The resources on the website of the University of Macau were shared with 
members of the working committee of the East African Mathematics Education and 
Research Network (EAMERN) in their meeting in October. Members of the com-
mittee represented various universities and teacher education programmes from the 
four East African countries of Kenya, Uganda, Tanzania and Rwanda. In addition, 
the techniques and resources gained during the sessions were used in individual 
work done with in-service lower primary teachers since promoting early years 
numeracy is a focus both in Tanzania and in the region.’

CANP5

Vallejo Vargas Estela, Peru

‘ICMI Study 23 gave me insight on how productive discussions might lead to 
interesting, valuable products. Observing the kind of work developed in an ICMI 
Study helped me understand that discussions are important, and moreover it is cru-
cial to lead these discussions towards specific relevant goals which must have been 
previously set in order not to wander but focus. This point is what I had in mind 
when participated in CANP 5. Likewise, I’m sure ICMI Studies (in particular ICMI 
Study 23) publications can be well used for the professional development of pre-
service and in-service teachers, which is directly related to CANP 5 goal, after 
translating them into Spanish. It was a nice experience to participate in the ICMI 
Study 23 and the CANP’s observers meeting since I could look at the interest of the 
ICMI representatives in particular, and the mathematics education community in 
general, on the search for helping developing countries make progress on the teach-
ing and learning of mathematics.’
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Other Observers from Mekong Area

There were three (3) additional observers from Cambodia, Lao and Thailand that 
were countries that formed part of the Third Capacity and Network Project (CANP3). 
They were supported by the Centre for Research in Mathematics Education and 
Faculty of Education, Khon Kaen University, Thailand.

The three CANP3 observers took video recordings of various sessions both ple-
nary and in the working group. Apart from meeting with scholars in mathematics 
and mathematics education, ICMI Study 23 provided an opportunity for each of the 
observers to learn more about and with participants from other regions. The ICMI 
Study 23 also provided an opportunity for various CANP representatives to meet 
and have a round table discussion about their networks and activities. The following 
are the personal reflections of each of the three observers.

Visa Kim (Cambodia)

‘At the ICMI Study 23 in the University of Macau on 6th June 2015 during a 
special meeting, I learned much more about the Capacity and Networking Project 
(CANP). I met with each CANP representative who reported on what has been done 
since the CANP meeting in their region such as the output of workshops, issues in 
the network and a vision for future and plans for follow-up activities. During the 
meeting, Prof. Mongkolsery mentioned about the next follow-up activity for CANP3 
members in November 2015 in Thailand. I am profoundly grateful for the opportu-
nity to be a part of the CANP and to join the ICMI Study 23’.

Chanhpheng Phommaphasouk (Laos PDR)

‘I’m working at Khangkhai Teacher Training College, Pek District, Xiengkhouang 
Province, Laos PDR. This was my first time to participate in an ICMI Study confer-
ence. I was a representative from Laos PDR and part of the “the Great Mekong 
Region” group. I learnt from scholars from different countries shared experiences 
and knowledge of outstanding experts in mathematics education in primary educa-
tion including future topics for research. Throughout the conference, I participated 
in many sessions and also listened to lectures from mathematicians, mathematics 
educators that were all useful for me. During the brief round table discussion of all 
CANP observers, participants from Asia, Africa and Latin America shared experi-
ence of cooperating in each region and also the President of ICMI Professor 
Ferdinando Arzarello suggested how to continue collaboration in each region.’

Weerasuk Kanauan (Thailand)

‘I am a doctoral student from Thailand. I got the opportunity to participate in the 
ICMI Study 23 Conference at the University of Macau as an observer and CANP 
representative. I am proud to have met with scholars whose names and works I had 
previously encountered in seminars and academic reading. I learned about the 
research in mathematics education from several countries and also shared experi-
ence about ways to enhance mathematics education with members from other 
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CANP regions. The conference has inspired me to work in the field of Mathematics 
Education and I hope to join similar studies in the future.’

�The Influence of ‘ICMI STUDY 23’: Whole Number Arithmetic 
on the Activities of CANP5 in Peru

The following is presented in the words of Yuriko Yamamoto Baldin (chair of IPC, 
general coordinator of CANP5) who wrote this section. ‘I acted as the chair of The 
International Program Committee of the CANP5 held in Lima, Peru, from 01 to 12 
February 12, 2016. The event has brought together mathematicians, mathematics 
educators and representatives of the Ministry of Education from Bolivia, Ecuador, 
Paraguay and Peru, with the general objective of improving the quality of mathe-
matics education in the region and aiming at the constitution of a network of col-
laborators to get through this objective.

Among the leading themes selected for discussion works of the CANP5, the 
issue of teacher education - initial and continued has had the main focus, for it raises 
the attention of all the participants for the implication to other themes. The national 
reports elaborated and presented by the country delegations to support the discus-
sions were right on the education of teachers, in which the needs of discussing the 
important segment of the primary education, especially about the arithmetic liter-
acy, were appointed as a concern of the countries in that region.

I participated in the ICMI Study 23 Conference as a contributor to the Working 
Group 5 with an article about a professional development course in Brazil at pri-
mary level, with focus on the arithmetic of whole numbers. Therefore, participating 
in the Study 23, sharing the experiences and the knowledge of the outstanding 
experts in the mathematics education in primary education was a real privilege that 
helped me to execute the scientific program of CANP5 with deeper perspectives. 
The generosity of the University of Macau has supported the participation of the 
CANP observers from CANP 2 to 5 in the works of the conference as well as in a 
special CANP meeting coordinated by the president of ICMI, Professor Ferdinando 
Arzarello. I am quite sure that this experience was definitive for the CANP 2, 3 and 
4 representatives to consolidate the works in their networks, and surely to the repre-
sentative of CANP5 to make her contribution during the CANP5 the most profitable 
and meaningful.

Since one of the objectives of the CANP5 constituted in the developments of 
adequate teaching materials to support the teacher education of elementary level, I 
am confident that the freshly constituted network of CANP5 will benefit from the 
ICMI STUDY 23 right for its moves in the near future. I express my gratitude to the 
coordinators of ICMI Study 23, Maria G. Bartolini-Bussi and Xu Hua Sun, for their 
reporting the Study in ICME13 with mentions to the CANP activities, so giving vis-
ibility to the networking efforts of developing countries on their way to improve the 
mathematics education from early years.’
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�Conclusion

To conclude, CANP representatives and observers have their gratitude for being 
invited and supported to attend the ICMI Study 23 at the University of Macau that 
provided them with an intellectually enriching and inspiring experience that would 
have a far-reaching effect. Hopefully, the interaction of CANP representatives has 
also enriched this unique ICMI Study just as it has had a positive impact on CANP5, 
which took place after the meeting in Macao. In summary, through the generosity of 
the University of Macau, the Education and Youth Affairs Bureau, Macao SAR and 
ICMI, the 23rd ICMI Study expanded what was started in individual CANPs, 
namely, to enhance capacity and promote networks with the ultimate goal of improv-
ing mathematics education.

�Appendix 2: The Twenty-Third ICMI Study: Primary 
Mathematics Study on Whole Numbers (Discussion 
Document)

�The International Program Committee of ICMI STUDY 23

Introduction and Rationale for ICMI Study 23

This document announces a new study to be conducted by the International 
Commission on Mathematical Instruction. This study, the twenty-third led by ICMI, 
addresses for the first time mathematics teaching and learning in primary school 
(and pre-school as well) for all, taking into account inclusive international perspec-
tives including socio-cultural diversity and institutional constraints. One of the chal-
lenges of designing the first ICMI primary school study is the complex nature of 
primary mathematics. For this reason a specific focus has been chosen, as the key 
and driving feature, with a number of questions connected to it. The broad areas of 
whole number arithmetic (WNA), including operations and relations and the solu-
tion of arithmetic word problems are the kernel or core content of all primary math-
ematics curricula. The study of this key core content area is often regarded as 
foundational for later mathematics learning. However, the principles and main goals 
of instruction in the foundational concepts and skills in these aspects are far from 
universally agreed upon, and practice varies substantially from country to country. 
An ICMI Study that provides a meta-level analysis and synthesis of what is known 
about this core area of primary mathematics would provide a useful base from 
which to gauge gaps and silences and an opportunity to learn from the practice of 
different countries and contexts.
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Whole numbers are part of in everyday language in each culture, but there are 
different views on the most appropriate age at which to introduce whole numbers in 
school. Whole numbers, in some countries, are approached already in pre-school, 
with nearly all the children before the age of six attending pre-school. The OECD 
has reported that, in general, participation in pre-school produces better learning 
outcomes for 15-year-old students (OECD PISA FOCUS 2011). In some countries, 
primary school includes Grades 1–6; in others it includes Grades 1–5. Also the 
entrance age of students for primary school may vary from country to country. For 
all these reasons, this study addresses teaching and learning whole numbers from 
the early grades, i.e. the periods in which whole numbers are systematically 
approached in the formal school, hence, when it is the case, also in pre-school.

In Berlin in January 2014, the International Program Committee (IPC) for ICMI 
Study 23 met and agreed upon four principles.

First, it was decided that cultural diversity and how this diversity impinges on 
the early introduction of whole numbers would be one major focus. The study will 
seek contributions from authors from as many countries as possible, especially 
those in which cultural characteristics are less known and yet they influence what is 
taught and learned. In order to foster the understanding of the different contexts 
where authors have developed their studies, each applicant for the Conference will 
be required to prepare background information (on a specific form) about this 
context.

Second, it was decided to find better ways to involve policy makers (who have 
the duty to offer to every child the opportunity to go to school and to learn arithme-
tic) and, in order to take care of this specific aim, to solicit also contributions in the 
form of commented and annotated video clips about practical examples with a 
(potentially) strong impact.

Third, it was decided to collect experiences about teaching and learning for all, 
including students with special needs, considering that in some countries they have 
special classrooms and teachers and even special schools, while in others they are 
enrolled in mainstream classes.

Fourth, it was decided to focus also on teacher education and professional 
development, considering that in order to teach elementary mathematics, there is a 
need for sound professional knowledge, both in mathematics and in pedagogy.

In order to meet this complex set of principles, the IPC delineated a set of themes 
to serve as the organising framework for the Study Conference.

This Discussion Document presents the background of the study, together with 
its challenges and aims. These sections lead to the description of the five organising 
themes of the study. Because the Study Conference will be organised around discus-
sion within each theme (with some overarching sessions), each proposed contribu-
tion to the study should be addressed to the theme into which it will fit best (with a 
first and a second choice, according to possible multiple foci). Finally, the Discussion 
Document outlines the organisation, timing and location of the Study Conference 
and the timetable of the milestones leading up to the Conference and to ICMI 
publication.
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�Background of the Study

Primary schooling is compulsory in all countries, although with different facilities 
and opportunities for children to take advantage of it. Mathematics is a central fea-
ture of all primary education and the content and quality delivery of that curriculum 
is important in all countries for the kinds of citizens each seeks to produce.

In the international literature, there are many contributions on primary school 
mathematics. In many cases, especially in the West, early processes of mathematical 
thinking, usually observed in early childhood (i.e. 3–8-year-old children), are also 
investigated by cognitive and developmental psychologists, who sometimes study 
the emergence of these processes in laboratory settings, where children are stimu-
lated by suitable displays (to observe the emergence of one-to-one correspondences, 
counting, measuring and so on). In several countries, Piaget’s theory is very influen-
tial despite its critics. Also neuroscientists have been studying for some years the 
emergence of ‘number sense’, but it has been observed (UNESCO 2013) that what 
is still missing is a serious and deep interdisciplinary work with experts in mathe-
matics education.

�Key Challenges for ICMI Study 23

A recent document prepared by ICMI’s Past President Michèle Artigue and com-
missioned by UNESCO (2012) discusses, from a political perspective, the main 
challenges in basic mathematics education. It reads:

We live in a world profoundly shaped by science and technology. Scientific and technologi-
cal development has never been faster, has never had an impact as important and as immedi-
ate on our societies, whatever their level of development. The major challenges that the 
world has to face today, health, environment, energy, development, are both scientific and 
human challenges. In order to take up these challenges, the world needs scientists able to 
imagine futures that we barely see and able to make these possible, but it also needs that the 
understanding of these challenges, the debate on the proposed changes, are not reserved for 
a necessarily limited scientific elite, but are very widely shared. Nobody can now doubt that 
positive, sustainable and equitable evolutions cannot be achieved without the support and 
contribution of the great majority of the population. Nobody should thus doubt that the 
gamble of shared intelligence, that of quality education for all, and especially science edu-
cation for all, including mathematics and technology education, are the only gambles we 
can take. This is even more the case in the current context of crisis. Without such an educa-
tion, it is futile to speak of debate and citizens’ participation.

Drawing on these ideas, ICMI has acknowledged that it is timely to launch, for 
the first time in its history, an international study that especially focuses on early 
mathematics education, that is, both basic and fundamental mathematically. Primary 
school mathematics education has been present in other ICMI Studies, but, in most 
cases, secondary school mathematics education was predominant. When founda-
tional processes are concerned, a strong epistemological basis is needed. This might 
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be the added value of ICMI involvement with respect to the analysis carried out in 
other fields. Such epistemological analysis was part of classical works of professional 
mathematicians (e.g. Klein, Smith, Freudenthal) who played a big role in the history 
of ICMI (ICMI 2008) and considered mathematics teaching as a whole. It is worth-
while to mention here a short text by Felix Klein in 1923, the first President of 
ICMI, used as an epigraph in the website on the history of ICMI (ICMI 2008).

I believe that the whole sector of mathematics teaching, from its very beginnings at elemen-
tary school right through to the most advanced level research, should be organised as an 
organic whole. It grew ever clearer to me that, without this general perspective, even purest 
scientific research would suffer, inasmuch as, by alienating itself from the various and lively 
cultural developments going on, it would be condemned to the dryness which afflicts a plant 
shut up in a cellar without sunlight. 

One cannot study school mathematics teaching without focusing also on the 
teacher’s role and responsibility. The attention towards mathematics teacher educa-
tion and professional development has been a constant preoccupation of ICMI. The 
case of primary school and (more generally) the case of early education deserves a 
special attention. The complex nature of arithmetic and its foundational value for 
mathematics are well known by mathematicians and mathematics educators. 
However, primary school teachers work within systems which may or may not sup-
port a rigorous professional environment in which they are knowledgeable and 
respected professionals who are experts on both the mathematics and the pedagogy 
of what they teach. In some systems, teaching WNA may be treated as something 
that virtually any educated adult can do with little specific training; WNA may be 
viewed by some as straightforward and intuitive and involving no more than show-
ing children how to cope with everyday life and to carry out algorithms.

There are systems where primary mathematics teachers are specialists and other 
where they are generalists. It is not within the aims of this study to enter deeply into 
the pedagogical debate about specialist vs generalist teachers in early education, as 
both models show advantages and disadvantages. What is important to highlight is 
that much is already known from research about productive ways to teach WNA, yet 
this knowledge cannot be enacted in systems in which teachers are not proficient in 
elementary mathematics and the particular pedagogical approaches. Effective 
teacher education may require a backdrop of a culture in which teachers are expected 
to be highly educated professionals.

�Aims of the Study

This study aims to produce and share knowledge on the sustainable ways of realis-
ing teaching and learning WNA for all, keeping into account the large body of the-
ory and research already existent, socio-cultural diversity and institutional 
constraints. In particular, the following specific aims were acknowledged by the 
IPC, for the early teaching and learning WNA:
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•	 Bring together communities of international scholars representative of ICMI’s 
diverse membership across regions and nationalities in addressing the theme of 
WNA for the production of a Study Volume; provide a state-of-the-art expert 
reference on the theme of WNA.

•	 Contribute to knowledge, better understanding and resolution of the challenges 
that WNA faces in diverse contexts; collectively represent the great variety of 
concerns in the field of WNA and reflect upon it.

•	 Facilitate multi- and interdisciplinary approaches (including cooperation with 
other bodies and scientific communities) to advance research and development in 
WNA; disseminate scholarship in mathematics education – research, methodolo-
gies, theories, finding and results, practices and curricula – in the theme of WNA.

•	 Pave the way towards the future by identifying and anticipating new research and 
development needs of WNA; be of interest and a resource to researchers, teacher 
educators, policy and curriculum developers and analysts and the broad range of 
practitioners in mathematics and education.

•	 Promote and assist discussion and action at the international, regional or institu-
tional level.

�The Themes of the ICMI Study 23

The ICMI Study will be organised around five themes that provide complementary 
perspectives on the early approach to whole numbers in mathematics teaching and 
learning. Contributions to the separate themes will be distinguished by the theme’s 
specific foci and questions, although it is expected that interconnections between 
themes will emerge and merit attention.

The five themes are:

	1.	 The why and what of whole number arithmetic
	2.	 Whole number thinking, learning and development
	3.	 Aspects that affect whole number learning
	4.	 How to teach and assess whole number arithmetic
	5.	 Whole numbers and connections with other parts of mathematics

Themes 1 and 2 address foundational aspects from the cultural-historic-episte-
mological perspective and from the (neuro) cognitive perspective. What is espe-
cially needed are reports about the impact that foundational aspects have on practices 
(both at the micro level of students and classrooms and at the macro level of curricu-
lar choices).

Themes 3 and 4 address learning and teaching, respectively, although it is quite 
hard, sometimes, to separate the two aspects, as it is evidenced by the fact that in 
some languages and cultures (e.g. Chinese, Japanese, Russian) the two words col-
lapse into only one.

Theme 5 addresses the usefulness (or the need) to consider WNA in connection 
with (or as the needed basis for) the transition to other kinds of numbers (e.g. ratio-
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nal numbers) or with other areas of mathematics, traditionally separated from arith-
metics (e.g. algebra, geometry, modelling).

Each theme is shortly outlined and followed by exemplary questions that could 
be addressed in the submitted contributions. An overarching question which cuts 
across all the themes concerns teacher education and development:

How can each of the themes be effectively addressed in teacher education and 
professional development?

The Why and What of Whole Number Arithmetic

This theme will address cultural–historic–epistemological issues in WNA and their 
relation to traditional, present and possible future practices.

The sense of numbers is constructed through everyday experience, where culture 
and language play a major role; hence, ethnomathematics has paid attention to the 
different grammatical constructions used in everyday talk (e.g. Maori number words  
as actions; Aboriginal Australians’ spatial approach to numbers). Ways of represent-
ing whole numbers and making simple calculations (e.g. with fingers or other body 
parts; with words; with tools, including mechanical and electronic calculators; with 
written algorithms) have enriched the meaning of whole numbers through the ages.

The base-ten system is critical for our current sophisticated understanding of 
WNA.  The long and difficult development of place value systems is well docu-
mented in the history of mathematics (the introduction of place value in China and 
India, the migration to Europe through the Arabic culture, the invention of zero, the 
strategies for mental calculation) and indicates the need to study place value and the 
base-ten system deeply for understanding.

The above issues (and others) have been considered in different ways by differ-
ent cultures throughout history. Beside the use of numbers in practical activities, 
there is evidence (in the history and in educational research) that the exploration of 
the properties of whole numbers, relations and operations paves the way towards the 
introduction, with young students too, of typical mathematical processes, such as 
generalising, defining, arguing, proving.

Some references may be found in the ICMI Studies 10, 13, 16, 19.
The following possible questions will help to illuminate this theme further:

•	 What goals underlie the teaching and learning of WNA?
•	 Taking a mathematical perspective (as practiced by the current community of 

mathematicians) combined with an educational perspective, what are core math-
ematical ideas in paths to developing WNA?

•	 What are distinctive features concerning whole number representation and 
arithmetic in your culture? What is the grammar of numbers? In what ways does 
language or ways of representing and using numbers influence approaches to 
calculation or problem-solving? How do these features interact with the decimal 
place value system?
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•	 What is the role of mathematical practices and habits of mind in teaching and 
learning WNA? How can teaching and learning WNA support the development of 
mathematical practices and habits of mind?

•	 How much the base-ten place value is emphasised in your curriculum?
•	 How much computational facility is important for later mathematics learning 

and learning in other areas? What about mental calculation? What about speed 
of calculation?

•	 How do policies and the educational environment and system support or not sup-
port a culture in which teaching WNA is seen as requiring detailed, specific pro-
fessional knowledge?

•	 What were the main historic features and their origins of WNA in (ancient) west/
east? What were some factors that led to such historic features? What were the 
effects on the development of mathematics curriculum?

•	 How does your curriculum develop understanding of the structural features of 
whole number arithmetic and its extensions?

Whole Number Thinking, Learning and Development

This theme will address the relationships between cognitive and neurocognitive 
issues and traditional, present and possible future practices in the early teaching and 
learning of WNA.

The idea of number sense was in use for decades in the literature on mathematics 
education before entering into the cognitive and neurocognitive literature, with 
some similarities and differences. (Neuro)cognitive scientists have focused on chil-
dren’s spontaneous tendency to focus on numerosity in their environment, the 
development of rapid and accurate perception of small numerosities (subitising) in 
connection with visualisation and structuring processes, the ability to compare 
numerical magnitudes and the ability to locate numbers on a (mental) number line. 
There are models for children’s informal knowledge of counting principles and 
informal counting strategies and their development into more formal and abstract 
arithmetic notions and procedures.

A recent focus concerns developmental dyscalculia, as a difficulty in mathemati-
cal performance resulting from impairment to those parts of the brain that are 
involved in arithmetical processing, without a concurrent impairment in general 
mental function.

Recent debates concern the embodied cognition thesis resulting in the evidence, 
shared by many researchers, that, although mathematics may be socially con-
structed, this construction is rooted in, and shaped by, the body and bodily 
experiences.

Some references may be found in OECD 2010, UNESCO 2013.
The following possible questions will help to illuminate this theme further:

•	 To what extent is basic number sense inborn and to what extent is it affected by 
socio-cultural and educational influences? How is the relationship between 
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these precursors/foundations of WNA, on the one hand, and children’s whole 
number arithmetic development?

•	 What can we learn from the (neuro)cognitive studies in WNA? Do their findings 
essentially confirm insights that are present (and were already present for a long 
time) in the mathematics education community or do they point to truly new 
insights and recommendations about the kind of tasks and instructional 
approaches children need? How to integrate different perspectives about the 
foundations and development of whole number arithmetic concepts and skills?

•	 What are specific effects of the structure of the individual finger counting system 
on mental and linguistic quantity representation and arithmetic abilities in chil-
dren, and even in older learners and adults?

•	 How an embodiment framework can be used to analyse and/or design educa-
tional approaches based on suitable representations, (e.g. through the number 
line) or on manipulatives and modern technological devices (touchscreens)?

•	 What are appropriate ways of analysing the multimodal nature of mathematical 
thinking (e.g. the role of bodily motion and gesture)?

•	 What is the relationship between the embodied cognitive approach and older 
approaches, for example, Montessori or Piagetian, which had a strong influence 
of elementary school mathematics worldwide?

•	 How can the tools of the embodiment framework/analysis be integrated/com-
bined with socio-cultural perspectives to compare/contrast approaches where 
embodiment is exploited or hindered?

•	 How can teachers be educated in order to exploit the (neuro)cognitive founda-
tions for WNA?

Aspects that Affect Whole Number Learning

This theme will address some aspects affecting learning of WNA in both positive 
and negative ways.

Socio-cultural aspects influence enumeration practices, algorithms and represen-
tations as well as metaphors or models (e.g. the number line). Hence students’ lan-
guage and culture may help or hinder the construction of WNA not only in schools 
but also in informal settings. On the one hand, the recourse to tools from the history 
of mathematics (e.g. counting sticks, different kind of abaci, reproduction of ancient 
mechanical calculators) may be effective to foster learning of WNA with explicit 
reference to the local culture. On the other hand, intentionally designed tools may 
address the effective learning processes evidenced in the literature (e.g. technologi-
cal tools including the multitouch ones).

Low achievement in WNA is a major focus in debates at all levels, from school’s 
practice to international studies. Literature shows that it may depend on very differ-
ent aspects: context variables (e.g. marginalised students, migrant and refugee stu-
dents, education in fragile democracies), institutional variables (e.g. different 
languages in school and out of school context), learning disabilities (dyscalculia, 
sensual impairment for deaf and blind students), on affect factors (e.g. self-beliefs, 
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anxiety, motivation, gender issues), on didactical obstacles (e.g. a too limited 
approach as in the case of teaching addition separate from subtraction or multiplica-
tion as a repeated addition only) and on epistemological obstacles (related to the 
historical process of constructing WNA by mankind).

Some references may be found in the ICMI Studies 17, 22 and, for general issues 
concerning the contexts, UNESCO 2010.

The following possible questions will help to illuminate this theme further:

•	 What are the features of your language related to whole numbers, operations and 
word problems that could affect learning in a positive or negative way? How 
these features are mirrored in formal, informal or not formal settings?

•	 What main challenges for learning WNA are faced by marginalised students or, 
in general, in difficult contexts?

•	 What main challenges are faced for learning WNA by students with sensual 
impairments (blind and deaf)?

•	 What main challenges are faced for learning WNA by dyscalculic students?
•	 In your country, are students with special needs enrolled in mainstream classes 

(inclusive systems) or in special education classes? To what extent may the strat-
egies especially developed for students with special needs be useful for all stu-
dents in WNA?

•	 In your country, are there evidence that the literature on either didactical or 
epistemological obstacles had impact on classroom practice?

•	 Which tools (from the ancient or new technologies) are useful to enrich the class-
room activity for all or to help low achievers for WNA? Are there evidence on 
effective use of traditional manipulatives (including the ones rooted in local cul-
tures), virtual manipulatives, technologies (including the recently developed 
multitouch technologies)? Are there classroom studies on the comparison of dif-
ferent kinds of tools?

•	 What strategies may be implemented by teachers in relations with the above 
issues?

How to Teach and Assess Whole Number Arithmetic

This theme will address general and specific approaches to teach and assess the 
learning of WNA. WNA appears in the standards for mathematics of every country 
(see http://www.mathunion.org/icmi/other-activities/database-project/introduction/) 
in specific international studies (e.g. the Learner’s Perspective Study, with 16 country 
teams). In some countries also independent research communities have developed 
projects on teaching and assessing WNA, which, in some cases, are internationally 
acknowledged (e.g. Realistic Mathematics Education in the Netherlands, NCTM 
Curriculum and Evaluation Standards in the USA, Davydov’s math curriculum in 
Russia, the theory of didactical situations in France). In the ethnomathematics trend, 
projects sensitive to the local cultures and traditions have been developed (e.g. in 
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Australia, Latin America, the USA and Canada). A specific Symposium on 
Elementary Mathematics Teaching (SEMT) is held every second year in Prague 
since 1991.

Some issues to be focused may be the following: textbooks and future teaching 
aids (e.g. multimedia, e-books) for WNA, tools to approach specific elements of 
WNA (e.g. manipulatives, technologies), specific strategies for some fields (e.g. for 
word problems, the Chinese tradition of problems with variation, the Singapore’s 
model method, the extended literature on word problems and relations with real-life 
situation), examples of practices rooted in local culture and metacognitive aspects 
in national curricula (e.g. early approach to mathematical thinking processes).

In recent years, the assessment debate at the local and school level has been very 
much biased by the results of international studies (e.g. OECD PISA, TIMSS), 
which are likely to produce assessment-driven curricula. An ICMI Study on assess-
ment was produced in the early 1990s (ICMI Study 6), but updating might be neces-
sary for the relevance and the media wide appeal of the international studies.

Some references for this theme may be found in the proceedings of ICMI 
Congress and Regional Conferences http://www.mathunion.org/icmi/Conferences/
introduction/.

The following possible questions will help to illuminate this theme further:

•	 What are the consequences of policy decision-making related to WNA teaching 
based on evidence in comparison with policy decision-making based on 
opinions?

•	 How the intended curriculum is reflected in textbook and other teaching aids?
•	 What are the changes (if any) that have resulted from the use of technology to 

teach WNA?
•	 How completely is understanding of the place value system developed, and at 

what points in the/your curriculum are key features of place value explored in 
greater depth?

•	 How does the/your curriculum foster the transition from a counting or additive 
view of number to a ratio/multiplicative/measurement view of number?

•	 How do children acquire WNA concepts and procedures outside of school? How 
can teachers built up on the knowledge children acquire outside school?

•	 What are the approaches that have proven to be effective in your school setting 
to teach elements of WNA, for example, number sense, cardinality, ordering, 
operations (subtraction with regrouping, etc.), problem-solving, estimation, rep-
resenting, mental computation, etc.?

•	 Problem-solving context: should it be realistic? Should it be authentic? Always? 
What is the place (if any) of traditional word problems? What is the role of (real 
world) context in WNA? Always necessary?

•	 How to develop positive attitudes towards mathematics while teaching WNA?
•	 How teachers promote the development of student’s metacognitive strategies 

during the learning of WNA?
•	 What main challenges are faced by teachers when teaching and assessing WNA?
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•	 What innovative assessment approaches are used to evaluate the learning out-
comes of WNA? What are the changes (if any) in assessment WNA that have 
resulted from the media appeal of international studies like PISA or TIMSS?

�Whole Numbers and Connections with Other Parts of Mathematics

This theme will address WNA in terms of its interrelationships with the broader 
field of mathematic.

Some connections concern pre-algebra and algebraic thinking (e.g. looking for 
patterns, schemes for the solution of world problems), geometry or spatial thinking 
(e.g. triangular or square numbers and similar, number lines), rational numbers and 
measurement (e.g. Davydov’s curriculum for arithmetic) and statistical literacy (e.g. 
mean, median and mode, interval, scale and graphical representation).

Evidence suggests that the earliest formation of WNA can support the learning 
of mathematics as a connected network of concepts and, vice versa, embedding 
WNA in the broad field of mathematics can foster a better understanding.

Some references for this theme may be found in the ICMI Studies 9,12,14 and 18.
The following possible questions will help to illuminate this theme further:

•	 How can WNA teaching and learning contribute to understand other intercon-
nected mathematical ideas and build on one another to make students view math-
ematics as a coherent body of knowledge?

•	 In your country, to what extent are connections between WNA and other 
Mathematics topics pointed out in the curriculum syllabus and textbooks, and 
how are they approached? i.e. WNA and measurement, WNA and elementary 
statistics? Pre-algebra patterns, WNA and algebra?

•	 In your system/country, are symbolic and nonsymbolic approaches to word prob-
lems compared? To what extent are connections made between base-ten arithme-
tic and polynomial arithmetic? To what extent are the rules of arithmetic/
properties of operations used as a guide in learning manipulation of algebraic 
expressions?

•	 In your country/system, to what extent are connections between WNA and other 
mathematics topics stressed in the teachers’ education programs?

•	 In what ways does the connection between WNA and specific themes in other 
areas of Mathematics contribute to students’ understanding of these themes?

•	 What learning conditions enable students to make connections between WNA 
and other mathematics topics?

•	 In which ways does the practice of connecting WNA to other areas of mathemat-
ics contribute to the development of mathematical thinking?

•	 How the connection of WNA with other areas of mathematics improve communi-
cation of mathematical ideas?

•	 How can technology be used to make connections between WNA and other math-
ematics topics?
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•	 How does the use of representations in WNA teaching and learning contribute to 
build connections with other mathematical areas? For example, to what extent is 
the number line used to exhibit the connections between WNA and arithmetic of 
fractions?

�The Study Conference

ICMI Study 23 is designed to enable teachers, teacher educators, researchers and 
policy makers around the world to share research, practices, projects descriptions 
and analyses. Although reports will form part of the program, substantial time will 
also be allocated for collective work on significant problems in the field that will 
eventually form part of the Study Volume.

We plan to organise the Conference around working groups on the themes and 
that these groups will meet in parallel during the time of the Conference. In each 
working group, the IPC will organise the discussion starting from the contributions, 
assuming that each participant has carefully read the contributions of their working 
group. Some special sessions of video clip presentation will be organised, to share 
meaningful examples of practices concerning WNA. Thus, there will be plenty of 
time for discussion of submitted papers, as well as possible plans for future collab-
orative activity.

The Conference language is English. However, native speakers and more 
expert participants will make every effort to ensure that every participant may 
take active part in the discussion.

Location and Dates

The Study Conference will take place in Macao, China, and will be hosted by the 
University of Macau (June 3–7, 2015), with opening on June 3 at 9 AM and closing 
on June 7 at 2 PM. Arrival day is on June 2; departure may be scheduled as from 
June 7 at night.

Every effort will be made to assist participants with visa applications, if needed.

Participation

As is the normal practice for ICMI Studies, participation in the Study Conference 
will be by invitation only for the authors of submitted contributions which were 
accepted. Proposed contributions will be reviewed and a selection will be made 
according to the quality of the work, the potential to contribute to the advancement 
of the Study, with explicit links to the themes contained in the Discussion Documents 
and the need to ensure diversity among the perspectives. The number of invited 
participants will be limited to approximately 100 people.
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Unfortunately, an invitation to participate in the Conference does not imply 
financial support from the organisers, and participants should finance their own 
attendance at the Conference. Funds are being sought to provide partial support to 
enable participants from non-affluent countries to attend the Conference, but it is 
unlikely that more than a few such grants will be available. Further information 
about the access to such grants will be available soon in the ICMI Study website.

http://www.umac.mo/fed/ICMI23/

ICMI Study Products

The first product of the ICMI Study 23 is an electronic volume of Proceedings, to 
be made available first on the Conference website and later in the ICMI website: it 
will contain all the accepted papers as reviewed papers in a Conference proceedings 
(with ISBN number).

The second product of the ICMI Study 23 is a gallery of commented video clips 
about practices in WNA, to be hosted on the Conference website and, possibly, later, 
on the ICMI website.

The third product is the ICMI Study Volume. The volume will be informed by 
the papers, the video clips and the discussions at the Study Conference as well as its 
outcomes, but it must be appreciated by all participants that there will be no guaran-
tee that any of the papers accepted for the Study Conference will appear in the book. 
The study book will be an edited volume published by Springer as part of the New 
ICMI Study Series. The editors and the editing process and content will be the sub-
ject of discussion among the IPC considering also the framework prepared for the 
Study Conference. It is expected that the organisation of the volume will follow the 
organisation and themes of this Discussion Document, although some changes 
might be introduced to exploit the impact of the discussion raised during the 
Conference. A report on the study and its outcomes will be presented at the 13th 
International Congress on Mathematical Education, to be held in Hamburg, 
Germany (24–31 July 2016). It is hoped that the Study Volume will also be pub-
lished in 2016.

�Call for Contribution to ICMI Study 23

The IPC for ICMI Study 23 invites submissions of contributions of several kinds: 
theoretical or cultural–historic–epistemological essays (with deep connection with 
classroom practice, curricula or teacher education programs), position papers dis-
cussing policy and practice issues, discussion papers related to curriculum issues, 
reports on empirical studies and video clips on explicit classroom or teacher educa-
tion practice. To ensure a rich and varied discussion, participation from countries 
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with different economic capacities or with different cultural heritages and practices 
is encouraged.

The IPC encourages people who are not so used to such Conferences to submit 
earlier (see the deadlines below) in order to receive assistance for finalising their 
contribution (this assistance concerns the choice of the topic of the contribution and 
the structure of the paper, not the editing of English language). In this way the IPC 
inaugurates a new tradition of helping newcomers (including practitioners) to the 
international mathematics education community. This implies a process of support-
ing the writing of a contribution which the IPC judges as having the potential to 
contribute to the study (see below).

An invitation to the Conference does not imply that a formal presentation of the 
submitted contribution will be made during the Conference or that the paper will 
appear in the Study Volume published after the Conference.

Submissions

The ICMI Study website is opened at the address

http://www.umac.mo/fed/ICMI23/

The website will be regularly updated with information about the study and the 
Study Conference and will be used for sharing the contributions of those invited to 
the Conference in the form of Conference pre-proceedings.

Two kinds of submissions are welcome:

Papers prepared in English (the language of the Conference) according to a tem-
plate (max 8 pages).

Video clips (5–8 min) with English subtitles with an accompanying paper prepared 
according to a template (max 6 pages) together with the author’s declaration of 
having collected informed consent forms signed by the participants. The 
English subtitles are required also in the videos with English speakers, in order 
to help the understanding of the interaction for non-native speakers. Blurring 
faces of participants for privacy reasons, when needed, has to be made by the 
applicants before sending the videos.

The files are to be saved with the name

Familyname_name

Accepted file extensions are the following:

papers: .doc; .docx; .odt together with a .pdf copy.
videos: .mp4; 3gp.

In both cases, the indication of the working group – theme (1st and 2nd choice) 
where the paper or the video clip is expected to be discussed – must be included.
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In both cases, also the context form has to be filled out by all the author(s) as 
completely as possible to help readers to understand the context of the contribution 
and interpret the contribution accordingly.

The template, context form, the informed consent form and the form for personal 
data can be downloaded from the ICMI website.

It is not allowed to submit two papers with the same first author.
Information about the technical way of submitting a paper or a video + paper 

will be available soon in the study website.

Deadlines

August 31, 2014: People who believe to need assistance for finalising their contri-
bution must submit a tentative copy with an appropriate form (assistance form) for 
requiring assistance no later than August 31, 2014. Their submissions will be exam-
ined immediately. The author will receive within September 30 the information of 
the decision (rejected, accepted pending revision, accepted in the present form). In 
the second case, an IPC member will act as ‘tutor’ to help the final preparation of 
the paper. Then the final paper will undergo the standard review process. The assis-
tance form can be downloaded from the study website.

September 15, 2014: Submissions by people who do not require help must be 
sent no later than September 15, 2014, but earlier if possible.

February 2015: Proposals will be reviewed, decisions made about invitation for 
the Conference in February 2015 and notification of these decisions sent within the 
end of February.

Information about visa, costs and details of accommodation will be available on 
the website

http://www.umac.mo/fed/ICMI23/

Further information may be asked at the following address:

e-mail: icmiStudy23@gmail.com

�Members of the International Program Committee

Maria G. 
Bartolini Bussi

Department of 
Education and 
Human Science

University of 
Modena and Reggio 
Emilia, Italy

bartolini@
unimore.it

Co-chair

Xu Hua Sun Faculty of 
Education

University of Macau, 
China

xhsun@umac.mo Co-chair

Berinderjeet 
Kaur

Centre for 
International 
Comparative 
Studies

National Institute for 
Education, Singapore

berinderjeet.
kaur@nie.edu.sg
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�Appendix 3: Electronic Supplementary Material

Maria G. Bartolini Bussi and Xu Hua Sun

In the Discussion Document of the ICMI Study 23, a specific request to submit video 
clips with English subtitles was made (this volume, Appendix 2). The rationale was 
twofold, as visual data are becoming more and more important in many studies, to 
record not only verbal interaction and written protocols, but also gestures and gazes 
and may communicate better than long verbal explanation the quality of interaction, 
the organisation of the classroom, the speed of the process. Hence, the video clips 
were introduced by a short text, in order to reconstruct or interpret the process.

The video clips shown at the Conference are collected, together with very short 
introductions. More details about the context are available in the volume and in the 
Proceedings of the Conference. The Proceedings are freely available in Sun, X., 
Kaur, B., & Novotna, J. (Eds.). (2015). Conference proceedings of the ICMI study 
23: Primary mathematics study on whole numbers. Retrieved February 10, 2016, 
from www.umac.mo/fed/ICMI23/doc/Proceedings_ICMI_STUDY_23_final.pdf

All the videos have been collected according to the privacy rules of the differ-
ent countries. The use of these videos is strictly personal: they can be used by 
mathematics educators for research purposes and cannot be shared in the 
internet via social media.

The complete list of video clips follows, reporting the relevant chapters below of 
this volume.

�Chapter 7

Gould P. J. (2017). From numerals to words

Jed’s oral counting sequence extends to 12 or 13. To identify numerals beyond 3 he 
appears to use a form of a mental number line from 1 to 10, with the location of the 
numerals often unclear above 5. For example, when asked to identify ‘6’, Jed 
repeatedly asked if it was upside down. He then answered that ‘six’ was ‘five’. Jed 
could consistently count just past ten, but he could not identify all of the numerals 
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from ‘1’ to ‘10’. He appeared to only be able to effortlessly identify the first three 
numerals. For other numerals, Jed gave every indication of accessing a mental num-
ber line arrangement of numerals and counting from the location of a known value. 
Although Jed’s method of identifying numerals is atypical of a student in the third 
year of school, it sheds light on the transcoding pathway from numerals to number 
words.

Baccaglini-Frank A. (2017a). Mental strategy for multiplication explained by 
grade 2 student using rectangle diagrams

In the PerContare Project, 7-year-old students learned to think about (and perform) 
products (up to 10 × 10) using rectangle diagrams, cardboard rectangles with a grid 
of 1cm2 squares marking the dimensions, which represent the numbers to be multi-
plied. Physical and mental manipulation of the rectangle diagrams was explored and 
fostered to calculate unknown products of numbers. By the end of the school year, 
many children were able to perform calculations, without the support of the physi-
cal rectangle diagrams, any longer. This video is an example containing an elaborate 
and complete verbal description, produced by Marco (7 years 8  months), of the 
mental (and highly visual) strategy he uses to figure out 7 × 8 when he is called on 
by the teacher.

�Chapter 9

Arzarello F. (2017). How “the Chinese dragon” helps the first grade children’s 
counting

An Italian teacher, Bruna Villa, has developed an effective learning design for grade 1  
children to teach them how to grasp the machinery of whole numbers. She based her 
design on what she called the method of the ‘small Chinese dragon’, in which the 
children articulate numbers based on a uniform Chinese-like structure (e.g. 11 is 
‘ten-one’ and not ‘undici’; 21 is two (times)- ten- one and not ‘ventuno’) before 
passing to the Italian system. In this way, she has been able to shorten the time 
needed to master the whole numbers from 1 to 100 (in Italian words and standard 
arithmetic representation) and to use them to conduct arithmetic.

Bartolini Bussi M. G. (2017). Some Western ways of using the number line in 
grade 2

The number line draws on the Euclidean tradition of representing numbers with line 
segments. It was transformed into a teaching aid in Europe in the seventeenth cen-
tury. Now number lines are part of the everyday experience of pupils, either in 
games (e.g. the board game of the Goose especially popular in Southern Europe), or 
in everyday tools (e.g. the graded ruler or scales in measuring instruments with 
direct reading). The video clip shows the 2nd grade students jumping on the floor, 
in order to explore a big size number line. There are episodes of either low or high 
achievers, under the adult’s guidance.
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Inprasitha M. (2017). An open approach incorporating lesson study: An inno-
vation for teaching whole number arithmetic

Open Approach was first introduced in Thailand at the Faculty of Education, Khon 
Kaen University. This introduced a paradigm change in the Thai teaching from a 
traditional teaching approach, delivering contents from a teacher to students, to an 
Open Approach. This example illustrates how first grade student learned to gain an 
implicit understanding of whole number arithmetic via mathematical activities 
teaching through four steps of Open Approach incorporating in Lesson Study. A 
learning unit was designed within the ‘base ten and place values’ in the first grade 
emphasising ‘how to learn’, rather than merely content, in order to support students’ 
self-learning through problem-solving. The four video clips show:

Posing an open-ended problem.
Learning through problem solving.
Whole-class discussion and comparison.
Summarisation through connecting students’ mathematical ideas.

Rottmann T. (2017). Difficulties with whole number learning and respective 
teaching strategies: the case of Ole

The video presents some sections of the initial diagnostic interview and individual 
tutoring sessions with Ole (Grade 2) conducted by pre-service teachers at the 
‘Counselling Centre for Dyscalculic Children’ at Bielefeld University. The inter-
vention focuses on the development of non-counting calculation strategies for addi-
tion and subtraction tasks. The main aim of the video is to illustrate an approach to 
assist the development of mental images by gradually and systematically replacing 
the use of concrete manipulatives with mental strategies. This process of internalisa-
tion is described in terms of a Four-Phases-Model that acknowledges the need for 
verbal descriptions when using and replacing manipulatives and presents transi-
tional phases from manipulating with material to mental actions and the associated 
mental operations.

Sarungi V. (2017). Popular Number song in Swahili. Naweza kuhesabu namba

The video clip shows a popular number song in Swahili. There is no subtitle but the 
transcript is attached.

How to 
sing Swahili English translation Remarks

All of this 
twicea

Naweza kuhesabu 
namba

I can count numbers

moja, mbili, tatu One, two, three
All of this 
twice

Nne, tano, sita, saba, 
nane, tisa, kumi

Four, five, six, seven, 
eight, nine, ten

All of this 
twice

Vidole vya mikono 
yangu

The fingers of my 
hand

‘vidole’ means ‘fingers’ and 
‘mikono’ means ‘hands’

Jumla yake kumi (their) total is ten The word ‘jumla’ means ‘total’
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How to 
sing Swahili English translation Remarks

All of this 
twice

Huku tano na huku 
tano

Here five and here five

Jumla yake kumi (their) total is ten

aIt is a common practice to sing ‘lines’ of a song twice – usually the first time it is by the teacher 
(or leader) and the second time by all. However, for this song, which is very popular and well 
known by everyone, the lines are still repeated twice even when there is no leader (i.e. whole group 
sings each line twice)

�Chapter 11

Sun X.H. (2017a). Open class: Addition of nine and one-digit with regrouping

This example illustrates how 1st grade students learned to do addition with regroup-
ing for the first time. The context was ‘sport time’. Materials (counters) were used 
to represent the situation and the calculation strategies for 5 + 9 = 14. The students 
worked in groups of four to discuss the possible strategies for this calculation, while 
the teacher moved between the groups to observe, listen to and discuss the strate-
gies. Students were selected to come to the front of the class and explain their strate-
gies. The teacher explored three different strategies with regrouping:

	 5 9 4 1 9 4 1 9 14.+ = + + = + +( ) = 	

	 5 9 5 4 5 4 5 5 14.+ = + +( ) = + +( ) = 	

	
5 9 10 1 5 10 5 1 14.+ = -( ) + = +( ) - =

	

Sun X.H. (2017b). Open class in ICMI STUDY 23 Conference: Addition of two-
digit and on-digit with regrouping

This example illustrates how 1st grade students learned to do addition with regroup-
ing. The context was ‘Party time’. Materials (candies) were used to represent the 
situation and the calculation strategies for 24  +  9  =  33. The students worked in 
groups of four to discuss the possible strategies for this calculation, while the teacher 
moved between the groups to observe, listen to and discuss the strategies. Students 
were selected to come to the front of the class and explain their strategies. The 
teacher explored three different strategies with regrouping:

	 23 1 9 33.+ +( ) = 	

	 20 4 9 33.+ +( ) = 	

	
24 6 3 33.+( ) + =
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�Chapter 13

Ramploud, A., Mellone, M. and Munarini, R. (2017). Additive structure: An 
educational experience of cultural transposition

The video shows the solution of this exercise in an Italian fifth grade class:

Grandmother gives 618 euros to her grandchildren, Franca, Nicola and Stefano. 
Franca receives twice Nicola’s amount Stefano receives 10 euros more than Nicola. 
How many euros will each grandchild receive?

The exercise, done in small groups, was corrected together; the various method 
resolutions were shown to the class. In this case, the reflection on the pictorial equa-
tion and on its meaningful use (Russian and Chinese) gave us the opportunity to 
explore its use in a more conscious way. Indeed, even if it is not present in the tradi-
tion of the Italian school curricula, in the presented experience, we recognise the 
opportunity to develop, towards arithmetic with primary pupils, an approach which 
pays more attention to the structural features than to the numerical ones. As a matter 
of fact, we observed pupils’ natural and flexible recourse to algebraic language in a 
context built on the pictorial equation.

�Chapter 15

Arzarello F. (2017). How the Chinese dragon helps first grade children’s 
counting

(see the Chap. 9 entry)

Bartolini Bussi M. G. (2017). Some Western ways of using the number line in 
grade 2

(see the Chap. 9 entry)

�Chapter 16

Baccaglini-Frank A. (2017b). Strategies for multiplication using rectangle dia-
grams in grade 2

The teacher has asked the children to share strategies they used to figure out 8 × 6, 
showing their procedure on the blackboard. One student breaks 8 into 5, 2 and 1, 
then he counts up by 5 to obtain the first piece, mentally rotates the second piece and 
remembers that 6 + 6 = 12 and recognises the last piece as 1 × 6. So he finally adds 
30 + 12 + 6. Another student decides to recompose 8 as 10–2 and describes her rea-
soning through ‘ghost rectangles’, rectangles that appear to make the calculation 
easier, but then they need to be taken away. She uses ghost rectangles to think of 8 as 
a part of 10, to reach the product 10 × 6 (= 60), and then subtract off 2 × 6 (= 12).
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