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Foreword

The International Commission on Mathematical Instruction (ICMI) was established
at the Fourth International Congress of Mathematicians held in Rome in 1908. It
was initiated to support active interests in school education which were widespread
among mathematicians at the time. ICMI is crucial for the International Mathematical
Union (IMU), because education and research cannot be separated from each other.
ICMI and the IMU function together for mathematics like the two wheels of a cart,
since ICMI develops education systems which enable mathematics to prevail in
society, while the IMU contributes to society through the development of pure and
applied mathematical sciences.

I have been serving the IMU as President since January 2015. Since I served the
IMU previously (1995-2002), I have noticed that ICMI and the IMU are working
together to establish collaborations given that mathematics education is a major
preoccupation of most scientific organisations nowadays.

My first physical involvement with ICMI as IMU President started with my par-
ticipation in the ICMI Study 23 Conference in Macao in May/June 2015. The ICMI
Study 23 was planned and run jointly by its local and foreign co-chairs, with support
from the University of Macau. The International Program Committee (IPC) meeting
of ICMI Study 23 in Berlin was also supported by the IMU Secretariat. I saw that
the support and cooperation of ICMI and the IMU have been essential throughout
these activities.

I was very pleased to learn that ICMI Study 23 addressed, for the first time,
mathematics teaching and learning in primary school (and pre-school as well) for
all, and I believe that it will have a larger impact for later mathematics knowing. I
hope the volume supports the whole of mathematics education.

Kyoto University Shigefumi Mori
Kyoto, Japan


http://www.mathunion.org/
http://www.mathunion.org/

Preface

I am particularly proud of the publication of this 23rd volume in the series of ICMI
Studies, not only since this means that a long scientific and organisational work has
been happily accomplished, but also for the outstanding quality of its content and
for the absolute relevance of the theme. ICMI Study 23 fully realises the objectives
of ICMI ‘to offer a forum for promoting reflection, collaboration and the exchange
and dissemination of ideas on the teaching and learning of mathematics from pri-
mary to university level’. Concentrating on whole numbers in primary grades repre-
sents a relevant signal of interest for a crucial moment in educational programmes
everywhere in the world. Never as in this case it is truer that the study addresses a
theme of particular significance to contemporary mathematics education.

The content of the volume is in perfect consonance with the overall ICMI pro-
grammes, according to which ‘ICMI works to stimulate the creation, improvement
and dissemination of recent research findings and of the available resources for
instruction (e.g curricular materials, pedagogical methods, the appropriate use of
technology, etc.). The objective is of providing links among educational research-
ers, curriculum designers, educational policy makers, teachers of mathematics,
mathematicians, mathematics educators and others interested in mathematical edu-
cation around the world’.

The people of this study have worked on a project that is challenging both scien-
tifically and culturally: the topics in the chapters and in the panel reports of the
book, the commentaries on them written by eminent scholars, and the two appendi-
ces face a large horizon of themes that go well beyond mathematics and show how
focusing on the learning and teaching of whole numbers is an immensely demand-
ing task that requires a wide range of competencies in addition to mathematics,
from linguistics to ethnomathematics, to neuroscience and more. The processes
according to which kids learn and elaborate whole numbers and their properties are
incredibly rich and intermingled with the culture where they live and with which
they can speak and think, as well as with the artefacts, which the tradition of their
countries or the most recent technology allows them to use.
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viii Preface

The book builds, in this sense, a real-world map of whole number arithmetic:
even if it is far from being complete, it does cover many regions of the world, from
East to West, from North to South, including many non-affluent countries. The con-
tributions from the different cultures illustrate the fascinating enterprise of the
mathematics teachers at the primary level, who from the one side speak the univer-
sal language of mathematics, but from the other side can link it to the specific lan-
guage and cultural environment of their own countries, in order to make it accessible
to their students. This amazing synthesis emerges clearly from the research and
practice described in the volume, which has the not-common capacity of intertwin-
ing the rigour of mathematics, linguistics, cognitive sciences, etc. with the extraor-
dinary different ways according to which numbers are alive in the different regions.

It is particularly significant that the study and the volume also had the contribu-
tions of invited people from another relevant IMU-ICMI programme, the ‘Capacity
and Networking Project (CANP)’, aimed to enhance mathematics education at all
levels in developing countries so that their people are capable of meeting the chal-
lenges these countries face. Their inputs have been important, since they empha-
sised the problems and the specificities of teaching whole numbers in those countries
and contributed to the richness and variety of voices in the volume.

The 536 pages of the book demonstrate the incredibly intense work of this study,
which lasted almost five years, from the appointment of the International Program
Committee and its two co-chairs at the end of 2012, to the preparation and organisa-
tion of its Conference, which was held in Macao in June 2015, to the last intense
work for the preparation and editing of this book, which, as it is usual for the ICMI
Study volumes, does not consist of the proceedings of the meeting, but is a further
elaboration of the discussions and results reached during the meeting itself.

I followed all these phases, and I must say that without the incredible work of the
IPC and particularly of the two co-chairs, Profs. Maria G. Bartolini Bussi and
Xu Hua Sun, we could not have now so nice a book, which is really a reference and
a source of inspiration for theory, research and practice to all the community of
researchers, practitioners and policymakers in mathematics education, especially,
but not only, those interested in mathematical education at the primary level.

On behalf of the ICMI EC and of the ICMI larger family, I wish to thank all of
them here for their remarkable work. As well, I take this opportunity to thank the
University of Macau and the Education and Youth Affairs Bureau and especially its
Rector Wei Zhao, Vice Rector Lionel Ni, Director Lai Leong, Dean Xitao Fan and
Associate Dean Timothy Teo and Director of Global Affairs Da Hsuan Feng, who
generously supported the organisation of the Conference; the President of the IMU,
Prof. Shigefumi Mori, who attended the meeting in Macao, thereby underlining the
relevance of this study for the community of mathematicians; and the Springer
Publisher for its accurate work of editing.

Turin, Italy Ferdinando Arzarello
December 31, 2016
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Chapter 1

Building a Strong Foundation Concerning
Whole Number Arithmetic in Primary
Grades: Editorial Introduction

Maria G. Bartolini Bussi ® and Xu Hua Sun

1l ne s’agit pas la de philosophie comparée, par mise en
paralleéle des conceptions; mais d’un dialogue philosophique,
out chaque pensée, a la rencontre de I’autre, s’interroge sur son
impensé

(“This is not about comparative philosophy, about paralleling
different conceptions, but about a philosophical dialogue in
which every thought, when coming towards the other, questions
itself about its own unthought’ (Jullien 2006, p. vi))

i1l Z f1, v] LAY (ta shan zhi shi, kéyi gong yit)
(‘The stone from another mountain can be used to polish one’s
own jade’ (Xiao Ya, Shijing: He Ming, 1000 A. C.))

1.1 Introduction

After more than five years of collaboration on whole number arithmetic (WNA), we
summarise our experiences, focusing on the process, the merits and the limits of the
ICMI Study 23, together with the potential for future activity and for addressing
different kinds of audience. We have not worked alone. A very knowledgeable and
helpful International Program Committee (IPC) shared the whole process of prepa-
ration of this volume. We wish to thank them all for their long-lasting (and not yet
finished) collaboration; although, obviously, the responsibility for some delicate
choices and possible mistakes and misunderstandings is left to the two of us.

The second author was supported by Research Committee, University of Macau, Macao, China
(MYRG2015-00203-FED). The opinions expressed in the article are those of the authors.
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The two epigraphs above, from the French philosopher and sinologist Frangois
Jullien and from an ancient Chinese saying, summarise our attitude now. This inter-
national study has offered us the opportunity to increase our knowledge and start
two complementary processes:

— Becoming aware of some deep values of our own culture (our ‘unthought’)
which we may have considered in the past the only possible choice or, at least,
the most suitable choice for an ideal ‘human nature’.

— Considering the possibility of introducing into our own practices, beliefs and
values (our ‘jade stone’) the processes of innovation, not copied from but influ-
enced by practices, beliefs and values of another culture.

The Study Volume is an account of the collective memory of participants offered
to the wider community of primary mathematics educators, including researchers,
teachers, teacher educators and policymakers. It is a product of fruitful collabora-
tion between mathematicians and mathematics educators, in which, for the first time
in the history of ICMI, the largely neglected issue of WNA in primary school has
been addressed. The volume reports all the activities of the Conference. Many co-
authors, who were involved in a collective co-authorship, are listed at the end of the
volume.

1.2 The ICMI Study 23

1.2.1 The Rationale of the Study

Primary schooling is compulsory in all countries, with different facilities and oppor-
tunities for children to take advantage of it. Mathematics is a central subject in pri-
mary mathematics education, and the delivery of the mathematics curriculum is
important in all countries for the different kinds of citizens and the different kinds
of competences each seeks to produce. In the proceedings of a recent workshop
organised by the National Academies of Science, Engineering and Medicine, held
in November 2016, to explore the presence and the public perception of the Social
and Behavioural Science (SBS) in K-12 education, a research survey was conducted
that compared public knowledge and attitudes towards the natural sciences and
social sciences, using a representative national sample of 1000 adults (balanced in
terms of age and gender). Besides questions on SBS, the survey included questions
about STEM (Science, Technology, Engineering and Mathematics). More than 30%
of respondents opined that mathematics and science education should begin in ele-
mentary school or earlier with a strong preference for mathematics in both pre-
school and elementary school.!

"http://nap.us4.list-manage.com/track/click?u=eaea39b6442dc4e0d08e6aada&id=99397b4537&
e=f0cb5232c5


http://nap.us4.list-manage.com/track/click?u=eaea39b6442dc4e0d08e6aa4a&id=99397b4537&e=f0cb5232c5
http://nap.us4.list-manage.com/track/click?u=eaea39b6442dc4e0d08e6aa4a&id=99397b4537&e=f0cb5232c5

1 Building a Strong Foundation Concerning Whole Number Arithmetic in Primary... 5

WNA and related concepts form the basis of mathematics content covered in
later grades. WNA in primary school lays the foundation for secondary school. It is
one of the goals of education for all and a part of the UN Global Education First
Initiative (UNESCO 2012). Consistently, the volume titled Building the Foundation:
Whole Numbers in the Primary Grades aims to convey the message of the impor-
tance of laying a solid foundation of WNA as early as possible for further mathe-
matics learning.

1.2.2 The Launch of the Study

A reflection on primary school mathematics was considered timely by the ICMI
Executive Committee (EC) (term 2010-2012). The theme of the study was defined
as follows:

The beginning of the approach to whole numbers, including operations and rela-
tions, and the solution of arithmetic word problems, in schools (and possibly pre-
school environments), up to Grade 3 or more, according to the various education
systems

Although it is not the only topic relevant to primary school mathematics, WNA
was chosen by the EC of ICMI to focus on a shared centrality in primary school
mathematics curricula all over the world.

The study was launched by ICMI at the end of 2012, with the appointment of two
co-chairs and the IPC, which, on behalf of ICMI, was responsible for conducting
the study:

Maria (Mariolina) G. Bartolini Bussi, Italy, and Xu Hua Sun, Macao SAR, China
(co-chairs);

Berinderjeet Kaur, Singapore; Hamsa Venkat, South Africa; Jarmila Novotnd,
Czech Republic; Joanne Mulligan, Australia; Lieven Verschaffel, Belgium; Maitree
Inprasitha, Thailand; Sybilla Beckmann, USA; Sarah Inés Gonzdlez de Lora Sued,
Dominican Republic; Abraham Arcavi, Israel (ICMI Secretary General); Ferdinando
Arzarello, Italy (ICMI President); Roger E. Howe, USA (ICMI liaison)

1.2.3 The Discussion Document

During 2013, an intense mail exchange within the IPC established and shared the
rationale, the goals and the steps of the forthcoming study. In January 2014, an IPC
meeting took place in Berlin, at the IMU Secretariat, which generously supported
the costs. The IPC members were welcomed by Prof. Dr. Jurgen Sprekels, Director
of the Weierstrass Institute for Applied Analysis and Stochastic (WIAS, Berlin), and
by the then ICMI President Prof. Ferdinando Arzarello, who participated in the
meeting and, later, in the entire Study Conference.
The meeting in Berlin took place in a productive and collaborative atmosphere.
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A Discussion Document (this volume, Appendix 2) including a call for papers
for the Study Conference was prepared, with the Study Conference announced for
June 2015 in Macao (SAR China). This document summarised issues that were
considered important to discuss in the study. Emphasis was given to the importance
of cultural diversity and its effects on the early introduction of whole numbers. In
order to foster understanding of the different contexts in which authors had devel-
oped their studies, each applicant for the study was required to fill a specific context
form in order to include background information about their submission’s context
(this volume, Chap. 2).

Five themes (each corresponding to a working group in the Conference) were
identified and assigned to pairs of members of the IPC:

. The why and what of whole number arithmetic

. Whole number thinking, learning and development

. Aspects that affect whole number learning

. How to teach and assess whole number arithmetic

. Whole numbers and connections with other parts of mathematics

W AW N =

Three plenary panels were identified:

—_—

. Traditions in whole number arithmetic, chaired by Ferdinando Arzarello

2. Special needs in research and instruction in whole number arithmetic (WNA),
chaired by Lieven Verschaffel

3. Whole number arithmetic and teacher education, chaired by Jarmila Novotna

Three plenary speakers were invited: Hyman Bass, Brian Butterworth and Liping
Ma.

The intention of the IPC was to offer a map of some important issues related to
WNA, crossing the borders of countries and regions. The aim was to foster reflec-
tions among participants (and, subsequently, among the readers of the volume) on
their own cultural contexts, with representation in the Conference and the volume of
sources from a wide range of geographical and socio-economic contexts. Cole’s
(1998) book on Cultural Psychology affirms the need for this kind of range:

In recent decades many scholars whose work I discuss have sought to make the case for a
culture-inclusive psychology. They argue that so long as one does not evaluate the possible
cultural variability of the psychological processes one studies, it is impossible to know
whether such processes are universal or specific to particular cultural circumstances. For
examples, John and Beatrice Whiting, anthropologists with a long-term interest in human
development, wrote: ‘If children are studied within the confines of a single culture, many
events are taken as natural, or a part of human nature, and are therefore not considered as
variables. It is only when it is discovered that other people do not follow these practices that
have been attributed to human nature that they are adopted as legitimate variables’. (p. 2)

The temptation of a narrow and local perspective is a risk for mathematics educa-
tors too, given the enormous advantages that mathematics developed in the West in
recent centuries has had on the development of science, engineering and technolo-
gies. This study aimed at challenging some of these beliefs with a short, yet lively,
immersion in an atmosphere where a more open mind is needed, at least when



1 Building a Strong Foundation Concerning Whole Number Arithmetic in Primary... 7

discussing early year mathematics and where the strong links with everyday life and
cultural traditions come into play.

1.2.4 The Study Conference

By the end of the selection process, 67 papers were accepted and distributed over
the five themes. For each accepted paper, a maximum of two co-authors were invited
to participate in the Study Conference. A volume of proceedings was edited by Xu
Hua Sun, Berinderjeet Kaur and Jarmila Novotna (Sun et al. 2015).

Thanks to generous support from the University of Macau, the Education and
Youth Affairs Bureau, Macao SAR and ICMI, for the first time the ICMI Study 23
was able to invite observers from developing countries. A choice was made to privi-
lege Capacity and Networking Project (CANP) participants who comprise the
major developmental focus of the international bodies of mathematicians and math-
ematics educators (this volume, Appendix 1). Other observers came from the Great
Mekong Area and China. The total number of participants was 91 from 23
countries.

The Study Conference was held on June 3-7, 2015, in Hengqgin Campus,
University of Macau, leased to Macao by the State Council of the People’s Republic
of China in 2009 for the construction of the new campus. The Conference was
opened by Prof. Zhao Wei, Rector of the University of Macau. Addresses were
given by Mr. Wong Kin Mou, Representative of Director of the Education and Youth
Affairs Bureau and Chief of Department of Research and Educational Resources of
Macao SAR; Prof. Shigefumi Mori, President of IMU; Prof. Ferdinando Arzarello,
President of ICMI; and the co-chairs (the co-authors of this chapter).>

1.2.5 The Study Volume

The ICMI Study Conference served as the basis for the production of this Study
Volume, edited by the two co-chairs of the study. The five themes identified in the
Discussion Document (this volume, Appendix 2) were assigned to pairs of members
of the IPC, who took part in the selection of the submitted papers and the organisa-
tion of the five working groups in the conference. As is the tradition with the ICMI
studies, the IPC members who led the working groups proceeded to lead the writing
of the corresponding chapter and to synthesise and integrate the papers presented in
the group alongside the subsequent discussions. Unfortunately, due to health rea-
sons, Sarah Inés Gonzéles de Lora Sued was not able to take part in the Conference.
During the writing process, Christine Chambris kindly accepted to take Sarah’s role.

2 A gallery of photos from the Study Conference is available at: www.umac.mo/fed/ICMI23/photo.
html.
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A short summary of the volume follows.

The introductory part addresses some background issues.

The diversity of contexts (Chap. 2) addresses the growing importance of under-
standing the role of the social and cultural context in which the teaching and learn-
ing of mathematics is situated. The process that led the IPC to prepare a context
form for each submitted paper is reported, together with a short analysis of the col-
lected forms. This information is important to understand the perceptions of the
contributors involved in writing this volume.

The diversity of languages (Chap. 3) addresses a feature that emerged in working
groups and plenary panels as well. The richness of cultural contexts allowed partici-
pants to discuss possible linguistic supports or limitations that may interfere with
students’ mathematics learning and teacher education. The participants were
informed by the working group leaders (when appropriate) that their contribution to
the language discussion would have been summarised in an editorial chapter by the
co-chairs, mentioning their contribution in the proceedings. A large part of the chap-
ter is devoted to the Chinese case that is different from many other languages.

Chapter 4 is a commentary paper prepared by an acknowledged scholar in the
field, David Pimm. He was not able to participate in the Conference, but was kindly
willing to write a commentary chapter.

The working groups’ part comprises 10 chapters, organised in pairs. The work-
ing groups’ chapters are co-authored by the IPC members who led the group
together with listed participants, and the different levels of collaboration during the
writing process are acknowledged as mutually agreed. The odd-numbered chapters
(Chaps. 5,7,9, 11 and 13) report, in order, the outputs of the discussions of the five
working groups. Each of these chapters is followed (in the even-numbered chapters)
by a commentary paper authored by an acknowledged scholar with expertise in the
field of whole number arithmetic, who did not take part in the Conference and thus
offered a different perspective on the study’s key themes: Roger Howe (Chap. 6),
Pearla Nesher (Chap. 8), Bernard Hodgson (Chap. 10), Claire Margolinas (Chap.
12) and John Mason (Chap. 14).

The panel part includes three panels (Chaps. 15, 16 and 17), which aimed to
address some transversal issues (traditions, special needs and teacher education)
that cut across the working group foci, with the participation of most members of
the IPC exploiting their areas of expertise and of some other invited participants,
including a discussant for each panel.

The plenary presentation part includes three plenary presentations (Chaps. 18, 19
and 20) which aimed at addressing WNA from three different perspectives: that of
a professional mathematician and past ICMI president (Hyman Bass), that of a neu-
rocognitive scientist with research on developmental dyscalculia (Brian Butterworth)
and that of a scholar in mathematics education with expert knowledge of Chinese
and US traditions (Liping Ma).

Three appendixes are included in the volume — the first related to the CANP
participants’ reflections, the second related to the Discussion Document of the ICMI
Study 23 and the third related to the electronic supplementary material (videos).



1 Building a Strong Foundation Concerning Whole Number Arithmetic in Primary... 9
1.3 Merits of the Study

The ICMI Study 23 has seen merits from both organisational and scientific
perspectives.

The Study Conference was located in Macao SAR, the right place for many rea-
sons. First, in recent years, the outstanding performance of Chinese students in the
OECD PISA mathematics assessment was debated all over the world. In particular,
Macao SAR'’s performance rose from 15th position in 2009 to 3rd position in 2015.
Knowing more about this performance is of interest to all mathematics educators.

But there are other reasons. Macao is known as the place of a dialogue between
Portugal and China, between European and Eastern cultures. Contacts between Asia
and the West started along the Silk Road even before the Common era (BCE).? As
from the thirteenth century, numerous traders — most famously the Italian Marco
Polo — had travelled between Eastern and Western Eurasia. In the sixteenth century
(1552), St Francis Xavier, a Navarrese priest and missionary and co-founding mem-
ber of the Society of Jesus, reached China. Some decades later, the Italian Jesuit
Matteo Ricci reached Macao. He introduced Western science, mathematics, astron-
omy and visual arts into China and carried on significant intercultural and philo-
sophical dialogue with Chinese scholars, particularly representatives of
Confucianism.

Matteo Ricci (1552-1610) is known as the initiator of the Catholic missions in China and
one of the earliest members of the Society of Jesus. Others before him ventured towards
China, but did not succeed in remaining there for life, let alone to receive the respect and
admiration from the Chinese people that Ricci enjoys even to this day. The root of Ricci's
success lies in his achieved integration as a human person that made it possible for him to
enter so fully into another culture without losing himself. The Society of Jesus and Macao,
in many ways, share together a common beginning and 450 years of history. The Jesuits in
Macao have always been at the service of the human person, either in need of education or
material help, but always at the very deepest level of ideals and hopes, where culture finds
its roots. This Jesuit tradition continues even today in Macao at the Macao Ricci Institute.*

The Ricci Institute was visited by the participants in the Study as a part of the
social programme, with lectures by Man Keung Siu about the role of Matteo Ricci
in introducing elements of European mathematics into China. Among these were
the first six books of Euclid’s Elements and the first arithmetic book on European
pen calculation. These translations changed Chinese mathematics education and
gave Chinese people their first access to real images of Western mathematics
(Chap. 15).

This intercultural dialogue is evident not only in the architecture of the old city,
the parallel entrance corridor of the Macao museum?® and the road signs (written in
Chinese and Portuguese), but also on the new Hengqin Campus,® where the Study

3www.ancient.eu/Silk_Road/
*www.riccimac.org/eng/introduction/index.htm
Swww.macaumuseum.gov.mo/w3ENG/w3MMabout/MuseumC.aspx
®www.umac.mo/about-um/introduction/about-the-university-of-macau.html
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Fig. 1.1 The customised
suan padn for the
participants in the
conference

Conference was held. Hence, the participants were physically embedded in intercultural
dialogue. We believe that this heritage of mixed traditions under the influence of the
Confucian educational heritage can provide a resource for new thinking in global
mathematics education development. In all the working groups and the panels, the
discussion was lively, and the presence of the Chinese culture was evident: the col-
leagues from the Chinese areas discussed their own perspectives, often different
from the others’ and still connected with the classical tradition. Interestingly, a spe-
cial gift was offered to all participants: a suan pdn (5 %%), the famous Chinese
abacus, added in 2013 to UNESCO’s intangible heritage list (see Fig. 1.1).

A central part of the social programme was the visit to two first grade classrooms
to observe lessons on addition and subtraction, according to the typical Chinese
tradition of open classes (guanma ke, WLE4), where many observers (several doz-
ens in our case) observed a lesson, with a carefully organised teaching plan distrib-
uted in advance, and discussed with the teachers later in order to improve the lesson
for the future. The participants showed great interest in this lively observation of a
Chinese classroom, it is described at length in one chapter of the Study Volume
(Chap. 11), and commented on from a Western perspective (Chap. 12). The immer-
sion in a culture so different from that of most participants led to a sharing of some
features of a range of different traditions, providing a much broader and deeper air-
ing of what is known in the literature. Comparisons between Chinese and Western
cultures of education have become relatively common in the international literature
(e.g. Gardner 1989; Stevenson and Stigler 1992), but most participants at the Study
Conference had never had personal experience in this field. The meeting of different
cultural traditions was reconsidered in a specific panel chaired by Ferdinando
Arzarello (Chap. 15).

An innovation related to our central attention to culture was that during the Study
Conference, in some working groups, short video clips about classroom episodes
were shown by the participants, who had agreed to prepare them with English sub-
titles. The vivid impression that a video clip can give of classroom life and of the
implicit culture is different from what is discernible in a written paper. While access
to video clips was constrained by the need to meet permission, privacy and ethical
rules (where these too are culturally dependent on different countries’ laws and
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norms), and by the resources available to prepare the English transcripts required to
make the video clips understandable in the context of an international conference,
we collected a small gallery of video clips that can be enlarged in the future.
References to particular video clips appear across the volume as electronic supple-
mentary material (see also Appendix 3) and are available on the publisher website.

Our attention to contexts and different cultural traditions is one of the major
merits of this study, in place from the beginning in the Discussion Document (this
volume, Appendix 2). It is worth noting our increased emphasis on what previously
was considered more as a ‘special interest’ rather than a core feature: for instance,
a plenary panel on Cultural contexts for European research and design practices in
mathematics education (Jaworski et al. 2015) was hosted by CERME 9 (the
Conference of the European Society for Research on Mathematics Education, held
in Prague in 2015) and a plenary address was given by Bill Barton on Mathematics
education and culture: a contemporary moral imperative at ICME 13.7 The direc-
tion seems to be right but the way remains long.

The issue of languages and their influence on WNAs was considered in different
working groups and was summarised in a specific chapter (Chap. 3). Perspectives
on WNA in relation to history, language and societal changes were also discussed in
Chap. 5 and Chap. 6.

During the process, the IPC felt that the traditional limits on how WNA is per-
ceived did not afford adequate recognition to the connections existing between dif-
ferent mathematical areas, for instance, the connection between arithmetic and
algebra. Two chapters (Chaps. 13 and 14) address this issue.

Teacher education and development in relation to WNA was addressed in a panel
(Chap. 17), complementing the ICMI Study 15 (Even and Ball 2009), thereby filling
a gap in that the earlier study made little reference to primary level in the Study
Volume.

Special needs were addressed in a panel (Chap. 16) that drew on the contribution
of Chap. 7, reporting on neurocognitive, cognitive and developmental approaches.
It represents a first step into a desirable and better dialogue between scholars from
different communities, that is mathematics educators and (neuro-)cognitive scien-
tists. WNA has been a hot topic in the field of psychology. Yet, studies carried out
from the perspective of classroom teaching are relatively rare, and most studies are
conducted in experiment rooms, with risks of limited application to classroom
teaching and instruction. This study has thus started to build important
discussions.

The issue of early childhood settings is considered in the chapters focusing on
observation studies (Chap. 7) and intervention studies (Chap. 9). The importance of
supporting literacy in these early childhood settings is widely accepted; but, histori-
cally, mathematics has often been viewed by many as unimportant to, or develop-
mentally inappropriate for, young children’s learning experiences: for example,
current US state standards for early childhood do not include much mathematics
(National Research Council 2009). More generally, many early childhood pro-

"https://lecture2go.uni-hamburg.de/12go/-/get/v/19757
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grammes spend little focused time on mathematics and are accompanied by con-
cerns of low instructional quality. Many opportunities are therefore missed for
learning mathematics. A key exception is represented by the proactive stance of the
European Society for Research in Mathematics Education, which has, from 2009,
included a specific working group on Early Years Mathematics meeting every sec-
ond year (Levenson et al. in preparation). A plenary talk on Towards a more com-
prehensive model of children’s number sense by Lieven Verschaffel, member of the
IPC of the ICMI Study 23, was also presented at CERME 10® in Dublin.

Last but not least, a further merit of the Study is the involvement of CANP rep-
resentatives as observers. This group has acknowledged (Appendix 1) the impor-
tance of the Study Conference where each of them was assigned to a working group,
ensuring dialogue between them and the other participants. They also had a formal
meeting with the ICMI President, Ferdinando Arzarello, during which, for the first
time, experiences across CANPs were shared. Veronica Sarungi (personal commu-
nication), representative of CANP4, noted in her reflections:

One of the major contributions of the ICMI Study 23 was to enable the CANPs to build

networks beyond their regions. As a result of connections formed in Macao, a discussion

group proposal was submitted and accepted for ICME-13 that will focus on CANPs. Apart

from networking, the meeting in Macao enhanced the individual capacity of the representa-
tives that had an effect on their respective institutions, national and regional associations.

This friendly and supported introduction into the international community of
mathematics educators has already contributed to broadened participation in other
ICMI activities and regional conferences and meetings of affiliated organisations
such as CERME.

1.4 TImpact of the Study

Overall, the impact of the study is promising. Some communities indicated their
interest before the Study Conference (e.g. Bartolini Bussi and Sun 2014; Beckmann
2015). After the Conference, reports (by invitation) have appeared in key journals
(European Mathematical Society Newsletter, in English; Mathematics Education
Journal, in Chinese; the Bulletin of CFEM, in French) and conference proceedings
(Copirelem, Bartolini Bussi and Sun 2015; SEMT 2015, Novotna 2015). An official
report has been published by L’Enseignement Mathématique (Bartolini Bussi and
Sun 2016). A report on “ICMI Study 23 on Whole Number Arithmetic” was given
by Roger Howe at NCTM 2017. A presentation of the Study Volume was also held
in 2016 in a special timeslot at ICME 13 in Hamburg.’

The intercultural dialogue between mathematics educators interested in WNA
for the primary school continues in international conferences (such as SEMT, taking

$www.cerme10.org
“https://lecture2go.uni-hamburg.de/12go/-/get/v/19768
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place every second year in Prague'’) and at ICME, where specific groups are organ-
ised every fourth year. Moreover, the Inter-American Conference on Mathematics
Education (IACME), taking place every 4 years, has a special section on primary
mathematics education, and WNA is an important part of it.

1.5 Limits of the Study

The aim of constructing a map of the main educational aspects of WNA has been
partially fulfilled in the Study Conference and in this Volume, with a wide multicul-
tural approach. Some themes have been deepened and some others have been
opened up as new avenues that currently are simply sketched.

The issue of textbooks within the teaching of WNA is touched upon in some of
the chapters (Chaps. 9 and 11), but would deserve a whole study in its own (Jones
etal. 2014').

The issue of assessment of and for WNA learning too has been touched (Chap.
11), but the theme deserves further exploration. The ICMI Study 6 on assessment is
as yet not updated (Niss 1993a, b) with changes internationally influencing prac-
tices at the country and classroom levels (see, for instance, Suurtamm et al. 2016).

The issue of gifted students’ needs was only skimmed within the consideration of
challenging mathematical tasks (Chaps. 9, 10 and 14). Hence, in this case too, there
is space for further development (see, for instance, Singer et al. 2016).

The participation in the Study Conference deserves some comments. It was not
surprising that China was well represented in the Conference, because of the prox-
imity to the venue. Yet, in spite of the significant efforts of the [IPC members, a
limitation of the study was the failure to involve mathematics educators from a
wider range of countries and regions (e.g. Russia, India, Japan, Korea, several parts
of Africa and Latin America). Equity imperatives for participation in the ICMI
Study 23 therefore remained far from being reached, although the themes of the
Study had the potential to involve mathematics educators and policymakers from
developing countries. Key obstacles that we identified included:

— Ineffective dissemination (international mailing lists and journals continue to
reach a limited portion of the mathematics education community across the
world).

— Language issues (the choice of English as the study language, although inescap-
able, may well have inhibited some authors from applying).

— Costs (while airfares tend not to be strictly related to the distance from countries,
commercial constraints continue to apply).

0www.semt.cz
'www.sbm.org.br/icmt2/
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1.6 The Implications of This Study

1.6.1 A Message for Practitioners

The multifaceted aspects considered in the many chapters of the Study Volume have
the potential to attract mathematics teachers and teacher educators from all over the
world: there are collections of tasks, activities and artefacts (see, for instance,
Chaps. 9 and 10), addressing WNA. Approaches and models for teacher education
and development are also broadly represented in the study, with input from many
acknowledged scholars in the field of mathematics education, making the study
attractive for researchers in primary school arithmetic.
From the many examples, we pick up some:

— Balancing ordinal, cardinal and measurement aspects of (and approaches to)
number sense.

— Connecting the three core concepts of addition, subtraction and number together.

— Exploiting the potential of cultural artefacts (e.g. abaci, Dienes blocks, Cuisenaire
rods, pascalines, devices from multitouch technologies).

— Focusing on structural approaches to early number development.

— Focusing on the make-a-ten method of addition and subtraction within 20.

— Storytelling to borrow the completely regular number names in those cultures
where irregular names are present.

— Emphasising the importance of figural and spatial representations.

— Fostering bodily involvement such as counting with fingers, dancing or jumping
on the number line.

1.6.2 A Message for Curriculum Developers and Policymakers

The attention to the social and cultural contexts and to the importance of native
languages in mathematics learning has the potential to attract curriculum developers
and policymakers. Around the world, 250 million children either fail to complete
more than 3 years of basic education or lack basic numeracy skills for ongoing
learning despite finishing 3 years of basic education (Matar et al. 2013). In one
region of Morocco, one assessment showed that 20% of Grade 2 students could not
solve any simple addition problems and 44% could not answer any simple subtrac-
tion problems (Matar et al. 2013). Furthermore, children who start school with a
poorly developed understanding of number tend to remain low achievers throughout
school (Geary 2013). This contrast between acknowledged needs and existing
instructional programmes should be a major preoccupation of curriculum develop-
ers and policymakers.
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Some policies and approaches that this study offers as suggestions include:

— Taking seriously the influence of early grade instruction on success in later
education.

— Promoting early childhood mathematics in schools.

— Considering globalisation and the roots of mathematics in local cultures in a
dialectic way.

— Taking the particular language and cultural constraints into account.

— Addressing the use of cultural artefacts and cognitively demanding tasks as
teaching aids.

— Acknowledging the professional status of primary school teachers.

— Designing primary teacher education and development in order to make them
highly educated professionals.

1.7 Concluding Remarks

Our hope is that the special focus on WNA in primary school mathematics within
ICMI Study 23 lays the ground for further attention to primary mathematics topics,
curricula and pedagogies to be addressed in future studies and in the conferences of
organisations affiliated to ICMI, because building the foundation, as the title of
volume reads, is critically important for the development of mathematics teaching
and learning in secondary/high schools and beyond.

The interest shown by the participants from many different countries and regions
and their engagement in authoring parts of this volume, as well as the early impact
of the study, suggest strong potential and opportunities for organising a follow-up
study in a few years’ time. We, as co-chairs of the ICMI Study 23, will continue to
collaborate in order to ensure a long-lasting influence of this study in our regions
and, more generally, at the international level.

ICMI conferences and studies are examples of attempts to improve communica-
tion between different communities. However, it is misleading to claim that ICMI
Study 23 achieved a shared perspective. This volume does not present a single
coherent discourse, nor did the mathematics educators and the mathematicians con-
verge to a common discourse of teaching WNA. A better description would be shar-
ing perspectives, in the following sense: the various communities were given ample
opportunities to present and elaborate their perspectives; others listened attentively
and respectfully; there were opportunities for participants to discuss commonalities
and differences and to develop new insights, yet eventually each participant was
free to adopt, reject, modify or integrate parts of the others’ perspectives into his/her
own discourse of WNA.

In a world increasingly driven by questions about borders and migrations across
them, what this volume has succeeded in collecting are overviews and discussions
that are of interest to mathematics educators across phases and across borders. The
volume provides illustrations of interventions and developments that share, across
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different cultural contexts, a concern with broadening access to foundational math-
ematical ideas that are important if we are to contribute to progress and participation
into higher-level mathematics. Diversity of language, artefacts and approaches to
this endeavour of broadening access strengthens the field’s ability to address this
goal. We conclude by offering our thanks for the cross-cultural interaction processes
that have culminated in this work. The broader global discourses that prevail at the
time of the publication of this volume resonate with talk of walls and of borders.
This volume stands as a testament to the strength of cross-national and cross-cul-
tural collaboration — the dissolution of borders — and this study, like previous ICMI
studies, is enriched by the international collaboration.

1.8 Processes and Acknowledgements

The chapters were reviewed internally by the IPC and by the co-chairs. Through this
process, cross-referencing was developed as much as possible, and there was care-
ful examination of any overlaps. Where different chapters have treated similar ideas,
we have tried as far as possible to indicate cross-references.

We want to acknowledge the particular roles played by three members of the
IPC, Xu Hua Sun, Jarmila Novotnd and Berinderjeet Kaur, who carefully edited the
online proceedings (Sun et al. 2015), and the role played by Hamsa Venkat, who
was helpful in editing many chapters of the volume. Xu Hua Sun, as a Macao co-
convenor, took care of many financial and practical matters, which made the study
possible. We are also grateful to Bill Barton who, as President of ICMI when the
proposal was submitted, was encouraging and supportive; Lena Koch who managed
many ICMI matters; Ferdinando Arzarello, the President of ICMI; and to Abraham
Arcavi, the ICMI Secretary General, during the whole study, who were present in
many phases of the process, from the first IPC meeting in Berlin to the entire
Conference in Macao and to the presentation at ICME 13. The process went through
the terms of three Presidents of ICMI: Bill Barton, Ferdinando Arzarello and Jill
Adler. We thank Jill Adler, the President of ICMI from January 1 2017, who devoted
much energy to a thoughtful reading of the manuscript with new eyes and to the
agreement for the contract with Springer that allowed, for the first time, to have an
Open Access publication in the Niss series. Thanks are given also to Natalie Rieborn
(Springer) and the whole SPI staff who were very supportive and patient in the very
long process of book preparation. We also wish to thank Shigefumi Mori, the
President of IMU, who showed in many ways his deep interest in primary mathe-
matics education.

The ICMI Study co-chairs and the IPC members are very grateful to the partici-
pants of the conference for their written papers which appear in the conference
proceedings (Sun et al. 2015) and for their significant contributions to the discus-
sions, which highly enriched the contents of this study. Special thanks are for
David Pimm who collaborated in a very generous way to the final editing of the
volume.
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Chapter 2 “®)
Social and Cultural Contexts i
in the Teaching and Learning of Whole

Number Arithmetic

Maria G. Bartolini Bussi @ and Xu Hua Sun

2.1 Introduction

At the first meeting of the ICME 23 IPC group, held in Berlin in January 2014, there
was unanimous agreement on the relevance of cultural diversity in ICMI Studies.
The Discussion Document for the study noted that:

It was decided that cultural diversity and how this diversity impinges on the early introduc-
tion of whole numbers would be one major focus. The Study will seek contributions from
authors from as many countries as possible, especially those in which cultural characteris-
tics are less known and yet they influence what is taught and learned. In order to foster the
understanding of the different contexts where authors have developed their studies, each
applicant for the Conference will be required to prepare background information (on a
specific form) about this context. (see this volume, Appendix 2, “Introduction and Rationale
for ICMI Study 23”)

This statement was based, on the one hand, on the awareness of the increasing
participation of scholars from developing countries in international conferences and
of the number of submissions to international journals of manuscripts from all over
the world and, on the other hand, on the ICMI aim to improve the quality of math-
ematics teaching and learning worldwide. Most IPC members, including the first
author of this chapter, have experience in reviewing papers for international
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conferences and journals: in many papers, there is an implicit belief that the reader-
ship knows enough about the context in which a study has been carried out (espe-
cially if it concerns European or North American countries) and that the transposition
of findings from one country to another is possible and natural, if the theoretical
framework and methodology are sound enough.

However, as early as the ICMI Study 8 (1992—-1998) on Mathematics Education
as a Research Domain: A Search for Identity (Sierpinska and Kilpatrick 1998),
working group 4, led by Susan Pirie, Tommy Dreyfus and Jerry Becker, was raising
questions about the issue of results and their validity. An interesting question was
raised:

To what extent can research results from one environment or culture (e. g. Japan) be linked
to those from another culture (e.g. the USA) and to what extent are results culture specific?
(p-27)

Although the issue was raised about 20 years ago, at the ICMI Study Conference
in Washington, DC, in 1994, the acknowledgement of the issue of cultural context
in major international journals and conferences remains uncommon (Bartolini Bussi
and Martignone 2013). In support of this claim, it is enough to quote some excerpts
from the information given to prospective authors of empirical studies by one of the
major international journals, i.e. the Journal for Research in Mathematics Education
(NCTM n.d.).

The Journal for Research in Mathematics Education seeks high quality manuscripts that
contribute knowledge to the field of mathematics education. For an author’s work to be
publishable, it needs to exhibit qualities that characterize well-conceived and well-reported
research studies. The following information illustrates characteristics of strong manuscripts
that have been submitted to JRME.

The following items are then elaborated:

appropriate purpose and rationale

clear research questions

an informative literature review

a coherent theoretical framework

clearly described research methods

sound research design and methods

claims about results and implications that are supported by data
contribution to the field of mathematics education
clearly explained and appropriately used terms
high quality writing

mathematical accuracy.

An abridged version of the same document appears in the PME 39 (2015) guide-
lines for research reports of empirical studies.

Observational, ethnographic, experimental, quasi-experimental, and case studies are all
suitable.
Reports of empirical studies should contain, at minimum, the following:

— astatement regarding the focus of the submitted paper;
— the study’s theoretical framework;
— references to the related literature;
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— an indication of and justification for the study’s methodology; and
— asample of the data and the results (additional data can be presented at the confer-
ence but some data ought to accompany the proposal)

In both cases, no reference to the social and cultural context is explicitly men-
tioned. Hence, the limited space allowed either for manuscripts or (even more lim-
ited) for research reports is likely to inhibit the author’s intention of framing the
empirical study within its context. Moreover, it implicitly conveys the idea that
every relevant scientific communication must follow the above structure, where
there is no reference to the social and cultural context. It seems a limiting rather than
a proactive statement.

For example, open-class activities/lesson studies that view the classroom as an
open or public space, which has been a major influence in the professional develop-
ment of teachers in China and Japan for many years, may be contrasted with the
view of the private and autonomous classroom that has been described as common
in the Western tradition (see, for instance, Sztein et al. 2010).

Instead, the evidence of some ongoing changes may be found in the guidelines
for reviewers in two subsequent Conferences of the European Society for Research
in Mathematics Education. The CERME 8 (2013) guidelines read:

Reports of Studies (Empirical or Developmental)

Surveys, observational, ethnographic, experimental or quasi-experimental studies, case
studies are all suitable. Papers should contain at least the following:

a statement about the focus of the paper;

an indication of the theoretical framework of the study reported, including references to the
related literature;

an indication of and justification for the methodology used (including problem, goals and/
or research questions; criteria for the selection of participants or sampling; data collec-
tion instruments and procedures);

results;

final remarks or conclusions

The CERME 9 (2015) guidelines added a new indicator:

an indication on the scientific and cultural context in which this study is embedded (explain-
ing crucial assumptions and the possible contingency of the relevance of the study for a
specific cultural context)

What happened between the CERME 8 and CERME 9 guidelines? Both co-
chairs of this ICMI23 Study were present at CERME 8, and the first author of this
chapter was invited by the organising committee to introduce a forum discussion
about the neglected importance of the social and cultural context. The CERME
board was favourably impressed and accepted the challenge to adapt the widespread
tradition mentioned above. CERME 9’s scientific committee not only introduced a
small change in the instruction (for authors and reviewers), but also decided to host
a panel chaired by Barbara Jaworski on Cultural Contexts for European Research
and Design Practices in Mathematics Education (Jaworski et al. 2015). The panel
was held very successfully in Prague in February 2015. This panel represents a
milestone in making explicit international awareness of the importance of the social
and cultural context in the teaching and learning of mathematics.
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Another milestone is represented by the explicit request for contextual detail in
the ICMI Study 23. The ICMI Study IPC unanimously agreed to highlight the role
of the social and cultural context and to design a specific form (see below) for col-
lecting relevant information about this context, in order to leave the limited space of
the paper (eight pages) for the scientific report according to the usual formats. The
aim was twofold: not only to collect relevant information for understanding the dif-
ferent contexts (as explicitly written in the Discussion Document), but also to foster
authors’ awareness about the relevance of their own cultural contexts.

2.2 The Context Form: Design

The form designed by the IPC tried to address some very basic issues about the situ-
ation in the country where either the empirical research study or the theoretical
reflections were carried out. The IPC was aware that a complete answer to all the
questions would have been very demanding, and akin to a study itself, unless the
authors knew some already existing documents at the national level (e.g. ICMI
2011).

The form designed by the IPC follows (Table 2.1).

Some applicants expressed surprise at this unexpected additional task, asking the
reasons for completing such a form with information that should already be known
by all mathematics educators: this was further evidence, if any were needed, that the
awareness of the relevance of the social and cultural context and the need to offer
information about these are far from being shared in the field.

The following story of the Macao Conference, with the visit to Chinese schools
and with the discovery of the differences between Western and Eastern mathemati-
cal traditions, provided further evidence that this awareness is really needed and
useful in order to understand and to start a fruitful dialogue between different cul-
tural contexts. This aspect will be further elaborated in this chapter and in the whole
volume.

2.3 The Context Form: Data

Sixty-six context forms were collected, concerning 29 countries (counting sepa-
rately China and SARs Hong Kong and Macao). The distribution by country is
detailed in Table 2.2.

Three submitted papers concerned cross-cultural studies (Cyprus — Netherlands,
Germany — Australia, England — Sweden, where the context forms for both coun-
tries were filled (and, hence, were counted twice in the above table). In one case, the
submitted paper concerned a cross-cultural study where all the Francophone coun-
tries were analysed for a study commissioned by the World Bank: a single context
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Table 2.1 The context form

Please fill in as many of the following as completely as possible so that we understand the

context of your paper

General (objective data)

Give a rough idea of the numbers of:

Students up to the age of 11 years

Teachers for pre-primary and primary
education

A short description of the National Education
System (please match grades with pupils’ age)

If relevant, please explain whether the system is
inherited from colonial period or is related to
local traditions

Give information about what you consider an
important feature in your country (e.g. the pillar
of the network of monastic schools in Burma)

Inclusiveness

Is the system totally inclusive?

Are there special schools/classrooms for

sensually impaired students (blind, deaf)?

Are there special schools for students with
disabilities?

National language(s)

List the national language(s) of the country

List the local languages (minorities)

Is pre-primary/primary school carried out in the
local languages?

Migrant/refugee/marginalised students

Is there a significant minority of migrating
students (coming from other countries), of
refugee students and of marginalised students?

Are there specific rules for schools which take
care of these students? Is there some help from
the national/local government?

Pre-primary general

Is pre-primary education extended to the whole
country?

Which percentage of students are expected to
enrol in pre-primary education?

Pre-primary textbooks

Do they exist?

In what language (in the case of more local
languages)?

Is there only one national textbook? Or a limited
number?

Is there only one teachers’ guide? Or a limited
number?

Primary general

Is primary education extended to the whole
country?

Which percentage of students are expected to
enrol in primary education?

(continued)
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Please fill in as many of the following as completely as possible so that we understand the

context of your paper

Primary textbooks

Do they exist? In what language (in the case of
more local languages)?

Is there only one national textbook? Or a limited
number?

Is there only one teachers’ guide? Or a limited
number?

Primary teachers’ qualification

Generalists or specialists?

Assessment Is there a national system of assessment?
At what ages/grades are students assessed in
mathematics (focus on both pre-school and
primary school)?

Standards Is there a governmental/national document for

standards?

Teacher education and development

‘What are the national rules?

Is there some shared practice you consider
relevant (e.g. Lesson Study in Japan, guanmo ke
in China)?

Do you have forms of distance learning for
teacher development?

Teacher education and development:
pre-primary

How is organised pre-primary teacher education?

Please distinguish (if relevant) the governmental
rules and what happens in practice?

Teacher
education and development — primary

How is organised primary teacher education?

Please distinguish (if relevant) the governmental
rules and what happens in practice?

Contents (limiting the focus to whole
numbers)

Local languages

Place value: do you have tradition of system of
representation in base not ten?

Problems: which kind of problems are typical of
school practice? (e.g. China: problems with
variation)

Problems: which kind of problem-solving
strategies? (e.g. Singapore: model method)?

Any other information related to the context
of your paper

form was filled for all the Francophone countries, with reference to the colonial

influence of the French system.

The applicants were encouraged to fill the form as completely as possible, draw-
ing on their own knowledge. Hence, rather than on objective data, in most cases, the
information drew on applicants’ knowledge and perceptions of their national con-
texts. Moreover, the sample was a convenience sample involving the selection of the
most accessible subjects (Marshall 1996), limited to the applicants in the study,
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Table 2.2 The countries

Country Number of forms | Country Number of forms
Algeria 1 Australia 5
Belgium 1 Brazil 1
Canada 4 China 5
China HK SAR 2 China Macao SAR 2
Cyprus 1 Czech Republic 1
Denmark 1 Dominican Rep. 1
England 1 France 4
Germany 4 Israel 3
Italy 4 Jordan 1
Netherlands 2 New Zealand 2
Serbia 1 Singapore 1
South Africa 3 Sweden 2
Switzerland 1 Taiwan 4
Thailand 1 USA 5
Vietnam 1 All Francophone countries 1

hence excluding or limiting the contribution of some major areas (e.g. India, Russia,
Latin America, much of Africa, Southeast Asia).

In the following, we briefly outline the main outcomes of an early analysis of the
collected data.

2.3.1 The General Structure of Education Systems for Early
Years Mathematics

The data reported by the applicants have been matched with Education Database
(n.d.). Although in some countries (e.g. Australia, Brazil, Canada, Cyprus, Germany,
Switzerland, USA) there are differences between the different states/provinces/
regions/territories, the models may be summarised as follows. While primary school
or elementary school is the accepted wording, in some cases pre-primary school is
named in different ways. Usually pre-primary is not mandatory but attended by
many students (in some cases up to 95%) at least in the last year before entering
primary school.

In some cases primary school is split into different steps including also what is
elsewhere called middle school. Although our convenience sample is limited to 29
countries, there is a large variety, concerning both the duration and the entry age. In
Europe too different models exist. This institutional diversity has implications for
this study: for instance, when the entry age is postponed, it is likely that WNA is
approached at pre-school level, and when the duration is extended (up to sixth
grade, as in many Eastern countries), it is likely that pre-algebraic thinking is fos-
tered before high school level. As these institutional differences cannot be cancelled,
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in this study we chose to focus on the contents rather than on the grades or the stu-
dents’ age (Table 2.3).

The influence of colonial heritage is reported in some countries: Algeria,
Australia, China HK, China Macao, New Zealand, Taiwan (from Japan and China).
This influence in some cases emerges also in the choice of school language different
from family language. This issue was reported and discussed also in the Conference
(this volume, Chap. 3).

2.3.2 Inclusiveness in Education

The focus on inclusive education has a long story in UNESCO’s documents (e.g.
UNESCO 2009a; see the historical summary on p. 9) and dates back to the Universal
Declaration of Human Rights (1948), but it is still actual (see, for instance, the ple-
nary speech by Bill Barton in ICME 13"). Inclusive education was taken into account
in the Millennium Developmental Goals criteria (UNESCO 2010), where Universal
Primary Education (UPE) is mentioned (Millennium Developmental Goal 2). It is
considered also in the most recent document (UNESCO 2017) on Education for
Sustainable Development Goals, where it is included in the learning objective 4:
‘Quality Education | Ensure inclusive and equitable quality education and promote
lifelong learning opportunities for all’ (UNESCO 2017, p. 18 ff.).

UNESCO (2009a) states that inclusion addresses not only students with special
needs? (e.g. disable students), but also those from diverse backgrounds (cognitive,
ethnic and socio-economic). Hence, this issue is related to some other questions
posed in the context form (i.e. national languages and school languages, provisions
for migrant, refugee and marginalised students).

This broad approach was assumed by the IPC of the study which included in the
context form three different items (see above) concerning students with special
needs, students with school language different from family language and students
with diverse background.

The presence of different national languages has been reported by applicants,
mentioning also local languages. There are countries where home languages are
different from national language (or languages), for instance, in Algeria, Arabic and
Berber—Tamazight; in Australia, Australian English and aboriginal languages; in
Belgium, Dutch, French and German; in Canada, English and French; in the Chinese

"https://lecture2go.uni-hamburg.de/12go/-/get/v/19757)

2We are aware that there is a growing trend towards abandoning the wording ‘special needs’ and
using ‘special rights” or ‘educational rights’. For instance, Runswick-Cole and Hodge (2009) have
argued for abandoning the language of ‘special education needs’ in the UK, based on the claim that
it has led to exclusionary practices, mentioning an Italian rights-based approach developed in
Reggio Emilia that refers to ‘children with special rights’ drawing on the United Nations
Convention of the rights of the child (UNICEF 1989). Yet we decided to maintain the most com-
mon wording ‘special needs’ as it is shared in literature and better known by mathematics
educators.
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area, Mandarin, Cantonese and minorities languages; in Cyprus, Greek and Turkish;
in Israel, Hebrew and Arabic; in New Zealand, English, Te Reo Maori and New
Zealand Sign Language; in Serbia, Serbian, Hungarian and Romanian; in Singapore,
English, Malay, Tamil and Mandarin; in South Africa, Afrikaans, English, Zulu,
Xhosa, Swati, Tswana, Southern Sotho, Northern Sotho, Tsonga, Venda and
Ndebele; in Sweden, Swedish, Finnish, Meankeli, Samic, and so on; in Switzerland,
French, German, Italian and Romansh; in Thailand, Thai and Esann; and in the
USA, English and Spanish. In most cases, the language of teaching (or school lan-
guage) is different from home languages with the well-known critical consequences
(Barwell et al. 2016). There are countries with acknowledged minorities (e.g. Czech
Republic, France, Italy, New Zealand) where teaching in the minority language is
encouraged with special funds and programmes. For instance, in New Zealand,
Maori schools are very well developed and address about 15-20% students.’

The issue of migrant, marginalised and refugee students is mentioned by some
applicants, although only in a few countries (e.g. Australia, Belgium, Cyprus,
Germany, Jordan, Netherlands, New Zealand) official governmental support is men-
tioned. In other cases (e.g. France, Italy, UK), municipal support is mentioned
together with the involvement of volunteers and charities.

According to the data reported in UNESCO (2017) and confirmed by some par-
ticipants, there has been significant progress towards ensuring UPE in terms of
access, and the conversation has now shifted from aiming for access to goals for
quality UPE.

The question of students with disabilities or special needs seems to be ill-posed
or, maybe, ill-interpreted by the applicants to the Conference. In many cases, appli-
cants answered YES (i.e. the system is inclusive) probably meaning that all the
students are allowed to go to primary school, but in many cases (at least 12 out of
29), special schools for disabled students were mentioned as the only provision.

According to UNESCO (2009a):

In most countries, both developed and developing, the steps towards achieving the right to
education for students with disabilities have followed a common pattern, with some local
variations. Progress has tended to follow the pattern of steps outlined below:

Exclusion from school, based on negative attitudes and a denial of rights, justified by
the belief that students with disabilities cannot learn or benefit from education

Segregation, reflecting the emphasis on ‘difference’, combined with a charity-based
approach, where separate education centres and schools were and are still provided by
local, regional and international charitable NGOs and, more recently, by development-
focused NGOs

Integration, reflecting some degree of acceptance for some disabled students, depend-
ing on their degree of disability, allowing them to attend local regular national schools, as
long as they can fit in to the school and the school does not have to make significant adjust-
ments for them

Inclusion in education, acknowledging the fact that all students, including those with
disabilities, have the right to education, that all schools have the responsibility to teach
every child and that it is the responsibility of the school to make the adjustments that may
be necessary to make sure that all students can learn (p. 51)

3www.education.govt.nz/ministry-of-education/our-role-and-our-people/education-in-nz/
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Following this definition, if the system of special schools is widespread in a
country, it is a segregation model and not an inclusive model.

To sum up the data, most countries are reported to have special schools only;
some countries (e.g. Australia, Brazil, Canada, Czech Republic, Denmark, France,
Germany, Israel, Netherlands, New Zealand) have started a process of integration,
and some countries have stated by law complete inclusion in mainstream classes
with support teachers. A relevant case, worthwhile to be mentioned, is Italy.
D’ Alessio (2011) reconstructs the historical and legislative backgrounds of the inte-
gration policy in Italy, mentioning the promulgation of the Italian Constitution
(Senato della Repubblica 1947), where the spirit and ethos for integration were
already encapsulated.

Since the Fascist dictatorship had denied individual freedom, one of the first targets of the
democratic Constitution was to put the dignity of the person and the rights of minorities at
the centre of the constitutional charter. (D’ Alessio 2011, p. 6)

In the following years, legislation went in this direction. According to Ferri
(2008), for Italian teachers, inclusion was considered ‘a moral issue which is more
important than a legal mandate’ (p. 47). A discussion about the possible distance
between laws and implementation is made by Booth and Ainscow (2011) which
have designed a tool to support and assist with the process of developing inclusive
education.

At the international level, inclusive education is considered to be:

a key vehicle through which the right to an equal education opportunity for all can be
ensured. For this to become a reality it is necessary to provide a system in which all persons,
including persons with disabilities, can access education at all levels on an equal basis with
others in the communities in which they live. They should not be excluded on the basis of
any disability and should get the support they require. (EASPD 2012, p. 6)

It must be said, however, that the issue of exclusion-segregation-integration-
inclusion is far from being agreed upon at the international level. It is not only a
matter of clear definitions; it is rather a matter of ethical consensus. A recent paper
by Reindal (2016) summarises different positions, reconstructing the history of the
inclusion debate from the ‘World Conference on Special Needs Education’ in
Salamanca in 1994. Reindal claims:

Inclusive education as presented in documents from UNESCO was indefinite from the start
in relation to both the target group and those whose responsibility was to implement inclu-
sive education for that group. Reviews of the research also support several interpretations
of responsibility and elucidations of inclusive education. In a recent study based on prior
reviews and a recent search of databases covering the period 2004-2012, Goransson and
Nilholm (2014a) found four different interpretations of inclusion which gave rise to four
qualitatively different categories of definitions. These definitions were related hierarchi-
cally to each other employing stricter criteria concerning what counts as inclusive education
as one goes from A to D:

(A) Placement definition — inclusion as the placement of pupils with disabilities in mainstream
classrooms.

(B) Specified individualised definition — inclusion as meeting the social/academic needs of pupils
with disabilities.
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(C) General individualised definition — inclusion as meeting the social/academic needs of all
pupils
(D) Community definition — inclusion as creation of communities with specific characteristics.
Reindal (2016) suggests to tackle this issue from the perspective of a capability
approach (Walker and Unterhalter 2007), as that:

has the potential to emphasise the ethical aspects of inclusion because it builds on an under-
standing of difference as a specific variable of human diversity, and because it understands
human dignity as the development of capabilities. The capability approach defends an
understanding of difference as a specific variable of human diversity with an objective real-
ity. [...] If the central purpose of special education and inclusion is to treat all students as
the same while at the same time aiming to treat them differently then one must deal with the
problem of difference in a way that comes to grips with the attendant challenges — as well
as those faced particularly by developing countries. (Reindal 2016, p. 6)

The issue of the diversity of school language and family language was discussed
during the Conference and finds place in this Volume (e.g. Chap. 3, 4 and 9). The
issue of students with special needs was discussed during the Conference and
reported in some chapters (e.g. Chaps. 7, 8, 9, 16 and 20).

The capability approach, one that is very interesting, was not picked up in the
Study and may suggest future developments in mathematics education.

2.3.3 Textbooks

Most applicants reported that no textbook for pre-primary exists: rather, some avail-
able collections of learning resources, working sheets and teachers’ guides are
mentioned.

As far as primary school is concerned, textbooks exist everywhere, although in
some cases (e.g. Australia) the adoption of a textbook is not mandatory. In most
countries there is a free-market system with no official overlooking agency. In some
countries only one or a limited number of approved textbooks is available (e.g.
Chinese area, Algeria, Germany, Singapore and Thailand). In Vietnam, textbooks
are written by specialists of the Ministry of Education. In South Africa, there are
textbooks in all the national languages, though harder to access in the smaller lan-
guage groups. In China too, there are textbooks in all the minority languages.

In this Study, the issue of textbooks was just skimmed in the Chaps. 9 and 11 but
would deserve a study in its own.

2.3.4 National Curriculum Standards and Assessment

In nearly all the countries of this convenience sample, there are national standards.
They do not exist in Algeria and are identified with the sole national textbook in
Jordan. An interesting case is represented by the USA. There is no national



2 Social and Cultural Contexts in the Teaching and Learning of Whole Number... 31

curriculum in the USA, but National Council of Teachers of Mathematics (NCTM)
Standards are widespread. Yet, locally, states, school districts and national associa-
tions recommend some curriculum standards be used to guide school instruction.
The Common Core Standard initiative* is in progress. In nearly all the countries,
there is a national system of assessment (in progress in New Zealand) consistent
with curriculum standards. However, the grades in which assessment takes place are
not the same. Usually they are every second or third year and depend also on the
structure of the education system (see Sect. 2.3.1).

2.3.5 Teachers’ Qualification and Teacher Education
and Development

All the applicants reported a generalist trend for primary teacher education in their
countries, with some limited exceptions: Germany, with the encouragement to get
further qualification in German or Mathematics, and Italy, with testing of specialist
mathematics teachers in some schools, according to autonomous choices of the
school council. Only in Denmark and in the Chinese area a trend towards specialist
mathematics teachers is reported. In China, this choice is common in big cities but
not in rural areas. Where there are specialist mathematics teachers, it is common
to form a Mathematics Teaching Research Group in the school, for in-service
development according to the model of ‘open classes’, called in Chinese guanmdo ké
(W L), which means ‘to observe for imitating a lesson’ and has some similarities
to the Japanese lesson study (Sun et al. 2015).

In our convenience sample, pre-service teacher education at universities (or, in
some cases, teachers’ colleges) seems well established. In most cases for pre-
primary and primary school, the length of the programme (bachelor) is the same:

3-year bachelor in Belgium and New Zealand

4-year bachelor in Australia, Canada, Chinese area, South Africa, Switzerland

5-year master in Italy

6-year master in Thailand

In other countries, the length is different for pre-primary and primary school
teachers:

2-3 years in Singapore (at the National Institute of Education)

3—4 years in Denmark, Serbia

3 1/2—4 years in Sweden

In some cases the length of the bachelor degree is not reported.

In Germany no university programme for pre-primary teachers is reported, while
the programme for primary teachers is at masters level (5 years).

In France there is no information provided for pre-primary, while the programme
for primary teachers is at masters level (5 years).

*www.corestandards.org
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In the USA the rules are different in different states. For primary teachers, bachelor
degrees are mentioned.

In the UK, different agencies are involved with programmes of different lengths
(e.g. school-led teacher training, university programmes).

Practicum (internship) is mentioned with very different organisations and durations,
for instance, a 600 hours practicum is required in Italy alongside the 5-year master
programme, while in Israel, the practicum is at the end of the university programme. A
year of practicum is required in Macao alongside the 4-year bachelor degree. In
Australia 80 hours of mandatory practicum is prescribed for bachelor programmes.

Distance learning is mentioned especially for in-service teacher development.
However, for in-service development, different models are described from inspector-
led programmes, to mandatory programmes (60 hours per year in Israel, 5 days per
year in Switzerland). In Australia, there is a programme for accreditation according
to well-described professional standards. In some cases in-service development is
appointed to municipalities (Sweden). In many cases in-service development is
reported as not effective. It seems that, in general, there are not well-organised mod-
els. A relevant exception is the model of ‘open classes’ in China (see Sect. 2.3.3).

For teacher education and development, besides the panel on teacher education
(this volume, Chap. 17), it is worthwhile to mention the ICMI Study 15 (Even and
Ball 2009).

2.4 Conclusion

In this chapter we have briefly explored mainly structural features of the instruction
systems including inclusiveness, curricula, standards and assessment and teacher
education and development. We had just a glance to the many different choices
existing in the countries of our convenience sample.

Our limited analysis shows that even in Europe, a small continent, many different
organisations of the education systems exist. Education systems are cultural arte-
facts that could be studied, on the one hand, as products of socio-cultural contexts
and, on the other hand, as sources of information about the society that constructed
or adopted them. We do hope that, in the future, a sensitive attitude for cultural con-
texts will become more and more shared, in international journals and conferences.
As stated by Bartolini Bussi and Martignone (2013):

The question of cultural background applies to every study in mathematics education [...]
It is necessary to explain in more depth how the research design and implementation is
related to the cultural background: the results and success (if any) of the project may depend
on implicit values which are not likely to be found in other contexts. (p. 2)

In this spirit, the investigation of the different social and cultural contexts contin-
ued throughout the whole study and is mirrored in the Study Volume.
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Chapter 3
Language and Cultural Issues
in the Teaching and Learning of WNA

Xu Hua Sun @ and Maria G. Bartolini Bussi

3.1 Introduction

3.1.1 Reflections on Language and Culture Before,
During and After the Macao Conference

Language is an artefact used to communicate and think (see Chap. 9). Languages
differ not only in pronunciation, vocabulary and grammar, but also the different
‘cultures of speaking’. Language plays a common, key role in conveying mathemat-
ics concepts for learning and teaching and the development of mathematical think-
ing. The features of language can help to make numerical concepts transparent and
support the understanding that occurs in learning discourse. A cross-cultural exami-
nation of languages should thus allow us to understand the linguistic support and
limitations that may foster/hinder students’ learning and teachers’ teaching of math-
ematics. This study examines number naming and structure across languages and
language issues related to whole number structure, arithmetic operations and key
concepts, and thus has important educational implications for whole number
arithmetic.
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As reported in Chap. 2, this study aims to foster awareness of the relevance of
cultural diversity in the teaching and learning of whole number arithmetic and in
related studies. As stated in ICMI Study 21 (Barwell et al. 2016, p. 17), ‘language
and culture are closely and intimately related and cannot be separated’. Language
and culture influence each other. Language is part of culture and plays an important
role in it. A language not only contains a nation’s cultural background, but also
reflects a national view of life and way of thinking. Hence, no discussion of lan-
guage issues in whole number arithmetic can be separated from cultural
background.

In this chapter, we address language and cultural issues based on different exam-
ples reported by the conference participants, which can be roughly divided as
follows:

— The language of whole number arithmetic in Indo-European languages
— The colonial case in Africa
— The Chinese case

We also consider some of the educational implications.

A short outline of Chinese grammar for numbers is collected for the interested
reader, who may in this way become acquainted with some background of the
Chinese mathematics education. This special focus on the Chinese language and
culture depends on:

— The ‘perfect’ match between everyday Chinese arithmetic and the mathemati-
cian’s arithmetic (Sun 2015).

— The very interesting organisation of Chinese curricula that has seemingly pro-
ceeded uninterrupted since classic times (see Chap. 5).

— The presence of some original strategies (e.g. variation problems) (Sun 2011,
2016).

— The performance of Chinese students and teachers (e.g. Geary et al. 1993; Ma
1999).

— The circumstance of us meeting together in China and seeing a Chinese first-
grade lesson in person (see Chap. 11).

The presence of different cultural and linguistic traditions makes participants and
readers aware of the choices that have been made throughout history regarding the
teaching and learning of whole number arithmetic, creating an improved awareness
of cultural diversity in mathematics. This diversity does not allow for the simple
adoption of curricula developed by others, unless a careful process of cultural trans-
position (see Chap. 13) is started. An example at the end of the chapter (Sect.
3.4.5.2) illustrates this point.
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3.1.2 Some Everyday Language Issues in Number
Understanding

An assumption of the universality of whole number arithmetic has been predomi-
nant for both curriculum reformers and international evaluators. The so-called
Hindu-Arabic system of numerals as number signs is considered the most effective
computation tool and has consequently been adopted by countries around the world
during the last century. However, in this chapter, we discuss how whole number
arithmetic is not culture-free, but rather deeply rooted in local languages and cul-
tures, and present the inherent difficulty of transposition from language and culture
perspectives.

Information about how words are connected with whole number arithmetic may
be found in many books (e.g. Menninger 1969; Zaslavsky 1973; Ifrah 1981; Lam
and Ang 2004). We do not aim to summarise what can easily be found elsewhere.
Our intention is to systematically collect some of the information and reflections
shared between the conference participants who represented many cultural contexts
and report on some of the features of their languages/cultures that have important
educational implications.

Before approaching the topic of whole number arithmetic, we examine some of
the studies conducted in the linguistic field, particularly in the field of pragmatics,
where the contrast within the same culture between figurative meaning in everyday
language and literal meaning in school arithmetic language is investigated. As the
examples (Bazzanella, personal communication) come from very different lan-
guages and cultures, this phenomenon seems universal despite having different
features.

The roots of this phenomenon may be found in ancient ages. In Poetics, Aristotle
himself introduces the idea of the metaphor, which consists of giving a thing a name
that belongs to something else. Among the different examples, one concerns num-
bers: “‘Indeed ten thousands noble things Odysseus did,” for ten thousand, which is
a species of many, is here used instead of the word ‘many’” (Levin 1982, p. 24).

In ancient China, ‘ten thousand’ (wan, /J) was used in a figurative way, as in the
proper name for ‘the Great Wall’ (/7 '3, wan ¥ chdngchéng). This name liter-
ally means ‘ten thousand Ii long wall’, where [7 is an ancient unit of length used to
highlight the immense length of the wall.!

In the last decades, linguistic scholars have started to investigate the use of num-
bers (whole numbers) in everyday language. There are several issues involved in
this usage, such as indeterminacy and approximation. Indeterminacy in language is
commonly resorted to for a variety of reasons and takes several different forms
(Krifka 2007; Bazzanella 2011). In some applications of numerals, exact numbers
are used systematically to denote indefinite quantities. Such uses are linked to cer-
tain very specific numerals, either rather low ones (2, 3, 4, 5) or high but ‘round’
ones (100, 1000). They are hyperbolic in the sense that the number indicated cannot

'https://en.wikipedia.org/wiki/Great_Wall_of_China
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be true; moreover, several variants of one expression (100, 1000, 10,000, etc.) often
coexist (Lavric 2010). Lavric (2010) collects several examples from European lan-
guages (English, French, German, Italian and Spanish) where the meaning of whole
numbers is not the same as the numerals learnt in counting. Some expressions in
some languages must be interpreted in an approximate way. For instance, the sen-
tence ‘vuoi due spaghetti?” (do you wish to have two spaghettis?) among Italian
speakers means ‘do you wish to have some spaghetti?” Hence, ‘two’ is not used in
its cardinal meaning but means a general number of things. Round numbers (i.e.
powers of ten, such as ten, a hundred, a thousand, ten thousand, a hundred thousand,
a million) are also used in hyperbolic meaning: ‘I have told you a thousand times
that you have to be prudent’. Fractions may be used to mean a very small number
(‘half’ also sometimes means a part when the original is divided into two parts that
may not be equal), with the numerator ‘one’, and a high and round numerator (e.g.
‘even a millionth of a second’) is used to minimise or a very close numerator and
denominator used to maximise (e.g. ‘it is ninety-nine point nine percent certain’).
Apart from European languages, in Mandarin Chinese, approximate numerical
expressions are classified into two main types with different meanings: one with the
discourse marker ba () denoting the approximate quantity and the other without
an explicit marker denoting the exact quantity (Ran 2010). These aspects are studied
in linguistics for their effects on translations from one language to another, when
literal translation is impossible. They are not usually considered in the literature on
mathematics education, although they are important to the connection (continuity
vs discontinuity) between everyday language and school language.

3.2 Place Value in Different School Languages and Cultures

3.2.1 Some Reported Difficulties in Understanding Place Value

How is number naming in daily language related to the structure of numbers in
school mathematics? How do listeners in the mathematics classroom recognise
numerical concepts? What are the cognitive bases of approximate uses? What are
their effects on cognitive processes? We discuss these language issues related to the
comprehension of place value in the following.

Place value is the most important concept in the so-called Hindu-Arabic system,
as it has a long-term effect on the comprehension of number structure and calcula-
tions. It denotes the value of a digit depending on its place or position in the number.
Each place has a value of ten times the place to its right. In Chinese literature, place
value is emphasised as an understanding of numeration with different units (i - #C5
i7)). Recording magnitude with different units in counting is called place value in
English-speaking communities or positional notation in French-speaking commu-
nities. In place value, there are two inseparable principles (Houdement and Tempier
2015):
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— The positional principle, where the position of each digit in a written number
corresponds to a unit (e.g. hundreds stand in the third place)

— The decimal principle, where each unit is equal to ten units of the immediately
lower order (e.g. one hundred = ten tens)

However, a range of studies shows that the teaching and learning of place value/
numeration units is difficult. For example, Tempier (2013) finds low percentages of
success of 104 French third graders (8- to 9-year-olds) in tasks involving relations
between units: ‘1 hundred = ... tens’ (48% success), ‘60 tens = ... hundreds’ (31%
success) and ‘in 764 ones there are ...tens’ (39% success). Even in the fourth and
fifth grades, no more than half of the students demonstrate an understanding that the
‘5’ in 25’ represents five of the objects and the ‘2’ the remaining 20 objects (Kamii
1986; Ross 1989).

Bartolini Bussi (2011) mentions a similar difficulty (see Sect. 9.3.2):

When 7-year-old students are asked to write numbers, a common mistake in transcoding
from number words to Hindu-Arabic numerals shows up: some students write ‘10,013’
instead of ‘113’ as the zeroes on the right (100) are not overwritten by tens and units. (p. 94)

It should not be surprising that these students cannot grasp multi-digit addition
and subtraction. Many curricula in the West list place value as positional knowledge
only. For instance, Howe (2010) offers a critique of elementary curricula in the
USA:

Place value...is treated as a vocabulary issue: ones place, tens place, hundreds place. It is
described procedurally rather than conceptually.

Bass (see Chap. 19) uses the problem of counting a large collection to stimulate
the development of grouping with multiple units, according to the concept of place
value. Young-Loveridge and Bicknell (2015) advise supporting the comprehension
of place value by providing meaningful multiplication and division at the same
time. Place value is inherently multiplicative (Askew 2013; Bakker et al. 2014) and
usually introduced as part of the addition and subtraction of multi-digit numbers
before children have experienced meaningful multiplication and division. In
Chap. 9, we report on artefacts designed and used to overcome some difficulties in
the introduction of place value. Based on the studies that have been conducted, a
language perspective on place value is rare in the mathematics education field. In
this chapter, we wish to reconstruct some part of the history of place value while
looking at it from the language perspective.

3.2.2 Transparency and Regularity of Number Languages:
Some European Cases

In Europe, place value was introduced in the thirteenth century through the Arabic
tradition and came into conflict with previous traditions (Menninger 1969; Lam and
Ang 2004). This explains why the principle of place value continues to be a specific
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part of school curricula (Fuson and Briars 1990). Units of hundreds and thousands
are always explicit, but units of ones and tens are always implicit and often missing
in spoken languages. For example, units of ones and tens are not visible in
‘thirty-one’.

Examples in European languages show that many irregularities appear in their
languages; they depend on the existence of more ancient representation (with non-
ten bases) or on other linguistic properties where the combination of two words
forces an abbreviation. Furthermore, the order of units may be different.

In English, French and German, numbers have independent names up to 12,
while in Italian the suffix dici appears with 11 and becomes a prefix with 17 (as in
French). English and German are similar from 13 to 20 (with the suffix teen or zehn,
meaning 10). But from 21 the order of reading units and tens in German is opposite
to that in English until 99. In French there is the memory of base 20, e.g. 70 is
soixante-dix; 80 is quatre-vingts. A similar yet more complex irregularity is present
in Danish: the irregularity involves the number names between 10 and 20, the inver-
sion of units and tens (as in German) and a memory of a base 20 system (see Chap.
5 and Ejersbo and Misfeltd 2015).

When expressing 76 + 83, for example, different languages hint at different
words that make the column calculation more or less difficult.

English: seventy-six plus eighty-three

French: sixty-sixteen plus four-twentys-three

Italian: seventy-six plus eighty-three

Danish: three-and-a-half-twenty-six plus four-twenty-three
Chinese: seven tens six plus eight tens three.

The transparency of the Chinese names is likely to foster students’ understanding
of place value.

3.2.3 Post-colonial Cases: Africa and Latin America

Zaslavsky (1973) wrote her fundamental books on African mathematical tradition
to contrast the scarce (if any) references to Africa in Menninger (1969). In a later
study, Verran (2001) reports on the Yoruba approach to whole number arithmetic. At
the Macao Conference, there were two scholars from Northern Francophone (Nadia
Azrou) and South-Eastern Anglophone Africa (Veronica Sarungi) who reported on
the story of whole number arithmetic in the schools in their postcolonial regions.

2Funghi (2016) prepared a review of many different languages.
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3.23.1 Algeria

Azrou (2015) reports the language situation in Algeria, where many different lan-
guages are spoken with different status: classical Arabic, Berber and French together
with many different local dialects (see Chaps. 5 and 15). Besides the different num-
ber words, Azrou reports the different meanings of ‘digit’ vs ‘number’. Consider the
following examples:

A-123,...9

B- 2781

C- a series of digits to design a phone number, a car number and an address, e.g. the
contact number for ICMI-49 30 20 37 24 30...

In English, A are called digits, B numbers and C numbers.

In Arabic, A are called s, ragm (digit) or 1,5, argam (digits, the plural).

In French, A are called chiffres, B nombres and C numéro.

In Berber (Tamazight is one of the oldest languages of humanity), only one word
(numro) is used for everything.

The relationship between the French dialect and Berber language (languages
used in everyday life) presents a problem. The dialect and Berber language have
kept one word (numro) to express everything. This is a problem for students, who
confuse the mathematical concepts they learn at school (for both Arabic and French)
with the street mathematics used in Berber in everyday life.

3.2.3.2 The Guatemalan Case

In Guatemala, the official language is Spanish, and the indigenous population com-
prises 41% of the total population. There are 25 linguistic communities grouped in
4 ‘pueblos’ (different groups of people), i.e. Ladino, Maya, Griftina and Xinka, each
with a unique identity, culture and language. Mayans comprise 81% of the indige-
nous population and have four linguistic communities. The formal recognition of
the complex ethnic composition of this country was made in 1996 through the
‘Agreement of Peace’, which recognised people’s right to their cultural identities.
As a consequence, the Ministry of Education set up a bilingual programme in which
the teaching must be done bilingually, respecting the culture and values of the indig-
enous people. In 2005, there were 3800 bilingual schools, and many of their teach-
ers could speak the indigenous language but could not write or read it. Because of
the characteristics of this country, primary schools work with two number systems:
vigesimal (base 20) for Mayan mathematics and decimal. Numbers are read and
written according to the two systems and various languages. The Mayan numeration
system uses three symbols: the dot to represent a unit (@), the bar to represent five
units (™) and a third symbol to represent the zero, also called a shell or cocoa
bean (D). With the combination of these three symbols, the first 19 numbers are
written using three rules. First, from one to four, points are combined. Second, five
points form a bar. Third, bars are combined up to three.
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3.2.3.3 Tanzania and Other East African Countries

Sarungi (personal communication) reports on the complex situation in the part of
Africa colonised by the British Empire (East African countries). The diversity in
learners’ first languages makes teaching mathematics in those languages difficult.
For example, Tanzania has over 120 ethnic tribes with their own languages, although
these belong to major language groups such as Bantu, Nilotic and Cushitic. At the
same time, Kiswabhili, which is a mixture of Bantu, Arabic and other languages such
as Portuguese and English, has become the first language of tribes along the coast
and islands of Zanzibar. In fact, Kiswabhili is the national language of Tanzania and
Kenya and is widely spoken in other East and Central African countries such as
Burundi, Rwanda, Uganda and Democratic Republic of Congo.

In Tanzania, the language policy is to use Kiswahili as the medium of instruction
in pre-primary and primary education (MOEVT 2014), even though Kiswabhili is
not the first language of many children, especially those in rural areas (Halai and
Karuka 2013) and is learnt formally when entering school. In Uganda, the policy is
to use ethnic or local languages in the first 3 years of primary school, although
English is used in settings in which learners have diverse local languages (National
Curriculum Development Centre n.d.). Research conducted in African contexts has
pointed to the challenges of using a language that is not easily accessible to learners
and even teachers in some cases, while the use of first languages in mathematics
classrooms has been shown to foster more interactions between learners and teach-
ers (Sepeng 2014).

Apart from the benefits of increased participation, the names of numbers in eth-
nic languages usually point to a base 10 structure (see Funghi 2016). Most African
languages have a similar structure for numbers between 10 and 20, namely, ‘ten’
and ‘digit’, where digit stands for a number from one to nine inclusive. Moreover,
the decades from 20 to 90 have a logical structure. The wording constitutes either
‘tens digit’ to signify how many tens are taken or ‘decade digit’, such as in Simbiti.
Thus, a number like 34 in African ethnic language is literally formed as ‘tens three
and four’ or mathematically ‘three tens and four’. Many children encounter the
names of numbers to around 30 in a non-formal way by the time they start attending
school. Thus, learning whole numbers in such ethnic languages could help learners
to make sense of the structure of the numbers. However, there are challenges in tak-
ing advantage of these affordances. First, teachers may not be equipped to assist
learners, due to unfamiliarity with the local language and its mathematical register
(Chauma 2012). Moreover, the language policy may not be favourable to promoting
the use of ethnic languages, as is the case for Tanzania, where Kiswahili is encour-
aged for purposes of national unity.

When widely spoken in a community, Kiswahili can bridge the gap between the
multiplicities of languages, although its use for learning whole numbers can be a
potential source of confusion for children, even if it is their first language. This is
due to the origins of number names from Arabic and Bantu words, which results in
an inconsistency in the naming of decades (for a comparison between Awahili and
Arabic, see Funghi 2016).
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For Bantu speakers, numbers from 1 to 20 present little problem, except for the
names of 6, 7 and 9. However, non-Bantu speakers have to learn most of the names,
although the structure from 11 to 20 is familiar. For most learners, there is an addi-
tional cognitive demand in learning the names of decades, which no longer adhere
to the structure of Bantu or other ethnic languages but instead borrow words from
Arabic. For example, there is very little link between the names for 30 and 3. In
effect, children are required to learn new names for 20, 30, 40 and 50 in Kiswabhili.
It is only 60, 70 and 90 that have some link to 6, 7 and 9, respectively. Thus, asking
children to write down a given two-digit number in words can result in confusion if,
for instance, the child needs to remember the name for 30 (thelathini) and cannot
infer it from its name, which is linked to its value (three tens). On a related point,
the use of English in private pre-primary schools in Tanzania further complicates
the matter, as the structure of numbers from 11 to 19 does not follow the known
structure of Bantu and Kiswabhili. Ultimately, even in contexts in which both learn-
ers and teachers speak the same language as the language of instruction, it is impor-
tant to take into account the features of the common language that hinder or promote
the learning of whole numbers in early years of schooling.

3.2.4 Towards Transparency: The Chinese Approach

Chinese young children perform better at facets of basic arithmetic, such as generat-
ing cardinal and ordinal number names (Miller et al. 2000), understanding the base
10 system and the concept of place value (Fuson and Kwon 1992), using decompo-
sitions as their primary backup strategy to solve simple addition problems (Geary
et al. 1993) and calculation (Cai 1998). A comparative study (Geary et al. 1992)
indicates that the addition calculating scores of Chinese students is three times that
of American students. Specifically, Chinese students use more advanced strategies
and exhibit faster retrieval speeds. American students use counting strategies (e.g.
counting fingers or verbal counting) more frequently than their Chinese counter-
parts. Chinese students use retrieval strategies more frequently than their American
counterparts (He 2015). However, most studies have provided various explanations
for these findings, such as parents’ high expectations for education, the diligence of
the students and the effectiveness of the teachers. Ni (2015) argues that elementary
school curricula, textbooks, classroom instruction and the cultural values related to
learning mathematics have contributed to the arithmetic proficiency of Chinese chil-
dren and the establishment of arithmetic as a social-cultural system.

The 2013 PISA results in mathematics (from the test taken in 2012) showed that
the highest performers were located in Asian countries, placing in the following
order: (1) Shanghai (China), (2) Singapore, (3) Hong Kong (China), (4) Taiwan, (5)
South Korea, (6) Macao (China) and (7) Japan. All of these countries have used
languages that share the same ancient Chinese number tradition.

Some authors have studied the Chinese language and culture in mathematics
education in the last few decades. For instance, ICMI Study 13 (Leung, Graf and
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Lopez-Real 2006) first focused on a comparison of East Asia and the West. It was
followed by a trend of studies and volumes about Chinese tradition in mathematics
education (Fan et al. 2004, 2015; Li and Huang 2013; Wang 2013). The specific
issue of language has been addressed by many authors such as Galligan (2001) and
Ng and Rao (2010), and other authors such as Fuson and Li (2009) and Xie and
Carspecken (2007) have compared educational materials in China and the USA.

This phenomenon relates to a large number of teachers and students. In China,
there are nearly 2.63 hundred million primary school students. Moreover, the
ancient Chinese literature affected the development of mathematics in most East
Asian countries (e.g. Japan, Korea, Vietnam) (Lam and Ang 2004) in terms of the
convention of place value.

3.3 The Chinese Approach to Arithmetic

3.3.1 The Ancient History

The Chinese approach to numerals in primary schools shows consistency among the
features of Chinese language, the names of numbers and the use of artefacts for
representing numbers and computing (Chap. 5), which can be traced back to the
tradition of teaching numbers in China in fourteenth century BCE (Guo 2010). The
long tradition is reflected in a range of ancient Chinese arithmetic works, such as the
official mathematical texts for imperial examinations in mathematics used a thou-
sand years ago:

The Suan shix shii, Writings on Reckoning (54115) (202-186 BCE)
Zhoubi Suanjing (FI#152%) (100 BCE)

The Nine Chapters on the Mathematical Art (JLFE5A) (100 BCE)
The Sea Island Mathematical Manual (i 5)55.4%) (about 225-295 CE)
The Mathematical Classic of Sun Zi () T-5-28) (500 CE)

The Mathematical Classic of Zhang Qiujian (7% 22 5.28) (500 CE)
Computational Canon of the Five Administrative Sections (T. 8 55.4%) (1212 CE)
Xia Houyang’s Computational Canons (32 5:FH528) (1084 CE)
Computational Prescriptions of the Five Classics (TLZ25H )

Jigu Suanjing (4555 4) (625 CE)

Zuisu (4 AK) (500 CE)

Shushu jiyi (AR iciz) (about 200 CE)

In this section, we offer a short outline of Lam and Ang’s (2004) Fleeting
Footsteps, a long history drawing on an important reference.

In the general history of numbers, the importance of the Chinese tradition is not
always acknowledged. For instance, Ifrah (1981) claims that place value is an Indian
invention. Dauben (2002) strictly criticises this error:
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One Chinese source of which Ifrah is apparently unaware is the Sun Zi Suanjing ¥) 154
(The Mathematical Classic of Sun Zi), written around 400 CE. (p. 37)

This text has been available in an English translation since 1992 in Fleeting
Footsteps, an edition prepared with extensive commentary by Lam and Ang, who
later published a more extended edition (Lam and Ang 2004). This source not only
gives a complete description of Chinese rod numerals, but also describes in detail
ancient procedures for arithmetic operations. The most ambitious part of Lam and
Ang’s study argues that the Hindu-Arabic number system had its origins in the rod
numeral system of the Chinese. The most persuasive evidence Lam and Ang offer is
the fact that the complicated, step-by-step procedures for carrying out multiplica-
tion and division are identical to the earliest but later methods of performing multi-
plication and division in the West using Hindu-Arabic numerals, as described in the
Arabic texts of al-Khwarizmi, al-Uqlidist and Kushyar ibn Labban (see the exten-
sive review in Lam and Ang 2004). Guo (2010) explains that the Chinese system
was transmitted to India during the fifth to ninth centuries, to the Arabic empire in
the tenth century and then to Europe in the thirteenth century through the Silk Road.
In 1853, Alexander Wylie, Christian missionary to China, refuted the notion that
‘the Chinese numbers were written in words at length’ and stated that in ancient
China calculation was carried out by means of counting rods and that ‘the written
character is evidently a rude presentation of these’, showing both the arithmetic
procedure and the decimal place value notation in their numeral system through the
use of rods. Wylie believed that this arithmetic method invented by the ancient
Chinese played a vital role in the advancement of all fields that required calcula-
tions. After being introduced to the rod numerals, he wrote:

Having thus obtained a simple but effective system of figures, we find the Chinese in actual
use of a method of notation depending on the theory of local value [i.e. place value], several
centuries before such theory was understood in Europe, and while yet the science of num-
bers had scarcely dawned among the Arabs. (p. 85)

In a review of the first edition of the Archives internationales d’histoire des sci-
ences, Volkov (1996) writes that the book ‘may provoke a strong reaction from
historians of European mathematics’. Nevertheless, Volkov emphasises one of the
book’s great strengths:

The emphasis made by the authors on the great importance of studying Chinese methods of
instrumental calculators as well as numerical and algorithmic aspects of Chinese mathemat-
ics, which otherwise cannot be understood properly. (p. 158)

Chemla (1998) suggests adopting a prudent attitude towards this controversy:

The nine chapters share with the earliest extant Indian mathematical writing (6" ¢.) basic
common knowledge, among which is the use of a place-value decimal numeration system.
Such evidence allows no conclusion as to where this knowledge originated, a question
which the state of the remaining sources may prevent us forever answering. Instead, it
suggests that, from early on, communities practicing mathematics in both areas must have
established substantial communication. (p. 793)

This historic origin could be helpful for understanding why the Chinese (Eastern
individuals) have found it so easy to grasp this concept, why it is so late to develop
in Europe, how number heritage has been shaped and how we can advise on the
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number practices or tools used to strengthen the comprehension of place value. In
the following, we elaborate on the Chinese approach to arithmetic as representative
of East Asia. We begin by considering some elements of the Chinese approach to
numbers and computation and then discuss some of the educational implications.

Although ancient Chinese mathematicians did not develop a deductive approach,
they made advances in inductive algorithm and algebra development (Guo 2010).
The Zhoubi Suanjing (J1#5i45), the oldest complete surviving mathematical text
compiled between 100 BCE and 100 CE, contains a statement highlighting the anal-
ogy nature of Chinese tradition:

In relation to numbers, you are not as yet able to generalize categories. This shows there are
things your knowledge does not extend to, and there are things that are beyond the capacity
of your spirit. Now in the methods of the Way [that I teach], illuminating knowledge of
categories [is shown] when words are simple but their application is wide-ranging. When
you ask about one category and are thus able to comprehend a myriad matters, I call that
understanding the Dao. ... This is because a person gains knowledge by analogy, that is,
after understanding a particular line of argument they can infer various kinds of similar
reasoning ... Whoever can draw inferences about other cases from one instance can general-
ize. (Quoted in Cullen 1996, pp. 175-176)

Since antiquity, the major focus of Chinese mathematics has been on numbers
and computations as collections of prescriptions similar to modern algorithms.
Mathematics is called shixué (% (“shi”” meaning ‘number’) in Chinese. Knotted
cords and tallies (see Sect. 9.2.2) were mentioned in ancient Chinese literature
(Martzloff 1997, p. 179), following multiplicative-additive rules. The Chinese used
bamboo rods to count (see the information about counting rods in Sect. 9.2.2), and
this activity fostered the creation of a systematic way to represent numbers. The first
nine numerals formed by the rods are presented in Fig. 3.1.

According to Lam and Ang (2004), the number presentation principle was ini-
tially introduced as follows:

Numerals in tens, hundreds and thousands were placed side by side, with adjacent digits
rotated, to tell each apart. For example, 1 was represented by a vertical rod, but 10 was
represented by a horizontal one, 100 by a vertical one, 1000 by a horizontal one and so
forth. Zero was represented by a blank space so the numerals 84,167 and 80,167 would be
as shown [see Figure 3.2]. ... Although most books on the early history of mathematics,
especially the recent ones, have mentioned the Chinese rod numerals, they have failed to
draw attention to a very important fact that the ancient Chinese had invented a positional
NOTATION. Any number, however large, could be expressed through this place value
notation which only required the knowledge of nine signs. I should add that in the current

Fig. 3.1 The Chinese Rod

representation of the first | " "I "" ""l T _"- -m- mT
4 5

nine numerals 6 7 8 9

Fig. 3.2 Rod M= T m LT

representation of multi-

digit numbers 8 416 7 8016 7
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Fig. 3.3 An ancient
drawing of a suan pdn
(F4$%) with measurement
units (https://commons.
wikimedia.org/wiki/
File:Ming_suanpan.JPG)

more sophisticated written form, a tenth sign, in the form of zero, is required (Lam and
Ang 2004, p. 1)

The translation of the computation principle was initially introduced as follows:

In the common method of computation [with rods] (fdn suan zhi fa, JL3T.2 1), one must
first know the positions (wei, fi7.) [of the rod numerals]. The units are vertical and the tens
horizontal, the hundreds stand and the thousands prostrate; thousands and tens look alike
and so do ten thousands and hundred. (Lam and Ang 2004, p. 193)

A feature of Chinese mathematics is the ancient use of the counting rods (% %,
suan chou) on a table (counting board, jishit ban, V154X, Fig. 3.3). The counting
board was used to make computations (arithmetic operations, extracting roots) and
solve equations. The rules for using the counting board are carefully described by
Lam and Ang (2004), who highlight the feature of introducing procedures in pairs:
the procedure for subtraction is the inverse of that for addition, and the procedure
for division is the inverse of that for multiplication. Chemla (1996) highlights that
the position in the counting board is stable (see Sect. 3.3.4, which reports on the
wording of the elements of arithmetic operations).

3.3.2 Chinese Language Foundation to Place Value

The concept of place value is dominantly used in counting rod or suan pdn (5i4)
and written numerals (Sun 2015). Moreover, place value can be traced to the use of
base 10 and conversion rates for measurements, classifier grammar and the part-
part-whole structure with radicals and characters in local language. This language
origin can be helpful in understanding why Western students find it so difficult to
grasp the concept of place value and why it has developed so late in Europe from a
language perspective.

3.3.2.1 Base 10 and the Conversion Rate for Measurement
The Chinese system had a base 10 convention for representing quantities (Lam and

Ang 2004; Martzloff 1997; Sun 2015). This was consistent with the conversion rate
between the measurement units of length and volume, since the first emperor (gin
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shi huang %1t 52) who unified the whole of China in third century BCE introduced
a metric system for measurements.’ Except for weight units, units of length and
volume had base 10 conversion rates. For example, the conversion rate of length
units was expressed as follows (Lam and Ang 2004):

1 yin(51) =10 zhang (3L) = 100 chi () = 1000 cun (<)) = 10,000 fen (77) = 100,000
1i (%) = 1,000,000 hao (%£).

The conversion rate of weight units was:

1 liang (M) = 10 gian (5%) = 100 fen (77) = 1000 [i (%) = 10,000 hao (Z£) = 100,000
si (£2).

The conversion rate of volume units was:
1 gong (ffh) = 10 dou (=}); 1 dou (=F) = 10 sheng (I1).

The ancient conversion rate of time units was 100 before the Western Zhou
dynasty:

1 shi (1)) = 100 ke (Z); 1 night (54%) = 5 geng ().
The first money conversion rate was 10 in ancient China:
1 peng (M) =10 ke (J).

Besides the measurement unit systems, the Chinese system had a base 10 con-
vention for representing numerals using number characters and corresponding num-
ber units (Zou 2015). This can be ascribed to the Yellow Emperor in the sixth century
book by Zhen Luan, Wujing suanshu (1158 5.4l5 Arithmetic in Five Classics) (Guo
2010). The first five number units, i.e. ge (i), shi (1), bai (1), gian (T-) and wan
(), always represent 1, 10, 102, 10° and 10*, respectively. The other number units
vary with different systems of number notation.

Shushu jiyi {ERICE)  written by XuYue (f£%%) during the Eastern Han
dynasty (50-200 CE) recorded the early number naming principle: the conversion
rate of the down number (xiashu %)), i.e. the standard number, was 10; the con-
version rate of the middle number (zhongshu "4Y), i.e. the large number, was
10,000; and the conversion rate of the up number (shangshu %)), i.e. the largest
number, was the square of the number unit.

Looking at decimal and fraction numbers, the following spoken numeration units
were used to denote small orders of magnitude in Sunzi Suanjing (Lam and Ang
2004) in ancient China. The negative power of 10 was stressed in daily spoken
numerals: 10~4# si, 107 Z& hao, 1072 7% [i and 10~'75" fen.

It may be interesting to compare the situation in China with the situation in Europe, where the
metric system was introduced at the end of the eighteenth century, and the situation in the USA and
UK, where metricisation is still controversial. For example, the conversion rates of inches, feet,
yards and miles are non-10: 12 inches = 1 foot, 3 feet = 1 yard, 5280 feet = 1 mile. One US fluid
ounce is 1/16 of a US pint, 1/32 of a US quart and 1/128 of a US gallon.
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3.3.2.2 Classifiers

All number units in the Chinese language are called classifiers (Liangci i) In
English, it is natural to use measurement words to describe the quantity of a con-
tinuous noun (i.e. to identify a specific unit to make the quantity countable). For
example, in 1 m of cloth, 1 ml of water and 1 kg of meat, the measurement units of
m, ml and kg are, respectively, required. However, it is natural not to use measure-
ment words to describe the quantity of countable nouns (e.g. one apple, five ducks
and three desks). There are hundreds of different classifiers, all of which reflect the
objects to be counted. In Chinese, both uncountable and countable nouns need mea-
surement words known as classifiers. Consider one ge ({lil) apple, five zhi (}1) ducks
and three zhang (%) desks, in which ge (“unit of fruit”), zhi (“unit of animal”’) and
zhang (“unit of object”) play the role of measurement word as units. This is a kind
of Chinese grammar used to describe quantity (#{#), which requires numbers and
classifiers. The classifiers are called number units (Zou 2015), numeration units
(Houdement and Tempier 2015), number ranks (Lam and Ang 2004) or number
markers (Martzloff 1997).

The column units left of the suan pdn (5i4%) shown in Fig. 3.4 read from left to
right as follows:

Wan (5 ten thousand), gian (T thousand), bai (i1 hundred), shi (‘1" ten), liang (/4
weight unit 1 liang = 1/16 jin), £ gian (10 gian = 1 liang), 77 fen (weight unit,
10 fen = 1 gian).

The column units right of the suan pdn shown in Fig. 3.4 read as follows from
left to right:

— ones, {1 shi (volume unit, 10 dou = 1 shi); =~} dou, 7t sheng, 1+ (1 =10 =}, 1
=107k 17 =10 £).

The units are used as column units. Weight, volume and numeration units have
the same position in a functioning calculation. This indicates that numeration units
have the same role as that of measurement units in Chinese (Martzloff 1997).

Fig. 3.4 The number . -
71,824, written by the k 7\ — C’

mathematician Jia Xian

. A
during the Song dynasty ‘% q. s * 2
(960-1279)

T —M =1
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Fig. 3.5 The oral counting in Chinese. One ones, two ones ...; ten ones, one ten and one ones, one
ten and two ones, ...; two ten ones, two tens and one ones ...

Following Allan (1977), there are about 50 languages in the world with this fea-
ture, some in the Far East and some in other parts of the world. We discuss the case
of the Chinese language, where numeral classifiers are systematically used, in detail
as follows. Following Senft (2000), numeral classifiers are defined in the following
way:

In counting inanimate as well as animate referents the numerals (obligatorily) concatenate

with a certain morpheme, which is the so called ‘classifier’. This morpheme classifies and
quantifies the respective nominal referent according to semantic criteria. (p. 15)

There are many classifiers in Chinese, as each type of counted object has a par-
ticular classifier associated with it. This is a weak rule, as it is often acceptable to
use the generic classifier (g, 1~) in place of a more specific classifier. The generic
classifier (gé, “) is not translated into English, but may be considered as a kind of
unit (a ‘one’). The generic classifier may be considered the prototype of units in
place value representation.

Besides the generic classifier (ge, 1), other units of higher value have been
introduced in Chinese to represent numbers: ten (shi 1), hundred (bdi ), thou-
sand (gian ) and ten thousand (wan /J). A very interesting example from ancient
Chinese is given in Figure 1 in the Yongle Encyclopedia (1408).* In the example
shown in Fig. 3.4, the number 71,824 is represented to indicate the digit and number
(or measurement) unit. In this case, the unit is * (bi, i.e. step, an ancient length
unit).

In particular:

— The first line ‘1= /\VY__" represents the number value ‘71,824".

— The second line represents the units & (wan, ten thousand), T (gian, thousand),
Fi (bdi, hundred), 1 (shf, ten) and *& (bu, or ‘step’, an ancient length unit).

— The third line represents the number using the ancient rod numerals, hinting at
the counting rods discussed previously. The number units have the same position
as the measurement unit (bu).

Classifiers are used also in the recitation of numerals when counting objects, so
that both oral and written numerals are kept consistent with each other.

In Fig. 3.5, ten-two hints at an addition procedure of 10 + 2, while two tens hints
at a multiplication procedure of 2 x 10. Hence, the Hindu-Arabic number 24 is
translated into the Chinese language as ‘two tens and four ones’ (- TPU4™).

The legend shows a literal translation into English (numeral and classifier). In the
translation, there is ambiguity between one (number) and one (classifier or unit),

“https://en.wikipedia.org/wiki/Yongle_Encyclopedia. See also http://www.wdl.org/en/item/3019/
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which in Chinese are written (—, />) and said (y1 and g&) in two different ways. The
same happens for 10, which in English is both a number and a unit.

In other languages (e.g. Italian), the situation may be less ambiguous, as ‘uno’
and ‘dieci’ (numbers 1 and 10) are different from ‘unita’ and ‘decina’ (unit), but the
use of terms like the latter in the reading of numbers is limited to school practice
(decomposition of a given number in unit, ten, hundred and so on).

In Chinese, classifiers are also used in interrogative questions, e.g. %/
(duoshdo), which means ‘How much? How many?’, and the right classifier must
follow. When this term is used in an arithmetic word problem, e.g. in additive prob-
lems, the same classifier is used for both the data and question. For example, if five
zhi (1) ducks swim in a river, and then two zhi () ducks join them, how many zhi
(X1) ducks are there altogether? This example shows that zki (F1) must be used for
both the data and question.

By identifying classifiers of quantity, concrete numbers with units of the same
name (same classifiers) are defined like numbers (see Chap. 18 of this volume). A
principle for arithmetic operations with like numbers is also constructed in everyday
language (see Chap. 18 of this volume).

Principle of addition/subtraction: only like numbers can be directly added or
subtracted. Two zhi (1) ducks can be added to three zhi (F1) ducks. Two zhi (})
ducks cannot be added to three dozen da (£]) or groups of ducks.

Principle of multiplication: only unlike numbers can be directly multiplied. For
example, three groups of zhi (}1) ducks swim at the river. Each group comprises
four zhi () ducks. How many zhi (}1) ducks are there in total? The answer is
4 zhi (J1) ducks * 3 groups = 12 zhi (X1) ducks.

Principle of division:

—  With like numbers (measure division): for example, 12 zhi (}1) ducks swim in the
river. Each group comprises four zhi (}1) ducks. In this case, 12 and 4 are like
numbers. How many groups are there in total? The answer is 12 zhi (}) ducks/4
zhi (J1) ducks = 3 groups.

—  With unlike numbers (partitive division): for example, 12 zhi (51) ducks swim in
the river. We plan to group them into three groups. Here, 12 and 3 are unlike
numbers. How many zhi (1) ducks are in each group? The answer is 12 zhi ()
ducks/3 groups = 4 zhi (*1) ducks per group.

Classifiers are one of the most important elements required in word problem-
solving. Generally, Chinese curricula do not need a section to differentiate partitive
division from measure division, as the grammar of classifiers is enough to introduce
the distinction.

3.3.2.3 Radicals and the Part-Part-Whole Structure

Radicals (f8 T bt shou ‘section headers’) constitute the basic writing unit. Most
(80-90%) of Chinese characters are phonetic-semantic compounds, combining a
semantic radical with a phonetic radical. Chinese words have a compound or
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Fig. 3.6 The decomposition of 6 in many different ways as 5 + 1, 4 + 2 and so on (Mathematics
Textbook Developer Group for Elementary School 2005, p. 42)

part-part-whole structure. The compound can be seen in the structure of Chinese
number words. For example, as shown previously, the Chinese refer to the number
12 as ‘ten-two’ rather than as a single word such as ‘twelve’.

The idea of a part-part-whole structure appears in a more general way in number
computations. A number (a whole) may be conceived as the sum of two parts in dif-
ferent ways (see Fig. 3.6).

This idea may be connected with the use of artefacts (either counting boards
Jjishit bén, VIEHC with rod numerals 5L%8; suan chou or suan pdn $i%L). For
instance, in the suan pdn, it is important to ‘make a ten’ by replacing two groups of
five beads with one bead in the tens place if one has to calculate the following while
also exploring the associative and commutative properties of addition:

I5+7=(10+5)+B+2)=10+5+5+2=10+10+2

The practice of composing/decomposing numbers is exploited to carry out very
fast calculations (for a didactical example, see Chap. 11, Sect. 11.2).

3.3.3 Conceptual Naming of Fractions

The Nine Chapters on the Mathematical Art (JL% 54l Jitizhang Suanshit) was
composed by several generations of scholars from the tenth to second century BCE,
with its latest stage composed from the second century CE. According to Guo
(2010), it gave the first fraction theory in the world. These are the procedures called
he fen (addition 75 7): Problems 7-9), jian fen (subtraction Ji7): Problems 10-11),
ke fen (comparison if77: Problems 12-14), ping fen (arithmetic mean “[>75:
Problems 15-16), cheng fen (multiplication #€75: Problems 19-25) and jing fen
(division #%7)3: Problems 17—18) (Sun and Sun 2012).

Martzloft (1997) observes, ‘In Chinese mathematics, by far the most common
notion of fraction is that which comes from the notion of dividing a whole into an
equal number of equal parts (sharing)’ (p. 192). He quotes examples such as —7)°
Z . (san fén zht er), meaning ‘two thirds’. The word 7J (fen) suggests the idea of

SLike €% in The Nine Chapters on the Mathematical Art, in ancient times, 1€ and #¢ were
regarded as the same word.
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sharing, as etymologically its upper component ba (/\) means ‘to share’, while its
lower component represents a knife (/J, dao). The order of reading (and writing) is
denominator first and numerator second and may be literally translated as ‘of three
parts, one’. Martzloff (1997) continues:

The denominator and the numerator are then respectively called fen mii (73 £} the ‘mother’
of the sharing) and fen zi (7)1~ the ‘son’ of the sharing). The inventor of these expressions
was thinking of a pregnant mother and her child, thus highlighting both the difference in
size and the intimate link between the two terms. (p. 103)

According to Needham and Wang (1959) and Guo (2010), decimal fractions
were called tiny numbers (7% wéi shir), first developed and used by the Chinese
in first century BCE by Liuhui (%1#) (Guo 2010).

3.3.4 Arithmetic Operations

Here, we explain how addition and subtraction were introduced into Chinese tradi-
tion. The links between addition and subtraction were highlighted in the ancient
textbooks. In 1274, Yang Hui observed, ‘Whenever there is addition there is sub-
traction’ (quoted in Siu 2004, p. 164).

This strict link is evident in the wording of operations. The strong regularity is
evident in the following list:

In — jia — addition.

In% — jia shit — addend.

il — jicin — subtraction.

J%H — jidn shit — subtrahend, literally ‘subtracting number’.
BEYFEL — bei jian shit — minuend, literally ‘subtracted numbers’.
Fe ik — chéngfia — multiplication.

W A $ — bei chéng shit — literally ‘multiplied number’.

T4 — chéng shi — literally ‘multiplying number’.

b — chiifi — division.

bR — bei chii shit — dividend, literally ‘divided number’.
FR# — chiishii — divisor, literally ‘dividing number’.

% (bei) is the most common word used in Chinese to create the passive verb form.

This regularity is meaningful, especially when compared with the wording in
Western languages. Schwartzman (1994) points out that many English mathematics
terms are borrowed from Greek and that Latin-derived terms bear no inherent
meaning. For example, the English words ‘minuend’ and ‘subtrahend’, which come
from Latin words and thus have little meaning today for English-speaking children
in contrast with Chinese subtracted and subtracting numbers, directly embody the
subtraction relationship without the exchange law. (The same is true in other
Western languages.)

Addition and subtraction are carried out using counting rods (%% suan chou)
(see Sect. 9.2.2) by simply grouping (ifll & ziihé making the bundle) or ungrouping


http://www.chinese-tools.com/tools/sinograms.html?q=八
http://www.chinese-tools.com/tools/sinograms.html?q=分
http://www.chinese-tools.com/tools/sinograms.html?q=母
http://www.chinese-tools.com/tools/sinograms.html?q=分
http://www.chinese-tools.com/tools/sinograms.html?q=子
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24 +6=30
30+3=33

Fig. 3.7 Addition in the Chinese textbook (Mathematics Textbook Developer Group for
Elementary School, 2005, vol. 2, p. 62.)

"Just open a
How do we 36 3 8 - bundle
operate 6-8 (aten) "?

when 6 is
small than 8?

Fig. 3.8 Subtraction in the Chinese textbook (Mathematics Textbook Developer Group for
Elementary School, 2005, vol. 2, p. 68.)

(% #H jié zii opening the bundle) the rods (see Figs. 3.7 and 3.8) (Mathematics
Textbook Developer Group for Elementary School 2005).

When the abacus (suan pdn H4) is introduced, fingering is complex (Fig. 3.12)
and wording may become different (Fig. 3.10):

13— —jin yi — forward (towards the unit of higher value, e.g. when 10 units becomes
aten

iR — — tui y7 — backward (towards the unit of lower value, e.g. when a ten becomes
10 units
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LIIII3333%;

1 2 3 45 67 89

Fig. 3.9 Representation of 123456789 in a Chinese suan pdn (Kwa 1922, p. 6)

Fig. 3.10 Wording on
suan pdn: forward and #— —jin yT — forward one (ten)

backward

12— — tui yi — backward one (ten)

The following images are taken from Kwa (1922), an old handbook of the
Chinese abacus that was included as a gift for participants at the Macao Conference.

These features are interesting, as in both cases they emphasise the inverse rela-
tion between addition and subtraction, which are described by means of inverse
verbs. Division is based on multiplication, as it is the inverse of multiplication and
uses a scheme that is symmetric with respect to the multiplication performed in rod
calculations (adapted from Martzloff 1997, p. 217) (Table 3.1).

We analyse the differences from Western languages where this link is not high-
lighted as follows.

3.3.5 Mathematical Relational Thinking: Equality

A range of studies has advised emphasising not only numerical computation but also
quantitative relationships (Ma 2015; Bass 2015; see also Chaps. 6 and 9 of this vol-
ume). The relational thinking of equality constitutes a central aspect of equations and
algebra thinking (Cai and Knuth 2011). Equality is a key concept, but sometimes prob-
lems are presented in Western curricula. Li et al. (2008) show that Chinese curricula
introduce the equal sign in a context of relationships and interpret the sign as ‘bal-
ance’, ‘sameness’ or ‘equivalence’. In the following, we review the history of the equal
sign and address the approach to the relational view of the equal sign and equality.
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Table 3.1 The symmetric scheme in Sunzi Suanjing

Multiplication Multiplication Division Position
Multiplicand Multiplier Quotient (shang i) Upper
Product Product Dividend (shi ) Central
Multiplier Multiplicand Divisor (fa 1) Lower

3.3.5.1 The History of the Equal Sign ‘=’ in Europe

The equal sign (‘=") was invented (and used in its relational meaning) in 1557 by
Welsh mathematician Robert Recorde (in his work The Whetstone of Witte), who
was fed up with writing ‘is equal to’ in his equations. He chose the two lines because
‘no two things can be more equal’ (Cajori 1928, p. 126).

The etymology of the word ‘equal’ is from the Latin words ‘aequalis’ (meaning
‘uniform’, ‘identical’ or ‘equal’) and ‘aequus’ (meaning ‘level’, ‘even’ or ‘just’).

The symbol ‘=" was not immediately popular. The symbol ‘II” was used by some,
and ‘@’ (or ‘e’), from the Latin word ‘aequalis’ meaning ‘equal’, was widely used
into the 1700s.

3.3.5.2 The History of the Equal Sign ‘=" in China

It seems there was no ancient symbol for ‘=" in Chinese, but the Chinese characters
5§ déng (equality) for relational meaning and dé 13 (get the result) for procedural
meaning were used broadly in ancient texts. Equality is related to the balance rule
of yin-yang and the invariant principle of the I Ching. The basic procedures of sub-
stituting in the Chinese rod/suan pdn, substituting 5 by 5 ones, substituting two 5s
by 10, substituting 10 by I ten, substituting 100 by 10 tens, substituting 1 thousand
by 10 hundreds, etc., reflect the spirit of equality used in a broader, flexible way to
some extent.

Such is the fundamental ancient Chinese mathematics spirit. ‘Simultaneous
equations’ appears as one of the nine chapters of The Nine Chapters on the
Mathematical Art (JLE SR Jitizhang Suanshit) (Guo 2010). Spirit of equality is
reflected in the ‘equalising’ and ‘homogenising’ theory (55 [r]J5LE), the first basic
principle to deduce fractions, and ‘cutting and paste’ theory (/%5 HH), an explicit
principle used when solving geometry problems involving area and volume in
Liuhui’s commentary on The Nine Chapters (Guo 2010).

There are 256 instances of the character 1 (d¢) and 11 instances of the character
% (déng) in The Nine Chapters. The fifth problem in JjH fangtian — rectangular
fields — reads as follows:

The method for simplifying parts: What can be halved, halve them. As for what cannot be
halved, separately set out the numbers for the denominator and numerator. Then alternately
reduce them by subtraction. This is seeking for the equality. Simplify using this equal num-
ber. (Guo 2010, p. 99)
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Fig. 3.11 Comparing ~
numbers in the first grade: o]
the prior content of the o .
textbook (Mathematics @ & ﬁ‘
Textbook Developer Group o B
for Elementary School @ o ol
2005, p. 5) &3 0 &
3 3 2
&)
A -
& < o9 oo
& & = F-- 3
8a BHv B0
2=23 Jozd 34
3¥F3 S.4aT & 34T 4

Fig. 3.12 Fingering in
suan pdn: the correct
method of moving the
beads (Kwa 1922, p. 8)

3.3.5.3 Chinese Approaches to the Relational Meaning of Equality

Ni (2015) reports that Chinese teachers are intolerant of errors where the relational
(or conceptual) meaning of ‘=" is replaced by a procedural (or operational) mean-
ing, while US teachers consider such errors minor. She mentions Chinese textbooks
in which one-to-one correspondence is used from the beginning to assist students in
better understanding the equal, greater-than and less-than symbols to enhance the
relational meaning of ‘=" in contrast with ‘<’ and >’ (Fig. 3.11).

This strategy is widespread in other countries (Alafaleq et al. 2015).

In general, the English expression ‘how many’ is translated into Chinese as
‘more or less’ (duoshdo, % /1), which hints at the relational meaning and denotes a
comparison of more than or less than (the imagined number). This expression is
very common in arithmetic word problems. Like numerals, such expressions need a
classifier (Sect. 3.3.2.2), highlighting the explicit connection between data and
unknown values.
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The variation approach to word problems presents another way to cope with the
conceptual meaning of equality in China. Variation (“£ 1\, bian shi) is a widely used
approach that aims to discern the variance, invariance and sameness behind a group
of problems and is regarded as the foundation of algebraic thinking and equations
(Sun 2011, 2016). This approach is also closely related to the features of the Chinese
language. Chinese is a tonal and logographic language, where each character has
multiple meanings (— 1 % 2%) and each word plays multiple roles in its context (—
1] % 1k). Teaching by variation is consistent with the needs of teaching the Chinese
language. To learn to write Chinese and to increase their orthographic awareness,
students must distinguish the similarities and differences of different characters that
very often look similar to each other (Marton et al. 2010).

As variation problems enhance perceptions of variance and invariance or equal-
ity to solve word problems in Chinese curricula, they are regarded as one of the
most important and explicit task design frameworks in China (Sun 2016). They
refer to the ‘routine’ daily practice commonly accepted by Chinese teachers (Sun
2007, 2011; see also Cai and Nie 2007). Following Sun (2011), Bartolini Bussi et al.
(2013, p. 550) describe a typical feature of these problems:

One distinctive feature of word problems is to develop the ability to identify the invariant
category of word problems (I12%) it belongs to and discern different categories (J42%),
namely, discern the invariant elements from the variant elements between problems and
recognize the ‘class’ every problem belong to. This pedagogy is generally called as
bianshi (4%3%) in Chinese, where ‘bian’ stands for ‘changing’ and ‘shi’ means ‘form’,
can be translated loosely as ‘variation’ in English (Sun 2011). Some categories of bian-
shi are the following:

OPMS (One Problem Multiple Solutions), where, for instance, the operation to solve the
problem is carried out in different ways, with different grouping and ungrouping:
8+9=08+2)+7;8+9=7+(1+9) and so on.

OPMC (One Problem Multiple Changes, see the variation problem below in Italy
(Bartolini Bussi et al. 2013)), where in the same situation some changes are
introduced.

MPOS (Multiple Problem One Solution), where the same operation can be used to solve
different problems, as in summary exercises (Sun 2011).

Western curricula use various models (e.g. models of taking away and compar-
ing) to introduce meanings of addition/subtraction, as well as strategies to solve
word problems. On the contrary, in Chinese curricula, rather than approaching word
problems separately, problem variation permits them to be introduced in a holistic
way without the use of multiple models (Sun 2015). Cai and Nie (2007, p. 467)
report on the frequency of teaching with variation in the Chinese classroom through
a survey of 102 teachers (see Table 3.2).

Table 3.2 The frequency of teaching with variation in the Chinese classroom

Used very often Used occasionally Never used
OPMS (n =102) 84 18 0
OPMC (n =102) 69 33 0
MPOS (n = 100) 52 48 0
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An example of OPMS of addition with two digits is discussed in Chap. 11.
Section 3.4.5.2 considers a transposition of additive variation problems to Italy.

3.4 Educational Implications

The above observations clearly point out some of the features of the Chinese arith-
metic tradition:

— The inductive approach, where general principles of representing numbers and
calculation are consistent with and derived from the specific case of the ones
place (e.g. number operations in the tens/hundreds place are similar to number
operations in the ones place).

— The tradition of calculation using specific cultural artefacts that also leave traces
in the language.

— The variation tradition in word problems.

These features have important educational implications. Ma (1999) finds that the
content knowledge of American and Chinese teachers is different. In particular, the
strength of mathematics content knowledge is related to profound understanding of
fundamental mathematics. According to Ma (1999):

The US teachers tended to focus on the particular algorithm associated with an operation,
for example, the algorithm for subtraction with regrouping, the algorithm for multi-digit
multiplication, and the algorithm for division by fractions. The Chinese teachers, on the
other hand, were more interested in the operations themselves and their relationships. In
particular, they were interested in faster and easier ways to do a given computation, how the
meaning of the four operations are connected, and how the meaning and the relationships
of the operations are represented across subsets of numbers — whole numbers, fractions, and
decimals. When they teach subtraction with decomposing a higher value unit, Chinese
teacher start from addition with composing a higher value unit. (p. 112)

Similar reflections may be applied to other Western curricula. Chinese curricula
do not have a chapter on place value similar to American or European curricula;
rather, place value appears in all chapters, along with reading and writing number
activities as an overarching principle. Place value involves implicit core knowledge
of the number unit in ancient literature (Zou 2015) and in Chinese curricula (Sun
2015), which is different from the calculation vocabulary or extended number pro-
cedures in chapters on calculation in the mandatory practices of American curricula
(Howe 2011, 2015).

3.4.1 Place Value and Whole Number Operations

Chinese verbal counting is transparent and completely regular for place value rep-
resentation. However, in the West, place value may be perceived as an artificial
construct for written purposes, as communities do not use it in ordinary
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conversation; for Western students, it can be a learned concept, but not a native one.
The abbreviation of ‘-teen’ numbers in English (13 to 19) and in other European
languages cannot be easily decoded in terms of the place value of tens and ones,
which hinders understanding of the ten-structured regroup aspects of a multi-digit
calculation, i.e. addition with moving up a place/subtraction with moving back a
place. This is consistent with the findings of Ho and Fuson (1998), who argue that
the structure of the English language makes it more difficult to understand that
‘-teen’ numbers are composed of a ten and some ones. It also makes it more difficult
to learn the advanced make-a-ten method of single-digit addition and subtraction
that is taught to first graders in China and other East Asian countries (Fuson and
Kwon 1992; Geary et al. 1993; Murata 2004; Murata and Fuson 2001, 2006).
Actually, the positional and decimal principles mentioned in Chap. 5 (WG1) have
been naturally embedded in Chinese numeration and everyday language since the
third century BCE. Some scholars (e.g. Butterworth 1999) have interpreted this as a
reason why Chinese students are at ease with place value for large numbers from the
beginning. From ancient times until now, spoken Chinese whole numbers have been
the same as written numbers, implying that the written numeral directly reflects its
pronunciation and thus has not diverged from the spoken language. Place value is an
unlearned activity, but it is an inherited concept like a mother language, where
native speakers are often unaware of the complexities of their language. This may
explain why all current Chinese curricula do not include the topic of place value (for
a discussion, see Sect. 15.3).

3.4.2 Cardinal Numbers and Measure Numbers

From a conceptual perspective of numbers, Bass (see Chap. 19) points out that num-
bers and operations have two aspects: conceptual (what numbers are) and nominal
(how we name and denote numbers). At least two possible pathways exist for the
development of whole numbers: counting and measurement. Conceptually, num-
bers arise from a sense of quantity of some experiential species of objects: count (of
a set or collection), distance, area, volume, time, rate, etc. To develop a conceptual
understanding, Bass supports an approach to developing concepts of numbers using
general notions of quantity and their measurement, in which the measurement ‘unit’
is key to knowing how much (or many) of the unit is needed to constitute the given
quantity while measuring one quantity by another. Cardinal and measure numbers
in Western languages appear very different from each other, as measure numbers
require the choice of a unit. This is not the case in the Chinese language, where both
are considered in the same way.
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3.4.3 Fraction Names

The order of writing (and reading) a fraction in Western languages is ‘first numera-
tor, then denominator’, and the denominator is usually named with ordinal (not
cardinal) numbers, such as ‘two thirds’ (2/3) of three parts. (In Chinese naming,
taking two parts indicates a part-whole relationship rather than ‘two thirds’.) This
method of fraction naming generates some difficulties for learning the part-whole
relationship. The names for fractions in Western languages are not so clear. Bartolini
Bussi et al. (2014) and Pimm and Sinclair (2015) analyse this difficulty and make
proposals for overcoming it.

3.4.4 Arithmetic Operations

Research studies have identified several difficulties that Western students have with
algorithms. For instance, Fuson and Li (2009) point out that many students in the
USA make the error of subtracting the smaller number in a column from the larger
number even if the smaller number is on the top:

346
-157

211

This error may be reinforced by language confusion, as the names ‘minuend’ and
‘subtrahend’” do not emphasise the passive relationship between them (see above).
However, this seems to be only a part of the story. Written algorithms for addition
and subtraction were introduced in Europe by Leonardo Fibonacci in the thirteenth
century. They hint at the actions performed on some kind of abacus (the Chinese
suan pdn, the Japanese soroban, the Roman abacus or similar; see Menninger 1969).
More recently, the spike abacus was introduced for teaching (see the figures in
Chap. 9). In English and other Western languages, the operations in Figs. 3.7 and
3.8 are described using terms like ‘carrying’® and ‘borrowing’.” The same was not
true when algorithms were introduced in ancient textbooks. In Liber abaci, the term
‘borrow’ is not used. Rather, a kind of compensation or invariance is suggested: to
increase by 10 the units in the minuend and to increase by 10 the units of the subtra-
hend. In this process, the 10 to be added to the subtrahend must be ‘kept in hands’
(reservare in manibus, in Latin). This strategy was maintained in many method
textbooks for primary schoolteachers in Italy until at least 1930.

®Riporto - riportare in Italian; Ubertrag in German; llevar in Spanish; retenue in French.
7 Prestito in Italian, anleihe in German, prestar in Spanish; retenue in French.
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Ross and Pratt-Cotter (2000, 2008) reconstruct the story of the word ‘borrowing’
in North America. They find the first occurrence in a textbook by Osborne in 1827,
but observe that ‘the term borrow may be a misnomer since it suggests that some-
thing needs to be returned’ (p. 49). Fuson and Li (2009) criticise this word (which
was used for more than one century), and Fuson uses the words ‘grouping’ (for
addition), ‘ungrouping’ (for subtraction) and ‘regrouping’ (if necessary in both
cases) in the Math Expression project.®

The situation is quite different in China. In teaching subtraction with regrouping,
the majority of the Chinese teachers interviewed in Ma (1999) describe the so-
called ‘borrowing’ step in the algorithm as ‘a process of decomposing a unit of
higher value instead of saying “you borrow 1 ten from the tens place™ (p. 8). One
third-grade teacher explained why she thought the expression ‘decomposing a unit
of higher value” was conceptually accurate:

The term ‘borrowing’ can’t explain why you can take 10 to the ones place. But ‘decompos-
ing’ can. When you say decomposing it implies that the digits in higher places are actually
composed of those at lower places. They are exchangeable. The term ‘borrowing’ does not
mean the composing-decomposing process at all. (p. 9)

The English terms ‘carrying’ and ‘borrowing’ are not related to each other. The
French term ‘retenue’ is the same for both operations. ‘Refenue’ literally means
‘keep in mind’ (or ‘keep in hand’ in French) and hence hints at memory and not a
concrete action. The origin may be traced back to the term used in medieval arith-
metic ‘reservare in manibus’ (‘to keep in hands’). The use of the same term for
different actions creates many difficulties for pupils (Soury-Lavergne, personal
communication). This simple example shows that different cultures/languages may
foster or hinder the understanding of meaning.

3.4.5 Mathematical Relational Thinking: Equality or
Sameness

3.4.5.1 Some Reported Difficulties in the Understanding of Equality

Several studies have been carried out to examine the use of the equality symbol ‘=’
in mathematics education. Kieran (1981) studies the interpretation of the equality
symbol in the early grades. In preschool, two intuitive meanings appear: the first
(conceptual or relational meaning) concerns the relation between two sets with the
same cardinality (hence an equivalence relation, according to the historical genesis),
while the second concerns the set resulting from the union of two sets. The second
is related to the interpretation of ‘+” and ‘=" in terms of actions to be performed
(procedural or operational meaning). This latter view is reinforced through the use

$http://www.hmhco.com/shop/education-curriculum/math/elementary-mathematics/math-expressions
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of pocket calculators and the transcription of the additions and results as they appear
on the display. For instance, to add the following numbers in a notebook:

15+31+18
it is common to see the following:
15+31=46+18=064

This discussion was carried out in a third-grade classroom in Italy. Only some
excerpts are reported. The teacher (Rosa Santarelli) posed the following problem:

How many days for holidays last summer?

Two pupils have solved the problem as follows:

30-10=20+31=51+31=82+15=97

Do you think that this calculation is correct?

STE: Yes, it is correct. They have thought about the months of holidays. Hence, this month
has so many days, and they have put that month. In June we were at school for 10 days,
hence 30 — 10. ... [T]hen they have written the equal sign and then 20 and from that 20
they have started to count all the holidays. They have written +31, then 51, + 31 equals
82, + 15 (the days in September) equals 97. Then they have understood the result, they
have written it. What they have done is right.

Many pupils agree and reword the same process.

TEACHER: But what does the sign ‘=‘mean in mathematics?

GIO: Equal means that if you have 20 + 30 you put the equal sign and you get the result.
The equal sign tells the result of an operation ...

CAR: If you wish to use this sign in an operation, you must put it at the end. If you make
5 + 5 = then you write 10.

Other pupils reword the same statements.

TEACHER: What does it mean ‘to be equal to” in mathematics?

ILA: It means that you get the result.

SAM: Equal, in mathematics, is usually in the operations. It is used to get the result.

TEACHER: Is it correct to write ‘8 = 8’?

GIO: No, it isn’t. You must write ‘+0’ or else one doesn’t understand. You need to put

something.

TEACHER: Hence, I make a mistake if T write ‘8 = 8.

GIO: Yes, you do. You should write ‘8 + 0 =8 or ‘8 — 0 = 8. (Zan 2007, p. 79 ff., our

translation)

This short excerpt confirms that the procedural meaning of the equality symbol
is often dominant in primary schools, at the expense of the relational meaning. Ni
(2015) argues that student errors such as considering the equal sign as an order to
‘do something’ for an answer probably contribute to the difficulty they experience
later when learning algebra; students treat an algebraic equation as indicating not a
mathematical relation, but an order to ‘do something’ to obtain an answer. This may
have very bad consequences in secondary school, when algebraic expressions are in
the foreground. It is not possible to interpret the following equation according to the
conceptual meaning:

x+3=4
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Teachers tacitly reinforce the procedural meaning when they do not take care of
this issue.

3.4.5.2 Variation Problems in China and Italy

Bartolini Bussi et al. (2013) report an example of variation problems from the
OPMC category, where all of the problems are collected in one 3 x 3 table (see also
Sullivan et al. 2015, p. 88). In China, a collection of variation problems was given
to second graders at the end of the school year as a kind of summary, with several
different examples of problems presented during the school year. It was expected
that the task would be solved in just one lesson due to the background knowledge of
the students. Bartolini Bussi et al. used this task in some Italian schools, but a pro-
cess of cultural transposition was needed (see Chap. 13 of this volume) (Table 3.3).
The most evident effect of this transposition was the time needed. It was not pos-
sible to solve the task in just one lesson. The task was the source of a longer process,
where the students had to become familiar with this surprising way of considering
several problems together and using schemes to find/represent the solution. During
the process, the students started to focus on the relationships between operations
rather than on the execution of operations and hence started reasoning algebraically.
Some further experiments (Mellone and Ramploud 2015) are in progress now.

3.5 Concluding Remarks

The attention to differences in whole number approaches is increasing. It is worth-
while to mention at least the book by Owens (2015), with a chapter on visuospatial
reasoning with numbers, and the book by Owens et al. (2017) on the history of
number in Papua New Guinea and Oceania that details number systems other than
base 10 systems.

The examples discussed in this chapter show that language plays a common, key
role in conveying concepts in the teaching and learning of whole number arithmetic.
A cross-cultural examination of languages should thus allow us to understand lin-
guistic supports and limitations that may foster or hinder students’ learning and
teachers’ teaching of mathematics.

The above discussion highlights that in many cases the Chinese way to develop
whole number arithmetic seems to offer advantages for the construction of mathe-
matical meanings: the attention to mathematical consistency and coherence seems
larger than in the Western curricula. Yet the Chinese case shows that the difference
is strongly related to linguistic and cultural features not shared by other cultural
groups. This observation suggests that caution must be taken when trying to apply
some of the Chinese methods in other countries, unless a careful process of cultural
transposition is established.
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Table 3.3 An example of variation problems from the OPMC category Beijing Education Science
Research Institute and Beijing Instruction Research Center for Basic Education (1996), vol. 4,

p- 88

Solve the following nine problems and then explain why they have been arranged in rows and
columns in this way, commenting on their relationships.

(1) In the river there are 45
white ducks and 30 black
ducks. How many ducks are
there altogether?

(2) In the river there are
white ducks and black ducks.
There are 75 ducks
altogether. 45 are white
ducks. How many black
ducks are there?

(3) In the river there are white
ducks and black ducks. There

are 75 ducks altogether. 30 are
black ducks. How many white
ducks are there?
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(1) In the river there is a
group of ducks. 30 ducks
swim away. 45 ducks are still
there. How many ducks were
in the group to begin with?

(2) In the river there are 75
ducks. Some ducks swim
away. There are still 45
ducks. How many ducks
swam away?

(3) In the river there are 75
ducks. 30 ducks swim away.
How many ducks are still
there?
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(1) In the river there are 30
black ducks. There are 15
more white ducks than black
ducks (15 fewer black ducks
than white ducks). How many
white ducks are there?

(2) In the river there are 30
black ducks and 45 white
ducks. How many more
white ducks than black ducks
(how many fewer black
ducks than white ducks) are
there?

(3) In the river there are 45
white ducks. There are 15
fewer black ducks than white
ducks (15 more white ducks
than black ducks). How many
black ducks are there?

w0H
A
me )
s A
2l PE e
=
TH

my \—_—_,_._{-‘H,'

7H '
E]F—ri'q"_;_—d'

B R

Acknowledgements These language and cultural issues were debated in different working
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Chapter 4
On Number Language: A Commentary
on Chapter 3

David Pimm

4.1 Introduction

I start with a policy statement, pretty unrelated to the previous chapter. I am always
a little taken aback to see numbers or other mathematical symbols (e.g. “7° rather
than ‘seven’, ‘+’ rather than ‘plus’) presented inside classroom transcripts, which
supposedly provide a written account of what was said. Everything that is said is
said by someone in some natural language (or natural language mix — cf. code-
switching, e.g. Setati 1998 — such as where a somewhat bilingual speaker may know
how to say the higher number words in one language only). Non-verbal numerals
(of whatever sort) are not part of any natural language,' so they require ways to be
read aloud info such a language. Because of this, I believe it is important to be very,
very precise about marking such distinctions. In Pimm (1987), for instance, I distin-
guished between what I termed a ‘spelling’ reading and an ‘interpretative’ reading
of written mathematics: for example, is the Biblical ‘number of the beast’ (666) to
be said as ‘six six six’ or is it ‘six hundred and sixty-six’ (in British English) or ‘six
hundred sixty-six’ (in the North American version)? What it is not, however, is ‘six
hundreds (and) sixty-six’, something I will come back to later on.?

!'Chrisomalis asserts, ‘Over 100 structurally different numerical notation systems are known to
have been used between 3500 BCE and the present day [...] Unlike number words, they represent
numbers translinguistically, and do not follow the language or lexicon of any specific language.
Unlike tallies, they represent completed enumerations, and unlike computational technologies,
they create permanent records of numerals’ (Chrisomalis 2009, pp. 506-7).

2Note this is not true when saying decimals in English: ‘666.66 can be read aloud as six hundred
(and) sixty-six and sixty-six hundredths. The negative whole number powers of ten are always read
in terms of plural-marked units.
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Is ‘six six six’ even a spoken number or simply a time-ordered string of digits
being listed in turn (one no different from a reading into English of ‘6, 6, 6’ rather
than ‘666’), one that ignores the positional structure? In French, certain numbers
(such as phone numbers) whose cardinal value is seldom of interest are frequently
read (and written) as sequences of two-digit numbers: 02 65 47 23 46. I will come
back to this later too when querying whether the number-word system of any lan-
guage reflects place value (or better put perhaps, in relation to speech, ‘temporal
value’). My broader point is that there are significant differences between speaking
and writing in relation to numbers, most particularly when it comes to engaging
with the written symbolism of mathematics (not least of number), differences that
are forgotten at our peril.

As numerical anthropologist Stephen Chrisomalis claims, ‘The linkages between
number words, computational technologies, and number symbols are complex, and
understanding the functions each serves (and does not serve) will help illustrate the
range of variability among the cognitive and social systems underlying all mathe-
matics’ (Chrisomalis 2009, p. 496).

4.2 What Is Written and What Is Said

I start by echoing the claim from early on in Chap. 3 that ‘whole number arithmetic
is not culture-free, but deeply rooted in local languages and cultures with the inher-
ent difficulty of transposition and culture perspective’ (this volume, Sect. 3.1.2). As
mathematician René Thom once observed:

when learning to speak, a baby babbles in all the phonemes of all the languages of all the
world, but after listening to its mother’s replies soon learns to babble in only the phonemes
of its mother’s language. (cited in Ziman 1978, p. 18)

Also, from Chap. 3’s opening page, the expression ‘cultures of speaking’ brought
to mind the fact that there are ‘cultures of writing’ too (e.g. the order of writing of
the two numerals within a single fraction — see Bartolini Bussi et al. 2014) and that
these two may not perfectly align within a single ‘culture’ (see later for a further
example involving grouping of digits within a large number in relation to how they
are read). And these both influence and are influenced by the physical actions and
gestures implicated in counting and computation (a fact worthy of the historical and
geographical term ‘cultures of gesture’, such as varied forms of finger counting and
finger calculation® — for many examples and a classification scheme, see Bender and
Beller 2012). It is important to remember that, in many times and places, these two
mathematical actions (counting and computation) were barely connected at all —

*One instance is recorded in the writings of the Northumbrian monk Bede (674-723 CE): for
example, in De temporum ratione. O’Daly (2014) writes: ‘The hand, the most portable device of
all, was a powerful tool for symbolic representation, calculation, and mental processing in the
Middle Ages, and indicates the presence of a comprehensive, but elusive, gestural vocabulary, the
full meaning of which we can only guess’.
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e.g. the combined but unrelated use of Roman numerals to hold numbers and count-
ing boards with which to calculate (see Tahta 1991; Chrisomalis 2010).

In response to the piece about fraction writing order by Bartolini Bussi et al.
(2014), I wrote:

With fractions written by hand, the composite symbol is produced in a given, temporal
order. How might that gestural order relate either to what is said or to how what is said is
conventionally written? In English, the first word spoken in time is the numerator: is this so
for any language? When a fraction word is written down in English, left to right, the numer-
ator is again the first word to be written. (Ditto the question about other languages.) But
when the composite symbol for the fraction is produced, there are variations possible, as
their terrific vignettes from China and Burma attest. But both examples point to the arbi-
trary nature of manual symbol formation (in Hewitt’s 1999 use of that word) and to the fact
that, once made, the symbol retains (almost) no trace of its making [not least its order].
(Pimm 2014, p. 15)

The many cultures of number are fascinating and intricate, and the particularities
of language vis-a-vis time and place, in interaction with computational technologi-
cal devices (which have existed for at least 5000 years), offer a most worthwhile
focus for profound attention. In relation to very recent work concerned with what
might be termed ‘tangible technological gestures’ (see Sinclair and de Freitas 2014,
not least in regard to Jackiw and Sinclair 2014), languages themselves at times
encode forms of gesturing that have their own transparencies and opacities, their
own generalities and idiosyncrasies, all of which form part of the complex symbolic
world into which all children are born.

For Wittgenstein, language is, initially but fundamentally, reactive, the word not
being the origin:

The origin and the primitive form of the language game is a reaction; only from this can

more complicated forms develop. Language — I want to say — is a refinement, ‘im Anfang
war die Tat’ [in the beginning was the deed]. (Wittgenstein 1937/1976, p. 420)*

In relation to the deed of counting, the specific pedagogic language of computa-
tional practice (e.g. the English arithmetic metaphor in addition of ‘borrowing’ and
‘paying back’) brings with it the possibility that it was at one point literal. One
potential example taken from Chap. 3 relates to the suggested link between the
medieval Latin expression reservare in manibus (‘to keep in the hands’) and the
more contemporary French term a retenir (‘to keep in mind’). It crossed my mind
that the former, in relation to abaci and counting boards, might literally refer to what
the hands had to do. Elsewhere, Wittgenstein also commented, ‘Remember the
impression one gets from good architecture, that it expresses a thought. It makes
one want to respond with a gesture’ (Wittgenstein 1932, p. 22e). This observation

reminded me of the Egyptian hieroglyph for million (21 ), plausibly a human whole-
body gesture at the large size of the number.

Language is not separable from culture nor from gesture (especially not in the
context of counting). Gestures perhaps have evolved over a longer period and

“For much more on this, see Zwicky (1992).
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perhaps have left their trace on the language.’ There is also the possibility of tempo-
ral slippage of one system in relation to a development within the other, not dissimi-
lar to those identified by Lakoff and Nufiez (2000) with regard to the calculus,
whereby the (static) talk is mid-nineteenth century, while associated (dynamic) ges-
tures are more seventeenth century in nature (more fitting to the notion and language
of a moving variable, a language that is returning with dynamic geometry
environments).

In particular, Raphael Niifiez examined the co-production of gestures and speech
of Guershon Harel proving a result from real analysis. Nifiez observes:

The study of gesture production and its temporal dynamics is particularly interesting
because it reveals aspects of thinking and meaning that are effortless, extremely fast, and
lying beyond conscious awareness (therefore not available for introspection). (2009, p. 319)

But it is also true that the gestures are co-produced when counting (and that in
certain circumstances constitute counting), phenomena that are equally worthy of
study as their higher mathematical counterparts. Nevertheless, the focus of this
chapter as well as its predecessor is on number language and not number gestures,
even though I do not wish to dismiss the latter as epiphenomenal, the way labelling
them ‘paralinguistic’ does.

4.3 On Place Value

With regard to place value, one of Chap. 3’s central themes, I have three main obser-
vations to make.

First, I would like to consider whether the phenomenon of place value exists
solely in relation to written numerals (i.e. written marks, nowadays usually, but not
always, employing what are termed Hindu-Arabic numerals®) and not in respect of
written words or characters from a natural language and whether it also could
describe aspects of spoken number words in a natural language as well (or even
gestural language — query: what is the structure of number signs in British, American
or Chinese sign language?). This question reflects my increasing uncertainty as to
what place value actually is, as well as echoing Tahta’s (1991) informed assertion
that place value is appreciably overemphasised in Western mathematics teaching —

SNumeration systems are among the most linguistically stable systems that exist: the pronuncia-
tion split within proto-Indo-European languages into classes labelled centum and satem (two dif-
ferent words for ‘hundred’, in Latin and Avestan, respectively) is a surface reflection of this. For an
intriguing account of zero, see Rotman (1987).

¢ Chrisomalis (2009) helpfully observes, “I use the term ‘western” to refer to the signs 0123456789
instead of ‘Arabic’ and ‘Hindu-Arabic’, not to deny that this innovation was borrowed from a
Hindu antecedent through an Arabic intermediary, but to avoid confusion with the distinct Indian
and Arabic numerical notations used widely to this day. Rendering these latter notations ‘invisible’
through nomenclature is counterproductive and potentially ethnocentric.” (p. 496). In response to
this, hereafter I use single quotation marks around ‘Hindu-Arabic’ in this chapter.
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and the discussion of Chinese numeration in Chap. 3 relates to this, when the authors
claim, ‘The transparency of Chinese [number] names is likely to foster students’
understanding for place value’ (this volume, Sect. 3.2.2). Though if, as I argue
below, place value is simply a convention, then there is a strong question as to
whether it is something that is amenable to being ‘understood’, rather than simply
complied with (see Hewitt 1999).

My questioning arose from reading Chap. 3. The authors claim that traces (which
they nicely term ‘memories’) exist within many spoken numeration systems within
natural languages. But these are, at best, ordinal traces, with regard to how number
names are said in a conventional order (in English, in decreasing powers of ten,
although exceptions like four-and-twenty still exist; in German, the decades are
systematically said after the units, e.g. 54 is vier-und-fiinfzig, ‘four-and-fifty’). This
raised two sub-questions: does it make sense even to ask whether written (or spo-
ken) natural language numeration systems are or are not place value and, in regard
to written numeration systems that were not place value (e.g. the ancient Egyptian
one), what were their spoken counting systems like?

In regard to the first question, my (admittedly strong, potentially over-strong)
conjecture is no spoken language-based numeration system is place value (not even
Asian ones, which would be the most likely contenders). This is because the struc-
ture of how number words are formed ensures that their decimal value is encoded as
part of the string, thus changing either the written order (of language-specific sym-
bols on the page) or (temporally) the spoken order in which the various parts of the
numeral are said aloud does not alter the combined total. It may go against conven-
tion (as ‘four-and-twenty’ does), but it does not produce a different number. (Of
course it is true that simply interchanging the ‘six’ and the ‘seven’ in ‘sixty-seven’
and ‘seventy-six’ changes the value but that ignores the fact that ‘six’ is part of
‘sixty’.) So possibly place value is solely a phenomenon of written, non-language-
based numeration systems, and whichever natural language is used cannot help with
this.

My second place value observation, which relates to the first, has particular force
because of the particularities and peculiarities of manipulatives such as Dienes
blocks (also known as multibase arithmetic blocks — see this volume, Sect. 9.3.1.2),
which are regularly promulgated as a means to assist with acquiring the concept of
place value. See Fig. 4.1.

It is a commonplace pedagogic move in English-language primary schools to use
large sheets of paper and columns labelled (from left to right), thousands (or Th),
hundreds (or H), tens (or T) and units (or U).” The blocks are collected and placed
in the respective columns and then ‘Hindu-Arabic’ digits are used to record the
number of them in each column, hugely finessing the fact that it is actually the paper
columns and not the blocks themselves that are both ‘holding’ the places and, con-
sequently, carrying ‘place value’.

7And these too can go on, TThs for tens of thousands, HThs for hundreds of thousands, Ms for
millions, etc. Note how both words for TThs and HThs are plural, but in the notation, only the latter
is marked symbolically. For more on this, see Sect. 4.4 on ‘units’.
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Fig. 4.1 Dienes blocks (1000, 100, 10 and 1)

However, as with the instance mentioned in Chap. 3 where a 7-year-old writes
10013 instead of 113, an accurate (as opposed to conventionally correct) notating
from a corresponding Dienes block paper configuration would be 1H, 1T, 3Us = 100,
10, 3 = 100103. The question of quantity versus place is an intricate and arbitrary
one (again in Hewitt’s 1999 sense), and there is no necessary reason why there can-
not be any number of blocks of any size in a single column (something an abacus
masks by each spike having a set, uniform height relative to the diameter of the
beads). Indeed, a higher (and linear-algebra-influenced) mathematical perspective
has any whole number generated by the basis consisting of powers of 10 (and
includes decimal fractions, if negative powers of 10 are permitted) with the coeffi-
cients 0-9. It is partly for this reason that I mentioned the six, six, six reading of
‘666’ in the opening paragraphs of this commentary (as well as linking to David
Fowler’s 1987 historical reconstruction, via the arithmetic process of anthyphaire-
sis, of a pre-Euclidean functioning definition of ratio).

Before raising further difficulties, there are three more observations I wish to
make about Dienes blocks themselves. The first is that they can actually be modified
to display any whole number or decimal fraction. To have ten thousand, for instance,
one simply needs to stick together ten of the large cube size; for hundred thousand,
a square array of a hundred of the large cube size; and for million, a cube array of a
thousand the large cube size. For decimal fractions, merely rename one of the larger
blocks (e.g. the larger cube or the ‘long’ or the ‘flat’ as they are sometime called) as
‘one’.® Secondly, this visuo-geometric repetition every 10° exactly fits the SI
(Systeme Internationale) emphasis on grouping whole number digits into triples, as
well as reflecting the standard metric naming structure of measures (though if we

8As is so often the way of these things, having figured this out for myself, I then came across the
paper by Kim and Albert (2014) which purports both to give an account of and to account for the
history of base-ten blocks. While disagreeing profoundly with much of their accounting for, they
did remind me that in Dienes’ (1963) book An Experimental Study of Mathematics Learning — a
book which I read in 1972 as part of a very early mathematics education course taught by David
Tall in the University of Warwick mathematics department — Dienes makes the same observation,
on his p. 28.
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wanted to use this to refer to a kilo-something, a milli-something or a micro-
something, we would need a word for a standard counting unit — other than ‘unit’).
My third observation is straightforward: there is a ‘natural’ and directly observable
sense of decimal equivalence between each power of ten and the next one.

However, it strikes me that Dienes blocks are at least as good a fit to the base-ten
system of Egyptian hieroglyphic numerals (which uses the repetition of vertical
lines, hoops, scrolls, lotus flowers, etc. where there are no links whatsoever among
the symbols for 1, 10, 100, 1000 and so on, either to record numbers or to calculate
with them).’ (See Fig. 4.2.) And this numeration system is decidedly not a place
value one.

In general, there are two alternate principles for generating words or other sym-
bols for numbers: repetition (related to tallying) and cypherisation, namely, the use
of distinct and independent symbols for each number. Many older symbolic systems
use repetition as the primary principle. For example, below (see Fig. 4.3) depicts an
example using the ancient Egyptian numeration system: on the left is the conven-
tional order and on the right in a scrambled order. (Whole-number adding is totally
unproblematic as the symbols themselves are simply combined, and any excess over
nine of one power of ten is converted into one of the next power up.)
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Fig. 4.2 A depiction of Dienes blocks (with ancient Egyptian hieroglyphs for 1000, 100, 10 and 1
appended)

IR - 4523 - INIINIIIICRR

Fig. 4.3 An ancient Egyptian numeral (in conventional and scrambled order)

°This is not always the case historically. With Roman numerals, for instance, they are perfectly
competent for recording numbers. However, due to a variety of principles being combined (both
additive and subtractive, the use of 5, 50, 500, etc. as an intermediate resting place sometimes
called a sub-base, etc.), they are not easily used for calculation (particularly multiplication and
division). But the companion use of counting boards was perfectly adequate for that.
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‘Full’ cypherisation means every initial numeral up to one less than the base has
a different symbol (think 1, 2, 3, 4, 5, 6, 7, 8, 9). Chinese rod numerals (discussed
in Chap. 3) reflect enormous flexibility with very limited cypherisation (the vertical
rod and the horizontal rod), akin to Roman numerals I and V, only without the
latter’s subtractive principle!® and much repetition, likely because they became
traces of actual piles of rods used on counting boards, where an attribute of the
board (lines, positions) took care of the place value. Likewise, ancient Babylonian
numeration consists in its entirety of only two distinct stylus edge marks (one the
same as the other only rotated through 90°), together with a mixed-base system (ten
and sixty), repetition, a form of place value and contextual ‘floating point’.

One pragmatic test for any written system (presuming it makes repeated use of
the same set of symbols or objects) with regard to its being place value or not is
whether one can generically scramble the order of the marks and not affect the
numerical value represented: this is true with Dienes blocks and also with ancient
Egyptian numerals. In passing, it is also true of early Greek (Ionian) numerals (and
are still used today for depicting ordinals), where the numeral for 1 bears no relation
to that of 10 or 100, being different letters of the alphabet. The Egyptian numerals
(as do the Greek) retain their specific decimal value, even when rearranged — see
Pimm (1995) for more on these complexities of symbol/object manipulation.
Consequently, Dienes blocks cannot ‘contain’ place value. So, if they do ‘work’,
how do they ‘work’? The ‘value’ is there, but the ‘place’ is not.

Caleb Gattegno (e.g. Gattegno 1974) repeatedly proposed systematising
language-based counting systems in elementary schools in different European lan-
guages, in order to make them easier to learn by being a far closer fit to the standard
Western written numeration system. In particular, in English he wanted ten to be
said as ‘one-ty’, eleven as ‘one-ty-one’ and twelve as ‘one-ty-two’!! and then twenty
as ‘two-ty’, thirty as ‘three-ty’ and so on. With the later decades (sixty, seventy,
eighty, ninety), the changes merge with the actual empirical system. There is a
samizdat-style community within Anglophone mathematics education (especially
within the UK, but in North America and Western Europe too), which works exten-
sively with Gattegno’s ideas (and the teaching aid of the Gattegno number chart,
among others), in order to support the acquisition of structured fluency in number
naming (for one recent instance, see Coles 2014).'> The Chinese numeration system
detailed in Chap. 3 (which presents in several other Asian languages too) has these
properties already.

My third place value observation relates to the notion of linguistic/conceptual
transparency as employed in Chap. 3, the generation of number terms for powers of

"For example, instead of IIII, they used IV = V — 1; instead of XXXX, they used XL =L — X, but
this shortening only occurred in mediaeval times.

"'"The etymology of eleven and twelve is quite singular, deriving from old Norse words ‘einlief”
and ‘twalief’, meaning, respectively, ‘one-left” and ‘two-left’ (presumably after taking away ten, a
trace subtractive principle that can also be seen in Roman numeration).

12 There is also a far greater emphasis in this community on the value of acquiring ordinal elements
of counting: see Tahta (1998) or Coles and Sinclair (2017).
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ten and how they relate to the standard (SI) means of writing large whole numbers
using ‘Hindu-Arabic’ numerals. In Chinese, T (gian") is the character for ‘thou-
sand’ although none is needed, as it is not in English either, based on the principle
that a new power-of-ten name is only needed when the same two terms would oth-
erwise be next to each other. ‘Ten tens’ gives rise to ‘hundred’, but ten hundreds
(‘thousand’) should cause no difficulty (and does not in naming centuries, e.g. ‘the
seventeen hundreds’) and need not exist, while ‘hundred hundreds’ is the next one
that should generate a new term. In Chinese, that character is /J (wan), while
English speakers just say ‘ten thousand’. (To belabour the point, notice it is not said
as ‘ten thousands’, as conventional pluralisation rules of English would demand —
though see the next section on the distinction between mass and count nouns.'#) It is
this same principled issue that causes divergent interpretations of ‘billion’ (‘hun-
dred million’ in North America, ‘million million’ in the UK, at least historically):
likewise with ‘trillion’. But the generation of these new words for certain powers of
ten allows the use of the same number words from one to nine to be combined to
name every whole number.
The SI number convention declares:

The digits of numerical values having more than four digits on either side of the decimal
marker are separated into groups of three using a thin, fixed space counting from both the
left and right of the decimal marker. Commas are not used to separate digits into groups of
three. (http://physics.nist.gov/cuu/Units/cheklist.html)

Thus, for example, 213 154 163 is how this number should be written. However,
this convention makes a (false, universal) presumption in relation to every natural
language on the planet with regard to the structure of number words within each
language, because, as I mentioned at the outset, written numerals are not part of any
natural language.

So in relation to transparency and Chap. 3’s claimed ‘perfect’ match of Chinese
numeration and ‘the mathematician’s arithmetic’, this is one place where the
Chinese language numeration system does not match SI at least, namely, with regard
to delimiting (whether by means of commas, full stops or spaces) numerals with
more than four digits. For instance, twelve thousand is written in Chinese as —JJ %
T (yiwan lidnggian; in other words, one wan two gian — one ten-thousand and two
thousand), which does not match 12 000. The written symbolic form of numbers can
thus aid or interfere with generating the corresponding correct, language-specific
spoken form.

In an article about this particular mismatch, Arthur Powell opens his account as
follows:

In May and June of 1984, while conducting a series of mathematics teacher education

workshops in Beijing, capital of the People’s Republic of China, I was introduced to some
pedagogical problems in Chinese numeration. They involve the teaching and learning of

B Throughout this chapter, and indeed this volume, Hanyu Pinyin (a standardised Romanisation
system for Mandarin Chinese) is used to represent Chinese characters.

14The Greek word for ten thousand — myriad — is used in English as a ‘round’ number word for a
very large number (for much more on the linguistics of round numbers, see Channell 1994).
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how to speak numerals with fluency in Chinese, using Hindu-Arabic written numerals. A
salient feature of these problems manifests itself when Chinese students attempt to read
numerals longer than four digits. For example, even graduates of senior middle schools find
it necessary to read 6,721,394 by first pointing at and naming from right to left the place
value of each digit before knowing how to read the “6” in the millionth place and the rest of
the numeral. (Powell 1986, p. 20)

Powell’s proposals with regard to a way of ameliorating this difficulty in this
article relate to a suggestion generated by Gattegno’s ideas of the power of peda-
gogic modification of certain elements of number-naming systems in order to
emphasise structure:

[this proposed alternative approach] allows learners to become aware of the regularity of

Chinese numeration. It also helps learners to develop strategies for by-passing reading dif-

ficulties caused by the employment of a convention of delimiting digits which is contradic-
tory to the linguistic structure of Chinese. (p. 20)

So, by putting a space or comma after every four digits (rather than three) and
reading the delimiter as wan, correctly spoken Mandarin Chinese numeration fol-
lows, rather than it having to be memorised.'> But this does raise the question of
where, in regard to mathematics, does a specific language ‘stop’.

Finally, I was led to wonder, if place value can be so transparent in some sys-
tems, whether it becomes hard to think about change of base. But I cannot go into
this here. The next core element of this commentary relates to the complex issue of
numerical units.

4.4 Count Nouns and Mass Nouns: The Question of Units

The motivation for exploring the issues of this section arose in part from the inter-
esting and important discussion of number classifiers in Chinese provided in Chap.
3, but also from my simple curiosity wondering why in lots of settings English
number words have features of nouns that reflect both singular and plural forms: for
instance, in the everyday expression ‘hundreds and hundreds’ compared with ‘two
hundred (and) fifty-three’. Or, the spoken number following ‘ninety-nine’ is ‘one
hundred’ or ‘a hundred’, yet the number following one hundred ninety-nine is ‘two
hundred’). Why is it that ‘hundred’, when used as a power-of-ten unit, is singular
(e.g. two hundred and forty-two, rather than two-hundreds and forty-two)? Why do
number words put pressure on the straightforward singular/plural distinction in
English? How does this play out in the units for the countable noun and are numbers
themselves such units? As Wittgenstein observed, ‘Grammar tells what kind of

5To illustrate how devastating this can be, I noticed today that my ticket for the Vancouver
SkyTrain has a twenty-digit identification number, presented in groups of four: 0001 1570 5839
8568 8326. Had I to read this aloud as a single number (were I concerned, say, about its cardinal-
ity), rather than as simply a string of digits with a pause for each space, I would be rendered
speechless.



4 On Number Language: A Commentary on Chapter 3 81

object anything is” (Wittgenstein 1953, p. 116); hence, this uncertainty (present also
in singular or plural verbs) potentially reflects an ontological instability at the heart
of (English-language) number.

The earlier discussion of Dienes blocks and the paper tabular presentation also
had column headings that were called ‘thousands’, ‘hundreds’, ‘tens’ and ‘units’.
Yet once numerals were used to replace the (multiple) blocks, the differentially
marked plural forms vanished in both the corresponding spoken and written English.
(With regard to fractions words in English, not least the question of whether ‘three-
fifths’ is a singular or plural noun and how it differs syntactically from ‘three fifths’,
see the next section.)

In order to pursue some of the challenges that were mentioned in the previous
section, I wish to examine certain morphosyntactic aspects of number words in
English. One broad distinction in English grammar (which has commented upon in
the literature since at least the early 1900s'¢) is the distinction between count nouns
and mass nouns (the latter is sometimes referred to as ‘non-count’ nouns, though the
two categories are not the same — see Laycock 2010), albeit one currently eroding
(as is the case with round numbers) in interesting ways.

Edward Wisniewski begins his chapter on the potential cognitive basis for such a
distinction as follows:

English and other languages make a grammatical distinction between count nouns and mass
nouns. For example, “dog” is primarily used as a count noun, and “mud” is primarily used
as a mass noun. Count nouns but not mass nouns can be pluralized and preceded by numer-
als (as in “three dogs” but not “three muds”). Count nouns but not mass nouns can appear

with the indefinite determiner “a” (as in “A dog ate the chicken” but not “A mud covered the

chicken”). On the other hand, mass nouns can appear with indefinite quantifiers, such as
“much” or “little” (as in “much mud” but not “much dog”), whereas count nouns can appear
with indefinite quantifiers such as “many” and “few” (as in “many dogs” but not “many
muds”).'” (2010, p. 166)

There are many things to be said about this distinction. One key observation
concerns the potential that any English noun, in certain circumstances, can come to
take on both count and mass aspects, rather than, as suggested above, that these are
two disjoint noun categories. This is also marked by the failing distinction between
fewer (count) or less (mass), likewise many and much. In a mathematics context,
this flexibility can be seen in the nineteenth century with the terms ‘algebra’ or
‘geometry’, where mathematical developments (non-Euclidean geometry, Boolean
algebra) subsequently enabled ‘an algebra’ or ‘two geometries’ to be spoken of (and
related to highly significant shifts in the perception of the underlying mathematics
being referred to). In the late twentieth century, ‘technology’ has morphed to allow

1This distinction is certainly not limited to English but is far from universally employed across
languages. In particular, the various forms of Chinese do not distinguish these categories, instead
using classifiers as described in Chap. 3.

"There is a footnote in Wisniewski’s chapter at this precise point, which begins, ‘Some languages
such as classifier languages (e.g. Japanese) do not make a distinction between count and mass
nouns. Nevertheless, they do have mechanisms for indicating that an entity is or is not individu-
ated’. As explored at length in Chap. 3, Chinese is also a classifier language.
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‘a technology’ or ‘digital technologies’. All instances of conventionally mass nouns
admit count possibilities and characteristics, and vice versa.'8

A second observation has to do with the way that mass nouns are quantified:
traditionally, this was by using various instances of the ‘a unit of” construction (e.g.
‘a slice of” or ‘a loaf of” bread, ‘a grain of” rice), where the unit could always be
quantified, i.e. was itself a count noun. (Though, contrariwise, seeing four as ‘a
quartet of "' permits all count nouns to be seen as mass nouns — albeit in the plural
form — where the number words themselves can be quantified: two quartets of, three
septets of, and so on.?")

However, the most educationally significant thing by far that this distinction
relates to in regard to this chapter and the previous one is the extent to which num-
ber words themselves (in English or other languages), when functioning as nouns
(as they do in arithmetic), do so as mass or count nouns. This is centrally related to
the passing comments I have repeatedly made so far about whether it should be
‘hundred’ or ‘hundreds’.

In the specific context of this chapter, however, my interest lies with English
number words themselves in their nominal form, one, two, three, etc., and the cor-
responding ordinals, first, second, third (which may or may not function as nouns),
and the somewhat bewildering connection in some languages between ordinals and
fraction terms (see Pimm and Sinclair 2015, as well as the next section). With all of
these sets of number words, the question is: mass or count?

Consider the English word count sequence ‘one, two, three, etc.”. One of the
ambiguities in English in respect of multiplication has to do with whether it ‘should
be’ four twos is or four twos are eight.?! Notice the distinct pluralisation of ‘two’
marks it as a count noun, as does the ‘count’ word ‘four’, as does the verb agree-
ment of ‘are’ with the pluralised noun form ‘twos’. The presence of a count noun
permits the question ‘How many?’ to be asked in relation to it (for much more on
this, see Sinclair and Pimm 2015a). Yet in the count sequence one, two, three, etc.,
the number words act more like mass nouns. And, as always, what cognitive shifts
or chasms underlie such linguistic uncertainties?

Look at the ordinal terms: first, second, third, fourth, etc. While it is possible to
imagine scenes where a count noun perspective is possible (e.g. in an athletic meet-
ing, asking a runner: how many firsts, and how many seconds?, meaning first places
and second places), these act more like mass than count nouns. But notice what
happens when we shift to the related fraction forms: again, we get two sevenths and

'8 As a potential example of nouns going the other way, consider ‘I returned to the car and there was
bird all over the windshield’, though this also could be seen as an anti-synecdoche, using the whole
for the part.

With regard to Ancient Greece, David Fowler refers to arithmoi as cardinals, but helpfully
observes, ‘a much more faithful impression of the very concrete sense of the Greek arithmoi is
given by the sequence: duet, trio, quartet, quintet, ..."” (Fowler 1987, p. 14).

X CfT. S. Eliot’s Four Quartets as well as the earlier mention of Fowler and arithmoi, specifically
in the previous footnote.

2I'Though here the question, in relation to the calculator and what is said when pressing the ‘=’
button, is perhaps whether the verb should not be ‘is (are)’ but rather ‘make(s)’ or ‘give(s)’.
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three tenths, which are plural and count nouns (and would encourage this syntax for
statements like ‘two sevenths are bigger than three tenths’). But then the unifying
hyphen may show up (two-sevenths, three-tenths), with the effect of singularising
these composite forms.?

Once again, this section simply contains some brief comments and observations
about number language in certain contexts. In the next section, I move towards
aspects of a range of number word systems.

4.5 Cardinal, Ordinal and Fractional: Three Interlocking
Linguistic Subsystems

Whole numbers are not the only game in town. Languages also have systematic
ways of naming (of summoning, of calling into being) ordinals and fractions (deci-
mals or otherwise) as well. Most of what follows specifically concerns the English
language, though a more diverse discussion (concerning some twenty different lan-
guages) can be found in Pimm and Sinclair (2015), which explored variations
among these three sets of number words across a variety of languages and language
groups. The motivation to do so arose from the two papers in For the Learning of
Mathematics (Bartolini Bussi et al. 2014; Pimm 2014), most specifically in relation
to close links (in some languages near identical) between how ordinal words and
fraction words are formed (and why this might be).

In an attempt to summarise some of what was found, here are four diagrams that
reflect different relationships among cardinal (C), ordinal (O) and fraction (F) words
within specific languages from my dataset. The arrows indicate ‘adding’ a suffix to
the previous sets of words to form the new set. Figure 4.4(a) captures, e.g. Norwegian,
while (b) exemplifies one common relationship (e.g. German): (c) is the ‘degener-
ate’ case of (b) that fits some Western European languages (e.g. English, French,
Italian and Spanish), while (d) reflects Hungarian.

a b c d
(4D (D)
Fig. 4.4 (a-d) Various relationships among sets of number words within a single natural
language

22 Pedagogically, Hewitt (2001, pp. 47-8) explores fraction operations based primarily on linguistic
parallels between invented non-number noun names (that he gives compound number name pat-
terns to, such as ‘flinkerty-floo’ or ‘zipperly-bond’) and number nouns, asking not only ‘how many
twenty-fourths are there in one?” and ‘how many four-hundred-and-twentieths are there in nine?’
but also ‘how many flinkerty-flooths are there in one?” and ‘how many flinkerty-flooths are there
in zipperly-bond?’. Note his use of ‘How many?’ questions and plural number nouns and plural
verbs throughout.
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As I mentioned at the outset, one question I was led to examine was how these
naming systems relate one to another within a given language, as well as how they
relate to gestures on the one hand and to trans-linguistic written numerals on the
other. Ordinality primarily concerns the sequential aspect of whole numbers, as
opposed to their quantitative (cardinal) one. And there is a key and fundamental
question about which came first, cardinal or ordinal. (For much more on this, see
Seidenberg 1962 and Sinclair and Pimm 2015a.) But spoken ordinal terms carry a
significant difference from cardinal terms in that the core issue becomes which one
comes before or is said before or after another, rather than which one is bigger or
smaller. Thus, ordinality is strongly related to temporality rather than magnitude.

Here are two minute observations. First, there is a commonly employed, hybrid
written notation that seems both to pull ‘Hindu-Arabic’ numerals into a specific
language and to privilege the cardinal over the ordinal: 1st, 2nd, 3rd, 4th, 5th, etc.
(even though in French it is 1, 2ime  3itme gieme 5ieme etc ) The second one is spe-
cific to English and relates to the supposed cardinal counting decade words: both
‘thirty’ and ‘fifty’ show explicit ordinal over cardinal traces — ‘thir-ty’ as the third
‘-ty’, ‘fif-ty’ as the fifth ‘-ty’ — a visible (and audible) trace, not least because of the
distinction between the English words ‘three’ and ‘third’ and ‘five’ and ‘fifth’ (from
the two closely related English language systems of cardinal and ordinal words),
whereas neither ‘four’ and ‘fourth’ exactly ‘fit” “forty’.

There is an ordinal regularity in English after five, both of forming ordinals ‘from’
cardinals and the presumed economy (and greater ease of pronunciation) of poten-
tially dropping the ‘-th’ suffix from a possible, historical sixthty, seventhty, eighthty
and ninethty. But in regard to my discussion in Pimm (2014) of ‘the fifth part’ (in
regard to the singularity of unit fractions in Ancient Egyptian arithmetic), there is
some appreciable specificity implied, in that ‘the sixthty’ (seen as ‘the sixth ‘-ty”)
would have to be unique and ‘a sixthty’ or ‘two sixthtys” would not be feasible.

4.6 A Few Concluding Remarks

The main focus of this commentary piece has been to draw attention to certain fea-
tures of number language, both language-specific ones (mostly in regard to English)
and across certain classes of language (in terms of the presence or absence of certain
distinctions, such as mass/count or classifiers) that may have some pertinence or
significance in learning to number and to count. But underneath it has been an
attempt to keep an ear and an eye out for ‘traces’ (‘memories’ in the terminology of
Chap. 3) of what has passed before or en route (both within individuals and within
cultures) to our present-day set of practices and forms with regard to number.

In particular, in my attempt to localise place value away from natural language
and primarily into written symbolic notation systems (though it is important not to
forget physical manifestations of the same, such as with khipu — see Chrisomalis
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2009), I have endeavoured to make distinctions among the interlinked systems of
language, notation and the world. In regard to mathematics education, far more
generally, the potential overvaluing of cardinal number as the pedagogically pre-
sumed dominant form with regard to arithmetic and mathematics has some serious
consequences, as has the consequent downplaying of ordinality and its significant
role in learning how to count (see Tahta 1991, 1998; Sinclair and Pimm 2015a, b;
Coles 2017).

In Fig. 4.5, there is my first attempt at trying to depict this (even though I already
can see problems, oversimplifications, omissions and errors). It draws on the dis-
tinction between metaphoric and metonymic relations, as outlined in Tahta (1991,
1998), which he links with the abacist and the algorist, respectively: the use of
physical objects (which become metaphors for number) versus the ‘manipulation’
of numerals.

Tahta writes:

Metaphor and metonymy are not necessarily distinct polarities, but more like aspects that
can be stressed or ignored as desired. One of our problems in teaching arithmetic is the
move from the stress on metaphor to the stress on metonymy. We offer children counters
and rods and so on, in order to mimic processes which we eventually want them to transfer
to written or spoken numerals. (1998, p. 6)

As an individual becomes more and more numerically fluent, the separation
between number words and numerals becomes less and less: but this does not mean
that those distinctions and separations cease to leave their traces.

One final observation: Chrisomalis’s (2010) fascinating book on the history of
numerical notation is over five hundred pages long. The world and its (linguistic)
history in regard to whole number is a very complex and sophisticated mix. But also
an engaging and, at times, fascinating one.

numerals
(usually 'Hindu-Arabic’; place value)

physical apparatus
(Dienes blocks, Cuisenaire rods, etc.;
no place value)

metonymy

counting words/characters
(natural language, spoken and written;
no place value)

Fig. 4.5 Metaphor and metonymy in relation to the interlinked systems of natural language, nota-
tion and the world
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5.1 Introduction

Mathematics learning and teaching are deeply embedded in history, language and
culture (e.g. Barton 2008). Yet what historical, linguistic and cultural foundations
are necessary for the early years of school to adequately prepare children for math-
ematics learning? To address this question, we summarise work on these three
aspects of WNA to frame the entire volume and identify the historical, linguistic and
cultural bases on which other aspects of learning, teaching and assessment are
based. The chapter provides a meta-level analysis and synthesis of what is known
about WNA’s foundations of history, language and societal changes, which serves
as a useful base from which to gauge any gaps and omissions. This foundation also
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provides an opportunity to learn from the practices of different times and languages
and from societal changes.

5.1.1 Conference Presentations: Overview

Thirteen papers written by authors from 11 countries were presented for Theme 1.
For presentation and discussion, these papers were divided into four subgroups
exploring several overlapping aspects of the why and what of WNA: the historic
background of WNA, the language foundations of WNA, the foundational ideas that
underlie WNA and the support for societal changes to the teaching and learning of
WNA.

5.1.1.1 Historical Background

Zou (2015) summarised findings from historical investigations of arithmetic in
ancient China, including how number units were derived and named and how num-
bers were represented with rod or bead calculation tools and with symbols. Siu
(2015) studied the book of Tongwen Suanzhi (7] L %45) (Rules of Arithmetic
Common to Cultures, 1614) and reviewed how counting rods and the abacus were
gradually replaced with written calculations in China. Sun (2015), also discussing
early Chinese development, presented the use of advanced number names and
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calculation tools (counting rods and the suan pdn or Chinese abacus) and empha-
sised how place value is still the most overarching principle of WNA based on
Chinese linguistic habit. Traces of this influence can still be found in contemporary
core curriculum practices in many countries today.

5.1.1.2 Language Foundation of WNA: Regularity, Grammar
and Cultural Identity

Azrou (2015) reported how the historical and linguistic colonisation of Algeria
affected the learning of WNA and presented the first step of an intervention for
teacher education, which can also promote students’ cultural identities. Chambris
(2015) showed how changes related to place value that were introduced by the New
Math in France (1955-1975) continue to be influential today.

Houdement and Tempier (2015) reported on two experiments for strengthening
the decimal (base ten) principle of numeration, assigning a key role to the use of
numeration units in France. Changsri (2015) explored first grade students’ ideas of
addition in two Thai schools in the context of lesson study and an open approach
and found that the students used a variety of representations to express addition
ideas.

5.1.1.3 Foundational Ideas Underlying WNA

Dorier (2015) gave an overview of the development of numbers, showing how
Brousseau’s theory can be used in accordance with this historical context to develop
the key stages of a teaching sequence using the concept of numbers. Thanheiser
(2015), also studying teacher education, adopted the perspective of variation theory
and used historical number systems as a tool, finding that prospective teachers
developed a more sophisticated concept of the base-ten place value system by
examining, comparing and contrasting different aspects of historical systems.
Ejersbo and Misfeldt (2015) described research introducing a regular set of number
names in primary schools in Denmark. Sayers and Andrews (2015) summarised an
eight-dimensional framework called foundational number sense (FoNS) that char-
acterises necessary learning experiences for young children. They demonstrated
how to use the framework by analysing learning opportunities in first grade in five
European contexts.

5.1.1.4 Different Expected Learning and Teaching Goals for WNA

Cooper (2015) discussed how a university mathematician and a group of elementary
school teachers, working together in a professional development course, revealed
new insights into division with remainders. McGarvey and McFeetors (2015)
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identified the Canadian public’s concerns about the goals of WNA and the support
required for students to reach them.

5.1.2 Working Groups’ Discussions

The eight one-hour sessions were organised in different ways. Examining variation
in WNA across history and language and across different communities, working
group | discussed the implications of different views on the why and what of WNA
for instruction and teacher education. Place value in the so-called Hindu-Arabic
system was discussed extensively in the working group sessions. In addition to the
background discussion and questions posed in the Discussion Document (this vol-
ume, Appendix 2), the papers for Theme 1 can facilitate discussions of the follow-
ing questions:

1. How has the place value concept developed across numeral systems?
2. What are the issues of language and culture in WNA?
3. How did/do different communities change past/current teaching of WNA?

5.1.3 The Structure of This Chapter

This chapter describes number representations and their foundational ideas beyond
the variations in WNA across history, language and culture. As the world becomes
more unified and previously separate cultures interact and begin to merge, incom-
patibilities become visible and separations arise between different traditions and
practices. Many of these incompatibilities can be seen in WNA. Particularly notable
is the accommodation needed when traditional language is adapted to deal with the
nearly universal decimal place value system for naming and calculating. Approaches
to instruction and teacher education are affected by these incompatibilities, as this
chapter discusses.

Historical evolution can provide a deeper understanding of the past and present
in science as a means of consolidating and clarifying foundations (e.g. Jankvist
2009). We begin with a historical survey of the numeration knowledge development
of pre-numeral systems and the conceptual development of numeral systems. We
then track the foundational epistemological and pedagogical insights from history.
Section 5.2 highlights the differences between cultural practices, especially lan-
guage, and their links with the universal decimal features of WNA. Post-colonial
tensions, where the inconsistency between spoken and written numbers and the
incompatibility between numeration and calculation appear, are also explored.
Section 5.3 discusses the influence of multiple communities within societies
throughout history when attempts at changes are made. Different stakeholder groups
in a given society may hold different goals for WNA and thus create different expec-
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tations and support within the society. Various examples are given and key compari-
sons are made, especially for understanding how and why curricula change.

In parallel with tendencies towards teaching mathematics in globalised ways, a
shared awareness has recently evolved among teachers and researchers about the
nature of mathematics through the study of its history, traditions and culture. By
‘culture’, we mean a set of meanings that have been historically constructed, socially
transmitted and continually modified and that are embodied in our symbols and
language (e.g. Barton 2008). Through this set of meanings, people communicate,
perpetuate and develop their knowledge and understanding of life (see also this
volume, Chaps. 3 and 9). History and culture shape not only number names and
concepts but also the use of numbers in measurement and operations. Different
languages have their own syntax and semantics, which emphasise different aspects
of numbers; these may foster or hinder a deep understanding of number concepts,
especially ideas about base ten, place value and operations. While a purpose of
education is to support the continuity of the structures and functions that are unique
to a culture and to maintain cultural identity (e.g. Leung et al. 2006), local cultures
need to link to universal cultures to avoid isolation in global development. A critical
issue, then, is how a cultural system reflects on its own history, language and cul-
ture, identifies the disadvantages and advantages of its system, and overcomes its
disadvantages and promotes its advantages. What lessons do we learn from these
reflections and from the interventions that are based on them?

5.2 Foundational Ideas that Stem from History

5.2.1 |Introduction: The Hindu-Arabic Numeral System

According to some historians, the story of the Hindu-Arabic system (e.g. Lam and
Ang 2004) is derived from the Chinese story. See (Chemla 1998) for a different
historical perspective and more details in this volume, Chap. 3. This system and its
use, which was systematically presented in the Sunzi Suanjing, was transmitted
through India during the fifth to ninth centuries, to the Arab Empire in the tenth
century and then to Europe in the thirteenth century via the Silk Road (see Guo
2010). Mathematics historians have debated the origins of the Hindu-Arabic
numeral system for years. For example, French mathematics historian Georges
Ifrah (2000) argued that as the Brahmi notation of the first nine whole numbers was
autochthonous and free of any outside influence, the decimal place value system
must have originated in India and was the product of Indian civilisation alone. In
contrast, Lam and Ang (2004) argued that there is no early Indian text or evidence
to show that it was used earlier there than in China. Early texts and evidence show
that the Chinese used the rod numeral system continuously for almost 2000 years.
This historical fact is not well known in either the Western or Eastern communities
of math education because of the limited dissemination of the conceptualisation
history of place value of the Hindu-Arabic system.
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According to Lam and Ang (2004), in Western Europe, before the advent of the
Hindu-Arabic numeral system, few mathematicians would have been able to per-
form multiplication. In contrast, in ancient China, the operation of multiplication
would have been commonly known as far back as the Warring States period (475—
221 BCE), not only among mathematicians but also among officials, astronomers,
traders and others. This could be because the Chinese rod number system used the
concept of place value. It is not surprising that the Nine Chapters on the Mathematical
Art includes common fractions, areas, the rule of three, least common multiple,
extraction of square and cube roots, volumes, proportion and inverse proportion,
relative distance and relative speed, surplus and deficit, rule of false position, the
matrix notation, negative numbers, simultaneous linear equations and right-angle
triangles because it was grounded in the advanced decimal place value system
(Chemla, 2007).

A culture’s arithmetic development may be confined or promoted by the numeral
system used. For example, multiplication with large numbers could not be well sup-
ported by a simple tally system. The Hindu-Arabic numeral system is much more
complex than others: it includes a principle for naming numbers, which is ten based
with multiple units, and the additive and multiplicative relationships are embedded
implicitly, with only the digits recorded. It is universally used in the world because
every number, however large, can be easily represented and computations can be
easily realised.

According to the Discussion Document (this volume, Appendix 2), historical
reconstruction was in the foreground of WNA. For a better understanding of this
system, a brief conceptual development of the numeral system' is examined, and
associated epistemological and pedagogical analyses are carried out below. This
study has two motivations: to understand the foundations of established whole num-
ber arithmetic (product) by studying the historical origins (process) and to provide
insights for modern teaching by investigating epistemological obstacles (this vol-
ume Chap. 9, esp. Sect. 9.3.2). Jankvist (2009) argued that ‘history can not only
help to identify these obstacles, it can also help to overcome them: an epistemologi-
cal reflection on the development of ideas in the history can enrich didactical analy-
sis by providing essential clues which may specify the nature of the knowledge to
be taught, and explore different ways of access to that knowledge’ (p. 237).

We examine the foundational idea of number representation development and do
not describe all of the historical facts. The conceptual development of numeral sys-
tems can be classified into four types based on conceptual development progress:
the tally system, additive system, multiplicative-additive system and decimal place
value system. In each case, different strategies to realise operations were invented;
these are explained below. Progress could better mirror the development of number
structuring and some epistemological obstacles in history/learning (e.g. Jankvist,
2009).

A numeral system (or system of numeration) is a writing system for expressing numbers — that is,
mathematical notation for representing numbers of a given set using digits or other symbols in a
consistent manner.
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5.2.2 Knowledge of Pre-numeral Systems
5.2.2.1 Early Numeration Practices

Many anthropologists (e.g. Ifrah 2000; Menninger 1969) have found that some
ancient cultures did not develop numbers at all. Some had names only for one and
two and some up to three or four. Larger numbers were described as ‘many’. In
many ancient languages, words for ‘two’ or ‘three’ exist between singular and plu-
ral as a means to distinguish one from many, which is the beginning stage of the
development of numeration.

One-to-one correspondence between an organised list of words — that is, the list
of number names — and the units of a collection is typically considered an elemen-
tary process in counting, and it is the most fundamental stage. In many cultures (e.g.
Menninger 1969), parts of the human body have been used to make one-to-one cor-
respondence, often starting with fingers. Despite having limited sets of number
names, some cultures developed quantitative practices that go beyond the greatest
number available, such as the use of tally systems, and partitioned large quantities
into smaller countable quantities (Baxter 1989). A society’s early numerical prac-
tices are embedded in its development of a tally system, which is built on ordinal
numbers, cardinal numbers and the counting principle — namely, one-to-one corre-
spondence (Seidenberg 1962). Beyond tally numeral systems, various cultures
developed different numeration systems, yet all had in common a symbol for one,
the unit of ones and other symbols for collections of that unit (May 1973).

5.2.2.2 The Invention of the Counting Principle

Knowing whether quantities have increased or decreased was likely a key problem
for many ancient tribal peoples. To recognise more or fewer, one of the earliest
methods directly stimulated the invention of one-to-one correspondence with an
intermediate collection of stones (Dorier 2015). Before representing and naming
numbers, people developed several ways to evaluate quantities beyond rough esti-
mation. For example, we can imagine that shepherds were concerned about the
possibility of losing sheep when they returned from the fields at night. We can only
speculate how the use of stones became tokens in one-to-one correspondence, but
there is clear evidence that tokens were used in one-to-one correspondence by the
use of ‘envelopes holding counters to represent sets’ of numbers (Schmandt-
Besserat 1992, p. 190). Illustrations of artefacts were used to form records of num-
ber of tokens as representations. Several other artefacts, some dating to Palaeolithic
times (15,000 BCE), such as notches and bones, are indicators of human activity
related to the building of corresponding collections with specific cardinal numbers
to record quantities. This may have been the beginning of the invention of the count-
ing principle.
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5.2.2.3 The Pre-structures of Number Naming

Because of rhythmic demands of oral pronunciation, no language represents num-
bers by articulating the same sound more than two times. That is, there are no known
examples such as ‘one one one one’ for four or ‘three three three’ for nine. Words
are sometimes repeated but not more than once (Cauty 1984; Guitel 1975). This
implies that number names are not based on the principles of a tally system (a
numeration system of keeping a record of quantities and amounts by using single
strokes to represent the objects being counted) (see Sect. 5.2.2 and this volume
Chaps. 9 and 10). If number names exist in a given language, the list of the names
of the smallest numbers is a sequence of words that is more or less long, and the
words are more or less independent. Conversely, if a given language presents num-
ber names for large numbers, sequences of number names beyond a threshold
always have a multiplicative structure. The threshold is almost always under 100
(Cauty 1984; Crump 1990; Menninger 1969). In Chinese, and other languages such
as Chunka (Gonzdlez and Caraballo 2015), the threshold is ten.

We consider the sequence before the threshold, as its structure is of interest.
Cauty (1984) identified several types of sequences within spoken numbers:

1. Ordinal — a list of words independent of each other.

2. Ordinal with benchmarks — as described above, it begins with a list of words and
is followed by benchmarks on a scale, e.g. the Panare language has benchmarks
for 5, 10, 15 and 20 and counts from 1 to 4 between the benchmarks (Cauty
1984).

3. Cardinal with addition — where a number is represented by juxtaposed number
names whose sum is the given number (such as how XXIII means two 10s and
three 1s in Roman numerals).

4. Cardinal with multiplication — where a number is represented as a sum of prod-
ucts of small numbers (‘digits’) times units (such as how three hundred two
means three times one hundred and two in Chinese spoken and written
numerals).

The Oksapmin people (Saxe 1981) use body parts to recognise numbers, moving
from the right-hand fingers up to the right eye — the first finger is 1 and the eye is 13.
The nose is 14, and they move symmetrically from the left eye to the left-hand fin-
gers to count from 15 to 27. This can be considered a long ordinal list. According to
Cauty (1984), the ordinal-with-benchmarks type above is often confused with the
cardinal type with addition/multiplication. The difference between the two lies in
the grammar, which indicates movement in relation to the benchmarks. Benchmark
and additive numeration may be the beginning of the idea of a base (as in base ten).
However, in some languages, the names of larger numbers may be expressed in
terms of smaller numbers and arithmetic operations, which may be the beginning of
the exploration of number structure, e.g. 3 =2+ 1 and5=2+2 + 1, and even mul-
tiplicative forms such as 6 =2 x 3 and 18 = 3 x 6. However, it is rare for 2 to be
expressed as 1 + 1 (Crump 1990). In Nigeria, the Yoruba numeral system is based
on 20, and other numbers may be expressed by subtraction, e.g. 35 = (20 x 2) — 5.
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This can also be seen in Roman numerals, where, for example, CX means 110, but
XC means 90.

To meet the need for counting, various cultures developed the counting principle
and one-to-one correspondence and named numbers with some regularity, some-
times using addition and/or multiplication, to specify quantity. From these prac-
tices, we can learn about the conceptual development of number systems, as naming
and operations (addition/multiplication) were developed at the same time. The
counting principle, invented number names and written number symbols are needed
for the development of a formal numeral system. However, the coordination between
cardinal numbers and ordinal numbers could be considered too trivial, too easy to
explicitly design in many curricula and lessons. These could be reasons for long-
term learning difficulty in later number development and operations.

5.2.3 The Conceptual Development of Numeral Systems
5.23.1 Tally Systems

The Ishango bone? notches (about 18,000 to 20,000 BCE), ancient Chinese knots in
string and Sumerian marks on a clay tablet show what appear to document quantity
as an ‘early stone or agricultural age’ vision of numerals (Mainzer 1983/1991) in
almost all ancient cultures (see also Sect. 9.2.2). Ifrah (2000, p. 64) points out that
tally systems could be an early vision of systematic counting numbers ‘first used at
least forty thousand years ago’. These could be the origins of Roman or Etruscan
numerals (Ifrah 2000, pp. 191-197). Such marks clearly point to the development of
ancient written number representations. Tally numeral systems are among the most
primitive means of recording quantity (Hodgson and Lajoie 2015). Counting up and
down might be the natural calculation of sums and differences. It is the simplest
(unary) numeral system, and it plays an important role in the fundamental counting
action of building one-to-one correspondence between objects and names, forming
a set of reciting numbers in ascending order. This could be how the first systematic
conceptualisation of numbers in a set of numerals developed. Tally systems directly
reflect the fundamental idea of counting for small numbers: one-to-one correspon-
dence. Once tallying becomes an established practice, establishing a set of standard
names for small numbers might be the next step, as it affords the ideas of both car-
dinal numbers and ordinal numbers and allows the description of a collection of
objects arranged in a particular order. The analysis above indicates that counting
principles could be key to the conceptual development of numeral systems. Their
absence could result in counting by rote memorisation, skipping objects, counting
randomly and counting an object twice or multiple times.

>The arithmetic interpretation of the Ishango bone has been recently contrasted by Keller (2016),
claiming that further studies and references to archaeological finds would be needed.
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5.2.3.2 Additive Systems

As counting needs for large numbers increased, the difficulty of remembering many
number names led people in many societies to the idea of grouping ones, using
special abbreviations for repetitions of symbols and inventing a new object or sym-
bol to signify this quantity (Groza 1968). This grouping may be the first step in
coherently combining the different records to make structural organisation common
across counters (Bass 2015). It denotes the mathematical abstraction of the numera-
tion system in which the number represented by written numerals is simply the sum
of the value each numeral represents. It also requires new symbols for different
groups of ones and new strategies to enumerate the new collections. The different
sized groups could be the beginning of the idea of multiple units. This kind of
grouping — or re-counting different cardinal collections — was developed in all
ancient civilisations to count large numbers (e.g. Bass 2015). Sumerians
(~3500 BCE) initially used a tally system comprised of collections of small cones
to represent collections of items (Schmandt-Besserat 1992). Over time, they
replaced 10 small cones with a small ball, 6 small balls (or 60 small cones) with a
larger cone and 10 larger cones with a cone of the same size with a round hole in its
centre, thus using a mix of bases 10 and 60. These objects were packed in a spheri-
cal clay container that had to be broken to identify the inside number. Later, these
objects were represented with marks on the surface. Eventually, the objects were
abandoned and only their representations were used. Using cuneiform features,
marks of wedges and corners — specifically, one vertical wedge for 1 and one corner
for 10 — were written on a clay tablet. Dating to around 3300 BCE, this could be the
first known written additive numeral system. An updated numeration system was
constructed with a set of symbols, called numerals, together with a set of rules for
writing to represent numbers.

Around 1500 BCE, the Egyptians invented a hieroglyphic written additive
numerical system in base ten. Around the fourteenth century BCE, the main concept
used in most Chinese numerals in the oracle bone script found on tortoise shells and
animal bones was grouping, which partly formed an additive system. It is interest-
ing to note the numerals for 2 and 3, are still used in daily language. Ancient Roman
numerals, such as CXXXV for 1 hundred, 3 tens and five, recorded numbers using
the concept of grouping ones and regrouping into higher units. Although they used
different grouping approaches at each step, many cultures (Sumerian, Babylonian,
Egyptian, Greek, Roman, Arabic, Chinese, Mayan, Aztec, etc.) developed or used
many-levelled additive numeral systems based on the principle of successive group-
ing. Thus, historically, many numeral systems were developed by progressing from
tally systems to additive (grouping) systems in which multi-units with additive rela-
tions (no multiplication relations) were developed. The analysis above indicates the
understanding of multi-units as necessary to deal with large numbers and of the
possibility of learning difficulty in counting because of the different units and unit
conversions from the tally system.
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Fig. 5.1 Shang oracle bone numerals from the fourteenth century BCE
5.2.3.3 Multiplicative-Additive System

The additive systems above have been rather common inventions. Many historical
examples indicate that the multiplicative concept, most often with irregular forms at
the beginning, has also been a common invention for representing larger numbers
with a simpler approach. Counting the signs in the additive form and then naming
the value of the sign lead roughly to a multiplicative-additive system. For example,
the Roman numeral CCC (300) is called frecenti in Latin, from tres (three) and
centum (hundred). It is a numeration system in which the number value should be
the sum of the products of units indicating how many of each unit are considered,
where the multiplicative notion is added. Here, C is a unit rather than a number in
an additive system. In such systems, there is a different symbol for each power of
ten and for each number from one to the base minus one.

The ancient Chinese numeral system found on bones and tortoise shells of the
late Shang dynasty in the fourteenth century BCE was the first multiplicative-addi-
tive system based on the decimal system and was both additive and multiplicative in
nature. Here is a selection of Shang oracle bone numerals (Martzloff 1997; Needham
1959) (Fig. 5.1).

Here, 200 is represented by the symbol for 2 and the symbol for 100, 3000 is
represented by the symbol for 3 and the symbol for 1000, etc. (Fig. 5.2). The addi-
tive nature of the system means that symbols were juxtaposed to indicate addition,
so 4359 was represented by the symbol for 4000 followed by the symbol for 300,
the symbol for 50 and the symbol for 9 (Fig. 5.3).

As this was not a positional system, there was no need for a zero (Fig. 5.4).

Guitel (1975) classified this as a hybrid system. A number of additive systems
evolved into multiplicative-additive systems (Chinese, Mayan, etc.), but most
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remained additive (e.g. Roman written numerals, Egyptian, Greek). Multiplicative
systems improve calculation speed. However, the difference between multiplication
and addition could cause concept confusion and learning difficulty, and number
naming using both multiplication and addition could present an epistemological
obstacle.

5.2.3.4 Decimal Place Value System

Both the decimal numeral system and positional notation or place value notation
can further simplify arithmetic operations because of the use of the same symbol for
different orders of magnitude (e.g. the ‘ones place’, ‘tens place’, ‘hundreds place’).
By using 1, 10 and 100 as numeration units (not number names in an additive
numeral system) and both multiplicative and additive concepts, a much more
advanced numeral system, the decimal place value system, was invented, in which
a number can represent quantity with multiple decimal units. Both the digit itself
and its referring numeration unit determine the value that a digit represents. The
numeration unit that a symbol occupies determines the value of the unit, and the
symbol itself determines how many of these units are being represented (Groza
1968). Using numeration units, calculations in the place value system are quite dif-
ferent from those in the tally and additive numeral systems. The numeration units
and their conversions are the key to calculations. Addition should be carried out
with two numbers with the same units, and numbers with different units should be
converted to the same units using the following conversion rate: 1 thousand = 10
hundreds; 1 hundred = 10 tens (1 in the third place); 1 ten = 10 ones (1 in the second
place); etc.

The Chinese counting rod system and the Hindu-Arabic numeral system are
decimal place value systems (Japan, Korea and Thailand imported the Chinese deci-
mal system (Lam and Ang 2004)). About the fourth century BCE (the West Zhou
dynasty), the first place value system using counting rods came into use (Guo 2010;
Martzloff 1997). Numbers were represented by small rods made from bamboo (Zou
2015) and used on a counting board (this volume, Chap. 3). A number was formed
in a row with the units placed in the rightmost column, the tens in the next column
to the left, the hundreds in the next column to the left, etc. (Fig. 5.4).
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A zero on the counting board was simply a blank square. Sun Zi’s Suanjing (%%
K500 CE), the earliest extant treatise, described how to perform arithmetic
operations on the counting board and gives instructions on using counting rods to
multiply, divide and compute square roots. Though humans have always understood
the concept of nothing or having nothing, the symbol of zero was used to represent
the ‘zero’ first in the Hindu-Arabic numeral system. This was the first time in the
world that zero was recognised as a number of its own, as both an idea and a symbol
(Martzloff 1997). That place-value notation with the same ideas of zero emerging in
two very different settings aimed to make more efficient systems to represent any
number. Xiahou Yang’s Suanjing (& %% 5 #£500 CE) explains not only positive
powers of 10, but also decimal fractions as negative powers of 10 (Martzloff 1997),
applying positional notation to the decimal fraction ring. Thus, decimal place-value
notation emerged as a more efficient system for calculations of both whole numbers
and fractions.

5.2.3.5 Modern Theoretical Approaches

Below, two schemes or ‘theories’ of place value numeral systems are proposed to
describe written positional systems. The first is classical theory. It belongs to tradi-
tional arithmetic treatises, such as those of Bezout and Reynaud (1821) and Ryan
(1827). This theory has been used in France to teach positional notation for centu-
ries. The second theory belongs to academic mathematics.

The words for units used in numeration — that is, the words ‘ones’, ‘tens’, ‘hun-
dreds’ and so on — are henceforth called numeration units. Numeration units are
built one after the other in the following way. (1) The first ten numbers are built one
after another, starting with the unit one and then adding one to the previous number,
forming the numbers one, two, etc. (2) The set of ten ones forms a new order of
units: the ten. (3) The tens are numbered like the ones were numbered before, from
one ten to ten tens: one ten, two tens, etc. (4) Then the first nine numbers are added
to the nine first tens: one ten, one ten and one one, one ten and two ones,... two tens,
two tens and one one, and so on, forming the first 99 numbers. (5) The set of ten tens
forms a new order of units: the hundred and so on. Numbers’ names are presented
as a literal translation built on units’ names (adapted from French): ‘Say the tens,
then the ones’. For example, as three tens is thirty and four ones is four, then three
tens and four ones is thirty-four. The rules have exceptions, however. For instance,
the usual name of ten-one is eleven. Finally, after building the numbers, the posi-
tional notation is stated. To write numbers without writing the units’ names, it is
sufficient to juxtapose the numbers of units of each order with the ones on the right
side; then, each place represents a unit that is ten times larger than the one on its
right. Places that are not represented are marked with the sign 0.

The current reference knowledge for place value in academic mathematics is
based on the polynomial decomposition of a whole number 7 in a given base r:
n=Y ar,0 < a;<r, which is a much more generalised expression of classic theory
with the particular formal abstractions that characterise modern mathematics. The
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current proof of the existence and uniqueness of the decomposition in a formal way
involves Euclidian division. The positional notation is defined as the juxtaposition
of the coefficients of the polynomial. This theory, which belongs to advanced alge-
bra, is henceforth called academic theory (following Bezout and Reynaud 1821).

Both of the approaches presented above provide multiplicative descriptions of
positional notation. The multiplicative description and the recourse to exponents are
not necessary when devices for computing, such as the suan pdn or abacus, are used
(see this volume, Sect. 9.2.2), as the device itself embodies this convention.

In sum, the decimal place value system and computation were handed down to
us by our ancestors and underwent improvements over time. It is worth determining
which aspects were improved and the reasons for the changes. We have described
several steps, each requiring concept and relation development. From the tally sys-
tem to the additive system, multiunit notions — that is, the grouping of units — are
critical. Grouping units simply means a counting process using larger units, which
must also rebuild the multiplicative relation with lower units. Multiplication also
further simplifies the repeated addition relation, which advances the abstraction pro-
cess of counting. The development of this elegant positional base-ten system took
place over a long time; therefore, the fact that understanding numbers is compli-
cated should not be surprising. Without this notation, one would encounter the same
difficulties that peoples of ancient cultures encountered in large number and frac-
tion development.

5.2.4 Epistemological and Pedagogical Insights from History
5.2.4.1 Pedagogical Insights from the Pre-history of Numbers

The pre-history of numbers and the invention of small numbers can provide insights
into the beginning of the teaching of numbers and learning by young children. One-
to-one correspondence is likely an essential step towards the concept of numbers:
the recognition of quantity as a property of collections. History as described in the
previous section(s) shows a double role of one-to-one correspondence: the interme-
diate collection of objects such as stones and the intermediate collection of words,
e.g. the number names. As Dorier (2000) advised, history can be used to reconstruct
an epistemologically controlled genesis that takes into account the specific con-
straints of the teaching content. The fundamental situation of numbers conceived by
El Bouazzaoui (1982) and Brousseau (1997) belongs to such a programme. It has to
do with quantity (not yet numbers) and can be expressed as building the same car-
dinal number collection to a given collection. Typically, the task is, ‘Look, there are
rabbits here. Go and bring carrots so that each rabbit can eat. That is: each rabbit
should have one carrot, no more, no less’. It can be observed that spontaneously, a
young child does not count even if she knows a sequence of number names. From
this general situation, several steps can be conceived, taking into account didactical
variables (Brousseau 1997) — that is, conditions on the tasks to be achieved that can
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change what children learn. For example, are paper and pencil available? If so, chil-
dren can draw carrots, thus making a list of what is needed, which is an intermediate
collection. How is the size of the collection — e.g. [2-6], [6-12] and [12—100] —
related to children’s knowledge of the sequence of number names? Are the rabbits
visible from where the carrots are? They can be drawn and arranged in specific
ways, such as on a die or in several areas of a sheet of paper to foster concepts of,
for example, three in one area, two in another and so on (Briand et al. 2004;
Margolinas and Wozniak 2012).

5.2.4.2 Understanding Numerals’ Uses: To Write, to Compute, to Talk

Not all systems have followed the same development. For example, China never had
a recorded additive system. It is interesting to note that in the West, written Roman
numerals are additive, while the corresponding spoken number names are multipli-
cative. For example, XXX is triginta in Latin, where tres is 3 and decem is X (ten).
Spoken numerals, especially for large numbers, belong to a pre-multiplicative-addi-
tive system. However, in contrast to speaking and writing, the number concept for
computation is positional.

The positional principle for the Old Babylonians (ca. 2000-1600 BCE) was in
base 60. Its digits are of the written additive system in base ten as they are all under
60. In the scribal school of south Mesopotamia (ca. 2000-1800 BCE), positional
notation was only used for computation, never to express measurements, which
used only rather small numbers, written in additive form, associated with a devel-
oped system of units (Proust 2008, 2009). The ancient Romans and medieval
Europeans did not write positional numbers but used the additive system of Roman
numerals even though they computed with a positional abacus, which embodies the
positional principle used by the Greeks, Old Babylonians (Hgyrup 2002) and
Chinese (Fernandes 2015). The position of each digit within a number denotes the
multiplier (power of 10) multiplied by that digit. These tools were constructed using
principles similar to the abacus: a board with columns into which identical objects
are put, where all of the objects in a given column indicate the same value, which is
generally that of a digit of the additive system (or of the unit if it is a numeration unit
system), where adjacent columns contain objects representing two successive digits
(two successive units in a numeration unit system). A key feature is that if the ratio
of the digits between two adjacent columns (with the lesser on the right) is n, n
objects in the right column can be replaced by one object in the adjacent left column
without changing the number. If the ratio between the columns is n (which would
thus be the base of the system), one simply moves the objects in the adjacent left
column and multip