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Introduction

Superconductivity is a particular electronic state that arises in certain

materials when cooled below a critical temperature. This unique state

results in zero electrical resistance for direct current (DC). For many of

these materials, this property holds even in the presence of a high magnetic

field (a few tesla up to nearly 100 tesla), which makes superconductors the

only sensible option to build energy-efficient high-field magnets. In fact,

magnets have been the main commercial application of superconductors,

most of the time cooled to 4 K with expensive liquid helium. However, in

1986, a new class of superconductors called high-temperature superconduc-

tors (HTS) were discovered. Being superconductor at temperatures of 90 K

or above, HTS can easily be cooled to around 65–77 K with liquid nitrogen,

much cheaper than liquid helium. The suddenly cheaper cooling cost trig-

gered the development of numerous additional applications, ranging from

magnetic levitation to power devices (motors, cables, fault current limiters,

transformers, etc.), as well as many others.

In the 1990s HTS wires quickly gained in maturity and demonstrations

consisted mostly in replacing copper conductors by superconducting ones in

order to assess the characteristics and benefits of HTS devices over conven-

tional technology. However, it was quickly realized that in order to really

take advantage of the properties of superconductors, most applications had

to be significantly re-thought, and the need for modeling tools rapidly man-

ifested itself. Indeed, good models allow, among other things, predicting

the performance of conceptual devices and optimizing them before invest-

ing substantial resources to build prototypes. This saves considerable time

and money and speeds up developments. In addition, good models reveal

the effect of various design parameters on application performance, giving

designers valuable insights to improve them and even think about radically

new concepts.

vii



viii Numerical Modeling of Superconducting Applications

The evolution of modeling tools for superconducting applications is cor-

related with a number of external factors. Firstly, before the 1990s, most

models were based on analytical formulas developed for specific cases with

relatively simple geometrical arrangements (slab, strip, ellipse, etc.). In

addition, the electrical properties of low temperature superconductors were

quite compatible with analytical approaches. The most well-known exam-

ple is certainly the critical state model, also known as Bean’s model (1964),

which has driven the design of magnets and other applications for more

than 40 years. Indeed, with the Bean model and the classical Maxwell equa-

tions, one can calculate losses due to flux variations, as well as current and

magnetic field distributions in the device. In the same period, numerous

analytical models for heat transfer, quench studies and mechanical analysis

have also been developed or imported from other disciplines.

The advent of HTS materials engendered a first level of modeling compli-

cations. The rounded and very nonlinear E-J curve of HTS materials could

not be approximated with the Bean model as well as before, rendering the

Maxwell’s equations very nonlinear and nearly impossible to solve analyt-

ically. In response to the consequent need for numerical simulation tools,

researchers started rapidly to develop some. Progress has been exponential:

at the end of the 1990s, only a handful of numerical simulation approaches

had been published. Then, 25 years later, at the time of writing this book

(2022), one can literally find thousands of scientific papers dealing with

numerical simulations of HTS devices, most of them based on commercial

finite element tools. A smaller but non-negligible portion of these papers

come from researchers whose interests are related to the development of

numerical methods themselves, and who proposed ways to speed-up com-

putations by using smart mathematical formulations and/or assumptions

to simplify the problem to be solved. As more and more applied supercon-

ductivity researchers got interested in this type of research, the modeling

challenges specific to superconductors has even started to draw the atten-

tion of an increasing number of researchers who never touched supercon-

ductivity before. Finally, the steady increase of the computational speed

of computers, the improvement of generic linear algebra solvers and the

advent of sophisticated parallelization techniques that happened over the

last 40 years had a huge impact on the complexity and scale of the problems

that one can nowadays conceive to solve. Consequently, the development

of HTS application has never progressed at such a fast pace.

This fast progress is encouraging, but it also poses the challenge of

archiving in an organized way the knowledge in numerical modeling recently
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generated. Up to now, no comprehensive book that gathers this knowl-

edge has been published, most likely because the task is titanic. The field

is so wide and the borders so hard to define that it is difficult to deter-

mine where relevancy stops. Nevertheless, this multi-author book is a first

attempt in this direction, even if we cannot hope to cover everything in an

integrated manner. The choices of topics were made to reach a readership

as wide as possible in the four main areas of numerical modeling used in

applied superconductivity, namely electromagnetics (Chapter 1), quench

and stability (Chapter 2), mechanical and structural analysis (Chapter 3)

and thermal-hydraulics (Chapter 4). As a complementary source of infor-

mation, it is worth mentioning the existence of the www.htsmodelling.com

website, where various contributors share model files of HTS modeling.

In order to reach a readership as large as possible, the book has been

published as Open Access. As editors, we are very grateful to the authors

for the time spent in writing these chapters, as well as for their patience

during the editing process that spanned over many years. We all hope that

the book will serve its purpose to help modelers speed-up their work. We

also hope that it will inspire others to push this effort further in the future.

Enjoy reading!

Bertrand Dutoit, Francesco Grilli, Frédéric Sirois

Editors

www.htsmodelling.com
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Chapter 1

Electromagnetic Modeling
of Superconductors

Enric Pardo

Institute of Electrical Engineering,

Slovak Academy of Sciences, Bratislava, Slovakia

Francesco Grilli

Karlsruhe Insititute of Technology, Karlsruhe, Germany

Superconductors enable many large-scale electric applications, both current

and under research, with a high potential to cause important break-

throughs in human development. These are, for example, the reduction

of emissions responsible for the climate crisis through energy generation

(fusion and offshore wind turbines), electric transportation (electric and

hybrid-electric airplanes or sea vessels), and energy-efficient electric net-

works (power-transmission cables and transformers). Superconductors also

enable novel medical instruments, such as (high-field) magnetic resonance

imaging (MRI) and accelerators for ion cancer therapy. Last but not

least, superconducting magnets made it possible to conduct some of the

largest experiments in fundamental research in the world, involving par-

ticle accelerators and detectors, such as the large hadron collider (LHC).

c© 2023 The Authors. This is an Open Access book chapter published by World Scientific
Publishing Company. It is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License which per-
mits use, distribution and reproduction in any medium, for non-commercial purposes,
provided that the original work is properly cited.
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2 E. Pardo & F. Grilli

The abovementioned applications are just some examples, with the scope

of superconducting applications being much wider.

The design of all these applications requires electromagnetic modeling.

Although some simple studies could be done analytically, realistic configura-

tions need computations by numerical modeling. Modeling can also suggest

proof-of-concept ideas of novel devices or assist the analysis of electromag-

netic characterization of superconducting materials (bulks, wires, tapes, or

composite cables). Large-scale applications operate at currents or magnetic

fields of characteristic frequencies ranging from mHz or below, such as in

magnets, to kHz, such as in certain motors and generators for aviation,

passing through at 50–60 Hz for electric grid devices. In any case, the fre-

quency is low enough to neglect electromagnetic radiation, and hence, we

can assume slowly varying magnetic fields.

This chapter presents the fundamentals of electromagnetic modeling

for slowly changing magnetic fields or currents (quasimagnetostatics). The

scope is aimed at researchers or master’s and PhD students entering into the

field, while keeping high rigor. Although this chapter is mainly a review,

some parts are novel.

The outline of this chapter is as follows. Section 1.1 introduces the elec-

tromagnetic quantities and basic equations. Next, Section 1.2, we present

analytical formulas that also serve to explain the main behavior of super-

conductors. In Section 1.3, we outline the physical and mathematical back-

ground of numerical methods in several formulations. Finally, Section 1.4

presents how to model power applications, including practical guidelines

and the state of the art.

1.1. Introduction

In this section, we introduce the physical grounds of electromagnetics under

slowly varying magnetic fields (quasimagnetostatics), and hence, we neglect

electromagnetic radiation. Some sections go into detail and are rather rig-

orous in order to empower the knowledge of researchers entering the field.

1.1.1. Maxwell equations in quasimagnetostatics

This section outlines the Maxwell equations in quasimagnetostatics, which

are the governing laws in electromagnetic modeling of large-scale supercon-

ducting applications. The complete Maxwell equations are [40, 57]

∇ ·D = q, Gauss’ law, (1.1)

∇ ·B = 0, magnetic flux conservation law, (1.2)
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∇×E = −∂tB, Faraday’s law, (1.3)

∇×H = J+ ∂tD, Ampere’s law, (1.4)

where E is the electric field, D is the electric displacement, B is the mag-

netic flux density, H is the magnetic field, J is the current density, and q

is the charge density. The symbol ∂t denotes partial time derivative, and

hence, ∂tB = ∂B/∂t. The displacement and magnetic field are defined as

D ≡ ε0E+P, (1.5)

H ≡ B/μ0 −M, (1.6)

where P and M are the polarization, or the density of microscopic electric

dipoles, and magnetization, or the density of microscopic magnetic dipoles,

respectively. In order to solve Equations (1.1–1.4), it is necessary to use

the constitutive relations of the material:

D = ε(E)E, (1.7)

B = μ(H)H, (1.8)

E = ρ(J)J, (1.9)

where ε, μ, and ρ are the permittivity, permeability, and resistivity, respec-

tively, which are generally tensorial. In simpler words, this means that D,

B, and E are not always in the same direction as E, H, and J, respectively.

The quasimagnetostatic assumption is to neglect the ∂tD term in Equation

(1.4), obtaining

∇×H = J. (1.10)

This is achieved for low enough frequencies. The influence of the displace-

ment current, ∂tD, on the current distribution in closed current loops (or

multi-turn coils) is negligible for conductor lengths, l, much shorter than

the radiation wavelength, λ. This can be regarded as a rule of thumb for

any situation since in magnetostatics, the current always forms a closed

loop. Setting a stricter criterion than for typical antenna design, l < λ/100

instead of l < λ/10 [43, Section 5.1], the displacement current does not

influence the current density for frequencies up to around 3 MHz and 3 kHz

for conductor lengths of 1 m and 1 km, respectively. Even when the cur-

rent density in the conductor is not influenced by the displacement current,

there will still be a certain small radiation power loss due to the oscillating

magnetic dipole moment. However, this contribution is typically negligible

compared to the nonlinear Joule AC loss in superconductors.
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An interesting consequence of (1.10) is the current conservation equation

∇ · J = 0, (1.11)

which appears because ∇ · J = ∇ · (∇ × H) = 0. Equation (1.11) means

that the current density is neither created nor destroyed anywhere, forming

closed loops.

1.1.1.1. Faraday’s integral law

In electromagnetism, it is also often useful to take the integral Faraday’s

equation into account. This is found from (1.3), also called “differential

Faraday’s law,” or just “Faraday’s law.” By integrating (1.3) on an imagi-

nary surface, s, we obtain∫
s

ds · (∇×E) = −
∫
s

ds · ∂B
∂t
, (1.12)

where ds is the surface differential, which is perpendicular to the surface.

From Stokes’ theorem of calculus, this equation turns into∮
∂s

dl ·E = −dΦ

dt
, (1.13)

where ∂s is the curve that encircles surface s, dl is the length differential,

and Φ is the magnetic flux crossing surface s defined as

Φ ≡
∫
s

ds ·B. (1.14)

To be precise, the integral Faraday’s equation of (1.13) requires that surface

s does not change over time.

1.1.2. Macroscopic electromagnetic properties of

superconductors

Next, we present the constitutive material relations of (1.7)–(1.9) that are

usually assumed for superconductors in power and magnet applications.

First, we consider the relation between E and J. Only type-II super-

conductors with high pinning, usually named as hard superconductors,

can carry sufficiently large currents for power and magnet applications.

Although the electromagnetic properties are ultimately governed by vortex

physics, their macroscopic behavior can be described by a relation between

the macroscopic electric field E and the macroscopic current density J.

These quantities are averaged over volumes large enough in order to contain

many vortices but small enough in order to be considered as “differential.”
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As a rule of thumb, the characteristic side of the differential volume should

be much larger than the separation between vortices.

There are several physical models that explain the E(J) relation in

superconductors. Originally, Anderson and Kim [5] obtained the following

E(J) relation based on thermally activated flux creep:

E(J) =
J

|J|Ec exp

[
U0

kT

( |J|
Jc

− 1

)]
, (1.15)

where T is the temperature, U0 is the activation energy of the vortex bun-

dles, which depends on the material, k = 1.38064852× 10−23 J/K is Boltz-

mann’s constant, Ec is an arbitrary constant, and Jc is the current density

that causes |E| = Ec, which also depends on the material. Later, it was

found that several mechanisms, such as collective flux creep or vortex glass,

can be described by the general relation [17, 22]

E(J) =
J

|J|Ec exp

[
−U(|J|)

kT

]
, (1.16)

with

U(|J|) = U0
(Jc/|J|)α − 1

α
, (1.17)

where α is a material constant. The case of α = −1 corresponds to the

thermally activated flux creep relation of (1.15). The limit of α → 0 results

in U(|J|) = U0 ln(Jc/|J|) and

E(J) = Ec
J

|J|
( |J|
Jc

)n
, (1.18)

with n = U0/kT . This power-law E(J) has been found in many

experiments, appearing in most hard superconductors for |J| close to Jc.

Equation (1.18) is the most commonly used relation for superconductor

modeling. Figure 1.1 shows this power-law relation for several power-law

exponents, n. From (1.18), we see that the resistivity tensor ρ of the general

constitutive equation (1.9) is just the scalar function

ρ(J) =
Ec

Jc

( |J|
Jc

)n−1

. (1.19)

As a consequence, the power law above assumes that the electric field fol-

lows the same direction as the current density, and hence, the resistivity is

isotropic.

A simpler physical model is the critical-state model (CSM) [13], which

states that Any electromotive force, whatever small, induces a current
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Ec

5Ec

10Ec

 0
Jc 0

|E
|

|J|

n=10
n=20
n=40
n=80
CSM

Figure 1.1. The nonlinear E(J) relation of a superconductor is usually well described
by the power law in (1.18). On increasing the power-law exponent n, the power law
approaches the multivalued E(J) relation of the CSM of (1.20).

density with magnitude equal to the critical current density Jc. This state-

ment translates to the multivalued E(J) relation of Figure 1.1. The CSM,

in its most general form, corresponds to the limit of n → ∞ of the power-

law relation of Equation (1.18), as shown in Figure 1.1. Low-temperature

superconductors (LTS) often exhibit power-law exponents above 100, and

REBCO high-temperature superconductors (HTS) may exhibit exponents

as high as 40 in low magnetic fields. The simplicity of the CSM enables us

to obtain invaluably useful analytical formulas and helps to quantitatively

interpret the results obtained from more realistic E(J) relations. Mathe-

matically, the CSM can be expressed as J(E) = |J|(|E|)E/|E|, with

|J|(|E|) =
{
Jc if |E| > 0,

any |J| with |J| ≤ Jc if |E| = 0.
(1.20)

As we discuss in Section 1.2.1, in many configurations, such as cylinders

in an axial applied field, |J| always vanishes where |E| = 0 for the whole

history. Then, for those cases, |J| only takes values 0 or Jc. However, for

general shapes such as three-dimensional (3D) rectangular prisms [70] or

thin films [79], there appear regions with |J| grading between 0 and Jc.

The critical current density Jc, both in the CSM and the power law, and

the power-law exponent n generally depend on the magnetic flux density
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B and its orientation relative to the superconductor crystallographic axis.

Then, the general material relation is of the form E(J,B). Both Jc and n

typically decrease with |B|. A common magnetic-field dependence of Jc for

isotropic materials is the Kim model:

Jc(B) =
J0

(1 +B/B0)m
, (1.21)

where B = |B|, J0 = Jc(B = 0), and B0 and m are positive constants. In

addition, the critical current density for a given |B| often increases when B

becomes parallel (or close to parallel) to J, causing anisotropic resistivity.

Although this effect is of physical interest [11, 25, 46], it does not have an

impact on most power applications.

In addition, it is usually assumed that the first critical magnetic field,

Hc1, is negligible, as well as the reversible magnetization curve of the super-

conductor. Then, the relation betweenB andH of (1.8) is simplyB = μ0H.

In quasimagnetostatics, D is not directly related to neither B nor H,

and hence, it is not necessary to take any relation between D and E into

account.

1.1.3. Vector and scalar potentials and their relation to the

sources

The electromagnetic problem can also be set as a function of the scalar and

vector potentials, φ and A, respectively. The vector and scalar potentials

play a key role in integral and variational methods, in addition to the finite

element methods (FEMs) directly solving these potentials. This section

may be of interest to readers working or willing to work with numerical

methods using A and φ as electromagnetic variables, but it may be skipped

by others.

The origin of A and φ is the following. The fact that ∇ ·B = 0 implies

that B can be written as a function of a vector field A:

B = ∇×A (1.22)

because ∇ · (∇×A) = 0 for any A. Faraday’s law implies that

∇× (E+ ∂tA) = 0, (1.23)

and hence, E + ∂tA can be written as a function of a scalar field φ as

E+ ∂tA = −∇φ or

E = −∂tA−∇φ (1.24)
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since ∇×∇φ = 0 for any φ.

Next, consider the vector and scalar potentials, A′ and φ′, respectively,
that follow

A′ = A+∇f, (1.25)

φ′ = φ− ∂tf, (1.26)

where f is any scalar function. These vector and scalar potentials, A′ and
φ′, describe the same B and E as A and φ, respectively. This conversion

is called gauge transformation. In the following, we show that there is a

gauge, called Coulomb’s (or London’s) gauge, where the scalar potential

corresponds to the electrostatic potential, which is exclusively created by

the electric charges.

Let us assume that there is a gauge of the vector potential Ac that

follows

∇ ·Ac = 0. (1.27)

In the last paragraph of this section, we see that there is always a vector

potential that follows this condition. As a consequence of ∇ ·Ac = 0, the

divergence in Equation (1.24) becomes

∇ ·E = −∇2φc, (1.28)

where φc is the scalar potential in the considered gauge. Combining this

equation with Gauss’ law (1.1) results in

∇2φc = − q

ε0
, (1.29)

which is the Laplace equation for the electrostatic potential, and hence, the

scalar potential is the electrostatic potential. The solution to this equation

can be found by the Green function method (Section 1.1.4), with the result

being

φc(r) =
1

4πε0

∫
v

d3r′
q(r′)
|r− r′| , (1.30)

where v is the volume of the region that contains the charges. For the vector

potential, Ampere’s law (1.10) in the void, where B = μ0H, results in

∇2Ac = −μ0J, (1.31)

where we use the vector relation ∇ × ∇Ac = −∇2Ac + ∇(∇ · Ac) and

∇ · Ac = 0. Equation (1.31) consists of three Laplace equations, one for
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each component of A, as in (1.29) but with different constants. By analogy,

the solution is

Ac(r) =
μ0

4π

∫
v

d3r′
J(r′)
|r− r′| , (1.32)

where v is the region where there are currents. This equation is strictly

valid for the void. In the presence of magnetic materials, (1.32) represents

the contribution from the currents.

Therefore, we have seen that for any q(r) and J(r), there is always a

solution to φ and A that follows the condition ∇ · A = 0. Moreover, for

this case, the scalar potential is the electrostatic potential. Furthermore,

in this gauge, the scalar and vector potentials can be calculated by direct

integration from q and J, respectively, by means of (1.30) and (1.32). Thus,

q and J are the sources of the scalar and vector potentials, respectively.

1.1.3.1. Long straight conductors (infinite)

For very long (or “infinite”) straight conductors transporting current or

under a transverse applied field, it is useful to find A as a function of J in

the cross-section. Taking z as the longitudinal direction, J(r) = J(x, y)ez,

where ez is the unit vector in the z direction. Hence, the vector potential

in Coulomb’s gauge follows A(r) = A(x, y)ez . For a thin straight wire with

current Iw and length 2l much larger than its thickness, direct integration

of (1.32) yields

Awire(r2) = −μ0

2π
Iw ln

[ |r2 − r′2|
l

]
, (1.33)

where r2 is the vector position in the plane, r2 = xex + yey in Cartesian

coordinates, and r′2 is the central position of the conductor. The deduction

of the above equation used the fact that |r2 − r′2| � l. The conductor half-

length in (1.33) is usually dropped because it only adds a constant term

that vanishes when evaluating ∇×A. For very long conductors with any

J(r2), Equation (1.33) becomes

A(r2) = −μ0

2π

∫
s

d2r′2J(r
′
2) ln |r2 − r′2|+

μ0

2π
I ln l, (1.34)

where I is the net transport current and s is the region in the cross-sectional

plane where there are currents. Again, the constant term with ln l can be

omitted.
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For infinitely long problems, the gauge transformation of (1.26) can

be largely simplified into (1.35). We have seen that for Coulomb’s gauge,

A(r) = A(x, y)ez . If we also impose the infinitely long symmetry to

the vector potential A′ after the transformation, we get that A′(r) =

A′(x, y)ez. As a consequence, the gauge fixing function f satisfies ∇f(r) =
[∂zf ](x, y)ez. Therefore, ∂xf = ∂yf = 0, and hence, f depends on neither

x nor y. Because of the infinitely long symmetry, ∂zf does not depend on

z, and hence, f(z) needs to be linear with z. Then, ∂zf is uniform in the

whole space. Thus, for infinitely long problems, the gauge transformation

for the vector potential reduces to

A′(x, y) = A(x, y) + ∂zf. (1.35)

A single scalar, ∂zf , determines the gauge at each instant of time, and

hence, we can set the gauge by simply imposing a certain time dependence

of the vector potential at an arbitrarily chosen point.

The longitudinal symmetry also causes the electrostatic scalar potential

to be uniform within each conductor. This can be seen as follows. The

infinitely long symmetry results in J(r) = J(x, y)ez . If the resistivity of

the conductor is isotropic or the z direction corresponds to one of the main

axes of the resistivity tensor, the electric field follows the z direction, and

hence, E(r) = E(x, y)ez . From (1.24) and the symmetry of A, the vector

potential becomes ∇φ(r) = −[E(x, y) + ∂tA(x, y)]ez , and hence, ∇φ(r) =
[∂zφ](x, y)ez . As we have seen for the gauge transformation, this condition

results in ∂zφ becoming uniform within each conductor. However, ∇φ is

not always uniform in the whole space. This can be seen in the following

counterexample (Figure 1.2). If there are two very long conductors closed

at the ends with two identical voltage sources at each end, there is a certain

voltage drop between the conductors everywhere except at the central plane.

Although∇φ follows the conductor’s direction except very close to the ends,

∇φ in the air in between generally has a transverse component. For this

reason, ∂zφ could be different at each conductor.

1.1.3.2. Axial symmetry

For problems with axial symmetry, such as cylinders and circular coils, the

current density follows

J(r) = J(r, z)eϕ, (1.36)
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Figure 1.2. For very long conductors (usually referred as “infinite”), the modeling is
done on the central xy plane, which is located at z = 0. Although the gradient of
the scalar potential in Coulomb’s gauge, ∇φ, is uniform at each conductor (solid blue
rectangles), at z �= 0, there is a transverse component of ∇φ causing a transverse electric
field in the air. The voltage sources at the ends are assumed identical, which are also
generating a net current I at each conductor.

and hence, in Coulomb’s gauge,

A(r) = A(r, z)eϕ, (1.37)

where r and z are the radial and axial coordinates, respectively, and eϕ
is the unit vector in the angular direction. Now, a relevant case is the

vector potential generated by a thin closed loop, with current Il being (see

Ref. [54, p. 112])

Aloop(r, z − z′, r′) = Il
μ0

πk

√
r′

r

[(
1− k2

2

)
K(k)− E(k)

]
, (1.38)

with

k2 =
4rr′

(r + r′)2 + (z − z′)2
, (1.39)
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where K(k) and E(k) are the complete elliptic integrals of the first and

second kind, respectively, and r′ and z′ are the coordinates of the loop.

Then, for the whole body with axial symmetry,

A(r, z) =

∫
vs

dr′dz′J(r′, z′)aloop(r, z − z′, r′), (1.40)

where aloop(r, z − z′, r′) = Aloop(r, z − z′, r′)/Il and vs is the region in the

(r, z) plane where there are currents.

As for infinitely long problems, we can find important simplifications

for the gauge transformation and the scalar potential at each conductor.

The gradient of the gauge transformation function in (1.26) satisfies

∇f(r) = (1/r)∂ϕfeϕ with uniform ∂ϕf in the whole space. This follows

from the symmetry of A in Coulomb’s gauge, A(r) = A(r, z)eϕ, and the

imposed symmetry of the transformed vector potential, A′(r) = A′(r, z)eϕ.
The simplification of the gauge transformation function implies that the

gauge can be fixed by imposing the value of the vector potential at an

arbitrary point for every time instant.

The gradient of the scalar potential within the conductors follows

∇φ(r) = (1/r)∂ϕφeϕ, with uniform ∂ϕφ, which could be different in each

conductor. This follows from (1.24), (1.37), and E = E(r, z)eϕ, the last

one being a consequence of (1.36) for isotropic resistivity tensors or those

with a main axis in the angular direction. In the air, ∇φ does not need to

follow the angular direction since there could be a certain potential drop

between conductors, as is the case of coils.

1.1.4. Solution to the Laplace equation for electrostatics

In this section, we find that the solution to the Laplace equation for elec-

trostatics (1.29) is (1.30). This is used in the scalar and vector potential

expressions as a function of their sources in Section 1.1.3. Readers not

interested in the mathematical details may skip this section.

This can be seen by means of the Green function method, as follows.

Any charge density q(r) can be expressed as a combination of point charges

as

q(r) =

∫
v

d3r′q(r′)δ(r− r′), (1.41)

where v is the region where there are charges and δ(r− r′) is Dirac’s delta,

which follows 1 =
∫
R3 d

3rδ(r − r′) (R3 is the whole 3D space) and δ(r −
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r′) = 0 except for r → r′, where δ(r − r′) → ∞. With G(r, r′) being the

solution to

∇2G(r, r′) = −δ(r− r′)
ε0

, (1.42)

the solution to φc(r) is

φc(r) =

∫
v

d3rG(r, r′)q(r′) (1.43)

because from (1.41), (1.42), and (1.43), it is seen that

∇2φc(r) = −q(r)
ε0

= − 1

ε0

∫
v

d3r′q(r′)δ(r − r′) =
∫
v

d3r′∇2G(r, r′)q(r′)

= ∇2

∫
v

d3r′G(r, r′)q(r′), (1.44)

and hence, Equation (1.43) follows, except the constant terms.

Taking into account that ∇2 =
∑

i ∂
2/(∂xi)

2 =
∑

i ∂
2/[∂(xi − x′i)]

2 ≡
∇2

r′′ , where xi is one of the Cartesian coordinates, xi ∈ {x, y, z} and r′′ =
r− r′, we can see that Equation (1.42) becomes

∇2
r′′G(r, r

′) = −δ(r
′′)
ε0

. (1.45)

Since the right-hand side of (1.42) only depends on r′′, ∇r′′G only depends

on r′′. Taking into account that δ(r′′) = δ(r′′), where r′′ = |r′′|, and using

the fact that ∇2
r′′ is an isotropic operator (there is no privileged direction),

G should be isotropic and hence depends only on r′′: G(r′′).
From Gauss’ theorem,∫

∂v

ds′′ · ∇G(r′′) = − 1

ε0

∫
v

d3rδ(r − r′) = − 1

ε0
. (1.46)

Taking v as a sphere, where ∂v is its surface, we obtain

∇r′′G(r
′′) = − er′′

4πε0r′′2
, (1.47)

where er′′ is the unit vector in the r′′ = r − r′′ direction. Integrating over

r′′ results in

G(r, r′) =
1

4πε0|r− r′| . (1.48)
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Combining (1.43) with (1.48) yields

φc(r) =
1

4πε0

∫
v

d3r′
q(r′)
|r− r′| . (1.49)

1.1.5. Integral relation between B and J

There is also an integral relation between B and J that can be easily found

from the vector potential in Coulomb’s gauge from Section 1.1.3 by means

of B = ∇×A.

From (1.32), we obtain the well-known Biot–Savart law for general 3D

shapes [40]:

B(r) =
μ0

4π

∫
v

d3r′
J(r′)× (r− r′)

|r− r′|3 . (1.50)

The equivalent law for infinitely long problems in the z direction can be

obtained from (1.34):

B(r2) =
μ0

2π

∫
s

d2r′2
J(r′2)ez × (r2 − r′2)

|r2 − r′2|2
, (1.51)

where J = Jez and r2 = xex + yey.

Finally, for axisymmetric configurations, B = ∇×A from A in (1.40)

results in

B(r, z) =

∫
vs

dr′dz′J(r′, z′)bloop(r, z − z′, r′), (1.52)

where dr′dz′J(r′, z′)bloop(r, z − z′, r′) is the magnetic flux density created

by a circular loop of radius r′ located at z = z′ and current dr′dz′J(r′, z′).
Here, bloop has both r and z components, bloop = br,looper + bz,loopez,

where

br,loop(r, z − z′, r′)

=
μ0

2π
√
(r′ + r)2 + (z − z′)2

[
K(k) + E(k)

r′
2 − r2 − (z − z′)2

(r′ − r)2 + (z − z′)2

]
,

(1.53)

br,loop(r, z − z′, r′)

=
−μ0(z − z′)

2πr
√

(r′ + r)2 + (z − z′)2

[
K(k)− E(k)

r′2 + r2 + (z − z′)2

(r′ − r)2 + (z − z′)2

]
.

(1.54)
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In the expression above, k is given by (1.39), and K(k) and E(k) are the

complete elliptic integrals of the first and second kind, respectively.

1.1.6. Current potentials

Modeling methods using the current potentials as state variables have

recently become very popular. Thus, it is worth dedicating a few pages

introducing these potentials and their physical meaning, which depend on

the chosen gauge.

Thanks to the current conservation condition ∇ · J = 0 in quasimag-

netostatics, the current density can be written as a function of the vector

potential T as

J = ∇×T. (1.55)

From this property and (1.10), we find that

∇× (H−T) = 0, (1.56)

and hence, H − T is a conservative field. Thus, H − T can be written as

the gradient of a current scalar potential Ω:

H = T−∇Ω. (1.57)

Similar to the vector and scalar potentials in Section 1.1.3, the current

vector and scalar potentials have gauge freedom. That is, the current vector

and scalar potentials T′ and Ω′, related to T and Ω as

T′ = T+∇φ
Ω′ = Ω+ φ, (1.58)

generate the same J and H as T and Ω, respectively. The physical inter-

pretation of T and Ω depend on the gauge.

1.1.6.1. Divergence-free gauge of T

For a divergence-free gauge, defined as

∇ ·T = 0 (1.59)

everywhere, the divergence of H becomes ∇ · H = −∇2Ω. From B =

μ0(H+M), we obtain

∇2Ω = −qm, with qm ≡ −∇ ·M, (1.60)
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where qm is called the magnetic pole density. Thus, Ω becomes the mag-

netic potential, which is analogous to the electrostatic potential (compare

(1.60) with (1.29)), where qm plays the same role of q/ε0. The condition

∇ ·T = 0 also implies that T can be written as another vector potential G

so that

T = ∇×G. (1.61)

This potential G is also subjected to gauge invariance. Choosing the gauge

∇ ·G = 0 (1.62)

from ∇×T = J, we obtain

∇2G = −J, (1.63)

which is analogous to Equation (1.31). Therefore, the solution to the above

equation is

G(r) =
1

4π

∫
v

d3r′
J(r′)
|r− r′| , (1.64)

which is proportional to the vector potential generated by the current den-

sity, AJ , as G = AJ/μ0. Then, the current vector potential T = ∇ ×G

corresponds to the magnetic flux density generated by J, BJ , as

T = BJ/μ0. (1.65)

Therefore, for the divergence-free gauge, μ0T and Ω correspond to the

magnetic flux density generated by the currents and the magnetic potential

generated by the magnetic materials, respectively.

The current vector and scalar potentials for any gauge can be written

as

T = Tdf +∇φ,
Ω = Ωdf + φ, (1.66)

where Tdf and Ωdf are the T and Ω from the divergence-free gauge,

respectively.
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1.1.6.2. Magnetic-field gauge

An alternative gauge is that defined by φ = −Ωdf in (1.66), and hence,

T = Tdf −∇Ωdf ,

Ω = 0. (1.67)

From (1.57), T becomes the magnetic field:

T = H. (1.68)

1.1.6.3. Current potential as magnetization

For systems with no net current and no magnetic materials, the current

vector potential can be interpreted as an effective magnetization, and hence,

J = ∇ × T is taken as a magnetization current as done by Pardo and

Kapolka [69]. For this case,

B = μ0(H+T), (1.69)

∇×H = 0. (1.70)

As a consequence of the second equation, there exists a scalar potential Ω

that follows

H = −∇Ω. (1.71)

Again, we obtain ∇ ·H = −∇2Ω. From (1.69), this results in

∇2Ω = −qT with qT ≡ −∇ ·T. (1.72)

Consistently, Ω is the magnetic potential as a consequence of the effective

magnetization pole density qT . The advantage of this interpretation of T is

that it vanishes outside the conducting (or superconducting) sample. Since

T is taken now as a magnetization, there is no gauge invariance. In general,

∇·T does not vanish everywhere because −∇·T corresponds to the effective

magnetic pole density, although in some cases, it may occur that ∇·T 	= 0

at the sample surface only. Actually, this interpretation of T can also be

applied when transport currents and magnetic materials are present [69],

although this extension is outside the scope of this book.
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1.1.7. Calculation of local dissipation and AC loss

A quantity of practical importance for the design of large-scale applications

is the power dissipation under changing or alternating magnetic fields, also

called “AC loss.”

In Section 1.1.7.1, we show that the local power loss dissipation per unit

volume in both normal and superconducting materials is

p = J ·E. (1.73)

Therefore, the evaluation of the AC loss for both kinds of materials is the

same once J is known:

p = J ·E(J), (1.74)

where E(J) is the constitutive relation of the material. For a normal con-

ductor, we have E(J) = ρJ, while for a superconductor, E(J) is a nonlinear

function of J (see Section 1.1.2). For the CSM, where the E(J) relation

is multiple-valued (E can take several values for |J| = Jc), E should be

evaluated in a different way, such as from the vector and scalar potentials

(E = −∂tA−∇φ). From (1.73), the total instantaneous power loss in the

sample is

P =

∫
v

d3r J · E, (1.75)

and the loss per cycle for periodic excitations (applied magnetic field or

current) is

Q =

∮
dt

∫
v

d3r J · E. (1.76)

The hysteresis AC loss of magnetic materials, where there are no free

currents J, should be evaluated using the equations presented in Section

1.1.7.2.

1.1.7.1. Fundamental aspects of the local loss dissipation

In electromagnetism, the power dissipation per unit volume created by any

current density J in a certain electric field E is p = J · E (Equation (1.73)

above). This can be seen from the work exerted on the charge carriers, as
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follows. The force on a single carrier of charge C is F = CE. For a given

small time δt, this force causes a work

δW = Cδr · E = Cδtv ·E. (1.77)

If the charge C belongs to a differential volume dV , then C = qdV , where

q is the charge density. Then, the work density δw is

δw = δtqv ·E = δtJ · E. (1.78)

Therefore, the power density, p = δw/δt, exerted by any current density is

given by (1.73). This electric field is created by external sources from the

observed differential volume since the charge in that volume does not cre-

ate any net electric field at the center of the volume because of symmetry.

Then, this work is exerted by external sources from the observation point.

If p > 0, then the sources are providing energy, and hence, they are “losing”

energy. Since the work δw on the differential volume is exerted locally, this

energy gain must occur locally. This energy is transferred to another phys-

ical system, typically the kinetic energy of the carriers or the microscopic

structure of the material. If this local electromagnetic energy is consumed

to increase the thermal energy, we can say that the electromagnetic energy

is dissipated. This is the link between the electromagnetic system and the

thermal system in electrothermal problems. For J distributions in finite

volumes, the net work will still be exerted by external sources.

In normal conductors, the work is usually transferred to the ionic lattice

via conducting carrier collisions to impurities, lattice disorders, or oscilla-

tions. The result of the mechanisms is that for a given E, J does not change

in time, except for an extremely short transient. Then, a constitutive E(J)

relation can be formulated.

Since the ultimate charge carriers in superconductors are electrons (or,

more precisely, Cooper pairs), the same reasoning to obtain Equation (1.73)

also applies to superconductors. However, we can also obtain (1.73) from

vortex physics, as shown in the following. Then, we can ignore the charge

carriers and assume that the microscopic origin of all electromagnetic prop-

erties in type-II superconductors are vortices, their gradient, and their

movement. The starting point is that the driving force per unit length

on a vortex is Fd = J×Φ0, where |Φ0| is the vortex flux quantum, which is

h/2e, with e being the charge of the electron and h being Planck’s constant.

The direction of Φ0 follows the direction of the vortex. Then, the rate of
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work per unit volume, p, on the vortices is

p = (J×Φ0n) · v = (Φ0n× v) · J, (1.79)

where n and v are the vortex density and their velocity, respectively. From

electromagnetic analysis, it can be shown that the vortices moving with a

speed v create an electric field [36]:

E = Φ0n× v. (1.80)

The field E and J above are averaged over a small volume containing at

least one vortex. Finally, by inserting Equation (1.80) into (1.79), we obtain

p = J ·E.

1.1.7.2. Hysteresis loss of magnetic materials

In this section, we show that the hysteresis loss in a magnetic material

under cyclic applied magnetic fields is (1.82) in general and (1.88) for soft

ferromagnetic materials.

From Maxwell equations, it can be seen that the change in the free

energy, δF̂ , at constant temperature of a sample with local magnetization

M is [54, p. 116]

δF̂ = −μ0

∫
v

d3rM · δHa − μ0

∫
R3

d3rHa · δHa, (1.81)

where Ha is the applied magnetic field and δHa is a variation in this field.

If δF̂ > 0, then the external sources of Ha provide energy to the system.

Then, the loss per cycle due to the cyclic applied fields is

Q =

∮
δF̂ = −μ0

∫
v

d3r

∮
dHa ·M, (1.82)

where we use the fact that the cycle integral of the second term in (1.81)

vanishes. This equation is valid for any applied magnetic field, which could

be nonuniform and its direction could change during the cycle. If this loss

per cycle is positive, it means that the source of the applied field is providing

energy to the system, and hence, there is dissipation.

Equation (1.82) can also be written as a function of the total magnetic

field H as

Q = −μ0

∫
v

d3r

∮
dH ·M. (1.83)

The reason is thatH = HM+Ha, withHM being the magnetic field created

by M, and the cyclic integral
∫
v
d3r
∮
dHM · M vanishes. The latter can
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be seen as follows. First, the magnetic field created by a point dipole of

magnetic moment m at position r′ is [40]

Hdipole(r) = g(r− r′)m, (1.84)

with the tensor g(r− r′) having components

gij =
1

4πr′′5
(
3r′′i r

′′
j − δijr

′′2
i

)
, (1.85)

where δij are the identity matrix coefficients, r′′ = r− r′, r′′ = |r′′|, and r′′i
are the components of r′′. Since M(r) is the magnetic dipole density, the

magnetic field created by M, HM , is

HM (r) =

∫
v

d3r′g(r− r′)M(r′). (1.86)

Then, ∫
v

d3r

∮
dHM ·M =

∮
dt

∫
v

d3rM · ∂HM

∂t
=∮

dt

∫
v

d3r

∫
v

d3r′M(r)g(r− r′)
∂M(r′)
∂t

=

1

2

∮
dt

∫
v

d3r

∫
v

d3r′
∂

∂t
[M(r)g(r− r′)M(r′)] = 0. (1.87)

The last expression vanishes due to the circle integral in time and the global

time derivative of the integrand.

For isotropic, soft ferromagnetic materials, M is always parallel to H,

and the magnetization loops are very narrow. Then, the material response

can be approximated by a single-valued M(H) relation and the hysteresis

loss density per cycle, Qv, depends only on the magnetic field amplitude,

Hm, and the bias magnetic field, Hbias. Then, the circle integral of (1.83)

becomes Qv(Hm, Hbias), and the total loss per cycle is

Q ≈ −μ0

∫
v

Qv(Hm, Hbias)d
3r. (1.88)

In the above equation, the magnetic fields Hm and Hbias are total magnetic

fields, and hence, they include the contribution of the magnetic material.

1.1.7.3. Conductors and superconductors under uniform applied

fields

When a normal conductor or superconductor is submitted to only a uniform

applied magnetic fields, Ha, it can be seen from classical electrodynamics
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that Equation (1.76) yields

Q = −μ0

∮
m · ∂Ha

∂t
dt = −μ0

∮
m · dHa, (1.89)

where m is the magnetic moment, which is defined as

m =
1

2

∫
v

d3r r× J. (1.90)

For very long samples, where the current loops close near the ends, the

above equation results in

m = l

∫
s

d2r2 r2 × J, (1.91)

where l is the sample length, s is the cross-sectional plane, and r2 is the

position vector in that plane.

Equation (1.89) is valid for any periodic uniform applied vector field,

including oscillating and rotating applied fields. This equation could also

be obtained from (1.82) using the fact that Ha (and dHa) is uniform.

1.2. Analytical Formulas and Main Electromagnetic

Behavior

In this section, we deduce several analytical formulas to predict the electro-

magnetic behavior of superconductors. The main purpose of this section is

to introduce the reader to the main features of the electromagnetic response

of superconductors (bulks, wires, and tapes) and also superconducting con-

ductors containing normal conducting parts, usually metals. The formulas

presented in this section are also very useful for researchers working on

numerical modeling in order to test or benchmark their numerical methods.

For composite wires and cables, and any superconducting object in gen-

eral, we can distinguish between three types of electromagnetic response

due to hysteresis currents, eddy currents, and coupling currents. In more

detail:

• Hysteresis currents, also called superconducting currents, are those

that form closed loops exclusively within superconducting regions.

• Eddy currents are those that close entirely within normal conducting

parts.

• Coupling currents are currents that flow mostly on superconducting

regions, usually filaments in multi-filamentary wires or tapes, but they
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need to cross a normal conducting part in order to close the loop. Thus,

they join or “couple” different superconducting regions.

1.2.1. Hysteresis currents

The Bean–London CSM, which we introduced in Section 1.1.2, allows us to

find key analytical formulas of the elecromagnetic behavior of simple shapes.

According to the CSM, the induced current density is independent of the

frequency of the applied field or transport current, and hence, the supercon-

ductor shows hysteresis. Actually, the response also does not depend on the

waveform of these inputs as long as they monotonically increase from their

minimum to their maximum and monotonically decrease from maximum

to minimum. The weak frequency dependence on power-law E(J) relations

can be estimated with the scaling laws described in Section 1.2.1.7.

1.2.1.1. Infinite cylinder under axial applied magnetic field

As done by Bean [12], let us consider an infinitely long cylinder of radius

R in zero-field cool situation, where no current density is present (see

Figure 1.3). After applying an increasing magnetic field Ha in the axial

direction z, Ha = Haez, any closed circular circuit coaxial of the cylinder

axis experiences an electromotive force, due to Faraday’s law, as∮
∂s

dl ·Ea = −μ0

∫
s

ds · ∂tHa,

Figure 1.3. The CSM enables us to find analytical formulas of the response of a very
long superconducting cylinder submitted to varying applied magnetic fields in the axial
direction.



24 E. Pardo & F. Grilli

where Ea is the electric field due to the changing applied magnetic field

or “applied electric field.” Thanks to cylindrical symmetry, E = Eeϕ and

J = Jeϕ, with eϕ being the unit vector in the angular direction. The above

integral relation results in

Ea =
−μ0

2
r∂tHa.

Then, the rise inHa causes a negative nonzero Ea. Following the CSM E(J)

relation in (1.20), this negative applied electric field causes a current density

J = −Jceϕ in a certain region. However, the cylinder is not completely

filled with J = −Jc everywhere since the newly induced current density

partially shields the applied magnetic field. Thanks to the infinitely long

geometry, a current layer from the surface to a depth d creates a uniform

magnetic field of value HJ = −Jcd at r < R− d. The current penetration

depth d is such that H = 0 at 0 < r < R − d, where r is the radial

coordinate, because any change in H in the superconductor volume would

create an electric field and hence current density (Figures 1.4(a) and 1.4(c)).

We see now two key features of the CSM:

• For zero-field cool, the regions with zero current density has no magnetic

field in the whole history after zero-field cool.

• Although the CSM allows intermediate values of |J| between 0 and Jc,

these do not appear thanks to the circular and infinitely long geometry.

Thus, |J| is either 0 or Jc.

Since H = 0 at 0 < r < R − d, the magnetic field created by J follows

HJ = −Ha, and hence, d = Ha/Jc. By further increasing Ha, the current

further penetrates until the sample is saturated at

Hp = JcR, (1.92)

which is called penetration field. Then, the current density is

J =

{−Jc if R− d ≤ r ≤ R,

0 otherwise,
(1.93)

with

d =

{
Ha/Jc if Ha ≤ Hp = JcR,

R otherwise.
(1.94)
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Figure 1.4. ((a) and (c)) At the initial curve, the current density, J , and the magnetic
flux density, B = μ0H, in a long cylinder of radius R monotonically penetrates from the
surface inwards. (b) Later, when decreasing the applied flux density from the maximum,
Bm, current density with the opposite sign penetrates from the surface inwards. (d)
During this process, B is unchanged beyond a certain depth from the surface. Here,
Bp = μ0Hp = μ0JcR.

By Ampere’s law, J = −dH/dr, and hence, H can be found by integration

of J over r, resulting in

H =

⎧⎪⎨
⎪⎩
Ha if r ≥ R,

Jc(r −R) +Ha if R− d ≤ r < R,

0 otherwise.

(1.95)

Next, we reduce the applied magnetic field from the maximumHa = Hm

to Ha = −Hm (reverse curve). Now, the electromotive force is opposite,

and hence, the critical-state statement and Lenz law tell us that a region

with J = +Jc will appear. For the infinite cylinder, a layer with J = +Jc
of thickness dr is induced from the surface, beyond which the magnetic field

is unchanged or “frozen” and so is the current density. Then, at the reverse

curve, the regions enclosed by the region with reversed critical current has
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a frozen magnetic field and current density from the peak of the magnetic

field. The thickness of this layer is dr = (Hm −Ha)/2Jc because the local

change in J is 2Jc, instead of only Jc at the initial curve. Thanks to this,

with Ha = 0, there is a certain remnant field in the superconductor. The

maximum remnant field is achieved at Hm ≥ 2Hp = 2JcR. After further

reducing Ha down to −Hm, the reverse critical region further penetrates

until it fully removes the magnetic history. Then, at the end of the reverse

curve, the magnetic field and current density are the same as at the end

of the initial curve but with the opposite sign. The current density and

magnetic field in the reverse curve are

J =

⎧⎪⎨
⎪⎩
+Jc if R− dr < r ≤ R,

−Jc if R− dm ≤ r < R− dr,

0 otherwise,

(1.96)

with

dm =

{
Hm/Jc if Ha ≤ Hp = JcR,

R otherwise,
(1.97)

dr =

{
(Hm −Ha)/2Jc if Hm −Ha ≤ 2Hp = 2JcR,

R otherwise,
(1.98)

which results in a magnetic field

H =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ha if r ≥ R,

Jc(R − r) +Ha if R− dr < r < R,

Jc(r −R) +Ha if R− dm < r ≤ R− dr,

0 otherwise.

(1.99)

The magnetization process, as a result of increasing the magnetic field

again from −Hm to Hm (returning curve), is symmetric with respect to

the reverse curve, following

J↑(r, Ha) = −J↓(r,−Ha), (1.100)

H↑(r, Ha) = −H↓(r,−Ha), (1.101)

where J↑ and J↓ denote the current density at the returning (increasing

applied magnetic field) and reverse curve (decreasing applied magnetic

field), respectively. In the above equation, we express the current density

as a function of the vector position r because this expression is valid for a
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wide range of sample shapes. From the current profiles in Figure 1.4, it can

be seen that the current density at the reverse and returning curves can be

obtained by superposition of those at the initial curve as

J↓(r, Ha) = Ji(r, Hm)− 2Ji

(
r,
Hm −Ha

2

)
, (1.102)

J↑(r, Ha) = −Ji(r, Hm) + 2Ji

(
r,
Hm +Ha

2

)
, (1.103)

where Ji is the current density in the initial stage. Summarizing, the main

features of the magnetization process in the CSM are as follows:

• Although the CSM allows current densities of magnitude below Jc, the

response is such that |J | = Jc, wherever current density is present.

• For zero-field cool, the regions with zero current density has no magnetic

field in the whole history since zero-field cool.

• At the reverse curve, the regions enclosed by the region with reversed

critical current has a frozen magnetic field and current density from the

peak of the magnetic field.

• At the end of the reverse curve, the magnetic field and current density

are the same as at the end of the initial curve but with the opposite sign.

• The current density at the reverse and returning curves can be obtained

from the initial one.

Once J(r, Ha) is known, the magnetic moment can be calculated from

(1.90). From the sample symmetry, m = mez, where ez is the unit vector

in the z direction. The volume-averagedmagnetization isM = m/V , where

V is the sample volume. Applying (1.96) to (1.90), the magnetization of

the initial curve is

Mi(Ha) =

⎧⎪⎨
⎪⎩

JcR
3

[(
1− Ha

Hp

)3
− 1

]
if Ha ≤ Hp = JcR,

−JcR
3 ≡ −Ms if Ha ≥ Hp = JcR,

(1.104)

whereMs corresponds to the saturation magnetization (see Figure 1.5). For

the infinite cylinder, the magnetization exactly saturates at the penetration

field Ha = Hp = JcR. The relation between the initial and reverse curves

in (1.103) also applies to the magnetization since for any arbitrary current

densities J1(r) and J2(r), it follows that M = (1/2V )
∫
d3r r × [J1(r) +

J2(r)] = M1+M2, where M1 and M2 are the magnetizations for J1(r) and

J2(r), respectively. For the parts of the loop where the sample is saturated,
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Figure 1.5. When submitted to periodic applied magnetic flux densities, Ba, a super-
conductor in the CSM presents hysteresis loops after the initial rise in Ba. The above
results are for very long cylinders with the Ba amplitudes of Bm/Bp = 0.5, 1, 2, and 3,
where Bp = μ0Hp = μ0JcR and the saturation magnetization is Ms = JcR/3.

the width of the loop is ΔM = 3JcR/3, which enables experimentalists to

obtain Jc from magnetization loops as

Jc =
3ΔM

2JcR
. (1.105)

Knowing that the loss per cycle and unit volume is Qv =

2μ0

∫Hm

−Hm
dHaM↓(Ha) and that M↓(Ha) = Mi(Hm) − 2Mi[(Hm −Ha)/2]

and using (1.104), we obtain the AC loss [30]:

Qv

μ0πH2
p

=

{
h3(4− 2h)/(3π) if h =≤ 1,

(4h− 2)/(3π) if h =≥ 1,
(1.106)

whereHp ≡ JcR and h ≡ Hm/Hp. The normalized AC loss above is dimen-

sionless and depends only on the reduced applied magnetic field amplitude

h = Hm/JcR. The limits for low and high applied field amplitudes are of

high practical importance since many other configurations show the same

qualitative behavior:

Qv =
4μ0

3JcR
H3

m ∝ H3
m if Hm � Hp, (1.107)

Qv =
4μ0JcR

3
Hm ∝ Hm if Hm 
 Hp, (1.108)
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Figure 1.6. The AC loss of infinite superconducting cylinders and slabs in paral-
lel applied magnetic fields monotonically increases with the applied field amplitude

(left). The dimensionless, normalized AC loss Qv/(μ0πH2
p) therein is independent of

Jc and the dimensions of the body. The dimensionless loss factor in the right-hand plot,
Γm = Qv/(μ0πH2

m), is also independent of Jc and the sample size but enables a more
detailed analysis. This factor causes a peak at Hm/Hp = 1 and Hm/Hp = 4/3 for the
cylinder and slab, respectively, namely Hp = JcR and Hp = Jca, respectively, for each
shape.

with Hp = JcR, as in (1.106). Alternatively, we can also normalize the AC

loss with the amplitude of the applied field, H2
m, instead of H2

p so that

Γm ≡ Qv

μ0πH2
m

, (1.109)

which corresponds to the imaginary part of the AC susceptibility [24]. This

quantity allows us to analyze, in more depth, the details of the AC loss

curve. In particular, the peak of the normalized loss of (1.106), Hpk, occurs

at Hpk = Hp, where Hp = JcR is the penetration field (Figure 1.6). This

enables us to obtain Jc from measurements under applied alternating mag-

netic fields.

1.2.1.2. Infinite slab under parallel applied field

Another case of practical importance is a slab with an applied field parallel

to one infinite direction. For this idealized shape, the current is in the y

direction, as shown in Figure 1.7. Following the same reasoning as for the

cylinder, we find the same expression for J and H in the initial curve as

Equations (1.93) and (1.94) but replacing R by the half-width of the slab,

a. However, the magnetization is now

Mi(Ha) =

{
−Ha +

H2
a

2Jca
if Ha ≤ Hp,

−Jca/2 ≡ −Ms if Ha ≥ Hp,
(1.110)
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Figure 1.7. The response of a superconducting slab in the CSM to applied magnetic
fields, Ha, along one of the large dimensions also follows the analytical formulas.

with Hp = Jca. Obtaining this magnetization requires (1.91) since the

current loops close at infinity. Since the saturation magnetization now is

Ms = Jca/2, the current density is related to the width of the saturated

part of the loop as

Jc = ΔM/a. (1.111)

From the magnetization loops obtained from this initial magnetization,

the normalized AC loss is

qv ≡ Qv

μ0πH2
p

=

⎧⎪⎨
⎪⎩
2h3/(3π) if h ≤ 1,

(6h− 4)/(3π) if h ≥ 1,

2h/π if h
 1,

(1.112)

where h = Hm/Hp. The loss factor is just Γm = qv/h
2. In contrast to the

cylinder, the peak of the loss factor is not at Hp but at Hpk = 4Hp/3 =

4Jca/3 (Figure 1.6).

1.2.1.3. Circular wire with transport current

The AC loss in a circular wire with alternating transport current I(t) =

Im sin(ωt), such as that in Figure 1.8, cannot be obtained from a magneti-

zation loop. Instead, we can use the local instantaneous loss J · E. In this

way, we obtain the instantaneous power loss by integrating over the volume

and the loss per cycle by further integrating over one cycle.
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Figure 1.8. Long (or infinite) cylinder with transport current I. We use the closed
rectangular loop to calculate the local electric field, which follows the z direction.

First, we find the current density by applying positive transport current

after the zero-field cool situation. Due to the infinite geometry, J follows

the transport current direction, which we choose as z:

J(r) = J(r)ez , (1.113)

where r is the distance from the wire center. As a consequence of the CSM

statement (Section 1.1.2), a current with density Jc will penetrate from the

surface to the center in a cylindrical shell, as shown in Figure 1.10. This

can be seen as circular vortices of magnetic flux that enter the wire surface

in a gradient density determined by the Biot–Savart law, ∇ × B = μ0J,

and J = Jc. The current density is then

J(r) =

{
0 if r < b,

Jc if a ≥ r ≥ b,
(1.114)

where a and b are the wire and current-free zone radius, respectively, with

b related to the current as

b = a
√
1− i, with i = I/Ic. (1.115)

In the above equation, the critical current is Ic = πa2Jc. As for long cylin-

ders under axial applied magnetic fields (Section 1.2.1.1), the solution to

the current density is such that |J | is either Jc or 0, although the CSM

allows any |J | ≤ Jc. Again, the reason for the absence of intermediate |J |
between 0 and Jc is the high symmetry of the system. This can be seen
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Figure 1.9. ((a) and (b)) The normalized current density, ((c) and (d)) magnetic flux
density, and ((e) and (f)) electric field of a circular wire in the CSM under transport
current are universal and hence independent of the critical current density (Jc), wire
radius (R), frequency (f), and current waveform. The left-hand plots are for the initial
curve (I increasing from 0 to Im), while the right-hand plots are for the decreasing curve
that follows (I decreasing from Im to −Im). Here, Bp,s is the magnetic flux density on
the wire surface at saturation, Bp,s = μ0JcR/2, and ∂tI is the time derivative of the
current.

as follows. With the current increasing from 0 to I > 0, there will appear

regions with J > 0. If the current density is induced as a cylindrical shell

of J > 0 penetrating a certain distance from the surface, the magnetic field

remains zero at the core with J = 0, with the changing magnetic fields

only appearing in the region where J > 0. Since these changing magnetic

fields cause a nonzero electric field, E > 0, the CSM statement tells us that
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Figure 1.10. The dimensionless power loss in a circular wire in the CSM depends on the
current waveform but not on Jc, wire dimensions, or frequency. The normalized power
loss above is calculated using (1.119), (1.126), and (1.128). In (1.128), |∂tI|av is the
constant ramp rate of the triangular waveform (a) and |∂tI|av = 4fIm for the sinusoidal
current, with I(t) = Im sin(2πft).

J = Jc at the shell. Indeed, that is the only current distribution that is

consistent with the CSM. If we imagine a region with finite J but below

|Jc| (at the core, for example), there will appear E > 0 due to Faraday’s

law, but that contradicts the CSM statement because |J | can be lower than

Jc only when the electric field completely vanishes.

The electric field can be found from the magnetic field by means of

Faraday’s law. Since for our case, E(r) = E(r)ez and B(r) = B(r)eϕ, with

ϕ being the angular coordinate, Faraday’s law reduces to ∂rE = ∂tB. By

applying Ampere’s law to the obtained current density, the magnetic flux
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density is

B(r) =

⎧⎪⎨
⎪⎩
0 if r ≤ b,

μ0Jc[r − a2(1− i)/r]/2 if a ≥ r ≥ b,

μ0iJca
2/(2r) if r ≥ a.

(1.116)

From Faraday’s law and taking into account that E(r = 0) = 0 because

J(r = 0) = 0,

E(r) =

∫ r

0

dr′∂tB(r′) =
∫ r

0

dr′∂iB(r′)∂ti. (1.117)

Then, the electric field results in

E(r) =

{
0 if r ≤ b,

(μ0Jca
2/2)∂ti ln(r/b) if a ≥ r ≥ b.

(1.118)

The integral of J(r)E(r) over the cross-section is the instantaneous loss per

unit length, resulting in

Pl = −μ0

4π
I2c ∂ti[i+ ln(1 − i)]. (1.119)

An interesting limit is for low normalized currents, for which

Pl =
μ0

8π
I2c i

2∂ti if i� 1. (1.120)

At the beginning of the initial curve, the power loss increases with the

square of the current.

In order to calculate the loss per cycle, we need to obtain the power

loss not only at the initial curve but at the whole cycle. After the initial

curve, the current decreases. Now, a negative current density −Jc appears

at the surface and penetrates inwards. Again, this can be regarded as cir-

cular vortices leaving the wire surface, creating a magnetic field gradient of

opposite sign from that at the initial curve (Figure 1.9(d)). At the peak of

the AC cycle, we recover the same situation as the end of the initial curve

but with negative J . On increasing the current again, we repeat the same

process but with all current density with the opposite sign. As for the case

of the infinite cylinder in an applied magnetic field, the decrease in the

current density of the decreasing current, J↓, and that of the subsequent
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increasing current, J↑, are obtained from the initial curve Ji:

J↓(i) = Ji(im)− 2Ji

(
im − i

2

)
,

J↑(i) = −Ji(im) + 2Ji

(
im + i

2

)
, (1.121)

where im is the normalized current at the peak, im = Im/Ic. Then, the

current density for the decreasing curve is

J↓(r) =

⎧⎪⎨
⎪⎩
0 if bm > r,

Jc if b↓ > r ≥ bm,

−Jc if a ≥ r ≥ b↓,

(1.122)

with

bm = a
√
1− im, b↓ = a

√
1− (im − i)/2. (1.123)

From this current density, we obtain the magnetic field:

B↓(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if bm ≥ r,

μ0Jc[r − a2(1− im)/r]/2 if b↓ ≥ r ≥ bm,

μ0Jc[−r + a2(1 + i)/r]/2 if a ≥ r ≥ b↓,

μ0iJca
2/(2r) if r ≥ a.

(1.124)

Again, the electric field is obtained from (1.117) as

E↓(r) =

{
0 if b↓ ≥ r,

(μ0Jca
2∂ti/2) ln(r/b↓) if a ≥ r ≥ b↓.

(1.125)

Integrating the instantaneous local loss J(r)E(r) over the wire cross-

section, the instantaneous power loss per unit wire length is

Pl↓ =
μ0

4π
I2c ∂ti

[
im − i

2
+ ln

(
1− im − i

2

)]
. (1.126)

At the beginning of the decreasing curve, im − i� 1, the power loss is

Pl↓ = − μ0

32π
I2c (im − i)2∂ti if im − i� 1. (1.127)

The power loss at the decreasing curve increases quadratically with the

change in current, im − i, starting from zero loss. Note that the power loss
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is positive since ∂ti is negative. In order to obtain universal results, inde-

pendent of Jc, wire dimensions, and frequency, it is convenient to normalize

the AC loss into the following dimensionless quantity:

pl ≡ 2πPl

μ0Ic|∂tI|av , (1.128)

with |∂tI|av being the average of the modulus of ∂tI in a full cycle. The

typical time dependence for alternating currents of constant |∂tI| (trian-
gular waveform) is depicted in Figure 1.10(a), which shows a monotonous

power-loss increase for every half-cycle and a discontinuous sharp decrease

at the end. For sinusoidal currents, I(t) = Im sin(2πft), the average

|∂tI| is |∂tI|av = 4fIm. The normalized power loss, now being pl =

πPl/(2μ0IcImf), shows a peak at each half-cycle and vanishes at the peak

of the current (Figure 1.10(b)). Although the instantaneous power loss

depends on the current waveform, this is not the case for the loss per cycle.

At the decreasing curve, all the above quantities can be obtained by the

symmetry of the AC cycle, and hence,

J↓(i) = −J↑(−i),
B↓(i) = −B↑(−i),
E↓(i) = −E↑(−i),
Pl↓(i) = Pl↑(−i). (1.129)

The loss per cycle and unit wire length is the time integral in a whole period

of Pl as

Ql =

∫ t0+T

t0

dtPl(t) = 2

∫ −im

im

di
1

∂ti
Pl↓(i), (1.130)

where t0 is any time after the end of the initial curve. After integration,

the resulting Ql is

Ql =
μ0I

2
c

2π
[im(2 − im) + 2(1− im) ln(1− im)]. (1.131)

The normalized loss, defined as q ≡ 2πQl/(μ0I
2
c ), only depends on the

normalized current amplitude, im:

q = [im(2− im) + 2(1− im) ln(1− im)]. (1.132)
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Figure 1.11. The nondimensional normalized transport AC loss, q ≡ 2πQl/(μ0I
2
c ), of a

circular or elliptical wire and a strip, obtained using (1.132) and (1.165), respectively.

For very low amplitudes, im � 1, and the limit of im → 1, the normalized

loss approaches

q ≈ i3m/3 for im � 1,

q = 1 for im → 1,
(1.133)

The main behavior of the AC loss can be seen in Figure 1.11. As we explain

in the following (Section 1.2.1.4), the AC loss for a wire with elliptical cross-

section is the same as for a circular cross-section of the same Ic. In that

figure, we have already added the AC loss of a strip, Equation (1.165), for

completeness.

Alternatively, if you are not interested in the instantaneous power loss

but only in the loss per cycle and unit length, you could calculate this

quantity from the magnetic flux density at the peak. This can be seen as

follows. For the CSM and I < Ic, there always exists a region with J = 0,

and hence, E = 0 there. For a cylinder, E = 0 always at r2 = 0. From the

integral form of Faraday’s law (1.13), E at any point r2, with E = E(r2)ez,

follows

E(r2) = ∂tΦ(r2), (1.134)

with

Φ(r2) ≡
∫ r2

0

(dl×B) · ez, (1.135)
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where dl×B is always in the z direction and Φ(r2) is the magnetic flux per

unit length crossing the line between 0 and r2. Then, the loss per cycle is

Q =

∫
S

d2r2

∮
dtJ∂tΦ = 2

∫
S

d2r2

∫ t(i=−im)

t(i=im)

dtJ∂tΦ↓, (1.136)

where, at the last equality, we integrate only at the decreasing curve, and

hence, we write the subindex “↓” in Φ. At this curve, ∂tΦ↓ is nonzero only

at the reverse current penetration zone, where J = −Jc. Then,

Q = −2Jc

∫
S

d2r2

∫ t(i=−im)

t(i=im)

dt∂tΦ↓

= −2Jc

∫
S

d2r2

∫ −im

im

di∂iΦ↓

= −2Jc

∫
S

d2r2[Φ↓(−im)− Φ↓(im)]. (1.137)

Since at the reverse curve J↓ is related to J as (1.121), Φ↓ follows the same

relation:

Φ↓(i) = Φi(im)− 2Φi

(
im − i

2

)
. (1.138)

Then, from (1.137), we obtain

Q = 4Jc

∫
S

d2r2Φi(im). (1.139)

Alternatively, we can also obtain a relation with the vector potential, A =

A(r2)ez , instead of Φ. Thanks to B = ∇×A, the integral of Φ in (1.135)

becomes

Φ(r2) = A0 −A(r2), (1.140)

where A0 = A(r2 = 0). Then, (1.139) takes the form

Q = 4Jc

∫
S

d2r2[A0 −A(r2)]. (1.141)

The loss per cycle calculated by these equations is the same as (1.131),

as reported by Norris [62]. Actually, this equation can be extended to any

infinitely long configuration where the current fronts penetrate monotoni-

cally from the surface inwards for any half cycle [36, 65].
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Figure 1.12. An elliptical wire in the CSM under alternating transport current exhibits
current fronts as concentric ellipses of the same eccentricity as the whole wire.

1.2.1.4. Elliptical wire with transport current

Although the deduction is not straightforward, the magnetic flux density

inside an elliptical wire with uniform current density J and of semi-axes ax
and ay, whose eccentricity is s ≡ ay/ax, follows the simple relation [16, 62]

B(x, y) =
μ0J

1 + s
(−yex + sxey) , (1.142)

although the expression for B outside the wire is more complex [16, 62].

Since the magnetic flux density within the ellipse depends on the eccentric-

ity but not on the overall size, the flux density vanishes in a current-free

core of the same eccentricity (Figure 1.12). Therefore, the current density

in the initial curve will penetrate following elliptical current fronts of the

same eccentricity as the whole wire, and hence the current density, which

follows the z direction, will be (see Figure 1.12)

J(x, y) =

{
0 if x2 + (y/s)2 < b2x,

Jc if bx ≤ x2 + (y/s)2 ≤ ax,
(1.143)

where bx is the horizontal semi-axis of the current-free core. This quantity

is related to the normalized current, i = I/Ic, as

bx = ax
√
1− i. (1.144)

The current density at the reverse and returning curves can be easily

obtained using (1.121).

Moreover, it can also be found that equation (1.131) for a circular wire

also applies to circular wires of any eccentricity [62].
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Figure 1.13. A thin strip with thickness d much smaller than its width, 2a, in the CSM
has regions with sheet current density, K, where |K| = Kc ≡ Jcd, and a central region
with |K| < Kc when submitted to a perpendicular applied magnetic flux density Ba.

1.2.1.5. Thin strip under applied magnetic field

The current density of a thin film in a perpendicular applied magnetic field

(Figure 1.13) can also be analytically obtained by plane-to-plane conformal

mapping [62, 105].

Let us first take the case of perfect shielding, corresponding to the

limit of extremely large Jc. As shown by Huebener et al. [38] and Zeldov

et al. [105], the sheet current density, K, (or current density per unit width)

on a thin strip under perfect shielding is

Kshield,Ba(x) = −2Ba

μ0

x√
a2 − x2

, (1.145)

where a is the half-width of the strip, and the total flux density on the

plane of the strip, having only the y component, is

By(x) =

{
Ba|x|√
x2−a2

if |x| > a,

0 if |x| ≤ a.
(1.146)

As we can see, By becomes infinite at x = a. In practice, the finite thickness

of the strip, d, limits By to a finite value. The finite Jc will also limit the

sheet current density to finite values at the edge.

Next, let us consider the case of finite Jc, where there appear two seg-

ments of |K| = Jcd penetrating toward the edge up to a distance b from

the tape center that is, by now, unknown. Then, K = +Jcd on the left

segment and K = −Jcd on the right (Figure 1.13). As a consequence of

this current density, K at the inner region, where |x| < b, needs to also

shield the flux density from the saturated segments. In order to calculate

this, we first solve the shielding K reacting to a line current of intensity

Iw at a certain x = x0 > b (Figure 1.13). Norris [62] shows that the sheet



Electromagnetic Modeling of Superconductors 41

current density necessary to shield the flux density from this current is

Kshield,Iw (x) = − Iw
π(x0 − x)

√
x20 − b2

b2 − x2
. (1.147)

If we set Iw = −Jcd·dx0 at b < x0 ≤ a and Iw = +Jcd·dx0 at −b > x0 ≥ −a
and integrate over x0 on both sides, we obtain the K necessary to shield

the magnetic flux density from the saturated regions as

Kshield,Jc(x) =
2Jcd · x
π
√
b2 − x2

arcosh
(a
b

)
− 2Jcd

π
arctan

(
x

a

√
a2 − b2

b2 − x2

)
.

(1.148)

The total current density in |x| < b also needs to shield the applied

magnetic field, and hence, we should also add the contribution to (1.145)

but replacing a by b there. Next, we find the relation between the half-

width of the shielded region, b, and the applied flux density, Ba. To do

this, we can note that both K(x) in (1.145) and the first term in (1.148)

are proportional to x/
√
b2 − x2, which causes them to diverge at |x| = b.

However, the physical solution cannot diverge because the CSM assumption

imposes the upper limit |K| ≤ Jcd. Then, b is such that the terms with

x/
√
b2 − x2 cancel each other, occurring for

b =
a

cosh
(

Ba

Bc

) , (1.149)

with Bc ≡ μ0Jcd/π. Alternatively, we could find b by calculating By that

K generates and imposing By = 0 at |x| < b, giving the same result. Then,

the final sheet current density at the initial curve is

K(x) =

⎧⎪⎪⎨
⎪⎪⎩
− 2Jcd

π arctan
(

x
a

√
a2−b2

b2−x2

)
if |x| ≤ b,

+Jcd if −b ≥ x ≥ −a,
−Jcd if b ≤ x ≤ a,

(1.150)

with b given by (1.149). The reader can see the current penetration process

for the initial curve in Figure 1.14.
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Figure 1.14. Top, the profiles of sheet current density, K, normalized to Kc = Jcd for
a thin strip with an applied perpendicular magnetic flux density Ba (a) at the initial

curve and (b) at the decreasing curve, where Bc = μ0Jcd/π. Bottom, the total magnetic
flux density corresponding to the profiles on the top (c) for the initial curve and (d) the
decreasing curve.

Using this J(x), we obtain the magnetization, or magnetic moment per

unit volume, from (1.91):

M = −Mst, (1.151)

with

Ms ≡ Jca/2, (1.152)

t ≡ tanh

(
Ba

Bc

)
. (1.153)

The important results are that:

• the saturation magnetization at (at Ba 
 Bc) is the same as that of the

slab.
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• full saturation occurs only at Ba → ∞, and hence, an ideal strip never

fully saturates.

As a consequence of the second property, it is more convenient to define

the penetration field as the peak of the AC loss factor, as detailed later in

this section, which represents 98.57% of the full saturation. Alternatively,

we can also define an arbitrary saturation ratio, r, so that M = rMs. For

example, for r =0.9, 0.95, 0.97, and 0.9857, we obtain penetration fields,

Bp, of Bp/Bc =1.47, 1.83, 2.09, and 2.47, respectively.

Once J(x) at the initial curve is known, B(x) can be found by inte-

grating the Biot–Savart law in two dimensions (2D) (1.51), resulting in

B(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if |x| ≤ b,

Bcartanh
a
√
x2 − b2

|x|√a2 − b2
if b ≤ |x| < a,

Bcartanh
|x|√a2 − b2

a
√
x2 − b2

if |x| > a,

(1.154)

where b and t are given by (1.149) and (1.153), respectively. This flux

density diverges at |x| → a (Figures 1.14(c) and 1.14(d)).

After reaching a maximum value of the applied flux density, Bm, the

values of J , M , and B at the decreasing and increasing curves become

directly related to the initial curve by (1.103), with J replaced by M or

B as appropriate. Therefore, we can easily obtain these quantities for the

whole magnetization loop.

From the magnetization loop, we can calculate the AC loss per cycle

and unit length, Ql, as Ql = 2ad
∮
M(Ba)dBa, resulting in

Ql = 4a2dJcBmg(Bm/Bc), with (1.155)

g(x) = (2/x)ln coshx− tanhx. (1.156)

From this, we can define the dimensionless AC loss, ql, as

ql ≡ μ0Ql

4πa2B2
c

= (Bm/Bc)g(Bm/Bc), (1.157)

which is independent of the strip Jc and its dimensions. Similarly, we can

also define the dimensionless loss factor, Γ′
m, related to Ql as

Γ′
m ≡ μ0Ql

4πa2B2
m

= (Bc/Bm)g(Bm/Bc), (1.158)
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Figure 1.15. The normalized AC loss, ql ≡ μ0Ql/(4πa
2B2

c ), for a strip with a perpen-
dicular applied flux density of amplitude Bm monotonically increases with Bm, while
the loss factor, Γ′

m ≡ μ0Ql/(4πa
2B2

m), shows a peak. The dashed and dotted lines are
the limits for the low and high Bm, respectively.

with the limits for the low and high applied AC flux density being

Γ′
m = 1

6

(
Bm

Bc

)2
if Bm � Bc,

Γ′
m = Bc

Bm
if Bm 
 Bc.

(1.159)

Then, at low applied AC flux densities, the loss factor increases as B2
m,

and at high Bm, the loss factor decreases as 1/Bm, with a peak in between

(Figure 1.15(b)). From (1.158), we can find that the peak occurs at Bpk ≈
2.465Bc and has a value Γ′

m,pk ≈ 0.1857. Since ql = Γ′
m(Bm/Ba)

2, the

normalized AC loss (and the AC loss Ql) does not show a peak, increasing

monotonically with Bm (Figure 1.15(a)).

1.2.1.6. Thin strip with transport current

The current density, magnetic flux density, and AC loss of a thin film of

width 2a and thickness d under an alternating transport current, I, can

be obtained in a very similar way as for applied magnetic fields (Section

1.2.1.5). The CSM can only predict the case when |I| < Ic, with the critical

current Ic = 2adJc.

Now, the starting point is that the sheet current density, K, for a perfect

conductor (very high Jc or very low I limit) is, as found through conformal

mapping by Swan [95] and Norris [62],

K(x) =
I

π
√
a2 − x2

, (1.160)
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Figure 1.16. A thin strip of thickness d much smaller than its width, d � 2a, in the
CSM under transport current has two regions with sheet current density K = Kc, where
Kc ≡ Jcd, that enclose a central region with K < Kc.

and the magnetic flux density at the y = 0 line is B = Byey, with

By(x) =

⎧⎪⎨
⎪⎩
0 if |x| < a,

I

2π

x

|x|√x2 − a2
if |x| > a.

(1.161)

When considering a finite Jc and increasing the current from 0 to

I > 0, there will appear two segments with saturated sheet current density,

K = Kc ≡ Jcd, penetrating from the right and left to a certain distance b

from the center (Figure 1.16). However, in the central region, where |x| < b,

there will still appear nonzero sheet current density with |K| < Kc. Since

the current flowing in the saturated region is Isat = Ic(1 − b/a), the cur-

rent flowing in the non-saturated region is Ishield = I − Ic(1− a/b). In the

central region, where |K| < Kc, the CSM assumption tells us that both

the electric field and By remain zero. The sheet current density necessary

to shield By from the saturated regions can be calculated in the same way

as for the applied field case. In general, the resulting net current in the

shielded region, Ishield,Jc , is different from the Ishield above. Therefore, we

need to add a current-carrying component proportional to (1.160) but with

a replaced by b there. Finally, we obtain the physical value of b by imposing

that K(x) cannot diverge at |x| = b since the CSM assumes |K| ≤ Kc. The

final solution is [62]

K(x) =

⎧⎨
⎩

2Jcd

π
arctan

√
a2 − b2

b2 − x2
if |x| ≤ b,

Jcd if b ≤ |x| ≤ a,
(1.162)

with

b = a
√
1− i2 (1.163)

and i ≡ I/Ic.
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Once K(x) is known, the magnetic flux density can be found by inte-

grating the Biot–Savart law, resulting in

B(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if |x| ≤ b,

Bcx
|x| artanh

√
x2−b2

a2−b2 if b ≤ |x| < a,

Bcx
|x| artanh

√
a2−b2

x2−b2 if |x| > a,

(1.164)

where Bc ≡ μ0Jcd/π.

From these formulas of the sheet current density and magnetic flux

density of the initial curve, we can easily find those from the decreasing

and increasing curves of the stationary AC cycle using (1.121). A typical

AC behavior can be seen in Figure 1.17.

In order to calculate the AC loss per cycle and unit length, Ql, we can

use the fact that E = 0 at the center since J = 0 there, then calculate the

magnetic flux per unit length Φ(x, y = 0), as defined in (1.135), and apply
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Figure 1.17. ((a) and (b)) Sheet current density in a thin film with alternating transport
current and ((c) and (d)) the magnetic flux density that they generate. The left-hand
plots, (a) and (c), are for the initial curve, and the right-hand plots, (b) and (d), are for
the decreasing curve that follows.



Electromagnetic Modeling of Superconductors 47

(1.139). When doing so, Ql results in [62]

q ≡ 2πQl

μ0I2c
= 2[(1 + im) ln(1 + im) + (1− im) ln(1 − im)− i2m], (1.165)

where q is the nondimensional normalized loss as defined above. The main

limits of the normalized loss are the following:

q ≈ i4m/3 if im � 1,

q = 4 ln 2− 2 ≈ 0.7726 if im → 1.
(1.166)

It is important to note that for low current amplitudes, the AC loss increases

with i4m in contrast to only i3m for elliptical wires.

1.2.1.7. Universal scaling law for the power-law E(J) relation

In this section, we show that for the power-law E(J) relation of (1.18), the

vector potential, current density, and AC loss follow a universal scaling law,

which is valid for any shape. We also find a relation with the CSM results,

determining the frequency that the CSM predictions agree the best with

those from the power law.

Next, we find the partial differential equation for the vector potential.

For Coulomb’s gauge, the vector potential follows Equation (1.31). Taking

the isotropic power law from (1.18), the current follows

J =
Jc
Ec

( |J|
Jc

)1−n

E. (1.167)

Then, Equation (1.31) becomes

∇2A = −μ0
Jc
Ec

( |J|
Jc

)1−n

E,

∇2A = μ0
Jc
Ec

∣∣∣∣∇2A

μ0Jc

∣∣∣∣
1−n

(∂tA+∇φ), (1.168)

where in the second equation, we used (1.24) for E and again (1.31) for J.

We can write all the quantities in dimensionless variables as follows:

r′ ≡ r/l,

τ ≡ tω,

a ≡ A/μ0l
2Jc,

ϕ ≡ φ/μ0l
3ωJc, (1.169)
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where l and ω are a certain characteristic length and angular frequency

of the problem, respectively. For a tape submitted to a periodic applied

magnetic field, for example, l and ω could be the tape width and the angular

frequency associated to the applied field period, respectively. With this

normalization, Equation (1.168) becomes

∇′2a|∇′2a|n−1 = k(∂τa+∇′ϕ), (1.170)

where k is the dimensionless parameter,

k =
μ0Jcl

2ω

Ec
, (1.171)

∇′ is the nabla operator with respect to r′ in (1.169), and ∂τ is the partial

derivative to the normalized time. From Equation (1.170), it is clear that

a and ϕ only depend on parameter k. If we change k by a constant C so

that the new k, k̃, is

k̃ = Ck, (1.172)

Equation (1.170) tells us that the new a and ϕ, ã and ϕ̃, respectively, follow

ã = C
1

n−1a, (1.173)

ϕ̃ = C
1

n−1ϕ. (1.174)

In case the sample is submitted to an external applied magnetic field

Ha, which may be nonuniform, we should take into account the fact that

the normalization of the vector potential in (1.169) defines a normalized

magnetic field in the absence of magnetic materials:

h ≡ H/Jcl. (1.175)

Since the normalized applied field follows ha = ∇′ × aa, where aa is the

normalized vector potential for the applied field, scaling k as k̃ = Ck results

in the scaling of a in (1.173) if ha follows the scaling

h̃a = haC
1

n−1 . (1.176)

For a cyclic applied field of given amplitude Hm, the dimensionless loss

factor

Γm =
Qv

μ0πH2
m

, (1.177)
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where Qv is the loss per cycle and unit volume, which is related to a, ha,

and hm as

Γm =
1

μ0πH2
mV

∫
V

d3r

∮
B · dHa =

1

πh2mV
′

∫
V ′

d3r′
∮
(∇× a) · dha,

(1.178)

where V ′ = V/l3. The above equation shows us that scaling k as k̃ = Ck

does not modify the loss factor, and hence,

Γ̃m = Γm. (1.179)

For sinusoidal applied fields, Γm corresponds to the imaginary AC suscep-

tibility.

If the sample transports a current I, the relation between the normalized

current with respect to the critical current, i ≡ I/Ic, and a is

i =
I

Ic
=

1

Ic

∫
S

ds · J =
−1

μ0Ic

∫
S

ds · ∇2A =
−1

S′

∫
S′

ds′ · ∇′2a, (1.180)

where S is the sample cross-section, S′ ≡ S/l2, and ds′ = ds/l2. Then,

under the change k̃ = Ck, the new i, ĩ, is

ĩ = iC
1

n−1 . (1.181)

The normalized loss q = 2πQl/μ0I
2
c , where Ql is the loss per cycle and

conductor length, is related to a as

q =
2π

μ0I2c

∫
S

ds

∮
dtE · J

=
2π

μ0I2c

∫
S

ds

∮
dtJcEc

∣∣∣∣ JJc
∣∣∣∣
n+1

=
2πJcEc

μ0I2c

∫
S

ds

∮
dt

∣∣∣∣∇2A

μ0Jc

∣∣∣∣
n+1

=
2π

kS′2

∫
S′

ds′
∮

dτ
∣∣∇2a
∣∣n+1

. (1.182)

Then, a new k, k̃ = Ck, results in a new q:

q̃ = C
2

n−1 q. (1.183)

For a certain current amplitude, Im, the loss factor is defined as

Γt ≡ 2πQl

μ0I2m
=

q

i2m
, (1.184)
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where im ≡ Im/Ic. Then, the loss factor is independent of changes in k:

Γ̃t = Γt. (1.185)

The reasoning above is exactly the same if, in addition to the transport

current, the sample is submitted to an applied magnetic field with the same

period as the transport current, although the current and applied field do

not need to be in phase.

Summarizing, the scaling laws for a power-law E(J) relation are

k̃ = Ck,

ã = C1/(n−1)a,

ϕ̃ = C1/(n−1)ϕ,

h̃a = C1/(n−1)ha,

ĩm = C1/(n−1)im,

Γ̃m = Γm,

Γ̃t = Γt. (1.186)

Then, on increasing k in Equation (1.171) by increasing the frequency or Jc,

the curves of the loss factor Γm(hm) and Γt(im) shift to higher hm and im,

respectively (see Figure 1.18). Actually, we can construct k-independent

(or frequency-independent or Jc-independent) curves by taking Γm(h∗m)

and Γt(i
∗
m), where

h∗m = hmk
−1/(n−1) =

Hm

Jcl

(
Ec

μ0Jcl2ω

)1/(n−1)

,

i∗m = imk
−1/(n−1) =

Im
Ic

(
Ec

μ0Jcl2ω

)1/(n−1)

. (1.187)

The CSM corresponds to the limit n→ ∞, resulting in

h∗m =
Hm

Jcl
= hm,

i∗m =
Im
Ic

= im, (1.188)

and hence, h∗m and i∗m are equivalent to hm and im, respectively, in the

CSM. We name Γm(h∗m) and Γt(i
∗
m) as master curves, which only depend

on the sample shape and the power-law n factor. For high n factors, the
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Figure 1.18. The magnetization and transport loss factors in a superconducting thin
strip shift to the right with an increase in the frequency.

curve for the power law approaches that for the CSM. Then, the master

curve for the CSM can be used to estimate the frequency and Jc dependence

of superconductors with power-law E(J) relations. This can be done by

taking h∗m and i∗m in (1.187) for the power law as input for the CSM curve:

ΓmPL(Hm, ω, Jc, n) ≈ ΓmCSM[h∗m(Hm, ω, Jc, n)],

ΓtPL(Im, ω, Jc, n) ≈ ΓtCSM[i∗m(Im, ω, Jc, n)], (1.189)

where h∗m and i∗m are those for the power law given by (1.187). Figure 1.19

shows the transport and magnetization loss for a thin strip as an exam-

ple. The scaled results for the CSM fairly agree with the power-law results.

Since the deduction is general, the scaled CSM results are a fair approxi-

mation of those of the power law for any sample shape.
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Figure 1.19. The master curves for the magnetization and transport loss factors as a
function of h∗m = hmk−1/(n−1) and i∗m = imk−1/(n−1) only depend on the power-law

exponent n and the sample geometry, where k is the dimensionless parameter in Equation
(1.171).

1.2.2. Eddy currents

Next, we provide several formulas and their deduction for the eddy current

effects in normal metals submitted to varying magnetic fields. These equa-

tions are useful for both benchmarking numerical methods and providing

quick estimates. By means of these analytical solutions, we also discuss the

main behavior of the eddy current effects in superconductors.

1.2.2.1. Low-frequency limit

The eddy currents, or currents flowing entirely within normal metals, due

to an applied magnetic field can be easily found analytically when the mag-

netic field that they create is much smaller than the applied magnetic field.
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Figure 1.20. For the low-frequency limit, it is simple to analytically obtain the eddy
current loss for the wire cross-sections above. The top-left plot also shows the cross-
section of the closed circuit that we use to calculate the electric field.

As shown in the following, this occurs at low frequencies. In the following,

we detail the case of a circular wire in transverse applied magnetic field,

and later, we provide formulas for other geometries.

Let us take a circular wire of radius a that is infinitely long in the

y direction and submitted to a uniform applied flux density Ba in the z

direction (Figure 1.20). Then, J and E are in the y direction and do not

depend on y. Using the integral Faraday’s law,∮
∂S

dr · E = −
∫
S

ds · ∂tB,

and considering the circuit in Figure 1.20 (top-left), the electric field follows

E(x, z) = −
∫ x

0

dx′∂tB(x′, z), (1.190)

where we use the fact that E(−x, z) = −E(x, z) by symmetry. Now, we

assume that the induced currents are low enough so that B created by the
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currents is much smaller than Ba. Since J = E/ρ, this happens for high

enough ρ or low enough ∂tBa, causing a low electric field. Since B ≈ Ba,

we obtain an electric field

E(x, z) = −x∂tBa.

By integrating JE = E2/ρ over the whole volume, we obtain the instanta-

neous power loss:

P =
4l

ρ
(∂tBa)

2

∫ a

0

dz

∫ x(z)

0

dx′x′2.

Here, x(z) for a circular wire is x =
√
a2 + z2 for the first quadrant, where

we find the integral. This integral becomes

∫ a

0

dz

∫ x(z)

0

dx′x′2 =
1

3

∫ a

0

dz[x(z)]3 =
1

3

∫ a

0

dz
(
a2 − z2

) 3
2 =

πa4

16
,

and hence, the power loss is

P =
πla4

4ρ
(∂tBa)

2. (1.191)

Considering a sinusoidal applied field, Ba = Bm sin(2πft), the average

power loss in one cycle is

Pav =
π3la4f2B2

m

2ρ
,

resulting in a loss per cycle

Q =
Pav

f
=
π3la4fB2

m

2ρ
. (1.192)

Then, we see that for low ∂tBa, and hence low frequency f , the eddy

current loss per cycle increases proportionally to l, f , B2
m, and 1/ρ. Since

the loss per unit volume is Q/πa4 and Q ∝ a4, the AC loss in a single

large conductor is much higher than that of many small conductors with

the same total cross-section.

The AC loss of a hollow circular wire of outer radius a0 and inner radius

ai, similar to the shell of circular superconducting wires (Figure 1.20), can

be easily found by taking Equations (1.192) and (1.191) and substracting
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the contribution from the hole, Q = Q(a = a0)−Q(a = ai). Then,

P =
πl

4ρ
(∂tBa)

2(a40 − a4i ),

Q =
π3l

2ρ
fB2

m(a40 − a4i ).

Using the same reasoning, we can find the AC loss of a single rectangular

wire of side 2a and height h (Figure 1.20) as

P =
2lh

3ρ
(∂tBa)

2a3,

Q =
4π2lh

3ρ
fB2

ma
3 (1.193)

and the AC loss of a rectangular shell, resulting in

P =
2l

3ρ
(∂tBa)

2(h0a
3
0 − hia

3
i ),

Q =
4π2l

3ρ
fB2

m(h0a
3
0 − hia

3
i ), (1.194)

where 2a0 and 2ai are the widths of the whole object and the inner hole,

respectively, and h0 and hi are their respective heights. The case of two

rectangular wires connected at the ends in the y direction corresponds to

hi = h0.

1.2.2.2. Whole frequency range

For considerably large frequencies, the magnetic field generated by the cur-

rents partially shield the applied magnetic field, resulting in a more complex

frequency dependence on the loss per cycle than the f scaling found above

for low frequencies. Here, we focus on the simple example of an infinite

slab with uniform applied field parallel to the surface. For this case, the

solution is analytical and serves us to see the main features of the eddy

currents and eddy current loss. Some analytical results for this situation

are given by Kwasnitza [51] and Takács et al. [96], and examples of other

situations are given by Íñiguez et al. [39] and Jackson [40, pp. 218–223]. In

the following, we provide a comprehensive self-contained deduction.

For the eddy currents, a full analysis can be done by the magnetic diffu-

sion equation. This equation can be found as follows. From Faraday’s law,

∇×E = −∂tB. Using E = ρJ and Ampere’s law in the void, ∇×B = μ0J,
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we obtain ∇ × (μ−1
0 ρ∇ × B) = −∂tB. For homogeneous linear materials

(constant ρ), we obtain the differential equation

∂tB+
ρ

μ0
∇2B = 0.

For an infinitely long slab in the yz direction, width 2a, and applied

field along the z axis, this equation becomes

∂tB +
ρ

μ0
∂2xB = 0, (1.195)

where B = Bey. Next, we are interested in finding the solutions to uniform

applied magnetic fields with any time dependence, Ba(t). In order to find

a general solution, we can decompose B into a Fourier transform in time:

B(x, t) =

∫ +∞

−∞
dω b(x, ω)eiωt,

where i is the imaginary unit. Now, Equation (1.195) becomes

iωb+
ρ

μ0
∂2xb = 0.

The general solution to this differential equation is

b(x, ω) = c(ω)eikx + d(ω)e−ikx,
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Figure 1.21. The frequency dependence of the loss factor, Γm, of a conducting slab under
sinusoidal applied field (Equation (1.201)) shows a peak at ω ≈ 1.03τ , with τ being the
time constant given by (1.200). The coupling AC loss in a normal metal in between two
superconducting slabs follows the same curve, but the meaning of the dimensions 2a, h,
and l is different (Section 1.2.3.2).
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with

k = g(1− i), (1.196)

g =

√
ωμ0

2ρ
,

where c(ω) and d(ω) are any functions of ω. Note the complex k and its

frequency dependence through g. For uniform applied magnetic fields, the

solution has to be symmetric with x, and hence, c = d above. Then,

b(x, ω) = 2c(ω) cos kx,

B(x, t) =

∫ +∞

−∞
dω c(ω) cos (kx)eiωt,

where cos kx is complex due to the complex k of (1.196), with the cosine gen-

erally defined as cosZ = (eiZ + e−iZ)/2 = cosZr coshZi − i sinZr sinhZi,

where Z = Zr + iZi. The value of c(ω) is found by imposing B(x = a, t) =

Ba(t), where a is the half-width of the slab. Taking the Fourier transform

of Ba(t),

Ba(t) =

∫ +∞

−∞
dω ba(ω)e

iωt,

we find that

B(x, t) =

∫ +∞

−∞
dω ba(ω)

cos kx

cos ka
eiωt.

For a sinusoidal applied field, Ba(t) = Bm sinωat, the Fourier transform is

ba(ω) =
Bm

2i
[δ(ω − ωa)− δ(ω + ωa)] ,

resulting in the following solution to the magnetic field:

B(x, t) =
Bm

2i

[
cos kx

cos ka
eiωat −

(
cos kx

cos ka

)∗
e−iωat

]
, (1.197)

with

k = g(1− i) and g =
√
ωaμ0/(2ρ). (1.198)

In spite of the complex formalism, the B(x, t) above is real. The electric

field in the slab can be found using (1.190). Thus,

E(x, t) = −Bm

2
ωa

[
1

k

sinkx

cos ka
eiωat +

(
1

k

sin kx

cos ka

)∗
e−iωat

]
.
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By integrating the power loss density JE = E2/ρ in one cycle and the

whole volume, the loss per cycle becomes

Q =
π

μ0
lhB2

m

1

g

sinh 2ga− sin 2ga

cosh 2ga+ cos 2ga
, (1.199)

where l and h are the dimensions in the y and z directions, respec-

tively, which are assumed much larger than a. For the low frequency limit,

2ga� 1, we recover the same expression as (1.193), with Q being propor-

tional to the frequency. For large frequencies, or 2ga
 1, the loss per cycle

becomes

Q =
π

μ0
lhB2

m

1

g
=

π

μ0
lhB2

m

√
2ρ

ωμ0
if ga
 1,

which is proportional to 1/
√
ω. At intermediate frequencies, the loss per

cycle reaches its maximum at frequency ωm ≈ 1.03/τ (Figure 1.21), where

the time constant, τ , is defined as

τ ≡ μ04a
2

π2ρ
. (1.200)

This time constant also corresponds to the characteristic decay time of the

magnetic field in the conductor after switching off the applied magnetic

field [40, pp. 218–221]. In order to obtain universal results, it is convenient

to use the dimensionless loss factor of (1.109), being also the imaginary

susceptibility, which in our case is

Γm =
1

2ga

sinh 2ga− sin 2ga

cosh 2ga+ cos 2ga
. (1.201)

It can be seen that for high frequencies (2ga 
 1) and close to the

surface (x→ a−), the magnetic field of (1.197) becomes

B(x, t) ≈ Bme
−(a−x)g sin [ωat− g(a− x)] for x→ a− and ga
 1.

Then, for high frequencies, the magnetic field penetrates into the slab by a

distance of the order of 1/g, which is the penetration depth.

Summarizing, the main behavior of the eddy current loss can be found

from the expressions above:

• At low frequencies, the AC loss per cycle is proportional to ω.

• At high frequencies, the AC loss per cycle decreases with ω as 1/
√
ω.

• The AC loss shows a peak at ω ≈ 1/τ , with τ being the relaxation time

constant.
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• At high frequencies, the magnetic field penetrates into the sample by a

distance of around 1/g.

1.2.3. Coupling currents

Coupling currents, or currents joining two or more superconducting fila-

ments through a normal metal conductor, have many features in common

with eddy currents. However, their impact on the AC loss is usually higher

since the total resistance of the closed current loops is much lower. The

reason is that most of the loop is within the superconducting material,

where the resistivity nearly vanishes if the filaments are not saturated with

critical current density.

1.2.3.1. On the decomposition of AC loss into eddy, coupling, and

superconductor contributions

We can always separate the AC loss into the contributions of where the

local loss occurs as that from the normal metal or the superconductor as

Q = Qnormal +QSC,

with QSC denoting the AC loss from the superconductor. In general, all

currents – eddy, coupling, and superconductor – are both electrically and

magnetically coupled, and hence, each type of current influences the other

two.

For low enough frequencies, the currents in the normal metal are too low

to influence the superconductor. Since the power-law exponent is usually

high, the superconductor loss per cycle is virtually frequency independent.

That is why the superconductor loss for this scenario is often called as

hysteresis loss. However, for large enough frequencies, the coupling cur-

rents modify the superconductor loss per cycle, which becomes frequency

dependent. That is why, here, we avoid using the terminology of “hysteresis

loss” in favor of “superconductor loss.” For low enough frequencies and low

applied field amplitudes, we can always decompose the AC loss as follows:

Q = Qeddy +Qcoupling +QSC for Bm � Bp, ω � τc, τe, (1.202)

where Bm is the alternating applied field amplitude, Bp is the penetration

field of the superconducting filaments, and τc and τe are the time constants

of the coupling and eddy currents, respectively. In the above equation, the

following assumptions are made. For QSC, the current loops close within

each superconducting filament separately, never crossing any normal metal.
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Qcoupling assumes negligible magnetic flux and current density penetration

in the superconductor as well as negligible effective resistance therein. It

is also assumed that the magnetic flux density generated by the eddy and

coupling currents is negligible compared to the applied flux density and B

generated from the superconductor. Since QSC is virtually frequency inde-

pendent and Qeddy and Qcoupling are proportional to ω2 at low frequencies,

at extremely low frequencies, the superconductor contribution dominates.

When Bm ≥ Bp, the resistivity in the superconductor is not negligi-

ble, thus increasing the resistance of the coupling current loops and hence

suppressing the coupling currents.

When ω ∼ τc or ω > τc, the coupling currents are so large that they

change the current density in the superconductor, changing QSC. For ω >

τc, the coupling loss per cycle decreases with the frequency. Therefore, for

large enough frequencies (ω 
 τc), the coupling loss is much lower than the

superconductor loss. Then,

Q ≈ Qeddy +QSC for ω 
 τc, ω � τe, any Bm.

For this case, the coupling current loops tend to shield the whole sample (or

the whole filamentary region), and the shape of the loops is dominated by

the superconductor. Effectively, we can assume that the current distributes

freely between all tapes. Note that QSC in the above equation is much

larger than in Equation (1.202), where the current loops close within each

superconducting filament separately.

If ω ∼ τe or ω > τe, the eddy currents could partially shield the AC

loss in the superconductor, decreasing the other loss contributions. How-

ever, in the following, we always assume ω � τe so that the eddy currents

always add a contribution that does not interfere with the coupling and

superconductor losses.

1.2.3.2. Two slab filaments connected by normal conductor

As an analytical example, we take the case of two superconducting slabs

with normal conductor sandwiched between them (Figure 1.22). This could

be the case, for example, of two coated conductors connected face-to-face.

If the applied field amplitude is low enough, there is nearly no penetration

of the magnetic field into the superconductor but only through the normal

conductor. Thanks to this, the response of the metal part to alternating

magnetic fields is the same as that of a slab. This can be seen as follows.

Any slab of normal metal at a position x within a small length, dx, has
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Figure 1.22. A changing applied magnetic field, Ba, causes coupling currents in a nor-
mal conductor (blue shaded regions) sandwiched between two superconductors (white
blocks): general 3D shape (left) and qualitative behavior of coupling current loops cross-
ing a certain width dx of the normal region (right).

current dI = Jldx, where l is the height of the slab in the applied field

direction. This current of uniform sheet density dK = Jdx closes along

the surface of the superconducting filaments (Figure 1.22). Thanks to the

infinitely long geometry in the z direction, the magnetic flux density gener-

ated by the sheet current density of this circuit is uniform within the volume

closed by the circuit with value dB = Jdxez , regardless of the shape of the

circuit. Then, the flux density dB generated from the regions of width dx

at ±x is the same as an infinite slab. As a consequence, the solution is the

same as for the eddy currents in a slab, with all equations in Section 1.2.2.2

also applicable. The difference now is that 2a is the length of the sandwich,

h is the normal metal thickness, and l is its width (Figure 1.22). Then, the

qualitative behavior, such as the frequency dependence, is the same as for

the eddy currents. From the reasoning above, we can also see that for a

given length in the x direction, 2a, the AC loss in the normal conductor is

independent of the size of the superconducting filaments or their external

shape.

Applying the results in Section 1.2.2.2 to our coupling configuration, we

see the following key features:

• On increasing the frequency, f , the AC loss per cycle shows a peak at

around the relaxation time constant, increasing proportionally to f at low

frequencies and decreasing as 1/
√
f at high frequencies (Figure 1.21).

• At low frequencies, the AC loss is proportional to the cube of length,

(2a)3. Then, dividing the object into n parts along the x direction

reduces the AC loss by a factor n2.
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Our coupling configuration is qualitatively similar to superconducting wires

in a metal matrix that are transposed with a periodicity length lt = 4a.

Then, we see that the AC loss increases with the transposition length as l2t ,

and hence, low-loss wires should have low transposition length.

1.3. Numerical Methods

In this section, we detail the grounds of several numerical methods that

have been successfully applied to modeling of HTS. These can be applied

to model both HTS and normal metals, describing also eddy current and

coupling effects. Some of these methods are also applicable to ferromagnetic

materials interacting with HTS. Here, we present formulations that are valid

for general 3D modeling, unless stated otherwise.

1.3.1. Finite element methods

FEMs solve a certain electromagnetic variable or variables in a region of

the space, such as H or A−φ, usually including a relatively large portion of

the air around the object of study. Within this region, the electromagnetic

quantities obey a certain partial differential equation of second order. In

addition, these methods require setting boundary conditions at the external

surface of the modeled volume, usually of the Dirichlet type. Indeed, it can

be shown that the solution to second-order differential equations with given

differential equations is unique [42].

FEMs solve the governing partial differential equation by dividing the

volume into elements and then solving the value of the electromagnetic

quantities at each element by numerical methods, such as the Galerkin

method.

Some efficient FEMs use different electromagnetic quantities in sepa-

rated regions, such as the H–A and A–T formulations.

Here, we outline the formulations for general 3D shapes, detailing also

the simplifications done for cross-sectional 2D models (either infinitely long

wires or objects with cylindrical symmetry).

1.3.1.1. H formulation

In FEMs, we first need to write the partial differential equations of the

problem. In the H formulation, we use H as the electromagnetic variable,

from which all the other electromagnetic quantities are calculated, namely
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B, J, and E. In particular,

B = μ(H)H, (1.203)

J = ∇×H, (1.204)

E = ρ(∇×H)∇×H, (1.205)

where (1.203) is the constitutive relation between B and H, (1.204) is

Ampere’s law, and (1.205) combines the constitutive relation betweenE and

J through Equation (1.204). With these relations, Faraday’s law, ∇×E =

−∂tB, becomes

∇× [ρ(∇×H)∇×H
]
= −∂t

[
μ(H)H

]
. (1.206)

In order to solve this differential equation, we need to set constraints

and boundary conditions.

If we have a set of n simply connected bodies, which can be regarded

as n conductors, each having a given current Ii(t), we should impose the

constraint ∫
Si

ds · J = Ii, (1.207)

where Si is the cross-section of conductor i. From (1.204) and using Stokes’

theorem, we obtain ∮
∂Si

dl ·H = Ii, (1.208)

where dl is the line differential. Then, the current at conductor i is deter-

mined by the circle integral of H around the edge of its cross-section. In 2D

cross-sectional problems, the constraints of (1.208) are always well defined

since a single cross-section describes the whole geometry. For general 3D

objects, the current constraints should follow across any cross-section of

the conductor (Figure 1.23(a)). The ends of the conductor are somewhat

ill-defined because there should be current crossing these surfaces, while

there is isolating air. Then, simply applying the current constraints at the

ends clashes with the Biot–Savart law J = ∇×H, from which the continu-

ity equation ∇ · J = 0 is obtained. Taking the current constraint directly

at the open ends implicitly assumes that the electric current is created on

one end and vanishes on the other, which could only be possible if there is

an infinite charge reservoir at each end. However, this implies the general
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current conservation equation, ∇ ·J+ ∂tq = 0, which requires the displace-

ment current in the Biot–Savart law, ∇ × H = J + ∂tD, to contradict

the H formulation. Two simple solutions to the current constraints in 3D

are to either consider closed loops (Figure 1.23(b)) or to assume periodic

conditions (Figure 1.23(c)). For the latter, the modeled volume repeats

indefinitely in at least one direction.

We may also define single constraints for more than one conductor.

For example, the current constraint for two conductors perfectly sharing

current is ∮
∂Si

dl ·H+

∮
∂Sj

dl ·H = Iij .

(a)

(b)

(c)

Figure 1.23. In 3D problems, the current constraints should be considered with care: (a)
The current constraint of (1.208) should apply for any cross-section of the conductor. For
nonzero transport currents, the 3D formulation is consistent with the quasimagnetostatic
Maxwell equations for (b) closed loops or (c) periodic wire arrangements extending to
infinite in one direction.
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The boundary conditions of H are usually set at a distance much larger

than the size of the modeled object based on the fact that the H generated

by the object decays with distance. If there is no net transport current,

the boundary condition at the whole modeled domain (or air box), s, can

always be set asH = Ha on the boundary, whereHa is the applied magnetic

field, or magnetic field created by external sources of H independent of the

solution of the modeled object. If there is some transport current, the same

boundary condition can be taken for 3D problems where all the current

loops close far away from the boundaries of the air box or for axisymmetrical

2D problems but not for infinitely long configurations, including 3D periodic

problems also. The reason is that the net current, I, follows

I =

∮
∂S

ds ·H,

where S is any surface containing the cross-section of all the conductors.

Taking S as a cross-section of the whole modeled region, H = Ha at the

boundary always results in zero net current since all current density creating

Ha is outside the modeled volume, and hence,∮
∂S

dl ·Ha = 0. (1.209)

This could contradict the constraints on individual conductors of (1.207).

The solution is to use the fact that the H generated by any infinitely long

body approaches I/(4πr2)eϕ far away from the conductor, where r2 is the

modulus of the position vector in 2D and eϕ is the unit vector in the angu-

lar direction. Then, we can set H in the boundary of the whole modeled

domain as

H∂s =
I

4πr2
eϕ +Ha (1.210)

for infinitely long problems (of periodic 3D problems) and as

H∂s = Ha (1.211)

for axisymmetric problems or general 3D cases with closed current loops.

Actually, it is enough to provide the tangential component of the magnetic

field at the boundary, H∂s ×n, with n being the unit vector perpendicular

to the surface. The solution to H is found by dividing into elements and

later solving the discretized problem by a finite element technique, such as

the Galerkin method [42].
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Coming back to the initial equations on which the H formulation is

based on, (1.203)–(1.206), the reader will note that we did not impose

∇ · B = 0 or ∇ · (μH) = 0. Actually, if one chooses the initial conditions

such that ∇ · (μH) = 0, then the zero divergence of the magnetic field

is automatically satisfied at successive instants, as explained by Kajikawa

et al. [45] and Zermeno et al. [106]. In order to see how this comes about,

one can start from Faraday’s equations written in terms of the magnetic

field:

∇× (ρ∇×H) = −∂(μH)

∂t
. (1.212)

Taking the divergence of Equation (1.212) yields

∇ · [∇× (ρ∇×H)] = ∇ ·
(
− (μH)

∂t

)
. (1.213)

The left-hand side of Equation (1.213) is identically zero and, after exchang-

ing the order of time and spatial derivatives, it is easy to see that ∇ ·B =

∇ · (μH) is constant in time. Consequently, if ∇ ·B = 0 at a given time t0,

then ∇ ·B = 0 will hold at any other instant. So, if the initial conditions

are chosen such that

∇ · (μH)|t=t0 = 0, (1.214)

then ∇ · (μH) = 0 will hold at all times.

This shows that the use of edge elements, which are divergence-free

by construction [42], is in principle not necessary to guarantee the zero

divergence of the magnetic field. However, the edge elements seem to be

more robust and efficient than Lagrange elements for the H formulation

implemented in the commercial software COMSOL Multiphysics�[2].

1.3.1.2. A–φ formulation

We can also describe all electromagnetic fields by the vector and scalar

potentials, A and φ, respectively. In particular, B and E follow Equations

(1.22) and (1.24), respectively:

B = ∇×A,

E = −∂tA−∇φ.
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J and H are found by inverting the constitutive relations (1.9) and (1.8),

respectively, and hence,

J = ρ
−1

(E)E,

H = μ
−1

(B)B,

where ρ
−1

is the conductivity tensor. Using all the equations above, the

Biot–Savart law, ∇×H = J, becomes

∇× [μ
−1

(∇×A)∇×A] = ρ
−1

(∂tA−∇φ)(∂tA−∇φ). (1.215)

The current density also needs to follow the current conservation equation,

∇ · J = 0, and hence,

∇ · [ρ−1
(∂tA−∇φ)(∂tA−∇φ)] = 0. (1.216)

The two equations above are the coupled partial differential equations to

be solved for the general case, including 3D configurations.

Whether the problem contains current sources or not, the solution also

needs to fulfill the following current constraint for each conductor (or simply

connected region):

Ii =

∫
Si

ds · J =

∫
Si

ds · ρ−1
(∂tA−∇φ)(∂tA−∇φ). (1.217)

This constraint is unambiguously defined in 2D problems, either infinitely

long or axisymmetrical. However, as is the case for the H formulation (see

Section 1.3.1.1), this condition is only well defined in 3D problems where

the conductors form closed loops or they show translational periodicity.

All the equations above are gauge independent. Therefore, in order to

get a particular solution to A, we also need to impose the gauge. Next, we

outline how to set the gauge and boundary conditions in 2D and 3D, respec-

tively. When setting the boundary conditions, you are implicitly assuming

a certain gauge for A and φ at the boundary. In the following, we assume

Coulomb’s gauge, and later, we also discuss Weyl’s gauge, defined as φ = 0.

Boundary conditions are usually set at the external boundary of a box

that extends in air to a distance much larger than the size of the object of

study. For infinitely long problems with no net transport current, axisym-

metric problems, or 3D configurations with closed current loops, the A

generated by the currents decays far away from the sample. Then, the
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boundary condition is

A = Aa, (1.218)

where Aa is the vector potential due to currents external to the computed

domain, which are assumed independent of the solution in this domain.

For infinitely long problems and periodic 3D situations with net trans-

port current I, the vector potential generated by the currents approaches

−I/(2π) ln r2eϕ, where r2 is r2 =
√
x2 + y2 for a Cartesian coordinate sys-

tem with z as the long direction. Then, the boundary condition becomes

A = Aa − I

2π
ln r2eϕ. (1.219)

Alternatively, one could use Weyl’s gauge, where

φ = 0. (1.220)

This defines a relation between the potentials in Coulomb’s gauge, Ac and

φc, as (see Equation (1.26))

A = Ac +∇
∫ t

0

dt′φc(t′). (1.221)

As a consequence of φ = 0, the electric field follows

E = −∂tA. (1.222)

For infinitely long problems with no net current, axisymmetrical shapes,

and 3D shapes with closed current loops, the electrostatic potential vanishes

far away from the sample (φc → 0) so that the boundary condition becomes

A = Aa, with Aa being the applied vector potential in Coulomb’s gauge.

For cases with net transport current, either infinitely long or periodic 3D, φc
and ∇φc do not vanish far away from the sample, and hence, the boundary

condition is not straightforward.

For both Coulomb’s and Weyl’s gauges, the boundary condition for the

scalar potential can always be set as zero. This is clear for axisymmetrical

problems, 3D cases with closed loops, and infinitely long geometries with

no net current. For infinitely long problems of periodic 3D shapes with

transport current and insulating regions between conductors, we can always

impose φ = 0 at the mid-length in the transport direction. Therefore, φ = 0

at this mid-length, although ∂zφ does not generally vanish.
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In the A–φ formulation, we also need to ensure that the gauge is

preserved in the whole domain. In 2D problems (infinitely long or axisym-

metric), the gauge is fixed at the boundary condition since fixing the vec-

tor potential at a single point determines the gauge (Sections 1.1.3.1 and

1.1.3.2). In 3D, the gauge is usually ensured in the whole domain by the

spanning tree technique [3, 56].

1.3.1.3. T–Ω formulation

This formulation solves the current potentials T and Ω (Section 1.1.6), from

which all electromagnetic quantities can be obtained. J and H are related

to T and Ω as

J = ∇×T,

H = T−∇Ω,

and the constitutive relations yield B and E:

B = μ(H)H,

E = ρ(J)J.

With these relations, Faraday’s law, ∇×E = −∂tB, becomes

∇× [ρ(∇×T)∇×T
]
= −∂t

[
μ(T −∇Ω)(T−∇Ω)

]
, (1.223)

and the magnetic Gauss’ law, ∇ ·B = 0, takes the form

∇ · [μ(T−∇Ω)(T−∇Ω)
]
= 0. (1.224)

These two coupled differential equations determine both T and Ω.

The current constraint at each conductor i is

Ii =

∫
Si

ds · J =

∮
∂Si

dl ·T (1.225)

for any cross-section of a conductor, Si, with Ii being the current in conduc-

tor i. As for the other formulations, these boundary conditions are perfectly

consistent with cross-sectional 2D problems, but special care needs to be

taken in 3D (see Section 1.3.1.1 for the H formulation).

Next, we take the boundary conditions into account for a bounding box

far away from the modeled object. If there is no net current expanding into
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infinity (such as 2D axisymmetric shapes, 3D closed current loops, and 2D

infinite geometries with zero total current), the boundary condition is

T−∇Ω = Ha, (1.226)

with Ha being an applied magnetic field created by external sources. If

there is net current I flowing toward infinity as in 2D infinitely long shapes

or 3D periodic problems, the next current constraint needs to follow for

any cross-section, s, of the whole modeled domain:

I =

∫
s

ds · J =

∫
∂s

dl ·T =

∫
∂s

dl ·H. (1.227)

Since the sources of Ha are external to the modeled volume,
∫
∂s dl ·Ha = 0

so that the above integral vanishes at the boundary. Then, we need to add

an extra term to (1.225). SinceH far away from an infinitely long conductor

in the z direction follows H ≈ I/(2πr)eϕ, at high enough distances from

the conductor, the boundary condition becomes

T−∇Ω = Ha +
I

2πr
eϕ, (1.228)

where r =
√
x2 + y2 and eϕ is the angular unit vector.

The boundary conditions (1.226) and (1.228) are valid for any gauge

of T and Ω (gauge transformations given in Section 1.1.6). Next, we take

particular gauges into account.

For the Ω = 0 gauge, we get T = H, and hence, we reproduce the H

formulation.

For the divergence-free gauge, ∇ · T = 0, Ω becomes the magnetic

potential. Since there is always as many positive magnetic poles as negative

ones, the leading term of Ω is dipolar, and hence, both Ω and ∇Ω can be

set as zero at the boundary. Then, the boundary conditions are

T = Ha +
I

2πr
eϕ,

Ω = 0. (1.229)

The gauge in the whole modeling region is ensured by the spanning tree

technique on the meshing (or discretization), similar to A–φ in 3D [3, 52].

For 2D problems, T still has two components, and hence, the spanning tree

technique is also necessary.
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1.3.1.4. Combined formulations

Any formulation or numerical approach has advantages and disadvantages.

Combining different approaches, each applicable to a different region of

space, can provide the best of both.

All the formulations presented in this book are dynamic since they take

Faraday’s law into account, and they are also valid for nonlinear conducting

materials. However, static formulations or specific dynamic ones for linear

conducting materials are more straightforward to solve [6, 42], being usually

faster. In addition, they are often better suited for advanced meshing. This

is the case of rotating mesh, which is crucial for rotating machines. These

approaches are considered standard in electrical engineering, e.g. dynamic

A formulation for normal conductors [6].

The H–A formulation uses the A formulation for linear conductors at

normal conducting or magnetic materials, while using the H formulation

in the region containing the superconductors and the surrounding air [19].

The T–A formulation uses the static A approach to conventional mate-

rials (normal conductors, magnetic materials, and air), while using T to

describe the superconductor. This formulation is mostly used with the

approximation of the superconductor as a thin shell [109], but it can also

be applied to general geometries [35].

A different kind of mixed formulation is that based on H–ψ, which uses

H in the superconducting or normal conducting regions and the magnetic

scalar potential ψ in the air, where H = −∇ψ. The problem is that the

relation H = −∇ψ causes any closed-loop path integral of H to vanish,

being incompatible to the current constraints of (1.208). Then, the H− ψ

formulation is valid when any closed integral of H vanishes at the region

described by ψ. This is the case of the air region for the magnetization

problem (no current constraints) and no holes in the conductor as well

as the air outside rotating machines. An improvement in this approach

that enables current constraints is the H–ψ formulation with cohomological

decomposition [53, 94], where H is decomposed as

H = −∇ψ +
∑
i

Iihi,

with ψ being a scalar magnetic potential, the summation made over all

possible current constraints, Ii the current relative to current constraint i,

and hi a base function related to the current constraint i. For this formu-

lation, all base functions hi are kept the same throughout the whole time

evolution, and hence, ψ remains the sole quantity to be solved in the air.
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Further developments in 3D modeling have been made by Arsenault et al.

for applied magnetic fields [8, 9] and for transport current [7].

1.3.2. Variational methods

Variational methods find the electromagnetic quantities by minimizing a

certain functional, which is equivalent to solving Maxwell’s equations (or a

set of differential or integro-differential equations based on them) [18, 69,

78]. Essentially, the solution is of the same kind as that obtained by FEMs,

and hence, variational methods are an alternative. The variational methods

based on solving electromagnetic properties that exist only in the materials

(J for conductors and superconductors and M for magnetic materials) do

not require us to solve the fields in the air, which greatly reduces the number

of degrees of freedom. This property is also shared by integral methods (see

Section 1.3.3). Another advantage of variational methods is their capability

to solve any E(J) relation, including the multi-valued E(J) relation of the

CSM (Section 1.1.2). Actually, only variational methods can solve the CSM

in arbitrary shapes.

Similar to FEMs, variational methods also exist in several formulations,

depending on what quantity is solved. First, we present the variational

methods with no magnetic materials (Sections 1.3.2.1–1.3.2.3), and later,

we present the extension to magnetic materials (Section 1.3.2.5). For no

magnetic materials, the constitutive relation between B and H is simply

B = μ0H, and hence, B and H are generated only by the currents.

Three formulations can be applied for variational methods in 3D: T, H,

and H–ψ. Although the formalism in Section 1.3.2.1 for the J–φ formula-

tion is also valid for 3D, the presence of the electrostatic potential in the

functional highly complicates its applicability. However, the J–φ formula-

tion is very useful for cross-sectional problems (or 2D) because J can be

reduced to a scalar, which greatly reduces the number of degrees of freedom

and the computing time [66].

An interesting fact is that these variational methods are able to take

any vectorial E(J) relation into account (including the double CSM or the

anisotropic CSM), where E does not need to be parallel to J [10, 11, 46,

48, 69]. This is especially relevant for force-free configurations [25, 46].

Although the mathematical background of the first works on variational

methods are based on variational inequalities [18, 77], the deduction in

terms of the Euler equations of a functional is more understandable for

engineering and physics backgrounds [11, 69, 73]. Therefore, we take the

latter approach in this book.
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1.3.2.1. J–φ formulation

Here, we present the functional with J and the scalar potential φ as the

state variables. The starting point is that the equations that we wish to

solve are

E(J) = −∂tA−∇φ,
∇ · J = 0.

The first equation above joins the constitutive E(J) relation of the material

with the relation of E with the electromagnetic potentials, while the second

equation represents current conservation.

In time-discretized form at time tk, these equations become

E(Jk) = −ΔAk

Δtk
−∇φk, (1.230)

∇ · Jk = 0, (1.231)

where ΔAk = Ak −Ak−1 and Δtk = tk − tk−1.

Next, we need to take Coulomb’s gauge into account in order to express

A as an integral of J (see Section 1.1.3). We separate A from the con-

tribution of the currents in the sample, A[J], and those from external

sources, Aa, which are responsible for the external applied magnetic field.

The square brackets in A[J] denote functional dependence, with A[J] being

the integrals of J in the space of (1.32), (1.34), and (1.40) for 3D, infinitely

long, and cylindrical geometries, respectively. Then, (1.230) becomes

E(Jk−1 +ΔJk) = −A[ΔJk]

Δtk
− ΔAak

Δtk
−∇φk, (1.232)

where ΔJk = Jk − Jk−1 and ΔAak = Aak −Aa,k−1. As a consequence of

Coulomb’s gauge, φ is the electrostatic potential (Section 1.1.3).

As a result, we need to solve the integral and differential equations of

(1.232) and (1.231), respectively, in order to obtain the solution to the

quasimagnetostatic problem.

As mathematically demonstrated by Pardo and Kapolka [69], Equations

(1.232) and (1.231) are the Euler equations of the following functional with

respect to ΔJk and φk, respectively:

Lk[ΔJk, φk] =

∫
v

d3r

[
1

2
ΔJk · A[ΔJk]

Δtk
+ΔJk · ΔAak

Δtk

+U(ΔJk + Jk−1) +∇φk · (ΔJk + Jk−1)

]
, (1.233)
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where ΔJk = Jk − Jk−1 and U is the dissipation factor, defined as

U(J) ≡
∫ J

0

dJ′ ·E(J′).

This dissipation factor is uniquely defined for any physical E(J) relation

because, due to irreversible thermodynamic principles, ∇J × E(J) = 0,

and hence, the path integral in the U definition does not depend on the

particular integration path [11, 73]. Then, the solution to the problem cor-

responds to an extreme of the functional above. As shown by Pardo and

Kapolka [69], for any given φk, the extreme of this functional with respect

to ΔJk is a minimum that always exists and is unique. In order to find the

time evolution, we need to minimize the Lk above with respect to ΔJk for

each time k, once the solution for time k− 1 is known. The starting initial

condition is usually J = 0.

For general 3D configurations, obtaining J with this functional requires

us to previously know φ, which is usually not the case. The general 3D case

can be solved by the other formulations, T, H, or H− ψ, in the following

sections. An alternative is the J − q formulation, where J and the charge

density q are iteratively solved [71], although we do not go into detail here.

For cross-sectional problems (or 2D), the J − φ formulation does not

require us to solve the scalar potential, thus becoming very powerful. In

infinitely long problems, in the z coordinate, J, A, and ∇φ have only

one component so that J(r) = J(x, y)ez, A(r) = A(x, y)ez , and ∇φ(r) =
∂zφez. Then, the functional takes the form

Lk[ΔJk] = l

∫
s

dxdy

[
1

2
ΔJk

A[ΔJk]

Δtk
+ΔJkΔAak

+U(ΔJk + Jk−1) + (ΔJk + Jk−1) · ∂zφk
]
,

where l is the conductor length and A[J ] is found using Equation (1.34).

Thanks to the infinitely long geometry, it can be seen that ∂zφ is uniform at

each conductor i in the case where we are modeling multiple-tape conductor

problems. Then,

Lk[ΔJk] = l

∫
s

dxdy

[
1

2
ΔJk

A[ΔJk]

Δtk
+ΔJkΔAak + U(ΔJk + Jk−1)

]

−
nc∑
i

VikIik,



Electromagnetic Modeling of Superconductors 75

where Iik and Vik are the current and voltage drop at conductor i at time k,

respectively, with the latter following circuit sign convention (the current

flows in the direction where there is a voltage drop). We also use Vik =

−l(∂zφk)i. Similarly, in axisymmetrical problems, we find that

Lk[ΔJk] = 2π

∫
s

drdz

[
r

2
ΔJk

A[ΔJk]

Δtk
+ rΔJk

ΔAak

Δtk
+ rU(ΔJk + Jk−1)

]

−
nc∑
i

VikIik,

where we use the fact that in axisymmetric problems, the angular deriva-

tive of the electrostatic potential, ∂ϕφ, is constant in the cross-section of

each conductor, and hence, the voltage drop in one closed conductor is

Vik = −2π(∂ϕφk)i. For coils, the interpretation of Vi is the voltage applied

by a source connected at a very thin cut in a loop. A coil can be seen as con-

necting these loops at the small cut (see Figure 1.24). This approximation

of a round coil is realistic for closely wound pancakes.

If the given input variables are the voltages at each conductor (voltage

sources), both the current density and the total currents are found via

minimization. If the input is the total currents (current sources), we need to

take the current constraints into account in the minimization process. This

can be done by the minimization algorithm given by Pardo [63] and Pardo

Figure 1.24. Closely packed pancake coils can be approximated by an axisymmetric
geometry. The sketches above are for a pancake coil with its realistic spiral shape (left),
assuming circular turns except a turn-to-turn crossover (center), and circular turns with
independent voltage sources (right). For all configurations, the current at each turn, I,
is the same. In the central sketch, V1, V2, and V3 are the voltage drops between the
beginning and end of turns 1, 2, and 3, respectively.
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et al. [73] or by taking into account the current constraints via augmented

functionals [80].

For a magnetic-field-dependent E(J) relation, where Jc or the power-

law exponent n could depend on B, we can still use the variational method.

For this case, we need to find J and B iteratively. That is, we start with

B = μ0Ha, where Ha is the applied field, then calculate J by minimization

at the given B and B with the J contribution, and later, we calculate

J again for the new B. We repeat this process until the difference in J

between two iterations is below a certain tolerance.

1.3.2.2. T formulation

For the general 3D case, a way of dropping the scalar potential but keep-

ing the modeled volume as the sample is to use the T potential with the

interpretation of an effective magnetization so that T vanishes outside the

conductors (see Section 1.1.6). If the studied object transports no current,

J = ∇×T. A transport current can be taken into account if we add another

term to J as

J = ∇×T+ Jt.

This transport current density is not an unknown of the problem, but it is

given externally in order that the total current at each conductor, i, follows

a given value at every time so that∫
Si

ds · J =

∫
Si

ds · Jt = Ii, (1.234)

where Si is any cross-section of the 3D conductor. In the above equation,

we used the fact that the term J with ∇ × T does not contribute to the

net current density since T outside the sample vanishes. An additional

condition of the given Jt is that it should follow current conservation:

∇ · Jt = 0. (1.235)

Any given Jt that follows conditions (1.234) and (1.235) could be selected.

The particular choice of Jt only changes the value of T but not that of the

final solution to J, which is the observable quantity. With these definitions
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of T and Jt, the functional in (1.233) at time step k becomes

Lk[ΔTk] =

∫
v

d3r

[
1

2
ΔTk · B[ΔTk]

Δtk
+ΔTk · (ΔBak +ΔBtk)

Δtk

+U
(
∇× (ΔTk +Tk−1) + Jt

)]
, (1.236)

where Ba is the applied magnetic flux density, Bt is B generated by Jt,

and B[T] is the magnetic flux density generated by T, which is given by

B[T](r) =
μ0

4π

∫
v

d3r′
[∇′ ×T(r′)]× (r− r′)

|r− r′|3

= μ0T(r) +
μ0

4π

∫
v

d3r′g(r− r′)T(r′), (1.237)

with the symmetric tensor g components as

gij(r) =
3rirj
r5

− δij
r3
.

For infinitely long problems, B[T] follows

B[T](r2) = μ0T(r2) +
μ0

2π

∫
s

d2r′2 h(r2 − r′2)T(r′2), (1.238)

with

hij(r2) =
2rirj
r42

− δij
r22
,

where r2 is the 2D position vector in the cross-section, r2 = xex+ yey, and

r2 =
√
x2 + y2.

In (1.236), ΔTk = Tk − Tk−1 and ΔBk = Bk − Bk−1. With this

formulation, it can be demonstrated that the minimum of the functional

always exists, it is unique, and it corresponds to solving the time-discretized

Faraday’s law [69]:

∇×E(∇×Tk + Jtk) = −ΔBak

Δtk
− B[ΔTk]

Δtk
.

Since B[ΔTk] is an integral of ΔTk, the above equation is an integro-

differential equation of the state variable, ΔTk.
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1.3.2.3. H formulation

The electrostatic potential could also be avoided if we take the mag-

netic field H as the state variable. Actually, this was the first variational

approach for superconductors [10, 18]. In this case, the equation that we

wish to solve is Faraday’s law in time-discretized form, which at time step

k is

∇×E(∇×Hk) = −μ0
ΔHk

Δtk
, (1.239)

with ΔHk = Hk −Hk−1. Solving this equation is the same as minimizing

the functional [11, 73]

Lk[ΔHJk] =

∫
R3

d3r

[
μ0

2

(ΔHJk)
2

Δtk
+ μ0ΔHJk · ΔHak

Δtk

+U(∇× (ΔHk +Hk−1))

]
, (1.240)

with

U(J) =

∫ J

0

dJ′ ·E(J′),

where H = HJ + Ha, with HJ being the magnetic field created by the

current density J and Ha is the applied magnetic field. In the functional

above, we need to set a certain E(J) relation in air, which can be E =

ρairJ with a large constant value for ρair. The functional above can also be

directly deduced from (1.233) using electromagnetic relations and vector

calculus. In the H formulation, the functional needs to be evaluated in the

whole 3D space or a bounding box much larger than the object of study.

This can be avoided if we study infinitely long geometries with Ha in an

infinite direction and no transport current [10, 11], where HJ outside the

sample vanishes.

1.3.2.4. H–ψ formulation

For the general case, a way to minimize the number of degrees of freedom

outside the sample is to use a mixed formulation of H and the magnetic

scalar potential ψ, the latter being the state variable in the air [48]. Taking
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into account that H = −∇ψ in the air, the functional in (1.240) becomes

Lk[ΔHJk, ψsk] =

∫
v

d3r

[
μ0

2
(ΔHJk)

2 + μ0ΔHJk ·ΔHak

+ΔtkU(∇× (ΔHk +Hk−1))

]

+

∫
v′
d3r

[
μ0

2
|∇ψsk|2 + μ0∇ψsk · ∇ψak

]
, (1.241)

where v is the region of the sample, v′ is the whole 3D space volume exclud-

ing the sample volume, ψs is the contribution to ψ from the sample, and

ψa is the scalar magnetic potential from the applied magnetic field, which

is given by ψa = −r ·Ha for uniform applied fields. Minimizing this func-

tional corresponds to solving Faraday’s law in the sample and ∇2ψ = 0

in the air. An additional condition is that at the surface of the sample,

H × n = −∇ψ × n, where n is the normal unit vector to the surface.

As mentioned in this paragraph and by Kashima [48], this formulation is

applicable to the magnetization case only (no transport current).

For nonzero transport currents, the situation is more complicated

because using H = −∇ψ results always in zero closed-loop integrals of

H, which are not compatible with the current constraints of (1.208). For

this case, we could use similar concepts as the cohomological decomposition

[53]. Here, we provide an alternative comprehensive approach as follows.

In the air, we decompose H as

H = −∇ψ +
∑
i

Iihi, (1.242)

where ψ is a magnetic scalar potential to be solved, Ii are the given current

constraints for each conductor i, and hi is the magnetic field per unit current

generated by a wire with a particularly given path Ci within the conductor

that follows the main direction of the transport current (Figure 1.25). If

a conductor has holes, we should take an additional hi for a path flowing

within the conductor but closing around the hole (path C3 in Figure 1.25).

If no current constraint is imposed for some closed loops, such as C3 in

Figure 1.25, the current corresponding to this loop becomes an additional

variable to be minimized. For the decomposition of (1.242), the current

constraints of (1.208) are automatically satisfied, and hence, they do not

require any additional numerical treatment. The particular choice of the

paths may change the solution to the scalar potential but not the total
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Figure 1.25. The current constraints of the variational method in the H–ψ formulation
require us to take certain paths into account along each conductor and closing around
the holes (Section 1.3.2.4). The chosen paths (C1, C2, and C3) are fixed at the beginning
of the calculations and kept the same afterward.

solution to H. With the decomposition of (1.242), the functional to be

solved at any time step k becomes

Lk[ΔHJk, ψsk]

=

∫
v

d3r

[
μ0

2
(ΔHJk)

2 + μ0ΔHJk ·ΔHak

+ΔtkU(∇× (ΔHk +Hk−1))

]
+ μ0

∫
v′
d3r

×
[
1

2

∣∣∣∇ψsk −
∑
i

Iikhi

∣∣∣2 + (∇ψsk −
∑
i

Iikhi

)
· ∇ψak

]
,

(1.243)

where ψs and ψa are the magnetic scalar potentials from the sample and

applied magnetic field, respectively.

1.3.2.5. Interaction with nonlinear magnetic materials

A magnetic material can also be taken into account by variational princi-

ples. Here, we propose a formulation that uses the magnetization, M, as

the state variable, limiting the modeled region to the magnetic materials.
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First, we assume that the free current density, J, is given and later, we out-

line how to obtain J in superconductors (or normal conductors) interacting

with the magnetic materials.

The starting point is the constitutive relation between B and H; since

B = μ0(H+M), this also defines a constitutive relation between B and M

as

M = (1− μ
−1

)B (1.244)

or

B = G(M),

where G(M) is the inverse relation of (1.244). In this book, we restrict our-

selves to single-valued B–M relations, either linear or not [68]. An inter-

esting approach taking hysteresis into account can be found in the work by

Prigozhin et al. [83].

Independent of the constitutive relation, M directly generates magnetic

flux density because it is the density of magnetic dipoles. The magnetic

flux density generated by M can be found by taking into account the fact

that M generates the same B as an effective current density ∇×M. Using

the Biot–Savart integral law and vector calculus relations, we obtain

B[M](r) = μ0M(r) +
μ0

4π

∫
v

d3r′g(r− r′)M(r′), (1.245)

with the components of the g tensor being gij(r) = (3rirj)/r
5 − δij/r

3.

Above, we use square brackets to denote the functional relation between B

and M. For infinitely long problems, the B[M] relation becomes

B[M](r2) = μ0M(r2) +
μ0

2π

∫
s

d2r′2 h(r2 − r′2)M(r′2), (1.246)

with the components of the h tensor being hij(r2) = 2rirj/r
4
2 − δij/r

2
2. In

addition to M, there are other sources of B. These are the free current

density, generating BJ , and any source external to the domain of study

(superconductors, conductors, and magnetic materials), which create the

applied flux density Ba.

In the magnetic material, the constitutive relation needs to be consistent

with the total flux density generated by all sources, and hence,

G(M) = B[M] +Ba +BJ . (1.247)

Therefore, we can obtain M if we solve this integral equation.
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Following the same methodology adopted by Pardo and Kapolka [69],

it can be seen that Equation (1.247) is the Euler equation of the following

functional, and hence, minimizing this functional is the same as solving

Equation (1.247):

LM [M] =

∫
v

d3r

[
UM (M)− 1

2
B[M] ·M−Ba ·M−BJ ·M

]
, (1.248)

with

UM (M) =

∫ M

0

dM′ ·G(M′).

Again, it can be shown with the same argumentation as that of Pardo and

Kapolka [69] that the minimum of this functional always exists, and it is

unique for any material with permeability greater than or equal to one.

A superconductor or normal conductor interacting with a magnetic

material can be solved by minimizing both the functional LM in (1.248) for

M and the functional Lk for the free current density of (1.233) or (1.236)

for the J and T formulations, respectively. In this way, we can also model

materials that are both superconducting and magnetic. One way to simul-

taneously minimize both functionals is to minimize first LM with J (or T)

fixed, later minimize Lk with M fixed, and finally iterate until the difference

between iterations is below a certain tolerance.

Examples of calculations using this variational method are provided by

Pardo and Kapolka [68] for REBCO superconducting coils with magnetic

substrate and by Pardo et al. [72] for superconducting motors.

1.3.3. Integro-differential methods

The aim of the integral methods is to restrict the modeling volume to

the superconducting or conducting regions, thus avoiding meshing the air.

In this way, it is possible to save many unnecessary degrees of freedom,

potentially reducing the computing time. Another advantage of avoiding

meshing the air is that modeling moving objects (such as in levitation

configurations or rotating machines) is simpler. All these advantages are

shared by the variational methods in the J− φ and T formulations, which

could be also considered as integral methods.

The names of these methods come from the fact that they solve integral

or integro-differential equations, with the latter being the case of FEM and

variational principles in the H and H− ψ formulations.
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A drawback compared to methods using differential equations, such as

FEMs, is that integral methods contain dense interaction matrices, which

causes a large consumption of computer RAM and slows down the calcu-

lations. However, advanced integral methods use algorithms to reduce the

size of the interaction matrices and severely speed up the calculations, such

as multipole expansion of A (or B) [98] or hierarchical matrices [97].

1.3.3.1. J integral formulation

Most integro-differential approaches take directly the current density, J as

the state variable [21, 22, 58, 59, 85, 88, 99]. For any nonlinear E(J) char-

acteristics, the basic equation is the relation between the vector and scalar

potentials of (1.24). When using Coulomb’s gauge, the vector potential

from the sample is given by the integral of (1.32). Joining both equations

and taking a known applied vector potential into account, Aa, the integro-

differential equation of the general 3D problem is

E(J) = −4π

μ0

∫
v

d3r′
∂tJ(r

′)
|r− r′| − ∂tAa −∇φ, (1.249)

where φ is the electrostatic potential. Here, we also need to take the con-

tinuity equation into account:

∇ · J = 0 (1.250)

since we have four variables for each point of the space (three components

of J and one component of φ). In order to avoid calculating the scalar

potential also (and inherently satisfy (1.250)), it is possible to use closed-

loop currents as local variables since the integral of ∇φ in a closed loop

vanishes [88].

Certain types of J integral equations are called circuit methods since

they solve the integro-differential Equations (1.249) and (1.250) using

solvers for circuits [99].

For (infinitely) long shapes in the z direction, the integral equation

becomes

E(J) =
μ0
2π

∫
s

d2r′2∂tJ(r
′
2) ln |r2 − r′2| − ∂tAa − ∂zφ, (1.251)

where E = Eez, J = Jez, A = Aez, ∇φ = ∂zφez, and r′2 is the 2D position

vector at the cross-section. Thanks to the infinitely long shape, (1.250) is

automatically satisfied, and hence, it does not need to be explicitly taken

into account by the solver.



84 E. Pardo & F. Grilli

A pioneering integral method is the one known as Brandt’s method

for 2D infinitely long or axisymmetric shapes [21, 22], later extended by

Rhyner [85]. That method solves Equation (1.249) or (1.251) by matrix

inversion and Euler time integration, while Equation (1.250) does not need

to be solved thanks to symmetry. In addition, for the 2D geometries above,

∇φ is uniform in the cross-section, which simplifies the problem. Indeed,

∇φ can be ignored for magnetization configurations (no transport current).

For infinitely long shapes with nonzero transport currents, ∇φ corresponds

to the input voltage per unit length.

1.3.3.2. T integral formulation

This approach uses the current vector potential T as the state variable

(Section 1.1.6). The starting point is Faraday’s law:

∇× E = −∂tB.

By inserting the constitutive E–J relation, E = ρ(J)J, into Faraday’s law

and using J = ∇×T, we obtain

∇× [ρ(∇×T)∇×T] = −∂tB[T]− ∂tBa, (1.252)

where Ba is the external applied field and B[T] is the magnetic field gen-

erated by T, given by the integral relation of (1.237). This results in the

following integro-differential equation:

∇× [ρ(∇×T)∇×T] = −μ0

4π

∫
v

d3r′
[∇′ × ∂tT(r′)]× (r− r′)

|r− r′|3 − ∂tBa.

(1.253)

The current potential also needs to follow the current constraints for each

conductor, given by (1.225).

To solve the integro-differential equation of (1.253), we need to set

Dirichlet boundary conditions for T. For general 3D bodies, we may need

to set T far away from the sample, as done by Amemiya et al. [4], which

requires us to mesh the air. However, for thin films, where T is chosen to

be perpendicular to the film surface, it is enough to set the boundary con-

ditions at the narrow edges of the film. We can arbitrarily choose T = 0

on one edge and Tn = I/d on the other, with Tn being the (single) nor-

mal component of T and d being the film thickness, in order to satisfy the

current constraint. This enables us to model any surface with 3D bending

[61, 89].
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This integral formulation became very popular because for thin films,

only the perpendicular component of T to the surface needs to be taken

into account, reducing the number of degrees of freedom.

1.3.4. Spectral methods

Spectral methods are another set of interesting techniques. These are based

on separating the solution into the base functions that are not localized on

a single element but expand on the whole sample and often also a relatively

large portion of the surrounding air. This contrasts with all methods pre-

sented up to now, where the state variable is decomposed into base functions

localized in one or very few elements. The earliest methods were based on

Fourier expansions [20, 81, 82, 100] and, later, on Chevichev polynomial

decomposition [91].

Although the Fourier expansion method requires us to mesh the air

surrounding the sample also, it is able to solve bulk 3D shapes in very

short computing times and with a relatively simple implementation [81].

Another particularity of Fourier expansion is that it requires regular rect-

angular meshing, which limits the applicability for shapes containing thin

superconducting layers, especially for cross-field demagnetization or sur-

faces with 3D bending. Another advantage of the Fourier expansion method

is that it can be very efficiently linked to electro-thermal problems [100].

Chevichev polynomial decomposition is very promising for REBCO

superconducting windings, where the thin-film assumption can usually be

made [91]. Indeed, this method requires a one-dimensional (1D) approxima-

tion of the conductor cross-section. Therefore, this method is not suitable

for 3D modeling.

1.3.5. Particular issues for three dimensions

The modeling of 3D bodies is usually considered a special topic because the

calculations require the number of degrees of freedom orders of magnitude

to be higher than for 2D axisymmetric or surface modeling, even when the

studied surfaces are bent into complex shapes. Besides, there are numerical

methods that are inherently only applicable to 2D or even 1D mathematical

regions. In addition, there is a particular phenomenology that appears only

in 3D, which we focus on in this section.

First, certain 3D shapes, such as bulk rectangular prisms, contain a

current density, J, with a magnitude below the critical current density,

|J| < Jc, also in the CSM [69, 70]. This contrasts with cross-sectional 2D
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modeling, both from axisymmetric and infinitely long problems, where |J| =
Jc or 0 always. Indeed, that was even considered to be a requirement of the

CSM, while both its original and general forumulations enable intermediate

values of |J|, |J| ≤ Jc (see Equation (1.20) and Figure 1.1). In addition,

only the presence of intermediate values of |J| in the superconductor volume

can explain the observed intermediate values of |J| in thin films and thin

bulks and the experimentally found rounded current paths [70].

Another interesting issue is force-free effects. These appear when there

is a component of the magnetic field, B, that is parallel to the current

density, causing no macroscopic contribution to the driving force density

on superconducting vortices, f = B× J [25]. As a consequence, there is an

increase in the critical current density compared to configurations where the

magnetic field is perpendicular to the current density, as assumed in usual

axisymmetric and infinitely long configurations [25]. This translates into an

anisotropic relation between Jc and the magnetic field that contains also the

direction of J, Jc(B,J), also when the material presents isotropic pinning

for theB ⊥ J configuration. As a consequence of this feature, several effects

appear. For example, rectangular thin films exposed to tilted magnetic

fields shows regions of different current densities [46, 102]. Another effect

is that the critical current in spiral cables increases when there is a B

component in the direction of the cable axis [49].

1.4. Modeling of Power Applications

This section describes some examples of electromagnetic modeling of super-

conducting applications by numerical methods. The purpose is not to pro-

vide a complete review of the state of the art but to give the reader a glimpse

of what is currently possible to simulate with well-established numerical

methods.

Most examples concern rare-earth-based HTS wires because they are the

most promising wires for future superconducting applications. In addition,

the high width-to-thickness ratio of their superconducting layer makes the

simulation more challenging.

1.4.1. Numerical modeling of individual wires

1.4.1.1. Dependence of Jc on magnetic field

The critical current of superconductors depends on the magnetic field.

Sometimes, as in HTS, Jc depends not only on the magnetic field amplitude

but also on its direction. Figure 1.26 shows the angular dependence of a
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4 mm wide HTS-coated conductor manufactured by SuperOx for different

temperatures.

Typical expressions of the Jc(B) dependence for HTS and investigations

of their influence on AC losses are given by Robert et al. [86]. In the case

of HTS-coated conductors, the Jc(B) dependence can take quite complex

forms as a result of the introduction of artificial pinning centers aimed at

reducing the anisotropy of the superconductor. Some examples are given

by Long [55], Pardo et al. [76], and Hilton et al. [37]. A database of the

field dependence of commercial HTS wires in a wide range of fields and

temperatures has been made publicly available by the Robinson Research

Institute [87, 104].

In general, numerical models need the dependence of the critical cur-

rent density Jc on the local magnetic flux density, which we can indicate as

Jc(Blocal). What is typically measured in experiments is the dependence

of the critical current Ic on the applied magnetic field, which we can indi-

cate as Ic(Bapplied). This means that the experimental data also contain

the effect of the field generated by the current flowing in the sample during

the characterization (the so-called self-field effect). If the applied field is

large, the self-field can be neglected, and the Jc(Blocal) dependence can be

obtained by simply dividing Ic(Bapplied) by the cross-section of the super-

conductor. If, on the other hand, one is interested in the field dependence

for low values of B (for example, to simulate low-field applications such as

HTS power cables or fault current limiters), one needs to take the self-field

into account in order to have a sensible Jc(Blocal) dependence as input for

the simulations.

An example of how the self-field can be accounted for is given by Pardo

et al. [76]. Zermeno et al. [108] developed a method to take the self-field

Figure 1.26. Angular dependence of Ic at 20, 30, and and several magnetic fields of a
SuperOx-coated conductor sample. 0◦ refers to the field direction perpendicular to the
tape’s wide face.

Source: Reproduced from Grilli et al. [33].
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into account that produces a set of discrete data points for the Jc(Blocal)

to be used as input for successive simulations, without resorting to complex

mathematical expressions.

1.4.1.2. Dependence of Jc on position

HTS tapes experience a variation in Jc along their width as a consequence

of the manufacturing process [93]. Typically, Jc is lower near the edges of

the tape than in its center. This has some influence on the AC loss charac-

teristics for low AC transport currents or a low AC applied field. In those

cases, the field (self-generated by the current or externally applied) pene-

trates over a short distance from the edges. In those regions, the current

density easily reaches the (low) local value of Jc and causes a high power

dissipation. As the AC current or AC field increases, the current starts

flowing in the central region of the tape where Jc is higher, and the loss

behavior becomes similar to that of a tape with uniform Jc across the width.

A position-dependent Jc can be easily inserted in simulations and allows

us to obtain a better match with experimental data. However, the effect is

limited to low current and field amplitudes, so including such dependence

does not usually have a very important practical impact.

The critical current Jc also varies along the length of the tape [31].

The statistical distribution of Jc in good-quality, long pieces of commercial

HTS tape is typically of a few percentage points. This dependence is often

ignored in simulations, although the presence of points with very low Jc
can give rise to dangerous “hot spots.”

1.4.1.3. Simulation of magnetic materials

In certain cases, for reasons related to the manufacturing process, super-

conducting wires, such as MgB2 wires or HTS-coated conductors, contain

magnetic materials. This represents a challenge for simulations because

those materials have highly nonlinear magnetic characteristics, which may

cause difficulties in the implementation of the models or in the numerical

solution.

An example of implementation of a model with ferromagnetic materials

and a study of its influence on tape arrangements for fault current limiter

applications is given by Nguyen et al. [60].

Figure 1.27 shows an example of AC loss calculation in an HTS wire

with magnetic substrate carrying transport current. The substrate makes
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Figure 1.27. Transport losses of an HTS-coated conductor with ferromagnetic substrate:
comparison of experimental and simulation data. The numerical model gives access to
the different loss contributions.

a significant contribution to the losses, especially at low and medium cur-

rents. This example demonstrates that numerical models allow us to access

quantities (such as the individual loss contributions in the different materi-

als) that are not directly available from measurements. It also shows that

the magnetic material modifies the losses of the superconductor part, which

are different from those that would occur if the substrate was not magnetic

(“thin strip” line in the figure).

Magnetic materials can be added to superconducting tapes or wind-

ings in order to guide the magnetic flux away from the superconductor,

thus decreasing its AC loss [32, 50]. It should be remarked that, while AC

losses in the superconductor are decreased, a new loss contribution — the

AC losses in the magnetic materials — appears. So, the effectiveness of

these arrangements has to be carefully evaluated. An example of the use of

magnetic flux diverters in a HTS-coated conductor coil is given by Pardo

et al. [75].

1.4.1.4. Dynamic resistance

The term dynamic loss refers to the energy dissipation caused by the

DC electrical resistance appearing when a superconductor carries a DC
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transport current in the presence of an AC background magnetic field.

HTS flux pumps — which allow charging of DC magnets without the

need for large current sources — are actually based on dynamic resis-

tance [23, 29, 41]. The effect is also important in other HTS applications,

such as superconducting electrical machines, where the superconducting

coils carry DC current while subjected to varying magnetic fields [44].

1.4.2. Interacting tapes

In general, superconducting applications are composed of wires that are

closely packed and thus electromagnetically interacting. Numerical models

are now able to cope with a large number of superconductors. A typical

case is represented in Figure 1.28, which shows the current distribution and

the AC losses of four pancake coils made of HTS tapes. The model is able

to calculate the current distribution of the individual turns. Simulations

up to 10,000 individual turns have been carried out [64].

In order to reduce the computation time and to handle even larger

systems, alternative approaches to the detailed and simultaneous simulation

of all turns have been developed. These approaches can be divided into

three categories:

• Homogenization,

• Multi-scale,

• Densification.

A comprehensive review of these three methods applied to the H and

T –A formulations was presented by Berrospe-Juarez et al. [15] for the case

of HTS wires.

In short, with the homogenization, the details of the tapes are “washed

out” and stacks of tapes (like the turns of a pancake coil in 2D) are simulated

as a rectangular bulk. Specific boundary conditions need to be applied in

order to account for the fact that all the tapes (or turns) carry the same

current. The computational advantage stems from a much reduced number

of degrees of freedom (due to the simplified geometry and mesh) and from

the use of a smaller number of current constraints.

The multi-scale method is based on separating the calculation of the

current density in the tape and of the magnetic field of the “environ-

ment” around each tape. The main idea is to simulate individual tapes

with boundary conditions for the field generated by all the other tapes.

This approach has several advantages: First, the details of current and
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Figure 1.28. Four pancake coils made of HTS-coated conductor tape and connected in
series (top-left). AC losses as a function of the transport current for different assemblies,
ranging from a single coil to four coils: comparison of experimental results and numerical
calculations (bottom-left). Details of the current density distribution in the individual
turns of the four coils (right). See Refs. [73, 74] for further details.

field distributions inside the superconductor are calculated for very small

problems, one tape at the time. Then, the simulation of the various tapes

can be truly parallelized. Finally, there are virtually no limits on the size

of the device to be simulated. The drawbacks are that the results depend,

to a certain extent, on the choice of the initial current density distribution

in the tape and that the model implementation is rather complex due to

the exchange of information between the model for the whole device and

that for the individual tapes.

With the densification method, a certain number of tapes are merged

into a single tape. The densified tapes concentrate the transport current

of their surrounding tapes, while the surrounding tapes are erased. The
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densification allows us to build models with a smaller number of ele-

ments. However, similar to multi-scale, this method has quite an elaborate

implementation.

As mentioned by Berrospe-Juarez et al. [15], the homogenization is prob-

ably the best compromise in terms of gained speed (with respect to a full

model simulating all the tapes) and ease of implementation. However, it is

limited to the case of simulation of infinitely thin superconductors because,

by construction, it cannot take into account the currents induced across the

thickness of a tape.

In most cases, the simulation of superconducting coils assumes that the

same current flows in each turn. In other words, the turns are assumed to

be electrically uncoupled. This is schematically represented in Figure 1.29

for a coil wound from a single tape: The (known) current is injected at one

end of the tape and comes out at the other end of the tape, and neighboring

turns carry the same current.

However, in reality, some degree of coupling may exist, and models can

take this into account by appropriately setting constraints on where the

current flows. Let us consider a similar coil with the same number of tape

turns (12) but obtained by winding three turns of a “cable”; each turn is

composed of four tapes in parallel (Figure 1.30, top).

The tapes can be electrically connected along the entire length of the

coil (Figure 1.30, middle). The (known) current is injected at the level of

the cable turns: In each turn, it is left free to distribute between the tapes.

Such distribution, in general, changes along the length of the coil. We can

call this situation “fully coupled tapes.”

In another scenario, the tapes can be electrically insulated along the coil

but joint together at the ends (Figure 1.30, bottom). In this situation too,

the (known) current is injected at the level of the cable turns, and one does

not know in advance how it distributes between the tapes. However, current

Figure 1.29. Racetrack coil wound with one tape. The turns are electrically isolated,

with the current entering at one end of the coil and coming out at the other end.

Source: Figure courtesy of Tara Benkel.
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Figure 1.30. Racetrack coil wound with a cable composed of tapes in parallel (top).

The tapes can be electrically connected along the entire length of the coil (middle) or
just at the end of the coil (bottom).

Source: Figure courtesy of Tara Benkel.

transfer from one tape to another along the length of the coil is not allowed:

The current flowing in each tape, which is unknown a priori, must be pre-

served along the length. We can call this situation “coupled-at-ends tapes.”

Each situation described above requires the application of particular

current constraints. An application of these coupling scenarios for the coils

of a superconducting motor was carried out by Pardo et al. [67]. It was

found that coupled-at-ends turns have similar losses to the uncoupled ones.

This was encouraging because the former is easier to be realized in practice

than the latter.

1.4.3. 3D modeling

Superconducting bulks are the ideal geometry to test 3D models due to

their relatively simple geometry, which allows limiting the total number of



94 E. Pardo & F. Grilli

degrees of freedom, even for 3D simulations. In order to test the accuracy

and speed of 3D numerical models, the research community has setup a

benchmark for the magnetization of a cube under the action of an AC

magnetic field. The results of three models were compared, and a report of

the results is available on the website of the HTS Modeling Workgroup.1

More complex arrangements than simple bulks have been studied. The

A–φ formulation was used to simulate the magnetization of a supercon-

ducting ring subjected to the field generated by a racetrack coil in 3D [92].

Another 3D example is shown in Figure 1.31, which shows the currents

induced in a cup-shaped superconductor by a slanted magnetic field. Such

a case could not be simulated by 2D models. Vestg̊arden et al. [101] devel-

oped a model for studying nonlocal electrodynamics in superconducting

films, which was later applied to the case of a right-angled corner.

Figure 1.31. Current induced in a cup-shaped superconductor by a slanted magnetic

field (arrows). Such a case can only be handled with full 3D models. The plot shows
the x component of J , normalized with respect to Jc.

Source: Figure courtesy of Mykola Solovyov, Institute of Electrical Engineering, Slovak

Academy of Sciences.

1http://www.htsmodelling.com.

http://www.htsmodelling.com
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Another example of complex 3D simulations can be found in the work

by Fagnard et al. [28], in which the authors studied the effectiveness of

magnetic shielding of various geometries with the A–φ formulation imple-

mented in the open-source software GetDP. In particular, they investigated

semi-closed superconducting bulk cylinders (obtained by bringing together

a superconducting tube and a disk) subjected to axial and transverse fields,

as schematically represented in Figure 1.32

Full 3D models also allow exploring the so-called force-free configura-

tions, i.e. situations where the magnetic field and the current density are

parallel to each other [46] Another effect for which 3D simulations are useful

(or even necessary) is the study of demagnetization of bulks or tape stacks.

Magnetization can be trapped inside bulks (or tape stacks) in order to use

them as permanent magnets in several applications; however, in real appli-

cations, these “magnets” are often also subjected to small transverse fields,

for example created by the rotation in electrical machines. These transverse

fields have the practical effect of decreasing the trapped magnetic flux, and

hence, they can significantly reduce the benefits of using superconductors

instead of conventional permanent magnets. Modeling these effects in 3D

is very challenging because it is necessary to simulate a large number of

Figure 1.32. Schematic illustration of the bulk semi-closed superconducting cylinders

subjected to axial and transverse fields investigated by 3D simulations in [Fagnard et al.].

Source: Figure courtesy of J.-F. Fagnard, University of Liege, Belgium.
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cycles. In the case of HTS tape stacks, there is the additional challenge

of handling superconducting layers with length and width in the range of

centimeters, as opposed to a thickness of a few micrometers (which also

needs to be discretized) [47]. For these reasons, an alternative approach

based on the effective E(J) relation from dynamic magneto-resistance has

been developed. This allowed the simulation of cross-field demagnetization

of superconducting stacks and bulks for up to 100 tapes and two million

cycles [26].

Three-dimensional simulations can be used to investigate levitation

forces, for example in superconducting magnetic bearings. In the model

presented by Quéval et al. [84], the model consists of an unidirectional

coupling between the permanent assembly model and the HTS assembly

model. An example of a typical geometry is given in Figure 1.33.

Three-dimensional models can be used to study the coupling between

superconducting filaments through a normal metal between them. For

example, the influence of the aspect ratio of the filaments on the onset of

coupling was studied by Grilli et al. [34]. The coupling AC loss in soldered

tapes and striated coated conductors was investigated by Pardo et al. [71].

Losses in MgB2 wires with twisted filaments were calculated by Escamez

et al. [27].

Figure 1.33. Three-dimensional simulation of levitation of an HTS bulk above a perma-
nent magnet: example of the geometry and mesh considered by Quéval et al. [84].

Source: Löıc Quéval, University of Paris-Saclay, France.
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The modeling of complex 3D structures remains quite challenging to

this day. One example is represented by the calculation of transport and

magnetization losses in a Roebel cable presented by Zermeno et al. [106].

In that work, the superconducting strands were also discretized along the

thickness, although an artificial expansion of the thickness was necessary

in order to have a reasonable mesh and number of degrees of freedom.

For the modeling of complex cable geometries involving HTS-coated con-

ductors, the infinitely thin tape approximation is often used. With this

approximation, the superconducting strand is modeled as a sheet: In other

words, the variation in the electromagnetic properties across the supercon-

ductor’s thickness is neglected. The 3D features of the cable (such as the

meander-shaped intertwined strands in Roebel cables or twisted strands in

CORC cables) are preserved. Two notable examples are the simulation of

Roebel-cable coils [90] and multi-layer CORC cables [103].

1.4.4. Rotating machines

Recently, researchers from different groups have benchmarked their models

for the simulation of an HTS dynamo, which has the potential for several

applications [1].

When it comes to simulating rotating machines, such as motors and

generators, and calculating the dissipation of superconductors inside them,

one possible approach is to split the problem into two parts: First, calcu-

late the magnetic field maps with well-established FEM approaches without

simulating the superconductor material; second, use the calculated mag-

netic field as a boundary condition for a detailed calculation of the AC

losses in superconductors in a separate model dedicated to that purpose.

This approach was used by Zermeno et al. [107] for evaluating the losses

in a generator for wind turbine applications and by Pardo et al. [67] for a

superconducting motor. The recently developed T –A formulation enabled

the simulation of the whole machine and the calculation of the AC losses

in the same simulation environment [14].
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in coated conductors. Supercond. Sci. Technol. 23, 034012.

[33] Grilli F, Benkel T, Hänisch J, Lao M, Reis T, Berberich E, Wolfstädter S,
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Brambilla R, Benkel T and Riva N. 2021. Electromagnetic modeling of
superconductors with commercial software: Possibilities with two vec-
tor potential-based formulations. IEEE Trans. Appl. Supercond. 31(1),
5900109.

[36] Grilli F, Pardo E, Stenvall A, Nguyen DN, Yuan W and Gömöry F. 2014.
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S. 2013. Superconductor/ferromagnet heterostructures exhibit potential for
significant reduction of hysteretic losses. Appl. Phys. Lett. 102, 202601.

[51] Kwasnitza K. 1977. Scaling law for the AC losses of multifilament super-
conductors. Cryogenics 17(11), 616–620.

[52] Lahtinen V, Lyly M, Stenvall A and Tarhasaari T. 2012. Comparison of
three Eddy current formulations for superconductor hysteresis loss mod-
elling. Supercond. Sci. Technol. 25(11), 115001.

[53] Lahtinen V, Stenvall A, Sirois F and Pellikka M. 2015. A finite element
simulation tool for predicting hysteresis losses in superconductors using
an H-oriented formulation with cohomology basis functions. J. Supercond.
Novel Mag. 28(8), 2345–2354.

[54] Landau LD, Lifshitz EM and Pitaevskii LP. 2008. Electrodynamics of Con-
tinuous Media, Elsevier Butterworth Heinemann, Amsterdam.

[55] Long NJ. 2008. Model for the angular dependence of critical currents in
technical superconductors. Supercond. Sci. Technol. 21(2), 025007.

[56] Lousberg G, Ausloos M, Geuzaine C, Dular P, Vanderbemden P and Van-
derheyden B. 2009. Numerical simulation of the magnetization of high-
temperature superconductors: A 3D finite element method using a single
time-step iteration. Supercond. Sci. Technol. 22, 055005.

[57] Maxwell JC. 1881. A Treatise on Electricity and Magnetism, Oxford:
Clarendon Press.

[58] Morandi A. 2004. Circuit methods for three dimensional field analysis in
large scale superconducting systems, Ph.D. thesis, University of Bologna
(online at: www.die.ing.unibo.it/dottorato it/index en.htm).

[59] Morandi A and Fabbri M. 2015. A unified approach to the power law and
the critical state modeling of superconductors in 2D. Supercond. Sci. Tech-
nol. 28(2), 024004.

[60] Nguyen DN, Ashworth SP and Willis JO. 2009. Experimental and
finite-element method studies of the effects of ferromagnetic substrate

www.die.ing.unibo.it/dottorato_it/index_en.htm


102 E. Pardo & F. Grilli

on the total ac loss in a rolling-assisted biaxially textured substrate
YBa2Cu3O7 tape exposed to a parallel ac magnetic field. J. Appl. Phys. 106,
093913.

[61] Nii M, Amemiya N and Nakamura T. 2012. Three-dimensional model for
numerical electromagnetic field analyses of coated superconductors and its
application to Roebel cables. Supercond. Sci. Technol. 25(9), 095011.

[62] Norris W. 1970. Calculation of hysteresis losses in hard superconductors
carrying AC: Isolated conductors and edges of thin sheets. J. Phys. D:
Appl. Phys. 3, 489–507.

[63] Pardo, E. 2008. Modeling of coated conductor pancake coils with a large
number of turns. Supercond. Sci. Technol. 21, 065014.

[64] Pardo E. 2016. Modeling of screening currents in coated conductor magnets
containing up to 40000 turns. Supercond. Sci. Technol. 29(8), 085004.
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Stability typically refers to maintaining an existing state or the ability

to attain it with control. In superconductors, stability is related to main-

taining the superconducting state and therefore to the ability to transport

lossless direct current. The stability analysis of superconductors includes

considerations of the following questions: When is stability lost? How eas-

ily is it lost and what happens after it is lost? The answers to these

questions contribute to selecting the operation conditions for the device

and the design of its protection as well as the system for detecting the

loss of stability. Definitely, the system needs to be able to go through

the loss-of-stability situation so that after the operation conditions are
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recovered, it can be utilized again. In the latest, the role of the protec-

tion is crucial.

In large-scale superconducting applications, quench is an event of loss of

stability in which the heat generation is such that temperature rise within

the system cannot be stopped by the available cooling. Consequently, the

system needs to be de-energized, or taken out from its normal use, to pre-

vent damage. Often, it is necessary to design an adequate quench detection

and protection system for the superconducting device in order to perform

the de-energization fast enough.

This chapter begins by introducing margins of quench in Section 2.1.

The purpose is to introduce elementary concepts related to quench. First,

we consider numerical simulations of the minimum quench energy in a case

that can be utilized as a benchmark to develop or compare the tools at

hand. Second, we discuss how prone magnets are to quench by considering

various margins in the load line of a magnet.

Section 2.2 introduces two well-established classifications of quenches.

These are important for understanding how quenches originate and why,

especially, superconducting magnets behave like they do from a quench

point of view. In Section 2.3, we consider the methodology of quench sim-

ulations in general. We consider the design of quench protection systems,

quench modeling, and quench experiments.

Finally, Sections 2.4 and 2.5 present two case studies encountered in

superconducting magnet R&D projects. The first scrutinizes the quench

modeling of an R&D REBCO coil. The second presents design and model-

ing of quench protection heaters for a Nb3Sn accelerator magnet prototype.

Cooling is a necessity for making superconducting devices functional.

Cooling is very important, for example, in solving the heat balance of a

system or, naturally, when estimating the duration of a cool down phase.

Quench is often a very fast event: of the order of 1 s. Consequently, the

quench analyses of impregnated windings typically neglect the effect of cool-

ing and consider an adiabatic situation in which the magnet is completely

isolated from the coolant. However, when the cooling fluid is in direct con-

tact with the strands, the adiabatic approach is not necessarily adequate.

The effect of cooling in quench has been reviewed by Bottura [10]. This

chapter neglects the analysis of cooling during quench.

2.1. Margins to Quench

In the system design and comparison of different conductors or cables,

it is important to know how prone they are to quench. This can reflect
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on the selection of a device’s operation point or on the choice between

available conductor options. Here, we present two different approaches for

the available safety margin. In Section 2.1.1, we consider when an energy

release in a conductor is sufficient to cause a quench.

In magnets, the margin is a sum of several contributions because an

increase in current also increases the field the conductors are exposed to.

Correspondingly, it is not reasonable to only consider how far away the

operation current is from the critical one. The magnet’s load line must be

taken into account too. This is the topic of Section 2.1.2.

2.1.1. Minimum quench energy

Ideally, when distributed power is focused on a superconductor and cooling

is neglected, the margin to quench represents the energy required to increase

the temperature to such a value that the operation current gets above

the critical one somewhere in the device. However, this is not the only

way quench originates. A possible cause of quench is a local energy release

somewhere in the device. Then, if the dissipated energy is high enough,

it will locally cause the operation point to shift above the critical surface.

Correspondingly, Joule heat generation occurs in the superconductor in

the originated normal zone. If this normal zone propagates, quench occurs.

However, if the normal zone is small enough and heat conducts away from it

powerfully enough, the normal zone shrinks, superconductivity is recovered,

and stability is maintained.

The smallest volume that is required to generate a propagating nor-

mal zone and quench is defined as minimum propagation zone (MPZ).

The energy required to generate an MPZ is called minimum quench energy

(MQE). The stability of different conductors can be compared at defined

operation conditions, inter alia, by comparing their minimum quench ener-

gies. An analytical approach to the MPZ and MQE in low-temperature

superconductors was detailed by Wilson [75]. Its applicability to HTS coils

was considered by Härö et al. [33]. The analytical approach is often a good

first throw into the ballpark. However, when one considers, for example, the

influence of n values on the MQE, a more detailed, and typically numerical,

approach is required. We consider this next.

2.1.1.1. Numerical modeling of MQE

Numerical modeling of the MQE allows one to consider flexibly, for exam-

ple, which kinds of heat pulses cause quenches. The time duration and

spatial distribution of the heat pulses can be selected in these simulations,
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unlike in analytical computations. Also, one is not restricted in the choice

of the critical-current–temperature–magnetic-flux-density relation in the

superconducting domain. Furthermore, through numerical modeling, one

has the option to scrutinize the temperature distribution within the whole

modeling domain at every necessary time instant. This can be then utilized

to compute, for example, thermal stresses during the event.

Here, we consider one-dimensional (1D) numerical simulations of the

MQE, where the current diffusion within the conductor is neglected. Thus,

we describe the dynamics of the relevant physics with the heat diffusion

equation along the conductor. In doing this, we assume cross-sectional

isotherms and material-component-wise homogeneous current densities,

and due to the temperature increase and change in local resistivities, the

current redistributes instantaneously according to the minimum power prin-

ciple. Before going to the simulations, we formulate the thermodynamical

problem we are solving.

To go into more detail about the physics, i.e. to, first, abandon the

assumption of homogeneous currents in each component, one needs to solve

simultaneously the heat diffusion equation and themagnetoquasistatic prob-

lem, in which the current diffusion from the superconductor to the stabilizer

is modeled too. Because instantaneous current diffusion is the minimum

power solution to a net-current-constrained problem, the diffusion problem

will lead to higher total heat generation at the quench propagation fron-

tier. However, after this diffusion process has leveled off, the stabilizer will

carry a homogeneous current distribution. An important consideration is

whether or not the difference in the heat generation is meaningful with

respect to the more laborious approach that a simultaneous consideration

of current diffusion requires.

The described multiphysical approach cannot be based solely on a 1D

modeling domain because in that case, the current diffusion does not occur.

One can either use the same modeling domain for both physics or an approx-

imation of isothermal cross-sections and a different modeling domain for

the magnetoquasistatic problem. The heat diffusion equation couples with

the magnetoquasistatics via the temperature-dependent resistivity, and the

solution to the magnetoquasistatic problem gives the heat generation as an

input to the heat diffusion equation.

In the MQE simulation where only the thermal diffusion is considered,

we solve only the heat diffusion equation:

∇ · λ(T,B,RRR)∇T +Q = γC(T )
∂T

∂t
, (2.1)
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where λ is the heat conductivity, T the temperature, B the magnetic flux

density, RRR the residual resistivity ratio, Q the heat generation, γ the

density, and C the specific heat. One may also consider cooling in Q. Heat-

ing in Q consists of the heat in the conductor and the external energy input

— the disturbance Qdist; therefore, Q may depend on temperature, mag-

netic flux density, operation current, and time.

Thermal time constant and magnetic diffusion time can be utilized to

estimate whether the 1D thermal model is adequate to find the MQE or if

magnetoquasistatic physics should also be considered. For a single conduc-

tor, the time constant of the thermal problem τT is

τT =
γCr2

λ
, (2.2)

where r is the radius of the conductor. The magnetic diffusion time τM is

τM =
μr2

ρ
, (2.3)

where ρ is the resistivity and μ the permeability. In a simplified case, we

neglect the contact resistance between the superconductor and the stabi-

lizer and take a conductor with a radius of 0.5mm and consider the material

properties of copper with a residual resistivity ratio (RRR) of 100 at 4K and

5T: γ = 9.0 g/cm3, C = 0.09 J/kg/K, ρ = 0.35nΩm, and λ = 260W/mK.

The thermal time constant is 3μs. Correspondingly, only the disturbances

at this time scale are required to be considered in approaches other than the

1D approach from the temperature perspective. The corresponding mag-

netic diffusion time is 0.9ms. Again, if the disturbances last for several ms,

we can assume immediate homogenization of the current distribution in

the stabilizer arising from the excess current in the superconducting region

due to the increase in the local temperature. However, in superconducting

cables, perhaps with a stabilizing aluminum or copper jacket, the influence

that current diffusion inertia has on heat generation cannot be neglected

when high accuracy is required. One should note that the 1D approach also

neglects the turn-to-turn heat conduction in the coils. To compare individ-

ual conductors, this is adequate, but when the quench propagation in a mag-

net is considered, one must include turn-to-turn heat transfer in the model.

The next important modeling decision involves the heat generation

model. There are various ways to model the heat generation in the super-

conductor and stabilizer. The three main methods rely on current-sharing

model, power-law model for the whole conductor, and power-law model for

the superconducting domain.
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In the current-sharing model, one assumes that the superconducting

domain carries at most its critical current Ic in every cross-section of the

conductor. This assumption relies on isothermal conductor cross-sections.

The excess current Is flows in the stabilizer and determines the electric field

based on the stabilizer’s resistivity. The operation current Iop is thus the

sum of Is and Ic. The same electric field that exists in the stabilizer is also

present in the superconducting region in the current-sharing model. The

average heat generation Qcs on the conductor cross-section is computed as

Qcs(T,B) =

⎧⎨
⎩
0 Iop < Ic(T,B),

ρs(T )
(Iop−Ic)Iop

αA2
tot

Iop ≥ Ic(T,B),
(2.4)

where ρs is the stabilizer’s resistivity, Atot the cross-sectional area of the

conductor, and α the fraction of the stabilizer in the conductor’s cross-

section. Note that immediately above the current-sharing temperature Tcs,

i.e. the temperature at which the operation current corresponds to the

critical one, losses occur in the superconductor too.

In the power-law model for the whole conductor, one assumes that the

effective resistivity of the whole conductor behaves in a power-law-like fash-

ion until the situation where all the current flows in the stabilizer is reached.

Consequently, the heat generation Qpl is computed from

Qpl(T,B) = min

{
ρs(T )

I2op
αA2

tot

,
EcI

n+1
op

AtotIc(T,B)n

}
, (2.5)

where Ec is the critical electric field criterion utilized in the Ic character-

ization of the wire and n is the conductor’s index number characterizing

the steepness of the resistive transition. n is a function of T and B, though

in simulations, one often approximates it with a constant. With min, one

takes into account that the resistivity does not result in higher losses than

the situation in which all the current flowing in the stabilizer would.

In the power-law model for the superconducting domain, one assumes

that the electric field develops according to power law in the superconduct-

ing domain. Then, Iop is shared between the stabilizer and the supercon-

ducting domain in a way that their electric fields are equal. The same is

assumed in the current-sharing model too. But now, to solve the current

sharing between the matrix and the superconductor, one needs to solve the
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current of the stabilizer Is from

ρs(T )
Is

αAtot
= Ec

(
Iop − Is
Ic(T,B)

)n

, (2.6)

when the critical current is not zero. After this, the computation of the

electric field is straightforward, and the average heat generation can be

computed by weighting the heat generations of the matrix and supercon-

ducting region by their volumetric fractions.

When considering numerical MQE simulations, the important parame-

ters of the heat input pulse are its duration, spatial size, and time variation.

However, for a comparison of conductors, it is typically enough to compare

square-wave heat pulses. Thus, for a given duration and spatial size, one

needs to find the minimum constant magnitude of the applied external heat

generation that causes quench. However, if one anticipates specific energy

releases that may occur, for example in the interaction region (IR) of par-

ticle accelerators, a more detailed analysis is necessary. Also, one needs to

consider the length of the modeling domain and its discretization. To solve

the heat diffusion equation with a given energy input, we discretize the mod-

eling domain in space and solve the ordinary differential equation in time.

One can easily get involved in adjusting several tolerances and parameters

that control the linear solvers. Therefore, one needs to familiarize oneself

with the details of the available tools to solve problems reliably.

2.1.1.2. MQE simulations

This example presents a reference case, or a benchmark, for performing 1D

MQE simulations. Therefore, we selected a simulation case that is reason-

able but easy to replicate. For the material properties — heat conductivity,

thermal conductivity, and resistivity — we utilized the data of copper. We

considered an RRR of 100 for thermal conductivity and resistivity and ||B||
of 1 T to include the magnetoresistance. Various operation temperatures

were considered. The thermal conductivity and heat capacity were taken

from Ref. [43] and the resistivity from the work of Kim [35].

The volumetric heat capacity Cv (J/m3) is given by

Cv(T ) = γ · 10a+b ln(T )+c ln(T )2+d ln(T )3+e ln(T )4+f ln(T )5+g ln(T )6+h ln(T )7 ,

(2.7)

where γ is the density (which is 8960kg/m3 for copper) and following are

the values of the constants: a = −1.91844, b = −0.15973, c = 8.61013,
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Figure 2.1. Material properties of copper with RRR = 100 and ||B|| = 1T.

d = −18.996, e = 21.9661, f = −12.7328, g = 3.54322, and h = −0.3797.

The resistivity (Ωm) is given by

ρ(T,RRR,B) = max
{1.67 · 10−8

RRR
+ 5 · 10−11||B||,

5.9 · 10−11T − 1 · 10−9
}
. (2.8)

The thermal conductivity (W/m/K) is given by

λ(T ) = 10
a+b

√
T+cT+dT

3
2 +eT2

1+f
√

T+gT+hT
3
2 +iT2 , (2.9)

where a = 2.215, b = −0.88068, c = 0.29505, d = −0.04831, e = 0.003207,

f = −0.47461, g = 0.13871, h = −0.02043, and i = 0.001281. One should

note that for RRR other than 100, different constants must be utilized.

The material properties are displayed in Figure 2.1.

We considered a conductor with a radius of 0.5mm. It was assumed

that 70% of the conductor’s cross-section was made up of the stabilizer.

Insulation was neglected. We utilized the current-sharing model for com-

puting the heat generation. The critical current of the wire was determined

with the equation

Ic(T ) = 500

(
1− T − 4.2

20− 4.2

)
. (2.10)

This may approximate a MgB2 conductor. The length of the considered

piece of conductor was 8 m and quench was initiated with a 20mm long

heater. We utilized the discrete symmetry of this particular case, and cor-

respondingly, it was enough to utilize a modeling domain having a length of

4m (see Figure 2.2). The heater’s pulse duration was 10ms, and its power
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Figure 2.2. Modeling domain for the MQE problem (not to scale): The 10mm on the
left represents the area of disturbance, where the heat generation is the sum of dis-

turbances given by the current-sharing model. Also, adiabatic boundary conditions are
shown.

was uniformly applied to its volume. The simulation was carried out for

2 s, and if at the end of the simulation, the maximum temperature was at

least 5K above the Tcs, it was considered that quench originated. How-

ever, in the case of quench, a temperature of 300K is reached faster when

excluding very low currents. Therefore, we also terminated the simulation

if the maximum temperature exceeded the Tcs by 30K and deducted that

a quench has occurred. We show that, for this particular case also, this

quench criterion was adequate. The minimum energy that caused a quench

was determined to be the MQE.

Stability-related simulations are time-consuming because they include

highly nonlinear material parameters, must be performed over a certain

time interval, and often include parametric studies that are of interest.

Therefore, in the numerical analysis, one wants to have as few degrees of

freedom (DoFs) as possible to get adequate results. However, the risk of

having too few is that one does not attain accurate enough results. To min-

imize this risk, it is often useful to perform, first, a convergence analysis for

a particular study. If one utilizes a method in which the modeling domain

is meshed, one begins with a sparse mesh, proceeds toward denser ones,

and determines the adequate mesh density for the rest of the simulations.

In the case of finite element methods (FEMs), the influence of the poly-

nomial degree p of the basis function on computation can be studied too.

Often, in FEMs one attains better results with the same number of DoFs

in the case of higher-order basis functions. Furthermore, above a certain

threshold related to the number of DoFs, the linear solvers tend to solve

these problem faster. However, in 1D, that is not necessarily the behavior.

In addition to the MQE, the normal zone propagation velocity vnzp is

often of great interest. Essentially, vnzp tells how fast the volume where

heat is generated extends. Whereas finding out the MQE under spe-

cific operation conditions requires several simulations, vnzp can be deter-

mined from a single simulation. To compute the vnzp, one finds the curve

T (t, x) = Tcs from the solution, including the spatial points x, time t, and

temperature T . Then, one can restrict x to a certain space where the end of
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the modeling domain and the quench onset do not have influence. In that

region, T (t, x) is a straight line on the (t, x)-plane and correspondingly can

be expressed as x = vnzpt + a, where a is a constant. a depends on the

duration of the heat pulse and its magnitude, whereas vnzp depends only

on the operation conditions. Therefore, by fitting the first-order polynomial

to the curve on the (t, x) plane, vnzp can be calculated.

For the reference case, which we utilized to find adequate discretization,

we considered an operation temperature of 4.2K and a current of 350A

(i.e. 0.7Ic(4.2K)). Our solution was based on a homemade FEM software

in MATLAB. We used 100 times denser elements in the hot spot than in

the other end and let the element size gradually increase in between. For

the convergence analyses (one for MQE and one for vnzp), we used a scaling

parameter to control the absolute element size, and correspondingly, we got

a different number of DoFs for different meshes. We also investigated the

effect of changing the interpolation polynomial degree from 1 to 4.

The results of the MQE convergence analysis are shown in Figure 2.3

and those of vnzp in Figure 2.4. As can be noted, the MQE computation

converged only to ±1% limits. This is due to the numerous parameters in

the MQE computation and the discontinuous nature of the square-wave

power that we applied. The simulations are sensitive to time-stepping, the

particular mesh, and the algorithm, which searches for the MQE by making

educated guesses of the energy to be utilized in each simulation. There-

fore, a small fluctuation can be tolerated. However, the fluctuation is kept

within 2% of the average value of the previous four computations for each

value of p in every case when one has more than 100 DoFs. In the case of

vnzp, the same limit required about 250 DoFs, but no fluctuation occurred.

Whereas the MQE is a single-point property of the simulation that cannot

be expected to even converge in FEM-based analysis, vnzp is more a global

quantity. The utilized polynomial degree did not have any notable effect

on the convergence. This could have been a property of this 1D simulation

only and cannot be generalized to simulations in higher spatial dimensions.

For example, in magnetostatic problems where the total energy is of inter-

est, an increase in p from 1 to 2 is typically considerably more beneficial

than a corresponding densification of the mesh.

Based on the convergence analysis, we utilized in all other MQE sim-

ulations a mesh that resulted in 116 DoFs. All the simulations involving

vnzp were executed with a mesh that resulted in 775 DoFs. In both cases,

the polynomial degree of the basis functions was 1. Based on these sim-

ulations, the MQE for the reference study was 1.38mJ and for the vnzp
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Figure 2.3. Results from the convergence analysis of the MQE: Light and dark dashed
lines represent the 1% and 2% differences, respectively, from the average value of the

previous four computations for each p.

Figure 2.4. Results from the convergence analysis of normal zone propagation velocity.
Light and dark dashed lines represent the 1% and 2% differences, respectively, from the
average value of the previous four computations for each p.

study, 10.8m/s. The simulated energy input was multiplied by two to get

the MQE for the conductor because the symmetry of the modeling domain

was utilized.

In general, the solution to this kind of thermal problem is very sensitive

to the disturbance energy Edist. Figure 2.5 presents the maximum tem-

peratures in the modeling domain as a function of Edist at different time

instants in the reference case. The clear limit between the quenching and

non-quenching simulations is visible. At 10ms, i.e. when the heater was

switched off, the temperature distributions were very similar for the inves-

tigated energy range. However, at 20ms, there was already a clear differ-

ence. In the reference case, the maximum temperature started to increase
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Figure 2.5. Maximum temperature in the modeling domain at different time instants
as a function of normalized disturbance energy. Normalization was done to the MQE.

Figure 2.6. Maximum temperature as a function of time when energy disturbance was
the MQE (solid lines) and 1% below the MQE (dashed lines) for two different operation
currents.

immediately after the heater was switched off when the disturbance energy

was the MQE or higher.

The derivative of the maximum temperature, however, cannot be uti-

lized as a criterion to determine whether the given disturbance causes a

quench or not. Figure 2.6 compares two different simulations at 4.2K with

the operation currents of 0.3Ic and 0.7Ic. As can be seen, in the case of

Iop = 0.3Ic, it took more than 100ms before the quench really started

to propagate. In both the non-quenching and quenching cases, the max-

imum temperature started to decrease immediately after the heater was

powered off. Therefore, the simulation must include a significant time after
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Figure 2.7. Temperature evolution in the reference case when the disturbance energy
was slightly (a) below and (b) above the MQE.

Figure 2.8. Minimum quench energies at various operation temperatures as a function
of normalized operation current. Normalization was done to the Ic of given temperature.

the heater is powered off in order to determine whether the quench origi-

nated or not, especially if the current is considerably below the critical one.

In Figure 2.7, the temperature evolution in the case of disturbances

2% above and below the MQE is shown at the reference operation con-

ditions. The very rapid increase in the temperature as a function of time

is noticeable. It took only 400 ms to reach 300K in the case of a quench.

This also emphasizes the need for and importance of quench detection and

protection.

Parametric studies considering the MQE and vnzp at different tempera-

tures with different normalized operation currents are shown in Figures 2.8

and 2.9, respectively. The most important observation is that the higher

the MQE, the lower the vnzp. This is also a general conclusion because
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Figure 2.9. Normal zone propagation velocities at various operation temperatures as
a function of normalized operation current. Normalization was done to the Ic of given
temperature.

a higher MQE means more energy, or more time, to make the quench

propagate. At higher operation temperatures, the MQE tends to increase

because the heat generation is lower due to the diminished current densities

and the substantially increased specific heat. At the same time, the normal

zone propagation velocity decreases. All this means that if the operation

temperature is increased, it becomes more and more difficult to detect the

quench from a resistive voltage signal. So, a high MQE and vnzp are both

desirable from the stability point of view.

Finally, we considered the maximum temperatures that could be reached

in the investigated hot spot, i.e. the highest temperature in the modeling

domain, without causing a quench. The results are depicted in Figure 2.10.

As can be noted, a temperature increase to 30K above Tcs always caused a

quench. The maximum reachable temperature is of interest when one com-

pares the volumetric MQE in the hot spot to the cable’s enthalpy margin.

In a volumetrically large enough disturbance, these coincide. Therefore, if

homogeneous power was dissipated (for example, due to AC losses), the

one matching the enthalpy margin would cause a quench. However, in the

case of localized disturbance, this is not the case, as demonstrated. When

the disturbance is concentrated in a small volume for a short time, it is

possible to overstep the current-sharing temperature, notably — naturally,

greatly depending on the operation current — without causing a quench.

When the Ic is approached, this possibility decreases to insignificant

values.

As demonstrated, there is a lot to study even in simple MQE simula-

tions, including:
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Figure 2.10. The current-sharing temperatures (solid lines) and the maximum temper-
atures Tmax that could be reached in the considered hot spot without causing a quench
(dashed lines).

• a study of the minimum number of DoFs needed to acquire simulation

results that do not suffer from numerical noise;

• a study to find an adequate criterion to determine whether a given dis-

turbance caused a quench or not during simulation;

• parametric analyses as a function of temperature, current, and magnetic

field to understand the sensitivity to disturbances at different operation

conditions;

• a study of the parameters of the disturbances (at least duration and

spatial size) that are relevant to a given system.

Here, we considered, first, the DoFs and the quench criterion. Then, we

presented parametric studies. We considered for the disturbance only a

square-wave heat pulse at fixed time and space. However, it is not often

possible to know beforehand what the disturbances that cause quenches are

like. Therefore, a reference disturbance can be utilized to compare different

conductors or cables.

When this analysis is extended to three-dimensional finely structured

modeling domains, the simulations easily get computationally intensive.

Therefore, it is always important to find out how the situation under study

can be simplified without losing accuracy. Also, it might be important to

study only the effect of some conductor manufacturing-related detail. Then,

one should focus on the issues under study and remove the uncertainty and

influence of the simulation parameters that are not of interest in that case.
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2.1.2. Margins in magnet load line

In a superconducting coil, the magnetic field applied to the turns of the coil

is directly proportional to the operation current when the magnetization

possible in the iron yoke and filaments is neglected. The proportionality

gives a load line for the magnet, which can be utilized, together with the

critical current characteristic, to determine how much the current or tem-

perature can be increased before a quench. Here, we detail these margins.

The linear approximation between the current and the magnetic field

is typically very good for the purpose of stability considerations but not

necessarily adequate when the field in the magnet bore is of concern with

10 ppm accuracy. Also, in many applications, it is not reasonable to esti-

mate the current-carrying entity, a cable or a conductor, that is exposed to

a homogeneous magnetic flux density. A more detailed analysis is needed,

especially in particle accelerator magnets, from the perspective of the bore

field. Also, in magnets wound from cables whose cross-sectional area is

proportional to the cross-section of the whole magnet, the homogeneous

magnetic flux on the cable’s cross-section is not a reasonable estimation for

determining how much current the cable can carry.

In a series-coupled magnet system,1 the applied magnetic field is com-

pletely determined in a linear situation2 by the magnetic flux density dis-

tribution at unit current Bunit and by the operation current as B(Iop, x) =

Bunit(x)Iop, where x refers to a point in the magnet. In the case of an

isotropic critical current characteristic, all the margins of the magnet can

be computed with a single real number, the internal magnet constant K,

which gives B(Iop, x
′) = KIop, where x

′ is the location where the critical

surface is pierced first when the operation current is increased in the linear

magnet. A magnet’s load line, whose slope is K, relates the magnetic flux

density at x′ in an ideal linear magnet to its operation current.

We now consider an example of the margins of a magnet by using the

load line. Current margin means how much the current can be increased

before the critical current surface is pierced when the magnet load line

1In this chapter, we refer to coil as a single winding having one lead in and one lead out.
A magnet can be either a single coil or an assembly of coils, such as a dipole magnet
made from two coils. In the case of a resistive fault current limiter, a non-inductive coil
is not a magnet.
2Linear situation means that there are no materials present that magnetize and that there
are no magnetization currents in the conductors. Consequently, the current density is
always homogeneous in conductors.
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is taken into account. When the operation current is gradually increased,

there is a location in the magnet where the critical surface is reached first.

This location is called the critical point of the magnet — the previously

mentioned x′. Temperature margin means how much the operation temper-

ature can be increased before the critical surface is pierced. Short-sample

margin means how much below the short-sample Ic the magnet operates at

given operation conditions. The load line is not taken into account in the

short-sample margin. However, in some literature, the short-sample margin

and the current margin both mean the current margin. The short-sample

margin presented in this way is beneficial when one considers how much the

coil’s critical current characteristic has degraded due to the manufacturing

of the magnet if the theoretically maximum possible current Imax cannot be

reached in a constructed magnet. Imax can also be called the short-sample

limit of the magnet.

In the example case that we present here, we have utilized the following

expression for the critical current [35]:

Ic(B, T ) = Ic0

⎛
⎜⎜⎝1− ||B||

Bc0

(
1−

(
T
Tc0

)1.7)
⎞
⎟⎟⎠
(
1− T

Tc0

)
, (2.11)

where Ic0 = 500A, Bc0 = 15T, and Tc0 = 9.5K. Also, we consider a K of

20mT/A.

Figure 2.11 presents the load line of the magnet and the critical current

characteristics at few selected temperatures. We have considered that the

magnet operates at an Iop of 127A and at a Top of 4.2K. Then, according

to the K at its critical point, the magnet produces a field of 2.53T. This is

denoted as Bop.

When we follow the magnet’s load line to the critical current character-

istic at an operation temperature, we reach the maximum current that the

magnet can operate with, i.e. Imax. In this case, that is 187A. Thus, our

current margin is 187A−127A=60A.

If we start increasing the temperature, Imax gradually slides down on

the load line. When we have increased the temperature to such a value that

Imax equals Iop, i.e. to the current-sharing temperature, we have lost all the

temperature margin. Here, that would mean increasing the temperature to

6 K, which means the temperature margin is 6K−4.2K=1.8K.

The enthalpy margin is closely related to the temperature margin. It

is the integral of the heat capacity from the operation temperature to the
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Figure 2.11. Load line of the magnet (solid lined) and critical current characteristics at
selected temperatures (dashed lines).

current-sharing temperature. Naturally, when the operation temperature

increases and the operation point remains the same, the enthalpy margin

decreases. Correspondingly, smaller and smaller disturbances can cause a

quench.

As we can see, the short-sample Ic at Bop is larger than Imax. This is

obvious because an increase in ||B|| decreases Ic. In this case, Ic at Bop

and Top is 216 A. Therefore, our magnet operates at 59% of Ic, but one

should note that in a magnet, Ic at Bop of Iop cannot be reached because

||B|| increases as a function of current. The operation point of the magnet

is 68% of its maximum current Imax.

Before proceeding from the analysis of the single conductor (or cable) to

the stability analysis of a magnet system, one must consider the magnet’s

load line. Whereas in the parametric MQE or vnzp analyses, a constant field

can be applied to the whole modeling system, for the entire magnet, this

is hardly the case. Therefore, it is important to understand the margins

related to the magnet design and how they influence stability.

In this section, we first analyze the stability of a single conductor para-

metrically and then look at the margins that can be deduced from the mag-

net’s load line and the conductor’s critical current characteristic. Often,

however, the case is more complicated — but the particular methods can
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be easily extended from the ones presented. In the case of REBCO-based

magnets, the critical current characteristic can be anisotropic, meaning

that it depends on the direction of B at a given point. Furthermore, if

large cables are utilized to wind the coils, the current is not homogeneously

distributed across the cable’s cross-section. Then, one needs to solve the

current distribution to find Imax for the magnet. An approach to solve the

critical current for YBCO tapes in such situations was presented by Rostila

et al. [51].

2.2. Classifying Quenches

Altogether, quench is an undesirable event, though some devices, such as

resistive fault current limiters, utilize it to provide dynamic resistance to

the power grid. Often, quenches occur abruptly when failure occurs in some

location in the system. In order to improve future performance, it is impor-

tant to know why the quench originated. Consequently, quenches can be

classified to study the different possibilities that may have caused the unde-

sired event. Here, we present two different classifications. The first one was

presented by Devred [16] and the other one by Wilson [75, p. 70].

2.2.1. Devred’s classification of quenches

Devred developed a qualitative classification based on the relation between

the current at which the quench is detected and the magnet’s short-sample

limit. Even though this classification was initially developed for magnets

wound from isotropic low-temperature superconductors, it can be used as

such to qualify any superconducting system.

The classification divides quenches into two groups as follows. Îmax is

the temperature-dependent maximum operation current that the magnet

has reached, sooner or later, in the experiments or during operation. In

general, a magnet quench at current Iquench satisfies either Iquench = Îmax

or Iquench < Îmax — with adequate margin for defining the equality. At an

operation temperature Top, the conductor that has been utilized to wind the

magnet can reach at most Imax, the current at the junction of the critical

current characteristic at the operation temperature and the magnet’s load

line (see Figure 2.11).

If a quench occurs at Îmax, a conductor-limited quench has occurred.

If Îmax is the same as Imax, a short-sample quench has occurred. How-

ever, if Îmax < Imax holds, then one can say that the coil had degraded.

Some degradation is very common because during the winding process, the
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Figure 2.12. Quench history of two fictitious magnets. Quenches are classified according
to Devred’s classification.

conductor is exposed to a mechanical load. Degradation means that the

short-sample limit cannot be reached.

If a quench occurs at a current below Îmax, it is typically due to an

energy release inside the coil that locally increases the temperature enough

for a quench to originate. This kind of quench is called as energy-deposited

quench or premature quench. Figure 2.12 presents the quench currents of

consecutive quenches in two fictitious magnets and the relation of the

quenches to Devred’s classification.

In Figure 2.12, the inclined ellipse represents a region where the magnet

is training. In this region, quenches occur before any quench has happened

at Îmax. Stresses are produced in the magnet during manufacturing. Con-

sequently, mechanical energy is loaded into the magnet. If these stresses

are released during magnet energization, for example in the epoxy, causing

mechanical cracking, premature quenches can occur. Once these energies

are released, they no longer cause quenches, Hence, the training.

It is noteworthy that, sometimes, in magnets, it is possible to reach

currents above the short-sample limit. The reason for this is that stress

has an influence on the critical current [17]. With some conductors, the

stress distribution induced during the heat treatment changes during the

cooling and powering of the magnet. The short-sample limit may be defined

without the presence of an external stress, and correspondingly, it may be

slightly lower.

Sometimes, the maximum quench current of a magnet stays consid-

erably below the short-sample limit. Then, we say that the magnet has

degraded. There can be overall degradation, especially if the conductor is

brittle (such as those made of Nb3Sn) or if a single spot in the winding

is damaged so that it limits the performance of the whole magnet. Very
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often, even if some degradation is noticed, good magnets can achieve more

than 95% of the short-sample limit.

Devred’s classification mainly distinguishes whether a quench occurred

for normal, predictable reasons, such as too high an operation current,

or if it occurred without any clear explanation. Based on the experience in

magnet operation, Devred’s classification helps us to determine whether the

given magnet is a successful piece of work or is degraded. The important cri-

teria in assessing the quality of a magnet are the number of quenches needed

to reach the conductor-limited quenches, i.e. how long training takes, the

amount of degradation that has occurred, and the frequency of premature

quenches after the training has finished.

2.2.2. Wilson’s classification of quenches

Wilson presented another classification of quenches in superconducting

magnets earlier than Devred. These two classifications are not exclusive

but complementary. The classification by Wilson answers questions such

as how the quench originated, but it does not reveal the particular reason

that caused the quench.

Wilson considered what kinds of energy releases, disturbances, cause

quenches. Correspondingly, he added an attribute to the quenches he con-

sidered: energy-deposited quenches— the quenches occurring below Îmax in

Devred’s classification. According to Wilson’s point of view, even close to

Îmax, a quench originates due to a disturbance. When Îmax is approached,

the enthalpy margin becomes so negligible that, in principle, any distur-

bance can cause a quench.

In Wilson’s classification, the time and space scales of the disturbances

are of interest. Wilson’s classification divides quenches into four classes,

combining two classes in time and two in space. The overview of this clas-

sification can be presented with a disturbance spectrum. Table 2.1 summa-

rizes this spectrum and shows what kinds of energies or powers are related

to the given disturbance category.

The disturbances that cause quenches are divided into two, in time and

space. In time, the transients are something that occur only once, typically

for an unknown reason. If these can be considered to happen at a single

point, as that occurring on the cross-section of a single conductor or in

the insulation between two conductors, then one is interested in the energy

that is released. When the transient disturbance is spread out to a larger

volume, for example due to a false beam in a particle accelerator, then
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Table 2.1. Disturbance spectrum in
Wilson’s classification of quenches.

Space

Point Distributed

T
im

e Transient Joule J/m3

Continuous Watt W/m3

the quantity of interest is the energy per volume and the disturbance is

distributed in space.

Continuous disturbances are something that accumulates and slowly

causes a thermal runaway, an increase in temperature that at some time

instant is detectable as a quench. In these situations, the cooling cannot

match the heat generation inside the cryostat for a long period of time.

If these occur throughout the coil, for example due to AC losses or low

conductor n value, which causes sub-critical losses in the superconductor,

the continuous disturbance is distributed. The continuous disturbance is

related to a point if the location can be clearly positioned and the heat

dissipation does not stop during system operation. A resistive joint is an

example of such a disturbance.

Often, transient quenches are something that one cannot prepare for.

Therefore, a quench detection system is required to protect the magnet from

a quench. The quenches originating from continuous disturbances may take

a considerable amount of time to develop. Often, delicate modeling helps to

understand if continuous disturbances are a threat to normal operation. It

is important to know on what time scales the different disturbances occur.

Figure 2.13 presents the typical disturbances that can occur in accelerator

magnets and their related time scales and energy densities.

Disturbances in the ms range and below are transient ones, and longer

ones are of continuous character. For example, wire motion, flux jump,

and insulation crack are point disturbances. AC losses and heat leaks are

typically continuous distributed disturbances.

2.3. Engineering Methodology in Quench Protection

Analyzing quench requires a multiphysics approach. After simple, and often

pessimistic, analytical paper-and-pen calculations have taken the quench
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Figure 2.13. Overview of time and energy scales of different disturbances.

Source: Reproduced from Bottura [10].

protection engineer to the ballpark, she has to start considering how severe

the quench protection problem really is via numerical modeling.

The first thing in quench analysis is to consider which physics is relevant

for reliably describing the quench event. We call this phase by the name

model. After the appropriate model is composed, one considers design.

Typically, a device’s layout comes from another engineer with some con-

straints related to assembling the device and its intended operation, and the

task of the quench protection engineer is to design the quench protection

circuit with quench detection. For simplicity, we refer to this as quench

protection, but the detection is included too.

The design typically requires an interplay with the whole electric circuit

of the device: The desired operation needs to be achievable with adequate

quench protection. To achieve that, the quench engineer comes up with

a quench protection system and makes a simulation model representing

it. Then, it is important to simulate particular quench scenarios, such as

quench at nominal current and quench during loading the magnet. For

these, one represents the modeling domain in a fashion required by the

simulation tool and its underlying method. Then, one solves the equations

governing the physics in the specific scenarios that are determined by the

operation conditions and quench onset. The simulation results give feed-

back to the design phase and also to the model. Some results may reveal

that the model was not adequate. After the final design, the device is to

be constructed and tested. In the experiments, one replicates the opera-

tion conditions that were used in the simulations and records the output
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Model

Design

Simulation

Experiment

Which physics are relevant?
• 3-D Heat diffusion?
• Cooling?
• Electromagnetics?
• Circuit theory?

Something is constrained –
other can be devised

• Device layout
• Protection system
• Entire electric circuit
• Environment

• Operation conditions
• Material properties
• Simulation tools
• Structural simplifications

• Construct the device
• Replicate the simulation
• Interpret the results
• Study anomalities

Feedback

Instructions

Figure 2.14. Different components that form the methodology for quench analysis and
the two main workflows: instructions and feedback.

signals that can be compared against the simulated ones. Correspondingly,

the feedback goes all the way from the experiments back to the model via

the intermediate steps. Vice versa, the model gives input to the design,

which influences the simulation, and finally to the experiment. The simu-

lation governs the experiments because feedback is required for the other

stages of the quench analysis methodology. However, often the designed

device is not precisely implemented, and the simulations must be rerun to

benchmark them against the experiments.

Figure 2.14 schematically presents the interrelated components: model,

design, simulation, and experiment of quench analysis. Next, we look at the

contents of each box in detail. We note that the feedback and instructions

are between each box, not just between the model and the experiment.

2.3.1. Model

The model is about selecting the physics that the engineer deals with. It

enforces, or allows, specific design decisions and guides later the simula-

tion. This phase is of special interest if designs based on new principles
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are developed. However, in the conventional workflow, the model may be

self-evident to the engineer and does not need much attention. But before

we get to the physics, let us start from the primitive needs.

The primary target of quench analysis is to ensure that the device can

safely go through a quench event. Therefore, the chosen model needs to

be able to answer a few carefully selected questions. Depending on the

complexity of the device, these questions somewhat differ. For example, in

small devices, the stored energy may not play a role. In large magnets that

are connected in series, the stored energy poses challenges to, for example,

bypassing the magnet that is quenching. Here, we focus on a single coil

in such a way that, without loss of generality, the methodology can be

extended to a more complicated situation or to other devices.

To get started, one needs to be able to answer, at least, the following

questions:

(a) How rapidly does the current need to be brought down in order not to

overstep the maximum tolerable temperature? A short answer is that

the current integral ∫ ∞

0

I(t)dt (2.12)

plays a crucial role. Here, the time instant 0 s refers to the quench

onset, not to the time of detection or activation of the protection sys-

tem.

(b) If the coil is not self-protective or if the energy extraction via a dump

resistor is not adequate to protect the coil, how large a fraction of the

coil needs to be quenched and how fast?

Clearly, the first answers to these questions do not require considerations

where the heat diffusion is analyzed in the coil volume.

To consider the rapidity required for the current decay, one can first

neglect the heat diffusion completely and compute the MIITs3 of the cable,

or conductor, Γ(T ) [71]:

Γ(Tmax) = A2

∫ Tmax

Top

γC(T )

ρ(T )
dT, (2.13)

3The MIIT abbreviation comes from mega (M), current (I), current (I), and time (T).
If the integral equation (2.12) results in 5 · 106 A2s, the MIITs equal 5.
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with Tmax being the maximum tolerated temperature. Here, all the mate-

rial properties are those effective for the coil unit cell, and A is its area. This

integration gives the maximum value that Equation (2.12) can take. The

instruction for the design phase is then to consider if the energy extraction

can be made in such a way that the current decay integral remains below

the MIITs at Tmax.

If the energy extraction is not enough, a non-negligible part of the energy

must be dissipated inside the coil. For this, one needs to consider what

degree of resistance must be achieved in the coil. This does not address the

heat diffusion yet, but macroscopic considerations are enough. However,

the input from these considerations to the design is crucial. For example, if

quench protection heaters are used, the surface area that they must cover

can already be estimated.

After one knows how severe the problem is and what kind of design is

needed for the protection, one starts to approach the modeling of partic-

ular quench events at particular operation conditions. All of the previous

analyses can be carried out under nominal operation conditions.

To reveal the challenge of modeling, we look at the spectrum of physics

involved. Perhaps the most crucial role is played by the heat diffusion in

the superconducting device. Furthermore, superconductors are very finely

structured components. One necessarily needs to do some homogenization

approximation, the structural simplification shown in Figure 2.14, to make

the simulation feasible with larger entities emulating the finely structured

device. Whether this is a task to be done during modeling or simulation is

up to the engineer’s standpoint. This is true in many issues that we discuss

here.

When the heat flow reaches the interface between the coolant and the

superconductor, thermal hydraulics become relevant. Very often, one con-

siders the coil’s surface to be adiabatic and neglects the cooling during the

quench. However, this is not appropriate in all kinds of devices. In magnets

made from cable-in-conduit superconductors, this needs to be considered.

The coolant–magnet interface does not represent the only important

connection of the coil with the surroundings. The support structure also

offers thermal stabilization. Furthermore, during the current decay, the

magnetic field in the support may change rapidly. This causes eddy currents

in the conducting parts, which also contribute to the energy extraction.

The heating in the support structure may cause a quench-back, i.e. ignite

additional quenches at various locations on the coil’s surface or in its inte-

rior. This can be especially meaningful in conduction-cooled coils, where
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high-purity copper is in close contact with the superconducting device. In

order to take this into account, one needs to consider magnetoquasistatics.

Of course, the same effect is also present in superconductors when AC losses

originate due to the decaying magnetic field. Correspondingly, the simple

approximation of heating losses arising only locally from the transport cur-

rent may not be enough. Furthermore, these methods can be utilized to

protect the magnet [45].

When the quench originates, there is some diffusion time for the current

to homogenize in the stabilizer. During this time, the current density in the

stabilizer cannot necessarily be expected to be uniform. For coils made of

single strands, this does not play a role, as noted in Section 2.1.1, but for

large magnets, especially those made from jacketed cables [5], the influence

can be substantial not only on local heat generation but also because this

bursts the normal zone propagation. In particular, with models based on

field theory, the fine cross-sectional structures of cables made from LTS

conductors make a faithful analysis of these phenomena time-consuming

and complicated. One possibility is to support the heat generation models

with experimental data.

The technical superconductors and the devices made of them consist

of very different materials, characterized by different thermal expansion.

Because of this, stresses originate in the system during cool down, possibly

including high-temperature heat treatment [1]. In the case of a magnet,

this stress state considerably changes during the magnet powering due to

the Lorentz forces. The stress has an influence on the local critical current

density. In quench simulations, this is very often neglected.

Especially in HTS magnets, the normal zone propagation is slow if the

temperature margin, or equivalently the enthalpy margin, is high. There-

fore, the hot-spot temperature may be very localized. This can cause high

localized thermal stresses, which can lead to magnet damage. In coated

conductors, the risk is in the delamination of the layers [83]. The maxi-

mum tolerable hot-spot temperature may not be the only limiting factor

for the quench, but voltages (internal and voltage to ground) as well as the

quench stresses need to be considered too [61, 78, 79].

Because many superconducting devices operate with currents, the mod-

eling of the electric circuit is, of course, very important too. Though essen-

tial, often, but not always [80], the electric circuit model is merely a small

increment to the otherwise tedious modeling problem. Electric circuits

consider superconducting devices via macroscopic quantities in a lumped

model. Thus, one needs to be able to extract the appropriate resistances
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and inductances of the device during, or before, the simulation of the quench

propagation.

As briefly described, the quench is a very multiphysical problem. The

intensity of the coupling of the physics is also very important. For exam-

ple, the stress distribution originating from nonhomogeneous temperature

within the system can be analyzed after the quench simulation is per-

formed [78]. When modeling decisions are taken, including which physics

to include and how to represent the device in the modeling software, one

should lean on the pessimistic side. The high complexity and cost asso-

ciated with constructing superconducting devices does not allow one to

break them due to design flaws related to quench. Naturally, the design is

not the only thing that can go wrong and cause delays in commissioning

and major reconstruction [49]. Also, one should pay a lot of attention to

experimentally verifying the designs.

It is very important to find the adequate level for modeling. As well

as undermodeling, which does not adequately predict what happens during

the quench and may result in an overly complicated protection design, over-

modeling should be eschewed in every step too. It prolongs the engineering

design and therefore incurs additional costs. A model is very important to

design because it gives instructions on what must be considered. On the

other hand, design, simulation, and especially experiments give feedback to

model.

2.3.2. Design

The core of design is the layout and drawings of the protection-related com-

ponents. Design also represents an interface to the other engineers working

with the same system. The particular protection system design depends

naturally on the other parts of the system, as it is an interfacing duty.

Next, we begin from this viewpoint.

The main input to the quench protection system design is the device,

including the auxiliary components, such as the support structure. Natu-

rally, the quench analysis can also give feedback to the other parts of the

system. For example, once the required current is analyzed from the sta-

bility point of view, there might be a new requirement for the amount of

stabilizer in the superconductor. The nominal operation conditions play

the most important role, but the protection system must be able to protect

the device when it quenches at less demanding operation conditions too.

For example, a magnet can naturally quench during ramping up. It is not
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automatic that if a protection system is good enough at high currents, it

will be good enough at low currents too. This is especially the case if a

quench must be externally induced on a large fraction of the coil. When

the temperature margin has increased, the energy of the quench ignition

system, such as quench protection heaters, may not be enough.

Design should always reflect the model. Only those things are designed

and described in the design report that are considered important. To take

a very particular example, let us consider large magnets where quench

protection is implemented with quench protection heaters. If one considers,

for example, from previous experience, that the adhesive, which has earlier

been utilized to attach the heater traces to the coil, does not have an

influence on the modeling, one should not pay special attention to it in the

design of the device. On the other hand, if the influence of the adhesive on

the performance of the protection heaters is studied, one should especially

focus on questions related to that: how to spread the glue, how to control its

thickness, how to prepare the surfaces, how to cause the pressure contact,

etc. This is important in the scientific method. One needs to deliver results

that are usable in future engineering designs. However, in many scientific

collaborations, overdoing is a risk. One can focus on small details as long

as one wants, but that may not be useful from the point of view of the

whole project. From a quench engineer’s point of view, it is important to

identify what is expected and then deliver the solution, which is often the

design based on reliable modeling and other references.

In the construction drawings, it is necessary to include everything that is

needed to construct the device. This does not mean necessarily that every-

thing is or even could be simulated. Simulations only assist the design and

help understand the experiments. In modeling, one necessarily simplifies

the design and, additionally, considers whether some parts of the model

have such a small influence on the simulation results that they can be

neglected. More details mean longer simulation times as well as prolonged

construction of the modeling domain. In case of 3D modeling, the modeling

domains should be simplified in every possible way but without losing the

reliability of the simulation results.

In design, the most crucial choice to be made is between different

protection options. Protection methods can be divided into two classes:

active and passive. Active protection needs quench detection and activa-

tion of the protection system and, correspondingly, can fail if the quench

is not detected or if the protection system triggering fails. Passive protec-

tion, on the other hand, works without quench detection. However, passive
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protection is rarely enough. Passive protection methods typically require

fast development of resistance and corresponding current decay. Often, pas-

sive and active methods can be combined. For example, subdividing a coil

into diodes is a passive method, whereas bypassing the current source with

a switch requires quench detection and is an active method.

If external energy extraction via a dump resistor is possible, that is the

easiest option to implement quench protection and also the most economical

because heat is not dissipated into the cryogenic atmosphere. However, in

magnets that have large stored energies (in the order of MJ), this is not

typically possible, and active initiation of quench in a large coil volume is

needed. One option to ignite such a widespread quench is to utilize quench

protection heaters. These are stainless-steel strips that are mounted on

top of the coil’s surface and powered via a capacitor bank in the case of a

quench. They heat up the coil and cause rapid increase in resistance, which

reduces the current decay integral equation (2.13) and, consequently, the

hot-spot temperature. The most important protection methods and their

operational principles are summarized as follows:

• Dump resistor: It extracts the energy to an external dissipative circuit.

• Quench protection heaters: It causes a widespread quench in the magnet

and dumps most of the energy in the magnet.

• Quench-back and/or secondary coil: It utilizes a time-varying magnetic

field to cause losses either in the magnet or in the support structure to

extract energy and to rapidly spread the quenched volume.

• Subdivision: It bypasses the quenching part of the coil from the electric

circuit in order to have a smaller, or zero, current there, which reduces

the maximum temperature.

• Coupling loss induced quench (CLIQ): It connects an auxiliary circuit

to the coil, which causes part of the transport current to oscillate in

two or more parts of the coil. These oscillations cause AC losses [27]

(typically interfilamentary or interstrand coupling losses in the case of

low-temperature superconducting strands or Rutherford cables made of

them) that induce a widespread normal zone [45].

In addition to the design of the protection, the quench detection has an

important role. Because quench is a process where resistive voltage begins

to develop, the most obvious detection method is to monitor the voltage.

However, if the quench originates during a current ramp, it can be difficult

to detect the quench early enough, especially due to the associated inductive
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voltage. The contribution of the time between the quench onset and the

start of the current decay to the current decay integral can be substantial

if the quench detection does not work adequately. Therefore, monitoring

only the terminal voltage of the device is not necessarily enough. In case of

a magnet, a voltage tap that splits the magnet inductance into two is useful

for canceling the inductive voltage component. However, two symmetrically

originated simultaneous quenches cannot be detected only by this way.

In the case of a magnet, other options for the quench detection include

the so-called quench antenna [40], which monitors the acoustic emission

from the coil and the positioning of a pick-up coil array into the coil bore.

At the quench onset, the current density distribution changes due to a

local increase in the resistivity in the superconducting filaments, which

also changes the magnetic flux density and, consequently, the Lorentz force

distribution. The first can be detected with pick-up coils via an induced

voltage; the second typically causes small vibrations due to the variation

in the stress distribution, which can be detected acoustically.

Important times in the quench detection are the delay time, i.e. how

soon the quench is detected after it happens; the validation time, i.e. the

time that the system takes to decide whether a quench has actually orig-

inated; and the activation time, i.e. the time to activate the protection

system. The delay time greatly depends on the particular device. The val-

idation time is a design decision. A too small validation time can cause

false detections, whereas a too high one increases the hot-spot tempera-

ture. The activation time depends on the protection system electronics.

With currently available fast semiconductor-based power electronics, it is

typically in the order of few ms.

2.3.3. Simulation

In brief, simulation is about verifying the feasibility of the design and

its optimization based on the model. The simulation part represents the

computer-modeled experiments, which should be cheaper and faster to per-

form than the actual experiments. With simulations, the engineer can jus-

tify the design decisions to the other team members before the experiments

are conducted. The simulation phase is merely a tool that aids us in under-

standing the decisions related to the design. Therefore, though essential,

simulations are often considered secondary — when the final marketing

value of the device is considered. Thus, for an engineer, it is difficult to

concentrate only on simulations, but knowledge of design, experiments, and
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commissioning is valuable too. Next, we discuss simulations by considering

how they aid the design.

Various simulations aid the entire design process in different phases.

For example, if the simulations indicate too high a hot-spot temperature

in a magnet, either the magnet design (typically the amount of copper

in the cable) or the protection system must be modified. The link to the

model is crucial because the model tells which physics must be simulated.

This does not mean that a single simulation solves all the physics, but the

problem can be divided into adequate sub-problems that together deliver

the contribution of the simulations.

Typically the most tedious work in starting a superconductor simulation

is to find the relevant material properties. This is not restricted to proper-

ties such as the heat conductivity and capacity; the critical current surface

is especially important too. Often, when devices including new materials

are designed, a lot of experiments are required to analyze the critical cur-

rent surface. Furthermore, as the normal operation conditions are the most

important for the engineering design, it is sometimes secondary to do the

critical current characterization at elevated temperatures. However, this

is necessary for reliable quench simulations and must be kept in mind at

every phase of each project. Running the simulations may also be time-

consuming, especially if a 3D modeling domain is considered and paramet-

ric simulations are run. To cope with the tedium of finding the material

properties, many laboratories keep their own cryogenic material property

libraries, and there are also commercial ones available. CryoComp is a com-

mercial library [15], whereas MATPRO [39] is an example of a documented

material property library maintained by an accelerator laboratory in Italy.

First, it is important to know how much stabilizer is needed in the

conductor or cable that is utilized to construct the device. Analytical com-

putations, such as the MIITs, help to get to the ballpark, and they also

aid the design work in the beginning, but later, numerical simulations may

be necessary in order not to leave too much margin for the design. Too

much margin, or too conservative modeling, may mean that something is

not considered feasible even though, in reality, it could be done. When the

design proceeds, the quench protection engineer typically needs to return

to the conductor-level analysis to check if the requirements are met again.

From the simulations of the conductors, one proceeds to the simulation

of the device and, possibly later, considers the interplay of several entities,

for example if different magnets are connected to the same electric circuit.

In a simulation at the level of a device, it is impossible to consider all
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the details. Therefore, one needs to simplify the situation and scrutinize a

substitute that is simplified enough to make the modeling feasible but still

represents the original device with adequate accuracy.

The model determines which simplifications are made. Common sim-

plifications in the modeled physics of the quench protection system, or in

the quench analysis, are

• neglecting cooling by utilizing adiabatic boundary condition,

• modeling cooling with Dirichlet boundary condition (fixed temperature

at the boundary),

• neglecting heat conduction,

• neglecting transverse heat conduction,

• neglecting thermal and electric contact resistances,

• neglecting all the structure outside the superconducting assembly, such

as the magnet,

• neglecting the discontinuity in the heat capacity at the superconducting–

normal-conducting transition,

• neglecting the device’s internal structure and considering average volu-

metric material properties,

• neglecting the current diffusion at the quench frontier from the super-

conductor to the stabilizer,

• using a scaling factor to consider heat generation in the current-sharing

region,

• neglecting all magnetoquasistatic effects,

• modeling magnetoquasistatic effects with analytic formulae,

• neglecting the effect of a stress state on critical current density or assum-

ing constant strain over the winding,

• neglecting the effect of nonlinear magnetic materials, and

• considering homogeneous field distribution in the modeling domain.

Naturally, some of these simplifications are exclusive, and particular

typical situations combine some of these assumptions.

Cooling, clearly, plays a very important role in superconducting devices.

However, its modeling is non-trivial, whether the modeling includes the

mass transfer in the coolant or only a non-homogeneous and nonlinear Neu-

mann boundary condition representing the cooling heat flux. In impreg-

nated windings, it is often reasonable to consider an adiabatic situation.

This is naturally not the case if the cooling phase is of special inter-

est. When the performance of quench protection heaters is modeled, the
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utilization of a Dirichlet boundary condition on the magnet outer impreg-

nation and coolant surface is justifiable because it is a pessimistic estimate.

In the MIITs concept, all the heat conduction is neglected. In the pre-

sented 1D MQE simulations, the transverse heat conduction was neglected

(see Section 2.1.1.2). Sometimes, a flat cable represents an important entity

in the coil, and one neglects the heat conduction from a cable to another

but not inside a cable. The greatest benefit in neglecting the heat conduc-

tion in a given direction is that it immediately reduces the dimension of

the modeling domain. However, this may easily lead to too pessimistic an

estimate in terms of the vulnerability to quench or to too optimistic an

estimate in terms of the normal zone propagation velocity [69].

If the thermal and electric contact resistances are not neglected, the

modeling domain cannot be reduced. Often, these resistances are neglected

because their characterization requires tedious experiments, and still, it

is difficult to know how well they generalize to other situations than the

specific characterization experiment. Especially in superconducting mag-

nets, the coil is under a heavy stress load and very tightly packed. There-

fore, the contact resistances tend to be small. Thus, neglecting them is

not necessarily a bad estimate. For example, in many quench protection

heater simulations, the adhesive between the heater and the coil’s surface

is neglected. This means that the modeling is slightly optimistic. When

this is combined with Dirichlet-type boundary conditions at the coolant–

surface interface, which is a pessimistic estimate, the two effects somewhat

cancel each other. When several optimistic and pessimistic simplifications

are made, it becomes difficult to know the influence of each decision because

the simplifications influence on different directions. Thus, even though the

necessarily discrete large-scale measurement results can be compared with

good accuracy to the corresponding simulation characteristics, it is not

legitimate to draw too far-reaching conclusions from those simulation char-

acteristics that are not measured.

Neglecting the structure outside the superconducting assembly means,

for example, that one does not consider the heat conduction via the support

structure or the eddy current losses due to the decaying magnetic field.

Both the given examples are pessimistic. Then, if the design is pushed to

the limits, there is actually some margin. In conduction-cooled systems, the

superconducting device is typically well interfaced to a high-purity copper

cooling path [55]. Then, the role of this thermal conduction path can be

very substantial in causing a quench-back: Eddy currents are induced in
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the copper, which heats up, and the heat flows into the coil, causing a

rapidly widely spread quench.

An individual superconducting strand can consist of a hundred thousand

filaments embedded in matrix metal. Several strands can be assembled to

form a cable. The coil can be wound from this cable, making the structure

highly detailed. It is typically impossible to represent such a structure in

a CAD program, not to mention its detailed discretization in a numerical

modeling software. Consequently, one often neglects the detailed structure

and averages the material properties. Sometimes, the insulation is repre-

sented between the cables, but the cables or wires are homogenized. These

approaches can also be mixed [32]. All this, of course, depends on the spe-

cific device under study.

The idea of homogenization is that the specific heat is averaged, and as

for the thermal and electrical conductivities, the materials are considered

to be in parallel or in series, depending on the direction that is scruti-

nized. Therefore, some of the material properties are made anisotropic.

If the structure is highly irregular, one can model the unit cell and corre-

spondingly derive the effective properties, such as thermal conductivity [37]

and permeability [66]. An example of using homogenization in the MQE

and normal zone propagation velocity modeling was presented by Stenvall

et al. [67].

Many effects are time-consuming to simulate with field models, such

as the AC losses or the current diffusion at the quench frontier. There-

fore, simplified cases can be utilized to solve simpler problems analytically,

and based on experiments, the results can be scaled to the more difficult

simulation problems. This is especially the case with magnetoquasistatic

problems. Sometimes, a magnetostatic problem can also be simplified. If

only a single turn of a coil is considered, one may be able to consider it

under a homogeneous magnetic flux, though that is not the case in real-

ity. Simulations with such simplifications may still be able to give enough

feedback to the design. A similar approach can be taken if an iron yoke

is utilized to burst the magnetic field. To control the produced magnetic

field via the coil’s current, the effect of the yoke is important. However, in

quench simulations, the nonlinearity that the yoke causes to the inductance

can be neglected if one begins from the same total energy.

In all the simulations, the simulation tools are of interest too. Many

general modeling tools can be utilized to simulate basic problems in

superconductors, but often, the particular scenarios require extraordinary
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approaches, and thus, many laboratories have developed tools for particu-

lar purposes [52, 58]. If particular purpose tools are implemented, one must

ensure the continuity of the development and the frequent usage of the tools

to make the economical investment in its development sensible and invest

in expanding the user base of the software. Currently, the STEAM com-

munity promotes a unique approach to combine commercial tools within a

tailored framework [8].

Naturally, the simulation and design can be coupled too in such a way

that simulation proposes the design. If the design is formulated as an opti-

mization problem, the simulations suggest a particular design. Thus, here

also, the point of view of how model, design, and simulation are related is

subjective. Next, we discuss the experiments related to quench protection.

2.3.4. Experiment

One can approach experiments from several perspectives. For example,

first, the engineer wants to know if the simulations predicted the exper-

iment results adequately. Second, the working group gets information on

the successful construction and design. Third, some things cannot be sim-

ulated reliably, so necessarily experiments are required. Finally, the exper-

iments, especially those performed on the entire system, contribute greatly

to the credibility of the project — especially if a new future technology is

studied.

Performing experiments for conductors and cables can be routine-like,

but for large devices, such as magnets, specific test plans are of utmost

importance. First, the devices are typically made of very important compo-

nents, and second, their testing is expensive and time-consuming. The most

important tests include the performance tests: Does the device perform as

designed and modeled? Although quench protection is very important, it

is useless if the device does not reach its target values.

Under nominal operation conditions, the superconductor typically car-

ries a very high current density (even in the order of 1000A/mm2). There-

fore, failures in quench analysis can cause the device to fail in the first

test. Thus, in the case of large-scale devices, one must first do many tests

before trying to find out when the coil quenches first naturally. The electric

integrity test is the first one that must be done. Undesirable short circuits

must not exist in the device. Furthermore, the lumped parameters, the

inductance and normal state resistance, must be checked. Small currents

are adequate for these checks. Then, a relatively rapid current that ramps



Introduction to Stability and Quench Protection 143

up to a safe current value and goes down must be measured in order to

check the safe ramping of the magnet. A rapid predefined triangular ramp

prevents the magnet damage in the case of an unexpected quench. After

the triangular ramps are verified to be safe, a hold time for the current must

be considered. Development of abnormalities, such as continuous point dis-

turbances, must be monitored.

It is important to test the magnet quench protection system at low

currents. The current must be taken to such a value that the quench is

safe when only external energy extraction is utilized. A quench must be

manually triggered in such a way that the energy extraction begins auto-

matically regardless of the operation of the quench detection system. At

the same time, one must monitor if the detection system works. If every-

thing goes as expected, the test is repeated but without the predetermined

energy extraction. After enough confidence with low currents is reached,

including successful comparison to simulation results, the test progresses

toward situations where the quench is not triggered manually. Then, every-

thing relies on the automatized quench detection system. If the simulation

results are reproduced in low-current experiments, the confidence in high-

current experiments is gained. If this is not the case, one must rerun the

simulations and possibly adjust the fitting variables to assure safe quenches

in the short-sample limit also.

By positioning multiple potential taps in the coil and by monitoring

their changes, the quench origin can be traced to certain parts of the coil. It

is important to find out if the coil quenches at the critical point or elsewhere.

If the quench occurs elsewhere after the conductor-limited quench plateau

is reached, one must scrutinize why. Was the critical point computed erro-

neously or was some location damaged during the coil manufacturing? Also,

often one uses a fit, or the so-called scaling law, for the critical current char-

acteristic. One should check if this really reflects the reality at the operation

point where the magnet quenched. In case of anisotropic conductors, such

as REBCO-coated conductors, one should ensure that the conductor is from

the same batch for which the fit was made. The variation in the critical

current’s angular dependence of B is very large between differently doped

conductors [65].

The current decay curve can be compared most reliably against the

simulation results. Measurement of the maximum temperature in the coil

is very difficult due to the delay in temperature sensors. Typically, the

readings of the temperature sensors increase even after the current has

decayed to zero. Therefore, the temperature measurements only give lower
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boundaries for the hot-spot temperature. Recently, a new technique based

on fluorescent thermal imaging for temperature measurement has been

developed [30]. With such an approach, more timely temperature mea-

surements can be performed on the surface of a sample.

Destructive testing is also important during the R&D phase. In a

destructive test, one searches for the maximum value of the current decay

integral that can be tolerated in a coil. Then, a quench is triggered man-

ually to know the time of origin, and the validation time of the detection

system is increased step by step to increase the current decay integral.

If the quench detection is based on a voltage tap measurement, the val-

idation time means the time that the voltage must be above a detection

threshold before the protection system is activated. This provides a way to

delay the quench detection and increase the current decay integral. Between

two delayed tests, one checks if the coil still reaches the conductor-limited

quench. When this does not occur anymore, the maximum tolerable cur-

rent decay integral has been reached. This gives the absolute upper bound

that a quench simulation can tolerate for the current decay integral. Corre-

spondingly, in the simulation, a maximum tolerable hot-spot temperature

can be determined, but this value is very difficult to confirm reliably in an

experiment.

Naturally, testing gives input to the simulation either to confirm that

the device performs as expected or to discard the simulation result. Also,

it confirms, or discards, the expectations for safety margins and the feasi-

bility of the protection system. The feedback goes all the way back to the

modeling phase too. Perhaps, the considered physics were too simplified or

the same results could have been achieved with a less rigorous approach.

Experiments should never be forgotten, especially when new modeling tools

are developed, as the benchmarking of the tools is invaluable to all future

work.

2.4. Numerical Modeling of a Quench Event

Perhaps, the most tangible task in the simulation phase is that of the

modeling of a quench event: the quench simulation. In quench simulations,

one studies the temperature evolution in the superconducting device before

it is fully de-energized. The principal target of the simulation is to validate,

by modeling, that the protection system design allows a safe quench. The

protection system and circuit model are also included in the simulation.

The most important output is the current decay curve, which can be easily
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compared to the corresponding experiment, and the determination of the

hot-spot temperature, which is difficult to investigate experimentally with

high accuracy. Other important characteristics can include, depending on

the particular scenario, the time to detection, the time to activation of the

quench protection system, the amount of externally dissipated energy, and

the maximum voltage to ground. Next, we consider a general numerical

quench simulation, with emphasis on the instructions required to perform

particular simulations. Then, we present a simulation case that was carried

out in an HTS accelerator magnet R&D project.

The computer-assisted modeling of the temperature evolution during a

quench has traditionally been divided into two very different approaches.

Both approaches have been developed originally for LTS-based magnets,

where the temperature margins are modest and current densities high.

These mean a high normal zone propagation velocity.

The first approach was developed before it was feasible to solve the

heat diffusion equation in a 3D modeling domain using a computer with

adequate accuracy and time. Wilson [75] proposed to utilize normal zone

propagation velocities to study the growth of the normal zone and adiabatic

consideration for the hot-spot temperature. In this approach, one assumes

that the normal zone begins from a specific location and extends accord-

ing to the normal zone propagation velocity. However, the heat does not

diffuse, but the hot-spot temperature is computed adiabatically. To initi-

ate the simulation, one begins with a normal conducting, i.e. quenched,

ellipsoid and, at every time step, adds a new isothermal shell on top of

the previous normal zone according to the normal zone propagation veloc-

ity. Then, because the current is known, the temperature increase in each

shell and, correspondingly, the normal zone resistance can be computed.

The heat generation can be tweaked using analytical formulae for the AC

losses. Also, the normal zone propagation velocity can be computed ana-

lytically from several available expressions [74, 75] or input from known

experimental data. Tuning this method for particular cases is relatively

easy after some current decay curves are known at low, i.e. safe, currents.

Either the normal zone propagation velocities or the heat generation can

be scaled. Also, multiple coils can be studied, and coupling with a circuit

model is straightforward via self and mutual inductances and normal zone

resistance. Correspondingly, multiple quench origins can also be utilized.

After Wilson’s pioneering work, this work has been continued by others [48].

The alternative approach does not depend on the normal zone

propagation velocities, which can be merely post-processed from the
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simulation result. Then, one solves directly the heat diffusion equa-

tion within the magnet volume. Typical numerical approximate solution

methods rely on discretizing the volume of the modeling domain in order to

represent the unknown information, i.e. the temperature distribution from

which everything else can be derived, with a finite amount of information.

The most popular solution methods are finite element and difference meth-

ods [18, 19, 22, 63, 64, 68, 77]. Some of these utilize commercial software

for implementing the simulations, while some include tailored tools.

Next, we focus on a homemade tool, QueST (Finite Element Method

based Quench Simulation Tool), which has been developed to study HTS

magnets at Tampere University of Technology, on top of the GMSH mesh

generator with C++ programming language [24, 32]. The tool utilizes FEM

for spatial discretization and also includes a module to solve the magneto-

static problem. The latter is important because the critical current depends

on the temperature and the magnetic flux density, and it determines the

heat generation in the heat diffusion equation. To keep the discussion at

a level that is relevant to an engineer working with a commercial general

simulation tool, a tailored tool, or even developing a new tool, we present

the input that an engineer wants to consider in a simulation and the output

she wants to eventually get.

Then, we go a bit into FEM without deriving the weak formulation, but

we merely show the equation system and the representation of unknowns

that one eventually solves. As it is well known, one cannot solve for func-

tions in a computer, but only real numbers, or floating point numbers — to

be precise. Therefore, we consider how the unknown fields are represented

in a FEM software. We also consider the temporal discretization that is

external to the FEM matrix assembly.

At the end, we consider the quench simulations. First, we discuss how

to ignite the quench in a superconducting magnet. The quench simula-

tion in a 3D modeling domain can be very time-consuming. However, typ-

ically, only part of this modeling domain is of interest and has notable

influence on the output characteristic. Especially, when one simulates HTS

magnets, the quench may be very localized, and therefore, one can leave

out a large fraction of the modeling domain from the simulations. At the

end, we also present a full-fledged quench simulation for an R&D mag-

net. The simulations presented here are from different R&D phases of

an HTS magnet project. Therefore, they cannot be directly compared,

but only the overall conclusions from each investigated case should be

considered.
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2.4.1. Input and output of a quench simulation

Input and output should be considered first when starting to describe the

problem at hand to the computer. Input refers to things that the engineer

needs to address in the modeling. These can be divided into two specific

classes: (i) inputs that make this particular simulation different from other

ones and (ii) inputs that are common to all the simulations of this device.

Item (i) refers to setting operation conditions, whereas item (ii) refers to the

equations that are solved. Output, on the other hand, means the feedback

that the simulation gives to the design. If one is interested in deriving the

normal zone propagation velocities in the post-processing, the tool needs

to have this possibility. Therefore, the input and output are related by the

selection of the computational tool.

One very important input is the magnetic flux density distribution.

First, we discuss that, then operation conditions and other parameters that

are often worth studying. Finally, we discuss the post-processing data.

2.4.1.1. Magnetic flux density distribution

Magnetic flux density distribution as a function of current is typically

required by the heat diffusion equation solver for several purposes: most

fundamentally for the critical current but also for the magnetoresistance of

copper that has influence on its resistivity and heat conduction [35]. In LTS

magnets, where the critical current does not depend on the orientation of

B, ||B|| suffices, but in HTS magnets made of REBCO-coated conductors,

one needs the angular dependence of B [65].

To solve the magnetic flux density distribution, one solves a magneto-

static problem. In case of a magnet, it is typical to consider the homo-

geneous current distribution in the magnet cross-section, or in the cables,

and neglect the screening currents. If there are no materials that magne-

tize, such as iron, the permeability is that of vacuum everywhere, and one

can solve the magnetic flux density with unit current and, consequently,

only scale the solution by the actual current, as shown in Section 2.1.2.

Next, we will look at what kind of partial differential equation one solves in

the magnetostatic problem. However, the problem can also be approached

in other ways: The magnetic flux density can be directly computed from

the Biot–Savart law [14]. On the other hand, this direct computation does

not necessarily make the task easier.

In a magnetostatic problem, one finds such a magnetic field {B,H},
where H is the magnetic field intensity, which satisfies the defining
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properties of magnetostatics: Gauss’ law for magnetism

∇ ·B = 0, (2.14)

Ampère’s law

∇×H = J, (2.15)

where J is the known current density distribution, and the constitutive law

of magnetic field

B = μ(H+M), (2.16)

where μ is the permeability and M the magnetization [14]. Typically, M

refers to the magnetization of the permanent magnets, and in this work,

M = 0 holds. However, if additional equations are considered for the

screening currents, their influence can be taken into account with M. Other

constraints may be posed via boundary conditions. However, boundary

conditions can also be utilized to take advantage of discrete symmetries

in particular modeling methods or to model a field that vanishes far away

enough — to suppress the modeling domain.

When we search for the magnetic vector potential A that results in B

as

∇×A = B, (2.17)

we can eliminate Equation (2.14) because ∇·∇×F = 0 holds for all vector

fields F. Then, we can substitute the constitutive law in Equation (2.16)

with Equation (2.15), and we get a second-order partial differential equation

to solve:

∇× μ−1∇×A = J. (2.18)

This is the A formulation of the magnetostatic problem.

Curl (∇×) is a linear operator, and if μ is linear as well, the problem

is linear and can be solved with unit current corresponding to a specific

J. One gets for this a Bunit from the solved A. Then, during the simula-

tions, one can just scale the unit magnetic flux density distribution by the

operation current as

B = IopBunit. (2.19)

Then, the B distribution can be considered as an input to the quench mod-

eling problem. Otherwise, if nonlinearities and hysteresis are considered, B

must be solved simultaneously with the heat diffusion equation.
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In QueST, one solvesBunit in the modeling domain with FEMor imports

it from another software in a GMSH post-processing file format. In the

case of coated conductors, one needs the parallel and perpendicular flux

density components due to anisotropic critical current. Determining them

is not trivial, for example, for accelerator dipoles with flared ends. However,

tools specialized in computation of critical currents in these coils have this

information already available, and that can be imported to QueST [81].

2.4.1.2. Operation conditions

Another very important input considers the operation conditions. Even

though quench analysis is the most important at nominal operation cur-

rent, one cannot forget the low-current protection as well as the quench at

Imax. At low currents, the temperature margin is higher, and consequently,

for example, quench protection heaters may not be adequate to quench a

large fraction of the coil in the case of a spontaneous quench. Magnets are

typically also tested above nominal operation conditions if possible.

In the case of conduction-cooled R&D magnet systems, one does not

necessarily know beforehand the specific operation temperature at which

the magnet is tested. Therefore, once the protection system design is fin-

ished and its feasibility is verified through simulations at nominal condi-

tions, it is good practice to study other temperatures too. In the case of

forced-flow-cooled or non-impregnated magnets, one should study the effect

of heat transfer to the coolant. Different heat fluxes can be utilized in the

simulations to gain confidence in the design.

Often, in homemade tools, the input data is controlled by specific

input files. Many commercial software, on the other hand, allow importing

parameter lists via graphical user interfaces. Because quench simulations

are often time-consuming, it is important to pay attention to storing the

input data with the results in order to be able to later reopen the simulation

cases for examination. The downside of commercial software is that often

there are some inconsistencies between different versions of the program.

That makes it difficult to return to older simulation cases. In the case of

homemade codes, it is easier to keep track of the revisions of the code,

especially if programming is tracked with a version control system [26, 70].

In QueST, a specific JSON-formatted file is given to the command-line-

executable solver. This file is used to map the variables directly onto a

specific object in the program. Then, these variables can be utilized every-

where in the code. Some variable names are fixed, such as the operation

temperature, but some can be freely introduced, such as external lumped
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parameters. This JSON-formatted file also prevents one from compiling the

software if only minor modifications to the operation conditions are made,

such as when the operation current is changed.

2.4.1.3. Post-processing data

The solution is the main reason for the simulations to be performed in the

first place. But what is the solution from a quench simulation? The answer

to that question is not simple. There are multiple solutions or outputs from

which an engineer can draw conclusions.

The most important post-processing data consider global quantities as

a function of time. These are, for example, the hot-spot temperature, nor-

mal zone resistance, size of the normal zone, and circuit currents. Because

simulations are time-consuming, it is also important to have access to these

parameters during the simulation. That gives the engineer the option to

suspend the simulation in the case of abnormal behavior. For example, if

one aims to quench a magnet with a heater, but it does not quench, it

is not valuable to continue the simulation. As shown in Section 2.1.1, it is

not always easy to determine if the system quenches or not. In simulations,

one must also be able to position potential taps in the modeling domain

to investigate voltages over specific sectors. These characteristics can then

be compared to experiments. The voltage curves can be recorded during a

simulation or afterward in the post-processing of the temperature distribu-

tions. Post-processing is preferred for wider possibilities to determine what

to consider; online derivation, on the other hand, helps to understand the

simulation even while it is ongoing.

The evolution of the temperature distribution in the magnet is also an

important result. The propagation of the normal zone can be determined

from the temperature distribution, and it should be saved at multiple time

instants. Furthermore, these distributions can be utilized as an input for

thermal stress computation by a solid mechanics engineer. An appropriate

interval is 0.1 ms before the maximum temperature is below Tcs and about

1–5ms after that.

Often, the quench simulation is terminated if the hot-spot temperature

has risen to a sufficiently high temperature (e.g. 400 K) or if the current

has decayed to 10% of the nominal current. The latter means, roughly, that

the heat generation is only 1% of the maximum.

During the simulation, QueST displays the operation current, maximum

temperature, resistive voltage, and volumetric fraction of the normal zone.

All these are written to .mfiles and MATLAB can be used for visualization.
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The temperature distributions are saved in GMSH-style post-processing

files at specific time steps. The time steps can be determined from the

input JSON-formatted file. GMSH can be used for post-processing the tem-

perature distributions. In principle, any tweaks can be added to the code

by programming and then compiling.

2.4.2. Spatial and temporal discretization in a FEM

based tool

The finite element solution of a problem relies on representing the field

quantity to be solved as an element in a predetermined finite-dimensional

vector space where the elements are functions. A mesh is generated in the

modeling domain Ω to fix the basis for this space. Then, the task of the

problem is to find coefficients for these basis functions. The mesh offers

spatial discretization for the solver. A denser mesh means more basis func-

tions than a sparser one. Consequently, the mesh should be made dense in

the regions where the solution changes rapidly in space.

Because the heat diffusion problem requires integration in time, tempo-

ral discretization is needed too. The nonlinearity of the problem encour-

ages us to utilize an implicit backward differential formula with adaptive

time stepping for the time integration. Those kinds of numerical solvers

are available for homemade tools in the open-source package, Sundials [53].

However, in case of a quench, the problem is very time-consuming, and if

the adequate time step is known beforehand, it can be more efficient to uti-

lize simpler methods, such as Runge–Kutta or a mix of implicit and explicit

Euler, where less attention is paid to the computation of error estimates.

Even with such an approach, an adequately accurate solution is achievable.

Next, we detail spatial and temporal discretizations from the FEM and

QueST perspectives. A further improvement in the quench modeling soft-

ware is the utilization of adaptivity in spatial mesh as well as local time step-

ping. With local time stepping, one can get a high resolution of the solution

at the quench frontier. On the other hand, a high resolution can be achieved

with long time steps in locations where no heat generation occurs. How-

ever, these topics are still under development for superconductor-modeling-

tailored software [72].

2.4.2.1. Spatial discretization

In order to be able to utilize FEM, one needs to discretize Ω in space. This

means splitting Ω into polyhedra, which then form the finite element mesh
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for Ω. QueST relies on simplicial elements,4 with a slight extension to be

able to include other polyhedra.

In FEM, one attaches to first-order simplices one basis function per

node — the barycentric basis function Ni. The basis function gets a value

of 1 in a given node and 0 in others and linearly varies in between. Thus,

if points rj determine the nodes of a simplex, Ni(rj) = δij holds, where δij
is the Kronecker’s delta. This relation determines uniquely the linear basis

functions. In the elements where node i does not belong to, Ni vanishes.

The restriction of the support of the basis functions allows sparse system

matrices. However, one can also attach more than four basis functions to

an element — in the case of a tetrahedron having one basis function per

node. In the case of second-order simplices, one basis function is attached

to the center of each edge too. Then, Ni(rj) = δij holds for all 2(n + 1)

points in an n-dimensional simplex, making the basis functions quadratic.

In the case of an unknown vector field, such as A, one must have basis

functions for a vector field. These can be either tuples of Nis or vector

fields attached to the edges or faces of the mesh. In the case of A, one can

utilize the edge elements [6] to span the approximation of A. Naturally,

these concepts generalize to various element shapes (even to isoparametric

elements [76]) and higher-order basis functions.

Because the solution to the original partial differential equation lies typ-

ically in an infinite-dimensional function space, an exact solution cannot be

provided by a computer. Therefore, the solution one gets is an approxima-

tion. The FEM finds the solution from the subspace, spanned by the basis

functions that are determined by the mesh, in a way that the energy norm of

the approximate solution and the actual solution is minimized [12]. Thus,

it finds the projection of the actual solution from the subspace when the

metric for the projection is induced by the energy of the problem. This is

a well-accepted criterion, which has made the FEM very popular for field

computations. From now on, we do not make a difference in notation if we

are discussing the approximate solution of the field problem or its actual

solution. Also, we focus on solving the heat diffusion equation, where the

unknown can be represented with scalar functions.

In the heat diffusion equation, we need to span the space for temperature

T with functions, i.e. in case of first-order elements, those attached to the

4An n-dimensional simplicial element, a simplex, is a polyhedron with n+1 nodes. Thus,
in 2D, it is a triangle, and in 3D it is a tetrahedron.
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nodes of the mesh. Thus, we have

T (r) =

#DoF∑
i=1

Ti(r)Ni, (2.20)

where r refers to a point in the node. Therefore, Ti is also the temperature

in node i. Next, we put all the Tis into a tuple T:

T =
[
T1 T2 · · · T#DoF

]T
. (2.21)

According to the weak formulation of FEM, it is straightforward to repre-

sent Equation (2.1) as

M
∂T

∂t
= AT+Q, (2.22)

where M is the mass matrix, A is the stiffness matrix, and Q is the load

vector. Here, M , A, and Q depend on T and B as well as the operation

current. Q captures the role of heat dissipation and boundary conditions.

In a FEM software, it is straightforward to include domains with dif-

ferent material properties. However, the meshing should be done in a way

that the element boundaries also respect the domain boundaries. There-

fore, the fine structure of the modeling domain also causes a dense mesh.

An important option to bypass this is to utilize effective, almost necessar-

ily anisotropic, material parameters, as in Section 2.1.1. This is also the

approach QueST utilizes, with the possibility of including finely structured

domains as well.

2.4.2.2. Temporal discretization

To solve the ordinary differential equation (2.22), one needs time inte-

gration. For a computer solution, temporal discretization is required. In

QueST, we use the generalized Euler algorithm [34, p. 205], with parame-

ters θ and Θ that tune how implicit (θ = Θ = 1) or explicit (θ = Θ = 0)

the method is:

Tk+1 = Tk + hf (tk + θh,Tk +Θ(Tk+1 −Tk)) , (2.23)

where k refers to the time step and h to the step size. f is the function to

be integrated over time, i.e. here,

f(t,T) =M−1 (AT+Q) . (2.24)
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Naturally, this method does not allow algebraic constraints like, for exam-

ple, Sundials does [53]. However, to make the computation of M , A, and

Q explicit, we compute those at Tk. Therefore, the numerical integration

scheme of QueST is

Tk+1 = Tk + hM (Tk,Bk)
−1

(A (Tk,Bk) (Tk +Θ(Tk+1 −Tk))

+Q (Tk,Bk)) , (2.25)

which can be explicitly solved for Tk+1 with any Θ. We have emphasized

here the dependence of the mass and stiffness matrices and the load vector

on the values of T and B at time step k. Naturally, they also depend on

the current at time step k. In QueST, we use Θ equal to 1. QueST also

has an option to use Sundials.

2.4.3. Triggering the quench in the simulation of an HTS

magnet

Whereas in an actual operation situation, the magnet quenches abruptly, in

a simulation, the quench must be triggered at a predetermined location. Of

course, one can also consider a continuous point disturbance within a mag-

net volume, but in a detailed quench simulation, the diffusion process for

a few seconds can be very time-consuming, and the quenches from contin-

uous disturbances do not develop rapidly. Therefore, triggering is an issue

to consider in a quench simulation.

With a method based on normal zone propagation velocities, trigger-

ing is straightforward. One has an initial volume, no matter how small,

from which the quench begins to propagate. An obvious possibility is to

add a heat pulse somewhere in the system or to its surface [20]. Whereas

this can be used to quench LTS magnets in a way they also quench in

experiments, the quench triggering of an HTS magnet with a high stability

margin through this way can make the simulation results completely use-

less. First, the required triggering energy density for a quench may be so

high that it causes the hot-spot temperature to overstep a value that could

never be achieved in an experiment. If the artificial heater is made large

enough to prevent this, the voltage that it causes may almost immediately

exceed the detection threshold limit, which makes it impossible to study

how the quench develops. Therefore, with HTS magnets, another option

must be found.

A coil quenches from a location where the critical current surface is

punctured first. This locally reduced critical current can be caused by a
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Figure 2.15. Temperature as a (a) function of time and (b) normal zone voltage during
a quench simulation of a YBCO-based HTS coil. The solid (—), dashed (– –), and dash-

dotted (–·–) lines correspond to reduction of critical current in the hot spot by 100%,
65%, and 30%, respectively.

locally increased temperature as well as a local damage or inhomogene-

ity [73]. To emulate the situation of reduced critical current, one can arti-

ficially create a small volume in the modeling domain where the critical

current is degraded. This volume must be so small that the initial voltage

is considerably below the quench detection threshold voltage. The thresh-

old voltage depends on the quench protection system, with typical values

ranging from highly sensitive 10mV to 300mV.

We studied [31] the influence of the current degradation on the devel-

opment of the hot-spot temperature as a function of time or voltage over

the normal zone. The results are shown in Figure 2.15. In that particu-

lar case, we studied a YBCO-based HTS magnet that was designed in the

framework of an accelerator magnet R&D project. In that case, the pro-

tection was neglected, and we only studied how rapidly the magnet’s hot

spot reaches 400K when operated at 4.2K with a coil current density of

250A/mm2 in a background field of 13T. Here, without getting into the

details of the considered magnet, we conclude that the more the critical cur-

rent degrades, the faster the detectable quench propagation begins. How-

ever, it seems that only the actual onset is delayed. The relation between

the voltage and the temperature is very close to being identical between

different situations. Also, one should note the very short time, around

500–600ms, that is required to reach 400K. Therefore, the early detection
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of the quench is of utmost importance in superconducting magnets. Finally,

to speed up the quench simulations of HTS magnets, it is justified to con-

sider a small volume inside the magnet and set the critical current in it to

zero and to simulate the consequences.

2.4.4. Reducing modeling domain to speed up quench

simulations for HTS magnets

Due to the wide spectrum of temperature margin in HTS magnets, the

normal zone propagation velocities are much slower than in LTS magnets.

Therefore, it is typical that the whole magnet, even when it is relatively

small, does not go through the resistive transition — or reach Tcs. To

decrease the duration of a simulation, it seems to be reasonable to reduce

the modeling domain and not to solve the heat diffusion equation in the

whole magnet. In principle, this means smaller a number of unknowns and

faster simulation time — or that one can add more resolution, i.e. make

the mesh denser at the interesting locations near the quench origin.

Next, we present an analysis considering the reduction of the modeling

domain for an R&Dmagnet similar to that considered in Section 2.4.3. This

analysis is based on our published research results [32]. The basic principles

are demonstrated here. For the quench ignition, we utilized a volume with a

degraded critical current. First, we describe the modeling domain of inter-

est and then consider how the main simulation characteristics behave when

we reduce the modeling domain. Also, in these simulations, we neglected

the protection and quench detection and let the simulation run until the

hot-spot temperature reached 400K.

2.4.4.1. Modeling domain

The full modeling domain consisted of six stacked racetracks made from

a twin YBCO tape. In this twin tape, two CuBe2 and copper stabilized

tapes were soldered together. Copper offers thermal stabilization, whereas

copper–beryllium is for mechanical rigidity. In addition, both tapes had

a 50μm thick Hastelloy substrate. In total, the Kapton-insulated twin

tape had a thickness of 460μm and a width of 12.06mm. In the modeling

domain, we modeled the twin-tape insulation structure near the quench

onset. The material properties within the thin tape were homogenized.

Farther away from the location of a degraded twin tape, the structure was

modeled with homogeneous material parameters. Figure 2.16 presents the
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Figure 2.16. The structure of the modeling domain, including the two top-most coils
as (new inclusions described) (a) twin tapes at the other end of the coil (17 turns on
the topmost coil), (b) twin tapes at the straight parts, (c) volume with reduced critical
current, (d) insulation in blue, also between the adjacent twin tapes, (e) rest of the
magnet’s end modeled with effective homogeneous anisotropic material properties, and
(f) straight parts modeled with effective homogeneous anisotropic material properties.

Table 2.2. Relative material proportions of unit cells.

Coil (%) Twin tape (%) Insulator (%)

Copper 15 17.7 0
CuBe2 42 49.4 0
Hastelloy, buffers, YBCO 28 32.9 0
Kapton 15 0 100

structure of the modeling domain of the two topmost coils. The volumetric

fractions of the constituents are shown in Table 2.2.

A number of modeling decisions were made prior to the simulations.

The heat generation was computed according to the current-sharing model.

For the boundary conditions, adiabatic condition was used. The reduction

of the critical current in the quench onset volume was 100%.
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2.4.4.2. Simulation results

First, we considered how the important quench characteristics, namely the

maximum temperature, the resistive voltage, and the volumetric fraction

of the normal zone, behave when we neglect some of the coils from the

modeling domain. The results from the cases including only the quenching

coil and all the six coils are displayed in Figure 2.17.
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Figure 2.17. Quench simulation results when the number of coils in the modeling domain
was varied: (a) hot-spot temperature as a function of time, (b) voltage over the normal
zone as a function of time, (c) hot-spot temperature as a function of normal zone voltage,
and (d) heat generation volume. The dotted lines in (b) and (c) denote a possible quench
detection threshold voltage of 100mV.
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A very important characteristic is the time to reach the quench detec-

tion threshold voltage. For the analysis, we selected a conservative value of

100mV. In the case of six coils, the quench detection time was 71ms, but the

analysis of only the topmost coil resulted in a time only 3ms shorter. There-

fore, the stabilization that the other coils bring about as a heat sink was

not important in this case. Also, the variation in the hot-spot temperature

at the time of detection was almost negligible. The single coil simulation

resulted in 67K, whereas the whole magnet analysis gave 68.5K. However,

200 ms after the start of the simulation, the normal zone propagated to the

adjacent coil also in the full magnet model, and correspondingly, the nor-

mal zone increased more rapidly. Therefore, in order to compute reliably

the normal zone resistance, one needs to include more than one coil in the

computation.

The normalized computation times for the simulations including differ-

ent number of coils are shown in Table 2.3. The savings in the computa-

tion time when shifting from the six-coil-structure to the modeling domain

including only the single coil was fivefold. Therefore, if one needs to simu-

late what happens before the quench detection, the modeling domain should

be reduced considerably — especially if it consists of several coils.

Next, we considered only the topmost coil and studied the stabiliza-

tion that the transverse heat diffusion offers. This study was performed

by reducing the number of twin tapes included in the modeling domain.

Figure 2.18 compares the single coil simulation and the simulations with

2, 4, and 10 twin tapes. Whereas the difference in the maximum temper-

ature as a function of time is almost negligible, the maximum temper-

atures as a function of the normal zone voltage behave very differently.

Table 2.3. Quantitative data from different modeling domains that were

considered. Normalization of computation time is done to that of full mag-
net simulation. The absolute time was two days and eight hours, but this
should not be used as a reference value for any other case because the simu-
lations were limited to a single core to isolate them from all other operation
system processes.

Simulated coils # Elements #DoFs Computation time (%)

1 157 058 39 622 18
2 386 189 90 127 46
3 631 355 142 418 63
4 820 000 182 935 86
6 940 000 209 009 100
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Figure 2.18. Quench simulation results when the number of twin tapes in the modeling
domain was varied: (a) hot-spot temperature as a function of time, (b) voltage over the
normal zone as a function of time, (c) hot-spot temperature as a function of normal
zone voltage, and (d) heat generation volume. The dotted lines in (b) and (c) denote
the considered quench detection threshold voltage of 100 mV.

When the normal zone reaches the edge of the modeling domain, the

transverse heat diffusion does not offer additional stabilization or a vol-

ume that would quench next. Therefore, the voltage increase is limited

even though the temperature continues to increase. Also, the temperature

increase is bursted but only marginally. The quench detection times for

10 twin tapes and the single coil model differ only by 0.2ms, and the
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Table 2.4. Quantitative data from different modeling domains that were consid-
ered in the twin tape analysis. The normalization of the computation time is done
to that of the single coil simulation.

Simulated twin tapes # Elements #DoFs Computation time (%)

1 2 476 1 218 1.3
2 14 856 4 283 8.3
4 29 712 7 961 19

10 74 280 18 995 44

hot-spot temperatures at the corresponding time instances differ by 0.1K

only. When less than 10 twin tapes were considered, the results became

more unreliable. The simulation times are summarized in Table 2.4.

The lesson to be learned from these simulations is that often in time-

consuming simulations, it is possible to consider a reduced modeling

domain — not the whole device of interest. However, it is important to

study when the characteristics that one really needs converge. Each new

case must be studied in detail before general conclusions can be made.

Furthermore, the quench onset simulation can be performed with a reduced

domain, and after that, one can completely change the approach to consider

the quench propagation during the protection system activation phase.

2.4.5. Quench analysis of an R&D REBCO magnet

The quench analyses of large and small magnets are very different. An

issue unique to each large magnet is the design of the protection system.

In small magnets, the most important question is what happens before

the detection because the protection can be easily taken care of with an

external dump resistor. The amount of stored energy and the operation

current are the key parameters that determine whether a magnet is small

or large. The stored energy necessarily needs to be dissipated or extracted

from the magnet. The operation current limits the terminal voltage and

thus the power for extraction. We consider a magnet to be large if the

external dump resistor is not adequate for protection and small otherwise.

The definition of adequate protection may vary for individual cases: the

hot-spot temperature, the voltage to ground or turn-to-turn, as well as the

temperature gradient may constrain the protection.

Because the classification of a magnet as small or large is vital for all

the phases of the quench analysis, one must first consider the size of the

magnet. The MIITs computation is the first approach that one takes. It is
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Figure 2.19. Design of prototype coil with the location of the reduced critical current
volume at the other end of the coil shown in brown color.

Figure 2.20. Dummy Roebel cable made of stainless steel.

pessimistic in the sense that heat conduction is neglected, and if it impli-

cates that the magnet is small, one can focus first on the quench onset only.

The MIITs analysis depends on the inductance of the magnet, the maxi-

mum terminal voltage, the current, the current density and the effective coil

unit cell properties: its area, heat capacity and normal state resistivity.

Here, we consider a Roebel-cable-based [29] five-turn, racetrack-like pro-

totype coil having a length of 220 mm and a width of 44mm at its widest

cross-section [36]. This coil with the location of the reduced critical cur-

rent zone is shown in Figure 2.19. The Roebel cable was 12mm wide and

1mm thick and made from 15 REBCO tapes (see Figure 2.20 for such a

dummy assembly on a spool). Copper plating was added to offer thermal

stabilization. The volumetric fractions of copper; Hastelloy, substrates, and

REBCO; and the insulation on the coil unit cell are shown in Table 2.5.

The insulated cable cross-section area was 12.2mm2. The insulation mate-

rial was Kapton. The aim of constructing this coil was to study the feasi-

bility of the Roebel cable in a coil with flat sides. For example, accelerator

dipoles, block or cos-Θ design, have flat sides. When the required magnetic

flux densities overstep those that can be achieved with LTS conductors,

one needs to change the technology to HTS-based magnets operated at low
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Table 2.5. Volumetric fractions of the most
important compounds on the coil’s cross-section.

Copper 31.5%
Hastelloy, substrate layers, and REBCO 38.5%
Insulation 30%

Table 2.6. Operations conditions considered in
the simulations and the most important param-
eters needed for the simulations. The given
operation current has a corresponding temper-
ature. Operation currents correspond to 80%

of Imax at a given temperature.

Parameter Value

Operation Current 9/5.6/0.9 kA
Operation Temperature 4.2/30/77K
Copper, RRR value 100
Superconductor, n-value 20

temperatures. The R&D project EUCARD2 [50] on which this section is

partially based was part of such an effort.

The goal of the work package on developing future magnets in the

EUCARD2 project was to produce a 5 T stand-alone accelerator-quality

magnet with an aperture for a beam tube. The results were reported by

van Nugteren et al. [82]. Eventually, the target was to test the magnet

also as an insert in an ∼13 T background field. For the current intermedi-

ate development step, the first prototype coil was characterized at various

operation temperatures in order to study quench and the relation between

the achievable current and the computed critical current. The operation

conditions and the most critical parameters utilized in the simulations are

displayed in Table 2.6. For the heat generation, we utilized the power law

in superconducting domain model (see Section 2.1.1). Cooling was also

neglected because the coil was impregnated. Therefore, adiabatic bound-

ary conditions for temperature were utilized in the simulations.

Based on the most demanding operation conditions, one can deduce

whether the magnet is small or large. With a terminal voltage limitation

of 1 kV and a coil current of 9 kA, the maximum dump resistor resistance

Rd is 0.11Ω. The terminal voltage limitation and the operation current



164 A. Stenvall, T. Salmi & E. Härö

determine the maximum dump resistor size via Ohm’s law. The induc-

tance L of the coil was 10μH. When the current decay was determined

only by the energy extraction and the coil inductance, one has for the

current

I(t) = Iop exp

(
− t

τ

)
, (2.26)

where the circuit time constant τ is L/Rd. Therefore, the current decay

integral equation (2.12) that considers only the energy extraction results in

0.00368 MIITs (only the time after the activation of the protection system

is considered), corresponding to a current decay of 99% of the operation

current in just 0.41ms. This short decay time is caused by the very small

inductance of the coil. The corresponding temperature increase from 4.2K

is 3.7K, from 50K is 0.2K, from 100K is 0.2K, and from 200K is 0.3K,

according to Equation (2.13). Therefore, this coil is small and thus the

temperature increase after the activation of the protection system is negli-

gible. One can then focus only on studying the temperature increase before

the activation of the protection system. To handle all the different cases

simultaneously, one can study how long it takes for an unprotected coil

to reach 400 K, and then, one can analyze the temperature and voltage

characteristics.

The main quench simulation results are displayed in Figure 2.21. The

most important observation is that when a hot-spot temperature of 100K

is reached, the terminal voltage is around 100mV. Therefore, the quench is

a safe event if the detection and the energy extraction systems work as they

are supposed to. However, the temperature increase from the correspond-

ing value at 100mV to 400K will last only 43, 102, and 4.3 s for operation

currents corresponding to initial temperatures of 4.2, 30, and 77K, respec-

tively. Thus, the successful detection of the quench, as well as the rapid

operation of the quench protection system that bypasses the current source

and connects the dump resistor, is very important.

Figure 2.22 presents the temperature profile of the coil at the time

instant when the hot spot has reached a temperature of 400K. In this case,

the coil quenched at 4.2K. As already known from the previous observa-

tions, the high-temperature volume is very localized, not even extending

through the thickness of the coil, which only consists of five turns. This

forces the quench detection system to be such that it considers the whole

coil volume. Also, the thermal stresses during the quench can be critical,
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Figure 2.21. Temperature as a function of (a) time and (b) voltage.

especially with REBCO-based coils that are prone to suffer delamination

of the tape due to its layered structure [83].

To conclude the quench analysis, the pessimistic analytical computa-

tions indicated that the coil is small and that it can be protected with

an external dump resistor. The current extraction in the worst case takes

less than 0.5ms. Then, the simulation of the quench event showed that

before the safe detection threshold voltage of 100mV was reached, the coil

temperature had risen to around 100K, slightly depending on the initial

temperature. A critical observation was made that the time derivative of

the temperature at 100mV is steep and that, in the worst case, there is

only 43ms for the protection system to react before a temperature of 400K

is reached. It is not certain if 400K is even a safe limit. One reason for this

is the localized hot spot, which can cause high thermal stresses in the wind-

ing. The thermal stresses must be considered, and experiments are required
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Figure 2.22. Temperature profile on the coil’s surface when the hot spot reaches 400K.

to assure that the quench can be carried through safely. Also, the quench

detection system needs special attention. Because the quench is localized,

the entire coil must be closely monitored. This is the main output of this

kind of analysis for the engineering team to take the quench protection to

the level of actually implementing and characterizing the system.

2.5. Design of Quench Protection Heaters for Nb3Sn

Accelerator Magnets

In large accelerator magnets, the external energy extraction with a dump

resistor is not enough for protection. Therefore, even in subscale prototyp-

ing, alternative protection methods must be investigated. In high-energy

accelerator magnets, especially dipoles and quadrupoles, protection has tra-

ditionally included quench protection heaters [41, 62]. These heaters cause

a widespread quench in the magnet and, correspondingly, rapidly enlarge

the heat dissipation volume from the initial hot spot, thus bringing down

the operation current. The most important characteristic of a protection

heater is the time delay between powering them and quenching the magnet

below the heaters.

This section considers an analysis of quench protection heaters, start-

ing from their design via simulations to experiments and, therefore, to
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the benchmark of the simulation results. Also, the model behind the sim-

ulations is discussed. This case study arises from the quench protection

of the Nb3Sn accelerator quadrupole magnets5 that are being designed

for the Large Hadron Collider (LHC) luminosity upgrade [25]. We focus on

the quench protection heater design of a subscale-model magnet, called long

high-gradient quadrupole (LHQ), that has been designed during the R&D

phase. We show an example of how simulations can be used to guide the

heater design.

In this section, we first briefly consider the technological development

related to Nb3Sn quadrupoles for the LHC luminosity upgrade. This is

important for understanding the target of the heater design. We include the

MIIT considerations of the LHQ model magnet design to demonstrate the

need for additional quench protection. Then, we consider the heater tech-

nology in general. It is especially important to recognize the parameters

that can be optimized. This is related to the design phase of the quench

protection heaters and its coupling to the simulations. Thus, we consider

the optimization of the heater design for the LHQ through simulations.

At the end, we also present an experimental characterization of the heaters

that is viable for validating the usability of the design and benchmarking

the simulation results.

2.5.1. R&D of Nb3Sn quadrupole magnet

The goal of the luminosity upgrade is to develop high-gradient Nb3Sn

quadrupole magnets for the LHC IR in order to achieve, before the col-

lision, a focusing of the particle beams that is stronger than the currently

existing ones [11]. The design parameters of the IR magnets (called MQXF)

are the following:6 a 132.6T/m gradient in a 150mm aperture with a nom-

inal current of about 16.5 kA. The stored energy will be about 1.17MJ/m

and the peak field in the conductor, 11.4T [23]. Magnets with two differ-

ent lengths are considered: 4.2 and 7.15 m. In the preparation of designing

and building such magnets, several shorter and smaller aperture prototypes

have been designed and tested [4].

5A quadrupole magnet consists of four coils that produce such a gradient of magnet flux
density to its aperture that a beam of charged particles is focused toward the center line
of the magnet [42].
6These values date back to 2015, the time of writing of this chapter. Updated values
can be found in the following preprint: https://arxiv.org/abs/2203.06723v1.

https://arxiv.org/abs/2203.06723v1
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The prototypes’ sizes and complexities have increased based on the expe-

rience with the behavior of the materials and fabrication methods. Thus,

the model–design–simulation–test procedure can be seen in the magnet

development too, on a scale of several years. At the time of writing this

chapter, the closest to the final magnet was a 3.3m long, 120mm aperture

magnet: the LHQ.7 The operation current of the LHQ is about 15 kA and

the peak field in the conductor, about 12T. Figure 2.23 presents the coil

configuration and the support structure related to the designs of the MQXF

and the high-gradient quadrupole (HQ), which has the same cross-section

as the LHQ.

The quench protection of these compact high-field and high-energy mag-

nets will be very challenging due to the high current density in the copper

stabilizer after a quench has originated. Using the MIITs concept, one can

compute that in the LHQ, a current integral of 19.3MA2s corresponds to

a 350K hot-spot temperature. Based on the gained experience with the

Nb3Sn magnet R&D, the MIITs corresponding to temperature increase of

350K is the upper limit for a quench that does not degrade a magnet [3].

In the MIITs calculation, the insulated cable area was 23.6mm2, the

Cu fraction was 40%, the Nb3Sn fraction was 33%, the G10 (insulation)

fraction was 27%, RRR was 100, and the magnetic flux density for magne-

toresistivity was 12T. The material properties were taken from the MAT-

PRO database [39]. At constant operation current of 15 kA, the considered

19.3MIITs correspond to 85ms. Therefore, the magnet energy must be

rapidly discharged.

The MIITs calculation can be used to derive the first estimation of the

quench protection requirements. Assuming operation at 15kA and 20ms

for the quench detection, validation, and activation of the protection sys-

tem, the MIITs left for the current decay phase are about 15. When expo-

nential current decay is considered, the circuit time constant (L/R) can

be up to a maximum of 130ms. The inductance of the magnet is 7mH/m.

Thus, for the 3m long prototype, the total inductance is 21mH. To get

the needed circuit time constant, a circuit resistance of at least 160mΩ

is required. If this was achieved with only an external dump resistor, its

voltage would be about 2.4 kV at nominal operation current. The same

voltage would be across the magnet’s terminals and beyond the insulation

limit (1 kV). Therefore, an external dump resistor is not a solution; the

7Finally, the full LHQ magnet was not built. One LHQ coil was built and tested
individually.
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(a) (b)

(c)

Figure 2.23. (a) Coil configuration in a small-sized model of MQXF, (b) the support
structure envisioned for MQXF, and (c) the cross-section of HQ magnet structure.

Source: (a) courtesy of S. Izquierdo Bermudez, CERN, see Ref. [85] for more details;
(b) see Ref. [85]; (c) see Ref. [86].

magnet protection must rely on internal absorption of the energy, and the

resistance must come from the resistive cable segments. Also, in the case

of a longer magnet (final target is 7m), the inductance of the magnet and

the required resistance would be even larger, making a protection system

relying entirely on a dump resistor even less practical. However, due to the

difficulty of protecting the MQXF, the advantage of using a small dump

resistor to extract part of the energy is being investigated separately from

the heater design study.
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In order to increase the resistance of the magnet assembly, protection

heaters are activated upon quench detection to rapidly induce a widely

spread normal zone in the coils. The advantage of a large normal zone

with respect to hot-spot temperature is also evident when noting that the

conversion of the stored magnetic energy to heat occurs only through Ohmic

losses in the normal conducting cables. The dissipation of the energy into a

larger volume leads to a more uniform temperature distribution and thus a

lower peak temperature compared to a case where all the energy is absorbed

by only a small quenched cable volume. Therefore, the efficiency of the

heaters can be characterized by the heater delay, i.e. the time it takes to

initiate quench below the heater, and by the fraction of the coil that is

quenched by the heaters.

As the design of the new LHC magnet is an iterative process, so is

its protection heater design. R&D magnets, such as the LHQ, are used to

test different protection heater layouts and other quench protection design

concepts. Here, we describe a heater design study that was done for the

LHQ magnet. This case provides an example of how the model–design–

simulation–experiment principle applies to a quench analysis task, including

the heater design.

This particular study investigates the option of protecting the magnet

only with the heaters: dump resistor and potential help from AC losses are

neglected in this analysis [45]. The goal of this heater design was to quench

a volume as large as possible as fast as possible within certain constraints

related to powering the heaters. Though successful protection at operation

currents below the nominal one is interesting too, in this study, we focus

on the quench at operation current only.

2.5.2. Heater technology and target variables for

optimization

The heater technology that is considered here is based on the so-called trace

technology [21]. The traces are like flexible printed circuits that consist of

25μm thick stainless-steel heater strips glued onto a polyimide layer. The

traces are impregnated on the coils’ surfaces. The polyimide layer is needed

for electrical insulation. A pre-charged capacitor bank is used to deliver

power to the heaters. Therefore, the heater’s power is not constant during

its operation but decays according to the RC time constant of the circuits,

where R is the resistance of the heater circuit and C is the capacitance of

the capacitor bank. R changes slightly during the operation because of the
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temperature increase; however, a constant R typically describes the power

decay in the heaters sufficiently well.

Ideally, to heat a coil fast, one would use heaters with very high power,

covering the entire coil surface and use a very thin insulation layer to min-

imize the thermal barrier between the coil and the heater. However, there

are several constraints to the heater design set by the available technol-

ogy and other magnet design aspects. The limitations to consider in this

particular case are summarized as follows:

(1) Insulation thickness: A too thin insulation may lead to an electric

breakdown and cause damage to the heater or to the coil. A too thick

insulation increases the heater delay. Here, the design uses 50μm thick-

ness because empiric experience suggests that it is the thinnest safe

thickness to consider.8

(2) Strip location: In wind-and-react cos-nΘ Nb3Sn coils [42], the heaters

are applied on the coil’s inner and/or outer surfaces after heat treat-

ment. In previous R&D models, the heaters on the coil’s inner layer

surface have shown signs of degraded contact with the coil [2]. There-

fore, in this design, the heaters are placed only on the coil’s outer sur-

face. Moreover, the innermost and outermost coil turns must be left

free for other instrumentation or for mechanical purposes.

(3) Strip length: In order to avoid additional power wires from the middle

of the magnet, a single heater strip must extend over the entire coil

length.

(4) Heater voltage: The total voltage across a heater strip can be limited

either by the available heater power supply or the electrical insulation’s

withstand voltage (taking into account that the coil’s voltage may be

of opposite polarity and add to the heater powering voltage). In this

design, the heater’s terminal voltage is limited to 400V.

(5) Heater temperature: In this design, the upper limit of the heater strip’s

temperature is 350K. Higher temperatures might cause thermal stresses

that can damage the heater.

Due to these limitations, most of the heat in the heater is deposited at

the so-called heating stations. The limitations on the heater’s temperature

8In recent years, several voltage integrity tests have been done with different insula-
tion thicknesses at Lawrence Berkeley National Laboratory, Berkeley, California, USA.
In these tests, a 25µm thick insulation has failed several times, and 50 µm has been
considered the safe option.
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determine the energy that can be deposited per heating station. The lim-

itation on the voltage then constraints the number of heating stations one

can have. In long coils, the heater strips must also be long. Therefore,

the requirements for homogeneous power dissipation can make the heater

design inefficient, and it is more effective to deposit the energy in specifically

designed heating stations to have a rapid quench onset, i.e. short heater

delay. This can be achieved by reducing the total resistance of the heater

strip by having lower resistance paths between the periodically placed heat-

ing stations. The coil quenches under the heating stations due to the tem-

perature increase in the heaters and the consequent heat conduction to the

coil. Then, the quench propagates naturally, filling the space between the

heating stations.

From several analyses [21, 56, 57] performed during the development of

the R&D model coils, it is known that both longer heating stations and

higher power reduce the heater delay. However, their impact saturates at

some point so that on increasing their values above a certain point, the

decrease in the delay is not noteworthy. Thus, during the heater design

phase, the particular design must be selected carefully: The higher the

power and the longer the heating stations, the fewer they can be because

the total energy and voltage are limited. When the distance between the

heating stations is increased, i.e. the heater’s period is increased, the time it

takes for a quench to propagate between the heating stations increases. The

design of the strip geometry and the optimization of the heating stations’

length and spacing are the goals of this design study.

There are different ways to make a heater strip with heating stations.

One can utilize straight stainless-steel strips on the coil outer layer. The

low-resistance path between the heating stations is achieved with copper

cladding [46, 47]. This technology was utilized in the LHC Nb–Ti mag-

nets. In the so-called Nb3Sn-based LQ magnet (also a prototype coil in

the MQXF development program) only stainless steel was utilized and the

heating stations were narrow segments [21]. The low-resistance segments

were implemented with wider stainless-steel paths. The heater design for

the LHQ was based on the same technology as the LQ heater and used

stainless steel only. The shape of the strip, however, has not been inves-

tigated earlier; see Figure 2.24 for both the LQ and LHQ heater shapes.

The novelty of the LHQ heater design concept, when compared to existing

concepts, is that it has longer heating stations and their length can be opti-

mized based on the field region under them. In particular, more heat can

be directed toward the lower field area by using a longer heating station.
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(a)

(b)

Figure 2.24. (a) Schematic layout of LQ heater. Source: Ref. [21]. (b) Schematic lay-
out of LHQ heater strip.

Source: Reproduced from Ref. [59]. Both figures are not to scale.

The low-field region has a higher thermal margin than that near the coil’s

critical point. Therefore, more heat is required there to cause a quench.

In the LHQ, each coil outer layer of the magnet has four strips, two on

each side of the pole. Figure 2.25 shows the magnetic flux density distribu-

tion in the cross-section of one half of the coil (an octant of the magnet’s

cross-section) and the heater strip locations at the high-field (HF) block

close to the central pole piece and the low-field (LF) block near the mag-

netic mid-plane.

The outer layer consists of two cable blocks separated by a copper wedge.

One heater strip is used to cover each block. The widths of the strips are

based on the dimensions of the block. The heating stations are half of the

strip width. The HF block has an arc length of about 24.4mm. In order to

leave the pole turn and the copper wedge uncovered, the heater strip width

was determined to be 21mm. The two heating stations (HS1 and HS2 in

Figure 2.24) were decided to be 10.5mm wide in order to cover all the turns

below the heater with heating stations. The arc length of the LF block was

about 20.8mm. To leave one turn uncovered near the mid-plane, the heater

strip width was fixed as 18mm, with two 9mm wide heating stations. The

lengths (LHS1 and LHS2 in Figure 2.24) and the distances of the heating

stations (i.e. the Lperiod in Figure 2.24) have been optimized by simulating

the efficiencies of the different heaters in both HF and LF blocks.
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Figure 2.25. Half of the LHQ coil with magnetic flux density distribution and the loca-
tion of the two heater strips with their azimuthal dimensions based on the coil block

dimensions. The shorter arrows show the locations of the heating stations in the heater
that occupy both halves of the heater’s width.

2.5.3. Modeling the heater’s efficiency

The interest of the quench heater delay simulation is limited to the time

between the heater’s activation and the coil’s transition above the current-

sharing temperature. The quench analysis engineer is also interested in the

time it takes for a quench to propagate between the heating stations. It

is typically assumed that the magnet operates at constant current until a

heater causes a quench. For each turn of the coil, the model for the heater

efficiency and cable normal transition is composed of only two parts:

(1) the quench provoked by the heater under the heating stations, and

(2) the quench propagation between the heating stations.

The modeling of these two parts is separated in this analysis. Moreover,

since the turn-to-turn thermal propagation is neglected, each turn of the

coil is considered as an individual thermal system. The error arising out of

this assumption is not important when the adjacent turns are also heated

in a similar manner [60]. The heater delay is modeled based on the heat

diffusion from the heater to the cable. The longitudinal quench propaga-

tion, on the other hand, is computed simply by assuming a known constant

quench propagation velocity for the known distance between two heating

stations. The total delay is the sum of the heater delay and the quench
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propagation time. The purpose of the heater delay simulation is to solve

the heat diffusion from the heater to the cable in order to know the cable’s

temperature evolution and its transition from the superconducting to the

normal conducting state.

The heater-coil structure always includes several thin layers of differ-

ent materials with highly nonlinear material properties. In the simulations,

high thermal gradients are present on very short time scales (sometimes μs).

Therefore, utilizing a computational tool based on numerically solving the

heat diffusion equation in 3D leads to a computationally very expensive

simulation. Furthermore, because one often simulates several cables with

several different heaters, the individual simulation time tends to multiply.

Therefore, several simplifications and reductions have to be adopted in the

simulations.

The physics of the heat transfer problem can be limited to solving the

heat diffusion equation (2.1) within one cable, its insulation, and the heater

trace. Considering each coil turn separately and isolated from the other

turns allows reducing the modeling domain to 2D, representing the cable

longitudinally. The domain further reduces to half of the heater period in

the case of periodic heater geometry (with the heating station at the center

of the period). A schematic layout of a heater on the coil’s surface and the

modeling domain are shown in Figure 2.26. The assumptions in the heater

delay simulation are as follows:

(a) (b)

Figure 2.26. (a) The schematic layout of the heater and (b) that of the modeling domain
for the 2D heat diffusion simulation that solves for the heater delay. Note that the
dimensions are not to scale.

Source: Reproduced from Ref. [58].
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• The heat transfer from the heater to the cable occurs through conduction

only.

• There is a uniform power distribution within the heater’s cross-section

in both the heating station and the wide segment. The computation is

based on the heater current and the heater cross-sectional area.

• Each turn of the coil is considered an individual thermal system.

• The modeling domain consists of half of the heater period in one cable.

The included materials, in addition to the heater and bare cable, are the

cable insulation on the top and bottom of the cable and the heater insu-

lation. Above the heater is the coil ground insulation, which insulates

the coil from the support structure i.e., the collar. Below the cable is the

insulation to the inner coil layers.

• The insulation on the cable’s wide sides is neglected.

• The cold components in the immediate surroundings of the top and bot-

tom of the system (metallic collars around the coil or the other coil layer)

are modeled as heat sinks at constant temperature (the temperature of

the cryogenic bath).

• The time taken for the transition to the normal state is based on the

cable’s maximum temperature increasing above Tcs.

• The magnetic field is considered constant across a cable’s cross-section.

• During the whole simulation, the operation current remains constant.

This allows pre-computation for Tcs.

• The critical current as a function of the field and temperature is computed

at a single stress state.

• The material layers are expected to have a constant thickness.

• Homogeneous and isotropic thermal properties are utilized for the bare

cable (i.e. individual strands are not modeled).

• Because the simulation is considered only until Tcs, no Joule heating

occurs in the cable.

The thermal model is characterized by the heat diffusion equation (2.1).

Heat generation occurs only in the heater, and it is computed as

Q(t, T ) = ρ(T )Jss(t)
2, (2.27)

where Jss(t) is the current density in the heater strip. Its time dependence

is emphasized, as the heaters are energized from a preloaded capacitor bank,

and the current decays during the heater operation.

An important modeling decision is the criterion for the quench onset

induced by the heater. The possibility of validating the simulations with
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experiments has been kept in mind. In the measurement, the quench onset

is typically associated with a detectable monotonously increasing resistive

voltage rise in the coil. That is why we defined the quench onset to be the

time instant when the maximum temperature in the cable reaches Tcs.

A dedicated simulation tool, based on the finite difference method [13]

with explicit time integration [7], has been developed to solve the described

heater delay problem [58]. The following results have been obtained with

this tool, whose detailed implementation is discussed by Salmi [59].

2.5.4. Guidelines for parametric optimization of heaters

Because the parameter space for a heater strip is limited and the com-

putation routine has been simplified and optimized, it is possible to use

parametric analysis to find the optimum heater design. In the analysis,

both the HF and LF (see Section 2.5.2 and Figure 2.25) strips are con-

sidered separately. The goal of optimization is to minimize the maximum

sum of the heater delay and quench propagation time between two heat-

ing stations among all the turns that are covered by the heater strip. The

quench propagation between the heating stations is directly known from the

heater’s period and the predetermined, or given, normal zone propagation

velocity. One should also note that another criterion for the optimization

could be set. For example, the average delay could be minimized. The cur-

rently selected method minimizes the maximum delay, but it may do so at

the expense of increasing the very short delay times somewhere in the coil.

The currently utilized routine is as follows:

(1) Compute the heater delay in each heating station as a function of set

heater coverages and powers. The power decay time constant, i.e. the

time variation of the current density of the heater strip, for each peak

power is defined such that the temperature in the heater does not exceed

350 K in adiabatic computation (this computation is equivalent to the

MIITs of a superconductor).

(2) List all possible heater geometries (power, coverage, and period) that

are within the design limits.

(3) Compute quench propagation time between the heating stations and,

consequently, the longest heater delay in each turn of the coil for every

heater geometry as the sum of the heater delay and propagation time.

(4) Choose the final design: The heater geometry that led to the smallest

time until all the turns under the heater have been quenched.
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In order to define the heater periods, the heating station lengths for the

HF and LF blocks must be set. The heater period for a given combination

of HS lengths can be defined from the heater’s terminal voltage limitation.

The period should be the smallest possible that keeps the heater resistance

below the limiting value. This computation is based on approximating the

heater’s resistance by considering it to consist of rectangular blocks, emu-

lating the heating stations and the wider segments in between, which are

connected in series.

When computing the delay for each magnetic field region as a function of

heating segment length and power, the heater period is assumed to be suf-

ficiently long so that it does not impact the result. Then, each period does

not require a separate heater delay computation. The heating provided by

the wide segment has been ignored in the simulations, though its influence

on the resistance, which determines the current, is considered. Therefore,

the period only influences the quench propagation time between the heat-

ing stations. To go through all the possible heater layouts, the predefined

heating station lengths are combined in all the possible ways. These fix the

periods so that the heater’s terminal voltage does not exceed the limiting

value, i.e. 400 V here.

2.5.5. Simulations for the LHQ heater design

The presented modeling approach and the heater design concepts were

applied to the LHQ magnet heater design. The strip length was 3m, and

a 0.3Ω margin was left for the connections to the capacitor bank. The

magnet’s parameters are detailed in Table 2.7. The optimization was done

for a magnet current of 15.4 kA, which is 80% of the short-sample limit.

The magnetic flux density on the coil’s outer surface was calculated using

ROXIE [52], and the lowest value of the magnetic flux density under each

heating station was used to determine Tcs and, consequently, the heater

delay. On the HF block, the magnetic flux densities for HS1 and HS2 were

fixed at 8.1 and 5.8T, respectively, with the current-sharing temperatures

of 9.2 and 11.0K, respectively. On the LF block, the corresponding val-

ues were 5.6 and 5.2T and 11.2 and 11.4K for HS1 and HS2, respectively.

These magnetic flux density values are the maximum ones in the cables

that have the lowest maximums below the corresponding heating stations.

However, one could also utilize the simulated magnetic flux density dis-

tribution, which is shown in Figure 2.25, its minimum, or the average

value. Because the delay in experiments is often associated with the first

observation of a resistive signal, the utilization of the maximum value is
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Table 2.7. LHQ cable and coil parameters
for heater simulation.

Parameter Value

Number of strands per cable 35
Strand diameter 0.79mm
RRR 90
Strand Cu/non-Cu ratio 1.20
Cable width 15mm
Epoxy fraction 0.18
Insulation material G10
Cable insulation thickness 0.1mm
Ground insulation around coil 0.38mm
Insulation between coil layers 0.5mm

justified. Furthermore, with simulations, one does not aim at tackling all

the design issues, but prototyping also gives important input. The critical

surface utilized in the determination of Tcs was based on the Godeke fit [28]

and the HQ coil number 15 therein. The initial temperature in the simula-

tions was 4.2K. The normal zone propagation velocity was assumed to be

12m/s in the HF block and 7m/s in the LF block.

The temperature and magnetic flux density dependencies were consid-

ered in all the material properties. In the simulations, the effective material

properties of the uninsulated cable were utilized in the cable volume. The

properties of copper were taken from CryoComp [15], the specific heat of

Nb3Sn was based on a fit proposed by Manfreda [38], and epoxy specific

heat was based on CryoComp [15] (below 4.4K, a linear extrapolation is

used with an assumption that the specific heat of epoxy is 0 J/K/kg at

0K). The thermal conductivities of Nb3Sn and epoxy were assumed to be

negligible when compared to the thermal conductivity of copper. The G10

properties were taken from Ref. [43]. The heater’s polyimide insulation

was based on the properties of Kapton and taken from Ref. [43] (with an

extrapolation presented by Manfreda [38] below 4.3K). The specific heat of

stainless-steel and its thermal conductivity were taken from Ref. [43]. The

resistivity of stainless-steel was based on the work of Prestemon [44].

The heater delays were evaluated for heater peak powers from 50 to

300W/cm2 with a step size of 25W/cm2 in the HF heater and 28W/cm2

in the LF heater.9 Consequently, with the stainless-steel strip thickness of

9The power per area is a useful parameter when the efficiency of different heaters are
compared. Naturally, it does not represent the heat flux entering the coil because some
heat flows into the coolant too.
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Figure 2.27. (a) LHQ HF heater delay as a function of HS length with peak powers
of 50, 134, and 300 W/cm2: solid lines represent HS1 and lines with markers, HS2.
(b) The minimum period that can be used as a function of the sum of HS lengths.

25μm, the circuit’s time constant for the heater’s current varied from 73ms

(with 50W/cm2) to 12ms (with 300W/cm2). Figure 2.26(a) shows the

dependence of the HF heater delays on the heater’s longitudinal coverage

(HS length) with powers of 50, 134, and 300W/cm2. For HS1, the impact

of the heating station length started to level off at 25mm for the powers of

300W/cm2 and 134W/cm2. The corresponding leveling off starts at 30mm

for the power of 50W/cm2. For HS2, the corresponding values were 30 and

35mm. At the leveling-off length, less than 10% change occurs when the

heater length is further extended to 50mm.

After the heater delays as a function for heater coverage and power were

known at each field, all combinations of HS1 and HS2 lengths were con-

sidered. The HF heater period length for different HS length combinations

is shown in Figure 2.27(b). At 300W/cm2, the periods were always larger

than 0.5m and even larger than 1m if the sum of the heating station lengths

was larger than 50mm. This, combined with only 2–3ms improvement in

the delay compared to the case when the heater power was 134W/cm2, sug-

gests that this power is too high for the heater. For the powers of 134 and

50W/cm2, the periods were between 60 and 170mm, which is in the range

of practical interest. In this power range, the optimal period depended neg-

ligibly on the heater power. This is because there is a need for a minimum

wide segment length (the width of the strip at its widest point, i.e. 42mm)

between the transitions of HS1 and HS2 to make it at least a square.
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Table 2.8. Results from the heater optimization procedure. The delay times refer
to the longest delay times within all the turns the heater covers.

HS1 HS2 Time Heater Total
Heater length length Period Power constant delay delay
location [mm] [mm] [mm] [W/cm2] [ms] [ms] [ms]

HF block 15 50 107 134 27 12.5 14.9
LF block 30 35 100 125 37 14.7 19.3

For both heaters, the layouts that gave the shortest total delays are

detailed in Table 2.8. It is clear that these delay times represent a signifi-

cant quench load for the hot-spot temperature. This heater layout was also

drawn and tested in a real coil.

2.5.6. Testing the designed heater layout

The designed heater was fabricated and implemented in an LHQ coil that

was tested in the so-called mirror structure. This configuration allows test-

ing individual coils without cooling all four coils that are required for a

quadrupole magnet [9]. However, the utilization of the mirror structure also

brings about some uncertainty in the magnetic flux density distribution.

In the experiment, the outer layer trace had on its one side (including

both the LF and HF blocks) the new heater design and on its other side a

scale-up of the LQ-style design for comparison. The LF and HF heaters of

the new heater design were connected together at the coil end. The reason

was that the grooves at the coil’s ends were already designed for only one

connection, and the coil fabrication schedule did not allow the redesign

of the end parts. This was not expected to impact the peak power of the

heaters since the voltage will be the same across both strips, i.e. when

the LF and HF heaters are in parallel, although the optimal time constants

(capacitance values) could not be selected. A more significant disadvantage

was that, in this way, the strips could not be tested individually, and the

advantage of added redundancy, which is tolerable in experiments but not

in the final magnet, was lost. Photos of the implemented heaters are shown

in Figure 2.28.

The measurement of the heater’s resistances, for both the LHQ and LQ

style heaters, and the comparison with calculations highlight some short-

comings of the heater modeling. Table 2.9 lists the computed heater

resistances in the design and of the implemented strips using the same

analytical resistance calculation as in the design phase and strip resistances
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Figure 2.28. Photo of protection heaters impregnated on the outer surface of an LHQ
coil, developed as part of the of U.S. LHC Accelerator Research Program (LARP). In
this coil, two different heater designs were tested.

Source: Photos by Jesse Schmalzle (Brookhaven National Laboratory) and U.S. LARP.

Table 2.9. Comparison of the strips’ resistances (at 4.5K).

Simple FEM Measured
Designed computation computation Measured when
strips in for for from coil connected

Heater parallel (incl. implemented implemented in cryostat to capacitor

design margin) [Ω] strips [Ω] strips [Ω] [Ω] [Ω]

New 2.4 2.6 2.8 3.1 3.5
LQ-style — 3.7 4.4 4.8 5.2

computation with an FEM-based tool that solves the resistance from a cur-

rent stationary problem and two measurements. The comparison shows

that the analytical model for resistance calculation resulted in about 10%

smaller resistance than the FEMmodeling, which were computed only after-

ward because the currents in the heaters were lower than expected. There-

fore, the experiment gave feedback to the model too. One cannot directly

compare the measured and simulated resistances because the simulations

only include the area of the heating stations, whereas in the measurement,
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the straight end part of the heaters and some wiring are also considered.

Of course, one should note that the comparison with the measurement also

includes the uncertainty related to the used literature value of stainless-

steel resistivity and the fact that the thickness of the implemented heater

had uncertainty as well. Also, the connections between the heater strip and

the capacitor bank were non-negligible (0.4Ω), though in the design, they

were not considered. The measured resistance reduced the heaters’ power

almost by a factor of two from the design value. In future modeling, one

should pay special attention to the resistances to get a better idea of the

power that can be applied to the heating stations.

The designed heater was powered at 400V, leading to a power of about

72W/cm2 in the HF heater. The LQ-style heater was powered at 280V

in order to obtain the same power. The measured circuit time constants

governing the current decay of the heaters, i.e. their power as a function of

time, were 25ms in the LQ-style heater and 17ms in the new heater. The

simulations of the heaters in these conditions were performed in order to

find the first delays for both heater layouts that could be compared with

measurements. The impact of the wide part was also accounted for in these

simulations. It is noteworthy that the measurements can catch only the first

delay in the coil. The experimental results and the new simulations with

the measured lumped parameters are shown in Figure 2.29. The simulated

delays for the new heater agreed very well with the measurement, except

at 14.6 kA, where the measured delay was considerably shorter.

Simulation of the LQ-style heater gave delays systematically longer than

the measured ones. One reason for this can be the shape of the heating sta-

tion: It touches only four strands of a cable, and the power is not evenly dis-

tributed on the heating station surface. Therefore, the assumption related

to the homogeneous current distribution in the heater strip was not ade-

quate in that case — see also Refs. [59, p. 97] and [84].

The goal of inducing a faster current decay with the new heater design

was also characterized. The results are summarized in Figure 2.30. Accord-

ing to the results, when the heaters were powered with the same power

density, the new heater design was more effective in reducing the MIITs,

but when the LQ heater was used at its maximum power at the highest

test current, it resulted in slightly smaller MIITs.

The feedback that goes from this experiment back to the heater design

process is that for the new heater design style, the simulated delays are
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Figure 2.29. Measured heater delays in LHQ compared with simulations for (a) LQ-
style heater and (b) new heater design. Delays for both the heating stations of the new

heater design at the HF block are shown. The shortest delay times are the ones that
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Figure 2.30. Measured LHQ quench load (i.e. the current decay integral in Equa-
tion (2.12)) after inducing a quench with the different heater designs.

quite reliable. However, the quench propagation velocity remains uncer-

tain because it could not be characterized in these tests. In addition, the

resistance computation for the heaters must be reconsidered, and special

attention must be paid to the heaters’ connection to the capacitor bank.
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an MgB2 coil with a ferromagnetic matrix. Supercond. Sci. Technol. 19, 32.

[67] Stenvall A, Korpela A, Mikkonen R and Grasso G. 2006. Stability consider-
ations of multifilamentary MgB2 tape. Supercond. Sci. Technol. 19, 184.

[68] Stenvall A, Korpela A, Mikkonen R and Grasso G. 2006. Quench analysis of
MgB2 coils with a ferromagnetic matrix. Supercond. Sci. Technol. 19, 581.
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3.1. Introduction

In practical applications, high-temperature superconductors (HTS) are

subject to stress from fabrication, thermal contraction, and operation. This

stress can at times be substantial, producing high levels of strain, which

contribute to a critical current degradation of the superconductor. The

performance of superconductors under stress and strain is in a large part

governed by their mechanical properties.

The main types of stress that have the most significant influence on

HTS, particularly for magnet applications, are bending, torsion, uniaxial

and transverse loads. Among other sources, bending stress occurs from

winding of magnet coils, torsion stress from twisting during fabrication to

minimize AC loss, uniaxial stress from different thermal contraction rates,

and transverse stress from electromagnetic Lorentz forces.

Understanding the critical current behavior of HTS under stress and

characterizing their mechanical properties is an important research area

being investigated. Structural finite element analysis (FEA) is a powerful

computational method being used to study this electromechanical behavior

of superconductors.

c© 2023 The Authors. This is an Open Access book chapter published by World Scientific
Publishing Company. It is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License which per-
mits use, distribution and reproduction in any medium, for non-commercial purposes,
provided that the original work is properly cited.
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FEA uses a numerical technique called the finite element method, where

an object or system is discretized into simple geometric shapes called finite

elements, which are interconnected at nodes. By assembling and solving

a system of governing equations for each finite element (comprising con-

stitutive relationships, material properties, degrees of freedom, etc.), the

behavior over the domain of the entire system can be approximated. The

advantage of FEA as a numerical tool is its ability to approximate complex

systems with no closed-form analytical solution.

3.2. HTS Tapes and Cables

Second-generation rare-earth-barium-copper-oxide (REBCO)-coated con-

ductors have a thin rectangular tape geometry and a multilayered com-

posite architecture, as illustrated by the schematic layout in Figure 3.1.

These HTS tapes have a strong structural material for a substrate, on

which ceramic oxide buffer layers and a superconducting layer are deposited

by chemical or physical means. A silver cap is applied on top of the

REBCO layer followed by a coating of copper for stability. These HTS

tapes are available from a variety of manufacturers, each with its own

unique characteristics, including materials, thicknesses, layers, and deposi-

tion techniques [1–6].

HTS such as these REBCO-coated conductors have great mechanical

properties, which are governed by the strength of the substrate material and

Figure 3.1. Schematic layout of the multilayered composite architecture of REBCO-
coated conductors (HTS tapes).

Note: Layers are not to scale.

Source: M. Takayasu, J. V. Minervini and L. Bromberg, Massachusetts Institute of
Technology.
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the thickness of the copper stabilizer. They also have excellent high-current

capabilities at high magnetic fields, making them very promising conductors

for applications, such as accelerator and fusion magnets. The main chal-

lenge of REBCO-coated conductors is their flat tape architecture, which

causes mechanical and field-orientation anisotropies.

Various applications require HTS-cabled conductors with low AC loss

and high current density. Several novel cabling methods for REBCO-

coated conductors are under development. Examples of the five predom-

inant cabling techniques are shown in Figure 3.2. Each cabling method has

differences in assembly, tape utilization, and transposition and mechanical

properties, among other things. The Roebel assembled coated conductor

(RACC) punches HTS tapes with a zigzag pattern and then assembles

them into a Roebel bar configuration [7]. The conductor on round core

(CORC) cables tightly winds multiple coated conductors in a helical fashion

on a small round former [8]. Twisted stacked-tape cables (TSTC) stack

multiple tapes into a rectangular configuration and then twist them along

the stack axis [9]. A variation of the stacked-tape cable is round strands

made of twisted stacks, in which the stack of coated conductors is placed

between two half-round copper profiles [10]. These cables can also be used

as the base conductor for larger multistage Rutherford or cable-in-conduit

(a) (d)

(e)

(b)

(c)

Figure 3.2. HTS cabling methods: (a) twisted stacked-tape cable, (b) Roebel assembled
coated conductor, (c) conductor on round core cables, (d) HTS slotted-core CICC, and
(e) round strands made of twisted stacks.

Source: (a) M. Takayasu, J. V. Minervini and L. Bromberg, Massachusetts Insti-
tute of Technology; (b) A. Kario, Karlsruhe Institute of Technology, Germany;
(c) Advanced Conductor Technologies; (d) G. De Marzi and G. Celentano, ENEA, Italy;
(e) N. Bykovskiy, Paul Scherrer Institute, Switzerland. More details in Refs. [11–13].
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conductors (CICC) made with multiple cables. Another cabling technique,

designed particularly for fusion applications, is the HTS slotted-core CICC,

where stacks of tape are placed in five helical slots of an aluminum core [11].

The cable also has an external jacket and a central cooling channel for liquid

cryogen.

To improve cable processing, limit fabrication degradations, and maxi-

mize operational performance, it is essential to characterize the mechanical

properties of the HTS tapes and cables and determine their electromechani-

cal behavior under stress. Structural FEA is one numerical technique being

used for this investigation.

3.3. FEA Research Areas

Various institutions are utilizing FEA as an insightful tool to investigate the

electromechanical behavior and mechanical properties of HTS. Finite ele-

ment simulations are being used in conjunction with experiments to predict

and validate results. Numerical modeling is also being done to better under-

stand the degradation mechanisms of HTS tapes under stress. A variety of

methods are being used for modeling the stress and strain states of these

tapes under mechanical loads with both simple two-dimensional (2D) and

more complex three-dimensional (3D) simulations. Single REBCO-coated

conductors have been investigated as well as the behavior of HTS cables.

The structural FEA modeling being conducted focuses on two

main aspects: mechanical characteristics and electromechanical behavior.

Mechanical characteristics investigate stress–strain response, forces, and

torques, as well as yield strength and elastic–plastic behavior. These

mechanical characteristics are typically a good way of validating the numeri-

cal model when compared with experiments. The electromechanical behav-

ior analyzes how the critical current changes with applied stress or strain to

determine irreversible limits under various loads. The critical current can

be predicted from structural models by identifying the longitudinal strain

state in the superconductor.

This chapter briefly describes the type of numerical FEA simulations

being done on single tapes and cables. Their corresponding results are

described in Section 3.6.

3.3.1. Single-tape simulations

Single HTS tapes under a variety of loading conditions (including tension,

torsion, transverse, and thermal) have been analyzed using 3D structural
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FEA models [12–18]. The simulations have been conducted on tapes from

a variety of manufacturers and using a mixture of numerical modeling tech-

niques.

Single tapes under uniaxial tension have been investigated a great deal

[12, 14–17]. Structural finite element modeling has been used to both char-

acterize the stress–strain curves of the coated conductors and predict their

critical current behavior under tensile stress. Simulating the mechanical

stress–strain behavior is typically done to identify the yield strength and

modulus of elasticity of the composite tapes and also to validate the numer-

ical model being used. Predicting the critical current with structural mod-

els is normally done to identify the critical load that causes irreversible

degradation in the superconductor. The critical current behavior can be

predicted by identifying the strain state in the superconducting layer under

stress. Specific to Roebel cables, the uniaxial tensile characteristics of sin-

gle zigzag tapes have also been analyzed to determine the ideal punched

shape to minimize stress concentrations [17].

Single tapes under pure axial torsion are also an important topic being

explored [12, 13, 18]. Numerically, FEA has been used to examine the strain

state of the coated conductors under torsion to predict their critical cur-

rent behavior and ultimately to identify a minimum twist pitch achievable

before irreversible degradation. The required mechanical torque to twist

these samples was also analyzed for cable fabrication purposes.

Single tapes under a combined loading case of tension–torsion were also

studied [12–16]. This loading case is of particular interest for twisted cables

used in magnet coils because the twisted tapes within the cable will expe-

rience a tensile hoop stress, leading to a combined tension–torsion load.

Structural FEA is being used to determine the change in strain of a twisted

conductor as tension is applied and how that change affects the predicted

critical current behavior. Tensile stress was applied to tapes with various

twist pitches to determine the influence of the degree of twist. The change

in mechanical torque as tension is applied to the twisted tape was also

analyzed.

Single tapes under transverse compressive stress were investigated with

FEA [15, 16]. Numerical simulations were used to identify the strain in the

superconductor to determine the critical load corresponding to irreversible

critical current degradation. The mechanism of degradation for transverse

load was studied to discover any correlation with uniaxial tension. The

influence of the copper stabilizer thickness on the coated conductor under

transverse load was also analyzed.
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The intrinsic strain state of single REBCO tape after the production

process was analyzed by including the temperature variations during the

tape production into the structural model [15, 16]. The FEA modeling

was done to determine the intrinsic residual strain in the superconducting

REBCO layer after the production process. Structural simulations were

run using thermal (temperature variation) loads along with temperature-

dependent material properties. The strain effect from cool down to cryo-

genic operation temperature was also studied.

3.3.2. Cable simulations

Building on single tape simulations, numerous structural models of cables

have been developed. Focusing on the implementation of HTS cables in

magnet applications, the bending behavior and electromagnetic transverse

load characteristics have been investigated.

The electromechanical behavior of TSTC, HTS slotted-core CICC, and

CORC cables under bending has been investigated a great deal [12, 16, 19].

Numerically, FEA has been used to study the overall cable and individ-

ual tape performances under pure bending loads. Full 3D simulations of

each cable were required to capture the appropriate bending characteris-

tics. The influence of friction on the mechanical and electrical performances

of the cable was also investigated. In addition to the mechanical charac-

teristics of the cable under bending, the structural simulations were used

to determine the bending strain in each tape, which was used to predict

the critical current behavior. Identifying the minimum bending diameter

before irreversible critical current degradation was the primary focus of the

analysis.

Transverse compression stress on CORC and TSTC conductors has also

been explored [20, 21]. Numerically, simple 2D FEA models of the cable

cross-section were used to limit the computational time and complexity.

The transverse stress equivalent to that anticipated from electromagnetic

loads in operation was simulated. FEA was used to determine the maxi-

mum transverse stress on an individual tape to identify any potential critical

current degradation. The simulations were also used to identify any cross-

sectional deformation under load to investigate the best support mechanism

for high-current HTS cables.

Similar 2D simulations of the HTS slotted-core CICC cross-section

were run to analyze the radial compaction caused by external jacketing

of the CICC [10]. The radial shrinkage of the HTS CICC cross-section
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during cool down to cryogenic operating temperature was also simulated

numerically.

The potential strain produced on the coated conductors within an HTS

cable after cool down to 4.2 or 77K was also analyzed [16]. The HTS tapes

and cable support structure, unavoidably, have different rates of thermal

contraction, which could lead to stress accumulation in the tapes, depending

on their end constraints and their ability to slide freely.

3.4. Modeling Techniques for Single Tapes

Single-tape models of coated conductors have been analyzed using 3D struc-

tural FEA under tension, torsion, transverse, and thermal loads. Modeling

and loading a thin rectangular tape is relatively straightforward, but the

challenge in modeling coated conductors is accurately defining their inter-

nal layered structure and the appropriate elastic–plastic material proper-

ties. This chapter addresses the numerical techniques and approaches used

to modeling single HTS tapes under various loads.

3.4.1. Finite element software and settings

FEA is a powerful numerical tool for modeling the mechanical behavior

of superconductors. The main commercial finite element software pack-

ages being used are ANSYS�, ABAQUS�, and COMSOL� Multiphysics.

ANSYS� and ABAQUS� are the primary programs being used for struc-

tural modeling of HTS tapes and cables. COMSOL� is more widely used

for thermal and fluids simulations and employs a different approach to finite

element modeling and therefore will not be discussed here.

ANSYS�, and ABAQUS� are alike in the manner in which they

approach FEA modeling. They both have a diverse library of finite ele-

ments, each built from governing equations and degrees of freedom. The

modeler needs only to choose the appropriate element type for the physics

and geometry being modeled, and the software will compile and calcu-

late the system of governing equations automatically. For clarity, termi-

nology relevant to both software packages will be used throughout the

chapter.

The first step in modeling is preprocessing, where the user must build

or input the system geometry being modeled. During this step, the mod-

eler must: apply appropriate material properties, choose a suitable element

type and discretize the model geometry, apply contact relations and nodal

connectivity, and prescribe degree-of-freedom constraints and loads.



198 N. C. Allen & L. Chiesa

The processing or analysis step allows the modeler to choose the desired

analysis settings before the simulation is computed. The vast majority of

structural modeling for HTS is run as static simulations. Linear analyses

are used to model simple elastic behavior, while more commonly, nonlin-

ear analyses are used to capture nonlinear structural behavior arising from

plastic material properties, geometric nonlinearities, or irregular boundary

conditions and loads. Large deformation and enhanced strain formulations

are typically used in conjunction with nonlinear simulations. Various math-

ematical formulations, including sparse direct and iterative matrix solution

techniques as well as Newton integration methods for nonlinear problems,

are commonly used in practice.

The final step in finite element modeling is postprocessing, where the

user evaluates and displays the simulation results. For structural model-

ing, the stress and strain are of particular interest, as well as the resulting

forces and moments. Additional data manipulation steps are also done.

One example of this is taking the numerical strain results from the FEA

simulations and relating them to an expected critical current using experi-

mental data, as described later.

3.4.2. REBCO-coated conductor architecture

HTS tapes have a layered structure comprising a thick substrate material, a

thin buffer and REBCO layers, and a copper coating, as shown in Figure 3.1.

In most circumstances when modeling the mechanical behavior of these

coated conductors, the strain in the REBCO layer is of interest, in addi-

tion to the overall behavior of the composite tape. It has been established

that the mechanical characteristics of these layered tapes are primarily gov-

erned by the strength and thickness of their substrate and copper layers.

Consequently, the numerical models of coated conductors must include the

substrate, copper stabilizer, and superconducting REBCO layers as parts

of their composite architecture. Determining how to appropriately model

this layered structure can be the most challenging, yet most important,

aspect of modeling.

There are two main approaches being used to model the composite

architecture of the REBCO-coated conductors. The first approach models

the layered structure with physical geometric volumes, each having its own

material properties and finite element mesh. The second approach models

the entire composite tape as one single uniform volume with its layered

structure defined within the finite elements used to mesh it. A depiction of

both approaches is provided in Figure 3.3.
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(a) (b)

Figure 3.3. Depiction of the two approaches used to model the layered architecture of
HTS tapes: (a) homogenous and (b) layered composite elements.

In the first approach, the entire internal layered structure of the coated

conductor is included in a 3D geometric model. Every layer is created as

a separate physical volume with its own thickness and material properties.

The geometric model consists of a stack of volumes representing each layer

in the coated conductor. In this approach, the geometric model must be

meshed with a minimum of one element through the thickness of each layer

or volume. The thicker layers (substrate and copper) are typically meshed

with multiple elements through their thickness, while the thinner layers

(buffer, REBCO, and silver) are meshed with one element to produce a

more uniform element size.

The second approach uses a novel technique to simplify the 3D geomet-

ric model by defining the internal layered structure of the coated conduc-

tor within composite finite elements. In this approach, the entire tape is

modeled simply as one homogenous geometric volume. The homogenous

volume must be discretized with exactly one finite element through its

thickness. The order, thickness, and material properties of each layer are

then defined within the finite elements used to mesh the homogenous vol-

ume. Even though one element is used through the entire tape thickness,

the results for each individual layer can be selected during postprocessing.

The second approach not only greatly reduces the 3D geometric

model complexity but also eliminates the challenge of meshing neighboring
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layers with very different thicknesses (e.g. substrate and buffer layers).

Additionally, the second approach greatly reduces the total number of nodes

and elements and therefore tends to reduce the overall computation time.

This makes the second approach particularly well suited for modeling full-

scale HTS cables composed of many tapes. Defining the layered structure

within the finite elements also makes customizing the model to the exact

composite architecture from each manufacturer easier.

One limitation of the second approach is that though interlayer failure

can be predicted by stress and strain levels, physical interlayer failures, such

as delimitation and cracking, cannot be simulated. The first approach, with

the addition of appropriate contact relations between every layer, could be

used to study these physical interlayer phenomena. The first approach,

with many elements through the thickness of each layer, is also a more

advantageous way to model stress through the thickness of the tape for

loads such as transverse compression.

3.4.3. Element types

The two main types of finite elements that are typically used to model

coated conductors in 3D are structural solid (continuum) and solid-shell

hexahedron “brick” elements. The names of the equivalent solid and solid-

shell elements in ANSYS� and ABAQUS� are listed in Table 3.1. The

continuum and solid-shell elements are designed to model both uniform and

layered structural solids and have three translational degrees of freedom at

each node (x, y, and z directions). Both element types also have linear

elastic and full nonlinear capabilities, including plasticity, stress stiffening,

large deflection, and large strain.

Brick elements are almost exclusively used because they are the most tol-

erant element geometry to high aspect ratios (the ratio of element thickness

to width and length), making them ideal for modeling the thin rectangular

geometry of the HTS tapes. Additionally, the similarity between the brick

Table 3.1. Finite elements used to mesh coated conductors.

Element Type ANSYS� ABAQUS� Nodes Geometry

3D structural solid
(continuum)

SOLID185 C3D8 8 Hexahedron
(brick)SOLID186 C3D20 20

3D structural solid-shell
(continuum shell)

SOLSH190 SC8R 8 Hexahedron
(brick)
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element and the tape geometry permits the use of mapped (structured)

meshing, allowing the modeler to define a more uniform and repeatable

patterned mesh.

Typically, linear eight-node brick elements with sufficient mesh density

are adequate for most applications, while certain circumstances can neces-

sitate the use of higher-order 20-node hexahedron elements with quadratic

shape functions. Higher-order elements typically produce more accurate

results for the same element density but also require longer computation

times because of the higher node count.

Solid-shell elements are structural solid elements with built-in shell ele-

ment capabilities. They have full 3D continuum element topology and are

specifically designed to analyze thin shell-like structures. The elements have

an internal suite of special kinematic formulations to produce additional

shell-like characteristics. Solid-shell elements are, as a result, more suitable

for modeling thin geometries and produce more accurate results compared

to standard solid elements.

Solid and solid-shell finite elements both have the ability to be defined

as either homogenous elements or layered composite elements, as illustrated

in Figure 3.4. Therefore, both element types can be used to model coated

conductors in either approach described in Section 3.4.2. For composite

elements, the layered structure, including the number, order, thickness,

and material properties, are all defined within the finite elements.

(a) (b)

Figure 3.4. Schematics of a solid or solid-shell brick element having (a) homogenous
and (b) layered composite characteristics.
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3.4.4. Meshing

The overall number of elements (mesh density) as well as the element type

and geometry influence the results of numerical FEA simulations. Gener-

ally, the greater the mesh density, the more accurate the results. At some

point, the analysis results will converge to a unique solution, and any further

increase in the mesh density will result in greater computation times with

negligible improvement in accuracy. Mesh analysis should be performed to

determine the optimal mesh density for accurate results with reasonable

computation times.

Coated conductors are commonly meshed using hexahedron “brick” ele-

ments, as discussed in Section 3.4.3. Brick elements are favored because

they can tolerate the high aspect ratios required to mesh the relatively long

and thin rectangular geometry of HTS tapes. Brick topology is also advan-

tageous because it permits mapped (structured) meshing, which provides

the modeler with the most control over the finite element mesh. Mapped

meshes are used to produce very uniform and repeatable patterned meshes.

A mapped mesh can easily be defined by prescribing the number of elements

through the thickness, width, and length of the coated conductor.

For accurate strain results, sufficient mesh density in each dimension

was chosen based on the particular load being modeled. Transverse load

requires a higher mesh density through the thickness of the tape to accu-

rately model the perpendicular stress in each layer. Torsion loads necessi-

tate a higher mesh density through the width of the tape to capture the

resulting parabolic strain distribution. Finally, bending-type loads need a

finer mesh through the length of the tape to ensure uniformity along the

entire tape. Certain situations may also require locally higher mesh densi-

ties on top of the uniform mapped mesh.

The mesh through the thickness of the tape not only depends on the load

type but also on the modeling approach being used. The second approach

described in Section 3.4.2 prescribes the internal layered structure of the

coated conductor within the finite elements. This approach requires the

tape to be modeled as a single homogenous volume meshed with only one

element through its thickness, as shown in Figure 3.5(b). In this method,

the mesh density in the thickness dimension cannot increase, but the num-

ber of integration points within each internal layer of the finite element can

be increased to improve the accuracy.

The first approach described in Section 3.4.2 models every layer of

the coated conductor as a unique geometric volume that can be meshed
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(a) (b)

Figure 3.5. Mesh through the thickness of a REBCO-coated conductor using (a) 21
homogenous elements and (b) single-layered composite element with the internal struc-
ture indicated by dashed lines.

independently. At least one element must be meshed through the thickness

of every layer. For a standard tape with five layers, a minimum of five finite

elements through the thickness are needed. The thinner layers (REBCO

and silver) are exclusively meshed with only one element, while the thicker

compositional layers (substrate and copper) are typically meshed with mul-

tiple elements, as displayed in Figure 3.5(a). The thicker layers have been

meshed with up to 10 elements per layer in some instances. This is done to

produce a more uniform element size throughout the tape thickness, thus

improving the mesh quality, rate of convergence, and accuracy of results.

The mesh through the width of an HTS tape depends both on the load

being analyzed and on the length of the sample being modeled. A very

long tape may be meshed with fewer elements through its width to limit

the computational burden, while a shorter tape may utilize additional ele-

ments to capture a more detailed strain distribution through the tape width.

A standard 4mm wide coated conductor has been meshed with as few as

10 to as many as 40 elements through the width of the tape. For most load

applications, an average of 20 elements through the width has been found

to provide a good balance between accuracy and computation time.

The mesh density along the length of the tape is highly dependent on

the mesh density through the width and the length of the sample being

modeled as well as the load being applied. The element width-to-length

aspect ratio should, in most circumstances, be kept less than two to avoid

any element shape warnings and potentially invalid results. For example, a

standard HTS tape, as shown in Figure 3.6, can be meshed with 20 elements

through its 4 mm width and at least 50 elements over its 20mm length.
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Figure 3.6. Discretization of an HTS tape with 20 elements through its width and 50
elements along its length.

3.4.5. Material properties

Material properties are one of the most important components of structural

FEA because of their direct influence on the resulting mechanical behavior

of the system. The wrong choice of material model or properties could be

the difference between an accurate and an erroneous solution. HTS tapes

and cables are most often tested in liquid nitrogen at 77K or in liquid

helium at 4.2K, requiring their material properties to be known at these

temperatures. When available, material properties should always be taken

from direct stress–strain measurements, manufacturer’s data, or published

values in literature.

HTS tapes are expected to experience both elastic and plastic defor-

mations under fabrication and operational loads. When modeling only the

elastic response of the system (i.e. small strains and loads sufficiently below

the yield strength of all constituent layers), linear elastic isotropic material

models are adequate. However, in most circumstances, it is more common

to model the full elastic–plastic behavior of the coated conductors, typically

under large strain and high loads. To do this, it is necessary to use nonlin-

ear rate-independent inelastic constitutive material models for plasticity.

The essential components of nonlinear plasticity models are the yield

criterion, flow rule, and hardening. The yield criterion defines the material’s

transition from elastic to plastic behavior, the flow rule determines the rate

of inelastic plastic deformation, and the hardening governs the change in

the yield criterion following plastic deformation.

Isotropic (work) hardening and kinematic hardening are two common

types of hardening rules used in plasticity models, in addition to perfectly

plastic or no hardening. Isotropic hardening causes a uniform increase

in the yield criterion under plastic loading (i.e. an increase in the yield

strength) and is suitable for modeling the behavior of monotonic loading
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and elastic unloading. Kinematic hardening causes a shift in the yield cri-

terion under plastic deformation and is designed for modeling the inelastic

behavior of cyclic loads. The von Mises yield criterion is typically used for

determining the onset of plastic deformation in these hardening models.

The effective stress and strain behavior of a material is generally rep-

resented in plasticity models by two main cases: bilinear and multilinear

curves. An example of a bilinear and a multilinear curve used to define

elastic-plastic material properties is shown in Figure 3.7. A multilinear

material curve is a piecewise linear approximation of a true stress–strain

curve defined by a set of positive stress and strain values. A bilinear mate-

rial curve is an approximation of a true stress–strain curve using two

straight lines defined by two slopes (modulus of elasticity and tangent mod-

ulus) and a yield stress.

Multilinear plasticity models more accurately represent the stress–strain

curve of a material and in return tend to simulate more realistic elastic–

plastic behavior compared to bilinear models. That said, multilinear mod-

els require a complete stress–strain curve, while bilinear plasticity models

only need a modulus of elasticity, yield strength, and tangent modulus.

Therefore, bilinear material models are more advantageous to model plas-

tic deformation when full stress–strain data are not available. Addition-

ally, since bilinear curves are parameterized, they are easily modifiable

and can be adjusted if the exact material parameters are unknown. The

material properties at 77 K used in these plasticity models are provided in

Table 3.2.

(a) (b)

Figure 3.7. Classical elastic–plastic material behavior characterized by (a) a bilinear
and (b) a multilinear curve.
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Table 3.2. Range of structural properties used for coated conductor materials at 77K.

Material Modulus of Elasticity Yield Stress Refs.

Processed Substrate
Hastelloy� C-276 180–200 1150–1300 [15, 22, 23]
Stainless Steel 150–200 850–1050 [23, 24]
Ni-5AT.%W 125–130 250–260 [25, 26]

Copper Stabilizer
Electroplated 85–100 340–400 [15, 22]
Thin film 95–110 300–350 [27, 28]
Bulk 120–135 375–400 [29, 30]

Silver overlayer 60–85 200–275 [27, 28, 31]
REBCO/Buffer 145–160 — [31–33]

REBCO-coated conductors are layered tapes composed of many mate-

rials, as mentioned earlier. The exact materials, layered architectures, and

even manufacturing techniques are unique to each tape manufacturer. Yet,

all tape types include the same basic structure composed of a substrate,

buffer, REBCO, silver, and copper layers. Together, each material con-

tributes to the overall composite performance of the tape. Mechanically,

the substrate and copper stabilizing layers comprise the majority of the tape

volume and, as a result, govern the overall mechanical behavior of the tape.

Therefore, accurate material properties for these layers are of the utmost

importance for structural modeling. Table 3.2 provides a list of constituent

materials used in coated conductors and their corresponding mechanical

properties at 77K for reference [15, 22–33].

The choice of substrate material is the reason for one of the biggest struc-

tural differences between coated conductors from different manufacturers.

Most manufacturers are using either Hastelloy� C-276, nonmagnetic stain-

less steel or a nickel–tungsten alloy. Hastelloy� is a superalloy with the

greatest mechanical strength of the three materials, followed by stainless

steel and then nickel–tungsten, as indicated by their modulus of elasticity

and yield stress listed in Table 3.2. The variance in mechanical strength

of the substrate materials is generally compensated by their thickness. For

example, nickel–tungsten is the weakest material and, as a result, requires

a thick substrate.

The substrate materials in their initial polished condition (before deposi-

tion) are extremely strong. The buffer and REBCO deposition processes on

the polished substrate occur at elevated temperatures that tend to anneal

the substrate material, reducing its mechanical strength. When defining

material properties for the substrate layer of the coated conductor, it is
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important to use those for the processed substrate (after deposition), as

done in Table 3.2. The stress–strain behavior of individual processed sub-

strate materials has been well studied experimentally [22–27].

The stabilizing layer or coating of an HTS tape is another area of dis-

parity between tape manufacturers. Typical stabilizers are made of pure

copper or a copper alloy and are applied via electroplating or lamination

by means of soldering. The mechanical properties of electroplated copper

are different from that of thin-film copper, which are both different from

standard bulk copper properties. The differences in copper properties, how-

ever, are small when compared to the mechanical strength of the substrate.

In general, copper has a significantly lower yield strength and modulus

of elasticity than the substrate materials, as seen in Table 3.2. The low

mechanical strength of the copper leads to early plasticity, which tends to

lower the strength of the composite tape [22].

Identifying accurate material properties for the stabilizing material and

specific fabrication techniques can be challenging. Some stress–strain data

are available for copper stabilizers (both electroplated and films), but exper-

imentation is challenging and limited [22, 27–30]. In lieu of experimental

data, the rule of mixtures has been used to calculate the material proper-

ties of copper, knowing the properties of the substrate material and of the

entire composite tape [15].

The number, order, thickness, and composition of the buffer layers,

as well as the thickness and type of “rare-earth” compound used for the

REBCO film, vary for each tape manufacturer. The buffer and REBCO

layers are the most important layers electrically, but structurally, they have

a negligible influence on the mechanical strength of the tape. The buffer and

REBCO layers are both brittle ceramics, which tend to crack and fracture

before plastically yielding. Therefore, the buffer and REBCO layers are

generally modeled together as a single layer with linear elastic isotropic

properties. Table 3.2 provides a range of modulus of elasticity used for

REBCO and buffer materials [31–33]. Fracturing of the REBCO layer is

generally not simulated but instead inferred from the magnitude of strain

in the REBCO layer.

The mechanical strength of the thin silver overlayers also has minor

influence on the elastic–plastic behavior of the entire tape. Complete

stress–strain curves are limited, but the available material properties of

thin-film silver show similarity to those of copper, as seen in Table 3.2

[27, 28]. The inclusion of the silver layers in coated conductor models

is primarily for completeness. Some models ignore the silver layers and
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incorporate their thickness into the copper stabilizers, considering the com-

parable mechanical behavior.

For simulation of the internal residual strain incurred by the manufac-

turing process of the tape and the cool down to operational temperatures,

the temperature dependence of the material properties must be taken into

account. This requires the elastic–plastic properties of each layer to be

known for multiple temperatures, typically the REBCO deposition temper-

ature (>1000K), room temperature (298K), and operating temperature (77

or 4.2K). A linear dependence is classically used to define the stress–strain

curve of the materials in between the mentioned temperatures. Thermal

expansion coefficients for the materials are generally assumed to be con-

stant with temperature.

3.4.6. Boundary conditions and loads

Tension can be applied to the ends of the coated conductor as a displace-

ment or as a force. A tensile displacement can be applied via translational

degrees of freedom at the ends of the tape. A tensile force load can be

applied on the ends of the tape as an outward-facing surface pressure or as

a uniformly distributed force. For both load cases, one end of the tape is

generally fixed, while the axial force or displacement is applied to the other.

When applying a displacement load, you are defining tensile strain in the

tape and are computing the resulting stress, while by applying a force load,

you are prescribing a tensile stress in the tape and are interested in the

resulting strain.

Torsion is generally applied via rotational degrees of freedom at the ends

of the tape geometry. Rotation is applied to one end of the tape, while the

opposite end is prescribed to be fixed. The end of the tape with the applied

rotation is also permitted to move freely in the axial direction, allowing the

tape to naturally shrink while being twisted. This axial freedom guarantees

pure torsion by removing the possibility of unwanted axial tension.

Combined tension–torsion loading refers to the tension of a twisted

tape producing a combined tensile and torsional strain condition. Com-

bined tension–torsion load can be applied as a combination of pure tension

and pure torsion loads. Rotation is typically applied first to the ends of the

coated conductor, producing a desired twist pitch. Next, axial tension is

applied to the twisted tape via a displacement or a force load. The result-

ing loading condition should also be the same if the loads were reversed

and tension was applied first followed by rotation.
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(a) (b)

Figure 3.8. Tensile, torsion, and combined tension–torsion loads applied via (a) physical
clamps and (b) pilot node constraints on the end surface.

One modeling technique for prescribing tensile, torsion, and combined

tension–torsion loads is using physical clamps at the ends of the tape, as

shown in Figure 3.8(a). This method is most similar to what is done exper-

imentally; the clamps hold the tape, and the corresponding displacement,

rotation, and force loads are applied directly to them. The clamps are gen-

erally modeled as rigid bodies that cannot deform, allowing for direction

translation of the applied loads to the tape. One advantage of this method

is the ability to model the interaction (clamping force and friction) between

the clamps and the tape; however, in most cases, the influence of the clamps

is negligible and therefore not included.

Instead, another technique for modeling tensile, torsion, and combined

tension–torsion is to apply the loads directly to the tape geometry. Pressure

and force loads can be defined directly on the surfaces at the ends of the

tape. Translation and rotation loads are normally applied to the ends of

the coated conductors using a multipoint kinematic coupling (pilot node)

constraint. A pilot node or coupling constraint is when the motion of a

collection of nodes on a surface is constrained to the rigid body motion

of a reference or pilot node. The pilot node can be a node on the surface

of coupled nodes or a node at any arbitrary location. Its location is only

important when rotation is applied because the rotation occurs about the

pilot node.

Pilot node constraints can be defined at each end of the tape, rigidly

coupling every node on the end surfaces to a pilot node located in the center

of the tape (along its axis of rotation), as depicted in Figure 3.8(b). The

rotations and displacements at the ends of the tape can then be prescribed
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on the pilot nodes. Pilot node coupling constraints are particularly well

suited for modeling pure torsion because they only constrain the degrees of

freedom in the rotation plane and therefore allow the ends of the tape to

move freely in the axial direction.

For tension, torsion, and combined tension–torsion loads, the strain

along the length of the tape is constant. This uniformity along the length

of the tape allows shorter models to be simulated using symmetry-style end

conditions. Symmetric surfaces must remain planar but be allowed to move

axially. Pilot node constraints are ideal for applying loads to symmetry end

conditions without creating end effects. When applicable, additional planes

of symmetry can be used to further reduce the model size and computation

time.

Transverse compression can be modeled as a surface pressure or a uni-

formly distributed load applied directly to the tape. In experiments, how-

ever, the exact loading surface or contact area made by the pushing head

is unknown due to the slight thickness nonuniformities (dog bone shape) of

the coated conductor. Similarly, the load distribution through the pushing

head is also unclear in experiments. These uncertainties can necessitate the

inclusion of the complete load fixture in the model, as shown in Figure 3.9.

The load fixture, including the pushing head and support anvil, can be

modeled as a rigid body. The contact between the tape and the load fix-

ture must be defined. The load can be modeled by applying either a force

or a displacement to the pushing head, while the anvil is prescribed with a

fixed replicating realistic transverse compression on the tape.

(a) (b)

Figure 3.9. Transverse compression stress models highlighting two different load struc-
tures [15]. (a) Simplified load distribution using two flat surfaces. (b) More realistic
load distribution applied during the measurements (with a rounded anvil).
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Figure 3.10. Example of temperature load steps applied to structural model to ana-
lyze internal residual strain in the coated conductor after processing and cool down to

operational temperature.

The temperature load can be defined in a structural model as a simple

change in temperature, assuming that appropriate temperature-dependent

material properties have been defined. The change in temperature from

the tape production processes to the cryogenic operating environment

can be prescribed using a set of temperature load steps, as illustrated

in Figure 3.10. The simulation will calculate the steady state mechanical

effects (residual strain) caused by each relative step.

3.5. Modeling Techniques for Cables

HTS cable simulations have focused primarily on bending loads and electro-

magnetic transverse loads to support their future implementation in magnet

applications. The resulting strain in the coated conductors within a cable

after residual cool down to cryogenic temperatures was also analyzed. The

structural FEA cable models employ many of the same modeling techniques

used for single-tape simulations; however, modeling full-scale cables also has

its own set of challenges, which require the use of additional modeling tech-

niques. This chapter describes these modeling aspects which are unique to

cables.

3.5.1. Model simplifications

One of the main challenges of modeling HTS cables can at times be the

size of the numerical model. Cables consist of many coated conductors

(upwards of 100 tapes for certain cables), in addition to a support structure
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or former. Considering this, full 3D models can easily become very large,

requiring a significant amount of computational power and time. Using 2D

models when suitable is one of the biggest simplifications that can be made

to reduce the model complexity and computation time.

The dimensionality of models depends on the type of cable being mod-

eled as well as the structural loads being analyzed. Simulating bending

characteristics, for example, is one circumstance that requires the use of 3D

models to capture the full electromechanical behavior of the cable. On the

other hand, electromagnetic transverse compressive loads are one instance

that can generally be modeled accurately in 2D.

When 3D models must be used, one of the biggest simplifications that

can be made is to remove the internal layered architecture of the coated

conductor. This can accurately be done by simply modeling the layered

tapes as a single uniform volume defined with mechanical properties equiv-

alent to those of the composite tape. Removing the layered structure of the

coated conductors greatly reduces the size and complexity of the model and

simplifies the matrix calculations, leading to faster convergence and shorter

simulation times.

Another simplification that can be used with full-scale 3D models is

to reduce the length of the cable being modeled. The length of the model

directly relates to the size and thus the computation time of the simulation.

Models with half the cable length will typically take half the time to run.

Although length reduction can cause a significant decrease in computation

time, it can also make applying boundary conditions at the end of the

cables more challenging. Considering this, the length of the cable should

be chosen based on the twist pitch of the cable. If less than one full twist

pitch is modeled, special end constraints must be used.

The last major simplification for 3D modeling of cables is to eliminate

a part or all of the cable support structure. In certain circumstances, the

support structure of the cable can be represented in the model by compa-

rable boundary conditions or constraints. This technique, however, is only

suitable for certain types of cables and loads and, as a result, has limited

applicability.

3.5.2. Element types

The coated conductors used in HTS cables are generally modeled in the

same manner as done for single-tape simulations. Their internal layered

structure can be modeled using either approach described in Section 3.4.2.
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Alternatively, for the simplification of the cable models, the layered struc-

ture of the tapes can be neglected and instead modeled as a uniform tape

with equivalent composite properties. The tapes should be meshed with

either solid continuum or solid-shell hexahedron elements.

In addition to the coated conductors, most cables have some form of con-

stituent structural support component. The cable structure varies depend-

ing on the kind of cable but is typically some type of central former used to

wrap and wind the tapes around or some sort of external support used to

protect and reinforce the tapes. No matter the type, the support structure

can be meshed with solid continuum elements. The chosen solid element

geometry and resulting mesh will be unique to each cable type.

In most cases, if the geometry of the cable support is suitable, solid

brick elements are used because of their ability to produce uniform mapped

meshes along the cable length. Brick elements are also advantageous

because they can be elongated along the length of the cable, reducing the

number of elements without a loss of accuracy. Another element topology

commonly used with solid elements is tetrahedral. Tetrahedron geometry is

well suited to model irregular and curved structures, giving it an advantage

for certain cable support structures. The tetrahedral elements commonly

used in finite element software are listed in Table 3.3.

For 2D cable models, planar structural solid elements with translational

degrees of freedom are used. Planar solid elements can be defined as either

plane stress or plane strain and can have linear or quadratic shape functions.

Generally, higher-order elements are chosen to increase the accuracy of 2D

simulations. A list of planar elements used in ANSYS� and ABAQUS�

are also provided in Table 3.3.

Planar elements can take on quadrilateral or triangular geometry.

Similar to the advantages of using hexahedron elements in 3D, quadrilateral

Table 3.3. Finite elements used to mesh 3D cables and 2D cable cross-sections.

Planar
Element Type ANSYS� ABAQUS� Type Nodes Geometry

3D Structural
solid
(continuum)

SOLID285 C3D4 N/A 4 Tetrahedron
SOLID187 C3D10 N/A 10

2D Structural
solid
(continuum)

PLANE183 CPE8/CPS8 Plane Strain/
Stress

8 Quadrilateral

CPE6/CPS6 Plane Strain/
Stress

6 Triangular
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elements are most commonly used for the rectangular cross-section of coated

conductors. Triangular elements are particularly well suited to model the

generally circular or irregular cross-sectional shape of the cable support

structure.

3.5.3. Meshing

The mesh density again plays an important role in the accuracy of the

results of cable simulations. That being said, the size of the numerical

model (total number of elements) is one of the biggest challenges in sim-

ulating cables. Full 3D models, for example, consist of many coated con-

ductors along with a cable support structure and can have potentially long

lengths, which as a result require significant amount of computational power

and time. Finding the right balance between computational resources and

simulation accuracy is needed and is generally determined from mesh

studies.

Cable models can generally be meshed in stages. Typically, the coated

conductors are meshed first, followed by the cable support and then any

additional load structures when applicable. As done in single-tape models,

the coated conductors can be meshed with a uniform patterned mesh of

brick elements. The mesh density of the individual tapes is usually less

than that in single-tape simulations to help reduce the computation time

of full-scale cable models. The element topology and mesh of the support

structure depend directly on the type of cable being modeled. Brick ele-

ments are used whenever possible so that a uniform mapped mesh with

elongated elements can be used, which greatly reduces the overall number

of elements along the cable. Tetrahedral elements can also be used to mesh

very irregular support structures but must be used cautiously since they

tend to require more elements. If applicable, the load structure can be mod-

eled with either brick or tetrahedral elements depending on the structure’s

geometry.

The discretized models of two HTS cables used for 3D bending simu-

lations are shown in Figure 3.11. The cutaway model of the HTS CICC

demonstrates the uniform meshing of the cable support structure (slot-

ted core, spacer, and external jacket) with brick elements. Similarly, the

CORC cable model highlights the use of mapped pattern meshing with

elongated brick elements for each individual coated conductor. The meshes

shown in Figure 3.11 are meant to be illustrative and are not necessarily

the final discretizations. Mesh analyses should be conducted to determine
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(a) (b)

Figure 3.11. Discretized 3D cable models of (a) HTS CICC and (b) CORC cables
[12, 16].

Figure 3.12. Discretized 2D cross-section of a TSTC conductor in epoxy-filled
channel [21].

the optimal mesh density (number of nodes and elements) for each specific

cable structure.

The size of the mesh used for 3D cable models varies but is generally

on the order of hundreds of thousands of elements, which result in long

numerical computations. Planar models of cable cross-sections are used

when applicable because the size of the mesh for 2D models is typically

one order of magnitude smaller (tens of thousands of elements). The lower

element count, in addition to the simpler matrix calculations, results in

faster computation times. A 2D discretized model of a TSTC conductor

cross-section in an epoxy-filled channel used for electromagnetic transverse

load simulations is shown in Figure 3.12. The model shows the layered

quadrilateral mesh used for the composite tapes, the mixed triangular and
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quadrilateral mesh used for the epoxy region, and the uniform quadrilateral

mesh used for the channel walls. The meshes for 2D models need to be

optimized for the unique cable cross-section and load being analyzed.

3.5.4. Material properties

Like coated conductors, HTS cables are frequently tested at 77K in liquid

nitrogen or in liquid helium at 4.2K, requiring the material properties to be

defined at those temperatures. The cables are expected to experience both

elastic and plastic deformations during cable fabrication and magnet oper-

ation. If only small strains are modeled and the loads are below the yield

strength, linear elastic isotropic material models are suitable; otherwise,

nonlinear plasticity models defined by bilinear or multilinear stress–strain

curves should be used.

The layered composition of HTS tapes can be modeled with same nonlin-

ear properties for the substrate, stabilizer, and silver, as listed in Table 3.2,

as well as the same elastic properties for the REBCO and buffer layers.

The coated conductors can alternatively be modeled as a single uniform

volume with no layers, in which case the elastic–plastic material properties

of the entire composite tape should be used. The stress–strain behaviors of

the composite tapes are commonly available from the manufacturer or in

the published literature [22, 23, 26, 36].

The cable support structures differ between cable types but are typically

made of aluminum or copper. CORC conductors have cylindrical central

formers made up of either a solid aluminum rod or a bundle of copper

strands. The HTS CICC uses a twisted and slotted extruded aluminum

core along with copper spacers and a cylindrical aluminum jacket. The

round strands made by twisted stacks are made with a cylindrical copper

rod, which is cut into two pieces and machined in the center to fit the

stack of tapes. TSTC and ROEBEL cables, by themselves, do not have

any support structure but are frequently reinforced by sheathing or placing

in machined channels that can be solder filled or epoxy impregnated.

The appropriate elastic–plastic properties of each support material (alu-

minum, copper, solder, or epoxy) should be defined using nonlinear plastic-

ity models, as done for the coated conductor materials [29, 30, 37–39].

When available, their material properties should be taken at operating

temperatures from direct stress–strain measurements of the exact support

material. This should be done because bulk aluminum properties in the

literature are different from those of extruded aluminum, which are also
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different from those of slotted and twisted aluminum [29, 37]. Similarly,

copper strands have different properties from copper rods, and both show

variation in their respective properties depending on if they are hardened

or annealed [29, 30]. Solder properties also have very different properties

depending on the composition, temperature, and use [38, 39]. When direct

measurements are not available, manufacturer’s data or published literature

values are favored.

Material properties are highly temperature dependent and therefore

should be defined for the particular cryogenic environment being modeled.

To simulate the cool down of the cables, material properties should be pre-

scribed at both room temperature and the desired operating temperature,

77 or 4.2K. The thermal expansion coefficients for each material must also

be defined in addition to the nonlinear stress–strain properties.

3.5.5. Contact relationships

One of the most influential aspects governing the behavior of HTS cables is

their mechanical contact interactions. Many different contacts exist within

a cable, and the specific type of interaction depends primarily on the type

of load being analyzed. For example, bending loads may be of more interest

in frictional sliding contacts and the accumulation of shear stress along the

length of the cable, while transverse compression loads may be of more

concern with penetration contacts and how loads are transmitted through

the contacts.

One of the biggest contact interactions occurs between neighboring

tapes. The relative motion of these adjacent tapes has a major influence on

the mechanical and electrical performances of the cable. The characteristics

and behavior of these coated conductor interactions are highly dependent

on friction and the type of cable being modeled. TSTC conductors stack

tapes and twist them along their length, creating a single contact area over

their entire length. CORC cables helically wind layers of coated conduc-

tors around a central former in alternating directions, creating many small

periodic contact areas as different tapes obliquely cross over each other.

Another major contact interaction that influences the cable is that of

the tapes and remaining cable structure. The type of contact depends on

the kind of cable and whether the support is internal, external, uniform,

slotted, twisted, etc. As a result, the interaction of the structure with the

tapes could potentially play a large role in the overall behavior of the

cable. The use of solder or epoxy impregnation within the cable support
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will also greatly influence the contact interactions and the overall cable

characteristics.

Accurately modeling these interactions is essential to developing realistic

cable simulations. The interactions are generally modeled using surface-to-

surface contact pairs, which are defined as having a target (master) surface

and a contact (slave) surface that share a set of specified characteristics or

settings. These contact surfaces are generated on existing solid geometries

and are solely used to model the interaction of the solid volumes. Similar

contact pairs also exist for 2D planar models, where the edges of areas are

selected instead of the surfaces of volumes as in 3D.

In ABAQUS�, the model surfaces or edges are simply selected to define

the contact pair, while in ANSYS�, the surfaces and edges are instead

overlaid with a mesh of specific target and contact elements that create the

contact pair. The meshed contact surfaces have the same geometric charac-

teristics and element topology as the underlying solid or planar geometry.

Table 3.4 provides a list of the target and contact elements specific to

ANSYS�.

Although the methods of generating the contact pairs are slightly dif-

ferent in the two programs, they both have equivalent contact settings

and properties that can be defined to control the characteristics and over-

all behavior of the contact interaction. The mechanical contact properties

usually specified include friction coefficients and contact damping, as well

as the allowable contact pressure and penetration. Individual contact pairs

for every interaction should be used so that the unique contact settings

representing the specific characteristics of each interaction can be defined.

The properties and settings can also be adjusted to help improve the con-

vergence of the model.

Table 3.4. Target and contact elements used for contact pairs in ANSYS�.

Element Type Surface type ANSYS� Nodes Geometry

3D surface-to-
surface contact
pair

Target (master) TARGE170 Variable Node, line, triangle, or
quadrilateral

Contact (slave) CONTA173 4 or 3 Quadrilateral or
triangleCONTA174 8 or 6

2D surface-to-
surface contact
pair

Target (master) TARGE169 Variable Node, line, or arc
Contact (slave) CONTA171 2

Line or arc
CONTA172 3
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Each FEA package has specific built-in contact algorithms or formu-

lations, which may include hard and soft contacts, small and finite slid-

ing, rough and frictionless contacts, as well as bonded and no-separation

contacts. In many cases, the default settings associated with these con-

tact algorithms may be appropriate; however, for more advanced interac-

tions, the following settings can also be changed. Penalty and augmented

Lagrange methods are typically chosen for contact constrain enforcement.

The contact detection points are generally specified either at the finite

element nodes or at the Gaussian integration points. Automatic contact

surface adjustment can be selected to move the contact points with an ini-

tial gap (clearance) or penetration (overclosure) onto the target (master)

surface. Similarly, the effects of the initial geometric penetration or overclo-

sure can be included or excluded. Contact smoothing techniques can also

be applied to the contact surfaces if necessary.

3.5.6. Boundary conditions and loads

Pure bending of HTS cables can be applied using a variety of modeling

techniques. Pure bending requires the cable to be bent into a circular arc

with a uniform bending diameter, producing a constant bending moment

throughout and no shear forces.

One method to apply pure bending would be to bend the cable around a

circular object with a fixed diameter, which is the technique typically used

for experiments. For this method, a rigid circular body must be created

in the model with appropriate contact settings so that no additional stress

is applied to the cable. Bending can be generated by applying a uniform

distributed load along the cable, forcing it to conform around the circular

object. One drawback of this technique is that a new circular body must

be created for every desired bending diameter, which can make model-

ing cumbersome. Another issue is determining how much force is required

to deform the cable around the circular object without adding additional

transverse compression.

Another method by which pure bending can be achieved is to apply

two equal but opposite moments to the ends of the cable. The moment

load must be prescribed on the ends of the cable using pilot node kine-

matic coupling constraints. This is necessary because the solid continuum

elements used to discretize the cable do not directly support rotational

degrees of freedom. One disadvantage of this method is determining what
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(a) (b)

Figure 3.13. (a) Depiction of pure bending load application by equal and opposite rota-
tion and displacement of the cable ends. (b) Illustration of pilot node coupling constraint

used to apply bending loads on cable ends [12].

moment value correlates to what bending diameter, which will vary with

cable type.

The last approach that is typically used to generate pure bending loads

is to apply a coupled rotation and displacement to the ends of the cable, as

illustrated in Figure 3.13(a). Pure bending motion consists of moving the

ends of the cable closer together as they are rotated in opposite directions

relative to one another. The exact coupling between the amounts of dis-

placement and rotation can be solved analytically using a set of constitutive

equations. No matter the cable type, the same rotational and translational

degrees of freedom can be used to produce pure bending. The coupled rota-

tion and displacement must similarly be applied using pilot node constraints

due to the lack of rotational degrees of freedom in solid elements.

Pilot node constraints couple the motion of a collection of nodes on a

surface to the rigid body motion of the reference pilot node. In the case of

HTS cables, the ends of every tape as well as the ends of the corresponding

cable structure all get constrained to a central pilot node, as shown in

Figure 3.13(b). The pilot nodes should be defined on the end surfaces of

the cable and in the exact center of its cross-section. The position of the

pilot nodes is important, as it should be located on the neutral axis under

pure bending loads. Rotation and translation, as well as moment loads, can

be defined directly on the pilot nodes.

Transverse compression stress on 2D HTS cable cross-sections has

been modeled for two main cases: externally applied mechanical transverse

compressive loads and internal distributed electromagnetic Lorentz loads.



Finite Element Structural Modeling 221

In the first case, the numerical cable models typically include the load fix-

ture, as done for the single tapes described in Section 3.4.5 and shown in

Figure 3.9. The loading structure is generally included to more accurately

reproduce the experimental conditions by removing the uncertainties of not

knowing the exact load surface or distribution. Using this technique, the

pushing head and bottom anvil are modeled as rigid bodies that contact

the deformable cable.

The degrees of freedom of the bottom anvil are prescribed to be fixed

(no translation or rotation), and the transverse compression is applied to

the cable cross-section via the pushing head. The load can be applied either

as a force or a displacement to the pushing head. When a displacement is

used, the resulting reaction force can be determined along with the contact

area to determine the transverse stress applied. Similarly, when a force is

applied, the resulting transverse strain and deformation can be found.

In the second case of transverse stress, the electromagnetic load is gen-

erally applied in the model through one of two methods. Both methods

produce an internal distributed load that acts on the REBCO layer of each

individual tape within a cable. A distributed Lorentz load acting on the

cross-section of a TSTC conductor in a solder-filled tube is depicted by

arrows in Figure 3.14.

The first method to model an electromagnetic load in a structural sim-

ulation is to simply apply an equivalent load as a uniformly distributed

Figure 3.14. Internal distributed electromagnetic load acting on tapes of a TSTC con-
ductor in a solder-filled copper tube [21].
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force. The equivalent Lorentz load can be calculated from the anticipated

transport current and background magnetic field. The load can be applied

to the cable cross-section on an edge or distributed evenly over the REBCO

area of the coated conductors, as shown in Figure 3.14.

The second method is to couple simulations from two different physics.

First, create an electromagnetic model with the electrical current and back-

ground magnetic field to numerically compute the resulting Lorentz load.

Then, import that load as nodal forces into a structural model to analyze

the stress and strain in the cable. This approach provides a more accurate

electromagnetic load distribution; however, it also requires additional steps

and simulations.

No matter which method is used to define the electromagnetic load,

constraints must be added to the cable cross-section to resist the load.

Properly defining accurate constraints without over-restricting the model

can be challenging depending on the cable type being modeled. For some

cable types, such as the HTS CICC or the round strands made with twisted

stacks, the outer edge of their external jacket or former can be used to fix

the displacement without influencing the internal tapes. For cable types

such as the TSTC, which have tapes on the outside, it is more challenging

to apply fixed degrees of freedom without over-constraining the natural

movement of the tapes. For these cables, it is typically best to model their

external support structure as depicted in Figure 3.14.

The internal strain that may develop in HTS cables after cool down

to cryogenic environments can be simulated by defining a change in tem-

perature, as done for single-tape models. All material properties must be

adequately defined for every prescribed temperature being analyzed.

3.6. Postprocessing and Results

The final step in finite element modeling is to display, output, record, and

then evaluate the numerical results. For structural simulations, the stress

and strain results are of particular interest, as well as the resulting forces

and moments. The FEA simulations are inherently approximations; there-

fore, the output results should always be compared and validated with

experiments or trusted analytical models.

3.6.1. Simulation output results

One of the main benefits of numerical FEA is the amount of output results

available from a single simulation. For structural simulations, the reactions,
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deformations, and stress and strain results can all be output, as well as

the contact and failure results, among others. Furthermore, each of these

main outputs also includes many additional subcategories of results. For

example, the total strain can be broken down into elastic, plastic, creep,

thermal, and swelling strains if needed.

The numerical results for both the nodal and elemental solutions are

available depending on the desired data. Data for every finite element and

node in the model can be displayed and output; however, in most cases,

only the results from a small subset of the model in an area of interest are

needed. If results for points in between nodes are required, they can be

found through interpolation of the nodal data.

Another major benefit of structural FEA is the ability to visualize the

numerical results. The deformed shape of the physical geometry can be

viewed, on which colored contour plots of the stress and strain results can be

displayed. Visualization of the results in this manner provides the modeler

with a better understanding of how the system is responding to loads and

gives them the ability to identify any problems or troublesome locations

that may need further investigation. The ability to visualize the numerical

results is one of the most useful aspects of FEA modeling, even if it is only

qualitative.

For coated conductors, the main output results of interest tend to be the

nodal stress and strain data as well as the reaction forces and deformations.

For HTS cables, the same output results are of interest, with the addition

of the contact results, particularly with respect to frictional sliding and

geometric penetration. The normalized critical current of an HTS tape or

cable can be estimated from the structural models using the strain state in

the coated conductor along with an analytical model, as described in the

following section. The exact output results from each model depend on the

tape or cable being simulated and the type of load being analyzed.

The output results from the FEA program are typically compared

with experimental data when available to validate the numerical model.

Comparison of the numerical model with experiments allows for a bet-

ter understanding of the electromechanical behavior of coated conductors

and HTS cables. It is common practice to start by validating the tech-

nique used for modeling the layered composite tapes by comparison with

experimental stress–strain data. The structural models can also be vali-

dated using measured experimental data for reaction forces and moments

as well as deformations (elongation, rotation, and bending) depending

on the type of loads being modeled. The numerical strain results can
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also be used to estimate the normalized critical current behavior; there-

fore, the structural models can indirectly validate the experimental critical

current dependence on stress and strain, as mentioned in the following

section.

3.6.2. Critical current prediction

The critical current of an HTS tape is known to be a function of axial strain;

the larger the tensile or compressive strain, the lower the critical current

of the tape. This strain dependence of the critical current has been well

documented experimentally and can be characterized using higher-order

polynomials fit to the experimental data.

Structural FEA models produce detailed results of the axial strain in the

superconducting layer of REBCO-coated conductors under various mechan-

ical loads. These numerical strain results can be used to accurately predict

the normalized critical current of the tapes using an analytical model and

experimental data as outlined in Ref. [12].

The analytical model calculates the predicted critical current by inte-

grating the critical current densities over the cross-section of the tape. The

critical current densities are calculated from the numerical strain data using

a polynomial fit to the experimental critical current data. The integra-

tion through the width of the tape is evaluated using Gaussian integration

[34, 35].

For coated conductors with uniform strain along their length (such as

single tapes under tension and torsion), the integration can be conducted at

any location because the critical current will not vary along the length of the

tape. However, for tapes with strain variation along their length (such as

the tapes in HTS cables under bending), the integration must be evaluated

at several points along the length so that the total voltage criterion of the

tape can be calculated from a summation to identify the normalized critical

current for the entire tape.

Predicting the critical current from the numerical strain results in this

manner is a simple and easy technique, which has been shown to have

relatively good agreement with experimental results. The main advantage

of this method is that it is applied during the postprocessing step and can

therefore be used on any structural model of coated conductors. Caution

should be taken, as this is only a prediction of critical current and not a

full electromechanical model and therefore does not include things such as

filament breakage or variations with temperature and magnetic field.
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3.6.3. Single-tape results

Axial tension is one of the main loads used to characterize the electrome-

chanical behavior of REBCO-coated conductors. Modeling a thin tape

under axial tension is a straightforward load to simulate and thus is typi-

cally one of the first to be analyzed numerically. More importantly, tension

is typically modeled first as a means to validate the accuracy of the simu-

lations and the technique used to model the layered composite architecture

of the coated conductors. Experimental stress–strain curves are generally

used for validation since they describe the mechanical strength and behavior

of the composite tape.

Figure 3.15 shows the stress–strain behavior of two types of HTS tapes

at 77K. The experimental data are shown as solid and dashed lines, while

the numerical results are plotted with unfilled markers. The numerical

stress and strain values are gathered from the loads and deformations in

the FEA model. The axial elongation in the model is used along with the

initial tape length to calculate the numerical strain in the sample at every

load step. Likewise, the axial tensile force on the ends of the tape and

the cross-sectional area were used to determine the applied tensile stress.

The results were then combined to build the stress–strain curves shown

in Figure 3.15. The REBCO-coated conductors were modeled numerically

using solid-shell elements with bilinear material properties [14]. The differ-

ence in the stress–strain behavior of the two tapes is an example of how
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Figure 3.15. Stress–strain behavior of two coated conductors at 77K determined from
experimentation (EXP) and FEA simulations [12, 14].
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their layered architecture and choice of substrate governs their composite

performance.

Coated conductors are commonly twisted to reduce their AC loss, as

demonstrated in a number of HTS cable designs. This is the main motiva-

tion behind analyzing tapes under pure torsion and tension–torsion loads.

The torsion of a thin rectangular tape generates a parabolic distribution of

axial strain through its width. This axial strain distribution can be nicely

visualized as a contour plot of the deformed shape of the twisted tape, as

shown in Figure 3.16(a). Under pure torsion, the outer edges of the tape

will have a high tensile strain, while the center of the tape will experience

a slight compressive strain.

The magnitude of the strain distribution under torsion varies with the

degree of twist applied to the sample. The amount of twist is typically

denoted by the twist pitch, which is the length over which one full rota-

tion of the tape occurs. Figure 3.16(b) shows the axial strain distribution

through the width of the coated conductor for three common twist pitches.

The strain profile for a 62.5mm twist pitch is also compared with an ana-

lytical model for validation. The plot clearly indicates that the peak strains

produced under torsion can quickly become large as the twist pitch length

is reduced. These high strains, particularly at the ends of the tape, will

lead to a reduction in the critical current performance of the tape.

The strain through the width of the tape, as displayed in Figure 3.16(b),

is an example of the type of numerical data that can be used to estimate

the critical current capacity of the coated conductor. An example of the

predicted critical current behavior under combined tension–torsion load is
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Figure 3.16. Axial strain under pure torsion: (a) strain contour on twisted tape and
(b) strain distribution through width of tape for multiple twist pitches [12].
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displayed in Figure 3.17. The critical current was estimated for five different

twist pitches over a wide range of axial tensile stress using the method

outlined in the preceding section. The calculated results from numerical

strain data are in very good agreement with the experimental data for a

tape with a twist pitch of 150mm. The numerical results indicate that the

tapes with shorter twist pitch lengths tend to have earlier and more gradual

critical current degradations.

For torsion and combined tension–torsion loads, the moment (torque)

on the sample is based on the architecture and strength of the tape and

is an important mechanical characteristic for the fabrication and operation

of twisted cables. Torque can be applied to generate twist or a rotation

can be applied, and the resulting moment can be determined. For torsion

loads, the simulations can be used to identify the required torque to twist

a tape to a certain degree. For tension–torsion loads, the simulations can

be used to determine the change in torque on a twisted tape under axial

tension. The moment or torque is another mechanical characteristic that

is typically used to validate the FEA model against experiments.

Transverse compression on the wide face of coated conductors is another

important load that can be analyzed to investigate the resilience of the tape.

FEA simulations are uniquely well suited to identify the contact surface and

load distribution on the sample, as well as its deformation under the load,

as displayed in Figure 3.18. Exaggerating the deformation, as done in the

figure, can be particularly useful to identify the behavior of the tape at
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Figure 3.18. Deformed shape of coated conductor under transverse compressive
stress [15].

regions of interest, such as the edge of the pushing head where potential

load concentrations may exist.

3.6.4. Cable results

The adoption of HTS cables for magnet applications requires knowledge

of their performance under bending. CORC and HTS slotted-core CICC

cables have both been analyzed with FEA to simulate their respective bend-

ing characteristics. The deformed shape of both cables under bending are

presented in Figure 3.19. Their electromechanical behaviors under bending

loads are very different simply due to the method used to cable the coated

conductors. The number of tapes, winding method, support structure, and

use of external jacket mechanically influence the cables’ bending stiffness

and electrically influence the cables’ critical current performance.

The critical current of the cables under bending loads are dependent

on the strain state of the individual coated conductors, as shown by the

strain contours in Figure 3.19. The tapes within a CORC cable experience

many local regions of high and low strains as they wrap around the central

former, while the tapes in an HTS CICC are exposed to the high- and low-

strain regions only once over one twist pitch but for a larger region along

the tape.

An example of the numerical critical current data predicted from the

analytical model described in Section 3.6.2 for the HTS CICC cable over a
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(a)

(b)

Figure 3.19. Deformed shape of two HTS cables under bending showing strain contours:
(a) HTS CICC, highlighting one tape stack; (b) CORC cable, showing tapes from one
layer [16].
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Numerical data for various friction coefficients compared with analytical models [35].

range of bending diameters is shown in Figure 3.20. The strain through the

width and along the length of each individual tape was used to estimate

the critical current performance for each bending diameter. The plot shows

the numerical results for three different coefficients of friction, highlighting

its effect on the critical current performance due to strain accumulation

along the cable. The numerical results are plotted alongside two analytical

predictions under perfect-slip and no-slip conditions. Experimental results
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were found to match the analytical perfect-slip case and the numerical

model with the lowest friction.

Simulating transverse load characteristics of HTS cables is a way to

investigate the electromagnetic load effects on these cables under opera-

tion in magnet applications. In magnets, currents in the cable mixed with

the background field produce an electromagnetic load on the cable, which

generally acts as a transverse compression. The critical or maximum com-

pressive load on cables before irreversible degradation has been investi-

gated for externally applied transverse mechanical compression, as shown

in Figure 3.21. The figure shows a contour plot of the compressive stress

distribution through the cross-section of a single CORC cable. The maxi-

mum stress is located on the outer layer of the tapes where it contacts the

load structure.

External applied loads are important to study and can be validated

easily with experiments; however, they do not accurately replicate the real

electromagnetic Lorentz load that a cable will experience in a magnet. For

that reason, simulations of the internal distributed Lorentz loads acting on

each coated conductor in a cable need to be conducted. Figure 3.22 displays

Figure 3.21. Stress contour of CORC cross-section under mechanically applied trans-
verse compression [20].
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Figure 3.22. Stress contour in TSTC cross-section under internal electromagnetic
load [21].

a TSTC conductor in a solder-filled copper tube, which is one support

method being tested experimentally. In the model, a uniform distributed

load is acting on the superconducting layer of every coated conductor in

the tape stack. Depending on the rotational orientation of the stack (i.e.

its position along the length of the cable), the loads from every tape can

accumulate, leading to local stress concentrations and regions of high defor-

mation, as shown in Figure 3.22. The determination of appropriate support

structures for cables is actively being investigated.
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This chapter discusses the fundamental thermal-hydraulic (TH) aspects

involved in the cooling of superconducting magnets, with special reference

to the issues related to forced-flow cooling.

The aim of an electromagnet is to produce a magnetic field with given

characteristics, such as intensity and shape, at each time instant of the

operational transient at hand.

If the electromagnets need to be operated while reducing as much as

possible the Joule losses, then the ohmic conductor must be replaced by

a superconductor. The energy consumption from the electromagnet power

supply will thus be minimized, as the Joule losses will be reduced to a

sum of:

• the losses localized in the copper (Cu) joints;
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Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License which per-
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• the Joule losses in the superconductor, where the electric field E can be

computed as a function of the transport current I, as shown in Equation

(4.1):

E = Ec(I/Ic)
n (4.1)

with Ec set conventionally to 10μV/m for low-temperature supercon-

ductors (LTS), while the critical current Ic and the n value are usu-

ally obtained from conductor tests [1]. In particular, the critical current

depends on several parameters, such as the magnetic field, temperature,

and mechanical strain. Despite the fact that the electric field (and con-

sequently the voltage) is never exactly zero, as shown in Equation (4.1),

when I � Ic (i.e. under normal operation), E is in fact negligibly small,

with n being typically (for LTS) >∼ 5. However, when I ∼ Ic or I ∼ Ic
(e.g. during a quench), the Joule losses are no longer negligible.

Besides these losses, there is another type of Joule loss, the so-called alter-

nating current (AC) losses, caused by magnetic field variations (in turn,

due to current variations in the magnet itself or in other magnets whose

magnetic field affects the magnet at hand).

All electromagnets need to be cooled. For the resistive electromagnets,

the power P to be removed equals that generated by the Joule losses in the

ohmic conductor, namely

P = ΔV × I, (4.2)

with ΔV being the voltage across the magnet. The superconductors show

superconducting properties only if kept at cryogenic temperatures (below

their so-called critical temperature), namely below 80–100K (high criti-

cal temperature superconductors, HTS) or even below ∼20K (low critical

temperature superconductors, LTS); the superconductors then must be first

cooled down to their operating temperature (below their critical temper-

ature), which is lower than the ambient temperature. As a consequence,

the superconducting coils are subject to a static heat load coming from the

ambient by means of radiative, conductive, and/or convective heat transfer.

Once they are cooled below their critical temperature, the superconducting

coils can be operated, but they must be continuously cooled to compensate

(besides the power sources mentioned above, namely Joule and AC losses)

for the static heat load also. Moreover, fusion magnets also experience heat

generation due to particle flux coming from nuclear reactions taking place

in the machine.
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The cooling of superconducting magnets presents some peculiarities

related to the operating conditions, which are very demanding in terms of

temperature margin to keep the magnet far from the temperature at which

the loss of superconductivity (quench) occurs, transport current require-

ments, external magnetic field, and mechanical strain (in turn, induced

by the high current and magnetic field). The superconductor performance

depends on all these parameters, thus impacting on the cooling design

because of the temperature level to be maintained and the relatively small

space available for the coolant.

Starting from the different possible applications of superconducting

magnets, in Section 4.1, their structure is investigated, following a top-down

approach from the magnet to its components, down to the conductors. The

latter allows a discussion of the main issues and possible options for their

cooling, which is described in Section 4.2, together with the refrigerator

and other subsystems providing the cooling power.

Then, the modeling of the superconducting magnet cooling is addressed:

After a detailed analysis of the time and space scales involved (Section 4.3),

the main hydraulic (Section 4.4) and TH (Section 4.5) features are described

in order to introduce their modeling peculiarities. After that, following a

bottom-up approach, the aspects related to the heat transfer inside the

entire magnet are dealt with in Section 4.6.

For the sake of completeness, and to give a flavor of the importance of

TH modeling of superconducting magnets, the most relevant TH transients

of interest are listed and described in Section 4.7.

Finally, a list of existing state-of-the-art models and of available exper-

imental facilities with superconducting magnets is reported in Section 4.8.

4.1. Applications of Superconducting Magnets and Related

Topologies/Geometries

The target of producing a rated magnetic field when and where required

could be achieved by winding a proper number of ampere-turns of a single

superconducting strand, which would be difficult from a technological point

of view, or by winding a proper number of ampere-turns of a bundle of

strands collected into a conductor, which is the adopted solution nowadays.

The conductor winding results in a coil having a shape capable of producing

the needed magnetic field. Moving on from the simplest shape producing

a controlled magnetic field, i.e. the solenoid, the electromagnets can have

several different shapes depending on the final application. The cooling

strategy adopted for the different magnets and applications, to be chosen
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among those described in Section 4.2, depends on several factors, among

which are:

• size of the magnet;

• type of superconducting material, namely HTS or LTS;

• operating conditions (temperature, magnetic field, transport current den-

sity resulting in Lorentz forces, i.e. mechanical strain);

• heat load on the magnet;

• target temperature margin from current sharing (in turn depending on

the operating conditions).

Magnets for nuclear fusion applications have to face the worst conditions of

almost all the above-mentioned factors: large dimensions, stringent oper-

ating conditions, large heat loads, and small temperature margin since the

design phase. As a result, their TH conditions are also challenging: Most

of this chapter will be thus devoted to those magnets.

4.1.1. Magnetically confined nuclear fusion experiments

In the past 30 years, a lot of experience in superconducting magnets has

been gained thanks to their application in the field of magnetically confined

fusion experiments, which aim at demonstrating the possibility of exploiting

nuclear fusion reactions for energy production.

The adoption of superconducting coils is crucial for that kind of appli-

cation in order to reduce the energy consumption of the magnet system

for both tokamaks [2] and stellarators [3], the two most important config-

urations of magnetically confined fusion reactors. In these machines, the

magnetic system is one of the most complex and most expensive compo-

nents, aimed at controlling the plasma inside a vacuum chamber.

ITER, the world’s largest experimental reactor under construction at

Cadarache (France) [4] as a result of an international collaboration between

China, the European Union, India, Japan, South Korea, Russia, and

the United States, will have a fully superconducting magnet system, see

Figure 4.1.

Depending on the position and aim of the four different magnet subsys-

tems, namely:

• the central solenoid (CS),

• the toroidal field (TF) coils,

• the poloidal field (PF) coils, and

• the correction coils (CC),
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Figure 4.1. Sketch of the four superconducting magnet subsystems constituting the
ITER magnet system.

Source: Reproduced from Ref. [5].

the shape of the coils varies from an almost ideal solenoid (CS, see

Figure 4.2(a)), to a “D-shape” coil (TF coils, see Figure 4.2(b)) to accom-

modate the plasma chamber in the bore of the magnet, to a ring-shape (PF

coils, see Figure 4.2(c)), and to a rectangular/trapezoidal shape (CC, see

Figure 4.2(d)). All of these magnets are of an impressive size (Figure 4.2):

the ITER magnet system will indeed be the largest and most integrated

superconducting magnet system ever built [6]. To cool such big magnets,

existing engineering solutions have been improved and new technological

solutions have been adopted.

If stellarators are considered, e.g. the W7-X being operated at Greif-

swald (Germany) [7], some of the coils have a fully three-dimensional (3D)

shape, far different from a classical solenoid, see the W7-X nonplanar coil

in Figure 4.3 as an example.

All the ITER magnets, as well as most of the superconducting magnets

of existing and future tokamaks (EAST [9], KSTAR [10], JT-60SA [11], EU

DEMO [12]), stellarators (W7-X [13], LHD [14]), or test facilities for fusion

magnets (ITER CS model coil - CSMC [15]), rely on the cable-in-conduit

conductor (CICC) concept [16] for effective cooling of the superconduct-

ing coil, see Figure 4.4(a) highlighting the CICC main components and

Section 4.2.
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Figure 4.2. ITER superconducting magnets: (a) CS, with a height of 18m and a diam-
eter of 4m; (b) TF coils (in gray), 17m high and 9m wide; (c) PF coils (in yellow), up

to 24m in diameter; (d) CC, up to 8m wide.

Source: Reproduced from Ref. [6].

The CICC consists of a cable, in turn constituted by many supercon-

ducting strands twisted together, inserted into a conduit, called a jacket

(see Figure 4.5). Each strand inside the cable contains superconducting fil-

aments embedded into a Cu matrix. In the conduit, the coolant is forced

to flow through one or more paths, see Figure 4.4:

• the bundle, i.e. the free-flow area remaining in the small spaces left free

among the strands;

• a variable number of channels, usually called “holes” and delimitated

by a metal helix, acting as pressure relief paths, in particular to mitigate

the pressure rise during a quench [19].
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Figure 4.3. W7-X non-planar coil.

Source: Reproduced from Ref. [8].

)b()a(

(c) 

Figure 4.4. Cross-section of CICCs in: (a) Wendelstein 7-X stellarator (no holes), (b)
ITER TF (one hole), (c) EU-DEMO TF (two holes) conductor (not to scale). Some of
the main components of the CICC are highlighted in (a).

Source: Reproduced from (a) Ref. [17], (b) Ref. [5], and (c) Ref. [18].
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Figure 4.5. Components of the CICC.

Source: Reproduced from Ref. [20].

Different designs of the CICC, see Figure 4.6, have been produced

depending on the application and the performance required.

The CICCs find great success in large magnet applications in view of

their numerous advantages:

• Because the cable is made by thin, as opposed to large bulky, wires,

its manufacturing is easier, as well as its handling and bending, and

moreover, the hysteresis losses caused by variable magnetic fields are

reduced.

• The large wetted perimeter of the strands guarantees good heat transfer

with the coolant and efficient heat removal during the operation of the

machine (stability).

• The stainless-steel conduit protects the strands from a mechanical point

of view, withstanding large Lorentz electromagnetic forces acting on the

cable.

However, there are also some disadvantages: Since the coolant and conduit

walls occupy a part of the cross-section of the cable, the amount of super-

conductor that can be put into the cable is limited, reducing the maximum

transport current and therefore the magnetic field that can be generated.
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Figure 4.6. Different CICC layouts (to scale) developed in the past four decades.

Source: Reproduced from Ref. [21].

During the coil-winding process, the conductor can be wound in several

ways, depending mainly (but not necessarily only) on:

• manufacturing constraints, namely the length of the conductor (the so-

called unit length);

• operational constraints (location of the expected maximum thermal and

magnetic loads and, consequently, the minimum temperature margin in

the coil);

• TH constraints:

◦ the maximum allowed pressure drop across each cooling path,

◦ the capability to remove the heat deposited by the heat source and the

distance of the expected location of the minimum temperature margin

from the inlet;

• space constraints, determining the location of the coolant inlets and the

electrical joints.

The typical classification of the coil winding is as follows:

• Pancake winding: the different turns of the conductor are at a different

radial distance from the coil axis, see for example the ITER CS case [22]

in Figure 4.7(a).
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Figure 4.7. Example of (a) pancake-wound coil (ITER CS) and (b) layer-wound coil (EU
DEMO CS proposed by SPC and ENEA). The numbering of the different CS modules

is also reported (HP: hexa-pancake, QP: quad-pancake).

Source: (a) Partly reproduced from Ref. [22].

• Layer winding: the different turns of the conductor are at the same radial

distance from the coil axis, see for example the EU-DEMO CS (proposed

by SPC and ENEA) case [23] in Figure 4.7(b).

If the same conductor unit length is used to wind more than one pancake or

layer, independently of the fact that they are cooled in parallel or in series,

then the coil is wound in a multi-pancake (or multi-layer) way. The ITER

CS is, for example, constituted by six hexa-pancakes (a single unit length

used to wind six pancakes) and one quad-pancake, see Figure 4.7(a), while

the ITER TF coils are wound in double-pancakes.

On the other hand, it may happen that a single conductor length is

not sufficient to wind a layer or pancake. Then, for a given winding layout,

namely pancake or layer wound, it is possible to wind the coil:

• with a single conductor (one-in-hand) or

• with more than one conductor (two-in-hand, three-in-hand, etc.).

Figure 4.8 shows the final coil layout for three different (layer-wound)

cases. Using n conductors to wind a single layer or pancake allows us to

reduce the required conductor unit length by a factor of n, with a positive
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Figure 4.8. Schemes of one-, two-, and three-in-hand (layer) winding. The same con-
ductor is indicated with the same letter and color.

(a)  (b) 

Figure 4.9. Example of (a) two-in-hand pancake winding for the ITER PF coils and
(b) two-in-hand layer winding for the ITER CSMC.

Source: Reproduced from (a) Ref. [25] and (b) Ref. [27].

impact on the conductor manufacturing and on the pumping power during

operation.

The EU DEMO PF coils (ENEA and SPC design proposal [24]) are

one-, two-, and three-in-hand layer wound depending on the coil. ITER

PF coils are two-in-hand pancake wound [25], see Figure 4.9(a), and ITER

CSMC is two-in-hand layer wound [26], see Figure 4.9(b).
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4.1.2. Particle accelerators

Accelerators for high-energy physics require magnets to guide the particle

beams and confine them in a relatively small and well-defined volume in

the vacuum pipe. In particular, in a particle accelerator, the majority of

the magnets belong to one of these two types [28]:

• Dipoles, see Figure 4.10(a): to bend the beam in its circular orbit.

• Quadrupoles, see Figure 4.10(b): to reduce (focus) the transverse beam

size at the collision point.

The typical requirements for accelerator magnets are [29]:

• high current density in the targeted field range (up to more than 15T,

depending on the energy of the particles accelerated);

• precise and stable geometry (down to 2μm tolerance);

• capability to bear mechanical stress and strain (up to 150MPa pressure).

The CICCs are unsuitable for this type of magnet because the free

area for the coolant flow and the conduit walls occupy a large part of the

cross-section, reducing the fraction available for the cable; as a result, the

number of superconducting wires that can be put into the cable is limited,

reducing the maximum transport current and therefore the magnetic field

that can be generated. For this reason, for applications needing very large

magnetic fields, such as accelerators, monolithic conductors or Rutherford

cables are used. The latter are composed of Cu/NbTi twisted wires wound

around a core that can be, for example, a thin shim (see Figure 4.11(a)) or

a round tube or cylinder (see Figure 4.11(b)). The rectangular geometry of

the cable provides a high packing factor and results in a precisely controlled

dimension necessary to wind coils with tight tolerances; this type of cables

is also flexible enough to accommodate various geometries [28].

The conductors are insulated [34] and usually wound into a racetrack

shape (see Figure 4.12) in single or double layers, with the length of the

coil up to ∼10m. Such coils are then cooled by conduction (see Section 4.2)

with a coolant in a bath or flowing through suitable channels in the magnet

structure, see the cooling channels visible in Figure 4.10. In order to avoid

any movement due to Lorentz forces that would lead to heat generation,

possibly leading to a quench of the conductor, a system of collars is used

to resist the electromagnetic force and to apply an initial prestress to the

coil. The coil in the collar is similar in shape to a Roman arch, see each of
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(a) 

(b) 

Figure 4.10. Cross-section of (a) superconducting dipole magnet and (b) superconduct-
ing quadrupole magnet for the High-Luminosity (HL) Large Hadron Collider (LHC)

under design at CERN [30].

Source: Reproduced from Ref. [28].

the four red coils in the two collars in Figure 4.12, and the pre-compression

is obtained by inserting an oversized wedge into the coil pole [28].

In some cases, the iron yoke, the collars, and the coil can all be inserted

in an outer shell that provides helium (He) leak tightness so that the entire

magnet is kept at the superconductor operating temperature. This concept
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Figure 4.11. View of (a) Rutherford cable for the LHC dipoles and (b) scheme of the
superconducting cable for the Nuclotron [32] dipole: (1) Cu–Ni tube, (2) superconduct-
ing strands, (3) Ni–Cr wire, (4) Kapton tape, and (5) fiberglass tape.

Source: Reproduced from (a) Ref. [31] and (b) Ref. [33].

Figure 4.12. Cross-section of the two-in-one quadrupole magnet (left) for the HL-LHC
(constituted by two quadrupole magnets similar to that in Figure 4.10(a)) and 3D view
of coil winding (right).

Source: Reproduced from Ref. [35].

greatly simplifies the alignment and geometry of the coil but has a much

larger cold mass [28], requiring more time for cool down (CD), for example.

Advanced designs include the “canted cosine-theta” coil, composed of

two nested solenoids with oppositely tilted windings powered such that the

solenoid components (along the solenoid axis) cancel out, leaving a nearly
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Figure 4.13. Schematic representation of a canted cosine-theta coil.

Source: Reproduced from Ref. [28].

perfect dipole field [28] in the poloidal direction (orthogonal to the solenoid

axis), see Figure 4.13.

In some cases, high magnetic field ramp rates are required for particular

applications in accelerators. The ideal operating mode for superconducting

magnets is steady state, and fast-cycled accelerator magnets require special

attention to be paid to AC losses and cooling, as the required operating

margin must be maintained by removing the heat generated during ramp-

ing. These magnet coils are often wound using a cable whose strands are in

turn wound on a core constituted by a pipe in which gaseous or two-phase

coolants are circulated (see Figure 4.11(b)) or are realized starting from

suitable CICCs [36].

4.1.3. Others

Besides the application to nuclear fusion devices based on magnetic con-

finement concepts and particle accelerators, superconducting magnets are

also applied to a variety of other fields, of which an overview is given in the

following sections.

4.1.3.1. Gyrotrons

The gyrotron is a source of microwaves used as auxiliary heating for the

magnetically confined plasma in nuclear fusion installations. This technol-

ogy accelerates the electrons through a high DC voltage and magnetic field.

The superconducting magnet of the gyrotron has to provide the magnetic

field to fire the electron beam from the electron gun into the resonator.

These magnets, wound in a solenoidal shape, are usually small (a few tens

of centimeters in diameter and height) so that the cooling can be provided

by a liquid He (LHe) bath or they can be conduction cooled, see Section 4.2.
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4.1.3.2. Medical

Magnetic resonance imaging (MRI), a powerful medical diagnostic tool, is

the most prevalent commercial application of superconductivity. A high

image quality requires a field of at least 1.5T, a high field homogeneity,

and temporal stability in a large volume.

The superconducting magnets currently used by the MRI industry have

horizontal annular cryostats with circular patient bores with a diameter of

∼1m; the coils used are typically wound using NbTi wires, and they are

bath cooled or cryogen-free conduction cooled [37], see Section 4.2.

In the case of nuclear magnetic resonance (NMR), the magnets’ charac-

teristics are similar, but the magnetic field is much higher, up to more than

10T, so that high-temperature superconducting materials are adopted [38].

A relatively recent application of superconducting accelerator magnets

is the development of compact, lightweight gantries for particle beam can-

cer therapy. Current gantry designs rely on heavy, resistive magnets. The

requirements for these magnets are a large bore, the capability to combine

bending and focusing, and a quickly changing field. The topology of those

magnets is similar to that of the accelerator magnets described above [28]

in Section 4.1.2.

4.1.3.3. Power grid

As far as the applications to electric utility grids are concerned, super-

conducting magnets can be employed, in particular, for energy storage.

However superconducting cables are also used (not in the form of magnets)

in power transmission, generators (e.g. generators for wind turbines [39]),

motors [40], synchronous condensers, transformers, and fault-current

limiters [41]. Some of these applications are described briefly in the

following:

Power transmission cables: In the case of power transmission cables,

the superconducting cable is not wound in a coil to generate a magnetic

field but is used only to carry a given current in a limited space, minimiz-

ing the Joule losses (excluding the AC losses and the joints). Even if this

application is not a magnet, it is mentioned here as forced-flow cooling (see

Section 4.2), and the topology of the conductor (similar to a CICC) makes

this application of superconducting cables interesting from a TH point of

view. The interest in superconducting cables for power transmission has

increased a lot after the discovery of HTS: The use of HTS takes advantage
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of the use of a cheap fluid for the cooling (liquid nitrogen, LN2, or gaseous

He, GHe) [42].

According to the type of dielectric adopted, two main types of super-

conducting power cable concept have been developed [42]:

(1) Warm dielectric design, which is based on a flexible support with HTS

tapes in one or several layers, surrounded by a thermal insulation based

on two concentric flexible stainless-steel corrugated tubes with vacuum

(and superinsulation) in between (see Figure 4.14(a)); the dielectric

 (a) 

 (b) 

Figure 4.14. View of (a) warm dielectric and (b) cold dielectric superconducting cable.

Source: Reproduced from Ref. [43].
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insulation and the cable screen are the outermost layers at room tem-

perature. The coolant flows into two separate regions, namely inside

the flexible support and the innermost steel tube.

(2) Cold dielectric design, having a high-voltage insulation constituted by

a layered dielectric impregnated with liquid N, which is then also part

of the dielectric itself (see Figure 4.14(b)); three of these cable phases

can be put into individual or a single cryogenic envelope, which is again

based on two concentric flexible stainless-steel corrugated tubes with

vacuum (and superinsulation) in between.

Energy storage: Superconducting magnetic energy storage (SMES),

where the energy is stored in the magnetic field produced by an elec-

tric current flowing with no resistance in the superconducting coils, is an

attractive energy storage option thanks to an overall electrical efficiency

larger than 97% [44] and the possibility to withstand a very large, vir-

tually unlimited number of cycles. The two most used configurations of

SMES are the solenoid and toroidal configurations. SMES could be an

important part of smart grids since they are suitable for power manage-

ment purposes to compensate for electric power fluctuations on a wide

spectrum of time scales, ranging from seconds to several minutes [45],

in view of their high power density in the range 10–105kW/kg [44],

much higher than batteries. This is due to their capability to withstand

fast current variations, down to 0.1–1 s, so that the entire energy stored

(∼0.01MJ/kg [44]) can be released in that short time, resulting in a

high power transfer to the utility. However, they have a low energy den-

sity (directly proportional to the square of the current, the square of the

number of turns, and the coil radius but inversely proportional to the

large coil mass), much lower than batteries. This is mainly driven by two

factors:

(1) the critical current in the superconductors, which decreases as B

increases, reducing the maximum allowed operating current;

(2) the mechanical strength (often dominating limiting factor): when

either the maximum hoop stress due to Lorentz force reaches the yield

stress [46] or the stress amplitude reaches the fatigue limit of the struc-

tural materials [47], the operational limit is reached.

The technology adopted so far for SMES portends the use of LTS, such as

NbTi, with a peak B of ∼5–6T, cooled by stagnant He at 4.2K [48], by

forced-flow supercritical He (SHe) [44], or, rarely, by conduction (cryogen

free) [44], see Section 4.2. HTS have also begun to be considered in the
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design of SMES [49] in view of their potential to generate a much larger

magnetic field than LTS at 4.2K or to achieve a similar magnetic field but

with a much higher temperature [50] that would allow us to decrease the

operation costs of the cryogenic system.

4.2. Superconducting Magnet Cooling Methods

Several cooling strategies are available to keep the superconducting mag-

nets operating temperature at the desired value so that the superconducting

state is maintained. The cooling method depends on the magnet geome-

try/topology and on its application.

4.2.1. Cooling fluids

Several cooling fluids are available depending on the superconductor oper-

ating conditions (mainly the temperature). Besides the most used (He and

N2) that are listed and for which some more details are provided in the

following, other fluids are potentially available, such as hydrogen (H2) and

neon (Ne). Both of them could be used for HTS cooling in the ∼20–30K

temperature range in order to reduce the operating cost of the refrigerator.

Different fluids are presented and compared here based on their ther-

modynamic properties.

Fluid properties are usually given as a function of couple of thermo-

dynamic independent variables, e.g. pressure and temperature or pressure

and enthalpy. The most distinguished sets of properties are those of the

National Institute of Standards and Technology (NIST), a non-regulatory

agency of the United States Department of Commerce [51]. An alternative

open-source fluid property library is CoolProp [52].

Figure 4.15(a) shows the latent heat of vaporization (hv) at 1 bar, com-

pared also with the enthalpy variation (dh) when the fluid temperature

increases by 1K (namely, the specific heat at constant pressure) at differ-

ent temperatures. A similar comparison but per unit volume is shown in

Figure 4.15(b). It is shown that for a given allocated flow area, the highest

specific heat is provided by He, Ne, and N2 at 5, 30, and 70K, respectively,

which are the reference temperatures for the cooling of LTS (5K) and HTS

depending on their application.

4.2.1.1. Helium

He is traditionally used in LTS cooling in view of its very low critical (5.2K)

and boiling (4.2K at 1 bar) temperatures, besides its low critical pressure
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(a) 

(b) 

Figure 4.15. Comparison of the latent heat of vaporization at 1 bar and the enthalpy
variation when the fluid temperature increases by 1K at different temperatures (a) per
unit mass and (b) per unit volume among different cryogenic fluids [51].

(2.28 bar). It can be used in different thermodynamic states. Figure 4.15

shows that its latent heat at 1 bar is the lowest, smaller than, for example,

that of H2, but it is the only fluid that allows the temperature to reach

values lower than 5K at a pressure of ∼5 bar, as the triple point of H2, Ne,

and N2 is at 14, 24.6, and 63.2K, respectively.

However, He production around the world is reducing and its cost is

sharply increasing so that in the near future, other cooling solutions may

become competitive [53].
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Figure 4.16. Specific heat at constant pressure of He as a function of temperature at a
pressure of 5 bar [51].

Supercritical He: SHe, i.e. He at a pressure higher than its critical pres-

sure (0.228MPa) or at a temperature higher than its critical temperature

(5.2K), is the most commonly used coolant for superconducting magnets

for fusion applications. He is an inert gas, and SHe has a peak value of

specific heat at a temperature of ∼6–7K at a pressure of 0.5MPa (see

Figure 4.16) so that it acts as an excellent coolant under the operating

conditions favorable for the LTS used in the magnets that are currently the

state-of-the-art technology in magnetically confined nuclear fusion, with

typical critical temperatures between 10 and 20K.

Superfluid He: In some special applications, superfluid He is used as

cooling fluid. Superfluidity is a different phase state (superfluid He is also

known as He-II) that is reached at a temperature below 2.17K (He-4 at

ambient pressure) and characterized by a null viscosity and a very high

thermal conductivity. He-II is used as a cooling fluid in some accelerator

magnets and for the superconducting magnets of the Tore Supra [54] (now

WEST [55]), the French tokamak in operation at Cadarache since 1988

(WEST has started its operation in 2016).

Two-phase He: High-speed, two-phase He flow is used as a cooling fluid

in the central channel of the POLO conductor [56], see Figure 4.17. The

bundle region contains stagnant, pressurized SHe, which transfers heat by

conduction to the central channel [19].
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Figure 4.17. The POLO conductor, with two separate He chambers.

Source: Reproduced from Ref. [19].

4.2.1.2. Hydrogen

H2 has a saturation temperature at ambient pressure of ∼20K so that it

is still interesting for the cooling of HTS at that temperature level. It is

the most advantageous cooling medium, exhibiting the highest latent heat

and specific heat per unit mass, see Figure 4.15(a). This leads to a faster

thermal mass CD and a lower boil-off [57], but it is highly flammable —

this constraint limits its application, requiring caution in its handling and

operation.

4.2.1.3. Neon

In view of its higher density, Ne shows the highest specific heat per unit

volume at ∼30K (see Figure 4.15(b)), making it an interesting alterna-

tive to H2. Indeed, its saturation temperature at 1 bar is ∼27K. However,

because of its scarcity, its cost is higher than that of H2, while the price of

He is increasing (see above).

4.2.1.4. Nitrogen

N is a cheap and environmental friendly fluid. It is abundant in the atmo-

sphere and easy to be used. Its saturation temperature at ambient pressure

is 77K, and with its melting temperature being equal to 63K, it is not suit-

able for cooling LTS. The interest in N2 as a coolant has thus grown after

the discovery of HTS.

Indeed, the use of N2 as a coolant is also limited for HTS to the cases

where the operating conditions (in terms of the required current density and

background magnetic field) are not too stringent, otherwise the operating
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temperature of the magnet must be reduced to liquid H2/Ne or LHe one. As

a result, N2 turns out to be a promising coolant for power transmission lines

based on HTS, rather than for superconducting magnets [42]. As shown in

Figure 4.15(b), its specific heat per unit volume is excellent both in single-

and two-phase flow.

4.2.2. Cooling options

Besides the cooling fluids, different cooling options are available for super-

conducting cables. They are listed in this section.

4.2.2.1. Forced flow

Forced-flow cooling is typically adopted when the heat transfer coeffi-

cient (HTC) must be higher than in natural convection (e.g. for magnets

immersed in a pool) to guarantee a given temperature margin on a large

critical portion of the magnet (e.g. in most fusion devices) and/or the heat

load on the magnet is high. This may happen due to, for example:

• AC losses induced by magnetic field variations in fusion [58] and some

accelerator [28] magnets,

• static heat load from the environment, and

• nuclear heat load from the plasma in fusion magnets [59, 60].

SHe is circulated in the CICC used in the fusion magnets’ inside cool-

ing loops described in Section 4.2.3.2, i.e. the circuit directly cooling the

magnets and hydraulically decoupled from the refrigerator. The latter, see

Section 4.2.3.1, still uses He as the process fluid but in the form of gaseous

or liquid He.

Forced-flow, high-speed, two-phase He flow is used as the cooling fluid

in the central channel of the POLO conductor [56], see Figure 4.17. On the

other hand, the bundle region contains stagnant, pressurized SHe, which

exchanges heat only by conduction to the central channel [19]. In principle,

if the central channel wall is solid, the coolant used in it can be different

from the working fluid cooling the bundle.

Forced-flow N2 is usually adopted for the cooling of HTS for power

transmission.

4.2.2.2. Conduction

Conduction cooling is based on the thermal contact between the refrigerator

cold head and the magnet cryostat assembly [61]. The use of metallic and

high-conductive materials in the bulky coil guarantees the cooling of the
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entire magnet. This cooling option with dry magnets is suitable only for

small coils or in the case where the coil is operated in a steady state (with

small or no magnetic field variation) and with very small heat loads from

the ambient, as in accelerators and medical applications.

4.2.2.3. Pool

In the very first applications, LHe in a pool bath was the only option to

cool a superconducting magnet. LHe can be easily stocked in large amounts

independently of the size of the cryoplant.

In a pool-cooled magnet, LHe is in direct contact with the metallic

conductor so that the large enthalpy inventory of the bath is exploited to

obtain a high thermal stability. In order to allow the contact between LHe

and each conductor, the winding pack (WP) must ensure gaps for the He

that also has the function of electrical insulation. The gaps are, in some

cases, guaranteed by a number of spacers between conductors, limiting the

mechanical stiffness and allowing dangerous deformations of the WP under

operating loads, thus inducing mechanical instabilities.

The requirements of mechanical stiffness and reliability of the high-

voltage electrical insulation have ruled out the pool cooling option for fusion

devices of the present and future generations [62].

Tore Supra [54] (now WEST [55]] and LHD [14, 63] are currently the

two fusion devices running with magnets cooled in He-II pools. In the Tore

Supra case, the choice of operating at 1.8K was dictated by the need to

enhance the magnetic field of the tokamak without moving away from the

NbTi technology [62].

4.2.3. Cryoplant description

The cryoplant is responsible for the cooling of the superconducting mag-

nets to the required operating (cryogenic) temperature. This function is

accomplished by:

• the refrigerator, producing the cooling power by means of a process fluid,

and

• the cryodistribution system, delivering the cold fluid to the client and

collecting from it the warm fluid.

4.2.3.1. Refrigerator

The refrigerator is a complex component whose aim is to produce the

desired cooling power needed to maintain the operating temperature. Its
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cost is directly proportional to the peak cooling power: To reduce the

investment cost, it is thus required to operate it at a constant (averaged)

power and to reduce the peak power.

At present, most of the superconducting magnets are based on LTS and

cooled by He. The He refrigerator is thus described in this section.

The thermodynamic cycle featured by most of the He refrigerators for

fusion purposes (e.g. the one operated at the ITER CSMC facility in Naka,

Japan [64]), whose scheme is shown in Figur 4.18, is a conventional Collins

cycle, typically with LN2 precooling (HX1 and HX2), two or three isentropic

turbo-expansion stages (T1 and T2) connected in series (which distinguish

the Collins from the single expansion typical of the Claude cycle [65]), and

one or more Joule–Thomson (JT) isenthalpic expansions [64]. He refriger-

ators for other applications, such as to cool accelerator magnets, follow the

same thermodynamic cycle and have a similar layout.

The compressor unit is usually composed of an inter- and post-cooled

(IC and PC, respectively) two-stage warm compression system (screw com-

pressors are typically adopted). The compressor unit is equipped with a

GHe storage tank (B1) at ambient temperature for the loop pressure control

(as well as with gas purifiers and oil separators), see the dashed lines denot-

ing the He charging and discharging lines in the compressor unit shown in

Figure 4.18.

The refrigerator is equipped with a lot of temperature, pressure, and

flow sensors to control its operation. The GHe exiting the compressor unit

is driven through a series of heat exchangers (HXs), constituting the pre-

cooling stage (HX1-3 in Figure 4.18), some of which featuring LN2 pre-

cooling; in most of the cases (e.g. in the ITER CSMC [64], EAST [66], and

Tore Supra [67] refrigerators), the LN2 is stored in a proper tank and vented

to the atmosphere after being used for pre-cooling. Then, the He enters the

cooling stage, composed of a series of HXs (HX4-6 in Figure 4.18) in parallel

to the expansion stages, i.e. the turbo-expanders T1 and T2. Finally, the

He is driven to the after-cooling stages (HX7-8 in Figure 4.18), where the

expansion into the JT valve(s) takes place.

The He finally reaches the client to cool, which is different depending

on the operation phase:

• During CD, the refrigerator is connected directly to the magnet, acting

as a client.

• During normal (cold) operation, the client of the refrigerator is instead

a saturated LHe bath, thermally coupled by means of one or more HXs

to the loop cooling the magnet.
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Figure 4.18. Scheme of a He refrigerator for superconducting magnets in fusion devices.

Only in small applications, where the coolant mass flow rate is small, the

forced-flow cooling can be obtained directly from the refrigerator also dur-

ing the cold operation: thanks to the direct connection to the refrigera-

tor, where a two-stage compression usually results in a high pressure level

(larger than 10 bar), series cooling of the magnets is adopted because a
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large pressure drop is allowed, and the mass flow rate can be kept small as

required [62].

Besides the magnets, there are several other different clients for the

refrigerator in a facility containing superconducting magnets, e.g. the ther-

mal shields, current leads, diagnostics, and, in the case of a tokamak, cry-

opumps and the pellet injection system. The operating temperature of the

different utilities can be different (the thermal shields are usually operated

at ∼80K): the different flows of the process fluid in the refrigerator will

thus be properly split in order to optimize the power consumption.

4.2.3.2. SHe loop

In fusion devices, the magnets are cooled by SHe flowing in a pressurized

(∼0.6MPa) loop hydraulically separated from the refrigerator cycle, see

Figure 4.19. This loop is composed of:

• a cold circulator (driving the SHe flow in the magnets);

• cryolines, connecting the cold box, which contains the LHe bath, to the

magnets;

Figure 4.19. Scheme of the SHe loop for the cooling of superconducting magnets in
fusion devices.
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• feeders, i.e. the pipelines entering the cryostat (containing the magnets)

to supply the cooling fluid directly to the coil cooling the channel inlets;

• the HX(s) providing the thermal coupling between the SHe loop and

the LHe bath, i.e. between the magnet cooling loop and the refrigerator;

more than one HX can be present, and in that case, they are normally one

upstream of the cold circulator (to remove from the SHe loop the heat

from the magnets before pumping, thus reducing the required pumping

power) and one downstream of the cold circulator (to remove the power

introduced by the cold circulator, after the pumping process);

• control valves with suitable controllers (typically proportional–integral,

PI, or proportional–integral–derivative, PID), operated on the basis of

process values measured by a set of temperature, pressure, and mass

flow sensors along the loop itself.

To limit the pumping power of the cold circulator, the pressure drop

across the coils must be kept low, typically within 0.1MPa. The conductor

hydraulic characteristics (pressure drop during operation and maximum

pressure at quench) are indeed one of the major drivers for the design of

fusion conductors [62].

4.2.3.3. Interfaces

Current fusion machines are operated in a pulsed mode so that the heat

loads on the magnets (due to nuclear load or AC losses induced by mag-

netic field variations in the coils) are cyclically variable: During a period,

there will be a peak thermal load and a minimum thermal load, e.g. see

Figure 4.20 for the ITER CS. If the magnet was directly connected to the

refrigerator, the latter is to be dimensioned to remove the peak heat load,

which may be much larger than the average heat load. As the refrigerator

cost is driven by its nominal power, an over-dimensioning of the refrigera-

tor power will result in a higher investment cost. For this reason, the role

played by the SHe loop and the LHe bath is crucial: The active controls

acting on the former and the passive thermal inertia of the latter aim at

smoothing the variable thermal loads removed from the superconducting

magnets. In particular, the load can be smoothed by storing temporarily

the energy:

• in the bulky metal structures supporting the coil (e.g. in the TF coils

case), by means of a magnet (or HXs) bypass valve in the SHe loop or

reducing the cold circulator speed;
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Figure 4.20. Evolution of heat load (AC losses) in each module of the ITER CS during
a 15 MA standard plasma operating scenario. Note that the power scale is logarithmic.

Source: Reproduced from Ref. [58].

• in the LHe bath, reducing the GHe mass flow rate sent back to the

refrigerator by means of a suitable control valve at the LHe bath outlet

or varying the cold compressor speed.

Experimental facilities [68] and numerical tools [69–75] have been devel-

oped to design suitable heat load smoothing strategies for the existing and

future fusion reactors.

Magnets operated in the steady-state mode (as the accelerator ones) do

not need specific load-smoothing strategies, so the control of the coolant

distribution system is simpler.

4.2.4. Solid properties

The thermophysical properties of solids are usually given as functions of

temperature only, excluding few exceptions. To deal with the cooling of

superconducting magnets, the most relevant properties are density (which

can be considered constant if no mechanical calculations are being per-

formed), specific heat, thermal conductivity, and electrical resistivity. The

last one is needed to compute the power generation in the conductor

when the superconductor loses its superconducting state and the cur-

rent is transported by Cu and other metallic components, such as the

jacket.
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4.2.4.1. Metals

As far as metals are concerned, attention should be paid to Cu. It is used

as stabilizer in the cable, as all the superconducting strands are, for a given

fraction, made of Cu, and in some cases, additional pure Cu strands are

added to the superconducting ones. The role of Cu in the TH of the CICC is

very important: It provides a low impedance path for the current transport

during quench transients. The correct definition of its electrical resistivity

is thus required. It must be noted that the electrical resistivity of Cu, as

well as its thermal conductivity, depends not only on the temperature but

also on the magnetic field and residual resistivity ratio (RRR, the ratio of

the electrical resistivity at 300K and at 0K), the latter being higher for

purer Cu. Reliable thermophysical properties of Cu can be obtained from

the NIST database [76].

Other relevant metals and alloys are those adopted for the jacket, includ-

ing stainless steel, titanium, Incoloy�, and aluminum.

4.2.4.2. Superconductor

For superconductors, besides the typical solid thermophysical properties

(some of which may also depend on the magnetic field, current-sharing

temperature, and critical temperature), there is also another set of prop-

erties defining its critical current density, i.e. the so-called scaling. Scaling

depends on the superconducting material and its manufacturing technique,

while some parameters of scaling are defined for particular types of strands

and manufacturers. This set of information must be available when build-

ing a model of a superconducting cable in order to reproduce its critical

surface. The latter delimits the volume of the magnetic field, current den-

sity, and temperature parameter space in which the material behaves as a

superconductor. A typical, numerical definition of this surface returns the

critical current density for a given magnetic field and temperature [77]. For

some superconducting materials (e.g. Nb3Sn), the critical current density

is also a function of the mechanical strain [78].

4.2.4.3. Insulations

Insulation material properties are usually given only as a function of tem-

perature. However, they are affected by a nonnegligible uncertainty because

of the way the insulation is applied, i.e. in several superposed layers of dif-

ferent materials, usually impregnated by resins.

The thermophysical properties are typically given for the pure, bulky

material. As a result, if the insulation is wrapped around the CICC (“turn
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insulation”) or the coil (“ground insulation”) with a given overlapping, its

multi-layer nature usually alters the resulting properties and the insulation

layer does not act as if it were a single layer of the same thickness. This

is of paramount importance when computing the heat transfer between

neighboring CICCs across the turn insulation: an error in the definition

of the thermal conductivity will result in a different heat flux. Typically,

the multi-layer structure reduces the thermal conductivity of the insulation

layer by a factor of ∼10 with respect to the nominal value referred to the

bulky material [79–82].

4.3. Modeling

In view of the complex nature of large magnets, such as those used in

nuclear fusion facilities, their TH analysis (both from the conceptual and

from the modeling point of view) must deal with multiscale phenomena.

A multiscale approach was proposed for the TH modeling of fusion mag-

nets [83], but it is useful also in the description of the TH phenomena. TH is

indeed fundamental especially for forced-flow-cooled superconducting mag-

nets. In the following sections (from 4.4 to 4.7), this multiscale nature of

the TH of large superconducting magnets will be highlighted while dealing

with the physics and the corresponding modeling (and issues).

The need for adequate models is motivated by three needs:

• Interpretation of the results obtained from existing test facilities; there

are no diagnostics inside the conductors/magnets, thus the “local” con-

ductor performance in dedicated tests must be reliably deduced from

“global” (inlet, outlet) measurements (temperature, mass flow rate, pres-

sure, voltage, current, etc.) by means of suitable computational tools.

• Prediction of the magnet operation during the design phase; supercon-

ducting magnets must be kept sufficiently below the current-sharing tem-

perature, so the capability to reproduce/predict TH transients is needed

to assess the design choices.

• Design of operational scenarios, including suitable controls for the mag-

nets during and after the commissioning of the machine they are inte-

grated within.

4.3.1. Space scales

The TH-relevant spatial scale range is as follows (see Figure 4.21) [83]:

• Macroscale: 10–100m (magnet size/CICC length).

• Mesoscale: 10−2–1m (CICC transverse sizes/WP).
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Figure 4.21. Three relevant scales for the TH modeling of the ITER superconducting
magnets.

Source: Reproduced from Ref. [83].

• Microscale: 10−3–10−2m (strand diameter and insulation thick-

ness/transverse size of a CICC).

From the modeling point of view [83], on the macroscale, the entire

magnet (coil + structures + cryogenic circuit) is considered. The structures

include all the metallic, bulky casing that surround the coil to provide

mechanical stability. In fusion magnets, the largest structures are those

surrounding the TF coils, providing mechanical support against gravity to

the CS and PF coils also.

In order to successfully model the entire, macroscale system, the treat-

ment of the mesoscale dimension is required: The individual CICCs are

modeled, usually as one-dimensional (1D) objects along the conductor axis,

weakly thermally coupled inside a winding and with the casing (if applica-

ble), as well as the cooling pipes inside the structures (sometimes needed

to provide additional cooling to the structures), also approximated as 1D

objects.

The 1D mesoscale models need constitutive relations for the heat,

momentum, and mass transfer inside the CICC, namely friction factors and
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HTCs: They may, in turn, be derived by analyzing a limited portion of the

CICC at the microscale level by means of detailed 2D or 3D computational

thermal-fluid-dynamics (CFD) models.

4.3.2. Time scales

Similar to the spatial scales, the relevant TH time scales also cover several

orders of magnitude. The different time scales can be identified on the

basis of the transient under investigation and the heat transfer mechanism

considered.

The typical transients of superconducting magnets for fusion applica-

tions, which will be described in Section 4.7, involve the following time

scales:

• Normal operating conditions:

◦ Cool down: The duration of the transient is typically from a few days

to one month, depending on the size of the magnet to be cooled from

room temperature to cryogenic temperature.

◦ Plasma operation mode: The normal operation of a tokamak identifies

the plasma pulse; in this case, the time scales depend on the plasma

duration (driving the nuclear load on the TF coils) or on the duration

of the most steep current/magnetic field ramps, inducing the highest

heat loads in the pulsed coils. On average, the typical time scales range

from 10 to 1000 s.

• Off-normal operating conditions:

◦ Quench: The thermal stability of the superconducting cable is lost at

the 10−3 s time scale, while a quench propagates for a few seconds.

The time needed to recovery the initial (cold) operating conditions

then depends on the cold mass and can be up to several hours.

◦ Fast current discharge: It depends on the coil inductance and the max-

imum voltage that the insulation can withstand. Typically, relevant

time scales are in the range 1–10 s, while as in the case of a quench,

the time needed to recover the initial operating conditions can be up

to several hours.

◦ Severe accidents, such as loss of flow or loss of coolant: Their time

scales are in the range of a few seconds, but in the case of a small loss

of flow/coolant, an accidental transient can be much longer.
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The different heat transfer mechanisms that could be involved in forced-flow

cooling act at different time scales. In particular:

• Advection of the coolant along the channel: It depends on the coolant

speed and channel length and, usually, is in the range 100–1000s for a

CICC of fusion magnet in cold operation; it reduces to 10–100 s if the

pipes for the cooling of the structures are considered.

• Convection: The excellent thermal coupling between the coolant and the

solids in a CICC for fusion magnets, especially in the bundle region

(thanks to the large wetted perimeter), reduces the time scale of this

heat transfer mechanism well below 1 s, usually to the order of 1–10ms.

• Conduction: In this case, the thermophysical properties of the materials

considered determine the time scale of the thermal coupling, which at the

cold operating temperature of 4.5K ranges from ∼100 s (heat conduction

across 10 cm in the bulky stainless-steel structures) to ∼1 s (heat conduc-

tion across 1 cm of the ground insulation, wrapped around the coil) and

to 0.1–1 s (heat conduction across a few mm of the insulation separating

the conductors in the coil).

4.4. Forced-Flow CICC Superconductor Hydraulics

Most of the interest in the hydraulic analysis of a CICC is focused on

the assessment of its pressure drop per unit length because, as already

discussed above, together with the maximum pressure during a quench, it

is the major driver of the design of fusion conductors. On the other hand,

the most interesting TH aspects concern the capability to properly cool

the superconducting material (strands in a CICC) in order to maintain the

superconducting state. Moreover, in the case of dual-channel CICCs, the

complexity of the analysis is increased because of the presence of multiple

regions for the coolant flow, see Figure 4.22, typically coupled from both

the hydraulic and the TH points of view.

4.4.1. Multiple flow regions

SHe coolant flows both in the annular region, where the cable bundle is

present, and in the central channel, see Figure 4.23.

As the CICC axial–transverse size ratio of a CICC is typically ∼1000 in

a fusion coil, 1D (axial) models are customarily used for a CICC. Compress-

ible Euler-like flow of one fluid component for each region is computed, solv-

ing the three coupled equations of the conservation of mass (Equation 4.3),
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Figure 4.22. Sketch of the CICC used for the ITER central solenoid model coil (CSMC)
as a representative of a typical CICC. Note the dual-channel structure.

Source: Reproduced from Ref. [84].

(b)(a)

Figure 4.23. (a) Bundle and (b) hole flow regions in a CICC.

momentum (Equation 4.4), and energy (Equation 4.5), usually rewritten

to make explicit the non-conservative variables velocity, pressure, and tem-

perature: {
∂ρ

∂t
+
∂ρv

∂x
= Λρ (4.3)

{
∂ρv

∂t
+
∂ρv2

∂x
+
∂p

∂x
= Λv (4.4)

{
∂ρe

∂t
+
∂ρev

∂x
+
∂pv

∂x
+
∂qc
∂x

= Λe (4.5)
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In this set of equations, ρ, v, p, and e are the fluid density, velocity, pressure,

and specific (sum of internal and kinetic) energy. Λ indicates the sources of

mass (Λρ), momentum (Λv), and energy (Λe) in the respective equations.

The variable t is the time, x the space, and qc the thermal flux exchanged

within the fluid by conduction (it is usually neglected as the thermal con-

ductivity of SHe is very low).

The 1D, single-channel fluid model reported in Equations (4.3–4.5) is

based on the assumption that each hydraulic channel can be considered a

single conductor, independent of the winding strategy followed to build the

magnet.

If, besides the bundle (B), one (or more) central channel (hole, H) is

also present, a second set of these equations is solved for the second coolant

region.

The heat transfer between the two fluid regions also account for addi-

tional terms described in Section 4.5.3.

As far as solids are concerned, heat conduction along at least two solid

components (strands and jacket, see Figure 4.24) is solved, assuming a uni-

form temperature across the respective cross-sections. This is a limiting

assumption, as transverse temperature gradients between different cable

components may arise (and have indeed been measured [84]) even at the

sub-petal level and can be particularly relevant in the case of coupled elec-

tromagnetic TH transients:

AρC
∂T

∂t
− ∂

∂x

(
k
∂T

∂x

)
= Q, (4.6)

where C is the specific heat, k the thermal conductivity, and Q the heat

source, including the volumetric heat generation and the heat transfer with

(a) (b)

Figure 4.24. (a) Strands and (b) jacket solid cross-sections in a CICC.
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other solid regions (including the structures) and fluid(s). For the latter,

the heat transfer with solids is accounted for in the source of the energy

equation.

Note that, as shown in Figure 4.24(b), the cross-section of the wall of

the central channel and that of the sub-cable wrappings (metallic sheets

used to partially wrap each of the last cabling stage, usually called “petal”)

are also considered part of the solid cross-section in order to remove them

from the free-flow area that otherwise would be overestimated.

4.4.1.1. Bundle

The bundle flow region of a CICC, see Figure 4.23(a), is characterized

by a very large wetted perimeter of the strands, up to more than 1m,

providing an excellent thermal coupling between the cable, constituted by

small-diameter strands, and the coolant. However, the hydraulic diameter

of the bundle region is very small, typically ∼10−4m. As a result, the

pressure drop is very high, and therefore, the mass flow rate is limited.

Consequently, the coolant speed in the bundle region is also small, normally

10−2–10−1m/s during cold operation. The small velocity has a negative

impact on the stability, as the HTC increases with speed. For these reasons,

the use of a channel (“hole” ) with low hydraulic impedance is a common

practice.

4.4.1.2. Hole

The hole flow region of a CICC, see Figure 4.13(b), is included in several

designs (see Figure 4.4(b) and 4.4(c) and Figure 4.6) as a pressure release

channel to mitigate the pressure rise during a quench. In channels with

larger hydraulic diameter (from 5mm in the EU DEMO TF coil conductor

proposed by ENEA [18] to 10mm of the ITER PF coils [85]), the coolant

speed is large (up to 1m/s) and the average residence time of the coolant

in the winding is shortened [19].

The walls of the channel are typically constituted by a spiral (or a spring

as in some of the CSMC conductors [26]).

4.4.1.3. Coupling between bundle and hole

In the most general case, mass, momentum, and energy exchanges are

allowed between the two fluid regions across the wall separating them, see

also Section 4.5.3.

The two regions are coupled by means of mass transfer, which is

accounted for in the mass conservation equation (Equation (4.3)) as a
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Figure 4.25. Scheme of the coolant mass transfer across the perforated part of the
spiral.

source/sink proportional to the pressure difference between the two regions

and to an equivalent localized pressure drop coefficient (K), in turn related

to the area available for the cross flow:

Λρ =
K(pB − pH)

lA
(4.7)

where, l and A are the length and cross-section of the fluid region, respec-

tively. In other words, a valve-like model is typically adopted in many

codes [86] to compute the Λρ term in Equation (4.3) used to model the

radial fluid transport in the CICC, see Figure 4.25.

The mass transfer also causes a momentum and energy transfer, which

is accounted for in the source in the momentum and energy equations pro-

portionally to the Λρ term.

4.4.2. Friction factors

The momentum transfer between the coolant and solids is very important

as it determines, for a given mass flow rate, the pressure drop along a CICC

and thus the related cost of pumping.

The momentum source Λv includes the friction term F ,

F = 2fρ
v2

Dh
, (4.8)

with f being the friction factor coefficient and Dh the hydraulic diameter.

For analysis, as the two regions are modeled separately as two paral-

lel channels for simplicity (while microscale analyses reveal that there is

mass transfer with zero net flux between the two regions), separate friction

factors are needed for the bundle region and the hole so that at least two

sets of independent measurements are needed. Once both friction factors

are known, it is possible to compute both the pressure drop and the flow
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repartition between the different regions of a CICC. Note that even for

CICCs with a single hole, the two-channel model is a simplification of the

reality, as several parallel flow channels are actually present:

• a “third” channel may naturally appear during coil operation because of

Lorentz forces and finite cable stiffness;

• “triangles” appear on the CICC cross-section at the contact between two

petals and the (inner jacket) cable wrap.

For the bundle region, the correlation based on the Darcy–Forchheimer

equation for flow in porous media [84, 87, 88] is recommended as the primary

correlation to be used in TH simulations:

f =
D2

hϕ

2K

1

Re
+
Dhϕ

2

2

CF√
K
, (4.9)

where ϕ is the bundle void fraction, Re is the Reynolds number, CF is the

drag coefficient that characterizes a specific porous medium, and K is the

permeability. The drag coefficient can be defined as

CF√
K

=
2.42

ϕ5.80
[m−1], (4.10)

while for the permeability, a formulation is available:

K = 19.6× 10−9 ϕ3

(1− ϕ)2
[m2], (4.11)

where it should be noted, however, that this dependence on only porosity

cannot be too realistic since it is expected that K should also depend on

the tortuosity of the flow path, and therefore, in the case of a CICC, on

the different cabling twist pitches. A friction factor correlation taking into

account the tortuosity of the flow path, unfortunately, does not exist yet

(only the dependence on the cabling pattern — braided vs. non-braided

conductors — has been investigated so far in Ref. [89]).

Alternative correlations include the one given by Katheder [90], which

is of the type

f =
1

ϕ0.72

(
A

Re0.88
+B

)
, (4.12)

or others that can be found in Ref. [84].
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Figure 4.26. (a) Velocity field in a longitudinal cross-section of a hole. The inlet is
located on the left. (b) Velocity field in five cross-sections separated by one pitch from
each other.

Source: Reproduced from Ref. [18].

For the pressure-relief channel, the friction factor correlation depends,

of course, on the geometry (cross-section) of the channel. If (as usual) an

helix is adopted, then the correlations from Refs. [91–93] can be used.

Advanced CFD methods are used to address the problem of friction

in the central channel at the microscale level, in particular to predict the

effect of gap size [92, 94, 95], aiming at developing suitable friction factor

correlations to be adopted for the 1D modeling of He flow.

Recent analyses also show that a periodic flow field is established in a

spiral-walled channel with a pitch longer than a single-spiral pitch [18], see

Figure 4.26. As a consequence, most of the previous correlations obtained

from numerical experiments considering a single-spiral pitch with periodic

boundary conditions at the inlet and outlet should be carefully reconsidered.

4.5. Forced-Flow CICC Thermal-Hydraulics

The major heat transfer processes across a CICC section are summarized

in Figure 4.27, emphasizing the different conductor components involved.

They are accounted for in the form h × ΔT in the source of the energy

equation of the fluid region(s) (Λe term in Equation (4.5)) and of the heat

conduction equation of the solids (Q term in Equation (4.2)), with h being

the HTC.

The heat transfer significantly affects, together with friction, the most

relevant time scales of TH transients in a CICC [84].

The other most important heat transfer mechanism is advection, domi-

nating the heat transfer along the CICC axis; it is described by one of the

1D equations on which the typical models are based, namely the energy

conservation equation (Equation 4.5).
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Figure 4.27. Different heat transfer channels in the ITER CICC: strand–He (upper
right), bundle He — hole He (lower right), strand–jacket (lower left), bundle He —
jacket (upper left). A four-temperature model (jacket uniform, all strands common
and uniform, bundle He uniform, and hole He uniform) is implicitly assumed in this
representation.

Source: Reproduced from Ref. [84].

4.5.1. Heat transfer coolant–solids

For the heat transfer between the coolant and solids, the series of

• the minimum between the transient [96] and steady-state boundary layer

thermal resistance

• and Kapitza resistance [97]

can be typically adopted [84]. The steady-state heat transfer is derived from

correlations for the Nusselt number Nu = f(Re,Pr). The Dittus–Boelter

correlation is typically used, even if it was derived for pipes, for any type

of ducts and bundles and to a good approximation both for the uniform

surface temperature and heat flux conditions:

Nuturbulent = 0.023Re0.8Pry, (4.13)

where Pr is the Prandtl number and y in the exponent of Pr should be

taken as 0.4 if the wall is hotter than the fluid and 0.3 if the wall is colder

than the fluid. Equation (4.13) has been experimentally confirmed in the

range 0.6 < Pr < 160 and Re > 10, 000 for small to moderate temperature

differences and properties evaluated at the average wall/bulk temperature.

The resulting values of the HTC, h, are of several 102W/(m2K). The

same recipe is adopted for the calculation of the HTC between any solid

(jacket, strands, and hole wall) and the coolant.
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It is recommended not to rely on heat–momentum transfer analogies

(the so-called Colburn analogies), which, as far as momentum transfer is

concerned, are only valid if there is no form drag [98] — i.e. in the case

where the surface transferring heat through a thermal boundary layer is

also the one originating friction through the dynamic boundary layer. In

the particular case of the ITER CICC central channel, the non-applicability

of the Colburn analogy was also clearly confirmed by detailed CFD simu-

lations [99].

The HTC between the jacket and the coolant is relevant for the following

issues [84]:

• analysis of stability tests;

• interpretation of the jacket temperature sensor signals;

• access to the jacket heat capacity during the later quench phase.

4.5.2. Heat transfer between different solids

The heat transfer between the strands and the jacket provides [84]:

• a channel for direct strand cooling in parallel to the direct cooling from

the fluid (but the strand-to-jacket contact perimeter is two orders of

magnitude lower than the strand wetted perimeter);

• a channel for accessing the jacket heat capacity in the later quench phase,

as above 30K, it is about an order of magnitude larger than the coolant

one. The time scale of this thermal coupling may thus be relevant for

quench propagation and hot-spot temperature;

• the only direct channel for strand heating if the jacket is heated first by,

for example, a heater or thermal contact with the jacket of a neighboring

warmer CICC.

Historically, the HTC between the strands and the jacket was assumed to

be constant and equal to 500W/(m2K) [100]. The contact area between

the strands and the jacket strongly depends on the conductor design and

the applied Lorentz forces.

4.5.3. Heat transfer between different coolant regions

The thermal coupling between the hole and the bundle contributes to deter-

mining the time scale on which the central channel coolant heat capacity

becomes accessible for cooling the cable. This is not relevant (being too



Thermal-Hydraulics of Superconducting Magnets 277

slow) for stability purposes, but it is important for the coil re-cooling after

transient events.

The most important heat transfer paths [86] between the coolant in the

hole and in the bundle are [101]:

• advection due to the mass transfer between one region and another;

• thermal conduction across the spiral wall.

The former is already accounted for as a source in the 1D energy conserva-

tion equation for the fluid (Equation (4.5)). The thermal coupling between

the hole and the bundle across the spiral wall is modeled while account-

ing for two parallel paths (in addition to the advection across the spiral

perforated fraction of the wall), namely:

• the series of hole–spiral boundary layer + spiral wall + spiral–bundle

boundary layer (weighted with the unperforated fraction of spiral) in

parallel to

• the series of hole–wall boundary layer + wall–bundle boundary layer,

which qualitatively accounts for the heat transfer across the spiral gap,

weighted on the perforated fraction of the spiral.

The latter component is needed because several CFD analyses (at the

microscale level) performed in order to better investigate the heat transfer

between the hole and the bundle [99, 102] showed that a lot of turbulence

and stagnation regions alternate among the small gaps of the spiral. This

enhancement in the heat transfer across the perforated fraction of the spi-

ral wall is thus multiplied by a suitable factor that needs to be calibrated

(usually empirically) for each conductor, Hno-wall.

As a result,

hglobal = Hno-wall × hopen × perfor + hclosed × (1− perfor ) (4.14)

with perfor being the fraction of the perforated area,

hopen =
1

1
hB

+ 1
hC

, (4.15)

and

hclosed =
1

Dave

DouthB
+ Dave

2ksteel
ln
(

Dout

Din

)
+ Dave

DinhC

(4.16)

where Dave is the average spiral diameter, (Din + Dout)/2 and hB and

hC are the HTCs between the coolant in the bundle and the wall of the
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channel and between the coolant in the channel and the wall of the channel,

respectively. In the case of hopen, the perturbation introduced in hB and

hC by the presence of a permeable wall is neglected.

The thermal conductivity ksteel is evaluated at the tube temperature,

considered equal to the average of the coolant temperatures in the two

hydraulic channels.

4.6. Heat Transfer Mechanisms in the Magnet

From the heat and mass transfer phenomena described in Sections 4.4

and 4.5, the attention is now directed toward the heat transfer in the meso-

and macroscale, i.e. at the coil WP and casing (i.e. at the magnet) level.

In this case, excluding the case when there is an active cooling of the struc-

tures by means of a fluid, the heat is transferred by conduction.

4.6.1. Heat transfer within the winding

When there are no radial plates to mechanically sustain the conductors, in

view of their packing in the coil winding, neighboring CICCs are obviously

in thermal contact with each other; heat is transferred by conduction across

the (electrical) insulation layer separating the turns and the layers or pan-

cakes, while the heat capacity of the insulation is typically negligible. For

this reason, and as most of the models dealing with CICC-wound magnets

are 1D along the conductor axis, a possibility to account for the transversal

thermal conduction across the turn insulation is to consider the insulation

(including the turn insulation and the inter-layer or inter-pancake insula-

tion) as a pure thermal resistance based on the electrical analogy [103].

This allows us to compute the heat transfer between the jacket of two

neighboring CICCs, see Figure 4.28.

Note that this approximation does not account for dynamics, as the

thermal capacity is neglected in the electrical analogy (in a typical CICC

for fusion applications, the insulation thermal capacity is approximately two

orders of magnitude smaller than that of the jacket), but the contribution

of the insulation thermal capacity can be added to that of the jacket.

The (minimum) thermal resistance (Rth = 1/HTC) between different

turns/layers/pancakes can be evaluated as

Rth =
δ

k
, (4.17)

where k is the thermal conductivity of the insulation material between

turns/layers/pancakes and δ is the thickness of the insulation layer. In the
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(a) (b)

Figure 4.28. Sketch of (a) inter-turn/inter-pancake conductor insulation and (b) inter-
turn and inter-pancake (or inter-layer) thermal coupling paths in the WP models.

case of a multi-layer insulation, the total thermal resistance should be com-

puted as a series of thermal resistances of each layer. These recipes provide

a lower bound for the total thermal resistance since the contact resistances

are neglected, see Section 4.2.4. The resulting heat flux between the jacket

(at temperature Tjk(x)) of the two neighboring turns/layers/pancakes i and

j is then

q′′(x) =
(Tjk(xi)− Tjk(xj))

Rth
. (4.18)

Both the insulation material (in particular, its thermal conductivity) and

the value of δ depend on the WP design. The thermal conductivity is evalu-

ated at the mean temperature of Ti(x) and Tj(x). This is the recipe adopted

in the multi-conductor Mithrandir code [103].

A different approach, more expensive from a computational point of

view, is to model the 2D (or 3D) insulation layers, discretizing numerically

their thickness, so that the dynamics are also taken into account. This is

done, for example, with the 4C code [104] when, as in the case of the ITER

TF coils, the turns/pancakes are separated by thick stainless-steel radial

plates [105].

The inter-turn/inter-layer/inter-pancake thermal coupling has been

proven to play a nonnegligible role in Refs. [82, 106, 107]. The effect of

the thermal coupling within the WP is evident for several transients scan-

ning a wide range of time scales:

• during slow CD [108];

• during normal operation, for example, of the EU DEMO TF coils

WP [109];

• during fast quench transients [106, 110].
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Figure 4.29. Schematic cross-section of the DEMO TF coil WP proposed by
ENEA [109]. The red rectangle highlights a single CICC turn. The convention adopted

for the numbering of the double-layers (DLs) is also shown, as well as the He flow direc-
tion (blue arrows) and DL current (red arrows) inlets/outlets.

In the latter case, accounting for the inter-turn/inter-layer/inter-pancake

heat transfer completely changes the picture of the transient evolution. As

an example, the results of the quench propagation analysis of the EU DEMO

TF coils WP (2015 ENEA proposal [109], see Figure 4.29) performed with

the 4C code [104] is reported.

The normal zone length shown in Figure 4.30(a) is shown to be strongly

dependent on the thermal coupling between neighboring turns: The sud-

den slope changes are indeed caused by the normal zone initiation in the

adjacent turns of the same layer, Figure 4.30(b), caused by the inter-turn

heat transfer rather than by the heat advection due to He expulsion.

The same is true if the inter-layer heat transfer within the WP is con-

sidered, see Figure 4.31. Note that neglecting the thermal coupling within

the WP is not necessarily conservative: Besides the maximum hot-spot

temperature, the total amount of He expulsed from the coil and heated

up must also be considered, as it must then be re-cooled to the operating

temperature with a nonnegligible cost in terms of refrigeration power and

time.

4.6.2. Heat transfer within the magnet structures

The thermal conduction within the bulky stainless-steel structures typical of

the TF coils of fusion magnets is usually slow (see the time scales reported in
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(a)

(b)

Figure 4.30. Evolution of the computed (a) normal zone length and (b) quench front
propagation in DL 6.2 for the DEMO TF coil WP proposed by ENEA [109].

Section 4.3.2) so that the approximation of modeling 3D structures as a set

of 2D cross-sections thermally coupled with the CICC holds, which is com-

monly adopted by many numerical tools, among which is the 4C code [104].

The thermal coupling between neighboring cross-sections is indeed provided

mainly by the coolant advection in CICCs.

However, the heat transfer within the structures is important because

they are subject to heat loads and sometimes actively cooled by additional

cooling paths so that their role in the TH of the magnet could become very

important in establishing a steady-state temperature map in the WP, as

well as acting as an additional heat source/sink during slow transients.
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(a)

(b)

Figure 4.31. Evolution of the (a) normal zone length and (b) quench front propaga-
tion in DLs 5.2–7.2 in the nominal scenario for the DEMO TF coil WP proposed by
ENEA [109].

During normal (cold) operation, the massive stainless-steel structures

of the TF coils adopted in fusion reactors are needed to withstand the huge

thermo-mechanical forces acting on the WP. However, the external surface

of the structures is facing the cryostat, typically at ∼80K, and thus exposed

to a radiative thermal load. Moreover, the huge mass of the TF magnets

must be supported against gravitational load so that dedicated supports

(the so-called gravity support, see Figure 4.32) are installed. Since they

are in contact with the basement of the building housing the magnets, they

act as a heat bridge to the cold magnets.
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Figure 4.32. View of the gravity support of the ITER TF magnets.

Source: Reproduced from Ref. [111].

Finally, during fast magnetic field variations (induced, for example, by

a fast current discharge from the coil), eddy currents are generated in the

bulky stainless-steel structures so that Joule heat load is deposited within

them.

All these thermal loads may affect the coil operation temperature and

thus erode the temperature margin during operation, possibly leading to a

quench. For this reason, on the one hand, suitable cooling of the structures

must be guaranteed, and on the other hand, a proper model of the thermal

conduction in the structures (and of their cooling paths) is required for a

reliable TH simulation of a fusion magnet.

4.6.2.1. Cooling of the coil casing

The cooling of the stainless-steel structures surrounding the WP in large

fusion magnets is provided:

• by the thermal contact with the actively cooled WP;

• in some cases, by the additional installation of dedicated cooling pipes

inside the structures (as in the case of the ITER TF coils [105])
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or attached to their surface (as in the W7-X stellarator nonplanar

coils [8]).

The key issues in the design of these channels are:

• a proper design of their spatial location in order to take care of all possible

hot spots during the different transients the magnet may be subjected to;

• the definition of a proper strategy for their thermal connection to the

magnet; the problem is still open [112], despite several options that have

been attempted so far:

◦ welding/brazing/impregnation into suitably machined grooves [105] or

on the magnet surface [113];

◦ wrapping Cu stripes around the pipe and the magnet surface [8];

◦ forcing the pipe surrounded by a Cu mesh into suitably machine

grooves [108];

◦ coolant flow in the grooves machined and covered by a leak-tight welded

cover [81], providing the best thermal coupling but also introducing

severe leak-tightness issues.

4.6.3. Heat transfer between structures and winding

The amount of heat transferred between the WP and the casing strongly

depends on the casing cooling channel (CCC) design and the thermal prop-

erties of the ground insulation surrounding the WP, as well as on the

coupling between the channels cooling the structures and the structures

themselves.

In the specific case of the TF coils of a fusion reactor, it is important

to note that when the coil is charged, Lorentz forces tend to push the

WP away from the plasma. As a result, the WP normally detaches from

the structures so that almost no heat transfer between the two is present

during normal operation on the plasma-facing edge of the WP.

4.6.3.1. Issues in the ground insulation modeling

As mentioned above, the model of the ground insulation is crucial for a

proper calculation of the heat exchanged between the structures and the

WP. The impact of a variation in the thermal conductivity of the ground

insulation on, for example, the temperature margin in the ITER TF coils is

shown in Figure 4.33 to be as large as 0.3K, which is ∼50% of the minimum

requirement of 0.7K.
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(a) (b)

Figure 4.33. Polar distribution of the temperature margin on the inboard (straight) leg
of the ITER TF coils computed during the standard operation scenario (with the baseline
nuclear heat load of 14 kW on the entire TF magnet system) for (a) a central pancake and
(b) a side pancake, with maximum (solid) and minimum (dashed) thermal conductivities
of the winding ground insulation. The inboard equatorial location is at 270◦.

Source: Reproduced from Ref. [60].

4.7. Relevant TH Transients

This section is devoted to describing the most interesting transients in the

superconducting magnets for fusion reactors. The aim is to introduce the

relevant transient drivers and constraints on which the magnet design is

based.

4.7.1. Cool down

In order to reach its superconducting properties, a superconducting coil

must be cooled from room temperature to (at least) its critical temperature.

This necessary (and ordinary) transient is very long (up to one month,

depending on the cold mass of the magnet to be cooled) because of:

• the limited cooling power of the refrigerator, which is directly hydrauli-

cally coupled to the magnet and drives the transient evolution;

• the thermo-mechanical constraints.
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The latter are dictated by the fact that large thermal gradients in the mag-

net may result in large secondary mechanical stresses, arising from the dif-

ferent contraction (shrinking) of the (different) materials during the cooling

(and, of course, different expansions during the warming-up). The com-

monly adopted, well-established rule of thumb consists of limiting the

decrease in the inlet temperature of the coolant when the maximum tem-

perature difference across the magnet is ∼40–50K. As in the real world it

is not possible to install temperature sensors anywhere in the magnet, the

use of reliable TH simulation tools for the design of a suitable CD strategy

is of paramount importance to avoid excessive temperature gradients in the

magnet that may lead to the breaking of cable strands or insulation layers

during a (routine) CD transient.

As far as the LTS magnets’ CD is concerned, it can be divided into two

main phases [108], see Figure 4.34:

— Phase 1 from ∼300K to ∼80K (LN2 temperature): In this phase, the

turbines of the refrigerator (see Section 4.2.3.1) are switched off and

the cooling and after-cooling stages are bypassed. The decrease rate of

the coil inlet temperature is automatically controlled at the desired value

(typically ∼ − 1K/h), mixing the GHe mass flow cooled by LN2 with

the GHe mass flow at ambient temperature; the two mass flow rates are

regulated by the opening of suitable control valves, see Figure 4.34(a).

— Phase 2 from ∼80K to ∼4K: In this phase, the turbines are turned on,

letting a portion of the HP He (exiting the LN2 HXs) expand down to

LP in order to cool the primary He flow bypassing the turbines through

a series of regenerative HXs, namely HX3–HX6 (see Figure 4.34(b)). In

this phase, the inlet temperature decrease depends on the refrigerator

working point, and usually, it is slower than in phase 1 so that no issues

arise in the temperature gradients.

The inlet (and outlet) temperature evolution in a large-scale super-

conducting magnet for fusion (e.g. the ITER CSMC [15]) is reported in

Figure 4.35, where the different slopes of the temperature decrease between

phase 1 and phase 2 are evident.

4.7.2. Normal operation

For a superconducting magnet applied to fusion reactors, the normal oper-

ation is typically the cold operation during plasma pulses. The timeline of
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(b)(a)

Figure 4.34. Schematic illustration of the operation of a typical refrigerator for fusion
magnets cooling during a CD transient: (a) phase 1 and (b) phase 2.

such a periodic pulse for the ITER 15 MA plasma current scenario (the

reference one) is reported in Figure 4.36.

The heat loads reported in Figure 4.36 refer to a TF magnet operated

in direct current (DC), which mainly suffers from the static heat load on

the outer surface of the structures and the nuclear heat load from the

plasma. In the case of AC-operated fusion magnets, such as the CS and

PF coils, most of the heat load comes from eddy current/AC losses induced

by the changing magnetic field, see for example the ITER CS heat load

reported in Figure 4.20. The timeline of the AC-operated magnets is thus

the same, with higher AC losses, no nuclear heat load (shielded by the

bulky structures of the TF coils), and reduced static heat load, especially

for the CS that only faces the cold inner leg surface of the TF magnets.
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Figure 4.35. Measured evolution of the inlet temperature of the CSMC inner module
(CSIM) and CSMC outer module (CSOM) (green line) and of the outlet temperature of

the CSIM (dashed blue line) and CSOM (dash-dotted red line) during the first CSMC
CD in the 2015 test campaign [114]. The temperature dips at ∼150 h and ∼190 h are due
to temporary data acquisition problems. The vertical dashed line marks the separation
between phase 1 and phase 2 of the CD.

Source: Reproduced from Ref. [108].

Figure 4.36. Timeline of the standard 15MA scenario foreseen in the ITER (IM = initial
magnetization, SOB = start of burn, EOB = end of burn, SOD= start of discharge). The
radiative (static) load is applied during the whole 1800 s (blue line), the AC losses/eddy
current load (CS, PF, and TF) according to the red line, and the nuclear load (TF)
between the SOB and the EOB (yellow line).

Source: Reproduced from Ref. [59].
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Figure 4.37. Time evolution of the computed heat load (W) on the first turn of a central
pancake of the ITER TF coils directly from nuclear heating (solid) and indirectly from the

radial plates (RP) through the jacket during one plasma scenario with nominal (dashed)
and increased (dash-dotted) mass flow rates (dm/dt) in the WP. The computed hot-spot
temperature in the central pancake is also reported on the right axis.

Source: Reproduced from Ref. [59].

The evolution of some relevant TH parameters of the ITER TF coils

computed by 4C code during the same standard pulse is shown in Fig-

ure 4.37. Besides the nuclear heat load deposited during the plasma burn

(from SOB to EOB, see Figure 4.36), the heat load exerted on the WP by

conduction across the turn insulation is increased if the He mass flow rate

is increased in the CICCs of the WP by ∼30%. This is due to the fact that

the heat sink in the WP is stronger. The hot-spot temperature increases

during the plasma burn and is then reduced during the dwell time, which is

useful to re-cool the conductor and recover the initial operating conditions.

4.7.3. Off-normal operation

The off-normal operating conditions for a superconducting magnet used for

magnetically confined fusion reactors are all those conditions that may lead

to transients capable of seriously damaging the magnet itself.

4.7.3.1. Stability and quench

The analysis of the stability of a CICC involves the very fast time scales

on which the heat transfer within the conductor cross-section takes place.
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Numerical analyses with different levels of complexity are used to assess

which (thermal) perturbation that the conductor can withstand without

the generation of a propagating normal zone [115–118]. The details of the

transient HTCs mentioned in Section 4.5 are of paramount importance, and

the time step of the simulation must be very small in order to capture the

fast superconducting-to-normal transition [118].

If the thermal stability of the conductor is lost because the thermal per-

turbation is so large that the available coolant (and solids) thermal capacity

is not sufficient to absorb it, then a normal zone develops and propagates:

This is called a quench (note that if the normal zone develops but is reab-

sorbed without propagating, a recovery takes place and the stability is not

lost). A quench is a severe transient during which, if no action is taken by

the magnet protection system (unprotected quench), the temperature in

the cable can rapidly increase so much to damage or destroy it owing to

Joule heat generation in the normal zone.

Because of its dangerous nature, this transient in CICCs has been deeply

investigated both from experimental [114, 119–124] and numerical [101, 106,

110, 125–135] points of view.

The typical features of a quench transient in a CICC, with reference to

the data collected during the latest ITER CS Insert (CSI) test campaign

in 2015 [114], see Figure 4.38 for the sensors location, are reported here.

This case, although quite complex, has been chosen as a reference because

the conductor was very well instrumented in terms of TH and electrical

measurements:

• The timeline of a quench test in a full-scale CS conductor (the CSI)

is shown in Figure 4.39. After heating (by means of an inductive heater

IH01 wrapped around the CICC), a normal zone is initiated, and a quench

is detected when the integral over 1 s of the total voltage measured across

the coil is > 0.1Vs. Then, a delay is imposed (only for testing purposes)

before discharging the current from the CSI and CSMC to protect them.

• The increase in the resistive voltage measured across the entire coil during

the quench propagation is evident from Figure 4.40(a), until the current is

discharged from the coil. The voltage measurement is usually adopted as

the first quench detection in LTS fusion magnets, as it reacts immediately

and can be measured easily.

• The normal zone front propagation upstream and downstream of the IH

location is shown in Figure 4.40(b), where an acceleration of the prop-

agation speed occurs due to the preheating of the cable ahead of the
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Figure 4.38. CSI conductor cross-section and sketch of the available diagnostics installed
on the coil: VT-xx and star-xx voltage taps, TS-xx and TC-xx jacket and He thermome-
ters, PT-xx pressure taps, and FCT-xx flow meters. IH01 indicates the inductive heater
used as a driver of the quench tests.

Source: Reproduced from Ref. [101].

propagation direction because of warm He expulsion (“pressure-driven”

quench [131]).

• The latter is evident from Figure 4.41(a), where the mass flow rate mea-

sured at the coil extremities is reported. The heating in the central part

of the coil causes a violent He expulsion from the coil endings at the sound

speed time scale. Thanks to its quick reaction, it is used as a secondary

(redundant) quench detection system in (LTS) fusion magnets.

• The He expulsion causes a pressurization of the SHe circuit, as measured

by the pressure taps and shown in Figure 4.41(b).
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Figure 4.39. Typical quench test timeline, from the IH pulse to the CSI and CSMC
current dumps. V Dtot is the total voltage measured across the coil, tQD is the quench
detection time, tdump is the current discharge time, and Δtdelay is the hold time manually
set to delay the current discharge after the quench detection.

Source: Reproduced from Ref. [101].

(a)

(b)

Figure 4.40. (a) Measured evolution of the total voltage (sum of the local voltages)
across the CSI for all EOB quench tests. The time coordinate is shifted in order to
synchronize them at the quench detection time (tQD). (b) Measured propagation of the
quench front for different quench tests. Initial and final quench front speeds are reported.
The cyan crosses on the x-axis at ∼22m indicate the IH01 location.

Source: Reproduced from Ref. [101].
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(a)

(b)

Figure 4.41. (a) Measured evolution of inlet (blue) and outlet (pink) mass flow rates in
the EOB quench tests. The mass flow rates during the first phase of the transient for
the 7 s delay quench are reported in the inset (the IH is operated at time: tQD ∼− 2 s).
(b) Measured inlet and outlet pressurization evolution for the 7 s delay quench.

Source: Reproduced from Ref. [101].

• As far as the temperature is concerned, the most interesting one is the

hot-spot temperature of the cable, shown in Figure 4.42(a). It cannot

be measured but can be estimated by local voltage measurements (the

so-called “virtual sensor”), exploiting the (known) temperature depen-

dence of the electrical resistivity of Cu [132, 135]. The conductor design

must ensure that the maximum hot-spot temperature during a protected

quench does not overcome a given threshold to avoid thermo-mechanical

damages to the strands.

• Also, the jacket temperature is an important TH parameter during a

quench, see Figure 4.42(b), as it drives the thermo-mechanical stresses

in the WP.
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(a)

(b)

Figure 4.42. (a) Measured evolution of the jacket temperature (open markers) just
downstream of the IH (TS04H location) and of the virtual sensor signal deriving the

hot-spot temperature (solid markers) from the VD1112 measurement, for all the EOB
quench tests. The hot-spot temperature values from the virtual sensor just before the
CSI dump are also reported as horizontal dashed segments. (b) Measured evolution of
the jacket temperature at TS04H location for ∼100 s after the quench initiation. The
spikes at ∼ 5–10 s are induced by the strong magnetic field variation during the dump.

Source: Reproduced from Ref. [101].

4.7.3.2. Fast discharge/current ramps

The fast magnetic field variations, usually induced by quick current ramps

or exponential discharges (see Figur 4.43(a) for the fast current discharge

from the ITER TF coils) forced by the magnets protection system, cause

large heat deposition into the superconducting cable and in the stainless-

steel structures because of AC losses, see Figure 4.43(b).
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(b) 

(a) 

Figure 4.43. (a) ITER TF coil current discharge evolution. (b) Evolution of the power
deposited in: side pancake P1 and central pancake P7 on the left axis; a central radial
plate (RP4), in the outer part of the casing (CSU), and in the inner (plasma facing) part
of the casing (CSP) on the right axis.

Source: Reproduced from Ref. [136].

The power deposition can lead to a fast temperature increase (see the

effects on the straight leg of the ITER TF structures cross-section shown in

Figure 4.44(a)) and, consequently, to a quench even if the current is being

discharged from the magnet. In the case of a quench during the ITER TF

fast discharge, the amount of He vented to the quench tanks, according

to the simulations in Ref. [136], is larger than 150kg, see Figure 4.44(b).

That He must then be re-cooled and re-charged in the SHe loops, with a

large cost in terms of cooling power and time.

An accurate numerical analysis of the fast current discharge can help

in the design of the dump resistors to which the energy is discharged in

order to optimize the exponential time constant (constrained also by the

maximum voltage tolerated by the conductor insulation).
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 (a) 

(b) 

Figure 4.44. (a) Temperature distribution on cut #5, see the inset, at time t ∼ 20 s,
when the coil current is still ∼20 kA. (b) Evolution of mass flow rate from winding (W)
and casing cooling channels (CCC) to the quench line (QL), left axis, and of the total
He mass in the quench tanks (QT), right axis.

Source: Reproduced from Ref. [136].

4.7.3.3. Loss of flow/coolant accidents

Two other relevant accidents for an actively cooled superconducting mag-

net are the loss of flow accident (LOFA) and the loss of coolant accident

(LOCA).

The LOFA can be triggered by several initiating events [137], among

which, for example, is a cold circulator trip. If the LOCA is unprotected

and the plasma operation is not inhibited or interrupted, the LOFA in

the ITER TF coil could lead to a quench, as computed, for example, in

Ref. [138], see Figure 4.45.
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Figure 4.45. Comparison of the temperature margin (evaluated at the peak magnetic
field on the conductor cross-section) evolution in a side (P1) and a central (P7) pancake

in both nominal (dashed curves) and LOFA (solid curves) simulations.

Source: Reproduced from Ref. [138].

If the protection system accomplishes its functions, the protected LOFA

can evolve into a quench only for some choices of the current accelerated

discharge time from the coils [137]. However, the time required to re-cool

the coil is estimated to be as long as 1 h.

In the case of LOCA, the consequences can be twofold:

• the active cooling of the coil is lost, similar to the LOFA but with a

depressurization of the cooling circuit;

• if the break is located inside the cryostat, the loss of vacuum accident in

the latter is also initiated.

Existing, validated TH codes could be used for detailed simulations

of accidental transients at an early magnet design stage in order to pur-

sue a “safety-based” design. In particular, the simulations can be carried

out to assess the deterministic consequences of given events [137, 138] or

to generate the database needed to perform an integrated deterministic-

probabilistic safety analysis [139].

4.8. Available Models and Experimental Facilities

Even if the need for numerical modeling of superconducting magnets is evi-

dent, the effort toward verification and validation of the existing TH models

has been rather limited so far, sometimes notwithstanding the existence of
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Figure 4.46. Possible roadmap to confirm the reliability of existing TH codes for fusion
superconducting magnets system.

Source: Reproduced from Ref. [83].

a significant experimental database. Particular attention should also be

devoted to the assessment of the predictive capabilities of the existing TH

codes, according to the roadmap depicted in Figure 4.46.

In this section, both the most important existing code and the experi-

mental facilities (in principle, available for data collection with validation

purposes) are described.

4.8.1. Thermal-hydraulic codes

A short description of the more important tools available for the simulation

of TH transients in superconducting magnets is given in this section.
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4.8.1.1. Venecia

The Venecia code [140] is the next generation of the Vincenta code, devel-

oped for the simulation of TH transients in superconducting magnets cooled

by forced-flow He.

The complex computational model is built as a combination of 1D non-

linear TH models for coolant flows and 1D or 2D models of heat diffu-

sion in solids linked together. It is able to simulate the transient behavior

of cryogenic systems and superconducting magnet systems simultaneously,

reproducing the magnet geometry, cryogenic components, and nonlinear

thermal properties of coolant and solids. It can cope with fast (stability

and quench) and slow (normal operation, CD, warm-up) transients.

The applications include:

• magnets for nuclear fusion facilities;

• accelerators;

• MRI magnets;

• superconducting motors, generators, and SMES;

• experimental and diagnostic devices,

• superconducting cables in general.

It has undergone some validation exercises, as reported in Ref. [141].

4.8.1.2. 4C

The 4C code has been developed at Politecnico di Torino (Torino, Italy) as

a result of a suite of tools addressing the modeling of superconducting mag-

nets for fusion applications, from a single CICC [142] to the WP [103] and

finally to the entire magnet [104]. It addresses the TH transients in super-

conducting magnets for fusion applications, but it could also be suitable to

simulate other magnets, such as those of the SMES and superconducting

cables for power transmission.

The architecture of the 4C code is shown in Figure 4.47.

The coil (WP) is modeled as a set of CICCs hydraulically in parallel,

as described in Sections 4.3–4.5.

The CICCs can be thermally coupled to their neighbors (M&M [103]).

As far as the structures are concerned, a poloidal discretization of a

3D transient heat conduction problem is performed using several 2D cuts

on suitable cross-sections; the transient 2D heat conduction problems are

solved with finite elements, accounting for all the details of the magnet

cross-section (insulation layers, wedged shape, etc.).
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Figure 4.47. Architecture of the 4C code.

The circuit components are described in terms of differential-algebraic

equations; these components can then be connected hierarchically to build

arbitrarily complex system models in a way that can be represented graph-

ically in terms of object diagrams. A new Modelica “Cryogenics” library

has been developed for the modeling of cryogenic circuits using He as a

working fluid [143].

After its development, the 4C code has undergone a long series

of verification (including benchmarking [105, 143]) and validation exer-

cises [8, 70, 81, 101, 108], including predictive validation [126, 144], as

schematically represented in Figure 4.48, so that it can be claimed to be a

reliable tool for the TH analysis of the superconducting magnet systems of

existing and future fusion facilities.

4.8.1.3. Supermagnet

Supermagnet [145, 146] allows superconducting magnet designers to con-

sider different configurations of superconductors in a magnet, with disparate

cooling methods and power supply connections, and for each of them, sev-

eral operating conditions.
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Figure 4.48. Benchmarks, verifications, validations, and applications of the 4C code
so far.

The CryoSoft suite of codes THEA (Thermal, Hydraulic and Elec-

tric Analysis of Superconducting Cables), FLOWER (Hydraulic Network

Simulation), POWER (Electric Network Simulation of Magnetic Systems),

HEATER (Simulation of Heat Conduction), MrX (Generic Data Exchange)

provides a basis for well-optimized and flexible tools for the analysis of spe-

cific issues in superconducting magnet systems. Supermagnet is the man-

ager application that launches two or more of the above codes, schedules

their communication, and terminates execution as appropriate.

The codes communicate through a data exchange mechanism that

achieves the desired physical coupling and makes it possible to describe

a series of processes, such as:

• effect of He expulsion during thermal transients on the proximity cryo-

genics;

• regulation of cryogen flow and valving conditions, subject to transient

response in the superconducting cables;

• evolution of the coil current during a quench, including the effect of

quench resistance, and coupling within segments of the same magnetic

system;

• cooling of a coil with thermally coupled parallel channels.
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4.8.1.4. Others

Several general-purpose commercial tools have been used to model part of

a superconducting magnet system depending on the needs:

• EcosymPro [73] and Aspen HYSYS [147] for the analysis of the cooling

circuits;

• ANSYS Fluent [148] for a full 3D modeling of the superconducting

magnet.

Moreover, a computational tool similar to those described in Sec-

tions 4.8.1.1–4.8.1.3 has been developed by the Chinese Academy of Sci-

ence [149].

4.8.2. Conductor test facilities

One of the most important conductor test facility is SULTAN (Villigen,

Switzerland) [150]. It is devoted to the TH and electromagnetic testing of

full-size, short-length (up to ∼ 2.5m) straight CICC samples.

It can produce over a length of ∼ 0.5m a uniform magnetic field in

relevant conditions for superconducting magnets of fusion devices. A huge

number of samples have then been tested for all the existing (and future)

nuclear fusion facilities around the world, aiming at qualifying the conduc-

tors.

Cyclic tests can be done so that the conductor performance can also be

assessed after a lot of thermo-mechanical cycles.

Moreover, a fast magnetic field variation is allowed so that the AC

behavior of the conductor can also be assessed.

4.8.3. Magnets test facilities

Concerning the facilities capable of coping with the testing of large-scale

magnets, especially for fusion applications, the following must be men-

tioned:

• ITER CS Model Coil (CSMC) at Naka, Japan [15, 26]: It is a model

coil magnet for the ITER CS, but it is also used to test single-layer, full-

scale, long-length coils (the so-called insert coils) in its bore in a magnetic

field up to 13T under fully relevant conditions for their application in

superconducting magnets for fusion.
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• TOSKA facility at KIT, Karlsruhe [151]: It provides the cryostat, power

supply, and cooling power for the test of large-scale magnets, such as the

ITER Toroidal Field Model Coil [80].

• The Cold Test Facility for the JT-60SA Tokamak TF Coils at CEA

Saclay, France [152]. This facility is equipped with a large cryostat, power

supply, and suitable cryoplant.

• The ITER Central Solenoid Module Final Test Facility at San Diego, CA,

United States [153]. This facility is also equipped with a large cryostat,

power supply, and suitable cryoplant.

4.8.4. Available experiments

The available fusion experiments where the magnetic confinement is per-

formed by means of superconducting magnets are listed in this section.

4.8.4.1. Superconducting tokamaks in operation

The superconducting tokamaks currently in operation are:

• EAST in Hefei, China [9];

• KSTAR in Daejeon, Korea [154];

• WEST (formerly, Tore Supra [54] in Cadarache, France [55].

Under (advanced) construction are the JT-60SA in Naka, Japan [11] and

ITER in Cadarache, France [6].

4.8.4.2. Superconducting stellarators in operation

The stellarators in operation, relying on superconducting magnets, are:

• W7-X in Greifswald, Germany [7];

• Large Helical Device (LHD) in Toki, Japan [63].
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