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1 Introduction
1.1 Challenges of normative science

Contributors to this text were invited to review topics related to soil health
defined as 'the continued capacity of soil to function as a living ecosystem able
to deliver a range of ecosystem services that sustain plants, animals, people
and the environment in which they live’. As such, soil health is not distinguished
from soil quality, with definitions of both emphasizing the living and dynamic
nature of soil and associating interactions between its physical, chemical and
biological properties with soil functions that underpin services (Doran and
Parkin, 1994; Karlen et al., 1997). Both terms are normative and utilitarian and
have been criticized for their diffuse nature associated with reliance on values-
based judgment of non-subjective measurements that are made based on land
use, land type, prioritized soil functions and context for application (Davis and
Miller, 2000; Letey et al., 2003). This means quality and health will vary with a
perspective that depends upon whether they are applied to cultural, aesthetic,
industrial and ecosystem services that extend beyond the scope of agriculture
(FAQ, 2015). Even though this text will prioritize the productive function and
provisioning and sustaining services needed for food and fiber production to
narrow criteria for attribute evaluation, this alone cannot resolve the subjective
and at times contradictory aspects of these concepts’ application.

Patzel et al. (2000) argued for greater clarity and consistency in the use
of the two terms, quality and fertility, by both ley and scientific communities
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2 Soil health: definitions, history, key concepts and hurdles

and concluded that making distinctions between these terms is helpful to both
audiences by articulating concepts and acknowledging frames of reference.
They also noted that while the concept of soil fertility is quite definite, it is
dispositional or ‘concealed’ because judgments of what is, or is not, fertile
are site specific. Additional weaknesses in the concept of soil quality were
associated with undefined objectives and reliance on ‘extensional definitions’
that assert associations or linkages between properties and functions without
providing sufficient evidence or specifying context. Schjgnning et al. (2004)
suggested that the emergence of the soil quality paradigm changed society’s
expectations of the scientific community by asking researchers to be conscious
of societal priorities and their own values and goals. They noted soil quality
and health are examples of reflective science, wherein the observer's efforts
influence the object under consideration because research is undertaken
within a cognitive space consisting of observational components that apply
accepted methods within a civic setting for which the research is relevant using
intentional processes developed to specify and then ideally satisfy goals tied
to values.

Known challenges associated with the public’s ability to place value
judgements on soil indicator status and balance tradeoffs to determine how
to use soil resources to appropriately meet societal needs (Patzel et al., 2000)
must be addressed by structured steps that are not only reproducible and
transparent but also acknowledge subjective, context-specific aspects of the
work. While participatory research methods have been widely used in soil
health research to satisfy these expectations (Andrews et al., 2003; Wander
etal., 2002), it may be helpful to make a clearer distinction between soil quality
and soil health to add clarity and transparency to a process that includes
stakeholders in the process of assessment (Wander et al., 2019). Doran and
Zeiss (2000) made this distinction noting soil health, defined as the capacity
of soils to function, can be assessed using indicators of soil quality. By clearly
associating soil quality with indicators used to assess soil condition and soil
health with interpretive frameworks used to make judgments we can separate
the scientific and socio-technical components of subjective health assessment.
Distinctions between terms used by research communities that are delineated
by expertise, location, and focus are made to define and shape the scientific
discourse (Foucault, 1970). For example Grimm and Wissel (1997) found it
beneficial to distinguish between terms used to describe ecological stability
to efficiently communicate needed technical detail but that was harmful when
distinctions reduce shared understandings. Of course, academic arguments
like this are examples of privileged speech that are made moot when terms and
related discourse are taken up by society (Landa and Angel, 2014). Itis clear that
the soil health framing is intuitive in nature and resonates with the public and
this makes it well suited for social marketing purposes (Bouma and McBratney,
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2013; Brevick etal., 2019). Social movements that equate soil health with human
well-being (Wander, 2009) may be vulnerable to bad-faith actors intending
to exploit public sympathies. Whether or not this occurs will depend upon
whether or not the sociotechnical systems we devise to achieve related goals
can avoid creation of false narratives and unrealistic expectations (Giampietro
and Funtowicz, 2020). Frameworks must provide the technical specificity
and transparency necessary for unbiased assessment of soil capability and
condition and then, honestly communicate that information through evaluative
frameworks designed to set policy, back-stop product claims or guide
management.

1.2 History and context

The soil health discourse results from concern for human well-being that has
driven efforts to understand and characterize soil in terms of soil capability or
fitness for use since the dawn of civilization (Dale and Carter, 1955; Hillel, 1991).
Even though ‘soil quality’ and ‘soil health’ are often used interchangeably,
‘soil quality’ appeared earlier and has been used with greater frequency in
the scientific literature (Fig. 1). Liu et al., 2020 suggest that efforts have been
focused on the USA and that there has been limited international collaboration.
Their findings are at odds with this review which suggests there has been
global interest in convergent, synergistic scientific histories. Efforts to evaluate
the soil resource and encourage its stewardship pique in response to historical
events that have caused economic insecurity resulting in resource exploitation.
This was the case in the USA in the 1930s when economic depression, drought
and westward expansion produced threats to soil health that were addressed
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Figure 1 The increase in the number of citations using the terms ‘soil health” in black or
‘soil quality’ in the article's title. These were recovered in the literature covered in the Web
of Science.
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4 Soil health: definitions, history, key concepts and hurdles

by governmental action (Worster, 2004). During the first half of the twentieth
century, references to both quality and health were being made globally to
broadly consider plant-soil interactions and land capability classification. For
example, Schultz (1925) used soil quality to understand the distribution of
vegetation in South Finland and, Hoon and Dhawan (1950) used patterns in
vegetation to delineate soil quality in India. The concept of soil quality was
used to classify Esthonian (Zimmerman, 1939) and German soils (Wolff, 1939).
Forbes (1928) delineated soil quality based on suitability for food or timber
production in the USA in an article that challenged the notion that all arable
land should be used for food production. Unfortunately, the notion that the
most heavily timbered soils were the most fertile was imported from Europe
and it took decades for this to give way to the recognition that US grasslands
and oak openings were more productive and thus had greater soil quality from
an agricultural perspective (Peters, 1973). Even though the fact that soil quality
is multivariate, site and context specific has been emphasized repeatedly, this
crucial point is constantly being overlooked. Whether this is an example of
intentional ‘bypass’ by the soil science community that was cited by Baveye
(2020) is not clear. What is certain is that without specificity useful applications
of soil quality for soil health assessment are impossible.

Beginninginthe 1980s soil quality was invoked globally in association with
environmental concern with resource inventories shifting in focus to consider
management and remedy environmental problems (Breeuwsma et al., 1986),
assess risk from erosion (Yassaglou and Kollias, 1989; Urzelai et al., 2000) and
realize sustainable development goals (Wilson, 2000). An uptick in interest
coincided with soil degradation rates that increased in the USA in the 1970s
and 80s with the opening of global agricultural markets and industrialization
of agriculture (Debailleul, 1990; Lekkerkerk et al., 1990). This was followed in
the 1990s by disruptions in the agricultural sector in Eastern Europe resulting
from the breakup of the Soviet Union that raised environmental concern
and interest in soil quality (Davis and Miller, 2000). Historical forces that
have accelerated soil degradation fostered the emergence of soil quality as
a distinct scientific object by the end of the twentieth century to pursue the
simultaneous goals of increased or sustained production and the reduction
or alleviation of environmental harm (Tilman et al., 2002; Schjgnning et al.,
2004). This objective arose in part to address perceived shortcomings of soil-
fertility-based management that was focused too narrowly on soil chemistry
and production (Letey et al., 2003). Soil quality and its attendant stewardship
goals were quickly deemed to be essential for food security and successful
ecological intensification needed to sustain or increase yield (Cassman, 1999).
It was also referenced in association with other efforts to use soil properties
to set standards for environmental cleanup (Siegrist, 1990), steward North
American forests (Paige-Dumroese et al.,, 2000) and produce frameworks
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for ‘Soil Care’ (Stengel, 2000; Dumanski and Pieri, 2000). In such framings,
soil quality can be seen as an addition to the well-established concept of
soil capability classification. Soil quality adds consideration of land condition
through the use of dynamic soil properties to try to optimize land use based
on science (Steinhardt, 1995). Efforts have sought to use indicators associated
with capability and condition at national and even global scales for decades
(e.g. Gerasimoyv, 1983; Cox, 1995; Schipper and Sparling, 2000; Kriiger et al.,
2018).

The number of English language articles using soil quality and soil health
in their titles has continued to increase at the pace of 100- and 500-fold during
the last 20 years (Fig. 2). The number of peer-reviewed articles using ‘soil’ in
their titles only doubled in the 90s and tripped in the 2000s in comparison with
1981-1990, suggesting publication access cannot explain the rapid increase
in the use of these terms. A similar search for ‘soil security’ recovered only one
paper published before 1950 and 30 between 2011-2020 using this term
in the title. Increased international concern for soil quality and degradation
resulted from increased awareness of the finiteness of arable land, projections
for population growth and economic development and the recognition of the
serious and immediate need to mitigate climate change (Gomiero, 2016; Karlen
and Rice, 2015; Amelung et al., 2020). Interest in common global standards for
indicators that began decades ago (Hortensius and Welling, 1996) has grown
in kind (FAQ, 2015).
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Figure 2 The increase in the numbers of manuscripts recovered using soil, soil-health or
soil-quality in their title using Web of Science compared to the 1981-1990 period.
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2 Evolving methodology
2.1 Multi-step process

Research efforts continue to address all aspects of indicator development
including improvement of methods. Thiele-Bruhn et al. (2020) recently called
for standardization of methods suitable for ecosystem service assessment
endorsed by the FAO and UN, that consider soil microbial functions, including
nutrient cycling and greenhouse gas emission, pest control and plant
growth promotion, carbon cycling and sequestration, as well as soil structure
development and filter functions. The criteria they outlined for indicator
selection continued to include practicality, relevance and sensitivity judged
subjectively by experts using methods that are generally consistent with the
procedures and conceptual framing proposed by Andrews et al. (2002, 2004).
Those procedures include indicator development, selection, interpretation and
format for use-dependent applications with indicator scoring being related to
performance or attributed based on inherent potential.

2.2 Indicators and key concepts

Reviewing a variety of approaches to develop and deploy indicators for
agriculture Van der Werf and Petit (2002) separated soil properties or processes
into ‘means’ (aka practice-based) indicators and ‘effects’-based indicators
associated with soil function. While some indicators, like water holding capacity
or soil organic carbon, can be directly equated with services like water supply
or carbon sequestration, the functions of many indicators are only broadly or
indirectly associated with services. Soil organic matter and related qualities
(e.g. C/N in Southeast Asian forest (Yamakura and Sahunalu, 1990), humus
energy content (Kozin, 1990) and soil-dwelling arthropods (Reddy, 1986))
have long been recognized as useful integrative proxies that can aggregate
information about multiple soil characteristics into one variable associated
with shifts in carbon and nutrient cycles (Bailey et al., 2018). Emphasis on tight
nutrient cycling is central to the soil health paradigm as it distinguishes soil
health from fertility and associates these qualities with natural, undisturbed
systems and biotic integrity (Wander, 2009). Accordingly, many biochemical
assays, including extracellular enzymes and biotic indicators, are pursued as
integrative assays for nutrient cycling, decomposition, pest suppression and
plant resistance to stress (Burns et al., 2013; McDaniels et al., 2014; Ouyang
et al., 2018; Larkin, 2015; Neher and Barbercheck, 2019; Tahat et al., 2020).
These and other works continue to evaluate responsiveness to management
and ways to establish functional value using indices that consider diversity and
nutrient richness (Singh et al., 2012; Griffiths et al., 2018; Ney et al., 2019) as
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well as resistance and resilience (De Vries et al., 2012). Despite their proven
value biota other than bacteria remain underused in soil health applications
(Geisen et al., 2017). Much of the emphasis remains on the development of
high-throughput microbial assays and ‘'OMICS’ with work remaining in the
comparative mode to understand the assay by drawing samples from locations
under contrasting management or land use. Besides developing targeted
approaches for the isolation of microorganisms from the soil, which allows
a classical taxonomic assignment of genotypic and phenotypic traits, novel
approaches integrating metagenomic datasets with other types of data such
as metabolomics and abiotic factors will add insight into the workings of the
microbiome (Feng et al., 2016). Unfortunately, many studies continue to rely on
extensional definitions asserting relationships between diversity, richness and
evenness or community composition resulting from management with nutrient
cycling, plant growth promotion (Hartmann et al., 2015; De Curato et al.,
2020). Ideally one could audit the community status of the system in relation
to restoration targets and the effectiveness of management interventions and,
shifts in the community or indicator status would be related to performance or
enhancement of the rate of recovery of degraded systems (Harris, 2009). While
this concept and aspiration are widely embraced, few works have meaningfully
related microbiome attributes to system-level phenomena and relationships
between omics, including sequence-relative abundance and function,
unfortunately, remain obscure (Bailey et al., 2018). Efforts continue to strive to
overcome taxonomic barriers and categorize soil microorganisms based on
their ecological strategies associated with functional attributes but contend
with the fact that despite the ever-growing sequence databases, marker gene,
genomic and metagenomic analyses, most metagenomic reads cannot be
assigned to a function and most soil microorganisms remain undescribed
(Fierer, 2017).

Typically, the quantity, composition or process rate representing the ‘effects’
of management are commonly associated with soil services including nutrient
cycling through correlation (Doran and Parkin, 1994; Andrews et al., 2002).
For example, a recently developed multi-enzyme assay (Acosta-Martinez et al.,
2019) was validated by demonstrating it appropriately ranked nutrient cycling
status of soils under aggrading or degrading management. While meta-analytic
work can confirm broad relationships between indicators, organic matter and
nutrient abundance (Wang et al., 2018; Chen et al., 2018) much work needs
to be done to associate indicators with services in a trustworthy, site-specific
manner. Effects-type indicators, that relate indicators to desired outcomes, are
attractive proxies because these can allow growers to select among practices
to determine how to achieve goals based on their farming system, location
and market contexts (Wander et al., 2002; Van der Werf and Petit, 2002). A
drawback of effects-based indicators relative to the more general means- or
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practice-based measures is that they require more intensive data collection
and so are relatively costly and difficult to validate. Effects-based indicators
have long been prioritized for hands-on applications by farmers or technical
advisors. Efforts to develop applied tests that could help farmers relate soil
quality to productivity that began in the late 1970s (e.g. Geyer et al., 1980)
and identify a useful subset of indicators continue to be a priority (Mei et al.,
2019; Xia and Wander, 2021). Whether or not the information they provide is of
enough value to farmers remains an open question. It may be that transaction
costs could be lowered enough to help farmers use soil information in the way
envisioned many decades ago (Zusevics, 1979) by using technologyies that
reflect land capability (Quandt et al., 2020).

Schjgnning et al. (2004) prioritized interpretation of indicator response
to management and asserted that management-based, not indicator-based,
thresholds must be established to embed ethics into decision making to
successfully implement the soil health concept. These types of means, or
practice-based indicators, are well suited for policy-focused applications,
conservation ranking and product valorization when adequately tied to
services. Efforts attempting to relate indicator response to management use a
wide variety of statistical techniques (Bunneman et al., 2018). Responsiveness
to management is most often studied by comparing plots in replicated trials or
multiple sites, including farm fields, or areas under different use or management
using ‘space for time substitution’ that assumes qualities were initially similar.
Samples taken from the same location separated in time are often assumed to
be the best way to separate the influences of management and soil change
or development. Unfortunately, this kind of comparison is much less common
and can be problematic if care is not taken to prevent false equivalencies
caused by slight differences in sampling, handling, processing or analytical
methods. Meta-analytic studies comparing indicator status under contrasting
management are commonly used to rank practice efficacy (Ugarte et al., 2018)
and identify indicators that can discriminate among land-use histories (Lori et al.,
2017). Unfortunately, few studies contextualize indicators or collect co-variates
need to appropriately reward or target management through any mechanism
by allowing users to separate management effects from uncontrollable or
unchangeable system factors (Halberg et al., 2005). Extrapolation of services
associated with management practices can be risky and when overextended
can undermine the veracity of stewardship claims (Chabala et al., 2020).

2.3 Site specificity and resistance and resilience

Soil quality and health assessment struggle with the need to contextualize
information and establish viable reference states. The environment or habitat
provided by soils’ physical and chemical structure is assumed to enable
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or constrain biological response to perturbation and thus, collectively
determine soil stability, where resistance and resilience are governed by soil
physicochemical structure acting through its effect on microbial community
composition and physiology (Doran and Zeiss, 2000; Griffiths and Philippot,
2013). This conceptualization includes resistance and resilience as key criteria
for soil quality and soil health assessments (Doran and Zeiss, 2000; Andrews and
Carrol, 2001; Seybold et al., 1999). Related assessments commonly presume
an economy of nature associated with tight nutrient cycling resulting from
diversity and stability. This nature-based conceptualization treats non-managed
or natural conditions as the ideal that serves as a baseline for comparison.
Soils’ intrinsic potential has often been assessed using data taken from soils
maintained under natural or undisturbed land cover, typically grasslands or,
by comparing the status of soils managed using best or better practices with
controls managed using standard or conventional practices. Stability framings
such as this are often challenged due to their vagueness and because they
invoke the ‘organismic theory of ecology’ which relates communities’ structure
and function to idealized states (e.g. Clements’ idea equilibrium state) that are
not representative of reality and so widely criticized if not fully rejected by the
scientific community (Ehrenfeld, 1992; Rapport et al., 1998). Microbial biomass-
size, diversity or community evenness are examples of biotic indicators
routinely assumed to be positively related to soil function and health including
soils’ productivity function (Crowder et al., 2010; Wittebolle et al., 2009). Over-
generalization of these kinds of interpretive assertions is a common problem as
site, land-use history and scale are all needed to constrain the domain of validity
of stability statements (Grimm and Wiessel, 1997). Despite these weaknesses
and the fact that drivers of microbial community stability and ability to resist or
recover from disturbance remain poorly understood, the association between
resilience, microbial community composition and soil capacity to function
persists (eg: Allison and Martiny, 2016; Shade et al., 2012).

2.4 Emerging concepts

Fortunately, we are gaining insights needed to manage ecological systems
and their biotic components intentionally with more basic research. Functional
genes have usefully revealed the influence of cover crop mixes and methods
of termination on ammonia oxidizers and denitrifiers (Romdhane et al., 2019).
We have modest confirmation of associations between cover crop biomass,
taxonomic (species richness) or functional (legumes vs. non-legumes) diversity
and cover crop mixtures (Finney et al., 2017). The growing interest in the use
of functional taxa that endophytes, symbionts, pathogens, and plant-growth-
promoting rhizobacteria provide useful information (Philippot et al., 2013) is
paralleled by a rising interest in the larger community of soil microorganisms

Published by Burleigh Dodds Science Publishing Limited, 2022.
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or soil microbiome (Chaparro et al., 2012). The plant microbiome has emerged
as a fundamental trait that includes mutualism enabled through diverse
biochemical mechanisms first revealed by studies of plant-growth-promoting
and plant-health-promoting bacteria (Bulgarelli et al., 2013). Our ability
to understand how plants recruit protective microorganisms and enhance
microbial activity to suppress pathogens in the rhizosphere has begun to
provide some mechanistic insights into theories proposed decades earlier
(Berendsen et al., 2012; Philippot et al., 2013). This includes management of
plant-growth-promoting rhizobacteria (PGPR) that colonize roots and mote
phytohormones and other signals that enhance lateral root branching and
development of root hairs (Vacheron et al., 2013). Communications between
plants that modulate interactions favor association with beneficial microbes
when grown under stressful conditions (Rosier et al., 2016). A rhizosphere-
focused paradigm that has emerged posits that individual functions are
coordinated by the community through biochemical networks connecting
hosts and associated microbes where plants and animals are interdependent
entities or ‘holobionts’ (Bordenstein et al., 2015). Research by Mendes et al.
(2011) identified bacterial taxa and genes involved in the suppression of
a fungal root pathogen by coupling PhyloChip-based metagenomics of
the rhizosphere with culture-dependent functional analyses a decade ago
suggests that indicators might reveal the status of the holobiont. While this kind
of knowledge is useful to have, it is unlikely to lead to soil quality indicators as
they are currently conceived because molecular communications fluctuate in
space and time with plant growth stage, interactions between plants and other
species, management techniques and edaphic factors (Chaparro et al., 2012).
In many ways, the soil-testing approach used to assess and manage soils is
incompatible with understanding or management of these fine-scape processes
or associated (Vestergaard et al., 2017; Baveye et al., 2018). Appreciation of
co-evolution of crops and their holobionts (Peiffer et al., 2013) has made crop
breeding and selection more promising targets for information use. Intentional
efforts to determine how to select microbiome-host interactions employ basic
principles of quantitative genetics and community ecology. Mueller and Sachs
(2015) outline core concepts and suggest how to manage soils to facilitate
coadaptation between plants and microbes to enhance useful productivity
along with resistance and resilience of the desired community.

3 Soil health assessment
3.1 Scoring

After efforts have identified responsive indicators and selected them for use,
the indicators are scored or evaluated in relation to one or more functions or
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in relation to an acceptable reference state. Individual variables are commonly
transformed to simultaneously rate and convert values into unitless scores
that can then be combined into an integrated health index (Doran and Parkin,
1994, Liu et al., 2018). For example, Mukherjee and Lal (2014) followed
standard steps when they developed a scoring function for soil productivity
using the weighted additive method (Karlen and Stott, 1994; Amacher
et al.,, 2007; Fernandes et al.,, 2011) that considered root development,
water storage and nutrient supply in relation to crop productivity by deriving
indicator scores using principal component analysis. The maximum yield
observed was used as the reference state for functional scoring and this single
dimension score does not distinguish quality from productivity and does
very little to address health. Whether biotic indicators are judged through
correlation in relation to the soil’s intrinsic potential (optimum or maximum
state based on inherent potential) or in relation to an established reference
state, one must identify some kind of benchmark and interpret indicator status
using objective criteria that are holistic. Thiele-Bruhn et al. (2020) suggest
explicit consideration of indicator constancy and dynamic equilibrium and
use of endpoints that represent a potential function of soil microorganisms
(implying a reference) rather than the use of actual activity levels could
improve indexing. Regionalized references tailored to cropping systems can
provide reference states. For example, Kriger et al. (2018) used regional
references to assess spatial and seasonal variability of biological indicators
(soil respiration potential, microbial biomass carbon, microbial C/N ratio,
net nitrogen mineralization, metabolic potential of soil bacteria, earthworm
abundance, microbial quotient and metabolic quotient) in grassland and
cropland soils in Belgium. That and other works suggest population-based
approach may be superior to the use of natural or idealized reference states.
Ideally, reference ranges for indicators can be established within cropland or
other land-use types that consider not only spatial variability but also time and
of course, depth of sampling.

3.2 Combining

Once vetted, individual indicators are often combined into indexes after
transformation using a variety of statistical techniques. For example, Ritz et al.
(2009) used a semi-objective logical sieve to reduce 183 possible candidate
indicators to 17 genotypic-, phenotypic- and functional- variables for use
in national-scale soil monitoring with scoring by experts and stakeholders
performed using scientific and technical criteria. Repeated iterations allowed
indicator scores and weightings to account for end-user requirements and
expert opinion. Scoring methods can recognize the need for site-specific
scoring that considers both inherent and dynamic properties. For example,
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Vogel et al. (2018, 2019) propose a systemic modeling framework to couple
reductionist yet observable indicators for soil functions with detailed process
understanding. They propose that functional attributes can be explained by a
network of interacting processes derived from scientific evidence, with the non-
linear character of interactions leading to stability and resilience of soil function.
Integration steps have begun to attempt to quantify interdependencies and
tradeoffs between functions. For example, Vrebos et al. (2020) used DayCent
to estimate model indicators to build crop-specific Bayesian belief networks
(BBNs) to estimate productivity, climate protections, water protections and
nutrient use efficiency and tradeoffs in function under current European
Union conditions. Only relationships found to be plausible were retained after
‘validation’ by expert opinion. Algorithms used by BBNs can help capture the
inductive inferences of stakeholders (Bonawitz et al., 2011) and provide a
computational framework needed to compare the expected consequences of
different types of management actions (Dorazio and Johnson, 2003). While, In
theory, BBNs, which are a graphical network of nodes linked by probabilities,
can help users make more informed and disclosed decisions about resource
management (McCann et al., 2006), caution must be applied when they are
based on limited or synthetic data that is also not proven (Marcot et al., 2006).
Some fear the subjective aspect of BBNs can potentially obfuscate and embed
bias in a way that is difficult to remove (Schweizer, 2019); however, this is one
of the few ways to enable valid scientific quantification of perceptions of soil
functions /services (including uncertainties) (Baveye et al., 2016). Baveye et al.
(2016) recommend the use of BBNs with deliberative decision-making methods
and note that the literacy of participants is critical to effectively and ethically rank
services. Correlation and co-occurrence analyses and multi-criteria decision
support systems are examples of useful techniques (Zwetsloot et al., 2020).
Before decisions can be made, estimates of services and preferences should
be provided (Coker et al., 2019) to parties engaged in ranking and weighting
activities but unfortunately, location and system-specific information about
services supplied by practices or policies are commonly inadequate.

4 Conclusion

Even though soil quality and health continue to receive academic critiques
of their utility and scientific validity, the public and private sectors have
rallied around the soil health concept as a way to help address food security,
environmental degradation and climate change. Whether or not indicators
of quality or soil health assessments prove to be useful or, instead consume
resources better spent on other approaches may depend upon whether
proponents can better clarify their objectives to apply indicators with functional
relevance for specific biophysical and civic contexts. In order for effects-based
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indicators to find commercial success and be useful for valorization of
individual fields or farms, extensional definitions that assert nebulous notions
of diversity and stability must be replaced with appropriate references states
and well-articulated relationships between indicator status and nutrient use
efficiency, plant health and pest suppression. These understandings must be
combined with up-to-date agronomic information and integrated nutrient
management strategies that improve not only soil quality (Wu and Ma, 2015)
but also productivity and other services. Improving data access through digital
platforms and new technologies may be able to lower both the transaction
and monetary costs associated with historical land capability classification to
make information useful for site-specific applications. Calls for standardized
methods and national or even global commitment to this approach to support
ecosystem service markets first need to overcome our limited or incomplete
understanding of inherent sensitivity, responsiveness to management and
functional relevance of many indicators (Rombke et al., 2018). Very few efforts
proceed to establish benchmarks that provide contextual information, delimited
by space and land use in sufficient detail to reflect the inherent potential of a
site in its optimum status and allow comparison with the present condition.
Calls for policies that promote soil stewardship through practices that build
soil organic matter and presumably other soil health attributes (e.g. Gomiero,
2016; Amelung et al., 2020) need to more than just acknowledge the need for
contextualization. Efforts to implement policy or set targets often fall back on
expert opinions and assertions about the benefits of different farming practices
despite full knowledge of site-based variability. Analytical approaches like BBNs
and deliberative frameworks might include procedures for a clear record of the
decision-making process, flexibility in prioritization of function, and the ability
to accommodate the inclusion of new or additional methods or indicators into
the framework (Ritz et al., 2009; Baveye et al., 2016).

5 Where to look for further information

e Nature Reviews: Plant microbiome. https://www.nature.com/collections/
jcbagaigaa.

e Standards by ISO 190: Soil Quality: https://www.iso.org/committee/54328
/x/catalogue.

e Natural Resources Conservation Service Soil Health: https://www.nrcs.usd
a.gov/wps/portal/nrcs/main/soils/health/.
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