Dana Fisman

Grigore Rosu (Eds.)

Tools and Algorithms
for the Construction
and Analysis of Systems

28th International Conference, TACAS 2022
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022
Munich, Germany, April 2-7, 2022

Proceedings, Part Il

LNCS 13244 | ARCoSS

EUROP!AN-:!OINT GONFERENCES ON

THEORY & PRACTICE OF SOFTWARE

Lecture Notes in Computer Science 13244

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA Gerhard Woeginger ®, Germany
Wen Gao, China Moti Yung®, USA
Bernhard Steffen®, Germany

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy
Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen®, University of Dortmund, Germany

Deng Xiaotie, Peking University, Beijing, China

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558

More information about this series at https://link.springer.com/bookseries/558

https://link.springer.com/bookseries/558

Dana Fisman - Grigore Rosu (Eds.)

Tools and Algorithms
for the Construction
and Analysis of Systems

28th International Conference, TACAS 2022
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022
Munich, Germany, April 2-7, 2022

Proceedings, Part II

@ Springer

Editors

Dana Fisman Grigore Rosu
Ben-Gurion University of the Negev University of Illinois Urbana-Champaign
Be’er Sheva, Israel Urbana, IL, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-99526-3 ISBN 978-3-030-99527-0 (eBook)

https://doi.org/10.1007/978-3-030-99527-0

© The Editor(s) (if applicable) and The Author(s) 2022. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6015-4170
https://orcid.org/0000-0002-3102-0421
https://doi.org/10.1007/978-3-030-99527-0
http://creativecommons.org/licenses/by/4.0/

ETAPS Foreword

Welcome to the 25th ETAPS! ETAPS 2022 took place in Munich, the beautiful capital
of Bavaria, in Germany.

ETAPS 2022 is the 25th instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference established in 1998,
and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations of programming languages, analysis tools, and
formal approaches to software engineering. Organizing these conferences in a coherent,
highly synchronized conference program enables researchers to participate in an
exciting event, having the possibility to meet many colleagues working in different
directions in the field, and to easily attend talks of different conferences. On the
weekend before the main conference, numerous satellite workshops took place that
attract many researchers from all over the globe.

ETAPS 2022 received 362 submissions in total, 111 of which were accepted,
yielding an overall acceptance rate of 30.7%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2022 featured the unifying invited speakers Alexandra Silva (University
College London, UK, and Cornell University, USA) and Toma$ Vojnar (Brno
University of Technology, Czech Republic) and the conference-specific invited
speakers Nathalie Bertrand (Inria Rennes, France) for FoSSaCS and Lenore Zuck
(University of Illinois at Chicago, USA) for TACAS. Invited tutorials were provided by
Stacey Jeffery (CWI and QuSoft, The Netherlands) on quantum computing and
Nicholas Lane (University of Cambridge and Samsung AI Lab, UK) on federated
learning.

As this event was the 25th edition of ETAPS, part of the program was a special
celebration where we looked back on the achievements of ETAPS and its constituting
conferences in the past, but we also looked into the future, and discussed the challenges
ahead for research in software science. This edition also reinstated the ETAPS men-
toring workshop for PhD students.

ETAPS 2022 took place in Munich, Germany, and was organized jointly by the
Technical University of Munich (TUM) and the LMU Munich. The former was
founded in 1868, and the latter in 1472 as the 6th oldest German university still running
today. Together, they have 100,000 enrolled students, regularly rank among the top
100 universities worldwide (with TUM’s computer-science department ranked #1 in
the European Union), and their researchers and alumni include 60 Nobel laureates.

vi ETAPS Foreword

The local organization team consisted of Jan Kietinsky (general chair), Dirk Beyer
(general, financial, and workshop chair), Julia Eisentraut (organization chair), and
Alexandros Evangelidis (local proceedings chair).

ETAPS 2022 was further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Holger Hermanns
(Saarbriicken), Marieke Huisman (Twente, chair), Jan Kofroii (Prague), Barbara Konig
(Duisburg), Thomas Noll (Aachen), Caterina Urban (Paris), Tarmo Uustalu (Reykjavik
and Tallinn), and Lenore Zuck (Chicago).

Other members of the Steering Committee are Patricia Bouyer (Paris), Einar Broch
Johnsen (Oslo), Dana Fisman (Be’er Sheva), Reiko Heckel (Leicester), Joost-Pieter
Katoen (Aachen and Twente), Fabrice Kordon (Paris), Jan Kietinsky (Munich), Orna
Kupferman (Jerusalem), Leen Lambers (Cottbus), Tiziana Margaria (Limerick),
Andrew M. Pitts (Cambridge), Elizabeth Polgreen (Edinburgh), Grigore Rosu (Illinois),
Peter Ryan (Luxembourg), Sriram Sankaranarayanan (Boulder), Don Sannella
(Edinburgh), Lutz Schréder (Erlangen), Ilya Sergey (Singapore), Natasha Sharygina
(Lugano), Pawel Sobocinski (Tallinn), Peter Thiemann (Freiburg), Sebastidn Uchitel
(London and Buenos Aires), Jan Vitek (Prague), Andrzej Wasowski (Copenhagen),
Thomas Wies (New York), Anton Wijs (Eindhoven), and Manuel Wimmer (Linz).

I’d like to take this opportunity to thank all authors, attendees, organizers of the
satellite workshops, and Springer-Verlag GmbH for their support. I hope you all
enjoyed ETAPS 2022.

Finally, a big thanks to Jan, Julia, Dirk, and their local organization team for all their
enormous efforts to make ETAPS a fantastic event.

February 2022 Marieke Huisman
ETAPS SC Chair
ETAPS e.V. President

Preface

TACAS 2022 was the 28th edition of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. TACAS 2022 was part of the
25th European Joint Conferences on Theory and Practice of Software (ETAPS 2022),
which was held from April 2 to April 7 in Munich, Germany, as well as online due to the
COVID-19 pandemic. TACAS is a forum for researchers, developers, and users inter-
ested in rigorous tools and algorithms for the construction and analysis of systems. The
conference aims to bridge the gaps between different communities with this common
interest and to support them in their quest to improve the utility, reliability, flexibility,
and efficiency of tools and algorithms for building computer-controlled systems.
There were four submission categories for TACAS 2022:

1. Research papers advancing the theoretical foundations for the construction and
analysis of systems.

2. Case study papers with an emphasis on a real-world setting.

3. Regular tool papers presenting a new tool, a new tool component, or novel
extensions to an existing tool.

4. Tool demonstration papers focusing on the usage aspects of tools.

Papers of categories 1-3 were restricted to 16 pages, and papers of category 4 to six
pages.

This year 159 papers were submitted to TACAS, consisting of 112 research papers,
five case study papers, 33 regular tool papers, and nine tool demo papers. Authors were
allowed to submit up to four papers. Each paper was reviewed by three Program
Committee (PC) members, who made use of subreviewers. Similarly to previous years,
it was possible to submit an artifact alongside a paper, which was mandatory for regular
tool and tool demo papers.

An artifact might consist of a tool, models, proofs, or other data required for vali-
dation of the results of the paper. The Artifact Evaluation Committee (AEC) was tasked
with reviewing the artifacts based on their documentation, ease of use, and, most
importantly, whether the results presented in the corresponding paper could be accu-
rately reproduced. Most of the evaluation was carried out using a standardized virtual
machine to ensure consistency of the results, except for those artifacts that had special
hardware or software requirements. The evaluation consisted of two rounds. The first
round was carried out in parallel with the work of the PC. The judgment of the AEC
was communicated to the PC and weighed in their discussion. The second round took
place after paper acceptance notifications were sent out; authors of accepted research
papers who did not submit an artifact in the first round could submit their artifact at this
time. In total, 86 artifacts were submitted (79 in the first round and seven in the second)
and evaluated by the AEC regarding their availability, functionality, and/or reusability.
Papers with an artifact that was successfully evaluated include one or more badges on
the first page, certifying the respective properties.

viii Preface

Selected authors were requested to provide a rebuttal for both papers and artifacts in
case a review gave rise to questions. Using the review reports and rebuttals, the
Program and the Artifact Evaluation Committees extensively discussed the papers and
artifacts and ultimately decided to accept 33 research papers, one case study, 12 tool
papers, and four tool demos.

This corresponds to an acceptance rate of 29.46% for research papers and an overall
acceptance rate of 31.44%.

Besides the regular conference papers, this two-volume proceedings also contains
16 short papers that describe the participating verification systems and a competition
report presenting the results of the 11th SV-COMP, the competition on automatic
software verifiers for C and Java programs. These papers were reviewed by a separate
Program Committee (PC); each of the papers was assessed by at least three reviewers.
A total of 47 verification systems with developers from 11 countries entered the sys-
tematic comparative evaluation, including four submissions from industry. Two ses-
sions in the TACAS program were reserved for the presentation of the results: (1) a
summary by the competition chair and of the participating tools by the developer teams
in the first session, and (2) an open community meeting in the second session.

We would like to thank all the people who helped to make TACAS 2022 successful.
First, we would like to thank the authors for submitting their papers to TACAS 2022.
The PC members and additional reviewers did a great job in reviewing papers: they
contributed informed and detailed reports and engaged in the PC discussions. We also
thank the steering committee, and especially its chair, Joost-Pieter Katoen, for his
valuable advice. Lastly, we would like to thank the overall organization team of
ETAPS 2022.

April 2022 Dana Fisman
Grigore Rosu
PC Chairs

Swen Jacobs
Andrew Reynolds
AEC Chairs, Tools, and Case-study Chairs

Dirk Beyer
Competition Chair

Program Committee

Parosh Aziz Abdulla
Luca Aceto

Timos Antonopoulos
Saddek Bensalem
Dirk Beyer

Nikolaj Bjorner
Jasmin Blanchette
Udi Boker

Hana Chockler
Rance Cleaveland
Alessandro Coglio
Pedro R. D’Argenio
Javier Esparza
Bernd Finkbeiner

Dana Fisman (Chair)
Martin Franzle
Felipe Gorostiaga
Susanne Graf

Radu Grosu

Arie Gurfinkel
Klaus Havelund
Holger Hermanns
Falk Howar

Swen Jacobs

Ranjit Jhala
Jan Kretinsky
Viktor Kuncak

Kim Larsen
Konstantinos Mamouras
Daniel Neider

Dejan Nickovic

Corina Pasareanu
Doron Peled

Anna Philippou
Andrew Reynolds

Organization

Uppsala University, Sweden

Reykjavik University, Iceland

Yale University, USA

Verimag, France

LMU Munich, Germany

Microsoft, USA

Vrije Universiteit Amsterdam, The Netherlands

Interdisciplinary Center Herzliya, Israel

King’s College London, UK

University of Maryland, USA

Kestrel Institute, USA

Universidad Nacional de Cérdoba, Argentina

Technical University of Munich, Germany

CISPA Helmholtz Center for Information Security,
Germany

Ben-Gurion University, Israel

University of Oldenburg, Germany

IMDEA Software Institute, Spain

Université Joseph Fourier, France

Stony Brook University, USA

University of Waterloo, Canada

Jet Propulsion Laboratory, USA

Saarland University, Germany

TU Clausthal / IPSSE, Germany

CISPA Helmholtz Center for Information Security,
Germany

University of California, San Diego, USA

Technical University of Munich, Germany

Ecole Polytechnique Fédérale de Lausanne,
Switzerland

Aalborg University, Denmark

Rice University, USA

Max Planck Institute for Software Systems, Germany

AIT Austrian Institute of Technology, Austria
Carnegie Mellon University, NASA, and KBR, USA
Bar Ilan University, Israel
University of Cyprus, Cyprus
University of Iowa, USA

X Organization

Grigore Rosu (Chair)
Kristin Yvonne Rozier
Cesar Sanchez

Sven Schewe

Natasha Sharygina
Jan Strejcek

Cesare Tinelli

Stavros Tripakis

Frits Vaandrager
Tomas Vojnar
Christoph M. Wintersteiger
Lijun Zhang

Lingming Zhang
Lenore Zuck

University of Illinois at Urbana-Champaign, USA

Iowa State University, USA

IMDEA Software Institute, Spain

University of Liverpool, UK

Universita della Svizzera italiana, Italy

Masaryk University, Czech Republic

University of Iowa, USA

Northeastern University, USA

Radboud University, The Netherlands

Brno University of Technology, Czech Republic

Microsoft, USA

Institute of Software, Chinese Academy of Sciences,
China

University of Illinois at Urbana-Champaign, USA

University of Illinois at Chicago, USA

Artifact Evaluation Committee

Pavel Andrianov

Michael Backenkohler
Sebastian Biewer
Benjamin Bisping

Olav Bunte

Damien Busatto-Gaston
Marek Chalupa

Priyanka Darke
Alexandre Duret-Lutz
Shenghua Feng

Mathias Fleury
Kush Grover
Dominik Harmim
Swen Jacobs (Chair)

Xiangyu Jin

Juraj Si¢

Daniela Kaufmann
Maximilian Alexander Kohl
Mitja Kulczynski

Maurice Laveaux

Yong Li

Debasmita Lohar
Makai Mann

Ivannikov Institute for System Programming
of the RAS, Russia

Saarland University, Germany

Saarland University, Germany

TU Berlin, Germany

Eindhoven University of Technology, The Netherlands

Université Libre de Bruxelles, Belgium

IST Austria, Austria, and Masaryk University,
Czech Republic

Tata Consultancy Services, India

LRDE, France

Institute of Software, Chinese Academy of Sciences,
Beijing, China

University of Freiburg, Germany

Technical University of Munich, Germany

Brno University of Technology, Czech Republic

CISPA Helmholtz Center for Information Security,
Germany

Institute of Software, Chinese Academy of Sciences

Masaryk University, Czech Republic

Johannes Kepler University Linz, Austria

Saarland University, Germany

Kiel University, Germany

Eindhoven University of Technology, The Netherlands

Institute of Software, Chinese Academy of Sciences,
China

Max Planck Institute for Software Systems, Germany

Stanford University, USA

Fabian Meyer

Stefanie Mohr

Malte Mues

Yuki Nishida

Philip Offtermatt
Muhammad Osama

Jifi Pavela

Adrien Pommellet
Mathias Preiner

José Proenca

Tim Quatmann

Etienne Renault

Andrew Reynolds (Chair)
Mouhammad Sakr
Morten Konggaard Schou
Philipp Schlehuber-Caissier
Hans-Jorg Schurr
Michael Schwarz

Joseph Scott

Ali Shamakhi

Lei Shi

Matthew Sotoudeh

Jip Spel

Veronika Sokova

Organization

RWTH Aachen University, Germany
Technical University of Munich, Germany
TU Dortmund, Germany

Kyoto University, Japan

Université de Sherbrooke, Canada

Eindhoven University of Technology, The Netherlands

Brno University of Technology, Czech Republic
LRDE, France
Stanford University, USA

CISTER-ISEP and HASLab-INESC TEC, Portugal

RWTH Aachen University, Germany
LRDE, France

University of Iowa, USA

University of Luxembourg, Luxembourg
Aalborg University, Denmark

LRDE, France

Inria Nancy - Grand Est, France
Technische Universitdt Miinchen, Germany
University of Waterloo, Canada

Tehran Institute for Advanced Studies, Iran
University of Pennsylvania, USA
University of California, Davis, USA
RWTH Aachen University, Germany

Brno University of Technology, Czech Republic

Program Committee and Jury — SV-COMP

Fatimah Aljaafari

Lei Bu

Thomas Bunk

Marek Chalupa

Priyanka Darke

Daniel Dietsch

Gidon Ernst

Fei He

Matthias Heizmann

Jera Hensel

Falk Howar

Soha Hussein

Dominik Klumpp

Henrich Lauko

Will Leeson

Xie Li

Viktor Malik

Raveendra Kumar
Medicherla

University of Manchester, UK
Nanjing University, China

LMU Munich, Germany

Masaryk University, Czech Republic
Tata Consultancy Services, India
University of Freiburg, Germany
LMU Munich, Germany

Tsinghua University, China
University of Freiburg, Germany
RWTH Aachen University, Germany
TU Dortmund, Germany

University of Minnesota, USA
University of Freiburg, Germany
Masaryk University, Czech Republic
University of Virginia, USA

Chinese Academy of Sciences, China
Brno University of Technology, Czech Republic
Tata Consultancy Services, India

xii Organization

Rafael Sa Menezes
Vince Molnar

Hernan Ponce de Ledn
Cedric Richter
Simmo Saan
Emerson Sales
Peter Schrammel
Frank Schiissele
Ryan Scott

Ali Shamakhi
Martin Spiessl
Michael Tautschnig
Anton Vasilyev
Vesal Vojdani

Steering Committee

Dirk Beyer

Rance Cleaveland

Holger Hermanns
Joost-Pieter Katoen (Chair)

Kim G. Larsen
Bernhard Steffen

Additional Reviewers

Abraham, Erika
Aguilar, Edgar
Akshay, S.

Asadi, Sepideh

Attard, Duncan

Avni, Guy

Azeem, Mugsit

Bacci, Giorgio
Balasubramanian, A. R.
Barbanera, Franco
Bard, Joachim

Basset, Nicolas

Bendik, Jaroslav
Berani Abdelwahab, Erzana
Beutner, Raven
Bhandary, Shrajan
Biewer, Sebastian

University of Manchester, UK

Budapest University of Technology and Economics,
Hungary

Bundeswehr University Munich, Germany

University of Oldenburg, Germany

University of Tartu, Estonia

Gran Sasso Science Institute, Italy

University of Sussex and Diffblue, UK

University of Freiburg, Germany

Galois, USA

Tehran Institute for Advanced Studies, Iran

LMU Munich, Germany

Queen Mary University of London, UK

ISP RAS, Russia

University of Tartu, Estonia

Ludwig-Maximilians-Universitit Miinchen, Germany

University of Maryland, USA

Universitéit des Saarlandes, Germany

RWTH Aachen University, Germany, and Universiteit
Twente, The Netherlands

Aalborg University, Denmark

Technische Universitdt Dortmund, Germany

Blicha, Martin
Brandstitter, Andreas
Bright, Curtis
Britikov, Konstantin
Brunnbauer, Axel
Capretto, Margarita
Castiglioni, Valentina
Castro, Pablo

Ceska, Milan
Chadha, Rohit
Chalupa, Marek
Changshun, Wu
Chen, Xiaohong
Cruciani, Emilio
Dahmen, Sander
Dang, Thao
Danielsson, Luis Miguel

Degiovanni, Renzo
Dell’Erba, Daniele
Demasi, Ramiro
Desharnais, Martin
Dierl, Simon
Dubslaff, Clemens
Egolf, Derek
Evangelidis, Alexandros
Fedyukovich, Grigory
Fiedor, Jan
Fitzpatrick, Stephen
Fleury, Mathias
Frenkel, Hadar
Gamboa Guzman, Laura P.
Garcia-Contreras, Isabel
Gianola, Alessandro
Goorden, Martijn
Gorostiaga, Felipe
Gorrieri, Roberto
Grahn, Samuel
Grastien, Alban
Grover, Kush
Griinbacher, Sophie
Guha, Shibashis
Gutiérrez Brida, Simén Emmanuel
Havlena, Vojtéch

He, Jie

Helfrich, Martin
Henkel, Elisabeth
Hicks, Michael
Hirschkoff, Daniel
Hofmann, Jana
Hojjat, Hossein
Holik, Lukas
Hospodar, Michal
Huang, Chao
Hyvérinen, Antti
Inverso, Omar
Itzhaky, Shachar
Jaksic, Stefan

Jansen, David N.

Jin, Xiangyu

Jonas, Martin

Kanav, Sudeep
Karra, Shyam Lal
Katsaros, Panagiotis

Organization

Kempa, Brian
Klauck, Michaela
Kreitz, Christoph
Kroger, Paul

Ko6hl, Maximilian Alexander
Konig, Barbara
Lahijanian, Morteza
Larraz, Daniel

Le, Nham
Lemberger, Thomas
Lengal, Ondre;j

Li, Chunxiao

Li, Jianlin

Lorber, Florian

Lung, David

Luppen, Zachary
Lybech, Stian

Major, Juraj
Manganini, Giorgio
McCarthy, Eric
Mediouni, Braham Lotfi
Meggendorfer, Tobias
Meira-Goes, Romulo
Melcer, Daniel
Metzger, Niklas
Milovancevic, Dragana
Mohr, Stefanie

Najib, Muhammad
Noetzli, Andres
Nouri, Ayoub
Offtermatt, Philip
Otoni, Rodrigo
Paoletti, Nicola
Parizek, Pavel

Parker, Dave

Parys, Pawel

Passing, Noemi

Perez Dominguez, Ivan
Perez, Guillermo
Pinna, G. Michele
Pous, Damien

Priya, Siddharth
Putruele, Luciano
Pérez, Jorge A.

Qu, Meixun

Raskin, Mikhail

Xiii

Xiv Organization

Rauh, Andreas
Reger, Giles
Reynouard, Raphaél
Riener, Heinz
Rogalewicz, Adam
Roy, Rajarshi
Ruemmer, Philipp
Ruijters, Enno
Schilling, Christian
Schmitt, Frederik
Schneider, Tibor
Scholl, Christoph
Schultz, William
Schupp, Stefan
Schurr, Hans-Jorg
Schwammberger, Maike
Shafiei, Nastaran
Siber, Julian
Sickert, Salomon
Singh, Gagandeep
Smith, Douglas
Somenzi, Fabio

Stewing, Richard
Stock, Gregory

Su, Yusen

Tang, Qiyi

Tibo, Alessandro
Trefler, Richard
Trtik, Marek

Turrini, Andrea
Vaezipoor, Pashootan
van Dijk, Tom
Vasicek, Ondrej
Vediramana Krishnan, Hari Govind
Wang, Wenxi
Wendler, Philipp
Westfold, Stephen
Winter, Stefan
Wolovick, Nicolas
Yakusheva, Sophia
Yang, Pengfei

Zelji¢, Aleksandar
Zhou, Yuhao
Zimmermann, Martin

Contents — Part 11

Probabilistic Systems

A Probabilistic Logic for Verifying Continuous-time Markov Chains. 3
Ji Guan and Nengkun Yu

Under-Approximating Expected Total Rewards in POMDPs. 22
Alexander Bork, Joost-Pieter Katoen, and Tim Quatmann

Correct Probabilistic Model Checking with Floating-Point Arithmetic 41
Arnd Hartmanns

Correlated Equilibria and Fairness in Concurrent Stochastic Games. 60
Marta Kwiatkowska, Gethin Norman, David Parker, and Gabriel Santos

Omega Automata

A Direct Symbolic Algorithm for Solving Stochastic Rabin Games. 81
Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik,
Anne-Kathrin Schmuck, and Sadegh Soudjani

Practical Applications of the Alternating Cycle Decomposition. 99
Antonio Casares, Alexandre Duret-Lutz, Klara J. Meyer,
Florian Renkin, and Salomon Sickert

Sky Is Not the Limit: Tighter Rank Bounds for Elevator Automata in Biichi
Automata Complementation 118
Vojtéch Havlena, Ondiej Lengdl, and Barbora Smahlikova

On-The-Fly Solving for Symbolic Parity Games 137
Maurice Laveaux, Wieger Wesselink, and Tim A. C. Willemse

Equivalence Checking

Distributed Coalgebraic Partition Refinement 159
Fabian Birkmann, Hans-Peter Deifel, and Stefan Milius

From Bounded Checking to Verification of Equivalence via Symbolic
Up-to Techniques 178
Vasileios Koutavas, Yu-Yang Lin, and Nikos Tzevelekos

Xvi Contents — Part II

Equivalence Checking for Orthocomplemented Bisemilattices
in Log-Linear Time.o
Simon Guilloud and Viktor Kuncak

Monitoring and Analysis

A Theoretical Analysis of Random Regression Test Prioritization
Pu Yi, Hao Wang, Tao Xie, Darko Marinov, and Wing Lam

Verified First-Order Monitoring with Recursive Rules
Sheila Zingg, Srdan Krsti¢, Martin Raszyk, Joshua Schneider,
and Dmitriy Traytel

Maximizing Branch Coverage with Constrained Horn Clauses
llia Zlatkin and Grigory Fedyukovich

Efficient Analysis of Cyclic Redundancy Architectures via Boolean
Fault Propagation
Marco Bozzano, Alessandro Cimatti, Alberto Griggio, and Martin Jonds

Tools | Optimizations, Repair and Explainability

Adiar Binary Decision Diagrams in External Memory
Steffan Christ Solvsten, Jaco van de Pol, Anna Blume Jakobsen,
and Mathias Weller Berg Thomasen

Forest GUMP: A Tool for Explanation
Alnis Murtovi, Alexander Bainczyk, and Bernhard Steffen

ALPINIST: An Annotation-Aware GPU Program Optimizer.
Omer Sakar, Mohsen Safari, Marieke Huisman, and Anton Wijs

Automatic Repair for Network Programs
Lei Shi, Yuepeng Wang, Rajeev Alur, and Boon Thau Loo

11th Competition on Software Verification: SV-COMP 2022

Progress on Software Verification: SV-COMP 2022
Dirk Beyer

AProVE: Non-Termination Witnesses for C Programs:
(Competition Contribution).ottt
Jera Hensel, Constantin Mensendiek, and Jiirgen Giesl

Contents — Part II Xvii

BRICK: Path Enumeration Based Bounded Reachability Checking

of C Program (Competition Contribution) 408
Lei Bu, Zhunyi Xie, Lecheng Lyu, Yichao Li, Xiao Guo, Jianhua Zhao,
and Xuandong Li

A Prototype for Data Race Detection in CSeq 3: (Competition
Contribution) 413
Alex Coto, Omar Inverso, Emerson Sales, and Emilio Tuosto

DartacNaN: SMT-based Violation Witness Validation (Competition
Contribution) e 418
Herndn Ponce-de-Leon, Thomas Haas, and Roland Meyer

Deagle: An SMT-based Verifier for Multi-threaded Programs
(Competition Contribution).ot 424
Fei He, Zhihang Sun, and Hongyu Fan

The Static Analyzer Frama-C in SV-COMP (Competition Contribution). 429
Dirk Beyer and Martin Spiessl

GDarT: An Ensemble of Tools for Dynamic Symbolic Execution
on the Java Virtual Machine (Competition Contribution) 435
Malte Mues and Falk Howar

Graves-CPA: A Graph-Attention Verifier Selector (Competition
Contribution) e 440
Will Leeson and Matthew B. Dwyer

GwiT: A Witness Validator for Java based on GraalVM (Competition
Contribution) 446
Falk Howar and Malte Mues

The Static Analyzer Infer in SV-COMP (Competition Contribution) 451
Matthias Kettl and Thomas Lemberger

LART: Compiled Abstract Execution: (Competition Contribution). 457
Henrich Lauko and Petr Rockai

Symslortic 9: String Analysis and Backward Symbolic Execution with Loop

Folding: (Competition Contribution) 462
Marek Chalupa, Vincent Mihalkovic, Anna Rechtdckovd, Lukds Zaoral,
and Jan Strejcek

Symeiotic-WitcH: A KLee-Based Violation Witness Checker:
(Competition Contribution).ottt 468
Paulina Ayaziova, Marek Chalupa, and Jan Strejcek

Xviil Contents — Part 11

THeTA: portfolio of CEGAR-based analyses with dynamic algorithm

selection (Competition Contribution)

Zsofia Adam, Levente Bajczi, Mihaly Dobos-Kovdcs, Akos Hajdu,
and Vince Molnar

UrtiMATE GEMCUTTER and the Axes of Generalization: (Competition

Contribution)

Dominik Klumpp, Daniel Dietsch, Matthias Heizmann, Frank Schiissele,
Marcel Ebbinghaus, Azadeh Farzan, and Andreas Podelski

WitdJava: A Violation-Witness Validator for Java Verifiers

(Competition Contribution).ottt

Tong Wu, Peter Schrammel, and Lucas C. Cordeiro

Author Index

Contents — Part 1

Synthesis

HOLL: Program Synthesis for Higher Order Logic Locking.
Gourav Takhar, Ramesh Karri, Christian Pilato, and Subhajit Roy

The Complexity of LTL Rational Synthesis
Orna Kupferman and Noam Shenwald

Synthesis of Compact Strategies for Coordination Programs.
Kedar S. Namjoshi and Nisarg Patel

ZDD Boolean Synthesis.
Yi Lin, Lucas M. Tabajara, and Moshe Y. Vardi

Verification

Comparative Verification of the Digital Library of Mathematical Functions
and Computer Algebra Systems
André Greiner-Petter, Howard S. Cohl, Abdou Youssef,
Moritz Schubotz, Avi Trost, Rajen Dey, Akiko Aizawa, and Bela Gipp

Verifying Fortran Programs with CIVL
Wenhao Wu, Jan Hiickelheim, Paul D. Hovland, and Stephen F. Siegel

NORMA: a tool for the analysis of Relay-based Railway

Interlocking Systems
Arturo Amendola, Anna Becchi, Roberto Cavada, Alessandro Cimatti,
Andrea Ferrando, Lorenzo Pilati, Giuseppe Scaglione,
Alberto Tacchella, and Marco Zamboni

Efficient Neural Network Analysis with Sum-of-Infeasibilities
Haoze Wu, Aleksandar Zelji¢, Guy Katz, and Clark Barrett

Blockchain

Formal Verification of the Ethereum 2.0 Beacon Chain
Franck Cassez, Joanne Fuller, and Aditya Asgaonkar

Fast and Reliable Formal Verification of Smart Contracts

with the Move Prover
David Dill, Wolfgang Grieskamp, Junkil Park, Shaz Qadeer, Meng Xu,
and Emma Zhong

XX Contents — Part 1

A Max-SMT Superoptimizer for EVM handling Memory and Storage. 201
Elvira Albert, Pablo Gordillo, Alejandro Hernandez-Cerezo,
and Albert Rubio

Grammatical Inference

A New Approach for Active Automata Learning Based on Apartness 223
Frits Vaandrager, Bharat Garhewal, Jurriaan Rot,
and Thorsten Wiimann

Learning Realtime One-Counter Automata 244
Véronique Bruyere, Guillermo A. Pérez, and Gaétan Staquet

Scalable Anytime Algorithms for Learning Fragments of Linear
Temporal Logic 263
Ritam Raha, Rajarshi Roy, Nathanaél Fijalkow, and Daniel Neider

Learning Model Checking and the Kernel Trick for Signal Temporal Logic
on Stochastic Processes 281
Luca Bortolussi, Giuseppe Maria Gallo, Jan Kretinsky, and Laura Nenzi

Verification Inference

Inferring Interval-Valued Floating-Point Preconditions 303
Jonas Krdamer, Lionel Blatter, Eva Darulova, and Mattias Ulbrich

NeuReach: Learning Reachability Functions from Simulations 322
Dawei Sun and Sayan Mitra

Inferring Invariants with Quantifier Alternations: Taming the Search
Space EXplosion 338
Jason R. Koenig, Oded Padon, Sharon Shoham, and Alex Aiken

LinSyn: Synthesizing Tight Linear Bounds for Arbitrary Neural Network
Activation Functions L 357
Brandon Paulsen and Chao Wang

Short papers

Kmclib: Automated Inference and Verification of Session Types from
OCaml Programs. 379
Keigo Imai, Julien Lange, and Rumyana Neykova

Automated Translation of Natural Language Requirements

to Runtime MoONitors e 387
Ivan Perez, Anastasia Mavridou, Tom Pressburger, Alwyn Goodloe,
and Dimitra Giannakopoulou

Contents — Part 1 XXi

MaskD: A Tool for Measuring Masking Fault-Tolerance 396
Luciano Putruele, Ramiro Demasi, Pablo F. Castro,
and Pedro R. D’Argenio

Better Counterexamples for Dafny. 404
Aleksandar Chakarov, Aleksandr Fedchin, Zvonimir Rakamaric,
and Neha Rungta

Constraint Solving

cveS: A Versatile and Industrial-Strength SMT Solver. 415
Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer,
Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,
Mudathir Mohamed, Aina Niemetz, Andres Notzli, Alex Ozdemir,
Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli,
and Yoni Zohar

Clausal Proofs for Pseudo-Boolean Reasoning 443
Randal E. Bryant, Armin Biere, and Marijn J. H. Heule

Moving Definition Variables in Quantified Boolean Formulas. 462
Joseph E. Reeves, Marijn J. H. Heule, and Randal E. Bryant

A Sorted Datalog Hammer for Supervisor Verification Conditions Modulo

Simple Linear Arithmetic. 480
Martin Bromberger, Irina Dragoste, Rasha Faqeh, Christof Fetzer,
Larry Gonzalez, Markus Krétzsch, Maximilian Marx, Harish K Murali,
and Christoph Weidenbach

Model Checking and Verification

Property Directed Reachability for Generalized Petri Nets 505
Nicolas Amat, Silvano Dal Zilio, and Thomas Hujsa

Transition Power Abstractions for Deep Counterexample Detection. 524
Martin Blicha, Grigory Fedyukovich, Antti E. J. Hyvdrinen,
and Natasha Sharygina

Searching for Ribbon-Shaped Paths in Fair Transition Systems. 543
Marco Bozzano, Alessandro Cimatti, Stefano Tonetta,
and Viktoria Vozarova

CoVeriTeam: On-Demand Composition of Cooperative
Verification Systems 561
Dirk Beyer and Sudeep Kanav

Author Index e 581

Probabilistic Systems

A Probabilistic Logic for Verifying
Continuous-time Markov Chains

Ji Guan® and Nengkun Yu? (=)

! State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China.
guanjil992@gmail.com
2 Centre for Quantum Software and Information, University of Technology Sydney,
Sydney, Australia.
nengkunyu@gmail.com

Abstract. A continuous-time Markov chain (CTMC) execution is a con-
tinuous class of probability distributions over states. This paper proposes
a probabilistic linear-time temporal logic, namely continuous-time linear
logic (CLL), to reason about the probability distribution execution of
CTMCs. We define the syntax of CLL on the space of probability dis-
tributions. The syntax of CLL includes multiphase timed until formulas,
and the semantics of CLL allows time reset to study relatively temporal
properties. We derive a corresponding model-checking algorithm for CLL
formulas. The correctness of the model-checking algorithm depends on
Schanuel’s conjecture, a central open problem in transcendental num-
ber theory. Furthermore, we provide a running example of CTMCs to
illustrate our method.

1 Introduction

As a popular model of probabilistic continuous-time systems, continuous-time
Markov chains (CTMC's) have been extensively studied since Kolmogorov [25].
In the recent 20 years, probabilistic continuous-time model checking receives
much attention. Adopting probabilistic computational tree logic (PCTL) [22] to
this context with extra multiphase timed until formulas U Tipy ... UTk Dy,
for state formula @ and time interval 7, Aziz et al. proposed continuous stochas-
tic logic (CSL) to specify the branching-time properties of CTMCs and the
model-checking problem for CSL is decidable [8]. After that, efficient model-
checking algorithms were developed by transient analysis of CTMCs using uni-
formization [9] and stratification [41] for a restricted version (path formulas are
restricted to single until formulas ®;U%®;) and a full version of CSL, respec-
tively. These algorithms have been practically implemented in model checkers
PRISM [26], MRMC [24] and STORM [18]. Further details can be found in an
excellent survey [23].

There are also different ways to specify the linear-time properties of CTMCs.
Timed automata were first used to achieve this task [11,13,14,15,19], and then

© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 3-21, 2022.
https://doi.org/10.1007/978-3-030-99527-0_1

®

Check for
updates

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99527-0_1&domain=pdf

4 J. Guan and N. Yu

metric temporal logic (MTL) [12] was also considered in this context. Subse-
quently, the probability of “the system being in state sy within five-time units
after having continuously remained in state s;” can be computed. However, some
statements cannot be specified and verified because of the lack of a probabilistic
linear-time temporal logic, for instance “the system being in state so with high
probability (> 0.9) within five-time units after having continuously remained in
state s1 with low probability (< 0.1)”. Furthermore, this probabilistic property
cannot be expressed by CSL because CSL cannot express properties that are
defined across several state transitions of the same time length in the execution
of a CTMC.

In this paper, targeting to express the mentioned probabilistic linear-time
properties, we introduce continuous-time linear logic (CLL). In particular, we
adopt the viewpoint used in [2] by regarding CTMCs as transformers of prob-
ability distributions over states. CLL studies the properties of the probability
distribution execution generated by a given initial probability distribution over
time. By the fundamental difference between the views of state executions and
probability distribution executions of CTMCs, CLL and CSL are incomparable
and complementary, as the relation between probabilistic linear-time temporal
logic (PLTL) and PCTL in model checking discrete-time Markov chains [2, Sec-
tion 3.3].

The atomic propositions of CLL are explained on the space of probability
distributions over states of CTMCs. We apply the method of symbolic dynamics
to the probability distributions of CTMCs. To be specific, we symbolize the
probability value space [0, 1] into a finite set of intervals .# = {Z;, C [0, 1]} .
A probability distribution p over its set of states S = {sg, s2,...,84—1} is then
represented symbolically as a set of symbols

S(u) ={(s,Z) € Sx I : u(s) € I}

where each symbol (s,Z) asserts u(s) € Z, i.e., the probability of state s in
distribution 4 falls in interval Z. For example, (so,[0.9,1]) means the system is
in state so with a probability in 0.9 to 1. The symbolization idea of distributions
has been considered in [2]: choosing a disjoint cover of [0, 1]:

I = {[prl)a [p17p2)7 sy [p’m 1]}

Here, we remove this restriction and enrich the expressiveness of .#. A crucial
fact about this symbolization is that the set S x .# is finite. Consequently,
the (probability distribution) execution path generated by an initial probability
distribution g induces a sequence of symbols in .S x .# over time. Therefore, the
dynamics of CTMCs can be studied in terms of a (real-time) language over the
alphabet S x ., which is the set of atomic propositions of CLL.

Different from non-probabilistic linear-time temporal logics — linear-time
temporal logic (LTL) and MTL, CLL has two types of formulas: state formu-
las and path formulas. The state formulas are constructed using propositional
connectives. The path formulas are obtained by propositional connectives and a
temporal modal operator timed until U7 for a bounded time interval 7, as in

A Probabilistic Logic for Verifying Continuous-time Markov Chains 5

MTL and CSL. The standard next-step temporal operator in LTL is meaningless
in continuous-time systems since the time domain (real numbers) is uncountable.
As a result, CLL can express the above mentioned probabilistic property “the
system is at state sy with high probability (> 0.9) within 5 time units after hav-
ing continuously remained at state s; with low probability (< 0.1)” in a path
formula:

¢ = (s1,10,0.1) U (50, (0.9, 1]).

In this single until formula, there is a time instant 0 < ¢ < 5 at which state s;
with low probability transits to state sy with high probability. Then we illustrate
this on the following timeline.

10 Jt<5H
f‘ <S(), [09, 1]>

(517[070'1]>

Furthermore, CLL allows multiphase timed until formulas. The semantics of the
formulas focuses on relative time intervals, i.e., time can be reset as in timed au-
tomata [5,6], while those of CSL [8] are for absolute time intervals. Subsequently,
CLL can express not only relatively but also absolutely temporal properties of
CTMCs.

We illustrate the significant difference between relatively temporal properties
and absolutely temporal properties of CTMCs. For instance, “before probability
distributions transition ¢ happening in 3 to 7 time units, the system always stays
at state sg with a high probability (> 0.9)” can be formalized in path formulae

¢ = (s0,[0.9, 1NUB((s1,]0,0.1)) U (s50,[0.9,1])).

As we can see, there are two time instants, namely ¢; and to, happening distribu-
tion transitions. Time is reset to 0 after the first distribution transition happens
and thus ¢, is relative to t;. More clearly, we depict this on the following timeline.

=3
—_— Lt <7 Lta+t) <12
4

1 0s {s0,[0.9,1])

(50,(0.9,1]) (s1,[0,0.1])

An absolute version is “probability distribution transition ¢ happens and the
system always stays at state sg with a high probability (> 0.9) in 3 to 7 time
units”

¢ =03 (s0,[0.9,1]) A (s1,[0,0.1)U (50, [0.9,1])).

We can get a clear timeline representation by simply adding 0*7(sq,[0.9,1]) to
that of . Assume that t < 3,

10 bt <3 13 17

4 (80, [0.9,1])
(s1,]0,0.1]) (s0,[0.9,1])

6 J. Guan and N. Yu

Time reset enriches the expressiveness of CLL but introduces more difficulties
to model checking CLL than CSL. We cross this by translating relative time to
the absolute one. As a result, we develop an algorithm to model check CTMCs
against CLL formulas. More precisely, we reduce the model-checking problem to
a reachability problem of absolute time intervals. The reachability problem corre-
sponds to the real root isolation problem of real polynomial-exponential functions
(PEFs) over the field of algebraic numbers, an extensively studied question in
recent symbolic and algebraic computation community (e.g. [1,20,28]). By de-
veloping a state-of-the-art real root isolation algorithm, we resolve the latter
problem under the assumption of the validity of Schanuel’s conjecture, a central
open question in transcendental number theory [27]. This conjecture has also
been the footstone of the correctness of many recent model-checking algorithms,
including the decidability of continuous-time Markov decision processes [30], the
synthesizing inductive invariants for continuous linear dynamical systems [4], the
termination analysis for probabilistic programs with delays [39], and reachability
analysis for dynamical systems [20].

In summary, the main contributions of this paper are as follows.

— Introducing a probabilistic logic, namely continuous-time linear logic (CLL),
for reasoning about CTMCs;

— Dewveloping a state-of-the-art real root isolation algorithm for PEFs over the
field of algebraic numbers for checking atomic propositions of CLL;

— Proving that model checking CTMCs against CLL formulas is decidable
subject to Schanuel’s conjecture.

Organization of this paper. In the next section, we give the mathematical
preliminaries used in this paper. In Section 3, we recall the view of CTMCs as
distribution transformers. After that, the symbolic dynamics of CTMCs are in-
troduced by symbolizing distributions over states of CTMCs in Section 4. In the
subsequent section, we present our continuous-time probabilistic temporal logic
CLL. In Section 6, we develop an algorithm to solve the CLL model checking
problem. A case study and related works are shown in Sections 7 and 8, respec-
tively. We summarize our results and point out future research directions in the
final section.

2 Preliminaries

For the convenience of the readers, we review basic definitions and notations of
number theory, particularly Schanuel’s conjecture.

Throughout this paper, we write C, R, Q and A for the fields of all complex,
real, rational and algebraic numbers, respectively. In addition, Z denotes the set
of all integer numbers. For F € {C,R, Q,Z, A}, we use F[t] and F"*™ to denote
the set of polynomials in ¢ with coefficients in F and n-by-m matrices with every
entry in F, respectively. Furthermore, for F € {R,Q,Z}, we use F™ to denote
the set of positive elements (including 0) of F.

A Probabilistic Logic for Verifying Continuous-time Markov Chains 7

A bounded (time) interval T is a subset of RT, which may be open, half-open
or closed with one of the following forms:

[t1,ta], [t1,t2), (t1,t2], (t1,t2),

where t1,to € R* and ta > 1 (t1 = t2 is only allowed in the case of [t1, t2]). Here,
t; and ty are called the left and right endpoints of T, respectively. Conveniently,
we use inf 7 and sup 7 to denote ¢ and to, respectively. In this paper, we only
consider bounded intervals.

For reasoning about the temporal properties, we further define the addition
and subtraction of (time) intervals. The expression T +t or t + T, for t € RT,
denotes the interval {t +¢' : ¢/ € T}. Similarly, 7 — t stands for the interval
{—t+t :¢ €T} if t <infT. Furthermore, for two intervals 77 and 7a,

Ti+T={te(t' +T2):t' €eTi} ={t1 +t2:t1 € T and t5 € To}.

Two intervals 77 and 7> are disjoint if their intersection is an empty set, i.e.,
Ti N T2 = (. Let us see some concrete examples: 1+ (2,3) = (3,4), (2,3) — 1 =
(1,2), (2,3) + [3,4] = (5,7) and (2,3),[3,4] are disjoint. It is obvious that all
calculations of time intervals in the above are easy to be computed.

An algebraic number is a complex number that is a root of a non-zero poly-
nomial in one variable with rational coefficients (or equivalent to integer coeffi-
cients, by eliminating denominators). An algebraic number « is represented by
(P, (a,b),e) where P is the minimal polynomial of «, a,b € Q and a + bi is an
approximation of « such that |« — (a+bi)| < € and « is the only root of P in the
open ball B(a + bi,€). The minimal polynomial of « is the polynomial with the
smallest degree in Q[t] such that « is a root of the polynomial and the coefficient
of the highest-degree term is 1. Any root of f(¢) € A[t] is algebraic. Moreover,
given the representations of a,b € A, the representations of a b, § and a-b can
be computed in polynomial time, so does the equality checking [17].

Furthermore, a complex number is called transcendental if it is not an al-
gebraic number. In general, it is challenging to verify relationships between
transcendental numbers [33]. On the other hand, one can use the Lindemann-
Weierstrass theorem to compare some transcendental numbers. The transcen-
dence of e and 7 are direct corollaries of this theorem.

Theorem 1 (Lindemann-Weierstrass theorem). Let ny,- - ,n, be pairwise
distinct algebraic complex numbers. Then Y, Ape™ # 0 for non-zero algebraic
numbers Ay, , Ap.

The following concepts are introduced to study the general relation between
transcendental numbers.

Definition 1 (Algebraic independence). A set of complex numbers S =
{a1, -+ ,an} is algebraically independent over Q if the elements of S do not
satisfy any nontrivial (non-constant) polynomial equation with coefficients in Q.

By the above definition, for any transcendental number u, {u} is algebraically
independent over Q, while {a} for any algebraic number a € A is not. Thus, a

8 J. Guan and N. Yu

set of complex numbers that is algebraically independent over Q must consist of
transcendental numbers. {, e”‘/ﬁ} is also algebraically independent over Q for
any positive integer n [31]. Checking the algebraic independence is challenging,.
For example, it is still widely open whether {e, 7} is algebraically independent
over Q.

Definition 2 (Extension field). Given two fields E C F, F is an extension
field of E, denoted by F/E, if the operations of E are those of F restricted to
E.

For example, under the usual notions of addition and multiplication, the field of
complex numbers is an extension field of real numbers.

Definition 3 (Transcendence degree). Let L be an extension field of Q,
the transcendence degree of L over Q is defined as the largest cardinality of an
algebraically independent subset of L over Q.

For instance, let Q(e)/Q = {a+ be | a,b € Q} and Q(v/2)/Q = {a+bv2 | a,b €
Q} be two extension fields of Q. Then the transcendence degree of them are 1
and 0, respectively, by noting that e is a transcendental number and v/2 is an
algebraic number.

Now, Schanuel’s conjecture is ready to be presented.

Conjecture 1 (Schanuel’s conjecture). Given any complex numbers zi,--- , 2,
that are linearly independent over Q, the extension field Q(z1, ..., 2, €%, ..., €*")
has transcendence degree of at least n over Q.

Stephen Schanuel proposed this conjecture during a course given by Serge
Lang at Columbia in the 1960s [27]. Schanuel’s conjecture concerns the transcen-
dence degree of certain field extensions of the rational numbers. The conjecture,
if proven, would generalize the most well-known results in transcendental num-
ber theory significantly [29,37]. For example, the algebraical independence of
{e, 7} would simply follow by setting z; = 1 and 2o = =i, and using Fuler’s
identity €™ +1 = 0.

3 Continuous-time Markov Chains as Distributions
Transformers

We begin with the definition of continuous-time Markov chains (CTMCs). A
CTMC is a Markovian (memoryless) stochastic process that takes values on a
finite state set S (|S| = d < 00) and evolves in continuous-time ¢ € RT. Formally,

Definition 4. A CTMC is a pair M = (S,Q), where S (|S| = d) is a finite

state set and Q € Q?*? is a transition rate matrix.

A transition rate matrix @ is a matrix whose off-diagonal entries {Q; ; }i; are
nonnegative rational numbers, representing the transition rate from state ¢ to

A Probabilistic Logic for Verifying Continuous-time Markov Chains 9

state j, while the diagonal entries {Q; ;} are constrained to be — Zj# Q;,; for
all 1 < j < d. Consequently, the column summations of @ are all zero.

The evolution of a CTMC can be regarded as a distribution transformer.
Given initial distribution x4 € Q4% € D(S), the distribution at time ¢ € RY is:

Mt = thﬂa

where D(S) is denoted as the set of all probability distributions over S. We call
D(S) the probability distribution space of CTMCs. An execution path of CTMCs
is a continuous function indexed by initial distribution pu € D(S):

o, RT = D(S), ou(t) = e p. (1)

Ezample 1. We recall the illustrating example of CTMC M = (5,Q) in [8,
Figure 1] as the running example in our work. In particular, M is a 5-dimensional
CTMC with initial distribution u, where S = {sq, s1, $2, $3, 84} and

—30 000 0.1
10000 0.2
Q=1]20-700 p=103
00300 0.4
00400 0

4 Symbolic Dynamics of CTMCs

In this section, we introduce symbolic dynamics to characterize the properties
of the probability distribution space of CTMCs.

First, we fix a finite set of intervals .# = {Zj C [0, 1]}rek, where the end-
points of each 7 are rational numbers. With the states S = {so, 51, -, Sd—1},
we define the symbolization of distributions as a function:

S:D(S) = 257 S(p)={(s,I) € S x I : u(s) € T}, (2)

where x denotes the Cartesian product, and 2°%“ is the power set of S x
J. (s,I) € S(p) asserts that the probability of state s in distribution p is
in the interval Z. The symbolization of distributions is a generalization of the
discretization of distributions with Z;NZ,, = () for all k # m which was studied in
[2]. This generalization increases the expressiveness of our continuous linear-time
logic introduced in the next section. Now, we can represent any given probability
distribution by finite symbols from S x .#. For example, suppose

= {[0,0.1],(0.1,0.9), 0.9, 1], [L, 1], [0.4,0.4]}, (3)
and then the initial distribution p in Example 1 is symbolized as

S(1) = {(s0,[0,0.1]), {s1, (0.1,0.9)), {s2, (0.1,0.9)),
(s3,(0.1,0.9)), (s3,[0.4,0.4]), (s4,[0,0.1])}.

10 J. Guan and N. Yu

As we can see from the above example, the symbolization of distributions on
states considers the exact probabilities (singleton intervals) of the states and the
range of their possibilities.

Next, we introduce the symbolization to CTMCs,

Definition 5. A symbolized CTMC is a tuple SM = (S,Q,.#), where M =
(5,Q) is a CTMC and . is a finite set of intervals in [0, 1].

As we can see, the set of intervals is picked depending on CTMCs. Then, we
extend this symbolization to the path o,:

Soo, : RT —25%7, (5)

Definition 6. Given a symbolized CTMC SM = (S,Q,.7), Soo,, is a symbolic
execution path of M = (5, Q).

Given a symbolized CTMC SM = (S, Q, .#), the path g, of CTMC M = (5, Q)
over real numbers R™ generated by probability distribution u induces a symbolic
execution path S o o, over finite symbols S x .#. Subsequently, the dynamics
of CTMCs can be studied in terms of a language over S x .#. In other words,
we can study the temporal properties of CTMCs in the context of symbolized
CTMCs.

5 Continuous Linear-time Logic

In this section, we introduce continuous linear-time logic (CLL), a probabilistic
linear-time temporal logic, to specify the temporal properties of a symbolized
CTMC SM = (5,Q,.9).

CLL has two types of formulas: state formulas and path formulas. The state
formulas are constructed using propositional connectives. The path formulas are
obtained by propositional connectives and a temporal modal operator timed until
U7 for a bounded time interval 7, as in MTL and CSL. Furthermore, multiphase
timed until formulas ®oU T, U2 P, ... UTnd,, are allowed to enrich the expres-
siveness of CLL. More importantly, time reset is involved in these multiphase
formulas. Thus absolutely and relatively temporal properties of CTMCs can be
studied.

Definition 7. The state formulas of CLL are described according to the follow-
ing syntax:
P :=true|a € AP | P | P APy

where AP denotes S X Z as the set of atomic propositions.
The path formulas of CLL are constructed by the following syntax:

@ :=true | DU S Uy .. . U, | ~p | 01 Ao

where n € ZF is a positive integer, for all 0 < k < n, &, is a state formula,
and Ty ’s are time intervals with the endpoints in QF, i.e., each Ty, is one of the

following forms:
(a,b),[a,], (a,b],[a,b) Va,beQF.

A Probabilistic Logic for Verifying Continuous-time Markov Chains 11

The semantics of CLL state formulas is defined on the set D(S) of probability
distributions over S with the symbolized function S in Eq.(2) of Section 4.

(1) p [= true for all probability distributions p € D(S);

(2) pEaiff a€S(p);

(3) p =~ iff it is not the case that p = @ (or written p = @);
(4) plE P APy iff p =Py and p = Ps.

The semantics of CLL path formulas is defined on execution paths {0, },ep(s)

of CTMC M = (S, Q).

(1) o, = true for all probability distributions p € D(S);

(2) o, E S U D U2, ... UTnd,, iff there is a time instant ¢ € 77 such that
ou = &1 U@y .. .U, and for any t' € T1 N [0,t), pe = Do, where
ou, =@ iff py = @, and py is the distribution of the chain at time instant ¢,
ie., s = eQtp vt € Rt

(3) o, = ¢ iff it is not the case that o, = ¢ (written o, = ¢);

(4) o, =1 N2 iff 0, = @1 and 0, = @o.

Not surprisingly, other Boolean connectives are derived in the standard way,
i.e., false = —true, &1 V &3 = ~(—P1 A ~P2) and 1 — P = =P V Py, and
the path formula ¢ follows the same way. Furthermore, we generalize temporal
operators ¢ (“eventually”) and O (“always”) of discrete-time systems into their
timed variant ¢7 and 07, respectively, in the following:

OTd =trueU7¢ 0O7@ =07 .

For n = 1 in multiphase timed until formulas, the until operator UT* is a
timed variant of the until operator of LTL; the path formula $oU71®; asserts
that @, is satisfied at some time instant in the interval 7; and that at all pre-
ceding time instants in 77, @o holds. For example,

@ = (s1,10,0.1) U (50, (0.9, 1),

as mentioned in introduction section.

For general n, the CLL path formula S UT o UT2Py .. . U, is explained
over the induction on n. We first mention that U7 is right-associative, e.g.,
& U &,UT2d, stands for SoU T (P4 UT2@2). This makes time reset, i.e., 7; and
T2 do not have to be disjoint, and the starting time point of 75 is based on some
time instant in 7;. Recall the multiphase timed until formula in introduction
section and this formula expresses a relative time property:

¢ = (s0,[0.9, 1NUBT((s1,]0,0.1)) U1 (s0,[0.9,1])),

which is different to the following CLL path formula representing an absolutely
temporal property of CTMCs:

@ = 0B (s0,[0.9,1]) A (s1,[0,0.1) UL (54, [0.9,1])).

12 J. Guan and N. Yu

As an example, we clarify the semantics of CLL by comparing the above two
path formulas in general forms:

DU P U2 Py and SoUT 1 A DU D,.

(1) o, = SoUT P UT2P, asserts that there are time instants 1 € Ti,te € T
such that ¢ 1+, = P2 and for any ¢§ € T3 N [0,¢1) and th € T2 N [0,%2),
py; = Do and puy, 4y =y, where py = €9y Vt € RT. This is more clear in
the following timeline.

=inf 71 =inf T2
—_— —_— 1 Py
. —_— 't <sup T —— (t1 + t2) < sup(T1 + T2
1 time 0 pe 1 P /1 Py (t1 +t2) p(71 +T2)

(2) o = S UT &1 A B1UT2P, asserts that there are time instants ¢; € T, 1o €
Tz such that py, = @1 and py, = P2, and for any t) € 731 N [0,¢1) and
ty € TaN[0,t2), gy = Po and py = @1, where iy = eQtu vt € RT.

Before solving the model-checking problem of CTMCs against CLL formulas
in the next section, we shall first discuss what can be specified in our logic CLL.

Given a CTMC (S, Q), CLL path formula (121091 (s [1,1]) expresses a live-
ness property that state s € S is eventually reached with probability one before
time instant 1000. In terms of safety properties, formula [J[10:10001 (5 [0 0]) rep-
resents that state s € S is never reached (reached with probability zero) between
time instants 100 and 1000. Furthermore, setting the intervals nontrivial (neither
[0,0] or [1,1]), liveness and safety properties can be asserted with probabilities,
such as Q%1000 (5 [0.5,1]) and DI190:10001(s [0 0.5]). For multiphase timed un-
til formula (s, [0.7,1))UZ3(s,[0.7,1]) ... U>3(s,[0.7,1]), where the number of
U3l is 100, asserts that the probability of state s is beyond 0.7 in every time
instant 2 to 3, and this happens at least 100 times.

Next, we can classify members of & as representing “low” and “high” prob-
abilities. For example, if .# contains 3 intervals {[0,0.1], (0.1,0.9),[0.9, 1]}, we
can declare the first interval as “low” and the last interval as “high”. In this
case OI10:1000) (50 10,0.1]) — (s1,[0.9,1])) says that, in time interval [10,1000),
whenever the probability of state sy is low, the probability of state s; will be
high.

6 CLL Model Checking

In this section, we provide an algorithm to model check CTMCs against CLL
formulas, i.e., the following CLL model-checking problem — Problem 1 is decid-
able.

Problem 1 (CLL Model-checking Problem). Given a symbolized CTMC SM =
(S,Q,.#) with an initial distribution p and a CLL path formula ¢ on AP =
S x .7, the goal is to decide whether o, = ¢, where 0,,(t) = e?'1 is an execution
path defined in Eq.(1).

A Probabilistic Logic for Verifying Continuous-time Markov Chains 13

In particular, we show that

Theorem 2. Under the condition that Schanuel’s conjecture holds, the CLL
model-checking problem in Problem 1 is decidable.

In the following, we prove the above theorem from checking basic formulas
— atomic propositions to the most complex one — nontrivial multiphase timed
until formulas. For readability, we put the proofs of all results in Appendix A of
the extended version [21] of this paper.

We start with the simplest case of atomic proposition (s, Z). By the semantics
of CLL, py |= (s, Z) if and only if p; = e®*u(s) € Z. To check this, we first observe
that the execution path @'y of CTMCs is a system of polynomial exponential
functions (PEFs).

Definition 8. A function f : R — R s a polynomial-exponential function
(PEF) if f has the following form:

) =" frt)e! (6)

where for all 0 < k < K < oo, fr(t) € Fi[t], fr(t) # 0, A\, € Fo and F1,Fs are
fields. Without loss of generality, we assume that \i’s are distinct.

Generally, for a PEF f(t) with the range in complex numbers C, g(t) =
f(®) + f*() is a PEF with the range in real numbers R, where f*(t) is the
complex conjugate of f(t). The factor ¢ is omitted whenever convenient, i.e.,
f = f(t). t is called a root of a function f if f(t) = 0. PEFs often appear in
transcendental number theory as auxiliary functions in the proofs involving the
exponential function [10].

Lemma 1. Given a CTMC M = (S,Q) with S = {s0,...,84-1}, Q@ € Q¥*4,
and an initial distribution p € QY for any 0 <i < d—1, 9 u(s;), the i-th
entry of e9tu, can be expressed as a PEF f : RT — [0,1] as in Eq.(6) with
F, =TF, = A.

By the above lemma, for a given ¢ in some bounded time interval 7 (to be specific
in the latter discussion), e®*(s) € Z is determined by the algebraic structure
of PEF g(t) = €@ u(s) in T. That is all mazimum intervals Tmax € T such
that g(t) € T for all t € Trax, where interval Toax # 0 is called maximum for
g(t) € T if no sub-intervals 7’ C Tiax such that the property holds, i.e., g(t) € Z
for all t € T'. Then e®*u(s) € T if and only if t € Tay for some maximum
interval Tpax. So, we aim to compute the set 7 of all maximum intervals. By
the continuity of PEF ¢(t), this can be done by identifying a real root isolation
of the following PEF f(¢) in T: f(t) = (g(¢t) —inf Z)(g(t) — sup).

A (real) root isolation of function f(¢) in interval T is a set of mutually
disjoint intervals, denoted by Iso(f)7 = {(a;,b;) C T} for a;,b; € Q such that

— for any j, there is one and only one root of f(t) in (a;,b;);

14 J. Guan and N. Yu

— for any root t* of f(t), t* € (a;,b;) for some j.

Furthermore, if f has no any root in 7, then Iso(f)7 = 0.

Although there are infinite kinds of real root isolations of f(¢) in 7, the
number of isolation intervals equals to the number of distinct roots of f(t) in T.

Finding real root isolations of PEFs is a long-standing problem and can be
at least backtracked to Ritt’s paper [34] in 1929. Some following results were
obtained since the last century (e.g. [7,38]). This problem is essential in the
reachability analysis of dynamical systems, one active field of symbolic and al-
gebraic computation. In the case of F; = Q and Fy = N7 in [1], an algorithm
named ISOL was proposed to isolate all real roots of f(t). Later, this algorithm
has been extended to the case of F; = Q and Fo = R [20]. A variant of the
problem has also been studied in [28]. The correctness of these algorithms is
based on Schanuel’s conjecture. Other works are using Schanuel’s conjecture to
do the root isolation of other functions, such as exp-log functions [35] and tame
elementary functions [36].

By Lemma 1, we pursue this problem in the context of CTMCs. The distinct
feature of solving real root isolations of PEF's in our paper is to deal with complex
numbers C, more specifically algebraic numbers A, i.e., F; = Fo = A. At the
same time, to the best of our knowledge, all the previous works can only handle
the case over R. Here, we develop a state-of-the-art real root isolation algorithm
for PEFs over algebraic numbers. Thus from now on, we always assume that
PEFs are over A, i.e., F; = Fy = A in Eq.(6). In this case, it is worth noting
that whether a PEF has a root in a given interval, 7 C RT is decidable subject
to Schanuel’s Conjecture if T is bounded [16], which falls in the situation we
consider in this paper.

Theorem 3 ([16]). Under the condition that Schanuel’s conjecture holds, there
is an algorithm to check whether a PEF f(t) has a root in interval T, i.e.,
whether Iso(f)7 = 0.

In this paper, we extend the above checking Iso(f)7 = 0 to computing
Iso(f)7 of PEF f(t).

Theorem 4. Under the condition that Schanuel’s conjecture holds, there is an
algorithm to find real root isolation Iso(f)7 for any PEF f(t) and interval T.
Furthermore, the number of real roots is finite, i.e., |Iso(f)7| < co.

We can compute the set .7 of all maximum intervals with the above theorem
to check atomic propositions. Furthermore, we can compare the values of any
real roots of PEFs, which is important in model checking general multiphase
timed until formulas at the end of this section.

Lemma 2. Let fi(t) and fa(t) be two PEFs with the domains in T and Ta,
and ty € Ty and ty € T3 are roots of them, respectively. Under the condition that
Schanuel’s conjecture holds, there is an efficient way to check whether or not
t1 —te < g for any given rational number g € Q.

A Probabilistic Logic for Verifying Continuous-time Markov Chains 15

For model checking general state formula @, we can also use real root isolation
of some PEF to obtain the set of all maximum intervals Tpax such that pu; = @
for all t € Thax. The reason is that @ admits conjunctive normal form consisting
of atomic propositions. See the proof of the following lemma in Appendix A of
the extended version [21] of this paper for the details.

Lemma 3. Under the condition that Schanuel’s conjecture holds, given a time
interval T, the set 7 of all mazimum intervals in T satisfying us = @ can be
computed, where @ is a state formula of CLL. Furthermore, the number of all
intervals in T is finite; the left and right endpoints of each interval in & are
roots of PEFs.

At last, we characterize the multiphase timed until formulas by the reacha-
bility analysis of time intervals (instants).

Lemma 4. 0, = SoUT U2 Dy ---UTnd,, if and only if there exist time in-
tervals {Z, C RT}7_, with Io = [0,0] such that

— The satisfaction of intervals: for all 1 < k < n, p; | Pp_1 for all t € I,
and p+ | @y, where t* =supZ, and p; = thu vt € RT;

— The order of intervals: for all 1 < k < n, I, C Zy_1 + Tr and infZ; =
supZy_1 + inf Tg.

By the above lemma, the problem of checking multiphase timed until formulas
is reduced to verify the existence of a sequence of time intervals.
Now we can show the proof of Theorem 2.

Proof. Recall that the nontrivial step is to model check multiphase timed until
formula &oUT1d,U 2Py - - - UTnd,,, where {T; }7_1 is a set of bounded rational
intervals in RT, and for 0 < k < n + 1, &y, is a state formula.

By Lemma 4, for model checking the above formula, we only need to check
the existence of time intervals {Z}}_, illustrated in the lemma. The following
procedure can construct such a set of intervals if it exists:

- (1) Let fo = {Io = [0,0]} N

— (2) For each 1 < k < n, obtaining the set .# in [0,2521 sup 7;] of all
maximum intervals such that u; = @y for all t € T of T € ., where
e = e9tp; this can be done by Lemma 3. Noting that .#, can be the empty
set, i.e., S, = 0;

— (3) Let k from 1 to n. First, updating .#:

S, = {Iﬂ (I/ —‘rn) : T € S, and I e f}cfl}. (7)

The above updates can be finished by Lemma 2. If .#, = (), then the formula
is not satisfied;

— (4) Updating .%,: for each Z € .#,, we replace Z with [s — ¢,s) for some
constant € > 0 if there is an s € Z with s — ¢ € T such that us = @, where
ps = e9%u; Otherwise, remove this element from .#,. Again, this can be
done by Lemma 3. If .#, =), then the formula is not satisfied;

16 J. Guan and N. Yu

— (5) Finally, let k& from n — 1 to 1, updating .#:
I ={[s —inf T, s —inf Ty : [s — €, 5) € 1]}

Thus after the above procedure, we have non-empty sets {.%}7_, with the
following properties.

— foreach 1 <k <n, s =Py for all t € T, and Ty, € I, and py= = P,
where t* = sup Z,;

— for each 1 < k < n, I € .%,, there exists at least one 7' € #,_; such that
Z CsupZ + Ti and inf Z = supZ’ + inf Ty.

Therefore, we can get a set of intervals {Zj }7_, satisfying the two conditions
in Lemma 4 if it exists. On the other hand, it is easy to check that all such
{Zk}y_o must be in {F}7_,, i.e., for each k, 7y C Z for some Z € #,. This
ensures the correctness of the above procedure.

By the above constructive analysis, we give an algorithm for model checking
CTMCs against CLL formulas. Focusing on the decidability problem, we do
not provide the pseudocode of the algorithm. Alternatively, we implement a
numerical experiment to illustrate the checking procedure in the next section.

7 Numerical Implementation

In this section, we implement a case study of checking CTMCs against CLL
formulas. Here, we consider a symbolized CTMC SM = (S, Q,.¥), where M =
(S,Q) is the CTMC in Example 1 and finite set .# is the one considered in
Eq.(3). We check the properties of M given by the following two CLL path
formulas mentioned in the introduction for different initial distributions.

o = (51,10,0.1)U % (50, (0.9, 1]).

¢ = (s0,[0.9, 1NUB (51, [0,0.1]) U (50, [0.9,1]).

By Jordan decomposition, we have Q = SJS~! where

0 —6000 -70000 1—1410—;00
0 2001 0 —3000 —500 00
S=1-7-3000 J=10 0000 st=1204%201
3 3010 0 0000 2%oélo
4 4100 0 0000 31000

Then, we consider an initial distribution i as the same as the one in Example 1.
Then we have that the value of €9ty is as follows:

e 3t 0 0 00 0.1 %e*?’t
—3(e?t—1) 1 0 00| (02 —z5e 3 + T;
Yed—e™) 0 e 00|]os|=| gedilen

5*467’” 1673t + % 0— %67775 + 3 10 0.4 _%67315 %38 67715 4 38
76*7‘5 — 2e73t 4 % 0— %e Tt +2 () 1 0 _%567315 767715 n 12025

A Probabilistic Logic for Verifying Continuous-time Markov Chains 17

As we only consider states sg and s; in formulas ¢ and ¢’, we focus on the
following PEFs: fo(t) = {573 and fi(t) = —g5¢ 7% + 5.

Next, we initialize the model checking procedures introduced in the proof of
Theorem 2. First, we compute the set .7 of all maximum intervals 7 C [0, 5]
such that e9u = (s0,[0.9,1]) for t € T, i.e., fo(t) € [0.9,1] for t € T. We obtain
7 = () by the real root isolation algorithm mentioned in Theorem 4, and this
indicates that o, [~ ¢ where o, (t) = e?'y is the path induced by p and defined
in Eq.(1).

To check whether o, = ¢, we compute the set .7 of all maximum intervals
T C [0,12] such that eQp = (s0,[0.9,1]) for t € T, i.e., fo(t) € [0.9,1] fort € T.
Again, we obtain .7 = () by the real root isolation algorithm in Theorem 4.
Therefore, o, = ¢'.

In the following, we consider a different initial distribution p; as follows:

0.9 %e*St

0 — (e —1)
el =eQt 01| = Dt _ %e’”

0 %efstJr%ef?tJrl%

0 7%673t+%677t+%

The key PEFs are: go(t) = 557 and g1(t) = — 35 (e ™3 — 1).

Again, we initialize the model checking procedures introduced in the proof of
Theorem 2. We first compute the set 7 of all maximum intervals 7" C [0, 5] such
that ety = (s1,[0,0.1]) for t € T, i.e., gi(t) € [0,0.1] for t € 7. This can be

done by finding a real root isolation of the following PEF: ¢{(t) = — 3 (e ™% —

1) — &.
By implementing the real root isolation algorithm in Theorem 4, we have

Iso(gY)05) = {(0.13,0.14)} and then 7 = {[0,"]} for t* € (0.13,0.14).

Following the same way, we compute 7 for e®'u; = (s0,[0.9,1]). Then we
complete the model checking procedures in the proof of Theorem 2, and we
conclude: o, = ¢. By repeating these, the result of the second formula ¢’ is

Opq [# QD/'

8 Related Works

Agrawal et al. [2] introduced probabilistic linear-time temporal logic (PLTL) to
reason about discrete-time Markov chains in the context of distribution trans-
formers as we did for CTMCs in this paper. Interestingly, the Skolem Prob-
lem can be reduced to the model checking problem for the logic PLTL [3]. The
Skolem Problem asks whether a given linear recurrence sequence has a zero term
and plays a vital role in the reachability analysis of linear dynamical systems.
Unfortunately, the decidability of the problem remains open [32]. Recently, the
Continuous Skolem Problem has been proposed with good behavior (the problem
is decidable) and forms a fundamental decision problem concerning reachability

18 J. Guan and N. Yu

in continuous-time linear dynamical systems [16]. Not surprisingly, the Continu-
ous Skolem Problem can be reduced to model-checking CLL. The primary step
of verifying CLL formulas is to find a real root isolation of a PEF in a given
interval. Chonev, Ouaknine and Worrell reformulated the Continuous Skolem
Problem in terms of whether a PEF has a root in a given interval, which is
decidable subject to Schanuel’s conjecture [16]. An algorithm for finding root
isolation can also answer the problem of checking the existence of the roots of a
PEF. However, the reverse does not work in general. Therefore, the decidability
of the Continuous Skolem Problem cannot be applied to establish that of our
CLL model checking.

Remark 1. By adopting the method in this paper, we established the decidability
of model checking quantum CTMCs against signal temporal logic [40]. Again,
we need Schanuel’s conjecture to guarantee the correctness. A Lindblad’s master
equation governs a quantum CTMC and a more general real-time probabilistic
Markov model than a CTMC, i.e., a CTMC is an instance of quantum CTMCs.
We converted the evolution of Lindblad’s master equation into a distribution
transformer that preserves the laws of quantum mechanics. We reduced the
model-checking problem of quantum CTMCs to the real root isolation problem,
which we considered in this paper, and thus our method could be applied to it.

9 Conclusion

This paper revisited the study of temporal properties of finite-state CTMCs by
symbolizing the probability value space [0, 1] into a finite set of intervals. To
specify relatively and absolutely temporal properties, we propose a probabilistic
logic for CTMCs, namely continuous linear-time logic (CLL). We have considered
the model checking problem in this setting. Our main result is that a state-of-the-
art real root isolation algorithm over the field of algebraic numbers was proposed
to establish the decidability of the model checking problem under the condition
that Schanuel’s conjecture holds.

This paper aims to show decidability in as simple a fashion as possible with-
out paying much attention to complexity issues. Faster algorithms on our current
constructions would significantly improve from a practical standpoint.

Acknowledgments

We want to thank Professor Joost-Pieter Katoen for his invaluable feedback and
for pointing out the references [14,15,30]. This work is supported by the National
Key R&D Program of China (Grant No: 2018 YFA0306701), the National Natural
Science Foundation of China (Grant No: 61832015), ARC Discovery Program
(#DP210102449) and ARC DECRA (#DE180100156).

A Probabilistic Logic for Verifying Continuous-time Markov Chains 19

References

10.
11.

12.

13.

14.

15.

16.

17.

. Achatz, M., McCallum, S., Weispfenning, V.: Deciding polynomial-exponential

problems. In: Proceedings of the Twenty-first International Symposium on Sym-
bolic and Algebraic Computation. pp. 215-222. ACM (2008)

Agrawal, M., Akshay, S., Genest, B., Thiagarajan, P.: Approximate verification of
the symbolic dynamics of Markov chains. Journal of the ACM (JACM) 62(1), 2
(2015)

Akshay, S., Antonopoulos, T., Ouaknine, J., Worrell, J.: Reachability problems for
Markov chains. Information Processing Letters 115(2), 155-158 (2015)

Almagor, S., Kelmendi, E., Ouaknine, J., Worrell, J.: Invariants for continuous
linear dynamical systems. arXiv preprint arXiv:2004.11661 (2020)

. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science

126, 183-235 (1994)

Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Pro-
ceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing.
pp. 592-601 (1993)

Avellar, C.E., Hale, J.K.: On the zeros of exponential polynomials. Journal of
Mathematical Analysis and Applications 73(2), 434-452 (1980)

Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time
Markov chains. ACM Transactions on Computational Logic 1(1), 162-170 (2000)
Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Transactions on Software Engineering
29(6), 524-541 (2003)

Baker, A.: Transcendental number theory. Cambridge university press (1990)
Barbot, B., Chen, T., Han, T., Katoen, J.P., Mereacre, A.: Efficient CTMC model
checking of linear real-time objectives. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. pp. 128—-142. Springer
(2011)

Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Time-bounded verification
of CTMCs against real-time specifications. In: International Conference on Formal
Modeling and Analysis of Timed Systems. pp. 26-42. Springer (2011)

Chen, T., Han, T., Katoen, J.P., Mereacre, A.: Quantitative model checking of
continuous-time Markov chains against timed automata specifications. In: 2009
24th Annual IEEE Symposium on Logic In Computer Science. pp. 309-318. IEEE
(2009)

Chen, T., Han, T., Katoen, J.P., Mereacre, A.: Model checking of continuous-
time Markov chains against timed automata specifications. Logical Methods in
Computer Science 7(1) (Mar 2011)

Chen, T., Han, T., Katoen, J.P., Mereacre, A.: Observing continuous-time MDPs
by 1-clock timed automata. In: International Workshop on Reachability Problems.
pp. 2-25. Springer (2011)

Chonev, V., Ouaknine, J., Worrell, J.: On the skolem problem for continuous lin-
ear dynamical systems. In: Chatzigiannakis, 1., Mitzenmacher, M., Rabani, Y.,
Sangiorgi, D. (eds.) 43rd International Colloquium on Automata, Languages, and
Programming (ICALP 2016). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 55, pp. 100:1-100:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2016)

Cohen, H.: A course in computational algebraic number theory, vol. 138. Springer
Science & Business Media (2013)

20

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

J. Guan and N. Yu

Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A STORM is coming: A mod-
ern probabilistic model checker. In: International Conference on Computer Aided
Verification. pp. 592-600. Springer (2017)

Feng, Y., Katoen, J.P., Li, H., Xia, B., Zhan, N.: Monitoring CTMCs by multi-clock
timed automata. In: International Conference on Computer Aided Verification. pp.
507-526. Springer (2018)

Gan, T., Chen, M., Li, Y., Xia, B., Zhan, N.: Reachability analysis for solvable
dynamical systems. IEEE Transactions on Automatic Control 63(7), 2003—2018
(2017)

Guan, J., Yu, N.: A probabilistic logic for verifying continuous-time markov chains.
arXiv preprint arXiv:2004.08059 (2020)

Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512-535 (1994)

Katoen, J.P.: The probabilistic model checking landscape. In: Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer Science. pp. 31-45.
ACM (2016)

Katoen, J.P., Zapreev, 1.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. Performance Evaluation 68(2),
90-104 (2011)

Kolmogoroff, A.: Uber die analytischen methoden in der wahrscheinlichkeitsrech-
nung. Mathematische Annalen 104(1), 415-458 (1931)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model
checker. In: International Conference on Modelling Techniques and Tools for Com-
puter Performance Evaluation. pp. 200-204. Springer (2002)

Lang, S.: Introduction to transcendental numbers. Addison-Wesley Pub. Co. (1966)
Li, J.C., Huang, C.C., Xu, M., Li, Z.B.: Positive root isolation for poly-powers. In:
Proceedings of the ACM on International Symposium on Symbolic and Algebraic
Computation. pp. 325-332. ACM (2016)

Macintyre, A., Wilkie, A.J.: On the decidability of the real exponential field (1996)
Majumdar, R., Salamati, M., Soudjani, S.: On decidability of time-bounded reacha-
bility in CTMDPs. In: Czumaj, A., Dawar, A., Merelli, E. (eds.) 47th International
Colloquium on Automata, Languages, and Programming (ICALP 2020). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 168, pp. 133:1-133:19.
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany (2020)
Nesterenko, Y.: Modular functions and transcendence problems. Comptes rendus
de I’Académie des sciences. Série 1, Mathématique 322(10), 909-914 (1996)
Ouaknine, J., Worrell, J.: Decision problems for linear recurrence sequences. In:
International Workshop on Reachability Problems. pp. 21-28. Springer (2012)
Richardson, D.: How to recognize zero. Journal of Symbolic Computation 24(6),
627-645 (1997)

Ritt, J.F.: On the zeros of exponential polynomials. Transactions of the American
Mathematical Society 31(4), 680-686 (1929)

Strzebonski, A.: Real root isolation for exp-log functions. In: Proceedings of the
Twenty-first International Symposium on Symbolic and Algebraic Computation.
pp. 303-314 (2008)

Strzebonski, A.: Real root isolation for tame elementary functions. In: Proceedings
of the 2009 International Symposium on Symbolic and Algebraic Computation.
pp. 341-350 (2009)

Terzo, G.: Some consequences of Schanuel’s conjecture in exponential rings. Com-
munications in Algebra® 36(3), 1171-1189 (2008)

38.

39.

40.

41.

A Probabilistic Logic for Verifying Continuous-time Markov Chains 21

Tijdeman, R.: On the number of zeros of general exponential polynomials. In:
Indagationes Mathematicae (Proceedings). vol. 74, pp. 1-7. North-Holland (1971)
Xu, M., Deng, Y.: Time-bounded termination analysis for probabilistic programs
with delays. Information and Computation 275, 104634 (2020)

Xu, M., Mei, J., Guan, J., Yu, N.: Model checking quantum continuous-time
Markov chains. In: Haddad, S., Varacca, D. (eds.) 32nd International Conference
on Concurrency Theory (CONCUR 2021). Leibniz International Proceedings in In-
formatics (LIPIcs), vol. 203, pp. 13:1-13:17. Schloss Dagstuhl — Leibniz-Zentrum
fiir Informatik, Dagstuhl, Germany (2021)

Zhang, L., Jansen, D.N., Nielson, F., Hermanns, H.: Automata-based CSL model
checking. In: International Colloquium on Automata, Languages, and Program-
ming. pp. 271-282. Springer (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

l‘)

Check for
updates

Under-Approximating
Expected Total Rewards in POMDPs*

Alexander Bork! @@, Joost-Pieter Katoen!®, and Tim Quatmann®

RWTH Aachen University, Aachen, Germany
alexander.bork@cs.rwth-aachen.de

Abstract We consider the problem: is the optimal expected total re-
ward to reach a goal state in a partially observable Markov decision
process (POMDP) below a given threshold? We tackle this—generally
undecidable—problem by computing under-approximations on these total
expected rewards. This is done by abstracting finite unfoldings of the
infinite belief MDP of the POMDP. The key issue is to find a suitable
under-approximation of the value function. We provide two techniques: a
simple (cut-off) technique that uses a good policy on the POMDP, and
a more advanced technique (belief clipping) that uses minimal shifts of
probabilities between beliefs. We use mixed-integer linear programming
(MILP) to find such minimal probability shifts and experimentally show
that our techniques scale quite well while providing tight lower bounds
on the expected total reward.

1 Introduction

The relevance of POMDPs. Partially observable Markov decision processes (POM-
DPs) originated in operations research and nowadays are a pivotal model for
planning in AI [40]. They inherit all features of classical MDPs: each state has a
set of discrete probability distributions over the states and rewards are earned
when taking transitions. However, states are not fully observable. Intuitively,
certain aspects of the states can be identified, such as a state’s colour, but states
themselves cannot be observed. This partial observability reflects, for example, a
robot’s view of its environment while only having the limited perspective of its
sensors at its disposal. The main goal is to obtain a policy—a plan how to resolve
the non-determinism in the model—for a given objective. The key problem here
is that POMDP policies must base their decisions only on the observable aspects
(e.g. colours) of states. This stands in contrast to policies for MDPs which can
make decisions dependent on the entire history of full state information.

Analysing POMDPs. Typical POMDP planning problems consider either finite-
horizon objectives or infinite-horizon objectives under discounting. Finite-horizon
objectives focus on reaching a certain goal state (such as “the robot has collected
all items”) within a given number of steps. For infinite horizons, no step bound

* This work is funded by the DFG RTG 2236 “UnRAVeL”.

© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 22-40, 2022.
https://doi.org/10.1007 /978-3-030-99527-0_2

http://orcid.org/0000-0002-7026-228X
http://orcid.org/0000-0002-6143-1926
http://orcid.org/0000-0002-2843-5511
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99527-0_2&domain=pdf

Under-Approximating Expected Total Rewards in POMDPs 23

is provided and typically rewards along a run are weighted by a discounting
factor that indicates how much immediate rewards are favoured over more distant
ones. Existing techniques to treat these objectives include variations of value
iteration [46,36,20,18,52,53] and policy trees [29]. Point-based techniques [38,42]
approximate a POMDP’s value function using a finite subset of beliefs which is
iteratively updated. Algorithms include PBVI [38], Perseus [48], SARSOP [30]
and HSVI [45]. Point-based methods can treat large POMDPs for both finite-
and discounted infinite-horizon objectives [42].

Problem statement. In this paper we consider the problem: is the maximal expected
total reward to reach a given goal state in a POMDP below a given threshold?
We thus consider an infinite-horizon objective without discounting—also called
an indefinite-horizon objective. A specific instance of the considered problem is
the reachability probability to eventually reach a given goal state in a POMDP.
This problem is undecidable [33,34] in general. Intuitively, this is due to the fact
that POMDP policies need to consider the entire (infinite) observation history
to make optimal decisions. For a POMDP, this notion is captured by an infinite,
fully observable MDP, its belief MDP. This MDP is obtained from observation
sequences inducing probabilities of being in certain states of the POMDP.

Previously proposed methods to solve the problem are e.g. to use approx-
imate value iteration [22], optimisation and search techniques [1,12]|, dynamic
programming [6], Monte Carlo simulation [43], game-based abstraction [51], and
machine learning [13,14,19]. Other approaches restrict the memory size of the
policies [35]. The synthesis of (possibly randomised) finite-memory policies is
ETR-complete! [28]. Techniques to obtain finite-memory policies use e.g. para-
meter synthesis [28] or satisfiability checking and SMT solving [15,50].

Our approach. We tackle the aforementioned problem by computing under-
approximations on maximal total expected rewards. This is done by considering
finite unfoldings of the infinite belief MDP of the POMDP, and then applying
abstraction. The key issue here is to find a suitable under-approximation of
the POMDP’s value function. We provide two techniques: a simple (cut-off)
technique that uses a good policy on the POMDP, and a more advanced tech-
nique (belief clipping) that uses minimal shifts of probabilities between beliefs
and can be applied on top of the simple approach. We use mixed-integer linear
programming (MILP) to find such minimal probability shifts. Cut-off techniques
for indefinite-horizon objectives have been used on computation trees—rather
than on the belief MDP as used here—in Goal-HSVI [24]. Belief clipping amends
the probabilities in a belief to be in a state of the POMDP yielding discretised
values, i.e. an abstraction of the probability range [0, 1] is applied. Such grid-based
approximations are inspired by Lovejoy’s grid-based belief MDP discretisation
method [32]. They have also been used in [7] in the context of dynamic pro-
gramming for POMDPs, and to over-approximate the value function in model
checking of POMDPs [8]. In fact, this paper on determining lower bounds for

L A decision problem is ETR-complete if it can be reduced to a polynomial-length
sentence in the Existential Theory of the Reals (for which the satisfiability problem is
decidable) in polynomial time, and there is such a reduction in the reverse direction.

24 A. Bork, J.-P. Katoen, T. Quatmann

indefinite-horizon objectives can be seen as the dual counterpart of [8]. Our key
challenge—compared to the approach of [8]—is that the value at a certain belief
cannot easily be under-approximated with a convex combination of values of
nearby beliefs. On the other hand, an under-approximation can benefit from a
“good” guess of some initial POMDP policy. In the context of [8], such a guessed
policy is of limited use for over-approximating values in the POMDP induced
by an optimal policy. Although our approach is applicable to all thresholds, the
focus of our work is on determining under-approximations for quantitative object-
ives. Dedicated verification techniques for the qualitative setting—almost-sure
reachability—are presented in [17,16,27].

Ezxperimental results. We have implemented our cut-off and belief clipping ap-
proaches on top of the probabilistic model checker STORM [23] and applied it to a
range of various benchmarks. We provide a comparison with the model checking
approach in [37], and determine the tightness of our under-approximations by
comparing them to over-approximations obtained using the algorithm from [§|.
Our main findings from the experimental validation are:

— Cut-offs often generate tight bounds while being computationally inexpensive.
— The clipping approach may further improve the accuracy of the approximation.
— Our implementation can deal with POMDPs with tens of thousands of states.
— Mostly, the obtained under-approximations are less than 10% off.

2 Preliminaries and Problem Statement

Let Dist(A) := {p: A —[0,1] | ¥ c4 p(a) =1} denote the set of probability
distributions over a finite set A. The set supp(p) := {a € A | p(a) > 0} is the
support of p € Dist(A). Let R*® := R U {oo, —o0}. We use Iverson bracket
notation, where [z] = 1 if the Boolean expression x is true and [z] = 0 otherwise.

2.1 Partially Observable MDPs

Definition 1 (MDP). A Markov decision process (MDP) is a tuple M =
(S, Act, P, sinit) with a (finite or infinite) set of states S, a finite set of actions
Act, a transition function P: S x Act x S — [0, 1] with Y P(s,a,8") € {0,1}
for all s € S and o € Act, and an initial state s;p;.

s'eS

We fix an MDP M := (S, Act, P, sinit). For s € S and a € Act, let postM (s, a) :=
{s € S| P(s,a,5") > 0} denote the set of a-successors of s in M. The set of
enabled actions in s € S is given by Act(s) := {a € Act | post™(s,a) # 0}.

Definition 2 (POMDP). A partially observable MDP (POMDP) is a tuple
M = (M,Z, 0), where M is the underlying MDP with |S| € N, i.e. S is finite,
Z is a finite set of observations, and O: S — Z is an observation function such

that O(s) = O(s') = Act(s) = Act(s') for all s,s' € S.

We fix a POMDP M := (M, Z, O) with underlying MDP M. We lift the notion
of enabled actions to observations z € Z by setting Act(z) := Act(s) for some

Under-Approximating Expected Total Rewards in POMDPs 25

s € S with O(s) = z which is valid since states with the same observations are
required to have the same enabled actions. The notions defined for MDPs below
also straightforwardly apply to POMDPs.

Remark 1. More general observation functions of the form O : S x Act — Dist(Z)
can be encoded in this formalism by using a polynomially larger state space [16].

An infinite path through an MDP (and a POMDP) is a sequence 7 = spa1510 . . .
such that a; 1 € Act(s;) and s;41 € post™ (s;, ;1) for all i € N. A finite path is
a finite prefix & = spaq . .. ap s, of an infinite path 7. For finite 7 let last(7) 1= s,
and || := n. For infinite 7 set |77| := oo and let 7[i] denote the finite prefix of
length ¢ € N. We denote the set of finite and infinite paths in M by Pathsf\{f1
and Pathsi]\ff, respectively. Let Paths™ := Pathsfiv]{1 U Pathsf\ff. Paths are lifted to
the observation level by observation traces. The observation trace of a (finite or
infinite) path m = spa1s1as ... € Paths™ is O(7) :== O(s9)a10(s1)az Two
paths 7, 7" € Paths™ are observation-equivalent if O(r) = O(x’).

Policies resolve the non-determinism present in MDPs (and POMDPs). Given
a finite path 7, a policy determines the action to take at last(7).

Definition 3 (Policy). A policy for M is a function o : Pathsi’ — Dist(Act)
such that for each path # € Pathst., supp(o(#)) C Act(last(7)).

A policy o is deterministic if |supp(o(#))| = 1 for all # € Pathsp’. Otherwise
it is randomised. o is memoryless if for all 7,7’ € Pathsé\{]{1 we have last(7) =
last(7') = o(7) = o(#'). o is observation-based if for all 7,7’ € Paths} it
holds that O(%) = O(7#') = o(#%) = o(#’). We denote the set of policies for M
by XM and the set of observation-based policies for M by XL A finite-memory
policy (fm-policy) can be represented by a finite automaton where the current
memory state and the state of the MDP determine the actions to take [4].

The probability measure p3; for paths in M under policy o and initial state
s is the probability measure of the Markov chain induced by M, o, and s [4].

We use reward structures to model quantities like time, or energy consumption.

Definition 4 (Reward Structure). A reward structure for M is a function
R: S x Act x S — R such that either for all s,s' € S, a € Act, R(s,,s") >0
or for all s,s' € S, a € Act, R(s,,s") <0 holds. In the former case, we call R
positive, otherwise negative.

We fix a reward structure R for M. The total reward along a path 7 is defined
as rew r(m) := 2‘21 R(si—1,;, s;). The total reward is always well-defined—
even if 7 is infinite—since all rewards are assumed to be either non-negative or
non-positive. For an infinite path 7 we define the total reward until reaching a
set of goal states G C S by

rewy r(7) I eN:x7=7[i] A last(7) € G A
rewy r,G(7) == Vi <i:last(7[j]) ¢ G,
rewn r(7) otherwise.

26 A. Bork, J.-P. Katoen, T. Quatmann

Intuitively, rew s r,(7) accumulates reward along 7 until the first visit of a goal
state s € G. If no goal state is reached, reward is accumulated along the infinite
path. The expected total reward until reaching G for policy ¢ and state s is

ERY r(s F OG) = /reWM)R’G(ir) - pg)(dr).

€ PathsM,

Observation-based policies capture the notion that a decision procedure for a
POMDP only accesses the observations and their history and not the entire state
of the system. We are interested in reasoning about minimal and maximal values
over all observation-based policies. For our explanations we focus on maximising
(non-negative or non-positive) expected rewards. Minimisation can be achieved
by negating all rewards.

Definition 5 (Maximal Expected Total Reward). The maximal expected
total reward until reaching G from s in POMDP M is

RMR(s F 0G) := sup. ERM r(s = 0G).

UGE

We define ER}{R (0G) := ERY{R (Sinit = OG).

The central problem of our work, the indefinite-horizon total reward problem,
asks the question whether the maximal expected total reward until reaching a
goal exceeds a given threshold.

Problem 1. Given a POMDP M, reward structure R, set of goal states
G C S, and threshold A € R, decide whether ER}{’R (0G) < A.

Example 1. Fig. 1 shows a POMDP M with three states and two observations:
O(s0) = O(s1) = Oand O(s;y) = O. A reward of 1 is collected when transitioning
from s; to so via the [-action. All other rewards are zero. /:
The policy that always selects o at sg and (5 at s
maximizes the expected total reward to reach G = {s2}
but is not observation-based. The observation-based policy
that for the first n € N transition steps selects a and then
selects [afterwards yields an expected total reward of
1 — (1/2)". With n — oo we obtain ER}{’R (0{s2}) =1. Figure 1. POMDP M

As computing maximal expected rewards exactly in POMDPs is undecidable
[34], we aim at under-approximating the actual value ER{’g (0G). This allows
us to answer our problem negatively if the computed lower bound exceeds .

Remark 2. Expected rewards can be used to describe reachability probabilities
by assigning reward 1 to all transitions entering G and assigning reward 0 to
all other transitions. Our approach can thus be used to obtain lower bounds on
reachability probabilities in POMDPs. This also holds for almost-sure reachability
(i.e. “is the reachability probabilty one?”), though dedicated methods like those
presented in [17,16,27] are better suited for that setting.

Under-Approximating Expected Total Rewards in POMDPs 27

2.2 Beliefs

The semantics of a POMDP M are captured by its (fully observable) belief
MDP. The infinite state space of this MDP consists of beliefs [3,44]. A belief is a
distribution over the states of the POMDP where each component describes the
likelihood to be in a POMDP state given a history of observations. We denote the
set of all beliefs for M by B := {b € Dist(S) | Vs, s € supp(b) : O(s) = O(s')}
and write O(b) € Z for the unique observation O(s) of all s € supp(b).

The belief MDP of M is constructed by starting in the belief corresponding
to the initial state and computing successor beliefs to unfold the MDP. Let
P(s,a,2) := > ,,4[0(s") = z] - P(s,a,s") be the probability to observe z € Z
after taking action a in POMDP state s. Then, the probability to observe z
after taking action o in belief b is P (b, i, 2) := > g b(s) - P(s, @, 2). We refer
to [bla, 2] € Ba—the belief after taking « in b, conditioned on observing z—as
the a-z-successor of b. If P(b, v, z) > 0, it is defined component-wise as

_[O(s) =2] - 3esb(s") - P(s, 5)
[ble, 2] (s) := Pb.a.2)
for all s € S. Otherwise [b|a, 2] is undefined.
Definition 6 (Belief MDP). The belief MDP of M is the MDP bel(M) =
<BM, Act,PB,bmit>, where B is the set of all beliefs in M, Act is as for M,
binit = {Sinit — 1} is the initial belief, and PP : By x Act x Bag — [0, 1] is the
belief transition function with

P, a,2) if v = [bla, 2],

0 otherwise.

PE(b, o, b)) = {

We lift a POMDP reward structure R to the belief MDP [25].

Definition 7 (Belief Reward Structure). For beliefs b,b' € Baq and action
a € Act, the belief reward structure R? based on R associated with bel(M) is
given by

ZSES b(s) ’ ZS’ES[O(S/) = O(b/)] : R(Su Q, SI) : P(S, Q, SI)
P(b,a, O(b)) '

Given a set of goal states G C S, we assume—for simplicity—that there is a set
of observations Z’' C Z such that s € G iff O(s) € Z’. This assumption can always
be ensured by transforming the POMDP M. See the full technical report [10] for
details. The set of goal beliefs for G is given by Gp := {b € B | supp(b) C G}.

We now lift the computation of expected rewards to the belief level. Based on
the well-known Bellman equations [5], the belief MDP induces a function that
maps every belief to the expected total reward accumulated from that belief.

Definition 8 (POMDP Value Function). For b € By, the n-step value
function V,, : Byg — R of M is defined recursively as Vy(b) := 0 and

Vo (b) :=[b ¢ Gp] - max > PP b)) (RE (b0, V) + Vooa (1))
b’ € posttel(M) (b,ar)

REB(b,a, V) ==

28 A. Bork, J.-P. Katoen, T. Quatmann

so—~>1 |a 1 lsg=la|a 1| spt/a|a 1 |sm—ls|a |
s1+—0 s11/2 S1+>3/4 s1+—7/8

Figure 2. Belief MDP bel(M) of POMDP M from Fig. 1

The (optimal) value function V* : By — R is given by V*(b) := lim,— 00 Vi (D).

The n-step value function is piecewise linear and convex [44]. Thus, the optimal
value function can be approximated arbitrarily close by a piecewise linear convex
function [47]. The value function yields expected total rewards in M and bel(M):

ERRTR(s = 0G) = ERRIiv ro({s = 1} = 0Gs) = V({s = 1}).

Ezxample 2. Fig. 2 shows a fragment of the belief MDP of the POMDP from
Fig. 1. Observe EREI;?E(M),RB(Q {59 1}) = 1.

We reformulate our problem statement to focus on the belief MDP.

Problem 2 (equivalent to Problem 1). For a POMDP M, reward structure R,
goal states G C S, and threshold A € R, decide whether V*({s;ni — 1}) < A.

As the belief MDP is fully observable, standard results for MDPs apply. However,
an exhaustive analysis of bel(M) is intractable since the belief MDP is—in
general—infinitely large?.

3 Finite Exploration Under-Approximation

Instead of approximating values directly on the POMDP, we consider approx-
imations of the corresponding belief MDP. The basic idea is to construct a
finite abstraction of the belief MDP by unfolding parts of it and approximate
values at beliefs where we decide not to explore. In the resulting finite MDP,
under-approximative expected reward values can be computed by standard model
checking techniques. We present two approaches for abstraction: belief cut-offs
and belief clipping. We incorporate those techniques into an algorithmic framework
that yields arbitrarily tight under-approximations.
The technical report [10] contains formal proofs of our claims.

2 The set of all beliefs—i.e. the state space of bel(M)—is uncountable. The reachable
fragment is countable, though, since each belief has at most |Z| many successors.

Under-Approximating Expected Total Rewards in POMDPs 29

Sor>1 o | 30}—)1/2 o | 30}—)1/4 cut 1 cut
| 510 s1—1/2 S1+>3/4 Y
1 u R": V(b) 1

R:0

Figure 3. Applying belief cut-offs to the belief MDP from Fig. 2

3.1 Belief Cut-Offs

The general idea of belief cut-offs is to stop exploring the belief MDP at certain
beliefs—the cut-off beliefs—and assume that a goal state is immediately reached
while sub-optimal reward is collected. Similar techniques have been discussed in
the context of fully observable MDPs and other model types [11,26,49,2]. Our
work adapts the idea of cut-offs for POMDP over-approzimations described in [8]
to under-approximations. The main idea of belief cut-offs shares similarities with
the SARSOP [30] and Goal-HSVI [24] approaches. While they apply cut-offs on
the level of the computation tree, our approach directly manipulates the belief
MDP to yield a finite model.

Let V: By — R with V(b) < V*(b) for all b € Bag. We call V an under-
approzimative value function and V(b) the cut-off value of b. In each of the cut-off
beliefs b, instead of adding the regular transitions to its successors, we add a
transition with probability 1 to a dedicated goal state beyt. In the modified reward
structure R’, this cut-off transition is assigned a reward® of V(b), causing the
value for a cut-off belief b in the modified MDP to coincide with V(b). Hence,
the exact value of the cut-off belief—and thus the value of all other explored
beliefs—is under-approximated.

Example 3. Fig. 3 shows the resulting finite MDP obtained when considering
the belief MDP from Fig. 2 with single cut-off belief b = {s¢ > 1/4, $1 > 3/a}.

Computing cut-off values. The question of finding a suitable under-approximative
value function V'is central to the cut-off approach. For an effective approximation,
such a function should be easy to compute while still providing values close
to the optimum. If we assume a positive reward structure, the constant value
0 is always a valid under-approximation. A more sophisticated approach is to
compute suboptimal expected reward values for the states of the POMDP using
some arbitrary, fixed observation-based policy o € Eé‘g‘s. Let U7 : § — R™®
such that for all s € S, U?(s) = ER} r(s = 0G). Then, we define the function
U7 2 Bag = R as U7(b) := 3 cuppr) 0(5) - U7 (s).

3 We slightly deviate from Def. 4 by allowing transition rewards to be —oo or +o0.

Alternatively, we could introduce new sink states with a non-zero self-loop reward.

30 A. Bork, J.-P. Katoen, T. Quatmann

Lemma 1. 47 is an under-approzimative value function, i.e. for all b € Bag:

2Ib):= > b(s)-U(s) < V*(b).

s€supp(b)

Thus, finding a suitable under-approximative value function reduces to finding
“good” policies for M, e.g. by using randomly guessed fm-policies, machine
learning methods [13], or a transformation to a parametric model [28].

3.2 Belief Clipping

The cut-off approach provides a universal way to construct an MDP which under-
approximates the expected total reward value for a given POMDP. The quality
of the approximation, however, is highly dependent on the under-approximative
value function used. Furthermore, regions where the belief MDP slowly converges
towards a belief may pose problems in practice.

As a potential remedy for these problems, we propose a different concept
called belief clipping. Intuitively, the procedure shifts some of the probability mass
of a belief b in order to transform b to another belief b. We then connect b to b in
a way that the accuracy of our approximation of the value V*(b) depends only
on the approximation of V*(i)) and the so-called clipping value—some notion of
distance between b and b that we discuss below. We can thus focus on exploring
the successors of b to obtain good approximations for both beliefs b and b.

Definition 9 (Belief Clip). For b € By, we call pi: supp(b) — [0,1] a belief
Chp ’Lf Vs € supp(b) /‘L(S) S b(s) and Z(,LL) = Zsesupp(b) ,LL(S) < 1. The behef
(be) € By induced by p is defined by

Vs € supp(b): (bo u)(s) := Im

Intuitively, a belief clip p for b describes for each s € supp(b) the probability
mass that is removed (“clipped away”) from b(s). The induced belief is obtained
when normalising the resulting values so that they sum up to one.

Ezample 4. For belief b = {sg — /4,81 > 3/4}, consider the two belief clips
1 = {so > /4,51 — 1/a} and pe = {sg — /4,1 — 0}. Both induce the same
belief: (b O p1) = (b O p2) = {so — 0,s1 — 1}.

We have supp((b© 1)) € supp(b), which also implies O((b© u)) = O(b). Given
some candidate belief b, consider the set of inducing belief clips:

C(b,b) :== {u: supp(b) — [0,1] | is a belief clip for b with b = (b & ,u)} .

Belief b is called an adequate clipping candidate for b iff C(b,b) # 0.

Definition 10 (Clipping Value). Forb € By and adequate clipping candidate
b, the clipping value is A, 5 := > (8, ,;), where 6§, ,j := argmin o, 5 2 (1)-
The values 6, ,;(s) for s € supp(b) are the state clipping values.

Under-Approximating Expected Total Rewards in POMDPs 31

clip L/ cut

so—=1 |a 1| sog—=1/2 | a 1| sg—1/4
81*—>0

R:0

Figure 4. Applying belief clipping to the belief MDP from Fig. 2

Given a belief b and an adequate clipping candidate l~), we outline how the notion
of belief clipping is used to obtain valid under-approximations. We assume b # b,
implying 0 < A, ,; < 1. Instead of exploring all successors of b in bel(M), the
approach is to add a transition from b to b. The newly added transition has
probability 1 — A, 7 and gets assigned a reward of 0. The remaining probability
mass (i.e. A, ;) leads to a designated goal state bcu. To guarantee that—in
general—the clipping procedure yields a valid under-approximation, we need to
add a corrective reward value to the transition from b to bey. Let £: S — R
which maps each POMDP state to its minimum expected reward in the underlying,
fully observable MDP M of M?*, ie. £(s) = ER}/'r(s = OG). This function
soundly under-approximates the state values which can be achieved by any
observation-based policy. It can be generated using standard MDP analysis.
Given state clipping values 6, ,;(s) for s € supp(b), the reward for the transition

from b to beut 18 Zsesupp(b) (617—)5(8)/Ab—>5) ’ Q(S)

Ezample 5. For the belief MDP from Fig. 2, belief b = {sg > /4, $1 — 3/4},
and clipping candidate b = {sg — 0, s1 — 1} we get Ay ;= 14,88 6,_; =
to = {sg — /4, s1 — 0} with the belief clip po as in Example 4. Furthermore,
£(s0) = 0. The resulting MDP following our construction above is given in Fig. 4.

The following lemma shows that the construction yields an under-approximation.

Lemma 2. (1—- A, ;)-V*(b) + A, ;- > M-S(s) < V*(b).

—b
sesupp(b)

Proof (sketch). To gain some intuition, consider the special case, where A, ,; =
0,_;(s) = b(s) for some s € supp(b). The clipping candidate b can be interpreted
as the conditional probability distribution arising from distribution b given that
s is not the current state. The value V*(b) can be split into the sum of (i) the
probability that s is not the current state times the reward accumulated from
belief b and (ii) the probability that s is the current state times the reward
accumulated from s, i.e. from the belief {s — 1}. However, for the two summands

4 When rewards are negative, we might have £(s) = —oo for many s € S\ G in which
case the applicability of the clipping approach is very limited.

32 A. Bork, J.-P. Katoen, T. Quatmann

we must consider a policy that does not distinguish between the beliefs b, B, and
{s + 1} as well as their observation-equivalent successors. In other words, the
same sequence of actions must be executed when the same observations are made.

We consider such a policy that in addition is optimal at b, i.e. the reward
accumulated from b is equal to V*(b). For the reward accumulated from {s — 1},
£(s) provides a lower bound. Hence, (1 — b(s)) - V*(b) + b(s) - £(s) is a lower
bound for the reward accumulated from b. A formal proof is given in [10]. O

To find a suitable clipping candidate for a given belief b, we consider a finite
candidate set B C By consisting of beliefs with observation O(b). These beliefs
do not need to be reachable in the belief MDP. The set can be constructed, e.g.
by taking already explored beliefs or by using a fixed, discretised set of beliefs.

We are interested in minimising the clipping value Ay_,; over all candidate
beliefs ' € 9. A naive approach is to explicitly compute all clipping values for all
candidates. We are using mized-integer linear programming (MILP) [41] instead.
An MILP is a system of linear inequalities (constraints) and a linear objective
function considering real-valued and integer variables. A feasible solution of the
MILP is a variable assignment that satisfies all constraints. An optimal solution
is a feasible solution that minimises the objective function.

Definition 11 (Belief Clipping MILP). The belief clipping MILP for belief
b € By and finite set of candidates B C {b/ € By | O(Y') = O(b)} is given by:

minimise A such that:

Z ay =1 > Select exactly one candidate b’ (1)

b’'eB
Vb € B: ay € {0,1} (2)
Z 0s = A > Compute clipping value for selected b’ (3)

sesupp(b)
Vs € supp(b): ds €0, b(s)] (4)
| v e s 5y >b(s)—(1—A)-b(s)— (1 —ay) (5)

The MILP consists of O(|supp(b)| + |B|) variables and O(|supp(b)| - |'B|) con-
straints. For b’ € B, the binary variable a; indicates whether &’ has been chosen
as the clipping candidate. Moreover, we have variables d5 for s € supp(b) and a
variable A to represent the (state) clipping values for b and the chosen candidate
b'. Constraints 1 and 2 enforce that exactly one of the a, variables is one, i.e.
exactly one belief is chosen. Constraint 3 forces A to be the sum of all state
clipping values. 05 variables get a value between zero and b(s) (Constraint 4).
Constraint 5 only affects d if the corresponding belief is chosen. Otherwise, ay
is set to 0 and the value on the right-hand side becomes negative. If a belief
b’ is chosen, the minimisation forces Constraint 5 to hold with equality as the
right-hand side is greater or equal to 0. Assuming A is set to a value below 1, we
obtain a valid clipping values as

b(s) — ds

Vs € supp(b): d,=0b(s)— (1= A)-V(s) <= b(s)= T—A

Under-Approximating Expected Total Rewards in POMDPs 33

Input :POMDP M = (M, Z,0) with M = (S, Act, P, Sinit), reward
structure R, goal states G C S, under-approx. value function V,
function £: S — R> with £(s) = ER}/'’k(s E 0G)

Output : Clipping belief MDP KA and reward structure R*

1 9% « {binit, beus } With binit = {Sinit — 1} and a new belief state beu

2 P’C(bcut7 cut, beut) < 1, R’C(bcut, cut, boyt) < 0 // add self-loop
3 Q <+ {binit} // initialize exploration set
4 while Q # 0 do
5 b + chooseBelief(Q), Q «+ Q\ {b} // pop next belief to explore from Q
6 if supp(b) C G then P (b, goal,b) « 1, R*(b,goal,b) « 0 // add self-loop
7 else if exploreBelief (b) then // expand b
8 foreach a € Act(b) do // Using bel(M) and R” as in Defs. 6 and 7
9 foreach b’ € post" (b, a) do
10 PX(b,a,b) « PE(b,a,b), R*(b,a,b') «— RE(b,, V)
11 L if b’ ¢ S* then S* «— S U{b'}, Q + QU {V'}
12 else // apply cut-off and clipping to b
13 IDIC(I)7 cut, beut) < 1, R’C(b, cut, beut) < V(b) // add cut-off transition
14 choose a finite set B C By of clipping candidates for b
15 b, Ay 5,0, . + solveClippingMILP (b, B)
16 if b# b and b is adequate then // Clip b using b
17 PR (b, clip,b) < (1-A4,_;), PX(b,clip, bous) + A, i
18 R¥ (b, clip,B) 0, R (b, clip, beut) = ey 5220 - £(5)
19 if b ¢ S* then S* « S U {b}, Q + QU {b}

20 return Ky = <S’C, ActW {goal,cut,clip},PK,bim-t> and R®

Algorithm 1: Belief exploration algorithm with cut-offs and clipping

A trivial solution of the MILP is always obtained by setting a, and A to 1 and
Jds to b(s) for all s and an arbitrary b € 8. This corresponds to an invalid belief
clip. However, as we minimise the value for A, we can conclude that no belief in
the candidate set is adequate for clipping if A is 1 in an optimal solution.

Theorem 1. An optimal solution to the belief clipping MILP for belief b and
candidate set B sets aj to 1 and A to a value below 1 iff b € B is an adequate
clipping candidate for b with minimal clipping value.

3.3 Algorithm

We incorporate belief cut-offs and belief clipping into an algorithmic framework
outlined in Algorithm 1. As input, the algorithm takes an instance of Problems 1
and 2, i.e. a POMDP M with reward structure R and goal states G. In addition,
the algorithm considers an under-approximative value function V' (Sect. 3.1) and
a function £ for the computation of corrective reward values (Sect. 3.2).

Lines 1 and 2 initialise the state set S* of the under-approximative MDP 4
with the initial belief b;,;; and the designated goal state b.,t which has only one

34 A. Bork, J.-P. Katoen, T. Quatmann

transition to itself with reward 0. Furthermore, we initialise the exploration set
Q@ by adding b;p;; (Line 3). During the computation, @ is used to keep track of
all beliefs we still need to process. We then execute the exploration loop (Lines 4
to 19) until @ becomes empty. In each exploration step, a belief b is selected®
and removed from Q. There are three cases for the currently processed belief b.

If supp(b) C G, i.e. b is a goal belief, we add a self-loop with reward 0 to b
and continue with the next belief (Line 6). b is not expanded as successors of
goal beliefs will not influence the result of the computation.

If b is not a goal belief, we use a heuristic function® exploreBelief to decide
if b is expanded in Line 7. Lines 8 to 11 outline the expansion step. The transitions
from b to its successor beliefs and the corresponding rewards as in the original
belief MDP (see Sect. 2.2) are added. Furthermore, the successor beliefs that
have not been encountered before are added to the set of states S and the
exploration set Q).

If b is not expanded, we apply the cut-off approach and the clipping approach
to b in Lines 12 to 19. In Line 13 we add a cut-off transition from b to b.,¢ with
a new action cut. We use the given under-approximative value function V to
compute the cut-off reward. Towards the clipping approach, a set of candidate
beliefs is chosen and the belief clipping MILP for b and the candidate set is
constructed as described in Def. 11 (Lines 14 and 15). If an adequate candidate b
with clipping values A, ,; and 6, _,;(s) for s € supp(b) has been found, we add
the transitions from b to by and to b using a new action clip and probabilities
A,z and 1 — A, _;, respectively. Furthermore, we equip the transitions with
reward values as described in Sect. 3.2 using the given function £ (Lines 16 to 18).
If the clipping candidate b has not been encountered before, we add it to the
state space of the MDP and to the exploration set in Line 19.

The result of the algorithm is an MDP K with reward structure R*. The
set of states S* of K4 contains all encountered beliefs. To guarantee termination
of the algorithm, the decision heuristic exploreBelief has to stop exploring
further beliefs at some point. Moreover, the handling of clipping candidates in
Line 19 should not add new beliefs to @ infinitely often. We therefore fix a finite
set of candidate beliefs B# C B, and make sure that the candidate sets B in
Line 14 satisfy (B \ SX) C B#. To ensure a certain progress in the exploration
“clip-cycles”™—i.e. paths of the form by clip ... clip b, clipb;—are avoided in K 4.
This can be done, e.g. by always expanding the candidate beliefs b € B#.

Expected total rewards until reaching the extended set of goal beliefs Gyt :=
Gp U {bcut } in Kpq under-approximate the values in the belief MDP:

Theorem 2. For all beliefs b € S® \ {bey:} it holds that
ER?"?‘;’RK (b |: Ocht) S V*(b) = ER?’E?E(M),RB (b |: OGB)

Corollary 1. ERgY g (0Geut) < ERTIR(0G).

5 For example, Q can be implemented as a FIFO queue.

5 The decision can be made for example by considering the size of the already explored
state space such that the expansion is stopped if a size threshold has been reached.
More involved decision heuristics are subject to further research.

Under-Approximating Expected Total Rewards in POMDPs 35

Table 1. Results for benchmark POMDPs with maximisation objective

Benchmark Data PRrism STORM
Model ¢ ||S/Act/Z Cut-Off Cut-Off + Clipping Over-
Only | n=2 [n=3 [n=4 [n=6 HApprox.
Drone 1226]] TO / MO][>0.79]>0.79 <0.94
41 Pmox 2954 <1s| 1360s| TO| TO| TO
384 3-10%| 3.-10%
Drone 1226 TO / MO|| > 0.86|>0.91]|>0.92 <0.97
Prax 2954 <1s| 249s| 1902s| TO| TO
4-2 4 4 4
761 2.10%| 2.10%| 2-10
Grid-av 17][[0.21, 1.0][[>0.86[> 0.93][> 0.93[> 0.93[> 0.93]] <0.98
4o Pumax 59 5.14s <1s| <1s| 1.77s| 3.63s| 13.9s
4 n =6 238 312| 472 663 1300
Grid-av 17[[[0.21, 1.0]|| >0.82[>0.85]|>0.82[>0.85 <0.99
401 Poax 59 1.47s < 1s| 26.1s| 198s| 1913s TO
: 4 n =3 238| 317| 461 759
Netw-p 2.10%[[[657,557][] >537] >537] >537] >537] >537|] <558
9.g.90 Fmax 3-10% 23555 2.3s| 98.5s| 320s| 651s| 2368s
4909 n =10|| 8-10*| 1.10°| 1-10°| 1-10%| 1.10°
Netw-p 2-10°|| TO / MO|[>769] >769 <819
3 890 Tmax 3-10° 290s| 6640s| TO| TO| TO
2-10* 1-108| 1-10°
Refuel 208[[[0.67,0.72][[>0.67]>0.67]|>0.67]|>0.67|>0.67]] < 0.69
06 Fmax 565 4625s <1s| 5.89s| 24.3s| 92s| 2076s
50 n =3 4576| 4834| 5204| 5603| 6135
Refuel 470[| TO / MO|[>0.45[>0.45 <0.51
0y Pmax 1431 <1s| 839s| TO| TO| TO
66 2-10%| 2-10%

4 Experimental Evaluation

Implementation details. We integrated Algorithm 1 in the probabilistic model
checker STORM [23] as an extension of the POMDP verification framework
described in [§]. Inputs are a POMDP—encoded either explicitly or using an
extension of the PRISM language [37]—and a property specification. Internally,
POMDPs and MDPs are represented using sparse matrices. The implementation
supports minimisation” and maximisation of reachability probabilities, reach-
avoid probabilities (i.e. the probability to avoid a set of bad state until a set of goal
states is reached), and expected total rewards. In a preprocessing step, functions V'
and £ as considered in Algorithm 1 are generated. For V, we consider the function
317 as in Lemma 1, where o is a memoryless observation-based policy given by a
heuristic®. For the function £, we apply standard MDP analysis on the underlying
MDP. When exploring the abstraction MDP K4, our heuristic expands a belief iff
|SK| < |S]-max.e, |O~1(2)|, where |S*| is the number of already explored beliefs
and |O~1(2)| is the number of POMDP states with observation z. Belief clipping
can either be disabled entirely, or we consider candidate sets B C B#, where
Bff :={beB|VseS:b(s)€{i/n]|ieN,0<i<n}}forms afinite, regular grid
of beliefs with resolution n € N\ {0}. Grid beliefs b € B# are always expanded.

7 For minimisation, the under-approximation yields upper bounds.
8 The heuristic uses optimal values obtained on the fully observable underlying MDP.

36 A. Bork, J.-P. Katoen, T. Quatmann

Table 2. Results for benchmark POMDPs with minimisation objective

Benchmark Data PRrism STORM
Model ¢ ||S/Act/Z Cut-Off Cut-Off 4 Clipping Over-
Only | n=2 [n=3 [n=4 [n=6 ||Approx.
Grid 17]] [4.52,4.7]]] <4.78[<4.78[<4.78[<4.78 >4.52
401 Bmin 62 649s <1s| 15.6s| 148s| 1940s| TO
: 3 n =10 258| 255| 255| 255
Grid 17([16.12,6.31]|| < 6.56|< 6.56|< 6.56| < 6.56 >6.08
4.0.3 Bmin 62 1077s <1s| 15.8s| 148s| 1983s| TO
: 3 n =10 255 256 256| 256
Maze2 15][[6.32, 6.32][] < 6.34]< 6.34[< 6.34] < 6.34[< 6.34]] > 6.32
0.1 Rmin 54 1.79s <1s| <1s| <1s| <1s| 2.02s
: 8 n =10 91 90 90 90 90
Netw 4589][[3.17, 3.2][[<6.56]<6.56]<6.56]< 6.56|< 6.56]] >3.14
9.8.90 Bmin 6973 211s <1s| 5.31s| 17.2s| 42.3s| 167s
1173 n=10|| 2-10%| 2-10%| 2.10%| 3.10%| 3.10*
Netw 2.10%([[5.61, 6.79]|| <11.9]<11.9]<11.9[<11.9 >6.13
3.8.90 Pmin 3-10% 7133s|| 3.51s| 214s| 1372s| 4910s| TO
2205 n =6/ 1.10°| 2-10°| 2.10%| 2.10°
Rocks 6553 <38] <38] <38[<20] <21 >20
19 Tmin 3.10%|| TO / MO 1.39s| 61.1s| 138s| 230s| 532s
1645 3-10*| 3-10%| 3-10%| 5-10%| 6-10*
Rocks 1-10% <44| <44 <a4| <26| <27 > 26
16 Timin 5.-10*|| TO / MO|| 3.85s| 114s| 230s| 399s| 1062s
2761 4-10%| 4.10*| 4-10*| 6-10*| 1-10°

Furthermore, we exclude clipping candidates b with 8,_;(s) > 0 for s with
£(s) = —oo; clipping with such candidates is not useful as it induces a value of —oo.
Expected total rewards on fully observable MDPs are computed using Sound Value
Iteration |39] with relative precision 10~%. MILPs are solved using GUROBI [21].

Set-up. We evaluate our under-approximation approach with cut-offs only and
with enabled belief clipping procedure using grid resolutions n = 2,3,4,6. We
consider the same POMDP benchmarks® as in [37,8]. The POMDPs are scalable
versions of case studies stemming from various application domains. To establish
an external baseline, we compare with the approach of [37] implemented in
PrisM [31]. PRISM generates an under-approximation based on an optimal policy
for an over-approximative MDP which—in contrast to STORM—means that always
both, under- and over-approximations, have to be computed. We ran PRISM with
resolutions = 2,3,4,6,8,10 and report on the best approximation obtained.
To provide a further reference for the tightness of our under-approximation,
we compute over-approximative bounds as in [8] using the implementation in
STORM with a resolution of 7 = 8. All experiments were run on an Intel® Xeon®
Platinum 8160 CPU using 4 threads'?, 64GB RAM and a time limit of 2 hours.

Results. Tables 1 and 2 show our results for maximising and minimising properties,
respectively. The first columns contain for each POMDP the benchmark name,

9 Instances with a finite belief MDP that would be fully explored by our algorithm are
omitted since the exact value can be obtained without approximation techniques.

10 For our implementation, only GUROBI runs multi-threaded. PRISM uses multiple
threads for garbage collection.

Under-Approximating Expected Total Rewards in POMDPs 37

I L ______11
& & o o o o & & ¢
G .O...x.x.x.x.x.x.x.x.x.x.x.x.x.x‘(é
S 075 X XX 8
x|
x Cut-Offen = 2
0.5k \ | =
0 10,000 20,000 30,000

Number of explored beliefs |S™|

Figure 5. Accuracy for Drone 4-2 with different sizes of approximation MDP /C g

model parameters, property type (probabilities (P) or rewards (R)), and the
numbers of states, state-action pairs, and observations. Column PRISM gives the
result with the smallest gap between over- and under-approximation computed
with the approach of [37]. For maximising (minimising) properties, our approach
competes with the lower (upper) bound of the provided interval. The relevant
value is marked in bold. We also provide the computation time and the considered
resolution 7. For our implementation, we give results for the configuration with
disabled clipping and for clipping with different resolutions 7. In each cell, we
give the obtained value, the computation time and the number of states in the
abstraction MDP K. Time- and memory-outs are indicated by TO and MO.
The right-most column indicates the over-approximation value computed via [8].

Discussion. The pure cut-off approach yields valid under-approximations in all
benchmark instances—often exceeding the accuracy of the approach of [37] while
being consistently faster. In some cases, the resulting values improve when clipping
is enabled. However, larger candidate sets significantly increase the computation
time which stems from the fact that many clipping MILPs have to be solved.

For Drone 4-2, Fig. 5 plots the resulting under-approximation values (y-axis)
for varying sizes of the explored MDP K¢ (z-axis). The horizontal, dashed line in-
dicates the computed over-approximation value. The quality of the approximation
further improves with an increased number of explored beliefs.

5 Conclusion

We presented techniques to safely under-approximate expected total rewards in
POMDPs. The approach scales to large POMDPs and often produces tight lower
bounds. Belief clipping generally does not improve on the simpler cut-off approach
in terms of results and performance. However, considering—and optimising—the
approach for particular classes of POMDPs might prove beneficial. Future work
includes integrating the algorithm into a refinement loop that also considers
over-approximation techniques from [8]. Furthermore, lifting our approach to
partially observable stochastic games is promising.

Data Awvailability. The artifact [9] accompanying this paper contains source code,
benchmark files, and replication scripts for our experiments.

38

A. Bork, J.-P. Katoen, T. Quatmann

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Amato, C., Bernstein, D.S., Zilberstein, S.: Optimizing fixed-size stochastic control-
lers for POMDPs and decentralized POMDPs. Auton. Agents Multi Agent Syst.
21(3), 293-320 (2010)

. Ashok, P., Butkova, Y., Hermanns, H., Kretinsky, J.: Continuous-time Markov

decisions based on partial exploration. In: ATVA. Lecture Notes in Computer
Science, vol. 11138, pp. 317-334. Springer (2018)

. Astréom, K.J.: Optimal control of Markov processes with incomplete state informa-

tion. J. of Mathematical Analysis and Applications 10(1), 174205 (1965)

. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)
. Bellman, R.: A Markovian decision process. Journal of Mathematics and Mechanics

6, 679-684 (1957)

. Bonet, B.: Solving large POMDPs using real time dynamic programming. In: AAAI

Fall Symp. on POMDPs (1998)

. Bonet, B., Geffner, H.: Solving POMDPs: RTDP-Bel vs. Point-based Algorithms.

In: IJCAL pp. 1641-1646 (2009)

. Bork, A., Junges, S., Katoen, J., Quatmann, T.: Verification of indefinite-horizon

POMDPs. In: ATVA. Lecture Notes in Computer Science, vol. 12302, pp. 288-304.
Springer (2020)

. Bork, A., Katoen, J.P., Quatmann, T.: Artifact for Paper: Under-

Approximating Expected Total Rewards in POMDPs. Zenodo (2022). ht-
tps://doi.org/10.5281 /zenodo.5643643

Bork, A., Katoen, J.P., Quatmann, T.: Under-Approximating Expected Total
Rewards in POMDPs. arXiv e-print (2022), https://arxiv.org/abs/2201.08772
Brazdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kfetinsky, J., Kwiatkowska,
M., Parker, D., Ujma, M.: Verification of Markov decision processes using learning
algorithms. In: ATVA. Lecture Notes in Computer Science, vol. 8837, pp. 98-114.
Springer (2014)

Braziunas, D., Boutilier, C.: Stochastic local search for POMDP controllers. In:
AAAL pp. 690-696. AAAT Press / The MIT Press (2004)

Carr, S., Jansen, N., Topcu, U.: Verifiable rnn-based policies for POMDPs under
temporal logic constraints. In: IJCAI pp. 4121-4127. ijcai.org (2020)

Carr, S., Jansen, N., Wimmer, R., Serban, A.C., Becker, B., Topcu, U.:
Counterexample-guided strategy improvement for POMDPs using recurrent neural
networks. In: IJCAIL pp. 5532-5539. ijcai.org (2019)

Chatterjee, K., Chmelik, M., Davies, J.: A symbolic SAT-based algorithm for almost-
sure reachability with small strategies in POMDPs. In: AAAL pp. 3225-3232 (2016)
Chatterjee, K., Chmelik, M., Gupta, R., Kanodia, A.: Optimal cost almost-sure
reachability in POMDPs. Artificial Intelligence 234, 26-48 (2016)

Chatterjee, K., Doyen, L., Henzinger, T.A.: Qualitative analysis of partially-
observable Markov decision processes. In: MFCS. Lecture Notes in Computer
Science, vol. 6281, pp. 258-269. Springer (2010)

Cheng, H.T.: Algorithms for partially observable Markov decision processes. Ph.D.
thesis, University of British Columbia (1988)

Doshi, F., Pineau, J., Roy, N.: Reinforcement learning with limited reinforcement:
Using Bayes risk for active learning in POMDPs. In: ICML. pp. 256-263 (2008)
Eagle, J.N.: The optimal search for a moving target when the search path is
constrained. Operations Research 32(5), 1107-1115 (1984)

https://doi.org/10.5281/zenodo.5643643
https://doi.org/10.5281/zenodo.5643643
https://arxiv.org/abs/2201.08772

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Under-Approximating Expected Total Rewards in POMDPs 39

Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2021), https:
//www.gurobi.com

Hauskrecht, M.: Value-function approximations for partially observable Markov
decision processes. J. Artif. Intell. Res. 13, 33-94 (2000)

Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilistic
model checker Storm. Int. J. on Software Tools for Technology Transfer (2021).
https://doi.org,/10.1007/s10009-021-00633-z

Horak, K., Bosansky, B., Chatterjee, K.: Goal-HSVI: Heuristic Search Value Iteration
for Goal POMDPs. In: IJCAI pp. 4764-4770. ijcai.org (7 2018)

Itoh, H., Nakamura, K.: Partially observable Markov decision processes with impre-
cise parameters. Artificial Intelligence 171(8-9), 453-490 (2007)

Jansen, N., Dehnert, C., Kaminski, B.L., Katoen, J., Westhofen, L.: Bounded model
checking for probabilistic programs. In: ATVA. Lecture Notes in Computer Science,
vol. 9938, pp. 68-85 (2016)

Junges, S., Jansen, N., Seshia, S.A.: Enforcing almost-sure reachability in POMDPs.
In: CAV (2). Lecture Notes in Computer Science, vol. 12760, pp. 602-625. Springer
(2021)

Junges, S., Jansen, N., Wimmer, R., Quatmann, T., Winterer, L., Katoen, J.P.,
Becker, B.: Finite-state Controllers of POMDPs via Parameter Synthesis. In: UAI
pp. 519-529. AUAI Press (2018)

Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artificial Intelligence 101(1-2), 99-134 (1998)
Kurniawati, H., Hsu, D., Lee, W.S.: SARSOP: Efficient point-based POMDP
planning by approximating optimally reachable belief spaces. In: Robotics: Science
and Systems. vol. 2008 (2008)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: CAV. Lecture Notes in Computer Science, vol. 6806, pp.
585-591. Springer (2011)

Lovejoy, W.S.: Computationally feasible bounds for partially observed Markov
decision processes. Operations Research 39(1), 162-175 (1991)

Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning
and infinite-horizon partially observable Markov decision problems. In: AAAT/TAAL
pp. 541-548 (1999)

Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning
and related stochastic optimization problems. Artificial Intelligence 147(1-2), 5-34
(2003)

Meuleau, N., Kim, K.E., Kaelbling, L.P., Cassandra, A.R.: Solving POMDPs by
searching the space of finite policies. In: UAI pp. 417-426 (1999)

Monahan, G.E.: State of the art — a survey of partially observable Markov decision
processes: theory, models, and algorithms. Management Science 28(1), 1-16 (1982)
Norman, G., Parker, D., Zou, X.: Verification and Control of Partially Observable
Probabilistic Systems. Real-Time Systems 53(3), 354-402 (2017)

Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: An anytime algorithm
for POMDPs. In: IJCAL vol. 3, pp. 1025-1032 (2003)

Quatmann, T., Katoen, J.: Sound value iteration. In: CAV (1). Lecture Notes in
Computer Science, vol. 10981, pp. 643-661. Springer (2018)

Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach (4th Edition).
Pearson (2020)

Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons
(1986)

https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/s10009-021-00633-z

40

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

A. Bork, J.-P. Katoen, T. Quatmann

Shani, G., Pineau, J., Kaplow, R.: A survey of point-based POMDP solvers.
Autonomous Agents and Multi-Agent Systems 27(1), 1-51 (2013)

Silver, D., Veness, J.: Monte-Carlo planning in large POMDPs. In: NIPS. pp.
2164-2172 (2010)

Smallwood, R.D., Sondik, E.J.: The optimal control of partially observable Markov
processes over a finite horizon. Operations Research 21(5), 1071-1088 (1973)
Smith, T., Simmons, R.: Heuristic search value iteration for POMDPs. In: UAIL pp.
520-527 (2004)

Sondik, E.J.: The Optimal Control of Partially Observable Markov Processes. Ph.D.
thesis, Stanford Univ Calif Stanford Electronics Labs (1971)

Sondik, E.J.: The optimal control of partially observable Markov processes over the
infinite horizon: Discounted costs. Operations research 26(2), 282-304 (1978)
Spaan, M.T., Vlassis, N.: Perseus: Randomized point-based value iteration for
POMDPs. J. of Artificial Intelligence Research 24, 195-220 (2005)

Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model
checking techniques. IEEE Transactions on Industrial Informatics 14(1), 370-379
(2017)

Wang, Y., Chaudhuri, S., Kavraki, L.E.: Bounded Policy Synthesis for POMDPs
with Safe-Reachability Objectives. In: AAMAS. pp. 238-246 (2018)

Winterer, L., Junges, S., Wimmer, R., Jansen, N., Topcu, U., Katoen, J.P., Becker,
B.: Motion planning under partial observability using game-based abstraction. In:
CDC. pp. 2201-2208. IEEE (2017)

Zhang, N.L., Lee, S.S.: Planning with partially observable Markov decision processes:
advances in exact solution method. In: UAIL pp. 523-530 (1998)

Zhang, N.L., Zhang, W.: Speeding up the convergence of value iteration in partially
observable Markov decision processes. Journal of Artificial Intelligence Research
14, 29-51 (2001)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

with Floating-Point Arithmetic*

Arnd Hartmanns™

University of Twente, Enschede, The Netherlands
a.hartmanns@utwente.nl

Abstract. Probabilistic model checking computes probabilities and ex-
pected values related to designated behaviours of interest in Markov
models. As a formal verification approach, it is applied to critical sys-
tems; thus we trust that probabilistic model checkers deliver correct re-
sults. To achieve scalability and performance, however, these tools use
finite-precision floating-point numbers to represent and calculate prob-
abilities and other values. As a consequence, their results are affected
by rounding errors that may accumulate and interact in hard-to-predict
ways. In this paper, we show how to implement fast and correct prob-
abilistic model checking by exploiting the ability of current hardware
to control the direction of rounding in floating-point calculations. We
outline the complications in achieving correct rounding from higher-
level programming languages, describe our implementation as part of
the MODEST TOOLSET’s mcsta model checker, and exemplify the trade-
offs between performance and correctness in an extensive experimental
evaluation across different operating systems and CPU architectures.

1 Introduction

Given a Markov chain or Markov decision process (MDP [25]) model of a safety-
or performance-critical system, probabilistic model checking (PMC) calculates
quantitative properties of interest: the probability of (rare or catastrophic) fail-
ures, the expected recovery time after service interruption, or the long-run aver-
age throughput. These properties involve probabilities or expected costs/rewards
of sets of model behaviours, and are often specified in a temporal logic like
PCTL [16]. As a formal verification approach, users place great trust in the
results delivered by a PMC tool such as PrRisM [22], STORM [9], ePMC [15],
or the MODEST TOOLSET’s [18] mcsta. In contrast to classical model checkers
for functional, Boolean-valued properties specified in e.g. LTL or CTL [2], a
probabilistic model checker is inherently quantitative: the input model contains
real-valued probabilities and costs/rewards; PCTL makes comparisons between
real-valued constants and probabilities; the most efficient algorithms numerically
iterate towards a fixpoint; and the final result itself may well be a real number.

* This work was supported by NWO VENI grant no. 639.021.754 and the EU’s Horizon
2020 research and innovation programme under MSCA grant agreement 101008233.

© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 41-59, 2022.
https://doi.org/10.1007 /978-3-030-99527-0_3

Check for
updates

http://orcid.org/0000-0003-3268-8674
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99527-0_3&domain=pdf

42 A. Hartmanns

Often, we can restrict to rationals, which simplifies the theory and facilitates
“exact” algorithms using arbitrary-precision rational number datatypes. These
algorithms only work for small models (as shown in the most recent QComp
2020 competition of quantitative verification tools [6]). In this paper, we thus
focus on the PMC techniques that scale to large problems: those building upon
iterative numerical algorithms, in particular value iteration (VI) [8]. We restrict
to probabilistic reachability, i.e. calculating the probability to eventually reach a
goal state, as this is the core problem in PMC for MDP. Embedded in the usual
recursive CTL algorithm, it allows us to check any (unbounded) PCTL formula.

Starting from a trivial underapproximation of the reachability probability
for each state of the model, VI iteratively improves the value of each state
based on its successors’ values. The true reachability probabilities are the least
fixpoint of this procedure, towards which the algorithm converges. For roughly
a decade, PMC tools implemented VI by stopping once the relative or absolute
difference between subsequent iterations was below a threshold e. Haddad and
Monmege [12] showed in 2014 that this does not guarantee a difference of < e
between the reported and the true probability, putting in question the trust
placed in PMC tools. Then variants of VI were developed that provide sound, i.e.
e-correct, results: interval iteration (II) [3,5,13], sound value iteration (SVI) [26],
and optimistic value iteration (OVI) [19]. We focus on II as the prototypical
sound algorithm. It additionally iterates on an overapproximation; its stopping
criterion is the difference between over- and underapproximation being < e.

If all probabilities in an MDP are rational numbers, then the true reachability
probability as well as all intermediate values in II are rational, too. Yet imple-
menting II with arbitrary-precision rationals is impractical since the smaller-
and-smaller differences between intermediate values end up using excessive com-
putation time and memory. IT is thus implemented with fixed-precision (usually
64-bit IEEE 754 double precision) floating point numbers. These, however, can-
not represent all rationals, so operations must round to nearby representable
values. Although II is numerically benign, consisting only of multiplications and
additions within [0, 1], the default round to nearest, ties to even policy can cause
IT to deliver incorrect results. Wimmer et al. [29] show an example where PMC
tools incorrectly state that a simple PCTL property is satisfied by a small Markov
chain due to the underlying numeric difference having disappeared in rounding.
We confirmed with current versions of PRISM, STORM, and mcsta that the prob-
lem persists to today, even when requesting a “sound” algorithm like IT. Wimmer
et al. propose interval arithmetic to avoid such problems, cautioning that

[...] the memory consumption will roughly double, since two numbers for
the interval bounds have to be stored [...]. The runtime will be higher by
a small factor, because we need to derive lower and upper bounds for the
intervals, requiring two model checking runs per sub-formula. [29, p. 5]

They did not provide an implementation, and we are not aware of any to date.

! Wimmer et al. [29] already in 2008 mention this problem in a more general setting,
but neither give a concrete counterexample nor propose a solution tailored to PMC.

Correct Probabilistic Model Checking with Floating-Point Arithmetic 43

Our contribution. We present the first PMC implementation that computes cor-
rect lower and upper bounds on reachability probabilities despite using floating-
point arithmetic. We benefit from two developments since Wimmer et al.’s paper
of 2008: First, IT (published 2014) already uses intervals (though not as Wimmer
et al. envisioned), necessarily doubling memory consumption compared to VI (as
do SVI and OVI, so it appears an unavoidable cost of soundness). In place of
“two model checking runs per sub-formula”, we can make the two interleaved
computations inside II safe w.r.t. rounding. Second, hardware and programming
language support for controlling the rounding direction in floating-point opera-
tions has improved, in particular with the AVX-512 instruction set in the newest
x86-64 CPUs and widespread compiler support for C99’s “floating-point environ-
ment” header fenv.h. Nevertheless, it is nontrivial to achieve runtime that is
only “higher by a small factor”. For the analysis of probabilistic systems, the only
related use of safe rounding we are aware of is in the SSMT tool SiSAT [27].

Structure. We recap PMC and II (Sect. 2) as well as problems and solutions re-
lated to rounding in floating-point arithmetic in Sect. 3. We then present our new
approach in Sect. 4, including important implementation aspects. The perfor-
mance of our approach is crucial to its adoption in tools; thus in Sect. 5 we report
on extensive experiments across different software and hardware configurations
on models from the Quantitative Verification Benchmark Set (QVBS) [20].

2 Probabilistic Model Checking

We write {1 — y1,...} to denote the function that maps all z; to y;. Given a
set S, its powerset is 2°. A (discrete) probability distribution over S is a function
p € S — [0,1] with countable support spt(u) < {s € S | u(s) > 0} and
D sespt(u) 1(s) = 1. Dist(S) is the set of all probability distributions over S. If
wu(s) € Q for all s € S, we call u a rational probability distribution, in Distgp(S).

Markov decision processes (MDP) [25] combine the nondeterminism of Kripke
structures with the finite random choices of discrete-time Markov chains (DTMC).

Definition 1. A Markov decision process (MDP) is a triple M = (S, s;,T)
where S is a finite set of states with initial state s; € S and T: § — 2P%%(9)
is the transition function. T'(s) must be finite and non-empty for all s € S.

For s € S, an element u of T(s) is a transition, and if s’ € spt(u), then the
transition has a branch to successor state s’ with probability u(s"). If |T'(s)] =1
for all s € S, then M is a DTMC.

Ezample 1. Fig. 1 shows our example MDP M) which is actually a DTMC. It
is a simplified and parametrised version of the counterexample of Wimmer et
al. [29, Fig. 2]. It is parametrised in terms of n € N (determining the number
of chained states with transitions labelled b) and v € (0,0.5) (changing some
probabilities). We draw transitions as lines to an intermediate node from which

44 A. Hartmanns

Fig. 1. Example parametrised MDP M,]

probability-labelled branches lead to successor states. We omit the intermediate
node for transitions with a single branch, and label some transitions to easily
refer to them. M)’ has 4 4+ n states and transitions, and 7 + 2n branches.

In practice, higher-level modelling languages like MODEST [14] are used to specify
MDP. The semantics of an MDP is captured by its paths. A path represents a
concrete resolution of all nondeterministic and probabilistic choices. Formally:

Definition 2. A finite path is a sequence man, = Sg fho S1 J41 - - - n—1Sn where
s; €8 foralli € {0,...,n} and p; € T(s;) Api(si+1) > 0 foralli € {0,...,n—
1}. Let |man| = n andlast(man) = s, i (s) is the set of all finite paths starting
in s. A path is an analogous infinite sequence w, and I1(s) is the set of all paths
starting in s. We write s € w if 3i: s = s;.

A scheduler (or adversary, policy or strategy) only resolves the nondeterministic
choices of M. For this paper, memoryless deterministic schedulers suffice [4].

Definition 3. A function s: S — Dist(S) is a scheduler if, for all s € S, we
have s(s) € T(s). The set of all schedulers of M is G(M).

We are interested in reachability probabilities. Let M |5 = (S, s1, T'|s) with T'|s(s) =
{s(s)} be the DTMC induced by s on M. Via the standard cylinder set con-
struction [10, Sect. 2.2] on M|, a scheduler induces probability measures P32’
on measurable sets of paths starting in s € S.

Definition 4. For state s and goal state g € S, the maximum and minimum
probability of reaching g from s is defined as PM3(o g) = sup,ee Pe*({7 €

max
I(s) | gen}) and PM(o g) = infoes PY*({m € II(s) | g € T }), respectively.
The definition extends to sets G of goal states. We omit the superscript for M
when it is clear from the context, and if we omit that for s, then s = s;. From
now on, whenever we have an MDP with a set of goal states G, we assume w.l.o.g.
that all g € G are absorbing, i.e. every g only has one self-loop transition.

Definition 5. A maximal end component (MEC) of M is a maximal (sub-)MDP
(87,1, s%) where S" C S, T'(s) CT(s) forall s € S', and the directed graph with
vertex set S" and edge set { (s,s') | Iu € T'(s): u(s") > 0} is strongly connected.

Correct Probabilistic Model Checking with Floating-Point Arithmetic 45

=

function II(M = (S,s1,T), G, opt,¢€)

// Preprocessing
2 if opt = max then M := CollapseMECs(M,) // collapse MECs
3 So := Prob0(M, G, opt), S1 := Prob1(M, G, opt) // identify 0/1 states
4 l:={s—0]|seS\S1}U{s—1|se S} // initialise lower vector
5 u={s—0]|se€SotU{s—1]seS\So} // initialise upper vector
// Iteration
6 while (u(s;) —I(s1))/l(sr) > e do // while relative error > €:
7 foreach s € S\ (So U S1) do // update non-0/1 states:
8 U(8) = oplcr(s) 2osresprquy 1(87) - U(s") // iterate lower vector
9 u($) = 0Pt em(s) greapriuy H(ST) - uls) // iterate upper vector
10 | return 2(u(sr) — U(sr))

Alg. 1: Interval iteration for probabilistic reachability

2.1 Algorithms

Interval iteration [3,5,12,13] computes reachability probabilities p(s) = P{,;,(oG),
opt € { max, min }. We show the basic algorithm as Alg. 1. It iteratively refines
vectors | and u that map each state to a value in QQ such that, at all times, we
have I(s) < p(s) < u(s). In each iteration, the values in { and w are updated
for all relevant states (line 7) via the classic Bellman equations of value itera-
tion (lines 8-9). Their least fixpoint is p, towards which ! converges from below.
Some preprocessing is needed to ensure that the fixpoint is unique and also w
converges towards p: for maximisation, we need to collapse MECs into single
states (line 2). This can be be done via graph-based algorithms (see e.g. [7])
that only consider the graph structure of the MDP as in Definition 1 but do
not perform calculations with the concrete probability values. For both max-
imisation and minimisation, we need to identify the sets Sy and S7 such that
Vs € So:p(s) = 0 and Vs € S;: p(s) = S1 (line 3). This can equally done
via graph-based algorithms [10, Algs. 1-4]. We then initialise [and u to triv-
ial under-/overapproximations of p (lines 4-5). Iteration stops when the relative
difference between | and u at sy is at most € (which is often chosen as 102 or
107%). The corresponding check in line 6 assumes that division by zero results
in 400, as is the default in IEEE 754. By convergence of | and u towards the
fixpoint, II terminates, and we eventually return a value p with the guarantee
that p(sy) € [(1 —¢€) - P, (1 + ¢€) - p|. This makes IT sound.

PCTL. The temporal logic PCTL [16] allows us to construct complex branching-
time properties. It takes standard CTL [2]| and replaces the A(y)) (“for all paths
¥ holds”) and E(¢) (“there exists a path for which v holds”) operators by the
probabilistic operator P..(¢) for “under all schedulers, the probability of the
measurable set of paths for which v holds is ~ ¢ where ~ € {<, <, >, >}
and ¢ € [0,1]. To model-check a PCTL formula on MDP M, we follow the
standard recursive CTL model checking algorithm [2, Sect. 6.4] except for the P

46 A. Hartmanns

operator, which can be reduced to computing reachability probabilities. For the
“finally”/“eventually” case P~.(F ¢), we can directly use interval iteration: Let Sy
be the set of states recursively determined to satisfy ¢. Call II(M, Sy, opt..,€)
of Alg. 1 with opt,, = max if ~ € { <, <} and opt., = min otherwise, with two
modifications: Change the stopping criterion of line 6 to check the difference for
all states, and in line 10, return the set Sp <= {s € S | Vx € [I(s),u(s)]: x ~ c}. If
ds € S,z € [l(s),u(s)]: © » ¢, however, we would need to either abort and report
an “unknown” situation, or continue with a reduced € until we can (hopefully
eventually) decide the comparison. None of PRISM, STORM, and mcsta appear
to perform this extra check, though. In this paper, we only use PCTL for non-
nested top-level P, (F ...) operators; the results are then true if s; € Sp, should be
unknown in case the “‘unknown” situation applies to s;, and are false otherwise.

3 Floating-Point Arithmetic

The current implementations of IT (in PRisM, STORM, and mcsta) use IEEE 754
double-precision floating-point arithmetic to represent (a) the probabilities of
the MDP’s branches and (b) the values in [and u. A floating-point number is
stored as a significand d and an exponent e w.r.t. to an agreed-upon base b such
that it represents the value d - b°. We fix b = 2. IEEE 754 double precision uses
64 bits in total, of which 1 is a sign bit, 52 are for d, and 11 are for e. Standard
alternatives are 32-bit single precision (1 sign, 23 bits for d, and 8 for e) and the
80-bit x87 extended precision format (with 1 sign bit, 64 for d, and 15 for e). The
subset of Q that can be represented in such a representation is determined by the
numbers of bits for d and e. For example, % or % can be represented exactly in all
formats, but 1—10 cannot. IEEE 754 prescribes that all basic operations (addition,
multiplication, etc.) are performed at “infinite precision” with the result rounded
to a representable number. The default rounding mode is to round to the nearest
such number, choosing an even value in case of ties (round to nearest, ties to
even). In single precision, % is thus by default rounded to
13421773 - 2727 = 0.100000001490116119384765625.

A single rounded operation leads to an error of at most the distance between the
two nearest representable numbers. In iterative computations, however, rounding
may happen at every step. A striking example of the consequences is the failure of
an American Patriot missile battery to intercept an incoming Iraqi Scud missile
in February 1992 in Dharan, Saudi Arabia [28], which resulted in 28 fatalities.
The Patriot system calculated time in seconds by multiplying its internal clock’s
value by a rounded binary representation of %. After 100 hours of continuous
operation, this lead to a cumulative rounding error large enough to miscalculate
the incoming missile’s position by more than half a kilometre [1].

3.1 Errors in Probabilistic Model Checking

IT accumulates and multiplies rounded floating-point values in the [and u vectors
with potentially already-rounded values representing the rational probabilities of

Correct Probabilistic Model Checking with Floating-Point Arithmetic 47

the model. Using the default rounding mode, how can we be sure that the final
result does not miss the true probability by more than half a kilometre, too?

Following Wimmer et al. [29], let us consider MDP MY of Fig. 1 again, and
determine whether Py (¢ { s+ }) holds. The model is acyclic, so it is easy to see
that 1 1
p = Pmax(<> { S+ }> = 5 + 'Yn+2 > 5
Let us fix n = 1 and v = 1075. Then p = % + 10718, This value cannot be
represented in double precision, and is by default rounded to 0.5.

We have encoded M) in the MODEST and PRISM languages, and checked the
answers returned by PRISM 4.7, STORM 1.6.4, and mcsta 3.1 for the property.
The correct result would be false. PRISM returns true in its default configuration,
which uses an unsound algorithm, and false when requesting an algorithm with
exact rational arithmetic, for which M) is small enough. If we explicitly request
PRisM to use II, then the result depends on the specified e: for € > 107!, we get
the correct result of false; for smaller € < 10712, i.e. higher precision, however, we
incorrectly get true. STORM incorrectly returns true in its default configuration
as well as when we request a sound algorithm via the --sound parameter. Only
when using an exact rational algorithm via the --exact parameter does STORM
correctly return false. mcsta, when using II (--alg Intervallteration), in-
correctly returns true, and additionally reports that it computed [I(sr),u(sr)]
as [0.5,0.5], thus not including the true value of p. Other algorithms are not
immune to the problem, either; for example, mcsta also answers true when using
SVI, OVI, and when solving the MDP as a linear programming problem via the
Google OR Tools” GLOP LP solver.

This example shows that using a sound algorithm does not guarantee correct
results. The problem is not specific to cases of small probabilities like v = 1076
in the MDP; we can achieve the same effect using arbitrarily higher values of ~
if we just increase n a little. Such bounded try-and-retry chains where “normal”
probabilities in the model result in very small values during iteration and on
the final result are not uncommon in the systems often modelled as MDPs,
e.g. backoff schemes in communication protocols and randomised algorithms. In
general, tiny differences in probabilities in one place may result in significant
changes of the overall reachability probability; for example, in two-dimensional
random walks, the long-run behaviour when the probabilities to move forward
or backward are both % is vastly different from if they are % + 6 and % -4,
respectively, for any ¢ > 0.

3.2 On Precision and Rounding Modes

In our concrete example, we may be able to avoid the problem by increasing
precision: In the 80-bit extended format supported by all x86-64 CPUs, %4—10’18
is by default rounded to 5.000000000000000009... - 10~!, so there is a chance
of obtaining false unless other rounding during iterations would lose all the
difference. Extended precision is used for C’s long double type by e.g. the GCC
compiler; it is thus readily accessible to programmers. It is, however, the most

48 A. Hartmanns

precise format supported in common CPUs today; if we need more precision,
we would have to resort to much slower software implementations using e.g.
the GNU MPFR library. Any a-priori fixed precision, however, just shifts the
problem to smaller differences, but does not eliminate it.

The more general solution that we propose in this paper is to control the
rounding mode of the floating-point operations performed in the II algorithm.
In addition to the default round to nearest, ties to even mode, the IEEE 754
standard defines three directed rounding modes: round towards zero (i.e. trun-
cation), round towards +oo (i.e. always round up), and round towards —oo (i.e.
always round down). As we will explain in Sect. 4, using the latter gives us an
easy way to make the computations inside II safe, i.e. guarantee the under- and
overapproximation invariants for [and u, respectively. Control of the floating-
point rounding mode however appears to be a rarely-used feature of IEEE 754
implementations; consequently the level and style of support for it in CPUs and
high-level programming languages is diverse.

3.3 CPU Support for Rounding Modes

STORM and mcsta run exclusively on x86-64 systems (with the upcoming ARM-
based systems so far only supported via their x86-64 emulation layers), while
PrisM additionally supports several other platforms via manual compilation.
Thus we focus on x64-64 in this paper as the platform probabilistic model check-
ers overwhelmingly run on today.

X87 and SSE. All x64-64 CPUs support two instruction sets to perform floating-
point operations in double precision: The x87 instruction set, originating from
the 8087 floating-point coprocessor, and the SSE instruction set, which includes
support for double precision since the Pentium 4’s SSE2 extension. Both imple-
ment operations according to the IEEE 754 standard. Aside from architectural
particularities such as its stack-based approach to managing registers, the x87
instruction set notably includes support for 80-bit extended precision. In fact,
by default, it performs all calculations in that extended precision, only rounding
to double or single precision when storing values back to 64- or 32-bit memory
locations. This has the advantage of reducing the error across sequences of oper-
ations, but for high-level languages makes the results depend on the compiler’s
choices of when to load/store intermediate values in memory vs. keeping them
in x87 registers. The SSE instructions only support single and double precision.

Both the x87 and SSE instruction sets support all four rounding modes men-
tioned above. The rounding mode of operations for x87 and SSE is determined
by the current value of the x87 FPU control word stored in the x87 FPU control
register or the current value of the SSE MXCSR control register, respectively.
That is, to change rounding mode, we need to obtain the current control regis-
ter value, change the two bits determining rounding mode (with the other bits
controlling other aspects of floating-point operations such as the treatment of
NaNs), and apply the new value. This is done via the FNSTCW /FLDCW in-
struction pair on x87, and VSTMXCSR/VLDMXCSR for SSE. Rounding mode

https://www.mpfr.org/

Correct Probabilistic Model Checking with Floating-Point Arithmetic 49

is thus part of the global (per-thread) state, and we must be careful to restore
its original configuration when returning to code that does not expect rounding
mode changes. Frequent changes of rounding mode thus incur a performance
overhead due to the extra instructions that must be executed for every change
and their effects on e.g. pipelining.

AVX-512. AVX-512 is the extension to 512 bits of the sequence of single instruc-
tion, multiple data (SIMD) instruction sets in x84-64 processors that started
with SSE. It became available for general-purpose systems in high-end desk-
top (Skylake-X) and server (Xeon) CPUs in 2017, but it took until the 10th
generation of Intel’s Core mobile CPUs in 2019 before it was more widely avail-
able in end-user systems. It is supposed to appear in AMD CPUs with the
upcoming Zen 4 architecture. Aside from its 512-bit SIMD instructions, AVX-
512 crucially also includes new instructions for single floating-point values where
the operation’s rounding mode is specified as part of the instruction itself via
the new “EVEX” encoding. Of particular note for implementing I are the new
VFMADD(r17273)SD fused multiply-add instructions (the r; determining how
the operand registers are used) that can directly be used for the sums of prod-
ucts in the Bellman equations in lines 8-9 of Alg. 1. Overall, AVX-512 thus makes
rounding mode independent of global state, and may improve performance by
removing the need for extra instruction sequences to change rounding mode.

3.4 Rounding Modes in Programming Languages

Support for non-default rounding modes is lacking in most high-level program-
ming languages. Java, C#, and Python, for example, do not support them at
all. If II is implemented in such a language, there is consequently no hope for a
high-performance solution to the rounding problems described earlier.

For C and C++, the C99 and C++11 standards introduced access to the
floating-point environment. The fenv.h/cfenv headers include the fegetround
and fesetround functions to query the current rounding mode and change it,
respectively. Implementations of these functions on x86-64 read/change both the
x87 and SSE control registers accordingly. In the remainder of this paper, we fo-
cus on a C implementation, but most statements hold for C+-+ analogously. The
level of support for the C99 floating-point features varies significantly between
compilers; it is in particular still incomplete in Clang? and GCC |11, Further
notes|. Still, both compilers provide access to the fegetround/fesetround func-
tions (via the associated standard libraries), but GCC in particular is not round-
ing mode-aware in optimisations. This means that, for example, subexpressions
that are evaluated twice, with a change in rounding mode in between, may be
compiled by GCC into a single evaluation before the change, with the resulting
value stored in a register and reused after the rounding mode change. This can

2 The documentation as of October 2021 states that C99 support in Clang “is feature-
complete except for the C99 floating-point pragmas”.

https://clang.llvm.org/docs/UsersManual.html#c

50 A. Hartmanns

even happen when using the -frounding-math option®. Programmers thus need
to inspect the generated assembly to ensure that no problematic transformations
have been made, or try to make them impossible by declaring values volatile
or inserting inline assembly “barriers”.

Overall, C thus provides a standardised way to change x87/SSE rounding
mode, but programmers need to be aware of compiler quirks when using these
facilities. Support for AVX-512 instructions that include rounding mode bits in
C, on the other hand, is only slightly more convenient than programming in
assembly as we can use the intrinsics in the immintrin.h header; there is no
standard higher-level abstraction of this feature in either C or C++.

4 Correctly Rounding Interval Iteration

Let us now change II as in Alg. 1 to consistently round in safe directions at
every numeric operation. Given that we can change or specify the rounding
mode of all basic floating-point operations on current hardware, we expect that
a high-performance implementation can be achieved. First, the preprocessing
steps require no changes as they are purely graph-based. The changes to the
iteration part of the algorithm are straightforward: In line 6,

while (u(sy) —(s1))/l(s1) >edo ...,

we round the results of the subtraction and of the division towards +oo to avoid
stopping too early. In line 8,

Z(S) = Opt;LET(s) Zs’éspt(u) M(S/) ' Z(S/)’

the multiplications and additions round towards —oo while the corresponding
operations on the upper bound in line 9 round towards 4oo. Recall that all
probabilities in the MDP are rational numbers, i.e. representable as “*™ with
num, den € N. We assume that num and den can be represented exactly in the
implementation. Then, in line 8, we calculate the floating-point values for the
u(s") = num/den by rounding towards —oo. In line 9, we round the result of the
corresponding division towards +oco. Finally, instead of returning the middle of
the interval in line 10, we return [I(sy), u(s)] so as not to lose any information
(e.g. in case the result is compared to a constant as in the example of Sect. 3.1).

With these changes, we obtain an interval guaranteed to contain the true
reachability probability if the algorithm terminates. However, rounding away
from the theoretical fixpoint in the updates of [and u means that we may
reach an effective fixpoint—where | and u no longer change because all newly
computed values round down/up to the values from the previous iteration—at
a point where the relative difference of I(s;) and u(s;) is still above e. This
will happen in practice: In QComp 2020 [6], mcsta participated in the floating-
point correct track by letting VI run until it reached a fixpoint under the default
rounding mode with double precision. In 9 of the 44 benchmark instances that
mcsta attempted to solve in this way, the difference between this fixpoint and

3 The documentation as of Oct. 2021 states that -frounding-math “does not currently
guarantee to disable all GCC optimizations that are affected by rounding mode.”

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Correct Probabilistic Model Checking with Floating-Point Arithmetic 51

1 function SR-SII(M = (S,s1,T), G, opt,e)
2 ... (preprocessing as in Alg. 1)...
3 repeat
4 chg = false
5 fesetround(towards —oo)
6 foreach s € S\ (So U S1) do
7 Inew 1= 0Pt ep(s) 2o capr(uy M(S") - U(s") // iterate lower vector
8 if lnew # U(s) then chg := true
9 l(S) = lnew
10 fesetround(towards +00)
11 foreach s € S\ (So U S1) do
12 Unew 1= 0Pt e (s) Dosr cspi(n) u(s’) - u(s) // iterate upper vector
13 if Unew # u(s) then chg := true
14 u(s) = Unew
15 until —chg V (u(sr) — U(s1))/l(s1) < €
16 return [I(s1),1(s1)]

Alg. 2: Safely rounding sequential interval iteration (SR-SII) for x87 or SSE

the true value was more than the specified e. With safe rounding away from the
true fixpoint, this would likely have happened in even more cases.

To ensure termination, we thus need to make one further change to the II of
Alg. 1: In each iteration of the while loop, we additionally keep track of whether
any of the updates to [and u changes the previous value. If not, we end the loop
and return the current interval, which will be wider than the requested e relative
difference. We refer to II with all of the these modifications as safely rounding
interleaved II (SR-III) in the remainder of this paper.

4.1 Sequential Interval Iteration

When using the x87 or SSE instruction sets to implement SR-III, we need to
insert a call to fesetround just before line 8, and another just before line 9.
If, for an MDP with n states, we need m iterations of the while loop, we will
make 2-n-m calls to fesetround. This might significantly impact performance
for models with many states, or that need many iterations (such as the haddad-
monmege model of the QVBS, which requires 7 million iterations with e = 1076
despite only having 41 states). As an alternative, we can rearrange the iteration
phase of IT as shown in Alg. 2: We first update [for all states (lines 6-9), then u
for all states (lines 11-14), with the rounding mode changes in between (lines 5
and 10). We call this variant of II safely rounding sequential II (SR-SII). It only
needs 2-m calls to fesetround, which should improve its performance. However,
it also changes the memory access pattern of II with an a priori unknown effect
on performance. We write III for II to stress that it is interleaved, and SII for
Alg. 2 without the safe rounding, in the remainder of this paper.

52 A. Hartmanns

4.2 Implementation Aspects

We have implemented ITI, SIT, SR-III, and SR-SII in mcsta. While mcsta is writ-
ten in C#, the new algorithms are (necessarily) written in C, called from the
main tool via the P/Invoke mechanism. We used GCC 10.3.0 to compile our
implementations on both 64-bit Linux and Windows 10. We manually inspected
the disassembly of the generated code to ensure that GCC’s optimisations did
not interfere with rounding mode changes as described in Sect. 3.4. In a sig-
nificant architectural change, we modified mcsta’s state space exploration and
representation code to preserve the exact rational values for the probabilities
specified in the model, so that safely-rounded floating-point representations for
the u(s") can be computed during iteration as described above.

Of each algorithm, we implemented four variants: a default one that leaves the
choice of instruction set to the compiler and uses fesetround to change round-
ing mode; an 287 variant that forces floating-point operations to use the x87
instructions by attributing the relevant functions with target ("fpmath=387")
and that changes rounding mode via inline assembly using FNSTCW /FLDCW;
an SSE variant that forces the SSE instruction set via target ("fpmath=sse")
and uses VSTMXCSR/VLDMXCSR in inline assembly for rounding mode chan-
ges; and an AVX-512 variant that implements all floating-point operations re-
quiring non-default rounding modes via AVX-512 intrinsics, in particular using
_mm_fmadd_round_sd in the Bellman equations. All variants use double pre-
cision; default and SSE additionally have a single-precision version (which we
omit for 87 since the reduced precision does not speed up the operations we
use); and 287 also provides an 80-bit extended-precision version (however we
currently return its results as safely-rounded double-precision values due to the
unavailability of a long double equivalent in C#, which limits its use outside of
performance testing for now). All in all, we thus provide 28 variants of interval
iteration for comparison, out of which 14 provide guaranteed correct results.

In particular, the safe rounding makes PMC feasible at 32-bit single precision,
which would otherwise be too likely to produce incorrect results. While we expect
that this may deliver many results with low precision (but which are correct) due
to a rounded fixpoint being reached long before the relative width reaches e, it
also halves the memory needed to store [and u, and may speed up computations.
At the opposite end, mcsta is now also the first PMC tool that can use 80-bit
extended precision, which however doubles the memory needed for [and u since
80-bit long double values occupy 16 bytes in memory (with GCC).

5 Experiments

Using our implementation in mcsta, we first tested all variants of the algorithms
on M in the setting of Sect. 3.1. As expected, and validating the correctness of
the approach and its implementation, all SR variants return unknown.

We then assembled a set of 31 benchmark instances—combinations of a
model, values for its configurable parameters, and a property to check—from

Correct Probabilistic Model Checking with Floating-Point Arithmetic 53

the QVBS covering DTMC, MDP, and probabilistic timed automata (PTA) [24]
transformed to MDP by mcsta using the digital clocks approach [23]. These are
all the models and probabilistic reachability probabilities from the QVBS sup-
ported by mcsta for which the result was not 0 or 1 (then it can be computed via
graph-based algorithms) and for which a parameter configuration was available
where PMC terminated within our timeout of 120 s but II needed enough time for
it to be measured reliably (Z 0.2s). We checked each of these benchmarks with
all 28 variants of our algorithms using € = 107° on different x86-64 systems:
I11w: an Intel Core i5-1135G7 (up to 4.2 GHz) laptop running Windows 10,
this being the only system we had access to with AVX-512 support; AMDw:
an AMD Ryzen 9 5900X (3.7-4.8 GHz) workstation running Windows 10, repre-
senting current AMD CPUs in our evaluation; I4x: an Intel Core i7-4790 (3.6-
4.0 GHz) workstation running Ubuntu Linux 18.04, representing older-generation
Intel desktop hardware; and IPx: an Intel Pentium Silver J5005 (1.5-2.8 GHz)
compact PC running Ubuntu Linux 18.04, representing a non-Core low-power
Intel system. We show a selection of our experimental results in the remainder
of this section, mainly from 111w and AMDw. We remark on cases where the
other systems (all with Intel CPUs) showed different patterns from I11w.

We present results graphically as scatter plots like in Fig. 2. Each such plot
compares two algorithm variants in terms of runtime for the iteration phase of the
algorithm only (i.e. we exclude the time for state space exploration and prepro-
cessing). Every point (x,y) corresponds to a benchmark instance and indicates
that the variant noted on the x-axis took x seconds to solve this instance while
the one noted on the y-axis took y seconds. Thus points above the solid diagonal
line correspond to instances where the x-axis method was faster; points above
(below) the upper (lower) dotted diagonal line are where the x-axis method took
less than half (more than twice) as long.

Fig. 2 first shows the performance impact of enabling safe rounding for the
standard interleaved algorithm using double precision. The top row shows the
behaviour on [11w. We see that runtime is drastically longer in the default variant
that uses fesetround, but only increases by a factor of around 2 if we use
the specific inline assembly instructions. We note that GCC includes the code
for fesetround in the generated .d11 file on Windows, but in contrast to the
assembly methods does not inline it into the callers. Some of the difference
may thus be function call overhead. The middle row shows the behaviour on
AMDw. Here, default is affected just as badly, but the effect on SEF is worse
while that on 287 is much lower than on the Intel 111w system. In the bottom
row, we show the impact on default on the Linux systems (bottom left and
bottom middle), which is much lower than on Windows. This is despite GCC
implementing fesetround as an external library call here. The overhead still
markedly differs between the two Intel CPUs, though. Finally, as expected, we
see on the bottom right than safe rounding has almost no performance impact
when using the AVX-512 instructions.

Seeing the significant impact enabling safe rounding can have, we next show
what the sequential algorithm brings to the table, in Fig. 3. On the top left, we

54 A. Hartmanns

uDTMC ¢ MDP A PTA

>64 2 .
32 Lot ’
16 - o¥
5 os s = s
x4 ~ ~
n w0 0
2
1.
<02 MKy v v s <02 <0.2 ¢
<02 124816 TO <02 1 2 4 816 >64
IIT (I11w, default) III (I11w, SSE)
> 64 > 64
32 32
16 16
E 8 g 8 E
© 4 z 4 =
1 1
05 /. 05V /.
<02 ¥+ b <02 K <02 ¥+
<02 124 816 TO <02 12 4 816 >64 <02 1 2 4 816 >64
III (AMDw, default) III (AMDw, SSE) III (AMDw, x87)
>64 4 2 > 64 w vt >64 4
32 | o/ 39 | e 32 |
16 | 16 1 ﬁt’ 16 ¢
ST V- I SR - I
; 4 + ; 4 * : 4 +
g .| ¥ 7 o g 5
o 2
g .
L 14 - 1
o5 ¥ 05 l* 0.5 I
<0.2 S - <02 KMl <0.2 S S
<02 12 4 816 >64 <02 124816 TO <02 1 2 4 816 >64
11T (I4x, default) III (IPx, default) III (I11w, AVX-512)

Fig. 2. Performance impact of safe rounding across instruction sets and systems

compare the base algorithms without safe rounding, where SII takes up to twice
as long in the worst case. This is likely due to the more cache-friendly memory
access pattern of III: we store [and u interleaved for III, so it always operates
on two adjacent values at a time. The bottom-left plot confirms that reducing
the number of rounding mode changes reduces the overhead of safe rounding to
essentially zero. The remaining four plots show the differences between SR-III
and SR-SII. In all cases except 287 on AMDw, SR-III is slower. We thus have
that III is fastest but unsafe, SII and SR-SII are equally fast but the latter is
safe, and SR-III is safe but tends to be slower on the Intel systems. On the AMD
system, SR-III surprisingly wins over SR-SII with z87, highlighting that the x87
instruction set in Ryzen 3 must be implemented very differently from SSE.

Correct Probabilistic Model Checking with Floating-Point Arithmetic 55

> 64 >64 4 i
32 ! 32 Al
16 16 | o
=8 2o)
g 4 z 47 <y
wn 2 [9p} 2 1 ; - ..
1 s
0.5 0.5+ 4.
<02 ¥ <02 ¥ <02 ¥
<02 1 2 4 816 >64 <02 1 2 4 816 >64 <02 1 2 4 816 >64
III (I11w, SSE) SR-III (I11w, SSE) SR-III (111w, x87)
>64 4 >64 4 >64 4
32 | 32 | 32 |
16 | T 16 | 16 |
5% z 8] ORI Y
g 47 o 4 R g 47
[9p} 2 1 i - ! g wn 2 1 “. [9s} 2 1
14 14 7 A 1
0.5 1 4 0.5 1 /v % 0.5 {8 .
<02 ¥ <02 &b+ 5 <02+
<02 1 2 4 816 >64 <02 1 2 4 816 >64 <02 1 2 4 816 >64
SIT (I11w, SSE) SR-III (AMDw, SSE) SR-III (AMDw, x87)

Fig. 3. Performance of interleaved compared to sequential II

We further investigate the impact of the instruction set in Fig. 4. Confirming
the patterns we saw so far, SSE is slightly faster than x87 on I11w (and we see
similar behaviour on the other Intel systems) but slower by a factor of more
than 2 on the AMD CPU. The rightmost plot highlights that AVX-512 is the
fastest alternative on the most recent Intel CPUs, which may in part be due to
the availability of the fused multiply-add instruction that fits II so well.

All results so far were for double-precision computations. To conclude our
evaluation, we show in Fig. 5 that reducing to single precision does not bring
the expected performance benefits. We see in the leftmost plot that the overhead

>64 4 > 64
32 | o 32
= 16 5 16
2 ®
A 8 z 8
= 41 < 4
DI: 2 + :. 2
L2 I z o1
w0
0.5 $ 0.5
— <0.2 «Ht+—F—F+—+—+—+> <0.2 :
> 64 <02 1 2 4 816 >64 <02 1 2 4 816 >64
SR-IIT (111w, SSE) SR-III (AMDw, SSE) SR-IIT (111w, SSE)

Fig. 4. Performance with different instruction sets

56 A. Hartmanns

> 64 >64 4 >64 4
32 —~ 32+ 32 +
) 2 —~
ED 16 _g 16 + § 16 +
= 8 S 8 g 8t
12} < | ~
4 = 4 " 4
g 2 = 2 T2
! ; : ~
~
w1 % 1 X @1 1.
0.5 05+, e 05+ .
<0.2 ¢ <0.2 T <0.2 e
<02 1 2 4 816 >64 <02 1 2 4 816 >64 <02 1 2 4 816 >64
III (SSE, single) SR-III (SSE, single) SR-III (x87, double)

Fig. 5. Performance with different precision settings (on I111w)

of safe rounding has a much higher variance compared to Fig. 2. The detailed tool
outputs hint at the reason being that rounding away from the fixpoint occurs in
much larger steps with single precision, which significantly slows down or stops
the convergence in several instances. The middle plot shows that, aside from the
slowly converging outliers, using single precision does not provide a speedup over
using doubles. Finally, on the right, we show that the impact of enabling 80-bit
extended precision on x87 is minimal.

6 Conclusion

There has been ample research into sound PMC algorithms over the past years,
but the problem of errors introduced by naive implementations using default
floating-point rounding has been all but ignored. We showed that a solution ex-
ists that, while perhaps conceptually simple, faces a number of implementation
and performance obstacles. In particular, hardware support for rounding modes
is arguably essential to achieve acceptable performance, but difficult to use from
C/C++ and impossible to access from most other programming languages. We
extensively explored the space of implementation variants, highlighting that per-
formance crucially depends on the combination of the variant, the CPU, and the
operating system. Nevertheless, our results show that truly correct PMC is pos-
sible today at a small cost in performance, which should all but disappear as
AVX-512 is more widely adopted. With our implementation in mcsta, we provide
the first PMC tool that combines fast, scalable, and correct.

Acknowledgments. This work was triggered by Masahide Kashiwagi’s excellent
overview of the different ways to change rounding mode as used by his kv library
for verified numerical computations [21]. The author thanks Anke and Ursula
Hartmanns for contributing to the diversity of hardware on which the experi-
ments were performed by providing access to the AMDw and I11w systems.

Data availability. A dataset to replicate the experimental evaluation, including
the exact versions of the tools and models used, is archived and available at DOI
10.4121,/19074047 [17].

https://doi.org/10.4121/19074047

Correct Probabilistic Model Checking with Floating-Point Arithmetic 57

References

10.

11.

12.

. Arnold, D.N.: Some disasters attributable to bad numerical computing: The Patriot

missile failure (2000), https://www-users.cse.umn.edu/ ~arnold /disasters/patriot.
html, last accessed 2021-10-14.

Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)

Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the re-
liability of your model checker: Interval iteration for markov decision processes.
In: Majumdar, R., Kuncak, V. (eds.) 29th International Conference on Computer
Aided Verification (CAV). Lecture Notes in Computer Science, vol. 10426, pp.
160-180. Springer (2017). https://doi.org/10.1007/978-3-319-63387-9 8

Bianco, A., de Alfaro, L.: Model checking of probabalistic and nondeterministic
systems. In: 15th Conference on Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS). Lecture Notes in Computer Science, vol. 1026,
pp. 499-513. Springer (1995). https://doi.org/10.1007/3-540-60692-0 70

Bréazdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kretinsky, J., Kwiatkowska,
M.Z., Parker, D.; Ujma, M.: Verification of Markov decision processes us-
ing learning algorithms. In: Cassez, F., Raskin, J.F. (eds.) 12th International
Symposium on Automated Technology for Verification and Analysis (ATVA).
Lecture Notes in Computer Science, vol. 8837, pp. 98-114. Springer (2014).
https://doi.org/10.1007/978-3-319-11936-6 8

Budde, C.E., Hartmanns, A., Klauck, M., Kretinsky, J., Parker, D., Quatmann,
T., Turrini, A., Zhang, Z.: On correctness, precision, and performance in quanti-
tative verification — QComp 2020 competition report. In: Margaria, T., Steffen, B.
(eds.) 9th International Symposium on Leveraging Applications of Formal Meth-
ods (ISoLA). Lecture Notes in Computer Science, vol. 12479, pp. 216-241. Springer
(2020). https://doi.org/10.1007/978-3-030-83723-5 15

Chatterjee, K., Henzinger, M.: Faster and dynamic algorithms for maxi-
mal end-component decomposition and related graph problems in proba-
bilistic verification. In: Randall, D. (ed.) Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). pp. 1318-1336. SIAM (2011).
https://doi.org/10.1137/1.9781611973082.101

. Chatterjee, K., Henzinger, T.A.: Value iteration. In: Grumberg, O., Veith,

H. (eds.) 25 Years of Model Checking - History, Achievements, Perspectives.
Lecture Notes in Computer Science, vol. 5000, pp. 107-138. Springer (2008).
https://doi.org/10.1007/978-3-540-69850-0 7

Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A Storm is coming: A modern prob-
abilistic model checker. In: Majumdar, R., Kuncak, V. (eds.) 29th International
Conference on Computer Aided Verification (CAV). Lecture Notes in Computer
Science, vol. 10427, pp. 592-600. Springer (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

Forejt, V., Kwiatkowska, M.Z., Norman, G., Parker, D.: Automated verification
techniques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) 11th In-
ternational School on Formal Methods for the Design of Computer, Communication
and Software Systems (SFM). Lecture Notes in Computer Science, vol. 6659, pp.
53-113. Springer (2011). https://doi.org/10.1007/978-3-642-21455-4 3

Free Software Foundation: Status of C99 features in GCC (2021), https://gcc.gnu.
org/c99status.html, as accessed on 2021-10-14.

Haddad, S., Monmege, B.: Reachability in MDPs: Refining convergence of value it-
eration. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) 8th International Workshop

https://www-users.cse.umn.edu/~arnold/disasters/patriot.html
https://www-users.cse.umn.edu/~arnold/disasters/patriot.html
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/3-540-60692-0_70
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.1137/1.9781611973082.101
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-642-21455-4_3
https://gcc.gnu.org/c99status.html
https://gcc.gnu.org/c99status.html

58

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

A. Hartmanns

on Reachability Problems (RP). Lecture Notes in Computer Science, vol. 8762, pp.
125-137. Springer (2014). https://doi.org/10.1007/978-3-319-11439-2 10
Haddad, S., Monmege, B.: Interval iteration algorithm for
MDPs and IMDPs. Theor. Comput. Sci. 735, 111-131 (2018).
https://doi.org/10.1016/j.tcs.2016.12.003

Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Formal Methods Syst.
Des. 43(2), 191-232 (2013). https://doi.org/10.1007/s10703-012-0167-z

Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: A web-based
probabilistic model checker. In: Jones, C.B., Pihlajasaari, P., Sun, J. (eds.) 19th
International Symposium on Formal Methods (FM). Lecture Notes in Computer
Science, vol. 8442, pp. 312-317. Springer (2014). https://doi.org/10.1007/978-3-
319-06410-9 22

Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512-535 (1994). https://doi.org/10.1007/BF01211866
Hartmanns, A.: Correct probabilistic model checking with floating-
point arithmetic (artifact). 4TU.Centre for Research Data (2022).
https://doi.org/10.4121 /19074047

Hartmanns, A., Hermanns, H.: The Modest Toolset: An integrated environment
for quantitative modelling and verification. In: Abraham, E., Havelund, K. (eds.)
20th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Lecture Notes in Computer Science, vol. 8413, pp.
593-598. Springer (2014). https://doi.org/10.1007/978-3-642-54862-8 51
Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: Lahiri, S.K., Wang,
C. (eds.) 32nd International Conference on Computer Aided Verification (CAV).
Lecture Notes in Computer Science, vol. 12225, pp. 488-511. Springer (2020).
https://doi.org/10.1007/978-3-030-53291-8 26

Hartmanns, A., Klauck, M., Parker, D.; Quatmann, T., Ruijters, E.: The quantita-
tive verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) 25th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Lecture Notes in Computer Science, vol. 11427, pp. 344-350. Springer
(2019). https://doi.org/10.1007/978-3-030-17462-0 20

Kashiwagi, M.: kv — a C++ library for verified numerical computation, http://
verifiedby.me/kv/index-e.html, last accessed 2021-10-13.

Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilis-
tic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) 23rd International
Conference on Computer Aided Verification (CAV). Lecture Notes in Computer
Science, vol. 6806, pp. 585-591. Springer (2011). https://doi.org/10.1007/978-3-
642-22110-1_ 47

Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis
of probabilistic timed automata using digital clocks. Formal Methods Syst. Des.
29(1), 33-78 (2006). https://doi.org/10.1007/s10703-006-0005-2

Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(1), 101-150 (2002). https://doi.org/10.1016/S0304-3975(01)00046-9
Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley Series in Probability and Statistics, Wiley (1994).
https://doi.org/10.1002/9780470316887

Quatmann, T., Katoen, J.P.: Sound value iteration. In: Chockler, H., Weis-
senbacher, G. (eds.) 30th International Conference on Computer Aided Verifica-

https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1007/s10703-012-0167-z
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/BF01211866
https://doi.org/10.4121/19074047
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-030-17462-0_20
http://verifiedby.me/kv/index-e.html
http://verifiedby.me/kv/index-e.html
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/s10703-006-0005-2
https://doi.org/10.1016/S0304-3975(01)00046-9
https://doi.org/10.1002/9780470316887

27.

28.

29.

Correct Probabilistic Model Checking with Floating-Point Arithmetic 59

tion (CAV). Lecture Notes in Computer Science, vol. 10981, pp. 643—-661. Springer
(2018). https://doi.org/10.1007/978-3-319-96145-3 37

Teige, T., Franzle, M.: Constraint-based analysis of probabilistic hybrid systems.
In: Giua, A., Mahulea, C., Silva, M., Zaytoon, J. (eds.) 3rd IFAC Conference
on Analysis and Design of Hybrid Systems (ADHS). IFAC Proceedings Vol-
umes, vol. 42, pp. 162-167. Elsevier (2009). https://doi.org/10.3182/20090916-3-
ES-3003.00029

United States General Accounting Office: Software problem led to system failure
at Dhahran, Saudi Arabia. Report GAO/IMTEC-92-26 (February 1992), https:
//www-users.cse.umn.edu/ ~arnold /disasters/ GAO-IMTEC-92-96.pdf

Wimmer, R., Kortus, A., Herbstritt, M., Becker, B.: Probabilistic model checking
and reliability of results. In: Straube, B., Drutarovsky, M., Renovell, M., Gramata,
P., Fischerova, M. (eds.) 11th IEEE Workshop on Design & Diagnostics of Elec-
tronic Circuits & Systems (DDECS). pp. 207-212. IEEE Computer Society (2008).
https://doi.org/10.1109/DDECS.2008.4538787

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.3182/20090916-3-ES-3003.00029
https://doi.org/10.3182/20090916-3-ES-3003.00029
https://www-users.cse.umn.edu/~arnold/disasters/GAO-IMTEC-92-96.pdf
https://www-users.cse.umn.edu/~arnold/disasters/GAO-IMTEC-92-96.pdf
https://doi.org/10.1109/DDECS.2008.4538787
http://creativecommons.org/licenses/by/4.0/

l‘)

Check for
updates

Correlated Equilibria and Fairness in
Concurrent Stochastic Games

Marta Kwiatkowska!@®, Gethin Norman?®, David Parker3®, and Gabriel
Santos! (=)

! Department of Computer Science, University of Oxford, Oxford, UK
{marta.kwiatkowska,gabriel.santos}@cs.ox.ac.uk
2 School of Computing Science, University of Glasgow, Glasgow, UK
gethin.norman@glasgow.ac.uk
3 School of Computer Science, University of Birmingham, Birmingham, UK
d.a.parker@cs.bham.ac.uk

Abstract. Game-theoretic techniques and equilibria analysis facilitate
the design and verification of competitive systems. While algorithmic
complexity of equilibria computation has been extensively studied, prac-
tical implementation and application of game-theoretic methods is more
recent. Tools such as PRISM-games support automated verification and
synthesis of zero-sum and (e-optimal subgame-perfect) social welfare
Nash equilibria properties for concurrent stochastic games. However,
these methods become inefficient as the number of agents grows and may
also generate equilibria that yield significant variations in the outcomes
for individual agents. We extend the functionality of PRISM-games to
support correlated equilibria, in which players can coordinate through
public signals, and introduce a novel optimality criterion of social fair-
ness, which can be applied to both Nash and correlated equilibria. We
show that correlated equilibria are easier to compute, are more equitable,
and can also improve joint outcomes. We implement algorithms for both
normal form games and the more complex case of multi-player concur-
rent stochastic games with temporal logic specifications. On a range of
case studies, we demonstrate the benefits of our methods.

1 Introduction

Game-theoretic verification techniques can support the modelling and design of
systems that comprise multiple agents operating in either a cooperative or com-
petitive manner. In many cases, to effectively analyse these systems we also need
to adopt a probabilistic approach to modelling, for example because agents oper-
ate in uncertain environments, use faulty hardware or unreliable communication
mechanisms, or explicitly employ randomisation for coordination.

In these cases, probabilistic model checking provides a convenient unified
framework for both formally modelling probabilistic multi-agent systems and
specifying their required behaviour. In recent years, progress has been made in
this direction for several models, including turn-based and concurrent stochastic

© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 60-78, 2022.
https://doi.org/10.1007/978-3-030-99527-0_4

http://orcid.org/0000-0001-9022-7599
http://orcid.org/0000-0001-9326-4344
http://orcid.org/0000-0003-4137-8862
http://orcid.org/0000-0002-6570-9737
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99527-0_4&domain=pdf

Correlated Equilibria and Fairness in Concurrent Stochastic Games 61

games (T'SGs and CSGs), and for multiple temporal logics, such as rPATL [10]
and its extensions [24]. Tool support has been developed, in the form of PRISM-
games [22], and successfully applied to case studies across a broad range of areas.

Initially, the focus was on zero-sum specifications [24], which can be natural
for systems whose participants have directly opposing goals, such as the defender
and attacker in a security protocol minimising or maximising the probability of
a successful attack, respectively. However, agents often have objectives that are
distinct but not directly opposing, and may also want to cooperate to achieve
these objectives. Examples include network protocols and multi-robot systems.

For these purposes, Nash equilibria (NE) have also been integrated into prob-
abilistic model checking of CSGs [24], together with social welfare (SW) opti-
mality criterion, resulting in social welfare Nash equilibria (SWNE). An SWNE
comprises a strategy for each player in the game where no player has an incen-
tive to deviate unilaterally from their strategy and the sum of the individual
objectives over all players is maximised.

One key limitation of SWNE, however, is that, as these techniques are ex-
tended to support larger numbers of players [21], the efficiency and scalability
of synthesising SWNE is significantly reduced. In addition, simply aiming to
maximise the sum of individual objectives may not produce the best perform-
ing equilibrium, either collectively or individually; for example, they can offer
higher gains for specific players, reducing the incentive of the other players to
collaborate and instead motivating them to deviate from the equilibrium.

In this paper, we adopt a different approach and introduce, for the first time
within formal verification, both social fairness as an optimality criterion and
correlated equilibria, and the insights required to make these usable in practical
applications. Social fairness (SF) is particularly novel, as it is inspired by similar
concepts used in economics and distinct from the fairness notions employed in
verification. Correlated equilibria (CE) [3], in which players are able to coordi-
nate through public signals, are easier to compute than NE and can yield better
outcomes. Social fairness, which minimises the differences between the objectives
of individual players, can be considered for both CE and NE.

We first investigate these concepts for the simpler case of normal form games,
illustrating their differences and benefits. We then extend the approach to the
more powerful modelling formalism of CSGs and extend the temporal logic
rPATL to formally specify agent objectives. We present algorithms to synthesise
equilibria, using linear programming to find CE and a combination of back-
wards induction or value iteration for CSGs. We implement our approach in
the PRISM-games tool [22] and demonstrate significant gains in computation
time and that quantifiably more fair and useful strategies can by synthesised
for a range of application domains. An extended version of this paper, with the
complete model checking algorithm, is available [23].

Related work. Nash equilibria have been considered for concurrent systems
in [18], where a temporal logic is proposed whose key operator is a novel path
quantifier which asserts that a property holds on all Nash equilibrium computa-
tions of the system. There is no stochasticity and correlated equilibria are not

62 Marta Kwiatkowska, Gethin Norman, David Parker, Gabriel Santos

considered. In [2], a probabilistic logic that can express equilibria is formulated,
along with complexity results, but no implementation has been provided.

The notion of fairness studied here is inspired by fairness of equilibria from
economics [33,34] and aims to minimise the difference between the payoffs, as
opposed to maximising the lowest payoff among the players in an NE [25]. Our
notion of fairness can be thought of as a constraint applied to equilibria strate-
gies, similar in style to social welfare, and used to select certain equilibria based
on optimality. This is distinct from fairness used in verification of concurrent
processes, where (strong) fairness refers to a property stating that, whenever a
process is enabled infinitely often, it is executed infinitely often. This notion is
typically defined as a constraint on infinite execution paths expressible in logics
LTL and CTL* and needed to prove liveness properties. For probabilistic models,
verification under fairness constraints has been formulated for Markov decision
processes and the logic PCTL* [5,4]. For games on graphs, fairness conditions
expressed as w-regular winning conditions can be used to synthesise reactive
processes [8]. Algorithms for strong transition fairness for w-regular games have
been recently studied in [6]. Both qualitative and quantitative approaches have
been considered for verification under fairness constraints, but no equilibria.

2 Normal Form Games

We start by considering normal form games (NFGs), then define our equilibria
concepts for these games, present algorithms and an implementation for com-
puting them, and finally summarise some experimental results.

We first require the following notation. Let Dist(X) denote the set of prob-
ability distributions over set X. For any vector v € R™, we use v(i) to refer

to the ith entry of the vector. For any tuple x = (z1,...,2,) € X", element
7/ € X and ¢ < n, we define the tuples z_; = (1., Tim1, Tit1,-.-,2Tpn) and
964[96/] = ($1,--~7$i71,$/7$z‘+17---733n)-

Definition 1 (Normal form game). A (finite, n-person) normal form game
(NFG) is a tuple N = (N, A, u) where: N = {1,...,n} is a finite set of players;
A=A x---xA, and A; is a finite set of actions available to player i € N;
u=(U1,...,un) and u;: A — R is a utility function for player i € N.

We fix an NFG N = (N, A, u) for the remainder of this section. In a play of N,
each player i € N chooses an action from the set A; at the same time. If each
player i chooses a;, then the utility received by player j equals u;(ai,...,an).
We next define the strategies for players of N and strategy profiles comprising
a strategy for each player. We also define correlated profiles, which allow the
players to coordinate their choices through a (probabilistic) public signal.

Definition 2 (Strategy and profile). A strategy o; for player i is an element
of X; = Dist(4;) and a strategy profile o is an element of Xy = X1 x -+ - xX,.

For strategy o; of player i, the support is the set of actions {a; € 4; | 0;(a;)>0}
and the support of a profile is the product of the supports of the strategies.

Correlated Equilibria and Fairness in Concurrent Stochastic Games 63

Definition 3 (Correlated profile). A correlated profile is a tuple (7,<) com-
prising T € Dist(D), where D = Dyx ---xD,,, D; is a finite set of signals for
player i, and ¢ = (s1,...,5,), where ¢;: D; — A;.

For a correlated profile (7,<), the public signal 7 is a joint distribution over
signals D; for each player i such that, if player i receives the signal d; € D;, then
it chooses action ¢;(d;). We can consider any correlated profile (7,<) as a joint
strategy, i.e., a distribution over A; X - - x A,, where:

(r,9)(ar, ... an) => A{7(d1,...,dn) | di € D; ANg(d;) = a; for alli € N}.

Conversely, any joint strategy 7 € Dist(A; X --- X A,) can be considered as a
correlated profile (7,¢) where D; = A; and ¢; is the identity function for ¢ € N.

Any strategy profile o can be mapped to an equivalent correlated profile (in
which 7 is the joint distribution o1 X - - - X0, and ¢; is the identity function). On
the other hand, there are correlated profiles with no equivalent strategy profile.
Under profile o and correlated profile (7, <) the expected utilities of player ¢ are:

ui(o) d:(ifZ(al,...,an)eA ui(ai, ..., an) - (H;’L:l Uj(aj))
def
wi(7,6) = 2y, aep Ty dn) sui(G(d), - .o sn(dn)) -

Example 1. Consider the two-player NFG where A4; = {a!,a}} and a corre-
lated profile corresponding to the joint distribution 7 € Dist(A;xAs) where
7(a},ad) = 7(a?,a%) = 0.5. Under this correlated profile the players share a fair
coin and both choose their first action if the coin is heads and their second action

otherwise. This has no equivalent strategy profile. |

Optimal equilibria of NFGs. We now introduce the notions of Nash equilib-
rium [27] and correlated equilibrium [3], as well as different definitions of opti-
mality for these equilibria: social welfare and social fairness. Using the notation
introduced above for tuples, for any profile o and strategy o, the strategy tuple
o_; corresponds to o with the strategy of player ¢ removed and o_;[0}] to the
profile o after replacing player i’s strategy with o}.

Definition 4 (Best response). For a profile o and correlated profile (7,5), a
best response for player i to o_; and (7,5_;) are, respectively:

— a strategy o} for player i such that u;(o_;[0}]) = ui(o—;[0;]) for all oy € Xy;

— a function ¢} D; — A; for player i such that w;(7,s_;[s]]) = ui(T,5-i[si])
for all functions ¢;: D; — A;.

Definition 5 (NE and CE). A strategy profile o* is a Nash equilibrium (NE)
and a correlated profile (1,¢*) is a correlated equilibrium (CE) if:

— o} is a best response to o*, for alli € N;
— ¢F is a best response to (7,¢*;) for alli € N;

respectively. We denote by XN and XC the set of NE and CE, respectively.

64 Marta Kwiatkowska, Gethin Norman, David Parker, Gabriel Santos

~ o wi (@) us(a) usz(a)

1 (proy, proy, prog)|—1000[—1000[—100
. (proy, proy, yld;) [—1000] —100 | —5
1 (proy, yldy, pros) 5 =5 5
) (proy, yldy, ylds) 5 -5 -5

: (yld, , proy, pros)| —5 |—1000] —100
m—____l____> (yldy, proy, ylds) | —5 5 -5
: | (yld,, yldy, prog) | —5 | =5 | &

(yld, , yld,, yldg) | —10 | —10 [—10

Fig. 1: Example: Cars at an intersection and the corresponding NFG.

Any NE of N is also a CE, while there can exist CEs that cannot be represented
by a strategy profile and therefore are not NEs. For each class of equilibria,
NE and CE, we introduce two optimality criteria, the first maximising social
welfare (SW), defined as the sum of the utilities, and the second maximising
social fairness (SF), which minimises the difference between the players’ utilities.
Other variants of fairness have been considered for NE, such as in [25], where
the authors seek to maximise the lowest utility among the players.

Definition 6 (SW and SF). An equilibrium o* is a social welfare (SW) equi-
librium if the sum of the utilities of the players under o* is mazximal over all
equilibria, while o* is a social fair (SF) equilibrium if the difference between the
player’s utilities under o* is minimised over all equilibria.

We can also define the dual concept of cost equilibria [24], where players try to
minimise, rather than maximise, their expected utilities by considering equilibria
of the game N~ = (N, A, —u) in which the utilities of N are negated.

Example 2. Consider the scenario, based on an example from [32], where three
cars meet at an intersection and want to proceed as indicated by the arrows
in Figure 1. Each car can either proceed or yield. If two cars with intersecting
paths proceed, then there is an accident. If an accident occurs, the car having
the right of way, i.e., the other car is to its right, has a utility of —100 and the
car that should yield has a utility of —1000. If a car proceeds without causing an
accident, then its utility is 5 and the cars that yield have a utility of —5. If all
cars yield, then, since this delays all cars, all have utility —10. The 3-player NFG
is given in Figure 1. Considering the different optimal equilibria of the NFG:

— the SWNE and SWCE are the same: for ¢, to yield and ¢ and c¢3 to proceed,
with the expected utilities (5, —5,5);

— the SFNE is for c¢; to yield with probability 1, cs to yield with probability
0.863636 and c3 to yield with probability 0.985148, with the expected utilities
(—9.254050, —9.925742, —9.318182);

— the SFCE gives a joint distribution where the probability of ¢y yielding and
of ¢; and ¢3 yielding are both 0.5 with the expected utilities (0,0, 0).

Modifying us such that us(proq, proy, prog) = —4.5 to, e.g., represent a reckless
driver, the SWNE becomes for ¢; and c3 to yield and ¢y to proceed with the
expected utilities (—5, 5, —5), while the SWCE is still for ¢y to yield and ¢; and
cs to proceed. The SFNE and SFCE also do not change. |

Correlated Equilibria and Fairness in Concurrent Stochastic Games 65

Algorithms for computing equilibria. Before we give our algorithm to com-
pute correlated equilibria, we briefly describe the approach of [21,24] for Nash
equilibria computation that this paper builds upon. Finding NE in two-player
NFGs is in the class of linear complementarity problems (LCPs) and we follow
the algorithm presented in [24], which reduces the problem to SMT via labelled
polytopes [28] by considering the regions of the strategy profile space, itera-
tively reducing the search space as positive probability assignments are found
and added as restrictions on this space. To find SWNE and SFNE, we can enu-
merate all NE and then find the optimal NE.

When there are more than two players, computing NE values becomes a more
complex task, as finding NE within a given support no longer reduces to a linear
programming (LP) problem. In [21] we presented an algorithm using support
enumeration [31], which exhaustively examines all sub-regions, i.e., supports,
of the strategy profile space, one at a time, checking whether that sub-region
contains NEs. For each support, finding SWNE can be reduced to a nonlinear
programming problem [21]. This nonlinear programming problem can be modified
to find SFNE in each support, similarly to how the LP problem for SWCEs is
modified to find SFCEs below.

In the case of CE we can first find a joint strategy for the players, i.e.,
a distribution over the action tuples, which, as explained above, can then be
mapped to a correlated profile. A SWCE can be found by solving the following
LP problem. Maximise: » ;x> ,c 4 %i(@) - po subject to:

Yoaea, (wilamifa]) —ui(a—ilai])) - pa_;fa,) = 0 (1)
0<pa<1 (2)
ZQEA Pa = 1 (3)

foralli € N, a« € A, a;,a], € A;, a_; € A_; where A_; S {a_; | a € A}.
The variables p, represent the probability of the joint strategy corresponding
to the correlated profile selecting the action-tuple a. The above LP has |A|
variables, one for each action-tuple, and Y-,y (| As|* —|As]) 4+ |A| 41 constraints.
Computation of SFCE can be reduced to the following optimisation problem.
Minimise p™&% — p™it subject to: (1), (2) and (3) together with:

P = geaPa - uila) (4)
(Amenp’ = p™) = (p™* = p) (5)
(Amenp’ <p™) = (P™™ = p') (6)

forallie N, m#i, o € A, aj,a; € A;, a—; € A_;. Again, the variables p, in
the program represent the probability of the players playing the joint action a.
The constraint (4) requires p’ to equal the utility of player i. The constraints
(5) and (6) set p™a* and p™" as the maximum and minimum values within the
utilities of the players, respectively. Given we use the constraints (1), (2) and
(3), we start with the same number of variables and constraints as needed to
compute SWCEs and incur an additional | N|+2 variables and 3-|N| constraints.

66 Marta Kwiatkowska, Gethin Norman, David Parker, Gabriel Santos

Game Players||A;|| |A] Suppoljt]i: W SV\?ESF

4 16 225| 0.07(0.02{0.08

6 36 3,969 0.1/0.02] 0.1

Majority voting 2 8 64 65,025| 0.4]|0.03| 0.3

games 10| 100(1,046,529| 5.8(0.07| 0.7

3 3 27 343 1.2]0.07] 0.1

4 81 3,375| 25.8/0.08| 0.3

3 3 27 343| 8.7/0.08| 1.7

. 4 81 3,375|598.5/0.08| 2.9

Covariant 3 256] 6,561] TO[0.3] TO
games 8

3|6,561|5,764,801| TO|22.8| TO

10 2(1,024 59,049 TOJ| 1.2] TO

Table 1: Times (s) for synthesis of equilibria in NFGs (timeout 30 mins).

Implementation. To find SWNE or SFNE of two-player NFGs, we adopt a
similar approach to [24], using labelled polytopes to characterise and find NE
values through a reduction to SMT in both Z3 [13] and Yices [14]. As an op-
timised precomputation step, when possible we also search for and filter out
dominated strategies, which speeds up the computation and reduces solver calls.

For NFGs with more than two players, solving the nonlinear programming
problem based on support enumeration has been implemented in [21] using a
combination of the SMT solver Z3 [13] and the nonlinear optimisation suite
IropT [38]. To mitigate the inefficiencies of an SMT solver for such problems,
we used Z3 to filter out unsatisfiable support assignments with a timeout and
then IPOPT is called to find SWNE values using an interior-point filter line-search
algorithm [39]. To speed up the overall computation, the support assignments are
analysed in parallel. Computing SFNE increases the complexity of the nonlinear
program and, due to the inefficiency in this approach [21], we have not extended
the implementation to compute SFNE.

As shown above, computing SWCE for NFGs reduces to solving an LP, and
we implement this using either the optimisation solver Gurobi [17] or the SMT
solver Z3 [13]. In the case of SFCE, the constraints (5) and (6) include impli-
cations, and therefore the problem does not reduce directly to an LP. When
using Z3, we can encode these constraints directly as it supports assertions that
combine inequalities with logical implications, a feature that linear solvers such
as Gurobi do not have. Section 5 discusses implementing SFCE computation in
Gurobi. Both solvers support the specification of lower priority or soft objectives,
which makes it possible to have a consistent ordering for the players’ payoffs in
cases where multiple equilibria exist.

Efficiency and scalability. Table 1 presents experimental results for solving
a selection of NFGs randomly generated with GAMUT [29], using Gurobi for
SWCE and NE of two-player NFGs, Z3 for SFCE and both IpopT and Z3 for
NFGs of more than two players, and running on a 2.10GHz Intel Xeon Gold with
32GB of JVM memory. For each instance, Table 1 lists the number of players,
actions for each player, joint actions and supports that need to be enumerated
when finding NE, as well as the time to find SWNEs, SWCEs and SFCEs (the
time for finding SFNEs of two-player games is the same as for SWNEs). As the
results demonstrate, due to a simpler problem being solved and the fact that we

Correlated Equilibria and Fairness in Concurrent Stochastic Games 67

do not need to enumerate the solutions, computing CEs scales far better than
NEs as the number of players and actions increases. Finding NEs in games with
more than two players is particularly hard as the constraints are nonlinear. We
also see that SFCE computation is slower than SWCE, which is caused by the
additional variables and constraints required when finding SFCE and using Z3
rather than Gurobi for the solver.

3 Concurrent Stochastic Games

We now further develop our approach to support concurrent stochastic games
(CSGs) [36], in which players repeatedly make simultaneous action choices that
cause the game’s state to be updated probabilistically. We extend the previously
introduced definitions of optimal equilibria to such games, focusing on subgame-
perfect equilibria, which are equilibria in every state of a CSG. We then present
algorithms to reason about and synthesise such equilibria.

Definition 7 (Concurrent stochastic game). A concurrent stochastic multi-
player game (CSG) is a tuple G= (N, S,S,A, A, 6, AP, L) where:

— N ={1,...,n} is a finite set of players;

— S is a finite set of states and S C S is a set of initial states;

- A=A U{L})x - x(A, U{L}) and A; is a finite set of actions available
to player i € N and L is an idle action disjoint from the set U_; A;;

— A: S — 2Y=14 s an action assignment function;

— 0: (SxA) — Dist(S) is a (partial) probabilistic transition function;

— AP is a set of atomic propositions and L: S — 24F is a labelling function.

For the remainder of this section we fix a CSG G as in Definition 7. The game
G starts in one of its initial states 5 € S and, supposing G is in a state s, then
each player i of G chooses an action from the set that are available, defined
as Ai(s) = A(s) N A; if A(s) N A; is non-empty and A;(s) = {L} otherwise.
Supposing each player chooses a;, then the game transitions to state s’ with
probability d(s, (a1,...,a,)). To enable quantitative analysis of G we augment it
with reward structures, which are tuples r=(r4,rg) of an action reward function
r4: SxA — R and state reward function rg: S — R.

A path of G is a sequence T = sg —% §; —» --- where s, € S, aj =
(ak,....ak) € A, aF € A;(sy) for i € N and §(sg,) (spy1) > 0 for all k >
0. We denote by FPathsg s and IPathsg s the sets of finite and infinite paths
starting in state s of G respectively and drop the subscript s when considering
all finite and infinite paths of G. As for NFGs, we can define strategies of G
that resolve the choices of the players. Here, a strategy for player i is a function
0;: FPathsg — Dist(A; U {L}) such that, if o;(7)(a;)>0, then a; € A;(last(m))
where last(r) is the final state of 7. Furthermore, we can define strategy profiles,
correlated profiles and joint strategies analogously to Definitions 2 and 3.

68 Marta Kwiatkowska, Gethin Norman, David Parker, Gabriel Santos

The utility of a player i of G is defined by a random variable X;: IPathsg — R
over infinite paths. For a profile? o and state s, using standard techniques [20],
we can construct a probability measure PmbE’S over the paths with initial state s
corresponding to o, denoted IPathsg’S and the expected value Eg,s(Xi) of player
i’s utility from s under o. Given utilities X, ..., X,, for all the players of G, we
can then define NE and CE (see Definition 5) as well as the restricted classes of
SW and SF equilibria as for NFGs (see Definition 6). Following [24,21], we focus
on subgame-perfect equilibria [30], which are equilibria in every state of G.

Nonzero-sum properties. As in [24] (for two-player CSGs) and [21] (for n-
player CSGs) we can specify equilibria-based properties using temporal logic.
For simplicity, we restrict attention to nonzero-sum properties without nesting,
allowing for the specification of NE and CE against either SW or SF optimality.

Definition 8 (Nonzero-sum specifications). The syntaz of nonzero-sum spec-
ifications 0 for CSGs is given by the grammar:

¢ = (C)(*1,%2)opt~a(0)

0 = Pl +2[v] | Ko+ 4R o]
Y =Xa | aUSfa | ava
p=1IF]c* | Fa

where C = Cy:+--:Cyy,, C1, ..., Cy, are coalitions of players such that C;NCj = @
forall1 <i# j<mand U™,C; = N, (%1,%2) € {NE,CE}x{SW,SF}, opt €
{min, max}, ~€ {<,<,2,>}, x € Q, r is a reward structure, k € N and a is
an atomic proposition.

The nonzero-sum formulae of Definition 8 extend the logic of in [24,21] in that
we can now specify the type of equilibria, NE or CE, and optimality criteria, SW
or SF. A probabilistic formula {C:- - -:Cy,) (%1, %2) max~a (P[%1 |+ - -+P[¥m]) is
true in a state if, when the players form the coalitions C,...,C),, there is a
subgame-perfect equilibrium of type x; meeting the optimality criterion x5 for
which the sum of the values of the objectives P[], ..., P[%y,] for the coalitions
Cy,...,C,, satisfies ~x. The objective 1; of coalition C; is either a next (Xa),
bounded until (a; US* a5) or until (a; U as) formula, with the usual equivalences,
e.g., Fa=trueUa.

For a reward formula {(C1:---:Ch,)) (%1, *2)optz (R™ [1]+ - -+R"™ [p]) the
meaning is similar; however, here the objective of coalition C; refers to a re-
ward formula p; with respect to reward structure r; and this formula is either
a bounded instantaneous reward (I=*), bounded accumulated reward (CS¥) or
reachability reward (F a).

For formulae of the form {(Cy:--:Cp,)) (%1, *2)min~z(#), the dual notions of
cost equilibria are considered. We also allow numerical queries of the form
{(Cr: - :Cp)y (%1, *2)opt=7(6), which return the sum of the optimal subgame-
perfect equilibrium’s values.

4 We can also construct such a probability measure and expected value given a corre-
lated profile or joint strategy.

Correlated Equilibria and Fairness in Concurrent Stochastic Games 69

Model checking nonzero-sum specifications. Similarly to [24,21], to allow
model checking of nonzero-sum properties we consider a restricted class of CSGs.
We make the following assumption, which can be checked using graph algorithms
with time complexity quadratic in the size of the state space [1].

Assumption 1. For each subformula P[a; U as], a state labelled —ay V ag is
reached with probability 1 from all states under all strategy profiles and correlated
profiles. For each subformula R"[F a], a state labelled a is reached with probability
1 from all states under all strategy profiles and correlated profiles.

We now show how to compute the optimal values of a nonzero-sum formula
¢ = (Cit--- 1 Cpp)) (%1, *2)opt~z (#) when opt = max. The case when opt = min
can be computed by negating all utilities and maximising.

The model checking algorithm broadly follows those presented in [24,21], with
the differences described below. The problem is reduced to solving an m-player
coalition game G¢ where C = {C4, ..., C,,} and the choices of each player i in G¢
correspond to the choices of the players in coalition C; in G. Formally, we have
the following definition in which, without loss of generality, we assume C is of
the form {{1,...,n1}, {ni+1,...n2},..., {nm-1+1,...n,,}} and let jc denote
player j’s position in its coalition.

Definition 9 (Coalition game). For CSG G = (N, S,S,A, A, 5, AP, L) and

partition C = {C1, .. Cm} of the players into m coalitions, we define the coali-
tion game G¢ = ({1,...,m}, S, S, A, A€ 6¢ AP, L) as an m-player CSG where:

- A= (ACU{l}) (A mU{J-})

— A¢ = (H]ec (A, U{J_})\{()}) foralll <i<m;

— foranys € Sand1 <i<m:al € AC() if and only if either A(s)NA; =@
and a$ (jc) = L or af(jc) () for all j € Cy;

- foranysESand(a?,...7 al)) GAC 5 (s, (a5,...,a%)) = 6(s, (a1,...,an))

where for i € M and j € C; if a$=1, then aj=_1 and otherwise aj:af(jc).

If all the objectives in 6 are finite-horizon, backward induction [35,27] can be ap-
plied to compute (precise) optimal equilibria values with respect to the criterion
*9 and equilibria type *;. On the other hand, if all the objectives are infinite-
horizon, value iteration [9] can be used to approximate optimal equilibria values
and, when there is a combination of objectives, the game under study is modified
in a standard manner to make all objectives infinite-horizon.

Backward induction and value iteration over the CSG G¢ both work by iter-
atively computing new values for each state s of G¢. The values for each state,
in each iteration, are found by computing optimal equilibria values of an NFG N
whose utility function is derived from the outgoing transition probabilities from
s in the CSG and the values computed for successor states of s in the previous
iteration. The difference here, with respect to [21], is that the NFGs are solved
for the additional equilibria and optimality conditions considered in this paper,
which we compute using the algorithms presented in Section 2.

Algorithm for probabilistic until. Because of space limitations, we only
present here the details of value iteration for (unbounded) probabilistic until, i.e.,

70 Marta Kwiatkowska, Gethin Norman, David Parker, Gabriel Santos

for ¢ = (Cy:- -+ :) (%1, %2)max~a (0) where @ = P[a} Ual]+---+P[af* Ual].
The complete model checking algorithm can be found in [23].

Following [21], we use Vge(s,*1,%2,6,n) to denote the vector of computed
values, at iteration n, in state s of G¢ for optimality criterion x (SW or SF),
equilibria type x; (NE or CE) and (until) objectives 6. We also use 1,,, and 0,,
to denote a vector of size m whose entries all equal to 1 or 0, respectively. For
any set of states S’, atomic proposition a and state s we let ng/(s) equal 1 if
s € 8" and 0 otherwise, and n,(s) equal 1 if a € L(s) and 0 otherwise.

Each step of value iteration also keeps track of two sets D, E C M, where
M = {1,...,m} are the players of G°. We use D for the subset of players that
have already reached their goal (by satisfying ab) and E for the players who
can no longer can satisfy their goal (having reached a state that fails to satisfy
ai). It can then be ensured that their payoffs no longer change and are set to 1
or 0, respectively. In these cases, we effectively consider a modified game where,
although the payoffs for these players are set, we still need to take their strategies
into account in order to guarantee an optimal equilibrium.

Optimal values for all states s in the CSG G€ can be computed as the follow-
ing limit: Vge (s, %1, %2, 0) = lim,,—, o0 Vge (8, %1, %2, 0, 1), where Vge (s, %1, %2,0,n) =
Vge (8, %1, %2, 9, 2,0,n) and, for any D, F C M such that DNE = &:

(np(1),...,np(m)) if DUE =M
(naé (8)7 <oy Tap (5)) elseifn =20
Vge (s, x1,%2, D, E,0,n) = { Vge(s,%1,%x2, DUD', E,0,n) elseif D' # @
Vge(s,*x1,%2, D,EUE' 0,n) elseif B/ # &
val(N, %1, %) otherwise

where D' = {l € M\(DUE) | a € L(s)}, E' = {l € M\(DUE) | a} ¢
L(s) and s € L(a})} and val(N,x;,*2) equals optimal values of the NFG N =
(M, A, u) with respect to the criterion %5 and of equilibria type %; in which for
any 1<I<m and « € AC:

1 ifleD
u(a) = 0 elseifl € F
Ses (s, a)(s') -vi 2t otherwise
and (vfl,;ll, vf;fl, . ,vfllf'f) = Vge (s, %1,%2, D, E,0,n—1) for all ' € S.

Since this paper considers equilibria for any number of coalitions (in par-
ticular, for more than two), the above follows the algorithm of [21] in the way
that it keeps track of the coalitions that have satisfied their objective (D) or can
no longer do so (E). By contrast the CSG algorithm of [24] was limited to two
coalitions, which enabled the exploitation of efficient MDP analysis techniques
for such coalitions. As explained in [21], in such a scenario we cannot reduce the
analysis from an n-coalition game to an (n — 1)-coalition game, as otherwise we
would give one of the remaining coalitions additional power (the action choices
of the coalition that has satisfied their objective or can no longer do so), which
would therefore give this coalition an advantage over the other coalitions.

Correlated Equilibria and Fairness in Concurrent Stochastic Games 71

Strategy synthesis. As in [24,21] we can extend the model checking algorithm
to perform strategy synthesis, generating a witness (i.e., a profile or joint strat-
egy) representing the corresponding optimal equilibrium. This is achieved by
storing the profile or joint strategy for the NFG solved in each state. Both the
profiles and joint strategies require finite memory and are probabilistic. Memory
is required as choices change after a path formula becomes true or a target is
reached and to keep track of the step bound in finite-horizon properties. Ran-
domisation is required for both NE and CE of NFGs.

Correctness and complexity. The correctness of the algorithm follows directly
from [24,21], as changing the class of equilibria or optimality criterion does not
change the proof. The complexity of the algorithm is linear in the formula size
and value iteration requires finding optimal NE or CE for an NFG in each state
of the model. Computing NEs of an NFG with two (or more) players is PPAD-
complete [12,11], while finding optimal CEs of an NFG is in P [15].

4 Case Studies and Experimental Results

We have developed an implementation of our techniques for equilibria synthe-
sis on CSGs, described above, building on top of the PRISM-games [22] model
checker. Our implementation extends the tool’s existing support for construction
and analysis of CSGs, which is contained within its sparse matrix based “explicit”
engine written in Java. We have considered a range of CSG case studies (supple-
mentary material can be found at [40]). Below, we summarise the efficiency and
scalability of our approach, again running on a 2.10GHz Intel Xeon Gold with
32GB JVM memory, and then describe our findings on individual case studies.

Efficiency and scalability. Table 2 summarises the performance of our imple-
mentation on the case studies that we have considered. It shows the statistics for
each CSG, and the time taken to build it and perform equilibria synthesis, for
several different variants (NE vs. CE, SW vs. SF). Comparing the efficiency of
synthesising SWNE and SWCE, we see that the latter is typically much faster.
For two-player NE, the social fairness variant is no more expensive to compute as
we enumerate all NEs. For CE, which uses Z3 rather than Gurobi for finding SF,
we note that, although Z3 is able to find optimal equilibria, it is not primarily
developed as an optimisation suite, and therefore generally performs poorly in
comparison with Gurobi. The benefits of the social fair equilibria, in terms of
the values yielded for individual players, are discussed in the in-depth coverage
of the different case studies below.

Aloha. In this case study, introduced in [24], a number of users try to send
packets using the slotted Aloha protocol. We suppose that each user has one
packet to send and, in a time slot, if & users try and send their packet, then
the probability that each packet is successfully sent is ¢/k where ¢ € [0,1]. If a
user fails to send a packet, then the number of slots it waits before resending
the packet is set according to Aloha’s exponential backoff scheme. The scheme
requires that each user maintains a backoff counter, which it increases each time

72 Marta Kwiatkowska, Gethin Norman, David Parker, Gabriel Santos

Case study & property Plavers| 1 x Param.| CSG statistics [Constr.] Verif. |
[parameters] Y %21 values | States [Trans. [time(s)[time (s)]
NE,SW 2.2
CE,SW 2.1
Aloha 2 |\per| 408 2,778 6,285 0.1 51
(*1,%2) min =2 (R"™[F s;]) CE,SF 23.3
[bmas, 4] 3 |BSWl 408 | 107,799 355,734 30| 801
CE,SF 114.6
NE,SW 1042.9
4 | opsw| 208 68,689| 161,904 19| o
Aloha 4 NS5 08,8 | 159,892| 388,133 3.9 lggzg
(*1,%2) max =7 (Pmax =7 [F si At<D]) ‘5223 e
[bmas» @, D] 5 |‘Gpen | 20-88 |1,797.742(5,236,655 54.5| ©7N
Power control 2 |nmer|s4002| s2812| 260004 12 ggg'g
152) max 2 (B [F & NE,SF |8,40,0. , , . .
(} 2)max =7 (R’]1]) CE,SW 177.9
POWinaz, €maz s Ifail =3
“ 3 [$BSWIs15.0.2] 42,156| 740,758 3.5 70
CE,SF TO
Public good 3 [NBSWE o531 16,202] 35,884 0.8 2?3
(*1 »*2)max =7 (RC[I~ "mae]) I(\?;\V}\,V 71.9
[f, Tmas] 4 opaw| 33 391,961| 923,401| 13.0] .0
CE,Sw| 4,2 59,204] 118,342 31 5.2
Investors 2 |SSW 028 | 71731) 315804) 24|, 43?3
(1%2)max =2 (R [F cin;) S Sy
[Pbar, months] 3 | oper| 025 83,081| 462,920 3.6 a1

Table 2: Statistics for a set of CSG verification instances (timeout 2 hours).

there is a packet failure (up to bpmax) and, if the counter equals k and a failure
occurs, randomly chooses the slots to wait from {0,1,...,2%—1}.

We suppose that the objective of each user is to minimise the expected
time to send their packet, which is represented by the nonzero-sum formula
{usry: -+ usrm) (%1, %2)min=? (R™E[F s1 |+ - -+R¥™¢[F s,,,]). Synthesising opti-
mal strategies for this specification, we find that the cases for SWNE and SWCE
coincide (although SWCE returns a joint strategy for the players, this joint strat-
egy can be separated to form a strategy profile). This profile requires one user
to try and send first, and then for the remaining users to take turns to try and
send afterwards. If a user fails to send, then they enter backoff and allow all
remaining users to try and send before trying to send again. There is no gain to
a user in trying to send at the same time as another, as this will increase the
probability of a sending failure, and therefore the user having to spend time in
backoff before getting to try again. For SFNE, which has only been implemented
for the two-player case, the two users follow identical strategies, which involve
randomly deciding whether to wait or transmit, unless they are the only user
that has not transmitted, and then they always try to send when not in backoff.
In the case of SFCE, users can employ a shared probabilistic signal to coordinate
which user sends next. Initially, this is a uniform choice over the users, but as
time progresses the signal favours the users with lower backoff counters as these
users have had fewer opportunities to send their packet previously.

In Figure 2 we have plotted the optimal values for the players, where SW;
correspond to the optimal values (expected times to send their packets) for player

Correlated Equilibria and Fairness in Concurrent Stochastic Games 73

two users three users four users
) ‘ SPNE; RIS T =T sw, | e T sw, |
o O —m— sW, | . 8 —o—SW. | , 10 —e—SW. |
g —e— SW» g7 SWs-| g 9 SW5|
5 o4 —a— SFCE; | e 6" —a— SF; s 8 SW4—
he] 9 — o a o
Q Q 9] 7 SF;
+ [S 5 -
o 3 3] 3] 6
Q 2 4l o]
d o2t H 30 Mg
2 b 3
1 ! 1 1 ! 1 2
0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 1
q q q

Fig.2: Aloha: ((usry: -+« :usry,) (%1, %2)min=? (R¥™¢[F s1]+ - -+RI™MC[F 5.,])

1 for both SWNE and SWCE for the cases of two, three and four users. We see
that the optimal values for the different users under SFNE and SFCE coincide,
while under SWNE and SWCE they are different for each user (with the user
sending first having the lowest and the user sending last the highest). Comparing
the sum of the SWNE (and SWCE) values and that of the SFCE values, we see
a small decrease in the sum of less than 2% of the total, while for SENE there
is a greater difference as the players cannot coordinate, and hence try and send
at the same time.

Power control. This case study is based on a model of power control in cel-
lular networks from [7]. In the network there are a number of users that each
have a mobile phone. The phones emit signals that the users can strengthen by
increasing the phone’s power level up to a bound (pow,,,.). A stronger signal
can improve transmission quality, but uses more energy and lowers the qual-
ity of the transmissions of other phones due to interference. We use the ex-
tended model from [22], which adds a probability of failure (gf,i;) when a power
level is increased and assumes each phone has a limited battery capacity (emax)-
There is a reward structure associated with each phone representing transmis-
sion quality, which is dependent on both the phone’s power level and the power
levels of other phones due to interference. We consider the nonzero-sum prop-
erty (p1:--:Pm)) (%1, *2)max=?(R™ [F €1]+ - -+R™[F e,]), where each user tries
to maximise their expected reward before their phone’s battery is depleted.

In Figure 3 we have presented the expected rewards of the players under
the synthesised SWCE and SFCE joint strategies. When performing strategy
synthesis, in the case of two users the SWNE and SWCE yield the same profile
in which, when the users’ batteries are almost depleted, one user tries to increase
their phone’s power level and, if successful, in the next step, the second user then
tries to increase their phone’s power level. Since the first user’s phone battery
is depleted when the second tries to increase, this increase does not cause any
interference. On the other hand, if the first user fails to increase their power
level, then both users increase their battery levels. For the SFCE, the users
can coordinate and flip a coin as to which user goes first: as demonstrated by
Figure 3 this yields equal rewards for the users, unlike the SWCE. In the case of
three users, the SWNE and SWCE differ (we were only able to synthesise SWNE
for pow = 2 as for larger values the computation had not completed within

max

74 Marta Kwiatkowska, Gethin Norman, David Parker, Gabriel Santos

two users three users
— T T T
2,000 | —=— SW; b 2,100 | —=— SWCE;
—e— SW, —e— SWCE,
FRCE; —o— SWCE;3
2 1.900 |- FRNE; _ 3 2,000 - FRCE;
=) b >
g g
z £ 1,900
© 1,800, y% I
1,800,
1,700 ¢ N
| | 1,700 | | —
2 3 4 5 2 3 4 5
PowW, ., pow, .,
Fig. 3: Power control: ((p1:- - :pm) (*1, %2)max=2(R™[F e1)]+ - -+R™[F e,])
three player three player
\ T s — 400~ T T
125 | —®&— p1 (SWCE) g —a— SWNE
3 —e— p, (SWCE) 7 3501 —e—swom
S 100 |- ps (SWCE) - — 300 SFCE
5 —e— p; (FRCE) E 250 -
o] 75— =- p1 (SWNE) N s 200 -
g - 2- p2 (SWNE) o
g 50 ps (SWNE) B g 150 1
& < 100 .
M 25 - 4
. = & 50 .
0" 3 o-F3 ! S I
1.5 2 2.5 3 1.5 3

Fig. 4: Public good: {(p1: - :pm) (*1, %2)max=2 (R [IT="maz |4 - . REm [T="mes])

the timeout), again users take turns to try and increase their phone’s power
level. However, here if the users are unsuccessful the SWCE can coordinate as to
which user goes next trying to increase their phone’s battery level. Through this
coordination, the users’ rewards can be increased as the battery level of at most
one phone increases at a time, which limits interference. On the other hand, for
the SWNE users must decide independently whether to increase their phone’s
battery level and they each randomly decide whether to do so or not.

Public good. We next consider a variant of a public good game [19], based
on the one presented in [22] for the two-player case. In this game a number
of players each receive an initial amount of capital (e;n;) and, in each of rpqy
months, can invest none, half or all of their current capital. The total invested
by the players in a month is multiplied by a factor f and distributed equally
among the players before the start of the next month. The aim of the play-
ers is to maximise their expected capital which is represented by the formula:
(P15) (et %2 (R [T |- RO [T).

Figure 4 plots, for the three-player model, both the expected capital of indi-
vidual players and the total expected capital after three months for the SWNE,
SWCE and SFNE as the parameter f varies. As the results demonstrate the play-
ers benefit, both as individuals and as a population, by coordinating through a
correlated strategy. In addition, under the SFCE, all players receive the same
expected capital with only a small decrease in the sum from that of the SWCE.

Investors. The final case study concerns a concurrent multi-player version of
futures market investor model of [26], in which a number of investors (the players)

Correlated Equilibria and Fairness in Concurrent Stochastic Games 75

two player — CE (solid) & NE (dashed) three player — SW (solid) & SF (dashed)
5.4 3

— 2" N
5.2 = = -

51 P

¢ —m— CE;
21 —e— CE»
—4&— CE3

4.8 P

4.6 |- -

Expected reward
\
»

\
Expected reward
o
o
&

N

A A "

4.4 | | \ \ | = - 1.5 At + + +
2 3 4 5 6 7 8 9 2 3 4 5 6 7 8

Number of months Number of months

Fig. 5: Investors: ((invy:- - -:inv,,) (%1, %2)max=2 (RP/1[F ciny]+ - -+RP/m [F cin,,])

interact with a probabilistic stock market. In successive months, the investors
choose whether to invest, wait or cash in their shares, while at the same time the
market decides with probability pbar to bar each investor, with the restriction
that an investor cannot be barred two months in a row or in the first month,
and then the values of shares and cap on values are updated probabilistically.

We consider both two- and three-player models, where each investor tries to
maximise its individual profit represented by the following nonzero-sum prop-
erty: (invy:- - 1invy,) (%1, %2)max—? (RP1[F ciny]+ - -+RP = [F cin,,]). In Figure 5
we have plotted the different optimal values for NE and CE of the two-player
game and the different optimal values for CE of the three-player game (the
computation of NE values timed out for the three player case). As the results
demonstrate, again we see that the coordination that CEs offer can improve the
returns of the players and that, although considering social fairness does decrease
the returns of some players, this is limited, particularly for CEs.

5 Conclusions

We have presented novel techniques for game-theoretic verification of proba-
bilistic multi-agent systems, focusing on correlated equilibria and a notion of
social fairness. We began with the simpler case of normal form games and then
extended this to concurrent stochastic games, and used temporal logic to for-
mally specify equilibria. We proposed algorithms for equilibrium synthesis, im-
plemented them and illustrated their benefits, in terms of efficiency and fairness,
on case studies from a range of application domains.

Future work includes exploring the use of further game-theoretic topics within
this area, such as techniques for mechanism design or other concepts such as
Stackelberg equilibria. We plan to implement SFCE computation in Gurobi using
the big-M method [16] to encode implications and techniques from [37] to encode
conjunctions, which should yield a significant speed-up in their computation.

Acknowledgements. This project was funded by the ERC under the European
Union’s Horizon 2020 research and innovation programme (FUN2MODEL, grant
agreement No. 834115).

http://www.fun2model.org

76

Marta Kwiatkowska, Gethin Norman, David Parker, Gabriel Santos

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. de Alfaro, L.: Formal Verification of Probabilistic Systems. Ph.D. thesis, Stanford

University (1997)

Aminof, B., Kwiatkowska, M., B. Maubert, B., Murano, A., Rubin, S.: Probabilistic
strategy logic. In: Proc. IJCAT’19. pp. 32-38 (2019)

Aumann, R.: Subjectivity and correlation in randomized strategies. Journal of
Mathematical Economics 1(1), 67-96 (1974)

Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)

Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time
logic with fairness. Distributed Computing 11(3), 125-155 (1998)

Banerjee, T., Majumdar, R., Mallik, K., Schmuck, A.K., Soudjani, S.: Fast symbolic
algorithms for omega-regular games under strong transition fairness. Tech. Rep.
MPI-SWS-2020-007r, Max Planck Institute (2021)

Brenguier, R.: PRALINE: A tool for computing Nash equilibria in concurrent
games. In: Sharygina, N., Veith, H. (eds.) Proc. CAV’13. LNCS, vol. 8044, pp.
890-895. Springer (2013), Isv.fr/Software/praline/

Chatterjee, K., Fijalkow, N.: A reduction from parity games to simple stochastic
games. EPTCS 54, 74-86 (2011)

Chatterjee, K., Henzinger, T.: Value iteration. In: 25 Years of Model Checking.
LNCS, vol. 5000, pp. 107-138. Springer (2008)

Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Automatic verifi-
cation of competitive stochastic systems. Formal Methods in System Design 43(1),
61-92 (2013)

Chen, X., Deng, X., Teng, S.H.: Settling the complexity of computing two-player
Nash equilibria. J. ACM 56(3) (2009)

Daskalakis, C., Goldberg, P., Papadimitriou, C.: The complexity of computing a
Nash equilibrium. Communications of the ACM 52(2), 89-97 (2009)

De Moura, L., Bjgrner, N.: Z3: An efficient SMT solver. In: Proc. TACAS’08.
LNCS, vol. 4963, pp. 337-340. Springer (2008), github.com/Z3Prover/z3
Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Proc CAV’14. LNCS,
vol. 8559, pp. 737-744. Springer (2014), yices.csl.sri.com

Gilboa, 1., Zemel, E.: Nash and correlated equilibria: Some complexity considera-
tions. Games and Economic Behavior 1(1), 80-93 (1989)

Griva, I., Nash, S., Sofer, A.: Linear and Nonlinear Optimization: Second Edition.
CUP (01 2009)

Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2021),
www.gurobi.com

Gutierrez, J., Harrenstein, P., Wooldridge, M.J.: Reasoning about equilibria in
game-like concurrent systems. In: Proc. 14th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR’14) (2014)

Hauser, O., Hilbe, C., Chatterjee, K., Nowak, M.: Social dilemmas among unequals.
Nature 572, 524-527 (2019)

Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains. Springer (1976)
Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Multi-player equilibria ver-
ification for concurrent stochastic games. In: Gribaudo, M., Jansen, D., Remke, A.
(eds.) Proc. QEST’20. LNCS, Springer (2020)

Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: PRISM-games 3.0: Stochas-
tic game verification with concurrency, equilibria and time. In: Proc. CAV’20. pp.
475-487. LNCS, Springer (2020)

http://www.lsv.fr/Software/praline/
https://github.com/Z3Prover/z3
http://yices.csl.sri.com
https://www.gurobi.com

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Correlated Equilibria and Fairness in Concurrent Stochastic Games 7

Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Correlated equilibria and
fairness in concurrent stochastic games (2022), arXiv:2201.09702

Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Automatic verification of
concurrent stochastic systems. Formal Methods in System Design pp. 1-63 (2021)
Littman, M., Ravi, N., Talwar, A., Zinkevich, M.: An efficient optimal-equilibrium
algorithm for two-player game trees. In: Proc. UAT’06. pp. 298-305. AUAI Press
(2006)

Mclver, A., Morgan, C.: Results on the quantitative mu-calculus qMu. ACM Trans.
Computational Logic 8(1) (2007)

von Neumann, J., Morgenstern, O., Kuhn, H., Rubinstein, A.: Theory of Games
and Economic Behavior. Princeton University Press (1944)

Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic Game Theory.
CUP (2007)

Nudelman, E., Wortman, J., Shoham, Y., Leyton-Brown, K.: Run the GAMUT:
A comprehensive approach to evaluating game-theoretic algorithms. In: Proc. AA-
MAS’04. pp. 880-887. ACM (2004), gamut.stanford.edu

Osborne, M., Rubinstein, A.: An Introduction to Game Theory. OUP (2004)
Porter, R., Nudelman, E., Shoham, Y.: Simple search methods for finding a Nash
equilibrium. In: Proc. AAAT04. pp. 664-669. AAAT Press (2004)

Prisner, E.: Game Theory Through Examples. Mathematical Association of Amer-
ica, 1 edn. (2014)

Rabin, M.: Incorporating fairness into game theory and economics. The American
Economic Review 83(5), 1281-1302 (1993)

Rabin, M.: Fairness in repeated games. working paper 97-252, University of Cali-
fornia at Berkeley (1997)

Schwalbe, U., Walker, P.: Zermelo and the early history of game theory. Games
and Economic Behavior 34(1), 123-137 (2001)

Shapley, L.: Stochastic games. PNAS 39, 1095-1100 (1953)

Stevens, S., Palocsay, S.: Teaching use of binary variables in integer linear pro-
grams: Formulating logical conditions. INFORMS Transactions on Education
18(1), 28-36 (2017)

Waéchter, A.: Short tutorial: Getting started with 1POPT in 90 minutes. In: Com-
binatorial Scientific Computing. No. 09061 in Dagstuhl Seminar Proceedings,
Leibniz-Zentrum fiir Informatik (2009), github.com/coin-or/Ipopt

Waéchter, A., Biegler, L.: On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Mathematical Program-
ming 106(1), 25-57 (2006)

Supporting material, www.prismmodelchecker.org/files/tacas22equ/

http://arxiv.org/abs/2201.09702
http://gamut.stanford.edu
https://github.com/coin-or/Ipopt
http://www.prismmodelchecker.org/files/tacas22equ/

78 Marta Kwiatkowska, Gethin Norman, David Parker, Gabriel Santos

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Omega Automata

A Direct Symbolic Algorithm for Solving
Stochastic Rabin Games

Tamayjit Banerjee!, Rupak Majumdar?, Kaushik Mallik? @ X,
Anne-Kathrin Schmuck? ® =, and Sadegh Soudjani?

L TIT Delhi, New Delhi, India
2 MPI-SWS, Kaiserslautern, Germany
3 Newcastle University, Newcastle upon Tyne, UK

Abstract. We consider turn-based stochastic 2-player games on graphs
with w-regular winning conditions. We provide a direct symbolic algo-
rithm for solving such games when the winning condition is formulated
as a Rabin condition. For a stochastic Rabin game with k pairs over a
game graph with n vertices, our algorithm runs in O(nk”k!) symbolic
steps, which improves the state of the art.

We have implemented our symbolic algorithm, along with performance
optimizations including parallellization and acceleration, in a BDD-based
synthesis tool called Fairsyn. We demonstrate the superiority of Fairsyn
compared to the state of the art on a set of synthetic benchmarks derived
from the VLTS benchmark suite and on a control system benchmark from
the literature. In our experiments, Fairsyn performed significantly faster
with up to two orders of magnitude improvement in computation time.

1 Introduction

Symbolic algorithms for 2-player graph games are at the heart of many prob-
lems in the automatic synthesis of correct-by-construction hardware, software,
and cyber-physical systems from logical specifications. The problem has a
rich pedigree, going back to Church [10] and a sequence of seminal results
[6,31,17,30,13,14,34,21]. A chain of reductions can be used to reduce the syn-
thesis problem for w-regular specifications to finding winning strategies in
2-player games on graphs, for which (symbolic) algorithms are known (see, e.g.,
[29,14,34,27]). These algorithms form the basis for algorithmic reactive synthesis.

For systems under uncertainty, it is also essential to capture non-determinism
quantitatively using probability distributions [5,18,22,25]. Turn-based stochas-
tic 2-player games [3,9], also known as 21/2-player games, generalize 2-player
graph games with an additional category of “random” vertices: Whenever the
game reaches a random vertex, a random process picks one of the outgoing
edges according to a probability distribution. The qualitative winning problem
asks whether a vertex of the game graph is almost surely winning for Player 0.
Stochastic Rabin games were studied by Chatterjee et al. [7], who showed that
the problem is NP-complete and that winning strategies can be restricted to

© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 81-98, 2022.
https://doi.org/10.1007/978-3-030-99527-0_5

®

Check for
updates

http://orcid.org/0000-0001-9864-7475
http://orcid.org/0000-0003-2801-639X
http://orcid.org/0000-0003-1922-6678
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99527-0_5&domain=pdf

82 T. Banerjee et al.

be pure (non-randomized) and memoryless. Moreover, they showed a reduc-
tion from qualitative winning in an n-vertex k-pair stochastic Rabin game to
an O (n(k + 1))-vertex (k + 1)-pair (deterministic) Rabin game, resulting in an
O ((n(k +1))**2(k + 1)!) algorithm. In contrast, we provide a direct O(n*"2k!)
symbolic algorithm for the problem.

Our new direct symbolic algorithm is obtained in the following way. We
replace the probabilistic transitions with transitions of the environment con-
strained by extreme fairness as described by Pnueli [28]. Extreme fairness is
specified via a special set of Player 1 vertices, called live vertices. A run is ex-
tremely fair if whenever a live vertex is visited infinitely often, every outgoing
edge from this vertex is taken infinitely often. As our first contribution, we show
that to solve a qualitative stochastic Rabin game, we can equivalently solve a
(deterministic) Rabin game over the same game graph by interpreting random
vertices of the stochastic game as live vertices.

As our second contribution we prove a direct symbolic algorithm to solve
(deterministic) Rabin games with live vertices, which we call extremely fair ad-
versarial Rabin games. In particular, we show a surprisingly simple syntactic
transformation that modifies well-known symbolic fixpoint algorithm for solving
2-player Rabin games on graphs (without live vertices), such that the modified
fixpoint solves the extremely fair adversarial version of the game.

To appreciate the simplicity of our modification, let us consider the well-
known fixpoint algorithms for Biichi and co-Biichi games—particular classes of
Rabin games—given by the following pu-calculus formula:

Biichi: vY. pX. (GNCpre(Y)) U (Cpre(X)),
Co-Biichi: pX. vY. (GUCpre(X)) N (Cpre(Y)).

where Cpre(-) denotes the controllable predecessor operator and G denotes the
set of goal states that should be visited recurrently. In the presence of strong
transition fairness, the new algorithm becomes

Biichi: vY. uX. (GNCpre(Y))U (Apre(Y, X)),
Co-Biichi: vW. pX. vY. (GU Apre(W, X)) N (Cpre(Y)).

The only syntactic change (highlighted in blue) we make is to substitute the
controllable predecessor for the p variable X by a new almost sure predecessor
operator Apre(Y, X) incorporating also the previous v variable Y'; if the fixpoint
starts with a p variable (with no previous v variable), like for co-Biichi games,
we introduce one additional v variable in the front. For the general class of
Rabin specifications, with a more involved fixpoint and with arbitrarily high
nesting depth depending on the number of Rabin pairs, we need to perform this
substitution for every such Cpre(-) operator for every u variable.

We prove the correctness of this syntactic fixpoint transformation for solv-
ing Rabin games [31,27] in this paper. It can be shown that the same syntactic
transformation may be used to obtain fixpoint algorithms for qualitative solution
of stochastic games with other popular w-regular objectives, namely Reachabil-
ity, Safety, (generalized) Biichi, (generalized) co-Biichi, Rabin-chain, parity, and

A Direct Symbolic Algorithm for Solving Stochastic Rabin Games 83

GR(1). Owing to page constraints, these additional fixpoints are only discussed
in the extended version [4] of this paper, where we also generalize all results
presented in this paper to a weaker notion of fairness, called transition fairness.
In a nutshell, these results show that one can solve games with live vertices
while retaining the algorithmic characteristics and implementability of known
symbolic fixpoint algorithms that do not consider fairness assumptions.

We have implemented our symbolic algorithm for solving stochastic Rabin
games in a symbolic BDD-based reactive synthesis tool called Fairsyn. Fairsyn
additionally uses parallellization and a fixpoint acceleration technique [23] to
boost performance. We evaluate our tool on two case studies, one using synthetic
benchmarks derived from the VLTS benchmark suite [15] and the other from
controller synthesis for stochastic control systems [12]. We show that Fairsyn
scales well on these case studies, and outperforms the state-of-the-art methods
by up to two orders of magnitude.

All the technical proofs, the fixpoints for various other specifications, and an
additional benchmark taken from the software engineering literature [8] can be
found in the extended version of this paper under a slighly more relaxed setting
of the problem (transition fairness instead of extreme fairness) [4].

2 Preliminaries

Notation: We write Ny to denote the set of natural numbers including zero.
Given a,b € Ny, we write [a;b] to denote the set {n € Ny | a < n < b}. By
definition, [a;b] is an empty set if a > b. For any set A C U defined on the
universe U, we write A to denote the complement of A. Given an alphabet A,
we use the notation A* and A% to denote respectively the set of all finite words
and the set of all infinite words formed using the letters of the alphabet A. Let
A and B be two sets and R C A X B be a relation. For any element a € A, we
use the notation R(a) to denote the set {b € B | (a,b) € R}.

21/>-player game graph: We consider usual turn-based stochastic games, also
known as 21/2-player games, played between Player 0, Player 1, and a third player
representing environmental randomness which is treated as a “half player.” For-
mally, a 21/2-player game graph is a tuple G = (V, Vo, V1, V,., E) where (i) V is a
finite set of vertices, (ii) Vp, V1, and V,. are subsets of V' which form a partition of
V, and (iii) E C V x V is the set of directed edges. The vertices in V, are called
random vertices, and the edges originating in a random vertex are called random
edges, denoted as E,.. A 21/2-player game graph with no random vertices (i.e.
V. = 0) is called a 2-player game graph. A 21/2-player game graph with V; = {)
is called a 11/2-player game graph (also known as Markov Decision Processes or
MDPs). A 21/2-player game graph with V = V,. is known as a Markov chain.

Strategies: A (deterministic) strategy of Player 0 is a function pg: V*Vy — V
with po(wv) € E(v) for every wv € V*V}. Likewise, a strategy of Player 1 is a
function p;: V*V; — V with py(wv) € E(v) for every wv € V*V;. We denote
the set of strategies of Player ¢ by IT;. A strategy p; of Player ¢ (i € {0,1}) is
memoryless if for every wyv, wev € V*V;, we have p;(wiv) = p;(wav). In this

84 T. Banerjee et al.

paper we restrict attention to deterministic strategies, as randomized strategies

are no more powerful than deterministic ones for 2!/2-player Rabin games [7].

Plays: Consider an infinite sequence of vertices* 7 = v%'v?... € V¥. The

sequence 7 is called a play over G starting at the vertex v° if for every i € Ny, we
have v* € V and (v?,v**!) € E. A play is finite if it is of the form v%v!...v" for
some finite n € Ny. Let pg € Il and p; € II; be a pair of strategies for the two
players, and v € V be a given initial vertex. For every finite play 7 = v%v! ... o,
the next vertex v" T is obtained as follows: If v™ € Vj then v+ = pg(v0...0");
ifv™ € V; then vt = py (v ... v"); and if v™ € V,. then v is chosen uniformly
at random from the set E,(v™). The uniform probability distribution over the
random edges is without loss of generality for the problem considered in this
paper; we will come back to this after setting up the problem statement. Every
play generated in this way by fixing po, p1, and v° is called a play compliant with
po and py that starts at verter v°. The random choice in the random vertices
induces a probability measure P"** on the sample space of plays.” This is in
contrast to 2-player games, where for any choice of py € Ily, p1 € II;, and
1% € V, the resulting compliant play is unique.

Winning Conditions: A winning condition ¢ is a set of infinite plays over G,
i.e., ¢ C V¥ where the game graph G will always be clear from the context. We
adopt Linear Temporal Logic (LTL) notation for describing winning conditions.
The atomic propositions for the LTL formulas are sets of vertices, i.e., elements
of the set 2. We use the standard symbols for the Boolean and the temporal
operators: “=” for negation, “A” for conjunction, “V” for disjunction, “—” for
implication, “U” for until (AU B means “the play remains inside the set A until
it moves to the set B”), “(0” for next (OA means “the next vertex is in the set
A”), “Q” for eventually (OA means “the play will eventually visit a vertex from
the set A”), and “00" for always (OA means “the play will only visit vertices
from the set A”). The syntax and semantics of LTL can be found in standard
textbooks [3]. By slightly abusing notation, we use ¢ interchangeably to denote
both the LTL formula and the set of plays satisfying ¢. Hence, we write m € ¢
to denote the satisfaction of the formula ¢ by the play 7.

Rabin Winning Conditions: A Rabin winning condition is expressed using a
set of k Rabin pairs R = {(G1, R1),...,{Gk, Ri)}, where k is any positive integer
and G;, R; C 'V for all ¢ € [1;k]. We say that R has the index set P = [1;k]. A
play 7 satisfies the Rabin condition R if w satisfies the LTL formula

Q= \/ieP (ODRZ AN |:|<>Gl) . (2)

Almost Sure Winning: Let G be 21/2-player game graph, po € Iy and p; € IT;
be a pair of strategies, v° € V be an initial vertex, and ¢ be an w-regular

4 In our convention for denoting vertices, superscripts (ranging over Np) will denote
the position of a vertex within a given sequence/play, whereas subscripts, either 0,
1, or r, will denote the membership of a vertex in the sets V, Vi, or V, respectively.

5 The unique measure Pf 9Pl is obtained through Carathéodory’s extension theorem
by extending the pre-measure on every infinite extension—called the cylinder set—of
every finite play; see [3, pp. 757] for details.

A Direct Symbolic Algorithm for Solving Stochastic Rabin Games 85

specification over the vertices of G. Then P/9"”' () denotes the probability of
satisfaction of ¢ by the plays compliant with py and p; and starting at v°.
The set of almost sure winning states of Player 0 for the specification ¢ is
defined as the set W%* C V such that for every v° € W®* the following
holds: SUP . e 11, inf, e, Pvpé”pl (p) = 1. It is known [7, Thm. 4] that there is
an optimal (deterministic) memoryless strategy p§ € IIp—called the optimal
almost sure winning strategy—such that for every v € W®s it holds that

inf, e, P07 (p) = 1.

We extend the notion of winning to 2-player games as follows. Fix a 2-player
game graph G = (V, Vp, V4,0, E) and an w-regular specification ¢ over V. Player 0
wins the game from a vertex v" € V if Player 0 has a strategy po such that for
every Player 1 strategy p;, the unique resulting play starting at v" is in ¢. The
winning region W C V is the set of vertices from which Player 0 wins the game.
It is known that Player 0 has a memoryless strategy pj—called the optimal
winning strategy—such that for every Player 1 strategy p; € II; and for every
initial vertex v° € W, the resulting unique compliant play is in ¢ [19].

3 Problem Statement and Outline

Given a 21/2-player game graph G and a Rabin specification ¢ as in (2), we
consider the problem of solving the induced qualitative reactive synthesis prob-
lem. That is, we want to compute the set of almost sure winning states W *
of G w.r.t. ¢ and the corresponding optimal memoryless winning strategy pg of
Player 0. This problem was solved by Chatterjee et al. [7] via a reduction from
qualitative winning in the original 21/2-player Rabin game to winning in a larger
(deterministic) 2-player Rabin game with an additional Rabin pair.

Instead of inflating the game graph and introducing an extra Rabin pair at
the cost of more expensive computation, we propose a direct and computationally
more efficient symbolic algorithm over the original game graph G. We get this
algorithm by interpreting the random vertices of G as special Player 1 vertices,
called live vertices, which are subject to an extreme fairness assumption: along
every play, if a live vertex v is visited infinitely often, then all outgoing transitions
of v are also taken infinitely often. This re-interpretation results in a 2-player
Rabin game with special live Player 1 vertices that are subjected to extreme
fairness assumptions on Player 1’s behavior. We call such games extremely fair
adversarial (2-player) Rabin games. The correctness of our symbolic algorithm
then follows from the two main results of our paper.

(I) We show that qualitative winning in a 21/2-player Rabin game G is equiv-
alent to winning in the extremely fair adversarial (2-player) Rabin game G*
obtained from G. Moreover, the winning strategy po of Player 0 in G is also the
optimal almost sure winning strategy in G for ¢ (see Thm. 1 in Sec. 4).

(IT) We give a direct symbolic algorithm to compute the set of winning states,
along with the Player 0 winning strategy for extremely fair adversarial (2-player)
Rabin games (see Thm. 2 in Sec. 5).

86 T. Banerjee et al.

Both contributions are discussed in detail in Sec. 4 and Sec. 5, respectively.
Even though, for convenience, we have assumed a uniform probability distribu-
tion over the random edges, our contributions are valid for any arbitrary prob-
ability distribution. This follows from the established fact that the qualitative
analysis of 21/2-player games does not depend on the precise probability values
but only on the supports of the distributions [7].

We conclude the paper by an experimental evaluation in Sec. 6.

4 From Randomness to Extreme Fairness

In this section, we show that qualitative winning in 21/2-player Rabin games
is equivalent to winning in extremely fair adversarial (2-player) Rabin games
over the same underlying game graph. While it is known [16, Thm. 11.1] that
the reduction of random vertices to extreme fairness is sound and complete
for liveness winning conditions® we extend this connection to arbitrary Rabin
winning conditions in this section, and therefore to the entire class of w-regular
specifications. We start with a formal definition of extremely fair adversarial
games and the connection between randomness and extreme fairness, before
stating our main result in Thm. 1.

Extremely Fair Adversarial Games: Let G = (V, V), V1,0, E) be a 2-player
game graph with live vertices V¢ C V;, denoted using the tuple G¢ = (G, V*).
The set of edges originating from the live vertices are called the live edges, and
is denoted as E* := (V! x V)N E. A play 7 over G’ is extremely fair with respect
to V* if it satisfies the following LTL formula:

o= N\ner (BOv = 00w A OV)). (3)

Given G’ and an w-regular winning condition ¢ over V, Player 0 wins the ea-
tremely fair adversarial game over G' for ¢ from a vertex v° € V if Player 0

wins the game over G* for the winning condition o — ¢ from v°.

Randomness as Extreme Fairness: Let G = (V, V), V1, V,., E) be a 21 /2-player
game graph. Then we say that G induces the 2-player game graph with live
vertices G¢ = ((V, Vo, V1 UV, 0, E), ;). Intuitively, we interpret every random
vertex of G as a live Player 1 vertex in G¢. Obviously, this reinterpretation does
not change the structure of the underlying graph specified by V and FE.

Soundness of the Reduction: It remains to show that the almost sure winning
set and the optimal almost sure winning strategy of Player 0 in G for ¢ is the same
as the winning state set and the winning strategy of Player 0 in G for (. This is
formalized in the following theorem when ¢ is given as a Rabin condition. The
proof essentially shows that the random vertices of G simulate the live vertices
of G, and vice versa; details are in the extended version [4, App. B.6, pp. 61].

6 An LTL formula ¢ over V describes a liveness property if every finite play 7 over G
allows for a continuation 7’ s.t. 77’ € ¢.

A Direct Symbolic Algorithm for Solving Stochastic Rabin Games 87

Theorem 1. Let G be a 21/2-player game graph with vertex set V, ¢ C V¥ be a
Rabin winning condition as in (2), and G* be the 2-player game graph with live
edges induced by G. Let W C 'V be the set of vertices from which Player 0 wins
the extremely fair adversarial game over G' with respect to ¢, and W**' be the
almost sure winning set of Player 0 in the 21/2-player game G with respect to ¢.
Then, W = W, Moreover, an optimal almost sure winning strategy in G° is
also an optimal winning strategy in G, and vice versa.

5 Extremely Fair Adversarial Rabin Games

This section presents our main result, which is a symbolic fixpoint algorithm that
computes the winning region of Player 0 in the extremely fair adversarial game
over G with respect to any w-regular property formalized as a Rabin winning
condition. This new symbolic fixpoint algorithm has multiple unique features.
(I) Tt works directly over G*, without requiring any pre-processing step to reduce
G’ to a “normal” 2-player game with larger set of vertices.

(IT) Our new fixpoint algorithm is obtained from the algorithm of Piterman et al.
[27] by a simple syntactic change. We simply replace all controllable predecessor
operators over least fixpoint variables by a new almost sure predecessor operator
invoking the preceding maximal fixpoint variable. This makes the proof of our
new fixpoint algorithm conceptually simple (see Sec. 5.3).

At a higher level, we make a simple yet efficient syntactic transformation of
the fixpoint to incorporate the fairness assumption on the live vertices, without
introducing any extra computational complexity. Most remarkably, this transfor-
mation also works directly for fixpoint algorithms for reachability, safety, Biichi,
(generalized) co-Biichi, Rabin-chain, and parity games, as these can be formal-
ized as particular instances of a Rabin game. Moreover, it also works for gener-
alized Rabin, generalized Biichi, and GR(1) games. Owing to page constrains,
these additional cases are described in the extended version [4].

5.1 Preliminaries on Symbolic Computations over Game Graphs

Set Transformers: Our goal is to develop symbolic fixpoint algorithms to char-
acterize the winning region of an extremely fair adversarial game over a game
graph with live edges. As a first step, given G, we define the required symbolic
transformers of sets of states. We define the existential, universal, and control-
lable predecessor operators as follows. For S C V', we have

Prej(S) == {v e Vy | E(v)NS # 0}, (4a)
Pre}(S) == {v e Vi | E(v) C S}, and (4b)
Cpre(S) == Prej(S) UPre (S). (4c)

Intuitively, the controllable predecessor operator Cpre(S) computes the set of all
states that can be controlled by Player 0 to stay in S after one step regardless

88 T. Banerjee et al.

of the strategy of Player 1. Additionally, we define two operators which take
advantage of the fairness assumption on the live vertices. Given two sets S, T C
V', we define the live-existential and almost sure predecessor operators:

Lpre?(S) == {v e V!| E(v)N S # 0}, and (5a)
Apre(S,T) == Cpre(T) U (Lpre3 (T)n PreY(S)) . (5b)

Intuitively, the almost sure predecessor operator” Apre(S,T) computes the set
of all states that can be controlled by Player 0 to stay in T' (via Cpre(T)) as well
as all Player 1 states in V* that (a) will eventually make progress towards T if
Player 1 obeys its fairness-assumptions encoded in o (via Lpre?(T)) and (b) will
never leave S in the “meantime” (via Pre}(S)). All the used set transformers are
monotonic with respect to set inclusion. Further, Cpre(T') C Apre(S,T) always
holds, Cpre(T) = Apre(S,T) if V¢ = (), and Apre(S,T) C Cpre(S) if T C S.

Fixpoint Algorithms in the p-calculus: We use p-calculus [20] as a con-
venient logical notation to define a symbolic algorithm (i.e., an algorithm that
manipulates sets of states rather than individual states) for computing a set of
states with a particular property over a given game graph G. The formulas of the
p-calculus, interpreted over a 2-player game graph G, are given by the grammar

o =plX|oUplene|pre(p) | pX.o|vX.p

where p ranges over subsets of V', X ranges over a set of formal variables, pre
ranges over monotone set transformers in {Preg, Pre\f, Cpre, Lpre”, Apre}, and p
and v denote, respectively, the least and the greatest fixed point of the functional
defined as X — ¢(X). Since the operations U, N, and the set transformers pre
are all monotonic, the fixed points are guaranteed to exist. A p-calculus formula
evaluates to a set of states over G, and the set can be computed by induction over
the structure of the formula, where the fixed points are evaluated by iteration.
We omit the (standard) semantics of formulas (see [20]).

5.2 The Symbolic Algorithm

We now present our new symbolic fixpoint algorithm to compute the winning
region of Player 0 in the extremely fair adversarial game over G with respect to
a Rabin winning condition R. A detailed correctness proof can be found in the
extended version [4, App. B.3, pp. 40].

Theorem 2. Let G' = (G, V) be a game graph with live edges and R be a Rabin
condition over G with index set P = [1;k|. Further, let Z* denote the fized point
of the following u-calculus expression:

k

VY -1t X p, - U vYy, .uXp, . UVY;,Z.,LLXPZ. Uvak.uka. Uij ,
p1EP p2EP\; PrEP k-1 j=0

(6a)

7 We will justify the naming of this operator later in Rem. 1.

A Direct Symbolic Algorithm for Solving Stochastic Rabin Games 89

where Cp, = (ﬂg:o Epi) N [(Gp, N Cpre(Yy,)) U (Apre(Y,,, X,,))] . (6b)

with® po =0, Gy, =0 and Ry, =0 as well as P; := P\ {p1,...,p;}. Then Z*
is equivalent to the winning region W of Player 0 in the extremely fair adver-
sarial game over G° for the winning condition o in (2). Moreover, the fizpoint
algorithm runs in O(n*+2k!) symbolic steps, and a memoryless winning strategy
for Player 0 can be extracted from it.

5.3 Proof Outline

Given a Rabin winning condition over a “normal” 2-player game, [27] provided a
symbolic fixpoint algorithm which computes the winning region for Player 0. The
fixpoint algorithm in their paper is almost identical to our fixpoint algorithm
in (6): it only differs in the last term of the constructed C-terms in (6b). [27]
defines the term C,; as

(Moo) N [(Gy, N Cpre(x;,) U (Core(X;,)]

Intuitively, a single term C,,, computes the set of states that always remain within

Qp; = z:() R, while always re-visiting G, . That is, given the simpler (local)
winning condition
¢ = 0Q ADOG (7)
for two sets @, G C V, the set
vY. pX. QN [(GNCpre(Y)) U (Cpre(X))] (8)

is known to define exactly the states of a “normal” 2-player game G from which
Player 0 has a strategy to win the game with winning condition v [26]. Such
games are typically called Safe Biichi Games. The key insight in the proof of
Thm. 2 is to show that the new definition of C-terms in (6b) via the new al-
most sure predecessor operator Apre actually computes the winning state sets
of extremely fair adversarial safe Biichi games. Subsequently, we generalize this
intuition to the fixpoint for the Rabin games.

Fair Adversarial Safe Biichi Games: The following theorem characterizes
the winning states in an extremely fair adversarial safe Biichi game.

Theorem 3. Let G* = (G, V) be a game graph with live vertices and Q,G C V.
be two state sets over G. Further, let

7" =vY. pX. QN [(GNCpre(Y)) U (Apre(Y, X))] . (9)

Then Z* is equivalent to the winning region of Player 0 in the extremely fair ad-
versarial game over G¢ for the winning condition 1 in (7). Moreover, the fizpoint
algorithm runs in O(n?) symbolic steps, and a memoryless winning strategy for
Player 0 can be extracted from it.

8 The Rabin pair (Gpy, Rp,) = (0,0) in (6) is artificially introduced to make the
fixpoint representation more compact. It is not part of R.

90 T. Banerjee et al.

Intuitively, the fixpoints in (8) and (9) consist of two parts: (a) A minimal
fixpoint over X which computes (for any fixed value of Y') the set of states that
can reach the “target state set” T := @ NG N Cpre(Y') while staying inside the
safe set @, and (b) a maximal fixpoint over Y which ensures that the only states
considered in the target T are those that allow to re-visit a state in T while
staying in Q.

By comparing (8) and (9) we see that our syntactic transformation only
changes part (a). Hence, in order to prove Thm. 3 it essentially remains to show
that this transformation works for the even simpler safe reachability games.

Extremely Fair Adversarial Safe Reachability Games: A safe reachabil-
ity condition is a tuple (T, Q) with T,Q C V and a play 7 satisfies the safe
reachability condition (T,Q) if satisfies the LTL formula

¥ =QUT. (10)

A safe reachability game is often called a reach-while-avoid game, where the
safe sets are specified by an unsafe set R := @ that needs to be avoided. Their
extremely fair adversarial version is formalized in the following theorem and
proved in the extended version [4, Thm. 3.3].

Theorem 4. Let G = (G, V) be a game graph with live edges and (T, Q) be a
safe reachability winning condition. Further, let

Z* =vY. pX. TU(QnNApre(Y, X)). (11)

Then Z* is equivalent to the winning region of Player 0 in the extremely fair
adversarial game over G¢ for the winning condition v in (10). Moreover, the fiz-
point algorithm runs in O(n?) symbolic steps, and a memoryless winning strategy
for Player 0 can be extracted from it.

To gain some intuition on the correctness of Thm. 4, let us recall that the
fixpoint for safe reachability games without live edges is given by:

uX. T U(Q N Cpre(X)). (12)

Intuitively, the fixpoint computation in (12) is initialized with X° = { and
computes a sequence X%, X1, ..., X* of increasing sets until X* = X*+1. We
say that v has rank r if v € X7\ X"~ All states contained in X" allow Player 0
to force the play to reach T in at most r — 1 steps while staying in . The
corresponding Player 0 strategy po is known to be winning w.r.t. (10) and along
every play 7w compliant with pg, the path 7 remains in) and the rank is always
decreasing.

To see why the same strategy is also sound in the extremely fair adversarial
safe reachability game G, first recall that for vertices v ¢ V¢ of G, the operator
Apre(X,Y) simplifies to Cpre(X). With this, we see that for every v ¢ V* a
Player 0 winning strategy po in G¢ can always force plays to stay in @ and to
decrease their rank, similar to pg. Then every play 7 compliant with such a
strategy po and visiting a vertex in V¥ only finitely often satisfies (10).

A Direct Symbolic Algorithm for Solving Stochastic Rabin Games 91

Fig. 1. Fair adversarial game graph discussed in Ex. 1 and Ex. 2 with Player 0 and
Player 1 vertices being indicated by circles and squares, respectively. The live vertices
are V¢ = {2,3,5} (double square, blue), the target vertices are G = {6,9} (double
circle, green), and the unsafe vertices are @ = {1} (red,dotted).

The only interesting case for soundness of Thm. 4 is therefore every play =
that visits states in V* infinitely often. However, as the number of vertices is
finite, we only have a finite number of ranks and hence a certain vertex v € V*
with a finite rank r needs to get visited by 7 infinitely often. From the definition
of Apre, we know that only states v € V¢ are contained in X" if v has an outgoing
edge reaching X* with k < r. Because of the extreme fairness condition, reaching
v infinitely often implies that also a state with rank k s.t. k < r will get visited
infinitely often. As X! = T we can show by induction that T is eventually visited
along 7 while 7 always remains in) until then.

In order to prove completeness of Thm. 4 we need to show that all states
in V'\ Z* are losing for Player 0. Here, again the reasoning is equivalent to the
“normal” safe reachability game for v ¢ V*. For live vertices v € V¥, we see
that v is not added to Z* via Apre if v ¢ T and either (i) none of its outgoing
edges make progress towards T or (ii) some of its outgoing edges leave Z*. One
can therefore construct a Player 1 strategy that for (i)-vertices always choose
an arbitrary transition and thereby never makes progress towards T (also if v
is visited infinitely often), and for (ii)-vertices ensures that they are only visited
once on plays which remain in (. This ensures that (ii)-vertices never make
progress towards T' via their possibly existing rank-decreasing edges.

In the extended version [4], we have provided a detailed soundness and com-
pleteness proof of Thm. 4 along with the respective Player 0 and Player 1 strat-
egy construction. In addition, there we also proved Thm. 3 using a reduction to
Thm. 4 for every iteration over Y.

Ezample 1 (Extremely Fair adversarial safe reachability game). We consider an
extremely fair adversarial safe reachability game over the game graph depicted
in Fig. 1 with target vertex set T = G = {6,9} and safe vertex set @ = V '\ {1}.

We denote by Y™ the m-th iteration over the fixpoint variable Y in (11),
where Y? = V. Further, we denote by X™! the set computed in the i-th iteration
over the fixpoint variable X in (11) during the computation of Y™ where X™0 =
0. We further have X™! =T = {6,9} as Apre(-,)) =). Now we compute

X2 =TuU(QnApre(Y?, X))
={6,9} U (V \ {1} N [Cpre(X) U (Lpre? (X)) N Prel (V))]) = {3,5,6,7,8,9}.
{7,8} {3,5}

(13)

92 T. Banerjee et al.

We observe that the only vertices added to X via the Cpre term are 7 and
8. The live vertices 3 and 5 are added due to their outgoing edges leading to
the target vertex 6. The additional requirement Pre} (V) in Apre(Y?, X') is
trivially satisfied for all vertices at this point as Y = V and can therefore be
ignored. Doing one more iteration over X we see that now vertex 4 gets added
via the Cpre term (as it is a Player 0 vertex that allows progress towards 5) and
vertex 2 is added via the Apre term (as it is live and allows progress to 3). The
iteration over X terminates with Y1 = X1* =V \ {1}.

Re-iterating over X for Y! gives X??2 = X'2 = {3,5,6,7,8,9} as before.
However, now vertex 2 does not get added to X232 because vertex 2 has an
edge leading to V \ Y! = {1}. Therefore the iteration over X terminates with
Y? = X2* = V\ {1,2}. When we now re-iterate over X for Y2 we see that vertex
3 is not added to X32 any more, as vertex 3 has a transition to V'\ Y2 = {1, 2}.
Therefore the iteration over X now terminates with Y2 = X3* = V' \ {1,2,3}.
Now re-iterating over X does not change the vertex set anymore and the fixed-
point terminates with Y* = Y3 =V \ {1,2,3}.

We note that the fixpoint expression (12) for “normal” safe reachability
games terminates after two iterations over X with X* = {6,7,8,9}, as ver-
tices 7 and 8 are the only vertex added via the Cpre operator in (13). Due to
the stricter notion of Cpre requiring that all outgoing edges of Player 0 vertices
make process towards the target, (12) does not require an outer largest fixed-
point over Y to “trap” the play in a set of vertices which allow progress when
“waiting long enough”. This “trapping” required in (11) via the outer fixpoint
over Y actually fails for vertices 2 and 3 (as they are excluded from the winning
set of (11)). Here, Player 1 can enforce to “escape” to the unsafe vertex 1 in
two steps before 2 and 3 are visited infinitely often (which would imply progress
towards 6 via the existing live edges).

We see that the winning region in the “normal” game is much smaller than the
winning region for the extremely fair adversarial game, as adding live transitions
restricts the strategy choices of Player 1, making it easier for Player 0 to win.

Ezample 2 (Extremely fair adversarial safe Biichi game). We now consider an
extremely fair adversarial safe Biichi game over the game graph depicted in Fig. 1
with target set G = {6,9} and safe set Q@ =V \ {1}.

We first observe that we can rewrite the fixpoint in (9) as

VY. pX. [Q NG N Cpre(Y)]U[QN (Apre(Y, X)) . (14)

Using (14) we see that for Y? = V we can define 7° := QNG N Cpre(V) = G =
{6,9}. Therefore the first iteration over X is equivalent to (13) and terminates
with Y! = X1* =V \ {1}.

Now, however, we need to re-compute 1" for the next iteration over X and
obtain T = QNG N Cpre(Y!) = V\ {1} N {6,9} NV \ {1,2,9} = {6}. This
re-computation of T checks which target vertices are repeatedly reachable, as
required by the Biichi condition. As vertex 9 has no outgoing edge trivially it
cannot be reached repeatedly.

A Direct Symbolic Algorithm for Solving Stochastic Rabin Games 93

With this, we see that for the next iteration over X we only have one target
vertex 77 = {6}. Unlike the safe reachability case in Ex. 1, the vertex 7 cannot
be added to X?2, since Player 1 can always decide to take the edge towards 9
from 7, and therefore prevents repeated visit of a target state. Vertices 2 and 3
get eliminated for the same reason as in the safe reachability game within the
second and third iteration over Y. The overall fixpoint computation therefore
terminates with Y* = Y3 = {4,5,6,8}.

Proof of Thm. 2: The proof of Thm. 2 essentially follows from the same
arguments as in the soundness proof of the Rabin fixpoint for 2-player game by
Piterman et al. [27], which utilizes Thm. 4 and Thm. 3 at all suitable places. In
[4, App. A, pp. 29], we illustrate the steps of the Rabin fixpoint in (6) using a
simple extremely fair adversarial Rabin game with two Rabin pairs.

Remark 1. We remark that the fixpoint (11), as well as the Apre operator, are
similar in structure to the solution of almost surely winning states in concurrent
reachability games [1]. In concurrent games, the fixpoint captures the largest
set of states in which the game can be trapped while maintaining a positive
probability of reaching the target. In our case, the fixpoint captures the largest
set of states in which Player 0 can keep the game while ensuring a visit to the
target either directly or through some of the edges from the live vertices. The
commonality justifies our notation and terminology for Apre.

Remark 2. [2] studied fair CTL and LTL model checking where the fairness con-
dition is given by exteme fairness with all vertices of the transition system being
live. They show that CTL model checking under this all-live fairness condition,
can be syntactically transformed to mon-fair CTL model checking. A similar
transformation is possible for fair model checking of Biichi, Rabin, and Streett
formulas. The correctness of their transformation is based on reasoning similar
to our Apre operator. For example, a state satisfies the CTL formula VOp under
fairness iff all paths starting from the state either eventually visits p or always
visits states from which a visit to p is possible.

Complexity Analysis of (6): For Rabin games with & Rabin pairs, Piterman et
al. [27] proposed a fixpoint formula with alternation depth 2k + 1 . Using the ac-
celerated fixpoint computation technique of Long et al. [23], they deduce a bound
of O(n**1k!) symbolic steps. We can apply the same acceleration technique to
our fixpoint (6), yielding a complexity upper bound of O(n*+2k!) symbolic steps.
(The additional complexity is because of an additional outermost v-fixpoint.)

6 Experimental Evaluation

We developed a C++-based tool Fairsyn®, which implements the symbolic fair
adversarial Rabin fixpoint from Eq. (6) using Binary Decision Diagrams (BDD).

9 Repository URL: https://gitlab.mpi-sws.org/kmallik /synthesis-with-edge-fairness

https://gitlab.mpi-sws.org/kmallik/synthesis-with-edge-fairness

94 T. Banerjee et al.

Fairsyn has a single-threaded and a multi-threaded version, which respectively
use the CUDD BDD library [32] and the Sylvan BDD library [11]. In both, we
used a fixpoint acceleration procedure that “warm-starts” the inner fixpoints by
exploiting a monotonicity property (detailed in the extended version [4]).

We demonstrate the effectiveness of our proposed symbolic algorithm for 21 /2-
player Rabin games using a set of synthetic benchmark experiments derived from
the VLTS benchmark suite (Sec. 6.1) and a controller synthesis experiment for
a stochastic dynamical system (Sec. 6.2); in the extended version [4], we include
an additional software engineering benchmark example from the literature. In
all of these examples, Fairsyn significantly outperformed the state-of-the-art.

The experiments in Sec. 6.1 were performed using the multi-threaded Fairsyn
on a computer equipped with a 3 GHz Intel Xeon E7 v2 processor with 48 CPU
cores and 1.5 TiB RAM. The experiments in Sec. 6.2 were performed using the
single-threaded Fairsyn on a Macbook Pro (2015) laptop equipped with a 2.7 GHz
Dual-Core Intel Core i5 processor with 16 GiB RAM.

6.1 The VLTS Benchmark Experiments

We present a collection of synthetic benchmarks for empirical evaluation of the
merits of our direct symbolic algorithm compared to the one using the reduction
to 2-player games [7]; in the following, we refer the latter as the indirect approach.
Like our direct algorithm, the indirect approach has been implemented in Fairsyn
and benefits from the same Sylvan-based parallel BDD-library and accelerated
fixpoint solution technique. We collect the first 20 transition systems from the
Very Large Transition Systems (VLTS) benchmark suite [15]; their descriptions
can be found in the VLTS benchmark website. For each of them, we randomly
generated instances of 21/2-player Rabin games with up to 3 Rabin pairs using
the following procedure: (i) we labeled a given fraction of the vertices as ran-
dom vertices, (ii) we equally partitioned the remaining vertices into system and
environment vertices, and (iii) for every set in R = {(G1, R1), ..., (Gk, Rk)}, we
randomly selected up to 5% of all vertices to be contained in the set. All the ver-
tices in (i), (ii), and (iii) were selected randomly. In these examples, the number
of vertices ranged from 289-164,865, the number of BDD variables ranged from
9-18, and the number of transitions from 1224-2,621,480.

In Fig. 2, we compare the running times of Fairsyn and the indirect approach.
On the left scatter plot, every point corresponds to one instance of the randomly
generated benchmarks, where the X and the Y coordinates represent the run-
ning time for Fairsyn and the indirect approach respectively. The solid red line
indicates the exact same performance for both methods, whereas the dashed
red line indicates an order of magnitude performance improvement for Fairsyn
compared to the indirect approach. Observe that Fairsyn was faster by up to
two orders of magnitude for the majority of the cases. In the experiments, the
memory footprint of Fairsyn and the indirect approach was similar.

In the right plot, the X-axis corresponds to the proportion of random vertices
within the set of vertices in percentage: 0% corresponds to a 2-player game and
100% corresponds to a Markov chain. The Y-axis corresponds to the running

A Direct Symbolic Algorithm for Solving Stochastic Rabin Games 95

time normalized with respect to the running time for the 0% case. We observe
that Fairsyn was insensitive to the change of proportion of the random vertices.
On the other hand, the indirect approach took longer time for larger proportion
of random vertices, because for every random vertex it adds 3k + 2 additional
vertices, thus causing a linear blowup in the size of the game graph. The big
variations in the time differences of the two approaches are due to the varying
size of the experiments: The larger a game graph is, the larger is the difference.
Interestingly, for both Fairsyn and the indirect method, there is a dip in the
running time when all the vertices are random (i.e. the 100% case), which is
possibly due to faster computation of the Cpre and Apre operators and faster
convergence of the fixpoint algorithm, owing to the absence of Player 0 and
Player 1 vertices.

1,500

103 [

1,000

& | 500 |- , 5

The indirect approach (s)

Normalized running time

10-3 \
1073 10° 108 0 20 40 60 80 100

Fairsyn (s) Fraction of random vertices (%)

Fig. 2. LEFT: Comparison of running time of Fairsyn and the indirect approach on
the VLTS benchmarks. All axes are in log-scale. RIGHT: Sensitivity of normalized
running time w.r.t. variation of the proportion of random vertices. The blue and the red
lines correspond to different instances of Fairsyn and the indirect approach respectively.

6.2 Synthesis for Stochastically Perturbed Dynamical Systems

Synthesizing verified symbolic controllers for continuous dynamical systems is an
active area in cyber-physical systems research [33]. We consider a stochastically
perturbed dynamical system model, called the bistable switch [12], which is an
important model studied in molecular biology. The system model, call it X, has a
continuous and compact two-dimensional state space X = [0,4] x [0, 4] € R? and
a finite input space U = {-0.5,0,0.5} x {—0.5,0,0.5}. Suppose for any given
time k € N, z1(k),z2(k) are the two states, uj(k),uz(k) are the two inputs,
and wy(k), wa(k) are a pair of statistically independent noise samples drawn

from a pair of distributions with bounded supports Wy = [-0.4,—0.2], Wy =
[—0.4, —0.2] respectively. Then the states of X in the next time instant are:

(z1(K))?
(z1(k))* +1
A controller C for X' is a function C: X — U mapping the state z(k) at any
time instant k to a suitable control input w(k). Then applying (15) repeatedly

.Z‘Q(k + 1) = Z‘Q(k’) + 0.05 (— 025$2(k’)> + UQ(k‘) + wg(k)

96 T. Banerjee et al.

Table 1. Performance comparison between Fairsyn and StochasticSynthesis (abbrevi-
ated as SS) [12] on a comparable implementation of the abstraction (uniform grid-based
abstraction). Col. 1 shows the size of the resulting 21/2-player game graph (computed
using the algorithm given in [24]), Col. 2 and 3 compare the total synthesis times and
Col. 4 and 5 compare the peak memory footprint (as measured using the “time” com-
mand) for Fairsyn and SS respectively. “OoM” stands for out-of-memory.

vertices in Total synthesis time |Peak memory footprint
21/2-game abstraction Fairsyn SS Fairsyn SS
3.8 x 10° 0.4s 30s 66 MiB 156 MiB
2.2 x 10* 8.2s 555 72MiB 1GiB
1.1 x 10° 1min23s|16minls| 108 MiB 81 GiB
6.6 x 10° 5min27s| OoM 166 MiB 126 GiB
4.3 x 10° 41min7s| OoM | 517 MiB 127 GiB

with u(k) = C(x(k)), starting with an initial state (x1(0),22(0)) = 2(0) = Tinit,
gives us an infinite sequence of states (x(0),z(1),x(2),...) called a path. For
a fixed controller C' and for a given initial state zj,i;, we obtain a probability
measure ng‘ . on the sample space of paths of X, in a way similar to how we
obtained the probability measure P/0** over infinite plays of 21/2-player games.

Let ¢ € X“ be a Rabin specification, defined using a finite predicate over X.
We extend the notion of almost sure winning for con-

trol systems in the obvious way: A state x € X of X is 4 cl 1A
almost sure winning if there is a controller C' such that C
PC(¢) = 1. The controller synthesis problem asks to C| |C
compute an optimal controller C'* such that for every 0 B

almost sure winning state z, PS" (¢) = 1. 0 4

Majumdar et al. [24] show that this synthesis prob-
lem can be approximately solved by lifting the system
X to a finite 21 /2-player game. We used Fairsyn to solve the resulting 21/2-player
Rabin games obtained for the controller synthesis problem for X in (15) and for
the following specification given in LTL using the predicates A, B, C, D as shown
in Fig. 3: ¢ :== (O0B — 0C) A (OA — O-C).

In Table 1, we compare the performance of Fairsyn against the state-of-the-
art algorithm for solving this problem, which is implemented in the tool called
StochasticSynthesis (SS) [12]. It can be observed that Fairsyn significantly out-
performs SS for every abstraction of different coarseness considered here.

Fig. 3. Predicates over X.

Acknowledgments:
R. Majumdar and K. Mallik are funded through the DFG project 389792660

TRR 248-CPEC, A.-K. Schmuck is funded through the DFG project (SCHM
3541/1-1), and S. Soudjani is funded through the EPSRC New Investigator
Award CodeCPS (EP/V043676/1).

References

1. de Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent reachability games. In:
39th Annual Symposium on Foundations of Computer Science, FOCS. pp. 564-575.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A Direct Symbolic Algorithm for Solving Stochastic Rabin Games 97

IEEE Computer Society (1998)

Aminof, B., Ball, T., Kupferman, O.: Reasoning about systems with transition
fairness. In: 11th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning. LNCS, vol. 3452, pp. 194-208. Springer (2004)
Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
Banerjee, T., Majumdar, R., Kaushik, M., Schmuck, A.K., Soudjani, S.: Fast sym-
bolic algorithms for omega-regular games under strong transition fairness (2021),
https://www.mpi-sws.org/tr/2020-007.pdf

Belta, C., Yordanov, B., Gol, E.A.: Formal methods for discrete-time dynamical
systems, vol. 15. Springer (2017)

Buchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Transactions of the American Mathematical Society 138, 295-311 (1969)
Chatterjee, K., de Alfaro, L., Henzinger, T.A.: The complexity of stochastic Ra-
bin and Streett games. In: Proceedings of the 32nd International Colloquium on
Automata, Languages and Programming (ICALP). Lecture Notes in Computer
Science, vol. 3580, pp. 878-890. Springer (2005)

Chatterjee, K., De Alfaro, L., Faella, M., Majumdar, R., Raman, V.: Code aware
resource management. Formal Methods in System Design 42(2), 146-174 (2013)
Chatterjee, K., Jurdzinski, M., Henzinger, T.A.: Quantitative stochastic parity
games. In: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms. pp. 121-130. Society for Industrial and Applied Mathematics (2004)
Church, A.: Logic, arithmetic, and automata. Proceedings of the International
Congress of Mathematicians, 1962 pp. 23-35 (1963)

van Dijk, T., van de Pol, J.: Sylvan: Multi-core decision diagrams. In: International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
pp. 677—691. Springer (2015)

Dutreix, M., Huh, J., Coogan, S.: Abstraction-based synthesis for stochastic sys-
tems with omega-regular objectives. arXiv preprint arXiv:2001.09236 (2020)
Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of pro-
grams. In: FoCS. vol. 88, pp. 328-337 (1988)

Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: FoCS.
vol. 91, pp. 368-377 (1991)

Garavel, H., Descoubes, N.: Very large transition systems (2003), http://cadp.
inria.fr /resources/vlts/

van Glabbeek, R., Hofner, P.: Progress, justness, and fairness. ACM Comput. Surv.
52(4) (2019)

Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proceedings of the
fourteenth annual ACM symposium on Theory of computing. pp. 6065 (1982)
Kamgarpour, M., Summers, S., Lygeros, J.: Control design for property specifica-
tions on stochastic hybrid systems. Hybrid Systems: Computation and Control pp.
303-312 (April 2013)

Klarlund, N.: Progress measures, immediate determinacy, and a subset construc-
tion for tree automata. Annals of Pure and Applied Logic 69(2-3), 243-268 (1994)
Kozen, D.: Results on the propositional p-calculus. Theoretical Computer Science
27(3), 333 — 354 (1983), international Colloquium on Automata, Languages and
Programming (ICALP)

Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’05). pp. 531-540. IEEE
(2005)

https://www.mpi-sws.org/tr/2020-007.pdf
http://cadp.inria.fr/resources/vlts/
http://cadp.inria.fr/resources/vlts/

98

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

T. Banerjee et al.

Laurenti, L., Lahijanian, M., Abate, A., Cardelli, L., Kwiatkowska, M.: Formal
and efficient synthesis for continuous-time linear stochastic hybrid processes. IEEE
Transactions on Automatic Control (2020)

Long, D.E., Browne, A., Clarke, E.M., Jha, S., Marrero, W.R.: An improved al-
gorithm for the evaluation of fixpoint expressions. In: International Conference on
Computer Aided Verification. pp. 338-350. Springer (1994)

Majumdar, R., Mallik, K., Schmuck, A.K., Soudjani, S.: Symbolic qualitative con-
trol for stochastic systems via finite parity games. In: ADHS 2021 (2021)
Majumdar, R., Mallik, K., Soudjani, S.: Symbolic controller synthesis for Biichi
specifications on stochastic systems. In: Proceedings of the 23rd International Con-
ference on Hybrid Systems: Computation and Control. pp. 1-11 (2020)

Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems. In: Annual Symposium on Theoretical Aspects of Computer Science. pp.
229-242. Springer Berlin Heidelberg (1995)

Piterman, N., Pnueli, A.: Faster solutions of Rabin and Streett games. In: 21st
Annual IEEE Symposium on Logic in Computer Science (LICS’06). pp. 275-284
(2006)

Pnueli, A.: On the extremely fair treatment of probabilistic algorithms. In: Pro-
ceedings of the fifteenth annual ACM symposium on Theory of computing. pp.
278-290 (1983)

Pnueli, A., Rosner, R.: A framework for the synthesis of reactive modules. In: Vogt,
F.H. (ed.) International Conference on Concurrency, Proceedings. LNCS, vol. 335,
pp. 4-17. Springer (1988)

Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Annual ACM
Symposium on Principles of Programming Languages. pp. 179-190. ACM Press
(1989)

Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society 141, 1-35 (1969)

Somenzi, F.: Cudd 3.0.0 (2019), https://github.com/ivmai/cudd

Tabuada, P.: Verification and control of hybrid systems: a symbolic approach.
Springer Science & Business Media (2009)

Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theor. Comput. Sci. 200(1-2), 135-183 (1998)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://github.com/ivmai/cudd
http://creativecommons.org/licenses/by/4.0/

Practical Applications of the
Alternating Cycle Decomposition

Antonio Casares! (=)@, Alexandre Duret-Lutz? @, Klara J. Meyer3 @,
Florian Renkin?{), and Salomon Sickert**

! LaBRI, Université de Bordeaux, France, antonio.casares-santos@labri.fr
2 LRDE, EPITA, France, ad1@lrde.epita.fr, frenkin@lrde.epita.fr
% Independent Researcher, email@klarameyer.de
4 School of Computer Science and Engineering, The Hebrew University, Israel,
salomon.sickert@mail.huji.ac.il

Abstract. In 2021, Casares, Colcombet, and Fijalkow introduced the
Alternating Cycle Decomposition (ACD) to study properties and trans-
formations of Muller automata. We present the first practical implemen-
tation of the ACD in two different tools, Owl and Spot, and adapt it
to the framework of Emerson-Lei automata, i.e., w-automata whose ac-
ceptance conditions are defined by Boolean formulas. The ACD provides
a transformation of Emerson-Lei automata into parity automata with
strong optimality guarantees: the resulting parity automaton is minimal
among those automata that can be obtained by duplication of states.
Our empirical results show that this transformation is usable in practice.
Further, we show how the ACD can generalize many other specialized
constructions such as deciding typeness of automata and degeneraliza-
tion of generalized Biichi automata, providing a framework of practical
algorithms for w-automata.

1 Introduction

Automata over infinite words have many applications, including verification and
synthesis of reactive systems with specifications given in formalisms such as Lin-
ear Temporal Logic (LTL) [27, 23, 11, 12, 2, 29]. The synthesis problem from
LTL specifications asks, given an LTL formula ¢, to build a controller that pro-
cesses an input word letter by letter, producing an output word, such that the
combined input-output-word satisfies . The automata-theoretic approach to
this problem (first introduced by Pnueli and Rosner [27]) consists of building a
deterministic w-automaton A equivalent to the LTL specification ¢, then con-
struct a game from A in which the opponent chooses the input letters for the
automaton, and finally solve this game and obtain a controller from a winning
strategy (whenever such a strategy exists). The automaton A can use differ-
ent kinds of acceptance conditions (Rabin, Emerson-Lei, Muller, parity...) and

* Salomon Sickert is supported in part by the Deutsche Forschungsgemeinschaft (DFG)
under project number 436811179, and in part funded by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 787367 (PaVeS)

© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 99-117, 2022.
https://doi.org/10.1007/978-3-030-99527-0_6

Check for
updates

https://orcid.org/0000-0002-6539-2020
https://orcid.org/0000-0002-6623-2512
https://orcid.org/0000-0003-1334-9079
https://orcid.org/0000-0002-5066-1726
https://orcid.org/0000-0002-0280-8981
mailto:antonio.casares-santos@labri.fr
mailto:adl@lrde.epita.fr
mailto:frenkin@lrde.epita.fr
mailto:email@klarameyer.de
mailto:salomon.sickert@mail.huji.ac.il
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99527-0_6&domain=pdf

100 A. Casares, A. Duret-Lutz, K.J. Meyer, F. Renkin, S. Sickert

thus we obtain games with different winning conditions. Among these games,
parity games are the easiest to solve and there are highly-developed techniques
for parity games solvers. Thus it is common practice to transform the automa-
ton A to a parity one (for which we might need to augment the state space
of the automaton). The top-ranked tools in the SyntComp competitions [17],
Strix [23] (winner in editions 2018, 2019, 2020 and 2021) and 1tlsynt [26], use
this approach, producing a transition-based Emerson-Lei automata (TELA) as
an intermediate step before constructing the parity automaton. For this reason,
optimal and efficient procedures to transform Emerson-Lei automata into parity
automata are of great importance.

Emerson-Lei (EL) acceptance conditions (first defined by Emerson and Lei
[10], and reinvented in the HOA format [3]) are arbitrary positive Boolean for-
mulas over the primitives Inf(¢) and Fin(c) where ¢’s are colors from a set I'. A
run is accepting if the set of colors F C 2" seen infinitely often is a satisfying as-
signment to the EL acceptance condition (see Section 2 for a formal definition).
Note that an explicit representation of all satisfying assignments is comparable
to the Muller condition [15, Section 1.3.2]. Since the Boolean structure of LTL
formulas can be mimicked by the Emerson-Lei acceptance conditions, a transla-
tion of LTL formulas to Emerson-Lei automata is particularly convenient.

Many algorithms to transform Emerson-Lei and Muller automata to parity
have been proposed. In essence they all transform an automaton by turning
each original state ¢ into multiple states of the form (gq,r) where r records some
information about the current run, and transitions leaving (g, r) otherwise have a
one-to-one mapping with those leaving q. Definition 3 calls this a locally bijective
morphism, and we like to refer to those as algorithms that duplicate states. For
instance in the Later Appearance Record (LAR) [16], r is a list of all colors
ordered by most recent appearance, producing therefore a blow-up of |I'|! in the
state-space of the automaton. The State Appearance Record (SAR) [24, 22] is a
variation of this idea for state-based conditions, and the Color Appearance Record
(CAR) [28] is a variation for the Emerson-Lei condition. The Index Appearance
Record (IAR) [24, 22, 20] is a specialized construction for Rabin and Streett
conditions, where r is now an ordering of pair indices. These algorithms have
no particular insights about the input acceptance condition, such as inclusion or
redundancies between colors (or pairs). In the Zielonka-tree transformation [31],
r is a reference to a branch in a tree representation of a Muller condition. That
tree representation is tailored to the condition and allows such simplifications
compared to previous methods (it can be proven to be always better [6, 25]).
While none of these algorithms use the structure of the input automaton to
optimize the produced automata, some heuristics have been proposed [28, 25, 21].

In 2021, inspired by the Zielonka tree, Casares et al. introduced the Alternat-
ing Cycle Decomposition (ACD) of a Muller automaton [6]. Simply put, the ACD
is a forest, i.e., a list of trees, that captures how accepting and rejecting cycles
interleave in the automaton. They use the ACD to transform Muller automata
into parity automata, and they prove a strong optimality result: the resulting
automaton uses an optimal number of colors and has a minimal number of states

Practical Applications of the Alternating Cycle Decomposition 101

among those parity automata that can be obtained by duplicating states of the
original one (see Theorem 1 for a formal statement). The main novelty of this
transformation is that it does not only take into account the structure of both
the acceptance condition and the automaton, but it exactly captures how they
interact with each other. Moreover, Casares et al. [6] show that we can obtain
some other valuable information about a Muller automaton from its ACD: for
example the ACD can be used to decide typeness, i.e, if we can relabel it with
another acceptance condition (parity, Rabin, Streett...). Their approach is pri-
marily theoretical and puts the emphasis on how the ACD can be useful to
obtain new results concerning Muller automata, but little is said about the costs
of computing the ACD or the applicability of the transformation in practice.

Contributions. In this paper, we show that the ACD is practical. We adapt the
definition of the ACD to Emerson-Lei automata and the HOA format [3]. We
implement the ACD and the associated transformation in two tools: Owl [18]
and Spot [9], providing baselines for efficient implementations of these struc-
tures. We show that the ACD gives a usable and useful method to transform
Emerson-Lei automata into parity ones, improving upon any previous transfor-
mation in terms of the size of the output parity automaton. We extend the ACD
to produce state-based automata, and show that the ACD generally beats tradi-
tional degeneralization-based procedures. Our implementation can also use the
ACD to check typeness of deterministic automata.

Structure of the paper. We begin by providing some common definitions in Sec-
tion 2. In Section 3, we define the Alternating Cycle Decomposition, adapting
the definition of Casares et al. [6] to Emerson-Lei automata, and we provide an
algorithm to compute it. In Section 5, we study the transformation of Emerson-
Lei automata into parity ones using the ACD and we show experimental results
obtained by comparing the ACD-transform implemented in Spot and Owl with
other commonly used transformations. In Section 6 we show experimental re-
sults in the particular case of degeneralization of generalized Biichi automata.
In Section 7 we discuss the utility of the ACD to decide typeness of automata.

2 Preliminaries

We denote by |A| the cardinality of a set A and by 24 its power set. For a
finite alphabet X', we write X* and X for the sets of finite and infinite words,
respectively, over X. The empty word is denoted by €. Given v € X* w € X¥,
we denote their concatenation by v - w and we write v C w if v is a prefix of w.
We note inf(w) the set of letters that occur infinitely often in w. Given a map
0: A — B and a subset A’ C A, we denote o|4/ the restriction of o to A’. We
extend o to A* and A“ component-wise and we denote these extensions by o
whenever no confusion arises.

A (directed, edge-colored) graph is a pair G = (V, E) where V is a finite set
of vertices and E C V x I' x V is a finite set of I'-colored edges. Note that with

102 A. Casares, A. Duret-Lutz, K.J. Meyer, F. Renkin, S. Sickert

Table 1: Encoding of common acceptance conditions into Emerson-Lei condi-

tions. The variables c, ¢g, c1, . .. stand for arbitrary colors from the set I.

(B) Biichi Inf(c)
(GB) generalized Biichi N; Inf(cs)

(C) co-Biichi Fin(c)
(GC) generalized co-Biichi \/, Fin(c;)

(R) Rabin vz (Fin(czi) N |nf(62i+1))

(S) Streett N, (Inf(c2:) V Fin(c2i41))

(P) parity min even Inf(0) V (Fin(1) A (Inf(2) v (Fin(3) A...)))

parity min odd Fin(0) A (Inf(1) V (Fin(2) A (Inf(3) vV ...)))

this definition one can have multiple differently colored edges from a vertex v to
a vertex u. A graph G’ = (V', E’) is a subgraph of G (written G’ C G) if V' CV
and E' C E. A graph G = (V, E) is strongly connected if for every pair of vertices
(v,u) € V? there is a path from v to u. A strongly connected component (SCC)
of a graph G is a maximal strongly connected subgraph of G.

Emerson-Lei acceptance conditions. Let I' = {0,...,n — 1} be a finite set of n
integers called colors, from now on also written I" = {@, @, ...} in our examples.
We define the set EL(I") of acceptance conditions according to the following
grammar, where ¢ stands for any color in I:

a:z=T]|L]Inf(e)|Fin(e) | (aha)| (aVa)

Acceptance conditions are interpreted over subsets of I'. For C' C I" we define
the satisfaction relation C' |= « inductively according to the following semantics:

CET CEInf(e)iffceC CEahaif CEaand CEay
CHKELl CEFnifc¢gC CEmVaifCkEao orCEa

We denote by —«a the negation of the acceptance condition «, i.e., Fin(m) be-
comes Inf(m), and vice-versa, A becomes V, etc. We assume that constants are
propagated, i.e., a formula is either T, 1, or does not contain T and L.

Table 1 shows how common acceptance conditions can be encoded into
Emerson-Lei conditions. Note that colors may appear multiple times; for in-
stance (Fin(®) A Inf(€)) Vv (Fin(@) A Inf(®)) is a Rabin condition.

Emerson-Lei automata. A transition-based Emerson-Lei automaton (TELA) is
a tuple A = (Q, X, Qo, A, I,a), where @ is a finite set of states, X' is a finite
input alphabet, Qo C @ is a non-empty set of initial states, I" is a set of colors,
A C QxXx2I'xQ is a finite set of transitions, and o € EL(I") is an Emerson-Lei
condition. The graph of A is the directed edge-colored graph G 4 = (Q, E) where
the edges E = {(¢,C,q¢’) : Ja € X. (q,a,C,q") € A} are obtained from A by
removing Y. We denote the transition (g, a,C, ¢") € A and the edge (¢,C,¢") € E

by ¢ a0, ¢ and ¢ <, q', respectively. Further, we might omit a or C' if they are

Practical Applications of the Alternating Cycle Decomposition 103

clear from the context. We denote by 7 the projection of A or E to the set of
colors I'. Given a word w = ag-ay-az--- € X* a run over w in A is a sequence
0= (qo,a0,Co,q1) (q1,a1,C1,q2) --- € A¥ such that o € Qp. The output of the
run g, is the word (o) € (21)*. A run g is accepting if inf(y(0)) F a. A word
w € X% is accepted (or recognized) by A if there exists an accepting run over
w in A. We denote L£(A) the set of words accepted by A. Two automata A, A’
are equivalent if L(A) = L(A’). The size of an automaton, written |A|, is the
cardinality of its set of states. A state ¢ € @ is reachable if there is a path from
some state in Qg to ¢ in G 4.

An automaton A is deterministic if Qg is a singleton and for every ¢ € @

and a € X there is at most one transition from ¢ labeled with a, ¢ a0, q € A.

We will use automata with acceptance defined over transitions (instead of
stated-based acceptance) by default. However, in Sections 5 and 6 we will also
discuss transformations towards automata with state-based acceptance.

If the acceptance condition of an automaton is represented as a condition of
kind X (cf. Table 1), we call it an X -automaton. We assume that each transition
of a parity-automaton is colored with exactly one color; this can be achieved by
substituting the set C' in a transition ¢ = ¢’ by min C (if C #0)orby {|T'|+1}
if C = 0. (If C is a singleton we will omit the brackets in the notation).

Labeled trees. A tree is a non-empty prefix-closed set T C N* whose elements
are called nodes. It is partially ordered by the prefix relation; if z C y we say
that = is an ancestor of y and y is a descendant of x (we add the adjective
“strict” if moreover x # y). The empty string ¢ is the root of the tree. The set
of children of a node x € T is Childrenp(z) = {x -1 € T : i € N}. The set of
leaves of T is Leaves(T) = {x € T : Childrenp(z) = 0}. Nodes belonging to a
same set Childreny(x) are called siblings, and they are ordered from left to right
by increasing value of their last component. If A is a set of labels, an A-labeled
tree is a pair (T, n) of a tree T and a map n: T — A. The depth of a node z is
Depth(z) = |z|. The height of T is Height(T) = max Depth(z).

3 The Alternating Cycle Decomposition

The Alternating Cycle Decomposition (ACD), proposed by Casares et al. [6], is
a generalization of the Zielonka tree. The ACD of an automaton A is a forest, a
collection of trees, labeled with accepting and rejecting cycles of the automaton.
For each SCC of A we have a unique tree and the labeling of each tree alternates
between accepting and rejecting cycles. Thus the ACD captures the complexity
of the cycle structure of each SCC. We present now the definition of the ACD
adapted to TELA.

For the rest of this section, let A = (Q, X, Qo, A, I',a) be a TELA and let
Ga = (Q, E) be the associated graph with edges colored by v: E — 21", We lift

v to sets and define y(E’) = |J ~(e) for every subset E' C E.
ecE’

104 A. Casares, A. Duret-Lutz, K.J. Meyer, F. Renkin, S. Sickert

Definition 1. A cycle of A is a subset of edges £ C E forming a closed path in
Gy. A cycle € is accepting (resp. rejecting) if v(€) E « (resp. v(€) ¥ «). The set
of states of a cycle £ is States(f) = {q € Q : some e € { passes through q}. The
set of cycles of A is denoted Cycles(A). It is (partially) ordered by set inclusion.

Definition 2 ([6]). Let Si,...,Sk be an enumeration of the strongly connected
components of G4. The Alternating Cycle Decomposition of A, denoted ACD(A),
is a collection of k Cycles(A)-labeled trees (T1, ..., Tr) with T; = (T;,n;) such that:

— ni(e) is the set of edges of S, fori=1,... k.

— If v € T; and n;(x) is an accepting cycle, then x has a child in T; for each
mazimal element in {{ € Cycles(A) : ¢ C n;i(z) and ¢ is rejecting}. In this
case, we say that x is a round node.

— If x € T; and n;(x) is a rejecting cycle, then x has a child in T; for each
mazimal element in {€ € Cycles(A) : ¢ C n;(x) and ¢ is accepting}. In this
case, we say that x is a square node.

If ¢ € Q is a state belonging to the SCC S; in A, we define the tree associated
to g as the subtree T, = (T, n,) given by:

T,={e}U{z €T; : q € States(ni(x))}, ng=milz,-

Remark 1. We provide examples online at https://spot.lrde.epita.fr/ipynb/zlk
tree.html and an executable copy of this notebook is included in the artifact [8].

4 An Efficient Computation of the ACD

In this section we give an algorithm to compute the Alternating Cycle Decom-
position of an Emerson-Lei automaton A, implemented in Owl [18] and Spot [9].
This can be done by first computing an SCC-decomposition of G4 which gives us
the labels of the roots of the trees (77,..., Tx), and then recursively computing
the children of the nodes of each tree, following the definition of ACD(A). Algo-
rithm 1 shows how to compute the children of a given node and uses notation
we introduce now.

Let C C I' be a subset of colors and let S = (Qg, Fs) C G4 be a subgraph.
We define the projection of S on C, denoted S;¢ = (Qs, E%), as the subgraph
of S obtained by removing the edges e € Eg such that v(e) ¢ C, that is,
Es ={(¢,D,q') € Es : D C C}. We write Colors(S) = U,.cp, v(e). We say
that 8’ C S is an C-strongly connected component in S (C-SCC) if it is an SCC
of § and Colors(S’) = C. Further, maxc is the set of all maximal elements
according to the partial order defined by C.

Note that Algorithm 1 uses Algorithm 2, which simplifies the Emerson-Lei
conditions before passing the formula to a Max-SAT function (a SAT-solver
that computes maximal satisfying assignments, e.g., by clause blocking) [4]. This
preprocessing ensures that the ACD for Rabin or Streett acceptance conditions
can be constructed without making use of the general purpose algorithm for
computing maximal satisfying assignments.

https://spot.lrde.epita.fr/ipynb/zlktree.html
https://spot.lrde.epita.fr/ipynb/zlktree.html

Practical Applications of the Alternating Cycle Decomposition 105

Algorithm 1 Computing the children of a node.

1: Input: A cycle S = n;(z) corresponding to the label of a node z of ACD(A).
2: Output: The set of labels for the children of z, (Si,...,Sk).
3: function Compute-Children(S)

4: children <+ (), C < Colors(S)

5: if C E o then > Maximal subsets D C C such that DF a & CF «
6: {C4,...,Cr} < Max-Satisfying-Subsets(C, ~«)

7 else

8: {C4,...,Ck} + Max-Satisfying-Subsets(C, a)

9: for D € {C1,...,Cx} do

10: for 8’ € SCCs of S;p do > These might not be D-SCC in S
11: if Colors(S')Ea < DFE a then

12: children < children U {8’}

13: else

14: children < children U Compute-Children(S’)

15: return maxc children > Remove from children non-maximal cycles

Algorithm 2 The subprocedure Max-Satisfying-Subsets.

1: Input: A subset of colors C' C I' and an EL condition a € EL(I").
2: Output: maxc{D CC : DF a}.
3: function Max-Satisfying-Subsets(C, a)

4: if C F a then

5: return {C}

6: a + «afif ¢ € C then c else 1] > Replace colors not in C' by false
7 L + {c € C: =c does not occur in a}

8: if L # 0 then

9: a + «afif c € L then T else] > Replace colors in L by true
10: {C4,...,Ck} < Max-Satisfying-Subsets(C \ L, a)

11: return {C1UL,...,C, UL}

12: if « =—-¢1 V---V e, then

13: return {{c1,...,cn} \ {ci}: 1 <i<n}}

14: return Max-SAT(«)

Memoization. To optimize the construction of the ACD and to avoid duplicated
recursive calls, we perform two kinds of memoization: First, we memoize the
results of calling Algorithm 2 from Algorithm 1. (Thus we implicitly construct
a Zielonka DAG for «.) Second, we memoize the recursive calls to Algorithm 1:
this is useful, as distinct nodes in the ACD can be labeled by the same cycles.

5 From Emerson-Lei to Parity Automata

In this section we describe the transformation from TELA to parity automata
using the Alternating Cycle Decomposition [6]. This transformation provides
strong optimality guarantees: the resulting parity automaton has minimal size

106 A. Casares, A. Duret-Lutz, K.J. Meyer, F. Renkin, S. Sickert

among those that can be produced without merging states from the TELA and
it uses an optimal number of colors (Theorem 1). We also show that this trans-
formation can be adapted to produce state-based automata. Note that in this
case we loose the first optimality guarantee.

5.1 The ACD Transformation

Let A = (Q,X,Qo,A, I a) be a TELA and let ACD(A) = (T1,...,Tx). We
introduce the following notation that will allow us to move in the ACD.

Given a transition e = ¢ a0, ¢’ such that both ¢ and ¢’ belong to the i-th
SCC of A and a node x € T;, we define Support(x,e) to be the least ancestor z
of z in 7; such that e € n;(2). If Support(z,e) # « and it is not a leaf in Ty, let
z' be the only child of Support(z,e) that is an ancestor of z, and let y1,...,ys
be an enumeration from left to right of the nodes in Childrenr,, (Support(z,e)).
We define NextBranch(z,e) as:

Support(z,e), if Support(x,e) = x or if Support(z,e) is a leaf in Ty,
yl? lf Z/ = 957
Yit1, if 2/ =y;, 1<j<s.

We define a parity automaton Pacpay = (P, X, Po, Ap, I'p, 3) (ACD transform
of A) equivalent to A as follows:

States. The states of P 4¢p(a) are of the form (g,z), for ¢ € Q and z a leaf of
the tree associated to ¢. Initial states are of the form (qo,z) with go € Qo is
an initial state in A and z is the leftmost leaf on its corresponding tree.

P = U {g} x Leaves(Ty), Po = {(q0,) : g0 € Qo, = the leftmost leaf in T, }.
q€Q

Transitions. For each transition e = ¢ KECN ¢’ in A and each state (¢,z) € P,
let us define a transition (g, x) P, (¢',y) in Ap as follows: first, ¢’ is the
destination state for the original transition. If ¢ and ¢’ are not in the same
SCC then y is defined as the leftmost leaf in 7, and p = 1 (except if all 7;
have height 1 and a rounded root: in that case p = 0). Otherwise, if both ¢
and ¢’ belong to the i-th SCC of A, then the destination leaf y is the leftmost
descendant of NextBranch(z,e) in Ty
We define the color p of the transition as Depth(Support(z,e)), if the root
of 7; is a round node (n;(¢) E a), or as Depth(Support(x,e)) + 1 otherwise.
We remark that in this way, p is even if and only if 7;(2) F «.

Parity condition. The condition § is a parity min even condition (cf. Table 1).

Remark 2. If the color 0 does not appear on any transition then we shift all
colors by —1 and replace 8 by a parity min odd condition.

Proposition 1 ([6]). The automaton Pcp(ay recognizes L(A).

Practical Applications of the Alternating Cycle Decomposition 107

Remark 3. The ACD transformation preserves many properties (determinism,
completeness, good-for-gameness, unambiguity...) of the automaton A, see [6].

Remark 4. Since the number of colors used by Pcp(4) is at most the height of
a tree in ACD(A), we obtain that P 4¢p(4) never uses more colors than |I'] + 1.
Furthermore, since the TELA does not require all transitions to have a color, we
can omit the maximal one and produce an automaton with at most |I"| colors.

In order to state the optimality of this transformation we introduce the
notion of locally bijective morphisms of automata. Given an automaton A =
(Q,2,Q0, A, T',x) and ¢q € Q, we denote Out 4(q) the set of outgoing transitions

of g, i.e., OutA(q):{qﬁq'eA ca€e X, CCl,q €@}

Definition 3 ([6]). Let A= (Q, X, Qo, A, I &) and A’ = (Q', X,Q, A", I, o)
be two EL automata over X. A locally bijective morphism from A to A’ (denoted
p: A— A')is a pair of maps pg: Q = Q', pa: A— A" such that:

— @qlag, is a bijection between Qo and Q.

:C :C’
— pale == @) = vola1) == ¢g(q2) for some C' C I'.
— Forevery q € Q, Al out4(q) 5 a bijection between Out4(q) and Outa (g (q))
— For every run o € A¥ in A, o is accepting iff pa(0) is accepting in A’.

Theorem 1 ([6]). Let A be an Emerson-Lei automaton, and let Pacpa) be
the parity automaton obtained by applying the ACD transformation. Then,

— There is a locally bijective morphism ¢ : P acpa) — A.

— If P is a parity automaton admitting a locally bijective morphism to A, then
[Pacoal <[P

— If'P’ is a parity automaton recognizing L(A), P’ uses at least as many colors

as P.ACD(A) .

Note that all state-duplicating constructions mentioned in the introduction
create locally bijective morphisms. Thus the above theorem shows that the ACD
transformation duplicates the least number of states.

5.2 Experimental Results

Figures 1 and 2 compare four different paritization procedures applied to 1065
TELA generated® from LTL formulas from the Synthesis Competition. These
automata have between 2 and 55 colors (mean 5.92, median 5) and between
1 and 245761 states (mean 2023.20, median 20). Automata with fewer than 2
colors have been ignored since they are trivial to paritize.

The procedures are Owl’s and Spot’s implementation of ACD transform, as
well as Spot’s implementation of the Zielonka Tree transform [6], and Spot’s
previous paritization function (called to_parity) [28]. We refer the reader to
Section 8 for information about the used versions. Two dotted lines on the sides

5 We used 1t12tgba -G -D from Spot, and 1t12dela from Owl.

108 A. Casares, A. Duret-Lutz, K.J. Meyer, F. Renkin, S. Sickert

@ !:::::::::::::::::::::::::::::::::! :::::::::::::::::::::::::::::::::::! :::::::::::::::::::::::::::::::::::J
3} 9 cases 71| [4 cases L2 |1 case e
E 105 above diag. @ [above diag. | [above diag.
7 1 2 e
: :
ERr ‘.]
5 :
< L 3 :
< 10" 1 [[:
g, 14 cases:: 877 cases:: 123 cases :
»n o below diag.:}| [@° below diag.:}| [@ below diag. :
T T T T T T T T T
10" 10*° 10° 10" 10*° 10° ' 10*° 10°

Owl ACD trans. (states) Spot ZlkTree trans. (states) Spot to_parity (states)

Fig. 1: Comparison of the output size of the four paritization procedures.

103 R AT L R R R R R R R R R R R R R R R TS R R R R R R R R R R
. 180 cases | [552 cases ,’! 37 cases /‘?
2 above diag. above diag. ° /' | |above diag. ° Qs
. 1] = 4
& 10 g L 9{00
g e ¥ C)
by 2
Q 107! ° el o .
2 ° e © 8
o
2 1073 4 e e ®eo
a 2 b :
n 884 cases:] 508 cases:] 1020 cases :
, below diag.:] below diag.:]| [below diag. :
T T T T T T T
107* 107t 102 1072 10t 1072 10"
Owl ACD trans. (s) Spot ZlkTree trans. (s) Spot to_parity (s)

Fig.2: Time spent performing these four paritization procedures.

of the plots hold cases that did not finish within 500 seconds (red, inner line),
or where the tool reported an error® (orange, outer line). Pink dots represent
input automata that already have parity acceptance: for those, running the ACD
transform still makes sense as it will produce an output with a minimal number
of colors. However, Owl’s implementation, which mostly cares about reducing the
number of states, uses a shortcut and will return the input automaton unmodified
in this case: this explains the pink cloud on the left of Figure 2.

Owl’s and Spot’s implementations of the ACD transform produce automata
with the same size, as expected. The cases that are not on the diagonal all
correspond to timeouts or tool errors. The Zielonka Tree transform, which does
not take the automaton structure into consideration, produces automata that
are on the average 2.11 times bigger (median 1.60), while its runtime is on the
average 6.55 times slower (median 0.97). Lastly, Spot’s to_parity function is
not far from the optimal size given by ACD transform: on the average its output
is 3.28 times larger, but the median of that size ratio is 1.00. Similarly, it is on
the average 15.94 times slower, but with a median of 1.04.

6 Either “out-of-memory”, or “too many colors” as Spot is restricted to 32 colors.

Practical Applications of the Alternating Cycle Decomposition 109
5.3 ACD Transformation Towards State-Based Parity Automata

Sometimes it is desired to obtain an automaton with the acceptance defined over
states. A state-based parity automaton is a tuple A = (Q, X, Qo, 4, ¢: Q@ — N)
where (Q, X, Qo, Q) is the underlying structure defined as for transition-based
automata in Section 2 (with the only difference that A C @ x X x @ now), and
¢: @ — N is a map associating colors to states. A run over A is accepting if the
minimal color visited infinitely often is even.

Let A be a TELA with ACD(A) = (T1,...,Tx). We define an equivalent
state-based parity automaton Py, acpa) = (P, X, Py, Ap, ¢: P — N) as follows:

States. States are of the form (g,), for ¢ € Q and = € T, (now the second
component corresponds to a node of the ACD that is not necessarily a leaf).
The set of initial states is the same as for P4ep(a):

P= U {¢} xTy, Po={(q,x) : qo € Qo, = the leftmost leaf in T, }.
q€Q

Transitions. For each transition e = ¢ LECN ¢ € A and (q,z) € P we define
one transition (¢,2) % (¢',y) € Ap. To specify the destination node y, we
distinguish two cases:

Suppose that z is a leaf in 7. If NextBranch(z,e) is not the leftmost child
of Support(x,e) in Ty, then y is the leftmost leaf below NextBranch(z,e) in
T, (as in the transition-based case). If NextBranch(z, e) is the leftmost child
(a “lap” around Support(x,e) is finished), then we set y = Support(z,e).

If = is not a leaf in 7, the destination y is determined exactly as if the
transition started in (g, z’) for =’ the leftmost leaf in T}, under z.

Parity condition. ¢((g,x)) = Depth(x), if the root of 7; is a round node, and
?((q,x)) = Depth(x) + 1 otherwise.

Note that we do not have the same optimality guarantee as in the transition-
based case: If = is not a leaf in its corresponding tree, then the states of the form
(g,x) € P are not necessarily reachable in Py, 4cp(a). We only need to add
those that can be reached from the initial state. However, the set of reachable
states does depend on the ordering of the children in the trees of the ACD, and
therefore the size of the final automaton depends on this ordering.

We propose a heuristic to order the children of nodes in ACD(A). Let T; be
a tree in ACD(A) and z € T;. We define:

Di(z)={d €Q : ¢ ¢ ¢ ni(x), for some q € States(n;(z)),a € X}.
The heuristic consists in ordering the children of a node 7; by decreasing |D;(x)|.

Experiments involving transformations towards state-based automata and test-
ing this heuristic can be found in Section 6.2.

110 A. Casares, A. Duret-Lutz, K.J. Meyer, F. Renkin, S. Sickert
6 Degeneralization of Generalized Biichi Automata

The transformation of generalized-Biichi automata with n colors into Biichi au-
tomata (with a single color) is known as “degeneralization” and has been a
very common processing step between algorithms that translate temporal-logic
formulas into generalized-Biichi automata, and model-checking algorithms that
(used to) only work with Biichi automata. While it initially consisted in making
2" copies of the GBA [30, Appendix B] to remember the set of colors that had
yet to be seen, degeneralization to state-based Biichi acceptance can be done us-
ing only n + 1 copies once an arbitrary order of colors has been selected [13]. A
similar construction to transition-based Biichi acceptance requires only n copies
of the original automaton. Different orders of colors may lead to a different num-
bers of reachable states in the Biichi automaton. Some tools even attempted to
start the degeneralization in different copies to reduce the number of reachable
states [14]. Nowadays, an implementation such as the degeneralization of Spot
implements several SCC-based optimizations [2] to reduce the number of output
states, but is still sensitive to the arbitrary order selected for colors.

6.1 Transition-based Degeneralization

This order-sensitivity of the degeneralization, even in its transition-based vari-
ant, makes a striking difference with ACD. When applied to a generalized Biichi
automaton that has some accepting and rejecting paths, the ACD-transform pro-
duces an automaton with acceptance Inf(@®)VFin(€). Since all transitions are ei-
ther labeled by @ or @, color @ is superﬂuous7 and the condition can be reduced
to Inf(@®). In this context, ACD-transform therefore gives us a transition-based
Biichi automaton by duplicating the fewest number of states (Theorem 1(2)).

It can be seen that the cycling around the different children of the ACD
(whose ordering is arbitrary) performed during ACD-transform is similar to the
process used in traditional degeneralization. What makes the latter sensitive to
color ordering is that it only “sees” one transition at a time, while the ACD
provides a view of the cycles. For instance a degeneralization would process
the sequence (2)-@>)->(2) differently from the sequence (2)-€>¥)-0>)
depending on the order in which colors are expected to be encountered. However,
if there is no other transition reaching or leaving @ the two colors will always be
seen together so their order should not matter: the two transitions belong to the
same node of the ACD. The propagation of colors [28] is a related preprocessing
step that can improve the degeneralization by propagating all colors common to
the incoming transitions of a state to its outgoing transitions and vice-versa. It
would turn the previous situation into @0—@»@@-@»@ making the color
order selected by the degeneralization irrelevant (in this case).

A comparison of the output size of the traditional degeneralization imple-
mented in Spot (which includes several optimizations learned over the years)

" In an automaton with “parity min” acceptance where all transitions are colored, the
maximal color can always be omitted and replaced by the empty set.

Practical Applications of the Alternating Cycle Decomposition 111

11 4 0 case 57 11 4 0 case 57
10 4 above diag. 10 4 10 - above diag. 11 3
& 94 15 2 1 & 91 18
£ 8- 5 6 16 £ 8- 6 5 9
5 - Bls2 6 15| 5 7- 2 4
S 61 EBs3 20 11 3 3 S 61 3 1
8 5 B2 17 3 8 54
49 94 44 20 5 19 cases 47 32 15 16 5 935 cases
3431 34 9 1 1 below diag. 3443 28 4 1 below diag.
581 cases 1 1 1 1 1 1 1 1 1 765 cases 1 1 1 1 1 1 1 1 1
on diag. 3 4 6 7 8 9 10 11 ondiag 3 4 6 7 8 9 10 11
TBA.degen (states) TBA.degen_propagate (states)

Fig. 3: Two-dimensional histogram of the sizes of 1000 automata, degeneralized
to transition-based Biichi automata, using Spot’s degeneralization function (with
or without propagation of colors), or using ACD-transform.

against that of ACD-transform is given in the left plot of Figure 3. Unsurpris-
ingly, because of ACD-transform’s optimality, there are no cases where ACD
loses to Spot’s transition-based degeneralization. The use of the propagation of
colors (right of the plot) is an improvement (the non-optimal cases dropped from
419 to 235) but not a cure.

Remark 5. The input automata used in this section and the next one is a set of
1000 randomly generated, minimal, deterministic, transition-based generalized
Biichi automata, with 3 or 4 states and 2 or 3 colors. The reason for using such
small minimal automata is to be able to use a SAT-based minimization [1] on
the degeneralized state-based output in the next section to estimate how large
the gap between an optimal and our procedure is.

6.2 State-based degeneralization

If ACD is used to produce a state-based output, as explained in Subsection 5.3,
the obtained automaton is not guaranteed to be minimal with respect to locally
bijective morphisms. In this case we can obtain a weaker optimality result:

Proposition 2. Let A be a generalized Biichi automaton, and let By,_ acp(a)
be the state-based Biichi automaton obtained by applying the ACD state-based
transformation. If B' be is a state-based Biichi automaton admitting a locally
bijective morphism to A, then |Bg,— acpa)| < |B'| + | Al

Proof. Let B’ be a state-based Biichi automaton admitting a locally bijective
morphism to A. We can transform it into a transition-based Biichi automaton

! ans DY setting the transitions leaving accepting states to be accepting. This
automaton has the same size than B’ and it also accepts a locally bijective
morphism to A. Therefore, by Theorem 1, we have that |Bacpa)| < |Bironsl =

112 A. Casares, A. Duret-Lutz, K.J. Meyer, F. Renkin, S. Sickert
15 1402 cases 1 23114 15 1498 cases 1 1136
14 qabove diag. 12 458 2 14 4 above diag. 3 6 13
—~ 13 1 3822764 — 13 - 12101 4 115
g 12+ 93 2222 8 12 1 4 9 8 2 4 20
£ 11 A 612 2 £ 11 A 3101411 7 6
~ 10 4 10 1 ~ 10 4 1 8 11 15 28 28
€ 91 3 € 91 2 4181536[H
L 8 g 8 2 14 25 1
S 7 < 77 4 36 38 3
m 67 m 6-44 1037 1
n 54 ©n 543 148 2
4 - 96 cases 44338 2 9 cases
3 4 below diag. 3411 below diag.
502 cases I I I I I I I I I I I I I 493 cases I I I I I I I I I I I
ondiag. 34567 8 9101112131415 ondiag. 3 4 5 6 7 8 9 10111213

SBA.acd (states)

SBA.acd.heuristic (states)

Fig.4: Comparison of three ways to degeneralize to state-based Biichi: (acd,
acd.heuristic) using the state-based version of ACD-transform with or without

heuristic, and (degen) classical degeneralization.

—~ 13 43 cases] 9 1510 —~ 9 4 94 cases 2 3 25

§ 12 {above diag. 25 5 E: above diag.

£ 11 A 8 6 1 £ 81 1 2 17 38

P 10 A 2414 1 S 7 1 3 39

Z 9 Bls5 s 2 g

T 81 1 ENE 6 14

R 2

o 6 - ko] 5 12

3 3

< 97 < 4 70

B 4 241 cases M 0 case

@ 3 below diag. 3421 below diag.
756 cases T T T T T T T T T T T T T 555cases T T T T T T T
ondiag. 3 4 5 6 7 8 9101112131415 op diag. 4 5 6 T 8 9

SBA.acd (states) SBA.minimal (states)

Fig. 5: Effect of the heuristic for ordering children of the ACD, and comparison
to the minimal degeneralized automata (when known).

|B'|, where B4cp(a) is the transition-based automaton obtained applying the
ACD-transformation. We claim that [Bg,— acpa)l < [Bacpa)| + Al (therefore
implying that |Bg,— acpay| < |B'|4]A]). Indeed, the set of states of By, acp(a)
is the union of the set of states of B4cp(a) and a subset of nodes of the form
(q,€), where ¢ is the root of Tj,. There are at most |.4| nodes of this form. O

Figure 4 compares three ways to perform state-based degeneralization. The
ACD comes in two variants, with or without the heuristic of Section 5.3, and it
is compared against the state-based degeneralization of Spot.

Figure 5 shows how the heuristic variant compares to the one without, and
how it compares with the size of a minimal DBA, when its size could be computed
in reasonable time (in 649 cases). Note that there might not be a local bijective

Practical Applications of the Alternating Cycle Decomposition 113

morphism between the input automaton and the minimal DBA computed this
way, nonetheless these minimal size automata can serve as a reference point to
estimate the quality of a degeneralization. Compared to this subset of minimal
DBA, the average number of additional states produced by the state-based ACD
is 0.17 with heuristics, and 0.33 without. Comparatively, Spot’s degeneralization
has an average of 1.21 extra states.

7 Deciding Typeness

We highlight now how the ACD can be used to decide typeness of deterministic
TELA. This problem, first introduced by Krishnan and Brayton [19], consists of
deciding whether we can replace the acceptance condition of a given automaton
by another (hopefully simpler) without changing the transition structure and
preserving the language (see Table 1 for a list of common acceptance conditions).

Let A= (Q,X,Qo,A, I a) be a TELA. We say that A is X -type, for X €
{B,C,GB,GC,P,R, S}, if there is an X-automaton over the same structure,
A = (Q,X,Qo, A", I, 8) (where A and A’ only differ on the coloring of the
transitions), such that £(A) = L£(A’) and S belongs to X. We emphasize that
we permit to use a different set of colors IV in A’. Some conditions can always
be rewritten as conditions of other kinds (for example, Biichi conditions can be
expressed as parity ones, so being B-type implies being P-type). We should not
confuse this notion with the expressive power of deterministic automata using
these conditions. For example, both deterministic parity automata and Rabin
automata recognize all w-regular languages, but there are Rabin automata that
are not parity-type. Further, we say that an automaton A is weak if for every
SCC S of A, all cycles in S are accepting or all of them are rejecting.

The following result shows that the ACD is a sufficient data structure for
deciding typeness for many common acceptance conditions. We remark that the
second item adds to the results of Casares et al. [7] (this statement only holds if
transitions of automata are labeled with subsets of colors, which is not allowed
in their model).

Proposition 3 ([7, Section 5.2]). Let A be a deterministic TELA such that
all its states g € Q are reachable and let ACD(A) = (T1,...,Ty) be its Alternat-
ing Cycle Decomposition. Then the following statements hold:

1. Ais Rabin-type (resp. Streett type) if and only if for every q € Q, every round
node (resp. square node) of Ty has at most one child in T,. It is parity-type
if and only if it is both Rabin and Streett-type.

2. A is generalized Biichi-type (resp. generalized co-Biichi-type) if and only if
for every 1 <i <k, Height(T;) <2 and in case of equality, the root of T; is
a round node (resp. square node).

3. A is weak if and only if for every 1 < i <k, Height(T;) = 1.

Also, the least number of colors used by a deterministic parity automaton
recognizing L(A) is max Height(T;) + v, where v = 0 if the root of all trees of
K3

mazimal height have the same shape (round or square), and v = 1 otherwise.

114 A. Casares, A. Duret-Lutz, K.J. Meyer, F. Renkin, S. Sickert

If one of the previous conditions holds, then ACD(A) also provides an effec-
tive procedure to relabel A with the corresponding acceptance condition.

Remark 6. The ACD gives a typeness result for each SCC of the automaton,
which allows to simplify the acceptance condition of each of them indepen-
dently. Further, implications from right to left in Proposition 3 also hold for
non-deterministic automata.

Proposition 3 provides an effective procedure to check typeness of TELA:
we just have to build the ACD and verify that it has the appropriate shape.
Spot’s implementation of ACD has options to abort the construction as soon
as it detects that the shape is wrong. Moreover, if an automaton is parity-type,
the ACD provides a method to relabel the automaton with a minimal number
of colors. Finally, if the automaton already has parity acceptance, the ACD
transformation boils down to the algorithm of Carton and Maceiras [5].

8 Availability

The ACD and the transformations based on it are currently implemented in two
open-source tools: Spot 2.10 [9] and Owl 21.0 [18]. (The original developments
were independent before the authors met and worked on this joint paper.)

In Spot 2.10, the ACD can be played with using the Python bindings. The acd
class implements the decomposition, and will render it as an interactive forest of
nodes that can be clicked to highlight the relevant cycles in the input automaton.
The acd_transform() and acd_transform_sbacc() implements the transition-
based and state-based variant of the paritization procedure. Additionally, the
acd class has options to heuristically order the children to favor the state-based
construction, or to abort the construction as soon as it is clear that the ACD
does not have Rabin or Street shape (in case one wants to use it to establish
typeness of automata). All these features are illustrated at https://spot.Irde.ep
ita.fr/ipynb/zlktree.html. In the future, ACD will be used more by the rest of
Spot, and will be one option of the 1tlsynt tool (for LTL synthesis).

In Owl, the ACD transformation is available through the aut2parity com-
mand. This command reads an automaton in the HOA format [3] using arbi-
trary acceptance, and produces a parity automaton in the same format. The tool
Strix [23], which builds upon Owl, gained in version 21.0.0 the option to use the
ACD-construction as an intermediate step.

Instructions to reproduce all experiments and included in the artifact [8].

9 Conclusion

We have shown that ACD is more than a theoretically-appealing construction:
our two implementations show that the construction is very usable in practice,
and provide a baseline for further improvements. We have also shown that ACD is
a Swiss-army knife for w-automata in the sense that it can generalize and replace
several specific constructions (paritization, degeneralization, typeness checks).

https://spot.lrde.epita.fr/ipynb/zlktree.html
https://spot.lrde.epita.fr/ipynb/zlktree.html

Practical Applications of the Alternating Cycle Decomposition 115

References

10.

11.

12.

. Baarir, S., Duret-Lutz, A.: Mechanizing the minimization of deterministic gen-

eralized Biichi automata. In: Proceedings of the 34th IFIP International Confer-
ence on Formal Techniques for Distributed Objects, Components and Systems
(FORTE’14), Lecture Notes in Computer Science, vol. 8461, pp. 266—283, Springer
(Jun 2014), https://doi.org/10.1007/978-3-662-43613-4_17

. Babiak, T., Badie, T., Duret-Lutz, A., Kfetinsky, M., Strejéek, J.: Compositional

approach to suspension and other improvements to LTL translation. In: Proceed-
ings of the 20th International SPIN Symposium on Model Checking of Software
(SPIN’13), Lecture Notes in Computer Science, vol. 7976, pp. 81-98, Springer (Jul
2013), https://doi.org/10.1007/978-3-642-39176-7_6

. Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Kfetinsky, J., Miiller, D.,

Parker, D., Strejcek, J.: The hanoi omega-automata format. In: Kroening, D.,
Piasdreanu, C.S. (eds.) Computer Aided Verification, pp. 479-486, Springer Inter-
national Publishing (2015)

Battiti, R., , Protasi, M.: Handbook of Combinatorial Optimization: Volume 1-3,
chap. Approximate Algorithms and Heuristics for MAX-SAT, pp. 77-148. Springer
US (1998), ISBN 978-1-4613-0303-9, https://doi.org/10.1007/978-1-4613-0303-9_2
Carton, O., Maceiras, R.: Computing the Rabin index of a parity automaton.
Informatique théorique et applications 33(6), 495-505 (1999), URL http://www.
numdam.org/item/ITA_1999_33.6_495_0/

. Casares, A., Colcombet, T., Fijalkow, N.: Optimal transformations of games and

automata using Muller conditions. In: Bansal, N., Merelli, E., Worrell, J. (eds.) Pro-
ceedings of the 48th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP’21), Leibniz International Proceedings in Informatics (LIPIcs),
vol. 198, pp. 123:1-123:14, Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
Dagstuhl, Germany (2021), https://doi.org/10.4230/LIPIcs.ICALP.2021.123
Casares, A., Colcombet, T., Fijalkow, N.: Optimal transformations of muller condi-
tions. Extended version of [6], on ArXiv. (2021), https://arxiv.org/abs/2011.13041
Casares, A., Duret-Lutz, A., Meyer, K.J., Renkin, F., Sickert, S.: Artifact for the
paper “Practical applications of the alternating cycle decomposition”. https://do
i.org/10.5281/zenodo.5572613 (2021)

Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0 — a framework for LTL and w-automata manipulation. In: Proceedings of
the 14th International Symposium on Automated Technology for Verification and
Analysis (ATVA’16), Lecture Notes in Computer Science, vol. 9938, pp. 122-129,
Springer (Oct 2016), https://doi.org/10.1007/978-3-319-46520-3_8

Emerson, E.A., Lei, C.L.: Modalities for model checking (extended abstract):
Branching time strikes back. In: Proceedings of the 12th ACM symposium on
Principles of Programming Languages (POPL’85), pp. 84-96, ACM (1985), https:
//doi.org/10.1145/318593.318620

Esparza, J., Kretinsky, J., Raskin, J.F., Sickert, S.: From LTL and limit-
deterministic Blichi automata to deterministic parity automata. In: Proceedings of
the 23rd International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’17), Lecture Notes in Computer Science, vol.
10205, pp. 426-442, Springer-Verlag (2017), https://doi.org/10.1007/978-3-662-
54577-5_25

Esparza, J., Kietinsky, J., Sickert, S.: A unified translation of linear temporal logic
to w-automata. J. ACM 67(6) (Oct 2020), https://doi.org/10.1145/3417995

https://doi.org/10.1007/978-3-662-43613-4_17
https://doi.org/10.1007/978-3-662-43613-4_17
https://doi.org/10.1007/978-3-642-39176-7_6
https://doi.org/10.1007/978-3-642-39176-7_6
https://doi.org/10.1007/978-1-4613-0303-9_2
https://doi.org/10.1007/978-1-4613-0303-9_2
http://www.numdam.org/item/ITA_1999__33_6_495_0/
http://www.numdam.org/item/ITA_1999__33_6_495_0/
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://arxiv.org/abs/2011.13041
https://doi.org/10.5281/zenodo.5572613
https://doi.org/10.5281/zenodo.5572613
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1145/318593.318620
https://doi.org/10.1145/318593.318620
https://doi.org/10.1145/318593.318620
https://doi.org/10.1145/318593.318620
https://doi.org/10.1007/978-3-662-54577-5_25
https://doi.org/10.1007/978-3-662-54577-5_25
https://doi.org/10.1007/978-3-662-54577-5_25
https://doi.org/10.1007/978-3-662-54577-5_25
https://doi.org/10.1145/3417995
https://doi.org/10.1145/3417995

116

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A. Casares, A. Duret-Lutz, K.J. Meyer, F. Renkin, S. Sickert

Gastin, P., Oddoux, D.: Fast LTL to Biichi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) Proceedings of the 13th International Conference on
Computer Aided Verification (CAV’01), Lecture Notes in Computer Science, vol.
2102, pp. 53-65, Springer-Verlag (2001), https://doi.org/10.1007/3-540-44585-4 6
Giannakopoulou, D., Lerda, F.: From states to transitions: Improving translation of
LTL formule to Biichi automata. In: Peled, D., Vardi, M. (eds.) Proceedings of the
22nd IFIP WG 6.1 International Conference on Formal Techniques for Networked
and Distributed Systems (FORTE’02), Lecture Notes in Computer Science, vol.
2529, pp. 308-326, Springer-Verlag, Houston, Texas (Nov 2002)

Gréadel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games.
Springer, Berlin, Heidelberg (2002), https://doi.org/10.1007/3-540-36387-4
Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proceedings of the
14th annual ACM symposium on Theory of computing (STOC’82), pp. 60-65
(1982), https://doi.org/10.1145/800070.802177

Jacobs, S., Bloem, R., Colange, M., Faymonville, P., Finkbeiner, B., Khalimov,
A., Klein, F., Luttenberger, M., Meyer, P.J., Michaud, T., Sakr, M., Sickert, S.,
Tentrup, L., Walker, A.: The 5th reactive synthesis competition (SYNTCOMP
2018): Benchmarks, participants & results. CoRR abs/1904.07736 (2019), URL
http://arxiv.org/abs/1904.07736

Kretinsky, J., Meggendorfer, T., Sickert, S.: Owl: A library for w-words, automata,
and LTL. In: Proceedings of the 16th International Symposium on Automated
Technology for Verification and Analysis (ATVA’18), Lecture Notes in Computer
Science, vol. 11138, pp. 543-550, Springer (2018), https://doi.org/10.1007/978-3-
030-01090-4_34

Krishnan, Sriram C.and Puri, A., Brayton, R.K.: Deterministic w automata vis-a-
vis deterministic buchi automata. In: Algorithms and Computation, pp. 378-386,
Springer Berlin Heidelberg, Berlin, Heidelberg (1994)

Kretinsky, J., Meggendorfer, T., Waldmann, C., Weininger, M.: Index appearance
record for transforming Rabin automata into parity automata. In: Legay, A., Mar-
garia, T. (eds.) Proceedings of the 23st International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’17), Lecture
Notes in Computer Science, vol. 10205, pp. 443-460 (2017), https://doi.org/10.1
007/978-3-662-54577-5_26

Kretinsky, J., Meggendorfer, T., Waldmann, C., Weininger, M.: Index appearance
record with preorders. Acta Informatica (2021), https://doi.org/10.1007/s00236-0
21-00412-y

Loéding, C.: Optimal bounds for transformations of w-automata. In: Proceedings
of the 19th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’99), Lecture Notes in Computer Science, vol. 1738,
pp. 97-109, Springer (1999), https://doi.org/10.1007/3-540-46691-6_8
Luttenberger, M., Meyer, P.J., Sickert, S.: Practical synthesis of reactive systems
from LTL specifications via parity games. Acta Informatica pp. 3-36 (2020), https:
//doi.org/10.1007/s00236-019-00349-3

Léding, C.: Methods for the Transformation of w-Automata: Complexity and
Connection to Second Order Logic. Master’s thesis, Institute of Computer Sci-
ence and Applied Mathematics Christian-Albrechts-University of Kiel (1998), URL
https://old.automata.rwth-aachen.de/users/loeding/diploma_loeding.pdf

Meyer, P., Sickert, S.: On the optimal and practical conversion of Emerson-Lei
automata into parity automata. Unpublished manuscript, obsoleted by the work
of Casares et al. [6]. (2021)

https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1145/800070.802177
https://doi.org/10.1145/800070.802177
http://arxiv.org/abs/1904.07736
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-662-54577-5_26
https://doi.org/10.1007/978-3-662-54577-5_26
https://doi.org/10.1007/978-3-662-54577-5_26
https://doi.org/10.1007/978-3-662-54577-5_26
https://doi.org/10.1007/s00236-021-00412-y
https://doi.org/10.1007/s00236-021-00412-y
https://doi.org/10.1007/s00236-021-00412-y
https://doi.org/10.1007/s00236-021-00412-y
https://doi.org/10.1007/3-540-46691-6_8
https://doi.org/10.1007/3-540-46691-6_8
https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/10.1007/s00236-019-00349-3
https://old.automata.rwth-aachen.de/users/loeding/diploma_loeding.pdf

26.

27.

28.

29.

30.

31.

Practical Applications of the Alternating Cycle Decomposition 117

Michaud, T., Colange, M.: Reactive synthesis from LTL specification with Spot.
In: Proceedings of the 7th Workshop on Synthesis, SYNT@QCAV 2018, Electronic
Proceedings in Theoretical Computer Science (2018)

Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings
of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL’89), pp. 179—190 (1989), https://doi.org/10.1145/75277.75293
Renkin, F., Duret-Lutz, A., Pommellet, A.: Practical “paritizing” of Emerson-Lei
automata. In: Proceedings of the 18th International Symposium on Automated
Technology for Verification and Analysis (ATVA’20), Lecture Notes in Computer
Science, vol. 12302, pp. 127-143, Springer (Oct 2020), https://doi.org/10.1007/97
8-3-030-59152-6_7

Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Logics
for Concurrency: Structure versus Automata, volume 1043 of Lecture Notes in
Computer Science, pp. 238-266, Springer-Verlag (1996)

Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proceedings of the 1st Symposium on Logic in Computer Science
(LICS’86), pp. 332344, IEEE Computer Society Press (Jun 1986)

Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science 200(1), 135-183 (1998),
https://doi.org/10.1016,/S0304-3975(98)00009-7

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1145/75277.75293
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/978-3-030-59152-6_7
https://doi.org/10.1007/978-3-030-59152-6_7
https://doi.org/10.1007/978-3-030-59152-6_7
https://doi.org/10.1007/978-3-030-59152-6_7
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7
http://creativecommons.org/licenses/by/4.0/

)

Check for

Sky Is Not the Limit

Tighter Rank Bounds for Elevator Automata in
Biichi Automata Complementation

Vojtéch Havlena®, Ondiej Lengal®™, and Barbora Smahlikova
ihavlena@fit.vut.cz, lengal@vut.cz, xsmahl®0@vut.cz

Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic

Abstract. We propose several heuristics for mitigating one of the main causes
of combinatorial explosion in rank-based complementation of Biichi automata
(BAs): unnecessarily high bounds on the ranks of states. First, we identify elevaror
automata, which is a large class of BAs (generalizing semi-deterministic BAs),
occurring often in practice, where ranks of states are bounded according to the
structure of strongly connected components. The bounds for elevator automata
also carry over to general BAs that contain elevator automata as a sub-structure.
Second, we introduce two techniques for refining bounds on the ranks of BA states
using data-flow analysis of the automaton. We implement out techniques as an
extension of the tool RANKER for BA complementation and show that they indeed
greatly prune the generated state space, obtaining significantly better results and
outperforming other state-of-the-art tools on a large set of benchmarks.

1 Introduction

Biichi automata (BA) complementation has been a fundamental problem underlying
many applications since it was introduced in 1962 by Biichi [8,17] as an essential part of
a decision procedure for a fragment of the second-order arithmetic. BA complementation
has been used as a crucial part of, e.g., termination analysis of programs [13,20,10] or
decision procedures for various logics, such as S18S [8], the first-order logic of Sturmian
words [33], or the temporal logics ETL and QPTL [38]. Moreover, BA complementation
also underlies BA inclusion and equivalence testing, which are essential instruments in
the BA toolbox. Optimal algorithms, whose output asymptotically matches the lower
bound of (0.76n)" [43] (potentially modulo a polynomial factor), have been devel-
oped [37,1]. For a successful real-world use, asymptotic optimality is, however, not
enough and these algorithms need to be equipped with a range of optimizations to make
them behave better than the worst case on BAs occurring in practice.

In this paper, we focus on the so-called rank-based approach to complementation,
introduced by Kupferman and Vardi [24], further improved with the help of Friedgut [14],
and finally made optimal by Schewe [37]. The construction stores in a macrostate partial
information about all runs of a BA A over some word «a. In addition to tracking states
that A can be in (which is sufficient, e.g., in the determinization of NFAs), a macrostate
also stores a guess of the rank of each of the tracked states in the run DAG that captures
all these runs. The guessed ranks impose restrictions on how the future of a state might
look like (i.e., when A may accept). The number of macrostates in the complement

© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 118-136, 2022.
https://doi.org/10.1007 /978-3-030-99527-0_7

http://orcid.org/0000-0003-4375-7954
http://orcid.org/0000-0002-3038-5875
http://orcid.org/0000-0002-1184-4669
mailto:ihavlena@fit.vut.cz
mailto:lengal@vut.cz
mailto:xsmahl00@vut.cz
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99527-0_7&domain=pdf

Sky Is Not the Limit: Tighter Rank Bounds in Biichi Automata Complementation 119

depends combinatorially on the maximum rank that occurs in the macrostates. The
constructions in [24,14,37] provides only coarse bounds on the maximum ranks.

A way of decreasing the maximum rank has been suggested in [15] using a PSpace
(and, therefore, not really practically applicable) algorithm (the problem of finding the
optimal rank is PSpace-complete). In our previous paper [19], we have identified several
basic optimizations of the construction that can be used to refine the tight-rank upper
bound (TRUB) on the maximum ranks of states. In this paper, we push the applicability
of rank-based techniques much further by introducing two novel lightweight techniques
for refining the TRUB, thus significantly reducing the generated state space.

Firstly, we introduce a new class of the so-called elevator automata, which occur
quite often in practice (e.g., as outputs of natural algorithms for translating LTL to
BAs). Intuitively, an elevator automaton is a BA whose strongly connected components
(SCCs) are all either inherently weak! or deterministic. Clearly, the class substantially
generalizes the popular inherently weak [6] and semi-deterministic BAs [11,3,4]). The
structure of elevator automata allows us to provide tighter estimates of the TRUBs,
not only for elevator automata per se, but also for BAs where elevator automata occur
as a sub-structure (which is even more common). Secondly, we propose a lightweight
technique, inspired by data flow analysis, allowing to propagate rank restriction along
the skeleton of the complemented automaton, obtaining even tighter TRUBs. We also
extended the optimal rank-based algorithm to transition-based BAs (TBAs).

We implemented our optimizations within the RANKER tool [18] and evaluated our
approach on thousands of hard automata from the literature (15 % of them were elevator
automata that were not semi-deterministic, and many more contained an elevator sub-
structure). Our techniques drastically reduce the generated state space; in many cases we
even achieved exponential improvement compared to the optimal procedure of Schewe
and our previous heuristics. The new version of RANKER gives a smaller complement in
the majority of cases of hard automata than other state-of-the-art tools.

2 Preliminaries

Words, functions. We fix a finite nonempty alphabet X and the first infinite ordinal
w = {0,1,...}. For n € w, by [n] we denote the set {0,...,n}. Fori € w we use
7] to denote the largest even number smaller of equal to i, e.g., [42] = [43] = 42.
An (infinite) word « is represented as a function a: w — X where the i-th symbol is
denoted as ;. We abuse notation and sometimes also represent « as an infinite sequence
a = apay ... We use Z¢ to denote the set of all infinite words over Z. For a (partial)
function f: X — Y and a set S C X, we define f(S) = {f(x) | x € S}. Moreover, for
x € Xandy € Y,weuse f<{x — y} todenote the function (f\{x — f(x)})U{x — y}.

Biichi automata. A (nondeterministic transition/state-based) Biichi automaton (BA)
over X is aquadruple A = (Q, 4, I, Qrp UdFr) where Q is a finite set of states, §: QXX —
2@ is a transition function, I C Q is the sets of initial states, and Qr C Q and 6 C 6 are
the sets of accepting states and accepting transitions respectively. We sometimes treat ¢

as a set of transitions p N q, for instance, we use p 5 q € 6 to denote that g € §(p, a).

1 An SCC is inherently weak if it either contains no accepting states or, on the other hand, all
cycles of the SCC contain an accepting state.

120 Vojtéch Havlena, Ondfej Lengal, Barbora Smahlikov

Moreover, we extend ¢ to sets of states P C Q as 6(P,a) = U,ep d(p, a), and to sets
of symbols " C X as 6(P,T") = Uyer 6(P, a). We define the inverse transition function
as 67l = {p N q|q N p € 6}. The notation Ol for S C Q is used to denote the
restriction of the transition function 6 N (S X X X S). Moreover, for g € Q, we use A[q]
to denote the BA (Q, 6, {q}, Qr UdF).

A run of A from g € Q on an input word « is an infinite sequence p: w — Q that
starts in g and respects ¢, i.e., pg = g and Vi > 0: p; = pir1 € 0. Let infp (p) denote
the states occurring in p infinitely often and inf s (o) denote the transitions occurring in p
infinitely often. The run p is called accepting iff inf o (p) NQF # @ orinfs(p) N6F # 0.

A word « is accepted by A from a state g € Q if there is an accepting run p of A
from ¢, i.e., pg = q. The set L#(q) = {a € ¢ | A accepts a from g} is called the
language of g (in A). Given a set of states R C O, we define the language of R as
La(R) =Uzer La(q) and the language of A as L(A) = LA (). We say that a state
q € Q is useless iff La(q) = 0.1f 6 = 0, we call A state-based and if Qp = 0, we
call A transition-based. In this paper, we fix a BA A = (Q,6,1,0r UdF).

3 Complementing Biichi automata

In this section, we describe a generalization of the rank-based complementation of state-
based BAs presented by Schewe in [37] to our notion of transition/state-based BAs.
Proofs can be found in [16].

3.1 Run DAGs

First, we recall the terminology from [37] (which is a minor modification of the one
in [24]), which we use in the paper. Let the run DAG of A over a word @ be a DAG
(directed acyclic graph) G, = (V, E) containing vertices V and edges E such that

- VCOxXws.t (g,i) € Viff there is arun p of A from I over a with p; = ¢,
- ECVxVst ((q,0),(q',i") e Eiffi’=i+1and ¢’ € 6(q, ;).

Given G, as above, we will write (p,i) € G, to denote that (p,i) € V. A vertex
(p,i) € Vis called accepting if p is an accepting state and an edge ((q, i), (¢’,i’)) € E
is called accepting if g il q’ is an accepting transition. A vertex v € G, is finite if the
set of vertices reachable from v is finite, infinite if it is not finite, and endangered if it
cannot reach an accepting vertex or an accepting edge.
We assign ranks to vertices of run DAGs as follows: Let G = G, and j = 0. Repeat

the following steps until the fixpoint or for at most 2n + 1 steps, where n = |Q].

— Set ranko(v) « j for all finite vertices v of g{, and let g(jfl be g{, minus the
vertices with the rank j.
— Set rank o (v) « j + 1 for all endangered vertices v of Q{;l and let g{jQ be Q(j;l

minus the vertices with the rank j + 1.
— Setj «— j+2.

For all vertices v that have not been assigned a rank yet, we assign rank ,(v) < w.
We define the rank of @, denoted as rank(a), as max{rank,(v) | v € G, } and the
rank of A, denoted as rank(A), as max{rank(w) | w € ¢\ L(A)}.

Lemma 1. Ifa ¢ L(A), then rank(a) < 2|Q|.

Sky Is Not the Limit: Tighter Rank Bounds in Biichi Automata Complementation 121

3.2 Rank-Based Complementation

In this section, we describe a construction for complementing BAs developed in the work
of Kupferman and Vardi [24]—]later improved by Friedgut, Kupferman, and Vardi [14],
and by Schewe [37]—extended to our definition of BAs with accepting states and tran-
sitions (see [19] for a step-by-step introduction). The construction is based on the notion
of tight level rankings storing information about levels in run DAGs. For a BA A and
n =|0Q|, a (level) ranking is a function f: Q — [2n] such that f(QF) C {0,2,...,2n},
i.e., f assigns even ranks to accepting states of A. For two rankings f and f’ we define
fe¥if’ iff for each ¢ € S and ¢’ € 6(q,a) we have f'(¢') < f(q) and for each
q" € 6r(q,a)itholds f'(q"") < |Lf(g)]. The set of all rankings is denoted by R. For
aranking f, the rank of f is defined as rank(f) = max{f(q) | ¢ € Q}. Weuse f < f’
iff for every state ¢ € Q we have f(q) < f’(q) and we use f < f’iff f < f’ and there
is a state ¢ € Q with f(g) < f’(q). For a set of states S C Q, we call f to be S-tight if
(i) it has an odd rank r, (ii) £(S) 2 {1,3,...,r}, and (iii)) £(Q \ S) = {0}. A ranking is
tight if it is Q-tight; we use 7~ to denote the set of all tight rankings.

The original rank-based construction [24] uses macrostates of the form (S, O, f) to
track all runs of A over a. The f-component contains guesses of the ranks of states
in S (which is obtained by the classical subset construction) in the run DAG and the
O-set is used to check whether all runs contain only a finite number of accepting states.
Friedgut, Kupferman, and Vardi [14] improved the construction by having f consider
only tight rankings. Schewe’s construction [37] extends the macrostates to (S, O, f,i)
with i € w representing a particular even rank such that O tracks states with rank i.
At the cut-point (a macrostate with O = 0) the value of i is changed to i + 2 modulo the
rank of f. Macrostates in an accepting run hence iterate over all possible values of i.
Formally, the complement of A = (Q,d,1,QF U dF) is given as the (state-based) BA
ScHEWE(A) = (Q",¢",I', Q. U 0), whose components are defined as follows:

- Q' =071 UQ> where
e 0, =22%and
e 0,={(5,0,f,i)€2?2x22xT x{0,2,...,2n—2} | fis S-tight,
ocSnft@i},
- I'={I},
— 6’ =01 U by U3 where
e §1: Q1 x X — 29 such that 61(S,a) = {6(S,a)},
e 53: 01 XX — 22 such that 65(S,a) = {(5,0,1,0) | S’ = 6(S,a),
fis §’-tight}, and
e 03: Qo x X — 292 such that (87,07, f',i") € 63((S, 0, f.i),a) iff

* 8" =6(S,a),

% forif,

s rank(f) = rank(f’),
% and

o if O =0theni’ = (i +2) mod (rank(f") +1) and O’ = f~1(i’), and
o if O #0theni’ =iand O’ =6(0,a) N f'~1(i); and
- 0, ={0} U ((22 x {0} x T X w) N Q>).

We call the part of the automaton with states from Q; the waiting part (denoted as
WaITING), and the part corresponding to Q- the tight part (denoted as TiGHT).

122 Vojtéch Havlena, Ondiej Lengal, Barbora Smahlikov

Theorem 2. Let A be a BA. Then L(ScHEwe(A)) = X« \ L(A).

The space complexity of Schewe’s construction for BAs matches the theoretical
lower bound O((0.761)™) given by Yan [43] modulo a quadratic factor O(n?). Note that
our extension to BAs with accepting transitions does not increase the space complexity
of the construction.

b a
a
Example 3. Consider the BA A over —(r) b G XD
{a,b} given in Fig. la. A part of v
ScHEWE(A) is shown in Fig. 1b (we use b
({s:0,#:1},0) to denote the macrostate (a) BA A over {a, b}
({s,t},0,{s — 0,t — 1},0)). We ab
omit the i-part of each macrostate since
the corresponding values are O for all
macrostates in the figure. Useless states
are covered by grey stripes. The full au-
tomaton contains even more transitions
from {r} to useless macrostates of the
form ({r:-, s:-,1:-},0). O
From the construction of SCHEWE(A),
we can see that the number of states is
affected mainly by sizes of macrostates (b) A part of ScHEWE(A)
and by the maximum rank of A. In par-
ticular, the upper bound on the number
of states of the complement with the maximum rank r is given in the following lemma.

({r:1,5:2,£:3},0)

({r:3,5:2,1:1},0)

({r:3,5:0,1:1},0)

({r:1,5:0,2:0}, {s.1})

Fig. 1: Schewe’s complementation

Lemma 4. For a BA A with sufficiently many states n such that rank(A) = r the

number of states of the complemented automaton is bounded by 2" + ((rr:";l))’,l
m = max{0,3 - [57}.

where

From Lemma 1 we have that the rank of A is bounded by 2|Q|. Such a bound
is often too coarse and hence SCHEWE(:A) may contain many redundant states. De-
creasing the bound on the ranks is essential for a practical algorithm, but an optimal
solution is PSpace-complete [15]. The rest of this paper therefore proposes a framework
of lightweight techniques for decreasing the maximum rank bound and, in this way,
significantly reducing the size of the complemented BA.

3.3 Tight Rank Upper Bounds

Let a ¢ L(A). For { € w, we define the {-th level of G, as level,(€) = {q | (¢,€) €
G} Furthermore, we use f;* to denote the ranking of level £ of G,. Formally,

£(q) = {mnk(,((q, 0)) if g € level,(?), 0

0 otherwise.

We say that the {-th level of G,, is tight if for all k& > ¢ it holds that (i) f" is tight, and
(i) rank (f) = rank(f;*). Let p = SoS1 ... S¢-1(S¢, O¢, fe,i¢) ... be arun on a word

Sky Is Not the Limit: Tighter Rank Bounds in Biichi Automata Complementation 123

@ in ScHEWE(A). We say that p is a super-tight run [19] if fi = f* for each k > ¢.
Finally, we say that a mapping u: 22 — R is a tight rank upper bound (TRUB) wrt « iff

3t € w: level o (€) is tight A (Vk = £: p(level o (k) = f). 2)

Informally, a TRUB is a ranking that gives a conservative (i.e., larger) estimate on
the necessary ranks of states in a super-tight run. We say that u is a TRUB iff u
is a TRUB wrt all @ ¢ L(A). We abuse notation and use the term TRUB also for
a mapping p’: 22 — w if the mapping inner(u’) is a TRUB where inner(u’)(S) =
{grm|m=p(S)~1ifg € Qrelsem = u’(S)} for all S € 22. (= is the monus
operator, i.e., minus with negative results saturated to zero.) Note that the mappings
e ={S— (2|1S\ Qr| = 1)}gese and inner(u,) are trivial TRUBSs.

The following lemma shows that we can remove from ScHEwWE(A) macrostates
whose ranking is not covered by a TRUB (in particular, we show that the reduced
automaton preserves super-tight runs).

Lemma 5. Let u be a TRUB and B be a BA obtained from ScHEwe(A) by replacing
all occurrences of Q2 by Q5 = {(S, 0, f,i) | f < u(S)}. Then, L(B) =X« \ L(A).

4 Elevator Automata

In this section, we introduce elevator automata, which are BAs having a particular
structure that can be exploited for complementation and semi-determinization; elevator
automata can be complemented in O(16") (cf. Lemma 10) space instead of 20(1o8™)
which is the lower bound for unrestricted BAs, and semi-determinized in O(2") instead
of O(4™) (cf. [16]). The class of elevator automata is quite general: it can be seen
as a substantial generalization of semi-deterministic BAs (SDBAs) [11,5]. Intuitively,
an elevator automaton is a BA whose strongly connected components are all either
deterministic or inherently weak.

Let A=(Q,6,1,0r Udp). C C Q is a strongly connected component (SCC) of A
if for any pair of states ¢, ¢’ € C it holds that ¢ is reachable from g’ and ¢’ is reachable
from q. C is maximal (MSCC) if it is not a proper subset of another SCC. An MSCC C is
trivial iff |C| = 1 and 6| . = 0. The condensation of A is the DAG cond(A) = (M, E)
where M is the set of A’s MSCCs and & = {(C1,C2) | g1 € C1,3g2 € Co,3a €
X q1 4 g2 € 6}. An MSCC is non-accepting if it contains no accepting state and no
accepting transition, i.e., CNQf = 0 and 6|C N&r = 0. The depth of (M, &) is defined
as the number of MSCCs on the longest path in (M, E).

We say that an SCC C is inherently weak accepting (IWA) iff every cycle in the
transition diagram of A restricted to C contains an accepting state or an accepting
transition. C is inherently weak if it is either non-accepting or IWA, and A is inherently
weak if all of its MSCCs are inherently weak. A is deterministic iff |I| < 1 and
|[6(g,a)| <1forallg € Q anda € Z. An SCC C C Q is deterministic iff (C, P 0,0)
is deterministic. A is a semi-deterministic BA (SDBA) if A[¢] is deterministic for every
qeQrU{peQ]|s N p € 0F,s € Q,a € X}, i.e.,, whenever a run in A reaches an
accepting state or an accepting transition, it can only continue deterministically.

124 Vojtéch Havlena, Ondiej Lengal, Barbora Smahlikov

A is an elevator (Biichi) automaton iff for
every MSCC C of A it holds that C is (i) deter-
ministic, (ii) IWA, or (iii) non-accepting. In other
words, a BA is an elevator automaton iff every
nondeterministic SCC of (A that contains an ac-
cepting state or transition is inherently weak. An
example of an elevator automaton obtained from
the LTL formula GF(a v GF(b Vv GFc)) is shown
in Fig. 2. The BA consists of three connected de-
terministic components. Note that the automaton
is neither semi-deterministic nor unambiguous.

The rank of an elevator automaton A does
not depend on the number of states (as in general
BAs), but only on the number of MSCCs and the
depth of cond(A). In the worst case, A consists of a chain of deterministic components,
yielding the upper bound on the rank of elevator automata given in the following lemma.

—aA-bAc

GF(a v GF(b v GFc)) is elevator

Lemma 6. Let A be an elevator automaton such that its condensation has the depth d.
Then rank(A) < 2d.

4.1 Refined Ranks for Elevator Automata

Notice that the upper bound on ranks provided by Lemma 6 can still be too coarse. For
instance, for an SDBA with three linearly ordered MSCCs such that the first two MSCCs
are non-accepting and the last one is deterministic accepting, the lemma gives us an
upper bound on the rank 6, while it is known that every SDBA has the rank at most 3
(cf. [5]). Another examples might be two deterministic non-trivial MSCCs connected
by a path of trivial MSCCs, which can be assigned the same rank.

Instead of refining the definition of elevator automata into some quite complex list of
constraints, we rather provide an algorithm that performs a traversal through cond(A)
and assigns each MSCC a label of the form that contains (i) a type and
(ii) a bound on the maximum rank of states in the component. The types of MSCCs that
we consider are the following:

T: trivial components,

IWA: inherently weak accepting components,

D: deterministic (potentially accepting) components, and
N: non-accepting components.

Note that the type in an MSCC is not given a priori but is determined by the
algorithm (this is because for deterministic non-accepting components, it is sometimes
better to treated them as D and sometimes as N, depending on their neighbourhood).
In the following, we assume that A is an elevator automaton without useless states
and, moreover, all accepting conditions on states and transitions not inside non-trivial
MSCCs are removed (any BA can be easily transformed into this form).

We start with terminal MSCCs C, i.e., MSCCs that cannot reach any other MSCC:

T1: If C is IWA, then we label it with | IWA:0 |.

T2: Else if C is deterministic accepting, we label it with .

Sky Is Not the Limit: Tighter Rank Bounds in Biichi Automata Complementation 125

¢ =max{lp,lN +1,tw} {=max{lp + @, (N + 1, 0w +@®,2} {(=max{lp+1,{n,lw +1}

(a) Cis IWA (b)CisD

Fig. 3: Rules for assigning types and rank bounds to MSCCs. The symbols @ and @
are interpeted as 0 if all the corresponding edges from the components having rank ¢,
and {w, respectively, are deterministic; otherwise they are interpreted as 2. Transi-
tions between two components C; and Cs are deterministic if the BA (C, 6 I 0,0) is
deterministic for C = §(Cy1,X) N (C1 U Cs).

C:
(Note that the previous two options are complete due
to our requirements on the structure of A.) When
all terminal MSCCs are labelled, we proceed through [%j M M
cond(A), inductively on its structure, and label non-
terminal components C based on the rules defined below.
The rules are of the form that uses the structure depicted in Fig. 4, where children nodes

Fig.4: Structure of elevator
ranking rules

denote already processed MSCCs. In particular, a child node of the form denotes
an aggregate node of all siblings of the type k with £} being the maximum rank of these
siblings. Moreover, we use typemax{ep, e, ew } to denote the type j € {D, N, IWA}
for which e; = max{ep, en, ew } where e; is an expression containing ¢; (if there are
more such types, j is chosen arbitrarily). The rules for assigning a type ¢ and a rank £
to C are the following:

I1: If C is trivial, we set t = typemax{{p, {n,{w } and £ = max{{p, N, lw }.

12: Else if C is IWA, we use the rule in Fig. 3a.

I3: Else if C is deterministic accepting, we use the rule in Fig. 3b.

I4: Else if C is deterministic and non-accepting, we try both rules from Figs. 3b and 3¢
and pick the rule that gives us a smaller rank.

IS: Else if C is nondeterministic and non-accepting, we use the rule in Fig. 3c.

Then, for every MSCC C of A, we assign
each of its states the rank of C. We use
x: O — w to denote the rank bounds
computed by the procedure above.

Lemma 7. y is a TRUB.

Using Lemma 5, we can now use y
to prune states during the construction
of ScHEWE(A), as shown in the follow-
ing example.

Example 8. As an example, consider Fig.5: A part of ScHEWE(A). The TRUB
the BA A in Fig. la. The set of computed by elevator rules is used to prune
MSCCs with their types is given as states outside the yellow area.

126 Vojtéch Havlena, Ondiej Lengal, Barbora Smahlikov

{{r}:N, {s,t}:IWA} showing that BA A is an elevator. Using the rules T1 and 14
we get the TRUB y = {r:1, 5:0,7:0}. The TRUB can be used to prune the generated
states as shown in Fig. 5. O

4.2 Efficient Complementation of Elevator Automata

In Section 4.1 we proposed an algorithm for assigning ranks to MSCCs of an elevator
automaton A. The drawback of the algorithm is that the maximum obtained rank is not
bounded by a constant but by the depth of the condensation of A. We will, however,
show that it is actually possible to change A by at most doubling the number of states
and obtain an elevator BA with the rank at most 3.

Intuitively, the construction copies every non-trivial MSCC C with an accepting
state or transition into a component C*, copies all transitions going into states in C to
also go into the corresponding states in C*, and, finally, removes all accepting conditions
from C. Formally, let A = (Q,6,1,QF Udp) be a BA. For C C Q, we use C* to denote
a unique copy of C,i.e.,C* = {gq* | g € C}s.t. C*NQ = 0. Let M be the set of MSCCs
of A. Then, the deelevated BA DEELEV(A) = (Q’, 6,1, Q% U 6%) is given as follows:

-Q0'=0UQ",
-6 :0Q'x% — 29 where forg € 0
* §'(q,a) = 6(q,a) U (6(q,a))* and
e §'(q°,a) =(6(qg,a)NnC)* forq € C € M,
- I'’=1,and
- Q%:Q'Fand()’;:{q‘gﬂ|qi>r€6p}06’.

It is easy to see that the number of states of the deelevated automaton is bounded by 2|Q]|.
Moreover, if A is elevator, so is DEELEV(A). The construction preserves the language
of A, as shown by the following lemma.

Lemma 9. Let A be a BA. Then, L(A) = L(DeELEV(A)).

Moreover, for an elevator automaton A, the structure of DEELEV(A) consists of (after
trimming useless states) several non-accepting MSCCs with copied terminal deter-
ministic or IWA MSCCs. Therefore, if we apply the algorithm from Section 4.1 on
DEeELEV(A), we get that its rank is bounded by 3, which gives the following upper
bound for complementation of elevator automata.

Lemma 10. Let A be an elevator automaton with suffficiently many states n. Then the
language T \ L(A) can be represented by a BA with at most O(16") states.

The complementation through DEELEV((A) gives a better upper bound than the rank
refinement from Section 4.1 applied directly on A, however, based on our experience,
complementation through DEELEV(:A) behaves worse in many real-world instances.
This poor behaviour is caused by the fact that the complement of DEELEV (A) can have
a larger WarTinG and macrostates in TiGHT can have larger S-components, which can
yield more generated states (despite the rank bound 3). It seems that the most promising
approach would to be a combination of the approaches, which we leave for future work.

Sky Is Not the Limit: Tighter Rank Bounds in Biichi Automata Complementation 127

¢ =max{{p,{n +1,tw,{c} {=max{{p +@O. (N +1,{w +@®, G +2,2} (=max{lp+1,{n,tw +1,{c+1}

(a) C is IWA (b) Cis D

Fig. 6: Rules assigning types and rank bounds for non-elevator automata.

4.3 Refined Ranks for Non-Elevator Automata

The algorithm from Section 4.1 computing a TRUB for elevator automata can be
extended to compute TRUBs even for general non-elevator automata (i.e., BAs with
nondeterministic accepting components that are not inherently weak). To achieve this
generalization, we extend the rules for assigning types and ranks to MSCCs of elevator
automata from Section 4.1 to take into account general non-deterministic components.
For this, we add into our collection of MSCC types general components (denoted as G).
Further, we need to extend the rules for terminal components with the following rule:

T3: Otherwise, we label C with | G:2|C \ QF| |. ¢ =max{lp,ln +1,0w,lc} +2|C\ OF|

Moreover, we adjust the rules for assigning
a type t and a rank ¢ to C to the following (the
rule I1 is the same as for the case of elevator

automata): Fig.7: Cis G

12-15: (We replace the corresponding rules for their counterparts including general
components from Fig. 6).
I6: Otherwise, we use the rule in Fig. 7.

Then, for every MSCC C of a BA A, we assign each of its states the rank of C. Again, we
use y: QO — w to denote the rank bounds computed by the adjusted procedure above.

Lemma 11. y is a TRUB.

S Rank Propagation

In the previous section, we proposed a way, how to
obtain a TRUB for elevator automata (with gener-
alization to general automata). In this section, we
propose a way of using the structure of A to re-
fine a TRUB using a propagation of values and thus
reduce the size of TicHT. Our approach uses data
Sflow analysis [32] to reason on how ranks and rankings of macrostates of SCHEWE(A)
can be decreased based on the ranks and rankings of the local neighbourhood of the
macrostates. We, in particular, use a special case of forward analysis working on
the skeleton of SCHEWE(A), which is defined as the BA K4z = (22,6’,0,0) where

6’={R 58 | S =6(R,a)} (note that we are only interested in the structure of K4 and

(uR)) (#(R2)) -+ (1(Rw))

ax az am

Fig. 8: Rank propagation flow

128 Vojtéch Havlena, Ondiej Lengal, Barbora Smahlikov

not its language; also notice the similarity of K with WarTinG). Our analysis refines
a rank/ranking estimate p(S) for a macrostate S of K4 based on the estimates for its
predecessors Ry, . .., R, (see Fig. 8). The new estimate is denoted as u’(S).

More precisely, u: 22 — V is a function giving each macrostate of K5 a value from
the domain V. We will use the following two value domains: (i) V = w, which is used for
estimating ranks of macrostates (in the outer macrostate analysis) and (ii) V = R, which
is used for estimating rankings within macrostates (in the inner macrostate analysis). For
each of the analyses, we will give the update function up: (22 — V) x (22)"*! — vV,
which defines how the value of (S) is updated based on the values of u(Ry), . . ., u(Ry,).
We then construct a system with the following equation for every S € 29:

u(S) = up(u,S,R1,...,Ry) where {Rq,...,Ry,}=6"1(S,%). 3)

We then solve the system of equations using standard algorithms for data flow analysis
(see, e.g., [32, Chapter 2]) to obtain the fixpoint x*. Our analyses have the important
property that if they start with u(being a TRUB, then u* will also be a TRUB.

As the initial TRUB, we can use a trivial TRUB or any other TRUB (e.g., the output
of elevator state analysis from Section 4).

5.1 Outer Macrostate Analysis

We start with the simpler analysis, which is the outer macrostate analysis, which
only looks at sizes of macrostates. Recall that the rank r of every super-tight run in
ScHEWE(A) does not change, i.e., a super tight run stays in WAITING as long as needed
so that when it jumps to TiGHT, it takes the rank r and never needs to decrease it. We can
use this fact to decrease the maximum rank of a macrostate S in K. In particular,
let us consider all cycles going through §. For each of the cycles ¢, we can bound the
maximum rank of a super-tight run going through ¢ by 2m — 1 where m is the smallest
number of non-accepting states occurring in any macrostate on ¢ (from the definition,
the rank of a tight ranking does not depend on accepting states). Then we can infer that
the maximum rank of any super-tight run going through S is bounded by the maximum
rank of any of the cycles going through S (since S can never assume a higher rank in
any super-tight run). Moreover, the rank of each cycle can also be estimated in a more
precise way, e.g. using our elevator analysis.

Since the number of cycles in K4 can be large?, instead of their enumeration, we em-
ploy data flow analysis with the value domain V = w (i.e, for every macrostate S of K4,
we remember a bound on the maximum rank of S) and the following update function:

UP ot (1, S, Ry, s Ry) = min{u(S), max{u(Ry), ..., u(Rim)}}. “4)

Intuitively, the new bound on the maximum rank of S is taken as the smaller of the
previous bound w(S) and the largest of the bounds of all predecessors of S, and the new
value is propagated forward by the data flow analysis.

2 K 4 can be exponentially larger than A and the number of cycles in K4 can be exponential to
the size of K4, so the total number of cycles can be double-exponential.

Sky Is Not the Limit: Tighter Rank Bounds in Biichi Automata Complementation 129

Example 12. Consider the BA A, in ()1
Fig. 9a. When started from the initial a
TRUB po = {{p} = Lip.q} & ()

3, {p.q,r,s} +— T} (Fig. 9b), outer
macrostate analysis decreases the max-
imum rank estimate for {p,q} to 1,

o7 @arda

a a

since min{uo({p. ¢}, max{uo({p)}} = @ 7Aer Ko @Ky

min{3,1} = 1. The estimate for Fig.9: Example of outer macrostate anal-
{p,q,r,s} is mnot affected, because Ysis. (a) A, (® denotes accepting transi-
min{7, max{1, 7}} = 7 (Fig. 9¢). g tions). The initial TRUB p in (b) is refined

to u? ., in(c).

Lemma 13. [f uis a TRUB, then yu <{S — up (1, S, R1, ..., Rm)} is a TRUB.

Corollary 14. When started with a TRUB py, the outer macrostate analysis terminates
and returns a TRUB y}, ..

5.2 Inner Macrostate Analysis

Our second analysis, called inner macrostate analysis, looks deeper into super-tight
runs in SCHEWE(A). In particular, compared with the outer macrostate analysis from
the previous section—which only looks at the ranks, i.e., the bounds on the numbers
in the rankings—, inner macrostate analysis looks at how the rankings assign concrete
values to the states of A inside the macrostates.

Inner macrostate analysis is based on the following. Let p be a super-tight run of
ScHEWE(A) on a ¢ L(A) and (S, O, f,i) be a macrostate from Tigur. Because p is
super-tight, we know that the rank f(g) of a state ¢ € S is bounded by the ranks of the
predecessors of g. This holds because in super-tight runs, the ranks are only as high as
necessary; if the rank of g were higher than the ranks of its predecessors, this would
mean that we may wait in WAITING longer and only jump to g with a lower rank later.

Letus introduce some necessary notation. Let f, f’ € R berankings (i.e., f, f': Q0 —
w). We use f U f’ to denote the ranking {g — max{f(q), f'(¢)} | ¢ € Q}, and
f 1 f’ to denote the ranking {g — min{f(q), f'(¢)} | ¢ € Q}. Moreover, we define
max-succ-rankg(f) = max{f’ € R | f©*¢f’} and a function dec: R — R such that
dec(0) is the ranking 6 for which

0(q) -1 if 0(q) = rank(0) and g ¢ OF,
0'(q) = 16(q) = 1] if 6(q) = rank(6) and q € QF, (5)
0(q) otherwise.

Intuitively, max-succ-rankg(f) is the (pointwise) maximum ranking that can be reached
from macrostate S with ranking f over a (it is easy to see that there is a unique such
maximum ranking) and dec(@) decreases the maximum ranks in a ranking 6 by one
(or by two for even maximum ranks and accepting states).

The analysis uses the value domain V = R (i.e., each macrostate of K4 is assigned
a ranking giving an upper bound on the rank of each state in the macrostate) and
the update function up,, given in the right-hand side of the page. Intuitively, up,,

130 Vojtéch Havlena, Ondiej Lengal, Barbora Smahlikov

updates u(g) for every g € S
to hold the maximum rank com-
patible with the ranks of its pre-
decessors. We note line Line 6,
which makes use of the fact that
we can only consider tight rank-
ings (whose rank is odd), so we
can decrease the estimate using

UPip (U, Sy Ry, ..o, Ri):
foreach 1 <i <manda € X do
if 6(R;,a) = S then
‘ gj' < max-succ-ranky (u(R;))
0 — u(S) N LI{gf | gf is defined};
if rank(0) is even then § «— dec(0);
return 6;

T . T O SR SR

the function dec defined above.

Example 15. Let us continue in Section 5.1 and per- {pl @1}y {p:7, @7, riT, s
form inner macrostate analysis starting with the TRUB "\ \\\/\/
4 YA

N

{p:1},{p:1,q:1},{p:7,q:7,r:7,5:7}} obtained from u; ,. N/
We show three iterations of the algorithm for {p, g,r, s} in {*p:G, @, 7, 5T

the right-hand side (we do not show {p, ¢} except the first l
iteration since it does not affect intermediate steps). We can

notice that in the three iterations, we could decrease the maxi- {p:6. 6. r. 7}

mum rank estimate to {p:6, ¢:6, r:6, s:6} due to the accepting l
transitions from r and s. In the last of the three iterations, when (p:6, @6, 16, s:6}
all states have the even rank 6, the condition on Line 6 would ¥ dec

{p:5, ¢:5, r:d, s:5}

become true and the rank of all states would be decremented
to 5 using dec. Then, again, the accepting transitions from » and s would decrease the
rank of p to 4, which would be propagated to g and so on. Eventually, we would arrive to
the TRUB {p:1, g:1, r:1, s:1}, which could not be decreased any more, since {p:1,g:1}
forces the ranks of 7 and s to stay at 1. O

Lemma 16. If u is a TRUB, then yu < {S — up,, (1, S, R1,...,Rn)} is a TRUB.

Corollary 17. When started with a TRUB py, the inner macrostate analysis terminates
and returns a TRUB yu, .

6 Experimental Evaluation

Used tools and evaluation environment. We implemented the techniques described in
the previous sections as an extension of the tool RANKER [18] (written in C++). Speaking
in the terms of [19], the heuristics were implemented on top of the RANKERp,xr config-
uration (we refer to this previous version as RANKER(, ;). We tested the correctness of
our implementation using SpoT’s autcross on all BAs in our benchmark. We compared
modified RANKER with other state-of-the-art tools, namely, GoaL [41] (implementing
PiterMmAN [34], ScHEWE [37], SaFrA [36], and FriBourG [1]), SpoT 2.9.3 [12] (im-
plementing Redziejowski’s algorithm [35]), SEMINATOR 2 [4], LTL2DsTAR 0.5.4 [23],
and RoLL [26]. All tools were set to the mode where they output an automaton with
the standard state-based Biichi acceptance condition. The experimental evaluation was
performed on a 64-bit GNU/Linux DeB1aN workstation with an Intel(R) Xeon(R) CPU
E5-2620 running at 2.40 GHz with 32 GiB of RAM and using a timeout of 5 minutes.

Datasets. As the source of our benchmark, we use the two following datasets: (i) random
containing 11,000 BAs over a two letter alphabet used in [40], which were randomly

Sky Is Not the Limit: Tighter Rank Bounds in Biichi Automata Complementation 131

100000 JOLLA 100000 TTTTTm HHHH@H}I]“.:I{WW T - - o /
10000 10000
©
¢ o
2 1000 2 1000
[} C
@ p
100 100 %
10; & 10;
10 100 1000 10000 100000 10 100 1000 10000 100000
Ranker Ranker
(a) RANKER VS SCHEWE (b) RANKER vs RANKER(Q, p,

Fig. 10: Comparison of the state space generated by our optimizations and other rank-
based procedures (horizontal and vertical dashed lines represent timeouts). Blue data
points are from random and red data points are from LTL. Axes are logarithmic.

generated via the Tabakov-Vardi approach [39], starting from 15 states and with var-
ious different parameters; (i) LTL with 1,721 BAs over larger alphabets (up to 128
symbols) used in [4], which were obtained from LTL formulae from literature (221) or
randomly generated (1,500). We preprocessed the automata using Rasit [30] and Spot’s
autfilt (using the --high simplification level), transformed them to state-based ac-
ceptance BAs (if they were not already), and converted to the HOA format [2]. From
this set, we removed automata that were (i) semi-deterministic, (ii) inherently weak,
(iii) unambiguous, or (iv) have an empty language, since for these automata types there
exist more efficient complementation procedures than for unrestricted BAs [5,4,6,28].
In the end, we were left with 2,592 (random) and 414 (LTL) hard automata. We use all
to denote their union (3,006 BAs). Of these hard automata, 458 were elevator automata.

6.1 Generated State Space

In our first experiment, we evaluated the effectiveness of our heuristics for pruning the
generated state space by comparing the sizes of complemented BAs without postprocess-
ing. This use case is directed towards applications where postprocessing is irrelevant,
such as inclusion or equivalence checking of BAs.

We focused on a comparison with two less optimized versions of the rank-based com-
plementation procedure: SCHEWE (the version “Reduced Average Outdegree” from [37]
implemented in GoaL under -m rank -tr -ro)and its optimization RANKERQ,,. The
scatter plots in Fig. 10 compare the numbers of states of automata generated by RANKER
and the other algorithms and the upper part of Table 1 gives summary statistics. Observe
that our optimizations from this paper drastically reduced the generated search space
compared with both ScCHEWE and RANKERQ, , (the mean for ScCHEWE is lower than for
RANKERQ, ;, due to its much higher number of timeouts); from Fig. 10b we can see that
the improvement was in many cases exponential even when compared with our previous
optimizations in RANKER(Q, . The median (which is a more meaningful indicator with
the presence of timeouts) decreased by 44 % w.r.t. RANKER(, ,, and we also reduced the

132 Vojtéch Havlena, Ondiej Lengal, Barbora Smahlikov

Table 1: Statistics for our experiments. The upper part compares various optimizations of
the rank-based procedure (no postprocessing). The lower part compares RANKER to other
approaches (with postprocessing). The left-hand side compares sizes of complement BAs
and the right-hand side runtimes of the tools. The wins and lesses columns give the
number of times when RANKER was strictly better and worse. The values are given for
the three datasets as “all (random : LTL)”. Approaches in GoaL are labelled with &.
method mean median wins losses mean runtime [s] median runtime [s] timeouts

RANKER 3812 (4452:207) 79 (93:26) 7.83 (8.99:1.30)0.51 (0.84:0.04) 279 (276:3)
RANKERQ,,, 7398 (8688:358) 141 (197:29) 2190 (2011:179) 111 (107:4) | 9.37 (10.73:1.99) 0.61 (1.04:0.04) 365 (360:5)
ScHEWE @ 4550 (5495:665) 439 (774:35) 2640 (2315:325) 55 (1:54) [21.05 (24.28:7.80) 6.57 (7.39:521) 937 (928:9)

RANKER 47 (52:18) 22 (27:10) 7.83 (8.99:1.30)0.51 (0.84:0.04) 279 (276:3)
PrrerMAN @ 73 (82:22) 28 (34:14) 1435 (1124:311) 416 (360:56) | 7.29 (7.39:6.65)5.99 (6.04:5.62) 14 (12:2)
SAFRA © 83 (91:30) 29 (35:17) 1562 (1211:351) 387 (350:37) |14.11 (15.05:8.37) 671 (6.92:5.79) 172 (158:14)
Spor 75 (85:15) 24 (32:10) 1087 (936:151) 683 (501:182)| 0.86 (0.99:0.06) 0.02 (0.02:0.02) 13 (13:0)

FriBourG @ 91 (104:13) 23 (31:9) 1120 (1055:65) 601 (376:225)|17.79 (19.53:7.22) 9.25 (10.15:5.48) 81 (80:1)
LTL2pstaR 73 (82:21) 28 (34:13) 1465 (1195:270) 465 (383:82) | 3.31 (3.84:0.11)0.04 (0.05:0.02) 136 (130:6)
SEmiNaTOR 2 79 (91:15) 21 (29:10) 1266 (1131:135) 571 (367:204)| 9.51 (11.25:0.08) 0.22 (0.39:0.02) 363 (362:1)
RoLL 18 (19:14) 10 (9:11) 2116 (1858:258) 569 (443:126)|31.23 (37.85:7.28) 8.19 (12.23:2.74) 1109 (1106:3)

number of timeouts by 23 %. Notice that the numbers for the LTL dataset do not differ
as much as for random, witnessing the easier structure of the BAs in LTL.

6.2 Comparison with Other Complementation Techniques

In our second experiment, we compared the improved RANKER with other state-of-the-
art tools. We were comparing sizes of output BAs, therefore, we postprocessed each
output automaton with autfilt (simplification level --high). Scatter plots are given
in Fig. 11, where we compare RaNker with Spot (which had the best results on average
from the other tools except RoLL) and RoLL, and summary statistics are in the lower
part of Table 1. Observe that RANKER has by far the lowest mean (except RoLL) and the
third lowest median (after SEMINATOR 2 and RoLL, but with less timeouts). Moreover,
comparing the numbers in columns wins and losses we can see that RANKER gives strictly
better results than other tools (wins) more often than the other way round (losses).

In Fig. 11a see that indeed in the majority of cases RANKER gives a smaller BA than
Sror, especially for harder BAs (Sport, however, behaves slightly better on the simpler
BAs from LTL). The results in Fig. 11b do not seem so clear. RoLL uses a learning-based
approach—more heavyweight and completely orthogonal to any of the other tools—and
can in some cases output a tiny automaton, but does not scale, as observed by the number
of timeouts much higher than any other tool. It is, therefore, positively surprising that
RANKER could in most of the cases still obtain a much smaller automaton than Rorr.

Regarding runtimes, the prototype implementation in RANKER is comparable to SEM-
INATOR 2, but slower than Spot and LTL2psTARr (Sport is the fastest tool). Implementa-
tions of other approaches clearly do not target speed. We note that the number of timeouts
of RANKER is still higher than of some other tools (in particular PITERMAN, SpoT, Fri-
BOURG); further state space reduction targeting this particular issue is our future work.

7 Related Work

BA complementation remains in the interest of researchers since their first introduction
by Biichi in [8]. Together with a hunt for efficient complementation techniques, the effort
has been put into establishing the lower bound. First, Michel showed that the lower bound
is n! (approx. (0.36n)") [31] and later Yan refined the result to (0.76n)" [43].

Sky Is Not the Limit: Tighter Rank Bounds in Biichi Automata Complementation 133

T T TTTTTT T 7 T T T TTTTTTT
oS 1000
1000
g 100
. 100 g
o =5 d
) 2 .
% %
10 = 10 =
1 i 1 # . - .
1 10 100 1000 1 10 100 1000
Ranker Ranker
(a) RANKER Vs SpoT (b) RANKER vs RoLL

Fig. 11: Comparison of the complement size obtained by RANKER and other state-of-the-
art tools (horizontal and vertical dashed lines represent timeouts). Axes are logarithmic.

The complementation approaches can be roughly divided into several branches.
Ramsey-based complementation, the very first complementation construction, where
the language of an input automaton is decomposed into a finite number of equivalence
classes, was proposed by Biichi and was further enhanced in [7]. Determinization-
based complementation was presented by Safra in [36] and later improved by Piterman
in [34] and Redziejowski in [35]. Various optimizations for determinization of BAs were
further proposed in [29]. The main idea of this approach is to convert an input BA into an
equivalent deterministic automaton with different acceptance condition that can be easily
complemented (e.g. Rabin automaton). The complemented automaton is then converted
back into a BA (often for the price of some blow-up). Slice-based complementation tracks
the acceptance condition using a reduced abstraction on a run tree [42,21]. A learning-
based approach was introduced in [27,26]. Allred and Ultes-Nitsche then presented
a novel optimal complementation algorithm in [1]. For some special types of BAs, e.g.,
deterministic [25], semi-deterministic [5], or unambiguous [28], there exist specific
complementation algorithms. Semi-determinization based complementation converts
an input BA into a semi-deterministic BA [11], which is then complemented [4].

Rank-based complementation, studied in [24,15,14,37,22], extends the subset con-
struction for determinization of finite automata by storing additional information in
each macrostate to track the acceptance condition of all runs of the input automaton.
Optimizations of an alternative (sub-optimal) rank-based construction from [24] go-
ing through alternating Biichi automata were presented in [15]. Furthermore, the work
in [22] introduces an optimization of SCHEWE, in some cases producing smaller au-
tomata (this construction is not compatible with our optimizations). As shown in [9],
the rank-based construction can be optimized using simulation relations. We identified
several heuristics that help reducing the size of the complement in [19], which are
compatible with the heuristics in this paper.

Acknowledgements. We thank anonymous reviewers for their useful remarks that helped
us improve the quality of the paper. This work was supported by the Czech Science
Foundation project 20-07487S and the FIT BUT internal project FIT-S-20-6427.

134

Vojtéch Havlena, Ondfej Lengal, Barbora Smahlikové

References

10.

11.

12.

Allred, J.D., Ultes-Nitsche, U.: A simple and optimal complementation algorithm for Biichi
automata. In: Proceedings of the Thirty third Annual IEEE Symposium on Logic in Computer
Science (LICS 2018). pp. 46-55. IEEE Computer Society Press (July 2018)

Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Kfetinsky, J., Miiller, D., Parker, D.,
Strejéek, J.: The Hanoi omega-automata format. In: Computer Aided Verification - 27th
International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 9206, pp. 479-486. Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4_31

Blahoudek, F., Heizmann, M., Schewe, S., Strejéek, J., Tsai, M.H.: Complementing semi-
deterministic biichi automata. In: Tools and Algorithms for the Construction and Analysis of
Systems. pp. 770-787. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

Blahoudek, F., Duret-Lutz, A., Strejcek, J.: Seminator 2 can complement generalized Biichi
automata via improved semi-determinization. In: Proceedings of the 32nd International Con-
ference on Computer-Aided Verification (CAV’20). Lecture Notes in Computer Science, vol.
12225, pp. 15-27. Springer (Jul 2020)

Blahoudek, F., Heizmann, M., Schewe, S., Strejéek, J., Tsai, M.: Complementing semi-
deterministic Biichi automata. In: Tools and Algorithms for the Construction and Analysis of
Systems - 22nd International Conference, TACAS 2016, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9636, pp. 770-787.
Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_49

Boigelot, B., Jodogne, S., Wolper, P.: On the use of weak automata for deciding linear
arithmetic with integer and real variables. In: Automated Reasoning, First International Joint
Conference, [JCAR 2001, Siena, Italy, June 18-23, 2001, Proceedings. Lecture Notes in
Computer Science, vol. 2083, pp. 611-625. Springer (2001). https://doi.org/10.1007/3-540-
45744-5_50

Breuers, S., Loding, C., Olschewski, J.: Improved Ramsey-based Biichi complementation.
In: Proc. of FOSSACS’12. pp. 150-164. Springer (2012)

Biichi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. of Inter-
national Congress on Logic, Method, and Philosophy of Science 1960. Stanford Univ. Press,
Stanford (1962)

Chen, Y., Havlena, V., Lengdl, O.: Simulations in rank-based Biichi automata complementa-
tion. In: Programming Languages and Systems - 17th Asian Symposium, APLAS 2019, Nusa
Dua, Bali, Indonesia, December 1-4, 2019, Proceedings. Lecture Notes in Computer Science,
vol. 11893, pp. 447—467. Springer (2019). https://doi.org/10.1007/978-3-030-34175-6_23
Chen, Y., Heizmann, M., Lengdl, O., Li, Y., Tsai, M., Turrini, A., Zhang, L.: Ad-
vanced automata-based algorithms for program termination checking. In: Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018. pp. 135-150. ACM (2018).
https://doi.org/10.1145/3192366.3192405

Courcoubetis, C., Yannakakis, M.: Verifying temporal properties of finite-state probabilis-
tic programs. In: 29th Annual Symposium on Foundations of Computer Science, White
Plains, New York, USA, 24-26 October 1988. pp. 338-345. IEEE Computer Society (1988).
https://doi.org/10.1109/SFCS.1988.21950

Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.: Spot2.0 —a
framework for LTL and w-automata manipulation. In: Automated Technology for Verification
and Analysis. pp. 122-129. Springer International Publishing, Cham (2016)

https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-662-49674-9_49
https://doi.org/10.1007/3-540-45744-5_50
https://doi.org/10.1007/3-540-45744-5_50
https://doi.org/10.1007/978-3-030-34175-6_23
https://doi.org/10.1145/3192366.3192405
https://doi.org/10.1109/SFCS.1988.21950

Sky Is Not the Limit: Tighter Rank Bounds in Biichi Automata Complementation 135

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Fogarty, S., Vardi, M.Y.: Biichi complementation and size-change termination. In: Proc. of
TACAS’09. pp. 16-30. Springer (2009)

Friedgut, E., Kupferman, O., Vardi, M.: Biichi complementation made tighter. International
Journal of Foundations of Computer Science 17, 851-868 (2006)

Gurumurthy, S., Kupferman, O., Somenzi, F., Vardi, M.Y.: On complementing non-
deterministic Biichi automata. In: Correct Hardware Design and Verification Methods,
12th IFIP WG 10.5 Advanced Research Working Conference, CHARME 2003, L’Aquila,
Italy, October 21-24, 2003, Proceedings. LNCS, vol. 2860, pp. 96-110. Springer (2003).
https://doi.org/10.1007/978-3-540-39724-3_10

Havlena, V., Lengal, O., Smahlikov4, B.: Sky is not the limit: Tighter rank bounds for elevator
automata in Biichi automata complementation (technical report). CoRR abs/2110.10187
(2021), https://arxiv.org/abs/2110.10187

Havlena, V., Lengil, O., Smahlikov4, B.: Deciding S1S: Down the rabbit hole and through
the looking glass. In: Proceedings of NETYS’21. pp. 215-222. No. 12754 in LNCS, Springer
Verlag (2021). https://doi.org/10.1007/978-3-030-91014-3_15

Havlena, V., Lengil, O., Smahlikov4, B.: RANKER (2021), https://github.com/vhavlena/ranker
Havlena, V., Lengdl, O.: Reducing (To) the Ranks: Efficient Rank-Based Biichi Automata
Complementation. In: Proc. of CONCUR’21. LIPIcs, vol. 203, pp. 2:1-2:19. Schloss
Dagstuhl, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs. CONCUR.2021.2,
iSSN: 1868-8969

Heizmann, M., Hoenicke, J., Podelski, A.: Termination analysis by learning terminating
programs. In: Proc. of CAV’14. pp. 797-813. Springer (2014)

Kihler, D., Wilke, T.: Complementation, disambiguation, and determinization of Biichi au-
tomata unified. In: Proc. of ICALP’08. pp. 724-735. Springer (2008)

Karmarkar, H., Chakraborty, S.: On minimal odd rankings for Biichi complemen-
tation. In: Proc. of ATVA’09. LNCS, vol. 5799, pp. 228-243. Springer (2009).
https://doi.org/10.1007/978-3-642-04761-9_18

Klein, J., Baier, C.: On-the-fly stuttering in the construction of deterministic omega
-automata. In: Proc. of CIAA’07. LNCS, vol. 4783, pp. 51-61. Springer (2007).
https://doi.org/10.1007/978-3-540-76336-9_7

Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Trans.
Comput. Log. 2(3), 408—429 (2001). https://doi.org/10.1145/377978.377993

Kurshan, R.P.: Complementing deterministic Biichi automata in polynomial time. J. Comput.
Syst. Sci. 35(1), 59-71 (1987). https://doi.org/10.1016/0022-0000(87)90036-5

Li, Y., Sun, X., Turrini, A., Chen, Y., Xu, J.: ROLL 1.0: w-regular language learn-
ing library. In: Proc. of TACAS’19. LNCS, vol. 11427, pp. 365-371. Springer (2019).
https://doi.org/10.1007/978-3-030-17462-0_23

Li, Y., Turrini, A., Zhang, L., Schewe, S.: Learning to complement Biichi automata. In: Proc.
of VMCATI'18. pp. 313-335. Springer (2018)

Li, Y., Vardi, M.Y., Zhang, L.: On the power of unambiguity in Biichi complementation. In:
Proc. of GandALF’20. EPTCS, vol. 326, pp. 182-198. Open Publishing Association (2020).
https://doi.org/10.4204/EPTCS.326.12

Loding, C., Pirogov, A.: New optimizations and heuristics for determinization of biichi
automata. In: Automated Technology for Verification and Analysis. pp. 317-333. Springer
International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-31784-3_18
Mayr, R., Clemente, L.: Advanced automata minimization. In: Proc. of POPL’13. pp. 63-74
(2013)

Michel, M.: Complementation is more difficult with automata on infinite words. CNET, Paris
15 (1988)

Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis. Springer (1999).
https://doi.org/10.1007/978-3-662-03811-6

https://doi.org/10.1007/978-3-540-39724-3_10
https://arxiv.org/abs/2110.10187
https://doi.org/10.1007/978-3-030-91014-3_15
https://github.com/vhavlena/ranker
https://doi.org/10.4230/LIPIcs.CONCUR.2021.2
https://doi.org/10.1007/978-3-642-04761-9_18
https://doi.org/10.1007/978-3-540-76336-9_7
https://doi.org/10.1145/377978.377993
https://doi.org/10.1016/0022-0000(87)90036-5
https://doi.org/10.1007/978-3-030-17462-0_23
https://doi.org/10.4204/EPTCS.326.12
https://doi.org/10.1007/978-3-030-31784-3_18
https://doi.org/10.1007/978-3-662-03811-6

136 Vojtéch Havlena, Ondfej Lengal, Barbora Smahlikové

33. Oei,R.,Ma, D., Schulz, C., Hieronymi, P.: Pecan: An automated theorem prover for automatic
sequences using biichi automata. CoRR abs/2102.01727 (2021), https://arxiv.org/abs/2102.
01727

34. Piterman, N.: From nondeterministic Biichi and Streett automata to deterministic parity
automata. In: Proc. of LICS’06. pp. 255-264. IEEE (2006)

35. Redziejowski, R.R.: An improved construction of deterministic omega-automaton using
derivatives. Fundam. Informaticae 119(3-4), 393-406 (2012). https://doi.org/10.3233/FI-
2012-744

36. Safra, S.: On the complexity of w-automata. In: Proc. of FOCS’88. pp. 319-327. IEEE (1988)

37. Schewe, S.: Biichi complementation made tight. In: Proc. of STACS’09. LIPIcs, vol. 3, pp.
661-672. Schloss Dagstuhl (2009). https://doi.org/10.4230/LIPIcs.STACS.2009.1854

38. Sistla, A.P., Vardi, M. Y., Wolper, P.: The Complementation Problem for Biichi Automata with
Applications to Temporal Logic. Theoretical Computer Science 49(2-3), 217-237 (1987)

39. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata constructions. In:
Proc. of LPAR’0S. pp. 396—411. Springer (2005)

40. Tsai, M.H., Fogarty, S., Vardi, M.Y., Tsay, Y.K.: State of Biichi complementation. In: Imple-
mentation and Application of Automata. pp. 261-271. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011)

41. Tsai, M.H., Tsay, Y.K., Hwang, Y.S.: GOAL for games, omega-automata, and logics. In:
Computer Aided Verification. pp. 883—-889. Springer Berlin Heidelberg, Berlin, Heidelberg
(2013)

42. Vardi, M.Y., Wilke, T.: Automata: From logics to algorithms. Logic and Automata 2, 629-736
(2008)

43. Yan, Q.: Lower bounds for complementation of w-automata via the full automata technique.
In: Automata, Languages and Programming. pp. 589-600. Springer Berlin Heidelberg, Berlin,
Heidelberg (2006)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-
mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not in-
cluded in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to ob-
tain permission directly from the copyright holder.

https://arxiv.org/abs/2102.01727
https://arxiv.org/abs/2102.01727
https://doi.org/10.3233/FI-2012-744
https://doi.org/10.3233/FI-2012-744
https://doi.org/10.4230/LIPIcs.STACS.2009.1854
http://creativecommons.org/licenses/by/4.0/

On-The-Fly Solving for Symbolic Parity Games

Maurice Laveaux! (=)®, Wieger Wesselink!, and Tim A.C. Willemse'

! Eindhoven University of Technology, Eindhoven, The Netherlands
2 ESI (TNO), Eindhoven, The Netherlands
{m.laveaux, j.w.wesselink, t.a.c.willemse}@tue.nl

Abstract. Parity games can be used to represent many different kinds
of decision problems. In practice, tools that use parity games often rely
on a specification in a higher-order logic from which the actual game
can be obtained by means of an exploration. For many of these decision
problems we are only interested in the solution for a designated vertex in
the game. We formalise how to use on-the-fly solving techniques during
the exploration process, and show that this can help to decide the winner
of such a designated vertex in an incomplete game. Furthermore, we
define partial solving techniques for incomplete parity games and show
how these can be made resilient to work directly on the incomplete game,
rather than on a set of safe vertices. We implement our techniques for
symbolic parity games and study their effectiveness in practice, showing
that speed-ups of several orders of magnitude are feasible and overhead
(if unavoidable) is typically low.

1 Introduction

A parity game is a two-player game with an w-regular winning condition, played
by players ¢ (‘even’) and O (‘odd’) on a directed graph. The true complexity of
solving parity games is still a major open problem, with the most recent break-
throughs yielding algorithms running in quasi-polynomial time, see, e.g., [18,7].
Apart from their intriguing status, parity games pop up in various fundamental
results in computer science (e.g., in the proof of decidability of a monadic second-
order theory). In practice, parity games provide an elegant, uniform framework
to encode many relevant decision problems, which include model checking prob-
lems, synthesis problems and behavioural equivalence checking problems.

Often, a decision problem that is encoded as a parity game, can be answered
by determining which of the two players wins a designated vertex in the game
graph. Depending on the characteristics of the game, it may be the case that
only a fraction of the game is relevant for deciding which player wins a vertex.
For instance, deciding whether a transition system satisfies an invariant can be
encoded by a simple, solitaire (i.e., single player) parity game. In such a game,
player [J wins all vertices that are sinks (i.e., have no successors), and all states
leading to such sinks, so checking whether sinks are reachable from a designated
vertex suffices to determine whether this vertex is won by [, too. Clearly, as soon
as a sink is detected, any further inspection of the game becomes irrelevant.

© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 137155, 2022.
https://doi.org/10.1007/978-3-030-99527-0_8

®

Check for
updates

http://orcid.org/0000-0001-8732-7580
http://orcid.org/0000-0003-3049-7962
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99527-0_8&domain=pdf

138 M. Laveaux, W. Wesselink and T.A.C. Willemse

A complicating factor is that in practice, the parity games that encode deci-
sion problems are not given explicitly. Rather, they are specified in some higher-
order logic such as a parameterised Boolean equation system, see, e.g. [11]. Ex-
ploring the parity game from such a higher-order specification is, in general,
time-and memory-consuming. To counter this, symbolic exploration techniques
have been proposed, see e.g. [19]. These explore the game graph on-the-fly and
exploit efficient symbolic data structures such as LDDs [13] to represent sets of
vertices and edges. Many parity game solving algorithms can be implemented
quite effectively using such data structures [20,28,29], so that in the end, explor-
ing the game graph often remains the bottleneck.

In this paper, we study how to combine the exploration of a parity game
and the on-the-fly solving of the explored part, with the aim to speed-up the
overall solving process. The central problem when performing on-the-fly solving
during the exploration phase is that we have to deal with incomplete information
when determining the winner for a designated vertex. Moreover, in the symbolic
setting, the exploration order may be unpredictable when advanced strategies
such as chaining and saturation [9] are used.

To formally reason about all possible exploration strategies and the artefacts
they generate, we introduce the concept of an incomplete parity game, and an
ordering on these. Incomplete parity games are parity games where for some
vertices not all outgoing edges are necessarily known. In practice, these could be
identified by, e.g., the todo queue in a classical breadth-first search. The extra
information captured by an incomplete parity game allows us to characterise
the safe set for a given player a. This is a set of vertices for which it can be
established that if player o wins the vertex, then she cannot lose the vertex if
more information becomes available. We prove an optimality result for safe sets,
which, informally, states that a safe set for player « is also the largest set with
this property (see Theorem 1).

The vertices won by player « in an a-safe set can be determined using a
standard parity game solving algorithm such as, e.g., Zielonka’s recursive al-
gorithm [31] or Priority Promotion [2]. However, these algorithms may be less
efficient as on-the-fly solvers. For this reason, we study three symbolic partial
solvers: solitaire winning cycle detection, forced winning cycle detection and fa-
tal attractors [17]. In particular cases, first determining the safe set for a player
and only subsequently solving the game using one of these partial solvers will
incur an additional overhead. As a final result, we therefore prove that all these
solvers can be (modified to) run on the incomplete game as a whole, rather than
on the safe set of a player (see Propositions 1-3).

As a proof of concept, we have implemented an (open source) symbolic tool
for the mCRL2 toolset [6], that explores a parity game specified by a parame-
terised Boolean equation system and solves these games on-the-fly. We report
on the effectiveness of our implementation on typical parity games stemming
from, e.g., model checking and equivalence checking problems, showing that it
can speed up the process with several orders of magnitude, while adding low
overhead if the entire game is needed for solving.

On-The-Fly Solving for Symbolic Parity Games 139

Related Work. Our work is related to existing techniques for solving symbolic
parity games such as [20,19], as we extend these existing methods with on-the-
fly solving. Naturally, our work is also related to existing work for on-the-fly
model checking. This includes work for on-the-fly (explicit) model checking of
regular alternation-free modal mu-calculus formulas [23] and work for on-the-
fly symbolic model checking of RCTL [1]. Compared to these our method is
more general as it can be applied to the full modal mu-calculus (with data),
which subsumes RCTL and the alternation-free subset. Optimisations such as
the observation that checking LTL formulas of type AG reduces to reachability
checks [14] are a special case of our methods and partial solvers. Furthermore, our
methods are not restricted to model checking problems only and can be applied
to any parity game, including decision problems such as equivalence checking [8].
Furthermore, our method is agnostic to the exploration strategy employed.

Structure of the paper. In Section 2 we recall parity games. In Section 3 we
introduce incomplete parity games and show how partial solving can be applied
correctly. In Section 4 we present several partial solvers that we employ for
on-the-fly solving. Finally, in Section 5 we discuss the implementation of these
techniques and apply them to several practical examples. The omitted proofs for
the supporting lemmas can be found in [22].

2 Preliminaries

A parity game is an infinite-duration, two-player game that is played on a finite
directed graph. The objective of the two players, called even (denoted by ¢) and
odd (denoted by [J), is to win vertices in the graph.

Definition 1. A parity game is a directed graph G = (V, E,p, Vo, VD)), where

— V is a finite set of vertices, partitioned in sets Vo, and Vo of vertices owned
by O and O, respectively;

— ECV xV is the edge relation;

— p:V — N is a function that assigns a priority to each node.

Henceforth, let G = (V, E, p, (Vo, Vo)) be an arbitrary parity game. Throughout
this paper, we use « to denote an arbitrary player and & denotes the opponent.
We write vF to denote the set of successors {w € V | (v,w) € E} of vertex
v. The set sinks(G) is defined as the largest set U C V satisfying for all v € U
that vE = 0; i.e., sinks(G) is the set of all sinks: vertices without successors.
If we are only concerned with the sinks of player «, we write sinks,(G); i.e.,
sinks, (G) = V,, Nisinks(G). We write GNU, for U C V, to denote the subgame
(U,(UxU)NE,ply,(VoNU,VgNU)), where ply (v) = p(v) for all vertices
vel.

Ezxample 1. Consider the graph depicted in Figure 1, representing a parity game.
Diamond-shaped vertices are owned by player ¢, whereas box-shaped vertices
are owned by player [J. The priority of a vertex is written inside the vertex.
Vertex wu; is a sink owned by player O. O

140 M. Laveaux, W. Wesselink and T.A.C. Willemse

Fig. 1. An example parity game

Plays and strategies. The game is played as follows. Initially, a token is placed on
a vertex of the graph. The owner of a vertex on which the token resides gets to
decide the successor vertex (if any) that the token is moved to next. A maximal
sequence of vertices (i.e., an infinite sequence or a finite sequence ending in a
sink) visited by the token by following this simple rule is called a play. A finite
play 7 is won by player ¢ if the sink in which it ends is owned by player [J, and
it is won by player O if the sink is owned by player ¢. An infinite play = is won
by player ¢ if the minimal priority that occurs infinitely often along 7 is even,
and it is won by player [J otherwise.

A strategy o, : V*V, — V for player « is a partial function that prescribes
where player @ moves the token next, given a sequence of vertices visited by the
token. A play vov; ... is consistent with a strategy o if and only if o(vg ... v;) =
v;4+1 for all ¢ for which o(vg...v;) is defined. Strategy o, is winning for player
« in vertex v if all plays consistent with o, and starting in v are won by «a.
Player a wins vertex v if and only if she has a winning strategy o, for vertex v.
The parity game solving problem asks to compute the set of vertices We, won
by player ¢ and the set W, won by player [J. Note that since parity games are
determined [31,24], every vertex is won by one of the two players. That is, the
sets W, and W partition the set V.

Ezample 2. Consider the parity game depicted in Figure 1. In this game, the
strategy oo, partially defined as oo (mug) = ug and og(wus) = ug, for arbitrary
m, is winning for player ¢ in ug and wus. Player [] wins vertex ug using strategy
on(mus) = ug, for arbitrary 7. Note that player ¢ is always forced to move the
token from wy to ug. Vertex uj is a sink, owned by player O, and hence, won by
player ¢. O

Dominions. A strategy o, is said to be closed on a set of vertices U C V iff
every play, consistent with o, and starting in a vertex v € U remains in U. If
player a has a strategy that is closed on U, we say that the set U is a-closed.
A dominion for player « is a set of vertices U C V such that player « has a
strategy o, that is closed on U and which is winning for a. Note that the sets
W and W are dominions for player ¢ and player [J, respectively, and, hence,
every vertex won by player a must belong to an a-dominion.

Example 3. Reconsider the parity game of Figure 1. Observe that player [J has
a closed strategy on {us,u4}, which is also winning for player 0. Hence, the
set {us,us} is an O-dominion. Furthermore, the set {us,us,us} is O-closed.
However, none of the strategies for which {us,us,us} is closed for player ¢ is
winning for her; therefore {us, us, us} is not an ¢-dominion. a

On-The-Fly Solving for Symbolic Parity Games 141

Predecessors, control predecessors and attractors. Let U C V be a set of vertices.
We write pre(G,U) to denote the set of predecessors {v € V | Ju € U : u €
vE} of U in G. The control predecessor set of U for player a in G, denoted
cpre,, (G, U), contains those vertices for which « is able to force entering U in
one step. It is defined as follows:

cpre, (G, U) = (Vo Npre(G,U)) U (Vi \ (pre(G,V \ U) Usinks(G)))

Note that both pre and cpre are monotone operators on the complete lattice
(2",). The a-attractor to U in G, denoted Attr,(G,U), is the set of vertices
from which player « can force play to reach a vertex in U:

Attr, (G,U) = pZ.(U Ucpre, (G, Z))

The «-attractor to U can be computed by means of a fixed point iteration,
starting at U and adding «a-control predecessors in each iteration until a stable
set is reached. We note that the a-attractor to an a-dominion D is again an
a-dominion.

Example 4. Consider the parity game G of Figure 1 once again. The ¢-control
predecessors of {us} is the set {ug}. Note that since player O can avoid moving
to us from vertex us by moving to vertex uy, vertex wus is not among the -
control predecessors of {us}. The ¢-attractor to {us} is the set {ug,us}, which
is the largest set of vertices for which player ¢ has a strategy to force play to
the set of vertices {us}. O

3 Incomplete Parity Games

In many practical applications that rely on parity game solving, the parity game
is gradually constructed by means of an exploration, often starting from an ‘ini-
tial” vertex. This is, for instance, the case when using parity games in the context
of model checking or when deciding behavioural preorders or equivalences. For
such applications, it may be profitable to combine exploration and solving, so
that the costly exploration can be terminated when the winner of a particular
vertex of interest (often the initial vertex) has been determined. The example
below, however, illustrates that one cannot naively solve the parity game con-
structed so far.

Ezample 5. Consider the parity game G in Figure 2, consisting of all vertices
and only the solid edges. This game could, for example, be the result of an
exploration starting from uy. Then G N {ug, u1, us, us, ug, us} is a subgame for
which we can conclude that all vertices form an {-dominion. However, after
exploring the dotted edges, player [J can escape to vertex uy from vertex us.
Consequently, vertices u4 and us are no longer won by player ¢ in the extended
game. Furthermore, observe that the additional edge from w3 to us does not
affect the previously established fact that player ¢ wins this vertex. O

142 M. Laveaux, W. Wesselink and T.A.C. Willemse

Fig. 2. A parity game where the dotted edges are not yet known.

To facilitate reasoning about games with incomplete information, we first intro-
duce the notion of an incomplete parity game.

Definition 2. An incomplete parity game is a structure © = (G, I), where G is
a parity game (V,E,p,(Vo,VO)), and I CV is a set of vertices with potentially
unexplored successors. We refer to the set I as the set of incomplete vertices;
the set V' \ I is the set of complete vertices.

Observe that (G,0) is a ‘standard’ parity game. We permit ourselves to use
the notation for parity game notions such as plays, strategies, dominions, etcetera
also in the context of incomplete parity games. In particular, for © = (G, I),
we will write pre(©,U) and Attr,(9,U) to indicate pre(G,U) and Attr,(G,U),
respectively. Furthermore, we define © N U as the structure (GNU,INU).

Intuitively, while exploring a parity game, we extend the set of vertices and
edges by exploring the incomplete vertices. Doing so gives rise to potentially
new incomplete vertices. At each stage in the exploration, the incomplete parity
game extends incomplete parity games explored in earlier stages. We formalise
the relation between incomplete parity games, abstracting from any particular
order in which vertices and edges are explored.

Definition 3. Leto = ((V, E,p, (Vo,Vn)), 1), o' = (V' E",p', (V§, V), I') be
mcomplete parity games. We write © E O’ iff the following conditions hold:

(1) VCV', Vo CV{ and Vi C V;

(2) ECE and (V\I)x V)NE' CE;
(3) p="7pTv;

(4) I'NnV CI

Conditions (1) and (3) are self-explanatory. Condition (2) states that on the
one hand, no edges are lost, and, on the other hand, E’ can only add edges
from vertices that are incomplete: for complete vertices, E’ specifies no new
successors. Finally, condition (4) captures that the set of incomplete vertices I’
cannot contain vertices that were previously complete. We note that the ordering
C is reflexive, anti-symmetric and transitive.

Ezample 6. Suppose that © = (G, I) is the incomplete parity game depicted in
Figure 2, where G is the game with all vertices and only the solid edges, and
I = {us,us}. Then O C O, where O’ = (G',I’) is the incomplete parity game
where G’ is the depicted game with all vertices and both the solid edges and
dotted edges, and I’ = (). O

On-The-Fly Solving for Symbolic Parity Games 143

Let us briefly return to Example 5. We concluded that the winner of vertex
ug (and also us) changed when adding new information. The reason is that
player [0 has a strategy to reach an incomplete vertex owned by her. Such an
incomplete vertex may present an opportunity to escape from plays that would
be non-winning otherwise. On the other hand, the incomplete vertex ugz has
already been sufficiently explored to allow for concluding that this vertex is
won by player {, even if more successors are added to us. This suggests that
for some subset of vertices, we can decide their winner in an incomplete parity
game and preserve that winner in all future extensions of the game. We formally
characterise this set of vertices in the definition below.

Definition 4. Let © = (G,I), with G = (V, E,p,(Vo, Vo)) be an incomplete
parity game. The a-safe vertices for O, denoted by safe, (D), is the set V \
Attrs (G, Va N).

Ezample 7. Consider the incomplete parity game o of Example 6 once more. We
have safeq (D) = {ug, u1, ua,us} and safeq(0) = {uo, u1, ua, ug, us}.]

In the remainder of this section, we show that it is indeed the case that while
exploring a parity game, one can only safely determine the winners in the sets
safeq(0) and safeq (D), respectively. More specifically, we claim (Lemma 1) that
all a-dominions found in safe,(0) are preserved in extensions of the game, and
(Lemma 2) the winner of vertices not in safe, (D) are not necessarily won by the
same player in extensions of the game.

Lemma 1. Given two incomplete games © and O' such that © C o', Any a-
dominion in O N safe, (D) is also an a-dominion in O'.

Ezample 8. Recall that in Example 7, we found that safeq () = {uo, u1, ug, us}.
Observe that in the incomplete parity game O of Example 6, restricted to vertices
{ug, u1,uz,us}, all vertices are won by player ¢, and, hence, {ug,u1,us,uz} is
an ¢-dominion. Following Lemma 1 we can indeed conclude that this remains an
¢Q-dominion in all extensions of O, and, in particular, for the (complete) parity
game O’ of Example 6. O

Lemma 2. Let O be an incomplete parity game. Suppose that W is an «-
dominion in O. If W & safe, (D), then there is an (incomplete) parity game
O’ such that O C o' and all vertices in W \ safe, (D) are won by a.

As a corollary of the above lemma, we find that a-dominions that contain
vertices outside of the a-safe set are not guaranteed to be dominions in all
extensions of the incomplete parity game.

Corollary 1. Let © be an incomplete parity game. Suppose that W is an a-
dominion in O. If W € safe, (D), then there is an (incomplete) parity game O’
such that © T O’ and W is not an a-dominion in O'.

The theorem below summarises the two previous results, claiming that the
sets safeq (D) and safeq(D) are the optimal subsets that can be used safely when
combining solving and the exploration of a parity game.

144 M. Laveaux, W. Wesselink and T.A.C. Willemse

Theorem 1. Let © = (G,I), with G = (V,E,p,(Vs, Vo)), be an incomplete
parity game. Define W, as the union of all a-dominions in © Nsafe, (D), and let
We =V \ (Wo UWn). Then W- is the largest set of vertices v for which there
are incomplete parity games 0% and 0% such that © C 0% and © C 0% and v is
won by o in 0% and v is won by & in O%.

Proof. Let O, with G = (V, E,p, (V,Vg)) be an incomplete parity game. Pick
a vertex v € Ws. Suppose that in G, vertex v € W5 is won by player a. Let
0% = 0. Then 0 C 0% and v is also won by « in 0.

Next, we argue that there must be a game 0% such that © C 0% and v is
won by & in ©%. Since v € W5 is won by player @ in G, v must belong to an
a-dominion in G. Towards a contradiction, assume that v € safe, (9). Then there
must also be a a-dominion containing v in G N safe, (D), since & cannot escape
the set safe, (D). But then v € W,,. Contradiction, so v ¢ safe,(0). So, v must
be part of an a-dominion D in G such that D ¢ safe, (). By Lemma 2, we find
that there is an incomplete parity game 0% such that O C 0% and all vertices in
D\ safe, (D), and vertex v € D in particular, are won by & in 0%.

Finally, we argue that W cannot be larger. Pick a vertex v ¢ W». Then there
must be some player « such that v € W, and, consequently, there must be an
a-dominion D C O Nsafe, (D) such that v € D. But then by Lemma 1, we find
that v is won by « in all incomplete parity games 0’ such that © C o', O

4 On-the-fly Solving

In the previous section we saw that for any solver solve,, which accepts a parity
game as input and returns an a-dominion W, a correct on-the-fly solving algo-
rithm can be obtained by computing W,, = solve, (0 Nsafe,(0)) while exploring
an (incomplete) parity game o. While this approach is clearly sound, computing
the set of safe vertices can be expensive for large state spaces and potentially
wasteful when no dominions are found afterwards. We next introduce safe at-
tractors which, we show, can be used to search for specific dominions without
first computing the a-safe set of vertices.

4.1 Safe Attractors

We start by observing that the a-attractor to a set U in an incomplete parity
game o does not make a distinction between the set of complete and incomplete
vertices. Consequently, it may wrongly conclude that « has a strategy to force
play to U when the attractor strategy involves incomplete vertices owned by &.
We thus need to make sure that such vertices are excluded from consideration.
This can be achieved by considering the set of unsafe vertices V3 NI as potential
vertices that can be used by the other player to escape. We define the safe a-
attractor as the least fixed point of the safe control predecessor. The latter is
defined as follows:

spre,,(0,U) = (Vo Npre(®,U)) U (Vz \ (pre(©,V \ U) Usinks(9) U T))

On-The-Fly Solving for Symbolic Parity Games 145

Lemma 3. Let O be an incomplete parity game. For all vertex sets X C safe, (D)
it holds that cpre, (O N safe, (D), X) = spre, (0, X).

The safe a-attractor to U, denoted SAttr, (0, U), is the set of vertices from
which player « can force to safely reach U in o:

SAttr, (0,U) = pZ.(U Uspre, (9, Z))

Lemma 4. Let O be an incomplete parity game, and X C safe, (D). Then
Attr,, (0 N safe,(0), X) = SAttr, (0, X).

In particular, we can conclude the following:

Corollary 2. Let © be an incomplete parity game, and X C safe, (D) be an
a-dominion. Then SAttr, (9, X) is an a-dominion for all O' satisfying O C .

One application of the above corollary is the following: since on-the-fly solving is
typically performed repeatedly, previously found dominions can be expanded by
computing the safe a-attractor towards these already solved vertices. Another
corollary is the following, which states that complete sinks can be safely attracted
towards.

Corollary 3. Let © = (G,I) be an incomplete parity game and let O’ be such
that © C o', Then SAttry (D, sinksz(0) \ I) is an a-dominion in O'.

4.2 Partial Solvers

In practice, a full-fledged solver, such as Zielonka’s algorithm [31] or one of
the Priority Promotion variants [2], may be costly to run often while exploring
a parity game. Instead, cheaper partial solvers may be used that search for
a dominion of a particular shape. We study three such partial solvers in this
section, with a particular focus on solvers that lend themselves for parity games
that are represented symbolically using, e.g., BDDs [5], MDDs [25] or LDDs [13].
For the remainder of this section, we fix an arbitrary incomplete parity game
o= (V,E,p,(Vo,V0)), I).

Winning solitaire cycles. A simple cycle in O can be represented by a finite
sequence of distinct vertices vy vy ... v, satisfying vy € v, E. Such a cycle is an
a-solitaire cycle whenever all vertices on that cycle are owned by player «.

Observe that if all vertices on an «-solitaire cycle have a priority that is of
the same parity as the owner «, then all vertices on that cycle are won by player
«. Formally, these are thus cycles through vertices in the set P, N V,, where
Py = {v € V' \'sinks(D) | p(v) mod 2 = 0} and Pg = {v € V \ sinks(©) | p(v)
mod 2 = 1}. Let C$,(9) represent the largest set of a-solitaire winning cycles.
Then C2,(0) = vZ.(Py, NV, Npre(0, Z)).

sol

146 M. Laveaux, W. Wesselink and T.A.C. Willemse

Proposition 1. The set C$ (D) is an a-dominion and we have C3,(0) C safe, (O).

Proof. We first prove that C2(9) C safe,(0). We show, by means of an induction
on the fixed point approximants A; of the attractor, that CZ,(9) N Attrz (0, Va N
I) = 0. The base case follows immediately, as cggl(a) NAy =C%O@)NO = 0.
For the induction, we assume that C&(9) N A; = 0; we show that also CZ,(9) N
(VanI)Ucpreg (D A;)) = 0. First, observe that C,(9) C V,; hence, it suffices
to prove that C2,(©) N (Va \ (pre(E) V \ 4;) Usinks(®)) = (. But this follows
immediately from the fact that for every vertex v € C2,(9), we have v € P, N
VaNpre(9,CZ,(0)); more specifically, we have vENCE, (D) # 0 for all v € C2,(D).
The fact that C3,(9) is an a-dominion follows from the fact that for every
vertex v € C% (D), there is some w € vE NCE (D). This means that player o
must have a strategy that is closed on C&(9). Since all vertices in C,(0) are of

the priority that is beneficial to a, this closed strategy is also winning for a. O

Observe that winning solitaire cycles can be computed without first computing
the a-safe set. Parity games that stand to profit from detecting winning solitaire
cycles are those originating from verifying safety properties.

Winning forced cycles. In general, a cycle in safe, (), through vertices in Py
can contain vertices of both players, providing player (1 an opportunity to break
the cycle if that is beneficial to her. Nevertheless, if breaking a cycle always
inadvertently leads to another cycle through P, then we may conclude that all
vertices on these cycles are won by player . We call these cycles winning forced
cycles for player ¢. A dual argument applies to cycles through Pg. Let CZ, (9)
represent the largest set of vertices that are on winning forced cycles for player
a. More formally, we define C2,(0) = vZ.(P, Nsafe, (D) Ncpre, (0, Z)).

for
Lemma 5. The set CZ, (D) is an a-dominion and we have CZ (D) C safe, (D).

A possible downside of the above construction is that it again requires to first
compute safe, (D), which, in particular cases, may incur an additional overhead.
Instead, we can compute the same set using the safe control predecessor. We
define C¢ ¢, (D) = vZ.(P, Nspre, (0, Z)).

Proposition 2. We have C2,(9) = C ¢,,(9).

for
Proof. Let 7(Z) = P, Nspre, (9, Z). We use set inclusion to show that CZ, () is
indeed a fixed point of 7.

— ad CZ,(©) C 7(C&,(D)). Pick a vertex v € CZ,(9). By definition of CZ (D),
we have v € P, N safe,(0) N cpre,(0,Cq,(0)). Observe that safe,(©) N
cpre, (9,CE, (D)) = safe,(0) N cpre, (O N safeq (D), CE,(D)). But then, since
C, (D) C safe,(9), we find, by Lemma 3, that cpre, (9 Nsafeq (D), Cf‘i‘,r(D)) =
spre,(©,Cg,(9)). Hence, v € P, N sprea(D,Cfor()) = 7(C&,(©)).

—ad CE.(©) 2 7(CL.(0)). Again pick a vertex v € 7(CZ,(0)). Then v €
P, Nspre, (9,C2.(9)). Since C,(9) C safe,(9), by Lemma 3, we again have
spre, (0, C8, (D)) = cpre, (0 Nsafe, (9),CE,(9)). But then it must be the case

that v € safe, (). Moreover, cpre,, (0 Nsafe,(9),Ce, (2)) C cpre, (0,C8, (D).
So v € P, Nsafe,(9) Ncpre, (9,CL,(0)) = C, (D).

s—for

On-The-Fly Solving for Symbolic Parity Games 147

We show next that for any Z = 7(Z), we have Z C Cg,(9). Let Z be such. We first
show that for every v € ZNV,, there is some w € vENZ, and for every v € ZNVg,
we have v ¢ sinks(©), v ¢ I and vE C Z. Pickv € ZNV,. Thenv € 7(Z)NV, =
P,NV,Nspre,(D,7) C pre(®, Z). But then vE N Z # (). Next, let v € Z N V.
Then v € 7(Z)NVg = P,NVzNspre,(0,7) C Va\ (pre(@, V' \ Z) Usinks(©) UT).
So v ¢ pre(®,V \ Z) Usinks(©) U I. Consequently, vE C Z, v ¢ sinks(9) and
vl

Since for every v € Z NV, we have vE N Z # (), there must be a strategy
for player a to move to another vertex in Z. Let o be this strategy. Moreover,
since for all v € ZNV; we have vE C Z, we find that o is closed on Z and since
Z Nsinks(2) = 0, strategy o induces forced cycles. Moreover, since Z C P, we
can conclude that all vertices in Z are on winning forced cycles.

Finally, we must argue that Z C safe, (9). But this follows from the fact that
Z NVzNI =10, and, hence, also Z N Attr5(9,V5z N I) = 0. Since Z is contained
within P, Nsafe, (D), we find that Z C CZ,(©). a

Fatal attractors. Both solitaire cycles and forced cycles utilise the fact that the
parity winning condition becomes trivial if the only priorities that occur on
a play are of the parity of a single player. Fatal attractors [17] were originally
conceived to solve parts of a game using algorithms that have an appealing worst-
case running time; for a detailed account, we refer to [17]. While ébid. investigates
several variants, the main idea behind a fatal attractor is that it identifies cycles
in which the priorities are non-decreasing until the dominating priority of the
attractor is (re)visited. We focus on a simplified (and cheaper) variant of the
psolB algorithm of [17], which is based on the concept of a monotone attractor,
which, in turn, relies on the monotone control predecessor defined below, where
Pz¢={veV|p)>ch

Mcpre,, (D, Z,U,c) = P=° N cpre, (D, Z UU)

The monotone attractor for a given priority is then defined as the least fixed point
of the monotone control predecessor for that priority, formally MAttr, (9, U, c¢) =
uZ Mcpre, (9, Z,U,c). A fatal attractor for priority c is then the largest set of
vertices closed under the monotone attractor for priority ¢; i.e., F*(O,c) =
vZ.(P=¢ Nsafe, () N MAttr, (9 Nsafe, (D), Z, ¢)), where P=¢ = P2¢\ p=ctl,

Lemma 6 (See [17], Theorem 2). For even c, we have that MAttry(© N
safe, (D), F(D,¢),c) C safe (D) and MAttry (D N safe, (D), FO(D,¢),c) is an O-
dominion. If ¢ is odd then we have MAttrg(D N safe, (D), F2(D, ¢), ¢) C safeq(D)
and MAttro (D N safe, (D), FE (O, ¢), ¢) is an O-dominion.

Our simplified version of the psolB algorithm, here dubbed solB™ computes
fatal attractors for all priorities in descending order, accumulating ¢ and [J-
dominions and extending these dominions using a standard ¢ or U-attractor.
This can be implemented using a simple loop over these priorities.

In line with the previous solvers, we can also modify this solver to employ
a safe monotone control predecessor, which uses a construction that is similar

148 M. Laveaux, W. Wesselink and T.A.C. Willemse

in spirit to that of the safe control predecessor. Formally, we define the safe
monotone control predecessor as follows:

sMcpre,, (D, Z,U,c) = P=¢N'spre, (9, Z UU)

The corresponding safe monotone a-attractor, denoted sMAttr, (0, U, c), is de-
fined as follows: sMAttr,(2,U, ¢) = uZ.sMcpre, (0, Z,U, c). We define the safe
fatal attractor for priority ¢ as the set F(9,c) = vZ.(P=° N sMAttr, (9, Z, ¢)).

Proposition 3. Let © be an incomplete parity game. We have FQ(D,c) =
FOD,¢) for even ¢ and for odd ¢ we have F2(9,¢) = FI(©O,).

Similar to algorithm solB™, the algorithm solB_ computes safe fatal attrac-
tors for priorities in descending order and collects the safe-a-attractor extended
dominions obtained this way.

5 Experimental Results

We experimentally evaluate the techniques of Section 4. For this, we use games
stemming from practical model checking and equivalence checking problems.
Our experiments are run, single-threaded, on an Intel Xeon 6136 CPU @ 3 GHz
PC. The sources for these experiments can be obtained from the downloadable
artefact [21].

5.1 Implementation

We have implemented a symbolic exploration technique for parity games in the
mCRL2 toolset [6]. Our tool exploits techniques such as read and write depen-
dencies [20,4], and uses sophisticated exploration strategies such as chaining and
saturation [9]. We use MDD-like data structures [25] called List Decision Dia-
grams (LDDs), and the corresponding Sylvan implementation [13], to represent
parity games symbolically. Sylvan also offers efficient implementations for set
operations and relational operations, such as predecessors, facilitating the im-
plementation of attractor computations, the described (partial) solvers, and a
full solver based on Zielonka’s recursive algorithm [31], which remains one of the
most competitive algorithms in practice, both explicitly and symbolically [28,12].
For the attractor set computation we have also implemented chaining to deter-
mine (multi-)step a-predecessors more efficiently.

For all three on-the-fly solving techniques of Section 4, we have implemented
1) a variant that runs the standard (partial) solver on the a-safe subgame and
removes the found dominion using the standard attractor (within that subgame),
and 2) a variant that uses (partial) solvers with the safe attractors. Moreover,
we also conduct experiments using the full solver running on an a-safe subgame.
An important design aspect is to decide how the exploration and the on-the-fly
solving should interleave. For this we have implemented a time based heuristic
that keeps track of the time spent on solving and exploration steps. The time

On-The-Fly Solving for Symbolic Parity Games 149

measurements are used to ensure that (approximately) ten percent of total time
is spent on solving by delaying the next call to the solver. We do not terminate
the partial solver when it requires more time, and thus it is only approximate.
As a result of this heuristic, cheap solvers will be called more frequently than
more expensive (and more powerful) ones, which may cause the latter to explore
larger parts of the game graph.

5.2 Cases

Table 1 provides an overview of the models and a description of the property
that is being checked. The properties are written in the modal p-calculus with
data [15]. For the equivalence checking case we have mutated the original model
to introduce a defect. For each property, we indicate the nesting depth (ND) and
alternation depth [10] and whether the parity game is solitaire (Yes/No). The
nesting depth indicates how many different priorities occur in the resulting game;
for our encoding this is at most ND+2 (the additional ones encode constants
‘true’ and ‘false’). The alternation depth is an indication of a game’s complexity
due to alternating priorities.

Table 1. Models and formulas.

Model Ref. Prop. Result ND AD Sol. Description

SWP [30] 1 false 1 1 Y No error transition
2 false 3 3 N Infinitely often enabled then infinitely often taken
WMS [27] 1 false 1 1 Y Job failed to be done
2 false 1 1 Y No zombie jobs
3 truer. 3 2 Y A job can become alive again infinitely often
4 false 2 2 N Branching bisimulation with a mutation
BKE (3] 1 true. ' 1 1 Y No secret leaked
2 false 2 1 N No deadlock
CCP [26] 1 false 2 1 N No deadlock
2 false 2 1 N After access there is always accessover possible
PDI n/a 1 true. 2 1 N Controller reaches state before it can connect again
2 false 2 1 N Connection impermissible can always happen or we
establish a connection
3 false 3 1 N When connected move to not ready for connection and
do not establish a connection until it is allowed again
4 true 2 1 N The interlocking moves to the state connection closed

before it is allowed to succesfully establish a connection

We use MODEL-: to indicate the parity game belonging to model MODEL
and property i. Models SWP, BKE and CCP are protocol specifications. The
model PDI is a specification of a EULYNX SCI-LX SySML interface model that
is used for a train interlocking system. Finally, WMS is the specification of a
workload management system used at CERN. Using tools in mCRL2 [6], we have
converted each model and property combination into a so-called parameterised
Boolean equation systems [16], a higher-level logic that can be used to represent
the underlying parity game.

Parity games SWP-1, WMS-1, WMS-2 and BKE-1 encode typical safety
properties where some action should not be possible. In terms of the alternation-
free modal mu-calculus with regular expressions, such properties are of the shape

150 M. Laveaux, W. Wesselink and T.A.C. Willemse

[true*.a]false. These properties are violated exactly when the vertex encoding
‘false’ can be reached. Parity games SWP-2, WMS-3 and WMS-4 are more
complex properties with alternating priorities, where WMS-4 encodes branching
bisimulation using the theory presented in [8]. The parity games BKE-2 and
CCP-1 encode a ‘no deadlock’ property given by a formula which states that
after every path there is at least one outgoing transition. Finally, CCP-2 and
all PDI cases contain formulas with multiple fixed points that yield games with
multiple priorities but no (dependent) alternation.

Table 2. Experiments with parity games where on-the-fly solving cannot terminate
early. All run times are in seconds. The number of vertices is given in millions. Memory
is given in gigabytes. Bold-faced numbers indicate the lowest value.

Game Strategy Vertices (10%) Explore (s) Solve (s) Total (s) Mem (GB)

BKE-1 full 40 640 65 705 14
solitaire 40/40 629/615 153/100 782/715 15/15
cycles 40/40 635/644 149/160 785/804 15/15
fatal 40/40 624/625 152/164 776/789 15/15
partial 40 651 147 798 15
PDI-1 full 114 27 0.1 28 2
solitaire 114/114 28/27 4/0 33/28 2/2
cycles 114/114 29/28 7/7 36/35 2/2
fatal 114/114 28/28 4/7 32/35 2/2
partial 114 28 9 37 2
PDI-4 full 474 286 0 287 2
solitaire 474/474 284/281 46/14 331/295 2/2
cycles 474/474 284/287 92/91 376/378 2/2
fatal 474/474 285/283 80/91 365/374 2/2
partial 474 286 64 350 2

5.3 Results

In Tables 2 and 3 we compare the on-the-fly solving strategies presented in
Section 4. In the ‘Strategy’ column we indicate the on-the-fly solving strategy
that is used. Here full refers to a complete exploration followed by solving with
the Zielonka recursive algorithm. We use solitaire to refer to solitaire winning
cycle detection, cycles for forced winning cycle detection, fatal to refer to fatal
attractors and finally partial for on-the-fly solving with a Zielonka solver on safe
regions. For solvers with a standard variant and a variant that utilises the safe
attractors the first number indicates the result of applying the (standard) solver
on safe vertices, and the second number (following the slash ‘/’) indicates the
result when using the solver that utilises safe attractors.

The column ‘Vertices’ indicates the number of vertices explored in the game.
In the next columns we indicate the time spent on exploring and solving specif-
ically and the total time in seconds. We exclude the initialisation time that is
common to all experiments. Finally, the last column indicates memory used by
the tool in gigabytes. We report the average of 5 runs and have set a timeout
(indicated by 1) at 1200 seconds per run. Table 2 contains all benchmarks that
require a full exploration of the game graph, providing an indication of the over-

Table 3. Experiments with parity games in which at least one partial solver terminates
early. All run times are in seconds. The number of vertices is given in millions. For
solvers with two variants the first number indicates the result of applying the solver
on safe vertices, and following the slash ¢/’ the result when using the solver that uses
safe attractors. Memory is given in gigabytes. Bold-faced numbers indicate the lowest

On-The-Fly Solving for Symbolic Parity Games

value.
Game Strategy Vertices (10°) Explore (s) Solve (s) Total (s) Mem (GB)
SWP-1 full 13304 1 n/a 1 P
solitaire 15.1/0.4 85/1.4 27.3/0.1 35.8/1.5 2.8/1.5
cycles 25.2/0.9 12.3/1.8 42.7/1.0 55.0/2.8 3.2/1.5
fatal 15.1/0.4 9.0/1.3 29.4/0.4 38.4/1.7 3.1/1.5
partial 27.1 13.1 50.4 63.5 3.6
SWP-2 full 1987 1 n/a 1 1
solitaire 1631/1987 /1 163/11 /1 /1
cycles 1774/1774 1/ 154/91 1/1 1/
fatal 0.007/0.007 0.9/0.9 0.4/0.2 1.3/1.0 1.4/1.2
partial 0.007 0.9 0.4 1.3 1.4
WMS-1 full 270 2.8 0.4 3.3 0.2
solitaire 270,240 2.8/2.5 0.8/0.4 3.6/2.9 0.3/0.2
cycles 270/270 2.9/3.2 0.8/8.0 3.7/11.2 0.3/0.5
fatal 270/270 2.6/3.2 0.8/8.5 3.4/11.7 0.3/0.5
partial 270 2.7 0.8 3.5 0.3
WMS-2 full 317 3.3 0.3 3.6 0.2
solitaire 7)1 0.2/0.2 1.0/0.5 1.2/0.8 0.1/0.1
cycles 7/66 0.2/0.8 1.0/2.7 1.2/3.4 0.1/0.2
fatal 7/66 0.2/0.7 1.0/2.9 1.3/3.6 0.1/0.2
partial 7 0.2 1.1 1.3 0.1
WMS-3 full 317 2.6 0.1 2.7 0.2
solitaire 317/317 2.6/2.6 0.4/0.3 3.1/2.9 0.2/0.2
cycles 317/317 2.7/2.7 0.4/0.6 3.1/3.3 0.2/0.2
fatal 5/1 0.2/0.1 0.5/0.1 0.7/0.2 0.1/0.1
partial 5 0.2 0.3 0.5 0.1
WMS-4 full 366 n/a i 1
solitaire 0.03/0.03 38/38 0.8/0.1 39/38 2/2
cycles 0.03/0.03 37/37 0.8/0.3 38/37 2/2
fatal 0.03/0.03 37/37 0.8/0.3 38/37 2/2
partial 0.03 37 0.7 38 2
BKE-2 full 119 942 36.5 979 28
solitaire 0.0007/0.0001 0.2/0.1 0.0/0.0 0.2/0.2 0.9/0.9
cycles 0.0007/0.0003 0.2/0.2 0.0/0.0 0.2/0.2 0.9/0.9
fatal 0.0007/0.0003 0.2/0.2 0.0/0.0 0.2/0.2 0.9/0.9
partial 0.0007 0.2 0.0 0.2 0.9
CCP-1 full 0.4 28 4.2 32 2
solitaire 0.003/0.003 1.0/1.0 0.1/0.1 1.1/1.1 2/2
cycles 0.003/0.003 1.0/1.0 0.1/0.1 1.1/1.1 2/2
fatal 0.006/0.003 1.3/1.1 0.1/0.1 1.4/1.2 1.5/1.5
partial 0.003 1.0 0.1 1.1 1.5
CCP-2 full 0.9 35 33 68 1.7
solitaire 0.02/0.007 1.6/1.1 0.2/0.0 1.8/1.1 1.5/1.5
cycles 0.02/0.007 1.9/1.1 0.2/0.1 2.1/1.2 1.5/1.5
fatal 0.02/0.007 1.6/1.2 0.2/0.1 1.8/1.3 1.5/1.5
partial 0.02 1.6 0.2 1.8 1.5
PDI-2 full 229 31 12 43 2
solitaire 220/229 33/32 34/12 67/45 2/2
cycles 30/30 15/14 3/5 17/19 2/2
fatal 30/30 15/15 3/5 18/19 2/2
partial 123 23 29 51 2
PDI-3 full 436 228 8 236 2
solitaire 436/436 230/228 36/32 266,/260 2/2
cycles 78/162 65/102 19/64 84/166 2/2
fatal 75/84 64/67 19/23 83,90 2/2
partial 110 82 30 112 2

152 M. Laveaux, W. Wesselink and T.A.C. Willemse

head in cases where this is unavoidable; Table 3 contains all benchmarks where
at least one of the partial solvers allows exploration to terminate early.

For games SWP-1, WMS-1, WMS-2 in Table 3 we find that solitaire, and in
particular the safe attractor variant, is able to determine the solution the fastest.
Also, for all entries in Table 2 this is the solver with the least overhead. Next, we
observe that for cases such as WMS-1 and PDI-3 using the safe attractor variants
of the solvers can be detrimental. Our observation is that first computing safe
sets (especially using chaining) can be quick when most vertices are owned by
one player and one priority and the computation of the safe attractor, which uses
the more difficult safe control predecessor is more involved in such cases. There
are also cases WMS-3, WMS-4, CCP-1 and CCP-2 where the safe attractor
variants are faster and these cases all have multiple priorities. In cases where
these solvers are slow (for example PDI-3) we also observe that more states are
explored before termination, because the earlier mentioned time based heuristic
results in calling the solver significantly less frequently.

For parity games SWP-2 and WMS-3 only fatal and partial are able to find
a solution early, which shows that more powerful partial solvers can be useful.
From Table 2 and the cases in which the safe attractor variants perform poorly
we learn that the partial solvers can, as expected, cause overhead. This overhead
is in our benchmarks on average 30 percent, but when it terminates early it can
be very beneficial, achieving speed-ups of up to several orders of magnitude.

6 Conclusion

In this work we have developed the theory to reason about on-the-fly solving
of parity games, independent of the strategy that is used to explore games. We
have introduced the notion of safe vertices, shown their correctness, proven an
optimality result, and we have studied partial solvers and shown that these can
be made to run without determining the safe vertices first; which can be useful
for on-the-fly solving. Finally, we have demonstrated the practical purpose of our
method and observed that solitaire winning cycle detection with safe attractors
is almost always beneficial with minimal overhead, but also that more powerful
partial solvers can be useful.

Based on our experiments, one can make an educated guess which partial
solver to select in particular cases; we believe that this selection could even be
steered by analysing the parameterised Boolean equation system representing the
parity game. It would furthermore be interesting to study (practical) improve-
ments for the safe attractors, and their use in Zielonka’s recursive algorithm.

Acknowledgements We would like to thank Jeroen Meijer and Tom van Dijk
for their help regarding the Sylvan library when implementing our prototype.
This work was supported by the TOP Grants research programme with project
number 612.001.751 (AVVA), which is (partly) financed by the Dutch Research
Council (NWO).

On-The-Fly Solving for Symbolic Parity Games 153

References

10.

11.

12.

13.

14.

15.

. Beer, 1., Ben-David, S., Landver, A.: On-the-fly model checking of RCTL formulas.

In: Hu, A., Vardi, M. (eds.) CAV. LNCS, vol. 1427, pp. 184-194. Springer (1998).
https://doi.org/10.1007/BFb0028744

. Benerecetti, M., Dell’Erba, D., Mogavero, F.. Solving parity games via

priority promotion. Formal Methods Syst. Des. 52(2), 193-226 (2018).
https://doi.org/10.1007 /s10703-018-0315-1

. Blom, S., Groote, J.F., Mauw, S., Serebrenik, A.: Analysing the BKE-security

protocol with uCRL. Electron. Notes Theor. Comput. Sci. 139(1), 49-90 (2005).
https://doi.org/10.1016/j.entcs.2005.09.005

. Blom, S., van de Pol, J., Weber, M.: LT'Smin: Distributed and symbolic reachability.

In: Touili, T., Cook, B., Jackson, P.B. (eds.) CAV. LNCS, vol. 6174, pp. 354-359.
Springer (2010). https://doi.org/10.1007/978-3-642-14295-6_31

. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-

decision diagrams. ACM Comput. Surv. 24(3), 293-318 (1992).
https://doi.org/10.1145/136035.136043

. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink, E.P.,

Wesselink, W., Wijs, A., Willemse, T.A.C.: The mCRL2 toolset for analysing
concurrent systems - improvements in expressivity and usability. In: Vojnar,
T., Zhang, L. (eds.) TACAS. LNCS, vol. 11428, pp. 21-39. Springer (2019).
https://doi.org/10.1007 /978-3-030-17465-1_2

Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: Hatami, H., McKenzie, P., King, V. (eds.) STOC. pp.
252-263. ACM (2017). https://doi.org/10.1145/3055399.3055409

Chen, T., Ploeger, B., van de Pol, J., Willemse, T.A.C.: Equivalence checking
for infinite systems using parameterized Boolean equation systems. In: Caires, L.,
Vasconcelos, V.T. (eds.) CONCUR. LNCS, vol. 4703, pp. 120-135. Springer (2007).
https://doi.org/10.1007/978-3-540-74407-8_9

Ciardo, G., Marmorstein, R.M., Siminiceanu, R.: The saturation algorithm for
symbolic state-space exploration. Int. J. Softw. Tools Technol. Transf. 8(1), 4-25
(2006). https://doi.org/10.1007/s10009-005-0188-7

Cleaveland, R., Klein, M., Steffen, B.: Faster model checking for the modal mu-
calculus. In: von Bochmann, G., Probst, D.K. (eds.) CAV. LNCS, vol. 663, pp.
410-422. Springer (1992). https://doi.org/10.1007/3-540-56496-9_32

Cranen, S., Luttik, B., Willemse, T.A.C.: Proof graphs for parameterised Boolean
equation systems. In: D’Argenio, P.R., Melgratti, H.C. (eds.) CONCUR. LNCS,
vol. 8052, pp. 470-484. Springer (2013). https://doi.org/10.1007/978-3-642-40184-
8.33

van Dijk, T.: Oink: An implementation and evaluation of modern parity game
solvers. In: Beyer, D., Huisman, M. (eds.) TACAS. LNCS, vol. 10805, pp. 291-308.
Springer (2018). https://doi.org/10.1007/978-3-319-89960-2_16

van Dijk, T., van de Pol, J.: Sylvan: multi-core framework for deci-
sion diagrams. Int. J. Softw. Tools Technol. Transf. 19(6), 675-696 (2017).
https://doi.org/10.1007/s10009-016-0433-2

Eiriksson, A.T., McMillan, K.L.: Using formal verification/analysis methods on
the critical path in system design: A case study. In: Wolper, P. (ed.) CAV. LNCS,
vol. 939, pp. 367-380. Springer (1995). https://doi.org/10.1007/3-540-60045-0_63
Groote, J.F., Willemse, T.A.C.: Model-checking processes with data. Sci. Comput.
Program. 56(3), 251-273 (2005). https://doi.org/10.1016/j.scico.2004.08.002

https://doi.org/10.1007/BFb0028744
https://doi.org/10.1007/s10703-018-0315-1
https://doi.org/10.1016/j.entcs.2005.09.005
https://doi.org/10.1007/978-3-642-14295-6_31
https://doi.org/10.1145/136035.136043
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1007/978-3-540-74407-8_9
https://doi.org/10.1007/s10009-005-0188-7
https://doi.org/10.1007/3-540-56496-9_32
https://doi.org/10.1007/978-3-642-40184-8_33
https://doi.org/10.1007/978-3-642-40184-8_33
https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.1007/s10009-016-0433-2
https://doi.org/10.1007/3-540-60045-0_63
https://doi.org/10.1016/j.scico.2004.08.002

154 M. Laveaux, W. Wesselink and T.A.C. Willemse

16. Groote, J.F., Willemse, T.A.C.: Parameterised Boolean equation systems. Theor.
Comput. Sci. 343(3), 332-369 (2005). https://doi.org/10.1016/j.tcs.2005.06.016

17. Huth, M., Kuo, J.H., Piterman, N.: Fatal attractors in parity games. In:
Pfenning, F. (ed.) FOSSACS. LNCS, vol. 7794, pp. 34-49. Springer (2013).
https://doi.org/10.1007/978-3-642-37075-5_3

18. Jurdzinski, M., Lazi¢, R.: Succinct progress measures for solving
parity games. In: LICS. pp. 1-9. IEEE Computer Society (2017).
https://doi.org/10.1109/LICS.2017.8005092

19. Kant, G., van de Pol, J.: Efficient instantiation of parameterised
Boolean equation systems to parity games. In: Wijs, A., Bosnacki, D.,
Edelkamp, S. (eds.) GRAPHITE. EPTCS, vol. 99, pp. 50-65 (2012).
https://doi.org/10.4204/EPTCS.99.7

20. Kant, G., van de Pol, J.: Generating and solving symbolic parity games. In:
Bosnacki, D., Edelkamp, S., Lluch-Lafuente, A., Wijs, A. (eds.) GRAPHITE.
EPTCS, vol. 159, pp. 2-14 (2014). https://doi.org/10.4204/EPTCS.159.2

21. Laveaux, M.: Downloadable sources for the case study (2022).
https://doi.org/10.5281/zenodo.5896966

22. Laveaux, M., Wesselink, W., Willemse, T.A.C.: On-the-fly solving for symbolic
parity games. CoRR abs/2201.09607 (2022), https://arxiv.org/abs/2201.09607

23. Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. Sci. Comput. Program. 46(3), 255-281 (2003).
https://doi.org/10.1016/S0167-6423(02)00094-1

24. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic
65(2), 149-184 (1993). https://doi.org/10.1016,/0168-0072(93)90036-D

25. Miller, D.M.: Multiple-valued logic design tools. In: ISMVL. pp. 2-11. IEEE Com-
puter Society (1993). https://doi.org/10.1109/ISMVL.1993.289589

26. Pang, J., Fokkink, W.J., Hofman, R.F.H., Veldema, R.: Model checking a cache
coherence protocol of a java DSM implementation. J. Log. Algebraic Methods
Program. 71(1), 1-43 (2007). https://doi.org/10.1016/j.jlap.2006.08.007

27. Remenska, D., Willemse, T.A.C., Verstoep, K., Templon, J., Bal, H.E.:
Using model checking to analyze the system behavior of the LHC
production grid. Future Gener. Comput. Syst. 29(8), 2239-2251 (2013).
https://doi.org/10.1016 /j.future.2013.06.004

28. Sanchez, L., Wesselink, W., Willemse, T.A.C.: A comparison of BDD-based par-
ity game solvers. In: Orlandini, A., Zimmermann, M. (eds.) GandALF. EPTCS,
vol. 277, pp. 103-117 (2018). https://doi.org/10.4204/EPTCS.277.8

29. Stasio, A.D., Murano, A., Vardi, M.Y.: Solving parity games: Explicit vs symbolic.
In: Campeanu, C. (ed.) CIAA. LNCS, vol. 10977, pp. 159-172. Springer (2018).
https://doi.org/10.1007/978-3-319-94812-6_14

30. Tanenbaum, A.S., Wetherall, D.: Computer networks, 5th Edition. Pearson (2011),
https://www.worldcat.org/ocle/698581231

31. Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci. 200(1-2), 135-183 (1998).
https://doi.org/10.1016/S0304-3975(98)00009-7

https://doi.org/10.1016/j.tcs.2005.06.016
https://doi.org/10.1007/978-3-642-37075-5_3
https://doi.org/10.1109/LICS.2017.8005092
https://doi.org/10.4204/EPTCS.99.7
https://doi.org/10.4204/EPTCS.159.2
https://doi.org/10.5281/zenodo.5896966
https://arxiv.org/abs/2201.09607
https://doi.org/10.1016/S0167-6423(02)00094-1
https://doi.org/10.1016/0168-0072(93)90036-D
https://doi.org/10.1109/ISMVL.1993.289589
https://doi.org/10.1016/j.jlap.2006.08.007
https://doi.org/10.1016/j.future.2013.06.004
https://doi.org/10.4204/EPTCS.277.8
https://doi.org/10.1007/978-3-319-94812-6_14
https://www.worldcat.org/oclc/698581231
https://doi.org/10.1016/S0304-3975(98)00009-7

On-The-Fly Solving for Symbolic Parity Games 155

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Equivalence Checking

Fabian Birkmann®, Hans-Peter Deifel™*@®, and Stefan Milius**

Friedrich-Alexander-Universitdt Erlangen-Niirnberg, Germany
{fabian.birkmann,hans-peter.deifel,stefan.milius}@fau.de

Abstract. Partition refinement is a method for minimizing automata
and transition systems of various types. Recently we have developed a
partition refinement algorithm and the tool CoPaR that is generic in the
transition type of the input system and matches the theoretical run time
of the best known algorithms for many concrete system types. Genericity
is achieved by modelling transition types as functors on sets and systems
as coalgebras. Experimentation has shown that memory consumption is
a bottleneck for handling systems with a large state space, while running
times are fast. We have therefore extended an algorithm due to Blom
and Orzan, which is suitable for a distributed implementation to the
coalgebraic level of genericity, and implemented it in CoPaR. Experiments
show that this allows to handle much larger state spaces. Running times
are low in most experiments, but there is a significant penalty for some.

1 Introduction

Minimization is an important and basic algorithmic task on state-based systems,
concerned with reducing the state space as much as possible while retaining
the system’s behaviour. It is used for equivalence checking of systems and as a
subtask in model checking tools in order to handle larger state spaces and thus
mitigate the state-explosion problem.

We focus on the task of identifying behaviourally equivalent states modulo
bisimilarity. For classic labelled transitions systems this notion obeys the principle
‘states s and ¢ are bisimilar if for every transition s — s’, there exists a transition
t %5 ' with s’ and ¢ bisimilar’, and symmetrically for transitions from t.
Bisimilarity is a rather fine-grained branching-time notion of equivalence (cf. [17]);
it is widely used and preserves all properties expressible as p-calculus formulas.
Moreover, it has been generalized to yield equivalence notions for many other
types of state-based systems and automata.

Due to the above principle, bisimilarity is defined by a fixed point, to be
understood as a greatest fixed point and is hence approximable from above.
This is used by partition refinement algorithms: The initial partition considers
all states tentatively equivalent is then iteratively refined using observations

* Supported by the Deutsche Forschungsgemeinschaft (DFG) within the Re-
search and Training Group 2475 “Cybercrime and Forensic Computing”
(393541319/GRK?2475/1-2019)

** Supported by Deutsche Forschungsgemeinschaft (DFG) under project MI 717/7-1.

© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 159-177, 2022.
https://doi.org/10.1007/978-3-030-99527-0_9

Check for
updates

http://orcid.org/0000-0001-5890-9485
http://orcid.org/0000-0002-9542-9664
http://orcid.org/0000-0002-2021-1644
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99527-0_9&domain=pdf

160 F. Birkmann, H.-P. Deifel, S. Milius

about the states until a fixed point is reached. Consequently, such procedures
run in polynomial time and can also be efficiently implemented, in contrast to
coarser system equivalences such as trace equivalence and language equivalence
of nondeterministic systems which are PSPACE-complete [23]. This makes mini-
mization under bisimilarity interesting even in cases where the main equivalence
is linear-time, such as for automata.

Efficient partition refinement algorithms exist for various systems: Kanellakis
and Smolka provide a minimization algorithm with run time O(m-n) for labelled
transition systems with n states and m transitions. Even faster algorithms have
been developed over the past 50 years for many types of systems. For example,
Hopcroft’s algorithm for minimizing deterministic automata has run time in
O(n-logn) [21]; it was later generalized to variable input alphabets, with run time
O(n-|A|-logn) [18,24]. The Paige-Tarjan algorithm minimizes transition systems
in time O((m 4+ n) -logn) [31], and generalizations to labelled transition systems
have the same time complexity [13,22,36]. For the minimization of weighted
systems (a.k.a. lumping), Valmari and Franchescini [38] have developed a simple
O((m+n)-logn) algorithm for systems with rational weights. Buchholz [10] gave
an algorithm for weighted automata, and Hogberg et al. [20] one for (bottom-up)
weighted trees automata, both with run time in O(m - n).

In previous work [16,42], we have provided an efficient partition refinement
algorithm, which is generic in the system type, captures all the above system
types, and matches or, in some cases even improves on the run time complexity of
the respective specialized algorithms. Subsequently, we have shown how to extend
the generic complexity analysis to weighted tree automata and implemented the
algorithm in the tool CoPaR [11,41], again matching the previous best run time
complexity and improving it in the case of weighted tree automata with weights
from a non-cancellative monoid. The algorithm is based on ideas of Paige and
Tarjan, which leads to its efficiency. Genericity is achieved by modelling state
based systems as coalgebras, following the paradigm of universal coalgebra [34],
in which the transitions structure of systems is encapsulated by a set functor.
The algorithm and tool are modular in the sense that functors can be built
from a preimplemented set of basic functors by standard set constructions such
as cartesian product, disjoint union and functor composition. The tool then
automatically derives a parser for input coalgebras of the composed type and
provides a corresponding partition refinement implementation off the shelf. In
addition, new basic functors F' may easily be added to the set of basic functors by
implementing a simple refinement interface for them plus a parser for encoded F-
coalgebras. Our experiments with the tool have shown that run time scales
well with the size of systems. However, memory usage becomes a bottleneck
with growing system size, a problem that has previously also been observed by
Valmari [37] for partition refinement. One strategy to address this is to distribute
the algorithm across multiple computers, which store and process only a part
of the state space and communicate via message passing. For ordinary labelled
transition systems and Markov systems this has been investigated in a series
of papers by Blom and Orzan [4-9] who were also motivated to mitigate the
memory bottleneck of sequential partition refinement algorithms.

Distributed Coalgebraic Partition Refinement 161

Our contribution in this paper is an extension of CoPaR by an efficient dis-
tributed partition algorithm in coalgebraic generality. Like in Blom and Orzan’s
work, our algorithm is a distributed version of a simple but effective algorithm
called “the naive method” [23], or “the final chain algorithm” in coalgebraic
generality [25,42]. We first generalize signature refinement introduced by Blom
and Orzan to the level of coalgebras. We also combine generalized signatures (Sec-
tion 3) with the previous encodings of set functors and their coalgebras [11,41] via
the new notion of a signature interface (Definition 3.1). This is a key idea to make
coalgebraic signature refinement and the final chain algorithm implementable in a
tool like CoPaR. In addition, we demonstrate how signature interfaces of functors
can be combined (Construction 3.3 and Proposition 3.4) along standard functor
constructions. This yields a similar modularity principle than for the previous
sequential algorithm. However, this is a new feature for signature refinement
and also, to our knowledge, for the final chain algorithm. Consequently, our
distributed, modular and generic implementation of the final chain algorithm is
new (already as sequential algorithm).

We also provide experiments demonstrating its scalability and show that much
larger state spaces can indeed be handled. Our benchmarks include weighted tree
automata for non-cancellative monoids, a type of system for which our previous
sequential implementation is heavily limited by its memory requirements. For
those systems the running times of the distributed algorithm are even faster then
those of the sequential algorithm. In a second set of benchmarks stemming from
the PRISM benchmark suite [27] we again show that larger systems can now be
handled; however, for some of these there is a penalty in run time.

Related work. Balcazar et al. [1] have proved that the problem of bisimilarity
checking for labelled transition systems is P-complete, which implies that it is
hard to parallelize efficiently. Nevertheless, parallel algorithms have been proposed
by Rajasekaran and Lee [33]. These are designed for shared memory machines
and hence do not distribute RAM requirements over multiple machines.

Symbolic techniques are an orthogonal approach to reduce memory usage of
partition refinement algorithms and have been explored e.g. by Wimmer et al. [40)]
and van Dijk and de Pol [15].

Two other orthogonal extensions of the generic coalgebraic minimization and
CoPaR have been presented in recent work. First a non-trivial extension computes
(1) reachable states and (2) the transition structure of the minimized systems [12].
Second, Wiimann et al. [43] have shown how to compute distinguishing formulas
in a Hennessy-Milner style logic for a pair of behaviourally inequivalent states.

2 Preliminaries

Our algorithmic framework and the tool CoPaR [41,42] are based on modelling
state-based systems abstractly as coalgebras for a (set) functor that encapsulates
the transition type, following the paradigm of universal coalgebra [34]. We now
recall some standard notations for sets and maps and basic notions and examples
in coalgebra. We fix a singleton set 1 = {x}; for every set X we have a unique
map !: X — 1 and the identity map idx: X — X. We denote composition of

162 F. Birkmann, H.-P. Deifel, S. Milius

maps by (=) - (=), in applicative order. Given maps f: X — A, g: X — B we
define (f,g): X — A x B by (f,g)(x) = (f(x),g(z)). The type of transitions of
states in a system is modelled by a set functor F. Informally, F' assigns to every
set X a set F'X of structured collections of elements of X, and an F-coalgebra is
a map c: S — F'S which assigns to every state s € S in a system a structured
collection ¢(s) € F'S of successor states of s. The functor F' also determines a
canonical notion of behavioural equivalence of states of a coalgebra; this arises
by stipulating that morphisms of coalgebras are behaviour preserving maps.

Definition 2.1. A functor F': Set — Set assigns to each set X a set F'.X and
to each map f: X — Y a map Ff: FX — FY, preserving identities and
composition (Fidy =idpx, F(g-f) = Fg-Ff). An F-coalgebra (S, ¢) consists of
a set S of states and a transition structure c: S — F'S. A morphism h: (S,c) —
(57, ') of F-coalgebras is a map h: S — S’ that preserves the transition structure,
i.e. Fh-c=c -h. Two states s,t € S of a coalgebra c: S — F'S are behaviourally
equivalent (s ~ t) if there exists a coalgebra morphism h with h(s) = h(t).

Example 2.2. We mention several types of systems which are instances of the
general notion of coalgebra and the ensuing notion of behavioural equivalence.
All these are possible input systems for our tool CoPaR.

(1) Transition systems. The finite powerset functor P, maps a set X to the
set P, X of all finite subsets of X, and a map f: X — Y to the map P, f =
f[-]: PuX — P,Y taking direct images. Coalgebras for P,, are finitely branching
(unlabelled) transition systems. Two states are behaviourally equivalent iff they
are (strongly) bisimilar in the sense of Milner [29,30] and Park [32]. Similarly,
finitely branching labelled transition systems with label alphabet A are coalgebras
for the functor FX = P, (A x X).

(2) Deterministic automata. For an input alphabet A, the functor given by
FX =2x X4, where 2 = {0,1}, sends a set X to the set of pairs of boolean
values and functions A — X. An F-coalgebra (5, ¢) is a deterministic automaton
(without an initial state). For each state s € S, the first component of ¢(s)
determines whether s is a final state, and the second component is the successor
function A — S mapping each input letter a € A to the successor state of s
under input letter a. States s,t € S are behaviourally equivalent iff they accept
the same language in the usual sense.

(3) Weighted tree automata simultaneously generalize tree automata and weight-
ed (word) automata. Inputs of such automata stem from a finite signature X,
i.e. a finite set of input symbols, each with a prescribed natural number, its
arity. Weights are taken from a commutative monoid (M, +,0). A (bottom-up)
weighted tree automaton (WTA) (over M with inputs from X') consists of a finite
set S of states, an output map f: .S — M, and for each k > 0, a transition map
i X — MSkXS, where Y, denotes the set of k-ary input symbols in X'; the
maximum arity of symbols in X is called the rank.

Every signature X gives rise to its associated polynomial functor, also de-
noted X', which assigns to a set X the set]_[nE]N X, x X™ where] [denotes disjoint
union (coproduct). Further, for a given monoid (M, 4, 0) the monoid-valued func-
tor M) sends a set X to the set of maps f: X — M that are finitely supported,

Distributed Coalgebraic Partition Refinement 163

i.e. f(z) =0 for almost all z € X. Givenamap f: X — Y, M) M) 5 pr(¥)
sends a map v: X — M in M) to the map y — Zmexﬂx)zy v(x), correspond-
ing to the standard image measure construction.

Weighted tree automata are coalgebras for the composite functor FX =
M x M*X); indeed, given a coalgebra ¢ = (c1,¢2): S — M x M¥5) | its first
component ¢; is the output map, and the second component cs is equivalent to
the family of transitions maps puy described above.

As proven by Wiimann et al. [41, Prop. 6.6], the coalgebraic behavioural
equivalence is precisely backward bisimulation of weighted tree automata as
introduced by Hogberg et al. [20, Def. 16].

(4) The bag functor B: Set — Set sends a set X to the set of all finite multisets
(or bags) over X. This is the special case of the monoid-valued functor for the
monoid (N, +,0). Accordingly, B-coalgebras are weighted transition systems
with positive integers as weights, or they may be regarded as finitely branching
transition systems where multiple transitions between a pair of states are allowed.
Behavioural equivalence coincides with weighted (or strong) bisimilarity.

(5) Markov chains. The finite distribution functor D, is a subfunctor of the
monoid-valued functor R(=) for the usual monoid of addition on the real numbers.
It maps a set X to the set of all finite probability distributions on X. That
means that D, X is the set of all finitely supported maps d: X — [0, 1] such that
> zex d(x) = 1. The action of D, on maps is the same as that of R().

As shown by Rutten and de Vink [35], coalgebras c: S — (D,,S + 1)4 are
precisely Larsen and Skou’s probabilistic transition systems [28] (aka. labelled
Markov chains [14]) with the label alphabet A. In fact, for each state s € S
and action label a € A, that state either cannot perform an a-action (when
¢(s)(a) € 1) or the distribution c¢(s)(a) determines for every state t € C the
probability with which s transitions to ¢ with an a-action.

Coalgebraic behavioural equivalence is precisely probabilistic bisimilarity in
the sense of Larsen and Skou, see Rutten and de Vink [35, Cor. 4.7].

(6) Markov decision processes are systems which feature both non-deterministic
and probabilistic branching. They are coalgebras for composite functors such as
Pu(A x Dy(=)) or Py(D,(A x (—)) (simple/general Segala systems); Bartels et
al. [2] list further functors for various species of probabilistic systems.
Encodings. To supply coalgebras as inputs to CoPaR and in order to speak
about the size of a coalgebra in terms of states and transitions, we need

Definition 2.3 [12, Def. 3.1]. An encoding of a set functor F consists of a
set A of labels and a family of maps bx: FX — B(A x X), one for every set X,
such that the map (F!,bx): FX — F1 x B(A x X) is injective.

The encoding of a coalgebra ¢: S — FS is (Fl,bg)-c: S — F1 x B(A x S).
For s € S we write s — t whenever (a,t) is contained in the bag bg(c(s)). The
number of states and edges of a given encoded input coalgebra are n = |S| and
m =3 g |ps(c(s))], respectively, where |b| = >\ b(x) for a bag b: X — IN.

An encoding of a set functor F' specifies how F-coalgebras are represented as
directed graphs, and the required injectivity ensures that different coalgebras
have different encodings.

164 F. Birkmann, H.-P. Deifel, S. Milius

Example 2.4. We recall a few key examples of encodings used by CoPaR [42];
for the required injectivity, see [12, Prop. 3.3].

(1) For the finite powerset functor P, one takes a singleton label set A =1 and
bx: P,X — B(1 x X) is the obvious inclusion: bx (U)(*,z) =1if z € U C X.
(2) For the monoid-valued functor M=) we take labels A = M, and the map
bx: MX) — B(M x X) is given by by (t)(m,z) = 1 if t(z) = m # 0 and 0 else.
(3) As a special case, the bag functor B has labels A = IN, and the map
bx: BX — B(IN x X) is given by bx (¢)(n,x) = 1 if t(z) = n and 0 else.

Remark 2.5. (1) Readers familiar with category theory may wonder about the
naturality of encodings bx. It turns out [12] that in almost all instances, our
encodings are not natural transformations, except for polynomial functors. As
shown in op. cit., all our encodings satisfy a property called uniformity, which
implies that they are subnatural transformations [12, Prop. 3.15].

(2) Having an encoding of a set functor F' does not imply a reduction of the
problem of minimizing F-coalgebras to that of coalgebras for B(A x —). In fact,
the behavioural equivalence of F-coalgebras and coalgebras for B(A x —) may
be very different unless bx is natural, which is not the case for most encodings.

Functors in CoPaR can be combined by product, coproduct or composition,
leading to modularity. But in order to automatically handle combined functors,
our tool crucially depends on the ability to form products and coproducts of
encodings [41, 42]. We refrain from going into technical details, but note for
further use that given a pair of functors Fi, F» with encodings A;,bx; one
obtains encodings for the functors F; x Fy (cartesian product) and Fy + Fb
(disjoint union) with the label set A = A; + A,.

Input syntax and processing. We briefly recall the input format of CoPaR
and how inputs are processed; for more details see [41, Sec. 3.1]. CoPaR accepts
input files representing a finite F-coalgebra. The first line of an input file specifies
the functor F' which is written as a term according to the following grammar:

T:=X|P,T|BT|D,T|MD|x

Do=C|T+T|TxT|T* C:=N|A A:={s1,...,80.} |n, @
where n € IN denotes the set {0,...,n—1}, the s are strings subject to the usual
conventions for variable names (a letter or an underscore character followed by
alphanumeric characters or underscore), exponents F'4 are written F~A, and M
is one of the monoids (Z, +,0), (R,+,0), (C,+,0), (P,(64),U,0) (the monoid
of 64-bit words with bitwise or), and (IN, max,0) (the additive monoid of the
tropical semiring). Note that C' effectively ranges over at most countable sets,
and A over finite sets. A term 7' determines a functor F': Set — Set in the evident
way, with X interpreted as the argument.

The remaining lines of an input file specify a finite coalgebra ¢: S — F'S. Each
line has the form s: ¢t for a state s € S, and ¢ represents the element ¢(s) € F'S.
The syntax for ¢t depends on the specified functor F' and follows the structure of

Distributed Coalgebraic Partition Refinement 165

@

{f,n} x X~{a,b} @&a

DX
2\ 0
q: {p: 0.5, r: 0.5} 2 5 q: (n, {a: p, b: r}) 17 %/
p: {q: 0.4, r: 0.6} / p: (n, {a: q, b: r}) /Kb
r: {r: 1} @ r: (f, {a: q, b: p})
(a) Markov chain (b) Deterministic finite automaton

Fig.1: Examples of input files with encoded coalgebras [41]

the term T defining F; the details are explained in [41, Sec. 3.1.2]. Fig. 1 from
op. cit. shows two coalgebras and the corresponding input files.

After reading the functor term 7', CoPaR builds a parser for the functor-
specific input format and then parses the input coalgebra given in that format
into an intermediate format which internally represents the encoding of the
input coalgebra (Definition 2.3). For composite functors the parsed coalgebra
then undergoes a substantial amount of preprocessing, which also affects how
transitions are counted; see [41, Sec. 3.5] for more details.

3 Coalgebraic Partition Refinement

As mentioned in the introduction, the sequential partition refinement algorithm
previously implemented in CoPaR is based on ideas used in the Paige-Tarjan
algorithm [31] for transition systems. However, as has been mentioned by Blom
and Orzan [8], the Paige-Tarjan algorithm carefully selects the block of states to
split in each iteration, and the data structures used for this selection take a lot of
memory and require modification to allow a distributed implementation. Hence,
Blom and Orzan have built their distributed algorithm from a rather simple
sequential partition refinement algorithm based on what Kanellakis and Smolka
refer to as the naive method [23]. We now recall this algorithm and subsequently
show how it can be adapted to the coalgebraic level of generality.

Signature Refinement. Given a finite labelled transition system with the state
set .S, a partition on S may be presented by a function 7: S — IN, i.e. two states
s,t € S lie in the same block of the partition iff 7(s) = w(¢). The signature of a
state s € S is the set of outgoing transitions to blocks of :

sig, (s) = {(a,7(t)) | s =t} € P,(A x N). (2)

A signature refinement step then refines m by putting s,¢ € S into different blocks
iff sig,.(s) # sig, (t). Concretely, we put Tpew(s) = hash(sig,(s)) using a perfect,
deterministic hash function hash. The signature refinement algorithm (Fig. 2)
starts with a trivial initial partition on S and repeats the refinement step until
the partition stabilizes, i.e. until two subsequent partitions have the same size.

Coalgebraic Signature Refinement. Regarding a labelled transition system
as a coalgebra ¢: S — P, (A x §) (Example 2.2(1)), signatures are obtained by
postcomposing the transition structure with the partition under the functor:

W (AXTT)

sig. =S5 — P, (AXS) Pu(A x IN). (3)

166 F. Birkmann, H.-P. Deifel, S. Milius

Variables :old and new partitions represented by 7, Thew: S — IN with sizes
I, lnew, resp.; set H for counting block numbers;

1 foreach s € S do

2 | Maew(s) < 0;

3 end

4 lpew < 1

5 while [# I, do

6 T 4 Tnew, H + 0;

7 foreach s € S do

8 Tnew (8) < hash(sig,.(s));

9 H <+ H U {mew(s)};

10 end

11 I < lnew;
12 lnew <+ |H]J;
13 end

Fig. 2: Signature refinement for labelled transition systems

The generalisation to coalgebras for arbitrary F' is immediate: the signature
of a state of an F-coalgebra c¢: S — FS w.r.t. a partition m is given by the
function sig,, = F'r - c. In the refinement step of the above algorithm two states
are identified by the next partition if they have the same signatures currently:

Tnew(8) = Tnew(t) <= sig.(s) =sig,(t) <= (Fm)(c(s)) = (F'm)(c(t)). (4)

Hence, the algorithm in fact simply applies F(—) - ¢ to the initial partition
corresponding to the trivial quotient !: S — 1 until stability is reached. Note that
this is precisely the Final Chain Algorithm by Konig and Kiipper [25, Alg. 3.2]
computing behavioural equivalence of a given F-coalgebra. Its correctness thus
proves correctness of the coalgebraic signature refinement which is the algorithm
in Fig. 2 with sig, = F'w - c. Since we represent functors and their coalgebras by
encodings we use an interface to F' to compute signatures based on encodings.

Definition 3.1. Given a functor F' with encoding A,bx, a signature interface
consists of a function sig: F'1 x B(A x IN) — FIN such that for every finite set S
and every partition w: S — IN we have

F1xB(Axm)
_—

(Flbs) sig
Fr=(FS—=5F1xB(AxS) F1x B(AxN) —— FN). (5)

Given a coalgebra c¢: S — I'S, a state s € S and a partition 7: S — IN, the two
arguments of sig should be understood as follows. The first argument is the value
Fl(c(s)) € F1, which intuitively provides an observable output of the state s.
The second argument is the bag B(A x m)(bs(c(s)) formed by those pairs (a,n)
of labels a and numbers n of blocks of the partition 7 to which s has an edge;
that is, that bag contains one pair (a,n) for each edge s — s’ where 7(s') = n.
Thus, when supplied with these inputs, sig correctly computes the signature of s;
indeed, to see this, precompose equation (5) with the coalgebra structure c.

Example 3.2. (1) The constant functor !C has the label set A =), so we have
B(0 x IN) 2 1, and we define the function sig: C' x B() x IN) — C' by sig(c,) = c.

Distributed Coalgebraic Partition Refinement 167

(2) The powerset functor P,, has the label set A = 1, and we define the function
sig: Po1 x B(1 x N) — P,IN by sig(z,b) = {n : b(x,n) # 0}.

(3) The monoid-valued functor R(~) has the label set A = R, and we define the
function sig: R x B(R x IN) — R™ by sig(z,b)(n) = Z{r | b(r,n) # 0}.

Next we show how signature interfaces can be combined by products (x) and
coproducts (+). This is the key to the modularity of the implementation (be it
distributed or sequential) of the coalgebraic signature refinement in CoPaR.

Construction 3.3. Given a pair of functors Fi, F; with encodings A;,bx ; and
signature interfaces sig;, we put A = A; + Ay and define the following functions:
(1) for the product functor F' = F; x Fy we take sig: F1xB(AxIN) — FiINx F5IN,

sig(t,b) = (sigy (pry (t), filter (b)), sigy (pry(t), filtera(b))).

Here, pr;: F1 — F;1 is the projection map and filter;: B(A x N) — B(A; x N) is
given by filter;(b)(a,n) = b(in; a,n), where in;: F;IN — FIN is the injection map.
(2) for the coproduct functor F = Fy + F» we take

sig: F1 x B(A x N) - F;IN + F5IN, sig(in; t, b) = in;(sig, (¢, filter;(b))).

Proposition 3.4. The functions sig defined in Construction 3.3 yield signature
interfaces for the functors Fy x Fy and Fy + Fy, respectively.

As a consequence of this result, it suffices to implement signature interfaces
only for basic functors according to the grammar in (1), i.e. the trivial identity
and constant functors as well as the functors P, B, D, and the supported
monoid-valued functors M (7). Signature interfaces of products, coproducts and
exponents, being a special form of product, are derived using Construction 3.3.

Functor composition can be reduced to these constructions by a technique
called desorting [42, Sec. 8.2], which transforms a coalgebra of a composite functor
into a coalgebra for a coproduct of basic functors whose signature interfaces can
then be combined by + (see also [41, Sec. 3.5]). As for the previous Paige-Tarjan
style algorithm, this leads to the modularity in the functor of the coalgebraic
signature refinement algorithm: signature interfaces for composed functors are
automatically derived in CoPaR. Moreover, a new basic functor F' may be added
by implementing a signature interface for F', effectively extending the grammar
of supported functors in (1) by a clause FT.

4 The Distributed Algorithm

Our distributed algorithm for coalgebraic signature refinement is a generalization
of Blom and Orzan’s original algorithm [8] to coalgebras. We highlight differences
to op. cit. at the end of this section.

We assume a distributed high-bandwidth cluster of W workers wy, ..., wy
that is failure-free, i.e. nodes do not crash, messages do not get lost and between
two nodes the order of messages is preserved. The communication is based on
non-blocking send operations and blocking receive operations. Messages are triples
of the form (from, to, data), where the data field may be structured and will often
contain a tag to simplify interpretation.

168 F. Birkmann, H.-P. Deifel, S. Milius

Description. The distributed algorithm is based on the sequential algorithm
presented in Fig. 2, using a distributed hashtable to keep track of the partition.
As for the sequential algorithm, the input consists of an F-coalgebra (S, c)
with |S| = n states. We split the state space evenly among the workers as a
preprocessing step. We write .S; with |S;| = n/W for the set of states of worker w;.
The input for worker w; is the encoding of that part of the transition structure of
the input coalgebra which is needed to compute the signatures of the states in .5;.
This information is presented to w; as the list of all outgoing edges of states of \S;
in the encoding of the coalgebra (S, c), i.e. the list of all s —*+ ¢ with s € S;
(cf. Definition 2.3). We refer to the block number 7(s) of a state s € S as its ID.

After processing the input, the algorithm runs in two phases. In the Initializa-
tion Phase (Fig. 3) the workers exchange update demands about the IDs stored
in the distributed hashtable. If w; has an edge s — s’ into some state s’ of wj,
then during refinement w; needs to be kept up to date about the ID of s’ and thus
instructs w; to do so. Worker w; remembers this information by storing w; in
the set Iny = {w; | 3s € S;,a € A. s %+ s’} of incoming edges of s’ (lines 14-16).
Hence, for each edge s — s’ with s € S; and s’ € S, worker w; sends a message
to w;, informing w; to add w; to Iny (lines 5-8).

Variables :Set V of visited states; process count d;

for each s € S; a list Ins of workers with an edge into s

1 V<+0,d«+ 0

2 foreach s € S; do

3 | Ing<[];

4 end , . 14 on receive (wg,w;,s) do
5 foyeach edge s — s of w; with 15 Ing < (wy = Iny);

s ¢V do 16 end

6 V<« Vu{s}

7 send(w;, wy, 8');

s end 17 on receive (_, ,DONE) do
9 foreach 1 < j < W do 18 dd+1
10 | send(w;,w;, DONE); 19 end

11 end

12 waitFor(d = W);
13 return([Ins | s € S;]);

Fig. 3: Initialization Phase of worker w;

The main phase is the Refinement Phase (Fig. 4), mimicking the refinement
loop of the undistributed algorithm. In each iteration all workers compute their
part of the new partition, i.e. the IDs hs; = hash(sig, (s)) for each of their states
s € S; (line 5). In addition, every worker w; is responsible for sending the
computed ID of s € S; to workers in Ing that need it for computation of their
own signatures in the next iteration (lines 6-9). The IDs are also sent to a
designated worker counterOf(h;) (lines 10-12). This ensures that IDs are counted
precisely once at the end of the round when the partition size is computed after
all messages have been received (lines 14-17). The actual counting (line 19) is a

Distributed Coalgebraic Partition Refinement 169

Variables :Old, respectively new partitions 7, Thew With sizes [, lnew;
finished workers d; ID-counting set H;

1 Tnew O',l — _1,lnew — 07H ~ ®7
2 while [7é lnew do

3 I < lhew, T < Tnew;
4 foreach s € S; do
5 Trnew (8) < hash(sig, (s)); 22 on receive
6 foreach w; € In; do (wk, wi, (UPD, s, hs)) do
7 send(w;, wy, 23 ‘ Tnew(8) < s
8 (UPD, 5, Tnew(s))); 24 end
9 end
10 send(w;, 25 on receive
1 counterOf(mnew (5)), (wk, wi, (COUNT, hs)) do
12 (COUNT, Tpew(s)); 26 ‘ H <+ HU{hs};
13 end 27 end
14 foreach 1 < j < W do
15 | send(wi,w;, DONE); 28 on receive (_,w;, DONE) do
16 end 20 | d<d+1;
17 waitFor(d = W); 30 end
18 I < lnew;
19 lnew <— distribSum(sizeOf(H));
20 synchronize;
21 end

Fig. 4: Refinement Phase of worker w;

primitive operation in the MPI library, for an explicit O(log W) algorithm using
messages see e.g. Blom and Orzan [8, Fig. 6]. Finally, the workers synchronize
before starting the next iteration (line 20). The refinement phase stops if two
consecutive partitions have the same size (line 2).

Correctness. The Initialization Phase (Fig. 3) terminates since every worker
reaches line 10, sends DONE to all workers and thus also receives it (lines 17-19)
a total of W times, allowing it to progress past line 12. An analogous argument
proves termination of every iteration of the Refinement Phase (Fig. 4). The
sequential algorithm is correct, hence we know the loop of the refinement phase
terminates when all IDs are computed and counted correctly, since then the
distributed and the sequential algorithm compute precisely the same partitions.

To show that the signatures are computed correctly, we note that if all DONE
messages have been received in a round, then, by order-preservation of messages,
all messages sent previously in this round have also been received. This ensures
that no workers are missing from the lists Iny computed in the Initialization Phase
and that during the Refinement Phase new IDs are sent to all concerned workers
(Fig. 4, lines 6-8). This establishes correctness of the signature computation, and
the signatures coincide on all workers since we assume that the hash function is
deterministic. Finally, the use of the counterOf function (line 11) ensures that
each ID is included in the counting set of exactly one worker. Thus, the distributed
sum of the sizes of all counting sets is equal to the size of the partition.

170 F. Birkmann, H.-P. Deifel, S. Milius

Complexity. Let us assume that not only states, but also outgoing transitions

are distributed evenly among the workers, i.e. every worker has about m/W

outgoing transitions. In the Initialization Phase, the loop sending messages runs
n

in O(4) and receiving takes O(W -) = O(n), since for worker w; every other

worker w; might have an edge into every state in .S;. Both are executed in parallel
so in total the phase runs in O(max(,n)) = O(37 +n). In the Refinement
Phase, we assume the run time of computing signatures and their hashes is linear
in the number of edges. Then the loop for computing and hashing (O(3)) and
counting (O({%)) signatures runs in total in O(Z£™), since it is performed by
all workers independently. Each worker receives at most m/W ID-updates each
round and the partition size is computable in O(W) giving the complexity of one
refinement step in (9(’”*”) As many as n iterations might be needed for a total

complexity of O(+n) +n - (')(n;rvm> _ O(mn+n n n)

Remark 4.1. The above analysis assumes that signature interfaces are imple-
mented with a linear run time in their input bag. This could in fact be theoretically
realized for all basic functors (whence also for their combinations) currently im-
plemented in CoPaR, which would involve using bucket sort for the grouping of
bag elements by the target block (second component), e.g. for monoid-valued
functors. However, since the table used in bucket sort would be very large (the
size of the last partition) and memory conscience is our main motivation, we
opted for an implementation using a standard nlogn sorting algorithm instead.

Implementation details. CoPaR is implemented in Haskell. We were able
to reuse, with only minor adjustments, major parts of the code base of CoPaR
dedicated to the representation and processing of coalgebras. This includes the
implemented functors and their encodings together with the corresponding parser
and preprocessing algorithms (see Section 2). As explained in Section 3 the
sequential Paige-Tarjan-style algorithm of CoPaR was not used; we implemented
an additional “algorithmic frontend” to our “coalgebraic backend”. To compute
signatures during the Refinement Phase, each functor implements the signature
interface (Definition 3.1), which is written in Haskell as follows:

class Hashable (Signature f) => Signaturelnterface f where
type Signature f :: Type
sig @ F1f -> [(Label f, Int)] -> Signature f

We require in the second line a type Signature f, that serves as an implementa-
tion-specific datatype representation of FIN. In the type of sig, the types f, Label f
and F1f correspond to the name of F, its label type and the set F'1, respectively.

Example 4.2. The Haskell-implementation of the signature interface for the
finite power set functor P, from Example 3.2(2) is as follows:

data P x = P x —— already defined in CoPaR
type instance Label P = () —— also already defined
instance Signaturelnterface P where

type Signature P = Set Int

Distributed Coalgebraic Partition Refinement 171

sig :: F1f -> [(O, Int)] -> Set Int
sig _ = setFromList . map snd

Signature interfaces for the other basic functors according to the grammar in (1)
are implemented similarly. For combined functors CoPaR automatically derives
their signature interface based on Construction 3.3.

In the algorithm itself, each worker runs three threads in parallel: The first
thread is for computing, the second one is for sending and the third one is for
receiving signatures. This allows us to keep calls to the MPI interface separated
from (pure) signature computation, simplifying logic and allowing the workers
to scatter the ID of one state while simultaneously computing the signature of
the next one to ensure that neither signature computation nor network traffic
become bottlenecks. For inter-thread communication and synchronization we rely
on Haskell’s software transactional memory [19] to ease concurrent programming,
e.g. to avoid race conditions.

Comparison to Blom and Orzan’s algorithm. We now discuss a few
differences of our algorithm to Blom and Orzan’s original one [8].

In Blom and Orzan’s algorithm for LTSs the sets Ing of s € S; are in fact lists
and contain worker wy a total of r times if there exist r edges from states in Sy
to s. This induces a redundancy in messages of ID updates, since w; sends r
(instead of one) messages with the ID of s to wy. If the LTS has an average
fanout of f then each worker has ¢ = n/W - f outgoing transitions; this is the
number of ID updates received every round. Since there are only n states, at most
n/t = W/ f of those messages are necessary. In our scenario, we have W <« f for
large coalgebras, hence the overhead becomes massive; e.g. for W = 10, f = 100
already 90% of all ID messages are redundant. We use sets instead of lists for Ing
to avoid this redundancy.

Signature computation and communication do not proceed simultaneously in
Blom and Orzan’s original algorithm. However, in their optimized version [9] and
in Blom et al’s algorithm for state labelled continuous-time Markov chains [4]
they do.

Another difference of our implementation is that we decided to hash the
signatures directly on the workers of the respective states while Blom and Orzan
decided to first send the signatures to some dedicated hashing worker who is
then (uniquely) responsible for hashing, i.e. computing a new |ID. This method
allows to compute new IDs in constant time. However, for more complex functors
supported by CoPaR, sending signatures could result in very large messages, so we
opted for minimizing network traffic at the cost of slower signature computation.

5 Evaluation

To illustrate the practical utility and scalability of the algorithm and its im-
plementation in CoPaR, we report on a number of benchmarks performed on
a selection of randomly generated and real world data. In previous evaluations
of sequential CoPaR [41], we were limited by the 16GB RAM of a standard
workstation. Here we demonstrate that our distributed implementation fulfills its

172 F. Birkmann, H.-P. Deifel, S. Milius

main objective of handling larger systems without lifting the memory restriction
per process. All benchmarks were run on a high performance computing cluster
consisting of nodes with two Xeon 2660v2 “Ivy Bridge” chips (10 cores per
chip + SMT) with 2.2GHz clock rate and 64GB RAM. The nodes are connected
by a fat-tree InfiniBand interconnect fabric with 40 GBit/s bandwidth. Most
execution runs were performed using 32 workers on 8 nodes, resulting in 4 worker
processes per node. No process used more than 16GB RAM. Execution times of
the sequential algorithm were taken using one node of the cluster. No times are
given for executions that ran out of 16GB memory previously [41]; those were
not run on the cluster.

Weighted Tree Automata. In previous work [41], we have determined the size
of the largest weighted tree automata for different parameters that the sequential
version of CoPaR could handle in 16GB of RAM. Here, we demonstrate that the
distributed version can indeed overcome these memory constraints and process
much larger inputs.

Recall from Example 2.2 that weighted tree automata are coalgebras for the
functor FX = M x M) For these benchmarks, we use XX = 4x X" with rank
r € {1,...,5} and the monoids (2, V,0) (available as the finite powerset functor
in CoPaR), (N, max,0) and (P, (64),U,0). To generate a random automaton
with n states, we uniformly chose k = 50-n transitions from the set of all possible
transitions (using an efficient sampling algorithm by Vitter [39]) resulting in a
coalgebra encoding with n’ = 51 - n states and m = (r + 1) - k edges. We took
care to restrict the state and transition weights to at most 50 different monoid
elements in each example, to avoid the situation where all states are already
distinguished in the first iteration of the algorithm.

Table 1 lists results for both the
sequential and distributed implemen-
tation when run on the same input.
These are the largest WTAs for their
respective rank and monoid that se-
quential CoPaR could handle using at
most 16GB of RAM [41]. In contrast,
the distributed implementation uses
less than 1GB per worker for those 93 94 95 96 of
examples and is thus able to handle
much larger inputs. Incidentally, the Workers used
distributed implementation is also faster despite the overhead incurred by network
communication. This can partly be attributed to the input-parsing stage, which
does not need inter-worker synchronization and is thus perfectly parallelizable.

To test the scaling properties of the distributed algorithm, we ran CoPaR with
the same input WTA but a varying number of worker processes. For this we chose
the WTA for the monoid (2,V,0) with ¥X =4 x X® having 86852 states with
4342600 transitions and file size 186 MB. The figure on the right above depicts
the maximum memory usage per worker and the overall running time. The results
show that both data points scale nicely with up to 32 workers, but while the

211 i
210
29

28

Mem. per Worker [MB]
Computation time [s]

Distributed Coalgebraic Partition Refinement 173

running time even increases when using up to 128 workers, the memory usage per
worker (the main motivation for this work) continues to decrease significantly.

Monoid r k n Mem. (MB) Time (s) Seq. Time (s)
5 4630750 92615 849 61 511
4 4171550 83431 663 52 642
3 4721250 94425 639 59 528
(P..(64),1,0) 2 6704100 134082 675 76 471
1 7605350 152107 642 79 566
3 47212500 944250 6786 675 -
5 4722550 94451 871 61 445
4 4643950 92879 754 56 463
(IN, max, 0) 3 5039950 100799 628 64 391
’ ’ 2 5904200 118084 633 74 403
1 7845650 156913 677 82 438
3 50399500 1007990 5644 645 -
5 4342600 86852 701 71 537
4 4624550 92491 728 67 723
(2,V,0) 3 6710350 134207 825 113 689
T 2 6900000 138000 715 129 467
1 7743150 154863 621 160 449
3 65000000 1300000 7092 1377 -

Table 1: Maximally manageable WTAs for sequential CoPaR; “Mem.” and “Time”
are the memory and time required for the distributed algorithm and are the
maximum over all workers. “Seq. Time” is the time needed by sequential CoPaR.

PRISM Models. Finally, we show how our distributed partition refinement
implementation performs on models from the benchmark suite [27] of the PRISM
model checker [26]. These model (aspects of) real-world protocols and are thus
a good fit to evaluate how CoPaR performs on inputs that arise in practice.
Specifically, we use the fms and wlan__time__bounded families of systems. These
are continuous time Markov chains, regarded as coalgebras for FX = R(X), and
Markov decision processes regarded as coalgebras for FX = N x P, (IN x (D, X)),
respectively. Again, our translation to coalgebras took care to force a coarse
initial partition in the algorithm.

The results in Table 2 show that the distributed implementation is again able
to handle larger systems than sequential CoPaR in 16GB of RAM per process.
For the fms benchmarks, the distributed implementation is again faster than the
sequential one. However, this is not the case for the wlan examples. The larger
run times might be explained by the much higher number of iterations of the
refinement phase (i-column of the table). This means that only few states are
distinguished in each phase, and thus signatures are re-computed more often and
more network traffic is incurred.

174 F. Birkmann, H.-P. Deifel, S. Milius

Model n m Mem. (MB) Time (s) ¢ Seq. Time (s)
fms (n=4) 35910 237120 13 2 4 4
fms (n=>5) 152712 1111482 62 8 5 17
fms (n=6) 537768 4205670 163 26 5 68
fms (n=7) 1639440 13552968 514 84 5 232
fms (n=8) 4459455 38533968 1690 406 7 -
wlan_tb (K=0) 582327 771088 90 297 306 39
wlan_tb (K=1) 1408676 1963522 147 865 314 105
wlan_tb (K=2) 1632799 5456481 379 2960 374 -

Table 2: Benchmarks on PRISM models: n and m are the numbers of states and
edges of the input coalgebra; 7 is the number of refinement steps (iterations). The
other columns are analogous to Table 1.

6 Conclusions and Future Work

We have presented a new and simple partition refinement algorithm in coalgebraic
genericity which easily lends itself to a distributed implementation. Our algorithm
is based on Konig and Kiipper’s final chain algorithm [25] and Blom and Orzan’s
signature refinement algorithm for labelled transition systems [8]. We have
provided a distributed implementation in the tool CoPaR. Like the previous
sequential Paige-Tarjan style partition refinement algorithm, our new algorithm
is modular in the system type. This is made possible by combining signature
interfaces by product and coproduct, which is used by CoPaR for handling
combined type functors. Experimentation has shown that with the distributed
algorithm CoPaR can handle larger state spaces in general. Run times stay low for
weighted tree automata, whereas we observed severe penalties on some models
from the PRISM benchmark suite.

An additional optimization of the coalgebraic signature refinement algorithm
should be possible using Blom and Orzan’s idea [9] to mark in each iteration
those states whose signatures can change in the next iteration and only recompute
signatures for those states in the next round. This might mitigate the run time
penalties we have seen in some of the PRISM benchmarks.

Further work on CoPaR concerns symbolic techniques: we have a prototype
sequential implementation of the coalgebraic signature refinement algorithm
where state spaces are represented using BDDs. In a subsequent step it could be
investigated whether this can be distributed. In another direction the distributed
algorithm might be extended to compute distinguishing formulas, as recently
achieved for the sequential algorithm [43], for which there is also an implemented
prototype. Finally, there is still work required to integrate all these new fea-
tures, i.e. distribution, distinguishing formulas, reachability and computation of
minimized systems, into one version of CoPaR.

Data Availability Statement The software CoPaR and the input files that
were used to produce the results in this paper are available for download [3]. The
latest version of CoPaR can be obtained at https://git8.cs.fau.de/software/copar.

https://git8.cs.fau.de/software/copar

Distributed Coalgebraic Partition Refinement 175

References

1.

10.

11.

12.

13.

14.

15.

16.

Balcazar, J., Gabarro, J., Santha, M.: Deciding bisimilarity is P-complete. Form.
Asp. Comput. 4(6A), 638-648 (1992)

. Bartels, F., Sokolova, A., de Vink, E.: A hierarchy of probabilistic system

types. In: Coalgebraic Methods in Computer Science, CMCS 2003. Elec-
tron. Notes Theor. Comput. Sci., vol. 82, pp. 57-75. Elsevier (2003)

. Birkmann, F., Deifel, H.P., Milius, S.: Software and Benchmarks for Distributed Coal-

gebraic Partition Refinement (Jan 2022). https://doi.org/10.5281/zenodo.5907084

. Blom, S., Haverkort, B.R., Kuntz, M., van de Pol, J.: Distributed Markovian

bisimulation reduction aimed at CSL model checking. In: Proceedings of the 7th
International Workshop on Parallel and Distributed Methods in verifiCation (PDMC
2008). Electron. Notes Theor. Comput. Sci., vol. 220, pp. 35-50. Elsevier (2008)

. Blom, S., Orzan, S.: A distributed algorithm for strong bisimulation reduction of

state spaces. In: Brim, L., Grumberg, O. (eds.) Proc. Parallel and Distributed Model
Checking (PDMC). Electron. Notes Theor. Comput. Sci., vol. 68, pp. 523-538.
Elsevier (2002)

. Blom, S., Orzan, S.: Distributed branching bisimulation reduction of state spaces.

In: Sokolsky, O., Viswanathan, M. (eds.) Proc. Parallel and Distributed Model
Checking (PDMC). Electron. Notes Theor. Comput. Sci., vol. 89, pp. 99-113.
Elsevier (2003)

. Blom, S., Orzan, S.: Distributed state space minimization. In: Arts, T., Fokkink,

W. (eds.) Proc. Eighth International Workshop on Formal Methods for Industrial
Critical Systems (FMICS). Electron. Notes Theor. Comput. Sci., vol. 80, pp. 109—
123. Elsevier (2003)

. Blom, S., Orzan, S.: A distributed algorithm for strong bisimulation reduction of

state spaces. International Journal on Software Tools for Technology Transfer 7(1),
74-86 (2005). https://doi.org/10.1007/s10009-004-0159-4

. Blom, S.,; Orzan, S.: Distributed state space minimization. International Jour-

nal on Software Tools for Technology Transfer 7(3), 280-291 (Jun 2005).
https://doi.org/10.1007/s10009-004-0185-2

Buchholz, P.: Bisimulation relations for weighted automata. Theoret. Comput. Sci.
393, 109-123 (2008)

Deifel, H.P., Milius, S., Schroder, L., Wilmann, T.: Generic partition refinement and
weighted tree automata. In: ter Beek et al., M. (ed.) Proc. International Symposium
on Formal Methods (FM). Lecture Notes Comput. Sci., vol. 11800, pp. 280-297.
Springer (2019)

Deifel, H.P., Milius, S., Wilmann, T.: Coalgebra encoding for efficient minimization.
In: Kobayashi, N. (ed.) Proc. 6th International Conference on Formal Structures
for Computation and Deduction (FSCD). LIPIcs, vol. 195, pp. 28:1-28:19. Schloss
Dagstuhl (2021)

Derisavi, S., Hermanns, H., Sanders, W.: Optimal state-space lumping in Markov
chains. Inf. Process. Lett. 87(6), 309315 (2003)

Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled markov
processes. Inform. Comput. 179(2), 163-193 (2002)

van Dijk, T., van de Pol, J.: Multi-core symbolic bisimulation minimisation. Inter-
national Journal on Software Tools for Technology Transfer 20(2), 157-177 (Apr
2018). https://doi.org/10.1007/s10009-017-0468-z, http://link.springer.com/10.
1007/s10009-017-0468-z

Dorsch, U., Milius, S., Schréder, L., Wifimann, T.: Efficient coalgebraic partition
refinement. In: Meyer, R., Nestmann, U. (eds.) Proc. 28th International Conference

https://doi.org/10.5281/zenodo.5907084
https://doi.org/10.1007/s10009-004-0159-4
https://doi.org/10.1007/s10009-004-0185-2
https://doi.org/10.1007/s10009-017-0468-z
http://link.springer.com/10.1007/s10009-017-0468-z
http://link.springer.com/10.1007/s10009-017-0468-z

176

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

F. Birkmann, H.-P. Deifel, S. Milius

on Concurrency Theory (CONCUR). LIPIcs, vol. 85, pp. 28:1-28:16. Schloss
Dagstuhl (2017)

van Glabbeek, R.: The linear time — branching time spectrum I; the semantics
of concrete, sequential processes. In: Bergstra, J., Ponse, A., Smolka, S. (eds.)
Handbook of Process Algebra, pp. 3-99. Elsevier (2001)

Gries, D.: Describing an algorithm by Hopcroft. Acta Informatica 2, 97-109 (1973)
Harris, T., Marlow, S., Peyton Jones, S.: Composable memory transac-
tions. In: PPoPP ’05: Proceedings of the tenth ACM SIGPLAN sympo-
sium on Principles and practice of parallel programming. pp. 48-60. ACM
Press (January 2005), https://www.microsoft.com/en-us/research/publication/
composable-memory-transactions/

Hogberg (Bjorklund), J., Maletti, A., May, J.: Bisimulation minimisation for
weighted tree automata. In: Developments in Language Theory, 11th International
Conference, DLT 2007, Turku, Finland, July 3-6, 2007, Proceedings. Lecture Notes
Comput. Sci., vol. 4588, pp. 229-241. Springer (2007). https://doi.org/10.1007/978-
3-540-73208-2

Hopcroft, J.: An nlogn algorithm for minimizing states in a finite automaton. In:
Theory of Machines and Computations. pp. 189-196. Academic Press (1971)
Huynh, D., Tian, L.: On some equivalence relations for probabilistic processes.
Fund. Inform. 17, 211-234 (1992)

Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes,
and three problems of equivalence. Inform. Comput. 86(1), 43-68 (1990).
https://doi.org/10.1016 /0890-5401(90)90025-D

Knuutila, T.: Re-describing an algorithm by Hopcroft. Theoret. Comput. Sci. 250,
333-363 (2001)

Konig, B., Kiipper, S.: Generic partition refinement algorithms for coalgebras and
an instantiation to weighted automata. In: Theoretical Computer Science, IFIP
TCS 2014. Lecture Notes Comput. Sci., vol. 8705, pp. 311-325. Springer (2014)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Computer Aided Verification, CAV 2011. LNCS, vol. 6806,
pp. 585-591. Springer (2011)

Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In:
Ninth International Conference on Quantitative Evaluation of Systems, QEST 2012,
London, United Kingdom, September 17-20, 2012. pp. 203-204. IEEE Computer
Society (2012). https://doi.org/10.1109/QEST.2012.14

Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inform. Comput.
94(1), 1-28 (1991)

Milner, R.: A Calculus of Communicating Systems, Lecture Notes Comput. Sci.,
vol. 92. Springer (1980)

Milner, R.: Communication and Concurrency. International Series in Computer
Science, Prentice Hall (1989)

Paige, R., Tarjan, R.: Three partition refinement algorithms. STAM J. Comput.
16(6), 973-989 (1987)

Park, D.: Concurrency on automata and infinite sequences. In: Deussen, P. (ed.)
Proc. Conf. on Theoretical Computer Science. Lecture Notes Comput. Sci., vol. 104,
pp. 167-183 (1981)

Rajasekaran, S., Lee, I.: Parallel algorithms for relational coarsest parti-
tion problems. IEEE Trans. Parallel Distributed Syst. 9(7), 687-699 (1998).
https://doi.org/10.1109/71.707548

Rutten, J.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci. 249,
3-80 (2000)

https://www.microsoft.com/en-us/research/publication/composable-memory-transactions/
https://www.microsoft.com/en-us/research/publication/composable-memory-transactions/
https://doi.org/10.1007/978-3-540-73208-2
https://doi.org/10.1007/978-3-540-73208-2
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1109/QEST.2012.14
https://doi.org/10.1109/71.707548

35.

36.

37.

38.

39.

40.

41.

42.

43.

Distributed Coalgebraic Partition Refinement 177

Rutten, J., de Vink, E.: Bisimulation for probabilistic transition systems: a coalge-
braic approach. Theoret. Comput. Sci. 221, 271-293 (1999)

Valmari, A.: Bisimilarity minimization in O(mlogn) time. In: Applications and
Theory of Petri Nets, PETRI NETS 2009. Lecture Notes Comput. Sci., vol. 5606,
pp. 123-142. Springer (2009)

Valmari, A.: Simple bisimilarity minimization in o(m log n) time. Fundam. Inform.
105(3), 319-339 (2010). https://doi.org/10.3233/F1-2010-369

Valmari, A., Franceschinis, G.: Simple O(mlogn) time Markov chain lumping. In:
Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2010.
Lecture Notes Comput. Sci., vol. 6015, pp. 38-52. Springer (2010)

Vitter, J.S.: An efficient algorithm for sequential random sampling. ACM Trans.
Math. Softw. 13(1), 58-67 (1987). https://doi.org/10.1145/23002.23003
Wimmer, R., Herbstritt, M., Hermanns, H., Strampp, K., Becker, B.: Sigref —
A Symbolic Bisimulation Tool Box. In: Hutchison, D., Kanade, T., Kittler, J.,
Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan,
C., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum, G.,
Graf, S., Zhang, W. (eds.) Automated Technology for Verification and Analysis,
vol. 4218, pp. 477-492. Springer Berlin Heidelberg, Berlin, Heidelberg (2006).
https://doi.org/10.1007/11901914 35

Wilmann, T., Deifel, H.P., Milius, S., Schréder, L.: From generic partition refinement
to weighted tree automata minimization. Form. Asp. Comput. 33, 695-727 (2021)
Wiimann, T., Dorsch, U., Milius, S., Schroder, L.: Efficient and modular coalgebraic
partition refinement. Log. Methods Comput. Sci. 16(1), 8:1-8:63 (2020)
Wiimann, T., Milius, S., Schréder, L.: Explaining behavioural inequivalence generi-
cally in quasilinear time. In: Haddad, S., Varacca, D. (eds.) Proc. 32nd International
Conference on Concurrency Theory (CONCUR). LIPIcs, vol. 203, pp. 31:1-32:18.
Schloss Dagstuhl (2021)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.3233/FI-2010-369
https://doi.org/10.1145/23002.23003
https://doi.org/10.1007/11901914_35
http://creativecommons.org/licenses/by/4.0/

)

Check for

" From Bounded Checking to Verification of
Equivalence via Symbolic Up-to Techniques *

Vasileios Koutavas!®, Yu-Yang Lin!(®)®, and Nikos Tzevelekos?

! Trinity College Dublin, Dublin, Ireland {Vasileios.Koutavas, linhouy}@tcd.ie
2 Queen Mary University of London, London, UK nikos.tzevelekos@qmul.ac.uk

Abstract. We present a bounded equivalence verification technique
for higher-order programs with local state. This technique combines
fully abstract symbolic environmental bisimulations similar to symbolic
game semantics, novel up-to techniques, and lightweight state invariant
annotations. This yields an equivalence verification technique with no
false positives or negatives. The technique is bounded-complete, in that
all inequivalences are automatically detected given large enough bounds.
Moreover, several hard equivalences are proved automatically or after
being annotated with state invariants. We realise the technique in a tool
prototype called HOBBIT and benchmark it with an extensive set of new
and existing examples. HOBBIT can prove many classical equivalences
including all Meyer and Sieber examples.

Keywords: Contextual equivalence - bounded model checking - symbolic
bisimulation - up-to techniques - operational game semantics.

1 Introduction

Contextual equivalence is a relation over program expressions which guaran-
tees that related expressions are interchangeable in any program context. It
encompasses verification properties like safety and termination. It has attracted
considerable attention from the semantics community (cf. the 2017 Alonzo Church
Award), and has found its main applications in the verification of cryptographic
protocols [4], compiler correctness [26] and regression verification [10,11,9,17].
In its full generality, contextual equivalence is hard as it requires reasoning
about the behaviour of all program contexts, and becomes even more difficult in
languages with higher-order features (e.g. callbacks) and local state. Advances in
bisimulations [16,29,3], logical relations [1,13,15] and game semantics [18,25,8,20]
have offered powerful theoretical techniques for hand-written proofs of contextual
equivalence in higher-order languages with state. However, these advancements
have yet to be fully integrated in verification tools for contextual equivalence
in programming languages, especially in the case of bisimulation techniques.
Existing tools [12,24,14] only tackle carefully delineated language fragments.

* This publication has emanated from research supported in part by a grant from
Science Foundation Ireland under Grant number 13/RC/2094 2.

© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 178-195, 2022.
https://doi.org/10.1007/978-3-030-99527-0_10

http://orcid.org/0000-0002-3970-2486
http://orcid.org/0000-0001-5783-9454
http://orcid.org/0000-0001-8509-8059
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99527-0_10&domain=pdf

From Bounded Checking to Verification of Equivalence 179

In this paper we aim to push the frontier further by proposing a bounded
model checking technique for contextual equivalence for the entirety of a higher-
order language with local state (Sec. 3). This technique, realised in a tool called
HoBBIT,? automatically detects inequivalent program expressions given sufficient
bounds, and proves hard equivalences automatically or semi-automatically.

Our technique uses a labelled transition system (LTS) for open expressions
in order to express equivalence as a bisimulation. The LTS is symbolic both for
higher-order arguments (Sec. 4), similarly to symbolic game models [8,20] and
derived proof techniques [3,15], and first-order ones (Sec. 6), adopting established
techniques (e.g. [6]) and tools such as Z3 [23]. This enables the definition of a fully
abstract symbolic environmental bisimulation, the bounded exploration of which
is the task of the HOBBIT tool. Full abstraction guarantees that our tool finds all
inequivalences given sufficient bounds, and only reports true inequivalences. As
is corroborated by our experiments, this makes HOBBIT a practical inequivalence
detector, similar to traditional bounded model checking [2| which has been proved
an effective bug detection technique in industrial-scale C code [6,7,30].

However, while proficient in bug finding, bounded model checking can rarely
prove the absence of errors, and in our setting prove an equivalence: a bound
is usually reached before all—potentially infinite—program runs are explored.
Inspired by hand-written equivalence proofs, we address this challenge by propos-
ing two key technologies: new bisimulation up-to techniques, and lightweight user
guidance in the form of state invariant annotations. Hence we increase signifi-
cantly the number of equivalences proven by HOBBIT, including for example all
classical equivalences due to Meyer and Sieber [21].

Up-to techniques [28] are specific to bisimulation and concern the reduction
of the size of bisimulation relations, oftentimes turning infinite transition systems
into finite ones by focusing on a core part of the relation. Although extensively
studied in the theory of bisimulation, up-to techniques have not been used in
practice in an equivalence checker. We specifically propose three novel up-to
techniques: up to separation and up to re-entry (Sec. 5), dealing with infinity in
the LTS due to the higher-order nature of the language, and up to state invariants
(Sec. 7), dealing with infinity due to state updates. Up to separation allows us
to reduce the knowledge of the context the examined program expressions are
running in, similar to a frame rule in separation logic. Up to re-entry removes the
need of exploring unbounded nestings of higher-order function calls under specific
conditions. Up to state invariants allows us to abstract parts of the state and
make finite the number of explored configurations by introducing state invariant
predicates in configurations.

State invariants are common in equivalence proofs of stateful programs, both
in handwritten (e.g. [16]) and tool-based proofs. In the latter they are expressed
manually in annotations (e.g. [9]) or automatically inferred (e.g. [14]). In HOBBIT
we follow the manual approach, leaving heuristics for automatic invariant inference
for future work. An important feature of our annotations is the ability to express
relations between the states of the two compared terms, enabled by the up to

3 Higher Order Bounded Blsimulation Tool (HOBBIT), https://github.com/LaifsV1/Hobbit.

https://github.com/LaifsV1/Hobbit

180 V. Koutavas, Y.-Y. Lin, N. Tzevelekos

state invariants technique. This leads to finite bisimulation transition systems in
examples where concrete value semantics are infinite state.

The above technologies, combined with standard up-to techniques, transform
HoOBBIT from a bounded checker into an equivalence prover able to reason about
infinite behaviour in a finite manner in a range of examples, including classical
example equivalences (e.g. all in [21]) and some that previous work on up-to
techniques cannot algorithmically decide [3] (cf. Ex. 22). We have benchmarked
HOBBIT on examples from the literature and newly designed ones (Sec. 8). Due
to the undecidable nature of contextual equivalence, up-to techniques are not
exhaustive: no set of up-to techniques is guaranteed to finitise all examples.
Indeed there are a number of examples where the bisimulation transition system
is still infinite and HOBBIT reaches the exploration bound. For instance, HOBBIT
is not able to prove examples with inner recursion and well-bracketing properties,
which we leave to future work. Nevertheless, our approach provides a contextual
equivalence tool for a higher-order language with state that can prove many
equivalences and inequivalences which previous work could not handle due to
syntactic restrictions and other limitations (Sec. 9).

Related work Our paper marries techniques from environmental bisimulations
up-to [16,29,28,3] with the work on fully abstract game models for higher-order
languages with state [18,8,20]. The closest to our technique is that of Biernacki et
al. [3], which introduces up-to techniques for a similar symbolic LTS to ours, albeit
with symbolic values restricted to higher-order types, resulting in infinite LTSs in
examples such as Ex. 21, and with inequivalence decided outside the bisimulation
by (non-)termination, precluding the use up-to techniques in examples such as
Ex. 22. Close in spirit is the line of research on logical relations [1,13,15] which
provides a powerful tool for hand-written proofs of contextual equivalence. Also
related are the tools HECTOR [12] and CONEQCT [24], and SYTECT [14], based
on game semantics and step-indexed logical relations respectively (cf. Sec. 9).

2 High-Level Intuitions

Contextual equivalence requires that two program expressions lead to the same
observable result in any program context these may be fed in. Instead of working
directly with this definition, we can translate programs into a semantic model
that is fully abstract, reducing contextual equivalence to semantic equality.

The semantic model we use is that of Game Semantics [18]. We model programs
as formal interactions between two players: a Proponent (corresponding to the
program) and an Opponent (standing for any program context). Concretely, these
interactions are sets of traces produced from a Labelled Transition System (LTS),
the nodes and labels of which are called configurations and mowves respectively.
The LTS captures the interaction of the program with its environment, which
is realised via function applications and returns: moves can be questions (i.e.
function applications) or answers (returns), and belong to proponent or opponent.
E.g. a program calling an external function will issue a proponent question, while
the return of the external function will be an opponent answer. In the examples
that follow, moves that correspond to the opponent shall be underlined.

From Bounded Checking to Verification of Equivalence 181

@ ret(g) /\ app(g, f1) /\ app(fl,()) app(g; f2) m app(fa, (aPP(!L f3)

ret(()

Fig. 1. Sample LTS’s modelling expressions in Section 2.

Ezample 1. Consider the expression N = (fun f -> f (); 0) of type (unit —
unit) — int. Evaluating N leads to a function g being returned (i.e. g is Af.f();0).
When g is called with some input fi, it will always return 0 but in the process it
may call the external function f;. The call to f; may immediately return or it
may call g again (i.e. reenter), and so on. The LTS for N is as in Fig. 1 (top).

Given two expressions M, N, checking their equivalence will amount to check-
ing bisimulation equivalence of their (generally infinite) LTS’s. Our checking
routine performs a bounded analysis that aims to either find a finite counterex-
ample and thus prove inequivalence, or build a bisimulation relation that shows
the equivalence of the expressions. The former case is easier as it is relatively
rapid to explore a bisimulation graph up to a given depth. The latter one is
harder, as the target bisimulation can be infinite. To tackle part of this infinity,
we use three novel up-to techniques for environmental bisimulation.

Up-to techniques roughly assert that if a core set of configurations in the
bisimulation graph explored can be proven to be part of a relation satisfying a
definition that is more permissive than standard bisimulation, then a superset
of configurations forms a proper bisimulation relation. This has the implication
that a bounded analysis can be used to explore a finite part of the bisimulation
graph to verify potentially infinitely many configurations. As there can be no
complete set of up-to techniques, the pertaining question is how useful they are
in practice. In the remainder of this section we present the first of our up-to
techniques, called up to separation, via an example equivalence. The intuition
behind this technique comes from Separation Logic and amounts to saying that
functions that access separate regions of the state can be explored independently.
As a corollary, a function that manipulates only its own local references may be
explored independently of itself, i.e. it suffices to call it once.

182 V. Koutavas, Y.-Y. Lin, N. Tzevelekos

Loc: NG Var:x,y, z Const:c
Type: T:=bool [int|unit|T =T |Ty*...xT,
Exp: e, M,N:=v | (€) |op(€) | ee|ifetheneelsee |refl=vine|ll|l:=e|let(Z)=eine
Val: w,vu=c|z|fixf(z).e| (V)
ECxt: E:=[]r|(U,E,€)| op(¥,E,€)|Ee|vE|l:=E|if Etheneelsee| let(¥) = E ine
Cxt: D:=[]ir | e| (D)]op(D)| DD |l:=D |if Dthen Delse D | fixf(x).D
|refl=DinD |let(Z) =D in D

St: s,t € Loc VA

(s p()) o (s3w) if o (0) = w
(si(ficf(z)e)v) o (s elo/allfixf (@).e/ 1)

(s;let(Z) = (V) ine) — (s;e[v/T])

(s,refl—vme) — (s[l—v];e) if | & dom(s)

(s; 1) — (s;v) if s(l) =wv

(s:1:=1) o (sll o);0)

(s;if ctheneelsees) — (s;e;) if (¢, i) € {(tt, 1), (ff,2)}
(s: Ble) — (s Ele) if (s5¢) > (s'3¢)

Fig. 2. Syntax and reduction semantics of the language \™P.

Ezxample 2. Consider M = (fun f -> ref x = 0 in f (); !x) and N from
Ex. 1. The LTS corresponding to M and N are shown in Fig. 1 (middle and
top). Regarding M, we can see that opponent is always allowed to reenter the
proponent function g, which creates a new reference x,, each time. This makes
each configuration unique, which prevents us from finding cycles and thus finitise
the bisimulation graph. Moreover, both the LTS for M and N are infinite because
of the stack discipline they need to adhere to when O issues reentrant calls.

With separation, however, we could prune the two LTS’s as in Fig. 1 (bottom).
We denote the configurations after the first opponent call as C;. Any opponent
call after C; leads to a configuration which differs from C; either by a state
component that is not accessible anymore and can thus be separated, or by a
stack component that can be similarly separated. Hence, the LTS’s that we need
to consider are finite and thus the expressions are proven equivalent.

3 Language and Semantics

We develop our technique for the language A™P, a simply typed lambda calculus
with local state whose syntax and reduction semantics are shown in Fig. 2. Ex-
pressions (Exp) include the standard lambda expressions with recursive functions
(fixf(x).e), together with location creation (ref I =wvine), dereferencing (!1), and
assignment (I := e), as well as standard base type constants (¢) and operations
(op(€)). Locations are mapped to values, including function values, in a store (St).
We write - for the empty store and let fl(x) denote the set of free locations in x.

The language N™P is simply-typed with typing judgements of the form A; X
e : T, where A is a type environment (omitted when empty), X a store typing and
T a value type (Type); X is the typing of store s. The rules of the type system are
standard and omitted here. Values consist of boolean, integer, and unit constants,

From Bounded Checking to Verification of Equivalence 183

functions and arbitrary length tuples of values. To keep the presentation of our
technique simple we do not include reference types as value types, effectively
keeping all locations local. Exchange of locations between expressions can be
encoded using get and set functions. In Ex. 22 we show the encoding of a classic
equivalence with location exchange between expressions and their context. Future
work extensions to our technique to handle location types can be informed from
previous work [18,14].

The reduction semantics is by small-step transitions between configurations
containing a store and an expression, (s;e) — (s';¢€’), defined using single-hole
evaluation contexts (ECxt) over a base relation <. Holes [-]p are annotated with
the type T of closed values they accept, which we may omit to lighten notation.
Beta substitution of « with v in e is written as e[v/z]. We write (s;e) | to denote
(s;e)y =* (t;v) for some t, v. We write ¥ to mean a syntactic sequence, and
assume standard syntactic sugar from the lambda calculus. In our examples we
assume an ML-like syntax and implementation of the type system, which is also
the concrete syntax of HOBBIT.

We consider environments I' € N fin Val which map natural numbers to
closed values. The concatenation of two such environments Iy and I, written
I, I is defined when dom(I1) Ndom(I%) = 0. We write (“vy,...,"v,) for a
concrete environment mapping 41, . .., %, to v1,...,v,, respectively. When indices
are unimportant we omit them and treat I'" environments as lists.

General contexts D contain multiple, non-uniquely indexed holes [-]; 1, where
T is the type of value that can replace the hole. Notation D[I'] denotes the
context D with each hole [-]; 7 replaced with I'(7), provided that ¢ € dom(I") and
X+ I(i): T, for some X. We omit hole types where possible and indices when all
holes in D are annotated with the same i. In the latter case we write D[v] instead
of D[(*v)] and allow to replace all holes of D with a closed expression e, written
Dle]. We assume the Barendregt convention for locations, thus replacing context
holes avoids location capture. Standard contextual equivalence [22] follows.

Definition 3 (Contextual Equivalence). Expressionste;:T andbeq: T
are contextually equivalent, written as e; = es, when for all contexts D such that
F Dley] : unit and - Dles] : unit we have {-; Dle1]) 4 4ff {-; Dles]) {.

4 LTS with Symbolic Higher-Order Transitions

Our Labelled Transition System (LTS) has symbolic transitions for both higher-
order and first-order transitions. For simplicity we first present our LTS with
symbolic higher-order and concrete first-order transitions. We develop our theory
and most up-to techniques on this simpler LTS. We then show its extension with
symbolic first-order transitions and develop up to state invariants which relies on
this extension. We extend the syntax with abstract function names a:

Val: w,v,w == c|fixf(z).e| (V)| ar

Abstract function names ar are annotated with the type T of function they
represent, omitted where possible; an(x) is the set of abstract names in .

184 V. Koutavas, Y.-Y. Lin, N. Tzevelekos

PROPAPP : (A; I K ;5; Elav]) 2P (A 11" B[], K;s;) if (D,I") € ulpatt(v)

PROPRET:(A;F;K;s;v}M(A;F,F';K;s;~> if (D, I") € ulpatt(v)
i,D[a
OPAPP:(A;F;K;3;~>M(A&J&;F;K;s;e} if Ys-0@6@):T—T
and (D, @) € ulpatt(T)
and I'(:) D[@] = e

OPRET :

(A;T: B[, K 53 =P awa. ri ks E[D[]) if (D,d) € ulpatt(T)
Tav: (A;T;K;s5e) 5 (A; T K 5s5¢) if (s;e) = (s';¢)
RESPONSE : C' 25 (1) if n#l

TERM:(A;F;qs;-}#(L)

Fig. 3. The Labelled Transition System.

We define our LTS (shown in Fig. 3) by opponent and proponent call and
return transitions, based on Game Semantics [18]. Proponent transitions are
the moves of an expression interacting with its context. Opponent transitions
are the moves of the context surrounding this expression. These transitions are
over proponent and opponent configurations (A;I"; K ;s;e) and (A; ;K ;s5),
respectively. In these configurations:

— A is a set of abstract function names been used so far in the interaction;

— I' is an environment indexing proponent functions known to opponent;*

— K is a stack of proponent continuations, created by nested proponent calls;
— s is the store containing proponent locations;

— e is the expression reduced in proponent configurations; é denotes e or -.

In addition, we introduce a special configuration (L) which is used in order to
represent expressions that cannot perform given transitions (cf. Remark 6). We
let a trace be a sequence of app and ret moves (i.e. labels), as defined in Fig. 3.
For the LTS to provide a fully abstract model of the language, it is necessary
that functions which are passed as arguments or return values from proponent to
opponent be abstracted away, as the actual syntax of functions is not directly
observable in Ai™P. This is achieved by deconstructing such values v to:

— an ultimate pattern D (cf. [19]), which is a context obtained from v by
replacing each function in v with a distinct numbered hole; together with
— an environment I mapping indices of these holes to values, and D[I'] = v.

We let ulpatt(v) contain all such pairs (D,I") for v; e.g.: ulpatt((Az.e1,5)) =
{(([1:+5), ["Az.e1]) | for any i}. We extend ulpatt to types through the use of
symbolic function names: ulpatt(7) is the largest set of pairs (D, I") such that
F D[I') : T, where rng(I") = dz, and D does not contain functions.

4 thus, I' is encoding the environment of Environmental Bisimulations (e.g. [16])

From Bounded Checking to Verification of Equivalence 185

In Fig. 3, proponent application and return transitions (ProrpAprp, PROPRET)
use ultimate pattern matching for values and accumulate the functions generated
by the proponent in the I" environment of the configuration, leaving only their
indices on the label of the transition itself. Opponent application and return
transitions (OPAPP, OPRET) use ultimate pattern matching for types to generate
opponent-generated values which can only contain abstract functions. This elimi-
nates the need for quantifying over all functions in opponent transitions but still
includes infinite quantification over all base values. Symbolic first-order values in
Sec. 6 will obviate the latter.

At opponent application the following preorder performs a beta reduction when
opponent applies a concrete function. This technicality is needed for soundness.

Definition 4 (>). For application vu we write vu = e to mean e = au, when
v =qa; and e = ¢'[u/z][fixf(x).€'/ f], when v = fixf(x).€.

In our LTS, C ranges over configurations and 7 over transition labels; = means

I* when n = 7, and =55 otherwise. Standard weak (bi-)simulation follows.

Definition 5 (Weak Bisimulation). Binary relation R is a weak simulation
when for allC; R Cy and Cy L C1, there exists C such that C L Chand C1 R

Ch. If R, R™! are weak simulations then R is a weak bisimulation. Similarity (<)
and bisimilarity (=) are the largest weak simulation and bisimulation, respectively.

Remark 6. Any proponent configuration that cannot match a standard bisimula-
tion transition challenge can trivially respond to the challenge by transitioning
into (L) by the Responsk rule in Fig. 3. By the same rule, this configuration can
trivially perform all transitions except a special termination transition, labelled
with |. However, regular configurations that have no pending proponent calls
(K =), can perform the special termination transition (TErwm rule), signalling
the end of a complete trace, i.e. a completed computation. This mechanism
allows us to encode complete trace equivalence, which coincides with contextual
equivalence [18], as bisimulation equivalence. In a bisimulation proof, if a propo-
nent configuration is unable to match a bisimulation transition with a regular
transition, it can still transition to (1) where it can simulate every transition of

the other expression, apart from LN leading to a complete trace.

Our mechanism for treating unmatched transitions has the benefit of enabling
us to use the standard definition of bisimulation over our LTS. This is in contrast
to previous work [3,15], where termination/non-termination needed to be proven
independently or baked in the simulation conditions. More importantly, our
approach allows us to use bisimulation up-to techniques even when one of the
related configurations diverges, which is not possible in previous symbolic LTSs
[18,15,3], and is necessary in examples such as Ex. 22.

Definition 7 (Bisimilar Expressions). Expressions ey : T and b es : T are
bisimilar, written ey & e, when (-;-;-;-;e1) & (-;-;;;€2).

186 V. Koutavas, Y.-Y. Lin, N. Tzevelekos

Theorem 8 (Soundness and Completeness). e; = ey iff e1 = es.

As a final remark, the LTS presented in this section is finite state only for a small
number of trivial equivalence examples. The following section addresses sources
of infinity in the transition systems through bisimulation up-to techniques.

5 Up-to Techniques

We start by the definition of a sound up-to technique.

Definition 9 (Weak Bisimulation up to f). R is a weak simulation up to f
when for all Cy R Cy and Cy 5 O, there is C} with Cy 2= C% and C} f(R) CY.
If R, R™! are weak simulations up to f then R is a weak bisimulation up to f.

Definition 10 (Sound up-to technique). A function f is a sound up-to
technique when for any R which is a simulation up to f we have R C (k).

HoBBIT employs the standard techniques: up to identity, up to garbage
collection, up to beta reductions and up to name permutations. Here we present
two novel up-to techniques: up to separation and up to reentry.

Up to Separation Our experience with HOBBIT has shown that one of the
most effective up-to techniques for finitising bisimulation transition systems is
the novel up to separation which we propose here. The intuition of this technique
is that if different functions operate on disjoint parts of the store, they can be
explored in disjoint parts of the bisimulation transition system. Taken to the
extreme, a function that does not contain free locations can be applied only
once in a bisimulation test as two copies of the function will not interfere with
each other, even if they allocate new locations after application. To define up to
separation we need to define a separating conjunction for configurations.

Definition 11 (Stack Interleaving). Let K, Ko be lists of evaluation contexts
from ECxt (Fig. 2); we define the interleaving operation Ky #5 Ko inductively,

and write Ky # Ko to mean Ki #j Ko for unspecified k. We let - #.-=- and:
By Ky # gy Ko = By (Ko #p Ko) Ky # gy Bo, Ko = By, (K # Ks).

Definition 12 (Separating Conjuction). Let C1 = (A1 ;11 ;K1 ;81;€é1) and
Cy = (Ay; v Ko ;893 €2) be well-formed configurations. We define:

- @}5 Cy dZEf<A1 UAQ;Fl,FQ;Kl #EKQ;Sl,SQ;él) when ég9 = -

- C1 @2 Oy (AU Ay T, T Ky # Koy 51,805 62) when éq = -

provided dom(sy) Ndom(sg) = 0. We let Cy & Cy denote i, el EB% Cs.

The function sep provides the up to separation technique; it is defined as:

UrTo® UprTo® 1l UprTo® Lgr
CiRCy C3RCy CiR(L) C3RCy CiRC, C3R{(L)

C @i;; C3 sep(R) Ca @i;} Cy Cr & Cssep(R) (L) C1 & Cs sep(R) (L)

Soundness follows by extending [28,27] with a weaker, sufficient proof obligation.

From Bounded Checking to Verification of Equivalence 187

Lemma 13. Function sep is a sound up-to technique.

Many example equivalences have a finite transition system when using up to
separation in conjunction with the simple techniques of the preceding section.

Ezxample 1. The following is a classic example equivalence from Meyer and
Sieber [21]. The following expressions are equivalent at type (unit — unit) — unit.

M ="Ffun f -> ref x =0 in f () N =Ffun f -> f ()

For both functions, after initial application of the function by the opponent,
the proponent calls f, growing the stack K in the two configurations. At that
point the opponent can apply the same functions again. The LTS of both M
and N is thus infinite because K can grow indefinitely, and so is a bisimulation
proving this equivalence. It is additionally infinite because the opponent can keep
applying the initial function applications even after these return. However, if
we apply the up-to separation technique immediately after the first opponent
application, the I" environments become empty, and thus no second application of
the same functions can happen. The LTS thus becomes trivially small. Note that
no other up to technique is needed here. HOBBIT applies up-to separation after
every opponent application transition and explores the configuration containing
the application expression and the smallest possible I'; this does not lead to
false-negative (or false-positive) results.

Ezample 15. This example is due to Bohr and Birkedal [5] and includes a non-
synchronised divergence.
M = fun f ->
ref 11 = false in ref 12 = false in
f (fun () -> if !'11 then _bot_ else 12 := true);
if !12 then _bot_ else 11 := true

N = fun f -> f (fun () -> _bot_)

Note that _bot_ is a diverging computation. This is a hard example to prove using
environmental bisimulation even with up to techniques, requiring quantification
over contexts within the proof. However, with up-to separation after the opponent
applies the initial functions, the I" environments are emptied, thus leaving only
one application of M and N that needs to be explored by the bisimulation.
Applications of the inner function provided as argument to f only leads to a small
number of reachable configurations. HOBBIT can indeed prove this equivalence.

Up to Proponent Function Re-entry The higher-order nature of A'™P and
its LTS allows infinite nesting of opponent and proponent calls. Although up
to separation avoids those in a number of examples, here we present a second
novel up-to technique, which we call up to proponent function re-entry (or simply,
up to re-entry). This technique has connections to the induction hypothesis in
the definition of environmental bisimulations in [16]. However up to re-entry
is specifically aimed at avoiding nested calls to proponent functions, and it is
designed to work with our symbolic LTS. In combination with other techniques
this eliminates the need to consider configurations with unbounded stacks K in
many classical equivalences, including those in [21].

188 V. Koutavas, Y.-Y. Lin, N. Tzevelekos

UPTOREENTRY
Cir=(A;I;Ki;815) R(A;T12;K2552;) =Co
vﬁ7 C7 A/7F1/7F2/as/173/2' [(ﬂ(l? 7) g {ﬁ} and

app(4,C) n
(A;Tve5815) ———==< (A5 171 ;551 5+) and
app(i,C)
<A;F2;';527>—>n <A F27'7527'>

implies I'] = It and I, = I and s1 = s} and sz = s3]
74’,C —/ 7,C
0, 2209, 7 2l C) (A's I K1, Kussaseh)
c 18 Kool
(A's I K1, Ky saseh) reent(R) (A" o Ko, Kassaseb)

app(6,0) 7/ app(i,C”)
-

Fig. 4. Up to Proponent Function Re-entry (omitting rules for L-configurations).

Up to re-entry is realised by function reent in Fig. 4. The intuition of this up-to
technique is that if the application of related functions at 4 in the I" environments
has no potential to change the local stores (up to garbage collection, encoded by
(x)) or increase the I" environments, then there are no additional observations to
be made by nested calls to the i-functions, thus configurations reached by such
nested calls are added to the relation by this up-to technique. Soundness follows
similarly to up-to separation.

In HOBBIT we require the user to flag the functions to be considered for the
up to re-entry technique. This annotation is later combined with state invariant
annotations, as they are often used together. Inequivalences found while using
the up to re-entry and state invariant annotations could be false-negatives due
to incorrect user annotations. HOBBIT ensures that no such false-negatives are
reported by re-running discovered inequivalences with these two techniques off.

Below is an example where the state invariant needed is trivial and up to
separation together with up to re-entry are sufficient to prove the equivalence.

Ezxample 16.
M —=ref x =0 in fun f -> f (); 'x N=fun f ->f (); 0

This is like Ex. 2 except the reference in M is created outside of the function

body. The LTS for this is as follows. Labels (e;!x;) are continuations.

(o31z1) CHESY (o3 1z1); (o5 la1)

@ret(g)ﬁa (g9, f1) mapp (f1. (m p(g, fz)/\app fas (/\app(q f3> N

: <&
ret((ret{())

Again, the opponent is allowed to reenter g as before. With up-to reentry, however,
the opponent skips nested calls to g as these do not modify the state.

From Bounded Checking to Verification of Equivalence 189

(o 121) (o m)

Qret Q p{g, f1) @app f1, (/\ ret(()) @
U < U N

app(g, f2)

N mirrors the above LTS without the x; reference and with continuation (e;0).

6 Symbolic First-Order Transitions

We extend N™P constants (Const) with a countable set of symbolic constants
ranged over by k. We define symbolic environments o ::=- | (k —~ e), o, where —~
is either = or #, and e is an arithmetic expression over constants, and interpret
them as conjunctions of (in-)equalities, with the empty set interpreted as T.

Definition 17 (Satisfiability). Symbolic environment o is satisfiable if there
exists an assignment &, mapping the symbolic constants of o to actual constants,
such that §o is a tautology; we then write 6 F o.

We extend reduction configurations with a symbolic environment o, written as
o F (s;e). These constants are implicitly annotated with their type. We modify
the reduction semantics from Fig. 2 to consider symbolic constants:

ok (s;0p(C)) — o A (k=o0p(€)F (s;k)if k fresh
o b (s;if kthenejelsees) — o A(k=tt)F (s;e1) if o A (k= tt) is sat.
o b (s;if kthenejelsees) — o A (k =1f)F (s;eq) if o A (k = ff) is sat.

All other reduction semantics rules carry the o. The LTS from Sec. 4 is modified
to operate over configurations of the form o + C or - - (L). We let C range over
both forms of configurations. All LTS rules for proponent transitions simply carry
the o; rule Tau may increase o due to the inner reduction. Opponent transitions
generate fresh symbolic constants, instead of actual constants: labels app(i, D[d])
and ret(D[d]) in rules OPAPP and OPRET of Fig. 3, respectively, contain D with
symbolic, instead of concrete constants. We adapt (bi-)simulation as follows.

Definition 18. Binary 1 relation R on symbolic conﬁgumtions is a weak simula-
tion when for all 01 R CQ and 01 n Cl, 302 such that Cg 02 and

Ci R C} (C}.0,Ch.0) is sat. V6. 8 = (Cl.0,Ch.0) = 0y = o
Lemma 19. (o1 F C1) § (02 = Co) iff for all 6 = 01,09 we have 6C1 § 6Cs.
Corollary 20 (Soundness, Completeness). (- C1) 5 (- F Cy) iff C1 k Co.

The up-to techniques we have developed in previous sections apply unmodified to
the extended LTS as the techniques do not involve symbolic constants, with the
exception of up to beta which requires adapting the definition of a beta move to
consider all possible d. The introduction of symbolic first-order transitions allows
us to prove many interesting first-order examples, such as the equivalence of

190 V. Koutavas, Y.-Y. Lin, N. Tzevelekos

bubble sort and insertion sort, an example borrowed from HECTOR [12] (omitted
here, see the HOBBIT distribution). Below is a simpler example showing the
equivalence of two integer swap functions which, by leveraging Z3 [23], HOBBIT
is able to prove.

Ezxample 21.

M = let swap xy = N = fun xy -> let (x,y) = xy in
let (x,y) = xy ref x = x in ref y = y in
in (y, x) X = Ix - ly; y = Ix+ ly;

in swap x = ly - Ix; (!'x, ly)

7 Up to State Invariants

The addition of symbolic constants into A™P and the LTS not only allows us to
consider all possible opponent-generated constants simultaneously in a symbolic
execution of proponent expressions, but also allows us to define an additional
powerful up-to technique: up to state invariants. We define this technique in two
parts: up to abstraction and up to tautology realised by abs and taut.’

UpTotaut
(01,07 = C1) R (02,05 F Cy)
UpToabs 01,09, 07,05 is sat.
(01}_6'1)7?,(0'2'_02) 0'1,0'2/_|(0'/1,O'/2) is not sat.

(0'1 [Cl)[g/ﬁ] abs(R) (0’2 = Cg)[6/l2‘j] (0'1 = Cl) taut(’R) (0'2 F 02)

The first function abs allows us to derive the equivalence of configurations by
abstracting constants with fresh symbolic constants (of the same type) and
instead prove equivalent the more abstract configurations. The second function
taut allows us to introduce tautologies into the symbolic environments. These
are predicates which are valid; i.e., they hold for all instantiations of the abstract
variables. Combining the two functions we can introduce a tautology I(¢) into
the symbolic environments, and then abstract constants ¢ from the predicate but
also from the configurations with symbolic ones, obtaining I(K), which encodes
an invariant that always holds.

Currently in HOBBIT, up to abstraction and tautology are combined and
applied in a principled way. Functions can be annotated with the following syntax:

F =fun x {K | Iy as Ci[R], ..., ln as CnlR] | ¢} -> e

The annotation instructs HOBBIT to use the two techniques when opponent
applies related functions where at least one of them has such an annotation. If
both functions contain annotations, then they are combined and the same K are
used in both annotations. The techniques are used again when proponent returns
from the functions, and proponent calls opponent from within the functions.® As
discussed in Sec. 5, the same annotation enables up to reentry in HOBBIT.
When HOBBIT uses the above two up-to techniques it 1) pattern-matches
the values currently in each location [; with the value context C; where fresh

5 HoBBIT also implements an up to o-normalisation and garbage collection technique.
6 Finer-grain control of application of these up-to techniques is left to future work.

From Bounded Checking to Verification of Equivalence 191

symbolic constants K are in its holes, obtaining a substitution [¢/&]; 2) the up to
tautology technique is applied for the formula ¢[¢/K]; and 3) the up to abstraction
technique is applied by replacing ¢[¢/&] in the symbolic environment with ¢, and
the contents of locations I; with C;[R].

Ezample 22. Following is an example by Meyer and Sieber [21] featuring location
passing, adapted to A'™P where locations are local.

M = 1let loc_eq loclloc2 = [...] in
fun q -> ref x = 0 in
let locx = (fun () -> !'x) , (fun v -> x := v) in
let almostadd_2 locz {w | x as w | wmod 2 == 0} =
if loc_eq (locx,locz) then x := 1 else x := !x + 2
in q almostadd_2; if !x mod 2 = 0 then _bot_ else ()

N = fun q -> _bot_

In this example we simulate general references as a pair of read-write functions.
Function loc_eq implements a standard location equality test. The two higher-
order expressions are equivalent because the opponent can only increase the
contents of x through the function almostadd_2. As the number of times the
opponent can call this function is unbounded, the LTS is infinite. However, the
annotation of function almostadd_2 applies the up to state invariants technique
when the function is called (and, less crucially, when it returns), replacing the
concrete value of x with a symbolic integer constant w satisfying the invari-
ant w mod 2 == 0. This makes the LTS finite, up to permutations of symbolic
constants. Moreover, up to separation removes the outer functions from the I
environments, thus preventing re-entrant calls to these functions. Note the up to
techniques are applied even though one of the configurations is diverging (_bot_).
This would not be possible with the LTS and bisimulation of [3].

8 Implementation and Evaluation

We implemented the LTS and up-to techniques for A™P in a tool prototype called
HoOBBIT, which we ran on a test-suite of 105 equivalences and 68 inequivalences—
3338 and 2263 lines of code for equivalences and inequivalences respectively.
HOBBIT is bounded in the total number of function calls it explores per path.
We ran HOBBIT with a default bound of 6 calls except where a larger bound was
found to prove or disprove equivalence—46 examples required a larger bound,
and the largest bound used was 348. To illustrate the impact of up-to techniques,
we checked all files (pairs of expressions to be checked for equivalence) in five
configurations: default (all up-to techniques on), up to separation off, annotations
(up to state invariants and re-entry) off, up to re-entry off, and everything off.
The tool stops at the first trace that disproves equivalence, after enumerating
all traces up to the bound, or after timing out at 150 seconds. Time taken and
exit status (equivalent, inequivalent, inconclusive) were recorded for each file; an
overview of the experiment can be seen in the following table. All experiments
ran on an Ubuntu 18.04 machine with 32GB RAM, Intel Core i7 1.90GHz CPU,
with intermediate calls to Z3 4.8.10 to prune invalid internal symbolic branching

192 V. Koutavas, Y.-Y. Lin, N. Tzevelekos

and decide symbolic bisimulation conditions. All constraints passed to Z3 are of
propositional satisfiability in conjunctive normal form (CNF).
default sep. off annot. off ree. off all off
eq. | 72]015.6s] |32]0[1622.9s] |47 | 0 [178.3s]|57 | 0 [177.6s] |3 | O [2098.5s]
ineq. [0 | 68 [20.0s] | 0 | 66 [312.8s] | 0 | 68 [19.6s] | O | 68 [20.1s] |0 | 65 [515.7s]
a | b [c] for a (out of 105) equivalences and
b (out of 68) inequivalences reported taking ¢ seconds in total.

We can observe that HOBBIT was sound and bounded-complete for our
examples; no false reports and all inequivalences were identified. Up-to techniques
also had a significant impact on proving equivalence. With all techniques on, it
proved 68.6% of our equivalences; a dramatic improvement over 2.9% proven
with none on. The most significant technique was up-to separation—mnecessary
for 55.6% of equivalences proven and reducing time taken by 99.99%—which was
useful when functions could be independently explored by the context. Following
was annotations—mnecessary for 34.7% of equivalences and decreasing time by
96.9%—and up-to re-entry—=20.8% of files and decreased time by 96.8%. Although
the latter two required manual annotation, they enabled equivalences where our
language was able to capture the proof conditions. Note that, since turning off
invariant annotations also turns off re-entry, only 10 files needed up-to re-entry on
top of invariant annotations. In contrast, inequivalences did not benefit as much.
This was expected as without up-to techniques HOBBIT is still based on bounded
model checking, which is theoretically sound and complete for inequivalences, and
finds the shortest counterexample traces using breadth-first search. Nonetheless,
with up-to techniques turned off, inequivalences were discovered in 515.7s (vs. 20s
with techniques on) and three files timed out, due to the techniques reducing the
size and branching factor of configurations. This suggests that the reduction in
state space is still relevant when searching for counterexamples.

9 Comparison with Existing Tools

There are two main classes of tools for contextual equivalence checking. The first
one includes semantics-driven tools that tackle higher-order languages with state
like ours. In this class belong game-based tools HECTOR [12] and CONEQCT [24],
which can only address carefully crafted fragments of the language, delineated by
type restrictions and bounded data types. The most advanced tool in this class
is SYTECT [14], which is based on logical relations and removes a good part of
the language restrictions needed in the previous tools. The second class concerns
tools that focus on first-order languages, typically variants of C, with main tools
including REVE [9], SYMDIFF [17] and RVT [11]. These are highly optimised
for handling internal loops, a problem orthogonal to handling the interactions
between higher-order functions and their environment, addressed by HOBBIT and
related tools. We believe the techniques used in these tools may be useful when
adapted to HOBBIT, which we leave for future work.

In the higher-order contextual equivalence setting, the most relevant tool to
compare with HOBBIT is SYTECI. This is because SYTECI supersedes previous
tools by proving examples with fewer syntactical limitations. We ran the tools on

From Bounded Checking to Verification of Equivalence 193

examples from both SYTECI’s and our own benchmarks—7 and 15 equivalences,
and 2 and 7 inequivalences from SYTECI and HOBBIT respectively—with a
timeout of 150s and using Z3. Unfortunately, due to differences in parsing
and SYTECI’s syntactical restrictions, the input languages were not entirely
compatible and only few manually translated programs were chosen.

SyTeCi Hobbit
SyTeCi eq. examples 31014 (0.03s) 1]0]6(<0.01s)
Hobbit eq. examples 8107 (04s) 1510 | 0 (<0.01s)

SyTeCi ineq. examples 0120 (0.06s) 01]2]0(0.02s)

Hobbit ineq. examples 2|3]2(0.52s) 01]7]0 (0.45s)

a|b]c(d) for a eqg’s, b ineq’s and ¢ inconclusive’s reported taking d sec in total

We were unable to translate many of our examples because of restrictions
in the input syntax supported by SYTECI. Some of these restrictions were
inessential (e.g. absence of tuples) while others were substantial: the tool does not
support programs where references are allocated both inside and outside functions
(e.g. Ex. 15), or with non-synchroniseable recursive calls. Moreover, SYTECT relies
on Constrained Horn Clause satisfiability which is undecidable. In our testing
SYTECI sometimes timed out on examples; in private correspondence with its
creator this was attributed to Z3’s ability to solve Constrained Horn Clauses.
Finally, SYTECI was sound for equivalences, but not always for inequivalences as
can be seen in the table above; the reason is unclear and may be due to bugs. On
the other hand, SYTECI was able to solve equivalences we are not able to handle;
e.g. synchronisable recursive calls and examples with well-bracketing properties.

10 Conclusion

Our experience with HOBBIT suggests that our technique provides a significant
contribution to verification of contextual equivalence. In the higher-order case,
HoBBIT does not impose language restrictions as present in other tools. Our
tool is able to solve several examples that can not be solved by SYTECI, which
is the most advanced tool in this family. In the first-order case, the problem of
contextual equivalence differs significantly as the interactions that a first-order
expression can have with its context are limited; e.g. equivalence analyses do not
need to consider callbacks or re-entrant calls. Moreover, the distinction between
global and local state is only meaningful in higher-order languages where a
program phrase can invoke different calls of the same function, each with its own
state. Therefore, tools for first-order languages focus on what in our setting are
internal transitions and the complexities arising from e.g. unbounded datatypes
and recursion, whereas we focus on external interactions with the context.

As for limitations, HOBBIT does not handle synchronised internal recursion
and well-bracketed state, which SYTECI can often solve. More generally, HOBBIT
is not optimised for internal recursion as first-order tools are. In this work we
have also disallowed reference types in N™P to simplify the technical development;
location exchange is encoded via function exchange (cf. Ex. 22). We intend to
address these limitations in future work and explore applications of HOBBIT to
real-world examples.

194

V. Koutavas, Y.-Y. Lin, N. Tzevelekos

References

1.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Ahmed, A., Dreyer, D., Rossberg, A.: State-dependent representation independence.
In: POPL. Association for Computing Machinery (2009)

Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.
In: TACAS. Springer Berlin Heidelberg (1999)

Biernacki, D., Lenglet, S., Polesiuk, P.: A complete normal-form bisimilarity for
state. In: FOSSACS 2019, ETAPS 2019, Prague, Czech Republic. Springer (2019)
Blanchet, B.: A computationally sound mechanized prover for security protocols.
In: IEEE Symposium on Security and Privacy (2006)

Bohr, N., Birkedal, L.: Relational reasoning for recursive types and references. In:
Kobayashi, N. (ed.) APLAS. LNCS, vol. 4279, pp. 79-96. Springer (2006)

Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS. Springer Berlin Heidelberg (2004)

Cordeiro, L., Kroening, D., Schrammel, P.: JBMC: Bounded model checking for
Java Bytecode. In: TACAS. Springer (2019)

Dimovski, A.: Program verification using symbolic game semantics. TCS 560 (2014)
Felsing, D., Grebing, S., Klebanov, V., Riimmer, P., Ulbrich, M.: Automating
regression verification. In: ACM/IEEE ASE '14. ACM (2014)

Godlin, B., Strichman, O.: Inference rules for proving the equivalence of recursive
procedures. Acta Informatica 45(6) (2008)

Godlin, B., Strichman, O.: Regression verification. In: DAC. ACM (2009)
Hopkins, D., Murawski, A.S., Ong, C.L.: Hector: An equivalence checker for a
higher-order fragment of ML. In: CAV. LNCS, Springer (2012)

Hur, C.K., Dreyer, D., Neis, G., Vafeiadis, V.: The marriage of bisimulations and
Kripke logical relations. SIGPLAN Not. (2012)

Jaber, G.: SyTeCi: Automating contextual equivalence for higher-order programs
with references. Proc. ACM Program. Lang. 4(POPL) (2020)

Jaber, G., Tabareau, N.: Kripke open bisimulation - A marriage of game semantics
and operational techniques. In: APLAS. Springer (2015)

Koutavas, V., Wand, M.: Small bisimulations for reasoning about higher-order
imperative programs. In: POPL. ACM (2006)

Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebélo, H.: SYMDIFF: A language-
agnostic semantic diff tool for imperative programs. In: CAV. Springer (2012)
Laird, J.: A fully abstract trace semantics for general references. In: ICALP, Wroclaw,
Poland. LNCS, Springer (2007)

Lassen, S.B., Levy, P.B.: Typed normal form bisimulation. In: Computer Science
Logic. Springer Berlin Heidelberg (2007)

Lin, Y., Tzevelekos, N.: Symbolic execution game semantics. In: FSCD. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik (2020)

Meyer, A.R., Sieber, K.: Towards fully abstract semantics for local variables. In:
POPL. Association for Computing Machinery (1988)

Morris, Jr., J.H.: Lambda Calculus Models of Programming Languages. Ph.D.
thesis, MIT, Cambridge, MA (1968)

de Moura, L., Bjgrner, N.: Z3: An efficient smt solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems.
pp. 337-340. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

Murawski, A.S., Ramsay, S.J., Tzevelekos, N.: A contextual equivalence checker for
IMJ*. In: ATVA. Springer (2015)

Murawski, A.S., Tzevelekos, N.: Nominal game semantics. FTPL 2(4) (2016)

26.

27.
28.

29.

30.

From Bounded Checking to Verification of Equivalence 195

Patterson, D., Ahmed, A.: The next 700 compiler correctness theorems (functional
pearl). Proc. ACM Program. Lang. 3(ICFP) (2019)

Pous, D.: Coinduction all the way up. In: ACM/IEEE LICS. ACM (2016)

Pous, D., Sangiorgi, D.: Enhancements of the bisimulation proof method. In:
Advanced Topics in Bisimulation and Coinduction. CUP (2012)

Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-
order languages. In: LICS. IEEE Computer Society (2007)

Schrammel, P., Kroening, D., Brain, M., Martins, R., Teige, T., Bienmiiller, T.:
Successful use of incremental BMC in the automotive industry. In: FMICS (2015)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

)

Check for
updates

Equivalence Checking for Orthocomplemented
Bisemilattices in Log-Linear Time*

Simon Guilloud®)® and Viktor Kundak

EPFL IC LARA, Station 14, CH-1015 Lausanne, Switzerland
{Simon.Guilloud,Viktor.Kuncak}@epfl.ch

Abstract. Motivated by proof checking, we consider the problem of efficiently
establishing equivalence of propositional formulas by relaxing the completeness
requirements while still providing certain guarantees. We present a quasilinear
time algorithm to decide the word problem on a natural algebraic structures we call
orthocomplemented bisemilattices, a subtheory of Boolean algebra. The starting
point for our procedure is a variation of Aho, Hopcroft, Ullman algorithm for
isomorphism of trees, which we generalize to directed acyclic graphs. We combine
this algorithm with a term rewriting system we introduce to decide equivalence of
terms. We prove that our rewriting system is terminating and confluent, implying
the existence of a normal form. We then show that our algorithm computes this
normal form in log linear (and thus sub-quadratic) time. We provide pseudocode
and a minimal working implementation in Scala.

1 Introduction

Reasoning about propositional logic and its extensions is a basis of many verification
algorithms [19]. Propositional variables may correspond to, for example, sub-formulas
in first-order logic theories of SMT solvers [2,5,26], hypotheses and lemmas inside proof
assistants [13,27,32], or abstractions of sets of states. In particular, it is often of interest
to establish that two propositional formulas are equivalent. The equivalence problem
for propositional logic is coNP-complete as a negation of propositional satisfiability [8].
From proof complexity point of view [18] many known proof systems, including (non-
extended) resolution [31] and cutting planes [29] have exponential-sized shortest proofs
for certain propositional formulas. SAT and SMT solvers rely on DPLL-style algorithms
[9,10] and do not have polynomial run-time guarantees on equivalence checking, even if
formulas are syntactically close. Proof assistants implement such algorithms as tactics,
so they have similar difficulties. A consequence of this is that implemented systems may
take a very long time (or fail to acknowledge) that a large formula is equivalent to its
minor variant differing in, for example, reordering of internal conjuncts or disjuncts.
Similar situations also arise in program verifiers [12,21,30,34,35], where assertions act
as lemmas in a proof.

* We acknowledge the financial support of the Swiss National Science Foundation project
200021_197288 “A Foundational Verifier”.
©The Author(s) 2022

© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 196214, 2022.
https://doi.org/10.1007/978-3-030-99527-0_11

http://orcid.org/0000-0001-8179-7549
http://orcid.org/0000-0001-7044-9522
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99527-0_11&domain=pdf

Equivalence Checking for Orthocomplemented Bisemilattices in Log-Linear Time 197

It is thus natural to ask for an approximation of the propositional equivalence prob-
lem: can we find an expressive theory supporting many of the algebraic laws of Boolean
algebra but for which we can still have a complete and efficient algorithm for formula
equivalence? By efficient, we mean about as fast, up to logarithmic factors, as the simple
linear-time syntactic comparison of formula trees.

We can use such an efficient equivalence algorithm to construct more flexible proof
systems. Consider any sound proof system for propositional logic and replace the notion
of identical sub-formulas with our notion of fast equivalence. For example, the axiom
schema p — (¢ — p) becomes p — (¢ — p’) for all equivalent p and p’. The new system
remains sound. It accepts all the previously admissible inference steps, but also some
new ones, which makes it more flexible.

LI: xUy=yuUx L1’: XAY=YyAX
L2:xu(yuUz)y=(xuUyuz|L2: xAQ@AZ)=(xXAY)AZ
L3: xUx=x L3: XAX=X

L4: xul=1 L4’: xA0=0

L5: xu0=x L5’: xAl=x

Lé6: X =X L6: same as L6

L7: xU-x=1 L7: xAx=0

L8: ~(xuy)=-xA-y L8: —(xAy)=-xuU-y

Table 1. Laws of an algebraic structures (S, A, L, 0, 1, 7). Our algorithm is complete (and log-
linear time) for structures that satisfy laws L1-L8 and L1°-L8’. We call these structures orthocom-
plemented bisemilattices (OCBSL).

L9: xU(xAy) =x L9’: xA(xUy) =x
LIO: xu(yAz)=(xUy)A(xUz) |LIO: xA(yUZ)=(XAY)U(XAZ)

Table 2. Neither the absorption law L9,L.9’ nor distributivity L10,L10’ hold in OCBSL. Without
L9,L.9’, the operations A and U induce different partial orders. If an OCBSL satisfies L10,L.10’
then it also satisfies L9,L.9’ and is precisely a Boolean algebra.

1.1 Problem Statement

This paper proposes to approximate propositional formula equivalence using a new al-
gorithm that solves exactly the word problem for structures we call orthocomplemented
bisemilattices (axiomatized in Table 1), in only log-linear time. In general, the word
problem for an algebraic theory with signature .S and axioms A is the problem of de-
termining, given two terms #; and ¢, in the language of .S’ with free variables, whether
1, = t, is a consequence of the axioms. Our main interest in the problem is that ortho-
complemented bisemilattices (OCBSL) are a generalisation of Boolean algebra. This
structure satisfies a weaker set of axioms that omits the distributivity law as well as its
weaker variant, the absorption law (Table 2). Hence, this problem is a relaxation “up
to distributivity” of the propositional formula equivalence. A positive answer implies
formulas are equivalent in all Boolean algebras, hence also in propositional logic.

198 S. Guilloud and V. Kunc¢ak

Definition 1 (Word Problem for Orthocomplemented Bisemilattices). Consider the
signature with two binary operations A, LU, unary operation = and constants, 0, 1. The
OCBSL-word problem is the problem of determining, given two terms t| and t, in this
signature, containing free variables, whether t| = t, is a consequence (in the sense
of first-order logic with equality) of the universally quantified axioms L1-LS,L1’-L8’ in
Table 1.

Contribution. We present an O(n logz(n)) algorithm for the word problem of orthocom-
plemented lattices. In the process, we introduce a confluent and terminating rewriting
system for OCBSL on terms modulo commutativity. We analyze the algorithm to show
its correctness and complexity. We present its executable description and a Scala imple-
mentation at https://github.com/epfl-lara/OCBSL.

1.2 Related Work

The word problem on /lattices has been studied in the past. The structure we consider
is, in general, not a lattice. Whitman [33] showed decidability of the word problem on
free lattices, essentially by showing that the natural order relation on lattices between two
words can be decided by an exhaustive search. The word problem on orthocomplemented
lattices has been solved typically by defining a suitable sequent calculus for the order
relation with a cut rule for transitivity [4, 17]. Because a cut elimination theorem can be
proved similarly to the original from Gentzen [11], the proof space is finite and a proof
search procedure can decide validity of the implication in the logic, which translates to
the original word problem.

The word problem for free lattices was shown to be in PTIME by Hunt et al. [15]
and the word problem for orthocomplemented lattices was shown to be in PTIME by
Meinander [25]. Those algorithms essentially rely on similar proof-search methods as
the previous ones, but bound the search space. These results make no mention of a spe-
cific degree of the polynomial; our analysis suggest that, as described, these algorithms
run in O(n*). Related techniques of locality have been applied more broadly and also
yield polynomial bounds, with the specific exponents depending on local Horn clauses
that axiomatize the theory [3,24].

Aside from the use in equivalence checking, the problem is additionally of indepen-
dent interest because OCBSL are a natural weakening of Boolean Algebra and ortho-
complemented lattices. They are dual to complemented lattices in the sense illustrated
by Figure 1. A slight weakening of OCBSL, called de Morgan bisemilattice, has been
used to simulate electronic circuits [6,22]. OCBSL may be applicable in this scenario
as well. Moreover, our algorithm can also be adapted to decide, in log-linear time, the
word problem for this weaker theory.

To the best of our knowledge, no solution was presented in the past for the word
problem for orthocomplemented bisemilattices (OCBSL). Moreover, we are not aware
of previous log-linear algorithms for the related previously studied theories either.

1.3 Overview of the Algorithm

It is common to represent a term, like a Boolean formula, as an abstract syntax tree.
In such a tree, a node corresponds to either a function symbol, a constant symbol or a

https://github.com/epfl-lara/OCBSL

Equivalence Checking for Orthocomplemented Bisemilattices in Log-Linear Time 199

variable, and the children of a function node represent the arguments of the function. In
general, for a symbol function f, trees f(x, y) and f(y, x) are distinct; the children of a
node are stored in a specific order. Commutativity of a function symbol f corresponds to
the fact that children of a node labelled by f are instead unordered. Our algorithm thus
uses as its starting point a variation of the algorithm of Aho, Hopcroft, and Ullman [14]
for tree isomorphism, as it corresponds to deciding equality of two terms modulo com-
mutativity. However, the theory we consider contains many more axioms than merely
commutativity. Our approach is to find an equivalent set of reduction rules, themselves
understood modulo commutativity, that is suitable to compute a normal form of a given
formula with respect to those axioms using the ideas of term rewriting [1]. The interest
of tree isomorphism in our approach is two-fold: first, it helps to find application cases
of our reduction rules, and second, it compares the two terms of our word problem. In
the final algorithm, both aspects are realized simultaneously.

(a) Complemented lattice (b) Orthocomplemented bisemilattice(c) Orthocomplemented lattice

Fig. 1. Bisemilattices satisfying absorption or de Morgan laws.

2 Preliminaries

2.1 Lattices and Bisemilattices

To define and situate our problem, we present a collection of algebraic structures satis-
fying certain subsets of the laws in tables 1 and 2.

A structure (.S, A) that is associative (L1), commutative (L2) and idempotent (L3) is
a semilattice. A semilattice induces a partial order relation on S definedby a < b <
(aAb) = a. Indeed, one can verify that 3c.(bAc) = a < (bAa) = a, from which tran-
sitivity follows. Antisymetry is immediate. In such partially ordered set (poset) .S, two
elements a and b always have a greatest lower bound, or glb, a A b. Conversely, a poset
such that any two elements have a g/b is always a semilattice. A structure (S, A, 0, 1) that
satisfies L1, L2, .3, L4, and LS is a bounded upper-semilattice. Equivalently, 1 is the
maximum element and O the minimum element in the corresponding poset. Similarly,
a structure (S, U, 0, 1) that satisfies L1’ to L5’ is a bounded lower-semilattice. In that

200 S. Guilloud and V. Kunc¢ak

case, we write the corresponding ordering relation J. Note that it points in the direc-
tion opposite to <, so that 1 is always the “maximum” element and 0 the “minimum”
element. A structure (S, A, L) is a bisemilattice if (S, A) is an upper semilattice and
(S, 1) a lower semilattice. There are in general no specific laws relating the two semi-
lattices of a bisemilattice. They can be the same semilattice or completely different. If
the bisemilattice satisfies the absorption law (L9), then the two semilattices are related
in such a way thata < b <= a 3 b, i.e. the two orders < and J are equal and the
structure is called a lattice. A bisemilattice is consistently bounded if both semilattices
are bounded and if 0, = 0, = Oand 1, = 1, = 1, which will be the case in this
paper. A structure (S, A, U, 7,0, 1) that satisfies L1 to L7 and L1’ to L7’ is called a com-
plemented bisemilattice, with complement operation —. A complemented bisemilattice
satisfying de Morgan’s Law (L8 and L8’) is an orthocomplemented bisemilattice and
implies =0 = ~(=1 A0) = ==11=0 = 1. A structure satisfying L1-L.9 and L1°-L.9’ is an
orthocomplemented lattice. Both de Morgan laws (L8, L8’) and absorption laws (L9
and L9’) relate the two semilattices, in a way summarised in Figure 1. In bisemilattices,
orthocomplementation is (merely) equivalentto a < b <= —b 1 —a. Indeed, we have:

def Ly def
a<b<< aNnb=a < —alU-b=-a < —-bda

In the presence of L1-L8,L1’-L8’, the law of absorption (L9 and L9’) is implied
by distributivity. In fact, an orthocomplemented bisemilattice with distributivity is a
lattice and even a Boolean algebra. In this sense, we can consider orthocomplemented
bisemilattices as “Boolean algebra without distributivity”.

2.2 Term Rewriting Systems

We next review basics of term rewriting systems. For a more complete treatment, see [1].

Definition 2. A term rewriting system is a list of rewriting rules of the form e, = e,
with the meaning that the occurence of e; in a term t can be replaced by e,. e; and e,
can contain free variables. To apply the rule, e; is unified with a subterm of t, and that
subterm is replaced by e, with the same unifier. If applying a rewriting rule to t, yields

*
1y, we say that t| reduces to t, and write t| = t,. We denote by — the transitive closure

*
of = and by < its transitive symmetric closure.

An axiomatic system such as L1-L9, L1’-L9’ induces a term rewriting system, inter-

preting equalities from left to right. In that case ¢, S t, coincides with the validity of
the equality #; = #, in the theory given by the axioms [1, Theorem 3.1.12].

Definition 3. A term rewriting system is terminating if there exists no infinite chain of
reducing terms t| — ty — t3 — ...

Fact 1 Ifthere is a well-founded order < (or, in particular, a measure m) on terms such
thatt| = t, = t, <ty (or, in particular m(t,) < m(t,)) then the term rewriting
system is terminating.

Equivalence Checking for Orthocomplemented Bisemilattices in Log-Linear Time 201

3k
Definition 4. A term rewriting system is confluent iff: for all t|,t,,t3, t; = tyAt] =% 13
% %
implies 3t4.t2 g t4 A t3 - t4.
Theorem 1 (Church-Rosser Property). [I, Chapter 2] A term rewriting system is
* * *
confluent if and only if V|, 1,.(t; & 1)) = (Ftz3.1y = 13 A1y = 13).

A terminating and confluent term rewriting system directly implies decidability of
the word problem for the underlying structure, as it makes it possible to compute the
normal form of two terms to check if they are equivalent. Note that commutativity is not
a terminating rewriting rule, but similar results holds if we consider the set of all terms,
as well as rewrite rules, modulo commutativity [1, Chapter 11], [28]. To efficiently ma-
nipulate terms modulo commutativity and achieve log-linear time, we will employ an
algorithm for comparing trees with unordered children.

3 Directed Acyclic Graph Equivalence

The structure of formulas with commutative nodes correspond to the usual mathematical
definition of a labelled rooted tree, i.e. an acyclic graph with one distinguished vertex
(root) where there is no order on the children of a node. For this reason, we use as our
starting point the algorithm of Hopcroft, Ullman and Aho for tree isomorphism [14, Page
84, Example 3.2], which has also been studied subsequently [7,23].

To account for structure sharing, we further generalize this representation to singly-
rooted, labeled, Directed Acyclic Graphs, which we simply call DAGs. Our DAGs gener-
alize rooted directed trees. Any DAG can be transformed into a rooted tree by duplicating
subgraphs corresponding to nodes with multiple parent, as in Figure 2. This transforma-
tion in general results in an exponential blowup in the number of nodes. Dually, using
DAGs instead of trees can exponentially shrink space needed to represent certain terms.

Fig. 3. Two equivalent DAGs with different
Fig. 2. A DAG and the corresponding Tree number of nodes.

Checking for equality between ordered trees or DAGs is easy in linear time: we
simply recursively check equality between the children of two nodes.

Definition 5. Two ordered nodes © and n with children ,...,7,, and =y, ..., x, are
equivalent (noted t ~ n) iff

label(t) = label(n), m = nand Vi < n,7; ~ x;

202 S. Guilloud and V. Kunc¢ak

For unordered trees or DAG, the equivalence checking is less trivial, as the naive al-
gorithm has exponential complexity due to the need to find the adequate permutation.

Definition 6. Tivo unordered nodes t and x with children z, ..., t,, and =, ..., &, are
equivalent (noted v ~ n) iff

label(t) = label(x), m = n and there exists a permutation p s.t. Vi < n, Tpiy ~ 7

For trees, note that this definition of equivalence corresponds exactly to isomor-
phism. It is known that DAG-isomorphism is GI-complete, so it is conjectured to have
complexity greater than PTIME. Fortunately, this does not prevent our solution because
our notion of equivalence on DAGs is not the same as isomorphism on DAGs. In partic-
ular, two DAGs can be equivalent without having the same number of nodes, i.e. without
being isomorphic, as Figure 3 illustrates.

Algorithm 1: Unordered DAG equivalence. The operator ++ is concatenation.

input : two unordered DAGs 7 and x

output: True if 7 and # are equivalent, False else.
1 codes «—HashMap[(String, List[Int]), Int];
2 map <HashMap[Node, Int];

3 s, . List < ReverseTopologicalOrder(r);
4 s, . List « ReverseTopologicalOrder(r);
5 for (n:Node in s ++s,) do
6
7
8
9

1, < [map(c) for c in children(n)];
r, < (label(n), sort(l,));
if codes contains r then

‘ map(n) < codes(r,);

10 else

11 codes(r,) < codes.size;
12 map(n) < codes(r,);

13 end

14 end

15 return map(r) == map(r)

Algorithm 1 is the generalization of Hopcroft, Ullman and Aho’s algorithm. It de-
cides in log-linear time if two labelled (unordered) DAGs are equivalent according to
definition 5. The algorithm generalizes straightforwardly to DAGs with a mix of ordered
and unordered nodes: if a node is ordered, we skip the sorting operation in line 7.

The algorithm works bottom to top. We first sort the DAG in reverse topological
order using, for example, Kahn’s algorithm [16]. This way, we explore the DAG starting
from a leaf and finishing with the root. It is guaranteed that when we treat a node, all its
children have already been treated.

The algorithm recursively assigns codes to the nodes of both DAGs recursively. In
the unlabelled case:

Equivalence Checking for Orthocomplemented Bisemilattices in Log-Linear Time 203

o The first node, necessarily a leaf, is assigned the integer O

e The second node gets assigned O if it is a leaf or 1 if it is a parent of the first node

e For any node, the algorithm makes a list of the integer assigned to that node’s chil-
dren and sort it (if the node is commutative). We call this the signature of the node.
Then it checks if that list has already been seen. If yes, it assigns to the node the
number that has been given to other nodes with the same signature. Otherwise, it
assigns a new integer to that node and its signature.

Lemma 1 (Algorithm 1 Correctness). The codes assigned to any two nodes n and m
of s,++s, are equal if and only if n ~ m.

Proof. Let n and m denote any two DAG nodes. By induction on the height of n:

— In the case where n is a leaf, we have r, = (label(n), Nil). Note that for any node
n, map(n) = codes(r,). Since every time the map codes is updated, it is with a
completely new number, codes(r,) = codes(r,) if and only if r, = r,, i.e. iff
label(m) = label(n) and m has no children (like n).

— In the case where n has children n;, again codes(r,) = codes(r,,) if and only if
r,, = r,, which is equivalent to (/abel(m) = label(n) and sort(l,,) = sort(l,). This

means this means there is a permutation of children of n such that Vi, codes(n ;) =

codes(m;). By induction hypothesis, this is equivalent to Vi, n,;, ~ m;. Hence we
find that map(n) = map(m) if and only if both:

1. Their labels are equal
2. There exist a permutation p s.t. n,;) ~ m;

i.e n and m have the same code if and only if n ~ m.

Corollary 1. The algorithm returns True if and only if T ~ 7.

Time Complexity. Using Kahn’s algorithm, sorting = and x is done in linear time. Then
the loop touches every node a single time. Inside the loop, the first line takes linear time
with respect to the number of children of the node and the second line takes log-linear
time with respect to the number of children. Since we use HashMaps, the last instructions
take effectively constant time (because hash code is computed from the address of the
node and not its content).

So for general DAG, the algorithm runs in time at most log-quadratic in the number
of nodes. Note however that for DAGs with bounded number of children per node as well
as for DAGs with bounded number of parents per nodes, the algorithm is log-linear. In
fact, the algorithm is log-linear with respect to the total number of edges in the graph.
For this reason, the algorithm is still only log-linear in input size. It also follows that
the algorithm is always at most log-linear with respect to the tree or formula underlying
the DAG, which may be much larger than the DAG itself. Moreover, there exists cases
where the algorithm is log-linear in the number of nodes, but the underlying tree is
exponentially larger. The full binary symmetric graph is such an example.

204 S. Guilloud and V. Kunc¢ak

4 Word Problem on Orthocomplemented Bisemilattices

We will use the previous algorithm for DAG equivalence applied to a formula in the
language of bisemilattices (.S, A, LI) to account for commutativity (axioms L1, L1"), but
we need to combine it with the remaining axioms. From now on we work with axioms
L1-L8, L1°-L8 in Table 1. The plan is to express those axioms as reduction rules. Of
rules L2-L8 and L2’-L8’, all but L8 and L8’ reduce the size of the term when applied
from left to right, and hence seem suitable as rewrite rules.

It may seem that the simplest way to deal with de Morgan law is to use it (along
with double negation elimination) to transform all terms into negation normal form. It
happens, however, that doing this causes troubles when trying to detect application cases
of rule L7 (complementation). Indeed, consider the following term:

f=(@Ab)u-(aAb)

Using complementation it clearly reduces to 1, but pushing into negation-normal form,
it would first be transformed to (a A b) U (—a V —b). To detect that these two disjuncts
are actually opposite requires to recursivly verify that =(a A b) = (—a Vv —b).

It is actually simpler to apply de Morgan law the following way:

xAy=-(-xU"y)

Instead of removing negations from the formula, we remove one of the binary semilattice
operators. (Which one we keep is arbitrary; we chose to keep LI.) Now, when we look if
rule L7 can be applied to a disjunction node (i.e. two children y and z such that y = —z),
there are two cases: if x is not itself a negation, i.e. it starts with LI, we compute —x code
from the code of x in constant time. If x = =x’ then =x ~ x’ so the code of —x is simply
the code of x’, in constant time as well. Hence we obtain the code of all children and
their negation and we can sort those codes to look for collisions, all of it in time linear
in the number of children.
We now restate the axioms L1-L8 ,L1°-L.8’ in this updated language in Table 3.

Al =]G x;, Xj5) = |_](‘..,xj, X5t Al = (=x,my) = = [y, —x)

A2 LG UG = L& A2 =X, =) = UG,)
L) =x

A3 oo x) = L P A3 = x, i, my) = = L (x, =y)

A4 A, D=1 A4 =](-0,-p) =0

A5 1 0,3 =] A5 A (=1,2%) = = L(=%)

A6 mx=x

A7 : |_|(x, ax,y) =1 A7 - I_l(—|x, —=x,7y) =0

A8 = (xy,ex) = AL (mmxy, x| A8 (g, o) = L (B,)

Table 3. Laws of algebraic structures (S, L, 0, 1, =), equivalent to L1-L8, L1-L8’ under de Morgan
transformation.

It is straightforward and not surprising that axiom A8 as well as A1’-A8’ all follow
from axioms A1-A7, so A1-A7 are actually complete for our theory.

Equivalence Checking for Orthocomplemented Bisemilattices in Log-Linear Time 205
4.1 Confluence of the Rewriting System

In our equivalence algorithm, A1 is taken care of by the arbitrary but consistent ordering
of the nodes. Axioms A2-A7 form a term rewriting system. Since all those rules reduce
the size of the term, the system is terminating in a number of steps linear in the size of
the term. We will next show that it is confluent. We will thus obtain the existence of
a normal form for every term, and will finally show how our algorithm computes that
normal form.

Definition 7. Consider a pair of reduction rules Iy — ry and 1| — r| with disjoint sets
of free variables such that ly = D[s], s is not a variable and o is the most general unifier
of os = ol,. Then (ory, (6 D)[or,]) is called a critical pair.

Informally, a critical pair is a most general pair of term (with respect to unification)
(t;,1,) such that for some t,, t, — t; and t; — t, via two “overlapping” rules. They are
found by matching the left-hand side of a rule with a non-variable subterm of the same
or another rule.

Example 1 (Critical Pairs).

1. Matching left-hand side of A6 with the subterm —x of rule A7, we obtain the pair
(1, ||, x5

which arises from reducing the term ¢, = |_|(-|x, —nx, y) in two different ways.
2. Matching left-hand sides of A2 and A7 gives

(& 5.=] Jon.n

which arise from reducing | (X, |_|(3), = _|(3))) using A2 or A7.
3. Matching left-hand sides of A5 and A7 gives

(=0, 1)
which arise from reducing 0 LI =0 in two different ways.

Proposition 1 ([1, Chapter 6]). A terminating term rewrltmg system is confluent if and

only if all critical pairs (t,,t,) are joinable i.e. 3t;. t; 5 13N 5 t3.

In the first of the previous examples, the pair is clearly joinable by commutativity and
a single application of rule A7 itself. The second example is more interesting. Observe
that | |(X,¥,=[](%) = 1 is a consequence of our axiom, but the left part cannot be
reduced to 1 in general in our system. To solve this problem we need to add the rule A9:
L%, ¥, = I(»)) = 1. Similarly, the third example forces us to add A10: =0 = 1 to our
set of rules. From A10 and A6 we then find the expected critical pair A11l: =1 = 0.

206 S. Guilloud and V. Kunc¢ak

ALz G x5, 00 = LG x50 X5 00)
A2 & o) = UE D

LI(x) = x
A3 L%y = P
A4 L =1
A5 [0,%) = L)
A6 . x=x

AT | (x,x,p) =1
49 : (& 7,116y =1
Al10: =0=1

All : =1=0

Table 4. Terminating and confluent set of rewrite rules equivalent to L1-L8, L1’-L8’

4.2 Complete Terminating Confluent Rewrite System

The analysis of all possible pairs of rules to find all critical pairs is straightforward. It
turns out that the A9, A10 and A1l are the only rules we need to add to our system to
obtain confluence. We have checked the complete list of critical pairs for rules A2-A11
(we omit the details due to lack of space). All those pairs are joinable, i.e. reduce to the
same term, which implies, by Proposition 1, that the system is confluent. Table 4 shows
the complete set of reduction rules (as well as commutativity).

Since the system A2-A11 considered over the language (S, | |, =, 0, 1) modulo com-
mutativity of | | is terminating and confluent, it implies the existence of a normal form
reduction. For any term #, we note its normal form ¢]. In particular, for any two terms

t, and t,, we have t; = t, in our theory iff ¢, S t, iff t;| and t,] are equivalent terms
modulo commutativity. We finally reach our conclusion: an algorithm that computes
the normal form (modulo commutativity) of any term gives a decision procedure for the
word problem for orthocomplemented bisemilattices.

5 Algorithm and Complexity

The rewriting system readily gives us a quadratic algorithm. Indeed, using our base
algorithm for DAG equivalence, we can check, in linear time, for application cases of
any one of rewriting rules A2-A11 of Table 4 modulo commutativity. Since a term can
only be reduced up to » times, the total time spent before finding the normal form of a
term is at most quadratic. It is however possible to find the normal form of a term in a
single pass of our equivalence algorithm, resulting in a more efficient algorithm.

5.1 Combining Rewrite Rules and Tree Isomorphism

We give an overview on how to combine rules A2-A7, A9, A10, A1l within the tree
isomorphism algorithm, which we present using Scala-like ! pseudo code in Figure 7.

! https://www.scala-lang.org/

https://www.scala-lang.org/

Equivalence Checking for Orthocomplemented Bisemilattices in Log-Linear Time 207

For conciseness, we omit the dynamic programming optimizations allowed by struc-
ture sharing in DAGs (which would store the normal form and additionally check if a
node was already processed.) For each rule, we indicate the most relevant lines of the
algorithm in Figure 7.

A2 (Associativity, Lines 10, 20, 32, 42) When analysing a |_| node, after the recursive
call, find all children that are | | themselves and replace them by their own children.
This is simple enough to implement but there is actually a caveat with this in term of
complexity. We will come back to it in section 5.

A3 (Idempotence, Lines 8, 31, 35) This corresponds to the fact that we eliminate du-
plicate children in disjunctions. When reaching a | | node, after having sorted the code
of its children, remove all duplicates before computing its own code.

A4, A5 (Bounds, Lines 8, 31, 35, 11, 36) To account for those axioms, we reserve a
special code for the nodes 1 and 0. For A4, when we reach some |_] node, if it has 1 as
one of its children, we accordingly replace the whole node by 1. For A5, we just remove
nodes with the same codes as 0 from the parent node before computing its own code.

A6 (Involution, Lines 17, 22) When reaching a negation node, if its child is itself a
negation node, replace the parent node by its grandchildren before assigning it a code.

A7 (Complement, Lines 11, 36) As explained earlier, our representation of nodes let us
do the following to detect cases of A7: First remember that we already applied double
negation elimination, so that two “opposite” nodes cannot both start with a negation.
Then we can simply separate the children between negated and non-negated (after the
recursive call), sort them using their assigned code and look for collisions.

A9 (Also Complement, Lines 11, 36) This rule is slightly more tricky to apply. When
analysing a | | node x, after computing the code of all children of x, find all children of
the form = | |. For every such node, take the set of its own children and verify if it is
a subset of the set of all children of x. If yes, then rule A9 applies. Said otherwise, we
look for collisions between grandchildren (through a negation) and children of every | |
node.

Al0, All (Identities, Lines 17, 26) These rules are simple. In a = node, if its child has
the same code as O (resp 1), assign code 1 (resp 0) to the negated node.

5.2 Case of Quadratic Runtime for the Basic Algorithm

All the rules we introduced in the previous section into Algorithm 1 take time (log)linear
in the number of children of a node to apply, which is not more than the time we spent in
the DAG/tree isomorphism algorithm. For A3, checking for duplicates is done in linear
time in an ordered data structure. A4 and A5 (Bounds) consist in searching for specific
values, which take logarithmic time in the size of the list. A6 (Involution) takes constant
time. A7 (Complement) is detected by finding a collision between two separate ordered

208 S. Guilloud and V. Kunc¢ak

lists, also easily done in (log) linear time. A9 (Also complement) consists in verifying
if grandchildren of a node are also children, and since children are sorted this takes log-
linear time in the number of grandchildren. Since a node is the grandchild of only one
other node, the same computation as in the original algorithm holds. A10 and A11 take
constant time. Hence, the total time complexity is O(nlog(n)), as in the algorithm for
tree isomorphism.

As stated in Section 3 regarding the algorithm for DAG equivalence whose com-
plexity we aim to preserve, the time complexity analysis crucially relies on the fact that
in a tree, a node is never the child (or grandchild) of more than one node during the
execution. However, this is generally not true in the presence of associativity. Indeed
consider the term represented in Figure 4. The 5th | | has 2 children, but after applying

o oo o

Fig. 4. A term with quadratic runtime

A2, the 4th has 3 children, the 3rd has 4 children and so on. On the generalization of
such an example, since an x; is the child of all higher | |, our key property does not hold
and the algorithm runtime would be quadratic. Of course, such a simple counterexam-
ple is easily solved by applying a leading pass of associativity reduction before actually
running the whole algorithm. It turns out however that it is not sufficient, since cases of
associativity can appear after the application of the other A-rules.

In fact, there is only one rule that can creates case of rule A2, and this rule is A6
(Involution). The remaining rules whose right-hand side can start with a | | have their
left-hand side already starting with |_|. It may seem simple enough to also apply double
negation elimination in a leading pass, but unfortunately, cases of A6 can also be created
from other rules. It is easy to see, for similar reasons, that only the application of A2b
(LI(x) = x) can create such cases. And unfortunately, such cases of A2b can arise from
rules A3 and A5 which can only be detected using the full algorithm. To summarize,
the typical problematic case is depicted in Figure 5. This term is clearly equivalent to
| |(x;, x5, x3, X4), but to detect it we must first find that z; and z, are equivalent to 0, so
we cannot simply solve it with an early pass.

5.3 Final Log-Linear Time Algorithm

Fortunately, we can solve this problem at a logarithmic-only price. Observe that if we
are able to detect early nodes which would cancel to 0, the problem would not exist:
When analysing a node, we would first call the algorithm on all subnodes equivalent to

Equivalence Checking for Orthocomplemented Bisemilattices in Log-Linear Time 209

Fig. 5. A non-trivial term with quadratic runtime
LD LD— ()

©
) =) ®

Fig. 6. the term of Figure 5 during the algorithm’s execution

0, remove them and then when there is a single children left, remove the trivial disjunct,
the double negation and the successive disjunction (as in Figure 5) before doing the
recursive call on the unique nontrivial child. However, we of course cannot know in
advance which child will be equivalent to 0.

Moreover note (still using Figure 5) that if the z-child is as large as the non-trivial
node, then even if we do the “useless” work, we at least obtain that the size a tree is
divided by two, and hence the potential depth of the tree as well. By standard complexity
analysis, the time penalty would only be a logarithmic factor.

The previous analysis suggests the following solution, reflected in Figure 7 lines
28-29. When analysing a node, make recursive calls on children in order of their size,
starting with the smallest up to the second biggest. If any of those children are non-zero,
proceed as normal. If all (but possibly the last) children are equivalent to zero, then
replace the current node by its biggest (and at this point non-analyzed) child, i.e. apply
second half of rule A2 (associativity). If applicable, apply double negation elimination
and associativity as well before continuing the recursive call.

We illustrate this on the example of Figure 5. Consider the algorithm when reaching
the second |_| node. There are two cases:

1. Suppose z; is a smaller tree than the non-trivial child. In this case the algorithm
will compute a code for z;, find that it is O and delete it. Then the non trivial node
is a single child so the whole disjunction is removed. Hence, the double negation
can be removed and the two consecutive disjunction of x; and x, merged, obtaining
the term illustrated in Figure 6. In particular we did not compute a code for the two
deleted | | nodes, which is exactly what we wanted for our initial analysis.

2. Suppose z; is larger tree than the non-trivial child. In this case, we would first re-
cursively compute the code of the non-trivial child and then detect that z; ~ 0. We

210 S. Guilloud and V. Kunc¢ak

indeed computed the code of the disjunction that contains x, when it was unnec-
essary since we apply associativity anyway. This “useless” work consists in sorting
and applying axioms to the true children of the node (in this case x,, x3 and x,) and
takes time quasilinear in the number of such children. In particular, it is bounded by
the size of the subtree itself and we know it is the smallest of the two.

Analogous situation can arise from the use of rule A3 (idempotence), but here triv-
ially the two subtrees must have the same number of (real) subnodes, so that the same
reasoning holds.

Denote by |n| the size of a node, i.e. the number of descendants of n. We compute
the penalty of useless work we incur by computing children of a node » in the wrong
order, i.e. by computing a non-0 child n,, when all other are 0. n,, cannot be the largest
child of n for otherwise we would have found that all other children are 0 before needing
to compute n,,. Hence |n,,| < |n|/2. It follows that the total amount of useless work is
bounded by log(|n|) - W (n), where

W(n) < |nl/2+) W(n) for Y |n] < |n|.

It is clear that W (n) is maximized when » has exactly two children of equal size:
Wn) < |n|/2+2-W(n/2)
By observing that we can divide n by 2 only log(n) times,

log(n)
Wn) <) 2" |n|/2"
m=1

so we obtain W (n) = O(|n| log(|n|)) and hence the total runtime is O(n(log n)?).

6 Conclusion

We have described a decision procedure with log-linear time complexity for the word
problem on orthocomplemented bisemilattices. This algorithm can also be simplified
to apply to weaker theories. Dually, we believe it can be generalized to decide some
stronger theories (still weaker than Boolean algebras) efficiently. While the word prob-
lem for orthocomplemented lattices was known to be in PTIME [15] and as such the
membership of orthocomplemented bisemilattices in PTIME may not come as a sur-
prise, this is, to the best of our knowledge, the first time that this result has been ex-
plicitly stated, and the first time that an algorithm with such low log-linear complexity
was proposed for this or a related problem. The algorithm has not only low complexity
but, according to our experience, is easy to implement. It can be used as an approxi-
mation for Boolean algebra equivalence, and we plan to use it as the basis of a kernel
for a proof assistant. We also envision possible uses of the algorithm in SMT and SAT
solvers. The algorithm is able to detect many natural and non-trivial cases of equiva-
lence even on formulas that may be too large for existing solvers to deal with, so it may
also complement an existing repertoire of subroutines used in more complex reasoning
tasks. For a minimal working implementation in Scala closely following Figure 7, see
https://github.com/epfl-lara/OCBSL.

https://github.com/epfl-lara/OCBSL

Equivalence Checking for Orthocomplemented Bisemilattices in Log-Linear Time 211

1
2
3
4
5
6
7
8

9
10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

def equivalentTrees(tau: Term, pi: Term): Boolean =

val codesSig: HashMap[(String, List[Int]), Int] = Empty
codesSig.update(("zero", Nil), 0); codesSig.update(("one", Nil), 1)
val codesNodes: HashMap[Term, Int] = Empty
def updateCodes(sig: (String, List[Int]), n: Node): Unit = ... // codesSig, codesNodes
def bool2const(b:Boolean): String = if b then "one" else "zero"
def rootCode(n: Term): Int =
val L = pDisj(n, Nil).map(codesNodes).sorted.filter(_# 0).distinct
if L.isEmpty then ("zero", Nil), n)
else if L.length == 1 then codesNodes.update(n, L.head)
else if L.contains(1) or checkForContradiction(L) then updateCodes(("one", Nil), n)
else updateCodes(("or", L), n)
codesNodes(n)
def pDisj(n:Node, acc:List[Node]): List{Node] = n match
case Variable(id) = updateCodes((id.toString, Nil), n); return n :: acc
case Literal(b) = updateCodes((bool2const(b), Nil), n); return n :: acc
case Negation(child) = pNeg(child, n, acc)
case Disjunction(children) = children.foldleft(acc)(pDisj)
def pNeg(n:Node, parent:Node, acc:List[Node]): List[Node] = n mat