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Foreword

1.1. Motivations and content of the volume

As the title suggests, this book collects notes that were prepared for a
university course I taught in the Spring of 2018, with a slightly different
title from the one I chose for this book, Probability and Rational Choice,
and delivered to an audience of students enrolled in theMaster course on
Logic, Philosophy and History of Science (LaureaMagistrale in Logica,
Filosofia e Storia della Scienza), held at the Dipartimento di Lettere e
Filosofia of the University of Florence. The goal of the course was to in-
troduce students to some basic concepts from the area of research gener-
ally known as decision theory. Due to the vastity of it, it was necessary to
sharpen the aim of the course by carefully selecting some significant top-
ics to expose the students to. I have made my choice in this respect as is
usual the case for situations like this one, namely by taking into account
factors, like expertise, taste, opportunity, etc., that could make the selec-
tion optimal for the course, and for theMaster programme objectives, or,
I should better say, for my understanding of them.

TheMaster programme this coursewas taught for the sake of, is an in-
terdisciplinary curriculum which aims at teaching students coming from
different bachelor studies, either settledwithin theHumanities, or linked
to scientific disciplines. Course topics vary, but are in general somehow
related with actual researches centered on Logic or on the Philosophy
and the History of Science. This is a unique thing among the Master pro-
grammes available at the Academic level in Italy. A substantial part of
this objective is achieved by introducing students to the use of formal
methods, in agreement with a tradition that has made the philosophical
studies in Florence renowned in, and outside Italy. The course I have
taught, and this book which, as I said, comes out from that teaching ex-
perience, was intended to serve this purpose.
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VIII COURSE NOTES ON FINITE GAMES AND RATIONAL CHOICE

The concept which I decided to put under the spotlight is the concept
of « rational choice». I also decided that the methodological tool that
could be mostly useful to deal with it was the theory of games. This is
because this latter area of research has rapidly become a territory where
different scholars, mathematicians, economists, philosophers, meet for
discussing topics from multiple points of view. Therefore, I thought that
sticking to games could best reflect the educational aim the course was
supposed to have. In particular, since I was trying to minimize prerequi-
sites needed to attend the course (see below), I decided to limit myself to
the treatment of finite games.

Regarding the selection of topics in that direction of work, I doubt
that the expert reader would consider it an original one: it is rather ex-
actly what onemay expect an introductory volume to decision theory cen-
tered around the tool of finite games to contain.

Chapter 1 is my attempt to motivate the investigation on choice – on
rational choice to be more precise –, from the game-theoretic angle I will
adopt and propose in the subsequent parts of the volume.

With chapter 2 I start to elaborate the main dichotomy upon which
the book is built, namely as based on distinguishing the analysis of games
where the order in which players play is not taken into account, which
yields the theory of games in normal form as they are commonly referred
to, from the approach to games where that feature is present, that is to
games as seen in extensive form. Beside laying down some basic termi-
nology, this part of the book aims at making clear the implications in ‘ge-
ometrical’ terms involved in taking the one route, and in taking the other
instead.

Havingmaking clear the two areas of knowledge wewill be interested
in, I present in chapter 3 the theory of finite games in normal form (or, I
should rather say, the part of it I decided to select for the volume’s sake).
Once again, I must stress that nothing unexpected happens here, topic-
wise: after discussing the notion of Nash equilibrium as a natural gen-
eralization of what could be seen as representing a ‘solution’ to a game
in normal form (that is, a solution of the choice problem that can be for-
mulated for it, namely: What action should each player choose?), I go
on questioning the natural character of this concept by discussing situa-
tions, in the form of games, in which by sticking to equilibria one seems
to deviate from paths that rational agents might be expected to prefer.
Refinements of the original notion of equilibrium that stem from the rel-
evant critiques to it, at least some of those that have been proposed in the
literature, are presented along the way. If this, as I said, was more or less
expected, what is unexpected maybe, hence counts as an original contri-
bution that this monograph put forth in this respect, is the approach by
means of which the basic properties of equilibria and their refined ver-
sions are attained at, and proved to hold. This is done by making use
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of formal methods which are proper to the logical investigation and are
based on the setting-up of a formal language to speak of actions, utili-
ties associated to them and their comparison. A definition of «rational
strategy» is then introduced on this basis, and a study of it is pursued by
means which are again standard in areas of logical research where circu-
lar concepts are relevant (like, for instance, the theory of formal truth).
The whole story is told with some more bibliographical details in section
3.12.

Chapter 4, the last one of the book, contains the treatment of games
in extensive form. Here, the diagrammatic form of trees by means of
which games of this type are sometimes accounted for in the literature, is
abandoned in favour of the mathematical model of games as sequences
of natural numbers. After providing the reader with the concepts needed
to familiarize with the approach, as well as a discussion about alterna-
tives to the model that we call «canonical» and which come out from re-
flecting upon the common experience with games in real life, it follows
a presentation of (what I chose to be) the main result on games in this
form, namely the theorem of determinacy. The proof idea bears similar-
ities with the aforementioned methodology used to deal with games in
normal form. In particular, a formal language is introduced in order to
speak of games in the chosen form and show that determinacy turns out
as a consequence of some validity properties of formulas expressing that
a strategy for winning every match of the game under scrutiny exists for
one of the two players.

Presuming that by what I have said so far I succeded in providing the
reader with a credible answer to the question «What do I get back if I de-
cide to pay the price needed to go through the content of this book?», the
other information required to make the decision, and eventually paying
the actual price needed to buy the volume, is «What does the reading of
this book presume I know already?». Being this latter question as impor-
tant as the former, let us spend a fewwords about it as we did for the sake
of answering the other one.

1.2. Notation and prerequisites

Having said that the book is supposed to be an introduction to the
topics it treats, the best answer to the question on prerequisites is: noth-
ing, no previous knowledge is presupposed here. To say that would turn
out to be a lie. It would have to be regarded as a small lie probably, but
still a lie in the end. Since to set up a relationship on lies is never a good
idea, I will try not to lie to the reader, with whom I am suppose to en-
gage a relationship henceforth. So, this book does indeed require some
pre-existing knowledge. I have tried to avoid any assumptions about the
reader knowing something about finite games and being acquainted with
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the notation at use in that area of study. Since the choice of sticking to
games as a tool for approaching the theory of rational decision was a de-
liberate choice of mine, and certainly a different route could have been
chosen instead, I did not want to make any presupposition regarding the
reader’s expertise in the area. So, the volume aims at being a genuine
introduction to the theory of finite games for beginners.

As the approach that is fostered here to game-theoretic topics is par-
tially novel, prerequisites have to be evaluated with respect to that too.
Both the treatement of finite games in normal form, for what concerns
the theory of equilibria and their refinements, as well as the theory of
games in extensive forms as sequences, in particular the proof of the the-
orem of determinacy from section 4.8, are based on the use of formal
methods that are proper to the logical investigation.

Although I have tried both to motivate the methodological choice
and to provide the reader with the necessary information step by step,
I could not avoid assuming familiarity with the way in which formal lan-
guages are dealt with notationally in the first place, and how the basic no-
tions involved in the costruction of them, such as the concepts of terms
and formulas, are commonly introduced. So, the reader who has already
been exposed to the standard notation concerning predicates application,
symbols chosen for the main logical operations and the like, will experi-
ence no problem in going through the sections from chapter 3 and chap-
ter 4 where they are at use. In addition, familiarity with inductive defi-
nitions of terms and formulas, as well as with proofs by induction, might
be presupposed by some of the passages the reader will be required to go
through. Parts of chapter 3 (in particular, section 3.5) and chapter 4 may
also require familiarity with basic mathematical notions which are only
partially accounted for here. Some very basic knowledge of set theory,
both notationally and conceptually speaking, and a very basic acquain-
tance with the mathematical notion of function could ease the reading of
those parts of the volume.

That is all the reader should be warned of, I think. I have decided to
publish these notes both to serve an ‘internal’ purpose (that is, to provide
future students of other courses I may deliver on the topic with a manual
they could use as a companion to actual class notes), as well as an ‘outer’
one, namely to share themwith scholars,make themavailable to students
and, why not, teachers of other courses thatmay be in search of a compact
manual on these topics. I hope that anyone who will happen to stumble
on this book will find it a useful tool for reading, researching, studying
and teaching.

Before launching ourselves into the actual reading of the volume, I
would like to save a fewwords for acknowledgements. As amatter of fact,
there is quite a number of people I should expressmy gratitude to as far as
the preparation of this material for publication is concerned. First of all,
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to the family at large at home. Secondly, to my collegues of the research
group in Logic and Philosophy of Science, and to Andrea Cantini in par-
ticular, for several discussions concerning topics treated here that finally
brought me to develop the interest needed to conceive the writing of this
book. To the students, who attendedmy course in the Spring semester of
2018 for being the first ones to test these notes and for reportingme some
typos they originally contained. Finally, to the Dipartimento di Lettere e
Filosofia as a whole, that granted me a generous support for making this
publication possible. It is intended that I remain the only responsible for
mistakes and inaccuracies that might still be found here.

Firenze, 17 September 2018





Chapter 1
Preliminary considerations

This is a a book on choice. Since choices occur in many forms and
affect most, if not every aspect of our lives, the first thing that a book on
choice should do is to sharpen the object of investigation. We are not
dealing with choices whatsoever in the first place. Our aim is to focus on
rational choices. So, choices we are wishing to analyze are those where
what they say is the charactermost typical to human beings is excercised.
Is this enough to clarify what kind of choices are we interested in? If
so, how can the character of rational choices be specified better? Is this
of any help to set up a systematic investigation of it and what kind of
knowledge can we expect that this treatment will allow us to achieve?
These are the kind of issueswewill confront ourselves in this introductory
chapter.

1.1. Types of choice

As I said already, choices are everywhere. As a result of their ubiqui-
tary character, choices come in many different types. Choices we aim at
dealing with are the rational ones. What does this mean? To make the
idea more precise we could tentatively attempt a general definition like
the following:

Definition 1.1 A choice is rational if it can be rationally argued for, or
if rational arguments can be produced against it.

The idea of the definition is that choices are either recognized to be
rational because you can rationally explain why they were made, or be-
cause you can oppose them rationally. Choices are rational if they have a
rational ‘content’ that can be argued, for or against, by rational means. I
will not even attempting at dragging the consideration of this definition
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even longer than that, and admit straight away that the definition is a
weak one. It is weak because it fails to sharpen the object of our analy-
sis as we wanted. To speak of reasons supporting, or allowing to argue
against a choice that has been made is only apparently helping us in this
respect: to set up the clock at 7:00 a.m. is not really the kind of choice
one is expected to pick to speak of rationality at first; however, if it turns
out that I have a meeting at 8:30, and that I have to travel the distance to
the meeting point in an average situation of morning traffic, this might
be enough to argue for the choice I have made andmake it rational in the
sense of the definition. This brief observation is meant to show that it is
easy to make any choice appear as if it fits the definition above. In other
words, to tighten «choices» and «rationality» together as we did it makes
the former notion depending upon «reasons» and «argumentations» the
latter notion is also entangled with. However, the latter concepts have
not a unique meaning and are subject to a variety of interpretations that
suggest that they can hardly serve the purpose of making any easier the
dispute about what the rational character of choices is, or is not.

Now, it is clear that the definition above could be revised and refined
tomake it harder to defy, but the effort would be hardly rewarding, I feel,
as it is improbable that one can find a fully satisfactory version of it at
this level of generality. So, I will refrain from doing this, also because it
seems to me that things get really easier, only if one tries to investigate
about this matter in concrete and specific situations.

Take, for instance, the following story about Alice:

Alice is looking for a part-time job that could ensure her to
earn somemoneywhile she is finishing her studies at theUni-
versity. She then finds this company, which delivers support
to clients for social networking and advertises available posi-
tions for perspective employees who are expected to increase
the number of «likes» on websites of clients over their com-
petitors. Alice decides to accept the offer, and, according to
the contract she signs, she will be paidmore, themore «likes»
she is able to place.

Assuming that no legal, moral, or other sorts of infringements are at
risk of occurring while Alice is performing her activity, if someone asked
the question, «What is the rational choice for Alice tomake?», I think that
no doubt would be cast on what is the answer to such question despite
the previously noted difficulty with the notion it involves. Alice is indeed
expected to place as many «likes» as she is able to do during worktime,
in order to increase her salary.

This suggests that questions about rational choices are easier to an-
swer if they are raisedwith respect to suitably restricted settings. Yes, but
is not the setting we have chosen too restrictive and simple? It is. How-
ever, we are trying to lay down some basic, simple remarks to start from,
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and there is nothing wrong to start from simple situations to do that. So,
let us go on with the story, since things complicate a little bit afterwards:

Since Alice’s company is expanding, she is provided with a
teammate, a new employee named Bob, and the clauses of
her contract are changed accordingly: now, she will be paid
more in all situations inwhich her choice of action agreeswith
Bob’s, to the effect that they both like or dislike a website,
while they will be paid less whenever their actions disagree.
The same applies to Bob’s contract.

The new situation requires the previous conclusion about Alice’s way
of working to be adjusted to the new conditions of Alice’s, and Bob’s job.
From the viewpoint of Alice (the viewpoint of Bob being symmetrical),
the adjustment looks easy as she is expected to place a «like» whenever
Bob does, and place «dislike» again when Bob is doing the same. Simple
as itmay appear, it is true indeed that the situation becamemore complex
with respect to the one we considered beforehand. By comparing them,
there are some general features that is worth extracting to introduce and
explain the subsequent development of these notes.

The very first issue that clearly marks the difference between the first
half of the story and the second, is the number of characters involved.
There is just one character at first, they are two in the subsequent part.
This shift marks a first sense in which the concept of choice falls into
types: some choices are done by and for ourselves, some others are done
by ourselves but as part of a group of members who equally contribute
to the choice we make, and have consequences for the whole group we
are part of. In other words, some choices are the expression of our in-
dividuality, and are then individual choices, some other choices are the
expression of our being part of a community, of a society, of a group of
people and are named social choices accordingly. Examples of individ-
ual rational choices are too many to mention, since, as I was suggesting
earlier, a suitable setting canmake rationality appear almost everywhere.
«Social choice» is similarly a concept that can be used in relation tomany
situations, some of the which mark important occasions that require a
decision on our part collectively, like voting, investing, trading, fighting,
negotiating, and so on, but may be also involved in more mundane cases
which require mutual collaboration between agents.

One second feature that is worth noticing about the story of Alice and
Bob comes out by reflecting some more about the kind of situation that
frames it. For, it is clear that the contract conditions at which they are
employed favour their collaboration: in the social schema I have just pro-
posed, they form a coalition which, is easy to imagine, acts against other
coalitions made out by employees of concurrent companies. However, it
is also easy to imagine a completely different setting in which Alice and
Bob are brought to avoid collaboration, since acting one against the other
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is more fruitful for them. Real life is alas an unlimited source of insipra-
tion for situations of this sort also. This suggests a sense in which social
choices too fall into types: the type of choices made in cooperation, co-
operative social choices, and that of choices which are non-cooperative
instead.

Individual versus social, cooperative vs. non-cooperative are the first
fundamental types of choices that can give rise to some more types. This
induces enough dynamic to the setting we are laying down to suggest the
potential of the systematic investigation we are aiming at pursuing over
it, where situations, even simple situations like those I have started from,
exemplify features that are shared by all other sorts of situations that fall
into the same type, and therefore engender the kind of general reasoning
about them we would like to achieve. It should be clear, however, that
these are just the first building blocks of the more complex structure we
wish to arrange in the end. Before going on with this, I will not leave
unnoticed that there is a third character that stems from the situation I
have considered here, that the reader might have indentified and that I
am consciously avoiding to put the emphasis on at this stage of the analy-
sis. I am thinking in particular of a character that can be associated with
what is rational for Alice and Bob to do in the story, and that candidates
itself to provide us with the very paradigm of rationality that we could use
as a working hypothesis for our subsequent development. I feel it would
be premature to unveal it here. Therefore, I will leave the analysis of it to
my future considerations.

1.2. A decision and its components

In the previously designed setting, Alice and Bob are bound to take
decisions. Once again, even though the story is a simple one, it is enough
to emphasize characters that are proper to decisions in general, therefore
that are universally shared by themwhichever is the level of complexity of
the setting they belong to (this is, at least, the conviction that we are rely-
ing to as aworking hypothesis). Tomake up theirminds for Alice andBob
means to make a choice among the actions they have at their disposal. In
the chosen situation, this means that they have either to decide to ‘play’
like, or dislike instead. What seems to be the driving force of the choice
they have to make is the consequences of actions. The story is set in such
a way that to play either like or dislike yields different consequences for
their lives. These consequences, in turn, affect the kind of expectation
they might have: so, to play like in the right situation for Alice means to
have wealthier life than playing dislike instead. The expectations Alice
and Bob might have with respect to decisions they make, induce prefer-
ences over actions they choose among. In other words, decisions can be
viewed as tools for turning actions into consequences they are assumed
to have on the basis of an agent’s preference.
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These initial observations can serve the purpose of testing the goal
we would like to achieve. As a matter of fact, the ambition we nurture
is to be able to perform a study of choices that be rigorous and system-
atical. Can we? The observations we have just made, for instance, gives
some hint in this respect. They may suggest indeed to represent deci-
sions by making use of the mathematical notion of function. As a matter
of fact, functions as they are used in mathematics are suitable to situa-
tions in which elements of a given collection, the domain of the function,
are taken as argument towhich a ‘process’ (in the form of an operation, or
a series of operations) is applied and yields a unique result that belongs
to a possibly different collection of elements, the co-domain of the func-
tion. Functions are then described either intentionally, when the process
they rely upon is explicitly given, or extensionally as a collection of corre-
spondences of the form argument-value. Functions in the first form have
an algorithmic nature: they essentially look like a set of instructions that
one needs to execute for a given argument as input to ‘calculate’ the result
as value. Functions in the second form, instead, appear as a set (that is
commonly named the graph of a function), a collection of ordered pairs
of the form (a, f (a)) (i.e., a pair of elements taken in a certain order where
one element counts as the first element of the pair, the other as the sec-
ond one1), whose first element a is the argument of the function f and
f (a) is the value of it. To express the fact that a function with domain D
takes an element a of this set as input and returns a unique element f (a)
of its co-domain C , it is common to use the notation f : D→ C .

Whatever form one chooses to present a function f , whether it is the
intensional or the extensional one, this will turn out to have the following
properties:

• to be defined over all elements of its domain D , in the sense of
yielding a value in its co-domain C for each of them (so, for each
element a belonging to domain D , there exists an element b in
the co-domain C such that f (a) = b ));

• to be right-hand unique, as it is usually said, that is to yield a
unique value for one and the same argument (hence, for every
element a and b in D , if a = b , then f (a) = f (b ) – which is the
same as assuming that if values of f are different, then theymust
be produced out of arguments which are also different).

As far as the treatment of choices is concerned, a decision for a char-
acter like Alice, call it da , would then be a function from the set of her
actions A to the set C of the consequences they have. The notation is

1Ordered pairs have a distinguished equality relation which is defined according to their
ordered ‘nature’. Therefore, for any given two ordered pairs (a, b ) and (a′, b ′), it is the case
that they are equal, that is that (a, b ) = (a′, b ′) holds, if and only if a = a′ and b = b ′. That is,
ordered pairs are equal if they have the same elements in the same order.
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chosen in such a way that it can be adapted to indicate decisions made by
other characters, as it would be turned into db to indicate Bob’s decision
for instance. To see how satisfactory the rendition of choices as functions
can be, another aspect of the situation we have been considering should
be taken into account. In particular, the part of it inwhich decisionsmade
by Alice combine with those made by Bob and viceversa.

The story suggests that the said interaction is a key feature. With re-
spect to what we have noted already, this amounts to let consequences
of actions being dependent upon not just the action decided by one char-
acter, but on decisions made by all characters involved in the situation.
In the story by Alice and Bob, for instance, the outcomes referred to, i.e.
the income they get, depends not just on Alice choosing like or dislike,
but on Bob doing the same in coordination. This means that the conse-
quence Alice aims at achieving by means of her decision depends upon
the action of hers she chooses and the action correspondingly chosen by
Bob. Does this affect ourmodel of choices via functions? It does not seem
so, as mathematical functions are tools flexible enough to accommodate
for that. For instance, because functions representing choices made by
single characters can be composed to simulate the combination of choices
which turn out to yield a consequence which, affecting each member of a
group of people, also affects the group as a whole.

To develop the mathematical details of this observation here would
be like putting the cart before the horse. We are for themoment willing to
flag some useful observations that could also strengthen our confidence
that to take choices as the object of a rigorous study is indeed possible. So,
I will just leave the remark there, also because I feel there is something
more pressing that should be clarified about the schema we have been
discussing.

In the representation of choices we are fostering, actions are chosen
in view of their consequences and one action is preferred over the others
because the consequence of it is preferred by the agent that performs the
said choice. What made the situation simple to analyze in the case of the
story I have used for the sake of argument in the previous section, was
precisely that the story itself was making clear what preference an agent
could excercise with respect to the consequences of her actions. This was
clear since the part of the story involving Alice alone, as the choice she
had to make amounted to choose between being wealthy, or being un-
wealthy instead. The same applies to the second half of the story, where
Alice and Bob need to coordinate (and become wealthier), or avoid doing
that and lowering their incomes. This means that the analysis we have
performed so far presupposes that consequences are arranged in such a
way that a preference is attached to each of them. So, if we are using these
preliminary considerations as a test that a systematic study of choices is
possible, maybe that is the idea that should be tested and argued for first.
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That is, that we are indeed capable of similarly conceiving a rigorous way
to express such a «system of preferences», as we shall refer to it hence-
forth, applied by agents over consequences of actions.

1.3. Aligning things on a scale

By a system of preferences I generally mean a schema according to
which consequences can be compared with one another. By adopting
a sympathetic view to the mathematical one we have used to show, or
rather to give support to our confidence that a rigorous treatement of
«choice» can be pursued, we can view such system as an relation of order
over the set of consequences of a character’s actions. To express pref-
erence for a consequence with respect to another is the same, according
to this view, as putting the former before the latter in the list of conse-
quences one is willing to achieve. Like the previous notion of decision as
function transforming actions into consequences, this also happens to be
a concept that can be accounted for mathematically speaking.

As a matter of fact, for a given set A, a relation R over its elements
is a set of ordered pairs of them, hence a subset of what is known as the
cartesian product A× A of A with itself, that contains all possible ordered
pairs whose elements are elements of A (in symbols: R ⊆ A× A, hence if
b ∈ R , then b = (a,a′) for some a,a′ ∈ A). For any pair (a,a′) that belongs
to R , it is intended that a is in relation R with a′.

This general notion of relation can be seen to turn out useful in the
case we are concerned with. We only need to make it specific to the idea
we are wishing to use. This idea concerns putting things in an order and
we can imagine two ways of doing this. The first one is determined by the
following intuition: to compare the elements of a set with one another in
order to determine which one is preferred to the other, is the same as
putting them on a line where every element is preferred to those which
follow it. Now, if we assume the elements of A to be aligned in this way,
then some obvious properties will be verified all along the line. In par-
ticular, it will hold true that if the element a of A comes prior to another
element of it, say b , and b comes prior to anothe one, c , then a comes prior
to c . It is also obvious that for every two elements of A, say a and b , if a
comes prior to b , then b cannot come prior to a. This is obvious at least
in all cases in which a and b are different elements of A: if the line has to
be obtained by ordering the elements of A, then once an element of it has
been placed it cannot be ‘reused’ at some later stage, or, in other words,
any element can occur only once in the line. This idea is entirely satis-
factory if we think of the line of elements of A as reflecting preferences
over its elements. For, there is no point in expressing any preference to-
ward an element a of A and a itself. The problem is comparing any two
elements of the set, as long as they are different.
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However, there is another thing about preferences that seems to clash
with this model of alignment of things. As a matter of fact, if all elements
of A are supposed to be aligned, and coming prior to another element in
the line is taken to mean preference of the one element over the other,
how can we express bymeans of this model the agent’s absence of prefer-
ence in comparing any two things? This ismatter of common experience:
sometimes we prefer riding the bike to walking, sometimes is the other
way around, and sometimes we do not have any preference, or we pre-
fer both things to driving but we are not willing to choose one of the two
things in particular. This way of seeing preferences seems absent from
the previous model of aligning the elements of A according to an ‘exclu-
sive’ or strict way of ordering them, which is characterized by the previ-
ous property about the order being not reversible, hence such that if a is
prior to b , then b is not prior to a for every a and b in A.

The other route we have just hinted at instead, which gives rise to an
ordering relation that is ‘inclusive’ or ‘large’ (usually known as partial or-
dering), limits the said property to elements of A that are different, hence
amounts to saying that if a is prior to b and a is not equal to b , then b is
not prior to a (which is equivalent to say that if a is prior to b and b is
prior to a , then a is equal to b).

The possibility of assuming either of the two modes of thinking of
preferences, that is tomake a systemof preference coincidewith ordering
the elements of the set of consequences of an agent’s action, is reassur-
ing as long as our attempt of studying choice rigorously. This is because,
as I said, presuming that such a preference system is at work is one of
the building blocks of the analysis of the situations we have performed
in the previous section. One point that may puzzle the reader about that
is which of the two model should be chosen. Even though very little use
of the result below will be made in the subsequent parts of the volume,
since, as I shall explain in a moment, for the modest goals pursued here
we will rather stick to a different representation of a consequence value
(see section 4 below), I feel it is coherent with the experimental charac-
ter of this introductory chapter to say a few words about this issue. As a
matter of fact, the difference between a strict ordering relation and a large
one, is the same that passes between the «less than» relation < among,
say, the elements of the set � of natural numbers, and the «less than, or
equal to» relation ≤ over the same domain. It then follows by known re-
sults about the relationship between these two types of ordering that a
choice between them is not really needed and can be largely considered
as a matter of taste. For, if one assumes that the identity relation over
elements of the domain under consideration is given2, then a strict or-

2This means that there is a relation = defined over elements of A, which is such that: 1.
a = a holds for every a ∈ A; 2. if a = b is the case, then b = a also holds, for every a, b ∈ A; 3.
if a = b and b = c hold, then a = c is the case, for every a, b , c ∈ A.
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dering relation over a set A can be used to define a partial ordering ≤ of
the same set3:

Proposition 1.1 Let < be a strict ordering relation over A, that is let it
be such that: (i) a ̸< a for every a ∈ A, and (ii) if a < b and b < c , then
a < c for every a, b , c ∈ A. Let ≤ be the relation over elements of A defined
by putting, for every a, b ∈ A:

a ≤ b⇔Def a < b ∨ a = b

Then ≤ is a partial ordering of A.

Proof : first of all we prove that from (i) and (ii) it follows: (iii) a < b
entails b ̸< a for every a, b ∈ A. Suppose then that a < b is the case. If
b < a were also the case, then a < a would follow from (ii). This, however,
contradicts (i). Therefore (iii) must hold.

Now, clearly a = a entails a ≤ a by definition for every a ∈ A. Also,
assume that both a ≤ b and b ≤ c holds for any a, b , c ∈ A. Since a ≤ b is
the case, then either a < b , or a = b (but not both, owing to (i)). If the
latter is the case, then b = a ≤ c holds by the other assumption. If a < b
holds instead, then either a < c = b , or a < b < c hold by (ii). Finally,
assume that a ≤ b is the case, and that a ̸= b also holds. By definition of
≤, then a < b must be the case. Hence, b ̸< a holds by (iii) above. Since
a ̸= b entails b ̸= a, then the definition of ≤ again implies that b ̸≤ a is the
case. QED

The relationship we have just proved can be reversed, as if one starts
from a partial ordering of A, it is similarly possible to define a strict or-
dering of it:

Proposition 1.2 Let ≤ be a partial ordering of A, i.e. a relation over
its elements such that: (j) a ≤ a holds for every a ∈ A; (jj) if a ≤ b and
b ≤ a, then a = b for every a, b ∈ A; (jjj) if a ≤ b and b ≤ c , then a ≤ c for
every a, b , c ∈ A. Let < be the relation over A defined by:

a < b⇔Def a ≤ b ∧ a ̸= b

for every a, b ∈ A. Then, < is a strict ordering of A.

Proof : since a = a holds for every a ∈ A, then a ̸< a follows by definition.
Moreover, suppose that both a < b and b < c are the cases. Then, a ≤ b
and b ≤ c follow, which yield a ≤ c . From the two hypotheses, a ̸= b and

3We assume familiarity with some standard notation from formal logic. In particular,
for sentences φ,ψ, we assume that the reader knows that by φ ∧ ψ and φ ∨ ψ are usually
indicated the conjunction, respectively the disjunction of φ and ψ. We also make use of the
standard notation for elementhood of sets and indicate, say a ∈ A, for: «a is an element of,
or belongs to the set A».
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b ̸= c also turn out to be the cases, which give a ̸= c (for, otherwise, from
a ≤ b , b ≤ c = a and (jj), then also a = b and a < b = a would follow). This
means that a < c is obtained by the definition above. In view of the first
half of the proof of proposition 1.1, it is also the case that a < b entails
b ̸< a for every a, b ∈ A. QED

So, if one decides to align elements of a set by putting them in line
according to a strict model of ordering, then it is possible to recover a
larger model out of it and the same holds the other way around. Granted
that, onemay choose to favour either the oneway or the other. But, dowe
really have tomake this choice? As amatter of fact, the readermight have
expected something different right from the very beginning by thinking of
the stories we have started from, since they suggest a third, and possibly
simpler way to compare the consequences of an agent’s actions.

1.4. Take consequences at face value

The story of Alice we have started from, as well as the continuation of
it involving Bob, raised no issue about attaching preferences to the con-
sequences of the characters’ actions. The system of preferences of the
two agents, as we have referred to it above, was given to us ‘for free’, so
to say. The matter for comparing the two actions at each agent’s disposal
was turning out from the story itself as with the one action was connected
the increasing of the character’s income, while a decrease of it was con-
nected with the other one. One could even think of telling the story to
make such connection even more explicit by speaking, for instance, of
Alice as being paid one Euro more for each «like» she places, and to be
given nothing if she places «dislike» instead.

The story as it was told already, once the implicit content of it in terms
of consequences comparison was made clear along the lines we have just
brieflymentioned, could then suggest another route for taking thematter
of preferences into account.

Let us suppose that to each element of a given set A is assigned a value
in the form of, say, a rational number. Let us assume that this is done by
means of a function v that, with any element a in A, associates a value
v (a) that belongs to the set � of rational numbers. Let us also suppose
that such mapping of A via v is performed in such a way that no one and
the same number is assigned to different elements of A. That is, let us
suppose that v (a) ̸= v (b ) whenever a ̸= b , or, as mathematicians say, that
v is an injectivemap of A into�. This assumption itself suggests a simple
way for comparing the elements of A, as it was the case for Alice’s actions
in the story, namely by putting them in an orderwhich reflects the natural
ordering of numbers associated to them. In this schema, a is preferred to
b just in case v (a) is greater than v (b ).
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The idea might appear both fascinating, since it is simple and easy to
understand, but also simplistic at the same time. For, with the exception
of situations like the one involving Alice and Bob where this possibility
of ‘measuring’ consequences was, as I said, part of the story itself, it is
unclear whether the assumption that any action has a ‘measurable’ con-
sequence is feasible in all cases.

Another difficulty comes from thinking of this assignment of ‘values’
as representing an agent’s preference: is this ‘quantitative’model going to
be as pleasing and satisfactory as a ‘qualitative’ model based on ordering
relations might appear to be? Let us try to give an answer to the latter
question first. Let me anticipate that the answer I will provide the reader
with is largely unsatisfactory, since a proper answer to the questionmight
require a technical detour that I consider unnecessary to take here. Since
we are going to prefer the assignment of values to consequences over the
relational approach to system of preferences, I do not want to linger for
long about this matter.

From the superficial viewpoint I want to take, that question may re-
flect the following worry: how can an assignment of values in the form of
numbers ever reflect the depth of reasons and justifications thatmight be
hidden behind a system of preferences? Are not we loosing this informa-
tion by sticking to values rather than to ordering relations? For instance,
how can a numerical set of values account for common situations that
may take place like dynamical changes of preferences? Once values have
been assigned to elements of a given set A, what happens if this set gets
bigger and new elements need to be equally evaluated? Is not the dis-
creteness of (some) number systems preventing us from imagining how,
having set values v (a) and v (b ) for elements a and b of A, can we always
set a value v (c ) for a new element c of that set to lie in between v (a) and
v (b )?

Concerns put forth in this way can easily be addressed. This is be-
cause number systems are more flexible than one can think of at first.
Some number systems would indeed justify the previous preoccupation.
Take�, the set of natural numbers for instance. If we had used that as co-
domain of the function v assigning values to elements of A, then we could
really have problems in trying to accommodate extensions of the domain
set. If, for instance, we had set v (a) = v (b ) + 1 and we wished to associate
a new element c with value v (c ) in such a way that this is intermediate
between v (a) and v (b ), then the task would be impossible to accomplish,
for there is no such value as there is no element of � in between v (a) and
v (b ). However, not all number systems are the same, in particular if they
are like the set � we have assumed to contain all values of the functions
v above. �, as a matter of fact, is dense as mathematicians say, to the
effect that if any two elements of it are considered, say q and q ′, one will
always be able to find a third element of it, q ′′, which is an intermediate
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number between q and q ′. So, if we are clever, we can stick to number
systems flexible enough to accommodate with dynamical changes in val-
ues that do not put us at risk of requiring to always start the assignment
from scratch, for every chosen change in the situation to consider.

Having thereby answered the question that came second above, at
least in one of the possible interpretations of it, let us try to address the
first difficulty then, which is an effect of the natural way of looking at this
assignment of values that needs to be overturned. The natural view in
question is the following: having assumed that a value v (x ) in� has been
assigned to any element x of the set A, and taken any two elements a and
b of it, the agent prefers the former to the latter because v (a) is greater
than v (b ). Read in this way, the system of preferences that comes out
from the assignment in question reflects the natural ordering of values of
elements of A as numbers.

This view seems unquestionable: how else could the relationship be-
tween values and preferences be understood? Yet, this view raises the
problem we have mentioned about how to assign values to consequences
that do not appear to be measurable. The original remark about matters
of income returning a way to measure consequences of actions for free,
does not explain how the assignment of values may work with respect
to actions that are evaluated with respect to different ‘scales’, involving
principles like justice, honor, social advantage, and so on.

The way out, as I said, is to overturn the relationship between val-
ues and preferences. Yes, but how? Well, by assigning values to conse-
quences in such a way that the value comparison reflect the system of
preferences of agents. In this other scenario, having assigned values v (x )
in � to elements of the set A, you have to assume that, for any two ele-
ments a and b , the value of v (a) is greater then the value of v (b ) because
the agent we are considering prefers a to b . To make the idea clearer
with respect to the examples we have considered, the assignment of val-
ues in the case of the story about Alice should be made according to the
following moral: since Alice prefers a wealthier life to a less wealthy one,
then the value v (l ) of the consequence of choosing action «like» should be
higher than the value v (d ) associated with the consequence of choosing
the contrary action instead. And this is why an assignment of values can
be as pleasing and satisfactory as a relational system of preferences in the
end: just because we assume, as we shall stick to numbers as represent-
ing preferences in the course of the volume below, that values assigned
to consequences reflect the agent’s preference system in such a way that
higher values are assigned to consequenceswhich are preferred themore.

Havingmade clear this fundamental presupposition of ours, we shall
now rapidlymove toward considering the game-theoretic settingwewant
to use to frame the problem of rational choices in the rest of the book.
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1.5. Decisions in a game-theoretic setting

Let us now consider the following scenario:

Alice is put in front of two buttons, a red and a green one. She
is told that each time she hits the green button she marks a
score of 1. If she hits the red button instead, her score is 0.
Finally, she is told that she wins if her score increases, and
loses otherwise.

Let us compare this scenario with the story of Alice that was used for
the sake of our initial observations in section 1.1. It is clear that there are
some differences. First of all, while the first one is a story that deals with
an everyday situation where the agent has to take real-life decisions, this
one stems from a recreational kind of situations, a game in particular, as
it seems clear by the occurrence of words like «score» and by reference to
a winning, as well as to a losing condition. The actions Alice can choose
among, are articulated accordingly: it is no more a matter of choosing
which action is best to ensure her the greatest income, rather she is re-
quired to choose how to increase her score according to the rules. Despite
the differences though, the two stories have also a lot in common: there
is one agent in both who is supposed to make choices about what to do;
the chosen action will havemeasurable consequences in the two cases (in
the form of income increase on the one hand, and of score increase on the
other). This suggests that, the clear differences notwithstanding, the two
stories share features that are relevant to the kind of investigation we are
planning to pursue. This idea is supported also by the variation of the
previous scenario that corresponds to the complication of Alice’s story
that was considered in section 1.1:

Alice is informed that Bob is now starting to play the same
game, and the rule of it are changed accordingly. Alice will
score 1 by pressing the green button if Bob also presses it, she
scores the same if she presses the red button and Bob does
that also, while she scores 0 in case they play differently: that
is, if Alice presses green and Bob red, and if she presses red
and Bob green.

The correspondence between the two situations we noticed earlier,
are equally present in this case. The action by the agents is now turned
into a move of the game, the consequences of which is now measured in
terms of score, rather than income. As in the situation that was consid-
ered previously, the rules of the game now reflect the cooperative char-
acter of the real-life story, since Alice and Bob are favoured if they coor-
dinate with each other, and penalised otherwise. The two situations are
so close that one can think of one as being the reformulation of the other
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with just a different terminology. If one thinks of the features of the situ-
ations considered first, which we have flagged as crucial for the decision
problemwe wish to tackle, they all appear here as well, except for the fact
that they go under a different name (with «players» taking the place of
«agents», «moves» of «actions», and «score» of «income»).

Yet, to think of «games» rather than «stories» is not merely a mat-
ter of translation. The situations as they are described now, in the ‘game
form’, are more clearly written with a lot of unnecessary details left off
(for instance, what brought Alice to the situation where her decision-
making skill is required). At the same time, those aspects we concluded
to be crucial to consider when a decision come into play, are now even
better emphasized and brought to the foreground, to the point that one
can easily produce a schematic rendition of the situation. As a matter
of fact, the game in the two-player version boils down to considering the
four cases which turn out by combining the players’ actions. These cases,
therefore, can be identified with the pair of moves they are connected
with, to indicate which we can think to a first-level formalism featuring
G for «press green» andR for «press red». To keep track of which players
moves what, we may use indices and write Gi ,Ri , where i is either a for
Alice or b for Bob. What counts then about possible outcomes is the score
the players get. The formalism here comes for free again, as the score is
given in the form of number of points, and to keep track of which player
gets what, we can use pairs (n,m) where we conventionally assume to in-
dicate the score of Alice first, and Bob’s second. Granted that, the game
conditions can be summarized by means of a simple schema:

(Ga ,Gb ) = (1,1)
(Ra ,Gb ) = (0,0)
(Ga ,Rb ) = (0,0)
(Ra ,Rb ) = (1,1)

Since this schema contains all that we stressed as relevant for the pro-
posed investigation and the pursuing of it, to pass from a situation in
‘story form’ to a situation that corresponds to it (in a fashion similar to
the correspondence we found in the cases here at stake), and which is in
‘game form’, may be convenient for the sake of rigour. For, the example
I have used for the sake of illustrating the point I want to make, suggests
that the idea of game is strong enough to fill our needs in this respect.
This is at least what we shall assume in the rest of this book. We will
give to this assumption the form of the following game representation
hypothesis (GRH, henceforth):

GRH: For every situationwhich is relevant to consider in order to inves-
tigate the nature of rational decision, one can design a correspond-
ing game such that studying decisionsmade by players of this game
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is the same as studying decisions made by the characters involved
in the original situation.

We will now pass to introduce what counts as a «game» for the sake
of this hypothesis, trying to single out its features in order to give it the
form of a concept that one can deal with mathematically, and then pass
with the next chapter to the investigation of the properties of ‘objects”
falling under this concept in a systematic manner.

1.6. How to design a game

If a situation is about agents, a game is about players. Agents act,
therefore decide which action to act, while players move (and choose
among the moves they have available). A situation is framed by states
of affairs that constraint or direct the agents’ choices (in the story about
Alice and Bob, the clauses of their contract play the role of states of af-
fairs that are relevant to their choices), while a game is framed by its rules
which make moves legitimate or not. In a situation where more than one
agent is present, actions of agents combine and these actions combina-
tions give rise to consequences. Similarly, if there ismore than one player
in a game, their moves combine and these action combinations give rise
to rounds of a game match, for each of which players get a score. Conse-
quences of each actions combination might be different to agents, or, to
say it better, might be differently evaluated by agents which express pref-
erences on them (where each agent is free to express his, or her own pref-
erence), the general rationale being that agents will takes decisions that
agree with their own system of preferences (therefore, they will choose
the action which they prefer the most). Correspondingly, players in a
game get their score individually and, unless differently suggested by the
rules of the game, it is intended that they play in such a way that their
score increases as the game goes on. So, we assume that the relationship
between scores and preferences be the same that was supposed to hold
between values of consequences and preferences in section 1.4.

This concise summary is conceived in order to give a sample of how
terminology may vary from now onwards, having decided to proceed ac-
cording to GCH.

Players in a game are required to make choices that concern the ac-
tion to play next to the current state of the game. More precisely, as
is well-known to those who play recreational games, players are up to
devising a strategy. In general terms, a strategy is a plan: an idea on
what to play next that takes into account what has been played so far in
a match and what the other players may play, and is used to determines
the player’s moves accordingly. If we were supposed to describe the form
a strategy takes, this would likely be a series of statements of the form
«If players p0, . . . , pk play…, then I play…, and if p0, . . . , pk play… instead,
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then I play…, and if…». That is to say, a strategy is a hypothetical plan
that allows players tomake choices in the actual situation. Of course, this
plan is sensible to the score distribution, as the latter represents the ul-
timate motivation for each player’s move as I said. Since strategies can
be taken to represent the way decisions are made by players, what I have
just said suggests that they might be represented in the same way as the
latter are in ordinary situations: namely, as functions which take in this
case rounds of the game as inputs (the form of which being determined
by the number and the distribution of actions among the players playing
in the game), and yield the score accordingly (therefore, decisions in this
form would be something like a function d : R → S , where R is the set of
legitimate rounds of the game under consideration, while S is the set of
score assignments).

Strategies are not always the same. A strategy can be more effec-
tive than another because of its ‘range’. For instance, because it is so
conceived that it takes more options into accounts, and therefore allows
the player who conceived it to better secure her decisions with respect
to what the others do. Similarly, a strategy might be stronger than oth-
ers because it allows a player to rely upon that for longer (i.e., it works
well for more rounds than other plans do). The main difference between
strategies is between those which are «winning», and allow the player to
actually achieve the best possible score, and those which are not. While,
depending on the game rules, there might also be strategies that are nei-
ther winning nor loosing in all cases where ties are allowed.

Now, since strategies are crucial to players, it might be worth reason-
ing some more about them. As a matter of fact, there are a couple of is-
sues that are quite naturally connected with this idea about players mak-
ing choices for the sake of their performance in the match that is worth
discussing preliminarly here. As games, like real-life stories and choices
made there, fall into types, strategies that need to be devised accordingly
fall into types too. For instance, it is clear that players make choices on
the basis of their knowledge.

A player’s knowledge, by the way, may in part refer to the player’s
individual character and skills. This aspect of the issue is rather difficult
to assess as each player comes with his own talent and experience, and
seems therefore to be of little help to consider that connection for the
sake of an investigation like ours which aims at establishing something
that could be regarded as holding in the general case.

The player’s knowledge that seems important to evaluate here is the
one that is related to the game characteristics. The piece of a player’s
knowledge that is relevant in this respect, is their knowledge of the game
rules. Rules, as it was hinted at above already, determine an important
restriction over the players’ moves as theymake these split into legal and
illegal moves accordingly (the first group being made of all moves that
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are allowed by, or are in agreement with the game rules, the second group
containing all moves which are not as such). It should be clear that this
sort of information is crucial for the sake of devising a winning strategy,
since only by passing from legal moves to legal moves a player will be in a
position towin the game. The secondpart of each player’s knowledge that
is relevant to our goals is the knowledge of the match they are playing as
the latter goes on. Knowledge of this type involves a player’s awareness
of the current state of the match, which in turn will make her capable of
determining what moves may the opponents make, in combination with
the afore mentioned knowledge of the rules of the game. Finally, there
is a third part of a player’s knowledge that must be mentioned, which is
the players’ knowledge of the score distribution and how each move will
impact on their individual score in particular. To know this it is required
to determine, given the current state of thematch, which one of a player’s
legal move allows her to achieve the highest score, and could be preferred
the most, and which of the opponents’ move allows them to get the best
score and is therefore the one they will be likely endindg up playing.

An optimal strategy, a winning strategy as I will be calling it, is the
result of a careful analysis of all these aspects of a game situation. Even
on the basis of this rough account, to devise a winning strategy for a game
appears to be a difficult task. Most importantly, this task appears to be
different according to what we assume is the knowledge level of players.
Roughly speaking (again) there are two main routes that we may take
here.

On the one hand, we may assume that players know everything they
have to know to devise their strategies. This route applies to gameswhich
convey to players a perfect information, as game-theorists would say.
Chess or draughts provide us with good examples of games where players
always know what is needed for them to devise a plan for winning: the
state of the game, which corresponds to the state of the board that is al-
ways visible to them, the rules, as well as advantages and disadvantages
that legal moves represent in terms of each player’s score. This makes
clear that games where players play with perfect information can be as
hard to play as those where some information is hidden. So, for a perfect
information game, it is perfectly reasonable to ask questions about win-
ning strategies, and whether it is always the case that a player can devise
one.

There are games, however, which would be unsuitable to treat as sit-
uations where players knows everything. Think to poker, for instance.
Like most games played with cards, there are always cards that remain
hidden to the players’ sight. So, to guess what cards are the other play-
ers holding and what cards are in the bundle is part of what each player
has to try determining for the sake of her strategy. The difference be-
tween smarter and less smarter players is also measured by considering
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the ability of recovering this additional information. Games of this sort
are generally referred to as imperfect information games.

The distinction between perfect and imperfect information games is
naturally related to another issue about the players’ choices that is worth
mentioning. In a situation where all the required information is dis-
played, and in case the state of the match allows it, players might be in a
position to make predictions about what is going to come next with ab-
solute precision. In all these cases we shall say that players will elaborate
strategies that are pure, as they reflect this condition of absolute certainty
about the subsequent development of the match.

In the normal situation, however, this is not likely to happen as play-
ers will normally have choices to make and each player’s strategy will be
sensible to how these choices of players combine. Therefore, a player
is rather devising strategies which take all these different combinations
into account and the player’s choice will be made on the basis of what
combinations is favoured, i.e. regarded as more likely, and which one is
not. In these cases we say that players play according to strategies that
are mixed, which are obtained by assigning probabilities to every possi-
ble combination of moves by the players (that is, to each possible pure
strategy) in a way that reflect how likely it is that they will occur in the
actual game according to the players.

Pure vs. mixed strategy are pivotal concepts of two big areas in which
the theory of games is divided. Also the consideration of perfect vs. im-
perfect information games causes the study of the subject to split. Nei-
ther of the two splittings of the general theory is reflected in the foregoing
parts of this book. The observations we made here where conceived to
state with exact precision what is the object of this volume and what is
not, in such a way that the reader knows, to make the game correspond-
ing to the reading of this book fair right from the beginning, what shemay
gain from it and what she will certainly cannot expect to gain instead. As
a matter of fact, our goal is to deal with finite games, where players are
always granted perfect information and devise strategies which are pure.



Chapter 2
How games are dealt with

Having sketchly summarized some of the issues related to passing
from addressing the choice problem in real-life situations to dealing with
it in games that corresponds to, or represent them (owing toGRH), in this
chapter we are going to dig into the topic some further. Let us assume
that our previous considerations from section 1.5 provide us with enough
reason to think that by shifting to considering games things get simpler
as long as the problem of analyzing choices made by agents is concerned.
However, to say that we aim to passing from real-life situations to games
is not enough. For, beside the obvious changes in perspective we have
hinted at in section 1.6, the idea of «game» we have proposed is still too
vague to let us properly assess advantages and disadvantages. The first
sections of this chapter are conceived in a way to discuss the topic and
relate the reader to standard ways in which games are dealt with by the
ordinary theory. The standard vocabulary of it is also introduced along
the way, in view of the thourough account that will be starting from next
chapter.

2.1. Games in tree or matrix form

The storywewillmake use of as our running example for the overview
on the theory of gameswe plan to pursue, is not original. On the contrary,
it possibly represents the most popular andmost discussed case-study in
the field. Here is how the version of the story we will stick to goes:

Alan and Bonnie have been caught red-handed, and arrested
by the police for having stolen a car. However, the police has
reasons for thinking that they are involved in a bigger crime
and suspect they are part of a band which committed a series
of robberies recently. Alas, there are only evidences to send
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them in jail for the car theft. However, an attempt is made
to get a confession by proposing to each of them the follow-
ing agreement: if you confess you took part in the robberies,
make a statement that also implicate the partner and she does
not confess, then you will go free and she will be put in jail for
ten years; if you confess and she also does it, then you both get
five years; if you do not confess and she does not too, then you
will both be imprisoned for two years for the car theft. What
should Alan and Bonnie do?

The first step into trying to answer the question requires thatwemake
decisions on how tomodel the situation. The whole idea is to represent it
in game-form, in agreement with GRH, by interpreting the consequences
of the characters’ actions at face value as we said, or, to make use of the
standard way of referring to them in the ordinary theory of games, by
looking at thepayoff or theutility that each character gets in the situation
under scrutiny. Since the former are given in terms of ‘quantities’ already
(the number of years of prison Alan and Bonnie get for each decision they
make), we just make use of a direct ‘translation’ into payoffs by sticking
to the rule that turns n (the number of years of prison in the agreement
that is proposed to the characters) into utility -n. Therefore, we obtain
the following correspondence:

Consequence Payoff
Go free 0

Two years -2
Five years -5
Ten years -10

Then, utilities are arranged into an order by making use of the usual
ordering < over integer numbers, which causes 0 to be the top element
and -10 to be the bottom one. The story also gives us a clear indication
about what actions our characters can choose, which is either to confess
or not confess instead. If we apply here the notation that was suggested
already in section 1.5, this gives us two options Ca ,Na for Alan, and two
more, Cb ,Nb , for Bonnie. These two steps together would then lead us to
the schematic representation of payoffs attached to the characters’ com-
bination of actions that reads as follows:

(Ca ,Cb ) = (-5,-5)
(Ca ,Nb ) = (0,-10)
(Na ,Cb ) = (-10,0)
(Na ,Nb ) = (-2,-2)

Yet, the schematic form we have reduced the situation to, while cer-
tainly helpful to concisely summarize the crucial information we need
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in order to come up with an answer to the question about what action
should each character choose, it is still not enough for achieving it. Some
further aspects of the situation need to be taken into account. In partic-
ular, it seems that we are required to identify some sort of reasoning that
may explain how the two characters in the story are supposed to make
up their minds. In the next two sections we will scrutinize two possible
options in this respect. In turn, these will naturally brought us to arrange
the above data in a ‘structure’, so to say, which will allow us to reach the
answer we are seeking for.

2.2. Dynamic choice: games as trees

Let us suppose that the following addition to the story of Alan and
Bonnie is made:

The chief inspector keeps Alan and Bonnie in the same room
and makes her proposal to them at once. Then, she lets Alan
choose first, and Bonnie choose second.

The new feature comprised in here is some sort of dynamics: it is now
clear that the two characters will have tomake a choice alternatively, with
Alan choosing first and Bonnie having to choose once he is done. Then,
one can look at the whole story from a new viewpoint, as we can focus on
it by stepping into each character’s shoes once at a time. When it comes
to Alan to choose, he has two options to assess: one is to confess, and
the other is to refuse doing it. This is the same for Bonnie, since she
is given these options as well, but since she chooses second her choice
combine with Alan’s and give rise to four scenarios to consider: the one
in which she confesses having Alan confessed as well; the one in which
she does not confess, while Alan has decided to confess; the one in which
she confesses contrary to what Alan does; and the one in which Bonnie
does not confess and Alan has made the same decision. Payoffs are then
distributed among these four alternatives.

Now, how does the addition to the story we are considering in this
section change the situation as it was first given? As it was said, it gives
it a structure which emerges once we try to put the information into a
diagrammatic form for the sake of analysis. As a matter of fact, it is now
quite natural to think to the situation involving Alan andBonnie as taking
place in stages.

Stage one occurs when the options has been declared by the chief in-
spector and, according to the addition to the original story, Alan is sup-
posed to make his choice. Stage two takes place once Alan’s choice has
beenmade, and it can take one of two possible forms, depending on what
Alan has decided to make. This is the stage at which Bonnie chooses.
Her choice determines the third and final stage, which is when the two
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characters are finally granted the payoff they deserve owing to the payoffs
distribution over the possible outcomes of the story.

How does it happen that this structure turns into a diagram as it was
suggested? Let us suppose to represent stages in the story as nodes in a
path. Then, there should be a node representing the first stage in particu-
lar, which is the initial situation inwhich Alan chooses. As we said, Alan’s
decision leads us to the subsequent stage, which is therefore connected
with the previous one. The connection between two subsequent stages
is represented by edges liking them together. The natural interpretation
of edges is to view them as determined by the reason causing the tran-
sition from the one stage to the subsequent one. The reason in the case
under scrutiny is Alan’s choice between the two actions at his disposal.
Depending on what choice is made, a different second stage in the story
will occur. Since we aim at giving a comprehensive overview of the situa-
tion for the sake of the analysis of it, it is required that both outcomes be
represented: before Alan has chosen, we have no clue whatsoever to say
which form of stage two will prevail.

This suggests that we should adopt the following diagram to repre-
sent stage one, stage two, and the passage from the former to the latter:

C N

Edges carry a label that refer to the reason why they appear in the
diagram, in this case this reason being Alan’s choice of action. So, we
have two branches: one corresponding to the situation in which from the
initial stage we get to stage two and Alan has chosen to confess, the other
being the situation that represent Alan’s choice of not confessing instead.

The terminal nodes of the diagram represent the situation in which
Bonnie’s choice takes place. Her decision determines the passage to stage
three, which, once again, takes a different shape owing to what decision
Bonniemakes. By sticking to what we have just done for stage 1 and stage
2, this leads us naturally to the subsequent continuation of the previous
diagram:

C N

C N C N

(-5,-5) (0,-10) (-10,0) (-2,-2)
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Terminal nodes of the diagram now represent the final situation to
model, that is the stage at which, having bothmade their decisions, char-
acters get their payoffs. This explains why nodes representing the possi-
ble forms of stage three are labelled by the payoffs assignments to agents,
the latter being written as pairs of numbers as before, whose order reflect
the order of agents’ actions (hence, the first element of each pair repre-
sents Alan’s payoff, while the second element is Bonnie’s payoff instead).

As a result of the dynamic feature introduced in our story by the clause
we have added here, it turns out that all the information required to as-
sess the choice at the characters’ disposal are nicely displayed in the form
of a tree owing to the reading we have proposed, which we stress here
again for the reader’s sake: having noticed that the story dynamics causes
it to split into stages, stages in our story are nodes in the tree, actually ar-
rays of nodes, each one of those belonging to one and the same row rep-
resenting a ‘version’ of the stage that takes place; actions leading from
one stage to the other are represented by edges, the number of edges at
each node corresponding to the number of options the character that is
supposed to choose at that stage has; the initial node, the root of the tree,
which is unique, then corresponds to the initial stage of the story, while
terminal nodes of the tree, the leaves, represent the ultimate outcomes of
the situation, i.e. the stage at which payoffs are given to the characters.

Games represented as trees are referred to in the literature as games
in extensive form. This way of analyzing them depends of course upon
the addition we have made to the original story, and upon the conse-
quences of it. In particular, it depends upon the fact that characters are
forced to act by sticking to an order, and the action of the one character
is following the one of the other. It is clear, however, that this is not the
only way things could have been going in the case of Alan and Bonnie.

2.3. Static choice: games as matrices

Let us suppose that the story we have been considering in section 2.1
goes on differently:

The chief inspector brings Alan and Bonnie in two different
rooms in such a way that they cannot communicate with one
another. Shemakes them the offer and they are informed that
the same proposal has beenmade to both of them. Then, they
are required to make their choice without possibly knowing
what choice the other is making.

It should be clear that in the new situation the previous analysis is
no more of help. As a matter of fact, that was carried out under the as-
sumption that Alan and Bonnie were choosing one after the other. The
new storyline rather suggests a different approach where no preferential
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order between the outcomes should be assumed to hold. Hence, no list,
or alignment of them seems to be justified anymore.

To represent the situation in a way to remain as close to the char-
acters’ viewpoint as possible, outcomes should be arranged in a table in
some sort of neutral way. We then stick to a matrix arrangement where
things are ordered lexicographically on the basis of what actions combi-
nation they correspond to. Let us briefly explain how this arrangement
is achieved.

Let us assume to keep considering situations with just two agents
involved for the sake of simplicity. Let us also suppose to indicate by
a0,a1, . . . ,an agent 1’s actions, and by b0, b1, . . . , bm agent 2’s actions. Ac-
tions combinations are then ordered lexicographically (something that
we will express symbolically by ab ≺l a′b ′ to mean that actions combi-
nation ab preceeds in the lexicographic order actions combination a′b ′),
owing to the clause: ai b j ≺l ah bk if and only if i < h, or i = h and j < k .

The effect of the definition just given is to generate the following ar-
rangement of actions combinations:

a0b0,a0b1, . . . ,a0bm
a1b0,a1b1, . . . ,a1bm
. . .
an b0,an b1, . . . ,an bm

Each combination in the array above represents a distinctive outcome
of a situation in which agents 1 and 2 are suppose to choose among ac-
tions (ai )0≤i≤n and (bj )0≤ j≤m respectively. Each outcome in the situations
we shall be interested in here, is associated with a distribution of payoffs
among agents. As in the arrangement of outcomes as leaves of a tree we
have obtained in section 2.2, we would like the information to be ‘dis-
played’, for the sake of the evaluation of it.

The graphic representation of the situation is then achieved as fol-
lows: actions of agent 1 are displayed in a column in lexicographic order,
while actions of agent 2 are similarly displayed in a row. Payoffs granted
to agents are placed at crossings in the usual form of pairs where the first
element is the payoff that goes to agent 1, while the second element is
the payoff that goes to agent two. Notice that we use here symbol p j

i to
represent the pair of payoffs granted to players for every 0 ≤ i ≤ n and
0 ≤ j ≤ m. Hence, each p j

i is of the form (1
j
i ,2

j
i )where 1

j
i is the payoff that

agent 1 gets if she plays action ai when agent 2 plays action bj , and 2 j
i is

the payoff that agent 2 gets in the same situation.

In the general situation we are here considering, this would allow us
to reach the following disposition of outcomes and payoffs:
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b0

a0

b1

a1

…

…

bm

an

… … … …

…

…

…

p00 p10 pm0

p01 p11 pm1

p0n p1n pmn

It should be clear that starting from the leftmost, upmost corner of it,
the diagram reproduces the lexicographic order of action combinations
above, and it further contains the information we wanted to have dis-
played about what payoff each agent gets in every such situation. Hence,
each row of the diagram contains all responses of agent 2 to one and the
same action by agent 1, while columns provide us with the same informa-
tion in the other order of agents.

Coming then to our simpler example, the general method for repre-
senting the situation we have decided to adopt would lead us to the dia-
gram below:

(-5,-5)

(-10,0)

(0,-10)

(-2,-2)

C N

N

C

It should be clear by what we have said that this way of arranging
things, which leads to represent games as matrices, or to represent them
in normal form as it is said in the literature, is as general as the previous
representation of them in terms of trees. However, one may well expect
that the two modes of arranging things bear differences due to the fact
that they are justified by two alternative endings to our story. This is what
we aim at clarifying in the rest of the chapter, by stressing two things in
particular: (i) how the diagrammatic representations help us answering
the original question about what is rational for Alan and Bonnie to do
in the situation we are considering, and (ii) whether the two alternative
ways of arranging outcomes also lead to different answers, as long as the
issue of the two characters’ choice is concerned.
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2.4. Reasoning on trees

The first task to accomplish is to try to see how arranging all of the
important information in a story such as the one about Alan and Bon-
nie, can help us in our attempt of determining what one should expect
in terms of the characters’ reaction, or what action should the characters
choose. Let us take the tree case first, and let us consider then the dia-
gram we finally displayed in section 2.2 which we reproduce here for the
reader’s sake:

C N

C N C N

(-5,-5) (0,-10) (-10,0) (-2,-2)

Now, it should be clear that to try determining what action between
confessing and not confessing agent 1 should favour, is the hardest thing
to attempt. For, agent 1’s choice is not yet connected to the consequences
of it, being payoffs distributed to a combined action by the two agents,
and being the outcoming combination depending therefore upon agent
2’s choice. Reasoning about agent 2’s choice is much easier, since her
actions do lead to consequences we can ‘measure’ by means of payoffs.
Of course, this will not be an exact form of reasoning since it will be de-
pending upon the hypothesis of how agent 1 has moved previously, but it
is exact enough to put us at least in a position of discriminating between
the available outcomes and select those which are most likely to happen.

So, let us first suppose that agent 1 has decided to play C , i.e., to con-
fess that she took part in the robberies the police wanted to accuse her
and her accomplice of. Then, the leftmost path in the tree is the actual
one, and by looking at it we have that agent 2 is facing two alternatives: on
is to confess as well, and the other is not to do it. If she does confess, the
payoff distribution entails that she is going to be convicted for five years
in prison (owing to the correspondencewe set in section 2.1, and owing to
the second element of the pair of numbers beneath the leftmost leave of
the tree). If she does not confess instead, she is going to be convicted for
10 years as a result of agent 1’s statement. Now, there is no doubt about
what agent 2 will be doing in the end, having agent 1 decided to confess,
and she will confess as well in the attempt of minimizing the effect of the
conviction she has to face.

Let us assume that agent 1 decides instead not to confess in the first
place. Then, the two alternatives agent 2 is facing, those coming out from
the righthand path of the tree above, will have different consequences
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payoff-wise. As a matter of fact, if she did confess, then she will be free to
go (as payoff «0» corresponds to freedom in our schema), while she will
be convicted for two years if she refused to confess. Once again, it seems
obvious what choice agent 2 will make and she will decide to confess.

There are two observations to flag as a result of this analysis. The first
one is that agent 2 will decide to confess anyway. So, despite the reason-
ing is hypothetical, this means that we can determine what action agent
2 will make categorically (that is, independently of agent 1’s choice). The
second effect of the above analysis is that, having been able to determine
what choice agent 2 will favour when it is her turn to play, we are now in
a position to also state what payoff agent 1 is likely to get by making her
choice of action. As a matter of fact, if agent 1 confess, then it is clear that
she will get a payoff equal to -5 (which corresponds to be convicted in
prison for five years), as a result of agent 2 confessing in that case. If she
does not confess, since agent 2 will confess anyway, then she is going to
score -10, which is the same as being convicted for ten years in prison. If
this is the option, then also in the case of agent 1’s decision there seems to
be little doubts about what she is going to decide, since confessing offers
her a clear advantage over not confessing.

Two more remarks are on order. The first one concerns the fact that,
having analyzed agent 2’s choices first, has finally put us in a position
from which it is possible to assess agent 1’s choices as well. The situation
we have achieved in this way can be regarded as the result of distributing
the agents’ payoffs over non-terminal nodes in the tree like in the follow-
ing, modified version of the tree we have been discussing so far:

C N

C N C N

-5

-5

-10 0

-10

-2

As a matter of fact, the information required to perform the first step
in the above analysis (determine agent 2’s choice under the hypothesis
of what agent 1 might be doing), is the payoff distribution for agent 2’s
actions at terminal nodes. No use of the information about agent 1’s pay-
offs was made there. The latter information instead, was crucial for per-
forming the second step of the previous reasoning (the one devoted to
determine agent 1’s choice at the initial node, knowing what agent 2 will
do afterwards). In other words, as a result of the previous reasoning we
get a new diagram where payoffs granted to characters, rather than been
coupled and used to label leaves in the tree, are taken individually and
attached to nodes that are reached by a choice of actionmade by the char-
acter that gets them.
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The second observation is that, having reasoned in this way, we are
able to predict how the two agents will choose, or to say how they should
choose assuming (which is likely) that each one of them is willing tomake
the most convenient choice (this one coinciding with the one that allows
them to get theminor conviction). Now, suppose that bothAlan andBon-
nie, our agent 1 and 2, are assumed to be capable of going through a sim-
ple reasoning such as the one that led us to the said conclusion. Notice
that the side conditions of our story make the assumption realistic since
all of the required information is on display, and nothing we have relied
upon for the sake of the argument is hidden to the two characters. Then,
under this supposition Bonnie would reason hypothetically as we did at
first, just to conclude that confessing is her best chance to go for. Alan,
on his part, would be able to replicate Bonnie’s reasoning and would re-
alize what she concluded. Therefore, owing to the payoff distribution he
would be in a position to say that confessing is also his own best choice.
In this way they both would come to a conclusion, and the chief inspector
would get a confession from both of them.

2.5. Reasoning on matrices

Having reached the conclusion that Alan andBonnie can finallymake
decisions on what to do in our story under the assumption that they are
able to carry on the argument above, one may wonder whether this was
made possible by the extra assumption on them acting in a sequence.
The easiest way to determine whether the agents’ order is crucial or not,
is to consider the alternative ending of our story where both characters
were required tomake their choices simultaneously andwithout knowing
what the other has chosen in advance. For reasons we have discussed in
section 2.3, the situation in this case is best represented by the following
matrix, which we reproduce here for the reader’s sake:

(-5,-5)

(-10,0)

(0,-10)

(-2,-2)

C N

N

C

Since our agents are supposed tomake their choices separately, there
is no difference here in where to start for addressing the issue. Let us
consider the situation from the viewpoint of agent 1 anyway. It will turn
out clearly that we could have started from agent 2’s choice, and noth-
ing different would have happened. Remember that while devising the
diagram, we had decided to put agent 1’s actions on the leftmost column
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and we have assumed that her payoff is indicated as the first element of
the pair that can be found at the crossing with agent 2’s choice of action.
Actions at agent 2’s disposal are placed along the topmost row of the dia-
gram instead, andher payoff appear in the diagramas the second element
of each pairs of numbers1. Agent 1 may then reason as follows. She con-
siders the possibility of confessing at first and notices that, if she did that,
agent 2 is likely to confess as well since she scores -5 instead of -10, which
is the score she gets if she does not confess. This follows by looking at the
second element of the two pairs of numbers in the first rowwhere payoffs
pairs appear, as it results from the diagram by focusing on the portion of
it that is referred to by the agent’s reasoning above:

(-5,-5) (0,-10)

C N

C

Agent 1 then considers the possibility of not confessing, in which case
she notices that agent 2 is again very likely to confess since confessing
would allow her to score 0, while not confessing would let her score only
-2:

(-10,0) (-2,-2)

C N

N

Then, agent 1 notices that she can conclude that agent 2 is going to
confess anyway. In this case, however, it follows by looking at first el-
ements of the two pairs of the leftmost column of the diagram where
payoffs pairs appear, that to confess is best for her if agent 2 is likely to
confess as she concluded, since agent 1 would indeed score -5, while not
confessing would let her score -10:

(-5,-5)

(-10,0)

C

N

C

1Notice that our convention about actions disposition in thematrix is unimportant here,
due to agent 1 and agent 2 having the same two actions at their disposal. The same conven-
tion, however, will be maintained for the matrices to be displayed below in the volume.
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Agent 2 would apply a similar line of reasoning. Actually, she applies
the same reasoning, being the payoffs distributed symmetrically among
agents. Then, she assumes that she may confess, in which case she no-
tices that agent 1 would be willing to confess, which brings her a score of
-5, rather than not confessing whichwould cause her to score -10 instead:

(-5,-5)

(-10,0)

C

N

C

In case she decided not to confess, agent 2 notices that agent 1 would
be equally brought to confess, which would allow her to score 0, rather
than avoid doing it, since not confessing would let her score -2:

(0,-10)

(-2,-2)

N

N

C

Having thereby established that agent 1 is likely to confess, agent 2
notices that she should confess as well to achieve a score of -5, rather
than risking to score -10:

(-5,-5) (0,-10)

C N

C

The result of the analysis we have just carried out with respect to
the main issue we were up to, namely to try to determine which action
combinations by the agents is likely to happen in the situation we are
considering, is the following: both Alan and Bonnie are likely to confess
and, under the above assumption that they are carrying out the reasoning
themselves, they are also able to detect what the other is likely to choose
and to make their choices accordingly.
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2.6. The rationale of rational choice

The purpose of the chapter so far was the attempt to test the previ-
ous idea that, by turning situations that may resemble real-life stories
into games, one would be given the opportunity of focusing on the only
important features of it to consider for the sake of the investigation on
rational choice we aim at pursuing. The story we have stick to in this re-
spect has given us encouraging information. For, as far as the problem of
assessing the possibility of detecting a ‘solution’ to the problem of choice
in a given situation, that is, to determine what choice of actions agents in-
volved in a story (which is the same as players of a game, owing to GRH),
it turned out that a positive answer was attainable in both the tree-like
approach to our running example, as well as in the approach to it based
on matrices. Out of all the possible outcomes deriving from the combi-
nation of actions by Alan and Bonnie, we now have a plausible candidate
to propose as solution to the quest of a rational choice on their part. The
choice is rational because of the argument itself that has lead us to single
it out. We will come back to the peculiarities of the reasoning in question
later on, as there are aspects of it that are worth deepening. For the mo-
ment, we are rather happy with the possibility of approaching the choice
issue via games that we have attempted here, and we would like to fur-
ther test the methodology. For this very reason, we are going to flag the
advantages of it, as these turn out from what we have done so far.

Both the tree and the matrix approach seem flexible enough to cope
with a variety of situations we may wish to handle. They certainly rely
upon a number of features that the situation under scrutiny need to pre-
sent for the two approaches to be applied. First of all, they require that a
distribution of payoffs be present in such a way that reasonings such as
those we have exemplified in section 2.4 and in section 2.5 can be per-
formed. As we shall see when the whole issue will be approached more
closely in the next chapter, there is something more about the payoff dis-
tribution that is required for the analyses that have been carried out here
to be pursued. Anyway, for the time beingwe shall content ourselves with
the observation we have just made about it.

Another feature that we have taken for granted, as we announced it
at the end of chapter 1, is that the game under scrutiny be finite. What
«finite» means is now clear. For both the tree, as well as for the matrix
mode of arrangement of parameters counting in a game, it is needed that
both the number of players and the number of actions at each player’s
disposal is finite. Finiteness of the number actions, which entails finite-
ness of the number of actions combinations, is crucial for the sake of the
kind of reasoning that we have performed in section 2.4 and in section
2.5 with respect to our exemplary situation. This is likely to be a feature
that cannot be given up, and onemay think that this is aminor constraint
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to respect: we are planning to devise a methodology that be adequate to
treat, via GRH, real situations in which the choice issue occurs and no
such situation would ever involve infringement of the finiteness require-
ment we have just mendtioned. Though the observation is plausible and
unproblematic at the current stage in the analysis, we shall see in chap-
ter 4 that by approaching the whole issue from a more abstract angle,
the point of considering the extension of it to infinite cases stems quite
naturally.

One further thing to notice is that the two approaches we have here
envisioned, the one based on trees on the one hand, and the one based
on matrices on the other, are complementary in the sense that they cope
with different kinds of situations. In particular, trees are tailor-made to
model situations in which the order of actions by the players counts and
each player’s choice is made in a certain sequence with respect to the oth-
ers’ choices. Matrices, on the contrary, get used in all those situations in
which players are required to make their choices simultaneously, or at
least whenever the order in which they are made is presumed to have no
visible effect. This means that, taken together, trees and matrices should
enable us to treat a number of different case studies. In view of this, it
seems important to try to generalize what we have said so far about the
possibility of actually getting a solution to the choice issue with respect
to the toy situation we have made reference to so far. In particular, we
would like to know more about combinations of actions by the players
which, as it was for the combination «confess» and «confess» by Alan
and Bonnie, turn out to offer concrete advantages to players with respect
to the alternative ones, hence candidate themselves as solutions to the
problem of detecting actions that are preferrable to others. What is their
distinctive character? Can we somehow be certain that at least one of
them can always be found in any possible situation we should be faced
with? Are solutions of this sort really as good as they appear at a first
sight? In the next two chapters we would like to explore these and other
related issues. We plan to start from simultaneous games at first, and
then move on to consider situations where players are required to make
their moves one after the other.



Chapter 3
On games in normal form

Owing to what we have said in the previous chapter, by the name
game in normal form goes any situation that can be schematically re-
produced by means of a diagram that takes the form of a matrix. Some
of the general features required for that have already been discussed in
section 2.6. We just list them here again for the reader’s sake:

• the number of players partaking in the situation must be finite
in the first place;

• the number of actions at each player’s disposal must be equally
finite in number;

• each combination of the players’ choices that counts as, so to
say, a ‘round’ in game-theoretic terms, i.e. a state of the match
in which ‘points’ or other forms of prizes are distributed among
the players, must be associated with a distribution of payoffs to
the players (this feature being indeed crucial for the kind of rea-
soning that was used in section 2.3 to reach our conviction about
which of all possible action combinationswas candidate to be the
best one, hence the one to be chosen);

• finally, games to be put in the form of matrices must be such
that no order applies to the choices made by the players, who
are required to play simultaneously and must be therefore able
to make up their minds while the others have not played yet.

3.1. Solving the (matrix) riddle

Let us go back to the case study we have been analyzing in the previ-
ous chapter. Let us assume the reader’s confidence in the story behind it,
and let us start again from the point in which the diagram summarizing
it has just been laid down:
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(-5,-5)

(-10,0)

(0,-10)

(-2,-2)

C N

N

C

The actions combination made out by the pair CC (which is a short-
hand for the proper notation CaCb , where actions carry an index refer-
ring to the player that makes it), was put forth as candidate to be the
best one. What makes it special with respect to the other outcomes is the
argument we considered in section 2.3. That reasoning came out as an
attempt to simulate the players’ own assessment of the matrix. Such an
a priori analysis of the situation corresponds to an a posteriori evalua-
tion of the outcome of it. As a matter of fact, let us assume that Alan and
Bonnie, that is agent 1 and agent 2 respectively in our account from the
previous chapter, are determined to confess. Then, it is clear from the
distribution of payoffs that there is no convenience for neither of them to
change their minds unilaterally: if, for instance, Alan did that, he would
move from the leftmost, topmost cell of the diagram to the one to be-
low it, hence he would pass from scoring -5 to scoring -10; Bonnie, on
the other hand would suffer from a similar loss, because by changing her
choice from «confess» to «not confess» in presence of Alan’s choice of
confessing, would cause the final outcome to be the one placed second
in the pair of numbers to the right of the current one (hence, it would be
equal to -10, instead of -5).

If we were searching for features that may characterize the outcome
which appears to be the best possible on the basis of the previous line
of reasoning, then the view of it which follows from the observation just
made can be of help. For, it suggests that the selected outcome has a cer-
tain ‘stability’ property, which follows from the fact that no player gains
any advantage from changing her choice if the opponents are instead
determined to stick to it.

Now, notice that if we now re-examined the game matrix as if we
never did it, and try to differentiate between good and bad outcomes on
the basis of the stability property we have just singled out, then we would
come to the same result we have obtained in section 2.5. For, not only
the outcome CC has this stability property as we have just noticed, but
is also the case that no other outcome has it. If we consider NC, for ex-
ample, which corresponds to the situation where Alan does not confess
while Bonnie does it, then it is convenient to Alan to change his mind
if Bonnie sticks to confessing, since by confessing he scores -5 which is
greater than -10 that he scores by not confessing. The same is true for
Bonnie if outcome CN is taken into account instead. As far as outcome



ON GAMES IN NORMAL FORM 35

NN is concerned finally, both Alan and Bonnie would get an advantage
by changing their choices since their score is higher in outcomes CN and
NC respectively1.

Viceversa, if we have singled out an outcome which is stable in this
sense, then it is not possible that we can find an outcome which is more
convenient to stick to for one of the players in the sense of the reasoning
we have been using in section 2.5. This should be clear by considering the
case of a game in which we have two players, like the one we have been
using so far.

The analysis from section 2.5 was made with the goal of determin-
ing which, among all possible choices of actions by a player was best in
terms of the score it granted under the assumption that the opponent had
made a certain choice (all possible choices of her having been considered
to make the argument complete in this respect). From the viewpoint of
the one wemay refer to as player 1, since it is now clear that we are speak-
ing of games, and whom we assume to be the one whose actions are dis-
played in the leftmost column of the diagram as Alan’s actions are in our
running example, this corresponds to determining which action is scorily
the best reply in each row of the diagram. From the viewpoint of player
2 instead, this corresponds to do the same for each column of the matrix.
Now, let us assume that an outcome which is stable in the sense we are
considering has been isolated. Then, it is simply not possible that this
is not coinciding with the combination of actions that results from the
previous reasoning: for, assuming the outcome in question to be of the
formAB, whereA represents player 1’s choice of action andB is the action
chosen by player 2, then to assume this outcome to be not scorily the best
for either of the two players would be the same as saying that there exists
an action A′, or an action B′ (where the case in which both alternatives
occur cannot be excluded as well), which allows player 1, and player 2 re-
spectively, to score a higher payoff (i.e., such that the payoff that player 1
is granted in A′B is greater than the one she gets in AB, or such that the
payoff that player 2 is granted in AB′ is greater than the one she obtains
in AB); but then the outcome in question would not be stable in the sense
we are here considering, since there would be an advantage for one, or
both players to make a unilateral change in the choice of action to play in
the end.

So, to analyze a game inmatrix form in a fashion similar to the onewe
have used in section 2.5, which considers the players’ viewpoint one by
one, or to analyze it aswehave donehere, that is by analyzing each actions
combination to locate the stable ones, gives the same result. Since the
former line of reasoning allows one to identify for each player the actions

1In particular, Alan scores -2 in NN, but he would score 0, which is higher, if he con-
fessed instead and Bonnie would not change her choice, that is if CN were the real outcome.
The situation is symmetrical for Bonnie.
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which are best for any given actions combination played by the others,
this is also true for those outcomes which are isolated in virtue of the
latter kind of scrutiny.

Now, having finally found a distinctive feature of candidate solutions
to games inmatrix form, there are (at least) two natural issues to address.
As a matter of fact, one could ask in the first place whether solutions of
this sort always exist. Secondly, whether solutions of this sort always
exist as unique outcomes, or if it is possible that more than one of them
may be present in one and the same game matrix instead.

3.2. Equilibria

Outcomes such as the combination of actions byAlan andBonnie that
corresponds to confessing for both in the previous situation, goes by the
name of equilibria. The feature of solutions like the one we have singled
out in our example, can be used to informally frame the concept by defi-
nition in the first stance:

Definition 3.1 In a finite game (i.e., in a game with a finite number
of players, each of which is given a finite number of possible actions),
where players have to make their choice simultaneously, a combina-
tion of the players’ actions is an equilibrium if and only if no player has
benefit from changing her strategy unilaterally (i.e., without the other
players changing theirs).

The definition comes equipped with its own, easy method for deter-
mining which of all possible actions combinations in a given game inma-
trix form is an equilibrium in this sense of the expression: it consists in
checking, for any combination of actions by the players, whether any of
them gets advantages by changing her strategy on her own in terms of
payoff. The method is exhaustive, or can be made as such, by checking
all actions combinations in the order of their appearence in the matrix.
Also, owing to the game being finite, the whole process is bound to reach
an end in a finite number of steps. Neither of these two features of it, ex-
haustiveness and finiteness, help us under any respectwith the two issues
we are planning to address, namely existence and uniqueness of equilib-
ria in all possible situations. To tackle these topics, we propose to follow
a different route. We are going to specify a little bit the language we are
using to speak of finite games in normal form and then show how the
concept of equilibrium we have just defined can be seen to correspond to
a different notion, that of fixpoint of a monotone operator, with respect
to which we will be in a position to answer the said questions. Let us first
start from giving a more exact shape to the notions we have been using
so far.

Owing to what we have said, for the sake of the analysis of games by
means of matrices it is required that: (i) the games be finite in terms of
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number of players and number of actions at their disposal; (ii) a distri-
bution of payoffs be given among actions combinations that allows us to
assess how convenient each of themmight be for each player of the game;
(iii) no assumption about what is the order of choices is made. This ap-
proach to games can be made general if we think of a game G in normal
form to be given as a triple 〈PG , (Σi

G )pi∈PG , uG 〉 where2:

• PG = {p1, . . . , pn} is a finite set of players of G ;
• eachΣi

G = {s i1 , . . . , s imi
} is the finite set of actions of player pi inG ;

• uG is the function which distributes payoffs to players for any
given combination of actions of theirs: let ΣG the finite set of
strategy profiles of G , namely the set whose elements are lists s
of actions by the players of G such that s is exhaustive, i.e., for
every player pj of G , s features at least one action s ji by pj , and
non-redundant, i.e., for no player pj of G , s features more than
on of the actions of hers; then, uG is a mathematical function of
the form uG : PG ×ΣG →�, i.e., a right-hand unique relation be-
tween the set whose elements are pairs (pi , s ), where pi ∈ PG and
s ∈ ΣG , and a rational number uG (pi , s ) representing the payoff
of player pi in case the strategy profile s be played by the players
of G .

Notice that, owing to what we said above, elements of ΣG can be
thought of as having the following form:

s = s 1i1 s
2
i2
. . . s nin

That is, strategy profiles are lists of actions which are numbered by
a superscript, indicating the player they are action of, and by a subscript
indicating which action of those at the player’s disposal it is.

Also observe that, at the level of generality we are aiming at achiev-
ing in this volume, the choice of the codomain of the utility function will
play little role, hence different choices can be made in this respect. For

2For the untrained reader, the notation used here, in particular in the second item in the
list, can be explained as follows: each player pi of G has a finite set of actions among which
she chooses what to play, like the set {s i1 , . . . , s imi

} where the common superscript indicates
that these are all action of one and the same player pi of G ; as to the other index, this is
related to the fact that it is possible that not all players in the game have one and the same
number of actions to choose among. This happened to be the case in the gamewe have used
so far, but it is not one of the features we have relied upon for the sake of the analysis of
it. To make the general situation possible, the subscript mi of action s imi

in this set, which
is supposed to indicate the last action in the set of actions of pi and carries an index that is
equal to the total number of those actions, depends upon i itself since every such set Σi

G ,
which also depends upon i , will have ‘its own’ ending element s imi

, i.e. its own number of
elements this mi corresponds to.
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instance, the example we have been considering so far would have legiti-
mate to stick to the set of integer numbers�. Other situations,may rather
suggest that the utility function be chosen as getting values in the set of
real numbers �. The choice of � is somehow intermediate between the
two, due to the observations that we made back in section 1.4.

To make things easy, in the rest of the chapter we will confine our-
selves to two-player games. This means that the object of our study will
coincide with simpler triples than those discussed above for the sake of
generality. This allows us to make some extra assumptions on the nota-
tion to use which avoid complications due to indices proliferation. For,
since the set of players in this case can be assumed to be of the form
P = {p1, p2}, we can also assume that a varies over actions by player p1,
while b does the same for actions by player p2. Therefore, the two sets of
actions of players of such a game in this case would look as follows:

Σ1 = {a1, . . . ,an}
Σ2 = {b1, . . . , bm}

In turn, the setΣ of strategy profiles for a simplified game as suchwill
contain elements of the form ai b j with 1 ≤ i ≤ n and 1 ≤ b ≤ m. Since we
plan to apply the convention of dropping the subscript «G»we have been
using above to mark elements of one and the same triple representing
the game G (as we have already started to do here), and let the context
speak for that (as long as there is no risk of ambiguity), we can also think
of simplifying the notation for the utility function and let its values be
indicated as u1(ai b j ), as long as we mean by that the utility for player 1
in case the combination of actions ai b j be played, and as u2(ai b j ) for the
corresponding value of the utility function for player 2 instead.

Representing games in the form of the said triples has the advantage
of making possible for us to speak precisely of ideas we have been re-
ferring to intuitively along the way in the analysis we have put forth in
section 3.1. For instance, one can explain in clearer terms what is meant
that a certain action is «more convenient» to a player than another. Let
thenG be a two-player game of the form 〈P, (Σi )i∈{1,2}, u〉wherewe assume
that the previous conventions on the notation are at use. To analyze the
situation from the viewpoint of player 1 in a way similar to what we did in
section 2.5, means trying to determine which action player 1 is likely to
choose for each possible choice of action made by the opponent. In turn,
this depends upon the payoff distribution among strategy profiles in the
following way: let bj be an arbitrary but fixed element ofΣ2 (that is, let bj
indicate one of the actions at player’s 2 disposal, and let it remain fixed
throughout the argument); then, we say of any two actions of player 1,
ai ,ah ∈ Σ1, that, say, ai is more convenient than ah (relative to bj ) if and
only if u1(ai b j ) > u1(ah bj ) (where · > · is the usual «greater than» relation
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over elements of � to which u1(ai b j ) and u1(ah bj ) belong). The same ap-
plies to player 2 and how choices are evaluated from her point of view.
So, more convenient actions allows a player to achieve a greater payoff as
replies to one and the same action chosen by the opponent, and players
are supposed to asses choices on the basis of how payoffs are distributed,
higher payoffs being preferred to lower ones (see also the discussion we
made of this topic back in section 1.4). The whole idea is as simple as
that.

Players are obviously expected to perform the said comparison be-
tween possible choices of actions for the purpose of determining the ac-
tion of theirs which is most convenient in each case. Having specified
how the comparison goes pairwise, the task in question clearly corre-
sponds to identifyng the action that ensures a player the highest payoff,
or, to say it in the previous terms of the comparison, the action which is
more convenient than all the other alternatives to it with respect to one
and the same choice of action by the opponent: ai is most convenient to
player 1 with respect to the choice of action bj by player 2 if and only if
u1(ai b j ) > u1(ah bj ) is the case for every ah ∈ Σ1.

As it was said, each player is supposed to consider all possible cases
and to perform the assessment of her own choices of action for any given
choice of action by the opponent. This means that the assessment as a
whole reads like the following scrutiny (which we exemplify by assuming
to follow player 1’s thread of thoughts, the one made by player 2 being
obtained by means of the obvious modification of it):

«If b1 is the choice of action by player 2, then … is my choice of action»
«If b2 is the choice of action by player 2, then … is my choice of action»

. . .
«If bm is the choice of action by player 2, then … is my choice of action»

(where «…» is supposed to be substituted in each case by the action
of player 1’s which is most convenient in the previous sense of the ex-
pression). Actually, since players of games we consider are supposed to
be rational agents who are performing choices in virtue of this rational
character of theirs, they are assumed to single out choices which are ra-
tional. Therefore, a more appropriate rendition of the previous line of
reasoning should rather read like:

«If b1 is rational to player 2, then … is rational to me»
«If b2 is rational to player 2, then … is rational to me»

. . .
«If bm is rational to player 2, then … is rational to me»

The connection between the players’ obvious choice of action and the
maximum payoff it ensures is so natural, that one can even imagine that
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any of the players in a game uses the previous reasoning also to disclose
whether there is a clear choice by the opponent that is about to be made.
That was actually the way in which the said argument was used first in
the analysis of the game matrix we took as exemplar in section 2.5. By
applying the reasoning in this way, the kind of utterances it would be
made out of should rather be the dual ones to those we have previously
considered. For instance, in the case of player 1 the argument in question
should be something like the following:

«If a1 is rational to me, then … is rational to player 2»
«If a2 is rational to me, then … is rational to player 2»

. . .
«If an is rational to me, then … is rational to player 2»

(where again «…» stay for the action that is most convenient to the
opponent). The moral of all this is that this kind of reasoning, be that
directed to disclosing which action of a player is best to choose in view of
what is rational to do to the other player, or be that performed in view of
determining what the other might be doing as a reply to the player’s own
choice, is supposed to help identifying the action which is most conve-
nient with respect to the choice of action that is rational to the opponent.
Let us try to make sense of the conclusion we have just reached bymeans
of some modest use of formalism. For the sake of keeping this part read-
able, we are going to pursue the task in away that be friendly to the reader
untrained in the construction of formal languages, yet, at the same time,
in a way that may suggest to the acquainted reader how things should be
modified to reach the standard required to a proper mathematical logic
work .

Let us try to devise a language, that we shall call �GM henceforth
(GM referring to «Game Matrix»), which could be used for the sake of
literally expressing the very same reasoning we have been dealing with
in a formal way. Actually, we need not to be generous with resources
here, as the reasoning we aim at expressing is a parsimonious one. That
reasoning speaks of players’ actions in the first place, therefore the lan-
guage expressing it should be equipped with means for doing that. Ow-
ing to the assumptions we have made about what kind of games we shall
be concerned with, we may assume our language to contain two sorts of
symbols for actions of player 1 and actions of player 2 respectively, which
we may assume to coincide with those we have been using so far in the
attempt to keep things simple, namely:

a1,a2, . . . ,an , . . .
b1, b2, . . . , bn , . . .

As this way of writing suggests, wemay well assume our linguistic re-
sources to be (denumerably) infinite in this respect in such a way that we
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have means for speaking of actions in any possible situation, although
in each of them only a finite amount of symbols will be actually used.
The reader acquainted with the use of formal methods should notice that
these symbolswill play the role of constants, i.e. proper names for actions
in any two-player game G . We assume symbols of this sort to be juxta-
posed pairwise to form names for strategy profiles, i.e. terms like ai b j
under the extra assumption that the term for action of player 1 should
come prior in the juxtaposition to the name for the action of player 2.

We would like to stress for the untrained reader’s sake that by calling
expressions like ai , bj , and ai b j as terms, it is because this is what they
are now, that is, symbols of a linguistic apparatus that count as names
for ‘objects’ which are in this case actions and actions combinations of
players in a finite game. In particular, these symbols are part of what we,
or the players themselves express in the form of the previous sentences.

Now, those very same sentences speak of rational actions to be more
precise. Therefore, if we are willing to set up the language �GM in such
a way that those utterances become sentences of it, we have to equip it
with the suitable resources. This means in particular that we have to add
a symbol, say R(·), for the property in question, i.e. such that it applies to
actions (to action terms to be precise) to produce constructions like R(ai ),
R(bj ), which will count as sentences expressing the fact that: «Action ai
is rational» and «Action bj is rational» respectively.

To be precise, in the propositions our sample reasoning is broken
into, rationality seems to be a feature that depends upon players, which
may suggest to introduce two different predicates of rationality (or, to
make the one we assume to have relative to the players names). This
however would be odd under a different respect, since it would suggest
that players of our games might have different characters of rationality.
It seems safer to assume that we have just one idea of rationality for ac-
tions, and that this idea is made relative to players only as an effect of the
players speaking of actions made by someone being rational.

Another observation about reference to rationality of actions in the
above statements is on order. For, while the first occurrence of it (the one
that belongs to the antecedent of the «If…, then…» sentences) is totally
independent of the payoffs distributions in the game, being it the effect
of a blind assumption by the player who utters the statement in question,
the second (which appears in the consequent of those conditional sen-
tences) is not, since it comes out of the player making an evaluation of
actions to determine which, in view of the hypothesis she has made, is
most convenient, i.e. ensures the maximum payoff. This brings us to an-
other conclusion about resources that should be added to those already
available in language�GM . For, its sentences toowill speak of actions be-
ing most convenient, since we are designing them to be the formal coun-
terpart of thosewe are using asmodels, hence of payoffs and payoffs com-
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parison. We follow here the previous prescription about keeping things
simple, andwe incorporate in our language�GM the very same resources
we have been using in this respect as they appeared informally: we there-
fore assume�GM to have terms constructors for payoffs u1(·), u2(·), which
take as input terms for strategy profiles and indicate the payoff granted
to player 1 and to player 2 respectively in the case of the actions combi-
nation these terms refer to. So, for instance, we take u1(ai b j ) to be the
term of our language indicating the payoff for player 1 if actions ai and
bj are played, while u2(ai b j ) does the same for player 2’s payoff in the
same situation. In addition, we require that �GM has a binary relation
symbol · > · for payoffs comparison, which, for any given terms ai ,ah and
bj , bk for the players’ actions, gives rise to formulas of �GM of the form
un(ai b j ) > um(ah bk ) (where n,m can be equal to either 1 or 2, and the case
in which they are equal is not excluded). The intended meaning of such
formulas is to express the fact that payoff granted to player n in the strat-
egy profile ai b j is greater than the payoff granted to player m in ah bk .

It is clear that in the impossibility of determining which of the choice
of actions at hers, or at the opponent’s disposal is the rational one, the
reasoning we are trying to replicate at the level of the language we are
building is bound to remain hypothetical in character. This was not so
in the example we have considered in section 3.1, for one precise reason:
because by performing the argument in that case, it turned out that one
and only one action stood out as the one to choose (i.e., confessing for
both players). This was clearly an effect of the payoffs distribution, which
caused, under both the hypothesis that the other may confess as well as
in the alternative scenario that she may not, confessing to be more con-
venient than not confessing for either of the two players. That is, payoffs
are distributed in the game that we have discussed in sections 2.5 and 3.1
above in such a way that the following is verified: for every choice of the
opponent, there is always a unique choice for the other player that en-
sures her the maximum payoffs. Actually, in the situation we have been
considering even more is true. That is, it turns out that there exists a
unique choice by any player (to confess), which ensures her the maxi-
mum payoff against every choice of action by the opponent. The pre-
vious feature is just a side effect of this stronger property that the game
possesses. In view of the latter, the action to substitute ellipses in the
hypothetical sentences above is one and the same action. That is, if we
assumed games to always replicate this property there would be an action
for, say, player 1 (let it be indicated as a⋆) such that the following would
turn out to be the case:

«If b1 is rational to player 2, then a⋆ is rational to me»
«If b2 is rational to player 2, then a⋆ is rational to me»

. . .
«If bm is rational to player 2, then a⋆ is rational to me»
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The same would also be true for player 2, and one action of hers b ⋆.
In case only the other propertywere verified instead, then therewould

still always be one action to substitute ellipses in the sentences, but that
would not be necessarily one and the same in all of the cases. In other
words, to exemplify the situation by means of the viewpoint of player
1 again, for every action bj of player 2 there would be a unique action
a( j ) ∈ Σ1 (where the notation is used to indicate explicitly the dependency
of the action by player 1 in question on the chosen action by player 2) en-
suring the maximum payoff to player 1. Then, the previous reasoning
would go in the following way:

«If b1 is rational to player 2, then a(1) is rational to me»
«If b2 is rational to player 2, then a(2) is rational to me»

. . .
«If bm is rational to player 2, then a(m) is rational to me»

(where the fact that all actions a(1),a(2), . . . ,a(m) might be different
from one another is the novel aspect with respect to the situation wewere
considering previously).

As a first attempt to generalize the considerations we have made on
the gamewe took as an example, wemaywell require that this latter prop-
erty be featured, but, to avoid our assumption to be too much controver-
sial, wemay also confine ourselves to that and let the former, the stronger
one which holds in the game we took as our reference example, be not
featured instead. This does not rule out that the more peculiar situation
that the stronger property of payoffs distribution leads to be possible, al-
though only as a special case of what we assume should be always veri-
fied. This will cause our analysis to bemore general, in the sense of being
applicable also to cases in which it fails and only the weaker one holds
instead.

Now, the easiest way to explain in which terms payoffs must be dis-
tributed for the assumption to be verified in a game, that is, to make true
that for every choice of action by the opponent there exists a most con-
venient reply by any of the player, is to say that ties in payoffs are not
allowed for actions counting as reply of any player to one and the same
action chosen by the opponent. That is, no two actions of any player in a
game ensure one and the same payoff to her as replies to a choice of ac-
tion made by the opponent. Let us formulate this property in more pre-
cise terms and, due to the fact that it corresponds to payoffs being strictly
ordered along rows and columns of the game matrix (see also section 1.2
about strict ordering), let us introduce the class of strict games thereby:

Definition 3.2 Let G = 〈{p1, p2}, (Σi
G )i∈{1,2}, uG 〉 be a two-player game

in normal form. We say that G is strict if and only if u1(ai b j ) �= u1(ah bj ),
for every ai ,ah ∈ Σ1 and for every bj ∈ Σ2, and u2(ai b j ) �= u2(ai bk ), for
every ai ∈ Σ1 and for every bj , bk ∈ Σ2.
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The strictness property as it is formulated here amounts to the as-
sumption that payoffs are distributed among players over strategy pro-
files in such a way that ties are avoided as we said, i.e., for no player of
the game, and for no actions combination there are two or more options
that are equally valuable to her. Owing to payoffs being represented by
rational numbers, it is just a matter of routine to verify that, having pre-
sumed that a game is strict in the sense of definition 3.2 above, then each
player of the game can count, for each possible actions combination, on
a (unique) action ensuring her the maximum payoff:

Lemma 3.1 Let G = 〈{p1, p2}, (Σi
G )i∈{1,2}, uG 〉 be a strict game in normal

form. Then: (i) for every ai ∈ Σ1 there exists a corresponding action by
player 2, say b (i ) ∈ Σ2, such that u2(ai b (i )) > u2(ai b j ) for every bj ∈ Σ2

with b (i ) �= bj ;3 (ii) for every bj ∈ Σ2 there exists a corresponding action
a( j ) ∈ Σ1 such that u1(a( j )bj ) > u1(ai b j ) for every ai ∈ Σ1 with a( j ) �= ai .

Proof : owing to the set � being equipped with its own partial ordering
relation ≥, we have that p ≤ q , or q > p is the case for every p, q ∈ �
(which is a shorthand for: either p = q , or p > q , or q > p for every
p, q ∈ �). This holds in particular for elements of � which are values of
the utility function uG of G . Therefore, if ai is any element of Σ1 and so
are bj , bk ∈ Σ2 we have either u2(ai b j ) = u2(ai bk ), or u2(ai b j ) > u2(ai bk ), or
u2(ai bk ) > u2(ai b j ). However, since G is strict, only u2(ai b j ) > u2(ai bk ), or
u2(ai bk ) > u2(ai b j ) are the possible cases. This means that the set

{u2(ai b j ) : 1 ≤ j ≤ m}

necessarily has a maximum element (for, otherwise strictness would
fail). Let this be b (i ) and part (i) of the lemma follows.

Part (ii) is proved by means of an identical argument, which then
gives the desired result. QED

What does this entail at the level of the language �GM we have been
building along the way? In a game where payoffs are distributed accord-
ing to the strictness prescription, for every choice of action made by the
opponent, there is always a unique action ensuring the maximum payoff
to each of the two players, i.e., one action that stands out as the «most

3Since this action b (i ) belongs to the set Σ2 of actions at player 2’s disposal in game G ,
and since actions of players in games in normal form are assumed to be given as lists, b (i )
must take a certain place in the order that produces the listΣ2 of actions, i.e., it corresponds
to an action of the form bk of that list. To assume that the payoff for player 2 associated with
the strategy profile ai b (i ) is greater than the one associated to ai b j for every b (i ) �= bj , is the
same as assuming this that this holds for every bj ∈ Σ2 such that j �= k . A similar remarks
applies to action a( j ) of player 1mentioned in the second half of the statement of the lemma.
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convenient» one to each player. Owing to the previous analysis, the ac-
tion that is the most convenient reply to the rational action by the oppo-
nent is the one that players are trying to disclose by the reasoningwe have
considered. This is now something we are capable to express by means
of a formula of the language �GM , if we just assume that a minimum
amount of logical resources are also available within this language.

Let us suppose that �GM is equipped with the standard means for
expressing conjunctions and disjunctions, that is, let us assume that�GM
has symbols ∧, ∨ for logical connectives, i.e., operations on formulas of
�GM that can be used to give rise to expressions (φ∧ψ), (φ∨ψ) out of any
two formulas φ,ψ of �GM , with parentheses being used as customary to
mark the scope of the connectives, counting as new formulas with the
intended meaning: «φ and ψ» for (φ ∧ψ), and «φ or ψ» for (φ ∧ψ).

On the basis of this further assumption, the following formula of�GM

(R(b1)∧ u1(a1b1) > u1(a2b1))

is intended to mean that b1 is rational, hence it is rational to player
2 owing to what we have said above about all players in our game being
subject to one and the same concept of rationality, and action a1 ensures
a greater payoff to player 1 if it is the chosen reply of her to action b1 of
player 2, than action a2. Furthermore, the formula

(R(b1)∧ u1(a1b1) > u1(a2b1)∧ . . .∧ u1(a1b1) > u1(an b1))

(where ellipses stay for the conjunction of all formulas of the form
u1(a1b1) > u1(ai b1) for every 3 ≤ i ≤ (n−1), where n is supposed to indicate
the number of actions at player 1’s disposal in G), is intended to express
the fact that b1 is rational to player 2 and a1 ensures to player 1 the maxi-
mum payoff (i.e., a1 is the reply to b1 that is themost convenient to player
1).

Let us introduce a convention on the notation that might be suitable
for concisely refer to an expression such as the one above in the general
case. Let then ∧

2≤i≤n
u1(a1b1) > u1(ai b1)

be an abbreviation for the long conjunction

(u1(a1b1) > u1(a2b1)∧ . . .∧ u1(a1b1) > u1(an b1))

that appeared in the formula of �GM above. Now, owing to the as-
sumption on what are the logical resources of �GM and to what we have
just agreed upon, take the following expression of�GM :

(R(b1)
∧

2≤i≤n
u1(a1b1) > u1(ai b1))∨ . . .∨ (R(bm)

∧
2≤i≤n

u1(a1bm) > u1(ai bm))
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where, similarly to the previous situation, ellipses substitute the dis-
junction of all formulas of�GM of the form

(R(bj )
∧

2≤i≤n
u1(a1bj ) > u1(ai b j ))

for every 2 ≤ j ≤ (m − 1), m being the number of possible actions by
player 2 in G . That is a formula of �GM which expresses the fact that b1
is rational to player 2 and a1 is the most convenient reply of player 1 to it,
or b2 is rational to player 2 and a1 is similarly the most convenient reply
to it, or etc., up to action bm . That is, it is a mean for expressing within
the language �GM , that a1 is the most convenient reply of player 1 to all
choices of action made by player 2. Owing to the idea according to which
«rational» is a property that applies to actions that are most convenient,
this formula expresses the fact that a1 is rational to player 1.

Let us similarly abbreviate the long disjunction featured in the ex-
pression just displayed, by means of:

∨
1≤ j≤m

(R(bj )
∧

2≤i≤n
u2(a1bj ) > u2(ai b j ))

This is a formula of �GM , call it φ1, that, as we have just concluded,
expresses the fact that a1 is rational to player 1 in a given game G in nor-
mal form.

Let us further suppose that we have produced formulas φ2, …, φn by
making the obvious changes to φ1 above, each formula φi of which ex-
presses the fact that action ai is rational to player 1.

Let us also suppose that we have similarly devised a list of formulas
ψ j of �GM , each of which expresses the fact that the action bj of player
2 is rational to her. Granted the above conventions on the notation, this
can be done by assuming each of these ψ j ’s to be of the form:

∨
1≤i≤n

(R(ai )
∧

2≤h≤m
u1(ai b j ) > u1(ai bh ))

Before proceeding in our attempt to answering the questions about
solutions to finite games inmatrix formwe raised, let us try tomake clear
what this development of linguistic resources has allowed us to gain in
this respect.

Having formulated formulas φi ’s and ψ j ’s puts us in a position to
have made precise under what circumstances an action turns out to be
rational to play to players of a game matrix G in the previous sense of
the expression. As a matter of fact, if any of the situations concerning the
distribution of payoffs described by formulasφ1, . . . ,φn occurred, then the
corresponding action would be rational to player 1 in the sense of being
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the most convenient to her. On the other hand, if the distribution of pay-
offs over strategy profiles in a gamematrixG resembled the situation de-
scribed by one of the formulas ψ1, . . . ,ψm , then the corresponding action
would be rational to player 2.

Notice that having supposed to deal with games that are finite and
also strict, means that we know for sure that one and only one of the
formulas φi , as well as one and only one of the formulas ψ j correctly ex-
presses the way in which payoffs are distributed over strategy profiles of
the game under scrutiny. As amatter of fact, owing to a game being strict,
we can always say that for every action of a player, say bj of player 2, there
always exists one and only one action of player 1, say ai , that is best as long
as the payoff it grants is concerned (as lemma 3.1 above states). Hence,
φi would correctly express this fact. Symmetrically, the same would hold
true for a certain formulaψk for every choice of actionmade among those
at player’s one disposal. Since ties are avoided, due to the game being
strict, and since the ordering > of � is non-reversible (as this was made
precise for strict kinds of orderings in section 1.2), this makes impossi-
ble that ‘competing’ formulas of φi and ψk , say φh and ψl , be a correct
description of the situation taking place in G as far as the payoffs distri-
bution over the relevant outcomes is concerned. However, do notice that
this is still different from saying that an action is the most convenient in
absolute terms, for, validity of any of the formulas φi ’s and ψ j ’s only en-
tails the existence of an action of player 1 and player 2 respectively that is
most convenient relatively to one action that is rational to the opponent
(this action being possibly different for different assumptions concern-
ing what is the latter, rational action of the other player), rather than the
existence for both players of one and the same action which is best in-
dependently of which action is chosen by the opponent. As it was said
before going throught the construction of language �GM , strictness em-
bodies only the former (weaker) condition, and still leaves open whether
also the latter (stronger) condition holds.

Having clarified that, let us resume the previous discussion from the
conclusion we reached about rational actions in a (two-player) game in
normal form G being those whose corresponding formulas among

φ1, . . . ,φn ,ψ1, . . . ,ψm

are «valid», in the sense of being a correct description of how pay-
offs of players are distributed among strategy profiles of G . Since game
matrices we are dealing with are finite in the sense of always featuring a
finite number of actions at each player’s disposal, we can say of any action
what condition it should satisfy in order to be the rational one in a game
in normal form G . In particular, it should be the one whose correspond-
ing formula is valid in the above sense. Now, since these formulas are
finitely many we can easily express that through a case-distinction type
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of scrutiny: for, it is either the first action of player 1 in case φ1 holds, or
it is the second action by player 1 because φ2 holds insted, etc. This anal-
ysis can also be reflected by means of the linguistic resources of �GM ,
provided those we have equipped it with are modestly enhanced. In par-
ticular, it is required that we have means to refer to actions in general.
This is something that is usually coped with at the level of formal lan-
guages by variables that indicate an unknown, hence arbitrary element
out of a given domain. In the case of our language �GM , we therefore
suppose that we have variables symbols x , y, z , . . . for (arbitrary) actions.
In addition to that, we should be able to say that a certain action, be that
arbitrary or not, ‘coincides’ with another (for reasons that will be clear
in a minute). We then equip the language �GM of a suitable symbol for
expressing that, in the formof a binary relation forwhichwe use the iden-
tity symbol · = ·. This will provide us with the means for stating formulas
such that x = ai , or x = bj , as well as formulas ai = bj for every variable x
and terms for actions ai , bj .

Finally, the previous, informal assessment ofwhat itmeans for a (gen-
eric) action to be rational in a game in normal form G , can be given the
form of a definition by making use of the previous conventions on the
notation as follows:

R(x )⇔Def
∨

1≤i≤n
(x = ai ∧φi )
∨

1≤ j≤m
(x = bj ∧ψ j )

The above expression should be read as follows: The property of «be-
ing rational» applies to any action x in a game in normal form G , just in
case x coincides with a1 and φ1 is valid, i.e., truly describes the situation
concerning payoffs distribution inG , or x coincides with a2 andφ2 is valid
instead, or …” (dots being replaced by a similar reading of the remaining
disjuncts up to the last one where x is set to coincide with bm).

In turn, the definition we have just given reflects a quite natural way
to analyze the outcomes of a game played by two players that we have
proposed as being tied up with the players’ own attempt to detect the
rational action out of the finitely many they have to choose among. Yet, it
is unclear how this is related to the idea of equilibria as we defined them
at the beginning of the section, and whether it is of any help with the
two issues that were raised about them, namely whether it is always the
case that such equilibria appear in any finite game in normal form, and
whether it is always the case that a unique equilibrium shows up in all
situations. The goal of the next section is precisely to provide themissing
connection and start addressing those issues.

3.3. Getting rid of the loop on rationality of actions

In the previous section, we have tried to generalize the approach to
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the example of game in normal form that we pursued in section 2.5, and
that sounded as a reasonable way to assess the variety of actions com-
binations in order to determine the most convenient one. The process
started with the ‘solution’ of the matrix that we proposed in section 3.1,
and brought to the definition of equilibria as ‘stable’ outcomes in a game
in normal form. The reasoning that led us to that was further analyzed,
and used to devise a formal language as a new tool for pursuing the as-
sessment of finite games in normal form. Bymaking use of this language,
we managed to set up a definition of what is rational to players to choose
by following the natural idea that players are likely to stick to actions that
are most convenient to them. Actions that are rational in the sense of our
definition above, as a matter of fact, are the most convenient reply, in
terms of the payoff they ensure, to the action that is rational to the oppo-
nent.

Now, regarding the two ideas we have been working on so far, the
idea of equilibria as stable outcomes, and the idea of rational actions as
most convenient choices, it would be desirable that they coincided in the
sense that stable outcomes turned out to be made out of actions that are
rational in the latter respect, and, viceversa, that pairs of actions which
are rational to the players could be proved to give rise to equilibria. The
expectation is encouraged by an informal assessment of the former di-
rection of it: if an outcome is ‘stable’ in the sense in which equilibria are
assumed to be owing to definition 3.1, then they are made out by actions
that aremost convenient as rational actions should be due to the fact that,
by keeping the action of the opponent fixed, the other one in the equilib-
rium ensures to the playerwho plays it the highest possible payoff (hence,
makes it unconvenient to her a unilateral change in the chosen strategy,
as definition 3.1 requires).

This way of putting things, however, can only serve as an indication,
as an encouragement as we said, since for an action to be the most con-
venient one to a player is only one side of the feature it has to have in
order to be rational in the sense of the definition we have come up with
above. For, the definition requires that at least one among the formu-
las φi ’s and the ψ j ’s be ‘valid’, in the informal sense of validity we have
explained above. In turn, this requires that an action is the most con-
venient reply to the action that is rational to the opponent, in the same
sense of the expression. That is the point where things become difficult,
for it seems that to state which action is rational to a player in the sense of
the defining condition we managed to extract from the analysis of games
inmatrix form, onemust have first determinedwhich action is rational to
the opponent. To do this, by the way, it is similarly required that we know
which action is rational to the other player, which (owing to the fact that
we are dealing with two-player games) brings us back to the point where
we started.
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It seems we are facing a problem here, and there is no easy way out.
Despite how natural appeared the path leading to it, the definition of «ra-
tional action» in two-player, strict games in normal form turns out to be
unusable owing to the cycle it traps us into and which seems to be due to
the fact that the property we are trying to assign to actions in a game, pre-
supposes that actions that possess it are known already. Luckily there is a
way out, which requires that some further reflections upon the language
�GM we have devised in the previous section be made.

The first thing that will turn out useful is to provide the reader with
somemore details about the language�GM and the property of «validity»
for formulas of it, that we have been sloppy about so far.

From the point of view of its syntax, the language�GM we have been
devising comprises the following types of expressions:

x | ai | bj | ai b j | u1/2(ai b j ) | R(·) | · = · | · > · | φ ∧ψ | φ ∨ψ

that is: terms of�GM are either variables, terms for actions of either
player 1 or player 2 of a given two-player game in normal form G , terms
for strategy profiles of G , and terms for payoffs assigned to either player
1 or player 2; formulas of �GM are either atomic formulas, which take
three possible forms: (i) R(ai ), R(bj ), (ii) t = ai , t = bj , where t is either
a variable or a term for action, (iii) s > t , where both t and s are terms
for payoffs; or, they are obtained from formulas of�GM by applying con-
junction ∧, or disjunction ∨.

The purpose of setting up this languagewas to speak of a game in nor-
mal form in the way we have imagined that the very players of it might be
doing while analyzing all outcomes in search of the best thing to do. In
particular, statements of this language are conceived in such a way that
they refer to state of affairs involving features of the game matrix such
as payoffs distribution over outcomes and their evaluation. The connec-
tion between formulas and states of affairs they are supposed to refer to,
is usually made clear in formal languages like ours by means of a suit-
ably specified validity relation. In turn, this validity relation comes in
the form of a list of clauses, each one of which states precisely at which
condition every formula of the language is valid, depending on what is its
logical form (therefore, there should be a clause for each possible form
that formulas of the language under consideration can take).

The previously noted difficulty about an expression of it of the form
R(t ), where t is a term for either an action of player 1, or an action of
player 2, seems to represent a stumbling block in the definition of such
validity relation in the case of �GM . For, as we informally discussed the
issue in section 3.2, the intended meaning of a formula R(t ) of the said
sort is the assertion that «action named t is rational (to the player it is
an action of)». The validity relation should then certify this by means of
a dedicated clause stating that the formula R(t ) is valid, or «holds true»,
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just in case the fact it is intended to express occur, that is in case the action
named t is rational. The problem is, aswe have briefly noted already, that
what does the fact in question amount to is hard to say. For, according to
the definitionwe have come upwith in section 2, andwhichwe reproduce
here for the reader’s sake

R(x )⇔Def
∨

1≤i≤n
(x = ai ∧φi )
∨

1≤ j≤m
(x = bj ∧ψ j )

a formula R(t ) is supposed to hold if the term t of �GM produces a
true instance of the defining condition when substituted to the variable
x , i.e. in case ∨

1≤i≤n
(t = ai ∧φi )
∨

1≤ j≤m
(t = bj ∧ψ j )

which is also a formula of �GM , is valid in the above sense. If we
suppose to having developed a definition of validity for formulas of�GM
that follows the standard treatment of logical operations as we would like
to, then for such formula to be valid means that t is in the first place
a term for action of either the form ai (that is, a term for an action of
player 1), or the form bj (a term for an action of player 2), since only
terms of this form would produce valid instances of formulas of �GM of
the form t = ai or t = bj , which is part of what must happen to make R(t )
valid as we want. Moreover, it should also happen that at least one of the
formulas φi , ψ j be equally valid. However, as the reader may remember
from section 3.2, both kinds of formulas feature occurrences of formulas
of the form R(s ), where s is a term for an action of the opponent, which
are then supposed to be valid to make either the expression φi or ψ j they
belong to, valid itself. In sum, this is the cycle we were referring to above:
for a formula R(t ) to be valid, it is required that another formula R(s ) of
the same form is known as valid already.

Now, the reader should remember that we arrived to the definition
above as an attempt to capture the reasoning performed by the players
in the attempt of evaluating outcomes of a game G . This reasoning was
hypothetical in form, as it wasmeant to comprise utterances which, as far
as player 1 was concerned to give an example of it, read like the following
ones:

«If b1 is rational to player 2, then a(1) is rational to me»
«If b2 is rational to player 2, then a(2) is rational to me»

. . .
«If bm is rational to player 2, then a(m) is rational to me»

This is the reason for the previously mentioned occurrence of a for-
mula of the form R(s ) in the defining condition for R(t ). By the way, it
should be also noticed that, if such hypotheses were actually made, the
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cycle preventing us from evaluating R(t ) would disappear. Let us illus-
trate this last observation in a simpler situation.

Let us consider a game in normal form like the one we have been us-
ing as starting point and that was inspired to the story about Alan and
Bonnie. Let then G be a two-player game in normal form where each
player is given two actions to choose among. Only a fragment of the lan-
guage �GM we have defined is needed here. In particular, the part of it
that features terms for actions a1,a2 and b1b2, which give rise to terms for
strategy profiles a1b1,a1b2,a2b1,a2b2. In turn, terms of this latter form de-
termine the variety of terms for payoffs un(t ), where n is either 1 or 2, and
t is a term for a strategy profile of G .

The definition of «rational action» in this simpler case has the same
logical form of the general schema of it above, although it turns out to be
less complex in the number of its components. In the sample situationwe
have chosen, they are so few that they can even bewritten down explicitly:

R(x )⇔Def (x = a1 ∧φ1)∨ (x = a2 ∧φ2)∨ (x = b1 ∧ψ1)∨ (x = b2 ∧ψ2)

In turn, formulasφi andψ j also reflect the simple character of the sit-
uation. For instance, φ1, which expresses the fact that action a1 is rational
to player 1, reads as follows:

(R(b1)∧ u1(a1b1) > u1(a2b1))∨ (R(b2)∧ u1(a1b2) > u1(a2b2))

Now, in easier situations like that, imagine that a hypothesis has been
made as to what is rational to do to the two players. The hypothesis needs
not to be grounded on the game matrix evaluation. It may just reflect a
feeling, or an intuition. Suppose then that someone hypothesized that a1
is rational to player 1 and b1 is rational to player 2.

Suppose also that payoffs have been distributed over outcomes, i.e.
strategy profiles of G , in such a way that both u1(a2b1) > u1(a1b1) and
u2(a1b1) > u2(a1b2) are actually the cases, corresponding to a2 being the
most convenient reply to action b1 by player 2 to player 1, and b1 be-
ing the most convenient choice of action by player 2 if player 1 plays a1.
This payoff distribution also causes the formulas u1(a2b1) > u1(a1b1) and
u2(a1b1) > u2(a1b2), which express those very same facts, to be valid in the
informal sense of the expression we are still referring to (that is, in the
sense of being true descriptions of what really takes place in the game).

The two features we are supposing to be verified, the hypothesis of
what is rational to do to the players and the distribution of payoffs, would
then lead to

(R(b1)∧ u1(a2b1) > u1(a1b1))

and
(R(a1)∧ u2(a1b1) > u2(a1b2))
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being formulas of �GM corresponding to valid utterances. In turn,
owing to what we said in section 3.2 about the intended meaning of log-
ically complex formulas of �GM , this fact makes also valid formulas φ2
and ψ1, as we have decided to name them, since the two formulas dis-
played above happen to be disjuncts of them, and we informally assume
of a disjunction that it is valid whenever at least one of its disjunct is. This
means, in the end, that the supposition about what is rational to do for
the players involved into gameG , together with the actual distribution of
payoffs, allows us to make valid two other formulas of�GM , namely

(a2 = a2 ∧φ2)

and
(b1 = b1 ∧ψ1)

Even though we are still reasoning at the informal level, the reason
why this is so should turn out to be evident. It has to do of course with
the intended interpretation of the conjunction that we are willing to pur-
sue, according to which a formula of that logical form is valid whenever
both of its conjuncts are valid. It has to do with φ2 and ψ1 turning out to
be valid under the hypotheses made. Finally, it has to do with an obvious
constraint that wemay want to put over formulas of the form s = t , which
are supposed to convey the idea that s and t coincide, that is, that the ac-
tion named by s and the action named by t are the same. Whatever is this
notion of coincidence for actions one may have in mind, one thing about
it is right for sure: it certainly applies when s and t are terms naming one
and the same action, which makes every instance of formulas of this type
of the form s = s obviously valid.

Now, this leads us to one further observation: that, by what we have
just noticed, we are indeed capable of making valid two instances of the
definition of rationality we came up with. The instances in question are
those which are obtained by substituting everywhere in the defining con-
dition a2 for x on the one hand, and b1 for x on the other. Which means
that formulas R(a2) and R(b1) turn out to be valid in the end, whichmeans
that actions a2 and b1 can be pronounced to be rational to player 1 and to
player 2 respectively, under the hypothesis that a1 and b1 are rational to
them.

Tomake pronouncements of this sort on the basis of the definitionwe
devised in section 3.2 was what appeared to us to be impossible in view of
the cycle we found ourselves stuck into. It turned out in the end that this
cycle is illusory, as well as the said impossibility, provided we are given
hypotheses as to what is rational first. In the next section, we shall make
use of this new conviction of ours, and give it the form of a method. A
method by using which we are going to finally answer the two issues that
were raised, and which, to be honest, is about time to tackle.
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3.4. Hypotheses and their revision

Let us first flag a few features of the process which uses hypotheses
about what is rational to do for players in order to disclose what turns out
to be so on the basis of the definition of «rational action» we have found.

First of all, it should be noticed that the hypothesis required by that
takes the form of a strategy profile. This is a general feature, but is obvi-
ously more evident in the two-player case. In the model of reasoning we
have analyzed in section 3.2, players start from what might be rational to
the opponent to do and try determining what turns out to be rational to
them on the basis of the payoffs distribution. The defining condition of
the predicate marking rational actions features occurrences of formulas
in which the rational predicate R itself is applied to terms for actions of
all of the players involved in the given game. Therefore, the hypothesis
one needs in order to determine which other action by a player turns out
to be the one that produces a valid instance of the defining condition of
the rationality predicate, should comprise a complete list of actions that
are supposed to be rational to all of the player’s opponents.

A second observation to make concerns the result of the previous so-
lution of the difficulty related to the definition of rational action. As a
matter of fact, having begun with the hypothesis concerning what is ra-
tional to do to players of a game, one ends with a list of actions that are
rational in the sense of producing a valid instance of the condition defin-
ing the rationality predicate R which also can take the form of a strategy
profile, as it has then the same character of a complete list of actions of
the hypothesis we have started from.

A third remark concerns the fact that in the course of making use of
hypotheses to get rid of the original cycle we had spotted in the condition
defining the property of being «rational» for an action, we have heavily
referred to the validity property for formulas of �GM . This is for a very
good reason since the two things, escaping the cycle and finding a way to
state when the property we are concerned with applies, go on together.
Actually, the very same trick that allows us to accomplish the former task,
also allows us to accomplish the second: if we are given hypotheses as to
what is rational to do for players, we also are in a position to say when it
is the case that certain instances of the condition defining the predicate
R(x ) is valid in the informal sense of «correctly reporting a state of affairs
involving the game G we suppose to be given, and payoffs distribution
over its outcomes». We know that because this coincidence is what we
have beenmaking use of in section 3.3. Now, wewant tomake this way of
proceeding precise and what we need here is to make precise in the first
place the definition of what it means for a formula of�GM to be valid.

This conclusion and the form it will take should sound terribly obvi-
ous to the reader acquantied with formal languages and the way they are
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normally dealt with. However, since this book is also written for the un-
trained scholar, I feel compelled to spend a fewwords aboutwhat is about
to happen at the cost of appearing naive to those who are knowledgeable
(and who may well wish to skip this passage).

As I have tried to explain already, formulas of our language�GM are
conceived to make pronouncements about the game G under scrutiny.
They are in this sense not different from statements of our natural lan-
guages which are conceived to let us speak of something going on in the
physical world or in some other ‘domain’, to the state of affairs of which
we may wish to refer. How this correspondence actually takes place is
easily explained with respect to formulas of�GM , which are made out of
terms, the intended meaning of which is to name either actions of the
players, strategy profiles, or payoffs, and may take either the form of
«simple formulas» (atomic formulas is the way they are named in the
usual account of formal languages), which correspond in our case to for-
mulas that intend to express properties of ‘objects’ named by terms or
relations holding between them, or «complex formulas», which are built
out of the simple ones by the use of logical operations and which, so to
say, impose a ‘relationship’, of the logical kind, between the state of affairs
referred to by their components. Now, to make this relation of meaning
between formulas and state of affairs clear, aswell as the validity property
that follows it, we provide the reader with a couple of definitions.

The first one is supposed to state precisely what do terms of �GM
refer to (read: mean) in the context of a given game G in normal form.
For the sake of it we are using the symbol ≡ as a shorthand to indicate
what the meaning of a given term of the language is identical to:

Definition 3.3 Let G = 〈{p1, p2}, (Σi
G )i∈{1,2}, uG 〉 be a strict, two-player

game in normal form. Suppose that

Σ1
G = {a1, . . . ,an}

and
Σ2

G = {b1, . . . , bm}
For every term t of �GM , we define the interpretation t G of t in G

inductively as follows:

• if t is a variable x , then xG is any action of G , i.e. xG ∈ Σ1
G ∪Σ2

G ;
• if t is an action term of the form ai and i ≤ n, then aGi ≡ ai ;
• if t is an action term of the form bj and j ≤ m, then bG

j ≡ bj ;
• if t is a term for strategy profile s1 s2, where s1 is a term referring

to an action of player 1 (i.e., s G1 ∈ Σ1
G ) and s2 is similarly a term

referring to an action of player 2 (i.e., s G2 ∈ Σ2
G ), then (s1 s2)

G ≡
s G1 s G2 ;
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• if t is a payoff term un(s ), where n is either 1 or 2 and s is term
for a strategy profile (that is, s is of the form s1 s2 with s1 and s2
being like in the previous clause), then (un(s ))G ≡ un

G (s
G
1 s G2 ).

The tautological character of (most of) the above clauses is obviously
due to the conventionwehave established on the notation, which brought
us to use the same symbol for terms of�GM and their intended reference
in a given gameG . The interpretation of a term is set here tomake precise
the correspondence we intended to capture by laying down the syntax of
�GM in that way. Therefore, when we write for instance aGi ≡ ai in the
second clause we are aiming at stating that action ai on the right of ≡
is what the term of �GM ai mentioned on the left of it means (or, to be
consistent with the definition: is interpreted by).

Notice that language�GM is set up to speak of any two-player game
in normal formG , since the latter are finite objects. Therefore, nomatter
what size a given game G of this form has in terms of number of actions
allowed to players, �GM has terms to refer to each of them (hence, only
a portion of those that would be available are actually used to speak of
actions of G and needs to be given an interpretation), as well as to the
strategy profiles that come out by combining them, and to payoffs that
are distributed to players over the latter combinations of actions.

Next in line comes, as promised, the definition of validity for formu-
las, which similarly depends upon a strict game G in normal form that
we suppose to be given, and it also features the mention of hypotheses,
which are needed to evaluate formulas of�GM of the form R(s ), or formu-
las which comprise occurrences of them, due to the previous discussion
of cycles and cycle-breaking. Remember in this respect that hypotheses
needed to break the said cycles should feature actions that are supposed
to be rational to both players. More precisely, let us put the following:

Definition 3.4 If G = 〈{p1, p2}, (Σi
G )i∈{1,2}, uG 〉 is any strict, two-player

game in normal form, a hypothesis inG is a set h which contains exactly
one term of�GM for an action of player 1 inG (i.e., there exists a unique
s ∈ h such that s G ∈ Σ1

G ), and exactly one term of �GM for an action of
player 2 in G (i.e., there exists a unique t ∈ h such that t G ∈ Σ2

G ).

Hypotheses defined as (unordered) pairs of action terms do corre-
spond to strategy profile of a given game G since, if h = {s , t }, where s
and t are terms of�GM that refer to actions s G and t G respectively of G ,
then s G t G is a strategy profile of G . To make the notation easier, we will
conventionally write hypotheses in a simplified form as combinations of
action terms corresponding to strategy profiles, i.e., we shall write h = s t
instead of h = {s , t } as we should owing to definition 3.4.

Hence, we have:
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Definition 3.5 Let G = 〈{p1, p2}, (Σi
G )i∈{1,2}, uG 〉 be as before a strict,

two-player game in normal form. Let also h be a hypothesis in G . For
every formula θ of �GM , then that θ is valid relatively to G and h (in
symbols: |=Gh θ) is defined by induction on θ as follows:

• if θ is of the form s = t , hence if s is either a variable or an action
term and t is an action term as well (i.e., if s G , t G ∈ Σ1

G ∪Σ2
G ),

then |=Gh θ holds if and only if s G = t G is the case4;
• ifθ is of the form s > t , hence if both s and t are terms for payoffs

(which entails, owing to how the utility function of G is defined
– see section 2 – that s G , t G ∈�), then |=Gh θ holds if and only if
s G > t G is the case5;

• if θ is of the form R(s ), hence s is an action term (i.e., s G ∈ Σ1
G ∪

Σ2
G ), then |=Gh θ is the case if and only if s ∈ h;

• if θ is of the form θ1 ∧ θ2, then |=Gh θ holds if and only if both
|=Gh θ1 and |=Gh θ2 are the cases;

• if θ is of the form θ1 ∨ θ2, then |=Gh θ holds if and only if either
|=Gh θ1, or |=Gh θ2 is the case (where the case that both cases hold
true is not excluded).

We invite the reader to take notice of the fact that, consistently with
the discussion from sections 3.2 and 3.3 about formulas of �GM of the
form R(s ) representing the only problematic case with respect to exercis-
ing the intuition we had about validity of formulas, actual use of hypothe-
ses h is made just for the sake of the clause about instances of formulas of
that type. In other words, changing a given hypothesis h into a different
one h ′ can cause changes in the attempt of assessing whether θ is valid or
not in the sense of the definition only if θ is either of the form R(s ), or if
it features occurrences of formulas of that form.

The validity relation for formulas of �GM just defined, can be used
to make the passage in section 3.3 that is crucial to overcome the ob-
stacle connected with the definition of rational action we came up with.
The passage in question is the one that, for a given strict game G in nor-
mal form, allows to refine the hypothesis about what is rational to do to
players by determining which actions among those that are available in
G produce valid instances of the defining clause of the predicate R(x ) of
�GM .

Let thenG 〈{p1, p2}, (Σi
G )i∈{1,2}, uG 〉 be an arbitrary, but fixed strict two-

player game in normal form. Let us indicate with θG (x ,R) the defining

4The clause here presumes that we have a suitably defined notion of identity over the
elements of G that interpret terms s and t , to which the identity relation between terms of
�GM corresponds to. In this respect, see what was said back in footnote 3.

5Like in the previous clause, this one is conceived in such a way to make valid all of the
instances of formulas of �GM of the form s > t that correspond to true inequalities over �
between elements of this domain which interpret the terms s and t .
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clause for the predicate R(x ), «x is a rational action in G», which is ob-
tained from the general formulation of it in section 3.2, by making it spe-
cific to G (that is, by considering the actual number of actions that are
at the players’ disposal in the game under scrutiny). This means that
θG (x ,R), which keeps track in the notation of the fact that the original
formula it is a shorthand for features the occurrence of a free individ-
ual variable x , as well as occurrences of the predicate symbol R , is set to
indicate the following instance of the general definition we are using:

R(x )⇔Def
∨

1≤i≤nG
(x = ai ∧φi )
∨

1≤ j≤mG

(x = bj ∧ψ j )

︸ ︷︷ ︸
θG (x ,R)

where
nG =max{i ∈� : ai ∈ Σ1

G }
mG =max{ j ∈� : bj ∈ Σ2

G }
Now, as we were saying, the previous approach to the definition al-

lows one to pass from a given hypothesis h, which comprises actions (in
fact, action terms) that are supposed to be rational to player 1 and 2 of
G , to a revised hypothesis h+, that contains action terms which produce
valid instances of θG (x ,R) when substituted to x by making use of ele-
ments of h to say which instances of formulas of the form R(ai ), R(bj ) oc-
curring in θG (x ,R) are valid. This can be now expressed precisely bymak-
ing use of the property of «validity» relative to a gameG and a hypothesis
h from definition 3.5 above. In particular, if we assume to indicate with
ATERMGM the collection of action terms of �GM (hence, ATERMGM is
the collection of expressions s of�GM such that s G ∈ Σ1

G ∪Σ2
G ), then for a

given hypothesis h, we have that:

h+ = {s ∈ ATERMGM : |=Gh θG (s ,R)}
where θG (s ,R) indicates the expression which is obtained by substi-

tuting s for x in θG (x ,R).
It should be noticed first that, provided h is a hypothesis inG accord-

ing to definition 3.4, then also h+ is as such. This is due to the fact that,
the game being strict, for every chosen action combination there is one
unique action for each player that represents the best reply, payoff-wise,
to the action played by the opponent, hence also to the one that is sup-
posed to be rational here. Therefore, for every starting hypothesis h, if
t ∈ h is such that t G ∈ Σ2

G , then there is one and only one formula φi
that is valid relatively to G owing to t , hence just a unique s1 ∈ h+ with
s G1 ∈ Σ1

G ; viceversa, if s ∈ h is such that s G ∈ Σ1
G , then there is a unique

formula ψ j that is valid relatively to G owing to it, hence a unique t1 ∈ h+
with t G1 ∈ Σ2

G . It follows that h
+ = s1 t1 in this case, and fits definition 3.4

as a consequence.
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In addition, and owing to the same reason, we also have that this pas-
sage from h to h+ is ‘right-hand unique’, so to say, in the sense that no two
different hypotheses h ′ and h ′′ can be obtained as a result of ‘revising’ in
the above sense one and the same hypothesis h. It is then possible to
use this observation to define a revision operator acting on hypotheses
as arguments and yielding revised hypotheses as values. The latter kind
of hypotheses would then literally appear as ‘function of’ the hypotheses
that are supposed to be given in the first place. This can be done by taking
into account that hypotheses as we defined them in definition 3.4 above
are pairs of action terms, one of which is a term for an action of player 1
and the other one is a term for an action of player 2. Therefore, the func-
tion that associates a hypothesis with its revised one must be defined in
such a way that this aspect is taken into account.

Let us introduce the following notation to make things readable be-
low: for every pair of sets A,B , let P (A,B ) be the collection of unordered
pairs of elements of A and B , that is6:

P (A,B ) = {{a, b} : a ∈ A, b ∈ B}
Let now a two-player game in normal form G be given. Put:

S 1
L = {s ∈ ATERMGM : s G ∈ Σ1

G }
S 2
L = {s ∈ ATERMGM : s G ∈ Σ2

G }
That is: S 1

L gathers all action terms of �GM that are interpreted by
means of actions of player 1 in G , while S 2

L does the same with terms
of �GM that are interpreted by actions of player 2 in G . Notice that in
case these sets S 1

L and S 2
L are substituted for A and B respectively, then

P (S 1
L , S

2
L ) is nothing but the set of hypotheses in G according to definition

3.4 above. Let, for the sake of brevity, this set P (S 1
L , S

2
L ) be indicated as

HG henceforth. Then we put:

Definition 3.6 Let G = 〈{p1, p2}, (Σi
G )i∈{1,2}, uG 〉 be a strict, two-play-

er game in normal form. The operator for revising hypotheses in G , or
the revision operator in short, is a function δG : HG → HG defined by
δG (h) = h+ for every h ∈ HG .

Having made precise the idea of passing from one given hypothesis
to the revised one in the previous way, allows us to further specify, in the
form of a rigorous and systematic method, the idea of getting in this way
rid of the loop in the definition of «rational action» in (a certain class of)
finite games. For instance, the reader might have noticed already that
by no means the passage from an hypothesis h to h+, or δG (h) as defini-
tion 3.6 tells us, should be confined to just one single application of the

6Notice that this is different from gathering together the set of (ordered) pairs as this is
usually done by means of the Cartesian product between two given sets (see section 4.4 on
that).
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revision process of hypotheses. That is, the revised hypothesis h+ which
comes out of a given h, is suitable to be refined further by the samemeans.
This will allow us to obtain a third hypothesis, say h++, which can be fur-
ther revised, and so on and so on. The idea of an operator δG that takes
care of all these applications of the revision process, allows us to make
the idea precise in terms of iterations of it as follows:

Definition 3.7 The finite iteration (δn
G (h))n∈� of the revision operator

δG over a hypothesis h ∈ HG , for every strict, two-player game G in
normal form, is inductively defined for every n ∈ � by the following
clauses:

δ0
G (h) = h
δn+1
G (h) = δG (δn

G (h))

Thedefinition is just away to frame the idea according towhich, given
a starting hypothesis h, this is first revised according to the process we
are well aware of, and the hypothesis h+ is produced as a result. This
corresponds by definition 3.6 to an application of the revision operator
δG to h. Then, one may wish to revise h+ itself. The result would again
correspond to applyingδG again, this time to h+ as argument. This would
lead us to valueδG (h+)which can also bewritten asδG (δG (h)) owing to h+
being itself the result of applying the revision operator as said, and would
amount to the double iterationδ2

G (h) of the revision operator according to
what we have just stated in definition 3.7. By proceeding in this way one
is brought to find a third iteration of it, then a fourth one, and so on, each
of them coinciding with the elements of a revision sequence that starts
with h and features all further applications of the method for revising it:

h , h+, h++, . . . , h++...+, . . .

Now, the question stems naturally as to whether this thread of hy-
potheses and their revisions has an end or not. This is also relevant for
the issues we are trying to use this method to give a solution to. For, were
there not an end to the process of revising the hypothesis about what is
rational for players of a finite game in normal form to do, then it would
not be clear at all that to seek for «rational actions» could be useful for
the sake of isolating ‘stable solutions’ to the game itself. Since to revise an
hypothesis is intuitively connected to finding themost convenient replies
to actions that are, owing to the hypothesis itself, rational to the players,
if the process of revising hypothesis were unending, that could be taken
as an indication that no stable solution can be found, even though no ex-
act correspondence between the revision process and equilibria has been
established yet. Luckily, the said process can be proved to reach an end
in the case of strict games at least, this end also providing us with what
we are aiming to find in terms of solutions that are stable.
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3.5. Equilibria as fixpoints of the revision operator

Let us first reason a little bit about the iteration of the revision process
we have been considering in the last part of the previous section, and let
us think what an ‘end’ to it may look like.

The problem, of course, is that there is nothing in that procedure
as we have described it so far that ensures us that not always new in-
formation will be acquired by passing from hypotheses to their revised
forms in the way we have explained. That is, for what we know of this re-
vision process so far, we have no clue for guessing that, by having set
a starting hypothesis h, by revising it, and by keep applying the revi-
sion operator as definition 3.7 says, we will not always encounter hy-
potheses that have not been produced at earlier stages. Now, something
about the game we suppose to start from being finite may suggest that
this scenario cannot occur: the number of strategy profiles in any game
G = 〈{p1, p2}, (Σi

G )i∈{1,2}, uG 〉 is finite anyway, and since hypotheses are
equal in number to strategy profiles7, we also have a finite amount of
them; therefore, any revision sequence in which every element is (set-
wise) different from the previous one, must come to an end in the sense
of featuring at some point the very element from which it was all started,
or some subsequent element of it. For, otherwise we would be building
an infinite revision sequence of hypotheses in a given game G , which is
impossible owing to the finite character of it.

However, this is not really the kind of end we would like to be think-
ing of, as it turns out clearly by reasoning a little bit about the situation
that would take place in that case. This requires that we think of having
set a initial hypothesis h in a gameG that we suppose to be given, and that
the revision operator be applied to it once to get δG (h) = h+ as per defi-
nition 3.6. By the supposition we are making use of, h and δG (h) would
be different, which means that one or both elements that h contains are
different from those in δG (h). Then, we would be iterating the process,
thereby obtainingδ2

G (h), andδ
3
G (h) after that, and so on. As we said, if we

kept supposing that the sets we obtain in this way were always different,
then it would be like assuming that we can build a infinite sequence of
different hypotheses in G , which contradicts the fact that G is finite and
no such amount of hypotheses in it is available. So, we have to suppose
that the converse will take place, that is, that at some stage in our finite
iteration of the revision operator over h, say at stage δn

G (h), we realize
that what we have obtained is identical as a set to something that had
been obtained before, i.e., that for some m < n we have δm

G (h) = δ
n
G (h).

Now, having noticed that the revision operator is right-hand unique, we

7It should be clear, without no need of stating this in more precise terms, that strategy
profiles con be thought of as ordered hypotheses and, viceversa, hypotheses are just made
out of the pairs of action a strategy profile is made out of.
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would be driven to conclude then that, being δm
G (h) and δ

n
G (h) identical,

applying the operator to them would lead us to results that are identical
too, hence that

δG (δ
m
G (h)) = δ

m+1
G (h) = δn+1

G (h) = δG (δ
n
G (h))

is true. In turn, the identity would be inherited, and for the same rea-
son as before, to values obtained by applying the revision operator again,
and so on. In sum, elements of the whole block of hypotheses going from
δm
G (h) to δ

n−1
G (h), would be identical to the corresponding elements of

the block going from δn
G (h) to δ

2n−1−m
G (h) in the end8. In other words, we

would realize at stage δn
G (h) that we are stuck in a cycle, since what we

obtain here correspond to what we had already achieved at stage δm
G (h),

and what follows cannot but repeating what we had produced at stages
later than that. So, we would have tried to escape a loop just to find our-
selves trapped into another one, and this, as anticipated, would turn out
to be no good news.

Yet, this reflection about this kind of end for the iterated revision pro-
cess is not entirely useless. For, as the reader might have notice already,
the existence of the said cycle between hypotheses available in a given
game G depends upon the distance between the hypothesis δm

G (h) in our
example and the next occurrence of it as hypothesis δn

G (h). Let us sup-
pose that this distance be reduced to the minimum, i.e. that n = m + 1.
As an effect of the right-hand uniqueness property of the revision opera-
tor, one would get as a consequence that the subsequent stage δn+1

G (h) =
δG (δ

n
G (h)) = δG (δ

m
G (h)) = δ

n
G (h) is also identical to δm

G (h), and the same
holds true for every stage produced afterwards. Then, the situation can
be accounted for in the following way: having started from hypothesis
h, one has applied the revision process iteratively obtaining always ‘new’
results, until a certain hypothesis h∗ has been reached (our δm

G (h) in the
example), after which the process becomes no more creative, since no
additional information in the form of new hypotheses can be obtained by
iterating the revision operator any further. Now, this special case of the
previous situation does soundmore like the kind of ‘solution’ to the itera-
tion of the revision process wewere seeking for. As amatter of fact, if that
were the situation, then one could be legitimated to claim that the whole
procedure has reached an ‘end’. If the original problem was that by keep

8The reader may wonder how this index was calculated. It simply follows from the rea-
soning we have been pursuing: if we, starting from δm

G (h), presume that we keep obtaining
different hypotheses until δn

G (h) is reached, then the length of the block comprising differ-
ent hypotheses measures l = (n−1)−m which counts the number of times the operator was
applied after δm

G (h) and before δn
G (h). Then, the end of the block comprising hypotheses

that are identical to those in between δm
G (h)and δ

n−1
G (h) after δn

G (h) is obtained by applying
δG to it l -many times. This means that the end of it is reached at δ l

G (δ
n
G (h)) which, by def-

inition 3.7, corresponds to stage δ (n−1)−m+nG (h). Then, some basic arithmetical calculation
yields the result.
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revising hypotheses one could never endwith a last one (‘last’ in the sense
ofmaking useless any further iteration of process), then an outcome such
as h∗ in the example can be put forth as solving it. The questions to an-
swer now clearly concern whether we can expect to always find solutions
such as h∗, and whether to find them is in any way connected with the
search for solutions to finite games in the form of equilibria.

To address the first question we have to rely on the theory of a certain
class of operators to which also the revision operator we are considering
here belongs to.

«Operator», as it might have been guessed already, is just another
name for what one may commonly refer to by means of the word «func-
tion». The latter expression, however, is too much connected with appli-
cations to number-theoretic domains and to refer to «operators» rather
than «functions» is an attempt to avoid a too narrow interpretation of
the word. Sticking to the former notion rather than the latter, allows
us to take a more liberal stance not just for what concerns the nature
of elements of domain and co-domain of an operator, but also on their
type: we are used to think of functions as being defined over elements
of a given domain D , these elements being regarded as «individuals»;
however, there is nothing wrong in thinking to a mathematical ‘object’
being function-like and operating over domains whose elements are not
individuals but collections of individuals instead, for example, and de-
liver values which have the same character. By the term «operator» we
are wishing to refer to operations in this wider sense of the expression.
Strictly speaking, this may not appear as needed as far as the revision
operator δG is concerned, since, as it has been defined in definition 3.6,
action of δG reduces to a one-to-one correspondence between elements
of the set HG . However, this set does not contain individuals, since it is
made of pairs, and this is whywe have been callingδG as such rather than
«revision function».

To familiarize the reader with this general notion, we present the
main features of it. First comes the very definition of the concept:

Definition 3.8 Given any two sets A and B , we call Γ : A→ B an oper-
atorwith domain A and co-domain B if and only if:

• for every element a in A, Γ (a), the application of Γ to a, is an
element of B;

• for every element a of A, Γ (a) is the unique element of B that
Γ associates with a, i.e., for every a,a′ ∈ A, if Γ (a) �= Γ (a′), then
a �= a′.

Every operatorworks as a function over a givendomain of elements in
the sense of being everywhere defined over their totality, and being right-
hand unique also. An operator is therefore exactly as a function, but, as it
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was said, its domain and co-domain may contain ‘objects’ which are not
necessarily numbers, nor have an elementary nature (or, are «individu-
als» in the sense this expression was used in the paragraph preceeding
the definition).

Inwhat follows, we are interested into operators Γ ’s which are defined
over subsets of a given setU and produce subsets ofU as values. To avoid
further complications in the notation, we will keep referring to operators
of this kind as Γ :U →U , where it is intended that the actual domain of it
is the set� (U ) = {X : X ⊆U } of subsets ofU , which is also its co-domain
(hence, for every X ⊆ U , Γ (X ) ⊆ U )9. Throughout the rest of the section
we shall make no other hypothesis on U , except that this is a non-empty
set to avoid trivialities.

An important related notion is the one that allows us to refer to «clo-
sure stages» in the application of an operator, like the hypothesis h∗ we
were previously considering in our example about the revision operator.
This is made precise by means of the following definition:

Definition 3.9 Let Γ : U → U be an operator whatsoever. We call
X ⊆U a fixpoint of Γ if Γ (X ) = X .

To reconcile the definition we have just given with the example we
were previously considering we need to imagine that Γ be applied itera-
tively, therefore to produce an output Γ (Z ) out of a subset Z of U , then
once again to the value obtained thereby in order to get value Γ (Γ (Z )),
and so on. If at some point in this iteration the value X is obtained, this
is were the process stops, in the same sense as before with the revision
operator δG and its value h∗, since any further application of Γ would re-
duce to Γ (X ) and, assuming X to be fixpoint of Γ as in definition 3.9, this
value in turn would be X again.

One further notion to be considered is the following feature of oper-
ators:

Definition 3.10 An operator Γ :U →U ismonotone if and only if, for
every X ,Y ⊆U , Γ (X ) ⊆ Γ (Y )whenever X ⊆ Y is the case.

Monotone operators give rise to iterative processes which are said to
be cumulative in view of the property introduced by definition 3.10. In

9This apparent confusion between ‘proper’ functions, i.e., correspondences between el-
ements of a set U of the form f : U → U where, for every x ∈ U , f (x ) ∈ U , and ‘genuine’
operators, i.e., any F such that F :� (U )→� (U ), which is motivated here to avoid adopt-
ing a more complex notation, is somehow justified at the mathematical level by a strict
relationship between the two concepts. As a matter of fact, if f :U →U is a function, then
there is an operator ‘naturally’ corresponding to it, namely F f : � (U )→� (U ) defined by
F f (X ) = { f (x ) : x ∈ X }, for every X ⊆ U . On the other hand, if F : � (U )→� (U ) is given,
one can also define a function out of it, say function fF : U → U , by setting fF (u) ∈ F ({u}),
for every u ∈ U . However, to get a function out of this idea one needs the axiom of choice
in general (which ensures that fF is right-hand unique in particular). So, the connection
between the two concepts does not come out ‘for free’ in this direction, so to say.
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a cumulative process the information is not dispersed, so to say, in the
passage from one stage to another as long as the resources to achieve it
are present: therefore, as long as Y contains the resources in X in the
set-theoretic sense that the latter set is a subset of the former, then the
information that X allows one to achieve, that is the value Γ (X ), is also
part of the possibily bigger information that one obtains by relying on Y ,
and Γ (X ) ⊆ Γ (Y ) as a consequence.

The main reason to focus our attention on monotone operator, is the
following result:

Theorem 3.1 Let Γ : U → U be a monotone operator. Then, there ex-
ists a subset of U , XΓ , which is a fixpoint of Γ .

Proof : let Γ be as in the hypothesis. We are going to prove that

FIX Γ = {Z ⊆U : Γ (Z ) = Z }
that is, the collection of fixpoints of Γ , is indeed non-empty. Let

CΓ = {X ⊆U : Γ (X ) ⊆ X }
It is a fact that CΓ is not empty. As amatter of fact, takeU for X : then

U ⊆ U obviously holds and, Γ (U ) ⊆ U also holds by definition of Γ . So,
at least U ∈ CΓ is the case, which means that this latter set contains one
element and is different from the empty set.

Now, let:
⋂

CΓ = {z ∈U : z ∈ X , for every X ∈ CΓ }

To say it in ordinary set-theoretical terms,
⋂

CΓ is the generalized
intersection over set CΓ , that is the set of all common elements to all sets
belonging to CΓ . As a consequence, we have that

⋂
CΓ ⊆ X for every X ∈

CΓ . Then, since Γ is monotone and X ∈ CΓ , it follows that

Γ (
⋂

CΓ ) ⊆ Γ (X ) ⊆ X

Since this holds for every element X of CΓ , then also Γ (
⋂

CΓ ) ⊆
⋂

CΓ
must be the case (for, the elements of Γ (

⋂
CΓ ) are common to all elements

of CΓ and
⋂

CΓ is meant to collect all such elements). This latter fact al-
lows us to conclude two things. It means that

⋂
CΓ ∈ CΓ holds, on the one

hand. Second, by using again monotonicity of Γ , it yields that

Γ (Γ (
⋂

CΓ )) ⊆ Γ (
⋂

CΓ )

hence, that Γ (
⋂

CΓ ) ∈ CΓ is also the case. Then, it also follows that⋂
CΓ ⊆ Γ (
⋂

CΓ ), because the former set is supposed to contain elements
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which are common to all of the elements of CΓ , hence is a subset of all of
them. Hence, we can conclude that

⋂
CΓ = Γ (
⋂

CΓ ), having proved that
both Γ (
⋂

CΓ ) ⊆
⋂

CΓ , and
⋂

CΓ ⊆ Γ (
⋂

CΓ ) are the cases. That is,
⋂

CΓ ∈
FIX Γ . Hence, the theorem10. QED

So, monotone operators always have fixpoints. This means that if
only we could prove that the revision operatorδG ismonotone, to go back
to the investigation we have set up, then we would know that ‘solutions’
to the iteration of it, like the hypothesis h∗ in the example we have been
considering above, always exist. For, it should be clear with fixpoints,
that once you have reach one of them there is no point into iterating the
operator no matter how many times you are planning to apply it. As a
matter of fact, if Z ⊆U is a fixpoint of Γ :U →U , then it follows that is a
fixpoint of Γ 2 : Γ (U )→U with Γ (U ) = {Γ (X ) : X ⊆U }, meaning by that the
application of Γ to subsets obtained by applying Γ to subsets of U , since

Γ 2(Z ) = Γ (Γ (Z )) = Γ (Z ) = Z

holds owing to double application of Γ (Z ) = Z . Similarly, Z can be
seen to be the fixpoint of Γ n for every n ∈�.

Now, as long as fixpoints of the revision operator are concerned, it
turns out that the answer regarding their existence can be obtained by
passing through the logical approach to the notion of «rational action»
in a finite game that was put forth in section 2. To be clear on that, let us
re-considerwhatwedid in that specific case fromamore general persepc-
tive.

Let then � be a first-order formal language whatsoever11. For every
formula φ of� , we suppose to indicate explicitly, whenever is a relevant
feature of it, the fact that it contains, in its own formulation, occurrences
of both an individual variable x outside the scope of the quantifiers of
� (it contains free occurrences of x , as logicians are used to say – see
section 4.8 below in this volume for an exact defintion of this concept in
the context of another formal language), and a given predicate symbol P
of� . Let us use the notation φ(x ,P ) for that12.

10It should be noticed that we do not need to argue, for the sake of the theorem, that
⋂

CΓ
is a non-empty set itself.

11This generically means that � is of the same type of the language �GM we have been
devising up to this point. For the acquainted reader, the features generally associated with
first-order formal languages are: (i) the existence of an alphabet of symbols out of which
expressions of � are made comprising denumerably-many elements; (ii) the existence of
a decidable set of expressions of that sort, TERM L, which are designated as the terms of
� ; (iii) an equally decidable set of expressions FORM L, designated as the formulas of � ;
(iv) the fact that the latter collection of expressions is closed under firts-order logical oper-
ations, i.e., boolean connectives and quantifiers ∀,∃ which produces formulas by bounding
individual variables universally and existentially respectively.

12Once again the parallel with what we have done with �GM and the definition of R(x )
can be of help in this case. In particular, the convention about indicating the formula of
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Now, among the logical operations by which formal languages are
standardly equipped with we have negation (that is usually indicated by
means of the symbol ¬). The next definition wishes to frame a pure syn-
tactical property of formulas having the features of φ(x ,P ) we know of,
that is occurrences of a free individual variable x , and occurrences of a
predicate symbol P :

Definition 3.11 Let� be any first-order formal language. Let φ(x ,P )
be an arbitrary formula of it. Then we say that φ(x ,P ) is P -positive if
no occurrence of P in φ(x ,P ) falls under the scope of an odd number of
negations.

To make the definition intelligible and ready-to-use for the goals we
are aiming at, let us treat the case which is closest to the one we want to
apply it to. So, let us think of P as a predicate which, like R in�GM , can be
applied to a term t of� , being this a variable or some other kind of term
of� (like action terms in the case of R and�GM ), to give rise to formulas
of � of the form P (t ). Now, negation, like other logical operations, can
be used to form new formulas of � out of them of the form ¬P (t ) (the
intendedmeaning of which is «t is not P», or, more precisely, «the object
denoted by t has not the property named P»). It is a general feature of
logical operations that they can be applied again and again to form even
more complex formulas. So is the case of negation which, in the example
we are considering, gives rise to

¬P (t ),¬¬P (t ),¬¬¬P (t ), . . .

All these formulas are «negated formulas» in a sense, because they
are obtained from formulas of� through an application of the negation
connective. But, of all these formulas, only some of them express a neg-
ative state of affairs. This is due to assuming that a common principle of
the logic of negation be valid, namely that two negations ‘neutralize’ each
other to the effect that a formula like ¬¬P (t ) ends up having the same
meaning as P (t ) (that is, it means «object named t has the property P»).
Clearly, this transfers to all formulas in the list above which features an
even number of negations in the front: because ¬¬¬¬P (t ) has the same
meaning of ¬¬P (t ) for the same reason, which happens to have the same
meaning of P (t ); ¬¬¬¬¬¬P (t ) has the samemeaning of ¬¬¬¬P (t ) and so
of P (t ) again, and so on and so forth.

In turn, the same principle tells us that formulas in the list being pre-
fixed by an odd number of negations express one and the same ‘negative’
fact, namely that «object named t has not the property P»: for, ¬¬¬P (t )
has the same meaning of ¬P (t ) owing to the double negation principle

�GM constituting the defining condition of R(x ) by θG (x ,R) was meant precisely to keep
track of the fact that one could find occurrences of both x and R into it.
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above, and ¬¬¬¬¬P (t ) has the same meaning of ¬¬¬P (t ) which reduces
to ¬P (t ), and so on.

This also tells us something about definition 3.11 above. In particular,
it tells us that a formula φ(a,P ) of � is P -positive if and only if it does
not contain occurrences of negative instances of formulas involving P ,
or, which is just another way of saying the same thing, if and only if it
contains only formulas by means of which the property P is (positively)
attributed to elements of the reference domain of� (via their names).

Formulas of� like the generic φ(x ,P ) we are using here for the sake
of this presentation of the issue, can be used to define an operator in a
similar fashion to what we have done above with the family of formulas
θG (x ,R) of�GM . This requires that an interpretation of expressions of�
over a given domain M be given as it was done for expressions of �GM ,
whichmeans in the first place that a correspondence is set between terms
t of� and elements t M belonging toM, whatever naturemight they have,
t M playing the role of the object the ‘name’ t refers to.

Secondly, it requires that a relation of validity in M for formulas of
� be defined. As long as formulas of the form P (t ) of � are concerned,
as well as all other atomic formulas of this language, this definition of
a validity relation would have to feature a clause stating that any given
instance of such formulas «holds» or is valid inM provided the interpre-
tation t M of t , presuming this is the term that the predicate symbol P is
applied to in the instance under consideration, belongs to a distinguished
subset of the domain MP of M which works as the interpretation of P in
M, and is not valid if the contrary happens, that is if t M does not belong
to this set (which, in turn, provides us with the clause according to which
negated formulas of that form, i.e. formulas ¬P (t ), are valid in M). So,
this validity relation, as far as formulas P (t ) of � are concerned, is de-
fined relatively to such interpretation of P being fixed in advance in the
form of a set of individuals of M. This dependence of it over this latter
set should be made apparent. Let us say that this is done by referring to
this relation by means of the notation |=MX φ to indicate that the formula
φ is valid in the modelM of� under the interpretation of occurrences of
formulas P (t ) in φ by means of the set X .13

Let us assume that this has been done, hence that the relation |=MX for
formulas of� has been defined. Then, we have the following:

Definition 3.12 Let� be a formal language. Let alsoTERML the set of
its terms, φ(x ,P ) a formula of it, and |=MX a validity relation for formulas
of� overM. Let UM be a subset of the collection of those elements ofM
over which interpretations of terms of� are defined, that is:

UM ⊆ {a ∈M : a = s M , for some s ∈ TERML}
13Again, the reader may clarify this by comparing this general situation to what was done

with definition 3.5 above for language�GM and formulas θG (x ,R), by using hypotheses as
interpretations of R .
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Then, Γφ :UM →UM is the operator associated to φ(x ,P ) defined by

Γφ(X ) = {aM ∈UM : |=MX φ(a,P )}
for every X ⊆UM .

Clearly, for one and the same formula φ(x ,P ) there might be more
than one operator associated with it owing to the definition we have just
given. This is due to the fact that subsets UM ofM containing interpreta-
tions of terms of � can be selected in many ways, and operators which
are defined over collections of their elements can be as many as they are.

Operators that correspond to formulas of� which are P -positive can
be proved to have a peculiar feature:

Lemma 3.2 Let � , φ(x ,P ) and |=MX be as before. Let also φ(x ,P ) be P -
positive. Then, any operator Γφ associated with φ(x ,P ) is monotone.

Since we have not been precise about the definition of the language
� , as well as the definition of the validity relation |=MX beside those that
can be extracted by comparing this situation with the one we have been
dealing with in the case of language �GM , it would be awkward to go
through an exact proof of this result. Wewill confine ourselves to a sketch
of it to let the reader get the idea of how the argument may go in all con-
crete cases.

The proof exploits the inductive definition of the set of formulas of
� and allows one to make sure that the result holds whatever form does
the formula φ(x ,P ) takes through a proof by induction (see also lemma 2
from section 4.8 below for another example of this type of proofs). As it
might be known to the reader already, arguments of this sort are based
on proving the theorem relatively to parameters which are inductively
defined, such parameter in this case being the logical form of φ(x ,P ). In
particular, it is first assumed that the logical complexity of φ(x ,P ) be the
lowest possible, that is, it is assumed that φ(x ,P ) be an atomic formula,
and it is shown how the proof goes under that hypothesis. In the case
here at stake, one notices that if the logical form of φ(x ,P ) is the sim-
plest possible, which boils down to assuming that φ(x ,P ) is P (x ), owing
to the additional hypothesis that this formula does contain negated oc-
currences of P and is P -positive, then the following is verified: if X and
Y are any given subsets of UM such that X ⊆ Y , then aM ∈ Γφ(X ) if and
only if |=MX P (a), that is if and only if aM ∈ X (since X provides us with the
interpretation of P ); however, if aM ∈ X ⊆ Y , then it follows that aM ∈ Y
is also the case, which yields aM ∈ Γφ(Y ), hence Γφ(X ) ⊆ Γφ(Y ) (i.e., Γφ is
monotone in this case).

The next step in the proof is to take account of what goes under the
name of the induction step of it, which has a different goal: to prove that
the theorem holds by supposing that φ takes any of the possible logically
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complex form that the alphabet of� allows (depending uponwhich sym-
bols for logical operations belong to it), under the hypothesis (which is
called the induction hypothesis) that the theoremholds for formulas with
lower logical complexity (so, in particular, that it holds for subformulas
of φ).

As long as the lemma above is concerned, this induction hypothesis,
together with the expected clauses in the definition of |=MX , are easily seen
to be enough to conclude that the statement goes through this step. Hav-
ing made no precise assumption on� , this is where it is difficult to show
how the proof goes in every possible case. However, we can just focus
on one example and let the reader guess how the argument may work
in the missing cases. So, let us assume for instance that φ(x ,P ) has the
form of a conjunction, namely that it is of the form (ψ1(x ,P ) ∧ψ2(x ,P )),
whereψ1,ψ2 are formulas of� featuring occurrences of P and both being
P -positive. The induction hypothesis in this case correspond to the as-
sumption that operators Γψ1

, Γψ2
aremonotone, where these are defined as

Γφ with ψ1, respectively ψ2 playing the role that φ plays in that case. One
should observe that, owing to how validity relations such as |=MX are usu-
ally defined, we have that |=MX (θ ∧ η) holds if and only if |=MX θ and |=MX η
are the cases, for every formula θ,η of� . This has the consequence that
aM ∈ Γφ(X ) holds if and only if aM ∈ Γψ1

(X ) and aM ∈ Γψ2
(X ) both hold, for

every aM ∈ UM and X ⊆ UM . Then, assuming that X ,Y are any two given
subsets ofUM for which X ⊆ Y is the case, it follows from the assumption
that aM ∈ Γφ(X ), that aM ∈ Γψ1

(X ) and aM ∈ Γψ2
(X ) also hold; the induction

hypothesis then leads to conclude that aM ∈ Γψ1
(Y ) and aM ∈ Γψ2

(Y ) are
the cases, which yields aM ∈ Γφ(Y ) as wanted.

As it was said, the argument goes through in a similarmanner, both in
the case of the remaining logical connectives, as well as in the case of the
logical quantifiers. This eventually leads to the complete proof of lemma
3.2 above. Finally, this puts us in a position to reconcile this detour about
formal languages in general to what we had been doing previously with
�GM .

First of all, it might have been noticed already that:

Fact 3.1 Any formula θG (x ,R) of�GM is R-positive.

This is just a matter of observation, of course, since we have not even
equipped the language �GM with a negation symbol, hence we cannot
produce negative formulas of it. This has an obvious consequence:

Corollary 3.1 The revision operator δG as it was defined in definition
3.6, is an operator associated with a given formula θG (x ,R) of�GM that
is monotone.

Corollary 3.1 is of course a consequence of fact 3.1 and lemma3.2 (and
of definition 3.12, of which the revision operator δG satisfies the require-
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ments). In turn, together with theorem 3.1, this has another important
consequence:

Corollary 3.2 For every formula θG (x ,R) of�GM , the operator δG as-
sociated with it has fixpoints.

So, the revision operator admits fixpoints. The question is: how does
this help us? The shortest answer to the question is given in the form of
the following result:

Theorem 3.2 Let G = 〈{p1, p2}, (Σi
G )i∈{1,2}, uG 〉 be a strict, two-player

game in normal form. Let θG (x ,R) be the formula of �GM providing
us with the defining condition of «rational action» for G . Then, any
hypothesis h = ai b j is a fixpoint of δG if and only if the strategy profile
aGi b

G
j is an equilibrium of G .

Proof : actually, one can convince herself of the statement of the theorem
by means of a simple, indirect argument. So, suppose that this is not the
case and that, in the given two-player game G which is also strict, there
exists an hypothesis h = ai b j which is fixpoint of δG , but such that the
corresponding strategy profile aGi b

G
j is not an equilibrium in the sense

of definition 3.1. This can only mean (see definition 3.1 again), that for
at least one of the players it is beneficial to change her strategy under the
assumption that the opponent will not be doing the same. Let us suppose
that this holds true for player 1. Then, owing to G being strict, this can
only mean that u1(aGh b

G
j ) > u1(aGi b

G
j ) for some aGh ∈ Σ1

G . However, if this
were the case then δG (ai b j ) = ah b ∗ (where b ∗ is either bj , or not), hence
h cannot be a fixpoint of δG , contrary to the assumption. The contra-
diction that follows yields that no such ah exists, and aGi b

G
j is indeed an

equilibrium of G .
A symmetrical argument can be used to show that this is also the case

if player 2 is assumed to have benefits from changing her strategy unilat-
erally, which gives the theorem. QED

That is: fixpoints of the revision operator correspond to equilibria
in a two-player game in normal form G which is also strict. This result
gives us a hint for finally solving one of the two questions we raised about
equilibria, namely: Does any two-player gameG in normal formwhich is
strict always admit equilibria? It turned out that the answer is positive,
which, as long as equilibria are considered to provide us with a ‘solution’
as to what players should do in the situation depicted by G , entitles us
to conclude that any game of that sort always features such solutions in
the form of strategy profiles corresponding to hypotheses being fixpoint
of the revision operator.
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A second questionwas about the ‘quantity’ of equilibria that are given
in one and the same game G . Is it always the case that we have just one
of them? This is what we plan to address in the next section.

3.6. Unique equilibria?

Having shown that fixpoints and equilibria correspond to one an-
other, one may further investigate issues regarding either of the two con-
cepts by pursuing the path that one feels to be more inclined toward to.
The next topic in our agenda is uniqueness, i.e., try solving the clue as
to whether it is always the case that a game G in normal form which is
strict possesses one unique equilibrium. We can anticipate here that the
answer is negative. This can be easily argued for by presenting one sin-
gle counterexample supporting the contrary assertion, even before dis-
cussing some general result that may help us to understand more about
the collection of equilibria in finite games. As a matter of fact, to achieve
the said conviction, it is enough to play a little bit with the distribution of
payoffs over a gamematrix and realize that there is no obstacle in detect-
ing one which features more than one equilibria. Take for instance the
following situation, that comes frommodifying a little bit the distribution
we considered in the game we have used in our discussion from section
2.5:

(-5,-5)

(-10,-3)

(-3,-10)

(-2,-2)

C N

N

C

Now, as long as the strategy profile CC that was indicated as an equi-
librium before is concerned, this has not changed. For, neither of the two
players have anything to gain from changing their strategy unilaterally.
The changes we have made on the payoffs distribution has not affected
that: still, player 1 would pass from a payoff equal to -5 to a lower one,
-10, as well as player 2 that would suffer from an equal loss by deciding
to avoid confessing.

Let us now have a look at strategy profile NN, the situation in which
both players decide to not confessing. The payoff they both get is -2,
which makes of it the most convenient situation for each of them. This
was not so on the basis of the analysis of the game matrix we pursued
in section 2.5. If we look at it now from the viewpoint of player 1, it is
clear that not confessing is indeed the most convenient action to her in
case player 2 also decided to proceed identically, since by changing her
strategy she would pass from scoring -2 to scoring -3:
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(-3,-10)

(-2,-2)

N

N

C

An identical consideration can bemade by looking at player 2’s alter-
native to not confessing, which, in case player 1 decided not to confess,
would bring her passing to scoring -3 instead of -2:

(-10,-3) (-2,-2)

C N

N

This all entails that no player in this gamewould take advantage from
a unilateral change in her strategy in case they have both chosen not to
confess. Therefore, owing to definition 3.1, strategy profileNN is an equi-
librium.

In full agreement with what we have concluded in the previous sec-
tion by theorem 3.2, to the same conclusion one arrives by considering
themethod of revision of hypotheses. For, assume thatNN is the starting
hypothsis, that is, not confessing is rational to both player 1 and player 2.
Then, owing to the fact that both

u1(NN) > u1(CN)

and
u2(NN) > u2(NC)

are the cases, it follows that formulas φ2 and ψ2, which, according
to what we agreed upon in section 3.2, express that action N is the most
convenient reply of player 1, respectively of player 2, in case the opponent
‘plays’ N , are valid relatively to the chosen game and to the hypothesis
NN. This means then that, if h =NN, δG (h) = h, that is, h is a fixpoint of
the revision operator.

So, it is not always the case that one can get a finite game where pay-
offs are distributed among the players according to the strictness require-
ment of definition 3.2, with just one strategy profile that turns out to be
an equilirbium of the game. As it was said, such a conclusion can be given
the form of a general result. For instance, by means of the following the-
orem which establishes the existence, for every monotone operator, of a
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minimum and a maximum fixpoint. The proof of it comes from suitably
modifying the argument used for the sake of proving theorem 3.1 above:

Theorem 3.3 Let Γ : U → U be a monotone operator. Then, there are
subsets IΓ and SΓ ofU such that: (i) IΓ is a fixpoint of Γ and SΓ is a fixpoint
of Γ too; (ii) IΓ is the least fixpoint of Γ (i.e., if X is any other fixpoint of
Γ , then IΓ ⊆ X ); (iii) SΓ is the greatest fixpoint of Γ (i.e., if X is a fixpoint
of Γ whatsoever, then X ⊆ SΓ is the case).
Proof : we already proved, for the sake of theorem 3.1, that

⋂
CΓ , where

CΓ = {X ⊆ U : Γ (X ) ⊆ X } would be a fixpoint of Γ . We can also prove that
this is the least fixpoint. As a matter of fact, assume that Z ⊆ U is also a
fixpoint of Γ . That is, Γ (Z ) = Z which means that, in particular, Γ (Z ) ⊆ Z
is also the case. Hence, Z ∈ CΓ and

⋂
CΓ ⊆ Z .

Now, let
DΓ = {X ⊆U : X ⊆ Γ (X )}

and put
⋃

DΓ = {z ∈U : z ∈ X , for some X ∈ DΓ }
This means, in ordinary set-theoretical terms, that

⋃
DΓ is the gen-

eralized union of all the elements of DΓ and, as such, it contains all of the
elements of sets belonging to DΓ . Therefore, X ⊆ ⋃DΓ holds for every
X ∈ DΓ . By Γ being monotonic and X being element of DΓ , it follows that

X ⊆ Γ (X ) ⊆ Γ (
⋃

DΓ )

is the case for every X ∈ DΓ . So, in particular X ⊆ Γ (⋃DΓ ) holds for
every X ∈ DΓ . It follows that DΓ ⊆ Γ (

⋃
DΓ ) and
⋃

DΓ ⊆ Γ (
⋃

DΓ ) is the case
as well: take any a ∈⋃DΓ , then a ∈ X must be the case for some X ∈ DΓ ,
from which it follows that a ∈ Γ (⋃DΓ ) since X ⊆ Γ (

⋃
DΓ ) holds as stated

(which proves that
⋃

DΓ ∈ DΓ ). Also, by monotonicity of Γ we have

Γ (
⋃

DΓ ) ⊆ Γ (Γ (
⋃

DΓ ))

which means that Γ (
⋃

DΓ ) ∈ DΓ . Owing to that, we conclude
Γ (
⋃

DΓ ) ⊆
⋃

DΓ

by the definition of the latter set. Hence,
⋃

DΓ = Γ (DΓ ) and
⋃

DΓ is
another fixpoint of Γ .

Now, assume that X is another fixpoint too. Thismeans that X ⊆ Γ (X )
holds as a consequence of X = Γ (X ). That is, X ∈ DΓ and X ⊆⋃DΓ is the
case by that.

The theorem then follows by putting IΓ =
⋂

CΓ and SΓ =
⋃

DΓ . QED

Clearly, owing to this theorem, the following also holds:
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Corollary 3.3 Let G = 〈{p1, p2}, (Σi
G )i∈{1,2}, uG 〉 be a strict, two-player

game in normal form. Let θG (x ,R) be the formula of�GM providing us
with the defining condition of «rational action» forG . Then, the revision
operator δG has a least, and a greatest fixpoint IG and SG respectively.

Proof : the result follows from corollary 3.1 and theorem 3.3. QED

The discovery that solutions to games in normal form in the form of
equilibria are not always unique, raises a problem. For, while unique
solutions can be more clearly connected to (the beginning of) a theory of
rational choice which could be both descriptive of how rational agents act
in a certain situation (provided some kind of argument about equilibria
being connected to actual actions of agents), and normative about how
players should act instead, the existence of two and possibly more solu-
tions to one and the samematrix requires some further investigations on
equilibria that may clarify whether or not one can differentiate one from
the other for the sake of the said theory. If the definition of equilibria it-
self (as well as the equivalent notion of fixpoint of the revision operator),
makes clear why they are preferable to strategy profiles that are not equi-
libria, how should we expect that rational agents could decide between
different actions of theirs which belong to different strategy profiles all
of which happen to be equilibria? The lack of a unique solution to finite
games seems to necessarily lead to the discussion of features, and even-
tually to the setting of criteria which make one equilibria favourable to
another.

This, however, turns out to be just one out of many problematic re-
marks that can be made about the concept of equilibrium as solution of
a game. It seems that showing that uniqueness fails gives us the occa-
sion to critically reconsider the preliminary assessment we made of that
concept and try making it more robust.

3.7. The limits of strict games and strict equilibria

Let us go back for a minute to the modified matrix that was used in
the previous section to introduce the topic of uniqueness of equilibria in
finite games in normal form:

(-5,-5)

(-10,-3)

(-3,-10)

(-2,-2)

C N

N

C

The problem we hinted at in the very last paragraph of the previous
section can be concretely formulated with respect to this given situation
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as follows: by searching for equilibria as solutions of the matrix we are
here facing the problem that we have two of them, without any further
clue on how to evaluate which one is better than the other. The problem
sounds evenmore critical if we consider that there is an easy way to carry
out the said evaluation. As a matter of fact, by deciding to both confess,
player 1 scores a payoff equal to -5 and the same does player 2. By not
confessing, instead, they both score more, since by sticking to action N
they are both granted a payoff equal to -2. Now, since one of the crite-
ria we have followed in our justification of equilibria as fixpoints of an
operator ‘extracted’ from a very intuitive definition of «rational action»,
was based upon certain actions being mostly convenient to players ow-
ing to the fact that they ensure them the greatest possible payoff, should
we not applying this criteria in this case, hence concluding that NN rep-
resents a better (i.e., more convenient) solution than CC? The proposal
appears to be quite reasonable. However, there is nothing in the concept
of equilibria that justifies us to apply that way of reasoning in this case
(in fact, in any case). For, strategy profiles which turn out to be equilibria
have been compared with strategy profiles which are alternative to them
only, that is, which are obtained from the one under scrutiny by assuming
just one player to change her mind. This means that strategy profile CC
is compared payoff-wise with strategy profile NC and CN, these strategy
profiles corresponding to the situation in which player 1 is the only player
who changes her mind on the one hand, and to the one in which player 2
does that on the other hand instead. Similarly, strategy profileNN turns
out to be an equilibrium of the game, owing to being most convenient
to both players with respect to alternative strategy profiles CN and NC
where one player at a time is supposed to change her choice of action.
So, no direct comparison between CC and NN is needed for the sake of
determining whether they are equilibria or not.

To stress this fact even further by relying on the geometry of the ma-
trix in a two-player game, alternative strategy profiles which count for the
sake of awarding one of them the prize in the ‘equilibrium competition’
are those lying on one and the same column, as long as the evaluation of
the most convenient option to player 1 is concerned, and on one and the
same row for what concerns player 2 instead. With respect to corollary
3.3we have achieved in the previous section, this leads us to the following
clarification of it:

Fact 3.2 In a two-player, finite game in normal form G that is strict,
no two different equilibria can lie on one and the same row, or on one
and the same column.

This is so in the example we are currently discussing, since strategy
profile CC is on different row and column from those to which strategy
profileNN belongs. This, however, seems just a side observation that let
us progress no further with the issue we are considering, except maybe
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for providing us with a more solid base supporting the impression that
the concept of equilibrium is rather weak since the problem of the lack of
direct comparison between two different equilibria we have just spotted
is somehow intrinsic to the definition of it, or to the procedure by means
of which equilibria are identified.

It should be noticed, however, that fact 3.2 is directly connected with
the strictness requirement of the game involved therein. As a matter of
fact, the payoff distribution in a strict games G causes any two alter-
native strategy profiles that might be involved in a comparison for the
sake of determining which one is most convenient to a player, say ai b j
and ah bj for player 1, to be such that either u1

G (ai b j ) > u1
G (ah bj ) holds,

or u1
G (ah bj ) > u1

G (ai b j ) is the case (where the third possibility, i.e., that
u1
G (ai b j ) = u1

G (ah bj ), is not possible). This means that in case the game
considered is not strict, then fact 3.2 breaks down and it is also possi-
ble for two different equilibria of the game to belong to the same column
or row. Let us consider an example of such situation, which will help
us identifying one further critical aspect of the concept as we have been
knowing it so far.

We are not going to make the example very specific, since the feature
we would like to stress is of a general kind. In particular, we avoid equip-
ping the game below with a story explaining it, and we just present its
matrix, which is tailor-made to let the crucial character we would like to
discuss turn out:

(0,1)

(1,0)

(1,2)

(0,1)

(0,2)

(-1,0)

b1 b2 b3

a2

a1

The situation depicted here is new to us, in the sense that the matrix
above comes from a two-player game in normal form which is ‘asymmet-
ric’ since the two players have not the same amount of actions to choose
among: while player 1 has just two action at hers disposal like before, a1
and a2, player 2 happens to be allowed to choose between b1, b2 and b3.
Take notice of the fact that there is nothing wrong with that, and that our
notion of finite game as we defined it in definition 3.2 allows that such a
situation may occur.

The second fact to notice about the game above that further breaks
the ‘tradition’ of examples that we have been considering so far, is the
payoff distribution. In particular, the fact that, as the reader might have
noticed it already, u2

G (a1b2) = u2
G (a1b3). And that does break the notion
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of strict games from definition 3.2, as it prevents player 2 to have a most
convenient reply to action a1 in case the latter was chosen by player 1.

Finally, observe that strategy profiles a1b2 and a1b3 are both equilibria
in the sense of definition 3.1. For, in the case of the former strategy pro-
file, player 1 gets no advantage from changing her choice of action from
a1 to a2 since she would suffer a loss in score (passing from 1 to 0), and
player 2 is in a similar situation since by changing her action unilater-
ally, she would either pass from scoring 2 to scoring 1 (in case she de-
cided to play b1 instead of b2), or she would score 2 (by deciding to play
b3 instead of b2) which is exactly what she scores already. The analysis of
strategy profile a1b3 gives similar indications since player 1 would not like
to change her choice, which would cause her to pass from scoring 0 to a
lower payoff, -1, and player 2 too would again either loose or score the
same as she scores already by playing b1 and b2 respectively. The conclu-
sion is, as anticipated, that both a1b2 and a1b3 are equilibria, whichmakes
two equilibria in one and the same row in the case considered contrary
to the prescription of fact 3.2 for strict games.

Apart from failure of fact 3.2, which is due, as we said, to the game
here being not strict, the situation now allows us to add a new critical
remark about equilibria. For, imagine player 1 and player 2 who, having
both made the analysis of the game as we have done it, are supposed to
make their choice. The situation is easy for player 1 since both ‘solutions’
in the sense this expression was used up to now, lie on the same row,
which corresponds to a1 as her choice of action. The possibility that she
may gain a positive score or gain no score at all (but avoid suffering froma
loss in score at least), now depends onwhether player 2 is going to choose
b2, or b3 instead. But, how could this choice be possibilymade? Player 2 is
not even in the position of excercising the evaluation that was suggested
with respect to the previous game (when the problem was to compare
equilibrium CC with NN), since the two options she needs to weigh up,
literally weigh the same.

So, by passing to games which are strict to games which are no more
as such, the issue we raised about equilibria gets even worse since not
even the possibility of comparing them in the way we suggested by con-
sidering the game at the beginning of this section (that is, by sticking to
the equilibriumwhich ismost convenient to the players), works anymore.

Someone may find a possibility of escaping the difficulty we are con-
fronting, in noticing that, in the situation that was last considered, the
two equilibria of the game corresponding to strategy profiles a1b2 and a1b3
were not really equivalent, not to both players at least. For, while player
2 would find herself stuck in the impossibility of deciding which one of
them is most convenient to her, this is not so for player 1 who is still in a
position to discriminate between the two strategy profiles and say which
is the one she favours. As a matter of fact, player 1 scores 1 in case player
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2 decided to play b2 and the final outcome coincided with strategy profile
a1b2 then, while she scores 0 in the other case, i.e., if player 2 decided
to play b3 instead. How does this help us with player 2’s indecision? In
no way, if player 1 and player 2 are regarded as opposed to one another
in the game. It does however help us, instead, if they are supposed to
make a choice as a group. For, then one may wish to consider one out-
come «more convenient» to a group of people with respect to another, if
by sticking to it at least onemember of the group gets a higher payoff and
the rest of the group does not loose anything. By applying the said intu-
ition to the case here at stake, one may be led to regard outcome a1b2 to
be preferable to outcome a1b3 for player 1 and player 2 taken collectively.

However, it should be clear that this is no solution to the issue we are
discussing, and for two reasons.

First of all, because this way of looking at things would work only for
those situations in which the players do not act one against the other.
This means that the problem we would solve there, would stay identical
in all of the remaining cases.

Secondly, because once the strictness criterion has been ‘betrayed’,
there is no reason why one should remain faithful to other aspects of it.
Therefore, it would be easy to further modify the distribution of payoffs
of our present example and build a new situation in which player 1 too
is indifferent between the two equilibria of the game (in particular, this
is easily achieved by setting player 1’s payoff in outcome a1b3 from the
matrix above equal to 1).

To be honest, rather thanhelping uswith the issuewewere pondering
over, this way of seeing things from the point of view of social choice adds
some new material to criticize the concept of equilibrium we have been
putting forth as solving games. As a matter of fact, that concept seems to
be well-motivated individualistically, for, if any natural element can be
found in it, that is the idea that no single person would act by preferring
a lower payoff to a greater one; however, the same concept is only poorly
motivated from the point of view of groups taking decisions, for, in that
case, it is equally unlikely that all of its member acted without consider-
ing some sort of collective benefit. So, in the end, this viewpoint makes a
solution to the problem, to the problems in fact we have here discussed,
evenmore urgent. Wewill consider one proposal in this respect in section
3.9 below, and another one in the section following it, and try to connect
both of themwith the approach we have been fostering so far. Before do-
ing that, however, we present an extension of the methodology for ana-
lyzing games tomatrices where payoffs are not distributed over outcomes
in such a way that the strictness requirement is respected. This is done
to let the reader familiarize gradually with modifications which we will
be using for the sake of comprising those refinements to the notion of
equilibrium that will be considered by further reflecting on the topic.
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3.8. When strictness fails

The reader might have noticed that, in our previous discussion of a
game that is not strict, we needed not to adapt the definition of equi-
librium we had come up with by reasoning on a game which was strict
instead. This is because the concept as it was defined by means of defi-
nition 3.1 already accommodates the event of a tie: a strategy profile ai b j
is not an equilibrium according to that definition if and only if there ex-
ists a strategy profile ah bj which is more convenient to player 1 (i.e., such
that u1

G (ah bj ) > u1(ai b j )), or if there exists a strategy profile ai bk which is
more convenient to player 2 instead (i.e., such that u2

G (ai bk ) > u2(ai b j )).
In other words, a strategy profile is an equilibrium in this sense as long as
the payoff that each player gets by sticking to it is greater than, or equal to
the payoff that each player would get by changing her mind and decided
to play differently while the opponents play according to the strategy in
question.

In turn, this observation suggests an easy way to similarly adapt the
definition of «rational action» that we have given in the context of strict
games tomake it suitable for approaching situations like the one we have
been discussing lately. As a matter of fact, what we have just noticed
about the concept of equilibrium legitimates to consider a strategy profile
ai b j in a two-player gameG in normal form (not necessarily a strict one),
more convenient to a player than another if it ensures to her a strictly
higher, or an equal payoff. Therefore, for an action in a strategy profile
to be rational to a player it might be regarded as a sufficient condition
that it ensures to her a payoff that is no less than the payoffs ensured by
all of the alternative actions she could opt for.

Let us make the discussion more concrete by considering again the
example that suggested the crucial observation:

(0,1)

(1,0)

(1,2)

(0,1)

(0,2)

(-1,0)

b1 b2 b3

a2

a1

What we were just saying then, amounts to view a strategy profile as
rational to both players as long as by sticking to it each of them obtains
payoffs which are greater than, or equal to (i.e., no less than) the payoffs
theywould get by changing theirmindwith a unilateral act. This is clearly
verified by both strategy profile a1b2 (since player 1 would score 0 instead
of 1 by changing her choice to a2, that is by causing a2b2 to be the final
outcome, and player 2 would either experience a similar loss by choosing
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b1, or would achieve the same payoff by choosing b3 instead), and a1b3 as
well (due to the same considerations as before), and only by them (as the
reader can easily verify by considering all the other strategy profiles in
the game).

As we did with the corresponding observation with respect to games
where payoffs are distributed in such a way that the strictness require-
ment is verified, we would like to comprise this intuition in a formula of
�GM like the one we built and used for the sake of our discussion in pre-
vious sections. To do that we expand it by means of a new symbol for a
binary relation, · ≥ ·, that we are going to use for the sake of payoff terms
comparison, hencewe use it to produce formulas of the form ui (s ) ≥ ui (t ),
where i is an index identifying one of the players of the game, and s and
t are terms for strategy profiles, with the intended meaning: «the payoff
granted to player i by strategy profile s is greater than, or equal to the
payoff granted to her by strategy profile t».

Let us call� +GM the language that is obtained from�GM by perform-
ing the said extension. Then, one can think of using the additional re-
sources of it to express the previous idea about an action being rational
to a player by means of a formula. In the concrete case we are referring
to for the sake of illustration, the formula stating that b2 is rational in this
sense to player 2, for instance, would turn out to be, owing to the conven-
tion on the notation we made beforehand and that we keep using here,
the following expression:
∨

1≤i≤2
(R(ai )∧ u2(ai b2) ≥ u2(ai b1)∧ u2(ai b2) ≥ u2(ai b3))

Coherently with the modified situation we are considering, action b2
is mostly convenient to player 2 if it ensures no loss when it is used as
reply to the action that is rational to player 1, whatever this one may be.
Let us say that formulas of this sort have been devised for all the actions
available to players. Let us replicate for them the notation we have been
using so far for the sake of comparison, and assume then that we have ex-
pressions φ+1 ,φ

+
2 which express that action a1, and action a2 respectively

are mostly convenient to player 1, while expressions ψ+1 ,ψ
+
2 ,ψ

+
3 (ψ

+
2 coin-

ciding with the above formula) do the same for player 2’s actions b1, b2
and b3 (+’s are used here as a label for formulas of� +GM ).

In turn, these can be gathered together in a definition of «rational ac-
tion» for the game above which corresponds to the following expression:

R(x )⇔Def
∨

1≤i≤2
(x = ai ∧φ+i )
∨

1≤ j≤3
(x = bj ∧ψ+j )

If we proceed in a fashion similar to howwe did with the correspond-
ing definition for games that are strict, and call θ+(x ,R) the defining con-
dition of this R(x ), that is the expression to the right of the symbol⇔Def ,
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we can use it to define an operator for revising hypotheses concerning
what is rational to do to player 1 and player 2 in the given game like we
did with θG (x ,R) and δG for strict games. With two provisos:

1. like in the previous situation, to carry out the procedure we are
hinting at here it is required that a relation of validity correspond-
ing to |=Gh be defined for formulas of� +GM ;

2. unlike what happened with δG , the revision operator defined out
of the said procedure will have the character of a ‘genuine’ opera-
tor rather than a one-to-one mapping between hypotheses.

Proviso no. 1 causes no difficulty as the validity relation that is needed
will differ from the previous one only insofar as we are required to pro-
vide a specific clause for validity of the new type of formulas that count
as expressions of the extended language, namely formulas of the form
ui (s ) ≥ ui (t ). This, however, will be done easily, by reflecting the intended
meaning we are willing to attach to them (in particular, it will be said that
a formula like ui (s ) ≥ ui (t ) is valid in this more precise sense if and only
if ui

G (s
G ) ≥ ui

G (t
G ) is the case).

Proviso no. 2 is a direct effect of the new kind of payoffs distribution
we are facing. As a matter of fact, by supposing a given strategy profile of
the game to be made out of actions that are rational to the players, it may
now be the case that two or more strategy profiles should be regarded
as rational owing to the previous definition. Let us illustrate this fact by
means of strategy profile a1b1 in the previous gamematrix. That is, let us
suppose that action a1 is rational to player 1 and action b1 is rational to
player 2.

As to player 1, this has the effect that action a2 turns out to be most
convenient as it ensures a payoff equal to 1 against b1, which is rational
to the opponent by hypothesis, while a1 only allows her to score 0:

(0,1)

(1,0)

b1

a2

a1

From the point of view of the new definition of rational action, this
causes formula φ+2 to be valid, and this formula only.

The difference with the previous situation comes when we evaluate
the hypothesis from the viewpoint of player 2. For, having supposed that
a1 is rational to player 1, we are looking at things as if we were in player
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2’s shoes and glanced at scores coming second in payoffs pairs lying on
the topmost row of the diagram:

(0,1) (1,2) (0,2)

b1 b2 b3

a1

This would lead us to reject action b1 for sure, which ensures the low-
est payoff. As for the other two possibilities, they should both be retained
as rational since they grant player 2 one and the same payoff. As amatter
of fact, both formula ψ+2 and formula ψ+3 turn out to be valid in this situa-
tion, which means that, having supposed a1 to be rational to player 1 and
b1 to be rational to player 2, we are driven to consider a2 to be rational
to player 1 in the sense of the definition, and b2 and b3 to be rational to
player 2. In terms of strategy profiles, this causes to revise the hypothesis
that a1b1 was rational to the players by the conclusion that both a2b2 and
a2b3 are rational in the end.

The revision operator in this case would be defined to reflect that.
This means that, in particular, if it is given the hypothesis h = a1b1 as
an argument it should return the set H+ = {a2b2,a2b3} as value (where
the use of capital letters is justified by the different kind of objects these
values turn out to be).

The previous observation has an additional effect on fixpoints. For, it
should be clear that no single hypothesis can be fixpoint of such an oper-
ator since, in presence of a tie in the payoffs granted to any of the players,
the value of it will never be a singleton, therefore will never coincide with
the starting hypothesis. The reader can easily convince herself of that by
verifying, owing to an argument which is similar to the one we have just
illustrated, that starting from the hypothesis that a1 be rational to player
1 and b2 be rational to player 2, one similarly concludes that both a1b2 and
a1b3 are rational owing to the definition above, exactly as what happens
under the assumption that a1b3 be rational instead.

To get fixpoints in this case then, we have to think also of arguments
of the revision operator as sets of hypotheses rather than single hypothe-
ses only (which, by the way, is consistent with how fixpoints were defined
in definition 3.9). Then, it turns out for instance that the set of hypothe-
ses H = {a1b2,a1b3} leads to a revised value H+ = {a1b2,a1b3} = H .

Let us suppose that all of the previously mentioned steps have been
taken care of, and that the definition of a modified revision operator, call
it ∆G to mark the difference from the previous δG , has been achieved14.

14It might have occurred to the reader that the two provisos that make the difference
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Having comprised the intuition that boosts the concept of equilibrium
into the new definition of «rational action», which in turn determines
the values of the revision operator exactly as in the previous treatment
of strict games, it does not come as a surprise that one could easily show
that a set of hypotheses H is fixpoint of the (newly defined) revision op-
erator ∆G , whatever two-player game in normal form G is supposed to
be given, if and only if H contains only elements that are equilibria of G
(i.e., if and only if, for every h ∈ H with h = ai b j , aGi b

G
j is an equilibrium

of G). Furthermore, it is just a matter of observation to conclude that
θ+(x ,R) (in fact, any formula θ+G (x ,R) which is obtained by adapting it to
the features of any two-player game in normal form as it was done be-
fore with formulas θG (x ,R)), is R-positive: again, it simply follows from
the fact that in passing from �GM to � +GM no negation sign was added.
Therefore, it follows as a corollary of the these results and theorem 3.1,
the following general proposition which we state here precisely (without
proving, though, having hinted at all the ingredients of its proof), to let
the reader appreciate the difference in scope with respect to theorem 3.2
about finite games which are strict:

Theorem 3.4 Let G = 〈{p1, p2}, (Σi
G )i∈{1,2}, uG 〉 be a two-player game in

normal form. Let θ+G (x ,R) be the formula of� +GM providing us with the
defining condition of «rational action» for G . Then, there exists a set of
hypothesis H which is a fixpoint of∆G , hence, such that hG = aGi b

G
j is an

equilibrium of G for every h ∈ H .

3.9. What if the opponent trembles?

So, every two-player game G in normal form has equilibria, being it
strict or not. However, this does not help us with the issues that were
raised in section 3.7. On the contrary, the result we have just presented
can be taken as matter for arguing how pervasive those issues are, and
how urgent is the need of addressing them. Reasoning on the new situa-
tion that we have started to consider here can be of help. For, it is even

between the modified route we are here describing and the original one, are not indepen-
dent one of the other. For, having noticed that the revision operator should be ‘genuine’ as
we were saying, hence that it should let a set H of hypotheses correspond to a unique set
∆G (H ) = H+, we also would like that the latter set contained hypotheses which are valid,
in the sense specified according to the first proviso, granted H . This means that also the
validity relation should be defined to accommodate the set-theoretic nature of H , while the
previous validity relation |=Gh was introduced for single hypotheses alone. This, however,
can be easily solved under the assumption that a corresponding validity relation has pre-
viously been defined, call it (G , h) |=+, in such a way that (G , h) |=+ θ, where θ is a formula
of� +GM , if and only if this is valid relatively to two-player game in normal form G and to a
single hypothesis h. Then, the required extension of it to sets of such hypotheses might be
defined as a relation (G ,H ) |=+ in such a way that, concerning the modified defining con-
dition θ+(x ,R) of R(x ), we have, for every s ∈ ATERMGM , (G ,H ) |=+ θ+(s ,R) if and only if
(G , h) |=+ θ+(s ,R) for some h ∈ H .
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clearer in a situation where strict distribution of payoffs breaks down,
that one of the most evident shortcomings of the notion of ‘solution’ to
a game we have been referring to so far is the fact that it only requires a
player to reason individualistically: no thought is made about the other
player’s opportunities except for what concerns the attempt of determin-
ingwhere on the gamematrix lies the balance of theirmutual interests. Is
there a reasonable way to deepen the player’s concern for the opponent’s
choice of actions and incorporate it into her attempt of determining her
best reply? In the case which we were analyzing before, which we repro-
duce here again for the reader’s sake, such a more careful study of the
situation might take the form of the following reasoning:

(0,1)

(1,0)

(1,2)

(0,1)

(0,2)

(-1,0)

b1 b2 b3

a2

a1

Having realized that there is no way for her to try deciding between
playing b2 or playing b3 by some other reason, player 2 may be willing
to consider unpredictable events. For instance, what happens if player 1
makes a mistake? What if, having decided to play a1 as it is sensible to
expect, player 1 trembles and ends up playing a2 instead? Is it still indif-
ferent whether I, player 2 would think, decided to play b2 of b3 instead?
The consideration of this possibility causes player 2 to give another look
at the matrix, by also considering what outcomes she would get by play-
ing either of the two actions in question:

(1,2)

(0,1)

(0,2)

(-1,0)

b2 b3

a2

a1

She would then notice that actions b2 and b3 differ indeed in this sce-
nario: for, while b2 would ensure her a payoff equal to 1, b3 would fail
to do so and she would score 0 by choosing it. So, she would conclude,
action b2 ensures the highest payoff in case player 1 plays as she should,
and chooses her best action; if this did not happen, b2 is the action that
allows player 2 to still achieve the highest payoff she could possibily get.
Then, it is superior to action b3, and should be player 2’s choice.
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The previous reasoning suggests that definition 3.1 be changed in the
following way.

Definition 3.13 In a two-player game in normal form a strategy pro-
file is a trembling-hand equilibrium if and only if no player has bene-
fit from changing her strategy unilaterally, even under the assumption
that the opponent may make mistakes.

Let us just consider a couple of situations in addition, to familiarize
further with the new idea. First of all, the following, simple one:

(2,2)

(1,2)

(2,1)

(2,2)

b1 b2

a2

a1

This game is easily seen to have two equilibria, namely a1b1 and a2b2.
As amatter of fact, neither player 1, nor player 2might have any intention
to ‘leave’ the former strategy profile, that is to play differently in case the
opponent does not, since they would both decrease the expected payoff.
Player 1 would indeed pass from scoring 2 to scoring 1:

(2,2)

(1,2)

b1

a2

a1

and so would be doing player 2:

(2,2) (2,1)

b1 b2

a1

The situation is similar with strategy profile a2b2, which is the out-
come player 1 would like to stick to since, by changing her choice of action
to a1, would let her achieve the same score of 2 and get not benefit then:
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(2,1)

(2,2)

b2

a2

a1

The same would hold true for player 2, and her choice of action b2:

(1,2) (2,2)

b1 b2

a2

If these two equilibria are compared with one another both player 1
and player 2 would be indifferent about which one to choose. To realize
that they actually should be preferring strategy profile a1b1, is something
that is now possible to conclude by analizing the situation with the new
intuition behind definition 3.13. As a matter of fact, player 1 notices that
if she plays a2 and player 2 trembles, then she decreases her score from 2
to 1:

(1,2) (2,2)

b1 b2

a2

The same would hold true for player 2, and her choice of action b2:

(2,1)

(2,2)

b2

a2

a1

If strategy profile a1b1 is analyzed under the hypothesis of the oppo-
nent beingmistaken, then it is clear that the result is different. For, player
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1 would be able to maintain her score of 2 even if player 2 trembled and
played b2 instead of b1:

(2,2) (2,1)

b1 b2

a1

On her part, player 2 observes the same:

(2,2)

(1,2)

b1

a2

a1

This would lead them both thinking that playing a1 and b1 better al-
lows them to protect their income against the opponent’s trembles, and
would stick to a1b1 as anticipated.

A more complex situation that can be used to further illustrate the
idea behind definition 3.13, is the following:

(1,2)

(0,0)

(0,2)

(3,1)

(1,1)(2,1)

b1 b2

a2

a1

a3

As an initial observation, let us just notice that the game in question
features two equilibria in the previous sense of the expression (that is,
in the sense of definition 3.1). One of them is strategy profile a1b1 since,
by changing her strategy unilaterally, player 1 would pass from scoring 2
to score either 1, in case she chose action a2, or 0 if she chose action a3
instead:
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(2,1)

(1,2)

(0,0)

b1

a2

a1

a3

As to player 2, by changing her choice of action from b1 to b2, she
would still score 1 (hence, no benefit) in case player 1 stuck to choosing
a1:

(2,1) (1,1)

b1 b2

a1

If we pass to considering strategy profile a3b2, then we notice that
similarly player 1 has no need of changing her strategy unless player 2
also does that. For, instead of scoring 3, she would get a null payoff by
choosing action a2, and just a payoff equal to 1 in case she chose a1:

(1,1)

(0,2)

(3,1)

b2

a2

a1

a3

Player 2, on her part, would also experience a loss, by passing from
scoring 1 to scoring 0 instead:

(0,0) (3,1)

b1 b2

a3
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So, both strategy profiles, a1b1 and a3b2, are equilibria in the old sense.
Yet, the two equilibria are indifferent from the point of view of player 2,
who scores 1 in both cases. This would make it hard for her to decide
whether it is better to play b1 or b2 instead. However, things are differ-
ent if we assume that player 2 weighs the same situation by assuming the
new concept of equilibriumwhichmakes use of the trembling-hand intu-
ition. As a matter of fact, player 2 would easily realize that only strategy
profile a3b2, hence only action b2, manages to protect her from possible
‘trembles’ of player 1: for, by sticking to b2, she would maintain the score
of 1 she gets in case player 1 makes no mistake and plays a3, which is the
same she scores if player 1 mistakenly played a1, while she even increases
her payoff, scoring 2 instead of 1, if player 1 takes a2 as her wrong action:

(1,1)

(0,2)

(3,1)

b2

a2

a1

a3

If player 2 chose action b1 instead, and player 1 would not play a1
as expected by mistake, then her payoff would equally be incremental
in case player 1 trembled and played a2, as she would score 2 (the same
as if she played b2 and player 1 made the same mistake), but she would
experience a loss if only player 1 played a3 by mistake:

(2,1)

(1,2)

(0,0)

b1

a2

a1

a3

Thismakes strategy profile a3b2 the only trembling-hand equilibrium
of the game, and choice of action b2 preferable to b1 for player 2.

Now, even before trying to address the question whether or not it is
possible to incorporate the new intuition into a definition of «rational
action», in a similar fashion as this was done in section 2, it would be
better to anticipate here, as the reader might have already guessed that,
that the new definition too has shortcomings. First of all, it is perfectly
possible to imagine a situationwhere payoffs are distributed in such away
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that equilibria which are clearly preferrable collectively, do not result to
be captured even by making use of the new intuition. This is the case for
instance of the following game:

(1,1)

(0,2)

(2,0)

(2,2)

b1 b2

a2

a1

If analyzed with respect to the original idea of equilibrium, the one
from definition 3.1, both strategy profile a1b1 and strategy profile a2b2
falls under that concept. In the evaluation of the former strategy profile,
it turns out that player 1 would decrease her score by changing her mind:

(1,1)

(0,2)

b1

a2

a1

and the same would be true for player 2:

(1,1) (2,0)

b1 b2

a1

Also, player 1 would not be gaining anything more by passing from
having chosen a2 to choose a1 instead, in case strategy profile a2b2 is ana-
lyzed:

(2,0)

(2,2)

b2

a2

a1

and player 2 too, would have no reason to be the one who wants to
change her mind in that situation:
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(0,2) (2,2)

b1 b2

a2

Out of these two equilibria in the previous sense of the expression,
only one is matching the requirement to be named as such owing to defi-
nition 3.13. However, contrary to any expectation, this is going to be a1b1,
which is also clearly not the one the players would like to choose as they
get less out of it with respect to what they would get if strategy profile a2b2
was the chosen one instead. As a matter of fact, player 1 would notice in
this case that sticking to a1 allows her to even increase her payoff in case
player 2 trembled:

(1,1) (2,0)

b1 b2

a1

and the same is true for player 2:

(1,1)

(0,2)

b1

a2

a1

This is not what happens with the players’ choice if strategy profile
a2b2 is concerned, owing to the fact that player 1 would pass from a score
of 2 to a null score if player 2 trembled in this case:

(0,2) (2,2)

b1 b2

a2

and the situation for player 2 would be exactly the same:
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(2,0)

(2,2)

b2

a2

a1

So, playing the strategy profile a2b2 wouldmean failing for both play-
ers to protect themselves against the opponent’s tremble, which means
that this is not a trembling-hand equilibrium, while a1b1 is.

Another shortcoming of the new intuition comes again by considering
ties. This was the same with equilibria defined according to definition
3.1. One of the reasons we considered for refining the idea behind that
concept was given to us by noticing how poorly equilibria in that sense
of the word allowed us to deal with ties. The same is true with the new
intuition, although, differently fromwhat happened then, ties we shall be
considering now do not involve directly the solutions to a game that are
put forth on the basis of definition 3.13, but are those placed somewhere
else on the game matrix. Let us just say a few words more about that to
explain the problem.

The very intuition we have used to come up with the idea of strategy
profiles being equilibria in the new sense, can be summarized as follows:
the need for the new idea to step in is the existence of a tie in the game,
that is, the existence of two ormore actionswhich are equally good replies
to one and the same action chosen by the opponent; in the worst case,
such a tie involves actions occurring into strategy profiles that turn out
to be equilibria in the sensewe previouslywere referring to as solutions of
the game (as it was happening in the situation we have used for the sake
of our critical re-consideration of that concept in section 3.7, and that we
kept using as our running example through section 3.8). Suppose we do
have two strategy profiles of this sort, ai b j and ah bj , and let us say that
player 1 is in trouble since ai and ah are indeed the best reply of hers to
action bj of player 2’s, but they both ensure her one and the same payoff.
Then, player 1 would be inspecting the matrix of the game and consider
all strategy profiles that turn out from it by supposing that player 2 may
tremble. She would be interested in particular in those actions combina-
tions which comprise ai and ah as her own reply to player 2’s action, and
would compare them pairwise: ai bk with ah bk , ai bl with ah bl , and so on.
She would then be in a position to make a choice between playing ai or ah
when she is able to locate one strategy profile in that list in which one of
the two actions is best reply to player 2’s action, that is, grants her a bet-
ter payoff than the one granted to her by the alternative action. To make
this possible and for the new intuition to be applicable, while it is true in-
deed that the game need not to be strict as a whole, strictness cannot fail
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everywhere, at least not on startegy profiles which, like those in the list
before, are obtained for the sake of testing what is the achievement that
any two, or more actions of a player that are best if the opponent played
rational, allows her to accomplish against the opponent’s trembles. We
call games whose matrix meets this requirement quasi-strict.

Quasi-strict games do admit an exact definition, which we reproduce
here for the sake of completeness. We warn the reader, however, that the
combinatorics required by it canmake it hard to understand. We suggest
then to go through it by keeping in mind the intuitive explanation of it:

Definition 3.14 Let G = 〈{p1, p2}, (Σi
G )i∈{1,2}, uG 〉 be a two-player game

in normal form. Let s , s ′, . . . , s ∗, . . . , s †, s ‡, . . . , s #, . . . be used to refer to strat-
egy profiles in G , that is for actions combinations of the form ai b j for
ai ∈ Σ1

G and bj ∈ Σ2
G . Let SG be a shorthand for the set of such strat-

egy profiles in G . Also, for every strategy profile s , we indicate by si for
i ∈ {1,2}, player pi action in s (i.e., if s = ai b j then s1 = ai and s2 = bj ).
Then, we put:

1. For any two strategy profiles s , s ′ and for every i ∈ {1,2}, we say
that s =i s ′ holds if s and s ′ contain the same strategy for player
pi but are not identical (that is, if si = s ′i but s j �= s ′j for pj with
j �= i );

2. G is quasi–strict if, in case there exists i ∈ {1,2} and s , s ′ ∈ SG with
s �=i s ′ and ui

G (s ) = ui
G (s
′) =max{ui

G (s
′′) | s ′′ ∈ SG , s ′′ �=i s}, then there

are s ∗, s † ∈ SG such that:
2.1 s ∗ =i s , s † =i s ′, s ∗ �=i s † and ui

G (s
∗) > ui

G (s
†) or ui

G (s
†) > ui

G (s
∗);

2.2 if ui
G (s
∗) > ui

G (s
†), then for all s ‡ ∈ SG , if s ‡ =i s †, then ui

G (s
#) ≥

ui
G (s

‡)where s # =i s ∗ and s # �=i s ‡;
2.3 if ui

G (s
†) > ui

G (s
∗), then for all s ‡ ∈ SG , if s ‡ =i s ∗, then ui

G (s
#) ≥

ui
G (s

‡)where s # =i s † and s # �=i s ‡.15

Granted that quasi-strictness is a necessary requirement to the new
intuition we are considering, let us focus on that. To keep things simple,
let us do more. Let us consider a concrete example like the one from
which this whole thread of thoughts started and let us take it up again
here:

15Notice that, according to part 1 of this definition, in a two-player game we have that
s �=i s ′j holds if and only if s = j s ′ does not hold for every strategy profiles s , s ′. However, this
is no more true in n-player games for n > 2. This makes it redundant for the G considered
here to require, in part 2.1 of the definition, that s ∗ �=i s † holds, since s ∗ =i s and s † =i s ′
already imply that s ∗j = s †j is the case for j ∈ {1,2}with j �= i . Although we are not concerned
with the extension of this approach to the n-player case (not until section 3.11 at least), we
preferred to give the reader the ‘full’ definition, which goes through that general situation
also. In addition, notice that in a quasi-strict game in normal formG , for no player are there
actions which are fully equivalent (i.e., actions which guarantee the same payoff under all
possible circumstances).
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(0,1)

(1,0)

(1,2)

(0,1)

(0,2)

(-1,0)

b1 b2 b3

a2

a1

Roughly speaking, the idea we have put forth to deal with cases like
this one goes as follows: as long as strictness is in place use that; when
it fails, resort to the trembling-hand intuition to solve ties. As a matter
of fact, definition 3.14 does not exclude that the game G that is consid-
ered there be strict. The quasi-strictness prescription of part 2 of it only
takes place if strictness fails. This means that the collection of quasi-
strict games does contain strict games also as elements. If we are willing
to provide ourselves with a new definition of «rational action» in a game
that is quasi-strict, the possibility that it must be applied to strict games
cannot be dismissed. However, we have already devised an approach for
quasi-strict games of this peculiar sort, have not we? Therefore, if the
game we are considering is strict, an action is rational if and only if the
same defining condition we were using so far is valid.

So, suppose that wewish to determine and comprise this condition in
a formula of language�GM , when it is the case that a1 is rational to player
1 in the previous game. Owing towhat we just noticed, the possibility that
game G be strict cannot be ruled out (even though it is clear that G is not
so by looking at its matrix), because we are willing to devise a definition
of rationality for actions that may work for all quasi-strict games. As we
said, ifG were strict, then a1would be rational to player 1 in case it was her
best reply to the action that is rational to player 2. That is, if the following
formula of�GM

∨
1≤ j≤3

(R(bj )∧ u1(a1bj ) > u1(a2bj ))

is valid. Let reference to this formula be shorthened by calling it
Strict11 (where indices are chosen to keep track of the fact that it ‘says’
that action a1 is strictly the best choice to player 1 – the upper 1 indicat-
ing the player’s number, the lower one being connected with the action
term index). This just replicates for the case here at stake the intuition
that was used for the sake of defining the property «rational action» for
all elements in the class of strict games: it indeed allows us to pick a1 if
the latter is the most convenient reply of player 1 to player 2’s rational
action.

Although G might be strict, it is also possible that it is not. In that
case actions that are rational to the players are selected by making use
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of the trembling-hand intuition. In the case of a1 from the game matrix
above, this intuition corresponds to a situation in which, given the action
that is rational to player 2, say b1, a1 fails to be strictly the best choice that
player 1 canmake because it happens to grant her the same payoff that a2
does. However, it turns out to be the action that better protects her from
player 2’s trembles, for instance, because it also ensures a payoff that is
not less than those granted to player 1 by a2 with respect to one of the two
actions on which player 2 may tremble, say b3, but does ensure a strictly
better payoff than a2 when conceived as a reply to the remaining action
of player 2’s.

This idea, literally correspond to the validity of the following formula
of�GM :

(R(b1)∧ u1(a1b1) = u1(a2b1)∧ u1(a1b2) > u1(a2b2)∧ u1(a1b3) ≥ u1(a2b3))

(the reader might have noticed that the identity sign = here is ap-
plied to payoff terms of �GM , which is different from how things used
to be in previous sections; this however can be fixed by a routine addi-
tion of a clause in the defining condition of the set of formulas of�GM to
allow such a modified use). Alternatively, it may happen that a1 should
be chosen according to the new intuition behind the refined concept of
equilibria from definition 3.13, because it does at least as good as a2 as a
reply to b2, but it beats a2 if chosen in response to b3 instead. That is:

(R(b1)∧ u1(a1b1) = u1(a2b1)∧ u1(a1b2) ≥ u1(a2b2)∧ u1(a1b3) > u1(a2b3))

These possibilities together can be comprised in just one single for-
mula of�GM , bymeans of the disjunction sign (since it is either one case,
or the other that indicates that a1 is the best reply by player 1, in the sense
of the trembling-hand intuition, to the rational action b1 by player 2).
Let again reference to this compound formula be shortened by referring
to the said disjunction as Tremb1(1,1), that indicates that action a1 is the best
reply that player 1 can stick to in response to rational action b1 of player 2
(again, the upper 1 being the index that refers to the player, and the lower
pair of numbers being those that keep track of the actions we are consid-
ering: the first element of the pair being the index of player 1’s action, the
second the index of the action of player 2).

Let us suppose that formulas Tremb1(1, j ) of�GM for j ∈ {2,3} have been
devised as well. Owing to the convention on the notation we have made,
formulas Tremb1(1,2) and Tremb1(1,3) express the fact that a1 is the best reply
by player 1 in the trembling-hand sense to rational actions b2 and b3 re-
spectively.

Let also φ′1 be the following formula of�GM :

φ′1 = Strict
1
1

∨
1≤ j≤3

Tremb1(1, j )
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This formula expresses the fact that action a1 represents player 1’s
most convenient choice because either it is strictly the best reply to the
action that is rational to player 2, or because is the best way by means of
which player 1 can protect herself from player 2’s trembles.

Suppose that formulas φ′2, which says of a2 what φ′1 says of a1, as well
as formulas ψ′j with j ∈ {1,2,3} doing the same for actions b1, b2 and b3
respectively, have also been devised by obviously modifying the formulas
considered above. Then, we are in a position to use these formulas to
piece together a new definition of «rational action» for the game under
consideration which looks like the previous one:

R(x )⇔Def
∨

1≤i≤2
(x = ai ∧φ′i )
∨

1≤ j≤3
(x = bj ∧ψ′j )

The main difference is that formulas φ′i andψ
′
j this is made out of in-

corporate the intuition behind definition 3.13 of trembling-hand equilib-
ria. As a consequence, if we suppose then that a new revision operatorδ ′G
has been defined by modifying what we did in section 3.4 with definition
3.6, then we would expect that fixpoints of δ ′G coincied with trembling-
hand equilibria of the game. This can be easily verified in our running
example by means of the following informal reasoning.

Suppose then h = a1b2. Since b2 is assumed to be rational, a1 is easily
seen as the best reply to it that player 1 can choose:

(1,2)

(0,1)

b2

a2

a1

It follows then that formula u1(a1b2) > u1(a2b2) is valid relatively to G
and the given hypothesis, which yields that Strict11 is also valid, and φ

′
1 as

well. Therefore, presuming that θ′G (x ,R) indicates the defining condition
of the new definition of «rational action» (i.e., the big formula that is
placed right-hand to the definition sign⇔Def ), we have that θ

′
G (a1,R) is

valid relatively to this G under the hypothesis that b2 is rational to player
2.

On the other hand, with a1 being rational by hypothesis, it results
from the game matrix that b2 and b3 do equally well as player 2’s reply to
it:
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(1,2) (0,2)

b1 b2

a1

Thismeans that the formula u2(a1b2) = u2(a1b3) of�GM is valid in this
setting. The new idea of equilibrium suggests that to solve ties of this sort,
players would go and see how the actions behave with respect to possible
trembles of the opponent. Here we have just one of them, and inspection
of the game matrix in this case makes b2 better than b3:

(0,1) (-1,0)

b1 b2

a2

This corresponds to formula u2(a2b2) > u2(a2b3) being valid. This is
enough to conclude that Tremb2(1,2), which expresses that action b2 is the
trembling-hand best reply by player 2 to action a1,16 is valid and ψ′2 is
valid as a consequence of it (since it contains the previous formula as
one of its disjuncts). Therefore, we conclude that θ′G (b2,R) is similarly
valid in this case which, together with what we concluded above, yields
δ ′G (a1b2) = a1b2 as expected.

As the reader can easily verify herself, this is the only strategy profile
providing us with a fixpoint of the modified revision operator. More-
over, the analysis we have performed can be taken as paradigmatic of
what happens in the general case. As a matter of fact, having carried
out things in all details would put us in the position of proving a general
result which, like theorem 3.2, establishes the exact correspondence be-
tween fixpoint of the modified revision operator δ ′G and equilibria in the
sense of definition 3.13. So, the new intuition for solving ties that allowed
us to stress the defects of the previous definition of equilibrium in a finite
game, is prone to being approached by the same methodology. Alas, this
intuition works well only on games which are quasi-strict. This means
that it is not difficult to come up with situations that we are uncapable of
coping with by means of it. Hence, some new idea is required to enlarge
the number of games we can solve.

16Recall that in the pair of numbers which serves as the lower index of formulas of this
sort, the first element is the index of the action by player 1 and the second element is the
one indicating player 2’s action.
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3.10. Proper equilibria

Let us consider now the following situation:

(5,5)

(-2,7)

(5,5)

(3,6)

(8,2)(0,0)

b1 b2

a2

a1

a3

This is again a situation that requires some deal of reflection. Not
really forwhat concerns player 1’s actions, since the situation is clear from
that respect. For, in case we suppose b1 to be rational to player 2, for
instance, then certainly player 1 would have no doubts in choosing a2 as
a reply to it owing to how payoffs are distributed to players in this game:

(0,0)

(5,5)

(-2,7)

b1

a2

a1

a3

No doubts also would she have in case player 2’s rational choice of
action were b2 instead, since a1 would stands out as a natural reply to it:

(8,2)

(5,5)

(3,6)

b2

a2

a1

a3

The situation would be different from player 2’s angle. For, while she
would have no doubts either, both in case action a1 were rational to player
1:
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(0,0) (8,2)

b1 b2

a1

and in case a3 were rational instead:

(-2,7) (3,6)

b1 b2

a3

player 2 would have more difficulties in establishing what she is sup-
posed to reply to player 1’s choice of action, if action a2 were the rational
one to pick. As a matter of fact, player 2 in this case would have to face a
tie similar to those we became acquainted with in the previous section:

(5,5) (5,5)

b1 b2

a2

Then, she might be willing to solve it according to the «trembling-
hand» intuition. She would then consider player 1’s possible trembles.
By looking at a1 first, player 2 would then realize that b2 offers her the
best way to protect her score, as it is clear by looking at the two top-most
rows of the game comparatively:

(0,0)

(5,5)

(8,2)

(5,5)

b1 b2

a2

a1

But then, to make her final choice, player 2 would have to consider
the other tremble of player 1’s, since it might well be possible that her
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opponent’s mistake would lead her to play a3 instead of a2. Then, a look
at the two bottom rows of the game would lead player 2 to make an un-
pleasent discovery:

(5,5)

(-2,7)

(5,5)

(3,6)

b1 b2

a3

a2

Payoffs now indicate that b1 is instead the action to choose to prevent
the opponent’smistake: for, under the said circumstance, it allows player
2 to increase her payoff up to 7, while choosing b2 would raise it only up
to 6.

Here lies the problem with all that, since we are not prepared to deal
with such a split decision, when by considering one mistake of the op-
ponent we are lead to choose one action, which is not the same one we
are lead to choose by considering another possible mistake in the same
game. The conclusion is not surprising since, by glancing at the game
matrix as a whole first we would have realized that it does not respect
the quasi-strictness requirement of definition 3.14. This means that the
intuition that brought us to the modified concept of equilibria from def-
inition 3.13, is not good to deal with it. This also means that the concept
of trembling-hand equilibrium we came up with must be further refined
and we need an idea for that. The idea we might are now willing to test
in this respect is the following.

Finding herself in troubles, player 2may be glancing again at the pay-
offs distribution just to suddenly realize that she was making a mistake:
she was considering both trembles as if they were the same, while this is
clearly not the case. The point is that, if player 1’s trembles are actions
chosen by mistake, then they should reflect how costly these are to her.
For, it seems fair to assume that player 1 would not be making a mistake
that costs too much to her because she would be paying a lot of attention
to avoid that and double-check what she is doing to ensure she is not do-
ing anything stupid. Rather, it is more probable that she could be more
superficial while overseeing choices that are close to one another, as long
as the payoff they ensure is concerned. In the situation above, this line of
reasoning would lead player 2 to notice that mistaking a3 for a2 is indeed
a costly error, since it causes player 1 to pass from a score of 5 to a score
of -2 (which is a loss equal to 7 on that side of the matrix) if player 2 hap-
pened to play b1, and from a score of 5 to a score of 3 (i.e., a total loss of
2) if player 2’s choice of action were b2 instead:



102 COURSE NOTES ON FINITE GAMES AND RATIONAL CHOICE

(5,5)

(-2,7)

(5,5)

(3,6)

b1 b2

a2

a1

In particular, this is a more costly mistake than choosing a1 instead
of a2, since player 1’s loss is equal to 5 if player 2 played b1, and is even
beneficial to player 1 in case player 2 played b2:

(0,0)

(5,5)

(8,2)

(5,5)

b1 b2

a2

a1

So, player 2 would conclude that player 1’s first mistake is unlikely,
while the other is rather possible and it is the only ‘proper’ mistake she
has to protect herself from. Since u2(a1b2) > u2(a1b1), then b2 does better
against a1 and she ends up playing b2.

The idea we are making use of to solve ties which would remain un-
resolved if approached by the intution we were using up to now, is easy
to comprise in a definition that refines the concept of «equilibrium» in a
game in the following way:

Definition 3.15 In a two-player game in normal form, a strategy pro-
file is a proper equilibrium if and only if no player has benefit from
changing her strategy unilaterally, even under the assumption that the
opponent may make mistakes that are not costly to her.

Of course, it is required to make the idea of a ‘costly’ mistake pre-
cise for actually making it usable. Moreover, like it was the case before
with the refinement that brought us to complete the definition of «equi-
librium» as it was given originally with the trembling-hand intuition, one
may wonder whether it is possible to incorporate this idea into our fix-
point machinery of revision of hypotheses. The good news is that we can
address both issues at once, since dealing with the latter will also make
clear how one can deal with the other.

As amatter of fact, while trying to think how to use the above intuition
to further modify the definition of «rational action» in finite games and
make it usable for the sake of solving games that are not quasi-strict, we
are required to state precisely (and in a formal way) whatmakes player 1’s
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mistake of choosing a3 instead of a2 more costly, hence less probable than
her mistake of choosing a1 in place of a2. This has to do, according to the
analysis we have put forth, with howmuch she is expected to accomplish
by the two mistakes in question. The idea is that the less convenient is
the mistake, the less probable it is. Or, which is the same thing, the more
convenient it is, the more probable it is. Concretely speaking, the whole
matter is explained owing to the fact that, in the game above, we have
that both

u1(a1b1) > u1(a3b1)

and
u1(a1b2) > u1(a3b2)

are the cases. The simple truth is: to play a1 is more convenient to
player 1 than a3, whatever is the choice of action made by player 2. So,
according to what we said, player 1 would not be making a mistake by
choosing a3 when she is supposed to play a2: she would be too much
careful to avoid that mistake, since she has so much to loose. Then, if
any mistake of hers is possible, this will be likely the be the other one,
that leads her to mess up with a2 and a1 instead.

Let us now recapitulate one by one all the ingredients needed to apply
this new intuition to make things clear, and what is the requisite of an
action in the game, say b2 of player 2, to be picked as reply to a2 because
it embodies the intuition behind definition 3.15.

First of all, having supposed a2 to be rational to player 1, it must be
the case that b1 and b2 ensure one and the same payoff to player 2. If a tie
was not present, no problem for player 2 would have ever occurred while
going through the various alternatives. Then, this situation corresponds
to what expresses the following formula of�GM :

R(a2)∧ u2(a2b1) = u2(a2b2)

Let us call it 1Prop2(2,2) to say that this is the first part of the formula of
�GM which is globally valid when action b2 is rational to player 2 owing
to the properness intuition of definition 3.15, under the hypothesis that
a2 is rational to player 1 (where, like before, the upper index indicates
the player to whose action the properness intuition is applied, while the
lower pair of indices contains the index of the action by player 1 which is
rational by hypothesis first, and the index of the action of player 2 that is
conceived as the reply to it).

Secondly, it also must be the case that the «trembling-hand intu-
ition» must be unusable for both b2 and b3, which means, owing to what
we did in section 9, that both formulas Tremb2(2,1) and Tremb2(2,2) fail to be
valid. To put things in this way may cause troubles since, in order to ex-
press the failure of a formula in our formal language, we would be forced
to introduce a negation sign which we have not been using so far. This,
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in turn, may lead us to produce a formula which is no more R-positive,
with no way of making use of the results about fixpoints of monotone op-
erators we have hinged upon up to now. Luckily this is not needed. As
a matter of fact, it turns out that what we are required to refer to here is
the payoff distribution that causes quasi-strictness not to apply, and this
amounts to assume that the following holds:

(u2(a1b1) = u2(a1b2)∧ u2(a3b1) = u2(a3b2))∨
(u2(a1b1) > u2(a1b2)∧ u2(a3b2) > u2(a3b1))∨
(u2(a1b2) > u2(a1b1)∧ u2(a3b1) > u2(a3b2))

That is: either the game is not quasi-strict because b1 and b2 ensure
one and the same payoff to player 2 if played against both a1 and a3, or
it fails because b1 is strictly best in one case and b2 is strictly best in the
other, or it fails because the reversal situation is taking place. Let the
formula above be indicated as 2Prop2(2,2).

Finally, it must be the case that b2 does better than b1 against the less
costly mistake of player 1’s, which, according to what we were noticing
above, turns out to also correspond to the validity of a formula of �GM .
In particular, to the one that contains the following part:

(u1(a1b1) > u1(a3b1)∧ u1(a1b2) ≥ u1(a3b2)∧ u2(a3b2) > u2(a3b1))∨
(u1(a1b1) ≥ u1(a3b1)∧ u1(a1b2) > u1(a3b2)∧ u2(a3b2) > u2(a3b1))

(that is: a3 is a less costly mistake than a1 to player 1 and b2 is a better
reply to it than b1), when is put together by means of a disjunction sign
in between, with the following one:

(u1(a3b1) > u1(a1b1)∧ u1(a3b2) ≥ u1(a1b2)∧ u2(a1b2) > u2(a1b1))∨
(u1(a3b1) ≥ u1(a1b1)∧ u1(a3b2) > u1(a1b2)∧ u2(a1b2) > u2(a1b1))

whichmeans that a1 is a less costly mistake than a3 instead, and again
b2 is a better reply to it. Call 3Prop

2
(2,2) the disjunction of these two formu-

las, and let Prop2(2,2) be the formula of�GM that is obtained by conjoining
all these three parts together, that is to correspond to the expression:

(1Prop∧ 2Prop2(2,2) ∧ 3Prop2(2,2))

Suppose also that formulas Prop2i ,2 for i ∈ {1,3}have also being devised
to mean that b2 is player 2’s proper best reply under the hypothesis that
a1 is rational to player 1, a3 is rational to her respectively.

Let also Strict22 and Tremb2( j ,2) for j ∈ {1,2,3} be as before. Then, let ψ′′2
be set as corresponding to the following formula of�GM :

Strict22
∨

1≤ j≤3
(Tremb2( j ,2) ∨ Prop2( j ,2))
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This expression can be taken to mean the following: either the game
is strict and b2 is strictly the best reply of player 2 to the rational action
of player 1, or the game is quasi-strict and b2 is the reply of player 2’s to
the rational action of player 1 which is the most robust one to possible
mistakes of hers, or the game is not quasi-strict and b2 is the action that
player 2 should pick owing to the properness intuition.

Let ψ′′1 be the expression of �GM that says of b1 what ψ′′2 says of b2.
Let us also suppose that formulas φ′′i for i ∈ {1,2,3} have equally being
devised. Then, the definition of «rational action» for the game under
consideration turns out to be the following:

R(x )⇔Def
∨

1≤i≤3
(x = ai ∧φ′′i )
∨

1≤ j≤2
(x = bj ∧ψ′′j )

Notice that: (i) the logical structure of the formula has not changed;
(ii) the defining condition is set to apply also to situations where quasi-
strictness fails; (iii) the defining condition is R-positive, hence the revi-
sion operator δ ′′G we are now in a position to define out of that would be
monotone, and subject to the application of results about the existence
of fixpoints which are likely to correspond to proper equilibria.

3.11. Generalizing the analysis to all finite games

As the readermight have guessed it already, it is easy to come upwith
situations that would make useless even the new intuition of properness.
In the end, it is just a matter of playing well with payoffs, like we have
done here bymodifying the score for players in the game we have consid-
ered in the previous section:

(5,5)

(2,7)

(5,5)

(3,6)

(8,2)(0,0)

b1 b2

a2

a1

a3

The new state of the game is the effect of having turned what was a
negative payoff delivered to player 1 in strategy profile a3b1, into a pos-
itive one. It should be clear that even such a small change in the game
can make the previous analysis ineffective. As a matter of fact, that was
depending upon one of the possible mistakes by the opponent of player 2
being costly the most to her. In turn, one action was regarded to be more
costly than another in case a player has a lotmore to loose by playing that,
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hence if the payoff she gets in all strategy profiles involving it is always
strictly less than the payoff she would get by choosing some alternative
action instead. This is no more so in the new version of the game: by
mistakenly choosing a1 instead of a2, which we suppose to be the rational
action to play, still player 1 gets a score of 8 in case the opponent plays
b2, that is greater than the score of 3 she would get by playing a2 instead;
however, she nowgets a payoff of 2 by playing a2 which is higher thatwhat
she gets by playing a1, that entitles her to score 0, in case player 2 played
b1. This means that there is no more a clear indication as to what is the
most costly mistake of hers. Therefore, player 2 has no way of choosing
what to play under the hypothesis that a2 be rational to player 1, and solve
the tie like she was doing beforhand by means of the new idea of proper
equilibrium.

So, just in case one was wondering whether the analysis by means of
which we had happily resolved the problems bothering us in the previous
section could be extended to all finite games, the plain answer is: no, we
need somethingmore. Rather than keep going this way, however, we feel
that a change in the path we have been following could be more benefi-
cial. This is not because we have run out of ideas on how to fix the bug.
For instance, one may wish to apply a different approach by measuring
the risk involved into playing certain actions rather than others, and use
that as amean for deciding a player’s responding strategy. This approach
could be fine-tuned in such a way to profile different kinds of players, like
the risky one, who would always be inclined to run the risk involved into
playing a given action, or the conservative one, who would be willing to
run the risk only at certain favourable conditions.

It is not even true that we abstain from going into the deatils of these
refinements because they just do not fit the methodology we have been
incorporating our ideas into. Quite on the contrary, it is not difficult to
express these ideas about risk and conservation intomutual relationships
of payoffs in such a way that a new version of the defining condition of
«rational action» in a game is reached, and a new definition of the re-
vision operator along with it, to turn the problem of finding equilibria
in the new form into the problem of calculating the fixpoints of it. How-
ever, I feel that what we have been treated here suffices for accomplishing
the original aim of the chapter, which was meant to introduce some ba-
sic concepts in the treatment of games in normal form, as well as to let
the reader get acquainted with the methodology for dealing with them I
wanted to foster. To go on with further proposals for refining the con-
cept of equilibrium, would not allow us to get anything more and, most
importantly, would not allow us to reach a stage where all the problems
we have been mentioning here get solved (on the contrary, some new,
controverial issues would be piled up along the way).

Moreover, I have another reason for changing subject. This reason is
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connected with a new territory I feel we should explore, or, rather, with
an area of the territory we have been exploring that has not been given
the attention it deserves. This area is naturally connected with the idea
of games in general, and with the idea of strategic thinking in general.
Games offer us the opportunity to experiment with situations in which
strategy is crucial, since players are required to make choices by taking
into account both their goals and the goals the opponents are after. To
find a solution that is optimal for the situation, it is required to think
strategically. Normal form games, however, are a ‘static’ domain. The
action of players is somehow ‘freezed’ and only the payoffs distribution
is left as the preeminent parameter that drives the players’ choices. This
is so distant from how things happen in life, where the dynamic of the
situation is another aspect to cope with. To get closer to the real thing,
we would like to put some dynamics into games as we have considered so
far. This is what we will be doing in the next chapter.

3.12. Bibliographical note

Games where introduced as objects for mathematical treatment in
the pivotal book by John von Neumann and Oskar Morgenstern (von
Neumann and Morgenstern 1944). Their idea was to open a new field of
economic studies, which could use games as a tool for modeling agents’
behaviour in a variety of situations according to a view that von Neu-
mann in particular had envisioned earlier (von Neumann 1928). Despite
the deep influential role played by this source, the actual theory of games
(where by «actual» I mean closer to the type of approach to the issue we
are pursuing in this volume), is the result of extensions and generaliza-
tions of von Neumann and Morgenstern original theory that took place
in the decades following the publication of their book.

Among those who should be mentioned for having played a major
role in this sense is the Americanmathematician John F. Nash, who pub-
lished a few seminal papers in the early 1950’s (Nash 1950a, 1950b, 1951),
that eventually brought him to win the Nobel prize in Economics in 1994.
Nash ismostly responsible for the theory of equilibria in finite games that
we have been treating here from section 3.2 onwards. Actually, the no-
tion of «equilibrium» as we have tried to frame it by means of definition
3.1 is commonly named after him, since it is the subject of one of Nash’s
most famous results about the existence of solutions of this sort in any
finite game. Nash’s proof was obtained by making use of other known
results, primarily a theorem about the existence of fixpoints of continu-
ous mappings named after the Dutch mathematician L.E.J. Brouwer.

The approach to equilibria we have proposed in this chapter does fol-
low a different route, although it is one still centered on fixpoints as we
have seen. There are two major sources for that. On the one hand, as
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far as classical results like theorem 3.1 from section 3.5 about fixpoints
of monotone operators are concerned, we have been referring to results
that have become standard references forwork dealingwith iterative con-
structions like (iterated) inductive definitions.

Inductive definitions play a major role in researches involving the
formal methods of logic, for the simple reason that inductive definitions
are, in a sense, the backbone of those methodologies themselves. To get
a quick idea of how deep is this relationship, the one between logical re-
searches and inductively defined concepts, take formal languages like the
language �GM we have been defining starting from section 3.2, in order
to actually describe by means of its formulas what goes on in a gamema-
trix. This language is based on inductive definitions, as all of its syntax
is inductively defined. Moreover, so is the semantics we have associated
with it via the relation |=Gh .

In addition to what we have just noticed about the relation, which
turns out to be a strong one, between logically driven accounts and in-
ductive definitions of concepts, inductive definitions do also play amajor
mathematical role. Roughly speaking, this can be related to induction, in
the form of complete induction, being possibly the most distinctive prin-
ciple of the branch of number theory known as artithmetic. In fact, the
principle of induction is a principle of proof, rather than a defining princi-
ple, but the fact that this makes proofs by induction so pervasive in areas
related to the theory of natural numbers is enough to explain also why so
are definitions by induction, since only collections of elements that are
inductively defined are prone to be analyzed by arguments of that (in-
ductive) sort.

Both remarks we have just made explain why inductive definitions
have attracted the attention of scholars dealing with issues in the foun-
dations of mathematics. A summary of the work done by specialists up to
the 1970’s, is themonograph edited byW. Buchholz and others published
at the beginning of the 1980’s (Buchholz et al. 1981). A concise update
of the work done in the area, which is more accessible to those lacking
the expertise required to go through research papers on the subject, is a
later article by S. Feferman (Feferman 2010) who was among the main
contributors to the subject.

Anyway, iterated inductive definitions have little to do with what we
have been dealing with, except for the fact that they provided scholars
with a ground for the applications of results we have mentioned, as it
was said, the most important of which is theorem 3.1, which states the
existence of fixpoints for monotone operators. That theorem is usually
named after two Polish mathematicians, Bronisław Knaster and Alfred
Tarski, who are responsible for having first presented a proof of the re-
sult (Knaster and Tarski 1927). The short note is contained in the part
of the Annals of the Polish mathematical society devoted to scientific
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reports coming from the Varsaw section of the society. Constructions
involving the use of operators in iterative form eventually reaching fix-
points, have become very popular in the area which studies the concept
of truth for formalized languages, particularly after the proposal made in
the mid 1970’s by philosopher Saul Kripke (Kripke 1975) for dealing with
it. This also is a field of studies which features a seminal contribution by
Alfred Tarski (Tarski 1935), which was first published in Polish in 1933
and then subsequently translated in English, although this is not related
to the previously mentioned joint work with Knaster.

Formal theories of truth originate in turn in the study of paradoxes,
which has a even longer tradition and appears nowadays as a complex
area of research (Cantini and Bruni 2017, being a comprehensive source
to get an idea of how back and how deep goes the topic in the history
of contemporary logic, and how ramified looks today the network of its
connections to other topics). Paradoxes, as well as formal truth, are con-
nected with circularity, and this is where the approach to the concept
of «rational action» in finite games we have proposed here originally
comes from. As a matter of fact, the machinery of making hypothesis
and revising them for the sake of escaping loops due to a concept being
defined circularly, was considered as a solution to the problems affect-
ing the concept of truth for formalized languages in a series of papers
from the early 1980’s by Hans Herzberger (Herzberger 1982a, 1982b),
Anil Gupta (Gupta 1982) andNuel Belnap (Belnap 1982). Gupta and Bel-
nap later specified the methodology as a way to deal with circular defini-
tions in general (Gupta and Belnap 1993). Then, in later contributions
(Gupta 2000; Chapuis 2000, 2003), Gupta again and André Chapuis
have argued that the concept of «rational choice» turns out to be circular
if the intuition which is commonly assumed to underline choices by ra-
tional agents in finite games is formalized. Furthermore, it was noticed
by Gupta that fixpoints of the operator that comes out by applying the
revision-theoretic machinery in such setting coincide with Nash equilib-
ria. This approach to the topic, is also the one I have decided to stick to
here for the sake of presenting the readerwith an introduction to this fun-
damental concept. It should be stressed that Gupta’s contribution was
confined to the class of strict games in the sense of definition 3.2 from
section 3.2 above.

As it might be known to the acquainted reader already, despite the
crucial role the concept has played for the history of game theory, coun-
terexamples of various sorts have beenproposed to argue that the concept
of «Nash equilibrium» is not robust enough both if regarded as a descrip-
tion of, and if taken as a norm for how rational agents act in concrete situ-
ations. An equally diverse refinements of the concept have beenproposed
to make up with the criticisms that were raised. One of them, which has
also been mentioned here, is the trembling-hand intuition based on the
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idea that optimal, hence rational solutions to agents in a game are those
which best protect them against trembles of the opponents. This idea
was first proposed in the literature by another Nobel laureate, Reinhardt
Selten (Selten 1975).

Another idea that we have referred to here is the concept of «proper
equilibrium», due to Roger H. Myerson (Myerson 1978), that we have
used to show how to deal with situations where even the trembling-hand
intuition is helpless. This way of presenting refinements of the concept of
equilibrium originally due to Nash as ways of always enlarging the scope
of the revision-theoretic machinery for isolating solutions in wider and
wider classes of finite games, is inspired to the work that has recently
been done bymyself together with G. Sillari (Bruni and Sillari 2017). This
was conceived as an attempt to showhow themethodology used byGupta
to dealwith the concept of «rational strategy» in anarrow set of situations
can be widened, so to potentially apply to all possibile finite games.

One final note for those who, having read this introduction to classi-
cal concepts of game theory, would like to know more about this area of
reasearch, or would like to view a more orthodox approach for the sake
of comparison. The choice here is vast, hence we confine to a couple of
suggestions: the manual by M.J. Osborne and A. Rubinstein (Osborne
and Rubinstein 1994), and the more recent book by A.R. Karlin and Y.
Peres (Karlin and Peres 2016). For the reader in search of a more ap-
proachable source, I suggest to take a look at the stimulating and com-
prehensive introduction to game theory that can be found in the entry on
«Game theory» of the Stanford Encyclopedia of Philosophy by D. Ross
(Ross 2014).



Chapter 4
Sequential play: games in extensive form

In the 1983 movie War games, a super-computer named Joshua,
upon the operation of which homeland security of the United States de-
pends, is led by teenager David to produce the illusion of a nuclear attack
by Russia which is taken for real by everyone, and is thereby about to de-
termine a real nuclear conflict. This is then avoided when, in a excited
ending, David manages to stop the computer operations by entrapping it
into an endless tic-tac-toe series of matches.

Tic-tac-toe is a game everyone knows. Two players, one is given cross
marks, the other one circle marks. They are confronted with a grid where
nine cells are aligned in three rows and three columns, and they fill them
with their marks alternatively with the only constraint that no twomarks
can be put in one and the same cell. The circle player starts, the cross
one will follow. The goal is to try to get three equal symbols in line, either
vertically, or horizontally, or diagonally. Should this happen, the player
who owns the marks wins. That is everything you have to know to play
this game, in addition to the moves made by your opponent. But this is
no problem, since no parts of the grid is ever hidden and you will always
be able to determine the current state of the game by looking at it.

Tic-tac-toe is, as specialists would say, a game that comes with «per-
fect information» since nothing required to players to decide their strate-
gies is kept secret to the players’ eyes. This is not even a peculiar feature
of this game, since tic-tac-toe is in quite good company with other perfect
information games like draughts, chess, go and the like. The peculiar fea-
ture, quite peculiar indeed if you consider that this is a game where two
players battle with each other to win, is that to win a match of tic-tac-
toe you need your opponent to make a mistake. If this does not happen,
then none is going to win for sure. That is the whole idea behind the
use of that game for the sake of the movie’s dramatic effect: if a game
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like tic-tac-toes is played by perfect players as computers can be, none
wins. So, why should anyone want to play it? This is Joshua’s own con-
clusion: why anyone would ever be interested in ‘playing’ nuclear war?
Why on earth playing a game whose only winning move is not to play it?
We should rather play some serious game: «How about a nice game of
chess?», Joshua asks in the end relieving the tension on the terrified on-
lookers’ faces. Now chess is, as I said, a perfect information game like
tic-tac-toe. We are all happy that Joshua thought chess was something
more serious to turn the attention to, but are we really sure it is serious
enough to play?

4.1. One player after the other

One other thing I said about tic-tac-toe in the previous paragraphs,
is a feature that it shares with the other games that I have mentioned
along with it. Tic-tac-toe, as I said, is a game where players have to play
in a certain order. It happens to be a game where players cannot play
simoultaneaously, rather a game where one player has to wait until the
other has performed her move first. That is also the way a match goes in
the other games I have briefly referred to, that is chess, draughts, go.

Regarding the way games were handled in the previous chapter, it
should be clear that this would not fit tic-tac-toe, nor it would fit any of
the other games in the short list of games I provided the reader with. In a
game where players are supposed to play one after the other, you cannot
get all possible combinations of moves, arrange them in a matrix, assign
to each player involved in the game the payoff she would get if a certain
combination was played, and try to analyze the game in this way. If you
did that, you would loose an important feature of how the game is played.

All the games that have beenmentioned here are perfect information
games. This means that players are given the possibility to glance at ev-
erything that might be important to choose what move they should be
making next. Obviously, the information they may need in this respect
includes themove, or themoves the opponents havemade up to the point
it is their turn to play. It should be clear that, by sticking to the matrix
representation of a match in a game like those, that distinctive feature
of theirs would be lost. The alternation in the players’ move is what we
referred to as the «game dynamic» back in section 2.2, where we also
considered trees as the best way to represent a game that features such
dynamic. I will briefly recall how this can be done here, for the reader’s
sake.

A tree of that sort will always feature a «root» from where it starts.
The root represents the initial situation when player 1, the player who is
supposed to play first, has not played yet. The root, as well as the subse-
quent stages in a match, are represented by nodes, each following node
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representing one amongmany of the possible outcomes coming out of the
previous stage of the match. In addition to nodes, a tree like that will fea-
ture «branches» also, in the form of paths going through nodes, and each
branch would keep track of the moves that are played as the match goes
on. As a matter of fact, there would be edges coming out of the nodes of
the tree connecting them to subsequent ones, and each edge would rep-
resent a move that a player has at her disposal at the stage of the game
represented by the node this edge is coming out from.

For instance, if the match to be represented was a tic-tac-toe match,
then the tree representing it would feature a root like all the others. At-
tached to that node there would be asmany branches as themoves player
1 can choose among. This tree would then feature nine branches starting
out from it, one branch for each of the cell player 1 can choose to put her
mark in. Since the game has not started yet, all of the nine cells are empty
and player 1 can freely choose the one she prefers. Each of these branches
would then lead to the subsequent set of nodes of the tree. Any of these
subsequent nodes would represent the stage in the match where player 2
is supposed to reply to the move made by player 1. As before, each node
in this set would have attached as many edges as the moves that player 2
this time can come across. As a matter of fact, player 2 can choose to put
her mark in any of the eight empty cells remaining, the one that has been
chosen by player 1 beforehand being the only one excluded. Each of these
branches would connect the node we are after with the subsequent one,
that represents the subsequent stage of the match. By going through all
the possibilities one gets a complete picture of the match, actually of the
many matches that come out of a match if you collect all the possibilities
that are given to the players playing it. Since all of them have been con-
sidered, the actual match will certainly coincide with one of the branches
of the tree. So, the picture we have of a game by means of the tree we
have built is complete, but the question is: which branch will contain the
choices made by the actual players of the game?

At the bottom of the tree representation of amatch you will find what
we should call ’leaves’. Each leave of a tree represents the outcome of the
match. Leaves are labelled with numbers, each number representing the
payoff each player is getting in case the match as it is played ended up
there. Players are supposed to act in a way which is not different from
the one we have assumed players have played so far, namely they will
try to get the best outcome they can for their part. Can we make any
prediction? Is there a way, by looking at the representation of the match,
to get an idea of how a match in a game where players have to wait until
the opponent has played tomake theirmovewill ever end? Somethingwe
said already back in section 2.4 comes to our mind as giving information
related to answering this question. To make sure our recall is correct,
shall we go through it again?
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4.2. Solving trees, backwards

Let us suppose for a moment that we are given a tree representing a
match in a two-player game with perfect information, that is built out of
the instructions from section 2.2 that we have briefly recapitulated above.
Suppose we are required to evaluate its leaves only. Suppose also that the
tree in question is the one that we actually built in that case to evaluate
the dilemma of the two prisoners dynamically, which corresponds to the
following diagram:

C N

C N C N

(-5,-5) (0,-10) (-10,0) (-2,-2)

First of all, take notice of the fact that we are about to illustrate the
point we want to make in a situation that is way too simpler than those
we would have to analyze, if the trees to be considered were those com-
ing out from any of the games we have mentioned so far in this chapter.
The reason for that is merely practical, for the combinatorics which is in-
volved into those games would make the corresponding trees impossible
to handle. If you take the simpler game of them, namely tic-tac-toe, well,
it turns out that the number of leaves the corresponding tree contained
would be equal to

9! = 9× 8× 7× 6× 5× 4× 3× 2

(because it comes from multiplying the nine edges coming out from
the root, which correspond in number to the nodes that follow it, by the
number of edges coming out from the latter nodes, which is 8, and mul-
tiply the result of this by the number of edges coming out from the sub-
sequent nodes, which is 7, and so on until all set of nodes preceeding the
leaves have been considered). The result is the astonishing number of
362.880 final nodes to draw on the page! This alone would make the tree
impossible to figure out, even without attempting to sketch the rest of it.
The fact that we are then forced to consider a different situation, at least
as long as the ‘size’ of it is concerned, is no harm, however, since what we
are about to say is independent of the number of nodes and the size of
the tree we are required to analyze.

So, let us go back to the initial question and suppose that we are re-
quired to say, of each leave in the tree above, whether it represents an out-
come which is favourable to player 1, that is a final situation of the match
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in which player 1 wins, or if it is favourable to player 2 instead. Leaves
are labelled by numbers which reflect the score each player is going to
get if the outcome a leave represents turns out to be the actual outcome
of the match that is being played. So, the task is an easy one. For, a leave
will be regarded as a winning outcome for the player who is about to earn
more from that. Suppose also that the game in question is a game where
ties are not allowed. For cases like the one that originated the tree above,
where tie is present, this can be achieved by assigning thematch to one of
the two player as is done in chess, where tie, «stalemate» as it is called, is
actually regarded as a situation in which black has won. The idea behind
this is compensation: the match is assigned to player 2 since player 1 has
moved first, and moving first is indeed as a big advantage. So, if this rule
is adopted, every leave in the tree can be evaluated as either representing
an outcome of the match in which player 1 wins, or an outcome in which
player 2 wins.

Suppose that we use colors for that, and we paint a node white in case
it represents a favourable outcome to player 1, and we use black to do the
same with leaves in the tree representing winning outcomes of player 2.
Then, once we have done this with the tree depicted above we obtain the
following situation:

Now, let us suppose that, having collected this information about ter-
minal nodes of the tree, we would like to analyze the set of nodes that
comes right before, i.e., right above them. In our running example, this
set contains two nodes. Those are outcomes determined by the moves
that player 1 has at her disposal at the preceeding stage, and represent
situations in which player 2 is about to move. Elements of this latter set
of nodes are connected with terminal nodes representing outcomes they
lead to through edges which, in turn, represent moves that player 2 can
choose. In the tree as it looks now once we have started to paint it, edges
coming out from nodes preceeding the leaves would connect them with
either black or white nodes. Since player 2 is moving at the nodes we are
now considering, and since black outcomes represent situations in which
she wins, we can now tell what are likely to be the moves she will prefer
to make at that stage of the match, namely those represented in the tree
by edges that lead to black leaves.

Similar considerations would apply if these were nodes representing
situations in which player 1 was supposed to play. Even in this case it is
hard to see why player 1 wouldmake amove that leads to an outcome that
is unfavourable to her, being it favourable to her opponent, unless she is
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obliged to. If players are supposed to try winning the match, they will
try to reach outcomes in which they actually win. Of course, it is possible
that no such edges exist and there is no way for players to avoid making
decisions that will favour their opponent. In particular, it is possible that
at some point in this process of analyzing set of nodes in the tree, we
are facing a situation in which nodes representing a stage in the match
where a player is supposed to play are only connected with nodes that
are painted with the opponent’s color. In order to keep this process of
painting nodes in the tree going, we set up the following rule: if the nodes
we are considering represent situations where player 1 is supposed play,
then we paint them white just in case they are connected with at least
one white node and we paint them black otherwise; if the nodes we are
considering represent situationswhere player 2 is supposed play, thenwe
paint them black just in case they are connected with at least one black
node and we paint them white otherwise.

Let us figure out how the rule goes in the examplewe are using. Let us
first refer to the portion of the diagram that interests us at themoment, by
painting the nodes whose ‘nature’ we are trying to determine half white
and half black until our evaluation of them by the rule we have just set is
finished:

So, there are two nodes to consider. They both have two edges each
coming out from them. As far as the left-hand node is concerned, the two
edges connect it with the leftmost pair of leaves in the tree, one of which
is painted black, while the other one is painted white. The right-hand
node under scrutiny equally has two edges coming out which connect it
with two black leaves. Let us consider the left-hand node first. Accord-
ing to the rule we have just set up, this node should be painted full black
since it represents a situation in which player 2 has to play, and there is
at least one edge that connects it with a black leave, that is a black subse-
quent node. This observation would prompt us changing the diagram as
follows:
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Now, let us consider the right-hand node. This also has connection
with at least one black subsequent node. In fact, both nodes with which it
is connected are black, hence it should be black itself, which finally brings
us to the following improvement of the previous diagram:

Having painted the diagram up to this point allows us to look at the
subsequent set of nodes. This is made out of just one node and, once we
adopt with it the previous habit of painting uncertain nodes half white
and half black until the application of the rule clarifies which color we
should use for it, the situation we have to scrutinize looks as follows:

Since we are one step higher in the three, the node we are looking at
corresponds to a stage in the match where player 1 is supposed to play.
This node is connected with the two nodes we evaluated previously, and
that were both painted black. Since there is no other node the root of the
tree is connected with, the rule we have set applies and we paint it black,
being it impossible for us to paint it white. We thus finally obtain the
following diagram:

Now, the whole idea behind painting the diagram’s nodes was to have
a quick way of realizing whether, at any stage of the match, the player
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who is about to move has a preferred choice. This happens if one of the
subsequent nodes is painted with the player’s own color. If this is not the
case, the node itself is painted with the opponent’s color so that we know,
when this happens, that the player who is in charge of making the next
move will not be able to reach a node that will possibly lead her to win
the match.

The process that we started with the leaves of the tree brought us to
paint black the tree’s own root. This is the stage where the match starts
and it should be clear, in view of what we have just said, that this is
painted with the color of whoever is in a position to win the game. By
the way, on the basis of the premises we have been careful to set, only
one player can be in that position. So, after the process of painting nodes
in a tree has ended, you will know the only player who can ever win the
game by looking at the color of the root.

It should be noticed also that the rule as we have set it can never be
broken. For, either a node is connected by edges with nodes all painted
with one and the same color, or at least one of themmust be painted with
the contrary color. So, whatever tree we are applying the process to, and
whatever is the size of this tree, we would be able to carry it through.
Then, one other thing should be clear about our painting game trees at
this point: that this process could serve the purpose of allowing us to
always determine the only player who is in a position to choose a path
through the nodes and reach an outcome that is winning to her. No mat-
ter how complicated the game you are referring to is, if it is subject to the
tree representation, then it is also subject to the painting procedure. And
if it subject to the painting process, then it is possible to anticipate who
is going to win.

This conclusion appears to be so strict and convincing, that it could
take the form of a mathematical theorem. Yet, the conclusion cannot
leave us indifferent. For, since all the games we have been discussing
so far are indeed subject to the tree representation, what does not this
conclusion tell us about them? Does not it allow us to conclude, in par-
ticular, that the difference between a simple game like tic-tac-toe and a
complicated one like chess is only the complication itself? For, as long
as the problem of trying to determine who is going to win, there seems
to be now a very tiny difference (assuming we would like to consider the
difference in combinatorics, which is huge, a tiny aspect). This remark
is in fact so surprising that we cannot remain silent to it and forces us to
do something more to test it. Maybe there is something wrong with the
previous account. There has to be a mistake somewhere.

We now feel compelled to go through this matter more seriously,
leave this conclusion aside for the moment along with white and black
paint, and lay down some serious tools to deal with it with greater preci-
sion and be able to get back to it again.
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4.3. An abstract, mathematical approach

Following the previous preliminary analysis of game with perfect in-
formation as trees, and the surprising conclusion we have reached, we
shall now begin a systematic investigation of this subject. The first step
of ours may indeed turn out to be unexpected to the reader as we plan to
change the object of our interest, or at least to change the way it appears.
As a matter of fact, we shall get rid of trees in the following and substi-
tute the model of games where players play one after the other by a more
abstract, mathematical one.

This may sound puzzling at first as I said, for trees are mathemat-
ical objects already as the acquainted reader may know, so to say that
we are going to build a mathematical model for games in extensive form,
as this type of games was referred to back in section 2.1, does not ex-
plain too much since a model of that kind we had already. What I meant
to say is that we are going to prefer another mathematical model to the
one we have been sticking to so far. This is mostly due to the fact that
trees are hard to handle. They have indeed the advantage of being repre-
sentable diagrammatically, which allows one to put forth live examples
that usually make the explanation easier. However, this advantage has
a cost since tree diagrams can easily become impossible to frame on the
page space. This was already hinted at in the discussion we went through
in the previous section. In addition to that, if a systematic investigation
has to be pursued, then diagrams of trees would have to be abandoned
anyway in favour of the mathematical definition of trees, and trees as
mathematical objects are not as easy to handle as their representations
lead to think. So, we are rather going to choose a model which is def-
initely more abstract than trees, but which is simpler, mathematically
speaking, at the same time. Since to change the model means to change
the basic notions, the language, and the notation too, the first thing be-
fore going through the said investigation is to introduce the features of
the new mathematical setting to let the reader be able to familiarize with
it.

4.4. Preliminary notions and basic notation

The main mathematical structure we will be interested in, is the one
which is based upon the set � of natural numbers:

� = {0,1,2, . . .}

Having spoken of ordered sets already, natural numbers will be re-
ferred to as a totally ordered set. In particular, elements of the set � will
be taken to be arranged in their ‘standard’ order. The mathematical no-
tation commonly at use for that is the Greek letter ω, which denotes the
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least infinite ordinal number that corresponds to the ordered set (�,<).
The difference between using � and ω should be clear, and, since this is
also a book about games, it is the same that occurs when one is referring
to a group of cards and to the same cards arranged in such a way to form
a straight: the first is a simple set, while the second is what one obtains
when the elements of that very same sets are arranged in their order of
size. That said, however, I will take a relaxed approach to the topic and
consent myself to often treat ω and � as equivalent notations (in partic-
ular, by letting the former symbol refer to the latter set).

We will denote byωn the n-Cartesian product ofω, where n is a nat-
ural number itself. This means that ωn denotes the result of repeating
the application of the Cartesian product toω n-times to produce the set

ω ×ω × . . .×ω︸ ︷︷ ︸
n−times

which is made out of n-tuples, i.e. ordered tuples (k0, . . . , kn−1) with n
elements from ω. For every s ∈ ωn we assume to indicate with (s )i for
0 ≤ i ≤ (n−1), the i -th element of s . This amounts to assume that s comes
in the form:

((s )0, . . . , (s )n−1)

This also coincides with identifying finite sequences of this sort (i.e.,
elements of sets ωn for n ∈ �) with functions fs : (0,1, . . . , n − 1) → ω,
where, for every i such that 0 ≤ i ≤ (n − 1), fs (i ) denotes the i -th element
of the sequence s , i.e. fs (i ) = (s )i .

Functions regarded extensionally (see section 1.2) are identified with
their graph, which is the set of pairs coupling each argument in the func-
tion’s domain with the value of it it produces. For functions of the sort
we are considering here like fs , this means that they are extensionally co-
incident with the set Gfs

⊆ (0,1, . . . , n − 1) ×ω of pairs of elements from
(0,1, . . . , n − 1) and from ω (for example, pairs of the form (i , fs (i )) where
0 ≤ i ≤ n − 1), satisfying the right-hand uniqueness conditions (i.e., such
that b = b ′ for every (a, b ), (a, b ′) ∈ Gfs

).
A note on the empty sequence as the empty function. Owing to what

we have just said, the empty sequence ( )would be identified with a func-
tion f� : � → ω, the graph of which is a subset Gf�

of � ×ω, which is an
element of ω0. The latter, by the way, is the set of all pairs (x , y ) such
that x ∈ � and y ∈ ω, but since there are no elements in �, it turns out
that � ×ω = �. This also means that Gfs

= � as � ⊆ � ×ω (in fact, � is the
only subset of � ×ω). It follows that there is a unique function f� whose
graph Gf�

is the empty set. So, this f� represents no correspondence at
all (and, in this latter sense, is suitable to represent the empty sequence).
However, it is a function since the statement «for all x , if x ∈ �, then there
exists a unique y ∈ ω such that f�(x ) = y» is vacuosly true by logic alone
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because, since there is no such x , the antecedent «x ∈ �» is true of all of
them, which, in turn, makes true the conditional utterance as a whole.

Notationally, we also assume to indicate withω<k the set of all finite
sequences of length less than k , which in standard set-theoretical nota-
tion is indicated as:

ω<k =
⋃
n<k

ωn

As an extension of the above convention, the set ofall finite sequences
will be denoted byω<ω. That is:

ω<ω =
⋃
n∈�
ωn

which contains all n-tuples of natural numbers of every finite length
(i.e., s ∈ ω<ω if and only if there exists a natural number k such that
s = ((s )0, . . . , (s )k−1) which is the same as saying that s ∈ωk holds).

For every finite sequence s , we denote by |s | its length: therefore, |s | =
k if and only if s ∈ωk holds (notice that, due to the conventions we have
made, such k is unique, and |( )| = 0).

The repeated application of the Cartesian product can be extended to
infinite ordinal numbers, and ωω would represent the least set which is
obtained in this way. Despite the fact that grasping this idea is not triv-
ial, since the very same concept of an infinite set can be a bit disturbing,
things should be made simpler owing to what we have said so far. The
whole idea of identifying finite sequenceswith functions can be explained
in the following way. To come up with a finite sequence s ∈ωn , i.e. with
an arrangement of n elements in an order, is the same as labelling them
with natural numbers in such a way that: (i) each element gets a unique
labels (hence no two different elements get one and the same label), and
(ii) elements are arranged in the order of their label. To denote the i -
th element (s )i of the sequence s by fs (i ), is a way to take notice of the
fact that the element in question stems from the i -th application of the
labelling process (here identified with the function fs ). Condition (i) im-
plies that a finite number of labels will allow to produce only the ordering
of a finite number of elements, i.e. a finite sequence. Infinite sequences
of elements is what you get by extending this idea to a situation where we
assume that the number of labels can be infinite and coincide with the
total set ω. This means that a sequence s is infinite if it is the result of
arranging a given infinite amount of elements in an order. Or, to extend
to this situation the previous notation, if s is obtained as the result of ap-
plying the labelling function fs infinitely many times. This is for instance
what happens if the labelling function is any function f whose domain
is the set ω itself (which corresponds to the simplest way to extend the
previous schema, inwhich labels came out of finite subsets – finite subse-
quences, one should better say –, ofω). This is precisely what one would
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assume by denoting the set of all infinite sequence by ωω. An element s
of this set is a sequence of natural numbers of infinite length, i.e.:

s = ((s )0, (s )1, . . . , (s )n , . . .)

(where we are exploiting the same notation convention as before, and
(s )i denotes the i -th element of s ), or, equivalently, s is the result of the
application of the function

fs :ω→ω
which takes as input the whole setω of natural numbers (and there-

fore fs (i ) = (s )i for every such i ).
Now, it should not come as a surprise that one can have different infi-

nite sequences out of the elements coming fromone and the same infinite
set ω of natural numbers, as the reader might be acquainted of this fact
already (the sequence s of even natural numbers, and the sequence s ′ of
odd natural numbers providing us with a simple example for illustrat-
ing that). That goes back to the feature which can be taken to be themost
prominent characteristic of an infinite set, that is the property of contain-
ing as subsets different sets with the same (infinite) number of elements.
As long as distinct sequences of natural numbers are considered, i.e. dif-
ferent order arrangements of infinitely-many elements ofω, this feature
is reflected by the fact that the size of ωω is the same as the size of the
set of all functions of type f : ω → ω, and the latter set can be proved
by the well-known «diagonalization argument» conceived by the mathe-
matician Georg Cantor to be ‘bigger’ in size than the former set ω itself.
This, however, is just a digression since here we shall be concerned only
with finite sequences. So, let us get back to them.

Let now s , s ′ ∈ ω<ω be finite sequences of numbers. The main com-
parison relation between objects of this sort will be denoted by:

s � s ′

to means that s is a subsequence of s ′, which takes place when: (i)
|s | ≤ |s ′| (i.e., the length of s is not greater than the length of s ′), and (ii)
(s )i = (s ′)i for every 0 ≤ i < |s | (elements of s are equal to the correspond-
ing elements of s ′, namely to the element which occupies the same place
in the order). Requirements (i) and (ii) makes clear that when s � s ′ is
the case, then s is the initial part of s ′ or, as it should be said, the initial
segment of s ′.

Two basic facts should be obvious about the subsequence relation just
defined, namely:

( ) � s
s � s

for every finite sequence s . That is, the empty sequence is the uni-
versal subsequence owing to the fact that it contains no element (hence,
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its elements, being nowhere, are everywhere, so to say), and every finite
sequence is the subsequence of itself since conditions (i)-(ii) above are
easily seen to apply if s ′ = s .

With respect to finite sequences such as s and s ′, the main operation
we will be dealing with is composition. This will be indicated by:

s ◃▹ s ′

We will make use of this notation to refer to the sequence that is ob-
tained by prefixing all elements of s to all elements of s ′, that is:

s ◃▹ s ′ = ((s )0, . . . , (s )|s |−1, (s
′)0, . . . , (s )|s ′ |−1)

(where clearly |s ◃▹ s ′| = |s |+ |s ′| then, and |s |, |s ′| ≤ |s ◃▹ s ′| as a conse-
quence)1.

Composition of finite sequences s , s ′ is inductively defined over i ∈�
such that 0 ≤ i < |s ′|, by:

(s ◃▹ s ′)i =
�
(s )i , if i < |s |
(s ′)i−|s |, if i ≥ |s |

Notice that s � s ◃▹ s ′, but this does not hold for s ′ in general. In
particular, s ′ � s ◃▹ s ′ holds if either s = ( ), or s ′ = ( ), or s = s ′ are the cases.
In addition, one has that the following cases also hold:

• (s ◃▹ s ) �= s , if s �= ( );
• (s ◃▹ s ′) �= s ′ ◃▹ s , if s �= ( ), s ′ �= ( ), s �= s ′;

(as amatter of fact, s ◃▹ ( ) = ( ) ◃▹ s = s ). Also, notice that one canmore
easily express the previous observation of s being the initial segment of
s ′ in case s � s ′ holds, owing to the fact that s � s ′ is the case if and only if
s ′ = s ◃▹ s ′′ for some s ′′ ∈ω<|s ′ | (the proof is an easy exercise).

Both the subsequence relation and the composition operation can be
extended to infinite sequences. In particular, if s ∈ω<ω and s ′ ∈ωω, then
s � s ′ holds just in case (s )i = (s ′)i for every 0 ≤ i ≤ |s ′| − 1 (since |s | < |s ′|
then), while, at the same conditions, s ◃▹ s ′ denotes the infinite sequence:

((s )0, . . . , (s )|s |−1, (s
′)0, (s

′)1, . . .)

(where again s � s ′ is obviously the case).
1As a consequence of using natural numbers as labels for elements of a finite sequence,

i.e., of counting the elements of a finite sequence s starting from the first natural number,
which is 0, we have that |s | = k if and only if s has k-many elements, which means that, if
its first element is (s )0, then its last one is (s )k−1, the k-th element of the sequence, namely
(s )|s |−1.
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4.5. Two-person, zero-sum, perfect information games

As declared at the very beginning of this chapter, the goal is to deal
with two-player, perfect information games.

The two players playing the game will be denoted as Player I and
Player II to differenciate here the notation we have used for the sake of
the analysis of games in normal form. Since the main feature of games
we would like to consider is the fact that players are supposed to play in
a certain order, we shall assume that Player I plays first, and Player II
responds. One additional feature of the kind of games we are going to
model is that tie is not possible. So, either Player I wins, in which case
Player II loses, or Player II wins instead and Player I loses. In game-
theoretic terms games as such are called zero-sum. Finally, in games we
are considering Player I and Player II knows everything and both knows
that. In particular, there is no asymmetrical distribution of knowledge
among the players of our game.

The consequences of our assumptions in terms of what we are actu-
ally modeling, and what we are leaving out of consideration, are summa-
rized in the following table:

� ×
two players multiple players

alternate moves simultaneous moves
perfect information imperfect, or asymmetrical information

Having made clear that, we are now going to introduce the mathe-
matical model in a stepwise manner, and to provide the reader with all of
the information required to reconcile the model with the original inten-
tion.

4.6. The model of finite games

Themathematical structurewe take in order to represent finite games
comes in the form of a triple. A finite game G is as follows:

G = 〈k ,P,A〉
where:

• k ∈� is the number of moves in matches of G ;
• P =ω2k is the set ofmatches of G ;
• A ⊆ P is the set ofwinning conditions for Player I in G .

In particular, G is the model of a game played as follows: Player I
plays first, and Player II plays second at each turn; Player I plays by pick-
ing a number out of �, and Player II responds by picking out a natural



SEQUENTIAL PLAY: GAMES IN EXTENSIVE FORM 125

number too; after exactly 2k rounds, hence after both players have picked
k natural numbers each, the match is over and Player I wins in case the
sequence s ∈ω2k of numbers that contains all of the players’ choices be-
longs to A, and looses (that is, Player II wins) if that is not the case. In
the following it should be clear that by G we will always refer to a model
of a game of this sort, hence, to a game in which players play according
to the previous description.

As it was said at the end of section 3.11, the main concept we would
like to incorporate in our model is the concept of strategy. This should
be done in a way that reflects the intuition according to which a player in
a game has a strategy if she has a plan that allows her to decide what to do
at each stage of a match. In order to model a situation in which all moves
that a player chooses are part of a unique plan (hence, that there is a par-
ticular strategy that a player follows), it was suggested thatwe couldmake
use of the concept of function which acts on the information required to
make a choice. In a perfect information game, all the required informa-
tion to decide what to do next is displayed as the match goes along. Here
we assume that the information over which strategies of players ‘act’ (i.e.,
the information that is used for the sake of deciding the nextmove), is the
portion of the match that has actually been played.

This idea is comprised in the following definition:

Definition 4.1 Let G = 〈k ,P,A〉 be a finite game as before. Let E <2k =
{s ∈ω<2k : |s | = 2m,m ∈�} indicate the set of subsequences of a match in
G with even length, and let O<2k = {s ∈ ω<2k : |s | = 2m + 1,m ∈ �} be the
set of subsequences of matches of G with odd length instead. Then:

1. a strategy for Player I in G is a function σ : E <2k →ω;
2. a strategy for Player II in G is a function τ :O<2k →ω.
The definition is a consequence of the conventions we have made.

Since Player I plays first, the state of the game, namely the portion of the
match that has been played before she makes the next move, is always
represented by a sequence with a even number of elements. This is true
for the sequence we find at first: none has played yet, so the portion of
the match that Player I has to consider to make her choice is the empty
sequence ( ), which is such that |( )| = 0 and 0 is an even number (then, ( ) ∈
E <2k ). The same holds to every further stage of the game, since moves by
Player I are always preceded by situationswhere Player II has also played.
So, Player I will need the help of a strategy, in the form of the next natural
number to play, for every given a piece of information that takes the form
of a sequence comprising all numbers that have been played before the
match ends, that is a sequence whose maximum length is equal to the
greatest even number strictly less than 2k (which is even, but marks the
end of the game and no strategy is required by any player at that stage).
For the same reason, Player II only plays when a odd number of natural
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numbers have been played, and a strategy for her then takes the above
form.

Now, it should be clear that, following the intuition above, to play
according to a strategy means to have a plan which motivates a player’s
choice at each stage in a game, but it does not mean that the plan is win-
ning! So, for the moment, that a player plays according to a strategy does
not mean that she is going to win. Before attacking this particular situ-
ation, we have to adapt the previous conventions on the notation to the
new concept of strategy. We do that by abusing the previous symbolism,
in order to avoid an increasing complication of it:

Definition 4.2 1. Let s ∈ ωk be any sequence, and let σ be a strategy
for Player I. Then, σ ◃▹ s is used to indicate the sequence where numbers
occurring at odd places are produced by means of σ , while numbers
occurring at even places come from s in its own order. That is:

σ ◃▹ s = (x0, (s )0, x1, (s )1, . . . , xk−1, (s )k−1)

where, for every 0 < n ≤ k − 2:
�

x0 = σ (( ))
xn+1 = σ ((x0, (s )0, . . . xn , (s )n))

2. Let s ∈ ωk be any sequence, and let τ be a strategy for Player II.
Then, s ◃▹ τ is used to indicate the sequence where numbers occurring at
odd places are produced by means of s in its own order, while numbers
occurring at even places are given by applications of τ instead. That is:

s ◃▹ τ = ((s )0, y0, (s )1, y1 . . . , (s )k−1, yk−1)

where, for every 0 < n ≤ k − 2:
�

y0 = τ((s )0)
yn+1 = τ(((s )0, y0 . . . yn , (s )n+1))

This basic definition can be used to define, for a given game G , the
set of matches of it where players play according to some given strategy:

Definition 4.3 Let G = 〈k ,P,A〉 be any finite game, σ be a strategy for
Player I in G , and τ be a strategy for Player II. Then:

Pσ = {σ ◃▹ s : s ∈ωk}
Pτ = {s ◃▹ τ : s ∈ωk}

denote the set of matches of G where Player I plays according to σ ,
Player II plays according to τ respectively2.

2It should be clear that, having set the collection of matches of a game G to be equal to
ω2k , as a consequence of which every sequence s with length equal to 2k is a match of G ,
then every sequence with length equal to k can be taken to represent the sequence of moves
played by one of the players of G in a match of it.
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Finally, we come to the crucial notion of winning strategy, which
will be used for the sake of analyzing those situations in which not only
a player plays according to a plan, but this plan is a winning one, that is
allows her to alwayswin (i.e., to win independently of what the opponent
decides to play):

Definition 4.4 Let G = 〈k ,P,A〉 be any finite game. Then:

1. a strategy σ for Player I in G is winning if, for every s ∈ωk , σ ◃▹
s ∈ A;

2. a strategy τ for Player II in G is winning if, for every s ∈ ωk ,
s ◃▹ τ �∈ A;

As a result of the definitions we have given so far, we can obtain a
deductive confirmation that games as we have described them are indeed
zero-sum as we wanted, in the sense of the next result:

Proposition 4.1 Let G = 〈k ,P,A〉 be any finite game. Then, not both
Player I and Player II can have a winning strategy in G .

Proof : let G be a finite game as in the statement of the lemma. Let, for
any strategy σ for Player I and strategy τ for Player II

σ ◃▹ τ = (x0, y0, . . . , xk−1, yk−1)

be the sequence inductively defined as follows:



x0 = σ (( ))
y0 = τ(x0)
xi+1 = σ (x0, y0, . . . , xi , yi )
yi+1 = τ(x0, y0, . . . , xi , yi , xi+1)

(that is: σ ◃▹ τ is the sequence obtained by applying σ to the previous
elements to produce new ones occurring at odd places, and by applying
τ to produce elements occurring at even places of it).

Then, to assume that both Player I and Player II have a winning strat-
egy inG means that σ ◃▹ τ ∈ A and σ ◃▹ τ �∈ Amay hold for some strategies
σ and τ, which is impossible. Hence, the lemma. QED

4.7. Alternative models of finite games

Before going on with the investigation on finite games as sequences,
we plan to stop and discuss some issues that the definitions we have set
so far may be puzzling the reader. This apparent detour will have the
purpose to help the reader understand the model better and to recon-
cile it with some intuitions that are naturally connected with the idea of
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games due to our experience with them. It also has the goal of showing
the model flexibility, therefore to justify why we left trees behind to stick
to sequences instead.

With respect to things we were discussing preliminarly about games
(see section 4.6 and chapter 1), the first thing that may have struck the
reader in the definition of finite game we have given in the previous sec-
tion, is the length of matches. It is part of the common experience with
games that different matches of one and the same game may have differ-
ent lengths, this feature being indeed related to many factors including
the players’ ability. In view of this, it appears rather odd to assume that
every match of the same game should have always the same length as it
follows by setting P to contain as elements only 2k-tuples of numbers.

A second issue turns out by looking at the same set ofmatches, which,
being P equal toω2k , is also supposed to contain all such sequences. This
has the effect that the definition we have given does not allow to distin-
guish legal matches, which are those where players play only according
to the rules, from illegal ones, which contain at least one move that is
not allowed by the rules of the game. However, this is again part of the
common experience with playing a game we have.

Now, it is easy to show that the assumptions we have made do not
affect the scope of the model, and the variety of types of games we can
capture by means of it.

4.7.1. Finite games with rules

Among those features that are apparently missing in the model we
have proposed, we first want to try encapsulating the distinction between
moves that are legal, i.e. made in full agreement with the rules of the
game, and moves that are illegal, i.e. not allowed by these rules instead.
Here is how the model from section 4.6 could be modified to do so.

Let then GR («R» staying for «rules») be the following triple:

GR = 〈kR ,P R ,AR 〉
where:

• kR ∈� is the number of moves of matches of GR ;
• P R ⊆ω2kR is the set of matches of GR ;
• AR ⊆ P R is the set of winning conditions for Player I in GR .

The reader should notice that the difference from the previous def-
inition of finite games, is the fact that the set of matches now is only a
portion, a subset, of the set of all sequences of length equal to 2kR . This
means that it may happen that this set P R is a proper subset of ω2kR

(which is commonly denoted by P R ⊂ ω2kR ) with the consequence that
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the difference set C = ω2K R \ P R between the total set and this subset is
not empty as P R contains only some, but not all the elements of the latter
set. If this was the case, one could take P R as representing the set of legal
matches as wanted, and take every s ∈ ω2kR which is not an element of
it (hence, such that s ∈ ω2kR \ P R), to represent an illegal match of GR

instead.
To make the model correspond to the intended situation, the follow-

ing extra-condition is assumed over the set P R of matches. Let, for every
n ≤ 2kR , P R

n indicate a subset of ωn . Intuitively, each P R
n represents a

‘layer’ of P R . To the latter set we want to assign the role of the set of le-
gal matches. Hence, each P R

n could be viewed as the set of legal portions
at stage n of legal matches of GR . To this purpose, we assume that the
following conditions hold:

1. for every n < 2kR , P R
n+1 ⊆ {s ∈ωn+1 : s ′ � s , for some s ′ ∈ P R

n };
2. P R ⊆ω2kR such that, for every s ∈ P R and for every n < 2kR

((s )0, . . . , (s )n−1) ∈ P R
n

is the case.

Now, the first condition is thought of in order to ensure that every
legal portion of a match has a legal continuation3 (i.e., having Player I
and Player II played fairly up to stage n, they can always play a next fair
move if they want to). The second condition ensures that legal matches
of GR are only those sequences which are made out of legal portions and,
as a consequence of it, we have that, for every s ∈ω2kR , s ∈ P R holds if and
only if for every s ′ ∈ω2kR \P R there exists 0 ≤ i < 2kR such that (s )i �= (s ′)i .
Hence, it is enough for a sequence to contain just one illegal move to be
illegal as a whole (which also yields s ∈ ω2kR \ P R if and only if for some
0 ≤ i < 2kR , for every s ′ ∈ P R , (s )i �= (s ′)i , since illegal moves can be found
nowhere in a legal match).

Owing to what we have just said, if we restrict the attention to moves
made by each player, i.e., to elements of the set ωkR , we have that every
such element s is made out of legal moves only if and only if the only
elements it has in commonwith an illegal match, say s ′, are those that are
legal, i.e., also belongs to some legal match s ′′′. Call s a legal set of moves
of a player in that case. Remembering that moves by Player I occurr in a
match at even places andmoves by Player II occurr at odd places instead,
we have the following:

Definition 4.5 Let s ∈ωkR be given. Then we say:

3Notice that ( ) ∈ P R
0 since ( ) is the universal subsequence, i.e., every match starts as a

legal match (which is quite obvious: you can cheat only when the match has started).
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• s is a legal set of moves by Player I just in case (s )i = (s ′)2i for
some s ′ ∈ P R also;

• s is a legal set of moves by Player II just in case (s )i = (s ′)2i+1 for
some s ′ ∈ P R also;

Having noticed that the main difference from the new version of the
model, and the ‘canonical’ one amounts to P being possibily a proper sub-
set ofω2kR , also means that we can obtain the mainmodel as a limit case,
the one in which no such distinction is needed since any move is legal
and P R = ω2kR as a consequence. This means that the new model con-
tains the canonical one. We would like to see if the contrary also holds,
as far as strategic choice in this more complicated model is concerned at
least, and if there is a way to encompass the distinction between legal and
illegal matches by means of the previous model.

First of all, we introduce bymeans of the following definition the idea
of legal segment of a match that will turn out to be useful afterwards:

Definition 4.6 Let GR be a triple as above where P R ⊂ω2kR holds. Let
s ∈ω2kR be any sequence of numbers. Then, we say:

1. s ′ � s is a legal initial segment of s , if there exists s ′′ ∈ P R such that
s ′ � s ′′ holds;

2. s ′ � s is amaximal legal initial segment of a match, if s ′ is a legal
initial segment of s but s ′ ◃▹ (s )|s ′ | is not.

A legal segment of a sequence would contain only moves of it that
are legal. The maximal legal segment would count, and contain, all legal
moves in a sequence starting from the beginning of it up to and excluding
the first illegal one. Now, clearly, if s ∈ P R ⊆ ω2kR , then the maximal
legal segment of it is s itself. A maximal legal initial segment of an illegal
match, is a subsequence of legal moves of maximal length that can be
extracted from the latter starting from its first element. Notice that any
subsequence of a legal initial segment of a match in GR is also legal.

The following has an easy proof:

Lemma 4.1 IfGR is as in the previous definition, andC =ω2kR \P R �= �,
then, for every s ∈ C , if s ′ is a maximal legal initial segment of s , then s ′
is unique.

Proof : Suppose s ∈ C has two maximal legal initial segments s ′ and s ′′.
Then, either |s ′| < |s ′′| and s ′ � s ′′ is the case, which means that s ′ is not
maximal, or |s ′′| < |s ′| and s ′′ � s ′ hold, which means that s ′′ is not max-
imal, or, finally, it happens s ′ �� s ′′ and s ′′ �� s ′, which means that either
s ′ �� s or s ′′ �� s is the case. Since no other case is possible and all the
previous ones contradict the hypothesis, it follows that themaximal legal
initial segment of a sequence must be unique as wanted. QED
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As a consequence of this lemma, let, for every s ∈ C , ml (s ) indicate
the maximal legal initial segment of it.

The maximal legal initial segment of a sequence can be used for the
sake of determining who among the two players of a gameGR was the last
to play legally, or, equivalently, who was the first to play an illegal move.
Owing to the global assumption about how matches of GR are played,
with Player I playing first and Player II playing second, it should be clear
that the following holds for every s ∈ C :

• if |ml (s )| = 2m + 1 for some m ∈ �, then Player II was the first to
play illegally;

• if |ml (s )| = 2m for some m ∈�, then Player I was the first to play
illegally.

Since, for a given s ∈ C , ml (s ) contains only legal moves of it, if its
length is odd the last move by Player I it contains was a legal one and the
move that Player II played in response to it was the first illegal move of
the match (because if you couple each move with the one that has been
played as a reply to it, you will be left with a single action, the last one
of ml (s ), which must be a move made by Player I). Symmetrically, if the
length of ml (s ) is even then the opposite must be true.

The next item on the agenda is to equip the newmodel of games with
a suitable notion of strategy, for which, by the way, we stick to the one we
have used for the canonical model of finite games:

Definition 4.7 Let GR = 〈kR ,P R ,AR 〉 be a finite game as above. Let
E <2kR = {s ∈ ω<2kR : |s | = 2m,m ∈ �} indicate the set of subsequences of
sequences of length equal to 2kR whose length is even, and let O<2kR =
{s ∈ω<2kR : |s | = 2m+1,m ∈�} be the set of subsequences with odd length
instead. Then:

1. a strategy for Player I in GR is a function σ : E <2kR →ω;
2. a strategy for Player II in GR is a function τ :O<2kR →ω.
Notice that by defining strategies in this way, we admit them to be

defined everywhere, even on sequences representing portions of illegal
matches (and for very good reasons: one can also cheat strategically!).

Now, before proceeding further with the notion of winning strategy
for the new sort of games, let us first dig a little bit more into this idea
of legal vs. illegal moves to see if we can get some helpful insights in this
respect. Now, suppose that Player I and Player II actually come up with
one of these illegal sequence of numbers. This must have happened be-
cause, having played legally up to some point, either I or II suddenly plays
a move that is not allowed by the rules of the game. So, an illegal match
turns out because one of the two players is mistaken, and starts playing
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illegally, or if she deliberately decides to do so. This remark suggests two
possible interpretations for elements of the set C of illegal matches: in
the one view these are the result of mistakes made by one of the players
that could, or should be amended; in the other view, these are the ef-
fect of deliberate choices and should rather be sanctioned. There are two
possible attitudes as a consequence: a permissive attitude which allow
players to make up for mistakes, and a strict attitude which blames every
transgression of rules to those who are responsible for them. These two
attitudes are reflected by the two ways in which we define the notion of
«winning strategy» for a game such as GR above.

The first definition is the effect of regarding illegal matches permis-
sively, and let the player amend mistakes:

Definition 4.8 Let GR = 〈kR ,P R ,AR 〉 be a triple as above. Then:
1. A strategy σ for Player I in GR is winning if and only if,

σ ◃▹ s ∈ AR

for every s ∈ωkR that is a legal set of moves by Player II.
2. A strategy τ for Player II in G ′ is winning if and only if,

s ◃▹ τ ∈ P R \ AR

for every s ∈ωk that is a legal set of moves by Player I.

Notice that owing to the definition just set, illegal matches are not
counted as far as strategic winning is concerned, and winning strategies
are considered only insofar as they dowhat is expected over legalmatches
(while their value over illegal matches is not taken into account).

The alternative definition of winning strategy, the one comprising
the strict approach toward illegal moves we have spoken of above, would
make use of the concept of maximal legal initial segment of a sequence to
blame a player who plays illegally:

Definition 4.9 Let GR = 〈kR ,P R ,AR 〉 be a triple as above. Then:
1. A strategy σ for Player I in G ′′ is winning if and only if,

σ ◃▹ s ∈ AR

for every s ∈ωkR which is a legal set of moves by Player II, or

σ ◃▹ s ∈ C
and |ml (σ ◃▹ s )| = 2m + 1 alternatively.
2. A strategy τ for Player II in G ′ is winning if and only if,

s ◃▹ τ ∈ P R \ AR
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for every s ∈ωkR which is a legal set of moves by Player I, or

s ◃▹ τ ∈ C
and |ml (s ◃▹ τ)| = 2m alternatively.

So, for a strategy to be winning in this second sense of the expres-
sion it is not enough to meet the previous requirement as long as legal
matches are concerned, it is also needed for it to be a strategy that never
causes a player to be the first who played illegally. Notice that this defi-
nition is made possible by the extra requirement that was assumed over
P R , and which amounts to always give players the possibility of playing
legally. This assumption makes both part 1 and part 2 of this definition
non-vacuous.

We now turn to the problemof defining a game in canonical form that
may correspond to a game where legal and illegal matches are kept dis-
tinct as long as strategic winning is concerned. We do that in such a way
that the new gamewillmake possibile to prove that such a result holds in-
dependently of which attitude is taken with respect to illegal moves (i.e.,
whetherwinning strategies for players inGR are defined according to def-
inition 4.8, or according to definition 4.9 instead). The idea is simple and
amounts to extending to the set of matches as a whole the intuition be-
hind the strict approach to illegal moves that was fostered for the sake of
definition 4.9, namely to blame illegality on the one who is responsible
for it. So, we will consider a match to be lost in the new game by whom
was the first to play outside of the rules of GR . This idea can be made
precise for a game in canonical form as follows.

Let in the following GR = 〈kR ,P R ,AR 〉 be an arbitrary but fixed triple
of the above sort. Let G ⋆ be similarly given in the form of a triple:

G ⋆ = 〈k⋆,P ⋆,A⋆〉
where:

• k⋆ = kR is the number of moves of matches of G ⋆;
• P ⋆ =ω2k⋆ is the set of matches of G ⋆;
• A⋆ ⊆ P ⋆ is the set of winning conditions for Player I in G ⋆.

The set A⋆ is defined according to the following condition: s ∈ A⋆ if
and only if s ∈ AR , or s ∈ C =ω2kR \ P R and |ml (s )| = 2m + 1.

So, A⋆ is the subset of P ⋆ whose elements are either matches of GR

that are won by Player I, or illegal matches of GR in which Player I was
the last one to play legally. Strategies and winning strategies for game
G ⋆ are defined as usual (so, no modification except the obvious ones4

4By the «obvious» modifications we mean those which follow from substituting the ele-
ments of a generic game in canonical formG , with those which are part of the tripleG ⋆ that
is here at stake.
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are required with respect to the general definitions of these notions for
games in canonical form given according to definition 4.1, and definition
4.4 above).

The correspondence we would like to achieve sounds as follows: a
player has a winning strategy profile in GR if and only if the same player
has a winning strategy profile in G ⋆. We would like to prove that with re-
spect to both winning strategies being defined permissively like in defini-
tion 4.8, and winning strategy being approached strictly like in definition
4.9. Due to the arguments being symmetrical in the case of Player II, we
illustrate this point by proving that this holds for Player I alone.

So, we first prove that the following holds:

Proposition 4.2 LetGR andG ⋆ be as before, and let the notion of win-
ning strategy for Player I and II inGR be defined according to definition
4.8. Then, Player I has a winning strategy in GR if and only if Player I
has a winning strategy in G ⋆.

Proof : we first prove the direction from left to right of the statement, and
then assume that σ is a (permissive) winning strategy for Player I in GR .
Let σ⋆ be the strategy for Player I in G ⋆ defined out of σ by the following
condition for every s ∈ E <2k⋆ :

σ⋆(s ) =
�
σ (s ), for every s ∈ E <2k⋆ such that s �� s ′ for every s ′ ∈ C
min{z ∈� : z �= (s ′)|s |, for every s ′ ∈ C }, otherwise

Notice that for every s ∈ E <2k⋆ the set
{z ∈� : z �= (s ′)|s |, for every s ′ ∈ C }

contains numbers which do not correspond to illegal moves in C at
stage |s | in a match of GR . Therefore, they represent a next legal move by
Player I in the match s played so far (s represents in fact a portion of a
match of G ⋆). The whole idea of this definition is as follows: strategy σ⋆

coincides with σ as long as no illegal move has been played. Otherwise,
it provides Player I with a next legal move. This means that, for every
s ∈ωk⋆ , we have:

σ⋆ ◃▹ s = (x0, (s )0, . . . , xk−1, (s )k−1)

where x0 = σ (( )), and:

• xi+1 = σ (x0, (s )0, . . . , xi , (s )i ), if (s ) j �= (s ′) j+1 for every s ′ ∈ C and
0 ≤ j ≤ i ;

• xi+1 = z ∗, with

z ∗ =min{z ∈� : σ⋆(x0, (s )0, . . . , xi , (s )i ) ◃▹ z �� s ′, for every s ′ ∈ C }
otherwise.
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It follows then that σ⋆ ◃▹ s ∈ A⋆ is always the case, i.e., holds for every
s ∈ωk⋆ , for:

• either s is a legal set of moves by Player II in GR , hence σ⋆ ◃▹ s =
σ ◃▹ s and σ ◃▹ s ∈ AR ⊆ A⋆ since σ is a winning strategy for Player
I (therefore, σ⋆ ◃▹ s ∈ A⋆ as wanted);

• or, s contains illegal moves5 and σ⋆ ◃▹ s ∈ C as a consequence,
but if one takes the least i ∈ � for which (s )i = (s ′)i for some
s ′ ∈ C holds, then σ⋆ is instructed in such a way that (σ⋆ ◃▹ s )i+1 =
σ⋆((σ⋆ ◃▹ s )0, . . . , (s )i ) is a legal move by Player I (i.e., (σ ◃▹ s )i+1 �=
(s ′′)i+1 for every s ′′ ∈ C ); this means that |ml (σ⋆ ◃▹ s )| = 2m+1 for
some m ∈�, and σ⋆ ◃▹ s ∈ A⋆ by the definition of it.

Let, for the contrary direction of the statement, σ⋆ be a given winning
strategy for Player I in G ⋆. Then, for every s ∈ ωk⋆ which is a legal set of
moves by Player II, σ⋆ ◃▹ s ∈ A⋆. However, it is also the case that σ⋆ ◃▹
s �∈ C (for, otherwise |ml (σ⋆ ◃▹ s )| = 2m for some m ∈ �, hence this would
correspond to an illegal match of GR where Player I was the first to play
illegally; this is not the way A⋆ was defined and it would contradict σ⋆ ◃▹
s ∈ A⋆, that we know holds instead owing to σ⋆ being a winning strategy).
Hence, it must be σ⋆ ◃▹ s ∈ AR , which means that σ⋆ is winning for Player
I in GR and the statement holds. QED

The same model G ⋆ turns out to allow us to prove the correspond-
ing result to proposition 4.2 when the alternative, strict attitude toward
illegal matches is taken and winning strategies for players are defined
according to definition 4.9 instead:

Proposition 4.3 LetGR andG ⋆ be as before, and let the notion of win-
ning strategy for Player I and Player II in GR be defined according to
definition 4.9. Then, Player I has a winning strategy in GR if and only
if the same holds in G ⋆.

Proof : as before, we start from the left-to-right direction of the state-
ment, and assume that σ is a (strict) winning strategy for Player I in GR .
Then, if s is an arbitrary but fixed element ofωkR =ωk⋆ , either σ ◃▹ s ∈ AR

in case s is a legal set of moves by Player II, which yields σ ◃▹ s ∈ A⋆ since
AR ⊆ A⋆ holds by definition, or s is not a legal set of moves by Player
II, hence (what stated in footnote 5 holds of it and) σ ◃▹ s ∈ C with
|ml (σ ◃▹ s )| = 2m+1 for some m ∈�, from which it follows that σ ◃▹ s ∈ A⋆
owing again to the definition of it. That is: σ is also a winning strategy
for Player I in G ⋆, and (this direction of) the statement of the proposition
holds.

5Owing to definition 4.5, this holds if (s )i = (s ′)2i+1 for some 0 ≤ i < kR and (s )i �= (s ′′)2i+1
for every s ′′ ∈ P R .



136 COURSE NOTES ON FINITE GAMES AND RATIONAL CHOICE

Conversely, let us assume that Player I has a winning strategy in G ⋆
in the form of a function σ⋆. Let then s ∈ωkR be such that s is a legal set
of moves by Player II. Then, σ⋆ ◃▹ s ∈ A⋆ since σ⋆ is a winning strategy
and ωkR = ωk⋆ by definition. This can be either because σ⋆ ◃▹ s ∈ AR , or
because σ⋆ ◃▹ s ∈ C and |ml (σ⋆ ◃▹ s )| = 2m + 1 for some m ∈ �. Having
supposed that s is a legal set of moves by Player II, the latter cannot be
the case and σ⋆ ◃▹ s ∈ AR must be true instead.

If s contains illegal moves instead, and σ⋆ ◃▹ s ∈ C as a consequence,
since σ⋆ ◃▹ s ∈ A⋆ also holds having assumed that σ⋆ is winning for Player
I in G ⋆, then σ⋆ ◃▹ s ∈ AR cannot be the case owing to σ⋆ ◃▹ s ∈ C , which
means that |ml (σ⋆ ◃▹ s )| = 2m + 1 must hold for some m ∈ �. That is: σ⋆
is a winning strategy for Player I in GR , and the left-to-right direction of
the theorem holds. QED

One may wonder, having proved by proposition 4.2 and proposition
4.3 that for Player I to have a winning strategy in G ⋆ is the same for her
as to have either a permissive or a strict winning strategy in GR , whether
from the two results it follows that these two latter concepts, that were
apparently looking differently, are the same instead in the end. This is not
so, and the reason is that the two results we have proved have different
consequences. In particular, proposition 4.3 proves more than stated: it
actually proves that the set of winning strategies for Player I in G ⋆ is the
same as (i.e., it contains the same elements of) the set of strict winning
strategies for Player I inGR . Proposition 4.2 instead does not do the same
to the set of winning strategies for Player I inG ⋆ and the set of permissive
winning strategies for Player I in GR . For, while it proves that a winning
strategy for Player I in G ⋆ is a permissive winning strategy for Player I
in GR , it only proves that out of a permissive winning strategy of this
latter sort, one winning strategy for Player I in G ⋆ can be defined. This
means that the two sets of winning strategies in question have a non-
empty intersection, but are not necessarily the same set of strategies in
the end.

4.7.2. Games with matches of different lengths

Another possible modification of the canonical model of games we
have decided to stick to, would be prompted by the following observa-
tion: it is part of our common experience with games that matches have
not always one and the same length; as a matter of fact, there might be
different factors causing matches to last differently, including the abil-
ity of a player to find a more efficient strategy in one match, that helps
her to win earlier than in another match of the same game. This simple
observation makes the original requirement over matches in a game to
have always one and the same length a bit odd. In order to take this is-
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sue into account, the canonical model is modified as follows. Take now a
finite game GDL (for «games with (matches of) different lenghts») to be
a triple like the following:

GDL = 〈kDL,PDL,ADL〉

where:

• kDL ∈ � is the bound over the number of moves of matches of
the game GDL;

• PDL ⊆ω<2kDL
is the set of matches of GDL;

• ADL ⊆ PDL is the set of winning conditions for Player I in GDL.

Game GDL is played exactly in the same way as games in canonical
form are played. In particular, matches always have even length, which
means that Player II is always the last to move. Yet, they have different
durations and one match s ∈ P may end earlier (i.e., when a minor num-
ber of moves have been played) than another s ′ ∈ P (i.e., |s | < |s ′| holds
in this case). Notice that we assume that the bound over the number of
moves allowed to each player is never reached, since for no s ∈ PDL we
have |s | = 2kDL. This motivates the view we propose below of the main
result of this part of the section, proposition 4.4 below, as establishing
the means for passing from such a model to one in which all matches of
the given game are extended to have length equal to 2kDL.

Now, the definition of winning strategy in this type of games needs
to be modified with respect to how it was given in definition 4.4, so to
take into account the new features of matches of GDL. This is done by
means of definition 4.11 below, where, for the sake of completeness, we
have defined the new concept for both players even though only the new
definition of winning strategy for Player I is actually needed, as far as
proposition 4.4 below is concerned.

Before going into that, however, we need as usual to define strategies
in general. For technical reasons that make life easier with the proof of
the said proposition, we leave it as it stands. As we shall briefly comment
afterwards, this has some apparently counter-intuitive drawbacks that
should be taken into account:

Definition 4.10 Let GDL in the form of the previous triple be given.
Let E <2kDL and O<2kDL be as in definition 4.1, that is:

E <2kDL = {s ∈ω<2kDL : |s | = 2m,m ∈�}
O<2kDL = {s ∈ω<2kDL : |s | = 2m + 1,m ∈�}

Then:
σ : E <2k

DL →ω
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is a strategy for Player I in GDL, and:

τ :O<2k
DL →ω

is a strategy for Player II in GDL.

Strategies being defined in this way are capable of returning values
also for sequences which are not supposed to be matches of GDI L, due to
the fact that, owing to PDI L ⊆ ω<2kDL

, PDL might be a proper subset of
that total set. This, however, is no harm, and is just motivated to make
proofs easy: we might have been more strict here and redefine strategies
as functions which return values only when a proper match is concerned.
Notice that as we defined them, strategies are doing what they are sup-
posed to be doing since thay are defined over a superset of PDL, hence
they return values for every initial segment of an arbitrary element of the
latter set.

As it was the case for the canonical model, also in the case of GDL the
notion of winning strategy is obtained as a specification of the previous
definition of strategy:

Definition 4.11 Let GDL be a triple as before. Then:
1. A strategy σ for Player I inGDL iswinning if and only if, for every

s ∈ω<kDL such that (s )i = (s ′)2i+1 for some s ′ ∈ PDL and for every 0 ≤ i < |s |,

σ ◃▹ s ∈ ADL

2. A strategy τ for Player II inGDL iswinning if and only if, for every
s ∈ω<kDL such that (s )i = (s ′)2i for some s ′ ∈ PDL and for every i ≤ |s | − 1,

s ◃▹ τ ∈ PDL \ ADL

Notice that out of all values that winning strategies produce as strate-
gies, those that matters for their being winning are only the values re-
turned with respect to portions of actual matches of GDL. The extra con-
ditions on s ∈ ω<kDL

are intended to ensure that elements of s can count
as moves by Player II and Player I respectively (hence, corresponds to el-
ements occurring at odd places in such a match in the first case, which is
where moves by Player II can be found, and corresponding to elements
occurring at even places in a match, which is where moves by Player I
stay instead).

As it was the case beforewith themodification of the originalmodel to
encapsulate the idea that somematchesmay contain illegalmoves, we are
interested in showing that for every game defined according to the idea
that matches might have different lengths there exists a game in canoni-
cal form that corresponds to it in the sense that strategic winning of play-
ers is preserved. As anticipated above, we are going to partially achieve
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the goal by showing that, for every game GDL in the previous form there
exists a game G+ whose matches are obtained by extending the length
of any match in GDL up to length 2kDL, and such that it corresponds to
GDL in the previous sense of the expression. This does not yet mean that
we have obtained a version in canonical form of the latter model as the
set P + of matches of G+ is, as it will be clear in a minute, still a subset,
and possibly a proper subset of the total set ω2kDL

. We will make some
comments about this at the end of the section.

For the time being, let us content ourselves with the goal just de-
scribed, and let G+ be as follows:

G+ = 〈k+,P +,A+〉

where:

• k+ ∈� is the maximum number of moves of matches of G+;
• P + ⊆ω2k+ is the set of matches of G+;
• A+ ⊆ P + is the set of winning conditions for Player I in G+.

The conditions we put over the elements of G+ are:

1. k+ = kDL;
2. P + = {s ∈ω2k+ : s ′ � s , for some s ′ ∈ PDL};
3. s ∈ A+ if and only if s ′ � s for some s ′ ∈ ADL, and (s )i = 0 for every
|s ′| ≤ i < |s | − 1 and i = 2m for some m ∈ �, while (s )i = 1 for every
|s ′| ≤ i ≤ |s | − 1 and i = 2m + 1 with m ∈�.

The first two conditions of the list make clear what we meant to em-
phasize above: matches of G+ are obtained by extending matches of GDL

until length 2kDL is reached. The third condition reveals the whole idea
on which winningmatches inG+ is based. As far as Player I is concerned,
she is required to first play in such a way the portion of the match that
corresponds to a match in GDL is won, and then trivialize her game be-
haviour to the point of playing the constant move «0» until the end of
the match is reached. In other words, the hard part of winning a match
in G+ for Player I is winning the part of it that is a match in GDL. Player
II should play no differently, as once she has made sure to have won the
portion of the match in G+ that corresponds to a match of GDL, then she
just have to play numbers different from 1.

The conditions on P + and A+ justify the following observations:

Remark 4.1 For every s ′ ∈ PDL, there exists s ∈ P + such that s ′ � s (i.e.,
every match of GDL is extended by some match in G+), while for every
s ′ �∈ PDL and for every s ∈ P +, we have s ′ �� s (i.e., no match in G+ is the
extension of a sequence that is not in PDL).
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Remark 4.2 For every s ′ ∈ ADL, there exists s ∈ A+ such that s ′ � s ,
(s )i = (s ′)i for every 0 ≤ i < |s ′|, and (s ) j = 0 for every |s ′| ≤ j < |s | with
j = 2m + 1 for some m ∈� (i.e., every match of GDL where Player I wins
has an extension inG+wherePlayer I alsowins), while for every s ′ �∈ ADL

and for every s ∈ A+, s ′ �� s is the case (i.e., nomatch ofGDL where Player
I does not win has an extension in G+ where Player I wins).

Next come the definitions of strategy and winning strategy for game
G+. As far as the first is concerned, nothing changes with respect to the
canonical model:

Definition 4.12 Let G+ be given as the above triple. Let the sets E <2k+

and O<2k+ be defined as follows:

E <2k+ = {s ∈ω<2k+ : |s | = 2m,m ∈�}
O<2k+ = {s ∈ω<2k+ : |s | = 2m + 1,m ∈�}

Then:
σ : E <2k

+ →ω
is a strategy for Player I in G+, and:

τ :O<2k
+ →ω

is a strategy for Player II in G+.

Next comes the definition of winning strategy. If G+ were a game
in canonical form itself, we could just repeat here what was stated in
definition 4.4 above. However, that definition must be modified owing
to the fact that P + ⊆ ω2k+ only, which leaves open the possibility that
C + = ω2k+ \ P + �= � (as it was the case for games such as GR above).
Therefore, we apply a similar modification to the original definition in
this case:

Definition 4.13 Let G+ be a triple as before. Then:
1. A strategy σ for Player I in G+ is winning if and only if, for every

s ∈ωk+ such that (s )i = (s ′)2i+1 for some s ′ ∈ P + and for every 0 ≤ i < |s |−1,
σ ◃▹ s ∈ A+

2. A strategy τ for Player II in G+ iswinning if and only if, for every
s ∈ωk+ such that (s )i = (s ′)2i for some s ′ ∈ P + and for every 0 ≤ i < |s |,

s ◃▹ τ ∈ω2k \ A+

Finally, we are in a position to conclude this part of the section by
proving, as before, that having a strategy condition for Player I in a game
likeGDL above can be put in correspondence to having awinning strategy
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for Player I in G+. Once again we only provide the reader with this result
as a sample of how the symmetrical argument needed to conclude the
same for Player II would look like.

Then, we have:

Proposition 4.4 Let GDL and G+ be as before. Then: Player I has a
winning strategy in GDL if and only if Player I has a winning strategy
in G+.

Proof : we first prove the left-to-right direction of the statement, and sup-
pose that σ is a given winning strategy for Player I in GDL then. Take
s ∈ ω<2k+ to be such that |s | = 2m for some m ∈ � and s � s+ for some
s+ ∈ P + (that is: s represents a portion of an actual match of G+). Then,
owing to the definition of P + above, s ′ � s , wfor some s ′ ∈ PDL, and
s = s ′ ◃▹ s ′′ where either s ′′ = ( ) or not. Let, for every s ∈ ω<2k+ meet-
ing the extra condition above, sDL indicate the initial sequence of it that
belongs to PDL (hence, in our running example, sDL ∈ PDL and sDL � s � s+
where s+ ∈ P +). Let, for every such s , s − sDL be the remaining part of the
sequence (that is, s = sDL ◃▹ (s − sDL)).

This is something we use for the sake of defining an extension σ+ of
σ that may work as winning strategy for Player I in G+. Put:

σ+(s ) =
�
σ (s ), if s − sDL = ( )
0, otherwise

if s is as above, and let
σ+(s ) = 1

if s ∈ ω<2k+ with |s | = 2m for some m ∈ �, but s �� s+ for every s+ ∈
P +. Then, σ+ is a function defined on the whole set E <2k+ and hence is a
strategy for Player I in G+. Notice in particular that σ+(( )) = σ (( )) since
( )DL = ( ) = ( )− ( )DL.

Let now s ∈ ωk+ be such that (s )i = (s ′)2i+1 for some s ′ ∈ P + and for
every 0 ≤ i < |s |. Then,

σ ◃▹ s = (σ (( )), (s )0 = (s
′
DL)1,σ ((σ ( ), (s

′
DL)1)), . . . , (s

′ − s ′DL)1,0,0, . . .0)

since s ′ = s ′DL ◃▹ (s
′ − s ′DL). It turns out that σ

+ ◃▹ s ∈ A+ since σ+ ◃▹ s =
(σ ◃▹ s ′DL) ◃▹ s

′′ where:

• σ ◃▹ s ′DL ∈ ADL sinceσ iswinning for Player I inGDL and s ′DL ∈ PDL

(see also remark 4.1 above);
• s ′′ is such that (s ′′)i = 0 for every |s ′DL| ≤ i < 2k+ − 1, with i = 2m

for some m ∈�.

hence the proposition.



142 COURSE NOTES ON FINITE GAMES AND RATIONAL CHOICE

Conversely, let σ+ be a winning strategy for Player I in G+. Let s ∈
ω<k

DL = ω<k+ be such that (s )i = (s ′)2i+1 for some s ′ ∈ PDL and for every
i ≤ |s | − 1 and let us suppose that

σ+ ◃▹ s �∈ ADL

is the case (notice that ◃▹ is defined here owing to σ+ being a strategy
for Player I inG+, and therefore counting also as a strategy for Player I in
GDL owing to our main assumptions and to how definition 4.12 was de-
vised). Take s ⋆ ∈ωk+ to be such that (s ⋆)i = (s †)2i+1 as in part 1 of definition
4.12, and, moreover, such that s � s ⋆ also holds.

First of all, notice that such s ⋆ exists: having assumed that (s )i =
(s ′)2i+1 for some s ′ ∈ PDL and for every 0 ≤ i < |s |, and since we also have
s ′ � s ′′ for some s ′′ ∈ P + owing to remark 4.1 above, we have (s )i = (s ′′)2i+1
for every 0 ≤ i < |s |; hence, it is enough that s ⋆ = s ′′ for the previous as-
sumption to be justified.

Then,
σ+ ◃▹ s � σ+ ◃▹ s ⋆

and
σ+ ◃▹ s ⋆ ∈ A+

both hold since σ+ is winning for Player I in G+ by assumption. This
means that from our hypothesis it would follow that there is an element
σ+ ◃▹ s ⋆ of A+ whose initial subsequence σ+ ◃▹ s is not an element of ADL,
which contradicts remark 4.2. By that we conclude σ+ ◃▹ s ∈ ADL, which
yields, being s fixed but arbitrary, that σ+ is winning for Player I in GDL.
Hence the proposition. QED

As we warned already, the result we have achieved in this way is not
yet a strategical correspondence between games whose set of matches
is a subset of the total set of sequences with a given length and games
in canonical form. This is because in passing from games such as GDL

above to G+, we have passed from the set PDL ⊆ ω<2kDL
to the set P + ⊆

ω2k+ = ω2kDL
. Hence, all matches in the given game have been extended

to matches with length equal to 2kDL. A more clever definition of PDL

would have allowed us to achieve a broader result. However, I felt that
this putting more extra conditions would have made things less clear to
read. Therefore, I have decided to leave things simple and illustrate what
I thought was really worth conveying.

4.8. Determinacy of finite games

In section 4.6 we managed to clarify what is the main model of finite
games we plan to study, and, in view of what we have just seen in the
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subsequent sections, we now know that the model is sufficiently flexible
that it can cope with many of the features that games have in reality.

The concept of strategy in themodelwas first used to show that games
in the sense of our model are zero-sum games, hence it is not the case
that both Player I and Player II have a winning strategy. Now, we would
like to investigate a closely related question: Is it always the case that in
every finite game either Player I has a winning strategy, or Player II has
a winning strategy instead?

Let us first introduce some terminology:

Definition 4.14 A finite game G = 〈k ,P,A〉 is determined if it is either
the case Player I has a winning strategy, or Player II has a winning
strategy instead.

We are going to attack the problem of determinacy of finite games
by following a ‘logical route” similar to the one that brought us to study
equilibria in games in normal forms as fixpoints of a certain class of op-
erators. As one could expect then, this proof strategy requires to be more
precise about the linguistic resources we have been using so far.

Themain relationship we have spoken of, and the one that we have to
stick to as long as the goal of this section is concerned, is the elementhood
relation between individuals, in the form of either natural numbers, or
sequences of natural numbers, and sets. Relations of this sort are de-
noted by n ∈ S , or s ∈ S , as we have conventionally decided to indicate
numbers with symbols k ,m,n, . . . , k ′,m′,n′, . . . , k0,m0,n0, . . ., to indicate se-
quences by means of symbols s , s ′, s ′′, . . . , s0, s1, . . ., and save capital letters
for sets.

So far we have not needed to dig up and discuss the relation between
each of these symbols and the ‘objects’ they refer to. This becomes more
important now, due to to the peculiar proof strategy we plan to pursue
to accomplish the said task. As long as the latter is concerned, however,
we need to formally state with precision only a very little fragment of the
linguistic resources we have made use of so far. In particular, we need to
set up a formal language that allows us to speak of some very fundamental
facts occurring in a domain such as a game G in canonical form. These
fundamental facts concerns sequences that belong or do not belong to the
set A of winning conditions for Player I in G .

The language we are going to build will be called �−S («S» being a
shorthand for «sequences», the main objects we will be referring to by
means of it, and the minus sign «−» being a reminder of the quite weak
expressive power of it). We assume this language to have ‘proper names’
for all the elements of� in the form of constant symbols k for every k ∈�.
In addition, we assume it comprises means for referring to elements of
� generically, that is by means of variable symbols x0, x1, . . . , xn , . . .. What
we mean by saying that these symbols of�−S ‘refer to’ (or, ‘range over’ as
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it should be better said) numbers, it is something that has already been
exploited for the sake of building the language �GM to speak of game
matrices in the previous chapter and, as far as the new language is con-
cerned, will turn out clearly by definition 4.19 below.

Terms of the said sort, either proper names or variables, are used to
construct «complex terms» of�−S , which indicate sequences of numbers.
This will be done by supposing that the alphabet of�−S also contains (de-
numerably many) n-ary function symbols ( )n for every n ∈ �. As it turns
out from definition 4.15 below, these are conceived as (term-)functions
that take as input a finite list of n terms of�−S , for instance t0, . . . , tn−1, and
return the term (t0, . . . , tn−1)n as value (in the following, the superscript n
will be omitted in the case of complex terms of this form, whenever the in-
dices of terms occurring into it make it redundant). The intended mean-
ing for such complex construction is to refer to the sequence whose ele-
ments are the objects of our reference domain named by terms t0, . . . , tn−1.

In addition to «individual terms» of this three-fold sort (constants
k , variables xi , and sequence terms (t0, . . . , tn−1)), �−S is equipped with a
constant set name A, that we intend to use to refer to the set of winning
conditions for Player I of a given finite game. As long as sentences of this
language are concerned, we assume that �−S contains a binary relation
symbol ∈, that will be used to express the usual elementhood relation (see
definition 4.16 below), as well as some symbols which have a standard
logical meaning like ¬ for negation, ∀ for universal quantification over
individuals, and ∃ for existential quantification. Expressions of �−S are
obtained also by making use of parentheses (, ) as auxiliary symbols.

Having said that, the exact definition of this notion of «term of �−S »
is given below, along with the definition of the notion of «free variables»
for expressions that count as terms of�−S :
Definition 4.15 1. The set TERM−S of terms of �−S is the smallest col-
lection that contains all terms {k : k ∈ �}, all variables x0, x1, . . . , xn , . . .,
and is closed under application of sequence symbols ( )n to them, that is
contains expressions of the form (t0, . . . , tn−1) for every n ∈ � where each
ti (with 0 ≤ i < n) is either a constant (i.e., ti ≡ m for some m ∈ �), or a
variable (i.e., ti ≡ xj )6.

2. For every element t of TERM−S , the set of free variables of t , FV (t ),
is defined as follows: FV (t ) = � in case t ≡ k (k ∈ �); FV (t ) = {xn} if
t ≡ xn; FV (t ) = {x1, . . . , xm}, in case t ≡ (t0, . . . , tn−1) and

⋃
1≤i≤n−1 FV (ti ) ={x1, . . . , xm}.

Let us just add a couple of comments:

6I am using the symbol ≡ to indicate coincidence between two formal expressions. So,
e ≡ e ′ holds if e and e ′ are expressions of �−seq – finite lists of symbols from the alphabet

of the language – that coincide with one another (i.e., cointain exactly the same symbols in
the same order).
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• part 1 of the previous definition aims at identifying the collection
of expressions that can be formed out of the symbolic resources
of �−S and count as well-formed ‘names’ of it. As anticipated,
names we count are either proper or generic names for natural
numbers, as well as names for sequences of them;

• by means of part 2 of the definition we are simply isolating, for
every expression t that counts as a term of�−S , the variables that
occur into it (i.e., which are part of the list of symbols of�−S that
t is made out of); the reason why variables as such are called
«free» is something that will turn out clearly (andwill be thereby
stressed) after definition 4.16 below.

Terms of�−S are then used to make statements regarding sequences
of numbers belonging, or not belonging to the set A of a given game G .
This is done by means of a binary relation · ∈ · whose intended meaning
is: «· is an element of ·». The definition of the set of expressions that
we regard as formulas of �−S is given below (along with the extension to
expressions of�−S of this sort of the previous notion of «free variables»).
For the sake of it, we make use of the logical tools of�−S for extending its
own expressive capacity:

Definition 4.16 1.The atomic formulas of �−S are all, and only the ex-
pressions of the form t ∈ A, where t is in TERM−S and

t ≡ (t0, . . . , tn−1)

for some n ∈�, with t0, . . . , tn−1 ∈ TERM−S .
1.1 If t ∈ A is an atomic formula of�−S , then the set FV (t ∈ A) of free

variables of it is given by FV (t ∈ A) = FV (t ).
2. The set FORM−S of formulas of�−S is the smallest set of expressions

of it that contains all of the atomic formulas of�−S , and is further defined
by the following clauses:

• if φ is an element of FORM−S , then ¬φ is also an element of it,
with FV (¬φ) = FV (φ);

• if φ is an element of FORM−S with xi ∈ FV (φ), then ∀xiφ is an
element of FORM−S too, with FV (∀xiφ) = FV (φ) \ {xi };

• if φ is an element of FORM−S with xi ∈ FV (φ), then ∃xiφ is an
element of FORM−S too, with FV (∃xiφ) = FV (φ) \ {xi }.

Part 2.2 and 2.3 of the previous definition makes clear in what sense
a variable can be free in a expression of�−S , by establishingwhat itmeans
for it to be no more free (or, «bounded» by a quantifier as logicians say):
the latter is said of a variable occurring in an expression φ that counts as
a formula of �−S and which is subject to the application of a quantifier
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(either ∀, or ∃) prenexed to it. That is, xi is bounded in Q xiφ, where Q is
either ∀ or ∃ and φ is a formula of� i

S , if it occurs free in φ (i.e., if φ is not
an expression of the form Q xiψ where again Q is either ∀ or ∃ and ψ is
a formula of �−S ). In other words, «free» for a variable means: «within
the range of no quantifier symbol».

Having devised the syntax of �−S in this way, it is now time to equip
expressions that are well-formed with respect to the syntactical rules we
have listed with a meaning. This is done by similarly devising a basic
semantics for�−S .

As it was already mentioned for language �GM from the previous
chapter, this is a consequence of our habit of looking at languages as tools
for speaking of something, i.e. allowing us to refer of something occur-
ring in a domain of «facts», or «state of affairs», or «situations» etc., we
would like to report on. The same goeswith formal languages like the lan-
guage �−S we are devising. The intended domain of reference is a finite
game in the canonical form they are supposed to take, namely as triples
G = 〈k ,P,A〉, and in particular we want to speak by means of sentences of
�−S about facts concerning the set A which take the form s ∈ A (that cor-
responds to the ‘object’ s belonging to the ‘collection of objects’ A) or s �∈ A
(which corresponds instead to s not belonging to A). For our intention to
be met, we need to state a correspondence between sentences and facts
of the said sort that also comprises the means for saying when a sentence
truly refers to the fact it corresponds to. As it is customary for formal
languages, this is done by specifying a relation of validity for formulas of
�−S . Since this relation presupposes a reference domain to be given (in
the form of a game G) and is therefore relative to that domain, and since
it concerns formulas which report on facts referring to sequences of nat-
ural numbers belonging or not belonging to a collection of them (which
makes it also relative to the ‘nature’ of the objects these formulas speak
of), we call it «�-validity relative to G».

Before going into that, we need to establish the required notation,
and explain what we mean in the following by writing

φ[x0/t0, . . . , xn−1/tn−1]

for a given formulaφ of�−S , individual variables x0, . . . , xn−1 and terms
t0, . . . , tn−1. This is intended to indicate the expression that is obtained
from φ by literally replacing the symbols x0, . . . , xn−1 occurring into it by
means of the symbols t0, . . . , tn−1 in that order. Since free variables of a
formula are inherited by free variables of the terms occurring into it (see
definition 4.16 above), for this notation to be defined precisely we are
required to first define with a similar degree of precision what is meant
by

t [x0/t0, . . . , xn−1/tn−1]

where again t , t0, . . . , tn−1 are in the set TERM−S of terms of �−S and
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x0, . . . , xn−1 are variables of �−S . This we use as a notation to indicate the
expression that is obtained from t by substituting every occurrence of
x0, . . . , xn−1 with terms t0, . . . , tn−1 in that order.

This is defined over elements of TERM−S as follows:

Definition 4.17 1. If t ≡ xi for some 0 ≤ i ≤ n − 1 (hence, FV (t ) = {xi }),
then we have that the term t [x0/t0, . . . , xn−1/tn−1] is ti , for every variables
x0, . . . , xn−1 of�−S and t0, . . . , tn−1 ∈ TERM−S .

2. If t ≡ xj for some variable xj of �−S such that xj �= xi for every
1 ≤ i ≤ n − 1 (hence, FV (t ) = {xj } and xi �∈ FV (t ) for every 1 ≤ i ≤ n − 1),
then t [x0/t0, . . . , xn−1/tn−1] ≡ xj for every variables x0, . . . , xn−1 of �−S and
t0, . . . , tn−1 ∈ TERM−S .

3. If t ≡ k for some k ∈� (hence, FV (t ) = �), then

t [x0/t0, . . . , xn−1/tn−1] ≡ k

for every variables x0, . . . , xn−1 of�−S and t0, . . . , tn−1 in TERM−S .
4. If t ≡ (t ′0, . . . , t ′m−1) for some m ∈� and for some t ′0, . . . , t

′
m−1 ∈ TERM−S

(hence, FV (t ) =
⋃

0≤i≤m−1 FV (ti )), then

t [x0/t0, . . . , xn−1/tn−1] ≡ (t ∗0 , . . . , t ∗m−1)

where, for every 0 ≤ i ≤ m − 1, t ∗i ≡ t ′i [x0/t0, . . . , xn−1/tn−1] (for every
x0, . . . , xn−1 variables of�−S and t0, . . . , tn−1 in TERM−S ).

It follows from the definition that if {x0, . . . , xn−1} �∈ FV (t ), then
t [x0/t0, . . . , xn−1/tn−1] ≡ t

for every variables x0, . . . , xn−1 of�−S and terms t , t0, . . . , tn−1 in TERM−S
(proof is left as an exercise – hint: it is enough to carry out an inductive
argument over TERM−S ).

As said, we are now in a position to similarly define the corresponding
notation for formulas of�−s :
Definition 4.18 1. If t ≡ (t ′0, . . . , t ′m−1) for some m ∈ � and for some
t ′0, . . . , t

′
m−1 ∈ TERM−S , and φ ≡ t ∈ A (hence, FV (φ) = FV (t )), then

φ[x0/t0, . . . , xn−1/tn−1] ≡ t [x0/t0, . . . , xn−1/tn−1] ∈ A

for every variables x0, . . . , xn−1 and t0, . . . , tn−1 in TERM−S .
2. If φ ≡ ¬ψ for some ψ ∈ FORM−S (hence, FV (φ) = FV (ψ)), then

φ[x0/t0, . . . , xn−1/tn−1] ≡ ¬ψ[x1/t1, . . . , xn/tn]

for every variables x0, . . . , xn−1 and t0, . . . , tn−1 in TERM−S .
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3. If φ ≡ ∀xiψ for some ψ ∈ FORM−S (hence, FV (φ) = FV (ψ) \ {xi }),
then

φ[x0/t0, . . . , xn−1/tn−1] ≡ ∀xiψ[x0/t0, . . . , xn−1/tn−1]
for every variables xi , x0, . . . , xn−1 of �−S with i �= j for every 0 ≤ j ≤

n − 1 and t0, . . . , tn−1 ∈ TERM−S .7
3. If φ ≡ ∃xiψ for some ψ ∈ FORM−S (hence, FV (φ) = FV (ψ) \ {xi }),

then
φ[x0/t0, . . . , xn−1/tn−1] ≡ ∃xiψ[x0/t0, . . . , xn−1/tn−1]

for every variables xi , x0, . . . , xn−1 of �−S with i �= j for every 0 ≤ j ≤
n − 1 and t0, . . . , tn−1 ∈ TERM−S (notice again that it is not assumed that
xi ∈ {x0, . . . , xn−1}).

As in the previous case, it is an easy task to prove that, for every vari-
ables x0, . . . , xn−1 and terms t , t0, . . . , tn−1 in TERM−S ,

φ[x0/t0, . . . , xn−1/tn−1] ≡ φ
holds if {x0, . . . , xn−1} �∈ FV (φ) (proof is again left as an exercise and the

hint is the same: an inductive argument over FORM−S this time is needed).
Having said that, the announced definition of �-validity relative to

a game G for formulas of �−S , that is limited only to those expressions
which are of interest for the sake of theorem 4.1 below, goes as follows:

Definition 4.19 Let an arbitrary finite game G = 〈k ,P,A〉 be given.
Then we say:

1. a formula of �−S of the form t ∈ A where t ≡ (n0, . . . , n2k−1) for
some n0, . . . , n2k−1 ∈� is �-valid relative to G if and only if

(n0, . . . , n2k−1) ∈ A

2. a formula of �−S of the form t ∈ A, where t ∈ TERM−S F V (t ) =
{x0, . . . , xm−1} (m ≤ 2k), and t ≡ (t0, . . . , t2k−1) with t0, . . . , t2k−1 in
TERM−S ,

8 is �-valid relative to G if and only if

(t ∈ A)[x0/p0, . . . , xm−1/pm−1]
is �-valid relative to G for every p0, . . . , pm−1 ∈�.

3. a formula of the form ¬φ for some φ ∈ FORM−S is �-valid relative
to G if and only if φ is not �-valid relative to G;

7The extra assumption on xi , which has the effect that this is different from all those
x j that are substituted by terms t j in the given expression, is made to keep the definition
simple. It is known that it causes no loss of generality.

8Since t ∈ TERM−S each term from the list t0, . . . , t2k−1 is required – see definition 4.15 –
to be either of the form n for some n ∈ �, or a variable x j of �−S . Hence the free variables
occurring in t can be 2k at most.



SEQUENTIAL PLAY: GAMES IN EXTENSIVE FORM 149

4. a formula of the form ∀xiφ for some φ ∈ FORM−S and xi variable
of �−S , is �-valid relative to G if and only if φ[xi/n] is �-valid
relative to G for every n ∈�;

5. a formula of the form ∃xnφ for some φ ∈ FORM−S and xi variable
of �−S , is �-valid relative to G if and only if φ[xi/n] is �-valid
relative to G for some n ∈�;

Henceforth, we shall write

|=G� φ
to mean that φ is �-valid relative to G , and

�|=G� φ
to mean that φ is not �-valid relative to G instead.
A few comments on definition 4.19 are due:

• The rationale behind clause no. 2 in the definition comes from
wishing to assign to variables the value of generic names for nat-
ural numbers. Therefore, a formula φ that contains a generic
name as such in the form of a free variable xi should be regarded
as �-valid relative to G if and only φ[xi/n] is for every possi-
ble value of n (i.e., for every n ∈ �). This is stated explicitly for
atomic formulas alone. However, it follows from an easy induc-
tive proof on φ, that it extends to FORM−S as a whole (that is: if
xi ∈ FV (φ), then |=G� φ if and only if |=G� φ[xi/n] for every n ∈�).

• By looking at clauses 4 and 5, it turns out clearly what is the in-
tended meaning of ∀ and ∃. In particular, ∀xiφ counts as the
statement according to which «φ holds inG of every n ∈�» (i.e.,
|=G� φ[xi/n] for every n ∈ �), while ∃xiφ counts as the statement
according towhich «φ holds inG of some n ∈�» (i.e., |=G� φ[xi/n]
for some n ∈ �). These are known as the universal quantifier
(over individuals) and the existential quantifier (over individu-
als). Also, notice that the following holds owing to definitions
4.18 and 4.19: if xi �∈ FV (φ), then |=G� ∀xiφ and |=G� ∃xφ are the
cases if and only if |=G� φ.

• It follows from definition 4.19 that |=G� ∀xi∃xjφ holds if and only
if for every n ∈�, there exists m ∈� such that |=G� φ[xi/k , xj/h].

• Observe instead, that |=G� ∃xi∀xjφ if and only if there exists n ∈�,
such that for every m ∈�, |=G� φ[xi/n, xj/m].

We now focus on generic formulas involved into remarks (iii) and
(iv) above, since they turn out to play a crucial role in proving theorem
4.1 below. First, we state and prove the following ancillary result to that
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theorem, as a consequence of definition 4.19 above. For the sake of the
readability of it, we allow us to use also symbols y0, . . . , yn , . . . as ranging
over variables of�−S .

We have:

Lemma 4.2 Let G = 〈k ,P,A〉 be given. Then, for every n ≤ k
|=G� ¬∃x0∀y0 . . .∃xn−1∀yn−1φ

holds if and only if

|=G� ∀x0∃y0 . . .∀xn−1∃yn−1¬φ
is the case.

Proof : lemma is proved by induction on n. Assume first that n = 0 is the
case. Then, it is clear that there cannot be a sequence of variables such
as x0, y0, . . . , xn−1, yn−1. That is,

¬∃x0∀y0 . . .∃xn−1∀yn−1φ ≡ ¬φ ≡ ∀x0∃y0 . . .∀xn−1∃yn−1¬φ
So, we should prove that |=G� ¬φ holds if and only if |=G� ¬φ, which is

trivial.
Now, suppose that the lemma holds up to n < k (this is the induction

hypothesis), that is

|=G� ¬∃x0∀y0 . . .∃xn−1∀yn−1φ
holds if and only if

|=G� ∀x0∃y0 . . .∀xn−1∃yn−1¬φ
We want to prove that this holds true also for formulas

¬∃x0∀y0 . . .∃xn∀ynφ,∀x0∃y0 . . .∀xn∃yn¬φ
Notice that what counts for the application of the induction hypoth-

esis is the number of alternations of quantifiers in the prefix of a formula
that starts with a negation, which is followed by a list of quantifiers where
an existential comes prior to a universal one, and ends up with the for-
mula φ. We are assuming that the lemmawe are proving holds whenever
this number is n at most to prove that holds for formulas which have n+1
alternations of quantifiers too.

Let us suppose then that

|=G� ¬∃x0∀y0 . . .∃xn∀ynφ
holds. Owing to definition 4.19, this is the same as saying that

�|=G� ∃x0∀y0 . . .∃xn∀ynφ
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is the case, that is (again by definition 4.19 and observation (iv) after
that), it is not true that there exists p ∈� such that for every q ∈�

|=G� ∃x1∀y1 . . .∃xn∀ynφ[x0/p, y0/q]
holds. However, this is equivalent to say that for every p ∈ �, there

exists q ∈� such that

�|=G� ∃x1∀y1 . . .∃xn∀ynφ[x0/p, y0/q]
holds, which corresponds by definition 4.19 to saying that

|=G� ¬∃x1∀y1 . . .∃xn∀ynφ[x0/p, y0/q]
is the case for every p ∈ � and for some q ∈ �. The formula just

displayed however has n alternations of quantifiers (which are counted
starting from 1 to n), where an existential quantifier always comes before
a universal one. That is, has all features that are needed for applying
the induction hypothesis to it, from which it follows that the previous
situation holds if and only if

|=G� ∀x1∃y1 . . .∀xn∃yn¬φ[x0/p, y0/q]
for every p ∈� and for some m ∈�. Finally, by applying the relevant

clauses of definition 4.19 (see the observation (iii) after that), we have
that this holds true if and only if

|=G� ∀x0∃y0 . . .∀xn∃yn¬φ
We conclude that the above lemma holds for every n ≤ k . QED

As announced, this lemma leads us to the sought-for result:

Theorem 4.1 Every finite game is determined, i.e. for every given fi-
nite gameG = 〈k ,P,A〉, either Player I has a winning strategy, or Player
II has a winning strategy instead.

Proof : let a finite game G = 〈k ,P,A〉 be given. First, we briefly review the
proof strategy, and explain it. We start by proving that (1) Player I has a
winning strategy σG for G if and only if

|=G� ∃x0∀y0 . . .∃xk−1∀yk−1((x0, y0, . . . , xk−1, yk−1) ∈ A)
is the case. From this, definition 4.19 and lemma 4.2, it follows that

if that is not the case and Player I has not a winning strategy, then

|=GN ∀x0∃y0 . . .∀k−1∃yk−1¬((x0, y0, . . . , xk−1, yk−1) ∈ A)
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holds instead. By proving that (2) the latter is the case if and only if
Player II has a winning strategy for G , we get the theorem.

For the sake of the proof, let us first assume the convention to use φA
in the following as a shorthand for (x0, y0, . . . , xk−1, yk−1) ∈ A). It should be
then clear that

FV (φA) = {x0, y0, . . . , xk−1, yk−1}
Having stated that, the proof of part (1) comes from observing that

Player I has a winning strategy σG in G if and only if σG ◃▹ s ∈ A for every
s ∈ ωk . It turns out by exploiting this fact that we can conclude, at the
level of the language�−S we have been constructing, that

φA[x0/σG (( )), y0/(s )0, . . . , xk−1/σG (σG (( )), . . . , (s )k−1), yk−1/(s )k ]

is �-valid relative to G for every s ∈ωk as a consequence. Hence

φA[x0/σG (( )), y0/(s )0, . . . , xk−1/σG (σG (( )), . . . , (s )k−1), yk−1/n]

for every n ∈ �, in particular for all those n ∈ � such that n �= (s )k ,
since this amounts to say that σG ◃▹ s ′ ∈ A, where s ′ ∈ ωk is such that
(s )i = (s ′)i for every i < k − 1 but (s ′)k−1 = n �= (s )k−1.

Therefore, it follows from definition 4.19 that

∀yk−1φA[x0/σG (( )), y0/(s )0, . . . , xk−1/σG (σG (( )), . . . , (s )k−1)]
is �-valid relative to G (where, if we indicate by ψ the displayed for-

mula for the sake of brevity, then FV (ψ) = {x0, y0, . . . , xk−1} and yk−1 �∈
FV (ψ)), which, owing to definition 4.19, is the same as saying that

∃xk−1∀yk−1φA[x1/σG (( )), x2/(s )0, . . . , xk−2/(s )k−1]
is �-valid relative to G too. By keep using this reasoning, which al-

lows to substitute elements of the sequence of the form (s )i by means of
any natural number n, and substitute elements of the form σG (. . . (s )i . . .)
by σG (. . . n . . .) accordingly, it follows from definition 4.19 that if the pre-
vious condition is satisfied then

|=G� ∃x0∀y0 . . .∃xk−1∀yk−1φA
holds as wanted.
Viceversa, assume that

|=G� ∃x0∀y0 . . .∃xk−1∀yk−1φA
is the case. definition 4.19 entails then that

|=G� ∀y0 . . .∃xk−1∀yk−1φA[x0/n0]
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holds for some n0 ∈�. This means that, if we put

ψ0 = ∀y0∃x1∀y1, . . . ,∃xk−1∀yk−1φA
(and notice that FV (ψ0) = {x0}), then ψ0[x0/n0] is �-valid relative to

G . Let then
n∗ =min{z ∈� : |=G� ψ0[x0/z ]}

that is, n∗ is an element of � for which the following holds:

• ψ0[x0/n∗] is �-valid relative to G ;
• n∗ is the minimum element of � for which this is the case, i.e. if

n′ ∈� is such that |=G� ψ0[x0/n′] also holds, then n∗ < n′.

Now, n∗ exists because of the properties of the < relation over �. In
particular, it follows from the fact that every non-empty subset of � has
a minimum element with respect to <. By exploiting this very same idea
for every variable xi in the prefix of the above formula we come up with
the following definition of σG .

First of all let, for every 0 ≤ i ≤ (k − 1), ψi indicate the formula

∀yi∃xi+1 . . .∃xk−1∀yk−1φA
Notice that FV (ψi ) = {x0, y0 . . . , xi }.
Then, we inductively define a function σG for every sequence s such

that
s = ((s )0, . . . , (s )2m) ∈ E <2k

with 0 ≤ m < k , as follows:
�
σG (( )) = n∗

σG (s ) =min{z ∈� : |=G� ψ|s |−1[x0/σG (( )), y0/(s )0, . . . , xi/z ]}
The claim is that σG is a winning strategy for Player I in G .
First thing to check is that σG : E <2k → ω, hence that σG fits defini-

tion 4.1. This amounts to checking, in particular, that for every s ∈ E <2k ,
σG (s ) ∈ω, that is σG is everywhere defined over E <2k . However, granted
the definition we have just given, we have:

σG (s ) =min{z ∈� : |=G� ψ|s |−1[x0/σG (( )), . . . , xi/z ]} ∈ω
Then, we have to prove in addition that σG is right-hand unique. This

follows again by the definition of it we have just given, and< being a strict
order of �.

It remains to prove that σG is winning for Player I (see definition 4.4).
Let then s ∈ ωk . It follows by the definition of σG above and definition
4.2 that:

σG ◃▹ s = (n
∗, (s )0,σG (n

∗, (s )0), . . . ,σG (n
∗, (s )0, . . . , (s )k−1), (s )k )
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where, for every i ≤ k
σG (n

∗, (s )0, . . . , (s )i−1) =min{z ∈� :|=G� ψi−1[x0/σG (( )), . . . , xi/z ]}
This yields that

|=G� ψk−1[x0/σG (( )), . . . , xk−1/z ]

is the case, that is

|=GN ∀yk−1φA[x0/σG (( )), y0/(s )0, . . . , xk−1/σG (σG (( )), . . . , (s )k−2)]
Definition 4.19 entails that this holds true if and only if

|=GN φA[x0/σG (( )), y0/(s )0, . . . , xk−1/σG (σG (( )), . . . , (s )k−2), yk−1/n]
for every n ∈�, from which it follows that

|=GN φA[x0/σG (( )), y0/(s )0, . . . , xk−1/σG (σG (( )), . . . , (s )k−2), yk−1/(s )k−1]
holds in particular. By definition 4.19 again, this is the case if and

only if
(σG ( ), (s )0, . . . ,σG (σG (( )), . . . , (s )k−2), (s )k−1) ∈ A

Hence, σG is winning for Player I in G .
Having proved that step (1) in the sketch of the proof we started from

holds, it remains to prove step (2), as it was said, to get the theorem. In
turn, this amounts to proving that Player II has a winning strategy in G
if and only if

|=GN ∀x0∃y0 . . .∀k−1∃yk−1¬((x0, y0, . . . , xk−1, yk−1) ∈ A)
which, owing to the notation we are using, is the same as

|=GN ∀x0∃y0 . . .∀k−1∃yk−1¬φA
The direction from left to right of this proof goes along lines that are

similar to the corresponding case of (1) above. Let us suppose then that
Player II has a winning strategy τG in G . That is,

s ◃▹ τG = ((s )0,τG ((s )0), . . . ,τG ((s )0, . . . , (s )k−1)) �∈ A
for every s ∈ωk . If we let s to be an arbitrary but fixed element ofωk ,

to say that s ◃▹ τG �∈ A is, by definition 4.19, the same as saying that

¬φA[x0/(s )0, y0/τG ((s )0), . . . , xk−1/(s )k−1, yk−1/τG ((s )0, . . . , (s )k−1)]
is �-valid relative to G . So, in particular, it follows by applying the

relevant clause of definition 4.19 that

∃yk−1¬φA[x0/(s )0, y0/τG ((s )0), . . . , xk−1/(s )k−1]
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is �-valid relative to G . Moreover, since s is arbitrary and τG is win-
ning for Player II in G ,

∃yk−1¬φA[x0/(s )0, y0/τG ((s )0), . . . , xk−1/n]
is �-valid relative to G for every n ∈�, and
∀xk−1∃yk−1¬φA[x0/(s )0, y0/τG ((s )0), . . . , yk−2/τG ((s )0, . . . , (s )k−3)]

is �-valid relative to G as a consequence. By keep using this reason-
ing, it should be clear that if τG is a winning strategy for Player II in G ,
then

|=GN ∀x0∃y0 . . .∀k−1∃yk−1¬φA
as wanted.
Conversely, let us suppose that the latter situation occurs. Hence,

assume that
|=GN ∀x0∃y0 . . .∀k−1∃yk−1¬φA

holds. First of all, notice that, for every formula θ of �−S such that
FV (θ) = {xi , xj }, we have that

|=G� ∀xi∃xjθ
holds if and only if there exists f :ω→ω such that

|=G� θ[xi/n, xj/ f (n)]
is the case for every n ∈ �. The direction from right to left of such a

statement is clear (just observe that if such f exists, one can apply the
relevant clauses of definitions 4.19 to conclude that ∀xi∃xjθ is �-valid
relative to G). Viceversa, if

|=G� ∀xi∃xjθ
is the case, then it follows from definition 4.19 that, for every n ∈�

Mn
θ = {m ∈� : |=G� θ[xi/n, xj/m]} �= �

For reasons we have already made use of above, it follows that this
set Mn

θ has a minimum element with respect to <. Let mn
θ indicate such

element. This allows to set up the definition of a function f : ω → ω,
to be such that f (n) = mn

θ for every n ∈ �. This is a legitimate definition
of a function: f is defined over � as a whole and yields a value that be-
longs to the same set; in addition, f is right-hand unique as functions are
supposed to be. Finally, one observes that, by the definition of f ,

|=G� θ[xi/n, xj/ f (n)]
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holds for every n ∈ �. Now, granted that, and assuming that θ ≡ ¬ψ
for some formula ψ of �−S , it follows from what we have just observed
and definitions 4.19 that if

|=GN ∀x0∃y0 . . .∀xp−1∃yp−1¬ψ

is the case, then there exist functions f0, . . . , f p−1 with fi : ω → ω for
every 0 ≤ i < p, such that

|=GN ¬ψ[x0/n0, y0/ f (n0), . . . , xp−1/np−1, yp−1/ f p−1(np−1)]

holds for every n0, . . . , np−1 ∈ � (p being an arbitrary element of �
throughout the statement). It should be noticed that each of these func-
tions fi depend upon the ni ’s (since each element of � has ‘its own’ func-
tion that does what the fi ’s turn out to do)9. Therefore, the sequence of
functions f0, . . . , f p−1 depends upon the sequence s = (n0, . . . , np−1). Let us
make this dependence evident and let us put, for every sequence s ∈ω≤2k ,
f s
0 , . . . , f

s
|s |−1 be the functions which exist by the previous observation in

correspondence to the elements (s )0, . . . , (s )|s |−1 of s .
Let us now go back to the initial hypothesis. Then, owing to what was

just observed, we have that

|=GN ∀x0∃y0 . . .∀xk−1∃yk−1¬φA
is the case if and only if

|=GN ¬φA[x0/(s )0, y0/ f s
0 ((s )0), . . . , xk−1/(s )k−1, yk−1/ f

s
k−1((s )k−1)]

holds for every s ∈ ωk . Let, for every s ∈ O<2k , τG be the function
defined by τG (s ) = f s

|s |−1((s )|s |−1). Again, this is a legitimate definition of

function owing to what we have said. Moreover, for every s ∈ωk ,

|=G� ¬φA[x0/(s )0, y0/τG ((s )0), . . . , xk−1/(s )k−1, yk−1/τG ((s )0, . . . , (s )k−1)]
is the case, by definition of τG itself. By definition 4.19, it follows that:

s ◃▹ τG = ((s )0,τG ((s )0), . . . , (s )k−1,τG ((s )0, . . . , (s )k−1)) �∈ A
as needed. QED

Theorem 4.1 and proposition 4.1 together yields the following imme-
diate corollary:

9Actually, these functions also depend upon the formula ψ we are considering. For the
sake of readability, we leave this dependence implicit since, despite the generality of the
observation, we are interested in a specific instance of it, namely the one that applies to
ψ being the formula (x0, y0, . . . , xk−1, yk−1) ∈ A above. However, it should be clear that this
dependence should be emphasized also.
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Corollary 4.1 For every finite game G = 〈k ,P,A〉, either Player I has
a winning strategy, or Player II has a winning strategy, but not both
Player I and Player II have a winning strategy.

4.9. GRH at work

As the reader may recall, we have started the whole investigation on
a mathematical model of finite games driven by the hypothesis that for
every real-life situations one could find a finite game of that sort such
that to solve the choice problem in the former would correspond to solve
it in the latter (GRH we decided to call the hypothesis in question, back
in section 1.5). Now, the previous result about every finite game being
determined can be viewed as stating that the problemof (strategic) choice
can always be solved in such a setting.

As long as this attempted interpretation of the result we have given
is concerned, two things should always be taken into account: (i) the
strength of the result we have proved on the one hand, which amounts
to yield the existence of a strategy for either of the two players in case of
every game, that is the existence of a uniform method for winning every
match (which is not the same as, given any match of a game, finding the
way to win it, and then find another way to win another one, and so on for
all matches of it); (ii) that a substantial part of what would be needed to
turn the theoretical possibility it suggests into actuality ismissing, for, the
result gives no clue on whether it is possible for either of the two players
to really devise the strategy we proved it exists (i.e., to know the strategy
that exists by the theorem).

Anyway, the result as it is proved does tell us something about real-
life games. In particular, it can be used to finally give our preliminary
analysis of games with perfect information via trees in section 4.2 the
form of a mathematical theorem. To make the connection with those
remarks apparent, let us speak of the same game we were dealing with
there. The theorem we have in mind then, reads as follows:

Theorem 4.2 In chess, either White has a winning strategy, or Black
has a winning strategy, or both White and Black have a strategy for
drawing.

Now, this theorem is obtained as a simple corollary of theorem 4.1.
First of all notice that with chess we have a new alternative situation

to the one we have retained as the canonical one, for it comprises situa-
tions where draw is possible. If we wanted tomodel this in a similar fash-
ion to the modifications of the canonical model we considered in section
4.7, we would have to consider for instance a game GD as a quadruple
〈k ,P,A1,A2〉, where k ∈ �, P = ω2k , A1,A2 ⊆ P with A1 ∩ A2 = � (the lat-
ter conditions ensuring that GD is zero-sum since there is no match in P
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that is both won by Player I and by Player II). Then, A1 would work as the
set of winning conditions for Player I (therefore, a strategy σ for Player
I would be winning if, for every s ∈ ωk , σ ◃▹ s ∈ A1), A2 would be the set
of winning conditions for Player II (therefore, a strategy τ for Player II
would be winning if, for every s ∈ωk , s ◃▹ τ ∈ A2), while D = P \ (A1 ∪ A2),
which contains those s ∈ P for which both s �∈ A1 and s �∈ A2 are the cases,
i.e., matches where a draw takes place.

The reason why this modification was not considered earlier, is that
there is a very natural way for handling with that: define two games
in canonical form out of GD , namely GD

1 and GD
2 respectively, where

GD
1 = 〈k ,P,A〉 where A = A1 ∪ D , while GD

2 = 〈k ,P,A′〉 where A′ = A1. If
the usual notions of strategy and winning strategy for both players are
retained, then GD

1 is the game where Player I has a winning strategy if
and only if she has a strategy for either winning or drawing any match of
GD , and Player II has a winning strategy if and only if she has a strategy
for winning every match in GD . Game GD

2 , instead, is the game where
Player I has a winning strategy if and only if she has a winning strategy in
GD , and Player II has a winning strategy if and only if she has a strategy
for either winning or drawing any match of GD . Having noticed that ev-
erymatch ofGD

1 is a match ofGD
2 (and also amatch ofGD) and viceversa,

the consequence of theorem 4.1 for game GD are easily evaluated. Since
both GD

1 and GD
2 are finite games in canonical form, theorem 4.1 applies

and we get the following results out of it:

Corollary 4.2 Either Player I has a winning strategy in GD
1 , or Player

II has a winning in GD
1 .

Corollary 4.3 Either Player I has a winning strategy inGD
2 , or Player

II has a winning in GD
2 .

By considering the combinations of these two outcomes we get four
alternatives:

1. Player I has a winning strategy in both GD
1 and GD

2 ;
2. Player II has a winning strategy in both GD

1 and GD
2 ;

3. Player I has a winning strategy in GD
1 and Player II has a winning

strategy in GD
2 ;

4. Player I has a winning strategy in GD
2 and Player II has a winning

strategy in GD
1 .

In turn, these combinations tell us what happens to GD in view of
Corollaries 4.2 and 4.3 of theorem 4.1. For, suppose that alternative no.
1 takes place. Hence, Player I has a winning strategy in GD (since she
has a strategy for either winning or drawing in GD

1 , but since drawing a
match in GD

1 counts as loosing the corresponding match in GD
2 and she is

supposed to never loose a match in this game too, then she never draws a
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match inGD
1 whichmeans that she always wins the correspondingmatch

in GD by following the said strategy). By a symmetrical argument, alter-
native no. 2 yields that Player II has a winning strategy in GD .

Alternative no. 3, instead, has the consequence that both Player I and
Player II have a strategy for drawing every match in GD (for, assuming
that Player I has a winning strategy in GD

1 then it is clear that this can-
not be because she has a winning strategy in GD , for otherwise Player II
would not have a winning strategy in GD

2 as she has instead).
Finally, alternative no. 4 is easily seen as impossible: for, owing to

the assumption that Player I has a winning strategy σ in GD
2 , it follows

that she has a winning strategy in GD , which contradicts the assumption
that Player II has a winning strategy τ inGD

1 , since this implies that she is
supposed to have a winning strategy in GD as well (from which it follows
that σ ◃▹ τ ∈ A1 ∩ A2 = �; contradiction).

So, from the two corollaries above, we get theorem 4.2 with Player I
beingWhite and Player II being Black instead. As a consequence of it, we
finally have a confirmation that there was no mistake in our analysis of
finite games with perfect information that we performed in section 4.2.
In particular, we now know that there is no difference between a simple
game such as tic-tac-toe and a complex one like chess. They are both
determined, hence there is a way for one of the two player to devise a
method for winning everymatch of it. When this conclusion appeared on
our horizon then, we panicked. We simply could not figure out how this
was possible. However, we nowknowmore about this result tomake sure
that we should not panic owing to it in the end. In particular, we know
more about what it means for a winning strategy to exist, and we know
verywell the difference between knowing that awinning strategy ‘is there’
and actually have it ‘grasped’. Some of the results we have gone through,
as a matter of fact, required us to actually devise a winning strategy and
that was no easy task at all. Should then the determinacy property change
our view of finite games? Not really, as a matter of fact. When we start
playing a match of a perfect information, zero-sum game we know a few
things. Among the things we know, there is the simple fact that we loose
the match we have started if our opponent wins it. This could be because
she was clever enough to devise a better approach to that match. It could
also be that our opponent was so clever that she devised the best possible
approach, and grasped the winning strategy of the game. How can we
make sure? In the end, there is only one way to say which of the two is
the real case: playing another time and, if we loose again, keep playing.

How about a nice game of chess?

4.10. Bibliographical note

By leaving trees behind, and by dealing with games where players
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alternate moves with one another by means of the model based on se-
quences of numbers, we wanted to connect ourselves to the way games
are dealt with in ordinary mathematical terms. This was not at all in-
tended as being motivated by the attempt of leaving the study of games
of this sort by means of trees behind. Rather, our decision was driven
by wishing to provide the reader with tools that might encourage her to
keep deepening her acquaintance with the ordinary mathematical the-
ory of games in its usual form. By the way, this was done by starting
from a classical way for dealing with trees representing games. The ar-
gument presented in section 2 to suggest what we have proved only in
section 8, namely that all finite games with no tie is determined, is based
on a well-known analysis of games as trees known as backward induc-
tion, the earliest notable application of it is in the theorem about deter-
minacy of (real) chess we reported on here as theorem 4.2 and which
is commonly attributed to the mathematician Ernst Zermelo. Zermelo’s
theorem is contained in a little note from the early 1910’s (Zermelo 1913),
which has became a classical reference on the topic although it is unclear
what one should acknowledge Zermelo’s proof to achieve. The story of
this note and of Zermelo’s contribution is re-considered by U. Schwalbe
and P. Walker in the attempt of assessing the German mathematician’s
role in the early history of game theory (Schwalbe and Walker 2001).

What should be stressed with clarity here is that the portion of topics
covered by this volume does not even count as a small scratch on the sur-
face of the enormous area of study that the theory of games (in both nor-
mal and extensive form) appears to be nowadays. To get a quick idea of
this, it is enough to have a look at the 4-volumeHandbook of Game The-
ory (Aumann and Hart 1992, 1994, 2002; and Young and Zamir 2014),
which covers both the basic concepts of the theory (mostly dealt with in
vol. 1), as well as a wide range of applications of it. This is obviously a
valuable source to start from, for anyone interested in a thorough study
of the topic.

As far as the modest aim that we were pursuing here was concerned,
we based ourselves as reference for most of the topic we wished to cover
on the initial part of thenotes on infinite games byYurii Khomskii (Khom-
skii 2010) made available by Yurii Khomskii (which, on our latest search
on the web – September 2018 – were still up for free download). Most of
what we have been doing here in sections 4.6, 4.7 and 4.8 can be viewed
as filling the missing details in the very first part of those notes which,
as their title suggests, are more focused on the extension of the ground
theory to games which are infinite. Owing to the compatibility in style
and notation, that could be a reasonable source to look at for expanding
knowledge attained at by reading this volume.

Having made clear how little of the current theory of games we have
covered by means of the material presented here, it really would be hard
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to fill in what is missing through bibliographical references. A couple
of remarks in this direction we found that could be useful anyway, the
first one of which concerns the study of games in extensive form from a
philosophical perspective.

Like with finite games in general, the theory of games as trees has
attracted a lot of attention by scholars working in fields directly con-
nected with topics stemming from agents interactions. This is no sur-
prise since the very idea of rational agents making decisions which influ-
ence each others has a lot in common with classical topics from a variety
of philosophically related areas of research. This connection turns out
quite clearly from sources attempting at surveying the most important
work which has been done in the field. To give the reader some concrete
indication in this respect, Johann van Benthem’s numerous books on the
topic contain a huge amount of information, both from the point of view
of the issues involved and, most importantly, of the literature they sur-
vey (see, for instance, van Benthem 2011, 2014) – even though also Ross
2014 we already referred to, might also be a good starting point).

Another direction of work that departs from what we have been ac-
counting for here has already been mentioned, or better hinted at from
time to time (for instance, in section 4.4), when we spoke of extension
of the above theory to games which are infinite. Infinite games in this
sense take the form of infinite (ω-long) sequence of natural numbers.
Games in this form have been studied extensively, since the investiga-
tion on this topic proved to be tied up with some remarkable directions
of research with high mathematical importance. This holds true in par-
ticular for themain property we have been dealing with here with respect
to finite games, namely determinacy. As a matter of fact, the property of
an infinite game to be determined has early been seen to be connected
with relevant topological properties of sets. Several results have been
provided in this respect, starting from a theorem in by D. Gale and F.M.
Stewart (Gale and Stewart 1953) about infinite games with perfect infor-
mation being determined provided some extra features of the set of win-
ning condition ismet. This result was then extended once by PhilipWolfe
(Wolfe 1955), and then by Donald A. Martin (Martin 1975), whose main
theorem applies to a wider class of infinite games (though, not the whole
class of it).

The connection of these studieswith topological concepts that are rel-
evant for the branch of set theory known as descriptive set theory is not
the only one, as it turned out that the study of infinite games is also in-
teresting for its connections with the investigation on set theory itself. As
a matter of fact, it turns out that Martin’s result is the best that someone
can expect to prove by means of the ordinary set-theoretical axioms. The
statement according to which «All infinite games are determined», with
no extra condition on the class of games it refers to, is indeed disprov-
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able by the axioms of set theory if these are taken to include the axiom of
choice. This has not prevented scholars from investigating it. Quite on
the contrary, the fact that the statement in question, which is known in
the literature as the «axiom of determinacy», is instead consistent with
the axioms of the theory minus the axiom of choice, has made it attract a
lot of attention due to the strong deductive power that is associated with
it (more information about this direction of work can be found in calssical
textbooks on sets like Jech 2003).

It would be pointless, however, to keep the reader busy over consid-
erations of this sort owing to the distance, in terms of the mathematical
expertise they require, between the level at which these kind of investiga-
tions locate themselves and the level at which we have (hopefully) helped
her to rise by means of the reading of this volume. These remarks were
put herewith the only goal of trying to tease the readerwhy somemore in-
formation that may further stimulate her interest in the topic, and hope-
fully give her some reasons to keep digging the matter she has started to
study with this book.
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della filosofia
Marcialis N., Introduzione alla lingua paleoslava
Michelazzo F., Nuovi itinerari alla scoperta del greco antico. Le strutture fondamen-

tali della lingua greca: fonetica, morfologia, sintassi, semantica, pragmatica
Peruzzi A., Il significato inesistente. Lezioni sulla semantica
Peruzzi A., Modelli della spiegazione scientifica
Sandrini M.G., Filosofia dei metodi induttivi e logica della ricerca
Trisciuzzi L., Zappaterra T., Bichi L., Tenersi per mano. Disabilità e formazione del 

sé nell’autobiografia






