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Abstract

In the present thesis, coarse-grained molecular dynamics simulations and
relevant continuum models are investigated. In the first part we present a com-
putational analysis on the driven transport of Maltose Binding Protein (MBP)
across nano-channels in the framework of coarse-grained modeling. The work
is motivated by recent experiments on voltage driven transport of MBP across
nanopores exploring the influence of denaturation on translocation pathways.
Our simplified approach allows a statistical mechanics analysis of the transport
phenomenologywhich is useful to investigate the influence of denaturation from
a structural point of view. Numerical results are qualitatively in agreement with
experimental data. They reproduce a rich phenomenology, from fast transport
to long blockades (Fig. ) and, to some extent, bumping events. Specifically, we
identify and characterize short and long channel blockades, associated with the
translocation of denaturated and folded MBP structures, respectively. We show
that long blockades are related to stall events whereMBP undergoes specific and
reproducible structural rearrangements. To clarify the origin of the stalls, the

Figure : Stall snapshots during traslocation of folded MBP, stastistics of residence time
and native contact map.

stick-and-slip translocation is compared with mechanical unfolding pathways
obtained via steered molecular dynamics. This comparison clearly shows that
translocation pathway differs significantly from free-space unfolding dynamics
and strongly suggests that stalling events are preferentially determined by MBP
regions with higher density of long-range native interactions. This result might
constitute a possible criterion to predict a-priori statistical features of protein
translocation from structural analysis.

Marco Bacci, Coarse-grained molecular dynamics and continuum models for the transport of protein molecules 
ISBN  978-88-6655-693-0  (print) ISBN  978-88-6655-694-7  (online), CC BY 4.0, 2014 Firenze University Press



Customarily, protein dynamics is summarized in low-dimensional models
where only the evolution of few order parameters is considered as an appropri-
ate description of the complete dynamics of the atomic cluster constituting the
molecule. We show that long stall events and main translocation features are es-
sentially maintained in the D description of the process selected in the present
work, where the evolution of an appropriate collective variable and the relevant
free energy landscape are considered. Moreover, we show that both free energy
barriers and translocation bottlenecks are strongly associated with the structural
properties of the folded proteins. In particular, free-energy ramps systemati-
cally correspond to the regions along the backbone chain with greater density of
long-range native contacts with the untranslocated portion of the protein itself.
These areas are also responsible for the stalls during nanopore transport. Also,
this knowledge allow us to decompose the free energy trends into the different
contributions of internal energy and entropic effect, pointing out the dominant
terms. Here, results relevant to two different proteins and to a mutant one are
considered and discussed.

In the second part of the thesis, we enrich the standard D continuum view
by proposing a continuummodel for the description of the dynamics of isolated
macromolecules. We adopt a second-rank tensor as a descriptor of the macro-
molecular shape and identify the action governing its dynamics by means of an
identification procedure from a discrete scheme, based on power equivalence
and Cauchy-Born rule. We compare molecular dynamics stretching simulations
with the continuummodel by starting from discrete toy schemes, going on with
increasing complexity, and endingwith the analysis of theUbiquitin protein. The
results indicate limitations in the approach in case of unconstrained molecular
dynamics while they show appropriateness for driven dynamics (Fig. ). Also
MBP is considered by addressing primarly translocation simulations, a particu-
lar constrained dynamics where the selected approach confirms its appropriate-

Figure : Snapshots of molecule Ubiquitin and relevant morphological descriptor during
a mechanical pulling simulation.

ness.
Finally, to overcome the shortcomings stemming from possible lack of ho-

mogeneous deformation Cauchy-Born rule is based on, we investigate some al-
ternative heuristic approaches, which appear adequate in describing the protein
shape evolution also in uncostrained dynamics, such as free equilibrations.



Coarse-grained molecular dynamics and continuum models

10



Acknowledgements

First and foremost, I wish to acknowledge sincerely my advisor, Prof. Paolo
MariaMariano. Motivations tomy gratefulness are several, and start earlier than
the research activity here presented, when just after the master degree, I asked
him for a piece of advice to pursue the deep interest I have always felt for biome-
chanics. I can state, the PhD. days have been tough for me, nevertheless for him,
supporting my work and intellectual growth from the very beginning and pro-
vidingme withmany opportunities, even beyond themere scientific context. He
has never lacked of attention and real passion toward our work and the academic
world. In these last days his detailed revision to this manuscript has been crucial
and tireless.

I also wish to express my gratitude to Prof. Roberto Genesio and Prof. Ste-
fano Ruffo, for the support during the long journeys abroad and for the interest
they have always shown in the research activity I have been involved in.

This research project would not have been possible without the support of
many people. Profound thanks are directed to the research group in Rome, Dr.
Fabio Cecconi, Prof. Carlo Massimo Casciola and Dr. Mauro Chinappi. I have
performed a considerable part of the project in collaboration with them, who in
turn have always consideredme as a fullmember of the group, carrying out stim-
ulating and challenging discussions, which can not be neglected neither from a
scientific nor from a personal point of view. I will remember the experience in
Rome as a wonderful period, where I started to focus on the research proposal in
a stimulating and friendly environment, the so-called ‘aquarium’. Really, a spe-
cial thank, again, to Mauro Chinappi, he taught me things I should have learnt
before, with unfailing patience and competence.

I am grateful to Dr. Sandrasekaram Gnanakaran, Dr. Giovanni Bellesia and
to the whole T in Los Alamos National Laboratory. Despite the short visit, I
have been involved in meetings and discussions that considerably fostered the
second part of the research project about continuum modeling. Also, feeling at
home in such a far away country is not for granted and the friendly environment
of the Lab, despite what one might wrongly believe, played a substantial rôle.

I would like to gratefully acknowledge Prof. Charles S. Peskin and the
Courant Institute in New York University. By far the toughest days during the
PhD., as it has to be in such a mathematical school. Thanks to Prof. Peskin
I had the opportunity to present our scientific results to a selected group of
scientists, who have not been short of comments and hints for future research

Marco Bacci, Coarse-grained molecular dynamics and continuum models for the transport of protein molecules 
ISBN  978-88-6655-693-0  (print) ISBN  978-88-6655-694-7  (online), CC BY 4.0, 2014 Firenze University Press



(finger crossed). However, above all, I have had the possibility to interact with a
person who undertakes his job driven by passion, thus inspiring an otherwise
impossible serenity and simplicity to all the ones who have the chance (and
luck) to work with him. A big ‘thank you’ also to Giulio Trigila, Abba and
Shoshana Leffler, Adam Stinchcombe and friends, colleagues and staff at NYU.

Mentioning the New York City days, I can not forget my girlfriend Joce-
lyn. That is another story, I know, and deserves another stage. Let me just say
I am impressed and thankful to her determination and strength. / working
schedule for both of us, and not a complaint. I received only sympathy, sharing,
admiration and love. Many many thanks to Donna and Alex, Angie and Willie
and, of course, Reyes and their families, who have welcomeme as if I had always
been there.

Thank you zio Gigi, always so eager to interact and work with me, another
old-fashioned person that goes on for true passion.

My family, I have been far apart for some time, but it has always been like
having you close by. I have always felt a deep, sincere and excited interest for
what I have been on. Thank you, knowing your estimation for my commitment
allowed me not to give up.

Moreover, I wish to thank my friends, a bearing column where to rest, take
a break and dream.

Finally, I thank the personnel of University of Florence, and the Ministry of
Public Education for the scholarship I have benefitted from.



Coarse-grained molecular dynamics and continuum models

12



Chapter 

Introduction

.Preamble

The present dissertation is supervised by Prof. PaoloMaria Mariano of Uni-
versity of Florence and Scuola Normale Superiore of Pisa.

It is developed in collaboration with Prof. Carlo Massimo Casciola and Dr.
Mauro Chinappi of Sapienza University of Rome and Dr. Fabio Cecconi, Insti-
tute of Complex Systems, National Research Council of Rome.

The focus of the work is on the transport of proteins across nanopores, a
process called translocation. The work is based on coarse-grainedmolecular dy-
namics simulations exploiting the so-called Gō-like model, [, ]. Equilibration,
mechanical stretching and transport simulations are developed.

A standard D continuum approach based on the Langevin equation in the
potential of the mean force relevant to a suitably-defined reaction coordinate is
investigated. The main aim is to establish its suitability to retain and interpret
the complex three-dimensional molecular dynamics phenomenology.

Non-conventional continuummodeling is also considered. In this perspec-
tive a second rank tensor is defined in order to summarize the three-dimensional
shape evolution of clusters of atoms in space, in turn undergoing several differ-
ent dynamics. The analysis is performed in light of the mechanics of complex
materials [].

.Translocation in biology

Translocation, namely the passage of molecules through biological pores,
is a fundamental process occurring in many natural phenomena, []. It
involves the exchange of proteins, ions, energy sources, genetic information
and any particle or aggregate that plays a role in cell functioning and living. In
particular, biopolymer translocation across membranes is ubiquitous in biology
and includes the passage of RNA strands inside nuclear pores [], absorption of
oligonucleotides on suitable sites [], transport of proteins back and forth from
the cells [], mitochondrial import, protein degradation by ATP-dependent
proteases and protein synthesis, [, ].


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Cells are filled with all kinds of nanopores, committed to an overwhelming
range of functions. Proteins hold an important role in transport processes across
cell membranes. Indeed the latter are generally composed of phospholipid bilay-
ers and the channels across them by transmembrane proteins. The transport can
be either passive or active. The former one can take place by diffusion or by in-
terposition of carriers to which the transported substances bonded. In the active
case instead, transmembrane proteins use the Adenosine-Tri-Phosphate chemi-
cal energy to drive a molecule against its concentration gradient. A mechanism
of selection, based on the interaction between signal recognition particles and
relative receptors, allows the transmembrane proteins to detect the system to be
transported [].

As it will be described in Sec. , the discovery of the protein nature of
transmembrane pores fostered the synthesis of conductive channels to perform
in vitro translocation experiments. Although the first pioneering experimental
work on a transmembrane biopore embedded in an artificial lipid bilayer, both
housed in a microfluidic cell, dates back to the ’s [], clarifying the physical
and chemical phenomena involved in nanopore transport will remain a fertile
field of research for the years to come, as it is only recently that scientists have
developed suitable techniques to adequately tackle this issue.

Proteins are not only the basic constituent of transmembrane channels, but
are also commonly transported between organelles and cells. Very often mem-
brane apertures are not large enough to let the proteins enter in their native
(folded) conformations. For example, the narrowest constriction in the pro-
teosome organelle is only  Å in diameter. It is thus necessary for the pro-
teins to unfold in advance or during their passage across the pore []. Such
co-translocation unfolding rate is orders of magnitude faster than chemical or
thermal denaturation, suggesting a different unfolding mechanism [, ]. A
natural and appealing explanation of this gap is to suppose the process to be
driven by electromechanical forces.

..Protein molecules

Proteins are complex polymers composed of smaller elementary molecules
called amino acids. The specific monomer sequence determines their three-
dimensional structure, which is in turn responsible for the biological function
of the protein itself. Proteins influence a large number of phenomena in life sci-
ence. For instance, some of them are involved in the transmission of signals
between cells and tissues (hormones), other ones support the immune system
against pathogens (antibodies); moreover enzymes cause or foster the onset of
chemical reactions otherwise impossible at physiological conditions. In addi-
tion, proteins are responsible for the regulation of gene expression by bonding
with specific nucleic acid targets. Structural proteins are fundamental in con-
verting chemical energy into mechanical work in muscles, besides constituting


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part of the scaffold of tissues such as hair, nails, tendons and bones. Finally, par-
ticular proteins store and transport particles, control the passage of molecules
across membranes and drive the electron current in plant photosynthesis. Pro-
teins can be subdivided in two main categories:

. globular proteins,

. fibrous proteins.

The former are the majority, are soluble and their three-dimensional structure
is almost spherical. The latter are insoluble and do not have a predetermined
shape, although often are rod-like.

The conformation that allows a protein to comply with its biological task is
said native configuration, or also folded, natured or compact state. There are sev-
eral techniques to achieve protein denaturation. Unfolded states can be obtained,
for example, either thermally, chemically or evenmechanically, as in atomic force
microscope experiments or by using optical tweezers.

In nature there exist  different standard amino acids that constitute, as
already mentioned, the backbone chain of the protein molecules. Protein size
ranges from  up to more than  amino acids. However, the latter can bond
one another forming also small peptides or polypeptides with no specific three-
dimensional shape. Nineteen amino acids have the same general structure (de-
picted in Fig. .) and differ only in the chemical composition of the side chainR
(residue chain). The side chain of the th (prolyne) is standard, but it is bonded
to a nitrogen atom instead than to a carbon atom. The latter is called α-carbon
atom. Other carbon atoms along the side chain are termed β, γ, δ, ... accordingly
to their position with respect to the first one. Very often amino acids are simply
called residues in the biological parlance.

Basic Amino Acid Structure

Figure .: General representation of amino acids. Main components are highlighted and
labeled.

.Voltage-driven experiments and nanopore technology

The basic apparatus to perform voltage-driven translocation experiments
is constituted by an electro-chemical micro-fluidic cell, as the one depicted in


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Fig. . panel a, which represents the evolution of the Coulter resistive counter
[]. In such a device two chambers (cis and trans), which contain a buffer so-

Figure .: Snapshots of panels d and c are obtained using VMD software []. Panel
a: Sketch of a microfluidic experimental apparatus for voltage-driven translocation ex-
periments. A magnification of the sensing area of the device (nanopore) is also provided.
Panel b: Standard ion current blockade event at the passage of amolecule across the chan-
nel. Panel c: Side view of the α-hemolysin transmembrane protein. Panel d: Character-
istic eptametric structure of the α-hemolysin. This toxin is in fact composed of seven
elementary proteins arranged in a circular fashion.

lution, are connected by a pipe that also hosts the sensing area, i.e. a membrane
where a nanopore is inserted (single nanopore systems). An applied voltage, usu-
ally of the order of some mV , generates an ionic current through the channel
that can be recorded by standard electro-physiological techniques like patch-
clamp []. Once biopolymers (with a net charge at the pH of the solution)
are introduced (on the cis-side), they cross the pore driven by thermal fluctu-
ations (in the approaching to the pore) and by the voltage (across the pore itself,
where the majority of the voltage drop takes place) and flow into the opposite
chamber (trans-side). The passage temporary clogs the channel and provokes
a detectable ion current drop, Fig. . panel b, which strongly depends on the
chemical and physical properties of themolecule that occupies the pore. For this
reason, nanopore systems can work as efficient devices to operate at the molec-
ular level in order to characterize several different biological components [].
Nanopore-based technology is believed a promising resource offering powerful
tools for detection [], manipulation and sequencing of macromolecules [],


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although meaningful data analysis still remains challenging []. Moreover, the
duration of the current drop is a direct measure of the translocation time, which
is in turn used to characterize a single transport event, along with the intensity
of the blockage itself. Clusters of events, usually coupled with changes in ex-
ternal conditions such as temperature or salt concentration, can as well provide
information about the composition of the solution.

In voltage-driven translocation experiments, a widely exploited transmem-
brane protein is the well-known α-hemolysin (αHL), a β-barrel toxin expressed
by the the very common bacterium Staphylococcus Aureus []. αHL is very
stable in-vitro and spontaneously migrates into lipid bilayers, considerably sim-
plifying the building up of the experimental apparatus. Therefore it has been em-
ployed in several cases both for DNA/RNA strands and for protein translocation
[, , –]. Its crystallographic structure was determined with a resolution
of . Å [] and a schematic view is given in panels c and d of Fig. ..

Another biological nanopore that worth to be mentioned for similar appli-
cations is the Aerolysin channel [], recently used by Pastoriza-Gallego et al.
to study the translocation of a macromolecule called Maltose Binding protein
[, ].

Other pioneering experimental studies concerned detecting polypeptides
not only in the pore lumen but also in the aqueous phase. This analysis has been
achieved for the first time by Movileanu and co-workers [, ], who were able
to reveal the presence of a particular protein in the proximity of the biopore
by attaching a flexible linker within the large cavity of the α-hemolysin pore
with a specific ligand at its end. Inspired by this work, Kong and Muthukumar
performed Langevin molecular dynamics simulations and Poisson-Nerst-Plank
calculations tomodel the fluctuations of the linker inside the vestibule [], eluci-
dating the dynamics of the single-molecule captures in the aqueous phase. Even
if several other experiments worth to be referred, it is evident that the fundamen-
tal analyses just mentioned open the way to theoretical modeling and numerical
investigation of an enormous amount of phenomena. Moreover, as Movileanu
delineates [], nanopores represent single-molecule probes with several pos-
sible applications. They can be employed to reveal many features of important
biomolecules like folding state, backbone flexibility, mechanical stability, bind-
ing affinity and charge distribution, in addition to the possibility of revealing the
biophysical rules that govern the transport through transmembrane channels.
However, the main idea that fostered the development of voltage-driven translo-
cation experiments, since the very first application, has always been the one to
identify and fast-sequence the molecule that is clogging the throat section of the
channel. Although the original approach concerned only DNA/RNA strands,
protein sequencing is currently deemed even more interesting than DNA char-
acterization. Indeed, whereas several fast and inexpensive techniques to perform
DNA read-out already exist, the achievement of information on protein struc-
tures and amino acid order through standard experimental approaches such as x-


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ray crystallography or nucleic magnetic resonance is still challenging and time-
consuming. However protein sequencing is even more complex than DNA for
several reasons. The latter in fact is linear and homogeneously charged, differ-
ently from a structured polymer. Also, the ability to discern between different el-
ementarymolecules has to be superior for protein characterization. IndeedDNA
or RNA are constituted by only five different types of oligonucleotides while the
basic constituents of protein molecules are the  standard amino acids.

Several groups have already investigated the interactions of small polypep-
tides, including α-helical [–] and β-barrel [] hairpin polypeptides, or
even whole macromolecules [, , ] with the αHL or anthrax pores. A
crucial step toward single-molecule differentiation and sequencing has been re-
cently carried out by Talaga and Li []. They have distinguished from each
other different proteins in solution by modeling the characteristic ion current
drop across a solid state nanopore through a simple Ohmic term, multiplied by
a corrective factor that takes into account the relative geometry of the protein
and the channel. This approach will be probably delved deeper in the near fu-
ture to take into account other physical and chemical aspects of the molecules
and of the whole system.

As already stated, first experiences were carried out by exploiting biological
pores but, as mentioned in the last example, recent advances in technology have
opened new possibilities toward the use of artificial solid state nanopores.

A great advantage of protein biopores is that they can be chemically engi-
neered with advanced molecular biology techniques, such as mutagenesis [].
Using this approach a wide variety of α-hemolysin biosensors were developed,
especially to probe binding affinities [, , ] and to reach discrimination at
single-base resolution on isolated strands of DNA [, ]. Moreover, the ge-
ometry of a biopores is well-known and is highly reproducible, that is, once it
has been determined by using, for example, x-ray crystallography, it can be as-
sumed to be the same for all the biochannels of that particular type. Finally,
toxin pores like αHL or anthrax [, , ] embed spontaneously in lipid bi-
layer membranes. However they exhibit a number of disadvantages too. Typi-
cally the pores, but mainly the membranes that host them, can become unstable
if changes are produced in the external environment in terms of temperature,
pH or denaturant concentration (used to unfold the proteins in solution). Also,
it is very difficult to imagine portable devices which sensing area is made of bi-
ological pores, due to instability of, above all, the lipid bilayer. In addition, their
fixed size can also represent a limit, because geometry and dimensions cannot
be macroscopically changed to address specific issues.

Solid state nanopores present some advantages over their counterparts, such
as increased reliability and lifetime, control over surface properties and pore ge-
ometry (diameter, length and shape), compatibility with existing semiconduc-
tor and microfluidic fabrication techniques with thus potential integration into
ultra-high throughput devices [, ]. In fact, nanopore-based DNA analysis


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Figure .: Transmission electron microscope images of a solid state nanopore. Adapted
from [].

has the potential to carry out a range of laboratory and medical experiments
even faster than current methods, also reducing the cost (fast DNA sequencing
is an application of nanopore based sensing that took about  years to transfer
the early insights into a commercial device, announced by the end of  []).
Figure . shows TEM images of silicon nanopores. The first synthetic biosen-
sor was developed by Charles Martin’s group in  and consisted of a single
conical gold nanotube []. Since then, several teams have pursued this route,
demonstrating the capability of solid state nanopores to perform single-molecule
detection and to probe several characteristics of the proteins [, –].

Finally, as speculated by Branton et al. [], the possible embedding of a
biological pore into a semiconductor membrane represents a fascinating oppor-
tunity that should be carefully considered and evaluated.

.Outline of the thesis

The thesis is organized as it follows. In chapter  an overview on the state
of the art of voltage-driven translocation experiments on proteins is provided,
along with a summary of numerical investigations concerning coarse grained
molecular dynamics. Specifically, the work by Oukhaled et. al [] is described,
since it is the experimental analysis that has motivated a substantial part of the
numerical simulations performed during the present research activity. Also, nu-
merical analyses [, ] are outlined for can be deemed the reference works
on the topic available at the beginning of the thesis. Chapter  shows molecu-
lar dynamics results on protein stretching and translocation []. Chapter  is
dedicated to standard one-dimensional modeling of the translocation process,
in terms of driven diffusion of a proper reaction coordinate in the associated po-
tential of the mean force []. Main theoretical aspects are also considered along
with the exposition of the numerical results obtained. Finally, the last chapter
contains the three-dimensional continuum analysis performed to enrich the just
mentioned standard view. The analysis is performed in light of the mechanics
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of complex materials [] and it is in particular inspired by two previous works
[, ].


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Chapter 

State of the Art

.Preamble

This chapter principally reviews the main experimental work that consti-
tutes the baseline of our research activity, to which the whole section  is dedi-
cated.

However, a more general description of both experimental and numerical
investigations is provided in section , where also a popular coarse grained
model somewhat similar to the Gō model is outlined. It is worth to anticipate
that the Gō model, sec. ., constitutes the framework selected for the numerical
analyses presented in this thesis. Coarse grained models considerably reduce
the computational time with respect to full atoms simulations, which are not in
turn considered in the present setting since typical translocation time scales
are yet not accessible, unless the pulling force is order of magnitudes greater
than the biological ones [–]. In addition, the extrapolation of these results
to the lower-force regime is a very difficult task. Moreover, the most recent
and remarkable studies refer primarily to the analysis of folding/unfolding
pathways [–]. The advantage of a reduced complexity with respect to
full-atomistic techniques relies on the possibility of massive sampling of events,
thus allowing a statistical mechanical description of translocation in terms of
ensemble averages, as it will be shown in chapter .

Finally, the last section summarizes two numerical investigations of protein
transport across nanopores that can be considered as the reference works in the
minimalist molecular dynamics setting for protein translocation available in the
literature at the beginning of the research activity.

.Experimental work: a selected example from the literature

Stochastic biosensing has been exploited for detection of not only small
molecules or DNA strands but also to study long and complex biopolymers.
Since our interest is focused on protein experiments and modeling, all the wide
literature on oligonucleotides, although extremely interesting, is not further
considered.


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The transport of a folded polypeptide is characterized by a greater energetic
barrier than for an unfolded structure. According with this argument, a recent
study combined single-molecule electrical measures with simulations based on
Langevin dynamics to show that highly unfolded β-hairpin polypeptides enter
the pore in a linear fashion, pursuing fast single-file translocations. In contrast
the passage of structured β-hairpin polypeptides occurs more slowly, producing
longer current blockades [].

Similarly, Oukhaled and co-workers [] studied the translocation of folded,
partially folded and unfolded structures of the Maltose Binding protein (MBP)
across theαHL channel (Fig. .). The unfolded structures were accomplished in
high concentrations of guanidinium hydrocloride, a chemical denaturant com-
monly exploited in protein folding analyses. It is worth to disclose that this ex-
perimental work constitutes the starting point for the numerical investigations
presented here. In this experiment, translocation has been studied by varying
the denaturant concentration in the buffer solution, highlighting that current
blockades were dependent on this parameter, both in terms of frequency and
duration. The authors have observed, among other things, that folded proteins
did not translocate across the biopore. The radius of gyration of the nativeMBP is
indeed greater than theαHL lumen and the driving force was not strong enough
to accomplish the protein unfolding at the pore mouth (the voltage required to
unzip the fully native MBP would have destroyed the lipid bilayer of the exper-
imental apparatus). Therefore no ion current drops were detected for low levels
of denaturant in solution, panels a and c of Fig .. With the increasing of the
guanidinium hydrocloride concentration, the frequency of translocation events
increases, following a step-like denaturation curve. Also, the average duration of
long blockade events reduces, up to reach the phenomenology depicted in panel
f, where practically all the MBP molecules are unfolded in the bulk and accom-
plish translocation in a very short time 1ms. In between these states (fully
native and fully denatured), complex phenomenologies occur: short and long
current blockades coexist, testifying the presence of partially folded structures
in solution, the characteristic transport time of which is order of magnitudes
greater than the one of unfolded polymers, panels d and e. The mechanical na-
ture of such bottlenecks of translocation has been deduced since stalls shortened
in time when the applied voltage was increased. Moreover, the average translo-
cation time decreases with the increasing of the denaturant concentration. The
latter evidence excludes the possibility that theMBP stuck along the pore, due to
chemical bonds, a phenomenon that could in principle generate long blockades
but that is also thought to increase if the denaturation degree of the molecules

In nature, MBP is responsible for the uptake and efficient catabolism of maltodextrins in the
well-known bacterium Escherichia coli, increasing the solubility of recombinant proteins when ex-
pressed as MBP-fusion proteins. It is a monomeric periplasmic globular protein with two lobes (the
C and N lobes) that close to form the binding site. It is a single chain of  amino acids with no
disulphide bonds. Its molecular weight is approximately 42.5 ku.


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Figure .: Adapted from []. Left side: Snapshots of the system and measurements.
Panel a: Schematic representation of Maltose Binding protein and α-hemolysin without
Gdm-HCl in solution. The current is constant at 100pA (open pore conductance) and the
MBP can not enter into the pore. Panel b: With Gdm HCl 1.35M , well above the
unfolding transition, 0.8M 1.0M , the current trace decreases down to 20pA when
an MBP molecule is in the channel. Right side: Part of current traces generated by the
passage of MBP through theα-hemolysin pore as a function of the Gdm-HCl concentra-
tion. Panel c: At Gdm HCl 0.8M MBP practically does not translocate across
the channel and no current drops are detected. Only few short blockades are observed,
their average duration is 0.2ms Panel d: For Gdm HCl 0.85M , long blockades
of 100s in average alternate with a series of short ones of 0.2ms in average. Panel e: At
Gdm HCl 0.9M , the frequency of the short blockades increases (of average du-
ration 0.2ms). The frequency of the long blockades also increases, their distribution is
wide, their mean duration decreases, its value based on the statistical analysis of all events
is 40ms. Panel f: For Gdm HCl 1M , only short blockades (of average duration
. ms) are observed, MBP molecules are almost completely unfolded. The frequency of
short events does not further increase.

increases, for the hydrophobic chains of the residues can more easily interact
with the pore walls.

As already stated, translocation of Maltose Binding protein through the α-
hemolysin pore is the baseline for the research activity performed. Numerical
investigations have the primary aim to explore the complex phenomenology just
described in order to point out the role of denaturation on the transport across
nanochannels.


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.Additional past work outline

The aim of the current section is to touch on additional numerical and ex-
perimental works that played a remarkable role during the research activity.

From an experimental perspective, voltage-driven translocation of
polypeptides is more problematic than for DNA or RNA strands so that
numerical and theoretical support is extremely important. The main difficulties
arise from the fact that proteins, differently from nucleic acids, are not
uniformly charged molecules and, in addition, their natural tendency to form
compact conformations or aggregates usually interferes with the passage
through narrow paths, generating consequently a rich (almost overwhelming)
collection of non-trivial phenomena [, , , , , , ] (Fig. .).
Despite the difficulties, several research groups have showed that voltage-driven

Figure .: Conformations of Maltose Binding Protein (MBP) pulled across a α-
hemolysin channel (αHL) computed via a reduced-model simulation. The pore is por-
trayed as a cylinder. The protein description is reduced to its Cα-backbone. The chain
needs to unfold to translocate from the cis to the trans-side. The image was made using
VMD software [].

translocation can be achieved, not only for nucleic acids, but also for different
peptides and proteins [, , , , , –], and other studies show that
this technique is able to yield substantial structural information [], to
characterize protein charge [] and to discriminate different degrees of folding
or aggregation []. However, except for some encouraging evidences that
nanopores can detect site mutations on proteins [], it is uncertain whether
current blockages convey the necessary information to resolve each of the 
amino acids in order to achieve protein sequencing.

However, the number of experimental efforts is quickly multiplying [, ]
due to the obvious biological and biomedical advances expected in this research
field [, , ]. Therefore from both a theoretical [–] and computational
[, –] perspective, nanopore technology represents a challenging field to


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develop methods able to interpret experimental results and to support the opti-
mization and design of nanopore devices [–].

Sometimes simulations and theoretical methods allow bypassing the exper-
imental limitations, such as restricted access to the finer details of the dynamics
and irreproducibility of specific phenomena due to the instability of the organic
matter out of physiological conditions. There are various theoretical strategies to
tackle the transport of proteins across nanopores, starting from the microscopic
description. Atomic-scale simulations are extremely informative about the pro-
tein dynamics for they take into account the more thorough structural and in-
teraction details of the whole system: protein, nanopore, lipid bilayer and ionic
solution [, ]. The high system complexity, however, prevents atomic-scale
simulations from cumulating the necessary number of events for a meaningful
statistical mechanical description, even for small translocatingmolecules. Simu-
lations via coarse grained models of protein transport across nanochannels con-
stitute an interesting alternative to full-atom methods. As already mentioned,
translocation is practically always coupled with unfolding of the biomolecule.
The simplest model to account for such a coupled process is to assume that both
translocation and unfolding are accomplished by a constant mechanical force.
Even this approach is computationally challenging and not devoid of drawbacks,
because biologically or experimentally relevant time-scales are orders of magni-
tude greater than those reproducible by full atoms simulations and, in addition,
the constant force assumption could not be realistic to describe the transloca-
tion in cells. In fact, typical simulations time scales range from nanoseconds to
microseconds (whereas experimentally measured translocation events are of the
order of milliseconds). Also, it has been found that repetitive pulling actually
catalyzes protein import into mitochondria, suggesting that this could even be
a strategy selected by evolution to import proteins into organelles []. Specifi-
cally, as suggested in [], the interplay among cyclic operation ofmolecularmo-
tors, force-induced backbone strain, and non-native interactions might be of es-
sential importance in mitochondrial import and not only, as pulling/pushing of
proteins by molecular motors is widely observed in the delivery of biomolecules
across several organelle membranes.

A simplified phenomenological description of nanopores, proteins and
interactions, allocating a reasonable amount of computational resources,
provides an immediate inference on the average pathway of the process.
Moreover, the limited amount of CPU loading allows a massive statistics of
translocation events to be collected. Clearly, the major limitation of coarse
grained models lies just in their phenomenological nature, because the
non-trivial simplifications introduced have to be compensated by an extensive
input of experimental information in order to improve the predictive power of
the models and their ability to match experiments. Likely, a suitable strategy
to investigate theoretically a complex and articulated phenomenology, as the
one emerging from the fast-developing nanopore technology, would require


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an integrated approach that cleverly combines coarse-grained modeling with
full-atom simulations. In this direction the most famous example of a coarse
grained molecular model that directly derives from full-atom force fields (and
therefore is much more complex that the approach here actually used) is the
Martini model [, ].

A burgeoning development of coarse-grained approaches to heteropolymer
modeling has taken place in recent years []. The basic feature of protein mini-
malist models is to group together and identify side-chain atoms, or even a com-
plete residue, into simpler units (virtual atoms, beads). These models are sim-
ple, fast to implement and require relatively small computational resources as
they take into account only the Cα-carbon backbone dynamics. In this context,
the Sorenson Head-Gordon (SHG) model [] is an off-lattice model that gen-
eralizes a previous model introduced by Honeycutt and Thirumalai []. The
α-carbons are represented by three possible types of beads: hydrophobic (B),
hydrophilic (L), and neutral (N). The force responsible for the collapse onto a
compact structure is the attraction between B-beads, whereas all other pairs of
interactions are repulsive and determine the rearrangement of the folded struc-
ture onto the native topology. The long-range interactions between far apart
residues in the sequence are modeled through the potential:

VLR
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2S2

σ

rij
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(.)

where the summation ranges from 1 to the number m of residues, ϵ sets the
energy scale and σ is the excluded volume size used to obtain a self-avoiding
polymer chain. Also, rij ri rj is the distance between residues (beads) i and j.
The attractive forces between hydrophobic beads is attained by setting S1 S2

1 for BB pairs. The others are all repulsive: LL, LB are characterized by S1 1 3

and S2 1 and NB, NL by S1 1 and S2 0. In order to achieve the proper
secondary structure, bending and dihedral interactions, which surrogate side-
chain packing and hydrogen-bonding, are introduced. The analytic expression
of the dihedral potential is

Vdih
m 3

i 1 Ai 1 cosφi Bi 1 cosφi

Ci 1 cos 3φi Di 1 cos φi π 4 , (.)

where φi indicates the angle between the two adjacent planes identified by the
positions of four consecutive beads. The information on secondary structures
is stored in the coefficients A,B,C, and D that determine a bias on the angles
reflecting the tendency of residues to form one of the secondary motives: helical
(H), extended (E), turn (T). Therefore, the primary structure must be comple-
mentedwith the auxiliary sequence of E,H or T symbols, assigning the appropri-
ate set of coefficients. Such a decoupling between primary and dihedral sequence
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allows a fine structural design []. The bending angle interaction is modeled as
a harmonic potential:

Vbend

m 2

i 1

kθ

2
θi θ0

2, (.)

with a constant kθ 20ϵ2 rad so that large deviations from the equilibrium
value θ0 104.85 are unlikely. The SHG force field is completed by stiff springs
with equilibrium distance d0 3.8 Å, namely

Vpept ri,i 1

m 1

i 1

k

2
ri,i 1 d0

2, (.)

used to maintain chain connectivity by simulating the presence of covalent pep-
tide bonds between successive amino acids. In the SHG model a selected num-
ber of elements is used to capture the essential characteristics of the proteins.
However, some features, such as hydrogen bonding and side chains, are missing.
These limitations should be compensated through a design strategy for optimiz-
ing the sequence []. SHG models have been adopted variously in studies on
protein unfolding (in free and nano-confined geometries []) and transloca-
tion []. In the next chapter the coarse grained model (Gō model) used to per-
form the research activity here reported is considered, along with all the other
assumptions employed. A critical comparison between the performance of the
Gō and SHGmodels in reproducing the folding of the small WW-domain form
in the HPin protein can be found in [].

Huang, Kirmizialtin andMakarov [], using a SHG force field, compare the
mechanical unfolding of Ubiquitin in free space (AFM-like stretching) and in
a semi-infinite pore, and show that the two dynamics are quite different. More-
over, the authors observe that the unfolding pathway in the pore is strongly de-
pendent on both pore diameter and pulling terminus. The free energy profile as
a function of the position of the pulled amino acid along the pore axis presents
several branches corresponding to ‘unfolding intermediates’ before a plateau is
reached once the whole protein has entered the pore. As we shall see, similar
intermediates are also observed as ‘stall events’ in the present research activity in
a finite-size pore []. Due to its structural simplicity, Ubiquitin was used also in
other studies, for instance Ammenti et al. [] simulatedUbiquitin translocation
across a long pore using the Gō force field. The latter two examples [, ] are
further considered in the next section as are deemed to constitute the reference
coarse grained computational studies available at the beginning of the research
activity. A brief introduction is provided to delineate the basic mathematical

Atomic Force Microscopy
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frameworks that are still missing to perform an albeit qualitative description of
these works.

.Analytical models and simulations of protein translocation

..Overview

A common analytical approach to model complex phenomena such as the
translocation process, is to investigate the low-dimensional potential of themean
force landscape, which is relevant to suitably-defined reaction coordinates. This
approach is often coupled with simulations where simplifiedmodels for the pro-
tein and its surroundings are exploited, both to investigate the dynamics of the
system and to reconstruct the free energy profile, which governs the trend of
the potential of the mean force as it will be clear later on. As developed fur-
ther in chapter , a reaction coordinate is just a collective order parameter that
encompasses and summarizes multi-dimensional phenomena, usually between
two end-states. The choice of the reaction coordinate is often guided just by intu-
ition and aim of the analysis. In forced dynamics a natural selection is to choose
the degree of freedom that couples with the driving force (usually it is the com-
ponent along the force direction of the position vector of the pulled residue of
the protein). For umbrella sampling applications [] to translocation, however,
the center of mass of the molecule is often the preferred parameter []. For
mechanical stretching, a situation mimicking AFM pulling studies, the protein
extension along the direction of the applied force is often implemented as a reac-
tion coordinate. When the free energy landscape enters in the formulation of the
potential of the mean force, which is the natural (and sole) option for canonical
systems such as a single molecule in a heat reservoir, an implicit assumption is
always done: the translocation can be presumed to take place in thermal equi-
librium at any location along the pore, so to obtain a quasi-equilibrium process.
It is however possible that a protein, while inside the tunnel, would be trapped
in a metastable state so that its behavior is practically non-ergodic. The quasi-
equilibrium assumption allows one to avoid dealing with the actual kinetics of
the translocation, that can be traced back to a series of quasi-static states, as the
ones obtained by sampling the system with the umbrella sampling method. In
this context the free energy trend, G0 z , (here the reaction coordinate is as-
sumed to be just one for simplicity and it is indicated by z without loss of gen-
erality) is related to the probability p z to find the chosen reaction coordinate
at z (a collection of ‘equivalent’ macro-states of the system correspond to such a
value of the collective variable) by the following relation

G0 z kbT lnp z , (.)
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where kb is the Boltzmann constant and T the temperature of the heat reservoir.
When external fields act on the system, the associated reversible workW z has
to be taken into account by including in the previous expression a proper term.
For instance, in the case of themechanical stretching induced by a constant force
f , exemplified in the next paragraph, the potential of the mean force reads as

Gf z G0 z W z kbT lnp z fz (.)

(and now it is evident the reason why the free energy profile governs the po-
tential of the mean force trend). Since continuum approaches are delved deeper
later on in the thesis, the topic is not further considered in the present section.
It has had the only aim to introduce the idea underneath the D continuum ap-
proach related to the already mentioned numerical investigations [, ]. Such
a description is carried out in the next section.

.. Coarse-grained molecular dynamics reference studies

Huang, Kirmizialtin and Makarov [] performed an analysis relevant
to protein import into mitochondria using Langevin dynamics simulations
(see (.b)) of a coarse-grained off-lattice model, the already introduced
SGH model, to investigate the co-translocation unfolding of a protein
structure (the  amino acids long Ubiquitin), pulled mechanically through a
semi-infinite narrow pore, cylindrical in shape. It is emphasized that, despite
the computational savings, due to the minimalist assumptions, biologically
relevant time scales associated with barrier-crossing events are rarely accessible
via direct simulations. In this work the potential of the mean force just
introduced is exploited, i.e. equation (.), and the chosen reaction coordinate
coincides with the z-axis coordinate of the pulled residue (the z-axis coincides
in turn with the axis of symmetry of the pore). Thus the translocation is
assumed to be slow enough with respect to the protein internal dynamics to
be described as a one-dimensional driven diffusion along the pore axis in the
potential Gf z . To obtain the global shape of the free energy G0 z , the
umbrella sampling/weighted histogram method [] is used.

In [] the free energy profile resulting from translocation is also
compared with the one stemming from mechanical stretching (AFM-like
experiments) simulations and differences are discussed. It is in fact proven that
significant differences exist between these two cases and that, in particular,
AFM experiment outcomes cannot be easily scaled to match translocation
results as each process occurs following distinct pathways. For details on
amino acid interactions see section . Without entering the details of the
calculations, Figure . panel a shows the profile of the potential of the mean
force in the mechanical stretching case, for different values of the force (here
the reaction coordinate is the molecule extension along the force direction).
In this figure, contact maps are also depicted. These are the plots of the pairs
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of residues i, j such that their distance, in both the native and current
configurations, is lower than (in this analysis) 7.5Å and 9.125Å respectively.
Also, j i 3. Such residues interact following the long range potential (.).
In panel b the same situation is showed for the translocation process when the
N -terminus is pulled inside the pore. In the article [] the pulling from the
C-terminus is also studied. While the overall free energy cost of extending the

Figure .: Adapted from []. Panel a: Free energy profile of Ubiquitin in units of ϵh
as a function of the mechanical stretching reaction coordinate for different values of the
force. Theminima correspond to the native-like state  and unfolding intermediates  and
, which structure is depicted in the lower part of the figure, where also contact maps are
showed. Panel b: Translocation of Ubiquitin driven by a force applied to itsN -terminus.
The potential of the mean force is plotted as a function of the position of the reaction
coordinate, corresponding to the just mentioned end of the molecule. Native-like  and
intermediate structures - are shown with the relevant contact maps.

protein is similar, the profiles of Gf z and, consequently, the force-induced
unfolding mechanisms are different. The local minima correspond to unfolding
intermediates that are obviously distinct. Certain similarities exist between
mechanical stretching and translocation pathways, especially in the first step,

The N-terminus refers to the start of a protein or polypeptide terminated by an amino acid with
a free amine group (-NH). The convention for writing peptide sequences is to put the N-terminus
on the left and write the sequence from N- to C-terminus. When the protein is translated from
messenger RNA, it is created from N-terminus to C-terminus. The latter is in turn the end of an
amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH)
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transition from structure  (native-like) to structure , which is present in both
cases and concerns the same event (separation of two terminal parallel strands).

In this study the dependence of the translocation time on the driving force
is also examined, in addition to pore-size effects. Actually only a crude estimate
of the effect of the driving force on the blockage time is carried out, as the au-
thors assume that the average translocation velocity should be correlated to the
overall free energy barrier, namely∆G f maxGf z minGf z , encoun-
tered along the reaction coordinate. The unfolding free energy barrier does not
depend linearly on the force, as it is often conjectured in mechanical stretching
studies. The pore investigation is not considered here for brevity; it is just worth
mentioning that if the pore is wide enough, the protein can perform transloca-

Figure .: Adapted from []. Translocation of Ubiquitin across a large pore. The reac-
tion coordinate used to project the free energy profile is the position of the last amino acid
of the chain along the pore, theN -terminus. Structures representative of the molecule as
encountered during simulations are also depicted with their contact maps.

tion in a semi-folded fashion, for example in the way showed in Figure ..
As stated by the authors themselves, several limitations may prevent the di-

rect comparison of the numerical results with the experimental ones. These are
subsequently listed:

• The minimalist protein model may be too rough to reliably estimate the
translocation free energy barriers and their force dependence.

• The analysis concerns a semi-infinite pore, which is unrealistic.


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• The constant force assumption might be inadequate, even for
voltage-driven translocation experiments.

• The assumption that translocation is a slow barrier crossing process may
be unrealistic, especially in the case where the pore is wide and the result-
ing free energy barrier is small. If the translocation time scale is of the
same magnitude of internal dynamics time scales, the simple description
of the one-dimensional driven diffusion process in the equilibrium po-
tential of the mean force is no longer applicable and a full simulation of
translocation dynamics may be required.

• More realistic pore models may be called upon in order to apply compu-
tational results to the natural phenomena that take place in cells.

For completeness, it is worth mentioning a work where translocation of
Ubiquitin is studied both in its thermodynamics and average kinetics []. In
this analysis a pore of finite length is considered, thus tackling the issue, although
it is long enough to accommodate the unfolded protein, i.e. if some residues
still dwell on the cis-side, none has yet escaped the channel from the trans-side
aperture. In [] statistical analyses are also carried out, accounting for block-
ade time distribution and translocation probability, by following the analytical
method just sketched, in terms of first passage time statistics (again this per-
spective will be delved deeper further on in the thesis, chapter  sec. .). In
the remaining part of this section the main points of [] are summarized. The
model employed for the protein is a Gō-like one, see sec. . of chapter , while
the pore confinement is again described by a cylindrical soft-core repulsive po-
tential. The Langevin equation of motion still governs the simulation dynamics
and umbrella sampling is performed by constraining the center of mass of the
molecule with a harmonic potential. Multiple weighed histogram technique is
use to deweight the umbrella sampling results [].

Translocation simulations are run until the protein is fully expelled out of the
right end of the channel and almost complete refolding takes place. However,
at low forces, Ubiquitin may fail to cross the pore within the simulation time
window. The probability of translocation, PTr

, is estimated as the number of
translocation success over the total number of runs as a function of the driving
force and of temperature. Figure ., panel a, shows the curves of PTr

for two
different values of the temperature, reporting a step-like trend, which delineates
a clear value of the critical force, i.e the force for which PTr

1 2. For instance,
the decreasing of the critical force with temperature is a tangible consequence of
the lowering of the free energy translocation barriers with temperature increase.
Panel b in the same figure contains the trend of the average translocation time
as a function of the pulling regime and for the two values of the temperature
simulated. Only in the high force regime the average translocation time shows
an Arrhenius-like dependence on the force, i.e. τ τ0 exp βFL , with β

1 kbT , F the pulling force and L the pore length.


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a b

Figure .: Adapted from []. Panel a: Ubiquitin translocation probability as a function
of the pulling force for two values of temperature. Pore length 300Å, pore radius 4Å,
fu 6 pN, Tref 198 K and Tph 305 K. Panel b: Average translocation time τ of
Ubiquitin as a function of the force F at the two simulated temperatures. tu 0.25 ps.

Characteristic trends of the free energy (indicated asG x ), obtained from
umbrella sampling simulations and multiple weighted histogram analysis
method, are reported in Figure .. These values refer to the position of the
center of mass of the protein along the pore axis. The plateau indicates that
once the protein is unfolded and completely inside the channel, it can slide
along its axis without further free energy increase. This is a consequence of
the pore geometry, for it is long enough to fully host the protein even when
completely unfolded. In contrast, as expected, the main variations of the free
energy occur at pore boundaries. In the proximity of the right end, when
actually some of the residues are already located outside the pore, the molecule
starts to be spontaneously expelled.

Figure .: Adapted from []. Free energy trend obtained from umbrella sampling sim-
ulations with a harmonic potential as umbrella potential in units of ϵ. The two curves
refer to the two simulated temperatures (reference and physiological).
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However, despite the insights gained, the general relationship between
the structure of the proteins and their resistance to mechanically driven
co-translocation unfolding remains poorly understood.


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Chapter 

Molecular Dynamics Translocation Simulations

.Preamble

A set of translocation simulations and the description of the relevant nu-
merical tools are reported here. The attention is focused on driven transport
of Maltose Binding protein (MBP) across nano-channels in the framework of
coarse-grained modeling.

As already mentioned, this work is motivated by a recent experiment on
the MBP voltage-driven transport across nanopores which explores the influ-
ence of denaturation on translocation pathways []. Specifically, short and long
channel blockades, associatedwith the translocation of denaturated and partially
foldedMBP conformations respectively, are identified by large differences in the
ion current drop durations.

Dynamically, translocation of proteins strongly depends on the denatura-
tion degree and generally is coupled with an unfolding stage. In fact a folded
protein with gyration radius larger than the pore narrower section needs a com-
plete or partial unfolding to start the translocation [, ].
Structurally, MBP is a monomeric globular protein with 370 residues, resolved
through x-ray crystallography byQuiocho, Spurlino and Rodseth []. Mechan-
ical AFM pulling experiments by Bertz and Rief [] identified some structural
regions - named unfoldons by the authors - as resistant areas to mechanical de-
naturation. The domainsM, M, M andM, shown in Figure .A on the PDB
structure (PDB-ID: mbp), can be related (one can expect such a thing) to the
long blockade events in theMBP translocation. In computations we consider for
MBP the Gō-like model described in section ., as a natural approach to assess
the impact of the molecule structural properties on translocation. The advan-
tage of a coarse-grained description with respect to atomic scale models relies
on the possibility to explore a large number of denaturation and pulling condi-
tions, accumulating this way robust statistics of translocation events. For recent
applications of coarse-grained models to various biochemical processes see the
review [].
As first step we show that the model is able to reproduce the general features of
MBP chemical denaturation. Afterward we study the translocation process in
a pore reproducing the average dimensions of the αHL channel. We find the
translocation dynamics to be strongly affected by the protein denaturation state,
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Figure .: Adapted from []. A) Maltose Binding Protein structure with the four un-
foldons highlighted. M-darkest gray (residues: -), M-light gray (residues: -
), M-dark gray (residues: -), M-lighter gray (residues: -). Panel B reports
the positions of the five stall-points found in our translocation runs (residues , , ,
, ) in a D-topological view.

similarly to the experimental evidence. In particular, the translocation of chem-
ically unfolded MBP conformations requires relatively low forces and once the
pulled terminus enters the pore, the transport proceeds uniformly. In contrast,
native-like structures exhibit a richer phenomenology: stronger forces are re-
quired to trigger the transport that, once started, develops in a stick-and-slip fash-
ion, through bottlenecks and jerky movements caused by the rearrangements of
the folded part of the protein that has not yet engaged the pore. In this case
the issue is to identify the MBP structural motives responsible for the translo-
cation slowing down. First we exclude these stalling stages to be related with
the unfoldons, by showing that translocation pathways significantly differ from
the free space unfolding dynamics. Then, by means of an analysis of static and
dynamic native contact maps, we show that the stall points of the translocation
pathway are mainly due to the protein regions more dense in long range native
interactions. This result might constitute a possible criterion to predict a-priori
some statistical features of protein translocation from a simple static structural
analysis.

.Three-dimensional models for MBP simulations

In order to simulate numerically translocation phenomena, a coarse-grained
computational model for the Maltose Binding protein and its surroundings is
developed (Fig. .). As it is described below, choices are made in terms of the
importing mechanism, pore and particle interaction potentials, numerical inte-
gration scheme and equation of motion for the material points constituting the


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system. Finally, the approaches followed in the practical implementation of the
numerical simulations are also expounded.

..MBP numerical model: The Gō-like approach

The phenomenological off-grid model proposed by Nobuhiro-Gō and
Harold A. Scheraga (minimalist off-lattice native-centricCα Gō-model) [, ]
is a coarse-grained model that identifies all the amino acids with their Cα

carbon atoms (Fig. . panel c). Therefore, the protein is reduced to a sequence

Figure .: Panel a: Maltose Binding protein appearance according to a full atom repre-
sentation. Panel b: Secondary structure of the MBP evinced from its protein data bank
file, PDB-ID: mbp. Panel c: Amino acid core structure. The characteristic residue chain
of this elementary constituent is summarized by a box surrounding a capital R. The Cα

carbon atombinds directly with the residue chain. Panel d: MBP coarse grained represen-
tation. Accordingly to the Gōmodel, only theCα carbon atoms along themain backbone
chain of the protein are depicted.

of material points (also called beads) coinciding spatially with the Cα atoms of
the protein backbone and no side chain characteristics are retained (panel d of
the same figure). The atomic mass is the same for all the residues and equal to 1
in the so-called ‘code measure units’ or ‘internal units’.
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A lot of variances and refinements of this model are available in the current
literature (see e.g. [, –]). All these approaches are generally referred as
Gō-like models. Here the approach presented in [] is implemented.

The minimum energy is assigned to a particular reference configuration,
usually coincident with the native structure of the considered protein. This is
why the Gō model can be properly applied only when the crystallized structure
is already known and the folding dynamics are mainly determined by the topol-
ogy of the natured conformation, as it happens with small globular proteins. The
Gō-likemodel generates an almost ideal folding pathway (energetic traps associ-
ated withmetastable conformations able to hamper the folding process are prac-
tically absent). Also, the native configurations so obtained are stable and close to
the reference one (in terms of root mean square deviation []), which can be
extracted, for example, from the protein data bank. It is a particularly suitable
approach to simulate two-state folding dynamics, but it has been used also to
predict intermediate configurations [].
Thanks to its properties and to its simplicity the Gō model has been widely ex-
ploited for protein numerical analysis [, , –]. The main limitation of
the approach is the requirement that the native tertiary structure of the protein
has to be known. In addition, its topological nature does not account for chemi-
cal factors, determining a considerable disagreement between real and simulated
time scales: kinetic peculiarities of the folding process are not properly predicted.
These discrepancies do not alter the folding thermodynamics and the correct se-
quence of events. In most cases the model allows the correct assessment of the
free energy values and of folding pathways. Moreover, transition states are co-
herent with the ones experimentally determined.

In the remaining part of this section the practical implementation of the
model is presented. Following theGō-like approach selected, the potential acting
on the residues of the MBP is constituted by four parts.

• Peptide potential (or bond potential), Vp.

• Bending angle potential, Vθ .

• Twist angle potential, Vφ.

• Non-bonded interactions (Lennard-Jones potentials or barriers), Vnb.

Let ri, r0i (with i 1, ...,m) be the position vectors of them residues identified
by their Cα carbon atoms, in the reference (native) and current configurations,
respectively. The peptide potential, responsible for the covalent bonds between
the beads of the polymer chain, has the following representation:

Vp ri,i 1

kp

2
ri,i 1 r0i,i 1

2, (.)
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Figure .: Panel a: Schematic view of the peptide bond. Panel b: Sketch of the bending
angle interaction. Panel c: Representation of the twist angle formed by the two planes
determined by four consecutive material points of the protein structure (three by three).

where ri,i 1 ri ri 1, r0i,i 1
r0i r0i 1

are the position vectors (their norm is
the bond length) between the bonded residues i and i 1 in the instantaneous and
native configurations, respectively (panel a of Fig. .). Moreover, kp 1000ϵ d20
is the empirical constant in terms of the parameters d0 and ϵ named, respectively,
the equilibrium length and the unit of energy. In particular, d0 3.8Å is the
average distance between two adjacent amino acids and ϵ sets the energy scale
of the model. In summary, the bond potential is nothing more than a simple
harmonic potential.

The angular bending potential Vθ plays a fundamental role in recovering
the secondary structure of the reference native configuration of the protein. It is
mathematically equivalent to the peptide potential, where relative displacements
are substituted by angular differences, namely

Vθ θi
1

2
kθ θi θ0i

2, (.)

where kθ 20ϵ rad 2 is the elastic constant expressed in terms of the energy
computational unit and θi, θ0i are the bond angles formed by three adjacent
beads in the simulated (time-dependent) and native conformations, respectively
(Fig. .b).
An additional contribution to the composition of the secondary structure is the
dihedral potential, expressed as a function of the twist angles φi and φ0

i , again
referred respectively to the actual and crystallized conformations. The twist an-
gle is the angle formed between the two planes determined by four consecutive
amino acids (three by three) along the chain, panel c. The definition of the twist
angle potential Vφ is

Vφ φi k
1

φ
1 cos φi φ0

i k
3

φ
1 cos 3 φi φ0

i , (.)

where k 1

φ
ϵ and k

3

φ
ϵ 2 are the dihedral constants.

In the Gō model a distinction is made among the pairs of residues that interact
following a potential that has also an attractive part, in addiction to a repulsive


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one, set to take into account excluded volume effects, and the ones that, instead,
only repulse each other sterically. The distinction is made on the basis of the
native distances with respect to a parameter of the model, the so-called ‘cut-off
radius’, Rc. If the native distance between two (i and j) non-adjacent residues,
i.e. j i 3, is lower than the cut-off distance, they are considered to be in
native contact and will interact following a - Lennard-Jones potential (.).
In other words, such residues will interact attractively if brought to a distance
greater than the native one and repulsively otherwise:

Vnat rij ϵ 5
r0ij

rij

12

6
r0ij

rij

10

, (.)

where all the symbols have been already defined. When r0ij Rc, the purely
repulsive contribution Vnnat is assigned to the pair of amino acids considered.
This term is based on excluded volume effects. It enhances the cooperativity in
the folding process and takes the form of a Lennard-Jones barrier

Vnnat rij
10

3
ϵ

σ

rij

12

, (.)

where σ is, similarly to the SHG model, a free length parameter correlated with
the extension of the excluded volume (self-avoiding polymer chain). It is usually
set equal to the average dimension of the amino acids, approximately 4.5Å.
The total potential acting on all the residues of the protein is then:

VGō rij

m 1

i 1

Vp ri,i 1

m 2

i 1

Vθ θi

m 3

i 1

Vφ φi

i,j i 3

Vnb rij ,

(.)

where the non-bonded term Vnb summarizes the possible long range interac-
tions just described and reads as

Vnb rij ϵ

Vnat 5
r0ij
rij

12

6
r0ij
rij

10

r0ij Rc,

Vnnat
10

3

σ
rij

12

r0ij Rc.

In what follows ϵ 1 andRc varies in the range 3.0 7.5 Å.

..Pore and pulling models

The confinement effect on a protein driven inside a narrow space such as
a nanopore can be represented by a step-like soft-core repulsive cylindrical po-


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Figure .: A step-like 0 L cylindrical soft-core repulsive potential Vc is chosen to
model the effect of the confinement inside the pore. A constant force is used to drive the
MBP inside the channel. It is always applied to the foremost residue inside the pore.

tential. For simplicity the cylinder axis of symmetry is set coincident with the
x-axis of the frame of reference used for translocation simulations.

The same direction is used to develop the mechanical pulling of the MBP
by the application of a constant force to the foremost residue inside the channel.
The constant action is thought to constitute a reasonable approximation for the
average effect of the electrical potential in a voltage-driven translocation exper-
iment.

The channel potential is given in (.) and schematic representations of the
system, the potential and the pulling mechanism, are shown in Figure ..

Vc x, y, z V0

ρ

Rp

2q

Θ x L x . (.)

HereΘ s 1 tanh αs 2 is a smooth step-like function limiting the action
of the pore potential in the effective region 0, L . L andRp are pore length and
radius respectively. Also, ρ y2 z2 is the radial coordinate. A convenient
choice of the other parameters is q 1, α 3Å 2 and V0 2ϵ []. The driving
force acts only in the region in front of the pore mouth (the capture one) x
2,0 , and inside the channel 0, L . Pore length L 100Å and radius Rp

10Å are taken from αHL structural data.

..Langevin dynamics for the material points of the MBP

The choice for the dynamics of the beads is not different from what is usu-
ally employed in coarse-grained molecular dynamics simulations for it is the
well-known Langevin equation (.a) that governs the motion of the material
points. Consequently, numerical investigations are performed at constant tem-
perature. The overdamped limit is actually implemented, i.e. r̈ 0, (.b); a
standardVerlet algorithm is used as numerical scheme for time integration [].
In other words, any particle of the system follows a dynamics enforced by this


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three-dimensional equation, when a numerical simulation runs:

r̈i γṙi riV ri Γ t Fext, (.a)

ṙi
riV ri Γ t Fext

γ
. (.b)

Here γ is the friction coefficient used to keep the temperature constant (also
referred to as Langevin thermostat) and Γ t takes into account thermal
fluctuations, being a delta-correlated stationary and standard Gaussian process
(white noise). Practically, the latter quantity represents a random force that,
along with the friction term, satisfies the fluctuation-dissipation theorem
(namely the mean-square value of Γ is proportional to the corresponding
friction coefficient, γ). V ri is the total potential on the material points
(generally speaking it includes both the terms belonging to the Gō-like model
and to the potential used to model the pore confinement (.) and (.),
respectively, depending on the position ri of the issued bead) and Fext takes
into account the possible contribution of the external forces (in the present
setting it coincides with the force driving the translocation, which acts only on
the pulled residue).

Several analytical models can be implemented starting from a Langevin ap-
proach but, since this topic is developed when D-continuum modeling is con-
sidered, it is not further discussed here.

.Methods for translocation and stretching simulations

The following sections describe the practical implementations of the numer-
ical investigations in the cases of mechanical pulling in a confined environment
(translocation simulations) and in free space (AFM-like mechanical stretching
simulations). Thermalization runs are also outlined when necessary as they have
been used to obtain statistically independent initial configurations.

..Translocation simulations

For each cut-off radiusRc, thermalization simulations are performed at T
0.75 θu in the already mentioned ‘code measure units’ (symbols will be usually
dropped in what follows) to generate initial MBP configurations with one of the
two ends constrained near the pore entrance. More in general, in a thermaliza-
tion (or equilibration) simulation the protein is left free to fluctuate and possibly
to unfold (depending on the value of the cut-off radius) in the heat reservoir.
Protein configurations are sampled at time intervals equal to 10% of the simula-
tion time window, Tw 105tu with tu time units, to ensure statistical indepen-
dence of initial states. After thermalization, the protein is driven by applying the
pulling force F in the capture region and into the pore.


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Protein translocation is considered accomplished when the last residue
leaves the trans-side of the channel. As it will be shown in the result section,
there are conditions where the molecule escapes the capture by diffusion,
despite the action of the importing force. To save computational time,
simulations are stopped and discarded if the protein reaches a distance from the
pore entrance comparable to its native state linear size (approximately 20Å).
This criterion is based on a preliminary estimate of a negligible probability for
the molecule to re-approach the pore by diffusion and re-start the translocation.

To set the nomenclature up, such cases of protein escape will be labeled as
loss events. Cases where the protein is neither translocated nor lost at the end of
the time window are indicated as unsuccess.

..Stretching simulations

Before each stretching simulation (AFM-like), the protein is equilibrated
without constraints or additional forces in order to obtain a proper initial con-
figuration. Stretching is simulated by using a constant velocity SteeredMolecular
Dynamics (SMD) strategy [] where protein elongation is induced by a spring
of elastic constant k 0.1ϵ. TheproteinN-terminus is held fixed, theC-terminus
is attached to the first end of the spring, which second end is dragged at constant
velocity v in the direction of the initial end-to-end vector. To test the result-
ing robustness of simulation protocols, we use different steering velocities and
perform AFM-like stretching also from the N-terminus (with the C-terminus
blocked).

As mentioned in the introduction, MBP contains four unfoldons (M, M,
M and M, Fig. .). To monitor the denaturation degree of the k-th unfoldon
domain, we consider the number of its internal active native contacts, normal-
ized to the corresponding value in the PDB crystallized structure, as a function of
time. Two residues originally in contact are considered detached when their dis-
tance in the actual molecule conformation exceeds 1.23r0ij . The latter criterion
is based on a negligible attractive force beyond such a distance, which approx-
imately coincides with the point where the - Lennard-Jones potential (.)
changes curvature.

.Translocation and stretching numerical results

..Denaturation characterization

In the Gō-model force field (.) a decrement in the cut-off radiusRc plays
virtually the rôle of a chemical denaturing agent because, by reducing the num-
ber of attractive long-range interactions (.), the native state is destabilized with
respect to the action of thermal fluctuations. Denaturation can be also achieved
by increasing the temperature or decreasing the energy scale ϵ (thermal denat-
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uration). The latter approach would be however too global to be compared to
specific experiments [, ], because it would soften both bonded and non-
bonded interactions (see eqs. (.), (.)). The denaturation we implement in
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Figure .: Panel a: Contourmap of the RMSD as a function of the cut-off radius and sim-
ulation temperature. Darker regions reflect states were the equilibrated protein structure
resembles the native configuration. The transition from folded to unfolded state is a two-
state transition and is extremely sharp, in compliance with the experimental findings on
MBP denaturation. Panel b: Denaturation plot of MBP obtained by thermal equilibrium
simulations at T 0.75. The proper rescaling, (.), of RMSD makes simulation data
to collapse onto Ganesh et al. denaturation plot [] (fraction of unfolded structures by
circular dichroism spectroscopy).

such a minimal model context is the closest to the chemical one, as it reduces
only the number of attractive non-bonded interactions responsible for the col-
lapse onto compact native structures. That behavior mimics the chaotropic ac-
tion of a solute (denaturant) which destabilizes the native states by competing
with internal non-covalent protein interactions, such as hydrogen bonding and
hydrophobic effect.

We thus expect that laboratory denaturation conditions can be effectively
taken into account by a suitable choice of the cut-off radius. In fact panel a of
Figure . depicts a contour plot of the Kabsch distance (mean root-square de-
viation of a structure with respect to the native state []) as a function of the
simulation temperature and cut-off radius. The transition from the region where
MBP structures are folded (black) to the denatured one (white) is sharp, thus
pointing out the suitability of the selected approach to model chemical denat-
uration. Experimentally, Ganesh, Shah, Swaminathan, Surolia and Varadarajan
have analyzed chemical MBP denaturation by guanidine hydrochloride (Gnd-
HCl) at constant temperature, T 28 C. They have shown that the unfolded
protein concentration ρu, at different GndHCl concentrations D , estimated
via circular dichroism spectroscopy, could be fitted by means of a standard two-
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state model (dashed line in Fig. . panel b). The latter Figure compares the
denaturation of Gō-model MBP as a function of the cut-off radius Rc, with the
denaturation curve in []. As a nativeness indicator for the numerical data we
employ the already mentioned RMSD. Mapping between simulated and exper-
imental denaturation results is established after a base-line subtraction of the
RMSD values and a normalization to the 0,1 interval. It reads

D
a

Rc R0
c

a

Rc R0
c

, (.)

where our reference interaction cut-offRc 7.5Åcorresponds to the fully native
state D 0 in the experiment; R0

c 4.0Å is in turn the cut-off radius for
complete denaturation and a is a tunable parameter adjusted to achieve data-
collapse.

..Translocation dynamics

We characterize translocation success (top left panel of Fig. .) in terms of
translocation probabilityPTr. The fraction of translocated simulations is consid-
ered with respect to the total number of attempts, as a function of the importing
force F . Figure . refers to T 0.75 and Rc 6.8Å that, as shown in Fig-
ure .b, is the lowest Rc-value corresponding to native-like conformations, for
both N-pulling (empty symbols) and C-pulling (filled symbols). In addition to
PTr, the left side of Figure ., i.e. panels b and c, provides also the fraction of
loss events, PL, and unsuccessful events PU 1 PL PTr. PL is the percentage
of molecules that escape the capture by diffusion in the bulk. PU is the fraction
of proteins that are neither translocated nor lostwithin the timewindow Tw . The
step-like shape of PTr vs. F allows a clear definition of the critical force Fc as
the value for which PTr Fc 1 2. If F Fc, most of not-translocated runs
are lost, since the importing force is so weak to be easily overcome by thermal
motions. By increasing F , PL rapidly decays whereas the number of translo-
cated and unsuccessful runs increases. ForF Fc, almost all the untranslocated
proteins correspond to unsuccessful runs and very few are lost. The overall sce-
nario also indicates an asymmetric translocation process of folded MBP, which
depends on the pulling terminus. The difference in Fc and in the number of
proteins stuck in the pore between N- and C-pulling suggests that the transport
pathways are different in the two cases.

To characterize the role of denaturation in the translocationmechanism, we
estimate Fc at different cut-off radii. Panel d of Figure . shows that translo-
cation at low denaturation (large Rc) requires high forces. Decreasing Rc, the
critical force is reduced and belowRc 6.8Å it reaches a plateau. Actually, once
denaturated (Rc 6.8Å, see Fig. .), the dynamics of random coil MBP con-
figurations becomes unaffected by a further reduction of Rc. In contrast, as for
Rc 6.8Å the MBP structures become more and more compact and stable, the
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Figure .: Here and in the following figures units are internal, i.e. related to the coarse-
grained model we used. Distances, when present, are in Å. Empty symbols N-pulling,
filled symbols C-pulling. Left hand side: Statistics of translocation as a function of the
importing force F atRc 6.8Å and T 0.75: (a) translocation probability PTr, (b) loss
event probability PL and unsuccessful run probability PU (c). Right hand side: Critical
force Fc as a function ofRc for T 0.75, panel d. Loss and unsuccess events probability,
PL and PU respectively, at critical force, panel e.

increment of the critical Fc is naturally expected, due to a stronger resistance to
unfolding. Therefore, the critical force is a quantity able to discriminate folded
and unfolded MBP structures, in analogy to the applied voltage in experiments,
(see [, , ]).

A further difference between denaturated and native-like MBP transloca-
tion is revealed by the amount of loss and unsuccessful events at critical force.
Panel e of Figure . shows a clean transition at Rc 6.8Å in both PL and PU

at critical force. At smaller Rc (denaturated state) PL 0.5, hence none of the
unstructured chains gets stuck in the pore. That behavior is compatible with
the idea of an importing force competing with thermal fluctuations to insert a
residue in the pore: Fc Fth kbT d0 0.2, with d0 3.8Å the average
distance between consecutive residues. Once the first core of residues is im-
ported, denaturated structures oppose a weak resistance and their translocation
is easily accomplished. In contrast at larger Rc, the critical force is significantly
greater than Fth. Hence, almost all MBP configurations start getting imported
and those unable to finalize the transport within the allotted time end up stuck
into the channel. At low denaturation, long pore blockades are entirely due to
the structural resistance of folded MBPs to mechanical unfolding.
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..Residence time statistics

Figure . reports the average translocation (or blockade) time τb as a func-
tion of the importing force for different values of the interaction cut-off Rc, for
both the N-terminus and C-terminus pulling (panel a and b respectively). For a
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Figure .: Panel a: Average translocation time on the sub-ensemble of successfully
translocated runs τb vs. importing force F . The different symbols concern different
cut-off radii, namely Rc 3.0,5.0,6.2,6.5,6.8,7.0,7,2 and 7.5Å are represented by
upward triangles, downward triangles, squares, circles, diamonds, first-quadrant-filled
circles, second-quadrant-filled circles and pentagons, respectively. The dashed line rep-
resents the fit (.). Data for N-pulling simulations. Panel b: Average translocation time
on the sub-ensemble of fully translocated simulations τb vs. importing force F . Differ-
ent symbols represent different cut-off radii, namely Rc 3.0,5.0,6.2,6.5,6.8,7.0 Å
and 7.5Å, squares, circles, downward triangles, upward triangles, cross, diamonds, stars
respectively. The dashed line represents the fit, (.). Data for C-pulling simulations.
Panels c and d: translocation time distribution for Rc 6.5Å and F 0.575 (denatu-
rated) andRc 6.8Å and F 1.10 (native) respectively. The dashed lines in panel c and
d are an inverse Gaussian (.), and a double exponential fit (.).

given cut-off radius, τb generally decreases with increasing F , as it is expected.
However forRc 6.5Å, the τb vs. F data collapse onto a single curve (dashed),
confirming that MBP structures are completely denaturated and react similarly
to the importing force. The curve is well fitted by a three-parameter (τ0, F0, µ0)
relation, namely

τb F τ0 e
F F0

L

µ0F
, (.)
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which is a linear combination of an activation term exp F F0 , and a con-
stant velocity drift 1 F . The origin of the activation term can be explained
as in what follows. An irreversible translocation can occur only after a stable
core of residues is established inside the channel. This sort of capture process
requires the overcoming of the initial entropic barrier due to the strong con-
finement of the chain induced by the channel, that even unstructured polypep-
tides experience []. ForRc 6.8Å, the average translocation time grows with
the decrement of F (crosses, diamonds, stars in Fig. .a and b), indicating that
translocation is drastically slowed down. At large enough forces, overwhelming
the stability of the native-like MBP, τb tends to collapse on (.), regardless the
value of the cut-off radius. The curve depicted by (.) thus constitutes a sort of
base-line for all translocation times. In low-force regimes, the bending of data
toward the horizontal line τb Tw is an effect due to the time window finiteness.
In Figure .a and b, that effect has been partially corrected by using the formula

τb
1

PTr PU

PTr τTr PU Tw , (.)

where τTr is the average time from the translocated runs and PTr is the cor-
responding probability (see Fig. .). The use of (.) can be justified. Let
us consider a set of M runs, where MT of them translocate within Tw , while
MU do not accomplish the passage but are expected to translocate in a time
greater than Tw and ML are lost (will practically never translocate), obviously
M MT ML MU. By definition, after discarding lost events, the average
translocation time is

τb
1

MT MU

MT MU

r 1

tr,

where tr is the translocation time of the r-th run (thought for Tw ). We
could rewrite τb by separating the runs for which tr Tw from the runs for
which tr Tw and, consequently, split the summation into

τb
MT

MT MU

1

MT

MT

r 1

tr
MU

MT MU

1

MU

MU

r 1

tr .

Here, the first average involves the terms tr Tw , while the second one the
terms tr Tw . By considering that PU MU M and PTr MT M , we get the
expression

τb
1

PTr PU

PTr τTr PU Tw ,

where we have used the lower bound for tr Tw and the formula
τTr

1

MT

MT

r 1
tr .
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Panel c of Figure . shows a typical translocation time distribution ψ t of
a denaturatedMBP. It looks well localized around its average τb and it is properly
fitted by an inverse Gaussian, with parametersD0, µ0:

ψ t
L

4πD0t3
exp

L µ0Ft 2

4D0t
, (.)

that is the first-passage time distribution of biased random walkers on the inter-
val , L emitted in 0 and absorbed at and L []. An instance of the
time distribution ψ t of native-like MBP translocation is plotted in panel d. In
this case, ψ t has a fatter large-time tail and it is well reproduced by a double
exponential:

ψ t
k1k2

k2 k1
e k1 t t0 e k2 t t0 , (.)

with rates k1, k2 and t0 being an offset time interpreted as the time taken by a
denaturated MBP to cross the pore. As we shall see below, the double exponen-
tial is justified by the presence of two successive stall points, corresponding to
two energy barriers, the overcoming of which can be seen as an activated pro-
cesses. Translocation phenomenology is better characterized by addressing the

Figure .: Time evolution of the number of residues on the cis-side of the pore Ncis

for a pulling run at Rc 6.8Å and critical force (panel A: C-terminus pulling, panel
B: N-terminus pulling). Snapshots of representative configurations are reported for the
plateaus corresponding to the protein blockades. The average time spent by the protein in
differentNcis, at critical force, is reported in panels C, D and E forRc 6.8Å C-pulling,
Rc 6.8Å N-pulling,Rc 6.5Å C-pulling, respectively.

time evolution of the number of residuesNcis on the cis-side of the pore. Panel A
of Figure . showsNcis t for one successful run at critical force forRc 6.8Å,
pulled from theC-terminus. Clearly, most part of the time is spent by theMBP in
two particular stalling states,Ncis 335 (C-St) andNcis 267 (C-St), corre-
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sponding to configurations where either residue 335 or residue 267 are respec-
tively located at the pore entrance. Representative snapshots of the two states
are included in the figure for illustration. To gain more quantitative informa-
tion we compute the time tr Ncis spent by the r-th run in a given Ncis state
during translocation. Time t̄ Ncis , defined as the average of tr Ncis over the
ensemble of translocated runs, is plotted in panel C of Figure ., for C-pulling
translocations at critical force and Rc 6.8Å. The two peaks in the histogram
correspond to the two blockade events shown in panel A. Clearly, translocation
is far from being uniform and looks more as a step-like (or stick and slip) pro-
cess, where the protein has to overcome successive free-energy barriers associ-
ated with specific structural rearrangements. The analysis of N-pulling (same
cut-off radius and corresponding critical force), panels B and D in Figure .,
confirms the overall picture: also in this case the protein spends most part of
the time in specific configurations. The stalling events are three and take place
at different positions, namelyNcis 363 (N-St), corresponding to residue 7 at
the pore mouth, Ncis 307 (N-St, residue  at the mouth) and Ncis 256

(residue , N-St). To complete the phenomenology, we note that the transport
of denaturated proteins (Rc 6.8Å) appears much more uniform (peak-less),
panel E of Figure ..

The scenario for both N and C-pulling is robust under changes of both Rc

(provided that Rc 6.8Å, i.e. native-like MBP) and pulling force range F , with
only slight differences in the peak intensity (Fig. .). Concerning the unsuc-
cessful translocations, we find that the already mentioned stall points still occur
(Fig. . and Fig. .), just to confirm their leading role in transport bottlenecks.
In summary, panel B of Figure . sketches in a D-topological view the positions
of the five stall points detected for structured protein translocation runs (residues
, , , , ).

The loss events can provide insights into the translocation process andmight
be related to experimental observations. A typical event observed in loss sim-
ulations is that the protein spends some time at the pore entrance, attempting
to insert the terminus, before definitely escaping the capture by diffusion. The
duration of the events in which the number of residues inside the pore is greater
than 0 is well determined in lost simulations and defines a sort of protein-pore
interaction time tI . Moreover, reasonably assuming that in between two suc-
cessive events the protein remains close enough to the pore to generate some
kind of blockage, it is possible to attempt a closer connection between simula-
tion results and experimental findings. Panel A of Figure . depicts the inter-
action time distribution obtained for a denaturated protein while panel B shows
the trend of the average interaction time τI as a function of the denaturation
degree (as usual characterized by the Gō-model interaction cut-off Rc) for dif-
ferent importing force intensities. A common behavior of unfolded structures is
evident, while the average interaction time for compactmolecules results greater
and dependent on the cut-off radius. Although a quantitative comparisonmight
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Figure .: Average time spent by the protein as a function of Ncis. Panels of the first
row refer to translocated simulations (left), and unsuccessful runs (right), both for C-
pulling at critical force,Rc 7.2Å.The latter panel clearly shows the presence of the two
main blockades (C-St and C-St), which can be detected also for successful simulations,
thus confirming the robustness of the data shown in panel C of Figure . with respect to
changes in Rc. In the second row, analogous results are reported for N-pulling translo-
cations: three main peaks are evident (N-St, N-St and N-St). Finally, in the last row
the same data for successful simulations for Rc 6.5 Å (left) and Rc 6.2Å (right),
both for N-pulling at critical force are depicted. For Rc 6.5Å the peak structure still
partially holds (two on three peaks are still detectable) and it is necessary to decrease the
value of the cut-off radius to 6.2Å to recover a homogeneous behavior equivalent to the
one shown in panel E of Fig ., where the pulling is from the C-terminus.

be too ambitious, the scenario we observe in the simulations closely resembles
the presence of the ‘bumping events’ reported in the experiments by Mestorf et
al. [] and classified as short-time low-intensity current blockades. In prac-
tice, the protein moves close to the pore partly blocking the current but does not
start a translocation. The bumping time distribution results to be well fitted by
an exponential (Fig. .A) and its average is about one order of magnitude lower
than the corresponding average translocation time, a fact qualitatively in agree-
ment with the experimental data (for the numerical specific case here considered
τb τI 50).

..Stretching vs. translocation

The previous picture of MBP translocation rises the natural question as to
why the transport of initially compact structures becomes temporarily stalled
at well defined stages. We relate these ‘rate limiting steps’ of translocation to
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Figure .: Average time spent by the protein as a function ofNcis for unsuccessful runs
forRc 6.8 Å. Left panel refers to C-pulling, right panel to N-pulling. The two peaks in
the left panel and the three in the right one correspond to the peaks in panels C and D of
Fig ., respectively.

Figure .: Panel A: Protein-pore interaction time (tI ) distribution and associated ex-
ponential fit for unfolded protein and small pulling force. Panel B: Trend of average in-
terference time as a function of the pulling force and cut-off radius. Unfolded structures
show a common behavior at short τI while a greater average interaction time is associ-
ated to compact structures. The vertical dashed line marks the Rc-threshold separating
in the Gō-model approach native-like from fully denaturated conformations. Different
symbols correspond to four increasing force intensities (in the order: squares, circles, up
and down triangles).

the MBP structural properties that govern the free-space stretching. As men-
tioned in the preamble of this chapter, targeted AFM experiments [] have
shown that MBP mechanical stretching occurs via a sequence of events corre-
sponding to the successive breakdown of specific domains, termed unfoldons.
The analogy of pulled translocation with AFM mechanical stretching suggests
that unfoldons might be involved also in MBP translocation bottlenecks. Pre-
liminarily, we check, via standard Steered Molecular Dynamics stretching pro-
tocol [] that the Gō-model of the MBP is able to reproduce the ‘unfoldon
picture’ observed in the experiments []. In Figure .A the average over 50
runs of the force-extension (end-to-end distance Ree) curve of the MBP in the
numerical stretching experiment is depicted. The three branches, denoted by
M, M+M and M according to the nomenclature used in [], separated by
the three worm-like-chain curves [], identify the same unfoldon opening se-
quence described in the reference experimental work, including the coupled un-
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Figure .: Right: force (A) and average value of fraction of native contacts Qs Mk

k 1,4 (B) vs. the end to end distance Ree in stretching simulation at pulling velocity
v 0.05, temperature T 0.5 and cut-off radius Rc 7.5Å. Dotted lines represent
worm-like chain fits []. Left: average value ofQs Mk as a function ofNcis forRc

6.8 and T 0.75 for N-pulling (C) and C-pulling (D) translocated runs at critical force.
Vertical black lines mark the residues mainly involved in the translocation bottlenecks.

folding of M and M. Also, the stretching force required to perform constant
velocity detachment follows a peculiar trend qualitatively in compliance with the
experimental evidence (see Fig. . for a quick summary of the latter). The pic-
ture becomes clear when plotting the average fraction of the active native con-
tacts Qs Mk , k 1, . . . ,4 in each unfoldon as a function of the end-to-end
distanceRee of the MBP. For instance, in the initial stage of the elongation, cor-
responding to the curve branch labeled byM, the structural parameterQs(M),
dash-dotted line, decreases indicating the rôle of M detachment in this stage.
The simultaneous opening of M and M, solid and dashed line respectively, is
also evident in the second branch. Finally M opens. Snapshots of the detach-
ment sequence are shown in Figure ..

To understand the role of the unfoldons in the MBP translocation process,
first we locate the five blockage-points with respect to the unfoldons in the pro-
tein structure (Fig. .). Then, again, we plot the unfoldon structural parameters
Qs Mk as a function of Ncis for C-pulled and N-pulled translocations, re-
spectively (Fig. .C and D). In the C-terminus pulling case (Fig. .C), the se-
quence of unfoldon opening is essentially the same as in the mechanical stretch-
ing. First, M breaks down, followed by M and M, which dynamics is again
correlated, and finally the M-opening concludes the process. The vertical dot-
ted lines in Figure .C and D highlight the two stall points C-St, C-St in the
C-pulling and the three other ones, namely N-St, N-St, N-St, in the N-pulling
(see discussion of Fig. .). A very weak correlation emerges between unfoldon
dynamics and blockades. Specifically, the two configurations reported in panel
A of Figure . (see also Fig. .B and the vertical lines in Fig. .C and D) show
that the first blockage-point for C-pulling (residue ) takes places in unfoldon
M (darkest gray in the figure), while the second one (residue ) lies in the
initial part of M (light gray). In the pulling from the N-terminus, we observe
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Figure .: Adapted from []. Characteristic force-extension trace of a ddFLN--MBP
chimera []. Unfolding of the native protein and subsequent elongation of the polymer
is shown in the darkest gray (unfoldon M), the breakdown of M is shown in light gray,
the detachment of M is shown in dark gray and the unfolding of M is shown in the
lightest gray. Contour length increases are marked on worm-like-chain (WLC) curves fit
to the data. At extensions 125nm the characteristic unfolding pattern of three ddFLN
scaffold domains is visible (gray, leftmost and rightmost ends), followed by detachment of
the protein. Inset: Superposition of several MBP unfolding traces zoomed into the region
of the short-lived intermediate stateM (dark gray) resulting from the detachment ofM
(light gray). A best WLC fit to the curves is shown in black. All light gray levels (lifetime
of the intermediate state M) fall on the sameWLC curve, indicating the breakdown of
a well-defined state.

that M is the first to be broken followed by M, then M and finally M. Again
the blockade-points do not appear directly related to the unfoldon boundaries,
panel B of Figure ., with the sole exception of the stall N-St, located at the
boundary between M and M.

.Discussion

An essential result of our analysis is a sharp change in the translocation dy-
namics upon varying the cut-off radius fromRc 6.5Å toRc 6.8Å.We recall
that, according to (.), a mapping between Rc and the MBP denaturation de-
gree can be established (Fig. .).

Denaturated-MBP translocation (Rc 6.5Å). BelowRc 6.5Å, the MBP
behaves as a random coil: its translocation dynamics is basically independent
of Rc as revealed by the critical force behavior (Fig. .d) that remains almost
constant for Rc 6.5Å and by the blockage time data (Fig. .a and b) that



Coarse-grained molecular dynamics and continuum models

54



Figure .: Snapshots of MBP unfolding at T 0.5, Rc 7.5 Å and v 0.001. The
unfolding sequence is the one described by Bertz and Rief, []. The first part to open
is the unfoldon M (darkest gray) as shown in panel B, then M and M unfold (light
and dark gray), panels C, D and E. With the exception of the initial portion of M, the
last structure to detach is M (lighest gray), panels F and G. In panel, A the initial folded
MBP conformation is depicted.

collapse onto the same curve for every Rc, thus exhibiting a common behavior,
(.). In this Rc-range, not only the critical force Fc but also the probability of
lost events atFc shows a plateau (Fig. .e). Moreover, the pulling terminus (C or
N) does not influence significantly any of these quantities. The sole barrier in the
translocation dynamics is due to the pore entrance; once the protein is captured,
the average time spent at different stages of the process is similar (panel E of
Fig. .). Thus, random-coil MBP translocation can be interpreted as a capture
(activated) stage followed by an elementary first passage process, where random



Marco Bacci

55



walkers under a constant bias are injected from the cis-side of the channel and
absorbed to the trans-side.

Native-like MBP translocation (Rc 6.8Å). Folded structures exhibit a
much more complex dynamics, characterized by a transport getting stalled in
the pore due to specific MBP configurations. Translocation times are greater
than the unfolded case. Their average increases with Rc (Fig. .a and b) and
their distributions show fat tails (Fig. .d). These results agree with the experi-
ments described in [], where, in the explored forcing regime, only denaturated
proteins were able to rapidly translocate, whereas very long blockades pertained
to partially folded ones. The capability of numerical techniques to explore the
dynamical details evidences the presence of stable and reproducible bottlenecks
of the transport, namely C-St, C-St, N-St, N-St, N-St in native-like MBP
transport (Figs. ., . and .). Natural candidates for such stall points are the
boundaries between MBP unfoldons. However, our results clearly indicates that
the AFM-unfolding dynamics is not correlated to the stalls.

Rather, the analysis of MBP native-contact maps allows us to shed light on
the actual mechanism underlying the stalls. Indeed, the blocking C-St and C-
St, but also their counterparts for the N-pull case, can be interpreted in terms of
a specific sequence of native-contact breaking an MBP sub-domain undertakes
in order to engage the pore in an almost linear conformation. In fact, the stalling
domains of the protein are those with the greater amount of external native con-
tacts, where external means ‘excluding all the inner contacts of the domain’. In
formulas, ifK is the domain, then its contact density reads

ρc K
1

mK i K j K

Mij , (.)

where mK denotes the number of residues in K and Mij 1, if i and j form
a native contact, and Mij 0 otherwise. In Figure . the contact map of na-
tive MBP, obtained for Rc 6.8Å is considered. The lower side panel shows
the average of external contacts composed by the ten-residue-long consecutive
regions of the MBP. Peaks identify the protein regions with the greater number
of contacts that are thus the most probable candidates to cause the stall points
once engaging the pore entrance. However, by considering the dynamics data
(like the configurations associated with the stalls, Fig. .C for example), we can
be more precise by selecting the two critical regions around the peaks C-St and
C-St: C-K = 328,338 and C-K = 260,270 , respectively, and the comple-
mentary regions X = 339,370 , X = 271,327 and X = 1,259 , so to patch
the wholemolecular structure. Table . summarizes the density of external con-
tacts (see (.)) that these regions form with the part of the molecule running
from the proper boundary of the issued region to the free terminus (a generaliza-
tion of this approach concerning only a static analysis of contact maps - without
resorting to dynamical data - is provided in the next chapter). For instance, ex-
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Figure .: Contact map of native MBP obtained for Rc 6.8Å. Bottom panel depicts
the average number of long range contacts each residue establishes. The peaks identify the
regions of the chains with the larger density of external contacts, which are responsible for
putative stall points. Vertical gray bands highlight the stalling regions as obtained by the
analysis relevant to Figure .. These regions form a significant number of contacts with
distal parts of themolecule and only when the contact cluster at the pore cis-sidemouth is
broken the translocation can proceed further on, up to the next bottleneck (next cluster).

ternal contacts pertaining to C-K bond this domain with residues from  to
 (N-Terminus), as here C-terminus pulling blockades are exemplified. This ap-
proach allows tracking only the effective external contacts that come into play
when a region is facing the pore, namely the contacts formed with just that part
of the molecule which has not yet engaged the pore (backward contacts). The
higher values pertain to C-K and C-K sub-domains. They confirm the picture
emerging from Figure .. These areas, being with high contact density, oppose
the maximal resistance to unfolding once in front of the pore. In other words,
translocation bottlenecks are determined by those sub-domains that, still par-
tially folded when approaching the pore cis-side, carry with themselves other
distal regions of the molecule tightly bonded to by native interactions. The con-
tact analysis leads to the same conclusion also for the N-terminus pulling, where
the critical regions are N-K = 1,11 , N-K = 55,63 , N-K = 105,115 .



Marco Bacci

57



C-pulling N-pulling
Name Region ρ Name Region ρ

X 339,370 . N-K 1,11 .
C-K 328,338 . Y 12,54 .
X 271,327 . N-K 55,63 .

C-K 260,270 . Y 64,104 .
X 1,259 . N-K 105,115 .
—- ——— —- Y 116,370 .

Table .: Contact density of MBP subdomains described in the text. Col.: domain
nomenclature, C-K, C-K and N-K, N-K, N-K stand for critical blocks in C- and
N-pulling respectively, X, X, X and Y, Y and Y are the complementary regions.
Col.: residues involved in each sub-domain. Col.: density of external native contacts
as defined in (.). Critical blocks have a contact density larger than complementary
regions.

.Remarks

We have simulated Maltose Binding protein translocation across αHL
nanopore via a coarse-grained computational model for both the MBP and
the pore. As the channel is narrow, translocation properties strongly depend
on the denaturation state of the MBP. In the issued Gō-like model, molecule
denaturation is controlled by the parameter Rc determining the number of
native attractive interactions. In the region 6.5 Rc 6.8 Å, a transition is
observed from random-coil MBP (denaturated) to native-like structures. The
transition emerges from both equilibrium (Fig. .) and transport simulations
(Fig. .). In particular, translocation of denaturated MBP is almost uniform
and consists of a capture stage followed by a simple driven diffusion process.
The passage in the channel of folded MBP is more critical and interesting, it
looks like a stick-slip dynamics characterized by constant-velocity transport
broken by stalling events in the channel (Fig. .). For instance, the C-terminus
translocation occurs via two long stall events resulting in a double-exponential
tail-behavior of the translocation time distribution (Fig. .d). This behavior
is presumably associated with the presence of two subsequent free-energy
barriers that MBP has to overcome in order to complete the passage. Our
analysis also shows that stall events are related to the MBP regions with high
density of native external contacts. Thus, in principle, long blockade events and
stall points can be predicted by looking directly at the MBP PDB-structure. In
contrast, a weak correlation is found between stall points and unfoldons, the
structural blocks through which the MBP reacts to mechanical stretching in
free space. This result is a strong indication that, despite the analogy between
pulled translocation and mechanical unfolding, the pathways gathered from
mechanical pulling are not sufficient to make inferences on translocation
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mechanisms. The action of the pore, indeed, drastically modifies the unfolding
pathway during the transport with respect to a free pulling process.
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Chapter 

-Dimensional ContinuumModels

.Preamble

In order to interpret numerical results it is appropriate to built suited ana-
lytical models of the physical and chemical processes that occur in real translo-
cations and to define proper statistical observables to grasp and summarize the
essence of the phenomenon.

The first section of the present chapter is dedicated to an overview of the es-
sential ideas behind low-dimensional continuum models used in the literature
to summarize both experimental and three-dimensionalmolecular dynamics re-
sults.

Section  highlights the practical implementation of the specific approach
performed to obtain the free energy profile for the translocation simulation pro-
tocol described in chapter . Therefore, umbrella sampling simulations andmul-
tiple weighted histogram analysis method on coarse-grained molecular dynam-
ics (MD) simulations are outlined []. Theproteins under scrutiny are again de-
scribed by the Gō-like model already introduced, which accounts accurately for
the influence of the native structures on both folding and translocation pathways
[, , , ]. Finally, section  expounds the achieved results and presents a
comparison with the D numerical investigations. Also, since a mutant version
of the MBP (termed MalE) and an additional protein, the Endoglucanase
CelA (PDB-ID:ah), have been considered in this perspective, relevant out-
comes are provided as well.

.Overview

..The general framework

Experimental results highlight the presence of energy barriers that the
molecules have to overcome to accomplish translocation []. Also, empirical
distributions of blockade times show tail asymmetry typical of phenomena
where the motion is due to diffusion and drift effects [, ]. However, even for
a coarse-grained description of the protein dynamics, the energy landscape
is still too high-dimensional to allow a concise representation of the process.
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It is hence convenient to project the system evolution over relatively few
effective coordinates, Q1, . . . ,Qk (termed reaction coordinates or collective
variables), functions of the positions of the amino acids constituting the
molecule []. A translocation coordinate should enable us to parametrize
the walk of the protein along the pore. Since the evolution of each Qj is
expected to undergo random fluctuations, we are interested in the probability,
P Q1, . . . ,Qk, t , for the system to visit a state Q1, . . . ,Qk at time t, given an
initial condition P Q1, . . . ,Qk,0 . Two main questions arise: i) What are the
most representative reaction coordinates Qj in order to properly describe a
translocation process? ii) What is the equation governing the evolution of P ?

In biopolymer translocation, a set of reaction coordinates that we can con-
sider appropriate should smoothly trace without ambiguity the pathways be-
tween the two states (cis and trans) with respect to the pore ends. The com-
mon cylindrical symmetry of the narrow pores suggests to project the chain dy-
namics along the channel axis (x-axis without loss of generality) and consider
nugatory the transversal motion (y, z). Hence, the kinetics can be reasonably
parametrized by a single reaction coordinateQ, expected to be a function of the
x-coordinates of the residues only. The choice of Q is not a trivial task, there is
neither a unique option nor a general rule, and usually an appropriate choice de-
pends on the specific problem. For instance, in the case of a small protein pulled
through a semi-infinite [] or long enough [] pore, the natural reaction coor-
dinate can be either the x-position of the pulled residue or the x-component of
the center of mass. Other authors found it reasonable to introduce, as reaction
coordinate, the number of monomers in a given region of the space [, , ].

The derivation of an evolution equation for P , starting from the equations
of motion of the full system, is generally problematic. Moreover, in general, the
dynamics of Q in time is a stochastic process. A simplified approach is based
on the assumption that the evolution of the collective variable is the slowest
in the system, with a strong separation from other time scales, supposed
irrelevant. Translocation is then considered completed when the stochastic
process Q t crosses for the first time a threshold value Qth, corresponding to
the protein exiting the pore from the trans-side. This point of view clearly de-
fines a first-passage problem in a time window Tw , with exit time tout defined by

tout min
t

0 t Tw Q t Qth.

In this framework, the translocation phenomenology can be conveniently recast
in the motion of an effective particle at place Q, undergoing a driven diffusion
in a potential of mean force V Q []. Here, V Q, t G Q W Q and
G Q is the free-energy profile in the variable Q of the unperturbed system,
whileW Q is the work done by the importing force. In a first approximation,
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we can presume that the probability P Q, t obeys the Smoluchowski equation

∂P

∂t

∂J

∂Q
0, (.)

J Q, t µ0P
dV Q

dQ
D0

∂P

∂Q
, (.)

where µ0 is the effective mobility coefficient andD0 the effective diffusion one.
At equilibrium, they satisfy the fluctuation-dissipation relation: µ0 D0 kbT .
In (.), the contributions of the fast degrees of freedom are collected in a sin-
gle diffusion term ∂ D0∂P ∂Q ∂Q. The Smoluchowski equation is satisfied
by the probability to find the reaction coordinate at place Q, at time t. Such an
equation pertains, thus, to a population of random walkers undergoing an over-
damped Langevin driven diffusion in the potential of the mean force V(Q). As
far as the results stemming from this approach are concerned (sec. ), (.) has
not been solved directly, rather we have found it more convenient to solve sev-
eral D Langevin runs from (.), an approach that results equivalent to solving
the Smoluchowski equation.

Q̇ x
xV Q x Γ t

γ
(.)

V Q x G Q x W Q x

In stochastic-process first-passage theory (see []), the basic quantity is the sur-
vival probability S t , given by

S t
Qth

Q0

dQP Q, t , (.)

that estimates the number of systems forwhichQ is still in the interval Q0,Qth

as a function of time, corresponding to the protein still in the channel. HereQ0

is the value ofQ at the pore entrance. Hence, 1 S t amounts to the probability
to be outside the pore at time t. Therefore its derivative

ψ t
dS t

dt

Qth

Q0

dQ
∂P Q, t

∂t

determines the distribution ψ t of the exit times. Thus, by using the Smolu-
chowski (.), we get:

ψ t J Qth, t J Q0, t , (.)

namely the exit-time distribution is fully determined by the values of the
probability current J Q, t at the boundaries (pore ends). Common choices
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for a generic boundary condition QB can be the following ones: absorbing
P QB, t 0, reflecting J QB, t 0 or mixed J QB, t KBP QB, t . The
last one seems to be more realistic for describing translocation processes, as
real pore ends cannot be considered neither perfectly reflecting nor perfectly
absorbing. The solution P Q, t to (.) cannot be found in general for an
arbitrary potential. However, even without solving the Smoluchowski equation,
the exact analytic expression can be found for the average translocation time
τb F,L and probability PTr F,L as a function of the importing force
F and the pore length L [, , ]. The theoretical prediction of ψ t

requires instead a complete closed solution. Therefore, only simple cases can be
worked out or approximated expressions can be obtained [, , , ] and,
in specific conditions, we can reproduce both simulation and experimental
data. For instance, the inverse Gaussian function (.) is the first-passage
time distribution of a diffusion process in the interval , L , starting from
x 0, with absorbing boundaries in and L, and driven by a constant drift
µ0F []. Despite its simple origin, the approach is able to match observed
translocation time distributions under specific conditions [].

In [] the phenomenology of the transport appears more complicated than
a simple driven diffusion, but themild shape of the free-energy (Fig. .) permits
a simple interpretation of the translocation kinetics in terms of a single jumpover
an extended barrier followed by a diffusion driven by a constant force. The the-
oretical predictions in [] were corroborated by translocation time histograms
(Fig. .) which are well fitted by first-passage-time distributions ψ t , obtained
by numerically solving the Smoluchowski equation (.) in the spatial coordinate
x in 0, L . Only a constant-force drift has beenused in [] undermixed bound-
ary conditions, namely J 0, t K0P 0, t , J L, t KLP L, t , whereK0

andKL have been considered adjustable parameters.
It appears then necessary to calculate the free energy profile of the whole

process to take into account the barriers that hamper the crossing. A quite
common approach for similar issues refers to the umbrella sampling method
[], a computational technique used to improve sampling of systems which
phase space is dived into subdomains separated by high energy jumps. The
umbrella sampling technique is based on the choice of a fictitious potential to
overcome the energy constraints so to explore even the most unlikely areas of
the phase space. The thermodynamics properties calculated in this way need to
be deweighted from the influence of the artificial potential and recombined in
order to provide the unbiased probability (free-energy). This purpose can be
achieved, for example, by employing the weighted histogram analysis method
(WHAM) [, ].
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Figure .: Adapted from []. Probability distribution of translocation times for Ubiq-
uitin translocation in a L 300Å pore []. The dashed line is an inverse Gaussian
fit (.) of the histogram while the continuous line is the results obtained solving (.) in
the domain 0, L withV x fromFig. ., constant pulling force and radiative boundary
conditions.

.Models and methods

For the analyses presented in this chapter, an additional protein, the so-
called Endoglucanase Cela from bacillus Agaradherans [] (PDB-ID:ah)
is considered in addition to a mutated version of the MBP. The latter is called
MalE as it is mutated on residues  and . The mutation is obtained by
simply quenching the  native contacts belonging to the issued beads. Ther-
malization and translocation simulations are performed for both MalE and
AH. The former ones are addressed to establish the stability of protein struc-
tures, the latter ones aim to further study the transport through the model pore
described in section ., which is tailored to allow single-file translocation only.
The translocation simulation protocol has been already described in the previ-
ous chapter and it is adopted for both MalE and AH transport runs. Sim-
ulations are performed at critical force Fc, i.e. the load intensity for which the
translocation probability is 50%. This condition is believed the optimal com-
promise between statistical accuracy and the slow translocation speed needed
to both amplify the stall duration and possibly obtain a quasi-equilibrium pro-
cess. Results are not presented so much in depth as for theMBP because they do
not add crucial information. However, features such as the translocation stalls
will be shown along with the exposition of the D-continuum approach results.
Such results stem from the achievement of the free energy profile in ameaningful
reaction coordinate Q by umbrella sampling simulations and WHAM method
[]. Also, the free energy profile G Q is used in the formulation of the po-
tential of the mean force to perform a set of one-dimensional Langevin runs in
order to asses the suitability of this approach to interpret, retain and summarize
the essential features of the D translocation dynamics, the one in (.).
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The umbrella potential Vumb reads

Vumb Q x
1

2
ku Q x Q0

2
. (.)

The translocation process is parametrized in terms ofQ Nright Nleft, with
Nright and Nleft the number of residues outside the pore on its right and left
side respectively (Fig. .A). Translocation is thought to proceed from left to
right when the pulled terminus is the C-terminus and from right to left for N-
pulled translocations. In other words, the cis-side of the pore coincides with the
left side in the former case and with the right side in the latter one (the trans-
side accordingly). This nomenclature is used consistently throughout, with C-
pulling and N-pulling experiments proceeding, for example for the MBP, from
Q 370 to Q 370 and from Q 370 to Q 370, respectively (as already
stated, theMBP counts  residues, i.e. Q 370 370 ). The associated color
code used in the figures is light gray for N-pulling and dark gray for C-pulling.
The collective variableQ can be expressed as a function of the x-axis coordinates
of the residues in the following way:

Q x
1

2

m

i 1

tanh axi tanh a xi L , (.)

withm the number of residues of the protein,L the pore length and a 3.0Å 1 a
smoothing parameter. Equation (.) is a smooth version of the discrete variable
Q Nright Nleft. In order to compute the free energy profile, a set of umbrella
sampling runs with different equilibrium valuesQ0 is performed. In particular,
the interval between different Q0 is 4, hence, in the case of the MBP, 184 dif-
ferent runs are used to reconstruct the profile Q0 368, 364, . . . ,364,368.
We find it convenient to assign different values to the elastic constant ku of the
harmonic umbrella potential depending onQ0, in order to better control simu-
lation outcomes. In particular, such a shrewdness allow us to explore the whole
region of the phase space associated with the reaction coordinate, maintaining at
the same time a good overlap between adjacent histograms and a limited amount
of sampling windows. For the sake of completeness, ku 0.22 2 for any Q0,
where the greater values are used for the higher values of Q0 . Indeed, higher
values of Q0 correspond to the regions of the phase space where it is easier to
lose the protein in the bulk even for very small fluctuations of the reaction coor-
dinate from the equilibrium value, i.e. the regions in which the molecule is close
to the pore mouths. Initial configurations for the umbrella sampling runs are
borrowed from the configurations explored during translocation simulations by
selecting the ones closer to theQ0-value employed in the issued sampling. Each
simulation runs for a time suited to collect proper uncorrelated statistics (1000
points for each histogram with a correlation time equal to 150 internal units;
the latter value was determined by preliminary simulations). Moreover, the first
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104 time units (equal to 10% of the translocation simulation time window) are
not used for histogram collection, in order to allow the initial configuration to
lose memory of the transport process and to foster the possible refolding at the
trans-side. Multiple weighted histogram analysis method is applied to deweight
the data arising from the procedure in order to obtain the free energy profile
G Q . Further details on specific simulation protocols and employed quanti-
ties, such as the contact backward density, are given in section .

.Results

In this section we show that the translocation of proteins across narrow
pores is generally characterized by the occurrence of long stall events, which
main features are essentially retained in a D description of the process involv-
ing the evolution of a proper collective variable, the one in equation (.), in the
associated free energy landscape. This D approach is particularly appropriate
when the translocation proceeds slowly, that is when the critical driving force
is low enough. Indeed, the free energy profile is just a collection of thermody-
namics states along the translocation pathway, whichmight not be in accordance
with the non-equilibrium configurations explored during the transport.

In particular it is pointed out that both the ramps along the free energy
trends and the translocation bottlenecks result to be strongly associated with
the structural properties of the folded proteins. In fact, they correspond sys-
tematically to the regions along the backbone chain with a dense distribution of
long-range native contacts with the untranslocated portion of the protein, the so-
called backward contacts. These contacts, as we shall see, constitute a refinement
of what already introduced in section . In other words, the backward contact
density along the protein structure reflects into a step-like structure of the free
energy, besides determining the stalls of the transport.

The D Smoluchowski/Langevin approach retains the essence of the translo-
cation phenomenon, although some unavoidable limitations, due to the simpli-
fications introduced by the Dmodeling, can arise, especially if the slip transport
phases in between successive stalls in the Dmolecular dynamics (MD) simula-
tions are very fast due to a high critical force needed to perform the passage.

The overall emerging picture suggests to decompose the free energy land-
scape into its entropic and energetic terms. This approach confirms the impor-
tance of the regions with a dense distribution of long range interactions, which
govern both internal energy and entropy trends. In fact, once such bonds are
broken, we recognize not only an increment in the average value of the internal
energy, but also a similar jump in the entropic term. The latter one indicates that
the unfolding associated with contact severance prevails upon the entropy re-
duction due to the pore confinement. Such a behavior is different from the one



Marco Bacci

67



relevant to an unfolded protein, as the latter shows a decreasing (or stationary)
entropic contribution trend.

Numerical simulations involving different proteins support the conjecture
that these results are not limited to the MBP specific case, but are instead broad.
For the sake of clarity, the approach is first presented referring to the MBP. Suc-
cessively, the generality of the results is discussed by addressing the specificMBP
mutant MalE and the globular protein AH, which has been selected for its
substantially different native topology.

Figure .: Here and in the following figures units are internal, i.e. related to the coarse-
grained model we used. Distances, when present, are in Å. Panel A: Nleft, Nright and
Npore are the number of monomers on the left side, right side and inside the pore. It
is always conventionally assumed that the first monomer entering the left side is the C-
terminus (dark gray) while the translocation from the right side are pulled from the N-
terminus (light gray). Hence the protein translocates left-to-right or right-to-left for C-
and N-pulling, respectively. Panel B: Free-energy (G) profile from umbrella sampling
simulations of MBP in the collective variableQ Nright Nleft. The curves represent
the average residence time τb Q for non-equilibriumMDsimulations (filled) and for the
D approach based on the Smoluchowski equation (.) (dashed). For N-pull the τb Q

scale is reversed (the values being reported in parentheses and in light gray on the right
y-axes) while τb Q stemming from the Smoluchowski equation are rescaled in order to
match the background values.

The average residence time τb Q that the MBP (Rc 7.5Å in the present
investigation) spends in the configurations associated withQ during the translo-
cation (Fig. .B), clearly indicates that the transport is not uniform. Indeed,
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most time is spent in the same specific states found in chapter  for Rc 6.8Å
(events C-st and C-st for C-pulling and N-st, N-st, N-st for N-pulling). In
Figure .B the free-energy profileG Q is also reported: the barriers ofG Q

correspond to the stalling events. To obtain the profile we employ the procedure
described in section  by using as initial configurations both the conformations
relative to the C and N-pulling translocation runs. In fact, from the MBP-G Q

profile obtained by using as initial configurations only those from C-pull runs
and reported in dark gray in the upper left panel of Figure ., it is clear that the
average ascending trend in the region Q 0 does not correspond to an anal-
ogous average descending trend for Q 0. Since outside the pore (Q 370

and Q 370) the thermodynamics conditions are the same for both sides of
the channel, the relative free energy values should be equal. Such a prediction is
not reproduced by a profile achieved by using only initial configurations which
belong to either C or N-terminus translocation runs (single profile). This is pre-
sumably due to the long time needed for the refolding process at the trans side
to take place. Indeed, the same behavior is confirmed for the MBP N-pull runs
(light gray curve in the middle panel of Fig. . left side): forQ 0 (we conven-
tionally consider the N-terminus pulled translocations to proceed from right to
left) the ascending trend overwhelms the decreasing one observed whenQ 0.
In order to obtain a single representativeG Q profile for the entire process, half

Figure .: Free energy profilesG Q obtained from umbrella sampling runs employing
initial configuration taken only from C-pull (dark gray) or N-pull (light gray) transloca-
tion runs. The black line in the lower panel is the profile obtained using the two previous
profiles half by half. The left panels refer to MBP and the right ones to AH.

of the umbrella sampling runs obtained from the C-terminus pulling initial con-
ditions (Q0 0) are combined with the complementary simulations relevant to
the N-terminus case (Q0 0). The resulting profile is plotted in the lower panel
in Figure . and it is the one reported in Figure .B. The right panels of the
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former figure refer to AH, for which the same approach holds. As a further
indication that the anomalies of the single profiles are associated with the time
needed for the refolding process, we report in Figure . the free energy profile
for an unfolded protein, Rc 3.0Å obtained from umbrella sampling simula-
tions exploiting just the C-pull run initial configurations. In this caseG 0 also
forQ 370.

Figure .: G Q profile for denatured MBP protein (Rc 3Å) obtained from umbrella
sampling employing initial configuration from C-pull translocation runs only.

As common in translocation problems, the free energy trend is used in the
practical implementation of the Smoluchowski equation in order to compare
the non-equilibrium MD runs with the D continuum approach. In this per-
spective, a suitable mapping of the importing force Fx employed in the MD
runs on the effective force FQ ∂W ∂Q used in the stochastic model is re-
quired. A gross estimate for FQ can be obtained by assuming that, in the MD
case, each position of the application point of the force along the x-axis corre-
sponds to a unique value of the collective variableQ. In principle, from translo-
cation experiments, it is possible to extract the conditional probability of ob-
serving Q as a function of the force application point x, P̂ Q x . It turns out
that P̂ Q x is sharply peaked, thus allowing to use a (monotonically increas-
ing) deterministic function to map the MD onto the D-approach forces by us-
ing FQ ∂W ∂x ∂x ∂Q Fx∂x ∂Q. Indeed the molecular dynamics
data show that when the pore is full (Nleft 0 and Nright 0) the distri-
bution of Npore is tight around its average value, N̄pore 38 (Fig. .) up-
per panels. Hence, a single monomer entering from the cis side corresponds
to a single monomer exiting from the trans side (single-file motion). The net
variation of Q, ∆Q 2, is associated to a displacement of the force applica-
tion point substantially given by ∆x L N̄pore 2.5 . Thus it follows that
FQ Fx∆x ∆Q 1.25Fx. Instead, when either Nleft 0 or Nright 0, we
get∆Q 1 and FQ Fx∂x ∂Q 2.5Fx.

The dashed lines in Figure .B represent the average residence time τb Q

obtained by solving a set of D Langevin runs governed by (.). It is clear that
the peaks coincide with the stalls observed in the MD runs, thus confirming the
accuracy of the D driven diffusion interpretation.
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Figure .: Upper left. Npore distribution for translocation runs (both C and N pulling)
for the MBP. Upper right, same data for AH. Lower Left. Scatter plot of the amino acid
at the pore mouth on the cis-side as a function of the reaction coordinateQ during MBP
translocation simulations (C-pull dark gray, N-pull light gray). The maps eqs. (.) and
(.) are also depicted as straight dotted lines. Lower Right. Same data for the AH
translocations.

It has just been shown that the Smoluchowski picture is appropriate to de-
scribe the essence of the translocation process. Now we show also that the main
features of both G Q and τb Q are associated with specific properties of the
molecule native structure. In particular, we observe that the stalling events are
related to the entrance in the pore of the regions richer in long range contacts
formed with the untranslocated portion of the protein. The main idea behind
this approach is that only the interactions between the parts of the molecule that
still dwell on the cis-side are effective in provoking the stalls. As a first attempt
to quantify such a remark, we calculate for each amino acid the backward con-
tact index B, i.e. the number of contacts that the issued amino acid forms with
the still untranslocated residues. First of all it is necessary to establish a map be-
tween Q and the amino acid at the pore mouth, in order to express directly the
backward contact density as a function of Q, alike τb and G. This view allows
comparing the native contact clusters with the features of the free-energy pro-
file, even without resorting to a dynamical analysis of the MD data. However,
the average number of residues inside the pore, when it is full, is required to be,
with a good approximation, a constant of the motion. In Figure . a scatter plot
of Q versus the amino acid at the cis pore mouth, iCIS , is also shown in the
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lower panels. Such an amino acid is selected by running back upon the chain of
the protein, starting from the foremost residue along the pore axis up to the first
residue which x-coordinate falls in the range 1 3 . Also, its distance from
the pore axis has to be lower than the channel radius. For each Q the distribu-
tion of the amino acids that are found at the pore mouth is very tight (the map is
practically one to one and onto). The dashed lines show such a correspondence
by assuming N̄pore 38 and by using (.), or (.) to map Q and iCIS . The
map for the C-pulling case is

iCIS 1 N̄pore Q iCIS m,

iCIS N̄pore m Q 2iCIS N̄pore m,
(.)

while the N-pulling map reads as

iCIS m m N̄pore Q iCIS ,

iCIS m N̄pore 1 Q m N̄pore 2iCIS .
(.)

Such a correspondence is mainly used to map the backward contact index rel-
ative to the amino acid at the pore mouth onto the reaction coordinate Q, by
assuming that N̄pore is a constant of the translocation dynamics.

For a protein pulled from the N-terminus (first residue), the backward con-
tact index for the i-th amino acid reads

B
N

i

m

j i bt

Mij , (.)

where Mij is the contact matrix (Mij 1 if residues i and j are in native con-
tact and 0 elsewhere) and bt a threshold introduced in order to consider only the
native contacts formed with the residues that are relatively far in the sequence.
Here we use bt 20, a distal distance that excludes, for instance, the interac-
tions responsible for helix structures. Indeed, such structures do not play a con-
siderable rôle since helices are not required to completely unfold to enter the
pore. A smoothing procedure (running average) is then performed in the inter-

val i 5 i 5 . The resulting function is indicated as B̃ N

i . Such a procedure
is a refinement of what already illustrated in section  as, on one hand, only the
backward distal contacts are considered and, on the other hand, no dynamical
data are required aside from a preliminary evaluation of N̄pore. An analogous
expression holds for C-pulling:

B
C

i

i bt

j 1

Mij . (.)

Of course, when the amino acid i is supposed to be at the pore mouth, we get
i iCIS and the maps (.) or (.) between iCIS and Q hold. In Figure .
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the smoothed version B̃ of the backward contact index B is reported for C and
N-pull from just a static analysis of the MBP contact map. It is noticeable that
the ascending ramps in the profile correspond with the peaks in the backward
contact density B̃.

In order to confirm this picture, we remove selectively the native contacts
own of the amino acids  and  (two residues mainly involved in the stall
C-st) and repeat both the non-equilibrium MD translocations and the entire
umbrella sampling protocol. The result is that the residence time peak C-st is
smaller (Fig..) and, correspondingly, theG Q slope in that region is lowered
(Fig. .).

Figure .: Burial backward B̃ for C (dark gray) and N-pull (light gray). The solid line is
the free energy profile of the MBP (already reported in Fig. .B) while the dashed one is
the profile of the MBP-mutant, for which the native contacts of amino acids  and 
are removed.

Figure .: Comparison of residence time τb as a function of the collective variableQ for
wild-type MBP (dashed lines) and MalE (solid lines) for both C (dark gray) and N
(light gray) pulling.

To understand if the triple correspondence between average residence time
τb Q from non-equilibrium runs, free energy profileG Q and protein struc-
tural features (i.e. the backward contact density B̃) is specific of the MBP or is a
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more widespread property of protein-like structures, we repeat the analysis for
a different globular molecule (AH) characterized by a substantially different
native topology with respect to the MBP (see Fig. . for a comparison between
contact maps; Rc 7.5Å for the MBP and Rc 7.2Å for AH). In particular,
native contacts are more uniformly distributed for the MBP and are mainly as-
sociated with either distal clusters or β-sheet interactions. In contrast, for the
AHmolecule, Lennard-Jones potentials concern primarily adjacent α-helices,
in addition to a small set of clusters that the region close to theN-terminus forms
with the rest of the structure. In the bottom panel of Figure . the quenched
contacts in MalE are highlighted in dark gray. The protein AH is formed

Figure .: Native contacts are reported in transparent light gray circles. The dark gray
circles in the bottompanel correspond to the fourteen contacts removed in order to obtain
the mutated Maltose Binding Protein, MalE.

by  residues (henceQ 300,300 ). In Figure ., G, τb and B̃ for both C
(dark gray) and N-pull (light gray) are reported as a function ofQ. The dynam-
ics, similarly to the MBP, is characterized by several stalls. For both N-pull and
C-pull it appears that the peaks in τb Q coincide with the ones in the corre-
sponding B̃ trend. Moreover, the larger clusters of native contacts are associated
with the barriers inG Q .

Here the Smoluchowski picture (dashed lines) is appropriate to summarize
the D phenomenology, mainly for the C-pulling case, as the N-pull is charac-
terized by a very high value of the critical force. Such a force probably reduces
the suitability of the D approach in the equilibrium potential dictated by the
free energy profile, at least from a quantitative point of view. In Table . critical
forces Fc are summarized for the translocation simulations performed. For the
mutated MBP the critical force can be assumed to be equal to the one pertinent
to the wild type structure.



Coarse-grained molecular dynamics and continuum models

74



Figure .: AH.The filled curves in themain panel represent the average residence time
τb from D MD translocation runs, while the dashed lines represent the outcome of the
D Smoluchowski approach. The solid line is the free energy profileG Q from umbrella
sampling simulations. The upper and lower panels report the backward contact index B̃
for C (dark gray) and N-pull (light gray).

Protein, Pull Fc

MBP C-pull .
MBP N-pull .
AH C-pull .
AH N-pull .

Table .: Critical forces for the different MD translocation runs performed. The critical
force of the mutated MBP coincides, within the statistical error, with the critical force of
the corresponding wild type structure.

Finally, we analyze the different contributions to G Q in order to under-
stand what are the dominant ones for the observed phenomenology. In Fig-
ure .A, the total internal energy VGō, the free energy G and the entropic
contribution TS are reported for the wild type MBP as a function of Q. The
energetic contributions are calculated as conditional average by using the con-
figurations from the umbrella sampling runs. The entropic term is TS Q

VGō Q G Q . All contributions are conventionally set to zero forQ 370

(protein on the left side of the pore). During the transport VGō increases since
the protein needs to unfold to translocate and, consequently, native contacts are
stressed up to rupture. A similar behavior is found for the entropy. Indeed the
break-up of native contacts results in a less compact structure and in a disorder
increment, up to a maximum corresponding to the protein straddling the pore
symmetrically (the unfolding associated with contact detachment overwhelms
the confinement effect of the channel). Entropic and energetic contributions are
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closely correlated one another and, as usual, with the clusters of native contacts.
Also, the entropy profile differs from the one pertinent to an unstructured poly-
mer, which is provided in Figure . upper panel (MBP Rc 3.0Å). As it is
expected, the entropic term shows just a barrier at the beginning of the translo-
cation, i.e. up to the exit of the first residue on the trans side, after which the
landscape is practically flat. Panel B of Figure . reports themain contributions
to VGō, namely Vnat and Vφ. The dashed line Vnat marks a heuristic estimation
for Vnat, obtained by integrating the balanced version of the backward contact
density subsequently described.

Figure .: Upper: Energetic (dark gray circles) and entropic (light gray squares) contri-
butions to the free energy profileG Q for wild typeMBP. Lower: Main contributions to
VGō: Vnat (light gray diamonds) and Vφ (dark gray triangles). The dashed line represent
the heuristic estimation of Vnat based on the backward contact density.

For the sake of clarity, a translocation pulled from the C-terminus is ex-
emplified. A quantitatively identical result can be obtained by considering the
N-pull translocation. As first step we calculate the quantity

B̃ C Q B̃ C Q i B̃ N Q i N̄pore , (.)

where the term B̃ N Q i N̄pore represents the contribution to the internal
energy due to the refolding on the trans side. In fact, when residue i dwells at
the pore mouth on the cis-side, residue i N̄pore dwells close by the trans-side
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pore entrance. Integration of (.) provides an estimation for the net number of
broken contacts during the translocation. Since each contact amounts for an en-
ergy jump equal to , a rough estimation of the native contribution to the internal
energy can be calculated as

Vnat Q
Q

m
B̃ C q dq. (.)

The approach is a further confirmation that the essence of the translocation is
hidden in the structural properties of the native configurations, which are in
turn mainly determined by the long range native interactions.

To conclude, we mention that analogous results in terms of energetic and
entropic contributions hold for the AH protein (Fig. . lower panel), thus
confirming the overall picture.

Figure .: Energetic (dark gray circles) and entropic (light gray squares) contributions
to the free energy profileG Q for unfolded MBP (Rc 3Å upper panel) and for AH
(lower panel).

.Remarks

In this chapter it has been show that the stalling events that characterize
the dynamics of a protein-like structure in a single-file translocation are associ-
ated to the structural properties of the native configuration. The general setting
holds for all the cases analyzed. However, the stall sequence is specific for each
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protein and constitutes a sort of signature of the molecule. The identification of
the features responsible for the bottlenecks of the transport allow us to formu-
late a heuristic procedure able to estimate the native bound contribution to the
free energy profile, on the sole basis of the protein native structure and N̄pore,
by simply integrating a balanced version of the backward contact index profile.
These occurrences appear to be generic, not associated just to a specific globular
protein, thus opening the way to systematic pre-screening of the proteome.

Also, the intrinsic difference between folded and unfolded structures in
terms of the entropic contribution relevant to the translocation process has
been pointed out. In the former case the confinement effect due the pore
appears to be overcome by the severance of native contacts, hence confirming
the importance and leading role of the long range interactions in this kind of
dynamics. On the other hand, for unstructured polymers, the free energy
landscape is dominated by a single entropic barrier at the beginning of the
transport.

Finally, the one-dimensional interpretation of the process as a driven dif-
fusion along a proper potential of the mean force provides overall good results.
Indeed, it retains the essence of the D translocation dynamics like, for exam-
ple, the bottleneck scenario. However, quantitative comparisons appear to be
too ambitious, especially if the critical force pertinent to the transport is high,
as for the AH N-terminus pulling. In fact, in this case, once the first stall has
been overcome, the translocation proceeds extremely fast and hence it is poorly
described by a quasi-static approach.
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Chapter 

-Dimensional ContinuumModels

.Preamble

In the present chapter we propose a continuum model for the description
of the dynamics of isolated macromolecules. We adopt a second-rank tensor as
a descriptor of the macromolecular shape and identify the action governing its
dynamics bymeans of an identification procedure from a discrete scheme, based
on power equivalence and Cauchy-Born rule. We compare molecular dynam-
ics stretching simulations with the continuum model by starting from discrete
toy schemes, going on with increasing complexity, and ending with the analysis
of the already encountered Ubiquitin protein. The results indicate limitations
in the approach in case of unconstrained molecular dynamics while they show
appropriateness for driven dynamics.

In the second part of the chapter, simulations relevant to the MBP protein
are also presented. In this case stretching and, above all, translocation dynamics
are considered. The selected approach is able to capture the shape evolution of
the molecule, providing that the pore is long enough to provoke a considerable
stretching. However, limitations totally analogous to the Ubiquitin protein (and
hence not shown for brevity) still hold for equilibration simulations.

Such shortcomings are ovecome thanks to empirical formulations of the
morphogical descriptor, or rather of the quantity that govers its dynamics, as
we will see.

.Introduction

Biological materials have in general intricate architecture at finer spatial
scales. Multi-scale and multi-field views are often called upon to offer a setting
for the description of their mechanical behavior. Even the analysis of processes
involving a single macromolecule requires care. This is the case, for example,
of protein stretching in free space (performed, for example, in atomic force
microscope experiments). In analyzing such a process, both discrete and
continuous views are adopted. Numerical simulations on discrete schemes
(both full atoms and coarse-grained molecular dynamics) are developed to
analyze stretching and transport (see, e.g., [, , , , ]), and to
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determine free-energy profiles (see, e.g., [, , , ]) which are used often
to obtain closed form solutions for first passage time statistics (see [] for
relevant theoretical issues).

Models at continuum level are then used to summarize the results of numer-
ical simulations, by reducing the dynamics of discrete material points to the one
of a single descriptor of the molecule. The common view is that of using data to
describe just the motion of the molecular mass center or of a similar collective
variable leading to one-dimensional dynamics (see, e.g., [, ], and references
therein). No information on molecular shape evolution in time are added.

Here we propose a continuum model which captures, at least in a coarse
way, the shape evolution of an isolated protein. So, we attribute to the molecule
a (time-dependent) second-rank tensor ν with positive determinant as a descrip-
tor of its shape. ν does not coincide with the inertia tensor. It is a linear operator
that we define on the basis of Cauchy-Born rule. In fact, we imagine to fix a
shape of the molecule that we take as a reference, and represent it by a discrete
set of material points. ν is then defined as the tensor such that the velocity of the
i th material point is given by the time rate of ν applied to the i th reference
position vector.

The evolution of ν is governed by a balance of (microscopic) actions on the
molecule. At continuum level we identify such actions in terms of the ones oc-
curring between every material point and its first, second, and third neighbors
in the discrete scheme, in addition to possible long-range interactions. The iden-
tification is made in terms of power equivalence. The values of the actions in the
discretemodel are obtained by numerical simulations. Then the continuum evo-
lution of ν is depicted in terms of the eigenvalues of the symmetric component
of its polar decomposition.

We compare molecular dynamics stretching simulations with the contin-
uum model. We consider first discrete toy schemes and go on with increas-
ing complexity, then we end with the analysis of the Ubiquitin protein. The re-
sults indicate limitations in the approach in case of free dynamics of the macro-
molecule while they show appropriateness for constrained dynamics, allowing
us to accept the model for a number of constrained motions such as protein me-
chanical unfolding.

Finally,MBP translocation is also taken into account (there is not substantial
difference between Ubiquitin and MBP thermalization and mechanical stretch-
ing results, hence MBP data are not reported for brevity, aside from just one re-
mark in sec. .). We shown that the appropriateness of the approcah still holds
in MBP driven and confined dynamics. At the end of the chapter, we also point
out that the limitations concerning free equilibration are overcome by selecting
empirical formulations of the so-called self-action (a quantity that, in the present
setting, governs the evolution of ν).



Coarse-grained molecular dynamics and continuum models

80



.Models and methods

..Discrete scheme

The Ubiquitin protein in Figure . is described by the already introduced
(sec. . of chapter ) Cα backbone coarse-grained Gō-like model (see [, ]
for the original approach, [] for the refined version implemented here and also
[, , , ], for its use in describing protein stretching, thermalization and
translocation). The scheme is also equivalent to what is presented in [] where
the same molecule (PDB-id:ubq) is considered. Values of the parameters ap-
pearing in protein potentials and measure scales are reported also in []. If not

Figure .: From left to right: full-atom picture, secondary structure features and coarse-
grained Cα carbon atoms along the backbone chain.

differently specified, we assume also Rc 3.0Å or Rc 6.5Å as values of the
Gō model cut-off radius. The Gō potentials (see sec. . of chapter ) constitute
a basis for modeling atomic interactions not only in the Ubiquitin structure but
also in the other sets of atoms in space, as it will be pointed out in what follows
when necessary. The same approach holds also for the MBP.

..Continuummodel

As anticipated in the introduction, at continuum level the dynamics of a
single protein is commonly depicted just by evaluating the subsequent positions
in time of its centre of mass (see e.g. []). A more refined natural descriptor of
the molecular morphology is the moment of inertia of the atomic cluster. When
we use it as descriptor of the molecule, as Ericksen suggested in [], its time
evolution involves the sum of the tensor moment of momentum of each single
atom constituting it.

We do not follow such a view, but we are inspired by it and select a second-
rank tensor as a descriptor of the molecular shape, a tensor associated with an
idea of homogeneous deformation of a region containing themolecule in a shape
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that we take as a reference (in this sense we are closer to what suggested in []
for the mechanics of granular media). So, we select a compact region e in three-
dimensional space R3 – the volume of e is indicated by e – as a large enough
portion of space containing the molecule in a shape that we take as reference
(the equivalent sphere radius ranges in the interval [,]Å, about one and a
half to two times greater than the Ubiquitin gyration radius). Let ri be the vec-
tor position of the i th atom – or material point if we refer to a coarse discrete
representation of the protein – in e in the reference place. We consider a second-
rank tensor ν with positive determinant, which depends on time t, such that at
the instant t the velocity vi of the i th material point in the discrete scheme is
simply given by ν̇ri – essentially we are imagining that e is endowed with an
homogeneous strain rate and the atoms of the molecules are dragged along the
process by the homogeneous deformation.

The assumption has to be interpreted ‘in average’. It has clear limitations
because the unfolding of a protein can develop in a non-homogeneous way by
involving subsequent portions. However, the assumption

vi ν̇ri, (.)

which is motivated by Cauchy-Born rule, allows us to identify clearly the action
of the protein over itself.

We presume also that ν be endowed with positive determinant, so that, by
polar decomposition theorem, we can write

ν RU, (.)

whereR SO 3 and U is a second-rank symmetric tensor.
In the discrete representation of themacromolecule, as described previously,

call fij the action (a force, a covector indeed, that we think derived from a poten-
tial, the one introduced previously) between the material points i and j, applied
to the point i. The density of power πdiscr developed in the discrete scheme is
then given by

πdiscr

1

e i j e

fij vi.

In the continuum representation, the rate ν̇ has a conjugated action which is de-
fined by the power πc which is necessary to develop over the molecule, consid-
ered as a whole, to get the rate ν̇ itself. Since ν̇ is a tensor, the power-conjugated
action is a tensor too – call it z̄s – so that πc is defined by

πc z̄s ν̇.

See [] and [] for extended analyses of such a rule.
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Moreover, since z̄s summarizes the actions in the protein (it is a self-action, in-
deed), and we are not considering for the moment other actions over it, interac-
tion with the external environment being assigned, in this case, by applied strain
to the ends of the protein, zs should satisfy the balance equation

z̄s 0. (.)

However, in principle z̄s could be imagined as the sum of a conservative part,
zs, and a dissipative one, zds , dissipation being developed during the evolution
of the molecule – so we should have z̄s zs zds . The dissipative nature of zds
would be then expressed by the inequality

zds ν̇ 0,

which should hold for any choice of ν̇, implying so an expression for zds of the
type

zds aν̇ , (.)

with a a positive constant and ν̇ the dual version of ν̇. Precisely, with e1, e2, e3 a
vector basis in the three-dimensional ambient space, and e1, e2, e3 its dual coun-
terpart, we have ν̇ ν̇ijei ej and ν̇ ν̇ije

i ej . The reason of the occurrence
of ν̇ in (.) is that this way the product aν̇ ν̇ aν̇ij ν̇

ij is naturally defined
without the additional structure of the scalar product. However, in what follows
we shall not make difference between covariant and contravariant components
because we shall always tacitly use the identification of R3 with its dual. As a
consequence the balance (.) would reduce to the evolution equation

aν̇ zs.

In particular, for the sake of simplicity we shall assume later that a 1, so that
the evolution equation that we shall consider will be

ν̇ zs. (.)

If so, the power πc would result the sum

πc zs ν̇
1

2
ν̇

2
.

The problem is now the explicit expression of zs in terms of the discrete actions
fij . To get it, we impose here the identification of πdiscr with zs ν̇: the power
of the (potential dependent) actions in the discrete scheme should be the one of
the conservative part of the self-action. We then write

zs ν̇
1

e i j e

fij vi.
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Then, thanks to the arbitrariness of ν̇, by using (.) we finally get

zs
1

e i j e

fij ri. (.)

In presence of (conservative) external forces on single material points of the dis-
crete representation of the molecule, the previous expression of zs should be
augmented by the tensor product of these forces by the position vectors of the
material points where they are applied. So, if f̄k is the (conservative) force ap-
plied to the k th material point, with k 1,2, ..., q, with q the number of atoms
where external action act, we then have

zs
1

e i j e

fij ri

q

k 1

f̄k rk .

Since we are interested in the changes inmolecular shape, in the numerical anal-
yses presented later we shall compute essentially the eigenvalues λ of the sym-
metric tensorU appearing in the polar decomposition of ν, and determining the
semi-axes of an ellipsoid in three-dimensional space.

Finally, in what follows, the placement vectors ri might be referred to dif-
ferent frames. However, in the case of Ubiquitin and Maltose Binding proteins,
only placement vectors with respect to the center of mass of the molecules will
be considered. Obviously, explicit coordinates will depend on the frame selected
to evaluate both the center of mass and bead positions.

..Stretching simulations: methods

We summarize here the methods that we use in developing later numerical
simulations.

Stretching simulations are performed by means of a scheme based on con-
stant velocity steered molecular dynamics (see []). Initial conditions are ob-
tained by the so-called ‘free equilibrium’. At the beginning of each numerical test
the tensor ν is set to be equal to the identity. Protein detachment is achieved by
a spring of elastic constant k 1ϵ, linking a fictitious atom with a terminus of
the molecule. The fictitious atom is pulled at constant velocity. Its motion drags
the terminus where it is bonded. We perform two different stretching protocols.

. In the first scheme one end is held fixed in space and only the other one is
pulled away.

. In the second approach both ends of the molecule are dragged with oppo-
site velocities.

For an enlarged view on this identification procedure in the setting of mechanics of complex
materials, see [].
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The stretching direction coincides with the vector joining the two ends of the
molecule in the initial configuration. We investigate different stretching veloc-
ities vstr , temperatures T and cut-off radii Rc. When maximum elongation is
reached (the molecule is in an almost single-file conformation), the protein can
be either kept stretched or left free to fluctuate.

For the other smaller sets of atoms, either the fictitious atom external spring
(the one connecting the fictitious material point to the molecule) or the direct
enforcement of a suited constant velocity motion to some points of the system
have been used as strategies to obtain a deformation dynamics.

..Translocation simulations: methods

As far as MBP translocation simulations are concerned, nothing changes
from what described in sec. . but the pore length, which ranges in the interval
100 800 Å, depending on the simulation perfomed.

.Results

..Toy simulations and related remarks

Before looking at the dynamics of the entire Ubiquitin molecule at
discrete scale and within the continuum approximation proposed, we analyze
some simpler schemes – toys, indeed – to investigate the limits of the
discrete-to-continuum identification that we have adopted here.

D biatomic systems. First we consider the evolution of ν for a trivial har-
monic oscillator, composed by two material points, indicated by A and B, and
connected by a spring of elastic constant kh. In this case ν, defined previously,
reduces to a scalar. The scheme, sketched in panel a of Figure ., allows us
to make some elementary predictions that are in agreement with the numerical
analyses. The simulation temperature is set equal to zero and constant velocities
are assigned to the two atoms.

Let r0 be half of the inter-atomic distance when the spring between points
A andB is at rest (in other words, in a configuration that we set as a reference),
that is rA t 0 r0 and the same is forB.

When two equal and opposite velocities v0 t are assigned to pointsA and
B, for the motion we get

rA t r0
t

t0

v0 τ τ t0 dτ, rB t rA t .
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Figure .: Two-atoms system. Here and in all the other figures lengths are expressed inÅ
and the time in the relevant ‘code unit’. Panel a: Sketch of the two-atomsmass-spring sys-
tem. Panel b: Evolution of ν, a scalar in this case, for a standard elongation/compression
cycle, run twice. The asymmetric evolution of ν would generate an almost-monotonic
trend if the cycle was performed over and over again. The evolution of ν is here com-
pared with the radius of gyration rgir of the set of atoms. Panel c: It is the same of panel b
except that here the specular evolution of ν is achieved because internal distances rGi ap-
pearing in the expression of zs are kept constant to the reference values during the whole
dynamics. We note a delay in the evolution of ν with respect to the trend of the radius of
gyration as the former keeps on increasing (or decreasing) during the approaching phases
(i.e. when the system is moving toward the rest position from maximum detachment or
compression). Also, ν never shrinks further than its initial state. Panel d: Effect of the
velocity on the evolution of ν. Despite an overall equivalent deformation testified by the
evolution of the gyration radii in the inset, the amplitude of the trends of the ellipsoid is
different if the velocity is changed, i.e. it is dependent on the rate of deformation.

By indicating with fAB the force that pointA exerts on pointB, we can write

fAB kh rB t rA t 2r0 , fBA fAB .

We develop an elongation cycle in which pointsA andB are pulled far apart by
imposing opposite constant velocities v0 to A andB. The initial position with
the atoms at rest is obviously regained by reversing the velocities for the same
amount of time spent in the elongation phase, i.e. te ta, where the index e

indicates the elongation time and a the time spent in the re-approaching process.
The analysis of the previous equations is trivial and the solution can be plugged
into the definition of zs (where for simplicity we take e 1).
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Assume t0 0. From the coarse grained balance of overall actions in the
continuum scheme, we find two expressions for zs that we label with the apex
e in the elongation phase, and with a when the two particles re-approach one
another by reverse velocity. We get

zes 4kh r0v0t v20t
2 , zas 2kh v0t 2r0

2.

Time integration of (.) along an extension-compression cycle starting from an
initial value v0 then leads to

νe ν0
te

0

4khv0 r0τ v0τ
2 dτ

ν0 4kh v0r0
t2e
2

1

3
v20t

3

e

10

3
khter

2

0

νa νe
ta

te

2kh v0τ 2r0
2dτ νe.

The last inequality arises for zas is negative in the whole approaching process. So,
we have a drawback: the evolution of ν is monotonic although in the approach-
ing phase the two atoms are getting closer toward the initial configuration.
Also, if we we start compressing, the effect on ν is in magnitude different from
the extension dynamics. Indeed the expression of zs for such a case is

zs 2khr0v0t 2kv20t

The two terms on the right hand side are opposite in sign: the evolution of ν
results smoother and slower than in the elongation phase. In other words, a
symmetric deformation process does not generate a symmetric evolution of ν.
First ν does not recover the initial condition once the two atoms are back to the
rest position. It also does not regain the starting value even when a compression
follows the initial elongation, as clearly depicted in panel b in Figure .. In other
words, ν never ‘shrinks’ below the initial value. The evolution process quickly
degenerates in an almost monotonic trend, if the cycle elongation-contraction is
repeated several times. Moreover, if opposite sinusoidal motions are imposed to
points A and B, in place of the constant velocity drifts, a complete monotonic
evolution of ν arises, as it results from the subsequent elementary analysis.

In the sinusoidal case, the harmonic displacements (constants do not have
here a prominent rôle) are given by

rB t r0 D sin D t t0 , rA t rB t

The forces exerted between the points are then

fAB t kh rB t rA t 2r0 2khrB t
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and
fBA t fAB t .

zs is given by

zs t fAB t rB t fBA t rA t 2fAB t rB t sin2 t .

By integrating in time (.), we find that ν diverges, namely

ν t
t

0

sin2 τ dτ t,

thus we have again a bounded oscillation for the material points on one hand,
and an unbounded evolution on the other hand, if t .

An attempt to eliminate this inadequacy can be the decision to fix rA t

r0 and rB t r0, an internal constraint, indeed. In this case, in the simple D
harmonic case that we treat here, the evolution of ν would result just governed
by the forces determined by the internal spring, and it would be bounded and
symmetric. But there would still exist an half-a-period delay between the actual
overall shape of the system and the associated trend of ν at the continuum level.
Namely, the evolution would be still monotonic during the elongation and con-
traction phases, obviously for the sign of the internal forces does not change (see
panel c in Fig. .).

From now on, all results will refer to the just described approach, namely
the choice ri t ri 0 , i 1, ...,m, with m the number of material points in
the cluster, if not differently stated. However, in section . we provide also an
example of monotonic evolution of ν for the Ubiquitin protein in the case this
assumption does not hold, i.e. ri ri t .

An additional shortcoming suggested by this simple D analysis arises di-
rectly from the combination of equations (.) and (.). If we suppose that
the same evolution is performed in different times (e.g. we perform a whole
extension-contraction cycle once at velocity v0 and once at velocity v0 2), al-
though the same gross deformation occurs, different values of ν are detected. In
fact, in the slower case the same trend of zs spreads over a time that is twice the
time of the fastest one. Hence the integral results greater (doubled if the self-
action evolution is linear), as pointed out in panel d of Figure ..

Finally, it is obvious that if the biatomic D system considered in this section
is kept elongated or compressed, its shape does not vary but, since the spring
is loaded, zs is different from zero and ν evolves independently (data are not
reported here).

If the interatomic potential among material points is changed to, for exam-
ple, a Lennard-Jones one, as the one in (.), we do not find an improvement in
the picture. Actually the very stiff Lennard-Jones potential makes it almost im-
possible to achieve compression without huge spikes in the evolution of ν (see
panel a in Fig. .). Therefore, to perform such an analysis, two extra-particles
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Figure .: Two-atoms system. Panel a: Trend of ν when the interaction between neigh-
boring atoms is governed by a Lennard-Jones potential. The latter one is very stiff and the
associated ν undergoes a very large peak in correspondence with themaximum compres-
sion. The decreasing trend is practically negligible. Panel b: Evolution of ν when external
forces, due to the interaction between the system and the fictitious atoms that lead the de-
formation process, is considered in the computation of the self-action. Panel c: Dynam-
ics of ν when, as above, the external forces are taken into account and the square-root of
the reciprocal of the square root of the order parameter ν 1 2 is the quantity chosen to
describe the shape evolution of the system. Here the inner interaction potential is an har-
monic covalent bond, but a similar outcome is detected also in case a stiff Lennard-Jones
potential is enforced. Qualitative and quantitative agreements between ν and the radius
of gyration of the D system are achieved.

are bonded through an harmonic potential to the atoms constituting the system.
These fictitious atoms are driven at constant velocity instead of directly drifting
the two inner points. In this approach we can either include or neglect the con-
tribution of the external springs on the forces that act upon the inner atoms of
the systems. Such a choice appears crucial as the external harmonic potentials
end up governing the dynamics, and the related forces combined with the inter-
nal ones do practically change sign as soon as the motion is reversed (see panel
b in Fig. .). This is confirmed not only for Lennard-Jones potentials but also
when the inner forces are in turn harmonic potentials (see panel c, same figure).
In this analysis (differently from panel b) we take the square-root of the recip-
rocal of ν, in analogy with the eigenvalues of the inertia matrix and the relevant
inertia ellipsoid. This shrewdness allow us to achieve a trend in compliance with
the radius of gyration and to avoid the amplitude mismatch observed in panel b.
The order of magnitude of the quantities in comparison is also similar.

In this D example there is no influence of temperature on the scheme we
are using, providing that the effect of the external springs are not accounted for
in the force vectors determining zs. Once the latter is included to achieve a clean
representation of the numerical results, as the one in the just mentioned panel c,
the toy scheme seems much more sensible to thermal fluctuations and to their
ability to spoil the picture, due to the origin of non-homogeneous deformation
terms. However low-enough values of the temperature do not remarkably alter
stretching results.
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Figure .: First row: Dynamics of a homogeneous deformation for a four-atoms system.
Eachmaterial point is pulled at constant velocity in an extension/compression cycle. Sec-
ond row of pictures: Evolution of the eigenvalues λi of the symmetric part of ν obtained
by polar decomposition. The order parameter for the shape of the system never shrinks
below the initial state despite the set of atoms undergoes a compression phase (third col-
umn from the left). This shortcoming is common to all the situations where external
forces are absent (this is due to the direct assignment of constant velocity motions to the
points of the system) or not considered in the computation of the self-action. Obviously,
since the deformation process is symmetric, ν is a circle.

D four-atom system. Here we briefly mention the outcome of D simula-
tions performed over a set of four atoms in space, placed at the corners of a
square. Once homogeneous deformation is applied (all atoms are suitably driven
by constant velocity motions) the overall basic picture of panel c in Figure . is
achieved. In this elementary scheme all adjacent atoms are bonded by harmonic
interactions. These ones are the sole actions of the model (see Fig. ., panel a).

In this case, ν reduces to an ellipse, a circle when, starting from a square
configuration, the four atoms are driven homogeneously, maintaining the square
symmetry. Figure . displays the evolution in space of the atoms in the square
lattice and the corresponding coarse representation in terms of ν. The compres-
sion phase is not described appropriately because the actual value of ν represents
an ellipse never smaller than the one corresponding to the initial condition. Also,
at the end of a cycle in the simulation, the system is in a state equivalent to the
initial one, while ν does not reach the initial value.

Previous results on the square lattice refer to a scheme where the reference
positions of the atoms, i.e. the ri in (.), are kept constant to the initial values,
and the interacting forces fij change. However, a similar outcome is detected
also in the case the former quantities are let free to evolve, but the two eigenvalues
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have different evolutions inmagnitude. A similar non-symmetric behavior of the
eigenvalues of ν occurs also if the number of internal constraints is changed.
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Figure .: Panel a: Picture of the four-atoms set where an internal constraint is inserted.
Panel b: Evolution of the semi axis of the ellipse for a homogeneous deformation totally
equivalent to the one depicted in the first row of images of Fig. .. The presence of the
extra spring alters the dynamics of ν, which semi axes λ1 and λ2 (eigenvalues of the
symmetric matrixU stemming from polar decomposition of ν) follow different trends in
spite of the symmetry of the motion.

Indeed, if an extra inner spring is added, as for example the one connecting
atoms  and  in Figure ., panel a, but the constant velocity stretching protocol
is not varied (the deformation process depicted in the upper row of panels in
Fig. . still holds), we obviously get a different evolution of ν which changes
from a circle to an ellipse (see Fig. ., panel b): the two eigenvalues of ν follow,
in fact, different dynamics.

So, at least for systems composed by a small number of particles, the expres-
sion of zs that we have obtained does not allow the description in terms of ν to
capture appropriately the behavior in compression. However, if we perform the
deformation process by using fictitious points, properly connected by springs to
the molecule (see the first panel in Fig. .), and we take into account the exter-
nal forces generated this way, the results appear, at least qualitatively, acceptable.
Also, they are qualitatively independent of the number of internal constraints,
as summarized in Figure .. Finally, we investigate how the picture changes if
we alter the interaction potentials. We enlarge first the number of atoms in the
two-dimensional lattice, increasing them up to , and consider Lennard-Jones
interactions for two different values of the cut-off radius (see Fig. .). For a cut-
off Rc 3.0Å only adjacent residues generate an interaction. At Rc 6.5Å all
atoms interact one another. In Figure . the system is also depicted in the max-
imum elongation and compression states, which correspond to labels () and ()
in panel a of Fig .. Only when the external actions (the ones exerted by the
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Figure .: First row: Four-atoms system and fictitious beads driving deformation. The
ghost atoms follow constant velocity motions and drift the system deformation thanks to
harmonic external potentials. Maximum elongation states are also reported and labeled
by () and () also in panel a. The overall shape of the system is here summarized by the
magnitude of the edges of the limiting rectangle, bbx and bbz . The semi axes of ν should be
in agreement with the latter ones. Panel a: Comparison between the trends of the limiting
box and the ellipse semi axes, λ 1 2

i (λi are the eigenvalues of the symmetric part of ν by
polar decomposition). Here external forces due to the ghost atoms and relative external
springs are considered in the computation of zs. Instead, the inner extra spring is absent
(neither in the system itself nor, accordingly, in the computation of the self-action). The
qualitative agreement is considerable. Panel b: The qualitative agreement does not change
if the inner extra spring is added to the system and to the computation of the self-action,
differently from what have observed when external forces are not taken into account in
the expression of the self-action (Fig..b).

fictitious material points) are included in the computation of zs, the variation in
time of ν can be deemed in agreement with the real shape evolution of the lattice
(the square-root of the reciprocals of the eigenvalues of the symmetric matrixU
are again considered).

..Three-dimensional atomic clusters

Previous examples have been developed just to clarify the stage and to pave
the way to more intricate three-dimensional simulations, which are, at the end,
the realistic setting we have to face. Here we report the results obtained from a
simple cubic lattice – two extra atoms are placed in the centers of upper and lower
faces to simplify the implementation of constant velocity stretching simulations
(the scheme is in Fig. .a) – and the protein Ubiquitin (see Fig. .).
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Figure .: D eight-atoms system. The smaller cut-off radius used in the simulation is
depicted to show that only adjacent points are bonded in this case, similarly to covalent
bonding. The external fictitious apparatus and the limiting rectangular box are also easily
detectable. Maximum stretching and compression are labeled withmarks () and (). The
latter ones can be found also in panel a of Fig. . in correspondence with the evolution
of ν in these states.

Cubic lattice. Simulation data arising from the analysis of the cubic lattice
sketched in Figure .a, confirm what has been shown for the two-dimensional
systems.

• The overall landscape depends, of course, on internal interactions among
mass points. Passing from short to long-range Lennard-Jones potentials,
to covalent harmonic bonding between adjacent atoms, the time evolution
of ν changes (Fig. .). The results are (in general, indeed) only partially
in compliance with the real shape evolution of the lattice (see for example
panel c in Fig. .).

• The inclusion of the external forces exerted by fictitious atoms, the ones
we use to impose deformation in the numerical simulations, is a crucial
choice that commonly improves the adherence of the computational re-
sults to what we have in mind to describe (see Fig. .). In this setting the
square-root of the reciprocals of the eigenvalues of U appears to be the
best way to represent the semi axes of ν.

• Thermal fluctuations do not represent a hindrance, providing that lattice
stability is not compromised (i.e. the condensed nature of the matter is
not altered). The remark does not depend on the possible inclusion of
external forces (see panel b in Fig. .). However, as evidenced by the
results in the same panel (i.e. t 16000tu, with tu indicating the time
unit used in the computations), since thermal fluctuations are a source of
non homogeneous deformation and random forces, in the long run they
cause a sort of monotonic trend of the eigenvalues λi of U which is not in
compliance with a lattice just vibrating.
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Figure .: D eight-atoms system. Panel a: Comparison between the evolution of the
bounding box edges and ν semi-axes. Here the picture refers to a set where short range
(Rc 3.5Å) Lennard-Jones potentials connect adjacent atoms. The deformation is en-
forced by external fictitious beads and springs. Such forces are not accounted for in the
computation of zs. The evolution of semi-axes does not summarize alone the shape of the
set of points (there is qualitative agreement only in the compression phase ()). Panel b:
Once forces due to external springs are considered, the overall picture improves, provid-
ing thatλ 1 2

1
andλ 1 2

2
are taken as the semi-axes of ν. Panels c and d: Similar statements

hold true if Rc is greater (6.5Å). If external forces are not considered, the evolution of
ν degenerates into a D dynamics (only one of the eigenvalues actually evolves), panel c.
Again, if we include external forces we recover accuracy and “robustness” in the scheme
(panel d).
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Figure .: Panel a: Comparison between the first eigenvalue of U in (.) and the evo-
lution of the edge of the cubic set of atoms oriented along the z-axis. Stretching and
compression are performed along the latter axis by means of ghost atoms and springs, see
Fig. . for snapshots of the system during an equivalent deformation path. There is not a
close correlation between the two quantities displayed and a high peak in the evolution of
the eigenvalue is generated close to the compression phase, presumably as a consequence
of the stiff Lennard-Jones potentials employed in this simulation (Rc 12Å, all atoms
interact with each other). Panel b: Trends of second and third eigenvalues of ν emerging
in the simulation just described. If λ 1 2

1
and λ 1 2

2
are considered, the qualitative agree-

ment with the edges evolutions is considerable. Unfortunately this approach does not im-
prove the picture of the first eigenvalue. Panel c: The same stretching protocol is applied
to the systemwhen short range Lennard-Jones interactions are considered (Rc 5.75Å).
Similarly to the D case, short range Lennard-Jones potentials generate an evolution of
ν which is degenerate: in this case one of the three eigenvalues does not evolve and the
picture associated with ν is two-dimensional. Also, the trends of the two eigenvalues are
equivalent and do not allow to catch which sides of the real shape are shortening and
which ones are stretching. Panel d: The interaction potentials are in this case harmonic
bonds between adjacent atoms of the cubic lattice. The picture of ν is correct in the com-
pression phase, that is in the central region of the plot 8000tu t 13000tu. During the
stretching, instead, the three eigenvalues all follow a similar increasing/decreasing trend
and none of them allow us to distinguish between which sides of the real shape are short-
ening and which ones are stretching. Taking the square-root of the reciprocals of all the
eigenvalues cannot fix this inadequacy as all trends would be reversed.
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Figure .: Panel a: Once external forces due to fictitious atoms and springs that are
responsible for system deformation are included in the computation of the self-action,
the overall picture results qualitatively in agreement with the dynamics of the three-
dimensional cubic set of atoms under scrutiny. The agreement appears when harmonic
bonds or short Lennard-Jones interactions are considered, but it is not always the case
for high values of Rc. Panel b: Temperature effects. Low-enough values of thermal os-
cillations (they do not alter the condensed state of the D matter) do not affect the time
evolution of ν during the stretching phases, but generate trends that are not in agreement
with the shape evolution of the systems when the external deformation mechanism is no
more applied. A slight increasing trend in the values of λ1 and λ3 for t 15000tu can
be evidenced, despite no overall deformation occurs.
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Figure .: Panel a: General setting of the cubic lattice. Key quantities such as edge
lengths and fictitious atoms, used to perform stretching by assignment of constant veloc-
ity motions along the z-axis, are explicitly depicted. Panels b and c: Snapshots comparing
the evolution of the cubic lattice and the one of ν for a system that undergoes extension
and compression phases. These images refer to a model in which harmonic potentials
bond adjacent atoms and external forces have been used to compute the vectors fij in
the expression of the self-action. The value of the material element volume e has been
tuned to achieve comparable trends also from the quantitative point of view.
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Ubiquitin: mechanical stretching. Ubiquitin protein is composed by 
residues. The consequent increment of degrees of freedom does not give rise to
simulation results differing remarkably in the qualitative features from the ones
obtained from the simple lattices considered so far.

In what follows, when we report results in the figures collected in this
section, the values of the semi-axes of ν, evolving in time, are compared with
the smallest rectangular parallelepiped including the protein. Its edges, namely
bb1, bb2, bb3, are evaluated in the central principal frame of the molecular
structure (a discussion on the rôle of the coordinate system is also in sec. .).
Once again, the approach does not appear to be robust enough to achieve a
proper description of the molecular shape unless we introduce (numerically)
the external forces exploited in the deformation process, as it happens in the toy
schemes discussed previously. However, we have no general proof that the rôle
of the external forces in the simulation be always the one we have recognized
here.
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Figure .: Panel a: Ubiquitin stretching simulation where the protein is kept elongated
at the end of detachment (t 5000tu). It is evident that the time evolution of ν is domi-
nated by the trend of only one eigenvalue. The evolution of ν is not in agreement with the
one of the molecule shape as λ1 shows a monotonic trend when the molecule is simply
oscillating in its linear conformation (T 0). Panel b: Once secondary structure terms
in the overall potential (.) are neglected in the computation of the self action and the
temperature is maintained equal to zero, a horizontal plateau is detected in the evolution
of the main semi-axis of ν. The evolution of λ 1 2

2
and λ

1 2

3
well describe the trends of

the x and y axes of the limiting parallelepiped and viewed in the principal central system
of inertia of the protein (inset).

Figure . reports a comparison between two mechanical stretching simu-
lations, where, at the end of detachment, the protein is kept elongated. To obtain
an appropriate qualitative description of the molecular shape, it is necessary to
neglect the contributions of the secondary structure in the computation of the
vectors fij that determine zs, and to set the temperature equal to zero (see panel
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b in Fig. .). The need appears, obviously, because the elongated configuration
is not an equilibrium one. Internal forces do not vanish – the protein oscillates
driven by the ground state of the potential (.) – hence the self-action does not
vanish and determines the evolution of ν (see panel a in Fig. .). Only when
the contribute of such forces is neglected we obtain what is depicted in panel
b of the same figure. We just notice that the results improve if we consider the
square-root of the reciprocals of the second and third eigenvalues, differently
from the first one, although there is no evident physical reason to justify such
a choice. The picture holds true providing that peptide bonds are not loaded,
otherwise the horizontal plateau in the trend of λ1 would be impossible. Ther-
mal fluctuations also compromise the evolution of ν in a similar way. Also, such
a shortcoming cannot be easily eliminated by including the external forces by
which we generate numerically the deformation path, as they would simply add
a contribute to two of the vectors fij , which does not guarantee that zs would
vanish. Actually there is only one eigenvalue of U that evolves appreciably and
governs the evolution of ν, despite the analysis be three-dimensional.

In analyzing the whole protein, to obtain a clear picture of the evolution of
themolecular shape it is not always sufficient to pull just one end of it and include
the external force in the computation of zs. As it appears in comparing panels a
and b in Figure ., only when both ends are pulled far apart from each other
and the two external forces – the ones due to the springs that drag the molecule
ends – are included together in the scheme (panel b), the picture is qualitatively
in agreement with the real evolution of the protein shape (and it seems ‘robust’ as
indicated by the additional examples in sec. .). Figure . compares the shape
of the Ubiquitin with its coarse approximation in terms of ν. The approximation
process based on the ideas underlying Cauchy-Born rule can be optimized by
varying the amplitude of the normalization volume e. We can choose it, in fact,
in order to achieve comparable amplitudes between the limiting parallelepiped
and ν, with the possible need of a smoothing algorithm in post-processing.

The effect of temperature is usually negligible, during stretching and in the
phase immediately consequent, but it influences the dynamics of ν in the long
run, as we have already affirmed for the toy models analyzed previously. In the
scenario described in this section, changes in the cut-off radius, frame of refer-
ence or stretching velocity do not induce prominent qualitative alterations.

..Additional remarks

As we have repeatedly affirmed, the continuum approach proposed here,
with the specification of structure of zs in terms of the actions in the discrete
model, seems to capture the dynamics of a single macromolecule in presence of
constraints imposed by the environment. So, it can be used in representing the
mechanical stretching of a protein in free space. For results relevant to transloca-
tion dynamics in terms of the continuum model proposed here, see section ..
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Figure .: Panel a: Data refer to a mechanical stretching simulation in which one end
of the molecule is pulled at constant velocity by a fictitious bead and an external spring
and the other end is held fixed in space. Despite the external force of the spring is in-
cluded in the computation of the self-action, its presence is not enough to achieve an
adequate representation of the molecule shape. Panel b: Only when mechanical stretch-
ing is performed pulling both ends with equal and opposite velocities, including both the
two external spring forces in the self-action, the behavior in time of ν is in agreement with
the real shape evolution of the protein. It is, as usual, necessary to take the square-root of
the reciprocals of the eigenvalues as ν semi axes.

Figure .: Quantitative comparison between discrete Ubiquitin dynamics and the evo-
lution of ν when both ends are pulled by external atoms. The material element volume
has been optimized to allow the quantitative good agreement. Temperature is set equal to
0. Panel a: Beginning of mechanical pulling. Panel b: Maximum stretching state. Panel
c: Conformation of the protein after maximum detachment has been achieved and the
protein is left free to refold onto its native structure.

The scheme should be further enriched in case we would consider a de-
forming environment and/or the presence of a dense population of interacting
macromolecules. In the latter case the balance of actions (.) should include a
microstress, due to the interactions of each molecule with the neighboring ones.
Moreover, ν should not necessarily be associated with a singlemolecule, rather it
could be a representative ‘in average’ of a number of molecules occupying a por-
tion of space considered as material element and assigned to a point in a multi-
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scale and multi-field continuum representation of the macromolecular popula-
tion (this way we should go along the guidelines of the mechanics of complex
materials []).

In any case, the inadequacy in presence of molecular free motion remains,
as it will be shown in the conclusive part of the present section.

It is possible to overcome it by adopting a second-rank tensor ν as a descrip-
tor of the single molecule with a different meaning from the one assigned here,
and selecting an expression for zs different from (.) but inspired by it. Possible
approaches and related results shall be discussed in section .

Effect of time-dependent placement vectors for Ubiquitin. Figure . dis-
plays the trends of the semi axes of the ellipsoid associated with U when place-
ment vectors in the explicit expression of the self action zs depend on time,
meaning they are computed at every time step on the actual configuration of
the protein, ri ri t . It is clear that the monotonic behavior, theoretically pre-
dicted from considerations on D systems, still holds for greater sets of atoms.
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Figure .: Trends of the eigenvalues of U in a thermalization simulation for the Ubiq-
uitin protein when placement vectors ri in zs vary in time. The behavior displayed by
the analytical results for the biatomic system are confirmed also for the Ubiquitin pro-
tein. Data refer to an equilibration temperature T 0.5. The molecule maintains its
folded state: the radius of gyration undergoes just small fluctuations around a constant
value. The semi-axes of the morphological descriptor follow a monotonic evolution not
in accordance with the protein shape dynamics.

Frame of Reference. A few remarks on the way we have used frames of refer-
ence in computations are collected here.
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Figure .: Comparison between U semi-axes for stretching runs relevant to the PDB
frame and to the central principal system (PRI) for the Ubiquitin protein. Evolutions can
be considered equivalent, despite an opposite trend for the intermediate eigenvalue that,
however, results nugatory for the final shape of the morphological descriptor. Data refer
to a simulation where both terminuses are dragged with opposite velocities, T 0, and
external fictitious forces are included in the computation of zs.

When we consider just the reference values of the placement vectors ri, un-
der rotations R SO 3 of the ambient space (where we evaluate the vectors
fij) alone, zs becomes Rzs because the generic addendum fij ri defining it
changes intoRfij ri, for ri is fixed once and for all in the reference space that is
different from the ambient one and isomorphic to it, the isomorphismbeing sim-
ply the identification. In principle, we could also consider rotations R SO 3

in the reference space so that zs would change intoRzsR
T with the possibility

of having RzsR
T when R R. Tensor ν follows analogous rules, being the

integral in time of negative zs, according to the evolution equation ν̇ zs.
In contrast, when we take ri in the current configuration, as in the previ-

ous example, under rotationsR of the ambient space zs is mapped intoRzsR
T ,

and ν, evaluated this time in the current shape of the molecule, undergoes an
analogous change.

Consequently, when we compute ν in one frame and want to know it in
another one rotating in time, we have to know the whole time-history of the
rotation up to the instant considered.

Here we have considered the frame of reference associated to the protein
data bank file (PDB), which is the one where protein coordinates are provided
and can be selected once for all at will in space. However, if we develop com-
putations with respect to the principal inertial frame (PRI) of the molecule, the
results do not alter the picture that we have shown in previous sections. Fig-
ure . shows that the overall shape of the molecular descriptor is equivalent
in both cases, in the present example, if quantities are computed with respect to
the protein data bank reference or to the central principal frame, despite an op-
posite trend in λ

1 2

2
. Broadly speaking, on average, differences in between the

two cases can be more remarkable than what reported here, nevertheless a final
argument to prefer the central principal system to the PDB one is not apparent
from our analyses.
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Figure .: Trends of the square root of the reciprocal of the eigenvalues of U in a ther-
malization simulation of the Ubiquitin protein. Rc 3.0Å and Rc 6.5Å. The first
three pictures show that the evolutions are practically the same. However, the protein
with Rc 3.0Å is unfolding, according to the comparison depicted in the last panel,
where the trends of the radii of gyration of the two molecules is showed. The approach
followed here does not allow to correctly detect thermal unfolding, a situation dominated
by inhomogeneous deformation and random fluctuations that do not contribute to the
overall shape evolution.

Thermalization simulations. For each cut-off radius considered in previous
analyses we have performed thermalization simulations at T 0.50θ (in the
already mentioned code units) to measure the evolution of the molecular de-
scriptor associated with the protein shape. The protein is free to fluctuate in the
ambient space, following the Langevin dynamics already mentioned, with no
driving forces nor additional constraints. Each simulation starts from the crys-
tallized structure of the protein according to the PDB file. Unfolding is then
allowed, providing that the value of the cut-off radius be small enough. Protein
configurations are also regularly sampled to obtain statistical independent ini-
tial states for mechanical stretching simulations. As it was expected, changes in
the molecular shape, due to thermal equilibration, are not properly detected by
the approach outlined in this work, since the deformation process is inhomoge-
neous and not remarkable (the radius of gyration of a thermally unfolded protein
is only about two times greater than the one own of a compact structure). In ad-
dition, single-residue fluctuations play a prominent rôle at the atomic level, with-
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out a corresponding macroscopic deformation. At the given equilibration tem-
perature, structures with cut-off radius equal to 3.0Å unfold, while ifRc 6.5Å

they do not. Figure . depicts these remarks for the Ubiquitin protein. The
trends of the semi-axes of U are similar and mostly indistinguishable, despite a
protein undergoes thermal unfolding (as it results from the trends in the radius
of gyration). A similar behavior is found in all the equilibration simulations that
we have performed.
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Figure .: Panel a: Trends of the reciprocals of the square root of the eigenvalues of
U in a stretching simulation of Ubiquitin compared with the dynamics of the smallest
rectangular parallelepiped containing the molecule. The eigenvalues are here depicted
as sequences of points, the values of the edge of the parallelepiped as continuous lines.
Rc 3.0Å, T 0, vstr 0.05. Data refer to a simulation performed with respect to the
principal central frame. Panel b: Analogous data than in panel a but T 0.2. Molecular
descriptor data are computed with respect to the PDB system of coordinates.

Additional results for stretching simulations. We present here some addi-
tional data which can indicate the statistical robustness of the results provided
above, concerning the free-space stretching of the protein Ubiquitin when both
ends are pulled at opposite constant velocities and external forces pertinent to
the fictitious atoms are included in the computation of zs, see Figures .-..
Thematerial element volume e has not been optimized for quantitative compar-
isons for the data below, as here we are just interested in furnishing a qualitative
picture. Specifically, we have performed ten independent simulations for each
cut-off radius (Rc), temperature (T ), and stretching velocity (vstr) implemented
(Rc 3.0Å or Rc 6.5Å, T 0 or T 0.2, vstr 0.05 or vstr 0.1). For
all the cases, results can be deemed qualitatively equivalent to the few additional
examples here provided.



Marco Bacci

103



0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

0 2000 4000 6000 8000 10000

0

50

100

150

200

250

λ
-1

/2

i

b
b

i

t

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

0 2000 4000 6000 8000 10000

0

50

100

150

200

250

λ
-1

/2

i

b
b

i

t

a b

Figure .: Panel a: Trends of the reciprocals of the square root of the eigenvalues of
U in a stretching simulation of Ubiquitin compared with the dynamics of the smallest
rectangular parallelepiped containing the molecule. The eigenvalues are here depicted
as sequences of points, the values of the edge of the parallelepiped as continuous lines.
Rc 6.5Å, T 0, vstr 0.05. Data refer to a simulation performed with respect to the
principal central frame. Panel b: Analogous data than in panel a but T 0.2. Molecular
descriptor data are computed with respect to the PDB system of coordinates.
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Figure .: Panel a: Trends of the average over  runs of the reciprocals of the square
root of the eigenvalues of U in stretching simulations of Ubiquitin (data relevant to the
central principal frame). These quantities are compared with the average dynamics of
the bounding box. The eigenvalues are here depicted as sequences of points, the values
of the edges of the parallelepiped as continuous lines. Rc 3.0Å, T 0.2, vstr 0.1.
Panel b: Analogous average data than in panel a but now Rc 6.5Å, T 0.0, vstr
0.1. Molecular descriptor data are here computed with respect to the PDB system of
coordinates.

..Protein descriptor in MBP stretching simulations

As already mentioned for the Ubiquitin protein, placement vectors ri refer
to reference (equilibrated) configuration and do not depend on time. Here re-
sults relevant to the first stretching protocol are presented. In fact for theMBP, in
contrast to what shown previously, we find it sufficient to pull just one end of the
molecule (keeping the other terminus blocked in space) to gain an appropriate
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picture of protein shape evolution. As usual, the external force generated by the
ghost atom that drives the deformation pathway is included in the computation
of the self-action and the square root of the reciprocals of the eigenvalues of U
are again depicted as the semi axes of an ellipsoid.

In what reported in Figure . (N-terminus pulling, Rc 7.5, T 0.75,
vstr 0.1 tu), the material element volume e has been optimized for quan-
titative comparisons. In this case raw data are worked out to gain the trends
and images from panel a to panel f. First, original evolutions are smoothed by
supposing a process with memory. Namely a linear-weighted average over 
previous values is performed for each data. This way trends can be softened and,

especially, λ 1 2

1
(the one that practically governs the description) is closer to bb1

evolution, also in the equilibration part. Panels a, b and c report the outcome
of the application of this algorithm to the λ 1 2

i trends. Finally, to achieve the
ellipsoid snapshots only (panels d, e and f) a magnification coefficient equal to 
is used to recover a high-enough value of the first peak, as it can be noted that it
is considerably reduced by the smoothing. No magnifications or reductions are

used for λ 1 2

2
and λ 1 2

3
, as the average trend of those is deemed appropriate. To

get the pictures, the center of the ellipsoid is conveniently attached to the center
of mass of the molecule and its orientation is governed by the eigenvectors of
U . Thanks to these expedients, the description appears appropiate, despite the
evolution of the medium and smaller axes may be deeper.

We add that in the present approach the equivalent radius of the sphere hav-
ing the same volume of the ellipsoid follows a trend dominated by the first eigen-
value, that is a trend qualitatively equivalent to the radius of gyration one (the
volume increases in a stretching simulation).

.. MBPmorphological descriptor translocation results

In translocation simulations we find that the presence of the pore, which
constitutes a constraint that limits accessibility in phase space, enhances the
quality of the protein shape description. To the sake of clarity, in the present
approach, both the pulling force and the actions, due to the channel potential,
are included in the computation of the zs as external forces. The confinement
acts similarly to a decrement of the temperature, limiting residue fluctuations
inside the pore. Obviously, to achieve a proper outcome, either the volume of
the material element e needs to be small or the pore long enough to provoke a
considerable stretching, detectable by the eigenvalues of U . The issue is well
summarized in Figure ., where results related to two different pore lengths
are depicted, holding the material element volume constant at a standard value
(equivalent sphere radius: 30Å). Thus, once again, main limitations are due
to the necessity to fine-tune such a volume on the basis of the simulation
performed, or rather, according to a sort of ‘maximum value of deformation’.
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Figure .: Raw and elaborated data are shown for a stretching simulation of Maltose
Binding protein. As evident from the first row, to gain a better agreement between peak
magnitudes, e should be further reduced, but this would generate instabilities in the
routines used for polar decomposition. When depicted, protein dimensions are normal-
ized by the radius of gyration own of the PDB crystallized structure. Panel a: Trend of
the original λ 1 2

1
as resulting from fine tuning of e . The peak is high, reaching a value

eleventh times greater than the initial one. Its evolution is also tight and sharply decreases
during thermalization. Panel b: Despite the reduction in the value of e the drop at max-
imum detachment does not overcome % of the initial value and is equal to % at the
end of the simulation: the dull λ 1 2

2
dynamics is a limitation of the model. Panel c: The

minimum value at 10000tu corresponds to a drop of % of the initial value and has
to be compared to a % reduction in bb3, so the agreement is not very close in mag-
nitude. Panel a: λ 1 2

1
trend resulting from a weighted running average. Specifically,

the weights are linear (from  to ) and spread over the current value (weight = ) back
to the one-thousandth previous one (weight = ). The approach allows improving the
agreement between λ

1 2

1
and bb1, especially in the thermalization part. Panel b and c:

Same approach just described applied to λ 1 2

2
and λ 1 2

3
. A similar smoother behavior is

detected and amplitudes are reduced. Panel d: Snapshot of the ellipsoid and molecule at
the beginning of the pulling. The protein is compact and the ellipsoid is close to a sphere.
Here and in panels e and f a magnification coefficient is applied to the ellipsoid semi axis
to recover the amplitude of the peak smoothed by the averaging process. Panel e: Ellip-
soid and protein near the maximum value of the stretching. A remarkable elongation is
detected in agreement with the almost linear fashion of the polymer. Panel f: Snapshot
taken at the end of equilibration. The morphological ellipsoid shrinks still too quickly
from its maximum elongation when compared to its shape in panel d.
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Panel a, b and c underline the difference in the amplitudes of the square root
of the reciprocals of the eigenvalues once the channel is elongated from 100Å to
600Å. Panels d through f compare the MBP shape and the ellipsoid associated
withU once projected onto the plane formedby eigenvectors  and  (600Åchan-
nel). The choice of the plane is not by chance, as again we observe that eigen-
values  and  govern the dynamics, while the second one experiences just lit-
tle fluctuations. The outlined approach confirms its appropriateness to summa-
rize shape evolutions for a wide range of simulation parameters in constrained
dynamics. We performed several transport simulations across a nanopore by
varying the cut-off radius, pore length, temperature, driving force (always con-
siderably great, to perform translocation in a limited time window) and pulling
terminus, without remarkable limitations in the description (providing that the
transport be homogeneous in time).

However, the model is sensitive to the value of the pulling force: a greater
value causes higher values of interatomic forces fij , which are detected by zs.
Hence, two translocation simulations, which are equivalent from a macroscopic
deformation point of view (same channel), just performed at different driving
forces, are described by different ν. The one relevant to the greater value of the
pulling force generates the ellipsoid that stretches the most, whereas instead the
gross deformation of the proteins is practically the same. A similar behavior is
also noticed in stretching runs when detachment velocity is increased.

. Additional continuum formulations

As we have seen, the proposed approach based on Cauchy-Born rule and
power equivalence, appears to be robust enoughonlywhen external forces are in-
cluded in the computation of zs. Also, the dynamics has to be, in a sense, driven,
constrained, by the external environment. However, additional preliminary re-
sults (not shown here since they are deemed unreliable as a proper statistics of
event has not been collected yet) seem to show that external forces might not be
essential for MBP stretching and translocation simulations. In other words the
effect of the number of degrees of freedom of the system might require further
investigations.

What appears evident are the limitations of themodel to capture thermal un-
folding. In thermal simulations the homogeneity is lost due to random single-
bead oscillations that overwhelm and hide the overall unfolding process. The
drawback can be overcome by selecting different descriptors of the protein evo-
lution and related modified expressions of zs, which arise from evaluations of
the interaction mechanisms among material points in the molecule.
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Figure .: Translocation simulations for Rc 3.0, C-terminus pulling, T 0.75, F
2.0. Panels a, b and c: Trends of the reciprocals of the eigenvalues for two values of the
pore length (100 and 600Å). Despite a lower overall deformation if compared with the
stretching simulations, the presence of the pore allows a better description of themolecule
shape evolution. Especially λ

1 2

3
(panel c) appears to be particularly sensitive to the

confinement, its decreasing trend is considerable, reaching a minimum equal to about
one half of the initial value, regardless the pore length. λ 1 2

1
is instead influenced by the

latter quantity (panel a), being negligible in the 100Å pore. Finally, the evolution of the
second eigenvalue, although again pretty limited, is remarkable and usually greater than
in the steered-dynamics case. Panels d, e and f: Direct comparison between the ellipsoid
projected onto the planes associatedwith eigenvectors  and  and themolecule seen in the
xz plane of the PDB system of coordinates. The quality of the description is considerable
regardless the frame of reference employed. Due to the simulation protocol (alignment
of the PBD x-axis with the pore axis and therefore with the pulling force direction), all
the frames are very close to each other.

..Varying the meaning of ν

We change here the meaning of ν and consider it as a work tensor density
performed ‘in average’ in deforming the whole protein. Also here we assume
det ν 0. This way ν̇ is a power and it is supposed to be equal to the power
density in the discrete model. The equation ν zs is now a tensor power bal-
ance. The structure of zs, here indicated by zs2, is that of a tensor power density.
We express (heuristically) zs2 as the sum of the tensorial product between the
absolute value of the total force fij exerted between residues i and j and the
time rate of change of the absolute value of the placement vector of the material
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points with respect to the center of mass of the molecule, ∂t ri . It is important
to point out that here indicates the absolute value of the components of the
considered quantity, that is x is a vector which entries are the absolute values of
the entries of vector x, it is not its norm, which in turn would be indicated by the
symbol x . In a sense the dynamics here is like projected onto the first octant of
the Cartesian spaceR3, through proper reflections (associated with the absolute
value operator) that allow us to distinguish between departure or approach of a
residue with respect to the center of mass, regardless their mutual placement in
the frame of reference selected to assign point-coordinates. We write

zs2
1

e i j e

kzs2i fij ∂t ri . (.)

In the above expression kzs2i is a dimensionless scalar quantity defined as the
ratio between the actual distance of the point of application of the force from the
center ofmass of themolecule, ri , and the radius of gyration of the crystallized
PDB structure of the protein, r0gir :

kzs2i

ri

r0gir
.

The action fij involves all the elementary terms present in the Gō-like model,
such as actions stemming from peptide bonds, bending deformation and so on,
equivalently to the previous approach. As evident from (.), not only the square
root of the reciprocal of the eigenvalues of the symmetricmatrix due to polar de-
composition of ν are analyzed, but also the diagonal entries of ν are investigated
and a suited ellipsoid built from them.

Thermalization simulations results. For a matter of brevity, we show only
thermalization simulation results. In fact only in this case the first approach con-
sidered in the present chapter is not appropriate. However, similar outcomes (in
terms of the quality of the overall picture) hold also for stretching and translo-
cation simulations. Nevertheless, the description of thermal unfolding is the
toughest task. The approach analyzed here is mainly tailored to follow protein
deformation when diagonal components of ν are considered. However, also
symmetric matrix eigenvalues provide an adequate geometrical description of
the molecule.

In Figure . we show the trends of ν diagonal entries for a molecule with
cut-off radius equal to 7.5Å, while undergoes equilibration. As already shown
(Fig. .), since the simulation temperature is 0.75, MBP remains compact. Also,
that behavior can be easily detected by the lack of increment in the bounding box
edge lengths, as they simply oscillate around constant values regardless the frame
of reference used (all panels of Fig. .). In panels a, b and c we compare the
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trends of the square root of the reciprocals of the eigenvalues ofU with the evolu-
tion of the sides of the limiting rectangular parallelepiped in the central principal
frame, despite the simulation runs with respect to the PDB system of coordinate.
We do this becausewe believe that the description bymeans of symmetricmatrix
eigenvalues should be more general than the one based on the diagonal entries
of ν. All the panels show a good agreement between the two trends reported in
each of them. The eigenvalues do not show the almost monotonic trends as the
ones in Figure .. Rather, they randomly fluctuate around the initial values, a
behavior in accord with the bounding box one. However, fast spikes are not re-
produced and sometimes a sort of opposite behavior is detected. Panels d, e and
f report the evolution of ν diagonal entries and bounding box edges in the PDB
frame of reference (bbx, bby , bbz). ν diagonal entries are indeed tied to the sys-
tem of coordinates where quantities are evaluated. It is evident how much these
trends faithfully reproduce the evolution of the molecule shape even in such a
random dynamics. The magnitude of the oscillations can be easily changed by
altering the value of the material element volume once the approach here ana-
lyzed is chosen. Fast spikes are closely matched. Such an agreement holds true
for all the simulations we have performed, regardless the value of temperature
and cut-off radius. Therefore the associated ellipsoid always describes the pro-
tein shape in a pointwise fashion, not only in average. Unfortunately, neither the
eigenvectors of ν nor of U , (not even the rotation matrix arising from polar de-
composition) provide a straightforwardway to understand the orientation of the
polymer. Also, in this particular case, since the molecule remains folded, ν diag-
onal components are really able to follow the details of the deformation pathway
(bounding box oscillations are only a fewAngstroms), which is notmacroscopic.
To understand what just stated, see Figure .. It clearly shows the ability of the
current approach to distinguish between a protein that remains compact in a
heat reservoir and one that instead unfolds. Indeed, panels a through c compare
three quantities: square root of the reciprocals of the eigenvalues ofU for a 3.0Å
cut-off radius molecule, the relevant evolution of the bounding box sides and
the square root of the reciprocals of the eigenvalues of U for a protein that re-
mains folded. First of all we underline that the agreement between eigenvalues
and associated edges of the limiting rectangular parallelepiped is appropriate on
an average sense, since bounding box spikes are not so closely followed by ellip-
soid semi-axes. However, the magnitude of the deformation is clearly detected:

fluctuations in the evolution of λ 1 2

i associated with the folded molecule are
hardly visible. Such quantities remain practically flat and very close to the initial
value in a macroscopic standard, that is the one determined by the fluctuations
belonging to the 3.0Å cut-off radius MBP. It is evident that we can recognize
that the latter one is undergoing big deformations (thermal unfolding), while
the former one practically remains in a native-like conformation. Also, now it is
clear what we meant about the ability of the selected approach to follow the little
details of the deformation process, even the smallest changes in the shape are
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Figure .: Thermalization simulation results for MBP.Rc 7.5, T 0.75. The protein
remains foldedwith these parameters. Panels a, b and c: Comparison between the bound-
ing box side lengths and the square root of the reciprocals of the eigenvalues of U . The
former are computed in the principal central frame, the latter are relevant to the polar de-
composition of ν evaluated in the PDB coordinate system. In panel a the highest-valued
eigenvalue trend is shown, in panel b the middle-valued one and, accordingly, in panel c
the lowest. All three show a remarkable agreement with the trends of the bounding box
edges, especially considering that are relevant to different frames, in compliance with the
need that the eigenvalues of the symmetric matrix should have a general meaning. Panels
d, e and f: Comparison of ν diagonal components and bounding box sides in the PDB
frame. The agreement is in all cases at pointwise level, spikes are correctly reproduced,
despite the gross deformation of the molecule is negligible as no thermal unfolding takes
place.

recorded and are scaled correctly, providing that the material element volume of
the compared evolutions be the same.

The same picture is confirmed in panels d, e and f of Figure . where diag-
onal components are considered. Also in this case unfolding is clearly detected.
Moreover, the agreement between the ellipsoid semi axes and the bounding box
sides appears adequate not only on average but pointwise. If the ellipsoids are
plotted, the difference in their dimensions is evident and we can detect which
molecule is unfolding, as shown in Figure .. Data used for this figure are the
ones also reported in Figure ., when the difference between the first eigen-
values is close to the maximum one.

.. zs model  and *

Explicit formulation. Wecan also choose different expressions of zs as explicit
constitutive structure. Two of them are discussed here. The first one, indicated
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Figure .: Thermalization simulation results for MBP. Rc 3.0Å, and Rc 7.5Å,
T 0.75. The molecule with the lowerRc unfolds, the other one remains compact. The
material element volume is the same for the two cases, equal to a sphere of radius 20Å.
Panels a, b and c: Comparison between the bounding box side lengths (solid dark line)
and the reciprocals of the eigenvalues of the 3.0Å Rc molecule (dotted line). Also the
reciprocals of the eigenvalues of the 7.5Å Rc protein are showed for a quantitative com-
parison (dashed line). The agreement between the 3.0Å case and relevant bounding box
sides is appropriate in all panels. Also, the current approach is able to distinguish between
a molecule that undergoes thermal unfolding and one that does not, accordingly to the
difference in λ

1 2

i magnitude. Panels d, e and f: Comparison of ν diagonal elements and
limiting parallelepiped edges in the PDB frame of reference for the Rc 3.0Å simula-
tion. The agreement is appropriate in all cases and even fast spikes are closely followed.

by zs3, reads

zs3
1

e i j e

kzs3ij fij lij ι ∂t rj . (.)

Here lij is a dimensionless vector defined as

lij rij
rij

rij

rij

rij
, (.)

where rij is the position vector of material point j with respect to i (note that
rij rji); k

zs3
ij is a dimensionless quantity defined by

kzs3ij

rij r0ij

rij r0ij

rj

r0gir
, (.)
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Figure .: Comparison of the ellipsoids (and associated proteins) for the two cases al-
ready compared in panels a, b and c of Figure .. It is apparent which is the molecule
unfolding just from the difference in the shape of the ellipsoids, which refer to the square
root of the reciprocals of the eigenvalues of U . Snapshots are taken when the difference
between the first eigenvalues is close to the maximum one, according to Figure .a.
The palette indicates the z-axis values of the upper half portion of the ellipsoids. Protein
dimensions are normalized by r0gir .

where, r0ij is the placement vector of residue j referred to residue i in the refer-
ence configuration of themolecule and other symbols have been already defined.
Finally ι is a vector the entries of which are all unity.

In this approach the first quantity involved in the tensor product is an effec-
tive measure of the local action between amino acids i and j, while the second
quantity, once summed upon all points and integrated in time, is a grossmeasure
of the evolution of the distances within the molecule thought as a whole. Since
the actions practically result from the projection of the forces exchanged between
amino acids i and j onto the vector joining them, only peptide interactions and
native contacts (Lennard-Jones potentials) are considered in the computation of
zs3. The essential idea behind this approach is that∂t rj governs the evolution of
zs3. Therefore the whole left side term of the tensorial product, i.e. kzs3ij fij lij ι

is tailored in a way that it has a constant sign when the forces are generated by
harmonic or harmonic-like potentials, as peptide bonds or Lennard-Jones in-
teractions, respectively. Here ‘harmonic-like potentials’ means potentials that
are attractive in a region of the phase space and repulsive in the complementary
one. For amatter of clarity we shall refer to this approach as SAM in the present
section.

An alternative formulation that stems from this model and actually reduces
the whole evolution of ν to the evolution of its first diagonal entry, is subse-
quently described and will be addressed to as SAM*. This approach allows one
to drop the absolute value of the quantity rj in the time partial derivative of (.),
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without losing the ability to discerning between detachment or approach of an
amino-acidwith respect to the center ofmass. The aim is accomplished by simply
evaluating the vector rj in a local frame of reference that has itsx-axis coincident
with the vector itself, namely each residue has a local proper frame of reference
where its placement vector (with respect to the center of mass) is evaluated. In
the specific case, the placement vector itself fixes the x-axis of such a coordinate
system. Thence only the first entry of rj is different from zero and so only the
first diagonal component of zs3 evolves. In practice, the order parameter is re-
duced from a second-rank tensor to a scalar. However, tensor rank can be easily
restored claiming a volume-preserving deformation: in this way the other two
diagonal entries of ν can be deduced by requiring that the ellipsoid associated
with them would have a constant volume, equal to the initial one (the volume
of the material element). Since there is no preferred assumption, in the volume-
preserving enforcement the two indeterminate axes (i.e. the ones that are not
governed by the self-action) are set equal to each other. Similarly to the second
approach introduced in section ., both the square root of the reciprocals of the
eigenvalues and ν diagonal entries are considered for SAM, while for SAM*
only the latter ones are evaluated.

Main results. In this section all results for SAM and SAM* are briefly out-
lined. Generally speaking, the formulations analyzed here require the compu-
tation of several additional quantities or extra frames for every time-step dur-
ing a simulation, resulting more time-consuming than the two previous ones.
For this reason, no translocation simulations have been performed. Moreover,
the already presented outcomes are deemed appropriate for the purpose of the
present investigation. However, a few results are pointed out as the quality of the
description for both SAM and SAM* is adequate. As far as (.) is concerned,
the diagonal components of ν provide a clear description of the MBP shape in
all the runs performed, as it was expected. In this case, the value of e can be very
small and so ν entries very large. As it results from Figure. ., ν 1,1 leads the
dynamics and closely follows the trend of the associated bounding box edge in
the central principal frame for anAFM-like stretching simulation. The evolution
of the remaining two entries is negligible, although panel b and c highlight the
fact that their trends are not so close to the edges of the limiting parallelepiped.
Usually the appropriateness of the picture improves in the PDB system of coor-
dinates.

We find that only two of the eigenvalues of U evolve, as one of them is con-
stantly equal to 1 regardless the involved dynamics. Hence the picture associated

with the λ 1 2

i is just two-dimensional, as show in Figure .d and relative in-
set. This D description is in a sense in accord with the evolution of the gross
shape of the molecule (as basically one eigenvalue forms a peak and the other
one a minimum), but was not expected.
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As already stated, it is in the PDB frame of reference that SAMworks better.
As it is depicted in Figure ., ν diagonal entries closely follow the evolution of
the bounding box edges during a thermalization simulation. The agreement is
considerable and the curves reported in both panels a and b are hardly distin-
guishable (this holds true also for the diagonal component not depicted). Quan-
titative agreement is just a matter of fine tuning the material element volume.

SAM* approach generates a D evolution of the self-action and therefore
also of the associated ν. However, the D evolution can be recovered artificially
claiming a volume-preserving transformation for the ellipsoid, as already men-
tioned. In such a way it is probably obtained the most appropriate description
of all the ones presented in the thesis, as the constant-volume assumption allows
both λ

1 2

2
and λ

1 2

3
to considerably decrease from the initial value. The el-

lipsoid picture is drafted in Figure . for a stretching simulation, considering
both the trends of the square root of the reciprocals of the eigenvalues (upper
picture) and a snapshot of the system close to the maximum elongation of the
molecule (panel b). From the latter panel it is immediately appreciable the qual-
ity of the description as the almost single file conformation of theMBP gives rise
to an ellipsoid that is an extremely thin and long spindle.

..Remarks

Three additional formulation of zs have been considered to overcome the
limitations of the basic approach. Among them, the first one (sec. .) shows
the best premises, as it is computationally inexpensive and allows a proper de-
scription of the molecule shape in all the simulations performed. SAM and
SAM* approaches require the computation of several additional quantities at
every time step, considerably slowing down the efficiency of the numerical code.
Also, the symmetric matrix for SAM results two-dimensional, regardless the
simulated dynamics. SAM*, when associated to a volume-preserving defor-
mation requirement, generates an evolution of the ellipsoid in close agreement
with the real deformation of MBP. However, no translocation simulations have
been performed for SAM and SAM*. Also, systems smaller than the MBP
have not been studied in this frameworks. However, there are no doubts that
the appropriateness of the approaches here analyzed will not be compromised
by the dimensionality of the system, since the associated zs formulations arise
from considerations on deformation mechanisms between two single material
points.

What is necessary to further develop are the physical consequences of se-
lecting empirical formulations for zs, as the description of the material element
shape is only the first step to be undertaken in the building up of a continuum
model for a complex body.
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Figure .: Mechanical stretching simulation for MBP. Panel a: Comparison between
ν 1,1 and the bounding box x-axis edge in the central principal frame, bb1 . ν entry
ends up leading the whole dynamics of the ellipsoid and it shows a trend totally in com-
pliance with the gross shape evolution of the MBP. Panel b and c: ν 2,2 and ν 3,3

components compared with the associated edges. The trends are not so in agreement as
in panel a, but it is appropriate to point out that amplitudes are both negligible if com-
pared with ν 1,1 . Panel d: This panel and the relative inset shows the trends of the
two evolving symmetric matrix eigenvalues. The third eigenvalue (not shown) is always
constant, independently from the performed simulation. Hence the ellipsoid evolution
associated toU is only D for SAM. However λ 1 2

1
correctly reproduces the elongation

while λ 1 2

3
depicts the shrinking of the shape. We note that symmetric matrix eigen-

values undergo oscillations that are considerably smaller than the ones of the diagonal
entries of ν.
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Figure .: Panel a: Here the trends of ν 1,1 and the x-axis edge of the bounding box
in the PDB frame are compared. Trends are so close to each other that a visual distinction
is tough. It is in the PDB frame of reference that SAM achieves the best description of
the MBP shape as showed in this case for the challenging thermalization case. Panel b:
Similarly to panel a, ν 3,3 and bbz are compared, pointing out again the close similarity.
ν 2,2 and bby trends are not shown but their agreement is comparable with the ones
reported in this figure.
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Figure .: Panel a: Trends of the square root of the reciprocals of the eigenvalues as-
sociated to SAM* for a mechanical stretching simulation of MBP. λ 1 2

2
and λ

1 2

3
are

obtained claiming a constant volume deformation for the ellipsoid and are set equal to
each other. The trends result in close agreement with the overall shape deformation of
the protein in a AFM-like stretching simulation. Panel b: Visual comparison between
the almost linear shape of the MBP at maximum elongation and the associated ellipsoid,
which has been obtained from the data of panel a at maximum stretching multiplied by
the radius of gyration of the nativeMBP (also, amagnification coefficient of 2 for the semi
axes has been necessary, although a fine tuning of e would have worked the same). The
affinity of the two shapes is here substantial as the constant volume assumption allows to
achieve an adequate shrinking of both the transverse axes of the ellipsoid.
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[] N. Gō. Theorethical studies of protein folding. «Ann. Rev. of Biophys. and
Bioeng.», ():, .

[] E. Shakhnovich. Theorethical studies of protein-folding thermodynamics
and kinetics. «Curr. Opin. Struct. Bio.», ():–, .

[] D. Baker. A surprising simplicity to protein folding. «Nature»,
():–, .

[] J.K.Karanicolas andC.L. Brooks. ImprovedGō-likemodels demonstrate the
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