
Jiayue Sun
Shun Xu
Yang Liu
Huaguang Zhang

Adaptive 
Dynamic 
Programming
For Chemotherapy Drug Delivery



Adaptive Dynamic Programming



Jiayue Sun · Shun Xu · Yang Liu · Huaguang Zhang

Adaptive Dynamic
Programming
For Chemotherapy Drug Delivery



Jiayue Sun
The State Key Laboratory of Synthetical
Automation for Process Industries
and the College of Information Science
and Engineering
Northeastern University
Shenyang, Liaoning, China

Yang Liu
The Department of Thoracic Surgery
The First Affiliated Hospital of China
Medical University
Shenyang, Liaoning, China

Shun Xu
The Department of Thoracic Surgery
The First Affiliated Hospital of China
Medical University
Shenyang, Liaoning, China

Huaguang Zhang
The State Key Laboratory of Synthetical
Automation for Process Industries
and the College of Information Science
and Engineering
Northeastern University
Shenyang, Liaoning, China

ISBN 978-981-99-5928-0 ISBN 978-981-99-5929-7 (eBook)
https://doi.org/10.1007/978-981-99-5929-7

This work was supported by China National Postdoctoral Program for Innovative Talents (BX20220060)
and National Natural Science Foundation of China (62203469, 62203097)

© The Editor(s) (if applicable) and The Author(s) 2024. This book is an open access publication.

OpenAccess This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribu-
tion and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and indicate if changes were
made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

Paper in this product is recyclable.

https://doi.org/10.1007/978-981-99-5929-7
http://creativecommons.org/licenses/by/4.0/


To My Family

Jiayue Sun

To My Family

Shun Xu

To My Family

Yang Liu

To My Family

Huaguang Zhang



Preface

Optimization is the process of finding the best solution to a problem subject to a
set of constraints. It has long been a cornerstone of both engineering and math-
ematics. The evolution of optimization can be traced back to the ancient Greeks,
who employed geometric methods to solve optimization problems. In the eighteenth
and nineteenth centuries, optimization began to take on a more formalized approach
with the development of calculus and the rise of industrialization. Mathematicians
such as Leonhard Euler and Joseph-Louis Lagrange developed methods for finding
the maximum and minimum values of functions, which were crucial for optimizing
industrial processes and designing efficient machines. The twentieth century saw
a significant expansion in the field of optimization, with the development of linear
programming andother optimization techniques. Linear programming is amathemat-
ical technique for optimizing a linear objective function subject to linear constraints,
which involves optimizing a linear objective function subject to linear constraints,
was first introduced by George Dantzig in the 1940s and quickly became a powerful
tool for solving complex optimization problems. In the latter half of the twentieth
century, optimization began to be applied to a wide range of fields beyond math-
ematics and engineering. Operations research, which uses mathematical models to
optimize complex systems, becameapopular field in business andmanagement.Opti-
mization techniques were also applied to fields such as finance, transportation, and
telecommunications. These models are typically static and deterministic, meaning
they do not take into account the dynamic nature of many real-world systems. Over
time, researchers have developed increasingly sophisticated optimization algorithms
that can adapt to changing conditions and learn from experience.

Adaptive dynamic programming (ADP) is a powerful optimization technique for
improving dynamic systems. Despite being a relatively new area of optimization,
it has received broad usage in various industries. ADP is rooted in the principle
of dynamic programming, which involves breaking down a complex optimization
problem into smaller subproblems. These subproblems are solved recursively using
backward induction. ADP learns from feedback and adjusts its behavior accordingly,
making it useful for systems operating in uncertain environments. It has been applied
to awide range of problems, including electrical power systems, robotics, self-driving
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cars, and trading strategies. This book focuses on the practical application of ADP
in chemotherapy drug delivery, taking into account clinical variables and real time
data. ADP’s ability to adapt to changing conditions and make optimal decisions in
complex and uncertain situations makes it a valuable tool in addressing pressing
challenges in healthcare and other fields. As optimization technology evolves, we
can expect to see even more sophisticated and powerful solutions emerge.
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Chapter 1
Introduction

The stability analysis of dynamical systems, which are ubiquitous in nature, has
long been a hot topic of research and several approaches have been proposed. How-
ever, control scientists often demand optimality in addition to the stability of the
control system. In the 1950s and 1960s, motivated by the development of space
technology and the practical use of digital computers, the theory of optimization of
dynamical systems developed rapidly, forming an important branch of the discipline:
optimal control. It is increasingly used in many fields, such as space technology, sys-
tems engineering, economic management and decision-making, population control,
and optimization of multi-stage process equipment. In 1957, Bellman proposed an
effective tool for solving optimal control problems: the dynamic programming (DP)
method [1]. At the heart of this approach is Bellman’s optimality principle, which
states that the optimal policy for a multilevel decision process has the property that,
regardless of the initial state and initial decision, the remaining decisions must also
be optimal for the state formed by the initial decision. This principle can be reduced
to a basic recursive formula for solving multilevel decision problems by starting at
the end and working backward to the beginning. It applies to a wide range of discrete,
continuous, linear, nonlinear, deterministic, and stochastic systems.

ADP is a new approach to approximate optimality in the field of optimal control,
and it is a current research topic in the international optimization field. The ADP
method uses the function approximation structure to approximate the solution of the
Hamilton-Jacobi-Bellman (HJB) equation and uses offline iteration or online update
to obtain the approximate optimal control strategy of the system, which can effec-
tively solve the optimal control problem of nonlinear systems [2–11]. Bertsekas et
al. summarized neuronal dynamic programming in the literature [12, 13], describ-
ing in detail dynamic programming, the structure of neural networks, and training
algorithms. Meanwhile, several effective methods have been proposed for apply-
ing neuronal dynamic programming. Si et al. summarized the development of ADP
methods in cross-cutting disciplines and discussed the connection of DP and ADP
methods with artificial intelligence, approximation theory, control theory, operations
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2 1 Introduction

research, and statistics [14]. In [15], Powell showed how to use ADP methods to
solve deterministic or stochastic optimization problems, and pointed out the direc-
tion of ADP methods. In [16], Balakrishnan et al. concluded previous approaches to
the design of feedback controllers for dynamic systems using the ADP method from
both model and model-free cases. In [17], the ADP method was described from the
perspective of requiring initial stability and not requiring initial stability.

The ADPmethod has a unique algorithm and structure compared to other existing
optimal control methods. It overcomes the drawback that classical variational theory
cannot handle optimal control problems with closed-set constraints on the control
variables. Like the maximum value principle, the ADP method is not only suitable
for optimal control problems with open-set constraints, but also for optimal control
problems with closed-set constraints. While the extreme value principle can only
provide the necessary conditions for optimal control problems, the DP method gives
sufficient conditions. However, the direct application of the DP method is difficult
due to the difficulty of solving the problem of “dimensional disaster” by the HJB
equation in theDPmethod.Hence theADPmethod, as an approximate solution to the
DPmethod, overcomes the limitations of the DPmethod. It is more suitable for appli-
cations in systems with strong coupling, strong nonlinearity and high complexity.
For example, the literature [18] presented a constrained adaptive dynamic program-
ming (CADP) algorithm that could be used to solve general nonlinear non-affine
optimal control problems with known dynamics. Unlike previous ADP algorithms,
it was able to handle problems with state constraints directly by proposing a con-
strained generalized policy iteration framework that transforms the traditional policy
improvement process into a constrained policy optimization problem with state con-
straints. To solve the problem of robust tracking control, the literature [19] designed
an online adaptive learning structure to build a robust tracking controller for nonlinear
uncertain systems. The literature [20] proposed an iterative method of bias policy for
solving data-driven optimal control problems for unknown continuous linear systems
by adding a bias parameter that could further relax the conditions of the initial admis-
sible controller. The literature [21] considered the first attempt at ADP control for
a nonlinear Itô-type stochastic system, which transformed a complex optimal track-
ing control problem into a stable control optimization problem by reconstructing a
new stochastic augmented system. The use of a critical neural network in iterative
learning subsequently simplifies the structure of the behavioral criterion and reduces
the computational load. The ADP approach is still very widely used for a number of
common practical systems. The literature [22] developed an event-triggered adaptive
dynamic planning method to design formation controllers, and solved the problem
of distributed formation control for multi-rotor UAS. For wind/light energy hybrid
systems, literature [23] presented an adaptive dynamic programming method based
on Bellman’s principle, which enables accurate current sharing and voltage regula-
tion. Based on this approach, it is possible to obtain the optimal control variables for
each energy body objective.

Optimal control of nonlinear systems has been one of the hot spots and difficulties
in the field of control research. As a novel technology to solve the optimal control
problem, ADP method integrates the theories of neural network, adaptive evaluation
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design, augmented learning and classical dynamic programming, to overcome the
problem of “dimensional disaster”, which also enables the acquisition of an approx-
imate optimal closed-loop feedback control law. As a consequence, delving deeper
into the theory of ADP and its algorithms for solving optimal control of nonlin-
ear systems holds immense theoretical significance and practical application value.
Although the researches on the ADP method are still in its early stages, this book
aims to equip readers with a foundational understanding of the method and empower
them to apply it to diverse optimization problems in fields such as medicine, science,
and engineering.

1.1 Optimal Control Formulation

There are several schemes of dynamic programming [1, 13, 24]. One can con-
sider discrete-time systems or continuous-time systems, linear systems or nonlin-
ear systems, time-invariant systems or time-varying systems, deterministic systems
or stochastic systems, etc. Discrete-time (deterministic) nonlinear (time-invariant)
dynamical systems will be discussed first. Time-invariant nonlinear systems cover
most of the application areas and discrete time is the basic consideration for digital
implementation.

1.1.1 ADP for Discrete-Time Systems

Consider the following discrete-time nonlinear systems:

xk+1 = F(xk, uk), k = 1, 2, ..., (1.1)

where xk ∈ R
n is the state vector and uk ∈ R

m is the control input vector. The corre-
sponding cost function (performance index function) of the system takes the form of

J (xk, uk) =
∞∑

i=k

γi−kU (xi , ui ), (1.2)

where uk = (uk, uk+1, ...) is the control sequence starting at time k. U (xi , ui ) is the
utility function. γ is the discount factor, meeting 0 < γ < 1. Note that the function
J is dependent on the initial time k and the initial state xk . Generally, it is desired
to determine u0 = (u0, u1, ...) so that J (x0, u0) is optimized (i.e., maximized or
minimized). We will use u∗

0 = (u∗
0, u

∗
1, ...) and J ∗(x0) to denote the optimal control

sequence and the optimal cost function, respectively.The objective of dynamic pro-
gramming problem in this book is to determine a control sequence uk, k = 0, 1, ...,
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so that the function J (i.e., the cost) in (1.2) is minimized. The optimal cost function
is defined as

J ∗(x0) = inf
u0

J (x0, u0) = J (x0, u
∗
0), (1.3)

which is dependent upon the initial state x0.
The control action may be determined as a function of the state. In this case,

we write uk = u(xk),∀k. Such a relationship, or mapping u : Rn → Rm , is called
feedback control, or control policy, or policy. It is also called control law. For a given
control policy μ, the cost function in (1.2) is rewritten as

Jμ(xk) =
∞∑

i=k

γi−kU (xi ,μ(xi )), (1.4)

which is the cost function for system (1.1) starting at xk when the policy uk = μ(xk)
is applied. The optimal cost for system (1.1) starting at x0 is determined as

J ∗(x0) = inf
μ

Jμ(x0) = Jμ∗
(x0), (1.5)

where μ∗ denotes the optimal policy.
Dynamic programming is based on Bellman’s principle of optimality [1, 13, 24]:

An optimal (control) policy has the property that no matter what previous decisions
have been, the remaining decisions must constitute an optimal policy with regard to
the state resulting from those previous decisions.

According to Bellman, the minimum cost of any state starting at time k consists
of two parts, one of which is the minimum cost at time k and the other part is the
cumulative sum of the infinite minimum cost starting from time k + 1. In terms of
equations, this means that

J ∗(xk) = min
uk

{U (xk, uk) + γ J ∗(xk+1)}
= min

uk
{U (xk, uk) + γ J ∗(F(xk, uk))}.

(1.6)

This is known as the Bellman optimality equation, or the discrete-time Hamilton-
Jacobi-Bellman (HJB) equation. One then has the optimal policy, i.e., the optimal
control u∗

k at time k is the uk that achieves this minimum as

u∗ = argmin
uk

J {U (xk, uk) + γ J ∗(xk+1)}. (1.7)

Since onemust know the optimal policy at time k + 1 to (1.6) use to determine the
optimal policy at time k, Bellman’s principle yields a backwards-in-time procedure
for solving the optimal control problem. It is the basis for dynamic programming
algorithms in extensive use in control system theory, operations research, and else-
where.
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1.1.2 ADP for Continuous-Time Systems

For continuous-time systems, the cost function J is also the key to dynamic pro-
gramming. By minimizing J , one gets the optimal cost function J ∗, which is often
a Lyapunov function of the system. As a consequence of the Bellman’s principle
of optimality, J ∗satisfies the Hamilton-Jacobi-Bellman (HJB) equation. But usually,
one cannot get the analytical solution of the HJB equation. Even to find an accurate
numerical solution is very difficult due to the so-called curse of dimensionality.

Consider the continuous-time nonlinear dynamical system

ẋ(t) = F(x(t), u(t)), t ≥ t0, (1.8)

where x ∈ R
n is the state vector and u ∈ R

m is the control input vector. The corre-
sponding cost function of the system can be defined as

J (x0, u) =
∫ ∞

t0

U (x(τ ), u(τ ))dτ , (1.9)

with utility function U (x, u) ≥ 0, where x(t0) = x0. The Bellman’s principle of
optimality can also be applied to continuous-time systems. In this case, the optimal
cost

J ∗(x(t)) = min
u(t)

{J (x(t), u(t))}, t ≥ t0, (1.10)

satisfies the HJB equation

− ∂ J ∗

∂t
= min

u(t)

{
U (x, u) +

(
∂ J ∗

∂x

)T

F(x, u)

}
. (1.11)

The HJB equation in (1.11) can be derived from the Bellman’s principle of opti-
mality [24]. Meanwhile, the optimal control u∗(t)will be the one that minimizes the
cost function,

u∗(t) = argmin
u(t)

{J (x(t), u(t))}, t ≥ t0. (1.12)

In 1994, Saridis and Wang [25] studied the nonlinear stochastic systems
described by

dx = f (x, t)dt + g(x, t)u dt + h(x, t)dw, t0 ≤ t ≤ T (1.13)

with the cost function

J (x0, u) = E

{∫ T

t0

(
Q(x, t) + uT u

)
dt + φ(x(T ), T ) : x (t0) = x0

}
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where x ∈ R
n, u ∈ R

m , and w ∈ R
k are the state vector, the control vector, and a

separable Wiener process; f, g and h are measurable system functions; and Q and
φ are nonnegative functions. A value function V is defined as

V (x, t) = E

{∫ T

t

(
Q(x, t) + uT u

)
dt + φ(x(T ), T ) : x (t0) = x0

}
, t ∈ I,

where I � [t0, T ]. The HJB equation is modified to become the following equation

∂V

∂t
+ LuV + Q(x, t) + uT u = ∇V (1.14)

whereLu is the infinitesimal generator of the stochastic process specified by (1.13)
and is defined by

LuV =1

2
tr

{
h(x, t)hT (x, t)

∂

∂x

(
∂V (x, t)

∂x

)T
}

+
(

∂V (x, t)

∂x

)T

( f (x, t) + g(x, t)u)

Depending on whether ∇V ≤ 0 or ∇V ≥ 0, an upper bound V̄ or a lower bound
V of the optimal cost J ∗ are found by solving equation (1.14) such that V ≤ J ∗ ≤ V̄ .
Using V̄ (or V ) as an approximation to J ∗, one can solve for a control law. This leads
to the so-called suboptimal control. It was proved that such controls are stable for the
infinite-time stochastic regulator optimal control problem, where the cost function
is defined as

J (x0, u) = lim
T→∞E

{
1

T

∫ T

t0

(
Q(x, t) + uT u

)
dt : x (t0) = x0

}

The benefit of the suboptimal control is that the bound V of the optimal cost J ∗ can
be approximated by an iterative process. Beginning from certain chosen functions
u0 and V0, let

ui (x, t) = −1

2
gT (x, t)

∂Vi−1(x, t)

∂x
, i = 1, 2, . . . . (1.15)

Then, by repeatedly applying (1.14) and (1.15), one will get a sequence of func-
tions Vi . This sequence {Vi }will converge to the bound V̄ (or V ) of the cost function
J ∗. Consequently, ui will approximate the optimal control when i tends to ∞. It is
important to note that the sequences {Vi } and {ui } are obtainable by computation and
they approximate the optimal cost and the optimal control law, respectively.
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Some further theoretical results for ADP have been obtained in [2]. These works
investigated the stability and optimality for some special cases ofADP. In [2],Murray
et al. studied the (deterministic) continuous-time affine nonlinear systems

ẋ = f (x) + g(x)u, x (t0) = x0 (1.16)

with the cost function

J (x, u) =
∫ ∞

t0

U (x, u)dt (1.17)

whereU (x, u) = Q(x) + uT R(x)u, Q(x) > 0 for x 
= 0 andQ(0) = 0, and R(x) > 0
for all x . Similar to [25], an iterative procedure is proposed to find the control law
as follows. For the plant (1.16) and the cost function (1.17), the HJB equation leads
to the following optimal control law

u∗(x) = −1

2
R−1(x)gT (x)

[
dJ ∗(x)
dx

]
. (1.18)

Applying (1.17) and (1.18) repeatedly, onewill get sequences of estimations of the
optimal cost function J ∗ and the optimal controlu∗. Starting froman initial stabilizing
control v0(x), for i = 0, 1, . . ., the approximation is given by the following iterations
between value functions

Vi+1(x) =
∫ ∞

t
U (x(τ ), vi (τ )) dτ

and control laws

vi+1(x) = −1

2
R−1(x)gT (x)

[
dVi+1(x)

dx

]

The following results were shown in [2].
(1) The sequence of functions {Vi } obtained above converges to the optimal cost

function J ∗.
(2) Each of the control laws vi+1 obtained above stabilizes the plant (1.16), for

all i = 0, 1, . . .
(3) Each of the value functions Vi+1(x) is a Lyapunov function of the plant, for

all i = 0, 1, . . .
Abu-Khalaf and Lewis [26] also studied the system (1.16) with the following

value function

V (x(t)) =
∫ ∞

t
U (x(τ ), u(τ ))dτ =

∫ ∞

t

(
xT (τ )Qx(τ ) + uT (τ )Rx(τ )

)
dτ

where Q and R are positive-definite matrices. The successive approximation to the
HJB equation starts with an initial stabilizing control law v0(x). For i = 0, 1, . . .,
the approximation is given by the following iterations between policy evaluation
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0 = xT Qx + vTi (x)Rvi (x) + ∇V T
i (x) ( f (x) + g(x)vi (x))

and policy improvement

vi+1(x) = −1

2
R−1gT (x)∇Vi (x)

where ∇Vi (x) = ∂Vi (x)/∂x . In [26], the above iterative approach was applied to
systems (1.16) with saturating actuators through a modified utility function, with
convergence and optimality proofs showing that Vi → J ∗ and vi → u∗, as i → ∞.
For continuous-time optimal control problems, attempts have been going on for a
long time in the quest for successive solutions to the HJB equation. Published works
can date back to as early as 1967 by Leake and Liu [26]. The brief overview presented
here only serves as a beginning of many more recent results [26–28].

1.2 Publication Outline

The general layout of the presentation of this monograph is given as follows. Adap-
tive dynamic programming is used to design drug dosage regulation mechanisms to
provide adaptive viral treatment strategies for input-limited organisms, and to extend
this to tumour cells, immune cells and interplay and regulation schemes among the
immune system. The main contents of this monograph are shown as follows:

Chapter 1 introduces the research background, development and current status
of ADP both domestically and internationally, as well as the idea and design
framework of the underlying ADP, including discrete-time and continuous-time
systems.

Chapter 2 investigates optimal regulation scheme between tumor and immune
cells based onADPapproach.The therapeutic goal is to inhibit the growth of tumor
cells to allowable injury degree, and maximize the number of immune cells in the
meantime. The reliable controller is derived through the ADP approach to make
the number of cells achieve the specific ideal states. Firstly, the main objective is
toweaken the negative effect caused by chemotherapy and immunotherapy, which
means that minimal dose of chemotherapeutic and immunotherapeutic drugs can
be operational in the treatment process. Secondly, according to nonlinear dynam-
ical mathematical model of tumor cells, chemotherapy and immunotherapeutic
drugs can act as powerful regulatory measures, which is a closed-loop control
behavior. Finally, states of the system and critic weight errors are proved to be
ultimately uniformly bounded with the appropriate optimization control strategy
and the simulation results are shown to demonstrate effectiveness of the cyber-
netics methodology.

Chapter 3 investigates the optimal control strategy problem for nonzero-sum
games of the immune system based on adaptive dynamic programming. Firstly,
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the main objective is approximating a Nash equilibrium between the tumor cells
and the immune cell population, which is governed through chemotherapy drugs
and immunoagents guided by the mathematical growth model of the tumor cells.
Secondly, a novel intelligent nonzero-sum games-based ADP is put forward to
solve optimization control problem through reducing the growth rate of tumor cells
andminimizing chemotherapy drugs and immunotherapy drugs.Meanwhile, con-
vergence analysis and iterative ADP algorithm are specified to prove feasibility.
Finally, simulation examples are listed to account for availability and effectiveness
of the research methodology.

Chapter 4 devotes to evolutionary dynamics optimal control oriented tumor
immune differential game system. Firstly, the mathematical model covering
immune cells and tumor cells considering the effects of chemotherapy drugs
and immune agents. Secondly, the bounded optimal control problem covering
is transformed into solving HJB equation considering the actual constraints and
infinite-horizon performance index based on minimize the amount of medication
administered. Finally, approximate optimal control strategy is acquired through
iteration dual heuristic dynamic programming algorithm avoiding dimensional
disaster effectively and providing optimal treatment scheme for clinical applica-
tions.

Chapter 5 mainly proposes an evolutionary algorithm and its first application
to develop therapeutic strategies for Ecological Evolutionary Dynamics Systems
(EEDS), obtaining the balance between tumor cells and immune cells by rationally
arranging chemotherapeutic drugs and immune drugs. Firstly, an EEDS nonlinear
kinetic model is constructed to describe the relationship between tumor cells,
immune cells, dose, and drug concentration. Secondly, the N-Level Hierarchy
Optimization (NLHO) algorithm is designed and compared with 5 algorithms
on 20 benchmark functions, which proves the feasibility and effectiveness of
NLHO. Finally, we apply NLHO into EEDS to give a dynamic adaptive optimal
control policy, and develop therapeutic strategies to reduce tumor cells, while
minimizing the harm of chemotherapy drugs and immune drugs to the human
body. The experimental results prove the validity of the research method.

Chapter 6 investigates the optimal control strategy for organism by using ADP
method under the architecture of Firstly, a tumormodel is established to formulate
the interaction relationships among normal cells, tumor cells, endothelial cells
and the concentrations of drugs. Then, the ADP-based method of single-critic
network architecture is proposed to approximate the coupled HJEs under the
medicine dosage regulation mechanism (MDRM). According to game theory, the
approximate MDRM-based optimal strategy can be derived, which is of great
practical significance. Owing to the proposed mechanism, the dosages of the
chemotherapy and anti-angiogenic drugs can be regulated timely and necessarily.
Furthermore, the stability of the closed-loop system with the obtained strategy is
analyzed via Lyapunov theory. Finally, a simulation experiment is conducted to
verify the effectiveness of the proposed method.

Chapter 7 investigates the constrained adaptive control strategy based onvirother-
apy for organism using the MDRM. Firstly, the tumor-virus-immune interaction
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dynamics is established to model the relations among the tumor cells (TCs), virus
particles and the immune response. ADP method is extended to approximately
obtain the optimal strategy for the interaction system to reduce the populations
of TCs. Due to the consideration of asymmetric control constraints, the non-
quadratic functions are proposed to formulate the value function such that the
corresponding Hamilton-Jacobi-Bellman equation (HJBE) is derived which can
be deemed as the cornerstone of ADP algorithms. Then, the ADP method of
single-critic network architecture which integrates MDRM is proposed to obtain
the approximate solutions of HJBE and eventually derive the optimal strategy.
The design of MDRM makes it possible for the dosage of the agentia containing
oncolytic virus particles to be regulated timely and necessarily. Furthermore, the
uniform ultimate boundedness of the system states and critic weight estimation
errors are validated by Lyapunov stability analysis. Finally, simulation results are
given to show the effectiveness of the derived therapeutic strategy.
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Chapter 2
Neural Networks-Based Immune
Optimization Regulation Using Adaptive
Dynamic Programming

2.1 Introduction

In the fight against cancer, there had been no effectivemeasures before chemotherapy
and radiation appeared since there only exist tiny differences between cancer cells
and normal cells. Doctors operate to remove solid tumors that have not yet spread,
which can not guarantee cancer from recurring. When radiotherapy and chemother-
apy have increased side effects, and targeted therapy is not flexible because of its
strong pertinence, the scientific research direction began to turn to the human body
system. Generally, tumor cells escape from the immune system, not because it fails
for the immune system to recognize them or it is not activated, but cancer cells have
evolved away to block the activation ofT cells bymaking a specific binding. Thus, the
medical communities have struggled to find a lot of special means for cancer cells to
intercept the activation of the T cells, freeing up the immune system. Compared with
traditional treatments such as surgery, radiation and chemotherapy, immunotherapy
has fewer side effects and better therapeutic effects. However, it is difficult to tackle
the transient period of immune agents. Therefore, the hybrid therapy of chemother-
apy and immunotherapy is a better choice. As [1], it is hardly sufficient to control
tumor growth through neither chemotherapy nor immunotherapy alone, but tumor
cells can be eradicated by adopting the combination therapies which is known as
biochemotherapy described in [2].

With extensive development of nonlinear dynamic [3, 4], its engineering applica-
tion scenarios enjoy increasing diversification such as competitive Nash equilibrium
problems, especially in the biomedical field. And not coincidentally, game theory
has been introduced into the interaction model of tumor cells and immune cells. Both
of the chemotherapy and immunotherapy aim at reducing the number of tumor cells.
Based on this fact, the collaborative game is formed and one can design adaptive
therapy from the view of game theory. Multiple biological interactions constitute
complex nonlinear growth process of tumor cells, however, regarding major influ-
ence factors of tumor cell populations as research object is the focus. Hunting cells
refer to the immune cells participating in removing foreign agents and strengthening
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the immune response. temperatures have suggested that cell-mediated anti-tumor
immunity contributed to increasing the population of hunting tumor cells to main-
tain a specific proportion between the resting and the hunting predator cells as 40% in
literature [5], which was beneficial for maintenance of the tumor dormant state. The
immune regulations vary from individual to individual, but immunotherapy-based
optimal regulation plays the role of reducing tumor cells without considering certain
circumstances in case of special invocation. Enhanced tumor antigen presentation
could effectively stimulate dendritic cells and increase the immunotherapy-based
curative effect in [6]. The known “predator-prey” between immune cells and tumor
cells leads to cyclic growth and reduction, which can be continue indefinitely or
reach an equilibrium saddle point determined by system parameters. Literature [7]
investigated nonlinear dynamical model which provided guiding significance for
introducing that into cybernetics. As known, system identification or optimal control
is of great practical value. As a powerful and effective optimization algorithm, the
ADP method can solve the nonlinear optimal control problems well, realizing the
most appropriate therapeutic strategy.

Of course, the immune system has the responsibility for restraining tumor growth,
but it is hardly to fight out the tumor cells alone. Firstly, ego characteristic of tumor
cells compared to normal cells within the body leads to no exclusion and tolerance
to tumor cells of the immune system. Secondly, there is no strong defense mecha-
nism itself in fighting with the cancer cells which means the failure of the immune
response. Finally, Immune function was observed to be protective through interven-
tion with organic binding agents of CD4 and CD8 cells. Chemotherapy can not only
rapidly kill differentiated tumor cells, but also destroy regular cells. This side effect
caused by chemotherapy can be lessened through introducing the immunotherapy.
Thus the combined therapy of chemotherapy and immunotherapy is more reason-
able. Immunotherapies can strengthen the immune system through extra stimula-
tion, on the other hand, improve the ability to recognize foreign entity. Therefore,
decelerating the growth rate of tumor cells with minimized dose of chemotherapy
and immunotherapeutic drugs is the control objective. Furthermore, optimal control
strategy is obtained throughADPmethod, giving the optimal levels of each treatment
regimen through nonzero-sum differential games strategy developed in [8].

Prescribed performance tracking control has been creatively developed as [9],
however, there is seldom any literatures focusing on this scope considers mutual rela-
tionship among tumor cells, immune cells, chemotherapy and immunotherapy drugs,
let alone setting the performance as eventually acquired of optimal therapeutic effect
associatedwith couplingbehaviorsmentioned above.Retrospect to literatures as [10],
the chapter transformed it into multi-player nonzero-sum games problems whose
optimal control was obtained by complex decoupling in dealing with Hamilton-
Jacobi equation as [11]. Subsequently, online adaptive and off-policy learning algo-
rithms were respectively developed in [12–14]. Of course, the constrained-input was
taken into consideration, when it comes to practical applications in [15], even more
intensive work on uncertain constraints were in contemplation considered as [16]. As
[17], the control policies of the distributed subsystems acted as players, noticeably, the
chapter was formulated as a two-players nonzero-sum game including chemotherapy
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and immunotherapy. [18] first introduced an updating strategy based on intertask
relationships. Synchronously, reciprocal action between the tumor cells and immune
cells which could be analogous to interactions between systems in [19, 20].

The unknown nonlinear dynamic is usually implemented by fuzzy control as
[21, 22] and neural networks in [18, 23], where the actor network and critic network
are adopted for updating control policy at an appropriate time through policy iteration
technique as [24–26]. The convergence of model-based policy iteration algorithm
is equivalent to that of data-based learning as [27]. Similarly, states of the system
and critic error are required to be ultimately uniformly bounded during the process
of value iteration, which is guaranteed through event-triggered formation control
scheme firstly proposed for all signals of the closed-loop system in literature [28].
According to the iterative value algorithm, the optimum can be obtained through
learning continuously [29, 30]. However there is little research on the two-players
nonzero-sum game considering tumor cells and immune cells using the proposed
value iteration learning.

2.2 Preliminaries

As is known, there exist interaction relationships among the anticancer agent cells,
lymphocytes and macrophages that constitute the basic immune system microen-
vironment, which can be presented as follows. Firstly, T-lymphocytes and cyto-
toxic macrophages/natural killer cells can effectively damage tumor cells. Secondly,
destroyed behaviour of macrophages can also active T-lymphocytes for launching
another attack. Meanwhile, the population of T-lymphocytes can be fed through rest-
ing cells. Finally, the model is guided by degradation of resting cells and activation
of immune cells by natural growth rate. This section gives the nonlinear growth
equation which can represent the whole immune response.

Ntotal = υNH (t)NT (t)

ν + NT (t)
(2.1)

where NH (t), NT (t) denote the number of hunting cells and tumor cells at time t ,
respectively. υ and ν are positive constants. The changes in quantity caused by the
inactivation of the immune cells and the apoptosis of tumor cells are presented as:

dNT (t)

dt
= −σ1NH (t)NT (t)

dNH (t)

dt
= −σ2NH (t)NT (t) (2.2)

where σ1 denotes the loss rate of NT (t) caused by NH (t) and σ2 represents the loss
rate of NH (t) caused by NT (t). The situations above reflect the competition between
tumor cells and the host cells. Then we construct the dynamic equations as follows
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Table 2.1 Detailed descriptions of system parameters

Parameter Estimated value

ι1 Intrinsic growth rate of NT (t) ignoring NCD(t)

�1 Reciprocal carrying capacity of NT (t) irrespective of NT (t) and NCD(t)

� Constant influx rate of NH (t)

σ1 Rate of loss of NT (t) for NH (t)

δ1 Response coefficient to NCD(t) for NT (t)

D Per capita decay rate of NH (t) without regard to NT (t), NCD(t) and NI D(t)

σ2 Rate of loss of NH (t) for NT (t)

δ2 Response coefficient to NCD(t) for NH (t)

υ Maximum recruitment rate of NH (t) by ligand-transduced NT (t)

ς Maximum recruitment rate of NH (t) by NI D(t)

ν Steepness coefficient of NH (t) by NT (t)

ϑ Steepness coefficient of NH (t) by NI D(t)

ϕ1 Decay rate of NCD(t)

ϕ2 Decay rate of NI D(t)

ṄT (t) = ι1NT (t)(1 − �1NT (t)) − σ1NT (t)NH (t)

− δ1NCD(t)NT (t)

ṄH (t) = υNH (t)N 2
T (t)

ν + N 2
T (t)

+ ςNH (t)NI D(t)

ϑ + NI D(t)
− σ2NT (t)NH (t)

− DNH (t) − δ2NCD(t)NH (t)

(2.3)

where D represents the death rate of cells without considering any tumor cells.
ια (α = 1, 2) and �α denote the per capita growth rates and reciprocal carrying
capacities. The descriptions of the other associated parameters are given in Table2.1.

Consider the given chemotherapy and immunotherapy drugs as u(t) and v(t) at
time t , which is regarded as multiple dose administration compared with influence of
recombinant human interleukin-11 for injection or recombinant human granulocyte
colony-stimulating factor injection. Assume that targeted therapy cannot be achieved
through only chemotherapeutic drugs. Then we can obtain that

fresponse(t) = sα(1 − e−λu(t)) (2.4)

where sα is the different response coefficients for distinguishing the change rate of
different cells. The mathematical model considering injected drugs is presented as
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ṄCD(t) = u(t) − ϕ1NCD(t)

ṄI D(t) = v(t) − ϕ2NI D(t)

ṄT (t) = ι1NT (t)(1 − �1NT (t)) − σ1NT (t)NH (t)

− δ1NCD(t)NT (t) − s2(1 − e−λu(t))

ṄH (t) = υNH (t)N 2
T (t)

ν + N 2
T (t)

+ ςNH (t)NI D(t)

ϑ + NI D(t)
− σ2NT (t)NH (t) − DNH (t)

− δ2NCD(t)NH (t) − s1(1 − e−λu(t)) (2.5)

where NCD(t) and NI D(t) are concentrations of chemotherapy and immunotherapy.
v(t) and u(t) are the doses of chemotherapeutic drug and immunotherapeutic drug.
Generally speaking, λ is taken as 1 for the unknown role of cytokines.

Remark 2.1 The model (2.5) describes the relations among the hunting cells, the
tumor cells, the concentration of chemotherapy agentia, and the concentration of
immunotherapy agentia. From (2.5) we can find both of the hunting cells and the
chemotherapy agentia can reduce the number of tumor cells, and the immunotherapy
agentia can stimulate the growth of hunting cells. On the other hand, the tumor cells
can influence the number of hunting cells. Based on this complicated interactive
relationship, we can obtain the optimal object through ADP, that is, minimization of
tumor cells while ensuring the number of normal cells at certain time t .

Before proceeding, let X = [NT , NH , NCD, NI D]T , then the model (2.5) can be
simplified as

Ẋ(t) = f (X) + g(X)u(t) + κ(X)v(t) (2.6)

where f (X) is the right-hand dynamics of (2.5) excluding the control u(t) and v(t).
The matrixes g(X) = [0, 0, 1, 0]T and κ(X) = [0, 0, 0, 1]T .

For system (2.6), the performance index function of the ε player can be given as

Jε(X0) =
∫ ∞

0

(
XTQεX + uTRε1u + vTRε2v

)
dτ (2.7)

where Qε is positive definite matrix, Rε1 and Rε2 are symmetric positive matrixes.
The corresponding cost functions are presented as:

Vε(X, u, v) =
∫ ∞

t
Rε(X, u, v)dτ (2.8)

with the utility function

Rε(X, u, v) =XTQεX + uTRε1u + vTRε2v. (2.9)
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Definition 2.2 For two-player NZS game of system (2.6), the Nash equilibrium
solution is said to be obtained with the control pair (u∗, v∗) which satisfied that,

Vε(u
∗, v∗) ≤ Vε(u, v∗)

Vε(u
∗, v∗) ≤ Vε(u

∗, v) (2.10)

for any admissible control policies u and v.

The Hamilton functions can be constructed as:

Hε(X, u, v) = XTQεX + uTRε1u + vTRε2v

+ ∇VT
ε ( f (X) + g(X)u(t) + κ(X)v(t)) (2.11)

where ∇Vε is the partial derivative of the cost function and ε = 1, 2. According to
the stationarity conditions at equilibrium points, the optimal control for two players
are obtained

u∗ = −1

2
R−1

11 g
T (X)∇V∗

1

v∗ = −1

2
R−1

22 κT (X)∇V∗
2 (2.12)

with V∗
1 and V∗

2 being the solutions of coupled HJ equations as

XTQ1X − 1

4
∇V∗T

1 g(X)R−1
11 g

T (X)∇V∗
1 + ∇V∗T

1 f (X)

+ 1

4
∇V∗T

2 κ(X)R−1
22 R12R

−1
22 κT (X)∇V∗

2

− 1

2
∇V∗T

1 κ(X)R−1
22 κT (X)∇V∗

2 = 0, (2.13)

and

XTQ2X − 1

4
∇V∗T

2 κ(X)R−1
22 κT (X)∇V∗

2 + ∇V∗T
2 f (X)

+ 1

4
∇V∗T

1 g(X)R−1
11 R21R

−1
11 g

T (X)∇V∗
1

− 1

2
∇V∗T

2 g(X)R−1
11 g

T (X)∇V∗
1 = 0. (2.14)

Lemma 2.3 For nonlinear system (2.6), suppose thatV∗
1 andV∗

2 satisfy the equations
(2.13) and (2.14). Then under the optimal control (2.12), the system is asymptotically
stable.

Proof The proof is omitted since it is similar to that in [31, 32].
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By solving the coupled HJ equations (2.13) and (2.14), one can obtain the optimal
control as (2.12), which means the Nash equilibrium for the two-player NZS game
system is attained. Nevertheless, due to the existence of nonlinear terms and coupled
terms, these partial differential equations are uneasy to solve. SinceADP is a powerful
approximate learning method, the approximate solutions of (2.13) and (2.14) can be
acquired.

2.3 Design of Adaptive Controller

In order to find the optimal control strategy, a critic network is constructed based on
neural network firstly. And then optimal value function can be shown as:

V∗
ε = (ζ∗

ε )T ξε(X) + oε, ε = 1, 2, (2.15)

where ζ∗
ε ∈ Rpε , ξε ∈ Rpε and oε ∈ R are the ideal weight vector, activation function

and approximation error of the neural network. As it’s scarcely possible to get the
weight ζ∗

ε , we give the approximate version

V̂∗
ε = (ζ̂ε)

T ξε(X). (2.16)

Based on (2.12) and (2.15), we obtain the optimal control as

u∗ = −1

2
R−1

11 g
T (X)((∇ξ1(X))T ζ∗

1 + ∇o1)

v∗ = −1

2
R−1

22 κT (X)((∇ξ2(X))T ζ∗
2 + ∇o2) (2.17)

Then we further get the approximate control policies as

û = −1

2
R−1

11 g
T (X)(∇ξ1(X)T ζ̂1

v̂ = −1

2
R−1

22 κT (X)(∇ξ2(X)T ζ̂2 (2.18)

Remark 2.4 For the unknowable nature of ideal weights, the NNs are used to
approximate the system dynamics and approximate version as (2.16), aming at min-
imizing the current estimate of the value functions in (2.15) by selecting policies
(2.18) can be obtained with available closed-form expressions.

According to (2.18), the closed-loop system can be rewritten as

Ẋ(t) = f (X) + g(X)û + κ(X)v̂. (2.19)
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Furthermore, we can attain the approximate Hamilton as

Hε(X, û, v̂) = XTQεX + ûTRε1û

+ v̂TRε2v̂ + (ζ̂ε)
T∇ξε(X)Ẋ(t)

= eε(t). (2.20)

To approach the optimal strategy and minimize eε(t), the goal of adaptive learn-
ing is set to be E = E1 + E2 = 1/2e21 + 1/2e22. Then applying the gradient descent
method, we obtain the learning law of critic for player ε

˙̂
ζε = −�ε

1

(δTε δε + 1)2
∂E(t)

∂ζ̂ε

= −�ε
1

(δTε δε + 1)2
∂Eε(t)

∂ζ̂ε

= −�ε
δεeε(t)

(δTε δε + 1)2

(2.21)

where δε = ∇ξε(X)Ẋ(t), and �ε is the positive learning law. Let ζ̃ε = ζ∗
ε − ζ̂ε, then

we have

˙̃ζε = �ε
δεσε(t)

(δTε δε + 1)2
− �ε

δεδ
T
ε ζ̃ε

(δTε δε + 1)2
= �εδεσε(t) − �εδ̄εδ̄

T
ε ζ̃ε, (2.22)

where δε = δε/(δ
T
ε δε + 1)2, δ̄ε = δε/(δ

T
ε δε + 1) and σε(t) = −∇oTε (X)( f (X) +

g(X)û + κ(X)v̂) is the approximate residual error when employing critic neural
network [33].

Before presenting the main results of this chapter, two regular assumptions are
necessary [34–36].

Assumption 2.1 For ε = 1, 2, the signal δ̄ε is persistently excited such that the fol-
lowing inequality is satisfied

ςε Iνε×νε
≤

∫ t+T

t
δ̄εδ̄

T
ε dε, (2.23)

where νε denotes the neuro number of the εth critic network.

Assumption 2.2 For ε = 1, 2, there exist positive constants ξεmax , oεmax and σεmax

such that the following inequalities hold, that is, ‖∇ξε(X)‖ ≤ ξεmax , ‖∇o‖ ≤ oεmax

and ‖σε‖ ≤ σεmax .

Applying the Lyapunovmethod, the stability in the sense of UUB is demonstrated
to be guaranteed by the following theorem.

Theorem 2.5 For system (2.6),when the weight updating laws of critic networks are
given by (2.21), then the UUB properties of the weight estimation error ζ̃ε can be
guaranteed by the obtained control policies (2.18).
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Proof Select the Lyapunov function as

L = 1

2
�−1
1 ζ̃T

1 ζ̃T
1 + 1

2
�−1
2 ζ̃T

2 ζ̃T
2 . (2.24)

Taking the time derivative of (2.24), then we obtain

L̇ = �−1
1 ζ̃T

1
˙̃ζ1 + �−1

2 ζ̃T
2

˙̃ζ2
= ζ̃T

1 (δ1σ1(t) − δ̄1δ̄
T
1 ζ̃1) + ζ̃T

2 (δ2σ2(t) − δ̄2δ̄
T
2 ζ̃2) (2.25)

According to Young’s inequality, we have

ζ̃T
1 δ1σ1(t) ≤ ζ̃T

1 δ̄1σ1(t) ≤ 1

2
ζ̃T
1 δ̄1δ̄

T
1 ζ̃1 + 1

2
σ2
1max . (2.26)

Similarly,

ζ̃T
2 δ2σ2(t) ≤ 1

2
ζ̃T
2 δ̄2δ̄

T
2 ζ̃2 + 1

2
σ2
2max . (2.27)

Substituting (2.26) and (2.27) into (2.25), we get

L̇ ≤ −1

2
ζ̃T
1 δ̄1δ̄

T
1 ζ̃1 − 1

2
ζ̃T
2 δ̄2δ̄

T
2 ζ̃2 + 1

2
(σ2

1max + σ2
2max ). (2.28)

From (2.28) we can conclude that L̇ < 0 when one of the following conditions
holds

‖ζ̃1‖ >

√
σ2
1max + σ2

2max

λmin(δ̄1δ̄
T
1 )

, (2.29)

or

‖ζ̃2‖ >

√
σ2
1max + σ2

2max

λmin(δ̄2δ̄
T
2 )

. (2.30)

According to Lyapunov theory, it yields that the weight estimation errors for both
critic networks are UUB.

Remark 2.6 Theweight matrices are usually updated through certain renewal equa-
tions, and from (2.29) and (2.30), we can draw that the approximation weight error
will asymptotically converge to zero as νε → ∞.

Theorem 2.7 Consider the system (2.6). The weight updating laws for critic net-
works are given by (2.21). Then the obtained policies (2.18) can force system states
X to be UUB.
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Proof In order to discuss the stability of closed-loop system, the derivative of V =
V∗
1 + V∗

2 is considered as

V̇ =(∇V∗
1 )T ( f (X) + g(X)û + κ(X)v̂)

+ (∇V∗
2 )T ( f (X) + g(X)û + κ(X)v̂). (2.31)

Recalling (2.13) and (2.14), we have

∇V∗T
1 f (X) = − XTQ1X + 1

4
∇V∗T

1 g(X)R−1
11 g

T (X)∇V∗
1

− 1

4
∇V∗T

2 κ(X)R−1
22 R12R

−1
22 κT (X)∇V∗

2

+ 1

2
∇V∗T

1 κ(X)R−1
22 κT (X)∇V∗

2 , (2.32)

and

∇V∗T
2 f (X) = − XTQ2X + 1

4
∇V∗T

2 κ(X)R−1
22 κT (X)∇V∗

2

− 1

4
∇V∗T

1 g(X)R−1
11 R21R

−1
11 g

T (X)∇V∗
1

+ 1

2
∇V∗T

2 g(X)R−1
11 g

T (X)∇V∗
1 . (2.33)

For ε = 1, we can obtain V̇∗
1 as

V̇∗
1 = − XTQ1X − 1

4
∇V∗T

1 g(X)R−1
11 g

T (X)∇V∗
1

− 1

4
∇V∗T

2 κ(X)R−1
22 R12R

−1
22 κT (X)∇V∗

2

− ∇V∗T
1 (g(X)(u∗ − û) + κ(X)(v∗ − v̂)). (2.34)

According to (2.15) and (2.16) we have

V̇∗
1 = − XTQ1X − 1

4
∇V∗T

1 g(X)R−1
11 g

T (X)∇V∗
1

− 1

4
∇V∗T

2 κ(X)R−1
22 R12R

−1
22 κT (X)∇V∗

2

+ 1

2
((∇ξ1(X))T ζ∗

1 + ∇o1)
T
(
g(X)R−1

11 g
T (X)

× ((∇ξT1 (X))T ζ̃1 + ∇o1) + κ(X)R−1
22 κT (X)

× ((∇ξT2 (X))T ζ̃2 + ∇o2)
)
. (2.35)
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Due to Assumption 2.2 and Theorem 2.5, we obtain that

V̇∗
1 ≤ − XTQ1X − 1

4
∇V∗T

1 g(X)R−1
11 g

T (X)∇V∗
1

− 1

4
∇V∗T

2 κ(X)R−1
22 R12R

−1
22 κT (X)∇V∗

2 + θ1,

(2.36)

where the positive constant θ1 denotes the bound of the term 1
2 ((∇ξ1(X))T ζ∗

1 +
∇o1)T

(
g(X)R−1

11 g
T (X)((∇ξT1 (X))T ζ̃1 + ∇o1) + κ(X)R−1

22 κT (X)((∇ξT2 (X))T ζ̃2

+∇o2)
)
. As R11, R12 and R22 are symmetric positive definite, we have

1

4
∇V∗T

2 κ(X)R−1
22 R12R

−1
22 κT (X)∇V∗

2

+1

4
∇V∗T

1 g(X)R−1
11 g

T (X)∇V∗
1 > 0. (2.37)

Furthermore, we attain

V̇∗
1 ≤ −XTQ1X + θ1 ≤ −λmin(Q1)‖X‖2 + θ1. (2.38)

Similarly, for ε = 2, it yields that

V̇∗
2 ≤ −XTQ2X + θ2 ≤ −λmin(Q2)‖X‖2 + θ2, (2.39)

where the definition of θ2 is similar to that of θ1. Then it can be concluded that V̇ < 0
when the following inequality is satisfied

‖X‖ > max

{√
θ1

λmin(Q1)
,

√
θ2

λmin(Q2)

}
� Θ. (2.40)

Thus with the proposed control policies (2.18), the system state N is UUB with
the bound Θ . This completes the proof.

Remark 2.8 From Theorems 2.5 and 2.7, we can conclude that under the obtained
control policies the states of the system X and the critic weight error ζ̃ε are ultimately
uniformly bounded.

Remark 2.9 According to the clinical requirements, the specific value of the cost
function is finalised. Transformation is implemented from the mathematical mecha-
nismmodel to the solvable affine model. Subsequently, the chapter solve the optimal
control problem that means minimum dose of medicine can realize the best thera-
peutic effect.
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2.4 Simulation and Numerical Experiments

To verify the proposed method in the previous section, a simulation is given as
followed.

2.4.1 States Analysis on Tumor Cell Growth

According to clinical medical statistics borrowed from the literature [37], the specific
parameters of the dynamic models are presented as Table2.2.

According to (2.5) and Table2.2, we construct the model (2.41)

ṄT (t) = 0.00431NT (t)(1 − 1.02 × 10−9)NT (t))

− 6.41 × 10−11NT (t)NH (t)

− 0.08NCD(t)NT (t) − (1 − e−u(t))

ṄH (t) = 0.33 + 0.0125NH (t)N 2
T (t)

2.02 × 107 + N 2
T (t)

+ 0.125NH (t)NI D(t)

2 × 107 + NI D(t)

− 3.42 × 10−6NT (t)NH (t) − (1 − e−u(t))

− 0.204NH (t) − 3.42 × 10−6NCD(t)NH (t)

ṄCD(t) = u(t) − 0.1NCD(t)

ṄI D(t) = v(t) − NI D(t) (2.41)

The initial state of tumor cells N1(t) and immune cells N2(t) in a patient and follow
a certain chemotherapy and immunotherapy regimen. Correspondingly, N3(t) and
N4(t) respectively denote the concentrations of chemotherapy and immunotherapy.
And we can get the following curves on systems states tumor cells, immune cells,
chemotherapy and immunotherapy drugs as shown in Fig. 2.1. Initial value is set as
X0 = [

20 10 8 6
]T
.

Table 2.2 Concentration variation on immune cells, tumor cells, chemotherapeutic drug and
immunoagents

Parameter Estimated value Units Parameter Estimated value Units

ι1 0.00431 day−1 �1 1.02 × 10−9 cell−1

σ1 6.41 × 10−11 cell−1 δ1 0.08 day−1

D 0.204 day−1 σ2 3.42 × 10−6 cell−1

δ2 2 × 10−11 day−1 υ 0.0125 day−1

ς 0.125 day−1 ν 2.02 × 107 cell2

ϑ 2 × 107 cell ϕ1 0.1 day−1

ϕ2 1 day−1
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Fig. 2.1 The curves of system states

It is obviously that the control policies can stabilize the nonlinear system and
make the system states tend to zero which means that the closed-system is stable
and the control method is effective. Retrospect the original problem that the key is
to minimize cancer cells and reduce therapy toxicity as possible.

2.4.2 Weight Analysis of Control Policies

Theweights ζ∗
ε of the control policies u(t) and v(t) can be estimated through the value

function V̂∗
ε = (ζ̂ε)

T ξε(X) in (2.16), and the performance index is shown as (2.6)with
Q1 = I4×4, Q2 = 5Q1, R11 = R22 = 1, R12 = R21 = 2. The initialize weights are
set as [−0.25,−0.25,−1,−0.25]T . The selected activation function is selected as
[ζT

11→15, ζ
T
16→18, ζ

T
19→10],where ζ11→15 = [N 2

1 (t), N1(t)N2(t), N1(t)N3(t), N1(t)N4(t),
N 2
2 (t)] and ζ16→18 = [N2(t)N3(t), N2(t)N4(t), N 2

3 (t)] and ζ19→10 = [N3(t)N4(t),
N 2
4 (t)]
According to Fig. 2.2, we can conclude that the proposed optimal control demon-

strated a shorter convergence time than that without taking optimal control, where
the former needs only 10s, but the later may be 38s, which draws the superiority of
the proposed method.

In Fig. 2.3,we can obtain the less doses of the drugs is another advantage compared
with that without taking optimal control. Taking comprehensive consideration of
Figs. 2.2 and 2.3, we can draw a conclusion that the adopted algorithm can not only
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Fig. 2.2 Optimal control policies u(t)

Fig. 2.3 Optimal control policies v(t)
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Fig. 2.4 The curves of system states

decrease the convergence time but also reduce doses of chemotherapy drugs and
immune agents, and patients will benefit from for the minimal toxicity and shorter
response time.

When the initialize state is set as [−0.5,−0.1,−1,−0.4]T , and the other param-
eters are unaltered, we give another set of figures as Figs. 2.4, 2.5 and 2.6. In Figs. 2.5
and 2.6, there exist more obvious advantages for the proposed algorithms over that
without taking optimal control in response time and control policies,and we can
conclude that effectiveness of the control method does not vary in the different ini-
tial weights.

2.5 Conclusion

This chapter has introduced adaptive dynamic programming into solving the optimal
control policies of tumor cells growth model and realized objective of minimizing
tumor cells with the minimum dose of chemotherapeutic and immunotherapeutic
drugs. As is known, the negative effect caused by chemotherapy and immunotherapy
must be reduced for the reasonable treatment plan extracted from the optimal con-
trol behavior. Convergence properties have been proved to be guaranteed through
Lyapunov theory. Meanwhile, states of the system and critic error have been demon-
strated to be ultimately uniformly bounded. Simulations have been given to verify
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Fig. 2.5 Optimal control policies u(t)

Fig. 2.6 Optimal control policies v(t)
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rationality of the proposed method. In the future work, we will further investigate
the medical frontier topics and propose adaptive therapeutic methods to solve these
issues by employing ADP approach.
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Chapter 3
Optimal Regulation Strategy
for Nonzero-Sum Games of the Immune
System Using Adaptive Dynamic
Programming

3.1 Introduction

As the rapid increase of tumor patients, immunotherapies integrated with multi-
pronged approaches are being burgeoning for treatment of cancers with specific
forms, especially for poorly immunogenic tumors as [1]. The original intention of
immunotherapy is fighting cancer cells with their own lethality of immune cells.
AIDSas a typical immunodeficiency syndrome caused by failure of immune response
tends to be attributed to weakened immune levels, however, Natural killer cell pop-
ulation determine whether shutdown of immune system, once the activate immune
system can not be suspended from and produce cytokines [2], which is regarded as an
overreaction of the immune system such as COVID-19. Thus, the Nash equilibrium
between the tumor cells and the immune cell population needs to be solved through
optimal regulation based on specific learning method, and optimal control scheme is
firstly brought into this field with its unique superiority, what’s more, nonzero-sum
games-based ADP enjoys meliority and practicability.

Decision and estimation on unknown nonlinearity existed so extensively in fields
of engineering practice, medical treatments and even the social sciences, such that
literature [3] firstly proposed the evaluation of the designed S-Box with highly non-
linearity on the basis of Chinese I-Ching philosophy. It is of great importance to
make a suitable treatment decision in the field of health care where remains highly
nonlinearity. To obtain an optimal mixed treatment strategy, the growth model of cell
population levels was developed based on combination of immune and chemother-
apy as literatures [4, 5]. When it comes to reaction of the immune system to tumor
growth, a rather complicated nonlinear model of the immune system is requisite to
simulate the overall aggressive combination treatment plan of immunotherapy and
chemotherapywell. Thus, the process of solving the nonlinear function is hardly to be
achieved unless the application of exceptionally optimized iterative algorithm such as
backstepping techniques in [6], self-learning optimal regulation in [7], hierarchical
lifelong learning as [8], broad learning adaptive neural control in [9] and adap-
tive dynamic programming, which benefits from its adaptive capability and strong

© The Author(s) 2024
J. Sun et al., Adaptive Dynamic Programming,
https://doi.org/10.1007/978-981-99-5929-7_3

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-5929-7_3&domain=pdf
https://doi.org/10.1007/978-981-99-5929-7_3


34 3 Optimal Regulation Strategy for Nonzero-Sum Games …

autonomous iterative learning ability [10, 11]. Whether backstepping or adaptive
dynamic programming both could guarantee the control objectivewould be achieved,
and unknown nonlinear function matched the value of successive searching approx-
imation through neural networks or fuzzy control as literatures [12–15].

H∞ control enjoys excellent disturbance suppression while minimizing perfor-
mance index and it is recognized as a typical two-player zero-sum problem, which
can be equivalent to solving algebraic Riccati equations, and it is generally applied
into linear dynamics systems, of course, systems with quadratic performance index
could be actually solved such as literature [16]. Meanwhile, the familiar Hamilton-
Jacobi-Isaacs is perceived as an effective medium in dealing with systems consider-
ing inherent nonlinearity, such as unknown mechanical parameters in [17], which is
difficult to achieve using conventional methods for absence of exact system parame-
ters. The mainstream analysis of ADP is seeking optimal control strategy integrated
with solution to Bellman functions without information of system dynamics, which
has ascended to the core methodologies of optimization and artificial intelligence.
When it comes to actual models, control constraint has been definitely considered as
[18–20], thus the chapter mainly focuses on dynamic model of the immune system
which limits the single injection of drugs to an intervention level, and the optimal
control scheme is transformed into constrained control which needs to take a dis-
counted factor into account, avoiding infinite time dimension effectively, which will
lead to development of optimal constrained control policy.

Model-free adaptive control was developed to obtain optimal control strategy
without knowledge of exact system parameters as literatures [21–23], and multi-
ple neural networks were constructed to achieve multi-objective approximation or
optimization control process. Research with respect to multiple networks has been
extended to multitudinous actor-critic constructions. A tremendous amount of prac-
tical application scenarios need multiple controllers, each of which minimizes its
individual performance function as nonzero-sum problem. As elaborated in nonzero-
sum game theory, the control objective was minimizing the individual performance
function and maintaining stability to yield a Nash equilibrium in [24]. As literature
[25], saddle point of the Nash equilibrium was explored throughout the nonzero-
sum games-based optimization iterative process using ADP, even if there was no
feasible saddle point, optimum was realized through mixed optimal control scheme
iteratively, and the latter is of universal significance for conditions that are uneasy to
satisfy in practical applications, The local optimal problem exits extensively which
was firstly effectively avoided through fault-tolerant adaptive multigradient recur-
sive reinforcement learning as [9]. To seek the solution to Nash equilibrium, the
simultaneous algebraic Riccati or Hamilton-Jacobi-Isaacs functions require solving
for nonlinear systems, which leads to “curse of dimensionality” with huge amount of
computation, especially for multitudinous actor-critic constructions suffering from
higher computational burden by many multiples, such as a double-loop policy itera-
tion in [26]. According to the reason described above, the chapter adopts compromise
acceptable actor-critic neural networkswith appropriate dimensions, effectively real-
izing the transformation process from value iterative to cost function.
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Value and policy iterations generally constitute the whole iterative methods, and
begin with an semidefinite function or admissible control law accordingly. With
applications of ADP to solve the optimal control strategy for both continuous
[27, 28] or discrete-time systems [29, 30], however, traditional ADP can not sat-
isfy the physical application in the immune system considering the mixed treatment
strategywith chemotherapy drugs and immunotherapy, improvingmatters somewhat
by nonzero-sum games-basedADP. There are seldom any literatures on nonzero-sum
games-based ADP method for solving optimal regulation schemes of the immune
system, let alone considering optimal constrained control, policy iterations, tumor
regression and mixed control strategy of chemotherapy and immunotherapy, scilicet
the cost function approaching covers minimization of the tumor cells, chemotherapy
drugs and immunotherapy drugs, simultaneously.

3.2 Establishment of Mathematical Model

This part mainly introduces the mathematical growth model of tumor cells,
which considers the influence of external factors such as chemotherapy drugs and
immunotherapy on the tumor cells, mutual effect between two types of cells. In
the following model, Tu(t) represents the amount of tumor cells, Im(t) denotes
the number of immune cells, and Che(t), Im py(t) depicts the concentrations of
chemotherapy drugs and immunotherapy drugs in the bloodstream, respectively.

3.2.1 Growth Model of Tumor Cells

Individually considering the natural growth law of tumor cells without the relation-
ship with immune cells and any external effect on them, the growth law of tumor
cells is subject to logical growth.

Tu(t + 1) = Tu(t) + C1Tu(t)(1 − C2Tu(t)). (3.1)

But when it comes to the interaction between immune cells and tumor cells, the
direct killing of cells by chemotherapeutic drugs, and the growth model of tumor
cells can be revised to:

Tu(t + 1) = Tu(t) + C1Tu(t)(1 − C2Tu(t))

− CIm,TuT u(t)Im(t) − CChe,TuT u(t)Che(t), (3.2)

where the specifications of parameters are demonstrated as Table3.1.
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Table 3.1 Parameter specifications of the tumor cells

Parameters Relationships with the tumor cells

C1 Intrinsic growth rate irrespective of the immune cells and chemotherapy
drugs

C2 Maximum capacity for interaction between tumor cells ignoring effects of
immune cells and chemotherapy drugs

CIm,Tu Growth rate when the tumor cells are inactivated to attack from the
immune cells

CChe,Tu Stress response coefficient of the tumor cells to chemotherapy drugs

3.2.2 Growth Model of Immune Cells

Considering the natural growth law of immune cells simply, we assume that a fixed
number of immune cells are produced in a unit of time and that these cells have an
inevitable life cycle.

Im(t + 1) = Im(t) + C3 − CIm,d Im(t) (3.3)

The tumor cells in the body can stimulate the growth of immune cells, which
shows a positive non-linear change by (3.4).

Δim = α1Tu(t)2 Im(t)

β1 + Tu(t)2
. (3.4)

In immunotherapy, the addition of immune agents can produce an immune
response, which leads to the non-linear growth of immune cells.

ΔIm py = α2Tu(t)Im py(t)

β2 + Im py(t)
. (3.5)

Simultaneously, in the struggle between immune cells and tumor cells, immune
cells themselves can also cause losses,

ΔCTu,Im = −CTu,ImT u(t)Im(t). (3.6)

and in chemotherapy, chemotherapeutic drugs can also cause damage to immune
cells.

ΔCChe,Im = −CChe,ImChe(t)Im(t). (3.7)

Combined (3.3)–(3.7), and then (3.8) can be obtained.
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Table 3.2 Parameter specifications of the immune cells

Parameters Relationships with the immune cells

C3 Constant inflow rate

CIm,d Natural decay rate without any external action

α1 Maximum rate of recruitment caused by the tumor cells

β1 Steepness coefficient caused by the tumor cells

α2 Maximum rate of tumor cells caused by immunotherapy drug

β2 Steepness coefficient caused by immunotherapy drug

CChe,Im Stress response coefficient to chemotherapy drug

CTu,Im Reaction rate of tumor cells to the immune cells

Im(t + 1) = Im(t) + C3 − CIm,d Im(t) + Δim + ΔIm py

+ ΔCTu,Im + ΔCChe,Im

= Im(t) + C3 − CIm,d Im(t) + α1Tu(t)2 Im(t)

β1 + Tu(t)2

+ α2Tu(t)Im py(t)

β2 + Im py(t)
− CTu,ImT u(t)Im(t)

− CChe,ImChe(t)Im(t). (3.8)

Parameter elucidation of immune cells are outlined as Table3.2.

3.2.3 Drug Attenuation Model

We assume that at some point after the injection of a chemotherapy drug, the con-
centration of the drug in the body will decrease exponentially. To guarantee the
effectiveness of the treatment, we add chemotherapy drugs to the body, simultane-
ously.

Che(t + 1) = DrChe(t) − e−γ1Che(t). (3.9)

Similarly, we can obtain the attenuation model of the immunoagents:

Im py(t + 1) = DrIm(t) − e−γ2 Im py(t). (3.10)

where injected at t , DrChe(t) and DrIm(t) denotes concentrations of the chemother-
apy drugs and immunoagents separately.γ1 andγ2 is the decay rates of the chemother-
apy drugs and immunoagents.
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3.2.4 The Design of the Optimization Problem

Combined with the contents of (A), (B) and (C), we finally obtain the mathematical
model affecting the growth of tumor cells:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tu(t + 1) = Tu(t) + C1Tu(t)(1 − C2Tu(t))

−CIm,TuT u(t)Im(t) − CChe,TuT u(t)Che(t)

Im(t + 1) = Im(t) + C3 − CIm,d Im(t)

+α1Tu(t)2 Im(t)
β1+Tu(t)2 + α2Tu(t)Im py(t)

β2+Im py(t)

−CTu,ImT u(t)Im(t) − CChe,ImChe(t)Im(t)

Che(t + 1) = DrChe(t) − e−γ1Che(t)

Im py(t + 1) = DrIm(t) − e−γ2 Im py(t).

(3.11)

Given that Tu(t), Im(t) are biomass, and Che(t), Im py(t) are the drug concen-
trations in the bloodstream,

Tu(t), Im(t),Che(t), Im py(t) ≥ 0,∀t > 0. (3.12)

And all parameters in the model are non-negative:

C1;C2;C3;CIm,Tu;CChe,Tu;CIm,d;CTu,Im;CChe,Im

α1;α2;β1;β2; γ1; γ2 ≥ 0,∀t > 0. (3.13)

When we qualitatively analyze the problem that how to minimize the residual
tumor cell population in the bloodstream on the premise of using as few drugs as
possible, including chemotherapy drugs and immunoagents. This process can be
described as a quantitative mathematical expression as (3.14).

min{aTu(t)2 + b1

∫ DrChe(t)

0
tanh−1(Ū−1

1 s)Ū1R1ds

+ b2

∫ DrIm (t)

0
tanh−1(Ū−1

2 s)Ū2R2ds}. (3.14)

It is emphasized here that the single dose of the two drugs should be limited to
avoid drug poisoning. So we use a definition form with input constraints. During the
whole treatment process, we can get:



3.3 The Proposed Nonzero-Sum Games-Based ADP Scheme 39

t f∑

t=t0

λt {aTu(t)2 + b1

∫ DrChe(t)

0
tanh−1(Ū−1

1 s)Ū1R1ds

+ b2

∫ DrIm (t)

0
tanh−1(Ū−1

2 s)Ū2R2ds}, (3.15)

where 0 < λ < 1, Ū1 and Ū2 represent themaximum permissible dose of chemother-
apy drug and dose of immune agents in a single injection, respectively.

3.3 The Proposed Nonzero-Sum Games-Based ADP
Scheme

To solve the given problems above, we propose an aggressive treatment plan or
control scheme based on nonzero-sum games-based ADP algorithm.

3.3.1 Theoretical Introduction

For a differential control system x(t + 1) = F(x(t), u(t), t)), x(t) is the state vari-
able, u(t) is the control variable, F is the transition mapping between states, and
then the cost of state transition is obtained: U (x(t), u(t), t), and the total cost of the
whole period is

∑t f
t=t0 U (x(t), u(t), t).

When solving a finite time problem, we can equivalent it to

∞∑

t=t0

λtU (x(t), u(t), t), 0 < λ < 1. (3.16)

In the application ofBellman’s optimality principle to solve (3.1), we first stipulate
J (x(t0)) = ∑∞

t=t0
λtU (x(t), u(t), t), and then we can obtain that

J ∗(x(t)) = min
u(t)

{
U [x(t), u(t)] + λJ ∗[x(t + 1)]} , t ∈ (t0,∞). (3.17)

The corresponding optimal control can be solved and the form as follows.

u∗[x(t)] = argmin
u(t)

{
U [x(t), u(t)] + λJ ∗[x(t + 1)]} , t ∈ (t0,∞). (3.18)

This typical solution approach is a considerable challenge for computing and
storage space.
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Remark 3.1 Adaptive dynamic programming as an optimize learning method is
usually used to track the cost function, which is not only designed to minimize the
tumor cells, but also minimum dose chemotherapy drugs and immunoagents in this
chapter.

3.3.2 Iterative ADP Algorithm

To solve (1), we use an iterative adaptive dynamic programming algorithm, and the
revised facilitate solving differential equations model.

(1) Brief interpretation of ADP algorithm
Firstly, we take a value function K (x) to approximate the cost function J (x). In this
case, the purpose of iteration is to ensure that the approximate function approaches
to the optimal value equation and obtain the optimal decision law. Namely,

{
K (x) → J ∗(x)
κ → u∗. (3.19)

Secondly, in the specific solution process:
Give K 0(·) = 0, we make

κ0(x(t)) = argmin
u(t)

{
U [x(t), u(t)] + λK 0(x(t + 1))

}
, (3.20)

and update the value function as

K 1(x(t)) = U [x(t),κ0(x(t))] + λK 0(x(t + 1)), (3.21)

for i = 1, 2, 3, ... , we can get

κi (x(t)) = argmin
u(t)

{
U [x(t), u(t)] + λK i (x(t + 1))

}
. (3.22)

and
K i+1(x(t)) = min

u(t)

{
U [x(t), u(t)] + λK i (x(t + 1))

}
. (3.23)

Thus,
K i+1(x(t)) = U [x(t),κi (x(t))] + λK i (x(t + 1)). (3.24)
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and the optimal solution is obtained when the error requirement has
been adequately satisfied as condition that K i (x(t)) → K ∗(x(t)) and∥
∥K i+1(x(t)) − K i (x(t + 1))

∥
∥ ≤ ε, where i represents the number of iterations.

Algorithm : EvolutionaryADPalgorithm
Initialization :
1. A certain initial state is given randomly in the feasible region x(t);
2. Set Λ0(·) = 0;
3. Specific parameters are given according to the requirements: error ε,
discount factor λ;
IterationandUpdate :
4. i = 0 , substitute x(t) into “(3.26) = 0 ”, yield κi (t);
5. Plug x(t) and κi (t) into (3.25),and to get x(t + 1);

6. According to the (3.29), calculate Λi+1(x(t)) = ∂U (x(t+1),κi (t))
∂x(t) + Λi (x(t + 1));

7. According to the data set [x(t),Λi+1(x(t))] ,
the neural network of the relationship between x ∼ Λ ;
8. Using the neural network obtained by “7.”, the value in the same state
is calculated. When

∥
∥Λi+1(x(t)) − Λi (x(t))

∥
∥ ≤ ε ,ends;

If it is not true, returns “4.”;

To faster convergence to the optimal solution, we update in each iteration and
value function, the control law according to the current direction of steepest descent,
that is,

∂K i+1(x(t))

∂x(t)
=∂U (x(t),κi+1(t))

∂x(t)
+ λ[∂x(t + 1)

∂x(t)
]T ∂K i (x(t + 1))

∂x(t + 1)
, (3.25)

∂K i+1(x(t))

∂κi+1(t)
=∂U (x(t),κi+1(t))

∂κi+1(t)
+ λ[∂x(t + 1)

∂κi+1(t)
]T ∂K i (x(t + 1))

∂x(t + 1)
. (3.26)

Setting Λi (x(t + 1)) = ∂K i (x(t+1))
∂x(t+1) :

(2) Modification of Model (3.11)
Compared with the traditional control strategy, we directly solve the problem pro-
posed in this chapter by using ADP, although it is difficult to solve the model. Here,
we propose a fitting idea to modify the model. Analysis on (3.11) shows that the
injection of chemotherapy drugs into the body has a direct effect on tumor cells.
On the other hand, immunoagents act on immune cells, which affects tumor cell
populations. Throughout the whole action process, we can only consider the input of
chemotherapy drugs and immunoagents at every moment as the two control inputs
of the system and the state variables of the system are selected as the intermediate
transition variables such as tumor cells and immune cell population.
1. The standard expressions of control variables, state variables, cost functions and
so on are given as follows,

x(t) = Tu(t), u1(t) = Drche(t), u2(t) = DrIm(t). (3.27)
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K (x) =
∞∑

t=t0

λt {ax(t)2 + b1

∫ u1(t)

0
tanh−1(Ū−1

1 s)Ū1R1 ds

+ b2

∫ u2(t)

0
tanh−1(Ū−1

2 s)Ū2R2 ds}. (3.28)

2. The modified system model adopts the form of nonlinear affine system, namely:

x(t + 1) = f (x(t)) − [g1(x(t)), g2(x(t))][u1(t), u2(t)]T . (3.29)

3. Update the optimal control law and value function:
Let ∂K i+1(x(t))

∂ui1(t)
= 0 and ∂K i+1(x(t))

∂ui2(t)
= 0,

ui,∗1 (t) = Ū1tanh(
λ

b1Ū1R1
g1(x(t))Λ

i (x(t + 1))), (3.30)

ui,∗2 (t) = Ū2tanh(
λ

b2Ū2R2
g2(x(t))Λ

i (x(t + 1))). (3.31)

From this, we can also get

∂K i+1(x(t))

∂x(t)
= Λi+1(x(t)) =λ[d f (x)

dx
− ui1

dg1(x)

dx
− ui2

dg2(x)

dx
]

· Λi (x(t + 1)) + 2ax . (3.32)

Remark 3.2 To approximate optimal value based on optimal decision law, value
iterationmethod is devoted to tending to the cost function J (x) throughvalue function
K (x).

Remark 3.3 The fitted curve is constructed according to date obtained from the
original model which is uneasy to solve, and the modification of model is research
objectives for replacement, considering control inputs as chemotherapy drugs and
immunoagents, simultaneously.

3.3.3 Convergence Analysis

This section provides proof of the convergence of this algorithm to prove the effec-
tiveness of the algorithm in theory. This proof is mainly derived from formulas (3.1),
(3.2), and (3.3), including two lemmas and three theorems.
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Lemma 3.4 Take a control sequence { 
Ari (
x(t))}. When it is brought into for-
mula (1), the corresponding value function J iAr (
x) is obtained. Compared with

the control sequence { 
κi (
x(t))} corresponding to the minimum cost K i (
x(t)). If
J 0
Ar (·) = K 0(·) = 0, J i+1

Ar (
x(t)) = U [
x(t), 
Ari (
x(t))] + λJ iAr (
x(t + 1)), satisfying

K i+1(
x(t)) = U [
x(t),κi (
x(t))] + λJ iAr (
x(t + 1))

= min
Ar(t)

{
U [
x(t), Ar(t)] + λK i (
x(t + 1))

}
(3.33)

Then, J iAr (
x(t)) ≥ K i (
x(t)) for ∀i .
Proof K i (
x) is obtained by taking the minimum value equation J iAr (
x). {
κi (
x(t))}
is the corresponding optimal control sequence. For the arbitrarily control sequence

{ 
Ari (
x(t))}, the value equation J iAr (
x) which is corresponding with the arbitrarily
control sequence must not be less than K i (
x).

Lemma 3.5 Select a stable admissible control sequence { 
Sai (
x(t))} with certain
restrictions and the corresponding value equation J iSa(
x). For controllable system,
if J 0

Sa(·) = K 0(·) = 0 and J i+1
Sa (
x(t)) = U [
x(t), 
Sai (
x(t))] + λi (
x(t + 1)), Then

J iSa(
x) is bounded.
Proof

J i+1
Sa (
x(t)) = U [
x(t), 
Sai (
x(t))] + λJ iSa(
x(t + 1))

= U [
x(t), 
Sai (
x(t))] + λU [
x(t), 
Sai−1
(
x(t + 1))]

+ λJ i−1
Sa (
x(t + 2))

= U [
x(t), 
Sai (
x(t))] + λU [
x(t), 
Sai−1
(
x(t + 1))]

+ λ2U [
x(t + 2), 
Sai−2
(
x(t + 2))] + ...

+ λi+1 J 0
Sa(
x(t + i + 1)). (3.34)

Thus, J i+1
Sa (
x(t)) = ∑i

j=0 λiU [
x(t + j), 
Sai− j
(
x(t + j))] and J i+1

Sa (
x(t)) ≤
limi→∞

∑i
j=0 λiU [
x(t + j), 
Sai− j

(
x(t + j))], where {Sai (
x)} is the stable allow-
able control sequence, and we can get an conclusion that 0 ≤ J i+1

Sa (
x(t)) ≤
limi→∞

∑i
j=0 λiU [
x(t + j), 
Sai− j

(
x(t + j))] ≤ C for given constant C . That is,
J iSa(
x) is bounded.
Theorem 3.6 From formula (1), { 
κi (
x(t))} is the control sequence corresponding
to the minimum value function K i (
x). Assuming the initial state K i (·) = 0, it can be
proved that the sequence { 
κi (
x(t))} is a monotonic non-decreasing sequence, and
K i (
x(t)) ≤ K i+1(
x(t)).
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Proof Define a value equation T i (
x(t)) : T i (·) = 0, T i+1(
x(t)) = λT i (
x(t + 1)) +
U [
x(t), 
τ i+1(
x(t))]. When i = 0, T 1(
x(t)) = U [
x(t), 
τ 0(
x(t))] + λT 0(
x(t + 1)),
T 1(
x(t)) − T 0(
x(t)) = U [
x(t), 
τ 0(
x(t))] ≥ 0, we get T 1(
x(t)) ≥ T 0(
x(t)).

Assuming t = i − 1, T i (
x(t)) ≥ T i−1(
x(t)), When t = i , T i+1

(
x(t)) = U [
x(t), 
ξi (
x(t))] + λT i 
x(t + 1) and T i+1(
x(t)) − T i (
x(t)) =
λ(U [
x(t), 
ξi−1(
x(t + 1))]) ≥ 0. Then T i+1(
x(t)) ≥ T i (
x(t)). And we can get
K i (
x(t)) ≤ K i+1(
x(t)).
Theorem 3.7 It is known that { 
κi (
x(t))} is the control sequence corresponding to
the minimum cost function K i (
x), which can prove limi→∞ K i (
x(t)) = K ∗(
x(t)).
Proof {κi (
x)}and K i (
x)have beengiven inLemma3.2, and the correspondingvalue
function of {κi,l(
x)} is K i+1,l(
x(t)) = U [
x(t), 
κi,l(
x(t))] + λK i,l(
x(t)), where l is
the length. Obviously, K i+1,l(
x(t)) = ∑i

j=0 λiU [
x(t + j), 
κi− j,l(
x(t + j))].
After taking the limit, we can obtain K∞,l(
x(t)) = limi→∞

∑i
j=0

λiU [
x(t + j), 
κi− j,l(
x(t + j))], and define K ∗(
x(t)) = inf
l

{K∞,s(
x(t))}.
Similarly, Ω∞+1,s(
x(t)) ≤ K∞,l(
x(t)) ≤ Ds can be obtained from Lemma3.5.
On the other hand, we get K i+1(
x(t)) ≤ K∞,s(
x(t)) based on Lemma3.4. There-
fore, it can be concluded that K i+1(
x(t)) ≤ Ω i+1,l(
x(t)) ≤ Ω∞,l(
x(t)) ≤ Ds .
K ∗(
x(t)) = inf

l
K∞,l(
x(t)) with the definition of minimum value for the optimal

value equation, extracting a control sequence {
κi,m} so that K∞,m ≤ K ∗(
x(t)) + ε,
and drawing an conclusion that K∞,m ≤ K ∗(
x(t)) + ε. Considering K i+1(
x(t)) ≤
K i+1,l(
x(t)) ≤ K∞,l(
x(t)) ≤ Dl in another way and taking the limit, the formula
holds for any i, l, then limi→∞ K i (
x(t)) = inf

s
Ds .

To guarantee limi→∞ K i (
x(t)) = K∞,g(
x(t)), the control sequence {
κi,g} is nec-
essary, and then we can get K i+1(
x(t)) ≥ K ∗(
x(t)). Combining both aspects above,
limi→∞ K i (
x(t)) = K ∗(
x(t)) is obtained.
Theorem 3.8 For any state variable 
x(t), the optimal value equation K i (
x(t)) sat-
isfies the characteristics of the HJB equation.

K ∗(
x(t)) = U [
x(t), 
κ(t)] + λK ∗(
x(t + 1)). (3.35)

Proof From the proved lemmas and theorems, a series of characteristics about
“K i (
x(t))” are obtained. At this time, it is necessary to verify that characteris-
tics of the HJB equation are satisfied. According to (3.23), there exits K ∗(
x(t)) =
inf

κ(t)

{U [
x(t), 
κ] + λK i (
x(t + 1))}, meanwhile, according to Theorems 3.6 and 3.7,

yield that K i+1(
x(t)) = min

κ(t)

{U [
x(t), 
κ] + λK i (
x(t + 1))}. Then take the mathe-

matical limit, we get K ∗(
x(t)) ≤ inf

κ(t)

U [
x(t), 
κ] + λK i (
x(t + 1) for the randomness

of {
u(t)}).
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From the other side, we have K i+1(
x(t)) ≥ inf

κ(t)

U [
x(t), 
κ] + λK i−1(
x(t + 1),

take the limit again, then yield that K ∗(
x(t)) ≥ inf
i
U [
x(t), 
κ] + λK i (
x(t + 1)). As

to the analysis above, we can get a final conclusion.

K ∗(
x(t)) = U [
x(t), 
κ(t)] + λK ∗(
x(t + 1)). (3.36)

All content is verified.

Remark 3.9 The control sequence { 
κi (
x(t))} is a monotonic non-decreasing
sequence corresponding to the minimum value function K i (
x), which tend to be
K ∗(
x(t)) eventually, satisfying the characteristics of the HJB functions as [31].

3.4 Simulation and Numerical Experiments

In this section, we consider the mechanism model of tumor cell growth combined
with immunotherapy, chemotherapy and combination treatments proposed as experi-
mental validation. Firstly, The affine systemmodel is constructed with chemotherapy
drugs and immunoagents as control inputs and the account involved of tumor cells
as state variables. Secondly, according to the affine model obtained by fitting, we
developed the cost function of treatment losswith the clinical treatment requirements.
Finally, the optimal treatment plan for a patient with a basic condition is given after
calculation by the algorithm.

3.4.1 An Affine Model of Tumor Cell Growth

According to clinical medical statistics and literature [4], the specific parameters of
the mechanism model are given as Table3.3.

At this point, when we give the initial count of tumor cell population and immune
cells in a patient and follow a certain chemotherapy and immunotherapy regimen,
we can get the following four curves on tumor cells and immune cell population
as shown in Figs. 3.1 and 3.2. It is obviously that state variable Tu(t) denoted the
population of tumor cells tend to be stable in Fig. 3.2, similarly, for Im(t) in Fig. 3.1.

When the fitted affine system is carried out according to the data obtained from
the mechanism model, DrChe(t) and DrIm(t) are selected as two control inputs and
Im(t) as state variables.Within the allowable error range, the obtained fitting relation
is shown as the following form,
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Table 3.3 Concentration variation on immune cells, tumor cells, chemotherapeutic drug and
immunoagents

Parameter Estimated
value

Units Parameter Estimated
value

Units

C1 0.00431 day−1 C2 1.02 × 10−9 cell−1

C3 0.33 cell · day−1 CIm,Tu 6.41 × 10−11 cell−1

CChe,Tu 0.08 day−1 CIm,d 0.204 day−1

CTu,Im 3.42 × 10−6 cell−1 CChe,Im 2 × 10−11 day−1

α1 0.0125 day−1 α2 0.125 day−1

β1 2.02 × 107 cell β2 2 × 107 cell

γ1 0.1 day−1 γ2 1 day−1
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Fig. 3.1 The curves of tumor cells

x(t + 1) = f (x(t)) − [g1(x(t)), g2(x(t))][u1(t), u2(t)]T . (3.37)

f (x) = x + 0.00431x(1 − 1.02 × 10−9x). (3.38)

g1(x) = exp(8.15 × 10−6[log(x)]6.131 + 3.482). (3.39)

g2(x) = exp(0.05639[log(x)]2.093 + 2.492). (3.40)

The curves before and after fitting are compared as Fig. 3.3, which meets the
requirements of fitting precision, which guarantees accuracy of the data traced back
to the original source.
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Fig. 3.2 The curves of immune cells

Fig. 3.3 The curves of immunoagents drug concentrations in the bloodstream
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3.4.2 The Treatment Loss Cost Function

The form of the cost function proposed in the third part as (3.17). Unlike the the-
oretical mechanism model analysis, and combined with clinical requirements, it is
necessary to limit the single injection of drugs to no more than 0.05. Therefore,

Ū1 = 0.05, Ū2 = 0.05. (3.41)

To avoid the optimal solution in the infinite time dimension, we choose the dis-
count factor λ = 0.95. Finally, the specifically obtained cost function as follows:

K (x) =
∞∑

t=t0

0.95t {2.784 × 10−5x(t)2 +
∫ u1(t)

0
50tanh−1

(0.05−1s)ds +
∫ u2(t)

0
850tanh−1(0.05−1s)ds}. (3.42)

3.4.3 The Optimal Solution of the Treatment

According to the previous two subsections, we have completed the transformation
from the mathematical mechanism model to the solvable affine model, and deter-
mined the specific value of the cost function according to the clinical requirements.
The optimal treatment strategy is acquired through the proposed algorithm and make
a comparison to prove the effectiveness and feasibility. The cost function is designed
to minimize the tumor cells, meanwhile, there exit minimum dose chemotherapy
drugs and immunoagents.

In the following three figures (Figs. 3.4, 3.5 and 3.6), the blue curve represents
the changes of tumor cells and the changes of a single dose in patients under the
normal treatment regimen. In contrast, the red curve represents the optimal treatment
regimen’s effect calculated by the nonzero-sum game-based ADP algorithm.

As shown in Fig. 3.4, there are originally many cancer cells in the body. The two
curves are close to the upper limit, with drugs and dual function of the immune
system, a substantial reduction in the number of cancer cells. The amount of drug
injection therapy hasn’t changed greatly during the process from beginning to end.
Even in the closing stage, cancer cells decreased significantly, there are still specific
doses, and we solve the treatment dose is substantially less than the former.

Correspondingly, as shown in Fig. 3.5 that the changing trend of the injection dose
of immunoagents on the twocurves is close to the changingdirectionof chemotherapy
drugs. The optimized treatment is slightly more than the traditional treatment plan
when more cancer cells are in the initial stage, but it will not last for a long time.
When the number of cancer cells is relatively large, the primary or indirect target of
these two drugs is cancer cells; then, in the late stage of treatment, the number of
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Fig. 3.4 The injection dose curve of chemotherapy drugs under two kinds of treatment
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Fig. 3.5 The injection dose curve of immunologic agents under two kinds of treatment
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Fig. 3.6 The curves of tumor cells under two kinds of treatment

cancer cells is significantly reduced. If the chemotherapy drugs are put in according
to the normal treatment, the normal cells will suffer a lot of erosion, which has a
more significant impact on the body. However, the optimized drug dose has been
dramatically reduced, and the normal cells have been less affected.

As shown in Fig. 3.6, control effect of the two treatment schemes on the number
of tumor cells enjoy resemblance to that in the initial stage. Still, at the final stage, the
algorithm optimized by ADP not only significantly reduces the count of tumor cell
population, combined with Figs. 3.4 and 3.5, but also minimize the injection amount
of the two drugs, which shows the effectiveness of our treatment scheme.

Remark 3.10 The optimal regulation strategy for the immune system enjoys advan-
tage of decreasing of tumor cells, what is more, clinical treatment benefits from
typical minimization of chemotherapy drugs and immunoagents.

3.5 Conclusion

Nonzero-sum games-based adaptive dynamic programming has been proposed
acquiring the optimum through affecting the growth of tumor and immune cells,
providing guidance for clinical practice through adjusting the administered doses of
chemotherapy drugs and immunotherapy drugs. Obtained results have shown that the
immune system can decrease the tumor cells, meanwhile, minimizing of chemother-
apy drugs and immunoagents through optimal control behavior. Simulation examples
have presented availability and effectiveness of the researchmethodology. The future
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research will focus on solving the optimal mixed treatment strategy taking account
of complex immunotherapy system including immune cell subsets and cytokines,
considering the switched control policies in according with hybrid therapy.
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Chapter 4
Evolutionary Dynamics Optimal
Research-Oriented Tumor Immunity
Architecture

4.1 Introduction

Interaction between cancer cells, surrounding stromal cells and immune cells through
autonomous and non-autonomous signaling can influence survival competition.
Therefore, it is very critical for evolutionary and ecological dynamics mechanis-
tic understanding of tumor progression [1]. It is assumed that evolution causes traits
to change continuously over time even if the ecological dynamics are constantly
changing. More broadly, imagine an evolutionarily stable state that is a trajectory
of phenotypic states-an evolutionarily stable trait attractor. This can be used in sce-
narios where there is sufficient variation to facilitate rapid evolution, or where the
state involves a plastic response to environmental conditions, eventually constituting
evolutionary stability. Simultaneously, Natural killer (NK) cells as one of the players
in the game attack many tumour cell lines, which is critical in anti-tumour immunity
[2], however, the interaction between NK cells and tumour targets is poorly. To over-
come drug resistance, anti-tumor immunotherapy gradually replaces the traditional
treatment strategy [3]. The interaction between specialized cancer cell populations
and immune cells has become a special evolutionary dynamics phenomenon in the
process of tumor immunity growth architecture. The goal of optimization is to min-
imize administration dosage and reduce negative effects.

The dynamic perception or learning process is realized through interactions
between cells and organism architecture, accomplishing observing their responses
and learning optimal control strategy ultimately of Markov decision. It is required
to seek an optimal control scheme such that the desired dosage of administration
can be tracked and the optimal performance of minimize chemotherapeutic drugs
and immunological agents can be achieved. Thus, reinforcement learning is urgently
needed for optimal research-oriented tumor immunity architecture. The classical
policy iteration and value iteration frameworks are never out of date, and the new
min-Hamilton function [4] and the low-gain parameter ADP-Bellman equation for
global stabilization are thriving [5].
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The interaction between cells is highly nonlinear and coupled. When the compu-
tational conditions allow, whether it is the adaptive algorithm design based on policy
iteration, or the adaptive hierarchical neural network algorithm [6], which can easily
solve the coupled fractional order chaotic synchronization problem. All inspire us
in solving the optimal solution of the HJB equation of the idea. Once computing
conditions are not available, model-free is the best idea. The iteration-ADP algo-
rithm is developed into iteration-NDP algorithm, which does not require an accurate
system model [7], but only requires observable system data, which can reduce the
cost and optimize the control action in the process of error backpropagation [8].
The emergence of Q-learning, from containing three classes four networks to inter-
leaving double iteration, and then to the critical Q-learning [9] of a single class one
network, effectively improves the utilization of resources, and the problem of insuf-
ficient exploration no longer exists. The interaction between cells coincides with
multiple agents, and the attack of tumor cells on normal cells may cause abnormal
reactions, and the neural net-based attack detection and estimation scheme designed
by [10] can easily capture such anomalies. Cells cannot proliferate without limit.
When solving the optimal solution of the constrained auxiliary subsystem, based on
the framework of ADP, the idea of pi iteration is continued, and a strong convergence
synchronous iterative optimization strategy [11] is given.

The difficult-to-decouple leaderer-follower behavior of vehicle-vehicle commu-
nication [12], human-vehicle interaction, and mutual quality of everyone can be
easily solved with off-PI [13]. Switching system [14], T-S fuzzy, nash equilibrium,
zero-sum game [15], let each agent deal with a low-dimensional state and local pat-
tern, reduce conservatism, can easily obtain the minimum local cost [16]. Influenced
by the improved exploration feature, the parallel A-C asynchronous gradient shar-
ing mechanism can realize the parallel optimization operation of diversified agents
in a short time [17]. Affected by the time difference error, integral reinforcement
learning can obtain the estimated control strategy by updating the critic weight [18,
19]. In order to obtain a better stabilizing adaptive control scheme, it is necessary
to give an appropriate robust control scheme for the control system [20]. Reference
[21] summarizes the recent outstanding progress in the continuous nonlinear control
system of the controller that combines adaptability and robustness. The reliability
and effectiveness of the actual power system and some large machinery and heavy
machinery devices with these two designs considered are also demonstrated. The
theory integrates ecological and evolutionary dynamics blending ecological mathe-
matical model evolutionary game theory [22]. Then evolutionarily stable strategies
will be investigated to seamless integration of both sides [23]. Solvable dynamic
equations can be used to explore optimal control objectives, however, what followed
is a disaster of dimensions.

Toovercome it, dual-heuristic dynamic programming is proposed for the nonlinear
affine evolutionary dynamic dated from ADP considering the actual constraints. By
introducing a discounted performance index, the optimal regulation problem of the
infinite dimensional problem is reformulated into a finite dimensional. Different from
previous value iterationswhich requires a strategy for initially stable the system.ADP
is conformed to the optimal formation control by the establishment of performance
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index function [24]. The affine mathematical model is firstly introduced to twinborn
the real scenario [25]. The optimal control is transformed into pursuing solution of
HJB, and the convergence is proved. ADP involves learners giving rise to learning
strategy, and the author studied a competitive learning system setting with cancer
cell populations and immune cells, aiming at minimizing the dose administered.

4.2 Pre-knowledge

Consider a classical discrete-time nonlinear affine system,

x(t + 1) = f(x(t)) + g(x(t))u(t) (4.1)

where the state variable x(t) ∈ Rn, the control variable u(t) ∈ Rm, and f(·) ∈
Rn, g(·) ∈ Rn×m can be stabilized on a compact set� ∈ Rn, and f(0) = 0 g(0) = 0.
Colloquially, the optimal control problem of (4.1) is equivalent to obtaining u∗(t) =
u(x(t))(the optimal control law) that minimizes the proposed infinite-horizon per-
formance index:

J(x(t)) =
∞∑

t=0

K(x(t), u(t)). (4.2)

K(x(t), u(t)) is the cost function, K(x, u) ≥ 0 ∀x, u. Basically, the cost function
K(·) is given a quadratic form

K(x(t), u(t)) = xT (t)Px(t) + uT (t)Qu(t) (4.3)

P,Q > 0 are all positive definite matrices.
The optimal control problem of (4.2) can be converted to solve the HJB equation.

According to the Bellman optimal principle, the optimal value function should obey
the following[9]:

J∗(x(t))=min
u(t)

{
xT (t)Px(t)+ uT (t)Qu(t)+ J∗(x(t + 1))

}
(4.4)

By minimizing the right side of the (4.4) to solve the optimal control law, get the
optimal value function J∗(x(t)). For necessity, one can take the partial derivative of
the right-hand side of (4.4) with respect to u(t) to obtain u∗. Hence,

u∗(t) = −Q−1

2

[
g(x(t))

]T∂J∗(x(t + 1))
∂x(t + 1)

(4.5)
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Take (4.5) into (4.4), it can be obtained that

J∗(x(t)) = xT (t)Px(t) + 1

4

[∂J∗(x(t + 1))
∂x(t + 1)

]T

g(x(t))Q−1

· gT (x(t))
[∂J∗(x(t + 1))

∂x(t + 1)

]
+ J∗(x(t + 1)). (4.6)

By the on (4.6), it is almost impossible to obtain an analytical solution for u∗(t).
Impossible in the current moment t can know the next moment J∗(x(t + 1)). To over-
come this dilemma, the approximate optimal solution ofHJB equation can be studied.
In the fourth part of this chapter, the derivation of IDHP algorithm is introduced to
solve this kind of optimal control problem [26, 27].

4.3 Modeling of Mixed Immunotherapy
and Chemotherapy for Tumor Cell

In this part, a mathematical model is constructed from the natural growth of a single
type of tumor cells, the gradual increase of the interaction between various immune
cells and tumor cells in vivo, and the influence of external application of chemother-
apy drugs and immune agents on the population of tumor cells [22, 28, 29].

First, define the acronyms of various cells:

• Tu(t): Tumor cell population in the vivo.
• NK(t): NK cells are derived from bone marrow lymphoid stem cells.
• CT(t): Cytotoxic T lymphocytes (CTL), a subdivision of leukocytes, are specific
T cells that secrete various cytokines and participate in immune function.

• CL(t): Number of circulating lymphocytes (or leukocytes).
• Chdr(t): Chemotherapeutic drug concentration in the blood.
• Imdr(t): Immunotherapy drug concentration in the blood.

For the convenience of writing, the following subsections do not specify the time,
and the default is t, lowercase letters “a, b, c1, c2, e, f, g, h1, h2, i, j, l, m, n1, n2, p1,
p2, q1, q2, r, s, u” all represent fixed real numbers; Uppercase letters “G,K,O,R, I”
represent different categories of gain items, which depend on time t;L(·) is a constant
that depends on the cell type; and e(·) stands for exponential functions.

4.3.1 The Natural Growth of Cells

According to the [2, 22], the increase of tumor cells follows a natural growth curve,
GTu = aTu(1 − bTu) (G(·) represents the natural growth tescr operator of all types
of cells). Natural killer cells [22] are assumed to be produced at a constant rate
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and to be influenced by circulating lymphocytes throughout the production cycle
(since circulating lymphocytes represent the overall level of immune health), and
thus,GNK

= c1CL − c2NK. In the absence of tumor cells, Cytotoxic T lymphocytes
are assumed to be absent and cell growth of CT(t) cells is only affected by natural
mortality, GCT

= −eCT. Circulating lymphocytes are also produced at a constant
rate during their lifetime, GCL

= f − gCL. It is set that when the body is injected
with chemotherapy drugs or immune agents, it will show exponential decay,GChdr =
−e−γαChdr , GImdr

= −e−γβImdr .

4.3.2 Intercellular Conditioning

When the above cells exist at the same time, there will be a negative interaction
between the two populations, partly due to the competition for growth space and
nutrients, and this indirect effect. The other part is the direct resistance of cell pop-
ulations to each other [22]:

KTu = −jNKTu KCT
= h1 · (CT/Tu)

i

h2(CT/Tu)i
· Tu

And just to simplify the writing, let’s write O for a particular term, and notice
that O = O(t), which is related to CT(t),Tu(t).

O = h1 · (CT/Tu)
i

h2(CT/Tu)i
KCT

= O · Tu (4.7)

NKcells have the functionof recruitment,which is to design sequential application
methods of cell cycle non-specific drugs and cell cycle specific drugs, recruit more
cells at specific stages into the proliferation cycle, so as to increase the number of
tumor cells killed [29–31].

RNk
= l · Tu2

mTu
2 Nk; RCT

(Tu,CT) = p1
O2Tu

2

q1+ O2Tu
2CT

CT cells have a similar recruitment effect [32]. It is directly proportional to the
number of cells killed by NK cell lysis of tumor cells, RCT

(Nk,Tu) = n1NkTu.
Also, the presence of tumor cells stimulates the immune system to secrete more
cells, RCT

(CL,Tu) = n2CLTu. In the immune function, NK cells or CD cells may
have to undergo multiple contact with tumor cells, and then inactivate [29, 33–35].

Iac,Nk
= −p2TuNk Iac,CT

= −q2CTTu ICL,CT
= −rNk(CT)2
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4.3.3 Drug Intervention

All kinds of cell populations in this model contain the action tescr of chemotherapy
drugs, and the killing effect of chemotherapy drugs is not always effective. At low
drug concentration, the killing rate increases almost linearly, while at high drug
concentration, the killing rate tends to be stable. Saturation type is used to describe
them in the model [36], 1 − eChdr(t).

DCh
r (·) = L(·)(1 − eChdr(t))(·)

(·) = Tu,CT,CL,Nk.
L(·) represents the interaction coefficient between corresponding cells and tumor

cells. It also includes immunotherapy, whose impact on immune system efficacy
can be mathematically described by the Michaelis-Menten interaction, s, u are the
constant [30].

DIm
r (CT,Imdr) = u

ImdrCT

s + Imdr

Chemotherapy and immunotherapy drugs are injected in a certain period of time,
and denote by VChe(t) and VIm(t) the amount of chemotherapy drug injection and
the amount of immunotherapy drug injection, respectively.

4.3.4 Mixed Growth Model of Cell Population

Combined with the above contents, the total cell population growth model can be
obtained:

Imdr(t + 1) = (1 − e−γβ )Imdr(t) + VIm(t) (4.8a)

Chedr(t + 1) = (1 − e−γα)Chdr(t) + VChe(t) (4.8b)

CL(t + 1) = f − LCL
+ (1 − g)CL(t) − LCL

eChdr(t) (4.8c)

Tu(t + 1) = (1 + a − LTu )Tu(t) − bTu
2(t)

+ Tu(t)
[
eChdr(t) − jNk(t) − O(t)

]
(4.8d)

CT(t + 1) = (1 − e − LCT
)CT(t) + [n1Nk(t) − q2CT(t)

+ n2CL(t)] · Tu(t) − rNk(t)CT
2(t) + LCT

CT(t) (4.8e)

· eChdr(t) + CT(t)
[ uImdr(t)

s + Imdr(t)
+ p1O

2(t)Tu
2(t)

q1 + O2(t)Tu
2(t)

]

Nk(t + 1) = −LNk
+ (1 − c2)Nk(t) + l · Tu2(t)

m + Tu
2(t)

Nk(t)

+
[
LNk

eChdr(t) − p2Tu(t)
]
Nk(t) + c1CL(t) (4.8f)
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4.4 Iterative-Dual Heuristic Dynamic Programming
Algorithm for Mixed Treatment

The optimal control problem has been transformed into solving the HJB equation
(4.4). In this part, a constrained iterative dual heuristic dynamic programming algo-
rithm based on mixed treatment is given. The algorithm is derived from adaptive
dynamic programming [26]. This part mainly three parts research content are pre-
sented as working mechanism of ADP algorithm, structure of constrained iterative
dual-heuristic dynamic programming algorithm and proof of convergence on I-DHP
algorithm.

4.4.1 Working Mechanism of ADP Algorithm

Generally speaking, for unconstrained control problems, the performance functional
(4.3) is usually chosen as the quadratic form. In this chapter, considering the actual
constraints, is transformed into solving a bounded control problem, adopted a non-
quadratic functional as follows:

Y(t) = xT (t)Px(t) + 2
∫ u(t)

0
tanh−T (U

−1
s)UQds

It is convenient for mathematical calculation avoiding the loop or unlimited create
unlimited returns markov decision process. In the loop or unlimited markov process
which will constantly get reward again and again, so we need to add discount factor
to avoid infinity and infinitesimal value function,By introducing discount factor λ,
an infinite dimensional problem is transformed into a finite dimensional problem,
0 < λ ≤ 1.

J(t) =
∞∑

l=t

λl−tY(x(l), u(l)) = Y(t)

+ λ

∞∑

l=t+1

λl−(t+1)Y(x(l), u(l)) (4.9)

According to the Bellman optimality principle, the optimal value function satis-
fies:

J∗(x(t)) = min
u(t)

{
xT (t)Px(t) + 2

∫ u(t)

0
tanh−T (U

−1
s)·

UQds + λJ∗(x(t + 1))
}
. (4.10)
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In the ADP algorithm structure, it iterates according to the policy iteration, select-
ing Tι(x) as the approximation function and øι(x) as the corresponding control law.
The whole iterative process is as follows:

1. Let the initial value function beT0(·) = 0 (which is far fromoptimal) and compute
the control law at “ι = 0”as follows.

ø0(x(t)) = arg min
u(t)

{
xT (t)Px(t) + 2

∫ u(t)

0
tanh−T(U

−1
s)

· UQds + λT0(x(t + 1))
}

(4.11)

2. Get T1(x(t)):

T1(x(t)) = xT (t)Px(t) + 2
∫ ø0(x(t))

0
tanh−T(U

−1
s)U

· Qds + λT0(x(t + 1)). (4.12)

3. And for ι = 1, 2, 3, · · ·

øι(x(t)) = arg min
u(t)

{
xT (t)Px(t) + 2

∫ u(t)

0
tanh−T(U

−1
s)

· UQds + λTι(x(t + 1))
}
. (4.13)

4. The iterative value function is obtained as follows:

Tι+1(x(t)) = xT (t)Px(t) + 2
∫ øι(x(t))

0
tanh−T(U

−1
s)

·UQds + λTι(x(t + 1)). (4.14)

4.4.2 Structure of Constrained Iterative Dual-Heuristic
Dynamic Programming Algorithm

In the dual heuristic dynamic programming, the assumption is that the value function
is smooth, modelled on the (4.5), the partial derivatives (4.14) on the right side of
øι(x(t)), can get [37]:

∂Tι+1(x(t))

∂u(t)
=

∂
{
xT (t)Px(t) + 2

∫ u(t)

0 tanh−T(U
−1
s)UQds

}

∂u(t)

+ λ
∂Tι(x(t + 1))

∂u(t)
= 0.
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And, for ι = 0, 1, 2, · · ·

øι(x(t)) = Utanh
( −λ

2UQ

[∂x(t + 1)
∂u(t)

]T ∂Tι(x(t + 1))

∂x(t + 1)

)
(4.15)

Do the same with (4.14) respect to x(t),

∂Tι+1(x(t))

∂x(t)
= 2Px(t) + λ

[∂x(t + 1)
∂x(t)

]T ∂Tι(x(t + 1))

∂x(t + 1)
. (4.16)

As can be seen in (4.15) and (4.16), both have
∂Tι(x(t + 1))

∂x(t + 1)
, compared to Tι(x(t))

in (4.14), DHP algorithm evaluates and updates the first partial derivative of the value
function.

The specific algorithm structure is as follows: (set costate function Cι(x(t)) =
∂Tι(x(t))/∂x(t)).

4.4.3 Proof of Convergence on I-DHP Algorithm

The convergence proof of the algorithm shows that with the increase of the number
of iterations, the evaluation and update between (4.15) and (4.16) are continuously
completed, and the termination condition can finally be satisfied and the optimal
solution can be obtained.

The corresponding lemma needs to be given before the formal theorem proving.
In order to facilitate writing, abbreviated “2

∫ u(t)

0 tanh−T (U
−1
s)UQds” to “H(u(t))”.

Lemma 4.1 Assume that øι(t) is the control sequence calculated by (4.13), Tι(x) is
the value function calculated by (4.14). !ι(t) is any admissible control sequence in
the domain, and �ι(x) is its corresponding value function equation,

�ι+1(x(t))= xT (t)Px(t) + H(!´(t)) + λ�ι(x(t + 1)) (4.17)

and it is easy to obtain:
If �0(·) = T0(·) = 0, then 0 ≤ Tι(x) ≤ �ι(x), ∀ι.

Proof The conclusion is obvious. Tι(x) is the minimum value that can be obtained
on the right side of (4.14), and øι(t) is the corresponding control sequence. And
�ι(x) is any admissible value function, so it must be not less than Tι(x). �

Lemma 4.2 Given that Tι(x) by the (4.14), and if the system is controlled, then
Tι(x) has an upper bounded Z (a constant).

0 ≤ Tι(x) ≤ Z,∀ι
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Algorithm 1: Procedure of the I−DHP algorithm:

INITIAL:
1. Select a smaller positive number ε, initial iteration index for ι = 0, C0(·) = 0.

CALCULATION:
2. Calculate the control law at the 0th iteration:

ø0(x(t)) = arg min
u(t)

{
xT (t)Px(t) + 2

∫ u(t)

0
tanh−T(U

−1
s)UQds + λT0(x(t + 1))

)

=Utanh
( −λ

2UQ

[∂x(t + 1)
∂u(t)

]T

C0(x(t + 1))
)

3. Update the costate function for iteration 1:

C1(x(t)) = 2Px(t) + λ
[∂x(t + 1)

∂x(t)

]T

C0(x(t + 1))

4. Similarly, the control law for the ι iteration:

øι(x(t)) = arg min
u(t)

{
xT (t)Px(t) + 2

∫ u(t)

0
tanh−T(U

−1
s)UQds + λTι(x(t + 1))

)

=Utanh
( −λ

2UQ

[∂x(t + 1)
∂u(t)

]T

Cι(x(t + 1))
)

5. Obtain the costate function for iteration ι + 1:

Cι+1(x(t)) = 2Px(t) + λ
[∂x(t + 1)

∂x(t)

]T

Cι(x(t + 1))

COMPARATION:
6. If

∥∥Cι+1(x(t)) − Cι(x(t))
∥∥ ≤ ε, stop and get the approximate optimal control law

øι(x(t));
Else, let ι = ι + 1, and jump to the 4.

Proof Set vι(t) to be an admissible and stabilizing control sequence and Vι(x) to be:

Vι+1(x) = xT (t)Px(t) + H(v´(t)) + λVι(x(t + 1))

Then, it can be obtained: (V0(·) = Tι(·) = 0)
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Vι+1(x) = xT (t)Px(t) + H(v´(t)) + λVι(x(t + 1))

= xT (t)Px(t) + H(v´(t)) + λ
[
xT (t + 1)P

· x(t + 1)+H(v´−1(t + 1))
]
+λ2Vι−1(x(t + 2))

= . . .

= xT (t)Px(t) + H(v´(t)) + λ
[
xT (t + 1)P

· x(t + 1)+H(v´−1(t + 1))
]
+ · · ·

+λι

[
xT (t + ι)Px(t + ι) + H(v0(t + ´))

]

+ λι+1V0(x(t + + 1)).

Vι+l(x) = ∑ι
l=0 λl

[
xT (t + l)Px(t + l) + H(vι−l(t + l))

]
≤ limι→∞

{ ∑ι
l=0 λl

[
xT (t +

l)Px(t + l) + H(vι−l(t + l))
]}

.

Due to the admissible control sequence vι(t), it has an upper bound Z that

Vι+l(x)≤ lim
ι→∞

{ ι∑

l=0

λl

[
xT (t + l)Px(t + l)+H(vι−l(t + l))

]}
≤Z.

Combined with Lemma4.1, it can be obtained the result. �

Theorem 4.1 For the iterative cost function Tι(x) which follows (4.14) and its cor-
responding control law øι(t) obtained by (4.13), it can be concluded that with the
increase of the number of iterations,Tι(x)will converge to the optimal value function
and øι(t)will converge to the optimal control law, i.e.,Tι(x) → J∗(x), øι(t) → u∗(t).

Proof FromLemma4.1,�ι(x(t)) is the cost function corresponding to an any admis-
sible control sequence !ι(t), with �0(·) = 0.

Firstly, ι = 0,

T1(x(t)) − �0(x(t)) = xT (t)Px(t) + H(!0(t)) ≥ 0

then, T1(x(t)) ≥ �0(x(t)), ι = 0.
Secondly, for ι − 1, given Tι(x(t)) ≥ �ι−1(x(t)), ∀x(t). Then, as ι, it can be able

to conclude that

Tι+1(x(t))−�ι(x(t)) = xT (t)Px(t) + H(!´+1(t))

+ λ
(
Tι(x(t + 1)) − �ι−1(x(t + 1))

)

≥ λ
(
Tι(x(t + 1)) − �ι−1(x(t + 1))

)
(4.18)
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By the mathematical induction, it can be obtained that Tι+1(x(t)) ≥ �ι(x(t)), ∀ι.
Combined with Lemma4.1, it is obviously concluded that Tι+1(x(t)) ≥ �ι(x(t)) ≥
Tι(x(t)), that is,

{
Tι(x(t))

}
is a non-decreasing sequence, ∀ι.

From Lemma4.2, the sequence
{
Tι(x(t))

}
is bounded to Z, which is equiv-

alent to that the iterative equation has a limit value, which can be expressed
as limι→∞ Tι(x(t)) = T∞(x(t)). Therefore, it is bold to assume that T∞(x(t)) =
min
ø(t)

{
xT (t)Px(t) + H(ø(t)) + λT∞(x(t))

}
. This assumption will be proved below.

According to (4.14),

Tι(x(t)) ≤ xT (t)Px(t) + H(ø(t)) + λTι−1(x(t + 1)). (4.19)

From the non-decreasing property of sequence
{
Tι(x(t))

}
, it can be known that

Tι(x(t)) ≤ T∞(x(t)) ∀ι.
Substitute it into (4.19),

Tι(x(t)) ≤ xT (t)Px(t) + H(ø(t)) + λT∞(x(t + 1)), ∀ι. (4.20)

(4.20) for any ι was established, that when ι = ∞, also meet.

T∞(x(t)) ≤ xT (t)Px(t) + H(ø(t)) + λT∞(x(t + 1)),∀ι. (4.21)

Considering that ø(t) is any given control sequence, (4.21) can further obtain:

T∞(x(t)) ≤ min
{
xT (t)Px(t) + H(ø(t)) + λT∞(x(t + 1))

}
,∀ι. (4.22)

With (4.14), Tι(x(t))=min
ø(t)

{
xT (t)Px(t)+H(ø(t))+λTι−1(x(t + 1))

}
.∀ι

At this time of its on the left, and as a result of
{
Tι(x(t))

}
non decreasing, get,

T∞(x(t))≥min
ø(t)

{
xT (t)Px(t)+H(ø(t))+λTι−1(x(t + 1))

}
. Similarly, let ι → ∞,

T∞(x(t))≥min
{
xT (t)Px(t) + H(ø(t)) + λT∞(x(t + 1))

}
,∀ι. (4.23)

Combining (4.22) and (4.23), it follows that,

T∞(x(t))=min
{
xT (t)Px(t) + H(ø(t)) + λT∞(x(t + 1))

}
,∀ι. (4.24)

Canbe seen from (4.24), the previous assumptionprovedhow.Canbe learned from
Theorem 4.1, T∞(x(t)) is a discrete-time time solution of HJB equation. Considering
the uniqueness of the solution of the discrete-time-time HJB equation, it means
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that T∞(x(t)) in (4.24) and J∗(x(t)) in (4.10) are the same solution. In other words,
limι→∞ Tι(x(t)) = T∗(x(t)) = J∗(x(t)). �

Theorem 4.1 proves that T∞(x(t)) in (4.24) and J∗(x(t)) in (4.24) in (4.10) are the
same solution of the HJB equation corresponding to the same cost function, while
the termination criterion “

∥∥Tι+1(x(t)) − Tι(x(t))
∥∥ ≤ ε” indicates that the optimal

control law can be solved in finite time, and Theorem 4.2 will explain this context.

Theorem 4.2 The system (4.1) is controllable and the initial state x(t) of the system
can be chosen arbitrarily. Under the finite iteration index ι, the iterative approximate
cost function and the optimal cost function ‖T∗(x(t)) − Tι(x(t))‖ ≤ ε are equivalent
to the termination criterion ‖Tι+1(x(t)) − Tι(x(t))‖ ≤ ε.

Proof In Theorem 4.1, it is mentioned that
{
Tι(x(t))

}
is a non-decreasing sequence,

that is
J∗(x(t)) = T∗(x(t)) ≥ Tι+1(x(t)) ≥ Tι(x(t)). (4.25)

If ‖T∗(x(t)) − Tι(x(t))‖ ≤ ε, it can be concluded that

T∗(x(t)) − Tι(x(t)) ≤ ε, T∗(x(t)) ≤ Tι(x(t)) + ε. (4.26)

Combined (4.26) with (4.25),

Tι(x(t)) ≤ Tι+1(x(t)) ≤ T∗(x(t)) ≤ Tι(x(t)) + ε.

⇒ Tι(x(t)) ≤ Tι+1(x(t)) ≤ Tι(x(t)) + ε. (4.27)

It can get that, ∥∥Tι+1(x(t)) − Tι(x(t))
∥∥ ≤ ε (4.28)

From a different perspective, if (4.28) holds and the
{
Tι(x(t))

}
is nondecreasing,

− ε + Tι+1(x(t)) ≤ Tι(x(t)) ≤ T∗(x(t)) = J∗(x(t)). (4.29)

It is obvious that Tι+1(x(t)) − T∗(x(t) ≤ ε,

∥∥Tι+1(x(t)) − T∗(x(t)
∥∥ ≤ ε. (4.30)

Based on the analysis of both sides, it can be concluded that ‖T∗(x(t))−
Tι(x(t))‖ ≤ ε ⇔ ∥∥Tι+1(x(t)) − Tι(x(t))

∥∥ ≤ ε. �

The two theorems deal with value functions T(x(t)), while Algorithm 1 deals
with costate function C(x(t)). It will be shown in Theorem 4.3 that this convergence
is equivalent.



66 4 Evolutionary Dynamics Optimal Research-Oriented …

Theorem 4.3 (4.14) defines the sequence of value functions. The control law
sequence is shown in (4.13) and the update cofunction sequence is shown in
(4.16). The optimal value is chosen as the limit of the costate function C∗(x(t)) =
limι→∞Cι(x(t)), and when the value function approaches the optimal value, the
sequence of costate functions converges with the sequence of the control law.

Proof InTheorems4.1 and4.2, it is shown thatT∗(x(t)) andT∞(x(t)) satisfy the cor-

responding HJB equation respectively. i.e., T∞(x(t))=T∗(x(t))=min
ø(t)

{
xT (t)Px(t) +

H(ø(t)) + λT∗(x(t + 1))
}
.

Therefore, it can be concluded that the sequence
{
Tι(x(t))

}
of value functions

converges to the optimal value function of the discrete-time-time HJB equation.
i.e.,Tι → T∗, as ι → ∞.

Given Cι(x(t)) = ∂Tι(x(t))/∂x(t). It is also possible that the corresponding

sequence
{
Cι(x(t))

}
of costate function converges to Cι → C∗ as ι → ∞. Due to

the association, costate function is convergent, at the same time, it is concluded
that the corresponding sequence converges to the optimal control law øι → ø∗ as
ι → ∞. �

4.5 Multi-factor Mixed Optimization Experiment
Treatment of Tumor Cells

This section explores a novel therapeutic intervention for tumor cell growth inhibi-
tion. A discrete-time affine control system has been constructed from themulti-factor
tumor cell growth model, and the iterative DHP algorithm has been applied to realize
the reduction of drug dosage under the condition of greatly inhibiting the proliferation
of tumor cell population.

4.5.1 Discrete Affine Model of Tumor Cell Growth

According to clinical medical statistics and literature [2, 30, 31, 38–41], the values
of each parameter in the tumor cell proliferation model affected by multiple factors
are shown in Table4.1.

Using these parameters, try to observe the tumor cell proliferation model given
some circumstances.

With reference to [1], the initial “Tu(0) = 2 × 107, Nk(0) = 1 × 103, CT(0) =
10, CL(0) = 6 × 108 ” was selected, and the chemotherapy drug at a dose of
VChe(t) = 3.5 was injected every 5 days in (4.8) to observe the changes of various
cells in the current body.
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Table 4.1 Estimated parameter values

Parameter Description Estimated
value

a Tumor cell growth rate 4.31×10−1

b The inverse of the carrying capacity of the cell. 1.02×10−9

c1 The percentage of circulating lymphocytes that become NK
cells

2.08×10−7

c2 NK cell mortality 4.12×10−2

e CT cell mortality 2.04×10−1

f Constant source of circulating lymphocytes 7.5×108

g The natural death and differentiation of circulating lymphocyte 1.2×10−2

h1 Saturation level of fractional tumor cell kill by CT cells 2.34

i The killed index of some tumor cells by CT cells 2.09

j Fractional (non)-ligand-transduced tumor cell killed by NK
cells

6.41×10−11

l The highest recruitment rate of NK cells in tumor cells 1.25×10−2

m Steepness of the NK cell recruitment curve 2.02×107

n1 The rate at which NK cells stimulate CT cellproduction after
killing tumor cells

1.1×10−7

n2 The rate at which stimulate CT cell production after killing
tumor cells

6.5×10−11

p1 Maximum CT cell recruitment rate 2.49×10−2

p2 NK cell inactivation rate by tumor cells 1×107

q1 Steepness of the CT cell recruitment curve 3.66×107

q2 CT cell inactivation rate by tumor cells 1.42×10−6

r Regulation of CT cells by NK cells 3×10−10

s Steepness of the CT cell recruitment curve 3.66×107

u Regulatory function by NK cells of CT cells 3×10−10

LTu Fractional tumor cells are killed by chemotherapy 9×10−1

LNk
Fractional NK cells are killed by chemotherapy 6×10−1

LCT
Fractional CT cells are killed by chemotherapy 6×10−1

LCL
Fractional CL cells are killed by chemotherapy 6×10−1

γα Rate of chemotherapy drug decay 9×10−1

γβ Rate of IL-2 drug decay 1×101

Figure4.1 shows an injection method of chemotherapy drugs in the form of pulse.
The drug is injected into the body to study the influence of the addition of chemother-
apy drugs on the number of various cell populations in the body at different times.
As can be seen from the curve of tumor cell change in Fig. 4.1a (the second curve),
a dose of 5 chemotherapy drug injected every 5 days for 60 days is sufficient to
control the proliferation of tumor cells. The four curves showed different forms of
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Fig. 4.1 Ten doses of chemotherapy over 60 days has been sufficient to eliminate the tumor. a
Curves of the population of the four cell species. b Distribution of 10 doses of chemotherapy drugs
within 60 days and the trend of changes in the concentration of chemotherapy drugs in vivo
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oscillatory changes in the early stage, which mainly depended on the pulse injection
of chemotherapy drugs, and immunospecific cell CT, which also decreased to stabil-
ity after tumor cells stabilized in the later stage. Figure4.1b shows the corresponding
mode of administration, with the red is the pulse of administration and the green is
the change of the corresponding chemotherapy drug in the body.

4.5.2 Construction of Affine Model

In (4.8), although the discrete model has been obtained, it is too complex and the
addition of various coupling forms, which is difficult to be directly combined into the
iteration-DHP structure. At this time, the idea of constructing a simple affine model
is introduced. It can be easily learned from the above two sub-parts, which can be
simplified as the influence of the injected concentrations of the two drugs on tumor
cells in the body. Then, the current concentration of tumor cells can be selected as
the state variable, and the injected concentrations of the two drugs (chemotherapy
drugs and immune agents) can be used as the control variable to form a data set,
starting from a large number of random data. The desired affine discrete model is
obtained by fitting.

x(t + 1) = f(x(t)) +
[
g1(x(t))
g2(x(t))

]T

u(t) (4.31)

g1

(
log10(x)

)
= 0.001771

(
log10(x)

)
5−0.02931

(
log10(x)

)
4+0.1793

(
log10(x)

)
3

−0.5353
(
log10(x)

)
2+1.741

(
log10(x)

)
−1.133 (4.32)

g2

(
log10(x)

)
= 0.007579

(
log10(x)

)
4−0.1087

(
log10(x)

)
3

+0.4838
(
log10(x)

)
2+0.1783

(
log10(x)

)
2−0.2304 (4.33)

4.5.3 Optimization of Mixed Treatment Regimen

Following the affine model mentioned above, it is necessary to specify the cost
function required in iteration-DHP before optimizing the treatment:
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Table 4.2 Default parameters

λ P m1 U1 U1 m2 U2 Q2

0.95 10−7 0.55 1.28 6 × 1048 0.62 1.12 2 × 105
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The number of iterations
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Fig. 4.2 The iteration error change curve, after the end of the 67th iteration, satisfies the termination
condition

J(x(t)) =
∞∑

ι=0

λι

{
xT (t)Px(t) + m1

∫ u1(t)

0
tanh−T (U

−1

1 s)

· U1Q1ds + m2

∫ u2(t)

0
tanh−T (U

−1

2 s)U2Q2ds
}
. (4.34)

According to clinical experience, the default parameters are shown in Table4.2.
The iteration error ε is set to 10−6, and the iteration error variation curve is shown
in Fig. 4.2. The error decreases extremely fast in the first twenty iterations of the
calculation, and the convergence rate gradually decreases after 20 iterations. At
ι = 67, the termination condition has been satisfied.

Analysis of tumor cells after meet the termination criterion, according to the
optimized regimen of population change curve as shown in Fig. 4.3, visible at an
extremely rapid rate by the growth of stem. The usage and dosage of two drugs
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Fig. 4.3 Tumor cell population changes in optimized treatment

are shown in Fig. 4.4. Figure4.4a represents the curve of injected concentration of
chemotherapy drugs, and Fig. 4.4b represents the curve of injected concentration of
immune drugs.

4.6 Conclusion

In this chapter, a tumor immunedifferential game systemhas been established to solve
the problem of optimal clinical tumor treatment oriented to evolutionary dynamics.
Firstly, a mathematical model of the game system between tumor cells and immune
cells treated by immune agents and chemotherapy drugs has been given. Secondly, the
bounded optimal control problem has been solved by the HJB equation with infinite
horizon performance index which is subjected to practical constraints. Finally, the
optimal iterative approximate control strategy has been obtained by the iterative dual
heuristic dynamic programming algorithm, and the effectiveness of the proposed
algorithm has been proved.
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Chapter 5
N-Level Hierarchy-Based Optimal
Control to Develop Therapeutic
Strategies for Ecological Evolutionary
Dynamics Systems

5.1 Introduction

The death toll from tumor diseases is on the rise, and the nonlinear dynamics and con-
trol of tumor growth have attracted widespread attention [1]. The number of tumor
cells is gradually increasing. The most obvious feature is abnormal anti-growth sig-
nals. There is a strict control mechanism for normal cells. However, in the continuous
process, the static and death signals are turned off to generate cell division signals,
which leads to the crazy growth of tumor cells [2, 3]. Tumor cells promote the growth
of blood vessels, which are necessary to provide nutrients. This is why the flow of
blood in tumor tissues is related to the benign or malignant tumor. Cancer cells are
also polarized. They have evolved their camouflage ability in the ongoing battle with
immune cells, causing the immune system to mistake them for normal cells, which
makes it difficult for chemotherapeutic drugs to distinguish the volume of biological
targets [4, 5]. When the differentiation process of normal cells is not controlled, they
will evolve into tumor cells. This is the nature of tumor cells, tumor cells continue
to proliferate, deprive their limited body energy supply, and ultimately destroy the
body’s function and die [6]. Therefore, in order to inhibit the growth of tumor cells,
it is urgent to find a treatment that will minimize the damage to oneself.

In the fight against cancer, before the advent of chemotherapy and radiother-
apy, there have been no effective measures for the small differences between cancer
cells and normal cells [7, 8]. When the side effects of radiotherapy and chemother-
apy increased and the targeted therapy was highly targeted and inflexible, scientific
research projects began to turn to humans themselves [9]. The complex and unique
communities of cell life are called microenvironments by scientists. The microen-
vironment has many characteristics that affect cell growth, behavior, and how to
communicate with other cells nearby [10]. In the oncology world, researchers are
committed to understanding the tumor microenvironment and trying to find feasible
treatment opportunities. Under normal circumstances, the immune system can rec-
ognize and eliminate tumor cells in the tumor microenvironment. However, in order
to survive and grow, tumor cells can adopt different strategies to suppress the body’s
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immune system and fail to kill tumor cells normally, thereby surviving the various
stages of the anti-tumor immune response. The above-mentioned characteristics of
tumor cells are called immune escape. Tumor cells escape the immune system, not
because the immune system cannot recognize them, nor because it is not activated,
but cancer cells have evolved a way to prevent T cell activation through specific
binding [11–13]. Therefore, the medical community has been trying to find many
special methods to treat cancer cells to block the activation of T cells and release the
immune system.

Chemotherapy not only kills rapidly differentiated tumor cells, but also involves
conventional cells. Its side effects are the most obvious, but they can be alleviated
by immunotherapy. The closure of immune checkpoints and the success of adoptive
cell therapy have made immunotherapy a mature means of treating cancer [14, 15].
Compared with traditional therapies such as surgery, radiotherapy, and chemother-
apy, immunotherapy has fewer side effects and better effects, but immunotherapy is
difficult to overcome its transient nature. With the rapid increase in tumor patients,
immunotherapy is rapidly emerging for the treatment of specific types of cancer, espe-
cially tumors with poor immunogenicity [2]. The original intention of immunother-
apy is to fight cancer cells through the lethality of immune cells themselves. As a
typical immune deficiency syndrome, AIDS is caused by the failure of the immune
response and is often attributed to the weakening of the immune level. However, once
the activated immune system cannot be stopped, cytokines are produced, which is
considered to be an overreaction of the immune system like COVID-19 [16, 17].
Therefore, the combined treatment of chemotherapy and immunotherapy is more
reasonable. Immunotherapy refers to a treatment method that artificially enhances or
suppresses the body’s immune function to achieve the purpose of curing diseases by
referring to the body’s low or hyperimmune state. There are many immunotherapy
methods, which are suitable for the treatment of many diseases. Tumor immunother-
apy aims to activate the human immune system, relying on its own immune function
to kill cancer cells and tumor tissues [18]. Unlike previous surgery, chemotherapy,
radiotherapy, and targeted therapy, the target of immunotherapy is not tumor cells and
tissues, but the body’s own immune system [19]. Different types of tumor cells inter-
act with different types of immune cells, and these immune cells have the function
of helping or attacking tumors [20].

Themechanism of immune regulation varies from person to person, but in the case
of special calls, the optimal regulation based on immunotherapy will play a role in
reducing tumor cells regardless of specific circumstances. Enhancing tumor antigen
presentation can effectively stimulate dendritic cells and improve immunotherapeu-
tic efficacy [21, 22]. The known “predation-prey” between immune cells and tumor
cells will cause periodic growth and reduction of cells. This growth and reduction
can continue indefinitely or reach a balanced saddle point determined by system
parameters [23]. And all of the above is composed of a complex non-linear struc-
ture, and it is difficult to achieve the global optimum with conventional optimization
methods. Especially for the treatment of the human body, how to rationally use drugs
to achieve the minimum harm to the human body is particularly important. So this
article proposes a novel evolutionary calculation method, N-Level Hierarchy Opti-
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mization (NLHO) algorithm. It is bionic from the hierarchical system of biological
populations in the natural world. The hierarchical system refers to the hierarchical
phenomenon in which the status of each animal in the animal group has a certain
order. The basis of the formation of the hierarchy is the dominance behavior, that is,
the “domination-submission” relationship [24]. When the formed hierarchical sys-
tem stabilizes, lower-ranking people generally show compromise and obedience, but
sometimes they also re-struggle to change the hierarchical order, and so on. A stable
population will develop for a long time. This is an explanation for the rationality
of the hierarchy preserved in evolutionary selection [25]. So for the entire species
population, this is conducive to the preservation and continuation of the species. A
variety of biological interactions constitute a complex nonlinear growth process of
tumor cells, and the main influencing factors of tumor cell populations are the focus
of research. Hunting cells refer to immune cells that participate in the removal of
foreign objects and strengthen the immune response [26, 27].

In the NLHO algorithm, an N levels optimization structure is designed, which
includes the leader level, guider level, executant level and follower level. In the entire
population, the individual with the best search position is selected as the leader, who
has the grasp of the entire search direction of the team it leads. The second level is the
guider level, which executes the tasks issued by the leader and follows the direction
of the leader to find the best. Of course, in the whole process, the guider will also
refer to the task allocation of the global optimal leader to guide the executants to find
the best, so as to prevent the leader of the team from falling into a local optimum. The
third level is the executant level, which follows the guider to complete the task, in
order to achieve a wider area of coverage search. At the same time, it will also refer to
the tasks assigned by the leaders of the ethnic group tomake the task goals clearer and
speed up the convergence. The last level is the follower level. At this level, followers
can be divided into any level to solve different optimization problems. Of course,
in the later stage of searching, there may be excessive overlap between population
individuals [28].

5.2 Ecological Evolutionary Dynamics Systems Model

This part mainly introduces the mathematical growth model of tumor cells, which
takes into account the influence of external factors such as chemotherapy drugs and
immunotherapy on tumor cells, as well as the interaction between the two cells. In
the following model, T (t) represents the number of tumor cells, I(t) represents the
number of immune cells, Conche(t) and Conim(t) represent the blood concentration
of chemotherapy drugs and immunotherapy drugs, respectively.

Taking into account the interaction between immune cells and tumor cells, the
direct killing of chemotherapeutic drugs and the growth model of tumor cells can be
written as
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T (t + 1) = T (t) + ϑ1 × T (t) × (
1 − ϑ2 × T (t)

)

− γ × T (t) × I (t) − ε × T (t) × Conche(t)
(5.1)

where, ϑ1 stands for inherent growth rate unrelated to immune cells and chemother-
apy drugs, ϑ2 stands for the maximum interaction ability between immune cells and
tumor cells, ignoring chemotherapy drugs, γ stands for the growth rate when tumor
cells are inactivated and attacked by immune cells, ε stands for the stress response
coefficient of tumor cells to chemotherapeutics.

Considering the natural growth law of immune cells, we assume that a fixed
number of immune cells are produced in a unit time, and these cells have an inevitable
life cycle. Tumor cells in the body can stimulate the growth of immune cells, which
is a positive non-linear change. In immunotherapy, the addition of immune drugs
can produce an immune response, leading to non-linear growth of immune cells. At
the same time, in the struggle between immune cells and tumor cells, the immune
cells themselves will also cause losses. In chemotherapy, chemotherapy drugs can
also cause damage to immune cells.

I (t + 1) = I (t) + ϑ3 − λ × I (t)

+ α1 × T 2(t) × I (t)

β1 + T 2(t)
+ α2 × T (t) × Conim (t)

β2 + Conim(t)

− ξ1 × T (t) × I (t) − ξ2 × Conche (t) × I (t)

(5.2)

where, ϑ3 stands for rate of continuous inflow, λ stands for natural decay rate without
any external effects, α1 stands for maximum recruitment rate caused by tumor cells,
α2 stands for the largest proportion of tumor cells caused by immunotherapeutic
drugs, β1 stands for steepness factor caused by tumor cells, β1 stands for steepness
coefficient caused by immunotherapeutic drugs, ξ1 stands for stress response coef-
ficient to chemotherapy drugs, ξ2 stands for response rate of tumor cells to immune
cells.

At a certain point in time after the injection of chemotherapy drugs, the concen-
tration of the drugs in the body will decrease exponentially. We are adding immune
drugs at the same time. We can get the attenuation model of chemotherapy drugs and
immune drugs in vivo.

Conche(t + 1) = χche(t) − e−θ1Conche(t) (5.3)

Conim(t + 1) = χim(t) − e−θ2Conim(t) (5.4)

where, χche(t) and χim(t) represent the concentration of chemotherapeutic drugs
and immune drugs, respectively. θ1 and θ2 are the attenuation rates of chemotherapy
drugs and immune drugs.

Whenwequalitatively analyze how tominimize the number of tumor cells remain-
ing in the bloodstream under the premise of using as few drugs as possible, including
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chemotherapy drugs and immune drugs, this process can be described by quantitative
mathematical expressions. From formulas (5.1)–(5.4), we can get:

Fmin =
t∑

t=t0

δt
{
ωT 2(t) +

∫ χche(t)

0
tan−1(Ū−1

1 s)Ū1R1ds

+
∫ χim(t)

0
tan−1(Ū−1

2 s)Ū2R2ds

} (5.5)

where, Ū1 and Ū2 respectively represent the maximum allowable dose of chemother-
apy drugs and the dose of a single injection of immunizing agent, δ is the discount
factor, ω is a constant coefficient.

5.3 N-Level Hierarchy Optimization Algorithm

5.3.1 Leader Level of the Hierarchy

First of all, as individuals with high fitness values, leaders have strong self-learning
capabilities. Therefore, the iterative formula of design leaders is as follows:

xt+1
l, j = xtl, j

(
1 + randn(μl,σl)

)
(5.6)

where, i denotes the ith leader in the population, and j is the dimension. t is the
number of iterations. Randn is a Gaussian distribution, where the mean μl = 0 and
the standard deviation σl is shown below:

σl =
{
1 , f tl ≤ f ti
exp( f tl − f ti ) , f tl > f ti

, i ∈ [1, 2, · · · N ], i �= l (5.7)

where, f tl is the fitness value of the lth leader at the tth iteration, and f ti is the fitness
value of any individual in the population that is different from the lth leader.

5.3.2 Guider Level of the Hierarchy

Secondly, as the individuals who guide the general direction of the evolution of the
entire population for the leader, the guider must not only learn from the best overall,
but also obey the leader’s command.
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xt+1
g, j = xtg, j + randn(μg,σ

2
g) × (xtl, j − xtg, j )

+ s1 × (xtbest, j − xtg, j )
(5.8)

where, g denotes the gth guider in the population, best is the best individual in the
current iteration, s1 is the acceptance factor of guider, μg = 0.5.

σg = exp( f tl − f tg ) (5.9)

s1 = exp

(
f tbest − f tg
| f tg | + ε

)

(5.10)

where, ε is an infinitesimal value to prevent a guider from having a fitness value
of 0.

5.3.3 Executant Level of the Hierarchy

The executants seek the best as the main body of the entire population. On the one
hand, follow the guider’s arrangements, and on the other hand, follow the leader’s
direction.

xt+1
e, j = xte, j + randn(μe,σ

2
e ) × (xtg, j − xte, j )

+ s2 × (xtl, j − xte, j )
(5.11)

where, e is each executant in the population, s2 is the acceptance factor of the executor,
μe = 0.8.

σe = exp

(
f tg − f te
| f te | + ε

)
(5.12)

s2 = exp( f tl − f te ) (5.13)

5.3.4 Follower Level of the Hierarchy

Finally, there are followers, who themselves will be divided into multiple levels.
Learn from each other at different levels, and notify the follow-up executant to check
for deficiencies.

xt+1
fn , j

= xtfn , j + randn(μ fn ,σ
2
fn ) × (xtfn−1, j − xtfn , j )

+ cn × rand × (xte, j − xtfn , j )
(5.14)
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where, fn is the n-level follower, cn is the absorption factor of the n-level follower,
μ fn = 0.8 − 0.6 × (t/tmax),xtf0, j = xte, j , f

t
f0

= f te , n is a natural number greater than
0.

σ fn = exp( f tfn−1
− f tfn ) (5.15)

cn = exp( f tfn−1
− f tfn ) (5.16)

5.4 Simulation and Analysis for NLHO

In this experiment, the population size is set to 100, and the maximum number of
iterations is set to be 100. Each algorithm is run independently for 50 times, and the
spatial dimension is selected according to different test functions. The distribution
rates of each level system are LPercent = 10%, GPercent = 20%, EPercent = 40%,
and FPercent = 30%. The value of the updated algebra G = 10.

For independent tests of 20 test functions, we separately count their mean, mini-
mum and standard deviation to evaluate the performance of NLHO in various aspects
by setting the difficulty in different aspects. At the same time, we select some typical
algorithms for comparison, such as TabooSearch (TS), Chicken SwarmOptimization
(CSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), and Simulated
Annealing (SA), so as to compare the performance of the NLHO algorithm horizon-
tally. The test results are shown in Table5.1.

For the independent tests of the benchmark functions, we calculated 5 parameter
indexes respectively,whichwere their best,worst,median, average and std. deviation.
At the same time, in order to verify whether the results are statistically significant,
we use the Wilcoxon rank-sum test between NLHO and the other algorithms. “+”,

Table 5.1 Experimental simulation results
Function Optimization TS CSO GA ACO SA NLHO

Ackley Mean 2.685462(–) 8.88E-16(≈) 17.98669(–) 8.157645(–) 0.381913(–) 8.88E-16

Min 1.599236(–) 8.88E-16(≈) 2.532499(–) 0.818328(–) 0.024938(–) 8.88E-16

Std.
Deviation

3.327767(–) 0(≈) 5.021448(–) 2.860999(–) 0.248066(–) 0

Cross-in-
Tray

Mean −2.04281(–) −2.06247(–) −1.52287(–) −2.05567(–) −2.05048(–) −2.06261

Min −2.05463(–) −2.06261(≈) −2.06257(–) −2.06261(–) −2.06257(–) −2.06261

Std.
Deviation

0.050988(–) 0.000129(–) 0.314647(–) 0.007304(–) 0.008585(–) 1.17E-10

Drop-Wave Mean −0.90552(–) −1(≈) −0.16478(–) −0.9568(–) −0.98441(–) −1

Min −0.93563(–) −1 (≈) −0.90648(–) −1(≈) −0.99988(–) −1

Std.
Deviation

0.105019(–) 1.63E-07(–) 0.194473(–) 0.025337(–) 0.016453(–) 0
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“−”, and “≈” mean that the proposed NLHO is significantly better, significantly
worse, and no significantly statistically different in the comparison, respectively.

It can be seen from the experimental results that, compared with the other 5
algorithms, under 20 test functions 60 indicators, NLHO wins 58, 29, 59, 53 and
56 indicators, and they belong to different types of test functions, which reflects the
better robustness of NLHO. Moreover, it can be seen from the Wilcoxon rank-sum
test that NLHO is not only different from other population algorithms, but also has
obvious advantages. The experimental results for each function are discussed inmore
detail below.

The Ackley function f1 is widely used to test optimization algorithms. It is a con-
tinuous experimental function obtained by superimposing an exponential function
with a moderately amplified cosine. It is characterized by an almost flat outer area,
which is modulated by a cosine wave to form holes or peaks, making the curved sur-
face undulating, but there is a large hole in its center. For the Ackley function, both
NLHO and CSO have found the global minimum, and the average value is also equal
to the global minimum, so that the standard deviation is also 0. The optimization
process diagram of the NLHO algorithm is shown in this article, including the initial
iteration diagram, the final result diagram and the intermediate process convergence
curve, as shown in Fig. 5.1. The two algorithms are comparable, SA performance is
average, while TS, GA and ACO perform poorly.

The Cross-in-Tray function f2 has multiple global minimums. On this function,
the mean, minimum and standard deviation of NLHO have reached the best, and the
experimental results are shown in Fig. 5.2. At the same time, ACO also found the
global optimum, but the mean and standard deviation are slightly inferior to NLHO.
TS, CSO and SA performed well, while GA performed average.

The Drop-Wave function f3 is multi-modal and very complicated. In each smaller
input domain, its features have multiple ring-shaped peaks and valleys, and the depth
of the valleys gradually decreases as the center of the circle shrinks. For the optimiza-
tion process, it is very easy to fall into the local optimum. For this kind of complex
optimization function, NLHO has shown strong optimization ability, and the global
minimum, mean and standard deviation have all reached the best. The experimental
results are shown in Fig. 5.3. CSO, ACO and SA performed well, and TS and GA
performed poorly.

5.5 Develop Therapeutic Strategies for Ecological
Evolutionary Dynamics Systems Using NLHO

In this section, we apply the NLHO algorithm to the EEDS model as an experimen-
tal verification. According to clinical treatment needs, chemotherapeutic drugs and
immune drugs are used as input, and the cost of treatment loss is used as the objec-
tive function. Through the iteration of the NLHO algorithm, the optimal therapeutic
strategies for patients with a certain basic condition are worked out. For some of the
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Fig. 5.1 Ackley

Fig. 5.2 Cross-in-tray

remainder of this sample we will use dummy text to fill out paragraphs rather than
use live text that may violate a copyright.
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Fig. 5.3 Drop-wave

Table 5.2 Experimental parameter

Parameters Value Units Parameters Value Units

ϑ1 0.00431 day−1 ϑ2 1.02 × 10−9 cell−1

γ 6.41 × 10−11 cell−1 ε 0.08 day−1

λ 0.204 day−1 ξ1 3.42 × 10−6 cell−1

ξ2 2 × 10−11 day−1 α1 0.0125 day−1

α2 0.125 day−1 β1 2.02 × 107 cell2

β2 2 × 107 cell θ1 0.1 day−1

θ2 1 day−1 δ 0.95 N/A

ω 0.1392 × 10−4 N/A

According to clinical medical statistics borrowed from the literature [29], the
specific parameters of the dynamic models are presented as Table5.2. Based on the
above, we have completed the establishment of the EEDSmodel, and determined the
specific value of the cost function according to clinical needs. At the same time, the
feasibility and effectiveness of the NLHO algorithm are also verified on benchmarks.
Apply NLHO to the model of EEDS to develop therapeutic strategies. The best
processing strategy is obtained through experiments, which proves the effectiveness
and feasibility of the algorithm. The cost function is designed tominimize the number
of tumor cells, and also to use the smallest dose of chemotherapeutic drugs and
immune drugs to achieve the least harm to the human body.
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Fig. 5.4 Quantity curve of tumor cells

When we give the patient the initial number of tumor cells and immune cells,
according to the EEDS model and follow certain chemotherapy and immunotherapy
plans, we can get the following set of curves of tumor cells and immune cells. As
shown in Figs. 5.4 and 5.5, it shows the quantity curve of tumor cells and immune
cells.Within a one-year treatment period, the number of tumor cells was successfully
reduced to 254. Although the number of immune cells was reduced to 1.52×106,
significant effects were obtained for the treatment of tumors. Moreover, as shown in
Figs. 5.7, 5.8 and 5.9, due to the decline of the body’s immune cells, the immune drug
dropped to 0.022 and then increased to about 0.03. This caused the concentration of
immune drugs in human blood to rise from the trough of 0.0096 to 0.03, reaching a
sufficient level.

The dosage of chemotherapeutic drugs is adaptively and dynamically changed,
as shown in Fig. 5.6. Then the concentration of chemotherapeutic drugs in the blood
also has the same changing trend, as shown in Fig. 5.8. The reason is to minimize the
damage of drugs, and chemotherapy drugs are also harmful, not only killing tumor
cells in the body but also destroying immune cells. If chemotherapeutic drugs are put
in according to normal treatment methods, normal cells will suffer a lot of erosion,
and the impact on the body will be even more significant. However, the drug dose
optimized by NLHO will dynamically change adaptively, and the impact on normal
cells will be appropriately reduced without affecting the elimination of tumor cells.
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Fig. 5.5 Quantity curve of immune cells

Fig. 5.6 Dosage of chemotherapeutic drugs
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Fig. 5.7 Quantity curve of immune drug

Fig. 5.8 Concentration of chemotherapy drugs
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Fig. 5.9 Concentrations of immunereagents

5.6 Conclusion

It is a difficult problem to solve optimal therapeutic strategy for EEDS. Theoreti-
cally, it can achieve the desired therapeutic effect through reducing the tumor cells
through the combined of chemotherapeutic drugs and immune drugs, and minimize
the harm to the human body. Benefiting from the concept of heuristic algorithm
in evolutionary computing, this chapter has designed the NLHO algorithm via 20
benchmark functions to test NLHO, including unimodal and multimodal, single-
mode and multi-mode, single-extreme and multi-extreme, etc. It is compared with
the five algorithms of TS, CSO, GA, ACO and SA, and runs independently 50 times
to calculate the mean, minimum and standard deviation. It proves that NLHO has
good optimization ability and can solve various problems well. At the same time,
the development therapeutic strategies of EEDS have achieved very good results.
The experimental results have shown that the NLHO algorithm develops therapeutic
strategies well, and provides valuable prior knowledge and scientific basis for clini-
cal medicine. Future work will further improve the EEDS, and integrate the optimal
control strategy and the evolutionary calculation method for the optimal treatment
method.
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Chapter 6
Combination Therapy-Based Adaptive
Control for Organism Using Medicine
Dosage Regulation Mechanism

6.1 Introduction

The death toll is soaring caused by neoplastic diseases, and the issues on nonlinear
dynamics and control of tumour growth have motivated a widespread concern as [1].
Essential nutrients in humans are the resources for which the normal cells and tumor
cells compete. Tumour cellswill keepproliferating, robbing the limited energy supply
of the body, and eventually disintegrating the somatic function to death. Somatic
cells constantly divide, and new cells differentiate which end with apoptosis. In this
manner, the relative balance can be maintained in human bodies. Nevertheless, when
the process of differentiation for normal cells is out of control, the cells may well
evolve into tumor cells. It is the nature for the tumor cells of which the tendency is
to eat the body’s nutrients crazily.

The population of tumour cells progressively increases for the following three
characteristics. Firstly, the most obvious characteristic is the insensitivity to anti-
growth signals. There exists strict control mechanism for normal cells, but for tumor
cells, this mechanism is no longer valid. During the continuous process of division,
tumor cells can escape from themonitoring of the anti-growth signals, which leads to
the crazy growth of tumour cells. Secondly, tumour cells have the ability to promote
the growth of blood vessels which are essential for providing nutrients, and it is the
reason why the blood vessel density is associated with the malignant degree of the
tumor tissue. Finally, tumor cells are also duplicitous, evolving camouflage abilities
during their constant battle with immune cells to mislead the immune system into
regarding them as normal cells, which results in the tumor immune escape. Thus, to
suppress the growth of tumour cells, obstructing the generative mechanisms which
relies on the necessary nutrients was an effective approach as literatures [2, 3].

Distinguishing from the mixed tumor treatment approach of immunotherapy and
chemotherapy as [4], this chapter explores a more effective adaptive control strategy
for organism using medicine dosage regulation mechanism. An additional popula-
tion of cells which called endothelial cells enjoy the substances induced bymalignant
tumour cells, and they could transfer oxygen and nutrients to the primary focus caus-
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ing proliferating of blood cells, which will increase carrying capacity of tumour cells
known as tumour angiogenesis in [5]. As indicated in literature [6], anti-angiogenic
agent could particularly decrease the growing rate of tumours, reaching saturation to
some extent without killing the endothelial cells completely.When the chemotherapy
agent was used in combination with anti-angiogenic agent to reduce the population
of tumor cells , the latter could increase the effect of the former as described in [7].
Nevertheless, as the key element of promoting the growth of the vasculature, the
endothelial cells could not be completely destroyed. Otherwise, it may not exist that
the specified number of vasculature for constructing access of chemotherapy agent.
On the basis of the pharmaceutical science concerning the chemotherapy agent and
anti-angiogenic agent, the adaptive control strategy for organismwill provide a guid-
ance for clinical practice under the medicine dosage regulation mechanism, espe-
cially in the treatment process of Lung cancer. Furthermore, what counts is that since
the anti-tumor drugs often kill both tumor cells and normal cells, it’s of significance
to utilize less drugs to achieve the therapeutic goal during the treatment process.

ADP is derived from dynamic programming and reinforcement learning, is a
powerful tool to tackle optimization issues [8–10]. In general, the successful imple-
mentation ofADP-basedmethods depends on the cooperativework of actor and critic
networks [11]. Under this framework, the actor is responsible for performing the con-
trol strategy with current data [12]. The goal of critic is to provide actor with the
feedback information derived from the evaluation of the cost under the strategy. The
distinct merit of this type of algorithm lies in that the optimal control strategy could
be approximately acquired in the manner of iteration computation, and the “curse of
dimensionality” could be obviated with effect. Different ADP-based methods have
been researched by scholars to tackle multifarious optimal control problems with the
aid of the artificial neural networks of which the performance is outstanding [13, 14],
such as the robust control [15, 16], optimal consensus control [17–19] and the opti-
mal tracking issues [20, 21]. Furthermore, for the system with multiple controllers,
the optimization issues can be formulated by game theory. As a vital branch of game
theory, NZSGs is derived from [22]with the goal of attaining the optimal strategy pair
that can minimize the personal performance index for each player when stabilizing
the controlled system [23–25]. Due to the excellent ability to approximate optimiza-
tion, the ADP methods have been proposed to solve NZSGs. In [26], the adaptive
method of critic-only structure was developed to solve two-player NZSGs without
any initial stabilizing control. The experience replay technique was integrated into
the ADP algorithm in [27] to concurrently utilize the historical data together with the
real-time data to approximate the value function such that the persistence of excita-
tion condition was not indispensable. In [28], the data-based integral reinforcement
learning algorithm was proposed to solve NZSGs. More specially, it was a novel
iterative learning algorithm based on both off-line and online manner which could
extend the applicability of the data-based control scheme. Furthermore, in [29], the
discrete-time N -player NZSGs was tackled via the off-policy reinforcement learning
method which was independent of system dynamics.

Although the relevant academic achievements have been presented in theories and
applications as [30–38], there is seldom any literature on this filed according to litera-
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ture survey of the authors. The contributions can be shown as follows. First, the near-
optimal therapy for the treatment of tumor is firstly acquired via the ADP approach
which is an efficient adaptive intelligent learning algorithm. Second, the interactive
system with discounted value function is constructed based on the mathematical
model simulating the interaction relationships among cells and drugs. Besides, two
kinds of chemotherapy drugs and a kind of anti-angiogenic agent participate in the
therapy such that the combination therapeutic strategy can be derived under the archi-
tecture of NZSGs. Third, the idea of cybernetics is extended to the frontier fields of
medicine, more precisely, the therapy of tumor. Under the MDRM, the derived ther-
apeutic strategy can achieve the therapeutic goal with the lowest doses of drugs, and
the practical indications for medicine is considered for the first time.

Notations: N
+ denotes the set containing all positive integers. ‖ · ‖, diag{·} and

�(·) � ∂(·)/∂x respectively represent the Euclidean norm of a vector/matrix, the
operation of constructing diagonal matrix and the gradient operator. λm(·) and λM(·)
separately denote the minimum eigenvalue and maximum eigenvalue of a matrix.
In×n is the unit matrix whose dimension is n.

6.2 Preliminaries

6.2.1 Establishment of Mathematical Model

In this section, the growth mathematical model is established which considers the
interaction relationships among the normal cells, tumor cells and endothelial cells.
Moreover, the effects of control inputs, i.e., the chemotherapy and anti-angiogenic
drugs, on these cells are embodied in the model. Thus, in the model formed from
ordinary differential equations as follows, PNC (t), PTC(t) and PEC(t) respec-
tively represent the populations of normal cells, tumor cells and endothelial cells,
PCDj (t)(j = 1, 2) and PAD(t) denote the concentrations of chemotherapy and anti-
angiogenic drugs.

The population of normal cells, which is influenced by tumor cells, endothelial
cells and the concentrations of chemotherapy and anti-angiogenic drugs, is modeled
by

ṖNC(t) = α1PNC(t)
(
1 − PNC(t)

C1

)
− A1PNC (t)PTC(t)

− Ξ1
(
PEC(t), PAD(t)

) PNC(t)PCD1(t)

B1 + PNC (t)

− Ξ2
(
PEC(t), PAD(t)

) PNC(t)PCD2(t)

B1 + PNC (t)
, (6.1)

whereΞı
(
PEC(t), PAD(t)

) = Ξı1PEC(t) + Ξı2PAD(t) + Ξı0, ı = 1, 2. The param-
eters α1, B1, C1 denote the proliferation rate, Holling type 2 constant and carrying
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capacity for normal cells, respectively. A1 is the contention parameter between nor-
mal cells and tumor cells.

As the tumor cells contend with normal cells for necessary nutrients, the popu-
lation of tumor cells is affected by that of normal cells. Besides, there exist mutual
effects among tumor cells, endothelial cells and the drugs. Thus the corresponding
model can be written as

ṖTC(t) = α2PTC(t) − α2PTC(t)PTC(t)

C2 + �PEC(t)
− Π1

(
PEC(t), PAD(t)

) PTC(t)PCD1(t)

B2 + PTC(t)

− Π2
(
PEC(t),PAD(t)

) PTC(t)PCD2(t)

B2 + PTC(t)
− A2PNC(t)PTC(t), (6.2)

where Πj

(
PEC(t), PAD(t)

) = Πj1PEC(t) + Πj2PAD(t) + Πj0, j = 1, 2. The
parameters α2, B2, C2 are multiplication rate, Holling type 2 constant and carry-
ing capacity for tumor cells. A2 is contention parameter between normal cells and
tumor cells.

The population of endothelial cells is associated with tumor cells and anti-
angiogenic drugs. The relations can be given as

ṖEC(t) = s1+K PTC(t)+α3PEC(t)
(
1− PEC(t)

C3

)
− Ξ3PEC(t)PAD(t)

B3+PEC (t)
(6.3)

where K is multiplication rate caused by tumor cells and s1 the inflow rate. Similarly,
the parametersα3, B3,C3 aremultiplication rate,Holling type 2 constant and carrying
capacity for endothelial cells. Ξ3 is the killing rate for endothelial cells.

The concentrations of the drugs decrease during the treatment phases, owing to
thewashout process. Hencewe canmodel the evolution process of the concentrations
of chemotherapy and anti-angiogenic drugs by

ṖCD1(t) = Drc1 −
(
βc1+m1

PNC(t)

B1 + PNC(t)
+m2

PTC(t)

B2+PTC(t)

)
PCD1(t) (6.4)

ṖCD2(t) = Drc2−
(
βc2+m3

PNC(t)

B1+PNC (t)
+m4

PTC(t)

B2 + PTC(t)

)
PCD2(t) (6.5)

and

ṖAD(t) = Dra −
(
βa + m5PEC(t)

B3 + PEC(t)

)
PAD(t), (6.6)

where Drc1, Drc2 and Dra are the control inputs. βc1, βc2 and βa denote the washout
rates for the drugs. m1, m2, m3, m4 and m5 are the rates at which the drugs integrate
into the cells. Based on the operations similar to that in [39], we obtain the simplified
version of the model as
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗNC(t) = α1 pNC(t)(1 − pNC(t)) − a1 pNC(t)pTC(t)

− ξ1
pNC(t)pCD1(t)

b1 + pNC(t)
− ξ2

pNC(t)pCD2(t)

b1 + pNC(t)
,

ṗTC(t) = α2 pTC(t)
(
1 − pTC(t)

1 + φpEC(t)

)
− a2 pNC(t)pTC(t)

− π1
pTC(t)pCD1(t)

b2 + pTC(t)
− π2

pTC(t)pCD2(t)

b2 + pTC(t)

ṗEC(t) = s1 + kpTC(t) + α3 pEC(t)(1 − pEC(t)) − ξ3
pEC(t)pAD(t)

b3 + pEC(t)
,

ṗCD1(t) = uc1 −
(
βc1 + m1

pNC(t)

b1 + pNC(t)
+ m2

pTC(t)

b2 + pTC(t)

)
pCD1(t),

ṗCD2(t) = uc2 −
(
βc2 + m3

pNC(t)

b1 + pNC(t)
+ m4

pTC(t)

B2 + pTC(t)

)
pCD2(t),

ṗAD(t) = ua −
(
βa + m5 pEC(t)

b3 + pEC(t)

)
pAD(t),

(6.7)

where ξı
(
pEC(t), pAD(t)

) = ξı1 pEC(t) + ξı2 pAD(t) + ξı0 and πj

(
pEC(t), pAD(t)

)
= πj1 pEC(t) + πj2 pAD(t) + πj0 with ı, j = 1, 2. The states pNC(t), pTC(t),
pEC(t), pCD1(t), pCD2 and pAD are nonnegative.

Remark 6.1 The differential equation (6.7) is the simplified model describing the
interaction relationships among cells and drug. Observing the model, one can dis-
cover that there exists competition between normal cells and tumor cells. The tumor
cells require more nutrients such that they facilitate the proliferation of endothe-
lial cells, which could provide the indispensable nutrients to promote the growth
of tumor. The tumor cells can be effectively damaged by the chemotherapy drugs
which have side-effects on normal cells to some extent, and the anti-angiogenic drug
contributes to the proliferation inhibition of the endothelial cells.

6.2.2 Nonzero-Sum Games Formulation

Consider the interaction model (6.7) rewritten as

ẋ = f (x) +

⎡
⎢⎢⎣
03×1 03×1

0.06 0
0 0
0 0.12

⎤
⎥⎥⎦u1 +

⎡
⎢⎢⎣
03×1 03×1

0 0
0.1 0
0 0

⎤
⎥⎥⎦u2 (6.8)

= f (x) + g1u1 + g2u2,

where u1 = [uc1, ua]T , u2 = [uc2, 0]T and f (x) is constructed by the right-hand side
parts of (6.7) excluding the terms uc1, uc2 and ua .
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Define the value function for player ı(ı = 1, 2) as

Vı (x(t)) =
∫ ∞

t
e−	ı (ς−t)δı (x,u1,u2)dς, (6.9)

where the utility function δı (x,u1,u2) = xTΥı x + uT
1 Rı1u1 + uT

2 Rı2u2. The
matrixes Rıj (ı, j = 1, 2) and Υı are positive definite, and 	ı > 0 is the discount
factor. According to the value function (6.9), we can define the corresponding Hamil-
tonian function as

Hı (x,u1,u2) = (∇Vı )
T ( f + g1u1 + g2u2)

+δı (x,u1,u2) − 	ı Vı , ı = 1, 2. (6.10)

The optimal value function is defined as

V ∗
ı = min

uı

∫ ∞

t
e−	ı (ς−t)(xTΥı x +

N=2∑
j=1

uT
j Rıjuj )dς. (6.11)

The target of NZSGs is to attain the admissible strategy pair {u∗
1,u

∗
2} with the

definition given in [23, 40]. According to the stationarity condition, the optimal
strategy for player ı could be obtained by

u∗
ı = −1

2
R−1

ı ı gT
ı ∇V ∗

ı . (6.12)

Thus the HJEs can be obtained as

Hı (x,u
∗
1,u

∗
2,∇V ∗

ı ) = (∇V ∗
ı )T ( f + g1u

∗
1 + g2u

∗
2)

+xTΥı x + u∗
1Rı1u

∗
1 + u∗

2Rı2u
∗
2 − 	V ∗

ı = 0. (6.13)

Remark 6.2 It’s noteworthy that there exists no zero equilibrium for system (6.8),
which may well result in the divergence of Vı (x(t)). To resolve this issue, the dis-
counted factor 	ı is introduced to form decay term such that Vı (x(t)) can be conver-
gent.

In general, solving NZSGs is synonymous with solving the equations (6.13). Nev-
ertheless, for nonlinear system, it’s very intractable to tackle the coupled equations.
To resolve this difficulty, an ADP method utilizing dosage regulation mechanism is
proposed in the following sections.
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6.3 MDRM-Based Adaptive Critic Learning Method
for NZSGs

Firstly, we introduce the indications for medicine to judge when the medicine dosage
should be regulated. Then under the MDRM, the ADP method of single-critic archi-
tecture is proposed to approximately seek the optimal strategy for the NZSGs of
model (6.7).

6.3.1 MDRM-Based Optimal Strategy Derivation

For the sake of realizing conditioned therapy strategy, MDRM is required to handle
the clinical data such that the strategy can be changed timely and necessarily. The
time sequence {��} is constructed for recording the regulating instants and � denotes
the �th regulating instant. Then the state could be denoted as

x̆�(t) = x(��), t ∈ [��, ��+1). (6.14)

For evaluating the difference between real-time data and latest recorded data,
it’s necessary to define an error function that z� = x̆� − x(t), t ∈ [��, ��+1). The
operation of MDRM depends on the regulating condition which compares the error
z� with the threshold associated with real-time data. The strategy is adjusted only
when z� is larger than the threshold. That is, ŭı = uı (x̆�), ı = 1, 2, and � ∈ N

+. Thus
the MDRM-based strategy could be got as

ŭ∗
ı = −1

2
R−1

ı ı gT
ı (x̆�)∇ V̆ ∗

ı , ı = 1, 2, (6.15)

where∇ V̆ ∗
ı = ∂V ∗

ı /∂x when t = ��. The version that based on the adjustmentmech-
anism of HJEs is derived as

Hı (x, ŭ
∗
1, ŭ

∗
2, V

∗
ı ) = 1

4

N=2∑
j=1

(∇ V̆ ∗
j )Tgj (x̆�)R

−1
jj RıjR

−1
jj g

T
j (x̆�)∇ V̆ ∗

j

+ (∇V ∗
ı )T

⎛
⎝ f − 1

2

N=2∑
j=1

gjR
−1
jj g

T
j (x̆�)∇ V̆ ∗

j

⎞
⎠ + xTΥı x − 	ı V

∗
ı . (6.16)

Differing from HJEs (6.13), due to the existence of the error z�, (6.16) does
not equal to zero. Before proceed with the discussion, the following assumption is
required [41].

Assumption 6.1 The optimal strategy u∗
ı is locally Lipschitz. That is, for ı = 1, 2,

there exists a constant θı > 0 such that ‖u∗
ı − ŭ∗

ı ‖2 ≤ θı‖x − x̆�‖2.
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Theorem 6.3 Consider the system (6.8), and suppose that Assumption 6.1 holds
and V ∗

ı is the solution of (6.13). Then ŭ∗
ı formulated as (6.15) can stabilize system

(6.8) when the following medicine indication is applied

‖z�‖2 ≤ (1 − 2ζ)λm(Υ )

θλM(Y )
‖x‖2, (6.17)

where ζ ∈ (0, 1/2) is adjustable parameter. The terms θ,Υ and Y are given in (6.21)
and (6.22).

Proof Selecting the Lyapunov function Lya = V ∗
1 + V ∗

2 , we can obtain the corre-
sponding derivative as

L̇ ya =
N=2∑
ı=1

(∇V ∗
ı )T ( f + g1ŭ

∗
1 + g2ŭ

∗
2). (6.18)

According to (6.13), we have

(∇V ∗
ı )T f = − (∇V ∗

ı )T (g1u
∗
1 + g2u

∗
2) − xTΥı x

− u∗T
1 Rı1u

∗
1 − u∗T

2 Rı2u
∗
2 + 	ı V

∗
ı , (6.19)

and

(∇V ∗
ı )T

N=2∑
j=1

gj (u
∗
j − ŭ∗

j ) = −2u∗T
ı Rı ıg

−1
ı

N=2∑
j=1

gj (u
∗
j − ŭ∗

j ). (6.20)

Let u∗ = [u∗T
1 ,u∗T

2 ]T and ŭ∗ = [(ŭ∗
1 − u∗

1)
T , (ŭ∗

2 − u∗
2)

T ]T . Then we can derive
that

L̇ ya = − xTΥ1x − xTΥ2x −
N=2∑
ı=1

N=2∑
j=1

u∗T
j Rıju

∗
j

+ 2
N=2∑
ı=1

u∗T
ı Rı ıg

−1
ı

N=2∑
j=1

gj (u
∗
j − ŭ∗

j ) + 	1V
∗
1 + 	2V

∗
2

= − xTΥ x − u∗TRu∗ − 2u∗T Z ŭ∗

+ 	1V
∗
1 + 	2V

∗
2 , (6.21)

where Υ = Υ1 + Υ2, R = diag{R11 + R21,R12 + R22}, and Z = [Z1, Z2] with
Zı = [R11g

−1
1 gı ,R22g

−1
2 gı ]T , ı = 1, 2. Applying Young’s inequality, we have
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L̇ ya ≤ − xTΥ x − u∗TRu∗ + u∗TRu∗

+ ŭ∗T ZTR−1Z ŭ∗ + 	V

= − xTΥ x + ŭ∗T Y ŭ∗ + 	V , (6.22)

where Y = ZTR−1Z . It’s noted that u∗
ı is the admissible strategy, we can derive that

V ∗
ı is bounded. Hence 	V is the bound of the term 	1V ∗

1 + 	2V ∗
2 . According to the

definitions of Υ and Y , we have that λm(Υ ) > 0 and λM(Y ) > 0. Furthermore, we
can obtain

L̇ ya ≤ − 2ζλm(Υ )‖x‖2 − (1 − 2ζ)λm(Υ )‖x‖2
+ λM(Y )θ‖z�‖2 + 	V , (6.23)

where θ = θ1 + θ2. When the indication (6.17) is satisfied, we derive that L̇ ya ≤
−2ζλm(Υ )‖x‖2 + 	V . Then we can find that L̇ ya < 0 holds when ‖x‖ >

√
	V

2ζλm (Υ )
.

In light of Lyapunov theorem, the strategy (6.15) can stabilize system (6.8). This
completes the proof. �

6.3.2 Implementation of Adaptive Critic Learning Method

In this section, the approximate optimal strategy under MDRM is derived by ADP
method of single-critic architecture. In light of the universal approximation properties
of neural networks (NNs), V ∗

ı can be obtained by

V ∗
ı = ω∗T

ı νı (x) + σı , ı = 1, 2, (6.24)

where ω∗
ı is the ideal weight vector, νı the activation function and σı the approximate

error. To acquire the approximate version of the unknown vector ω∗
ı , the critic NN

is constructed by

V̂ı = ω̂T
ı νı (x), ı = 1, 2, (6.25)

with ω̂ being the approximate vector. With the aid of critic NN, we can present the
optimal strategy as

u∗
ı = −1

2
R−1

ı ı gT
ı

(
(∇νı )

Tω∗
ı + ∇σı

)
, ı = 1, 2. (6.26)

Accordingly, we can obtain the optimal and approximate optimal strategies under
MDRM as

ŭ∗
ı = −1

2
R−1

ı ı gT
ı (x̆�)

(
(∇νı (x̆�))

Tω∗
ı + ∇σı (x̆�)

)
, (6.27)
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and

ŭı = −1

2
R−1

ı ı gT
ı (x̆�)(∇νı (x̆�))

T ω̂ı . (6.28)

Then the approximate Hamiltonian can be presented as

Hı (x, ŭ1, ŭ2, ω̂ı ) = ω̂T
ı ψı + δı (x, ŭ1, ŭ2) � εı , (6.29)

where ψı = ∇νı
(
f + g1u1(x̆�) + g2u2(x̆�)

) − 	ıνı .
In order to minimize εı in (6.29), we set the target of minimization as E = E1 +

E2 = 1/2ε21 + 1/2ε22. Via applying gradient descent approach, we obtain

˙̂ωı = −γı
1

(ψT
ı ψı + 1)2

∂E

∂ω̂ı
= −γı

ψı

(ψT
ı ψı + 1)2

εı = −γı ψ̆ıεı , (6.30)

where γı is the adjustable parameter and ψ̆ı = ψı/(ψ
T
ı ψı + 1)2. Define ω̃ı = ω∗

ı −
ω̂ı . From (6.30), we derive that

˙̃ωı = −γı ψ̄ı ψ̄
T
ı ω̃ı + γı ψ̆ı eı , (6.31)

where ψ̄ı = ψı/(ψ
T
ı ψı + 1) and the approximated residual error eı = −∇σT

ı ( f +
g1ŭ1 + g2ŭ2) + 	ıσı . For proceeding further, the following assumptions are required
[11, 26, 27].

Assumption 6.2 For any ı ∈ {1, 2}, the signal ψ̄ı is persistently excited on the time
interval [t, t + T ]. That is, there exists the positive constant bψı such that

bψı INcı×Ncı ≤
∫ t+T

t
ψ̄ı ψ̄

T
ı dς, (6.32)

with Ncı being the neuron number of the ı th critic network.

Assumption 6.3 For ı ∈ {1, 2}, there exist positive constants such that ‖ω∗
ı ‖ ≤ bωı ,

‖∇νı‖ ≤ bνı , ‖∇σı‖ ≤ bσı and ‖eı‖ ≤ beı .

6.4 Stability Analysis

In this section, the asymptotic stability of the controlled system is analyzed by apply-
ing Lyapunov theory. Before presenting the main results, the boundedness of critic
weight is discussed in the following lemma.

Lemma 6.4 For any ı ∈ {1, 2}, suppose that Assumptions 6.2–6.3 hold and the
initial weight is finite. If the critic tuning law (6.30) is applied, then it holds that
ω̃ı is locally ultimately bounded.
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Proof Consider the Lyapunov function as Lyω . It’s noted that the derivative of ω̃ı is
flow dynamics, which indicates that there doesn’t exist any jumps in the values of
ω̃ı . More specially, ω̃ı is continuous at the regulating instant. Thus we only need to
consider the time interval between two adjoining regulating instants.

According to Assumptions 6.2–6.3, it can be derived that

L̇ yω = 2γ1ω̃
T
1

˙̃ω1 + 2γ2ω̃
T
2

˙̃ω2

= 2γ1(−ω̃1ψ̄1ψ̄
T
1 ω̃1 + ω̃1ψ̆1e1)

+ 2γ2(−ω̃2ψ̄2ψ̄
T
2 ω̃2 + ω̃2ψ̆2e2). (6.33)

By applying Young’s inequation, we can get

L̇ yω ≤ − γ1(ω̃1ψ̄1ψ̄
T
1 ω̃1 − eT1 e1)

− γ2(ω̃2ψ̄2ψ̄
T
2 ω̃2 − eT2 e2)

≤ − γ1bψ1‖ω̃1‖2 − γ2bψ2‖ω̃2‖2 + Γ1, (6.34)

where Γ1 = γ1b2e1 + γ2b2e2. Furthermore, when ‖ω̃1‖ >
√

Γ1
γ1bψ1

� bω̃1 or ‖ω̃2‖ >√
Γ1

γ2bψ2
� bω̃2 , it yields that L̇ yω < 0. The lemma is proved. �

Theorem 6.4 Consider the system (6.8) with strategy formulated as (6.28). Suppose
that Assumptions 6.1–6.3 hold. The tuning law for critic network is given by (6.30).
Then the state x and weight estimation error ω̃ı are UUB provided that the indication
is applied

‖z�‖2 ≤ (1 − �2
1)λm(Υ )

(1 + �2)θλM(Y )
‖x‖2 � ‖ze‖2, (6.35)

with �1 and �2 being the adjustable parameters.

Proof Select the Lyapunov function candidate as

LY =
N=2∑
ı=1

V ∗
ı (x̆�) +

N=2∑
ı=1

V ∗
ı (x) + 1

2

N=2∑
ı=1

ω̃T
ı ω̃ı

=LYa + LYb + LYc. (6.36)

Due to the utilization of MDRM, we present the proof process in two cases.
Case I: No regulation occurs, i.e., t ∈ [��, ��+1). Then we obtain L̇Ya = 0. The

derivative of LYb can be obtained as

L̇Yb =
N=2∑
ı=1

(∇V ∗
ı )T ( f + g1ŭ1 + g2ŭ2). (6.37)
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Let ŭ = [(ŭ1 − u∗
1)

T , (ŭ2 − u∗
2)

T ]T . Applying the operations similar to that in
Theorem 6.3, we have

L̇Yb ≤ − xTΥ x + ŭT Y ŭ + 	V

≤ − xTΥ x + 	V + λM(Y )‖u∗
1 − ŭ∗

1 + ŭ∗
1 − ŭ1‖2

+ λM(Y )‖u∗
2 − ŭ∗

2 + ŭ∗
2 − ŭ2‖2

≤ − xTΥ x + 	V + λM(Y )(1 + 1/�2)‖ŭ∗
1 − ŭ1‖2

+ λM(Y )(1 + �2)‖u∗
1 − ŭ∗

1‖2
+ λM(Y )(1 + 1/�2)‖ŭ∗

2 − ŭ2‖2
+ λM(Y )(1 + �2)‖u∗

2 − ŭ∗
2‖2. (6.38)

Recall that θ = θ1 + θ2, and substitute (6.27) and (6.28) into (6.38). Then we can
derive

L̇Yb ≤ − xTΥ x + (1 + �2)θλM(Y )‖x − x̆�‖2
+ 	V + Γ2, (6.39)

where Γ2 = 1
4λM(Y )(1 + 1/�2)

2
(‖R−1

11 ‖2b2g1b2ν1b2ω̃1 + ‖R−1
22 ‖2b2g2b2ν2b2ω̃2

) + 1
4�2

λM(Y )(1 + �2)
2
(‖R−1

11 ‖2b2g1b2σ1 + ‖R−1
22 ‖2b2g2b2σ2

)
with bg1 and bg2 denoting the

bounds of known g1 and g2.
According to Assumption 6.2 and Assumption 6.3, we derive that

L̇Y c ≤ −γ1bψ1‖ω̃1‖2 − γ2bψ2‖ω̃2‖2 + Γ1. (6.40)

Based on (6.39) and (6.40), we can obtain

L̇Y ≤ − (1 − �2
1)λm(Υ )‖x‖2 − �2

1λm(Υ )‖x‖2
+ (1 + �2)λM(Y )θ‖x − x̆�‖2 − γ1bψ1‖ω̃1‖2
− γ2bψ2‖ω̃2‖2 + £, (6.41)

where £ = Γ1 + Γ2 + 	V . Applying the indication (6.35), then we conclude that
L̇Y < 0 when one of the conditions hold that

‖x‖ >
1

�1

√
£

λm(Υ )
� βx , (6.42)

‖ω̃ı‖ >

√
£

γı bψı
� βω̃ı , ı = 1, 2. (6.43)
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Thus x and ω̃ı can be guaranteed to be UUB.
Case II: A regulation occurs, that is, t = ��+1. The difference of LY can be given

by

	LY = 	LYa + 	LYb + 	LYc, (6.44)

where the terms are defined by 	LYa = V ∗
1 (x̆�+1) − V ∗

1 (x̆�) + V ∗
2 (x̆�+1) − V ∗

2 (x̆�),
	LYb = V ∗

1 (x(��+1)) − V ∗
1 (x(�−

�+1)) + V ∗
2 (x(��+1)) − V ∗

2 (x(�−
�+1)), 	LYc =

1/2ω̃T
1 (��+1)ω̃1(��+1) − 1/2ω̃T

1 (�−
�+1)ω̃1(�

−
�+1) + 1/2ω̃T

2 (��+1)ω̃2(��+1) − 1/2ω̃T
2

(�−
�+1)ω̃2(�

−
�+1). Recalling the analysis in Case I, we obtain that L̇Y < 0 when x or

ω̃ı is out of the corresponding bound. Furthermore, we can derive that LYb + LYc is
monotonically decreasing when t ∈ [��, ��+1). In light of the properties of limits,
we have

0 ≤V ∗
ı (x(�−

�+1)) + 1

2
ω̃T
ı (�−

�+1)ω̃ı (�
−
�+1)

− V ∗
ı (x(��+1)) − 1

2
ω̃T
ı (��+1)ω̃ı (��+1). (6.45)

As x is proved to be UUB, we can obtain

V ∗
ı (x̆�+1) ≤ V ∗

ı (x̆�). (6.46)

According to (6.45) and (6.46), we can derive 	LY < 0, which indicates that the
selected Lyapunov (6.36) is monotonically decreasing when t = ��+1. This com-
pletes the proof. �

Remark 6.5 �1 and �2 in (6.35) are the adjustable parameters which determine
the frequency of medicine dosage regulation. A larger �1 or �2 leads to a higher
regulation frequency, and a smaller parameter implies a lower adjustment frequency.
Thus we can determine these parameters according to the clinical data.

Remark 6.6 In thischapter, the approximate optimal combination therapeutic strat-
egy is derived via ADP method to inhibit the proliferation of tumor cells under the
mechanism of medicine dosage regulation. The MDRM is constructed on the foun-
dation of the above-mentioned medicine indication (6.35). The data at the dosage-
regulating instants should be recorded and will be utilized as reference data in the
future. When the difference between the current clinical data and latest reference
data is larger than the threshold, the medicine dosage can be regulated. Therefore,
this mechanism can guarantee the derived therapeutic strategy to be regulated timely
and necessarily.
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Table 6.1 Parameter specifications of the cells

Parameters Operations Values Parameters Operations Values

α1 – 0.0068 day−1 α2 – 0.01 day−1

α3 – 0.002 day−1 a1 A1C1 0.00702 day−1

a2 A2C2 0.00072 day−1 b1 B1/C1 1.10

b2 B2/C2 4.6205 b3 B3/C3 4.6666

φ �C3/C2 0.1615 s1 – 0.001

k KC2/C3 0.00371day−1

Table 6.2 Parameter specifications of the drugs

Parameters Operations Values Parameters Operations Values

ξ10 Ξ10/C1 1.2 × 10−7 day−1 ξ11 Ξ11C3/C1 4.2 × 10−8 day−1

ξ12 Ξ12/C1 1.0 × 10−7 day−1 π10 Π10/C2 0.2051 day−1

π11 Π11C3/C2 0.00431 day−1 π12 Π12/C2 19.4872 day−1

ξ20 Ξ20/C1 6.0 × 10−8 day−1 ξ21 Ξ21C3/C1 2.2 × 10−9 day−1

ξ22 Ξ22/C1 1.0 × 10−8 day−1 π20 Π20/C2 0.1251 day−1

π21 Π21C3/C2 0.00217 day−1 π22 Π22/C2 15.7819 day−1

ξ3 Ξ3/C3 1.7143 day−1 m1 – 0.0002 day−1

m2 – 0.032 day−1 m3 – 0.0004 day−1

m4 – 0.028 day−1 m5 – 0.032 day−1

βc1 – 0.01813 day−1 βc2 – 0.01529 day−1

βa – 0.136 day−1

6.5 Simulation Study

In this section, the mathematical model (6.7) is considered which presents the rela-
tions between cells and drugs. For simplicity, we have constructed the rephrased
system (6.8) of which the control issue could be deemed as NZSGs.

In light of the clinical medical statistics and literature [38], the parameters on cells
and drugs for model (6.7) are given in Table6.1 and Table6.2, respectively. For the
discounted value function (6.9) of system (6.8), the corresponding parameters are
set as R11 = 0.8I2×2, R12 = 15I2×2, R21 = 5I2×2, R22 = I2×2, Υ1 = 0.02I6×6 and
Υ2 = 0.06I6×6. In addition, the discounted factors 	1 = 	2 = 0.2.

For the critic NNs, the activation functions are both set as [x21 , x1x2, x1x3, x1x4,
x1x5, x1x6, x22 , x2x3, x2x4, x2x5, x2x6, x

2
3 , x3x4, x3x5, x3x6, x

2
4 , x4x5, x4x6, x

2
5 , x5x6,

x26 ]T , and the learning laws are set by γ1 = 1.5 and γ2 = 2. Besides, the parameters
θ = 8, �1 = 0.8 and �2 = 8.

The evolution curves of the model (6.7) are depicted in Fig. 6.1. From Fig. 6.1
we can observe that when t = 200d, the population of tumor cells reduces to zero,
and when t = 600d, the population of normal cells almost returns to 1 and that of
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Fig. 6.1 The evolutions of model states
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Fig. 6.2 The therapy strategy curves of chemotherapy drug 1

endothelial cells drops down to a small steady value. This indicates that the prolif-
eration of tumor cells can be suppressed after 600 days under the optimal therapy
strategy. In Figs. 6.1, 6.2, 6.3, 6.4, 6.5, 6.6 and 6.7, we compare the medicine dosages
of the derived therapy strategy and that of initial therapy strategy. It indicates that
the medicine dosages of our near-optimal therapy strategy are significantly less than
the dosages of initial strategy. It’s of great practical significance since superfluous
drugs may well affect the health of patients and impose additional financial burdens
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Fig. 6.3 The therapy strategy curves of chemotherapy drug 2
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Fig. 6.4 The therapy strategy curves of anti-angiogenic drug

on patients. Besides, one can find that when the clinical data becomes better, the
regulation frequency of the derived therapy strategy becomes lower. This implies
that the therapy strategy based on medicine dosage regulation mechanism can be
regulated with the indications for medicine timely and necessarily. Figures6.5, 6.6
and 6.7 present the curves of the cells under different therapy strategies, that is,
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Fig. 6.5 The population of normal cells under different therapies

0 200 400 600 800 1000 1200

Time(day)

0

0.2

0.4

0.6

0.8

1

1.2

T
um

or
 c

el
ls

Fig. 6.6 The population of tumor cells under different therapies
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Fig. 6.7 The population of endothelial cells under different therapies

chemotherapy drug 1, chemotherapy drug 2, anti-angiogenic drug and the therapy
comprised of these three drugs. We can conclude from Figs. 6.5, 6.6 and 6.7 that the
therapeutic effect of the derived therapy is the best. Thus simulation results validate
the effectiveness of our therapy strategy

6.6 Conclusion

In this chapter, an ADP-based method using medicine dosage regulation mechanism
has been proposed to obtain the optimal combination therapy for curing cancer.
A mathematical model is employed to describe the interactions among the normal
cells, tumor cells, endothelial cells, chemotherapy drugs and anti-angiogenic drug.
The mathematical model provides the foundation for us to solve the optimization
issue under the architecture of NZSGs. The ADP method of single-critic framework
is proposed to approximately seek the optimal strategy. In addition, the introduction
of the medicine dosage adjustment mechanism guarantees the therapy strategy to
be adjusted timely and necessary. Finally, the theory analysis and simulation results
both indicate that the designed strategy can effectively decrease the population of
tumor cells and endothelial cells with very few medicine dosage, which verifies
the availability of the proposed method. Our future research direction is to seek
the optimal strategy for decreasing tumor cells or other harmful cells with latest
therapies, for example, the therapy applying oncolytic virus.
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Chapter 7
Adaptive Virotherapy Strategy
for Organism with Constrained Input
Using Medicine Dosage Regulation
Mechanism

7.1 Introduction

Low efficacy and high toxicity for patients is the characteristics of traditional ther-
apies as surgery, chemotherapy, and radiation, hence the most prosperous tumor
treatment strategy, oncolytic virotherapy which depends on the virus with relatively
weak pathogenicity and appropriate gene modification, simultaneously, the thera-
peutic effect benefits from strong replication capabilities. Similar to the principle
of targeted therapy, gene-modified viruses repressed selectively infect tumor cells
(ITCs) through rapid replication increment, and ultimately destroy TCs, concur-
rently, activate the body’s immune response. Soluble tumor virus therapy not only
can kill TCs, but also attract more immune cells to kill residual cancer cells, how-
ever, it doesn’t deplete normal cells in the body. Oncolytic virus (OVs) enjoyed the
superiority of minimal side effects and optimal therapeutic effects compared with
traditional treatment strategies as literature [1]. Development of oncolytic viruses
benefit from the virus-specific lytic CTL response eliciting immunostimulatory sig-
nals and contributing to killing of ITCs as literature [2], thus, viral doses, number of
doses and timing with reliable mathematical models are the future research direction.

To lucubrate cancer virotherapy, mathematical models which described mecha-
nisms of TCs, OVs and immune cells have been proposed and updated as literatures
[3, 4]. Literature [5] expounded the inner mechanism including uninfected tumor
cells (UTCs), ITCs and free viruses. Successively, the infected cells and uninfected
cells are distinguished through logistic growth of TCs and elimination of free recom-
binant measles viruses as [6].What matters most is the immune response which leads
to inhibitory effect of viral therapy for misregarding of genetically modified viruses.

Therapy efficiencydepends onhyperimmunity or not, in otherwords, infected can-
cer cells and viruses are swallowed for indistinguishability. Literatures has demon-
strated the side effect of immune cells, and immunosuppressive agent cyclophos-
phamide is chosen to reduce immune response [7]. Reference [8] has considered
the virus-free population adding the previous three variables, reflecting interactive
relationship between innate immune with infected cancer cells and the virus cells,
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evolving into an effectivemechanism analysismodel, butmore effective control strat-
egy is in urgent need. Cytokines form natural killer cells contribute most strength on
destruction of both tumor and virus-infected cells. The proposed model gives explic-
itation of interplay among TCs, OVs, and immune response, which is the guideline
of optimal therapeutic strategies or dosage regimen on oncotherapy. Although cor-
relational research on regulation on immune system and TCs has been proposed
using ADP as [9], selective oncolysis will enjoy optimal therapeutic effect through
gene-modified viruses compared with wild-type OVs based on ADP method.

As a vital branch in machine learning, obtaining information from interactive
environment [10–12], reinforcement learning (RL) has been demonstrated to perform
well in solving optimal control issues of nonlinear systems [13]. The ADP method,
which was derived from RL and dynamic programming, generally attempts to obtain
the optimal strategies with the aid of the classic critic-actor algorithm framework
[14]. Under this architecture, the critic evaluates the cost when the current strategy is
applied, and actor updates the control strategy in accordance with the feedback infor-
mation provided by the critic. Thus the approximate optimal strategy can be derived
and the “curse of dimensionality” can be obviated. Recently, ADP-based methods
have been widely researched to tackle various optimal issues, for instances, tracking
control [15–17], optimal consensus control [18–20], zero-sum games and nonzero-
sum games [21–23]. Different from fuzzy approximation as [24], the robust dynamic
NNwas established to asymptotically identify the uncertain systemwith additive dis-
turbances, and the critic and actor worked together to find the equilibrium solution
for nonzero-sum games subject to nonlinear system. The identifier was developed to
reconstruct the unknown dynamics and the critic was tuned by a concurrent learning
strategy which could effectively use real-time data and recorded data such that the
persistence of excitation (PE) condition could be removed. By utilizing both online
and off-line data, a data-based policy gradient ADP method was developed to seek
optimal scheme in [25]. To address global optimum control issue and avoid falling
into local optimality as[26], the ADP method which combined with the predesigned
extra compensators was proposed in [27]. The introductions of these compensators
contributed to deriving the augmented neighborhood error systems, thus the system
dynamics requirement for ADP was avoided. In [28], integrating the neural network
learning ability and the spirits of ADP, a general architecture of intelligent critic
control was proposed to solve the robustness issues of disturbed nonlinear systems.

As saturation phenomena which exist widely in many practical systems can affect
the system performance, multifarious ADP-based method were proposed to achieve
optimal control with input constraints [29–31]. For the tumor-virus-immune system
in this , the control input is the medicine containing the virus particles. Redundant or
insufficient medicine dosages may well influence the therapeutic effect or patients’
health. Thus we consider the asymmetric input constraints and construct the cor-
responding non-quadratic value functions associated with the tumor-virus-immune
system.

Recently, ADP-based methods have been proposed to develop approximate opti-
mal strategies in various practical applications [32–35]. However, there exist sel-
dom any literatures associated with optimal strategy based on virotherapy which is
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derived from ADP-based methods. Enlightened by the literatures mentioned above,
we design the virotherapy-based optimal strategy via ADP method with MDRM.
The contributions can be stated as follows. Firstly, the mathematic model is intro-
duced to simulate the relationships between TCs, OVs and immune cells. Due to
the asymmetric dosage constraints for medicine, a non-quadratic utility function is
constructed to form the discounted value function. Then, on the basis of the tumor-
virus-immune model, ADP method of single-critic architecture is proposed to solve
HJBE such that the approximate optimal strategy can be achieved, which means that
the TCs can be largely eliminated with the constrained optimal virotherapy-based
strategy. Furthermore, the reasonable the medicine dosage regulation mechanism is
firstly introduced into this algorithm framework, and the indications for medicine is
considered for the first time. Finally, theoretical analysis and simulation experiments
both validate the effectiveness of the designed therapeutic strategy.

7.2 Problem Formulation and Preliminaries

7.2.1 Establishment of Interaction Model

In the section, tumor-virus-immune interaction model is introduced to describe the
relations between TCs, viruses and immune cells. Due to the behavior of OVs, we can
divide TCs into UTCs and ITCs. In the model composed of four ordinary differential
equations as follows, PTU (t), PT I (t), PV I (t) and PIM(t) respectively denote the
populations of UTCs, ITCs, free OVs and immune cells.

The population of UTCs can be affected by multiple factors, that is, the multi-
plication and apoptosis of TCs, the infection by OVs and the reduction caused by
immune cells. Moreover, the growth dynamics of UTCs is presented as

ṖTU (t) = A1PTU (t)
(
1 − PTU (t) + PT I (t)

K

) − A2PTU (t)PV I (t)

− B1PTU (t)PIM(t) − C1PTU (t), (7.1)

where A1 is the tumor proliferation rate, A2 is the infection rate of virus, B1 denotes
the killing-efficiency of immune cells, and C1 is the apoptosis rate of UTCs.

Similarly, the population of ITCs can be modeled by

ṖT I (t) = A2PTU (t)PV I (t) − B2PT I (t)PIM(t) − ϕPT I (t), (7.2)

where B2 denotes the immune killing-efficiency of ITCs and ϕ is apoptosis rate of
ITCs.

The lysis of ITCs which contain multiple replicated virion particles and the input
of virus agentia can both contribute to the rise of the free virus population. Thus the
evolution dynamics of virus population can be presented as
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ṖV I (t) =U + κϕPT I (t) − A2PTU (t)PV I (t)

− B3PV I (t)PIM(t) − C2PV I (t), (7.3)

whereU denotes the input of agentia, κ the burst size of free viruses, B3 the immune
killing-efficiency rate of OVs, and C2 the clearance rate of OVs.

The immune response dynamics can be formulated as

ṖI M(t) =D1PT I (t)PIM(t) + D2PTU (t)PIM(t)

− C3PIM(t), (7.4)

where D1 and D2 are immune response rates stimulated by infected and uninfected
cells. And C3 is the apoptosis rate of immune cells. For purpose of simplifying the
interaction model, we utilize the nondimensionalization technique [36, 37] to derive
the simplified version as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗTU (t) = a1 pTU (t)(1 − pTU (t) − pT I (t)) − c1 pTU (t)

− a2 pTU (t)pV I (t) − b1 pTU (t)pIM(t)

ṗT I (t) = a2 pTU (t)pV I (t) − b2 pT I (t)pIM(t) − ϕpT I (t)

ṗV I (t) =u + κpT I (t) − a2 pTU (t)pV I (t)

− b3 pV I (t)pIM(t) − c2 pV I (t)

ṗI M(t) = d1 pT I (t)pIM(t) + d2 pTU (t)pIM(t)

− c3 pIM(t).

(7.5)

Herein the nonnegative states of nondimensionalization version are represented
as pTU (t), pT I (t), pV I (t) and pIM(t).

Remark 7.1 In virotherapy, the viruses achieved their reproductive objective by
infecting tumor cells and replicating themselves. After the lysis of infected cells,
new reproductions burst out and infect other tumor cells. Under this mechanism, the
tumor cells can be effectively eliminated. Furthermore, comparing with uninfected
tumor cells, the infected cells can activate immune cellsmore effectually to kill tumor
cells.

7.2.2 Problem Formulation

Consider the system (7.5) as

ẋ = f (x) + gu, (7.6)
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where g = [0, 0, 1, 0]T , and f (x) is constructed by the right-hand side parts of (7.5)
excluding the control input u. u ∈ [um,uM ] where um and uM denote the minimum
and maximum thresholds for medicine input dosage.

For system (7.6), the corresponding discounted value function is defined as

V (x(t)) =
∫ ∞

t
e−θ(ι−t)W(x,u)dι, (7.7)

with the discounted factor θ > 0. The utility function is given by

W(x,u) = xTΥ x + χ(u), (7.8)

where the matrix Υ is positive definite, and χ(u) is non-negative function. It’s noted
that for system (7.6) the input constraints are not symmetric. In order to cope with
this issue, function χ(u) is defined as

χ(u) = 2�

∫ u

α

ψ−1(�−1(ι − α))dι, (7.9)

where α = (um + uM)/2 and � = (uM − um)/2. ψ(·) is a monotonic odd function
which is continuously differential with ψ(0) = 0. Without loss of generality, we
select the hyperbolic tangent function as ψ(·), that is, ψ(·) = tanh(·).

Differentiating the value function (7.7) along system (7.6), we obtain that

0 = ∇V T ( f + gu) + xTΥ x + χ(u) − θV . (7.10)

Then the Hamiltonian function can be expressed as

H(x,u,∇V ) = ∇V T ( f + gu) + xTΥ x + χ(u) − θV . (7.11)

The optimal value function is defined as

V ∗(x) = min
u

∫ ∞

t
e−θ(ι−t)W(x,u)dι. (7.12)

which satisfies HJBE

min
u

H(x,u,∇V ∗) = 0. (7.13)

Applying the stationary condition, we can derive the optimal strategy as

u∗ = −� tanh(
1

2�
gT∇V ∗) + α. (7.14)

On the basis of (7.13) and (7.14), we rewrite the HJBE as
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(∇V ∗)T f − �(∇V ∗)Tg tanh(
1

2�
gT∇V ∗) + xTΥ x

+(∇V ∗)Tgα − θV ∗ + χ(u∗) = 0. (7.15)

Remark 7.2 In the conventional optimal control issue with control constraints, it’s
often required that the input constraints should be symmetric. Nevertheless, the pro-
posed method in this takes the asymmetric input constraints into account. Thus the
symmetric constrained condition is relaxed by constructing the unconventional utility
function (7.8).

Due to the nonlinear nature of (7.15), it’s often intractable to derive the analytical
solution, which is requisite for designing the optimal strategy. To overcome this
issue, in the following sections, ADP method of single-critic network using dosage
regulation mechanism is designed to approximately solve (7.15).

7.3 Optimal Strategy Based on MDRM

In order to achieve the goal of regulating therapeutic strategy timely and necessarily,
MDRM is introduced to provide indications for medicine to determine the timewhen
it’s necessary to make some regulation. Therefore, the time sequence {zı } is required
to record the regulating instants. The parameter ı ∈ N

+ represents the ı th updating
instant and N

+ is the set including all positive integers. Then we can define the state
as

x̆ı (t) = x(zı ), t ∈ [zı , zı+1). (7.16)

In general, the clinical data after the latest regulation is different from the current
comparable data. Hence the error is given by

νı (t) = x̆ı − x(t), t ∈ [zı , zı+1). (7.17)

Based on νı and the threshold associated with state x , the medicine regula-
tion mechanism is established. When a regulation occurs, νı = 0, which means
the medicine dosage is regulated to be equal to the current medicine indication.
The comparable data is updated by the clinical data at regulation instant, and the
medicine dosage remains unchanged until the occurrence of the next regulation.
That is, ŭ = u(xı ). Thus we derive the MDRM-based strategy as

ŭ∗ = −� tanh(
1

2�
gT (x̆ı )∇V ∗(x̆ı )) + α, (7.18)

where ∇ V̆ ∗ = ∂V ∗/∂x when t = zı . Then the medicine regulation mechanism-
based HJBE can be denoted as



7.3 Optimal Strategy Based on MDRM 121

H(x, ŭ∗, V ∗) = − �(∇V ∗)Tg tanh(
1

2�
gT (x̆ı )∇V ∗(x̆ı ))

+ (∇V ∗)T f + (∇V ∗)Tgα + xTΥ x

+ χ(ŭ∗) − θV ∗. (7.19)

The existence of the error νı lead to that (7.19) does equal to 0, which is different
from HJBE (7.15). Before proceeding, an assumption is necessary [31].

Assumption 7.1 The optimal strategy u∗ is locally Lipschitz with respect to error
νı , i.e., ‖u∗ − ŭ∗‖2 ≤ Ku‖x − x̆ı‖2 = Ku‖νı‖2 where Ku is a positive constant.

Theorem 7.1 Consider the nonlinear system (7.6). Suppose that Assumption 7.1
is tenable and there exists function V ∗ satisfying (7.15). If the optimal strategy is
formulated as (7.18) with the medicine indication

‖νı‖2 ≤ (1 − ζ2)λm(Υ )

Ku

‖x‖2 (7.20)

where ζ ∈ (0, 1) is the designed parameter, then the controlled system is guaranteed
to be asymptotically stable in the sense of UUB.

Proof Select the Lyapunov function Ȳ = V ∗(x). Then we can obtain the derivative
of V ∗

˙̄Y = (∇V ∗)T ( f + gŭ∗). (7.21)

According to (7.14) and (7.15), we derive that

(∇V ∗)T f = −(∇V ∗)Tgu∗ − xTΥ x − χ(u∗) + θV ∗, (7.22)

and

(∇V ∗)Tg = −2�(tanh−1((u∗ − α)/�))T . (7.23)

Then (7.21) can be rewritten as

˙̄Y = − (∇V ∗)Tg(u∗ − ŭ∗) − xTΥ x − χ(u∗) + θV ∗

= − 2�(tanh−1((u∗ − α)/�))T (ŭ∗ − u∗) − xTΥ x

− χ(u∗) + θV ∗

= − xTΥ x − χ(u∗) + θV ∗ + , (7.24)

where  = −2�(tanh−1((u∗ − α)/�))T (ŭ∗ − u∗). Due to Young’s inequality, from
(7.24) we derive

 ≤ �
2(tanh−1((u∗ − α)/�))2 + Ku‖νı‖2. (7.25)
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Via variable substitution approach, we have

χ(u∗) = 2�

∫ u∗−α

0
tanh−1((ι − α)/�)d(ι − α). (7.26)

The function (7.26) can be further expressed as

χ(u∗) =2�
2
∫ tanh−1((u∗−α)/�)

0
ς(1 − tanh2(ς))dς

= − 2�
2
∫ tanh−1((u∗−α)/�)

0
ς tanh2(ς)dς

+ �
2(tanh−1((u∗ − α)/�))2. (7.27)

Based on (7.24), (7.25) and (7.27), we can obtain

˙̄Y ≤ Ξ1 + Ku‖νı‖2 + θV ∗ − xTΥ x, (7.28)

where Ξ1(x) = 2�
2
∫ tanh−1((u∗−α)/�)

0 ς tanh2(ς)dς . Via utilizing integral mean-value
theorem, we derive that

Ξ1(x) = 2�
2 tanh−1((u∗ − α)/�)ρ tanh2(ρ), (7.29)

where ρ ∈ (0, tanh−1((u∗ − α)/�)). As u∗ is admissible, it can be deduced that V ∗
and ∇V ∗ are bounded. Let ‖V ∗‖ ≤ bV and ‖∇V ∗‖ ≤ b∇V with bV and b∇V being
positive constants. Then (7.29) becomes that

Ξ1(x) ≤2�
2 tanh−1((u∗ − α)/�)ρ

≤2�
2(tanh−1((u∗ − α)/�))2

=1

2
∇V ∗TggT∇V ∗

=1

2
b2gb

2
∇V � bΞ1 , (7.30)

where the positive constant bg denotes the bound of g(x). According to (7.28) and
(7.30), it can be obtained that

˙̄Y ≤ − ζ2λm(Υ )‖x‖2 − (1 − ζ2)λm(Υ )‖x‖2
+ Ku‖νı‖2 + θbV + bΞ1 . (7.31)

When the indication (7.20) is satisfied, it yields that ˙̄Y ≤ −ζ2λm(Υ )‖x‖2 +
θbV + bΞ1 . Then we can conclude that ˙̄Y < 0 when ‖x‖ >

√
θbV +bΞ1
ζ2λm (Υ )

. �
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Theorem 7.1 indicates that with the utilization of medicine regulation mecha-
nism, the MDRM-based optimal strategy can asymptotically stabilize the controlled
system.

7.4 MDRM-Based Approximate Optimal Control Design

The approximate optimal control strategy is designed based on the ADP algorithm
which integrates the medicine regulation mechanism. Furthermore, for the closed-
loop controlled system, the asymptotically stability in the sense ofUUB is guaranteed
when the proposed medicine indication is applied.

7.4.1 Implementation of the Adaptive Dynamic Programming
Method

In this section, the approximate optimal strategy is designed by the ADP method of
single-critic framework which integrates the medicine regulation mechanism.

Based on the universal approximation properties of NN, V ∗ can be represented
as

V ∗ = ω∗Tϑ(x) + τ , (7.32)

whereω∗ is the idealweight vector,ϑ(·) the activation function and τ the approximate
error. Let Γ1(x̆ı ) = 1

2�
gT (x̆ı )∇ϑT (x̆ı )ω, then we have

ŭ∗ = −� tanh(Γ1(x̆ı )) + τ̄ (x̆ı ) + α, t ∈ [zı , zı+1) (7.33)

where τ̄ (x̆ı ) = −(1/2)(1 − tanh2(�(x̆ı )))gT (x̆ı )∇τ (x̆ı ). Herein, �(x̆ı ) is selected
between 1/(2�)gT (x̆ı )∇V ∗(x̆ı ) and Γ1(x̆ı ). As the ideal weight ω∗ is unknown, the
approximate version of V ∗ is derived by the critic NN, which is presented as

V̂ = ω̂Tϑ(x), (7.34)

where ω̂ is the approximate vector. Then the MDRM-based approximate strategy
can be obtained

ŭ = −� tanh(Γ2(x̆ı )) + α, t ∈ [zı , zı+1), (7.35)

where Γ2(x̆ı ) = 1/(2�)gT (x̆ı )∇ϑT (x̆ı )ω̂. Then the approximate Hamiltonian could
be restated as
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H(x, ŭ, ω̂) = ω̂T ξ + xTΥ x + χ(ŭ) � εH , (7.36)

where ξ = ∇ϑ( f + gŭ) − θϑ.
The goal of tuning ω̂ is to minimize the term εH . Thus we set the target function

as E = 1
2ε

T
HεH . Using the gradient descent approach, we obtain

˙̂ω = −�
ξ

(ξT ξ + 1)2
εH = −�ξ̆εH , (7.37)

where � is the learning parameter and ξ̆ = ξ/(ξT ξ + 1)2. Define ω̃ = ω∗ − ω̂. From
(7.37) we derive that

˙̃ω = −�ξ̄ξ̄T ω̃ + �ξ̆eH , (7.38)

where ξ̄ = ξ/(ξT ξ + 1) and the approximate residual error eH = −∇τ T ( f + gŭ) +
θτ . Before presenting the main results, the following assumptions are requisite [38,
39].

Assumption 7.2 The signal ξ̄ is persistently excited over the time interval [t, t + T ].
In another word, there exists the positive constants φ and T such that

φINc×Nc ≤
∫ t+T

t
ξ̄ξ̄T dι, (7.39)

with Nc being the neuron number of the critic network.

Assumption 7.3 The terms τ̄ and eH are both bounded. That is, ‖τ̄‖ ≤ bτ̄ and
‖eH‖ ≤ beH where bτ̄ and beH are positive constants.

7.4.2 Stability Analysis

This section discuss the asymptotic stability of the controlled system with the
designed DARM-based strategy.

Theorem 7.2 Consider system (7.6) and let Assumptions 7.1–7.3 hold. The strategy
is given by (7.35) and the weights tuning law for critic is set as (7.37). Then the
closed-loop system (7.6) and weight estimation error ω̃ are asymptotically stable in
the sense of UUB provided that the medicine indication is applied

‖νı‖2 ≤ (1 − η2)λm(Υ )

2Ku
‖x‖2 � ‖Tνı ‖ (7.40)

with η ∈ (0, 1) being the regulation parameter.
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Proof Select the Lyapunov function as

Y = V ∗(x̆ı ) + V ∗(x) + ω̃�−1ω̃ = Ya + Yb + Yc. (7.41)

Note that when medicine indication is applied, the system can be described by the
impulsivemodel comprising two components. One is flowdynamics for t ∈ [zı , zı+1)

and the other is jump dynamics for t = zı . Hence we present the discussions over
the two cases.

Case I: No regulation occurs, i.e., t ∈ [zı , zı+1). Then we can obtain Ẏa = 0. In
light of (7.22) and (7.23), we could derive that

Ẏb =(∇V ∗)T ( f + gŭ)

=Ξ2 − χ(u∗) − xTΥ x + θV ∗, (7.42)

where Ξ2 = −2�(tanh−1((u∗ − α)/�))T (ŭ − u∗). According to Young’s inequa-
tion, we have

Ξ2 ≤ �
2‖ tanh−1((u∗ − α)/�)‖2 + ‖ŭ − u∗‖2. (7.43)

Recalling (7.27), we obtain

Ξ2 − χ(u∗) ≤ Ξ1(x) + ‖ŭ − u∗‖2. (7.44)

As Ξ1(x) and V ∗(x) are bounded, (7.42) becomes

Ẏb ≤ ‖ŭ − u∗‖2 + bΞ1 + θbV − xTΥ x . (7.45)

Applying the Young’s inequation, we derive that

‖ŭ − u∗‖ =‖ŭ − ŭ∗ + ŭ∗ − u∗‖2 ≤ 2‖ŭ − ŭ∗‖2 + 2‖ŭ∗ − u∗‖2
≤4‖� tanh(Γ1(x̆ı )) − � tanh(Γ2(x̆ı ))‖2 + 4‖τ̄ (x̆ı )‖2 + 2Ku‖νı‖2
≤8�2 tanh2(Γ1(x̆ı )) + 8�2 tanh2(Γ2(x̆ı )) + 2Ku‖νı‖2 + 4b2τ̄ . (7.46)

As | tanh(·)| ≤ 1, it could be obtained that

Ẏb ≤ −λm(Υ )‖x‖2 + 2Ku‖νı‖2 + σ, (7.47)

where σ = 16�2 + 4b2τ̄ + θbV + bΞ1 .
Taking the derivative of Yc, we derive that

Ẏc = −2ω̃T ξ̄ξ̄T ω̃ + 2ω̃T ξ̆eH . (7.48)

In light of Young’s inequation, it yields that
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2ω̃T ξ̆eH ≤ 2ω̃T ξ̄eH ≤ ω̃T ξ̄ξ̄T ω̃ + eTHeH . (7.49)

Then (7.48) can be further expressed as

Ẏc ≤ −ω̃T ξ̄ξ̄T ω̃ + eTHeH ≤ −λm(δ)‖ω̃‖2 + b2eH , (7.50)

where δ = ξ̄ξ̄T .
According to (7.47) and (7.50), when the medicine indication (7.40) is satisfied,

we can derive that

Ẏ ≤ − (1 − η2)λm(Υ )‖x‖2 − η2λm(Υ )‖x‖2 + 2Ku‖νı‖2
− λm(δ)‖ω̃‖2 + b2eH + σ

≤ − η2λm(Υ )‖x‖2 − λm(δ)‖ω̃‖2 + b2eH + σ. (7.51)

Then it can be concluded that Ẏ < 0 when one of the conditions holds that

‖x‖ >
1

η

√
b2eH + σ

λm(Υ )
, (7.52)

and

‖ω̃‖ >

√
b2eH + σ

λm(δ)
. (7.53)

Thus x and ω̃ are demonstrated to be UUB.
Case II: A regulation occurs, i.e., t = zı . The difference of LY is presented as

�Y = V ∗(x̆ı+1) − V ∗(x̆ı )︸ ︷︷ ︸
�Ya

+ V ∗(x(z+
ı )) − V ∗(x(zı ))︸ ︷︷ ︸

�Yb

= 1

�
ω̃T (z+

ı )ω̃(z+
ı ) − 1

�
ω̃T (zı )ω̃(zı )

︸ ︷︷ ︸
�Yc

. (7.54)

From the analysis in Case I, it can be derived that L̇Y < 0 when (7.52) or (7.53)
is satisfied. It can be further deduced that Yb + Yc is monotonically decreasing when
t ∈ [zı , zı+1), that is,

Yb(x(zı )) + Yc(x(zı )) ≥ Yb(x(zı + ε)) + Yc(x(zı + ε)), (7.55)

where ε ∈ (0, zı+1 − zı ). According to the properties of limits, we can obtain

Yb(x(zı )) + Yc(x(zı )) ≥ Yb(x(z
+
ı )) + Yc(x(z

+
ı )), (7.56)
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with x(z+
ı ) = limε→0 x(zı + ε). More specially, it yields that

V ∗(x(zı )) + 1

�
ω̃T (zı )ω̃(zı ) ≥ V ∗(x(z+

ı )) + 1

�
ω̃T (z+

ı )ω̃(z+
ı ). (7.57)

As x is proved to be UUB, it can be obtained that

V ∗(x̆ı+1) ≤ V ∗(x̆ı ). (7.58)

From (7.57) and (7.58), it’s derived that �Y < 0, which indicates that the con-
structed Lyapunov (7.41) is monotonically decreasing when t = zı . �

Remark 7.3 ζ in (7.40) is the regulation parameter determining the frequency of
medicine dosage regulation. A large ζ means that the medicine dosage is regulated
frequently while a small ζ implies the regulation occurs rarely. It can be set as an
appropriate value according to the clinical data.

Remark 7.4 Theorem 7.2 indicates that the designed MDRM-based approximate
optimal strategy (7.35) can asymptotically stabilize system (7.6). The medicine indi-
cation (7.40), the cornerstone of MDRM, can provide a reasonable reference thresh-
old for therapeutic strategy. When the difference derived from the current clinical
data and latest reference data is larger than the threshold, the medicine dosage can
be regulated, and the current indication data will be recorded and utilized as the new
reference data in the future. Thus the designed therapeutic strategy can be regulated
timely and necessarily according to the medicine indication.

Remark 7.5 The discount factor is programmed to avoid infinity and infinitesimal
value function in the accumulation of rewards, and immediately return can earn more
than the delayed return of interest. In human trials, we have found that human prefer
to immediately return can present close to exponential growth, the discount factor is
used to simulate such a cognitive model and biological process to make a decision.

7.5 Simulation Study

In this section, we consider the system (7.6) which is the simplified version of the
growth dynamics of cells and viruses described by (7.1)–(7.4). Based on system (7.6),
the simulation experiment is conducted to show the effectiveness of the proposed
ADP method with medicine regulation mechanism.

According to the clinical medical statistics and literatures [36, 37, 40], the param-
eters associated with the dynamics (7.1)–(7.4) are presented in Table7.1. After the
nondimensionalization, the corresponding parameters are set as a1 = 0.36, a2 = 0.1,
b1 = 0.36, b2 = 0.48, b3 = 0.16, c1 = 0.1278, c2 = 0.2, c3 = 0.036, d1 = 0.6, and
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Table 7.1 Parameter specifications of the tumor-virus-immune system

Parameters Descriptions Values

A1 Tumor proliferation rate 2 × 10−2 h−1

A2 Infection rate of virus 7 × 10−10 mm3/h

B1 Killing-efficiency of immune cells 2 × 10−8 mm3/h

B2 Immune killing-efficiency of infected tumor cells 2 × 10−8 mm3/h

C1 Apoptosis rate of uninfected tumor cells 0.0071 h−1

C2 Clearance rate of viruses 0.0119 h−1

C3 Apoptosis rate of immune cells 0.002 h−1

D1 Immune response rate stimulated by infected cells 5.6 × 10−7 mm3/h

D2 Immune response rate stimulated by uninfected cells 5.6 × 10−7 mm3/h

ϕ Apoptosis rate of infected tumor cells 0.056 h−1

κ Burst size of free virus 9.0
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Fig. 7.1 The population evolution of uninfected tumor cells

d2 = 0.29. The initial state vector is [0.8, 0, 0.2, 0.05]T . The minimum and max-
imum thresholds are given by um = 0 and uM = 0.02. For the discounted value
function (7.7) of system (7.6), the parameters Υ = 0.2I4×4 and θ = 0.5.

For the critic network, we select the activation function as [x21 , x1x2, x1x3, x1x4,
x22 , x2x3, x2x4, x

2
3 , x3x4, x

2
4 ]T . The other parameters are respectively set as Ku = 20,

ζ = 0.9 and � = 1.6.
Simulation results demonstrate that in Figs. 7.1, 7.2, 7.3, 7.4, 7.5, 7.6 and 7.7.

For model (7.5), the evolution trajectories of states are respectively depicted in
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Fig. 7.2 The population evolution of infected tumor cells
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Fig. 7.3 The population evolution of free oncolytic virus

Figs. 7.1, 7.2, 7.3 and 7.4. From Fig. 7.1, we could observe that under the attacks
from oncolytic viruses and immune cells, the population of uninfected tumor cells
rapidly declines and reaches a stabilizing value which is very low after t = 150d.
Figures7.2 and 7.3 reveal the relations between the population of infected tumor cells
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Fig. 7.4 The population evolution of immune cells
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Fig. 7.5 The curves of the therapeutic strategies
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Fig. 7.6 The population evolutions of uninfected tumor cells
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Fig. 7.7 The population evolutions of infected tumor cells
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and that of virus particles which is large proportional. The immune cells are activated
by the uninfected and infected tumor cells to kill tumor cells, which can be observed
from Fig. 7.4. The medicine dosage of the derived approximate optimal therapeutic
strategy and that of initial strategy are compared in Fig. 7.5. From Fig. 7.5, one can
derive that the dosage of the obtained strategy is obviously less than that of initial
strategy. On the other hand, the input dosages of the two strategies are both con-
strained by the pre-designed thresholds. This is of great practical significance since
excess medicines may well threaten the health of patients and cause a huge over-
head. Furthermore, it can be observed that the medicine dosage regulation frequency
steps down when the clinic data becomes better, which means that with the aid of
medicine regulation mechanism, the medicine dosage can be regulated timely and
necessarily. Figures7.6 and 7.7 present the population curves of the cells and viruses
under the derived strategy with different burst sizes of viruses, that is, κ = 2, 5.
This verified that the obtained therapeutic strategy can effectively kill tumor cells
with oncolytic viruses of different burst out sizes. However, when the parameter κ
is large enough, it may cause an oscillation. When the innate immune response is
considered, the tumor-virus-immune system becomes very complicated. Though the
viruses with large κ try their best to produce more replicas and infect more tumor
cells, the reduction of tumor cells inactivate the immune response in the meanwhile.
The viruses dominate the dynamics and the warfare between tumor cells and viruses
can last a long time such that the oscillation occurs repeatedly. The oncolytic virus
has the ability to effectively kill the tumor cells, while the immune response can
reduce the killing-efficiency of the viruses and block their infections. Furthermore,
the activated immune response can eliminate tumor cells as well. Thus there exists
a subtle balance between the viruses and the immune cells which demands a further
investigation.

7.6 Conclusion

Medicine regulation mechanism has been designed such that the constrained thera-
peutic strategy based on virotherapy can be obtained to eliminate tumor cells, guar-
anteeing that the medicine dosage can be regulated timely and necessarily. Firstly, a
mathematical model is utilized to describe the relations among the uninfected tumor
cells, infected tumor cells, oncolytic viruses and immune cells. Meanwhile, as the
simplified version of the tumor-virus-immune model, the non-quadratic function is
proposed to formulate the value function to acquire HJBE. Secondly, to address
the optimal therapeutic strategy, single-critic architecture has been designed to seek
the approximate solution of the HJBE through ADP. Finally, the simulation results
has verified the effectiveness of the proposed method. Furthermore, nonzero-sum
optimal control based on differential games will be a edge of the new frontier in
therapy of tumor treatment, cardiovascular, orthodontic treatment, osteoporosis and
cerebrovascular diseases.
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