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Foreword

In this book, we shall present some recent results on the global well-posedness of
strong solutions to 1D radiative fluid equations and liquid crystal equations. Most of
the contents of this book are based on the research carried out by the authors and
their collaborators in recent years, which have been previously published only in
original papers; but some contents of the book have never been published until now.

There are four chapters in this book.

Chapter 1 will recall some basic properties of Sobolev spaces, some differential
integral inequalities in analysis, some of which will be used in the subsequent
chapters.

In chapter 2, we shall study one-dimensional compressible infrarelativistic
radiation equations and further prove the global existence and the large-time
behavior of solutions to this system. Novelties of this chapter are: (1) Using a
suitable expression of specific volume and the delicate priori estimates, we establish
the positively lower bound and upper bound of the specific volume. (2) Using the
embedding theorems and the delicate interpolation inequalities, we have overcome
some mathematical difficulties caused by the higher order of partial derivatives to
prove the global well-posedness of solutions in higher regular spaces. It is a
remarkable fact that the difficulties we encounter in chapter 2 are how to deal with
the radiative term, which makes the analysis in this book different from those in Qin
[104], where the author studied some models without the radiative term.

Chapters 3 and 4 will study one-dimensional compressible liquid crystal fluid
equations. In chapter 3, we shall establish the existence of global solutions in
H (i=1,2, 4) in Lagrangian coordinates. In chapter 4, we shall first establish the
large-time behavior of solutions to one-dimensional compressible liquid crystal fluid
equations. The novelty in this chapter is that using a suitable expression of the specific
volume, we shall establish uniform bound of the specific volume by the embedding
theorems and a sequence of delicate interpolation techniques and then prove the
long-time behavior of solutions to the system using the Shen—Zheng inequality.
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VIII Foreword

For the contents of chapter 1, we refer the reader to [1, 2, 5-8, 37, 38, 40, 41, 45,
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99, 100] and [10, 17-21, 44, 59, 60, 74, 79, 80, 89, 111, 112, 116, 117, 127, 128]. For
the theory of equations of liquid crystal, we refer the reader to [9, 11, 16, 23-25, 56,
57, 77, 78, 81-83, 85-88, 110, 118, 124, 143, 144]. Since the compressible Navier—
Stokes equations are closely related to the radiation hydrodynamical equations and
the liquid crystal equations under consideration of this book, we also refer the reader
to related references of the compressible Navier—Stokes equations [3, 4, 13-15, 22,
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Chapter 1
Preliminary

This chapter will introduce some basic results, most of which will be used in the
following chapters. First we shall recall some basic inequalities whose detailed proofs
can be found in the related literature, see, e.g., Adams [1, 2], Friedman [37, 38|,
Gagliardo [40, 41], Nirenberg [95, 96], Yosida [148], etc.

1.1 Some Basic Inequalities

1.1.1 The Sobolev Inequalities

We shall first introduce some basic concepts of Sobolev spaces.

Definition 1.1.1. Assume QCR" is a bounded or an unbounded domain with a
smooth boundary T. For 1 < p < 400 and m a non-negative integer, W™?(Q) is
defined to be the space of functions u in LP(Q) whose distribution derivatives of order
up to m are also in L*(Q). That is,

Wm.,p(Q) — LT’(Q) N {u :D*u e LP(Q)7 |O(| < m}

The space W™P(Q), called a Sobolev space, is equipped with a norm

1/p
] p0 = /QZ |D*u|Pdzx |, if 1<p< o0, or (1.1.1)
|of <m
lull,,p0 = ‘HlliLX esssup | D*u(x)|, if p= 4+ o0 (1.1.2)
’ af<m  zeQ

DOI: 10.1051/978-2-7598-2903-3.c001
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2 1D Radiative Fluid and Liquid Crystal Equations

which is clearly equivalent to

> Il q- (1.1.3)

lo] <m
If Q =R", we only denote
lullmy = Nlellppres  Nulloy = llull,

W™P(Q) is a Banach space. The space W;""(Q) is defined as the closure of
C§°(Q) relative to the norm (1.1.3). Clearly,

WorQ) = (@)
with norm lIlly , o = Ill, . For p = 2, W™ (Q) = H™(Q), is a Hilbert space with

respect to the scalar product

(u,v),, = Z (D*u, D*0) 12
lo] <m
with (f, g)Lz(m = Jo fgdz, here g is the conjugate function of g.
It is well-known that the Sobolev inequalities are important tools in the study of
nonlinear evolutionary equations. First, we shall introduce these inequalities for
functions in the space W, ”(Q).

Theorem 1.1.1 (The Sobolev Inequality). Assume that QCR",n > 1, is an open
domain. There exists a constant C = C(n, p) > 0 such that

(1)ifn>p=1, and ue Wy (Q), then ue LV (Q) and

p(n—1)
< —||Du\|p£2 (1.1.4)

7 2(n - p)yn

Kt

where p* = np/(n — p);
(2) if p > n and Q is bounded, and u € Wol’p(Q), then u € C(Q) and

(-3 1Dul,0- (1.1.5)

sup [u| < C|Q
Q

While, if Q =R", then

1
sﬂtgnp lul < Carp”||ully g (1.1.6)

where w, = 711%’(12//22) is the measure of the n-dimensional unit ball, ' is the Euler

p—n

(r-1)/
gamma function and C = max{l, (p—_l) g p}.
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Remark 1.1.1. The Sobolev inequality (1.1.4) does not hold for p = n, p* = +00.

(1.1.4) was first proved by Sobolev [138] in 1938. Sobolev [138] stated that the
L”" norm of u can be estimated by llull; o or IDull, o, the Sobolev norm of w.
However, we can bound a higher L” norm of u by exploiting higher order derivatives
of u as shown in the next theorem which generalizes theorem 1.1.1 from m =1,
p > nto m =1 an integer.

Theorem 1.1.2. Assume QCR" is an open domain. There exists a constant C =
C(n, m, p) > 0 such that

(1) if mp < n, p=1, and ue W,""(Q), then u € L (Q) and

lull 0 < Cllull,, 0 (1.1.7)
where p* = %;
(2) if mp > n, and u € W, (Q), then u € C(Q) and
. m—1 1
sup [u] < CIKIVLZ0 (diamK)" S0l
+ (diamK)mﬁ(m _ ”/P)_IHDmUHp,K (1.1.8)

where K = suppu, C = C(m, p, n) and diamK is the diameter of K.

Remark 1.1.2. An important case considered in theorems 1.1.1 and 1.1.2is Q = R".
In this situation, W™P(R") = W;""(R") and therefore the results of theorems 1.1.1
and 1.1.2 apply to W™P(R™).

For p > n, the results of theorems 1.1.1 and 1.1.2 imply the fact that w is
bounded. Indeed, u is Hoder continuous, which we shall state as follows.

Theorem 1.1.3. If u€ W, *(Q),p> n, then ue C**(Q) where a = 1 — n/p.

Generally, the embedding theorems are closely related to the smoothness of the
domain considered, which means that when we study the embedding theorems,
we need some smoothness conditions for the domain. These conditions include
that the domain Q possesses the cone property, and it is a uniformly regular open
set in R, etc. For example, when Q € C' or 9Q € Lip, Q has the cone property.
Mathematically, we need to define the special meaning of the word “embedding” or
“compact embedding”.

Definition 1.1.2. Assume A and B are two subsets of some function space. Set A is
said to be embedded into B if and only if

(1) AC B;
(2) the identity mapping I: A — B is conlinuous, i.e., there exists a constant C' > 0
such that for any x € A, there holds that

[ ell p < Cll]] -
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If A is embedded into B, then we simply denote by A — B.
A is said to be compactly embedded into B if and only if

(1) A is embedded into B;
(2) the identity mapping I: A v B is a compact operator.

If A is compactly embedded into B, then we simply denote by A —<— B.

Now we draw some consequences from theorem 1.1.1. In fact, exploiting theorem
1.1.1, we have the following result which is an embedding theorem.

Corollary 1.1.1. If u e W, *(Q), then u € LYQ) with p<¢< L ifl<p<m, and
p < g < 400 if p = n. Moreover, if p > n, u coincides a.e. in Q with a (uniquely
determined) function of C(Q). Finally, there holds that

. np

lullpo < Cllullypa o 1<p<np<q<—— > (1.1.9)
ull ,o < Cllull, o if P=np<g<+o0, (1.1.10)
lulle < Cllully o if p>n, (1.1.11)

where C'= C(n, p, q) > 0 is a constant.

We can generalize corollary 1.1.1 to functions from W;""(Q) which can be stated
as the following embedding theorem.

Theorem 1.1.4. Let uwe Wi (Q),p>1,m>0. Then
(1) if mp < n, then we have, for all q € [p, "f—’fnp} ,

WP (Q)— LA(Q), (1.1.12)

and there is a constant C} > 0 depending only on m, p, q¢ and n such that for all

np
q¢c |:p’ n—mpi| ’

lull o < Cillull,,, 03 (1.1.13)
(2) if mp = n, then we have, for all q € [p, +0),
Wy (Q)—L(Q), (1.1.14)

and there is a constant Cy > 0 depending only on m, p, q¢ and n such that for all
q € [p, +99),

ull o< Collull (1.1.15)

m.p.Q
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(3)if mp > n, each u € Wy""(Q) is equal a.e. in Q to a unique function in C*(Q), for
all k € [0, m — n/p) and there is a constant C3 > 0 depending only on m, p, ¢ and n
such that

l[ull or < Cslu (1.1.16)

m,p,Q*

Remark 1.1.3. In case (2) of theorem 1.1.4, the following exception case holds for
m=mn,p=1,qg=+00:

WhHQ)—L>(Q). (1.1.17)

Now we give the following compact embedding theorem.

Theorem 1.1.5 (Embedding and Compact Embedding Theorem). Assume that Q is
a bounded domain of class C™. Then we have

(i) If mp < n, then W™P(Q) is continuously embedded in L7 (Q) with qi =

Wmr(Q)— L7 ().

In addition, the embedding is compact for any q, 1 < q < ¢*.
(it) If mp = n, then W™P(Q) is continuously embedded in L(Q), Vq,1 < g< + 00:

WmP(Q)— L1(C). (1.1.19)

In addition, the embedding is compact, Vq,1<qg< +oo. If p=1, m = n, then
the above still holds for ¢ = +00.
(i) If k+1 > m -5 > k, k € N, then writing m — 5= k+o,a € (0,1), Wm™P(Q) is

continuously embedded in C**(Q):
WP (Q)— C**(Q), (1.1.20)

where C**(Q) is the space of functions in C*(Q) whose derivatives of order k are
Hélder continuous with exponent o.. Moreover, ifn=m—k— 1, anda =1, p =1,
then (1.1.20) holds for o =1, and the embedding is compact from W™P(Q) to

CH(Q), for all0 < p < a.

1.1.2 The Interpolation Inequalities

In this subsection, we shall present the Gagliardo—Nirenberg interpolation
inequalities (see, e.g., Friedman [38] and Nirenberg [96]) which play a very impor-
tant role in the theory of nonlinear evolutionary equations.
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For p >0, |ul,q = ||ull ) For p <0, set —2=h+o with h= [—g} and
o € [0,1). Define
[ty = sup|D"ul = > sup| Dul, if o= 0,
¢ b= @

|u|p,Q = [Dhu]oc,Q = Z Sgp[Dﬁu]a
=

Y g 0= D)

= , if a>0.
|Bl=h TYEQTHY |a3 —

If Q = R", we simply write |u|, instead of |ul, o.

Theorem 1.1.6 (The Gagliardo—Nirenberg Interpolation Inequalities). Let j, m be
any integers satisfying 0 < j < m, and let 1< q,r< 400, and p € R,% <a<1 such

that
1 (1 m) 11—«
——t=ol-——])+ :
p n r on q

(i) For any u € W™ (R") N LYR"), there is a positive constant C = C(m, n, j, q, ,
a) such that

Then

7 m o 1—o
|D'ul, < C|D™ul]ul, (1.1.21)

with the following exception: if 1 < r < +00 and m — j — n/p is a non-negative
integer, then (1.1.21) holds only for a satisfying j/m<a<1.

(i) For any uwe€ W™'(Q) N LYQ) where Q is a bounded domain with smooth
boundary, there are two positive constants Cy, Cs such that

Dl < GID™uf glull + Golal g (1.1.22)
with the same exception as in (i).

In particular, for any we W,""(Q)NLI(Q), the constant Cy in (1.1.22) can be
taken as zero.

1.1.3 The Poincaré Inequality
In this subsection, we shall recall the Poincaré inequality in different forms.

Theorem 1.1.7. Let Q be a bounded domain in R" and u € Hy (Q). Then there is a
positive constant C = C(Q, n) such that for all u € Hy(Q),

[ull 12) < ClIVUll 120 - (1.1.23)
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Theorem 1.1.8. Let QCR" be a bounded domain of C'. Then there is a positive
constant C = C(Q, n) such that for any u € H'(Q),

v = all p2(q) < ClIVull 12 (1.1.24)
where & = \_Klllfﬂ u(x)dz is the integral average of u over Q, and |Q| is the volume of Q.

Theorem 1.1.9. Under assumptions of theorem 1.1.8, for any u € H*(Q), then

). (1.1.25)

el gy < 0<||Vullm> n } [ s

1.1.4 The Classical Bellman—Gronwall Inequality

In this subsection, we shall give the following classical Bellman—Gronwall inequality
which plays an important role in the study of global well-posedness of solutions to
evolutionary differential equations. For more details, we can refer to Bellman [5—8]
and Gronwall [45].

Theorem 1.1.10 (The Classical Bellman—Gronwall Inequality). If y(¢) and g(t) are
non-negative, continuous functions on 0 < t < t, which satisfy the inequality

s <+ [ atuads 0<i< (1.1.26)

where n is a non-negative constant, then for all0 < t < 1,

y(t)Snexp</0tg(5)d8>- (1.1.27)

Gronwall [45] first proved the special case of (1.1.26) with g¢(t) = constant > 0.
Later on, Bellman [6] (see also Kuang [75]) extended this result to the form of
theorem 1.1.10, which is a crucial tool in the analysis of differential equations. Until
now, more and more improvements and generalizations of the classical Bellman—
Gronwall inequality have been made. Specially, Bellman proved another inequality
which can be stated as follows (see, e.g., Kuang [75]).

Remark 1.1.4. Let u(t), b(t) be continuous on (a, B), and b(t) be non-negative. If for
all t = t(); tU; te (OC, ﬂ)7
t

u(t) <u(ty) + b(s)u(s)ds,

ty
then for any t = i,

ulty) exp <_ /t: b(s)u(s)dé’) < u(t) <ufty) exp (/tﬂ

t

b(s)u(s) ds) .
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The above theorem gives bounds on solution of (1.1.26) in terms of the solution
of a related linear integral equation

v(t) :11+/0 g(s)v(s)ds (1.1.28)

and is one of the basic tools in the theory of differential equations. Based on the basis
of various motivations, we know that it has been extended and used considerably
in various contexts. For instance, in the Picard—Cauchy type of iteration for
establishing existence and uniqueness of solutions, this inequality and its various
variants play a significant role. Inequalities of this type (1.1.26) are also encountered
frequently in the perturbation and stability theory of differential equations.

1.1.5 The Generalized Bellman—Gronwall Inequalities

In this subsection, we shall review the following generalized Bellman—Gronwall
inequalities which can be found in Qin [104, 106, 123, 128].

Theorem 1.1.11 (The Generalized Bellman—-Gronwall Inequality). Assume that f(t),
g(t) and y(t) are non-negative integrable functions in [t, T| (v < T) verifying the
following integral inequality for all t € [z, T),

i+ [ 0
Then it holds, for all t € [z, T],

v <o+ [ e [ 100) 008 (1.1.29)

In addition, if g(t) is a nondecreasing function in [z, T], then, for all t € [z, T],

W0 <o) 1+ / exo / FO)d0) ) (1.1.30)
t)[1+/th(s)dsexp(/rtf(O)dO)]. (1.1.31)

If further T = 400 and [*™ f(s)ds< + oo, then
y(1) < Cy(1) (1.1.32)
where C =1+ [ f(s)dsexp([."™ f(0)d0) is a positive constant.
The next result is a corollary of theorem 1.1.11, it can be found in Racke [135].

Corollary 1.1.2. Leta > 0,4, h € C([0, a]), h 2 0 and g: [0, a] — R is increasing. If
for any t € [0, a,
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o(t) < g(t)+ /0 h(s)p(s)ds, (1.1.33)

then for all t € [0, d],

o) < g(t) exp (/Ot h(s)ds). (1.1.34)

1.1.6 The Uniform Bellman—Gronwall Inequality

In this subsection, we shall introduce some uniform Gronwall inequalities which
provide uniform bounds or decay rates. This type of integral inequalities plays a very
crucial role in the study of the global existence and the large-time behavior of
solutions to evolutionary equations.

We start with the following theorem which is cited in Temam [141].

Theorem 1.1.12 (The Uniform Bellman—Gronwall Inequality). Assume that g(t),
h(t) and y(t) are three positive locally integrable functions on (ty, +00) such that
Y (t) is locally integrable on (ty, +90) and there holds that for all t > 1,

dy
2L h
i <gy+n,

t+r t+1r t4+1r
/ g(s)ds< ay, / h(s)ds< ag, / y(s)ds < ag,
¢ ¢ ¢

where v, aii = 1, 2, 3) are positive constants. Then, for all t = t,
y(t+r) < (@ + a2> e".
r

Next, we shall introduce some uniform generalizations which may provide some
large-time behavior of functions. This class of inequalities is a very powerful tool in
establishing the large-time behavior of solution when we use the energy methods to
study problems of partial differential equations.

We now give the familiar results in the classical calculus for the single real
variable analysis.

Lemma 1.1.1. (1) Assume y(t) € L'(0, +00) with y(t) = 0 for a.e. t>0, 3/ (t) €
L0, +00). Then
lim y(t) =0.

t— + o0

(2) Assume y(t) € L0, +00) with y(t) = 0 for a.e. t>0, and lim, ., coy(t) exists.
Then

lim y(t) =0.

t— + o0
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(3) Assume y(t) is uniformly continuous on [0, +09), y(t) € L'(0, + o). Then

t—l}l-Poo y(t) = 0.

(4) Assume y(t) is a monotone function on [0, +00) and y(t) € L'(0, + o00). Then
lim y(¢t)=0

t— + o0

and

y(t) = o(1/t) as t — +oo.

Obviously, the above lemma provides the asymptotic behavior of y(¢) for the
large time.

The next theorem related to the uniform Gronwall inequality was first estab-
lished by Shen and Zheng [137] in 1993 (see, e.g., Zheng [155]) which is very useful
and powerful in dealing with the global well-posedness and asymptotic behavior of
solutions to some evolutionary partial differential equations. We shall apply it fre-
quently in the subsequent context of this book (see, chapters 2—4).

Lemma 1.1.2 (The Shen—Zheng Inequality). Assume T is an arbitrarily given con-
stant with 0 < T < 400, and y and h are non-negative continuous functions defined
on [0, T) and satisfy the following conditions

% < AP (t) 4+ Ay + h(t), for all t>0, (1.1.35)
T T
/ y(s)ds < As, / h(s)ds< Ay, for all T >0, (1.1.36)
0 0

where Ay, Ay, A3z, Ay are given non-negative constants. Then for any r > 0, with
0<r< T, forallt=0,

A
y(t+r) < (;‘ +A2r+A4> - efids (1.1.37)
Furthermore, if T = +00, then
lim y(t) =0. (1.1.38)
t— + 00

Proof. We can find the proof in [137]. However, for reader’s convenience, we shall
give the detailed proof. The proof is similar to that of the Uniform Gronwall Lemma
(see lemma 1.1 in [141], p. 89, or theorem 1.1.12). Assume 0 < ¢ < s < ¢ + rwith any
given 7 > 0. We multiply (1.1.35) by exp(— [ A1y(t)dr) and obtain the relation


http://dx.doi.org/10.1051/978-2-7598-2903-3.c004
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S

Slreren(- [ o) | <t noen(- [Canm) <.
(1.1.39)

Then integrating it over [s, t + 7] yields

y(t+r) < y(s)exp (/SHT Aly(r)d‘c) + (Aar + Ay) exp </tm Aly(r)dr>

< (y(s) + Agr + Ay) e, (1.1.40)

Integrating this inequality, with respect to s between ¢ and ¢+ r, gives us
(1.1.37). From (1.1.35) and (1.1.37), it follows

d A. 2
j;l §A1[<75 4 Ao+ A4) eAlA‘*} + Ay + h(1)

= A, +n(t), forall t>r, (1.1.41)

where
. A3 A1 As ’
Ar = A1 7+A27’+A4 e +A2

To prove (1.1.38), we use the contradiction argument. Assume it were not true.
Then there would exist a monotone increasing sequence {t,} and a constant a > 0
such that for all n € N,

ty> 1+ 4—1, b1 > o+ 4—2, (1.1.42)
limt, = +ox, (1.1.43)
y(tn) = 5 >0. (1.1.44)
On the other hand, from (1.1.41) we have
Y(t) — y(t) S Ar(ty — t) + /tt” h(t)dr, as t, — 4LA, <t<t,. (1.1.45)

Combining (1.1.44) and (1.1.45) yields

a b

a a
e ()< -2 < . 1.
5 y(t) <y(t,) —y(t) < 4/t h(t)dz, as t, 14 S t<t, (1.1.46)

J—
n Iy
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Therefore,
fn a a
y(t) + / h(t)dt> =, as t, ——— <t<t,. (1.1.47)
- 4 44,
Let
nT—max{n| n €N, r+4;§§tn<T}. (1.1.48)
Thus,
lim np= +o0. (1.1.49)
T— 400

It turns out from (1.1.47) that for all T' > 0,

(IA4

T a T
> -
iz [ e [

t a [t a2
> >
> 1<Z< (/t_ h(t)dr + 1A h(r)dr) =TT nT(1.1.50)
<n<np

-a_ —a_
n T4, rJi, A,

Az +

which contradicts (1.1.36). Thus this completes the proof. O

In the sequel, we shall collect other useful inequalities which play important roles
in classical calculus. These inequalities include the Young inequality, the Hoder
inequality, and the Minkowski inequality.

1.1.7 The Young Inequalities

Theorem 1.1.13. Suppose f is a positive, real-valued, continuous and strictly
increasing function on [0, ¢ with ¢ > 0. If f(0) = 0, a € [0, ] and b € [0, f(c)], then

a b
/ flz)dz+ / fH(x)dz> ab (1.1.51)
0 0

with f is the inverse function of f. Equality holds in (1.1.51) if and only if b = f(a).

This is a classical result called “the Young inequality” whose proof can be found
in Young [149].
If we take f(z) = 2*~' with p > 1 in the above theorem, then we can conclude the
following corollary.
Corollary 1.1.3. There holds that
F X'
ab< & 4 = (1.1.52)
p q

where a, b= 0, p > 1 and 1/p + 1/q = 1.
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If0 < p < 1, then
p e
ab>L + = (1.1.53)
P q

The equalities in (1.1.52) and (1.1.53) hold if and only if b = a”*.

In corollary 1.1.3, if we consider a and b as ea and & 'b, respectively, we can get
the next corollary.

Corollary 1.1.4. For any ¢ > 0, there holds that
ePaP b?
ab — 4+ —
p g
where a, b= 0, p > 1 and %—F%:l.
In fact, the Young inequality has the following several variants.

Corollary 1.1.5. (1) Let a, b > 0, 5+ ;=1,1< p < +00. Then

(i) a/"0 < af/p + b/ g;
(ii) a”/?b" 7 < af (') + be''?/ q, for all e > 0;
(iii) a*b'*~* <aa+ (1 —a)b, O<a<l.

(2) Let ay>0,pp > 0,50 pr = 1. Then [[L; a* < 30", pray.

1.1.8 The Hélder Inequalities

This subsection will introduce some Holder inequalities. The following is the discrete
Hoélder inequality which was proved by Hoélder in 1889 (see e.g., Holder [55]).
However, as pointed out by Lech [76] that in fact it should be called the Roger
inequality or Roger—Hdlder inequality since Roger established the inequality (1.1.54)
in 1888 earlier than Holder did in 1889. However, we still call it here the Holder
inequality.

Theorem 1.1.14. Ifa; 20, b, 20 fork=1, 2,..., n, and % + % =1 withp > 1, then

1 1
> b < (Z a;j) (Z b,‘i) . (1.1.54)
k=1 k=1 k=1
If0 < p < 1, then

1 1
S s (z ) (z' b,g> | (1155
k=1 k=1 k=1

Here the equalities in (1.1.54) and (1.1.55) hold if and only if aa] = pb} fork =1,
2,..., n where a and f are real non-negative constants with o + f* > 0.
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Remark 1.1.5. If p =1 or p = 400, we have the trivial case.

Z apby < (Z ak) sup by, if p=1;
=1 =1

1<k<n

n n

Zakbkﬁ by | sup a, if p= +o0.
k=1 =1 L<k<n

Remark 1.1.6. When p= q=2, (1.1.54) and (1.1.55) are called to be the
Cauchy inequality, the Schwarz inequality, the Cauchy-Schwarz inequality or the
Bunyakouvskii inequality.

By virtue of the discrete Holder inequality (theorem 1.1.14), we can easily obtain
the integral form of the Holder inequality, namely.

Theorem 1.1.15. Iff€ LP(Q), g € LYQ) and QCR" is a measurable set, then
fge LNQ)
and
1491l (@) < Mooyl 91l ooy (1.1.56)

with 1<p< —l—oo,%—i—%:l and

1l = ( / |f<w>|de)”;

11l 10y = esssup |f(z)].
z€Q

If0 < p < 1, then
Hf9||L1(Q) 2 ||f||Lp(Q)H9HLq(Q)- (1.1.57)

The equalities in (1.1.56) and (1.1.57) hold if and only if there exist f € R and
real numbers Cy, Cy which are not all zeros such that Ci|f(z)|" = Cy|g(z)|" and
arg(f(z)g(z)) = B a.e. on Q hold.

Remark 1.1.7. We have the corresponding weighted Hélder inequality of the integral
form. Let 1<p< +oo,f € LP(Q), g€ L‘Z(Q),]l9 + % =1, w(z) > 0 on Q. Then

Listowas( [ If(x>|”w(w)dfc)%< / |g<x>|4w<x>dx)%.

1.1.9 The Minkowsk: Inequalities

Note that, in 1896, Minkowski established the following famous inequality.
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Theorem 1.1.16. Let a = {ay,..., a,} or a = {ay,..., a,,...} be a real sequence or
complex sequence. Define

all, = (Zak|p> if 1<p<+o0;
T

lalloo = sup la] 3f p = +oo.

Then for 1 £ p £ 400,
a0, <llall, +[Ioll,- (1.1.58)

If0# p <1, then
la+0ll, > all,+ o], (1.1.59)

where when p < 0, we require that ay, by, ap + by # 0 (k= 1, 2,...). Moreover, when
p#0, 1, the equality in (1.1.58) holds if the sequences a and b are proportional.
When p =1, the equalities in (1.1.58) and (1.1.59) hold if and only if
argay = argbg, for all k.

Remark 1.1.8. If we replace p by 1/p in (1.1.58), we can obtain the following
assertion:

(1) if 1 £ p < 400, then there holds

(; ot bk'*>p2 (; Iak|%>p+ (; |bk|,%)p;

(2) if 0 < p < 1, then there holds
) p p
1 1 1
<Z|ak+bk|P> < <Z|ak|”> + <Z|bk|”> .
% % s

In the applications, the following integral form of the Minkowski inequality is
used frequently.

Theorem 1.1.17. Assume that Q is a smooth open set in R" and f, g € LP(Q) with
1< p< +00. Then

[+gel’(Q)
and

I+ gl o) < 11l o) + 1191l 1o ()- (1.1.60)
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If0 < p < 1, then
I1f + 9ll oy = 1l o) + 1911 1o )- (1.1.61)

If p > 1, the equality in (1.1.60) holds if and only if there exists a constant C; # 0
such that Cyif(z) = g(z) a.e. in Q.

If p = 1, then the equality in (1.1.60) holds if and only if argf{z) = argg(x) a.e. in
Q or there exists a non-negative measurable function h such that fh = g a.e. in the set

A={we Q| flz)gla) # 0}.



Chapter 2

Asymptotic Behavior of Solutions

for the One-Dimensional Infrarelativistic
Model of a Compressible Viscous Gas
with Radiation

2.1 Main Results

This chapter will be devoted to the study of the large-time behavior of global
solutions to the one-dimensional infrarelativistic model of a compressible viscous gas
with radiation. The content of this chapter is adopted from Qin et al. [109], which
has improved the results of Qin et al. [111]. We note that the existence of global
solutions to such a model has been proved by Ducomet and Ne€asova [18] and Qin
et al. [111]. Tt is well-known that the radiative model in the one-dimensional case can
be reduced into the following equations (see, Ducomet and Necasova [19-21])

p-+(pv), =0,

(pv), + (PUQ);U + py = ny — (SF)

[p(e—i— %UQ)]T + [pv(e—i— %1)2) +pv — k0, — ,um)y}yz —(58) g
1L+l =S

(2.1.1)

Now we assume that the fluid motion is small enough with respect to the velocity
of light ¢ so that we can drop all the % factors in the previous formulation and then
get an “infrarelativistic” model of a compressible Navier—Stokes system for a
one-dimensional flow coupled to the radiative transfer equation given in the
following system

p‘L’ + (pv)y = 0)

(pv)‘[ + (p,UQ)g/ +pl/ = .uvyya

[p(e+ $)],+ [pv(e+ §12) + pv— ), — pony] = (S,
wl, = 8.

(2.1.2)

DOI: 10.1051/978-2-7598-2903-3.c002
© Science Press, EDP Sciences, 2022
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Under the Lagrangian coordinates, i.e.,
y
:1::/ p(& 1)dé, t=r,
0

system (2.1.2) reduces to the following system

Ny = Uy, (2.1.3)
UVt = Oy,
1
(e+522) = (o0- @ = n(se) (2.15)
t
ol, =18, (2.1.6)

where z € [0, 1], 5 is the specific volume (i.e., n = %), v denotes the velocity,  is the

temperature, I represents the radiative intensity depending on the Lagrangian mass
coordinates (z, t) and also on two extra variables: the radiation frequency v €
R, = (0, +0c0) and the angular variable w € S' :=[~1, 1], ¢ := —p—i—,u% is the
stress and @ := —K% is the heat flux with the heat conductivity x and u is the
viscosity coefficient. Source term S in the last equation is expressed as

S(z, t; v, w) = a,(v, w; 7, 9)~[B(v; 0) — I(z, t; v, w)]

+65(V; n, 0)[1(17 t; V) - [(Ia i v, CO)], (217)
where j(aa t,v) = %fil I(z, t; v, w)dw and B is a function of temperature and

frequency describing the equilibrium state.
We define the radiative energy as

1 + 00
Ep :/ / I(z, t; v, w)dvdw, (2.1.8)
-1Jo

the radiative flux

1 + 00
Fg :/ / ol(z, t; v, w)dvdo, (2.1.9)
-1Jo

and the radiative energy sourceradiative energy source
1 + 00
(Sp)g =/ / S(z, t; v, w)dvdo. (2.1.10)
-1Jo

We now consider a typical initial boundary value problem for (2.1.3)—(2.1.6) in
the reference domain Q X [0, +00) = (0, 1) X [0, +90) under the Dirichlet-Neu-
mann boundary conditions for the fluid unknowns

w0, 8) = o(1, ) =0, Q0,8 =Q(L )=0, Yt>0, (2.1.11)
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and transparent boundary conditions for the radiative intensity

{I(O, tv,w)=0 forme (0,1), Vt>0, (2.1.12)
I(1, t;v, 0) =0 forwe (—-1,0), V>0,
and initial conditions
n(z, 0) = ny(x), wv(z, 0) =w(z), 0O(z,0)=0(z) onQ, (2.1.13)
and
I(z, 0; v, ) = Iy(z; v, ®) on QxR x S (2.1.14)

Pressure and energy of the matter are related by the thermodynamical relation
ey(n, 0) = —p(n, 0) + Opo(n, 0). (2.1.15)

For the system (2.1.3) and (2.1.14), Ducomet and Nedasova [18] proved the
global existence of solutions in H; (i =1, 2). However, estimates obtained there
depend on any given time T, so they could not establish the large-time behavior of
global solutions in H; (i = 1, 2) based on their estimates. Moreover, in Ducomet and
Necasova [18], all estimates hold only for ¢ = 2r 4+ 1. Later on, Qin et al. [111] had
improved the results in [18]. Recently, Qin et al. [109] have improved the results in
[111] by establishing the uniform-in-time estimates of (n(t), v(t), 6(t), I(t)) in
H; (i=1, 2, 4), which hold for q and r satisfying (2.1.16). Furthermore, the system
considered here is different from that in Qin [104], so our uniform-in-time estimates
are also different from those in Qin [104].

We now assume that e, p, ¢ and x are twice continuously differential on
0<n < +400and 0= < +00, and there are exponents g and r satisfying one of the
following relations

0< <1 1<
r_27 2 Q7
1 5 2 1
§<TS§7 ”14:+ q,
(2.1.16)

§<r<£ 5r+1

2 -5 9 ’

1_7 10r+4

5 = 19

and we suppose the following growth conditions:

e(n, 0)>0, c(1+0") <ep(n, 0) < CL(1+0"),

—eon (140" <py(n,0) < — Con2(1+0""7),

Ipo(n, 0)| < Csn~ ' (140"),

ca(L+0""7) <np(n, 0) < CL(1+0"17),  py(n, 0)<0, (2.1.17)
0<p(n, 0) < C5(1+0'1),

66(1 _|_0q) < K(?], 0) < Cﬁ(l +0q),

licy (11, 0)] =+ [1epy(n, 0)] < C7(1+07),
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and that the absorption—emission coefficient o,(v, w; 7, 0) and the scattering
coefficient a,(v; 1, 0) satisfy the following conditions:

naa(v, ; n, 0)B™(v, 0) < Gs|w|0* f(v,0) form =1, 2,

0<0a(v7 w; 1, 6) < 09|w‘29(v7 w)v

[00+1(00), | +1(0a)ll (v, @; n, O)[L+ B(v, 0) +[By(v, 0)| +[Boo(v, 0)[] < Crolw|h(v, w),
0<a(v; 1, 0) < Cu|ok(v),

[(1(a)yyl + (@) yal +1(0a)gpll (v, @5 m, O)(L + B(v, 0) +[By(v, 0)]) < Cra|ow|i(v, ),
[((a5), |+ 1(a5)gl + 1(a5) | +1(a) 0l + (@)l (v 1, 0) < Crs|| M(v, w),

(2.1.18)

where 0 <a <7, the numbers ¢, Cj, (i=1,...,7, j=1,...,13) are positive
constants and the non-negative functions f, g, h, k, I, M are such that

frgh kL Me LNR . x SHNL®(R, x S).

We assume that the viscosity coefficient u is a positive constant. In the following,
we denote

+ 00
I(z,t):= /0 /51 I(z, t;v,w)dwdv

for the integrated radiative intensity. In particular,

+ 00
Z(z,0) = Iy :/ / I(z, 0; v, w)dwdv.
0 st

We define
Hi={(n, v, 0, 1) € H(0, 1) x Hj(0, 1) x H'(0, 1)
x MR, x S* H?(0, 1)) : n(z) >0, 0(z) >0, €0, 1],
V,-01 =0, I|,_o =0forw e (0,1), I|,_; =0 for w € (—1,0)},
Hi={(n, v 0,1)e Hi(o, 1) x Hj(0, 1) x H'(0, 1)
x MRy x §', HH0, 1)) : n(z) >0, 0(z) >0, z €0, 1], v,_o, =0,
Osly01 =0, I|,_o=0forwe (0,1), I|, , =0forwe (-1, 0)}, i=2,4.
The main aim of this chapter was to establish the global existence and the

large-time behavior of solutions in H; (i = 1, 2, 4) to the system (2.1.3) and (2.1.14).

The notation in this chapter will be as follows: L%, 1< ¢< +o00, W™% m e N,
H' = W2, H} = W, denote the usual (Sobolev) spaces on [0, 1]. In addition, Il-ll 5
denotes the norm in space B; we also put |[-[| = [||| jzo ). Subscripts ¢ and x denote
the (partial) derivatives with respect to ¢ and z, respectively. We use C; (i = 1, 2, 4)
to denote the generic positive constants depending on the ||(19, w0, 0o, Zo)ll4,,
mingep, 1) 7p(z), min,ep, 1) 0o(x), but not depending on t.
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Our main results read as follows (see also Qin et al. [109]), which has improved
the result in [111]. The next result concerns the global existence and asymptotic
behavior of solutions in Hj.

Theorem 2.1.1. Suppose that (4, v, 0o, ) € H1 and the compatibility conditions
hold. Under assumptions (2.1.15)—(2.1.18), there exists a unique global solution
(n(t), v(t), 0(t), I(t)) € L*([0, 4+ o), H1) to the problem (2.1.3)—(2.1.14) such that
forall (z, t) €0, 1] x [0, 4+ o),

0<Ct <np(z, 1) < Gy, (2.1.19)
and for all t > 0,
_ =12
1n(t) = llz + o) 170+ [10() = Ol + 1O 2 s 12000

t
+/0(Iln*ﬁllfm+||v||2}12+||9*9|

t 1 + o0
+ / / / / IFdodvdrds < C. (2.1.20)
0 Jo 0 St

Moreover, we have, as t — +00,

In(t) =7l — 0, [lo(®)ll;— 0, [|6() = 0[], — 0, IOl 1w, x5, 12001~ 05
(2.1.21)

2
e 1101 (s)ds

where 7 = fol n(z, t)de = fol nodz, 0>0 is determined by e(7,0) = f01 G+
e(ng, 0o) + Fr(0))dz.

In the next theorem, we shall establish the global existence and asymptotic
behavior of solutions in Hs.

Theorem 2.1.2. Suppose that (4, v, 0o, Io) € Ha and the compatibility conditions
hold. Under assumptions (2.1.15)—(2.1.18), there exists a unique global solution
(n(t), v(t), O(t), I(t)) € L*([0, 4+ o), H2) to the problem (2.1.3)—(2.1.14) satisfying
forany t > 0,

_ —112
In(t) = ill5e + o)1+ [0() = 0l e + 1 IO & st msoy + (DI
t
—112
+0.0)]° + / (loal® + 10all* + 110 = 0] s + 0]l s
+n =7l ()ds < Co. (2.1.22)

Moreover, we have, as t — +00,

() = ll 2= 0, o(B)ll = 0, [|6(t) — 0]

Hz_) Oa ||I(t)||L1<]R+ XSI,HS(OJ))_) 0.
(2.1.23)
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Theorem 2.1.3. Suppose that (1, v, 0o, ) € Hy and the compatibility conditions
hold. Under assumptions (2.1.15)—(2.1.18), there exists a unique global solution
(n(t), v(t), 0(t), I(t)) € L>(]0, + 00), Ha) to the problem (2.1.3) and (2.1.14) veri-
fying that for any t > 0,

In(t) =75 + I3 + (Ol + o1 + [va ()]
2
+1]6(t) = 0|, + 10:()]52 + 110u()]|* + ”I”il(]R+><Sl,H5(O,1))
t
+ [ =+ 10
+ 1015 + 110u72) (s)ds < Ci, (2.1.24)

2

—n2
o ol + vl + 110 = 0]

t
/0 (llmal1 7z + el 32 + el *) (8 ds < G (2.1.25)

Moreover, we have as t — +00,

[n(t) =7ll = 0, o)l a— 0, [|0(E) = 0] a0, (Dl p1r, s 50,1~ 05
(2.1.26)

where 1 = fol (z, t)dz = fo Nodz, 0> 0 is determined by e(7, 0 fo Uo + e(ng,
0o) + Fr(0))dz.

Corollary 2.1.1. The global solution (y(t), v(t), 0(t), Z(t)) obtained in theorem 2.1.3
is, in fact, a classical solution such that ast — 400,

H - 1/]’ ’O(t H C‘H 3(0, 1)) 377 O ||I( )||L‘(R+X5',C4+%(O,l))—> 0.

Remark 2.1.1. Theorems 2.1.1-2.1.3 also hold for the boundary conditions (2.1.12)
and

v(0, ) =v(1,t) =0, 06(0,t)=0(1, t) = Ty = const. > 0,

where 0 can be replaced by T.

2.2 Global Existence and Uniform-in-Time Estimates

in Hl

We note that the global existence of solutions in H; has been established in [18].
This section will study the global existence and asymptotic behavior of global
solutions in H;. To this end, we shall first establish some uniform-in-time estimates

in Hl.
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Lemma 2.2.1. Under assumptions in theorem 2.1.1, there holds that

Oz, t) >0, V¥ (z,t)€0,1] x [0, +00), (2.2.1)
1 1
/ n(z, t)de = / no(z)dz =7,, Vit>0, (2.2.2)
0 0
1
/ (040" (z, t)dz< Cy, Y t>0, (2.2.3)
0

/1[ —log — )—i—HlJr7 v*)(z, t)d

/ / ( 1+Bq %) (z, 8)dvds < Cy. (2.2.4)

Proof. Inequality (2.2.1) is a consequence of the generalized maximum principle [3]
and one can find the proof in [19-21].

Integrating (2.1.3) over @, = (0, 1) X (0, t), and using the boundary conditions,
we can easily deduce (2.2.2).

From (2.1.6), (2.1.9) and (2.1.10), we can infer

(Fr), = n(SE) - (2.2.5)

Inserting (2.2.5) into (2.1.5), we arrive at
1
<e+ 21)2> = (ov— Q — Fg),. (2.2.6)
t

Integrating (2.2.6) over @; and using boundary conditions (2.1.11) and (2.1.12),
we have

/01 <6+%112) (2, t)d:z:—!—/ Frlo= Ods—/o1 (eo—l—%v[%)(x)da:. (2.2.7)

Using (2.1.12), the contribution of the radiation term reads (see, e.g., [18])

t t + o0 1 + o0 0
/ FR|i(1)d5:/ {/ / ol(1, t; v, w)dwdvf/ / ol(0, t; v, w)dwdv|ds
0 ’ o LJo 0 0 ~1
>0

which, together with (2.2.7), implies

/01 <e+ ;1)2> (z, t)dz < Cy. (2.2.8)
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Combining (2.2.8) with (2.1.17) yields (2.2.3).

Noting that radiative term #n(Sg)p appears in (2.1.5), our estimate (2.2.8) is
different from the one in [17] where there is no radiative term.

We define the free energy y: = e — 6S with yy = — S and y, = — p with the
specific entropy S. Let us consider the auxiliary function

We have the following estimate (see, e.g., Ducomet and Ne€asova [18] for details)

1 1 Cr +o00
/ <E+—U2>dg;+/ /( 2)d;1:d5+// / /aaldwdvdxds
0 2 o Jo \n0 o st
t + 00 1 + 00
+ / [/ / wl(1, t; v, o)dwdy —/ / wl(0, t; v, w)dwdv} ds< (.
o LJo 0 0 -1

(2.2.10)

Using the Taylor theorem and the definition of E(y, 6), we can conclude

E(n, 0) —y(n, 0) +¢(n, 1) + (0 — 1)y (n, 0)
= ‘P(’% 1) - l//(lv 1) - l//n(m 0)

=(n— 1)2/01 (1= Oy (1+E(n — 1), 1)dE >0.
Thus,
E(n, 0) >y(n, 0) —y(n, 1) — (0 — L)ipy(n, 0)
—(1- 9)2 (0= Wl 04 <1~ 0)) e
S o1 - o) / (I-{1+[0+1-0}

9+T(1 —0)
logH 1)+ (1 A Cf](rt(im), for r > 0,
—logf —1), for r =0,
> ! 1og9— n4+crtortt — ot (2.2.11)

Combining (2.2.11) and (2.2.10), and using (2.1.17) yields (2.2.4). The proof is
now complete. Ul

The following two lemmas concerning the uniform-in-time estimate of specific
volume # play a very crucial role in this chapter. The uniform-in-time estimate is
different from the one in Ducomet and Necasova [18], where estimates are dependent
on any given time 7 > 0.

Lemma 2.2.2. For any t > 0, there exists one point x; = x,(t) € [0, 1] such that the
solution n(z, t) to the problem (2.1.3)—(2.1.6), (2.1.11)—(2.1.14) possesses the fol-
lowing expression:
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n(z, t) = D(, t)Z(t){l + %/0 n(z, s)p(z, s)D(x, s)Zl(s)ds} (2.2.12)

where

D(z, t) = ny(z) exp {% (Afm v(y, t)dy — /0 w(y)dy

+ ﬁlo 01 no(z) /Ol vg(y)dydx> }, (2.2.13)
Z(t) = exp{ui%/ot/u1 (v* +np) (v, s)dyds}. (2.2.14)

Proof. The proof is the same as that of lemma 2.1.3 in Qin [104]. But for the book’s
self-contained, we copy its proof here. Let

Mz, t) = /OT v (y)dy + /Oto(a:, 7)dt.

The from (2.1.13), h(z, t) satisfies

h,=v, h=o¢ (2.2.15)
and from (2.1.11) it solves the equation
haw
hy = —p+ 22 (2.2.16)
with
z=0,1:h,=v=0. (2.2.17)
Hence we derive from (2.2.16) that
(nh), = hvy — np + whyy. (2.2.18)
Integrating (2.2.18) over [0, 1] X [0, ¢] and using (2.2.17), we arrive at
1 1 t ol
/ nhdx = / Nohodz —/ / (np + v*)dzdt = $(t). (2.2.19)
0 0 0 Jo
Then for any ¢ > 0, there exists one point ¥, = z,(t) € [0, 1] such that
1 1
8= [ ubde= [ nds - ha(0.0 = W),
0 0
i.e.,
[ v, = [y piogTEDD Do
o ,T)at = VoY —_— 2.
0 0 no(zi(t)) i
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with

t 1 1 T
s = [ [ @ dsist [ nfo) [ wdstn. @22
0 Jo 0 0
Moreover, (2.1.4) can be rewritten as

v — u(logn)y = —pa = —p; (2.2.22)

with p* = p— fol p(z, t)dz. Integrating (2.2.22) over [z;(1), 2] X [0, ¢ for fixed ¢ > 0,
we get

n(z, t) = Wexp { ﬁ% [/1) (v(y, t) — w(y))dy

+ /Ot (p(z, 7) — p(z1 (1), T))dr] } (2.2.23)

Inserting (2.2.20) into (2.2.23) and noting (2.2.13), (2.2.14) and (2.2.21), we
conclude

1 t
n(x, t) exp{n—/ p(z, s)ds} =D Yz, t)Z7 (1) (2.2.24)
0Jo
which implies that
1 [t [ -1
exps — | plz,8)dsy =1+ — [ D (z,8)Z  (s)n(z, s)p(z, s)ds. (2.2.25)
Mo Jo Mo Jo
Thus (2.2.12) follows from (2.2.24) and (2.2.25). O
Lemma 2.2.3. There holds that
0<Crl <n(z, )< Cy, Y (x,t) €10, 1] x [0, +00), (2.2.26)
t
/ [v(8)|3ds< Ci, ¥ ¢>0. (2.2.27)
0

Proof. Let

M,(t) = t).
2(1) g%n(%)

Using the Young inequality, the Holder inequality and lemma 2.2.1, we get

T T 1 1 T
/ o(y, H)dy — / w(y)dy+ — / nol) / w(y) dydz
(1) 0 Mo Jo 0

1 3 1 g gl 1 3
([ ) (f 0] ok o[ )’
0 0 Mo Jo 0

< Glllol* + i< Cr. (2.2.28)
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Equations (2.2.28) and (2.2.13) yield the existence of some positive constant
C; > 0 such that

0<Cr'<D(x,)< G, V() €0, 1] x [0, +00).
From (2.1.14) and (2.2.1), we deduce
1 1 1
/ (v +np)(z, t)do > / np(x, t)dz> / (s +0")dz> ', V>0
0 0 0
(2.2.29)

Using lemma 2.2.1, we get
/01 (2 +np)(z, )z < [[o]]* + 04/01 (140" " dz< G, Vi>0.  (22.30)
Thus, from (2.2.29) and (2.2.30) it follows that for all 0 < s < ¢,
Crl(t—s)< /t/ol (v* +np) (=, s)dzds < Cy(t — s), (2.2.31)
which, together with (2.2.14), gives that for any 0 < s < ¢,

I _
e A=) < Z(1) 27 (s) = exp{——/ / (v* +np)(y, s)dyds} <G,
s JO

U
(2.2.32)

It thus derives from (2.2.4) and the convexity of the function — log y that

1 1 1
/ de—log/ de—lg/ (0 —logf—1)de<
0 0 0

which results in the existence of a(t) € [0, 1] and two positive roots of the equation
y —logy — 1 = C} such that

1
0<n < / 0(z, t)dz = 0(a(t), t) < .
0
This gives, for any ¢ > 0, such that

T 1
[0 (z,t) — 6™ (a(t), t)| = / (0™ (z,1)),dy| < C’l/ 0™10,|dx
al 0

(1)

11 +9q % 1 6277L1 %
< 0 —_—
<a(f L) (] rizme)

< O, VA1) M (1) (2.2.33)

where V(t) = fol l%fqﬁidx and 0 <my <m=(¢g+r+1)/2
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Then for any (z, t) € [0, 1] X [0, 400), we get
Crt — O V() My (1) < 0°™ (3, 8) < Gy + GV (8) My (2). (2.2.34)

Thus we conclude from lemma 2.2.1 and (2.2.32)—(2.2.34)

n(z,t) = D(x,t) [Z(t) + %/0 / n(z, s)p(z, s)D’l(:z?, s)Z(t)Zl(s)ds]

t
=G [60” / (1+ V(s)%(s))e“(”)ds]
0
t

<G+ G | M(s)V(s)ds,
0

i.e.,
t
M,(t) <G+ C’l/ M,(s)V(s)ds,
0
which, with (2.2.4) and using the Gronwall inequality, yields
M,(t) < (. (2.2.35)
Using (2.2.12) and (2.2.32), we find that there exists a large time ¢, such that as

t2ty, € [0, 1],

n(z,1) = D(z, t)Z(t){H— % /0 n(z, $)p(z, ) D (z, s)zl(s)ds}

t
>t [601t+ / ec‘(ts>ds}
0

> Cll/otecl(”%lsz 20) (2.2.36)
Notenow that D(z, t) > C;t, Z(t) > exp(— Cit) and infer that for any (z,?) € [0,1]
X [0, o],
n(z, t) > D(z, 1) Z(t) > Oy exp(—C1t) > C; ' exp(—City),
which, together with (2.2.36), gives that for any (z, t) € [0, 1] X [0, +©0)
n(z, t)>C L. (2.2.37)

Combining (2.2.35) and (2.2.37) gives immediately (2.2.26).
Using the Holder inequality, (2.2.26) and lemma 2.2.1, we obtain for any ¢ > 0

t s trorlg2 1
/ ||v(s)||imds§ / (/ |vxd:c> ds< / </ Id:r) </ 0d§L’> ds< (.
0 o \Jo o \Jo 0 0

The proof is now complete. O

2
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Corollary 2.2.1. If assumptions in theorem 2.1.1 hold, then there holds
C— V() <0™(z, t) < CL+ CLV (1), (2, t) €0, 1] x [0, 00), (2.2.38)

where

q\n2
V(t)=/ <1+9 0 / V(s)ds< C.
0

Corollary 2.2.2. If assumptions in theorem 2.1.1 hold, then there holds that

t 1
/ / (140)*"?dads< Cy, Vt> 0. (2.2.39)
0 0

Proof. Using the Poincaré inequality, lemma 2.2.1 and (2.2.38), we obtain

//(1—1—027" 2dxds<01//vdzds+01// $)v? dzds
0o Jo

0

The proof is now complete. O

Set A= sup [|0(s)|| -
0<s<t

Lemma 2.2.4. If assumptions in theorem 2.1.1 hold, then the following estimates hold
forany t > 0,

t 1
I, ()12 + / / (140" )pdeds < Ci(1+ A, (2.2.40)

t
/ os(s)|2ds < C1 (14 A2, (2.2.41)
0

with f=max(r+1— ¢,0).

Proof. Obviously, equation (2.1.3) can be written as
Na _
v — ,u; + pyn, = —pols. (2.2.42)
t

Multiplying (2.2.42) by (vf,u"’f]") and then integrating the result over

[0, 1] X (0, t), we have
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2 t ol _ 2
—= +/ / —'up"nzdxds

2
vy — D n1v+p99p<v ﬂ dzds.
"2 7’10 /0 / { !
Now using the Young inequality, (2.1.17) and lemmas 2.2.1-2.2.3, we can infer for
any € > 0,

1 2 t 1
- + / / (140" )P dads
2 0o Jo

t 1
<ava [ [ |ase s aro)
0 0

91<v—,u@>
n
t 1

501+01// (1+ 0" ") (en + C1v*) dads
0*(1+07) 2 3

+C1</ > // NEYOR d:rds)

(1+0")0*
+e// 1+01+7ndxds+01// +91+;dd

< L1+ A 0D 4 / / (140" ") dads
0 Jo
¢ t ol
§01(1+A)ﬁ+e/ V(s)anHstJre//Grﬂnid:rdS
0 0 Jo

t 1
+01/ / (L+07)0.n,|dzds (2.2.43)
0 0

} dzds

with ¢ = max(r+1—2¢,0) <.
Now we estimate the last term in (2.2.43). Using the Young inequality and
lemmas 2.2.1-2.2.3, we can conclude for any ¢ > 0,

(140"
r 1+r 2
// (146M|0.n,| < = // (140"’ dwds + O (e //lJrHHrHad:cd

—/ / (1+ 0" dads + CyL + CLAP,
0

which, together with (2.2.43), yields

2 t ol t ol
+ / / (1+0"" ") dads < e/ / (1+ 0" "2 dwds + Cl(1+ A
0 Jo 0 Jo

Nz
v— U
n

Thus for small € > 0 in the above inequality, and applying the generalized Bell-
man—Gronwall inequality, we conclude (2.2.40).
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Multiplying (2.1.4) by v, integrating the result over @, and using the Young
inequality, lemmas 2.2.1-2.2.3 and (2.2.38), we derive

—/vdx+//u - dxds
1
:5/ voda:—// (pyh1, + po0y) vdzds
0

§01+Cl/ / (140" )0l + (1 + 07)|6, 0] dds

<C’1+01<// 1+91+rnda:ds) (// 1+01+’vd:1:ds>
1+0‘Z 02 1/2 0*(1+07)*0? 2
(// dd) // Tire

<O NP L O N < O+ CLAP?

1/2

which yields (2.2.41). Thus this proves the proof. O
Lemma 2.2.5. There holds that for any t > 0,
t
los ()12 + / loa()|Pds < G (1+ AYP, (2.2.44)
0
t
[ lolids< iy, (2.2.45)
0
! B
e+ [ ol ds< Gula+ A (2:2.40)
0
with
5
B = max{'r+1+ﬁ,2ﬁ,max(2r+2 — q,O)}, Py = g + %,

3 3
B :max{r+l+ﬁ,max(2r+2— q,O),Zﬂl—l— gﬁ}

Proof. Multiplying (2.1.4) by v,,, and then integrating the resultants over [0, 1], we

get
1d o ! SN u
S 1z = T zzd - — z — Upy zzd, 2.2.47
silol= [ pevdo— [ (5) noet 2 vdo (22.47)

i.e., for any € > 0
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||W(t)||2+/0 | vaa(8)||* ds

¢l
<G+ / / (1102 V2| + (1 + 91+7')|nwvm| + (1460|005, dzds
0o Jo

t
§01+Cl//vn7dxds+6’1// 1+01+r idxds
0
t o1
+0 / / (14 0)*"6* dxds
o Jo

t 1 t
scl+ca<1+A>r“/ / (146" )2 duds + 01/0 ol ol i, | ds

1+9qe2921+9)
—I—C// (150 dzds

t 1/2 t
gcl+cl<1+A>T“”’+cl<1+A>ﬂ( / ||vz<s>||2ds) ( A
0 0

02(1_+_9)2r

+ C; sup 07

0<s<t

<O+ CA+A) T L G+ AP 4 (L Ay 2mad)

t
e / 022(5)|ds
0

t
<GOA e [ ool ds
0

L[>

which gives for small € > 0,

t
@1+ [ Toa(oPds < o1 +A)"

Thus

1/2

||vx ixds< Gy ||vz )|[*ds " () s
0

< Cy( 1+A)

1/2
s)|2ds>

(2.2.48)

(2.2.49)

Multiplying (2.1.4) by v,, integrating the resultants over [0, 1], and using lemmas

2.2.1-2.2.4, we get

1 1 ’
||vt||2: f/ Dyvrdz —/ {(g) Ny Uz + ':;UTT] v dx
0 0

(2.2.50)
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Integrating (2.2.50) in ¢ gives

ot H+/Hw )|[2ds

t
sa+a/WmWw+/um@mw
0

Lot 0*(1+0)* 0*(1407)
1+r
§01+01/0/0 (1+0"7)° dzds+01// o G dads

t 3/4 ¢ 1/4
+aswnM@(/nmwﬁ (/wwmmﬁ
0<s<t 0 0

< 01(1+A)7»+1+[f+ 01(1+A)Irlax(27'+2—q,0) + 01(1+A).3;ﬁ1+§ﬁ
<O (14 A

O

Corollary 2.2.3. If assumptions in theorem 2.1.1 hold, then the following estimates
hold for any t > 0,

t 1
/ / (14 0)* 02 dzds < Cy (14 A), (2.2.51)
t 1
/ / (140" 2 dads < C (1 + A)P T (2.2.52)
t 1
/ / (14 0)"+ o, P duds < Cy (14 AY, (2.2.53)
0 0
t 1
/ / (14+0)" vt deds < C (1 + AP, (2.2.54)
0

where

o1 :imax(qf 3r+1,0), 0y= max(q_g;_l, 0),
ﬁ4—61+ gl’ ﬁl ﬂ

Bs = max(q —r, 0)+_+Z
Bs = min(d + 2By, fs).
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Proof. Using corollary 2.2.1 and lemmas 2.2.1-2.2.5, we can derive

t 1 t
//(He?m deds</ o d8+/ V(s) v ds
0 0

<G+ A+ C(1+ A
< C(1+A)M

Note that

t ol
/ / (1+0)*" " 2 dwds < (1+A) / / (14 0)*"v? dzds
0 Jo

< 01(1+A)/}1+17

// (1+0)"" o,  deds < CL(1+ A)° // 1+0£ D, P deds
0

t 3 .
<G A) [ / fultass | V<s>4|vz||‘zgds]

< GEAT s o il [ ds) ( [ e ds)

+Cl(1+/\) maXHv;r ||2(/ (| |l ds)

< C(1+A)P

where we have used

¢ ¢ ) ¢ 3 ¢ 1
[ udids<cn [ ulfuatass 01( / ||vl«||?ds) ( / ||vm||2ds)
0
<y sup s ||(/ ™ ds) (/ o] ds)

<QO+AWL%

t 1 3 t 3 t 3 5 1
/ / V(s) o duds < / V(silulbds< G / V() 0al e s
0 0 0 0
! % ! 10 2 %
scl( / v<s>ds) ( AR ds)
<t sup [lus(s) |z( / o] ds)
9€0t

< 01(1 +A)Zﬁ1+zﬁ1 — 01(1 +A)§ﬁ|
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t ol
/ / (14+0)" v deds < C,(1+A)° / / (14 0™)v! dads
0 Jo

< Cl(14+A) // (1+ V(s))v'dads
0

[ relfetas+ ([ V(s)dsf
. (/Ot||vz||“|vﬂ||2ds)j

<G &) sup ([ o) ds> (f ds)
s o [ ol ds)

< 01(14—/\)(’2 [(1 +A)1ﬁ+;/fl +(1 +/\)2#1]
<G+ A>T

< O (1+A)™

However, we also know that

t 1
/0 /0 (1460)" vt dzds < Cy (14 A)™>~ To/ vl 4 ds

< Gy (14 Ayaro) / ol s
0

t Syt 2
g01(1+A)m“<q—"’0)</ ||vz||6ds> </ ||vm||2ds>
0 0

¢ ]
< G A ||vz<s>||2( / ||vz<s>||2ds)

([ 1t ds)

< G (14 A0+ (14 AP

Therefore,

/t/1 (1+0)" v dads < CL(1+ A)Ps. (2.2.55)
0

0
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In the next lemma, we shall derive new uniform-in-time estimates on radiative
term I(z, t; v, ) given in the following lemma, which are more complicated,
delicate than and quite different from those in [111], where estimates are not
uniform-in-time.

Lemma 2.2.6. There holds that for any t > 0,

t 1 o0 t 1 oo
/ / / / vo I dwdvdzds + / / / / vas(j — I)dedvd:z:ds
0o Jo Jo Js 0o Jo Jo Js

00 1
+ / / vo I (z, t; v, ) dodv < C’l/ 0' T dx < Oy, (2.2.56)
0o Js 0
/ / I(z, t;v,w)dwdv < C. (2.2.57)
0o Js

Proof. Multiplying (2.1.6) by I, integrating the result over (0, 1) X S* x (0, 00) and
using boundary conditions (2.1.11) and (2.1.12), we get for any € > 0,

1 [*® 1 [
—/ / a)IQ(l,t;v,a))dwdv——/ / oI*(0,t;v, w)dwdv
2 0 Sl 2 0 Sl
1 00 1 o0 _
+/ / /nauﬂdwdvdm—i—/ / /nas(l—1)2dwdvdx
0o Jo Js o Jo Jg
1 o0 1 [e'e)
SCl(e)/ / /na(LBdedvda:—l—e/ / /naaﬁdwdvdx
0o Jo Js o Jo Js
1 [e'9) 1 [e'S)
SCl(e)/ 9”%/ f(v,a))dwdv+e// /noal2dwdvd;v
0 0o Js o Jo Jg
1 1 o0
§Cl(e)/ 91+“dz+e/ / /noal2dwdvd:z:
0 0o Jo Js
1 00
< C'1+e/ / / no I?dodvdz.
0o Jo Js

Similarly, we also deduce that

1 ) 1
// /n(oa—kas)ﬂdwdvdxg/ 0' " dx < C). (2.2.58)
o Jo Js

0

In order to derive (2.2.5), we consider now the following integro-differential
equation

012, 1, 0) = noulv, 0, OB, 0) — a3y, 0)] +n0,(v:1,0)
x

x [I(x;v) — I(z;v,0)] on Q x [0, #] x Ry x 8,
I(0, t;v,w) =0 forall w € (0,1),
I(1,tv,w) =0 forallw e (—1,0),
I(z,0;v,0) = Iy(z;v,0) on Q x Ry x S*.

(2.2.59)
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Solving explicitly the ordinary differential equation and using boundary condition
(2.1.1), we arrive at (see [19] for details)

f7/'7(“a+“<)dz

/ (6,B+aI)dy for allwe (0, 1),

I(z, t;v,0) = oo (2.2.60)
/ eJ. a1 oaB+ o )dy for allwe (—1,0).

Using the Young inequality, (2.1.18), (2.2.3), and (2.2.56), we have for all
1),

o0
/ /[dvda)
Sl
Yy (0a+tfs)
/ / / ol Hesei 1 aaB+a I)dy)dvda)
SI

—(aaB + asj) dydvdw‘
w

Sl

1 1 0 1 5
—aaBdwdvdm+ / n/ —as(I — I+ 1)dwdvdzx
1 Sl

/ / / — 05+ 05 (I- I)2+0512]dwdvda:
SI

< 01/ 0"t dr < C. (2.2.61)
0

S

<0 / 't dr + O

In the same manner, we have the same result for all @ € (=1, 0). This completes
the proof. O

Obviously, we can obtain the following result by lemmas 2.2.1 and 2.2.6.
Lemma 2.2.7. If assumptions in theorem 2.1.1 hold, then there holds that for any
t>0,

t 1
|\9+01+"+v2|\2+/ / (1+0)7 0% dads < Cy (14 AP, (2.2.62)
0 Jo

where

f7; = max(2r+1— 2¢,0),

Bs = max{ﬁﬁ (B+ max(2r+2 — ¢,0)), Q+1+ﬁ’3ﬁl’w7

max(r — ¢,0) + %,max(q— r,0) + %}
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Proof. Multiplying (2.1.5) by e+ %2}2, integrating the resultant over [0, 1] X (0, ¢)
and using lemmas 2.2.1-2.2.6 and (2.1.15), we get

t 1
||e(t)+91+7‘(t)+1)2||2+/ / (1+0)"* 02 duds
0 0
t 1 t 1
§01+01// (1+0)2r+1|vew|dwds+01/ / (1+0)*" "2 |on,| deds
0 0 0 0
t 1 t 1
+01/ / (1+0)q+’>+1|omz|dxds+cl// (14 0)"* 12| v, | duds
0 0 0 0
t 1 t 1
+C’1//(1+6)r+1|vvmz\dxds+01//(1+0)T|w@01|dxds
0 0 0 0

1 1(5e)e e+ 57

8
= Ci+ > D, (2.2.63)

t 1 t
+ Cl / / (1 + 9)q|1)1);,9m|d$d8+ Cl dxds
0 0 0

Similarly to those in [104], we have estimates of Dy, Ds, and D3, for any ¢ > 0,

t 1
Dy < 6/ / (14 0)"" "6 dzds + Cy(e) (14 A)*
l)2 < 01(1 _’_A)% p+ max(2r+2—gq,0))

b

Dgge/ / (1+0)"+ 02 duds+ Cy () (14 A)F 1+,
0

Here we only give estimates of D;, (i = 4, 5, 6, 7, 8), for any € > 0,

t 1
D4§Cl(//(1+92m 2d:vds // 1+97+1Q4d$ds)

<o1+a)? s [4(9)l- // (140" P dads)’

<Cl(1—|—/\)2 sup ||v.(s)||* // (1+6)*" 2d:z:ds)

s€[0, 7]
s/fl

<G (14+A)T

1
Ds< () // 0) 1 deds // (1+0) ! 2v2dxds)
/vdmds)

<C1+A)TT

/f+/f2+L
2

Scl(l+A) )
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topl t el
D6S€/ / (1+0)" 902 duds + C’l(e)/ / (14 0)" "W dwds
0 Jo 0 Jo

B2

t ol
e/ / (1+9)T+q93d1:d5+C’l(e)(1+/\)mm‘(r*q‘0)+7,
t ol t ol
D7§e//(1+0)T+q03dxds+01(e)//(1+0)47T112v§d:)3d5
// (146)" " 102 dads + C1(e) (1+ A" 70+ %
At last, we use corollary 2.2.1, definitions of S and 7, (2.1.17) and (2.2.61) to get
t 1 1
Dsé‘/ / n(SE)R e+7v2>d:z:ds‘
0
7(// e+ {// 6a(B— Idvda)+// dvdco}d:cds’
S‘//n<e+v2)// aa(B—I)dvdwd;zzds‘
0 Jo 2 -1Jo
t 1 1 1 oo
g//n‘<e+—v2)// aa(B—I)dvdw’dxds
0 Jo 2 -1Jo
t 1 1 1 00 1 0
S// ‘ e—i——vQ / / 01+‘°‘fdvdw—|—/ / no'aIdvdw)‘da:ds
-1Jo
1
<Cl/ V(s d5—|—01/ ||1)HL% /GH“daz—kCl)ds
<o [ (v + 1ol )as< e [ aliedas

<o+ /||vx||2ds)2sol<1+/\>z.
0

Inserting estimates of Dy, Do, D5, D,, and Ds into (2.2.63), using the Young
inequality and taking ¢ > 0 small enough, we conclude

t 1
H@(t)+91”(t)+v2]|2+/ / (140)" 702 duds < Cr A%
0 Jo

The proof is hence complete. Ol

In the next lemma, we shall prove the new uniform-in-time upper bound on
temperature 6(z, t). The difﬁculty of the proof is how to derive the uniform-in-time

estimate on the last term [ fo Sg) pKidads in (2.2.67) below.
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Lemma 2.2.8. If assumptions in theorem 2.1.1 hold, the there holds that for any
t>0,

1 t 1
/(1+92q)9§(x,t)da;+/ / (14 07" 7)0? daeds < C (1 + A)Ps, (2.2.64)
0 0 0

ALy, (2.2.65)
where

By = {2max(q — r,0) + 2+ fg, max(q — 7,0) + f+ (Bs + B, +1)/2,
max(q —r,0) + B+ (Bs + Bs) /2, max(q — r,0)},

f1o = max{max(q — r,0)+ ¢+ 2+ f,2max(q — r,0) + r+ 2+ 2p,
max(q —7,0) + B+ (fy+7+3)/2,max(q —r,0) + f+ (B +7+2)/2,
(max(q —r),0)},

P11 = min(By, o),

g, — {max(3q+2 —7,0)+p; +ﬁg’max(3q+2 - T,O)+ﬂ2+ﬁ+ﬂg}’

2 2

B, — max 3¢+4+p 3qg+4+B,+ B
13 9 ) 9 s

Biy = min{Byy, B3},
Bis = max{ B, + 1, By, Bs, P11, By, max(2¢ +2, By) }.

Proof. Let

0
K00) = [ "“7,7’ % g,

t 1 1
X(t):/ / (14 07"7)0% dads, Y(t):/ (14079602 da.
0 JO 0

Then it is easy to verify that

K K0 K
K, =Ky, +—-0,, Ky= <—t> + Ky vai, + (‘) 1,01 + Ky vy
n n/, n/,

We know from (2.1.18) that
| Byl + [ K| < CL(140771).
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The equation (2.1.5) can be rewritten as

0,
egl; + Opov, — % v = (K’7) —1(Sg) - (2.2.66)

Multiplying (2.2.66) by K, and integrating the result over [0, 1] X (0, ¢), we arrive

0 0
// 6(-)9,54-9]7()’1}9;—%1}2 dea:ds+// K K t)

K
+ Km,Ua:"II + Krlvmr + (E)ﬂr]z()t} + n(SE)RKf:| dzds = 0. (2267)

at

Now we estimate each term in (2.2.67). Similarly to those in [104], we have

t ol
/ / €90y K;dxds > 01X(t) - 01(1 +A)ﬁ1+1’ (2268)

0 Jo

‘/ / Opov, — Ho T)Kd ds’<— +C1(1+A)ﬁ1+1
+OA+A oA, (2.2.69)
bk, 7 Kk0,
- - > - . .

/0 /0 1 ( ” )tdﬂfds_(le(t) Ci, (2.2.70)

) /ot /01 ng( nVar Knn”z'lz) da:ds‘

t 1
< / / (1 + 9)2q+1‘0z7}m + 99:71&:771|d$d5
0

<Ci(14+A) mmq”m) // 1+0(I+T02da:ds //U d:z:ds

. ) )
TCTERS S / / (14+0)"" 02 duds)’ / ||vm||ix||m||2dxds)
0 0 0

max(3q+2—7,0) + By + B max(3¢+2-7,0) + g + B+ f;
1 8 max\oqre7rn TP PTrg
2

<COO+A) T +00+
< O (1+A)Pe.
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On the other hand, it is easy to verify

t ol
0,
‘/ / £ ( n-/erKfmUﬂlx)d‘TdS‘
o Jo 1

t 1
SQ// (1+9)2H1|6zvm+01vznw|dfcds

qn2
1+0 gTdd //v d:zrds
(1 qu? 4
N EY N // + S duds) /||vz|\%oc||11$\|2d1:d5>z
0

3¢+4+p %q+4+/?2+/5

<CA+A)" 7 +C(1+A)
<G (14 A,

<G(1+

Therefore
t oLy,
’/ / TI(Kﬂvm—Fvamum)dzds‘§01(1—|—A)ﬁ“. (2.2.71)
0

Now we estimate the last two terms in (2.2.67). First, by lemmas 2.2.1-2.2.7, we

have
<O1// (1+6)1
0

2
t)+01/ / Kez) (1+0)" "2 dxds
0o Jo n

K@

17z9 dzds 0, ’ dxds

0

t 2
< ﬁX(t)+ Cr(1+ A)mexte=r 0+ F / 0o g
0 Nl
t 0, 2
< %X(t)Jr01(1+A)m“(’1‘“°)+"/ { KT
0

K0, <K9 ) :1:] (5)ds
< ? ( )_|_ 01(1+A)1nax(q r,0)+p

t 1
x{(HA)maXW*“m / / (1460)"" "0 dzds
0 Jo
t 1 1/2
+(/ / (1+0)"* 762 duds )
0,\ |? 1/2
x(// (1+0)! <K> dacds) },
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which, along with (2.2.66), lemmas 2.2.4, 2.2.5 and corollary 2.2.2, leads to
K()

nzﬁtdrds‘

X(t)+01(1+/\)21naxq r0)+/f+ﬁ8+c(1+/\)mdx(q 7,0)+f+Ps/2

, 1/2
x {X(t)+/ / [(1+0)4+T+%3+(1+0)‘1 ot (14 0)" " n?(Sp)> ]dzds}
< gX(t)-i— 01(1+A)2111ax q—7,0)+ 28+ fg + G (1+A)md‘< q—r.0)+ B+ (Bs+p1+1)/2
+ 01(1+A)mm q—7,0)+ B+ (Bs + fs) /' + 01(1+A)max (q—r,0)+ B+ p;
C
< LX)+ A (2.2.72)

However, we also know that

KH

1119 dxds’

2
—1X t)+C’1/ / (ng) (1+0)" "2 dds
01

( )+ 01(1+A)max(q 70)

{// 1+92"02dxds+// (140)°

< X0+ G+ Ay 8] Aq”/ V(s

+(/Otv 1/2 //921+9 (Kg)

S %X(t) + 01(1+A)max(q—'r‘0)+q+2+[3

t 1 KO ) 1/2
+ 01(1+A)m“@‘w”’“(WW{/ / (1+0)7 ( ) dmds}
0 Jo n 7z

C —r max(qg—r
SjX(t)—FCl(l—FA)max(q ,0)+q+2+[3_|_01(1_|_/\)2 ax(q—r,0)+2f+7r+2

) ’dxds}

2

dxds) 2 }

+ Cvl(l+[\)max(qfr,())Jr[3+(r+3+/31)/2+ Cl(l+A)max(qfr,())+ﬁ+(7‘+2+/36)/2

+ Cl(]. +A)max(q7r,0)

< % X(t)+ G (1+A)Pv.
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Next, we estimate the last term,

t 1 t 1 00
‘/ / 1(Sg) p Ky duds g// (/ /na,Ldedcu)|Kt|dxds
0 0 0 0 0 St
t 1 0
+ / / ( / / o ldvdo ) | K| duds
0 0 0 Sl
t 1 0 5
+// (/ /nas|1—1|dvdw)|Kt|dacds
0 0 0 Sl

=P+ Q+R (2.2.73)

Using (2.1.18), lemma 2.2.6, the Young and the Hélder inequalities, we conclude

|P|<// / /noadedw ‘K v+ — Qt
Sl
<Cl/ / (140714 %)y, | dads + C’l/ / (1+677%)|0,|dzds

+ C Aq+2a T

t 1 00 K
QS// (/ /naaIdvdw)‘KnvI—&-—Gt’dxds
0 Jo 0 Js n
t 1 o0 % o0 %
§Cl/ / (/ / naadwdv) (/ / naaIQda)dv> (14071 v, | dads
o Jo \Jo Jao o Js
t 1 00 % o g %
—|—01/ / (/ / naadwdv> (/ / naaIQda)dv> (1+Gq+1)|0t|dxds
Sl Sl
<Cl(1+A)2q+2/ |v,)* dds + eX (t) 4 Cy (e / / (/ / no,l dwdv)
0 0o Ja

<eX(t)+ Ci(1+A)T2

dxds

<

OOH—‘

Using the same technique, we also get
1 max(qg—r,0)
R§§X(t)+C’1A =i

Inserting estimates on P, @ and R into (2.2.73), using the Young inequality and
taking € > 0 small enough, we derive
X()+ Y (1)< C(1+A)s. (2.2.74)

By lemmas 2.2.1-2.2.7 and the Holder inequality, there exists a point a(t) € [0, 1]
such that for any ¢t > 0 fo z, t)dz = 0(a(t), t), we can hence deduce
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: r+3 ! rt+3
(5, 1) — 00 (a(t), £)] < 01/ 01510, | du
0

< 01(/01 (1+62q)03dx>%(/019”1dz)é

<O Y1)
Then

P15
A< G YT 4 G < Gy (L4 A7, (2.2.75)

After alengthy calculation, it is easy to verify that assumption (2.1.16) implies that
P15 < 2q + r + 3. Therefore, by the Young inequality, it follows from (2.2.75) that

AL (.

This thus completes the proof. O

The following lemmas are concerned with the new arguments on uniform-in-time
estimates of radiative term I(z, t; v, w).

Lemma 2.2.9. There holds

Pdwdv <C, Yt>0, (2.2.76)

L>=(Qu)

S1
‘ / || deodv <G, Vit>0, (2.2.77)
0 St L(Qr)

t 1 00
/ / / / IFdodvdzds< Gy, Y t>0. (2.2.78)
0 Jo 0 St

Proof. By (2.2.57) and (2.2.66), we can easily get (2.2.76). By the definition of 7, we
can derive from (2.2.76) that

/ / Idwdv
0 Jg

From (2.2.60), using the Young and the Hélder inequalities, (2.1.18) and lemmas
2.2.7, 2.2.8, we derive

2
/ /Idedw</ / / oaB—i—asI)da:) dvdo
st NJo
1
SCl/ / andm-/ O'GBde)dde
Sl
—|—Cl/ / /—o dw - / JJde)dwdv
Sl

§01+01/ / / (0.1 = 1)’ + 0,02 dzdodv< Gy, (2.2.80)
0 St

< (. (2.2.79)
L= (@)
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which, by the definition of 7, implies

/ /Pdwdvgcl. (2.2.81)
0 St

From (2.1.6), we get

I, = _1(6a+65)1+ E(G,IB+0'57).
) )

Integrating the above equality and using (2.1.18), we obtain

o0 o0 1
[ [tdowsa [T [ Lo+ ooltaod
0 st 0 st |o]

00 1 _
+ G / / —(0,B+a,I)dwdy
o Jsi|of

oo

<C+ Cl/ |I|dwdy + Cl/ |T|dewdv (2.2.82)
0 St 0 St

which, using (2.2.76) and (2.2.81), gives (2.2.77).
By (2.2.60), we have for any w € (0, 1),

f:l/” Oo+05)d n ﬂ Ji
It / ( w(6a+as)dz)tw(o-aB+o-SI)
"G, + 0, )
/ o). Hloata) ( 6,B+o0, I))tdy =: Ay + Bs. (2.2.83)

Using the Young inequality, (2.2.81), (2.1.18), lemmas 2.2.4 and 2.2.8, we deduce

/t/m/Sl Adwdvds
<Cl// /Sl / /I j(aa—i-a)—l—g((aa-i-as)nv

2
+(0,+0,),0 )dz) (04 B—i—asf)dy} dwdvds

<c / / /S / (6040, + (00), + (0,),)’

+ (( )+ (05)g) d:v / —0 B%lx)dwdvds

LG / / /3 / (004 0y + (00), + (0),)°

+—g<<a )y + (03)) dz - / 16212 dr) dordvds

<01// (02 +0?) d:cds+01// //dedwdvds
Sl

<G (2.2.84)
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Analogously,

/ / /SlBQd‘”d”d“Cl / / /S / Z(6,B+0.0)+ L ((0,),0.B

~ ~ ~ 2
+(00)g0iB+ 0 Bal; + (5,), Tv, + (6,),0,1 + aslt)) dx} dodvds

t 1 T t 00
gcl//(v§+9§)dxds+cl/// /Ifdwdvdsdy
0 Jo o Jo Jo Js
T t 00
SCH—CH/ // /It?dwdvdsdy,
o Jo Jo Jst

which, together with (2.2.84), implies

t 00 T t 00
/ / / If dodvds< C1 + C; / / / / If dodvdsdy.
o Jo Jst o Jo Jo Jas

Fixing ¢ > 0 and using the Gronwall inequality, we get
t o]
/ / / Pdwdvds< C1e%" < Ce < 0y, Yxelo,1].
0o Js

This proves the proof. (I
Lemma 2.2.10. If assumptions in theorem 2.1.1 hold, then there holds that
1Z2w(t)]| < Cyy ¥V iE>0. (2.2.85)

Proof. By virtue of the direct computation, we have

1Z 22 (1)) _/ / /Iuda)dv da:
_ /0 /0 /515(1115+175x)dwdv>2dx
o I, by ([, by

— G+ H. (2.2.86)

Using (2.1.18), (2.2.40) and lemma 2.2.9, we see that

G= /01 (/000 /51 éﬂdewdv)zdx
:/Olni(/ow/s. %(ga(B—I)+GS(T—I))dwdv>2dx

1
< 01/ n2dz < C. (2.2.87)
0
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Similarly,

B 1 o) ﬁ 6 i ) ) )
o / ( / [ lon.+ (o1~ 1)+ ot~ 1)
2
(@)1 + ()00 (F = 1) +ou(T - I)Z}da)dv) "

1
<a [ o2+ )i
0
<a. (2.2.88)

Plugging (2.2.87) and (2.2.88) into (2.2.86), we can get (2.2.85). The proof is
complete. Ul

2.3 Asymptotic Behavior of Solutions in H;

This will establish the large-time behavior of global solutions in H;, which completes
the proof of theorem 2.1.1.

Lemma 2.3.1. If assumptions in theorem 2.1.1 hold, then we have

Jim ([n(#) =7 =0, (2:3.1)
Jim [[o()]| = 0, (2:3.2)

— 1
where 77 = [ n(y, t)dy = [, no(y)dy.
Proof. By lemmas 2.2.1-2.2.8, we can derive from (2.2.47)

d _
%||U“H2+Cl 1H1}:mz||2§ C. (233)
Applying lemma 1.1.2 to (2.3.3), and using the Poincaré inequality, we obtain
||U(t)||§.[1 < Cl|va]*= 0 as t — oo,

Similarly, by lemmas 2.2.1-2.2.8, it follows from (2.2.42) that

4
dt

Ne

2 1
vopl C;l/ (L+0"""2dz < C. (2.34)
0

Applying lemma 1.1.2 to (2.3.4) again, and using lemmas 2.2.1-2.2.8 and (2.3.1),
we conclude that as ¢t — oo,
2
+ ||’U||2> — 0

In.|I* < 01<

which gives (2.3.2). O

.
n
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Lemma 2.3.2. If assumptions in theorem 2.1.1 hold, then we have

t}g;”@ —0|[,,=0, (2.3.5)
where 0 > 0 is determined by (7, 0 fo S0+ e(ng, 00) + Fr(0))dz.

Proof. Equation (2.1.5) can be rewritten as

690f+(_p+9p9)vz - sz+qz+’1(SE)R =0. (236)

Multiplying (2.3.6) by e;'0,,, integrating the result over (0, 1) and using the
Young inequality, the interpolation inequality and lemmas 2.2.1-2.2.8, we can
conclude for any & > 0,

d 2 1K93$
G0l +2 [

€on

_ ! [01)9% N (%)ZOr n(Se) g }0 s
o L e em e eo "
[

2
< S 10 (O + Crllloal® + vl o+ 10: 20 + 110511 + 1| (S2) & ]|")

N » DN o™

2 2 3 4 3 4
< S 10N+ Collloel” + [los 1"l oll + [[0zl|” + 102170zl + [102]]

100 + (| (S8) &)
<&l 0u (D)2 + Cr(ll0al® + [0 ® + 10211+ || () |- (2.3.7)

Now we need to estimate the new radiative term 7(Sg) g in (2.3.7), which did not
appear in the system considered in Qin [104] ((Sg)r = 0).

From (2.1.18), the Young and the Hélder inequalities and lemmas 2.2.7, 2.2.8, we
derive

ol = [ ([ [ wun-n+oii - ion) e
scl/o1 [(/OW/S aa,(B—I)dwdv)Q
+(/0+OO/S] as(:f—f)dwdv)Z] de
301/01 [(/OM/S "“d“’dv)(/om/sl ou( B + ) dody)
sa( [ [ odon)( [ [ 0= 1doa)]a

1
< / 0 et G < O, (233.8)
0
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which, together with (2.3.7), yields
t
o0+ [ loatolas< o

Plugging (2.3.8) into (2.3.7), using lemmas 2.2.1-2.2.8 and taking & > 0 small
enough, we have

d 1
G-I+ ci [ a0 de <l + D), (2.3.9)
0
which, together with lemma 1.1.2 and (2.2.44), (2.2.65), yields
2_
Hhin 10.(8)]"= 0. (2.3.10)

By the Poincaré inequality, we deduce
10(2) = 0| < Crll 0. (D),

which, combined with (2.3.10), gives (2.3.5). The proof is thus complete. O

The following lemma is the new argument on the large-time behavior of radiative
term I(z, t; v, w).

Lemma 2.3.3. If assumptions in theorem 2.1.1 hold, then we have

i [|IZ(8)]] 2= 0. (2.3.11)

Proof. By (2.2.76) and

(21
Lz o) ﬁ/ ([ [ vdod)
:/ / / - dedy /+OC/SIInda)dv
scl// /It|dwdv iz

<C / / /—|yz5+n5t|dwdv)dm— A3+Bs. (23.12)

.6), the direct computation yields

‘We denote

dodvdz

1 + 0o 1 ~ Y N
:/ / / ‘—vz(aa(B—I)—i—as(I—I)) dodvdr =: C+ D.
o Jo sla
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Using (2.1.18), lemmas 2.2.7-2.2.9 and the Young inequality, we can derive

+ o0
C<// /’ 0,00(B — I‘dcudvd:z;
Sl

+ o0
§Cl/ |vz|/ /—(|w|0“+1f(v,w)+|w|g(v,w)[)dwdvdaz
0 0 st |l

1 1
< |vg|dz < C’l/ vida:—&— ar,
0 0

R 1 + 00 1 B
DS// / —vxas(l—l)‘dwdvdx
0o Jo gl
1 + 00 1 B
gcl/ Ivg;l/ /—|w|k(v,w)|1—l|dwdvdx
0 0 gt |of

1 + 00 1 1
0 0 Sl 0 0 ’

We denote
1 + oo
we L1
o Jo sl
1 + 00
_ n
[ L Iale

+ (@) + (00 (T = D) o1 = 1), }
= FE+F,

dwdvdz

nS

)yts + (aa)()et} (B— 1)+ 0u(By0; — 1)

where

1 + 00
= n
E o A /0 /Sl (0] { [(6
1 + 00
n
[ LI
0o Jo stl@
Using (2.1.18), lemmas 2.2.7-2.2.9 and the Young inequality, we can conclude
1 + 00 1
|Py| < Cl/ |U.1;|/ / —l(04), Bldodvdz
0 0 st ol
1 + 00 1
< 01/ |vf|/ / —|w|h(v,w)dodvdz
0 0 st o]

1 1
<O | uldz< 01/ vidz+ C).
0 0

6
vy + (aa)eet} (B— 1)+ aa(Bybs — It)}‘dwdvda: —Y P,
i=1

0,), 0 + (as)get} T-D+o,(I- [)t} ‘ dodvdsz.
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Analogously, by lemmas 2.2.7-2.2.9,

+ oo
|P2|<01/ |v,|/ /l ), Idodvs
St

§C1/ |v| dz < Cl/ vdr + O,

+ oo
|P3|<Cl/ Ht/ / O',l \Bdwdvdm
51

<01/ |0,|dz < Cl/ 0?dz+ C,

+ 00
|P4|<C’1/ |9\/ / ol a)ol|dwdvdz
St

§O1/ |0 dz < Cl/ 0 dz+ O,
0 0

1 + 00 1
|P5| < 01/ |9t\/ / — |0, By|dewdvdz
0 0 s |l
1 1
Scl/ |0;|dx < 01/ 03d1‘+ C,
0 0
1 + 0o 1
| Ps| < Cl/ / / —a,|L|dwdvdr
0 Jo g1 loof
1 + o0
<C+ / / / Ifdwdvda:.
o Jo s

Now we estimate F as follows, by lemmas 2.2.7-2.2.9,

1 + o0 n ~ 1 + 00 n 5
Fg/ / /—\(as)nvz||f—l|dwdvdx+/ / /—|(65)90t||l—1|dwdvd:c
o Jo st o] 0 Jo st ol
1 + oo n N 3
+/ / /—Gs I—1),|dodvdx =: M;.
0o Jo st |l I g ;
By (2.1.18) and lemmas 2.2.7-2.2.9, we deduce
/ |v¢|/ / |w\ (0.), |1 = I|dwdvdz
+ 00 1
§C1/ |vz|/ / |I|dwdvdz < Cl/ v dz+ Oy,
0 0 51 0
1 + 00 1
MQgcl/ |et|/ / |I|dwdvdx < 01/ 0?dz+ C,
0 0 s 0
1 +oo
Mg§01+01/ / / IFdwdvdz.
0 Jo 51
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Inserting all previous estimates into (2.3.12) implies

d
o IZoO1* < Cilllo (O + 10D + 1ol 7250 i, <)) + Cs (2.3.13)
which, together with lemma 1.1.2, (2.2.41), (2.2.64), (2.2.65) and (2.2.78), yields
Lim I1Z.(8)]]>= 0. (2.3.14)
From (2.1.6), we derive
+ oo + 00 1 2
HIM Irrd(i)dv = —(n,8 +n8S;)dody
0 g1 @
+ 00 2 + o0 1 2
<O / / —n,Sdwdv|| + Cy / —nSydwdy
0 51 0 51
N+ N, (2.3.15)

Using (2.1.18) and lemmas 2.2.4-2.2.9, we deduce

N1<01/01n§(/()+m/5| é[aa(B—I)—i—as(j—l)]dwdv)de

< Gy lln. (0%, (2.3.16)
1 + 00
wza [ ([ ] St @ =D+ ensio. -1
+ (0,14 (05)g0:) (T = 1) +0,(T — 1))dde)2d1:
< G (IO + 10817 + | Z.(5)]). (2.3.17)

Inserting (2.3.16) and (2.3.17) into (2.3.15) and using (2.3.1), (2.3.10) and
(2.3.14), we get

Thus (2.3.11) follows from (2.3.14), (2.3.18). O
Proof of Theorem 2.1.1. Combining lemmas 2.2.1-2.2.8 and 2.3.1-2.3.3, we can
complete the proof of theorem 2.1.1. [l

2.4 Global Existence and Uniform-in-Time Estimates
in Hz

This section will prove the global existence of solutions and uniform-in-time esti-
mates in Hy. The next lemma concerns the uniform-in-time global (in time) positive
lower bound (independent of t) of the absolute temperature 6.
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Lemma 2.4.1. If assumptions in theorem 2.1.1 hold, then the generalized global
solution (n(t), v(t), 0(t), Z(t)) to the problem (2.1.3)—(2.1.6) and (2.1.11)—(2.1.14)
satisfies for all (z, t) € [0, 1] X [0, +-00),

0< 7t <0(z, t). (2.4.1)

Proof. We prove (2.4.1) by contradiction. If (2.4.1) is not true, that is,

inf 0(z, t) =0,
(z,t)€[0,1]x[0, 4+ c0)

then there exists a sequence (z,, t,) € [0, 1] X [0, +00) such that as n — +00,

0(z,, t,) — 0. (2.4.2)

If sequence {t,} has a subsequence, denoted also by t,, converging to +©0, then
by the asymptotic behavior results in theorem 2.1.1, we know that as n — +00,

0(z,,t,) — 0>0

which contradicts (2.4.2). If sequence {t,} is bounded, i.e., there exists constant
M > 0, independent of n, such that for any n =1, 2, 3,..., 0 < t, < M. Thus there
exists point ((z*,t*), £') € [0, 1] X [0, M] such that (z,,t,) — (z*,t*) as n — +00.
On the other hand, by (2.4.2) and the continuity of solutions in lemmas 2.2.1 and
2.2.2, we conclude that 0(z,,t,) — 0(z*,t*) =0 as n — + oo, which contradicts

(2.2.1). Thus the proof is complete. O

Lemma 2.4.2. If assumptions in theorem 2.1.2 hold, then the following estimates
hold for all t > 0,

t

||9t(t)\|2+||vt(t)|\2+/0(|\Umt\|2+||9mz||2)(8)d5§ Cy, (24.3)
t

||Um(t)||2+”0m(t)”2+ /0 (Hvzzz‘|2+||sz|‘2)(5)d5§ Gy, (2.4.4)
t

||17m-(15)||2+/O 1 ()17 ds < C. (2.4.5)

Proof. Differentiating (2.1.4) with respect to ¢, multiplying the result by v, and
integrating over (0, 1), we infer that

d . 1
T loe (DI + G a1 < 20, s (DI + Culll s ()1 + oDl + 16:6)])

< %Clnvn(t)n? + G ([l (2 + 1040))
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which, together with lemmas 2.2.1-2.2.8, yields
t t
o (0)]* + / [0’ (1) dr < Co + 01/ (lozl® +110:]*) () de < Co. (2.4.6)
0 0

Differentiating (2.2.42) with respect to z, using (2.1.3) (fuw = Vaus), We see that

0 (May _
W () = Patae = vie 4 B, 1) (24.7)

with
E(.T, t) = (pm]"]i + 2p0n9z771 + p009§) + ol — 2u Ualc”li/"]3 + 2/"0’71vzz/7]2-

Multiplying (2.4.7) by #../n, and by the Young inequality, lemmas 2.2.1-2.2.3
and (2.1.18), we can deduce that

d||n 2 i ’
e CHE
dt’ Ol IR el ©
1|l 2 A 4 2
<16 |||+ GBI + (DL + oa ()]
2
108 + |02 (8)][F)
N
< [FE®)| + CU0=® + I (B + [loa (1)) (2.4.8)
201 || n

which, combined with lemmas 2.2.1-2.2.8, gives

t
n%mW+An%@ng@,W>a (2.4.9)

By the embedding theorem, (2.1.4), (2.1.5) and (2.4.6), we conclude for all ¢ > 0,

ol < Cillvssll < Ci(lloall + 18+ 2]l + [[wsl)) < O, (2.4.10
! 2 ! 2 2 2 2
‘AanwsaAm%u+wmww%m+memg@. (2.4.11)

Using equation (2.1.5), lemmas 2.2.1-2.2.8, (2.3.8), the Gagliardo—Nirenberg
interpolation inequality and the Young inequality, we have

102 ()]l < CL 10D + [|[n(Se) ) < CLlllONB +1). (2.4.12)

Differentiating (2.1.5) with respect to ¢, multiplying the result by 6, and inte-
grating over (0, 1), we infer that for any & > 0,
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IV + O 0
<ell0a(IE + G {10 + oI + 10DI + 0n(o)P
o) + 0+ 10,010 (1) 100
+ ClH[’?(SE)R]tHQ}- (2.4.13)

Integrating (2.4.12) with respect to ¢ and using lemmas 2.2.1-2.2.8 and the Young
inequality, we derive for any ¢ > 0,

oo+ [ 0o
<Gt [ I0aPast G [ 0IEIOLIE+ 10
v [ Intse)al Foys
<ot [ 10aPds G swp [0+ [ )l )

t 1 t
<Cots [ 0a(oldst 5 sw [0+ C [0S P(90ds (2.41)
0 0<s<t 0

Noting that the new radiative term fot H [n(SE)RL||2(s) ds, we need to obtain the
uniform-in-time estimate.
From (2.2.41), (2.2.46), (2.2.65) and (2.2.78), we can derive

/0 H["(SE)RLHQ(S)dS
:/0,/0 [v2(SE) g+ 1[(SE) )| dzds

t 1 + 00 _ 9
scl/ / vz(/ / aa(B—I)+aS(I—I)dwdv) dxds
0 0 0 St

co [ [ [ Koyt @08 =0+ outm - 1)

~ ~ 2
+1(0,), 00+ (03)0(T = I) + 0y (T — I)tdwdv} duds
t t 1 + 00
sa/ (1ol + 110:]%) (s) ds + cl/ / / / Pdodvdeds
0 0 0 0 St
< Q. (2.4.15)

Inserting (2.2.15) into (2.2.14), then taking supremum in ¢ on the left-hand side of
(2.2.14), picking ¢ > 0 small enough, we can get for all ¢ > 0,

t
001 + [ 10491 ds< . (2.4.16)
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which, together with (2.2.12), implies
[0 < Co. (2.4.17)

Differentiating (2.1.5) with respect to z, using the Young inequality, the
Gagliardo—Nirenberg interpolation and the Poincaré inequality and lemmas 2.2.1-
2.2.8, (2.2.16), (2.2.17) and (2.4.5), we deduce

/Ot 10,20 (5)]|* ds < 02/0t(||’71:||2+ 721+ a1+ sz + 11602
+10ul*) (s)ds + Cg/ot [1(S) Rl | (s)ds
<Gt [ ntse Fioas (2.4.18
The same estimate as (2.4.16) yields

/H (Se)al,|*(s ds—// (1,(SE) 5 +11(Sk) ,) 2 dads

< / (U, 2+ 10,17 (s) ds

2

+ o0
+ / / |I;|dwdvy
0 st L= ()
<q. (2.4.19)
which, together with (2.4.18), implies that for all ¢ > 0,
t
/ 110000 (8)||* dazds < Cs. (2.4.20)
0

Thus (2.4.3), (2.4.4) follow from (2.4.6), (2.4.16), (2.4.17) and (2.4.20). The proof
follows immediately. O

The following two lemmas are the new arguments on the uniform-in-time esti-
mates of radiative term I(z, t; v, ®).

Lemma 2.4.3. There holds that for all t > 0,

+ 00
‘ / || derdv
0 51

Proof. Using (2.1.18), the Young inequality, lemmas 2.2.5 and 2.2.9, we derive from
(2.2.83)

< (Os. (2.4.21)
L= (@)
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+ 00
/ /\A2|da)dv
+ 00
<Cl/ / / / aa+oq+(aa+as)n)
St z

+— (anra)dz) (04 B+0'Idy)da)dv

<cl/+°°/51 / / gyt 0y + (5a+04),)

+ w(6“+6‘5) dz) dy+/ n2aiBQdy+ / Jgjzdy”dwdv
0

1
< 01/ (02 +07)dz < Cy. (2.4.22)
0

Analogously,

+o00 +oo
/ | Bo|devdv < Cl/ / / ~(0,B+a.)+ <(aa)nv$B
0 st st w

+(04)y0:B+0By0,+ (as)”jvm + (05)96,51 + stt)> dy} ’dwdv
—Jsjt’dwdvdy

1 T + o0 n
ga/ (|Ux|+|0t|)d1:+01// /
0 o Jo gt
x + o0
SCg—i-Cl/ / / || dwdvdy,
0o Jo 51

which, together with (2.4.22) and (2.4.18) and using the Gronwall inequality, implies

+ 00
/ / |It\da)dv< CQ

Thus the proof is hence complete. Ul

Lemma 2.4.4. If assumptions in theorem 2.1.2 hold, then there holds that

Proof. The elementary computation yields

+ 00
HIm || —/ / /L;,gda)dv dx
+ 0o 9
0 0 st

gcl/1 [(/m/ i)ndewdv>2—|—(/+oo/ énzsmdwdv)Q
0 0 st 0 5

+ (/OHC/S énsndwdvﬂ dz =: il Ji. (2.4.24)
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Employing the Gagliardo—Nirenberg interpolation inequality and using (2.1.18),
lemma 2.2.9 and (2.4.5), we conclude

1 + o0 1 9
e / ( / / —nm,dedV) dz
0 0 st
1 + o0 1 ~ 2
< 01/ ;72(/ / —[aa(B—I)—f—as(I—I)]dwdv) dz
o Mo st @
1

<G / n? dr < Oy, (2.4.25)
0

e / (/ o [ an{ten .+ @i -1

+6u(Bo0, — 1) +[(0,),1, + (6,)0)(T = I) +0,(1 1), }dwdv) dz
1
22
<G [ it

1
<O mgxni(/ (niJr@Z)dx) + O
0

< Culllnallimgs | + lIn.*) + o
< G (2.4.26)

Analogously, we infer from (2.1.18), (2.4.4), (2.4.5) and (2.2.85) that

wea [ ([ Mo+ e

~ ~ 2
- 0u(Bos = L)+ (0,1, + (00,011 = D+ oI = 1), } dordv) da
1
< 01/ (s + 03+ 0202+ + 02, + 12, ) da
0

1
< Gl el + 121> + 10210 + [10211%) /0 (03 + 0% dz + Cy
S 027
which, along with (2.4.25) and (2.4.26), gives (2.4.23). The proof is thus complete. (J

By lemmas 2.4.1-2.4.4, we conclude that the global existence of solutions
(n(t), v(t),0(t),Z(t)) exists in Hy such that for all ¢ > 0,

1(n(2), v(2), 6(2), Z(1))ll3y, < Co- (2.4.27)
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2.5 Asymptotic Behavior of Solutions in H,

This section will derive the asymptotic behavior of global solutions (1, v, 0,Z) in Hs
based on uniform-in-time estimates in section 2.4.

Lemma 2.5.1. If assumptions in theorem 2.1.2 hold, then we have

dim [lg(t) =7l »=0, (25.1)
im [[o(0)] 2=, (25.2)

where 1 = fol n(y, t)dy = fol no(y)dy

Proof. Applyinglemma 1.1.2 to (2.4.8) and using lemmas 2.2.1-2.2.8 and 2.4.1, 2.4.2,
we get, as t — 0O,

112 — 0. (2.5.3)

Thus (2.5.1) follows from (2.5.3) and (2.3.1) in lemma 2.3.1. Applying lemma 1.1.2
0 (2.4.6), using lemmas 2.2.1-2.2.8, we conclude, as t — 0,

[ (8)[] — O
which, with (2.4.10), gives, as t — 00,
|vae (2)]| — 0. (2.5.4)

Then (2.5.2) follows from (2.5.3) and (2.3.2) in lemma 2.3.1. The proof is now
complete. O

Since radiative term (Sg)g is present in our model, whose uniform-in-time esti-
mates are more complicated than those in Qin [104], we have to estimate a new

radiative term ||(SE)R||2 in the next lemma.

Lemma 2.5.2. If assumptions in theorem 2.1.2 hold, then we have

tliganH(f) —0]] .= 0, (2.5.5)
where 0> 0 is determined by e r], fo 'Uo + (1, 00) + F(0)) da.

Proof. By (2.4.13), we can get

d .
pr V&b (DI + & 10(0)||* < C'fz(\lf)z(t)H2 [l (O + 10O + [[oa (D)
+lin(Se)ali]),

which, combined with (2.2.41), (2.2.62), (2.2.64), (2.2.65), (2.4.3), (2.4.15), and
lemma 1.1.2, we can conclude

. 2
i |0(8)]= 0. (2.5.6)
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Using (2.1.18) and lemma 2.2.9, we can deduce

d + 0o
H ’ 72/ / / Sda)dv / / Sfda)dv
dt Sl Sl

< oL+ [[o (D1 +10:(8)*),
which, together with (2.2.41), (2.2.64) and lemma 1.1.2, implies

lim ||(Sz) )= 0. (2.5.7)

=+ 00
By equation (2.1.5), we see that
102 (£)[1 < Collloa (D + 10 ()1 + 10=(E)1] + [ () )
which, along with (2.3.2), (2.3.10), (2.5.6) and (2.5.7), gives
im0, =0, (258)

Thus (2.5.5) follows from (2.5.7) and (2.5.8). The proof is then complete. O

A new asymptotic behavior of solutions of radiative term I(z, t; v, ») in H? will be
given in the following lemma.

Lemma 2.5.3. If assumptions in theorem 2.1.2 hold, then we have

Jlim [[Z(8)] o= 0. (2.5.9)

Proof. By (2.1.6), we denote

) +oo 1 2 +00 1 2
||Zmr(t)” < 01 / / —ﬂIISdCOdV + Cl / / _ﬂzSg;da)dV
0 51 0 g1 @
+ 00 1 2
NSwdodv|| =: R+ Ry + Ry, (2.5.10)
S

Similarly, by (2.1.18), lemma 2.2.9 and the more delicated computation, we see
that

Ry < Cillna(1)II%, (2.5.11)
Ry < Cu(l[na(8)I + 10:(8)]), (2.5.12)
Ry < CiIea (DI + 10w (DI* + 1 Zex (8)]1%). (2.5.13)

Plugging (2.5.11)—(2.5.13) into (2.5.10) and using (2.3.1), (2.3.5), (2.3.11),
(2.5.1), (2.5.5), (2.5.8) and (2.3.18), we obtain
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. 2
tlle||Izzx(t)|| =0,

which, combined with (2.3.11), yields (2.5.9). O

Proof of Theorem 2.1.2. Combining lemmas 2.4.1-2.4.4 and 2.5.1-2.5.3, we can
complete the proof of theorem 2.1.2. O

2.6 Global Existence and Uniform-in-Time Estimates
in Hy
In this section, we shall first establish the global existence solutions in Hy.

Lemma 2.6.1. If assumptions in theorem 1.1.3 hold, then there holds that for any
(Mg, v0, 00, Zo) € Ha, the following estimates hold for any t > 0,

||U.T,t(xa 0)” + ||6.1rt(x7 O)H S 037 (261)
o, O+ 00 (2, 0)| + |0 (2, 0) | + 0 (, 0| < Co. (2.6:2)
2 ! 2 ! 2
mwm+/wwwmws&+@/u%mm@, (2.6.3)
0 0

t t
MﬁW+/n%mww§@ﬁ+@ﬁ/W%mwm
0 0

t
- 018/ (Il vstell® + Nz 1) (5) ds. (2.6.4)
0

Proof. Using theorems 2.1.1 and 2.1.2, we derive from (2.1.4)

oD < Co(llna (DI + 10N + 0w (D] < 17 (D + [0z (E)1])
< Gy([loa (D)l + (IO + [102(O)))- (2.6.5)

Differentiating (2.1.4) with respect to z and using theorems 2.1.1 and 2.1.2, we
deduce

[or (O < Collla ()l g2 + IOl g+ 1102(E) 1) (2.6.6)

[0re (D)1 < Co(ll0(E) | g2 + 112 () 1+ 102D ] g1 + [0z (D)]])- (2.6.7)

Similarly, differentiating (2.1.4) with respect to x twice, using theorems 2.1.1 and
2.1.2 and the embedding theorem, we get
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[0z (DI < Colllna (D) g2 + [0z (D)1 s + 102 (D) ] g2+ 102 (O g [0 (D)
11 O g 2z (O] 4 v (D] e 112 (D)
< Co(lIne (Ol gz + 102 = + 02 (D] 2) (2.6.8)

or

[0z (D)1 < Co Ul (Ol g2 + 02 (D] g2 + [102(E) | 12 + [ 022 ]])- (2.6.9)

Using theorems 2.1.1, 2.1.2, (2.1.18) and the Hélder inequality, we have
1 1
[ seatzas = [ {a(Sep-+al(Se. ¥ da
1
< cl/ 2(5p)2d + cl/ [(S5) 2 d

<a/nm / /%B qu<wm0m

+ 00
ta / / / Ga)yMs+(0a)g0:)(B — 1)+ 04(Bo0, — 1)
Sl

o)+ (00,00~ Do (- 1), doodv) do

1 +00 +oo
gCl/ |\11l||2 / /JGBZdwdv—o—/ /I%wdv)dw
0 51
+ o0 + o0 2
+Cl/ 111[ / / Bdwdv —|— / /(oa) Idwdv
0 51 st
+ 00
/ / a)y( dwdv) }dx—i— Cl/ 02 / / G,) Idwdv)
st 51
+ 00 + o0
/ / Bdwdv + / /aaBgdwdv
st 51
+ 00 + o0
/ / oI —1) dwdv dx+ Cl/ / / 0ol dwdv
St
+ 00
/ / as(I dwdv> dx
St
< Cl(llm( DI +10:(0)1° + I Za(8)11),

+ G

[1(Se) gl |l < Culllna ()1 + 10(E)]] + I Z(£)])- (2.6.10)
Similarly, we can derive
111(Se) Bl < Colllme () 2 + 102 ()l 1 + I Za ()] 1) (2.6.11)

and

1n(Se)ali]| < Collloa ()] + 10:(8) | + IZ(0)]) (2.6.12)
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or
[7(SE) Rl o]l < CollloaO + 10+ IO 2@ <11 ,)- (2.6.13)
From (2.1.5) and theorems 2.1.1 and 2.1.2 it follows that

10011 < CuUloa ()] + (Dl (D]
+ (Ol + 10 DINI0O 1 + 10O + [[(S5)4])
< G100+ oDl + [ (Se)g]]- (2.6.14)

Differentiating (2.1.5) with respect to x, and using theorems 2.1.1 and 2.1.2, we
arrive at

102(B)1I < Colll OO + 102 () 2 + 112 (D)l 2 + v (D] + || [1(S2) 1. |])
< Gl (Dl + vl i + 102 (D] 2 + [Z2(D)1]) (2.6.15)

1022 ()| < Calllna (Ol s + 102D 2 + 02 (D) g + [10(O) ] + [ Zo(D]])- - (2.6.16)

Differentiating (2.1.5) with respect to z twice, using theorems 2.1.1 and 2.1.2 and
the embedding theorem, we conclude

102t < Colllma (Ol g2 + 102l 2 + 102 (E)] g5 + [ [1(S) g el
< GOl = + oz (Dl g2 + 102 (D] s + 172 ()] 12) (2.6.17)

or

10azza (D] < Coll (D) g2+ va ()] g2+ 102 (E) | 2 + 1Ot (D] + [T () )
(2.6.18)

Differentiating (2.1.4) with respect to ¢, using (2.6.6), (2.6.8), (2.6.14) and
(2.6.15), we have
loa(D1 < Collor ()l i + N (O +110:) ] + 10 (D)
F [Jom (O 4 vz ()11
< Go(llna (Ol = + oz (Dl s + 102 (D) | 72 + 17 (D])- (2.6.19)

Analogously, we get

1021l < Callox (D + I (DI + 10: (D] + 110z (D) |
+a (D + 102 2 + 10z (8)| + [ [1(S) ]|
< Colln (Ol g2+ Nve (@l s + 102 (Ol g2 + 1Dl i + I1Zu(D). (2.6.20)
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Thus by theorem 2.1.1, estimates (2.6.1) and (2.6.2) follow from (2.6.6), (2.6.8),
(2.6.15), (2.6.17), (2.6.19) and (2.6.20).

Differentiating (2.1.4) with respect to ¢ twice, multiplying the result by vy in
L2(0, 1), performing an integration by parts and using the Young inequality and
using theorems 2.1.1 and 2.1.2, we obtain

1d

2 d [oa(t)])> + Cy M vae|)* < Co([|va()1” + 10:(B)]|* + 1|02 (2) ||

+ v (B + 104(2)]1%)- (2.6.21)

Thus, by theorems 2.1.1 and 2.1.2,

t t
(B2 + / loael()[2ds < Gy + Gy / 104(5) 2 ds
0 0

which, together with (2.6.20), (2.6.13) and lemma 2.2.9, gives (2.6.3).
Differentiating (2.1.6) with respect to ¢ twice, multiplying the resulting equation
by 6, in L2(0, 1), integrating by parts and using the Young inequality, we get

1d [! b, '
§E/o eoﬁida:: —/0 ( na)ttgmdl‘—/o (eor0t + eyuvy)0yda
3 1 , 1 v,
—5/0 egtﬂttdx—/o (en‘f'p_,u;)vxttgttdx
1
v{l?
—2/0 [ent— (—p—i—ﬂ;)f} Ul dz
1
+/ (—p+,uﬁ) 'U:L'Ottdz
0 n/t

1 7
_/0 (1(S8) ) yBuude ::ZAi. (2.6.22)

Using theorems 2.1.1-2.1.3 and (2.6.1), (2.6.2), and the embedding theorem, we
deduce for any € € (0, 1),

Al S - CfIHQttw(t)“Q —+ CZHem(t)HL”C(H’UT(t)H + ||9t(t)||)9tm(t)
(§>u(t)H|0¢(t)||Lm||0u(t)||

< = 26) 0D + Collloa(B)ll7n + 10N + 102 (£)1”
v (I + 18D + 10 (1)), (2.6.23)

+ Gy
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1
Aggcl/ (0] +10:)* + [oic] + 100 ](10,] + |va) 0wl de
0

< IO ()| = (10:E) | + [0 B DL e (D) e + 10:(8) 1 )
< (o (E)] + 10:E) 1) + loee (D] + 102 (2) |}

< GO0 (O + 10:es (DI s (D g1+ 10:2) | + (102 (D)
+ o (O + 18 (1))

< el 0 (8)7 + Coe (on (D% + 10,01 + 10 (D)
o (&)1 + 10a(8)1), (2.6.24)

1
msa/um+mwmx
0

< Cl10u(O I+ 10w (DD (o] + 10 D0 (D]
< €)|0ua (1) + Coe|0u(D)]%, (2.6.25)

Ay < e|vg (D)) + Coe M|04(1)]I7, (2.6.26)

45 < CQHUZ(t)”L%||0tt(t)||{(||vr(t)”Lx H10:D) 1 g ) (o (D + 1181

I+ 10Ol + v ()] + a1}
11Ol + 10 + 10Dl + (D)

+ [l (2
< Gol|On(t
F 10N + v (D))
<elloua(D° + Coe (10O + llve(8) 5 + 160:(8)]1°
+ o1+ 110(5)[1%) (2.6.27)

)
)

and

1
A6§01/ (|Ux|+|9t|+|Utg:\+|Ux|2)|vtx\|9tt|d$
0

< Collva O o (O (o) + 10O+ lo (DD OO (2.6.28)

which implies

/A6d1< Cy bup Hﬂﬁ )| /||vm|| dr /vaH dr
1/2
X{A(MA”HMF+HwWXﬂM}

¢
Se{ sup Hgtz‘ )||2+/ |v‘”||2(7)d‘f}+0263
0

0<t<

(2.6.29)
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Now we estimate the last term A;. Using the Young inequality, we arrive at
1
Ar = */ (n(Se) ) yOudx
0
1
== [ (v 20(Se) +l(Se)l e
1 1 1 1
< Cl/ vy, dz+ 01/ v [(Sk) g} do + 01/ 07 d + 01/ [(Se) ali:de
0 0 0 0
1 , [ , 1 1 ,
<a [ ddst Gl [ (Sodit+ 6 [ Gt G [ (o
0 0 0 0

which, using the interpolation inequality, (2.6.13) and theorems 2.1.1 and 2.1.2,
yields

Ar < Culloa O + o1 + 1001 + (10 (2) I

1
+ Hli(t)||%2(Q><(—1,1)><]R+))+ 01/0 ((Sk) g7 - (2.6.30)

Performing the Holder inequality and the interpolation inequality, using (2.1.18)
and theorems 2.1.1 and 2.1.2, we have

/01[(SE)REtd~T = /1 </+OO /S cu(B—1I)+a,(I - I)dwdv)2 dz

tt
+ 00
/ / /1 Ta) Vs + (00) gy 0102+ (0), 0t + (04) g, 020
s

+(0a)gol; + (02)g0u)(B = 1) +2((04),vs + (0)g01) (Bo0r — L)
+ O'a(BOHG? + Bﬁett - Itt) + (( )'TVIUZ + (0-5)0779“}1‘ + (Gs)ﬂvzt
+ ()0 00+ (75)g9 07 + (05)0) (I = 1))+ ((05), vz +2(a4)g0)

- . 2
x(I—=1),+a,(I— I)ttdwdv) dz
1
SCH/ (v} + 0302 + 0% + 07 + 0, + v}) dz
0

1 + o0
+01/ / / Ildwdvdzs
0 0 St

< Culllus (Ol + lua(B)1° + 10017 + I\Gtt(t)I\Z)

1 + o0
+01/ / / Irdwdvdz. (2.6.31)
0 0 St

Now we estimate fo N * [¢ I dodvdz. Differentiating (2.2.83) with respect to ,

we have
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(z v, 2
= [ ek [+ Glowtos Sontadriontan]e)
Y Y
A ~(6,B+0a,0)dy+ f-r w0at o) z(/ vﬂ((f”—i—as)—&— ﬂ((o,,—l—as)nvm
) ) )

Vg
+ (00 +05)p0:) + > ((aa +05),, v+ (0a+ as)w@tvl. + (0. + as)ﬂvﬂ

m
1 T o G, +05)dz
+(0.+ 05)000? +(0.+ 05)09tt)dz> i(canL os1)dy+ / ef, Loy +0,)d
0
Uy n Uy 7
: (5(% +0)+ - ((0u+0), v+ (au—f—as),,O,,)) : (E(GGB—Q—USI)
+ g ((Ga)nsz—F (04)90:B+0,Bp0; + (as)ﬂvzj + (oa)ge,j + abjt)) dy
+ / o) Mot 0 (2 6,54 0,1) 422 ((00), 0B + (00) 0 B+ 0Bt
0

+(aS)nuJ+(aa)09J+asL)+%(( 0B+ (04),5070, B+ (5.,), 0. B

+(aa)”va90l+(aa)(,nvI@,B—ﬁ—(aa)00023+2(0a) 6239+(6a) BQHL+6aBGGG%

+0,Bp0y+ (o ),"’1111—0—2( )7791119 I+ (rs) vl + (0'3)69921—0—2(65) vy

+2(,),0 It—i-asln))dyf ZD (2.6.32)

Using the Holder and the interpolation inequalities, (2.1.18) and theorems 2.1.1
and 2.1.2, we derive

t + 00 t 1
// Didwdvdr < 01// (vl + 07)dxds
0 0 St 0 0
t 1
Scl/ ||UT||2LDO/ vzdxds
0 0
t 1
+01/ ||0t|\§x/ 0? dwds
0 0

< Gy, (2.6.33)

t + 0o t 1
/ / / Didwdvdr < Cl/ / (02, + vt 4+ 0207 4+ o8 4 202
0 Jo st 0 Jo

+ 0+ 0) + v207,) dxds

t 1
<G+ G / / 02 dzds, (2.6.34)
0 JO
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t + oo t 1
/ / Didwdvdz < 01/ / (v} + 0207 + 07 + v* + 07) dxds
0 st 0 Jo

t 1 + 00
+ G / / / / I} dwdvdads
0 Jo 0 St
< Gy, (2.6.35)
+ oo
// /dedvdx<01// vl 40207 4+ o2, + 0F 4 02,) dads
0 Jo St
+ oo
+ G / / / / I} dwdvdyds
SI
<G+ G / / 02, dzds
+ oo
+Cg/// / I2dodvdyds. (2.6.36)
Sl

Squaring (2.6.32) in both sides and inserting (2.6.33)—(2.6.36) into the resulting
equation, we obtain

+ o0 + 00
/ / / dodvds< Cy + C’z/ 0:(s)||* ds + 02/ / / / IZdwdvdsdy.
st st

(2.6.37)
For fixed ¢ > 0, applying the Gronwall inequality to (2.6.37) implies
t + 00 t
/ / / Pdwdvds < (02 + 02/ ||0tt(s)\|2ds) Ot
0 Jo st 0
t
e 02/0 10,4(s)|2ds. Go)

Integrating (2.6.38) over Q with respect to z, we have

+ oo
/// / tdwdvds§02+02/||9tt(s)||2ds. (2.6.39)
St 0

Integrating (2.6.22) over (0, t), using (2.6.22), (2.6.39) and theorems 2.1.1 and
2.1.2, we obtain

t t
0u@+ [ 109 ds < Cuo{ sup [10a(6)IP+ [ (sl + ol 55}
0 0<s<t 0

t
+ Gt O / (110:(8) 12+ 1100l () ds
0

which, together with (2.2.78), (2.6.20), (2.6.13), lemma 2.2.9 and theorem 2.1.1,
implies (2.6.4). Similarly, we can derive the same result for w € (=1, 0). The proof is
now complete. O
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Lemma 2.6.2. If assumptions in theorem 2.1.3 hold, then for any (ny, vo, 6o, Zo)
€ 'H, the following estimates hold for all t > 0,

t t
IIUmt(t)ller/o oz (s) 1 ds < 038*6+0182/0(||9m||2+||vm||2)(5)d5, (2.6.40)

t
10D + / 10.(s)|2ds
t
< 03876 + 0182/ (H%th? + ||0:ttt||2 + HOMIHQHOHHQ
0

+ 1 Ll st 22000y + ||]t||2L2(R+><Sl,L2(O,1))) (s)ds. (2.6.41)

Proof. Differentiating (2.1.4) with respect to z and ¢, multiplying the resulting
equation by v, in L2(07 1), and integrating by parts, we arrive at

5 ()= Bo(r )+ Bu() (2642

with
/,71 1
Bo(ﬂ?, t) = O-twvtwu;()y Bl(t) = _/ O-twvth'dx~
0
Employing theorems 2.1.1 and 2.1.2, the interpolation inequality and the

Poincaré inequality, we get

By < Ci(flva (Bl oo +1100(E) ] o) (e ()] e 41102 ()]] 1)
o (D)l e + 10 (Ol = + 102 (D] 1o + |t (D] o [ 020 (E) | 1

0 (O | e 0w (O] e+ 0 ()] ) 020 (E) ]
< Cy(Bor + Boo) || vea(8) 1M || v (8] 2 (2.6.43)

where
Bor = [Jva(O)]l g2 + 10:(D) | + [0 (D) |

and

Boz = (10O 100 ()1 + N0 (D' [0 ()]
v (B + o (O e ()]

Exploiting the Young inequality several times, we have that for any € € (0, 1),
2
€ _
Ca Bl o ()"0 ()]]'* < 5 o ()7 + Coe 2 (1)

+ ol HI0D 1+ 10D (2.6.44)
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and

Co Bos | v (4)[|"* | v (£)| /2 < §||Utxa:(t)||2 + € (|01 ()1 + [0t (D)
+ G (0O + (b)), (26.45)
Thus we infer from (2.6.43)—(2.6.45), theorems 2.1.1, 2.1.2 and lemma 2.4.1
Bo < (0 () + [|ves (D] + 101 (1))
+ G ([loa (D72 + 16: I + 106 (DI + v (D) (2.6.46)

which, with theorems 2.1.1 and 2.1.2, further leads to
t t
/ Bydt < 62/ (lvraell® + |0tz ||* + |01 ?) (2) dT + Coe®, Wt > 0. (2.6.47)
0 0

In the same manner, using theorems 2.1.1, 2.1.2, the embedding theorem, we
get that for any € € (0, 1),

1,2
Bi< = [ E=dr G (o O1+ 10D Ul +100]2)
(] + 10u Ol + Dl o (Ol + 0Dl (D)
() () e (8]
< = @) I+ Colllen(®) 3 + 101
oI+ s (O1) (2045

which, with (2.6.42), (2.6.47), theorems 2.1.1, 2.1.2, and lemma 2.2.9, gives that for
€ € (0, 1) small enough,

t t
||v,fgg(t)||"’+/0 [V || * (1) dT < 036—6+0162/0(||am||2+||utm|\2)(f)dz-. (2.6.49)

Differentiating (2.1.4) with respect to z and ¢, and using theorems 2.1.1 and 2.1.2,
we deduce

Vet ()| < Chllves (D) + Collva (D)l g + 102 ()| g + (112 ()l g2+ 1106(E)] 2)-
(2.6.50)

Differentiating (2.1.5) with respect to z and ¢, multiplying the resulting equation
by 6,:, and integrating by parts, we get

1d (!

EE 6002tdﬂl‘: D0+D1—|—D2+D3+D4+D5 (2651)
0
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where

n= ().

1
_ K0,
f;(l)a Dl = 7/ ( ) emmtdxa
0 n /at

1
D2 = —/ (€nUI+O"UI)mt9Itd.TJ,
0

1
1
Dy = —/ (e()l.tQt + 5 ept + e()zett) ewtdxa
0

o= ‘/o (1)) Oundle = /0 [1(SE) gl Otk — (1) ) O 5.

Similarly to (2.6.42)—(2.6.49), we infer

Dy < Gy(lva(D) | g + 106Dl 1o + 102 (D)l 1 + 102 (B)]] 1
F 0O e 1102 (Ol 1o + 1Ota(B) | g + 10 ()] 1) 1012 ()| 1
< Co(Do1 + Do2)(Dos + Dos)

where
Dy Dog < 110 2 -2 2 10D + [|0:(D)]I2
Gy Doy oség\l e (D" + Coe™ (v ()| 772 + 102() I g2 + 10:(8) |50

2
a2 Doa Doz < %(Hefm(t)”Q + ||9tzzz(t)”2) + C2€_6||0tz(t)”27
CyDo1 Doy < C2(||Ux(t)||§{2 + ||3t(t)|ﬁ11 + ||9-’E(t)||?{2)7

and

2
€
G2 Doz Doy < 3 10 ()17 + 1101 (£) 1) + Coe 210w (£) 1.

That is,

Do < € (|01 (1> + (10 ()II) + Coe™C([[0a (D)5 + [102(8) | 72 + 106D [ 77)-
(2.6.52)

Similarly,
Di< = (26) 0w I + Caolllva ()l + 10070 +10: D7), (26.53)

Dy < o) + Coe*([loa(B)I72 + 10:(0) 17 + e (D]), (2.6.54)

Dy < 00 (D + Coe > (loa()3p + 1001+ 102(0)] o
e (01 + Il (B)1I). (2.6.55)
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Using the Young inequality and (2.6.13), (2.6.14), we derive
1 2
Dy < G0l 110atl 1 + Cull | 2z st 2oy 1O | + €10 (2]

1
+ 018_2/ [”(SE)R]fde
0
< (|0 (D] + Cog 7 ([loa( D + 101> + 16:(0)|
2 2
+ 1 (O 2m x5 22001)) T 1M (O 72®  xs1,22001))
Exploiting lemma 2.6.1, theorems 2.1.1, 2.1.2 and the embedding theorem result
in

H(k)mu)\ < Gl + (@)l + 10:8) L + 10Ol ),

H H H \ < Go(loa(O)ll o+ 10:(0)]1 )

and

+ ‘(’f) w(t)H < Co([lua ()| g1 + 102(D)]] ) < Co

U/ x

(0.0

which imply

|0 <] .00

< Gllua(B)l g + 1ol g2 + 10:(B)l| + 100(E)]2),  (2:656)
k

H(z)tﬁ"( )H<02 (3. -
< o)l + (@)l + 10:8) s + 1001 ), (2:657)

|5 gt =i (| ()], Jieton

< G(L+ [0 (&) DN Oz (D)1, (2.6.58)

L[>

k
H(ﬂ 0,(t H H O H<02||em(t)|H1. (2.6.59)

Differentiating (2.1.5) with respect to x and ¢, using estimates (2.6.57)—(2.6.59)
and theorems 2.1.1, 2.1.2, we conclude
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(5) deett
|G oeto] | G20 | ).mee]
K

()
| G)owto])
(t

< Gilllna (Ol + oz (Ol g2 + 102D 72+ 10: (D] 72+ 1102 (D) | 1
ol + 102110 (O + [ [11(SE) Lt (D)) (2.6.60)

1022 (£)]] < Ci <H<

)| Gate00]

Now we estimate H[”(SE)R]xt<t)H'

(02,(Se) % + v (SE) pls + 121(SE) pl7 + [(Sw) sy da

S~

/0 (0(S) gl <
_. iF (2.6.61)

=1

Using the Holder inequality, (2.1.18) and theorems 2.1.1, 2.1.2, we derive

1 + o0 B 2
Flz/ v2</ /oa(B—I)—i—as(I—I)dwdv) dz
0 0 Sl

< Gl (DI, (2.6.62)

s ([ [ ot @B 0+ o~ 1)

(01t (00T~ 1)+ 0,(0 — 1), dordv)
1
<G / (v2n? + 020%+ 02) dz < Cy (|, (D)5 + 102D + ve(8)]%).  (2:6.63)

Similarly, we have
Fy < Cullloa(Dl 7 + 10:(0)1 70 + (1) (2.6.64)
and

Fi < Gilloa(0)l[70 + [1ma (0 +10:(0) 70 + 110:(8)[170)

+ 00
+ O / / / 12 dwdvdz,
S1

which, together with (2.6.62)—(2.6.64), gives

1022t (O] < Culllz (D] 2+ 10 (O g2 + 10O 2 + [0 12 + 100 ()| s
ol A 10t (D11 Oree (DI + N Lt (D) 2202 1,1y xR ) (2.6.65)
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Differentiating (2.1.6) with respect to ¢, using (2.1.18), the Hélder inequality and
theorem 2.1.1, we obtain

t 1 + o0
/ / / / I%dwdvdzds
1 Jo 0 Sl
t 1 + oo 1
:/ / / /—2(0352+n25t2)dwdvdmds
1 Jo Jo 5@
t 1 t 1 + 00
gcl// (v§+0§)dxds+cl/ // /Ifdwdvdxds
1 J0 1 J0 0 St

< (. (2.6.66)

Integrating (2.6.32) over (0, ), using (2.6.52)—(2.6.56), (2.6.66) and theorems
2.1.1, 2.1.2, we easily get (2.6.41). O

Lemma 2.6.3. If assumptions in theorem 2.1.3 hold, then for any
(g, v, 00, In) € Ha, the following estimates hold, for all t > 0,

t
||vn(15)||2+II%t(t)IIQJr||9tt(lt)||2+||¢9m(7f)||2+/0(Ilvam:tH2+||vm||2

"’||Omtt||2+||0m|‘2)(5)d5§ Ci, (2.6.67)
2 2 ' 2 2

2 2 2 2 2
| vaaa () 20+ 022 (B) |10 + 102z (O] + [0 [[Ypr1e + 113 (D)
(O + |0 (D)* + t( 21104017 2 e+ 100
+ vz (|7 + (| Ozt ()] i llosll” + 10ull” + vzl weoo + 110z |y

2 2 2 2 2
1Ot g1+ 1[0zl [ar1 A+ 10 e + [0l 1o + et ) (8)ds < Co - (2.6.69)

¢
/0 (”UHHH?HI + ||0sz||ill)(5)d3§ Ci. (2.6.70)

Proof. Adding up (2.6.40) and (2.6.41), picking € € (0, 1) small enough, we arrive at
t
o (DN + 110 ()11 + /0 (lveael® + [102e*) (7)
¢
<G+ 0l [ (ol + 100l + 10100l e (2671
0

Now multiplying (2.6.3) and (2.6.4) by ¢ and /2, respectively, then adding the
resultant to (2.6.72), and choosing € € (0, 1) small enough, we obtain
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t
||Utx(t)||2+||0tz(t)||2+”vtt(t)”2+||9tt(t)|‘2+/O(||0t.1:x||2+”vtm“2

t
o+ 100 |*) (1) dT < Cre™® + 0262/ 1020l 101 () dz
0

which, with lemma 2.3.2 and the Gronwall inequality, gives estimate (2.6.68).
Differentiating (2.4.7) with respect to z, and using (2.1.3), we get

Na ( ’7 ) = Pplgge = El(xa t) (2672)
with
nzznz
By (2, 1) = e+ B, ) pyot1(25)

Obviously, we can infer from theorems 2.1.1, 2.1.2 and lemmas 2.6.1, 2.6.2 that
1 () < Colllna (O g+ Nva (D) g2+ 102(E) ] g2 + [[ v (£) 1) (2.6.73)

leading to
t
/ | EL|*(t)dt < Cy, Vit > 0. (2.6.74)
0

Multiplying (2.6.72) by " in L*(0, 1), we obtain

— |
n()

2
dt < Gl By (8| (2.6.75)

+C_

WIIZ
t
el

which, combined with (2.6.74) and theorems 2.1.1, 2.1.2 and lemmas 2.6.1, 2.6.2
gives, for all ¢t > 0,

t
H%MMF+AH%M$W%§G~ (2.6.76)

Using (2.1.18), the Hoélder inequality and theorem 2.1.1, we derive from (2.1.6)
that for any ¢ > 0,

+ 00 +oo
// / /Idedvdxds< Cl/ / / /—QSdedvdxds< Cy, (2.6.77)
0o Jo Jo 51 s1@

t 1 + o0 t 1
/// /Iﬁxdwdvdxdsg Cl//(ﬂi-ﬁ-@i)dxds
o Jo Jo g1 0 Jo
t 1 + oo
+ / / / / P dodydzds
o Jo Jo 51

<Gy, (2.6.78)
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t prl + 00
/ / / / I? dwdvdrds
o Jo Jo st

t 1 + oo 1
<0 / / / / — (%S + 028 + 52, dwdvdads
o Jo Jo g1 @

t 1
<G [ [0 s
0 0

t 1 + oo
+C’1/ / / / I dodvdads
o Jo Jo st

< 0. (2.6.79)

By (2.6.7), (2.6.9), (2.6.16), (2.6.18), (2.6.72)—(2.6.79) and theorem 2.1.1, and
using the interpolation inequality, we obtain for any t > 0,

Hvzzz(t)”Q + ||01rm(t)||2 + ”UH(t)”ix + H911<t)”2p«

t
b [ vl + 10l + il + 10l )15 G (2:680)
0

Differentiating (2.1.4) and (2.1.5) with respect to ¢, using (2.6.69), (2.6.12) and
theorems 2.1.1 and 2.1.2, we derive that for any ¢ > 0,

[or (DI < Crlloa (D1 + Callor (Ol s + N0 (DI + N0 1) < Co, - (2.6.81)

102zt (D| < CLl[ 0 (O] + IZe(DID) + Colllva(O)l s + N0 + [10:(E) | 1
10D ) < Ca (2.6.82)
which, together with (2.6.9), (2.6.18), (2.6.80) and theorem 2.1.1, yields for all ¢ > 0,
||Uwrmrm(t)“2 + ||0mrm(t)“2

t
* / (Hgﬂtnz + ”090111”2 + vatnz + HvaHz)(s) ds< Cy. (2.6.83)
0
Employing the interpolation inequality and (2.6.83), we get for any ¢ > 0,
t
||Uzzz(t)||2L°< + ||szz(t)||2Loc + /0 (”Uzzz”iw + HHIIZH%X)(S)dSS Cy. (2.6.84)

Now differentiating (2.6.72) with respect to z, we find

where

0 zzz'lz
EQ(.’E, t) = Elx(xa t) + Pyallaze +ME (1/] 1721/] )
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Using the embedding theorem, lemmas 2.6.1 and 2.6.2 and theorems 2.1.1, 2.1.2,
(2.6.68) and (2.6.82)—(2.6.85), we can conclude that

1B (DI < Ca([102(D)]] s + 112 (D] 2+ [[02(D)]| ),

1B < G (|Em.(t>|| ot (O] + | Bt (D] + H (""’“) m(t)H)

7’2
< Cill w1+ Cr (108) Lo+ 1. (8) L + (D))

which imply
[E2()]| < Cullvrae (D] + Colll 0z ()] g5 + 12| 12 + 102 (D) ] 1) - (2.6.86)

We infer from (2.6.19) and (2.6.20) that
/Ot(HUttH2 +1|04]*)(r)dr < Gy, VE>0 (2.6.87)
which, together with (2.6.48), (2.6.50) and (2.6.66), gives
/Ot(llvtml2 + |0l *) (1) dr < Gy, VE> 0. (2.6.88)

Thus it follows from (2.6.68), (2.6.88) and lemmas 2.6.1, 2.6.2 and theorems 2.1.1,
2.1.2 that

t
/ IBl2(D)di< G Vit > 0. (2.6.89)
0
Multiplying (2.6.85) by "= in L*(0, 1), we get
i

2
Nagzw -1
—||==(t C

e )| < cul (O, (2.6.90)
Thus it follows from (2.6.89) and (2.6.90) that for all ¢ > 0,

t
Mo (D12 + / e (9)|2ds < . (2.6.91)

Differentiating (2.1.4) with respect to z three times, using lemmas 2.6.1, 2.6.2 and
theorems 2.1.1, 2.1.2 and the Poincaré inequality, we can derive for all ¢ > 0, we infer

Thus it follows from (2.6.89)—(2.6.92) that

t
/0 (vl 4+ 170 ) () ds < Co. (2.6.93)

Differentiating (2.1.5) with respect to z three times, using (2.6.67), (2.6.68) and
theorems 2.1.1, 2.1.2 and the Poincaré inequality, we infer



Asymptotic Behavior of Solutions for the Compressible Viscous Gas 79

10zzze ()1 < Calllna (D)l s+ N0a (Ol o + 102 () 15 + 1Ot ()] 1
+ ”[x:mr(t)”LZ(QxKx(—l,l)))' (2-6-94)

From (2.6.80), (2.6.84), (2.6.92) and (2.6.94), we conclude for all ¢ > 0,
/Ot 0.z (8[| ds < Ca, (2.6.95)
which, together with (2.6.81) and (2.6.94), gives for all ¢ > 0,
[ UalBns #1000 < (26.96)
At last, using all previous estimates and the interpolation inequality, we can

easily derive desired estimates (2.6.67)—(2.6.70). The proof is complete. O

Lemma 2.6.4. If assumptions in theorem 2.1.3 hold, then for any (n,, v, 60,Zo) € H,
the following estimate holds for all t > 0,

IZ()l s < Ci. (2.6.97)

Proof. By (2.1.6), we have

+ 00
H:Zmrzx(t H _/ / / 7’[S mzdwdv)
+oo + oo 1 2
co [ /([ Enswon) ([ Ly saoar)
0 0 51 @ 0 g1
+ oo 1 2 + oo 1 2
0 51 @ 0 g1

= G (2.6.98)

=1

Applying the Holder inequality and the interpolation inequality, (2.1.18) and
theorems 2.1.1, 2.1.2 and lemma 2.6.3, we get

1 +00
1 1 ~
G1§01/ nim(/ / —20’a+0’a(32+]2)+—263+O‘S(I—])2dwdv>dit
0 0 s1@ w

1
< Cl/ Mo dz < Cy, (2.6.99)
0

1 1 +oo 2
Gy < C’l/ n> (0> + 0%)dz + Cl/ ’737(/ / (6a+ as)Izdwdv) dz
0 0 0 5

1
+C1/ (ﬂi-l—@i)dx
0

< Cr(|Inll7n + 110:1%) < Cu. (2.6.100)
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Analogously, we have

+ oo
G3<01(H111||H1+||0 ||H1 +C’1/ / / .+ 0 Imdwdv) dx
Sl

S 047

Ga < Gyl + 102 l3) + 01/ /Ho/é,l (04 +0s Imdwdv> dx
< Cy.
Inserting (2.6.99)—(2.6.102) into (2.6.98), we obtain for all ¢ > 0,
IZ s (D* < G

Differentiating (2.1.6) with respect to z four times, we arrive at

+ 00 too ,
” Izzn H < Cl/ / / r]rr'r;deU)dV + Cl / / 17”7,5' dwdv
=+ 00 1o
+ 01 / / *ﬂmsmdwdv + Cl / / *ﬂmsmpdwdv
0 510 0 g1 @
+ 00 1 9 5
+ Cl(/(}. /Sl asmmrdwdv) dr =: ; H;.

Similarly, we can deduce from lemmas 2.2.1-2.2.9, 2.3.1 and 2.3.2,

1
H < 01/ Nz < Ci,
0

+ o0
H2§01/ ’7m(’7z+02 +C’1/ / / Idwdv dx
0 St

+ o0
< ClImalls + 10:1) +01/ / /Idwdv i< Cy.
Sl
+ 00
%<GWMmHM%p+G/ / /mevM§@
+ 00
m<QWMmH%%p+Q/./ [ tuwiot) o<
Sl

+ 00
m<awmmﬂﬁmp+a/ / /‘M@m )<,

(2.6.101)

(2.6.102)

(2.6.103)

(2.6.104)

(2.6.105)

(2.6.106)

(2.6.107)

(2.6.108)

(2.6.109)
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Inserting (2.6.105)—(2.6.109) into (2.6.104), we get for all ¢ > 0,
||I:L'a:x:w:(t)||2 S 047

which, together with (2.6.103) and theorems 2.1.1, 2.1.2, implies (2.6.97). The
proof is now complete. O

2.7 Asymptotic Behavior of Solutions in H4

This section will be devoted to the study of the asymptotic behavior in Hy.
Lemma 2.7.1. If assumptions in theorem 2.1.3 hold, then we have

dim [ly(t) = ll= 0, (2.7.1)

where 7 = fﬂl n(y, t)dy.
Proof. Using (2.6.68), (2.6.75) and lemma 1.1.2, we get
lim [0 (1)) = 0- (2.7.2)

t—
Recalling (2.6.91) and (2.6.92) and lemma 1.1.2, we obtain

I (] =0
Bim [0 (8)]] = 0,

t 00

which, together with (2.7.2), (2.5.1) in lemma 2.5.1 and the Poincaré inequality,
yields (2.7.1). The proof is now complete. O

Lemma 2.7.2. Under assumptions in theorem 2.1.3, we have

tli+mm||v(t)|\H4: 0. (2.7.3)

Proof. From (2.6.42)—(2.6.48), we can estimate for any ¢ > 0,

%H%t(t)H? + O Mo (DI < el vt (DN + 1102 (2)]I%) + Cale) (o ()2
0Bl +102(8)” + o ()]
+ (D). (2.7.4)
Using (2.7.4), theorem 2.1.2, lemmas 2.6.1-2.6.3, we obtain

li+moc|\vzt(t)||2: 0, (2.7.5)

t—
which, along with (2.6.7) and theorem 2.1.2, implies

t—
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By theorems 2.1.1, 2.1.2 and lemma 2.6.3, and using the interpolation inequality,
we obtain

[Pat (DN < Co(l[va (D)l g2 + 11D 2 + [10:(E) | 72 + 102 ()] 2)- (2.7.7)

Differentiating (2.1.4) with respect to t once and z twice, multiplying the resulting
by v in LQ(O, 1) and using the Young inequality and theorems 2.1.1,2.1.2, we dedive

d
pr [zt ()1 + [0zt (DI* < Cullpaae (D + Collloa (B)l[7 + a2 + 112 (8) 1 722),
which, together with (2.7.7), theorems 2.1.1, 2.1.2, lemmas 2.6.3 and 1.1.2, gives
. 2_
th;nooﬂvm(t)ﬂ =0. (2.7.8)

From (2.6.51)—(2.6.55), we have derived for small ¢ > 0,

a0 + G 0P
< o110t (DN + [0 ()I17) + Cole) (0 (0) [ + 110(8) e
10D + I DI + o (B + 1D 2 e s1xr.) + 1ol Z2gxsi )
which, combined with lemmas 2.2.9, 2.6.3 and 1.1.2, implies
i [0.4(1)] = 0. (2.7.9)

By (2.7.9), (2.6.16), theorems 2.1.1, 2.1.2 and the fact lim,_ , || Z,(£)]]*= 0, we

arrive at

lim |0 (4)]] = 0. (2.7.10)

t— 400

Thus, by (2.7.2), (2.7.6), (2.7.8), (2.7.10) and theorems 2.1.1, 2.1.2, we obtain

tllglooHvtTN(t)H =0,
which, together with (2.7.6) and theorems 2.1.1, 2.1.2, yields (2.7.3). This proves the
proof. O

Lemma 2.7.3. If assumptions in theorem 2.1.3 hold, then we have

thﬂo”e —0]|,,=0, (2.7.11)
where 0> 0 is determined by e(7, 0 fo S 08+ e(ng, 00) + Fr(0))dz.

Proof. Obviously, the Young inequality gives

d ) 1 + oo
L . :2// /I~Idwdvdx
dt” +( )||L2(Q><( L1)xR,) o Jo g1 b

1 + 00 1 + 00
< / / / IPdodvds + / / / I2dwdvdr,
0 0 St 0 0 St
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which, together with (2.6.39), (2.6.69) and lemma 1.1.2, gives
: 2
tllfrnOCHIi(t)|‘L2(Q><(—1,1)><R+): 0. (2.7.12)

Thus it follows from (2.6.13), (2.7.12) and theorems 2.1.1 and 2.1.2 that

tli+moo||[’7(SE)R}t|| =0. (2.7.13)
Similarly, from theorems 2.1.1 and 2.1.2, we derive for small € > 0,

d
—10u(OI” + Cull 0 (DI <10 () ” + o (DI) + Calllva (D) + 100D

1013 + 1o (O + 102E I + ()] 20 (- 1.0k
+ [ (Ol 2% (-1,1)xR )

which, together with (2.6.39), theorems 2.1.1, 2.1.2, lemmas 2.6.3 and 1.1.2, implies
th£n ||0H(t)|| =0. (2.7.14)

We can derive from the similar estimate as (2.6.21)
10z (D1 < G (10 (D) + 02 (D + [ (D + [0+ 10t (D] + 1102 (B) | 2
+||[n(S) 1)

whence, by (2.7.9), (2.7.10) and (2.7.12)—(2.7.14),
i [[0,.(0)] =0,

which, combined with (2.1.25), (2.7.2), (2.7.6), (2.7.10) and the fact

limy . | oo || Ze(8)]]*= 0, yields
Hm |0 (£)||= 0. (2.7.15)

t— + oo

Thus (2.7.11) follows from (2.7.10) and (2.7.15). The proof is thus complete. O
Lemma 2.7.4. If assumptions in theorem 2.1.3 hold, then we have

Jlim |IZ()]| o= 0. (2.7.16)

Proof. From (2.1.6), it follows

+ o0 1 + 00 1
/ / —N g A AV / / —N g Sz dOdV
0 g1 0 g1
+ oo 1 + 00 1
/ / —N 3 Sgzddv / / —N Sy ddvy
0 51 0 51 W

=: iM (2.7.17)

=1

2

2
||Imu(t)||2 S Cl‘ + Cl

2

2
+Cl -‘1—01
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Using (2.1.18), theorems 2.1.1, 2.1.2 and lemma 2.6.3, we deduce

1 + 00 B 2
M, < Cl/ n. (/ / (1(B—1I)+0,(I— I))dwdv) dz
0 0 st

< il (1P, (2.7.18)
1
W< G [k 0 Dde< Ol 4100, 279)
Analogously,
My < Gl (Ol + 10012 + 1T (), (2.7.20)
M1 < G () + 10 (O + 1T o) + | o)), (2.7.21)

Inserting (2.7.18)—(2.7.21) into (2.7.17) and using theorems 2.1.1, 2.1.2, (2.7.2)
and (2.7.15), we have

lin [|Z s (8)|*= 0. (2.7.22)

>+

Similarly, we get

+ o0 1 2
0 g1
+ 00 1 2
/ / _]711511 dwdv
g1 @
+ 00
/ / —NStazz dwdv
g1 @

Similarly to (2.7.17) and by a more delicated computation, we can derive

+ o0 1 2
/ / —N g Sz dO AV
0 51
+ 00 1 2
/ / _nzSt:E:I: dwdy
e
5

Z (2.7.23)

=1

+ G + Gy

+ O

Ny < Culln, (817 (2.7.24)

No < Ca([lno(8)|[70 + 10:(8)][70), (2.7.25)

Ny < Gyl ()13 + 10:(0)17 + 1T (D), (2.7.26)

Ny < Cullma ()13 + 10015 + 1T (D1 + | T (D), (2.7.27)

N5 < Cl(””x(t)”ili* + ||0x(t)||ild + ||Iu(t)H2 + ”Iwc(t)”2 + HImu(t)”Q) (2~7-28)
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Plugging (2.7.24)—-(2.7.28) into (2.7.23) and using theorems 2.1.1, 2.1.2, (2.7.1),
(2.7.11) and (2.7.22), we get

. 2—
hgloonz-xmm(t)'l - 0’

t—

which gives (2.7.16). Thus this completes the proof. O

Proof of Theorem 2.1.3. Combining lemmas 2.6.1-2.6.4 and 2.7.1-2.7.4, we can
complete the proof of theorem 2.1.3. O

2.8 Bibliographic Comments

It is well-known that radiation dynamics includes the radiative effects into the
hydrodynamical framework. When equilibrium holds between matter and radiation, a
simple way to do that is to include local radiation terms into state functions and
transport coefficients. From quantum mechanics, we know that radiation can be
described by its quanta, the photons, which are massless particles traveling at the
speed c of light, characterized by their frequency v, their energy F = hv (where h is

Planck’s constant), and their momentum p = ”—CVQ with Q is a vector of the 2-unit

sphere. Moreover, from statistical mechanics, we can describe macroscopically an
assembly of massless photons of energy E and momentum P using a distribution

function: the radiative density I(r,t, ﬁ, v). Using this fundamental quantity,
we can derive global quantities by integrating with respect to the angular and fre-
quency variables: the spectral radiative energy density Er(r, t) per unit volume
is then Eg(r,t):=1[ [I(r¢, Q,v)dQdv, and the spectral radiative flux TR} =
IS Q1 (ry t, ﬁ, v) dQdv. If the matter is in thermodynamic equilibrium at constant
temperature T and if radiation is also in thermodynamic equilibrium at matter, its
temperature is also T'and statistical mechanics tells us that the distribution function
for photons is given by the Bose—Einstein statistics with zero chemical potential.
When there are no radiative effects, the complete hydrodynamical system can be

derived from the standard conservation laws of mass, momentum and energy using
Boltzmann’s equation satisfied by the f,(r, 9, t) and the Chapman-Enskog
expansion Gallavotti [43]. Then this reduces to the compressible Navier-Stokes
system

p+ V- (pt) =0, L

(pt),+V - (pu®@ i) =—-V - -I1+f, (2.8.1)

(pe), +V - (peii) = =V§—D:l+yg,

where IT = — p(p, T)]J + 7t is the material stress tensor for a newtonian fluid with the
viscous contribution 7 = 2uD 4 AV - @ I with 34 4+ 2u > 0 and ¢ > 0, and the strain
tensor D such that Dij = % (g—:’ + %) G is the thermal heat flux and f and g are

external force and source terms. There are many mathematical researchers who
studied such models and related models. We can refer to Antontsev et al. [3],
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Batchelor [4], Choe and Kim [13, 14], Constantin et al. [15], Ducomet and Zlotnik
[22], Feireisl [28], Feireisl and Novotny [29], Feireisl and Petzeltova [31-33], Feireisl
et al. [30], Fang and Zhang [26, 27], Foias and Temam [34, 35], Frid and Shelukhin
[36], Fujita and Kato [39], Galdi [42], Hoff [46-49], Hoff and Serre [51], Hoff and
Smoller [52], Hoff and Ziane [53, 54], Huang et al. [58], Jiang [61-67], Kawashima [68],
Kawashima and Nishida [69], Nishibata and Zhu [70], Kazhikhov [71, 72], Kazhikov
and Shelukhin [73], Lions [84], Matsumura and Nishida [90-93], Okada [97], Paicu
and Zhang [98], Qin [101-105], Qin and Hu [113, 114], Qin et al. [115, 116, 118-120,
126, 127, 131], Qin and Huang [121, 122], Qin and Jiang [125], Qin and Rivera [129],
Qin and Song [130], Qin and Wen [132], Qin and Zhao [134], Serrin [136], Temam
[139, 140], Xin [146], Xin and Yan [147], Zhang and Fang [150-154], Zheng and Qin
[156], and references therein.

In the framework of special relativity, the foundations of radiative fluids have
been described by Pomraning [99, 100] and Mihalas et al. [94]. Later on, Buet et al.
[10] and Lowrie et al. [89] studied in the inviscid case. Dubroca et al. [17], Lin [79]
and Lin et al. [80] investigated for numerical aspects. For more results, we can refer
to Chandrasekhar [12], Gallavotti [43], Jiang [61], Lowrie et al. [89] and Zhong and
Jiang [157].

When radiation is present, Chandrasekhar [12] investigated the radiation
integro-differential equation: terms f and g include the terms for the coupling
between the matter and the radiation, depending on I, and [ is driven by a transport
equation.

If the matter is at local thermodynamics equilibrium (LTE), the coupled system
reads (see, e.g., Mihalas and Weibel-Mihalas [94] and Pomraning [99] for details)

(pil), +V - (pi® @) = -V O+ Sp, (282)
( ¢),+V - (pett) = —V§—D: I+ Sg, e
I(rth)—I—Q VI(r,t,Q,v) = S(r,t,Qv),

where p(z,t), (:r t), O(z,t) represent the density, velocity and temperature,
respectively, the coupling terms are

Si(r, t, O, v)—oa( 8, p, T,@)[B(v T) — I(r, t, O, v)}

//aqrtp,Q/ Qv —v)
X {v I(r, t, V) I(r, t, Q,v) —ay(r, t, p, -8, v — v)
< I(r, 8, & V) I(r, 1, ©, v)}dg'dv',
the radiative energy source

Sg(r,t): //Strth)dev
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the radiative flux

t) :1//@5}(7’, t, ﬁ, v)dQdy,
¢

the functions o, and o, describe in a phenomenological way the absorption—emission
and scattering properties of the photon-matter interaction, and Planck function
B(v, 0) describes the frequency-temperature black body distribution. We also note
some results in Buet and Després [10], Dubroca and Feugeas [17], Jiang [61], Lin [79],
Lin, Coulombel and Goudon [80], Lowrie, Morel and Hittinger [89] and Zhong and
Jiang [157].

Let us now recall some previous works concerning the one-dimensional radiative
fluids. In Ducomet and Ne€asova [19], Ducomet and Neéasova considered the fol-
lowing system

Ny = Uy,

Uy = 0y — W(SF) 9
(e+ 1) = (00— Q), — n(Se) (283)
L+n"(cow—v)I, = cS

with (Sp), = %fil [,7 0S(x, t;v,w)dvdw in the domain (0, M) x R, subjected to
the Dirichlet-Neumann boundary conditions

Vo =0, Qo =0, (2.8.4)
and

I, ,=0forwe(0,1), I|,_,;, =0forwe(—-1,0). (2.8.5)

For ¢ 2 r + 1 with some suitable assumptions, they proved the existence and
uniqueness of weak solutions. However, all estimates depended on any given time
T > 0. So they could not study the large-time behavior of problem (2.8.3)—(2.8.5)
based on their estimates. Ducomet and Neéasova [20] investigated the problem
(2.8.3) with the different boundary conditions from Ducomet and Neéasova [19]

Vo =0, Qlu—o s =0, (2.8.6)
and
I,y = L(v) forw e (0,1), I|,_, = L(v)for w € (—1,0) (2.8.7)

and proved that the unique strong solutions of problem (2.8.3)—(2.8.6) converge

to a well-determined equilibrium state at exponential rate in H'(0,M) for

the fluid variables 7z, v, 8 and in L2(0, M) for the radiative intensity
:f( fsl (z,t;v, w)dwdy.

Ducomet and Neéasova [18] established the global existence of solutions to the
system (2.1.3) and (2.1.14) in H; (i =1, 2). However, estimates obtained there
depend on any given time 7, so they also could not investigate the large-time
behavior of global solutions in H; (i = 1, 2) based on their estimates. Moreover, in
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Ducomet and Necasova [18], all estimates hold only for ¢ 2 2 + 1. In [109], we have
established uniform-in-time estimates of (n(t), v(t), 0(t), Z(t)) in H; (i =1, 2, 4),
which hold for ¢ 2 r+ 1. For ¢ = r 4+ 1, @ 2 0, Qin et al. [111] established the gobal
existence of solutions in H; (¢ =1, 2). Hence our results in this chapter have
improved those in Ducomet and Necasova [18] and Qin et al. [111]. Furthermore, the
system considered here is quite different from that in Qin [104], so our
uniform-in-time estimates are also quite different from those in Qin [104].

Remark 2.8.1. The multi-dimensional viscous situation has been poorly understood
even at the formal level. Since the one-dimensional model possesses the special
constitutive state equations, which the multi-dimensional model do not have, to our
knowledge, we have not found any results on the global existence and asymptotic
behavior of solutions to system (2.8.2), i.e., the multi-dimensional case of
(2.1.3)—(2.1.6). Moreover, some Sobolev embedding inequalities and interpolation
inequalities involved in our arguments heavily depend on the dimension, hence this
may bring about some difficulties in deriving uniform-in-time estimates. In a word,
the method we deal with the one-dimensional case can not be applied directly to the
multi-dimensional case, which depends on the special constitutive relations of state
functions, and so on. However, we can refer to Kippenhahn and Weigert [74] for a
macroscopic treatment of radiation in the astrophysical context, and Feireisl 28] and
Qin [104] for the associated mathematical treatment.



Chapter 3

Global Existence and Regularity
of a One-Dimensional Liquid
Crystal System

3.1 Main Results

This chapter will establish the global existence and regularity of solutions to the
following system

pi+ (pu), =0, (3.1.1)
(pu), + (pu), + (P(p)), = ey — A|nal),, (3.1.2)
g+ ung = 0(ngg + |na|*n) (3.1.3)

where x € [0, 1]. Here, p > 0 is the density function, u denotes the velocity,
n represents the optical director of the molecules, P(p) = p’(y = 1) is the pressure,
and 4, u, 6 are positive constants. For simplicity, we assume A = ¢ = # = 1 in this
chapter. The results of this chapter are chosen from [117].

We consider the following initial-boundary value problem for (3.1.1)—(3.1.3) in
the reference domain {(z, ¢): 0 < z < 1, t € [0,T]}. for any given T > 0 under the
initial conditions and boundary conditions

p(:c, O) = p()(x)v u(;z:, 0) = UU('T)’ n(m,O) = n{)(m), (314)

w(0,t) = u(1,t) =0, n,(0,t) = n.(1,¢t) = 0. (3.1.5)

Equations (3.1.1)—(3.1.3) reveal system modeling the nematic liquid crystal flow
which consists of subsystem of the compressible Navier—Stokes equations coupling
with a subsystem including the heat flow equation for harmonic maps. It was derived
from the theory of hydrodynamics motivated by the Ericksen—Leslie system
(Ericksen [23] and Lesile [77]) for the nematic liquid crystal flow. Equation (3.1.1)
represents the transporting relation (conservation of mass), equation (3.1.2) is
the conservation of the linear momentum and equation (3.1.3) is the heat flow of
harmonic map equation.

DOI: 10.1051/978-2-7598-2903-3.c003
© Science Press, EDP Sciences, 2022
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The notation in this chapter is standard. We put ||-|| = [|-|| ;2 ;- Subscripts ¢ and

x denote the (partial) derivatives with respect to ¢ and z, respectively. We use
C; (i=1, 2) to denote the generic positive constant depending on the

(o> w0, no) || i i (1= 1,2), mingep 1) uo(z), mingep 1) 7o(z) and time T, and

C; (j=3, 4) depending on [0, 1] norm of initial data (pg, u, 70),

mingeo 1) (), Mingep 1) no(x) and time 7.
Without loss of generality, we may assume fol po(z)dz = 1. Under the Lagrangian
coordinates, a.e.,

y:/O po(En) e, t=1,

system (3.1.1)—(3.1.5) is transformed into the following system
v = Uy, (3.1.6)

2
= <P+ “y|"9|> : (3.1.7)
Y

n —1(@) + |”y|2n (3.18)
t— v\ov/y 2 ; N
(U7 U, ”)|t:o = (UOaU{)vno), (3,1,9)
u|y:0,1 =0, ”y|y:0,1 =0 (3.1.10)

where v =2 and v, = L.
P Po

In the sequel, we shall only consider the following case:
|n|* = nin; = 1. (3.1.11)
Our main results in this chapter will read as follows (see also Qin and Huang
[124]).

Theorem 3.1.1. Suppose that (uvy, uy, np) € H'[0, 1] x H[0, 1] x H?[0, 1] and the
compatibility conditions hold. Then there exists a unique global solution
(v(t), u(t), n(t)) € H'0, 1] x Hy[0, 1] x H?[0, 1] to the problem (3.1.6)(3.1.10)
such that for any (y, t) € [0, 1] x [0, T| (for all T > 0),

0< Gyt <u(y, 1) < O, (3.1.12)
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and
o5 + a5 + In() 1 + (8]

t
+/O (Il + g+ ) () de < €. (3.1.13)

Theorem 3.1.2. Suppose that (v, u, ny) € H*[0, 1] x HZ[0, 1] x H3[0, 1] and the
compatibility conditions hold. Then there exists a unique global solution
(v(t), u(t), n(t)) € H?[0, 1] x H}[0, 1] x H3[0, 1] to the problem (3.1.6)—(3.1.10)
such that for any (y, t) € [0, 1] x [0, T| (for all T > 0),

Fo(t) 172 + ()2 + (O s + ()17 + e (D]

b [l + ]+ gl 5) < € 5.114)

Theorem 3.1.3. Suppose that (uvy, uy, ny) € H[0, 1] x Hy[0, 1] x H*[0, 1] and the
compatibility conditions hold. Then there exists a unique global solution
(v(t), u(t), n(t)) € HY0, 1] x H[0, 1] x H[0, 1]) to the problem (3.1.6)-(3.1.10)
such that for any (y, t) € [0, 1] X [0, T] (for all T > 0),

(O + (Ol s+ (Ol + (Ol + e e + eI + ()
t
! /0 (Halls + ol + Nl + e + Tl + ) 2) e < G

(3.1.15)

Remark 3.1.1. It is worthy to point out here that the solution (v(t), u(t), n(t))
obtained in theorem 8.1.3 is, in fact, a classical solution such that

1o, w8, D o401 02 by o oy < O (3.1.16)

3.2 Global Existence in H' x H} x H*

In this section, we shall prove theorem 3.1.1 by establishing a series of lemmas.

Lemma 3.2.1. If assumptions in theorem 3.1.1 hold, then the following estimates are
valid in the FEuler coordinates,

1 T 1
/ (pu2+n(p)+2|nx|2)dx+/ / (W2 + |n X ng|*)dadt < O, (3.2.1)
0 0 0
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1 T 1
/|nx|2da;+/ /\nm\?dxdtg e (3.2.2)
0 0 0

£ y>1
where w(p) = { —17 )b
plogp—p, =1

Proof. Multiplying (3.1.2) by w, using (3.1.1) and integrating the resulting equality
by parts, we have

1d

1 1 1
—— | (pu*+m(p))dr+ / u?dr = / || >y dz. (3.2.3)

Thus we derive from (3.1.11) that
Ny + |nx|2n =—n X (n X ng). (3.24)

Multiplying (3.2.4) by n,,, we obtain

d 1 1 1
d—/ |n$|2d:r+ / |n$\2umd:r+2/ [n x nm\2d:1::0
tJo 0 0

which, along with (3.2.3), gives (3.2.1).
Multiplying (3.1.3) by n,, in L*[0, 1], integrating the resultant by parts and using
the Gagliardo—Nirenberg interpolation inequality, we derive

d (1 1 1 -

j/ |ng,|2dx+/ |n(,m|2d:r:/ unx~nmdx+/ |n,|" dz
tJo 0

/ || dz — / 0|y d

<Cl/ |7 d:z?—l—Cl/ Uy 2 dx

< Cl””ﬂi” (|72 || + Ol”“xH
1 2 6 2
< 5 linall” + Crllinal|” + [lul”)

which, together with (3.2.1), gives (3.2.2). Thus this proves the lemma. O

Lemma 3.2.2. If assumptions in theorem 3.1.1 hold, then the following estimates are
valid for any T > 0 in the Lagrangian coordinates, and for all t € [0, T],

[ (uumm y')d T ('% o ()

) dydt < Ci,

(3.2.5)
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1|n |2 T 117 /n, 2
/ ‘—ydy—i—/ / —[(—‘/)] dydt < C, (3.2.6)
0o v o Jo YL\NU/y

v 1
where 4 (v) = {”g}l_’logv . :; z 1’

Proof. Using lemma 3.2.1 and the total mass conversation fol vdy = fol v dy, we
easily derive (3.2.5) and (3.2.6). O

Lemma 3.2.3. For any t € [0, T] (for all T > 0), there exists one point y; = y(t)
€ [0, 1] such that the solution u(y, t) to problem (3.1.6)—(3.1.10) possesses the
following expression

v(y,t) = D(y, 1) Z(t)

1+ /t (P—i— M) vD ™ (y, s)Z_l(s)dsl (3.2.7)
0 v

where
D(y,t) = w(y) exp </le udé — /Oyuo(ﬁ)dé—i- 510/01 /0?/ m(z)dzdy), (3.2.8)

1 t pl ) |’fL |2 1
Z(t) = exp _6_0/0 /0 vP+u —|—‘—Z dyds ,5():/0 v dy. (3.2.9)

Proof. The proof is standard, we refer to lemma 2.2.2. O
Lemma 3.2.4. For any T > 0, we have

0<Cr' <oy, )<y, for all (y,t) € [0,1] x [0, T, (3.2.10)

t
/ Hny(s)HQLN ds< Cy, forallte|0,T). (3.2.11)
0

Proof. The present proof is more delicate than that of lemma 4.2.5 of this book.
Obviously, we derive from (3.2.3) that

0<C'<D(y, <G, 0<C'<Z(t)<1. (3.2.12)
Noting that U(P+ |7;+|2) > 0, using (3.2.7) and (3.2.12), we have

v(y, t) > D(y, ) Z(t) > C;' > 0. (3.2.13)


http://dx.doi.org/10.1051/978-2-7598-2903-3.c002#FPar8
http://dx.doi.org/10.1051/978-2-7598-2903-3.c004#FPar12
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Employing Wil L® lemmas 3.2.2, 3.2.3 and (3.2.12), (3.2.13), we deduce

t
u(y, t)§01+01/ <vP+ '";' )ds
0
<C1+O/

§C1+O1/

|nU| dS

[ |ny|d . (h;ﬂ)y
core [[([50) ()
(e,

2
dy} v(y, 8)ds

2 / 1 1/2
) ([ o) ]v(y,sms
0
t 11 1 ,2
SC’H‘Cl/ —dy+/ |7, ] d
0 0o v o v
2
11 . 1
e (lnl) dy+ [ odydy | oy 9)ds
0o v v y 0
2
t 1y y
§01+Cl/ 1+/<7LJ|)
0 0o v v Y

which, using the Gronwall inequality and (3.2.6), (3.2.13), gives (3.2.10). The
estimate (3.2.11) hence follows from (3.2.10) and the proof of (3.2.14). Thus this
completes the proof. O

dy | v(y, s)ds (3.2.14)

Lemma 3.2.5. If assumptions in theorem 3.1.1 hold, then the following estimate is
valid for any T > 0, and for all t € [0, T),

1 t ol
/ vzdy—i— / / (n;+|nyy|2—|—\nt|2)dyds§ Cy. (3.2.15)
0 0 Jo

Proof. It clearly follows from (3.1.7) that

v, 2n, - ny  2|n, |2U1 YU,
(u - —J) =y Ty STl Yy YU (3.2.16)
'

02 3 1T

Multiplying (3.2.16) by u — % and then integrating the resulting equation over
Q= [0, 1] X [0, t],t € [0,T] (for all T > 0), we have for any ¢ > 0,
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u—fH —|—/ / v, —|—|ny| UU )dyds
U
SHUO_% +C// oyl + [y - nyyul + |1y - ngyvy| + [y |Uy“|)dyd5
<C’1+€/ / v, +|ny| ,) dyds
) t o
JrC'l/ (1+H”?/HL>@)/ quyderCl// |1y, | dyds
0 0 0 Jo

which, by taking ¢ > 0 small enough and using (3.2.5) and (3.2.11), gives

Hu——H —|—/ / v +|ny| v )dyds< Cl—i—Cl/ / |1y dyds. (3.2.17)

By (3.2.6), we derive

2 2
/ / <”W| —'ni"',vy) dyds—/t/ll{(@) ] dydt + /t/127"y"zyy”y dyds
0 v° o Jo V[\V/y U
1 Lin, |*v?
gcl+—/ |"W|dd+cl//|”| Y dyds.
2 0 0 0

13 1 13 1
[ [ slavts< e e [Cingalf [
0 Jo 0 0

which, with (3.2.17) and ||ul|®* < C} in (3.2.5), gives

o, 0] +// (0] + |ny "2, dyds<01+01/ (| 7y (s Hm/ vidyds. (3.2.18)

Applying the Gronwall inequality to (3.2.18), and using (3.2.6) and (3.2.11), we
conclude

Thus

o+ /0/0 (" + Iy 0+ Iy [* + [ ) dyds < Ch. (3:2.19)
From (3.1.8) and (3.2.19) it follows that

()11 < Clllmy (O] + s (B (3:2.20)

[y (1)]] < Ci([[my (O[] + e (B)]])- (3.2.21)

Thus we deduce from (3.2.11), (3.2.19) and (3.2.20) that for all ¢ € [0, T],

t ol
/ / ln|* dyds < i,
o Jo

which, with (3.2.19) and (3.2.21), gives us (3.2.15). Hence this proves the lemma. [J
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Lemma 3.2.6. If assumptions in theorem 3.1.1 hold, then the following estimates are
valid for any T > 0 and for all t € [0, T],

e (D1 + |y (8)]| + [y (8)]|*

[l -+ )1 < G 322

Proof. Multiplying (3.1.7) by u,, and then integrating the resulting equation over
@y, using the Poincaré inequality and (3.2.15), we obtain

t
ol + [ ot
t 1 5
§01+01/0/0 (|”y|+‘“yvy|+|”y'"yy|+|ny| ‘Uy‘)|“yy|dyd3
1 t t
<Gt [ NunPast G [ [l o+ Il ol + lf ] )
1 t t
<Gt [ )Pt € [l + )5
3 t t
S@+ZAH%®W%+GAH%@MA%NW%&
which implies
t t
Huy(t)||2—|—/0 Huyy(s)||2ds§ C’1—|—C’1/0 Hny(s)||2Lx||nW(s)||2ds (3.2.23)

Differentiating (3.1.8) with respect to ¢, multiplying the resulting equation by n,

integrating it by parts and using lemmas 3.2.2-3.2.5, (3.2.20), (3.2.21) and (3.2.23),
we arrive at

Hm|ym/

0)|]° +2/ ZAds

= Cl”/ ZA ds (3.2.24)
0

=1

where

3

1 1
A = Ny - Ny Uy + Ny - "tvud A = |ny| |nt| +2n, - nyn - ne
3 ) 4 D) Ys
0 0

(%
1
2 .
&=—/lﬁilﬁﬂw
0

o3

1 Lo .
A, :/ Ny (Uyy s + uynty)dy’ Ay — _3/ ny ntuyvydy
0 0
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Using lemmas 3.2.2-3.2.5, the embedding theorem and (3.2.23), we derive that
for any ¢ € (0, 1),

t pl
/ / A dyds
0 Jo

t pl
Ty (Uyy Mt + Uy Mgy
:/0 /0 y( vy t3 Y t‘”)dyds

v

t t
<o [ @l ds+ G [l + D )51

t t
<e / [y ()]s + € / (I a2 + )1 [ ds

([ o) ([ totae) "+ [ hutolia]
<o [[ImlPas & [ o) ([ aneFumoia)
ca]f nes 2d5>1/2 ([ Isatlias) ™

+G (/Ot Huyy(s)”de’) 1/2+ Ci(e)
<2 / (o) ds + oo ( / t ||uyy<s>||2ds)l/2

01 [ In@F () as+ G0
g?a/OtHnty(s)Hgds—k ai(e) (/0 HuyyH?ds>l/2

v t’ o as) " (f t ||uw(s>”2ds)2/3 e

¢ ) t ) 2/3
<O +2 / ey (5)])” s + a@)( / |2y (3) | ds)
0 0

t t 2/3
528/0 ey (5)[[ds+ €1 () {H/O ()| | ()] ds]

3/4

t t 2/3
<2 [ @)l ds+ 1+ [ I+ 1)

t . t ) 2/3
§28/0 Hnty(s)Hst+ Ci(e)+ Cl(s)oiligt||nf(s)||7</0 Hny(s)HLxds>

t
<o) +e sup (o) +2 [ (9] ds (3.2.25)
0<s<t 0
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and

¢ t 1
/ Axds < O / In, - nywy vy, | dyds
0 0o Jo

o [ 1) [ Im I ol o)
<G s [l [( A Huy<s>|\2ds);( [ ||uyy<s>|>2d5>"‘
([ Huy<s>H2dsﬂ

. L t T
é01Oiggt(l\ny(s)\!‘zl|nw(s>HZ) {H/O Huyy(sw?d%

<C sup (14 [|m(s)|P) {1+/OtHuyy(s)H2dsT

0<s<t

t 3
<20 sup (o) + ot G [ (o))
0

0<s<t

¢ i
<2¢ sup ||m(s)|*+ Ci [H / Hny<s>H;Hnyy<s>|\2ds]

0<s<t

0<s<t

, 1/3
2 2
<2 sup |ny(s)|*+ C1+ 01Oiulit||nt(t‘>’)||3 (/ ||”y(5>HLwds>
<s< 0

<3¢ sup |n(s)]>+ Ci. (3.2.26)

0<s<t

Similarly, we conclude that for any & > 0,
/ Azds< 01/ / |1y - My |+ [ gy - ntvy|)dyds
<a/ ()2 ds + Ci(z >/0 U g + el 2l 12)(5) s

<2 / (s + o)+ o) [ (o)l (o)lds, (3:220)

t t 1
/ A““Scl/ / (a2 myl> + |y - oy - ) dyds
0 0 0
t t
< / Iy (3)]2ds + Gy / e(8) 2 g ()] s

t
§23/ ey () [2ds + Ci (&), (3.2.28)
0
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t t 1
/A5ds§ 01// 1y *|n - nyuy| dyds
0 0 0
¢ 3 ¢ 3
< [ Im i luas) ([ 1n@R o))

t 9 t ) ,
SS/O [y ()| ds + 01(8)+01(8)/0 ny()|[2. ||ug(s)| s, (3.2.29)

Inserting (3.2.25)—(3.2.29) into (3.2.24), then taking supremum in ¢ on the
left-hand side of (3.2.24), picking & > 0 small enough, we finally derive

t t
e (8)]* + /0 [y (5)||*ds < €1 + 01/0 [720(8)|[ 2 |1y (8) || . (3.2.30)
Using (3.2.21), (3.2.23) and (3.2.30), we deduce

t t
s + [ st Ps Gt €1 s g ) [ lma(o)]
0 0<s<t 0

<Ci+C osup (|m(B)])*+1)

2,
<0t 01 [ Inl o) s
which, using the Gronwall inequality and (3.2.11), implies
u@I+ [ Tuolds<
Thus it follows from (3.2.21) and (3.2.30) that

Hnt(t)||2+||uy(t)||2+|‘nyy(t)||2+/ (Nl ||* + || (s)ds< €. (3.2.31)

Moreover, we can derive from (3.1.7) that

o1 O] + Ol + L@+ ) (322)
or
||uyy(t)H < Cl(”“y(t)H + ()] + H”y(t)H + Hny(t)H + ||”yy(t)H) (3.2.33)
Thus we deduce from (3.2.31) and (3.2.32) that
/ ||t (s || ds< C)
which, along with (3.2.31), gives us (3.2.22). The proof is complete. O

Proof of Theorem 3.1.1. Using lemmas 3.2.2-3.2.6, we readily complete the proof of
theorem 3.1.1. O
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3.3 Proof of Theorem 3.1.2

This section will establish the regularity in H? x Hg x H3.

Lemma 3.3.1. Suppose assumptions in theorem 3.1.2 are valid, then the following
estimates hold for any T > 0 and for all t € [0,T],

()12 + ||y (B> + /0 [y ()| ds < G, (3.3.1)

t
oI+ [ imanl + [l 515 < . (332)

Proof. Differentiating (3.1.7) with respect to ¢, multiplying the resulting equation
by s, integrating it by parts and using lemmas 3.2.2-3.2.6, (3.2.32), we deduce that
for any ¢ > 0,

utol + [ )]s
<+ 61 [ [ ol ]
< oo [ unPas+ o [ [+ o)
sl ol . e
<o [ JuP st 61 [ [+l + [l

t
<Crts [ fu(o)|fas.
0

Now taking & € (0, 1) small enough and using (3.2.33), we obtain (3.3.1).
Differentiating (3.1.8) with respect to g, using lemmas 3.2.2-3.2.6 and the
embedding theorem, we deduce

[y (B[] < Colllmy(B)]] o + [0y ()] 1) (3.3.3)
I @[ < Colllmay (O + [ O] g + 00 O] - (3:34)

Similarly, we infer from (3.1.7),
[u B[ < Cllloy @ g1 + (B o + [y (D] ) (3.3.5)

(Ol < CLlllos O 2+ (O] s+ (D) e+ s (D (3:3.6)
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Now differentiating (3.1.7) with respect to y, using (3.1.6) (vy,, = u,,), we derive

v, v,
(ﬂ>t+yy"/gf1 = uy + E(y, 1) (3:3.7)

v

where

2 D) 9
E(y,t) =7 (v+ 12% 20y Uy, B 2vyuy N 2| 4 20y - 1y,
’ ot

v2 3 v2

2
_ 8ny - "yyvy‘|‘2|ny‘2vyy I 6[n,| U;

v vd

Multiplying (3.3.7) by “% integrating the resulting equation over @, = [0,1] X [0, {]

and using the Young inequality, lemmas 3.2.2-3.2.6 and (3.3.1), we conclude

@I+ [ NowlPds< Coeo [ ool *ds+ cite) [ (lusll*+ 121) s
(3.3.8)

where
t t
[ 180 [ [l ol + ol ol + ol ol
+ H”yyHZLoc ||"yy||2 + H”VHZLwH”yyyHZ + ||”u||ioo||“y||2pcHnyyH2

o+ 5 o s

<G [ (Il + Il s (339

Inserting (3.3.9) into (3.3.8), picking ¢ € (0, 1) small enough, and using lemmas
3.2.2-3.2.6, (3.3.1) and (3.3.4), we conclude

2 ! 2 ! 2 2
oI+ [ o) Pds G 6o [ (Il + o) )

t
<G+ 01(8)/ H'Uyy(s)H?ds
0

which, using the Gronwall inequality and estimates (3.3.1), (3.3.4) and (3.3.6), gives
us (3.3.2). The proof is complete. O

Lemma 3.3.2. Under assumptions in theorem 3.1.2, the following estimate holds for
any T > 0 and for all t € [0, T],

t
Hnty(t)H2+Hnyyy(t)H2+/0 ()| ds < C. (3.3.10)
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Proof. Differentiating (3.1.8) with respect to ¢ and y multiplying the resulting
equation by ny, in L*(0, 1) and integrating by parts, we arrive at

1 2
nH
—Hnty(t)||2+/0 %dy:Bo(t)+Bl(t) (3.3.11)

where

L2 +
Ty Uy Ty Uy 1 Ty Uy Ty Uy Uy
BO t y; z vy VW _ g YU o dy
( ) 0 3 3 ’U4 Yy

We now employ lemmas 3.2.2-3.2.6, the Gagliardo—Nirenberg interpolation
inequality and the Poincaré inequality to get

1 2
<o [ a0l 0] Ol (o]

+ o, O e B + I o B (D)

1 ntyy 2
SAL?}@+Q@m%m@AH%mW) (3:3.12)

Similarly, using lemmas 3.2.2-3.2.6, 3.3.1 and the embedding theorem, we derive
that for any small ¢ € (0, 1),

1
B < 01/0 [(I7y = gyl + |y - Ty |+ [y - ”yy||nt| + [y - nyyuy| + |”tyH”y|2 + ‘”y||uy||"y|2

+ |nay - myvy| + |"tHvUH"U|2 + |u1/y||"y|2 + |”y||uy||ny‘2)|nty”dy

1 2

<o [ 2l ay a0+ (O O + O+ O
1 2

<20 [ "yt oIl + O+ I 01)

which, combined with (3.3.11), (3.3.12), (3.3.1)—(3.3.3) and lemmas 3.2.2-3.2.6,
gives that for ¢ € (0, 1) small enough,

t
!WWW+AH%MW@S@ (3.3.13)

By (3.3.3) and (3.3.13), we deduce
Hnyyy(t)H <G
which, with (3.3.13), gives (3.3.10). The proof is complete. O

Proof of Theorem 3.1.2. Using lemmas 3.3.1 and 3.3.2, we readily complete the
proof of theorem 3.1.2. O
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3.4 Proof of Theorem 3.1.3

This section will establish the regularity in H* x Hy x H*.

Lemma 3.4.1. If assumptions in theorem 3.1.3 are valid, then the following estimates
hold for all t € [0, T],

7203 (9, 0)||” + ||ty (1, O) || + ||ty (3, 0) |

+ {7 (3, 0) 1> + [ uae (3, 0) || < €, (3.4.1)

t
()2 + (D)1 + ||y (8)]° + / (JJwatg|* + [t || + el

+ [y P+ ||| (5) ds < €, (34.2)

||uty(t)”2—|—||uyyy(t)||2+||utyy(t)|’2—|—/0 ([ ttyy (5)]|* ds < Ci. (3.4.3)

Proof. Differentiating (3.1.7) and (3.1.8) with respect to y twice, using theorems
3.1.1, 3.1.2 and the embedding theorem, we deduce

[[utyy (D] < Collluy(8)]] s + [[0s ()] o + ([0 (D] ), (3.4.4)

I (1] < Collmy ()] s + l[oa (D] ) (3-45)

or

H“yyyy(t)H < CZ(H“y(t)Hm + ||Uy(t) T Hny(t)Hm + H“tyy(t)H)a (3.4.6)

H"yyyy(t)H < CQ(H”y(t)HHz + Hvy(t)HH'z + ||”tw(t)||) (3.4.7)

Differentiating (3.1.7), (3.1.8) with respect to ¢, respectively, using theorems
3.1.1, 3.1.2, (3.3.3), (3.3.5), (3.4.4) and (3.4.5), we obtain

()] < oty (B)]| + [y (D] + [ ey ()] + [ ey (D] + [y (D] ) (3.4.8)

< CQ(HUZ/(t)HH:s + ||ny(t)||Hs + Hvy<t)HH2)7 (3.4.9)

(8| < Colllme(E) | + || rey () || + || mayy (O] + |2y ()| ) (3.4.10)

< Golllmy ()| o + 1oy (O)| o + [y (D] 1) (3-4.11)
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or

[ty (B)[] < Cullua(B) 1 + Co[ [y (O] + ([ ey (B[] + ey (D] + [y (D ), (34.12)

ra ()] < Cullma (D]l + Colllm DI+ [|may ()] + [y ()] ). (3.4.13)

Differentiating (3.1.7) with respect to y and ¢, using theorems 3.1.1 and 3.1.2, we
derive

Hutuuy(t)H < C2(H“tty(t)|| + ||ut:u(t)HH1 + ||”tt/(t)|

wt Hny(t)HHa + Huu(t)HHz)
(3.4.14)

Similarly, we get
I (Ol < Col[[may O] + ([ D] g + [0, O g1+ [ O g+ [0 (D] )
(3.4.15)

Thus estimate (3.4.1) follows from (3.3.5), (3.4.4), (3.4.5), (3.4.9) and (3.4.11).

Differentiating (3.1.7) with respect to ¢ twice, multiplying the resulting equation
by wuyy in L2(0, 1), performing an integration by parts, using theorems 3.1.1, 3.1.2 and
(3.4.1), we have

1d 2 ! 1 w, In |2
—— t = — -4 v _ I d
ZdtHUtt( I A ( o + " 2 tt“tty §

1ut211 1 |7’L |2 3
<= [y ol [ () |4 (F) [+ ol ol + ol
0 v v’ m U "
< - Cleutw(t)HQ + CQ(H“?/(”H?{I + Huf.r/(t)HQ + ””tu(t)”iﬁ + H"ﬁi’/(t)HQ)

which thus, by theorems 3.1.1 and 3.1.2, implies
llu (£)]|* + /Ut sy (5)||*ds < Cy + OQ/Ut [ty ()| ds. (3.4.16)
By (3.3.10) and (3.4.10), we further have
[ Inaoas< 3.417)

Similarly, differentiating (3.1.8) with respect to t twice, multiplying the resulting
equation by n, in L*(0, 1) and integrating it by parts, we arrive at

—|lnu(t)|*= Dy + Dy + Dy (3.4.18)
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where

1 1
e €. 2L 0,600 e
Dy = /1 ('nyf n> ngdy.
0 v tt

Employing theorems 3.1.1 and 3.1.2, the Gagliardo—Nirenberg interpolation
inequality and the Poincaré inequality, we conclude that for any ¢ > 0,

1 2
Dy< — /0 %d?ﬁ_ Colllna (1)) + Hnty(t)||2 + H“ty(t>H2 + ||“y(t)||4L4

+ (|| 2y (B) || + | ey ()] + ||Uy(t)||2L4+ e ()11 || 1y (£) ]
< - CfIH"tty(t)HQ + CZ(H"ty(t)H2 + H“fy(t)HQ + H“y(t)Hi{l +[lna (D),
(3.4.19)

1
QSQA{MMHMWMMHWMwM

+ (|nfuu| + [y ty| + [y oy | + [y, | + |ny“yuy|> |y || e } dy

< Gl P+ [y (O[5 + Ny (D[ + (DI + 1w (D), (3.4.20)

1
st / (|”ty|2 +ny - | + ny - mayl | + |”y‘2|ntt|
0

+ |”y : ntyuy| + |ny|2|”tuy| + |ny|2|uty| + |"y|2|uy|2)|ntt|dy
<el|nuy (D] + Colllma(®) 1 + [| ey ()] 3 + ey DI + [y (B[ 30)

which, along with (3.4.17)—(3.4.20), (3.4.1) and theorem 3.1.2, leads to that for
¢ € (0, 1) small enough,

t
Ina(OI + / ()| ds < G (3.4.21)
0
On the other hand, we derive from (3.4.16) and (3.4.21) that
t
s+ [ flun( 9] ds< . (3.4.22)
0

Exploiting theorems 3.1.1, 3.1.2, (3.4.12), (3.4.13), (3.4.15), (3.4.21) and (3.4.22),
we obtain (3.4.2).
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Differentiating (3.1.7) with respect to ¢ and y, multiplying the resulting equation
by uy, in L*(0, 1) and integrating by parts, we arrive at

1d 2
5&”%1/(75)“ = Fo(t)+F1(t) (3'4'23)

where

2 1 2
u, |n, u, |n
Fo(y,t) = <_P+ Ty_ | sz| ) Uylo,  Fi(?) :/0 <_P+ Fy_ | UyJ > Uty dY.
ty ty

Employing (3.4.1) and (3.4.2), theorems 3.1.1 and 3.1.2, the Gagliardo—Nirenberg
interpolation inequality and the Poincaré inequality and the Young inequality, we get

Fy < Cil([|uyy (D] g + [0, )] g2y (O] e + g ()] 1
+ [y O] g s D] e + [y D] N[00 (D]
[y DI O] o) ey (D]
< G|y (O o+ e O D+ | (9]
oty (Ot (O] (] e (O]
< G|ty (D[ + [| gy B[ + |2ty ()| e + ||t (D] (3.4.24)
which, together with (3.4.2), (3.4.14) and theorem 3.1.2, further leads to

t t
/ Fyds < 02/ (gl + [t |*) (8) s < Cu. (3.4.25)
0 0

Similarly, using theorems 3.1.1 and 3.1.2, (3.4.1), (3.4.2) and the embedding
theorem, we conclude that for any small ¢ € (0, 1),

1
P G |l oyl o]+ ]+ 92000 -
0

2 2
+|ny'"yyuy|+‘"y'nty”y‘+|“yyuny‘ + |ny ‘“y””ﬂ | uryy| dy

< Colllun ()l + s+ et Oll s+ s Ol + o)
which, combined with (3.4.23), (3.4.25), (3.4.1), (3.4.2) and theorems 3.1.1 and

3.1.2, gives us

¢
Jus O + [ unlo)]*ds < €. (3.4.26)

0
Therefore, by (3.3.6), (3.4.1), (3.4.2), (3.4.12), (3.4.14) and (3.4.26), we can
obtain (3.4.3). This completes the proof. O

Lemma 3.4.2. If assumptions in theorem 3.1.8 are valid, then the following estimates
hold for any t € [0, T)(T > 0),
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2 2 2
93 (D] ([ 24 (D] + (|t (D[] < C, (3.4.27)

¢
H”yyyy(’f)HQ"'/o (||”yyyyy||2+H“yyyyyHQ)(s)dsS Ci. (3.4.28)

Proof. Differentiating (3.3.7) with respect to y, we arrive at

Uyyy Uyyy
(42), +45 = By (3.4.29)

with

Vyy U (y+ Doyv
Bu(y,1) =+ By () + (F5) 497,

Using theorems 3.1.1 and 3.1.2 and lemma 3.4.1, we have

1B (DN < o[ty ()] + |0 (B)[ [ + ey (D + [ (B)[[ )

leading to

¢ ¢
2 2
/0 | By (s)]]ds < c4+02/0 vyl + | Py || ) (5)ds. (3.4.30)
Thus it follows from (3.4.2), (3.4.7) and (3.4.30) that for all ¢ € [0, T],

t t
1B (s)|?ds < Cy + 02/ [0y (8)||" ds. (3.4.31)
0 0

Multiplying (3.4.29) by - integrating the result over @Q;, and using the Young

v’

inequality, (3.4.1) and (3.4.31), we infer that

t t t
o ()7 + / o) ds< G+ G / |E(s)|Pds < Gy + O / oy ()] ds

which, using the Gronwall inequality, gives us for all ¢ € [0, 7],

t
Hvyyy(t)|‘2+/0 Hvyyy(s)Hstg Cy. (3.4.32)

Thus from (3.4.2), (3.4.3), (3.4.6), (3.4.7), (3.4.32) and theorem 3.1.2 it follows
that

H”’yyyy(t)“ + Huyyyy(t)H <G

which, together with (3.4.32), gives us estimate (3.4.27).
Now differentiating (3.4.29) with respect to gy, we arrive at

(%yyy) 7 Yyyyy _ B(y, 1) (3.4.33)
¢

v ,Uy+1
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with

Uyyy ¥ )
Ey(y, t) = Evy(y, t) + (%)f'ﬂ’(”/—i-l) vwyYy

7 t+2

Exploiting the embedding theorem, lemma 3.4.1 and theorem 3.1.2 and (3.4.27),
we can derive

12011 < ol | + [ g + 0Ol g+ () (3:439)

Differentiating (3.1.7), (3.1.8) with respect to y three times, respectively, using
theorems 3.1.1 and 3.1.2, the Poincaré inequality and the Young inequality, we derive

[ty ()| < [ty (D] + Coll|oy ()| o + [y (D] o + Iy (D[] ), (3.4.35)

[Py (D[] < Cul [ g ()| + CZ(H”y(t)HHz + ||”y(t)||H3) (3.4.36)
which, along with (3.4.2), (3.4.3), (3.4.27), (3.4.34) and theorem 3.1.2, implies
¢ ¢
/ | By (s)]|Pds < Cy + Cg/ Hvyyyy(s)Hst. (3.4.37)
0 0

Multiplying (3.4.33) by “2 integrating the resulting equation over @, and using

v

the Young inequality, (3.4.1) and (3.4.37), we derive
t t
2 2 2
[0y (2| +/0 |9y (8) || ds < C4+C2/0 [ E2(s)|"ds

t
SO4+02/ Hvyyyy(S)HQdS
0

which, using the Gronwall inequality, gives us for all ¢ € [0, T,
t
2 2
Hvyyyy(t)H + /o ||Uywu(5)H ds < C. (3.4.38)

Therefore, it follows from (3.4.2), (3.4.3), (3.4.27), (3.4.35), (3.4.36), (3.4.38) and
theorem 3.1.2 that for all ¢ € [0, T],

t
/0 (HnyyyyyH2 + H“yyyyyHQ)(S)dSS Ci,

which, together with (3.4.38), gives us estimate (3.4.28). This readily completes the
proof. O

Proof of Theorem 3.1.3. Using lemmas 3.4.1, 3.4.2, we can complete the proof of
theorem 3.1.3. O
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3.5 Bibliographic Comments

In this section, we briefly review some related literature. Note that the dynamic
theory of nematic liquid crystals was established by Ericksen [23] and Leslie [78] in
the 1960s. This theory is in fact derived from the macroscopic point of view; which
helps in understanding the coupling between the director field and the velocity
field, and also gives a tool to describe the motion of the defects in the molecule
configurations under the influence of the flow velocity. In order to describe the
dynamic property of nematic materials, Ericksen [24] and Leslie [77] established a
system consisting of equations for the conversation of the mass, the linear
momentum and an extra equation for the conversation of the momentum due to
vector field n. The Ericksen—Leslie system is well studied for describing many special
flows for the materials, especially for those with small molecules, and is widely
accepted in engineering and mathematical communities studying liquid crystals.
For the following simplified Ericksen—Leslie equation

v+ (v-V)v—vAv+ VP =—-AV-(Vd o Vd),
di+ (v-V)d = y(Ad — f(d)), (3.5.1)
V.-v=0,

where v is the flow velocity and d is the relaxation of the molecule direction. The

term AV - (Vd © Vd) = AV,(V,;d*V;d*) = iV,;d"V;d* + %Vi% in the stress ten-
sor represents the anisotropic feature of the system. When the system (3.5.1) is
subjected to Dirichlet boundary conditions, Lin and Liu [81] proved the global
existence of weak solutions and classical solutions, and discussed the uniqueness and
some stability properties of the system. Later on, they established the partial reg-
ularity results in [82], and most results were extended to the general Ericksen—Leslie
equations in [83]. When the system (3.5.1) is subjected to free-slip boundary con-
dition for v and Neumann boundary for d (i.e., v x v=0, (Vxv)xv=0, =0
on 0Q), Liu and Shen [86] proved the local classical solutions and global weak
solutions in 2D and 3D cases. When the system (3.5.1) is subjected to the Dirichlet
boundary condition and reproductivity conditions (i.e., v(z, 0) = v(z, T), d(z, 0) =
d(z, T)), Blanca et al. [9] showed the existence of weak solutions with the repro-
ductivity in time property in 2D and 3D cases. Fan and Ozawa [25] proved some
regularity criteria for this simplified Ericksen—Leslie system and also obtained the
existence and uniqueness of global smooth solutions for a regularization model of
this simplified system. Hu and Wang [57] studied three-dimensional case of (3.5.1) in
a smooth bounded domain, and obtained the existence and uniqueness of the global
strong solutions with small initial data and also proved that when the strong
solution exists, all the global weak solutions constructed in Lin and Liu [81] must be
equal to the unique strong solution. Hong [56] studied the system in 2D, and proved
global existence of solutions with initial data, where the solutions are regular except
for at a finite number of singular times. Some of the numerical experiments to the
system (3.5.1) were performed in Liu and Walkington [87, 88] who also demon-
strated the coupling between the fluid field and the director field. In this direction,
we also mention the works by Calderer et al. [11] and Liu [85] for the nematic liquid
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crystal model. Wen and Ding [143] studied the incompressible hydrodynamic flow of
the nematic liquid crystals in dimension N (N = 2 or 3):

(pu), +V - (pu®u)+ VP =yAu— V- (Vd o Vd),
V-u=0,
di+ (u-V)d = 0(Ad+ |Vn|*n),

(3.5.2)

where p denotes density, u is the flow velocity and d is the relaxation of the molecule
direction. Under the assumption py > 0, the authors obtained the local existence
and uniqueness of the solutions. In addition, if py had a positive bound from below,
and N = 2, they obtained the global existence and uniqueness of solutions with
small initial data.

We also note that for the system (3.1.1)—(3.1.5), Ding [16] proved the existence of
global strong solutions under assumptions for initial data (p, uo, n9) € H'(0,1) x
H}(0,1) x H*(0,1) with 0<¢;' < py < ¢, and global smooth (classical) solutions
under assumptions for initial data (py, up, ng) € C1+%[0,1] x C*T*[0,1] x C***[0,1]
with 0<a<1, 0<c;!<py<c. It is different from our result. First, Ding [16]
studied the existence of global strong solutions to problem (3.1.1)—(3.1.5) in Euler
coordinates, while we have established the existence of global solutions in H' (i = 1,
2, 4) in Lagrangian coordinates in this chapter. Second, we have established the
regularity in H? x H} x H?® and H* x Hj x H*, while Ding [16] proved the existence
smooth solutions in C*7* x C*T* x C*™ which is a direct consequence of our
results.



Chapter 4

Large-Time Behavior of Solutions
to a One-Dimensional Liquid
Crystal System

4.1 Introduction

In this chapter, we shall continue to study the large-time behavior of solutions in
H'x Hi x H*1(i=1,2) and H* x Hj x H* to the following 1D liquid crystal
system based on the results in chapter 3:

Vg = Uy, (4.1.1)
P—|— uy |ny|2 (4 1 2)
u = - - . .
! v 22 ’
y
Ly |nu|2
=\ - 4.1.3
"y ( v )y + w2 ( )
(v, u, n)| g = (v, 1o, m0), (4.1.4)
u|ﬁ’/:0.1 = 07 nl/|y:071 =0

where v=1, yy =1
P Po

In this chapter, we still restrict ourselves to the following case:

and P =p =1 (i.e., y = 1 in chapter 3).

v

|n> = nin; = 1. (4.1.6)

In this chapter, we use C; (i =1, 2) to denote the generic positive constant
depending on the [|(pg, o, 70| ix gris e (8= 1,2), mingep ) uo_(a:), min,eo.1) no (),
but not depending on time T, and C; (j = 3, 4) depending on H’[0, 1] norm of initial
data (po, uo, Mo), Mingep1) Uo(z), min,eo 1 70(z), but not depending on T.

The results of this chapter are selected from Qin and Feng [110].

DOI: 10.1051/978-2-7598-2903-3.c004
© Science Press, EDP Sciences, 2022
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Theorem 4.1.1. Suppose that (vy, uy,ng) € H'(0,1) x Hj(0,1) x H*(0,1) and the
compatibility conditions are wvalid. Then there exists a unique global solution
(v(t),u(t),n(t)) € H'(0,1) x H}(0,1) x H?*(0,1) to the problem (4.1.1)—(4.1.5) such
that for all (y,t) € [0,1] x [0, 4+ 00),

0< O <w(y, t) < Cy, (4.1.7)
and for all t > 0,

(&) + lla(ON + (@)l + I (8)]°

t
2
" /O (alle + |+ el @) de < €. (4.18)
Moreover, we have as t —> 400,
[v(t) =Vl =0, [u(®)llj— 0, [In(t) = all2— 0 (4.1.9)
where v = fo v(y, t)dy = f() wdy, n= fo t)dy.

Theorem 4.1.2. Suppose that (vy, ug, ng) € H2(O,1) x HZ(0,1) x H3(0,1) and the
compatibility conditions are wvalid. Then there exists a unique global solution
(v(t),u(t),n(t)) € H*(0,1) x H}(0,1) x H3(0,1) to the problem (4.1.1)—(4.1.5) such
that for all t > 0,

lo(8) 17 + ()l + (O + (Ol + el

# [ (ol

Moreover, we have as t — +00,

lo(t) = 0ll2= 0, Nlu(®)l[g2— 0, [[n =2l g2— 0. (4.1.11)

H?+H”fyy|| + |ty | ) )t < G, (4.1.10)

Theorem 4.1.3. Suppose that (uvy, up,ng) € H*(0,1) x H}(0,1) x H*(0,1) and the
compatibility conditions are valid. Then there exists a unique global solution
(v(t), u(t),n(t)) € HY(0,1) x H(0,1) x H*(0,1) to the problem (4.1.1)—(4.1.5) such
that for any t > 0,

(&) 13+ ()11 + ) Fgs + e e+ e () e + e ()17 + [lwee (D))

+ [ (s + el

H9+any|Ha+HUttyH +H7lthH ) d1j< 04
(4.1.12)

Moreover, we have, as t — +00,

[o(t) = 0llge= 0, Nu(®)[— 0, [In(t) = Al 2= 0. (4.1.13)
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4.2 Uniform Estimates in H' x H} x H't1(i=1,2)

and H* x H} x H*
The global existence of solutions in H'x Hi x H'*'(i=1,2) and H* x H} x H*
has been established in Qin and Huang [124] and also in chapter 3. In this section, we
shall derive some uniform estimates in H' x Hj x H'*'(i=1,2) and H* x H} x H*

by establishing a series of lemmas. First, we shall establish some uniform estimates
in H' x H} x H%.

Lemma 4.2.1. If assumptions in theorem 4.1.1 are valid, then the following estimates
hold in Euler coordinates for any t > 0,

1 t ol
/ (pu® + n(p) + 2|n,|*) dz + / / (u? + |1 X ng,|*)deds < O, (4.2.1)
0 0 Jo

1 t ol
/ |1, |” da: + / / || daeds < Cy (4.2.2)
0 0 Jo

where w(p) = plogp — p.

Proof. Multiplying (4.1.2) by u, using (4.1.1) and integrating the result by parts, we
have

1d (!

1 1
—— | (pu* +n(p))dz+ / udeC:/ |70 . (4.2.3)
2dt Jo 0o 0

We derive from |n|> = 1 that
Nag + | 1aP 0 = =1 X (0 X ngg).

Multiplying the above equation by n,,, we obtain

d 1 1 1
—/ |1, |? da + / |nx|2u1;d:c—|—2/ 11X Ny |* dz = 0,
dt Jo 0 0

which, along with (4.2.3), gives (4.2.1).
Using (4.1.6), we easily get
n-n; = 0.

Multiplying (4.1.3) by n,, integrating the result over [0, 1] X [0, #], applying the
Young inequality and the Poincaré inequality, we have for any ¢ > 0,

1 t 1 ¢ pl
/|nx|2dx+// |nt|2d:cds:—//unxntda:ds
0 0 Jo 0 Jo
t 1 t 1
Ss/ / || dads + Cl/ / u?|n,|* duds
0o Jo o Jo
t 1 t 1
gs// \nt|2da:ds—|—01/ Hu||iw/ I, |? duds
0o Jo 0 0
t 1 t 1
gs// \nt|2da:ds+01/ |\um||2/ |n,|? deds.
0o Jo 0 0
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Choosing & > 0 small enough, performing the Gronwall inequality, and using

(4.2.1), we obtain
1 t ol
/ |7’l1|2dm+ / / |nt|2dxd5§ Cl-
0 0 Jo

This proves the lemma. l

Lemma 4.2.2. If assumptions in theorem 4.1.1 are valid, then the following estimates
hold in Euler coordinates for any t > 0,

t 1
/ / (Ime|* + [ |*) daxds < C1. (4.2.4)
0 0

Proof. Squaring (4.1.3) in both sides, integrating the result over [0, 1] X [0, {],
employing integration by parts, the Young inequality and the Poincaré inequality,
and using (4.2.1) and (4.2.2), we conclude for any ¢ > 0,

t 1
//(|nm|2+|nm|4)dxds
0o Jo

t ol t el

:// (|m\2+u2|nm|2+2n,«,unm)dxdsf2//nm|nm|2ndxd5
// (Ine|* + W?|ne|* + 2npun,) deds + = // |n,|* dzds
0
2, 2 |2 4

§2//(Int| + || )dxds+—// |n.|* dads

0
<G+ // el dads + 01/ [l |7 derds
<G+s // || dads + 01/ (||| 7| deedls
§C1+—// |nz|4d$ds+01/ ||uz||2dxd5

0

<Ci+ 3 // |1, |* daeds. (4.2.5)

Therefore (4.2.4) follows from (4.2.5). This completes the proof. O

Lemma 4.2.3. If assumptions in theorem 4.1.1 are valid, then the following estimates
hold in Lagrangian coordinates, for any t > 0,
(%)
vy

1 | a1
/ u? 4 (v —logv— 1)+ L~ (y,t)dy—i—// R
0 v 0 Jo v

2
) dyds < Cla

(4.2.6)
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/Inuld +// [ ny }dyds<01. (4.2.7)

Proof. Using lemmas 4.2.1-4.2.2 and the total mass conservation fol vdy = fol v dy,
we easily derive (4.2.6) and (4.2.7). O

Lemma 4.2.4. For any t > 0, there exists one point 1, = 11 (t) € [0, 1] such that the
solution v(y, t) to problem (4.1.1)-(4.1.5) possesses the following expression:

t 2
1+ / <vl+|"?’2|> vD™(y, s)Zl(s)ds] (4.2.8)
0 (%
where

D(y, t)—vo(y)eXpM udé — / up (& dé+v0/ / dzdy} (4.2.9)
Z(t) —exp< / / <1+ +| | >dyds>, o = / 1 dy. (4.2.10)

Proof. See, e.g., lemma 2.2.2 or lemma 3.2.3. (I

u(y,t) = D(y, ) Z(1)

Lemma 4.2.5. There holds
0< Gt <w(y, )< Cy,  for all (y,t) € [0,1] x [0, + 00), (4.2.11)

¢
/ Hr@(s)”im ds< (, for all t > 0. (4.2.12)
0

Proof. Obviously, using the Young inequality, the Holder inequality and lemma 4.2.1,
we have
y y 1 [t oy
e~ [“w@ac+ T [ [ i)
u 0 Y .Jo Jo

1 3 1 3 1 [ 1 3
< (/ u2dy> + (/ ugdy) +,—/ (/ u%dy) dy
0 0 W Jo 0

< Ci|lull®+ G < . (4.2.13)

Equations (4.2.9) and (4.2.6) imply that there exists some positive constant
C} > 0 such that for all (y, t) € [0, 1] X [0, +©0),
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0< O <D(y, 1) < Oy

Noting that for all ¢t > 0,
1 |’I’L ‘2
1§/ 1+u® + 2 ) (y, )dy < O, (4.2.14)
0 v

then for 0 < s < ¢, we get

t ol 2
t—s< / / <1+u2—|— |nz|>dy§ Ci(t—s). (4.2.15)
s JO

Therefore, (4.2.10) and (4.2.15) imply that for any 0 < s < ¢,

G < Z()Z7(s) —exp( // <1+ T y')dyds)w o,

(4.2.16)

Using (4.2.8) and (4.2.16), we derive that there exists a large time ¢ such that as
t2 1y, y€[0,1],
' |, ” 1
1+ / v+ ‘/ vD™ Yy, 5)Z 7 (s)ds
0 ’U

! In |2 C
e’cltJr/ 1+ 2 | e Gl=9) gg
0 [
/ C —Cy(t— s)ds

>(20)7 " (4.2.17)

u(y, 1) = D(y, ) Z(1)

>t

Noting that D(y,t)> C;t, Z(t) > exp(—Cit), we infer that for any
(y.) €[0,1] x [0, %],

v(y, t) > D(y, t) Z(t) > C; ' exp(—Cit) > C; ' exp(—Citp),

which, together with (4.2.17), implies that for any (y, t) € [0, 1] X [0, +©0),
u(y, t) > C . (4.2.18)

Employing W"! < L*, by the Holder inequality, lemmas 4.2.3-4.2.4 and (4.2.18),
we deduce
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efclt+/ 1+| y| 701f S)
0
t
§01+01/ ”ds+0/
0

U(ya t) S Cl

|ny| —Cl t— s‘)ds

2
dy] vds (4.2.19)
y

which, using the Gronwall inequality and (4.2.7), (4.2.18), gives (4.2.11).
Using (4.2.7) and the Poincaré inequality, we obtain

[Inola<e | el o
LOC
2
t
cie
0 y
<q. (4.2.20)
This proves the lemma. |

Lemma 4.2.6. If assumptions in theorem 4.1.1 are valid, then the following estimates
hold for any t > 0,

1 t el
/ vidy—i- / / (|ny|4+|nyy|2+|nt|2+v§)dyd5§ Cy, (4.2.21)
0 0 Jo

[ (y, 0)|| < Ch. (4.2.22)

Proof. Using (4.1.1), we may rewrite (4.1.2) as

( ”y> Uy i 2|”y|27’y 2ny - nyy (4.2.23)
v/t 02 3 v2
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Multiplying (4.2.23) by u — <%, integrating the resulting equation over [0, 1] X [0, 1,
and using the Young and the Pomcare inequalities, we deduce for any ¢ > 0,

// v7/+|ny| vy )dyds

Voy
sHuo hy +cl// ol g~ gl -y - )+ [y Pl ) dyds
<Cl+8// v, +|n,,| dyd5+01/ ||y (s H ds

+01/ H%HLx/ u?dyds + 01// |y dyds. (4.2.24)
0 0 0 Jo

Taking & small enough in (4.2.24), and using (4.2.6), (4.2.12) and (4.2.24), we can
obtain

U'/

u——H +// v+ |y [22) dyds < 01+01// |y [*dyds.  (4.2.25)

By (4.2.7), we have

2 t pl 2 toply .
// <|"w| Inyrvy>dyds:/ / 1[(”_” dydtH/ / g
° 0o v (U v
1
<Ci+s //W|dd+()//|y| Ldyds.

t 1 t 1
[ imslasis e [ [ s
0 Jo 0 0

which, with (4.2.25) and the fact ||u||* < C’lHuyH2 < (), gives

t ol t 1
||Uy(t)“2+/0 /0 (U;+|”y|21)§>dyd5§ 01-1-01/0 H"yHZLw/O vidyds. (4.2.26)

Applying the Gronwall inequality to (4.2.26), and using (4.2.7) and (4.2.12), we
obtain

Thus

t ol
2
(| v, (0)]| —l—/o/o (|ny|2v§+|nyy|2+|vy\2)dyd3§ Cy. (4.2.27)

Thus from (4.2.7) and (4.2.12) it follows that

// |n,|* dyds < Cl/ Hnl/HLw/ |n,|* dyds < C. (4.2.28)
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By (4.1.3) and (4.2.27), we can derive
[y (D] < (|| ()] + e (D)), (4.2.29)
()l < Co({[ny (D] + [ (B)]]) (4.2.30)
which implies (4.2.22).

Thus, using the Poincaré inequality and (4.2.27), we can infer

[ im@iras< e [l + ml”) s

t
<a [ lnyofds<
0

which, with (4.2.27) and (4.2.28), yields (4.2.21). This proves the lemma. d

Lemma 4.2.7. If assumptions in theorem 4.1.1 hold, then the following estimates are
valid for any t > 0,

eI + |y (8)]] + (|2 (8]

[ (l? ol + ) )5 < (12.31)

Proof. Obviously, using lemma 3.2.6 in chapter 3 and the uniform estimate of v, we
may complete the proof. O

In what follows, we shall derive some uniform estimates in H? x Hg x H3. The
proof of the following is different from lemma 3.3.1 in chapter 3 to some extent.

Lemma 4.2.8. If assumptions in theorems 4.1.2 hold, the following estimates are
valid for any t > 0,

Hut(t)||2+||uyy(t)“2+ /OVHUty(S)HQdSS G, (4.2.32)

t
Hvyy(t)HQ—i—/O (o I* + 1l + ) ()5 < €. (4.2.33)

Proof. Differentiating (4.1.2) with respect to ¢, multiplying the resulting equation
by wu;, integrating it by parts, and using (3.2.32) and lemmas 4.2.3-4.2.7, we deduce
for any & > 0,
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P+ [ o't
<0 +01 [ [ fll o g+
<o [ fuast [ lull + o
e s s | 5
<o [ un@ldst [ [+l + ol s

t
< 02+8/ 1y ()2
0

which, by taking ¢ € (0, 1) small enough and using (4.2

31), yields (4.2.32).
Differentiating (4.1.2) with respect to y, using (4.1.1) (

Vgyy = Uyyy), We arrive at

) 42—y, By, ¢ 4.2.34
(%), + 25 = wy+ B(y.1) (4.2.34)

where
2115
E(y,t) = B +

2
_ 8my - nl/yvl/+2|ny|2vyy " 6ny| U?,

2 2
20y uyy _ 2v,uy + 2nyy|” 4 2ny - nyyy
V2 0 v2

v’ vt

Multiplying (4.2.34) by “%, integrating the result over [0, 1] X [0, #] and using the
Young inequality, we have for any ¢ > 0,

t t t
oI + [ ol ds< e [Pt G [ [l + 151 s
(4.2.35)

where
! 2 ! ! 4 2 2
Jumeas<er [ (o i, b+ )
"’|ny|2|”yy‘2”§+|”y|4U§y+|W/‘4U§)d@/d5
t
SCl/O (ol Mol + Noull 7 el + o ool 3

2 2 2 2 2 2 2

e ol a1 ) s
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Using the interpolation inequality, the Young inequality and lemmas 4.2.3-4.2.7,
we conclude

t t
[ 1B as< e [ (e + ol ol ol + ) s

t .
SG/O (sl + ool + el | +

[l + ) s

¢ 2 ¢ 2 2
<Gt [ ol s+ G [ (] ool
+ H”yyy(S)HQ)dS- (4.2.36)

Differentiating (4.1.3) with respect to g, using the interpolation inequality, the
Young inequality and lemmas 4.2.3-4.2.7, we can conclude

t t
[ @l as< e [l + sl +

2
+

2
Y

2

)ds
t

<t 01 [ (Imall ol + ol

e el + el I+ g e

ol Il

t t
<Gite [ n(Pds+ G [ im0 .

2 2
+ [y vy |

g

n3

2 2
+{[my | +H"yvy y

Picking ¢ € (0, 1) small enough, we obtain

t t
/Oy|nyyy<s)|\2dsg 01+01/0 Iy ([ ()]s (4.2.37)

Inserting (4.2.36) and (4.2.37) into (4.2.35), and taking ¢ small enough, we can
obtain

H”yy(t)Hz"" /O/H“yy(s)szSSCl""Cl/o H”V(S)HiwH”W(s)HQdS

Performing the Gronwall inequality, and using (4.2.12), we conclude that for all
t >0,

||Uyy(t)||2+/0 (Hvyy||2+Hnyysz)(s)dSSCl- (4.2.38)
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Differentiating (4.1.2) with respect to y, by the imbedding theorem and lemmas
4.2.3-4.2.7, we can obtain

a1 < G ([lon( O] + (0

w T ||ny(t)||H2) (4.2.39)

or

H“yyy(t)H <G (H”y(t>HHl + Huu(t)HHl + H”y(t)HHZ + HutyH) (4.2.40)

which, with (4.2.31), (4.2.32) and (4.2.38), gives (4.2.33). This proves the lemma. (J

Using the same estimate as in chapter 3, we can obtain the following two lemmas
concerning uniform estimates in H* x H{ x H'*1(i =1,2) and H* x H} x H* using
uniform estimates of specific volume v in lemma 4.2.5.

Lemma 4.2.9. If assumptions in theorem 4.1.2 are valid, then the following estimate
holds for any t > 0,

t
e O + s (DI + / I (9)] < Co. (4.2.41)

Lemma 4.2.10. If assumptions in theorem 4.1.3 are valid, then the following esti-
mates hold for any t > 0,

t
()1 + I ma (D + [ (DI + / (e I+

+ [l + HM;HQ + H”tyyy”2>(3)d8§ Cy, (4.2.42)
||“L‘y(t)||2+ H”yyy(t)||2+ ||“tyy(t)||2+ /Ot ||“tyyy(5)||2d5§ Ca, (4.2.43)
s (D + |7y DN + |t (D] + /Ot [0y (5)|) ds < Cu, (4.2.44)
@+ [ (Fal+ el Il )bz 01 4249

4.3 Large-Time Behavior in H' x Hi x H'"1 (1=1,2)
and H* x Hy x H*

In this section, we shall complete the proofs of theorems 4.1.1-4.1.3.
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Lemma 4.3.1. If assumptions in theorem 4.1.1 are valid, then we have

Jim [Jo(t) = 7ll =0 (4.3.1)

where v = fol v(y, t)dy = fol 1 dy.

Proof. Differentiating (4.1.1) with respect to y multiplying the result by v,, then
integrating the result over [0, 1], using the Young inequality, we can deduce

d 1 1
SO <l + a1 < 5+ 5 @ + (O]
which, along with (4.2.21), (4.2.31) and lemma 1.1.2, leads to

lim [|o,(8)]*= 0. (4.3.2)

t—+ o0
Moreover, using the embedding theorem, we can deduce
o= 3] < Ci[v,]
which, together with (4.3.2), gives (4.3.1). This proves the lemma. O
Lemma 4.3.2. If assumptions in theorem 4.1.1 are valid, then we have

i [|u(8)]| = 0. (4.3.3)

Proof. Equation (4.1.1) can be rewritten as

2
ut—<1) ’U2>+’Uy. (4.34)
Y

Let
PO S S L1 PV S BN 7 W
b 2 b b v ’1)2 'U
Then
Uy ~
w=(-5+2) =3, (4.3.5)
vy
Put
1
P =7"(y,t) =Dy, 1) —/ p(y, t)dy, (4.3.6)
0

1
G =5"(y, 1) = 6(y, 1) 7/0 &y, t)dy. (4.3.7)
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Then

1 1
/ p*(y, t)dy =0, / G*(y,t)dy =0, (4.3.8)
0 0

(»"), =Dy (),=7y (4.3.9)

Integrating (4.3.9) by parts, using (4.3.5), lemma 4.2.3 and the Young inequality,
we can infer that for any ¢ > 0,

=65 = (-5 [ 7' )
— (=9 [ 77d) = (w (fjf)y [7as)
_ (ut,/oyfﬁ*dx) - ((“—)y/oyﬁdm)
g(/olu?dyy(/ol(/oyp > ) /0 S5t

el + C@) el + Gy (o571 + Ce <|u1,||)
g(01+1)8||ﬁ*”z+ol(||ut||2+“uy” ) (4.3.10)

Choosing ¢ > 0 so small that (C} 4+ 1)e < 1, integrating the result over (0, ¢), we
obtain

/|| §)|Pds< Ci. (4.3.11)
Note that
GO =250 =2(7,.- [ 5iar)
=), [[70)
o) (), 79

< i (a1 + [+ 155 )] (4.3.12)
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From (4.2.21) and (4.2.30), it follows that

155017 < G (@1 + (o) o + 60 - o]

IN

G (O + [l O + [ DIl )
G ([lu® 1 + | s (O + (] 8)]*)
G ([lw I + I (O]*)- (4.3.13)

IN

IN

Combining (4.3.12) and (4.3.13), we get

d . ., 2 2
S @1 < G @I + [y (O] + (| (] ). (4:3.14)
Using lemmas 4.2.7 and 1.1.2, we can derive
Lim (|7 (2 1)]>= 0. (4.3.15)

Hence from (4.3.4), (4.3.5), (4.3.7) and (4.3.11), it follows

/n nw<a/( N+ ) (9 ds< (43.16)

By (4.3.4), (4.3.5), and (4.3.7), and integrating by parts, we derive

d o* /\* o Y o d
G150 =25 =2(a5,- [ aa)
y
2(ut, / T dm)
<Q@w|%w/aﬂ

Y Y 1
/Ejdy:/ <8t—/ at(é,t)dé>d:p (4.3.18)
0 0 0
~ 1 |n,[>  w,
s = (-1 12004 )
t

2 2
Y |7, | N (ﬂ) N Uvy — Uy
T2\ 2 f v/y v2

) (4.3.17)

where

and
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Noting that for all ¢ > 0,
ut(O, t) = ut(l, t),

we derive that for any y € [0, 1],

y 1
/ oz, t)dz| < G (/ |uy+nynty+n Uy + upvy + |dy+|ut|)
0 0
< G [lull+ | - ]+ || 2| - s
el + ) + ]
< G ([fay | + [l + lel + )
Analogously,

< Gl |+ llmaell + Tl + ).

1
/ G1(z, 1) dz
Y

Combining (4.3.18)—(4.3.20), we obtain

y Yy 1
[ara= [ (at—/ at@,t)df)dx
0 0 0
y 1 1
0 0 Y

< Cl(”“y” + H"zﬂ” + [l + el

which gives

< i ([l + D]+ (D)

H/odx

By (4.3.17) and (4.3.22), we can infer
d ~x%
@1 < (O + [ra®] + )]

< G (1 [[me )"+ D),
which, along with (4.3.16) and lemma 1.1.2; yields
lim [[5*(¢)|*= 0.

t— + 00

Noting that

1D Radiative Fluid and Liquid Crystal Equations

(4.3.19)

(4.3.20)

(4.3.21)

(4.3.22)

(4.3.23)
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we arrive at

. 1, 1
Yo () [y =@+ [ S
v v o U 0o U

which, together with lemma 4.2.3, gives

Uy

[Juy (8)]] < 01‘ < G(lE O+ 12" O + lu@®llf| v (D)]))- (4.3.24)

v
Thus from (4.3.15), (4.3.23), (4.3.2) and (4.3.24) it follows that
lim [Ju, (#)]| = 0. (4.3.25)

t
By the Poincaré inequality, we get
()| g1 < Ci[|uy (1)
which, together with (4.3.25), gives (4.3.3). This completes the proof. O

Lemma 4.3.3. If assumptions in theorem 4.1.1 are valid, then we have

lim_|n(f) = ] 2= 0 (4.3.26)

t—
where n = fol n(y, t)dy.

Proof. Multiplying equation (4.1.3) by ny, integrating the result over [0, 1] with
respect to y and using (4.1.6), we obtain

1 1
2y [ (M
/O\WI dy—/o v(v)ydy

1
_ _/ ﬂ(@ - "”’y) dy. (4.3.27)
0

v\ v 22

By the Young inequality, we deduce that for any ¢ > 0,

1d 1 9 1 9 1 ) 1 )
5@/ |ny| dy+/ | dyge/ Ine|? dy + 01/ Iy 202 dy.
0 0 0 0

Taking ¢ small enough and using (4.2.21), we have

d
@ + (1) < G|y (D) (4.3.28)
which, together with lemma 1.1.2 and (4.2.12), results in
Jim |, (8)]*= 0. (4.3.29)

By the Poincaré inequality, we derive

In() = 2l g < Ci[my (1)
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which, together with (4.3.28), leads to
lim ||n(t) — 7| = 0. (4.3.30)

t— + 00
By lemma 4.2.7, we can obtain
d
()1 [y (]| < [y ()| I
which, combined with (4.2.12), (4.2.31) and lemma 1.1.2, gives
Jim [lne(1)] =o. (4.3.31)
From (4.1.3) and (4.2.31), and using the Poincaré inequality, we can infer
2
(I < €5 (I + 0] + 6o
< G (Im O + |y Ol o (O + [l [ [ ()
< G (IO + [ o O + [ DI [ (D)
< G (IO + [[o, O + D).

which, along with (4.3.2), (4.3.30) and (4.3.31), gives

. 2
Jim g, (8)]]"= 0. (4.3.32)
Thus (4.3.25) follows from (4.3.32). This completes the proof. O

Proof of Theorem 4.1.1. Combining lemmas 4.2.3-4.2.7 and lemmas 4.3.1-4.3.3, we
complete the proof of theorem 4.1.1. O

Lemma 4.3.4. If assumptions in theorem 4.1.2 are valid, then there holds

tlir+n lv(t) — 0| =0 (4.3.33)

where v = fol v(y, t)dy = fol w(y)dy.

Proof. Differentiating (4.1.1) with respect to twice y, multiplying the resulting
equation by v,,, then integrating it over [0, 1], by the Young inequality, we can deduce

1d !
5@”%&/“)”2:/0 Uy Vyy Ay
1 1 1 1 1
< D) ||“yyy(t)||2 + ) Hvyy(t)HQ < 1 + ZH”yy(t)H4+ §Huyyu(t)||

2

which, together with lemmas 4.2.8 and 1.1.2, implies

lim [|o,, (8)]°= 0. (4.3.34)

t— + o0
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By the embedding theorem, we have
Jim_[[o(8) = 5l = 0.

This proves the proof. O

Lemma 4.3.5. If assumptions in theorem 4.1.2 are valid, then the following estimate
holds

lim [Ju(t)|| 2= 0. (4.3.35)

t—+

Proof. By (4.3.5), we have

v, 2ny -y 2ne
— Uy 2 Ty 2l (4.3.36)
v v v
— o (@) . (4.3.37)
vy

Hence, by lemmas 4.2.3-4.2.9, and using the interpolation inequality, we obtain
15,01 < G (Ol + [l 2) - ()] + [l 2) o, 1))
< G (Ol + | ol Ol + Iy O [0 D)

< 01 [ |”y (1) H + ( |”yy )H%H”vvy(t)H%‘F H”vy(t)H) H”y(t)H + H”uy(t)HzHUu(t)H]
< Ci([loy @] +[[ny (D)

which gives

lim |p,(t)| = 0. (4.3.38)

t— 400

Differentiating (4.3.37) with respect to ¢, multiplying the result by wu,;, then
integrating it over [0, 1], employing an integration by parts, and using the Young
inequality, we can obtain for any & > 0,

1d 2 ]_utZy ! 1u2ut’u
—— t —dy = Dy d Y 2d
sl [ iy = [ Sadyr [y

<elluy @)+ G (IBOF +[|w(D]},)- (43.39)

Choosing ¢ > 0 small enough, using (4.2.21), (4.2.31), (4.2.32) and the interpo-
lation inequality, we can conclude
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I + [l (o)
< G(lwy DI + [lny O (D]
+ O N + O B + (&)
< G ([l O + [l DI + Iy (DI )- (43.40)
Hence we infer from (4.3.40), (4.2.6), (4.2.12), (4.2.31) and lemma 1.1.2
lim ||u(t)]*= 0. (4.3.41)

i
By (4.3.37), (4.1.8) and the interpolation inequality, we derive
@] < CL(IB, O] + (D)l + [y (B vy (D))
<GB, Ol + N+ (Ol O + o1 D)
< (][5, O]+ (Dl + | 1))
which, along with (4.3.25), (4.3.37), (4.3.40), gives

Jim [, (8)]*= 0. (4.3.42)

Thus (4.3.35) follows from (4.3.42) and (4.1.9). This completes the proof. O

Lemma 4.3.6. If assumptions in theorem 4.1.2 are valid, then there holds that
lim ||n(t) — || =10 (4.3.43)

=+
where 7 = fol n(y, t)dy.

Proof. By lemma 3.3.2, we can derive

d
21 < a[lm 1 + [Ina0])
which, along with (4.2.21), (4.2.31) and lemma 1.1.2, leads to

Jim [y, (8)]*= 0. (4.3.44)

Hence it follows from (4.2.41), (4.3.32), (4.3.34) and (4.3.44) that

lim_[m (8)]|"= 0, (4.3.45)

t— +

which, using the embedding theorem and (4.3.26), gives (4.3.43). This proves the
lemma. |
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Proof of Theorem 4.1.2. Combining lemmas 4.2.8-4.2.9 and lemmas 4.3.4-4.3.6, we
can complete the proof of theorem 4.1.2. O

Lemma 4.3.7. If assumptions in theorem 4.1.3 are valid, then there holds that

Jim [Jo(t) = 7ll =0 (4.3.46)

where v = fol v(y, t)dy = fol w(y)dy.

Proof. Differentiating (4.1.1) with respect to y three times, multiplying the resulting
equation by wv,,,, integrating it over [0, 1], and then using the Young inequality, we
can derive

d
dt H”yyy(t)HQ < Huvyyy<t)||2 + Hvuuy(t)Hz

1

1
< 5+ 3 1o O + O]

which, together with lemma 4.2.10 and lemma 1.1.2, yields

Jim oy, ()]= 0. (4.3.47)

Differentiating (4.1.1) with respect to y four times, multiplying the resulting
equation by v,,,,, integrating it over [0, 1], and then using the Young inequality, we
can derive

d
dt Hvyyyy(t)HZ < H“yyyyy(t)H2 + Hvz,/yyy(’f)H2

1

1
=373 Hvyyyy(t)H4 + ||“yyyyy(t)”2

which, along with lemma 4.2.10 and lemma 1.1.2, leads to

lim |0y (1)]|*= 0. (4.3.48)

t— + 00

Therefore, using the embedding theorem, we conclude from (4.3.33), (4.3.47) and
(4.3.48),

Jim [Jo(t) = ] = 0.

This completes the proof. O

Lemma 4.3.8. If assumptions in theorem 4.1.8 are valid, then there holds that

tllg_nw||u(t)||H4: 0. (4.3.49)
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Proof. Clearly, using lemma 4.2.10 and the Young inequality, we can derive

DI < ol + (] + o D+ D
+ Hnt?}(t)Hi]‘ + Hvy(t)qul)
< G+ Glluy ' + G|y (D + [y D[ + (D
o 0] PR EAGT )
which, along with lemmas 4.2.3-4.2.10 and lemma 1.1.2, leads to

tlir+nN|‘uty(t)}’2: 0. (4.3.50)

Differentiating (4.3.36) with respect to g, using the interpolation inequality and
lemmas 4.2.3-4.2.10, we infer

12, (D] < C([[o D] + [0y O [0 O] + [ ()] 1 10 (D
+ Hnu(t)HLwH"uw(t)H + ||”u(t)||Loc||”u HLoc||”UU () {

DI NI+ oy Ol ] [l ()]

< G([lo O + o O + ns @) + g (D] + Nl (D))

which, combined with (4.3.2), (4.3.29), (4.3.34), (4.3.32) and (4.3.45), implies
im [, (0] = (4.3.51)

Differentiating (4.3.37) with respect to y, using the interpolation inequality and
lemmas 4.2.3-4.2.9, we derive

()] < 1 ([l + 15, ()] + [t DDl + [y (o (8)]| + (D20
< & ([l Ol + 1P O+ Ol + (0]
which, together with (4.3.50), (4.3.51), (4.3.25), (4.3.34), (4.3.2) and (4.3.42), leads

to

Wm |y, ()] = 0. (4.3.52)

t— + o0

Differentiating (4.3.36) with respect to y twice, using the interpolation inequality
and lemmas 4.2.3-4.2.10, leads to

H/ﬁuw(t)H < C4(H”:uyy(t)’| + Hvyy(t)H + H”uw(t)H + Hvu(t)H + ||”v(t)||)
which, along with (4.3.2), (4.3.29), (4.3.34), (4.3.45) and (4.3.47), results in
=0. (4.3.53)

hm Hpm H
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Differentiating (4.3.36) with respect to ¢ and y, using the Poincaré and the
Gagliardo—Nirenberg interpolation inequalities, and using lemmas 4.2.3-4.2.10, we
can obtain

1B < G ([l (DI + 1m0

o IOl + o @G). @359

Differentiating (4.3.37) with respect to ¢ once and y twice, multiplying the
resulting equation by w,,, employing an integration by parts, and using the Young
inequality, we can conclude that for any & > 0,

1 d 1u2’177 ~
il O+ [ 22y <l (O] + COFm I+ Gl

2

2
| T HuwHii + H“t/uuw||2

2
[l + ey
2
2 2 4
+ [y vy | +H“y”yyH +‘|“yvy’|L4>'

Choosing ¢ € (0, 1) small enough, using the interpolation inequality and lemmas
4.2.3-4.2.9, we deduce

d ~
Tl I + [y O < CillBye (D + ol (1) [

(O] + oy (D) (4.3.55)

Inserting (4.3.54) into (4.3.55), using lemmas 4.2.3-4.2.10 and lemma 1.1.2, we
can derive

tim g, (1)[|= 0. (4.3.56)

Differentiating (4.3.37) with respect to y twice, using the Gagliardo—Nirenberg
interpolation inequality and lemmas 4.2.3-4.2.10, we obtain

)] < (B O]+ (Ol + al] + [ | + |22

)

=G (Hfﬁyyu(t)u + [y (O] + [y (D] + [ | + s (D] + Hvyyy(t)H)
+ C4H”:u:u(t)H

which, together with (4.3.2), (4.3.25), (4.3.34), (4.3.42), (4.3.47), (4.3.53) and
(4.3.56), gives

3
+ H“yyvyyH + H“v”uuu” + ||“yvyy”yH + H“yvy

Hm ||y, (1)]| = 0. (4.3.57)

t— + o0

Therefore, it follows from (4.3.33), (4.3.52) and (4.3.57) that

Jim ()] = 0.

Thus the proof follows immediately. O
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Lemma 4.3.9. If assumptions in theorem 4.1.3 are valid, then the following estimate
holds

tlir+n In(t) — 7|l ja=0 (4.3.58)

where n = f()l n(y, t)dy.

Proof. Exploiting lemma 4.2.10 and the Young inequality, we easily infer that

Sl + e (O] < (M + [ + (D + D]
<G+ Gl + G|y (1[5
O + (DI
which, along with (4.2.33), (4.2.31), (4.2.41) and lemma 1.1.2, implies
tliirlm|\ntt(t)||2: 0. (4.3.59)

Then (4.3.55) follows from lemma 4.2.10, (4.3.31), (4.3.43), (4.3.47), (4.3.59) and
lemmas 4.3.1-4.3.6 immediately. Thus the proof follows readily. O

Proof of Theorem 4.1.3. Using lemma 4.2.10 and lemmas 4.3.7-4.3.9, we can finally
complete the proof of theorem 4.1.3. O

4.4 Bibliographic Comments

In addition to the comments in section 3.5, we would like to mention here that the
global existence and regularity of solutions to (3.1.1)—(3.1.5) or (3.1.6)—(3.1.10) have
been established for the pressure P = p’ = L (y > 1), while the large-time behavior
of global solutions to (3.1.6)—(3.1.10) (i.e., (4.1.1)-(4.1.5)) has only been proved for
y = 11in P and it is still open for y > 1. For the large-time behavior of solutions for
incompressible liquid crystal system, we would like to refer to Wu [144] and the
references therein.


http://dx.doi.org/10.1051/978-2-7598-2903-3.c001#FPar22

Bibliography

(1]
2]
3]

(4]

[5]

[6]
[7]

(8]

[9]

Adams R. A. (1975) Sobolev space. Academic Press, New York (Vol. 65 in the series Pure and
applied mathematics).

Adams R. A., Fournier, J. J. F. (2003) Sobolev spaces, section edn. Academic Press, New
York, Oxford, Singapore, Sydney, Tokyo.

Antontsev S. N., Kazhikhov A. V., Monakhov V. N. (1990) Boundary value problem in
mechanics of monhomogeneous fluids. North-Holland, Amsterdam, New York, Oxford,
Tokyo.

Batchelor G. K. (1967) An introduction to fluids dynamics. Cambridge University Press,
London.

Bellman R. (1948) On the existence and boundedness of solutions of nonlinear partial
differential equations of parabolic type, Trans. Amer. Math. Soc. 64(1), 21.

Bellman R. (1953) On an inequality of Weinberger, Am. Math. Monthly 60(6), 402.
Bellman R. (1954) Stability theory of differential equations. McGraw-Hill Book Co., Inc., New
York.

Bellman R. (1967) Upper and lower bounds for solutions of the matrix Riccati equation,
J. Math. Anal. Appl. 17(2), 373.

Blanca E., Francisco G., Marko R. (2006) Reproductivity for a nematic liquid crystal model,
Z. Angew. Math. Phys. 57(6), 984.

Buet C., Després B. (2004) Asymptotic analysis of fluid models for the coupling of radiation
and hydrodynamics, J. Quant. Spectrosc. Radiat. Transfer 85(3-4), 385.

Calderer M. C., Golovaty D., Lin F., Liu C. (2002) Time evolution of nematic liquid crystals
with variable degree of orientation, SIAM J. Math. Anal. 33(5), 1033.

Chandrasekhar S. (1960) Radiative transfer. Dover Publications, Inc., New York.

Choe H., Kim H. (2003) Strong solutions of the Navier-Stokes equations for isentropic
compressible fluids, J. Differ. Equ. 190(2), 504.

Choe H., Kim H. (2004) Unique solvability for the density-dependent Navier-Stokes
equations, Nonlinear Anal., TMA 59(4), 465.

Constantin P., Foias C., Temam R. (1983) Connexion entre la théorie mathematique des
équations de Navier—Stokes et la théorie conventionnelle de la turbulence, C. R. Acad. Sci.
Paris, Série 1297(11), 599.

Ding S. (April 1, 2009) Global solutions of one-dimensional liquid crystals system.
A presentation in a conference at Wuhan University.

Dubroca B., Feugeas J. L. (1999) Etude théorique et numérique d’une hiérarchie de modeles
aux moments pour le transfert radiatif, C. R. Acad. Sci. Paris, Série I 329(10), 915.



136

[18]

[19]

[20]

[21]

Bibliography

Ducomet B., Nedasovd S. (2010) Global existence of solutions for the one-dimensional
motions of a compressible gas with radiation: An “infrarelativistic model”, Nonlinear Anal.,
TMA, 72(7-8), 3258.

Ducomet B., Negasovd S. (2010) Global weak solutions to the 1D compressible Navier—
Stokes equations with radiation, Commun. Math. Anal. 8(3), 23.

Ducomet B., Nedasovd S. (2012) Large-time behavior of the motion of a viscous
heat-conducting one-dimensional gas coupled to radiation, Ann. Mat. Pura Appl. 191(2),
219.

Ducomet B., Nedasovd S. (2013) Asymptotic behavior of the motion of a viscous
heat-conducting one-dimensional gas with radiation: The pure scattering case, Anal. Appl.
11(1), 1350003, 1.

Ducomet B., Zlotnik A. (2003) Stabilization for equations of one-dimensional viscous
compressible heat-conducting media with nonmonotone equation of state, J. Differ. Equ. 194
(1), 51-81.

Ericksen J. (1987) Continuum theory of nematic liquid crystals, Res. Mech. 21, 381.
Ericksen J. (1961) Conservation laws for liquid crystals, Trans. Soc. Rheol. 5, 22.

Fan J., Ozawa T. (2009) Regularity criteria for a simplified Ericksen—Leslie system modeling
the flow of liquid crystals, Discrete Conti. Dyna. Syst. 25(3), 859.

Fang D., Zhang T. (2004) A note on compressible Navier-Stokes equations with vacuum
state in one dimension, Nonlinear Anal., TMA 58(5-6), 719.

Fang D., Zhang T. (2006) Global solutions of the Navier—Stokes equations for compressible
flow with density-dependent viscosity and discontinuous initial data, J. Differ. Equ. 222(1),
63.

Feireisl E., Dynamics of viscous compressible fluids. Oxford University Press, Oxford (2003).
Feireisl E., Novotny A., Singular limits in thermodynamics of viscous fluids. Birkhduser
Verlag, Basel-Boston-Berlin (2009).

Feireisl E., Novotny A., Petzeltova H. (2001) On the existence of globally defined weak
solutions to the Navier-Stokes equations, J. Math. Fluid. Mech. 3(4), 358.

Feireis] E., Petzeltova H. (2001) Bounded absorbing sets for the Navier-Stokes equations of
compressible fluid, Commun. Partial Differ. Equ. 26(7-8), 1133.

Feireisl E., Petzeltova H. (2001) Asymptotic compactness of global trajectories generalized
by the Navier-Stokes equations of a compressible fluid, J. Differ. Equ. 173(2), 390.

Feireisl E., Petzeltova H. (2002) The zero-velocity limit solutions of the Navier-Stokes
equations of compressible fluid revisited. Navier—Stokes equations and related nonlinear
problems, Ann. Univ. Ferrara-Sez. VII-Sc. Mat. 46(1), 209.

Foias C., Temam R. (1977) Structure of the set of stationary solutions of the Navier—Stokes
equations, Commun. Pure Appl. Math. 30(2), 149.

Foias C., Temam R. (1987) The connection between the Navier-Stokes equations, dynamical
systems and turbulence, New directions in partial differential equations. Academic Press,
New York.

Frid H., Shelukhin V. (2000) Vanishing shear viscosity in the equations of compressible fluids
for the flows with the cylinder symmetry, SIAM J. Math. Anal. 31(5), 1144.

Friedman A. (1964) Partial differential equations of parabolic type. Prentice-Hall, Englewood
Cliffs, NJ.

Friedman A. (1976) Partial differential equations. Krieger, Huntington, New York.

Fujita H., Kato T. (1964) On the Navier—Stokes initial value problem (I), Arch. Rational
Mech. Anal. 16(4), 269.

Gagliardo E. (1958) Proprieta di alcune classi di funzioni in pid variabili, Ricerche di Mat. 7,
102.

Gagliardo E. (1959) Ulteriori proprietd di alcune classi di funzioni in pit variabili, Ricerche di
Mat. 8, 24.

Galdi G. P. (1994) An introduction to the mathematical theory of the Navier—Stokes
equations, Vol. 1, Linearized steady problems, Springer tracts in numerical philosophy, Vol.
38. Springer-Verlag.



Bibliography 137

[43]
[44]
[45]
[46]
[47]

[48]

[49]
[50]
[51]
[52]
[53]

[54]

Gallavotti G. (2002) Foundations of fluid mechanics. Springer-Verlag, Berlin, Heidelberg,
New York.

Golse F., Perthame B. (1986) Generalized solutions of the radiative transfer equations in a
singular case, Commun. Math. Phys. 106(2), 211.

Gronwall T. H. (1919) Note on the derivatives with respect to a parameter of the solutions of
a system of differential equation, Ann. Math. 20(4), 292.

Hoff D. (1992) Global well-posedness of the Cauchy problem for the Navier—Stokes equations
of nonisentropic flow with discontinuous initial data, J. Differ. Equ. 95(1), 33.

Hoff D. (1995) Global solutions of the Navier—Stokes equations for multidimensional
compressible flow with discontinuous initial data, J. Differ. Equ. 120(1), 215.

Hoff D. (1996) Continuous dependence on initial data for discontinuous solutions of the
Navier—Stokes equations for one-dimensional compressible flow, STAM J. Math. Anal. 27(5),
1193.

Hoff D. (1997) Discontinuous solutions of the Navier-Stokes equations for multidimensional
flow of heat-conducting fluids, Arch. Rat. Mech. Anal. 139(4), 303.

Hoff D. (2006) Uniqueness of weak solutions of the Navier—Stokes equations of multidimen-
sional, compressible flow, STAM J. Math. Anal. 37(6), 1742.

Hoff D., Serre D. (1991) The failure of continuous dependence on initial data for the Navier—
Stokes equations of compressible flow, STAM J. Appl. Math. 51(4), 887.

Hoff D., Smoller J. (2001) Non-formation of vacuum states for compressible Navier—Stokes
equations, Commun. Math. Phys. 216(2), 255.

Hoff D., Ziane M. (1999) Compact attractors for the Navier-Stokes equations of
onedimensional compressible flow, C. R. Acad. Sci. Paris, Ser. 1. 328(3), 239.

Hoff D., Ziane M. (2000) The global attractor and finite determining nodes for the Navier—
Stokes equations of compressible flow with singular initial data, Indiana Univ. Math. J. 49,
843.

Holder O. (1889) Uber einen Mittelworthssatz, Nachr. Ges. Wiss. Géttingen, 38.

Hong M. (2011) Global existence of solutions of the simplified Ericksen—Leslie system in
dimension two, Calc. Var. 40(1-2), 15.

Hu X., Wang D. (2010) Global solution to the three-dimensional incompressible flow of liquid
crystals, Commun. Math. Phys. 296(3), 861.

Huang F., Matsumura A., Xin Z. (2006) Stability of contact discontinuities for the 1-D
compressible Navier—Stokes equations, Arch. Rat. Mech. Anal. 179(1), 55.

Jiang P., Wang D. (2010) Formation of singularities of solutions to the three-dimensional
FEuler-Boltzmann equations in radiation hydrodynamics, Nonlinearity 23, 809.

Jiang P., Wang D. (2012) Global weak solutions to the three-dimensional Euler-Boltzmann
equations in radiation hydrodynamics, Quart. Appl. Math. 70, 25.

Jiang S. (1994) On initial boundary value problems for a viscous heat-conducting
one-dimensional gas, J. Differ. Equ. 110(2), 157.

Jiang S. (1994) On the asymptotic behavior of the motion of a viscous, heat-conducting,
one-dimensional real gas, Math. Z. 216(1), 317.

Jiang S. (1996) Global spherically symmetric solutions to the equations of a viscous
polytropic ideal gas in an exterior domain, Commun. Math. Phys. 178(2), 339.

Jiang S., Global solutions of the Cauchy problem for a viscous polytropic ideal gas, Ann.
Scuola Norm Sup, Pisa Cl. Sci. XXVI(4), 47.

S. Jiang (1998) Global smooth solutions to the equations of a viscous heat conducting
one-dimensional gas with density-dependent viscosity, Math. Nachr. 190(1), 163.

Jiang S. (1998) Large-time behavior of solutions to the equations of a viscous polytropic ideal
gas, Ann. Mate. Pura Appl. 175(1), 253.

Jiang S. (1999) Large-time behavior of solutions to the equations of a one-dimensional
viscous polytropic ideal gas in unbounded domains, Commun. Math. Phys. 200(1), 181.
Kawashima S. (1987) Large-time behavior of solutions to hyperbolic-parabolic systems of
conservation laws and applications, Proc. Roy. Soc. Edinburgh 106(1-2), 169.



138

[70]

[71]

[72]

Bibliography

Kawashima S., Nishida T. (1981) Global solutions to the initial value problem for the
equations of one-dimensional motion of viscous polytropic gases, J. Math. Kyoto. Univ. 21
(4), 825.

Kawashima S., Nishibata S., Zhu P. (2003) Asymptotic stability of the stationary solution to
the compressible Navier—Stokes equations in the half space, Commun. Math. Phys. 240(3),
483.

Kazhikhov A. V. (1977) Sur la solubilité globale des problémes monodimensionnels aux
valeurs initiales-limités pour les équations dun gaz visqueux et calorifére, C. R. Acad.Sci.
Paris, Ser. A 284, 317.

Kazhikhov A. V. (1981) To a theory of boundary value problems for equations of one
dimensional nonstationary motion of viscous heat-conduction gases, Boundary Value Prob.
Hydrodynam. Equ. (in Russian), No. 50 Inst. Hydrodynamics, Siberian Branch Akad., USSR,
pp. 37-62.

Kazhikov A. V., Shelukhin V. V. (1977) Unique global solution with respect to time of initial
boundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math.
Mech. 41(2), 273.

Kippenhahn R., Weigert A. (1994) Stellar structure and evolution. Springer-Verlag, Berlin,
Heidelberg.

Kuang J. (2004) Applied inequalities, 3nd edn. Shangdong Science and Technology Press (in
Chinese).

Lech M. (1998) Why Hoélder’s inequality should be called Rogers’ inequality, Math. Inequal.
Appl. 1(1), 69.

Lesile F. (1968) Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal.
28(4), 265.

Lesile F. (1979) Theory of flow phenomena in liquid crystals advances in liquid crystals, Adv.
Liq. Cryst. 4, 1.

Lin C. (2007) Mathematical analysis of radiative transfer models, Ph.D. Thesis.

Lin C., Coulombel J. F., Goudon T. (2006) Shock profiles for non-equilibrium radiating
gases, Physica D 218(1), 83.

Lin F., Liu C. (1995) Nonparabolic dissipative systems modeling the flow of liquid crystals,
Commun. Pure Appl. Math. 48(5), 501.

Lin F., Liu C. (1996) Partial regularity of the dynamical system modeling the flow of liquid
crystals, Discrete Conti. Dyna. Syst. 2(1), 1.

Lin F., Liu C. (2000) Existence of solutions for the Ericksen-Leslie system, Arch. Rational
Mech. Anal. 154(2), 135.

Lions P. L. (1998) Mathematical topics in fluid dynamics, Vol. 1, Incompressible models, Vol.
2 Compressible models. Oxford Science Publication, Oxford.

Liu C. (2000) Dynamic theory for incompressible smectic-A liquid crystals: Existence and
regularity, Discrete Conti. Dyna. Syst. 6(3), 591.

Liu C., Shen J. (2001) On liquid crystal flows with free-slip boundary conditions, Discrete
Conti. Dyna. Syst. 7(2), 307.

Liu C., Walkington N. (2000) Approximation of liquid crystal flows, SIAM J. Appl. Math. 37
(3), 725.

Liu C., Walkington N. (2002) Mixed methods for the approximation of liquid crystal flows,
ESAIM: Math. Model. Numer. Anal. 36(2), 205.

Lowrie R. B., Morel J. E., Hittinger J. A. (1999) The coupling of radiation and
hydrodynamics, Astrophys. J. 521(1), 432.

Matsumura A., Nishida T. (1979) The initial value problem for the equations of motion of
compressible viscous and heat-conductive fluids, Proc. Jap. Acad. Ser. A 55, 337.
Matsumura A., Nishida T. (1980) The initial value problem for the equations of motion of
viscous and heat-conductive gases, J. Math. Kyoto. Univ. 20(1), 67.

Matsumura A., Nishida T. (1982) Initial boundary value problems for the equations of
motion of general fluids, Computing Meth. in Appl. Sci. and Engin. V. (R. Glowinski, J.
L. Lions, Eds.). North-Holland, Amsterdam, pp. 389—406.



Bibliography 139

[93]
[94]
[95]
[96]
[97]
(98]

[99]

[100]

[101]

[102]
[103]
[104]
[105]

[106]
[107]

[108]

[109]

[110]

[111]

[112]
[113]
[114]
[115]
[116]
[117]

[118]

Matsumura A., Nishida T. (1983) Initial boundary value problems for the equations of
motion of compressible viscous and heat-conductive fluids, Commun. Math. Phys. 89(4), 445.
Mihalas D., Weibel-Mihalas B. (1984) Foundations of radiative hydrodynamics. Oxford
University Press, New York.

Nirenberg L. (1959) On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa
13(3), 113.

Nirenberg L. (1974) Topics in mnonlinear functional analysis. Courant Institute of
Mathematical Sciences.

Okada M., Kawashima S. (1983) On the equations of one-dimensional motion of
compressible viscous fluids, J. Math. Kyoto Univ. 23(1), 55.

Paicu M., Zhang P. (2012) Global solutions to the 3-D incompressible inhomogeneous
Navier—Stokes system, J. Funct. Anal. 262(8), 3556.

Pomraning G. C. (1973) The equations of radiation hydrodynamics, international series’ of
monographs in  natural  philosophy, Vol. 54. Pergamon Press, Oxford-New
York-Toronto-Springer-BRAUNSCHWEIG.

Pomraning G. C. (2005) Radiation hydrodynamics. Dover Publications, Inc., Mineola, New
York.

Qin Y. (2001) Global existence and asymptotic behavior for a viscous, heat-conductive,
one-dimensional real gas with fixed and thermally insulated endpoints, Nonlinear Anal.,
TMA 44(4), 413.

Qin Y. (2002) Exponential stability for a nonlinear one-dimensional heat-conductive viscous
real gas, J. Math. Anal. Appl. 272(2), 507.

Qin Y. (2004) Universal attractor in H* for the nonlinear one-dimensional compressible
Navier—Stokes equations, J. Differ. Equ. 207(1), 21.

Qin Y., Nonlinear parabolic-hyperbolic coupled systems and their attractors, Operator theory,
advances in PDEs, Vol. 184. Basel-Boston-Berlin, Birkhduser (2008).

Qin Y. (2010) Exponential stability for the compressible Navier—Stokes equations with the
cylinder symmetry in R, Nonlinear Anal., RWA 11(5), 3590.

Qin Y. (2017) Analytic inequalities and their applications in PDEs. Birkhduser Verlag AG.
Qin Y. (2016) Integral and discrete inequalities and their applications, Vol. 1, Linear
inequalities. Springer International Publishing AG.

Qin Y. (2016) Integral and discrete inequalities and their applications, Vol. II, Nonlinear
inequalities. Springer International Publishing AG.

Qin Y., Dong X., Liu X. (2021) Global existence and asymptotic behavior of solutions for the
one-dimensional infrarelativistic model of a compressible viscous gas with radiation, Math.
Meth. Appl. Seci. doi: 10.1002/mma.7760.

Qin Y., Feng B. (2017) Large-time behavior of solutions to a 1D liquid crystal system, Math.
Meth. Appl. Sci. 50(1), 7077.

Qin Y., Feng B., Zhang M. (2012) Large-time behavior of solutions for the one-dimensional
infrarelativistic model of a compressible viscous gas with radiation, J. Differ. Equ. 252(12),
6175.

Qin Y., Feng B., Zhang M. (2014) Large-time behavior of solutions for the 1D viscous
heat-conducting gas with radiation: The pure scattering case, J. Differ. Equ. 256(3), 989.
Qin Y., Hu F. (2009) Global existence and exponential stability for a real viscous
heat-conducting flow with shear viscosity, Nonlinear Anal., RWA 10(1), 298.

Qin Y., Hu G. (2011) Global smooth solutions for 1D thermally radiative magnetohydro-
dynamics, J. Math. Phys. 52(2), 023102.

Qin Y., Hu G., Wang T. (2011) Global smooth solutions for the compressible viscous and
heat-conductive gas, Quart. Appl. Math. 69(3), 509.

Qin Y., Hu G., Wang T., Huang L., Ma Z. (2013) Remarks on global smooth solutions to a
1D self-gravitating viscous radiative and reactive gas, J. Math. A7nal. Appl. 408(1), 19.
Qin Y., Huang L. (2014) Global existence and regularity of a 1D liquid crystal system,
Nonlinear Anal., RWA 15, 172.

Qin Y., Huang L., Ma Z. (2009) Global existence and exponential stability in H* for the
nonlinear compressible Navier—Stokes equations, Commun. Pure Appl. Anal. 8(6), 1991.


https://doi.org/10.1002/mma.7760

140

[119]

[120]

[121]
[122]
[123]
[124]

[125]

[126]
[127]
[128]

[129]

[130]

[131]

[132]

[133]

[134)

[135]
[136]
[137]
[138]
[139]
[140]
[141]

[142]

Bibliography

Qin Y., Huang L., Yao Z. (2008) Regularity of one-dimensional compressible isentropic
Navier—Stokes equations with density-dependent viscosity, J. Differ. Equ. 245(12), 3956.
Qin Y., Huang L., Yao Z. (2009) A remark on regularity of one-dimensional compressible
isentropic Navier—-Stokes equations with density-dependent viscosity, J. Math. Anal. Appl.
351(2), 497.

Qin Y., Huang L. (2010) Regularity and exponential stability of the p-th Newtonian fluid in
one space dimension, Math. Mode Meth. Appl. Sci. 20(4), 589.

Qin Y., Huang L. (2010) Global existence and exponential stability for the p-th power
viscous reactive gas, Nonlinear Anal., TMA 73(9), 2800.

Qin Y., Huang L. (2012) Global well-posedness of nonlinear parabolic-hyperbolic coupled
systems, Frontiers in mathematics. Basel-Boston-Berlin, Birkh#user.

Qin Y., Huang L. (2014) Global existence and regularity of a 1D liquid crystal system,
Nonlinear Anal., RWA, 15, 172.

Qin Y., Jiang L. (2010) Global existence and exponential stability of solutions in H* for the
compressible Navier—Stokes equations with the cylinder symmetry, J. Differ. Equ. 249(6),
1353.

Qin Y., Liu X., Yang X. (2012) Global existence and exponential stability of solutions to the
one-dimensional full non-Newtonian fluids, Nonlinear Anal., RWA 13(2), 607.

Qin Y., Liu X., Yang X. (2012) Global existence and exponential stability for a 1D
compressible and radiative MHD flow, J. Differ. Equ. 253(5), 1439.

Qin Y., Liu X., Wang T. (2015) Global wellposedness of nonlinear evolutionary fluid
equations. Springer Basel, 978-3-0348-0593-3.

Qin Y., Rivera J. E. M. (2003) Exponential stability and universal attractors for the Navier—
Stokes equations of compressible fluids between two horizontal parallel plates in R?, Appl.
Numer. Math. 47(2), 209.

Qin Y., Song J. (2010) Maximal attractors for the compressible Navier—Stokes equations of
viscous and heat conductive fluid, Acta Math. Sci. 30B(1), 289.

Qin Y., Su X., Deng S. (2008) Remarks on self-similar solutions to the compressible Navier—
Stokes equations of a one-dimensional viscous polytropic ideal gas, Appl. Math. Sci. 2(30),
1493.

Qin Y., Wen S. (2008) Global existence of spherically symmetric solutions for nonlinear
compressible Navier—Stokes equations, J. Math. Phys. 49(2), 023101.

Qin Y., Yu X. (2009) Global existence and asymptotic behavior for the compressible Navier—
Stokes equations with a non-autonomous external force and heat source, Math. Meth. Appl.
Sci. 32(8), 1011.

Qin Y., Zhao Y. (2008) Global existence and asymptotic behavior of compressible Navier—
Stokes equations for a one-dimensional isothermal viscous gas, Math. Mode. Meth. Appl. Sci.
18(8), 1183.

R. Racke (1992) Lectures on nonlinear evolution equations, Aspects of mathematics, Vol. 19.
VIEWEG, Bonn.

J. Serrin (1962) On the interior regularity of weak solutions of the Navier—Stokes equations,
Arch. Rational Mech. Anal. 9(1), 187.

Shen W., Zheng S. (1993) On the coupled Cahn-Hilliard equations, Commun. Partial Differ.
Equ. 18(3-4), 701.

Sobolev S. L. (1938) On a theorem of functional analysis, Mat. Sbornik 4, 471; English transl:
Amer. Math. Soc. Trans. 34, 39 [I1.2, I1.9, Notes for II].

Temam R. (1979) Navier—Stokes equations, theory and numerical analysis. North Holland,
Amsterdam.

Temam R. (1983) Navier-Stokes equations and nonlinear functional analysis. Society for
Industrial and Applied Mathematics, Philadelphia, Pennsylvania.

Temam R. (1997) Infinite-dimensional dynamical system in mechanics and physics, 2nd edn.
Springer, New York.

Valli A., Zajaczkowski W. M. (1986) Navier—Stokes equation for compressible fluids: Global
existence and qualitative properties of the solutions in the general case, Commun. Math.
Phys. 103(2), 259.



Bibliography 141

[143]
[144]
[145]
[146]
[147]

[148]
[149]

[150]
[151]
[152]
[153]
[154]

[155]

[156]

[157]

Wen H., Ding S. (2011) Solutions of incompressible hydrodynamic flow of liquid crystals,
Nonlinear Anal., RWA 12(3), 1510.

Wu H. (2010) Long-time behavior for nonlinear hydrodynamic system modeling the nematic
liquid crystal flows, Discrete Conti. Dyna. Syst. 26(1), 379.

Wu S. T. (2011) General decay of solutions for a viscoelastic equation with nonlinear
damping and source terms, Acta Math. Sci. 31(4), 1436.

Xin Z. (1998) Blowup of smooth solutions to the compressible Navier—Stokes equation with
compact density, Commun. Pure Appl. Math. 51(3), 229.

Xin Z., Yan W. (2013) On blowup of classical solutions to the compressible Navier—Stokes
equations, Commun. Math. Phys. 321(2), 529.

Yosida K. (1980) Functional analysis, 6th edn. Springer-Verlag.

Young W. H. (1912) On classes of summable functions and their Fourier series, Proc. Roy.
Soc. London A 87(594), 225.

Zhang T., Fang D. (2006) Global behavior of compressible Navier-Stokes equations with a
degenerate viscosity coefficient, Arch. Rational Mech. Anal. 182(2), 223.

Zhang T., Fang D. (2007) Global behavior of spherically symmetric Navier-Stokes equations
with density-dependent viscosity, J. Differ. Equ. 236(1), 293.

Zhang T., Fang D. (2008) Global wellposed problem for the 3-D incompressible anisotropic
Navier—Stokes equations, J. Math. Pures Appl. 90(5), 413.

Zhang T., Fang D. (2009) A note on spherically symmetric isentropic compressible flows with
density-dependent viscosity coefficients, Nonlinear Anal., RWA 10(4), 2272.

Zhang T., Fang D. (2012) Random data Cauchy theory for the generalized incompressible
Navier—Stokes equations, J. Math. Fluid Mech. 14(2), 311.

Zheng S. (1995) Nonlinear parabolic equations and hyperbolic-parabolic coupled systems,
Pitman series monographs and surveys in pure and applied mathematics, Vol. 76. Longman
Group Limitted, London.

Zheng S., Qin Y. (2001) Universal attractors for the Navier—Stokes equations of compressible
and heat conductive fluids in bounded annular domains in R", Arch. Rational Mech. Anal.
160(2), 153.

Zhong X., Jiang S. (2007) Local existence and finite-time blow-up in multidimensional
radiation hydrodynamics, J. Math. Fluid Mech. 9(4), 543.






Index

A

Angular Variable, 18

Asymptotic Behavior, 17, 81

Asymptotic Behavior of Solutions in Hy, 48
Asymptotic Behavior of Solutions in Hs, 60
Asymptotic Behavior of Solutions in Hy, 81

C

Cauchy—-Schwarz Inequality, 14
Compactness Theorem, 5

Compressible Navier—Stokes Equations, 89
Conservation of Linear Momentum, 89
Conservation of Mass, 89

D
Density Function, 89

E

Embedding and Compactness
Theorem, 5

Embedding Theorem, 5

Ericksen—Leslie System, 89

G

Gagliardo-Nirenberg interpolation
inequalities, 6

Global Existence, 53, 89

Global Existence and Uniform-in-time
Estimates, 22, 62

H

Harmonic Map Equation, 89

Heat Conductivity, 18

Heat Flow Equation for Harmonic Maps, 89
Heat Flux, 18

Holder Inequality, 13

I
Infrarelativistic Model, 17
Initial Boundary Value Problem, 89

L

Lagrangian Coordinates, 18

Large-time Behavior, 111

Liquid Crystal Flow, 89

Liquid Crystal System, 111

Local Thermodynamics Equilibrium, 86

M
Minkowski Inequality, 15

(o)
Optical Director of the Molecules, 89

P
Planck Function, 87

R

Radiation Frequency, 18
Radiative Energy, 18

Radiative Energy Source, 18, 86
Radiative Flux, 18, 87
Radiative Intensity, 18
Regularity, 89

S

Schwarz Inequality, 14
Shen—Zheng Inequality, 10
Sobolev Inequality, 2
Sobolev Space, 1

Source Term, 18

Specific Volume, 18
Stress, 18



144

T

The Classical Bellman—Gronwall Inequality, 7

The Generalized Bellman—Gronwall
Inequality, 8

The Minkowski Inequalities, 14

The Poincaré Inequality, 6

The Uniform Bellman—Gronwall
Inequality, 9

The Young Inequalities, 12

Thermodynamical Relation, 19
Transporting Relation, 89

U
Uniform Estimates, 113
Uniform-in-time Estimates, 19, 53

A%
Viscosity Coefficient, 20

Index



	Contents
	Foreword
	Chapter 1 Preliminary
	Chapter 2 Asymptotic Behavior of Solutions for the One-Dimensional Infrarelativistic Model of a Compressible Viscous Gas with Radiation
	Chapter 3 Global Existence and Regularity of a One-Dimensional Liquid Crystal System
	Chapter 4 Large-Time Behavior of Solutions to a One-Dimensional Liquid Crystal System
	Bibliography
	Index

