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Yves Frégnac, Julien Fournier, Florian Gérard-Mercier, Cyril Monier,

Marc Pananceau, Pedro Carelli, and Xoana Troncoso

Grid Cells and Spatial Maps in Entorhinal Cortex

and Hippocampus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Tor Stensola and Edvard I. Moser

The Striatum and Decision-Making Based on Value . . . . . . . . . . . . . . . 81

Ann M. Graybiel

Decoding the Dynamics of Conscious Perception: The Temporal

Generalization Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Stanislas Dehaene and Jean-Rémi King
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Gy€orgy Buzsáki The Neuroscience Institute, School of Medicine, New York

University, New York, NY, USA

Center for Neural Science, New York University, New York, NY, USA

Pedro Carelli Centre National de la Recherche Scientifique (CNRS-UNIC), Unité
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Introduction

Neural systems are characterized by wide dynamic range, robustness, plasticity, and

yet stability. How these competing ingredients are amalgamated into a system in

which they all ‘live’ peacefully together is a key question to address and understand
in neuroscience. Neuronal firing rates, synaptic weights, and population synchrony

show several orders of magnitude distribution. This skewed dynamics is supported

by a neuronal substrate with equally skewed statistics from the highly skewed

distribution of synapse sizes to axon diameters and to macroscopic connectivity.

How these different levels of anatomical and physiological organizations interact

with each other to perform effectively was the topic of a recent event organized by

the Fondation Ipsen: Colloque Médecine et Recherche on the “Micro-, Meso- and

Macro-dynamics of the brain” (Paris, April 13, 2015). The participants of this

symposium addressed the issues why such a multilevel organization is needed for

the brain to orchestrate perceptions, thoughts, and actions, and this volume grew out

of those discussions. The individual chapters cover several fascinating facets of

contemporary neuroscience from elementary computation of neurons, mesoscopic

network oscillations, internally generated assembly sequences in the service of

cognition, large-scale neuronal interactions within and across systems, the impact

of sleep on cognition, memory, motor-sensory integration, spatial navigation, large-

scale computation, and consciousness. Each of these topics requires appropriate

levels of analyses with sufficiently high temporal and spatial resolution of neuronal

activity in both local and global networks, supplemented by models and theories to

explain how different levels of brain dynamics interact with each other and how the

failure of such interactions results in neurologic and mental disease. While such

complex questions cannot be answered exhaustively by a dozen or so chapters, this

volume offers a nice synthesis of current thinking and work-in-progress on micro-,

meso-, and macrodynamics of the brain.

New York City Gy€orgy Buzsáki

Paris Yves Christen
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Hippocampal Mechanisms

for the Segmentation of Space by Goals

and Boundaries

Sam McKenzie and Gy€orgy Buzsáki

Abstract In memory, the continuous flow of experience is punctuated at mean-

ingful boundaries between one episode and the next. When salient events are

separated by increasing amounts of space or time, memory systems can accommo-

date in two ways. One option is to increase the amount of neural resources devoted

to longer event segments. The other is to maintain the same neural resources with

sacrificed spatiotemporal resolution. Here we review how the spatial coding system

is affected by the segmentation of space by goals and boundaries. We argue that the

resolution of the place code is dictated by the amount of space encoded within

periods of theta. Thus, the theta cycle is viewed as a ‘neural word’ that segregates
segments of space and its cognitive equivalents (memory, planning). In support of

this conclusion, we report that, as rats traverse a linear track, the beginning of a

journey is represented at the falling phase of theta whereas the journey’s end is

represented on the ascending phase. The current location is represented in the

temporal context of the past and future event boundaries. These results are

discussed in relation to the changes in physiology observed across the longitudinal

axis of the hippocampus, with a special consideration for how sequence information

could be integrated by downstream ‘reader’ neurons.

Introduction

A typical morning is naturally described by a sequential list of events that are

demarked by completion of sub-goals, like making a pot of coffee, leaving the

apartment, and encounters with people during the subway commute. This

discretization of experience has a profound influence on how information is learned

and recalled (Kosslyn et al. 1974; Block 1982; Kahl et al. 1984; McNamara 1986;

S. McKenzie • G. Buzsáki (*)
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Mensink and Raaijmakers 1988; Montello 1991; Howard and Kahana 2002; Kurby

and Zacks 2008; Unsworth 2008; Kiliç et al. 2013). Depending on the spacing of

salient events, varying extents of space and time can be chunked together in

memory. For instance, the start and end points of journeys of different length

serve as salient boundaries that influence memory segmentation (Downs and Stea

1973; Golledge 1999; Bonasia et al. 2016).

Memory for events that unfold over space and time is known to depend upon the

hippocampus (Tulving and Markowitsch 1998; Eichenbaum 2004; Buzsáki and

Moser 2013). Recordings from hippocampal place fields have shown that salient

locations and physical boundaries influence the neural representation of space. For

example, when the physical size of a familiar space is extended, place field size

shows a concomitant expansion (O’Keefe and Burgess 1996; Diba and Buzsáki

2008). Rescaling of the place field size has the effect of decreasing the resolution of

the hippocampal code for that space. The critical role boundaries play in dictating

the organization of memory may be due to an underlying influence on place field

organization (Krupic et al. 2015).

Map-based spatial navigation has at least four requirements: first is the existence

of a cognitive map (O’Keefe and Nadel 1978); second is self-localization on that

map (O’Keefe and Nadel 1978); third is an appropriate orientation of the map

assisted by the head-direction system (Ranck 1984); and fourth is the calibration of

the distance scale of the map with the help of external landmarks. This latter

requirement is essential for allocating neuronal resources for any journey and for

an a priori determination of the place field size and their distances from each other.

Currently, there is no agreed-upon mechanism to explain how the hippocampus or

surrounding regions scale the representation of space.

The sequential firing of cell sequences bounded within the prominent hippo-

campal theta rhythm (Skaggs et al. 1996; Dragoi and Buzsáki 2006; Foster and

Wilson 2007; Wang et al. 2014) may be essential for this scaling. As an extension to

existing theories, we propose that the clustering of cells within theta periods defines

event segmentation (Gupta et al. 2012; Wikenheiser and Redish 2015). In building

this argument, we first discuss the influence that goals and landmarks have on the

hippocampal representation of space. Then, we present recent electrophysiological

evidence that the representations of the boundaries tend to bookend theta

sequences. This observation suggests that the spatial scale of memory and the

amount of allotted resources are dictated by the chunking of space within theta,

which depends upon the distance between salient landmarks. Finally, we discuss

outstanding challenges for sequence-based computations in the hippocampus and,

potentially, other regions of the brain.

2 S. McKenzie and G. Buzsáki



Goals and Other Boundaries Anchor and Alter

the Hippocampal Place Code

Boundaries, goals and landmarks have been shown to anchor place fields (Muller

et al. 1987; Knierim et al. 1995; Rivard et al. 2004). The importance of environ-

mental geometry was clearly demonstrated in one study where rats explored a

walled open arena and place fields were recorded. When rats were returned to the

same space without walls, the place fields became much more diffuse and irregular

(Barry et al. 2006). The walls were essential to the place field integrity. This same

study found that cells that fire on one side of a boundary tend not to fire on the other,

showing that spatial division causes segmentation of the hippocampal representa-

tion (Barry et al. 2006). Finally, in a study in which rats were trained to run down a

linear track starting at different points, place fields tended to be anchored to either

the start or end of journey (Gothard et al. 1996; Redish et al. 2000b). Fields closer to

the moveable start location shifted to maintain a fixed spatial distance from the start

box, whereas those fields closer to the track’s end maintained their place field

location even as the start box location was moved. A subset of neurons, typically

with place fields in the center of the track, maintained their firing fields to the distal

room cues.

These observations and others (O’Keefe and Burgess 1996) led to the hypothesis
that place fields are formed by summation of input from boundary vector cells

(BVCs) that fire maximally when the subject is at particular distance from a border

at a preferred orientation. According to this model, hippocampal cells will fire in

different locations according to the orientation and distance from a border coded by

pre-synaptic neurons. In support of this model, cells that fire along boundaries have

been found in the medial entorhinal cortex (mEC), the parasubiculum and the

subiculum (Solstad et al. 2008; Lever et al. 2009). Importantly, if these cells fire

in response to a border oriented north/south in one environment, for example, they

will also fire, on the equivalent side of a parallel wall inserted in the same

environment, in response to similarly oriented walls in other environments, and

even to gaps that restrict movement instead of walls (Lever et al. 2009). The

generality of the tuning curve suggests that the BVCs, and border cells, are truly

sensitive to the edges of space.

Head direction cells that fire when subjects face a particular direction (Taube

et al. 1990; Sargolini et al. 2006; Giocomo et al. 2014; Peyrache et al. 2015) may be

crucial for anchoring place fields to the environmental boundaries. Consistent with

this conclusion is the observation that head direction cells and place cells rotate in

concert when landmarks are shifted (Knierim et al. 1995). Interestingly, head

direction cells can align to different compass headings within connected regions

of space (Taube and Burton 1995), further showing the critical role environmental

boundaries have in segmenting the representation of space.

Another important component of the spatial coding system is the grid cells

observed in mEC (Hafting et al. 2005). These cells tile the environment with

multiple firing fields that are arranged in a hexagonal grid. Although the grid cell

Hippocampal Mechanisms for the Segmentation of Space by Goals and Boundaries 3



representation was first assumed to be independent of environmental boundaries

and the size of the testing arena (Fyhn et al. 2004; Hafting et al. 2005), recent grid

cell studies have shown the critical role that boundaries play in dictating firing field

location. In symmetrical environments, the grid appears to be aligned to the

boundaries of the space (Stensola et al. 2015), whereas in non-symmetrical, open

arenas grid spacing is strongly influenced by the angle at which the environmental

walls meet (Krupic et al. 2015). Similarity analysis of the representation of contig-

uous regions of space reveals that sharp turns around corners in a zig-zag maze

cause a de-correlation of the representation of neighboring spatial bins (Derdikman

et al. 2009; Whitlock and Derdikman 2012). These low correlations were hypoth-

esized to be the result of a reset of the integration of the distance travelled from the

preceding wall (Derdikman et al. 2009). Similar resets have been observed in the

hippocampus due to 180� turns on linear tracks (Redish et al. 2000a). Overall, these
results show that the grid fields, like place fields and head direction tuning, are

locked in the spatial boundaries.

In addition to walls and physical barriers, rewarded locations are also route

boundaries that profoundly affect the hippocampal representation of space. Several

studies have demonstrated that changing where an animal is rewarded causes cells

to fire in different positions—to remap (Markus et al. 1995; Dupret et al. 2010;

McKenzie et al. 2013). This remapping results in an accumulation of place fields at

the goal locations (Dupret et al. 2010). Over-representation of goal locations

depends upon NMDA receptor-dependent plasticity and correlates with learning

(Dupret et al. 2010, 2013).

Many studies have emphasized the random nature in which place fields remap

(Muller and Kubie 1987; Leutgeb et al. 2004; Vazdarjanova and Guzowski 2004;

Rolls 2013; Alme et al. 2014; Rich et al. 2014). However, the remapping of place

fields to goal locations can be predicted. In a recent study that addressed which cells

became goal cells, rats were trained to find a new reward site in a maze in which

several locations were already rewarded. Cells that began to fire at the new goal

were those that had fired to other, previously learned goal locations (McKenzie

et al. 2013). This distortion that reward plays on the spatial representation can be

appreciated in Fig. 1. In this experiment, rats were trained to retrieve a cereal

reward buried within pots that differed by how they were scented and what they

were filled with (see McKenzie et al. 2014 for full details). To visualize these

representations, a principal component analysis was conducted on the mean rate

vectors as rats sampled each pot in each position. The first two principal compo-

nents corresponded to two positions. Differences in reward potential scaled the

representations along these dimensions, as if by causing a scalar increase in the

firing rates of cells contributing to these components. Note that the rewarded events

were associated with representations closer to the origin, due to cells that fired

similarly to the rewarded item irrespective of its position (Lee et al. 2012;

McKenzie et al. 2014). Therefore, the presence of reward caused some locations

to be represented more similarly than others.

Grid cells, head direction cells and place cells are all anchored to boundaries and

goals. In the hippocampus the presence of a goal location not only dictates where a

4 S. McKenzie and G. Buzsáki



cell fires, but also which cells are active. In the following sections, we will argue

that these salient locations anchor and distort the hippocampal spatial map by

biasing which cells initiate and finish cell sequences bounded by the periods of

the theta rhythm.

The Hippocampus Organizes the Spatial Code into

Temporal Sequences

In addition to spatial location, hippocampal firing is modulated by the theta rhythm,

which, in the rat, is a 6- to 12-Hz oscillation that can be observed in the local field

potential (LFP) throughout the hippocampal system (Grastyan et al. 1959;

Vanderwolf 1969; Buzsáki 2002). Early models of the origin of theta posited that

hippocampal cells oscillated at theta due to an external pacemaker drive from the

medial septum (Petsche et al. 1962; Lewis and Shute 1967; Lee et al. 1994). It is

now clear that theta-like activity can be induced in hippocampal slices (Konopacki

et al. 1988; Goutagny et al. 2009) and that there are multiple theta generators

(Buzsáki et al. 1986; Kamondi et al. 1998) driven by the entorhinal cortex (Mitchell

and Ranck 1980; Alonso and Llinás 1989), CA3 (Konopacki et al. 1988; Kocsis

et al. 1999), the subiculum (Jackson et al. 2014), and other areas within the

hippocampal circuit (Konopacki et al. 1988). Even single cells show resonance at

theta frequencies (Leung and Yu 1998; Stark et al. 2013; Vaidya and Johnston

2013). Modeling work has demonstrated that a network of resonant cells can

−50 −25 0 25 50
−40

−20

0

20

40

A+

C+

B− D−

A+
C+

B−
D−

PC1

PC
2 Position 1

Position 2

Rewarded (+)

Not Rewarded (-)

Fig. 1 Coding of rewards across different locations. CA1 and CA3 neurons (N¼ 438) were

recorded as rats sampled rewarded (+) and not rewarded (�) pots (N¼ 4) that could appear in

different positions (N¼ 4). Pots differed by odor and the material in which hidden reward was

buried (labeled A, B, C, D). The mean firing rate during sampling of the 16 conditions (four pots,

four positions) was calculated to generate a 438� 16 firing rate matrix. The first two principal

components (PC) of this matrix for eight item/place combinations are plotted. The PCA was

computed over all 16 item and place combinations
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develop rhythmic firing activity (Traub et al. 1989; White et al. 2000; Thurley

et al. 2013; Tchumatchenko and Clopath 2014). Regardless of the origin of theta,

the strong rhythmic activity provides temporal windows in which presynaptic

inputs can be integrated, other windows in which cells fire, and windows of

refractoriness in which the network is relatively silent (Buzsaki 2006).

Hippocampal pyramidal cells fire maximally at the trough of local theta (Rudell

et al. 1980; Csicsvari et al. 1999). Therefore, the actual firing rate profile as subjects

run through a cell’s place field is a series of rhythmic bursts on a skewed Gaussian

place field envelope. In a purely rate-based coding scheme, the fact that both

position and theta phase dictate spiking probability presents a fundamental problem

for a downstream place decoder that relies on firing rate estimation. Low firing rates

could be indicative of two scenarios: either the subject is far from the center of the

cell’s place field, or the rat was in the center of the place field but during a

non-preferred phase of theta.

Resolving this ambiguity depends upon the time scale with which presynaptic

input is integrated. A systematic relationship between spiking phase and position

suggests that the hippocampus is capable of sub-theta period resolution. Upon entry

to the place field, cells tend to spike at late phases of theta, after the activity of the

majority of other cells. Moving through the place field, not only does the firing rate

increase but there is also a systematic advance in the phase in which the cell fires. In

the center of the field, where firing rate is the highest, cells spike just before the

chorus of other neurons. Upon exiting the field, the cell’s spikes occur at early theta
phases, preceding the bulk of spikes from other cells. This systematic relationship

between position and the theta phase in which a cell fires is known as theta phase

precession (O’Keefe and Recce 1993; Skaggs et al. 1996).

There is a close relationship between the change in rate and the change in firing

phase across different types of behavior. For example, during rapid eye movement

sleep, when the subject is clearly not physically moving through space, phase

analysis can be done on action potentials emitted early or late in spike trains.

Like in the experiments with rats running through space, spikes initiating the

train are observed on late phases whereas late spikes occur on early phases (Harris

et al. 2002). This phase advance can be observed in other situations. In virtual

reality, phase advancement is observed in cases when spiking is fixed to virtual

positions (Harvey et al. 2009; Ravassard et al. 2013) and in cases where spiking

seems to occur randomly in the virtual environment (Aghajan et al. 2014). When

rats run on running wheels (Harris et al. 2002; Pastalkova et al. 2008; Wang

et al. 2014) or treadmills (Kraus et al. 2013), cells can become tuned to specific

time intervals into running, analogous to the place field sensitivity to space. As time

spent running elapses through the ‘time field,’ firing rates increase and decrease and
precession can be observed (Pastalkova et al. 2008; Wang et al. 2014). Intriguingly,

in wheel running protocols that lack a memory demand, neurons tend to fire for

seconds at a fixed phase (Hirase et al. 1999; Pastalkova et al. 2008). Phase

precession seems to be linked to the waxing and waning of firing rates more so

than the absolute firing rate observed on a trial-to-trial basis. Phase precession is

therefore a fundamental organizing principal for changes in the hippocampal state.

6 S. McKenzie and G. Buzsáki



Despite decades of debate and study, there is no agreed-upon biological mech-

anism for phase precession. One class of model posits that phase precession is a

reflection of spikes being driven by an intracellular oscillation that is a higher

frequency than the theta observed in the LFP (O’Keefe and Recce 1993; O’Keefe
and Burgess 2005; Hasselmo et al. 2007). Intracellular recordings of place cells

show that sub-threshold oscillations increase in frequency as rats traverse a place

field and that action potentials lock to peaks on this intracellular rhythm. This

frequency increase rides on top of a place-locked depolarization (Harvey

et al. 2009). Several models predict that that depolarization directly drives the

higher frequency oscillation which causes spikes to precess (Kamondi et al. 1998;

Lengyel et al. 2003). A similar conversion of a rate code into a temporal code has

been suggested for spatial tuning of entorhinal grid cells, where cells are thought to

integrate head direction and velocity, rather than position, into changes in firing

frequency (O’Keefe and Burgess 2005; Hasselmo et al. 2007). This class of model

is challenged by the observation that silencing the hippocampus for >200 ms via

hippocampal commissural stimulation does not cause a reset in spiking phase

(Zugaro et al. 2005). Therefore spiking phase is likely determined on a cycle-to-

cycle basis, a conclusion that is at odds with oscillatory interference models for

hippocampal phase precession.

A single cell mechanism of phase precession has been proposed that focuses on

the rhythmic dendritic excitation that is phase synchronized with somatic inhibition

(Kamondi et al. 1998; Magee 2001; Losonczy et al. 2010). Moving to the place field

center causes greater amplitude dendritic excitation that progressively overcomes

somatic inhibition at early times, thus causing spikes early and often (Mehta

et al. 1997; Kamondi et al. 1998). This type of model requires an additional

mechanism—spike adaptation (Kamondi et al. 1998) or delayed inhibition

(Losonczy et al. 2010) have been suggested—to prevent late phase spiking upon

place field departure. Therefore, the decrease in the period between bursts of spikes,

relative to the LFP, is driven directly by increases in depolarization. Importantly,

tangential passes through place fields that miss crossing the field center result in a

symmetric place by position relationship, one that roughly mirrors how rate varies

across position (Huxter et al. 2008). This type of behavior is predicted if peak rates

must be achieved to prevent late phase spiking upon place field exit.

There have also been network models of phase precession. In a simple version of

the model, CA3 place cells are wired in a feedforward chain where the cells most

strongly driven fire first and at the highest rate (Jensen and Lisman 1996; Tsodyks

et al. 1996; Lengyel et al. 2005). These cells then excite, through recurrent

connections in CA3 and perhaps the dentate, other cells with place fields in front

of the animal. Cell spiking in this model is driven both by place-related excitation

and from activation of other cells with place fields between the subject and the

coded position. The synaptic activation causes a time (phase) delay proportional to

the distance between the current position and the cell’s place field due to greater

numbers of intervening cells that must be chained for more distant locations. This

type of model places a heavy onus on pre-existing wiring as phase precession can be

observed for first time passes through a place field (Feng et al. 2015) and in unique
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trajectories in two-dimensional environments (Harris et al. 2002; Huxter

et al. 2008; Jeewajee et al. 2014). These results necessitate pre-existing chains for

every running direction for every position, an unlikely scenario.

In another type of network model that is not mutually exclusive with those

mentioned, the most excited cells fire first, which drives inhibitory cells to delay

the activity of other place cells that code for more distant positions (Dragoi and

Buzsáki 2006; Maurer et al. 2006; Geisler et al. 2007; Stark et al. 2013). Silencing of

soma-targeting interneurons (Royer et al. 2012), or decoupling retrograde communi-

cation between pyramidal and inhibitory cells through endocannabinoid receptor

antagonism (Robbe et al. 2006; Robbe and Buzsáki 2009; Losonczy et al. 2010),

causes large disruptions in assembly coordination and a redistribution of spiking

across theta phase. These findings show a clear role of inhibition in phase precession.

Several observations support network models of precession. Place cells show

trial-to-trial variance in their firing rates that cannot be explained by changes in

position or theta phase alone (Lánský et al. 2001). Statistical models have shown

that the precise trial-to-trial timing can be predicted by the spiking activity of other

neurons, as would be expected if sequencing was brought about through a chaining

of co-active ensembles oscillating faster than the baseline LFP (Harris et al. 2002;

Dragoi and Buzsáki 2006; Geisler et al. 2007). However, principal cells respond to

many environment stimuli and therefore a misspecification of the model may

mistake common external modulation for a causal network interaction (Chadwick

et al. 2015). Therefore further experimentation is needed to resolve whether theta

sequences truly reflect network level synchronization.

Theta Sequences Code for Behaviorally Relevant Spatial

Segments

Early investigators realized that phase precession could reflect cell sequences

chunked into theta periods (Skaggs et al. 1996; Dragoi and Buzsáki 2006; Foster

and Wilson 2007). Theta periods tend to begin with cells that have mean firing

fields behind the present location and end with cells with mean fields slightly ahead.

Accordingly, decoding of position on sub-theta time scales reveals spatial

sequences that begin behind the animal and sweep in front (Itskov et al. 2008;

Maurer et al. 2012).

Theta sequences reflect about a ten-times compression of the timing of events in

the real world to time lags observed during theta (Skaggs et al. 1996) that increases

with the size of the environment (Diba and Buzsáki 2008). The compression ratio

can be reached by taking the cross correlation of pairs of spike trains and consid-

ering the lag in the peak at different time scales. For two place cells, the cross

correlation will have a global maximum at a lag that is proportional to the distance

between the place fields (Dragoi and Buzsáki 2006). These experiments are typi-

cally conducted on linear tracks with stereotyped velocity to allow a rough

8 S. McKenzie and G. Buzsáki



equivalence between space and time. In addition, the cross correlation is strongly

modulated by theta. The lags of the local maximum, on theta time scales, correlate

with the time taken to traverse between the place fields. The ratio of these lags

reflects the degree of compression.

A recent study explicitly tested the link between theta phase precession and theta

sequencing as rats explored a novel linear track (Feng et al. 2015). This study found

that phase precession was observed on the first trial, though theta sequences were

not. The sequencing emerged rapidly, by the second trial, and this development

coincided with a decrease in the phase variability in which cells fired upon place

field entry. Therefore, theta sequencing seems to be a natural consequence of a

group of cells that phase precess at the same rate (slope) and begin firing at the same

phase (Dragoi and Buzsáki 2006). It is unknown what causes cells to fire at more

reliable theta phases. The known importance of inhibitory cells in dictating firing

phase (Royer et al. 2012) and the hypothesized role of inhibition in phase preces-

sion (Kamondi et al. 1998; Geisler et al. 2010; Losonczy et al. 2010; Stark

et al. 2013) suggest a potential candidate for this phase alignment may be plasticity

between excitatory and inhibitory cells. Interestingly, cells recorded at the same site

tended to have more uniform phases upon place field entry (Feng et al. 2015),

consistent with models in which interneurons coordinated place cells within the

range of their axonal arbor.

There is growing evidence that theta sequences represent a meaningful segmen-

tation of space. In one experiment that addressed this issue, rats were habituated to a

linear track and the place field order and theta sequences were identified. Then, the

track was expanded, a manipulation known to cause concomitant increases in place

field size (O’Keefe and Burgess 1996). Remarkably, the theta time-scale lag

remained fixed, thereby causing an increase in the compression of the amount of

behavioral time represented within a theta cycle (Diba and Buzsáki 2008).

A recent experiment found that the magnitude of compression observed within

each theta sequence varied significantly according to where the rat was on the maze.

The amount of space represented ahead of, or behind, the rat varied systematically

according to where the rat was relative to the experimentally defined landmarks

(Gupta et al. 2012). This heterogeneity of theta sequence content suggests that one

role of theta could be to divide space into meaningful segments.

In the aforementioned study, theta sequences could have chunked space

according to the physical geometry or due to some process related to route planning.

To dissociate these two possibilities, rats were trained to traverse around a circular

track, collecting rewards by waiting a variable amount of time at each of three

locations (Wikenheiser and Redish 2015). Rats had a choice to stay and wait for a

reward or run to the next location, which was the optimal strategy if the wait time

for reward at the more distant site was shorter (Wikenheiser et al. 2013). When

activity on the late phases of theta was analyzed, there was a strong correlation

between the distance the rat was about to run and the places represented by the

active cells. Different cells spiked in the same location depending on where the rat

would run next. Importantly, there was no relationship between the distance the rat

had just run and the distances represented in these late theta phases. These data
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showed that hippocampal activity during theta could reflect more than a represen-

tation of current state and may reflect a vicarious trial-and-error important for

planning (Schmidt et al. 2013).

A similar observation has been made by decoding position using CA3 firing rates

at the choice points. This analysis reveals transient moments in which CA3

represented positions ahead of the rat, sweeping down the potential paths before

the rat made its decision (Johnson and Redish 2007). These findings are closely

related to the fact that the phase of spiking contains information about heading

direction in two-dimensional environments (Huxter et al. 2008), as would be

expected if theta sequences code for upcoming positions.

Overall, studies to date have demonstrated that theta sequences always begin

with place representations behind the subject and end with representations of the

future. However, the exact span coded by theta sequences has not been addressed

carefully. If the cells that are active at the trough of the CA1 theta cycle code for the

current position in the context of past and future locations, how is the span of the

past and future determined at the physiological level? One possibility is that theta

sequences code for a fixed amount of time or distance around the current location.

Alternatively, each geometric segment (e.g., individual corridors) and event along

the journey could be represented separately as a ‘neural word’ and such words

would be concatenated, perhaps via sharp wave ripples (Foster and Wilson 2006;

Davidson et al. 2009; Wu and Foster 2014), to represent the entire journey from the

beginning to the end. Yet another possibility is that the start and end (reward)

locations of a complex trajectory through a maze are coded in a given cycle. This

final option raises the question of just how much space could be segmented within a

theta cycle.

Data collected in our lab demonstrate that theta periods segment the environ-

ment either according to goals or to environmental geometry. As a rat ran down the

track, the probability that it occupied any given position given the observed CA1

spiking pattern was computed by comparing the instantaneous rates to a template of

the session averages, the cells’ place fields. When these posterior probability

distributions were calculated at every theta phase (Zhang et al. 1998), we observed

theta sequences that started at one end of the track and finished at the other (Fig. 2).

Thus, in addition to the goal being represented at late theta phases (Wikenheiser and

Redish 2015), our findings show that the start location is represented at early

phases. Combining these observations, the phase code is defined by the current

location in the context of a past bounded by a journey’s beginning and a future

bounded by the journey’s end. Separation of the future and past boundaries is

assured by the strongest inhibition at the peak of the theta cycle (Buzsáki 2002).

Recall the studies in which place fields expanded when familiar environments

were stretched. How do place fields expand with the environment? An answer

begins to emerge when one considers that the theta sequences are anchored to the

boundaries. The amount of space represented within the sequence, the compression,

dictates the resolution of the spatial code. When boundaries are moved apart, either

in the stretched environments or for journeys of different lengths, theta sequences

that are bookended by those boundaries necessarily represent more space which, in
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turn, causes place fields to expand (Diba and Buzsáki 2008). As Redish and

colleagues have shown, subjects can, on a moment-to-moment basis, allocate

computational resources as a function of the planned trajectory length. Long

trajectories were associated with larger place fields, and thus the resolution of the

spatial code for these trials was coarser (Wikenheiser and Redish 2015). Our

findings expand on these observations by demonstrating that it is not only the

goal but both the beginning and end of a continuous stretch (such as a linear

track) that are simultaneously represented by the theta assemblies. In our linear

track experiments, the environmental boundaries and the goal locations were the

same, and therefore further studies are needed to determine whether the route

boundaries or the environmental geometry dictated the reliable phase coding of

the start and stop locations.

Given the rapid formation of place fields upon entry into a new environment

(Frank 2004; Dragoi and Tonegawa 2011; Feng et al. 2015), there must be some

mechanism that estimates the spatiotemporal extent of the event segment to allocate

resources appropriately. The fact that nearby neurons exhibit similarly sized place

fields (Jung et al. 1994; Kjelstrup et al. 2008) suggests that there is a characteristic

segment size for a species that moves through space at a particular rate. It is

possible that salient events tend to happen at regular temporal or spatial intervals

(Sreekumar et al. 2014). Alternatively, the segment size may depend upon internal

limitations of hippocampal processing, for example, the limited amount of time in

which information can be held across a delay or a limited amount of time a cell can

fire at a faster rate than the overall population (Geisler et al. 2010). It is telling that,

Fig. 2 Left, as rats run on a 1.2-m linear track, the decoded probability (high probability¼ red) of
the rat occupying each track position (y-axis) is calculated at each phase of theta (x-axis, white sine
wave). In each subplot, the range of the white sine wave demarks the rat’s actual position.

Generally, there is a high probability of the rat occupying its actual position. However, within a

subplot, theta sequencing can be visualized by diagonal streaks of high probability that begin at the

START position on the falling phase of theta and finish at the END position at the rising phase.

Right, the same data averaged across all positions actually occupied by the rat. Note that theta

sequences are bookended by representations of the linear track START and END positions at the

falling and rising phases, respectively. Note that decoding was done on simultaneous ensembles

measured across 4 mm of the hippocampus
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even in large stretches of ‘open space,’ rodents choose certain spots as ‘home bases’
(Eilam and Golani 1989), perhaps to subdivide the space into spatial segments

tailored for hippocampal processing. A recent study of neurons in the ventral

hippocampus showed that, with learning, place fields shrank to encompass the

space that equivalently predicted which objects contained a hidden reward

(Komorowski et al. 2013). In this study, the default place field size was a poor

predictor of the spatial extent of the context boundaries and therefore the system

was modified to resolve the mismatch.

In an intriguing parallel to the organization of theta sequences, firing of cells in

the ventral striatum has been shown to phase precess relative to hippocampal theta

(van der Meer and Redish 2011; Malhotra et al. 2012). Cells in the ventral striatum

showed ramped firing as subjects ran towards goals. Remarkably, striatal phase

precession occurred over a long spatial extent for distant goals and over much

shorter spatial segments when goals were close together. The phase precession

appeared to be bookended by experimentally defined boundaries—the goal sites.

Striatal activity might be driven by cells in the ventral hippocampus, which showed

precession (Kjelstrup et al. 2008), ramped firing towards goals (Royer et al. 2010)

and connectivity with the ventral striatum (Groenewegen et al. 1987). These results

suggest that downstream areas may be sensitive to how space is segmented by

hippocampal theta sequences (Pezzulo et al. 2014), though future studies in which

both regions are recorded simultaneously are needed to assure the link between

these two observations.

How Could Theta Sequences Be Integrated by Post-synaptic

Readers?

Aside from the distance between place fields, there are other factors that influence

the temporal lags in cell activity. The mutual dependency of the distance between

place fields and anything else in determining spiking phase lag seriously compli-

cates the aforementioned models for the computation role of cell sequences.

Cells recorded in different regions of the hippocampus have different properties.

Septal CA1 cells tend to have smaller, unimodal place fields whereas more tempo-

ral cells have larger, multi-modal fields (Jung et al. 1994; Kjelstrup et al. 2008;

Royer et al. 2010; Komorowski et al. 2013). Hippocampal place cells have been

shown to phase precess, with spikes initiating the spike train emitted on the late

phases of local theta (Maurer et al. 2005; Kjelstrup et al. 2008). Therefore,

considering a pair of cells with their place fields centered at the same location,

the timing difference between spikes will change in sign as the rat crosses the place

fields’ common center. A range of place field sizes will cause a range in timing

offsets, all of which equivalently code for the same position.

The situation is complicated further by the systematic shift in theta phase across

the longitudinal axis of the hippocampus. Simultaneous recording of the LFP or
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current source density analysis has shown that theta is a traveling wave (Lubenov

and Siapas 2009; Patel et al. 2012) that begins at the most septal end of the

hippocampus closest to the subiculum and moves temporally and proximally,

resulting in a 180� phase shift at the two poles of the hippocampus (Patel

et al. 2012). The speed of the travelling wave and, therefore, the maximal phase

offset also change between waking and REM sleep (Patel et al. 2012). Importantly,

the phase preference for spiking, with respect to local theta, does not change across

the longitudinal axis (Patel et al. 2012) and, as mentioned, the phase onset and

offset of precession are the same regardless of cell location (Maurer et al. 2005;

Kjelstrup et al. 2008; Patel et al. 2012). Therefore, every instant in time is associ-

ated with cells at different parts of their phase precession cycle.

This observation led to the realization that moments in time do not represent

points in space but could instead represent line segments (Lubenov and Siapas

2009). Since there are a range of phases that can be observed in any snapshot of

time, there could theoretically be a range of represented positions, if spike phase

codes for a point in space. Unless cells had equivalent place fields and were located

at the same transverse lamellae along the longitudinal axis, the time delays between

cells would not convey any reliable information about the distance between the

place fields. The reports for this correlation in the literature are likely due to the

sampling from ensembles that conform to these restrictions (Dragoi and Buzsáki

2006; Feng et al. 2015).

It is unknown whether the hippocampus acts as a single computational unit or

whether transverse lamellae have different, and independent, computational roles

(Andersen et al. 2000; Strange et al. 2014). If lamellae have a relative degree of

independence, then the conditions could be met for phase lags to represent place

field separation. Early track tracing studies showed mainly parallel fibers along

transverse lamellae, implying that the trisynaptic loop is the fundamental

processing module that repeats across the longitudinal axis (Andersen et al. 1969,

2000; Tamamaki and Nojyo 1991). Subsequent cell tracing studies revealed that the

Schaffer collateral fans broadly from CA3 to CA1, thus allowing for substantial

integration across the longitudinal axis (Amaral and Witter 1989; Ishizuka

et al. 1990; Li et al. 1994), in addition to the well-known CA3 recurrent collaterals

(Lorente De N�o 1934; Wittner et al. 2007). Furthermore, the axonal arborization of

GABAergic cells can innervate as much 800 μm of the longitudinal axis, allowing

for considerable inter-laminar crosstalk (Sik et al. 1995; see also Sloviter and Lømo

2012).

Despite this newer anatomical evidence, others have argued for relative inde-

pendence of the transverse lamellae (Sloviter and Lømo 2012). Stimulation of a

small region of CA3 causes maximal axonal volleys in CA1 regions in the same

transverse plane (Andersen et al. 2000). Lesion and inactivation studies have also

shown dissociations in the function of the septal and temporal hippocampus.

Lesions to the septal hippocampus cause spatial memory deficits whereas those to

the temporal hippocampus are often associated with anxiolytic measures and

motivation (Moser et al. 1995; Kjelstrup et al. 2002; Pentkowski et al. 2006; Bast

et al. 2009; Jarrard et al. 2012; Kheirbek et al. 2013; Wu and Hen 2014). There are
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also large differences in efferent and afferent connections as well as sharp genetic

variations that delineate regions across the longitudinal axis (reviewed in Strange

et al. 2014). In further support of anatomical segregation is the finding that place

cells in the septal versus the temporal hippocampus have been shown to remap at

different rates (Komorowski et al. 2013) and to possess different place field

properties on the radial arm maze, linear track, and zig-zag maze (Royer

et al. 2010).

The anatomy and physiology of CA1 projections to the subiculum strongly

suggest that single subicular cells have access to a large range of the longitudinal

axis of CA1. Cell reconstruction studies have shown that CA1 cells project to

“slabs” of the subiculum that span a narrow range of the transverse axis but up to

2 mm along the longitudinal axis (Tamamaki and Nojyo 1990, 1991). Those

subicular cells would integrate across a broad range of hippocampal theta phases

(~60�). In vitro comparisons of physiology in hippocampal slices versus that in an

intact preparation showed large differences in the theta phase offsets between CA3

and the subiculum and in the theta frequency, suggesting that the slice preparation

severed processes necessary for communication across lamellae (Jackson

et al. 2014). Physiological studies, like those done between CA3 and CA1 (Ander-

sen et al. 2000), are needed to determine the strength of these cross-laminar

projections.

If cross-laminar communication is substantial, the compression that had been

hypothesized to occur over time may occur instead over co-active neurons firing at

different local phases (Lubenov and Siapas 2009). In this scheme, information is

communicated by which neurons are co-active and not by their inter-spike intervals

(Harris 2005). Segmentation of the environment would still be evidenced by which

regions of space were represented by the ensemble at each phase, though these

segments may not change within a theta period (for a different perspective see

Shankar and Howard 2015).

Conclusion

Goal locations have been shown to discretize memory and to segment the hippo-

campal representation of space. Here we have presented evidence that salient

boundaries play an important role in defining how theta sequences begin and end.

We propose that this segmentation anchors place cell firing and consequently the

organization of memory. However, basic questions remain as to how the hippo-

campal spatial code becomes coordinated during theta. What causes different areas

of space to be chunked within a theta sequence and consequently the resolution of

the spatial code? How do certain locations become over-represented? Are these

phenomena related? How does a planning-related signal shift the represented

position further ahead (or behind) the rat with the expected (or realized) journey

length? Simultaneous recordings from across the longitudinal axis of the hippo-

campus and between the hippocampus and its output regions will help resolve the
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spatial and temporal scale in which information is integrated. Finally, behavioral

tests combined with recordings are required to establish whether segmentation of

space into theta sequences is linked to how subjects behaviorally segment experi-

ence. Future experiments that address these questions may reveal important evi-

dence as to how the continuous nature of experience becomes discretized in our

memory.
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Lánský P, Fenton AA, Vaillant J (2001) The overdispersion in activity of place cells.

Neurocomputing 38–40:1393–1399
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Abstract Some 320 million years ago (MYA), the evolution of a protective

membrane surrounding the embryo, the amnion, enabled vertebrates to develop

outside water and thus invade new terrestrial niches. These amniotes were the

ancestors of today’s mammals and sauropsids (reptiles and birds). Present-day

reptiles are a diverse group of more than 10,000 species that comprise the sphen-

odon, lizards, snakes, turtles and crocodilians. Although turtles were once thought

to be the most “primitive” among the reptiles, current genomic data point toward

two major groupings: the Squamata (lizards and snakes) and a group comprising

both the turtles and the Archosauria (dinosaurs and modern birds and crocodiles).

Dinosaurs inhabited the Earth from the Triassic (230 MYA), at a time when the

entire landmass formed a single Pangaea. Dinosaurs flourished from the beginning

of the Jurassic to the mass extinction at the end of the Cretaceous (65 MYA), and

birds are their only survivors. What people generally call reptiles is thus a group

defined in part by exclusion: it gathers amniote species that are neither mammals

nor birds, making the reptiles technically a paraphyletic grouping. Despite this, the

so-defined reptiles share many evolutionary, anatomical, developmental, physio-

logical (e.g., ectothermia), and functional features. It is thus reasonable to talk about

a “reptilian brain.”

Reptilian Brain Structure and Evolution

The diversity of reptiles and their evolutionary relationship to mammals make

reptilian brains great models to explore questions related to the structural and

functional evolution of vertebrate neural circuits. To this end, comparative studies

G. Laurent (*) • J. Fournier • M. Hemberger • C. Müller • R. Naumann • J.M. Ondracek •

L. Pammer • S. Reiter • M. Shein-Idelson • M.A. Tosches • T. Yamawaki

Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438 Frankfurt am Main,

Germany

e-mail: gilles.laurent@brain.mpg.de

© The Author(s) 2016
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seek to identify homologies, i.e., structural or molecular similarities due to common

ancestry, at a variety of levels, e.g., brain regions, circuits, or cell types. Homolo-

gies can be inferred from extant species by using a comparative approach within a

phylogenetic framework. Vertebrate brains have been classically compared in

terms of morphology, connectivity, and neurochemistry. However, adult neuro-

anatomy may not be sufficient to determine homologies without ambiguity.

Vertebrates share among themselves the highest morphological resemblance not

as adults but at their “phylotypic stage” of embryonic development, as mirrored by

similarity across transcriptomes. Identification of conserved brain subdivisions,

established by conserved signaling centers and uniquely defined by the combina-

torial expression of transcription factors during development, demonstrates that all

of the general brain regions found in mammals, including the cerebral cortex, have

homologies in reptiles. For example, expression of transcription factors such as

Emx1 and Tbr1 in developing frogs, turtles, chickens, and mice reveals the exis-

tence of the same fundamental subdivisions of the pallium (ventral, medial, dorsal

and lateral) despite the divergent morphologies of pallial structures in adults. To be

clear, the cerebral cortex is thus not a mammalian invention but rather an ancient

dorsal pallial structure that predates the split between sauropsids and therapsids (the

mammals’ precursors) (Fournier et al. 2015; Naumann et al. 2015).

Comparative studies of brain structure and development have revealed a general

bauplan that describes the fundamental large-scale architecture of the vertebrate

brain and provides insight into its basic functional organization. The telencephalon

not only integrates and stores multimodal information but is also the higher center

of action selection and motor control (basal ganglia). The hypothalamus is a

conserved area controlling homeostasis and behaviors essential for survival, such

as feeding and reproduction. Furthermore, in all vertebrates, behavioral states are

controlled by common brainstem neuromodulatory circuits, such as the serotoneric

system. Finally, vertebrates harbor a diverse set of sense organs, and their brains

share pathways for processing incoming sensory inputs. For example, in all verte-

brates, visual information from the retina is relayed and processed to the pallium

through the tectum and the thalamus, whereas olfactory input from the nose first

reaches the olfactory bulb (OB) and then the pallium.

Although pallial structures exist in amphibians and fish, reptiles and mammals

are the only vertebrates to possess a cerebral cortex with a clear, though simple,

three-layered structure similar to that of mammalian allocortex. The reptilian

ventral pallium also gives rise to the dorsal ventricular ridge (DVR), a structure

that dominates the bird pallium and contributes to the complex cognitive abilities of

birds, but whose mammalian equivalent is still the subject of debate among

comparative anatomists. The reptilian cortex contains far fewer subdivisions than

that of rodents, carnivores, or primates: it is subdivided into a medial cortex, often

called hippocampus by anatomists, a lateral cortex, equivalent to the mammalian

piriform cortex, and a dorsal cortex in between, which receives multimodal inputs

(e.g., visual in turtles). There is little evidence for motor and somatosensory areas in

the reptilian cortex, but pallial motor control may have evolved early in vertebrate

evolution. Owing to this simplicity, the reptilian brain facilitates the study of
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primordial cortical function as a whole and points to the origins of cortex as

fulfilling general associative functions.

Besides sharing pallial modules, mammals and reptiles also share a complement

of cortical cell types, suggesting that some structural elements of cortical circuits

arose early in amniote evolution. As in mammals, reptilian cortex contains excit-

atory, glutamatergic neurons and inhibitory, GABAergic interneurons. In both

mammals and reptiles, these neurons have a common developmental origin: excit-

atory neurons are generated by multipotent cortical progenitors, whereas inhibitory

neurons are born in the subpallium before migrating to the cortex.

Classical studies suggest that the reptilian main cortical cell layer (layer 2)

corresponds to the deep, output layers of mammalian neocortex, whereas its layer

1 is equivalent to mammalian layer I. According to this view, mammalian cortical

evolution would have included the incorporation of new, intermediate cell layers

acting as input stations and internal circuitry. Morphologically, L2 pyramidal

neurons of the reptilian dorsal cortex are most similar to mammalian hippocampal

excitatory neurons. Indeed, reptilian pyramidal neurons have, depending on the

area, little to no basal dendritic field and several densely spine-studded apical

dendrites, quite different from the single, long, apical dendrite of neocortical

pyramidal neurons. Consistent with this correspondence between layers, reptilian

subpallial cells transplanted into mammalian embryos generate GABAergic neu-

rons that can populate only the deeper cortical layers.

Challenging this view, however, recent molecular studies show that turtle and

lizard cortical neuroblasts generate neurons that express upper layer molecular

markers in a developmental sequence similar to that observed in mammals.

Although the molecular characterization of neuronal types in the reptilian cortex

is still in its infancy, it is possible that reptilian cortex represents an ancestral

blueprint for the more elaborate mammalian cortical circuits. For example, reptilian

cortical neurons, or subsets of them, might share molecular (and functional)

features with both upper- and lower-layer mammalian cells.

Basic Architecture and Functional Features

Vertical Connectivity

The architecture of PCx and DCx is archetypal of a three-layered paleocortex.

Layer 1 contains mainly dendrites of layer 2 principal cells, a few scattered

interneurons and afferent and local axons. Layer 2 contains the densely packed

somata of pyramidal cells, whose apical dendrites run radially towards the pial

surface. Layer 3 contains basal dendrites of pyramidal cells, corticofugal and local

axons, some interneurons and a few deep pyramidal neurons in PCx (Neville and

Haberly 2004; Ulinski 1990). Incoming afferents to PCx run through the lateral

olfactory tract (LOT; Sosulski et al. 2011); those to DCx run through the lateral
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forebrain bundle (LFB; Mulligan and Ulinski 1990). These input fibers fan out

below the pial surface and make en-passant synapses on cortical neurons within the

distal 50–100 μm of layer 1 (Haberly and Behan 1983; Smith et al. 1980). Afferent

synapses impinge on both layer-1 interneurons and on distal dendrites of layer-2

pyramidal cells; interneurons provide both feed-forward and feedback inhibition to

pyramidal cells that themselves provide recurrent excitation to other pyramidal

neurons (Smith et al. 1980; Suzuki and Bekkers 2011, 2012; Kriegstein and

Connors 1986; Mancilla et al. 1998). In both PCx and DCx, superficial layer-1

interneurons tend to receive a higher density of afferent input than pyramidal cells

do (Smith et al. 1980; Suzuki and Bekkers 2012; Stokes and Isaacson 2010), which,

combined with a strong feed-back inhibition via layer-2/3 interneurons (Suzuki and

Bekkers 2012; Kriegstein and Connors 1986; Stokes and Isaacson 2010) may

explain the observed strong inhibition evoked by sensory stimulation and the

sparseness of pyramidal cell firing. To a first degree, PCx and DCx thus have a

similar microcircuit layout: both exhibit distal dendritic excitation from sensory

afferents, strong feed-forward inhibition, recurrent excitation through the so-called

associational intracortical connections, and feedback inhibition (Haberly 2001;

Shepherd 2011).

Different cell types have been identified in PCx. Most segregate into specific

sub-layers of the piriform microcircuit. Excitatory neurons in layer 2 can be

subdivided in semilunar (upper layer 2) and superficial pyramidal neurons (lower

layer 2), whereas those in layer 3 comprise a few deep pyramidal cells and scattered

multipolar spiny glutamatergic neurons (Haberly 1983; Suzuki and Bekkers 2006;

Bekkers and Suzuki 2013). Although they are embedded in the same basic connec-

tivity scheme, semilunar and superficial pyramidal cells receive different ratios of

afferent to associational inputs and may therefore belong to distinct functional

sub-circuits (Suzuki and Bekkers 2011; but see Poo and Isaacson 2011), consistent

with morphological differences between their dendritic trees and their laminar

position (Wiegand et al. 2011). Although data on subpopulations of principal

cells in DCx are few, analysis of Golgi-stained material also revealed different

morphological classes of spiny neurons at different laminar and sublaminar posi-

tions in reptilian cortex (Ulinski 1977; Desan 1984) PCx and DCx pyramidal

neurons are also similar with respect to their dendritic electrophysiological prop-

erties, suggesting comparable integrative properties at the subcellular level

(Larkum et al. 2008; Bathellier et al. 2009). Different subtypes of inhibitory

interneurons have been identified in PCx based on molecular markers, the mor-

phology of their dendritic arbor and the distribution of their axonal projections

(reviewed in Suzuki and Bekkers 2007). These sub-classes seem to correlate with

the type of inhibition they subserve, i.e., primarily feedback or feed-forward.

Horizontal and neurogliaform interneurons in layer 1 receive afferent inputs from

the LOT and mediate fast feed-forward inhibition targeting apical dendrites of

layer-2 pyramidal cells. Bitufted, fast-spiking and regular spiking interneurons

from layers 2 and 3 receive very little direct afferent input from the LOT but

provide strong feedback inhibition onto the somata and basal dendrites of pyrami-

dal cells (Suzuki and Bekkers 2012; Stokes and Isaacson 2010). Similarly, different
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populations of inhibitory interneurons in turtle DCx subserve mainly feed-forward

(subpial cells; Mancilla et al. 1998) or feedback (Mancilla et al. 1998; Connors and

Kriegstein 1986) inhibition. Axonal reconstructions of DCx interneurons (Colombe

et al. 2004) and immunocytochemical labeling (Reiner 1991, 1993) suggest the

existence of morphologically and physiologically identifiable classes of inhibitory

interneurons. It remains to be shown that those groupings also share functional

similarities with those in PCx. Given the anatomical similarity of input projections

to PCx and DCx, one may speculate that the inhibitory circuit topology of these two

cortices could also be similar.

Horizontal Connectivity

In PCx, afferents from mitral/tufted (MT) cells appear to project throughout the

cortex without any clear topographical relationship to their glomeruli of origin

(Sosulski et al. 2011; Miyamichi et al. 2011; Illig and Haberly 2003; Apicella

et al. 2010; Ghosh et al. 2011). Although this does not rule out the possibility of

some fine-scale topographical mapping of OB projections (e.g., mitral vs. tufted

cell projections) (Igarashi et al. 2012), it is now accepted that the glomerular

clustering of olfactory receptor cells axons in OB is entirely discarded at the level

of PCx (Wilson and Sullivan 2011). In DCx, early tracing studies from Ulinski and

colleagues suggested that the visual field is projected onto the rostro-caudal axis of

DCx in the form of iso-azimuth lamellae covering the naso-temporal dimension of

the visual field (Mulligan and Ulinski 1990; Ulinski and Nautiyal 1988). Such a

mapping of projections still awaits physiological confirmation and fine thalamo-

cortical projection tracing. If confirmed, this topographical mapping would differ

from the topology of mammalian olfactory projections to PCx, at least along one

cortical dimension.

In both PCx and DCx, the density of sensory afferents varies over the cortical

surface: high rostrally and laterally, it decreases progressively as one moves away

from the entry point of the LOT (PCx) or the LFB (DCx). Hence, the balance

between afferent and associational connectivity decreases along the rostro-caudal

and latero-medial (or ventro-dorsal) axes (Mulligan and Ulinski 1990; Haberly

2001; Wilson and Sullivan 2011; Hagiwara et al. 2012; Cosans and Ulinski

1990). PCx is subdivided into anterior and posterior regions, which differ not

only in the density of afferent vs. associational fibers (Haberly 2001) but also in

the properties of odor-evoked responses (Litaudon et al. 2003; Kadohisa and

Wilson 2006). PCx microcircuits may also contain fine-grain connectivity gradi-

ents: in vitro recordings from aPCx reveal that inhibition of pyramidal cells is

asymmetric and stronger along the rostro-caudal axis of the anterior part of PCx,

over distances as short as 200 μm (Luna and Pettit 2010). In turtles, DCx has been

classically divided into two different regions (D2 and D1) along the latero-medial

axis (Ulinski 1990; Desan 1984). This dichotomy rests mostly on cytoarchitectural

features related to the thickness of subcellular layer 3: thick in D2 laterally, thin in
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D1, with a significant transition zone between the two. Recent molecular data

suggest that this separation may be correlated with a higher expression level of

layer-4 markers in D2 (Dugas-ford et al. 2012). Confirmation of this division and of

its potential functional significance needs additional work. Such gradients of

connectivity across the cortical surface (in PCx and DCx) should be clearly

described because any horizontal heterogeneity could influence the propagation

and reverberation of activity across cortex, under the combined influences of

spreading afferent input and widespread associational activity.

Given their reciprocal interconnections with high-order cortical areas and a lack

of evident sensory topography, PCx and DCx are sometime described as associa-

tional rather than primary sensory cortices (Shepherd 2011). The major partners of

PCx are the orbitofrontal cortex (Ekstrand et al. 2001; Illig 2006), the lateral

entorhinal cortex (Kerr et al. 2007; Johnson et al. 2000) and the agranular insular

cortex (Johnson et al. 2000). Connectivity to these downstream targets differs

between aPCx and pPCx, supporting the notion that they have different functions.

Similarly, DCx is reciprocally connected to dorso-medial (DMCx) and medial

(MCx) cortices (Ulinski 1977; Desan 1984). Those regions are, on the basis of

hodology and position, often compared to parahippocampal and hippocampal

cortices (Desan 1984; Northcutt 1981; L�opez et al. 2003; Aboitiz et al. 2003).

Both PCx and DCx are thus directly connected to associational networks likely

involved in controlling or modulating behavior.

PCx and DCx are further interconnected with other cortical-like areas that also

receive parallel sensory afferents from the OB or the lateral geniculate nucleus of

the thalamus (LGN), respectively. For PCx, these include the anterior olfactory

nucleus (AON; Haberly and Price 1978; Illig and Eudy 2009), the olfactory

tubercule (OT; Haberly and Price 1978), and the amygdala (Johnson et al. 2000;

Luna and Morozov 2012). AONmight be a first stage of odorant-feature processing,

in turn used by PCx to detect complex odorant combinations (Haberly 2001; Lei

et al. 2006; Kay et al. 2011). DCx’s AON equivalent could be the pallial thickening

(PT), for it receives direct thalamic afferent input and projects to DCx (Mulligan

and Ulinski 1990; Heller and Ulinski 1987). If AON and PT also share functional

characteristics, these similarities may point to common elementary processing

streams of three-layered sensory cortices.

In turtles, visual stimulation triggers propagating waves of neural activity that

travel across the cortex. These waves are slower and simpler than those observed in

mammalian neocortex. They are accompanied by relatively slow oscillations,

which are most prominent in the 20 Hz frequency band. Whereas the so-called

gamma oscillations in mammalian cortex are typically around and above 40 Hz,

recent results in mice indicate that the 20 Hz band dominates when parvalbumin

(PV) interneuron development is artificially arrested, consistent with the above

observation that turtle cortex lacks PV interneurons. The computational role, if any,

of such dynamics is unknown at present. Progress will require new experimental

approaches that allow the simultaneous sampling of large neuronal populations.

Specific and data-driven theories of computation in reptilian cortex thus await

further study. To the extent that modern reptilian cortex resembles that in the
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common ancestor of reptiles and mammals, understanding reptilian cortex function

may reveal some of the fundamental associative computations that early cortical

circuits evolved to carry out.

Physiological Adaptations of the Reptilian Brain

Reptiles are ectotherms and must behaviorally or physiologically adapt to varying

temperatures, making reptile brains notable for their adaptation to extreme condi-

tions. The turtle brain, for example, has evolved remarkable adaptations to hypoxic

conditions, which have long been known to experimentalists interested in hearing,

olfaction, motor control or cerebellar physiology. Semi-aquatic freshwater turtles

(e.g., Chrysemys picta) are remarkable for their ability to survive hibernation in

hypoxic waters during cold northern winters and have been reported to survive

anoxic periods of over 4 months at 3 �C. This resilience points to several physio-

logical adaptations to survive cold, anoxic conditions during hibernation and

subsequent re-oxygenation in the spring. The mechanisms underlying such toler-

ance are interesting—and also possibly applicable to the treatment of brain injury

due to ischemia.

Anoxia tolerance critically depends on the ability to reduce energy expenditure

while elevating anaerobic adenosine triphosphate (ATP) production. ATP con-

sumption in neural tissues, particularly those involved in sensory functions,

requires high ATP turnover. Free glucose and glycogen can serve as metabolic

substrates in anoxic conditions, and stores of glycogen are released from the liver

and skeletal muscles to facilitate ATP production during hibernation. But by

shifting to anaerobic glycolysis, hibernating turtles must buffer the resulting met-

abolic product, lactic acid, to prevent fatal acidosis. In turtles, extracellular buffer-

ing of lactic acid is achieved by the large volumes of pericardial and peritoneal

fluids and through sequestration in the mineralized shell and skeleton.

During hibernation, turtles reduce ATP consumption in neural tissue by reducing

membrane permeability and, thus, the need for pump-mediated restoration of ionic

balance. This phenomenon has been observed in turtle neurons for voltage-gated

Naþ channels, the oxygen-sensitive calcium-activated Kþ channels, as well as

AMPA and NMDA receptors. Neuronal depolarization and NMDA receptor

over-activation are hallmarks of anoxia in mammalian neural tissue and lead to

excitotoxic cell death via increased intracellular Ca2þ concentrations. In turtle

neurons, NMDA receptor opening times are reduced by 65 % after 60 min of

anoxia, and NMDA receptor currents are actually silenced by anoxia-triggered

cytosolic Ca2þ release from mitochondrial stores. Despite reduced channel activity

and, thus, reduced electrical activity during anoxia, turtles appear to remain vigilant

and responsive to visual stimuli during hibernation (but less so to tactile stimuli).

This maintenance of visual responses in the absence of tactile responses during

hibernation suggests a differential down-regulation of sensory modalities. Because

changes in daily illumination contribute to signaling the end of hibernation, it may
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be a selective advantage for energy-conserving mechanisms to be applied less to

the visual system than to other brain areas.

When oxygen again becomes available, the re-oxygenation of tissue, such as that

observed after ischemia-reperfusion events caused by myocardial infarction or

stroke, is problematic in mammals because it is associated with the excessive

production of reactive oxygen species (ROS) that damage cells through protein

oxidation and lipid peroxidation. Turtles have evolved effective physiological

mechanisms that allow for repeated cycles of anoxia and re-oxygenation without

the free-radical damage induced by ischemia-reperfusion of tissues observed in

mammals. These mechanisms involve an evolutionarily old up-regulation of nitric

oxide and its metabolites that limits ROS generation and tissue damage in cardiac

and brain tissue. Thus, the turtle brain, with these physiological adaptations, is a

very useful model for the study of neural circuit function. Neural tissue remains

alive and viable for days ex vivo, and tissue can be routinely stored overnight in a

refrigerator at 3–5 �C.

Brain and Behavior

Reptiles express a number of complex behaviors normally attributed to mammals.

They can, for example, learn to navigate mazes as well as birds or mammals and

likely use a hippocampal structure to do so. Remarkably, sea turtles navigate across

the ocean to their home beach, possibly using magnetic, olfactory, and visual cues.

Reptiles also express interesting social behaviors: pythons and crocodiles, for

example, incubate their eggs after hatching, and mothers guard the nest and provide

infant care. Some lizard species exhibit pair bonding and parental care and form

families. Others construct networks of tunnels and may live in social communities

like those of naked-mole rats.

Reptiles inhabit a variety of ecological niches, such as terrestrial deserts, tem-

perate forests, tropical jungles, the sea, and fresh waters. They are found in all

oceans and on all continents except Antarctica. Semi-aquatic turtles, which live in

primarily aquatic habitats but make terrestrial excursions to lay eggs, offer an

interesting model animal in which to study navigation. Many turtles are known

for their impressive navigational skills and high nest-site fidelity, or the tendency

for individuals to return to the same geographic location or microhabitat to nest.

The mechanisms underlying these behaviors are not entirely understood, but nav-

igational ability in the fresh water turtle Chrysemys picta seems to depend on

experience gained during a critical period (<4 years of age). Translocated resident

adults, for example, can quickly and consistently find new aquatic habitats within

33 h, often using precise and predictable routes, whereas translocated non-resident

adults appear unable to find new aquatic habitats even after 21 days.

The hippocampus is critical for map-like or relational memory representations of

allocentric space, where objects are represented in relation to other objects. In birds

and mammals, lesions to the hippocampal formation produce selective impairments
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in spatial tasks that require the encoding of relationships among multiple environ-

mental features (place learning) but not in tasks that require approaching a single

cue or simple non-spatial discriminations. Whereas extensive comparative research

supports the idea that the reptilian medial cortex is homologous to the hippocampal

formation of mammals and birds, only a few studies have examined the neural

function of this brain structure or its role in place learning. In one such study,

Rodrı́guez et al. (2002) evaluated the effects of lesions to the hippocampus of turtles

in place and cue-maze tasks. Hippocampus-lesioned (and sham-lesioned) animals

performed cue-discrimination tasks correctly but hippocampus-lesioned animals

failed at the place learning that relied on allocentric space learning. These results

indicate that lesions to the hippocampus of turtles selectively impair map-like

memory representations of the environmental space, mirroring the effect of hippo-

campal lesions in mammals and birds. Thus reptilian hippocampus may also share a

central role in navigation.

In conclusion, the observation that mammalian and reptilian brains share both

ancestry and a large number of functional attributes suggests that the identification

of primordial (and possibly general) algorithmic principles of brain function could

be helped by comparative approaches. To this end, the reptilian brain, with its

simpler structure, may prove invaluable to decipher fundamental questions of

modern neuroscience.
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Flow of Information Underlying a Tactile

Decision in Mice

Nuo Li, Zengcai V. Guo, Tsai-Wen Chen, and Karel Svoboda

Abstract Motor planning allows us to conceive, plan, and initiate skilled motor

behaviors. Motor planning involves activity distributed widely across the cortex.

How this activity dynamically comes together to guide movement remains an

unsolved problem. We study motor planning in mice performing a tactile decision

behavior. Head-fixed mice discriminate object locations with their whiskers and

report their choice by directional licking (“lick left”/“lick right”). A short-term

memory component separates tactile “sensation” and “action” into distinct epochs.

Using loss-of-function experiments, cell-type specific electrophysiology, and cel-

lular imaging, we delineate when and how activity in specific brain areas and cell

types drives motor planning in mice. Our results suggest that information flows

serially from sensory to motor areas during motor planning. The motor cortex

circuit maintains the motor plan during short-term memory and translates the

motor plan into motor commands that drive the upcoming directional licking.

Introduction

With a half a second’s planning, we rapidly carry out complex sequences of

movements. Motor planning refers to our ability to conceive, plan, and initiate a

skilled motor behavior. During motor planning, sensory information must be

integrated to inform the appropriate motor responses. Behaviorally relevant infor-

mation must be kept in short-term memory. Thus the process of motor planning taps

into multiple aspects of flexible behavior and offers a way of studying the mental

processes that ultimately culminate in a movement, hence a window into cognition.

A neural correlate of motor planning was first reported in humans as a deflection

in EEG recordings, over motor and parietal cortex, which anticipates voluntary

movements (a.k.a. Bereitschaftspotential; Deecke et al. 1976). The EEG signal

appears long before the onset of the movement and hundreds of milliseconds before
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the subjects are aware of their desire to move (Libet 1985). The neural correlates of

motor planning were discovered in the primate motor cortex by Tanji and Evarts

(1976), who described neurons that discharged persistently before an instructed

movement. This persistent activity ramped up shortly after the instruction, long

before the movement onset, and predicted specific types of future movements.

These findings opened the possibility of studying the mechanisms of motor plan-

ning at the level of neural circuits (Riehle and Requin 1989; Crutcher and Alexan-

der 1990; Turner and DeLong 2000; Shenoy et al. 2013).

Behavioral paradigms in rodents are rapidly developing, and it is possible to

train mice in behavioral tasks that dissociate planning and movement in time,

analogous to the tasks used in primates (Guo et al. 2014a, b). The mouse is a

genetically tractable organism, providing access to defined cell types for recordings

and perturbations (Luo et al. 2008; O’Connor et al. 2009). In addition, the

lissencephalic macrostructure of the mouse brain allows unobstructed access to a

large fraction of the brain for functional analysis. We study motor planning in the

context of a tactile decision behavior (Guo et al. 2014a; Li et al. 2015). Mice

measure the location of an object using their whiskers and report their judgment by

directional licking. We delineate when and how activity in specific cortical regions

areas drives the tactile decision behavior in mice. New recording and perturbation

methods are beginning to reveal the circuit mechanisms underlying motor planning

that, in turn, will shed light on the biophysics of flexible behavior.

Head-Fixed Tactile Decision Behavior and Involved Cortical

Regions

We developed a tactile decision task to track the flow of information in cortex

during motor planning (Guo et al. 2014a; Li et al. 2015). Head-fixed mice measured

the location of a pole using their whiskers and reported their decisions about object

location with directional licking (Fig. 1a). In each trial, the pole was presented in

one of two positions (anterior or posterior) during a sample epoch (1.3 s; Fig. 1b).

During a subsequent delay epoch (1.3 s), the mice planned the upcoming response.

An auditory go cue (0.1 s) signaled the beginning of the response epoch, when the

mice reported the perceived pole position by licking one of two lickports

(posterior! “lick right”, anterior! “lick left”). The mice achieved high levels of

performance (~80 % correct). Responses before the go cue were rare (~13 %). They

performed the tactile decision behavior across many sessions (up to 85 sessions,

>400 trials per session), yielding tens of thousands of trials per mouse. The large

number of trials allowed us to use optogenetic silencing to identify the cortical

regions involved in an unbiased manner on a cortex-wide scale.

To achieve powerful cortical inactivation, we used transgenic mice expressing

Channelrhodopsin-2 (ChR2) in cortical GABAergic interneurons. This

photoinhibition silenced millimeter-size tissue volumes by photostimulating
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through the intact skull (85 % activity reduction) with time resolutions on the order

of 100 ms. We developed a scanning laser system to survey the neocortex for

regions driving behavior during specific behavioral epochs. First, we outfitted the

mice with a clear-skull cap preparation that provided optical access to half of the

neocortex. A scanning system targeted photostimuli in a random access manner.

Head-fixation and precise control of the laser position allowed each mouse to be

tested repeatedly across multiple behavioral sessions. We tested 55 evenly spaced

cortical volumes in sensory, motor, and parietal cortex for their involvement in the

behavior by applying photoinhibition during specific behavioral epochs (Fig. 1c).

Inactivation of most cortical volumes did not cause any behavioral change.

Inactivating vibrissal primary somatosensory cortex (vS1, “barrel cortex”) caused

deficits in object location discrimination. The effect was temporally specific:

inactivation during the delay epoch produced a much smaller deficit, suggesting

that tactile information was transferred out of the vS1 during the sample epoch

(Fig. 1c). During the delay epoch, preceding the motor response, inactivation of an

anterior lateral region of the motor cortex (ALM) biased the upcoming movement

(Fig. 1c). We used silicon probes to record single units from vS1 and ALM in mice

performing the tactile decision behavior. Single unit recordings supported the

photoinhibition experiments: a large fraction of neurons in vS1 showed object

location-dependent activity during the sample epoch, whereas the majority of

neurons in ALM showed movement-specific preparatory activity and peri-

movement during the delay and response epochs. These results begin to outline

the information flow in mouse cortex involved in the tactile decision behavior. The

information flow is largely consistent with a serial scheme, where information is

passed from sensory areas to motor areas during motor planning (Guo et al. 2014a).

ALM

Sample Delay

Inhibition

Sample Delay 
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−30
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Fig. 1 Mapping the cortical regions underlying tactile decision behavior. (a) Head-fixed mouse

responding “lick right” or “lick left” based on pole location. (b) The pole was within reach during

the sample epoch. Mice responded with licking after a delay and an auditory go cue. (c) Fifty-five

cortical locations were tested in loss-of-function experiments during different behavioral epochs.

Top, photoinhibition during sample (left) and delay (right) epochs. Bottom, cortical regions

involved in the tactile decision behavior during sample (left) and delay (right) epochs in “lick

right” trials. Color codes for the change in performance (%) under photoinhibition relative to

control performance. Circle size codes for significance (p values, from small to large; >0.025,

<0.025, <0.01, <0.001). Figure adapted from Guo et al. (2014a)

Flow of Information Underlying a Tactile Decision in Mice 37



Premotor Dynamics Underlying Motor Planning

A large fraction (>70 %) of ALM neurons significantly distinguished upcoming

movements during at least one of the trial epochs (p< 0.05, two-tailed t-test;

Fig. 2a). On error trials, when mice licked in the opposite direction to the instruction

provided by object location (Fig. 1a), most ALM neuron activities predicted the

licking direction (Guo et al. 2014a; Li et al. 2015). Such movement-specific activity

is consistent with a role in planning and driving movements (Fig. 1c). Interestingly,

the preparatory activity in ALM was not static but evolved with complex dynamics:

subsets of neurons showed selective activity during the sample epoch whereas other

neurons showed “bumps” of activity during different times of the delay epoch

(Fig. 2a). Despite these fluctuating responses at the level of the single neurons,

selectivity for the upcoming movement remained stable at the level of the popula-

tion (Fig. 2b). On average, selectivity emerged in the sample epoch and ramped up

throughout the delay epoch, reaching a maximum at the beginning of the response

epoch (Fig. 2b). This ramping activity in ALM during the delay epoch is similar to

the ramping activity reported in frontal (Hanes and Schall 1996; Murakami

et al. 2014), parietal (Roitman and Shadlen 2002; Maimon and Assad 2006; Harvey

et al. 2012), and motor cortex (Erlich et al. 2011; Thura and Cisek 2014), antici-

pating voluntary movements in primates and rodents. The ALM preparatory activ-

ity could provide a substrate for the maintenance of the motor plan during the delay

epoch. Information about the upcoming movement is likely coded at the level of the

population (Laurent 2002; Harvey et al. 2012; Shenoy et al. 2013; Murakami and

Mainen 2015). Consistent with a distributed code, we found that spatially

intermingled ALM neurons in each hemisphere have a preference for either contra-

or ipsi-lateral movements in roughly equal proportions (Li et al. 2015).

The preparatory activity encodes upcoming movement, yet it does not cause

movement during planning. How does preparatory activity evolve into commands

that descend to motor centers to trigger movement? Paradoxically, ALM neurons in

each hemisphere have a preference for contra- or ipsi-lateral movements in roughly

equal proportions, yet unilateral inactivation of ALM biased the upcoming move-

ment to the ipsi-lateral direction. How does silencing a brain area with

non-lateralized selectivity cause a directional movement bias? We measured neu-

ronal activity within hierarchically organized ALM circuits. ALM projection neu-

rons include two major classes: intratelencephalic (IT) neurons that project to other

cortical areas and pyramidal tract (PT) neurons that project out of the cortex,

including to motor-related areas in the brainstem (Komiyama et al. 2010; Shepherd

2013). IT neurons connect to other IT neurons and excite PT neurons, but not vice

versa. PT neurons are thus at the output end of the local ALM circuit (Morishima

and Kawaguchi 2006; Brown and Hestrin 2009; Kiritani et al. 2012; Shepherd

2013). We recorded activity from identified IT and PT neurons using cell-type

specific electrophysiology and two photon imaging. We found that ALM IT

neurons have mixed preparatory activity for both ipsi- and contra-lateral move-

ments. Contra-lateral population activity in PT neurons arose late during the delay
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epoch to drive directional licking. To test the causal role of the PT neuron

population activity in driving movements, we manipulated PT neurons by

expressing ChR2 in mouse lines selectively expressing cre in these neurons.

Weak activation of the PT neurons during movement planning could “write-in”

specific motor plans that resulted in contra-lateral licking movements. These results

suggest that, during movement planning, distributed preparatory activity in IT

neuron networks is converted into a movement command in PT neurons (‘output-
potent’ activity; Kaufman et al. 2014), which ultimately triggers directional move-

ments (Li et al. 2015).

Open Questions

Several key questions remain unsolved. What circuit mechanisms are responsible

for the maintenance of motor plan during short-term memory? How is sensory

information integrated into the motor plan? How do the basal ganglia and motor

thalamus interact with cortical regions during motor planning? Answering these

questions will require recordings and manipulation of specific cell types. Impor-

tantly, architectural and cell type information must be incorporated into models of

cortical dynamics. Tools to manipulate projections between brain regions are

needed to study the interactions between brain regions. Finally, there is still a

long way to go in developing richer behavioral paradigms that tap into the capa-

bilities of the mammalian brain.
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The Visual Brain: Computing Through

Multiscale Complexity

Yves Frégnac, Julien Fournier, Florian Gérard-Mercier, Cyril Monier,

Marc Pananceau, Pedro Carelli, and Xoana Troncoso

Abstract Information coding in sensory neurons is both digital, in terms of

neuronal output spike timing and rate, and analog, produced by the irregular

subthreshold changes in somatic and dendritic membrane potential resulting from

synchronized volleys of synaptic inputs. Intracellular recordings give a unique

access to a composite multiscale signal where the local microscopic integration

process realized by a single neuron can be studied in the global mesoscopic context

of the “unseen” units afferent to the recorded cell. This chapter shows how reverse

engineering approaches can be used in the primary visual cortex of higher mammals

to reveal the hidden complexity of visual processing and establish causal links

between the functional dynamics of synaptic echoes in primary visual cortex and

perceptual biases in low-level, non-attentive perception.

Introduction

A still highly controversial issue in visual perception concerns the definition of

receptive fields (RFs). Do they represent a static transfer function associated with

each sensory neuron or a dynamic integration window open on the sensory world

and continuously reshaped by contextual changes in the input statistics? How do RF

properties adapt to contrast/luminance non-stationarities experienced during the

oculomotor exploration of the visual world? Our understanding of early visual

processing (implemented in our brain by the retino-thalamo-cortical projection)
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Information et Complexité (UNIC), Gif-sur-Yvette, France

Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438 Frankfurt am Main,

Germany

© The Author(s) 2016
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in higher mammals has been shaped, to a large degree, with a hypothesis-driven

conception of sensory architecture in mind. This bias is best illustrated by the

50-year dominance of the hierarchical schema of genesis of RF specificity (Hubel

and Wiesel 1962, 1968, 2005), where visual attribute extraction in the early visual

system results from a serial processing starting from non-oriented retinal and

thalamic RFs to a cascade of oriented edge detectors of increasing complexity

across multiple successive relays (thalamus, primary and secondary cortical areas).

This feedforward view of visual processing is based on the repetition, at each stage

of integration, of canonical, but highly specific, rules of anatomical convergence

from which the function derives. Consequently, our current understanding of RF

genesis is largely bottom-up driven and contradicts Aristotle’s principle that “the

whole is greater than the sum of its parts.” Although this simplifying view of

sensory processing has led to major advances [review in Alonso (2002); see also

the remarkable obituary tribute to David Hubel by Kevan Martin (2014)], it fails to

account for the functional complexity expected from the recurrent structural con-

nectivity of cortical subcircuits (Douglas and Martin 2004) on the one hand and the

non-linear nature of the dynamic interactions between excitation and inhibition

during sensory processing (Borg-Graham et al. 1998; Monier et al. 2008). Further-

more, as emphasized by Bruno Olshausen (2014), RF classification has been

established using highly standardized and parametrized sensory contexts (spots,

bars and gratings), which have little to do with the rich spatio-temporal statistics

experienced during the natural scene-viewing conditions of our everyday life. The

principle of maximization of a single neuron’s firing rate, which initially guided the
“neuronal doctrine” (Barlow 1972), does not hold any more when RFs are engaged

by non-optimal stimuli most of the time, leading, for natural scene processing, to a

sparser and unexpectedly temporally precise spiking regime in the primary visual

cortical area (Vinje and Gallant 2000; Baudot et al. 2013). A third conceptual limit

to our present knowledge of early visual processing is that most modeling efforts

have been targeted at explaining sensory discharges only at the spike level in a

purely phenomenological perspective (see Carandini et al. 2005 for a review) rather

than aiming at elucidating causal, conductance-based mechanisms regulating the

temporal selectivity of the spiking opportunity window (Haider et al. 2010; Baudot

et al. 2013).

Although in vivo intracellular recordings are difficult to practice in higher

mammals, and thus often limited to the anesthetized and paralyzed preparation

(but see Tan et al. 2014 for a “tour de force” in the behaving non human primate),

they still appear to be the technique of choice to address quantitatively the synaptic

nature of the RF (Fig. 1a, b). In contrast to most imaging methods (voltage-sensitive

dye, two-photon) or correlation studies based on multiple recordings, intracellular

recordings allow us to differentiate the local microscopic integration process

achieved by the single neuron from the more mesoscopic contribution of the

network of unseen units that influence at each point in time the activity of the

recorded cell (Fig. 1c).

We review here recent intracellular electrophysiological studies from the

Frégnac lab (CNRS-UNIC), done in the visual cortex of the anesthetized
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mammalian brain and addressing separately two scales of spatial integration in the

V1 RF: (1) the inner ON-OFF organization of the RF core (underlying the “Simple”

vs. “Complex” typology), depending on the balance between feedforward and local

recurrent connectivity, and (2) the “association field” extending in the “silent”

surround of the RF, from which subthreshold activation can be evoked through

the propagation along long-distance, slowly conducting “horizontal” connections

intrinsic to V1 (Bringuier et al. 1999; Chavane et al. 2011; Frégnac 2012; Gérard-

Mercier et al. in preparation).

The claim we make here is that the intracellular subthreshold membrane poten-

tial signal gives unique access to the multiscale nature of cortical processing and

that reverse engineering methods can be designed to unfold, from the intracellular

reading of synaptic echoes, the mesoscopic dynamics of the afferent network

Fig. 1 Bridging microscopic and mesoscopic scales. (a) The synaptic RF (adapted from Huang

et al. 2014). Sensory cortical neurons integrate the feedforward drive from the thalamus (LGN),

eventually relayed by intracolumnar connections and amplified by recurrent local connectivity,

with the lateral input provided by intrinsic, horizontal long-distance connections and cortico-

cortical feedback and interhemispheric callosal loops. (b) Retrieving mesoscopic dynamics from

intracellular recordings (adapted from Frégnac et al. 2007). Top row, classical methods for

studying evoked sensory dynamics: left, voltage-sensitive, dye-imaging map based on hemody-

namic signals; right, same network analyzed with simultaneous multiple electrode recordings

(blind connectivity).Middle row, intracellular recording where reverse engineering methods allow

extraction of the “effective connectivity,” influencing the membrane potential at any point in time.

Synaptic functional imaging, based on feature selectivity and space and time, allows us to identify

the synaptic sources and reconstruct predictions of the full network dynamics (bottom row)
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(Fig. 1, right panel). In the first part of this review, we will show that the hidden

complexity revealed by this approach demonstrates how limited our current under-

standing is of the bottom-up emergence of dynamic properties in visual RFs in the

early visual system. Furthermore, it unravels the existence of immergence pro-

cesses through which the collective mesoscopic constraints imposed by the distrib-

uted sensory input regulate the functional expression of individual RF properties in

a top-down fashion. In the second part, we will illustrate how the decoding of

synaptic echoes originating from the silent surround of the RF allows us, in a

surprising way, to extract functional structural biases that may serve the self-

organization of psychological Gestalt laws in the non-attentive brain. These last

findings can be seen as one of the few successful attempts to link visually evoked

synaptic dynamics to perceptual biases and low-level perception, thus establishing

a causal bridge between microscopic and macroscopic scales.

The Synaptic Imprint of Mesoscopic “Immergence”

in Visual RFs

RFs in primary visual cortex (V1) are categorized as “Simple” or “Complex,”

depending on their spatial selectivity to stimulus contrast polarity, leading to the

retinotopic segregation (Simple) or overlap (Complex) of “ON” and “OFF” sub-

fields (Hubel and Wiesel 1962, 1968). Since the pioneering work of Hubel and

Wiesel in the cat and macaque visual cortex, most extracellular surveys have

reported V1 RFs with intermediate behaviors (Henry 1977). Intracellular record-

ings have shown that the separation between Simple and Complex RFs hides a

continuous distribution of synaptic inputs, in particular with regard to their degree

of linearity (in the sense of system theory; Skottun et al. 1991; Priebe et al. 2004). In

spite of the general acceptance that Simple and Complex RF organizations corre-

spond to distinct balance levels between linear and nonlinear contributions at the

synaptic level, few studies have investigated whether the functional expression of

the Simple or Complex nature of V1 RFs depends, in the same cell, on the

spatiotemporal statistics of the stimulus. This may be surprising, since gain-control

mechanisms are known to ensure the contrast invariance of the cell selectivity, and

it is well established that adaptation to stimulus contrast does not have the same

effect on the Simple-like and Complex-like components of V1 cell responses when

assessed with drifting gratings. Still, most previous studies of RF adaptation to

visual statistics focused either on linear RF components in Simple cells or on

nonlinear components in Complex cells and not on the differential adaptation of

these two components in the same RF (but see Yeh et al. 2009).

In a series of studies targeting the subthreshold definition of the RF, we realized

that RF maps varied significantly between stimulus conditions, leading us to

reassess in a quantitative way how the Simple/Complex nature of individual V1

cells depends on the full field visual context used to probe the RF (Fournier
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et al. 2011, 2014). This was done by comparing systematically, in the same cell

recorded intracellularly, the synaptic responses to three classical RF mapping pro-

tocols based on white noise: sparse noise, ternary dense noise and flashed Gabor

noise. A surprising result was that the linear kernel estimate differed between these

various contextual noises, in contrast with the prediction of invariance made by

cascade L-N-P models of V1 RFs (according to the so-called Bussgang theorem;

Bai et al. 2007). Intracellular recordings revealed that, for most V1 cells, there was

no such thing as an invariant RF type, but that the relative weights of Simple-like

and Complex-like RF components were scaled such as to make the same RF more

Simple-like with dense noise stimulation and more Complex-like with sparse or

Gabor noise stimulations (example in Fig. 2a; population analysis in Fig. 2b).

However, once these context-dependent RFs were convolved with the

corresponding stimulus, the balance between Simple-like and Complex-like con-

tributions—in terms of input current—to the synaptic responses appeared to be

invariant across input statistics (Fig. 2c; Fournier et al. 2011).

This invariance of the ratio between the linear/nonlinear input current contribu-

tions suggests a novel form of homeostatic control of V1 functional properties, where

the expressed network nonlinearities are optimized by the statistical structure of the

visual input. This study is the first, to the best of our knowledge, to show such clear

changes in terms of spatiotemporal reorganizations of synaptic and discharge fields at

the single cell level, interpretable as a coherent adaptive behavior at the cortical

population level. The claim made here is that these effects are more detectable at the

subthreshold than at the spiking level, where additional static non-linearities may

interfere with the global read-out of the connectivity adaptation rule.

A functional interpretation of these data could be that the Simple or Complex

nature of V1 RFs arises from a variable balance between feed-forward and lateral

inputs, with the feed-forward drive providing the Simple-like component whereas

the recurrent lateral connections would convey Complex-like contributions (Fig. 3,

left). Accordingly, the results might be explained by the functional recruitment of

lateral interactions in sparse stimulation conditions and by the decoupling of

adjacent cortical columns in dense visual contexts. This view is supported by

other studies, realized for instance by the group of Matteo Carandini, suggesting

that the lateral propagation of activity between adjacent cortical units decreases

substantially when the stimulus contrast is increased (Fig. 3, right, adapted from

Nauhaus et al. 2009). In view of these different results, the stimulus dependence of

the lateral cortical interactions likely generalizes to other stimulus dimensions,

rather than remaining exclusive to the local contrast. Similar effects might be

obtained by increasing the spatial or temporal density of the stimulus, with the

important parameter probably being the effective contrast along the stimulus

feature dimensions for which the cell is selective.

To enrich the predictive power of the synaptic RF model, we decomposed the

second-order kernel estimate obtained by a truncated Volterra expansion of the

membrane potential response to dense noise, into a non-linear combination of

parallel Simple-like filters in a way similar to the spike-triggered covariance

(STC) introduced by the groups of Simoncelli and Movshon (Rust et al. 2005).
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Although the STC method was applied with success at the spiking level to reveal

non-linear subunits in V1 and MT cells in the macaque, it failed to reveal more

diversity in the cat (Touryan et al. 2002, 2005), probably for technical reasons

linked to the limited number of spikes. This potential problem is bypassed here by

applying similar techniques to the continuous intracellular membrane potential

Fig. 2 The functional expression of V1 RFs depends on input statistics. (a) Example of a layer

2–3 cell: the ON and OFF kernels are shown for the two noise input statistics used to map the

subthreshold RF (SN sparse noise, DN dense noise). The shaded boxes represent the X-Y and

X-time features of the RF filter, with ON and OFF subfields represented in red and blue,
respectively. Note that the maps are Simple-like for the SN statistics [spatially segregated ON

and OFF subfields (X-Y map) and reversal of the spatio-temporal filter polarity with time (X-t

profile)] and Complex-like for the DN statistics (spatially overlapping subfields). Right column,
the individual kernel waveforms (mV), detailed for four different pixels (inset), are represented in
red for DN and black for SN. Note the divisive effect of dense noise compared to sparse noise on

the kernel estimate amplitude (by a tenfold factor). (b, c) Population analysis of the stimulus

dependency of the Simpleness Index (given by the ratio of the linear kernel energy divided by the

total RF kernel energy). “0” stands for Complex RFs (purely non-linear) and “1” for Simple RFs

(purely linear). (b) Population bi-histogram plot linking (on a cell-by-cell basis) the Simpleness

Index (SI) for sparse noise (SN, abscissa) and dense noise (DN, ordinate) stimulation. Hyperbolic

fit as a pink dotted curve. (c) Same population bi-histogram for SI* values obtained after

convolution of the kernels with the visual input waveform. Note the realignment of the points

(cells) along the identity line (bihistogram diagonal). See details in Fournier et al. (2011)
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signal, resulting in a much higher sensitivity for detecting stimulus-evoked sub-

threshold events contributing to the spike discharge (Fournier et al. 2014). Con-

ductance or current-based principal component analysis (PCA) allows us to

decompose the Simple-like and Complex-like components of the subthreshold RF

into a parallel set of functionally distinct subunits, consisting of a Simple-like

sub-unit whose linear output accounts for the push-pull components of the RF

and a variable number of Complex-like sub-units that contribute in a fully rectified

manner to the cell response (Fig. 4, left). Results show that both Simple and

Complex RFs exhibit a remarkable diversity of excitatory and inhibitory

Complex-like contributions, which differ in orientation and spatial frequency

selectivity from the linear RF, even in layer 4 and layer 6 Simple cells that received

direct input from the thalamus (exemplified in Fig. 4, right). Furthermore, the

diversity of Complex-like contributions recovered at the subthreshold level is

expressed in the cell spiking output.

These results demonstrate that the Simple or Complex nature of V1 RFs does not

rely on the diversity of Complex-like components received by the cell from its

Fig. 3 Immergence of mesoscopic network organization on microscopic response properties.

Changes in the mesoscopic context are provided by, functionally, non-stationarities in the sensory

input drive statistics and, structurally, by non-homogeneities in the columnar and lateral network

neighborhood (Monier et al. 2003). (A) Homeostasis Rule as a function of spatial and temporal

density (Fournier et al. 2011): regulation of the functional expression of the RF (h1st for linear and

h2nd Diag for the diagonal term of the second-order kernel) by input statistics (left, SN: right, DN).
The spread of lateral activation is wider for SN than for DN. (B) Homeostasis Rule as a function of

contrast level (adapted from Nauhaus et al. 2009): similar regulation of the lateral spread through

horizontal connectivity by the stimulus contrast
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synaptic afferents but on the relative imbalance between the weights of the Simple-

like and Complex-like synaptic contributions. In spite of the likelihood that the

Simple-like RF subunit results from the push-pull arrangement of excitatory and

inhibitory feedforward inputs selective for the same orientation, the diversity of

feature selectivity expressed by the Complex-like RF subunits is not consistent with

a strict iso-orientation preference rule for excitatory and inhibitory input conduc-

tance as generally posited (Ferster and Miller 2000; Priebe and Ferster 2012).

Although the estimated Complex-like subunits are operational filters that do not

necessarily correspond to the RFs of neurons presynaptic to the recorded cell, they

bear a striking resemblance to the linear RF of V1 Simple cells, which suggests that

they could correspond to separate subcircuits originating from within the cortex

(Rust et al. 2005; Chen et al. 2007). The diversity of orientation and spatial

frequency preferences of the Complex subunits agrees with that found in the tuning

of the excitatory and inhibitory input conductances measured by voltage clamp

techniques in vivo and previously reported by our lab (Monier et al. 2003, 2008).

Taken together, these intracellular results support the hypothesis that the Complex-

like components of V1 RFs arise from lateral interactions between adjacent cortical

Fig. 4 Filter bank decomposition of the subthreshold V1 RF (adapted from Fournier et al. 2014).

Left: decomposition principle: each branch of the filter bank is composed of a Simple-like filter

followed by an identity contrast function (linear kernel, upper branch) and by a parallel bank of

linear subunits feeding excitatory (red) and inhibitory (blue) quadratic contrast-dependent non--

linearities (lower parallel branches). Right: example of RF decomposition for two biocytin

reconstructed cells in, respectively, layer 4 (middle) and at the border between layers 5/6 (right)
in cat visual subunit. Each subunit weight (in the decomposition) is given below each kernel

component
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columns and are consistent with the proposal that the Simple or Complex nature of

V1 RFs arises from the respective balance between feedforward and lateral con-

nectivity (Chance et al. 1999; Tao et al. 2004). This wide functional spectrum of

Complex-like synaptic contributions to both Simple and Complex RFs may consti-

tute the skeleton of a multi-competent substrate allowing V1 cells to adapt on-the-

fly to the abrupt changes in the spatio-temporal statistics of visual inputs (Fig. 4,

right).

Synaptic Correlates of Perceptual Gestalt Laws

in the “Silent Surround” of V1 RFs

The synaptic RF stems from the interplay of distinct sets of connections, the

feedforward drive from the thalamus relayed eventually by vertical processes

within the cortical column, the local recurrent reverberation usually confined within

a hypercolumn, the long-distance connectivity intrinsic to V1 (that may even

originate from the other hemisphere through the corpus callosum) and the feedback

from higher cortical areas (Fig. 1a, b). The cat and ferret visual cortex appear to be

ideal experimental models to study horizontal connectivity (Kisvard�ay et al. 1997;

Bosking et al. 1997), since many reconstructed axons of pyramidal cells remaining

within the gray matter have been shown to extend over several hypercolumns (up to

6–8 mm in the cat; Kisvard�ay et al. 1997; Callaway and Katz 1990; Gilbert and

Wiesel 1983; Gilbert and Li 2012; Buz�as et al. 2006; but see Martin 2014). In spite

of some pioneering attempts (Kasamatsu et al. 2010; Mizobe et al. 2001), only

limited physiological data have addressed the synaptic contribution of the “silent”

surround of the classical V1 RFs, from which impulse-like stimuli fail to evoke a

spiking response. Consequently, the role of long distance horizontal connectivity in

influencing the response gain within the classical RF, and in particular in boosting it

for specific center-surround stimulus conditions (Jones et al. 1980; Sillito

et al. 1995; Sillito and Jones 1996), remains an issue of debate. In spite of this

uncertain status, horizontal connectivity has long been presented as the biological

substrate of iso-preference binding in the electrophysiological and psychophysical

cortical literature (review in Gilbert and Li 2012; Frégnac and Bathellier 2015).

This principle was derived from a developmental rule that posited that “who fires

together (or is alike) tend to wire together” (Callaway and Katz 1990). At the

psychophysical level, this view corresponds to the perceptual “association field”

concept, developed by Field, Hess and their colleagues in the 1990s (Field

et al. 1993). This concept assumes the instantaneous induction of collinear and, to

a lesser extent, co-circular facilitation by the static presentation of oriented contrast

edges. This elegant psychophysical hypothesis accounts in humans for the “pop-

out” perception of smooth contiguous path integration even when immersed in a sea

of randomly oriented edge elements (Fig. 5a, top; Field et al. 1993) and the

facilitation of target detection by high contrast co-aligned flankers (Fig. 5a, bottom;
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Polat and Sagi 1985). At the neuronal level, this view is supported by the peculiar

anatomy of long-distance horizontal connections emitted by supragranular pyrami-

dal cells found consistently in higher mammals (but see Martin et al. 2014) and the

electrophysiological demonstration of a “neural facilitation field” (Fig. 5b, c;

Gilbert and Li 2012). These latter experiments, realized in the attentive behaving

monkey, demonstrated an impressive boosting of the response gain to an optimally

oriented contrast edge within the classical RF when flankers were simultaneously

flashed in the “silent surround” and co-aligned along the preferred orientation axis

of the extracellularly recorded cell. Most remarkably, Charles Gilbert, Wu Li and

his colleagues showed that, to be expressed, the co-linearity binding rule required

Fig. 5 The perceptual association field and its neuronal correlate in the attentive brain (reviewed

in Frégnac and Bathellier 2015). (a) Top: “pop-out” emergence of a continuous integration path in

a sea of randomly oriented Gabor patches (Field et al. 1993). Bottom: facilitation of detection of a
low contrast vertical Gabor element induced by the simultaneous presentation of co-aligned high

contrast flanker elements (Polat and Sagi 1993). (b) Hypothetical association field induced by an

oriented element through lateral interactions promoting co-alignment and co-circularity (Field

et al. 1993). (c) The “iso-functional binding” hypothesis (Gilbert and Li 2012). An individual

superficial layer cortical pyramidal cell forms long-range connections that extend many millime-

ters parallel to the cortical surface. Long-range connections (>500 μm from the injection center)

tend to link columns of similar orientation preference. (d) The “neural facilitation field”

(Li et al. 2006). Left, the responses of V1 neurons are amplified in the awake behaving monkey

by collinear contours extending outside the RF. Introducing a cross-oriented bar between the

collinear segments blocks the contour-related facilitation. Right, two-dimensional map of facili-

tatory (blue) and inhibitory (red) modulation of the response to an optimally oriented line segment

centered in the RF (horizontal white bar). The spiking modulation is suppressed by anesthesia
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the existence of top-down signals, present in the target-attending monkey, since the

effect was weakened by diverted attention (Li et al. 2006) and the ability to learn

contour integration was suppressed by anesthesia (Li et al. 2008).

These previous studies provided, nevertheless, an indirect answer since they

addressed only the modulatory nature of the center-surround effects, without

probing the existence of a subthreshold influence. This issue has been addressed

intracellularly in the anesthetized mammal, and our lab has demonstrated repeat-

edly, in the context of various stimulation protocols, the existence of long-distance

propagation of visually evoked activity through lateral (and possibly feedback)

connectivity outside the classical RF (Bringuier et al. 1999; Frégnac 2012; Gerard-

Mercier et al. 2016; Troncoso et al. 2015). This propagation, initially hypothetized

by Amiram Grinvald and inferred from the synaptic echoes we recorded intracel-

lularly, has since been confirmed in the same species by voltage sensitive dye

(VSD) imaging techniques (Benucci et al. 2007; Chavane et al. 2011), which

provide a direct visualization of the horizontal propagation pattern at the

mesoscopic level of the V1 retinotopic map. Most remarkably, the VSD waves

were found to travel at the same speed as that inferred from intracellular recordings

(0.3 m/s).

In a recent intracellular study (Gérard-Mercier et al. 2014, in preparation), we

reinvestigated the association field concept to demonstrate whether a structure-

functional bias might be still detected at the subthreshold level, even in the absence

of attention-related signals. By averaging synaptic response properties in a unified

“cellulo-centric” reference frame centered on the discharge field center and

realigned with the spike-based orientation preference, we found a coherent spatial

organization of visual synaptic responses, reflecting the grouping bias of the

“perceptual association field” for collinear contours (Field et al. 1993). This result,

apparently contradictory to Gilbert and Li’s failure to find the “facilitatory neural

field” under anesthesia, is seen only at the population level by summation across

cells. The most likely interpretation is that a mean-field effect (in the sense of

physics) is needed to enhance a slight bias in the subthreshold impact of the

synaptic connectivity intrinsic to V1. Its expression is revealed (or facilitated)

here by the use of 3–4� test-oriented stimuli (Gabor patch) that recruit by spatial

summation the whole extent of the aggregate RF of a hypercolumn in the cat. Our

current working hypothesis is that a critical threshold of spatial synergy and

temporal summation has to be trespassed to make the weak functional impact of

these long-range interactions (in the mV range) detectable, as suggested from a

prior combined VSD and intracellular study done in collaboration with the lab of

Amiram Grinvald (Chavane et al. 2011). Preliminary intracellular data show that

two- to six-stroke apparent motion (AM) sequences, riding in phase with horizontal

activation in a centripetal way towards the RF center, are effective enough to

unmask suprathreshold filling-in responses in the unstimulated RF core (Troncoso

et al. 2015).

Our work provides, for the first time, intracellular evidence in the anesthetized

mammal for synaptic correlates of low-level perception, closely dependent on the

spatiotemporal features of the synaptic integration field of V1 neurons and most
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likely linked to intra-V1 horizontal connectivity. These findings also agree with the

concept of a “dynamic association field,” whose spatial anisotropy and extent are

transiently updated and reconfigured as a function of changes in the retinal flow

statistics imposed during visuomotor exploration of natural scenes (Frégnac 2012).

According to this still hypothetical view, the propagation of intracortical

depolarizing waves at the mesoscopic V1 map level would help in broadcasting

an elementary form of collective predictive “belief” to distant parts of the network,

at a time when they are not yet engaged by the stimulus drive. We propose that the

in-phase association of horizontal and feedforward input could provide the synaptic

substrate for implementing the psychological Gestalt principles of common fate and

axial collinearity (review in Wagemans et al. 2012). On a more conjectural note,

since a visual flow in the order of 100–250�/s in retinal space is needed to

maintain—in cat V1—the feedforward flow in phase or slightly ahead of intra-V1

propagation, one may expect the amplification of visual responses for edges

collinear to the motion path during specific phases of brisk eye-movements, namely

saccadic exploration or large changes of gaze between distant fixation locations.

This unexpected process could account for the observation of transient peaks of

responses for fast-moving contours coaligned with the RF axis (Barry Richmond,

personal communication; Judge et al. 1980) and the induction of filling-in responses

for fast centripetal radial flow (Troncoso et al. 2015).

Conclusion

We conclude from this review that the functional complexity in the early visual

system is largely underestimated and that the functional organization and prefer-

ence expressed in visual cortical RFs result from the coordination by input statistics

dynamics of overlaid activity processes operating at different spatial integration

scales. We have illustrated here what insight can be possibly gained by the

comparison between different levels of integration. Reverse engineering on intra-

cellular and spiking signals shows that part of the “effective” connectivity contrib-

uting to the RF is missed/ignored when models and data collection are confined at

the spiking level. Mapping of the hidden non-linearities in the subthreshold RF

reveals unexpected immergence processes, driven by the stimulus, through which

the global activity control extending within and beyond the cortical hypercolumn

regulates the functional expression of more microscopic properties, such as the

apparent “Simpleness” of individual RFs. This feature can be seen as a top-down

influence of the more mesoscopic levels of organization, typical of complex

dynamic systems based on nested processing. The unfortunate consequence of

this physiological finding for modellers is that one can no longer hope or pretend

to simulate the full network behavior by assembling neurons with fixed intrinsic or

context-invariant properties in a pure bottom-up approach. Models of the early

visual system have to incorporate homeostasis rules acting across integration levels

to account for the inverse covariation between input drive complexity and the
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apparent linearity of the more elementary processing units. In a kind of reciprocal

way, it remains nevertheless highly plausible that the characterization of psychic

laws at a more holistic level, guiding the psychological principles of low-level (non

attentive) perception, pleads for the existence of structuro-functional traces that can

be retrieved by decoding and averaging synaptic echoes. The identification at more

microscopic scales of the key non-linearities and the activity synergy requirements

necessary for their expression should help us to understand, in a causal way, the

emergence of novel binding principles at more mesoscopic levels, leading even-

tually to the abstract formalization of psychological foundations of perception.
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Borg-Graham LJ, Monier C, Frégnac Y (1998) Visual input evokes transient and strong shunting

inhibition in visual cortical neurons. Nature 393:369–373

Bosking WH, Zhang Y, Schofield B, Fitzpatrick D (1997) Orientation selectivity and the arrange-

ment of horizontal connections in tree shrew striate cortex. J Neurosci 1(6):2112–2127
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Frégnac Y (2012) Reading out the synaptic echoes of low level perception in V1. Lect Notes

Comput Sci 7583:486–495
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Frégnac Y, Bathellier B (2015) Cortical correlates of low-level perception: from neural circuits to

percepts. Neuron 88:110–126

Gérard-Mercier F, Carelli P, Pananceau M, Baudot P, Troncoso X, Frégnac Y (2014) A saccadic
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Monier C, Fournier J, Frégnac Y (2008) In vitro and in vivo measures of evoked excitatory and

inhibitory conductance dynamics in sensory cortices. J Neurosci Methods 169:323–365

Nauhaus I, Busse L, Carandini M, Ringach DL (2009) Stimulus contrast modulates functional

connectivity in visual cortex. Nat Neurosci 12:70–76

Olshausen BA (2014) 20 years of learning about vision: questions answered, questions unan-

swered, and questions not yet asked. In: Bower JM (ed) 20 years of computational neurosci-

ence. Springer, New York. ISBN 978-1-4614-1424-7

Polat U, Sagi D (1985) Lateral interactions between spatial channels: suppression and facilitation

revealed by lateral masking experiments. Vision Res 33(7):993–999

Polat U, Sagi D (1993) Lateral interactions between spatial channels: suppression and facilitation

revealed by lateral masking experiments. Vision Res 33:993–999

Priebe NJ, Ferster D (2012) Mechanisms of neuronal computation in mammalian visual cortex.

Neuron 75(2):194–208

Priebe NJ, Mechler F, Carandini M, Ferster D (2004) The contribution of spike threshold to the

dichotomy of cortical simple and complex cells. Nat Neurosci 7(10):1113–1122

Rust NC, Schwartz O, Movshon JA, Simoncelli EP (2005) Spatiotemporal elements of macaque

v1 receptive fields. Neuron 46:945–956

Sillito AM, Jones HE (1996) Context-dependent interactions and visual processing in V1. J

Physiol (Paris) 90(3–4):205–209

Sillito AM, Grieve KL, Jones HE, Davis J (1995) Visual cortical mechanisms detecting focal

orientation discontinuities. Nature 378(6556):492–496

Skottun BC, De Valois RL, Grosof DH, Movshon JA, Albrecht DG, Bonds AB (1991) Classifying

simple and complex cells on the basis of response modulation. Vision Res 31:1079–1086

Tan AYY, Chen Y, Scholl B, Seidemann E, Priebe NJ (2014) Sensory stimulation shifts cortex

from synchronous to asynchronous states. Nature 509(8):226–230

Tao L, Shelley M, McLaughlin D, Shapley R (2004) An egalitarian network model for the

emergence of simple and complex cells in visual cortex. Proc Natl Acad Sci USA 101:366–371

Touryan J, Lau B, Dan Y (2002) Isolation of relevant visual features from random stimuli for

cortical complex cells. J Neurosci 22(24):10811–10818

Touryan J, Felsen G, Dan Y (2005) Spatial structure of complex cell receptive fields measured

with natural images. Neuron 45:781–791

Troncoso X, Pananceau M, Lebec B, Desbois C, Gerard-Mercier F, Frégnac Y (2015) Spatial
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Grid Cells and Spatial Maps in Entorhinal

Cortex and Hippocampus

Tor Stensola and Edvard I. Moser

Abstract The cortical circuit for spatial representation has multiple functionally

distinct components, each dedicated to a highly specific aspect of spatial

processing. The circuit includes place cells in the hippocampus as well as grid

cells, head direction cells and border cells in the medial entorhinal cortex. In this

review we discuss the functional organization of the hippocampal-entorhinal space

circuit. We shall review data suggesting that the circuit of grid cells has a modular

organization and we will discuss principles by which individual modules of grid

cells interact with geometric features of the external environment. We shall argue

that the modular organization of the grid-cell system may be instrumental in

memory orthogonalization in place cells in the hippocampus. Taken together,

these examples illustrate a brain system that performs computations at the highest

level, yet remains one of the cortical circuits with the best readout for experimental

analysis and intervention.

Place Cells and Grid Cells

An entirely new branch of neuroscience opened with the discovery of hippocampal

place cells, i.e., cells that fire specifically when animals are in certain locations

(O’Keefe and Dostrovsky 1971; O’Keefe and Nadel 1978; Fig. 1). Different place

cells were found to fire in different locations of the environment (O’Keefe 1976),

such that, for any given ensemble of place cells, the animal’s location could be

decoded from the pattern of activity among those cells (O’Keefe and Nadel 1978;

Wilson and McNaughton 1993). With these insights, place cells became a strong
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candidate for the neural implementation of Tolmanian cognitive maps, maps that

animals use to guide their navigation in the environment (Tolman 1948; O’Keefe
and Nadel 1978).

In trying to understand which incoming signals could take part in generating

location-specific responses in place cells, both experimental and theoretical sug-

gestions have been presented. An important clue was the experimental

Fig. 1 Place cells recorded in hippocampal subarea CA3. Bird’s eye view of firing locations of

three place cells, with firing locations shown as red dots on the path of the rat (black). t indicates
tetrode number, c cell number. Cells were recorded simultaneously. Right: pseudo-color activity
maps of the cells to the left. Red is high firing rate, and blue is no firing. Reproduced with

permission from Fyhn et al. (2007)
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demonstration that place cells in CA1 could sustain place characteristics after

ablation of all input from CA3 (Brun et al. 2002). This observation suggested that

place responses in CA1 originated from an alternative source of excitatory input to

CA1: the medial entorhinal cortex (MEC). In pursuing this possibility, we observed

that neurons in MEC were also spatially selective (Fyhn et al. 2004; see also

Hargreaves et al. 2005), although MEC neurons typically had several firing fields

in environments where place cells had only a single field. It turned out that the firing

fields of the spatial cells in MEC formed a near-perfect hexagonal grid tessellating

the entire space available to the animal (Hafting et al. 2005; Fig. 2). Each grid cell

had a slightly different set of x, y-coordinates in the environment, so that the entire

environment could be covered collectively by a small number of grid cells. Dorsally

in MEC, grid patterns typically had small fields packed densely together. At more

ventral MEC locations, with increasing distance from the dorsal MEC border, the

scale of the grid pattern expanded (Fyhn et al. 2004; Hafting et al. 2005; Brun

et al. 2008; Fig. 2). Several computational models (O’Keefe and Burgess 2005;

25 cm

Module 1 Module 2

Module 3 Module 4

Fig. 2 Grid cell firing patterns; bird’s eye view. Action potentials (black) superimposed on the

movement path (gray) reveal a periodic spatial activity pattern. Shown are grid patterns of four

distinct scales recorded within the same animal. Reproduced with permission from Stensola

et al. (2012)
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Fuhs and Touretzky 2006; McNaughton et al. 2006; Burak and Fiete 2009; Burgess

et al. 2007) and multiple lines of experimental evidence (Brun et al. 2002; Van

Cauter et al. 2008; Zhang et al. 2013) soon pointed to grid cells as prime candidates

in conferring spatial selectivity to place cells in downstream hippocampus.

Models that describe possible grid-to-place transforms are dependent on how the

grid map is organized at several functional levels. Grid spacing is organized

topographically along the dorsoventral axis of MEC, with average grid spacing

increasing from dorsal to ventral (Fyhn et al. 2004; Hafting et al. 2005; Brun

et al. 2008). Despite initial reports based on low cell numbers (Barry et al. 2007),

it remained unclear after the first studies whether grid scale distributed within

animals as a scale-continuum or instead progressed in steps. To answer this

question, it was essential to record large numbers of grid cells over considerable

dorsoventral distances within animals, so as to sample a sufficient range of grid

spacing. It was necessary to record with minimal discontinuity in the tissue so that

steps in spacing could be discerned reliably from discontinuities in sampling of a

smooth topography.

In the first reports of grid cells (Hafting et al. 2005; Fyhn et al. 2007),

co-localized cells always had a similar grid orientation (orientation of grid axes),

suggesting there was only one shared orientation in the entire circuit. Later work

has shown that multiple orientation configurations may be present in the same

animal (Krupic et al. 2012; Stensola et al. 2012). The existence of multiple

orientation configurations across multiple levels of grid scale highlights a basic

question: is the grid map composed of smaller sub-maps or does it act as one

coherent representation of space, but with variable geometric features such as

spacing and orientation? A grid map with independently functioning sub-maps

may produce unique population-pattern combinations for every environment,

resulting in unique input patterns to place cells and, in turn, unique hippocampal

output (Fyhn et al. 2007). A major objective, based on this possibility, has therefore

been to determine if grid cells within the same grid circuit perform separate

operations on the same inputs. The next section will address the possibility of a

modular functional organization of the grid-cell circuit.

Discretization of the Entorhinal Grid Map

Locally, grid cells behave as a coherent ensemble (Fyhn et al. 2007), but it was

unknown from the first reports if the entire grid map functioned as a coordinated

whole or if it was fractioned into sub-units that displayed a capacity for independent

function. By combining novel and established experimental approaches, we were

able to record an unprecedented number of grid cells—up to 186 cells from the

same animal—which finally allowed us to determine that the grid map is a con-

glomerate of sub-maps or modules (Stensola et al. 2012).

The new recordings showed, within animals, that the gradient in grid scale (grid

spacing) along the dorsoventral axis of MEC progressed in clear steps rather than as
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a continuum. All cells within a module shared the same grid spacing, and modules

of increasing scale became more abundant as the tetrodes were turned to more

ventral MEC locations. Cells that shared the same grid spacing within animals also

had a common grid orientation, defined as the orientation of the grid axes relative to

the local boundaries of the environment. Most grid cells also demonstrated small

but consistent deviations from perfect hexagonal symmetry, expressed by the fact

that the inner ring of fields in the grid pattern formed an ellipse rather than a circle.

These deformations were consistent across cells in the same grid module (Stensola

et al. 2012). No modular organization was apparent within the population of head

direction cells in the MEC (Giocomo et al. 2014).

Modular organization was also expressed in the temporal modulation of spike

activity. Grid cells are tuned to the ongoing population activity, manifested as

oscillations in the local field potential (Hafting et al. 2008; Jeewajee et al. 2008).

Several models implicate theta rhythms in the generation of the grid pattern

(Burgess et al. 2007; for review, see Moser et al. 2014). Previous work had

shown that cells at ventral locations of the dorsoventral MEC axis oscillated with

a slower beat frequency than dorsal cells, and it was suggested that this gradient

arose from gradients in the expression of specific ion channels (Giocomo

et al. 2007; Giocomo and Hasselmo 2008; Garden et al. 2008; Jeewajee

et al. 2008). We found that grid cells in geometrically defined modules were

modulated by the same theta frequency. On average, modules with greater grid

spacing had lower theta frequencies, but within animals, modules were not strictly

confined to this trend.

The consistency of geometric features within but not across modules made it

possible to define module membership for all cells with an automated

multidimensional clustering approach (K-means clustering). After defining the

modules, we could turn to the question of how modules were distributed in the

MEC tissue. Several signs of anatomical clustering existed within the entorhinal

system (Ikeda et al. 1989; Solodkin and Van Hoesen 1996; Burgalossi et al. 2011),

pointing to possible anatomical substrates for the functional clustering. Individual

modules occupied extensive portions of MEC. We found that, on average, a module

spanned >1 mm of the dorsoventral MEC axis. There was extensive module

overlap in the intermediate-to-ventral parts of MEC such that, at any MEC location,

cells from several modules could be present. Grid modules were found to cut across

cell layers; cells that were part of one module were found in several layers. In

contrast to the organization along the dorsoventral axis, there was no discernable

topography along the mediolateral axis. Instead, modules extended across large

mediolateral distances (~1 mm, which was the limit of our recording arrays),

suggesting modules distributed as mediolateral bands along the dorsoventral axis.

Based on this knowledge, combined with the distribution of modules along the

dorsoventral axis, we could estimate the number of distinct modules within animals

to be in the upper single-digit range. This anatomical distribution of modules does

not match any known anatomical clustering in the entorhinal cytoarchitecture.

With previous reports having suggested a set relationship between scale steps

(Barry et al. 2007), we next quantified the relationship between module scales
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within and across animals. Within animals, there was considerable variation in the

relationship between one module scale and the next, suggesting that scale is set

independently for each module and animal. However, when we pooled the scale

progression across animals, a pattern was revealed. On average, modules increased

by a fixed scale ratio, as a geometric progression. The mean ratio was 1.42, very

close to √2. This relationship pointed to genetic circuit-mechanisms as contributors

to grid scale, yet the geometric individuality of the modules suggested that modules

exhibited a substantial level of autonomy.

Finally, in a separate set of experiments, we tested if grid modules were also

functionally independent. Grid cells are known to rescale along with environmental

compression (Barry et al. 2007; Solstad et al. 2008). We found that, when animals

were exposed to a relocation of one of the walls in the environment, modules

rescaled along the compression, but to varying degrees (Stensola et al. 2012). Cells

within a module behaved coherently, whereas individual modules could rescale to

completely different extents within animals. This finding provided the first proof-

of-principle for independent function within sub-populations in the grid map.

Combinatorics in Grid Cells and Remapping in Place Cells

In a landmark study of place cells, Muller and Kubie (1987) described a phenom-

enon that had great implications for our understanding of the relationship between

the spatial map in hippocampus and its role in memory formation. For one, they

demonstrated, in agreement with earlier work (O’Keefe and Conway 1978), that

place cells were under the control of sensory cues in the environment, as rotation of

a cue resulted in consistent rotation of the place fields. More importantly, they

showed that, if two recording environments differed beyond a certain magnitude,

the activity of the recorded cells changed drastically between the environments.

Among the cells that were active in the first environment and remained active in the

second, the firing locations were completely reorganized in space. Further, a large

portion of cells that were active in one environment became silent in the next. Other

cells were active only in the second environment. This functional reorganization

was termed ‘remapping’ and represented an orthogonalization in the population

encoding between the distinct environments.

Grid modularity appears to offer very favorable conditions for hippocampal

remapping (Fig. 3). Maps from different grid modules could reorganize to yield

completely novel downstream population inputs and, therefore, new hippocampal

place maps. Early work showed that grid cells realigned with the environment when

remapping took place in simultaneously recorded hippocampal place cells (Fyhn

et al. 2007). The realignment involved a shift in grid phase and a reorientation of the

grid pattern relative to the geometry of the environment. The realignment was

coherent for all grid cells recorded, so that spatial relationships between the grid

cells remained. This observation does not preclude independent realignment of

distinct modules, however, because all of the grid cells in the early work were
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recorded at the dorsal end of the MEC and all had a relatively similar grid scale, i.e.,

most of the cells may have belonged to the same module.

If grid modules are the main source of hippocampal remapping, the level of

independence between grid modules will affect remapping-based mnemonic capac-

ity. But how independent are the grid modules? Grid modules have several geo-

metric traits that suggest autonomy (Stensola et al. 2012). Grid spacing

relationships varied across animals, and grid orientation could be completely offset

between modules. Grid modules also differed in the amount and directionality of

pattern deformation, and deformation, scale and orientation changed independently

across modules when the animal was exposed to a novel room (Fig. 4). These

observations are entirely consistent with an attractor mechanism for grid formation.

In attractor models of grid cells, a grid network can only support a circuit in which

all cells share the same geometry (McNaughton et al. 2006; Burak and Fiete 2009;

Moser et al. 2014).

A surprising observation, however, was that modules typically assumed one of

only four distinct orientation configurations relative to the environment (Stensola

et al. 2015). This constraint on orientation may seem highly disadvantageous for

generating maximally distinct hippocampal inputs. However, it has been shown

theoretically that remapping based on grid modules is much more sensitive to the

spatial phase offset between the modules than the relative orientation and spacing

(Monaco and Abbott 2011; Fig. 5). Varying grid orientation caused less reorgani-

zation in hippocampus compared to varying phase.

The differences in rescaling across grid modules may shed light on the mecha-

nisms underlying rescaling of hippocampal place fields after changes in the

   global
remapping

26°

18°–5° –22°

Fig. 3 Two proposed mechanisms that may underlie hippocampal remapping based on grid

inputs. Left: several independent grid maps, each with a different color, realign independently

(bottom) and cause unique combinatorial population patterns in the hippocampus (top). Right: the
grid map is coherent across scales, and remapping occurs from a shift in spatial phase space.

Reproduced with permission from Fyhn et al. (2007)
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geometry of the environment (O’Keefe and Burgess 1996). O’Keefe and Burgess

recorded place cells in a rectangular environment that could be extended or

compressed in any of the four cardinal directions. When the recording box was

extended or compressed, place fields followed the change in environmental geom-

etry. Some cells were anchored to one wall or a set of walls so that their firing fields

moved along with the extension. Other cells were anchored to the external room

instead of the box, and yet others distended the place field along the box or even

split the field in two parts. This behavior suggested an underlying input pattern with

a distinct geometric relationship to the walls of the recording box or the room.
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Fig. 4 Modules realigned when animals were tested in a novel box in a novel room. Grid scale,

orientation and ellipse directions all changed independently between modules, strongly suggesting

independent operations. The left panel shows grid axes and ellipse (gray lines) and ellipse tilt

(black line) from all cells in one animal in square and circular environments. Note the independent

changes in ellipse tilt. The figure on the right shows data from all three grid axes in the square and
the circle. Reproduced, with permission, from Stensola et al. (2012)

Fig. 5 Efficacy of reorganizing different parameters of grid geometry between modules. The

strongest remapping occurred from phase shifts, while other features (changes in elliptic defor-

mation or scale) were less effective. A and B denote the two distinct environments. Reproduced,

with permission, from Monaco and Abbott (2011)
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Based on their observations, the authors proposed a model in which spatial mod-

ulation arose from the sum of multiple Gaussian activity bands offset from the

environmental boundaries at different distances (O’Keefe and Burgess 1996). This

idea was later developed into the boundary-vector model of place cells (Hartley

et al. 2000; Barry et al. 2006). Although boundary-selective cells exist in MEC and

do project to hippocampal place cells (Zhang et al. 2013), this study is also

intuitively in line with expectations from the observations of grid rescaling.

Because of rescaling, place fields can receive input that is topologically identical

to the original map, only distended or compressed, likely resulting in distended or

compressed place fields. If a place cell receives input from two modules, and these

modules differ greatly in rescaling, it seems reasonable to assume that their

contribution is split into two fields under some circumstances.

Topography in Parahippocampal Systems

In sensory and motor cortices, there is often a neat correspondence between

relationships in the external world and their internal representations in the brain,

that is to say, continuous or discrete variables in the external world are mapped

topographically into the cortical sheet (Rasmussen and Penfield 1947). Topography

often represents a ‘where’ component onto which information about stimulus

quality can be superimposed (Tolman 1948; Montagnini and Treves 2003; Kaas

2012). Similar correspondences are not present in the entorhinal-hippocampal

system. Neither place cells nor grid cells display topographic representation of

spatial location, at least not at the macroscopic level (O’Keefe 1976; Redish

et al. 2001; Hafting et al. 2005). In the hippocampus, with two-photon imaging,

the activity of an entire ensemble of hippocampal place cells could be imaged

simultaneously while a mouse navigated within a virtual environment (Dombeck

et al. 2010; Harvey et al. 2009). The place cells developed clear place fields,

suggesting the task was not too alienating for the spatial representation system.

Further, there was no statistical relationship between the location of place cells in

the hippocampal cellular sheet (>35 μm apart), and the locations of their place

fields in virtual space. Cell pairs <35 μm apart, displayed a significant correlation

but not separable from correlations from common neuropil or activity bleed-over in

the imaging technique (Dombeck et al. 2010). Imaging of grid cells using similar

methods has recently confirmed that grid phase is organized non-topographically at

the macroscopic level, but larger-than-expected correlations were reported for cells

that were nearest neighbors (Heys et al. 2014).

The low level of topography in the adult spatial representation system does not

exclude the existence of topography at earlier developmental stages. Mechanisms

by which topography is present during development as a teaching signal to set up

appropriate circuitry for grid function, only to disappear in the adult brain, have

been proposed for place cells (Samsonovich and McNaughton 1997) as well as grid

cells (McNaughton et al. 2006). It is worth noting that both hippocampus and
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entorhinal cortex are evolutionarily ‘old,’ such that the orderly topography seen in

typical low level cortex only likely arose after these structures were past their

phylogenetic window of opportunity (Kaas 2012). The olfactory piriform cortex is

another ancient cortical structure that does not show topographical organization,

even though continuity in stimulus dimensions exists and similar teaching inputs

may have been present.

The apparent lack of topographical mapping of firing locations contrasts with the

progressive increase in average scale of place cells (Jung et al. 1994; Kjelstrup

et al. 2008) and grid cells (Fyhn et al. 2004; Hafting et al. 2005; Brun et al. 2008)

along the dorsoventral axis of the hippocampus and the MEC, respectively. What

are the functional consequences of this scale expansion? There is an extensive

literature on the distinct features of dorsal and ventral portions of the hippocampus.

Lesions at different dorsoventral portions produce markedly different behavioral

deficits (Nadel 1968; Moser et al. 1993). Lesions of a small portion of the dorsal

pole impair spatial memory efficiently, whereas similar portions of the ventral pole

do not (Moser et al. 1993, 1995). Stress responses and emotional behavior are

affected by lesions to ventral but not dorsal portions of hippocampus (Henke 1990;

Kjelstrup et al. 2002). Connectivity to and from these portions of hippocampus is

distinct (Witter et al. 1989; Dolorfo and Amaral 1998). There is also a growing

body of literature in spatial cognition in humans suggesting functional polarization

along the human equivalent of the dorsoventral axis (Fanselow and Dong 2010;

Poppenk et al. 2013). In particular, activity in the human equivalent of the ventral

hippocampus is associated with coarse global spatial representations and route

planning and execution, whereas the dorsal equivalent is associated with fine-

grained local representations and navigation strategies, such as number of turns

on a route (Evensmoen et al. 2013).

The neural codes along the dorsoventral axis of the parahippocampal spatial

system may very well reflect an axis of generalization. With increased scale of

spatial fields in the hippocampus and the MEC, the larger fields do not denote

spatial location with equal demarcation, so spatial resolution is diminished. Another

consequence is that for these ventral codes, at any particular point in space, a

greater portion of cells will be active. This increase in representational density may

confer better robustness to noise: the more cells that can take part in a ‘majority’
vote, the better the vote will be statistically, despite poorer spatial resolution.

Exactly the same argument can be made for the representation of head direction,

whose resolution also decreases from dorsal to ventral MEC (Giocomo et al. 2014;

Fig. 6). Alternatively, ventral cells (both grid, place and head direction cells) code a

larger portion of the environment at any moment, so that the population code at any

location is more generalized. This may be beneficial for associating content into

current spatial contexts. The ventral hippocampus is more associated with stress

and fear responses and has stronger connections with the amygdala (Moser and

Moser 1998). For embedding fear memories into spatial context, it may be advan-

tageous to impose a higher level of generalization.
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Mechanisms of Grid Spacing

Our studies have shown that grid spacing increases in steps along the dorsoventral

axis of MEC. The factors that determine topographical grid spacing are currently

unknown. When all module pair ratios were pooled across animals, a consistent

average scale ratio was revealed. This consistency across animals implies a genetic

component in determining grid spacing. Gradients of specific ion channels, such as

the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, exist in

entorhinal cortex and have been suggested to account for the topography of grid

scale (Giocomo et al. 2007, Giocomo and Hasselmo 2009; Garden et al. 2008).

However, such channels, when genetically knocked out, did not remove grid

scaling along the dorsoventral axis but instead changed the baseline spacing

(Giocomo et al. 2011). Other channel gradients may contribute to scaling, such as

potassium channels (Garden et al. 2008). If scale is determined in part from channel

gradients, or indeed any genetic expression pattern, it seems likely the gradient will

provide a smooth topography of any conferred scale parameter, instead of a

Head directionHead directionHead direction

DensestSparsest Intermediate
Pactive: 0.083 Pactive: 0.139 Pactive: 0.306

Dorsal MEC Ventral MEC

Fig. 6 Head direction representational density increases along the dorsoventral axis in MEC layer

3. Each doughnut represents a head direction cell population, and each cell is represented as a

circle on the doughnut. The location and size of the circle represent preferred head direction and

tuning specificity, respectively. Given populations of equal size (same number of rings; dorsal to

ventral as left to right), and the same directional input, ventral populations will have a larger

proportion (P) of its cell population be active to any input compared to more dorsal populations

due to broader tuning (color gradient shows each cell’s activity level; red is maximum)
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modular organization. How then could modular grid scale result from a smooth

underlying gradient?

One possible scenario is that module grid scale is determined by network

dynamics acting on a graded underlying scale parameter. Attractor models of grid

cells predict that all cells in a circuit must have the same grid spacing (as well as

orientation and pattern deformation) to generate a stable grid pattern (Welinder

et al. 2008). Within a grid network determined by attractor dynamics, there will

likely be some tolerance to small variations in the scale-parameter distribution

across cells, so that when the network is initiated, the effects of population

dynamics dominate individual cells enough to coordinate all cells into a common

pattern, cancelling out individual variation. In a sense, this ‘spatial synchronization’
acts similarly to synchronization in the temporal domain; originally observed by

Huygens in 1665, coupled oscillators settle on a mean frequency that entrains all the

individual oscillators, even in the presence of relatively large variations in individ-

ual frequencies. But what would happen if the scale parameter distribution exhibits

too large spread? The variation may become too large to entrain all units into one

coherent pattern, and the pattern may fraction into sub-ensembles that each center

on a mean frequency that the ensemble can sustain. This way, by having a network

self-organize from a very wide, continuous scale parameter distribution, such as

channel expressions along an axis in MEC, several local modules of internal spatial

consistency could arise from the unstable global pattern.

We observed convincing signs of independence between modules within ani-

mals, in terms of pattern geometry and rescaling responses. To incorporate this

finding into the suggested mechanism above, one can suppose that, during devel-

opment, learning strengthens connections within spatially synchronized ensembles

but weakens connections between spatially desynchronized cells. In agreement

with this possibility, grid cell pairs with similar spatial phase show stronger

functional connectivity than pairs with dissimilar phase (Dunn et al. 2015). If two

cells have a similar spatial phase, their coordinated firing in space will cause

coordinated firing in time, a prerequisite for many forms of long-term potentiation

(LTP; Bi and Poo 1998). Enhancement of connections between grid cells with a

similar phase would lead to the development of functional ensembles intermingled

in the same tissue, with strong inter-ensemble connectivity and weak cross-

ensemble connectivity, in effect decoupling the ensembles functionally. A testable

prediction from this idea is that very young animals, which have yet to achieve

complete module decoupling, will display grid cells with poor spatial regularity

because the network cannot sustain a coherent grid pattern based on cross-ensemble

interactions. As the animal explores more space, decoupling will at some point

become complete enough for cells to self-organize into modules with coherent and

regular grid patterns. Such a transition may be rapid, as it may involve a ‘tipping
point’ after which network dynamics kick in to entrain the ensemble. In two studies

that characterized grid cells in early development in rats, grid patterns were indeed

not very regular initially (Langston et al. 2010; Wills et al. 2010). Only at the age of

about 4 weeks, 1–2 weeks after the beginning of outbound exploration, did regular
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grid firing occur. The transition to this state had a rapid onset, in line with the above

proposal.

Conversely, if the scale parameter is associated with temporal characteristics

such as intrinsic resonance frequency, as suggested in several models (Burgess

et al. 2007) and by experimental findings (Giocomo et al. 2007, 2011; Jeewajee

et al. 2008), synchronization in the temporal domain during development could

result in similar module fractionation and synaptic modification to cause temporally
consistent ensembles. If the scale parameter is associated with temporal frequency,

these temporally synchronized ensembles would also become spatially synchro-

nized. By this mechanism, grid modules could develop to mature, functionally

decoupled modules at least in part before the animal ever explores space. In line

with this is our finding that modules are temporally consistent.

Shearing-Induced Asymmetries in Grid Cells

There are no hexagonal features in the environment that correspond to the grid

pattern. Grid patterns are instead believed to arise from local network dynamics,

with self-motion input as a major update mechanism (Fuhs and Touretzky 2006;

McNaughton et al. 2006; Welinder et al. 2008; Couey et al. 2013). However, for the

grid pattern to be useful in allocentric representations, it must anchor to the external

environment. Several features of the pattern could be involved in this anchoring

process, including spatial phase (offset in the x, y-plane), grid spacing and grid

orientation (alignment between grid axes and axes of the environment). We dem-

onstrated earlier that grid orientation can assume distinct orientations across and

within animals (Stensola et al. 2012), but it was unknown whether there was any

orderly relationship between grid alignment and specific features of the

environment.

In a recent study (Stensola et al. 2015), we compared grid orientation from large

data sets recorded in two distinct square environments, enabling rigorous analyses

of grid alignment. Grid orientation did not distribute randomly across animals.

Instead, there was a strong tendency for grid axes to align to the cardinal axes of the

environment, defined by the walls of the recording enclosure. In one environment,

we observed clustering around one wall axis only, whereas in the other environment

grid orientation distributed around both cardinal axes. The strong bias towards the

box axes suggested the box geometry itself acted as the grid anchor, and not salient

extra-environmental visual cues, which were deliberately abundant.

Rather than aligning parallel to the box axes, cells were consistently offset from

these axes by a small amount in all environments. In one environment, this offset

was to either side of one cardinal axis. In the second environment, cells were also

offset from parallel, but with reference to both cardinal axes. The rotation was

identical across the two environments; cells were systematically offset from parallel

by 7.5�, with a standard deviation of 2–3�, yielding four general alignment config-

urations for square environments. The observed distributions were not a result of
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pooling across cells from different modules, as individual grid modules expressed

the same absolute offset configurations, i.e., 7.5�.
What could be the function of the consistent offset of the grid axes? We noted

that a triangular pattern within a square is maximally asymmetric at 7.5� rotation in
relation to the axes of symmetry in the square, the same as the offset observed in the

data. The environmental axes are primarily available to the animal in the form of

borders imposed by the walls of the environment. Because border segments have

been implicated in spatial coding (O’Keefe and Burgess 1996; Hartley et al. 2000;

Barry et al. 2006) and because MEC contains cells that encode these specifically

(Solstad et al. 2008; Savelli et al. 2008), we hypothesized that one function

performed by grid alignment is to create maximally distinct population codes

along border segments of the environment. This may be critical for encoding

environments in which sensory input is ambiguous. Grid cells are thought to

perform path integration (dead-reckoning from integration of distance and angle

over time) based on self-motion cues. Without occasional sensory input, however,

errors will accumulate until the representation becomes entirely unreliable. Sensory

cues affect grid cells (Hafting et al. 2005; Savelli et al. 2008) and are thought to

provide update signals that recalibrate path integration and reset accumulated

errors. The symmetry and geometric ambiguity of the square recording environ-

ment may render such sensory cues less useful because multiple locations in the

environment may produce similar update signals at different absolute locations.

Therefore, error may be minimized by orientation solutions that maximize the

distinctness of population representations at ambiguous locations.

Closer inspection showed that the angular offset of the grid axes differed

between grid axes and depended on the angular distance from any of the walls of

the square environment (Stensola et al. 2015). The further away a grid axis was

from any of the walls, the smaller was the angular offset. The differential offset

gave rise to an elliptic deformation of the circle described by the inner six fields of

the grid pattern. The size and orientation of this elliptic deformation was not

randomly distributed. In particular, the angular difference between the ellipse

orientation of modules was clustered around 90 or 0� (Stensola et al. 2012).

Because of this apparent link to the square geometry of the box geometry, we

were inclined to investigate any possible links between elliptification of the grid

and its offset. Ellipse orientation correlated strongly with angular offset, leading us

to hypothesize that grid deformation and offset were the result of a common

underlying process.

In continuum mechanics, simple shearing is a geometric transform that displaces

points on a plane along a shear axis. Any point is displaced by an amount directly

proportional to its Euclidian distance to that shear axis. The effect of this transfor-

mation on points that lie on a circle is that the circle becomes elliptic. Further, any

axis on this circle will display non-coaxial rotation, the magnitude of which is

directly proportional to the angular distance from the shear axis. To determine

whether shearing could account jointly for the elliptic deformation and the angular

offset of the grid, we applied shearing transformations to all grid patterns, with

either of the cardinal box-wall axes as the shear axis (Stensola et al. 2015). Each
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grid was sheared along each wall axis until it was minimally deformed, that is, least

elliptical. We then determined how much the transform managed to reduce defor-

mation, and how much the rotational offset was changed. We performed separate

analyses for differently sized recording environments.

In the 1.5-m box, simple shearing removed most of the deformation (ellipticity

was reduced from 1.17 to 1.06). It further completely removed the bimodal 7.5�

offset peaks. The offset distribution became unimodal, with a peak centered close to

0� (parallel to one of the wall axes). This robust explanatory power of simple
shearing implies that the grid pattern is globally anchored to one set of features

such as a wall or a corner. We hypothesized that shearing develops with experience.

In a smaller data set taken from a previous study (Fyhn et al. 2007), offset was

indeed significantly closer to parallel in novel environment exposures than in

familiar ones.

The 2.2-m box had more than twice the area of the 1.5-m box. Maintaining a

coherent grid pattern may be sensitive to excessive distances between environmen-

tal features. If grid anchoring is globally set by a single feature (e.g., a border or

wall), as suggested above, the integrity of the grid pattern may suffer at distances far

from such anchoring points. We have shown previously that grid patterns fragment

into local patterns in complex environments (Derdikman et al. 2009). We reasoned

that, as the environment becomes larger, the grid pattern will benefit from stabili-

zation by multiple anchoring points. In sufficiently large environments, spatial

representation might break into locally anchored patterns that merge in the interior

of the environment.

We applied simple shearing transforms to all grids from the 2.2-m box, exactly

as with the smaller box. Minimizing deformation reduced ellipticity to the same

extent, but the rotational offset was only partially removed. To test whether

shearing occurred simultaneously from both wall axes, we determined for each

cell the minimal deformation possible with a two-axis shearing transform. We

could detect exactly one such minimum for every cell, suggesting it was one-to-

one in the domain we were exploring. We then, as above, analyzed the impact on

rotational offsets. The two-axis transform completely removed the offset peaks in

the 2.2-m box, suggesting that the grid pattern had been sheared from two distinct

anchoring sites.

A few modules did not display the common 7.5� offset and were not amenable to

offset reduction through shearing. These modules nonetheless had 7.5� offsets

locally in particular areas of the box. Such local offsets might not be detectable in

a spatial autocorrelogram as the latter captures global pattern regularities. The

distinct local grid patterns merged either abruptly or smoothly in the box interior.

To quantify the amount of local pattern variation, we compared cross-correlations

between quadrants in the 2.2-m box and the 1.5-m box. We could successfully

capture the grid geometry in these smaller segments because we generated average

quadrant autocorrelograms (from splitting each rate map into equal 2� 2 sections)

for each module. Cross-correlations were much higher in the 1.5-m box compared

to the 2.2-m box, supporting the notion that the larger box induced local and more

complex anchoring.
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Finally, we performed the same analyses on the 2.2-m box data but with rate

maps divided into 3� 3 segments. There were clear differences in deformation

patterns across these segments. Grid scores (rotational symmetry) were signifi-

cantly higher in the central bin compared to the peripheral bins. Corner segments

showed a particularly high degree of deformation, and in one corner—the corner

where all animals were released into the box—ellipse direction showed a remark-

ably low degree of variation.

The need to anchor internal representations of space to external frames is

paramount for allocentric function. We have demonstrated that grids align to the

environment in a systematic manner. We have also suggested that the alignment of

the grid pattern can be used to counteract mislocation within geometrically ambig-

uous environments. Rats tested in spatial working memory tasks in rectangular

environments make systematic errors in segments of the box that have rotationally

equivalent geometry, even in the presence of polarizing cues (Cheng 1986), which

suggests geometric confusion is a common issue in spatial representation, as is

supported by similar effects found in several other species (Cheng 2008).

We hypothesize that border cells provide mechanistic links between the grid

map and the external environment. Despite abundant visual landmarks in the

recording rooms, modules, with few exceptions, aligned according to the geometry

of the environment. There may be a special salience given to environment borders,

as opposed to more point-like visual cues, because environmental borders are

generally more dependable and have an orientation. Biegler and Morris (1993)

found that rats only used landmarks within an environment to gauge distances if the

landmarks were stable within that environment. Several studies have shown similar

connections to environmental geometry in other cell types (Save et al. 2000;

Knierim et al. 1995, 1998; Sharp et al. 1995; Etienne et al. 2004) but have also

highlighted the fact that the system’s use of landmarks for spatial representation can

be changed experimentally through learning (Jeffery et al. 1997). The close match

between observed alignment and the alignment that would maximally decorrelate

population codes across segments of the environment suggests that there could be a

competitive interaction between path integration signals and sensory resets, as

observed previously for place cells in the hippocampus (Gothard et al. 1996; Redish

et al. 2000).

Oblique Effect in Grids?

Discrimination and detection of visual stimuli are dependent on the relationship of

the stimulus to the axes of the environment, a well-known effect known as the

‘oblique effect’ (Mach 1860). Stimuli oriented along the cardinal axes yield better

psychophysical performance compared to obliquely oriented stimuli. In the visual

cortices, both single-neuron responses and population responses reflect this psy-

chophysical anisotropy by increased representational density along the cardinal

axes (Furmanski and Engel 2000; Wang et al. 2003; Xu et al. 2006). Several studies
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suggest that the oblique effect originates in higher order cortices (Nasr and Tootell

2012; Liang et al. 2007; Shen et al. 2008), as the effect is stronger here compared to

early sensory cortex (Shen et al. 2008; Müller et al. 2000), and the effect in early

cortex is selectively abolished by temporal inactivation of higher order cortex (Shen

et al. 2008). Grid cells are typically aligned close to parallel to the cardinal axes of

the environment. Recently, it was shown that grid representations are not limited to

navigational space in that a grid map of visual space was demonstrated in the

entorhinal cortex of monkeys (Killian et al. 2012). Although highly speculative, it is

interesting to ponder the possibilities for similar mechanisms at play in embedding

internal representations into external reference frames in the visual domain as in the

spatial domain. Although not very many examples were given by Killian

et al. (2012), there seems to also be a trend for grids to align with a slight offset

to cardinal axes (see their Fig. 1). Further, using optical imaging in area MT (which

shows movement and orientation selectivity for stimuli) in the visual system, Xu

et al. (2006) showed frequency plots of activation over the range of possible

stimulus orientations. In these plots, there are quite distinct peaks with bimodal

offsets from the cardinal axes (Fig. 7). Upon further inspection, these offsets are

very close to 7.5�, which is the exact peak we observed in the alignment offset in

grid cells. This finding points to a possible, albeit suppositional, link between visual
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Fig. 7 The oblique effect in visual area MT in the owl monkey. Histograms show local activity

measured by intrinsic optical imaging. Increased pixel count (y-axis) corresponds to higher

activation. The different panels are from distinct subareas within MT. The red lines show 7.5�

offsets calculated from the x-axis of the plots. Note the correspondence between peak offset and

red lines. Reproduced with permission from Xu et al. (2006) (their Fig. 3 and Supplementary

Fig. 6)
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and spatial encoding in relation to real world axes, a link to be explored through

future studies.

Conclusions

The entorhinal-hippocampal circuit offers a good model system for investigating

basic functions carried out by neural networks within a behavioral context. Our

understanding of grid cells has developed substantially at the single cell level but

has for a while lagged behind the population insights gained from the hippocampus.

By overcoming technical and analytic hurdles, we have now defined the first large-

scale population characteristics of two central space-encoding cell populations. The

grid map was shown to be modular, with considerable independence in the response

of modules to geometrical features of the environment. Grid modules were found to

use a general strategy to anchor grid orientation to the environment, pointing to this

strategy as an optimal mechanism for population encoding of ambiguous segments

of the external environment.
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The Striatum and Decision-Making Based

on Value

Ann M. Graybiel

Abstract Our behaviors range from mindful, deliberative streams of action to

sequences of action that are so nearly automatic that we can perform them almost

without thinking. Transitions between these modes of behavior occur as we learn

behavioral routines. We have studied these transitions and the neural activity that

occurs in corticostriatal loops as they take place. We find that neural activity in

these loops is strongly modified during habit learning and that specific

corticostriatal circuits can powerfully control value-based decision-making and

habits.

As we move about and act in our environment, the brain constantly updates not only

our physical position and the moment-to-moment stimuli around us, but also

updates the value of the actions that we perform. How these values are attached

to our behaviors is still incompletely understood.

In our laboratory, we have approached this issue by teaching animals to perform

simple habits, capitalizing on much evidence that, at first, behaviors that are

candidate habits are sensitive to reinforcement, but later they become nearly

independent of whether or not the performance of the behavior is reinforced.

We have found that as this behavioral transition occurs, the spike activity and

local field potential activity recorded in the prefrontal cortex and striatum are also

transformed (Jog et al. 1999; Barnes et al. 2005; Thorn et al. 2010; Smith and

Graybiel 2013). In typical experiments, we have taught rodents to run in simple

T-mazes, with cues indicating to them whether to turn left or right to receive a food

reward. The neural activity in regions known to be necessary for habit formation

gradually shifts: early on, the population activity in the sensorimotor part of the

striatum is high during the full time of the maze runs, but later during the learning

process, the population activity becomes concentrated at the action points of the
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runs, especially the beginning and end of the runs. As the behavior of the animals

becomes fully habitual through extensive training (called ‘over-training’) on the

task, this beginning-and-end bracketing pattern becomes nearly fixed within the

sensorimotor striatum. A quite similar bracketing pattern later develops in the

prefrontal cortex, but it remains sensitive to reinforcement; if rewards are made

unpalatable, then the animals cease the habitual runs and the cortical bracketing

activity pattern becomes degraded.

We then found that we could block already formed habits and even toggle the

habit off and on by optogenetically suppressing this prefrontal cortical activity

(Smith et al. 2012). Comparable optogenetic inhibition of the same small prefrontal

cortical zone could block the formation of habits altogether when the optogenetic

inhibition was applied during the over-training period (Smith and Graybiel 2013).

These experiments raise the possibility that neural circuits involving the medial

prefrontal cortex can evaluate whether actions are beneficial and should be allowed

to be performed. The fact that this apparent control is effective even for behaviors

that seem to be nearly fully automatic suggests that there is on-line, value-related

control of behavior.

This potential was vividly seen in other experiments in which we blocked

compulsive grooming behavior in a mouse model of obsessive-compulsive disorder

by manipulating an orbitofrontal corticostriatal circuit (Burguiere et al. 2013). In

these experiments, we could block a conditioned compulsion by intervening either

at the level of the cortex or at the level of the medial striatum. Therefore, the control

was exerted by a corticostriatal circuit.

In a new set of experiments, we have asked whether we can identify critical

corticostriatal circuits that operate in these deliberative or repetitive decisions. We

focused on a circuit that is thought to lead from localized zones in the prefrontal

cortex to striosomes. These are dispersed zones within the striatum that can access

the dopamine-containing neurons of the midbrain (Crittenden and Graybiel 2011;

Fujiyama et al. 2011; Watabe-Uchida et al. 2012). We mimicked a situation often

faced in everyday life, in which we can acquire something, but only at a cost. In this

situation, costs as well as benefits have to be weighed. We used decision-making

tasks in which animals were required to choose an action sequence in response to

cues indicating that mixtures of rewarding and annoying reinforcers could either be

accepted or be rejected. This design meant that the animals could reject an offer, but

then they would miss out on the reward coupled to the cost.

This kind of decision-making, given the name ‘approach-avoidance decision-

making,’ has been studied extensively in human subjects, particularly in relation to

distinguishing between anxiety and depression in affected individuals who face

conflicting motivations to approach and to avoid. We thus were attempting to target

forms of decision-making that, in humans, involve value-based estimates of the

future.

In initial studies, Dr. Ken-ichi Amemori and I focused on the pregenual anterior

cingulate cortex in macaque monkeys (Amemori and Graybiel 2012), which earlier

work had shown to project preferentially to striosomes in the head of the caudate

nucleus (Eblen and Graybiel 1995). There, many neurons increased their activity
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during the decision period, either when the monkey would subsequently choose an

approach response (accepting the good and bad symbolized by cues on a computer

screen) or when the monkey would subsequently reject the offer. In one localized

pregenual region, the avoidance-related neurons outnumbered the approach-related

neurons. At other sites, similar numbers of these two classes were recorded.

Microstimulation applied during the decision period had little or no effect on the

decisions at most sites, but in the regions matching the sites with predominance of

avoidance-related neurons, the microstimulation induced significant increases in

avoidance. We found that treatment with the anxiolytic diazepam could block the

microstimulation effects. Notably, we found no effects of the microstimulation in a

control ‘approach-approach’ task in which both offered options were good.

In subsequent, still-ongoing experiments, Ken-ichi Amemori, Satoko Amemori

and I are determining whether, as initial results suggest, the ‘hot-spot’ for pessi-
mistic decision-making preferentially projects to striosomes (Amemori et al. in

preparation). If so, these experimental findings would squarely place the

corticostriatal system interacting with striosomes as part of the circuitry underpin-

ning decision-making in which conflicting motivations must be handled.

With the technical opportunities presented by work in rodents, we returned to

T-maze experiments, but this time introduced costs and benefits at each end-arm of

the mazes. In work spearheaded by Alexander Friedman, Daigo Homma, and Leif

Gibb, with Ken-ichi Amemori and others, we found striking evidence for a selective

functional engagement of a striosome-targeting prefrontal circuit (Friedman

et al. 2015). The evidence rests on the use of multiple decision-making tasks,

presenting cost-benefit, benefit-benefit, reverse cost-benefit and cost-cost deci-

sion-making challenges to the animals. We then used optogenetics to interrupt the

cortico-striosomal circuit. Across all of these tasks, it was only in the cost-benefit

task that the putative striosome-targeting prefrontal pathway was engaged. By

contrast, comparable optogenetic experiments inhibiting a matrix-targeting

prefronto-striatal circuit produced effects on decision-making in all of the tasks.

Evidence from our own and other laboratories suggests that striosomes may have

privileged access to the dopamine-containing neurons of the substantia nigra pars

compacta, either directly or by way of a multi-synaptic pathway via the lateral

habenula (Rajakumar et al. 1993; Graybiel 2008; Stephenson-Jones et al. 2013).

The details of these pathways remain unknown. It is known, however, that the

lateral habenula neurons increase their firing rates to negative reinforcers or their

predictors; the dopamine-containing nigral neurons fire in relation to positive or, in

some populations, to negative reinforcers and predictors (Hong and Hikosaka

2013). This potential dual downstream circuitry, combined with the experimental

evidence summarized here, suggests that striosomes could be nodal sites in mood-

and emotion-related corticostriatal networks influencing downstream modulators of

motivational states.
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Decoding the Dynamics of Conscious

Perception: The Temporal Generalization

Method

Stanislas Dehaene and Jean-Rémi King

Abstract Parsing a cognitive task into a sequence of successive operations is a

central problem in cognitive neuroscience. A major advance is now possible thanks

to the application of pattern classifiers to time-resolved recordings of brain activity

[electro-encephalography (EEG), magneto-encephalography (MEG), or intracra-

nial recordings]. The method determines precisely when a specific mental content

becomes explicitly represented in brain activity. Most importantly, the ability of

these pattern classifiers to generalize across time and experimental conditions sheds

light on the temporal organization of information-processing stages. To illustrate

these ideas, we show how the decoding of MEG and EEG recordings can be used to

track the fate of conscious and unconscious brain processes during simple masking

and auditory novelty tasks. The experimental results yield converging results,

suggesting that conscious perception is associated with the late formation of a

distributed and stable neural assembly that encodes the content of subjective

perception.

Parsing a cognitive task into a sequence of successive operations has been recog-

nized as a central problem ever since the inception of scientific psychology. The

Dutch ophthalmologist Franciscus Donders first used mental chronometry to dem-

onstrate that mental operations are slow and can be decomposed into a series of

successive stages (Donders 1969). Since then, psychologists have proposed a

variety of elegant but indirect methods by which such decomposition could be

achieved using behavioral measurements of response times (Pashler 1994; Posner

1978; Sigman and Dehaene 2005; Sternberg 1969, 2001).

The American psychologist and cognitive neuroscientist Michael Posner was

among the first to realize that the advent of brain imaging methods provided direct

evidence of this classical task-decomposition problem, and he successfully
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G. Buzsáki, Y. Christen (eds.), Micro-, Meso- and Macro-Dynamics of the Brain,
Research and Perspectives in Neurosciences, DOI 10.1007/978-3-319-28802-4_7

85

mailto:stanislas.dehaene@gmail.com


analyzed several tasks such as reading or attention orienting into their component

operations (Petersen et al. 1988; Posner and Raichle 1994). Time-resolved methods

that capture brain activity at the scale of milliseconds, such as electro- and

magneto-encephalography (EEG and MEG) or intracranial recordings, seem par-

ticularly well suited to this task-decomposition problem, because they can reveal

how the brain activity unfolds over time in different brain areas, each potentially

associated with a specific neural code. Yet the amount and the complexity of

electrophysiological recordings can rapidly become overwhelming. In particular,

it remains difficult to accurately reconstruct the spatial sources of EEG and MEG

signals. As a result, the series of operations underlying basic cognitive tasks remain

ill-defined in most cases.

Machine learning techniques, combined with high-temporal-resolution brain

imaging methods, now provide a new tool with which to address this question. In

this chapter, we briefly review a technique that we call the “temporal generalization

method” (King and Dehaene 2014), which clarifies how multiple processing stages

and their corresponding neural codes unfold over time. We illustrate this method

with several examples, and we use them to draw some conclusions about the

dynamics of conscious processing.

The Temporal Generalization Method

Contemporary brain imaging techniques such as EEG and MEG typically allow us

to simultaneously record a large number of electrophysiological signals from the

healthy human brain (e.g., 256 sensors in EEG and 306 sensors in MEG). Similarly,

using intracranial electrodes in monkeys or in human patients suffering from

epilepsy, hundreds of electrophysiological signals can be acquired at rates of

1 kHz or above. Identifying, from such multidimensional signals, the neuronal

representations and computations explicitly recruited at each processing stage can

be particularly difficult. For example, reconstructing the neural source of EEG and

MEG signals—i.e., determining precisely where in the brain the signals originate—

remains a major hurdle. Signals from multiple areas are often superimposed in the

recordings from a given sensor and, conversely, the signal from a given brain area

simultaneously projects onto multiple sensors.

Machine learning techniques can help overcome these difficulties (Fig. 1). The

idea is to provide a time slice of electrophysiological signals to a machine-learning

algorithm that learns to extract, from this raw signal, information about a specific

aspect of the stimulus. For instance, one can ask the algorithm to look for informa-

tion about whether the visual stimulus was a vertical or a horizontal bar, whether a

sound was rare or frequent, whether the subject responded with the right or the left

hand, etc. If we train one such classifier for each time point t (or for a time window

centered on time t), we obtain a series of classifiers whose performance traces a

curve that tells us how accurately the corresponding parameter can be decoded at

each moment in time. Typically, this curve remains at chance level before the onset

of the stimulus, then quickly rises, and finally decays (Fig. 1).
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The decoding curves tracking distinct features of the current trial typically rise

and fall at different times, thus providing precious indications about when, and in

which order, the respective representations begin to be explicitly coded in brain

activity. For example, Fig. 2 illustrates how we decoded the time course of

perceptual, motor, intentional and meta-cognitive error-detection processes from

the very same MEG/EEG signal (Charles et al. 2014; for another application to the

stages of invariant visual recognition, see Isik et al. 2014).

In addition to tackling the when question, machine learning may also tell us for

how long a given neural code is activated and whether it recurs over time. To this

aim, we asked how a pattern classifier trained at time t generalizes to data from

another time point t0. This approach results in a temporal generalization matrix that

contains a vast amount of detail about the dynamics of neural codes (King and

Dehaene 2014). If the same neural code is active at times t and t0, then a classifier

trained at time t should generalize to the other time, t0. If, however, the information

is passed on to a series of successive stages, each with its own coding scheme, then

such generalization across time should fail, and classifiers trained at different time

points will be distinct from each other. More generally, the shape of the temporal

generalization matrix, which encodes the success in training at time t and testing at

time t0 for all combinations of t and t0, can provide a considerable amount of

information about the time course of coding stages. For instance, it can reveal

whether and when a given neural code recurs, how long it lasts, and whether its

scalp topography reverses or oscillates. When comparing two experimental condi-

tions C and C0, it can also reveal whether and when the series of unfolding stages

Fig. 1 Principle of temporal decoding (from King 2014). On each trial we simultaneously

recorded a large number of brain signals (e.g., 256 EEG and 306 MEG signals). Using the data

from a single time point t, or from a time window centered on time t, we could train a Support

Vector Machine (SVM) to decode one aspect of the stimulus (for instance, the orientation of a grid

on the subject’s retina). The time course of decoding performance reveals the dynamics with which

the information is represented in the brain. How a decoder trained at time t generalizes to data from
another time point, t0, reveals whether the neural code changes over time
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was delayed, interrupted or reorganized (for detailed discussion, see King and

Dehaene 2014).

Advantages of Multivariate Decoding Methods

Temporal decoding and temporal generalization are powerful multivariate methods

that present several advantages over classical univariate methods for the character-

ization of brain activity:

– Within each subject, machine learning methods search for an optimal combina-

tion of brain signals that reflects a certain psychological variable. By combining

Fig. 2 Example of temporal decoding (from Charles et al. 2014). Distinct decoders were trained

to extract four different properties of an unfolding trial from the same MEG and EEG signals: the

position of a visual target on screen, the motor response made by the subject, the response that he

should have made, and whether the response made was correct or erroneous. Note how those four

distinct properties successively emerge in brain signals, from left to right. The target was masked,

such that subjects occasionally reported it as “unseen” (right column). In this case, stimulus

position and motor response could be decoded, but the brain seemed to fail to record either the

required response or the accuracy of the motor response
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multiple sensors, the noise level can be drastically reduced, thus optimizing the

detection of a significant effect. This technique is particularly useful when

working with brain-lesioned patients in whom the topography of brain signals

may be distorted; the software essentially replaces the experimenter in searching

for significant brain signals (King et al. 2013a).

– “Double-dipping,” i.e., using the same data for inference and for confirmatory

purposes, a problem that often plagues brain-imaging research (Kriegeskorte

et al. 2009), can be largely circumvented in computer-based inference by leaving

a subset of the data out of the training database and using it specifically to

independently test the classifier.

– Hundreds of brain sensors are summarized into a single time curve that “pro-

jects” the data back onto a psychological space of interest. By identifying a near-

optimal spatial filter, this aspect of the method simultaneously bypasses the

complex problems of source reconstruction and of statistical correction for

multiple comparisons across hundreds of sensors and provides cognitive scien-

tists with immediately interpretable signals.

– Finally, because distinct classifiers are trained for different subjects, and only the

projections back to psychological space are averaged across subjects, the method

naturally takes into account inter-individual variability in brain topography. In

this respect, the method makes fewer assumptions than classical univariate

methods that implicitly rest on the dubious assumption that different subjects

share a similar topography over EEG or MEG sensors. In the decoding approach,

we do not average sensor-level data but only their projection onto a psycholog-

ical dimension that is likely to be shared across subjects.

A drawback of the decoding method is that we cannot be sure that the features

that we decode from brain signals are actually being used by the brain itself for its

internal computations. For all we know, we could be decoding the brain’s equiv-
alent of the steam cloud arising from a locomotive—a side effect rather than a

causally relevant signal. To mitigate this problem, we restrict ourselves to the use of

linear classifiers such as a linear Support Vector Machine (SVM). In this way, we

can at least increase our confidence in the fact that the decoding algorithm focuses

on explicit neural codes. A neural code for a feature f may be considered as

“explicit” when f can be reconstructed from the neural signals using a simple linear

transformation. For instance, the presence of faces versus other visual categories is

explicitly represented in inferotemporal cortex because many neurons fire selec-

tively to faces, and thus a simple averaging operation suffices to discriminate faces

from non-faces (Tsao et al. 2006). This definition of “explicit representation”

ensures that the brain has performed a sufficient amount of preprocessing to attain

a level of representation that can be easily extracted and manipulated at the next

stage of neural processing, either by single neurons or by neuronal assemblies. If we

used sophisticated non-linear classifiers such as “deep” convolutional neural net-

works (LeCun et al. 2015), we could, at least in principle, decode any visual

information from the primary visual area V1, but this would be uninformative

about when, how and even whether the brain itself explicitly represents this
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information. By using linear classifiers, we ensure that we only decode explicit

neural signals. It should be kept in mind, however, that the identification of explicit

representations with linearly separable ones is a working hypothesis that remains

under-investigated. More generally, it is particularly difficult to determine whether

and how brain responses play a causal role in behavior and subjective perception

(see, e.g., Rangarajan et al. 2014). Beyond decoding analyses, this ambiguity is in

fact intrinsic to any non-causal brain-behavior correlation method.

A Test Using Auditory Novelty Signals

Figure 3 illustrates an application of the temporal generalization method to auditory

novelty detection in the local/global paradigm (Bekinschtein et al. 2009; King

et al. 2013a). This paradigm aims to separate two types of brain signals evoked

by the violation of two types of auditory expectations: (1) automatic detection of

unexpected sounds, and (2) conscious detection of unexpected sound sequences. As

we shall see, the temporal generalization analysis separates these two intermingled

signals, facilitates their detection, and shows that their temporal dynamics differ

radically.

We recorded MEG and EEG signals while human subjects heard sequences of

five repeated sounds (Wacongne et al. 2011). Sometimes the auditory sequence

ended with a different sound. This unexpected local violation generated a local

mismatch response, arising primarily from auditory cortex (Bekinschtein

et al. 2009). Furthermore, in each block, the entire sequence was repeated several

times and, occasionally, was violated by presenting a rare instance of a distinct

sequence. The difference between rare and frequent sequences generated a global

novelty response, arising from distributed brain areas including associative areas of

parietal and prefrontal cortex, and associated with a P3b component of the event-

related potential (Bekinschtein et al. 2009).

Temporal decoding allowed us to track the corresponding novelty signals in the

brain. First, classifiers could be trained to discriminate whether the fifth sound was

repeated or deviant (local mismatch). Above-chance decoding scores could be

observed during a time window ~100–400 ms after the deviant sound. Crucially,

the temporal generalization matrix revealed that this long period did not correspond

to a single neural code (Fig. 3b). A diagonal generalization pattern indeed suggested

that error signals changed over time as they propagated through a hierarchy of

distinct brain areas. There were even periods of below-chance generalization

(marked in blue in Fig. 3b), indicating that the spatial pattern of brain activity

observed at time t tended to reverse at time t0, possibly due to top-down inputs to the
same brain area that have been postulated to play a role in cancelling out the

bottom-up error signals (Friston 2005).

Second, the global effect was marked by a completely distinct pattern of

temporal generalization. From about 150 ms on, classifiers could discriminate

whether the global sequence was frequent or rare. The results demonstrated a
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and P3b wave 
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P3b alone 
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Decoding  
global novelty 
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C 

Fig. 3 Temporal decoding applied to an auditory violation paradigm, the local/global paradigm

(from King et al. 2013a). (a) Experimental design: sequences of five sounds sometimes end with a

different sound, generating a local mismatch response. Furthermore, the entire sequence is

repeated and occasionally violated, generating a global novelty response (associated with a P3b

component of the event-related potential). (b, c) Results using temporal decoding. A decoder for

the local effect (b) is trained to discriminate whether the fifth sound is repeated or different. This is

reflected in a diagonal pattern, suggesting the propagation of error signals through a hierarchy of

distinct brain areas. Below-chance generalization (in blue) indicates that the spatial pattern

observed at time t tends to reverse at time t0. A decoder for the global effect (c) is trained to

discriminate whether the global sequence is frequent or rare. This is reflected primarily in a square

pattern, indicating a stable neural pattern that extends to the next trial. In all graphs, t¼ 0 marks the

onset of the fifth sound
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square pattern of temporal generalization (Fig. 3c), indicating that the violation of

global sequence expectations evoked a single and largely stable pattern of neural

activity (with only a small enhancement on the diagonal, indicating a slow change

in neural coding).

Further research showed that the late global response is a plausible marker of

conscious processing (Dehaene and Changeux 2011): if processing reaches this

level of complexity, whereby the present sequence is represented and compared to

those heard several seconds earlier, then the person is consciously representing the

deviant sequence and can later report it (Bekinschtein et al. 2009). Inattention

abolishes the late global response but not the early local response. So does sleep:

as soon as a person falls asleep and ceases to respond to the global deviants, the

global response vanishes whereas the local response remains partially preserved, at

least in its initial components (Fig. 4; see Strauss et al. 2015).

The disappearance of late and top-down processing stages seems to be a general

characteristic of the loss of consciousness (for review, see Dehaene and Changeux

2011). In the local/global paradigm, when patients fall into a vegetative state or in a

coma, the global effect vanishes whereas the local effect remains preserved. The

global effect may therefore be used as a “signature” of conscious processing, useful

to detect that consciousness is in fact preserved in a subset of patients in apparent

vegetative state. In such patients, the temporal decoding method can optimize the

detection of a global effect, even in the presence of delays or topographical

distortions due to brain and skull lesions (King et al. 2013a). Unfortunately, the

global effect is not a very sensitive signature of consciousness, because it may

remain undetectable in some patients who are demonstrably conscious yet unable to
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Fig. 4 Generalization of decoding across two experimental conditions, wakefulness and sleep,

can reveal which processing stages are preserved or deleted (from Strauss et al. 2015). Subjects

were tested with the same local/global paradigm as in Fig. 2 while they fell asleep in the MEG

scanner. The local effect was partially preserved during sleep (left): between about 100 and

300 ms, a decoder could be trained during wake and generalize to sleep, or vice versa. Note that

all late components and, interestingly, off-diagonal below-chance components vanished during

sleep. As concerns the global effect (right), it completely vanished during sleep
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attend or whose EEG signals are contaminated by noise. When the global effect is

present, however, it is likely that the patient is conscious or will quickly recover

consciousness (Faugeras et al. 2011, 2012). Therefore, the decoding of the global

effect adds to the panoply of recent EEG-based mathematical measures that,

collectively, contribute to the accurate classification of disorders of consciousness

in behaviorally unresponsive patients (King et al. 2013b; Sitt et al. 2014).

Late Metastable Activity as a Signature of Consciousness

Why does the global response to auditory novelty track conscious processing? We

have hypothesized that conscious perception corresponds to the entry of informa-

tion into a global neuronal workspace (GNW), based on distributed associative

areas of the parietal, temporal and prefrontal cortices, that stabilizes information

over time and broadcasts it to additional processing stages (Dehaene and Naccache

2001; Dehaene et al. 2003, 2006). Even if the incoming sensory information is very

brief, the GNW transforms and stabilizes its representation for a period of a few

hundreds of milliseconds, as long as is necessary to achieve the organism’s current
goals Such a representation has been called “metastable” (Dehaene et al. 2003) by

analogy with the physics of low-energy attractor states, where metastability is

defined as “the phenomenon when a system spends an extended time in a config-

uration other than the system’s state of least energy” (Wikipedia). Similarly,

conscious representations are thought to rely on brain signals that persist for a

long duration, yet without being fully stable because they can be suddenly replaced

as soon as a new mental object becomes the focus of conscious thought.

The brain activity evoked by global auditory violations in the local/global

paradigm fits with this hypothesis. First, this signal is only present in conscious

subjects who can explicitly report the presence of deviant sequences. Furthermore,

this signal is late, distributed in many high-level association areas including pre-

frontal cortex, and stable for an extended period of time (Bekinschtein et al. 2009).

The latter point is particularly evident in temporal generalization matrices, which

show that the global effect, although triggered by a transient auditory signal

(a single 150-ms tone), is reflected in a late and approximately square (Fig. 3) or

thick-diagonal (Fig. 4) pattern of decoding Such a pattern indicates that the evoked

neural pattern is stable over a long time period. Our results indicate that the neural

activation pattern can be either quasi-stable for hundreds of milliseconds (as occurs

in Fig. 3, where subjects simply had the instruction to attend to the stimuli), or

slowly changing with considerable temporal overlap among successive neural

codes (as occurs in Fig. 4, where subjects were instructed to perform a motor

response to global deviants, thus enforcing a series of additional decision, response

and monitoring stages).

Many additional paradigms have revealed that conscious access is associated

with an amplification of incoming information, its transformation into a metastable

representation, and its efficient propagation to subsequent processing stages (Del
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Cul et al. 2007; Kouider et al. 2013; Salti et al. 2015; Schurger et al. 2015; Sergent

et al. 2005). For example, Fig. 5 shows the results of temporal decoding applied to a

classical masking paradigm, in which a digit is made invisible by following it at a

short latency with a “mask” made up of letters surrounding the digit’s position

(Charles et al. 2014; Del Cul et al. 2007). At short delays, subjects report the

absence of a digit even when it is physically present on screen. Nevertheless, a

pattern classifier can be trained to discriminate digit-present and digit-absent trials

(thus decoding, from the subject’s brain, a piece of information that the subject

himself ignores). The classifier for subliminal digits presents a sharp diagonal

pattern (Fig. 5), indicating that the digit traverses a series of transient coding

stages without ever stabilizing into a long-lasting activation. When the digit is

seen, however, a square pattern of temporal generalization can be observed,

suggesting a metastable representation of the digit’s presence. A similar difference

in metastability can be observed when sorting physically identical threshold

trials (SOA¼ 50 ms) into those that were subjectively reported as seen or unseen

(Fig. 5).

Metastability can also be assessed by other means, for instance, by measuring

whether the neural activation “vector” evoked by a given stimulus points in a

consistent direction for a long-enough duration (Schurger et al. 2015). Here

again, a few hundreds of milliseconds after the onset of a picture, stability was

E
M  M

E

9

Variable 
SOA

16 ms

250 ms

consciousat thresholdsubliminal

Fig. 5 Decoding reveals the signatures of subliminal and conscious processing in a masking

paradigm (data from Charles et al. 2013, 2014). When the stimulus-onset-asynchrony (SOA)

between a digit and a letter mask remains below 50 ms, the digit generally remains subjectively

invisible. A decoder trained to discriminate digit-present and digit-absent trials decodes only a

sharp diagonal pattern, indicating that the digit quickly traverses a series of successive coding

stages. When the digit is seen, however, a square pattern of temporal generalization emerges,

indicating that a temporally stable representation is achieved. A similar, though more modest

difference, can be observed when sorting physically identical threshold trials (SOA¼ 50 ms) into

those that were subjectively reported as seen or unseen

94 S. Dehaene and J.-R. King



higher when the picture was consciously perceived than when it was unseen. Thus,

late metastability consistently appears to be a plausible signature of consciousness.

Conclusion

Determining the sequence of processing stages through which a stimulus passes is

an essential goal for cognitive neuroscience. Furthermore, if the GNW theory is

correct, assessing whether a brief stimulus reaches a late stage of information

processing in which the sensory information is stabilized and is made available

to further processors can provide an efficient signature of consciousness. Both

of these goals can now be achieved through the use of temporal decoding and of

the temporal generalization method. Multivariate decoding of temporal signals

provides a sensitive method to probe the time course of information processing.

The code is freely available as part of the open-source MNE-Python software

(Gramfort et al. 2014; http://martinos.org/mne/). Thus, all of the above techniques

can now be readily applied to novel problems.

To summarize, our experimental findings suggest that (1) the initial stages of

stimulus-evoked brain activity reflect non-conscious processing and are systemat-

ically associated with a “diagonal” pattern of temporal generalization; (2) conscious

perception relates to a late period of metastability and slow sequential processing,

associated with the ignition of a distributed parietal and prefrontal network and with

a temporally extended, “square” pattern of temporal generalization. Recently, we

have obtained evidence suggesting that these conclusions may generalize to dual-

task paradigms such as the attentional blink and the psychological refractory period

(Marti et al. 2015). In the future, it will be essential to determine whether they can

be validated in additional paradigms.
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Sleep and Synaptic Down-Selection

Giulio Tononi and Chiara Cirelli

Abstract Sleep is universal, tightly regulated, and many cognitive functions are

impaired if we do not sleep. But why? Why do our brains need to disconnect from

the environment for hours every day? We discuss here the synaptic homeostasis

hypothesis (SHY), which proposes that sleep is the price the brain pays for

plasticity, to consolidate what we already learned, and be ready to learn new things

the next day. In brief, new experiments show that the net strength of synapses

increases with wake and decreases with sleep. As we discuss, these findings can

explain why sleep is necessary for the well-being of neural cells and brain circuits,

and how the regulation of synaptic strength may be a universal, essential function of

sleep.

Sleep Is Universal and Probably Essential, But Why?

We spend on average a third of our time asleep, but the functions of sleep remain

elusive (Mignot 2008; Siegel 2008). This is even more puzzling if one considers

that overall, during sleep the brain is almost as active as in waking life: neurons fire

at comparable rates as in wake, metabolism is only slightly reduced (Steriade and

Hobson 1976). So if sleep is not simply a passive state, during which brain cells can

rest, why does it disconnect from the environment, turns on spontaneous activity,

experiences vivid dreams but forms no new memories? This question is all the more

intriguing since sleep is universal (Cirelli and Tononi 2008). For example, even

animals that cannot afford to sleep in the regular manner because they are con-

stantly on the move, such as several species of cetaceans, have found a clever way

of cheating with sleep. Thus dolphins continue to swim and breathe with one

hemisphere, while the other half of their brain is deep asleep, showing EEG slow

waves just as in other mammals (Oleksenko et al. 1992). Though nature offers some
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remarkable case studies in sleep self-deprivation—some Alaskan sandpipers briefly

forgo regular sleep during the intense mating season (Lesku et al. 2012), and

migrating birds make do for a while on a third of their normal sleep (Rattenborg

et al. 2004)—there is so far no positive proof of any species that lacks sleep

completely (Cirelli and Tononi 2008). We now know that even invertebrates

sleep, including fruit flies (Hendricks et al. 2000; Shaw et al. 2000), honeybees

(Kaiser 1988), and octopus (Brown et al. 2006), though we still do not know how

much spontaneous activity goes on in their sleeping brains. Furthermore, fruit flies

not only sleep many hours a night but, just like mammals and birds, if they are kept

awake, their sleep becomes longer and more intense—a process called sleep
homeostasis (Huber et al. 2004b). Therefore, sleep does not seem to be a niche

adaptation, like hibernation, which may benefit some species that need to save

energy or avoid trouble when they have nothing better to do. Rather, sleep seems to

serve some essential, universal function, akin to temperature regulation or digestion

(Cirelli and Tononi 2008). What’s more, it is a function that requires the brain to

work off-line, despite the dangers of being temporarily disconnected from the

environment. But what is this function?

Sleep Helps Memory Consolidation, Gist Extraction,

and Integration

A popular idea that has gained much attention recently is that sleep may be

important for memory. There are now plenty of experiments showing that, after a

night of sleep and sometimes just after a nap, newly formed memories are preserved

better than if one had spent the same amount of time awake. That is, sleep benefits

memory consolidation (Rasch and Born 2013). This benefit is especially clear for

declarative memories—those one can recollect consciously, such as lists of words

or associations between pictures and places. But non-declarative memories, such as

perceptual and motor skills, can also profit from sleep. For instance, if you try to

reach a target on the screen with the mouse while, unbeknownst to you, the cursor is

systematically rotated, you slowly learn to compensate for the rotation and get

progressively better. If you sleep over it, you improve further, and your movements

become smooth (Huber et al. 2004a). These experimental results fit the common

observation that after intensive learning, say practicing a piece over and over on the

guitar, performance often becomes fluid only after a night of sleep. It is likely that,

when you learn by trial-and-error and repeatedly activate certain brain circuits,

many synapses end up strengthening, not only when you play the right notes well,

but also when you do it badly, or fumble other notes. The result is that, while by

practicing you get better and better on average, your performance remains a bit

noisy and variable. After sleep, it is as if the core of what you learned had been

preserved, whereas the chaff is eliminated—that is, sleep seems to notch-up the

signal-to-noise ratio (Rasch and Born 2013; Tononi and Cirelli 2014). Something
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similar may happen also with declarative memories: in the face of the hundreds of

thousands of scenes we encounter in waking life, memory is particularly effective at

gist extraction, where the details (the noise) may be lost, but the main point of what

happened to you (the signal) is preserved. So far, it seems that the memory benefits

of sleep, especially for declarative memories, are due primarily to non-rapid eye

movement (NREM) sleep, but in some instances REM sleep or a combination of

NREM-REM cycles may also play a role (Rasch and Born 2013). Of course, while

sleep is undoubtedly important for memory consolidation, one should not forget

that memories can also consolidate during wake. Moreover, to some extent sleep

helps memory consolidation simply because it reduces the interference caused by

later memory traces, since when you sleep you stop learning new things

(Ellenbogen et al. 2006).

Another process that may benefit from sleep is the integration of new with old
memories. Psychologists have long recognized that one tends to learn new material

better if it has many points of contacts with previous knowledge. For example, a

new word in a language you already know fairly well is easier to remember than a

new word in a completely unknown language. This process of integration certainly

occurs during wake—a memorable stimulus will activate, consciously or subcon-

sciously, a vast network of associations throughout the brain (read synapses), with

which it may become linked. However, sleep may be a particularly good time to

assess which of the new memories fit better and which worse with the vast amount

of organized older memories—also known as schemata—that are stored in brain

circuits (Lewis and Durrant 2011). This is because during sleep it is possible to

activate a large number of circuits in many different combinations without worry-

ing about the consequences for behavior, something that is not advisable during

wake, when one must stick to the situation at hand. For example, in real life it would

not be a good idea to reminisce about your father’s old car being of a similar color

as that of the large truck that is rapidly approaching. In a dream, instead, it is

perfectly fine to put your father in the truck’s driver seat, realize later that it is

actually a school bus, and notice that it is filled with old people who resemble your

colleagues. Perhaps during sleep your brain is sifting through old memories and

trying out which new ones fit best overall, while getting rid of the rest, just as it does

with gist extraction.

Sleep Helps Memory, But How? Is It Replay or Synaptic

Down-Selection?

The ongoing activity in the brain throughout sleep, then, could have something to

do with consolidating memory traces, extracting their gist, and integrating new with

old memories (Born et al. 2006; Rasch and Born 2013). This idea is supported by

studies performed over the past 20 years, first in rodents and then in primates, which

show that patterns of neural activity during sleep often resemble those recorded
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during wake (Wilson and McNaughton 1994; Kudrimoti et al. 1999; Nadasdy

et al. 1999; Hoffman and McNaughton 2002). For example, when a rat learns to

navigate a maze, different hippocampal neurons fire in different places, in specific

sequences. Presumably, each sequence is encoded in memory by strengthening the

connections between neurons firing one after the other. During subsequent sleep,

especially NREM sleep, these sequences are “replayed” above chance (though

neither very often nor very faithfully). Based on this evidence, many researchers

think that sleep “replay” may consolidate memories by further reinforcing the

synaptic connections that had been strengthened in wake, leading to synaptic
consolidation. There may also be some system-level consolidation, based on evi-

dence that over time memories may be shuttled around in the brain. For example,

the hippocampus may provide early storage, after which memories are transferred

to connected cortical areas, and sleep may help this transfer (Girardeau et al. 2009).

However, there is also evidence that the “replay” of neural circuits can also occur in

wake, not just in sleep (Karlsson and Frank 2009), and “preplay” can also occur

during wake before learning (Dragoi and Tonegawa 2011).

An interesting alternative is that sleep may be a time not so much for rehearsal,

but for down-selection (Tononi and Cirelli 2014). In essence, the idea is this: when

the brain sleeps, spontaneous neuronal firing activates many circuits in many

different combinations, both new memory traces, which may be particularly

prone to reactivation, and old networks of associations. But instead of strengthening

whatever synapses are activated the most, which would lead to learning things that

never happened, the brain could reverse plasticity rules, and promote the activity-

dependent weakening of connections. Indeed, an efficient way to do so would be to

implement a selectional, competitive process. For example, synapses that are

reactivated most strongly and consistently during sleep would be protected and

survive mostly unscathed, whereas synapses that are comparatively less activated

would be depressed. This down-selection process would literally ensure the sur-

vival of those circuits that are “fittest,” either because they were strengthened

repeatedly during wake (the signal, i.e., the right notes on the guitar) or because

they are better integrated with previous, older memories (a new word in a known

language). Instead, synapses involved in circuits that were only occasionally

strengthened during wake (the noise, i.e., fumbled notes on the guitar), or fit less

with old memories (a new word in an unknown language), would be depressed and

possibly eliminated. In this way, synaptic down-selection during sleep would

promote memory consolidation by increasing signal-to-noise ratios, thereby favor-

ing gist extraction and the integration of new memories with established knowl-

edge. As an additional bonus, down-selection would also make room for another

cycle of synaptic strengthening during wake. Indeed, there are several indications

that sleep, in addition to memory consolidation, gist extraction, and integration, is

particularly beneficial tomemory acquisition: quite a few studies have shown after a

night of sleep you can learn new material much better than after having been awake

all day.

Finally, down-selection based on the systematic reactivation of neural circuits

old and new would also explain why prolonged quiescence and disconnection from
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the environment are important—that is, why one needs to be asleep. This is because

sleep is the perfect time for the brain to try out many different scenarios without

worrying about behaving appropriately in the real world. Only in this way can the

brain go through a large repertoire of situations, collect fair statistics about how

each synapse is activated in the context of the entire set of stored memories (how

well it fits), and reorganize its networks accordingly. Otherwise, the synapses that

were strengthened most recently would always be favored (say you spent the entire

day trying out the guitar) at the expense of others that are equally important (you

also know how to type, and you would not want to forget it), irrespective of how the

new memories fit with your previous knowledge.

In the end, cycles of net strengthening of connections during wake followed by

net weakening during sleep may constitute an excellent selectional strategy that

implements a healthy reality check: neural activity patterns triggered during wake,

when the brain is connected with the environment, would tend to be reinforced,

whereas activation patterns triggered during sleep, when the brain is disconnected

from the environment and makes up its own imaginary scenarios, would be weeded

out systematically.

Synapses Get Stronger in Wake and Weaker in Sleep

There is converging evidence for synaptic down-selection during sleep (Tononi and

Cirelli 2014). Experiments performed in fruit flies, rodents, and humans, all seem to

indicate that the strength of connections among neurons increases during wake and

decreases during sleep. For example, when fruit flies spend the day in an environ-

ment with plenty of opportunity for interactions with other flies (a “fly mall”), by

evening time there are almost 70 % more synaptic spines—the little protrusion

where an incoming axon makes contact with a dendrite—than there were in the

morning, and this is true throughout their brain. The next morning the number of

spines goes back to baseline, but only if flies are allowed to sleep (Bushey

et al. 2011). In adolescent mice one sees a similar phenomenon: in the cerebral

cortex the number of synaptic spines tends to grow during wake and to decrease

during sleep, although the changes are smaller than in flies (Maret et al. 2011; Yang

and Gan 2011). In adult rodents it is not the number of synaptic spines that changes

with wake and sleep, but their strength. This is indicated by an increase in the

number of AMPA receptors in the synapses after wake, and a decrease after sleep

(Vyazovskiy et al. 2008). AMPA receptors are responsible for the bulk of excitatory

neurotransmission in mammalian brains, and the potentiation or depression of

synapses is ultimately achieved by increasing or decreasing their number. Other

experiments have shown that, if one stimulates electrically neural fibers in the

cortex, the response one gets from the target neurons is larger after a few hours of

wake, and smaller after sleep, and we know that these responses are usually larger

when synapses are strong, and smaller when they are weak (Vyazovskiy

et al. 2008). A similar experiment was performed in humans using transcranial

Sleep and Synaptic Down-Selection 103



magnetic stimulation—a short magnetic pulse applied to the scalp to activate the

underlying neurons—and high-density EEG to record the strength of the responses

of the rest of the cerebral cortex. The results were clear: the longer the subject was

awake, the larger the responses, and it took a night of sleep for the responses to

return to baseline (Huber et al. 2013).

One should emphasize that exactly how this down-selection process would take

place remains unclear, and the account above remains speculative. Indeed, the

precise mechanisms are likely to vary in different species, in different brain

structures, and in different developmental periods. For example, it is not known

whether in invertebrates sleep is accompanied by intense neuronal activation or

not—perhaps there the weakening of synapses can be accomplished without having

to go through a large repertoire of old memories. Similarly, it may be that NREM

sleep is the ideal time for weakening synapses in an activity-dependent manner in

the cerebral cortex, due to the occurrence of slow waves; but that in the hippocam-

pus, which does not generate slow waves, down-selection may happen preferen-

tially during the faster, theta waves of REM sleep (Grosmark et al. 2012).

Irrespective of the specific mechanisms, the evidence is strong, in several species,

that overall synaptic strength goes up during wake and down during sleep. And if

this is so, it has implications concerning the role of sleep that go beyond its benefits

to memory consolidation and integration, as we will now briefly discuss.

SHY: The Price of Plasticity

Perform a simple experiment: before you go to bed, try and remember as many

things as you can that happened to you today. If you are serious and systematic

about it, starting with your first thought upon awakening, the first thing you did,

what you had for breakfast, where you had breakfast, and so on, the list will be very

long, and very boring. Now even this list would be very incomplete. If you were to

wear a camera on your head recording all that happened to you, and if we were to

then show you snapshots from the recordings, you would suddenly recognize many

other things that happened to you that you did not initially recollect. And then there

are perceptual and motor skills that you have acquired or refined during the day,

such as the guitar piece you practiced. Obviously, over a typical day a lot of things

must have left a trace in your brain. We still do not know what proportion of the

trillions of synapses in your brain is actually changed by a day of wake: is it 0.01,

1, 10 % or even more? But for sure a lot of synapses must have been strengthened,

as suggested not only by your little evening thought experiment, but also by the

experimental evidence reviewed in the previous section.

Now the crucial thing to realize is that all this learning, if it is reflected in the

strengthening of synapses, does not come for free. First of all, stronger synapses

consume more energy. For its weight, the brain is by far the most expensive organ

of the body—accounting for almost 20 % of the energy budget—and of that budget,

two thirds or more is for supporting synaptic activity. So if we learn by
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strengthening synapses, one could say that we wake up with an efficient engine and

we end the day with a gas-guzzler. Also, a net strengthening of synapses is a major

source of cellular stress, due to the need to synthesize and deliver cellular constit-

uents ranging from mitochondria to synaptic vesicles to various proteins and lipids.

Clearly, learning by strengthening synapses cannot go on indefinitely—day after

day—and something must be done about it. That something, says the synaptic
homeostasis hypothesis, also known as SHY, is the down-selection of synapses

down to a baseline level that is sustainable both in terms of energy consumption and

cellular stress. And that, says SHY, is the essential function of sleep. In short, sleep

is the price we pay for being able to learn and adapt to novel environments when we

are awake—most generally, it is the price we pay for plasticity. If this is indeed the

essential function of sleep, it is only fitting that, as sleep-dependent synaptic down-

selection relieves neural cells of the metabolic burdens accumulated during wake in

the service of plasticity, it does so in a smart way, all along benefitting memory

consolidation and integration, while also resetting the conditions for efficiently

acquiring new memories when we wake up. This would not be the first time that

evolution catches many birds with one stone.
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Psyche, Signals and Systems

Costas A. Anastassiou and Adam S. Shai

Abstract For a century or so, the multidisciplinary nature of neuroscience has left

the field fractured into distinct areas of research. In particular, the subjects of

consciousness and perception present unique challenges in the attempt to build a

unifying understanding bridging between the micro-, meso-, and macro-scales of

the brain and psychology. This chapter outlines an integrated view of the neuro-

physiological systems, psychophysical signals, and theoretical considerations

related to consciousness. First, we review the signals that correlate to consciousness

during psychophysics experiments. We then review the underlying neural mecha-

nisms giving rise to these signals. Finally, we discuss the computational and

theoretical functions of such neural mechanisms, and begin to outline means in

which these are related to ongoing theoretical research.

Introduction

It was with considerable surprise that, 30 years later, in examining the literature of

modern psychology I found that the particular problem with which I had been

concerned had remained pretty much in the same state in which it had been when it

first occupied me. It seems, if this is not too presumptuous for an outsider to

suggest, as if this neglect of one of the basic problems of psychology were the

result of the prevalence during this period of an all too exclusively empirical

approach and of an excessive contempt for ‘speculation’. It seems almost as if

‘speculation’ (which, be it remembered, is merely another word for thinking) had

become so discredited among psychologists that it has to be done by outsiders who
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have no professional reputation to lose. But the fear of following out complex

processes of thought, far from having made discussion more precise, appears to

have created a situation in which all sorts of obscure concepts, such as ‘represen-
tative processes’, ‘perceptual organization’, or ‘organized field’, are used as if they

described definite facts, while actually they stand for somewhat vague theories

whose exact content requires to be made clear. Nor has the concentration on those

facts which were most readily accessible to observation always meant that attention

was directed to what is most important. Neither the earlier exclusive emphasis on

peripheral responses, nor the more recent concentration on macroscopic or mass

processes accessible to anatomical or electrical analysis, have been entirely bene-

ficial to the understanding of the fundamental problems.

– Friedrich Hayek, Preface to The Sensory Order: An Inquiry into the Founda-
tions of Theoretical Psychology (1953).

In 1920, a 21-year-old Friedrich Hayek (later to become the famous economist

and winner of the 1974 Nobel Prize in Economic Sciences) wrote one of the first

explicit proposals linking the coordinated activity of neural assemblies to con-

sciousness and the representation of percepts in the brain (Hayek 1991). Though

Hayek would devote the majority of his adult life to economic theory,1 he would,

some three decades later in 1953, publish an extended book on those same ideas in

The Sensory Order: An Inquiry into the Foundations of Theoretical Psychology
(Hayek 1999).2 The general “problem of theoretical psychology” that Hayek

introduced in The Sensory Order was to first describe what, and then explain

how, physical states of the brain give rise to sensory perception. To satisfy these

criteria he postulated a mechanism for how the collective action of individual

neurons could carry out a highly complex hierarchical classification function and

how such aggregate activity binds sensory primitives to represent percepts—a

defining problem still fundamental to modern neuroscience. By recasting the

problem of perceptual representation in terms of classification, Hayek made a

great leap forward in suggesting a specific framework of neural processing that

accounts for our subjective experience. The mechanistic descriptions offered by

Hayek point to unparalleled insightfulness at the conceptual level, ultimately

bridging the gap between the seemingly ineffable psyche and the algorithmic

framework of computation.

Theoretical (and often philosophical) work has continued in the decades since

Hayek’s work, but perhaps the most progress has been in identifying biophysical

signals that correlate to different behavioral and psychological states. Most typi-

cally, electrical activity, as measured via electroencephalography (EEG) or

1 There has been some discussion about the relationship between his thought in theoretical

psychology and economics, especially as it relates to the distribution of information in complex

networks of individual nodes, e.g., neurons in the brain or humans in a society (Butos and Koppl

2007; Caldwell 2004; Horwitz 2000).
2 Interestingly, Hayek considered this work to be one of his most important intellectual achieve-

ments and was disappointed that it did not achieve the popularity of his others works (Caldwell

2004).
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fluctuations of magnetism assayed via magnetoencephalography (MEG) gathered

from the scalp of humans, has been shown to correlate with behavioral and

psychological states. An offspring of such studies is the well-known framework

of the neural correlates of consciousness (or NCC), i.e., the minimal set of neural

events and mechanisms jointly sufficient for a specific conscious percept. The NCC

framework, first proposed by one of the discoverers of DNA structure and Nobel

prize winner, Francis Crick, and his colleague Christof Koch, was suggested as a

scientific framework in which to study consciousness (Crick and Koch 1990, 2003).

Generally, the study of consciousness can be separated into studying “contents” and

“level.” The contents of consciousness refer to those perceptual objects that a

subject is aware of, for instance, when a subject reports being aware of a tree in

their visual field. Level, on the other hand, refers to the continuum spanning from

dreamless sleep to normal waking life.

The use of NCC, studying both contents and level, has yielded a fruitful but

extremely nuanced list of candidate signals that correlate (in varying degrees and

with varying evidence) with consciousness and other related subjects, like attention

and decision-making. Due to the necessary use of noninvasive techniques in

humans, these signals are often found using EEG or imaging techniques such as

functional magnetic resonance imaging (fMRI). Alternatively, in a clinical setting,

human patients that have to undergo brain surgery (e.g., to treat epilepsy) live days

with intracranial depth electrodes implanted in their brains recording extracellular

voltage time-series, allowing neuroscientists to work with them and study how

cognitive processing is related to neural signals. Thus, when measured with EEG,

MEG, or depth electrodes, the NCC usually consist of modulations in amplitude of

these extracellular signals (alongside their timing) or modulations of oscillatory

power in certain frequency bands. When measured with fMRI, blood-oxygen level-

dependent (BOLD) signals are used as a proxy for neural activity and to find spatial

locations of activation mainly in the primate brain. Despite the immense advances

in this kind of research, they have taken place largely independent from more

theoretical concerns, like those discussed by Hayek.

To understand psychological phenomena, neuroscience must find mechanistic

explanations for how these signals reflect, support or even constitute the conscious

mind, ultimately explaining theoretical concerns through an understanding of the

function of neurons and the circuits they compose. Moreover, we will show how an

investigation of the details of physiology and anatomy of the brain can drive the

creation of experimentally testable psychological theories. Importantly, neurosci-

ence is now at a point where biophysical and anatomical details can be used to close

the gap between experimental neuroscience, psychology and theoretical concerns.

In this chapter we introduce and discuss the tight relationship between abstract

theoretical concerns, detailed physiological and anatomical facts, and population

signals often used in psychophysics experiments. Although much work has been

done to find explanations that relate signals to psychological phenomena, it is

important to realize that it is the physiology and anatomy of neurons and the

networks they create that actually compute and perform tasks in the brain. In

other words, within the framework presented herein, the neural substrate of
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psychology is cells and their networks and not (directly) extracellular fields,

oxygenation levels, or frequencies in certain bandwidths (though alternative ideas

exist; Hameroff 1994; McFadden 2002; Pockett 2012). Thus, theories of conscious-

ness and perception acknowledge that the signals mentioned are proxies for the

activity of cells and their networks. The method is thus easily described by a

triumvirate of areas of study (in no particular order) related to each other as

shown in Fig. 1. We will quickly introduce these three concepts and then delve

into them more concretely in the subsequent sections of this chapter.

First are the empirically reported signals that correlate with psychological

phenomena. As discussed, these can include signatures of the EEG, anatomical

locations found via fMRI, extracellular recorded spiking of cells in the

thalamocortical system, and power spectrum analysis in different bands. Second

are the theoretical considerations regarding psychological phenomena. These

include questions regarding computational and functional concerns; for example,

what does it mean in terms of a general algorithm to attend to something or

represent a conscious percept? Answers to these questions are often given using

some mathematical framework, for instance Bayesian inference (Knill and Pouget

Fig. 1 Signals correlated to conscious perception and theoretical concerns can be connected by

considering the biophysics of signals and the computations they perform. Theory concerns itself

with what it means in terms of computation and algorithm to consciously perceive something.

Signals refer to the population level measurements found in the psychophysics literature (e.g.,

EEG, fMRI, ECoG). The underlying biophysics of these signals can be uncovered using the tools

of experimental neuroscience, and then the computational functionalities of networks made from

those biophysics can be explored to bridge theory and signals
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2004; Ma et al. 2006; Yuille and Kersten 2006), predictive coding (Carandini and

Ringach 1997; Rao and Ballard 1999), integrated information theory (Oizumi

et al. 2014), or the free-energy principle (Friston 2010), or they can take a more

conceptual form such as neural Darwinism (Edelman 1993), global workspace

theory (Baars 2005), or indeed the ideas of Hayek and their modern extensions

like the cognit (Fuster 2003, 2006).

Bridging the empirical signals and theoretical concerns are the biophysical

mechanisms. One natural area of study arises in elucidating the physiological

underpinnings of signals that correlate to specific psychological states. For instance,

given a specific EEG amplitude occurring over the visual cortex, which networks,

cell types, transmembrane currents, etc., contribute to that signal? Because these

anatomical and physiological details are the substrates of neural computation, we

can then delve into the computational role these physical mechanisms play. These

questions connect high-level (macro-scale) theory, low-level (micro-scale) bio-

physical details, and mid-level (meso-scale) psychophysical signals.

In this chapter we explore how distinct biophysical processes connect between

signals and psyche. Specifically, using the physiology and anatomy of pyramidal

neurons in the neocortex, we explore a mechanism for perceptual binding. Notably,

we focus exclusively on the contents of conscious perception. It is important to state

at the onset that the connections presented herein are just one of a set of plausible

frameworks for understanding how the different scales studied by neuroscientists

connect to each other. This chapter is meant not to present the final word on how to

comprehensively think about the micro-, meso-, and macro-scales in neuroscience

as they relate to consciousness but, instead, to present, by way of example, one

possible path to bridge these multiple concerns. Importantly, the task of finding the

relationship between biophysics, network computation, theory, and psychology is

still very much an open area of study.

Signals of Conscious Perception

What processes in the brain accompany and support conscious perception? In the

attempt to answer this question, scientists and clinicians have carried out more than

a century’s work, often under the area of study called psychophysics, to find

measurable signals in the brain that correlate to consciousness. In particular, we

discuss the evidence for three such neural signatures: (1) late extracellular signals,

(2) distributed information sharing in the cortex, and (3) long-range feedback

connections within the cortex. As we will see, the boundaries between these topics

are often overlapping but have been studied in an independent enough manner to

discuss individually (though not necessarily independently). Notably, given that

many of these subjects are discussed in other chapters of this book, we review a

number of perceptual correlates rather succinctly in order to relate them to the more

general framework discussed in the introduction of this chapter.
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Late Extracellular Signals

In 1964, Haider et al. (1964) used scalp electrodes to record extracellular signals

from humans during a simple detection task. Dim flashes of light were shown to the

subjects, who were asked to report perception of these stimuli. When comparing the

averaged extracellular signature of seen and unseen trials, a significant difference

was found in the amplitude of a negative wave occurring approximately 160 ms

after the signal onset, with the amplitude of the negative wave being positively

correlated to perception. These visual results were later reproduced in the auditory

cortex (Spong et al. 1965).

Similar conclusions were formed in a series of papers in the 1980s and 1990s.

Cauller and Kulics performed a go/no-go discrimination task on forepaw stimula-

tion in monkeys (Kulics and Cauller 1986, 1989). They compared the extracellular

signal in the somatosensory cortex and found that an early positive component

(called P1, occurring about 50 ms after the stimulus) correlated well with the signal

strength whereas a later negative component (called N1) correlated with the

behavioral report of the signal (interpreted as the conscious perception). In a later

study using depth electrodes, the laminar structure of these signals was examined

using current source density analysis. Interestingly, the early P1 signal was found to

be attributal to a current sink in layer 4, whereas the later N1 signal was attributed to

a current sink in layer 1. Later work also showed that the later N1 signal was absent

during sleep and anesthesia (Cauller and Kulics 1988).

More recent psychophysical work, using a spectrum of masking techniques, has

suggested a variety of different extracellularly recorded signals that might correlate

with consciousness. Two of the most plausible seem to be the Visual Awareness

Negativity (VAN; Koivisto et al. 2008) and the p3b (also known as p300 or late

potential). Discussion of whether these signals correlate with consciousness itself,

or with pre- or post-conscious events, is ongoing (for reviews see Koivisto and

Revonsuo 2010; Railo et al. 2011). The p3b is a signal occurring in a largely all-or-

none fashion from 300 to 400 ms after stimulus onset (Fig. 2a), but it can occur

earlier based on expectation (Melloni et al. 2011).3 The VAN (Fig. 2a) shows a

more graded response than p3b and occurs from 100 to 200 ms after the stimulus,

but it has been shown to occur as late as 400 ms under specific stimulus conditions.

One study asked subjects to report the subjective awareness of a change in a visual

stimulus. EEG signals in aware and unaware trials from the occipital lobe were

compared (Fig. 2a). Both the p3b (referred to as P3 in their figure) and the VAN can

be seen to clearly signify the difference in awareness (Koivisto and Revonsuo

2007). We will not review all the differences between these signals and all the

evidence for their correlation (or absence of correlation) to conscious perception

here, but suffice it to say, there seems to be an NCC in a late signal occurring at least

100 ms after the stimulus onset, extracellularly measurable from the scalp. The

3Debate over the p3b and what it correlates with has increased recently, with evidence both

pointing to (Gaillard et al. 2009; Salti et al. 2015) and against (Silverstein et al. 2015) its status as

an NCC.
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VAN is particularly interesting as the timing of this signal corresponds to the timing

of the signals measured in the Haider et al. (1964) study as well as the Kulics and

Cauller work discussed above.4 As argued below, the VAN or p3b might even

correspond to recent measurements in behaving rodents.

One of the main advantages of primate experiments is the relatively direct

knowledge of what the subjects’ perception is, though of course this advantage is

offset by more limited access to physiological properties. Rodent experiments have
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Fig. 2 (a) EEG signals taken from occipital sites during a change blindness task. On the left are
averaged responses from trials where the subject was aware or unaware of the change. On the right
is the difference between aware and unaware trials. Data from Koivisto and Revonsuo (2003),

figure from Koivisto et al. (2007). (b) The subthreshold membrane potential of a mouse L2/3

pyramidal neuron during a whisker stimulus task. Behavioral hits and misses are shown in black
and red. There are two epochs of depolarization, with the late epoch correlating to the behavioral

output. Figure from Sachidhanandam et al. (2013). (c) Weighted symbolic mutual information

between EEG sites in control (CS), minimally conscious (MCS), and vegetative (VS) patients. As

the distance between sites increases, the differences in wSMI become more and more significant

between the different conscious states. Figure from King et al. (2013). (d) Phosphene report after
TMS stimulation in area V5 followed by V1, after a time delay shown on the x-axis. When V1

stimulation followed V5 stimulation within ~50 ms, phosphene report was abolished. Figure from

Pascual-Leone and Walsh (2001)

4 Though care must be taken not to over-interpret. It is important to realize, for instance, that these

signals all come from different perceptual modalities and cognitive tasks.
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been used as a model organism for cortical physiology at the synaptic, single-

neuron (including dendrites), and small network level. Recent genetic tools (e.g.,

cre-lines, opsins) have made the mouse a preferred animal in cellular and systems

neuroscience, despite the relative difficulty in establishing complex behavioral

tasks and inferring perceptual state. By establishing measurable (often population

or indirect) signals in primates, experimentalists are now able to find analogous

signals in the rodent cortex as they attempt to establish links between behavior and

perception. One recent example is from Sachidhanandam et al. (2013) (Fig. 2b). In

this experiment, mice were trained to report a whisker stimulus during whole-cell

patch recording of single pyramidal neurons in the barrel cortex. Two periods of

depolarization were found. The first, occurring within 50 ms of stimulus onset,

correlated well with stimulus strength. The second signal, occurring 50–400 ms

after stimulus onset, correlated well with the behavioral report. Taking advantage of

the animal preparation, optogenetics was used to silence pyramidal neurons during

both the early and late epochs. Both types of inhibition abolished the behavioral

report. In a control experiment, inactivation of the forepaw somatosensory cortex

(and not the whisker cortex) had no effect on performance. These experiments

established a causal influence of the late depolarization specifically in the whisker

cortex for the perception of whisker deflection.

Taken together, these findings suggest a potential NCC in a late (~150 ms) signal

that originates in the upper layers of the neocortex.

Distributed Processing in the Cortex

How distributed is the cortical representation for a given conscious percept? What

are the necessary and sufficient conditions related to the communication between

different areas of the brain and representation of such percepts? Here we review the

evidence pointing to the distributed nature of cortical percepts.

Perhaps the earliest work hinting at the distributed mode in which the cortex

operates was given by the pioneering physiologist Flourens, who sought to test the

theory of localized function in the brain made popular by phrenologists like Gall

and Spurzheim around the turn of the nineteenth century.5 Flourens removed

different parts of the brain in rabbits and pigeons and assessed a range of behavioral

abilities. Although he was able to ascribe differences in function between the

cerebellum and cerebrum, for instance, he was unable to relate different parts of

the cerebrum to different cognitive and memory-dependent behaviors, ultimately

positing that memory and cognition were highly distributed throughout the cere-

brum (Flourens 1842).

5 This task was actually assigned to Flourens by the French Academy of Sciences in Paris, on order

of Napoleon Bonaparte. Gall was not seen to have carried out his experiments with ample scientific

rigor by the Academy (Pearce 2009).
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Alongside medical results from the injured soldiers of WW1 (Goldstein 1942)

and a number of famous case studies (Harlow 1999), this line of study was

continued a century later by Lashley. In this body of work (Lashley 1929, 1950),

Lashley aimed to study the relationship between cerebral damage and cognitive

behavior, wanting to more quantitatively explain results in human patients with

cortical damage who had their visual discrimination assessed by using more

invasive experiments in rodents, very similar to those of Flourens. In this work,

rats were trained to run through a maze. Upon removing varying volumes of cortex

in different areas, rats were reintroduced into the maze, and their ability to complete

the maze was assessed. Lashley found that the maze-running ability was related to

the volume, but importantly not the location, of the cortical lesion. He thus posited

that the ability to run through the maze was not contained in any specific local part

of the cerebrum but was, instead, distributed among the entirety of the cortex.

One caveat of the work presented so far is that it is often not explicitly testing the

distributed nature of a conscious percept per se but instead a more general cortex-

dependent behavior. More recently, psychophysical experiments in humans have

suggested that widely distributed cortical activity is associated with conscious

perception, whereas activity more localized to the primary sensory areas is not.

Using intracortical EEG, Gaillard et al. (2009) used a masking paradigm to compare

conscious and unconscious extracellular signatures. They found that conscious

perception of the stimulus was associated with widely distributed voltage deflec-

tions sustained across the cortex, increased beta (12–20 Hz) synchrony across the

cortex, as well as gamma (30–60 Hz) power. The timing of these changes was late,

occurring most obviously 300 ms after stimulus presentation (this was interpreted

as being the p3b, though significant differences could be measured starting at

200 ms). Other similar studies showed that more localized gamma band activity

relegated to the visual cortex accompanied conscious perception (Fisch et al. 2009),

though follow-up studies argued that these signals were related more to pre- or post-

conscious processing (e.g., decision making and report; Aru et al. 2012) than with

conscious perception itself, a general weakness of the contrastive method (Aru

et al. 2012; de Graaf et al. 2012; Tsuchiya et al. 2015).

Two recent studies used mathematical concepts related to information sharing

across the cortex to successfully quantify the amount of consciousness in patients.

King et al. (2013) used weighted symbolic mutual information, a novel measure of

information sharing, between pairs of EEG recording sites (Fig. 2c). Importantly, in

comparing this information measure using different distances between electrodes, it

was found that differences between different levels of consciousness (e.g., vegeta-

tive vs. minimally conscious vs. healthy) were most significant for mid- to long-

range distances, implicating information sharing between far-away parts of cortex

in consciousness. Casali et al. (2013) used TMS evoked potentials to assess the

amount of integration and differentiation distributed across the scalp EEG of

patients. Importantly, this method was able to accurately and quantifiably assess

the level of consciousness in patients undergoing anesthesia, sleep (Massimini

et al. 2005), and varying degrees of brain injury. Similar results were more recently

shown by Sarasso et al. (2015) by comparing propofol and xenon anesthesia, which
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induce states of unconsciousness with no dreams, to dream-inducing ketamine

anesthesia. In propofol and xenon anesthesia, integration and differentiation mea-

sures were found to be low, whereas in ketamine, these same measures were high.

These two studies show that the concept of long-range distributed information

sharing is not only a qualitatively useful correlate of consciousness but is also

quantifiable and workable in a medically applicable setting. Similar studies using

transfer entropy measures have been used to study anesthesia in rats (Imas

et al. 2005).

How distributed the representation for a conscious percept needs to be is a matter

of ongoing debate. For visual perception, it is quite clear that V1 is generally

necessary but not in itself sufficient to support a conscious content (Blake and

Fox 1974; Crick and Koch 1995; Cumming and Parker 1997; Gawne and Martin

2000; Rees et al. 2002), though it is unclear if information processing needs to reach

extrastriate areas or the most frontal regions or the entirety of cortex. Whatever the

case, long-range communication in the cortex6 between at least several centimeters

in a human (or on the order of a millimeter in the mouse) is a necessary condition

for representation of a conscious percept.

Feedback Processing

A separable but not completely independent area of study from the distributed

nature of processing in the cortex is the study of feedback processing of extrastriate

areas or frontal regions to primary visual cortex. Here, the data in any one study do

not often explicitly implicate feedback processing but are instead interpreted to be

feedback from considerations like timing and anatomy.

The timing of extracellularly measured potentials that correlate to conscious-

ness, like the VAN discussed previously, suggests that they might have their origin

in long-range feedback connections from other areas of cortex. The sensory driven,

feedforward step of information processing follows a stereotyped succession of

cortical areas and is completed in ~100 ms (Lamme and Roelfsema 2000). Indeed,

many theories of consciousness rest on this fact, and some even go so far as to

equate recurrent processing with consciousness (Lamme 2006). Experiments using

TMS and other stimulation techniques have tested the causal influence of late,

presumably long-range feedback processing, on perception. Multiple studies using

different sensory paradigms have now shown interruption of perception by TMS

over V1 during two distinct time periods, the early one interpreted to be the

feedforward sweep and a later one (>200 ms) interpreted to be a feedback sweep

6One interesting possibility is that such long-range communication is mediated through the

thalamus via L5b pyramidal neurons and not directly within the cortex. Some evidence exists

that such a pathway is indeed the main mode in which different areas of cortex communicate with

each other (Sherman and Guillery 2002, 2011).
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(Heinen et al. 2005; Juan and Walsh 2003). Additionally, phosphenes induced by

TMS over V5 (an extrastriate visual area) can be reduced by a lagging TMS pulse

over V1, presumably interrupting the feedback of information from V5 to V1

(Fig. 2d; Pascual-Leone and Walsh 2001).

Another line of evidence comes from single cell recordings, showing that cells in

the cortex continue spiking past initial feedforward activity. Many cells in macaque

V1 have been found to possess dynamic orientation tuning, having precise tuning to

one orientation starting at around 50 ms and then inverting at 120 ms (Ringach

et al. 1997). Network simulations have shown that feedback, but not feedforward,

networks can recapitulate these dynamic tuning curves (Carandini and Ringach

1997). Furthermore, single unit recordings have shown the early firing of cells

codes tuned for the general category (e.g., face), whereas later spiking, ~165 ms,

was tuned for specific identity (Sugase et al. 1999). Finally, inactivation of higher

areas of cortex (e.g., area MT) greatly altered the response properties of cells in

lower areas (e.g., V1 and V2), where feedback axons project (Nowak and Bullier

1997).

A host of studies using a technique called backwards masking might also be

explained by the need for feedback processing in consciousness. In backwards

masking, a target stimulus is followed, after ~50 ms, by a mask (Breitmeyer and

Ogmen 2000). The subject is not aware of the target stimulus, even though on trials

without a mask the target is consciously perceived. One explanation for this

phenomenon is that, while the feedforward information flow through the cortex is

preserved, the feedback signals conflict with the mask, rendering the target uncon-

scious. A similar effect is found in patients with V1 lesions. These so-called

“blindsight” patients retain the ability to perform forced choice tasks even though

they can no longer consciously perceive visual stimuli into the affected visual field

(Weiskrantz 1986). Although the exact neural underpinnings of blindsight are

unknown, one candidate mechanism implicates the largely intact feedforward

sweep in the retained information processing capabilities and the disturbed feed-

back processing in the absence of consciousness (Lamme 2001). Feedback

processing has also been implicated in “contextual modulation,” which is the

altering of cellular responses by changes of the stimuli outside of their classical

receptive field. Interestingly, blindsight of stimulus that would normally create

contextual modulation abolishes such modulation (Zipser et al. 1996), as does

anesthesia (Lamme et al. 1998).

Biophysical Foundations of Signals Associated
with Conscious Perception

The aforementioned relationships between conscious perception and a number of

characteristic signals and signatures point to the importance of understanding the

neural substrate of these signals. Such understanding bridges the gap between the
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underlying cellular biophysics, the network effects, and the high-level behavioral

readouts. To gain insights into the signals associated with conscious perception, it is

important to understand the underlying physics, in terms of the physical laws

governing the generation of these signals as well as the neural origins that brings

them about.

We first present the physics underlying electric measurements in the brain

(‘Biophysics Related to Electric Measurements’). We have chosen to specifically

focus on electric signals and measurements such as the VAN as they have produced

the largest body of evidence in terms of psychophysics of conscious perception.

(Later in this chapter we also present other methods that have impacted or will

potentially critically impact the field.) In a next step, we introduce the most

significant cellular contributors of electric activity in brain matter as a means to

understand which processes (synapses, cells, circuits, etc.) contribute to these

signals (‘Biological Electric Field Contributors’). Finally, we present the most

prominent methods and technologies used to monitor brain activity (‘Monitoring

Neural Activity’).
The previous section featured results using several different types of electrical

measurements, including EEG (Koivisto and Revonsuo 2010), single unit record-

ings (Sugase et al. 1999), and depth electrodes to compute the power of different

frequency spectrum (Aru et al. 2012), as well as both local field potential (LFP) and

current source density (CSD) recordings (Kulics and Cauller 1986). These tech-

niques as well as others used in the field of neuroscience will be presented.

Additionally, the biophysical underpinnings of the late current sink in layer

1 (Kulics and Cauller 1986) that correlates to conscious perception is discussed.

Biophysics Related to Electric Measurements

Charge transfer across the membrane of all structures in brain matter such as

neurons, glial cells, etc., induces so-called extracellular sinks and sources that, in

turn, give rise to an extracellular field, i.e., a negative spatial gradient of the

extracellular voltage (Ve) measured in comparison to a distant reference signal.

The physics governing such events are described by Maxwell’s equations. In their

simplest form, Maxwell’s equations of electromagnetism dictate that Ve depends on

the transmembrane current amplitude (I), the conductivity of the extracellular

medium (σ) and the distance between the location of the ionic flux and the

recording. Specifically, when assuming a so-called point-source (i.e., when a

localized current injection occurs within an electrically conductive medium), the

relationship between the aforementioned variables and the resulting Ve is (Fig. 3a):

Ve dð Þ ¼ I

4πσd
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Based on the point-source equation, one can note the following: first, there is an

inverse relationship between distance d and the amplitude of the resulting voltage

deflection Ve, i.e., the farther away to recording site is from the location of

the current point-source, the larger the attenuation of the amplitude of the

Ve-deflection; the stronger the point-source I, the larger the Ve-deflection; finally,

the conductivity of the extracellular medium critically impact propagation of the

signals from the point-source to the recording site.

Notably, when the source is not limited to a point but instead possesses physical

extent, the approximation needs to be re-formulated accordingly to account for such
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Fig. 3 Biophysics of extracellular signatures and conductivity of the extracellular medium. (a)
Illustration of Ve calculation in a population through the superposition of contributions from all

compartments in all cells. Individual compartment contributions are primarily determined by their

transmembrane currents and distances from the electrode. (b) Charge transfer elicited across the

membrane (dark region) of a long, small diameter cable gives rise to an extracellular field. The

extracellular potential close to the cable was calculated using the line-source and the cylinder-

source approximation. The difference between the two approximations is very small (they

overlap). (c) Simulated location dependence of the extracellular action potential (EAP) waveform

of a pyramidal neuron. The peak-to-peak voltage range is indicated in this simulation by the color
of each trace. EAPs are calculated at the location of the start of each trace. EAP amplitude

decreases rapidly with distance. (d) Experimentally obtained values of components of the con-

ductivity tensor in the frog (Rana) and toad (Bufo) cerebellum as a function of depth. (e) In vivo

measurements of impedance as a function of cortical depth in monkey. (f) Microscopic measure-

ments of the relationship between intracellular and extracellular spike signals in rodent slice.

Whole-cell patched neurons are brought to spike (blue line) and a proximally positioned extracel-

lular silicon probe with eight contacts is used to record the elicited extracellular voltage transients

(red line). At the initiation time of the spike, the extracellular negativities (red) associated with the
intracellular spikes attenuate with distance from the soma (see also panel c), with the attenuation

occurring per the point-source approximation. Figure contributions are from (a, c) Schomburg

et al. (2012), (b) Holt and Koch (1999), (d) Nicholson and Freeman (1975), (e) Logothetis

et al. (2007), (f) Anastassiou et al. (2015)
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physical extent. For example, when charge transfer takes place along the elongated,

cable-like morphologies of neurons, it gives rise to a spatially distributed extracel-

lular source not compatible with the aforementioned point-source expression.

Probably the most prominent such approximation accounts for the field induced

by a linear, one-dimensional (line) source of infinitesimally small diameter. The

line source approximation (LSA) makes the simplification of locating the trans-

membrane net current for each neurite on a line down the center of the neurite. By

assuming a line distribution of current, Ve is described via a two-dimensional

solution in cylindrical coordinates. For an elongated current source of length Δs,
the resulting Ve(r, q) is given by:

Ve r; qð Þ ¼ 1

4πσ

ð0
�Δs

I

Δs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ q� sð Þ2

q ds ¼ I

4πσΔs
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ r2

p
� qffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ r2
p

� l

 !

where r is the radial distance from the line, q the longitudinal distance from the end

of the line, and l¼Δs + q is the distance from the origin of the line. Holt and Koch

(1999) analyzed the accuracy of the LSA and found it to be highly accurate except

at very close distances (i.e., about 1 μm) to the cable (see also Rosenfalck 1969;

Trayanova and Henriquez 1991; Fig. 3b). The LSA has been the primary method of

calculating extracellular voltages arising from transmembrane currents (Gold

et al. 2006, 2009; Holt 1998; Holt and Koch 1999; Pettersen and Einevoll 2008;

Fig. 3c).

Notably, the aforementioned relationships assume that the extracellular medium

in the brain is described via electrostatics and not by much more elaborate elements

of electrodynamics. Furthermore, a widespread assumption is that the extracellular

medium is isotropic and homogeneous. What evidence exists for such claims to be

made? It turns out that this question has remained unresolved, with a number of

studies reporting an anisotropic and homogeneous σ (Nicholson and Freeman 1975;

Logothetis et al. 2007) (Fig. 3d, e) to strongly anisotropic and inhomogeneous

(Goto et al. 2010; Hoeltzell and Dykes 1979; Ranck 1973) and, finally, even of

capacitive nature (Bédard and Destexhe 2009; Bédard et al. 2004; Gabriel

et al. 1996).

Part of the difficulty in determining the properties of σ, especially at the local,

microscopic scale, has to do with the inhomogeneity of the brain as a structure. In

that sense, the questions to be answered are where, in what species, in what

frequency band and at what spatial scale should σ be measured. The danger is

that measuring σ over larger volumes leads to possibly quite different results

(attributed to averaging) than recording σ over tens of μm. Moreover, measuring

σ within distances of tens micrometers, i.e., the relevant spatial scale for signals

related to spiking, poses significant technical challenges given the large number of

sites (both for current injection and voltage recording) that need to be positioned

within μm-distances and the resulting tissue deformation/damage.

Recently, detailed whole-cell patch recordings of excitatory and inhibitory

neurons in rat somatosensory cortex slices were performed in parallel to positioning
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a silicon probe in the vicinity of the patched somata, allowing concurrent recording

of intra- and extracellular voltages (Anastassiou et al. 2015). Using this experimen-

tal setup, the authors characterized biophysical events and properties (intracellular

spiking, extracellular resistivity, temporal jitter, etc.) related to extracellular spike

recordings at the single-neuron level. It was shown that the extracellular action

potential (EAP) amplitude decayed as the inverse of distance between the soma and

the recording electrode at the time of spike (Fig. 3f). The spatial decay of the

EAP-amplitude at the spike time was very close to the prediction of the point-

source approximation: at the spike time, transmembrane charge transfer was still

spatially localized (close or at the axon initial segment), resulting effectively in a

point-source. Even fractions of a ms after the spike time, the relationship between

the EAP-amplitude and distance was shown to become more intricate as more

extended sections of the cellular morphology acted as sources, leading to more

complex superposition rules (e.g., based on the LSA). On that limit, various

contributions of a cell’s different compartments need to be accounted for. Interest-

ingly, in the same experiments, a time lag was observed at the extracellular spike

waveform with increasing distance of the electrode location from the cell body with

respect to the spike time at the soma. While such time lags could be explained by

the presence of a non-ohmic extracellular medium, the authors showed that they

were actually attributed to the spatial propagation of the action potential along the

neural morphology, i.e., backpropagating action potentials. Finally, this study

demonstrated that different cortical layers exhibited different conductivity, with

the conductivity of layer 4 being higher than the conductivity of layer 2/3 and 5, i.e.,

an observation in line with the finding that layer 4 possesses a higher density of

neurons compared to layers 2/3 and 5.

Do these observations hold in vivo? A number of experimental studies have

appeared offering compelling insights into the physics of the extracellular medium.

Nicholson and Freeman (1975) studied the conductivity profile in the cerebellum of

bullfrogs using current injections through micropipettes and concluded that it is

anisotropic, homogeneous, and purely ohmic, with later measurements by

Logothetis et al. (2007) confirming these observations (Fig. 3d, e). Yet, others

found the extracellular medium to be strongly anisotropic and inhomogeneous

(Hoeltzell and Dykes 1979; Ranck 1973) or even of capacitive nature (Gabriel

et al. 1996; Bédard et al. 2004; Bédard and Destexhe 2009). In a more recent study,

Goto et al. (2010) used extracellular recordings to measure the conductivity profile

along the entire somatosensory barrel cortex in rodents using depth multi-electrode

recordings and reported that radial and tangential conductivity values varied con-

sistently across the six neocortical laminas. Thus, they showed that the electric

properties of the extracellular medium in the living animal were anisotropic and

inherently inhomogeneous, agreeing with the in vitro findings of Anastassiou

et al. (2015). Importantly, in their work Goto and colleagues provided evidence

that (at least for frequencies less than 500 Hz) σ can be assumed to be purely ohmic.

Based on the aforementioned, the temporal characteristics of the extracellular field

and signals like the VAN are not due to extracellular medium properties but,

instead, solely attributed to cellular functioning.
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Biological Electric Field Contributors

Given the aforementioned biophysics dictating how transmembrane currents are

generated and propagated in brain matter, what cellular processing gives rise to

these electric signals? Here we present the most important contributors of the

extracellular field. In principle, any charge transfer along the membranes of the

neural morphology elicits extracellular sinks and sources, as will be discussed

below. (For a more thorough treatise, the interested reader is pointed to Buzsáki

et al. 2012; Einevoll et al. 2013.)

Synaptic Activity

In physiological situations, synaptic activity and postsynaptic currents, in partic-

ular, are often the most prominent sources of extracellular current flow. While the

majority of individual synaptic connections induce fairly small extracellular signals

(e.g., Bazelot et al. 2010; Glickfeld et al. 2009), thousands of synapses are present

along a single neuron’s morphology (e.g., a rat layer five pyramidal neurons has

approximately 10,000 synapses along its processes). Thus, even if the individual

contribution of such postsynaptic events is fairly small, the fact that thousands of

them may become co-activated within a small time increment suggests a substantial

overall effect (Fig. 4a). Furthermore, the time constant of synaptic events can vary

substantially: while the time constant of fast excitatory AMPA- and inhibitory

GABA subtype A-receptors ranges approximately 1–15 ms (Hille 1992), excitatory

NMDA and inhibitory GABA subtype B-receptor dynamics can be particularly

slow (i.e., 50–300 ms; Pérez-Garci et al. 2006) and, as such, may readily contribute

to slow bands of the electric signal (Elul 1971; Logothetis and Wandell 2004).

The influx of cations when excitatory synaptic input impinges along the neural

membrane from the extracellular into the intracellular space gives rise to a local

extracellular sink. To achieve effective electroneutrality within the time constants

of relevance for systems neuroscience, the extracellular sink needs to be balanced

by an extracellular source, that is, an opposing ionic flux from the intracellular to

the extracellular space, along the neuron. In this case, the counter-flux is termed

passive or return current. It follows that such passive return currents do not only

depend on where synaptic input impinges along the neural morphology but also on

the actual morphological features of the neuron itself. For example, impinging

inputs in one area of the elongated morphology of pyramidal neurons gives rise to

passive return currents along the same neuron (Fig. 4a). On the other hand, the

symmetric location of the dendrites of inhibitory basket cells does not allow the

formation of such strong passive return currents due to cancellation effects, even

when these neurons receive strong synaptic input (Pettersen and Einevoll 2008;

Reimann et al. 2013). Depending on the location of the sink current(s) and its

distance from the source current(s), a dipole or a higher-order n-pole is formed.
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Beyond the location-related aspects of synaptic input, another important factor

crucially dictating the characteristics of extracellular electrophysiology signals is

input correlation, i.e., the amount of synaptic input impinging along a neuron or

neural population in a unit of time. Typically, enhanced input correlation is

manifested in larger Ve and local field potential (the lowpass filtered part of Ve or

LFP) amplitude, even if such intuition is not always warranted (see below). Beyond

the extracellular LFP magnitude, an additional feature of electrophysiology record-

ings impacted by input correlation is the spatial extent or spread. For example, for

uncorrelated input the majority of the extracellular voltage signal measured by an

electrode originates from neurons within a lateral distance of approximately 200 μm
(Katzner et al. 2009; Xing et al. 2009; Lindén et al. 2011; Reimann et al. 2013).

Notably, such low input correlation results in the independence of the region size

generating the LFP from neural morphology and the spatial distribution of the

synapses. In the presence of more considerable input correlation, the picture

changes drastically: pyramidal neurons with their extended spatial morphologies

as well as their synaptic specialization tend to dominate the extracellular field.

Moreover, correlated synaptic inputs give rise to correlated neural membrane

sources that result overall in stronger LFP amplitude. Yet, the degree of LFP

amplitude enhancement depends on the spatial separation between impinging

synaptic currents and return currents—for substantial separation (i.e., spatially

inhomogeneous input along the extended dendritic arbor), the LFP amplitude

enhancement becomes significant whereas for smaller separation (i.e., spatially

homogeneous input along more compact dendritic arbor), LFP enhancement

becomes weaker. Such interdependence between neural morphology features, loca-

tion of synaptic inputs, input correlation, etc., can putatively explain the disparate

length scales encoded by extracellular recordings (Kreiman et al. 2006; Liu and

Newsome 2006; Katzner et al. 2009; Xing et al. 2009).

Thus far, we have mostly considered chemical communication via dedicated

synapses that are prevalent in brain tissue. Another component whose impact on

population dynamics and, as a result, the extracellular voltage remains unaccounted

for is electrical synapses, which provide a low-resistance pathway between neurons

permitting the direct transmission of electrical signals. Gap junctions (GJs), the

morphological correlate of electrical synapses, have been used as a proxy for

electrical coupling and to infer electrically coupled network architectures. Numer-

ous studies have revealed such networks of electrically coupled neurons in many

mammalian brain structures. In cortex, extensive coupling has been reported

primarily between inhibitory parvalbumin-positive (PV) interneurons and between

somatostatin (SST)-expressing neurons. Such PV- and SST-expressing inhibitory

neurons critically contribute to many aspects of ensemble encoding in the mam-

malian brain (Hu et al. 2014), with one of their most prominent roles being

balancing excitation and shaping rhythmic activity. In addition, PV interneurons,

the most populous among inhibitory cortical cell types, shape cortical ensemble

activity, both during gamma (Szabadics et al. 2001; Traub et al. 2001) and during

other rhythms and events such as hippocampal theta or sharp waves. Given that

proximally located SST and PV neurons are connected both via chemical and
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electrical synapses (for a recent review, see Pereda 2014) in the developing and in

the developed neocortex (Connors et al. 1983), can GJs alter extracellular electric

fields? Because ions passing through GJs do not enter the extracellular space, it

follows that GJ themselves contribute neither to the extracellular current flow nor to

the extracellular field explicitly. On the other hand, because GJs contribute to the

functioning of inhibitory cells and cell populations altering, for example, their

spiking characteristics, they can have an implicit effect on field activity that hitherto

has remained unexplored.

Active Membrane Currents

Most neurons produce brief action potentials or spikes that travel along their axons

and give rise to synaptic currents at the synapses. It is through the propagation of

such electric activity from one neuron to its post-synaptic targets that information is

generated and processed within neural populations. Action potentials are produced

through active ionic membrane mechanisms allowing the exchange of ions such as

Na+, K+ and Ca2+ across the membrane. Specifically, fast, Na+-dependent spikes
and spike afterpotentials generated at the axon initial segment and somata of

neurons give rise to the strongest currents across the neuronal membrane, detected

as ‘unit’ or ‘spike’ activity in the extracellular medium. Although Na+-spikes

generate large-amplitude and transient (typically lasting 0.5–1 ms) Ve deflections

proximal to the soma with a cascade of ionic mechanisms, spike- and spike

afterpotential-associated fields remain local (Fig. 3c). The fact that spikes typically

last less than a few ms has led to the assumption that they only contribute to

extracellular unit activity whereas not appreciably to slower signals such as the

LFP or the scalp-recorded EEG like the VAN. Yet, synchronously elicited action

potentials (e.g., due to increased spike correlation) from many proximal neurons

can contribute substantially to slower bands of extracellular recordings

(Anastassiou et al. 2015; Belluscio et al. 2012; Schomburg et al. 2012; Taxidis

et al. 2015; Zanos et al. 2011). In addition, it has been shown that spikes give rise to

slower, smaller-amplitude afterpotential currents. These spike afterpotentials have

recently gathered much attention with studies showing that they can impact bands

as low as 20 Hz (Fig. 4b; see also sections below).

Another type of active membrane current is constituted by Ca-spikes and
Ca-related signals. Decades of work, mostly in vitro, have revealed that the

dendrites of cortical pyramidal neurons support a variety of nonlinear signals

such as so-called NMDA spikes, Ca-spikes, Na-spikelets and backpropagating

action potentials. Of particular interest are the temporally extended NMDA spikes

and dendritic Ca-spikes. With regards to NMDA spikes, basal, oblique, and apical

tuft dendrites of cortical pyramidal neurons receive a high density of glutamatergic

synaptic contacts. The synchronous activation of 10–50 such neighboring

glutamatergic synapses triggers a local dendritic regenerative potential, NMDA

spike/plateau, that is characterized by significant local amplitude (40–50 mV) and

an extraordinary duration (up to several hundred milliseconds). Notably, the
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conductance of the glutamate-dependent NMDA receptor (NMDAr) channel is also

dependent on voltage, giving the NMDAr its spiking ability. NMDArs are found on

the thin tuft dendrites of pyramidal neurons, such as those that reside in layer 1, and

have been shown to support spatially localized (~30 μm) all-or-none spiking events,

due to the glutamate binding requirement. Given the electrotonic distance to the

spike initiation zone, single NMDA-spikes do not, in general, cause somatic action

potential output. Yet, the effect of such NMDA spikes depends on the location

where they take place: if occurring in the apical tuft, they have the ability to

substantially depolarize the entire tuft region whereas, if occurring closer to the

cell body, they can depolarize the soma in a fashion similar to an UP-state. In

addition, it has been shown that a distributed set of multiple NMDA-spikes across

the dendritic tuft has the ability to cause action potentials during in vivo sensory

stimulation (Palmer et al. 2014).

Dendritic Ca-spikes are nonlinear events mainly attributed to large conductance,

high-voltage activated channels along the pyramidal dendrites that mediate a

sustained Ca2+-influx in a variety of dendrites (Larkum et al. 1999, 2009; Shai

et al. 2015). The apical dendrite of pyramidal neurons has a main bifurcation that

occurs in L2/3 or L1 and contains a high density of voltage-dependent Ca-channels.

This “hot spot” of Ca-channels, alongside other nonlinear channels, supports a

relatively slow but large all-or-none depolarizing current known as the Ca-spike.

Lasting for ~20–100 ms in in vitro conditions, and possibly longer in vivo, the

Ca-spike has the ability to depolarize a pyramidal neuron for an extended period of

time. These Ca-spikes can be triggered with a variety of mechanisms: by strong

synaptic drive, by a triplet of back-propagating action potentials or via an extra-

cellular stimulus.

Due to the location of the channels responsible for NMDA and Ca-spikes, these

signals are well-suited to being controlled and evoked by inputs into the dendritic

arbors of excitatory neurons. One such cortical pathway is long-range connections

into layer 1. Indeed, channel-rhodopsin-assisted mapping techniques have shown

that higher-order areas send strong-direct excitatory input into the apical dendrites

of pyramidal neurons (Fig. 5; see also Yang et al. 2013). What are the functional

consequences of NMDA and Ca-spikes in the dendrites of a pyramidal neuron? In

vitro experiments have shown that the Ca-spike can integrate with a

backpropagating action potential to elicit a spike burst (i.e., a multitude of somatic

spikes elicited within a few tens of milliseconds) at the soma (Larkum et al. 1999).

It is difficult to precisely control the amount and timing of synaptic inputs into

spatially segregated areas of a single neuron experimentally, though some efforts

deserve recognition (Jarsky et al. 2005). Modeling approaches present themselves

as useful tools to explore the possible functional roles of a complicated mixture of

linear and nonlinear channels across the dendritic membrane, as well as their

interactions with large barrages of synaptic input (e.g., Shai et al. 2014).

After creating a detailed multi-compartmental model of a L5 pyramidal neuron

based on a combination of previous modeling work (Hay et al. 2011) and dual soma

and dendrite patch clamp recordings in V1, Shai et al. (2015) imposed barrages of

dendritic and somatic excitatory synapses onto a single cell. The results of this

simulation showed that the coincident input of perisomatic and apical input elicited
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a burst of high-frequency action potentials at the soma, whereas only perisomatic or

apical input in isolation would not. Furthermore, this effect was dependent on the

Ca hot-spot around the bifurcation point. This finding was further summarized in a

simple abstract model whereby input into dendrites of the abstracted cell would

modulate, in a thresholded manner, the input-output relationship between

perisomatic input and output frequency. This “composite-sigmoid” model captured

the complicated interaction of perisomatically elicited backpropagating action

potentials (mediated by nonlinear sodium channels in the apical trunk) and the

tuft elicited Ca-spike, in a compact form, thus elucidating the computational

structure of a single pyramidal neuron.

In particular, the Ca-spike, being a relatively slow and large-amplitude signal in

the superficial layers, may constitute a candidate for NCC. Multi-compartmental

modeling is well suited to disentangling the potential contributions of different cell

types of channels to extracellular signals (e.g., Reimann et al. 2013; Fig. 4c).

Although more thorough investigations are needed, both in terms of modeling

and experiments, to establish the role of the Ca-spike in the superficial extracellular

signature, these simulations show that the Ca-spike is indeed a plausible mechanism

for these signals (Fig. 6).

Fig. 5 (continued) maps of the three main CA1 independent components from a rat with an

electrode array spanning the transverse axis of the hippocampus (seven shanks spaced 300 mm;

one shank shown on the left) indicates activation of different projections (CA1pyr pyramidal layer,

rad radiatum, lm lacunosum moleculare). (b) Electrocorticography (ECoG) records indicating

periods of behavior-relevant slow oscillations (orange) and spindles (gray). (Bottom)
Intraoperative ECoG recordings in human patients using new technologies have the ability to

detect spiking. Highpass filtered traces from a novel 64-grid electrode containing spiking activity

(black traces). Below, sample spike waveforms are shown. (c) Simulation of an individual neuron

(layer 5 pyramidal injected with intracellular somatic current by a pipette: intracellular somatic

spiking shown in blue is detected in the extracellular space by a proximal electrode (red; part of a
silicon depth electrode) as well as by the ECoG strip electrode (simulating the same layout as the

one in panel b)). The spike-triggered average ECoG signal from the middle of the ECoG strip is

shown (right). (Bottom) The spike triggered average ECoG field for two cell types extending to

superficial layers: a layer 23 pyramidal (left) and a layer 5 pyramidal neuron (right). While the

amplitude of the spiking ECoG signature is very similar, the spatial extent is markedly different.

(d, left) A large-scale, biophysically realistic model of thousands of reconstructed and

interconnected neocortical layer 4 (red) and layer 5 (green) pyramidal neurons emulating a

patch of deep cortical volume. The population model was used to study the extent to which active

membrane conductances impact the extracellular LFP and CSD signals. (Right) Two scenarios

were instantiated: passive-only membranes and active ones. The simulated LFPs and CSDs show

the result of these simulations (top: passive-only; bottom: active) with the spatiotemporal charac-

teristics of the LFP and CSD being markedly different. (e, left) Hippocampal model of the CA1

region consisting of reconstructed excitatory neurons capturing the various projections during

sharp wave ripples accounts for the extracellular signals during such events. (Right) Replay

sequences during sharp waves yield consistent LFP patterns in the ripple (150–200 Hz) bandwidth.

As observed, simulations point to the spatiotemporal patterned activity that is also observed in the

same band in vivo, reflecting the spiking activity of cell assemblies activated during sharp waves.

Figure contributions are from (a) Schomburg et al. (2014), (b) Khodagholy et al. (2015), (c)
simulations by C.A. Anastassiou and A.S. Shai, (d) Reimann et al. (2013), (e) Taxidis et al. (2015)
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Fig. 6 A mechanism of coincidence detection via feedback into layer 1. (a) A top view of the

mouse brain showing the anterior cingulated cortex (ACA, a frontal region) and primary visual

cortex (V1). (b) The anterograde projections of ACA axons into V1 show a clear striation in layer

1 (green fluorescence). Subcellular channel-rhodopsin-assisted mapping (sCRACM) on a layer

5 pyramidal neuron (red) shows strong excitatory input into the apical tuft dendrites. (c) 100 tuft

and 175 basal NMDA/AMPA synapses are distributed randomly across the apical tuft and basal

dendrites of a multi-compartmental L5 pyramidal neuron model. All synapses are randomly and

uniformly elicited in time across 100 ms. In the following panels, somatic traces are in black and
dendritic (location shown by the red arrow in c), are in red. (d) Simultaneous tuft and basal inputs

trigger a burst of somatic action potentials and a dendritic Ca2+ spike, whereas (e) basal inputs
alone evoke only a single somatic spike. (f) Apical tuft inputs alone do not evoke somatic spiking.

(g) Reducing Ca2+ channel conductance by 50 % during tuft and basal input gives rise to a single

somatic spike. (h) When applying a 200 pA hyperpolarizing DC current to the soma, the

subthreshold response of the tuft and basal inputs are similar to the case with Ca2+conductances

reduced shown in (i), even though the suprathreshold (b, c) cases are remarkably different. (a)
Taken from the Allen Institute Brain Explorer. (b) Experiments performed by Adam Shai, but also

see Yang et al. (2013), for similar results. (c–i) Taken with permission from Shai et al. (2015)
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Non-neural Contributors (Glia, etc.)

During the last two decades, glial cells have been shown to be of great significance

for brain signaling (Volterra and Meldolesi 2005) while also possessing active ionic

conductances that result in fairly slow but prominent transmembrane processes

being activated during neural activity (Perea and Araque 2007). Electrically passive

astrocytes coexist with others that show voltage-dependent currents such as

inwardly rectifying or delayed, outwardly rectifying K+ or both types (D’Ambrosio

et al. 1998). Given the abundance of glia in brain tissue, how do these contribute to

the extracellular electric field (Wang et al. 2006)? Can certain LFP or EEG bands

(such as the slow 0.1–1 Hz band) be influenced by glial and astrocytic transmem-

brane activity? Such questions are also related to the link between LFP activity, the

blood oxygen-level dependent (BOLD) signal and the overall metabolic demands

of specific brain areas. Interestingly, the BOLD signal, which has been linked to

neural as well as astrocytic activity, has been found to correlate preferentially with

specific LFP bandwidths.

Monitoring Neural Activity

In this section of the chapter we present the most prominent methods of monitoring

brain activity. We separate this section into two parts: a part on monitoring spatially
local brain activity and a part on methods used to monitor spatially extended (even

whole-brain) activity. While local monitoring can offer superior spatiotemporal

resolution from identified signal sources, spatially diffuse monitoring offers

insights from multiple brain regions, as discussed previously, such distributed

processing has been often implied to be a cornerstone for the formation of con-

scious percepts.

Local Monitoring

Local monitoring refers to measurements of neural activity within fairly small

volumes of brain tissue. Historically, the most prominent of these local monitoring

techniques have been extracellular voltage recordings either from a single location

(e.g., via a metal wire) or multiple locations (multiple wires bundled together or

multiple contacts manufactured along the length of a silicon shank; Buzsáki 2004).

The exact sampling volume of such extracellular electrodes remains the object of

investigations. In the past, various distances have been suggested ranging from a

few tens to a few hundreds of micrometers. Here we present and succinctly discuss

the most prominent methods (also beyond extracellular recordings) that allow

monitoring neural activity within similar volumes.
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Action potential elicitation of neurons proximal to a recording electrode is

typically reflected in the approximately 1 ms long and 50–200 μV deep negativities

of the extracellular voltage time series. These rapid and spatially localized Ve-

deflections reflect membrane currents in the axonal and perisomatic region (Fig. 3b,

c) but are also impacted by more distributed currents such as backpropagating

action potentials traveling along the dendritic arbor of a neuron. An important

aspect of monitoring spiking activity in the extracellular space is the inherent,

activity-dependent variability of the EAP waveform. Indeed, the EAP amplitude

of hippocampal pyramidal neurons can vary as much as 60 % during a high-

frequency (approximately 200 Hz) burst (Buzsáki et al. 1996) for example, within

a place field (Harris et al. 2001). These features, together with artefactual sources of

variability from electromyogram contamination or hardware sources, pose chal-

lenges for spike waveform-based clustering and classification of neurons in vivo.

Specifically, the most salient features of EAPs, the EAP negativity attributed to fast

sodium- and potassium-dependent currents and the immediately proceeding EAP

positivity attributed to slower potassium (but also calcium) currents, can substan-

tially vary as a function of spike frequency. In general, the spike variability of the

EAP amplitude is more pronounced compared with intracellular spike variability

(Anastassiou et al. 2015; Henze et al. 2000) and is non-monotonic as a function of

spike frequency. The temporal EAP waveform features, such as halfwidth or decay

time of spike repolarization, vary more reliably with the intracellular waveform

than the amplitude (Anastassiou et al. 2015; Barth�o et al. 2004). It follows that,

while EAP recordings are fairly straightforward to obtain compared to more

elaborate methodologies, can be performed in deeper brain structures and offer

superior temporal resolution, their disadvantage lies in the difficulty of the proce-

dure involved in separating spikes and EAP waveforms originating from different

neurons, a process often referred to as spike clustering.

When the wideband signal from extracellular recordings is lowpass filtered

(typically below 300 Hz), the resulting time series is referred to as the local field
potential (LFP). The LFP has been studied extensively in the past as, in contrary to

highpass part of the recordings, it reflects electrogenesis from a spatially more

distributed region (Fig. 5a). What the length scale of the LFP is has been a debated

topic and remains a vibrant field of science (e.g., Katzner et al. 2009; Xing

et al. 2009; Ray and Maunsell 2011; Lindén et al. 2011; Reimann et al. 2013).

What is clear is that the spatial extent of the LFP is not a static feature depending on

multiple factors such as cytoarchitecture, input correlations (see above), etc. Hith-

erto, the LFP has been considered to mainly reflect postsynaptic and associated

return currents (even if recently more LFP-contributors have been identified); as

such, it is uniquely positioned to measure input into and output from a particular

brain region (e.g., Mitzdorf 1985; Colgin et al. 2009; Einevoll et al. 2013;

Logothetis et al. 2007; Buzsáki et al. 2012; Schomburg et al. 2014; Taxidis

et al. 2015).

A method used in conjunction with LFP recordings is the so-called current
source density (CSD) analysis. The CSD analysis is a particularly useful tool in

deciphering the location of the extracellular current sources and sinks giving rise to
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the LFP (Fig. 5a). CSD per se represents the volume density of the net current

entering or leaving the extracellular space (Nicholson and Freeman 1975; Mitzdorf

1985; Buzsáki et al. 2012). Unfortunately, it is not possible to conclude from the

CSD analysis alone whether, for example, an outward current close to the cell body

layer is due to active inhibitory synaptic currents or reflects the passive return

current of active excitatory currents impinging along the dendritic arbor. Such

insights have to be gathered from complementary information such as the cytoarch-

itecture of the brain region under investigation, its anatomy, projecting pathways,

etc. Even so, CSD analysis can point to regions of interest to be studied more

elaborately.

Conventionally it has been thought that spiking currents cannot affect tempo-

rally slower signals such as the LFP or the EEG due to the rapid, approximately

1-ms transient sodium/potassium charge transfer giving rise to the stereotypical

intracellular positivity (or extracellular negativity). Lately this view has been

challenged by a number of studies showing that neural spiking can affect electric

signals at much lower frequencies than the typical time scales suggested by action

potentials (Belluscio et al. 2012; Zanos et al. 2011; Ray and Maunsell 2011;

Schomburg et al. 2012; Reimann et al. 2013; Anastassiou et al. 2015). What part

of the EAP waveform can impact power at slow bands of extracellular recordings?

This has been the focus of a few studies (e.g., Zanos et al. 2011; Belluscio

et al. 2012; Anastassiou et al. 2015). In a recent one, the authors performed

so-called “de-spiking,” i.e., the procedure of substituting a window of 0.6 ms before

and after spike initiation time with a different (non-spiking) time series in the

extracellular voltage time series (Belluscio et al. 2012), in experiments where

both the intracellular and extracellular spikes were monitored concurrently

(Anastassiou et al. 2015). This resulted in EAP waveforms lacking the typical

spike negativity but containing the characteristic afterpotential repolarization.

Performing spectral analyses of the de-spiked time series led to a surprising

conclusion: spike afterpotential currents of pyramidal neurons can impacted the

spectrum of recorded signals as low as 20 Hz, i.e., bands hitherto solely related to

synaptic processing (Fig. 4b). Importantly, when the same analyses using the EAP

waveform from basket cells was performed, the outcome was very different:

spiking of these neurons minimally contributed to spectral power under 100 Hz

and, even then, did so only for elevated spike frequencies. The lack of impact of

basket cell spiking to LFPs under 100 Hz was attributed to their temporally narrow

EAP waveform as well as the lack of long-lasting depolarizing currents (compared

to pyramidal neurons). The study concluded that the effect of EAPs in such low

frequencies was attributed to the slower, smaller amplitude repolarization typically

attributed to slower potassium- and calcium-dependent currents difficult to distin-

guish in vivo.

Electrocorticography (ECoG) is the intracranial recording of electrophysiolog-

ical signals using electrodes and multi-electrode arrangements (grids) from the

surface of the brain after craniotomy and has been used for decades to monitor

(and sometimes perturb) cortical activity. Specifically, ECoG recordings have

conventionally been used to record slow signals (similar to the LFP) related to
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brain states or evoked activity, though spiking activity has been difficult to detect

(Fig. 5b). In that sense, ECoG has been largely used as a spatially distributed

monitoring method much related to electroencephalography and magnetoencepha-

lography (see below). Yet, very recently, advances in technology and materials

have for the first time allowed robust recording of cortical spiking (Khodagholy

et al. 2015) using ECoG (Fig. 5b, c), rendering the possibility of concurrent

monitoring of intra- and inter-cortical processing in terms of spiking and slower

activity from the brain surface.

Beyond electric recording methodologies, optical imaging techniques capturing

electric or ionic activity in neurons have flourished over the past decade or

so. Specifically, voltage changes can also be detected by membrane-bound volt-

age-sensitive dyes or by genetically expressed voltage-sensitive proteins (Siegel

and Isacoff 1997; Grinvald and Hildesheim 2004; Akemann et al. 2010). Using the

voltage-sensitive dye imaging (VSDI) method, the membrane voltage changes of

neurons in a region of interest can be detected optically, using a high-resolution

fast-speed digital camera, at the excitation wavelength of the dye. A major advan-

tage of VSDI is that it directly measures localized transmembrane voltage changes,

as opposed to the extracellular potential. A second advantage is that the provenance

of the signal can be identified if a known promoter is used to express the voltage-

sensitive protein. Limitations are inherent in all optical probe-based methods (Denk

et al. 1994); for VSDI these include interference with the physiological functions of

the cell membrane, photoxicity, a low signal-to-noise ratio and the fact that it can

only measure surface events.

Calcium imaging has emerged as a promising technology for observing hundreds

to thousands of neurons within a micro-circuit with both high spatial resolution and

precise localization to specific brain regions. The technique works by introducing

calcium-sensitive indicators into neural populations of interest and then imaging these

neurons in vivo through a light microscope. These fluorescence measurements are

interpreted as a proxy for the underlying neural spiking activity, as there is a biological

relationship between elicited action potentials and changes in calcium concentration; a

spike causes increases in [Ca2+], which gradually decays due to cell buffering and

other extrusion mechanisms. Amajor advantage of Ca-imaging is that, in combination

with genetically modified cre-animals, it offers the ability to record activity from

different cell types. In addition, fluorophore kinetics have been drastically reduced so

that, in principle, single-spike resolution is obtainable in a limited volume. On the

other hand, a major problem arises when intending to monitor spiking activity in larger

volumes; instead, what is recorded is a noisy and temporally sub-sampled version of

the spiking activity, which in some cases can be orders of magnitude slower than the

underlying neural dynamics. Even so, technology advances are continuously offering

indicators with faster response times and increased signal-to-noise ratio.

Finally, a method recently revamped as a test bed for understanding the origin

and functionality of signals is computational modeling. The first model to link intra-

and extracellular voltages was the work of Pitts (1952) describing the extracellular

negativity appearing as a result of spiking. Accordingly, the first simulations shed-

ding light into the LFP signal were the pioneering work by Shepherd and Rall

explaining the LFP recordings in the olfactory bulb of rabbit from first principles
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(Rall and Shepherd 1968). Since that time, a number of significant contributions

have been made with respect to the neural underpinning of brain signals, where more

involved computational models have been employed, for example, accounting for

different cell types, varying ratio of excitation and inhibition, etc.

A caveat of simulations typically used to study brain functioning and recreate

brain signals is that they have remained somewhat too conceptual. Neurons are

typically taken as point-like processes with rules of connectivity imposed upon

such nodes. While such simulations have proven informative with regards to

analyzing network dynamics (Koch 2004), signals related to electric field activity

are induced by the multitude of synaptic and membrane conductances activated

along the intricate, three-dimensional morphology of neurons (see also previous

sections) and are critically impacted by factors such as the alignment of dendrites

and other neural processes, input impinging along these processes, etc. (see above;

Buzsáki et al. 2012). Thus, the use of point neurons, while informative for illumi-

nating computational principles, either presumes or even fully neglects the primary

means by which such effects are mediated, that is, ionic fluxes along the neural

membrane and the extracellular medium. These restrictions are by no means limited

to models of electric activity (Fig. 5d, e). For example, a similar lack of under-

standing is combined with models attempting to replicate Ca-imaging response. In

this case, limitations do not arise from the lack of morphology features anymore but

instead from the lack of understanding and accurate representation between intra-

cellular Ca-dynamics and the resulting fluorescence signal.

The recent rise in computational power and advances in parallelization have

allowed larger, more realistic models to be implemented. Such models carry the

potential of being able to link subcellular and cellular biophysics with locally

measured signals such as cortical spiking, LFPs, Ca-imaging, etc. For example,

morphologically detailed and biophysically realistic single-neuron (Gold

et al. 2006; Druckmann et al. 2007; Hay et al. 2011) and population models

(Pettersen and Einevoll 2008; Lindén et al. 2011; Schomburg et al. 2012; Reimann

et al. 2013; Taxidis et al. 2015) have offered considerable insights into extracellular

spiking and LFP signals. Even more recently, large-scale simulation programs

combining unprecedented level of detail have been initialized promising to unravel

novel insights into a plethora of brain signals (e.g., Markram et al. 2015).

Spatially Distributed Monitoring

Spatially distributed monitoring relies on the same biophysical principles as local

monitoring, yet the inability of measuring highly localized sinks and sources due to

spatially undersampling renders the origins of electric activity spatially equally

diffuse.

Electroencephalography (EEG) is one of the oldest and most widely used

methods for the investigation of the electric activity of the brain (Niedermeyer

and Lopes da Silva 2005; Nunez and Srinivasan 2006). The scalp electroencepha-

logram is a spatiotemporally smoothed version of the ECoG (though the impact of

the skull on the recorded signal needs also to be accounted for) or LFP, integrated
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over an area of 10 cm2 or more. Under most conditions, it has little discernible

relationship with the firing patterns of the contributing individual neurons, largely

due to the distorting and attenuating effects of the soft and hard tissues between the

current source and the recording electrode. The recently introduced ‘high-density’
EEG recordings, in combination with source modelling that can account for the gyri

and sulci (as inferred from structural MRI imaging) of the subject, have substan-

tially improved the spatial resolution of EEG (Nunez and Srinivasan 2006; Ebersole

and Ebersole 2010).

Magnetoencephalography (MEG) uses superconducting quantum interference

devices (SQUIDs) to measure tiny magnetic fields outside the skull (typically in the

10–1000 fT range) from currents generated by the neurons (Hämäläinen

et al. 1993). Because MEG is non-invasive and has a relatively high spatiotemporal

resolution (~1 ms, and 2–3 mm in principle), it has become a popular method for

monitoring neuronal activity in the human brain. An advantage of MEG is that

magnetic signals are much less dependent on the conductivity of the extracellular

space than EEG. The scaling properties (that is, the frequency versus power

relationship) of EEG and MEG often show differences, typically in the higher-

frequency bands, that have been attributed to capacitive properties of the extracel-

lular medium (such as skin and scalp muscles) that distort the EEG signal but not

the MEG signal (Dehghani et al. 2010).

Functional magnetic resonance imaging (fMRI) is an imaging technique that

monitors oxygenation levels of blood flow in the brains of animals and humans.

Specifically, the BOLD contrast has been used as a proxy for neural activity, though

the exact relationship between neural processing and the output signal is a complicated

one (Logothetis and Wandell 2004). A number of pivotal studies have appeared over

the years relating the BOLD signal with depth LFP recordings rather than spiking

(Logothetis et al. 2001; Logothetis and Wandell 2004; Nir et al. 2007; Sch€olvinck
et al. 2010). The main advantage of fMRI is that it can be applied in a brain-wide

fashion, allowing for whole-brain associations, and it is non-invasive. At the same

time, the temporal sampling rate is fairly slow (typically fractions or a few Hz) and the

voxel size of the signal acquisition is considerable (e.g., from fractions to a few mm).

Linking spatially distributed measurements with the biophysics and workings of

networks and circuits all the way to single-cell and synaptic contributions typically

measured via local measurements has remained a challenge, mainly due to the

multiple spatiotemporal scales involved requiring simultaneous monitoring at all

levels. While such monitoring is difficult to pursue in humans, recent advances in

sensing technology have allowed performing it in other animals, particularly

rodents. For example, as mentioned earlier, recent advances in material and tech-

nology have allowed simultaneous measurement of spiking, LFPs and ECoG in

rodents (but also humans), offering the possibility to link between micro-, meso-

and macroscopic electric signals (Khodagholy et al. 2015). In similar fashion, the

relationship between the BOLD fMRI signal has been studied in conjunction with

spiking and LFP measurements (e.g., Logothetis et al. 2001; Nir et al. 2007;

Whittingstall and Logothetis 2009) and, recently, by engaging specific neural

population via optical perturbation (Lee et al. 2010).
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Computational modeling has the ability to link across scales and relate micro-

scopic with meso- and macroscopic observables. Yet, at the level of distributed brain

circuits, detailed representations of each circuit and its elements—such as synapses or

single-neuron morphologies—becomes prohibitive. Even so, more abstract models of

neural processing, such as circuits consisting of leaky-integrate-and-fire units, have

provided many insights into the functioning of distributed brain circuits during sleep

and wakefulness (Hill and Tononi 2005), the perception-action cycle (Eliasmith

et al. 2012), etc. With regards to conscious perception, modeling has been employed

in attempts to link between the various signals and neural dynamics during tasks. In

an important study, Dehaene and colleagues (2003) used a neural network model to

investigate mechanisms underlying visual perception typically giving rise to activity

patterns such as sustained activity in V1, amplification of perceptual processing,

correlation across distant regions, joint parietal, frontal, and cingulate activation,

band oscillations, and the p3b waveform. The neural network model indicated that

access awareness (the step of conscious perception) is related to the entry of

processed visual stimuli into a global brain state that links distant areas, including

the prefrontal cortex, through reciprocal connections and thus makes perceptual

information reportable by multiple means. This study is an excellent example of

the kinds of insights computational modeling can offer towards relating signals linked

to conscious processing with underlying neural processing in distributed areas.

From Cellular Biophysics to Systems and Computations
Associated with Conscious Perception

In the previous section, we reviewed a single-cell mechanism for spike bursting via

the dendritic Ca-spike of pyramidal neurons, whose extracellular signature is a

plausible candidate for a late superficial current sink. Cortical layer 1 is unique in

that it is extremely sparse, and the vast majority (upwards of 90 %; Hubel 1982) of

the synapses there are from long-range inputs rather than from the local circuit.

Importantly, the pyramidal neurons whose dendrites support Ca-spikes are pre-

cisely those neurons that make long-range connections themselves, both cortically

(feedforward, horizontal, and feedback7) and subcortically. What computational

role could be played by such a physiological and anatomical setup?

One intriguing possibility, which we will call Association by Apical Amplifica-

tion (AAA), was described by Matthew Larkum (2013). AAA takes a largely

bottom-up approach, starting from the detailed physiology of pyramidal neurons

and the anatomy of long-range connections in the cortex. Of particular importance

is the laminar structure of long-range feedforward and feedback axons in the cortex.

There is now ample evidence that feedforward connections strongly innervate the

7 There is an “indirect” pathway for cortico-cortico information flow through the thalamus, and

some argue that this might be the main way that information is transferred from one area of cortex

to another (Sherman and Guillery 2011).
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basal dendrites of layer 5 pyramidal neurons with excitatory synapses. Feedback

axons innervate layer 1, where the dendritic tufts of pyramidal neurons reside. As

discussed previously, the physiology of layer 5 pyramidal neurons allows for a

coincidence detection mechanism, whereby concurrent excitatory input into both

the basal and apical tuft dendrites causes a high frequency burst.

Additionally, the local inhibitory circuit consists of a number of different cell

types that can generally be classified into distinct groups based on their specific

effects on either the somatic or apical areas of the pyramidal neuron. For instance,

neurogliaform cells in layer 1 metabotropically inhibit voltage-gated calcium

channels in the apical dendrites (Palmer et al. 2012; Pérez-Garci et al. 2013),

whereas single bouquet cells in layer 1 disinhibit the apical dendrite via their

inhibitory effects on layer 2/3 inhibitory cells (Jiang et al. 2013). SST-positive

inhibitory neurons are known to directly inhibit the apical dendrites, whereas

PV-positive inhibitory neurons directly inhibit the basal dendrites, affording these

groups of neurons distinct computational roles in the regulation of pyramidal

neuron output (Royer et al. 2012; Shai et al. 2014). In this way, inhibition of the

apical dendrites by neurogliaform cells or SST-positive interneurons can act as a

form of gain control, regulating the frequency of firing in pyramidal neurons.

Alternatively, inhibition of neurogliaform cells, for instance via cholinergic action

(though under certain conditions, acetylcholine can have opposite effects; Brombas

et al. 2014), can bias pyramidal neurons to high frequency firing.

Taken together, pyramidal neurons and the local inhibitory circuit that surrounds

them are well suited to associate feedback and feedforward information streams

(Fig. 7). That association, signaled via a high-frequency spike burst in a pyramidal

neuron, is then communicated to other areas of the brain, including other areas of

cortex. For instance, a pyramidal neuron receiving feedforward orientation informa-

tion from V1 and motion information via feedback from V5 can bind these two

information streams. These associated signals can then contribute, via their influence

on the apical or basal dendrites of far-away pyramidal neurons, to other associations.

The single-cell mechanism through which concurrent basal and tuft excitatory input

creates spike bursting has been named the BAC mechanism (Larkum 2013). In this

way, the BAC mechanism causes high-frequency burst firing, as is often observed

in vivo (de Kock and Sakmann 2008; Buzsáki and Mizuseki 2014), whereas input

into only the basal dendrites will only cause tonic low-frequency firing (Fig. 5). Long-

range input can also robustly regulate the BAC mechanism indirectly by recruiting

the effect of the different cell types in local inhibitory circuit.

Importantly, low-frequency firing is still available as a unit of information

transfer in cases where excitatory input exists into the basal dendrites in the absence

of excitation in the apical tufts or when the BAC mechanism is inhibited. These

different modes of firing (low-frequency vs. high frequency bursting) can have

substantially different influences postsynaptically (Buzsáki and Mizuseki 2014;

Lisman 1997). For instance, different short-term plasticity mechanisms act as

filters, allowing only certain frequencies to effectively communicate with down-

stream neurons (Markram et al. 1998; Tsodyks and Markram 1997; Tsodyks

et al. 1998). There is evidence that presynaptic bursts cause postsynaptic potentials

with substantially greater efficacy (>90 %) than single action potentials (~40 %;
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Lisman 1997). In this way, the coincident excitatory input into a pyramidal neuron,

representing the association of information from different areas of cortex, can

create a unique signal that has markedly different influence on other cortical

areas than the integration of a purely feedforward (basal dendrite) input.

Fig. 7 Association by apical amplification (AAA) connects physiological and anatomical details

to network level computation and perceptual representation in the cortex. (a) As shown in Fig. 6,

input into the basal dendrites of a cell causes steady low-frequency firing in a pyramidal neuron.

This feedforward input into the basal dendrites, when combined with feedback input into the apical

tufts, causes high frequency burst firing. In the scheme of AAA, feedforward input into the basal

dendrites carries sensory information from the periphery, while feedback input into the apical tufts

carries predictive information about the stimulus. (b) The parallel feedforward/feedback interac-

tions in multiple areas acts as a selection mechanism to choose which pyramidal neurons are in a

state of high frequency firing, ultimately binding different aspects to represent the percept, in this

case a tiger (figure from Larkum 2013)
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AAA importantly serves as a concrete mechanism linking details of electrophys-

iology and anatomy to larger-scale concepts like perceptual binding and the repre-

sentation of conscious percepts. The connection between forming a bound

representation and consciousness are matters of current debate and require some

discussion. The topic of binding is generally separated into two issues (Revonsuo

1999). The first concerns the grouping of sensory inputs to form distinct objects (e.g.,

combining color, shape, and motion to represent a tiger); the second concerns the

inherent grouping of the phenomenal mind to give a single conscious experience

(a property called the unity of consciousness). The difference between these two sets
of concerns is also contentious. One way to think of the difference between these two

issues is that the first relates to computational function whereas the second relates to

phenomenology. Another interpretation is that the first relates to defining distinct

objects and the second refers to arranging those objects into some kind of unified

structure. This interpretation holds great relevance to the ideas discussed in the final

section. Yet another interpretation is that there is no real difference between the two

sets of concerns or even that the unity of consciousness is illusory (Dennett and

Kinsbourne 1992). For the purposes of this chapter, it is important to point out that for

AAA to be a mechanism of consciousness, it assumes that the functional substrate of

phenomenology is the binding of sensory information to form unified wholes.

Let us take into account the different facts that are put together here. The most

basic starts with the distribution of nonlinear channels in the apical dendrites of

pyramidal neurons, which support nonlinear regenerative spiking, and acts as a

mechanism for high frequency burst firing in those cells. Anatomically, these cells

make long range connections, both in feedforward pathways where they synapse onto

the basal dendrites of other pyramidal neurons, and in feedback pathways, where they

synapse into layer 1, and they can act to manipulate the apical dendrites of pyramidal

neurons. The extracellular signature of such manipulation, in particular, the dendritic

Ca spike, is a large current sink in the upper layers. Psychophysics experiments have

found that such a signal correlates to conscious perception. In terms of cortical

computation, the association of feedforward and feedback signals might act to bind

different aspects of a percept together, though the exact details of such a process at the

network level remain elusive. In the next section we discuss candidate theoretical

frameworks that might be able to describe such a process in cortex.

Towards a (Unifying) Theory/Framework of Conscious
Perception

Before delving into the details of theoretical considerations, it will be useful to

quickly review what has been covered in this chapter so far. We began by looking

at psychophysical results describing signals that correlate to conscious perception. In

particular, late extracellular voltage signals that occur in the superficial layers as well

as distributed information processing between different cortical regions were
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presented as candidate NCC. From there we considered the physical origins of these

extracellular signals, residing in the transmembrane currents brought about by the

electrical structure of dendrites and synapses. Dendrites of pyramidal neurons,

supporting highly nonlinear NMDA and Ca-spiking, were presented as a likely origin

for late extracellular signals in the superficial layers. Next, we asked what computa-

tional role such an electrogenic structure could play in terms of single neuron

processing of synaptic inputs, and we discussed how pyramidal neurons and their

dendrites act as coincidence detectors between inputs into the basal and apical

dendrites and additionally have powerful mechanisms to regulate such a coincidence

mechanism. Importantly, the output of this single cell mechanism is given by a

nonlinear increase in the frequency of action potential outputs, in the form of a

burst at 100 Hz or greater. As discussed elsewhere (Larkum 2013) the network

implication of such a single cell mechanism is a general principle by which pyramidal

neurons distributed across the cortex can be associated with each other, ultimately

serving as the physical representation of any given conscious percept.

This series of connections—from psychology to signals, signals to neural bio-

physics, from biophysics to single cell computation, and single cell computation to

network level computation—is built upon more than a century of work in a variety

of fields. Still, the connections between these levels of understanding require

substantial amounts of work to be sufficiently fleshed out before becoming widely

agreed-upon scientific fact. Instead, what has been presented so far should be

understood as an attempt to combine results from psychology to physiology in a

coherent and testable framework. The testability of this framework is of special

import, as this requires (in the best case) taking the somewhat ineffable topic of

consciousness into the realm of neurons and their functions.

As an important part of that project, a number of theoretical (and often mathe-

matical) frameworks emerged attempting to describe the abstract underpinnings of

representation and consciousness in the brain, ultimately providing a description for

what it means, in terms of algorithm or function, to create a representation or to be

conscious. In the subsection that follows, we will discuss some of these frameworks

and explore how they might be related to the ideas mentioned so far. This discussion

will not be an in-depth review but will instead feature a largely conceptual overview.

Importantly, the discussion that follows should not be interpreted as arguing for an

equivalence between these various theories. Instead, what follows is a discussion of

the potential areas of conceptual overlap between seemingly disparate ideas and how

they might be brought together, at least at certain points of conceptual intersection.

We will frame this section with Friedrich Hayek’s contributions to theoretical

psychology, most explicitly given in his 1953 work The Sensory Order: An Inquiry
into the Foundations of Theoretical Psychology. The reasons for this are multifold.

First, Hayek’s contributions mark a stark departure from multiple theoretical

frameworks of that time, for instance behaviorism8 and the theory of psycho-

8 In its’ most extreme form behaviorism studies the link between sensory input and behavioral

output, and denies that anything is really going on in the mind.
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physical parallelism,9 ultimately arriving at the modern understanding of the role of

the brain in perception. Second, as we will see, there are direct conceptual parallels

between his ideas and many of the more mathematically rigorous modern ideas.

Third, Hayek’s work in theoretical psychology is underappreciated, especially

given both its breadth and depth. We will see that Hayek’s work provides a

conceptual framework that suggests overlap between a number of modern theoret-

ical ideas and AAA (Fig. 8d). With regards to AAA, the main point here is the

connection between computation at the single cell level (e.g., as discussed,

coincidence-detection, association) and more network-level implications. This

link is what Hayek explores.

Hayek’s foundational idea is quite straightforward. He posited three orders:

(1) the external world (which he called the physical order), (2) the brain (which

he called the sensory order), and (3) the mind (which he called the phenomenal

order), and he focused his efforts on understanding the relationship between the

three. In Hayek’s formulation, the state of the brain has an isomorphic correspon-

dence with that of the mind. The structure of the psychological realm, for Hayek,

was relational (e.g., psychological objects are defined relative to other psycholog-

ical objects), and as such, that structure of relationships that make up the psyche had

to be recapitulated in the structure of the neural network and its activity. This strict

correspondence contrasts with the correspondence between the outside world and

the structure of the brain (and thus the mind), which is imperfect, as shown by the

existence of sensory illusions. The problem for Hayek was then to describe how the

relational network that is the psyche can be encoded in the structure and activity of a

neural network, given the computational properties of single neurons that make up

that network. Although this might seem trivial to today’s standards, it cannot be
overstated how important this development was, especially given prevailing ideas

at the time. In the end, we will see that Hayek’s solution comes in a form that is in

many ways remarkably similar (though missing the details of biophysics and

anatomy that remained uncovered until the 1990s) to the ideas of AAA, Integrated

Information theory, and Predictive Coding and discuss their connections. For

Hayek the main questions were:

1. How can a relational network be encoded in the structure and activity of a neural

network?10

2. How are the relations between objects in the outside world learned and encoded

(imperfectly) in the neural network of the brain11?

9 Psycho-physical parallelism is the idea that there is a one-to-one correspondence between

sensory input and the contents of the psyche.
10 Quote from Hayek: “The question which thus arises for us is how it is possible to construct from

the known elements of the neural system a structure which would be capable of performing such

discrimination in its response to stimuli as we know our mind in fact to perform.” (Hayek 1999).
11 Quote from Hayek: “Our task will be to show how the kind of mechanism which the central

nervous system provides may arrange this set of undifferentiated events in an order which

possesses the same formal structure as the order of sensory qualities,” and “Our task will thus
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Fig. 8 Hayek’s types of classification and their relationship to Integrated Information Theory. In

Hayek’s theory of cortical function, neurons perform a classification function by grouping

presynaptic cells that have similar postsynaptic effects together. (a) In simple classification,

classes are defined via their different effects on different cells. Here neuron X defines a class {r,

s}, because each of that class causes neuron X to fire. Similarly, neuron Y defines a different class

{t}. In the conceptual framework of integrated information theory, these “differences that cause a

difference” (i.e., the groups {r,s} and {t} each cause different cells to fire) confer the network with

high differentiation but not high integration. (b) In hierarchical classification, simple classification

occurs in multiple stages. This allows the network to create classes of classes, and, importantly, to

classify the relationships between different classes. For example, each of neurons W, X, Y, and Z

defines a class made up of three cells. The cells postsynaptic to W, X, Y, and Z require two

simultaneous inputs to fire, signified by the dotted lines. This defines {W&X}, and {Y&Z} as two

groups. The neuron R defines a group {W&X,Y&Z}. In this way, the neuron R requires any one of

the three cells in groups W and any one of the three cells in group X, or any one of Y and any one

of Z, to fire. In this way, the cell R is said to fire to the relationship between W and X or to the

relationship between Y and Z. Because each of these relationships similarly causes R to fire, these

relationships are thus the same. (c) In multiple classifications, neurons can be in multiple classes,

and different classes can have overlapping members. In this way, neuron r is in group X and in

group Y, and neuron s is in groups X, Y, and Z. In terms of information theory, this type of

classification confers the network with integrated information, since neurons r and s have distinct,
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The answers to these questions came by positing that a foundational computation

the brain performs is classification.12 Hayek described types of classification of

increasing complexity (Fig. 8). Simple classification is the sorting of externally

different objects into one of a set of different classes by virtue of their differing

effects. One example of this is a machine that sorts balls of even diameter into a bin

marked A and balls of an odd diameter into a bin marked B. The machine is said to

have classified each ball into either group A or B. Simple classification of this sort

can describe simple reflexes, which act to group external stimuli by the behaviors

that are produced, often by a chain of very few neurons. Hierarchical classifica-
tion13 occurs when successive acts of classification occur in successive stages. In

this way, the groupings that occur in a previous stage become the objects to be

grouped in the next stage.Multiple classification allows for stimuli to be in multiple

groups at once and also for multiple stimuli to be classified differently than when

they occur individually.14

It is this classification, carried out by the activity of postsynaptic neurons (as a

function of presynaptic activity and the structure of anatomical connections), that

builds up a system of relations. Here, we already see a conceptual overlap with

some modern ideas. For instance, Buzsáki’s (2010) reader concept is a framework

for defining cell assemblies by virtue of postsynaptic effects (e.g., by collective

effects on reader neurons). Similarly, an important aspect of integrated information
theory, which will be discussed more below, is the defining of causal groups as
differences that make a difference, in other words, defined by their causal postsyn-

aptic effects (Oizumi et al. 2014). There are even mathematical theories of com-

putation in dynamical systems, which have not been created or even used in

thinking about neural systems, that use the same conceptual idea, such as epsilon

machine reconstruction (Crutchfield 1994), and could potentially be used to analyze

network function.

⁄�

Fig. 8 (continued) but semi-overlapping, causal effects. Thus the network has “differences that

cause a difference” but also causal dependencies. (d) A conceptual network of the connections

between different aspects of biophysics, signals, and theory

be to show how these undifferentiated individual impulses or groups of impulses may obtain such a

position in a system of relations to each other that in their functional significance they will

resemble on each other in a manner which corresponds strictly to the relations between the sensory

qualities which are evoked by them.”
12 Quote from Hayek: “All the different events which whenever they occur produce the same effect

will be said to be events of the same class, and the fact that every one of them produces the same

effect will be the sole criterion which makes them members of the same class.”
13 Hayek does not use the term hierarchical in his description and instead just treats it as a more

complicated form of multiple classification.
14 This classification may thus be ‘multiple’ in more than one respect. Not only may each

individual event belong to more than one class, but it may also contribute to produce different

responses of the machine if and only if it occurs in combination with certain other events.
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In the simplest case of classification, two neurons that individually cause the

same postsynaptic effect are seen by the network as being equivalent, that is, as

being in one class. Thus, the position of these two neurons in the entire system of

relationships is the same. Different neurons will in general have varying degrees of

overlap in their postsynaptic effects, making it possible to talk about varying

degrees of similarity with respect to their position in the system of relations. In

this way, Hayek spoke of the postsynaptic activity representing the common

attributes of presynaptic impulses that bring about that postsynaptic effect, though

he preferred to say that the postsynaptic activity constitutes the attribute, rather than
represents it. This was to make the ontological point that these neural systems are
what the common attributes actually are and that they do not exist outside of the

material actions of the neural network. In other words, the contents of conscious-

ness have a one-to-one correspondence not only with the activity of neurons but

also in the structure of the network in which that activity exists. Importantly, this

theory differed radically from contemporaneous theories where the qualitative

aspects of the mind were somehow attached to the properties of electrical signals

themselves. Here, instead, we see the beginnings of an understanding of the psyche

that has at its core relations and information: “it is thus the position of the individual

impulse or group of impulses in the whole system of connections which gives it its

distinctive quality.” (Hayek 1999).

Indeed, it is important to point out that there are two separable aspects of this

scheme. The first is the (simple) classification of different signals by their differing

effects (“to respond differently to different impulses”). In this way, if each of a

group of cells causes the firing of a postsynaptic cell A, and each of a different

group of cells causes the firing of a different cell B, then the network has classified

these groups of cells into two distinct classes. This alone, however, does not make

up a system of relations, because so far we have only described distinct attributes, A

and B, with no real relationship between them. The second aspect is then that of

putting those attributes in a relationship with one another. This is where multiple

classification comes in. By way of example, this process occurs when a postsyn-

aptic cell requires the concurrent input of any of a member of class A alongside any

of a member of class B, or the concurrent input of any member of class C and any

member of class D. In such a case, we can say that the postsynaptic cell responds to

the relationship between A and B, which is the same relationship as between C

and D.

These two processes have been put to quantitative work in a modern theory of

consciousness, called integrated information theory (IIT), proposed by Giulio

Tononi (2008). We will not describe the theory in all of its conceptual and

mathematical detail here. For our purposes, it is important to point out the concep-

tual overlap with Hayek’s ideas of classification, even though the two theories start

from a very different set of considerations. The two concepts necessary for Hayek’s
scheme to set up a network of relations, that of setting up distinct attributes by

virtue of them having distinct postsynaptic effects and that of relating these

attributes to each other by virtue of their overlapping (classifying classes) and

diverging (being in multiple classes at once) inputs onto postsynaptic cells, can
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be conceptually reformulated into the language of information theory. In an infor-

mation theoretic framework, the setting up of distinct postsynaptic effects (simple

classification) confers a high entropy to the network, and thus a high informational

content (information here can be estimated as the negative logarithm of the number

of different potential states of the system). On the other hand, this information

needs to somehow be put in a relational network. This is done by the cooperative

effects of different classes both postsynaptically and on each other (multiple

classification). This informational dependency is called integration in IIT. Impor-

tantly, for a system to have both high information content and high integration, and

thus high integrated information, the system must simultaneously have dependen-

cies between different attributes to put them in a relation with one another, but not

so much dependency as to erase distinctions between different attributes. Because

of a set of principled reasons, IIT posits that systems with high integrated informa-

tion are conscious.

The exact physiological underpinnings of the thalamocortical system that might

give the brain high amounts of integrated information, and thus consciousness, are

still illusive. However, by considering the similarities between integrated informa-

tion and classification, a way forward is seen whereby specific network and

physiological structures are found to be plausible candidates. In particular, we

will find that, by considering increasingly complex structures of classification

(and by extension increasingly complex amounts of integrated information), a

hierarchical network of feedforward and feedback interactions can work as the

substrate for the representation of conscious percepts.

After the general description of classification and how it can be used to set up a

series of relationships, Hayek goes on to find implications for this idea in terms of

the structure of the cortex and how it might act to build representations. He begins

by considering the simplest of automatic reflexes, which performs a simple classi-

fication by grouping sensory inputs by the movements they produce. The evolution

of the brain led to these pathways of these reflexes, often carried out by a small

number of nerve cells from the periphery to the afferent, branching off and sending

axons to higher areas of the brain.15 This allows the brain to receive information

about both the state of the periphery and the actions that the organism is about to

take. Unlike pure afferent information, information in the higher centers is available

to be used for multiple classification, which can eventually send out motor

commands.

Hayek posited a hierarchical scheme whereby the cortex would perform classi-

fication in successive layers and could even perform classifications on relationships

15 It is in this idea, which is the main focus of Chapter 4 in Hayek’s book (1999), where Hayek

posits a potential use for axons that send the same information to the spinal cord and back to within

the cortex. Hayek talks of how there is no evidence for such axons; however, we now know that

layer 5b pyramidal neurons have axons that split, sending the same information directly to the

spinal cord and to relay cells in the thalamus that feed back into the cortex. The implications of this

process has been put into a theory of thalamocortical function, with many parallels to the ideas of

Hayek, described by Sherman and Guillery (2002).
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themselves, thus providing a highly complex and structured substrate for the

psyche. As classifications continue on up the hierarchy, classes become more

general and abstracted (classes of classes of classes, and classes of relations

between classes, etc.). In the case of the evolution of more complicated control of

motor responses, the higher levels can thus act to represent and control more

general groups or motor commands. Importantly, sensory input comes into an

already active network and thus interacts not only with the anatomical structure

of the network but with the activity already present in the network. Hayek describes

the type of information processing that feedforward and feedback connections

might serve in such a case:

The position of the highest centres [of the brain] in this respect is somewhat like that of the

commander of an army (or the head of any other hierarchical organization), who knows that

his subordinates will respond to various events in a particular manner, and who will often

recognize the character of what has happened as much from the response of his sub-

ordinates as from direct observation. It will also be similar in the sense that, so long as

the decision taken by his subordinates in the light of their limited but perhaps more detailed

observation seems appropriate in view of his more comprehensive knowledge, he will not

need to interfere; and that only if something known only to him but not to his subordinates

makes those normal responses inappropriate will he have to overrule their decisions by

issuing special orders.

In this way, certain cells (or groups of cells) in the brain act by comparing their

knowledge with what they receive from sensorium, only interfering in the network

when there is a mismatch. A framework for neural computation, called predictive
coding, is the mathematical description of such a process. The predictive coding

framework posits that the brain uses an efficient coding scheme to represent the

external world. In particular, this idea posits that natural redundancies in the

external environment acting on the sensory apparatus are not explicitly represented

in the brain, and instead what is represented is the deviation of the sensory drive

from what is predicted. Rao and Ballard (1999) have used this idea to explain the

tuning properties of cells in the retina, LGN, and V1. Importantly, this framework

puts an emphasis on efficient coding in the brain, something that Hayek did not

consider. Despite this, we will see that the biophysical mechanism in which

feedforward and feedback signals interact to represent sensory perceptions is

conceptually consistent with the predicting coding framework.

In the parlance of predictive coding, feedback signals, from higher to lower

levels in the hierarchy, convey predictions of the activity of the lower levels to

which they project, that is, predictions of general classes of motor commands given

the sensory input. In turn, cells compare predictions with information from lower

levels and send error signals forward in the hierarchy. In this way the predictions

are continually refined. The diction here becomes conceptually important. A

restatement of the processes of refining predictions via error signals representing

the comparison of prediction and feedforward sensory driven information puts the

ideas regarding network level computation discussed earlier in the chapter squarely

in the framework of predictive coding. Indeed, a comparison is biophysically

nothing more than the local integration of feedforward and feedback signals that
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occur in a single pyramidal neuron (and influenced by the surrounding local

circuit). A prediction is the feedback activity that predisposes specific neurons in

lower cortical areas to varying degrees of activity (or inactivity). An error signal is
then the result of the integration of feedforward and feedback signals, which are

then broadcast to higher areas of the hierarchy. Feedback activity, and its robust

control over the output of pyramidal neurons via dendritic nonlinearities (NMDA

and Ca-spikes), serves here as a physiological mechanism in which these kinds of

computations might be carried out in the brain. Importantly, NMDA and Ca-spikes

are physical mechanisms that can be both monitored and exquisitely manipulated in

experiment and thus provide a way to test hypotheses about how the cortex

implements predicting coding.

In thinking of the further evolution of cortex, Hayek posits that there is funda-

mentally no difference between the increased control of more complicated motor

responses (for instance, being able to account for context) and the representation of

complex percepts. Indeed, the addition of more and more layers alongside more

complicated forms of classification in the network allows for the network to form a

map of the outside world. In this way the role of convergent fibers to higher levels

of the hierarchy confers the binding of different attributes into more abstract

attributes, whereas divergence confers the distribution of common attributes to

different categories (Hayek 1999; Fuster 2003). Associations between different

attributes are given by connections that predispose but do not on their own elicit

activity in a postsynaptic cell or group of cells. Associations of this type can occur

in any direction of the hierarchy. An important aspect of such a distributed network

is that higher levels of the hierarchy can, through feedback connectivity to lower

cortical areas, act to predispose certain cells in the lower areas to fire. Hayek

describes the process through which multiple categorization and multiple associa-

tions interact to create a dynamic and ongoing selection of categories at multiple

levels of the hierarchy:

The different associations attaching to individual impulses. . . will often not only not be

convergent but even conflicting; and not all the representations which will form part of the

following [ie. postsynaptic effects] of the elements of the complete situation will be capable

of simultaneous realization, or would produce a significant new pattern if they did. Since

from each element of the structure of connected fibers impulses can pass in a great variety

of directions, the initial stream of impulses would merely diffuse and dissipate itself if the

overlapping of the following [ie postsynaptic effects] did not determine a selection of some

among the many potential paths on which they might travel.

This type of selection, which occurs on account of multiple associations

interacting with each other, is consistent with the network level computation that

follows from the single-cell biophysics of pyramidal neurons discussed. The main

single cell computation in AAA is that of coincident detection or, more generally

stated, of integration from multiple axonal pathways. Individually, these pathways

bias, but do not cause, the neuron to fire a burst of high-frequency action potentials.

The pyramidal neuron thus acts as a highly nonlinear classifier of the thousands of

excitatory and inhibitory inputs (and in reality even neuromodulatory inputs) that

impinge on the basal and tuft dendrites. These classifying neurons then send their
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own long-range axons to many cells in far away areas, establishing hierarchical and

multiple classification. In direct analogy to what Hayek discussed, it is the collec-

tive action of this process that works to select which pyramidal neurons are active in

different areas of the cortex and which act to form the bound representation of

percepts in the brain.

The ideas presented in this section are all active areas of research. The connec-

tions between these topics (Fig. 8d) range from scientific fact (e.g., NMDA and

Ca-spikes) to plausible speculation (the connection between the single cell BAC

mechanism and network level binding), or are even philosophical in nature (the

relationship between consciousness and binding). In the coming decade, it will be

important to establish exactly where, in both mathematical and physiological

foundations, these ideas overlap and differ. At the very least, Hayek’s stream of

thought suggests that there are connections waiting to be uncovered. Ultimately,

understanding the cortical network implications of single cell and local network

computation would be made easier if a more direct connection between ideas like

AAA, which explicitly take into account physiological and anatomical details of the

type that are experimentally measurable and readily manipulated, and the more

theoretical ideas of network computation like predictive coding and IIT was better

understood.
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dans les animaux vertébrés. Ballière. https://books.google.com/books?hl¼en&lr¼&id¼_

WRZW_d4R0IC&oi¼fnd&pg¼PA1&dq¼flourens&ots¼VVspXxOcml&

sig¼UEZm6vPd4Sy0rjO35u0YRTnuquU. Accessed 12 Nov 2015

Friston K (2010) The free-energy principle: a unified brain theory? Nat Rev Neurosci 11:127–138

Fuster JM (2003) Cortex and mind: unifying cognition. Oxford University Press, New York, http://

psycnet.apa.org/psycinfo/2002-18891-000. Accessed 12 Nov 2015

Fuster JM (2006) The cognit: a network model of cortical representation. Int J Psychophysiol

60:125–132

Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues:

II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251

Gaillard R, Dehaene S, Adam C, Clémenceau S, Hasboun D, Baulac M, Cohen L, Naccache L

(2009) Converging intracranial markers of conscious access. PLoS Biol 7(3):e1000061

150 C.A. Anastassiou and A.S. Shai

https://books.google.com/books?hl=en&lr=&id=_WRZW_d4R0IC&oi=fnd&pg=PA1&dq=flourens&ots=VVspXxOcml&sig=UEZm6vPd4Sy0rjO35u0YRTnuquU
https://books.google.com/books?hl=en&lr=&id=_WRZW_d4R0IC&oi=fnd&pg=PA1&dq=flourens&ots=VVspXxOcml&sig=UEZm6vPd4Sy0rjO35u0YRTnuquU
https://books.google.com/books?hl=en&lr=&id=_WRZW_d4R0IC&oi=fnd&pg=PA1&dq=flourens&ots=VVspXxOcml&sig=UEZm6vPd4Sy0rjO35u0YRTnuquU
https://books.google.com/books?hl=en&lr=&id=_WRZW_d4R0IC&oi=fnd&pg=PA1&dq=flourens&ots=VVspXxOcml&sig=UEZm6vPd4Sy0rjO35u0YRTnuquU
https://books.google.com/books?hl=en&lr=&id=_WRZW_d4R0IC&oi=fnd&pg=PA1&dq=flourens&ots=VVspXxOcml&sig=UEZm6vPd4Sy0rjO35u0YRTnuquU
https://books.google.com/books?hl=en&lr=&id=_WRZW_d4R0IC&oi=fnd&pg=PA1&dq=flourens&ots=VVspXxOcml&sig=UEZm6vPd4Sy0rjO35u0YRTnuquU
https://books.google.com/books?hl=en&lr=&id=_WRZW_d4R0IC&oi=fnd&pg=PA1&dq=flourens&ots=VVspXxOcml&sig=UEZm6vPd4Sy0rjO35u0YRTnuquU
https://books.google.com/books?hl=en&lr=&id=_WRZW_d4R0IC&oi=fnd&pg=PA1&dq=flourens&ots=VVspXxOcml&sig=UEZm6vPd4Sy0rjO35u0YRTnuquU
https://books.google.com/books?hl=en&lr=&id=_WRZW_d4R0IC&oi=fnd&pg=PA1&dq=flourens&ots=VVspXxOcml&sig=UEZm6vPd4Sy0rjO35u0YRTnuquU
https://books.google.com/books?hl=en&lr=&id=_WRZW_d4R0IC&oi=fnd&pg=PA1&dq=flourens&ots=VVspXxOcml&sig=UEZm6vPd4Sy0rjO35u0YRTnuquU
https://books.google.com/books?hl=en&lr=&id=_WRZW_d4R0IC&oi=fnd&pg=PA1&dq=flourens&ots=VVspXxOcml&sig=UEZm6vPd4Sy0rjO35u0YRTnuquU
http://psycnet.apa.org/psycinfo/2002-18891-000
http://psycnet.apa.org/psycinfo/2002-18891-000


Gawne TJ, Martin JM (2000) Activity of primate V1 cortical neurons during blinks. J

Neurophysiol 84:2691–2694

Glickfeld L, Roberts JD, Somogyi P, Scanziani M (2009) Interneurons hyperpolarize pyramidal

cells along their entire somatodendritic axis. Nat Neurosci 12:21–23
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Federating and Integrating What We Know

About the Brain at All Scales: Computer

Science Meets the Clinical Neurosciences

Richard Frackowiak, Anastasia Ailamaki, and Ferath Kherif

Abstract Our everyday professional and personal lives are irrevocably affected by

technologies that search and understand the meaning of data, that store and preserve

important information, and that automate complex computations through algorith-

mic abstraction. People increasingly rely on products from computer companies

such as Google, Apple, Microsoft and IBM, not to mention their spinoffs, apps,

WiFi, iCloud, HTML, smartphones and the like. Countless daily tasks and habits,

from shopping to reading, entertainment, learning and the visual arts, have been

profoundly altered by this technological revolution. Science has also benefited from

this rapid progress in the field of information and computer science and associated

technologies (ICT). For example, the tentative confirmation of the existence of the

Higgs boson (CMS Collaboration et al. Phys Lett B 716:30–61, 2012), made

through a combination of heavy industrial development, internet-based scientific

communication and collaboration, with data federation, integration, mining and

analysis (Rajasekar et al. iRODS primer: integrated rule-oriented data system.

Synthesis lectures on information concepts, retrieval, and services. Morgan &

Claypool, San Rafael, 2010; Chiang et al. BMC Bioinformatics 12:361, 2011;

Marks. New Sci 196:28–29, 2007), has taken our understanding of the structure

of inorganic matter to a new level (Hay et al. The fourth paradigm: data-intensive

scientific discovery. Microsoft, Redmond, WA, 2009). But within this vision of

universal progress, there is one anomaly: the relatively poor exploitation and

application of new ICT techniques in the context of the clinical neurosciences. A

pertinent example is the genetic study of brain diseases and associated bioinfor-

matics methods. Despite a decade of work on clinically well-defined cohorts,

disappointment remains among some that genome-wide association studies

(GWAS) have not solved many questions of disease causation, especially in

psychiatry (Goldstein. N Engl J Med 360:1696–1698, 2009). One question is
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whether we have the appropriate disease categories. Another factor is that gene

expression is affected by environmental and endogenous factors, as is protein

function in different circumstances (think of the effects of age, developmental

stage and nutrition). It is clear that any genetic associations with disease expression

are likely to be highly complex. Why then are the world’s most powerful super-

computers not being deployed with novel algorithms grounded in complexity

mathematics to identify biologically homogeneous disease types, or to understand

the many interactions that lead to the integrated functions that arise from DNA

metabolism, such as cognition? Is it from a lack of appropriate data and methods or

are the reasons related to our current clinical scientific culture?

Introduction

Reductionist methods of hypothesis falsification have dominated science in the last

two centuries, and rightly so, given the major advances in knowledge about the

living and non-living worlds they have afforded. However, there is much evidence

to suggest that a uniquely reductionist approach may be blinkered. Indeed it may

always have been so—think of Linnaean categorization of the plant kingdom as a

scoping exercise prior to a more modern hypothesis-led, genetically based descrip-

tion of plant biology. Darwin had no idea about the physical nature of the hereditary

process he so cleverly deduced (he received one of the few original copies of

Gregor Mendel’s manuscript, but did not read it, judging by the fact that it was

found uncut at his death). Yet he catalogued the animal kingdom, discovering

hidden patterns that gave rise to his theory about adaptive mechanisms and suc-

cessful procreation underlying the evolution of species. But do biomedical granting

agencies fund work that does not express a firm and clear hypothesis? What modern

biomedical grants agency will fund scoping studies involving observation and

classification (though again, perhaps that’s what GWAS studies are)? Outside

epidemiology, such a scenario is difficult to entertain. And in epidemiology, how

many studies emerge from the correlative world of univariate statistics, and how

many founder on inadequate power?

The most powerful means of examining the spread of influenza epidemics is now

achieved by analyzing the geographical spread of incidence posted on Google

(Brownstein et al. 2008; http://www.google.org/flutrends/). This is a real-time

example of the interconnected power of global computing; crowd sourcing is

another (Brabham 2008). How organic matter self-organizes across spatial and

temporal scales to produce the diversity of living, reproducing, adaptive creatures

and their nervous systems is a question that is slowly being addressed with a new

methodological agenda. The complexity of the human brain demands modern

methods that address, describe and quantify interactions in large integrated systems.
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Clinicians need to take note of this trend, both in terms of the science and art of

medicine and also in any effort to rapidly identify and develop effective treatments.

Syndromic Diagnosis

What is the challenge? Firstly, the clinical-pathological paradigm of the last century

and a half, attributed to Broca in the clinical neurosciences, has reached the limits of

its usefulness. Syndromes, composed of groups of symptoms narrated by patients

with varying degrees of cognitive impairment, or by their relatives, to individual

practitioners, overlap too much to remain useful as a basis for the precise diagnosis

of brain diseases. This is not a new insight, as demonstrated by the variability in

presentation of diseases such as syphilis and diabetes mellitus, but it is an increas-

ingly pertinent one. Recently it has been reported that the five major classes of

psychiatric illness share a similar set of associated genes that predispose not to one

or other class but to mental illness in general (Cross-Disorder Group of the

Psychiatric Genomics Consortium 2004). The spinocerebellar ataxias are associ-

ated with well over 20 dominant, often partially penetrant, mutations, each of which

generates a similar pattern of clinical features, at times causing diagnostic confu-

sion (Sch€ols et al. 2012). The dementia syndrome is caused by a range of patho-

logical mechanisms, a few of which are genetically determined, the vast majority of

which are of unknown aetiology, to the extent that the diagnosis of Alzheimer’s
disease (AD) is wrong in the best centers about 30 % of the time, if post mortem

features are used to define disease (Beach et al. 2012). Longitudinal syndromic

studies demonstrate that even diagnoses of “pure” syndromes fail to remain appli-

cable through life, and correlation with post mortem features is poor if not random

(Kertesz et al. 2005). Finally, the same single genetic mutation can present with a

variety of syndromes. A simple example is that of Huntington’s disease, where a

behavioral or psychiatric presentation is recognized, as are presentations with

movement disorders or gait abnormalities. Though the phenomenon of generational

anticipation in male presentation of the disease is associated with the length of CAG

repeats in the huntingtin gene, it is not understood how this happens. In short, there

is a pressing need to move from an observational and simple correlational approach

to clinical neuroscience to one that is mechanistic and multifactorial.

A Theory of the Brain

That is easier said than done, for a simple reason. Unlike the materials sciences,

where there is a clear if still often approximate (except at the quantum level)

understanding of the organization of inorganic matter across spatial and temporal

scales, no such theory of living matter is available. However, this is not an

intractable problem with infinite degrees of freedom, as some have suggested.
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The building block of organic matter, DNA, is composed of a limited set of highly

specific base pairs. We have a good understanding of how transcription to RNA and

translation to proteins occur, and what mechanisms control these processes. The

human genome is known and much if not all of the variation in it has been

catalogued. Much of it consists of (mysterious) non-coding sequences. That takes

care of a lot of degrees of freedom and sets parameters on how life itself emerges, as

well as cognition, emotion, perception and action. The rules that determine mech-

anistic interactions at these basic levels are constantly being discovered but remain

unconnected without a global theory of brain organization from the lowest to the

highest levels: from base pairs, to genes, to functional and structural proteins, to

neurons and glia, to cortical columns and subcortical nuclei, to redundant networks

and functioning, learning adapting systems, and eventually to cognition and more.

Each level with its rules constrains the structure and function of the next, more

complex ones. There are many examples of such rules. The Hodgkin-Huxley

equations are the best known and among the oldest (Hodgkin and Huxley 1952).

In principle, then, all the levels of brain organization should eventually become

expressible in terms of mathematical relationships, and that would constitute a

brain theory, or model.

Computers

A decade or two ago, the idea that an inestimable number of simultaneous

non-linear equations could represent a theory of brain organization, if dreamt of

by a few, seemed such an unlikely proposition that it merited no more than a passing

frisson. There were two fundamental problems: how to make the calculations, and

how to amass the data on which to make them. The first problem is largely solved, at

least in principle and partly in practice. The most powerful super-computers

currently available are at the peta-flop level (http://www.top500.org/list/2013/06/).

The IBM roadmap predicts the production of an exascale computer around 2018

(1� 1018 flops/s). Extrapolating today’s Blue Brain Project numbers, exascale is

probably the minimum required to simulate the entire brain. This level of perfor-

mance is just sufficient for the simultaneous computation of the present estimate of

the number of equations needed to provide a first holistic version of a brain model,

one that instantiates the nonlinear interactions that give rise to the emergent

properties of living brains. As to data storage, this is a practical problem that has

effectively been solved by cloud computing and distributed storage with appropri-

ate addressing; it is data analysis and aggregation with efficient database queries

that are challenges at this scale.
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Data and Data Mining

Clinical scientists are used to dealing with highly controlled, “clean” data sets,

despite the messy nature of their observational constructs. Hence their data sets are

often small, precious and closely guarded, being a critical part of the discovery

process. This mind set is invalidated by advances in data mining algorithms that

have become commonplace in industry (banking, nuclear power, air transportation,

space and meteorology, to name but a few) (http://en.wikipedia.org/wiki/Data_

mining).

Such algorithms identify patterns in big data that are characterized by invariable

clusters of (mathematical) rules. In other words, they are rule-based classifiers.

They offer a potential escape from the world of correlations into the world of

causes. However, strictly, rule-based classification generates correlations, not cau-

sality (although it depends on how narrowly causality is defined). It shows what

occurs together but not what causes what. Homogeneous clusters are useful for

disease signatures, but for treatments causality will have to be understood by

integration of knowledge and simulation results from genetics, biochemistry, phys-

iology and medical description into randomized experiments (Fig. 1).

These powerful and computer-sensitive, data-hungry algorithms often use novel

mathematics. They have been developed because the new generations of computers

can verify and validate them. They deal with multivariate and “dirty” data, missing

data, textual or semantic data and data from different sources or with different

ranges. They can work in non-linear, non-Euclidean, non-stochastic, high-dimen-

sional spaces (Loucoubar et al. 2013). Others are more statistically based, such as

machine learning techniques. Some attempt to exhaustively test all possible models

describing the data to discover the most parsimonious set that explains them. Which

will be the best tools and methods for use in the clinical neurosciences is not yet

clear, but one can be sure that data mining will generate many hypotheses for

testing! And so the perspective emerges that the comprehension of brain organiza-

tion and the causes of brain disease are not to be found by a reductionist approach

alone but by a combination of hypothesis falsification that follows a constructivist,

simulation-based approach using novel classifiers working on large amounts of real

biological data.

Simulating the Brain

An initial proof-of-concept program has recently communicated very encouraging

results. The Blue Brain Project (http://bluebrain.epfl.ch) at the Brain Mind Institute

of the Ecole Polytechnique Fédérale de Lausanne (EPFL) took as its starting point

data on the functionality of ion channels and their distributions along axons and

dendrites of different neural types (Peck and Markram 2008; Khazen et al. 2012).

Proceeding with a simulation-based approach, using biological data about matters
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such as cortical volume, the distribution of cortical layers, the distribution of

capillaries, the variation in numbers and distributions of morphological and func-

tional types of neurons in the various cortical layers, and statistical data on the

probability of connections between different cell types, it built a preliminary model

of a rodent cortical column using an IBM Blue Gene/Q computer. A correspon-

dence of functionality and morphology between the model and ex vivo slices of

brain tissue has been demonstrated (Ramaswamy et al. 2012). Predictions about the

distribution of synaptic connections (Hill et al. 2012) and the occurrence of

spontaneous activity (in the gamma band) have also been made that in themselves

constitute strong hypotheses for further empirical verification.

Fig. 1 Schematic representation of steps in applying modern informatics to clinical neuroscience.

The Human Brain Project (HBP) aims to collect, explain and simulate the functions of the human

brain at different levels of hierarchical complexity. Within the HBP framework, a strategically

feasible approach to understand brain diseases is depicted in this figure. The idea is to federate

(1) and integrate (2) the data, thus making use of an abundance of biological information from the

different levels of brain organisation. Data mining (3) will be used to extract sets of rules that

constitute definitions of homogeneous groupings of patients or subjects. Causal modelling with

new data (real or simulated) will be performed for external validation (4), which will complete the

process of defining (5) the biological signatures of diseases. The signatures of diseases will

constitute the basis for a new, biologically determined nosology that should facilitate drug target

identification and selection of homogeneous groups of patients for clinical trials as well as

simulation of the effects of pharmacological treatment and secondary event profiles

162 R. Frackowiak et al.



Data Provenance

The computing power needed for the extension of such a project to whole brains is

now within our reach. Data provenance remains a problem. In the research domain,

there are 30 years of data described in millions of scientific papers lodged in

repositories such as the National Library of Science in Washington DC. There are

many basic science laboratory databases, often publically funded, held in univer-

sities and research laboratories around the world. These data have often been used

once and exist for archival reasons alone. In the clinical field, there are databases in

each hospital that contain clinical and diagnostic information on innumerable

patients. Again, the data are used for the benefit of an individual and are normally

kept for medico-legal reasons or as a baseline for returning patients. In countries

with socialized medicine, these data are paid for by taxes and so, at least in part,

belong to the public. This mass of legacy data represents an enormous, untapped

research resource. How can such heterogeneous data be usefully exploited?

Real-time data addressing is a fact of life for anyone who uses the Internet and a

search engine today. Therefore, in principle, the infrastructure and software are

available. It remains to be seen whether specialized integrated hardware and

software infrastructures will become acceptable to hospitals and researchers for

scientific activity. Issues such as privacy protection in the context of anonymization

are technically solvable and already acceptable on the grounds of proportionality

(the potential benefit to members of society as a whole, compared to the potential

risk to an individual) in worlds such as those of Internet banking and crime

prevention (http://www.scienceeurope.org/uploads/Public%20documents%20and

%20speeches/ScienceEuropeMedicalPaper.pdf; but see Gymrek et al. 2012). Fol-

lowing the CERN model, asking for scientists’ data in return for giving them access

to many other databases should be a huge incentive, especially since it will

accelerate the process of scientific discovery by increasing the efficiency of data

usage. The acceptability of such systems will depend on their ability to avoid

displacement and corruption of source data, which is already a practical possibility

(Alagiannis et al. 2012; Fig. 2). The advantage to society is that taxpayers will

contribute to medical research at no extra cost while benefiting from its fruits. In

other words, every datum collected in the course of standard medical care will also

serve to promote medical and health research based on big data (Marx 2013).

Disease Signatures

Initially, the strategy is to federate data through a dedicated, connected infrastruc-

ture and then to integrate them appropriately so that they can be mined for answers

to specific questions. In all cases the results will relate to groups and not to

individuals, so guaranteeing an appropriate and proportionate degree of privacy.
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“The Human Brain Project,” awarded one billion euros in a European Commis-

sion Flagship of Enterprise and Technology competition in 2013, seeks to use this

strategy in its medical informatics division (http://www.humanbrainproject.eu/#).

One type of question will involve identifying groups of patients who show identical

patterns of biological abnormality based on the results of clinical investigation.

These patterns, called “disease signatures,” will comprise sets of causative features

including clinical findings, results of validated questionnaires of mood and emo-

tion, brain images of various types, electrophysiological recordings, blood tests,

genotypic characteristics, and protein composition of cerebrospinal fluid or blood.

To obtain maximal differentiation and sensitive discrimination between different

diseases, the strategy will be to use data from as wide and inclusive a range of brain

diseases (both neurological and psychiatric) as possible. This approach runs directly

counter to standard techniques of epidemiology based on tightly defined syndromes

or single characteristics, such as a unique pattern of single nucleotide polymor-

phisms or protein expression, by seeking to understand and resolve the one syn-

drome—multiple mutations and one mutation—multiple phenotypes problems. The

disease space, sampled in multiple dimensions, each of which is described by a

Fig. 2 Schematic describing the clinical neurosciences big data infra-structure. In the context of

the Human Brain Project, research will be undertaken based on distributed processing of medical

informatics infrastructures. The Medical Informatics Platform will provide a software framework

that allows researchers to query clinical data stored on hospital and laboratory servers, without

moving the data from the servers where they reside and without disproportionately compromising

patient privacy (in situ querying). Tools and data queries will be made available to a participating

community via a web-based technology platform adapted for neuroscientific, clinical, genetic,

epidemiological and pharmacological users. The information made available will include brain

scans of various types, data from electrophysiology, electroencephalography and genotyping,

metabolic, biochemical and hematological profiles and also data from validated clinical instru-

ments. Tools will be designed to aggregate data for analysis by state of the art high-performance

computing that automatically provides a basic descriptive statistical overview as well as advanced

machine learning and discovery tools
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specific vector of biological variables, will provide a new diagnostic nosology that

is in principle quantitative and expressed by a complete, exclusive set of charac-

teristic clinical features and results.

In the context of a medical consultation, a doctor might take a set of measure-

ments and order a set of tests to provide a results vector, which can be presented to a

database for matching to disease type, a clear step towards personalized medicine.

Biologically characterized diagnostic criteria will facilitate drug trials in that

diagnostic ambiguities in control and disease cohorts will be drastically attenuated,

leading to small groups with reduced error variances and adequate power for drug

discovery in humans. In dementia, as mentioned earlier, the error in AD diagnosis

approaches 30 %. Certain aged normal people have a degree of AD-related path-

ological change, which is compensated for at the behavioral or cognitive level. It is

claimed that 39 % of elderly subjects supposed to be normal show AD pathology

post mortem (Sch€ols et al. 2012). Twenty percent of 80-year-old adults have some

form of recognizable cognitive decline, so the error variance in currently consti-

tuted normal control groups may also be substantial. Clinical trials with groups that

are as inhomogeneous as these are likely to fail, even with specifically targeted

drugs. A search for preclinical abnormality in populations may lead to a definition

of types of “normality” in large enough data sets, and the dementias may become

more usefully defined by shared clinical and biological characteristics.

Data Mining and Medical Data

One data mining tool—Hypercube©—has already been used in medical research

(Loucoubar et al. 2011). We have preliminary data with this algorithm on a set of

200 patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-

base (http://www.three-city-study.com/les-publications-scientifiques-de-l-etude-

des-trois-cites.php) and also from a subset of 500 elderly subjects from the 3 Cities

study (http://adni.loni.ucla.edu) and associated image-genetics-clinical-psychology

cohorts followed in France for 10 years. Our analyses are somewhat flawed, in that

the entire disease space is not sampled and the numbers of patients are pitifully

small (though we now have over 6000 donated datasets from the same sources and

from the pharmaceutical company Sanofi-Aventis), but encouraging patterns have

emerged. Of the subjects in the first dataset, 199 of 200 fell into six distinct

subgroups on the basis of “disease signature.” In the second, where substantial

genotyping data were also available, separate, normal-aged groups can be distin-

guished from a number of groups associated with cognitive decline. The largest of

the latter includes APP and ApoE4 in its “disease signature.” Of great interest will

be secondary phenotyping, returning to groups of patients with the same “disease

signature” to identify specific clinical characteristics or variability in them with

factors such as age, which will give further insight into how brain diseases manifest

(Fig. 3).

Federating and Integrating What We Know About the Brain at All Scales:. . . 165

http://www.three-city-study.com/les-publications-scientifiques-de-l-etude-des-trois-cites.php
http://www.three-city-study.com/les-publications-scientifiques-de-l-etude-des-trois-cites.php
http://adni.loni.ucla.edu/


Human Brain Project

The Human Brain Project has, in addition to a medical informatics division, a basic

neuroscience component that is charged with creating an in silico blueprint (model)

of the normal human brain. Replacement of normal biological characteristics in

such a model by disease-associated values should, if correct, give an idea after

propagation through the model of what associated functional or structural changes

to expect. Likewise, modifications of parameters induced by a neuromodulator or

other factor should provide ideas about the spectrum of both desired and undesired

effects of any such medication (Harpaz et al. 2013). It may be worth enlarging this

Fig. 3 Theoretical schema describing the relationship between different levels of description and

the role of the disease signature in relating biology to phenomenology. The biological signatures of

diseases are deterministic mathematical constructs that aim to describe both variability at the

phenomenological level (clinical features with symptoms and syndromes) and at the biological

level (genetic, proteomic, etc.). The key property of a biological signature of disease is that it

accounts for the fact that a symptom of brain dysfunction can be due to many biological causes

(one-to-many symptom mapping) and that a biological cause can present with many symptoms

(many-to-one symptom mapping). In reality, the situation is often one of many-to-many mappings

between symptoms and biological causes. With advanced computing power, nearly exhaustive

searches of a data space can be performed to identify sets of rules that describe homogeneous

populations, to explain their biological data and to predict the pattern of symptoms
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perspective to system-based approaches, too (Zhang et al. 2013). In a real sense the

normal brain simulation program and the medical informatics effort will serve to

test each other in a cycle of repeated virtuous iteration until adequate accuracy can

be achieved for medical practice.

Europe has provided funds for a major coordinated effort in this field, supported

by leading edge computer science and technology, which has its own agenda of

using knowledge about human brain organization to inspire novel chip and com-

puter architectures. The aim is to move on from von Neumann digital binary

machines to neuromorphic probabilistic architectures that are much more energy-

efficient (Pfeil et al. 2013; Indiveri et al. 2011). The vision described here is broad

but practical. Its implementation will demand new competencies in medical

researchers and doctors, greater cross-disciplinary collaboration (along the lines

pioneered by physicists in CERN) and major changes in culture and practice.

Clinical Neuroscience-Related Big Data Initiatives

The scientific world is taking on the challenge faced by clinical neuroscience to

create a culture and foster competences that will be needed for the effective use of

big data research (see Box 1 for more details). Examples include BioMedBridges, a

joint effort by ten European biomedical sciences research infrastructures in which

the project partners will develop a shared e-infrastructure—the technical bridges—

to allow interoperability between data and services in the biological, medical,

translational and clinical domains; One Mind, which has the vision of a

technology-enabled data-sharing community focused on psychiatric disease and

brain injury, brought together through a federated data platform; the Allen Brain

Atlas, a growing collection of online public resources integrating extensive gene

expression and neuroanatomical data, including that of humans, complete with a

novel suite of search and viewing tools; ELIXIR, which unites Europe’s leading life
science organizations in managing and safeguarding the massive amounts of data

being generated every day by publicly funded research; and ENIGMA (Enhancing

Neuro-Imaging Genetics through Meta-Analysis), which brings together

researchers in imaging genomics to understand brain structure and function based

on MRI, DTI, fMRI and GWAS data.
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Box 1. Big data initiatives: a selection

Allen Brain Atlas—http://www.brain-map.org

BioMed Bridges—http://www.biomedbridges.eu

One Mind—http://1mind4research.org/about-one-mind

Elixir—http://www.elixir-europe.org

Enigma—http://enigma.loni.ucla.edu/about/

European Bioinformatics Institute—http://www.ebi.ac.uk

International Neuroinformatics Coordinating Facility—http://www.incf.

org/about

Machine Learning—http://en.wikipedia.org/wiki/Machine_learning

Data mining—http://en.wikipedia.org/wiki/Data_mining
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Changing the Culture

Far-seeing higher educational establishments such as the EPFL have been devel-

oping strategies of recruitment and faculty development that bring engineering and

ICT together with life and clinical sciences in preparation for such a revolution.

The public will need to be convinced of the privacy issues, and researchers will

need to acknowledge that it is ideas and not just data that generate Nobel Prize-

winning work. Finally, politicians and industrialists will need to be convinced that

there are substantial efficiency savings to bemade by preventing the endless repetition

of underpowered studies with unrepeatable results that characterize much of present-

day life science. They will presumably be open to exploiting the added value that

federating data offers at no extra cost and to the business opportunities that arise from

developing, installing and maintaining local infrastructures to feed big data-based

medical and health sciences research on a global scale (Hood and Friend 2011).
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