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Spin in Particle Physics

Motivated by recent dramatic developments in the field, this book provides a thorough
introduction to spin and its role in elementary particle physics. Starting with a simple
pedagogical introduction to spin and its relativistic generalization, the author successfully
avoids the obscurity and impenetrability of traditional treatments of the subject. The
book surveys the main theoretical and experimental developments of recent years, as
well as discussing exciting plans for the future. Emphasis is placed on the importance of
spin-dependent measurements in testing QCD and the Standard Model.

This book will be of value to graduate students and researchers working in all areas
of quantum physics and particularly in elementary particle and high energy physics. It
is suitable as a supplementary text for graduate courses in theoretical and experimental
particle physics. This title, first published in 2001, has been reissued as an Open Access
publication on Cambridge Core.

ELLIOT LEADER is Emeritus Professor in The University of London and Visiting Professor
at Imperial College, London. He received his Ph.D. from the University of Cambridge and
in 1967 became Professor of Theoretical Physics at Westfield College, London. In 1984 he
took up the Chair of Theoretical Physics at Birkbeck College, London, where he worked
for 16 years. Professor Leader has done research in universities and laboratories throughout
the world, including CERN, Brookhaven, Fermilab, California Institute of Technology and
the Lawrence Radiation Laboratory, Berkeley. He has published numerous papers and
review articles, and is the joint author of two previous books. An Introduction to Gauge
Theories and the ‘New Physics’, CUP (1982) and An Introduction to Gauge Theories and
Modern Particle Physics, CUP (1996), both written with Enrico Predazzi.
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Preface

Spin is an essential and fascinating complication in the physics of elemen-
tary particles. The spin of a particle is a quantum mechanical attribute.
Questions about the spin dependence of reactions therefore tend to probe
the underlying theoretical structures very deeply.

Spin plays a dramatic Jekyll and Hyde role in the theatre of elementary
particle physics, acting sometimes as the harbinger of the demise of a
current theory, sometimes as a powerful tool in the confirmation and
verification of such a theory.

Witness, for example, the parameters of the Standard Model. The
world’s most precise measurement of the Weinberg angle,

sin? 61 = 0.23061 + 0.00047,

comes from the SLD experiment at Stanford, where the use of a polarized
electron beam turns out to be equivalent to gaining a factor of 25 in
the statistics compared with the unpolarized situation. Or take the LEP
collider at CERN. Even though there has never been a serious spin pro-
gramme there, nonetheless the most precise determination of the beam
energy comes from a measurement of the resonant depolarization of the
beams. And spin measurements have played a key role in elucidating the
structure of the weak interactions and in demonstrating the V— A form of
the weak Lagrangian, and several exquisite and delicate experiments (e.g.
the parity-violating optical rotation in bismuth and the longitudinal po-
larization asymmetry in electron—proton scattering) have had a profound
effect upon our fundamental view of the electroweak interaction.

On the ‘destructive’ side witness the theory of J/W production in
hadronic collisions. Measured cross-sections were long ago found to be
more than an order of magnitude larger than the predictions of the colour-
singlet QCD calculations. So colour-octet enhancement was introduced,
thereby apparently providing a successful theory of J /¥ production. Now
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it turns out from more refined measurements, wherein the state of polariza-
tion of the J /¥ particles is determined, that there is a serious disagreement
between theory and experiment.

On a longer time scale take the case of Regge pole theory. There, an
entire and beautiful theoretical structure, highly successful on many fronts,
was severely shaken in the face of an accumulating mass of spin-dependent
data in contradiction with its predictions.

Spin, because it has no classical correspondence limit to aid our in-
tuition, has tended to be regarded with trepidation and to be seen as
surrounded by dangerous pitfalls epitomized by the Thomas precession,
which is always mentioned, but rarely explained, in textbooks on quantum
mechanics. Indeed there is an unconscious element of witchcraft in the oft
found statement that a purely relativistic effect produces a 50% correction
to the calculation of the L - S coupling in a hydrogenic atom!

Our opening sentence was inspired by a much loved slogan of the 1960s
that ‘spin is an inessential complication’, a view that lent some practical
relief in wrestling with the analytic properties of scattering amplitudes
and the Mandelstam representation; this was an approach that seemed
to offer, for the first time, the possibility of significant results in strong
interaction theory. But here too later developments demonstrated clearly
that spin could not be ignored and that the high energy behaviour of
Feynman diagrams is much influenced by the spin of the virtual particles.

During the 1970s and early 1980s spin physics drifted into a relatively
tranquil state of activity, from which it was rudely awakened in 1987
by the extraordinary results of the European Muon Collaboration’s ex-
periment, at CERN, on deep inelastic lepton—hadron scattering, using a
longitudinally polarized lepton beam on a longitudinally polarized tar-
get. Interpreted in simple parton model terms the experiment implied,
loosely speaking, that the sum of the spins carried by the quarks in a
proton added up to only about one eighth of the proton’s spin — a most
counter-intuitive result.

The EMC publication became the most-cited experimental paper in the
field for the following three years and catalysed an enormous theoretical
effort to re-examine, at a more fundamental level, the whole theory of
spin effects in deep inelastic scattering. Once again it was found that
the explanation of spin-dependent phenomena poses a more profound
challenge to a theory than the mere prediction of event rates. The theory
of the spin-dependent structure function gi(x) is much more subtle than
expected in the simple parton model and is linked to a deep aspect of
field theory, the axial anomaly. And the structure function g>(x) turns out
to have no explanation at all in the simple parton model and requires
essential field-theoretic generalizations of the parton model.
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The EMC experiment also stimulated massive experimental pro-
grammes at SLAC, CERN and DESY, which, in turn, have stimulated
the major contemporary experiments, COMPASS at CERN, HERMES
at HERA and RHIC, which has just come into operation at Brookhaven.

The information gleaned from decades of unpolarized deep inelastic
scattering experiments has played a seminal role in our understanding of
the internal structure of hadrons and in the testing of certain aspects of
quantum chromodynamics. The depth and breadth of this information
owes much to the fact that unpolarized deep inelastic scattering can
be studied using both charged lepton beams (et, uT) and neutral ones
(Ve Ve, Vi, 1), the latter requiring gigantic kilotonne targets. The polarized
case, by comparison, suffers from the lack of neutrino data — one does
not know how to polarize a battleship! But, most extraordinary, it now
appears that it may be possible to construct a neutrino factory, based
upon a muon storage ring, that produces neutrino fluxes 10° or 10* times
greater than ever before, thus making polarized targets feasible. With this,
one can contemplate a new era of polarized deep inelastic scattering, with
profound implications for our understanding of the internal spin structure
of hadrons.

In purely hadronic physics, too, there are tantalizing questions regarding
spin dependence. There exists a whole array of semi-inclusive experiments
like p'p — nX, with a transversely polarized proton beam or target,
or pp — hyperon + X, with an unpolarized initial state in which huge
hyperon spin asymmetries or polarizations — at the 30%—40% level! — are
observed. These experiments are very hard to explain within the framework
of QCD. The asymmetries all vanish at the partonic level and one has to
invoke soft, non-perturbative mechanisms. All such mechanisms predict
that the asymmetries must die out as the momentum transfer increases,
yet there is no sign in the present data of such a decrease.

In exclusive reactions like pp — pp the disagreement between the data
on the analysing power at large momentum transfer and the naive QCD
asymptotic predictions is even more severe, but here at least there is an
escape clause: the theory of exclusive reactions in QCD is horrendously
difficult.

On the practical side, the technology of spin measurements has im-
proved dramatically over the past few years. Improvements in polarized
sources suggest that proton beams of almost 100% polarization, and with
nearly the same intensity as present-day unpolarized beams, will eventu-
ally be available. Polarized-target construction is also improving. A highly
successful polarized gas cell is in operation in the circulating electron beam
at HERA. Experiments using a polarized gas-jet target in a circulating
proton beam have been carried out. Polarized electrons and positrons in
ete™ colliders are commonplace.
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Our aim in this book is threefold.

(1) We hope to offer a simple pedagogical treatment of spin in relativistic
physics that strips it of its unnecessary mystery. Our approach, based
upon the helicity formalism, leads to a unified general treatment for
arbitrary exclusive and inclusive reactions at a level that, we hope,
should make it of interest to both theorists and experimentalists.

(2) While admitting a lack of expertise in the matter, we have tried, with
the help and advice of experimental colleagues, to present and explain
some of the absolutely dramatic achievements on the experimental
side of spin physics, a continuing endeavour which seems to be part
science, part art.

(3) We wish to highlight the importance of spin-dependent measurements
in testing QCD and in providing a highly refined probe of the structure
of the Standard Model of electroweak interactions. We survey the rich
and challenging physics results that have emerged from the major spin-
physics experiments of the past few years, EMC and SMC at CERN,
E142, E143, E154 and E155 at SLAC, and HERMES at HERA. And
we discuss some of the exciting physics that will be explored in the new
generation of experiments, COMPASS at CERN and RHIC-SPIN at
the RHIC collider at Brookhaven. RHIC will be unique, exploring a
formerly undreamed-of regime of spin physics, with its colliding beams
of polarized 250 GeV protons.

Looking further ahead, the HERA-N project to polarize the proton
beam at HERA would provide a marvellous facility to explore an en-
tirely new regime in polarized deep inelastic lepton—hadron scattering and
would, with a fixed polarized nucleon target, offer an experimental set-up
beautifully complementary to RHIC in terms of the reactions it could
study with high efficiency. We can only hope that a positive decision will
be taken to proceed with the project.

In the appendices we have gathered together a large number of useful
results, e.g. on the representations of the rotation and Lorentz groups, on
Dirac spinors and matrix elements and various representations of the y-
matrices, on the Feynman rules for QCD and on the linearly independent
helicity amplitudes and spin-dependent observables for several reactions.

Acknowledgements

I am greatly indebted to a group of colleagues who share my belief
in the excitement and importance of spin-dependent measurements in
elementary particle physics and from whose advice and expertise I have
often benefited: Xavier Artru, Mauro Anselmino, Daniel Boer, Elena
Boglione, Claude Bourrely, Gerry Bunce, Nigel Buttimore, Don Crabb,



Xviil Notational conventions

Tolya Efremov, Thomas Gehrmann, Sergey Goloskokov, Rainer Jakob,
Alan Krisch, Peter Kroll, Yousef Makdisi, Gerhard Mallot, Brian Mon-
tague, Piet Mulders, Francesco Murgia, Aldo Penzo, Phil Ratcliffe, Oleg
Selyugin, Jacques Soffer, Dimiter Stamenov, Oleg Teryaev, Larry Trueman
and Werner Vogelsang. In particular the earlier chapters of this book owe
much to work done in collaboration with Claude Bourrely and Jacques
Soffer.

I am grateful to Elena Boglione for help with diagrams and numerical
computations, and to Philip Burrows, Jim Clendenin, Michel Diiren, Jim
Johnson, Jean-Pierre Koutchouk, Wolfang Lorenzon, Livio Piemontese
and Morris Swartz for information about and diagrams of experimental
apparatus.

Finally I wish to thank Pasquale Iannelli for his efficient typing of my
not always legible manuscript.

Notational conventions

Units
Natural units /i = ¢ = 1 are used throughout. For the basic unit of charge
we use the magnitude of the charge of the electron: e > 0.

Relativistic conventions
Our notation generally follows that of Bjorken and Drell (1964), in Rela-
tivistic Quantum Mechanics.

The metric tensor is

1 0 0 0
go—gh— |0 1 0 0
w 0 0 -1 0

0 0 0 -1

Space—time points are denoted by the contravariant 4-vector x* (u =
0,1,2,3), where

xt = (t,x) = (t,x,y,2),

and the 4-momentum vector for a particle of mass m is

pﬂ = (Eap) = (Eanapy»Pz)a

E = /p?> + m2.

Using the equation for the metric tensor, the scalar product of two 4-
vectors A, B is defined as

A-B=A,B*=g,A"B" = A°B"— A -B.

where
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y-matrices
The y matrices for spin-1/2 particles satisfy
Pyt Tyt =281
and we use a representation in which
0 __ I 0 j_ 0 g j .
Y _<0 _I), V _<—O'] 0 b} J_1’2’3,
where ¢; are the usual Pauli matrices. We define

. 0 I
75=V5=W071V2V3=<I 0>.

In this representation one has, for the transpose of the y-matrices,

PT =yl for j =0,2,5,

but . _
T = o) for j=1,3.
For the hermitian conjugates one has
O =50, ySt =95,

but . .
yt=—p/  for j=1,2,3.
The combination )
i
wo— L opn v
o =5 ']
is often used.
The scalar product of the y matrices and any 4-vector A4 is defined as

AE'})”A#='})0A0—')71A1—'})2A2—"})3A3.

For further details and properties of the y-matrices see Appendix A of
Bjorken and Drell (1964).

Spinors and normalization
The particle spinors u and the antiparticle spinors v, which satisfy the
Dirac equations

(p—mu(p) =0
(p+m(p) =0
respectively, are related by
v=iy’u’
5 = —iuTy0y2

where 7 = vTy0; similarly 7 = ufy°.
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Note that our spinor normalization differs from Bjorken and Drell. We
utilize

ulu =2E, vfv = 2E,

the point being that this normalization can be used equally well for
massive fermions and for neutrinos. For a massive fermion or antifermion
the above implies

uu = 2m, = —2m.

Cross-sections

With our normalization the cross-section formula (B.1) of Appendix B in
Bjorken and Drell (1964) holds for both mesons and fermions, massive or
massless.

Fields
Often a field such as y,(x) for the muon is simply written u(x) or just u
if there is no danger of confusion.

In fermion lines in Feynman diagrams the arrow indicates the direction
of flow of fermion number.

Group symbols and matrices
In dealing with the electroweak interactions and QCD the following
symbols often occur.

ns is the number of flavours.
N specifies the gauge group SU(N). Note that N = 3 for the
colour gauge group QCD.
e The Pauli matrices are written either as o; or 7; (j = 1,2, 3).
e The Gell-Mann SU(3) matrices are denoted by A¢ (a =1,...,8).
e For a group G with structure constants f,. one defines C»(G) via

5abC2(G) = facdfbcd
and one writes
Cs=C[SUQ3) =3.
If there are ny multiplets of particles, each multiplet transforming ac-

cording to some representation R under the gauge group, wherein the
group generators are represented by matrix t?, then T'(R) is defined by

daT(R) = ny Tr (t°t0).
For SU(3) and the triplet (quark) representation one has t* = 1%/2 and
T = T(SU(3); triplet) = n;.
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For the above representation R one defines C»(R) analogously to C»(G)
via

For SU(3) and the triplet representation one has
Cr = Cy(SU(3); triplet) = §.

Colour sums in weak and electromagnetic currents

Since the weak and electromagnetic interactions are ‘colour-blind’ the
colour label on a quark field is almost never shown explicitly when
dealing with electroweak interactions. In currents involving quark field
operators a colour sum is always implied. For example, the electromagnetic
current of a quark of flavour f and charge Qy (in units of e) is written

Jem(X) = Q55 (x)y¥qs(x)
but if the colour of the quark is labelled j (j = 1,2, 3) then what is implied
is
JE(x) =05 > g, (x)y"qy,(x).

colours
J

Subscripts referring to the laboratory frame (Lab)
Normally a subscript upper-case ‘L’ is used, e.g. pL. However, sometimes
the subscript ‘Lab’ is used, for further clarification.






Errata

Page 14: the line above Eqn. (1.2.27) should read:- ¢ .... frame S4 ob-
tained from S via ...”

Page 22: the equations (2.2.7) and (2.2.8) for the effect of a general
Lorentz transformation are incorrect. The correct expressions are:

P; Mg = €7 dyx(Owick) e s XY (2.2.7)

where p’ = I"'p = (¢',0',¢'), Owick is given by (2.2.6), and n and 7’ are
given by

cos 0 sin  — sin O cos 0 cos(pg — ¥)

cosn = .
sin 0
) sin g sin(pg — @)
sinn = - (2.2.8qa)
sin &
and
6 sin 0’ + sin 6 ¢ — ¢
cosyf = cos g sin +sm'ﬂcos cos(pg — ¢')
sin ¢’
0 s o
siny — Snfasin(es = &) (2.2.8b)

sin ¢’

where, as in (2.2.6), § is the angle between B and p, and ¢’ is the angle
between B and p’.
Page 119: Eqn. (5.6.12) should read:

d’o 1 do )
dido = %E{I—FA(A)(Q?’;cosgb—@ﬁsmcb)

—A®) (2D cosdp — #5 sing)

+Agg [cos® ¢ 22 P8 - sin? gb.@;,@f

+cos ¢ sing (74 2L + 7 P2)]

— Ay, [sin® ¢ 72 72 +cos2¢9;495

—cos ¢ sing (2 2o + 2 22

— Ay PLP] 4 Ay P4 (cO8 ¢ P +8in 6 2,))
— A, PP(cos $ P+ sin g 7))




Page 121: Eqn. (5.6.20) should read:

d%c 1 do
b (G, D) 52 dtdé ~ 2n {tw (@ D) dt:|unpol
+2icjl—j{§aﬁ[cos¢(XO|f) —sin¢ (Y0[f)]

+27, [cos ¢ (0X|f) +sing (Y[ )]

—h@;‘ [cos ¢ (YO|f) + sin ¢ (XO0|f)]

+2, [cos ¢ (0Y|) — sin ¢ (0X] )

+22 (201f) + 2. (021f) + 222, (22]1)

+2}7, [cos’ ¢ (XX|f) —sin® ¢ (YY | )

+cos ¢ sin ¢ (XY|f) — (Y XI|f))]

+ 787, [cos? ¢ (YY|f) — sin® ¢ (X X|f)

+cos ¢ sin ¢ (XY|f) — (Y XI|f))]

727, [cos’ o (XY|f) +sin’ 6 (YX[S)

—cos ¢ sing (XX|f) + (YY|f))]

2,2, [cos’ ¢ (YX|) +sin® ¢ (XY )

+cos ¢ sing (X X|f) + (YY|f))]

+2,2, [cos ¢ (XZ|f) —sing (YZ])]

+2.2, [cos ¢ (ZX|f) +sing (ZY )]

+2, %, [cos ¢ (Y Z|[) +sin ¢ (X Z|f)]

+217,) [cos $ (ZY ) — sing (ZX|1)]}

Pages 173/174: for a particle on the closed orbit, the vector n(6) should

more correctly be called ny(6) to conform with current usage in the field. For
a modern treatment of this topic, see G.H.Hoffstatter, A modern view of high
energy polarized proton beams (Springer; to be published) and D.P.Barber,
Electron and proton spin polarization in storage rings—an introduction , 15th
Advanced ICFA Beam Dynamics Workshop: Quantum Aspects of Beam Dy-
namics, Monterey, California, January 1998, Ed. Pisin Chen. (World Scien-

tific, 1999, p67 )
Page 188, Eqn. (8.1.5): one factor of a should be removed from the last
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Spin and helicity

Traditionally, in textbooks on quantum mechanics, spin is introduced via
an idealized Stern—Gerlach experiment in which a non-relativistic beam
of silver atoms passes through an inhomogeneous magnetic field. Each
atom is treated as a single valence electron of charge —e in an s-state. The
subsequent splitting of the beam into two indicates the two-valuedness
of s;, which is related to the value 1/2 for s, and the magnitude of the
splitting shows that the magnetic moment u is related to s by

e

=——§
K mc

the proportionality factor (the gyromagnetic ratio) being twice as big as
the factor that classically gives the magnetic moment due to the orbital
angular momentum of a point charge.

Historically, however, it seems that the early Stern—Gerlach experiments,
begun in 1922, had no influence at all upon the discovery of spin, simply
because they were too imprecise. Rather, the concept of spin appeared
after a long and tedious battle to understand the splitting patterns and sep-
arations in line spectra. Several people had for various reasons discussed
classical models of rotating charge distributions but Kronig, in 1924, was
the first to show that an electron with spin 1/2 would explain the pattern
of what we would today call L - S splitting, as well as anomalies in the
Zeeman effect. He realized, though, that the gyromagnetic ratio (—e/mc)
needed for the latter would give L - S splittings twice as big as those
observed. It is said that Pauli expressed his negative reaction to Kronig’s
idea with such vehemence that Kronig never published his work (Mehra
and Rechenberg, 1982). Soon thereafter, in 1925, the same idea occurred
to Uhlenbeck and Goudsmit (1925), who proceeded to a detailed analysis
of the splittings, concluding at first that everything worked beautifully,
but then becoming aware, as a consequence of a comment by Heisenberg,
of the factor-of-2 inconsistency mentioned above.

1
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Some months later Thomas demonstrated that a careful relativistic
treatment produced exactly the factor of one half needed to bring about
agreement between the theory of L - S splitting and experiment (Thomas,
1926).

In this work appears for the first time the infamous ‘Thomas preces-
sion’, which is mentioned, yet almost never explained, in all textbooks
on quantum mechanics. We shall return to it later, but we should like,
immediately, to demistify one aspect of it. It is usually said that relativistic
effects produce a factor of one half. Now that would indeed be mysterious!
What is forgotten is the fact that the L - S coupling is itself a relativistic
effect. By means of a Lorentz transformation, we can understand that the
electron, moving through the Coulomb field of the nucleus, sees a mag-
netic field in its rest frame. So the Thomas result is simply a correction to
an already intrinsically relativistic effect.

1.1 Spin and rotations in non-relativistic quantum mechanics

In non-relativistic quantum mechanics the spin of a particle is introduced
as an additional rotational degree of freedom. Analogously to orbital
angular momentum one introduces three spin operators

§ = (§X5 §y5 §Z);

the spin states |sm) are the simultaneous eigenstates of the commuting
operators §” and §,, with eigenvalues s(s + 1) and m respectively. The spin
s of the particle can be zero or a positive integer or half integer, while m
can take values —s < m < s in unit steps. The quantity m is referred to as
the ‘z-component of the spin’.

The three spin operators §; satisfy the usual angular momentum com-
mutation relations

[ﬁj,@k] = ifjklgl- (111)

For a free particle the spin degree of freedom is totally decoupled from
the usual kinematic degrees of freedom, and this fact is implemented by
writing the state vector in the form of a product, one factor referring to
the usual degrees of freedom and the other to the spin degree of freedom.
Thus, for a particle of momentum p,

[p;sm) = |p) ® |sm) (1.1.2)
or, equivalently, for the wave function,

Ypism(X) = @p(X)1(m) (1.1.3)

where 5 is a (2s + 1)-component spinor and ¢@p(x) is a standard
Schrodinger wave function.
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Since the labelling of the above spin states uses m = §, and therefore
makes reference to ‘the z-direction’ it is tacitly assumed that we are
working in a well-defined, fixed coordinate reference system with origin
0.

We wish now to discuss the effect of rotations upon the spin states. To
begin with we recall the well-known rules for ordinary vectors. We shall
denote by r the physical operation of a rotation. Thus, if we say that an
object is rotated by e.g. r.(f), where 0 is positive, then we mean that we
are to physically push that object around the Z-axis through an angle 6
in the sense of a right-hand screw advancing along OZ.

If we apply r to a given three-dimensional vector A we shall call the
resultant rotated vector rA or A”. The action we have described is often
referred to in the literature as the ‘active’ point of view as distinct from the
‘passive’ one, in which the axis system is rotated. We think that this is a
confusing nomenclature. All our rotations act as described in the previous
paragraph and if we wish to rotate axes we shall simply state that r acts
on the coordinate axes.

The components of the rotated vector are related to the components A;
of A by

where the 3 x 3 matrix R with elements R;; depends, of course, on r.

Strictly speaking, we should write it as R(r). Sometimes it is convenient
to write the components A4; in the form of a column vector

Ay
A= (Ay) : (1.1.5)
A,

in which case (1.1.4) can be written in matrix notation as
A" = RA. (1.1.6)
As an example, if r = r(0) then

cosf 0O sinf
R[ry(O)]=< 0 1 0 )

—sinf 0 cos@

(1.1.7)

For a tensor T, say of rank 2, the components of the rotated tensor T"
will be given by

T;; = RicRjm Tiom (1.1.8)

with obvious generalization to tensors of higher rank. It should be noted
that tensors of rank > 2 do not transform irreducibly under rotations. (The
irreducible representations of the rotation group are discussed briefly in
Appendix 1.)
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Often one wishes to utilize a set of three orthogonal unit ‘basis vectors’
e() along the three coordinate axes. If we rotate one of them, say e(;), the
n components of e{;) will be related to those of e(j) by (1.1.4). But we can
also consider ¢{;) as a linear superposition of the e(;), and one easily shows
that

¢f;) = Rije() = (RT)ﬁ e) (1.1.9)
where RT is the transpose of the matrix R. (Recall that for rotations R is
orthogonal ie. RTR=RRT =1))

Note that whereas R appears in (1.1.4) it is RT that occurs in (1.1.9).

We come now to the physical role of rotations. We are interested in the
relationship between the descriptions that different observers give to the
same physical phenomenon. Let A be a fixed vector, which observer O in
our fundamental reference system S describes as having components A;.
Thus

A=) A (1.1.10)
J

Let O™ be an observer using a reference system S” that has been rotated
from S by a rotation r. Using the basis vectors ef;, the observer describes
A as having components (A4;)g-. Thus

A= (A)s eq) (1.L11)
1

and via (1.1.9) one finds, using [R(r)]~! = R(r~'), that
(Ai)sr = Rij(r™")A;. (1.1.12)

Although slightly misleading it is convenient to abbreviate (1.1.12) in
the form

(A)g = r1A. (1.1.13)

In summary, if the reference system is rotated by r then the components
of a fixed vector, as described in §” and in S, are related via R(r~!), in
contradistinction to (1.1.4) in which R is shorthand for R(r).

Spin-s spinors are dealt with in complete analogy to the above. We
introduce 2s + 1 unit basis spinors #(y,), where

1 0 0

0 1 0

0 0 0
"I(s) = : ’ r’(S—l) = : ’ sy 7](_5) = : ;

0 0 0

0 0 1



1.1 Spin and Rotations 5

the #(s) represent eigenstates of 5,. We write for a general spinor
=" LnMm): (1.1.14)
m

The numbers X, are the ‘components’ of X. The components (X,,)s- at-
tributed to the spinor X in the rotated reference frame S” are related to
X, analogously to (1.1.12):

(L)sr = 2 (") (1.1.15)

where the matrices 2)(r) are the (2s 4 1)-dimensional representation
matrices of the rotations r. (See Appendix 1; recall that the & are unitary
matrices, i.e. 2'% = 1.) By analogy with the inverse of (1.1.9) we have

Nim) = Dty M- (1.1.16)

The physical interpretation of (1.1.16) is that the state described by ob-
server O in the frame S as 7y is described by the rotated observer O’ as
a superposition of the states M)

Because of its importance we restate this in more general terms. If an
observer O with reference system S sees a spin s particle in a state |sm)
then the observer O" whose reference frame S” is rotated from S by the
rotation r describes the state of the particle as |sm)gr, where

|sm)sr = D) (771 sm). (1.1.17)

It is implicit in (1.1.17) that the states on the right-hand side are the |sm)
of O".
Although it is not simple to see what we mean by physically rotating
a spinor, by analogy with the vector case we shall talk about the active
rotation of a state |sm) to [sm)". Comparing with eqn (1.1.9) for the vector
case, we shall interpret |sm)" as given by
lsm)" = 2% (r)|sm'). (1.1.18)

It is very convenient in quantum mechanics to represent the effect of an
operation by an operator acting directly on the state vectors. Thus we
rewrite (1.1.18) in the form

|sm)" = U(r)|sm) (1.1.19)

where U(r) is the operator representing the rotation r.
From (1.1.18) and (1.1.19) follows the well-known relation

28 (r) = (sm'|U(r)|sm). (1.1.20)
In this operator notation (1.1.17) becomes

lsm)sr = U(r~Y)|sm). (1.1.21)
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In the case of spin 1/2, the spin operators §; when acting on the two-
dimensional spinors X'/? are represented by the set ¢/2 of 2 x 2 hermitian
matrices 0;/2, the o; being the usual Pauli matrices. In the case of arbitrary
spin s the operators $; when operating on the (2s41)-dimensional spinor x*
can similarly be represented by a set of three (2s+1)-dimensional hermitian
matrices Sj, the S; being the generalization of the Pauli matrices o;. There
is an important and vital distinction, however, between the ¢; and the §;,
which in a sense makes the spin-1/2 case unique. It is a fact that the most
general 2 x 2 hermitian matrix M can be specified by four independent
real parameters and, as a consequence, because the ¢; are hermitian and
independent, such a matrix M can always be written as

M=1(l+b-o) (1.1.22)

where the factor 1/2 is for convenience, I is the unit matrix, b - ¢ is short
for bjo; and the four numbers a,b; are all real. The form of (1.1.22) is
particularly convenient since it is trivial to solve for a and b;. One has

a=Tr M, bj =Tr (c;M) (1.1.23)

where Tr = trace means the sum of the diagonal elements of the matrix.

The Pauli o; thus play a dual role. On the one hand, they represent
the spin operators $;; on the other they furnish a basis for expressing any
2 X 2 hermitian matrix. It is the confusion of these two roles that sometimes
leads to difficulties in understanding spin effects in relativistic situations.

In the case of higher spin s the most general hermitian matrix is specified
by (254 1)? real parameters, so the set of the three S ; matrices is far from
adequate as a basis for an expansion analogous to (1.1.22).

The special role of spin 1/2 shows itself in yet another way. The most
general two-component spinor X can be specified by four-real parameters,
of which one, the overall phase, is totally irrelevant.

If, further, the spinor is normalized to unity, i.e.

=1,

we are left with two independent real parameters. Thus we can write,
without loss of generality,

1o o—i¢/2
cos 50 e
1= 2 . 1.1.24
< sin%@ eit/2 > ( )
If now we compute the spin-polarization vector P, defined by
P, = (o), =xTox (1.1.25)

we shall find that
P, = (sin 0 cos ¢, sin 0 sin ¢, cos 0) (1.1.26)
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with ’P% = 1. We see trivially that a knowledge of P, completely specifies
the quantum state X. In the case of higher spin, one can still define a
spin-polarization vector for a state X such that

Py=8)y/s=sy/s (1.1.27)

where s is the mean spin vector, but now the three components of P
are insufficient to fix the 2(2s + 1) — 2 independent parameters of the
(2s + 1)-dimensional spinor X. Besides the case of spin 1/2 there is no
other situation in nature where a knowledge of the spin-polarization
vector completely specifies the quantum state. (Of course P and s are
really pseudovectors. P is commonly referred to as the polarization vector
but it is not at all the same thing as the polarization vector ¢ used in
the description of photons or massive spin-1 particles. For this reason we
shall refer to it as the spin-polarization vector.)

Finally we note a very important property of the matrices S; representing
the spin operator §; for spin s, namely that they ‘transform as vectors under
rotation’. More precisely:

29829 (r) = Ri;(r™1)S;. (1.1.28)

This relation is best known in the spin-1/2 case in the simpler looking,
but really equivalent, form

(61)g = Rij(r™") (o)) (1.1.29)

relating expectation values in S” to those in S.

1.2 Spin and helicity in a relativistic process

The pioneering work of Dirac (1927) showed that spin emerges automat-
ically in a relativistic theory and that it could no longer be treated as an
independent additional degree of freedom. Nevertheless it is not trivial
to see precisely how the spin is to be described relativistically, nor how
it is to be interpreted physically. We shall give a brief discussion of this
question, and then turn to consider the helicity states of Jacob and Wick
(1959). Here our emphasis will be upon the physical interpretation and is
somewhat complementary to the approach used by other authors.

We assume that the reader has some familiarity with homogeneous and
inhomogeneous Lorentz transformations. A clear account can be found
in Gasiorowicz (1967).

In a relativistic quantum theory the fundamental operators are the
generators of the inhomogeneous Lorentz transformations. There are 10 of
these. The three momentum operators P/ and the hamiltonian operator P°
generate translations in space and time respectively, and the six operators
M”V(= —M V) generate the homogeneous Lorentz transformations. It
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is physically more revealing to work not with the M* but with the
combinations

Ji=—lep*,  Ki=MP, (1.2.1)

which can be shown to be the generators of pure rotations and of pure
Lorentz transformations (‘boosts’) respectively. Thus the J; are identified
as the total angular momentum operators.

As a consequence of the inherent characteristics of the inhomogeneous
Lorentz transformations, one can derive commutation relations that must
be satisfied by the generators. In particular, and in accordance with the

interpretation of the J; as angular momentum operators, one naturally
finds

175 Jk] = iejudi (12.2)

The operator }A’MIA’“ is invariant, i.e. it commutes with all the generators
and its eigenvalues can thus be used to label states. Indeed, what we mean
when we talk of an elementary particle of mass m is nothing other than
matter that is an eigenstate of P,P* with eigenvalue m?.

The question that now arises is the following. If the theory already
contains the spin then which operators are to be identified as the spin
operators? Is there a set of operators §;, with commutation relations akin
to eqn (1.2.2)?

The nearest one can get to a covariant spin operator is the set of
Pauli-Lubanski operators W, defined as follows:

Wo = —Leupe MM PP (1.2.3)
(with eg123 = +1), whose commutation relations can be shown to be
(Wi, W, = iesups WPP°. (1.2.4)

These are not quite what we hoped for, but we notice that if' we consider
the action of these operators on states of momentum p = 0, i.e. on ‘rest’
states, then for the space parts of the commutation relations (1.2.4) one
will have

{VAV]', Wk] = 1€ jkp0 WPm = —Ime ji| Wl. (1.2.5)
Thus, for the case m # 0 the three operators
1 ..
§i=—-W' (1.2.6)
m
have the commutation relations
[ﬁj, §k] = ifjklgl (1.2.7)

provided they act on the states of particles at rest.
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Further, the operator Wﬂ WH is invariant! and its eigenvalues, as can be
deduced from(1.2.4)—(1.2.7), are of the form m?s(s + 1) with s = 0, %, L,...
It is the number s that is defined as the ‘spin’ of a particle in a relativistic
theory.

In summary, in a relativistic theory a particle is assigned an invariant
spin quantum number s. But only when the particle is at rest can one
identify a set of spin operators §; and proceed to invoke the usual formal-
ism of non-relativistic quantum mechanics. Indeed from (1.2.3) one sees
that when I/AVH acts upon a particle at rest it has the form

A m A
Ws = _EGHVOJM#V

or, from (1.2.1)
Wi =ml,. (1.2.8)

Thus the §; when acting on states at rest are just the ji, so that all the
rotational properties of non-relativistic spin hold for particles at rest. The
possibility that a particle at rest has non-zero total angular momentum
has emerged automatically.

For a particle at rest it is convenient to fix a reference frame and then
to classify the states of the particle as in the non-relativistic case, i.e.
using eigenstates |ss,) of §% and §,. For a particle in motion, however, the
labelling of the states is not so clear cut.

The standard approach is to generate states of arbitrary momentum
by acting upon the rest states with suitable Lorentz transformations. We
shall adopt an equivalent but more physical approach, considering Lorentz
transformations in a similar spirit to our discussion of rotations in Section
1.1.

We denote an arbitrary physical Lorentz transformation by I. We con-
tinue to denote physical rotations by r, and we denote by [;, j = x,,z,
physical pure Lorentz transformations (‘boosts’) along the axes. We re-
mind the reader that care must be taken when specifying a sequence of
operations acting on the reference system. For example, if we first rotate
a system S about its Y axis through angle 6 (call this frame S’) and then
boost to a new frame S” moving with speed v along the Z-axis of S', then
we should represent the complete transformation from S to S” as

S = 8" =1L(v)ry(0)S;

it is essential for clarity to use the primed label z’ on I. A pure Lorentz
transformation or boost in an arbitrary direction is denoted by I(v), where

1 WM W and }A’,‘IA”‘ are the only invariant operators of the inhomogeneous Lorentz group.
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conventionally
I(v) = [r-l(v)]” L (0)r(v). (1.2.9)

Here r(v) is the rotation about e;) x v that rotates the Z-axis into the
direction of v and (r~'(v))” is its inverse, applied to the boosted frame.
We shall refer to (1.2.9) as a canonical boost.

The reason for calling (1.2.9) a pure boost is clear from Fig. 1.1, which
shows (for the case of v lying in the XZ plane) that the final reference
system S has its Z-axis at the same angle 0 to v as did OZ of S.

If a 4-vector A is acted upon by a physical Lorentz transformation [
then it is transformed to a new vector, which we shall denote by [A4 or 4;.
Its components are related to those of A by

(A) = Al = A*,(1)A". (1.2.10)

When using matrix notation we shall denote by A the 4 x 4 matrix whose
elements are A*,, u referring to the row, v to the column. The column
matrix A4 is defined to have as components the contravariant components
A". Thus (1.2.10) reads as

A = A()A

Explicit forms for A#, for a few cases of special importance follow. If [
is simply a rotation r, then we have

1 0 0 O
A= 0 (1.2.11)
-— 0 R . .
0
where R is the matrix defined in (1.1.4).
X” X”/
A 7"
S\ v
X \ //BS - ZIII
A\ -~ ” =
7 ) 4 S
X’ 'l"
A} v~
\
S'\\\
A 6 > Z
S

Fig. 1.1. A canonical boost along v to S — S” as shown.
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If I is a boost of speed v along the Z axis then

y 0 0 9p
0 1 0 O
ALOI={ 9 o 1 o (1.2.12)
B0 0 v
where y = (1 — p2)~V2, B =v/c.
For the canonical boost (1.2.9) one has
Y 7Bx ) By 7B:
Allw)] = s 1tafc afiby - abip: (1.2.13)

7By ofyBx 1+ “ﬁ; By
7B op:Bx af:By 1+ 0‘:322

where p=v/c,y = (1 — p*>)~V2 and o = y2(y + 1)~ L.

If S! is a frame obtained by applying a Lorentz transformation [ to a
frame S then analogously to (1.1.12) a fixed 4-vector 4 in S will appear
in S! to have components

(AMg = A", (17N A", (1.2.14)
which for convenience will be written, somewhat loosely, as
(A)g = 1714, (1.2.15)

A brief discussion of the finite-dimensional representations of the Lor-
entz group is given in Appendix 2.

1.2.1 Particles with non-zero mass

Let us suppose that we are given a definite reference frame S in which a
particle A of mass m is at rest in state |s;s;). Let O be an observer moving
at velocity —v with respect to O4. Choose v = p/+/p? + m? where p is
some arbitrary momentum. Then observer O looking at 4 which is at rest
in S4, will see a particle moving with momentum p. Thus in describing
this state O will use a label p, ie. |p;---). However, there are infinitely
many reference frames S all attached to O and moving with velocity —v
with respect to O 4 in which particle A will still appear to have momentum
p: if S; is one such frame then so will be any other frame obtained by
rotating S; bodily about p. Clearly, although all these observers report A
as having momentum p they will each report a different spin state since
their reference frames are all rotated from each other. Thus the ‘spin’ label
given to the state of motion of A must depend on a choice as to which
reference frame O is using. This choice is a matter of convention.
There are two main choices in the literature.
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(1) The canonical choice. Here O chooses his/her reference frame S in such
a way that it is obtained from S4 by a pure Lorentz transformation
I(—v) as in (1.2.9). O then labels the state of motion that he/she sees
as |p;sz).

(2) The helicity choice. Let p have polar angles 6, ¢. Then O chooses his
frame S as follows. To begin with, O transforms to a frame S’ boosted

by a speed
v =[pl/\/p* +m?

in the direction of the negative Z-axis of S4.

O then applies a rotation to S’ designed to make the momentum of
A appear as p = (p, 0, ¢). The rotation we use is the simplest one: first
through angle —6 about OY’ then through —¢ about the new Z-axis
0Z", i.e. the overall transformation is

Sa = S = ry(—d)ry(—0); 1 (v)Sa. (1.2.16)

We note that if the usual notation r(a, f, y) is used for a rotation through
the Euler angles a, 8,7, i.e.

r(e, B,y) = rz(0)ry (B)rz() = rz(c)ry(B)r(y) (1.2.17)
(the latter equality is explained in Hamermesh (1964)) then

S =r710,¢,0) (v)S4. (1.2.18)

If the state 4 in the rest frame Sy is |f7;s, s, = A), where fv = (m,0,0,0),
then O using the frame S sees the state IB;S, s; = A)s, which O labels as
Ip; A), i.e. the helicity state |p; /) is defined by

Ip;4) = |pss,s; = A)s, (1.2.19)

in which S is specified as above. The mathematical relationship between
Ip; A) and p;s; = 2) will be given later.

In what follows we shall seldom use the canonical basis, so that, unless
specifically indicated, all our states are helicity states. The formalism
is much simplified thereby and the treatment of massive and massless
particles is unified.

It should be noted that the rotation defined in (1.2.16) is simpler than
the one used in the original paper of Jacob and Wick. Their rotation
corresponds to having r~!(¢, 0, —¢) in (1.2.18). However, both Jacob and
Wick in later papers adopted the simpler rotation given in (1.2.16).
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1.2.2 The physical interpretation of helicity and canonical spin states

Equations (1.2.18) and (1.2.19) are the crucial tools in understanding the
physical content of a helicity state. Suppose in a frame S we are told that
the particle A is in a state of motion described by |p; A). Then, according
to eqns (1.2.18) and (1.2.19), particle 4 will be found at rest with spin
component s, = A if one observes it in the frame Sy related to S by
(1.2.16), i.e. in the frame

Sa = 1y(v)r(¢,0,0)S. (1.2.20)

We refer to this particular one of the infinitely many rest frames for A as
its ‘helicity rest frame’.

The relation between Sy and S, for the case ¢ = 0, can be seen in Fig.
1.2. In general, for arbitrary ¢, Z4 will lie along p and Y, along e(;) X p.
For § = 0 or = we take Y4 along or opposite to OY respectively. The
transformation in (1.2.20) is often given the special symbol h(p), i.c.

h(p) = L (v)r(¢,0,0). (1.2.21)

Another way of specifying h(p), which is more common in the literature,
is to refer all the operations involved to just one reference frame. In this
case it can be shown (Hamermesh, 1964) that

h(p) = r(¢,0,0)l:(v), (1.2.22)
XA
A a
X’ v Sa
L\ -~

\ /\
I\
S\ .
z
\ e d
- L, (v)
S L
ry (6)

Fig. 1.2 Definition of the helicity rest frame S, for particle A, which has
momentum p in a reference frame S.
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where the absence of primes on the axis labels is crucial. We note that

y 0 0 By
Alh(p)] = yBx cosfcosp —sing yfi/p (1.2.23)

yBy cosOsing cosep B,/ |’
7B —sin0 0 vB:/P

where B = p/E has polar angles 0,¢ and y = E/m. Note that the form
for B and y for massless particles will be given in subsection 1.2.3.

We note also, that by its very construction, h(p) operating on the
4-vector p turns it into p.

We now have

S =hY(p)S4 (1.2.24)
and therefore in complete analogy with eqn (1.1.21)

Ip;A) = |p;s,s. = A)s = Uh(p)]Ip;s,s. = A), (1.2.25)

where U is the unitary operator corresponding to the Lorentz transfor-
mation h(p).

In the usual treatment of helicity states, the |p; 1) are simply defined
by eqn (1.2.25). The advantage of our treatment is that it clarifies the
interpretation of the label A.

We must at this point add a note of warning to the reader. In building up
helicity states for two particles, Jacob and Wick (1959) make a distinction
between the states for what they call ‘particle 1’ and ‘particle 2’. For us
the definition of a helicity state of any particle is the same.

For the moment the crucial point to be drawn from the above is simply
that if a helicity state for a particle 4 is defined in some frame S by

Ip; 2) = Ulha(p)l|p;s: = A) (1.2.26)

then A is the z-component of the spin of the particle A when measured in
the helicity rest frame S4 obtained from S, via

S — Sy = hu(p)S (1.2.27)

and illustrated in Fig. 1.2.

Because of the subtle question of phases, some care must be exercised
in talking about the vector —p. If p = (p, 0, ¢) then we shall always use
—p=(p,n—0,¢0+ m) even when 0 = ¢ =0.

The canonical spin states |p;s;)can are introduced in complete analogy
with the above, the only difference being that h4(p) is replaced by the pure

boost I(v) where v = p4/4/p% + m2. Thus instead of (1.2.26) we have for a
particle 4

P35z )can = ULa(V)]|p;sz) (1.2.28)
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and the physical interpretation is that s, is the spin component of A4 as
measured in its canonical rest frame S reached from S by the boost L4(v).
If v in Fig. 1.1 refers to particle 4 then the frame S” is just Y. Comparing
Figs. 1.1 and 1.2 we see that the two rest frames differ by a rotation and
thus the physical situations described by say |p; A = %) and |p;s, = %)Can
are different. In classical physics what is loosely termed ‘the rest frame’ or
‘a comoving frame’ is what we have called the canonical rest frame.

Finally we note that it is easy to show that the state |p; A) is an eigenstate
of the helicity operator J- f’/|13|, ie.

LT psd) = 2pi . (1229)
P

Thus the helicity is the projection of the total angular momentum onto

the direction of the linear momentum, for a free particle.

1.2.3 Particles with zero mass

In all the above we leant heavily upon the existence of a rest frame for our
particle. In fact helicity states can still be defined for massless particles and
this is one of the many reasons for preferring them to canonical states.
They unify completely the treatment of spin for particles of any spin and
mass.

The generalization to mass-zero particles starts from the realization
that the helicity states defined by (1.2.25) are eigenstates of the helicity
operator 3 lA’/|lA)|.

With this interpretation there is no reference to the mass or a rest frame.
We may therefore adopt eqn (1.2.29) as the definition of a helicity state
for a massless particle. There is to begin with just one value of A, and the
spin s is defined by s = |A|. If, however, the interactions of the particle are
invariant under space reflection then the state obtained by acting with the
parity operator £ on |p;A) must also be a physical state.

Since J - lA)/ ]lA)| is manifestly invariant under rotations and is a pseudo-
scalar under space reflection, it is clear that for the state with p, = (0,0, p),

Ylp.; 2) = e Plp.; 4) (1.2.30)

has momentum p, and is an eigenstate of J 13/ |13| with eigenvalue —A. It
can thus be written as

Ypz; A) = nlpz;—4), (1.2.31)

where # is called the ‘intrinsic parity factor’ of the massless particle.

In summary, if its interactions conserve parity then a massless particle
of spin s has two independent helicity states for a given momentum,
namely |p;A = s) and |p; A = —s), and they are related by (1.2.31). Thus a
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photon, whose interactions conserve parity, has two helicity states A = +1
whereas a neutrino, whose interactions violate parity, can exist only as a
‘left-handed particle’, i.e. A = —% only.

Although (1.2.29) gives a meaning to A, it does not specify the state
|p; A) uniquely.

In order to specify the relationship between states seen by different
observers we can begin in some standard reference frame Sy in which
the particle is moving in the Z-direction with some definite momentum
pst = (p,0,0,p). This state is labelled |ps; A).

In analogy with (1.2.25) the helicity state |p;4) can be defined by

Ip; ) = ULh(p, pst)]IPst; 4) (1.2.32)

where now h(p, pst) is the Lorentz transformation of the form

r(¢,6,0)L:(v)

such that h~!(p, pst) changes the frame Sy to the frame S in which the
momentum is p* = (p,p) with p = (p, 0, ¢). Alternatively, h(p, pst) acting
on pg turns it into p. One can of course show that the |p;4) defined
in (1.2.32) do satisfy (1.2.29). But (1.2.32) goes beyond (1.2.29) in that it
specifies also the relative phases of the states.

The matrix A[h(p, pst)] is still given by (1.2.23) but now

B =" —p)/ 0" +P).
For a massless particle it is not possible to define the spin s directly

from the eigenvalues of Wu WH. This can be seen as follows. From (1.2.4)
we have that

[Wua Wv”pst;l) = ﬁ’[fuvpo + 6uvp3] Wp]pst;)~>~
Therefore one has the following commutation relations for the WH when
acting on the |pst;A):
W', W? =0 (1.2.33)

and

(W3, W] =ipW?
W] — i, (1.2.34)

Now consider the fundamental commutation relations of the translation
generators with the angular momentum operators. One has

[0, Py =i (ghPY — g* P (1.2.35)

and of course
[P, P'] = 0. (1.2.36)
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It follows from (1.2.35) and (1.2.1) that

J3,P1] = iP?

s Az] . (1.2.37)

[J3’P ] = —iP
and

[PL, P =0.
On comparing (1.2.37) with (1.2.34) and (1.2.33) we see that, acting on

the states |ps;A) the set of operators (W3/p, W1, W?) obeys an algebra
isomorphic to that of (J3, P!, P?). Thus the eigenvalues of W! W? will
be, just like momentum eigenvalues, unquantized! It is postulated that
the physical massless particles in nature correspond to eigenvalue zero for
i,

W2 |pg; ) = 0. (1.2.38)
It then follows from (1.2.3) that, when acting on these physical states
Pst; 4),

W*|psi; 4) = (pJ3,0,0,pJ3)Ipst; ) (1.2.39)
so that
WHW,Ipst; 4) =0 (1.2.40)
and
. A A
Kvp—lpst;i) = Jalpss A) = J|]/})|P|pst;/1>
= Alpst; 4). (1.2.41)

Thus the physical helicity states may be thought of as eigenstates of
(W3/p, W', W?) with eigenvalues (4,0,0).

Since s is not now given by its usual rules, i.e. as the eigenvalue s(s + 1)
of the square of some spin operator, we have to ask how we determine
that s is to have only integer or half-integer values.

The answer can be seen as follows: although the value of A is clearly
invariant under rotations (of course for both zero-mass and massive cases)
the helicity states do pick up a phase under some rotations. Thus from
(1.2.29) it is clear that for a rotation by angle « about the direction of p
one will have

Ip; A) — exp(—iad - p/[p)Ip; ) = e |p; A). (1.2.42)

For a rotation of 2n we require that this phase be equal to +1 in the
bosonic and fermionic cases respectively and conclude that 4 must be an
integer or half integer.
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The effect of Lorentz and discrete
transformations on helicity
states, fields and wave functions

In discussing experiments it is often necessary to refer a given physical
situation to different reference frames, e.g. to the laboratory or centre-
of-mass system. Thus we need to understand how helicity states are
affected by Lorentz transformations. The approach is quite similar to
the discussion of rotations in Section 1.1 and we seek the analogue
of eqn (1.1.17). However, because sequences of Lorentz transformations
are more complicated than sequences of rotations the result will look a
little less simple. We shall compare and contrast this situation with the
transformation properties of fields and wave functions.

2.1 Particles with non-zero mass

Let us suppose that in a given reference system S an observer O sees a
particle 4 in motion with momentum p and helicity 4, i.e. the observer
reports a state of motion specified by |p; 4).

Let S' be a reference frame obtained by carrying out a physical Lorentz
transformation [ on S. We wish to know how observer O' describes the
motion of A.

By analogy with the rotational case (see eqn (1.1.21)) O will describe
the state as

Ip; Ayt = U(I™h)[p; 4) (2.1.1)

when U(!) is the operator effecting a Lorentz transformation [.

Let us denote by p’ the momentum vector that O' attributes to 4, ie.
p' = [7'p. Its components p’* are clearly the components of p as seen by
0', ie. (see eqns (1.2.14), (1.2.15))

p* = (s = AN (2.1.2)

It is obvious that we must expect to find that |p;A)g = [p/; A) with p/
given by (2.1.2). The only question is what values of A’ should appear. To

18
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answer this one writes
U~ Yip; A = UICHUTh(p)]Ip; A) (2.1.3)

using the definition of helicity states (1.2.25). One then invokes the brilliant
stratagem of multiplying eqn (2.1.3) by unity in the form

ULh(e)1U~ [h(p)]

where h(p’) is the helicity transformation that would be used to define a
state |p’; 4), i.e. h(p') is such that

Ip';4) = ULh(p)]|p; 2). (2.1.4)

One can now write (2.1.3) in the form
U(~")lp; 2) = ULh(p)]2Ip; 2) (2.1.5)

where £ is short for the product U~ [h(p/)]U(I"1)U[h(p)]. Since the op-
erators U represent the various physical operations we can simplify and
write

2= UL~ (p) " h(p)] = U~ (' o)~ h(p)]. (2.1.6)

The crucial observation is that the sequence of physical operations in U is
just a rotation no matter what [ is. The simplest way to see this is to study
the effect of the sequence of operations h~'(p/)I~'h(p) on the 4-vector

13 = (m,0,0,0). We have

(1) h(p) :p = p
@ tipop
(3) h(p') is such that it takes p — p/, thus h=(p') : p — p.

Hence the sequence (1), (2), (3) takes 13 - f) From the form of 1(3 it is
clear that only a rotation could have this property. Hence # represents a
rotation no matter what [ is. Let us label this physical rotation as r(l, p),
Le.

r(L,p) = k=17 p)l~h(p). (2.1.7)

We shall refer to this as the Wick helicity rotation for the transformation
| of axes that takes p to p' = [~!p. (It is not the same as the Wigner
rotation, as will be explained later.)

Once it is recognized that # corresponds to a rotation the completion
of the evaluation of |p; A)g1 becomes simple. From (1.1.18) and (1.1.19) we
know what rotations do to particles at rest. Thus

Rp;A) = D5} r(L,p)Ip; A (2.1.8)
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and since the &, are just numbers, substituting back into (2.1.5) and
(2.1.1) and then using (2.1.4) gives

Ip; gt = D) [r(L, PIUTh(P)Ip; ') = D8} [r(L p)lIp’; 4 (2.1.9)

with p/ = I~ p.

This is the desired relationship between the description used in frames
S! and S for the motion of the particle. In the above form it is valid for
an arbitrary Lorentz transformation from S to S. The reason why |p; )¢
and |p’; /) are related by a rotation is that the helicity rest frame of the
particle reached from S is not the same as the one reached from §'. Indeed
if we call these helicity rest frames S4 and S/, respectively, then one can
show that

S4 = r(l,p)S, (2.1.10)

It should be clear that for canonical states we have a result analogous
to (2.1.9). The only difference is that r(l, p) is replaced by

rwig(l,p) = I71(V)I7(v) (2.1.11)

where [(v) and (V') are pure boosts corresponding to the momenta p and
p’ = ["!p. The rotation in (2.1.11) is known as the Wigner spin rotation. If
S% and S are the canonical rest frames reached from S and S’ respectively,
then analogously to (2.1.10) one finds

SO = rwig(l,p)S?. (2.1.12)

To gain some physical intuition for the rotations involved we shall look
at a few cases of practical interest.

2.2 Examples of Wick and Wigner rotations

We here derive explicit expressions for these rotations for several cases of
practical interest and we end with a discussion of the Thomas precession.

2.2.1 Pure rotation of axes

In frame S let p lie in the XZ -plane, p = (p, 0,0). Apply a rotation through
angle f about OY to the frame S such that [ = r,(f). Then in S” we have
I=p = (p,0 — B,0). One finds trivially r(I,p) = 1, i.e. there is no Wick
helicity rotation. Thus, in this case,

Ip;A)se =1[p’;4)  with  p'=r;"p. (2.2.1)

For a general rotation r(a,f,7) of S, with p = (p,0,¢) and r~lp =
(p,0', ¢'), one finds

p; s = p';4)  with  p=r"1p (2.2.2)
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where
cosf —cosfcost’

cos{ = - -
sin 0 sin €’

(2.2.3)

(In the event that cos{ appears indeterminate it is simpler to use eqn
(2.1.7) to determine the rotation involved.)

Both the above results are in accord with the fact that 4 is invariant
under rotations.

For the canonical spin states for | = r,(f), p in the XZ-plane, one
finds rwig(l,p) = ry(—p). Here the spin transforms just as it would non-
relativistically (see eqn (1.1.17)).

2.2.2 Pure Lorentz boost of axes

To begin with, take the boost velocity B to lic along OZ so that [ = [,(p).
In the original and boosted frames we have:

S: p=(p,0,0),E speedv
Sl p=1""p=(p,0,0),E speed
and from eqn (1.2.22)
h(p) = r(¢,0,0)l:(v)
h(p') = r(9,0',0)1.(v").

The Wick helicity rotation is now

r[L(B),pl = b= () (B)h(p). (224)

It is easy to see that this is just a rotation about the Y -axis: simply
examine the effect of the sequence of operations in (2.2.4) on the unit
vector in the Y -direction e(,) = (0,0, 1,0). It remains unchanged. Thus

r[1(B), pl = ry(Owick)
so that
D3 Irwie] = 3, (Owic) (22.3)
and the angle Owic can be found most easily by checking the effect of
rwick upon the unit vector e = (0, 1,0,0). Carrying out the sequence of
operations one ends up with
ey = {O, cosfcost + ysinfsin@’, 0, —%(sin 6 cos 0’ — y cos 0 sin 9’)}

where y = (1 — p2)~1/2,
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Comparing with (1.1.6) and (1.1.7) and using the relation between 0
and 6’ we end up with

cos Owick = %(p — BE cosd)

. (2.2.6)
sin HWick = —;/'})ﬂ sin 0

where 0 (0 < § < m) is the angle between B and p. (In this case 6 = 0.)
For the general case of a boost [(B) of the axes, with B = (B, 03, pp),
one has

1p; A)sip = €M) (Owia) |1 p; A (227)
corresponding to rwick = (1, Owick, —1), where 7 is given by

sin 0 cos 0 — cos 0 sin Og cos(@ — @p)
sin d
sin 0 sin(¢ — @p)
sin '

cosn =
(2.2.8)

siny =

As in (2.2.6), J is the angle between f and p, 0 < < 7.
When both p and B lie in the XZ-plane the general result simplifies to

Ip; s = dyi(£0wick) |1 p; ) (22.9)

with Owic given by (2.2.6); the + correspond to B x p being along or
opposite to OY respectively.

2.2.3 Boost along or opposite to p

It is clear that if S! is boosted from S in a direction opposite to the
momentum of p of the particle then

Ip; A)st = 117" p; 2). (22.10)
This holds also for boosts along p provided that the boost speed v
satisfies v < p/E. For higher boost speeds along p the particle direction

will have reversed in S! and one finds

Ip; Mgt = (=141~ p; —A). (2.2.11)
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2.2.4 Transformation from CM to Lab

A case of practical importance is the transformation from centre-of-mass
frame (CM) to laboratory frame (Lab). Let the particle, mass m, have
momentum p = (p, 0, ¢) in the CM and I~!p = pr = (pr, 0L, ¢) in the Lab.
The boost is along the negative Z-axis with speed frap (i.e. the speed of
the Lab as seen in the CM frame).

In (2.2.8) and (2.2.7) we have 6 = —0, oy = 0p =m and thus n ==
so that

P Arab = (=1 dyi(Owick)IpL; A

= djy(@)lpL; ) (2.2.12)
where
coso = V;ab (p + PrabE cos 6)
L
(2.2.13)
sing = % sin 6
PL

Another convenient expression for sin o is

sina = Eﬂ (sin 6 cos O, — yrap cos O sin Or) (2.2.14)
L

For an elastic reaction A + B — A4 + B, with B the target in the Lab,
one finds for the final state B particle

ap = Or = Lab recoil angle. (2.2.15)

For elastic scattering of equal-mass particles, e.g. pp — pp, in addition
one finds for the final state A particle, which is scattered through 6; in
the Lab frame,

oy = 0, = Lab scattering angle. (2.2.16)

2.2.5 Non-relativistic limit of CM to Lab transformation

For a non-relativistic collision we have yr., — 1, Ex — m, and from
(2.2.14) we find

x=0—0r, (2.2.17)

which is what we would expect non-relativistically given that the helicity
is the spin projection along the direction of motion.
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2.2.6 Ultra high energy collisions

Consider a very high energy collision in the Lab, which produces particles
all of which are highly relativistic in the CM. Then S, = 1, E ~ p and
pL ~ yLabE(1 4 cos ), provided that 6 #+ 180°. Then from (2.2.13)

. m sin 6 m 0
sin o &~ T (m) = tan <§> . (2.2.18)

For a two-body reaction A + B — C + D we have Ec = Ep =~ \ﬁ/2
where \/E is the total CM energy. Thus

sin o ~ 2_m tan (Q) , (2.2.19)
NG 2
showing that o« — 0 as s — oo at fixed 6 or at fixed momentum transfer
to the scattered particle.
Hence follows the important result that a particle for which m/ \/E -0
does not undergo a Wick helicity rotation in the transformation CM to
Lab.

2.2.7 Massless particles

The transformation of the helicity state for a massless particle can be
deduced from the previous results by putting m = 0. Thus, under an
arbitrary rotation, (2.2.2) continues to hold but under an arbitrary boost
I(B), Owick = 0 and instead of (2.2.7) we have

Ip; A)sie = [17'p; A), (2.2.20)
so that the helicity label is unaltered by a boost.

2.2.8 The Thomas precession

We shall give what we hope is an intelligible derivation of this famous
effect, which so baffled physicists at the time of the discovery of intrinsic
spin.

Let s be the expectation or mean value of the spin operator § for an
electron of charge —e. The electron’s intrinsic magnetic moment u is given
in Gaussian units by

ge

p=—s s, (2.2.21)

where g is the gyromagnetic factor, which is very nearly equal to 2. For
non-relativistic motion we expect s to obey a classical equation of motion.
o

In particular, for a magnetic field in the rest frame of the particle, B, we
expect to have

ds o ge o
— = B=—-"-sxB. 2222
dt #x 2mcS % ( )
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Consider an electron that at time ¢ has velocity v in some fixed reference
frame, in which there is an electric field E. If we Lorentz-transform to the
electron’s comoving canonical rest frame SO at that instant we shall find

a magnetic field 103 that, to order v/c, is given by
B-— —; » E. (22.23)

It was originally supposed that a correct description of the motion of s

was thus given by

§=——§SX(VXE)= g
but this leads, in hydrogenic-type atoms, to a spin—orbit interaction that
is too large by a factor of 2.

To see that (2.2.24) is incorrect, imagine a situation in which there is
no torque acting on u or s in the canonical rest frame. We shall use the
canonical definition of the spin, so that s(t) is the non-relativistic spin
vector in the canonical rest frame St0 reached from our reference frame,
the Lab Sy, say, at time ¢t when the electron has velocity v. Thus s(¢) is the
spin vector in

528 X (VX E), (2.2.24)

SO = I(v)S. (2.2.25)

In the following we ignore time dilatations since they turn out to be
irrelevant to our accuracy.

As viewed from the canonical rest frame S?, the electron is at rest at
time ¢t but has accelerated to some infinitesimal velocity dv at time ¢ + dt.
The motion is wholly non-relativistic and there is no physical torque, so
the mean spin vector in S0 at time t + dt should still be s(¢). But this is
equivalent to saying that s(¢) is the mean spin vector in the canonical rest

frame Stojrdt reached from S? by the infinitesimal boost l(d%) (see Fig. 2.1),

Fig. 2.1.  Boost from S? to 2,
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ie.
(s(t+dt)> , =s() (2.2.26)

We now have the following situation at time ¢+dt. The mean spin vector
is s(t 4 dt) in the canonical rest frame s?+d, reached from Sp; it is s(t)

in the canonical rest frame sgdt reached from the Lorentz-transformed
frame SO = I(v)SL.
From our earlier discussion we know that S2, and S2, are not

generally the same rest frame and are related by a Wigner rotation. From
(2.1.12)

S i = rwigll(v), v+ V1S, 4. (22.27)
It follows that
s(t + dt) = riig (s(t + dt)gy = rwigS(0). (2.2.28)

Thus, even in the absence of a physical torque, s(t + dt) # s(t). To find
the intrinsic rate of change of s we study the Wigner rotation, taking into
account that dv is infinitesimal.

We have from (2.1.11), since dv = [l_l(v)] (v+dv),

Fwigll(V),V + dv] = 7 (@)= (v)I(v + dv). (2.2.29)

To identify the rotation involved we evaluate the matrix A(rwig), using
(1.2.13) and working to first order in dv. Note that to this order

dv = y2dvy + ydv, (2.2.30)

where || and L are relative to the direction of v and y = (1 — v2/c?)~1/2.
We find eventually

s(t +dt) = [r‘l(ds)] s(t) (2.2.31)
where
2
y V X dv)
= ) 2.2.32
a9 1+y ( c? ( )
From this follows
ds
5 = O XS (2.2.33)
where the Thomas angular velocity is
2
Y axvy 1 axy
T = Tty ( 2 > ~ 5 (—cz ), (2.2.34)

a = dv/dt being the electron’s acceleration at time t.
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Thus owing to the interpretation of s(t) as a vector in the canonical rest
frame we find that s(¢) rotates even when no physical torque acts on it in
the rest frame. Clearly, then, in the presence of a magnetic torque (2.2.24)
should be modified to

ds  ge

i 2mczs X (v X E) 4+ ot X s. (2.2.35)
For a one-electron Coulombic atom, with potential V(r),
1dV
(—e)E = —; Wr
and
¢E
a=—,
m
leading, via (2.2.34), to
ds g—1/1dv
2_s5 -~ (220 . 2.2.
dt  2m2c? (r dr ) Lxs (2.2.36)

We see that for g = 2 the Thomas term just halves the strength of the
spin—orbit interaction.

In Section 3.4 we shall introduce a covariant mean spin 4-vector and in
subsection 6.3.1 derive relativistically covariant equations for its motion.
They will offer a more direct derivation of the above results.

2.3 The discrete transformations

We now consider how helicity states transform under space inversion and
time reversal. These results are crucial to an understanding of the physical
consequences of these symmetries in specific reactions. We also briefly
discuss charge conjugation.

2.3.1 Parity

Under space inversion, S — S7 = IS such that x — x’ = (t,—x). The
Hilbert space operator U(l;l) is usually written as £ and has the following

effect on the Lorentz generators J= {ji} K = {K,-}, see (1.2.1):
P Jp =] (2.3.1)
27 1K» = —K. (2.3.2)

The operator 2 is unitary and taken to satisfy %> = 1. Under S — S7 we
have, as in (2.1.1),

Ip; ) — U(lzY)p; ) = 2|p; 4) (2.3.3)
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Consider the action of 2 on the helicity state of a massive particle with
spin s
p;4) = Ip,6,0;2) = Ulh(®)]Ip; 2)
= Ulr(g,0,0)L(0)]Ip; 4); (234)
we have
21p,6,9;2) = Ulr(,6,0)(—0)]2|p; 2). (2.3.5)
The intrinsic parity 74 is defined by
P\p;4) = 121p; 2) (2.3.6)
with 72, = 1. After some manipulation, using
I:(—=v) = ry(—=n)L(v)ry(m)
we find
2\p,0,9;2) = npe” ™ |p,n — 0,0 + n;—A).! (2.3.7)

For massless particles we have already defined the intrinsic parity in
(1.2.31). For the operator for reflections in the XZ-plane, % = r,(n)?, we
have

Y|p,0,0; 1) = nap(—1)"*|p,0,—p;—2) (2.3.8)

which is consistent with (1.2.31) since there 4 = s and ¢ = 0.

2.3.2 Time reversal

The time-reversal operator J is an anti-unitary operator (i.e.  is anti-
linear with 7! = 71), which has the following action on the Lorentz
generators:

A

T T =-J
1o . (2.3.9)
7 K7 =K.
Because of the anti-linearity these imply
T hT =r 23.10
T g =171 (2310

for any rotation r and pure boost .

1 Of course the vector (p,n — 0, ¢ + 7) is just —p, but we are loth to use that notation since e.g.
| —(=p); 2) # |p; A). Indeed, with —p = (p,x — 0, ¢ + )

| —(=p); ) = |p,0,0 + 213 2) = (=1)*|p,0,¢; )
==p;A),

the plus sign corresponding to bosons and the minus sign to fermions.
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Because of its anti-linearity care must be exercised when using 7 inside
matrix elements, and it is safer to revert to a Hilbert-space notation for
these rather than the Dirac notation. We recall that for any operator O

(BlOlo) = (B, 0. (2.3.11)
For a linear operator L the hermitian conjugate L' is defined by
(B, Loy = (LB.00) = (@, LTBY", (23.12)
so that, as usual,
(BILIo) = (L) . (23.13)

For the anti-linear operator 4 the hermitian conjugate ' has to be
defined by

B, T o) = (T B,0) = (o, 7). (2.3.14)

It is therefore safer to use the notation |7 «) rather than 7 |a) for the
time-reversed state of |x). Thus, under § — S7 = IS such that x' =
l;-lx = (—t, X),

Ip;4) = 17 (p,2) (23.15)

We follow the convention used by Jacob and Wick (1959) and take, for
a particle at rest,

|7 (p, 2)) = (—1)"~*|p; —A). (2.3.16)

Note that with this convention 72 = (—1).
It follows from (2.3.16) and (2.3.10) that

|7 (p,0,0;7)) = e ™ |p,n — 0,0+ ;) (2.3.17)

and the same result holds for massleﬁs particles.
Note that for any linear operator L one has
(TulLlTB) = (T, LT p) = (&, T LT )’
= (7 'LTIp)’
= (B17 LI T (o), (2.3.18)

—
~

the last step following since 7 tL.7 is a linear operator.
Time-reversal invariance is usually taken to mean that, for transition
amplitudes or S-matrix elements,

(T o|S|T B) = (B|S|). (2.3.19)
From (2.3.18) we see that time-reversal invariance implies

TS =5§t (2.3.20)
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in contrast to all linear invariances, where there would be no dagger
symbol on the right-hand side.

2.3.3 Charge conjugation

The charge conjugation operator % (42 = 1) changes particles into anti-
particles and vice versa. For a particle A at rest

G|A;p,A) = ng|A; p, 2) (2.3.21)

where ng = +1 is the charge parity of the particle. Since ¢ has no effect
on the kinematic variables, we have also

6lA;p, A) = nglA;p, ). (2.3.22)

Note that ngy = +1 for pions and nucleons, —1 for photons.

We remind the reader that some care must be exercised when dealing
with multiplets of an internal symmetry. For example, if protons and
neutrons are regarded as forming an isotopic spin doublet of the nucleon
N, so that

IN;I; =1/2) =|p),  IN;I=-1/2) =n), (23.23)
then the antinucleon multiplet that transforms like an isospin doublet is
IN;I; =1/2) =—[n),  [N;I.=-1/2) =p). (2.3.24)

This is explained in subsection 2.4.2.

2.4 Fields and wave functions

On the one had we saw in Section 2.1 that under Lorentz transformations
the state vector in a relativistic theory transforms in a complicated way,
the transformation matrix depending upon the Wick helicity rotation or
the Wigner rotation.

On the other hand, in setting up a field theory it is customary to use
fields that transform simply under Lorentz transformations. Thus if a
Lorentz transformation [ acting on the reference frame S takes it to S’,

shst

so that x — x’ = [7lx, then the fields ¢,(x),n = 1,...,N, are taken to
undergo the transformation ¢,(x) — ¢/ (x") where

$u(x) = UD$u()U(™") = DI~ (). (2.4.1)

here D,;, is an N-dimensional representation of the homogeneous Lorentz
group (see Appendix 2). Note that the matrices depend only on 1.

We consider here some aspects of the relationship between the two
approaches.
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The fields ¢,(x) are generally not irreducible, in the sense that they
have more components (N) than are needed to describe quanta of some
given spin s, ie. N > 25 + 1. As a consequence the representation DN
may be reducible under pure rotations, as, for example, when massive
spin-1 quanta are described by a Lorentz 4-vector, or they may even be
reducible under all homogeneous Lorentz transformations, as in the case
when spin-1/2 quanta are described by a four-component Dirac field. (In
the latter case the representation becomes irreducible if the operation of
space inversion is included.)

In order to construct Lorentz-invariant lagrangians etc. it is useful to
deal with conjugate fields ¢, (x). These may be just the hermitian conjugate
fields ¢(x) or some fixed linear combination of these (e.g. ¥(x) = ¥'(x)B
in the Dirac theory) so designed that ¢ transforms contra-grediently to ¢,

ie. under S S1, $,(x) = ¢ (x') where

Bn(x) = UD)Gu(x)U(I™1) = Gp(1x)Dyn(1). (24.2)

Thus in matrix notation, regarding ¢ as a column vector and ¢ as a row
vector:

¢'(x') = D~ (¢(x)

- _ (24.3)
¢ (x') = ¢(x)D(0),

so that ¢¢ is a scalar, i.e.

¢ (X' (x) = P(x)p(x). (2.4.4)

The use of ¢ and ¢ makes it quite simple to construct quantities with
definite transformation properties under Lorentz transformations. But
some price has to be paid for the redundant components; this price is the
existence of field equations that must be satisfied even by non-interacting
fields. These equations are nothing more than invariant conditions of
constraint upon the unwanted components. In a series of elegant papers
Weinberg (1964a, 1964b) showed how one may construct irreducible fields
¢, with only 2s + 1 components. These satisfy no field equations (other
than the Klein—-Gordon equation, which just imposes the correct relation
between energy and momentum) but they do not transform simply under
Lorentz transformations. They shed an interesting light upon the whole
question of fields and field equations and we therefore give a brief discus-
sion of this approach in Appendix 3. Here we continue to deal with the
usual fields ¢, (x).

The fields ¢n(x), ¢,(x) are Fourier expanded in terms of creation and
annihilation operators (af, a for particles and b, b for antiparticles), which
create and annihilate quanta of spin s with definite momenta and helicity.
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Thus one writes

Pn(x) = / & [u (p, Aa(p, e~ + vy (p, A)b'( z)eiP'X} (24.5)
n - (2%)3/22,}70 n\p» pa n p’ p’ o

am=§:/1ﬁ—-h@zmwzw”+a@zw e ] (246)
=] (auyragyo RAET B P -

where the u and v are ‘wave functions’ for the quanta (in the Dirac case
they just correspond to the Dirac 4-spinors u,v).

Since a'(p, 4) creates the state |p; A) from the Lorentz invariant vacuum,
it follows from eqn (2.1.9) and the unitarity of the representations of the
rotation group that

U(Da(p, YU(I™Y) = DY) (r)a(lp, 1), (2.4.7)

where r = r(l, p) is the Wick rotation defined in eqn (2.1.7).
For free fields or fields in the interaction representation and with particle
states such that

Ip; 4) = a'(p, 2)0), (2.4.8)

where the operators satisfy commutation or anticommutation relations
[a(p, 2).a" (0, 1)] | = 2% (8’ — P2, (24.9)

one has
un(p, A)e P>

<0|¢n(x)|p,i> = (27[)3/2

(2.4.10)

and for antiparticles
On(p, A)e P
(27!)3/2

The set of wave functions u,(p, A) will be said to correspond to the state
Ip; A):

(01d,(x)Ip; 4) = (2.4.11)

[p; A) «— upn(p, 4). (2.4.12)

Clearly the uy(p, A)e P> satisfy the same free-field equations as do the
¢n(x). Thus the u, are usually obtained by solving those equations, but
care must be exercised in order to have consistent phase conventions.
Thus if

Ip; A) «— un(p, A)

and

P3s: = 2) <> un(p, 1)
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then from (1.2.25) and (2.4.1), using the Lorentz invariance of the vacuum,

(Ol¢n(x)Ip, 2) = (0l¢n(x)Uh(p)]|p; 4)
= (0|U™" [h(p)l¢n(x)U [(p)]|p; 2)

= Dy [h(P)1(Olpm(h~"x)|p; 2), (24.13)

which leads, via (2.4.10), to the requirement that
Un(Ps 2) = Dy [1(P)]t4(p, 2). (2.4.14)

A similar argument, for antiparticles, leads to
(P, ) = Om(P, ) Dy [ (D). (2.4.15)

Consider now the effect of an arbitrary Lorentz transformation S st
Using eqns (2.1.3), (2.1.9) and (2.4.1) in (2.4.10), we have the correspon-
dence

Ip; 4) < un(p, )
and
UI™Y)p; 2) < Dym(I™"Yum(p, 2)
= u,(I7'p, )2, (r) (2.4.16)

where r = r(l, p).
In a similar way one finds for antiparticles

Il_)a)'> «—— Dp(p, 4)
and
U™)Ip; A) «<— Om(p, ADpun(l)
= 0,(17"p, )2 (r) (2.4.17)
and, in addition,
<pa }*I «— un(pa j*)
(P, AL U(I) < Upn(p, 2)Dmn(]) (2.4.18)
= u,(I7'p, )25 ()
and for antiparticles
(P, Al <= vn(p, 4)
(B, Al U(l) «— Dyum(I™ Yom(p, 2) (2.4.19)
= 0,17 p, )25 (r 7).
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2.4.1 The discrete transformations of the fields

Consider the discrete transformations. Under space inversion

S35? = 1,8
with x = x' = Ipx = (t,—x), one takes ¢,(x) — ¢7(x') with (see Section
2.3)
¢ (x) = 27 $u(x)2 = Pumpm(t, —X) (24.20)
where P is an N x N matrix (P? = I) chosen so that ¢7(x) satisfies the

space-inverted field equations. This does not fix the absolute phase of P.
However, using eqn (2.3.7) we have for a particle of spin s

(01¢n(x)2Ip, 0, @; 2) = npe” ™ (0|¢pn(x)|p, 7 — 0, + 7; —1).
= (012~ $u(x)2|p, 0, ¢; 1)
= Pun(0l@pm(t, —X)|p, 0, @; A) (2.4.21)

from which, via (2.4.10), we have that P must be chosen such that

Puntim(p, 0,03 2) = npe  ™un(p,n — 0,0 + w;—2). (24.22)

For antiparticles one has, since P2=1,ie. P71 =P,

Bu(p, 7t — 0,0 + 15 —1) (2.4.23)

ins

5m(p, 0’ ?; A)Pmn = ﬁ@e_

where 775 is the intrinsic parity of the antiparticle.
We also have the following correspondence between states and wave
functions:

PIp; A) < Pumtim(p, 1) (2.4.24)
2Ip; ) < Om(p, A)Ppun- (2.4.25)
As an example, in the Dirac case it is conventional to choose P = 7°.

For the particle at rest, the use of (2.4.24) and (2.4.25) in (2.3.6) and its
analogue for antiparticles shows that we must then choose n» = 1 and

Consider now the anti-unitary time-reversal operation
S557 =18
(see subsection 2.3.2) with x —» x’ = l}lx = (—t,x). One takes ¢7 (x) —
¢7 (x') with
¢7 (x) = T ' Pu(x)7 = Tumm(—1,%), (2:4.26)

where T is an N x N matrix with T*T = (—1)*I, chosen such that ¢ (x)
satisfies the time-reversed equations. Its phase is fixed as follows. Using
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eqns (2.3.16), (2.3.18) and (2.4.26) we find

(01pn(x)|T (p, 0, 93 1)) = €™ (0lpu(x)Ip, 7 — 0, + 75 4)
= (017 "' $u(x)T |, 0, 0; 1)
= Ty (0l pm(—t,X)|p, 0, 3 )" (2.4.27)

from which we have the requirement

T (p,0,¢;2) = e ™u,(p,m — 0,0 +m; A) (2.4.28)
or

Tomtim(, 0, 93 2) = €™’ (p,m — 0, 0 + 73 2). (2.4.29)
Similarly, for antiparticles

Om(P, 0, 03 4) Ty = €™ T(p,m — 0,0 + 75 1), (2.4.30)

Note that one has the correspondence between states and wave functions

T (0,0, 0;2) «— e ™u,(p,n — 0,0 +7;2) (2.4.31)
and for antiparticles

T (p,0,0;2)) «— e ™B,(p,m — 0,0 + ;2. (2.4.32)

With the conventions (1.2.22), for the Dirac case one has T = y3y! if
we use the standard representation of the y-matrices, given for example
in Bjorken and Drell (1964), in which y3 and y! are real.

Finally, under charge conjugation (see subection 2.3.3) we have from
eqns (2.3.22) and (2.4.10)

un(p,4) _ ,
(27_[)3/2 - <0|¢n(0)|p’j~>

= n¢{01¢»(0)€|p; 2)

= 1¢(01% ™" $,(0)%1p; 4), (24.33)

which is only possible, via (2.4.11), if
E ()% = 1eComPp(x), (2.4.34)

where €% =1I.
Substituted into (2.4.33) this implies that

un(p, 4) = ComUm(p; 4)- (2.4.35)

For the Dirac case, in the standard representation of the y-matrices one
has C = iy?y°, with C? = —I.
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2.4.2 Isospin multiplets for antiparticles

We mentioned in subsection 2.3.3 that if protons and neutrons are regarded
as forming a doublet under isotopic spin rotations,

IN;I=1)=Ip)  IN;L.=—3})=|n, (2.4.36)
then the antiparticle doublet that transforms as an isodoublet is
N:L=1)=—n) [N;L.=-1)=1p) (2.4.37)

The source of the minus sign or, for a general isospin multiplet, of
certain phase factors can be understood as follows.

Let |A;I.;) be an isospin multiplet of particles of type A. Under an
isospin rotation r, in complete analogy to ordinary rotations (see (1.1.18)
and (1.1.19)) one will have

UnI4; L) = ) (|43 17) (2438)

where U(r) is the unitary operator that represents the isotopic spin rotation
acting on the state vectors and the @) are the SU(2) representation
matrices, whose properties are discussed in Appendix 1.

If the creation operators for the particles are labelled a;rz then (2.4.38)
is tantamount to having

U(r)a], U™\ (r) = 2§)). (r)a], (2.4.39)

where we do not display arguments such as momentum, helicity etc. that
are irrelevant to the discussion.

Consider now the set of usual fields @y (x) corresponding to the set of
particles of type 4 and isospin I. They ought to transform analogously
to (2.4.1), except that there is here obviously no effect on the space-time
coordinates. So we wish to have

U@L (x) U (r) = 24}, (™) (x). (2.4.40)

Now the field @y, (x) contains the annihilation operator a;, as in (2.4.5),
so we have to check that (2.4.39) and (2.4.40) are compatible. Indeed they
are, since taking the hermitian conjugate of (2.4.39) yields

Ura, U (r) = 24, (Nay;

_ [gt ,

- [@ (r)] L

which, using the unitarity of the matrices 2, gives
U(r)a, U (r) = Qg}é(r_l)au, (2.4.41)

as required for (2.4.40).
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However, the field @y (x) also contains the creation operators sz, which

create the states |A4,1,) corresponding to the antiparticles of the particles
Aj,. For consistency with (2.4.40) they will have to transform as follows:

U(r)b] U7 (r) = 2 }Z,(r_l)bz
which, as before, via the unitarity nature of 2U) gives
U(rb], U™ (r) = 2§ ()b},
= 2§, ()b}, (2.4.42)

Comparing with (2.4.39) and (2.4.38) we have, for the isospin multiplet
made up of particles,

U(r|4; L) = 25 (0|4;12) (2443)
and, for their antiparticles,
U4 I2) = 24 ()| 4; 7). (2.4.44)

In other words the set of antiparticles states |4;1,) does not transform as
a standard isospin multiplet.

However, for the group of isospin rotations SU(2) the representations
2D and 27 are equivalent, i.e. there exists a unitary matrix C?), inde-
pendent of r, such that

g (1) = cD g ()™ (2.4.45)

for all r.
Then the antiparticle multiplet |4;I,) that transforms as a standard
isospin multiplet is clearly

A;1.) = CY) |ATL), (2.4.46)
1e.
UG43 1) = 25) (r)[4512). (2447)

In fact the matrix CY) is very simple. It can be taken, conventionally,
as

CY) = (=1y=5;_;. (2.4.48)
As an example of (2.4.46) and (2.4.48), for the nucleon isodoublet one

finds just the results (2.4.36) and (2.4.37). (Of course the overall sign in
(2.4.37) is irrelevant and sometimes the opposite convention is used.)
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The spin density matrix

The state of an ensemble of particles is specified by a density matrix. In
any reaction one starts with a knowledge of the density matrix of the
initial system (known from its mode of preparation) and one attempts to
measure the density matrix of the final system.

The properties of a density matrix are of three kinds.

(1) Firstly, there are properties of a very general nature that follow from
the very definition of a density matrix and from the basic postulates
of quantum mechanics. To check that a measured density matrix
conforms to those requirements is best thought of as a test of the
reliability of the experimental measurements.

We shall refer to these as basic properties.

(2) Secondly, there are properties of a kinematical-dynamical origin, which
reflect the general properties of an interaction, for example its sym-
metries, but which do not depend on a detailed knowledge of the
dynamics. It is important to check that the density matrix measured
in a particular reaction does satisfy these properties.

We shall refer to these as general kinematical-dynamical properties.

(3) Thirdly, there are properties which depend upon the specific dynamical
mechanism in a reaction and which can therefore be used either to
learn about these mechanisms or to test dynamical models.

We shall refer to these as model-dependent properties.

In this chapter we shall discuss only the basic properties of the density
matrix. It will turn out that all the basic properties of the non-relativistic
case hold also for the helicity density matrix provided care is taken with
the physical interpretation of the latter.

We discuss, amongst other things, the expression of the density matrix
in terms of multipole parameters or statistical tensors, the concept of
‘degree-of-rank-L polarization’ and the transformation properties of the
density matrix under rotations and Lorentz transformations.

38
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We also give a detailed discussion of the density matrix for spin-1
particles, bearing in mind that polarized deuteron beams are already in
use and will become more commonly available in the near future.

The treatment of the general kinematical-dynamical properties will follow
in Chapter 4 after the discussion of scattering amplitudes. Some model-
dependent properties will be found in the discussion of specific dynamical
models.

In all experiments involving the use of polarized targets or polarized
beams we are dealing with a system of quantum mechanical particles that
is not in a definite, pure quantum state. Rather we have an incoherent
mixture or statistical ensemble of particles about which our knowledge
is limited to the average of certain dynamical variables, an average, that
is, for the whole ensemble. Strictly speaking this ought to apply also to
variables such as momentum, but the averaging processes involved therein
are usually quite uninteresting for hadron physics and therefore we shall
ignore them, adopting the fiction that each particle in the beam emerging
from an accelerator has precisely the same momentum. Our sole concern
will be with the spin properties of these ensembles.

We review the main properties of the density matrix in the next section.
A more general exposition can be found in the review article of Fano
(Fano, 1957).

3.1 The non-relativistic density matrix

3.1.1 Definition

For a particle of spin s, a pure quantum mechanical spin state |p) is
defined and identified by the coefficients c,, involved in its expansion into
a sum of basic states |s;m); these are usually taken as eigenstates of §,,
the z-component of the spin operator, i.e. one has

S
lp) = Z Cm|sm). (3.1.1)
m=—s
For an arbitrary operator O with matrix elements
Oy = (sm|O|sm’) (3.1.2)

the mean value in the state |y), normalized to unity, is given by

<é>w (p|Oly) = Zc,ommcm (3.1.3)

For a non-pure state we might have an incoherent mixture of a number
of pure states |p), each occurring in an ensemble with probability or
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statistical weight p with 3, p® = 1. For each state the operator O will
have a mean value
<O> o > ng)’ Oprmely)
v mm’

and therefore its mean value over the whole ensemble will be
(0)=220"(0) = 2= Owm >0y el (3.1.4)
i m,m’ i
The spin density matrix in the basis |s;s, = m) is now defined by
e = 3 pOD D’ (3.1.5)
i
so that equation (3.1.4) becomes

<O> = Zom’mpmm’ = Tr (Op) (3.1.6)

where O and p are the matrices whose elements are Oy, and P,y
Equation (3.1.6) allows us to calculate the mean value for the ensemble
of every physical operator once we know the density matrix p.
Conversely, and of most interest in hadron physics, a knowledge of the
mean values for the ensemble of a sufficiently large number of physical
observables will enable the inversion of eqn (3.1.6) and thus determination
of the density matrix.

3.1.2 Some general properties of

The pnw are the elements of the density matrix referred to a particular
choice of basis states |s;s, = m). We can also give the density matrix
in any other basis unitarily related to |s;s, = m). If T is any unitary
(2s 4+ 1) x (2s + 1) matrix we can take as basis states

|n>/ = Z Tonls;s; = m)
m
and if we label the density elements in the new basis as p/,, we will have

p:m’ = Z Ty;nlpmm/ Toww (3.1.7)
mm

or in matrix notation

p =T 1pT. (3.1.8)
We note the important property that the trace is invariant under change
of basis:

Tr p' = Tr p. (3.1.9)
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From the definition (3.1.5) and the condition 3, p) = 1 the following
properties can easily be read off.

(1) The trace of p is unity, i.e.
Trp=1. (3.1.10)
(2) p is a hermitian matrix, i.e.
Pt = Prvm- (3.1.11)
(3) For each m, the diagonal elements are positive semi-definite, i.e.
Pmm =0 (3.1.12)

and this holds in any unitarily related basis.
(4) The hermitian properties of p guarantee the existence of a unitary
matrix U that will diagonalize p, i.e. we have

U~lpU = pP (3.1.13)

where pP is the diagonal matrix

(pD)mn = SOy (3.1.14)

with Ay > 0.
(5) From (3.1.9), (3.1.12), (3.1.13), (3.1.14)

2
2
Tr p* = Tr (pD) = Zlﬁ < (Zlm) =(Trp?=1.
m m
Thus
Tr p* =Y lpwm|* < 1. (3.1.15)

mm’

(6) If it happens that all members of an ensemble are in a single pure
quantum state, then all except one p{¥) will be zero, and the non-zero
one pY) say, will be equal to unity. In this case p will be a rank-1
matrix! and it will have one eigenvalue equal to unity and all the rest
equal to zero. It can then be written in a factorized form, e.g.

Pmm' = CmCpy- (3.1.16)
For this case the equality holds in (3.1.15).
! The rank of p is the dimension of the largest non-zero determinant that can be formed from the

rows and columns of p. Equivalently, the rank of an n x n matrix p is r = n — k, where k is the
dimension of the eigenspace corresponding to the eigenvalue zero of p.
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3.1.3 Combined systems of several particle types

If the overall system is a mixture of several systems of different particles
then it can be described by a joint density matrix. For example for
two types of particles 4, B one would have p(4, B) with matrix elements
P(A, B)yn:m'w, the labels m, n referring to the eigenstates

IsA,fz‘1 = m;sB,si3 =n)

of the system of two particles 4 and B. .
The mean value for the whole system of an arbitrary operator O is
again given by an equation like (3.1.6):

<é> = Tr [0p(A4, B)] (3.1.17)
where now the trace is used in the generalized sense

Tr [OP(A5B)] = Z [Op(AaB)]mn;mn

with
[OP(A’ B)]mn;mn = Z Omn;m/n/p(Aa B)m/n’;mn'

m' 0
If on the one hand we wish to calculate the joint expectation values of an
observable O of the particle A and an observable O(®) of the particle B
then we must take the expectation value of the operator product 0 @0®)
defined in such a way that

(@(A) ® @(B)) =005 (3.1.18)

mn;m'n’

If on the other hand we wish to calculate the expectation value for the
measurement of a physical observable of just one type, 4, then if 0@ is
the operator corresponding to this observable we get the mean value of
0 by calculating the mean value of 0 ® 1®), where 1®) is the unit
operator in the space of the labels referring to particle B.

Thus
(o)

Tr [O(A) ® 13 p(4, B)]

= Z Of;:l")l, 6nn/p(A9 B)m’n’ smn
m,m’

nn
= Z Oifn),/ Z p(A, B)m’n;mn
m,m’ n

= Try [o(f“p(A)} (3.1.19)
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where p(A) is the (2s4 + 1) X (254 + 1) effective density matrix for type-A
particles, defined by

p(A)mm = Zp(AsB)mn;m’n' (3.1.20)

We note that if the rank of p(4, B) is r, then for the rank of p(A4) one has
rank p(A4) < (2sg + 1)r.

Of course a similar result holds for an observable of the particles of
type B.

If the state of the combined system is uncorrelated then the mean values
of all measurements carried out on particles of type 4 and B must factorize
into mean values over the separate ensembles of A and B, i.e.

<@(A) ® @(B)> _ <@(A)> <@(B)>

must hold for every observable 0, O®). This is only possible if the joint
density matrix itself factorizes. We thus have the important result that

p(A,B)mn;m/n/ = P(A)mm/p(B)nn’ (3121)

if and only if the ensemble of particles A and particles B is uncorrelated.
An example of such ensembles is the incoming beam and the target in a
scattering experiment prior to interaction.

In general, if several spinning particles C, D, E,... are produced in a
reaction then the full density matrix for the final state is a joint matrix
p(C,D,E,...) with matrix elements

p(C, D> Ea .. ')c,d,e,...;c’,d’,e’,‘..-

If, as often happens in practice, the properties of only one of the particles
are measured, say those of type C, then the mean values are to be
calculated using the effective density matrix p(C) where

p(c)c;c/ = Z p(C7 D, Ea .. -)c,d,e,...;c’,d,e,,..- (3122)
de,...

Usually one refers to this simply as ‘the density matrix for C’.

3.1.4 The independent parameters specifying p

We saw in Chapter 1 that a pure state for a particle of spin s can be
specified by 2(2s + 1) — 2 = 4s real parameters. For an incoherent mixture
made up of particles of spin s the ensemble is completely characterized
by the (2s + 1) x (2s 4+ 1) hermitian matrix p. Taking into account the
normalization condition (3.1.10) one requires (2s+1)?>—1 independent real
parameters to specify p fully. The direct listing of the individual elements
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of p could then be limited to 2s of the 2s + 1 (real) diagonal elements,
and the real and imaginary parts of the elements above the diagonal. This
is not always the most convenient set of numbers to deal with, from the
point of view of either experiment or theory.

Various ‘representations’ of p can be introduced, expressing p as a sum
over certain standard matrices, the properties of a particular p being then
specified by the coefficients in the expansion.

The best known of these is the density matrix for spin-1/2 particles.
Since p is now a 2 X 2 matrix, it can always be written, see (1.1.22), as

p= %(I +P o) (3.1.23)
where P is now the spin-polarization vector for the ensemble,
P = (o) = Tr po. (3.1.24)

Thus the three real numbers P can be used to specify p. We note that
whereas for a pure state P2 = 1, in general for an ensemble we have

P2 <1 (3.1.25)

as follows from (3.1.15).

What is the generalization of (3.1.23) for spins s > 1/2? Clearly it is
not sufficient to replace ¢ by the set of three hermitian matrices S = {S;}
that represents the spin operator 8. We need to construct many more basis
matrices and this can be done in principle by using products of the S;. (It
must of course be remembered that results like g;07 = io3 are specific to
spin 1/2; higher-spin products, such as S5, are independent and cannot
be expressed in terms of S3.)

3.1.5 The multipole parameters

A very useful and convenient set of basis matrices can be obtained by
forming sets of products of the spin operators that transform very simply
under rotations. These so-called spherical tensor operators ’f}{q, 0<L<2s,
—L < M < L, and the matrices T{; that represent them can be chosen in
such a way that the elements of these matrices are given by vector-addition
coefficients (Edmonds, 1957 and Appel, 1968). Thus

(T4) = (sm|Tizlom') = (smism'; LM) ; (3.1.26)
mm’

L is called the rank of the tensor operator. Some examples are as follows
Scalar:

79 =1.
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Vector or rank 1 tensor:

Y D N
L I
A 1 A
Tll = —m(sx + lSy) . (3127)
. 1
T1 _ A A
1T aern T

Further examples may be found in the review article by Jackson (Jackson,
1965).

For our purposes it is not necessary to know the precise form of the
operator TA"A’} The crucial information is contained in equation (3.1.26).
We note, incidentally, that there are (2s + 1)? different Tj; but from the
properties of the vector-addition coefficients it can be shown that

T, = (—)MTL", (3.1.28)

We now proceed to derive the expansion of the density matrix p in
terms of the matrices T4.
Let us define the set of complex parameters t§; (0 < L < 2s) by

th =" (smlsm’; LM) pyum- (3.1.29)
m,m’
The inverse of this is
_ 1 /. L*
Pt = 341 §(2L + 1) (sm|sm'; LM) ty; (3.1.30)
and, using (3.1.26),
1 L* L
Pt = 5 LXA;(ZL + Dty (Thp)mm- (3.1.31)

Thus the matrix p is expanded in terms of the matrix set T as

1 x
=Y (2 5 T 132
p 2sH}%(LH)tMTM (3.1.32)
This is the desired generalization of eqn (3.1.23). Now from the definition
(3.1.26) it follows that

_ 2s+1

Lt
TI‘ (TM/TAIZ ) - 2IJ——i—15LL,5MM/ (31.33)

and hence that
Lt L*
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or, since p is hermitian,
thy = Tr (pTL). (3.1.34)

Thus the t&, which are called either multipole parameters (of rank L)
or statistical tensors, are a generalization of the spin-polarization vector.
Indeed for the lowest-rank multipole parameters one has

= Trp=1

S
=2/ 1

1 , < (3.1.35)
t1=—(9x+19y) m
. S
t1_1=(9x—19y) m

where the spin-polarization vector P is defined in eqn (1.1.27).
We note that, from eqn (3.1.29) and the properties of the vector-addition
coefficients, one has

thy = (=DM (3.1.36)

In particular the t} are real.

Thus the set of t; is actually specified by (2s+1)? real numbers. Bearing
in mind that t) = 1 we see that the (2s+ 1)> — 1 remaining real parameters
are just the right number to specify p completely.

The condition (3.1.15) leads to the inequality

1
— N eL+ <1 (3.1.37)
2s+1 in

We stress the fact that whether we choose to specify the set of numbers
Pmm OF the set of numbers tb is merely a question of convenience. They
are directly related by (3.1.29) or (3.1.30).

3.1.6 Multipole parameters for combined systems of particles

In the case of a combined system of different particles 4, B, ..., in
analogy with the discussion in subsection 3.1.3 the joint density matrix
p(A, B,...) will be expanded in terms of the direct product of matrices
T(A)5; ® T(B), ® - - - with coefficients tkhs (A, B, ...), the joint multipole
parameters.

(Note that T (A4) is a matrix of dimension 2s4 + 1. We will usually
leave out the particle label on the Tf.)

If the different types of particles are uncorrelated, we will have

T X (3.1.38)
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The effective multipole parameters t5;(4) for particles of type A, say,
when no spin measurement is carried out on the other particles, will be

th1(A) = t3106.0- (3.1.39)

3.1.7 Even and odd polarization

It sometimes happens that only the even-rank multipoles or only the odd-
rank multipoles are non-zero. We refer to such states of polarizations as
‘even’ or ‘odd’ (Doncel et al., 1970). When this happens the density matrix
has a special symmetry, namely

Pyi = H(=1""Fps (3.1.40)

the (+) corresponding to an ($34) state of polarization. In fact, it is

sometimes convenient to break p up into its even and odd parts for a
general state of polarization. Thus we write

p=p++p- (3.1.41)
and
_ 1 L*pL
p+ = %—HLZ QL+ Dty Ty
]C\/}’Cl’l
1 (3.1.42)
_ L*—rL
- =51 Lzo;d(2L+ Dtk T4
M
Equivalently
() =} [Pt =1/ 2, (3.1.43)
Thus, in general,
(p1)—p—i = H(=1)"Fpy. (3.1.44)

It will be seen later that it is usually easier to measure the elements of
p+ than those of p_.
We note that if rank p = r then

rank p4 < 2r. (3.1.45)

3.1.8 The effect of rotations on the density matrix

Since the density matrix elements p,,, are given in a basis specified by
the spin states |s;s, = m), they are implicitly dependent on the choice of
axis system.

We denote by pS,, the elements of the density matrix defined using as
basis states the |sm) appropriate to the reference frame S and by p,sn'm, the
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elements of the density matrix defined using as basis states the rotated
states |sm)" = U(r)|sm), see (1.1.18), appropriate to S”. Then, similarly to
eqn (3.1.8), we have

5 = 291 pS 29(r) (3.1.46)
or
P = D) (1S D (1)

It is clear that pS" thus defined is the correct density matrix to use
when evaluating expectation values as seen in reference frame S”. For this
reason we shall refer to p5" as the density matrix in the frame S'.

The relationship between pS  and pS . is rather complicated. The
formula can be simplified a little using the rules for the reduction of
products of rotation matrices. One finds

2s s
P =3 3 (=) (s,mys,—m|J,m —m')

J=0nn'=—s
x (s,n;8,—n |, MY D) Yply. (3.147)

The multipole parameters ¢}, transform very simply, however. If (t§/)s
and (tk)sr denote the components of the statistical tensors in the frames
S and S then, from (3.1.46) and (3.1.29), one finds the simple result

(th)sr = Z@M,M RIGTS (3.1.48)

which is the usual rule relating the components of a spherical tensor in
different reference frames.

3.1.9 Diagonalization of p. The quantization axis

Although it is always possible to diagonalize p it is not always possible
to do so by means of an actual physical rotation of axes. If, however,
the ensemble consists of a mixture of magnetic substates, i.e. eigenstates
|sm) where m is the projection of § along the quantization direction,
then in a frame that has OZ along the quantization direction clearly p
will be diagonal, and all multipole parameters t§; with M # 0 will be
zero. We shall refer to the direction OZ that makes p diagonal as the
quantization axis. For spin-1/2 particles the quantization axis coincides
with the polarization vector P, but the quantization axis is a somewhat
more general concept since for higher spins one can easily have the vector
polarization zero yet still have some ‘alignment’ along the quantization
axis (see subsection 3.1.12 below).
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3.1.10 Other choices of basis matrices

The case we know best, namely spin 1/2, is misleadingly simple. Here
we succeed in expanding the hermitian p in terms of the hermitian Pauli
matrices o; with real coefficients of direct observable relevance, and at the
same time we enjoy the very simple properties of the g; under rotations.

The T} used for the general case have simple rotation properties but
are not hermitian. As a result the ¢}, are complex and are not so closely
related to what is actually measured.

In fact, it is very easy for arbitrary spin s to introduce a set of hermitian
basis matrices (Doncel et al., 1970) Q%;, defined as follows:

L (—OM 2L +1 (., Lt
M>1 Qf == T+ T
M=0 b = 1/2L+1T0L (3.1.49)
2s
- M 2i s —-M M

with corresponding real multipole parameters r, given by

M=0 b=l (3.1.50)
2s
M<-—1 r§4=(—1)M‘/2LS+1 Im ¢k,

and the density matrix expansion

1 2S L
P=571 (1 +25) 00> rf(,,Qk,,) . (3.1.51)

L=1M=—-L

This approach is especially useful for discussing the ‘domain’ of the density
matrix, i.e. the range of permitted values for the parameters specifying p.
However, the price one pays is that the rotational properties of the Q%;
and hence of the r; are more complicated.

For this reason, we have chosen to develop our general treatment of
reactions in terms of the usual T};.
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3.1.11 Invariant characterization of the
state of polarization of an ensemble

Full information about the state of an ensemble requires a knowledge of
the whole density matrix. It is useful, however, to have a simple, invariant,
albeit cruder, characterization of the ensemble. Thus for spin 1/2 we
talk of an unpolarized ensemble or a polarized ensemble with degree of
polarization 2 = /P2 We wish to generalize these concepts to arbitrary
spin.

An unpolarized or isotropic ensemble of spin-s particles has equal
probabilities p® = 1/(2s 4+ 1) of being in any pure state |p?) and is
therefore given by the density matrix

1
Piso = EE:_—II (3152)
in any basis.
Therefore the matrix
1 x
— Piso = =——— L LTk 1.5
P — Piso 25+1I§(2 + D)k T (3.1.53)
M

measures the departure from isotropy (Doncel et al., 1972).

To characterize this difference in a rotationally invariant fashion we
have to introduce some measure of the ‘difference’ between two matrices,
or, as it is often described, the ‘distance’ between them.

A suitable invariant measure is

1
— 3.1.54
2541 ( )
by (3.1.10) and (3.1.52). In fact, the ratio (Tr p> — Tr p2,)/ Tr pZ, takes
the value zero for an unpolarized ensemble and the value 2s for a pure
state. We thus define the overall degree of polarization

Tr (p — piso)’ = Tr p* — Tr pdy = Tr p* —

1 5 1/2
d= 7 [(2s +1) Trp* — 1] (3.1.55)
so that
0<d<l.
For spin 1/2, as expected,
d=P = P2 (3.1.56)

but this case is misleadingly simple. For higher spin we can have vector
polarization, rank-2 tensor polarization etc. and the magnitude of the
vector polarization is no longer the overall degree of polarization.
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The representation in terms of Cartesian spin matrices gets very clumsy

for higher spin so we restrict ourselves to the multipole parameter expan-
sion (3.1.32). One can define a measure of rank-L polarization (L > 1)

by
1/2
2L+ 1
dr, = 1/ : <Z|t11(,[|2> (3.1.57)
$ M

and the overall degree of polarization is then

1/2
d= {Zdi} . (3.1.58)

L>1

However, the dy, can be a little misleading since the individual d;, cannot
usually attain the value 1, although d itself can. (For example, for spin-1

particles (di)max = \/§/2.)

3.1.12 Spin-1 particles and photons

(i) Massive particles
With the production and general use of polarized deuteron beams this
case has become of great interest and we therefore treat it in some detail.
The density matrix can either be written in the standard form (3.1.32)
involving multipole parameters or it can be given in a Cartesian form as
follows:

p= % [1 + %P S+ \/gTij(SiSj + SjS,‘)] (3.1.59)

with T;; real and symmetric, and traceless: ); Tj; = 0. Here S stands for
the 3 x 3 traceless matrices S; representing the spin operators §; for spin

1:
1(010 ;0 —1 0
So= 2 [1 0 1 S,=— (1 0 —1
V2o 1 0 V2\o 1 o

1 0 O
;=10 0 0 |.
0 0 —1

The three real parameters #; and the five independent T;; are all inde-
pendent of each other.

Other definitions of PP and T;; are sometimes given in the literature
(Werle, 1966) but ours are designed to have the simplest physical inter-
pretation. One finds that P is the spin-polarization vector

P = ). (3.1.61)

(3.1.60)
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in agreement with (1.1.27) for the case s = 1 and T;; measures the rank-2
spin tensor

T, = %\@ (<§,@,~ +88) — %‘5,,) . (3.1.62)
The degrees of vector polarization £ and of tensor polarization T are
P = P2 0<2<1 (3.1.63)

and
T= |3 (1) 0<T<1. (3.1.64)

ij

The overall degree of polarization is

d= (ggﬂ +12)", (3.1.65)
The multipole parameters are related to 2; and T;; via
th = ﬁ@z thy =F} (2« +i2)) (3.1.66)
and
=\ 2 =F/i(TetiT}) 6167
tziz = \/% (Txx — Tyy £2iTyy) -
They are related to the elements of the density matrix itself via
t} = —%(plo +po1) = ﬁ(ﬂu —p-1-1)’ (3.1.68)
and
6= \/gp’{_l = —\/_%(PIO — po—1)" (3.169)

g = \/%(Pn + p-1-1 = 2po0) -

Often the ensemble is made up of particles whose spin is quantized
along the Z-axis. Let py, po and p_ be the probabilities of finding a
particle with spin projection 1, 0, —1 respectively along the quantization
axis. Then from (3.1.61) and (3.1.62)

Px=2y=0 ?: = (p+ —p-)

o T T (3.1.70)
Tij=01fl7é] Txx= Tyy=_§Tzz TZZ = %(1—3170)

The degree of vector and tensor polarization are then

2 = |py —p-| T = 1|1 —3pol (3.171)
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and the density matrix is

1432, +,/3T., 0 0
p=3 0 1— J6T., 0 (3.172)
0 0 ~32.+\/iT..

In this case, in the frame with OZ along the quantization axis, the
multipole parameters take the simple form

h=y12:  d=\T =/} (3.1.73)

thy =t =13, =0
where
o =1—3pg (3.1.74)

is referred to as the alignment (Steenberg, 1953).

It should be noted that ensembles of the above type are by no means
the most general ones for spin-1 particles. To discuss the general case,
consider the orthonormal basis states

lec)) = 7 (12 =—-1) —12=+1))
i . (3.1.75)

lep) = —= (1A= —1) + 2= +1))

V2
‘e(z)> =[A=0)
The most general normalized pure spin state for a spin-1 particle is then
le) = €xle(x)) + eyle(y)> + ezle(z)> (3.1.76)
where & = (ex, €y, €;), the polarization vector, is a complex vector with

g-e=1 (3.1.77)

It is & that is the analogue of the polarization vector in classical elec-
trodynamics.

For a pure state one finds that the spin polarization vector P is related
to the polarization vector & via

P=Im (e xe); (3.1.78)

this will be given a covariant form in Section 3.4. Thus P = 0 for any
pure state with real &.
For the tensor Tj; one finds

T; = \/3 [%&y —Re (e?ej)] : (3.1.79)
Note that there is no pure state for which T;; = 0 for all i and .
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For example, for states with s, = +1,0 we have
e = J5(F1,—1,0)

O _ 0.0.1) (3.1.80)
so that
P =(0,0,1)
P =(0,0,—1). (3.1.81)
PO = (0,0,0)

(ii) Photons
Although intrinsically relativistic we may treat photons as above provided,
as will be justified in Section 3.2, we interpret the states |s, = +1) as helicity
states for the photons moving along the direction OZ. Of course the states
|s; = 0) are now absent. As a consequence, an ensemble of photons can
never be isotropic. Indeed, from (3.1.73) and (3.1.74) we see that for all
ensembles of photons T,, =1/ \/3 and therefore t}) = /1/10.

(o) Circular polarization. A photon with helicity +1 is said to be circu-
larly polarized. For a mixture of such states (3.1.72) becomes, since now

T,, = 1/\/&
) 1 1+ gcirc 0 0
P =3 0 0 0 : (3.1.82)
0 0 1—Pirc

Pirc 1s conventionally referred to as the circular polarization of the pho-
tons. From (3.1.70) 2. is given in terms of the probabilities for finding
helicity +1 and helicity —1 polarized photons as

Peirc = P+ — D— (3.1.83)

as expected.

Note that 2, = +1 corresponds to photons with positive helicity.
In terms of the electric field vector of a classical electromagnetic wave
propagating along OZ, the case 2. = +1 corresponds to the case when
the electric field vector is seen to rotate anticlockwise when looking into
the wave. In optics this is referred to as left-circularly polarized light.

In the case of circular polarization the spin-polarization vector and the
multipole parameters are given by

Pcirc = (O, Oa e@circ) (3.1.84)

1_ 1 g, 2_ 1 1 2 _ 2 _

o= pPdcc 0= p5 tu=lHp=14=0
Note that 2. is, in magnitude, a measure of the degree of vector polari-
zation.
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Because of the absence of the |m = 0) states it is sometimes convenient
to write (3.1.82) in the form

p;irc — %(I + Peirc0s) . (3.1.85)

(B) Linear polarization. A photon is said to be linearly polarized along
OX or OY if its state is |e()) or |e(,)) respectively as defined in (3.1.75).
Consider a mixture of photons linearly polarized along the directions
OX', OY’ in the XY -plane, where OX’ and OY’ make an angle y with
OX and OY respectively. The linear polarization along OX' is defined by

Plin = Px — Dy

where p., pyy are the probabilities for finding photons linearly polarized
along OX' and OY’ respectively.

Using the fundamental definition (3.1.5) of the density matrix, and eqn
(3.1.46), we get the density matrix for photons linearly polarized in the
XY -plane at angle y to the X-axis:

) 1 1 0 —Qline'Zi‘/
pit = 3 0 0 0 . (3.1.86)

—Piine® 0 1

In this case the spin-polarization vector and multipole parameters are
given by

Plln = (09 09 0)

. (3.1.87)
d=—1\/1Pud = 75 =11 =0

and 2y, contributes only to the tensor polarization, as follows from
(3.1.67).
Again, it is sometimes useful to abbreviate (3.1.86) in the form
pit = 1[I — Pyin(cos2y ax +sin2y o)) . (3.1.88)
The physical interpretation of (3.1.82) and (3.1.86) when the photon has
momentum p = (p, 0, ¢) will be explained in subsection 3.2.1.

(v) Mixed polarization. Although light sources are usually either linearly
or circularly polarized, it is in principle possible to have a mixture of
both.

Let f be the fraction of circularly polarized photons and 1 — f the
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fraction linearly polarized. Then the density matrix for the mixture is just

py =105+ (1= f)p}"

3.1.13 Positivity of the density matrix

The density matrix, being hermitian, can always be diagonalized. In a
basis in which it is diagonal it is clear that its elements pum = An simply
measure the probability p,, of finding the state |m) in the ensemble. Thus
the eigenvalues of p are either positive or zero.

A hermitian matrix whose diagonal elements have this property is
called a positive semi-definite matrix. When a density matrix is measured
experimentally it is essential to check that the matrix so obtained is indeed
positive semi-definite. If it is not, this is a sure indicator of experimental
error. Unfortunately it is a non-trivial task to get enough information
experimentally to allow the calculation of the eigenvalues of p; it requires
a knowledge of the whole matrix p.

Often, however, p is only partially known and it is important to be
able to test whether this partial knowledge is compatible with the ultimate
positive semi-definiteness of p. Thus we require criteria for the positivity of
p that do not involve a knowledge of its eigenvalues.

The most useful result is the following. Let p;; be the elements of p
in any basis. Then every principal minor of the matrix must be positive
semi-definite, i.e. if in some basis

p11 p12 ... Pin
20 PR - P2
p— | P pan (3.1.89)
Pnl Pn2 .-+ Pnn
then one must have
(1) pjj =0 for every j
2 Pii- Pk >0 for every j and all k > j
@ Pkj  Pkk i J
Pjj  Pjk Pijl
(3) pkj Prk Pri| =0 for every jand all [ > k > j
pPij Pk pPu
P11 P12 --- Pln
2 2 ..
(n) p‘l p p?n >0
Pnl Pn2 ..o Pnn
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Failure of any one of these conditions will imply that p is not positive
semi-definite.
Thus even partial measurements of p can be tested for compliance.
When p is diagonal it is trivial to see the consequences of positivity. For
example in the case of spin 1, from (3.1.72) one has clearly

T.. <1/./6 (3.1.90)

2 (1+\/§Tu) <2, <2 (1+\@TZZ>

which, combined with (3.1.90), gives
-1<2,<1. (3.1.91)

and

For a more detailed analysis of the positivity conditions and an in-
troduction to the concept of the polarization domain the reader should
consult the review of Bourrely, Leader and Soffer (1980).

3.2 The relativistic case

We turn now to the relativistic case and introduce the helicity density
matrix. All the properties discussed in Section 3.1 remain valid provided
that care is exercised in the physical interpretation.

3.2.1 Definition of the helicity density matrix

Using as basis the helicity states discussed in Section 1.2 we can formally
define the density matrix p in a given reference frame in which the particle
is moving with momentum p, in exact analogy with the non-relativistic
case. If we have an ensemble of particles, all with momentum p but
distributed with probability p over various states [p®;p), where

N
pOip) = > ;i A), (3.2.1)
A=—s
then we define p by
pir =y pOec). (3.2.2)

The only question is: what is the physical meaning and use of this
matrix?

In Section 1.2 we discussed the physical interpretation of helicity states.
From this it is clear that p,; for a given particle A is the ordinary, non-
relativistic spin density matrix for particle A if we observe A4 in the helicity
rest frame of A.
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Thus for any observable O connected with particle A, Tr (pO) is the
expectation value of 0 for the ensemble, in the helicity rest frame of A.

If there is a mixture of several particle types, as in the initial or final state
of a reaction, then one can, as in the non-relativistic case, define a joint
density matrix using helicity states as a basis. For example, for two types
of particles 4, B one will have p(4, B) with matrix elements p(4, B),, ;. w
defined in terms of simple direct products of the helicity states of 4 and B.
This density matrix thus describes the spin distributions in the respective
helicity rest frames of A and B. If O is an observable connected with
both particles A and B then Tr [p(4, B)O] gives the ensemble expectation
value of O for measurements on A carried out in the helicity rest frame of
A and measurements on B carried out in the helicity rest frame of B. As
in the non-relativistic case, if we measure an observable belonging only
to one of the particles, say A, then we require the (2s4 + 1) X (2s4 + 1)
effective density matrix for 4, p(A4), where

p(A)r = (A, By s (3.2.3)
u

then
<O<A>> = Tr [p(4)0“)]. (3.2.4)

An identical result holds for B.
In a similar fashion, for massless particles p gives the density matrix of
a particle in the standard frame where its momentum is p* = (p, 0,0, p).

3.2.2 Definition of helicity multipole parameters

Because of the simple, i.e. non-relativistic, meaning of the helicity density
matrix in the respective helicity rest frames, it is clear that multipole
parameters defined in terms of p, as in the non-relativistic case, will also
enjoy the same simple rotational properties.

Thus for any particle A we define

thy (4) =Y (sAls2 s LM) p;(A) (3.2.5)
M

as the helicity-basis multipole parameters for A.
In A’s helicity rest frame S4, the tk/(A4) are just the non-relativistic
multipole parameters corresponding to an axis system coinciding with S4.
Joint helicity multipole parameters are defined in terms of joint helicity
density matrices, exactly as in Section 3.1, and all the properties derived
there hold equally well.
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3.2.3 The effect of Lorentz transformations
on the helicity density matrix

(i) Rotations of rest frame. Let p(A) be the helicity density matrix of A.
As discussed above p(A4) is the density matrix for 4 in its helicity rest
frame. The density matrix for 4 in any other rest frame S} is simply
obtained from p(A4) by a rotation. If S’ = rS4 then by (3.1.46)

p%i(4) = 29 (r)p(H) 2V (r). (3.2.6)

(ii) Lorentz transformations. The density matrix in a Lorentz-transformed
frame is obtained as follows.

Let p5(p) be the helicity density matrix in frame S where the particle
has momentum p. Let psl(p’ ) be the helicity density matrix in the frame
S! = IS obtained from S by an arbitrary Lorentz transformation [ and in
which the particle has momentum p’ = I~ !p.

If we think of piL,(p’) as the matrix of an operator 5/,

l A
P (®) = (0 1l I'5 1),
then it is clear, from the meaning of p;; as a probability correlation, that
we must have the numerical relation

P32 (B) = 51 (p; 21010 X1
from which, using (2.1.9), we eventually obtain

o5 (0) = 20r(1.p)1p* )2 [r(L,p)] (3.27)

where r(l,p) is the Wick helicity rotation defined in Section 2.1.
Note that if the particle is not at rest in S, then for any frame S”
obtained from S by a rotation r, eqn (3.2.7) reduces to

3 (@) = pSy(p)et =) (3.2.8)
where { is given in (2.2.3). If the particle is at rest in S then (3.2.6) holds.

3.2.4 Transformation law for multipole parameters

It was stressed earlier that the multipole parameters t}; transform more
simply under rotations than does p. Because Lorentz transformations are
effected ultimately by just the Wick helicity rotation, also in this case the
helicity-basis multipole parameters defined in eqn (3.2.5) will enjoy simpler
transformation properties. Thus the analogue of (3.2.7) is

(t§)st = D (r(L, ) [tip ). (329)
Note that for a spin-1/2 particle, if we write

P =11+P 6) p=La+P-o
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then from (3.2.7) and (1.1.28)
P; = Rij(r)?; (3.2.10)

where r is short for r(, p).

Analogous results will hold for P and T;; for spin-1 particles, etc.

In the case of a pure rotation for which { in (3.2.8) happens to be zero,
so that p5" = p, putting

psr=%(1+'Pl‘O‘)

implies the perhaps surprising result P’ = P. It must not be forgotten
that 2} and #; are the components of the spin-polarization vector in the
helicity rest frames reached from S™ and S respectively and that these rest
frames coincide in this particular case.

3.3 Choices of reference frame for a reaction
We consider a general reaction
A+B—->C+D+E+---

taking place either in the Lab frame, corresponding to a fixed-target
experiment, where B is at rest, or in a frame, corresponding to collider
physics, where 4 and B collide head-on. In the latter case the frame may
or may not be the actual CM frame.

The actual choice of axes is partly a matter of convention, partly a
matter of convenience in the context of the particular experiment.

Quite generally the collision axis is taken as the Z-axis. In the Lab
frame OZ is taken to lie along the incoming beam.

The choice of Y -axis depends on the kind of experiment. Much of
the early work on spin-dependent reactions utilized fixed spectrometers,
which therefore defined the reaction plane; the spin-polarization vectors
of beam and target particles, which could be varied in the experiment,
were referred to this reaction plane.

For the 2 — 2 reaction A+ B — C + D, according to the so-called Basel
convention OY is defined to lie along the normal to the reaction plane,
defined as the direction of p4 X pc.

In more modern experiments, where the collision axis is surrounded by
detectors, there is no obviously preferred fixed reaction plane and OY
is then chosen arbitrarily, according to convenience. This is particularly
important when a reaction is being used as an analysing reaction, i.e.
to measure the direction and magnitude of the spin-polarization vectors
of a beam and/or target; it may then be necessary to perform weighted
integrals over the ¢-dependent angular distributions in some fixed refer-
ence frame in order to determine the components of the spin-polarization
vectors in that frame.
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In doing calculations it is generally simplest to work with the CM
helicity amplitudes, which are directly related to the CM helicity density
matrix (see Section 5.3). Thus it is helpful to specify the states of the
particles and to carry out analysing measurements on the particles, in
frames that are related to the CM simply by a Lorentz transformation.

3.3.1 Density matrix for the initial particles

It is simplest to give the density matrices or multipole parameters of A4
and B in their helicity rest frames Sy, Sp, reached from the CM of the
reactions as shown in Fig. 3.1. (Note that Y4 and Yp are in opposite
directions.) These are then the correct parameters to use in specifying the
initial state in the reaction CM.

The laboratory (Lab) frame will always be taken to have the same
orientation of axes as the CM frame and is to be thought of as reached
in the limit as we boost along the negative Z-axis until B is just barely
at rest. The helicity rest frames for the initial particles 4, B reached from
the Lab frame will then coincide with those shown in Fig. 3.1.

Note that for the target the axes of Sg do not point in the same direction
as the Lab axes. One has

Sp = ry’(n)rz(n)SL

and spin information about the target, if specified in the Lab frame, must
always be transformed into Sp.

Often, however, for magnetically prepared beam and target, the polar-
ization information is given in a rest frame whose Z-axis Z ) lies along
the quantization axis. Let this axis have polar angles 0 = f§, ¢ = 7y relative
to the axes of the CM frame (or of the Lab frame) as shown in Fig. 3.2.

AX
XA Xp
BEAM Yg
I S I R
Zp Z Zp
Y4 CM
Y

Fig. 3.1. Helicity rest frames for beam and target reached from the CM.
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| X

Fig. 3.2. Rest frame with 0Z along quantization axis.

In this rest frame p;; is diagonal, its elements being just the probability
of the various magnetic substates. Equivalently, the multipole parameters
are such that t, = 0 for m # 0. Let us label the non-zero multipole
parameters in this frame by z).

Then for particle A, coming in along OZ, the CM helicity multipole
parameters are

t(A) = 74" dy0(B4)i0(A) (33.1)

as follows from eqn (3.1.48).
For particle B, moving in the negative OZ direction, the CM helicity
multipole parameters are

t'.(B) = e78"md (m — Bp)th(B) (3.3.2)

wherein account has been taken of the fact that Yp in Fig. 3.1 is opposite
in direction to YoMm.

As an example consider an electron or nucleon with spin-polarization
vector (0,0,2;) along or opposite to 0Z. From (3.1.35)

iy =1/12.. (33.3)

For the case of longitudinal polarization, 0Z lies along OZ or opposite
to it. For particle A4, (3.3.3) then gives, for degree of polarization 2,

A =+/12s 1 =0 (3.3.4)

for longitudinal polarization along or opposite to 4’s motion.
Similarly

15(B) = T1/3 25 th, =0 (33.5)

for longitudinal polarization along or opposite to B’s motion.



3.3 Choices of reference frame 63

For the case of transverse polarization, say perpendicular to the plane
XZ, we get

th(4) =0 th(4) = t4,(4) = Fy/Lizs (3.3.6)

where 24 is the degree of polarization along or opposite to O Ycm.
For particle B one has

h(B)=0  tl(B) =1 ,(B)=+\/}i?s (3.3.7)

where 25 is the degree of polarization along or opposite to O Ycum.

As a second example consider a beam of photons incident along OZcy.
Here we may directly use the results (3.1.82), (3.1.83) and (3.1.86) for the
density matrix. For the case of circular polarization one has from (3.1.82),
(3.1.68) and (3.1.69)

th = %%m = ﬁ (3.3.8)
with all other ¢, = 0 for [ # 0.

For the case of linear polarization in the XY -plane at angle y to the
X-axis, from (3.1.86), (3.1.68) and (3.1.69),

= —%\/ge%inem to = \/% (3.3.9)

with all other ¢/, = 0 for [ # 0.
If the linear polarization of the photon is specified with respect to
the CM X- and Y-axes and if the photon is incident in the negative

Z -direction, then, bearing in mind Fig. 3.1, one must take y — —y in
(3.3.9).

3.3.2 Density matrix of final state particles

The density matrix of a produced particle may be obtained experimentally
from studying the decay of the particle or by letting it undergo a secondary
analysing reaction.

Unfortunately many conventions exist and many different frames have
been used in the past for this analysis. A comprehensive discussion of
the Adair, Gottfried—Jackson, and transversity frames can be found in
Bourrely, Leader and Soffer (1980).

The frame in which one wishes to know the density matrix is dictated
by the kind of reaction under study. There are basically two situations:

(i) reactions in which a resonance is produced and its decay studied;
(ii) reactions in which a stable final state particle undergoes a secondary,
analysing reaction.
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) Cll;“/lig. 3.3.  Helicity rest frame for particle produced with angles 6, ¢
in .

(i) Resonance production
If one or several final state particles are unstable we will be interested in
their decay distributions, which yield information about the production
mechanism.
It is simplest to analyse the decay of some particle or resonance C
in its own helicity rest frame (see subsection 1.2.2) reached from the CM
frame of the production reaction 4+ B — C + D + E + .., since in that



3.3 Choices of reference frame 65

case the initial helicity density matrix of C before it decays is just equal
to the helicity density matrix of C in the CM frame of the production
reaction, i.e. it is given directly in terms of the CM helicity amplitudes for
the production process.

Let C have momentum p = (p, 6, ¢) in the CM frame. Then as explained
in subsection 1.2.2 its helicity rest frame Sc has its Z-axis, Z¢, along p
and its Y -axis along e(;) X p, where () is a unit vector along the Z-axis
of the CM frame. This is illustrated in Fig. 3.3. Note that for # =0 or n
we take Y along or opposite to the CM Y -axis.

The case of a reaction taking place in the X Z -plane is easier to visualize.
The relative orientation of the helicity rest frames reached from the CM
frame is shown in Fig. 3.4.

The relationship between the decay characteristics and the density ma-
trix of C is discussed in Section 8.2. For an analysis done in S¢ the
relevant density matrix is then just the density matrix of C in the CM of
the production reaction — no transformation is needed.

(ii) Secondary scattering
Consider a stable particle K produced in the reaction CM with momentum
(pk, Ok, ¢k ). We shall define the natural analysing frame for K, Sy k, to be
a frame reached from the laboratory frame Sy by mean of a pure rotation
such as to give particle K polar angles equal to zero. In other words

P* = (pk,0,0). (3.3.10)

Zp

Fig. 3.4 Helicity rest frames reached from the CM of the reaction
A+ B — C + D. Note that the Y -axes for B and D are opposite to those
for A and C.
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Fig. 3.5 The laboratory ‘analysing’ frames Sy 4, SLs, SLc and Sy p for the
reaction A+ B — C + D.

The natural analysing frames for the 2 — 2 reaction AB — CD are
illustrated in Fig. 3.5. We include frames for the initial particles.

The Lab frame Sy is the simplest and most natural frame in which to
study the analysing reaction for K for the following reasons.

(o) Because Sk is reached from Sy by the rotation

ry(0%)r:(¢x) = r(¢k, 0%, 0) (3.3.11)

it is easy to see from (2.1.7) that the helicity density matrix for K is
the same in Syg as in St.

(B) Because the CM frame for the analysing reaction is reached from
SiLkx by boosting along the positive Z-axis of Sy, the helicity density
matrix for K in the CM of the analysing reaction is the same as it is
in Spx. By () it is then the same as in the main Lab frame.

Thus we have the result

(K gy, = 5 (K) = p*(K) (33.12)
reaction

and the initial helicity density matrix of K needed for the analysing
reaction is simply given by p5t(K).
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Finally, then, in terms of the helicity density matrix in the CM of the
production reaction we have
[p(K)) cuer = d(ox)p(K)d' (k) (3.3.13)

analysing
reaction

with ag given by (2.2.13), or, equivalently,
(K] emor =db(ox)t (K. (3.3.14)

analysing
reaction

We remind the reader that ax takes on special values when the produc-
tion reaction is an elastic reaction; see (2.2.15) and (2.2.16).

3.4 Covariant spin vectors

In Section 1.1 the spin-polarization vector for a non relativistic state |X)
was defined as
s

(x[8lx) = o (34.1)

©a | -

Py =

where sy is the mean spin vector, and this was generalized in subsection
3.1.5 to an ensemble or mixture of pure states. As stressed in Section 3.2
these non-relativistic quantities and, more generally, the multipole param-
eters can continue to be used in the relativistic case for a massive particle,
provided that any physical statements about the spin are understood to
hold in the helicity rest frame of the particle.

It is nonetheless advantageous sometimes to deal with relativistic, co-
variant generalizations of these quantities. We showed in Section 1.2 that
the natural covariant generalization of the non-relativistic spin operators
§; is given by the space components of the Pauli-Lubanski operators W,
namely, when acting on the state of a massive particle at rest,

Wilp;s. = 2) = m/|p;s; = ). (3.4.2)
Note, in addition, that
WOp;s, = ) =0. (3.4.3)

Now for any rest state |p;X) that is a linear superposition of states of
spin s with different values of s,, we can define

[Z

o H o A O
Sy =~ p; (W |p; X) (3.4.4)

and we see from (3.4.2), (3.4.3) and (3.4.1) that

oM m
F1="0.57) = m(0.Py) (345)
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(The reason for our convention of including the factor m in this definition
will become clear later.)

Moreover, because 107 = (m,0,0,0), we have

Py =0 (3.4.6)
o o m2 2
S L= —gSr

Now consider the expectation value of W* for a relativistic helicity state
[p; A). We have from (1.2.25)
(03 21W* 3 2) = (p3 21U [h(@)] W U [h(p)]|P; 2)
= A*(p; AW |p; 2) (34.7)

since the W transform covariantly as a 4-vector. Hence we can define the
covariant helicity mean spin vector

1 o
S, A) = (s AW P A) (3.4.8)
and we then have, in full detail,
SH(p, 2) = (A[h(p)])* v £ (34.9)

where
P = (E,p) = (A[h(®)])*+ D -

For a state X that is a linear combination of states with different values
of s, we clearly have

S %) = (AT, F7. (3.4.10)

If one uses the canonical spin states (see subsection 1.2.1) then one
defines

1 N
ygan(pa SZ) = E can<P;Sz|W”|p;Sz>can (34.11)
and so, in contrast to (3.4.10),
S lan(®:X) = (ALIWD*y £y (3.4.12)

where [(v) is the pure boost that takes ;) to p~.
Note that (3.4.6) generalizes to

LP,X) p=0 (3.4.13)

p, X - _2 Svy. 3.4.14
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We shall see in subsection 6.3.1 that ¥ provides a convenient approach
to the relativistic motion of the mean spin vector.

As an example let us compute the covariant helicity mean spin vector
for a spin-1/2 particle in a definite helicity state 4 = +1/2. In this case
from (3.4.1)

sy =s(£1/2) = (0,0,%1/2)
and using eqn (1.2.23) we arrive at
FH(p, A) = 2M(p, Ep) (3.4.15)
where P is a unit vector along p. Note the important result that, for spin
1/2,
rLiglo FH(p, A) = 22p*~. (3.4.16)

Had we not included the factor m in the definition of ,&ﬂ the limit m — 0
of (3.4.15) could not have been taken. Thus, with our convention, ##
applies equally well for massless particles.

In the general case of massless particles we replace (3.4.4), (3.4.5) by

1 A
yﬂ(Psta /1) = *<pst;/1|WN|Pst;/1> (3.4.17)
S

using the ‘standard’ states, defined in subsection 1.2.3, where py =
(p,0,0,p). It follows from (1.2.39) and (1.2.41) that, for a massless he-
licity state with arbitrary 4-momentum p*,

A
LA =P (3.4.18)
which is perfectly consistent with (3.4.15)when s = 1/2.
The tensor operators Tjj, introduced in subsection 3.1.12 for massive
spin-1 particles, are all expressed as products of the basic spin operators
8j. A relativistic generalization of (3.1.62) is then

v % % {% (WﬂW” + W”Wﬂ) +g (guv _ P:f;)] (3.4.19)
with expectation values

T (p,2) = (p: X T"|p; X) (3.4.20)
such that

o aﬁ
TR (p,0) = AN g Ty (3.4.21)
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where A = A[h(p)]. The relation to the non-relativistic expectation values
T;; is then

}ij = Tjj 30'0]' = 90°jo = T 00 =0. (3.4.22)
We note that
> T =0
K (3.4.23)

puT (. X) = T (p, X)p, = 0.

To specify the most general state for a massive spin-1 particle at rest
we introduced in eqn (3.1.76) a polarization vector ¢ (in general complex).
Copying the above procedure, we can define

&' =(0.2) (3.4.24)
and take
e'(p) = (A[h(P))" , € . (3.4.25)
We have
pue’(p) =0 (3.4.26)
and from (3.1.77)
€' (p) - e(p) = —1. (3.4.27)

The relations between S#(p,¢), 7 *'(p,¢) and e¥(p), which generalize
(3.1.78) and (3.1.79), are

L (D) = —€apyp” Im (e*ﬁeV) (3.4.28)

T (D, 8) = —\/g [Re (ehen) + % (gw - %)] . (3.4.29)

For states of definite helicity, ¢ is given by eqn (3.1.80). Equation (3.4.28)
illustrates very clearly that the spin-polarization vector for a spin-1 particle
is quite different from the polarization vector €. Indeed, the complex
polarization vector contains all the information needed to specify the state
of the particle whereas this is not true for the spin-polarization vector.

It is instructive to link the above discussion of the polarization vector
e* with the more familiar use of polarization vectors in field theory when
describing a field of spin-1 quanta by means of a 4-vector field 4,(x). In
that case the analogue of eqn (2.4.5) is usually written

and

& px »
Aulx) =3 / m [€u(p, 2)a(p, e~ + }(p, )b (p, )e™™]

(3.4.30)
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To ensure that there are no spin-0 quanta present one imposes the
invariant condition
0"A4,(x) =0 (3.4.31)
from which we have the requirement
pleu(p, ) =0 (3.4.32)

as in (3.4.26).
Moreover, using (3.4.25) and (3.1.80), if one takes the simple case
p = (0,0, p) then, via eqn (1.2.23),

e(pz, A = £1) = —(0,F1,—i,0) (3.4.33)

Sis

e*(pz, A =0)= —(p,0,0,E) (3.4.34)

|-

and we check that

IV
S tpaemay="F

m
2=0,+1

But (3.4.33), (3.4.34) and (3.4.35) are just the usual properties of the
polarization vectors in (3.4.30). (See, for example, Gasiorowicz, 1967.)
Thus the polarization vectors introduced in (3.4.25) coincide exactly with
those used in conventional field theory.

Finally, let us note from (2.4.10) that e,(p, 1) plays the r6le of the wave
function for the single-particle state |p; ) annihilated by the field A,(x).

For photons, our standard state |ps;4) consists of the photon moving
along 0Z with momentum p% = (p,0,0,p) and helicity +-1 and we may
take e(ps; A = +1) as given by (3.4.33).

For a photon in the state |p;A) = U[h(p, pst)]|pst; A) the polarization
vector is then

— oM. (3.4.35)

€'(p, 4) = (A[h(p, ps)])" v €' (pst; A). (3.4.36)
Explicitly, one finds, when p = (p, 0, @), that
e“(p,£1) = ﬁ(o, Fcosfcos @ +isin@,F cosfsinp —icos @, +sinb).
(3.4.37)

Using this, one can check that the connection between #,(p,¢) and e*
given for massive spin-1 particles in (3.4.28) continues to hold for photons,
and correctly gives (3.4.18).

It is simple to check that, as expected, for the spatial part of the vectors

gp)-p=0. (3.4.38)
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To define a covariant spin tensor J *’ for photons is a little clumsy. The

role of ;o)” /m = (1,0,0,0) must here be taken by a unit time-like vector nf
defined to have components

ni = (1,0,0,0) (3.4.39)
in the standard frame. Then
T (p,8) = \/3 [ (" — g) — Re (e"e")] (3.4.40)

where €* is given by (3.4.37) and
" = n¥(p) = (Alh(p, pst)])" v1gy

_ L2202 e
= 5,5 [P +P 0P =B (34:41)

This 7 # satisfies eqns (3.4.21) and (3.4.22) with 90‘ replaced by .
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Transition amplitudes

Ultimately our fundamental goal in particle physics is to understand the
dynamics, i.e. to have a theory from which we can actually calculate
transition amplitudes. Tests of the theory will involve, at the crudest level,
measurements of differential cross-sections or decay rates but, at a more
sophisticated and more probing level, measurements of all kinds of spin-
dependent phenomena. On the one hand, given a dynamical theory it
is probably simplest to calculate the helicity transition amplitudes and
from them the formulae for the spin-dependent observables that can be
tested against experimental data. On the other hand, in the absence of a
theory it would seem best to try to obtain information on the behaviour
of the transition amplitudes from a sufficiently large number of different
independent measurements. In this way one would hope to be led to
deduce the nature of the underlying dynamics.

In both these situations it is important to bear in mind that certain
properties are intrinsic to transition amplitudes, i.e. they do not depend
upon detailed dynamical theory but rather follow from very general con-
servation laws, principally from the conservation of angular momentum.

The study of reactions thus divides into two phases:

(1) the general properties of transition amplitudes and the connection
between their behaviour and the underlying dynamics; and
(2) the relationship between transition amplitudes and observables.

In this chapter we concentrate upon the former. The latter will be discussed
in Chapter 5.
4.1 Helicity amplitudes for elastic and pseudoelastic reactions

Many kinds of transition amplitude can be found in the literature, but it
seems to us that helicity amplitudes are generally the simplest and most
useful amplitudes, and we shall therefore concentrate almost exclusively on

73
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them. (However, in some circumstances other types of transition amplitude
can be valuable, in particular transversity amplitudes, so we include a brief
discussion of these in Appendix 4.)

We consider reactions of the type

A+B—->C+D

where C and D may be stable or unstable particles. The particles have
arbitrary spins s4, Sg, Sc, Sp.

In defining the scattering amplitudes we shall utilize the simple helicity
states discussed in Section 1.2, which differ slightly from those of the
original Jacob—Wick paper (Jacob and Wick, 1959). We do not adopt the
convention that deals asymmetrically with the particles and distinguishes
‘particle 2” in the reaction.! Nevertheless our helicity amplitudes will be
almost identical to the Jacob—Wick amplitudes at ¢ = 0, the difference
being an irrelevant constant factor. Our amplitudes will have a simpler
¢-dependence and this will lead to simpler properties of the final state
density matrices.

As in Section 1.2 we define single-particle helicity states |p;1) =
|p, 0, ¢; ) normalized as follows:

(05X |p; A) = 2m)® x 2E5°(p' — p). (4.1.1)

A two-particle state, or indeed an N-particle state, is defined as a direct
product of one-particle states. Thus our two-particle CM helicity state
with relative momentum p’ = (p/, 6, ¢) is

Ip';Acip) =P, 0,¢;4c) ® Ip',m — 0, + 7; Ap). (4.1.2)

For consistency, the initial state with 4 along OZ and relative momen-
tum p = (p,0,0) is then

Ip; Aa4B) = |p,0,0;4) ® |p, 7, 7; AB). (4.1.3)

The transition amplitudes are essentially the matrix elements of the
§-operator taken between initial and final CM helicity states. We shall
write these as Hj_;,.1,:,;(0,¢) and they will be normalized in such a way
that for an unpolarized initial state the invariant differential cross-section
is given by

dj _ 1
dt (2s4 + 1)(2sp + 1)

Y Hicin (O (4.1.4)
all 4

! So long as one works only in the CM the Jacob-Wick convention is sensible, but the moment
one wishes to transform to other systems, e.g. to the Lab, the asymmetric treatment of the particle
becomes a nuisance. Indeed Wick himself discarded the convention in later papers. (Wick, 1962).
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where ¢ is the invariant square of the 4-momentum transfer,

t = (pc — pa)- (4.1.5)

For photons, the factor 2s+1 is replaced by 2 in (4.1.4). Here, as through-
out, H(0) means H(6, ¢ = 0).
Our amplitudes are then related to those of Jacob—Wick as follows. For

¢ =0,
Hjcapiaga5(0) = exp [in(sp — sp)] \/ %f,{caD;lAgB((?) (4.1.6)

in which the constant phase factor is basically irrelevant.
However, the ¢-dependence of our amplitudes is simpler than in Jacob—
Wick. We have

HiClD ;AalB (0, ¢) = C¢Xp {id)(lA - ’13)} Hftch A4AB (0) (4.1.7)

With our normalization and conventions the partial-wave expansion is

, T eld4
Hjeipiiaig(0,0) = em(s"‘s”)\/—
C/AD>AAAB pp/ p

x> (7 +14) Gcln TI(E) hatn) d],(0)  (418)
J

where
A=di—Aip p=ic—ip S=1+iT (4.1.9)

and the partial-wave amplitudes are identical to those of Jacob—Wick.

4.2 Symmetry properties of helicity amplitudes

We now list the symmetry properties of the Hy; when the reaction
possesses certain invariant properties.

4.2.1 Parity

Let n; be the intrinsic parity of particle j and suppose that invariance
under space inversion holds. Then, using also rotational invariance, one
finds

H_jc—ips—ra—ip(0,9) = ﬂe_i”“H/chD aip(0, T — @) (4.2.1)
where u is defined in (4.1.9) and

n = TP _pysatsn—sc—sp (4.22)
NanB
Taking ¢ = 0 and using (4.1.7) yields a condition on the ¢ = 0
amplitudes:

H_jemipminmin(©) = n(=1)*""H; 35 .3,1,(0). (4.2.3)
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4.2.2 Time reversal

If time-reversal invariance holds then the sets of helicity amplitudes

H;cipiaaip(0) for the process A+ B — C + D and Hj ; ., ; (0) for the
process C + D — A + B are related by
H} igiacip(0) = (FD20 ™0 (1 Hy gy 0,0,(0). (42.4)

If the reaction is an elastic, one A + B — A + B, then (4.2.4) constitutes a
set of relations amongst the amplitudes for the reaction:

Hj g0, (0) = (=1 #Hys ir .055(0). (4.2.5)

4.2.3 Identical particles

If C and D are identical particles with sc = sp = s then correctly
symmetrized final states

55(1€:0.¢:¢) @ ID;m — 6.6+ 7:.4p)
+(=D)|C;m— 60,6 + 75 4p) ® D0, 3 c))

must be used instead of (4.1.2); similarly for the initial states if A = B.

Let 21, be the operator that exchanges the space and spin quantum
numbers of the first and second particles in the state. Under this ex-
change for particles C and D one finds, using the definition of the helicity
amplitudes, that for ¢ =0

Hieipiiang(0) = (=1 exp [in(As — 48)] Hipicsiis(m — 0) (4.2.7)
and a similar result for 4 < B.

The correctly symmetrized amplitudes for processes involving identical
particles, either fermions or bosons, are then as follows (we label the
helicities a, b, ¢, d for simplicity):

ForA+A—->C+D

Hi304(0) = %5 [Heaaw (0) + (1)~ Hegaraln — 0)] . (4.2.8)

ForA+B—->C+C
HE (0) = %5 [Heoa(0) + (-1 P Hocap(m = )] (4.29)
and forAd+A—->C+C
H: ot (0) = 3 [Heeraa(0) + (=1~ Ho a(0)

+ (—l)a_a,Hc’c,aa’(n - 9) + (_I)C—C/ cc’,a’a(n - 0)]
(422.10)

(4.2.6)
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The correctly symmetrized amplitudes have the following properties:
ForA+4—-C+D

Hcdaa( ) =(— l)c_dHcda (T —0) (4.2.11a)
For A+ B —>C+C

H (0) = (=1)* " HZ, 4(x — 0) (4.2.11b)
For A+ A — C + C, both the above apply and, in addition,

H o (0) = (=1 HZ, 1,(0). (4.2.12)

Note that if the particles belong to a multiplet of some internal sym-
metry group, so that we are dealing with an internal state vector (or wave
function) that has a definite symmetry under interchange of the internal
quantum numbers of the particles, then this symmetry factor (+1) must
be inserted on the right-hand side of (4.2.11a,b). For example, for a state
of definite isospin I a factor (—1)'*! should be inserted. The symmetry
(4.2.11a,b) forces certain amplitudes to vanish at 90° in the CM as follows:

ForA+A—->C+D

HY w(n/2) = ifa=d and (—1)¢=-1. (4.2.13)
For A+B— C+C
HY 3(m/2) = ifc=c¢ and (—1)*?=—1 (4.2.14)

and, as before, both applyto A+ 4 — C + C.

Again, if the state has a definite symmetry under interchange of internal
quantum numbers then the symmetry factor must be included in (4.2.13)
and (4.2.14). Thus, for definite isospin (4.2.13) becomes (—1)¢—4++1 = —1,
etc.

There exist powerful phenomenological consequences of the symmetry
conditions. We give some classical examples.

(i) Elastic proton—proton scattering. In the conventional notation
$01(0) =Hyy14(0)  d20)=Hiy——(0)  ¢3(0) = Hi—1(0)
¢a(0)=Hi_._(0) ¢s(0) = Hyt.4—(0), (4.2.15)
we find
b12 = $120) + P12(n —0) ¢ = ps(0) — ps(m —0)
¢ = ¢3(0)— ¢a(n—0) ¢ = $4(0) — p3(n — ),

an immediate consequence of which (see subsection 5.4.1(ii)) is that the
polarizing power which is proportional to ¢s, vanishes at 6 = 90°.
Also note that we have

¢35 (n — 0) = —¢7 (0). (4.2.17)

(4.2.16)
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(if) Resonance decaying into two identical particles. As explained in sub-
section 8.2.1 the decay amplitude for a resonance of spin J into two
particles is obtained by just keeping the term with the relevant J in the
partial-wave expansion (4.1.8). In addition the partial-wave amplitude is
then independent of the helicity of the resonance. Aside from a normal-
ization constant, one has for a spin-J resonance E — C+ D, with helicities
e,cd,

Heqo(0) = Mg(c,d)dl ._4(0) (4.2.18)
where the Mg(c,d) are dynamics-dependent parameters that depend only

on the helicities of C and D.
For the correctly symmetrized amplitudes for

E—-C+C
one finds from (4.2.11a,b) and (4.2.18), upon using
d,(m — 0) = (=1)"*d]_,(0), (4.2.19)
that
MZ (c,d) = (=1 MZ (c, ) (4.2.20)
from which we see that
MZ (4, 4) =0 if J is odd. (4.2.21)

A classical example is the decay of a massive spin-1 particle into two
photons. To conserve the z-component of angular momentum in the rest
frame of the particle we must have |J;| < 1, so the photons can only have
the same helicity, as shown in Fig. 4.1.

Thus, by (4.2.21), a massive spin-1 particle cannot decay into two
photons, a result originally due to Landau (1948) and Yang (1950). The
result (4.2.21) is thus a generalization of the Landau—Yang theorem.

<= =
«— MWW : WAVMANAA— ————z
A=+1 A=+1

OR

> <=

A=-1 A=-1

—————z

Fig. 4.1. Possible helicities for J = 1 decay into two photons.
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4.2.4 Charge conjugation

For interactions that are invariant under charge conjugation %, the most
interesting cases, as regards helicity dependence, are reactions of the type

A+A—>D+D
or the decay of a resonance with definite charge parity of the type
E - D+D.

Since charge conjugation on a state of the type |4A) is equivalent to
exchanging the space and spin quantum numbers of the particles together
with interchanging their order in the state, we have that

G|AA..) = (=1)P4 P AA..) (4.2.22)
and analogously to (4.2.12) we find for A4+ A4 —- D+ D
H3.0a(0) = (—1)""*Hgy.2,(0) (4.2.23)

where A=a—aand u=d—d.
In the case that A4 is its own antiparticle, i.e.
A+A—->D+D
with 4 = A, one has also
Hj.,4(0) = (—1)“_5’H‘—1d;a(_l(n —0). (4.2.24)

For a resonance E of spin J that is an eigenstate of ¢ with charge
parity #¢ one finds for E - D 4+ D

ME(d,d) = ne(—1)’ Mg(d, d) (4.2.25)
so that Mg(d,d = d) = 0 if nc(—1)’ is odd.

4.3 Some analytic properties of the helicity amplitudes

An important consequence of the analytic structure of the Hy; is that
some amplitudes must vanish in the forward or backward direction. This
is summarized by writing (Wang, 1966)

Hjeipai5(0) = (sin 0/2)*H(cos 0/2) ¥ H; 5, 5,15(0) (4.3.1)

where I:I{ 2 is, in general, finite and non-zero at # = 0 and 0 = 7.

In particular dynamical models the helicity amplitudes may vanish more
rapidly as 0 — 0 or n (Leader, 1968). Equation (4.3.1) gives the minimum
requirement on this vanishing in the forward and backward direction.

If however there are dynamical singularities, e.g. at t = 0 in the Coulomb
scattering of two charged particles, then H may be singular at 6 = 0 or
7. In that case the relative vanishing of different helicity amplitudes must
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be at least as fast as given by the sinf8/2, cosf/2 factors in (4.3.1).
For example, the electromagnetic (one-photon-exchange) contribution to
proton—proton scattering at small ¢ gives

1

¢ =Hiy 121472 12 € R
X (4.32)

cm
5" = Hy 1)2:1/2-1/2 € —
the ratio being in accordance with (4.3.1).

There are other kinematic points at which analyticity imposes some
particular behaviour, namely the thresholds s = (my + mp)?, s = (mc +
mp)?, the pseudothresholds s = (my — mp)?, s = (mc — mp)* and the
origin s = 0. The detailed discussion of Cohen-Tannoudji et al. (1968a, b)
showed that the behaviour of the helicity amplitudes in the neighbourhood
of thresholds and pseudothresholds is complicated and involves constraint
equations tying together the behaviour of several different amplitudes. (In
Appendix 4 we shall see that, on the contrary, the behaviour of transversity
amplitudes is simple at these points while it is complicated at 6 = 0 or =.)

At high energies, the behaviour of Hy; at thresholds and pseudo-
thresholds is unimportant. If however we construct models of the t-channel
helicity amplitudes (see below) then care must be taken, because, for them,
the singularities occur at points t = (my + mc)?> and t = (mp + mp)?,
some of which may be close to the physical scattering region. Care too
must be taken to satisfy the constraints at & = 0 or n. Observed effects
originating from the kinematic singularities must not be attributed to the
dynamics, and models should be constructed so as to satisfy the constraints
automatically.

4.4 Crossing for helicity amplitudes

The amplitudes for the three reactions

A+B—->C+D s-channel
D+B—>C+A4 t-channel (4.4.1)
C+B—>A+D u-channel

all depend upon the Mandelstam variables

s = (pa +pc)’
t = (pa — pc)’ (44.2)
u=(pa—pp)°

with
s+t +u=m}+mh+mk:+mj (4.4.3)
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and are described by just one set of analytic functions evaluated in different
regions of the variables s, t, u. The reaction amplitudes for any one reaction
channel are obtained by analytic continuation from the amplitudes of any
other channel. The set of relations amongst the amplitudes constitute the
‘crossing relations’ (Trueman and Wick, 1964).

For the t- and u-channel reactions, the variables ¢ and u respectively
play the role of the square of the CM energy, just as s does for the

s-channel reaction. Let H,_,,.;,, denote the helicity amplitudes for the
s-chapnel reaction and let us denote by Hitc) 23 n’ Hg)lb s the helicity
amplitudes for the ¢-channel and u-channel reactions, all with ¢ = 0. Then
the t — s crossing relation states that

Hcipiiais = el (p)

(4.4.4)
X dit/;i,i (wA)ditl;iB(wB )H;(ttc)ug SUDHB
where the t — s crossing angles y; are given by
2 2\t 2 2 T2 A
CoOSYPy = _ (s +my —mp)( 'H:_A me) + 2my
S4BT ac
sin = ma¥ cp sin 0
2 2 t 2 02 2 2 A
coswp = (s +mp — my)( +7:_B mp) + 2my
< 4B BD
sin = mp< cp sin 0
¥YB \ﬁ T sp
(4.4.5)
oS e — (s +m& —md)(t +m& —m?) — 2mZA
e L cpT ac
sin = mc 4B sin 0
Yc \/5 T ac
cospp = (s mp —mg)(t+ ;ﬁ, —m3) + 2m}HA
S cp7 BD
sin = mpF 4B inf
vp ST BD '
Here
S = [s— (mi —mj)H[s — (m; + m))*]
T = [t — (mi —mj)A[t — (m; + mj)*] (4.4.6)

AEm%+m%—m124—m%

and 0 is the s-channel CM scattering angle.
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For the crossing from u — s we have
s — J5¢ Sp
Hicipiiais = dyg (), 5, (p)

s s ()
X duéi,, (XA)duljslB (Xp )Hﬂl;iﬂp SHeks

(4.4.7)

where each X; is obtained from the y; of eqn (4.4.5) by the substitutions
t—>u mc — mp mp — mc.

Note that for a massless particle the crossing rules simplify greatly. If
under crossing the particle remains a particle its crossing matrix is simply
dy,;,(0) = 6,. If an antiparticle crosses into a particle then the crossing

matrix is dj; () = (=155 ;.

4.5 Transition amplitudes in field theory

Consider now the calculation of the matrix elements of some operator in
quantum field theory. All operators are expressed in terms of products of
fields and the particle states are reduced to the vacuum state by the action
of the field operators, as shown in eqn (2.4.10), for example. One sees that
each particle or antiparticle in a matrix element will give rise to one or
other wave-function factor. Thus a general transition amplitude involving

particles 4, B, ... and antiparticles C, D, ... will always be of the form
(B,...,D,...|S|4,...,C,...)
=Uy(B) -~ Eﬁ(C)Ma...ﬂ...,y...é...uy(A) T Ua(D). (4.5.1)

4.6 Structure of matrix elements

The matrix M, which is a function only of the momenta of the particles,

will be shown to have simple Lorentz transformation properties. It is
therefore possible, in any given case, to write down its most general
structure consistent with these properties (and with the requirements of
invariance under the discrete transformation). The M’s are referred to as
M-functions in the literature (Stapp, 1962). We shall not give a general
discussion of the theory of M-functions but will illustrate their use in
some cases of particular importance.

4.6.1 Matrix elements of a vector current

As a prototype example we shall examine the matrix elements of a 4-
vector current j#(x) taken between states of a spin-1/2 Dirac particle.
This is germane to the study of the electromagnetic form factors of a
nucleon. The method used works equally well for any ‘current’ that has a
well-defined law of transformation under Lorentz transformations, e.g. a
scalar, spinor, vector etc.
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Under the Lorentz transformation S —l> S! let
xt o XM = (TIx)F = AKX (4.6.1)

(with our conventions A*, = A*,(I"1); see eqns (1.2.10), (1.2.14)) and,
analogously to (2.4.1),

J06) = ()

where
J ) =UD*x)UI™") = A ¥ (Ix). (4.6.2)
Consider the ‘vertex’
TH(p2A2; p1i1) = (p2; A21*(0)[p1; A1) (4.6.3)
= Ux(p2, 22) M5 (P2, P1 )1t (P1, A1)
= u(p2, A2)M*(p2, p1)u(p1, 41) (4.6.4)

where u, u are Dirac four-component spinors for particles of definite
helicity. Our aim is to study the structure of the 4 x 4 matrices M*.

The transformation matrix D,,(I"!) that appears in (2.4.16) is custom-
arily denoted by the 4 x 4 matrix S, for the case of Dirac particles. Thus,
from (2.4.16) and (2.4.18) we have

u(l~'p, /)24, 2(r) = Su(p, 2)
2526 u(~'p, ¥) = u(p, S,
Now using (4.6.2) we insert
A (0) = U)j*O) U™
into (4.6.3) and obtain, using (4.6.4),(2.1.1) and (2.1.9)

u(p2, A2)A¥, M (p2, p1)u(p1, A1)
= (p2; 121 U(D)*O) U ")|p1; A1)
= 23 B2 MO s )2 (1)
= 22 (" pa, )

Az/u

(4.6.5)

x MM g, 1 pu(l™ o1, 1) 25, ()
= u(p2, 2)S ™ M*(I™ " po, I p1)Su(py, A1). (4.6.6)
Thus we end up with the requirement on M*
A*, M (p2,p1) = ST MM (17 po, 171 py)S. (4.6.7)

The next step is to note that M, being a 4 X 4 matrix, can be written as a
superposition of the complete set of 16 Dirac matrices, which comprises:
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the scalar I; the vector y*; the tensor o*’ = %[y“,y”]; the axial vector
y#ys; and the pseudoscalar ys. They have the transformation properties

STUS =1 S7YysS=|Alys  STIyrS = ARy
S7lykysS = |AIAKy s STI6MS = AF,Ago™

where |A| = det(A*)).
When [ corresponds to the operation of space inversion, j#(x) transforms
as a true vector under

(4.6.8)

x = x' = Izlx = (t, —x) = (g"*)x*
(no sum on u) (4.6.9)
7 X)P = (8"))M(t — x).
Using (2.3.7) and the fact that § = y° for space inversion, one finds that

(8" )M*(p2, p1) = 7" M*(—p2, —p1)° (4.6.10)
must be satisfied.

It is simple to check that the following all satisfy (4.6.7) and (4.6.10);
here we write g* = p5 — pf:

Iq" " g
I(pi+p2)t " (pr4p2)y  €,p1055)°.

However, since M* is sandwiched between Dirac spinors, use of the
Dirac equation enables the latter three forms to be expressed in terms of
the first three.

In addition the current is conserved, ie. 0,j*(x) = 0, so that, upon

using the fact that translations are generated by the momentum operator
[P, f(x)] = —i0qf (x), we find

4u(p2; A217*(0)Ip1; A1) =0, (4.6.11)
which is incompatible with a term of the form Ig*. Thus we are left with
y* and o*'q,.

Finally, under time reversal x — x’ = I7lx = (—t,x)
THT = (") (—,%). (4.6.12)

Using (2.3.17), and remembering that J is an anti-linear operator (see
the discussion in subsection 2.3.2) we have

u(p2, 42) g M¥(p2, p1)u(p1, A1)
= (p2; 2|7 ' 1(0)T Ip1; a)
(7 (p2; 22)j*(0)T (15 A1)
= ™= (py 1 — 0y, ¢y + 73 A2 jH(O)|p1, 7 — 01, b1 + 73 )
= 1i(p2, A2)(y°y") M** (—p2, —p1 )y *y u(p1, A1), (4.6.13)
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where we have used (2.4.29) with T = y3y!. Thus we need

) M (—pa, —p1y™y! = (8")M*(p2, 1) (4.6.14)
It is easy to check that
@yHTy Pyt = (g (4.6.15)
and
@3N Te"* (4%, —q)uy 3! = —(g")a* g, (4.6.16)

so that (4.6.14) is satisfied by the forms y# or ic*’q,, times any real scalar
function. Conventionally one writes

(p2; A21j*(0)[p1; A1)
=1(pa, A2) | F1(g})y* + %Fz(qz)ia’“qv u(p, A1) (4.6.17)

where x is the anomalous magnetic moment of the fermion of mass m,
and Fi, are the Dirac form factors.

The approach used in this section can be applied to the analysis of
the matrix elements of any operator that has a well-defined behaviour
under Lorentz transformations. If parity and/or time-reversal invariance
are broken one simply does not impose the restrictions (4.6.10) and/or
(4.6.14).

The analysis that utilizes Lorentz invariance etc. to expose the essential
structure of the matrix elements in (4.6.17) is akin to the familiar use
of the Wigner—Eckhardt theorem to express a set of matrix elements in
terms of just the reduced matrix elements. Thus these 16 matrix elements
(w=0,1,2,3;4; = +1/2,4; = +1/2) are expressed in terms of just two
independent functions Fjj. The dynamics, therefore, is entirely contained
in these functions.

4.6.2 Vector and axial-vector coupling

The two most fundamental theories at the present time are the electroweak
theory of Glashow, Salam and Weinberg and quantum chromodynamics,
and some aspects of these will be discussed in detail in Chapters 9 and 10.
For a general introduction the reader is referred to Leader and Predazzi
(1996). Here we note that these theories contain only vector and axial-
vector couplings of the various gauge bosons to the spin-1/2 fermions. It
is thus important to have a detailed understanding of the properties and
the structure of these vertices.

Firstly we consider the relationship between the expressions for the
Feynman diagram vertices shown below involving incoming and outgoing
spin-1/2 fermions A, B or antifermions A4, B.
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u u

A B
A B A

p.A P, A p.A P, A

Here the vertex is either y# or y#ys. The transition amplitudes 4 — B or
A — B will involve, see eqn (4.5.1),

Tpea(p,p) =up(p, V) {y" or y"ys} ua(p, ) (4.6.18)
and
Tpa(P.p) =0a(p, ) {y* or y*ps}vp(p’, 2). (4.6.19)
Using the charge conjugation result (2.4.35), we have
u(p, 4) = Co(p, 1) (4.6.20)
with
C = iy*y. (4.6.21)

Adding the fact that
CyhC! = —1T (4.6.22)
where y#T is the transpose of y“, one arrives at
g a(p,p) = up(p’, ) {y* or —y"ys} ua(p, A). (4.6.23)

~ Comparing with (4.6.18) we see that the amplitudes for 4 — B and
A — B are equal for the vector coupling and opposite in sign for the
axial-vector coupling. This will be helpful in comparing, for example,

Ve+n—>e +p
with
Ve+p—oet +n

Next we consider the detailed helicity dependence of the vector and
axial-vector vertices.

The four-component Dirac spinors which are constructed in accordance
with eqns (2.4.14) and (2.4.15) and which respect eqns (4.6.20), (4.6.21)
can be written

1 E+m N
u(p,A) = —E\/_—_-l_:m< 2pi )X,l(p) (4.6.24)

o) = <—2p/1>%—z(f)) (4.6.25)

JE +m\E +m
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where p = (sinfcos @, sinfsin¢, cosf), A = +1/2 and X,(p) is a two-
component spinor. In (4.6.24) and (4.6.25) both E + m and 2pA are of
course understood to be multiplied by X(p) to yield a four-component
spinor. One has

Ly(p) = e~ i90:/2= 10032y, (4.6.26)
where A is + or — and

() - e

N e /2 cos0/2 . —e~*/25in0/2
(B = ( ¢i/25in 0/2 0=\ gz cose)2

Let us for brevity put

Explicitly,

). (4.6.28)

VY. = Nu(p', 2 )y"u(p, A
" e, )b 7) (4.6.29)
Al = Nu(p', A)yHysu(p, 4),

with N = [(E'4+m')(E +m)]~'/? included to make the result dimensionless,
and let us define the angular function

h, = 2, 1(P) (4.6.30)
where

o* = (I,0). (4.6.31)

One finds
V9, = N2 [(E' +m')(E +m) + 4pp' )| 1Y, (4.6.32)
V), = 2N*[(E'+m)pi+ (E +m)p ¥ b} (4.6.33)
A%, = 2N2 [(E' + m)pA+ (E +m)p' X h,; (4.6.34)
Ay, = N*[(E' +m')(E +m) + 4pp/ i)' b . (4.6.35)

We see that only two different energy-dependent factors occur. So we may
write

V)?’ﬂ == El’lhg’,la Ag’i = F,{/lhgli (4636)
Vj.],i = Fi’ihﬁll’ Ai’}» = Ej_’}.hi//l (4.6.37)

with
Ey, = ! [(E"+m')(E + m) + 4pp'AX] (4.6.38)

(E" +m')(E +m)
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and

_ 2

" (E'+m')(E +m)
In dealing with QCD and the parton model we shall be particularly

interested in situations in which E > m and E’ > m/, corresponding to
the partons being essentially massless. In this limit

F;;

[(E' +m')pi+ (E +m)p'X] . (4.6.39)

Ey; =1+4+4i) 4+ O(m/E) (4.6.40)
Fu,=2(A+2)+0(m/E). (4.6.41)
We have then the remarkable result that for ' = —A(= +1/2)

Thus the vector and axial-vector couplings approximately conserve he-
licity for a fast-moving particle. The helicity is exactly conserved for a
massless fermion, e.g. for a neutrino. The impact of this in the parton
model is dramatic, since in that model one is supposed to view the col-
lision from an ‘infinite momentum frame’, i.e. from a frame in which all
particles are moving at ‘infinite’ (i.e. very high) speeds.

For the helicity non-flip matrix elements one has the simple results

Vi =2 (hg, 3» 220, i) +O(m/E) (4.6.43)

A, =20V, + O(m/E). (4.6.44)

An analogous simplification arises if we consider the creation or anni-
hilation of a fermion and antifermion via vector or axial-vector coupling

in the limit E > m.
Consider the creation process

A BA
u
B P, A
If we define
Vi, = Nug(p' 2 )y va(p, 2) (4.6.45)
Al = Nug(p'2 )y"psva(p, A) (4.6.46)
then we find
Vi =Fuihl_; Ay =Ey_ih)_, (4.6.47)

Vin=Ey_iW,_, Ay =Fy_h,_, (4.6.48)



4.6 Structure of matrix elements 89

It follows from (4.6.40) and (4.6.41) that in the limit E > m
Vi, =45, =0+0(m/E). (4.6.49)

Hence the amplitude for producing the fermion and the antifermion
with equal helicity is of order m/E. For opposite helicities the result takes
the simple form, analogous to (4.6.43) and (4.6.44),

Vi =22, 1) + O(m/E) (4.6.50)
Ay, =2iV%_, + O(m/E). (4.6.51)

In a similar way, in the annihilation of a fermion—antifermion pair the
matrix element of the form o(y* or y#ys)u will vanish for E > m unless
the fermion and the antifermion have opposite helicities.

4.6.3 Chirality

Let us consider now the connection between these results and the concept
of chirality. A Dirac spinor is said to be either right-handed (R) or left-
handed (L) if it is an eigenvector of ys. By convention

Y5UR = UR YsuL = —uL (4.6.52)
Y5UR = —UR Ys0L = UL.

An arbitrary spinor can always be split up into right-handed and left-
handed pieces by noting that

7s(1 £ys) = £(1 1 7s),
so that
urL = 3(1 £ys)u vrL = 3(1 F s (4.6.53)
satisfy (4.6.52), and then
U =ugr +uL v =UR + VL. (4.6.54)
It is clear from (4.6.24), (4.6.25) that u(p, 1), v(p, A) are not eigenvectors

of
(0 1
s=\r o)

However, when m = 0 they do become chiral states and we have
ur(p) = u(p, 1/2) uL(p) = u(p,—1/2)
vr(p) = v(p, 1/2) vL(p) = v(p, —1/2)

Clearly we should expect (4.6.55) to hold also for massive particles in
the limit m/E — 0. Upon splitting u(p, 1), v(p,4) into their right- and

} m=0). (4655
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left-handed pieces, as in (4.6.53), (4.6.54), we find

E+m+p
" e
E —
X {uR(p,1/2)+ %Mm(m/z)} (4.6.56)
and
E+m+p
P S
)+ 2 p-1/2)| (4657
<o =1/2)+ L —1/2)] (@657)

Thus as m/E — 0 we get

u(p,1/2) = ur(p) [1 4+ O(m/E)]
u(p,—1/2) = ur(p) [1 + O(m/E))

with analogous results for v(p).
The result (4.6.42) can now be understood from a different point of

view. Let us denote chirality eigenstates by u,(p), with n = +1/ — 1
corresponding to R/L, so that (4.6.52) reads

(4.6.58)

uy(p) = nysuy(p)
vy(p) = —nysvy(P),

and let us consider the vector and axial-vector matrix elements for states
of definite chirality. One has for example

Uy (p)y" 1y (P) = Mty (p') 7514y (P)
= —17iy (p)757"tty (p)-
From (4.6.59) we have #,ys = —'@,y, so the right-hand side is

(4.6.59)

1ty (p)y" iy (P),
which is our initial expression multiplied by n#’, so that we must have
nn’ = +1 for a non-zero matrix element, i.e. ' = 5. The same result holds
for pHys.

Thus for massless fermions, y* and y*ys exactly conserve chirality. The
conservation of the helicity in the limit m/E — 0 follows because of the
identification of helicity and chirality in this limit, as shown in (4.6.58).

For fermion-antifermion annihilation or creation, i.e. matrix elements
of the type o(y* or y*ys)u or u(y* or y*ys)v one finds that in the massless
case the fermion and the antifermion must have opposite chirality, which
coincides with our results (4.6.49)—(4.6.51) that the amplitude for anni-
hilation or creation with equal helicities is O(m/E) compared with the
opposite helicity case.
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These results will play a seminal role in our study of the electroweak
theory and QCD, where the couplings are just y* and y*ys. (A more general
version of these results is given in Section 10.4.) Note, for comparison,
that the other couplings (I, ys, 6**) can be shown to flip helicity in the
limit m/E — 0, in contrast to (4.6.42).
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The observables of a reaction

Interesting spin effects are seen in many hadronic reactions, such as
pp — pp, np — np, pp — nA, Ap — Ap, pp — nX etc. And recently
more complete measurements have been made on Ap — Ap and the
related reaction pp — AA, especially at LEAR at CERN. In addition
experiments using polarized deuteron beams and targets are becoming
relatively commonplace.

Given the interest and variety of reactions that are or will be studied it
seems worthwhile to set up a general description for an arbitrary 2 — 2
reaction with particles of any spin. Indeed we shall set up a general
scheme which is, surprisingly, simpler to work with than the usual one
for NN — NN and from which the relevant information for a specific
reaction can be easily read off.

Our emphasis here will be upon those quantities, the observables that
can be measured and upon how they are related to the helicity amplitudes.

We begin with total cross-section measurements, which yield infor-
mation about the forward amplitudes, and then consider more general
observables. For the latter we work first in the CM and then relate the
CM observables to the Lab frames where the measurements are actually
made.

A comprehensive list of linearly independent measurable reaction pa-
rameters and their relation to the helicity amplitudes, for various reactions,
is given in Appendix 10.

5.1 The generalized optical theorem

For spinless particles, in our normalization, the usual optical theorem
(see e.g. Messiah, 1958) relates the imaginary part of the forward helicity
amplitude H to the total cross-section as follows:

Im H(O = O) = %atob (511)

NG

92



5.1 The generalized optical theorem 93

For particles with spin, the direct generalization of (5.1.1) is

1
Im Hj 5534050 = 0) = ratot(}bA, AB) (5.1.2)

NG
where oot(44, Ag) means the total cross-section measured with the initial
particles A and B in the unique helicity states 14, Ap respectively, a
situation that can sometimes be realized using a polarized beam and
target.
The unpolarized total cross-section is defined as

1
(2s4+ 1)(2sg + 1)

S Groiliar 25) (5.1.3)
24,B

Otot =

so that from (5.1.2)

254+ 1)(2sp+ 1
Z Im Hj 550408 = (254 4)( B )O'tot, (5.1.4)
A4,AB \/E

where H;,;,.1,, 15 evaluated at 0 = 0. For photons the factor 2s + 1 is
replaced by 2 in (5.1.3) and (5.1.4).

Relations (5.1.4) and (5.1.2) are very valuable. Equation (5.1.4), which
is easy to use in practice, allows a determination of the imaginary part
of the forward ‘spin-averaged’ amplitude whereas (5.1.2), which may be
difficult in practice, gives the imaginary parts of the individual amplitudes
Hj 50405 at 0=0.

However, (5.1.2) is not the most general form of the optical theorem.
There are other amplitudes, not of the form A44Ap — A44p, which need
not vanish in the forward direction (see Section 4.3), namely those of the
form A4ip — AyAy where A}y — Ay = A4 — Ap; all these can be measured
by suitably preparing the initial states of beam and target.

Let pi(A, B) be the joint helicity density matrix for the initial particles.
Then (Bialkowski, 1970) the generalization of (5.1.2) is

1
Z pi/l%lB;/lA/lB(A’B) Im H/”.;/VB;}»A}»B(B =0)= nat‘)t(pi) (5.1.5)
= iy=la—Ip Jr

where oot(pj) is the total cross-section measured with the beam and target
described by p;.
Usually the beam and target are uncorrelated, so that

pi(4, B) = pi(4) ® pi(B). (5.1.6)

We shall illustrate the use of (5.1.5) in nucleon—nucleon scattering and
then consider a more general reaction.
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5.1.1 Nucleon—nucleon scattering

Let the spin-polarization vectors for the beam (P*) and for the target (P?)
both be specified in the Lab frame, as is commonly done in experiments.
Then the CM helicity density matrices for particles 4 and B will be

p(A)=%(I+’PA-a)

p(B) =} (1 4 PE. G) (5.1.7)

where, because the Lab frame is rotated from the helicity rest frame for
B (see Fig. 3.1 and discussion thereafter)

PE = (28, -8, —75). (5.1.8)
Substituting in (5.1.5) yields

Im Hyy i (1 — 2 27)
+ Im Hy—y (1 4+ 2/ 20)
1
+ Im Hoy o (PLP7 + 23 P)) = Eﬁamt(vy‘mﬂ) (5.1.9)
where (+) is short for (+1/2).
The connection between our helicity amplitudes and the notation com-

monly used in nucleon—nucleon (NN) physics (Goldberger et al., 1960) is,
aside from normalization,

Hiivy=¢1  Hyy—=¢2 Hi oy =¢3

(5.1.10)
Hi . =¢4 Hyy =¢s
If 5 indicates complete polarization along or opposed to the incoming
beam direction and 1| indicates polarizations transverse to the beam then
(5.1.9) gives the now familiar results

AoL = 0ot — ot = 4y/m Im (Hypr —Hii), (5.1.11)

where the top arrow refers to the beam polarization and the bottom arrow
to the target polarization, and

AO'T = Otott| — Otott = —4ﬁ Im H.|.+;__, (5112)

where the first arrow refers to the beam polarization and the second arrow
to the target polarization.

Measurements of Acy, and Aar have produced rather interesting results,
as will be discussed in Chapter 14.
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5.1.2 Particles of arbitrary spin

It is now simplest to specify the initial CM helicity density matrix in terms
of the multipole parameters t),(4) and t5,(B) (see eqn (3.1.32)). Then
(5.1.5) becomes

Z Z tm(A)tm(B) Im hlL(m) \/—O'tot(Pl)

m L

where hjr(m) is a linear combination of forward amplitudes:

hu(m) = (552111))((22;111) Tr [T4TEH(O = 0)). (5.1.13)
Parity invariance gives
hip(—=m) = (=1 hyg (m) (5.1.14)
and time-reversal invariance yields
hip(m) = (1) Fhy (m). (5.1.15)

Thus only even values of [ + L can occur and we end up with the result

1
aoe = S T2 Im ) Re (G5B (54

LL m>0
I4+L even

Notice that there is no interference between even and odd ranks of
polarization.
For identical particles one also has

hiL(m) = hpi(m). (5.1.17)

By suitably choosing the ¢/ (4) and tL(B) one can measure the linear

combinations of forward amplitudes h;y (m).
Note that since (T,ﬁi) = 0 unless i = j + m, all amplitudes in the sum

ij
(5.1.16) are of the form

HAA+m,AB+m ;;tA/lB

with, of course |m| < min{2s4,2sg}. Thus we have an important result:
The determination of the imaginary part of a forward amplitude of the form
Hj, tmip+m:i i Tequires polarization of rank | > |m| in both beam and
target.
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Once the hj(m) are determined, the individual helicity amplitudes can
be obtained via

Hjyimapimiagiy = (=147 (25, + 1)(2sp + 1)]1/2

hi(m)
X l, ,A + ; ,_i
%} [(21 + 1)(2L + 1)]/2 (Lm|sq, Aq +m;s4,—Aa)

X (L,m|sg,Ap +m;sp,—Ap).

(5.1.18)

5.1.3 Application to deuteron—nucleon
and deuteron—deuteron scattering

Consider a magnetically prepared beam and target with axes of quanti-
zation in the Lab frame specified by polar angles 6 = f4,¢ = y4 and
0 = BB, ¢ = 0 respectively, as shown in Fig. 5.1.

Let ?6 and % be the multipole parameters of beam and target when
referred to the frames in which their quantization axes are along OZ.
Then the CM multipole parameters needed are found from (3.3.1) and
(3.3.2), and (5.1.16) becomes

1 241 1
—=0wt(p) = > Lolg > cos(y.am) dyo(Ba)
4Jn

ILL m>0
I+L even =

x dLo(m — )2 — Omo) Im hyp(m).  (5.1.19)

TARGET

Y

Fig. 5.1.  Angles specifying quantization axes of beam and target.
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In terms of the polarization and the alignment! of beam and target,
(5.1.19) gives the following.
Ford+ N—>d+ N

1

iz

O'tot('Pd,&f;'PN) = Im hoo(0)

+ L [242Y Tm his(1) — 242N Tm iy (0)]
+ 35 (3cos?f— 1) Im ho(0)  (5.1.20)

where

hoo(0) = 3 (Hu/z;n/z + Ho1/2.01/2 + H—11/2;—11/2)
hii(1) = B3H120-1)2

h11(0) = \/§ (H11/2;11/2 — H—11/2;—11/2>

hao(0) = %\[% (H11/2;11/2 +H_ 112,112 — 2H01/2;01/2)

(5.1.21)

and where B is the angle between P? and the beam direction. Note
that four measurements are needed to find all the amplitudes, and only
polarizations along and transverse to the beam are required.

For d+d — d + d, labelling the beam and target deuterons by A and B
respectively, one gets?

1
o

= Im h()()(O) +

o1ot(PE, 2B PA, o)
1[2428 Im hyi(1) — 2428 Im hy1(0)]
[ 44 (3cos? g —1) + o/® (3 cos® B — 1)] Im h2(0)
+ 410&/“,9{3 [(3cos? pa— 1) (3cos? fz — 1) Tm hxx(0)
— 12 cosy4 sin 4 cos B4 sin B cos fp Im hyo(1)
+3cos 2y, sin? B4 sin® B Im hzz(z)] . (5.1.22)
1 See subsection 3.1.12.

2 This can be written in simpler form using the Tj; of eqn (3.1.59). We have not done so because
experimentally it is easier to think in terms of the alignment.
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Finally, the amplitude combinations measured by seven experiments
are:

hoo(0) = § (H11;11 + 2H0.01 + Hi—1;1-1 + %Hoo;oo)

h11(1) = Hi1,00 + Hi00-1

h11(0) = Hir;1 — Hi—1;1-1

hao(0) = 1 (Hy1;11 — Hioso + Hi—t:1-1 — Hoo:00) (5.1.23)
hx(0) = 3 (H11 11 — 4H10;10 + Hi—1;1-1 + 2Hoo,00)

hx(1) = 3 (Hii00 — Hio0-1)

h(2) = $Hi1-1-1.

Note that now the polarizations of both beam and target have to be set

at some angle other than along or transverse to the beam for at least one
measurement. For example, one could choose y4 =0, 4 = fp = 45°.

5.2 The final state helicity density matrix

We consider now the definition, and some important properties, of the
helicity density matrix of the final particles produced in a reaction. Initially
we deal with 2 — 2 reactions, but this will be generalized in Section 5.8.

5.2.1 Definition

We consider an arbitrary reaction 4 + B — C + D. For given initial
helicities a, b, the helicity amplitudes H.4.,, are a measure of the probability
amplitude for finding the final helicities ¢, d. Thus, in analogy with eqn
(3.2.2) the joint CM helicity density matrix for the final state is

p/cd;c/d/(c, D) = ZHcd;ab pjab;a/b/(A,B) H:’d’;a’b’ (521)
a,b
ap

where pj(A4, B) is the initial state helicity density matrix. To avoid the
profusion of indices we write (5.2.1) in matrix form:

p'(C,D) = Hpi(A, BH. (5.2.2)

If pi(A4, B) is correctly normalized, so that Tr pi(4, B) = 1, it will be found
that p'(C, D) is not normalized to trace 1, so for computing expectation
values of observables in the final state we must always use

p'(C,D)

PEPY= ey
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With our normalization for Hy;), eqn (4.1.4),

d’c (1
dtdg P
where (d?c/dtd¢)(p;) is the differential cross-section into the momentum

transfer range t — t + dt and the azimuthal range ¢ — ¢ + d¢ for an
initial state specified by p;.

Tr p/(C,D) = 2 ), (5.2.3)

5.2.2 Rank conditions

Since the rank (see subsection (3.1.2)) of a product of matrices must be
less than or equal to the rank of any matrix in the product, (5.2.2) implies
that

rp<ri (5.2.4)

where r; and r; are the ranks of the final and initial state density matrices.
This condition can be a very stringent one. For example, in

n+N-—>n+N(J)

where N*(J) is a high-spin resonance, r; cannot be greater than 2 (p; is a
2 x 2 matrix) and therefore py, which is 2J x 2J and could thus be a huge
matrix, must have rank < 2.

If it happens that only the even part p of the final state density matrix
can be measured (see subsection 3.1.7), then the weaker rank condition

rank py < 2r

holds. In our N*(J) example above, if J = 3/2 we end up with rank
p+ < 4 which is no restriction at all, bearing in mind that p; is a 4 x 4
matrix! If both C and D have non-zero spin and we consider the effective
density matrix of, say, C, then its rank must satisfy a much weaker bound
than (5.2.4), namely,

rank p(C) < (2sp + 1) rank p; (5.2.5)

with analogous constraint for D.
Generally a large number of relations may exist amongst the elements
of p; and they must be taken into account experimentally.

5.2.3 Angular momentum constraints near 0 = 0,7

The behaviour of the Hy; near 6 = 0 and =n (Section 4.3) imposes
constraints on p(C,D) near the forward and backward regions. These
depend upon p;i(4, B).
The strongest conditions apply when the initial state is unpolarized.
Thenat 0 =0orn
pcd;c’d’(CaD) =0
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unless both
c—d=c—d and |c—d|<s4+ s

Near these points, the behaviour is

pedivar o (sin0/2)° (cos 6/2)°" (5.2.6)
where
si=lc—d—cd+d|+(1+e)M
ci=lc—d+d—d|+(1—eM
with
e =sign{(c—d)( —d)}
and

0 when either [c —d| or | —d'| < s4+ sB
min{‘lc—dl — 54— SB'; ‘|c/ —d'|—sy4 —SB‘} otherwise.
For the effective single-particle density matrix, say of particle C, we have
pee(C) =0, (52.7)

unless both

c=c and |c| <54+ sp+Sp,

and
pee(C) oc (sin0/2)% (cos 0/2)° (5.2.8)

where

sSi=le—d|+(1+eM

a=le+d|+(1—-e)M
with

€ =sign {cc'}

and

- {0 when either |c| or || < 54+ s + sp

min {‘lcl — 54 —5Sg—spl;||c/| —s4 —sB — sD‘} otherwise.
The above constraints must be respected in any data analysis. It will
be seen in Section 5.4 that the multipole parameters have a much simpler

behaviour than p at § ~ 0, 7.
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5.3 The CM observables and the dynamical reaction parameters

Several discussions of the variables valid for relativistic scattering have
been given in the literature for nucleon—nucleon scattering. Detailed ref-
erences are given in Bourrely, Leader and Soffer, (1980).

Our treatment is more general, applying to any reaction, and is actually
simpler. We expand the initial and correctly normalized ﬁnal density
matrices in terms of joint multipole parameters th(A B), t ,M,(C,D),
according to eqn (3.1.31) as generalized to combined systems of particles,
and substitute in (5.2.2). There results a relation between the initial and
final multipole parameters of the reaction:

rrr d20'
twfsar(C.D) gy ()

_ <2> 1 d"Z(zl+ DRL+ 1)

(l,m;L,Mu’,m s L', M') , 1, (A)3(B) (53.1)

where n, is the number of photons in the initial state. We have assumed
that the beam and target are uncorrelated. Equation (5.3.1) gives the value
of tf;%,(C,D) when C’s direction is at polar angles 6, ¢ in the CM. The
outcome of the experiment is controlled by the fundamental CM dynamical
reaction parameters (we shall simply call them ‘reaction parameters’),

(Lm; L, MI',m'; L', M)

= () 1
—\dt (2s4 +1)(2sp + 1)
x Tr [HTH(so) T (s)H T (sc) T (sp)]s (53.2)

where H is the matrix whose elements are H4.45(0, ¢). The use of matrix
notation is compact and efficient, but to avoid any confusion we write out
the trace in (5.3.2) in full detail:

Tr [HT) (s4)Tyf (s8)H ' Thy(sc) Taz (sp)]
car (Tl 50) (T (5w)),,

B (150, (),

The reaction parameters (5.3.2) are a direct generalization of the Wolfen-
stein parameters. All the dynamics is contained in these parameters, which
can be evaluated in terms of the helicity amplitudes. They depend on both
0 (or t) and ¢, but the ¢-dependence is trivial:

(Lm; L M\l',m’; L', M)y = M=) (I m; L, M|I',m’; L', M),  (5.3.3)
¢
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where the right-hand side parameters are at ¢ = 0. When no ¢-label is
shown we shall always mean ¢ = 0 in the reaction parameters.
It should be noted that the order of symbols is

(beam; target|scattered; recoil)
and the normalization is such that
(0,0;0,0(0,0;0,0) = 1. (5.34)

Note that for some colliding-beam experiments the spin measurements
are carried out in the CM, so that (5.3.1) will apply directly to the measured
quantities.

In using (5.3.1) and various special cases to be derived from it, it must
be remembered that for all photons, whether polarized or not, because
of the absence of states with helicity 2 = 0 one has 3 = 1/./10, as is
explained in subsection 3.1.12. Also of use in this case is the result

(2,0;0,0(0,0;0,0) = 1/4/10,
which follows from (5.3.2) and the properties of TO2 as given in (3.1.26).

5.3.1 Properties of the CM reaction parameters

The reaction parameters are not all independent as a consequence of the
symmetry properties of the helicity amplitudes and of the T!, matrices.

(i) Reality. From T = (—1)"T"., follows
(L,m; L, M|I',m"; L', M')*

= (—1)ymtMAEn M g L —M|, —m'; L', —M'). (5.3.5)

(i) Parity. Using (T,’n) = (—1) (T’_ m) and the space inversion
—my—my A mymy
properties eqn (4.2.1) in both the Hy; in (5.3.2) yields
(L,m; L, M|l',m'; L', M')

(_1)m+M—|—m’+M’ (_1)l+L+l'+L’
x (I, =m;L,—M|l',—m"; L', —M’). (5.3.6)

Thus
(1,0;L,0|I',0;L',0)=0 (5.3.7)

if |[+L+1'+ L is odd.
When this is combined with (5.3.5) we have the important result

I
(Lm; L, M|U,m ;L' M) s {imare; " }
gmary (53.8)

I+ L+l +1/ .{even}.
asl+ L+l + 18 odd
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(iti) Time-reversal. Using eqn (4.2.4) in both the Hy; in (5.3.2) and also
the fact that the T, are real gives

(L,m; L, M|l',m; L, M")AB=€P
= (I',m'; L', M'|l,m; L, M)§2 45, (5.3.9)

=7
For elastic reactions eqn (4.2.5) yields

(Lm; L, M|I',m'; L', M")
= (—1ymEMAm M () M|l m; L M) (5.3.10)

(iv) Identical particles. Using (4.2.11a,b) we find the following.
If A =B,

(Lm; L, M|I',m'; L', M)’
= (1" *M' (L, M;1,m|l',m’; L', M'y"*. (5.3.11)

Thus at 6 =x/2
(Lm;L,m|l',m';L',M") =0 if m" + M’ is odd. (5.3.12)
If C =D,
(Lm; LML, M1, m)? = (=1)™™M (1, m; L, M|I',m ; L', M"Y* . (5.3.13)
Thus at 0 = /2
(Lm; L,M|l',m;1',m') =0 if m+ M is odd. (5.3.14)
Equations (5.3.13), (5.3.14) also hold for reactions of the type
A+A—->D+D

provided the reaction is invariant under charge conjugation.
Finally, if A = B and C = D then

(L. M Lm|L', M50 m') = (=)™ MM (s L MLl L M),
(5.3.15)
This also holds for reactions of the type

A+A—->D+D

if charge conjugation is a good symmetry.
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(v) Additional parity and time-reversal constraints. The application of the
above symmetry results will not, in general, reduce the number of inde-
pendent reaction parameters to the expected N? in the case where there
are N independent helicity amplitudes. The additional relations can be
obtained by applying the symmetry concerned to just one Hy; in (5.3.2).
The results are as follows.

Parity:

(Lm; L, M|I',m'; L', M)
=0 > ALty (IM)AL L7, (LM)A (') 1 gy (LM

repeated
indices

X (li,my; Ly, My|ly, my; Ly, M) (5.3.16)

where 7 is defined in eqn (4.2.1). The o/(Im) are given in terms of vector

addition coeflicients and are tabulated for s = 1/2,1 and 3/2 in Appendix

6.

Time reversal: (for elastic reactions):
. . _ Im;l'm' ,LM;L'M’
(L L MIU,m S L MYy = 0 6 61 v

repeated
indices

x (I1,my; Ly, My|l}, m}; Ly, My) (5.3.17)

The coefficients ¢ are explained in Appendix 7 and are tabulated for s =
1/2. In Appendix 10 we give a comprehensive list of linearly independent
reaction parameters for various reactions and their relation to the helicity
amplitudes.

(vi) Behaviour near 6 = 0 or n. In the forward and backward scattering
regions we find

(Lm; L, M|I',m'; L', M')?=0 oc (sin 0/2)m—M-m+M'| (5.3.18a)
and
(Lm; L, M|I',m'; L', M')?=™ oc (cos /2)/m—M+m' =M (5.3.18b)
The phenomenological consequences of these properties will emerge in the
following sections.
5.4 Experimental determination of the CM reaction parameters

In this section we assume that we are given the CM multipole parameters
for an arbitrarily prepared initial state and that we are able to measure
the joint CM multipole parameters of the final state. The connection
with measurements carried out in the Lab and the question of how one
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measures the multipole parameters will be dealt with in Sections 5.5 and
5.6.

From (5.3.1), exhibiting explicitly the ¢-dependence, the outcome of an
experiment is controlled by

2 n,
dE (0, )4 <5> L do Z(2l+1)(2L+1)

dtdp ~— \3) 2rmadr
xZe’¢ Mgl (A)th,(B)
(l,m,L,M|l’,m,L/,M’) (5.4.1)

where, of course the left hand side is measured for an initial state
specified by t},(4) and t§,(B). (For photons we recall the discussion after
eqn (5.3.4).)

There are, in general, two ways to utilize (5.4.1) experimentally in order
to learn about the reaction parameters. The first way takes advantage
of the simple ¢-dependence to study asymmetries such as ‘up—down’ or
‘left-right’. The most sophisticated example would involve measuring over
the whole range of ¢ at fixed 6 and then taking experimental averages of
¢"® over the data at fixed 0, the u being integers.

The second way looks at the changes induced in a measured observable
when the density matrix of the initial state is altered, e.g. by reversal of
the ordinary (rank-1) polarization of beam or target. For spin > 1/2 the
method is less efficacious than for s = 1/2, where one can maximize the
effect by fully reversing the sign of the polarization. It is not generally
possible to reverse the sign of an arbitrary t,, when [ > 2. We shall discuss

an example where the . are altered by the passage through a magnetic
field.

5.4.1 Unpolarized initial state

(i) Measurements of the generalized polarizing power
and the final state polarization correlation parameters

Since all t,(4) and t§,(B) are zero except t3(A4) = tJ(B) = 1, there is no
¢-dependence left in (5.4.1) and, remembering that by definition

L do
d¢ drdd (unpol. initial state) = o

one obtains

th 1/ (C, D;unpol. initial state) = (0,0;0,0(/',m’; L', M"). (5.4.2)
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For an elastic reaction time reversal, eqn (5.3.10), then gives the
parameters:

(I',m';L',M'|0,0:0,0) = (—1)" *™(0,0;0,0|',m’; L', M").

Note that the parameters (0,0;0,0|/’,m’;0,0) and (0,0;0,0|0,0; L', M) are
analogous to the usual polarizing power of the reaction but are here
generalized to specify the rank of the polarization produced. We shall
refer to them as the ‘Im polarizing power’. The parameters with both I’ and
L’ non-zero are generalizations of the final state polarization correlation
parameters C;; used in nucleon-nucleon scattering. All these parameters
can be determined, in principle, using an unpolarized initial state.

(ii) Properties of the final state multipole parameters
From (5.4.2) and the properties (5.3.5)—(5.3.17) of the reaction parameters
we learn the following properties of the final state CM joint (or effective)
helicity-basis multipole parameters for a parity-conserving reaction with
unpolarized initial state:

(a) t'L. /(C, D) is independent of ¢.
(b) As always 'L, (C,D) = (=1y"M{L (C, D).
real even
(c) t'h, is or forl+L¢ or ;. (54.3)
imaginary odd
(d) Hence, t'%_,,(C,D) = (—1)FLAmM{IL (C D)

and 1tk =0 if I + L is odd.

As an example, consider the famous result that the spin-polarization
vector P of the final particles in a parity-conserving two-body reaction
with unpolarized initial state must be perpendicular to the reaction plane.
The properties (c) and (d) imply that t(l) =0 and til is pure imaginary
respectively. The result then follows from eqn (3.1.35).

In reverse, we note that a non-zero value of, say, the longitudinal com-
ponent of P (i.e. the component along the particle’s momentum) signals a
parity violation. Some of the most beautiful electroweak experiments play
upon just this feature.

(e) If particles C and D are identical then

t'L(0) = 5 (n—6). (5.4.4)
(f) If, in addition, particles A and B are identical then
thag(0) = (=1 Mg, (0) (5.4.5)
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and it follows that
L (m/2)=0  if m+ M is odd. (5.4.6)

As an example, in pp — pp we have t‘il = 0 at § = n/2. Thus the
spin-polarization vector P has magnitude 0 at 0 = n/2. Equivalently one
can say that the polarizing power vanishes at 6 = /2.

(2) Asf—0 b oc (sing/2)" M

(5.4.7)
AsO - th oo (cosh/2)m M

Most of the above properties have obvious consequences for the helicity
density matrix itself. The most interesting result follows from (d), namely

pedea = (=) 4o q (548)
Note that from eqn (3.1.43) the even- and odd-polarization parts of the
final state density matrix are, in this case, simply the real and imaginary
parts of p, i.e.

p+= Rep

. (5.4.9)
p— =1ilm p.

In the transversity basis the analogue for the effective density matrix of
either of the final particles is

ps. =0 if ¢ —cisodd, (5.4.10)

thus giving pT a ‘chequerboard’ pattern and forcing [t} ]gr = 0 if m is odd.

5.4.2 Polarized beam, unpolarized target

We consider the measurement of the cross-section and the final state
multipole parameters for an arbitrarily polarized beam. We also give
some results for specific types of initial polarization.

(i) Measurement of cross-section asymmetries
— the generalized analysing power
From (5.4.1) we have, in general (for photons we recall the discussion
after eqn (5.3.4))

d*e 2\" 1 do -
L (2) TS0 + 1 (A)(1,m;0,0]0,0;0,0)e ™.
dtdd <3> or dt %n:( + 1)t,,(A)(1,m; 0,0 Je (5.4.11)
The parameters (I,m;0,0]0,0;0,0) play the role of the ‘analysing power’
of the reaction for Im-type initial polarization, since they govern the
magnitude of the asymmetry or ¢-dependence in d’c/dtd$. From eqn
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(5.3.10) we see that for an elastic reaction the magnitudes of the Im
polarizing power and Im analysing power are equal.!

In a typical polarized-beam experiment let the quantization axis for the
beam have polar angles 8 = f, ¢ = y in the rest frame of the beam
(see Fig. 5.1). Let ff) be the (known) helicity multipole parameters in the
frame whose Z-axis is along the quantization axis. Then the CM multipole
parameters t)(4) needed for (5.4.11) are, from (3.3.1),

th(4) = e"™d ()b (5.4.12)

We refer to the plane ¢ =y, i.e. the plane containing the beam and the
quantization axis, as the quantization plane. For this discussion there is no
loss of generality in choosing y = 0, so that the quantization plane is the
XZ-plane. In detail (5.4.11) now becomes (recall that (I,m;0,0|0,0;0,0) is
pure imaginary when [ is odd)

d*’c _ (2\"™ 1 do | o l
iap = (3) e (1 + 222+ g 32 = S0l ()

I>1 m=0

X {[1 + (=1)] cosmep — i[1 — (—1)1] sinm¢}
x (1,m;0,00,0;0, 0)) (5.4.13)

where ¢ is the azimuthal angle measured from the quantization plane.
The asymmetries with respect to the quantization plane, or the detailed
¢-dependence itself, can be used to isolate the combinations such as

Gm =20 + Dipdho(B)(1,m;0,0[0,0:0,0) (5.4.14)

I>m

for each m > 0.

To measure the individual (/,m;0,0/0,0;0,0) one must be able to vary
the ¢} (4) of the beam for each m. One way to do this is to deflect the
polarized beam in a magnetic field, between the production reaction and
the main reaction. We shall discuss one simple example.

! Because of this and eqn (5.4.2), an analogue of (5.4.11) appears in the non-relativistic literature
with (I,m;0,0]0,0;0,0) replaced by (—l)mtﬁn(O), the latter being the CM final state multipole
parameters for A when produced from an unpolarized initial state. We avoid this in practice
since it confuses properties of the beams in special situations with properties of the reaction.
Moreover in relativistic double-scattering experiments the tﬁn(A) to be inserted into (5.4.11) are
NOT the final state CM multipole parameters of the first reaction but, rather, are the [tﬁ,,(H)] Sie
discussed in subsection 3.3.2 (see eqn (3.3.14)).
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(ii) Use of a magnetic field to vary the initial state density matrix

Let a polarized beam having multipole parameters t’fn emerge in the
XZ-plane and pass through a uniform magnetic field B oriented along
OY. The particles are deflected around OY through an angle 0Oy (the
cyclotron angle) as measured in the Lab. (0cy is zero for neutral particles.)

The helicity density matrix of the beam, considered, as usual, to be
arriving along the Z-direction of the main reaction, will then be described
by the CM helicity multipole parameters . given by

th(3) =3 d\, (0) ) (54.15)

where § is the angle of precession of the spin vector of the particle during
the passage through the magnetic field.

For a particle of mass m, charge Q, arbitrary spin s and total magnetic
moment g, the g-factor is defined by

Y
=g = g, 5.4.16
p=gy S ( )
Then the precession angle ¢ is given, in terms of the cyclotron angle, by
g EL

where Ep is the Lab energy of the beam particles. For protons and
deuterons one has

g g
2 — 1) =179 ( — 1> = —0.14.
( 2 proton 2 deuteron

It is thus difficult to cause a sizeable alteration of the t’i,, for
deuterons. Nevertheless a successful experiment of this type, using 410
MeV deuterons, was carried out by Button and Mermod (1960), and the
idea seems to stem from Lakin (1955).

For neutral particles

5= —2u (52) »_ B4 (5.4.18)
pLc/ 2mye

where p is the magnetic moment in units of the proton magneton, e, and
m, are the charge and mass of the proton and d is the distance through
the magnetic field traversed by the particle.

If B is measured in gauss and d in metres then

0~ —32x10"y (%) Bd. (5.4.19)

We have, for example,

Uneutron = —1.91 upa = —0.61.
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Clearly one must utilize as many different values J; of 6 as there
are [-values appearing in the sum (5.4.14) and measure C,,(d;) for each.
The individual (I,m;0,0/0,0;0,0) are then obtained by solving a set of
simultaneous equations.

(iii) Measurement of the generalized
depolarization and polarization-transfer parameters
Consider the case where we measure the effective multipole parameters of
particle C. From (5.4.1) and (5.4.2) we have

’ d20' ’ d20'
rfn/(C)—} — [t,’w(o——]
I: dtd¢ pol.bm. dtd¢ unpol.
2 ny 1 dO' 1
- <§> £E§(2l+l)tm(A)
x (1,m;0,0|l',m’;0,0)e"™ (5.4.20)

where do/dt is, of course, the unpolarized cross-section.

Equation (5.4.20) indicates the significance of the generalized depolar-
ization parameters (I,m;0,0|l',m";0,0) which can be measured by studying
the asymmetry in ¢ of the left-hand side for several values of I’ and n?,
bearing in mind the ¢-independence of the second term on the left-hand
side. As in (ii) above, the isolation of individual parameters will be possible
only if the initial ¢t} (4) can be varied.

If it is the density matrix of D that is measured, completely analo-
gous equations hold and one determines thereby the generalized A — D
polarization-transfer parameters (I,m;0,0(0,0; L', M’).

If the joint multipole parameters for C and D can be measured, one
learns analogously about the ‘three-spin’ parameters (I, m;0,0(l',m’; L, M").

(iv) Properties of the final state
From (5.4.13), (5.4.20) and the properties (5.3.5)—(5.3.17) of the reaction
parameters we find that the special properties of d?¢ /dtd¢ and tf,’;M(C,D)
for our main reaction, as listed below, hold for any of the following
situations.

(s1) The magnetically prepared beam has f = n/2, i.e. the quantization
axis is perpendicular to the beam.

(s2) The beam is a secondary beam emerging from a previous parity
conserving reaction R;:E + F — A+ G, with unpolarized initial state,
and our Y -axis is along pg X p4.

(s3) As in (s3), but R; can have a polarized beam E, a polarized target
F or both, provided that the quantization axes are normal to the
scattering plane of R;.
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The properties are:

(a) d*c/dtd¢ is symmetric under reflection in the beam-containing plane
that is perpendicular to the quantization plane, ie. under ¢ — —o.
(Exceptionally, if particles A have spin 1/2, this holds also for any
angle f of the quantization axis; furthermore, Re ', for [ + L even
and Im t!L, for | + L odd are symmetric under ¢ — —q’>)

(b) tiL(C, D) now depends on ¢ in general.

(c) As always

= (=ML (5.4.21)
(d)
1L () = (—1)FEL L (—4). (5.4.22)
Thus at ¢ =0
real even
t'L, s or as |+ L is or ». (5.4.23)
imaginary odd

(e) Hence t'L ,(¢) = (—1)'"+M+I+Lt£f,“M(—¢), and

too(¢ = 0) = if I + L is odd. (5.4.24)

As an example, an incoming beam with its spin-polarization vector P4
perpendicular to the scattering plane satisfies the condition (sq). Then use
of (5.4.22) together with (3.1.35) tells us that the spin-polarization vectors
PC€ and PP must also be perpendicular to the scattering plane.

(f) For an arbitrary initial polarization, if C = D one has
(L 1(0,¢) = 5 (n — 0,0 + 7). (5.4.25)
(2
As 0 -0 1’ oc (sin0/2)7
IL A (5.4.26)
Asf > tth, oc (cos0/2)

where A = max {0, |m — M| —m'} and m' is the largest value of ||
that occurs in the tf;,,(A) of the polarized beam.

For the density matrix itself, the results given in subsection 5.4.1 hold
at ¢ = 0. For ¢ # 0 one has

pedca($) = (_I)C_C/+d_d//7—0’—d’ —c—d(—¢). (5.4.27)
In particular p satisfies (5.4.8) at ¢ = 0 under the experimental conditions

(s1)—(s3).
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There are other results that hold for rather special circumstances. For
example, if the quantization axis lies in the scattering plane and if the
beam possesses only even-rank or only odd-rank polarization, then

(Re tf,fM>pome. { eovgg:rr:;lllz } polarization
= (Re tl,,fM)unpoL for | +L{ :Vi‘ril } (5.4.28)
and
(Im tf,’;M>pol.bm. for { ngcrll:rr;;l: } polarization
= (m ti,fM)unpoL for l+L{ ZV(‘;; } (5.4.29)

These are particularly powerful when the beam consists of spin-1/2 parti-
cles, since in this case only rank-1 polarization is possible. As an example,
if the spin-polarization vector of the beam, P4, lies in the scattering plane

then the spin-polarization vector P¢ can have components both in (’P”C )

and perpendicular to (’Pf) to the scattering plane. Equations (5.4.28),
(5.4.29) together with (3.1.35) tell us that P$ is independent of the vector
P4, ie. it is the same as it would have been if the beam were unpolarized.

5.4.3 Polarized target, unpolarized beam

The transcription of the results of subsection 5.4.2 to the situation where
the target is polarized and the beam is unpolarized is absolutely straight-
forward. Only one point requires mention.

If the experiment involves a stationary target in the laboratory and if
the target quantization axis is specified by polar angles 0 = f’, ¢ =y’ in
the Lab frame, then in place of (5.4.12) one must have (see eqn (3.3.2))

th(B) = e "Mk (n — B)ik. (5.4.30)

If, however, the experiment involves colliding beams and if f', y’ refer
to the quantization axis for B in its helicity rest frame Sp (see Fig. 3.1)
then (5.4.12) should be used to calculate t&/(B).

5.4.4 Polarized beam and target

For either the differential cross-section or the final state multipole pa-
rameters, the general result when the beam and target are both polarized
is, from (5.4.1), of the form (for photons recall the discussion after eqn
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(5.3.4))

1y dZO' Iyt d20'
I'L '
v C, D)—— — |t v =
l ' )dtdd> pol.bm. l mM dtdqb]
pol.targ. polbm

1y d2o. ryr d20'
I'L '
- tm/M/ —] + ltm/M/—}
I, dtdd) pol.targ. dtdd) unpol.

_(2\" 1 do ! L
mM

X (Im; L, M|l',m’; L', M")e 7" M=m)% (5.4.31)

Here, obviously, the state of polarization of beam (or target) must, where
labelled, be the same on both sides of the equation.
The generalized initial state polarization correlation parameters,

(I,m; L, M|0,0;0,0),

which are the analogues of 4;; in nucleon—-nucleon scattering, can be stud-
ied from the ¢-dependence of the differential cross-section. Other three-
and four-spin tensors require measurements of the final state multipole
parameters.

For arbitrarily polarized beam and target the final state parameters t,’,’;M
do not possess any special symmetry properties. If, however, the following
experimental condition holds,

(s4) the quantization axes of beam and target are parallel

then the properties (a)—(f) listed in subsection 5.4.2(iv) continue to hold in
the situations (s1)—(s3).
The behaviour near 0 = 0, is now as follows.

For 0 >0  t'5, o (sin6/2)"

For 0 — =« 1’ oc (cos B/ 2N
(5.4.32)
where A’ = max {0, |[m — M| — @i} and 7 is the largest value of |m' — M|
that occurs in the tﬁ;,(A) and t&,(B) of the polarized beam and target.

5.5 The laboratory reaction parameters

For some colliding-beam experiments the measurements are carried out in
the CM so that the multipole parameters that appear in (5.4.1) are the ones
measured. For fixed targets in the laboratory what one actually measures
are the multipole parameters in the Lab natural analysing frames (see
subsection 3.3.2, especially Fig. 3.5). It is straightforward to translate these
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measurements into statements about the CM multipole parameters so that
(5.4.1) again applies. However, for psychological reasons, experimentalists
prefer to utilize the analogue of (5.4.1), which connects directly what goes
into the experiment with what comes out in the Lab.

With all quantities measured respectively in the Lab analysing frames
SLA, SLB, SLC, SLD one has

ryr d26 2 My 1 dO'

I'L “v — < ahad

|:tm/M/(C,D) dtd(ﬁjL (3) > di E I+1D)R2L+1)
LCsSLD IL

mM

X (Lm;L,M|l',m"; L', M") ., g M—m)¢

(5.5.1)
where, from (3.3.14), the Lab reaction parameters are
(,m; L, M| ,m s L', M)y
= > (m;LM|I'\m";L',M")
m',M"
X db (=0 )dp g (—0p) (55.2)

with the angles ac,ap being given by (2.2.13).

Note that the Lab reaction parameters enjoy the same reality property
(5.3.8) as do the CM ones.

Clearly the entire analysis of measurements in the CM can be taken over
unchanged to discuss the extraction of the Lab reaction parameters from the
Lab experimental data.

The symmetry properties that relate many of the CM parameters to
each other will give rise, via (5.5.2), to similar, though more complicated-
looking, relations amongst the Lab parameters.

Only the parity result looks simple:

(L—m; L,—M|I',—m; L', —M")Lqp, = (—1)" MM (LAl
X (Lm; L, M|I',m"; L', M) Lap (5.5.3)
from which one gets
(1,0;L,0[/,0;L,0)1ap =0  if [+ L+1+L is odd. (5.5.4)

For the other symmetries there is no point in writing down the general
results. In a specific reaction it is best to write them out explicitly for the
CM parameters and then to substitute the inverse of (5.5.2) to get the
relations amongst the Lab reaction parameters.
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