
Dhabaleswar K. Panda
Michael Sullivan (Eds.)

LN
CS

 1
32

14

7th Asian Conference, SCFA 2022
Singapore, March 1–3, 2022
Proceedings

Supercomputing Frontiers

Lecture Notes in Computer Science 13214

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://link.springer.com/bookseries/558

Dhabaleswar K. Panda · Michael Sullivan (Eds.)

Supercomputing Frontiers
7th Asian Conference, SCFA 2022
Singapore, March 1–3, 2022
Proceedings

Editors
Dhabaleswar K. Panda
Department of Computer Science
and Engineering
The Ohio State University
Columbus, OH, USA

Michael Sullivan
Material Science and Chemistry
A*STAR Institute of High Performance
Computing
Singapore, Singapore

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-10418-3 ISBN 978-3-031-10419-0 (eBook)
https://doi.org/10.1007/978-3-031-10419-0

© The Editor(s) (if applicable) and The Author(s) 2022. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-10419-0
http://creativecommons.org/licenses/by/4.0/

Preface

As the share of supercomputers in Asia continues to increase, the relevance of super-
computing merits a supercomputing conference for Asia. Supercomputing Asia 2022
(SCA22) was an umbrella of notable supercomputing events that promoted a vibrant
HPC ecosystem in Asian countries.

The technical programof SCA22 provided a platform for leaders fromboth academia
and industry to interact and to discuss visionary ideas, important global trends, and
substantial innovations in supercomputing. Called the Supercomputing Frontiers Asia
(SCFA) technical paper program, SCFA22, consisted of four tracks:

– Application, Algorithms, and Libraries
– Architecture, Network/Communications, and Management
– Data, Storage, and Visualization
– Programming and Systems Software

The submitted papers for the technical papers program went through a rigorous peer
review process by an international program committee. A set of eight papers were finally
selected for inclusion in the proceedings. The accepted papers cover a range of topics
including HPC communication, GPU programming models, network service, large data
set transfer, molecular dynamics simulation, and large-scale parallel applications. The
quality of the papers is reflected in the proceedings that you find here. We would like
to thank all authors for their submissions to this conference. Our sincere thanks to
all Program Committee members for doing high-quality and in-depth reviewing of the
submissions and selecting the papers for this year’s program. We would like to thank
the conference organizers for giving us the opportunity to serve this year’s conference
as the Co-Chairs for SCFA22.

April 2022 Dhabaleswar K. Panda
Michael Sullivan

Organization

Program Co-chairs

Dhabaleswar K. (DK) Panda The Ohio State University, USA
Michael Sullivan A*STAR Institute of High Performance

Computing, Singapore

Program Committee

Ritu Arora The University of Texas at San Antonio, USA
Olivier Aumage Inria, France
Ron Brightwell Sandia National Laboratories, USA
Rajkumar Buyya The University of Melbourne, Australia
Maciej Cytowski Pawsey Supercomputing Centre, Australia
Sandra Gesing University of Illinois Discovery Partners Institute,

USA
Mark Gray Pawsey Supercomputing Centre, Australia
Bilel Hadri KAUST Supercomputing Lab, Saudi Arabia
John Kim Korea Advanced Institute of Science and

Technology, South Korea
Kishore Kothapalli International Institute of Information Technology,

Hyderabad, India
Bu Sung Lee Nanyang Technological University, Singapore
Fang-Pang Lin National Center for High-Performance

Computing, Taiwan
Jing Lou A*STAR Institute of High-Performance

Computing, Singapore
Piotr Luszczek University of Tennessee Knoxville, USA
George S. Markomanolis CSC - IT Center for Science Ltd., Finland
Ronald Minnich Sandia National Laboratory, USA
Antonio J. Peña Barcelona Supercomputing Center (BSC), Spain
Depei Qian Beihang University Member, China
Martin Schulz Technical University of Munich, Germany
Ryota Shioya The University of Tokyo, Japan
Nathan Tallent Pacific Northwest National Laboratory, USA
Michela Taufer University of Tennessee, Knoxville, USA

viii Organization

Jingbo Wang The Australian National University, Australia
Jianfeng Zhan Institute of Computing Technology,

Chinese Academy of Sciences, China
Joey Tianyi Zhou A*STAR Institute of High Performance

Computing, Singapore

Contents

High Performance Parallel LOBPCG Method for Large Hamiltonian
Derived from Hubbard Model on Multi-GPU Systems . 1
Susumu Yamada, Toshiyuki Imamura, and Masahiko Machida

Vapor Condensation Under Electric Field: A Study Using Molecular
Dynamics Simulation . 20
Pengyu Wang and Zhong Chen

The Effect of Wing Mass and Wing Elevation Motion During Insect
Forward Flight . 31
Jie Yao and K. S. Yeo

Exploring the Dynamics of Quantum Information in Many-Body
Localised Systems with High Performance Computing . 43
Shao-Hen Chiew, Leong-Chuan Kwek, and Chee-Kong Lee

On the Difference Between Shared Memory and Shared Address Space
in HPC Communication . 59
Atsushi Hori, Kaiming Ouyang, Balazs Gerofi, and Yutaka Ishikawa

Evaluating GPU Programming Models for the LUMI Supercomputer 79
George S. Markomanolis, Aksel Alpay, Jeffrey Young, Michael Klemm,
Nicholas Malaya, Aniello Esposito, Jussi Heikonen, Sergei Bastrakov,
Alexander Debus, Thomas Kluge, Klaus Steiniger, Jan Stephan,
Rene Widera, and Michael Bussmann

Evaluating Methods of Transferring Large Datasets . 102
Jakub Kopeć

Service Function Chaining Design & Implementation Using Network
Service Mesh in Kubernetes . 121
Abdullah Bittar, Ziqiang Wang, Amir Aghasharif, Changcheng Huang,
Gauravdeep Shami, Marc Lyonnais, and Rodney Wilson

Author Index . 141

High Performance Parallel LOBPCG
Method for Large Hamiltonian Derived
from Hubbard Model on Multi-GPU

Systems

Susumu Yamada1(B), Toshiyuki Imamura2, and Masahiko Machida1

1 Japan Atomic Energy Agency, Kashiwa, Chiba, Japan
yamada.susumu@jaea.go.jp
2 RIKEN, Kobe, Hyogo, Japan

Abstract. The physical property of the Hubbard model can be under-
stood by solving the eigenvalue problem for the Hamiltonian derived
from the model. Since the Hamiltonian is a large sparse matrix, an iter-
ation method is usually utilized for solving the problems. One of effec-
tual solvers for this problem is the LOBPCG (Locally Optimal Block
Preconditioned Conjugate Gradient) method. The tuning strategies of
the method on GPU systems when all iteration vectors are stored in
device memory have been proposed. In this research, we propose tun-
ing strategies for parallel LOBPCG method on multi-GPU system when
the Hamiltonian is large and some iteration vectors are stored in host
memory. When the LOBPCG method is used for solving multi eigenpairs
(eigenvalues and the corresponding eigenvectors), the number of itera-
tion vectors, whose size is the same as the dimension of the Hamiltonian,
is proportional to the number of the eigenpairs. On the other hand, the
memory consumption for the non-zero elements of the Hamiltonian can
be significantly reduced by considering the regular arrangement of the
elements. Therefore, when we execute the LOBPCG method for a large
Hamiltonian on GPUs, some of the vectors have to be stored on host
memory and have to be transferred between host and device memory as
needed. Since the cost of the data transfer is very large, we also propose
the optimization for it. The simulation result on a multi-GPU system
shows that the optimization of the data transfer is very effective for high
performance computing.

Keywords: LOBPCG method · Multi-GPU systems · Data transfer
between CPU and GPU

1 Introduction

Eigenvalue problems appear in a variety of fields such as quantum dynamics,
structure analysis and economics. Therefore, many solvers for them have been

c© The Author(s) 2022
D. K. Panda and M. Sullivan (Eds.): SCFA 2022, LNCS 13214, pp. 1–19, 2022.
https://doi.org/10.1007/978-3-031-10419-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10419-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-10419-0_1

2 S. Yamada et al.

developed and the strategies to improve their performance have also been pro-
posed. In the quantum dynamics, when we solve eigenvalue problems derived
from quantum models, we can recognize quantum states which indicate prop-
erties of the models. In this research, we focus on the eigenvalue problem for
the Hamiltonian derived from the Hubbard model and will propose the strate-
gies to realize a high performance solver on multi-GPU systems. The model can
exhibit the property of many interesting phenomena such as high-temperature
superconductivity [9,11], therefore, a lot of physicists take interest in it. The
Hamiltonian, which represents the energy of the Hubbard model, is given as

H = −t
∑

i,j,σ

c†
jσciσ +

∑

i

Uini↑ni↓, (1)

where t is the hopping parameter from a site to another one and Ui is the repul-
sive energy for one-site double occupation of two fermion the i-th site. Quantities
ci,σ, c†

i,σ and ni,σ are the annihilation, the creation, and the number operator
of a fermion with pseudo-spin σ on the i-th site, respectively. When we solve
the ground state (the smallest eigenvalue and the corresponding eigenvector) of
the Hamiltonian, we can understand the property of the model. Moreover, when
we solve multi eigenpairs (eigenvalues and the corresponding eigenvectors), we
can reveal more detail property. Therefore, many methods to solve the model
have been proposed. One of the most accurate solvers is the exact diagonalization
method which directly solves some eigenpairs of the Hamiltonian derived exactly
from the model. At this time, the Hamiltonian becomes a huge sparse symmet-
ric matrix. Accordingly, an iteration method, such as the Lanczos method and
LOBPCG (Locally Optimal Block Preconditioned Conjugate Gradient) method
[7,8], is usually utilized. And then, the parallelization strategies for multi-CPU
systems [14] and the tuning ones for single-GPU systems [1,12,15,17] have been
proposed. In this research, in order to realize the LOBPCG method for solving
some eigenpairs using multi-GPU systems, we will propose the parallelization
and tuning strategies. The parallelization not only realizes speedup by distribut-
ing the calculations, but also enables simulations for larger models by distribut-
ing data. Since the memory size of GPU is generally smaller than that of CPU,
we can calculate larger models by storing data in CPU memory (host memory)
than in only GPU memory (device memory). Accordingly, in order to simulate
a larger model, we transfer the data that are required for an operation from
host to device memory and temporarily store them in device memory, and then,
we execute the operation using them. Moreover, we have to transfer the calcu-
lation results from device to host memory, if necessary. Since the speed of the
data transfer between host and device memory is much slower than that of data
transfer in GPU, it is important to decrease the cost of data transfer between
host and device memory for high performance parallel LOBPCG method on
multi-GPU systems. In order to realize the decrease, we focus on the data trans-
fer between host and device memory in this paper. Accordingly, although it may
be possible to perform faster using CPUs in addition to GPUs, we target the
LOBPCG method whose all time-consuming operations are performed on only
GPUs.

High Performance Parallel LOBPCG on Multi-GPU Systems 3

The rest of the paper of structured as follows. Section 2 presents the imple-
ment schemes on multi-GPU systems. We propose the tuning strategies in view
of data transfer between host and device memory in Sect. 3. Section 4 shows
the result of numerical experiments on HPE SGI 8600 in Japan Atomic Energy
Agency. A summary and conclusion are given in Sect. 5.

2 LOBPCG Method for Solving Multi Eigenpairs
on Multi-GPU Systems

We can solve m eigenpairs of the matrix H using the LOBPCG method shown
in Fig. 11. The method requires m matrix-vector multiplications and some lin-
ear operations using iteration vectors x

(i)
k , w

(i)
k , p

(i)
k , X (i)

k , W(i)
k , and P(i)

k

Fig. 1. LOBPCG method for solving the m smallest eigenvalues and the cor-
responding eigenvectors of a symmetric matrix H. T (i) is a preconditioner for
the i-th smallest eigenvalues. And X (i)

k , P(i)
k , and W(i)

k are Hx
(i)
k , Hp

(i)
k ,

and Hw
(i)
k , respectively. As convergence progresses, a set of iteration vectors

{x(1)
k , . . . ,x

(m)
k ,w

(1)
k , . . . ,w

(m)
k ,p

(1)
k , . . . ,p

(m)
k } becomes linearly dependent, and the

general eigenvalue problem can not be solved. Therefore, in practice, we orthonor-
malize a set of the vectors to calculate the algorithm stably.

1 In practice, in order to improve the convergence property, it is advisable to set the
parameter m larger than the number of eigenpairs which we want to find.

4 S. Yamada et al.

(i = 1, 2, . . . ,m). Moreover, in order to execute the LOBPCG method stably,
we have to orthonormalize iteration vectors x

(i)
k , w

(i)
k and p

(i)
k . At this time,

SB becomes the identity matrix. The parallelization schemes of the multiplica-
tion for the Hubbard model on multi-CPU systems have been proposed [14]. In
addition, the tuning strategies for single-GPU systems have been also proposed
[12,15,17]. We propose the parallelization of the multiplication on multi-GPU
systems by combining the above two strategies appropriately. Since the size of
device memory is typically a fraction of that of host memory, it is supposed in
this paper that we store only the information of the matrix H and 2m vectors
(w(i)

k and W(i)
k , i = 1, . . . ,m) in device memory and the other vectors (x(i)

k ,
X (i)

k , p
(i)
k and P(i)

k) in host memory. Here, the time-consuming operations of
LOBPCG method are Hamiltonian matrix-vector multiplication operations and
the vector operations (dot product, vector update and orthonormalization). In
the following, we introduce the parallelization strategies in multi-GPU systems
for each operation.

2.1 Hamiltonian Matrix-Vector Multiplications

When we solve m eigenpairs of the Hamiltonian, we have to operate m
Hamiltonian-vector multiplications per iteration. Since each of these multipli-
cations can be executed independently, we focus on parallelization and tuning
strategies for one multiplication. The Hamiltonian is represented as

H = D + I↓ ⊗ A↑ + A↓ ⊗ I↑, (2)

where D is a diagonal matrix from the repulsive energy, and A↑ (A↓) is a sparse
symmetric matrix from the hopping of the up-spin (down-spin). And, I↑ (I↓) is
the identity matrix, dimension of which is the same as that of A↑ (A↓). When
the dimension of A↑ (A↓) is n↑ (n↓), the dimension of the Hamiltonian H is
n↑ × n↓. Since the dimension of A↑ and A↓ is much smaller than that of H, we
store the non-zero elements of A↑, A↓ and D in device memory instead of the
matrix H. Here, the multiplication of the Hamiltonian and vector is

Hv = Dv + (I↓ ⊗ A↑)v + (A↓ ⊗ I↑)v.

We transform the vector v to the matrix V as the following manner:

v =

⎛

⎜⎜⎜⎝

v1
v2
...

vn↑×n↓

⎞

⎟⎟⎟⎠ → V =

⎛

⎜⎜⎜⎝

v1 vn↑+1 · · · vn↑×(n↓−1)+1

v2 vn↑+2 · · · vn↑×(n↓−1)+2

...
...

...
...

vn↑ v2n↑ · · · vn↑×n↓

⎞

⎟⎟⎟⎠ , (3)

and the diagonal elements of the matrix D to the matrix D̄ as the same manner.
Here, the matrix-vector multiplication is change into the following matrix-matrix
multiplication:

(HV)i,j = D̄i,jVi,j +
∑

k

A↑i,kVk,j +
∑

k

A↓j,kVi,k,

High Performance Parallel LOBPCG on Multi-GPU Systems 5

where the subscript i, j of a matrix is the (i, j)-th element of the matrix. Since
the matrix V is a dense matrix, we can execute the multiplications in parallel
as follows:

CAL 1: Y c = D̄c � V c + A↑V c,
COM 1: all-to-all communication from V c to V r,
CAL 2: Zr = V rAT

↓ ,
COM 2: all-to-all communication from Zr to Zc,
CAL 3: Y c = Y c + Zc.

where the superscription c and r denotes the columnwise and rowwise partition-
ing in matrix data for the parallel calculation. And, � means an elementwise
multiplication. The parallelization strategy requires two all-to-all communication
operations per multiplication.

When all non-zero elements of the matrix H and the data of the decomposed
matrices ,V c and V r, are stored in device memory, we can execute CAL 1,
CAL 2 and CAL 3 by using the algorithms proposed for single-GPU systems
[12,15,17]. Here, the storage layout of V c and V r should be row-major and
column-major order, respectively, in order that A↑V c and V rAT

↓ are performed
with contiguous memory access. Therefore, the method requires the change of
the storage layout of the matrix between column-major and row-major order,
however, the operation can be executed with high performance by using the
shared memory on GPU systems.

2.2 Vector Operations

The vector operations in the LOBPCG method can be categorized into the
following three groups:

– Dot product for constructing 3m× 3m-dimensional symmetric matrix (SA in
Fig. 1),

– Updating all column vectors of Xk+1, Pk+1, Wk+1, Xk+1 and Pk+1

,where Xk+1 = (x(1)
k+1, . . . ,x

(m)
k+1), Wk+1 = (w(1)

k+1, . . . ,w
(m)
k+1), Pk+1 =

(p(1)
k+1, . . . ,p

(m)
k+1), Xk+1 = (X (1)

k+1, . . . ,X (m)
k+1)(= HXk+1) and Pk+1 =

(P(1)
k+1, . . . ,P(m)

k+1)(= HPk+1).
– Orthonormalization for all column vectors of Xk+1, Pk+1 and Wk+1.

We discuss the dot product and update for vectors first, then the orthonormal-
ization of vectors.

Dot Product and Vector Update. The parallelization of dot product can
be realized by calculating the partial sum of dot product on each process and
performing the sum-reduction for the partial sum by MPI ALLREDUCE in all
processes. The parallelization of vector update operation can be realized by
performing the ‘axpy’ operation for the decomposed vectors on each process
without data communication between processors. When all vectors are stored

6 S. Yamada et al.

Fig. 2. Schematic CUDA Fortran codes of vector operations of the LOBPCG method
for solving m eigenpairs on multi-GPU systems. Here, the number of tiles of the vec-
tors is l and the dimension of each tiled vector is n. Therefore, the dimension of the
decomposed vector on each process is l×n. Here, h is cuBLAS library handle. And, x,
p, dot and dot0 are stored in host memory and dx, dp, w, α, β, γ, dd, dd0 and dtmp in
device memory. The codes are simplified to indicate the relationship between the data
transfer and the execution on a GPU. Therefore, the code should be extended appro-
priately to actually execute the LOBPCG method. Moreover, the data is transferred
in one operation by packing data.

High Performance Parallel LOBPCG on Multi-GPU Systems 7

on device memory, the vector operations can be parallelized straightforwardly.
However, in this research, 4 matrices (Xk, Xk, Pk and Pk) are stored in host
memory, and the data have to be transferred to device memory. Therefore, we
partition the vectors into some tiles and we transfer each tile of the vectors from
host to device memory and execute the partial dot product operation on each tile
(Fig. 2(a)) [10]. The vector update operation can be also executed using almost
the same strategy (Fig. 2(b)). However, the operation requires transferring the
updated vectors from device to host memory.

Orthonormalization of Vectors. Here, we discuss the orthonormalization of
the iteration vectors x(i)

k , p(i)
k , and w

(i)
k . In order that we execute the LOBPCG

method for solving multi eigenpairs stably, a set of the basis of the subspace
spanned by all iteration vectors, that is, a set of all column vectors of Xk, Pk,
and Wk, should be linearly independent. Therefore, we should orthogonalize the
basis per iteration. The orthognalization can be realized by many methods such
as the modified Gram-Schmidt (MGS) orthonormalization, TSQR, CholeskyQR,
CholeskyQR2 and so on [2,4,13]. When we apply these methods for vectors
directly, we have to transfer vectors stored in host memory. Therefore, we focus
on the orthogonalization strategy for the LOBPCG method proposed by Het-
maniuk and Lehoueq (HL) [3,5]. The HL strategy is as follows:

– Here, we represent the eigenvector corresponding to the i-th smallest
eigenvalue of SA as v(i). And, it is assumed that a set of vectors
{v(1),v(2), . . . ,v(m)} is orthonormal, moreover, a set of all column vectors
of the matrices Xk, Pk and Wk in the k-th iteration is also orthonormal.

– When the (i, j)-th element of the matrices C1, C2 and C3 are defined as
C1

(i,j) = (α(i)
j), C2

(i,j) = (β(i)
j) and C3

(i,j) = (γ(i)
j), that is,

⎛

⎝
C1

C2

C3

⎞

⎠ = (v(1),v(2), . . . ,v(m)),

Xk+1 and Pk+1 are calculated by

(Xk+1, Pk+1) = (Xk,Wk, Pk)C, C =

⎛

⎝
C1 0
C2 C2

C3 C3

⎞

⎠ .

Here, a set of all column vectors of matrices Xk+1 becomes orthonormal.
– We decompose matrix C into QR using QR decomposition. When we calculate

Xk+1 and Pk+1 using the following formula

(Xk+1, Pk+1) = (Xk,Wk, Pk)Q,

all columns of Xk+1 and Pk+1 are orthonormal2.
2 Xk+1 is the same as the above result, because a set of (v(1), v(2), . . . , v(m)) is

orthonormal.

8 S. Yamada et al.

– Next, we orthonormalize the column vectors of Wk+1 against those of Xk+1

and Pk+1 using the classical Gram-Schmidt (CGS) method, that is, WK+1 is
updated by the following formula [6]

Wk+1 = (I − Xk+1X
T
k+1 − Pk+1P

T
k+1)Wk+1. (4)

The method requires much less allreduce communication operations than the
MGS method.

– Finally, we orthonormalize a set of the columns vectors of Wk+1 using the
MGS method. The MGS method requires a lot of allreduce communication
operations, however, the number of the operations in this case is reduced by
about one-ninth compared to the orthonormalization of all column vectors of
three matrices Xk+1, Pk+1 and Wk+1. Moreover, since we orthonormalize a
set of only the column vectors of Wk+1 stored in device memory, we do not
need to transfer any vectors between host to device memory.

In this operation, when we find vectors to be a combination of other vectors,
we eliminate them in this iteration. We show the schematic CUDA Fortran code
for orthogonalizing the column vectors Wk+1 against those of Xk+1 and Pk+1

in Fig. 3. The operation requires to transfer Xk+1 and Pk+1 from host to device
memory twice.

Performance. Here, we examine the performance of these three operations
using the above methods for solving the eigenvalue problems of the Hamiltonian
derived from 5 × 4-site Hubbard model with 5 up-spins and 5 down-ones using 16
GPUs of 4 nodes on HPE SGI8600 in Japan Atomic Energy Agency. The details
of the system are shown in Table 1. Here, the dimension of the Hamiltonian is
240,374,016, therefore, the dimension of a partitioned vector for each GPU is
15,023,376.

Figure 4 shows the elapsed time of each operation for solving 5 or 10 eigen-
pairs. The result indicates that the elapsed times tend to increase as the number
of tiles becomes larger. The reason is that as the number of the tiles increases,
the number of data transfer operations increases and the data size for each trans-
fer operation decreases, that is, the latency of data transfer increases and the
throughput declines. Moreover, in this result, it is noted that the elapsed time
of the vector update operation is unstable. The reason is that when we execute
operations on four GPUs on the system whose node logic diagram as shown in
Fig. 5, we generally run two processes on each processor. When two processes
on a processor simultaneously transfer data between host and device memory in
the same direction, the bus connected between a CPU and two GPUs are shared
with two processes and the throughput per process is limited to about half of the
throughput of data transfer using one process. In the beginning of the iteration,
the data transfer operations on two processes of one processor are synchronized.
However, when the number of the tiles is large, that is, the number of iterations
for completing the operation is large, the data transfer operations in the same
direction on the two processes gradually become out of synchronization and the

High Performance Parallel LOBPCG on Multi-GPU Systems 9

Fig. 3. Schematic CUDA Fortran code of orthogonalizing the column vectors of W
against those of X and P using the classical Gram-Schmidt method.

opposite directional transfer operations sometimes might be synchronized. They
can be performed without conflict, and they achieve almost the same as the peak
throughput when the size of the transferring data is large. Figure 6 shows their
elapsed times for solving 10 eigenpairs. The result demonstrates that the elapsed
time of the conventional method (synchronous data transfer) is in the interval
between that of the same-directional data transfer with synchronization3 and
that of the opposite-directional one (Fig. 7). And, it is confirmed that the inter-
val of throughput for the two data transfer operations becomes narrow as the
number of tiles increases. The reason is that when transferring large data, the

3 MPI barrier operation is executed in the beginning of each iteration of the outer-
most loop in Fig. 2(b).

10 S. Yamada et al.

Fig. 4. Elapsed time of orthonormalization and dot product and vector update per
operation.

Table 1. Details of GPU-system of HPE SGI 8600 in Japan Atomic Energy Agency.

CPU Intel Xeon Gold 6248R

(3.0 GHz, 35.75 MB cache) × 2 CPUs

Number of CPUs per node 2

Number of cores per CPU 24

Memory of node 386 GB

GPU NVIDIA Tesla V100 SXM2 32GB memory

Number of GPUs per node 4

Connection between CPU-GPU ×16 PCIe (16 Gbytes/s)

Network 4 ports of 4 × EDR Infini Band interfeces

Network Throughput 50 GB/s(12.5 GB/s × 4)

(one direction)

throughput of the opposite-directional data transfer is larger than that of the
same-directional one, however, as the size of the transferring data per operation
becomes small, that is, the number of tiles becomes larger, the former declines
and ultimately becomes almost the same as the latter.

3 Optimization CPU-GPU Data Transfer

3.1 Asynchronous Data Transfer

When we execute the calculation consuming huge memory on a GPU, we have
to transfer the necessary data from host to device memory (HtoD). The data
transfer operation can be overlapped with the calculation on GPUs by using
asynchronous data transfer. In actual, the dot product, the vector update and
the orthonormalization operations shown in Sect. 2.2 can be overlapped with the
data transfer using the multi-buffering strategy. Since the data transfer of the

High Performance Parallel LOBPCG on Multi-GPU Systems 11

Fig. 5. Node logic diagram of GPU sys-
tem on HPE SGI8600 in Japan Atomic
Energy Agency.

Fig. 6. Comparison of elapsed time of
vector update operation using three
types of data transfer.

Fig. 7. Schematic code of vector update operation with performing HtoD data transfer
on one process of a CPU and DtoH transfer on the other process at the same time.
Here, two processes are run on each processor and the MPI ranks of these processes
are set to be contiguous.

dot product and the orthonormalization operations is only HtoD, the overlap can
be realized using the double-buffering. Moreover, the update vector operation
requires to transfer the updated vectors from device to host memory (DtoH)
in addition to HtoD data transfer. Therefore, the overlap of data transfer and
calculation in the operation can be realized by using the triple-buffering.

Here, we compare the performance of the three operations using the syn-
chronous data transfer with that using the asynchronous one. Figure 8 shows
the relationship between the elapsed time of each operations and the number
of the tiles. The results indicate that the method using the asynchronous data
transfer is faster than the method using synchronous one for the dot product
and the orthonormalization operations. On the other hand, for the vector update
operation, when the number of tiles is small, the asynchronous data transfer real-
izes speedup, however, it is confirmed that the performance becomes unstable
as the number of tiles increases. As a result, when the number is large, there are
cases where the speedup effect can not be obtained.

12 S. Yamada et al.

Fig. 8. Comparison of elapsed time using synchronous and asynchronous data transfer
operations. Here, m means the number of eigenpairs to be solved.

3.2 Reduction of Data Transfers

After updating vectors, we orthonormalize the column vectors of Wk+1, and we
calculate SA using the dot product operations. The vector update operation
requires HtoD transfer for four matrices Xk, Xk, Pk and Pk, and DtoH transfer
for four updated matrices Xk+1, Xk+1, Pk+1 and Pk+1. The column vectors of
these four updated matrices will be used as is for the following calculations. On
the other hand, the column vectors of Wk+1 are the residual vectors, and they are
modified by a preconditioning. Therefore, we can perform the dot product oper-
ations and the orthonormalization after applying preconditioner. However, when
we apply a preconditioner which works elementwisely like point Jacobi precon-
ditioner, we can modify the updated residual vectors elementwise. Accordingly,
when we apply such a preconditioner or do not perform any preconditioning,
we can calculate the partial sum of the dot products by using the subset of five
matrices Xk+1, Xk+1, Wk+1, Pk+1 and Pk+1 before the data is transferred to the
host memory4. Therefore, we can calculate Xk+1W

T
k+1 and Pk+1W

T
k+1 which are

used for the orthogonalization of the column vectors of Wk+1 against those of
Xk+1 and Pk+1 without the HtoD data transfer. However, when we execute the
orthogonalization using the result of the dot product, we have to transfer Xk+1

4 When we use the HL strategy, the column vectors of Xk+1 and Pk+1 are orthonormal.
In this case, we do not need to calculate Xk+1X

T
k+1, Xk+1P

T
k+1 and Pk+1P

T
k+1.

High Performance Parallel LOBPCG on Multi-GPU Systems 13

and Pk+1 from host to device memory. After the orthogonalization, we orthonor-
malize the column vectors of Wk+1 against each other without any HtoD data
transfer, and then, we obtain Wk+1 by m matrix-vector multiplication opera-
tions. So as to calculate the remaining dot products using the Wk+1, we have to
transfer Xk+1 and Pk+1 from host to device memory. Accordingly, we eliminate
the number of the matrices which are transferred form host to device memory
by four per iteration. In the following, the method is called ‘Red 1’.

Next, we focus on the operation to orthogonalize the column vectors of Wk+1

against those of Xk+1 and Pk+1. When we orthogonalize the i-th column vector
w

(i)
k+1, we remove the projection of each column vector of Xk+1 and Pk+1 from

w
(i)
k+1 using the result of the dot product. When we operate w

(i)
k+1 directly, we

have to transfer Xk+1 and Pk+1 from host to device memory. In order to reduce
this data transfer, we represent the operated vector w

(i),∗
k+1 as

w
(i),∗
k+1 =

∑

l

fx(l, i)x(l)
k+1 +

∑

l

fp(l, i)p
(l)
k+1 +

∑

l

fw(l, i)w(l)
k+1, (5)

and we operate the coefficients instead of calculating the vector w
(i)
k+1 directly.

After the orthogonalization of the column vectors of Wk+1 against those of
Xk+1 and Pk+1, the coefficients are set as fx(l, i) = −(x(l)

k+1,w
(i)
k+1), fp(l, i) =

−(p(l)
k+1,w

(i)
k+1) and fw(l, i) = 0(l �= i), 1(l = i). In this operation, when we

modify the vector by the operation t∗ = t − (t, s)s for ||s|| = 1, the norm of
t∗ is given by ||t∗|| =

√||t||2 − (t, s)2. When the norm of a vector becomes
smaller than the tolerance in the process of the orthogonalization, we consider
the vector to be the combination of other vectors and we eliminate the vector.
Afterwards, we execute the orthonormalization of a set of column vectors of
Wk+1 against each other using the MGS method. Here, we can calculate the dot
product zi,j = (w(i),∗

k+1 ,w
(j),∗
k+1) by

zi,j =

(
∑

l

fx(l, i)x(l)
k+1 +

∑

l

fp(l, i)p
(l)
k+1 +

∑

l

fw(l, i)w(l)
k+1,

∑

l

fx(l, j)x(l)
k+1 +

∑

l

fp(l, j)p
(l)
k+1 +

∑

l

fw(l, j)w(l)
k+1

)

=
∑

l

fx(l, i)fx(l, j) +
∑

l

fp(l, i)fp(l, j)

+
∑

l

∑

s

fx(l, i)fw(s, j)(x(l)
k+1,w

(s)
k+1) +

∑

l

∑

s

fp(l, i)fw(s, j)(p(l)
k+1,w

(s)
k+1)

+
∑

l

∑

s

fw(l, i)fx(s, j)(w(l)
k+1,x

(s)
k+1) +

∑

l

∑

s

fw(l, i)fp(s, j)(w
(l)
k+1,p

(s)
k+1)

+
∑

l

∑

s

fw(l, i)fw(s, j)(w(l)
k+1,w

(s)
k+1).

14 S. Yamada et al.

When ||w(j),∗
k+1 || = 1, the vectors w

(i),∗
k+1 and w

(j),∗
k+1 become orthogonal by cal-

culating fx(l, i) = fx(l, i) − zi,jfx(l, j), fp(l, i) = fp(l, i) − zi,jfp(l, j) and
fw(l, i) = fw(l, i) − zi,jfw(l, j) (l = 1, 2, . . . ,m). Accordingly, we can orthonor-
malize all column vectors of Wk+1 without performing additional dot product
operations5.

Therefore, the multiplication of the Hamiltonian and an orthonormalized
vector w

(i),∗
k+1 can be represented as

Hw
(i),∗
k+1 =

∑

l

fx(l, i)Hx
(l)
k+1 +

∑

l

fp(l, i)Hp
(l)
k+1 +

∑

l

fw(l, i)Hw
(l)
k+1. (6)

Here, we calculate the remaining dot products (Hx
(j)
k+1,w

(i),∗
k+1), (Hp

(j)
k+1,w

(i),∗
k+1)

and (Hw
(i),∗
k+1 ,w

(j),∗
k+1) for constructing the matrix SA using the coefficients and

the results of the dot products in consideration of (5) and (6). Since the dot
products except (Hw

(i)
k+1,w

(j)
k+1) have already been calculated during the vector

update operation, we calculate (Hw
(i)
k+1,w

(j)
k+1) using Hw

(i)
k+1(= W(i)

k+1) obtained
by executing matrix-vector multiplication. Therefore, we do not need to transfer
extra matrix data from host memory for constructing SA. After we solve the
eigenvalue problem for SA, we transfer four matrices Xk+1, Xk+1, Pk+1 and
Pk+1 to update Xk+2, Xk+2, Pk+2 and Pk+2. Before the update, we construct
Wk+1(= (w(1),∗

k+1 , . . . ,w
(m),∗
k+1)) and Wk+1(= (Hw

(1),∗
k+1 , . . . ,Hw

(m),∗
k+1)) based on

(5) and (6) using the transferred matrices and the coefficients fx, fp and fw. As
a result, the strategy can reduce HtoD data transfer for four matrices compared
to ‘Red 1’. In the following, the method is called ‘Red 2’.

In order to evaluate the effect of the reduction of data transfers, we exe-
cute these two methods (‘Red 1’ and ‘Red 2’) and the conventional method
(‘Conv’) described in Sect. 2 with the synchronous, the opposite-direction and
the asynchronous data transfers under the same condition as in Sect. 2. Here,
we set the number of tiles to be 20, and we execute the LOBPCG method with
no preconditioner. And then, we show the elapsed time of the orthonormaliza-
tion, the vector update and the dot product operations in Table 2. In ‘Red1’
and ‘Red2’ methods, some dot product operations are fused with other opera-
tions. Therefore, these elapsed times includes the elapsed time of the fused dot
product operations. The result demonstrates that the reduction of the number
of the data transfer between host and device memory can considerably improve
the performance. Moreover, ‘Red2’ method can realize orthonormalization by
operating the coefficients of (5) instead of calculating vectors directly, therefore,
the method greatly reduce the elapsed time for orthonormalization.

5 This orthonormalization operation is equivalent to CholeskyQR method [13].

High Performance Parallel LOBPCG on Multi-GPU Systems 15

Table 2. Effect of reduction of data transfers. Here, ‘Sync.’, ‘Opposite’ and ‘Async.’
are represented as the synchronous data transfer, the opposite-directional one and the
asynchronous one, respectively.

Elapsed time (sec)

Sync. Opposite Async.

Conv Red 1 Red 2 Conv Red 1 Red 2 Conv Red 1 Red 2

Orthonormalization
+dot product

1.0128 0.5337 0.0008 1.0110 0.5330 0.0008 0.8321 0.4361 0.0008

Vector update
+dot product

2.1547 2.5030 2.7597 1.4579 1.8501 2.1254 0.9734 1.4496 1.7005

Remaining dot
product

1.0062 0.0158 0.0158 1.0037 0.0156 0.0156 0.7955 0.0158 0.0158

Total 4.1736 3.0525 2.7763 3.4726 2.3988 2.1419 2.6010 1.9015 1.7171

4 Numerical Experiments

In this section, we examine the performance of the LOBPCG method for the
Hubbard model on the multi-GPU system in HPE SGI8600 in Japan Atomic
Energy Agency. We solve the eigenvalue problems of the Hamiltonian derived
from 5 × 4-site Hubbard model with 6 up-spins and 6 down-ones. The details
of the system are shown in Table 1. Here, the dimension of the Hamiltonian is
1,502,337,600. We attempt to find the eight smallest eigenvalues and the corre-
sponding eigenvectors using a block size of 10 columns. Accordingly, we use the
convergence criterion

||Hx
(i)
k − λ(i)x(i)

k || ≤ 10−6, i = 1, 2, . . . , 8,

where λ(i) is an approximate value of the i-th smallest eigenvalues. Here, we set
the number of tiles to be 20 and use MPIDirect for communication for the matrix-
vector multiplication operation between GPUs. Moreover, we use the zero-shift
preconditioner [14,16]. Since the preconditioner works elementwisely, we uti-
lize ‘Red 2’ as the method for reducing of the data transfers. Table 3 shows the
elapsed time of ‘Red2’ method using three types of data transfer. The result indi-
cates that the synchronous data transfer method has the lowest performance of
the three methods. The reason is that the conflict for the bus connected between
CPU and two GPUs occurs due to performing the data transfer between host
and device memory in the same direction simultaneously. The method using the
opposite-directional data transfer is performed much faster than the synchronous
one, because the method avoids the conflict by the opposite-directional data

16 S. Yamada et al.

Table 3. Parallel performance of LOBPCG method on SGI HPE8600 system. This
table shows the total elapsed time, the number of iterations, and the elapsed time
per iteration of ‘Red2’ method using the synchronous, the opposite-direction and the
asynchronous data transfer operations.

Elapsed time (sec) (top)

Number of iterations (middle)

Elapsed time per iteration (sec) (bottom)

Synchronous Opposite Asynchronous

32 GPUs 2295.8055 1927.8972 1426.4036

205 205 205

11.1991 9.4044 6.9581

64 GPUs 1233.4289 1067.7207 855.4724

214 214 214

5.7637 4.9893 3.9975

128 GPUs 663.1469 582.9776 503.1989

210 210 210

3.1578 2.7761 2.3962

256 GPUs 371.9728 332.6797 291.2728

202 202 202

1.8414 1.6469 1.4419

transfer operations. The method does not overlap the data transfer with the cal-
culation, since its data transfer is a synchronous operation. On the other hand,
the asynchronous method can overlap the data transfer with the calculation.
Therefore, the method has better performance than the opposite-directional one.

Next, we show the elapsed time of ‘conv’, ‘Red1’ and ‘Red2’ methods using
the asynchronous data transfer operation in Table 4. The result indicates that
‘Red2’ is the fastest. And, although Table 2 indicates that ‘Red1’ is more than
10% slower than ‘Red2’, ‘Red1’ is only a few percent slower in this result. The
reason is that ‘Red2’ always requires m matrix-vector multiplication operations
for calculating Hw by (6), whereas, since ‘Red1’ execute the operations for only
independent linearly vectors, there is no need the multiplication for eliminated
vectors by the orthonormalization operation.

High Performance Parallel LOBPCG on Multi-GPU Systems 17

Table 4. Parallel performance of LOBPCG method on SGI HPE8600 system. This
table shows the total elapsed time, the number of iterations, and the elapsed time per
iteration of ‘Conv’, ‘Red1’ and ‘Red2’ methods using the asynchronous data transfer
operation.

Elapsed time (sec) (top)

Number of iterations (middle)

Elapsed time per iteration (sec) (bottom)

Conv Red1 Red2

32 GPUs 2330.2672 1515.3687 1426.4036

205 205 205

11.3672 7.3920 6.9581

64 GPUs 1314.3161 857.6863 855.4724

214 214 214

6.1417 4.0079 3.9975

128 GPUs 657.6043 523.1674 503.1989

210 210 210

3.1314 2.4913 2.3962

256 GPUs 363.8983 296.9689 291.2728

202 202 202

1.8015 1.4701 1.4419

5 Conclusions

we have proposed the parallelization and the tuning strategies of the LOBPCG
method, whose almost all operations are performed using GPUs, in order to solve
an eigenvalue problem for a large Hamiltonian derived from the Hubbard model
using multi-GPU systems. In this research, the dimension of the Hamiltonian
is very large and some vectors are stored in host memory. In order to perform
the calculations using GPUs in this situation, we have to transfer data between
host and device memory as needed. The cost of the data transfer is very large.
Therefore, we reduced the transfer operations by considering the algorithm of
the LOBPCG method and achieved the improvement of the performance. More-
over, when we execute the conventional method using two processes on each
processor on the system as shown in Fig. 5, two processes transfer data in the
same direction at the same time. Accordingly, the bus connected between host
and device memory is shared with two processes and the throughput per process
is limited to about half of the peak throughput. In order to avoid sharing the
bus, we have proposed the strategy in which two processes on each processor
transfer data in opposite directions. The method has much better performance
than the conventional one.

We proposed the strategies in consideration of the property of consuming a
small amount of device memory to store Hamiltonian data. Therefore, the pro-

18 S. Yamada et al.

posed strategies can be applied not only to eigenvalue problems for the Hamil-
tonian derived from the Hubbard model, but also to problems that consume
a small amount of device memory to store matrix data or that do not require
matrix data to be stored by calculating it per iteration.

In this research, since we mainly focused on the data transfer between host
and device memory, all time-consuming operations, that is, matrix-vector mul-
tiplications and vector operations, have been executed using GPUs. Recently,
the performance of a CPU is improving considerably. Therefore, it is possible
to achieve better performance by performing some of calculations using CPUs,
especially for problems with a lot of data transfer between host and device mem-
ory like the problem in this research. In future work, we plan to investigate the
strategy to appropriately distribute the calculations to CPUs and GPUs.

Acknowledgments. This research was partially supported by JSPS KAKENHI
Grant Number 18K11345. This research was conducted with the supercomputer HPE
SGI8600 in the Japan Atomic Energy Agency.

References

1. Anzt, H., Tomov, S., Dongarra, J.: Accelerating the LOBPCG method on GPUs
using a blocked sparse matrix vector product. In: Proceedings of the Symposium
on High Performance Computing, pp. 75–82 (2015)

2. Demmel, J., Grigori, L., Hoemmen, M., Langou, J.: Communication-optimal paral-
lel and sequential QR and LU factorizations. SIAM J. Sci. Comput. 34, A206–A239
(2012). https://doi.org/10.1137/080731992

3. Duersch, J.A., Gu, M., Shao, M., Yang, C.: A robust and efficient implementation
of LOBPCG. SIAM J. Sci. Comput. 40, C655–C676 (2018). https://doi.org/10.
1137/17M1129830

4. Furuya, T., Nakatsukasa, Y., Yanagisawa, Y., Yamamoto, Y.: CholeskyQR2: a
simple and communication-avoiding algorithm for computing a Tall-Skinny QR
factorization on a large-scale parallel system. In: ScalA 2014 (2014)

5. Hetmaniuk, U., Lehoucq, R.: Basis selection in LOBPCG. J. Comput. Phys. 228,
324–332 (2006)

6. Iwata, J.I., et al.: A massively-parallel electronic-structure calculations based on
real-space density functional theory. J. Comput. Phys. 229, 2339–2363 (2010).
https://doi.org/10.1016/j.jcp.2009.11.038

7. Knyazev, A.V.: Preconditioned Eigensolvers - an oxymoron? Electron. Trans.
Numer. Anal. 7, 104–123 (1998)

8. Knyazev, A.V.: Toward the optimal Eigensolver: locally optimal block precondi-
tioned conjugate gradient method. SIAM J. Sci. Comput. 23, 517–541 (2001)

9. Montorsi, A. (ed.): The Hubbard Model: A Collection on Reprints. World Scientific,
Singapore (1992). https://doi.org/10.1142/1346

10. Rabbi, F., Daley, C.S., Aktulga, H.M., Wright, N.J.: Evaluation of directive-based
GPU programming models on a block Eigensolver with consideration of large
sparse matrices. In: Wienke, S., Bhalachandra, S. (eds.) WACCPD 2019. LNCS,
vol. 12017, pp. 66–88. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
49943-3 4

https://doi.org/10.1137/080731992
https://doi.org/10.1137/17M1129830
https://doi.org/10.1137/17M1129830
https://doi.org/10.1016/j.jcp.2009.11.038
https://doi.org/10.1142/1346
https://doi.org/10.1007/978-3-030-49943-3_4
https://doi.org/10.1007/978-3-030-49943-3_4

High Performance Parallel LOBPCG on Multi-GPU Systems 19

11. Rasetti, M. (ed.): The Hubbard Model: Recent Results. World Scientific, Singapore
(1991). https://doi.org/10.1142/1377

12. Siro, T., Harju, A.: Exact diagonalization of the Hubbard model on graphics pro-
cessing units. Comp. Phy. Comm. 183, 1884–1889 (2012)

13. Stathopoulos, A., Wu, K.: A block orthogonalization procedure with constant syn-
chronization requirements. SIAM J. Sci. Comput. 23, 2165–2182 (2006). https://
doi.org/10.1137/S1064827500370883

14. Yamada, S., Imamura, T., Machida, M.: 16.447 TFlops and 159-billion-dimensional
exact-diagonalization for trapped Fermion-Hubbard model on the earth simulator.
In: Proceedings of SC05 (2005)

15. Yamada, S., Imamura, T., Machida, M.: High performance eigenvalue solver in
exact-diagonalization method for Hubbard model on CUDA GPU. In: Joubert,
G.R., Leather, H., Parsons, M., Peters, F., Sawyer, M. (eds.) Parallel Computing:
On the road to Exascale. Advances in Parallel Computing, vol. 27, pp. 361–369.
IOS (2016). https://doi.org/10.3233/978-1-61499-621-7-361

16. Yamada, S., Imamura, T., Machida, M.: Communication avoiding Neumann expan-
sion preconditioner for LOBPCG method: convergence property of exact diago-
nalization method for Hubbard model. In: Bassini, S., Danelutto, M., Dazzi, P.,
Joubert, G.R., Peters, F. (eds.) Parallel Computing is Everywhere. Advances in
Parallel Computing, vol. 32, pp. 27–36. IOS (2018). https://doi.org/10.3233/978-
1-61499-843-3-27

17. Yamada, S., Imamura, T., Machida, M.: High performance eigenvalue solver for
Hubbard model: tuning strategies for LOBPCG method on CUDA GPU. In: Foster,
I., Joubert, G.R., Kučera, L., Nagel, W.E., Peters, F. (eds.) Parallel Computing:
Technology Trends. Advances in Parallel Computing, vol. 36, pp. 105–113. IOS
(2020). https://doi.org/10.3233/APC200030

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1142/1377
https://doi.org/10.1137/S1064827500370883
https://doi.org/10.1137/S1064827500370883
https://doi.org/10.3233/978-1-61499-621-7-361
https://doi.org/10.3233/978-1-61499-843-3-27
https://doi.org/10.3233/978-1-61499-843-3-27
https://doi.org/10.3233/APC200030
http://creativecommons.org/licenses/by/4.0/

Vapor Condensation Under Electric Field:
A Study Using Molecular Dynamics Simulation

Pengyu Wang(B) and Zhong Chen

School of Materials Science and Engineering, Nanyang Technological University,
50 Nanyang Avenue, Singapore 639798, Singapore

n2007034k@e.ntu.edu.sg

Abstract. The condensation of water vapor on the substrate surface under elec-
tric field is studied by molecular dynamics simulation, and a series of behaviors
of water molecules during condensation were studied, such as nucleation, growth
and coalescence. In the process of condensation, there will be some small clusters,
whose size increases with the increase of time, and under the action of the move-
ment of water molecules in vapor, the clusters move irregularly on the substrate
surface and coalesced into larger clusters. And the droplets will be stretched along
the direction of the electric field. Interestingly, the condensationwill decrease with
the increase of the electric field strength under the electric field perpendicular to
the surface. The results also show that the orientations of water molecule dipole
are closely related to the direction of electric field, indicating that the electric field
causes the realignment of water molecules. The research shows that the electric
intensity will have great impact on vapor condensation, which provides guid-
ance for reversible adjustment of vapor condensation and the design of intelligent
surface.

Keywords: Condensation ·Molecular dynamics simulation · Electric field ·
Cluster

1 Introduction

Vapor condensation is closely related to our daily life and can be utilized for water
collection [1], thermal management [2], water desalination [3] and so on. Therefore,
mechanism of water vapor condensation is very important for the rational utilization
of condensation, and the efficient condensation has also attracted the interest of many
researchers.

A large number of studies show that the roughness and chemical properties of the
condensation surface have important impact on the condensation efficiency [4–9]. The
development of molecular dynamics simulation provides a new method for the study
of water molecular condensation. For example, Xu et al. studied the condensation of
water vapor on the V-shaped groove by molecular dynamics simulation [4], the results
show that the wetting modes of clusters are determined by the intrinsic contact angle and
the cross sectional angle of the surface. Another study by the same team shows that the

© The Author(s) 2022
D. K. Panda and M. Sullivan (Eds.): SCFA 2022, LNCS 13214, pp. 20–30, 2022.
https://doi.org/10.1007/978-3-031-10419-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10419-0_2&domain=pdf
https://doi.org/10.1007/978-3-031-10419-0_2

Vapor Condensation Under Electric Field 21

formation and growth of clusters in the process ofwater vapor condensation increasewith
the increase of substrate hydrophilicity [5]. Gao et al. explored the condensation of water
vapor on the nanostructured surfaces with hybrid wettability areas and found that the
nanostructured surfaceswith hybridwettability areas has better heat transfer performance
[6]. Huang et al. discussed the effects of pillar height, spacing and substrate wettability
on argon condensation [7]. However, the influence of external field is ubiquitous and will
have a great impact on the condensation of water vapor, such as electric, temperature,
force.

At present, studies exist mainly on the influence of external electric field on the static
and dynamic behavior of sessile droplets on the surface [10–15] and water evaporation
[16]. The research of Yan et al. [10] shows that the voltage amplitude and frequency
of tangential AC electric field are important factors affecting the dewetting of droplets.
The dynamics behaviors of droplets on flexible graphene sheets under constant and
alternating electric fieldswith different amplitudes and frequencies are studied byKargar
[11] et al., and the results show that droplets elongated in the direction of electric field.
Wang et al. [12] simulated the condensation process of water molecules under the action
of an electric field perpendicular to the surface by molecular dynamics simulation and
found that the condensation could be inhibited by vertical electric field.

Water molecules are easy to be affected by electric field because of the polarity,
and electric field is an easily available clean energy, which provides a premise for its
large-scale utilization, such as electrostatic spray, electrohydrodynamic atomization.
The existence of external field also provides a new method to dynamically regulate the
condensation of water molecules. However, the mechanism of the vapor condensation
under external field is still not well understood. In this paper, the condensation process
of water molecules under constant electric field perpendicular to the surface is studied
by molecular dynamics simulation. The growth of maximum cluster size, number of
clusters, dipolemoment and the temperature ofwatermolecules are calculated to quantify
the condensation process. The research results are also useful for the efficient utilization
of heat and mass transfer.

2 Model and Methods

In this paper, the molecular dynamics simulation software LAMMPS is used to simulate
the condensation process of water vapor under the action of electric field [17, 18]. The
structure of the simulation system is shown in Fig. 1. The simulation system consists of
three parts, including an upper substrate (hot surface), a lower substrate (cold surface) and
water molecules. In order to improve the calculation efficiency, the structure of copper
atoms is used to establish the models of the cold surface and hot surface, in which the
lattice is 3.615 Å, the thickness of the cold surface and hot surface is 10.845 Å, and the
lateral dimension is 253 * 253 Å, consisting of 58800 atoms, [6, 19, 20]. Meanwhile, to
improve the condensation rate of water molecules, 10000 water molecules are placed in
the simulation systems.

The simple point charge/extension (SPC/E) model, which has been validated in
previous studies, is chosen to describe the interaction between the water and water [21–
23]. The calculation method of the interaction between water molecules in the model

22 P. Wang and Z. Chen

is consistent with our previous research [21, 24]. The interaction between substrate
atoms and water molecules is calculated by Lennard-Jones (L-J) potential, where the
energy coefficient (ε) is 0.2 kJ/mol, and the distance coefficient (σ) is 2.891 Å. The
interaction between the substrate atoms is also described by the L-J potential, in which
εS-S = 4.72 kJ/mol, σS-S = 2.616 Å [25], and there is no interaction between the upper
substrate atoms and lower substrate atoms. In the simulation, the cutoff distances are set
as 12 Å.

253 Å

Hot surface atom

Oxygen

Hydrogen

Cold surface atom

(a) (b)

25
3

Å
38

5
Å

(c)

Fig. 1. Schematic diagram for the simulation system. (a) Front view. (b) Perspective view. (c)
Top view.

In the process of simulation, the periodic boundary conditions are applied in all
directions. Meanwhile, the velocity-Verlet algorithm is used to solve the Newtonian
motion equation with a time step of 1 femtosecond (fs). The particle–particle particle-
mesh (PPPM) method is used to calculate the long-range electrostatic interactions with

Vapor Condensation Under Electric Field 23

an accuracy up to 10–4. And to improve the calculation efficiency, SHAKE algorithm
is used to fix the bonds and angles of water molecules.

And all the simulations are performed in two stages: First, the equilibration phase is
carried out for a total of 0.2 ns (ns) in a NVT ensemble, and the temperature of water
molecules and substrate atoms are controlled at 500K.Then the thermostat applied on the
water vapor is removed, the temperatures of the lower and upper surfaces in the system
are controlled at 300K and 500K, respectively. In order to observe the condensation of
water molecules faster, the temperature difference of the substrates is set larger. At the
same time, the electric field is applied to the system. In our study, constant electric field
perpendicular to the surface is applied to study the effect of electric field on water vapor
condensation. And the simulation time for condensation is extended to 4 ns to see the
condensation process clearly.

The growth of clusters is an important index to study the condensation process. In
this study, the Stillinger criterion is used to define clusters, two water molecules are
determined to be located in one cluster when the distance between oxygen atoms in two
water molecules is 3.36 Å [26].

3 Results and Discussion

In this study, the condensation process of water vapor is simulated under the action
of vertical electric field, and some snapshots of the simulation systems are selected to
show the condensation process. Only part of the simulation system is shown in Fig. 2
because of the large size of the system. Figure 2 shows the condensation process of
water vapor in different electric fields, and the direction of the electric field points to
the negative direction of the y-axis. Water molecules move irregularly in the simulation
process. When water molecules impact the cold surface, part of the energy of water
molecules is converted into heat energy, resulting in the reduction of the speed of water
molecules, which may be adsorbed on the cold surface or rebound back to the vapor. At
this time, the motions of water molecules are influenced by electric field force, van der
Waals force between substrate atoms and water molecules, and the interaction between
water molecules. Due to the temperature difference between the cold surface and the hot
surface, water molecules tend to adsorb on the cold surface and gradually form clusters
on the cold surface.With the increase of electric field intensity, the condensation of water
molecules is affected.

It can be seen from Fig. 2 that the clusters formed by condensation will be gradually
elongated with the increase of electric field intensity. For example, the stretching of
clusters is not obviouswhen the electric field intensity is 0.4V/nm.When the electric field
intensity is 0.8 V/nm, the deformation of droplets is obvious and becomes cylindrical.
When the electric field intensity is 1.0 V/nm, the condensed clusters will leave the
substrate surface, indicating a great influence of the electric field.

In the subsequent simulation, the condensation of water vapor in the electric field
pointing to the positive direction of Y axis is also simulated. The results show that the
electric field pointing to the positive direction of Y axis also inhibits the condensation of
water vapor, and the effect is more obvious than that in the negative direction. It stretches
the water droplets stretch along the positive direction of the Y axis. Our findings are

24 P. Wang and Z. Chen

(a)

(b)

(c)

X

X

Z
E

Top
View

Front
View

0 ns 0.5 ns 1 ns 2 ns 3 ns 4 ns

Y

X

X

Z

Top
View

Front
View

Y

X

X

Z

Top
View

Front
View

Y

E

E

Fig. 2. Snapshots (Front view and Top view) of the condensation process with different constant
electric fields. (a) E = 0.0 V/nm. (b) E = 0.4 V/nm. (c) E = 0.8 V/nm.

consistent with previous studies on sessile droplets, in which the vertical electric field
in the positive and negative directions was found to stretch and deform the droplets,
and the deformation is more obvious under the electric field in the positive direction
[27–29]. At the same time, it is obvious from Fig. 2 that the condensation speed of water
molecules decreases gradually with the increase of electric field intensity. When the
electric field intensity is small, the time that clusters start to form is not much different
from that without electric field. However, clusters appear much later when the electric
field strength increases to 0.8 V/nm. Our results show that the electric field inhibits the
condensation of water vapor.

To more specifically quantify the impact of electric field on water molecular conden-
sation, the growth of the maximum cluster size and the number of clusters in the system
are calculated in the condensation process, and the results are shown in Fig. 3. Figure 3
(a) shows the temporal evolution of maximum cluster size under constant electric fields.
The growth curve of the maximum cluster size increases linearly in some stages, indicat-
ing that the number of water molecules in the system is sufficient to simulate accurately
the condensation process, and the abrupt increase in the curve indicates that adjacent
clusters have merged. Figure 3 (a) shows the merging process of adjacent clusters when
the electric field intensity is 0.0 V/nm. This also shows that the growth of the maximum

Vapor Condensation Under Electric Field 25

0 1 2 3
3000

4500

6000

7500

9000

T
he

 n
um

be
r

of
 c

lu
st

er
s

Time (ns)

 E = 0.0 V/nm
 E = 0.2 V/nm
 E = 0.4 V/nm
 E = 0.6 V/nm
 E = 0.8 V/nm
 E = 1.0 V/nm

0 1 2 3
0

1000

2000

3000

4000
M

ax
im

um
 c

lu
st

er
 si

ze

Time (ns)

 E = 0.0 V/nm
 E = 0.2 V/nm
 E = 0.4 V/nm
 E = 0.6 V/nm
 E = 0.8 V/nm
 E = 1.0 V/nm

(a)

(b)

Fig. 3. (a) Temporal evolution of maximum cluster size under constant electric fields, the inset
shows the coalescence process of clusters (E = 0.0 V/nm). (b) Temporal evolution of the number
of clusters under constant electric fields.

cluster size is more obvious with the increase of electric field, except for the electric
field intensity is 0.2 and 0.4 V/nm. From the condensation process, it is found that the
reason for the abnormal maximum cluster size is that there is only one large cluster in
the system when electric field intensities are 0.2 and 0.4 V/nm. While for the simulation
when the electric field intensity is 0 V/nm, there are two large clusters on the cold surface
in the condensation process. Figure 3 (b) shows the temporal evolution of the number
of clusters under constant electric fields. The red circle indicates that the increase of
electric field will destroy the clusters in the system, resulting in a sudden increase of the
number of clusters. It is clear that the greater the electric field intensity, the greater the
increase of the curves in the red circle. The results imply that the formation of clusters

26 P. Wang and Z. Chen

is inhibited with the increase of electric field intensity. This result corresponds well to
the analysis in Fig. 2.

The polarity characteristics of water molecules show that water molecules are easy
to be affected by electric field. Therefore, the dipole moments of water molecules are
also calculated to quantify the effect of electric field on water molecules and to explain
the growth and deformation of clusters. Figure 4 shows the average of the cos(θ) values
of the water molecules under constant electric field (θ is the angle between the dipole
moment of water molecule and the direction of electric field.). When the electric field
intensity is 0.0 V/nm, the average of the cos(θ) is close to 0.0, indicating that water
molecules are in a disordered state. With the increase of the electric field intensity, the
average value of cos(θ) begins to increase gradually, indicating that the structure of water
molecules rearranges under the action of the electric field, and the dipolemoment ofwater
molecules begin to align the direction of the electric field. At this point, the hydrogen
atoms in water molecules point to the direction of the electric field, while the direction of
oxygen atoms is opposite to the direction of the electric field. This characteristic makes
the clusters stretch and grow along the direction of the electric field.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

co
s (

θ)

E (V/m)
Fig. 4. The average of the cos(θ) values of the water molecules under constant electric field.

Next, we collected the temperature of each part of the system in the simulation
process as shown in Fig. 5 (a), which displays the temporal evolution of water molecule
temperature, and the cold and hot surfaces under different electric field intensities. For
the system with electric field intensity of 0.0 V/nm, the temperature of water molecules
begins to decrease from 500K with the collision between water molecules and cold
surface when the temperature of the cold surface is controlled at 300K.When the electric
field is applied, the temperature of water molecules rises instantaneously, indicating that
water molecules acquire energy to raise the water temperature, as shown in the red circle

Vapor Condensation Under Electric Field 27

in Fig. 5(a). This corresponds to the sudden increase in the number of clusters in Fig. 3
(b). The temperature of water molecules begins to decrease gradually as the simulation
progresses. Figure 5(a) demonstrates that the higher the electric field strength, the higher
the water molecule temperature during the whole simulation process. Obviously, this is
not conducive to the condensation of water molecules. Interestingly, the slope of the
temperature curve corresponding to the simulation system with electric field intensity
of 1.0 V/nm becomes very small after 3 ns. This is because the electric field force plays
a dominant role, the clusters are stretched and leave the cold surface, as shown in Fig. 5
(b) and (c), which is not conducive to heat transfer. The literature also draws similar
conclusions from the released accumulated energy [12].

(a)

(b) (c)

0 1 2 3 4

300

450

500

550

T
 (K

)

Time (ns)

 Cold surface
 Heat surface
 E = 0.0 V/nm
 E = 0.6 V/nm
 E = 1.0 V/nm

Fig. 5. (a) Temporal evolution of the temperature (T) of water molecules in simulations. (b) The
snapshot of the simulation system under the electric field of 1.0 V/nm (Front view), T = 3.5 ns.
(c) The snapshot of the simulation system under the electric field of 1.0 V/nm (Front view), T =
4 ns.

Then, the mean square displacement of water molecules in the Z direction (MSDz)
is also calculated to evaluate the effect of electric field on condensation, as shown in

28 P. Wang and Z. Chen

Fig. 6. The simulation process in the Fig. 6 is divided into two parts: the first part is
the equilibrium process of condensation system, and then the water vapor begins to
condense under electric field. The results show that under the action of electric field,
the MSDz curve of water molecules in the Z direction gradually decreases with the
increase of electric field intensity, which shows that the diffusion of water molecules in
the Z direction is restrained and the probability of droplet collision with the substrate
is reduced. This is because the strong electric field induces water molecules to form an
ordered structure pointing to the electric field direction, which is not conducive to the
formation of clusters, At the same time, this reveals why the condensation efficiency
decreases with the increase of electric field intensities.

0.0 0.5 1.0 1.5 2.0
0

5000

10000

15000

20000

25000

M
SD

z
(Å

)

Time (ns)

 E = 0.0 V/nm
 E = 0.4 V/nm
 E = 0.8 V/nm
 E = 1.0 V/nm
 E = 2.0 V/nm

Condensation Process

Fig. 6. The mean square displacement of water molecules in the Z direction (MSDz) under
constant electric field.

4 Conclusion

In this study, the condensation process of water vapor under electric field is studied by
molecular dynamics simulation. The influence of electric field on water vapor condensa-
tion is quantitatively evaluated by calculating the growth of themaximumcluster size, the
number of clusters, the dipole moment of water molecules and the system temperature.
The results show that the existence of vertical electric field promotes the rearrangement
of water molecules along the direction of electric field, which makes the clusters grow
along the direction of electric field. The formed clusters are stretched, which may even
lead to the separation of clusters from the substrate surface. At the same time, the exis-
tence of vertical electric field increases the temperature of water molecules and inhibits

Vapor Condensation Under Electric Field 29

the condensation of water vapor. And the condensation efficiency of droplets decreases
with the increase of electric field intensity.

Acknowledgement. The computational work for this articlewas partially performed on resources
of the National Supercomputing Centre, Singapore (https://www.nscc.sg).

References

1. Ju, J., Bai, H., Zheng, Y., Zhao, T., Fang, R., Jiang, L.: Amulti-structural and multi-functional
integrated fog collection system in cactus. Nat. Commun. 3(1), 1247 (2012)

2. Miljkovic, N., Preston, D.J., Enright, R., Wang, E.N.: Electric-field-enhanced condensation
on superhydrophobic nanostructured surfaces. ACS Nano 7(12), 11043–11054 (2013)

3. Khawaji, A.D., Kutubkhanah, I.K., Wie, J.M.: Advances in seawater desalination technolo-
gies. Desalination 221(1), 47–69 (2008)

4. Xu,W., Lan, Z., Peng, B.L.,Wen, R.F.,Ma, X.H.: Effect of nano structures on the nucleuswet-
ting modes during water vapour condensation: from individual groove to nano-array surface.
RSC Adv. 6(10), 7923–7932 (2016)

5. Xu, W., Lan, Z., Peng, B.L., Wen, R.F., Ma, X.H.: Effect of surface free energies on the
heterogeneous nucleation of water droplet: a molecular dynamics simulation approach. J.
Chem. Phys. 142(5), 054701 (2015)

6. Gao, S., Liu, W., Liu, Z.: Tuning nanostructured surfaces with hybrid wettability areas to
enhance condensation. Nanoscale 11, 459–466 (2019)

7. Huang, D., Quan, X., Cheng, P.: An investigation on vapor condensation on nanopillar array
surfaces by molecular dynamics simulation. Int. Commun. Heat Mass Transfer 98, 232–238
(2018)

8. Starostin, A., Valtsifer, V., Barkay, Z., Legchenkova, I., Danchuk, V., Bormashenko, E.: Drop-
wise and film-wisewater condensation processes occurring onmetallicmicro-scaled surfaces.
Appl. Surf. Sci. 444, 604–609 (2018)

9. Ranathunga, D.T.S., Shamir, A., Dai, X., Nielsen, S.O.: Molecular dynamics simulations of
water condensation on surfaces with tunable wettability. Langmuir 36(26), 7383–7391 (2020)

10. Yan,X., Li, J., Li, L., Huang, Z.,Wang, F.,Wei, Y.: Droplet condensation on superhydrophobic
surfaces with enhanced dewetting under a tangential AC electric field. Appl. Phys. Lett.
109(16), 161601 (2016)

11. Kargar, M., Lohrasebi, A.: Deformation of water nano-droplets on graphene under the influ-
ence of constant and alternative electric fields. Phys. Chem. Chem. Phys. 19, 26833–26838
(2017)

12. Wang, Q., Xie, H., Hu, Z., Liu, C.: The impact of the electric field on surface condensation
of water vapor: insight from molecular dynamics simulation. Nanomaterials 9(1), 64 (2019)

13. Ren, H., Zhang, L., Li, X., Li, Y., Wu, W., Li, H.: Interfacial structure and wetting properties
of water droplets on graphene under a static electric field. Phys. Chem. Chem. Phys. 17,
23460–23467 (2015)

14. Zhang, B., Wang, S., He, X., Yang, Y., Wang, X.: Dynamic spreading of a water nanodroplet
on a nanostructured surface in the presence of an electric field. J. Mol. Liq. 333, 116039
(2021)

15. Yuan, Q., Zhao, Y.: Precursor film in dynamic wetting, electrowetting, and electro-elasto-
capillarity. Phys. Rev. Lett. 104(24), 246101 (2010)

https://www.nscc.sg

30 P. Wang and Z. Chen

16. Hens, A., Biswas, G., De, S.: Evaporation of water droplets on Pt-surface in presence of
external electric field—a molecular dynamics study. J. Chem. Phys. 143(9), 094702 (2015)

17. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.
117(1), 1–19 (1995)

18. LAMMPS Molecular Dynamics Simulator. http://lammps.sandia. Accessed 12 Dec 2018
19. Wang, P., He, L., Sun, X., Lv, H., Wang, Z.: Influence of trapezoidal cavity on the wettability

of hydrophobic surface: a molecular dynamics study. Langmuir 37(12), 3575–3584 (2021)
20. Zhu, C., et al.: Controlling states of water droplets on nanostructured surfaces by design.

Nanoscale 9, 18240–18245 (2017)
21. Wang, P., Sun, X., Lv, H.,Ma, S.,Wang, Z.: Investigation of surfacewettability and their influ-

encing mechanisms under vibration field: a molecular dynamics simulation study. Comput.
Mater. Sci. 197, 110615 (2021)

22. Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P.: Themissing term in effective pair potentials.
J. Phys. Chem. 91(24), 6269–6271 (1987)

23. Zhao, Y., Yuan, Q.: Statics and dynamics of electrowetting on pillar-arrayed surfaces at the
nanoscale. Nanoscale 7(6), 2561–2567 (2015)

24. Wang, P., He, L., Wang, Z.: The effect of surface structure and arrangement on wettability of
substrate surface. Colloids Surf. A 614, 126165 (2021)

25. Heinz,H., Vaia, R.A., Farmer, B.L., Naik, R.R.: Accurate simulation of surfaces and interfaces
of face-centered cubic metals using 12–6 and 9–6 Lennard-Jones potentials. J. Phys. Chem.
C 112(44), 17281–17290 (2008)

26. Stillinger, F.H.: Rigorous basis of the Frenkel-Band theory of association equilibrium. J.
Chem. Phys. 38(7), 1486–1494 (1963)

27. Song, F., Ma, L., Fan, J., Chen, Q., Lei, G., Li, B.Q.: Electro-wetting of a nanoscale water
droplet on a polar solid surface in electric fields. Phys. Chem. Chem. Phys. 20(17), 11987–
11993 (2018)

28. Zhang, Z., Dong, X., Ye, H., Cheng, G., Ding, J., Ling, Z.: Wetting and motion behaviors
of water droplet on graphene under thermal-electric coupling field. J. Appl. Phys. 117(7),
074304 (2015)

29. Zong, D., Yang, Z., Duan, Y.: Wettability of a nano-droplet in an electric field: a molecular
dynamics study. Appl. Therm. Eng. 122, 71–79 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://lammps.sandia
http://creativecommons.org/licenses/by/4.0/

The Effect of Wing Mass and Wing Elevation
Motion During Insect Forward Flight

Jie Yao(B) and K. S. Yeo

Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
mpeyaoj@nus.edu.sg

Abstract. This paper is concerned with the numerical simulation of the forward
flight of a highReynolds number flapping-wingflyer,modelled after the humming-
bird hawkmoth (Macroglossum stellatarum). The numerical model integrated a
Navier-Stokes solver with the Newtonian free-body dynamics of the model insect.
The primary cyclic kinematics ofwingswere assumed to be sinusoidal for simplic-
ity here, which comprises sweeping, elevating and twisting related wing actions.
The free flight simulation is very computationally intensive due to the large mesh
scale and the iterative solution for the FSI problem, so parallelization is essential
in the numerical simulation. Two parallelization techniques are used in current
simulation, i.e., open multi-processing (OpenMP) and graphics processing units
(GPU) acceleration. The forward flightmainly consists of two stages, i.e., the body
pitching down from the normal hovering posture and the following forward accel-
eration. During this process, the effect of the wing mass and the wing elevation
motion is very important, which is investigated in detail. It is found that Oval-
shaped wing elevating motion can help to generate large pitching down moment
so that the flyer can quickly adjust its orientation for forward acceleration. More-
over, wing mass tends to magnify the effect and prohibits the growth of pitching
down velocity, which is favourable aspect. The present study provides detailed
information of the coupled dynamics of fluid and flyer in free flight condition, as
well as offers a prospective approach that could complement existing experiments
in a wider study of insect flight and maneuver.

Keywords: Insect free flight · CFD simulation · Parallel computation ·
OpenMP · GPU acceleration

1 Introduction

Over the past fewdecades, concerted efforts have beenmade by researchers to unravel the
physical phenomena underlying the insects’ fascinating flight performances. Flapping-
wing flight appears to be more advantageous in terms of its maneuverability and effi-
ciency compared to conventional fixed-wing flight, especially for small size flyers. It
is believed that successful application of insects’ aerodynamics could revolutionize the
design of Micro Air Vehicle (MAV).

The earliest study of flapping wing aerodynamics attempted to estimate the forces
generated by the wings using quasi-steady aerodynamics of conventional fixed-wing fly-
ers [1–5]. Experimental biomechanics and fluid dynamics have played a key role in the

© The Author(s) 2022
D. K. Panda and M. Sullivan (Eds.): SCFA 2022, LNCS 13214, pp. 31–42, 2022.
https://doi.org/10.1007/978-3-031-10419-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10419-0_3&domain=pdf
http://orcid.org/0000-0002-0874-7390
https://doi.org/10.1007/978-3-031-10419-0_3

32 J. Yao and K. S. Yeo

study of flapping flight since the 1920s. The experimental studies byWillmott & Elling-
ton [6, 7], Dickinson et al. [8], Fry et al. [9] and others havemeasured thewing kinematics
and explored the unsteady aerodynamics related to flapping wing flight in great details.
Computational Fluid Dynamics (CFD) arguably offers a complimentary and sometimes
more expedient approach to access the unsteady aerodynamics at the scales of the insects.
Benefiting from the continuously improving computing hardware and technology, the
development of CFDhas advanced rapidly in the past several decades. Full-fidelity CFD-
FSI (computational fluid dynamics with fluid structure/body interaction) simulation is
one promising approach to study the free flight of a flapping-wing insect, where the
interactions between flyer and flow can be well resolved in a coupled manner. Wu et al.
[10] successfully simulated the controlled free hovering flight of a model fruit fly with
all six degrees of freedom, and investigated its ‘real-time’ aerodynamics and the role
of active feedback control. Yao and Yeo [11, 12] subsequently extended the hovering
model ofWu et al. to study the free longitudinal flights and simple manoeuvres (saccadic
yawing and rapid sideslipping) of the fruit fly. Yao and Yeo [13, 14] adopted a similar
numerical framework to study the hovering and the forward flight and sideslip manoeu-
vre of a hummingbird hawkmoth, wherein the significant reciprocating wing mass of
the hawkmoth was also accounted for.

In this paper, we shall be concerned with simulating the forward flight of a model
hummingbird hawkmoth, Macroglossum stellatarum, where the effect of wing mass
and wing elevation motion is studied. The simulation of insects in free flight remains
highly challenging due to their dynamical complexities and high computational cost. To
accelerate the computation, two parallelization techniques are used in current simulation,
i.e., openmulti-processing (OpenMP) and graphics processing units (GPU) acceleration.

Section 2 gives the morphological details of the model hawkmoth and the basic
methodology for the numerical simulation. Section 3 presents the results for the forward
flight of the model hawkmoth. The key conclusions from present study are summarized
in Sect. 4.

2 Methodology

2.1 Governing Equations and Numerical Discretization

The hummingbird hawkmoth (Macroglossum stellatarum) is adopted as the model flap-
ping wing flyer in the present work. It is a good representative of the family Sphingidae,
which usually exhibits superior flight performance among flying insects with relatively
high Reynolds number (Re ≈ 3000). The flapping wing motion of hummingbird hawk-
moth has a frequency (f) of approximately 70 Hz and a stroke amplitude (�) of about
115° according to available literature [15]. The model insect has a wing length (L) of
20.2 mm and total mass (M) of 0.21g, where the wings’ mass takes about 4.66%.

Wing motion is specified by three flapping angles: the stroke/sweep angle (φ), the
elevation angle (θ) and the twist angle (ψ). The wing angles φ, θ, ψ are basically the
Euler angles. They specify the action of the wings during flight and are thus prescribed
functions or actively-controlled function of time t. Low-order Fourier series comprising
simple sinusoidal functions are used to describe thewing kinematics of the presentmodel

The Effect of Wing Mass and Wing Elevation Motion 33

flyer. The wing angle functions may thus be represented as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ(t) = −�

2
cos(2π t)

θ(t) = θ0 + θa1 cos(2π t) + θb1 sin(2π t) + θa2 cos(4π t) + θb2 sin(4π t)

ψ(t) = π

2
− π

4
sin(2π t)

(1a-c)

where t is the non-dimensional time. The θa and θb are parameters that define the shape
of wing tip trajectory, such as U-shaped, oval-shaped and ∞-shaped paths.

The fluid flow around the model insect is governed by the three-dimensional
incompressible Navier-Stokes equations, in the non-dimensional Arbitrary Lagrangian-
Eulerian (ALE) form given here:

⎧
⎨

⎩

∇ · u = 0

∂tu = −(u − ug) · ∇u + 1

Re
∇2 u − ∇p

(2a-b)

where u and p represent the velocity and pressure field of the fluid domain respectively,
and ug is the convection velocity of the computational node. A projection-based method
is adopted to solve above equations, where the insect body and wings are modelled as
non-slip surfaces �(t), on which u(x) = ug(x). The pressure boundary condition is
given by n ·∇p = −n ·a, where a is the acceleration of the surface node. Neumann-type
boundary conditions are applied at the far field boundaries of the flow domain.

The free flight of the model insect is governed by Newtonian dynamics. Assuming
the body and wings to be essentially rigid, and the wings to have negligible mass, the
kinematic and dynamic equations for flight are given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
XB(t) = VB(t)

d

dt
�(t) = [K(�)] · ω(t)

d

dt
(M · VB) = −Mgkg + FA

d

dt

(↔
I
B · ω

)

= TB
A

(3a-d)

where XB(t) is the position of body centre and also the centre of mass (CoM) at time t;
�(t) the orientation vector of the flyer and [K(�)] the transformation matrix relating

the rate of change of �(t) to the angular velocity ω(t) of the body. The
↔
I
B
and

↔
I
B · ω

denote the inertia tensor and the angular momentum of the flyer about its CoM. The
FA(t) and TB

A(t) denote the net resultant aerodynamic force and moment respectively
acting on the flyer about CoM, which are obtained from the flow field solver. The closed
form expressions for the dynamics with wingmass are rendered highly complex because
of the complex kinematics of the twowings, plus the relative shifting of the insect’s CoM
within the body frame. The reader is referred to [16] for its derivation and further details.

34 J. Yao and K. S. Yeo

Fig. 1. Grid system for numerical simulation.

The configuration of the mesh used in current simulation is shown in Fig. 1. A
uniform Cartesian background grid had been adopted for the domain – Fig. 1b gives a
partial view to highlight the placement of the model fly. The whole mesh system consists
of 4013 Cartesian background grids and around 60000 moving nodes near the model
insect.
The complex fluid-structure interaction (FSI) implies the need to iterate the solution
process between flow solver F[�(t)] and the dynamic solver S{F[�]} of Eq. (3) at each
time step to determine the updated/new configuration of the flyer �(t). The iteration is
carried at each time step until the change between consecutive estimates of � is smaller
than a given tolerance.

2.2 Projection Method

Projection method is applied to solve Eq. (2), which is further decomposed into Eq. (4a)
and Eq. (4b). The pressure Poisson Eq. (4c) is then obtained by taking divergence of
Eq. (4b) and invoking the continuity equation.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∗ − un

	t
= 1

2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[

−(u − ug) · ∇u + 1

Re
∇2u

]n+1

+
[

−(u − ug) · ∇u + 1

Re
∇2u − ∇p

]n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

un+1 − u∗

	t
= −1

2
∇pn+1

∇2pn+1 = 2

	t
∇ · u∗

(4a-c)

Important steps of the implementation are summarized below.

The Effect of Wing Mass and Wing Elevation Motion 35

STEP 1. Compute intermediate velocity field u∗
For interior nodes: solve Eq. (4a).
For solid boundary nodes: u∗ = un+1 = ug,n+1. This is the non-slip velocity

boundary condition where the fluid velocity at a boundary node is equal to the velocity
of the boundary node itself.
STEP 2. Solve the pressure Poisson equation.

For interior nodes: solve Eq. (4c).
For solid boundary nodes: n · ∇pn+1 = n · (−ab + 1

Re∇2un+1
)
, where ab is the

boundary node acceleration.
For far field boundary nodes: n · ∇pn+1 = 0, which is again a Neumann-type

boundary condition.
STEP 3. Compute the final velocity field un+1.

For all computational nodes: solve Eq. (4b).

Above three steps are repeated until the solution converges. Any term containing
the del operator (∇) or Laplace operator (∇2) requires spatial discretization, the scheme
depends on the type of computation nodes. Standard procedures can be followed for
the 7-point central difference scheme, SVD-GFD scheme will be elaborated in next
section. STEP 1 and STEP 3 are straightforward, where the calculation can be done
separately on each node. STEP 2 is more complicated because pressure needs to be
updated simultaneously to the next time step for all nodes. A large linear system in the
form of Ax = b is derived. A is a sparse matrix containing the coefficients of the spatial
discretization. x is the pressure vector, the dimension of which is the total number of
computation nodes. b stores the results of 2

	t∇ ·u∗ and the boundary condition in STEP
2. In present study, the BICGStab method is adopted to solve the large linear system.

2.3 SVD-GFD Scheme

The generalized finite difference (GFD) method is based on the Taylor series expan-
sion. Taylor series can represent an arbitrary function f (x) as an infinite sum of terms
calculated by the function’s derivatives at a single point. Equation (5) shows the Taylor
series expansion of f (x) at point x = x0 up to the nth order. The value of the function
at x = x0 + 	x can be approximated by the Taylor series at x = x0. In solving the NS
equations, the function f (x) can be the pressure field p(x) or any velocity component
u(x), v(x),w(x).

f (x) = f (x0) +
∑

1≤i1+i2+i3≤n−1

	xi1	yi2	zi3

i1!i2!i3!
[

∂ i1+i2+i3

∂xi1∂yi2∂zi3
f

]

x0

+ O(|	x|n) (5)

Second order spatial accuracy can be maintained if the Taylor series is truncated after
the 4th order derivatives (n = 4). In this way, the first 19 derivatives are retained. If
the values of function f (x) are known on 19 surrounding nodes of x0, we can obtain 19
equations about the derivatives ∂ i1+i2+i3

∂xi1∂yi2∂zi3
f at x0, which forms a closed linear system for

solving the derivatives. However, practice shows that the 19 × 19 matrix tends to be ill-
conditioned, which is mainly caused by the poor spatial arrangement of the surrounding

36 J. Yao and K. S. Yeo

nodes. A systematic nodal selection scheme is applied to find out the most suitable
supporting nodes to form the equation system. Details of the scheme can be found in
the work by Ang [17], Zhang [18] and Yao [19], which will not be elaborated here. The
nodal selection scheme helps to improve the quality of the matrix but cannot eliminate
the ill-conditioned problem. An over-determined algebraic system is used to solve this
problem, which is formed by including more supporting nodes. Hence the final linear
system is shown as follows, where N > 19 is the number of surrounding nodes.

SN×19∂f19×1 = 	fN×1 (6)

	fN×1 = [
f1 − f0 f2 − f0 ... fN − f0

]T

SN×19 =

⎡

⎢
⎢
⎢
⎣

	x1 	y1 	z1 0.5	x21 0.5	y21 0.5	z21 · · · 	x1	y1	z1
	x2 	y2 	z2 0.5	x22 0.5	y22 0.5	z22 	x2	y2	z2

...
. . .

...

	xN 	yN 	zN 0.5	x2N 0.5	y2N 0.5	z2N · · · 	xN	yN	zN

⎤

⎥
⎥
⎥
⎦

∂f19×1 =
[

∂f(x0)
∂x

∂f(x0)
∂y

∂f(x0)
∂z

∂2f(x0)
∂x2

∂2f(x0)
∂y2

∂2f(x0)
∂z2

· · · ∂3f(x0)
∂x∂y∂z

]T

Pseudoinverse matrix of SN×19 needs to be computed to solve for ∂f19×1, which is
accomplished by the approach of single value decomposition (SVD).

2.4 Computation Acceleration

Above shows a brief introduction for the computational framework for current simula-
tion, more details can be referred to in [16]. So far, we can see the numerical simulation is
very computationally intensive due to the large mesh scale and time-dependent iterative
FSI solver and thus parallelization is essential in the computation. Two paralleliza-
tion techniques are used in current simulation, i.e., open multi-processing (OpenMP)
and graphics processing units (GPU) acceleration. OpenMP is a shared-memory paral-
lel architecture which provides great flexibility to achieve parallelization, where minor
change is required on the code based on serial computation. General-purpose computing
on graphics processing units (GPGPU) is an emerging heterogeneous computing tech-
nique that performs massive parallelization on graphics processing unit (GPU). This
technology is designed to achieve high float point operation rates and is suitable for
acceleration of numerically intensive CFD computations. Nowadays, a general-purpose
GPU is designed with thousands of processing units to achieve high float-point opera-
tion rates, the structure of which is very suitable for current CFD simulation on a large
grid system. The calculation of the projection method (BICGStab algorithm) with GPU
acceleration is much faster than that with CPU parallelization, and the GPU acceleration
becomes more advantageous as the grid amount increases [20]. The main drawback of
the GPU acceleration is programming complexity, especially when extensive calcula-
tion is required on a single mesh grid, such as the singular value decomposition (SVD)
procedure in current study. SVD calculation of the CFD solver was thus performed on
CPUs with OpenMP parallel computation in present simulations. Hence, we combine
the above two parallelization techniques to utilize their respective advantages.

The Effect of Wing Mass and Wing Elevation Motion 37

3 Results and Discussion

The forward flight can be divided into two main consecutive stages, body pitching down
and continuous acceleration. The first stage can be accomplished within fewwing cycles
and does not affect the flight stability much, while we have to stabilize the pitching angle
in the second stage.Hence, the first step to fly forward is to pitch down so the aerodynamic
force in the horizontal direction is increased and body drag is reduced.

The pitching down process is governed by two factors, aerodynamic moment and
wing inertia-induced moment. The normal wing motion is restricted within the stroke
plane for simple and stable flight control. While in the nature, insects apply the elevation
angle very often, which results in a wide variety of wing kinematics. The oval-shape
wing motion is adopted here for rapid pitch control, which is demonstrated in Fig. 2.
Such wing motion is governed by the wing elevation function shown by Eq. (1b). The
wing sweeps lower than the wing root during the downstroke and higher than the wing
root during the upstroke, so the wing tip trajectory is an oval shape. Function of this
type of elevation motion is shown by Eq. (7), where θa is prescribed as 10° during the
pitching down process.

θ = θa sin(2π t) (7)

Both aerodynamic drag force and wing inertia force are in the opposite direction of
wing motion. Wing drag/inertia force in downstroke has shorter moment arm than that
in upstroke, which contributes a net pitching down aerodynamic/inertia-inducedmoment
in a wingbeat. The magnitude of both moments increases with larger elevation ampli-
tude. The aerodynamic moment superposes with the wing inertia-induced moment, and
together they make the insect pitch down rapidly.

Fig. 2. Oval-shape wing motion

Since wing inertia-induced force is the internal force between the wings and body,
the body pitch up (down) caused by wing mass does not impose pitching velocity or
acceleration, governed by the law of conservation of angular momentum. However, that

38 J. Yao and K. S. Yeo

is unavoidable in pitch motion due to the aerodynamic moment. Hence, orientation
adjustment by wing inertia is theoretically more straightforward and easier to control.

After the fast pitching down stage, we need to maintain the designated pitching angle
to ensure the insect fly forward stably. When the insect starts to gain speed, the pitching
up moment induced by the flow field increases for any wing plane angle values, which
can be seen from the prescribed motion study shown in Fig. 3. In that case, we maintain
the oval wing motion to eliminate the induced moment. This was also discussed by Yao
and Yeo [11].

Fig. 3. Pitching moment variation with forward speed at different wing plane angles

As indicated by Fig. 3, the induced pitching upmoment increases almost linearlywith the
speed at different wing plane angles. Therefore, we can simply relate the wing elevation
amplitude and forward speed linearly as in Eq. (8).

θa = kθv (8)

A constant linear coefficient may not be able to sustain a stable flight even though
the pitching moment generated by oval wing motion may change linearly with elevation
amplitude. The reason is because we cannot maintain the pitching angle at the designated
value throughout the flight, and the actual induced moment may not follow exactly the
trend shown in Fig. 3.Hence,we needmodification to this linear relationship.Alternating
linear coefficient can be used to counter the uncertain inducedmoment. If the insect tends
to pitch up due to positive moment, we apply a larger coefficient to achieve a stronger
pitching down effect. Similarly, we apply a smaller coefficient if it tends to pitch down.
The alternating coefficient has advantage over a constant coefficient that it can stop the
excessive moment from building up with a stronger recovery in time.

As analyzed previously, wing mass plays a significant role in pitch control during
forward flight. To verify the analysis and find out the effect of wing mass, we simulated
the forward flight in two situations, i.e., with or without wing mass. Since the effect of
wing mass is mainly on the longitudinal motion, simulations reported in this paper do
not take into consideration of the lateral dynamics to avoid the influence on each other.
Figure 4 shows the comparison of forward velocity between flight with actual wing

The Effect of Wing Mass and Wing Elevation Motion 39

Fig. 4. Comparison of speed for forward acceleration with/without wing mass

mass ratio and that without wing mass, where the wingbeat frequency is fixed at 75 Hz.
Clearly, we can find that the case without wing mass shows much smaller cyclic velocity
oscillation. Same conclusion can be drawn for the pitching motion, which is presented

Fig. 5. Wing tip trajectories for forward acceleration with/without wing mass. Figures are based
on actual flight data. Wing root is marked as (+) in figure. Wing chords show the approximate
wing orientation with dotted leading edge. Unit wing length is represented by L.

40 J. Yao and K. S. Yeo

Fig. 6. Comparison of pitch for forward acceleration with/without wing mass

in Fig. 6. Hence, greater body oscillation is observed due to the wing inertia force. The
flight with zero wing mass ratio accelerates faster and reaches a slightly higher speed
in the end. The reason for that is because smaller body oscillation allows longer wing
sweeping distance, which generates more aerodynamic forces. This can be verified by
the wing tip trajectory at maximum speeds for both cases (see Fig. 5). The vertical wing
sweeping distance is less dependent on the forward speed compared to the longitudinal
sweeping distance, and we find that the positive longitudinal force is mainly generated in
the upstroke, during which the wings move almost vertically viewed from global frame.
Figure 5a shows that the flight without wing mass has a slightly longer range of wing
tip trajectory in the vertical direction (h1 > h2) due to smaller body oscillation. Hence,
more longitudinal thrust is generated for the case without wing mass, which contributes
to faster acceleration and higher final speed.

Pitch control is more rapid and responsive for the flight with wing mass, as can be
observed from Fig. 6a. The period of medium-term pitching oscillation for the case with
wing mass is shorter than that without. This is because the wing inertia-induced moment
gives rise to additional body rotation, which was explained previously. Another major
difference is in the pitching down stage at the beginning of acceleration (first 3 wing

The Effect of Wing Mass and Wing Elevation Motion 41

cycles). The flyer pitches down faster in the case with wing mass because this process is
accomplished by both the aerodynamic moment and the wing inertia-induced moment,
as shown in Fig. 6b. In addition, the residual pitching fluctuation after that is smaller since
the internal wing inertia force does not change the pitching velocity. However, for the
case without wing mass, the whole pitching downmotion is contributed by aerodynamic
moment alone, which can also change the pitching velocity.

4 Conclusion

The present paper investigated the effect of wing mass and wing elevation motion during
insect free forward flight via numerical simulation. The numerical model integrated a
Navier-Stokes flow solver with the Newtonian free-body dynamics of the model insect.
Parallel computation is essential for current study, since the free flight simulation is
computationally intensive due to the large mesh scale and the iterative solution for
the FSI problem. Two parallelization techniques are used in current simulation, i.e.,
open multi-processing (OpenMP) and graphics processing units (GPU) acceleration.
Two techniques are applied at the suitable computational algorithms respectively to
take advantages of each. It is found that Oval-shaped wing elevating motion can help
to generate large pitching down moment, both in terms of the aerodynamic moment
and the wing inertia-induced moment. With such wing elevation motion, the flyer can
quickly adjust its orientation for forward acceleration from the normal hovering status.
On the other hand, wing mass tends to magnify such effect while prohibits the growth
of pitching down velocity, which is favourable for the overall flight performance. Larger
body oscillation is observed during forward flight for the case with actual wing mass
compared to the case without wing mass. In addition, the forward flight with zero wing
mass ratio accelerates faster and reaches a slightly higher speed in the end compared to the
case with insect actual wing mass. The present study provides detailed information and
access to the coupled dynamics of fluid and flyer in free flight condition. The present free
flight model offers a prospective approach that could complement existing experiments
with live insect subjects in a wider study of ‘real-time’ dynamics of insect flight and
manoeuvres.

References

1. Osborne, M.: Aerodynamics of flapping flight with application to insects. J. Exp. Biol. 28(2),
221–245 (1951)

2. Weis-Fogh, T., Jensen, M.: Biology and physics of locust flight. I. basic principles in insect
flight. a critical review. Phil. Trans. R. Soc. Lond. B 239(667), 415–458 (1956)

3. Weis-Fogh, T.: Energetics of hovering flight in hummingbirds and in drosophila. J. Exp. Biol.
56(1), 79–104 (1972)

4. Weis-Fogh, T.: Quick estimates of flight fitness in hovering animals, including novel
mechanisms for lift production. J. Exp. Biol. 59(1), 169–230 (1973)

5. Ellington, C.: The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Philos.
Trans. R. Soc. London. B Biol. Sci. 305(1122), 1–15 (1984)

6. Willmott, A.P., Ellington, C.P.: The mechanics of flight in the hawkmoth manduca sexta. I.
Kinematics of hovering and forward flight. J. Exp. Biol. 200(21), 2705–2722 (1997)

42 J. Yao and K. S. Yeo

7. Willmott, A.P., Ellington, C.P.: The mechanics of flight in the hawkmoth Manduca sexta. II.
Aerodynamic consequences of kinematic and morphological variation. J. Exp. Biol. 200(21),
2723–2745 (1997)

8. Dickinson, M.H., Lehmann, F.-O., Sane, S.P.: Wing rotation and the aerodynamic basis of
insect flight. Science 284(5422), 1954–1960 (1999)

9. Fry, S.N., Sayaman, R., Dickinson, M.H.: The aerodynamics of free-flight maneuvers in
drosophila. Science 300(5618), 495–498 (2003)

10. Wu, D., Yeo, K.S., Lim, T.T.: A numerical study on the free hovering flight of a model insect
at low Reynolds number. Comput. Fluids 103, 234–261 (2014)

11. Yao, Y., Yeo, K.S.: Longitudinal free flight of a model insect flyer at low Reynolds number.
Comput. Fluids 162, 72–90 (2018)

12. Yao, Y., Yeo, K.S.: Manoeuvring Flight of a Model Insect–Saccadic Yaw and Sideslip.
Computers & Fluids, 2019

13. Yao, J., Yeo, K.S.: Free hovering of hummingbird hawkmoth and effects of wing mass and
wing elevation. Comput. Fluids 186, 99–127 (2019)

14. Yao, J., Yeo, K.: Forward flight and sideslip manoeuvre of a model hawkmoth. J. Fluid Mech.
896, A22 (2020)

15. Wu, G., Zeng, L.: Measuring the kinematics of a free-flying hawk-moth (Macroglossum
stellatarum) by a comb-fringe projection method. Acta. Mech. Sin. 26(1), 67–71 (2010)

16. Yao, J., Computational Aerodynamics of Hawkmoth Free Flight. Thesis (2018)
17. Ang, S., et al.: A singular-value decomposition (SVD)-based generalized finite difference

(GFD) method for close-interaction moving boundary flow problems. Int. J. Numer. Meth.
Eng. 76(12), 1892–1929 (2008)

18. Zhang, L.: Unsteady aerodynamics of flapping wings. Thesis (2013)
19. Yao, Y.: Computational aerodynamics of flapping wing flight. Thesis (2016)
20. Yao, Y., Yeo, K.-S.: An Application of GPU Acceleration in CFD simulation for insect flight.

Supercomput. Front. Innov. 4(2), 13–26 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Exploring the Dynamics of Quantum
Information in Many-Body Localised

Systems with High Performance
Computing

Shao-Hen Chiew1,2(B), Leong-Chuan Kwek2,3,4, and Chee-Kong Lee5

1 Department of Physics, Faculty of Science, National University of Singapore,
Blk S12 Level 2, Science Drive 3, Singapore 117551, Singapore

shaohenc@gmail.com
2 Centre for Quantum Technologies, National University of Singapore,

Singapore 117543, Singapore
3 MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit,

Singapore UMI 3654, Singapore, Singapore
4 National Institute of Education, Nanyang Technological University,

Singapore 637616, Singapore
5 Tencent America, Palo Alto, CA 94306, USA

Abstract. Conventional many-body quantum systems thermalize under
their own dynamics, losing information about their initial configurations
to the environment. However, it is known that a strong disorder results
in many-body localization (MBL). A closed quantum systems with MBL
retains local information even in the presence of interactions. Here, we
numerically study the propagation and scrambling of quantum informa-
tion of a closed system in the MBL phase from an information theoretic
perspective. By simulating the dynamics and equilibration of the tem-
poral mutual information for long times, we see that it can distinguish
between MBL and ergodic phases.

Keywords: Quantum dynamics · Quantum information · Disordered
systems

1 Introduction

The fate of a generic many-body quantum system can be described by quantum
statistical mechanics at equilibrium, where it is expected that it eventually ther-
malizes through the process of thermal equilibration regardless of the system’s
initial state. Recently, however, it has become clear that there exists exceptional
disordered quantum system that can avoid this fate through localization [1–3].
This phenomenon, termed Many-Body Localisation (MBL), leads to a plethora of
interesting features that cannot be described by quantum statistical mechanics,
including the preservation of information, the slow spreading of entanglement,
the emergence of integrability, and so forth [4].
c© The Author(s) 2022
D. K. Panda and M. Sullivan (Eds.): SCFA 2022, LNCS 13214, pp. 43–58, 2022.
https://doi.org/10.1007/978-3-031-10419-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10419-0_4&domain=pdf
https://doi.org/10.1007/978-3-031-10419-0_4

44 S.-H. Chiew et al.

Concomitant to the development of a new understanding of the MBL phase,
there has also been significant progress in the experimental simulation of quan-
tum many-body systems [5–10]. With a greater degree of tunability, control,
manipulation and isolation from the environment, such systems provide a per-
fect avenue towards a greater understanding of strongly-correlated many-body
quantum systems. Examples of such experimental setups are ultracold atoms
in optical lattices, trapped ions, and nuclear and electron spins associated with
impurity atoms in diamond nitrogen-vacancy centers [4]. These systems have also
been studied through the lens of quantum information science using concepts
and tools such as quantum entanglement, quantum coherence and the quantum
Fisher information. For example, entanglement growth can be detected through
suitable witnesses or with the quantum Fisher information [11]. The latter pro-
vides a lower bound on the entanglement in the system with just a measurement
of two-body correlators, which can be efficiently accessed with site-resolved imag-
ing [6]. In some cases, for instance in ion traps, partial or full quantum state
tomography can be performed [12].

Systems in the MBL phase differs significantly from systems in the ergodic
phase in many aspects. From an experimental perspective, the equilibration of
physical observables to non-thermal values at long times [13,14] is interesting
as the expectation values of physical observables such as local magnetisation
can be experimentally probed [5–7]. However, local observables can only reveal
part of the complete picture: to fully investigate MBL, it is fruitful to resort to
more abstract quantities that capture finer details from the information-theoretic
properties of the MBL phase. This is precisely the approach that we will take in
this paper.

In particular, we focus on understanding the localization and the propagation
of information as the MBL systems evolve. We begin with a brief overview of
relevant concepts and methods in the next section. We then proceed to discuss
the main problem in detail, and present our numerical results on the temporal
mutual information at length in Sect. 3.

2 Background and Numerical Setup for Dynamics

From an information-theoretic perspective, a hallmark of the MBL phase is the
logarithmic spreading of the entanglement entropy. The entanglement entropy
between two subsystems of a quantum state ρ, or alternatively the Von Neumann
entropy of the reduced density matrix for either subsystem, is defined by:

Sent(ρA) = −Tr(ρAlogρA), (1)

where ρA = TrB(ρAB), with A being a subsystem of the total system AB. It
measures the extent to which the subsystems A and B are entangled with one
another. Starting with an initial non-thermal product state, one can show [15]
that the entanglement entropy of a MBL system grows logarithmically, i.e.:

Sent(ρMBL) ∝ log(t), (2)

Dynamics of Quantum Information in Many-Body Localised Systems 45

in contrast to the ballistic spread of entropy in the ergodic case:

Sent(ρerg) ∝ t. (3)

This indicates much slower spreading of entanglement in the MBL phase. Indeed,
this slow spreading of correlations is often regarded as one of the distinguishing
features of MBL from ergodic systems.

Another relevant quantity is the quantum mutual information (QMI). For a
system partitioned into two subsystems A and B, the QMI between A and B is
defined as:

I(A : B) = S(ρA) + S(ρB) − S(ρAB), (4)

where S(ρ) is the entanglement entropy of the state ρ as defined in the previous
paragraph. It measures the total correlations shared between the two subsystems,
or equivalently how much information is gained about one subsystem by measur-
ing the state of the other. The separability of two subsystems, i.e. ρAB = ρA⊗ρB
implies zero QMI, while non-zero QMI implies non-zero correlation or entangle-
ment. The growth and equilibration of the QMI can be used as a diagnostic tool
for the MBL phase [16,17]. Numerical results indicate that the QMI in an MBL
phase is exponentially localized in space, which is consistent with our intuition
of a localized phase.

2.1 Physical Model

An important model that exhibits MBL is the 1D isotropic Heisenberg spin-
1/2 chain, subject to random transverse magnetic fields [16,17]. For an array of
L spins obeying open boundary conditions, the Hamiltonian for this system is
given by:

H = J

L−1∑

i=1

Si · Si+1 +
L∑

i=1

hiS
z
i . (5)

Here, Si = (Sx
i , Sy

i , Sz
i) is the vector of local spin operators at site i, with

i ∈ [1, L], J the interaction strength, and hi the strength of the disordered
magnetic field at site i, which is a random real number uniformly distributed in
the interval [−W,W]. This well-studied system is known to exhibit MBL, with
an ergodic-MBL transition occurring at W ≈ 3.5J [2,18,19]. In the following
sections, we will focus exclusively on this model, with the disorder parameter W
controlling the system’s localization. Throughout the article and in numerical
simulations, we will also set J = 1 consistently.

2.2 Simulation of Unitary Dynamics

To study the steady-state properties of a closed system, one can perform a quan-
tum quench, where an initial nonequilibrium state |ψ(0)〉 (which is the ground
state of a Hamiltonian H0) is first prepared, and evolved under the unitary
dynamics of another Hamiltonian H according to Schrödinger’s equation:

i�
∂

∂t
|ψ(t)〉 = H|ψ(t)〉. (6)

46 S.-H. Chiew et al.

|ψ(t)〉 can then be studied either experimentally by measuring the values of phys-
ical observables in a physical setup, or numerically by simulating less experimen-
tally accessible quantities such as the entanglement entropy and the QMI. Of
particular interest to us are signatures that manifest when MBL systems evolve
in time.

We simulate the unitary dynamics of a closed quantum system by directly
integrating Schrödinger’s equation for a time independent Hamiltonian H,
Eq. (6). In a particular basis |φk〉, we have:

|ψ(t)〉 =
∑

k

ck(t)|φk〉. (7)

The set of coupled first-order differential equations then takes the form:

i�
∂ck(t)

∂t
=

∑

i

[H]kici(t), (8)

which can be readily integrated by an ODE solver to yield |ψ(t)〉.
Importantly, to study disordered systems such as Eq. (5), we study the aver-

ages of quantities over multiple disorder realizations, with each realisation corre-
sponding to a randomly sampled set of transverse magnetic fields hi. The number
of realizations range from 100–1000 in this project.

The numerical simulation of quantum dynamics is implemented in Python
with QuTiP [20], an open-source software for simulating the dynamics of
closed and open quantum systems. In particular, the Complex-valued Variable-
coefficient Ordinary Differential Equation (zvode) solver [21] is used to integrate
Eq. (6). Time intensive simulations are also performed with the High Perfor-
mance Computing (HPC) clusters from NUS and NSCC.

3 Information Scrambling and Delocalization in MBL
Systems

An important characteristics of MBL is the slow propagation of quantum infor-
mation. Along these lines, we wish to understand how an initially localized infor-
mation is spatially spread across a many-body quantum system under time evo-
lution, and how the phenomenon of many-body localization changes the answer
to this question.

These considerations lead us to the notion of information scrambling, which
is the spreading of local information across many-body quantum systems, such
that they can only be recovered by non-local measurements. Related to thermal-
ization and chaos, the notion of scrambling has been used recently to study the
quantum information of black holes [22,23], and can be experimentally probed
[24]. Naturally, it is interesting to relate this notion to the MBL phase, given its
information-localizing nature.

In this section, we relate a proposed measure of scrambling, the temporal
mutual information (following [25]), with the MBL phase, and investigate its

Dynamics of Quantum Information in Many-Body Localised Systems 47

qualitative differences with the ergodic phase with numerical and some analytical
arguments. We begin with a brief review on the channel-state duality and use it
to define the temporal mutual information.

3.1 Channel-State Duality

Consider the action of a unitary operator1 U(t) that acts on vectors in H, written
in a basis as:

U(t) =
∑

i,j

uij |i〉〈j|. (9)

This operator is then isomorphic to a state in H ⊗ H:

|U(t)〉 =
∑

i,j

uij |i〉|j〉, (10)

an isomorphism known as the channel-state duality (or the Choi-Jamio�lkowski
isomorphism). More generally, consider an arbitrary input ensemble ρin =∑

i pj |ψj〉〈ψj |. Each state |ψj〉 in this statistical ensemble evolves into |φj〉 =
U(t)|ψj〉, so that the entire ensemble becomes ρout =

∑
i pj |φj〉〈φj |. The action

of U(t) on the input state can then be summarized by the pure state:

|Ψ〉 =
∑

j

√
pj |ψj〉in ⊗ |φj〉out = 1 ⊗ U(t)

∑

j

√
pj |ψj〉in ⊗ |ψj〉out. (11)

|Ψ〉 contains all information about the action of U(t) on ρin. In particular, we
have:

ρin = Trout(|Ψ〉〈Ψ |), (12)
ρout = Trin(|Ψ〉〈Ψ |). (13)

Importantly, the state in the form of Eq. (11) treats the input and output
states on equal footing. If we consider the unitary operator to be the propagator
U(t) = e−iHt of the Hamiltonian H, Eq. (11) then contains information about
the the state at different times, before and after the evolution due to U(t).

3.2 Temporal Mutual Information

For concreteness, consider a 1D lattice of spins in (H)⊗N that is evolving under a
Hamiltonian H. The state |Ψ〉 dual to the channel U(t) then lives in Hin ⊗Hout,
where Hin = Hout = (H)⊗N . We partition Hin arbitrarily into subsystems A
and B, and Hout into C and D (Fig. 1 represents the situation schematically).

1 In general, the evolution need not be unitary, but can be a quantum channel (i.e.
a trace-preserving completely positive map) in the case where the state is an open
subsystem of a larger, closed system. We will only consider unitary channels in the
following analyses.

48 S.-H. Chiew et al.

Fig. 1. Schematic representation of the spatial partition of input 1D lattice into A
and B, and the output state into C and D after a unitary evolution generated by H.
In general, there need not be an equal number of partitions of the input and output
states, and A and C (B and D) need not correspond to the same spatial partitions. If
they do, we denote them A = A(0) and C = A(t) (B = B(0) and D = B(t)).

Following [24], one can then define the entanglement entropy between subsys-
tems at different times and different spatial sites by tracing out appropriate
subsystems from the dual state ρ = |Ψ〉〈Ψ |. For example,

S(ρAC) ≡ −Tr(ρAC log ρAC), (14)

where ρAC = TrBD(ρ) is the reduced density matrix containing subsystem A
before the unitary evolution and C after the evolution. We can further define
a more useful quantity, which is the mutual information at different times and
different spatial sites:

I(A : C) ≡ S(ρA) + S(ρC) − S(ρAC). (15)

This quantity, which we refer to as the temporal mutual information, intuitively
quantifies the amount of information that one can obtain about subsystem A by
measuring subsystem C at a later time. Furthermore, if A and C correspond to
the same sites spatially (at different times), which we denote as A ≡ A(0) and
C ≡ A(t), I(A(0) : A(t)) quantifies information contained in a spatial region
(A(t)) about the same region before time evolution (A(0)) - in other words how
much information can still be extracted from a region of space about its past
configuration.

3.3 Problem Statement

We can study the delocalization of information using a game played between
Alice and Bob. Suppose Alice has a source of classical information X = 0, ..., N

Dynamics of Quantum Information in Many-Body Localised Systems 49

with probability distribution p0, ..., pN , which she chooses to encode in a set of
quantum states {|ψ0〉, ..., |ψN 〉}. Alice prepares a a state |ψX〉 from this set and
sends it to Bob, so the state that Bob effectively studies is:

ρ =
N∑

i=0

pi|ψi〉〈ψi|. (16)

Bob’s task is then to determine the index X based on his knowledge about the
state of some part of the system.

Fig. 2. Schematic of the game between Alice and Bob, realized on a 1D lattice of
spins. ρA is the information-bearing state provided by Alice, and ρB is the state that
Bob uses to infer ρA. In (a), Bob infers ρA using a state ρB at the same time, so the
information that Bob can extract is I(A : B). In (b), Bob infers ρA = ρA(0) using a
state at a later time, ρC , which happens to be the same spins after the evolution, i.e.
ρA(t). The information that Bob can extract is then the temporal mutual information
I(A(0) : A(t)). In general, ρC need not be the same spins. Our analyses will focus solely
on the temporal mutual information.

For concreteness, suppose further that these quantum states are realized on
part of a 1D lattice of spins, i.e. ρA ∈ HA = (H)⊗K ⊂ (H)⊗L, with K < L, so
that (H)⊗L constitutes the system (See. Fig. 2a). Calling A the partition that
contains the information-bearing state ρA, the information that Bob can extract
on ρA if he has full knowledge of a state ρB at another partition B is then given
by the quantum mutual information:

I(A : B) = S(ρA) + S(ρB) − S(ρAB), (17)

as discussed in Sect. 1.
Here, ρA and ρB correspond to states at the same time - this is the approach

taken by [16,17] to study MBL - while Eq. (15) from the previous section provides
an extension to states at different times. Our question can now be rephrased as
the following:

50 S.-H. Chiew et al.

How much information can Bob obtain about an initial state ρA if he has
knowledge about a state ρC after the action of a unitary evolution U(t)?

Our following investigations will focus on determining the behaviour of
I(A(0) : C(t)) for different partitions C(t). When C = A(t), I(A(0) : A(t))
measures the amount of information that remains in the original subsystem
after time evolution. On the other hand, if C(t) is spatially disjoint from A(0),
I(A(0) : C(t)) measures the amount of information that has “leaked out” to
another region C outside of A (See. Fig. 2b). We expect the behaviour of
I(A(0) : C(t)) to differ depending on whether the lattice is ergodic or local-
ized, and in our following work we obtain numerical evidence that our intuition
is indeed true.

3.4 Numerical Results

We consider the closed system as consisting of 6 spins, where the first two spins
are the information bearing spins. This closed system evolves under the Heisen-
berg XXX model Hamiltonian Eq. (5) that has been discussed in the previous
sections, with the disorder parameter W controlling the strength of localization.

We encode the classical information source X = 0, 1, 2, 3 in orthogonal states
{|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉} with equal probabilities p0 = p1 = p2 = p3, so that the
information bearing state ρA =

∑
i pi|ψi〉〈ψi| corresponds to the maximally

mixed state ρA = 1
41. It is embedded in an environment (the 4 remaining spins)

which we take to be the Néel state |↑↓↑↓〉. The combined initial state is thus:

ρ =
1
4
1 ⊗ |↑↓↑↓〉. (18)

With U(t) = e−iHt, we can then use the channel-state duality to construct the
pure state |Ψ〉 from Eq. (11), and monitor the evolution of the temporal mutual
information I(A(0) : C(t)) with different partitions C(t) and disorder W .

Dynamics of Initially Localized Information. Starting from ρ, how does
information that is initially localized in ρA leak out to its surroundings after
time evolution due to U(t)? This can be monitored by following the evolution of
I(A(0), A(t)) - from an initially maximal value, it is expected to decay as time
progresses, indicating that information initially contained in A(0) has decayed.

Figure 3a shows the evolution of I(A(0), A(t)) for different values of W . This
decay can indeed be noticed, with the final steady-state value depending on the
disorder strength. In addition, we can also choose C(t) to be spatially disjoint
with A(t). I(A(0), C(t)) then monitors information initially contained in A(0)
that has leaked to another spatially disjoint region C(t). This is shown in Fig. 3b.
Both plots agree with our expectation that localization strength directly affects
the amount of information about the initial state that has leaked out spatially
to other regions.

Dynamics of Quantum Information in Many-Body Localised Systems 51

Fig. 3. Evolution of I(A(0) : C(t)) for different partitions C(t) and disorder strength
W (indicated by different colors), averaged over 50 disorder realizations. In (a), C(t) is
chosen to correspond to the same region A. I(A(0) : C(t)) is then observed to decay and
equilibrate to a lower steady-state value that depends on the strength of localization,
controlled by increasing W . In (b), C(t) is disjoint from A, and chosen to be the
furthest single site away from A. While initially containing no information about A(0),
information leaks out into this region as the system evolves and becomes entangled to
the environment. We also graphically indicate the partitions below the plots, with blue
marking partition A and red marking C of the temporal mutual information I(A : C).

Having qualitatively shown the effects of localization strength on
I(A(0), C(t)), we repeat this simulation more fully with all possible future parti-
tions C(t) for the ergodic case with W = 0.1J and the MBL case with W = 7J ,
shown in Fig. 4. There are 2n − 1 = 31 number of ways to choose C(t), cor-
responding to the 31 curves in Fig. 4. Several noteworthy observations can be
extracted from Fig. 4:

– Similar to the previous plots, the steady-state values of I(A(0) : C(t)) depends
on W . (This scaling is investigated more thoroughly in the next subsection)

– I increases as the size of the partition C(t) is increased. This follows from the
monotonicity of the quantum mutual information, i.e. I(X : Y Z) > I(X : Y).

– In the MBL phase, the steady-state values of I(A(0) : C(t)) decays with
distance from the initial 2 spins. (For example, I(A(0) : [5]) > I(A(0) : [6]) >
... > I(A(0) : [9])). The ergodic phase, on the other hand, does not exhibit this

52 S.-H. Chiew et al.

spatial decay2 (I(A(0) : [6]) = ... = I(A(0) : [9])). This possibly demonstrates
that in the ergodic phase, initially localized information is evenly distributed
across the entire chain, while in the MBL phase the distribution of information
depends on distance from the first 2 spins.

– At short times, the growth/decay of I occurs more rapidly in the ergodic
phase, compared to the MBL phase. This can be attributed to the slow spread-
ing of entanglement in the MBL phase, compared to the ballistic spread in
the ergodic phase.

– I(A(0) : [56789](t)) is constant and equal to 2S(ρA(0)) = 2 ln 4 ≈ 2.77. This is
due to identity Eq. (20), representing the conservation of information, which
we prove in the last subsection.

– Every curve (Except I(A(0) : [56789](t))) has a symmetric counterpart such
that the sum between these two curves at any time is 2S(ρA(0)). (For example,
I(A(0) : [5](t))+ I(A(0) : [6789](t)) = 2S(ρA(0))) This can be explained with
the identity Eq. (22) in the final subsection.

Steady-State Values of Temporal Mutual Information as a Function
of Localization Strength. From the dynamics above, I(A(0), C(t)) reaches
steady-state values after evolving for t ≈ 15J . Choosing the final 20% of the
evolution as the steady-state window tSS , we define the steady-state TMI as:

I(A(0), C) =
1

ΔtSS

∫

tSS

I(A(0), C(t))dt. (19)

In this section, we investigate these steady-state values as a function of dis-
order/localization strength W . The results are shown in Fig. 5. We note the
following observations:

– Indeed, the value of I(A(0) : C) for any partition C that contains A = [5]
increases with W , signalling increasing localization of information in the ini-
tial spatial region. On the contrary, the value of I(A(0) : C) for any partition
that does not contain [5] decreases with W , as less information has leaked
out to these partitions.

– As W is increased so that the system transitions into the MBL phase, the
decay of I(A(0) : C) as C is chosen to be further away from the first 2 spins
(also observed and discussed in the previous section) is again visible from
the splitting of initially coinciding lines. Again, this indicates that ergodic-
ity spreads information throughout the system evenly, while MBL tends to
localize information with a strength that decays spatially.

2 The large value of I(A(0) : [5]) compared to I(A(0):[6]), ..., I(A(0):[9]) is due in part
to the index [5] representing 2 spins.

Dynamics of Quantum Information in Many-Body Localised Systems 53

Fig. 4. Evolution of temporal mutual information for all possible partitions of C(t),
for the ergodic phase (Top plot) and the MBL phase (Bottom plot). Colors represent
different choices of C(t) and are labelled in the legend, and the indices corresponding
to different sites are shown in the schematic below the plots (Blue highlighting indi-
cates information-bearing spins). For example, I(A(0), [5](t)) is the temporal mutual
information between A(0) and A(t), I(A(0), [56](t)) is the temporal mutual information
between A(0) and the first 3 spins at time t, and I(A(0), [56789](t)) is the temporal
mutual information between A(0) and the entire system plus environment at time t.

54 S.-H. Chiew et al.

Fig. 5. I(A(0) : C) as a function of disorder strength W for all possible partitions C.
Colors represent different choices of C and are labelled in the legend, and the indices
corresponding to different sites can be found in the schematic below Fig. 4. Each value
of I is obtained by averaging over 500 disorder realizations, and the averaging window
is chosen to be the final 20% of a total evolution time of Jt = 40.

Scaling with System Size. To study how the steady state temporal mutual
information I(A(0) : C) scales with system size L, and whether it is useful for
detecting the location of the critical disorder Wc at which the ergodic-MBL
transition occurs, we perform additional simulations with different values of L.

Similar analyses [26,27] that study the ergodic-MBL transition for finite sys-
tem sizes provide evidence that the entanglement entropy and Holevo quantity
can help locate the the ergodic-MBL transition that occurs at the thermody-
namic limit, L −→ ∞, where these quantities vary discontinuously across a criti-
cal disorder strength Wc. If the behaviour of I(A(0) : C) against W approaches
a step function in a similar manner as the system size L tends to infinity, the
location of the discontinuity then marks the location of the critical disorder Wc.

The results of some preliminary investigations for the same Heisenberg XXX
spin chain3 are presented in Fig. 6 for L = 4, 6, 8, 10, 12. From the figure, while
there are good indications that the curves are converging to a sigmoidal curve
as L increases, suggesting a possible scaling law for I(A(0) : C), the limitations
of our numerics prevent more concrete claims. More samples and larger system
sizes will be needed to establish a scaling law.

3 The chosen configuration in this section is slightly different from the previous sec-
tions. Here, half of the system carries information, while in the previous sections
only 2 out of 6 spins do.

Dynamics of Quantum Information in Many-Body Localised Systems 55

Fig. 6. Normalized steady-state values of I(A(0) : C) against disorder, for system sizes
L = 6, 8, 10, 12. The information-bearing state consists of the first L/2 spins, while
the environment constitute the remaining L/2 spins. I(A(0) : C) is normalized with
2S(A(0)) = 2 ln(2L) so that the same y-scale can be used to compare I across different
system sizes. Each point is produced by averaging over 100–200 disorder realizations,
with an averaging window chosen to be the final 20% of a total evolution time of
Jt = 40.

Mathematical Identities Finally, we state and prove a few identities on the
temporal mutual information that explains some features of the above numerical
results. Let L symbolically denote the system, and {A,B} a partition of L.
Suppose further that ρA(0) is a mixed state and ρB(0) is a pure state, so that
ρ(0) = ρA(0)⊗ρB(0) (corresponding to our setup above). Recall that ρ = |Ψ〉〈Ψ |
is the (pure) dual state obtained using the channel-state duality Eq. (11).

Lemma 1.
I(A(0) : L(t)) = 2S(ρA(0)). (20)

Information initially contained in a subsystem A can always be fully re-extracted
at a later time from the full system L.

Proof. From the definition of the temporal mutual information Eq. (15),

I(A(0) : L(t)) = S(ρA(0)) + S(ρL(t)) − S(ρA(0)L(t)). (21)

We use the fact that the entropy of the bipartitions of a pure state are equal.
Since the dual state ρ is pure, this implies that the second term is S(ρL(t)) =
S(ρL(0)) = S(ρ(0)) = S(ρA(0) ⊗ ρB(0)). The same fact yields S(ρA(0)L(t)) =
S(ρB(0)) for the third term. Finally, ρB(0) being pure implies that the third
term vanishes, while the second term becomes S(ρL(t)) = S(ρA(0)), leading to
the result.

56 S.-H. Chiew et al.

Lemma 2. If {C,D} is an arbitrary partition of L, then:

I(A(0) : L(t)) = I(A(0) : C(t)) + I(A(0) : D(t)). (22)

Proof. Firstly, note that the subsystem B(0) can always be traced out without
changing the entropy. This can be seen by applying the triangle inequality and
the subadditivity of the entropy on any subsystem B(0)X containing B(0):

|S(ρB(0)) − S(ρX)| ≤ S(ρB(0)X) ≤ S(ρX) + S(ρB(0)). (23)

ρB(0) being pure then implies that S(ρB(0)X) = S(ρX).
The right hand expression is by definition:

I(A(0) : C(t)) + I(A(0) : D(t)) = S(ρA(0)) + S(ρC(t))
−S(ρA(0)C(t)) + S(ρA(0)) + S(ρD(t)) − S(ρA(0)D(t)). (24)

Some terms can be simplified:

S(ρA(0)D(t)) = S(ρB(0)C(t)) = S(ρC(t)) (25)
S(ρA(0)C(t)) = S(ρB(0)D(t)) = S(ρD(t)), (26)

where the first equality is because the entropies of the bipartitions of a pure
state are equal, and the second equality results from our initial note. Finally,
cancelling some terms yield:

I(A(0) : C(t)) + I(A(0) : D(t)) = 2S(ρA(0)) = I(A(0) : L(t)), (27)

where the second equality is due to the previous identity Eq. (20).

Lemma 3. We have:

I(A(0) : A(t)) = S(ρA(0)) + S(ρA(t)) − S(ρB(t)). (28)

Proof. Note that:

S(ρA(0)A(t)) = S(ρB(0)B(t)) = S(ρB(t)), (29)

where the first equality is because the entropies of the bipartitions of a pure state
are equal, and the second equality results from tracing out B(0) not affecting
the entropy. Applying the definition of I(A(0) : A(t)) then leads to the result.

4 Conclusion and Discussion

We have investigated information localization in MBL systems from an
information-theoretic perspective by introducing the temporal mutual informa-
tion. Unlike the quantum mutual information, which depends on states at the
same time, the temporal mutual information allows us to monitor the spread
of information as the system evolves. From our numerical simulations on its

Dynamics of Quantum Information in Many-Body Localised Systems 57

dynamics, we observe that its evolution and steady-state behavior agree with our
intuition that the MBL phase should localize and slow the spread of information.
We also find some preliminary indications that it can be useful in identifying the
ergodic-MBL transition, based on its scaling with system size.

Further work in this direction should constitute a better understanding of the
temporal mutual information, and its relation with the entanglement entropy.
In light of Eq. (28), there is a simple relation between I and S; does the tempo-
ral mutual information then contain more information, or is the entanglement
entropy sufficient in characterising the spread of information? Otherwise, the
scaling behaviour of I could be investigated more thoroughly with larger system
sizes. This would ideally involve better suited computational techniques such as
the use of matrix product states and the time-evolving block decimation algo-
rithm.

Acknowledgments. KLC is supported by the Ministry of Education and the National
Research Foundation under the Center for Quantum Technologies (CQT).

References

1. Serbyn, M., Papić, Z., Abanin, D.A.: Local conservation laws and the structure of
the many-body localized states. Phys. Rev. Lett. 111(12), 127201 (2013)

2. Huse, D.A., Nandkishore, R., Oganesyan, V.: Phenomenology of fully many-body-
localized systems. Phys. Rev. B 90(17), 174202 (2014)

3. Imbrie, J.Z.: On many-body localization for quantum spin chains. J. Stat. Phys.
163(5), 998–1048 (2016)

4. Abanin, D.A., Altman, E., Bloch, I., Serbyn, M.: Colloquium: many-body local-
ization, thermalization, and entanglement. Rev. Mod. Phys. 91(2), 021001 (2019)

5. Schreiber, M.: Observation of many-body localization of interacting fermions in a
Quasirandom optical lattice. Science 349(6250), 842–845 (2015)

6. Smith, J., et al.: Many-body localization in a quantum simulator with pro-
grammable random disorder. Nat. Phys. 12(10), 907–911 (2016)

7. Choi, J.-Y., et al.: Exploring the many-body localization transition in two dimen-
sions. Science 352(6293), 1547–1552 (2016)

8. Bordia, P., et al.: Probing slow relaxation and many-body localization in two-
dimensional quasiperiodic systems. Phys. Rev. X 7(4), 041047 (2017)

9. Roushan, P., et al.: Spectroscopic signatures of localization with interacting pho-
tons in superconducting qubits. Science 358(6367), 1175–1179 (2017)

10. Kai, X., et al.: Emulating many-body localization with a superconducting quantum
processor. Phys. Rev. Lett. 120(5), 050507 (2018)

11. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum
states. Phys. Rev. Lett. 72(22), 3439 (1994)

12. Häffner, H., et al.: Scalable multiparticle entanglement of trapped ions. Nature
438(7068), 643–646 (2005)

13. Wu, Y.-L., Das Sarma, S.: Understanding analog quantum simulation dynamics in
coupled ion-trap qubits. Phys. Rev. A 93(2), 022332 (2016)

14. Hauke, P., Heyl, M.: Many-body localization and quantum ergodicity in disordered
long-range Ising models. Phys. Rev. B 92(13), 134204 (2015)

58 S.-H. Chiew et al.

15. Deng, D.-L., Li, X., Pixley, J.H., Wu, Y.-L., Das Sarma, S.: Logarithmic entan-
glement lightcone in many-body localized systems. Phys. Rev. B 95(2), 024202
(2017)

16. De Tomasi, G., Bera, S., Bardarson, J.H., Pollmann, F.: Quantum mutual infor-
mation as a probe for many-body localization. Phys. Rev. Lett. 118(1), 016804
(2017)

17. Bañuls, M.C., Yao, N.Y., Choi, S., Lukin, M.D., Ignacio Cirac, J.: Dynamics of
quantum information in many-body localized systems. Phys. Rev. B 96(17), 174201
(2017)

18. Pal, A., Huse, D.A.: Many-body localization phase transition. Phys. Rev. B 82(17),
174411 (2010)

19. Luitz, D.J., Laflorencie, N., Alet, F.: Many-body localization edge in the random-
field Heisenberg chain. Phys. Rev. B 91(8), 081103 (2015)

20. Robert Johansson, J., Nation, P.D., Nori, F.: QuTiP: an open-source python frame-
work for the dynamics of open quantum systems. Comput. Phys. Commun. 183(8),
1760–1772 (2012)

21. Brown, P.N., Byrne, G.D., Hindmarsh, A.C.: VODE: a variable-coefficient ODE
solver. SIAM J. Sci. Stat. Comput. 10(5), 1038–1051 (1989)

22. Bekenstein, J.D.: Black holes and entropy. In: Jacob Bekenstein: The Conservative
Revolutionary, pp. 307–320. World Scientific (2020)

23. Lashkari, N., Stanford, D., Hastings, M., Osborne, T., Hayden, P.: Towards the
fast scrambling conjecture. J. High Energy Phys. 2013(4), 1–33 (2013). https://
doi.org/10.1007/JHEP04(2013)022

24. Landsman, K.A.: Verified quantum information scrambling. Nature 567(7746),
61–65 (2019)

25. Hosur, P., Qi, X.-L., Roberts, D.A., Yoshida, B.: Chaos in quantum chan-
nels. J. High Energy Phys. 2016(2), 1–49 (2016). https://doi.org/10.1007/
JHEP02(2016)004

26. Khemani, V., Lim, S.-P., Sheng, D.N., Huse, D.A.: Critical properties of the many-
body localization transition. Phys. Rev. X 7(2), 021013 (2017)

27. Nico-Katz, A., Bayat, A., Bose, S.: Information-theoretic memory scaling in the
many-body localization transition. arXiv preprint arXiv:2009.04470 (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/JHEP04(2013)022
https://doi.org/10.1007/JHEP04(2013)022
https://doi.org/10.1007/JHEP02(2016)004
https://doi.org/10.1007/JHEP02(2016)004
http://arxiv.org/abs/2009.04470
http://creativecommons.org/licenses/by/4.0/

On the Difference Between Shared
Memory and Shared Address Space

in HPC Communication

Atsushi Hori1(B) , Kaiming Ouyang2 , Balazs Gerofi1,3,
and Yutaka Ishikawa1

1 National Institute of Informatics, Tokyo, Japan
{ahori,yutaka ishikawa}@nii.ac.jp

2 University of California, Riverside, USA
kouya001@ucr.edu

3 RIKEN Center for Computational Science, Kobe, Japan
bgerofi@riken.jp

Abstract. Shared memory mechanisms, e.g., POSIX shmem or
XPMEM, are widely used to implement efficient intra-node communica-
tion among processes running on the same node. While POSIX shmem
allows other processes to access only newly allocated memory, XPMEM
allows accessing any existing data and thus enables more efficient com-
munication because the send buffer content can directly be copied to
the receive buffer. Recently, the shared address space model has been
proposed, where processes on the same node are mapped into the same
address space at the time of process creation, allowing processes to access
any data in the shared address space. Process-in-Process (PiP) is an
implementation of such mechanism. The functionalities of shared mem-
ory mechanisms and the shared address space model look very similar –
both allow accessing the data of other processes –, however, the shared
address space model includes the shared memory model. Their internal
mechanisms are also notably different. This paper clarifies the differ-
ences between the shared memory and the shared address space mod-
els, both qualitatively and quantitatively. This paper is not to showcase
applications of the shared address space model, but through minimal
modifications to an existing MPI implementation it highlights the basic
differences between the two models. The following four MPI configura-
tions are evaluated and compared; 1) POSIX Shmem, 2) XPMEM, 3)
PiP-Shmem, where intra-node communication is implemented to utilize
POSIX shmem but MPI processes share the same address space, and
4) PiP-XPMEM, where XPMEM functions are implemented by the PiP
library (without the need for linking to XPMEM library). Evaluation
is done using the Intel MPI benchmark suite and six HPC benchmarks
(HPCCG, miniGhost, LULESH2.0, miniMD, miniAMR and mpiGraph).
Most notably, mpiGraph performance of PiP-XPMEM outperforms the
XPMEM implementation by almost 1.5x. The performance numbers of
HPCCG, miniGhost, miniMD, LULESH2.0 running with PiP-Shmem
and PiP-XPMEM are comparable with those of POSIX Shmem and
XPMEM. PiP is not only a practical implementation of the shared

c© The Author(s) 2022
D. K. Panda and M. Sullivan (Eds.): SCFA 2022, LNCS 13214, pp. 59–78, 2022.
https://doi.org/10.1007/978-3-031-10419-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10419-0_5&domain=pdf
http://orcid.org/0000-0002-7010-8098
http://orcid.org/0000-0002-4775-1835
http://orcid.org/0000-0003-2286-9770
https://doi.org/10.1007/978-3-031-10419-0_5

60 A. Hori et al.

address space model, but it also provides opportunities for developing
new optimization techniques, which the paper further elaborates on.

Keywords: Shared memory · Shared address space · Parallel
execution model · HPC Communication · MPI

1 Introduction

Shared memory, which enables processes to access the same physical memory
regions, is popular for implementing intra-node communication. The most well-
known shared memory implementation is POSIX shmem [13] that requires the
allocation of a new memory region so that other processes can gain access
to it. When implementing MPI inter-process communication, POSIX shmem
requires two memory copies; one copy from the send buffer to a shared memory
region and another copy from the shared memory region to the receive buffer.
XPMEM [9], which was first introduced on SGI supercomputers, enables other
processes accessing existing memory regions. In XPMEM, the owner process of
a memory region first exposes the memory region and then the process trying to
access the memory region attaches the exposed region. If the memory region in
which the send buffer resides is accessible from the receiver process, then only
one memory copy enables the data transfer from the send buffer to the receive
buffer. Thus, XPMEM is used in many MPI implementations to make intra-
node communication more efficient than that of POSIX shmem. Additionally,
the XPMEM communication style also enables efficient implementation of one-
sided communication. Once the addresses of the origin and target buffers are
known, one-sided communications can take place without any intervention of
the other process. XPMEM’s big disadvantage, however, is the overhead of the
attach operation. Consequently, most MPI implementations utilizing XPMEM
make use of an XPMEM cache that reduces this overhead by caching attached
memory regions [7].

The shared address space is another mechanism that enables processes to
efficiently share memory. As of today, SMARTMAP [5], PVAS [19], MPC [18]
and Process-in-Process (PiP) [10] implement this model. As the name suggests,
in this model processes are created to share the same address space. Once pro-
cesses are created, they can access any data in the address space and there is no
need for any special operations that are required in the shared memory model,
such as the creation of shared memory regions in POSIX shmem or the expose
and attach operations of XPMEM. Moreover, the shared address space model
can provide all functionalities of the shared memory model, but with higher effi-
ciency. There are more benefits to the shared address space. The address of an
object is unique and does not depend on the accessing process. This means that
complex data structures such as linked lists and/or tree structures where objects
are linked with pointers can be also accessible without any extra effort. Even
execution code can be shared. This characteristic of the shared address space
model is very difficult to implement with traditional shared memory since that

On the Difference Between Shared Memory and Shared Address Space 61

does not guarantee the same virtual address for mapped objects. The shared
address space, however, has also a disadvantage compared to the traditional
shared memory. In particular, it may induce higher overhead when modifying
the shard address space itself, such as by calling m(un)map() or brk() system
calls that have no impact when using traditional shared memory.

The shared memory and the shared address space models can be confusing
because both allow access to the data of another process. However, the shared
memory model only allows access to some parts in the address space of the other
processes, while the shared address space model allows for all processes to access
everything in the same address space. The primary motivation of this paper is
to clarify the difference between these two models.

The shared address space model can be defined as execution entities share
an entire address space, not only parts of it. For example, the well-known multi-
thread execution model can also be thought of as the shared address space
model. However, the execution models of multi-process and multi-thread are
very different, and it is not appropriate to compare the basic differences of the
two memory models.

This paper highlights the differences between the two memory models both
qualitatively and quantitatively. The possible optimization techniques enabled
by using the shared address space are not the main concern of this paper, but
some of them will be discussed in Sect. 6.

In this paper, we chose PiP as an implementation of the shared address
space model because PiP is implemented at user-level and PiP can provide the
XPMEM API. We chose MPICH for evaluation purposes as it is a well-known
MPI implementation. We modified MPICH to create the shared address space
environment, but the modification is minimized so that basic performance differ-
ences can be demonstrated. Our approach is to compare four different MPICH
configurations by using POSIX shmem, XPMEM, and PiP;

Shmem: configured to utilize POSIX shmem for intra-node communication,
PiP-Shmem: configured to utilize POSIX shmem but MPI processes are

spawned by using PiP,
XPMEM: configured to utilize XPMEM for intra-node communication, and
PiP-XPMEM: configured to utilize XPMEM but XPMEM functions are imple-

mented by using PiP.

The quantitative differences will be demonstrated by using the Intel MPI
benchmark programs (IMB) and various HPC benchmarks. In summary, the
main findings of this paper are as follows.

– PiP-Shmem behaves almost the same with Shmem,
– PiP-XPMEM outperforms XPMEM at best when the communication pattern

is irregular and thus the XPMEM cache is ineffective,
– PiP(-XPMEM) has large overhead when calling the m(un)map() or brk()

system calls, and
– application behavior does not trigger the above overhead and there are cases

where PiP-Shmem and PiP-XPMEM outperforms Shmem and XPMEM.

62 A. Hori et al.

To the best of our knowledge, this is the first paper which clarifies the dif-
ferences between the shared memory and the shared address space models.

2 Background and Related Work

There are two well-used parallel execution models, multi-process and multi-
thread. Although the MPI standard does not define which execution model is
to be used to implement MPI, many MPI implementations are based on the
multi-process model. OpenMP is a parallel language utilizing the multi-thread
execution model. Usually, a process has its own address space, and nothing is
shared among processes. Threads share almost everything including static vari-
ables. One may realize a third execution model to take the best of two worlds
of multi-process and multi-thread. In this execution model, execution entities
(processes or threads) share an entire address space, but each execution entity
can run independently from the others, i.e., all variables are privatized unlike the
thread model. Since an address space is shared, one can access the data owned
by others whenever it’s required. Specifically, nothing is shared in the process
model, everything is shared in the thread model, and in this third execution
model everything is shareable. Needless to say, the third execution model also
provides the shared address space model. The term process may not be appropri-
ate here because a process, as opposed to a thread, usually implies its associated
address space. Hereinafter the term task is used in the contexts of the shared
address space model and the third execution model.

The shared memory model does not have this feature since the mapped
address of a memory segment may differ process by process. This feature is
called Consistent Address View (CAV) in this paper. CAV enables the sharing
of complex structures (i.e., linked list or tree) and execution codes. In most cases,
those linked lists and tree structures hold pointers to refer to the other related
object(s) and those related objects may widely scatter in an address space and
may not fit in a memory segment. With traditional shared memory, pointers
in complex data structures cannot be dereferenced as they are, and complex
structures may not fit in a memory segment to share. Thus, sharing a complex
structure with shared memory is difficult.

There are currently four major implementations of the third execution model;
1) SMARTMAP, 2) PVAS, 3) MPC, and 4) PiP. These are summarized in
Table 1, Base indicates the base of implementation (process or thread), Par-
tition indicates address space is regularly partitioned or not, CAV indicates if
the implementation has the CAV feature, Multi-Prog. indicates if multi-program
is supported or not, PIE indicates if executable must be PIE (Position Inde-
pendent Code) or not, and Impl. Lv. indicates the implementation level, user or
kernel.

The implementation of SMARTMAP relies on the page table structure of the
x86 architecture and its page table has a unique format. A task is mapped twice
in the shared address space, one for execution itself and another for accessing
from the other tasks. Thus, to access the data of the other task an offset must
be added to addresses and thus CAV is not supported by SMARTMAP.

On the Difference Between Shared Memory and Shared Address Space 63

Table 1. Shared Address Space Implementations

Name Base Partition CAV Multi-Prog. PIE Impl. Lv. Note

PiP Process No Yes Yes Yes User

SMARTMAP Process Yes No Yes No Kernel Dedicated
OS

PVAS Process Yes Yes Yes Yes Kernel Patched
Linux

MPC Thread No Yes No No User Dedicated
Compiler

A shared address space is partitioned in SMARTMAP and PVAS. All mem-
ory segments of a task are packed into one of the partitions. Unlike SMARTMAP,
PVAS is architecture independent, and it loads an executable image onto one of
the unused partitions. If a program A is loaded twice or more, the images of A
must be loaded at different partitions. To enable this, the executable must be a
PIE. This situation of PVAS is the same with PiP, while PiP does not partition
an address space.

MPC has a different approach from the others. Its implementation is based
on Pthread and MPC makes threads like processes. The variable privatization is
implemented by converting static variables to Thread Local Storage (TLS) vari-
ables. This translation is done by a dedicated compiler and linker. The biggest
issue with this implementation is that user programs may create (OpenMP)
threads and declare their own TLS variables. The converted TLS variables must
be able to be accessed by any (process-like) threads, while the user-declared TLS
variables must be accessed only by the thread created by the user. So, the con-
verted TLS variables and user-declared TLS variables have different accessing
scopes. To solve this issue, they implement two different TLS systems; one for
the converted TLS and another for user-defined threads. Despite this mitigation,
MPC tasks still have the limitations coming from the thread implementation,
such as only a single program can be loaded that shares a single file descriptor
table, etc.

In the XPMEM shared memory model, the procedure to access the address
space of another process is; 1) the exposing process must call xpmem make()
in advance, 2) then the accessing process calls xpmem get(), and 3) calls
xpmem attach(). The xpmem make() function of XPMEM is to specify an
address range of the caller process so that the other process can attach only
the memory regions within this specified address range. The xpmem get() func-
tion is to check if the calling process can access the exposed memory. Finally,
the xpmem attach() function must be called to specify the memory region to
be shared. The times to call XPMEM functions (and the times to call POSIX
shmem functions as well) are already reported by [10], showing xpmem get()
(and POSIX shmem) overhead is very high.

64 A. Hori et al.

Hashmi investigated various optimization techniques for implementing MPI
by using XPMEM [7], though the title of his thesis has the term “Shared-
Address-Space.” He proposed the XPMEM implementation of MVAPICH (an
MPI implementation [20] to improve P2P communications and collective oper-
ations. XPMEM cache was proposed to mitigate the high overhead. He also
proposed optimization for handling MPI datatypes by using XPMEM.

SMARTMAP, PVAS and XPMEM are implemented at the kernel level. Con-
sequently, it is very difficult to set up their environment on systems in operation
if those systems do not support them already. To the contrary, PiP and MPC
are implemented at user level, and it is easy to run programs under these envi-
ronments on any system. As shown in Table 1, PiP is the most practical in terms
of its transparency for a dedicated OS kernel, language processing system and
CAV. This is the reason why we chose PiP in this paper.

The shared address space model is new and not thoroughly investigated yet.
This paper is to clarify the basic characteristics of the shared address space
model by comparing it with traditional shared memory. Possible applications of
this model will be discussed in Sect. 6.

3 Process-in-Process (PiP)

In PiP, a normal process can spawn child PiP tasks located in the same address
space of the spawning process. The parent process is called the PiP root process
and the spawned tasks are called PiP tasks. When implementing MPI with PiP,
the process manager process is the PiP root and MPI processes are PiP tasks.
The PiP root process is also treated as a PiP task.

The PiP implementation relies on the dlmopen() (not dlopen()) Glibc func-
tion and the Linux clone() system call. dlmopen() loads a program with a
new name space. By using this function, programs can be loaded into the same
address space twice or more whilst maintaining their variable privatization. To
load the same program but to a different location in the same address space,
the loaded program must be compiled and linked as Position Independent Exe-
cutable (PIE). The clone() system call is used to create a task sharing the
same address space but to behave like a process, i.e., to have its independent
file descriptor table, signal handlers, etc. Thus, a PiP task behaves just like a
normal process except for the shared address space.

Let us explain about the variable privatization of PiP in a concrete example.
Assume that a program has a statically allocated variable x and it spawns two
PiP tasks derived from this program. Each PiP task has its own variable x
at different location in the same virtual address space. Each task accesses its
own variable x. Thus, the spawned tasks can run independently without having
any collisions of accessing variables. This behavior is substantially different from
that of the multi-thread mode where all static variables are shared. To access the
variable x owned by another task, PiP provides several ways to pass the address
of an object to another PiP task. If the address of an object to be accessed is
known, then a task can simply access it without performing any extra operations.

On the Difference Between Shared Memory and Shared Address Space 65

This variable privatization makes PiP tasks much easier for programs to share
an address space than that of using the multi-thread model. When a sequential
program is run with the multi-thread model, static variables must be protected
from simultaneous access. In the shared address model, however, all static vari-
ables are privatized and there is no need for such protection. Thus, multiple
instances of a program or multiple programs can run in the shared address
space without the need for any modification of their source code.

There is one big limitation of PiP that comes from the current Glibc imple-
mentation. The number of name spaces which the dlmopen() can create is lim-
ited up to 16. This number is the size of a statically allocated array of name
spaces and it is hard coded in Glibc. This number is too small considering the
number of CPU cores on a node. As a result, we patched Glibc so that more than
16 PiP tasks can be created. Regardless of using the patched Gilbc or not, the
current PiP implementation is purely user-level, and requires neither any kernel
patch nor a specific kernel module. It should be noted that this patched Glibc
can coexist with the existing Glibc. Only when a PiP program is compiled and
linked by using the PiP compiler wrapper scripts, the patched Glibc is used.

The PiP library also provides the XPMEM functions and the XPMEM
header file so that programs using XPMEM can easily be converted to PiP-
aware programs. Furthermore, a converted program can run without installing
the XPMEM kernel module. The XPMEM functions implemented in the PiP
library do nothing and work very efficiently because PiP tasks can access any
data in the address space to begin with.

4 Shared Memory Vs. Shared Address Space

4.1 Page Tables and Page Faults

In modern CPUs and OS kernels, an address space is essentially implemented
as a page table located inside the kernel. The page table holds all mapping
information from virtual addresses to physical addresses on every memory page
in use. Every process has its own address space (left figure of Fig. 1). This implies
every process has its own page tables. When a shared region is created by using
POSIX shmem, the physical memory pages that are share are mapped in the page
tables associated with the processes to share the memory region. In XPMEM, an
existing memory region to share must be exposed and then the region is attached
by the other process.

Let us take a closer look at the creation of new mappings. In many modern
OSes including Linux, there are two steps; one to create a skeleton of the mapping
upon request, followed by a (minor) page fault when accessing the memory page
for the first time. This page fault triggers the creation of a page table entry
of the memory page. Every step is accompanied with non-negligible overhead.
Furthermore, in the shared memory model, these steps happen on every process
accessing the shared memory region. Thus, the shared memory model may suffer
from the setup overhead and the overhead of a large number of page faults.

66 A. Hori et al.

Proc 1 Proc 2 Proc n

Page
Table

1

Physical Memory

Task 1 Task 2 Task n

Page Table

Physical Memory

Page
Table

2

Page
Table

n

shared
memory

Shared Memory Model Shared Address Space Model

Task 0 Task 1 Task n

Fig. 1. Page table structure difference

To the contrary, there is only one page table regardless of the number of
tasks in the shared address space model (right figure of Fig. 1). Once a page
table entry is created, the corresponding memory page can be accessed by any
tasks sharing the address space without triggering page faults. Nowadays the
number of tasks (processes) in a node for parallel execution can be large since
the number of CPU cores is increasing. Thus, the overhead of page table setup
and page faults can be far less than that of the shared memory model.

4.2 Modifications to Page Tables

However, the shared address space has also a disadvantage. Suppose that there
are four processes sharing the same address space (right figure of Fig. 1). In
theory, the size of the shared page table is the sum of the sizes of the four inde-
pendent processes. The bigger page table than that of shared memory can take
longer time to walk through the page table. Additionally, the page table is shared
by the four processes. To maintain consistency of the page table, the page table
must be protected from the simultaneous modification by using some combina-
tion of locking. This locking renders the overhead of page table modifications
even larger.

There are two well-used system calls, m(un)map() and brk(), to modify the
page table when memory regions get (de)allocated. The mmap() system call is
also used to allocate a shared memory region. The brk() system call extends the
memory region of the heap segment. The brk() function is used by the malloc()
routines. The detailed m(un)map() overhead was already analyzed and reported
by the original PiP paper [10], and the overhead on PiP is almost the same with
that of Pthreads which is another implementation of the shared address space
model.

On the Difference Between Shared Memory and Shared Address Space 67

Table 2. Shared memory and shared address space

Feature Shared memory Shared address space (PiP)

Sharing target Regions Entire address space

Setup cost Very high Nothing

Page table modification cost – Higher

Page Faults Larger Smaller

Lifespan of sharing Attach ∼ detach Same as task/thread

Consistent Address View (CAV) No Yes

Summary of the Differences

Table 2 shows the summary of a qualitative comparison between the shared mem-
ory model and the shared address space model.

5 Evaluation

The objective of this evaluation is to asses whether or not the shared address
space can provide performance advantages compared to shared memory in the
presence of the advantages and disadvantages described in the previous section.
Unfortunately, the benchmark programs evaluated in this paper have no usage
of CAV which is one of the most unique features of shared address space, which
we will further discuss in Sect. 6.

We chose MPICH (Version 3.4.1) for evaluation. Although various optimiza-
tions based on PiP are possible, we kept modifications to MPICH minimal to
highlight the basic difference between the shared memory and shared address
space models. To make MPICH PiP-aware, we modified the Hydra process man-
ager of MPICH to spawn PiP tasks instead of creating normal processes. MPICH
was configured in four ways,

Shmem MPICH is configured to use POSIX shmem for intra-node communica-
tion,

XPMEM MPICH is configured to use XPMEM for intra-node communication,
if possible,

PiP-Shmem MPICH is configured to spawn PiP tasks and PiP tasks allo-
cate POSIX shared memory regions for intra-node communication (although
shmem is not needed with PiP), and

PiP-XPMEM in addition to PiP-Shmem, XPMEM code is enabled but imple-
mented by the PiP library and the XPMEM cache code is bypassed.

A certain difference between XPMEM and PiP-XPMEM is expected because
XPMEM incurs the overhead of attaching memory of other processes as well as
the overhead of the XPMEM cache to reduce the number of calls to XPMEM
attach. The performance of PiP-Shmem and PiP-XPMEM, however, might incur
higher mmap() and/or brk() overhead.

68 A. Hori et al.

P2P and RMA performances were measured by using Intel MPI Bench-
mark [11]. Six mini-apps, HPCCG [8], miniGhost [3], LULESH2.0 [1,12], min-
iMD [14], miniAMR [2] and mpiGraph [15], were chosen to cover various parallel
execution and communication patterns.

We confirm that XPMEM is used in MPICH when calling P2P functions
(Send/Recv, Isend/Irecv and Sendrecv) with message sizes larger than or equal
to 4KiB and some RMA calls (Get/Put and Accumulate). This condition is the
same with PiP-XPMEM since the threshold setting was left unchanged.

5.1 Experimental Environment

To measure the four MPICH configurations, Shmem, PiP-Shmem, XPMEM
and PiP-XPMEM, we needed access to a cluster where XPMEM was already
installed. Unfortunately, only a limited number of compute nodes from the
Oakforest-PACS supercomputer [12] could be installed with such environment.
Table 3 describes our evaluation environment.

Table 3. Experimental platform information

H/W CPU # Cores (# HT) Clock Memory Network

Xeon Phi 7250 (KNL) 68 (272) 1.4 GHz 96(+16) GiB Omni-Path

S/W OS Linux 3.10.0-957.27.2.el7.x86 64

PiP-Glibc 2.17-260.el7.pip.branch

GCC 4.8.5 20150623 (Red Hat 4.8.5-36)

Intel MPI Intel(R) MPI Library 2019 Update 5 for Linux

In all cases in this section, MPI processes are bound to CPU cores with the
-bind-to rr (round-robin) MPICH runtime option. No other runtime option
is specified. The performance numbers of the benchmark programs compiled
and linked with built-in Intel compiler and Intel MPI will also be shown in some
cases, just for reference. All MPICH libraries and mini applications are compiled
using GCC. All measurements were repeated ten times and average numbers are
reported.

5.2 Intel MPI Benchmark (IMB) Performance

To measure and compare P2P performance in this subsection, all benchmark
numbers in IMB-MPI1 and IMB-RMA were measured using only a single node. Most
benchmark results did not show any big difference between Shmem and PiP-
Shmem and between XPMEM and PiP-XPMEM, respectively. Here, Exchange
in IMB-MPI1 (Fig. 2) and All put all in IMB-RMA (Fig. 3) results are shown. In
the Exchange benchmark, MPI processes form a ring topology and each MPI
process send messages to its neighbors by calling MPI Isend(), MPI Irecv()

On the Difference Between Shared Memory and Shared Address Space 69

and MPI Wait(). In the All put all benchmark, each MPI process puts data to
all the other MPI processes. Remember that XPMEM is only effective in the
P2P communication and when the message size is larger than or equal to 4KiB,
and some RMA operations including get and put.

In Fig. 2, Shmem, not shown in this figure because it is the base (always one),
and PiP-Shmem exhibited the very similar latency curves, except for the dip at
message size of 64 KiB. This is because the latency of Shmem is exceptionally
large at that message size. XPMEM and PiP-XPMEM exhibit almost the same
and much better than that of Shmem and PiP-Shmem when the message size
is larger than or equal to 4 KiB which is the threshold to call the XPMEM
functions to communicate.

0

0.5

1

1.5

2

2.5

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

R
el

at
iv

e
La

te
nc

y
to

 S
hm

em

Message Size [Bytes]

Intel PiP-Shmem XPMEM PiP-XPMEM

Fig. 2. IMB-MPI1 Exchange (-np 32 -
ppn 32)

0

0.2

0.4

0.6

0.8

1

1.2

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

R
el

at
iv

e
La

te
nc

y
to

 S
hm

em

Size [Byes]

Intel PiP-Shmem XPMEM PiP-XPMEM

Fig. 3. IMB-RMA All put all (-np 32 -
ppn 32)

0

2000

4000

6000

8000

10000

12000

Shmem PiP-Shmem XPMEM PiP-XPMEM

IM
B

-E
X

T
W

in
d

ow
 [u

se
c]

Fig. 4. IMB-EXT Window (-np 32 -ppn 32)

In Fig. 3, Shmem and PiP-Shmem exhibited almost the same except for the
dip at 1KiB. Again, this dip comes from the exceptional Shmem latency at this
message size and affects the ratios of the other MPI configurations. Compar-
ing XPMEM and PiP-XPMEM, PiP-XPMEM exhibited much better latency
at the range from 4KiB to 64KiB. We believe this performance advantage of

70 A. Hori et al.

PiP-XPMEM over XPMEM comes from the XPMEM cache misses. It has been
shown by Hashmi that the XPMEM cache miss overhead can only be seen on
smaller message sizes [7] and Fig. 3 matches with his report.

There is a pitfall in the IMB-RMA benchmark. The measured time
does not include the time to create an RMA window. The time to call
MPI Window create() can be measured by another program IMB-EXT in the IMB
suite. Figure 4 shows the results using this program. By large, PiP-Shmem and
PiP-XPMEM took more than 2x compared with Shmem and XPMEM, respec-
tively. This PiP overhead is considered to come from the contention of mmap()
calls and the larger size of the page table. In general, the RMA window creation
function is called at the initialization stage of an MPI program, and the RMA
window creation function is not called frequently. So this overhead is diluted in
real applications.

5.3 Mini App Performance

Table 4 lists the mini applications used in this subsection and parameters to
run them. The column Maj. MPI send indicates the MPI function which is
called most frequently in that application. The Perf. Index at the last column

Table 4. Benchmark parameters

Name (Lang.) -np Parameters Maj. MPI

Send

Perf. Index

HPCCG

(C++)

32 150 150 50 Send MFLOPS

256 (same as above)

miniGhost

(F90)

32 ndim = 600 npx = ppy = 4 ppz = 2 scaling

= 1

Isend Total

GFLOPS

256 ndim=1200 npx=ppy=8 ppz=4 scaling=1

LULESH2.0

(C++)

27 s = 16 Isend FOM

125 s = 18

miniMD

(C++)

32 in.lj.miniMD Sendrecv Performance

256 (same as above)

miniAMR (C) 32 npx = npy = 4 npz = 2 max blocks = 1000 Isend Total

GFLOPS

nx = ny = nz = 8 init x = init y = init z =

1

num refine = 4 num objects = 1 object = 2

0 −0.01 −0.01 −0.01 0.0 0.0 0.0 0.0 0.0 0.0

0.0009

0.0009 0.0009 num tsteps = 200 comm vars

= 2

256 npx = npy = 8 npz = 4

(rests are same as above)

mpiGraph (C) 32 1048576 10 10 Isend Send avg

256 (same as above)

On the Difference Between Shared Memory and Shared Address Space 71

indicates which number reported by the application is used for the performance
comparison.

In the following application evaluation, single-node performance and
multiple-node performance are shown and compared. The number of MPI
processes of LULESH2.0 must be cubic, so the number of MPI processes of
LULESH2.0 evaluation is 27 for single-node, 125 for multiple nodes (five nodes).
The number of MPI processes of all the other applications is 32 for running on
a single node and 256 for running on eight nodes.

Figure 5 shows the single node performance ratios of mini apps based on
Shmem performance. As seen, the PiP-Shmem, XPMEM and PiP-XPMEM per-
forms within the range of few percent differences. Most notably, the performance
of mpiGraph running with PiP-XPMEM outperforms Shmem at 3x, XPMEM
at 1.5x.

0.
99

4

0.
99

9

1.
01

5

0.
99

3

1.
05

2

0.
94

0

1.
00

2

1.
00

9

1.
00

0

1.
04

4

1.
00

0

1.
91

5

0.
99

7

1.
01

0

1.
01

0

1.
03

8

1.
05

9

2.
90

6

0

0.5

1

1.5

2

2.5

3

HPCCG miniGhost LULESH2.0 miniMD miniAMR mpiGraph

R
el

at
iv

e
P

er
fo

rm
an

ce
 t

o
S

hm
em

PiP-Shmem XPMEM PiP-XPMEM

Fig. 5. Application Performance Com-
parison

0.
99

1

0.
99

9

1.
01

0

0.
94

3

1.
05

0

1.
00

8

1.
00

4

1.
01

1

0.
99

4

1.
11

8

1.
00

0

1.
03

2

0.
99

2

1.
00

8

1.
00

7

1.
04

6

1.
05

5

1.
05

8

0

0.5

1

1.5

HPCCG miniGhost LULESH2.0 miniMD miniAMR mpiGraph

R
el

at
iv

e
P

er
fo

rm
an

ce
 t

o
S

hm
em

PiP-Shmem XPMEM PiP-XPMEM

Fig. 6. Application Performance Com-
parison (multiple nodes)

Figure 6 shows the multi-node performance numbers. Unlike Fig. 5, the
big performance gain of PiP-XPMEM on mpiGraph is hardly seen. Further,
XPMEM outperforms PiP-XPMEM and Shmem also outperforms PiP-Shmem
in miniMD. In mimiAMR, PiP-Shmem and PiP-XPMEM outperform Shmem
and XPMEM by about 5%, respectively.

In the next subsection, we will try to analyze these situations in terms of the
XPMEM cache miss, the number of page faults, the number of brk() calls, and
the communication patterns.

Detailed Analysis
Figure 9 shows the numbers of XPMEM cache accesses and the XPMEM cache
miss ratios on each application. The XPMEM cache works in such a way that
firstly it searches the XPMEM cache table and if there is no cache entry then the
xpmem get() and xpmem attach() are called to attach the memory region and
the attached region is registered in the XPMEM cache. The upper bars in the
figure indicate the number of XPMEM cache access and the lower bars indicate
the cache miss ratios. In the mpiGraph application, the XPMEM cache miss
ratio is exactly 10%, the highest among the others.

72 A. Hori et al.

8.
56

E
+

5

9.
18

E
+

5 2.
55

E
+

7

2.
67

E
+

5 7.
18

E
+

6

1.
41

E
+

6

4.
55

E
+

5

4.
77

E
+

5 2.
11

E
+

7

2.
63

E
+

5 6.
98

E
+

6

1.
36

E
+

6

7.
68

E
+

5

8.
83

E
+

5 2.
55

E
+

7

2.
56

E
+

5 7.
14

E
+

6

2.
88

E
+

6

3.
21

E
+

5

3.
06

E
+

5

2.
11

E
+

7

2.
50

E
+

5 6.
93

E
+

6

3.
03

E
+

5

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

HPCCG miniGhost LULESH2.0 miniMD miniAMR mpiGraph

P

ag
e

Fa
ul

ts

Shmem PiP-Shmem XPMEM PiP-XPMEM

Fig. 7. # Page Faults (single node)

0

0.5

1

1.5

2

2.5

HPCCG

m
ini

Gho
st

LU
LE

SH2.
0

m
ini

M
D

m
ini

AM
R

m
piG

ra
ph

P
ag

e
Fa

ul
t

R
at

io
(re

l.
to

 S
hm

em
)

PiP-Shmem XPMEM PiP-XPMEM

Fig. 8. Page Fault Ratio (single node)

Figure 7 shows the number of page faults and Fig. 8 shows the ratio of page
faults during the executions. The numbers of page faults with PiP-Shmem and
PiP-XPMEM are always less than those of Shmem and XPMEM respectively, as
expected. Most notably, the number of page faults of XPMEM on mpiGraph is
2x higher than that of Shmem and close to 10x higher than that of PiP-XPMEM.

8.
56

E
+

5

9.
18

E
+

5 2.
55

E
+

7

2.
67

E
+

5 7.
18

E
+

6

1.
41

E
+

6

4.
55

E
+

5

4.
77

E
+

5 2.
11

E
+

7

2.
63

E
+

5 6.
98

E
+

6

1.
36

E
+

6

7.
68

E
+

5

8.
83

E
+

5 2.
55

E
+

7

2.
56

E
+

5 7.
14

E
+

6

2.
88

E
+

6

3.
21

E
+

5

3.
06

E
+

5

2.
11

E
+

7

2.
50

E
+

5 6.
93

E
+

6

3.
03

E
+

5

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

HPCCG miniGhost LULESH2.0 miniMD miniAMR mpiGraph

P

ag
e

Fa
ul

ts

Shmem PiP-Shmem XPMEM PiP-XPMEM

Fig. 9. # XPMEM Cache Access and
Cache Miss Ratio (single node)

0

0.5

1

1.5

2

2.5

HPCCG

m
ini

Gho
st

LU
LE

SH2.
0

m
ini

M
D

m
ini

AM
R

m
piG

ra
ph

P
ag

e
Fa

ul
t

R
at

io
(re

l.
to

 S
hm

em
)

PiP-Shmem XPMEM PiP-XPMEM

Fig. 10. Number of brk() calls

The number of mmap() system call includes the calls when loading a program
and required shared libraries and the comparing the number of mmap() calls
may be imprecise. Instead, the number of brk() system calls is measured in this
paper. We measured the overhead of the brk() system call on 32 tasks on a
single node. The overhead of the PiP-Shmem case is very high, almost 200x of
the Shmem case. This large overhead may affects the application performance.

Figure 10 shows the numbers of brk() calls per node. These numbers are
measured by using the Linux strace command. The brk() is always called in
pairs, one to obtain the current heap address and another to increase the heap
segment. So, the actual number of page table modifications is the half of the
numbers shown in the table. Unfortunately, the strace command is not PIE and

On the Difference Between Shared Memory and Shared Address Space 73

it is impossible to run it on the PiP environment. However, the numbers would be
the same with the numbers in the graph, since the MPICH code modifications
to be PiP-aware do not affect the number of brk() calls. These numbers are
almost independent from single node or multiple nodes, and using XPMEM or
not, except for LULESH2.0 with which the number of page faults on multiple
nodes are higher than those on a single node.

Fig. 11. Communication patterns

Figure 11 shows the cumulative graphs of send frequency over message sizes.
These numbers are obtained by using the PMPI interface. The communication
pattern of miniMD depends on the number of ranks while the others are almost
independent from the number of nodes. In miniMD, the larger the number of
ranks, the smaller the message sizes. This is due to the fact that the miniMD
parameter setting is in a strong scaling way.

Let us examine all these evaluation results. The single node performance of
mpiGraph is a good showcase of how PiP-XPMEM works better than XPMEM;
1) high XPMEM cache miss ratio, 2) high number of page faults, 3) moderate
number of brk() calls, and 4) exchanging large messages by which MPICH can
utilize the XPMEM functionalities.

LULESH2.0 and miniAMR exhibited similarly in terms of high number of
XPMEM calls, low XPMEM cache miss ratio, and high number of brk() calls.
The high number of brk() calls is considered to be the disadvantages for PiP-
Shmem and PiP-XPMEM, however, there are almost no performance penalties
observed. On the contrary, PiP-Shmem and PiP-XPMEM slightly outperforms
them. This can be explained by the fact of the high number of page faults (Fig. 7).

HPCCG and miniGhost performed constantly independent from whether
using PiP and/or XPMEM or not. The number of page faults could be reduced by

74 A. Hori et al.

using PiP or PiP-XPMEM. This advantage of PiP can be considered to be can-
celed by the brk() overhead. The advantage of using XPMEM over Shmem on
HPCCG, miniGhost and miniMD might have been spoiled by the 1% XPMEM
cache miss ratio (Fig. 9).

The miniMD multiple node performance of PiP-Shmem is slightly worse than
that of Shmem. miniMD exhibited almost the same with HPCCG and miniGhost
in terms of the number of page faults, XPMEM cache miss ratio, and the number
of the brk() calls. A big difference between miniMD and those applications can
be found at the communication pattern (the miniMD graph in Fig. 11). The
message sizes of running on 256 ranks are smaller than those of running on 32
ranks. The smaller the message size, the larger the impact of the brk() overhead.

6 Discussion

So far, the performance of PiP has been evaluated by using MPICH with the
indispensable and minimal modifications to be PiP-aware. However, there is a
lot of room for optimizing MPI implementations by using the shared address
space model. In the POSIX Shmem usage of an MPI implementation, there are
two mmap() calls; one to allocate a shared memory region and another to attach
the shared memory region to access. In the shared address space model, however,
only one call to allocate memory is enough. Once the memory region is allocated
the memory region can be accessible without calling another mmap() call to
attach. If an MPI implementation is optimized to utilize the full advantages
of the shared address space, then the number of mmap() calls can be halved.
Although the overhead of modifying a page table is high in shared address space,
the smaller number of page table modifications may lead to smaller overhead.

The shared address space may improve not only intra-node communication
performance, but also inter-node communication performance. Ouyang is eagerly
working on MPI optimization to improve inter-node, not intra-node, communi-
cation by using PiP. In [17], Ouyang et al. proposed CAB-MPI where commu-
nication queue entries of the other MPI processes are stolen to balance commu-
nication load among MPI processes in a node. In their other paper [16], Daps is
proposed so that idle MPI processes steal the asynchronous progress work of the
other busy MPI processes, instead of creating an asynchronous progress thread.
CAV provided by the shared address space model plays a very important role
when implementing CAB-MPI and Daps. The message queue (i.e., send or receive
queue) is implemented as a linked list in many cases. CAV enables CAB-MPI to
access the message queues of the other processes without largely modifying the
existing queue structures. To implement the asynchronous progress stealing in
Daps, things are more complicated than implementing CAB-MPI. In MPICH,
low level communication functions are called via function pointers to decouple
the device independent code and device dependent code. Those functions must
also be called by a different MPI process when implementing Daps, and the CAV
nature which the shared address space model provides enables this.

On the Difference Between Shared Memory and Shared Address Space 75

Although this paper focused on the difference between the shared memory
and the shared address space and reported advantages in intra-node MPI com-
munication, there are many other potential applications which would have ben-
efits by using the shared address space. The shared address space can also be
applied to various communication libraries (i.e., OpenSHMEM [4]) and parallel
programming languages (i.e., PGAS languages).

In-situ applications, visualization programs, and multi-physics applications
are required to run two or more programs simultaneously and these programs
cooperate with the others and exchange information among them. What if these
programs run in the shared address space environment? The data exchange
among programs can be more efficient than that of the conventional ways, –
data exchange via file or coupling library – because data of the other program
can be accessed directly. There are many open issues in this field of coupling
multiple programs, however, it is our belief that the shared address space can
be an answer for the question, how to connect programs in an efficient way.

Garg, Price and Cooperman proposed a checkpoint-restart system named
Mana which is agnostic to MPI implementations and network devices by having
a dedicated thread to save a memory image [6]. Although the authors claimed
that their approach is hard to implement by using PiP, we think checkpoint-
restart is a very attractive and challenging application of the shared address
space model.

7 Summary

This paper has provided a detailed comparison between the shared memory and
shared address space models. Although these two models appear similar since
both models allow access to data owned by the other processes, their underlying
mechanisms are notably different. From a qualitative point of view, the shared
address space model may have fewer number of page table modifications and
page faults than those of the shared memory model. To the contrary, the shared
address space model may incur larger overhead when modifying page tables,
e.g., when calling m(un)map() and brk() system calls. This overhead comes
from the shared page table among processes and from the fact that the page
table size is larger than that of the shared memory model. From a quantitative
point of view, evaluations were conducted by using P2P benchmark programs
and mini application benchmark programs. PiP is chosen as an implementa-
tion of the shared address model and an MPI implementation was modified in
a minimal way to have the shared address space model. Four MPI configura-
tions; 1) (POSIX) Shmem, 2) XPMEM, 3) PiP-Shmem and 4) PiP-XPMEM are
compared. Shmem and XPMEM are as the representatives of the shared mem-
ory model, PiP-Shmem and PiP-XPMEM are the representatives of the shared
address model.

The P2P benchmarks show that both models perform comparably. RMA
benchmark reveals that RMA operation of the shared address space may out-
perform the shared memory model, however, the RMA window creation of the

76 A. Hori et al.

shared address space model is almost twice as costly as that of the shared
memory model. Most mini benchmark programs also perform comparably. Most
notably, mpiGraph performance with PiP-XPMEM outperformed Shmem by 3x
and XPMEM by 1.5x.

The shared memory model is an old technology which has received a lot
of attention in the literature. To the contrary, the shared address space model
is newer and only a few investigations have been done so far. We believe that
considering the opportunities to improve the current HPC system software, it is
worth investigating the shared address space model. This paper has made the
first steps towards this direction.

PiP is an open-source software and freely available at https://github.com/
procinproc/procinproc.github.io. The PiP package includes the patched Glibc,
PiP-aware GDB, installation program (named pip-pip), and more. PiP can also
be installed by using Spack (https://github.com/spack) with the package name
of process-in-process.

Acknowledgment. This work has been partially funded by JST AIP Grant Number
JPMJCR19U2. We thank the University of Tokyo, the University of Tsukuba, and
JCAHPC for letting us access the OFP machine and for their help with getting the
experiments done.

References

1. Hydrodynamics Challenge Problem, Lawrence Livermore National Laboratory.
Technical report, LLNL-TR-490254, July 2011

2. miniamr, version 00 (2014). https://www.osti.gov//servlets/purl/1253324
3. Barrett, R.F., Heroux, M.A., Vaughan, C.T.: MiniGhost: a miniapp for exploring

boundary exchange strategies using stencil computations in scientific parallel com-
puting. https://doi.org/10.2172/1039405. https://www.osti.gov/biblio/1039405

4. Brightwell, R., Pedretti, K.: An intra-node implementation of OpenSHMEM
using virtual address space mapping. In: Fifth Partitioned Global Address
Space Conference. Galveston Island, Texas (2011). http://pgas11.rice.edu/papers/
BrightwellPedretti-OpenSHMEM-PGAS11.pdf

5. Brightwell, R., Pedretti, K., Hudson, T.: SMARTMAP: operating system sup-
port for efficient data sharing among processes on a multi-core processor. In:
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC 2008,
pp. 25:1–25:12. IEEE Press, Piscataway (2008). http://dl.acm.org/citation.cfm?
id=1413370.1413396

6. Garg, R., Price, G., Cooperman, G.: Mana for MPI: MPI-agnostic network-agnostic
transparent checkpointing. In: Proceedings of the 28th International Symposium
on High-Performance Parallel and Distributed Computing, HPDC 2019, pp. 49–60.
Association for Computing Machinery, New York (2019). https://doi.org/10.1145/
3307681.3325962

7. Hashmi, J.M.: Designing high performance shared-address-space and adaptive
communication middlewares for next-generation HPC systems. Ph.D. thesis, The
Ohio State University (2020)

8. Heroux, M.A., Dongarra, J., Luszczek, P.: HPCG benchmark technical specifica-
tion. https://doi.org/10.2172/1113870. https://www.osti.gov/biblio/1113870

https://github.com/procinproc/procinproc.github.io
https://github.com/procinproc/procinproc.github.io
https://github.com/spack
https://www.osti.gov//servlets/purl/1253324
https://doi.org/10.2172/1039405
https://www.osti.gov/biblio/1039405
http://pgas11.rice.edu/papers/BrightwellPedretti-OpenSHMEM-PGAS11.pdf
http://pgas11.rice.edu/papers/BrightwellPedretti-OpenSHMEM-PGAS11.pdf
http://dl.acm.org/citation.cfm?id=1413370.1413396
http://dl.acm.org/citation.cfm?id=1413370.1413396
https://doi.org/10.1145/3307681.3325962
https://doi.org/10.1145/3307681.3325962
https://doi.org/10.2172/1113870
https://www.osti.gov/biblio/1113870

On the Difference Between Shared Memory and Shared Address Space 77

9. Hjelm, N.: Linux Cross-Memory Attach. https://github.com/hjelmn/xpmem
10. Hori, A., et al.: Process-in-process: techniques for practical address-space sharing.

In: Proceedings of the 27th International Symposium on High-Performance Parallel
and Distributed Computing, HPDC 2018, pp. 131–143. Association for Computing
Machinery, New York (2018). https://doi.org/10.1145/3208040.3208045

11. Intel Corp.: Intel MPI Benchmarks - User Guide and Methodology Description,
Revision 3.2.4 edn. (2013)

12. Karlin, I., Keasler, J., Neely, R.: Lulesh 2.0 updates and changes. Technical report,
LLNL-TR-641973, August 2013

13. Kerrisk, M.: shm overview(7) - Linux manual page (2021). https://man7.org/
linux/man-pages/man7/shm overview.7.html

14. Li, M., Lin, J., Lu, X., Hamidouche, K., Tomko, K., Panda, D.K.: Scalable MiniMD
design with hybrid MPI and OpenSHMEM. In: Proceedings of the 8th International
Conference on Partitioned Global Address Space Programming Models, PGAS
2014. Association for Computing Machinery, New York (2014). https://doi.org/
10.1145/2676870.2676893

15. Moody, A.: mpigraph, version 00 (2007). https://www.osti.gov//servlets/purl/
1249421

16. Ouyang, K., Si, M., Hori, A., Chen, Z., Balaji, P.: Daps: a dynamic asynchronous
progress stealing model for MPI communication. In: 2021 IEEE International Con-
ference on Cluster Computing (CLUSTER), pp. 516–527 (2021). https://doi.org/
10.1109/Cluster48925.2021.00027

17. Ouyang, K., Si, M., Hori, A., Chen, Z., Balaji, P.: CAB-MPI: exploring interpro-
cess work-stealing towards balanced MPI communication. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE Press (2020)

18. Pérache, M., Carribault, P., Jourdren, H.: MPC-MPI: an MPI implementation
reducing the overall memory consumption. In: Ropo, M., Westerholm, J., Don-
garra, J. (eds.) EuroPVM/MPI 2009. LNCS, vol. 5759, pp. 94–103. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-03770-2 16

19. Shimada, A., Gerofi, B., Hori, A., Ishikawa, Y.: Proposing a new task model
towards many-core architecture. In: Proceedings of the First International Work-
shop on Many-Core Embedded Systems, MES 2013, pp. 45–48. ACM, New York
(2013). https://doi.org/10.1145/2489068.2489075

20. The Ohio State University: MVAPICH: MPI over InfiniBand, Omni-Path, Ether-
net/iWARP, and RoCE. http://mvapich.cse.ohio-state.edu

https://github.com/hjelmn/xpmem
https://doi.org/10.1145/3208040.3208045
https://man7.org/linux/man-pages/man7/shm_overview.7.html
https://man7.org/linux/man-pages/man7/shm_overview.7.html
https://doi.org/10.1145/2676870.2676893
https://doi.org/10.1145/2676870.2676893
https://www.osti.gov//servlets/purl/1249421
https://www.osti.gov//servlets/purl/1249421
https://doi.org/10.1109/Cluster48925.2021.00027
https://doi.org/10.1109/Cluster48925.2021.00027
https://doi.org/10.1007/978-3-642-03770-2_16
https://doi.org/10.1145/2489068.2489075
http://mvapich.cse.ohio-state.edu

78 A. Hori et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Evaluating GPU Programming Models
for the LUMI Supercomputer

George S. Markomanolis1 , Aksel Alpay2, Jeffrey Young5 ,
Michael Klemm3 , Nicholas Malaya3 , Aniello Esposito4 ,

Jussi Heikonen1 , Sergei Bastrakov6, Alexander Debus6 , Thomas Kluge6 ,
Klaus Steiniger6 , Jan Stephan6,7(B) , Rene Widera6 ,

and Michael Bussmann6,7

1 CSC - IT Center for Science Ltd., Espoo, Finland
{georgios.markomanolis,jussi.heikonen}@csc.fi

2 Heidelberg University, Heidelberg, Germany
aksel.alpay@uni-heidelberg.de

3 Advanced Micro Devices Inc, Santa Clara, USA
{michael.klemm,nicholas.malaya}@amd.com
4 Hewlett Packard Enterprise, Spring, USA

aniello.esposito@hpe.com
5 Georgia Institute of Technology, Atlanta, USA

jyoung9@gatech.edu
6 Center for Advanced Systems Understanding, Görlitz, Germany

7 Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
{s.bastrakov,a.debus,t.kluge,k.steiniger,
j.stephan,r.widera,m.bussmann}@hzdr.de

Abstract. It is common in the HPC community that the achieved
performance with just CPUs is limited for many computational cases.
The EuroHPC pre-exascale and the coming exascale systems are mainly
focused on accelerators, and some of the largest upcoming supercomput-
ers such as LUMI and Frontier will be powered by AMD InstinctTM accel-
erators. However, these new systems create many challenges for devel-
opers who are not familiar with the new ecosystem or with the required
programming models that can be used to program for heterogeneous
architectures. In this paper, we present some of the more well-known
programming models to program for current and future GPU systems.
We then measure the performance of each approach using a benchmark
and a mini-app, test with various compilers, and tune the codes where
necessary. Finally, we compare the performance, where possible, between
the NVIDIA Volta (V100), Ampere (A100) GPUs, and the AMD MI100
GPU.

Keywords: GPU · Programming models · HIP · CUDA · OpenMP ·
hipSYCL · Kokkos · Alpaka

1 Introduction

Europe has procured a number of supercomputers through the EuroHPC Joint
Undertaking (JU) organization. In this work, we focus on the LUMI [1] super-
c© The Author(s) 2022
D. K. Panda and M. Sullivan (Eds.): SCFA 2022, LNCS 13214, pp. 79–101, 2022.
https://doi.org/10.1007/978-3-031-10419-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10419-0_6&domain=pdf
http://orcid.org/0000-0002-5571-4823
http://orcid.org/0000-0001-9841-4057
http://orcid.org/0000-0002-8634-4634
http://orcid.org/0000-0001-6259-7453
http://orcid.org/0000-0003-1597-0811
http://orcid.org/0000-0003-3396-6154
http://orcid.org/0000-0002-3844-3697
http://orcid.org/0000-0003-4861-5584
http://orcid.org/0000-0001-8965-1149
http://orcid.org/0000-0001-7839-4386
http://orcid.org/0000-0003-1642-0459
http://orcid.org/0000-0002-8258-3881
https://doi.org/10.1007/978-3-031-10419-0_6

80 G. S. Markomanolis et al.

computer which is being installed in Finland by Hewlett-Packard Enterprise
and is run by a consortium of ten European countries. LUMI will have both
a CPU and a GPU partition, where the CPU partition performance is only a
few petaflops, the AMD InstinctTM GPUs provide almost 0.5 EFLOPS across
2560 nodes with 64 core AMD Trento CPU and four AMD MI250X GPUs, using
similar technology as the Frontier system [2].

There are a few parallel older programming models, however, with the arrival
of the GPUs, other programming models had to be created, such as Compute
Unified Device Architecture (CUDA) [3], OpenCL [4], or directive-based pro-
gramming models such as OpenMP [5] and OpenACC [6]. Meanwhile, even more
programming models have emerged, some of which are more widely known than
others. For some of them, there is a significant learning curve, and others are to
be used by HPC domain experts.

When a scientist prepares an application to be ported to a GPU architecture,
or to move from NVIDIA GPUs to AMD GPUs, the effort often depends on the
used programming model. With such a wide variety of available programming
models, it sometimes is not straightforward which one to use. In this paper, we
explore the porting procedure for the LUMI supercomputer, discuss the appli-
cable programming models, and present some results of various benchmarks and
performance comparisons across AMD and NVIDIA GPUs.

The main contributions of this work are as follows:

– We present a porting diagram that illustrates how the LUMI users could port
their application in various scenarios.

– To our knowledge, this is one of the first comparisons between NVIDIA
V100/A100, and AMD MI100.

– We evaluate the performance of many programming models such as HIP,
CUDA, OpenMP Offloading, hipSYCL, Kokkos, and Alpaka while optimizing
when possible.

– We present results of the BabelStream with Alpaka backend for the first time.
– We present how to tune some of the kernels.

2 Related Work

For many programming models, there are studies that evaluate these for CPUs
or GPUs. In [7] the authors study OpenMP offload on NVIDIA V100 with a few
mini-apps and various compilers, observe performance variations, and provide
some OpenMP optimization techniques. In [8], the authors present the compute-
bound mini-app miniBUDE and evaluate various programming models, including
offload to GPUs. In [9], the authors present a performance analysis of CUDA,
OpenACC, and OpenMP programming models on V100 GPU where they illus-
trate how it is easier to use OpenMP offloading and OpenACC compared to
CUDA, and they measure the performance. Deakin et al. in [10] evaluate the
performance of benchmarks in SYCL and comparing them with an OpenCL ver-
sion. They use three applications for this purpose. The authors in [11] present
a performance portability study on different CPUs/GPUs, using programming

Evaluating GPU Programming Models for the LUMI Supercomputer 81

models and codes to investigate the performance portability. However, not many
of them supported an AMD GPU at that time.

Compared to the current related work, we use some new GPUs, and especially
the AMD MI100 and evaluate the programming models and tune them based on
its hardware specifications. Furthermore, we try to use the most recent versions
of the programming models where possible. Finally, we provide box plots in some
cases to identify variations.

3 Programming Models

In this section, we present a few programming models that we plan to use on
LUMI, and later we describe in which situation to use them.

3.1 HIP

The Radeon Open Compute (ROCm) platform [12,13] includes programming
models to develop codes for AMD GPUs. Among those is the Heterogeneous-
compute Interface for Portability (HIP) [14]. HIP is a C++ API and kernel
language to create portable applications for the AMD ROCm platform as well
as NVIDIA GPUs using the same source code. It is open source, it provides an
API to port your code, and the syntax is very similar to CUDA. It supports
a large subset of the CUDA runtime functionality and has almost no negative
performance impact over coding directly in CUDA. HIP includes features such
as C++11 lambdas, namespaces, classes, templates, etc. The HIPify [15] tools
convert CUDA code to HIP. Of course, tuning will be required for each specific
GPU.

Table 1 exemplifies some similarities between CUDA and HIP. For most cases,
replacing the “cuda” in the function name with “hip” as well as for the arguments
is enough to translate the API. However, not all the CUDA API is supported in
HIP yet. Executing a GPU kernel is similar as you can see in the corresponding
table but there is also a HIP API called hipLaunchKernelGGL.

With the HIP translation tool, a common approach is to semi-automatically
port a CUDA code to HIP. For example, to convert a CUDA file called exam-
ple.cc, the command hipify-perl --inplace example.cc performs the trans-
lation of CUDA API calls to HIP API calls (a backup of the original code is kept
as example.cc.hip. There is also hipconvertinplace-perl.sh to translate all
source files of a directory as well as a version of the HIPify tool that is based on
the clang compiler. For more details about porting codes there are a few sources
such as [16,17].

For CUDA Fortran codes, it is required to do the following steps (further
details are available at [17]):

– Port CUDA Fortran code to HIP kernels in C++. The hipfort API helps to
invoke the HIP API from Fortran.

– Wrap the kernel launch in function with C calling convention.
– Call the launch function from Fortran through the Fortran 2003 C bindings.

82 G. S. Markomanolis et al.

Table 1. Convert CUDA code to HIP

CUDA HIP Description

cudaMemcpy hipMemcpy Copy data between two
different memory
locations

cudaMalloc hipMalloc Allocates a memory
pointer on the device

cudaFree hipFree Deallocate memory
from the GPU

kernel name <<<
gridsize, blocksize,
shared mem size,
stream >>>(arg0,
arg1, ...);

kernel name <<<
gridsize, blocksize,
shared mem size,
stream >>>(arg0,
arg1, ...);

Execute a GPU kernel

3.2 The OpenMP Application Programming Interface

The OpenMP API supports offloading computation to accelerator devices since
version 4.0 and has since then refined and extended the features continu-
ously [18]. The OpenMP API supports a variety of target directives that control
the transfer of data (if needed), transfer of control flow, as well as parallelism
on the target device. OpenMP also offers low-level API interfaces for memory
allocation and data transfers similar to the interfaces of the CUDA and HIP
programming models.

This is a very basic example of an OpenMP offload region, running code on
a GPU:

#pragma omp target teams distribute parallel for simd \
map(to:A[:N]) map(from:B[:N]) \
num_teams(x) thread_limit(y)

for (int i = 0; i < N; ++i) {
B[i] = expression(A[i], i);

}

In the example above, the target construct transfers the control flow from
the host device to the default target device (the host thread will await completion
of the offload region). The map clauses are used to specify the data that is needed
for execution as well as the direction of the data flow. If the host and accelerator
have distinct memories, the OpenMP implementation will perform an actual
transfer. If host and device have a shared memory (emulation), the map clauses
do not issue an actual data transfer.

Since the OpenMP API does not only support GPU-like architectures as
target devices, it has been a design decision by the OpenMP Language Com-
mittee to separate offload directives and parallelism from each other. Through
this decision programmers can use the best matching OpenMP directives to

Evaluating GPU Programming Models for the LUMI Supercomputer 83

create parallelism for a specific target architecture. Also, the OpenMP API sup-
ports a more descriptive approach via the loop construct instead of the teams
distribute parallel for construct.

The teams distribute directive then partitions the loop iteration space
across the available warps or wavefronts, while the parallel for simd con-
structs can parallelize the partitioned loop for the available GPU threads.
Another approach is to map parallel for to a single GPU thread and use simd
to create parallelism within the warp/wavefront. OpenMP explicitly allows for
this flexibility in laying out the execution on the GPU, such that implementa-
tions can pick the best possible strategy.

Many compilers now have (partial) support for version 5.0 and version 5.1 of
the OpenMP API. In this work, we use only OpenMP offloading as we benchmark
GPU accelerators. For AMD GPUs, we rely on the AMD OpenMP compiler
(AOMP).

3.3 SYCL

SYCL [19] is an open standard for heterogeneous programming. It is developed
and maintained by the Khronos Group. Unlike other heterogeneous programming
models, SYCL does not introduce any custom syntax extensions or pragmas.
Instead, expresses heterogeneous data parallelism with pure C++. The latest
SYCL version is SYCL 2020, which relies on C++17. Originally, SYCL was
intended as a higher-level single-source model for OpenCL. This means that in
contrast to OpenCL, host and device code reside in the same source file in SYCL,
and are processed together by the SYCL compiler. Starting with SYCL 2020, a
generalized backend architecture was introduced that allows for other backends
apart from OpenCL. Backends used by current SYCL implementations include
OpenCL, Level Zero, CUDA, HIP and others.

While a more task-oriented model is available as well, SYCL currently
strongly focuses on data parallel kernels. The execution of these kernels is orga-
nized by a task graph that is maintained by the SYCL runtime. There are two
memory management models in SYCL: the buffer-accessor model and the unified
shared memory (USM) model.

In the buffer-accessor model, the SYCL runtime handles data transfers auto-
matically according to data access specifications given by the programmer. These
are also used by the SYCL runtime to automatically construct a task graph for
the execution of kernels. In the pointer-based USM model, the programmer is
responsible for correctly inserting dependencies between kernels and making sure
that data is available on the device when necessary. While the buffer-accessor
model may introduce overheads due to the evaluation of the access specifica-
tions and calculatation of kernel dependencies, if the scheduler receives detailed
information that can be used to optimize the task graph execution.

The execution model in SYCL is largely inherited from OpenCL. Parallel
work items are grouped into work groups, and synchronization is only possible
within a work group. Starting with SYCL 2020, work groups are additionally
subdivided into subgroups that are typically mapped to SIMD units. On GPUs,

84 G. S. Markomanolis et al.

a SYCL work group usually corresponds to a thread block from HIP or a team in
the OpenMP model. As such, the SYCL work-group size is a tuning parameter
as in those other models. In SYCL, multiple methods exist to invoke kernels. In
the simplest method, parallel for, the work groups are not exposed and, on
GPUs, a SYCL implementation automatically selects an appropriate work group
size. In the more complex nd range model, the user is responsible for choosing
an appropriate work group size.

There are multiple implementations of SYCL. The most well-known imple-
mentations include ComputeCpp [20], DPC++ [21], hipSYCL [22] and triSYCL
[23]. In this work, we will be using hipSYCL as it has mature support both
for the GPUs investigated in this work. hipSYCL consists of a multi-backend
runtime with support for CPUs and GPUs from AMD, NVIDIA and Intel, the
SYCL kernel and runtime header library, as well as a compiler component with
a unified compiler driver called syclcc. This compiler component is designed
to integrate with existing compiler toolchains. For example, when compiling for
NVIDIA and AMD GPUs, hipSYCL acts as an additional layer on top of CUDA
and HIP. During compilation, hipSYCL loads an additional clang plugin that
extends clang’s native HIP and CUDA support with support for SYCL-specific
constructs, such as automatic kernel detection and outlining. This design not
only allows a user to mix-and-match CUDA or HIP kernel code with SYCL code
even within one kernel, it also allows using vendor-supported toolchains with
hipSYCL since e.g. AMD’s official ROCm HIP compiler uses the same clang
HIP toolchain. Consequently, hipSYCL can be deployed on top of the AMD
HIP compiler.

3.4 OpenACC

OpenACC is a directive programming model for the GPUs that has evolved
significantly since its beginning. Initially, there were two options for OpenACC
support on LUMI. First, the HPE/Cray compiler supports only Fortran and
OpenACC version 2.7, with potential for up to v3.1 until end of 2022. Second,
the GNU compiler [24], which is not a contractual agreement. Thus, our guidance
is not recommending OpenACC without also mentioning these caveats.

For illustration, the following OpenACC directive uses a few clauses. The
gang clause corresponds to the thread blocks, while the worker clause is the
warp or wavefront, and vector is the threads:

#pragma acc parallel loop \
copyin(A[:N]) copyout(B[:N]) \
vector_length () gang worker num_workers ()
...

As GCC with offload to AMD MI100 GPUs is not focus on performance
this moment, but more to functionality, we do not report OpenACC results.
We mention though that GCC v10.3, v11.1, and later have fixed an issue that
GPU memory was cleaned too often and as a result the performance on NVIDIA
GPUs is improved by almost 30% for all BabelStream kernels except the dot

Evaluating GPU Programming Models for the LUMI Supercomputer 85

kernel for which the performance remained similar. Moreover, in the future we
plan to explore a research project called clacc [25,26] that provides OpenACC
support for Clang and LLVM. This will allow for simplified porting of OpenACC
codes to the OpenMP API (amongst other benefits).

3.5 Alpaka

The Abstraction Library for Parallel Kernel Acceleration (alpaka) [27] is imple-
mented as a header-only C++14 abstraction library for accelerator development
and portability. Originally developed to support large-scale scientific applications
like PIConGPU [28], alpaka enables an accelerator-agnostic implementation of
hierarchical redundant parallelism, that is, the API allows a user to specify data
and task parallelism at multiple levels of compute and memory for a particular
platform. Currently, alpaka provides support for backends for OpenMP, (C++)
threads, Intel Threading Building Blocks, CUDA, HIP, and SYCL for FPGA
along with new backends for directives in development.

Alpaka code can be used to express hierarchical parallelism for both CPU-
style and GPU devices. In addition to grids, blocks, and threads, alpaka also
provides an element construct that represents an n-dimensional set of inputs
that is amenable to vectorization by the compiler. This extra level of parallelism
is key to achieve good performance when attempting to map GPU-style kernels
to a CPU architectures that offer SIMD instructions as part of their instruction
set architecture.

In addition to the optimized kernels via alpaka, users can also use the C++
User interface for the Platform independent Library Alpaka (cupla) [29] to port
CUDA code to use the alpaka library. Cupla codes have a very similar syntax
to regular CUDA kernels and can include calls to the CUDA API for data allo-
cation and movement. While cupla introduces some host-side API call overhead
compared to pure alpaka, it provides a suitable path to map existing codes to
alpaka’s supported backends.

3.6 Kokkos

The Kokkos [30] C++ Performance Portability Ecosystem is a framework for
writing modern C++ applications with portability across a variety of hardware.
It is part of the Exascale Computing Project (ECP) and is used by many HPC
users and packages. It supports several backends, such as CUDA, HIP, SYCL,
and OpenMP offloading to target various accelerators, including NVIDIA and
AMD GPUs.

The Kokkos abstraction layer maps C++ source code to the specific instruc-
tions required for the backend during build time. When compiling the source
code, the binary will be built for the declared backends:

– Serial backend, for serial code on a host device.
– Host-parallel backend, which executes in parallel on the host device (OpenMP

API, etc.).
– Device-parallel backend, which offloads on a device, such as a GPU.

86 G. S. Markomanolis et al.

4 Choosing a Programming Model

Figures 1 and 2 present the porting diagrams of potential codes targeting the
LUMI system. Initially, developers make a decision based on whether the code
is already able to use a GPU or not. If not (see Fig. 1), there is an option for the
developer to try various programming models such as SYCL, Alpaka, or Kokkos
if the application’s programming language is supported. Expert developers could
port their code directly to HIP, identifying the kernels and preparing them sim-
ilarly to CUDA. If the code does not have OpenMP directives, a tool such as
Cray Reveal could be used to port the code to the OpenMP API. This procedure
can be more productive for Fortran applications, and it could be expanded to
the rest main programming languages later. Then the developer can manually
port the OpenMP CPU code to user OpenMP target directives.

Then, a standard software tuning cycle can kick in. If the performance is not
as expected and desired, then developers profile and tune the OpenMP directives,
especially avoiding unnecessary data transfers. This cycle repeats until the prob-
lem is solved and the code works as expected. Otherwise, some OpenMP offload
regions can be ported to HIP to expose more control over kernel execution. It
should be mentioned that at the time of writing, the OpenMP implementation
of AMD is composable with the HIP API, but requires to keep OpenMP code
and HIP code in separate compilation units. If the code is in C/C++, then pro-
file, identify the kernels, and port to HIP. If the code is CUDA Fortran, then
it is required to use a Fortran interface for GPU kernels, called hipfort [31], to
port the code to HIP. The developers could also use OpenACC instead of the
OpenMP API once the compilers are available, but it depends on whether the
applications are already using OpenMP directives or not, and what preference
for the programming model is.

If the application is already ported to a GPU (see Fig. 2) there is a possibility
to use the programming models such as SYCL, Alpaka, etc. If the initial appli-
cation is developed in OpenACC, there are three options that are divided into
sub-categories. First of all the Cray compilers are supporting only Fortran codes.
LUMI is an HPE supercomputer, which means there is contractual engagement
on the availability of some programming models. On the other side, the GCC
efforts were mentioned in the OpenACC section before. Finally, the research
projects such as Clacc, and Flacc which provides OpenACC support for Flang,
are not yet in the final state. If the performance with any of the previous solu-
tions is not good, then port the OpenACC calls to OpenMP to investigate the
performance and tune the code.

If the GPU code is written in CUDA, and if it is C/C++ code it could be
ported with the HIPify tools, while if it is in CUDA Fortran, then the hipfort
should be used as also described in Sect. 3.1. Finally, if the performance is not
as expected, a similar software tuning cycle is used to resolve the issue.

Evaluating GPU Programming Models for the LUMI Supercomputer 87

5 Benchmarks and Applications

5.1 BabelStream

BabelStream [32,33] is a memory bound benchmark with many programming
models implemented. There are five computational kernels that we are using,
the add (a[i] = b[i] + c[i]), multiply (a[i] = b ∗ c[i]), copy (a[i] = b[i]), triad
(a[i] = b[i] + d ∗ c[i]), and dot (sum = sum + a[i] ∗ b[i]). The default problem
size is 225 FP64 operations and 100 iterations. We are evaluating BabelStream
v3.4 (6fe81e1). We developed the Alpaka backend for BabelStream for which we
present some results in this paper.

Fig. 1. Diagram for porting CPU applications to LUMI

88 G. S. Markomanolis et al.

5.2 MiniBUDE

We use also the mini-app called miniBUDE for the Bristol University Docking
Engine (BUDE) [34], a kernel of a drug discovery application that is compute
bound and provides performance results in single precision. BUDE is designed
for in silico molecular docking. In the computationally intensive virtual screen-
ing, molecules of drug candidates, known as ligands, are bonded to target protein
molecule. BUDE predicts the binding energy of the ligand with the target, how-
ever, there are many ways this bonding could happen, and a variety of positions
and rotations of the ligand relative to protein, known as poses, are explored.
And for each pose, a number of properties are evaluated. We are evaluating the
version with commit 1af5b39.

Fig. 2. Diagram for porting GPU applications to LUMI

Both BabelStream and miniBUDE support many programming models such
as HIP, CUDA, OpenMP Offloading, SYCL, OpenACC, Kokkos.

6 Methodology

6.1 Compilation

For the compilation, we used the provided instructions from the benchmark and
application. For the miniBUDE, we had some concerns about our installation

Evaluating GPU Programming Models for the LUMI Supercomputer 89

that we will discuss later as we could not achieve the expected performance but
we had no issue with the BabelStream.

6.2 Execution and Tuning

We save the data from ten executions (in the same submission script, so using the
same compute nodes). We then visualize the results in a box plot to determine
variations and to ensure sure that our observations are correct. As our runs do
not include MPI, we try to investigate if binding the processes helps in some
cases or trying to have a process as close to the GPU as possible, but for our
cases, we did not observe any significant improvement. We tune where possible
by adjusting the number of the thread blocks to be a multiple of the number
of compute units for the MI100 or streaming multiprocessors for V100/A100
GPUs.

7 Results

7.1 Configuration

We plan to utilize a single GPU, as we do not want to interfere with MPI
performance evaluation in this work. CSC provides two supercomputers called
Puhti and Mahti. The AMD Accelerator Cloud is a remote, heterogeneous system
provided by AMD. Technical details about the GPUs specifications are presented
in Table 2.

The Puhti [35] supercomputer at CSC, is constituted by 682 CPUs and 80
GPU nodes. Each GPU node has two Intel Xeon Gold 6230 processors with
20 cores each, and four NVIDIA V100 with 32GB HBM2 memory each. The
interconnect is based on a dual-rail Mellanox HDR100 fabric.

The Mahti [36] supercomputer has 1404 CPUs and 24 GPU nodes. Each
GPU node has two AMD EPYCTM 7H12 Processors (“Rome”) with 64 cores
each, four NVIDIA A100 with 40 GB HBM2 memory for each one, and a total
of 512 GB of memory.

Table 2. List of utilized GPU architectures and specifications

Vendor Model HBM Memory (GB) MemoryBandwidth (GB/s) Threads Peak FP64 (TFLOPS) Peak FP32 (TFLOPS)

NVIDIA V100 32 900 5,120 7.8 15.7

NVIDIA A100 40 1,555 6,912 9.7 19.5

AMD MI100 32 1,200 7,680 11.5 23.1

The AMD Accelerator Cloud offers different GPU options. We used a
node with two AMD EPYC 7742 Processors and four AMD Instinct MI100
accelerators.

In Table 3 we mention the compilers/software for each system that partici-
pated in our study and their versions.

90 G. S. Markomanolis et al.

7.2 BabelStream

In this subsection we present the results from the BabelStream and do compar-
isons between GPUs.

Versions and Generic Tuning

We mention some software versions and generic tuning that applies in most of
the kernels below. If a kernel has a different tuning, it will be mentioned in the
corresponding kernel. About HIP, we decrease the number of threads per block
to 256 instead of 1024, and achieve on average a performance improvement of
up to 28% than using the default number of threads. The AMD MI100 has 120
compute units, thus when the blocks of threads are a multiple of 120, are usually
more efficient for this GPU because we hide the latency cost. It is known that
the AOMP is under heavy development to achieve better performance. We work
with one of the latest AOMP versions instead of building the LLVM from the
provided AMD GitHub repository through ROCm, as the AOMP is closer to
production. Moreover, according to our tests, all the kernels perform around
5% better between AOMP 13.x and AOMP 12.x except the dot kernel that it
is improved with a factor of 2.7. One of the reasons is also that AOMP 13.x
creates automatically two times more block of threads compared to version 12.x,
including the AOMP performance improvements and the utilization of LLVM
13. A table which displays the range of the percentage of speedup of MI100 over
V100 or the slowness of MI100 over A100 will be presented for each kernel. For
all the experiments, hipSYCL uses HIP as backend for AMD GPUs and CUDA
for NVIDIA GPUs. Finally, we developed the Alpaka backend for BabelStream
[37].

Table 3. List of compilers

Compiler/Software Version System

AOMP 13.0-4-4 AMD accelerator cloud

LLVM 13.0.0 AMD accelerator cloud

ROCM/HIP 4.2 AMD accelerator cloud

NVIDIA HPC SDK 21.7 Puhti, Mahti

GCC devel/omp/gcc-
10
(6b88ea4)

Puhti

hipSYCL 0.9.1 (c759aac1d) Puhti, Mahti, AMD
accelerator cloud

Kokkos 3.4.1 Puhti, Mahti, AMD
accelerator cloud

Alpaka (cupla) commit 287deace Puhti, Mahti, AMD
accelerator cloud

Evaluating GPU Programming Models for the LUMI Supercomputer 91

Copy Kernel

Figure 3 demonstrates the results from the Copy kernel of the BabelStream
across many programming models. On the x-axis are the names of the program-
ming models and on the y-axis the bandwidth in GB/s is depicted. However,
as we plot the boxplots, we split the y-axis in order to be able to visualize the
plots more clearly. On each y-axis range, there are results only from a specific
GPU whose name is mentioned on the right y-axis. In Table 4, we present in the
three first rows the peak performance (in %) based on the best programming
model and the last two rows demonstrate the percentage range of the differences,
either slower for MI100 vs A100 or faster for MI100 vs V100. We observe that
for all the GPUs, the HIP/CUDA programming models achieve the highest per-
formance. Although the OpenMP performance seems to be close to the CUDA’s
one, thanks to efficient NVHPC compiler, the AMD OpenMP based on LLVM
is not performing similar to HIP for this pattern. The default Kokkos imple-
mentation in BabelStream does not provide tuning options, however, we observe
that for MI100 its results are close to not tuned HIP. Finally, hipSYCL has a
variation on A100 which is less than 2%, and Alpaka achieves a performance
similar to HIP for the MI100.

Fig. 3. Results of BabelStream for copy kernel across the programming models on
AMD MI100, and NVIDIA V100/A100

92 G. S. Markomanolis et al.

Table 4. Copy kernel results, percentage peak and comparison (%)

HIP/CUDA OpenMP Kokkos hipSYCL Alpaka

A100 100 98.5 96.3 97.53 97.3

MI100 100 92.6 99 97.8 99.99

V100 100 97.95 89.01 98.4 98.2

MI100 slower
than A100

28.5–29.25 33–34 25.29–26.79 28.74–29.79 26.14–26.78

MI100 faster
than V100

22.5–23 14.9–15.9 36.2–37.1 20.67–21.42 25.75–25.93

Multiply Kernel

We plot the results for the Multiply kernel in Fig. 4 and present the peak perfor-
mance and the comparison in the Table 5. For MI100, most of the programming
models achieve 96.63% and above except OpenMP, while for A100 all the pro-
gramming models perform close to the peak, however, for V100, the not tuned
Kokkos underperforms. For MI100, most programming models perform 21.6–
37.8% faster than V100, except OpenMP, and similarly, MI100 is 25–31% slower
than A100. For some cases there is variation up to 4.5% on A100 where for the
moment we have not identified a specific reason as for all the cases we use a
dedicate single node. However, it could be considered as execution variation.

Fig. 4. Results of BabelStream for mul kernel across the programming models on AMD
MI100 and NVIDIA V100/A100

Evaluating GPU Programming Models for the LUMI Supercomputer 93

Table 5. Multiply kernel results, percentage peak and comparison (%)

HIP/CUDA OpenMP Kokkos hipSYCL Alpaka

A100 100 99.59 97.75 97.63 99.99

MI100 100 93.98 99.07 96.63 99.95

V100 100 98.54 89.52 98.39 99.90

MI100 slower
than A100

26.16–26.78 30.4–30.98 24.92–25.79 26.99–27.57 26.96–27.44

MI100 faster
than V100

23.8–24.74 17.8–18.6 37.0–37.8 21.6–22.22 21.74–24.52

Add Kernel

We plot the results for the Add kernel in Fig. 5 and present the peak performance
and the comparison in the Table 6. The performance of Alpaka programming
model is quite close to HIP/CUDA for all the devices with hipSYCL following,
and the OpenMP is less efficient on the MI100 compared to the rest GPUs.
Finally, Kokkos, seems to be between Alpaka and hipSYCL, regarding the per-
formance.

Fig. 5. Results of BabelStream for add kernel across programming models on AMD
MI100 and NVIDIA V100/100

94 G. S. Markomanolis et al.

Table 6. Add kernel results, percentage peak and comparison (%)

HIP/CUDA OpenMP Kokkos hipSYCL Alpaka

A100 100 99.80 97.6 97.70 99.99

MI100 100 94.52 98.92 97.06 99.99

V100 100 97.91 99.90 98.93 99.93

MI100 slower
than A100

28.55–28.86 32.46–32.86 29.44–29.78 29.27–29.54 28.91–29.19

MI100 faster
than V100

18.94–21.55 14.74–17.58 17.76–20.08 16.55–18.88 19.20–21.60

Triad Kernel

We plot the results for the Triad kernel in Fig. 6 and present the peak perfor-
mance and the comparison in the Table 7. For this kernel Alpaka performs equally
to HIP/CUDA, with following Kokkos, and then hipSYCL and OpenMP.

Fig. 6. Results of BabelStream for triad kernel across programming models on AMD
MI100 and NVIDIA V100/A100

Dot Kernel

We plot the results for the Dot kernel in Fig. 7 and present the peak performance
and the comparison in the Table 8. In the first segment of V100, we have also a

Evaluating GPU Programming Models for the LUMI Supercomputer 95

Table 7. Triad kernel results, percentage peak and comparison (%)

HIP/CUDA OpenMP Kokkos hipSYCL Alpaka

A100 100 99.78 99.72 97.77 99.89

MI100 100 94.62 98.83 97.30 99.94

V100 100 98.82 99.86 98.80 99.69

MI100 slower
than A100

28.93–29.31 32.6–32.81 29.52–29.87 29.21–29.57 28.91–29.19

MI100 faster
than V100

18.63–21.25 13.47–16.40 17.79–20.13 17.00–19.25 19.02–21.61

plot of MI100 for hipSYCL as they were too close these values. MI100 GPU is
around 2.69–14.62% faster than NVIDIA V100 except for OpenMP, and 28.00–
69.69% slower than A100. The OpenMP on MI100 does not perform efficiently
for the reduction pattern, and Kokkos is not optimized but it is quite close to
non-optimized HIP version. For HIP/CUDA; We define 216 blocks of threads
for the A100, as it has 108 streaming multiprocessors, and improved the dot
kernel performance by 8–10%. For hipSYCL; we utilize 960 blocks of threads
and 256 threads per block to achieve around 8% faster than the default values.
For Alpaka; we are able to tune also the dot kernel with 720 blocks of threads for
MI100 and improve its performance by 28% comparing to the default settings.

Table 8. Dot kernel results, percentage peak and comparison (%)

HIP/CUDA OpenMP Kokkos hipSYCL Alpaka

A100 100 96.77 84.43 94.63 98.52

MI100 100 42.16 74.40 89.53 99.99

V100 100 96.5 72.87 96.95 99.38

MI100 slower
than A100

29.09–29.84 68.7–69.69 37.19–38.43 32.67–33.65 28.00–28.62

MI100 faster
than V100

10.80–11.86 –51.06 -
(–51.513)

12.60–14.62 2.69–3.38 11.80–12.59

Summary

We can observe that based on the hardware performance AMD MI100 performs
faster than NVIDIA V100 and slower than NVIDIA A100. The peak band-
width percentage for the OpenMP programming model is 42.16%–94.68% for
MI100 while it is at least 96% for the NVIDIA GPUs which demonstrates that
AOMP needs further development. For Kokkos, the range is 74–99% for MI100,
72.87–99% for the NVIDIA GPUs, where the non-optimized version has lower

96 G. S. Markomanolis et al.

Fig. 7. Results of BabelStream with Kokkos HIP backend on AMD MI100 and NVIDIA
V100/A100

performance mainly on MI100 and V100. hipSYCL achieves at least 96% of the
HIP/CUDA performance except for MI100 and dot kernel that achieves 89.53%.
Finally, Alpaka achieves at least 97.2% for all the cases and demonstrates its per-
formance. The OpenMP compiler performs better for NVIDIA GPUs regarding
dot kernel, however, the version that we used for AMD GPUs, is not the final
product yet. The Kokkos results regarding the dot kernel are not optimized, we
did not modify the execution policy and, we tried to use the default code and
change only specific values, thus the low percentage. Also this demonstrates that
some tuning are not so straight forward for Kokkos. Overall, the Alpaka perfor-
mance is quite close to HIP, followed by hipSYCL and Kokkos, while OpenMP
can perform slower depending on the kernel. We have to mention that all the
remaining programming models except the OpenMP utilize HIP or CUDA as
backend. The OpenMP Offloading for AMD GPUs has a potential to improve
in the future as it is under development.
Finally, we should mention that we can observe that various programming mod-
els could have similar performance on the same GPU with some variation except
OpenMP for some cases and Kokkos because is not optimized for some specific

Evaluating GPU Programming Models for the LUMI Supercomputer 97

cases. Overall, the tuning is not difficult if the developer is aware of the archi-
tecture and the programming model. Also, the utilization of each programming
model depends on the experience of the developer, and the programming lan-
guage as it was presented in the porting workflow.

7.3 MiniBUDE

Large problem sizes for miniBUDE are required to be able to saturate the GPUs.
For every experiment, we execute 8 iterations with 983040 poses. We calculate
this number by tuning for AMD MI100, however, this value achieves peak per-
formance on the NVIDIA GPUs also with minimal variance of 1–2% and we
decided to use the same workload for all the devices. The miniBUDE provides in
the output the single precision GFLOP/s, and we observe in the Fig. 8 that the
AMD MI100 GPU achieves a performance close to A100 by 2% and around 26%
over V100. As the benchmark does not use tensor cores or other features, the
peak performance is based on the FP32 capabilities of the GPUs. Thus, AMD
MI100 is on average 1.25 times faster than NVIDIA V100, and 0.018 times slower
than NVIDIA A100 for single precision using miniBUDE. For the moment, the
other programming models do not perform very well, and we are still investi-
gating the reasons. The code varies a bit between the programming models and
the performance is significantly worse, thus we can not identify yet why both
hipSYCL and Kokkos perform lower than HIP while using HIP for backend.
Moreover, the Alpaka version for miniBUDE is under preparation. Regarding
single precision, we tested also the mixbench [38,39] benchmark and the MI100
was 1.16 times faster than A100, achieving both close to their peak performance.

Fig. 8. Results of miniBUDE on various GPUs for HIP and CUDA

98 G. S. Markomanolis et al.

8 Conclusion and Future Work

In this paper, we present a methodology for porting applications to LUMI super-
computer, an AMD GPU-based system. As we expect many users to utilize
LUMI, we are getting ready for a variety of porting scenarios. We benchmark
various programming models to understand how they perform, how efficient they
are, and which ones to propose to our future users. Thus, we do a performance
comparison between AMD MI100, NVIDIA V100, and A100. We utilize a bench-
mark and a mini-app, which are memory and compute-bound respectively. We
illustrate how various programming models perform on these GPUs and what
techniques can improve the performance for specific cases. We discuss the lack of
performance on some aspects of OpenMP, how to tune some programming mod-
els based on the targeted hardware and we verify the results. Moreover, the single
precision mini-app demonstrates how similar performance to NVIDIA A100 has
the AMD MI100 when not utilizing tensor cores. Overall, HIP/CUDA perform
quite good and most of the programming models are quite close, depending
on the kernel pattern. Depending on your experience, the programming lan-
guage, and the kernel, you could leverage many of the programming models and
always compare with the peak performance. Finally, programming models such
as Alpaka and hipSYCL could be utilized as they support many backends, are
portable and for many kernels they provide similar performance to HIP. All the
scripts and the results are provided in [40] for reproducibility purposes.

For future work, we plan to identify what the issue with some programming
models and miniBUDE is. We want to analyze the OpenACC performance from
the GCC and Cray Fortran compiler, amongst tuning further the programming
models, and to test the new functionalities from the ROCm platform such as Het-
erogeneous Memory Management (HMM). We envision evaluating multi-GPU
benchmarks and their scalability across multiple nodes. By using LUMI we will
be able to use the MI250X GPU and compare it with the current GPU genera-
tion. Finally, we are interested in benchmarking I/O from the GPUs memory as
we have already hipified Elbencho [41] benchmark and a few applications could
have significant I/O bottlenecks but we plan to benchmark them when LUMI is
available as its architecture is much different to the available systems.

Acknowledgement. We want to thank CSC - IT Center for Science Ltd. for the
access to Puhti and Mahti supercomputers. Tomas Tobias from Siemens for the discus-
sions about GCC and LLVM. Finally, thank to Simon McIntosh-Smith and Wei-Chen
Lin from University of Bristol for providing the necessary files to create new input
problem sizes for miniBUDE.

This work was partly funded by the Center for Advanced Systems Understanding
(CASUS) that is financed by Germany’s Federal Ministry of Education and Research
(BMBF) and by the Saxon Ministry for Science, Culture and Tourism (SMWK) with
tax funds on the basis of the budget approved by the Saxon State Parliament.

Copyright 2021 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD
Arrow logo, EPYC, and Instinct and combinations thereof are trademarks of Advanced
Micro Devices, Inc. Other product names used in this publication are for identification
purposes only and may be trademarks of their respective companies.

Evaluating GPU Programming Models for the LUMI Supercomputer 99

References

1. CSC LUMI supercomputer. https://www.lumi-supercomputer.eu/lumis-full-
system-architecture-revealed/

2. Frontier web page. https://www.olcf.ornl.gov/frontier/
3. NVIDIA. CUDA. https://developer.nvidia.com/about-cuda
4. Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for

heterogeneous computing systems. In: Computing in Science & Engineering, vol.
12, no. 3, pp. 66–73, May-June 2010. https://doi.org/10.1109/MCSE.2010.69

5. OpenMP Architecture Review Board. OpenMP Application Programming Inter-
face, version 4.0. https://openmp.org/40pdf

6. OpenACC Specification 3.0. https://www.openacc.org/sites/default/files/inline-
images/Specification/OpenACC.3.0.pdf

7. Davis, J.H., Daley, C., Pophale, S., Huber, T., Chandrasekaran, S., Wright, N.J.:
Performance assessment of OpenMP compilers targeting NVIDIA V100 GPUs. In:
Bhalachandra, S., Wienke, S., Chandrasekaran, S., Juckeland, G. (eds.) WACCPD
2020. LNCS, vol. 12655, pp. 25–44. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-74224-9 2

8. Poenaru, A., Lin, W.-C., McIntosh-Smith, S.: A performance analysis of modern
parallel programming models using a compute-bound application. In: 36th Inter-
national Conference, ISC High Performance 2021, Frankfurt, Germany (2021)

9. Khalilov, M., Timoveev, A.: Performance analysis of CUDA, OpenACC and
OpenMP programming models on TESLA V100 GPU. In: Journal of Physics:
Conference Series, vol. 1740 (2021)

10. Deakin, T., McIntosh-Smith, S.: Evaluating the performance of HPC-style SYCL
applications. In: Proceedings of the International Workshop on OpenCL (2020)

11. Deakin, T., et al.: Performance portability across diverse computer architec-
tures. In: 2019 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), pp. 1–13 (2019). https://doi.org/10.1109/
P3HPC49587.2019.00006

12. AMD. ROCm Platform. https://github.com/RadeonOpenCompute/ROCm
13. AMD. ROCm Documentation. https://rocmdocs.amd.com/en/latest/
14. AMD. HIP. https://github.com/ROCm-Developer-Tools/HIP
15. AMD. HIPify Tools. https://github.com/ROCm-Developer-Tools/HIPIFY
16. AMD. HIP Porting Guide. https://github.com/RadeonOpenCompute/ROCm

Documentation/blob/master/Programming Guides/HIP-porting-guide.rst
17. CSC. Porting GPU Codes to HIP. https://github.com/csc-training/hip
18. de Supinski, B.R., et al.: The ongoing evolution of OpenMP. In: Proceedings of the

IEEE, vol. 106, no. 11, pp. 2004–2019, November 2018
19. Khronos Group. SYCL 2020 Specification. https://www.khronos.org/registry/

SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
20. Codeplay Software. ComputeCpp. https://www.codeplay.com/solutions/

ecosystem/
21. Intel Corporation. SYCL* Compiler and Runtimes. https://github.com/intel/llvm
22. Alpay, A., Heuveline, V.: SYCL beyond OpenCL: the architecture, current state

and future direction of hipSYCL. In: Proceedings of the International Workshop on
OpenCL (IWOCL 2020), Association for Computing Machinery, New York, Article
vol. 8, no. 1 (2020). https://github.com/illuhad/hipSYCL

23. triSYCL. https://github.com/trisycl/trisycl

https://www.lumi-supercomputer.eu/lumis-full-system-architecture-revealed/
https://www.lumi-supercomputer.eu/lumis-full-system-architecture-revealed/
https://www.olcf.ornl.gov/frontier/
https://developer.nvidia.com/about-cuda
https://doi.org/10.1109/MCSE.2010.69
https://openmp.org/40pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC.3.0.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC.3.0.pdf
https://doi.org/10.1007/978-3-030-74224-9_2
https://doi.org/10.1007/978-3-030-74224-9_2
https://doi.org/10.1109/P3HPC49587.2019.00006
https://doi.org/10.1109/P3HPC49587.2019.00006
https://github.com/RadeonOpenCompute/ROCm
https://rocmdocs.amd.com/en/latest/
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIPIFY
https://github.com/RadeonOpenCompute/ROCm_Documentation/blob/master/Programming_Guides/HIP-porting-guide.rst
https://github.com/RadeonOpenCompute/ROCm_Documentation/blob/master/Programming_Guides/HIP-porting-guide.rst
https://github.com/csc-training/hip
https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://www.codeplay.com/solutions/ecosystem/
https://www.codeplay.com/solutions/ecosystem/
https://github.com/intel/llvm
https://github.com/illuhad/hipSYCL
https://github.com/trisycl/trisycl

100 G. S. Markomanolis et al.

24. ORNL and Mentor Graphics. https://www.olcf.ornl.gov/2020/09/03/oak-ridge-
leadership-computing-facility-fosters-gcc-compiler-development-with-mentor-
contract/

25. Denny, J.E., Lee, S. and Vetter, J.S.: Clacc: translating OpenACC to OpenMP in
clang. In: 2018 IEEE/ACM 5th Workshop on the LLVM Compiler Infrastructure
in HPC. LLVM-HPC), Dallas, TX, USA (2018)

26. Clacc. https://github.com/llvm-doe-org/llvm-project/tree/clacc/main
27. Zenker, E., et al.: Alpaka-an abstraction library for parallel kernel acceleration. In:

2016 IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), pp. 631–640, May 2016

28. Bussmann, M., et al.: Radiative signature of the relativistic kelvin-helmholtz insta-
bility. In: SC 2013: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1–12 (2013)

29. René, W., Sergei, B., Simeon, E., Jeffrey, K., Jan, S.: Cupla - C++ User interface
for the Platform Independent Library alpaka. https://rodare.hzdr.de/record/1103

30. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore perfor-
mance portability through polymorphic memory access patterns. J Parall. Distrib.
Comput. 74, 3202–3216 (2014). https://doi.org/10.1016/j.jpdc.2014.07.003

31. AMD. hipfort. https://github.com/ROCmSoftwarePlatform/hipfort
32. Deakin, T., Price, J., Martineau, M., McIntosh-Smith, S.: GPU-STREAM v2.0:

benchmarking the achievable memory bandwidth of many-core processors across
diverse parallel programming models. In: Paper presented at P̂MA Workshop at
ISC High Performance, Frankfurt, Germany (2016). https://doi.org/10.1007/978-
3-319-46079-6 34

33. Tom, D., Simon, M.-S.: BabelStream. https://github.com/UoB-HPC/
BabelStream

34. miniBUDE. https://github.com/UoB-HPC/miniBUDE/
35. CSC. Puhti Supercomputer. https://docs.csc.fi/computing/systems-puhti/
36. CSC. Mahti Supercomputer. https://docs.csc.fi/computing/systems-mahti/
37. CUPLA BabelStream Fork, v3.4-alpaka release https://github.com/jyoung3131/

BabelStream/releases/tag/v3.4-alpaka
38. Konstantinidis, E., Cotronis, Y.: A quantitative roofline model for GPU kernel

performance estimation using micro-benchmarks and hardware metric profiling. J.
Parall. Distrib. Comput. 107, 37–56 (2017)

39. Mixbench. https://github.com/ekondis/mixbench
40. Reproduce the results of the paper Evaluating GPU Programming Models for the

LUMI Supercomputer. https://zenodo.org/record/6307447
41. Elbencho. https://github.com/breuner/elbencho

https://www.olcf.ornl.gov/2020/09/03/oak-ridge-leadership-computing-facility-fosters-gcc-compiler-development-with-mentor-contract/
https://www.olcf.ornl.gov/2020/09/03/oak-ridge-leadership-computing-facility-fosters-gcc-compiler-development-with-mentor-contract/
https://www.olcf.ornl.gov/2020/09/03/oak-ridge-leadership-computing-facility-fosters-gcc-compiler-development-with-mentor-contract/
https://github.com/llvm-doe-org/llvm-project/tree/clacc/main
https://rodare.hzdr.de/record/1103
https://doi.org/10.1016/j.jpdc.2014.07.003
https://github.com/ROCmSoftwarePlatform/hipfort
https://doi.org/10.1007/978-3-319-46079-6_34
https://doi.org/10.1007/978-3-319-46079-6_34
https://github.com/UoB-HPC/BabelStream
https://github.com/UoB-HPC/BabelStream
https://github.com/UoB-HPC/miniBUDE/
https://docs.csc.fi/computing/systems-puhti/
https://docs.csc.fi/computing/systems-mahti/
https://github.com/jyoung3131/BabelStream/releases/tag/v3.4-alpaka
https://github.com/jyoung3131/BabelStream/releases/tag/v3.4-alpaka
https://github.com/ekondis/mixbench
https://zenodo.org/record/6307447
https://github.com/breuner/elbencho

Evaluating GPU Programming Models for the LUMI Supercomputer 101

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Evaluating Methods of Transferring Large
Datasets

Jakub Kopeć(B)

Interdisciplinary Centre for Mathematical and Computational Modelling,
University of Warsaw, ul. Tyniecka 15/17, 02-630 Warsaw, Poland

jakubkopec1018@gmail.com

https://icm.edu.pl/en/

Abstract. Our society critically depends on data, Big Data. The
humanity generates and moves data volumes larger than ever before and
their increase is continuously accelerating. The goal of this research is to
evaluate tools used for the transfer of large volumes of data. Bulk data
transfer is a complex endeavour that requires not only sufficient network
infrastructure, but also appropriate software, computing power and stor-
age resources. We report on the series of storage benchmarks conducted
using recently developed elbencho tool. The tests were conducted with an
objective to understand and avoid I/O bottlenecks during data transfer
operation. Subsequently Ethernet and InfiniBand networks performance
was compared using Ohio State University bandwidth benchmark (OSU
BW) and iperf3 tool. For comparison we also tested traditional (very inef-
ficient) Linux scp and rsync commands as well as tools designed specif-
ically to transfer large datasets more efficiently: bbcp and MDTMFTP.
Additionally the impact of using simultaneous multi-threading and Eth-
ernet jumbo frames on transfer rate was evaluated.

Keywords: I/O · File systems · Data management · Data transfer ·
File transfer protocols · Network evaluation · I/O benchmarking ·
Elbencho

1 The Outline of the Problem

The amount of data created and processed by humanity in the last few decades
has grown exponentially. “Data explosion” is the term that is commonly used to
describe this phenomenon. The Internet has evolved from the military project
funded in 1965 [1] to the “place” where people spend large proportion of their
time. Enormous amounts of data are generated which are sent over computer
networks and stored in digital form on some sort of storage.

Historically Particle Physics and Astronomy were the major generators of Big
Data generated by the particle accelerators and observatory equipment spread
across the globe and beyond (e.g. The Hubble Telescope). Radioastronomy, with
Square Kilometre Array (SKA) project - a radio telescope with a square kilo-
metre collecting area located in Australia and South Africa will soon generate

c© The Author(s) 2022
D. K. Panda and M. Sullivan (Eds.): SCFA 2022, LNCS 13214, pp. 102–120, 2022.
https://doi.org/10.1007/978-3-031-10419-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10419-0_7&domain=pdf
http://orcid.org/0000-0001-9896-1958
https://doi.org/10.1007/978-3-031-10419-0_7

Evaluating Methods of Transferring Large Datasets 103

observational data in volumes never imagined before. A prototype project: Aus-
tralian Square Kilometre Array Pathfinder (ASKAP) is designed to be 1% the
size of the full Square Kilometre Array and is to planned produce 60 Tb per
second of raw data when finished [2]. Currently the ASKAP acquires 7,5 TB of
data per second and the overall storage requirements of astronomical sciences
are estimated to 1 EB per year.

However, Genomics might steal the title of the biggest data generator with
the predictions of using 40 EB of storage per year by 2025. Among the factors
that are boosting the amount of the data created by Genomics are: - the constant
increase in number of the new high-tech sequencers in production; - increasing
number of new endeavours to catalogue all the DNA of plants, animals and
part of microbes; - and, of course, human Genomics - sequencing the human
genome for the scientific and medical purposes. The huge data generators are
the endeavours of sequencing the genomes of cancers that are characterised by
unimaginable levels of genetic variations and the personalized medicine that will
focus on the genome of an individual person [3].

All of these projects generate unimaginable amount of data that need to be
stored and in many cases transferred over the computer network for analysis
as the necessary computing power may not be available in situ. As the data
transfer may be realised using various hardware and software the author decided
to evaluate the performance of the chosen data transfer solutions.

The common misconception is that moving enormous amounts of data
requires only appropriate network with sufficient bandwidth. For efficient bulk
data transfers over a high-bandwidth network one needs powerful servers, highly
performant file system and storage. Servers that are able to provide data at the
rate that allows to saturate the link efficiently. It is impossible to use 100 Gbps
network efficiently if the server provides data at 10 Gbps. The crucial aspect
is the read/write speed of the storage device that is used in data exchange -
the sending side must be able to provide (read) the data at appropriate speed
and the receiving side must be able to ingest (write) incoming data. In the first
place storage medium is to provide necessary data rate, but the server must also
posses sufficient computing power and memory to cope with the transmission
task. This hardware aspect is frequently neglected by the developers of data
transfer solution and they tend to focus on the network bandwidth and soft-
ware solution [4,5]. As storage device performance is critical to the data transfer
endeavor we chose to start the evaluation with conducting storage benchmark
with recently created elbencho tool [6] and storage sweep script that allows to
gain good understanding of the storage system I/O throughput and character-
istics [7].

In the era of cloud and Internet of Things (IoT) the approach of moving
compute to the data, in order to reduce access costs, becomes a common prac-
tice. The example of such action is using microcontrollers located in the devices
that acquire data (sensors, cameras, detectors etc.) to preprocess data stream
before it is passed to the main compute system. In larger systems, e.g. in cloud
applications part of the computation may be performed outside the cloud (at

104 J. Kopeć

the edge) and only the aggregated or abnormal results may be uploaded to the
cloud for further analysis. Such actions limit the amount of the data that needs
to be transferred [8]. However, there are numerous scenarios where this approach
cannot be efficiently employed. Advanced scientific instruments, such as radio
telescopes, particle detectors etc., are able to generate tremendous amount of
raw data so they are already coupled with complex systems that reduce the data
flow. But even after such reduction these are still large datasets that need to be
transferred as a whole to remain meaningful and transferring them is inevitable
for the backup reason alone, not to mention further sharing or processing them.
Due to that the author believes that the need to move large datasets cannot be
completely eradicated by the approach of moving compute to the data, thus the
evaluation of existing transfer methods and finding new solutions of this problem
remain relevant.

2 Tests Workbench: Hardware Specification

2.1 Servers

It is essential to treat the bulk data transfer as a complex issue that needs a
holistic solution - appropriate servers interconnected with high-bandwidth net-
work and the software that is able to efficiently utilise underlying infrastructure
[4,5]. To satisfy the balanced hardware requirements we used two HPE ProLiant
DL385 Gen10 Plus servers that were customised to provide sufficient storage
speed and compute power. The servers’ specification is listed below:

– 2x AMD EPYC 7302 16-core (3.0 GHz) processors
– 16 HPE 1× 32 GB Dual Rank x8 DDR4-3200 CAS-22-22-22 RAM memory

(512 GB RAM memory in total)
– 8x HPE 3.84 TB NVMe Gen4 Mainstream Performance Read Intensive SFF

SC U.3 CD6 SSD drives
– 2x 240 GB SATA SSD drives with HPE E208i-a SR GEN10 12G SAS con-

troller
– Ethernet 100 Gb 2-port QSFP28 MCX516A-CCHT Adapter
– Intel I350-T4 Ethernet 1 Gb 4-port BASE-T OCP3 Adapter for HPE
– Mellanox MT27700 Family [ConnectX-4] InfiniBand Adapter

2.2 Mellanox InfiniBand Range Extenders

In the first part of the tests (storage benchmarking) the servers were intercon-
nected directly with their 100 Gb InfiniBand Adpters, but in the second part
of the test (network benchmarking) Mellanox’s MetroX MTX6240 InfiniBand
extenders were used. The vendor claims that this system is able to provide 40
Gbps throughput over 40 km of dark fiber [9] allowing to benefit from IB fea-
tures (hardware-implemented RDMA) between geographically distributed sites
[10–12]. MetroX system implements point-to-point communication - the two
MTX6240 bundles, that consist of MEX6240 IB switch and MEX6200 DWDM

Evaluating Methods of Transferring Large Datasets 105

transponder, are located at the ends of the link - one bundle at each end. The
MEX6240 IB switch may be connected to local IB network or directly to IB
adapter in the server. During the tests the bundles were interconnected locally
within one rack with short fiber (since longer dark fiber was not available at
the time of tests) and the MEX6240 switches were connected directly to the IB
adapters of HPE ProLiant servers.

3 Storage Benchmark - Elbencho

3.1 The Motivation for Storage Benchmarking

The storage performance is one of four crucial determinants that influence the
overall data transfer performance - the storage device must be able to supply
as well as ingest the transferred data at appropriate rate in order to saturate
the connection and efficiently use available bandwidth. Vendors advertise their
product’s performance with the number of input/output operations per second
(IOPS) or throughput (the amount of data transferred in a given time). Often
these numbers may be quite meaningless as these may be the theoretical maximal
values or the results obtained in the tests that simulate only narrow use scenario
or even worse - are artificially designed to obtain high results without any respect
to the real-life use of the drives. The hardware performance is closely coupled
with the type of the executed workload - the same drive will perform differently
when it will act as database with a lot of random writes/reads of small portions
of data spanned across the whole medium than when it will read serial data
sequence (i.e. streaming long video clip) saved in one physical location.

In order to evaluate the storage device one should run the tests that reflect
the actual workload that will be run on a given device. As a production workload
is not always available or possible to run as a test, people create benchmarks
whose task is to simulate various workloads that may be spotted in real-life
environments. Additionally the benchmarks may provide unified way to com-
pare given devices or computer systems - the perfect example is the LINPACK
benchmark that is used to measure performance and compare the computing
power of the supercomputer systems for the TOP500 list [13].

In 2020 Sven Breuner created elbencho - a distributed storage benchmark for
file systems and block devices with support for GPUs. Inspired by fio [14], mdtest
and ior benchmarks [15] he wanted to create new, modern, easy to use and uni-
fied tool that may be used for testing storage systems performance. Elbencho
allows testing the performance of GPU storage access. It has become essential
nowadays as the deep learning and AI applications operate on GPUs [6]. The
storage sweep script created by Chin Fang is invaluable part of elbencho tool-
box as it provides the user with one-button-push ability to discover performance
characteristics of a storage service with respect to the file size. It estimates the
storage throughput by writing multiple hyperscale datasets (overall size bigger
than 1 TB or number of files larger than 1 million) of different characteris-
tics - a lots of small files (LOSF), an average amount of medium-sized files or
a few of big files - and presents the results in a single csv file or on a graph

106 J. Kopeć

created with gnuplot [7]. There are other important aspects of benchmarking
storage - the most noticeable are the testbed’s configuration and the file size
histogram of the test dataset. The hardware specification and the benchmark
execution parameters should be as close to the projected production environ-
ment as possible - if the target application is host-oriented (e.g. database) then
the benchmarking tool should be run on a single client host, analogically if the
target application is cluster-oriented then the benchmark should be executed
concurrently on multiple client hosts. Not only the servers specification should
be identical to the target ones, but the whole system should be the same (e.g.
storage, interconnects). The dataset structure (file size histogram) is important
as transferring or processing a lot of small files is significantly slower than oper-
ating on smaller number of larger files [7] - this issue will be described in detail
in the next section. “Storage sweeps”, similarly to other benchmarks, should be
carried out, as mentioned before, in a configuration that is intended for the tar-
get application. Nevertheless, as data transfer methods will be evaluated instead
of production application, the “sweeps” will be performed using default options
that are sufficient for comparison purposes [16].

3.2 Lots of Small Files Problem (LOSF)

Lots of small files (LOSF) issue is a common concern in any processing and
transfer of the data. Every file is associated with the metadata - the data that
describes the actual data that is valuable for the end-user, e.g. the location in
the directory tree hierarchy (in case of file-based storage), the physical location
on the storage device, the creation date, the last modification date, the owner,
the access permissions etc. In the case of small files the metadata size may
be comparable to the size of the actual data - hence the contribution of the
overhead caused by the need of processing this metadata becomes significant
part of any operation on the data. When the file size increases the ratio of
the metadata size to the actual data size decreases and the excessive overhead
diminishes. Other issues brought by the LOSF is the fact that any operation on
file requires additional operations such as accessing the file, opening or closing
it after processing. When dealing with the LOSF these operations are repeated
frequently between the actual data reads/writes (that are rather short as there is
not much data to process), but in the case of larger files these additional actions
are less frequent and are separated with the significantly longer valuable data
streams. The next problem may become less important with wider use of SSD
drives, but it is still worth mentioning - a traditional storage devices (HDD)
perform incomparably better operating on longer sequences of data that are
stored in one physical location (track or adjacent sectors) than working on a lot
of small files scattered randomly over the physical storage medium.

Here are a few examples of scientific domains in which the LOSF problem
emerge as the datasets are most conveniently stored as independent files [17]:

– climatology - Community Climate System Model - 450k files with an average
size of 61 MB [18],

Evaluating Methods of Transferring Large Datasets 107

– astronomy - Sloan Digital Sky Survey - 20 million files with an average size
< 1MB [19],

– genomics - sequencing the human genome - 30 million files with an average
size of 190 KB [20].

There are various attempts to efficiently address the LOSF issue, e.g. in machine
learning some training sets are packed into single file. In the domain of data
transfer one of the solutions is to compress the files into single archive and
decompress it after transmission. Nevertheless, such solution is rather imperfect
as compression and decompression require CPU time.

3.3 The Reasons for Conducting “Storage Sweeps”

There are three main reasons why we conducted “storage sweeps” in advance of
the test of the actual data transfer methods. First of all, the storage I/O per-
formance may be the one of the bottlenecks in the pipeline of data transmission
tasks - the “sweeps” allow verification if the throughput of the storage service is
sufficient to saturate the available network bandwidth. The results will also be
useful to select the best file system to conduct the further research. Secondly,
these “sweeps” are the ideal way of estimating the performance of the network
file systems (NFS) implemented in various network configurations. Lastly, the
“sweeps” are the good start for the tests of data transfer protocols as they bring
useful information on how the successive tests may be carried out, for example
which datasets should be used etc.

3.4 Storage Benchmarks Results

Local File Systems. The first series of tests concerned the local file systems
and the results are plotted in Fig. 1. They helped to decide that for the successive
tests the XFS file system will be used, as it’s performance was better in compari-
son with EXT4 - even though the maximal throughput was similar in both cases,
with XFS the maximal value was obtained for the broader range of the datasets.
The throughput of 8 SSD coupled in linux software RAID0 (using mdadm tool)
was almost 8 times larger than the throughput of single SSD drive. We infer that
the overhead of creating software RAID in this case was negligible. We conducted
some tests of the BeeGFS distributed file system that is widely implemented on
HPC systems [21]. As one may expect the BeeGFS Converged System Setup,
which essentially means that all the required services (storage server, metadata
server and client) are hosted within one physical server [22], cannot compete
with the performance of the local XFS file system. It is caused by the overhead
that results from the additional tasks required from distributed file system such
as metadata synchronization or data replication. Moreover as all the services
are launched on the single machine they may compete for resources which may
create further overhead. In the conducted tests beeGFS gave approximately one

108 J. Kopeć

Fig. 1. Results of the “storage sweeps” conducted on local file systems

third of the throughput of XFS. Nevertheless, the distributed file systems are
not designed to achieve maximal throughput per server, but to scale, i.e. to
scale the performance proportionally to the large number of severs. In beeGFS
documentation [23] ZFS file system was suggested as the appropriate base for
beeGFS when using software RAID. The “sweeps” showed that ZSF-based soft-
ware RAID’s performance is far below the performance of linux software RAID.
In the case of locally accessed file system the RDMA feature did not influence
the throughput which is not surprising. Hence the XFS will be the best choice
of file system for the further tests of data transfer protocols/data movers and
that the storage service in case of medium and large files will not be the bottle-
neck as 155 Gbps throughput will easily saturate the 100 Gbps network adapters
installed in the servers.

Network File Systems. The first “network storage sweep” was run using 1
Gbps Ethernet adapter instead of 100 Gbps one. It showed that 1 Gbps link could
be utilised in 100% without any effort and tuning using default settings. Further
analysis of the results plotted in Fig. 2 show that traditional NFS cannot even
obtain the throughput of 10 Gbps. The results obtained using NFS over 100 Gb
Ethernet and NFS over IPoIB (IP packets encapsulated into InfiniBand packets
and sent over IB network) are similar. For BeeGFS “sweeps” the elbencho was
run on the server that was the BeeGFS client and the second server, that was
connected to the first one with 100 Gbps Ethernet, acted as the BeeGFS storage
and metadata server. The BeeGFS without using the RDMA feature performed
slightly better than traditional NFS, but still it barely saturated 20% of the
available bandwidth. The best results were obtained using the BeeGFS with
RDMA feature enabled and NFS over RDMA (NFS using RoCE feature) [24].

Evaluating Methods of Transferring Large Datasets 109

Fig. 2. Results of the “storage sweeps” conducted on network/distributed file systems

The RoCE-based NFS seems to perform slightly better, but still the results are
comparable. However, any of the tested protocols/file systems did not allow to
saturate so much as 50% of the link bandwidth. It is worth to notice that in all
the tests the the throughput decreased for the datasets comprised of large files.

4 Network Benchmarks and Data Transfer Tests

Three types of the tests of data transmission methods were used:

– Ohio State University Bandwidth Test (OSU BW)
The OSU BW is a part of the OSU Micro-Benchmarks bundle developed
at the Ohio State University in Network-Based Computing Laboratory. This
benchmark may be used to test maximum data rate that is sustained in
the network, it measures the bandwidth based on the transmission time of
various-sized messages passed with non-blocking MPI functions [25].

– iperf3 network speedtest tool
Iperf3 is intended to measure the maximum achievable bandwidth on Internet
Protocol-based networks and it’s development is mainly driven by the the U.S.
Department of Energy Sciences Network (ESNet) and the Lawrence Berkeley
National Laboratory [26].

– Sending the test elbencho-created datasets between the servers
The last series of test will consist of sending the test datasets, created using
elbencho, between the servers installed in the testbed using various programs
and comparing their performance.

110 J. Kopeć

4.1 Tests Methodology

During the tests one server acted as a host while the other one acted as a client.
We decided to verify the impact of the AMD Simultaneous Multi-Threading
(AMD SMT) feature on the data transfer rate - in Intel processors this feature
is known as Hyper-threading and allows more efficient utilisation of CPU cycles.
During the first test series the AMD SMT was disabled, and it was enabled in
servers’ BIOS for the second series.

We also wanted to verify how the utilisation of jumbo frames (the Ethernet
frames with larger data payload) influence the transfer rates over the Ethernet.
Since majority of the used applications is IP-based it was necessary to employ in
such cases the Internet Protocol over InfiniBand (IPoIB) protocol that encapsu-
lates IP packets into IB packets [27]. The use of the IPoIB is a major drawback,
as it imposes additional overhead and almost completely eliminates the benefits
brought by InfiniBand, but there is no other option of evaluating the performance
of these applications with the MetroX IB extenders. Since the testbed operating
system and IB adapter configuration did not allow the change of the IB frame
size the influence of using jumbo frames with IPoIB protocol was not tested. As
the out of the box server configuration usually is not able to provide full 100
Gbps throughput of the network interfaces the servers were appropriately tuned.
The CPU governor was set to “performance” such as the power saving settings
would not limit the CPU frequency. TCP maximal buffer size was extended to 2
GB, the maximum value possible in the Linux OS. Additionally the “fair queu-
ing” (FQ) packet scheduler was used and the network interface interrupts were
bound to the appropriate CPU socket using NIC vendor supplied script [28].

Ohio State University Bandwidth Test (OSU BW). The OSU BW bench-
mark is launched on two interconnected nodes simultaneously using MPI. We
used MVAPICH [29] implementation of MPI to run the test. In each tested con-
figuration the benchmark was launched three times and the average throughput
of these runs is treated as an end result.

Iperf3. The tests with iperf3 measure overall network bandwidth. We also check
if “zero copy” sending data method has any significant effect on the throughput.
We checked if assigning the iperf3 process to appropriate CPU socket, so the
affinity between the NIC and user process would be guaranteed, would impact the
results. The test consisted of launching 6 instances of iperf3 simultaneously. The
bandwidth of all iperf3 instances was aggregated and used as a test result. The
use of single iperf3 instance was rather poor as each run in the same conditions
resulted in significantly different outcomes. It is probably a result of the fact that
iperf3 is single-threaded process and in the case of using high speed networks the
CPU core frequency may become the bottleneck. The solution of this problem
is launching multiple iperf3 instances that may utilise more than one CPU core
[30]. Running 6 instances of iperf3 was optimal since adding more instances did
not increase the aggregated throughput. The average of three consecutive runs
is reported. This average is compared to the nominal bandwidth of the link.

Evaluating Methods of Transferring Large Datasets 111

Data Transfer of Elbencho-Created Datasets. This test comprised of
transferring three test datasets using scp, rsync (standard Linux’ tools to trans-
fer data), bbcp [31] and MDTMFTP [32] in various testing configurations. The
datasets were created using elbencho. It allows to create datasets containing
random data with user-specified hierarchy (number of directories and number of
files within them) and size. We created three test datasets that will correspond
to three data structures:

– A lots of small files (LOSF) (1024× 1 MiB = 1 GiB)
– An average number of medium files (40× 256 MiB = 10 GiB)
– A few large files (10× 10 GiB = 100 GiB)

In case of scp and rsync the default parameters were used. bbcp enables user
to tune many transfer parameters hence we decided to check if increasing the
number of parallel TCP streams to 4 or using fixed-size optimal TCP window
instead of auto-tuned one would improve the throughput. The suggestion of
using 4 parallel TCP streams and the formula for optimal TCP window size -
(bandwidth in Gbps)/8*(round-trip time between the source and target) - were
found in the bbcp documentation [31]. The MDTMFTP and OSU BW are the
only solutions implemented in this study that support InfiniBand natively (with-
out the use of IPoIB) and are able to utilise it’s full potential to saturate the
links effectively. Moreover the MDTMFTP is multicore software that is able to
utilise multiple cores [32]. The tests with MDTM required using larger LOSF and
medium datasets as their transfer took few seconds which prevented throughput
measurement - the transmission was so short that the MDTMFTP process was
killed by the OS before reporting any results. For MDTMFTP tests the LOSF
dataset and medium dataset were increased to approximately 10 GiB (10000× 1
MiB) and 30 GiB (120× 256 MiB) respectively. During the tests we noticed that
using jumbo frames did not impact the transfer rates significantly, but instead it
caused the MDTMFTP to crash repeatedly which precluded the transfer comple-
tion. For this reason we abandoned conducting the tests in the last configuration
(AMD SMT enabled, transfer using jumbo frames) as this phase of tests was too
time-consuming.

4.2 Results

Ohio State University Bandwidth Test (OSU BW). The results of OSU
BW benchmark are shown in the graphs in Fig. 3. The first obvious observa-
tion is the fact that the results for all combination of parameters are prac-
tically the same - as this benchmark is supposed to test the maximum data
rate in the network it is not surprising that servers’ configuration (AMD SMT
enabled/disabled, Ethernet frame size) does not affect the obtained results. Nev-
ertheless, these graphs are an ideal way of visualisation the benefits of using
InfiniBand as a transport protocol. The maximum data rate in 100 Gbps Eth-
ernet is approximately 55 Gbps which means that the remaining 45% of the
bandwidth is used by the service of the Ethernet protocol. On the other side

112 J. Kopeć

one may notice that 4xQDR InfiniBand maximum data rate is approximately
30 Gbps which means that almost 94% of the available bandwidth may be used
to transfer valuable data. And that is the exact reason of the InfiniBand’s supe-
riority over the Ethernet - it is able to efficiently saturate the network with
meaningful data instead of congesting the fabrics with surplus control data.

Fig. 3. Results of the OSU BW benchmarks with the additional plots of the links
nominal bandwidths.

Table 1. The results of iperf3 benchmarks with AMD SMT disabled and with standard-
sized Ethernet frames. All results are given in Gbps

100 Gbps ethernet 4xQDR (32 Gbps) InfiniBand

Run 1 Run 2 Run 3 Average % of 100 Gbps Run 1 Run 2 Run 3 Average % of 32 Gbps

No additional parameters 35,08 39,18 42,04 38,77 38,8% 14,18 14,18 14,19 14,18 44,3%

Zero copy 42,63 49,13 41,34 44,37 44,4% 11,84 11,84 11,85 11,84 37,0%

CPU affinity set 42,07 35,31 40,52 39,30 39,3% 9,52 9,52 11,90 10,31 32,2%

Iperf3. The results of iperf3 benchmarks are shown in Tables 1, 2, 3 and 4.
By comparing the Tables 1 and 2 we notice that setting the CPU affinity does
not seem to influence the throughput while using zero copy method of sending
data boost up the throughput over a few Gbps. Turning on AMD SMT caused
a drop in obtained throughputs. Such phenomenon is not seen in the results of
the test with jumbo frames as in all cases the aggregated throughput achieve
approximately the maximum network data rate of 55 Gbps.

In the iperf3 InfiniBand tests we do not find any significant correlations
except for the fact that the achieved throughputs are a combinations of 2.38 Gbps

Evaluating Methods of Transferring Large Datasets 113

Table 2. The results of iperf3 benchmarks with AMD SMT enabled and with standard-
sized ethernet frames. All results are given in Gbps.

100 Gbps ethernet 4xQDR (32 Gbps) InfiniBand

Run 1 Run 2 Run 3 Average % of 100 Gbps Run 1 Run 2 Run 3 Average % of 32 Gbps

No additional parameters 32,38 34,26 31,44 32,69 32,7% 14,22 9,52 11,90 11,88 37,1%

Zero copy 41,40 38,86 38,21 39,49 39,5% 14,23 14,10 14,23 14,19 44,3%

CPU affinity set 34,04 33,56 33,38 33,66 33,7% 9,52 11,90 14,25 11,89 37,2%

Table 3. The results of iperf3 benchmarks with AMD SMT disabled and with jumbo
frames. All results are given in Gbps.

100 Gbps ethernet

Run 1 Run 2 Run 3 Average % of 100 Gbps

No additional parameters 54,50 54,87 54,81 54,73 54,7%

Zero copy 54,12 54,31 54,14 54,19 54,2%

CPU affinity set 55,46 55,34 55,50 55,43 55,4%

Table 4. The results of iperf3 benchmarks with AMD SMT enabled and with jumbo
frames. All results are given in Gbps.

100 Gbps ethernet

Run 1 Run 2 Run 3 Average % of 100 Gbps

No additional parameters 54,54 54,86 54,96 54,79 54,8%

Zero copy 54,12 54,92 53,87 54,30 54,3%

CPU affinity set 55,42 55,25 55,20 55,29 55,3%

Table 5. The results of data transfer tests with AMD SMT disabled and with standard-
sized Ethernet frames. All results are given in Gbps.

100 Gbps ethernet 4xQDR (32 Gbps) InfiniBand

LOSF Medium Large % of 100 Gbps LOSF Medium Large % of 32 Gbps

scp 0,95 1,11 1,56 1,6% 0,92 1,36 1,71 5,3%

rsync 1,12 1,55 1,42 1,5% 1,12 1,58 1,44 4,9%

bbcp 2,30 13,60 16,80 16,8% 1,92 7,91 8,80 27,5%

Bbcp - optimal window size 1,96 13,60 16,00 16,0% 1,51 7,88 8,80 27,5%

bbcp - 4 streams 2,30 12,80 16,00 16,0% 1,88 7,92 8,80 27,5%

MDTMFTP 28,23 27,87 28,41 28,4% 17,08 20,19 25,60 80,0%

and 1.19 Gbps (a half of 2.38) obtained by the individual iperf3 instances. It may
suggest that IPoIB imposes some limit on encapsulated frames that causes the
repetitiveness of per-thread results. There is no evident impact of setting he CPU
core affinity between the NIC and user process as the obtained throughput was
similar to the outcomes of the tests conducted with default iperf3 parameters.
Possibly the obtained throughput was too small to benefit or bring loss from the
CPU affinity settings.

114 J. Kopeć

Table 6. The results of data transfer tests with AMD SMT enabled and with standard-
sized Ethernet frames. All results are given in Gbps.

100 Gbps ethernet 4xQDR (32 Gbps) InfiniBand

LOSF Medium Large % of 100 Gbps LOSF Medium Large % of 32 Gbps

scp 1,11 1,34 1,47 1,5% 0,89 1,44 1,40 4,5%

rsync 1,12 1,52 1,61 1,6% 1,12 1,74 1,58 5,4%

bbcp 2,19 12,80 18,40 18,4% 1,91 7,91 8,80 27,5%

bbcp - optimal window size 1,93 13,60 15,20 15,2% 1,48 7,89 8,80 27,5%

bbcp - 4 streams 2,24 13,60 16,00 16,0% 1,85 7,92 8,80 27,5%

MDTMFTP 27,40 29,95 30,65 30,6% 16,71 18,99 27,96 87,4%

Table 7. The results of data transfer tests with AMD SMT disabled and with jumbo
frames. All results are given in Gbps.

100 Gbps ethernet

LOSF Medium Large % of 100 Gbps

scp 0,95 1,18 1,63 1,6%

rsync 1,12 1,40 1,69 1,7%

bbcp 2,21 12,80 16,00 16,0%

bbcp - optimal window size 2,10 12,80 16,00 16,0%

bbcp - 4 streams 0,22 12,80 16,00 16,0%

MDTMFTP — — — —

Data Transfer Tests. The results of the data transfer tests are listed in
Tables 5, 6 and 7 and the first conspicuous fact is that how poorly the standard
Linux data transfer tools (scp, rsync) utilise available bandwidth - in all config-
urations they were not able to provide as much as 2 Gbps throughput. While
using the 100 Gb Ethernet they used approximately 1,6% of the bandwidth. In
the case of the InfiniBand they used approximately 5% of the bandwidth, but
that fact is meaningless as it does not result from the increase in the achieved
throughput, but from the decrease of the available bandwidth. Regardless of the
testbed configuration the results obtained by scp and rsync were similar and
oscillated around 1,34 Gbps. This poor performance of these tools is probably
caused by the fact that these tools use OpenSSH with built-in 1 MB buffer
to encrypt the transferred data [33]. In order to remove that bottleneck one
should look for tool that uses another encryption protocol or change the “data
mover” to one that encrypt only control channel and sends the actual data unen-
crypted (which is acceptable in some applications) - for example bbcp [34]. The
result obtained with bbcp shows that auto-tuned parameters are optimal as any
attempt of manual tuning caused the slight decrease of the throughput or did not
bring any positive effect. The bbcp results show perfectly the issue of processing
the LOSF as the throughput obtained when transferring large files was approx-
imately 8–9 times bigger than in the case of the LOSF. In all test conducted
with bbcp we noticed that there seems to be a limit on the maximal throughput
that may be obtained using this program - 16 Gbps on the Ethernet and 8,8
Gbps on the InfiniBand. We believe that this limitation may arise from the fact
that bbcp is single-thread program and CPU frequency is the factor that limits

Evaluating Methods of Transferring Large Datasets 115

the throughput. However, in the case of InfiniBand this limit may be a result
of the IPoIB encapsulation. The most interesting are the results obtained with
MTDMFTP - it’s mechanism of dealing with the LOSF problem proved to be
successful as the differences between the LOSF and large files throughput were
not only significantly smaller, but on the Ethernet it seemed to disappear com-
pletely. While transferring the large files using IB the MDTMFTP was able to
saturate approximately 80–90% of the available bandwidth that was impossible
to achieve with any other tested software. The change of the size of the Ethernet
frame did not result in any major change of the achievable throughput, but it
only caused the instability of MDTMFTP software - the numerous errors pre-
vented obtaining any reliable results of MDTMFTP performance with the use of
the jumbo frames. Enabling AMD SMT feature revealed slight improvement of
the throughput obtained with the MDTMFTP, no other changes were noticed.

4.3 Additional Comments on the Tests Results

We were not able to notice any significant impact of enabling AMD SMT fea-
ture (except for small decrease of throughput in the iperf3 tests and slight
improvement in MDTMFTP transfer rates) that would allow drawing unam-
biguous conclusions on its influence on transfer rates. The usage of the jumbo
frames undoubtedly improved the obtained throughput (what was observable
in iperf3 tests), but none of the evaluated “data movers” can benefit from that
increase as single-threaded applications were not able to utilise such bandwidth
and MDTMFTP became unstable and the jumbo frames caused numerous errors
and crashes.

5 Conclusions

The tests revealed striking inefficiency of the most popular Linux transfer tools
on high-bandwidth networks. These tools were developed when the volume of
transferred data and network bandwidths were incomparably smaller, thus they
are not able to perform efficiently with the current volumes of transmitted data.
Their design and underlying protocols are not able to saturate modern high-
speed network links - approximately 98% of the bandwidth was wasted. This
software may still perform well in the situations it was designed for. Scp is a
useful tool to transfer few gigabytes over 100Mbps residential network, but it is
by far not sufficient and outright wasteful to transfer hundreds of terabytes of
scientific data across intercontinental 100Gbps link. The test has also shown how
much bandwidth capacity may be spared by using the InfiniBand fabrics instead
of the Ethernet. The InfiniBand is able to utilise efficiently more than 90% of
the bandwidth while the Ethernet barely uses half of it after thorough tuning
and effort. But the most importantly this research allows to understand how
complex an issue the efficient transfer of digital data is and, that the network
bandwidth is only one part of the mix and to transfer data efficiently one needs
also appropriate storage, file system and computing resources, not to mention
the suitable software.

116 J. Kopeć

5.1 Future Work

This research by no means did exhaust a topic of bulk data moving as it is
very broad and complex problem that exists as the computer networks evolve
and the number of links and their bandwidth increase rapidly. Moreover the
storage technology is advancing rapidly as the new media are being developed.
This study was focused on evaluation of common hardware and widely available
software performance, however, there are several areas where the further research
may be conducted.

New Storage Media. As the new non-volatile memory technologies emerge,
such as spin-torque transfer RAM (STT-RAM), phase-change (PCM) and resis-
tive (ReRAM) memory [36,37] or Intel’s 3D XPoint [37,38] their performance
could be assessed. For instance, the new Intel Optane SSD drives that employ 3D
XPoint memory technology could be benchmarked using elbencho or its influence
on the data transfer rate may be evaluated.

NVM-adapted File Systems. With the advent of fast non-volatile memories
with the DRAM-like performance and byte-addressability current file systems
are becoming the new performance bottleneck. Modern journaling file systems
are designed to use whole data block as the basic unit of the journal what may
cause significant overhead. As the actual price of the next genaration NVM
prohibits it to be used as standalone large-capacity memory device it may be
beneficial to use it in hybrid DRAM/NVMM (non-volatile main memory) or
NVDIMM solutions where NVMM may act as the external journal device for
journaling files systems [37,39,40] or the journaling strategies may be altered
to be more suitable for NVM dvices [41]. On the other hand maybe the new
principles of designing file systems are required as in [42,43] to fully utilize the
cutting-edge NVM media. The evaluation of mentioned solutions may be the
further extension of this research.

Alleviate OpenSSH Bottleneck Using HPN-SSH. The poor performance
of SSH-backed tools caused by the limited size of OpenSSH buffer and the sig-
nificant encryption overhead may be improved by using HPN-SSH - a research
project that consists of a series of modifications to OpenSSH created at the
Pittsburg Supercomputing Center. Authors of the modifications reported that
the throughput of SSH was at least doubled while using their tuning [44]. The
data transfer tests of SSH-backed tools could be repeated with the use of HPN-
SSH for the comparison purposes.

Creating Geographically Distributed Testbed. Developing further geo-
graphically distributed systems enabled with the MetroX InfiniBand or Vcinity
range extenders [35] and comparing its performance with Ethernet would allow
for validation of obtained results in productional environment.

Evaluating Methods of Transferring Large Datasets 117

Evaluating Other Software Solutions’ Performance. During this research
only the widely available software was evaluated. In the upcoming studies the
performance of other software, for instance XRootD [45] may be evaluated. If
possible the performance of proprietary solutions, such as Zettar’s zx [46] or
Obsydian Strategics’ dsync+ [10] could be investigated.

Acknowledgments. The work reported here constituted research part of my Master
of Science degree in Computational Engineering undertaken at the Interdisciplinary
Centre for Mathematical and Computational Modelling,

University of Warsaw (ICM UW) under supervision of Dr Marek Michalewicz who
recommended this topic and guided me throughout. I would like to express my gratitude
to people who contributed to the realisation of this project: Chin Fang (Zettar Inc.) and
Marcin Semeniuk (ICM UW) for sharing their knowledge with me and their valuable
comments on my work; and to Bartosz Drogosiewicz (ICM UW) and Jaros�law Skomia�l
(ICM UW) for helping me build the testbed for this project. I also wish to thank
Hewlett Packard Enterprise Polska Sp. z o.o. for providing two test HPE ProLiant
DL385 Gen10 Plus servers used in this study.

References

1. Kleinrock, L.: An early history of the internet [History of Communications]. IEEE
Commun. Mag. 48(8), 26–36 (2010)

2. Newman, R., Tseng, J.: Memo 134 Cloud Computing and the Square Kilometre
Array (2011)

3. Stephens, Z., et al.: Big data: astronomical or genomical? PLOS Biol. 13(7), 1–11
(2015)

4. Fang, C.: Moving massive amounts of data across any distance efficiently, Talk
on 2020 Rice Oil & Gas HPC Conference. https://www.youtube.com/watch?
v=8PCjMSKMyRw. Accessed 17 Apr 2021

5. Zettar Inc. white paper: Understanding moving data at scale & speed (2020).
https://www.zettar.com/white-paper/. Accessed 01 Mar 2021

6. Breuner, S.: elbencho github repository. https://github.com/breuner/elbencho/.
Accessed 29 May 2021

7. Fang, C.: Storage Sweep github repository. https://github.com/breuner/elbencho/
tree/master/contrib/storage sweep. Accessed 29 May 2021

8. Near-Memory Computing. https://semiengineering.com/knowledge centers/
compute-architectures/near-memory-computing/. Accessed 02 Dec 2021

9. Mellanox TX6240 product brief. https://www.mellanox.com/related-docs/prod
long haul systems/MetroX TX6240.pdf. Accessed 29 Mar 2021

10. Michalewicz M., et al.: InfiniCortex: concurrent supercomputing across the globe
utilising trans-continental infiniband and galaxy of supercomputers. In: Super-
computing 2014: The International Conference for High Performance Computing,
Networking, Storage and Analysis, New Orleans (2014). https://doi.org/10.13140/
2.1.3267.7444

11. Michalewicz, M.: InfiniCortex: present and future (2020). https://doi.org/10.1145/
2903150.2912887

12. Niedzielewski, K., et al.: Long distance geographically distributed InfiniBand based
computing (2020). https://doi.org/10.14529/jsfi200202

https://www.youtube.com/watch?v=8PCjMSKMyRw
https://www.youtube.com/watch?v=8PCjMSKMyRw
https://www.zettar.com/white-paper/
https://github.com/breuner/elbencho/
https://github.com/breuner/elbencho /tree/master/contrib/storage_sweep
https://github.com/breuner/elbencho /tree/master/contrib/storage_sweep
https://semiengineering.com/knowledge_centers/compute-architectures/near-memory-computing/
https://semiengineering.com/knowledge_centers/compute-architectures/near-memory-computing/
https://www.mellanox.com/related-docs/prod_long_haul_systems/MetroX_TX6240.pdf
https://www.mellanox.com/related-docs/prod_long_haul_systems/MetroX_TX6240.pdf
https://doi.org/10.13140/2.1.3267.7444
https://doi.org/10.13140/2.1.3267.7444
https://doi.org/10.1145/2903150.2912887
https://doi.org/10.1145/2903150.2912887
https://doi.org/10.14529/jsfi200202

118 J. Kopeć

13. About The Linpack Benchmark webpage. https://www.top500.org/project/
linpack/. Accessed 29 May 2021

14. Flexible I/O Tester (fio) github repository. https://github.com/axboe/fio.
Accessed 29 May 2021

15. IOR and mdtest github repository. https://github.com/hpc/ior. Accessed 29 May
2021

16. Fang, C., Cottrell, R., Kissel, E.: When to use rsync - DOE Technical Report.
https://slac.stanford.edu/pubs/slactns/tn06/slac-tn-21-001.pdf. Accessed 29 May
2021

17. Carns P., Lang S., Ross R., Vilayannur M., Kunkel J., Ludwig T.: Small-file access
in parallel file systems. In: 2009 IEEE International Symposium on Parallel &
Distributed Processing, pp. 1–11. IEEE, Rome (2009). https://doi.org/10.1109/
IPDPS.2009.5161029

18. Chervenak A., et al.: Monitoring the Earth System Grid with MDS4. In: Proceed-
ings of the Second IEEE International Conference on e-Science and Grid Comput-
ing, p. 69. IEEE, Amsterdam (2006). https://doi.org/10.1109/E-SCIENCE.2006.
261153

19. Neilsen, E.H., Jr.: The Sloan digital sky survey data archive server. Comput. Sci.
Eng. 10(1), 13–17 (2008)

20. Bonfield, J.K., Staden, R.: ZTR: a new format for DNA sequence trace data.
Bioinformatics 18(1), 3–10 (2002)

21. Why Use BeeGFS webpage. https://www.beegfs.io/c/home/why-use-beegfs/.
Accessed 29 May 2021

22. BeeGFS Documentation, Architecture overview. https://doc.beegfs.io/latest/
architecture/overview.html. Accessed 29 May 2021

23. Tips and Recommendations for BeeGFS Storage Server Tuning webpage. https://
www.beegfs.io/wiki/StorageServerTuning. Accessed 29 May 2021

24. HowTo Configure NFS over RDMA (RoCE) webpage. https://community.
mellanox.com/s/article/howto-configure-nfs-over-rdma-roce-x. Accessed 07 Apr
2021

25. OSU Micro-Benchmarks webpage. http://mvapich.cse.ohio-state.edu/
benchmarks/. Accessed 09 Jun 2021

26. iperf3 homepage. https://iperf.fr/. Accessed 09 Jun 2021
27. Kashyap, V.: RFC 4392 - IP over InfiniBand (IPoIB) Architecture. https://www.

rfc-editor.org/rfc/rfc4392.html. Accessed 09 Jun 2021
28. ESnet Fasterdata Knowledge Base - 40G/100G Tuning webpage. https://

fasterdata.es.net/host-tuning/linux/100g-tuning/. Accessed 09 Jun 2021
29. MVAPICH homepage. http://mvapich.cse.ohio-state.edu/. Accessed 09 Jun 2021
30. ESnet Fasterdata Knowledge Base - iperf3 at 40Gbps and above webpage.

https://fasterdata.es.net/performance-testing/network-troubleshooting-tools/
iperf/multi-stream-iperf3/. Accessed 09 Jun 2021

31. BBCP homepage. https://www.slac.stanford.edu/∼abh/bbcp/. Accessed 16 Mar
2021

32. MDTM Homepage. https://mdtm.fnal.gov/index.html. Accessed 17 Mar 2021
33. ESnet Fasterdata Knowledge Base - scp and sftp webpage. https://fasterdata.es.

net/data-transfer-tools/scp-and-sftp/. Accessed 09 Jun 2021
34. ESnet Fasterdata Knowledge Base - Data transfer tools background webpage.

https://fasterdata.es.net/data-transfer-tools/background/. Accessed 09 Jun 2021
35. WAN Interoperability Overview - Vcinity Application Note. https://vcinity.io/

sites/default/files/WAN Interop AN RevA.pdf. Accessed 29 Mar 2021

https://www.top500.org/project/linpack/
https://www.top500.org/project/linpack/
https://github.com/axboe/fio
https://github.com/hpc/ior
https://slac.stanford.edu/pubs/slactns/tn06/slac-tn-21-001.pdf
https://doi.org/10.1109/IPDPS.2009.5161029
https://doi.org/10.1109/IPDPS.2009.5161029
https://doi.org/10.1109/E-SCIENCE.2006.261153
https://doi.org/10.1109/E-SCIENCE.2006.261153
https://www.beegfs.io/c/home/why-use-beegfs/
https://doc.beegfs.io/latest/architecture/overview.html
https://doc.beegfs.io/latest/architecture/overview.html
https://www.beegfs.io/wiki/StorageServerTuning
https://www.beegfs.io/wiki/StorageServerTuning
https://community.mellanox.com/s/article/howto-configure-nfs-over-rdma-roce-x
https://community.mellanox.com/s/article/howto-configure-nfs-over-rdma-roce-x
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/
https://iperf.fr/
https://www.rfc-editor.org/rfc/rfc4392.html
https://www.rfc-editor.org/rfc/rfc4392.html
https://fasterdata.es.net/host-tuning/linux/100g-tuning/
https://fasterdata.es.net/host-tuning/linux/100g-tuning/
http://mvapich.cse.ohio-state.edu/
https://fasterdata.es.net/performance-testing/network-troubleshooting-tools/iperf/multi-stream-iperf3/
https://fasterdata.es.net/performance-testing/network-troubleshooting-tools/iperf/multi-stream-iperf3/
https://www.slac.stanford.edu/~abh/bbcp/
https://mdtm.fnal.gov/index.html
https://fasterdata.es.net/data-transfer-tools/scp-and-sftp/
https://fasterdata.es.net/data-transfer-tools/scp-and-sftp/
https://fasterdata.es.net/data-transfer-tools/background/
https://vcinity.io/sites/default/files/WAN_Interop_AN_RevA.pdf
https://vcinity.io/sites/default/files/WAN_Interop_AN_RevA.pdf

Evaluating Methods of Transferring Large Datasets 119

36. Suzuki, K., Swanson, S.: The Non-Volatile Memory Technology Database
(NVMDB). Technical Report CS2015-1011, Department of Computer Science &
Engineering, University of California, San Diego (2015)

37. Xu J., Swanson, S.: NOVA: a log-structured file system for hybrid volatile/Non-
volatile main memories. In: 14th USENIX Conference on File and Storage Tech-
nologies (FAST 16), pp. 323–338. USENIX Association, Santa Clara (2016)

38. Intel and Micron Produce Breakthrough Memory Technology. https://newsroom.
intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-
technology/. Accessed 16 Feb 2022

39. Chen, C., Yang, J., Wei, Q., Wang, C., Xue, M.: Fine-grained metadata journal-
ing on NVM. In: 32nd International Conference on Massive Storage Systems and
Technology (MSST 2016), pp. 1–13 (2016). https://doi.org/10.1109/MSST.2016.
7897077

40. Xu J., et al.: NOVA-Fortis: a fault-tolerant non-volatile main memory file system.
In: Proceedings of the 26th Symposium on Operating Systems Principles (SOSP
2017), pp. 478–496. Association for Computing Machinery, New York (2017).
https://doi.org/10.1145/3132747.3132761

41. Chen, C., Wei, Q., Wong, W.-F., Wang, C.: NV-journaling: locality-aware jour-
naling using byte-addressable non-volatile memory. IEEE Trans. Comput. 69(2),
288–299 (2020). https://doi.org/10.1109/TC.2019.2948004

42. Kwon, Y., Fingler, H., Hunt, T., Peter, S., Witchel, E., Anderson, T.: Strata: a cross
media file system. In: Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP 2017), pp. 460–477. Association for Computing Machinery, New
York (2017). https://doi.org/10.1145/3132747.3132770

43. Lu, Y., Shu, J., Chen, Y., Li, T.: Octopus: an RDMA-enabled distributed persistent
memory file system. In: 2017 USENIX Annual Technical Conference (USENIX
ATC 17), pp. 773–785. USENIX Association, Santa Clara (2017)

44. Rapier, C., Bennett, B.: High speed bulk data transfer using the SSH protocol.
In: Proceedings of the 15th ACM Mardi Gras conference (MG 2008), Association
for Computing Machinery, New York (2008). https://doi.org/10.1145/1341811.
1341824

45. XRootD Homepage. https://xrootd.slac.stanford.edu/index.html. Accessed 16
Mar 2021

46. A Software Engine for Moving Data at Scale & Speed - Zettar prod-
uct brief. https://www.zettar.com/wp-content/uploads/2020/10/Zettar product
brief.pdf. Accessed 01 Mar 2021

https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
https://doi.org/10.1109/MSST.2016.7897077
https://doi.org/10.1109/MSST.2016.7897077
https://doi.org/10.1145/3132747.3132761
https://doi.org/10.1109/TC.2019.2948004
https://doi.org/10.1145/3132747.3132770
https://doi.org/10.1145/1341811.1341824
https://doi.org/10.1145/1341811.1341824
https://xrootd.slac.stanford.edu/index.html
https://www.zettar.com/wp-content/uploads/2020/10/Zettar_product_brief.pdf
https://www.zettar.com/wp-content/uploads/2020/10/Zettar_product_brief.pdf

120 J. Kopeć

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Service Function Chaining Design &
Implementation Using Network Service

Mesh in Kubernetes

Abdullah Bittar1(B) , Ziqiang Wang1 , Amir Aghasharif1 ,
Changcheng Huang1 , Gauravdeep Shami2, Marc Lyonnais2,

and Rodney Wilson2

1 Carleton University, Ottawa, ON K1S 5B6, Canada
{abdullahbittar,ziqiangwang,amiraghasharif,huang}@carleton.ca

2 Ciena Corporation, Ottawa, ON K2K 0L1, Canada
{gshami,mlyonnai,rwilson}@ciena.com

Abstract. Service Function Chaining (SFC) in a cloud-native environ-
ment is becoming essential as more users move towards clouds today.
Cloud-native environments utilize container-based microservices to pro-
vide software solutions. Integrating SFC with container-based microser-
vices introduces new challenges. This paper exploited Network Service
Mesh (NSM) framework features to create a service function chain on
a multi-node Kubernetes cluster. We focus on the design and imple-
mentation of SFC in Kubernetes using NSM. Also, we deployed our
custom-built containers in the Kubernetes cluster to create a service
function chain. Hence, we demonstrate how an SFC is designed in a
cloud-native environment rather than a traditional NFV/SDN approach.
Furthermore, to evaluate the performance, we compare different frame-
works that support SFC in Kubernetes, highlighting the advantage and
disadvantages of each framework.

Keywords: Service Function Chain · SFC · Kubernetes · Network
Service Mesh · NSM · Design · Implementation

1 Introduction

Next-generation networks mainly rely on the virtualization of network functions
[1]. The network virtualization concept affects network operations, deployment,
and expansion, especially by leveraging its benefits. Network Function Virtual-
ization (NFV) provides some benefits such as scalability, flexibility, and cost.
The idea behind NFV is to integrate different network equipment into industry-
standard high-capacity servers, storage, and switches that can be located in
various locations, such as data centers [2].

NFV introduced new opportunities to exploit the network and provide bet-
ter services for its users. According to the International Data Group (IDG)
c© The Author(s) 2022
D. K. Panda and M. Sullivan (Eds.): SCFA 2022, LNCS 13214, pp. 121–140, 2022.
https://doi.org/10.1007/978-3-031-10419-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10419-0_8&domain=pdf
http://orcid.org/0000-0003-1898-5840
http://orcid.org/0000-0002-0570-4643
http://orcid.org/0000-0001-6101-0921
http://orcid.org/0000-0001-6300-8526
https://doi.org/10.1007/978-3-031-10419-0_8

122 A. Bittar et al.

2020 survey, 92% of the organization’s IT environments are at least somewhat
in the cloud today. More than half of the organizations currently use multiple
clouds [20]. This considerable shift towards cloud-based operation introduces
new techniques such as adopting microservice software to bring more flexibil-
ity and agility to NFV architecture. This phenomenon brought the so-called
Cloud-native Network Function (CNF) [21]. CNF re-designed network functions
to become self-contained, transforming them into a container format. This inspi-
ration introduces challenges for supporting new applications, such as identifying
and steering traffic for different users or content. Furthermore, cloud-native envi-
ronments such as Kubernetes do not support NFV networking requirements,
such as network isolation and fixed containers IP [31]. Lacking the support
of network requirements endangers an essential task in NFV, Service Function
Chaining (SFC). SFC is a mechanism that allows multiple different service func-
tions to be connected to form a chain enabling carriers to benefit from the
virtualized software-defined infrastructure. Hence, SFC is essential to spawning
on-demand network services. In this paper, we concentrate on the design and
implementation of SFC in a cloud-native environment, an approach that has not
been addressed yet. While traditional SFC solutions have been widely addressed
using the Software-Defined Networking (SDN) approach, SFC cloud-native is
still somewhat novel in the research community. Our primary goal in this paper
is detailing the design and the implementation of SFC concept deployed in a
Kubernetes-based solution by leveraging Network Service Mesh (NSM) frame-
work. The contribution of this paper is threefold:

1. We investigate various tools that can be utilized to build an SFC over Kuber-
netes

2. Inspired by the Network Service Mesh (NSM) approach, we design and imple-
ment a multi-node cloud-native SFC framework using a custom-build con-
tainer in a Kubernetes cluster.

3. Performance analysis and evaluation of various Kubernetes SFC tools

The rest of the paper is organized as follows. Section 2 provides background
on key concepts such as NFV, SFC, Kubernetes, containers, Container Net-
work Interface (CNI), NSM, and the motivation behind our work. Section 3
describes our cloud-native traffic steering design. Section 4 provides details about
the implementation process. In Sect. 5 we provide performance evaluation, while
in Sect. 6, we provide the limitations and future work. Section 7 summarizes the
main related work dealing with SFC in Kubernetes, and finally, the last section
will conclude the paper.

2 Background

The main idea of NFV is to integrate proprietary network devices into industry-
standard high-capacity servers, storage, and switches in various locations such
as data centers [2]. The NFV architecture inherently promises advantages such
as software and hardware decoupling, flexible network function deployment, and

SFC Design & Implementation Using NSM in Kubernetes 123

dynamic functioning [3]. The Internet Engineering Task Force (IETF) describes
Service Function Chaining (SFC) as an ordered set of service functions in which
they must be executed [4]. Therefore, an SFC would consist of physical or virtu-
alized network functions chained together where traffic will pass through before
reaching the destination.

2.1 Motivation

SFC plays a vital role in next-generation networks by benefiting different tech-
nologies such as 5G, IoT, and edge computing [9,10,39,40]. SFC helps in pro-
viding customizable network function services to traffic flows between different
networks. The demand for new network services has grown exponentially, aided
by the explosion of new network technologies and infrastructures, such as the
success of cloud networks, that have increased the degree of pervasiveness and
connectivity between heterogeneous devices. Our motivation behind this paper
is to provide the reader with sufficient details regarding the design and imple-
mentation of SFC in Kubernetes using the NSM framework while delivering a
real-life use case. This approach has not been addressed before in a cloud-native
environment tool like Kubernetes. Focusing on chaining containers rather than
traditional virtual machines, we created a cluster in Kubernetes that consisted of
multiple Pods chained together and added video reduction and video broadcast
service functions.

2.2 Kubernetes

Kubernetes is a cloud-based platform that offers a Container-as-a-Service (CaaS)
layer for managing containerized workloads and services. According to Kuber-
netes’ main web page, Kubernetes is “an open-source system for automat-
ing deployment, scaling, and management of containerized applications” [5].
The simplest way to describe Kubernetes’ primary function is container clus-
ter orchestration. Google originally designed Kubernetes, but since 2014 Cloud
Native Computing Foundation (CNCF) has been responsible for maintaining
Kubernetes. Kubernetes is a decentralized architecture based on a declarative
model that defines the ultimate state. Users only describe the application’s struc-
ture to be deployed when using the declarative model. In contrast, in the imper-
ative model, the user must clearly define all the technical deployment tasks to be
performed in sequence order. Kubernetes implement a microservice architecture
that considers a single application as a collection of small services, each running
in its process and communicating with each other with a lightweight mechanism,
typically an HTTP service/gRPC service and corresponding API.

A cluster in Kubernetes consists of master and worker nodes. A node in
Kubernetes may be either a virtual or a physical machine. Figure 1 is an exam-
ple of a Kubernetes cluster that consists of two master nodes and three worker
nodes. The main elements in a master node are different than those in a worker
node. Intuitively from its name, the worker node performs the actual work-
load. Applications will have to be containerized, and a Pod will encapsulate the

124 A. Bittar et al.

Fig. 1. Kubernetes cluster architecture and the main components.

container. The worker node will have at least one Pod. A Pod is the smallest
deployable unit of computing that can be created and managed in Kubernetes.
A Pod is a group of one or more containers in which they share resources such
as shared storage, networking and information about how to run each container.
Pods are temporary but can be automatically re-created to meet the desired
state. There are three main background services running in each worker node.
The first process is the container runtime which is responsible for running con-
tainers. Secondly, the Kubelet agent is the frontend CLI used to communicate
with kube-apiserver, which resides on the master node. Thirdly, the Kube Proxy
is a network proxy to forward the requests between different elements in the
cluster.

A master node is considered a control plane that includes four main processes.
The first process is API Server which acts as a cluster gateway and gatekeeper for
authentication. All requests initiated by users will first pass through API Server
for validation. The second process is Scheduler which is responsible for scheduling
Pods on nodes while considering the resources in the cluster. The third process
is the Controller Manager which is responsible for detecting cluster changes and
bringing the cluster status to its desired state. The last process is etcd which is
a key-value store for the cluster state [5].

Kubernetes offers minimal networking services. Kubernetes only provides
the networking model placeholder and does not provide networking ser-
vices/extensions in the cluster. In most cases, Kubernetes depend on third-party
projects that provide network functionality. Four different types of network-

SFC Design & Implementation Using NSM in Kubernetes 125

ing communication should be addressed when developing a network extension.
Firstly, highly-coupled container-to-container communications. Secondly, Pod-
to-Pod communications. Thirdly, Pod-to-Service communications and finally is
the External-to-Service communications. A Service in Kubernetes is an abstract
way to expose an application running on a set of Pods as a network service. Since
Pods are ephemeral, Pods are associated with Services through key-value pair,
where the Service will automatically discover new Pods with labels that match
the key-value pair. Furthermore, Kubernetes imposes fundamental requirements
on any networking implementation to allow Pods on a node to communicate
with all Pods on all nodes without Network Address Translation (NAT). Third-
party projects develop networking extensions that meet the networking module
requirements, while each may have a different focus. Hence, users will have to
choose amongst the available networking extensions that meet their needs to
deploy them in Kubernetes.

2.3 Containers

Self-contained network functions are moved into a container, such as routers or
firewalls. With containers, users can pack up their services neatly, including all
application binaries, software dependencies, and necessary configuration files.
This also means that the application will remain constant regardless of where
they are running. Containers incur significantly lower overhead than traditional
Virtual Machines (VMs). It is essential to mention that not all virtual network
functions are feasible to be containerized [7]. Containers help businesses modern-
ize by making it easier to scale and deploy applications. According to a CNCF
survey done in 2020, containers usage in production has increased 300% since
2016, and 92% of users surveyed say they use containers [6]. Lightweight virtu-
alization technologies such as cloud-native containers are the trend in deploy-
ing applications in the cloud infrastructure. Container-native Network Function
(CNF) is a software implementation of a network function built and deployed in
a cloud-native method [8]. Despite all the benefits gained from integrating con-
tainers into the NFV environment, there will be management and orchestration
challenges that may hinder the utilization of container-based VNFs. Containers
introduce new challenges and complexity by introducing an entirely new infras-
tructure ecosystem.

2.4 Different CNI Plug-ins

Networking in Kubernetes is provided by the so-called Container Network Inter-
face (CNI), a CNCF project that defines the configuration of network interfaces
for Linux containers. CNI comprises specifications and libraries for plug-ins to
configure network interfaces in Linux containers [11]. A unique file called the
CNI plug-in is responsible for inserting the correct network interface into the
container network while making any necessary changes on the host. There are
different kinds of CNIs, and each one provides a particular behaviour to allow
networking inside the cluster. Some of the most common CNIs are Calico and

126 A. Bittar et al.

Canal, according to [12]. Firstly, Calico is well known for its performance, flexi-
bility, and power. Calico provides additional functions, such as network security
and administration, and essential Pod to Pod connections [13]. Secondly, Canal
integrates Calico and another CNI called Flannel into one CNI to deploy in a
Kubernetes cluster. It uses Flannel for networking pod traffic between hosts via
VXLAN and Calico for network policy enforcement and Pod to Pod traffic [14].
Weave Net is another CNI plug-in. It is resilient and straightforward to use the
network for Kubernetes and its hosted applications [42]. Weave Net creates a vir-
tual network that connects Docker containers across multiple hosts and enables
their automatic discovery. One of Weave Net’s benefits is that it comes with a
Network Policy Controller that automatically monitors Kubernetes for any Net-
workPolicy annotations on all namespaces and configures iptables rules to allow
or block traffic as directed by the policy

2.5 Network Service Mesh (NSM)

Kubernetes’ principle includes service discovery and load balancing in an auto-
mated function for scaling up or down applications. On this basis, Kubernetes
does not focus on the networking aspect but on managing a cluster. Kubernetes
cannot provide some advanced L2/L3 network features, and it lacks the support
for cross-cluster connectivity. Network Service Mesh (NSM) utilizes Kuberne-
tres’ networking model to perform specific networking functions. NSM is a novel
approach to solving complicated L2/L3 use cases in Kubernetes that are tricky
to solve [17], such as SFC use case. NSM is inspired by Software Defined Net-
working (SDN), in which NSM maintains the separation between control and
data plane while providing network intelligence between microservices.

Fig. 2. NSM

SFC Design & Implementation Using NSM in Kubernetes 127

NSM is based on three basic concepts. The first concept is Network Service
(NS) which provides L2/L3 service. The second concept is Network Service End-
point (NSE), a Pod in a Kubernetes cluster that provides the NS application.
The final concept is the L2/L3 connection between the client’s Pod and the
NSE(s). NSM extends beyond kernel interface to support complex use cases and
provides other interfaces such as memif or vhost-user interfaces. A memif inter-
face, called Shared Memory Packet Interfaces, provides high-performance packet
transmit and receive between the user application and Vector Packet Processing
(VPP) [41]. NSM allows individuals to connect to an NS independently of the
infrastructure they are running on. An NS, such as a chain of microservices, must
be identified in a cluster to allow users to access it. After creating an NS, users
will request to join a specific NS in the cluster by assigning a Pod to the user
and creating a vWire to connect to the NS. User’s Pod will have a unique anno-
tation key-value pair that will specify which NS to connect. The NSM Manager
will create a vWire that connects the user’s Pod to the specified NS. A simple
example of NSM connectivity is in Fig. 2. This figure illustrates how a client
can access an NS on the Kubernetes cluster. Each NSE (Pod) includes a key-
value pair to identify which NS. it belongs to. In Fig. 2, a client would like to
connect to Service X by sending a request to the NSM Manager. In return, the
NSM Manager will examine the annotation key-value pair in the client’s Pod
and then check if the required NSEs and interface mechanism are available in
the cluster. If there is a match, the NSM manager will respond to the request
by creating a vWire to the appropriate requested NS.

NSM consists of a few elements that are important for its functionality.
Figure 3 provides a graphical representation of the NSM control and data plane
elements.

Fig. 3. NSM

Network Service Client is the first element involved in NSM. It is deployed
as a Pod in a Kubernetes environment, and its main aim is to require a cross-

128 A. Bittar et al.

connection to a specific NS. On the other hand, NSE oversees implementing
network functions in a network service. Both Network Service Client and NSE
can be composed of two containers, one container for implementing NSM control
plane functionalities and the other container implementing the primary service
function. NSM Manager Pod is fundamental in the control plane that consists
of three essential containers. The first container, which is the heart of the NSM
control plane implementation, is the nsmd container. This container is respon-
sible for all requests that involve cross-connections construction. The second
container is nsmd-k8s, responsible for registries between different NSM Man-
agers. The final container is nsmdp container which is in charge of checking that
all elements involved in NSM Manager functions are working correctly. Network
Service Forwarder’s main aim is to implement NSM data-plane functionalities.
When communication between Pods is provided, it is in charge of configuring
interfaces and building cross-connection between involved Pods. Lastly, Admis-
sion Webhook intercepts Pod creation request to api-server and based on its
internal configuration, and it can modify the request and inject specific code in
the YAML request.

3 Design

In this paper, we address the problem of SFC in microservices-based architec-
ture. Our contribution aims to provide details of the design and implementation
process in deploying SFC in the Kubernetes cluster using custom-build contain-
ers by leveraging the NSM plug-in while adding extra features. Deploying an
SFC in Kubernetes includes three steps: online search for third-party network-
ing extension supporting SFC, deploy correct configurations for creating SFC
and building an SFC in Kubernetes.

First Step is to search online for third-party projects (network extension) that
support SFC in Kubernetes. Luckily, there are few options available. The first
network extension is Contiv-VPP [15] which uses FD.io VPP to provide network
connectivity between Pods in a Kubernetes cluster. The FD.io [16] is the world’s
secure networking data plane project that focuses on supporting terabit software
data plane by using the VPP concept, which processes multiple packets at a time
with low latency. Contiv-VPP is a CNI plug-in that employs a programmable
CNF vSwitch offering SFC and other high-performance cloud-native networking
and services. The second network extension is called OVN4NFV-K8s [19], and
it is based on an Open Virtual Network (OVN) CNI controller to provide cloud-
native-based SFC and other overlay networking features. OVN4NFV-K8s is a
project under the Open Platform for NFV (OPNFV), a collaborative open-
source platform for NFV. The third and final network extension that supports
SFC in Kubernetes is NSM.

We tested the abovementioned three networking extensions to deploy SFC.
We were able to deploy an SFC in a Kubernetes cluster using the Contiv-VPP
extension successfully. Contiv-VPP provides three different scenarios to deploy

SFC Design & Implementation Using NSM in Kubernetes 129

an SFC [45]. The first scenario is adding a tap interface to Linux CNFs. Secondly,
each CNF Pod runs its own VPP instance and is connected with one or two addi-
tional memif interfaces. The final scenario is connecting a CNF to external Data
Plane Development Kit (DPDK) sub-interfaces via two additional memif inter-
faces. The additional tap/memif interfaces between Pods/external interfaces are
inter-connected on the L2 layer, using an L2 cross-connect on the vSwitch VPP.
Contiv-VPP may be used on bare metal servers or using VMs. We went with
VMs, where Kubernetes and service functions were on different VMs deployed
on a single server.

We faced challenges in deploying SFC in OVN4NVF. The main issue was
because the coreDNS Service Pod does not initiate. In other words, the API
server could not get the endpoint of kube-dns Service. We ensured that no firewall
was stopping the traffic and that coreDNS and API configurations were correct
and functioning. OVN4NVF provides instructions on how to set up Kubernetes
using VMs.

The third extension we tested was NSM, which is entirely orthogonal to stan-
dard Kubernetes networking. NSM allows Pods network with different workloads
across the cluster using a simple set of APIs designed to provide connectiv-
ity, security, and observability. NSM leverages the Custom Resource Definition
(CRD) service Kubernetes provides to define a custom resource in a cluster that
performs a specific function [18]. NSM introduces an NS CRD, representing the
logical implementation of a chain of network functions implemented as Pods in
the cluster. The NS also specifies the order of the network function chain in
which traffic should follow when traversing. It is also important to mention that
the NSM control plane implements a cross-connection between Pods to allow
proper communication. The cross-connection comprises two interfaces injected
in the Pods involved in the communication.

Second Step is divided into two phases where the first phase is to deploy a clus-
ter in Kubernetes, and the second phase is to configure the cluster according to
the networking extension you choose in step one. Deploying a cluster in Kuber-
netes can be done using different tools. Kubeadm is a tool to build a Kubernetes
cluster on a bare metal server [38]. Kubeadm toolbox will bootstrap a minimum
viable Kubernetes cluster that conforms to best practice, allowing adding many
nodes to the cluster. Another tool to build a cluster is using Kind tool. Kind is
an open-source tool that generates Kubernetes clusters using Docker [25]. Kind
was primarily designed for testing Kubernetes itself. Kind makes it easy to cre-
ate a cluster by simply passing the command ‘kind create.’ NSM (release v0.2.0)
uses the Kind tool to create clusters by default. Hence, Kind uses Kindnet [26]
as the default networking plug-in. Kindnet implements the Kubernetes network-
ing model using the CNI reference plug-ins and uses Docker’s default bridge
networking. We created a cluster in Kubernetes that consisted of multiple Pods
and services.

The second phase configures the Kubernetes cluster according to the network
extension deployed to build an SFC. In general, all networking extensions follow

130 A. Bittar et al.

the same concept to identify an SFC service. Differences are mainly founded
in the attribute values of the configuration files. The central idea is to create
a CDR and reference the CRD in the services deployed in the cluster. The
CRD is used to define an SFC with a name and schema. Figure 4a is a YAML
configuration file of our custom CRD based on the NSM framework schema. It
identifies a new custom resource that defines the concept of a networking service
chain with the name of NetworkServiceChain, which will be used to create a
network service chain, as Fig. 4b shows. Figure 4b is a YAML configuration file
that identifies a chain of network services. We used the NetworkServiceChain
name as an identifier and added it to the ‘kind’ attribute.

Traffic must follow the two matching rules, as depicted in Fig. 4b. Specifically,
the first matching rule requires that the forwarder direct all traffic flow from any
client that connects with this NS to the ‘firewall’ Pod, the entry point to the
chain in the cluster. The matching rule is indicated in the red box in Fig. 4b.
The second matching rule requires that traffic flow from the firewall Pod be
steered to a second Pod, the ‘vid-reduction’ Pod, as indicated in the orange
box in Fig. 4b. Hence, a flow request coming from an NSC Pod will be first
headed to the ‘firewall’ Pod then to the ‘vid-reduction’ Pod. The metadata name
attribute, ‘SFC-1’, in Fig. 4b is an essential attribute. This is the only method
for attaching a Pod to a chain by having the metadata name of the chain in the
Pod’s deployment configuration file.

Third Step in building an SFC in Kubernetes is to deploy the Pods in the
cluster. This step is container development and adding them to a Pod. Developers
need to create containers that will perform their application’s service/network
function. After that, containers will be wrapped by Pods in the Kubernetes
cluster. Our chain consists of three Pods in a sequence plus an extra Pod for
the client, as illustrated in Fig. 5. Inside each Pod, we added a container that we
custom-built to perform a specific function:

1. Firewall Pod: a firewall container to detect IP addresses and port numbers.
2. Vid-Reduction Pod: a container that performs video reduction size function.
3. Vid-Broadcast Pod: a container that broadcasts the video to users.

Docker is an open-source platform for building, deploying and managing con-
tainerized applications [22]. We used Docker to develop our containers and specif-
ically included a CNI responsible for allocating network interfaces to the newly
created container network namespace and making necessary changes on the host
to enable the connectivity with other containers on the same network. Using the
specification provided by the CNI GitHub [23], an IP address should be assigned
to the interface using the correct IP address management.

Network Automation. To complete the design process, it is a good idea to
automate the deployment process. There are multiple methods for automation,
and one of the methods is to develop coding scripts ready for deployment. In
our experiment, we created numerous Python scripts that configure, manage,

SFC Design & Implementation Using NSM in Kubernetes 131

(a) CRD (b) Network Service Chain

(c) Annotation Method (d) Environment Variables Method

Fig. 4. Kubernetes configuration files, YAML

and deploy the SFC in the Kubernetes cluster. We also built a simple web page,
User Interface (UI), for clients to interact with the cluster to choose a video
file from the available list for broadcasting. A request would be sent from the
web page (frontend) to the backend to broadcast the requested video. The web
page and the backend were developed using Python because of their simplicity
in integrating the frontend to the backend process.

The first action the backend performs is creating a Pod for the client. Pod cre-
ation is crucial because the newly created Pod will contain metadata to identify
which service function chain they would like to connect. There are two differ-
ent methods to define the service function chain name in the NSM framework.
Users can use annotation or include a variable in the environment specifications.
The client’s Pod configuration file will consist of an attribute called annotation,
which specifies the name of the NS or the service function chain they would like

132 A. Bittar et al.

Fig. 5. SFC in Kubernetes multidomain cluster topology

to be associated with, as illustrated in Fig. 4c. The other method is to include a
key value when deploying a Pod. The Pod will have an environmental value that
is the exact value of the metadata of the network service chain, i.e. ‘SFC-1’, as
illustrated in Fig. 4d. After creating the client’s Pod with the correct annotation
or environment variable, a request would be sent to the Network Service Man-
ager for connecting the client’s Pod to the specified NS. In return, the Network
Service Manager will register the client as an NSC and search in the Network
Service Registry for NSE. If an NSE is found in the registry, an interface will
be injected into the client and related NSE Pods to create a chain. This chain
will include only interconnected Pods, and each Pod will have separate NSM
interface(s) where the Pod can communicate with other Pods in the chain.

The chain we developed includes three different service functions. The first
service function (Pod) in the chain is the Firewall Pod. This Pod will act as an
entry point to the chain in the cluster. Figure 4b illustrates this action. This Pod
includes our custom-built container using the Nginx as a base image, and the
primary function is to authenticate requests entering the Kubernetes cluster. If
the request is allowed to enter the cluster, the traffic will be steered according to
the chain identified, as illustrated in Fig. 4b, and the next hop in the chain will
be the Vid-Reduction Pod. All traffic that egress the Firewall Pod will traverse
to the Vid-Reduction Pod.

The second Pod in the chain is the Vid-Reduction Pod. Traffic from the pre-
vious Pod in the chain will ingress into this Pod which is responsible for locating
the video file and checking the file size. If the file size is below a threshold, the file
will be sent to the next hop in the chain without any modification. Otherwise,
the video will be compressed. The Vid-Reduction Pod includes our custom-built
container, which was developed using an Nginx base image. Furthermore, we use
the FFMPEG tool to perform the compression function for the video file. After
the compression function, the compressed file will be sent to the next hop in the
chain. The file will leave from the Vid-Reduction Pod and traverse to the next
hop in the chain, the Vid-Broadcast Pod.

The third and final Pod in the chain is the Vid-Broadcast Pod. Traffic from
the previous Pod, Vid-Reduction Pod, in the chain will ingress into the Pod.
This Pod is responsible for broadcasting the requested video to fulfill the client’s
request. The Vid-Broadcast Pod container wraps the Nginx RTMP module and

SFC Design & Implementation Using NSM in Kubernetes 133

FFMPEG tool. Nginx is open-source software for web servers, reverse proxying,
load balancing, streaming, and more [24]. We choose Nginx because it provides a
fast and reliable static web server, plus it is one of the most popular web servers.

4 Implementation

Testbed. The experiments were conducted on our testbed, CINE, consisting of
2 servers. One of the servers has a 40-core CPU (Intel Xeon E5-2650 @ 2.30)
with one 1GbE NIC (Intel I350), and the other server has a 40-core CPU (Intel
Xeon Silver 4114 @ 2.20GHz) with one 1GbE NIC (BRCM 5720).

Kubernetes. We focused on using the latest version of Kubernetes. The client
version for Kubernetes is 1.21.3, and the server version for Kubernetes is 1.21.1.
We deployed Kubernetes on the two servers mentioned above. We also installed
kubelet and kubectl. The kubelet is the component that runs on all the machines
in the cluster and performs user’s requests such as starting a Pod and containers.
The latter is the command line to communicate with the cluster. We used the
Kubeadm tool to create clusters in Kubernetes.

Networking. We choose the NSM to be deployed in our cluster. The new release
of NSM (v1.0.0) does not depend on a specific CNI. Therefore, we select Net
Weave, a resilient and straightforward network for Kubernetes and its hosted
applications [42]. Weave Net creates a virtual network that connects Docker
containers across multiple hosts and enables their automatic discovery.

NSM. We tested two versions of the NSM releases. At first, we worked with
the v0.2.0 release. This release was only released against Helm version 2. NSM
is released through a set of Helm charts, which are easily deployable in the
Kubernetes cluster. Release v0.2.0 introduces more features such as interdomain,
DNS, security, and improvement to Network Service Endpoint. We also worked
on the new release, v1.0.0, which was not officially published when we wrote the
paper. Instead, the NSM community is releasing the latest version in phases.
We worked with the new release and created a cluster with our custom-built
containers to develop a chain of services. Release v1.0.0 added more features and
capabilities from the old release, such as supporting different types of payloads
(IP and Ethernet), latency reduction, and topology-aware scale.

5 Performance Evaluation

This section will provide a performance evaluation for the three different
frameworks under three categories: Operating System (OS)-level virtualization,
technology-based aspects, and management flexibility.

There are two different types of OS-level virtualization. The first one is VMs
and the second is containers. The difference between VMs and containers is

134 A. Bittar et al.

the level of OS virtualization. Traditional VMs are heavyweight that run guest
operating systems with their binaries, libraries, and applications that it services
and the VM may be many gigabytes in size. In comparison, containers incur
significantly lower overhead than traditional VMs and are gaining increasing
attention in recent years [43]. A container shares host OS kernel, binaries and
libraries, and they come in megabytes in sizes. Both OVN4NFV-K8s and Contiv-
VPP use the VMs technique, which adds management overheads. Developers will
have to deal with any additional issues when creating the VMs. While on the
other hand, the NSM framework focuses on containers to reduce management
overhead because they use the operating system’s standard system call interface.
But this comes with a flexibility issue where containers are not as flexible as a
VM.

Secondly, each framework uses a different technology to present its solution
for SFC. The Contiv-VPP extension only supports L2 cross-connect for intercon-
necting between Pods and only supports one single data path. Contiv-VPP relies
on Data Plane Development Kit (DPDK) technology which offloads packet pro-
cessing from the operating system kernel to userspace. Using DPDK technology
brings benefits such as accelerating packet processing workloads. Despite that,
it might be challenging to set up the correct environment and install DPDK for
Contiv-VPP to function correctly on bare metal servers. On the other side, if you
choose to implement Contiv-VPP using VMs, this will eliminate the challenges
of installing DPDK as the VMs will be ready to use. Furthermore, Contiv-VPP
requires a specific hypervisor, VirtualBox, limiting the users due to lack of sup-
port to VirtualBox hypervisor. It is essential to mention that Contiv-VPP only
uses memif interfaces. Finally, Contiv-VPP provides a user interface that might
help visualize the components and connect them.

OVN4NFV-K8s is based on Open Virtual Network (OVN), which supports
virtual network abstraction and complements the existing capabilities of Open
vSwitch that provides L2/L3 virtual networking, such as logical switches and
routers, multiple tunnel overlays, and L2/L3/L4 ACLs. It is essential to mention
that the OVN4NFV-K8s plug-in is a project under the Open Platform for NFV
(OPNFV). Hence, it inherits and is limited to the OPNFV features. The third
framework, NSM, complements traditional service mesh [44] and provides an
infrastructure layer over microservices to standardize the runtime operations of
applications. NSM focuses on supporting applications that might consist of many
microservices, leading to simplicity, flexibility, and scalability. However, manag-
ing different microservices is a complex task, where different languages might
be implemented, owned by different tenants, and/or constant changing states
to microservices. Finally, comparing NSM with Contiv-VPP and OVN4NVF
networking tools, NSM does not alter the Kubernetes CNI; instead, it is a stan-
dalone mechanism that consists of several components that can be deployed in
a Kubernetes cluster. NSM provides different types of interfaces to be injected
in a Pod. It gives the users a choice between using a memif or kernel interface.

The final category in evaluating the performance is each framework’s flexibil-
ity for developers to configure the framework accordingly. Creating a Kubernetes

SFC Design & Implementation Using NSM in Kubernetes 135

cluster using the OVN4NFV-K8s and Contiv-VPP framework was more com-
plex than the NSM framework. Both OVN4NFV-K8s and Contiv-VPP require
heavy pre-configuration. For OVN4NFV-K8s, the framework requires specific
pre-configuration before deploying the cluster. Plus, it depends on building VMs
rather than containers. On the other hand, deploying a Kubernetes cluster using
NSM is smooth. We started by using Calico and implemented Calico as CNI
with a single node cluster in using NSM. However, Calico causes some issues
when switching to two physical node clusters. It delays connections between
spire agent and spire server, consequently generating the failure of workload
registration in NSM infrastructure. But NSM provides the freedom for users
to choose amongst different networking plug-ins. Furthermore, NSM does not
require heavy pre-configuration to deploy the networking plug-ins as it provides
great flexibility.

6 Limitations and Future Work

We faced multiple challenges during our work to deploy an SFC in Kuber-
netes. The first challenge was working with NSM releases. Between old and
new releases of the NSM framework, the documentation provided is inferior.
The latest release of NSM introduces a new method to deploy Network Service.
It involves the Kubernetes concepts of the Kustomize tool, a standalone tool to
customize Kubernetes objects through a kustomization file [27]. We faced the
second challenge of integrating our custom-built containers into the NSM frame-
work. Specifically when adding the feature of injecting memif interfaces to coex-
ists with our service function. SM framework forces the injection of interfaces,
and traffic will have to ingress and egress specifically from those interfaces. This
can limit service functions types implemented in a chain. The final challenge we
faced was the transfer process of the video file between Pods. Transferring files
between Pods in a chain is different than regular file transfer using Kubernetes-
based features. There are many tools for file transfer, such as the secure copy
protocol, but implementing it in a container will increase the container image
size. This will eliminate one of the container’s benefits of being lightweight.

SFC is still not mature in microservice-based network architecture. More
research is needed to provide solutions for chaining service functions while using
containers and not traditional VMs. Furthermore, the SFC concept is limited to
small applications, such as load balancing and packet investigations. Big science
data flow applications might benefit from SFC features if deployed correctly.
Another area of improvement is an analytical study of the effect of different
network interfaces performance. In our example, we used both kernel and memif
interfaces. Ideally, it would be good to analyze how each different interface per-
forms in a container environment. Finally, applying network analysis to extract
network metrics and optimize the performance will provide a better QoS over
the chain.

136 A. Bittar et al.

7 Related Work

The authors in [28] provide a similar work by using NSM in Kubernetes to offer
SFC solutions. They proposed an efficient traffic steering orientation for cloud-
native service function chaining. They proposed a new network-aware traffic
orientation model based on weighted cycles. This is different from our work as
we focus on SFC’s design and implementation process using the NSM framework
in Kubernetes. Also, in [29], they offered a solution to maximize the QoS satisfac-
tion rate by load-balancing the traffic over the SFC path using the Convtiv-VPP
method. Few papers [30,31] focus on integrating OpenStack and Kubernetes
to deploy a chain of service functions. OpenStack provides VMs for users to
deploy their services and applications, while Kubernetes orchestrates and man-
ages containers. Bringing both OpenStack and Kubernetes together uses Kuryr,
an OpenStack project that aims to solve container networking issues in Open-
Stack. Many papers fill in the gap for container-based orchestration. Since there
is no standard for defining container-based VNFs, many articles fill the gap
by designing new solutions such as extending Tacker architecture (NFV man-
agement and orchestration framework) [32,33]. The authors in [34] proposed a
fault management system with dynamic policy recovery enforcement to support
the high availability of SFC in a multi-cloud environment. In [35], the authors
proposed a performance model approach for recommending an initial resource
provisioning for every microservice within all CNFs before deploying the SFC.
Another interesting paper [36] proposed a machine learning framework module
that can detect anomalies for SFC integrity. Finally, a recent paper [37] proposed
a resource and energy-aware SFC strategy in the edge-cloud environment for IoT
applications that would cope with dynamic load and resource situations emerg-
ing from dynamic SFC requests. Our work is related to those papers mentioned
in this section by building a service function chain. We took a different avenue
by providing sufficient details on SFC’s design and implementation process using
the NSM framework in Kubernetes and adding more value to a service function
chain. To our knowledge, no previous work used the NSM framework for building
a chain of network services using real-life use cases.

8 Conclusion

NFV is the future technology that enables cloud-based platforms to provide
public services and acquire resources such as networking, computing, and stor-
age. This concept unfolded innovations such as container-based microservices
for deploying services and applications. Containers are efficient and flexible
while incurring significantly lower overhead. Kubernetes is a tool to orches-
trate and manage containers. Kubernetes’ function strategy follows a declarative
microservice approach. Kubernetes provides service discovery and load balanc-
ing, automation in self-healing, optimal scheduling, and security mechanisms. It
also has a shorter time to deployment due to architecture, logging detail and live
“in-service” debugging. Kubernetes does provide a specific way to interconnect

SFC Design & Implementation Using NSM in Kubernetes 137

Pods and containers. Instead, it depends on the third party to provide overlay
network functions such as NSM over Kubernetes essential network functions.
These projects follow the Kubernetes networking model to build a networking
plug-in for the Kubernetes cluster. We provide details on different networking
extensions that support SFC. We also briefly explain the various networking
plug-ins that support CNI, such as Calico, Canal, and Contiv-VPP.

We created a Kubernetes cluster using the NSM framework, supporting the
SFC concept. We created a service function chain that consisted of multiple Pods
in a multi-node cluster. The Pods contained our custom-built containers, and
each container was built to perform a different function. The container functions
we built were firewall, video compression, and video broadcasting containers. We
found limitations when using the NSM framework to deploy the SFC concept.
Hence, the limitations of deploying the SFC concept on Kubernetes are related
to the functionality and features of the networking extension plug-in we used
(NSM). Our SFC design and implementation focused on providing a real-life
scenario compared to traditional chains with limited service functions.

Acknowledgement. This project is supported by the Mitacs Accelerate program
funded by NSERC between Ciena and Carleton University, Ottawa, Canada.

References

1. Tsuji, Y., Itoh, A., Kobayashi, M.: Future network technologies for the 5G/IoT
Era. NTT Tech. Rev. 16(6) (2018)

2. ETSI Industry Specification Group (ISG): Network Functions Virtualisation
(NFV): An introduction, benefits, enablers, challenges and call for action. SDN
and OpenFlow World Congress, Darmstadt, Germany (2012)

3. ETSI Industry Specification Group (ISG): Network Functions Virtualisation
(NFV): Architectural Framework (2014)

4. Halpern, J., Pignataro, C.: Service Function Chaining (SFC) Architecture. In:
RFC, number 7665, October 2070–1721, RFC Editor, RFC Editor (2015)

5. Kubernetes, Production-Grade Container Orchestration, https://kubernetes.io/.
Accessed 15 Nov 2021

6. Cloud Native Computing Foundation, CNCF Survey Report 2020. https://www.
cncf.io/wp-content/uploads/2020/12/CNCF-Survey-Report-2020.pdf. Accessed
15 Nov 2021

7. Cziva, R., Pezaros, D.P.: Container network functions: bringing NFV to the net-
work edge. IEEE Commun. Mag. 55(6), 24–31 (2017). https://doi.org/10.1109/
MCOM.2017.1601039

8. Cloud-Native Network Functions. https://cdnf.io/. Accessed 15 Nov 2021
9. Li, X., Rao, J., Zhang, H., Callard, A.: Network Slicing with Elastic SFC. In:

IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1–5 (2017). https://
doi.org/10.1109/VTCFall.2017.8287914

10. Barakabitze, A.A., et al.: 5G network slicing using SDN and NFV: a survey of
taxonomy, architectures and future challenges. Comput. Netw. 167, 106984 (2020).
https://doi.org/10.1016/j.comnet.2019.106984

11. CNI - the container network interface. https://github.com/containernetworking/
cni. Accessed 15 Nov 2021

https://kubernetes.io/
https://www.cncf.io/wp-content/uploads/2020/12/CNCF-Survey-Report-2020.pdf
https://www.cncf.io/wp-content/uploads/2020/12/CNCF-Survey-Report-2020.pdf
https://doi.org/10.1109/MCOM.2017.1601039
https://doi.org/10.1109/MCOM.2017.1601039
https://cdnf.io/
https://doi.org/10.1109/VTCFall.2017.8287914
https://doi.org/10.1109/VTCFall.2017.8287914
https://doi.org/10.1016/j.comnet.2019.106984
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni

138 A. Bittar et al.

12. Benchmark-k8s-cni-2020-08. https://github.com/InfraBuilder/benchmark-k8s-
cni-2020-08. Accessed 15 Nov 2021

13. Project Calico. https://docs.projectcalico.org/getting-started/kubernetes/.
Accessed 15 Nov 2021

14. KOPS -Kubernetes Operation. https://kops.sigs.k8s.io/networking/canal/.
Accessed 15 Nov 2021

15. Contivpp.https://contivpp.io/. Accessed 15 Nov 2021
16. FD.io, The world’s secure networking data plane. https://fd.io/. Accessed 15 Nov

2021
17. Network Service Mesh. https://networkservicemesh.io/. Accessed 15 Nov 2021
18. Custom Resources. https://kubernetes.io/docs/concepts/extend-kubernetes/api-

extension/custom-resources/. Accessed 15 Nov 2021
19. OPNFV/OVN4NFV-K8s-K8s-plugin. https://github.com/opnfv/ovn4nfv-k8s-

plugin/. Accessed 15 Nov 2021
20. IDG 2020 IDG Cloud Computing Study. https://resources.idg.com/download/

2020-cloud-computing-executive-summary-rl/. Accessed 15 Nov 2021
21. CDNF, Cloud-Native Network Functions. https://cdnf.io. Accessed 15 Nov 2021
22. Docker Homepage. https://www.docker.com/. Accessed 15 Nov 2021
23. Container Network Interface specification. https://github.com/

containernetworking/cni/blob/master/SPEC.md. Accessed 15 Nov 2021
24. NGINX Homepage. https://www.nginx.com/. Accessed 15 Nov 2021
25. Kind Homepage. https://kind.sigs.k8s.io/. Accessed 15 Nov 2021
26. Simple CNI plugin with IPv4, IPv6 and DualStack support. https://github.com/

aojea/kindnet. Accessed 15 Nov 2021
27. Declarative management of Kubernetes objects using kustomize. https://

kubernetes.io/docs/tasks/manage-kubernetes-objects/kustomization/. Accessed
15 Nov 2021

28. Dab, B., Fajjari, I., Rohon, M., Auboin, C., Diquélou, A.: An efficient traffic steer-
ing for cloud-native service function chaining. In: 23rd conference on innovation in
clouds, Internet and Networks and Workshops (ICIN), pp. 71–78 (2020). https://
doi.org/10.1109/ICIN48450.2020.9059340

29. Bouridah, A., Fajjari, I., Aitsaadi, N., Belhadef, H.: Optimized scalable SFC traf-
fic steering scheme for cloud native based applications. In: IEEE 18th Annual
Consumer Communications & Networking Conference (CCNC), pp. 1–6 (2021).
https://doi.org/10.1109/CCNC49032.2021.9369583

30. Vu, X.T., et al.: An architecture for enabling VNF auto-scaling with flow migra-
tion. In: 2020 International Conference on Information and Communication Tech-
nology Convergence (ICTC), pp. 624–27. IEEE (2020). https://doi.org/10.1109/
ICTC49870.2020.9289507

31. Kouchaksaraei, H.R., Karl, H.: Service function chaining across openstack and
kubernetes domains. In: Proceedings of the 13th ACM International Conference
on Distributed and Event-based Systems (2019)

32. Hoang, C.-P., et al.: An extended virtual network functions manager architecture
to support container. In: Proceedings of the 2018 International Conference on
Information Science and System, pp. 173–176. ACM (2018). https://doi.org/10.
1145/3209914.3209934

33. Yang, H., Hoang, C., Kim, Y.: Architecture for virtual network function’s high
availability in hybrid cloud infrastructure. In: 2018 IEEE Conference on Net-
work Function Virtualization and Software Defined Networks (NFV-SDN), pp.
1–5 (2018). https://doi.org/10.1109/NFV-SDN.2018.8725784

https://github.com/InfraBuilder/benchmark-k8s-cni-2020-08
https://github.com/InfraBuilder/benchmark-k8s-cni-2020-08
https://docs.projectcalico.org/getting-started/kubernetes/
https://kops.sigs.k8s.io/networking/canal/
https://contivpp.io/
https://fd.io/
https://networkservicemesh.io/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://github.com/opnfv/ovn4nfv-k8s-plugin/
https://github.com/opnfv/ovn4nfv-k8s-plugin/
https://resources.idg.com/download/2020-cloud-computing-executive-summary-rl/
https://resources.idg.com/download/2020-cloud-computing-executive-summary-rl/
https://cdnf.io
https://www.docker.com/
https://github.com/containernetworking /cni/blob/master/SPEC.md
https://github.com/containernetworking /cni/blob/master/SPEC.md
https://www.nginx.com/
https://kind.sigs.k8s.io/
https://github.com/aojea/kindnet
https://github.com/aojea/kindnet
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/kustomization/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/kustomization/
https://doi.org/10.1109/ICIN48450.2020.9059340
https://doi.org/10.1109/ICIN48450.2020.9059340
https://doi.org/10.1109/CCNC49032.2021.9369583
https://doi.org/10.1109/ICTC49870.2020.9289507
https://doi.org/10.1109/ICTC49870.2020.9289507
https://doi.org/10.1145/3209914.3209934
https://doi.org/10.1145/3209914.3209934
https://doi.org/10.1109/NFV-SDN.2018.8725784

SFC Design & Implementation Using NSM in Kubernetes 139

34. Song, S.-Y., Lin, F.J.: Dynamic fault management in service function chaining. In:
IEEE 44th Annual Computers, Software, and Applications Conference (COMP-
SAC), pp. 1477–1482. IEEE (2020). https://doi.org/10.1109/COMPSAC48688.
2020.00-46

35. Khan, M.G., et al.: A performance modelling approach for SLA-aware resource
recommendation in cloud native network functions. In: 6th IEEE Conference on
Network Softwarization (NetSoft), pp. 292–300 (2020). https://doi.org/10.1109/
NetSoft48620.2020.9165482

36. Cheng, S.-T., Zhu, C.-Y., Hsu, C.-W., Shih, J.-S.: The anomaly detection mecha-
nism using extreme learning machine for service function chaining. In: 2020 Interna-
tional Computer Symposium (ICS), pp. 310–315 (2020). https://doi.org/10.1109/
ICS51289.2020.00068

37. Thanh, N.H., Kien, N.T., Van Hoa, N., Huong, T.T., Wamser, F., Hossfeld, T.:
Energy-aware service function chain embedding in edge-cloud environments for IoT
applications. IEEE Internet Things J. 8(17), 13465–13486 (2021). https://doi.org/
10.1109/JIOT.2021.3064986

38. Creating a cluster with kubeadm. https://kubernetes.io/docs/setup/production-
environment/tools/kubeadm/create-cluster-kubeadm/. Accessed 15 Nov 2021

39. Zou, D., Huang, Z., Yuan, B., Chen, H., Jin, H.: Solving anomalies in NFV-SDN
based service function chaining composition for IoT network. IEEE Access 6,
62286–62295 (2018). https://doi.org/10.1109/ACCESS.2018.2876314

40. Imagane, K., Kanai, K., Katto, J., Tsuda, T., Nakazato, H.: Performance eval-
uations of multimedia service function chaining in edge clouds. In: 15th IEEE
Annual Consumer Communications & Networking Conference (CCNC), pp. 1–4
(2018). https://doi.org/10.1109/CCNC.2018.8319249

41. Memif Poll Mode Driver. https://doc.dpdk.org/guides/nics/memif.html. Accessed
15 Nov 2021

42. Weaveworks, Integrating Kuberntes via the Addon. https://www.weave.works/
docs/net/latest/kubernetes/kube-addon/. Accessed 15 Nov 2021

43. Zhang, Q., Liu, L., Pu, C., Dou, Q., Wu, L., Zhou, W.: A comparative study of
containers and virtual machines in big data environment. In: IEEE 11th Interna-
tional Conference on Cloud Computing (CLOUD), pp. 178–185 (2018). https://
doi.org/10.1109/CLOUD.2018.00030

44. Li, W., Lemieux, Y., Gao, J., Zhao, Z., Han, Y.: Service mesh: challenges, state of
the art, and future research opportunities. In: 2019 IEEE International Conference
on Service-Oriented System Engineering (SOSE), pp. 122–1225 (2019). https://
doi.org/10.1109/SOSE.2019.00026

45. CONTIV/VPP. https://github.com/contiv/vpp/tree/master/k8s/examples/sfc.
Accessed 31 Jan 2022

https://doi.org/10.1109/COMPSAC48688.2020.00-46
https://doi.org/10.1109/COMPSAC48688.2020.00-46
https://doi.org/10.1109/NetSoft48620.2020.9165482
https://doi.org/10.1109/NetSoft48620.2020.9165482
https://doi.org/10.1109/ICS51289.2020.00068
https://doi.org/10.1109/ICS51289.2020.00068
https://doi.org/10.1109/JIOT.2021.3064986
https://doi.org/10.1109/JIOT.2021.3064986
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://doi.org/10.1109/ACCESS.2018.2876314
https://doi.org/10.1109/CCNC.2018.8319249
https://doc.dpdk.org/guides/nics/memif.html
https://www.weave.works/docs/net/latest/kubernetes/kube-addon/
https://www.weave.works/docs/net/latest/kubernetes/kube-addon/
https://doi.org/10.1109/CLOUD.2018.00030
https://doi.org/10.1109/CLOUD.2018.00030
https://doi.org/10.1109/SOSE.2019.00026
https://doi.org/10.1109/SOSE.2019.00026
https://github.com/contiv/vpp/tree/master/k8s/examples/sfc.

140 A. Bittar et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

Aghasharif, Amir 121
Alpay, Aksel 79

Bastrakov, Sergei 79
Bittar, Abdullah 121
Bussmann, Michael 79

Chen, Zhong 20
Chiew, Shao-Hen 43

Debus, Alexander 79

Esposito, Aniello 79

Gerofi, Balazs 59

Heikonen, Jussi 79
Hori, Atsushi 59
Huang, Changcheng 121

Imamura, Toshiyuki 1
Ishikawa, Yutaka 59

Klemm, Michael 79
Kluge, Thomas 79

Kopeć, Jakub 102
Kwek, Leong-Chuan 43

Lee, Chee-Kong 43
Lyonnais, Marc 121

Machida, Masahiko 1
Malaya, Nicholas 79
Markomanolis, George S. 79

Ouyang, Kaiming 59

Shami, Gauravdeep 121
Steiniger, Klaus 79
Stephan, Jan 79

Wang, Pengyu 20
Wang, Ziqiang 121
Widera, Rene 79
Wilson, Rodney 121

Yamada, Susumu 1
Yao, Jie 31
Yeo, K. S. 31
Young, Jeffrey 79

	 Preface
	 Organization
	 Contents
	High Performance Parallel LOBPCG Method for Large Hamiltonian Derived from Hubbard Model on Multi-GPU Systems
	1 Introduction
	2 LOBPCG Method for Solving Multi Eigenpairs on Multi-GPU Systems
	2.1 Hamiltonian Matrix-Vector Multiplications
	2.2 Vector Operations

	3 Optimization CPU-GPU Data Transfer
	3.1 Asynchronous Data Transfer
	3.2 Reduction of Data Transfers

	4 Numerical Experiments
	5 Conclusions
	References

	Vapor Condensation Under Electric Field: A Study Using Molecular Dynamics Simulation
	1 Introduction
	2 Model and Methods
	3 Results and Discussion
	4 Conclusion
	References

	The Effect of Wing Mass and Wing Elevation Motion During Insect Forward Flight
	1 Introduction
	2 Methodology
	2.1 Governing Equations and Numerical Discretization
	2.2 Projection Method
	2.3 SVD-GFD Scheme
	2.4 Computation Acceleration

	3 Results and Discussion
	4 Conclusion
	References

	Exploring the Dynamics of Quantum Information in Many-Body Localised Systems with High Performance Computing
	1 Introduction
	2 Background and Numerical Setup for Dynamics
	2.1 Physical Model
	2.2 Simulation of Unitary Dynamics

	3 Information Scrambling and Delocalization in MBL Systems
	3.1 Channel-State Duality
	3.2 Temporal Mutual Information
	3.3 Problem Statement
	3.4 Numerical Results

	4 Conclusion and Discussion
	References

	On the Difference Between Shared Memory and Shared Address Space in HPC Communication
	1 Introduction
	2 Background and Related Work
	3 Process-in-Process (PiP)
	4 Shared Memory Vs. Shared Address Space
	4.1 Page Tables and Page Faults
	4.2 Modifications to Page Tables

	5 Evaluation
	5.1 Experimental Environment
	5.2 Intel MPI Benchmark (IMB) Performance
	5.3 Mini App Performance

	6 Discussion
	7 Summary
	References

	Evaluating GPU Programming Models for the LUMI Supercomputer
	1 Introduction
	2 Related Work
	3 Programming Models
	3.1 HIP
	3.2 The OpenMP Application Programming Interface
	3.3 SYCL
	3.4 OpenACC
	3.5 Alpaka
	3.6 Kokkos

	4 Choosing a Programming Model
	5 Benchmarks and Applications
	5.1 BabelStream
	5.2 MiniBUDE

	6 Methodology
	6.1 Compilation
	6.2 Execution and Tuning

	7 Results
	7.1 Configuration
	7.2 BabelStream
	7.3 MiniBUDE

	8 Conclusion and Future Work
	References

	Evaluating Methods of Transferring Large Datasets
	1 The Outline of the Problem
	2 Tests Workbench: Hardware Specification
	2.1 Servers
	2.2 Mellanox InfiniBand Range Extenders

	3 Storage Benchmark - Elbencho
	3.1 The Motivation for Storage Benchmarking
	3.2 Lots of Small Files Problem (LOSF)
	3.3 The Reasons for Conducting ``Storage Sweeps''
	3.4 Storage Benchmarks Results

	4 Network Benchmarks and Data Transfer Tests
	4.1 Tests Methodology
	4.2 Results
	4.3 Additional Comments on the Tests Results

	5 Conclusions
	5.1 Future Work

	References

	Service Function Chaining Design & Implementation Using Network Service Mesh in Kubernetes
	1 Introduction
	2 Background
	2.1 Motivation
	2.2 Kubernetes
	2.3 Containers
	2.4 Different CNI Plug-ins
	2.5 Network Service Mesh (NSM)

	3 Design
	4 Implementation
	5 Performance Evaluation
	6 Limitations and Future Work
	7 Related Work
	8 Conclusion
	References

	Author Index

