
Language, Cognition, and Mind

Adrian Brasoveanu
Jakub Dotlačil

Computational
Cognitive
Modeling and
Linguistic Theory

Language, Cognition, and Mind

Volume 6

Series Editor

Chungmin Lee, Seoul National University, Seoul, Korea (Republic of)

Editorial Board

Tecumseh Fitch, University of Vienna, Vienna, Austria
Peter Gärdenfors, Lund University, Lund, Sweden
Bart Geurts, Radboud University, Nijmegen, The Netherlands
Noah D. Goodman, Stanford University, Stanford, USA
Robert Ladd, University of Edinburgh, Edinburgh, UK
Dan Lassiter, Stanford University, Stanford, USA
Edouard Machery, Pittsburgh University, Pittsburgh, USA

This series takes the current thinking on topics in linguistics from the theoretical
level to validation through empirical and experimental research. The volumes
published offer insights on research that combines linguistic perspectives from
recently emerging experimental semantics and pragmatics as well as experimental
syntax, phonology, and cross-linguistic psycholinguistics with cognitive science
perspectives on linguistics, psychology, philosophy, artificial intelligence and
neuroscience, and research into the mind, using all the various technical and critical
methods available. The series also publishes cross-linguistic, cross-cultural studies
that focus on finding variations and universals with cognitive validity. The peer
reviewed edited volumes and monographs in this series inform the reader of the
advances made through empirical and experimental research in the language-related
cognitive science disciplines.

For inquiries and submission of proposals authors can contact the Series Editor,
Chungmin Lee at chungminlee55@gmail.com, or request a book information form
from the Assistant Editor, Anita Rachmat at Anita.Rachmat@springer.com.

More information about this series at http://www.springer.com/series/13376

mailto:chungminlee55@gmail.com
mailto:Anita.Rachmat@springer.com
http://www.springer.com/series/13376

Adrian Brasoveanu • Jakub Dotlačil

Computational Cognitive
Modeling and Linguistic
Theory

Adrian Brasoveanu
University of California Santa Cruz
Santa Cruz, CA, USA

Jakub Dotlačil
Utrecht University
Utrecht, The Netherlands

ISSN 2364-4109 ISSN 2364-4117 (electronic)
Language, Cognition, and Mind
ISBN 978-3-030-31844-4 ISBN 978-3-030-31846-8 (eBook)
https://doi.org/10.1007/978-3-030-31846-8

© The Editor(s) (if applicable) and The Author(s) 2020. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons license and indicate if
changes were made.
The images or other third party material in this book are included in the book’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publi-
cation does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-31846-8
http://creativecommons.org/licenses/by/4.0/

Foreword and Acknowledgments

We want it all. And so should you.
We want it all: this book used to have a very long subtitle—‘Integrating gen-

erative grammars, cognitive architectures and Bayesian methods.’ It was a
mouthful, so we dropped it. But this very long subtitle was trying to summarize the
main contribution of this book, which is to provide a formally and computationally
explicit way to build theories that integrate generative grammars and cognitive
architectures: integrated competence-performance theories for formal syntax and
semantics. Not only that: once this rich, expansive space of linguistic theories opens
up, we want to be able to quantitatively check their predictions against experimental
data that is standard in psycholinguistics (forced choice experiments, self-paced
reading, eye-tracking, etc.). We also want to be able to do a quantitative comparison
for arbitrary linguistic and processing theories. And this is where Bayesian methods
for parameter estimation and model comparison come in.

And so should you: this book is our best argument that linguists can actually
have it all. Maybe not exactly (or not even nearly) in the form outlined in this book.
That’s OK. We are taking a formal and computational step on the path to a richer
theoretical and empirical space for generative linguistics. And we hope you will
join us in our building effort.

In our heart of hearts, we are formal semanticists, and we think of this book as
taking some steps towards addressing one of the key challenges for formal
semantics that Barbara Partee mentioned in her 2011 address titled The Semantics
Adventure, namely “how to build formal semantics into real-time processing
models—whether psychological or computational—that involve the integration of
linguistic and not-specifically linguistic knowledge.” (Partee 2011, p. 4)

One way to begin answering this challenge is to build a framework for mech-
anistic processing models that integrates work in the formal semantics tradition that
started roughly with Montague (1970, 1973), and work on cognitive architectures—
broad, formally explicit and unified theories of human cognition and cognitive
behavior—a cognitive psychology research tradition that was explicitly established
around the same time (Newell 1973a, b). This book is our first comprehensive
attempt at building such a framework, and we see ourselves as following directly in

v

the footsteps of Hans Kamp’s original goal for Discourse Representation Theory.
The classic Kamp (1981) paper begins as follows:

Two conceptions of meaning have dominated formal semantics of natural language. The
first of these sees meaning principally as that which determines conditions of truth. […]
According to the second conception meaning is, first and foremost, that which a language
user grasps when he understands the words he hears or reads. […] these two conceptions
[…] have remained largely separated for a considerable period of time. This separation has
become an obstacle to the development of semantic theory […] The theory presented here
is an attempt to remove this obstacle. It combines a definition of truth with a systematic
account of semantic representations. (Kamp 1981, p. 189)

We are grateful to Chris Barker, Dylan Bumford, Sam Cumming, Donka Farkas,
Morwenna Hoeks, Margaret Kroll, Dan Lassiter, Rick Nouwen, Abel Rodriguez,
Amanda Rysling, Edward Shingler, Shravan Vasishth, Matt Wagers and Jan
Winkowski, and to the participants in the UCSC LaLoCo lab in Spring 2017, the
participants in the UCSC Semantics Seminar of Spring 2018 and the participants in
our ESSLLI 2018 course for discussing with us various issues related to this book,
and giving us feedback about various parts of the book. We are also grateful to the
Editor of the Springer LCAM series Chungmin Lee, the Senior Publishing Editor
for Springer Language Education & Linguistics Jolanda Voogd, and the Assistant
Editors for Springer Language Education and Linguistics Helen van der Stelt and
Anita Rachmat—this book would not have been possible without their continued
help and support. We want to thank two anonymous reviewers for their comments
on an earlier draft of this book. Finally, we want to thank the UCSC Socs-Stats
cluster administrators, particularly Doug Niven, without whose support the
computing-intensive parts of this research would not have been possible. This
document has been created with LaTeX (Lamport 1986) and PythonTex (Poore
2013). This research was partially supported by a Special Research Grant awarded
to Adrian Brasoveanu by the Committee on Research from UC Santa Cruz, by the
NWO VENI 275-80-005 grant awarded to Jakub Dotlačil and by the NWO VC.
GW17.122 grant. The NWO VC.GW17.122 grant and a grant from the Utrecht
University library enabled us to provide open access to this book..

Finally, we want to thank Maria Bittner, Hans Kamp and Shravan Vasishth for
their support of this project, which has been a long time coming. Maria Bittner kept
reminding us that making a contribution to semantics that only we can make is one
of the most important things to which we can aspire, and that having an idea is only
half the work—the other half is spreading the word. Hans Kamp has been an
outstanding mentor and role-model, providing much-needed encouragement at
crucial junctures during this project. His continued emphasis on the importance of a
representational level for natural language interpretation has constantly guided the
work we report on here. Shravan Vasishth provided extremely helpful and sup-
portive feedback on an earlier version of the book, and helped us identify a suitable
title that is both descriptive and concise. Shravan’s work on computational cog-
nitive models for sentence comprehension was one of the main sources of inspi-
ration for us, and his support means a lot.

The usual disclaimers apply.

vi Foreword and Acknowledgments

We dedicate this book to our children J. Toma Brasoveanu, Willem Dotlačil and
Klaartje Dotlačil, whose births and early childhoods overlapped with the birth and
maturation of this project.

In memoriam: we also want to acknowledge that discussions with friend and
mentor Ivan Sag (1949–2013) and his work on competence-performance issues in
generative grammar (Sag 1992; Sag and Wasow 2011) were a major source of
inspiration for this work.

Keywords: Semantics ∙ Processing ∙ Computational psycholinguistics ∙ ACT-R ∙
Discourse representation theory ∙ Cognitive modeling ∙ Bayesian inference ∙ Python

Foreword and Acknowledgments vii

Contents

1 Introduction . 1
1.1 Background Knowledge . 1
1.2 The Structure of the Book . 2

2 The ACT-R Cognitive Architecture and Its pyactr
Implementation . 7
2.1 Cognitive Architectures and ACT-R . 7
2.2 ACT-R in Cognitive Science and Linguistics 10
2.3 ACT-R Implementation . 11
2.4 Knowledge in ACT-R . 13

2.4.1 Declarative Memory: Chunks . 13
2.4.2 Procedural Memory: Productions 14

2.5 The Basics of pyactr: Declaring Chunks 15
2.6 Modules and Buffers . 18
2.7 Writing Productions in pyactr . 20
2.8 Running Our First Model . 24
2.9 Some More Models . 27

2.9.1 The Counting Model . 27
2.9.2 Regular Grammars in ACT-R . 31
2.9.3 Counter Automata in ACT-R . 34

2.10 Appendix: The Four Models for Agreement, Counting,
Regular Grammars and Counter Automata 36

3 The Basics of Syntactic Parsing in ACT-R 39
3.1 Top-Down Parsing . 39
3.2 Building a Top-Down Parser in pyactr 41

3.2.1 Modules, Buffers, and the Lexicon 42
3.2.2 Production Rules . 44

3.3 Running the Model . 48
3.4 Failures to Parse and Taking Snapshots of the Mind

When It Fails . 50

ix

3.5 Top-Down Parsing as an Imperfect Psycholinguistic Model 54
3.6 Appendix: The Top-Down Parser . 56

4 Syntax as a Cognitive Process: Left-Corner Parsing
with Visual and Motor Interfaces . 57
4.1 The Environment in ACT-R: Modeling Lexical Decision

Tasks . 57
4.1.1 The Visual Module . 59
4.1.2 The Motor Module . 60

4.2 The Lexical Decision Model: Productions 60
4.3 Running the Lexical Decision Model and Understanding

the Output . 63
4.3.1 Visual Processes in Our Lexical Decision Model 65
4.3.2 Manual Processes in Our Lexical Decision Model 67

4.4 A Left-Corner Parser with Visual and Motor Interfaces 68
4.5 Appendix: The Lexical Decision Model 81

5 Brief Introduction to Bayesian Methods and pymc3
for Linguists . 83
5.1 The Python Libraries We Need . 85
5.2 The Data . 85
5.3 Prior Beliefs and the Basics of pymc3, matplotlib

and seaborn . 89
5.4 Our Function for Generating the Data (The Likelihood) 92
5.5 Posterior Beliefs: Estimating the Model Parameters

and Answering the Theoretical Question 98
5.6 Conclusion . 102
5.7 Appendix . 103

6 Modeling Linguistic Performance . 105
6.1 The Power Law of Forgetting . 106
6.2 The Base Activation Equation . 115
6.3 The Attentional Weighting Equation . 120
6.4 Activation, Retrieval Probability and Retrieval Latency 127
6.5 Appendix . 132

7 Competence-Performance Models for Lexical Access
and Syntactic Parsing . 133
7.1 The Log-Frequency Model of Lexical Decision 133
7.2 The Simplest ACT-R Model of Lexical Decision 137
7.3 The Second ACT-R Model of Lexical Decision: Adding

the Latency Exponent . 142
7.4 Bayes+ACT-R: Quantitative Comparison for Qualitative

Theories . 146

x Contents

7.4.1 The Bayes+ACT-R Lexical Decision Model
Without the Imaginal Buffer . 147

7.4.2 Bayes+ACT-R Lexical Decision with Imaginal-Buffer
Involvement and Default Encoding Delay for the
Imaginal Buffer . 154

7.4.3 Bayes+ACT-R Lexical Decision with Imaginal
Buffer and 0 Delay . 157

7.5 Modeling Self-paced Reading with a Left-Corner Parser 159
7.6 Conclusion . 165
7.7 Appendix: The Bayes and Bayes+ACT-R Models 166

7.7.1 Lexical Decision Models . 166
7.7.2 Left-Corner Parser Models . 167

8 Semantics as a Cognitive Process I: Discourse Representation
Structures in Declarative Memory . 169
8.1 The Fan Effect and the Retrieval of DRSs from Declarative

Memory . 172
8.2 The Fan Effect Reflects the Way Meaning Representations

(DRSs) Are Organized in Declarative Memory 178
8.3 Integrating ACT-R and DRT: An Eager Left-Corner

Syntax/Semantics Parser . 182
8.4 Semantic (Truth-Value) Evaluation as Memory Retrieval,

and Fitting the Model to Data . 192
8.5 Model Discussion and Summary . 203
8.6 Appendix: End-to-End Model of the Fan Effect

with an Explicit Syntax/Semantics Parser 204
8.6.1 File ch8/parser_dm_fan.py . 204
8.6.2 File ch8/parser_rules_fan.py . 205
8.6.3 File ch8/run_parser_fan.py . 205
8.6.4 File ch8/estimate_parser_fan.py 205

9 Semantics as a Cognitive Process II: Active Search for Cataphora
Antecedents and the Semantics of Conditionals 207
9.1 Two Experiments Studying the Interaction Between

Conditionals and Cataphora . 209
9.1.1 Experiment 1: Anaphora Versus Cataphora

in Conjunctions Versus Conditionals 210
9.1.2 Experiment 2: Cataphoric Presuppositions

in Conjunctions Versus Conditionals 214
9.2 Mechanistic Processing Models as an Explanatory Goal

for Semantics . 218
9.3 Modeling the Interaction of Conditionals and Pronominal

Cataphora . 221

Contents xi

9.3.1 Chunk Types and the Lexical Information Stored
in Declarative Memory . 222

9.3.2 Rules to Advance Dref Peg Positions, Key Presses
and Word-Related Rules . 228

9.3.3 Phrase Structure Rules . 230
9.3.4 Rules for Conjunctions and Anaphora Resolution 239
9.3.5 Rules for Conditionals and Cataphora Resolution 249

9.4 Modeling the Interaction of Conditionals and Cataphoric
Presuppositions . 262
9.4.1 Rules for ‘Again’ and Presupposition Resolution 262
9.4.2 Rules for ‘Maximize Presupposition’ 271
9.4.3 Fitting the Model to the Experiment 2 Data 275

9.5 Conclusion . 278
9.6 Appendix: The Complete Syntax/Semantics Parser 280

9.6.1 File ch9/parser_dm.py . 280
9.6.2 File ch9/parser_rules.py . 280
9.6.3 File ch9/run_parser.py . 281
9.6.4 File ch9/estimate_parser_parallel.py 281

10 Future Directions . 283

Bibliography . 287

xii Contents

Chapter 1
Introduction

In this brief chapter, we summarize the background knowledge needed to be able
to work through the book (Sect. 1.1). After that, we provide an overview of the
remainder of the book (Sect. 1.2).

1.1 Background Knowledge

The present book interweaves approaches that are often treated separately, namely
cognitive modeling, (Bayesian) statistics, (formal) syntax and semantics, and psy-
cholinguistics. Given thewide range of frameworks and approaches,we try to presup-
pose as little possible, so that readers coming from different fields can work through
(almost) all the material. That said, the book is mainly geared towards linguists,
so readers are expected to have a basic grasp of formal syntax and semantics. The
overwhelming majority of the cognitive phenomena that we discuss and model in
this book are associated with natural language (English) comprehension, and we will
generally presuppose the reader is familiar with the basic linguistic representations
and operations involved in modeling these phenomena.

We take a hands-on approach to cognitive modeling in this book: we discuss
theories and hypotheses, but we also focus on actually implementing the models (in
Python). While it is possible to read the book without developing or running any
code, we believe that going through the book this way misses important aspects of
learning cognitive modeling. For this reason, we strongly encourage readers to run
and modify our code, as well as develop their ownmodels as they proceed. Cognitive
modeling, like any other technical endeavor, is not a spectator sport: learning is doing.
But doing cognitive modeling from scratch can be a daunting task. To simplify this,
we created a Python package, pyactr, that will help readers focus only on those
features of the implementation of cognitive models that are theoretically relevant.

© The Author(s) 2020
A. Brasoveanu and J. Dotlačil, Computational Cognitive Modeling
and Linguistic Theory, Language, Cognition, and Mind 6,
https://doi.org/10.1007/978-3-030-31846-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31846-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-31846-8_1

2 1 Introduction

Instructions for how to install the package, as well as other practical details regarding
programming and Python are discussed here1:

https://github.com/abrsvn/pyactr-book.

This book is not an introduction to programming, in general or in Python. When-
ever it is possible, we briefly cover concepts needed to understand code snippets
presented in the book. However, readers should keep in mind that such explanations
are included merely to make the process of going through the text a little smoother.
In order to gain a deeper understanding, it will be necessary to consult Python text-
books (or online courses). Downey (2012) is a good starting point to learn Python;
see Ramalho (2015) for a slightly more advanced discussion. We chose Python for
this book because it is beginner-friendly and it is currently (as of 2019) the most pop-
ular language for general data wrangling, data visualization and analysis, machine
learning and scientific computing. Python’s ease-of-use and library ecosystem for
scientific computing is currently unrivaled.2

In sum,we believe it is possible to read the bookwithout any knowledge of Python.
But understanding Python will provide better insight into the models we build, and
it will enable our readers to use the concepts and tools we develop here in their own
research.

1.2 The Structure of the Book

The book is structured as follows.
Chapter 2 introduces the ACT-R cognitive architecture and the Python3 imple-

mentation pyactr we use throughout the book. We end with a basic ACT-R model
for subject-verb agreement.

Chapter 3 introduces the basics of syntactic parsing in ACT-R. We build a top-
down parser and learn how we can extract intermediate stages of pyactr simula-
tions. This enables us to inspect detailed snapshots of the cognitive states that our
processing models predict.

Chapter 4 introduces a psycholinguistically realistic model of syntactic parsing
(left-corner parsing). We also introduce the vision and motor modules. These mod-

1If you encounter any issues with the package and/or the code discussed in this book, please go the
public forum associated with the pyactr-book repository and open an issue there. The forum is
located here:

https://github.com/abrsvn/pyactr-book/issues.

2But see this blog post, for example, for a more nuanced—and ultimately different—opinion:

https://github.com/matloff/R-vs.-Python-for-Data-Science.

Chances are good that sooner or later, one will have to become familiar with both Python and R
if one works in a field connected to data science (in its broadest sense, e.g., as characterized here:
https://cra.org/data-science/).

https://github.com/abrsvn/pyactr-book
https://github.com/abrsvn/pyactr-book/issues
https://github.com/matloff/R-vs.-Python-for-Data-Science
https://cra.org/data-science/

1.2 The Structure of the Book 3

ules enable our cognitive models to interact with the environment just as human
participants do in a psycholinguistic experiment. This is an important contribution to
the current psycholinguistics literature, which focuses almost exclusively on model-
ing the declarative memory contribution to natural language processing. Instead, our
models make use of the full ACT-R cognitive architecture, and explicitly include (i)
the procedural memory module, which is the backbone of all cognitive processes, as
well as (ii) the interface modules, motor and vision specifically.

Chapter 5 introduces the basics of Bayesian methods for data analysis and param-
eter estimation, and the main computational tools we will use for Bayesian modeling
in Python3. Bayesian modeling enables us to estimate the subsymbolic parameters
of ACT-R models for linguistic phenomena, and our uncertainty about these esti-
mates. Applying Bayesian methods to ACT-R cognitive models is a contribution
relative to the current work in the psycholinguistic ACT-R modeling literature, and
ACT-Rmodeling more generally. Parameters in ACT-Rmodels are often tuned man-
ually by trial and error, but the availability of the new pyactr library introduced
in the present monograph, in conjunction with already available, excellent libraries
for Bayesian modeling like pymc3, should make this practice obsolete and replace
it with the modeling and parameter-estimation workflow now standard in statistical
modeling communities.

Chapter 6 introduces the (so-called) subsymbolic components needed to have a
realistic model of human declarative memory, and shows how different cognitive
models embedded in Bayesian models can be fit to the classical forgetting data from
Ebbinghaus (1913). In addition to estimating the parameters of these models and
quantifying our uncertainty about these estimates, we are also able to compare these
models based on how good their fit to data is. We limit ourselves to plots of posterior
predictions and informal model comparison based on those plots.

Chapter 7 brings together theBayesianmethods introduced inChap. 5 and the sub-
symbolic components of the ACT-R architecture introduced in Chap. 6 to construct
and compare a variety of ACT-R models for the lexical decision data in Murray and
Forster (2004). We begin by comparing two ACT-R models that abstract away from
the full ACT-R architecture and focus exclusively on the way declarative memory
modulates lexical decision. Once the better model is identified, we show how it can
be integrated into three different end-to-end models of lexical decision in pyactr.
These models incorporate the full ACT-R architecture and are able to realistically
simulate a human participant in lexical decision tasks, from the integration of visual
input presented on a virtual screen to providing the requisite motor response (key
presses). Crucially, these three Bayes+ACT-R models differ in symbolic (discrete,
non-quantitative) ways, not only in subsymbolic (quantitative) ways. Nonetheless,
our Bayes+ACT-R framework enables us to fit them all to experimental data and to
compute quantitative predictions (means and credible intervals) for all of them. That
is, we have a general procedure to quantitatively compare fully formalized qualitative
(symbolic) theories. The chapter also discusses predictions of the ACT-R left-corner
parser from Chap. 4 for the Grodner and Gibson (2005) processing data. This pro-
vides another example of how the framework enables us to consider distinct symbolic

4 1 Introduction

hypotheses about linguistic representations and parsing processes, formalize them
and quantitatively compare them.

Chapters 8 and 9 build the first (to our knowledge) fully formalized and com-
putationally implemented psycholinguistic model of the human semantic parser/
interpreter that explicitly integrates formal semantics theories and an independently-
motivated cognitive architecture (ACT-R), and fits the resulting processing models
to experimental data. Specifically, we show how Discourse Representation Theory
(DRT; Kamp 1981; Kamp and Reyle 19933) can be integrated into the ACT-R cog-
nitive architecture.

Chapter 8 focuses on the organization of Discourse Representation Structures
(DRSs) in declarative memory, and their storage in and retrieval from declarative
memory. The chapter argues that the fan effect (Anderson 1974; Anderson and Reder
1999) provides fundamental insights into the memory structures and cognitive pro-
cesses that underlie semantic evaluation, which is the process of determiningwhether
something is true or false relative to a database of known facts, i.e., a model in the
parlance of model-theoretic semantics.

Chapter 9 builds on the model in Chap. 8 and formulates an explicit parser for
DRSs that works in tandemwith a syntactic parser and that has visual andmotor inter-
faces. The resulting model enables us to fully simulate the behavior of participants
in self-paced reading tasks targeting semantic phenomena. We use it to account for
the experiments reported in Brasoveanu and Dotlačil (2015a), which study the inter-
action between (i) cataphoric pronouns and cataphoric presuppositions on one hand,
and (ii) the dynamic meanings of sentential connectives, specifically, conjunctions
versus conditionals, on the other hand.

An extreme, but clear way to state themain theoretical proposal made in Chap. 9 is
the contention that anaphora, and presupposition in general, are properly understood
as processing-level phenomena that guide and constrain memory retrieval processes
associated with incremental interpretation. That is, they guide and constrain the
cognitive process of integration, or linking, of new and old semantic information.
Anaphora and presupposition have semantic effects, but are not exclusively, or even
primarily, semantics. The proper way to analyze them is as a part of the processing
component of a broad theory of natural language interpretation. This proposal is very
close in spirit to theDRT account of presupposition proposed in van der Sandt (1992);
Kamp (2001a, b), among others. Kamp (2001b), with its extended argument for and
extensive use of preliminary representations—that is, meaning representations that
explicitly include unresolved presuppositions—is a particularly close idea.

Finally, Chap. 10 outlines several directions for future research.

3See also File Change Semantics (FCS; Heim 1982) and Dynamic Predicate Logic (DPL;
Groenendijk and Stokhof 1991).

1.2 The Structure of the Book 5

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 2
The ACT-R Cognitive Architecture
and Its pyactr Implementation

In this chapter, we introduce the ACT-R cognitive architecture and the Python3
implementation pyactr we use throughout the book. We end with a basic ACT-R
model for subject-verb agreement.

2.1 Cognitive Architectures and ACT-R

Adaptive Control of Thought—Rational (ACT-R1) is a cognitive architecture. Cog-
nitive architectures are commonly used in cognitive science to integrate empirical
results into a unified cognitive framework, which establishes their consistency and
provides a comprehensive formal foundation for future research. They are also used to
make/compute fully explicit predictions of abstract and complex theoretical claims.

Using a cognitive architecture can be very useful for the working linguist and
psycholinguist, for the very same reasons. This book shows how theACT-R cognitive
architecture can be used to shed light on the cognitive mechanisms underlying a
variety of linguistic phenomena, and to quantitatively and qualitatively capture the
behavioral patterns observed in a variety of psycholinguistic tasks.

The term ‘cognitive architecture’ was first introduced by Bell and Newell (1971).
A cognitive architecture specifies the general structure of the human mind at a level
of abstraction that is sufficient to capture how the mind achieves its goals. Vari-
ous cognitive architectures exist. They differ in many respects, but their defining

1‘Control of thought’ is used here in a descriptive way, similar to the sense of ‘control’ in the
notion of ‘control flow’ in imperative programming languages: it determines the order in which
programming statements—or cognitive actions—are executed/evaluated, and thus captures essen-
tial properties of an algorithm and its specific implementation in a program—or a cognitive sys-
tem. ‘Control of thought’ is definitely not used in a prescriptive way roughly equivalent to ‘mind
control’/indoctrination.

© The Author(s) 2020
A. Brasoveanu and J. Dotlačil, Computational Cognitive Modeling
and Linguistic Theory, Language, Cognition, and Mind 6,
https://doi.org/10.1007/978-3-030-31846-8_2

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31846-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-31846-8_2

8 2 The ACT-R Cognitive Architecture and Its pyactr Implementation

characteristic is the level of abstractness that the architecture presupposes. As John
R. Anderson, the founder of ACT-R, puts it:

In science, choosing thebest level of abstraction for developing a theory is a strategic decision.
In the case of connectionist elements or symbolic structures in ACT-R, the question is which
level will provide the best bridge between brain and mind […]. In both cases, the units
are a significant abstraction from neurons and real brain processes, but the gap is probably
smaller from the connectionist units to the brain. Similarly, in both cases the units are
a significant distance from functions of the mind, but probably the gap is smaller in the
case of ACT-R units. In both cases, the units are being proposed to provide a useful island
to support a bridge from brain to mind. The same level of description might not be best
for all applications. Connectionist models have enjoyed their greatest success in describing
perceptual processing,whileACT-Rmodels have enjoyed their greatest success in describing
higher level processes such as equation solving. […] I believe ACT-R has found the best
level of abstraction for understanding those aspects of the human mind that separate it from
the minds of other species. (Anderson 2007, 38–39)

If nothing else, the preceding quote should sound intriguing to linguists or psy-
cholinguists, who often work on higher-level processes involved in language produc-
tion or comprehension and the competence-level representations that these processes
operate on. Thus, linguists and psycholinguists are likely to see ACT-R as providing
the right level of abstraction for their scientific enterprise. We hope that this book
provides enough detail to show that this is not just an empty promise: ACT-R can
be enlightening in formalizing theoretical linguistic claims, and making precise the
ways in which these claims connect to processing mechanisms underlying linguistic
behavior.

But being intrigued by the idea of cognitive architectures is not enough to justify
why cognitive scientists in general, and linguists in particular, should care about
cognitive architectures in their daily research. A better justification is that linguistics
is part of the larger field of cognitive science, where process models of the kind
cognitive architectures enable us to formulate are the proper scientific target to aim
for. The term ‘process models’ is taken from Chap.1 of Lewandowsky and Farrell
(2010), who discuss why this type of models—roughly, models of human language
performance—provide a higher scientific standard in cognitive science than charac-
terization models—roughly, models of human language competence. Both process
and characterization models are better than simply descriptive models,

whose sole purpose is to replace the intricacies of a full data set with a simpler representation
in terms of the model’s parameters. Although those models themselves have no psycholog-
ical content, they may well have compelling psychological implications. [In contrast, both
characterization and process models] seek to illuminate the workings of the mind, rather
than data, but do so to a greatly varying extent. Models that characterize processes identify
and measure cognitive stages, but they are neutral with respect to the exact mechanics of
those stages. [Process] models, by contrast, describe all cognitive processes in great detail
and leave nothing within their scope unspecified.

Other distinctions between models are possible and have been proposed […], and we make
no claim that our classification is better than other accounts. Unlike other accounts, however,
our three classes of models [descriptive, characterization and process models] map into three
distinct tasks that confront cognitive scientists. Do we want to describe data? Do we want to

2.1 Cognitive Architectures and ACT-R 9

identify and characterize broad stages of processing?Dowewant to explain how exactly a set
of postulated cognitive processes interact to produce the behavior of interest? (Lewandowsky
and Farrell 2010, 25)

The advantages and disadvantages of process (performance) models relative to
characterization (competence) models can be summarized as follows:

Like characterization models, [the power of process models] rests on hypothetical cognitive
constructs, but [they provide] a detailed explanation of those constructs […] One might
wonder why not every model belongs to this class. After all, if one can specify a process,
why not do that rather than just identify and characterize it? The answer is twofold.

First, it is not always possible to specify a presumed process at the level of detail required
for [a process] model […] Second, there are cases in which a coarse characterization may
be preferable to a detailed specification. For example, it is vastly more important for a
weatherman to know whether it is raining or snowing, rather than being confronted with the
exact details of the water molecules’ Brownian motion.

Likewise, in psychology [and linguistics!], modeling at this level has allowed theorists to
identify common principles across seemingly disparate areas. That said, we believe that in
most instances, cognitive scientists would ultimately prefer an explanatory process model
over mere characterization. (Lewandowsky and Farrell 2010, 19)

However, there is a more basic reason why linguists should consider pro-
cess/performancemodels—and the cognitive architectures that enable us to formulate
them—in addition to and at the same time as characterization/competence models.
The reason is that a priori, we cannot know whether the best analysis of a linguistic
phenomenon is exclusively a matter of competence or performance or both, in much
the same way that we do not know in advance whether certain phenomena are best
analyzed in syntactic terms or semantic terms or both.2 Such determinations can only
be done a posteriori: a variety of accounts need to be devised first, instantiating var-
ious points on the competence-performance theoretical spectrum. Once specified in
sufficient detail, the accounts can be empirically and methodologically evaluated in
systematic ways. Our goal in this book is to provide a framework for building process
models, i.e., integrated competence-performance theories, for formal linguistics in
general and semantics in particular.

Characterization/competence models have been the focus of theorizing in for-
mal linguistics, and will rightly continue to be one of its main foci for the fore-
seeable future. However, we believe that the field of linguistics in general—and
formal semantics in particular—is now mature enough to start considering pro-
cess/performance models in a more systematic fashion.

Our main goal for this book is to enable linguists to substantially and produc-
tively engage with performance questions related to the linguistic phenomena they
investigate. We do this by making it possible and relatively easy for researchers to
build integrated competence-performance linguistic models that formalize explicit
(quantitative) connections between theoretical constructs and experimental data. Our

2Weselected syntax and semantics only as a convenient example, since issues at the syntax/semantics
interface are by now a staple of (generative) linguistics. Any other linguistic subdisciplines and their
interfaces, e.g., phonology or pragmatics, would serve equally well to make the same point.

10 2 The ACT-R Cognitive Architecture and Its pyactr Implementation

book should also be of interest to cognitive scientists other than linguists interested
to see more ways in which contemporary linguistic theorizing can contribute back
to the broader field of cognitive science.

2.2 ACT-R in Cognitive Science and Linguistics

This book and the cognitive models we build and discuss are not intended as a com-
prehensive introduction and/or reference manual for ACT-R. To become acquainted
withACT-R’s theoretical foundations in their full glory, aswell as its plethora of appli-
cations in cognitive psychology, consider Anderson (1990), Anderson and Lebiere
(1998), Anderson et al. (2004), Anderson (2007) among others, and the ACT-R
website http://act-r.psy.cmu.edu/.

Aquick introduction to themotivation and ideas behind cognitive architectures can
be obtained by (i) skimming through Newell (1973b), (ii) watching Allen Newell’s
1991 address Desires and Diversions, which is an approximately one-hour long
movie available on youtube (search for it or go directly to this link https://www.
youtube.com/watch?v=_sD42h9d1pk), and (iii) reading the first two chapters of
Anderson (2007), Chap. 1 (Cognitive Architecture) and Chap. 2 (TheModular Orga-
nization of the Mind), which are beginner-friendly.

ACT-R is probably the most popular cognitive architecture in linguistics. Its pre-
decessor (ACT) has been used in Anderson (1976) to derive facts about language and
grammar. This attempt was criticized in linguistics (Wexler 1978) and this particular
research line of using ACT to model language phenomena was abandoned.

Renewed interest in integratingACT-R and linguisticswas sparked by the publica-
tion of Lewis and Vasishth (2005), while the contemporary and excellent Budiu and
Anderson (2004, 2005) remained largely unknown in the (psycho)linguistic commu-
nity. Lewis and Vasishth (2005) show that left-corner parsers, originally developed
in computational linguistics (Johnson-Laird 1983; Resnik 1992) but with the aim
of having cognitively plausible properties, can be implemented in ACT-R. Lewis
and Vasishth’s models were created by hand-crafting parsing rules and interweaving
these rules and memory retrievals. Memory retrievals are needed in parsing to con-
nect various language elements that depend on each other for their interpretation,
e.g., verbs and their arguments, or reflexives and their antecedents. The models made
precise quantitative predictions for reaction times in eye-tracking while reading and
self-paced reading experiments. In particular, the models were successful in sim-
ulating effects of interference and distance on memory retrieval (as observable in
reaction times).

ACT-Rmodels of real-time language comprehension have since been used to pre-
dict the effects of frequency and priming in language production (Reitter et al. 2011),
the interaction of parsing and oculomotor control (Engelmann et al. 2013; Dotlačil
2018), the interaction of predictability/surprisal and memory retrieval (Boston et al.
2011), and interference effects in the recall of structural information (Wagers and
Phillips 2009;Dillon et al. 2013;Kush et al. 2015; Jäger et al. 2015, 2017;Nicenboim

http://act-r.psy.cmu.edu/
https://www.youtube.com/watch?v=_sD42h9d1pk
https://www.youtube.com/watch?v=_sD42h9d1pk

2.2 ACT-R in Cognitive Science and Linguistics 11

and Vasishth 2018). ACT-R language modeling has also been successful in explain-
ing the acquisition of past-tense verb morphology (Taatgen and Anderson 2002), the
semantic processing of metaphors (Budiu and Anderson 2004) and negation (Budiu
and Anderson 2005), and impaired processing in individuals with aphasia (Mätzig
et al. 2018).

ACT-R’s success inmodeling linguistic phenomena is to a large extent attributable
to the fact that ACT-R is a so-called hybrid cognitive architecture. The “hybrid” qual-
ification refers to the fact that ACT-R combines symbolic and subsymbolic compo-
nents. The symbolic components enable us to incorporate formal linguistics theories,
i.e., theories describing human language competence, in a fairly transparent way. The
subsymbolic components enable the resulting ACT-R models to make quantitative
predictions for human language performance that can be checked against experi-
mental data. Thus, the hybrid architecture is useful in bridging the gap between
competence and performance while retaining the essential features of current theo-
rizing in linguistics. This is one of the main reasons it resonated with researchers in
(computational) psycholinguistics.

In this book, we do not focus on one particular phenomenon or model, but instead
show how ACT-R can be used to model a variety of lexical, syntactic and semantic
phenomena. We hope that the variety of applications and the precise (and largely
correct) predictions of the models will help researchers assess the usefulness of
computational cognitive modeling in general, and ACT-R modeling in particular, for
linguistic and psycholinguistic theorizing.

2.3 ACT-R Implementation

One of themain ways in which this book is different frommany other texts in linguis-
tics is its hands-on approach to modeling: we will not only discuss and characterize
theoretical claims and language models; we will also implement these models in
Python3, making extensive use of the ACT-R package pyactr, and we will see
what the implemented models predict, down to very specific and fine-grained quan-
titative details.

The ACT-R theory has been implemented in several programming languages,
including Lisp (the ‘official’ implementation), Java (jACT-R, Java ACT-R), Swift
(PRIM) and Python2 (ccm). In this book, we will use a novel Python3 implemen-
tation: pyactr. This implementation is very close to the official implementation
in Lisp, so once you learn it you should be able to fairly easily transfer your newly
acquired skills to Lisp ACT-R, if you are so inclined.

However, Python seems to be the de facto lingua franca of the scientific com-
puting world: it is widely used in the statistics, data science and machine learning
communities and it has a very diverse and robust ecosystem of well-maintained and
tested libraries, including an easy-to-use, fast, comprehensive, well-tested and up-to-
date scientific computing stack. Because of this, implementing any components that
do not directly pertain to ACT-R modeling and the specific linguistic phenomenon

12 2 The ACT-R Cognitive Architecture and Its pyactr Implementation

under investigation ismuch easier in Python than in Lisp. For example, Pythonmakes
it much easier to do data manipulation (wrangling/munging) or statistical analysis,
to interact with the operating system, to plot results, to incorporate them in an article
or book etc.3

Thus, we think pyactr is a better tool to learn ACT-R and cognitive modeling:
the programming language is more familiar and commonly used, and data collection-
manipulation-analysis-and-presentation—aswell as general softwaremaintenance—
tasks, are much more likely to have good off-the-shelf solutions that require minimal
customization. The tool will therefore stand less in the way of the task, so we can
focus on actually designing cognitive models, evaluating them and communicating
the results.

In addition to the convenience and ease of use that comes with Python, reim-
plementing ACT-R in pyactr also serves to show that ACT-R is a mathematical
theory of human cognition that stands on its own, independently of its specific soft-
ware implementations. While this is well-understood in the cognitive psychology
community, it might not be self-evident to working (psycho)linguists or machine-
learning researchers.

We will interleave theoretical notes and pyactr code throughout the book. We
will therefore often display Python code and its associated output in numbered exam-
ples and/or numbered blocks so that we can refer to specific parts of the code and/or
output and discuss them in more detail. For example, when we want to discuss code,
we will display it like so:

(1) 2 + 2 == 4 1
3 + 2 == 6 2

Note the numbers on the far right—we can use them to refer to specific lines
of code, e.g.: the equation on line 1 in (1) is true, while the equation on line 2
is false. We will sometimes also include in-line Python code, displayed like this:
2 + 2 == 4.

Most of the time however, we will want to discuss both the code and its output,
andwewill display them in the sameway theywould appear in the interactive Python
interpreter. For example:

[py1] >>> 2 + 2 == 4 1
True 2
>>> 3 + 2 == 6 3
False 4

Once again, all the lines are numbered (both the Python code and its output) so
that we can refer back to specific parts of a code block and output.

Examples—whether formulas, linguistic examples, examples of code etc.—will
be numbered as shown in (1) above. Blocks of python code meant to be run interac-
tively, together with their associated output, will be numbered separately, as shown
in [py1] above.

3See https://xkcd.com/353/.

https://xkcd.com/353/

2.3 ACT-R Implementation 13

The code for all themodels introduced and discussed in the book is available online
on GitHub as part of the repository pyactr-book. You can access it by following the
link below:

https://github.com/abrsvn/pyactr-book.

2.4 Knowledge in ACT-R

There are two types of knowledge in ACT-R: declarative knowledge and procedural
knowledge (see also Newell 1990). Declarative knowledge is our knowledge of facts.
For example, if one knows what the capital of the Netherlands is, this is encoded
and stored in one’s declarative knowledge. Procedural knowledge is knowledge that
we display in our behavior (cf. Newell 1973a). This distinction is closely related to
the distinction between explicit knowledge (‘knowing that’) and implicit knowledge
(‘knowing how’) in analytical philosophy (Ryle 1949; Polanyi 1967; see also Davies
2001 and references therein for a more recent discussion).

It is often the case that our procedural knowledge is internalized: we are aware
that we have it, but we would be hard pressed to explicitly and precisely describe it.
Driving, swimming, riding a bicycle and, arguably, using language, are examples of
procedural knowledge. Almost all people who can drive, swim, ride a bicycle, talk
etc. do so in an ‘automatic’ manner. They are able to do it but if asked, they might
completely fail to describe exactly how they do it.

ACT-R represents these two types of knowledge in two very different ways.
Declarative knowledge is encoded in chunks. Procedural knowledge is encoded in
production rules, or productions for short.

2.4.1 Declarative Memory: Chunks

Chunks are lists of attribute-value pairs, familiar to linguists acquainted with feature-
based phrase structure grammars (e.g., GPSG, HPSG or LFG—cf. Kaplan et al.
1982; Pollard and Sag 1994; Shieber 2003). However, in ACT-R, we use the term
slot instead of attribute. For example, we might think of one’s lexical knowledge of
the word car as a chunk of type word, with the value ‘car’ for the slot form, the
value �car� for the slot meaning, the value ‘noun’ for the slot category and the
value ‘sg’ (singular) for the slot number. This is represented in graph form in (2)
below.

https://github.com/abrsvn/pyactr-book

14 2 The ACT-R Cognitive Architecture and Its pyactr Implementation

(2)

The slot values are the primitive elements ‘car’, �car�, ‘noun’ and ‘sg’. Chunks
(complex, non-primitive elements) are boxed and subscripted with their type, e.g.,
carword , whereas primitive elements are simple text.A simple arrow () signifies
that the chunk at the start of the arrow has the value at the end of the arrow in the
slot with the name that labels the arrow.

The graph representation in (2) will be useful when we introduce activations and,
more generally, ACT-R subsymbolic components (see Chap. 6). The same chunk
can be represented as an attribute-value matrix (AVM). We will primarily use AVM
representations like the one in (3) below from now on.

(3)

word

⎡
⎢⎢⎢⎣

form: car

meaning: �car�

category: noun

number: sg

⎤
⎥⎥⎥⎦

2.4.2 Procedural Memory: Productions

A production is an if -statement. It describes an action that takes place when the if
‘part’ (the antecedent clause) is satisfied. This is why we think of such productions
as 〈precondition, action〉 pairs. For example, agreement on a verb can be (abstractly)
expressed as follows:

(4) If the number slot of the subject NP in the sentence currently under construc-
tion has the value sg (precondition),
then check that the number slot of themain verb also has the value sg (action).

Of course, for number agreement in English, this is only half of the story. Another
production rule would state a similar 〈precondition, action〉 pair for pl number. Thus,
the basic idea behind production rules is that the if part specifies preconditions, and
if these preconditions are true, the action specified in the then part of the rule is
triggered.

Having two rules to specify subject-verb agreement—as we suggested in the
previous paragraph—might seem like a cumbersome way of capturing agreement
that misses an important generalization: the two rules are really just one agreement

2.4 Knowledge in ACT-R 15

rule with two distinct values for the number slot. Could we then just state that the
verb should have the same number specification as the subject? ACT-R allows us to
state just that if we use variables.

Avariable is assigned a value in the precondition part of a production, and it has the
same value in the action part. In other words, the scope of any variable assignment is
the production rule in which that assignment happens. Given this scope specification
for variable assignments, and employing the ACT-R convention that variable names
are preceded by ‘=’, we can reformulate our agreement rule as follows:

(5) If the number slot of the subject NP in the sentence currently under construc-
tion has the value =x,
then check that the number slot of the main verb also has the value =x.

2.5 The Basics of pyactr: Declaring Chunks

We introduce the remainder of the ACT-R architecture by discussing its implemen-
tation in pyactr. In this section, we describe the inner workings of declarative
memory in ACT-R and their implementation in pyactr. In the next section (Sect.
2.6), we turn to a discussion of ACT-Rmodules and buffers and their implementation
in pyactr. We then turn to explaining how procedural knowledge, a.k.a. procedural
memory, and productions are implemented in pyactr (Sect. 2.7).

To use pyactr, we have to import the relevant package:

[py2] >>> import pyactr as actr 1

Weuse the as keyword so that every timewe usemethods (functions), classes etc.
from the pyactr package, we can access them by simply invoking actr instead
of the longer pyactr.

Chunks/feature structures are typed (see Carpenter 1992 for an in-depth discus-
sion of typed feature structures): before introducing a specific chunk, we need to
specify a chunk type and all the slots/attributes of that chunk type. This is just good
housekeeping: by first declaring a type and the attributes associated with that type,
we make clear from the start what kind of objects we take declarative memory to
store.

Let’s create a chunk type that will encode how our lexical knowledge is stored.
We don’t strive here for a linguistically realistic theory of lexical representations, we
just want to get things off the ground and show the inner workings of ACT-R and
pyactr:

[py3] >>> actr.chunktype("word", "form, meaning, category, number") 1

The functionchunktype creates a typewordwith four slots:form,meaning,
category, number. The type name, provided as a character string "word", is the
first argument of the function. The list of slots, with the slots separated by commas,

16 2 The ACT-R Cognitive Architecture and Its pyactr Implementation

is the second argument. After declaring a type, we can create chunks of that type,
e.g., a chunk that will encode our lexical entry for the noun car.

[py4] >>> carLexeme = actr.makechunk(nameofchunk="car1", 1
... typename="word", 2
... form="car", 3
... meaning="[[car]]", 4
... category="noun", 5
... number="sg") 6
>>> print(carLexeme) 7
word(category= noun, form= car, meaning= [[car]], number= sg) 8

The chunk is created using the function makechunk, which has two required
arguments: nameofchunk, provided on line 1 in [py4], and typename (line 2).
Other than these two arguments (with their corresponding values), the chunk consists
of whatever slot-value pairs we need it to contain—and they are specified as shown
on lines 3–6 in [py4]. In general, we do not have to specify the values for all the slots
that a chunk of a particular type has; the unspecified slots will be empty.

If you want to inspect a chunk, you can print it, as shown on line 7 in [py4].
Note that the order of the slot-value pairs is different from the one we used when we
declared the chunk: for example, we defined form first (line 3), but that slot appears
as the second slot in the output on line 8. This is because chunks are unordered
lists of slot-value pairs, and Python assumes an arbitrary (alphabetic) ordering when
printing chunks.

Specifying chunk types is optional. In fact, the information contained in the chunk
type is relevant for pyactr, but it has no theoretical significance in ACT-R, it is just
‘syntactic sugar’. A chunk type is not identified by the name we choose to give it,
but by the slots it has. However, it is recommended to always declare a chunk type
before instantiating a chunk of that type: declaring types clarifies what kind of AVMs
are needed in our model, and establishes a correspondence between the phenomena
and generalizations we are trying to model, on the one hand, and the computational
model itself, on the other hand.

For this reason, pyactr will print a warning message if we don’t specify a
chunk type before declaring a chunk of that type. Among other things, this helps
us debug our code. For example, if we accidentally mistype and declare a chunk of
type "morphreme" instead of the "morpheme" type we previously declared, we
would get a warning message that a new chunk type has been created. We will not
display warnings in the code output for the remainder of the book.4

It is also recommended that you only use slots already defined in your chunk
type declaration (or when you first used a chunk of a particular type). However,
you can always add new slots along the way if you need to: pyactr will assume
that all the previously declared chunks of the same type had no value for those
slots. For example, imagine we realize half-way through our modeling session that
it would be useful to specify the syntactic function that a word has. We didn’t have
that slot in our carLexeme chunk. So let’s create a new chunk carLexeme2,
which is like carLexeme except it adds this extra piece of information in the slot

4See the pyactr and Python3 documentation for more on warnings.

2.5 The Basics of pyactr: Declaring Chunks 17

synfunction. We will assume that the synfunction value of carLexeme2
is subject, as shown on line 7 in [py5] below:

[py5] >>> carLexeme2 = actr.makechunk(nameofchunk="car2", 1
... typename="word", 2
... form="car", 3
... meaning="[[car]]", 4
... category="noun", 5
... number="sg", 6
... synfunction="subject") 7
>>> print(carLexeme2) 8
word(category= noun, form= car, meaning= [[car]], 9

number= sg, synfunction= subject) 10

The command goes through successfully, as shown by the fact that we can print
carLexeme2, but a warning message is issued (not displayed above):

UserWarning: Chunk type word is extended with new
slots.

Another, more intuitive way of specifying a chunk is to use the method
chunkstring. When declaring chunks with chunkstring, the chunk type is
provided as the value of the isa attribute. The rest of the 〈slot, value〉 pairs are listed
immediately after that. A 〈slot, value〉 pair is specified by separating the slot and
value with a blank space.

[py6] >>> carLexeme3 = actr.chunkstring(string=""" 1
... isa word 2
... form car 3
... meaning ’[[car]]’ 4
... category noun 5
... number sg 6
... synfunction subject 7
... """) 8
>>> print(carLexeme3) 9
word(category= noun, form= car, meaning= [[car]], 10

number= sg, synfunction= subject) 11

The method chunkstring provides the same functionality as makechunk.
The argument string defines what the chunk consists of. The slot-value pairs are
written as a plain string. Note that we use three quotation marks rather than one to
provide the chunk string. Triple quotation signals that the string can appear on more
than one line. The first slot-value pair, listed on line 2 in [py6], is special. It specifies
the type of the chunk, and a special slot is used for this, isa. The resulting chunk is
identical to the previous one: we print the chunk and the result is the same as before
(see lines 10–11).5

Defining chunks as feature structures/AVMs induces a natural notion of identity
and a natural notion of information-based ordering over the space of all chunks. A
chunk is identical to another chunk if and only if (iff) they have the same slots and
the same values for those slots. A chunk is a part of (less informative than) another
chunk if the latter includes all the 〈slot, value〉 pairs of the former and possibly more.

5The value of a slot can also be enclosed in quotes, e.g., ’some-value-here’, i.e., it can be
provided as a string. The quotes themselves are not treated as part of the value. Using quotes is
neededwheneverwewant to input non-alphanumeric characters, aswe have donewhenwe specified
the value of the slot meaning.

18 2 The ACT-R Cognitive Architecture and Its pyactr Implementation

The pyactr library overloads standard comparison operators for these tasks, as
shown below:

[py7] >>> carLexeme2 == carLexeme3 1
True 2
>>> carLexeme == carLexeme2 3
False 4
>>> carLexeme <= carLexeme2 5
True 6
>>> carLexeme < carLexeme2 7
True 8
>>> carLexeme2 < carLexeme 9
False 10

Note that chunk types are irrelevant for deciding identity or part-of relations. This
might be counter-intuitive, but it’s an essential feature of ACT-R: chunk types are
‘syntactic sugar’, useful only for the human modeler. This means that if we define a
new chunk type that happens to have the same slots as another chunk type, chunks
of one type might be identical to, or part of, chunks of the other type:

[py8] >>> actr.chunktype("syncat", "category") 1
>>> anynoun = actr.makechunk(nameofchunk="anynoun1", 2
... typename="syncat", 3
... category="noun") 4
>>> anynoun < carLexeme 5
True 6
>>> anynoun < carLexeme2 7
True 8

This way of defining chunk identity is a direct expression of ACT-R’s hypothesis
that the human declarative memory is content-addressable memory. The only way
we have to retrieve a chunk is by means of its slot-value content.6 Chunks are not
indexed in any way and cannot be accessed via their index or their memory address.
The only way to access a chunk is by specifying a cue, which is a slot-value pair or
a set of such pairs, and retrieving chunks that conform to that pattern, i.e., that are
subsumed by it.7

2.6 Modules and Buffers

Chunks do not live in a vacuum, they are always part of an ACT-R mind (a specific
instantiation of the ACT-R mental architecture). The ACT-R building blocks for the
humanmind are modules and buffers. Eachmodule in ACT-R serves a different men-
tal function. But these modules cannot be accessed or updated directly. Input/output

6See McElree (2006) and Jäger et al. (2017) for discussions and summaries of language-related
evidence for content-addressable memory retrieval.
7A feature structure, a.k.a. chunk, C1 subsumes another chunk C2 iff all the information that is
contained in C1 is also contained in C2. We write this as C1 ≤ C2 or C1 � C2. In pyactr, we
write C1 <= C2. C1 subsumes C2 iff all the slots in the domain of C1 are also in the domain of
C2, and for each of the slots in the domain of C1, the value of that slot is identical to the value of
the corresponding slot in C2. Note that subsumption in ACT-R (also, in pyactr) is not recursively
defined,whichwould require “is identical to” in the previous sentence to be replaced by “subsumes”.

2.6 Modules and Buffers 19

operations associated with a module are always mediated by a buffer, and each mod-
ule comes equipped with one such buffer. Think of it as the input/output interface
for that mental module.

A buffer has a limited throughput capacity: at any given time, it can carry only
one chunk. For example, the declarative memory module can only be accessed via
the retrieval buffer. Internally, the declarative memory module supports massively
parallel processes: basically all chunks can be simultaneously checked against a cue.
But externally, the module can only be accessed serially by placing one cue at a
time in its associated retrieval buffer. This is a typical example of how the ACT-
R architecture captures actual cognitive behavior by combining serial and parallel
components in specific ways (cf. Anderson and Lebiere 1998).

ACT-R conceptualizes the human mind as a system of modules and associated
buffers, within and across which chunks are stored and transacted. This flow of
information is driven by productions: ACT-R is a production-system based cognitive
architecture. Recall that productions are stored in procedural memory, while chunks
are stored in declarative memory. The architecture is more complex than that, but in
this chapter we will be concerned with only these twomajor components of the ACT-
R architecture for the human mind: procedural memory and declarative memory.

As we already mentioned, procedural memory stores productions. Procedural
memory is technically speaking a module, but it is the core module for human cogni-
tion, so it does not have to be explicitly declared because it is always assumed to be
part of any mind (any instantiation of the mental architecture). The buffer associated
with the procedural module is the goal buffer. This reflects the ACT-R view of human
higher cognition as fundamentally goal-driven. Similarly, declarative memory is a
module, and it stores chunks. The buffer associated with the declarative memory
module is called the retrieval buffer.

So let us now move beyond just storing arbitrary chunks, and start building a
mind. The first thing we need to do is to create a container for the mind, which in
pyactr terminology is a model:

[py9] >>> agreement = actr.ACTRModel() 1

The mind we intend to build is very simple. It is merely supposed to check for
number agreement between the main verb and the subject of a sentence, hence the
name of our ACT-Rmodel in [py9] above.We can now start fleshing out the anatomy
and physiology of this very simple agreeing mind. That is, we will add information
about modules, buffers, chunks and productions.

As mentioned above, any ACT-Rmodel has a procedural memory module, but for
convenience, it also comes equipped by default with a declarative memory module
and the goal and retrieval buffers. When initialized, these buffers/modules are empty.
We can check that the declarative memory module is empty, for example:

[py10] >>> agreement.decmem 1
{} 2

20 2 The ACT-R Cognitive Architecture and Its pyactr Implementation

Note that decmem is an attribute of our agreementACT-Rmodel, and it stores
the declarative memory module. The retrieval and goal attributes store the
retrieval and the goal buffer, respectively, and they are also empty, as shown below.

[py11] >>> agreement.goal 1
set() 2
>>> agreement.retrieval 3
set() 4

It is convenient to have a shorter alias for the declarative memory module, so we
introduce a new variable dm and assign the decmem module as its value:

[py12] >>> dm = agreement.decmem 1

Wemight want to add a chunk to our declarative memory, e.g., our carLexeme2
chunk. We add chunks by invoking the add method associated with the declarative
memory module. The argument of this function call is the chunk that should be
added:

[py13] >>> dm.add(carLexeme2) 1
>>> print(dm) 2
{word(category= noun, form= car, meaning= [[car]], number= sg, 3

synfunction= subject): array([0.])} 4

Note that when we inspect dm, we can see the chunk we just added. The chunk-
encoding time is also recorded. This is the simulation time at which the chunk was
added to declarative memory. We have not yet run the model, i.e., we have not yet
started the model simulation, so that time is 0 (line 4 in [py13]).

2.7 Writing Productions in pyactr

Recall that productions are essentially conditionals (if -statements), with the precon-
ditions that need to be satisfied listed in the antecedent of the conditional and the
actions that are triggered if the preconditions are satisfied listed in the consequent.
Thus, productions have two parts: the preconditions that precede the double arrow
(==>) and the actions that follow it.

Let’s add some productions to our model to simulate a basic form of verb agree-
ment.8 Our model of subject-verb agreement will be very elementary, but the point
is to learn how to assemble a basic ACT-Rmodel/mind rather than to build a realistic
processing model of this linguistic phenomenon. We restrict ourselves to agreement
in number for 3rd person present tense verbs.Wemake no attempt to model syntactic
parsing, we will just assume that our declarative memory already stores the subject
of the clause, and that the current verb is already present in the goal buffer, where it
is being actively assembled.

What should our agreement model do? One production should state that if the
goal buffer has a chunk of category verb in it and the current task is to agree, then

8The full model is linked to in the appendix of this chapter.

2.7 Writing Productions in pyactr 21

the subject should be retrieved. The second production should state that if the number
specification on the subject in the retrieval buffer is =x, then the number of the verb
in the goal buffer should also be =x (recall that the = sign before a string indicates
that the string is the name of a variable). The third rule should say that if the verb is
assigned a number, the task is done.

Let’s start with the first production: noun retrieval. As shown in [py14], line 1
below, we give the production a descriptive name "retrieve" that will make the
simulation output more readable. In general, productions are created by the method
productionstring associated with our ACT-R model, and they have two argu-
ments (there is actually a third argument; more on that later): name, the name of the
production, and string, which provides the actual content of the production.

[py14] >>> agreement.productionstring(name="retrieve", string=""" 1
... =g> 2
... isa goal_lexeme 3
... category verb 4
... task agree 5
... ?retrieval> 6
... buffer empty 7
... ==> 8
... =g> 9
... isa goal_lexeme 10
... category verb 11
... task trigger_agreement 12
... +retrieval> 13
... isa word 14
... category noun 15
... synfunction subject 16
... """) 17
{’=g’: goal_lexeme(category= verb, task= agree), 18
’?retrieval’: {’buffer’: ’empty’}} 19

==> 20
{’=g’: goal_lexeme(category= verb, task= trigger_agreement), ’+retrieval’:21
word(category= noun, form= , meaning= , number= , synfunction= subject)} 22

The preconditions (the left hand side of the rule) and the actions (the right hand
side of the rule) are separated by ==>. This separator can be seen on line 8 in
[py14] above. Everything that precedes the separator belongs to the preconditions,
and everything that follows it belongs to the actions. The rule has preconditions
for two buffers. The first one starts on line 2. =g> indicates two things: the target
buffer and the type of precondition this buffer has to satisfy. The precondition checks
that the chunk currently stored in the goal buffer g is subsumed by the chunk that
is specified on the following lines (lines 3–5). The = symbol encodes that we are
interested in the subsume relation. That is, the chunk in the goal buffer has to be of
category verb (line 4), and the current task for this lexeme should be agree (line
5). The chunk in the goal buffer could have other slot-value pairs, but we are not
interested in them for the purposes of this rule.

The second precondition starts on line 6 in [py14] above. ?retrieval> indi-
cates that this precondition will check whether the retrieval buffer is in a certain
state. ? in front of the buffer name indicates that we are interested in the state of the
buffer, not in the chunk that is in it. The state that we want the retrieval buffer to be
in is specified on line 7: the retrieval buffer needs to be empty (no chunk should be
stored there).

22 2 The ACT-R Cognitive Architecture and Its pyactr Implementation

In general, we can check for a variety of states that buffers could be in. For
example:

• ’?g> buffer full’ checks if the goal buffer is full (whether it carries a
chunk);

• ’?retrieval> state busy’ checks if the retrieval buffer is working on
retrieving a chunk;

• ’?retrieval> state error’ checks if the last retrieval request has
failed (no chunk has been found).

If the preconditions on the two buffers are met, the rule triggers two actions. The
first action is stated starting on line 9 in [py14]: wemodify thegoal_lexeme chunk
by changing the current task from agree to trigger_agreement. When such
a feature-value update takes place, the other features of the updated chunk remain
the same.

The trigger_agreement task specified in the goal_lexeme chunk is to
identify a subject noun so that the goal_lexeme can agree with that noun in
number, which leads us to the second action. This action is stated starting on line 13
in [py14]: +retrieval> indicates that we access the retrieval buffer (recall
that we just verified that this buffer is empty) and we add a new chunk to it (that
is what + means). This chunk is our memory cue/query: we want to retrieve from
declarative memory a chunk of type word that is a noun and a subject.9

Memory cues always consist of chunks, i.e., feature structures, and the retrieval
process asks the declarative memory module to provide a (possibly) larger chunk
that the cue chunk is a part of (technically, a chunk in declarative memory that is
subsumed by our cue chunk). In our specific case, the cue requests the retrieval of a
chunk that has at least the following 〈slot, value〉 pairs: the chunk should be a noun
that is a subject.

After this production rule is fired, a subject noun is retrieved from declarative
memory and placed in the retrieval buffer (assuming the retrieval is successful), and
the goal lexeme has trigger_agreement as its task. The second production
rule, provided in ([py15]) below, can now fire and actually perform the agreement:

[py15] >>> agreement.productionstring(name="agree", string=""" 1
... =g> 2
... isa goal_lexeme 3
... category verb 4
... task trigger_agreement 5
... =retrieval> 6
... isa word 7
... category noun 8
... number =x 9
... synfunction subject 10
... ==> 11
... =g> 12
... isa goal_lexeme 13
... category verb 14

9Strictly speaking, it is not necessary to ensure that the retrieval buffer is empty before placing a
retrieval request. The model would have worked just as well if the retrieval buffer had been non-
empty. The buffer would have been flushed/emptied first, and then the memory cue would have
been placed in it.

2.7 Writing Productions in pyactr 23

... number =x 15

... task done 16

... """) 17
{’=g’: goal_lexeme(category= verb, task= trigger_agreement), 18
’=retrieval’: word(category= noun, form= , meaning= , 19

number= =x, synfunction= subject)} 20
==> 21
{’=g’: goal_lexeme(category= verb, number= =x, task= done)} 22

The two preconditions of the rule in [py15] above ensure that we are in the correct
state:

• lines 2–5: the chunk in the goal buffer is subsumed (=) by the chunk on lines 3–5,
i.e., it hasverb as thevalueof the slotcategory, andtrigger_agreement
as the value of the slot task

• lines 6–10: the chunk in the retrieval buffer is subsumed (=) by the chunk on lines
7–10, i.e., it must be of category noun, have the syntactic function of subject
and have a number specification =x;

– since =x does not appear anywhere else in the preconditions, this last check
is vacuous, as a variable can have any value; however, keep in mind that
variables take scope within a rule and, therefore, any other part of this rule
that will make use of =xwill have to match in value the number slot in the
retrieval buffer.

After checking that we are in the correct state, we trigger the agreeing action.
Lines 12–16 in [py15] tell us that the chunk that is currently in the goal buffer should
be kept there (that’s what = on line 12 encodes) and its feature structure should be
updated as follows. The type and category should stay the same (goal_lexeme
and verb, respectively), but a new number specification should be added, namely
=x, which is the same number specification as the one for the subject noun we have
retrieved from declarative memory. This completes the agreement operation, so the
task slot of the goal lexeme is updated and marked as done (line 16).

The third and final production rule just mops things up: we are done, so the goal
buffer is flushed and our simulation ends. The action on line 6 in [py16] below,
namely ~g>, simply discards the chunk in the goal buffer.

[py16] >>> agreement.productionstring(name="done", string=""" 1
... =g> 2
... isa goal_lexeme 3
... task done 4
... ==> 5
... ˜g> 6
... """) 7
{’=g’: goal_lexeme(category= , number= , task= done)} 8
==> 9
{’˜g’: None} 10

In the next section, we run the model that we have just created. The notation
introduced throughout this section is summarized in Table2.1 (for preconditions)
and Table2.2 (for actions).

24 2 The ACT-R Cognitive Architecture and Its pyactr Implementation

Table 2.1 Notation and terminology used in the preconditions of production rules

Symbol

= ?

Interpretation Check that subsumption holds Check the status of the buffer

Possible values Any chunk that subsumes
the chunk in the buffer

Buffer full
Buffer empty
State busy
State free
State error

Table 2.2 Notation and terminology used in the actions of production rules

Symbol

= + ~

Interpretation Modify the current
chunk

Add a new chunk to buffer
(triggers memory recall if added to
retrieval buffer)

Clear buffer

Possible
values

The chunk in the buffer
updated with the new
slots and values

A chunk with specified slots and
values (for retrieval buffer, old
chunk from dec. mem. if recall
succeeds)

N/A

2.8 Running Our First Model

To run the agreement model, we just have to add an appropriate chunk to the goal
buffer. Recall that ACT-R conceptualizes higher cognition as fundamentally goal-
driven: if there is no goal, no productions will fire and the mind will not change
state.

We add a goal chunk in [py17] below. First, we declare our goal_lexeme
type (line 1 in [py17]). Then, we add one such chunk to the goal buffer (lines 2–6).
Chunks are always added to buffers/modules using the method add. We check that
the chunk has been added to the goal buffer by printing its contents (line 7). Note
that the number specification on line 8 is empty.

[py17] >>> actr.chunktype("goal_lexeme", "task, category, number") 1
>>> agreement.goal.add(actr.chunkstring(string=""" 2
... isa goal_lexeme 3
... category verb 4
... task agree 5
... """)) 6
>>> agreement.goal 7
{goal_lexeme(category= verb, number= , task= agree)} 8

We can now run the model by invoking the simulation method (with no
arguments), as shown in [py18], line 1 below. This takes the model specification and
initializes various parameters as dictated by the model (e.g., simulation start time).
We can then execute one run of the simulation, as shown on line 2 in [py18].

2.8 Running Our First Model 25

[py18] >>> agreement_sim = agreement.simulation() 1
>>> agreement_sim.run() 2
(0, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 3
(0, ’PROCEDURAL’, ’RULE SELECTED: retrieve’) 4
(0.05, ’PROCEDURAL’, ’RULE FIRED: retrieve’) 5
(0.05, ’g’, ’MODIFIED’) 6
(0.05, ’retrieval’, ’START RETRIEVAL’) 7
(0.05, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 8
(0.05, ’PROCEDURAL’, ’NO RULE FOUND’) 9
(0.1, ’retrieval’, ’CLEARED’) 10
(0.1, ’retrieval’, ’RETRIEVED: word(category= noun, form= car, 11

meaning= [[car]], number= sg, synfunction= subject)’) 12
(0.1, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 13
(0.1, ’PROCEDURAL’, ’RULE SELECTED: agree’) 14
(0.15, ’PROCEDURAL’, ’RULE FIRED: agree’) 15
(0.15, ’g’, ’MODIFIED’) 16
(0.15, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 17
(0.15, ’PROCEDURAL’, ’RULE SELECTED: done’) 18
(0.2, ’PROCEDURAL’, ’RULE FIRED: done’) 19
(0.2, ’g’, ’CLEARED’) 20
(0.2, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 21
(0.2, ’PROCEDURAL’, ’NO RULE FOUND’) 22

The output of the run() command is the temporal trace of our model simulation.
Each line specifies three elements: (i) the simulation time (in seconds); (ii) themodule
(name in upper-case letters) or buffer (name in lower-case letters) that is affected;
and finally (iii) a description of what is happening to themodule or buffer. By default,
every cognitive step in the model takes 50 ms, i.e., 0.05s. This is the ACT-R default
time for an elementary cognitive operation.

The first line of our temporal trace (line 3 in [py18]) states that conflict resolution
is taking place in the procedural memory module, i.e., the module where all the
production rules reside. This happens at simulation time 0. The main function of
‘conflict resolution’ is to examine the current state of the mind (basically, the state
of the buffers in our model) and to determine if any production rule can apply, i.e.,
to check if the current state of the mind satisfies the preconditions of any production
rule.

Note how ACT-R once again combines serial and parallel components to capture
actual cognitive behavior. Checking if the current state of the mind satisfies the
preconditions of any rule is a massively parallel process: all rules are simultaneously
and very quickly (instantaneously) checked. But rule firing is serial: at any given
point in the cognitive process, only one rule can fire/apply. This is similar to the
interaction between the parallel computations in the declarative memory module (all
chunks are simultaneously checked against a pattern/cue) and the serial way in which
retrieval cues can be placed in the retrieval buffer (one at a time).

‘Conflict resolution’ is particularly simple in the present case. Given the state of
the goal and retrieval buffers, only one rule can apply: our first production rule, which
we named retrieve in [py14] above. Line 4 in [py18] shows that the retrieve
rule is selected at time 0. The rule fires, and this takes the ACT-R default time of 50
ms, as shown on line 5. The state of our mind has changed as a consequence of this
rule firing, and the subsequent lines in the output report on that new state: the goal
buffer has been modified (line 6; the task is now trigger_agreement) and the
retrieval buffer has started a memory retrieval procedure (line 7), which will take
time to complete.

26 2 The ACT-R Cognitive Architecture and Its pyactr Implementation

Now that the retrieve rule has fired, the procedural module enters a ‘conflict
resolution’ state again and looks for production rules to apply (line 8). The current
state of the mind (i.e., the buffer state) does not satisfy the preconditions of any rule,
so none is fired (line 9).

However, a memory retrieval process has been started and is completed 50 ms
later, i.e., at the next simulation time of 100 ms. Retrieval time is set to a default value
of 50 ms here, but ACT-R specifies in great detail how memory behaves, and makes
clear predictions about retrieval accuracy and retrieval latency. This is discussed in
detail in Chap. 6, but we want to keep our first model simple, so we use the default
retrieval time of 50 ms here.

At the 100 ms point, the memory retrieval process has been completed. The
retrieval buffer is cleared (line 10) so that the newly retrieved chunk can be placed
there (lines 11–12).

The mind is now in a new state since the buffer contents have changed, so the
procedural module reenters a ‘conflict resolution’ state of rule collection and rule
selection (line 13). This time, the resolution process identifies one rule that can fire
(line 14), namely the second production rule we discussed in [py15] above andwhich
we named agree.

The agree rule takes 50 ms to fire (line 15 of [py18]), so we are now at 150
ms in simulation time. As a consequence of the agree rule, the chunk in the goal
buffer has been modified (line 16): its number specification has been updated so that
it is now the same number as the noun chunk in the retrieval buffer.

Agreement has been performed, so the third and final production rule is selected
(lines 17–18). The rule takes 50 ms to fire (line 19), so at time 0.2 s, the goal buffer
is cleared (line 20), and no further rule can apply (lines 21–22).

When the goal buffer is cleared, the information stored in it does not disap-
pear. The ACT-R architecture specifies that the cleared information is automatically
transferred (‘harvested’) to declarative memory. The intuition behind this is that our
past accomplished goals, i.e., the results of our past successful cognitive processes,
become our present (newly acquired) memory facts. This is also the case in pyactr.
We can inspect the final state of the declarative memory module to see that it stores
the cleared goal-buffer chunk:

[py19] >>> dm 1
{word(category= noun, form= car, meaning= [[car]], number= sg, 2

synfunction= subject): array([0.]), 3
goal_lexeme(category= verb, number= sg, task= done): array([0.2])} 4

Note that this newly added chunk is time-stamped with the simulation time at
which the goal buffer was cleared (0.2 s).

And that’s it. At its core, ACT-R provides a fairly simple framework for building
process models that is accessible to generative linguists because it is production-rule
based and manipulates feature structures of a familiar kind.

To be sure, our first model and the introduction to ACT-R and pyactr in this
chapter are overly simplistic inmanyways. But themain point is thatwe can now start
building explicit andmore realistic computationalmodels for linguistic processes and
behaviors.

2.8 Running Our First Model 27

Our development of integrated competence-performance theories for linguistic
phenomena is now at a stage similar to the one in a formal semantics intro course
where the semantics for classical first order logic (FOL) has just been introduced.
FOL semantics is in many ways an overly simplistic model for natural language
semantics, but it provides the basic structure that more realistic theories of natural
language interpretation (in the Montagovian tradition) can build on.

2.9 Some More Models

In this section, we present three more (simple) ACT-R models. The models do not
add any new concepts to what we have learned so far about ACT-R and pyactr.
Before we delve into the models, we should point out that none of these models is
necessarily cognitively realistic or plausible.We simply present them here to solidify
the reader’s knowledge of the concepts introduced in this chapter. They also serve as
preparation for the more complex linguistic performance models we develop in the
remainder of the book.

The firstmodel shows howcounting can be simulated inACT-R. This is a classical,
toy example that modelers are often first introduced to when learning about ACT-
R.10 It is a subcomponent of a larger model. The larger model does strive to simulate
actual human cognition: it captures how young children learn addition (see Lebiere
1999). However, our simplemodel does not have this ambitious goal. The second and
third models show how regular grammars and counter automata can be implemented
in ACT-R.

2.9.1 The Counting Model

The model starts with an initial number and keeps incrementing it by one until it
reaches a final number. We have two chunk types: (i) countOrder, used to store
the list of natural numbers we are counting over in pairs of successive numbers, and
(ii) countFrom, used to store the current state of the counting process.

[py20] >>> counting = actr.ACTRModel() 1
>>> actr.chunktype("countOrder", ("first", "second")) 2
>>> actr.chunktype("countFrom", ("start", "end", "count")) 3

Let’s say we want to simulate counting from 2 to 4. We do so by encoding these
two parameters in the goal buffer:

[py21] >>> counting.goal.add(actr.chunkstring(string=""" 1
... isa countFrom 2
... start 2 3

10It is the first model in the tutorial units available on the official ACT-R website http://act-r.psy.
cmu.edu/.

http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/

28 2 The ACT-R Cognitive Architecture and Its pyactr Implementation

... end 4 4

... """)) 5

Next, we will store counting knowledge in declarative memory. Since counting
goes only up to 4 in our toy example, we will only store the first four numbers and
their successors:

[py22] >>> dm = counting.decmem 1
>>> dm.add(actr.chunkstring(string=""" 2
... isa countOrder 3
... first 1 4
... second 2 5
... """)) 6
>>> dm.add(actr.chunkstring(string=""" 7
... isa countOrder 8
... first 2 9
... second 3 10
... """)) 11
>>> dm.add(actr.chunkstring(string=""" 12
... isa countOrder 13
... first 3 14
... second 4 15
... """)) 16
>>> dm.add(actr.chunkstring(string=""" 17
... isa countOrder 18
... first 4 19
... second 5 20
... """)) 21

Finally, ourmodelwill have three rules:"start","increment" and"stop".
The "start" rule is specified in [py23] below.
[py23] >>> counting.productionstring(name="start", string=""" 1

... =g> 2

... isa countFrom 3

... start =x 4

... count None 5

... ==> 6

... =g> 7

... isa countFrom 8

... count =x 9

... +retrieval> 10

... isa countOrder 11

... first =x 12

... """) 13
{’=g’: countFrom(count= None, end= , start= =x)} 14
==> 15
{’=g’: countFrom(count= =x, end= , start=), 16
’+retrieval’: countOrder(first= =x, second=)} 17

Recall that rules are conditionalized actions and ==> separates preconditions from
actions. In this rule, the preconditions simply state that the goal buffer must have a
chunk that has no value for the slot count. Furthermore, the slot start has the
value =x (since =x does not appear anywhere else in preconditions, this is trivially
satisfied). As for the actions, the rule specifies changes in two buffers: the goal buffer
(lines 7–9) and the retrieval buffer (lines 10–12). The ACT-R model will change the
value of the slot count to the value assigned to the variable =x. This means that
the value of the count slot in the goal buffer will be matched to the value of the
start slot. Second, we place a retrieval request for a declarative memory chunk
that has the value =x in the slot first. That is, we want to recall the successor of
=x from memory.

2.9 Some More Models 29

The "increment" rule in [py24] below has preconditions involving the goal
and retrieval buffers. It requires the value of count in the goal buffer to not match
the final, end number (lines 4–5). This is achieved by specifying that count has
the value =x and end does not have the same value (~ is negation). Second, the
retrieval buffer carries a chunk whose first value matches the count value in the
goal buffer. This condition will be satisfied if the retrieval request placed by the rule
"start" succeeds. If these preconditions are satisfied, we trigger two actions (lines
11–16). First, the current count value will be updated to the value of its successor,
which is the value stored in the second slot of the chunk in the retrieval buffer
(lines 9 and 13). Second, we place a retrieval request for the next increment, i.e., the
successor of the updated count (lines 14–16).

[py24] >>> counting.productionstring(name="increment", string=""" 1
... =g> 2
... isa countFrom 3
... count =x 4
... end ˜=x 5
... =retrieval> 6
... isa countOrder 7
... first =x 8
... second =y 9
... ==> 10
... =g> 11
... isa countFrom 12
... count =y 13
... +retrieval> 14
... isa countOrder 15
... first =y 16
... """) 17
{’=g’: countFrom(count= =x, end= ˜=x, start=), 18
’=retrieval’: countOrder(first= =x, second= =y)} 19

==> 20
{’=g’: countFrom(count= =y, end= , start=), 21
’+retrieval’: countOrder(first= =y, second=)} 22

Finally, if the current count matches the final number (specified in the slot end),
the "stop" rule clears the goal buffer, indicating that the counting goal has been
achieved.

[py25] >>> counting.productionstring(name="stop", string=""" 1
... =g> 2
... isa countFrom 3
... count =x 4
... end =x 5
... ==> 6
... ˜g> 7
... """) 8
{’=g’: countFrom(count= =x, end= =x, start=)} 9
==> 10
{’˜g’: None} 11

We can now run the counting model:

[py26] >>> counting_sim = counting.simulation() 1
>>> counting_sim.run() 2
(0, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 3
(0, ’PROCEDURAL’, ’RULE SELECTED: start’) 4
(0.05, ’PROCEDURAL’, ’RULE FIRED: start’) 5
(0.05, ’g’, ’MODIFIED’) 6
(0.05, ’retrieval’, ’START RETRIEVAL’) 7
(0.05, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 8
(0.05, ’PROCEDURAL’, ’NO RULE FOUND’) 9

30 2 The ACT-R Cognitive Architecture and Its pyactr Implementation

(0.1, ’retrieval’, ’CLEARED’) 10
(0.1, ’retrieval’, ’RETRIEVED: countOrder(first= 2, second= 3)’) 11
(0.1, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 12
(0.1, ’PROCEDURAL’, ’RULE SELECTED: increment’) 13
(0.15, ’PROCEDURAL’, ’RULE FIRED: increment’) 14
(0.15, ’g’, ’MODIFIED’) 15
(0.15, ’retrieval’, ’START RETRIEVAL’) 16
(0.15, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 17
(0.15, ’PROCEDURAL’, ’NO RULE FOUND’) 18
(0.2, ’retrieval’, ’CLEARED’) 19
(0.2, ’retrieval’, ’RETRIEVED: countOrder(first= 3, second= 4)’) 20
(0.2, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 21
(0.2, ’PROCEDURAL’, ’RULE SELECTED: increment’) 22
(0.25, ’PROCEDURAL’, ’RULE FIRED: increment’) 23
(0.25, ’g’, ’MODIFIED’) 24
(0.25, ’retrieval’, ’START RETRIEVAL’) 25
(0.25, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 26
(0.25, ’PROCEDURAL’, ’RULE SELECTED: stop’) 27
(0.3, ’retrieval’, ’CLEARED’) 28
(0.3, ’PROCEDURAL’, ’RULE FIRED: stop’) 29
(0.3, ’retrieval’, ’RETRIEVED: countOrder(first= 4, second= 5)’) 30
(0.3, ’g’, ’CLEARED’) 31
(0.3, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 32
(0.3, ’PROCEDURAL’, ’NO RULE FOUND’) 33

The counting process unfolds in the expected way. The model starts at number 2:
rule "start" is selected at 0 ms and fires 50 ms later (lines 4–5 in [py26]). The
retrieval request for the successor of 2 is placed at the 50 ms point (line 7) and is
completed successfully at the 100 ms point (line 11).

At this point, the preconditions of the "increment" rule are satisfied, so the
rule is selected at 100 ms and fires at 150 ms. The current count is updated to 3 (the g
buffer is modified on line 15) and a retrieval request for the successor of 3 is placed.

The retrieval is completed at 200 ms (line 20), at which point the "increment"
rule is selected again and fires at 250 ms. Yet again, the current count is updated
(line 24), reaching the end goal of 4, and a retrieval request is placed (line 25). The
retrieval request is not needed but it is still placed as part of the actions triggered by
the "increment" rule.

However, at the same time (that is, we’re still at 250 ms) the preconditions of
the "stop" rule are satisfied, since the current count matches the end number. The
"stop" rule is therefore selected (line 27) and fires 50 ms later (line 29). We are
now at 300 ms. The retrieval request for the successor of 4 is successful (line 30),
but the counting process is over and the g (goal) buffer is cleared (line 31).

In sum, themodel simulates basic counting by successor finding, i.e., incrementing
by one. Obviously, this is too trivial compared to how adults actually count, but
children arguably learn counting by incrementing by one and only later generalize
this procedure. At the same time, children memorize particularly frequent (hence,
useful) cases of counting. For more details about ACT-R modeling of arithmetic
learning, see Lebiere (1999).

2.9 Some More Models 31

2.9.2 Regular Grammars in ACT-R

Regular grammars can be classified into right-regular and left-regular grammars.
Right-regular grammars are grammars whose rules are of the following form:

• X → a Y (where a is a terminal and X, Y are non-terminals)
• X → a (where a is a terminal and X is a non-terminal)
• X → ε (where ε is the empty string and X is a non-terminal).

That is, the right-hand side of all production rules is constrained so that non-
terminal symbols can only occur in the second position/on the right. Right-regular
grammars are famously not expressive enough for natural languages (Chomsky
1956), but they make for a good introductory example of modeling basic linguistic
patterns in ACT-R.

Let us implement a right-regular grammar in ACT-R, which will generate NP
(noun phrase) constituents consisting of indefinitely long strings of nouns. We will
represent nouns with the terminal symbol ‘N’. We effectively restrict ourselves to
one rule. This rule is of the form NP → N NP. That is, every run of the model will
generate an NP consisting of a potentially infinite number of Ns.

We need only one chunk type—goal_chunk on line 2 of [py27] below—
encoding the ruleNP (mother)→N(daughter1)NP (daughter2). In addition
to these three slots, this chunk type has a fourth slot state, which will enable us to
toggle between printing the value of daughter1 and applying the ‘NP → N NP’
rule recursively to the NP in the daughter2 slot.

[py27] >>> regular_grammar = actr.ACTRModel() 1
>>> actr.chunktype("goal_chunk", "mother daughter1 daughter2 state") 2

We initialize the goal buffer to an NP mother node. The value of state will
be rule which will simply signal that the rewrite rule should be triggered.

[py28] >>> regular_grammar.goal.add(actr.chunkstring(string=""" 1
... isa goal_chunk 2
... mother NP 3
... state rule 4
... """)) 5

We need only three rules:

i. one which implements our ‘NP → N NP’ rule: we rewrite the NP mother
node as the daughters N and NP (in that order); see [py29] below;

ii. another rule that prints the first daughter, i.e., the terminal node N; see
[py30];

iii. a final rule that sets the second daughter, which is the non-terminal NP, as
the current node so that the rewrite rule can apply again; see [py31].

The "NP ==> N NP"rule in [py29] is triggered if our goal_chunk has NP
as the mother node, no daughters, and is in a state expecting the rule to be applied.
If these preconditions are satisfied, we generate the daughter nodes and we enter a
show state in which the first daughter will be printed.

32 2 The ACT-R Cognitive Architecture and Its pyactr Implementation

[py29] >>> regular_grammar.productionstring(name="NP ==> N NP", string=""" 1
... =g> 2
... isa goal_chunk 3
... mother NP 4
... daughter1 None 5
... daughter2 None 6
... state rule 7
... ==> 8
... =g> 9
... isa goal_chunk 10
... daughter1 N 11
... daughter2 NP 12
... state show 13
... """) 14
{’=g’: goal_chunk(daughter1= None, daughter2= None, mother= NP, state= rule)}15
==> 16
{’=g’: goal_chunk(daughter1= N, daughter2= NP, mother= , state= show)} 17

The "print N" rule in [py30] below is triggered only when the goal_chunk
is in a show state. In that case, the value of the daughter1 slot is printed and the
state is switched back to a rule application state. Printing is done by specifying
that a buffer should execute an action (that is what ! encodes; see line 6 in [py30]),
and then specifying the action. In this particular case, the command show on line 7
prints the value of the slot daughter1.

[py30] >>> regular_grammar.productionstring(name="print N", string=""" 1
... =g> 2
... isa goal_chunk 3
... state show 4
... ==> 5
... !g> 6
... show daughter1 7
... =g> 8
... isa goal_chunk 9
... state rule 10
... """) 11
{’=g’: goal_chunk(daughter1= , daughter2= , mother= , state= show)} 12
==> 13
{’!g’: ([([’show’, ’daughter1’], {})], {}), 14
’=g’: goal_chunk(daughter1= , daughter2= , mother= , state= rule)} 15

The final rule"get new mother" in [py31] sets the value of thedaughter2
slot as the newmother node (assuming this value is not None), preparing the ground
for a new application of the "NP ==> N NP" rule. It also erases the current values
of the daughter1 and daughter2 slots, which ensures that the "get new
mother" rule cannot apply to its own output. This way, only the "NP ==> N
NP" rule can be selected after the "get new mother" rule fires.

[py31] >>> regular_grammar.productionstring(name="get new mother", string=""" 1
... =g> 2
... isa goal_chunk 3
... daughter2 =x 4
... daughter2 ˜None 5
... state rule 6
... ==> 7
... =g> 8
... isa goal_chunk 9
... mother =x 10
... daughter1 None 11
... daughter2 None 12
... """) 13
{’=g’: goal_chunk(daughter1= , daughter2= =x˜None, mother= , state= rule)}14
==> 15
{’=g’: goal_chunk(daughter1= None, daughter2= None, mother= =x, state=)} 16

2.9 Some More Models 33

We can now run the simulation for different amounts of time and, depending on
that, we will get NPs rewritten as N sequences of varying lengths. To see only the
sequence of Ns, we suppress all other output by turning off the temporal trace for
the simulation— see trace=False in [py32] below.
[py32] >>> regular_grammar_sim = regular_grammar.simulation(trace=False) 1

>>> regular_grammar_sim.run(0.5) 2
daughter1 N 3
daughter1 N 4
daughter1 N 5
>>> regular_grammar_sim = regular_grammar.simulation(trace=False) 6
>>> regular_grammar_sim.run(1) 7
daughter1 N 8
daughter1 N 9
daughter1 N 10
daughter1 N 11
daughter1 N 12
daughter1 N 13

If we want to examine the full trace of the model, we can run it with the trace
turned on (which is the default setting, so we do not normally need to explicitly
specify it). We see that the model runs in repeated cycles: first, the "NP ==> N
NP" rule fires, then the "print N" rule fires, then the "get new mother"
rule fires, after which this three-rule cycle begins again. The trace in [py33] does
not begin with the "NP ==> N NP" rule because the model state (specifically, the
chunk in the goal buffer) is the one that was the result of the last simulation run in
[py32] above.
[py33] >>> regular_grammar_sim = regular_grammar.simulation(trace=True) 1

>>> regular_grammar_sim.run(0.5) 2
(0, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 3
(0, ’PROCEDURAL’, ’RULE SELECTED: print N’) 4
(0.05, ’PROCEDURAL’, ’RULE FIRED: print N’) 5
daughter1 N 6
(0.05, ’g’, ’EXECUTED’) 7
(0.05, ’g’, ’MODIFIED’) 8
(0.05, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 9
(0.05, ’PROCEDURAL’, ’RULE SELECTED: get new mother’) 10
(0.1, ’PROCEDURAL’, ’RULE FIRED: get new mother’) 11
(0.1, ’g’, ’MODIFIED’) 12
(0.1, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 13
(0.1, ’PROCEDURAL’, ’RULE SELECTED: NP ==> N NP’) 14
(0.15, ’PROCEDURAL’, ’RULE FIRED: NP ==> N NP’) 15
(0.15, ’g’, ’MODIFIED’) 16
(0.15, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 17
(0.15, ’PROCEDURAL’, ’RULE SELECTED: print N’) 18
(0.2, ’PROCEDURAL’, ’RULE FIRED: print N’) 19
daughter1 N 20
(0.2, ’g’, ’EXECUTED’) 21
(0.2, ’g’, ’MODIFIED’) 22
(0.2, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 23
(0.2, ’PROCEDURAL’, ’RULE SELECTED: get new mother’) 24
(0.25, ’PROCEDURAL’, ’RULE FIRED: get new mother’) 25
(0.25, ’g’, ’MODIFIED’) 26
(0.25, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 27
(0.25, ’PROCEDURAL’, ’RULE SELECTED: NP ==> N NP’) 28
(0.3, ’PROCEDURAL’, ’RULE FIRED: NP ==> N NP’) 29
(0.3, ’g’, ’MODIFIED’) 30
(0.3, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 31
(0.3, ’PROCEDURAL’, ’RULE SELECTED: print N’) 32
(0.35, ’PROCEDURAL’, ’RULE FIRED: print N’) 33
daughter1 N 34
(0.35, ’g’, ’EXECUTED’) 35
(0.35, ’g’, ’MODIFIED’) 36

34 2 The ACT-R Cognitive Architecture and Its pyactr Implementation

(0.35, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 37
(0.35, ’PROCEDURAL’, ’RULE SELECTED: get new mother’) 38
(0.4, ’PROCEDURAL’, ’RULE FIRED: get new mother’) 39
(0.4, ’g’, ’MODIFIED’) 40
(0.4, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 41
(0.4, ’PROCEDURAL’, ’RULE SELECTED: NP ==> N NP’) 42
(0.45, ’PROCEDURAL’, ’RULE FIRED: NP ==> N NP’) 43
(0.45, ’g’, ’MODIFIED’) 44
(0.45, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 45
(0.45, ’PROCEDURAL’, ’RULE SELECTED: print N’) 46

2.9.3 Counter Automata in ACT-R

The last example we discuss is the implementation of a counter automaton in
ACT-R/pyactr. A counter automaton is a type of push-down automaton: it is a
push-down automaton that allows only two symbols to appear on the stack. One
well-known example of a language recognized by a counter automaton, but not
generated by a regular grammar, is the language {anbn : n ≥ 1} = {ab, aabb,
aaabbb, aaaabbbb, . . . }, for two arbitrary terminals a and b. One-counter automata
recognize a subset of the context-free languages (see Hopcroft et al. 2001, 351 et
seqq for more details).

Let’s implement a grammar corresponding to this automaton in ACT-R, and use
it to generate (a finite subset of) this language. Our implementation builds on the
counting model we discussed above, since we need to count the number of a and b
occurrences. Let’s initialize the model and incorporate the counting model specifi-
cation first. Everything in [py34] below is the same as in the counting model, with
the exception of the fact that we add another slot terminal to our countFrom
chunk type.

[py34] >>> counter = actr.ACTRModel() 1
2

>>> actr.chunktype("countOrder", "first, second") 3
>>> actr.chunktype("countFrom", ("start", "end", "count", "terminal")) 4

5
>>> dm = counter.decmem 6
>>> dm.add(actr.chunkstring(string=""" 7
... isa countOrder 8
... first 1 9
... second 2 10
... """)) 11
>>> dm.add(actr.chunkstring(string=""" 12
... isa countOrder 13
... first 2 14
... second 3 15
... """)) 16
>>> dm.add(actr.chunkstring(string=""" 17
... isa countOrder 18
... first 3 19
... second 4 20
... """)) 21
>>> dm.add(actr.chunkstring(string=""" 22
... isa countOrder 23
... first 4 24
... second 5 25
... """)) 26

2.9 Some More Models 35

We will let the model start with the goal of generating two adjacent sequences of
two elements each, the first sequence consisting of ‘a’s:

[py35] >>> counter.goal.add(actr.chunkstring(string=""" 1
... isa countFrom 2
... start 1 3
... end 3 4
... terminal a 5
... """)) 6

We can now specify our production rules. The "start" rule in [py36] below is
the same as in the counting model. The other two rules—"increment" in [py37]
and "restart counting" in [py38] below—are almost identical to the rules
of the counting model except: (i) whenever we increment, we print the terminal (a
or b), [py37]; (ii) when we are done counting the first sequence of terminals (the
sequence of ‘a’s), we do not stop but switch to counting and printing ‘b’s, [py38].
[py36] >>> counter.productionstring(name="start", string=""" 1

... =g> 2

... isa countFrom 3

... start =x 4

... count None 5

... ==> 6

... =g> 7

... isa countFrom 8

... count =x 9

... +retrieval> 10

... isa countOrder 11

... first =x 12

... """) 13
{’=g’: countFrom(count= None, end= , start= =x, terminal=)} 14
==> 15
{’=g’: countFrom(count= =x, end= , start= , terminal=), 16
’+retrieval’: countOrder(first= =x, second=)} 17

[py37] >>> counter.productionstring(name="increment", string=""" 1
... =g> 2
... isa countFrom 3
... count =x 4
... end ˜=x 5
... =retrieval> 6
... isa countOrder 7
... first =x 8
... second =y 9
... ==> 10
... !g> 11
... show terminal 12
... =g> 13
... isa countFrom 14
... count =y 15
... +retrieval> 16
... isa countOrder 17
... first =y 18
... """) 19
{’=g’: countFrom(count= =x, end= ˜=x, start= , terminal=), 20
’=retrieval’: countOrder(first= =x, second= =y)} 21

==> 22
{’!g’: ([([’show’, ’terminal’], {})], {}), 23
’=g’: countFrom(count= =y, end= , start= , terminal=), 24
’+retrieval’: countOrder(first= =y, second=)} 25

36 2 The ACT-R Cognitive Architecture and Its pyactr Implementation

[py38] >>> counter.productionstring(name="restart counting", string=""" 1
... =g> 2
... isa countFrom 3
... count =x 4
... end =x 5
... terminal a 6
... ==> 7
... +g> 8
... isa countFrom 9
... start 1 10
... end =x 11
... terminal b 12
... """) 13
{’=g’: countFrom(count= =x, end= =x, start= , terminal= a)} 14
==> 15
{’+g’: countFrom(count= , end= =x, start= 1, terminal= b)} 16

We can now run the model. Notice that it prints 2 as (since we start at 1 and count
up to 3), followed by the same number of bs.

[py39] >>> counter_sim = counter.simulation(trace=False) 1
>>> counter_sim.run() 2
terminal a 3
terminal a 4
terminal b 5
terminal b 6

The model can in principle generate indefinitely long anbn expressions (if we add
enough number knowledge to declarative memory), but in practice, it is limited by
time and memory constraints. One might see this as a limitation of the implemented
model, but this actually makes the model cognitively more realistic since humans
are also limited by time and memory constraints.

2.10 Appendix: The Four Models for Agreement,
Counting, Regular Grammars and Counter Automata

All the code discussed in this chapter is available on GitHub as part of the repository
https://github.com/abrsvn/pyactr-book. If you want to examine it and run it, install
pyactr (see Chap. 1), download the files and run them the same way as you would
any other Python3 script. Links to the specific files that contain the models discussed
in this chapter are provided below:

File ch2_agreement.py:

☞ https://github.com/abrsvn/pyactr-book/blob/master/book-code/
ch2_agreement.py.

File ch2_count.py:

☞ https://github.com/abrsvn/pyactr-book/blob/master/book-code/
ch2_count.py.

https://github.com/abrsvn/pyactr-book
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch2_agreement.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch2_agreement.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch2_count.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch2_count.py

2.10 Appendix: The Four Models for Agreement, Counting, Regular Grammars … 37

File ch2_regular_grammar.py:

☞ https://github.com/abrsvn/pyactr-book/blob/master/book-code/
ch2_regular_grammar.py.

File ch2_counter_automaton.py:

☞ https://github.com/abrsvn/pyactr-book/blob/master/book-code/
ch2_counter_automaton.py.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch2_regular_grammar.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch2_regular_grammar.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch2_counter_automaton.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch2_counter_automaton.py
http://creativecommons.org/licenses/by/4.0/

Chapter 3
The Basics of Syntactic Parsing in ACT-R

In this chapter, we introduce the basics of syntactic parsing in ACT-R. We build
a top-down parser and learn how we can extract intermediate stages of pyactr
simulations. This enables us to inspect detailed snapshots of the cognitive states that
our processing models predict.

3.1 Top-Down Parsing

Now that the basic ACT-R cognitive architecture is in place and we’re more familiar
with its specific implementation in pyactr, let us build a basic model of syntactic
parsing. Specifically, we will build a top-down parser, i.e., a parser that uses the
grammar to make predictions about the sentential structure of the upcoming input.

There are three properties of the human parser that we want our model to capture
(Marslen-Wilson 1973, Frazier and Fodor 1978, Tanenhaus et al. 1995, Steedman
2001, Hale 2011 among others):

i. the parser is incremental: syntactic parsing and semantic interpretation do not
lag significantly behind the perception of individual words;

ii. the parser is predictive: the processor forms explicit representations of words
and phrases that have not yet been heard;

iii. finally, the parser satisfies the competence hypothesis: understanding a sen-
tence/discourse involves the recovery of the structural description of that sen-
tence/discourse on the syntax side, and of the meaning representation on the
semantic side.

A top-down parser satisfies these conditions and it has the pedagogical advantage
of being very simple (too simple, in fact, to be cognitively plausible). It is, therefore,
a good place to start.

© The Author(s) 2020
A. Brasoveanu and J. Dotlačil, Computational Cognitive Modeling
and Linguistic Theory, Language, Cognition, and Mind 6,
https://doi.org/10.1007/978-3-030-31846-8_3

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31846-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-31846-8_3

40 3 The Basics of Syntactic Parsing in ACT-R

Suppose we have a context-free grammar with the following rules:

(1) S → NP VP
NP → ProperN
VP → V NP
ProperN → Mary
ProperN → Bill
V → likes

For simplicity, we assume that we have only two proper names in our language and
one transitive verb. Our goal is to build a top-down parser that is able to analyze the
sentence Mary likes Bill. We assume the sentence is presented to the comprehender
one word at a time in themanner of self-paced reading tasks (Just et al. 1982). In such
tasks, the words are hidden and only one word is uncovered at a time with a spacebar
press. The human reader decides when to press the spacebar to uncover the next word
(which automatically hides the current word), hence the name of self-paced reading.
So reading our sentenceMary likes Bill will happen in four successive stages. In one
such version of self-paced reading (the so-called non-cumulative moving-window
paradigm), the whole process would look as in (2) below.

(2) i. initial display: ---- ----- ----

ii. after one spacebar press: Mary ----- ----

iii. after another spacebar press: ---- likes ----

iv. after the third spacebar press: ---- ----- Bill

Self-paced reading tasks mimic an essential aspect of naturally-occurring lan-
guage comprehension with auditory stimuli: the signal is strictly linearly and strictly
incrementally presented one word at a time. Just as in naturally-occurring verbal
interactions, and unlike in normal reading situations, the linguistic signal cannot be
‘rewound’ to previous words—we cannot just look back and reread previous parts of
the text—or ‘fast-forwarded’ to subsequent words—we cannot jump ahead to parts
of the text that do not immediately follow the word currently being read.

With the empirical task fully characterized as a self-paced reading task, we can
proceed to the characterization of our processing model. A top-down parser can be
thought of as a push-down automaton, i.e., an automaton that has a basic form of
memory represented as a stack. The stack stores parsing goals and subgoals in a
strict, total order and these goals are accomplished one at a time by accessing the top
of the stack. In our case, the parsing goals are simply syntactic categories that have
to be parsed, i.e., that have to be identified in the incoming string.

For example, whenwe start the parsing process, we push the initial goal of parsing
an S node onto the stack. The stack has now only one goal in it, namely ‘parse an
S’, and the goal sits at the top of the stack.

(3) S

We pop goals off the stack one at a time: we can only look at the top of the stack
and remove the current top goal when this goal is (i) accomplished or (ii) broken

3.1 Top-Down Parsing 41

down exhaustively into subgoals. For example, we will pop the ‘parse an S’ goal off
the stack when we apply the first grammar rule in (1) above and replace this goal
with two subgoals: first parse an NP (i.e., identify an NP in the incoming word input),
then parse a VP. The resulting stack will now have two goals: the top one is ‘parse
an NP’, and the one below it is ‘parse a VP’.

(4) S ⇒ NP
VP

The parser works by modifying the contents of its stack based on two pieces of
information: the top element on the stack and, possibly, the current word that has to
be parsed (the leftmost word in the incoming string of words).

We can sum up top-down parsing as a parsing strategy that applies two algo-
rithm schemata, expand and scan, in this order (see Hale 2014 among others for an
introduction):

(5) Top-down parsing rules:

a. expand: if the stack has a symbol X on top, and the grammar contains
a rule X → A B or X → A, pop X and push down onto the stack the
symbols B and A (in that order), or the symbol A, respectively.

b. scan: if the top of the stack has a terminal symbol (a symbol like V or
ProperN that rewrites to a lexical item, that is, a part of speech) and w,
the leftmost word to be parsed, is of that part of speech, then pop the
terminal symbol off the stack and remove w from the word string that is
to be parsed.

Let us now implement a top-down parser in pyactr that consists of these two
general parsing rules and uses the grammar in (1). Recall that the example sentence
we will parse isMary likes Bill.

3.2 Building a Top-Down Parser in pyactr

Let us start with the first standard step, importing pyactr.

[py1] >>> import pyactr as actr 1

We should now specify the types of chunks we need. We will have one type for
parsing goals. The parsing goal will keep track of:

• the stack content: we only need two positions in the stack for our current
purposes—the top and the bottom of the stack; this is a consequence of the
fact that our grammar (1) generates at most binary branching trees with no left
recursion (cf. Resnik 1992);

• the current word being parsed (if any);

42 3 The Basics of Syntactic Parsing in ACT-R

• the current task of the parser, that is, the current state our parsing model is
in—basically, ‘parsing’ if the parse is still ongoing, and ‘done’ if the parsing is
finished.

[py2] >>> actr.chunktype("parsing_goal", 1
... "stack_top stack_bottom parsed_word task") 2

The second chunk type we need to declare is one that will enable us to represent
the incoming sentence, i.e., the word string to be parsed. This might seem counter-
intuitive: why shouldwe represent the sentence to be parsed in a chunk? The sentence
is external to the agent, it’s what the agent reads or hears. However, at this point we
have no way of representing the surrounding environment and the basic input/output
interfaces between the mind and the environment. We therefore have to represent a
sentence internally as a chunk. When we introduce the vision and motor modules in
Chap.4, we will be able to develop a more intuitive and elegant solution.

The chunk type for sentences only needs to store three words, since our target
sentence is that long:

[py3] >>> actr.chunktype("sentence", "word1 word2 word3") 1

3.2.1 Modules, Buffers, and the Lexicon

Let us now initialize the model and set up more convenient ways of accessing the
declarative memory module and the goal buffer:

[py4] >>> parser = actr.ACTRModel() 1
>>> dm = parser.decmem 2
>>> g = parser.goal 3

The goal buffer will store a parsing_goal chunk, which carries the informa-
tion that drives the parsing process, and which is updated throughout that process.
But we also need to store the word sequence that we need to parse, so we will create
a second buffer that is similar to the goal buffer and that will store the sentence to be
parsed.

Having two goal-like buffers is not uncommon in ACT-R. The first buffer is
the actual goal buffer, which keeps track of the information driving the cognitive
process. The other one is the imaginal buffer. This buffer is associated with the
imaginal module and maintains an internal image of the information associated with
the current cognitive process, thereby providing contextual information relevant for
the current task. Thus, storing the sentence to be parsed in the imaginal buffer is an
acceptable approximation of the cognitive behavior we’re trying to model.

[py5] >>> imaginal = parser.set_goal(name="imaginal", delay=0.2) 1

In [py5], we create a new goal buffer, the imaginal buffer. The string
"imaginal" sets the name under which the model will recognize and access the

3.2 Building a Top-Down Parser in pyactr 43

buffer (e.g., in production rules). The delay attribute of the imaginal buffer is the
time needed to encode/set a chunk in the buffer, which is 0.2 s (200 ms). This is
the default ACT-R value for this buffer, in contrast to the goal buffer which sets a
chunk immediately. Finally, [py5] assigns this new buffer to a variable imaginal
so that we can access it more easily in the Python interpreter.

The goal and imaginal buffers—more generally, all the buffers at any given point
in a cognitive process—provide the internal state, or the context, of the cognitive
process at that point. For example, chunks in memory that share values with chunks
in the goal or imaginal buffers are contextually ‘primed’: they are more salient than
other items and are easier to retrieve because they are relevant in context.

Thus, the cognitive context in the sense of ‘the current state of the buffers’ has
a function similar to variable assignments in first-order logic. Assignments in first-
order logic provide the current context of interpretation relative to which upcoming
expressions are interpreted. Similarly, the state of the buffers in an ACT-R model of
the mind provide the context for the next step in the cognitive process.

We can even extend this analogy to models, i.e., to the other parameter that the
interpretation function in first-order logic is relativized to. The ACT-R counterpart
of a first-order logic model is the content of the modules, particularly the facts stored
in declarative memory and the rules stored in procedural memory.

We can now add chunks to the goal and imaginal buffers:

[py6] >>> g.add(actr.chunkstring(string=""" 1
... isa parsing_goal 2
... task parsing 3
... stack_top S 4
... """)) 5
>>> g 6
{parsing_goal(parsed_word= , stack_bottom= , stack_top= S, task= parsing)} 7
>>> imaginal.add(actr.chunkstring(string=""" 8
... isa sentence 9
... word1 Mary 10
... word2 likes 11
... word3 Bill 12
... """)) 13
>>> imaginal 14
{sentence(word1= Mary, word2= likes, word3= Bill)} 15

Thegoalbuffer switches to an activeparsing state/task, and the current pars-
ing goal, i.e., the top of the stack, is set to parsing a sentence (S). In the imaginal
buffer, we set the sentence to be parsed toMary likes Bill.

We are now ready to start answering the main question of the chapter: how do
we implement the top-down parser itself? We will assume that the grammar and
associated parsing rules are part of the proceduralmodule, i.e., they are encoded
in production rules. This contrasts with lexical information, which is commonly
encoded in declarative memory. See Lewis and Vasishth (2005) for more discussion
and arguments for this division of labor between declarative and procedural memory
when encoding the lexicon and the grammar and parser.

We specify our lexicon first. For simplicity, our lexical representationswill encode
only the form (weuse thewritten form, for simplicity) and thepart of speech (syntactic
category) tags of our lexical items:

44 3 The Basics of Syntactic Parsing in ACT-R

[py7] >>> actr.chunktype("word", "form cat") 1
>>> dm.add(actr.chunkstring(string=""" 2
... isa word 3
... form Mary 4
... cat ProperN 5
... """)) 6
>>> dm.add(actr.chunkstring(string=""" 7
... isa word 8
... form Bill 9
... cat ProperN 10
... """)) 11
>>> dm.add(actr.chunkstring(string=""" 12
... isa word 13
... form likes 14
... cat V 15
... """)) 16
>>> dm 17
{word(cat= ProperN, form= Mary): array([0.]), 18
word(cat= ProperN, form= Bill): array([0.]), 19
word(cat= V, form= likes): array([0.])} 20

3.2.2 Production Rules

We now turn to the production rules that encode both our context-free grammar rules
in (1) and the top-down parsing strategy codified by the expand and scan rules
in (5).

The first rule is an expanding rule, encoding the first phrase structure rule of our
grammar: we expand S into NP and VP, in that order.

[py8] >>> parser.productionstring(name="expand: S ==> NP VP", string=""" 1
... =g> 2
... isa parsing_goal 3
... task parsing 4
... stack_top S 5
... ==> 6
... =g> 7
... isa parsing_goal 8
... stack_top NP 9
... stack_bottom VP 10
... """) 11
{’=g’: parsing_goal(parsed_word= , stack_bottom= , 12

stack_top= S, task= parsing)} 13
==> 14
{’=g’: parsing_goal(parsed_word= , stack_bottom= VP, 15

stack_top= NP, task=)} 16

Note how the rule pops the S goal off the stack and replaces it with two subgoals
NP and VP, in that order. We do not modify the current task, which should remain
specified asparsing, so we omit it from the specification of the action: the chunk in
the consequent/right-hand side of the production rule only specifies the slots whose
values should be updated, namely stack_top and stack_bottom.

The second rule is once again an expanding rule: NP is expanded into ProperN.

[py9] >>> parser.productionstring(name="expand: NP ==> ProperN", string=""" 1
... =g> 2
... isa parsing_goal 3
... task parsing 4
... stack_top NP 5

3.2 Building a Top-Down Parser in pyactr 45

... ==> 6

... =g> 7

... isa parsing_goal 8

... stack_top ProperN 9

... """) 10
{’=g’: parsing_goal(parsed_word= , stack_bottom= , 11

stack_top= NP, task= parsing)} 12
==> 13
{’=g’: parsing_goal(parsed_word= , stack_bottom= , 14

stack_top= ProperN, task=)} 15

Note that the rule only updates the top of the stack. The bottom of the stack is left
unmodified, so it is omitted throughout the rule.

The third production rule expands VP into V and NP:

[py10] >>> parser.productionstring(name="expand: VP ==> V NP", string=""" 1
... =g> 2
... isa parsing_goal 3
... task parsing 4
... stack_top VP 5
... ==> 6
... =g> 7
... isa parsing_goal 8
... stack_top V 9
... stack_bottom NP 10
... """) 11
{’=g’: parsing_goal(parsed_word= , stack_bottom= , 12

stack_top= VP, task= parsing)} 13
==> 14
{’=g’: parsing_goal(parsed_word= , stack_bottom= NP, 15

stack_top= V, task=)} 16

This rule is almost identical to the first rule: we only change the syntactic category
symbols. Crucially, note that the rule is triggered only when the ‘parse a VP’ goal is
at the top of the stack. Thus, to trigger this third rule, something must happen after
the successive application of the first and second rules "expand: S ==> NP
VP" and "expand: NP ==> ProperN" that will promote the VP goal from
the bottom of the stack to the top of the stack.

Goals at the bottom of the stack can be promoted to the top when the top goal is
popped off the stack and is not replaced by another goal. This is what happens in a
scan step: in our case, a scan rule needs to (i) pop the ProperN goal off the top of
the stack and, at the same time, (ii) scan the first word Mary of our target sentence.

That is, once we have a terminal (ProperN, V) at the top of our stack, we have to
check that the terminal matches the category of the word to be parsed. If so, the word
is parsed. We achieve this by means of two rules. First, we place a retrieval request
for a lexical item stored in declarative memory whose form is the current word to be
parsed. Then, if a lexical item is successfully retrieved and the syntactic category of
that lexical item is the same as the terminal at the top of our stack, the current word
is scanned and the top symbol on our stack is popped.

The two retrieval rules for our two terminal symbols (ProperN, V) are provided
below. In both cases, we place a retrieval request based on the form of the first word
in the sentence to be parsed (=w1) and we change the state of the parsing goal to
retrieving (rather than parsing):

46 3 The Basics of Syntactic Parsing in ACT-R

[py11] >>> parser.productionstring(name="retrieve: ProperN", string=""" 1
... =g> 2
... isa parsing_goal 3
... task parsing 4
... stack_top ProperN 5
... =imaginal> 6
... isa sentence 7
... word1 =w1 8
... ==> 9
... =g> 10
... isa parsing_goal 11
... task retrieving 12
... +retrieval> 13
... isa word 14
... form =w1 15
... """) 16
{’=g’: parsing_goal(parsed_word= , stack_bottom= , 17

stack_top= ProperN, task= parsing), 18
’=imaginal’: sentence(word1= =w1, word2= , word3=)} 19

==> 20
{’=g’: parsing_goal(parsed_word= , stack_bottom= , 21

stack_top= , task= retrieving), 22
’+retrieval’: word(cat= , form= =w1)} 23

[py12] >>> parser.productionstring(name="retrieve: V", string=""" 1
... =g> 2
... isa parsing_goal 3
... task parsing 4
... stack_top V 5
... =imaginal> 6
... isa sentence 7
... word1 =w1 8
... ==> 9
... =g> 10
... isa parsing_goal 11
... task retrieving 12
... +retrieval> 13
... isa word 14
... form =w1 15
... """) 16
{’=g’: parsing_goal(parsed_word= , stack_bottom= , stack_top= V, 17
task= parsing), ’=imaginal’: sentence(word1= =w1, word2= , word3=)} 18

==> 19
{’=g’: parsing_goal(parsed_word= , stack_bottom= , 20

stack_top= , task= retrieving), 21
’+retrieval’: word(cat= , form= =w1)} 22

If the retrieved lexical item matches the top of our stack in syntactic category,
we parse the word, pop the top symbol off the stack, and move to the next word in
our sentence (that is, we promote word2 in our sentence to word1, and word3 to
word2):

[py13] >>> parser.productionstring(name="scan: word", string=""" 1
... =g> 2
... isa parsing_goal 3
... task retrieving 4
... stack_top =y 5
... stack_bottom =x 6
... =retrieval> 7
... isa word 8
... form =w1 9
... cat =y 10
... =imaginal> 11
... isa sentence 12
... word1 =w1 13
... word2 =w2 14
... word3 =w3 15
... ==> 16

3.2 Building a Top-Down Parser in pyactr 47

... =g> 17

... isa parsing_goal 18

... task printing 19

... stack_top =x 20

... stack_bottom None 21

... parsed_word =w1 22

... =imaginal> 23

... isa sentence 24

... word1 =w2 25

... word2 =w3 26

... word3 None 27

... ˜retrieval> 28

... """) 29
{’=g’: parsing_goal(parsed_word= , stack_bottom= =x, 30

stack_top= =y, task= retrieving), 31
’=retrieval’: word(cat= =y, form= =w1), 32
’=imaginal’: sentence(word1= =w1, word2= =w2, word3= =w3)} 33

==> 34
{’=g’: parsing_goal(parsed_word= =w1, stack_bottom= None, 35

stack_top= =x, task= printing), 36
’=imaginal’: sentence(word1= =w2, word2= =w3, word3= None), 37
’˜retrieval’: None} 38

Note how on lines 20–21 of [py13], the top of the stack is popped, so the symbol
on the bottom of the stack is promoted to the top of the stack. Similarly, the imaginal
buffer is updated on lines 23–27. The word =w1 that we just parsed is deleted from
the sentence, so the word string that we still need to parse contains only words =w2
and =w3. These remaining words are promoted to the word1 and word2 positions.
We also clear the retrieval buffer (~retrieval> on line 28).

Finally, as a convenience, the parsed word =w1 is stored in the parsed_word
slot of the parsing goal chunk (line 22 in [py13]), and we enter a new printing
state (line 19 in [py13]). This new state will trigger a print action reporting which
word was just parsed. The print action, performed by the rule in [py14] below, is
helpful to us as modelers, but it is not a necessary part of our processing model.

[py14] >>> parser.productionstring(name="print parsed word", string=""" 1
... =g> 2
... isa parsing_goal 3
... task printing 4
... =imaginal> 5
... isa sentence 6
... word1 ˜None 7
... ==> 8
... !g> 9
... show parsed_word 10
... =g> 11
... isa parsing_goal 12
... task parsing 13
... parsed_word None 14
... """) 15
{’=g’: parsing_goal(parsed_word= , stack_bottom= , 16

stack_top= , task= printing), 17
’=imaginal’: sentence(word1= ˜None, word2= , word3=)} 18

==> 19
{’!g’: ([([’show’, ’parsed_word’], {})], {}), 20
’=g’: parsing_goal(parsed_word= None, stack_bottom= , 21

stack_top= , task= parsing)} 22

The production rule in [py14] says that, if the current parsing goal is in a
printing state (line 4 in [py14]) and the slot word1 in the imaginal buffer is
not empty (the squiggle ~ on line 7 is negation), that is, we still have words to parse,
thenwe should print theparsed_word in thegoal buffer (lines 9–10). Line 9!g>

48 3 The Basics of Syntactic Parsing in ACT-R

should execute an action that involves the goal buffer. The action is then specified
on line 10: call the method show, which will print the value of the parsed_word
slot. When we’re done printing, we delete the contents of the parsed_word slot
and re-enter an active state of parsing (lines 11–14).

The last production we have to consider is the ‘wrap-up’ production we trigger at
the end of the parsing process, provided in [py15] below. The parsing process ends
when the word1 slot in the imaginal buffer chunk has the value None (line 7) and
the task is printing (line 4). We therefore print the final word of the sentence that
was just parsed (lines 9–10) and declare the parsing process done by clearing the
imaginal and goal buffers (lines 11–12).

[py15] >>> parser.productionstring(name="done", string=""" 1
... =g> 2
... isa parsing_goal 3
... task printing 4
... =imaginal> 5
... isa sentence 6
... word1 None 7
... ==> 8
... !g> 9
... show parsed_word 10
... ˜imaginal> 11
... ˜g> 12
... """) 13
{’=g’: parsing_goal(parsed_word= , stack_bottom= , 14

stack_top= , task= printing), 15
’=imaginal’: sentence(word1= None, word2= , word3=)} 16

==> 17
{’!g’: ([([’show’, ’parsed_word’], {})], {}), 18
’˜imaginal’: None, ’˜g’: None} 19

3.3 Running the Model

We run the model as before: we first instantiate a simulation of the model and then
run it.
[py16] >>> parser_sim = parser.simulation() 1

>>> parser_sim.run() 2
(0, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 3
(0, ’PROCEDURAL’, ’RULE SELECTED: expand: S ==> NP VP’) 4
(0.05, ’PROCEDURAL’, ’RULE FIRED: expand: S ==> NP VP’) 5
(0.05, ’g’, ’MODIFIED’) 6
(0.05, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 7
(0.05, ’PROCEDURAL’, ’RULE SELECTED: expand: NP ==> ProperN’) 8
(0.1, ’PROCEDURAL’, ’RULE FIRED: expand: NP ==> ProperN’) 9
(0.1, ’g’, ’MODIFIED’) 10
(0.1, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 11
(0.1, ’PROCEDURAL’, ’RULE SELECTED: retrieve: ProperN’) 12
(0.15, ’PROCEDURAL’, ’RULE FIRED: retrieve: ProperN’) 13
(0.15, ’g’, ’MODIFIED’) 14
(0.15, ’retrieval’, ’START RETRIEVAL’) 15
(0.15, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 16
(0.15, ’PROCEDURAL’, ’NO RULE FOUND’) 17
(0.2, ’retrieval’, ’CLEARED’) 18
(0.2, ’retrieval’, ’RETRIEVED: word(cat= ProperN, form= Mary)’) 19
(0.2, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 20
(0.2, ’PROCEDURAL’, ’RULE SELECTED: scan: word’) 21
(0.25, ’PROCEDURAL’, ’RULE FIRED: scan: word’) 22

3.3 Running the Model 49

(0.25, ’g’, ’MODIFIED’) 23
(0.25, ’imaginal’, ’MODIFIED’) 24
(0.25, ’retrieval’, ’CLEARED’) 25
(0.25, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 26
(0.25, ’PROCEDURAL’, ’RULE SELECTED: print parsed word’) 27
(0.3, ’PROCEDURAL’, ’RULE FIRED: print parsed word’) 28
parsed_word Mary 29
(0.3, ’g’, ’EXECUTED’) 30
(0.3, ’g’, ’MODIFIED’) 31
(0.3, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 32
(0.3, ’PROCEDURAL’, ’RULE SELECTED: expand: VP ==> V NP’) 33
(0.35, ’PROCEDURAL’, ’RULE FIRED: expand: VP ==> V NP’) 34
(0.35, ’g’, ’MODIFIED’) 35
(0.35, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 36
(0.35, ’PROCEDURAL’, ’RULE SELECTED: retrieve: V’) 37
(0.4, ’PROCEDURAL’, ’RULE FIRED: retrieve: V’) 38
(0.4, ’g’, ’MODIFIED’) 39
(0.4, ’retrieval’, ’START RETRIEVAL’) 40
(0.4, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 41
(0.4, ’PROCEDURAL’, ’NO RULE FOUND’) 42
(0.45, ’retrieval’, ’CLEARED’) 43
(0.45, ’retrieval’, ’RETRIEVED: word(cat= V, form= likes)’) 44
(0.45, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 45
(0.45, ’PROCEDURAL’, ’RULE SELECTED: scan: word’) 46
(0.5, ’PROCEDURAL’, ’RULE FIRED: scan: word’) 47
(0.5, ’g’, ’MODIFIED’) 48
(0.5, ’imaginal’, ’MODIFIED’) 49
(0.5, ’retrieval’, ’CLEARED’) 50
(0.5, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 51
(0.5, ’PROCEDURAL’, ’RULE SELECTED: print parsed word’) 52
(0.55, ’PROCEDURAL’, ’RULE FIRED: print parsed word’) 53
parsed_word likes 54
(0.55, ’g’, ’EXECUTED’) 55
(0.55, ’g’, ’MODIFIED’) 56
(0.55, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 57
(0.55, ’PROCEDURAL’, ’RULE SELECTED: expand: NP ==> ProperN’) 58
(0.6, ’PROCEDURAL’, ’RULE FIRED: expand: NP ==> ProperN’) 59
(0.6, ’g’, ’MODIFIED’) 60
(0.6, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 61
(0.6, ’PROCEDURAL’, ’RULE SELECTED: retrieve: ProperN’) 62
(0.65, ’PROCEDURAL’, ’RULE FIRED: retrieve: ProperN’) 63
(0.65, ’g’, ’MODIFIED’) 64
(0.65, ’retrieval’, ’START RETRIEVAL’) 65
(0.65, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 66
(0.65, ’PROCEDURAL’, ’NO RULE FOUND’) 67
(0.7, ’retrieval’, ’CLEARED’) 68
(0.7, ’retrieval’, ’RETRIEVED: word(cat= ProperN, form= Bill)’) 69
(0.7, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 70
(0.7, ’PROCEDURAL’, ’RULE SELECTED: scan: word’) 71
(0.75, ’PROCEDURAL’, ’RULE FIRED: scan: word’) 72
(0.75, ’g’, ’MODIFIED’) 73
(0.75, ’imaginal’, ’MODIFIED’) 74
(0.75, ’retrieval’, ’CLEARED’) 75
(0.75, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 76
(0.75, ’PROCEDURAL’, ’RULE SELECTED: done’) 77
(0.8, ’PROCEDURAL’, ’RULE FIRED: done’) 78
parsed_word Bill 79
(0.8, ’g’, ’EXECUTED’) 80
(0.8, ’imaginal’, ’CLEARED’) 81
(0.8, ’g’, ’CLEARED’) 82
(0.8, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 83
(0.8, ’PROCEDURAL’, ’NO RULE FOUND’) 84

The parser runs as expected: we successfully parse our three-word sentence. The
time course of the parsing is as follows.

The first word Mary is parsed at the 250 ms mark when the scan: word rule
is fired for the first time (lines 22–25) and printed by the time 300 ms of simulation
time have elapsed (line 29 in [py16]).

50 3 The Basics of Syntactic Parsing in ACT-R

The second word likes is parsed at the 500 ms mark when the scan: word rule
is fired for the second time (lines 47–50) and printed after 550 ms of total simulation
time (line 54).

The final word Bill is parsed at the 750 ms mark when the scan: word rule is
fired for the third and final time (lines 72–75) and printed after 800 ms of simulation
time have passed (line 79).

Let us examine the content of the declarative memory module at the end of the
simulation. It should contain the lexical items we added at the very beginning of the
simulation, as well as the chunks stored in the goal and imaginal buffers right before
we cleared them at the end of the parsing process (recall that clearing the buffers
always moves their contents to declarative memory).

[py17] >>> dm 1
{word(cat= ProperN, form= Mary): array([0. , 0.25]), 2
word(cat= ProperN, form= Bill): array([0. , 0.75]), 3
word(cat= V, form= likes): array([0. , 0.5]), 4
sentence(word1= None, word2= None, word3= None): array([0.8]), 5
parsing_goal(parsed_word= Bill, stack_bottom= None, 6

stack_top= None, task= printing): array([0.8])} 7

As expected, we see in [py17] that the goal chunk stored in declarative memory
has an empty stack, and the imaginal chunk has an empty sentence (no words).
Furthermore, both these chunks have been stored/activated in memory at the 800 ms
mark, i.e., at the end of the simulation.

We also see the three lexical items Mary, likes and Bill, each of which has two
activation time stamps. The first activation time is at 0 ms, when they were all added
to declarative memory before running the simulation. The second activation time is
at 250, 500 and 750 ms respectively, when they were parsed during the simulation.
Specifically, these are the times when the retrieval buffer was cleared by the three
firings of the scan: word rule.

Chapter 6 discusses the inner workings of declarative memory in detail. We will
see there that this schedule of activations for items in memory is a crucial component
of determining the relative salience of items in memory. The salience, or activation,
of an item modulates how easy it is to retrieve it—specifically, the probability of a
successful retrieval and the time that the retrieval takes.

3.4 Failures to Parse and Taking Snapshots of the Mind
When It Fails

We can run the parser on ungrammatical sentences to see if, and how exactly, it
fails. Let’s try to parse the word sequence Bill Mary likes. The parser should fail
while parsing the second word Mary because the noun does not match the parser’s
expectation to see a verb.

We add the relevant chunks to the goal and imaginal buffers and start a new
simulation. Note that, in general, it is recommended to reset the declarative memory
module (and various buffers) before rerunning a model simulation.

3.4 Failures to Parse and Taking Snapshots of the Mind When It Fails 51

A simple way to reset the model is to reinitialize it from scratch, that is, restart
with parser = actr.ACTRModel() etc. You can take a look at the code for
the more advanced models in Chaps. 7, 8 and 9 to see how to reset the state of a
model without restarting it from scratch, so that multiple simulations with the same
initial model state can be run.
[py18] >>> g.add(actr.chunkstring(string=""" 1

... isa parsing_goal 2

... task parsing 3

... stack_top S 4

... """)) 5
>>> imaginal.add(actr.chunkstring(string=""" 6
... isa sentence 7
... word1 Bill 8
... word2 Mary 9
... word3 likes 10
... """)) 11
>>> parser_sim2 = parser.simulation() 12
>>> parser_sim2.run() 13
(0, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 14
(0, ’PROCEDURAL’, ’RULE SELECTED: expand: S ==> NP VP’) 15
(0.05, ’PROCEDURAL’, ’RULE FIRED: expand: S ==> NP VP’) 16
(0.05, ’g’, ’MODIFIED’) 17
(0.05, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 18
(0.05, ’PROCEDURAL’, ’RULE SELECTED: expand: NP ==> ProperN’) 19
(0.1, ’PROCEDURAL’, ’RULE FIRED: expand: NP ==> ProperN’) 20
(0.1, ’g’, ’MODIFIED’) 21
(0.1, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 22
(0.1, ’PROCEDURAL’, ’RULE SELECTED: retrieve: ProperN’) 23
(0.15, ’PROCEDURAL’, ’RULE FIRED: retrieve: ProperN’) 24
(0.15, ’g’, ’MODIFIED’) 25
(0.15, ’retrieval’, ’START RETRIEVAL’) 26
(0.15, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 27
(0.15, ’PROCEDURAL’, ’NO RULE FOUND’) 28
(0.2, ’retrieval’, ’CLEARED’) 29
(0.2, ’retrieval’, ’RETRIEVED: word(cat= ProperN, form= Bill)’) 30
(0.2, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 31
(0.2, ’PROCEDURAL’, ’RULE SELECTED: scan: word’) 32
(0.25, ’PROCEDURAL’, ’RULE FIRED: scan: word’) 33
(0.25, ’g’, ’MODIFIED’) 34
(0.25, ’imaginal’, ’MODIFIED’) 35
(0.25, ’retrieval’, ’CLEARED’) 36
(0.25, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 37
(0.25, ’PROCEDURAL’, ’RULE SELECTED: print parsed word’) 38
(0.3, ’PROCEDURAL’, ’RULE FIRED: print parsed word’) 39
parsed_word Bill 40
(0.3, ’g’, ’EXECUTED’) 41
(0.3, ’g’, ’MODIFIED’) 42
(0.3, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 43
(0.3, ’PROCEDURAL’, ’RULE SELECTED: expand: VP ==> V NP’) 44
(0.35, ’PROCEDURAL’, ’RULE FIRED: expand: VP ==> V NP’) 45
(0.35, ’g’, ’MODIFIED’) 46
(0.35, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 47
(0.35, ’PROCEDURAL’, ’RULE SELECTED: retrieve: V’) 48
(0.4, ’PROCEDURAL’, ’RULE FIRED: retrieve: V’) 49
(0.4, ’g’, ’MODIFIED’) 50
(0.4, ’retrieval’, ’START RETRIEVAL’) 51
(0.4, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 52
(0.4, ’PROCEDURAL’, ’NO RULE FOUND’) 53
(0.45, ’retrieval’, ’CLEARED’) 54
(0.45, ’retrieval’, ’RETRIEVED: word(cat= ProperN, form= Mary)’) 55
(0.45, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 56
(0.45, ’PROCEDURAL’, ’NO RULE FOUND’) 57

Just as before, our goal is to parse a sentence S ([py18], line 4), namely Bill Mary
likes (lines 8–10). The parser correctly parses the first word Bill and prints it (line
40). But the parsing process stops after 450 ms because the word Mary retrieved

52 3 The Basics of Syntactic Parsing in ACT-R

from declarative memory is of category ProperN (line 55). The top of the goal stack,
however, stores the category V, which is what the parser was expecting to retrieve
(lines 48–49).

To facilitate the inspection of simulations and models, pyactr provides a way to
advance simulations one step at a time, rather than letting them run from beginning
to end. This makes it easy to check the internal state of the buffers, as well as to
diagnose/debug our models, e.g., if the model gets stuck in an infinite loop. Let’s run
the simulation in [py18] again and go through it step by step.

[py19] >>> g.add(actr.chunkstring(string=""" 1
... isa parsing_goal 2
... task parsing 3
... stack_top S 4
... """)) 5
>>> imaginal.add(actr.chunkstring(string=""" 6
... isa sentence 7
... word1 Bill 8
... word2 Mary 9
... word3 likes 10
... """)) 11
>>> parser_sim3 = parser.simulation() 12
>>> parser_sim3.step() 13
(0, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 14

Very little happens in the first step: the parser simply enters a ‘conflict resolution’
state in which it identifies the rules that can be fired given the initial cognitive state
(that is, the initial state of the buffers).

Let’s go through some more steps. To do that, we use the method steps with
a parameter that provides the exact number of steps the simulation should advance
through. In [py20], we advance 10 steps, as reflected in the 10 lines of simulation
output.

[py20] >>> parser_sim3.steps(10) 1
(0, ’PROCEDURAL’, ’RULE SELECTED: expand: S ==> NP VP’) 2
(0.05, ’PROCEDURAL’, ’RULE FIRED: expand: S ==> NP VP’) 3
(0.05, ’g’, ’MODIFIED’) 4
(0.05, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 5
(0.05, ’PROCEDURAL’, ’RULE SELECTED: expand: NP ==> ProperN’) 6
(0.1, ’PROCEDURAL’, ’RULE FIRED: expand: NP ==> ProperN’) 7
(0.1, ’g’, ’MODIFIED’) 8
(0.1, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 9
(0.1, ’PROCEDURAL’, ’RULE SELECTED: retrieve: ProperN’) 10
(0.15, ’PROCEDURAL’, ’RULE FIRED: retrieve: ProperN’) 11

Let’s now advance our simulation to the point where the rule "scan: word"
has just fired. To be able to do that, we have to be able to check the current event, i.e.,
the most recent step taken in the simulation, and stop when this event is a "scan:
word"-rule firing.

The current event is an attribute of the simulation. For example, the current event
in our simulation is a ProperN retrieval:

[py21] >>> parser_sim3.current_event 1
Event(time=0.15, proc=’PROCEDURAL’, action=’RULE FIRED: retrieve: ProperN’)2

3.4 Failures to Parse and Taking Snapshots of the Mind When It Fails 53

As shown in [py21], the event has three attributes:
• time—the simulation time at which the event occurred (150 ms in our case),
• proc—the module or buffer that is affected (procedural memory in our case),
and

• action—the cognitive action that has taken place.

Let us now advance to the first firing of the "scan: word" rule. We do this by
running a while loop in the Python interpreter: the command on line 2 in [py22]
below, i.e., advance one step through the simulation, should be executed while the
condition on line 1 is satisfied. That condition says that the action attribute of the
current event should not be a "scan: word" firing. Note that != is non-identity
in Python; ! is customarily used for negation in programming languages, and it is
distinct from ACT-R negation ~.

[py22] >>> while parser_sim3.current_event.action != ’RULE FIRED: scan: word’: 1
... parser_sim3.step() 2
... 3
(0.15, ’g’, ’MODIFIED’) 4
(0.15, ’retrieval’, ’START RETRIEVAL’) 5
(0.15, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 6
(0.15, ’PROCEDURAL’, ’NO RULE FOUND’) 7
(0.2, ’retrieval’, ’CLEARED’) 8
(0.2, ’retrieval’, ’RETRIEVED: word(cat= ProperN, form= Bill)’) 9
(0.2, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 10
(0.2, ’PROCEDURAL’, ’RULE SELECTED: scan: word’) 11
(0.25, ’PROCEDURAL’, ’RULE FIRED: scan: word’) 12

We can now inspect our buffers. As expected, the top of our parsing goal stack
is a ProperN terminal, the first word Bill is about to be removed from the sentence
stored in the imaginal buffer (but is still there at this simulation step), and the lexical
representation for Bill is accessible in the retrieval buffer:

[py23] >>> g 1
{parsing_goal(parsed_word= Bill, stack_bottom= None, 2

stack_top= VP, task= printing)} 3
>>> imaginal 4
{sentence(word1= Bill, word2= Mary, word3= likes)} 5
>>> parser.retrieval 6
{word(cat= ProperN, form= Bill)} 7

Let us now advance to the point where the parsing process failed. We will step
through the simulation until the action attribute of the current event starts with the
string ’RETRIEVED’. That will be the point where the second word in our string,
namely Mary has been retrieved:

[py24] >>> while not parser_sim3.current_event.action.startswith(’RETRIEVED’): 1
... parser_sim3.step() 2
... 3
(0.25, ’g’, ’MODIFIED’) 4
(0.25, ’imaginal’, ’MODIFIED’) 5
(0.25, ’retrieval’, ’CLEARED’) 6
(0.25, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 7
(0.25, ’PROCEDURAL’, ’RULE SELECTED: print parsed word’) 8
(0.3, ’PROCEDURAL’, ’RULE FIRED: print parsed word’) 9
parsed_word Bill 10
(0.3, ’g’, ’EXECUTED’) 11
(0.3, ’g’, ’MODIFIED’) 12
(0.3, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 13

54 3 The Basics of Syntactic Parsing in ACT-R

(0.3, ’PROCEDURAL’, ’RULE SELECTED: expand: VP ==> V NP’) 14
(0.35, ’PROCEDURAL’, ’RULE FIRED: expand: VP ==> V NP’) 15
(0.35, ’g’, ’MODIFIED’) 16
(0.35, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 17
(0.35, ’PROCEDURAL’, ’RULE SELECTED: retrieve: V’) 18
(0.4, ’PROCEDURAL’, ’RULE FIRED: retrieve: V’) 19
(0.4, ’g’, ’MODIFIED’) 20
(0.4, ’retrieval’, ’START RETRIEVAL’) 21
(0.4, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 22
(0.4, ’PROCEDURAL’, ’NO RULE FOUND’) 23
(0.45, ’retrieval’, ’CLEARED’) 24
(0.45, ’retrieval’, ’RETRIEVED: word(cat= ProperN, form= Mary)’) 25

We can once again inspect the current cognitive state of the model/mind, i.e., the
buffer contents:
[py25] >>> parser.retrieval 1

{word(cat= ProperN, form= Mary)} 2
>>> g 3
{parsing_goal(parsed_word= None, stack_bottom= NP, 4

stack_top= V, task= retrieving)} 5
>>> imaginal 6
{sentence(word1= Mary, word2= likes, word3= None)} 7

And the cause of the parsing failure is apparent: the retrieval buffer stores a
ProperN while the top of the parsing goal stack, i.e., our current parsing expec-
tation/prediction, is a V. The parser therefore halts before the second word in our
sentence can be scanned, as shown by the unchanged chunk in the imaginal buffer.

3.5 Top-Down Parsing as an Imperfect Psycholinguistic
Model

It is, however, not enough for our parser to correctly parse grammatical sentences
and fail for ungrammatical ones. Our top-downACT-R parser is not simply an imple-
mentation of an arbitrary parsing algorithm that is satisfactory as long as it works
correctly. This parser is meant to be a limited, but realistic model of a certain kind
of human cognitive behavior, namely syntactic parsing in comprehension-like tasks
(self-paced reading). Is our parser even remotely adequate as a psycholinguistic
model?

One of the empirical adequacy desiderata for our parser is that the temporal trace
of parsing a sentence should correspond to the temporal trace of an average human
participant completing the same task. For example, we see that our parser takes 800
ms to parse the sentence Mary likes Bill. This is roughly correct.

But there are various other properties of our parser that are more worrying. For
one, the parser requires this much time while abstracting away from what human
participants have to do during an actual self-paced reading task: internalizing visual
information, projecting sentence meaning, executing motor actions (pressing keys)
etc., so ultimately 800 ms might be too much given the very narrow amount of work
our parser actually does.

Another issue is that retrieving lexical information always takes 50 ms in our
current models and simulations, but this is hardly realistic. We know that lexical

3.5 Top-Down Parsing as an Imperfect Psycholinguistic Model 55

retrieval is dependent on various factors: word frequency, priming etc. These factors
are completely ignored here.

Finally, top-down parsers work well for right-branching structures like the sen-
tenceMary likes Bill, but they have significant difficulties with left branching struc-
tures. For such structures, the parser would have to store as many symbols on the
stack as there are levels of embedding. Since every expansion of a grammar rule
takes 50 ms, we expect left branching structures with n levels of embedding to take
50 ∗ n ms. This is at odds with actual human performance (see Johnson-Laird 1983;
Abney and Johnson 1991; Resnik 1992).1 The main reason for this is that our parser
generates predictions about syntactic structure exclusively based on the grammar and
completely ignores the actual evidence (the sentence to be parsed) until it reaches a
terminal on the leftmost branch.

In fact, purely top-down parsers consult the evidence (the word string) only after
they predict all the way to lexical items. That is, such pure top-down parsers would
place memory retrieval requests based on the terminal at the top of the parsing goal
stack. For example, if a ProperN is at the top of the stack, they would retrieve an
arbitrary ProperN from declarative memory and only after that, they check whether
the form of the retrieved ProperN matches the leftmost word to be parsed. If not, a
new retrieval request would be placed for a new ProperN in hopes that the form of
that new chunk would match the word to be parsed. In the worst case, such a purely
top-down parser would retrieve all chunks of category ProperN one at a time from
declarative memory and, finally, identify the one whose form matches the current
word to be parsed.

The temporal trace of such a parser would be very far from the temporal trace
of an average human participant completing the same task: if the lexicon contains
20 chunks of ProperN category, and a retrieval takes around 50 ms, it would take a
full second to parse the first word in the sentence Mary likes Bill in the worst-case
scenario. And this ignores the time needed to verify that 19 of the retrieved chunks are
mismatches, and then the time needed to backtrack and restart the retrieval process.

Thus, a more plausible human parser would consult the evidence, i.e., the word
string to be parsed, earlier and more often in the parsing process. Our top-down pars-
ing strategy needs to be complemented by a bottom-up parsing strategy. In principle,
we could switch from a purely top-down parser to a purely bottom-up parser that is
completely driven by the evidence. Such a parser would be incremental, but it would
not be predictive in the same way that the human parser seems to be. We will there-
fore not explore purely bottom-up (shift-reduce) parsers and instead move directly
to left-corner parsers, which combine top-down and bottom-up features: they can be
thought of as predictive top-down parsers with incremental bottom-up filtering. The
next chapter introduces left-corner parsers and models them in ACT-R and pyactr.

1Possessives provide typical examples of left-branching structures in English. This is a naturally-
occurring example: “You are, officially, my aunt’s sixth great-uncle’s wife’s mother’s husband’s
brother’s wife’s eighth great-granddaughter.” (https://people.com/archive/scoop-vol-82-no-13/).

https://people.com/archive/scoop-vol-82-no-13/

56 3 The Basics of Syntactic Parsing in ACT-R

3.6 Appendix: The Top-Down Parser

All the code discussed in this chapter is available on GitHub as part of the repository
https://github.com/abrsvn/pyactr-book. If you want to examine it and run it, install
pyactr (see Chap.1), download the files and run them the same way as any other
Python script.

File ch3_topdown_parser.py:

☞ https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch3_
topdown_parser.py.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://github.com/abrsvn/pyactr-book
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch3_topdown_parser.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch3_topdown_parser.py
http://creativecommons.org/licenses/by/4.0/

Chapter 4
Syntax as a Cognitive Process:
Left-Corner Parsing with Visual
and Motor Interfaces

In the previous chapters, we introduced and used several ACT-Rmodules and buffers:
the declarative memory module and the associated retrieval buffer, the procedural
memory module and the associated goal buffer, and the imaginal buffer. These are
core ACT-R modules, but focusing exclusively on them leads to solipsistic models
that do not interact in any way with the environment.

In this chapter, we are going to change that and introduce the vision and motor
modules, which give us basic ways to be affected by and, in turn, affect the environ-
ment outside the mind. We will then leverage these input/output interfaces when we
build a psycholinguistically realistic left-corner parser for the syntactic component
of the linguistic representations we will model in this book.

4.1 The Environment in ACT-R: Modeling Lexical Decision
Tasks

We will introduce ACT-R environments by modeling a simple lexical decision task.
Modeling lexical decision tasks is a good stepping stone towards our goal of providing
an end-to-end model of self-paced reading. By end-to-end, we mean a model of self-
paced reading that includes both syntactic and semantic parsing (and therefore lexical
retrieval of both syntactic and semantic information), and that also has

• a suitable vision interface to model the way a human perceives the linguistic
input that is incrementally presented on the screen, and

• a suitable motor interface to model the way a human self-paced reader interacts
with the keyboard.

In lexical decision tasks, participants perceive a string and decide whether that
string is a word in their language. We will build an ACT-R model to simulate human
behavior in this type of tasks. The model will search a (virtual) screen, find a letter

© The Author(s) 2020
A. Brasoveanu and J. Dotlačil, Computational Cognitive Modeling
and Linguistic Theory, Language, Cognition, and Mind 6,
https://doi.org/10.1007/978-3-030-31846-8_4

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31846-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-31846-8_4

58 4 Syntax as a Cognitive Process: Left-Corner Parsing …

string/word on the screen, and if the word matches its (impoverished) lexicon, it will
press the J key on its (virtual) keyboard. Otherwise, it will press the F key.

We start by importing pyactr and creating an environment. Currently, the envi-
ronment is just a (simulated) computer screen, and a pretty basic one at that: only
plain text is supported. But that is enough for our purposes throughout this book.

[py1] >>> import pyactr as actr 1
>>> environment = actr.Environment(focus_position=(0,0)) 2

When the classEnvironment is instantiated,we can specify various parameters.
Here, we only specify focus_position, which indicates the position the eyes
focus on when the simulation starts. Two other parameters are: (i)
simulated_screen_size, which specifies the physical size of the screen we
are simulating in cm (default: 50 × 28 cm), and (ii) viewing_distance, which
specifies the distance between the simulated participants eyes and the screen (default:
50 cm).

Now that the environment is initialized, we can initialize our ACT-R model:

[py2] >>> lex_decision = actr.ACTRModel(1
... environment=environment, 2
... automatic_visual_search=False, 3
... motor_prepared=True 4
...) 5

This initialization is similar to what we used before except that this time, we
specify environment-related arguments. We state what environment the model/mind
is interacting with, and we set automatic_visual_search to False so that
the model does not start searching the environment for input unless we specifically
ask it to. Finally, we state that the motor module is prepared.

Setting motor_prepared to False would signal that we believed the model
to be in a situation inwhich it did not recently use themotormodule. Thiswouldmake
sense, for example, if we tried to model the first item in the experiment. But lexical
decision tasks are long and repetitive, so it ismore realistic to assume that participants
have their motor module ‘prepared’, which means that there is no preparation phase
for key presses. Otherwise, the module would need 250 ms before executing any
manual action.

The MODEL_PARAMETERS attribute lists all the parameters that can be explicitly
set when initializing amodel, together with their default values. Themajority of these
parameters will be discussed in this and future chapters.

[py3] >>> lex_decision.MODEL_PARAMETERS 1
{’subsymbolic’: False, ’rule_firing’: 0.05, ’latency_factor’: 0.1, 2
’latency_exponent’: 1.0, ’decay’: 0.5, ’baselevel_learning’: True, 3
’optimized_learning’: False, ’instantaneous_noise’: 0, 4
’retrieval_threshold’: 0, ’buffer_spreading_activation’: {}, 5
’spreading_activation_restricted’: False, ’strength_of_association’: 0, 6
’association_only_from_chunks’: True, ’partial_matching’: False, 7
’mismatch_penalty’: 1, ’activation_trace’: False, ’utility_noise’: 0, 8
’utility_learning’: False, ’utility_alpha’: 0.2, ’motor_prepared’: False, 9
’strict_harvesting’: False, ’production_compilation’: False, 10
’automatic_visual_search’: True, ’emma’: True, ’emma_noise’: True, 11
’emma_landing_site_noise’: False, ’eye_mvt_angle_parameter’: 1, 12
’eye_mvt_scaling_parameter’: 0.01} 13

4.1 The Environment in ACT-R: Modeling Lexical Decision Tasks 59

We can now add the modules we used before. Given that we are simulating a
lexical decision task, we also add some words to declarative memory that the model
can access and check against the stimuli in the simulated experiment:

[py4] >>> actr.chunktype("goal", "state") 1
>>> actr.chunktype("word", "form") 2
>>> dm = lex_decision.decmem 3
>>> for string in {"elephant", "dog", "crocodile"}: 4
... dm.add(actr.makechunk(typename="word", form=string)) 5
... 6
>>> g = lex_decision.goal 7
>>> g.add(actr.makechunk(nameofchunk="beginning", 8
... typename="goal", 9
... state="start")) 10

We add three words to our declarative memory using a Python for loop (lines
4–6 in [py4]) rather than adding them one at a time (needlessly verbose and tedious).
This way of adding chunks to memory can save a lot of time if we want to add a
lot of elements, e.g., a reasonably sized lexicon. We also add a chunk into the goal
buffer that will get our lexical decision simulation started (lines 8–10).

4.1.1 The Visual Module

The visual module allows the ACT-R model to ‘see’ the environment. This interac-
tion happens via two buffers: visual_location searches the environment for
elements matching its search criteria, and visual stores the element found using
visual_location. The two buffers are sometimes called the visual Where and
What buffers.

The visual Where buffer searches the environment (the screen) and outputs the
location of an element on the screen that matches some search criteria. Visual search
cues have three possible slots: color, screen_x (the horizontal position on the
screen) and screen_y (the vertical position on the screen). The x and y positions
can be specified in precise terms, e.g., find an element at location screen_x 100
screen_y 100, where the numbers represent pixels. Or we could specify the
location of an element only approximately: a screen_x <100 cue would search
for elements at screen locations at most 100 pixels from the left edge of the screen,
and a screen_x >100 cue would search for elements on the complementary side
of the screen.

Three other values are possible for the screen_x and screen_y slots:

• screen_x lowest searches for the element with the lowest position on the
horizontal axis (the element closest to the left edge);

• screen_x highest searches for the element with the highest position on
the same axis (the element closest to the right edge);

• finally, screen_x closest searches for the closest element to the current
focus position (the axis is actually ignored in this case).

The same applies to the screen_y slot.

60 4 Syntax as a Cognitive Process: Left-Corner Parsing …

The visual What buffer stores the element whose location was identified by the
Where buffer. The What buffer is therefore accessed after the Where buffer, as we
will see when we state the production rules for our lexical decision model.

The vision module as a whole is an implementation of EMMA (Eye Movements
and Movement of Attention, Salvucci 2001), which in turn is a generalization and
simplification of the E-Z Reader model (Reichle et al. 1998). While the latter model
is used for reading, the EMMA model attempts to simulate any visual task, not just
reading. For detailed discussions of these models and their empirical coverage, see
Reichle et al. (1998), Salvucci (2001), Staub (2011).

4.1.2 The Motor Module

The motor module is limited to the simulation of a key press on the keyboard—or
typing, if multiple key strokes are chained. The ACT-R typing model is based on
EPIC’s Manual Motor Processor (Meyer and Kieras 1997). It has one buffer that
accepts requests to execute motor commands.

The ACT-R motor module currently implemented in pyactr is more limited,
it currently supports only one command: press_key. But this should suffice for
simulations ofmany experimental tasks used in (psycho)linguistics, including lexical
decision tasks, self-paced reading, forced-choice tasks etc. All of these tasks com-
monly require only basic keyboard interaction on the participants’ part (or mouse
button presses, which we subsume under keyboard interaction).

The hands of the ACT-R model are assumed to be positioned in the home row on
a standard (US) English keyboard, with index fingers at F and J. The model assumes
a competent, albeit not expert, typist.

4.2 The Lexical Decision Model: Productions

We only need five productions to model our lexical decision task. The first rule
requires the visual Where buffer to search the (virtual) screen and find the closest
word relative to the starting (0, 0) position.

[py5] >>> lex_decision.productionstring(name="find word", string=""" 1
... =g> 2
... isa goal 3
... state start 4
... ?visual_location> 5
... buffer empty 6
... ==> 7
... =g> 8
... isa goal 9
... state attend 10
... +visual_location> 11
... isa _visuallocation 12
... screen_x closest 13
... """) 14
{’=g’: goal(state= start), ’?visual_location’: {’buffer’: ’empty’}} 15

4.2 The Lexical Decision Model: Productions 61

==> 16
{’=g’: goal(state= attend), ’+visual_location’: _visuallocation(color= , 17
screen_x= closest, screen_y= , value=)} 18

The rule requires the start chunk to be in the goal buffer (lines 2–4 in [py5])
and the visual location buffer to be empty (lines 5–6). If these preconditions are met,
we enter a new goal state of ‘attending’ to the visual input (lines 8–10) and the visual
location buffer will search for and be updated with the position of the closest element
(lines 11–13).

Note that the search is done by specifying +visual_location, that is, the
name of the buffer and the + operation. We used + before in connection to the goal
and retrieval buffers, where + signals that a new chunk is added to these buffers.
Furthermore, in the case of the retrieval buffer, the addition of a chunk automatically
triggers a memory recall. For the visual Where buffer, the + operation triggers a
similar action: a chunk is added that automatically starts a search, the only difference
being that the visual Where buffer automatically starts searching the environment,
while the retrieval buffer starts searching the declarative memory.

Once this rule fires, ourACT-Rmodelwill know the position of the closest element
on the screen, but it won’t knowwhich element is actually present at that location. To
access the element, wemake use of the visualWhat buffer, as shown in the "attend
word" rule below.
[py6] >>> lex_decision.productionstring(name="attend word", string=""" 1

... =g> 2

... isa goal 3

... state attend 4

... =visual_location> 5

... isa _visuallocation 6

... ?visual> 7

... state free 8

... ==> 9

... =g> 10

... isa goal 11

... state retrieving 12

... +visual> 13

... isa _visual 14

... cmd move_attention 15

... screen_pos =visual_location 16

... ˜visual_location> 17

... """) 18
{’=g’: goal(state= attend), ’=visual_location’: _visuallocation(color= , 19
screen_x= , screen_y= , value=), ’?visual’: {’state’: ’free’}} 20

==> 21
{’=g’: goal(state= retrieving), ’+visual’: _visual(cmd= move_attention, 22
color= , screen_pos= =visual_location, value=), 23
’˜visual_location’: None} 24

This rule checks that the visualWhere buffer has stored a location (lines 5–6) and
that the visualWhat buffer is free, i.e., it is not carrying out any visual action. If these
preconditions are satisfied, a new chunk is added to the visualWhat buffer that moves
the focus of attention to the current visual location (lines 13–16). The attention focus
is moved by setting the value of the cmd (command) slot to move_attention. In
addition, the goal enters a retrieving state (lines 10–12) and the visual Where
buffer (a.k.a. visual_location) is cleared (line 17).

62 4 Syntax as a Cognitive Process: Left-Corner Parsing …

The interaction between the two vision buffers simulates a two-step process: (i)
noticing an object through the visual location (Where) buffer, and (ii) finding what
that object is, i.e., attending to the object through the visual (What) buffer.

The next rule starts the memory retrieval process: we take the value =val of
the chunk stored in the visual (What) buffer, which is a string, and check to see if
there is a word in our lexicon that has that form. This retrieval request is actually
the core part of our lexical decision model. The crucial parts of the rule are on lines
7 and 14 in [py7] below: the character string =val of the perceived chunk (line 7)
becomes the declarative memory cue placed in the retrieval buffer (line 14).

[py7] >>> lex_decision.productionstring(name="retrieving", string=""" 1
... =g> 2
... isa goal 3
... state retrieving 4
... =visual> 5
... isa _visual 6
... value =val 7
... ==> 8
... =g> 9
... isa goal 10
... state retrieval_done 11
... +retrieval> 12
... isa word 13
... form =val 14
... """) 15
{’=g’: goal(state= retrieving), ’=visual’: _visual(cmd= , color= , 16
screen_pos= , value= =val)} 17

==> 18
{’=g’: goal(state= retrieval_done), ’+retrieval’: word(form= =val)} 19

The final two rules we need are provided below. They consider the two possible
outcomes of the retrieval process: (i) a lexeme was retrieved—the rule in [py8], or
(ii) no lexeme was found with that form—the rule in [py9].
[py8] >>> lex_decision.productionstring(name="lexeme retrieved", string=""" 1

... =g> 2

... isa goal 3

... state retrieval_done 4

... ?retrieval> 5

... buffer full 6

... state free 7

... ==> 8

... =g> 9

... isa goal 10

... state done 11

... +manual> 12

... isa _manual 13

... cmd press_key 14

... key J 15

... """) 16
{’=g’: goal(state= retrieval_done), 17
’?retrieval’: {’buffer’: ’full’, ’state’: ’free’}} 18

==> 19
{’=g’: goal(state= done), ’+manual’: _manual(cmd= press_key, key= J)} 20

[py9] >>> lex_decision.productionstring(name="no lexeme found", string=""" 1
... =g> 2
... isa goal 3
... state retrieval_done 4
... ?retrieval> 5
... buffer empty 6
... state error 7
... ==> 8
... =g> 9

4.2 The Lexical Decision Model: Productions 63

... isa goal 10

... state done 11

... +manual> 12

... isa _manual 13

... cmd press_key 14

... key F 15

... """) 16
{’=g’: goal(state= retrieval_done), 17
’?retrieval’: {’buffer’: ’empty’, ’state’: ’error’}} 18

==> 19
{’=g’: goal(state= done), ’+manual’: _manual(cmd= press_key, key= F)} 20

The format of the rules should look familiar by now. The only new parts are on
lines 12–15 (in both [py8] and [py9]). These lines set the motor module in action,
which can accept only one command, namely pressing a key. This is implemented
by placing a chunk of a special predefined type _manual in the manual buffer.

The chunk has two slots: cmd (what command should be carried out) and key
(what key should be pressed). The command is the same for both rules (press_key
on line 14 in both [py8] and [py9]), but the key to be pressed is different. If a lexeme is
found, the ACT-Rmodel simulates a human participant and presses ’J’. Otherwise,
the model presses ’F’ (line 15 in both [py8] and [py9]).

4.3 Running the Lexical Decision Model
and Understanding the Output

Before we run the simulation of the model, we have to specify the set of stimuli
(character strings) that should appear on the screen.We use a dictionary data structure
for that (a dictionary is basically a partial variable assignment). The dictionary data
structure is represented in Python using curly brackets {} and it consists of 〈key,
value〉 pairs, i.e., 〈variable, value〉 pairs. Values can themselves be dictionaries.

In [py10], we specify that our first—and only—stimulus is the word elephant,
which should be displayed on the screen starting at pixel 〈320, 180〉.
[py10] >>> word = {1: {’text’: ’elephant’, ’position’: (320, 180)}} 1

We are now ready to initialize the simulation:

[py11] >>> lex_dec_sim = lex_decision.simulation(1
... realtime=True, 2
... gui=False, 3
... environment_process=environment.environment_process, 4
... stimuli=word, 5
... triggers=’’, 6
... times=1) 7

The first parameter, namely realtime (line 2 in [py11]), states that the simu-
lation should appear in real time. Setting this parameter to True ensures that the
simulation will take the same amount of real time as the model predicts (otherwise,
the simulation is executed as fast as the processing power of the computer allows it).
Note that this does not affect the actual model and its predictions in any way, it only
affects the way the simulation is displayed.

64 4 Syntax as a Cognitive Process: Left-Corner Parsing …

The second parameter gui (line 3) specifies whether a graphical user interface
should be started in a separate window to represent the environment, i.e., the virtual
screen on which the stimuli are displayed. This option is switched off here, but feel
free to switch it on by setting gui to True.

The third argument (line 4) states what environment process should appear in
our environment. You can create your own, but there is one predefined in the
Environment class that displays stimuli from the list in [py10] one at a time
on the virtual screen.

The stimulus list to be displayed in the environment is specified by the fourth
parameter (line 5 of [py11]).

The final two parameters are triggers (line 6), which specifies the triggers that
the process should respond to (we do not have any triggers here, so we leave that list
empty), and times (line 7), which specifies that each stimulus should be displayed
for 1 s.

The simulation can now be run:
[py12] >>> lex_dec_sim.run() 1

(0, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 2
(0, ’PROCEDURAL’, ’RULE SELECTED: find word’) 3
****Environment: {1: {’text’: ’elephant’, ’position’: (320, 180)}} 4
(0.05, ’PROCEDURAL’, ’RULE FIRED: find word’) 5
(0.05, ’g’, ’MODIFIED’) 6
(0.05, ’visual_location’, ’CLEARED’) 7
(0.05, ’visual_location’, "ENCODED LOCATION:’_visuallocation(color= None, 8

screen_x= 320, screen_y= 180, value= None)’") 9
(0.05, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 10
(0.05, ’PROCEDURAL’, ’RULE SELECTED: attend word’) 11
(0.1, ’PROCEDURAL’, ’RULE FIRED: attend word’) 12
(0.1, ’g’, ’MODIFIED’) 13
(0.1, ’visual_location’, ’CLEARED’) 14
(0.1, ’visual’, ’PREPARATION TO SHIFT VISUAL ATTENTION STARTED’) 15
(0.1, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 16
(0.1, ’PROCEDURAL’, ’NO RULE FOUND’) 17
(0.1127, ’visual’, ’CLEARED’) 18
(0.1127, ’visual’, "ENCODED VIS OBJECT:’_visual(cmd= move_attention, 19

color= , screen_pos= _visuallocation(color= None, screen_x= 320, 20
screen_y= 180, value= None), value= elephant)’") 21

(0.1127, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 22
(0.1127, ’PROCEDURAL’, ’RULE SELECTED: retrieving’) 23
(0.1627, ’PROCEDURAL’, ’RULE FIRED: retrieving’) 24
(0.1627, ’g’, ’MODIFIED’) 25
(0.1627, ’retrieval’, ’START RETRIEVAL’) 26
(0.1627, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 27
(0.1627, ’PROCEDURAL’, ’NO RULE FOUND’) 28
(0.2127, ’retrieval’, ’CLEARED’) 29
(0.2127, ’retrieval’, ’RETRIEVED: word(form= elephant)’) 30
(0.2127, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 31
(0.2127, ’PROCEDURAL’, ’RULE SELECTED: lexeme retrieved’) 32
(0.253, ’visual’, ’PREPARATION TO SHIFT VISUAL ATTENTION COMPLETED’) 33
(0.2627, ’PROCEDURAL’, ’RULE FIRED: lexeme retrieved’) 34
(0.2627, ’g’, ’MODIFIED’) 35
(0.2627, ’manual’, ’COMMAND: press_key’) 36
(0.2627, ’manual’, ’PREPARATION COMPLETE’) 37
(0.2627, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 38
(0.2627, ’PROCEDURAL’, ’NO RULE FOUND’) 39
(0.3127, ’manual’, ’INITIATION COMPLETE’) 40
(0.3127, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 41
(0.3127, ’PROCEDURAL’, ’NO RULE FOUND’) 42
(0.3815, ’visual’, ’SHIFT COMPLETE TO POSITION: [320, 180]’) 43
(0.3815, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 44
(0.3815, ’PROCEDURAL’, ’NO RULE FOUND’) 45
(0.4127, ’manual’, ’KEY PRESSED: J’) 46
(0.4127, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 47
(0.4127, ’PROCEDURAL’, ’NO RULE FOUND’) 48

4.3 Running the Lexical Decision Model and Understanding the Output 65

(0.5627, ’manual’, ’MOVEMENT FINISHED’) 49
(0.5627, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 50
(0.5627, ’PROCEDURAL’, ’NO RULE FOUND’) 51

Let us first consider the general picture that the temporal trace of our simulation
paints. In this model, we see that it should take a bit more than 400 ms to find a
stimulus, decide whether it is a word and press the right key—see the event ’KEY
PRESSED: J’ on line 46 in [py12] above.

This is slightly faster than the 500–600 ms usually found in lexical decision tasks
(Forster 1990a; Murray and Forster 2004), but it is a consequence of our inadequate
modeling of memory retrieval. That is, while visual and motor processes are fairly
realistically modeled, we assume retrieval always takes 50 ms regardless of the
specific features of the word we’re trying to retrieve and the cognitive state in which
retrieval happens. We will address this in Chap. 6 when we start introducing the
subsymbolic components of ACT-R, and in Chap. 7 where we use them to build
much more realistic models of lexical decision tasks.

The remainder of this section is dedicated to discussing the visual and manual
processes that are chronicled in the output of the simulation in [py12].

4.3.1 Visual Processes in Our Lexical Decision Model

Traditionally, visual attention is equated to (keeping track of) the focus position of
the eyes (e.g., Just and Carpenter 1980; Just et al. 1982): understanding which word
one attends to is tantamount to identifying which word the eyes are focused on. But
this identification of the unobservable cognitive state (attention) and overt behavior
(eye focus position) is an overly simplifiedmodel. For example, it is known that when
people read, some words —especially high-frequency ones—are processed without
ever receiving eye focus (Schilling et al. 1998; Rayner 1998 among others).

The EMMA model (Salvucci 2001) incorporated in ACT-R and implemented in
pyactr captures this by disassociating eye focus and attention: the two processes
are related but not identical. In particular, a shift of attention to a visual object, for
example, the command move_attention on line 15 in [py6] above, triggers:

i. an immediate attempt to encode the object as an internal representation and,
at the same time,
ii. eye movement.

But the two processes proceed independently of each other.
We first discuss the process of encoding a visual object. The time tenc needed

to encode an object is modeled using a gamma distribution (a generalization of the
exponential distribution)withmean Tenc and standard deviation one third of themean.
Note that the mean Tenc in (1–2) below is crucially parametrized by the distance d
between the current eye focus position and the position of the target object:

66 4 Syntax as a Cognitive Process: Left-Corner Parsing …

(1) tenc ∼ Gamma(μ = Tenc, σ = Tenc/3)1

(2) Tenc = K · (− log f) · ekd , where:
• f is the (normalized) frequency of the object (word) being encoded;
• d is the distance between the current focal point of the eyes and the object

to be encoded measured in degrees of visual angle (d is the eccentricity
of the object relative to the current eye position);

• k is a free parameter, scaling the effect of distance (set to 1 by default);
• K is a free parameter, scaling the encoding time itself (set to 0.01 by

default).

In the trace of the simulation in [py12], the time point of encoding a visual object
is signaled by the event ENCODED VIS OBJECT (lines 19–21).

Let us turn now to discussing the eye movement process. The time needed for
eye movement to the new object is split into two sub-processes: preparation and
execution. The preparation is modeled once again as a Gamma distribution with
mean 135 ms and a standard deviation of 45 ms (yet again, the standard deviation is
one third of the mean).

The execution, which follows the preparation, is also modeled as a Gamma dis-
tribution with:

• a mean of 70 ms + 2 ms for every degree of visual angle between the current eye
position and the targeted visual object, and

• a standard deviation that is one third of the mean.

It is only at the end of the execution sub-process that the eyes focus on the new
position. Thus, the whole process of eye movement takes around 200 ms (≈135
+ 70), which corresponds to average saccade latencies reported in previous studies
(see, e.g., Fuchs 1971).

In our simulation [py12], the event PREPARATION TO SHIFT VISUAL
ATTENTION COMPLETED (line 33) signals the end of the preparation phase, and
the end of the execution phase is signaled by SHIFT COMPLETE TO POSITION
[320, 180] (line 43). It is only at this point that the eyes focus on the new loca-
tion, but the internal representation of the object has already been encoded: the word
has already been retrieved from memory by this point, as indicated by the earlier
event RETRIEVED: word(form= elephant) (line 30).

How do the two processes of visual encoding and eye movement interact? One
possibility is that encoding is done before the end of the preparation phase—this
is actually the case in [py12]. When this happens, the planned eye movement can
be canceled, but only if the cognitive processes following visual encoding are fast
enough to cancel the eye shift or request a new eye-focus position before the end of
the preparation phase.

1Gamma distributions are usually parametrized in terms of a shape α and a rate β or scale 1
β
. We

can convert our non-standard parametrization into the standard one(s) as follows: shape α = (
μ
σ
)2

and rate β = μ

σ 2 (equivalently: scale 1
β

= σ 2

μ
).

4.3 Running the Lexical Decision Model and Understanding the Output 67

The second possibility is that visual encoding is finished only during the execution
phase of the eyemovement process. In that case, the eyemovement cannot be stopped
anymore and the eye shift is actually carried out.

The third and final possibility is that visual encoding is still not done after the
eyes shift to a new position. In that case, visual encoding is restarted and since the
eyes have moved closer to the position of the object we’re trying to encode, the time
necessary for visual encoding is now decreased.

To understand how the restarted visual encoding time is decreased, consider what
the new encoding time would have been if this had been an initial visual encoding.
We would have a random draw t ′enc from a Gamma distribution centered at a new
mean T ′

enc, because the distance between the object and the new position of the eyes
has now changed to d ′:

(3) t ′enc ∼ Gamma(μ = T ′
enc, σ = T ′

enc/3)

(4) T ′
enc = K · (− log f) · ekd ′

But instead of taking the full t ′enc time to do the visual encoding, we will scale that
down by the amount of time we already spent during our initial encoding attempt.
Specifically, we will look at the initial expected encoding time tenc and at the time
tcompleted that we actually spent encoding. Note that necessarily, tcompleted < tenc. We
can therefore say that we have already completed a percentage of the visual encoding
process, and that percentage is tcompleted

tenc
.

The new processing time should be the remaining percentage that we have not
completed yet, i.e., tenc−tcompleted

tenc
or equivalently 1 − tcompleted

tenc
. Thus, instead of saying

that the new encoding time is the full t ′enc, we will only need the percentage of it
that is the same as the percentage of incomplete processing we had left after our first
encoding attempt:

(5) Visual reencoding time:
(
1 − tcompleted

tenc

)
· t ′enc

This completes our brief introduction to visual processes in ACT-R/pyactr. For
more details, see Salvucci (2001).

4.3.2 Manual Processes in Our Lexical Decision Model

Similarly to the vision process, the motor process is split into several sub-phases
when carrying out a command: the preparation phase, the initiation phase, the actual
key press and finishing the movement (returning to the original position). As in the
case of the visual module, cognitive processes can interrupt a movement, but only
during the preparation phase.

The time needed to carry out every phase is dependent on several variables:

• Is this the first movement or not? If a key was pressed before, was it pressed with
the same hand or not? Answers to these questions influence the amount of time
the preparation phase takes.

68 4 Syntax as a Cognitive Process: Left-Corner Parsing …

• Is the key to be pressed on the home row or not? The answer to this question
influences the amount of time the actual movement requires, as well as the
preparation phase.

We will not discuss here the details of the ACT-R/pyactr model of motor
process—see Meyer and Kieras (1997) for a detailed presentation.

4.4 A Left-Corner Parser with Visual and Motor Interfaces

In this section, we introduce a left-corner parser that incorporates visual and motor
interfaces. The left-corner parser builds on the basic top-down parser introduced
in the previous chapter and on the lexical decision model with visual and motor
interfaces introduced in this chapter.

As discussed at the end of the previous chapter, left-corner parsers combine top-
down and bottom-up features: they can be thought of as predictive top-down parsers
with incremental bottom-up filtering.

Left-corner parsing differs from top-down parsing with respect to the amount of
evidence necessary to trigger a production rule. A grammar rule cannot be triggered
without any evidence from the incoming signal/string of words, as it would be in a
top-down parser. But we do not need to accumulate complete evidence, that is, all the
necessary words, to trigger a rule, as we would in bottom-up parsing. For example,
we do not need both words in Mary sleeps to trigger the S → NP VP rule.

Thus, in left-corner parsing, partial evidence is necessary (in contrast to top-down
parsing), and also sufficient (in contrast to bottom-up parsing). For example, having
evidence for the very first category on the right-hand side of the rule, namely NP in
the sentence Mary sleeps, which is described as having evidence for the left corner
of the S → NP VP rule, is sufficient to trigger it.

Following Hale (2014, Chap. 3), we summarize the left-corner parsing strategy
in the ‘project’ and ‘project and complete’ rules below (see (6a) and (6b)). The only
difference between them is the context in which the left-corner rule is triggered. If
the mother node, e.g., S in our example above, is not expected in context, it is added
to the context as a ‘found’ symbol (this is the simple ‘project’ rule). But if the mother
node is already expected in context, we check off that expectation as satisfied. Finally,
the ‘shift’ rule in (6c) takes words one at a time from the incoming string of words
and adds them to the top of the stack to be parsed.

(6) Left-corner parsing rule schemata (Hale 2014, Chap. 3):

a. Project: if the symbol Y is at the top of the stack, and there is a grammar
rule X → Y Z whose right-hand side starts with Y, then replace Y with
two new symbols: a record that X has been found and an expectation for
the remaining right-hand side symbol(s) Z.

b. Project and complete: if the symbol Y is at the top of the stack and right
below it is an expectation of finding symbol X, and there is a grammar

4.4 A Left-Corner Parser with Visual and Motor Interfaces 69

rule X → Y Z, then replace both Y and X with an expectation for the
remaining right-hand side symbol(s) Z.

c. Shift: if the nextwordof the sentence is a terminal symbol of the grammar,
push it on the top of the stack.

The distinction between the two different kinds of left-corner projection—
projection tout court and projection plus a completion step—was proposed in Resnik
(1992),whoargues that projection and completion is necessary to keep the stackdepth
reasonably low when parsing both left-branching and right-branching structures.

Most of our rules will be project and complete rules, with the exception of NPs
projected by ProperNs. If the ProperN is in subject position, it will trigger a simple
projection rule for the NP dominating it since we do not have an NP expectation at
that point. But if the ProperN is in object position, the previous application of the
VP -> V NP rule will have introduced an NP expectation to the context, so we can
both project and complete the NP at the same time.

Let’s build a left-corner parser in ACT-R. We start by importing pyactr and
setting the position on the virtual screen where the words in our example—the simple
sentence Mary likes Bill—will be displayed one at a time.

[py13] >>> import pyactr as actr 1
>>> environment = actr.Environment(focus_position=(320, 180)) 2

We then declare the chunk types we need:

• parsing_goal chunks will be stored in the goal buffer and they will drive
the parsing cognitive process;

• parse_state chunks will be stored in the imaginal buffer and they will pro-
vide intermediate internal snapshots of the parsing process, befitting the kind of
information the imaginal buffer stores;

• finally, word chunks will be stored in declarative memory and encode lexical
information (in our case, just phonological form and syntactic category) for the
words in our target example.

[py14] >>> actr.chunktype("parsing_goal", "task stack_top stack_bottom\ 1
... parsed_word right_frontier") 2
>>> actr.chunktype("parse_state", "node_cat mother daughter1\ 3
... daughter2 lex_head") 4
>>> actr.chunktype("word", "form cat") 5

The parsing_goal chunk type in [py14] has the same slots as the type
we used for the top-down parser discussed in Chap. 3, with the addition of a
right_frontier slot. The right-frontier slot will be used to record the attach-
ment points for NPs: the S node for subject NPs and the VP node for object NPs.
Specifically, whenever we will store a parse_state chunk in the imaginal buffer
that will contain information about an NP that has just been parsed, we will take the
value in the right_frontier slot and record it as the value of the mother node
for the NP in the imaginal buffer.

70 4 Syntax as a Cognitive Process: Left-Corner Parsing …

Let’s now turn to the parse_state chunk type in [py14]. These intermediate
parsing states are stored in the imaginal buffer, and record the progress of the parsing
cognitive process. In particular:

• the node_cat slot records the syntactic category of the current node, i.e., the
node that has just been parsed;

• the mother slot records the mother node of the current node;
• thedaughter1 and daughter2 slots record the daughter nodes of the current
node;

• finally, the lex_head slot records the lexical head of the current phrasal pro-
jection.

The parse_state chunk type gives us a window into how much ACT-R con-
strains theories of ‘high-level’ cognitive processes. The goal of the parsing cognitive
process can be characterized as incrementally building an unobservable hierarchical
tree structure (a structural description) for the target sentence. But there are strict
limits on how the partially-built structure is maintained and accessed during the
cognitive process: we can only store one chunk at a time in any given buffer (goal,
imaginal, retrieval).

This means that the mind never has a global view of the syntactic tree it is con-
structing. Instead, the structure is viewed through a limited, moving window that can
‘see’ only a part of the under-construction structure.

Furthermore, the values stored in the slots of a chunk can encode only ‘descrip-
tive’ content, not specific memory addresses or uniquely identifiable time stamps
for specific nodes in the tree. This is particularly constraining for phrases like NPs,
which are repeatedly instantiated in a given structure. Their position in the hierar-
chical structure can be identified only if we encode additional information in their
corresponding chunks.

Specifically, we need to record the lexical head associated with an NP to be able
to identify which word it dominates, otherwise the NP might end up dominating any
ProperN that has already been built/parsed—hence the need for the lex_head slot.
We also need to record the point where the full NP is attached in the larger tree,
otherwise we might end up attaching the direct object NP to the S node as if it were
a subject—hence the need for the mother slot.

These two slots of the parse_state chunk type, namely lex_head and
mother, will be exclusively needed for NPs in the left-corner parser introduced
in this section. There is no deep reason for this. For simplicity, we only focus on
simplemono-clausal target sentences, so onlyNP andProperNnodeswill bemultiply
instantiated in any given tree. When we scale up the parser to include multi-clausal
sentences and/or multi-sentential discourses, we will end up using these slots for
other node types, e.g., VP and S.

We can now initialize the parser model and set up separate variables for
the declarative memory module (dm), the goal buffer (g) and the imaginal buffer
(imaginal). In [py15], we set a delay of 0 ms for the imaginal buffer, going against
its default setting of 200ms. This default setting ismotivated by non-linguistic cogni-
tive processes that are structurally much simpler than language comprehension, and

4.4 A Left-Corner Parser with Visual and Motor Interfaces 71

the 200 ms encoding delay provides a better fit to the reaction time data associated
with those processes.

In contrast, we believe that a low-delay or even no-delay setting is necessary when
modeling language comprehension in ACT-R, because this requires rapidly building
complex hierarchical representations that are likely to extensively rely on imaginal
chunks. In general, it is reasonable to expect that the systematicmodeling of language
processing inACT-R—still verymuch a nascent endeavor—will occasionally require
such departures from received ACT-R wisdom.

[py15] >>> parser = actr.ACTRModel(environment, motor_prepared=True) 1
>>> dm = parser.decmem 2
>>> g = parser.goal 3
>>> imaginal = parser.set_goal(name="imaginal", delay=0) 4

We are ready to add lexical entries to declarative memory. Just as in the case of
our top-down parser, we keep the lexical information to a minimum and store only
phonological forms and syntactic categories, as shown in [py16] below. We also
specify the goal chunk needed to get the parsing process started: the initial goal is to
read the first word (line 18: the task is read_word), and to try to parse the whole
sentence (line 19: stack_top is S).

[py16] >>> dm.add(actr.chunkstring(string=""" 1
... isa word 2
... form Mary 3
... cat ProperN 4
... """)) 5
>>> dm.add(actr.chunkstring(string=""" 6
... isa word 7
... form Bill 8
... cat ProperN 9
... """)) 10
>>> dm.add(actr.chunkstring(string=""" 11
... isa word 12
... form likes 13
... cat V 14
... """)) 15
>>> g.add(actr.chunkstring(string=""" 16
... isa parsing_goal 17
... task read_word 18
... stack_top S 19
... right_frontier S 20
... """)) 21

With the lexicon in place, we can start specifying the production rules. Our first
rule is the "press spacebar" rule below. This rule initializes the actions needed
to read a word: if the task is read_word (line 4 in [py17]), the top of the stack is
not empty (line 5), that is, we have some parsing goals left to accomplish, and the
motor module is free (not currently busy), then we should press the space bar to
display the next word.

[py17] >>> parser.productionstring(name="press spacebar", string=""" 1
... =g> 2
... isa parsing_goal 3
... task read_word 4
... stack_top ˜None 5
... ?manual> 6
... state free 7
... ==> 8
... =g> 9
... isa parsing_goal 10

72 4 Syntax as a Cognitive Process: Left-Corner Parsing …

... task encode_word 11

... +manual> 12

... isa _manual 13

... cmd ’press_key’ 14

... key ’space’ 15

... """) 16
{’=g’: parsing_goal(parsed_word= , right_frontier= , stack_bottom= , 17
stack_top= ˜None, task= read_word), ’?manual’: {’state’: ’free’}} 18

==> 19
{’=g’: parsing_goal(parsed_word= , right_frontier= , stack_bottom= , 20

stack_top= , task= encode_word), 21
’+manual’: _manual(cmd= press_key, key= space)} 22

Assuming the next word was displayed and the visual module retrieved its form,
we trigger the "encode word" rule below, which gets the current value stored in
the visual buffer, stores it in the goal buffer as the current parsed_word, and
initializes a new get_word_cat task.

[py18] >>> parser.productionstring(name="encode word", string=""" 1
... =g> 2
... isa parsing_goal 3
... task encode_word 4
... =visual> 5
... isa _visual 6
... value =val 7
... ==> 8
... =g> 9
... isa parsing_goal 10
... task get_word_cat 11
... parsed_word =val 12
... ˜visual> 13
... """) 14
{’=g’: parsing_goal(parsed_word= , right_frontier= , stack_bottom= , 15

stack_top= , task= encode_word), 16
’=visual’: _visual(cmd= , color= , screen_pos= , value= =val)} 17

==> 18
{’=g’: parsing_goal(parsed_word= =val, right_frontier= , stack_bottom= , 19
stack_top= , task= get_word_cat), ’˜visual’: None} 20

The get_word_cat task consists of placing a retrieval request for a lexi-
cal item stored in declarative memory. As the rule "retrieve category" in
[py19] below shows, the retrieval cue consists of the form/value we got from the
visual buffer. While we wait for the result of this retrieval request, we enter a new
retrieving_word task.

[py19] >>> parser.productionstring(name="retrieve category", string=""" 1
... =g> 2
... isa parsing_goal 3
... task get_word_cat 4
... parsed_word =w 5
... ==> 6
... +retrieval> 7
... isa word 8
... form =w 9
... =g> 10
... isa parsing_goal 11
... task retrieving_word 12
... """) 13
{’=g’: parsing_goal(parsed_word= =w, right_frontier= , stack_bottom= , 14

stack_top= , task= get_word_cat)} 15
==> 16
{’+retrieval’: word(cat= , form= =w), 17
’=g’: parsing_goal(parsed_word= , right_frontier= , stack_bottom= , 18

stack_top= , task= retrieving_word)} 19

4.4 A Left-Corner Parser with Visual and Motor Interfaces 73

If we are in a retrieving_word task and the declarative memory retrieval
was successfully completed, which we know because the retrieved word is in the
retrieval buffer, we can start building some syntactic structure, i.e., we can
sensu stricto parse. The first parsing action is "shift and project word",
in [py20] below. This means that the syntactic category of the retrieved word is
pushed onto the top of the stack (pushing to the bottom of the stack whatever was
previously on top), and storing a new parse_state in the imaginal buffer. The
parse state is a unary branching tree with the syntactic category of the retrieved word
as the mother/root node and the phonological form of the word as the only daughter.
We also enter a new parsing task, in which we see if we can trigger any other
parsing, i.e., syntactic structure building, rules.

[py20] >>> parser.productionstring(name="shift and project word", string=""" 1
... =g> 2
... isa parsing_goal 3
... task retrieving_word 4
... stack_top =t 5
... stack_bottom None 6
... =retrieval> 7
... isa word 8
... form =w 9
... cat =c 10
... ==> 11
... =g> 12
... isa parsing_goal 13
... task parsing 14
... stack_top =c 15
... stack_bottom =t 16
... +imaginal> 17
... isa parse_state 18
... node_cat =c 19
... daughter1 =w 20
... ˜retrieval> 21
... """) 22
{’=g’: parsing_goal(parsed_word= , right_frontier= , stack_bottom= None, 23

stack_top= =t, task= retrieving_word), 24
’=retrieval’: word(cat= =c, form= =w)} 25

==> 26
{’=g’: parsing_goal(parsed_word= , right_frontier= , stack_bottom= =t, 27
stack_top= =c, task= parsing), ’+imaginal’: parse_state(daughter1= =w, 28
daughter2= , lex_head= , mother= , node_cat= =c), ’˜retrieval’: None} 29

We now reached that point in our parser specification when we simply encode all
the grammar rules into parsing rules. The first two rules, listed in [py21] and [py22]
below, project an NP node on top of a ProperN node. NP projection comes in two
flavors depending on whether we are expecting an NP at the time we try to project
one, or not.

Consider first the case in which we do not expect an NP, that is, rule "project:
NP ==> ProperN" in [py21] below. This rule is triggered if the top of our stack
is a ProperN and the bottom of our stack is not an NP. That is, we do not expect an
NP at this time (∼NP on line 5 in [py21] below). If this is our current parsing goal,
then we will pop the ProperN category off the stack, replace it with an NP category
and add the newly built structure to the imaginal buffer. This newly built structure
is a unary branching NP node with ProperN as its only daughter. The NP node is in
its turn attached to whatever the current right frontier =rf is, and it is indexed with
the lexical head that projected the ProperN node in a previous parsing step.

74 4 Syntax as a Cognitive Process: Left-Corner Parsing …

[py21] >>> parser.productionstring(name="project: NP ==> ProperN", string=""" 1
... =g> 2
... isa parsing_goal 3
... stack_top ProperN 4
... stack_bottom ˜NP 5
... right_frontier =rf 6
... parsed_word =w 7
... ==> 8
... =g> 9
... isa parsing_goal 10
... stack_top NP 11
... +imaginal> 12
... isa parse_state 13
... node_cat NP 14
... daughter1 ProperN 15
... mother =rf 16
... lex_head =w 17
... """) 18
{’=g’: parsing_goal(parsed_word= =w, right_frontier= =rf, stack_bottom= ˜NP, 19

stack_top= ProperN, task=)} 20
==> 21
{’=g’: parsing_goal(parsed_word= , right_frontier= , stack_bottom= , 22
stack_top= NP, task=), ’+imaginal’: parse_state(daughter1= ProperN, 23
daughter2= , lex_head= =w, mother= =rf, node_cat= NP)} 24

The second case we consider is an NP projection on top of a ProperN when an
NP node is actually expected, as shown in rule "project and complete: NP
==> ProperN" below. That is, the current parsing goal has a ProperN at the top
of the stack and an NP right below it (at the bottom of the stack). If that is the case,
we pop both the ProperN and the NP category off the stack (lines 14–15 in [py22]),
add the relevant unary-branching NP structure to the imaginal buffer, and reenter
a read_word task.
[py22] >>> parser.productionstring(1

... name="project and complete: NP ==> ProperN", 2

... string=""" 3

... =g> 4

... isa parsing_goal 5

... stack_top ProperN 6

... stack_bottom NP 7

... right_frontier =rf 8

... parsed_word =w 9

... ==> 10

... =g> 11

... isa parsing_goal 12

... task read_word 13

... stack_top None 14

... stack_bottom None 15

... +imaginal> 16

... isa parse_state 17

... node_cat NP 18

... daughter1 ProperN 19

... mother =rf 20

... lex_head =w 21

... """) 22
{’=g’: parsing_goal(parsed_word= =w, right_frontier= =rf, stack_bottom= 23

NP, stack_top= ProperN, task=)} 24
==> 25
{’=g’: parsing_goal(parsed_word= , right_frontier= , stack_bottom= None, 26
stack_top= None, task= read_word), ’+imaginal’: parse_state(daughter1= 27

ProperN, daughter2= , lex_head= =w, mother= =rf, node_cat= NP)} 28

Now that we implemented the NP projection rules, we can turn to the S and VP
grammar rules, implemented in [py23] and [py24] below. Both of these rules are
project-and-complete rules because, in both cases, we have an expectation for the

4.4 A Left-Corner Parser with Visual and Motor Interfaces 75

mother node. We expect an S because that is the default starting goal of all parsing-
model runs. And we expect a VP because the "project and complete: S
==> NP VP" rule in [py23] always adds a VP expectation to the stack.

The project-and-complete S rule in [py23] is triggered after we have already
parsed the subject NP, which is sitting at the top of the stack (line 6), and we have
an S expectation right below the NP. If that is the case, we pop both categories off
the stack and add an expectation for a VP at the top of the stack (lines 12–13). We
also reenter the read_word task (line 11), and introduce the expected VP node
as the current right frontier that the object NP will attach to (line 14). Finally, as
expected, we add the newly built syntactic structure to the imaginal buffer: this is
a binary-branching structure with S as the mother/root node and NP and VP as the
daughters (in that order; lines 17–19).

[py23] >>> parser.productionstring(1
... name="project and complete: S ==> NP VP", 2
... string=""" 3
... =g> 4
... isa parsing_goal 5
... stack_top NP 6
... stack_bottom S 7
... ==> 8
... =g> 9
... isa parsing_goal 10
... task read_word 11
... stack_top VP 12
... stack_bottom None 13
... right_frontier VP 14
... +imaginal> 15
... isa parse_state 16
... node_cat S 17
... daughter1 NP 18
... daughter2 VP 19
... """) 20
{’=g’: parsing_goal(parsed_word= , right_frontier= , stack_bottom= S, 21

stack_top= NP, task=)} 22
==> 23
{’=g’: parsing_goal(parsed_word= , right_frontier= VP, stack_bottom= None, 24
stack_top= VP, task= read_word), ’+imaginal’: parse_state(daughter1= NP, 25
daughter2= VP, lex_head= , mother= , node_cat= S)} 26

The "project and complete: VP ==> V NP" rule in [py24] below is
very similar to the project-and-complete S rule. This rule is triggered if we have
just parsed a verb V, which is sitting at the top of the stack (line 7), and we have an
expectation for a VP right below it (line 8). If that is the case, we pop both categories
off the stack and introduce a new expectation for the object NP at the top of the
stack (lines 13–14), reenter the read_word task (line 12) and store the newly built
binary-branching VP structure in the imaginal buffer (lines 17–19).

[py24] >>> parser.productionstring(1
... name="project and complete: VP ==> V NP", 2
... string=""" 3
... =g> 4
... isa parsing_goal 5
... task parsing 6
... stack_top V 7
... stack_bottom VP 8
... ==> 9
... =g> 10
... isa parsing_goal 11
... task read_word 12
... stack_top NP 13

76 4 Syntax as a Cognitive Process: Left-Corner Parsing …

... stack_bottom None 14

... +imaginal> 15

... isa parse_state 16

... node_cat VP 17

... daughter1 V 18

... daughter2 NP 19

... """) 20
{’=g’: parsing_goal(parsed_word= , right_frontier= , stack_bottom= VP, 21

stack_top= V, task= parsing)} 22
==> 23
{’=g’: parsing_goal(parsed_word= , right_frontier= , stack_bottom= None, 24
stack_top= NP, task= read_word), ’+imaginal’: parse_state(daughter1= V, 25
daughter2= NP, lex_head= , mother= , node_cat= VP)} 26

We have now implemented all the parsing rules corresponding to the grammar
rules listed in Chap. 3, example (1). The final rule we need is a wrap-up rule that ends
the parsing process if our to-parse stack is empty, i.e., we have no categories to parse
at the top of the stack (line 5 in [py25] below). If that is the case, we simply flush
the g (goal) and imaginal buffers, which empties their contents into declarative
memory.

[py25] >>> parser.productionstring(name="finished", string=""" 1
... =g> 2
... isa parsing_goal 3
... task read_word 4
... stack_top None 5
... ==> 6
... ˜g> 7
... ˜imaginal> 8
... """) 9
{’=g’: parsing_goal(parsed_word= , right_frontier= , stack_bottom= , 10

stack_top= None, task= read_word)} 11
==> 12
{’˜g’: None, ’˜imaginal’: None} 13

Let us now run the left-corner parser on the sentenceMary likes Bill and examine
its output. As shown by the stimuli variable in [py26] below, the sentence is
presented self-paced reading style, with the words displayed one at a time in the
center of the (virtual) screen (lines 1–3). We also specify that the simulation should
be run for 1.5 s (the default time is 1 s, which would not be enough in this case).

[py26] >>> stimuli = [{1: {’text’: ’Mary’, ’position’: (320, 180)}}, 1
... {1: {’text’: ’likes’, ’position’: (320, 180)}}, 2
... {1: {’text’: ’Bill’, ’position’: (320, 180)}}] 3
>>> parser_sim = parser.simulation(4
... realtime=True, 5
... gui=False, 6
... environment_process=environment.environment_process, 7
... stimuli=stimuli, 8
... triggers=’space’) 9
>>> parser_sim.run(max_time=1.5) 10
(0, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 11
(0, ’PROCEDURAL’, ’RULE SELECTED: press spacebar’) 12
****Environment: {1: {’text’: ’Mary’, ’position’: (320, 180)}} 13
(0, ’visual_location’, ’ENCODED LOCATION: _visuallocation(color= , 14

screen_x= 320, screen_y= 180, value=)’) 15
(0.007, ’visual’, ’AUTOMATIC BUFFERING: _visual(cmd= , color= , 16

screen_pos= _visuallocation(color= , screen_x= 320, screen_y= 180, 17
value=), value= Mary)’) 18

(0.05, ’PROCEDURAL’, ’RULE FIRED: press spacebar’) 19
(0.05, ’g’, ’MODIFIED’) 20
(0.05, ’manual’, ’COMMAND: press_key’) 21
(0.05, ’manual’, ’PREPARATION COMPLETE’) 22
(0.05, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 23
(0.05, ’PROCEDURAL’, ’RULE SELECTED: encode word’) 24

4.4 A Left-Corner Parser with Visual and Motor Interfaces 77

(0.1, ’manual’, ’INITIATION COMPLETE’) 25
(0.1, ’PROCEDURAL’, ’RULE FIRED: encode word’) 26
(0.1, ’g’, ’MODIFIED’) 27
(0.1, ’visual’, ’CLEARED’) 28
(0.1, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 29
(0.1, ’PROCEDURAL’, ’RULE SELECTED: retrieve category’) 30
(0.15, ’PROCEDURAL’, ’RULE FIRED: retrieve category’) 31
(0.15, ’g’, ’MODIFIED’) 32
(0.15, ’retrieval’, ’START RETRIEVAL’) 33
(0.15, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 34
(0.15, ’PROCEDURAL’, ’NO RULE FOUND’) 35
(0.2, ’manual’, ’KEY PRESSED: SPACE’) 36
(0.2, ’retrieval’, ’CLEARED’) 37
****Environment: {1: {’text’: ’likes’, ’position’: (320, 180)}} 38
(0.2, ’retrieval’, ’RETRIEVED: word(cat= ProperN, form= Mary)’) 39
(0.2, ’visual_location’, ’ENCODED LOCATION: _visuallocation(color= , 40

screen_x= 320, screen_y= 180, value=)’) 41
(0.2, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 42
(0.2, ’PROCEDURAL’, ’RULE SELECTED: shift and project word’) 43
(0.2137, ’visual’, ’AUTOMATIC BUFFERING: _visual(cmd= , color= , 44

screen_pos= _visuallocation(color= , screen_x= 320, 45
screen_y= 180, value=), value= likes)’) 46

(0.25, ’PROCEDURAL’, ’RULE FIRED: shift and project word’) 47
(0.25, ’g’, ’MODIFIED’) 48
(0.25, ’retrieval’, ’CLEARED’) 49
(0.25, ’imaginal’, ’CLEARED’) 50
(0.25, ’imaginal’, ’CREATED A CHUNK: parse_state(daughter1= Mary, 51

daughter2= , lex_head= , mother= , node_cat= ProperN)’) 52
(0.25, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 53
(0.25, ’PROCEDURAL’, ’RULE SELECTED: project: NP ==> ProperN’) 54
(0.3, ’PROCEDURAL’, ’RULE FIRED: project: NP ==> ProperN’) 55
(0.3, ’g’, ’MODIFIED’) 56
(0.3, ’imaginal’, ’CLEARED’) 57
(0.3, ’imaginal’, ’CREATED A CHUNK: parse_state(daughter1= ProperN, 58

daughter2= , lex_head= Mary, mother= S, node_cat= NP)’) 59
(0.3, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 60
(0.3, ’PROCEDURAL’, ’RULE SELECTED: project and complete: S ==> NP VP’) 61
(0.35, ’manual’, ’MOVEMENT FINISHED’) 62
(0.35, ’PROCEDURAL’, ’RULE FIRED: project and complete: S ==> NP VP’) 63
(0.35, ’g’, ’MODIFIED’) 64
(0.35, ’imaginal’, ’CLEARED’) 65
(0.35, ’imaginal’, ’CREATED A CHUNK: parse_state(daughter1= NP, 66

daughter2= VP, lex_head= , mother= , node_cat= S)’) 67
(0.35, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 68
(0.35, ’PROCEDURAL’, ’RULE SELECTED: press spacebar’) 69
(0.4, ’PROCEDURAL’, ’RULE FIRED: press spacebar’) 70
(0.4, ’g’, ’MODIFIED’) 71
(0.4, ’manual’, ’COMMAND: press_key’) 72
(0.4, ’manual’, ’PREPARATION COMPLETE’) 73
(0.4, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 74
(0.4, ’PROCEDURAL’, ’RULE SELECTED: encode word’) 75
(0.45, ’manual’, ’INITIATION COMPLETE’) 76
(0.45, ’PROCEDURAL’, ’RULE FIRED: encode word’) 77
(0.45, ’g’, ’MODIFIED’) 78
(0.45, ’visual’, ’CLEARED’) 79
(0.45, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 80
(0.45, ’PROCEDURAL’, ’RULE SELECTED: retrieve category’) 81
(0.5, ’PROCEDURAL’, ’RULE FIRED: retrieve category’) 82
(0.5, ’g’, ’MODIFIED’) 83
(0.5, ’retrieval’, ’START RETRIEVAL’) 84
(0.5, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 85
(0.5, ’PROCEDURAL’, ’NO RULE FOUND’) 86
(0.55, ’manual’, ’KEY PRESSED: SPACE’) 87
(0.55, ’retrieval’, ’CLEARED’) 88
****Environment: {1: {’text’: ’Bill’, ’position’: (320, 180)}} 89
(0.55, ’retrieval’, ’RETRIEVED: word(cat= V, form= likes)’) 90
(0.55, ’visual_location’, ’ENCODED LOCATION: _visuallocation(color= , 91

screen_x= 320, screen_y= 180, value=)’) 92
(0.55, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 93
(0.55, ’PROCEDURAL’, ’RULE SELECTED: shift and project word’) 94
(0.5659, ’visual’, ’AUTOMATIC BUFFERING: _visual(cmd= , color= , 95

screen_pos= _visuallocation(color= , screen_x= 320, 96
screen_y= 180, value=), value= Bill)’) 97

78 4 Syntax as a Cognitive Process: Left-Corner Parsing …

(0.6, ’PROCEDURAL’, ’RULE FIRED: shift and project word’) 98
(0.6, ’g’, ’MODIFIED’) 99
(0.6, ’retrieval’, ’CLEARED’) 100
(0.6, ’imaginal’, ’CLEARED’) 101
(0.6, ’imaginal’, ’CREATED A CHUNK: parse_state(daughter1= likes, 102

daughter2= , lex_head= , mother= , node_cat= V)’) 103
(0.6, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 104
(0.6, ’PROCEDURAL’, ’RULE SELECTED: project and complete: VP ==> V NP’) 105
(0.65, ’PROCEDURAL’, ’RULE FIRED: project and complete: VP ==> V NP’) 106
(0.65, ’g’, ’MODIFIED’) 107
(0.65, ’imaginal’, ’CLEARED’) 108
(0.65, ’imaginal’, ’CREATED A CHUNK: parse_state(daughter1= V, 109

daughter2= NP, lex_head= , mother= , node_cat= VP)’) 110
(0.65, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 111
(0.65, ’PROCEDURAL’, ’NO RULE FOUND’) 112
(0.7, ’manual’, ’MOVEMENT FINISHED’) 113
(0.7, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 114
(0.7, ’PROCEDURAL’, ’RULE SELECTED: press spacebar’) 115
(0.75, ’PROCEDURAL’, ’RULE FIRED: press spacebar’) 116
(0.75, ’g’, ’MODIFIED’) 117
(0.75, ’manual’, ’COMMAND: press_key’) 118
(0.75, ’manual’, ’PREPARATION COMPLETE’) 119
(0.75, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 120
(0.75, ’PROCEDURAL’, ’RULE SELECTED: encode word’) 121
(0.8, ’manual’, ’INITIATION COMPLETE’) 122
(0.8, ’PROCEDURAL’, ’RULE FIRED: encode word’) 123
(0.8, ’g’, ’MODIFIED’) 124
(0.8, ’visual’, ’CLEARED’) 125
(0.8, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 126
(0.8, ’PROCEDURAL’, ’RULE SELECTED: retrieve category’) 127
(0.85, ’PROCEDURAL’, ’RULE FIRED: retrieve category’) 128
(0.85, ’g’, ’MODIFIED’) 129
(0.85, ’retrieval’, ’START RETRIEVAL’) 130
(0.85, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 131
(0.85, ’PROCEDURAL’, ’NO RULE FOUND’) 132
(0.9, ’manual’, ’KEY PRESSED: SPACE’) 133
(0.9, ’retrieval’, ’CLEARED’) 134
(0.9, ’retrieval’, ’RETRIEVED: word(cat= ProperN, form= Bill)’) 135
(0.9, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 136
(0.9, ’PROCEDURAL’, ’RULE SELECTED: shift and project word’) 137
(0.95, ’PROCEDURAL’, ’RULE FIRED: shift and project word’) 138
(0.95, ’g’, ’MODIFIED’) 139
(0.95, ’retrieval’, ’CLEARED’) 140
(0.95, ’imaginal’, ’CLEARED’) 141
(0.95, ’imaginal’, ’CREATED A CHUNK: parse_state(daughter1= Bill, 142

daughter2= , lex_head= , mother= , node_cat= ProperN)’) 143
(0.95, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 144
(0.95, ’PROCEDURAL’, ’RULE SELECTED: project and complete: NP ==> ProperN’) 145
(1.0, ’PROCEDURAL’, ’RULE FIRED: project and complete: NP ==> ProperN’) 146
(1.0, ’g’, ’MODIFIED’) 147
(1.0, ’imaginal’, ’CLEARED’) 148
(1.0, ’imaginal’, ’CREATED A CHUNK: parse_state(daughter1= ProperN, 149

daughter2= , lex_head= Bill, mother= VP, node_cat= NP)’) 150
(1.0, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 151
(1.0, ’PROCEDURAL’, ’RULE SELECTED: finished’) 152
(1.05, ’manual’, ’MOVEMENT FINISHED’) 153
(1.05, ’PROCEDURAL’, ’RULE FIRED: finished’) 154
(1.05, ’g’, ’CLEARED’) 155
(1.05, ’imaginal’, ’CLEARED’) 156
(1.05, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 157
(1.05, ’PROCEDURAL’, ’NO RULE FOUND’) 158

Themodel output is prodigious since the parser runs for about 1 s, a fairly realistic
time for a three-word sentence. We will now briefly examine how the cognitive
process of parsing unfolds in time, and then examine the final result of the process
more closely.

At the very beginning of the simulation (0 ms), the first word of the sentence
(Mary) is already displayed on the screen (line 13), so the visual module immediately
encodes its location (lines 14–15) and retrieves the visual value (word form) at that

4.4 A Left-Corner Parser with Visual and Motor Interfaces 79

location soon after that (lines 16–18). At the same time, the "press spacebar"
rule is selected, which will ultimately trigger a key press that will reveal the second
word of the sentence. This rule fires 50 ms later (line 19), initiating a manual process
in the motor module.

Since the visual module already retrieved the form of the first word, we can select
the "encode word" rule at the 50 ms point (line 24). At 100 ms, this rule fires
(line 26), taking the retrieved visual value and encoding it in the goal chunk as the
word to be parsed—line 27: the chunk in the g (goal) buffer is modified. The visual
buffer is cleared and made available for the next word (line 28).

We can now attempt the retrieval of the encoded word from declarative memory:
rule "retrieve category" is selected at 100 ms (line 30) and takes 50 ms
to fire (line 31). At this point, i.e., at 150 ms, a retrieval process from declarative
memory is started (line 33) that takes 50 ms to complete. So at 200 ms, the word
Mary is retrieved with its syntactic category ProperN (line 39).

Meanwhile, the motor module executes the movement preparation and initiation
triggered by the "press spacebar" rule fired at 50 ms (lines 22 and 25). This
happens in parallel to the parsing steps triggered by the word Mary.

With the syntactic category of the first word in hand, we start a cascade of parsing
rules triggered by the availability of this ‘left corner’.

First, at 200 ms, we select the "shift and project word" rule, which
fires 50 ms later and creates a chunk in the imaginal buffer storing a unary branching
tree with the syntactic category ProperN as the mother node and the word Mary as
the daughter (lines 51–52).

At this point (250 ms), we select the project-NP rule (line 54), which fires 50
ms later and creates a chunk in the imaginal buffer storing the next part of our tree,
namely the NP node built on top of the ProperN node we previously built (lines
58–59).

We are now at 300 ms.We select the project-and-complete-S rule (line 61), which
fires at 350 ms and creates a binary branching chunk in the imaginal buffer with S as
the mother node, the previously built NP as its first daughter, and a VP as its second
daughter that we expect to identify later on in the parsing process (lines 66–67).

In parallel to these parsing actions, the motor and visual modules execute actions
that lead to the second word of the sentence being displayed and read. At 200 ms, the
motor module is finally ready to press the space key, which displays the word likes
on the screen (line 38). The visual location of this word is immediately encoded and
the visual value is retrieved soon after that.

We are therefore ready at 350 ms to select the "press spacebar" rule once
again (line 69), which fires 50 ms later and will eventually lead to displaying and
reading the final word of the sentence. After that, at 400 ms, we are ready to encode
the word likes that we displayed and perceived around 185ms earlier. The "encode
word" rule is selected at 400 ms (line 75), the rule fires at 450 ms (line 77), and
triggers the selection of the "retrieve category" rule (line 81).

At the same time, the motor module prepares and initiates the second spacebar
press much more quickly: the preparation is instantaneous (line 73) and the initiation
takes 50 ms (line 76), so the space key is pressed again at 550 ms. The final word of

80 4 Syntax as a Cognitive Process: Left-Corner Parsing …

the sentence (Bill) is displayed on the screen (line 89), triggering the same visual-
location encoding and visual-value retrieval steps as before.

Once again, these motor and visual processes happen in parallel, so at 500 ms
we are able to fire the "retrieve category" rule (line 82) that we selected 50
ms earlier. The process of retrieval from declarative memory takes 50 ms, so at 550
ms we have the V category of our verb likes (line 90). We shift and project the verb,
which leads to the creation of a chunk in the imaginal buffer projecting a V node on
top of the word likes (lines 102–103).

We can now select the project-and-complete-VP rule, which fires at 650 ms,
creating the VP node we were expecting (based on the previously triggered S rule)
on top of the V node we just built, and adding a new expectation for an object NP
(lines 109–110).

At this point (700 ms), we are in a state in which "press spacebar" can be
selected, but since there are no more words to be read, the application of this rule
will not have any effect on further parsing.

After that, the "encode word" rule can be selected. The rule fires 50 ms later.
We then go through the retrieval process for the word Bill, after which we project a
ProperN node on top of it (lines 142–143).

Finally, we trigger the project-and-complete-NP rule, which completes the object
NP we were expecting by recognizing that the ProperN Bill is that NP (lines 149–
150).

We are done parsing the sentence, so the "finished" rule fires at 1050 ms and
the parsing simulation ends with the clearing of the g (goal) and imaginal buffers
into declarative memory.

It is instructive to inspect the parse states stored in declarative memory at the end
of the simulation, shown in [py27] below (sorted by time of (re)activation). We first
sort all the contents of declarative memory (lines 1–3), after which we display only
the parse_state chunks (lines 4–6).

[py27] >>> sortedDM = sorted(([item[0], time]\ 1
... for item in dm.items() for time in item[1]), 2
... key=lambda item: item[1]) 3
>>> for chunk in sortedDM: 4
... if chunk[0].typename == "parse_state": 5
... print(chunk[1], "\t", chunk[0]) 6
... 7
0.3 parse_state(daughter1= Mary, daughter2= , lex_head= , 8

mother= , node_cat= ProperN) 9
0.35 parse_state(daughter1= ProperN, daughter2= , lex_head= Mary, 10

mother= S, node_cat= NP) 11
0.6 parse_state(daughter1= NP, daughter2= VP, lex_head= , 12

mother= , node_cat= S) 13
0.65 parse_state(daughter1= likes, daughter2= , lex_head= , 14

mother= , node_cat= V) 15
0.95 parse_state(daughter1= V, daughter2= NP, lex_head= , 16

mother= , node_cat= VP) 17
1.0 parse_state(daughter1= Bill, daughter2= , lex_head= , 18

mother= , node_cat= ProperN) 19
1.05 parse_state(daughter1= ProperN, daughter2= , lex_head= Bill, 20

mother= VP, node_cat= NP) 21

We see here that the ACT-R architecture places significant constraints on the
construction of deep hierarchical structures like syntactic trees: there is no global

4.4 A Left-Corner Parser with Visual and Motor Interfaces 81

view of the constructed tree in declarative memory, only local snapshots recording
immediate domination relations, or at the most, two stacked immediate domination
relations (when the mother slot is specified). As external observers, we can assem-
ble a global view of the syntactic tree based on the parse_state chunks stored
in declarative memory and their time stamps, but this syntactic tree is never present
as such in declarative memory.

The time stamps of the parse states displayed in [py27] (lines 8–21) show how the
parsing process unfolded over time. We first parsed the subject NPMary, which was
completed after about 300 ms (the usual time in word-by-word self-paced reading).
Based on this left-corner evidence, we were able to project the S node and add a
VP expectation. This expectation was confirmed when the verb likes was parsed,
after about 300 ms more. But confirming the VP expectation added an object NP
expectation; this expectation was confirmedwhen the final wordBillwas parsed after
yet another 300 ms.

It is similarly instructive to see the words in declarative memory at the end of the
simulation (again sorted by time of (re)activation):

[py28] >>> for chunk in sortedDM: 1
... if chunk[0].typename == "word": 2
... print(chunk[1], "\t", chunk[0]) 3
... 4
0.0 word(cat= ProperN, form= Mary) 5
0.0 word(cat= ProperN, form= Bill) 6
0.0 word(cat= V, form= likes) 7
0.25 word(cat= ProperN, form= Mary) 8
0.6 word(cat= V, form= likes) 9
0.95 word(cat= ProperN, form= Bill) 10

All the words were added to declarative memory at the very beginning of the sim-
ulation, and then were reactivated as the parsing process unfolded. The reactivations
are roughly spaced at 300 ms intervals, as expected for self-paced reading tasks.

This concludes our introduction to the symbolic part of the ACT-R framework, as
well as the introduction of (basic) processing models for linguistic phenomena that
can be developed in this cognitive framework.

Chapters 6 and 7 introduce the basic subsymbolic components of ACT-R, which
enable us to provide realisticmodels of performance and on-line/real-time behavioral
measures. These models and their numerical parameters can be fit to experimental
data in the usual way, using frequentist or Bayesian methods for data analysis.

Chapter 5 provides a brief introduction to Bayesian methods of data analysis,
which we will then be able to deploy in the remainder of the book to estimate the
subsymbolic parameters of our ACT-R processing models.

4.5 Appendix: The Lexical Decision Model

All the code discussed in this chapter is available on GitHub as part of the repository
https://github.com/abrsvn/pyactr-book. If you want to examine it and run it, install
pyactr (see Chap. 1), download the files and run them the same way as any other
Python script.

https://github.com/abrsvn/pyactr-book

82 4 Syntax as a Cognitive Process: Left-Corner Parsing …

File ch4_lexical_decision.py:

☞ https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch4_lexical_
decision.py.

File ch4_leftcorner_parser.py:

☞ https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch4_leftcorner_
parser.py.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch4_lexical_decision.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch4_lexical_decision.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch4_leftcorner_parser.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch4_leftcorner_parser.py
http://creativecommons.org/licenses/by/4.0/

Chapter 5
Brief Introduction to Bayesian Methods
and pymc3 for Linguists

In this chapter, we introduce the basics of Bayesian statistical modeling. Bayesian
methods are not specific to ACT-R, or to cognitive modeling. They are a general
framework for doing plausible inference based on data—both categorical (‘sym-
bolic’) and numerical (‘subsymbolic’) data.

Introducing Bayesian methods at this point in a book about cognitive modeling
for linguistics might seem like an unnecessary detour into a complex topic that is
only tangentially related to our main goal here. Why would Bayesian methods be
a necessary component of building fully formalized and integrated competence-
performance/processing theories for generative linguistics in general, and formal
semantics in particular?

They are not. However, we believe this detour to be necessary for a different
reason. One of the two main goals of this book is to argue for integrated, fully
formalized theories of competence and performance: theories that provide full math-
ematical formalizations that explicitly link the theoretical constructs generative lin-
guists postulate in their analyses and the experimental data generated by widely used
psycholinguistic methodologies.

But the second main goal of this book is to enable our readers to build these kinds
of theories for themselves and use them in their own work. We want our readers to
understand that linguistic theorizing can be more than what it is traditionally taken
to be. But equally importantly, we want our readers to be able to do more and build
more encompassing, fully formalized and experimental-evidence based linguistic
theories.

This is why we always provide all the gory details of our Python code throughout
the book, although much of that is not immediately relevant to our main, linguistics-
centered enterprise: we want our readers to be able to do everything we do, so that
they can start using these ideas, frameworks and tools in their own work.

We are now at an important juncture in this book. In the next chapter, we will
start introducing the subsymbolic components of ACT-R, which come with a good
number of numerical parameters/‘knobs’. These parameters need to be dialed in to

© The Author(s) 2020
A. Brasoveanu and J. Dotlačil, Computational Cognitive Modeling
and Linguistic Theory, Language, Cognition, and Mind 6,
https://doi.org/10.1007/978-3-030-31846-8_5

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31846-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-31846-8_5

84 5 Brief Introduction to Bayesian Methods and pymc3…

specific settings based on (numerical) experimental data. For simplicity and clarity
of exposition, we could choose to pull the correct settings and values out of thin air,
and hand-wave in the general direction of statistical inference for the proper way to
obtain these specific values. But this will satisfy only our first goal for this book. We
would present a formalized theory of competence and performance, but our readers
would not be able to reproduce our results, and would ultimately not be able to build
better theories and ‘tune’ their numerical parameters on their own. Similarly, it would
be impossible to compare several theories by tuning their parameters and finding out
which theory better accounts for the data under consideration.

The Bayesian inference framework introduced in this chapter will enable us to:
(i) learn the best settings for numerical parameters from the data, (ii) explicitly
quantify our uncertainty about these settings, and (iii) do empirically-driven theory
comparison. We will then be able to introduce the subsymbolic components of ACT-
R, set the values of the numerical parameters associatedwith these components based
on linguistic data, and numerically compare and evaluate different linguistic theories.

A final word for our readers with a largely non-technical background: it might
seem that numbers, equations and code start flooding the pages at this point, and
you might feel that the difficulties are insurmountable. They are not. You have to
understand that the math we will use in this and the following chapters is actually
pretty simple, and it is possible to follow the text by slowing down and googling
around a bit. If you find things heavy going, just be enterprising and look online
for the right kind of resource for you—the resource that will enable you to bridge
the specific gaps you have in your background math knowledge. There are many
such resources available now, from blog posts to videos of lectures/tutorials and
fully-fledged online courses.

Another thing that you, dear reader, should keep in mind is that you do not have
to fully understand everything we show you at this point. Understanding the main
ideas and the general process of theory and model development is good enough for a
first (or second) pass through the book. That’s why we want you to have the full code
and be able to run it, modify it, play with it, and grasp how things work by seeing
how the results change.

The approach that both of us (i.e., the authors) have gravitated towards more and
more as teachers is: your daily activity as a budding (or mature, for that matter)
researcher is tinkering within the horizon of a big question. The big question gives
you a compass for where the research should be going, and how to change strate-
gies when you get stuck. That’s where all the big words (‘developing integrated,
fully formalized linguistic theories of competence and performance’) come in. The
tinkering aspect is what makes research fun, doable and hands-on, and keeps it excit-
ing and fundamentally open-minded and exploratory. That’s where the code and the
instantaneous interaction with the Python interpreter come in.

5.1 The Python Libraries We Need 85

5.1 The Python Libraries We Need

We first load the relevant Python libraries:

• numpy provides fast numerical and vectorial operations;
• matplotlib and seaborn provide plotting facilities; we adjust a variety of
settings for matplotlib in [py1], but the default ones are very good too, and
more useful if working interactively in the terminal, in which case you should
comment out/ignore lines 4–17;

• pandas provides data frames, i.e., data structures well suited for data analysis,
basically Excel sheets on steroids; similar to R data frames;

• finally, pymc3 is the library for Bayesian modeling—Monte Carlo (MC) meth-
ods for Python3

[py1] >>> import numpy as np 1
2

>>> import matplotlib as mpl 3
>>> mpl.use("pgf") 4
>>> pgf_with_pdflatex = {"text.usetex": True, "pgf.texsystem": "pdflatex", 5
... "pgf.preamble": [r"\usepackage{mathpazo}", 6
... r"\usepackage[utf8x]{inputenc}", 7
... r"\usepackage[T1]{fontenc}", 8
... r"\usepackage{amsmath}"], 9
... "axes.labelsize": 8, 10
... "font.family": "serif", 11
... "font.serif":["Palatino"], 12
... "font.size": 8, 13
... "legend.fontsize": 8, 14
... "xtick.labelsize": 8, 15
... "ytick.labelsize": 8} 16
>>> mpl.rcParams.update(pgf_with_pdflatex) 17
>>> import matplotlib.pyplot as plt 18
>>> plt.style.use(’seaborn’) 19
>>> import seaborn as sns 20
>>> sns.set_style({"font.family":"serif", "font.serif":["Palatino"]}) 21

22
>>> import pandas as pd 23
>>> import pymc3 as pm 24

5.2 The Data

We introduce Bayesian estimation methods by using a very simple data set from
Brasoveanu and Dotlačil (2015c), which consists of reading times (RTs) associ-
ated with two quantifiers, namely every and each. The data is available in the
pyactr-book github repo—see the ‘data’ folder.1

We load the file using the read_csv method provided by pandas—see line 1
in [py2]) below.2 Line 2 in [py2] specifies that the "quant" (quantifier) variable
should be considered categorical.

1At this address: https://github.com/abrsvn/pyactr-book/blob/master/data/every_each.csv.
2If you are using Windows, you might have to modify the way you provide the path to the csv
file. Similarly, you might need to modify the path if the relative path from your current working

https://github.com/abrsvn/pyactr-book/blob/master/data/every_each.csv

86 5 Brief Introduction to Bayesian Methods and pymc3…

We can look at the shape of our data (line 3 in [py2]) and we can list the first 3
rows of the data (line 5).We see that the data consists of 347 observations (rows) with
respect to two variables (columns): "logRTresid" (residualized log-transformed
RTs) and "quant". We can also select several different rows/observations by using
the iloc (integer-based location) method (line 10): we select rows [0, 8, 18,
31], and we display the values in all the columns (:).

[py2] >>> every_each = pd.read_csv("./data/every_each.csv") 1
>>> every_each["quant"] = every_each["quant"].astype(’category’) 2
>>> every_each.shape 3
(347, 2) 4
>>> every_each.head(n=3) 5

logRTresid quant 6
0 0.056128 each 7
1 0.241384 each 8
2 0.056128 every 9
>>> every_each.iloc[[0, 8, 18, 31], :] 10

logRTresid quant 11
0 0.056128 each 12
8 0.869077 every 13
18 -0.073706 every 14
31 -0.187536 each 15

This data is part of the results of Experiment 2 (a self-paced reading experiment)
reported inBrasoveanu andDotlačil (2015c). The experiment investigates the hypoth-
esis formulated in Tunstall (1998) that the distinct scopal properties of each and every
are, at least to some extent, the consequence of an event-differentiation requirement
contributed by each. By scopal properties, we mean the preference of these quanti-
fiers to take wide scope over another quantifier in the same sentence.

Consider the examples in (1) and (2) below:

(1) A helper dyed every shirt without thinking about it.

(2) A helper dyed each shirt without thinking about it.

The quantifier phrases every/each shirt can take wide or narrow scope relative to
the indefinite a helper in subject position. On the wide scope reading, the sentences
in (1)/(2) are taken to mean that every/each shirt was dyed by a possibly different
helper. We also call this reading the inverse scope reading because the scope of the
quantifiers is the inverse of their surface order. On the narrow scope reading, also
known as the surface scope reading (for obvious reasons), the sentences in (1)/(2)
are taken to mean that the same helper dyed every/each shirt.

On the face of it, both every and each have the same meaning: they contribute
so-called universal quantificational force—as opposed to indefinites like a or some,
which contribute existential quantificational force. However, Tunstall (1998) (see
also references therein) notices that each, but not every, require a separate event for
each element it quantifies over.

For example, the sentence Jake photographed every student in the class, but
not separately is perfectly acceptable, while the minimally different sentence Jake

directory to the csv file is different. Please look online for more information about files paths in
Python 3; for example, search for “Python 3 file paths on Windows and Linux.”

5.2 The Data 87

photographed each student in the class, but not separately, where each is substituted
for every, is definitely less acceptable.

Based on contrasts like this, Tunstall (1998, 100) proposes that each contributes
a differentiation condition to the effect that “[e]ach individual object in the restrictor
set of the quantified phrase must be associated with its own subevent, in which the
predicate applies to that object, and which can be differentiated in some way from
the other subevents.”

There are many ways in which events can be differentiated from one another,
but one way, relevant for our sentences in (1)/(2) above, is for each to take inverse
scope. In that case, each shirt is dyed by a (possibly) different helper, which ensures
that each shirt-dyeing event is differentiated from all others because of the different
person doing the dyeing.

Thus, if each contributes an event-differentiation requirement, unlike every, we
expect it to have a higher preference for inverse scope than every. And since inverse
scope is known to lead to processing difficulties (Kurtzman and MacDonald 1993;
Tunstall 1998; Anderson 2004; Pylkkänen and McElree 2006 among many others),
whichmanifest themselves as increasedRTs,we expect to see higherRTs for sentence
(2) relative to (1).

In their Experiment 2, Brasoveanu and Dotlačil (2015c) test this prediction using
a moving-window self-paced reading task (Just et al. 1982). Because the experiment
included a separate manipulation, the most important regions of interest (ROIs) were
the spillover words immediately following the universal quantifier phrase. Specifi-
cally, in examples (1)/(2) above, these ROIs were the words without, thinking and
about. The data set we have just loaded in Python and assigned to the every_each
variable contains measurements collected for the third ROI about.

The RTs collected for the ROI about were transformed in a couple of ways.
Raw reading times in self-paced reading experiments are roughly between 300 and
600 ms per word. These raw reading times were first log-transformed, which yields
log RTs roughly between 5 and 7—see lines 1–4 in ([py3]) below. We discuss log
transformation/log compression in more detail in the next chapter.

In addition, following Trueswell et al. (1994), Brasoveanu and Dotlačil (2015c)
residualized the log RTs by factoring out the influence of word length and word
position. This yields residualized log RTs that are roughly between −3 and 3. In
fact, in this particular case, they fall just between −1 and 2, as we can see when we
inspect the minimum and maximum of the residualized log RTs in our data—see
lines 5–8 in [py3].
[py3] >>> np.log(300) 1

5.703782474656201 2
>>> np.log(600) 3
6.396929655216146 4
>>> np.min(every_each["logRTresid"]) 5
-0.678407840683957 6
>>> np.max(every_each["logRTresid"]) 7
1.19278354190761 8

88 5 Brief Introduction to Bayesian Methods and pymc3…

The main question we want to ask of this data set is the following: are the reading
times, specifically in the formof residualized logRTs, different for the two quantifiers
every versus each?

That is, we will model RTs as a function of quantifier. One way to model RTs
as a function of quantifier is to estimate the two means for the two quantifiers: we
can estimate the means and our uncertainty about them, that is, we estimate two full
probability distributions, one for each of the means.

But estimating the mean RTs for the two quantifiers will not give us a direct
answer to our question: is there a difference in RTs between the two quantifiers? In
a Bayesian framework, we could still answer the question given a two-mean model,
but it is more straightforward (and closer to the way frequentist estimation would be
done) to estimate the difference between the two quantifiers directly.

Thus, in our model, we estimate the mean RT for every (together with our uncer-
tainty about it), and instead of estimating the mean RT for each, we estimate the
mean difference between the every RTs and each RTs (together with our uncertainty
about it). We can still obtain our mean RT for each by starting with the mean for
every and adding to it the mean difference in RTs between the two quantifiers.

If wewant to answer our question—are the RTs different for every versus each?—
we basically look at our probability distribution for the difference in RTs and check
if 95% of the probability mass is away from 0.3

It is important to pause at this point and realize that the reasoning we are going
through here has a different structure than the kind of reasoning and arguments
linguists are familiar with. From very early on in our linguistic training, we are
presented with some data, we automatically assume there is a pattern in the data,
and we try to identify the pattern and build a theory to capture it. In contrast, our
first job as empirically-driven statistical modelers is to ask: is there really a pattern
in the data? how sure are we that we’re not hallucinating regularities/signal in what
is actually pure noise?

This kindof skepticism is actually familiar to linguists in other forms. For example,
it is never clear at the outset whether a meaning-related phenomenon (e.g., licensing
negative polarity items like any or ever) should receive a syntactic analysis (Klima
1964), which might seem the ‘obvious’ way to go, or a semantic one (Ladusaw
1979). As linguists, we know all too well that it is important to be skeptical about
the assumptions we make as we build theories.

But it is equally important to be skeptical about the assumptions we make when
we identify ‘obvious’ generalizations and patterns in the data. All data (even intro-
spective data) is ultimately behavioral data, i.e., a product of a performance system,
never a direct expression of the unobservable competence system hypothesized to be
at the ‘core’ of the performance system. As such, we need to be reasonably skeptical
about all the generalizations and patterns we think we see in the behavior of the
system.

3This is an oversimplification. See, for example, Kruschke (2011), Nicenboim and Vasishth (2016)
and references therein for more discussion of posterior distributions, credible intervals, hypothesis
testing and related issues in a Bayesian framework.

5.2 The Data 89

Therefore, our question about the quantifier data set is unpacked as follows: (i)
can we actually showwith enough credibility that the RTs actually differ between the
two quantifiers (every and each)? Assuming we can, (ii) what is the magnitude of the
difference4 andwhat is our uncertainty about that magnitude? The answer to question
(ii) should be of the form: given both our prior knowledge about the phenomenon
under discussion and the experimental data, the mean difference between the RTs
of the two quantifiers is xmean, and we’re 95% certain that the magnitude of the
difference is somewhere in the interval (xlowerlimit, xupperlimit).

Let’s now turn to specifying the actual model, and more of this will start making
sense. The model we are about to specify is called a t-test, or a linear regression with
one binary categorical predictor.

5.3 Prior Beliefs and the Basics of pymc3, matplotlib
and seaborn

ThewayBayesian estimationworks is basically as follows.We startwith a prior belief
about the quantities of interest, in our case: the RTs for every, and the difference in
RTs between each and every. ‘Prior’ beliefsmeans that these are our beliefs beforewe
see the data. Furthermore, these beliefs take the form of full probability distributions:
we say what values are possible for the quantities of interest, and in addition, we say
which of the possible values are plausible (before we see the data).

We then update these prior beliefs with the data—specifically, the data stored in
the "logRTresid" and "quant" columns in our data set. Upon exposure to the
data, we shift/update our prior beliefs in the direction of the data, and the result of
this update consists of two posterior probability distributions, one for the mean RT
for every, and the other for the difference in RTs between the two quantifiers.

Our posterior beliefs/posterior probability distributions are a weighted average of
our prior beliefs, on one hand, and the data, on the other hand. If our prior beliefs
are very strong (not the case here; see below), the posterior beliefs will reflect the
data to a smaller extent. If we have a lot of data, and the data has low variability, the
posterior beliefs will reflect the data to a larger, or even overwhelming, extent.

We have very weak prior beliefs about the quantities of interest. Let’s characterize
them. Before even looking at the specific residualized log RTs associated with each
and every, we know that self-paced reading RTs are usually between 300 and 600
ms, since participants read about 3 words per second. After log-transforming and
residualizing these RTs with respect to word length and word position, we get very
small values clustered around 0 and spanning the (−3, 3) interval (actually, the
(−2, 2) interval) most of the time.

In sum, residualized log RTs for word-by-word self-paced reading are very rarely,
if ever, larger than 3 in absolute value. Note that we derived these limits from con-
siderations about word-by-word self-paced reading experiments in general, and the

4In residualized log ms, admittedly a non-intuitive temporal unit, which we will omit from now on.

90 5 Brief Introduction to Bayesian Methods and pymc3…

various transformations we apply to the resulting raw RTs (namely, log + residual-
ization).

Therefore, a very reasonable—in the sense of very weakly constraining/very low
information—prior for the mean RT for every would be a normal (Gaussian) distri-
bution centered at 0 and with a standard deviation (which is a measure of dispersion)
of 10. This prior belief effectively says that the mean RT for every (after log trans-
formation and residualization, as we already indicated) is, as far as we are concerned
and before seeing the data, anywhere between about−30 and 30 (±3 standard devi-
ations from the mean), most likely somewhere between −20 and 20. Values below
−30 or above 30 are possible, but really unlikely.

We call this prior a very low information prior in the sense that it very weakly
constrains the range of data we expect to see whenwe finally look at the experimental
data. From prior considerations, we know that this data is very likely in the (−3, 3)
interval, and our prior very liberally allows for values in the (−30, 30) interval.

Let’s plot a normal distribution with a standard deviation of 10. We’ll take this
opportunity to introduce the basics of pymc3models. In [py4] below, we first create
a model every_each_model using the pm.Model() method (line 1).

Then, we start specifying the model components. In our case, we are simply inter-
ested in a normally distributed variable called ’normal_density’. We create
this variable with the corresponding pymc3 probability density function (line 3).
When we call this function, we need to specify the name of the variable (needed
for pymc3-internal purposes), and then provide the parameters for the probability
density function: the mean of the normal is set to 0 and the standard deviation is set
to 10.

We then ask pymc3 to sample 5000 draws from this distribution using some
samplingmagic thatwewon’tworry about,5 and save the results to a separate database
db (lines 7–9 in [py4]). We specify the type of database that will store the draws to
be Text. To save and load this type of database, we need to import two additional
convenience functions from pymc3 (lines 5–6 in [py4]).

Lines 7–9 in [py4] are commented out because we do not want to execute them.
Executing them takes a while with the default sampling procedure for pymc3.
Instead, we load the samples from a previous run of the model, as shown on lines
12–13. The samples we load here are available in the pyactr-book github repos-
itory, as are the samples (a.k.a. draws, or traces, or posterior estimates) for all the
other Bayesian models in this book.6 But you can also generate your own samples;
to do that, simply uncomment lines 7–9 and run them.
[py4] >>> every_each_model = pm.Model() 1

>>> with every_each_model: 2
... normal_density = pm.Normal(’normal_density’, mu=0, sd=10) 3
... 4
>>> from pymc3.backends import Text 5

5See Lynch (2007); Kruschke (2011); Lambert (2018) among others for detailed and clear
discussions.
6The traces/posterior samples for all the models in the book are available in the ‘data’ folder here:
https://github.com/abrsvn/pyactr-book/tree/master/data. The samples for the model under discus-
sion are available here: https://github.com/abrsvn/pyactr-book/tree/master/data/normal_trace.

https://github.com/abrsvn/pyactr-book/tree/master/data
https://github.com/abrsvn/pyactr-book/tree/master/data/normal_trace

5.3 Prior Beliefs and the Basics of pymc3, matplotlib and seaborn 91

>>> from pymc3.backends.text import load 6
>>> #with every_each_model: 7
>>> #db = Text(’./data/normal_trace’) 8
>>> #trace = pm.sample(draws=5000, trace=db, n_init=500) 9

10
>>> # we load the results / trace of a previous run 11
>>> with every_each_model: 12
... trace = load(’./data/normal_trace’) 13
... 14
>>> def generate_normal_prior_figure(): 15
... fig, ax = plt.subplots(ncols=1, nrows=1) 16
... fig.set_size_inches(5.5, 3.5) 17
... sns.distplot(trace[’normal_density’], hist=True, ax=ax) 18
... ax.set_xlabel(’Normal density, mean = 0, standard deviation = 10’) 19
... plt.tight_layout(pad=0.5, w_pad=0.2, h_pad=0.7) 20
... plt.savefig(’./figures/normal_prior.eps’) 21
... plt.savefig(’./figures/normal_prior.png’) 22
... plt.savefig(’./figures/normal_prior.pdf’) 23
... 24
>>> generate_normal_prior_figure() 25

Finally, we turn to plotting the results. We start by defining a plotting function on
line 15 in [py4]. On line 16, we initialize the figure by indicating that we will have
one plot, or ‘axis system’, which we call ax. This plot will be displayed in a grid
consisting of 1 column and 1 row (ncols=1, nrows=1); this specification is
superfluous here, but it is useful when we have more than one plot to display. The
total figure size is set to 5.5 by 3.5 in. Lines 18–19 plot the histogram of the normal
samples and label the plot accordingly. Lines 20–23 tighten up/suitably shrink all
the blank margins in the figure and save it in various formats.

As we already mentioned, this entire procedure is assembled under a function
generate_normal_prior_figure, which is called on line 25 of [py4]. The
result is provided in Fig. 5.1. As expected for a normal density centered at 0 and with
a standard deviation of 10, most of the probability mass (area under the curve) is
spread over the (−30, 30) interval, i.e., within ± 3 standard deviations of the mean.
We will use this normal density as our very weak, noncommittal prior for the mean
RT for every.

We can now turn to specifying the prior for the difference in RTs between every
and each. This difference could be positive (the mean RT for each is greater than
the one for every), negative (the mean RT for each is less than the one for every), or
0 (the mean RTs for each and every are the same). Whether 0, negative or positive,
this difference cannot be larger than 6 in absolute value.

To see this, recall that log RT residual values are roughly between −3 and 3 (and
are usually very close to 0). In the unlikely event that the mean RT for each happens
to be 3 and the one for every happens to be −3 (or the other way around), we’ll get
a difference of 6 in absolute value. This is already very unlikely, and the a priori
probability of even more extreme values for the difference in RTs is practically 0.

It is therefore reasonable to, once again, specify our prior for the difference in
RTs as a normal distribution with a mean of 0 and a standard deviation of 10.

One final remark about the plot in Fig. 5.1. The shaded area under the dark-blue
curve is probability mass and the curve itself plots probability density. That is, for
any point on the x-axis, the height of the curve at that point (i.e., the corresponding
value on the y-axis) does not plot the probability of that x-axis value: the height of

92 5 Brief Introduction to Bayesian Methods and pymc3…

−40 −20 0 20 40

Normal density, mean = 0, standard deviation = 10

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Fig. 5.1 A normal probability density

the curve does not provide the probability mass associated with that x-axis value.7

Since they are density curves, their values can exceed 1 (we will in fact see such a
case when we estimate posterior probabilities for our every/eachmodel). In contrast,
probabilities, i.e., probability masses, can never exceed 1.

5.4 Our Function for Generating the Data (The Likelihood)

Now that we specified our priors, we can go ahead and specify how (we think) nature
generated the data. For this purpose, we need to mathematically specify how RT is
a function of quantifier.

What we conjecture as our ‘data-generating’ function (technically, our likelihood
function) is that we have two mean RTs for the two quantifiers every and each. For
each of the two quantifiers, the RTs we observe are imperfect reflections of the mean
RT for that quantifier, that is, they are somewhere around the mean for that quantifier.
More specifically, the observed RTs for a quantifier are composed of the mean RT for

7There is 0 probability mass associated with any single point on the x-axis. Just as single points
on the real line do not have length, i.e., they have 0 length, single points on the real line have 0
probability associated with them. Only intervals on the real line can have length. Similarly, only
intervals can have a non-0 amount of probability mass associated with them.

The height of the curve at an x value does not indicate the probability mass at that value, but the
probability density in an infinitesimal interval around that value. That is, we take an infinitesimal
interval around the x value, we measure the probability mass sitting on top of that interval and we
divide that mass by the length of the interval. In the limit, i.e., as the length of the infinitesimal
interval around the x value goes to 0, this ratio, namely probabilitymass

interval length , gives us the probability

density at that point—and this is what is plotted by the dark-blue curves.

5.4 Our Function for Generating the Data (The Likelihood) 93

that quantifier plus some error, which is caused by our imperfect measurement, the
fact that a participant was faster pressing the space bar on one occasion than another
etc.

Plotting the RTs by quantifier will make this clearer. On line 1 in [py5] below,
we check to see how many observations we have for each quantifier. We see that
we have roughly the same number of observations for every and each—around 170,
for a total of 347 observations. We define a function to generate a plot of these 347
observations by quantifier on lines 6–16, and call this function on line 18.

[py5] >>> every_each["quant"].value_counts() 1
each 174 2
every 173 3
Name: quant, dtype: int64 4

5
>>> def generate_RTs_by_quant_figure(): 6
... fig, ax = plt.subplots(ncols=1, nrows=1) 7
... fig.set_size_inches(5.5, 3.5) 8
... g = sns.stripplot(x="quant", y="logRTresid", data=every_each,\ 9
... jitter=True) 10
... g.set_xlabel("Quantifier") 11
... g.set_ylabel("Residualized log RTs") 12
... plt.tight_layout(pad=0.5, w_pad=0.2, h_pad=0.7) 13
... plt.savefig(’./figures/RTs_by_quant.eps’) 14
... plt.savefig(’./figures/RTs_by_quant.png’) 15
... plt.savefig(’./figures/RTs_by_quant.pdf’) 16
... 17
>>> generate_RTs_by_quant_figure() 18

The plot, provided in Fig. 5.2, shows that the approx. 170 observations collected
for each are centered somewhere around 0.05, while the approx. 170 observations
collected for every are centered a little lower, around −0.05. The observations are
jittered (jitter=True on line 10 in [py5]), that is, they are not plotted on a straight
line so that we can distinguish overlapping points in the plot. The observations for
each are generated from the mean RT for each (which is, say, around 0.05) plus
some error/noise around that mean RT. The noise is pretty substantial, with observed
RTs spread between about−0.75 and 0.75. Similarly, the observations for every are
generated from the mean RT for every (which seems to be around−0.05) plus some
error/noise around that mean RT. Once again, the noise is substantial, spreading the
observed values mostly between −0.75 and 0.75.

Our job right now is to write this story up in a single formula that will describe
how the 347 RTs depend on quantifier. Furthermore, recall that we are interested in
the difference between the two quantifiers: we want to estimate it so that we can say
whether this difference is likely different from 0, i.e., whether the mean RT for each
is different from the mean RT for every, as Tunstall’s differentiation condition would
predict. To this end, we will estimate two quantities:

• the mean RT for every: RTevery
• the mean difference in RT between each and every: RTeach−every

With these two quantities in hand, we can obtain the mean RT for each in the
obvious way: RTeach = RTevery + RTeach−every.

We will now use a simple reformulation of the quant variable (called ‘dummy
coding’ of the categorical predictor variable every_each["quant"]) to be able

94 5 Brief Introduction to Bayesian Methods and pymc3…

Fig. 5.2 Plot of residualized log RTs by quantifier

to write a single formula describing how all 347 RTs are a function of the quantifier
they are associated with.

The idea is to rewrite the quant variable as taking either a value of 0 or a value
of 1, depending on whether the RTs are associated with every or each. We then
multiply this rewritten/dummy-coded quant variable with the RTeach−every difference
as follows:

(3) Formula for RT as a function of quantifier:
RT = RTevery + quant · RTeach−every + noise

a. If RT is associated with every, our dummy-coding for quant says that
quant = 0. Therefore, the RT is generated from the mean RT for every
plus some noise:
RT = RTevery + 0 · RTeach−every + noise = RTevery + noise

b. If RT is associated with each, our dummy-coding for quant says that
quant = 1. Therefore, the RT is generated from the mean RT for each
plus some noise:
RT = RTevery + 1 · RTeach−every + noise = RTeach + noise

The code for the dummy coding of the quant variable is a one-liner (line 1 in [py6]
below). This takes advantage of the vectorial nature of both data and operations in
numpy/pandas. The resulting "dummy_quant" variable, as expected, recodes
each as 1 and every as 0:

5.4 Our Function for Generating the Data (The Likelihood) 95

[py6] >>> every_each["dummy_quant"] = (every_each["quant"]=="each"). 1
astype("int") 2
>>> every_each.head(n=6) 3

logRTresid quant dummy_quant 4
0 0.056128 each 1 5
1 0.241384 each 1 6
2 0.056128 every 0 7
3 0.037743 each 1 8
4 -0.208206 every 0 9
5 -0.113990 every 0 10

We can now use the variable every_each["dummy_quant"] and the likeli-
hood function in (3) to generate synthetic datasets. In [py7] below, we set our mean
RT for every to −0.05 and our mean difference in RT to 0.1 (lines 1–2). This will
result in a mean RT of 0.05 for each. For convenience, we extract the dummy-coded
dummy_quant variable and store it separately (line 3 in [py7]).

We then assemble the means for the 347 synthetic observations we want to gen-
erate: line 4 in [py7] directly implements the likelihood function in (3). We can look
at the first 25 means thus assembled (lines 5–8 in [py7] below). For example, the
first two are mean RTs associated with each, since the first two observations in our
original data set are associated with each (see lines 5–6 in [py6] above). Their mean
RT is therefore 0.05. The third observation is associated with every since the third
observation in our original data set was associated with every (see line 7 in [py6]
above). Its mean RT is therefore −0.05. And so on.

[py7] >>> mean_every = -0.05 1
>>> mean_difference = 0.1 2
>>> quant = np.array(every_each["dummy_quant"]) 3
>>> synthetic_RT_means = mean_every + quant * mean_difference 4
>>> synthetic_RT_means[:25] 5
array([0.05, 0.05, -0.05, 0.05, -0.05, -0.05, 0.05, 0.05, -0.05, 6

0.05, -0.05, 0.05, 0.05, -0.05, -0.05, 0.05, -0.05, 0.05, 7
-0.05, -0.05, -0.05, 0.05, 0.05, 0.05, -0.05]) 8

>>> sigma = 0.25 9
>>> synthetic_RTs = np.random.normal(synthetic_RT_means, sigma) 10
>>> synthetic_RTs.round(2)[:25] 11
array([0.21, 0.01, -0.05, -0.38, 0.17, -0.31, 0.2 , 0.02, -0.06, 12

0.42, -0.41, -0.09, -0.36, -0.57, -0.13, -0.11, -0.27, 0.35, 13
-0.57, 0.06, -0.08, -0.35, 0.33, 0.02, 0.05]) 14

>>> # compare to the actual RTs in our dataset 15
>>> RTs = np.array(every_each["logRTresid"]) 16
>>> RTs.round(2)[:25] 17
array([0.06, 0.24, 0.06, 0.04, -0.21, -0.11, -0.04, 0.02, 0.87, 18

0.04, 0.09, -0.02, 0.18, -0.49, -0.04, 0.17, -0.28, -0.16, 19
-0.07, -0.18, -0.13, -0.27, 0.14, -0.34, 0.08]) 20

>>> # repeat to generate a different sample of synthetic RTs 21
>>> synthetic_RTs = np.random.normal(synthetic_RT_means, sigma) 22
>>> synthetic_RTs.round(2)[:25] 23
array([-0.21, -0.01, 0.26, 0.24, -0.15, 0.08, 0.21, -0.53, -0.15, 24

0.02, -0.38, 0.16, -0.59, 0.02, -0.17, -0.29, 0.07, -0.19, 25
-0.15, -0.01, -0.4 , -0.03, 0.58, -0.02, 0.25]) 26

The likelihood function in (3) has one final component, namely the noise: RTs
from a specific quantifier are only imperfect, noisy reflections of themean RT for that
quantifier. The noise comes from variations in the measuring equipment (keyboard
etc.), or variations in the way the participants press the space bar at different times,
or any other factor that we are not controlling for.

We generate noisy observations by drawing random numbers from a normal dis-
tribution: we use the numpy function random.normal for this purpose (line 10 in

96 5 Brief Introduction to Bayesian Methods and pymc3…

[py7] above). The mean of the normal distribution is the mean RT for one quantifier
or the other, and the standard deviation is set to 0.25, which generates noise of about
±0.75 (lines 9–10 in [py7]). The resulting RTs are randomly generated real numbers
(lines 11–14). We can compare them to the actual RTs, extracted and stored in an
independent variable RTs (lines 16–20). We see that the range of variation in the
synthetic data is pretty similar to the actual data.

Finally, if we want to synthesize more RT datasets that are similar to our actual
dataset, we can simply do another set of draws from a normal distribution centered at
−0.05 or 0.05 (depending on the quantifier) with a standard deviation of 0.25 (lines
22–26 in [py7]).

Now that we understand that the likelihood function has to incorporate some
noise, which needs to be estimated from the data, we need to set up a prior for this
noise. Reasoning again from our prior knowledge about residualized log RTs, we
know that this noise/variability in data cannot really be larger than maybe about 3.

This can be justified as follows. We know that residualized log RTs are between
about −3 and 3. Now, if we think of them as being generated from a normal distri-
bution centered somewhere in the interval (−3, 3), a standard deviation (i.e., a noise
setting) of about 3 for this normal distribution would very easily cover the interval
(−3, 3). This is because a normal distribution spreads 99% of its probability mass
within ±3 standard deviations from its mean.

So, if the normal distribution that generates noisy RTs is centered at 3 and has a
standard deviation (noise) of 3, it will spread most of its probability mass between
about −6 and 12. This will easily cover the interval (−3, 3). A similar conclusion
is reached if we assume that the normal distribution that generates noisy RTs is
centered at the other extreme of the interval, namely −3. With a standard deviation
of 3, it will spread its probability mass between about −12 and 6, once again easily
covering the interval (−3, 3), within which we know from prior considerations that
most residualized log RTs live.

Therefore, a very weak and non-committal prior for residualized log RT noise
would be a half-normal distribution centered at 0 and with a standard deviation of
10. A half-normal distribution is a normal (Gaussian) distribution centered at 0 and
‘folded over’ so that all the probability mass over negative values gets transferred
to the corresponding positive values. Half-normal distributions correctly require
noise/dispersion to be positive.

If we set the standard deviation of this half-normal prior for noise to 10, we place
practically no constraints on the actual value of the noise before we see the data: as
far as we a priori expect, the noise can be anywhere between 0 and about 30, a very
diffuse interval that allows for much larger values than 3, which we already argued
would be good enough.

However, since this prior assigns higher probabilities to lower values than to larger
values, as we can see in Fig. 5.3, we do expect the noise to be smaller rather than
larger. This makes sense: even though values larger than 3 for residualized log RT
noise are possible, such values are unlikely and they are more and more unlikely as
they get bigger and bigger.

5.4 Our Function for Generating the Data (The Likelihood) 97

Fig. 5.3 A half-normal probability density

To plot a half-normal prior, we can simulate draws from it in the same way we did
for the normal priors for the mean RT for every and the mean RT difference between
each and every. We do this in [py8] below, and plot the results in Fig. 5.3.

[py8] >>> every_each_model = pm.Model() 1
>>> with every_each_model: 2
... half_normal_density = pm.HalfNormal(’half_normal_density’, sd=10) 3
... 4
>>> from pymc3.backends import Text 5
>>> from pymc3.backends.text import load 6
>>> #with every_each_model: 7
>>> #db = Text(’./data/half_normal_trace’) 8
>>> #trace = pm.sample(draws=5000, trace=db, n_init=500) 9

10
>>> # we load the results / trace of a previous run 11
>>> with every_each_model: 12
... trace = load(’./data/half_normal_trace’) 13
... 14
>>> def generate_half_normal_prior_figure(): 15
... fig, ax = plt.subplots(ncols=1, nrows=1) 16
... fig.set_size_inches(5.5, 3.5) 17
... sns.distplot(trace[’half_normal_density’], hist=True, ax=ax) 18
... ax.set_xlabel(’Half-normal density, standard deviation = 10’) 19
... plt.tight_layout(pad=0.5, w_pad=0.2, h_pad=0.7) 20
... plt.savefig(’./figures/half_normal_prior.eps’) 21
... plt.savefig(’./figures/half_normal_prior.png’) 22
... plt.savefig(’./figures/half_normal_prior.pdf’) 23
... 24
>>> generate_half_normal_prior_figure() 25

98 5 Brief Introduction to Bayesian Methods and pymc3…

5.5 Posterior Beliefs: Estimating the Model Parameters
and Answering the Theoretical Question

With the priors and likelihood in hand, we can finally ask pymc3 to give us the
posterior distributions for the quantities of interest, namely mean_every and
mean_difference. We specify the full model as shown in [py9] below:
[py9] >>> every_each_model = pm.Model() 1

>>> with every_each_model: 2
... # priors 3
... mean_every = pm.Normal(’mean_every’, mu=0, sd=10) 4
... mean_difference = pm.Normal(’mean_difference’, mu=0, sd=10) 5
... sigma = pm.HalfNormal(’sigma’, sd=10) 6
... # likelihood 7
... observed_RTs = pm.Normal(’observed_RTs’, 8
... mu=mean_every + quant*mean_difference, 9
... sd=sigma, 10
... observed=RTs) 11
... 12
>>> #with every_each_model: 13
>>> #db = Text(’./data/every_each_model_trace’) 14
>>> #trace = pm.sample(draws=5000, trace=db, n_init=50000, njobs=4) 15

16
>>> with every_each_model: 17
... trace = load(’./data/every_each_model_trace’) 18
... 19

Our assumptions for this model—and for Bayesian models in general—fall into two
classes: (i) the assumptions we need to specify the priors, (ii) the assumptions we
need to specify the likelihood (how the data is generated). We discuss them in turn.

The priors for our model are specified on lines 4–6 in [py9].
Our prior for the mean RT for every is very weak/low information, as already

discussed. Recall that in normal and half-normal distributions, 99% of observations
fall within 3 standard deviations from themean, so the prior on line 4 allows for mean
(residualized log) RTs anywhere between−30 and 30, an extremelywide range given
that log RT residuals are very close to 0 and usually fall within the (−3, 3) interval.

Our prior for the difference in RT between each and every is similarly weak/low
information (line 5): the difference can be positive (higher mean RT for each than
every), negative (lower mean RT for each than every), or 0 (same mean RT for each
and every). The differences this prior allows for fall anywhere between −30 and
30, again an extremely wide range given that the maximum difference between two
residualized log RTs is usually at most 6 in absolute value, and commonly much
smaller.

Finally, the prior for our noise distribution on line 6 allows for values anywhere
between 0 and 30. This is a very non-committal range since the standard deviation of
residualized log RTs is usually around 1, generating a range of residualized log RTs
between −3 and 3 if these RTs are centered around 0 and approximately normally
distributed.

The likelihood (the data generation part of the model) is specified on lines 8–11
in [py9]. We indicate that we model the observed data by explicitly specifying on
line 11 that these values are observed, and providing the variable that stores these

5.5 Posterior Beliefs: Estimating the Model Parameters … 99

observed values. In this case, the observed values are stored in the variable RTs,
which we introduced on line 16 of [py7].

On line 9 of our model specification in [py9], we say that each RT is some-
where near the mean RT for the corresponding quantifier. If the RT is associated
with the quantifier every, our dummy variable quant takes the value 0, so line 9
reduces to mu=mean_every. If the RT is associated with the quantifier each, the
dummy variable quant takes the value 1, so line 9 reduces to mu=mean_every
+ mean_difference, that is, the mean RT for each.

As we already discussed above, each RT is an imperfect, noisy reflection of the
mean RT for the corresponding quantifier, so we add some normally distributed noise
to thatmeanRT to obtain the actual RT. This normally distributed noise has a standard
deviation sigma (line 10). We do not know how large the noise is, so this will be the
third parameter we estimate from the data, in addition to our parameters of primary
interest mean_every and mean_difference.

At the end of the day, our assumptions about the priors and the likelihood lead us
to using two types of probability distributions: (i) normal distributions, which come
with two parameters (mean and standard deviation) that we can tweak to rearrange
the way the probability mass is spread over the entire real line; and (ii) half-normal
distributions, which are by default assumed to cover the entire positive part of the real
line, and which come with only one parameter (standard deviation) that manipulates
the spread of probability mass over the positive real numbers.8

To summarize, we have three parameters we want to learn about from the data:

i. the mean RT for every (mean_every),
ii. the mean difference in RT between each and every (mean_difference),

and
iii. the magnitude of the noise/dispersion of the actual RTs around the mean RT

for the corresponding quantifier (sigma).

All these three parameters contribute in essential ways to the likelihood, i.e., to
the way we think the observed RT data was generated (lines 8–11 in [py9]). And
we need prior distributions for each of these three parameters (lines 4–6 in [py9]),
so that we can update the prior distributions with our observed RT data. These prior
distributions have a total of five hyperparameters (two means and three standard
deviations) that we need to set, and we have set them all to values that are very
non-committal. This is why we called them weak, low information priors.

We finally run themodel on lines 13–15 in [py9], whichmeans that we ask pymc3
to compute for us the posterior distributions for the two quantities that are of primary
interest to us, namely mean_every and mean_difference. As before, we do
not actually run the model interactively here, but load the samples from a previous
run of the model (lines 17–18). And as before, these samples are available in the
pyactr-book github repo.9

8Weassume that half-normal distributions are always obtainedby ‘foldingover’ normal distributions
centered at 0, so we do not specify a location parameter for them.
9See here: https://github.com/abrsvn/pyactr-book/tree/master/data/every_each_model_trace.

https://github.com/abrsvn/pyactr-book/tree/master/data/every_each_model_trace

100 5 Brief Introduction to Bayesian Methods and pymc3…

Fig. 5.4 Every-each RT model: posterior distributions

We then plot the resulting posterior distributions. The plotting code is provided in
[py10] below and the resulting plots are shown in Fig. 5.4. The posterior distributions
plotted in Fig. 5.4 are muchmore constrained than the very ‘loose’ prior distributions
we specified, which indicates that we learned a lot from the data. That is, these
posterior distributions mostly reflect the data and not our priors (which were very
weak).

[py10] >>> def generate_every_each_model_posteriors_figure(): 1
... fig, (ax1, ax2) = plt.subplots(ncols=2, nrows=1) 2
... fig.set_size_inches(6, 4) 3
... plot1 = sns.distplot(trace[’mean_every’], hist=True, bins=300,\ 4
... ax=ax1) 5
... plot1.set_xlim(-0.2, 0.1) 6
... ax1.set_xlabel(r"Mean RT ‘every’") 7
... plot2 = sns.distplot(trace[’mean_difference’], hist=True,\ 8
... bins=300, ax=ax2) 9
... plot2.set_xlim(-0.1, 0.2) 10
... ax2.set_xlabel(r’Mean RT difference’) 11
... plt.tight_layout(pad=0.5, w_pad=0.2, h_pad=0.7) 12
... plt.savefig(’./figures/every_each_model_posteriors.eps’) 13
... plt.savefig(’./figures/every_each_model_posteriors.png’) 14
... plt.savefig(’./figures/every_each_model_posteriors.pdf’) 15
... 16
>>> generate_every_each_model_posteriors_figure() 17

Specifically, the posterior mean for the everymean RT is around−0.05 and, after
seeing the data, we know that this mean RT is roughly between −0.1 and 0. This is
much stronger than our prior assumptions, which stated that the mean RT for every
could be anywhere between −30 and 30.

Similarly, after seeing the data, we know that the RT difference between each and
every is probably around 0.07, and we’re very confident this difference is between
about 0 and 0.15. That is, we are fairly confident that the mean RT for each is larger

5.5 Posterior Beliefs: Estimating the Model Parameters … 101

than the mean RT for every. Once again, this is much more constrained than our
prior, which countenances differences as small as −30 and as large as 30.

We can ask pymc3 to examine the posterior distribution of themeanRTdifference
and tell us precisely where the central 95% portion of the probability mass is10:

[py11] >>> mean_difference = trace[’mean_difference’] 1
>>> pm.hpd(mean_difference).round(2) 2
array([0.01, 0.12]) 3

The resulting interval is our 95% credible interval: after seeing the data, we are
95% confident that the difference in (residualized log) RTs between each and every
is positive and is somewhere between 0.01 and 0.12.

We can also compute the means and standard deviations (a.k.a. standard errors)
of these posterior distributions:

[py12] >>> mean_difference.mean().round(2) 1
0.07 2
>>> mean_difference.std().round(2) 3
0.04 4

5
>>> mean_every = trace[’mean_every’] 6
>>> mean_every.mean().round(2) 7
-0.05 8
>>> mean_every.std().round(2) 9
0.03 10

11

We see that these numbers are close to the frequentist ones we would get using a
standard function in a standard statistical software environment, e.g., the function
lm() in R:

(4) Output from R’s lm function for comparison with our Bayesian estimates:

every_each = read.csv("./data/every_each.csv") 1
every_each$quant = relevel(every_each$quant, ref="every") 2
print(summary(lm(logRTresid ˜ quant, data=every_each)), digits=2) 3
[...] 4

Estimate Std. Error [...] 5
[mean RT for every] -0.055 0.019 [...] 6
[mean RT difference] 0.070 0.028 [...] 7
[...] 8

The Bayesian and frequentist point estimates are very close, while the standard
errors (our uncertainty about these estimates) are smaller, i.e., underestimated, on
the frequentist side.

10Technically speaking, the pm.hpd function returns the 95% highest posterior density (HPD)
interval, not the central one.These intervals are very similar for posterior distribution approximations
that are basically symmetric and unimodal, like the one under consideration here. For a discussion
of the differences between these two types of posterior credible intervals (CRIs), see, for example,
Kruschke (2011).

102 5 Brief Introduction to Bayesian Methods and pymc3…

5.6 Conclusion

Bayesian methods for data analysis and cognitive modeling have two advantages,
one theoretical and one computational. The theoretical one is that Bayesian methods
are very intuitive: they mathematically encode the common-sense idea that we have
beliefs aboutwhat is plausible and (un)likely to happen in theworld, and that we learn
from experience, that is, experience/data updates these prior beliefs. To do statistical
inference or compute predictions boils down to computing posterior beliefs (i.e., prior
beliefs updated with data) and examining these posterior beliefs in various ways.

Computationally, Bayesian methods in general and pymc3 in particular give
us access to a very powerful and flexible way of empirically evaluating linguistic
theories. These theories can be faithfully and fairly directly encoded in specific
structures for the priors and for thewaywe think the data is generated (the likelihood).
We are not required to take our independently motivated linguistic theories and force
them (or parts of them) into a pre-specified statistical inference mold. The opposite
actually happens: we take our theory in all its complex and articulated glory and
embed it in a fairly direct fashion in a Bayesian model. This, in turn, enables us to
empirically evaluate it and do statistical inference about the parameters of the theory
in a straightforward way.

Being able to take mathematically specified cognitive models and embed them
in Bayesian models to empirically evaluate them will become essential in the next
chapter, when we start introducing the subsymbolic components of ACT-R. These
subsymbolic components come with a good number of real-valued parameters, and
the Bayesian methods introduced in this chapter will enable us to learn the best
settings for these parameters from the data, rather than relying on default values that
seem to be pulled out of thin air.

Equally importantly, embedding rich cognitive theories in Bayesian models also
enables us to do empirically-driven theory comparison. We can take two compet-
ing theories for the same phenomenon, collect experimental data, identify the best
parameter settings for the two theories, as well as our uncertainty about these param-
eter settings, and then compare how well the predictions made by these parameter
settings fit the data. We will in fact do this at the beginning of the next chapter, where
we compare an exponential and a power-law model of forgetting.

5.7 Appendix 103

5.7 Appendix

All the code discussed in this chapter is available on GitHub as part of the repository
https://github.com/abrsvn/pyactr-book. If you want to examine it and run it, install
pyactr (see Chap. 1), download the files and run them the same way as any other
Python script.

File ch5_code.py:

☞ https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch5_code.py.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://github.com/abrsvn/pyactr-book
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch5_code.py
http://creativecommons.org/licenses/by/4.0/

Chapter 6
Modeling Linguistic Performance

The goal of ACT-R is to provide accurate cognitive models of learning and perfor-
mance, as well as accurate neural mappings of cognitive activities. In this chapter,
we introduce the ‘subsymbolic’ declarative memory components of ACT-R. These
are essential to modeling performance, i.e., actual human behavior in experimental
tasks. We then build end-to-end models for a variety of psycholinguistic tasks—list
recall, lexical decision, (self-paced) reading—and evaluate how closely thesemodels
fit the actual data. The models we build are end-to-end in the sense that they include
explicit linguistic analyses that are primarily encoded in the production rules (i.e.,
in procedural memory), together with a realistic model of declarative memory and
simple, but reasonably realistic, vision and motor modules.

When studying performance, we are usually interested in two measures: (i) what
response people choose given some stimulus, and (ii) how much time it takes them
to make that choice, known as reaction time. In linguistics, the first measure often
appears as the “Accept–Reject” response when people judge the grammatical or
interpretational status of a sentence or a discourse. But other types of experimental
tasks also fit here, for example, responses in forced-choice tasks, lexical decision
tasks, acceptability judgment tasks etc. The second measure often encodes how
much time it takes to choose a particular response, but other options also exist, e.g.,
how much time it takes to shift eye gaze, to move a mouse, to press the spacebar to
reveal the next word etc. This chapter is dedicated to introducing the components
of ACT-R that enable us to make realistic predictions with respect to both kinds of
measures.

© The Author(s) 2020
A. Brasoveanu and J. Dotlačil, Computational Cognitive Modeling
and Linguistic Theory, Language, Cognition, and Mind 6,
https://doi.org/10.1007/978-3-030-31846-8_6

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31846-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-31846-8_6

106 6 Modeling Linguistic Performance

6.1 The Power Law of Forgetting

The main idea behind the ACT-R declarative memory architecture is that

human memory is behaving optimally with respect to the pattern of past information presen-
tation. Each item in memory has had some history of past use. For instance, our memory for
one person’s name may not have been used in the past month but might have been used five
times in the month previous to that. What is the probability that the memory will be needed
(used) during the conceived current day? Memory would be behaving optimally if it made
this memory less available than memories that were more likely to be used but made it more
available than less likely memories. (Anderson and Schooler 1991, 396)

In particular, the availability of a specific chunk stored in declarative memory,
i.e., its activation, which determines both the probability that it will be successfully
retrieved and its retrieval time/latency, is a function of the past use of that memory
chunk (among other things; more about other factors later).

To see how this is actually formalized in ACT-R, let’s examine the well-known
Ebbinghaus (1913) retention data, presented in his Chap. 7 and shown here in [py13]
below. The stimulus materials used by Ebbinghaus consisted of nonsense CVC syl-
lables, about 2300 in number. They were mixed together and then, syllables were
randomly selected to construct lists of different lengths that needed to be memorized.

The method used to memorize them was ‘learning to criterion’: Ebbinghaus
repeated the list as many times as necessary to reach a prespecified level of accu-
racy (e.g., one perfect reproduction of the list). The retention measure was ‘percent
savings’, which was computed as follows. First, a list was learned to criterion, and
Ebbinghaus counted the number of times he needed to repeat the list until that hap-
pened. Let’s say he needed to repeat the list 10 times until he could reproduce it
perfectly. He waited one day, and then he tried to see howmuch he still remembered.
The way Ebbinghaus chose to measure ‘how much’ is by seeing how many times he
needed to repeat the list on the second day until he learned it to criterion again. Let’s
say that he needed to repeat the list only 7 times on the second day. So, he saved 3
list repetitions compared to the first day, that is, he had 30% savings (10−7

10) after one
day.

[py13] >>> # loading the data 1
>>> import pandas as pd 2
>>> ebbinghaus_data = pd.read_csv(’./data/ebbinghaus_retention_data.csv’) 3
>>> ebbinghaus_data 4

delay_in_hours percent_savings 5
0 0.33 58.2 6
1 1.00 44.2 7
2 8.80 35.8 8
3 24.00 33.7 9
4 48.00 27.8 10
5 144.00 25.4 11
6 744.00 21.1 12

In [py13], we load the Ebbinghaus data from a csv file using the pandas
library (lines 2–3). The data is displayed on lines 5–12. We see that there are 7 data
points/observations (7 rows, numbered 0 through 6). The first column in the data is
the independent variable (time): it records the delay in hours that the relearning of the
syllable series took place relative to the initial learning-to-criterion time. The second

6.1 The Power Law of Forgetting 107

column is the dependent variable (the measure of activation in memory): it records
the percent savings observed for the corresponding delay in hours, i.e., the reduction
in repetitions of the target series of syllables needed to relearn it to criterion.

For completeness, we provide the summary of the Ebbinghaus data in [py14]
below. This gives us the total number of observations (7), the means for the delay in
hours and savings percentages (138.59and35.17 respectively), the standarddeviation
etc.

[py14] >>> ebbinghaus_data.describe() 1
delay_in_hours percent_savings 2

count 7.00000 7.000000 3
mean 138.59000 35.171429 4
std 271.65549 12.663690 5
min 0.33000 21.100000 6
25% 4.90000 26.600000 7
50% 24.00000 33.700000 8
75% 96.00000 40.000000 9
max 744.00000 58.200000 10

A much better way to develop an intuitive understanding of this data is to plot
it. In [py15] below, we load the visualization (plotting) libraries matplotlib and
seaborn, and specify a variety of options for them (lines 2–20). If working in the
terminal, you should probably simply load these libraries and accept their default
settings. We can now define a function to plot the data, and then call it (lines 22–57
in [py15]). The resulting 3 plots are provided in Fig. 6.1.

[py15] >>> # settings for data visualization 1
>>> import matplotlib as mpl 2
>>> mpl.use("pgf") 3
>>> pgf_with_pdflatex = {"text.usetex": True, "pgf.texsystem": "pdflatex", 4
... "pgf.preamble": [r"\usepackage{mathpazo}", 5
... r"\usepackage[utf8x]{inputenc}", 6
... r"\usepackage[T1]{fontenc}", 7
... r"\usepackage{amsmath}"], 8
... "axes.labelsize": 8, 9
... "font.family": "serif", 10
... "font.serif":["Palatino"], 11
... "font.size": 8, 12
... "legend.fontsize": 8, 13
... "xtick.labelsize": 8, 14
... "ytick.labelsize": 8} 15
>>> mpl.rcParams.update(pgf_with_pdflatex) 16
>>> import matplotlib.pyplot as plt 17
>>> plt.style.use(’seaborn’) 18
>>> import seaborn as sns 19
>>> sns.set_style({"font.family":"serif", "font.serif":["Palatino"]}) 20

21
>>> def generate_ebbinghaus_data_figure(): 22
... fig, (ax1, ax2, ax3) = plt.subplots(ncols=1, nrows=3) 23
... fig.set_size_inches(5.5, 6.3) 24
... # plot 1 25
... ax1.plot(ebbinghaus_data[’delay_in_hours’], 26
... ebbinghaus_data[’percent_savings’], 27
... marker=’o’, linestyle=’--’) 28
... ax1.set_title(’a. Non-transformed data’) 29
... ax1.set_xlabel(’Delay (hours)’) 30
... ax1.set_ylabel(’Savings (\\%)’) 31
... # plot 2 32
... ax2.plot(ebbinghaus_data[’delay_in_hours’], 33
... ebbinghaus_data[’percent_savings’], 34
... marker=’o’, linestyle=’--’) 35
... ax2.set_title(’b. Log performance (log percent savings), base 10’) 36
... ax2.set_xlabel(’Delay (hours)’) 37
... ax2.set_ylabel(’Savings (log \\%)’) 38

108 6 Modeling Linguistic Performance

(a)

(b)

(c)

Fig. 6.1 Ebbinghaus retention data

... ax2.set_yscale(’log’, basey=10) 39

... ax2.grid(b=True, which=’minor’, color=’w’, linewidth=1.0) 40

... # plot 3 41

... ax3.plot(ebbinghaus_data[’delay_in_hours’], 42

... ebbinghaus_data[’percent_savings’], 43

... marker=’o’, linestyle=’--’) 44

... ax3.set_title(’c. Log-log (log delay, log percent savings), base 10’) 45

... ax3.set_xlabel(’Delay (log hours)’) 46

... ax3.set_xscale(’log’, basex=10) 47

... ax3.set_ylabel(’Savings (log \\%)’) 48

... ax3.set_yscale(’log’, basey=10) 49

... ax3.grid(b=True, which=’minor’, color=’w’, linewidth=1.0) 50

... # clean up and save 51

... plt.tight_layout(pad=0.5, w_pad=0.2, h_pad=0.7) 52

... plt.savefig(’./figures/ebbinghaus_data.eps’) 53

... plt.savefig(’./figures/ebbinghaus_data.png’) 54

... plt.savefig(’./figures/ebbinghaus_data.pdf’) 55

... 56
>>> generate_ebbinghaus_data_figure() 57

6.1 The Power Law of Forgetting 109

The three panels in Fig. 6.1 plot the retention data in its non-transformed form
(panel a), with a logarithmically compressed y axis (panel b: we plot log percent
savings), and with both axes logarithmically compressed (panel c). We see that a
linear relation emerges in the final log-log plot, which indicates that forgetting (decay
of chunk activation in declarative memory) has a particular functional form—to
which we now turn. (The log tick marks are in base 10 for readability, although we
always work with the natural logarithm, i.e., log base e, in what follows.)

The forgetting curve in plot (a) of Fig. 6.1 is sometimes taken to reflect an under-
lying negative exponential forgetting function of the form:

(1) P = αe−βT , where:

– P is the memory-related performance measure (percent savings in the
Ebbinghaus data),

– T is the time delay since presentation (since initial learning to criterion
in our case), and

– α, β are the free parameters of the model, to be fit to the data.

But this predicts that performance should be a linear function of time if we log-
transform the performance P:

(2) log(P) = log(α) − βT , i.e., a linear function of time T with intercept log(α)

and negative slope −β

One way to intuitively think about logarithmic transformation/logarithmic com-
pression is to think about a series of evenly spaced trees that you can see on the
side of a long straight road as you look up the road. The distances between the trees
appear smaller and smaller as the trees are further and further away, until the trees
basically become one tree as the gaze approaches the horizon. The further away two
trees are from us, the smaller the distance between them seems to be.

Similarly, the larger two numbers are, the more the difference between them
is compressed: the difference between 4 and 2 is compressed much less than the
difference between 14 and 12 under the log transform. Equivalently, the larger a
number is, the higher its compression under the log transform. This is shown on
lines 3–6 in [py16] below, as well as in the plot of the log transform (for x ≥ 1) in
Fig. 6.2.

[py16] >>> import numpy as np 1
2

>>> np.log(4) - np.log(2) 3
0.6931471805599453 4
>>> np.log(14) - np.log(12) 5
0.15415067982725805 6

7
>>> def generate_log_figure(): 8
... fig, ax = plt.subplots(ncols=1, nrows=1) 9
... fig.set_size_inches(5.5, 3) 10
... x = np.arange(1, 15, 0.01) 11
... ax.plot(x, np.log(x), linestyle=’-’) 12
... #ax.set_xlim(left=1) 13
... ax.set_xlabel(r’x’) 14
... ax.set_ylabel(r’$\log(x)$’) 15

110 6 Modeling Linguistic Performance

Fig. 6.2 Plot of the log transform (for x ≥ 1)

... plt.tight_layout(pad=0.5, w_pad=0.2, h_pad=0.7) 16

... plt.savefig(’./figures/log_plot.eps’) 17

... plt.savefig(’./figures/log_plot.png’) 18

... plt.savefig(’./figures/log_plot.pdf’) 19

... 20
>>> generate_log_figure() 21

Throughout this book, when we use logarithm simpliciter without explicitly spec-
ifying the base, we always mean the natural logarithm function, i.e., log base e. We
will therefore abbreviate the natural logarithm of a number x simply as log(x) or,
dropping parentheses, log x (rather than ln x or loge x).

The idea behind the exponential model of forgetting is that, once we logarith-
mically compress performance, log performance will be a linear function of time.
However, panel (b) of Fig. 6.1 shows that this is not the case: the relationship between
the delay on the x-axis, measured in hours, and savings on the y-axis, measured in
log-transformed percentages, is still not linear.

We can use our recently acquired knowledge of Bayesian modeling with pymc3
to compare the actual observations and the predictions made by a theory that hypoth-
esizes that performance (forgetting) is an exponential function of time.

In [py17], we import the relevant libraries and then store the delay and
savings data in separate variables for convenience (lines 1–6). We then write
up the exponential model directly from the equation in (2): the likelihood function
defined on lines 15–17 says that log savings (i.e., log performance) is a linear function
of delay (with two free parameters intercept and slope), plus some normally
distributed noise with standard deviation sigma.

The hypothesis that log savings are a linear function of delay is tantamount to
saying that, if we plot the mean mu of log savings for any given delay, we obtain a
line. A line is standardly characterized in terms of an intercept and a slope (line 15
in [py17]): mu is a deterministic function of delay, given parameters intercept
and slope. The intercept corresponds to log(α) in formula (2) above, and the slope
corresponds to −β.

6.1 The Power Law of Forgetting 111

Lines 11–13 in [py17] provide low information priors for the intercept, slope,
and noise. The priors have forms familiar from the previous chapter. We set the
standard deviations for all priors to 100, which is very non-committal since the
response/dependent variable is measured in log-percent units.

Once the priors and likelihood are specified, we can run the model. We save
the result, i.e., our posterior estimates for the parameters intercept, slope and
sigma, in the variable trace.1

[py17] >>> import pymc3 as pm 1
>>> from pymc3.backends import Text 2
>>> from pymc3.backends.text import load 3

4
>>> delay = ebbinghaus_data[’delay_in_hours’] 5
>>> savings = ebbinghaus_data[’percent_savings’] 6

7
>>> exponential_model = pm.Model() 8
>>> with exponential_model: 9
... # priors 10
... intercept = pm.Normal(’intercept’, mu=0, sd=100) 11
... slope = pm.Normal(’slope’, mu=0, sd=100) 12
... sigma = pm.HalfNormal(’sigma’, sd=100) 13
... # likelihood 14
... mu = pm.Deterministic(’mu’, intercept + slope*delay) 15
... log_savings = pm.Normal(’log_savings’, mu=mu, sd=sigma, 16
... observed=np.log(savings)) 17
... 18
>>> #with exponential_model: 19
>>> #db = Text(’./data/exponential_model_trace’) 20
>>> #trace = pm.sample(draws=5000, trace=db, n_init=50000, njobs=4) 21

22
>>> with exponential_model: 23
... trace = load(’./data/exponential_model_trace’) 24
... 25

With the posterior distributions for our exponentialmodel in hand,we can compare
the predictions made by the model against the actual data to see how close the
predictions are. The predictions are stored in the variable mu. These are predicted
log savings. If we exponentiate them, we obtain predicted savings.

Furthermore, if we look at the 95% credible intervals for the predicted savings,
we can see the range of predictive variability/uncertainty in the predictions made by
the exponential model. If the actual savings fall within these credible intervals, we
can take the model to be empirically adequate. The code in [py18] below generates
two plots that enable us to empirically evaluate the exponential model. The two plots
are provided in Fig. 6.3.

[py18] >>> mu = trace["mu"] 1
2

>>> def generate_ebbinghaus_data_figure_2(): 3
... fig, (ax1, ax2) = plt.subplots(ncols=1, nrows=2) 4
... fig.set_size_inches(5.5, 4.5) 5
... # plot 1 6
... ax1.plot(delay, savings, marker=’o’, linestyle=’--’) 7
... ax1.plot(delay, np.median(np.exp(mu), axis=0), color=’red’, linestyle=’-’) 8
... ax1.set_title(’b. Log performance (blue) and exponential model estimates (red)’)9

1Recall that the traces, i.e., posterior estimates, for all the models in the book are available in
the ‘data’ folder of the pyactr-book github repo. For example, the trace for the exponential
model under consideration is available here: https://github.com/abrsvn/pyactr-book/tree/master/
data/exponential_model_trace.

https://github.com/abrsvn/pyactr-book/tree/master/data/exponential_model_trace
https://github.com/abrsvn/pyactr-book/tree/master/data/exponential_model_trace

112 6 Modeling Linguistic Performance

(a)

(b)

Fig. 6.3 Ebbinghaus retention data and the exponential forgetting model

... ax1.set_xlabel(’Delay (hours)’) 10

... ax1.set_ylabel(’Savings (log \\%)’) 11

... ax1.set_yscale(’log’, basey=10) 12

... ax1.grid(b=True, which=’minor’, color=’w’, linewidth=1.0) 13

... # plot 2 14

... yerr = [np.median(np.exp(mu), axis=0) - pm.hpd(np.exp(mu))[:, 0], 15

... pm.hpd(np.exp(mu))[:, 1] - np.median(np.exp(mu), axis=0)] 16

... ax2.errorbar(savings, np.median(np.exp(mu), axis=0), yerr=yerr, 17

... marker=’o’, linestyle=’’) 18

... ax2.plot(np.linspace(0, 100, 10), np.linspace(0, 100, 10), 19

... color=’red’, linestyle=’:’) 20

... ax2.set_title(’Exponential model: Observed vs. predicted savings’) 21

... ax2.set_xlabel(’Observed savings (\\%)’) 22

... ax2.set_ylabel(’Predicted savings (\\%)’) 23

... ax2.grid(b=True, which=’minor’, color=’w’, linewidth=1.0) 24

... # clean up and save 25

... plt.tight_layout(pad=0.5, w_pad=0.2, h_pad=0.7) 26

... plt.savefig(’./figures/ebbinghaus_data_2.eps’) 27

... plt.savefig(’./figures/ebbinghaus_data_2.png’) 28

... plt.savefig(’./figures/ebbinghaus_data_2.pdf’) 29

... 30
>>> generate_ebbinghaus_data_figure_2() 31

The plot in the top panel of Fig. 6.3 reproduces the middle panel of Fig. 6.1,
together with the line of best fit predicted by the exponential model. It is clear that
the line does not match the actual data very well.

This lack of empirical adequacy is also visible in the second plot of Fig. 6.3, which
plots the percent savings predicted by the exponential model on the y-axis against
the observed percent savings on the x-axis. The red diagonal line indicates the points
where the predictions would be exactly equal to the observed values.

6.1 The Power Law of Forgetting 113

We see that themedian predicted savings are not very close to the observed values,
especially for higher savings (associated with a short delay). Some of the points are
pretty far from the diagonal line, and some of the 95% intervals do not cross the
diagonal line at all, or barely cross it.

The fact that the points are pretty far from the diagonal line indicates that the expo-
nential model makes incorrect predictions. The fact that some of the 95% intervals
around those median predictions do not cross the diagonal line, or barely cross it,
indicates that the exponential model is not only wrong, but it is also pretty confident
about some of its incorrect predictions.

We can now fairly confidently conclude that memory performance (forgetting) is
not a negative exponential function of time. Instead, plot (c) in Fig. 6.1 shows that
performance is a power function of time. That is, performance is a linear function of
time only if both performance and time are log-transformed:

(3) log(P) = log(α) − β log(T)

(4) The power law of forgetting: P = αT−β

(final form of the forgetting function, obtained by exponentiating both sides
of (3))

A line fits the log-log (log savings-log delay) data very well. Once again, we
can set up a Bayesian model that directly implements the formula in (3), and then
examine its predictions. The code for the power lawmodel is provided in [py19], and
the code generating two plots parallel to the plots we generated for the exponential
model is provided in [py20]. The resulting plots are provided in Fig. 6.4.

[py19] >>> power_law_model = pm.Model() 1
>>> with power_law_model: 2
... # priors 3
... intercept = pm.Normal(’intercept’, mu=0, sd=100) 4
... slope = pm.Normal(’slope’, mu=0, sd=100) 5
... sigma = pm.HalfNormal(’sigma’, sd=100) 6
... # likelihood 7
... mu = pm.Deterministic(’mu’, intercept + slope*np.log(delay)) 8
... log_savings = pm.Normal(’log_savings’, mu=mu, sd=sigma, 9
... observed=np.log(savings)) 10
... 11
>>> #with power_law_model: 12
>>> #db = Text(’./data/power_law_model_trace’) 13
>>> #trace = pm.sample(draws=5000, trace=db, n_init=50000, njobs=4) 14

15
>>> with power_law_model: 16
... trace = load(’./data/power_law_model_trace’) 17
... 18

[py20] >>> mu = trace["mu"] 1
>>> def generate_ebbinghaus_data_figure_3(): 2
... fig, (ax1, ax2) = plt.subplots(ncols=1, nrows=2) 3
... fig.set_size_inches(5.5, 4.5) 4
... # plot 1 5
... ax1.plot(delay, savings, marker=’o’, linestyle=’--’) 6
... ax1.plot(delay, np.median(np.exp(mu), axis=0), color=’red’, linestyle=’-’) 7
... ax1.set_title(’c. Log-log plot (blue) and power law model estimates (red)’) 8
... ax1.set_xlabel(’Delay (log hours)’) 9
... ax1.set_xscale(’log’, basex=10) 10
... ax1.set_ylabel(’Savings (log \\%)’) 11
... ax1.set_yscale(’log’, basey=10) 12
... ax1.grid(b=True, which=’minor’, color=’w’, linewidth=1.0) 13

114 6 Modeling Linguistic Performance

(a)

(b)

Fig. 6.4 Ebbinghaus retention data and a power forgetting function

... # plot 2 14

... yerr = [np.median(np.exp(mu), axis=0) - pm.hpd(np.exp(mu))[:, 0], 15

... pm.hpd(np.exp(mu))[:, 1] - np.median(np.exp(mu), axis=0)] 16

... ax2.errorbar(savings, np.median(np.exp(mu), axis=0), yerr=yerr, 17

... marker=’o’, linestyle=’’) 18

... ax2.plot(np.linspace(0, 100, 10), np.linspace(0, 100, 10), 19

... color=’red’, linestyle=’:’) 20

... ax2.set_title(’Power law model: Observed vs. predicted savings’) 21

... ax2.set_xlabel(’Observed savings (\\%)’) 22

... ax2.set_ylabel(’Predicted savings (\\%)’) 23

... ax2.grid(b=True, which=’minor’, color=’w’, linewidth=1.0) 24

... # clean up and save 25

... plt.tight_layout(pad=0.5, w_pad=0.2, h_pad=0.7) 26

... plt.savefig(’./figures/ebbinghaus_data_3.eps’) 27

... plt.savefig(’./figures/ebbinghaus_data_3.png’) 28

... plt.savefig(’./figures/ebbinghaus_data_3.pdf’) 29

... 30
>>> generate_ebbinghaus_data_figure_3() 31

The top plot in Fig. 6.4 reproduces the log-log plot in the third panel of Fig. 6.1,
together with the line of best fit predicted by the power law model of forgetting. We
see that the model predictions match the data very well.

This is further confirmed by the second plot in Fig. 6.4. The points are almost
perfectly aligned with the diagonal. That is, the savings predicted by the power law
model are very close to the observed savings.

Furthermore, the confidence intervals aroundmost predictions are so tight that that
we do not see any segments extending outward from the plotted points. That is, the

6.1 The Power Law of Forgetting 115

power law model makes correct predictions, and it is furthermore highly confident
about the predictions it makes (with somewhat less confidence for higher savings).

We conclude that the better model for the Ebbinghaus forgetting data is a power
law model, and not an exponential one.

6.2 The Base Activation Equation

The ACT-R base activation equation in (5) directly reflects the power law of forget-
ting:

(5) ACT-R base activation: Bi = log

(
n∑

k=1

t−d
k

)
.

Equivalently (exponentiating both sides): eBi =
n∑

k=1
t−d
k = t−d

1 + t−d
2 + · · · +

t−d
n

The base activation Bi of a chunk i in declarative memory is a log-transformed
measure of performance. So the actual measure of performance is eBi , and eBi is
a power function of the times tk since the chunk was presented. ‘Presentation’ in
ACT-R really means two things: (i) the chunk was created for the first time, for
example, because the human (or the model) was confronted with a new fact, or (ii)
the chunk was re-created. Re-creating most often happens when the human (or the
model) correctly recalls a chunk, after which the chunk is stored again in memory.

Memory-related performance eBi on a specific chunk i at a specific timeof retrieval
from memory tnow is the sum of t−d

k , for all k presentations of the chunk, where k
varies from 1 to the total number of chunk presentations n. For each presentation k,
tk is the period of time elapsed between the time of presentation k and the time of
retrieval tnow. That is, tk is the same as the delay variable in the Ebbinghaus data.
The negative exponent −d (decay) is the equivalent of the −β slope parameter in
our log-log (power-law) model of the Ebbinghaus data.

The basic intuition behind the base activation equation in (5) is that

at anypoint in time,memories vary in how likely they are to be needed and thememory system
tries to make available those memories that are most likely to be useful. The memory system
can use the past history of use of a memory to estimate whether the memory is likely to be
needed now. This view sees human memory in some sense as making a statistical inference.
However, it does not imply that memory is explicitly engaged in statistical computations.
Rather, the claim is that whatever memory is doing parallels a correct statistical inference.
(Anderson and Schooler 1991, 400)

What memory is inferring is activation, which reflects “need probability”: the
probability that we will need a particular chunk now. The basic assumption, already
developed in Anderson (1990), is that chunks (facts in the declarative memory) are
considered in order of their need probabilities until the need probability of a chunk

116 6 Modeling Linguistic Performance

is so low that it is not worth trying to retrieve that chunk anymore—i.e., the chunk’s
activation is below a retrieval threshold.

This description of what declarative memory does when it retrieves chunks is
serial, but the actual retrieval process is formalized as a parallel process in which
chunks are simultaneously accessed, and the one with the highest activation is
retrieved (if the activation exceeds the threshold).

Crucially, this theory of declarative memory derives specific predictions about
the relationship between activation, which is an unobserved quantity reflecting need
probability, and observable/measurable quantities: recall latency (how long retrieving
a fact takes) and recall accuracy (what is the probability of a successful retrieval).

The key to understanding the connection between activation on one hand, and
recall latency and accuracy on the other hand, is to understand the specific way in
which activation reflects need probability. The statement in (6) below is left rather
implicit in Anderson (1990) and Anderson and Schooler (1991):

(6) Activation Bi is the logit (log odds) transformation of need probability:
Bi = log(oi).
Thus, exponentiated activation eBi , which is the actual measure of perfor-

mance, is the needoddsoi of chunk i :2 eBi is the odds that chunk i is needed .

Summarizing, the base-level activation equation in (5) says that exponentiated
activation eBi , which encodes the ‘need odds’ of chunk i (the odds that chunk i is
needed at the time of retrieval tnow), is a power function of time. This power function

has two components,
n∑

k=1
and t−d

k , which formalize the following:

n∑
k=1

: individual presentations 1 through n of a chunk i have a strengthening impact

on the need odds of chunk i ; a presentation k additively increases the previous
need odds for chunk i

– these impacts are summed up to produce a total strength/total need odds for
chunk i ;

t−d
k : the strengthening impact of a presentation k on the total need odds for chunk
i is a power function of time t−d

k , where tk is the time elapsed since presentation
k

– that is, tk is the delay, i.e., the period of time elapsed between the time of pre-
sentation k and the time of retrieval tnow;

– raising the delay tk to the −d power (the decay) produces the power law of
forgetting.

The parameter d in the base activation equation is usually set to 1
2 , so the equation

simplifies to:

2Recall that odds are a deterministic function of probability: oi = pi
1−pi

, where pi is the ‘need

probability’ of chunk i , i.e., the probability that chunk i is needed at the retrieval time tnow .

6.2 The Base Activation Equation 117

(7) Base-level learning equation (simplified: d = 0.5): Bi = log

(
n∑

k=1
t
− 1

2
k

)
=

log

(
n∑

k=1

1√
tk

)
.

Let’s work through an example. Assume we have the following chunk of type
word in declarative memory, repeated from Chap. 2, and represented in both graph
and AVM form:

(8) word (Bi)car �car�

noun

sg

form meaning

category

number

(9)

word
(
Bi

)

⎡
⎢⎢⎢⎣
form: car

meaning: �car�

category: noun

number: sg

⎤
⎥⎥⎥⎦

Assume this chunk is presented 5 times, once every 1.25 s, starting at time 0 s.
We want to plot its base-level activation for the first 10 s.

In [py21] below, we define a base_activation function. Its inputs are the
vector of presentation times for the chunk (pres_times—the first argument of the
function), and also the vector consisting of the moments of time at which we want
to compute the activation (moments—the second argument of the function). You
can think of these moments of time as potential retrieval times. The output of the
base_activation function is the vector base_act of base-activation values
at the corresponding moments of time.

• line 2: we initialize the base activation base_act: we set it to be a long vector
of 0s, as long as the number of moments we want to compute the activation for;

• line 3: the for loop on lines 3–6 in [py21] computes the actual activation: for
every point idx (short for ‘index’) at which we want to compute the activation,
we do several things, discussed below;

• line 4: we identify the moment in time at which we should compute the activa-
tion, namely moments[idx]; we identify the presentation times that precede
this moment, namely pres_times<moments[idx], since they are the only
presentations contributing to base activation at this moment in time; we retrieve
these presentation times and store them in the variable past_pres_times;

118 6 Modeling Linguistic Performance

• lines 5–6: with these past presentation times in hand, we compute base level acti-
vation following the base level equation in (7); first, we compute the time inter-
vals since those past presentations: moments[idx]—past_pres_times;
then we take the square root of these intervals np.sqrt(...) and then, the
reciprocal of those square roots 1/np.sqrt(...); finally, we sum all those
reciprocals np.sum(...);

• lines 7–9: now, the vector base_act stores exponentiated activations; to get to
the actual activations, we need to take the log of the quantities currently stored
in base_act; since log(0) is undefined, we identify the non-0 quantities in
base_act (line 7), take the log of those quantities and replace them with their
logs (lines 8–9).

[py21] >>> def base_activation(pres_times, moments): 1
... base_act = np.zeros(len(moments)) 2
... for idx in range(len(moments)): 3
... past_pres_times = pres_times[pres_times<moments[idx]] 4
... base_act[idx] = \ 5
... np.sum(1/np.sqrt(moments[idx] - past_pres_times)) 6
... non_zero_activations = np.not_equal(base_act, 0) 7
... base_act[non_zero_activations] = \ 8
... np.log(base_act[non_zero_activations]) 9
... return base_act 10
... 11
>>> pres_times = np.linspace(0, 5000, 5)/1000 12
>>> pres_times 13
array([0. , 1.25, 2.5 , 3.75, 5.]) 14
>>> moments = np.arange(10000)/1000 15
>>> moments 16
array([0.000e+00, 1.000e-03, 2.000e-03, ..., 9.997e+00, 9.998e+00, 17

9.999e+00]) 18
>>> base_act = base_activation(pres_times, moments) 19
>>> base_act 20
array([0. , 3.45387764, 3.10730405, ..., 0.62436509, 0.6242921 , 21

0.62421912]) 22

On line 12 in [py21], we generate a vector of 5 presentation times evenly spaced
between 0 and 5000ms. As shown on line 14, these presentation times are at 0, 1.25,
2.5, 3.75 and 5s. On line 15, we generate a vector of themoments in time at which we
want to compute the activation: wewant to see the ebbs and flows of activation for the
first ten seconds, andwewant to see this everyms, sowe generate a vectorwith 10000
numbers—from 1 to 10000ms (lines 17–18). Finally, we compute the base activation
relative to these moments and presentation times using our base_activation
function.

We can now plot the result: the code for the plot is provided in [py22] below, and
the plot itself is provided in Fig. 6.5.

[py22] >>> def generate_base_activation_figure(): 1
... fig, ax = plt.subplots(ncols=1, nrows=1) 2
... fig.set_size_inches(5.5, 3) 3
... ax.plot(moments, base_act, linestyle=’-’) 4
... ax.plot(pres_times, np.ones(5) * -0.3, ’ro’) 5
... ax.set_title(’Base activation (blue) and 5 presentations (red)’) 6
... ax.set_xlabel(’Time (s)’) 7
... ax.xaxis.set_major_locator(mpl.ticker.MultipleLocator(1)) 8
... ax.set_ylabel(’Base activation (logits)’) 9
... #plt.xticks(rotation=45) 10
... plt.tight_layout(pad=0.5, w_pad=0.2, h_pad=0.7) 11
... plt.savefig(’./figures/base_activation.eps’) 12

6.2 The Base Activation Equation 119

Fig. 6.5 Base activation as a function of time (10 s, 5 presentations)

... plt.savefig(’./figures/base_activation.png’) 13

... plt.savefig(’./figures/base_activation.pdf’) 14

... 15
>>> generate_base_activation_figure() 16

We see that the activation of the chunk spikes after each presentation and then
drops as a power function of time until the next presentation/spike. We also see
that the maximum activation (the height of the spikes) slowly increases with each
presentation, just as the decay of activation becomes more and more mild. After the
fifth presentation, the activation of the chunk decreases pretty slowly, and even in
the long term (at 10 s), its activation is higher than the activation it had shortly after
the first presentation (say, at 500ms). Thus, after repeated presentations, we can say
that the chunk has been retained in ‘long-term’ memory.

What Fig. 6.5 shows is that forgetting + rehearsal is an essential part of remember-
ing. The model captures the common observation that cramming for an exam never
works long term (the activation of the newly learned facts decreases very steeply after
the first presentation), while properly spaced rehearsals or practice lead to long-term
retention.

To conclude this section, we note that ACT-R does not distinguish between short-
term and long-termmemory. Both of them are distinct fromworking memory, which
can be thought of as the state of the buffers at any given time. Modeling memory
as a power-function of time generates the proper short-term memory behavior (after
one presentation), as well as the proper long-term memory behavior (after a series
of presentations).

120 6 Modeling Linguistic Performance

6.3 The Attentional Weighting Equation

In addition to base activation, a chunk’s activation depends on the context in which
it is needed. What counts as “context” within the ACT-R cognitive architecture?
Context for cognitive processes is the information that is instantaneously available
to the procedural module: all the buffers and the chunks that reside in them (basically,
working memory).3

We know that chunks consist of slot-value pairs. To capture the role of context,
ACT-R assumes that any chunk V that appears as the value of some slot in a buffer
spreads activation to (i) chunks in declarative memory that have V as one of their
values, and (ii) chunks in declarative memory that are content-identical to V , i.e.,
they consist of the same set of slot-value pairs as V . This context-driven boost in
activation for chunks in declarative memory is known as spreading activation.

An example will help shed more light on the workings of spreading activation.
Suppose that only one buffer carries a chunk, say, the imaginal buffer. And the chunk
in the imaginal buffer is the representation of the word car. We assume that the chunk
has four slots: form,meaning, category and number. Each of these slots, in turn,
has a chunk as its value: the form, the interpretation, the syntactic category and the
morphological number, respectively. Each of these values comes with a weight, as
shown in (10).

(10)

word

⎡
⎢⎢⎢⎣
form: car (W1)

meaning: �car� (W2)

category: N (W3)

number: sg (W4)

⎤
⎥⎥⎥⎦

• the form car has weight W1

• the meaning �car� has weight W2

• the syntactic category N has weight W3

• the number specification sg has weight W4.

Any chunk i in declarative memory that shares values with the imaginal chunk
(10)4 receives spreading activation proportional to (∝) the weights Wj (for j ∈
{1, 2, 3, 4}) of the values that chunk i has in common with the imaginal chunk.

That is, chunk i receives an activation boost just by virtue of containing any of the
four values in (10), i.e., the form car (W1), �car� (W2), N (W3) or sg (W4). Intuitively,
sharing a value with a context chunk (like the car chunk in the imaginal buffer)

3This is sometimes called “the general context”. Besides the general context, there is also a specific
context, relevant for partial matching. Partial matching is available in pyactr, but it is not covered
in this book. See Lebiere (1999) for a detailed discussion of partial matching and an example of
how it can be applied to cognition and learning.
4Or that consists of the same slot-value pairs, but we ignore this case for expositional simplicity.

6.3 The Attentional Weighting Equation 121

‘connects’ chunk i in declarative memory to the context chunk. Activation can now
spread/flow along this connection, and this spreading activation is proportional to
the weight Wj (in symbols: ∝ Wj) of the connecting value.

Note that these values are themselves chunks, but we will continue to refer to
them as values and explicitly call ‘chunk’ only the chunk in declarative memory
that receives spreading activation, and the context chunk that is the source of the
spreading activation.

We keep insisting that spreading activation is proportional to a weightWj (∝ Wj),
but not identical to it, because chunk i in declarative memory does not simply addWj

to its activation. Every weight Wj , or source activation, is scaled by an associative
strength S ji , and it is the product Wj · Sji that gets added to the activation of chunk
i .

Intuitively, we can think of this associative strength as the strength (or the resis-
tance, if you will) of the connection between chunk i (the activation-receiving chunk
in declarative memory) and the context chunk that is the source of spreading acti-
vation. Every value shared between chunk i in declarative memory and the context
chunk ‘creates’ a connection along which activation Wj can spread/flow, but this
connection has a strength/resistance Sji specific to the value j that ‘created’ the
connection and to the activation-receiving chunk i .

In our specific example, we have four weights/source activationsW1,W2,W3,W4

and four corresponding associative strengths S1i , S2i , S3i , S4i .
Associative, or ‘connection’, strength is basically ameasure of how predictive any

specific value in a context chunk is of chunk i . This idea of ‘predictive’ association
will make more sense in a moment when we introduce the concept of fan, and will be
further clarified in Chap. 8, where we discuss and model the classic fan experiment
in Anderson (1974).

In our example, the form car has weight W1, but we don’t simply add that to the
base activation Bi of our chunk i in declarative memory. Instead, we scale it by the
associative strength S1i , which is the strength of the connection created by the value
car (which resides in the form slot of the imaginal buffer) and our chunk i (which
resides in declarative memory, and which has the same value car in one of its slots).
Thus, the activation boost spreading to chunk i in declarative memory from the value
car in the imaginal buffer is given by the product W1S1i .

The resulting total activation Ai for any chunk i in declarative memory will
therefore be the sum of its base activation Bi (which reflects its past history of usage)
and whatever spreading activation it gets from the cognitive context, which in our
example is restricted to the imaginal buffer. When activation spreads along all four
values of the imaginal chunk (that is, chunk i in declarative memory has all these
four values in its slots), we have:

(11) Ai = Bi + W1S1i + W2S2i + W3S3i + W4S4i

How are we to set the weights and the associative strengths? One answer that
immediately comes to mind is: empirically. We set some low-information/vague
priors over the weights and the associative strengths and infer them from suitable

122 6 Modeling Linguistic Performance

experimental data. This is in fact what we will do in Chap. 8. For now, we will simply
discuss some reasonable default values.

Every chunk in a buffer that spreads activation is assumed to have a total source
activation W that gets evenly distributed among the values that reside in the slots
of that chunk. W is by default set to 1. In our example, this would mean that W1 =
W2 = W3 = W4 = 1

4 .

(12) Default value for source activation: Wj = W
n , where:

• j goes from 1 to the number of slots n that carry a value;
• W is by default set to 1.

Let’s turn now to the associative strengths Sji , where i is the chunk in declarative
memory that receives spreading activation, and j , which varies from 1 to n, is a value
in the cognitive context buffer that spreads activation (this buffer has n slots that carry
a value). For these associative strengths Sji , we want to capture the intuition that:

• the association should be 0 if j does not associate with i (it is not predictive of
i in any way),

• it should be high if j uniquely associates with the chunk i (because j is then
highly predictive of i), which would happen if there is no other chunk in declar-
ative memory that is associated with j , and finally,

• the association strength should decrease as more and more chunks in declarative
memory are associated with j , since j becomes less predictive of any of these
chunks.

This intuition is captured by the following formula (see Anderson and Schooler
1991; Anderson 2007):

(13) Sji ≈ log prob(i | j)
prob(i)

In words, the strength of association between value j in a context buffer that
spreads activation and chunk i in declarative memory that receives activation is
approximately the log probability of needing chunk i from memory conditional on
the fact that value j is present in the buffer, ‘normalized’ by the probability that
chunk i is unconditionally needed.

Formally, this is the pointwise mutual information (pmi) between (i) the event
that chunk i is needed/requested from declarative memory and (ii) the event that j
is a value in the activation-spreading context buffer, i.e., a chunk in one of the slots
of that context buffer:

(14) Pointwise mutual information between two events i, j :
pmi(i, j) = log prob(i, j)

prob(i)prob(j) = log prob(i | j)
prob(i) = log prob(j |i)

prob(j)

As the definition in (14) above shows, pmi is a symmetric measure of association
between single events (not an expectation, like mutual information). It can have both
negative and positive values, and it is 0 if the events are independent. Understanding
association strengths Sji in terms of the pmi between the declarativememory chunk i

6.3 The Attentional Weighting Equation 123

and the value j in the cognitive context makes intuitive sense: strength of association
is a measure of how predictive the contextual value j is of the need to retrieve chunk
i from memory. See also Appendix A.3 in Reitter et al. (2011) for a short discussion.

ACT-R has developed away to estimate the values in (13). First, for cases in which
i and j are not associated in any way, i.e., they are independent, the joint probability
prob(i, j) is the product of the marginals prob(i)prob(j), so:

(15) Sji = pmi(i, j) = log prob(i, j)
prob(i)prob(j) = log prob(i)prob(j)

prob(i)prob(j) = log 1 = 0

To put it differently, if i and j are independent, the contextual value j is not pre-
dictive at all of the need to retrieve chunk i from declarative memory, so prob(i | j) =
prob(i, j)
prob(j) = prob(i)prob(j)

prob(j) = prob(i). Therefore, the contextual value j does not boost
the activation of chunk i in any way, and to ensure that no activation spreads, we
zero out the ‘connection’ strength Sji = log prob(i | j)

prob(i) = log prob(i)
prob(i) = log 1 = 0.

If i and j are not independent, i.e., there is an association between them, so j has
some predictive value with regards to the need-probability of chunk i , the common
estimate for prob(i | j) is as follows:
(16) prob(i | j) = 1

fan j
, where:

• fan j is the number of chunks associated with j in declarative memory,
i.e.,

• fan j is the number of chunks that have j as a value in one of their slots.

The intuition behind this common estimate is that a value j in the cognitive context
is equally predictive of any chunk in declarative memory that it is associated with.
Basically, in the past, whenever we had value j in the cognitive context, we were
equally likely to need to retrieve any of the declarative memory chunks associated
with j . This kind of assumption is unrealistic in a naturalistic, ‘ecologically valid’
setting, but it is probably reasonable in the context of a counterbalanced experiment.

A common estimate for prob(i) is:

(17) prob(i) = 1
|dm| , where:

• |dm| is the size of declarativememory (dm): the number of chunks present
in dm.

Again, this is extremely unrealistic since it assumes that all the chunks in declara-
tive memory have the same history of past usage (or no history of past usage), so they
have the same probability of being needed/retrieved. This estimate makes sense as
a flat uniform prior used for convenience, perhaps in an experimental setting where
frequentist and Bayesian posterior estimates of need probabilities for experimental
items are intended to be identical.

With these two assumptions in place, associative strength Sji can be estimated as
follows:

(18) Sji = log |dm|
fan j

= log |dm| − log fan j .

124 6 Modeling Linguistic Performance

Note how the dependency on a specific declarative memory chunk i disappears
because of the (unrealistic) uniformity assumptions built into the prob(i | j) and
prob(i) estimates.

It is hard to estimate the size of declarative memory, so the minuend log |dm| is
often treated as a free (hyper)parameter S, with the requirement that S should be
larger than log fan j , for any value j . If this was not so, association could be negative
in some cases, i.e., in some cases, association strengthwould yield negative spreading
activation, decreasing (inhibiting) base activation for some items rather than simply
failing to boost it.

In sum, the final form for associative strength that is commonly used in ACT-R
modeling is as follows:

(19) Associative strength equation between a value j and a chunk i :

Sji =
⎧⎨
⎩

S − log fan j if i and j are associated, i.e., i = j or j is a value of i

0 otherwise
where:

• S is the maximum associative strength, a free (hyper)parameter.

Putting this together, we arrive at the activation equation in (20). This shows how
spreading activation from just one buffer affects the total activation of elements in
declarative memory. Extending to more than one buffer is easy: we just sum up the
spreading activation from all the buffers, as shown in (21).

(20) Activation equation (simplified to one buffer): Ai = Bi +
m∑
j=1

Wj Sji ,

for any chunk i in declarative memory and all values j of the chunk in the
buffer.
This equation has three major components:

a. Base-level learning equation: Bi = log

(
n∑

k=1
t−d
k

)
= log

(
n∑

k=1

1√
tk

)
(since

usually d = 0.5), where tk is the time since the k-th practice / presentation
of chunk i .

b. Attentional weight equation: see (12)

c. Associative strength equation: see (19)

(21) Activation equation (generalized to all buffers): Ai = Bi +
n∑

k=1

mk∑
j=1

Wkj S ji ,

for any chunk i in declarative memory, all buffers k and all values j of the
chunk present in buffer k, where the chunk in buffer k has mk slots.
This equation has the same three major components as the simpler one in
(20) above. Differences:

a. We sum over all buffers k, from 1 to n buffers in the cognitive context.

6.3 The Attentional Weighting Equation 125

b. The weights / source activations Wkj are indexed with both the value j
that is their source, as well as the buffer k where value j is located.

To understand this a little better, think of the typical scenario in which spreading
activations, i.e., source activations scaled by associative strengths, are used. The
values j we typically consider are values stored in the slots of the imaginal or the
goal chunk. These buffers drive the cognitive process, so they provide a crucial part
of the cognitive context in which we might want to retrieve items from memory.

When we have a goal or an imaginal chunk, we associatively bring to salience,
i.e., spread activation to, chunks in declarative memory that are associated with
the current imaginal or goal chunk, since these declarative memory chunks might
be needed. We operationalize this ‘association’ between a chunk in the cognitive
context and a chunk i in declarative memory in terms of the chunks being content
identical (consisting of the same same set of slot-value pairs) or sharing some value
j in some of their slots.

This essentially results in increasing the activation of those declarative memory
chunks that are related to the current cognitive context, i.e., ultimately, that are
potentially relevant to the current stage of the cognitive process we are involved in.
The associative strength Sji is really the probability that chunk i is relevant given a
cognitive context in which we attend to the value j .

One intuitive way to think about the activation of chunks in declarative memory
and the additive relation between base activation and spreading activation is to imag-
ine declarative memory was a sea of darkness with small rafts, i.e., chunks, floating
everywhere on it. Each raft has a small light, and the brightness of that light indicates
its total activation: the brighter that light is, the easier the raft is to find and grab—that
is, we can retrieve it more accurately and more quickly.

The light on each raft is powered by two power sources. One of them is a recharge-
able battery stored on the raft itself (well, it’s more like a capacitor, but let’s ignore
this). This reflects base activation, i.e., the history of previous usages of a chunk.
Every time we use a chunk (retrieve a raft), we plug its ‘local battery’ in for a quick
charge. Immediately after that, the battery will have more power, so the light will be
brighter.

The second source of power that can increase the brightness of the light on a raft
is the current cognitive context, specifically the values held in the buffers. If these
values are also stored on some of the rafts in declarative memory (that is, they are
the values of some of the features of those chunks), they can act as wires delivering
extra power to the lights on the rafts.

Let’s focus on a specific chunk in some buffer in our cognitive context. Each value
j in that chunk has a set amount of battery power (these are the source activations,
i.e., the Wj values), and that power gets distributed to all the rafts in declarative
memory that also store that value. This immediately predicts that the more rafts a
value in the cognitive context is connected with—in ACT-R parlance, the higher the
‘fan’ of a value—, the less power it will transmit to each individual raft. This ‘fan
effect’ is discussed in detail in Chap. 8.

126 6 Modeling Linguistic Performance

The amount of power/activation that ‘spreads’ from the goal/imaginal buffer (or
any buffer in the cognitive context that we decide to spread activation from) depends
not only on the ‘battery power’ Wj of each value j , but also on the specific ‘wires’
connecting the buffer and the rafts/chunks in declarative memory that share that
value. Different wires have different ‘resistance’ characteristics Sji , and the extra
power boost Wj is modulated by the ‘resistance’/strength of the connection.

Let us go through an example. Suppose we have the word car in the imaginal
buffer and our declarative memory consists of two chunks x and y that are singular
nouns (say, book and pen) and one chunk z that is a plural noun (say, books). The
singular nouns x, y have two values in common with the car chunk in the imaginal
buffer, namely the singular number and the noun category. The plural noun z has
only one value in common with the car chunk, namely, the noun category.

The activation of the plural noun z is calculated in (22) below. Recall that j are
the values of the car chunk in the imaginal buffer, and j = 1 for the form slot, j = 2
for the meaning slot, j = 3 for the syntactic category slot and j = 4 for the number
morphology slot. Since there are 4 total slots in the imaginal buffer chunk, the source
activations are all set to 1

4 (see (12) above, with W = 1, n = 4).
Turning to association strengths, we note that only the value in the syntactic cate-

gory slot (i.e., noun/N) spreads activation. This means that the association strengths
for all the other values are zero, i.e., S1z = S2z = S4z = 0. The fan of the value in
the syntactic category slot, namely fan3, is 4, since this value is N and there are
four nouns total in declarative memory: x, y, z and, we assume, also the car chunk
currently in the imaginal buffer.

The calculation, therefore, proceeds as follows:

(22) Az = Bz +
m∑
j=1

Wj Sjz

= Bz + W1S1z + W2S2z + W3S3z + W4S4z
= Bz + 1

4 · S1z + 1
4 · S2z + 1

4 · S3z + 1
4 · S4z

= Bz + 1
4 · 0 + 1

4 · 0 + 1
4 · (S − log fan3) + 1

4 · 0
= Bz + 1

4 · (S − log 4)

In contrast, the activation of the singular noun x proceeds as shown in (23) below.
This time, the singular receives spreading activation both from the syntactic category
value (N) and from the number specification (sg).

The activation spreading from the number value is higher than the one spreading
from the syntactic category value because there are 4 nouns total (fan3 = 4), but
only 3 of them are singular (fan4 = 3). This makes intuitive sense: values that appear
only in handful of chunks are more predictive of these chunks and should boost their
activationmore than values that aremore frequent and, therefore, less discriminatory.

(23) Ax = Bx +
m∑
j=1

Wj Sjx

= Bx + W1S1z + W2S2z + W3S3x + W4S4x
= Bz + 1

4 · S1z + 1
4 · S2z + 1

4 · S3x + 1
4 · S4x

= Bx + 1
4 · 0 + 1

4 · 0 + 1
4 · (S − log fan3) + 1

4 · (S − log fan4)
= Bx + 1

4 · (S − log 4) + 1
4 · (S − log 3)

6.4 Activation, Retrieval Probability and Retrieval Latency 127

6.4 Activation, Retrieval Probability and Retrieval Latency

Now that we have a formal model of activation with its two components, namely:

• base activation that encodes the effects of prior use on memory, and
• spreading activation that encodes contextual effects

we can turn to how we can predict human performance based on activation.5

Recall that the two behavioral measures we are trying to predict are (i) the prob-
ability of selecting a particular response, specifically of retrieving a chunk from
memory, and (ii) the latency of selecting a response, specifically the time taken by
the retrieval process. The relevant equations are provided in (24) and (25) below.

(24) Probability of retrieval equation: Pi = 1

1+e− Ai−τ
s

, where:

• s is the noise parameter and is typically set to about 0.4
• τ is the retrieval threshld, i.e., the activation at which we have a chance-

level (0.5) retrieval probability6

(25) Latency of retrieval equation: Ti = Fe− f Ai , where:

• F is the latency factor (basically, an intercept on log time scale)
• f is the latency exponent (a slope on log time scale)7

In addition to the activation Ai of chunk i , these equations have a few parameters.
The threshold parameter τ in the probability of retrieval equation (24) and the latency
factor F in the (25) vary from model to model, but there is a general relationship
between them, provided in (26).

(26) F ≈ 0.35eτ , i.e., the retrieval latency at threshold is approximately 0.35 s/350
ms8

To understand the two equations in (24) and (25) a bit better, recall our discussion
of base activation, and the important remark that activation Ai is really the log of the
need-odds of a particular chunk i . That is, Ai is the logit (log odds) transformation
of the need-probability of chunk i .

5Note that these two components of activation have roles similar to the model M and the variable
assignment g parameters of the interpretation function �·�M,g in formal semantics. The model M
is parallel to base activation as it encodes more permanent, context-invariant information, while
the variable assignment g is parallel to spreading activation as it encodes contextually-sensitive
information of a more transient nature.
6When Ai = τ , we have: Pi = 1

1+e− τ−τ
s

= 1
1+e0

= 1
2 .

7On log time scale, we have: log Ti = log(Fe− f Ai) = log F − f Ai .
8When Ai = τ and f is set to its default value of 1, we have: Ti = Fe−Ai = Fe−τ ≈ 0.35eτ e−τ =
0.35.

128 6 Modeling Linguistic Performance

The need-probability of chunk i is just the probability that chunk i is the
one needed to satisfy the current memory retrieval request. Talking about need-
probability is interchangeable with talking about need-odds, or activation, which is
just need-logits.

In (27) below, we show how we can compute need-odds and activation (need-
logits) if we are given the need-probability pi of chunk i . In (28), we show how we
can compute need-odds and need-probability if we are given the activation Ai (i.e.,
we are given the need-logits Ai) for chunk i .

(27) Given the need-probability pi for chunk i , we have:

– need-odds oi = pi
1−pi

– need-logits / activation Ai = log oi = log pi
1−pi

(28) Given the activation / need-logits Ai for chunk i , we have:

– need-odds oi = eAi

– need-probability pi = oi
1+oi

= eAi
1+eAi

;

equivalently, pi = 1
1+ 1

oi

= 1
1+ 1

eAi

= 1
1+e−Ai

The very last equation in (28) shows how to compute need-probability pi when
we are given activation (need-logits) Ai . But this is exactly the equation we used to
obtain probability of retrieval in (24) above. The only difference is that, in (24), we
add two parameters, the threshold τ and the noise s, which enable us to make the
model more realistic/flexible so that we can fit different kinds of data well.

Thus, the probability of retrieval equation immediately follows from the fact that
we take activation to encode the log-odds (logit) transformation of need-probability.

The latency of retrieval equation in (25) is equally intuitive. Ignoring the param-
eters F and f , i.e., setting them to 1 (incidentally, 1 is the default value for f), we
have that:

(29) Ti = e−Ai = 1
eAi

= 1
oi
(if we set F = f = 1)

That is, the retrieval latency for chunk i is inversely proportional to the need-odds
of i . The higher the need-odds for chunk i , the less time it will take to retrieve it. The
lower the need-odds for chunk i , the more time it will take to retrieve it.

The need odds for a chunk i are high if the chunk has been used a lot and/or
recently (this comes from base activation), and the chunk is highly relevant given the
current cognitive context (this comes from spreading activation). It therefore makes
sense that such a chunk would be easy/fast to retrieve: it was retrieved a lot and/or
recently, and it is strongly associated with what the cognitive process is currently
attending to.

Finally, modeling retrieval times/latencies as inversely proportional to need-odds
makesmathematical sense.While probabilities take values in the interval [0, 1], odds
take values in the interval [0,∞), i.e., in the set of positive real numbers (and 0),
which is the same interval in which reaction times/latencies also take values.

6.4 Activation, Retrieval Probability and Retrieval Latency 129

Let’s now work through an example. We will plot the probability and latency
of retrieval for the same hypothetical case as the one in Fig. 6.5 above, assuming
the activation of the carLexeme chunk under consideration is just its base-level
activation. We set the parameters as follows:

• noise s = 0.4
• threshold τ = 0.3
• latency factor F = 0.47
• latency exponent f = 1.

Note that according to the equation in (26), F ≈ 0.35e0.3 ≈ 0.35 × 1.35 ≈ 0.47
s, which is what we set our F value to.9 Of course, we pulled the values for these
parameters out of thin air for this particular example. In general, we want to use sta-
tistical inference (e.g., Bayesian methods with pymc3) to estimate these parameters
from the data, and we will do exactly this when we model lexical decision tasks in
the next chapter (Chap. 7). But we set the parameters to these (more or less default)
values for the current example.

In [py23], we use the previously computed vector base_act of base activations
to compute the probabilities of retrieval and the latencies of retrieval for the 10 s we
are interested in. We then plot these three curves (activation, retrieval probability,
retrieval latency). The code for the plot is provided in [py24], and the plots are
provided in Fig. 6.6.

[py23] >>> s = 0.4 1
>>> tau = 0.3 2
>>> F = 0.47 3
>>> f = 1 4
>>> prob_retrieval = 1 / (1 + np.exp(-(base_act - tau)/s)) 5
>>> prob_retrieval 6
array([0.3208213 , 0.99962368, 0.99910542, ..., 0.69230396, 0.69226509, 7

0.69222622]) 8
>>> latency_retrieval = F * np.exp(-f*base_act) 9
>>> # latency of retrieval in ms 10
>>> (latency_retrieval * 1000).astype("int") 11
array([470, 14, 21, ..., 251, 251, 251]) 12
>>> threshold_prob_scale = 1 / (1 + np.exp(-(tau-tau)/s)) # =1/(1+1) 13
>>> # it’s 1/2, i.e., 50% probability when activation is at threshold 14
>>> threshold_prob_scale 15
0.5 16
>>> threshold_latency_scale = F * np.exp(-tau) 17
>>> # time to retrieve in ms when activation is at threshold 18
>>> (threshold_latency_scale * 1000).astype("int") 19
348 20

[py24] >>> def generate_prob_latency_figure(): 1
... fig, (ax1, ax2, ax3) = plt.subplots(ncols=1, nrows=3, sharex=True) 2
... fig.set_size_inches(5.8, 8.3) 3
... # plot 1 4
... ax1.plot(moments, base_act, linestyle=’-’) 5
... ax1.plot(pres_times, np.ones(5) * -0.3, ’ro’) 6
... ax1.plot(moments, np.ones(len(moments)) * tau,\ 7
... linestyle=’--’, color=’black’) 8
... ax1.annotate(’Threshold’, xy=(8, tau - 0.26), size=10) 9
... ax1.set_title(’Activation (blue),\ 10
... threshold (black) and 5 presentations (red)’) 11

9Note that this value is close to F = 0.46 s in Vasishth et al. (2008, 692), and it is pretty far from
F = 0.14 s in Lewis and Vasishth (2005, 382).

130 6 Modeling Linguistic Performance

... ax1.set_ylabel(’Activation (logits)’) 12

... # plot 2 13

... ax2.plot(moments, prob_retrieval, linestyle=’-’) 14

... ax2.plot(pres_times, np.zeros(5), ’ro’) 15

... ax2.plot(moments, np.ones(len(moments)) * threshold_prob_scale,\ 16

... linestyle=’--’, color=’black’) 17

... ax2.annotate(’Threshold’, xy=(8, threshold_prob_scale - 0.067),\ 18

... size=10) 19

... ax2.set_title(’Retrieval probability (blue), \ 20

... threshold (black) and 5 presentations (red)’) 21

... ax2.set_ylabel(’Probability of retrieval’) 22

... # plot 3 23

... ax3.plot(moments, latency_retrieval, linestyle=’-’) 24

... ax3.plot(pres_times, np.ones(5) * -0.03, ’ro’) 25

... ax3.plot(moments, np.ones(len(moments)) * threshold_latency_scale,\ 26

... linestyle=’--’, color=’black’) 27

... ax3.annotate(’Threshold’, xy=(8, threshold_latency_scale - 0.037),\ 28

... size=10) 29

... ax3.set_title(’Retrieval latency (blue), \ 30

... threshold (black) and 5 presentations (red)’) 31

... ax3.set_xlabel(’Time (s)’) 32

... ax3.set_ylabel(’Latency of retrieval (s)’) 33

... # clean up and save 34

... plt.tight_layout(pad=0.5, w_pad=0.2, h_pad=0.7) 35

... plt.savefig(’./figures/prob_latency_figure.eps’) 36

... plt.savefig(’./figures/prob_latency_figure.png’) 37

... plt.savefig(’./figures/prob_latency_figure.pdf’) 38

... 39
>>> generate_prob_latency_figure() 40

In Fig. 6.6, we plot the threshold τ as an interrupted black line in every plot:

• in the top panel, we plot its raw value (0.3) on the activation (logit) scale;
• in the middle panel, the threshold is at 50% probability, as intended given that
activation at threshold level should yield even odds of retrieval (1/1; chance
level);

• in the bottom panel, the threshold is at about 350ms, which is the time of retrieval
when activation is at threshold level; this is actually determined by the constant
0.35 (350ms) we used in (26).

Figure6.6 shows that, as activation increases above threshold after the fourth
and fifth presentation/rehearsal of the carLexeme chunk (see the top panel in the
figure), retrieval accuracy increases above chance (see the plot in the middle panel)
and the retrieval becomes faster and faster (retrieval time decreases below 340ms;
see plot in bottom panel).

Remarkably, the ACT-R account of declarative memory unifies two separate mea-
sures (retrieval accuracy and retrieval latency) under one quantity: activation. Fur-
thermore, activation can be independently derived if we know, or can reasonable
conjecture:

• the pattern of previous use for a chunk—this will give us the base activation
component;

• the cognitive context—this will give us the spreading activation component.

In the following chapter, we will apply this model to lexical access and we will
evaluate how well the ACT-R model of memory accounts for both accuracy and
latency in lexical decision tasks, as well as latencies in self-paced reading experi-
ments.

6.4 Activation, Retrieval Probability and Retrieval Latency 131

Fig. 6.6 Activation, retrieval probability and retrieval latency as a function of time

132 6 Modeling Linguistic Performance

6.5 Appendix

All the code discussed in this chapter is available on GitHub as part of the repository
https://github.com/abrsvn/pyactr-book. If you want to examine it and run it, install
pyactr (seee Chap. 1), download the files and run them the same way as any other
Python script.

File ch6_code.py:

☞ https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch6_code.py.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://github.com/abrsvn/pyactr-book
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch6_code.py
http://creativecommons.org/licenses/by/4.0/

Chapter 7
Competence-Performance Models for
Lexical Access and Syntactic Parsing

In Chap. 4, we introduced a simple lexical decision task and a simple left-corner
parser. The models we introduced in that chapter might be sufficient with respect to
the way they simulate interactions with the environment, but they are too simplistic
in their assumptions about memory, since memory retrievals are not dependent on
any parameters of the retrieved word. In this chapter, wewill improve on bothmodels
by incorporating the ACT-R model of declarative memory we just introduced in the
previous chapter.

We start with a discussion of word frequency and the way it modulates lexical
decision (Sect. 7.1). We then build several ACT-R models for lexical-decision tasks
that incorporate the subsymbolic declarative memory components introduced in the
previous chapter and take into account word frequency in a theoretically motivated
way (Sects. 7.2–7.4). In Sect. 7.5, we do the same for a left-corner parser.

7.1 The Log-Frequency Model of Lexical Decision

One very robust parameter affecting latencies and accuracies in lexical decision tasks
is frequency (Whaley 1978). In fact, frequency effects have been found not just in
lexical decision tasks, but in many if not all tasks that involve some kind of lexical
processing (Forster 1990b; Monsell 1991). These frequency effects have a specific
functional form: since Howes and Solomon (1951), it is accepted that lexical access
can be well approximated as a log-function of frequency.

Modeling lexical access in terms of log-frequency provides a good, but not perfect,
fit to the data. Murray and Forster (2004) studied the role of frequency in detail
and identified various issues with the log-frequency model. The data consisted of

© The Author(s) 2020
A. Brasoveanu and J. Dotlačil, Computational Cognitive Modeling
and Linguistic Theory, Language, Cognition, and Mind 6,
https://doi.org/10.1007/978-3-030-31846-8_7

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31846-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-31846-8_7

134 7 Competence-Performance Models for Lexical Access and Syntactic Parsing

Table 7.1 Frequency bands of words used in Murray and Forster (2004) (Exp. 1); frequency
reported in number of tokens per 1 million words

Group Frequency
range

Mean
frequency

Latency (ms) Accuracy (%) Example word

1 315–197 242.0 542 97.22 Guy

2 100–85 92.8 555 95.56 Somebody

3 60–55 57.7 566 95.56 Extend

4 42–39 40.5 562 96.3 Dance

5 32–30 30.6 570 96.11 Shape

6 24–23 23.4 569 94.26 Besides

7 19 19.0 577 95 Fit

8 16 16.0 587 92.41 Dedicate

9 14–13 13.4 592 91.67 Robot

10 12–11 11.5 605 93.52 Tile

11 10 10.0 603 91.85 Between

12 9 9.0 575 93.52 Precedent

13 7 7.0 620 91.48 Wrestle

14 5 5.0 607 90.93 Resonate

15 3 3.0 622 84.44 Seated

16 1 1.0 674 74.63 Habitually

collected responses and response times in a lexical decision task using words from
16 frequency bands, summarized in Table7.1.1

Using the RT latencies from Murray and Forster (2004), let us build a log-
frequencymodel and evaluate the discrepancies between the predictions of themodel
and the data. We first store the data in two variables freq (mean frequency) and rt
(reaction time/latency; measured in s) (Fig. 7.1).

[py25] >>> import matplotlib as mpl 1
>>> mpl.use("pgf") 2
>>> pgf_with_pdflatex = {"text.usetex": True, "pgf.texsystem": "pdflatex", 3
... "pgf.preamble": [r"\usepackage{mathpazo}", 4
... r"\usepackage[utf8x]{inputenc}", 5
... r"\usepackage[T1]{fontenc}", 6
... r"\usepackage{amsmath}"], 7
... "axes.labelsize": 8, 8
... "font.family": "serif", 9
... "font.serif":["Palatino"], 10
... "font.size": 8, 11
... "legend.fontsize": 8, 12
... "xtick.labelsize": 8, 13
... "ytick.labelsize": 8} 14

1Example words in Table7.1 are based on the Corpus of Contemporary American English (COCA;
http://corpus.byu.edu/coca/), specifically the list available at http://www.wordfrequency.info/files/
entriesWithoutCollocates.txt, which lists frequencies of words of 450 million words total (as of
March 7, 2017). The chosen example word was one of the closest one to the mean frequency listed
in the same row. These were not the words used in the actual experiment—Murray and Forster
(2004) controlled for other parameters, e.g., word length while manipulating word frequency.

http://corpus.byu.edu/coca/
http://www.wordfrequency.info/files/entriesWithoutCollocates.txt
http://www.wordfrequency.info/files/entriesWithoutCollocates.txt

7.1 The Log-Frequency Model of Lexical Decision 135

Fig. 7.1 Log-frequency model estimates and observed RTs

>>> mpl.rcParams.update(pgf_with_pdflatex) 15
>>> import matplotlib.pyplot as plt 16
>>> plt.style.use(’seaborn’) 17
>>> import seaborn as sns 18
>>> sns.set_style({"font.family":"serif", "font.serif":["Palatino"]}) 19
>>> import numpy as np 20
>>> import pandas as pd 21
>>> import pymc3 as pm 22
>>> from pymc3.backends import Text 23
>>> from pymc3.backends.text import load 24

25
>>> freq = np.array([242, 92.8, 57.7, 40.5, 30.6, 23.4, 19, 26
... 16, 13.4, 11.5, 10, 9, 7, 5, 3, 1]) 27
>>> rt = np.array([542, 555, 566, 562, 570, 569, 577, 587, 28
... 592, 605, 603, 575, 620, 607, 622, 674])/1000 29
>>> accuracy = np.array([97.22, 95.56, 95.56, 96.3, 96.11, 94.26, 30
... 95, 92.41, 91.67, 93.52, 91.85, 93.52, 31
... 91.48, 90.93, 84.44, 74.63])/100 32

We can now build a Bayesian model. We are thoroughly familiar with this kind
of code, so we include it in [py26] below without any further comments:

[py26] >>> log_freq_model = pm.Model() 1
>>> with log_freq_model: 2
... # priors 3

136 7 Competence-Performance Models for Lexical Access and Syntactic Parsing

... intercept = pm.Normal(’intercept’, mu=0, sd=300) 4

... slope = pm.Normal(’slope’, mu=0, sd=300) 5

... sigma = pm.HalfNormal(’sigma’, sd=300) 6

... # likelihood 7

... mu = pm.Deterministic(’mu’, intercept + slope*np.log(freq)) 8

... observed_rt = pm.Normal(’observed_rt’, mu=mu, sd=sigma, 9

... observed=rt) 10

... 11
>>> #with log_freq_model: 12
>>> #db = Text(’./data/log_freq_model_trace’) 13
>>> #trace = pm.sample(draws=5000, trace=db, tune=15000, 14
>>> #n_init=200000, njobs=4) 15

16
>>> with log_freq_model: 17
... trace = load(’./data/log_freq_model_trace’) 18
... 19

We can now plot the estimates of the log-frequency model:

[py27] >>> mu = trace["mu"] 1
>>> def generate_log_freq_figure(): 2
... fig, (ax1, ax2) = plt.subplots(ncols=1, nrows=2) 3
... fig.set_size_inches(5.5, 5.5) 4
... # plot 1 5
... ax1.plot(freq, rt, marker=’o’, linestyle=’’) 6
... ax1.plot(freq, mu.mean(axis=0), color=’red’, linestyle=’-’) 7
... ax1.set_title(’Observed (blue) \& predicted (red) RTs\ 8
... against log frequency’) 9
... ax1.set_xlabel(’Log frequency (log of \# tokens/1 million words)’) 10
... ax1.set_xscale(’log’, basex=10) 11
... ax1.set_ylabel(’RTs (s)’) 12
... ax1.grid(b=True, which=’minor’, color=’w’, linewidth=1.0) 13
... # plot 2 14
... yerr=[mu.mean(axis=0)-pm.hpd(mu)[:,0], 15
... pm.hpd(mu)[:,1]-mu.mean(axis=0)] 16
... ax2.errorbar(rt, mu.mean(axis=0), yerr=yerr, 17
... marker=’o’, linestyle=’’) 18
... ax2.plot(np.linspace(0.5, 0.7, 10), np.linspace(0.5, 0.7, 10), 19
... color=’red’, linestyle=’:’) 20
... ax2.set_title(’Log frequency model: Observed vs. predicted RTs’) 21
... ax2.set_xlabel(’Observed RTs (s)’) 22
... ax2.set_ylabel(’Predicted RTs (s)’) 23
... ax2.grid(b=True, which=’minor’, color=’w’, linewidth=1.0) 24
... # clean up and save 25
... plt.tight_layout(pad=0.5, w_pad=0.2, h_pad=1.9) 26
... plt.savefig(’./figures/log_freq_model_figure.eps’) 27
... plt.savefig(’./figures/log_freq_model_figure.png’) 28
... plt.savefig(’./figures/log_freq_model_figure.pdf’) 29
... 30
>>> generate_log_freq_figure() 31

The plots show that the log-frequency model gets the middle values right, but it
tends to underestimate the amount of time needed to access words in the extreme
frequency bands—both low frequency (associatedwith highRTs) and high frequency
(associated with low RTs). Murray and Forster (2004) take this as an argument for
a specific information retrieval mechanism, the Rank Hypothesis (see Forster 1976,
1992), but as they note, other models of retrieval could similarly improve data fit.
One such model treats frequency effects as practiced memory retrieval, which is
commonly assumed to be a power function of time in the same way that memory
performance is (Newell and Rosenbloom 1981; Anderson 1982; Logan 1990).

7.2 The Simplest ACT-R Model of Lexical Decision 137

7.2 The Simplest ACT-R Model of Lexical Decision

Practicedmemory retrieval in ACT-R crucially relies on the power-functionmodel of
declarative memory. The power function is used to compute (base) activation based
on the number of practice trials/‘rehearsals’ of a word (see (5) in Chap. 6), which
in turn is used to compute latency and accuracy for retrieval processes (see (25) and
(24) in Chap. 6).

For any word, the number of rehearsals that contribute to its base activation are
crucially determined by its frequency. There are other factors that determine the
number and timing of the rehearsals, but we will assume a simple model here: the
number of rehearsals is exclusively determined by frequency. We will also assume,
for simplicity, that presentations of a word are linearly spaced in time.

To be specific, let’s consider a 15-year old speaker. How can we estimate the time
points at which awordwas used in language interactions that the speaker participated
in?Onceweknow these timepoints,we can compute the base activation for thatword,
which in turn will make predictions about retrieval latency and retrieval accuracy that
we can check against the Murray and Forster (2004) data in Table7.1.

We know the lifetime of the speaker (15 years), so if we know the total number of
words an average 15-year old speaker has been exposed to, we can easily calculate
how many times a particular word was used on average, based on its frequency.
Once we find out how many times a word with a specific frequency was presented
to our speaker during their lifetime, we can then present the word at linearly spaced
intervals during the life span of the speaker (we use linearly spaced intervals for
simplicity).

A good approximation of the number of words a speaker is exposed to per year
can be found in Hart and Risley (1995). Based on recordings of 42 families, Hart and
Risley estimate that children comprehend between 10 million and 35 million words
a year, depending to a large extent on the social class of the family. This amount
increases linearly with age.

According to the Hart and Risley (1995) study, a 15-year old has been exposed to
anywhere between 50 and 175 million words total. For simplicity, let’s use the mean
of 112.5 million words as the total amount of words a 15-year old speaker has been
exposed to. This is a very conservative estimate because we ignore production, as
well as the linguistic exposure associated with mass media.

The roughness of our estimate is not an issue for our purposes since we are
interested in the relative effect of frequency, not its absolute effect. We do not want
to predict how much time the retrieval of a word from one frequency band requires,
but how much time a word requires compared to a word from another frequency
band.

In [py28] below, we first compute the number of seconds in a year, and then the
total number of seconds in the life span of the 15-year old speaker we’re modeling
(lines 1–2). The function time_freq defined on lines 3–9 takes themean frequency
vector freq in [py25] above and generates a schedule of linearly spaced word
rehearsals/presentations for words from the 16 frequency bands studied by Murray

138 7 Competence-Performance Models for Lexical Access and Syntactic Parsing

and Forster (2004). The schedule of rehearsals covers the entire life span of our
15-year old speaker.

[py28] >>> SEC_IN_YEAR = 365*24*3600 1
>>> SEC_IN_TIME = 15*SEC_IN_YEAR 2
>>> def time_freq(freq): 3
... max_idx = np.int(np.max(freq) * 112.5) 4
... rehearsals = np.zeros((max_idx, len(freq))) 5
... for i in np.arange(len(freq)): 6
... temp = np.arange(np.int((freq[i]*112.5))) 7
... temp = temp * np.int(SEC_IN_TIME/(freq[i]*112.5)) 8
... rehearsals[:len(temp),i] = temp 9
... return(rehearsals.T) 10
... 11

On line 4 in [py28], we initialize our rehearsal schedule in the matrix
rehearsals. This matrix has as many rows as the number of rehearsals for the
most frequent word band: np.max(freq) gives us the maximum frequency in
words per million, which we multiply by 112.5 million words (the total number of
words our 15-year old speaker has been exposed to). The rehearsals matrix has
16 columns: as many columns as the frequency bands we are interested in.

The for loop on lines 6–9 in [py28] iterates over the 16 frequency bands and,
for each frequency band, it does the following. On line 7, we identify the total
number of rehearsals for frequency band i throughout the life span of the speaker
(freq[i]*112.5) and generate a vector with as many positions as there are
rehearsals. On line 8, at each position in that vector, we store the time of a rehearsal
in seconds. The result is a vector temp of linearly spaced rehearsal times that we
store in our full rehearsals matrix (line 9).

These rehearsal times can also be viewed as time periods since rehearsals if we
reverse the vector (recall thatwe need time periods since rehearsalswhenwe compute
base activation). But we don’t need to actually reverse the vector since we will have
to sum the time periods to compute activation, and summation is commutative.

Finally, we return the full rehearsals matrix on line 10, in transposed form
because of the way we will use it to compute base activation (see below).

With this function in hand, we compute a rehearsal schedule for all 16 frequency
bands on line 3 of [py29] below. We store the matrix in a theano variable called
time. The theano library, which we import on lines 1–2, enables us to do com-
putations with multi-dimensional arrays efficiently, and provides the computational
backbone for the Bayesian modeling library pymc3. We need to access it directly
to be able to compute activations from the rehearsal schedule stored in the time
variable.

[py29] >>> import theano 1
>>> import theano.tensor as tt 2
>>> time = theano.shared(time_freq(freq), ’time’) 3

Now that we have the rehearsal schedule, we can implement the lexical decision
model:

[py30] >>> lex_dec_model = pm.Model() 1
>>> with lex_dec_model: 2
... # prior for base activation 3
... decay = pm.Uniform(’decay’, lower=0, upper=1) 4

7.2 The Simplest ACT-R Model of Lexical Decision 139

... # priors for latency 5

... intercept = pm.Uniform(’intercept’, lower=0, upper=2) 6

... latency_factor = pm.Uniform(’latency_factor’, lower=0, upper=5) 7

... # priors for accuracy 8

... noise = pm.Uniform(’noise’, lower=0, upper=5) 9

... threshold = pm.Normal(’threshold’, mu=0, sd=10) 10

... # compute activation 11

... scaled_time = time ** (-decay) 12

... def compute_activation(scaled_time_vector): 13

... compare = tt.isinf(scaled_time_vector) 14

... subvector = scaled_time_vector[(1-compare).nonzero()] 15

... activation_from_time = tt.log(subvector.sum()) 16

... return activation_from_time 17

... activation_from_time, _ = theano.scan(fn=compute_activation, 18

... sequences=scaled_time) 19

... # latency likelihood 20

... mu_rt = pm.Deterministic(’mu_rt’, intercept +\ 21

... latency_factor*tt.exp(-activation_from_time)) 22

... rt_observed = pm.Normal(’rt_observed’, mu=mu_rt, sd=0.01, 23

... observed=rt) 24

... # accuracy likelihood 25

... odds_reciprocal = tt.exp(-(activation_from_time - threshold)/noise) 26

... mu_prob = pm.Deterministic(’mu_prob’, 1/(1 + odds_reciprocal)) 27

... prob_observed = pm.Normal(’prob_observed’, mu=mu_prob, sd=0.01, 28

... observed=accuracy) 29

... 30
>>> #with lex_dec_model: 31
>>> #db = Text(’./data/lex_dec_model_trace’) 32
>>> #trace = pm.sample(draws=10000, trace=db, 33
>>> #n_init=200000, njobs=6) 34

35
>>> with lex_dec_model: 36
... trace = load(’./data/lex_dec_model_trace’) 37
... 38

Computing activations from the rehearsal schedule requires us to define a sepa-
rate function compute_activation—see lines 13–17 in [py30]. This function
assumes that the matrix scaled_time has been computed (line 12): to compute
this matrix, we take our rehearsal schedule stored in the time matrix (time periods
since rehearsals for all frequency bands) and raise these time periods to the -decay
power. The result is a matrix that stores scaled times, i.e., the base activation boost
contributed by each individual word rehearsal for all frequency bands.

Some of the values in the time matrix were 0. In the scaled_time matrix,
they become infinity.Whenwe compute final activations, wewant to discard all these
infinity values, which is what the compute_activation function does. It takes
the 16 vectors of scaled times (for the 16 frequency bands) as inputs one at a time.
Then, it identifies all the infinity values (line 14). Then, it extracts the subvector of
the input vector that contains only non-infinity values (line 15). With this subvector
in hand, we can sum the scaled times and take the log of the result to obtain our final
activation value (line 16), which the function returns to us.

With the function compute_activation in hand, we need to iterate over the
16 vectors of scaled times for our 16 frequency bands and compute the 16 resulting
activations by applying the compute_activation function to each of these
vectors of scaled times. However, theano-based programming is purely functional,
which means there are no for loops. We therefore use the theano.scanmethod

140 7 Competence-Performance Models for Lexical Access and Syntactic Parsing

on lines 18–19 of [py30] to iteratively apply the compute_activation function
to each of the 16 vectors in the scaled_time matrix.2

The likelihoods of the lexical decision model in [py30] (lines 21–24 and 26–29 in
[py30]) are direct implementations of the retrieval latency and retrieval probability
equations in (25) and (24). We omit the latency exponent in the latency likelihood
(see mu_rt on lines 21–22) because we assume it is set to its default value of 1.
We will see that this value is not appropriate, so we will have to move to a model in
which the latency exponent is also fully modeled.

Note that the dispersions around the mean RTs and mean probabilities are very
minimal—we set the standard deviations on lines 23 and 28 to 0.01. The reason is that
our observed values for both RTs and accuracy are not raw values—they are already
means, namely, the empirical means for the 16 frequency bands reported in Murray
and Forster (2004). As such, we assume these means are very precise reflections of
the underlying parameter values.

We could model these standard deviations explicitly, but we decided not to since
we have only 32 observations here (16 for RTs, 16 for accuracies), and we are
trying to estimate a fairly large number of parameters already:decay,intercept,
latency_factor, noise and threshold. Low information priors for these
parameters are specified on lines 4, 6–7 and 9–10 in [py30].3

The only new parameter in this model relative to the ACT-R probability and
latency equations in (24) and (25) is the intercept parameter we use in the
latency likelihood (line 21 in [py30]). The intercept is supposed to absorb the time
in the lexical decision task associated with operations other than memory retrieval:
focusing visual attention, motor planning etc.

With the model fully specified, we sample from the posterior distributions of the
parameters. Once we obtain the samples, we are ready to plot them to evaluate how
well the model fits the data (we take the first 2000 samples to be the burn-in and drop
them; see, for example, Kruschke (2011) for more discussion of burn-in, thinning
etc.). The code for the plots is provided in [py31] and the resulting plots are shown
in Fig. 7.2.

[py31] >>> trace = trace[2000:] 1
>>> mu_rt = pd.DataFrame(trace[’mu_rt’]) 2
>>> yerr_rt = [(mu_rt.mean()-mu_rt.quantile(0.025))*1000, 3
... (mu_rt.quantile(0.975)-mu_rt.mean())*1000] 4

5
>>> mu_prob = pd.DataFrame(trace[’mu_prob’]) 6
>>> yerr_prob = [(mu_prob.mean()-mu_prob.quantile(0.025)), 7
... (mu_prob.quantile(0.975)-mu_prob.mean())] 8

9
>>> def generate_lex_dec_model_figure(): 10

2For more information about functional programming, see, for example, https://en.wikipedia.org/
wiki/Functional_programming andAbelson et al. (1996). Purely functional programming languages
(Haskell is probably the most well-known example nowadays) should be easy to understand for
formal semanticists, given their familiarity with λ-calculus.
3By low information priors, we mean priors that do not assign high probability to particular narrow
regions in the parameter space. If some regions are less probable than others, that is because their
lower probability can be determined from considerations that are independent of experimental data
we are trying to model.

https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming

7.2 The Simplest ACT-R Model of Lexical Decision 141

Fig. 7.2 Lexical decision model: estimated and observed RTs and probabilities

... fig, (ax1, ax2) = plt.subplots(ncols=1, nrows=2) 11

... fig.set_size_inches(5.5, 5.5) 12

... # plot 1: RTs 13

... ax1.errorbar(rt*1000, mu_rt.mean()*1000, yerr=yerr_rt, marker=’o’, 14

... linestyle=’’) 15

... ax1.plot(np.linspace(500, 800, 10), np.linspace(500, 800, 10), 16

... color=’red’, linestyle=’:’) 17

... ax1.set_title(’Lexical decision model:\ 18

... Observed vs. predicted RTs’) 19

... ax1.set_xlabel(’Observed RTs (ms)’) 20

... ax1.set_ylabel(’Predicted RTs (ms)’) 21

... ax1.grid(b=True, which=’minor’, color=’w’, linewidth=1.0) 22

... # plot 2: probabilities 23

... ax2.errorbar(accuracy, mu_prob.mean(), yerr=yerr_prob, marker=’o’, 24

... linestyle=’’) 25

... ax2.plot(np.linspace(50, 100, 10)/100,\ 26

... np.linspace(50, 100, 10)/100, 27

... color=’red’, linestyle=’:’) 28

... ax2.set_title(’Lexical decision model:\ 29

... Observed vs. predicted probabilities’) 30

... ax2.set_xlabel(’Observed probabilities’) 31

... ax2.set_ylabel(’Predicted probabilities’) 32

... ax2.grid(b=True, which=’minor’, color=’w’, linewidth=1.0) 33

... # clean up and save 34

... plt.tight_layout(pad=0.5, w_pad=0.2, h_pad=0.7) 35

... plt.savefig(’./figures/lex_dec_model_figure.eps’) 36

142 7 Competence-Performance Models for Lexical Access and Syntactic Parsing

... plt.savefig(’./figures/lex_dec_model_figure.png’) 37

... plt.savefig(’./figures/lex_dec_model_figure.pdf’) 38

... 39
>>> generate_lex_dec_model_figure() 40

An important thing to note about the ACT-R lexical decision model is that predic-
tions about latencies and probabilities are theoretically connected: base activation is
an essential ingredient in predicting both of them. Thus, we are not proceeding purely
in an inductive fashion here by looking at the RT data on one hand, the accuracy
data on the other hand, and then drawing theoretical conclusions from the data in an
informal way, i.e., in a way that is suggestive and possibly productive, but ultimately
vague and incapable of making precise predictions.

Instead, our mathematical model takes a core theoretical concept (base activation
as a function of word frequency) and connects it in a mathematically explicit way to
latency and accuracy. Furthermore, our computationalmodel directly implements the
mathematical model, and enables us to fit it to the experimentally obtained latency
and accuracy data.

In addition to connecting distinct kinds of observable behavior via the same unob-
servable theoretical construct(s), a hallmark of a good scientific theory is that it is
falsifiable. And the plots in Fig. 7.2 show that anACT-Rmodel of lexical decision that
sets the latency exponent to its default value of 1 (in effect omitting it) is empirically
inadequate.

The bottom plot in Fig. 7.2 shows that our lexical decision model does a good job
of modeling retrieval probabilities. The predicted probabilities are very close to the
observed ones, and they are precisely estimated (there are very few visible error bars
protruding out of the plotted points).

In contrast, latencies are poorly modeled, as the top plot in Fig. 7.2 shows. The
predicted RTs are not very close to the observed RTs, and our model is very confident
in its incorrect predictions (error bars are barely visible for most predicted RTs).

7.3 The Second ACT-R Model of Lexical Decision: Adding
the Latency Exponent

Our ACT-R lexical decisionmodel without a latency exponent does not provide a sat-
isfactory fit to the Murray and Forster (2004) latency data. In fact, the log-frequency
model is both simpler (although less theoretically motivated) and empirically more
adequate.

We therefore move to a model that is minimally enriched by explicitly modeling
the latency exponent. The usefulness of the latency exponent in modeling reaction
time data has been independently noted in the recent literature—see, for example,
West et al. (2010).

The code for the model is provided in [py32] below. The only additions are (i)
the half-normal prior for the latency exponent on line 10 and (ii) its corresponding

7.3 The Second ACT-R Model of Lexical Decision: Adding the Latency Exponent 143

addition to the latency likelihood on line 25. Note that we use a different method to
sample the posterior for this model (Sequential Monte Carlo/SMC, line 37).4

[py32] >>> from pymc3.backends.text import dump 1
2

>>> lex_dec_model_lat_exp = pm.Model() 3
>>> with lex_dec_model_lat_exp: 4
... # prior for base activation 5
... decay = pm.Uniform(’decay’, lower=0, upper=1) 6
... # priors for latency 7
... intercept = pm.Uniform(’intercept’, lower=0, upper=2) 8
... latency_factor = pm.Uniform(’latency_factor’, lower=0, upper=5) 9
... latency_exponent = pm.HalfNormal(’latency_exponent’, sd=3) 10
... # priors for accuracy 11
... noise = pm.Uniform(’noise’, lower=0, upper=5) 12
... threshold = pm.Normal(’threshold’, mu=0, sd=10) 13
... # compute activation 14
... scaled_time = time ** (-decay) 15
... def compute_activation(scaled_time_vector): 16
... compare = tt.isinf(scaled_time_vector) 17
... subvector = scaled_time_vector[(1-compare).nonzero()] 18
... activation_from_time = tt.log(subvector.sum()) 19
... return activation_from_time 20
... activation_from_time, _ = theano.scan(fn=compute_activation, 21
... sequences=scaled_time) 22
... # latency likelihood 23
... mu_rt = pm.Deterministic(’mu_rt’, intercept +\ 24
... latency_factor*tt.exp(-latency_exponent*\ 25
... activation_from_time)) 26
... rt_observed = pm.Normal(’rt_observed’, mu=mu_rt, sd=0.01, 27
... observed=rt) 28
... # accuracy likelihood 29
... odds_reciprocal = tt.exp(-(activation_from_time - threshold)/noise) 30
... mu_prob = pm.Deterministic(’mu_prob’, 1/(1 + odds_reciprocal)) 31
... prob_observed = pm.Normal(’prob_observed’, mu=mu_prob, sd=0.01, 32
... observed=accuracy) 33
... 34
>>> # run 4 times to obtain 4 chains 35
>>> #with lex_dec_model_lat_exp: 36
>>> #step = pm.SMC() 37
>>> #trace = pm.sample(draws=20000, step=step, njobs=1) 38

39
>>> #dump = Text(’./data/lex_dec_model_lat_exp_trace’, trace) 40

41
>>> with lex_dec_model_lat_exp: 42
... trace = load(’./data/lex_dec_model_lat_exp_trace’) 43
... 44

We plot the results of this enriched lexical decision model: the code for the plots
is provided in [py33] and the resulting plots are shown in Fig. 7.3.

[py33] >>> mu_rt = pd.DataFrame(trace[’mu_rt’]) 1
>>> yerr_rt = [(mu_rt.mean()-mu_rt.quantile(0.025))*1000, 2
... (mu_rt.quantile(0.975)-mu_rt.mean())*1000] 3

4
>>> mu_prob = pd.DataFrame(trace[’mu_prob’]) 5
>>> yerr_prob = [(mu_prob.mean()-mu_prob.quantile(0.025)), 6
... (mu_prob.quantile(0.975)-mu_prob.mean())] 7

8
>>> def generate_lex_dec_model_lat_exp_figure(): 9

4Discussing different kinds of MCMC sampling schemes, chain convergence diagnostics etc. is
beyond the scope of this book. For a fairly recent survey of SMC methods, see, for example,
Creal (2012). For a brief comparison of BUGS versus NUTS, see, for example, this blog post:
http://elevanth.org/blog/2017/11/28/build-a-better-markov-chain/. Formore discussion ofMCMC
diagnostics etc., seeGelman andHill (2007), Kruschke (2011) and references therein, among others.

http://elevanth.org/blog/2017/11/28/build-a-better-markov-chain/

144 7 Competence-Performance Models for Lexical Access and Syntactic Parsing

Fig. 7.3 Lex. dec. model with latency exp.: estimated and observed RTs and probabilities

... fig, (ax1, ax2) = plt.subplots(ncols=1, nrows=2) 10

... fig.set_size_inches(5.5, 5.5) 11

... # plot 1: RTs 12

... ax1.errorbar(rt*1000, mu_rt.mean()*1000, yerr=yerr_rt, marker=’o’, 13
linestyle=’’) 14

... ax1.plot(np.linspace(500, 800, 10), np.linspace(500, 800, 10), 15

... color=’red’, linestyle=’:’) 16

... ax1.set_title(’Lex. dec. model with latency exponent:\ 17

... Observed vs. predicted RTs’) 18

... ax1.set_xlabel(’Observed RTs (ms)’) 19

... ax1.set_ylabel(’Predicted RTs (ms)’) 20

... ax1.grid(b=True, which=’minor’, color=’w’, linewidth=1.0) 21

... # plot 2: probabilities 22

... ax2.errorbar(accuracy, mu_prob.mean(), yerr=yerr_prob, marker=’o’, 23

... linestyle=’’) 24

... ax2.plot(np.linspace(50, 100, 10)/100, 25

... np.linspace(50, 100, 10)/100, 26

... color=’red’, linestyle=’:’) 27

... ax2.set_title(’Lex. dec. model with lat. exp.:\ 28

... Observed vs. predicted probabilities’) 29

... ax2.set_xlabel(’Observed probabilities’) 30

... ax2.set_ylabel(’Predicted probabilities’) 31

... ax2.grid(b=True, which=’minor’, color=’w’, linewidth=1.0) 32

... # clean up and save 33

... plt.tight_layout(pad=0.5, w_pad=0.2, h_pad=0.7) 34

7.3 The Second ACT-R Model of Lexical Decision: Adding the Latency Exponent 145

... plt.savefig(’./figures/lex_dec_model_lat_exp_figure.eps’) 35

... plt.savefig(’./figures/lex_dec_model_lat_exp_figure.png’) 36

... plt.savefig(’./figures/lex_dec_model_lat_exp_figure.pdf’) 37

... 38
>>> generate_lex_dec_model_lat_exp_figure() 39

We see that the lexical decision model that explicitly models the latency exponent
fits both latencies and probabilities verywell. The latencies, in particular, aremodeled
better than both the lexical decision model without a latency exponent, and the log-
frequency model, which did not have a very good fit to the data at the extreme
frequency bands (low or high frequencies).

We list below the estimated posterior mean and 95% credible interval (CRI) for
the latency exponent: the posterior mean value and the CRI are pretty far away from
the default value of 1 we assumed in the previous model.

[py34] >>> latency_exponent_posterior = trace["latency_exponent"] 1
>>> latency_exponent_posterior.mean() 2
0.26874855202916675 3
>>> pm.hpd(latency_exponent_posterior) 4
array([0.05284098, 0.46545318]) 5

The posterior estimates for the other parameters (means and 95% CRIs) are pro-
vided below for reference:

[py35] >>> decay_posterior = trace["decay"] 1
>>> decay_posterior.mean() 2
0.20922545157863634 3
>>> pm.hpd(decay_posterior) 4
array([6.48482310e-04, 7.12426351e-01]) 5

6
>>> intercept_posterior = trace["intercept"] 7
>>> intercept_posterior.mean() 8
0.48309734409006416 9
>>> pm.hpd(intercept_posterior) 10
array([0.37181586, 0.55819152]) 11

12
>>> latency_factor_posterior = trace["latency_factor"] 13
>>> latency_factor_posterior.mean() 14
0.35641063490136776 15
>>> pm.hpd(latency_factor_posterior) 16
array([0.00476266, 0.77476657]) 17

18
>>> threshold_posterior = trace["threshold"] 19
>>> threshold_posterior.mean() 20
-1.2335980386761345 21
>>> pm.hpd(threshold_posterior) 22
array([-10.80783392, 2.99617913]) 23

24
>>> noise_posterior = trace["noise"] 25
>>> noise_posterior.mean() 26
1.780720441127118 27
>>> pm.hpd(noise_posterior) 28
array([1.5927438 , 1.96868986]) 29

146 7 Competence-Performance Models for Lexical Access and Syntactic Parsing

7.4 Bayes+ACT-R: Quantitative Comparison
for Qualitative Theories

In this subsection, we show how we can embed ACT-R models implemented in
pyactr into Bayesian models implemented in pymc3. This embedding opens the
way towards doing quantitative comparison based on experimental data for both
subsymbolic and symbolic theories.

That is, this Bayes+ACT-R combination enables us to do quantitative theory com-
parison. We will be able to take our symbolic theories that make claims about com-
petence, for example, Discourse Representation Theory (DRT; Kamp 1981; Kamp
and Reyle 1993), as we will see in Chaps. 8 and 9, embed them in larger performance
theories that have a detailed processing component, and then compare different the-
ories quantitatively based on behavioral data of the kind commonly collected in
psycholinguistics.

In this section, we introduce the basics of our Bayes+ACT-R framework by con-
sidering and comparing three models for lexical decision tasks:

i. the first model builds on the simple ACT-R/pyactr lexical decision model
introduced in Chap. 4; we will show how that model can be used as part of the
likelihood function of a larger Bayesian model;

ii. the second model is cognitively more realistic than the first one: it makes use
of the imaginal buffer as an intermediary between the visual module and the
declarative memory module; we set the delay for imaginal-buffer encoding to its
default value of 200 ms; once again, this ACT-R/pyactr model will provide
part of the likelihood component of a larger Bayesian model;

iii. the third and final model is cognitively more realistic since it makes use of the
imaginal buffer, just as the second model, but we set the encoding delay of the
imaginal buffer to the non-default value of 0 ms5; this is the imaginal-buffer
delay we needed when we implemented our left-corner parser in Chap. 4; just
as before, the ACT-R/pyactr model is embedded in a larger Bayesian model,
for which it provides part of the likelihood function.

The first model (i) without the imaginal buffer and the other two models (ii) and
(iii) with imaginal buffers differ with respect to a symbolic (qualitative) compo-
nent. In this particular case, the symbolic component (imaginal-buffer usage or lack
thereof) belongs to the processing part of the symbolic (non-quantitative) theory,
but theoretical differences at the ‘core’ competence level can (and will) be similarly
compared.

In contrast, the last two models (ii) and (iii) differ with respect to specific con-
jectures about a subsymbolic (quantitative) component, namely the average time to
encode chunks in the imaginal buffer.

5In computational models of psychological experiments, the encoding delay in the imaginal buffer
is usually set to 200 ms. See Chap. 3, and also Taatgen et al. (2009).

7.4 Bayes+ACT-R: Quantitative Comparison for Qualitative Theories 147

Our Bayes+ACT-R framework enables us to compare all these models. This com-
parison is not only qualitative. The models can be quantitatively evaluated and com-
pared relative to specific experimental data. Since pyactr enables us to embed
ACT-R models as the likelihood component of larger Bayesian models built with
pymc3, we can do statistical inference over the subsymbolic parameters of our
ACT-R model in the standard Bayesian way, rather than trying different values one
at a time and manually identifying the best fitting ones.

We’ll therefore be able to identify the standard measures of central tendency
(posterior means, but also medians or modes if needed), as well as compute credible
intervals for every parameter of interest. The Bayesian framework will furthermore
enable us to conduct unrestricted model comparison (using Bayes factors or WAIC,
for example), unlike maximum likelihood methods—see the discussion at the end of
this section and in Sect. 7.5.

Throughout this book, whenever we embed anACT-Rmodel in a Bayesianmodel,
we turn off all the non-deterministic (stochastic) components of the ACT-R model
other than the ones for which we are estimating parameters. This effectively turns the
ACT-R model into a complex, but deterministic, function of the parameters, which
we can straightforwardly incorporate as a component of the likelihood function of
the Bayesian model.

Formore realistic simulations, wewould have to turn on various non-deterministic
components of the ACT-R model (e.g., noise associated with visual module), in
which case we would have to resort to Approximate Bayesian Computation (ABC;
see Sisson et al. (2019) and references therein) to incorporate an approximation of
the ACT-R induced likelihood into our Bayesian model. ABC is beyond the scope of
this book, but it is a very promising direction for future research, and a central issue
to be addressed as more linguistically sophisticated cognitive models are developed.

7.4.1 The Bayes+ACT-R Lexical Decision Model Without
the Imaginal Buffer

The link to the full code for this model is provided in the appendix to this chapter—
see Sect. 7.7.1.Wewill only discuss here themost important and novel aspects of this
Bayes+ACT-R model combination. We first initialize the model under the variable
lex_decision and declare its goal buffer to be g.

[py36] >>> import pyactr as actr 1
>>> environment = actr.Environment(focus_position=(320, 180)) 2
>>> lex_decision = actr.ACTRModel(environment=environment, 3
... subsymbolic=True, 4
... automatic_visual_search=True, 5
... activation_trace=False, 6
... retrieval_threshold=-80, 7
... motor_prepared=True, 8
... eye_mvt_scaling_parameter=0.18, 9
... emma_noise=False) 10
>>> lex_decision.goals = {} 11
>>> lex_decision.set_goal("g") 12
set() 13

148 7 Competence-Performance Models for Lexical Access and Syntactic Parsing

We set up the data: see the FREQ, RT and ACCURACY variables in [py37] below
(recall that pyactr measures time in s, not ms, so we divide the RTs by 1000). We
then generate the presentations times for the 16 word-frequency bands considered in
Murray and Forster (2004): see FREQ_DICT and the theano variable time.

[py37] >>> FREQ = np.array([242, 92.8, 57.7, 40.5, 30.6, 23.4, 19, 1
... 16, 13.4, 11.5, 10, 9, 7, 5, 3, 1]) 2
>>> RT = np.array([542, 555, 566, 562, 570, 569, 577, 587, 3
... 592, 605, 603, 575, 620, 607, 622, 674])/1000 4
>>> ACCURACY = np.array([97.22, 95.56, 95.56, 96.3, 96.11, 94.26, 5
... 95, 92.41, 91.67, 93.52, 91.85, 93.52, 6
... 91.48, 90.93, 84.44, 74.63])/100 7

8
>>> # on average, 15 years of exposure is 112.5 million words 9
>>> FREQ_DICT = {} 10
>>> FREQ_DICT[’guy’] = 242*112.5 11
>>> FREQ_DICT[’somebody’] = 92*112.5 12
>>> FREQ_DICT[’extend’] = 58*112.5 13
>>> FREQ_DICT[’dance’] = 40.5*112.5 14
>>> FREQ_DICT[’shape’] = 30.6*112.5 15
>>> FREQ_DICT[’besides’] = 23.4*112.5 16
>>> FREQ_DICT[’fit’] = 19*112.5 17
>>> FREQ_DICT[’dedicate’] = 16*112.5 18
>>> FREQ_DICT[’robot’] = 13.4*112.5 19
>>> FREQ_DICT[’tile’] = 11.5*112.5 20
>>> FREQ_DICT[’between’] = 10*112.5 21
>>> FREQ_DICT[’precedent’] = 9*112.5 22
>>> FREQ_DICT[’wrestle’] = 7*112.5 23
>>> FREQ_DICT[’resonate’] = 5*112.5 24
>>> FREQ_DICT[’seated’] = 3*112.5 25
>>> FREQ_DICT[’habitually’] = 1*112.5 26

27
>>> ORDERED_FREQ = sorted(list(FREQ_DICT), key=lambda x:FREQ_DICT[x],\ 28
... reverse=True) 29

30
>>> def time_freq(freq): 31
... rehearsals = np.zeros((np.int(np.max(freq) * 113), len(freq))) 32
... for i in np.arange(len(freq)): 33
... temp = np.arange(np.int((freq[i]*112.5))) 34
... temp = temp * np.int(SEC_IN_TIME/(freq[i]*112.5)) 35
... rehearsals[:len(temp),i] = temp 36
... return(rehearsals.T) 37
... 38
>>> time = theano.shared(time_freq(FREQ), ’time’) 39
>>> LEMMA_CHUNKS = [(actr.makechunk("", typename="word", form=word)) 40
... for word in ORDERED_FREQ] 41

We are now ready to build the procedural core of our model. The production rules
are the same as the ones we introduced and discussed in Chap. 4, listed for ease of
reference in [py38] below:
• the "attend word" rule takes a visual location encoded in the visual where
buffer and issues a command to the visual what buffer to move attention to that
visual location;

• the"retrieving" rule takes the visual value/content discovered at that visual
location,which is a potentialword form, and places a declarativememory request
to retrieve a word with that form;

• finally, the "lexeme retrieved" and "no lexeme found" rules take
care of the two possible outcomes of the memory retrieval request: if a word with
that form is retrieved from memory ("lexeme retrieved"), a command is
issued to the motor module to press the ’J’ key; if no word is retrieved ("no

7.4 Bayes+ACT-R: Quantitative Comparison for Qualitative Theories 149

lexeme found"), a command is issued to the motor module to press the ’F’
key.

[py38] >>> lex_decision.productionstring(name="attend word", string=""" 1
... =g> 2
... isa goal 3
... state attend 4
... =visual_location> 5
... isa _visuallocation 6
... ?visual> 7
... state free 8
... ==> 9
... =g> 10
... isa goal 11
... state retrieving 12
... +visual> 13
... isa _visual 14
... cmd move_attention 15
... screen_pos =visual_location 16
... ˜visual_location> 17
... """) 18
{’=g’: goal(state= attend), ’=visual_location’: _visuallocation(color= , 19
screen_x= , screen_y= , value=), ’?visual’: {’state’: ’free’}} 20
==> 21
{’=g’: goal(state= retrieving), ’+visual’: _visual(cmd= move_attention, 22
color= , screen_pos= =visual_location, value=), ’˜visual_location’: None} 23

24
>>> lex_decision.productionstring(name="retrieving", string=""" 25
... =g> 26
... isa goal 27
... state retrieving 28
... =visual> 29
... isa _visual 30
... value =val 31
... ==> 32
... =g> 33
... isa goal 34
... state retrieval_done 35
... +retrieval> 36
... isa word 37
... form =val 38
... """) 39
{’=g’: goal(state= retrieving), 40
’=visual’: _visual(cmd= , color= , screen_pos= , value= =val)} 41
==> 42
{’=g’: goal(state= retrieval_done), ’+retrieval’: word(form= =val)} 43

44
>>> lex_decision.productionstring(name="lexeme retrieved", string=""" 45
... =g> 46
... isa goal 47
... state retrieval_done 48
... ?retrieval> 49
... buffer full 50
... state free 51
... ==> 52
... =g> 53
... isa goal 54
... state done 55
... +manual> 56
... isa _manual 57
... cmd press_key 58
... key ’J’ 59
... """) 60
{’=g’: goal(state= retrieval_done), 61
’?retrieval’: {’buffer’: ’full’, ’state’: ’free’}} 62
==> 63
{’=g’: goal(state= done), ’+manual’: _manual(cmd= press_key, key= J)} 64

65
>>> lex_decision.productionstring(name="no lexeme found", string=""" 66

150 7 Competence-Performance Models for Lexical Access and Syntactic Parsing

... =g> 67

... isa goal 68

... state retrieval_done 69

... ?retrieval> 70

... buffer empty 71

... state error 72

... ==> 73

... =g> 74

... isa goal 75

... state done 76

... +manual> 77

... isa _manual 78

... cmd press_key 79

... key ’F’ 80

... """) 81
{’=g’: goal(state= retrieval_done), 82
’?retrieval’: {’buffer’: ’empty’, ’state’: ’error’}} 83
==> 84
{’=g’: goal(state= done), ’+manual’: _manual(cmd= press_key, key= F)} 85

With the production rules in place, we can start preparing the way towards embed-
ding the ACT-R model into a Bayesian model. The main idea is that we will use the
ACT-Rmodel as the likelihood component of theBayesianmodel for lexical-decision
latencies/RTs. Specifically, we will feed parameter values for the latency factor lf,
latency exponent le and decay into the ACT-R model, run the model with these
parameters for words from all 16 frequency bands, and collect the resulting RTs.

The Bayesian model will then use these RTs to sample new values for the lf, le
and decay parameters in proportion to how well the RTs generated by the ACT-R
model agree with the experimentally collected RTs (and the diffuse priors over these
parameters).

The first function we need is run_stimulus(word) in [py39] below. This
function takes a word from one of the 16 frequency bands as its argument and runs
one instance of the ACT-R lexical decision model for that word. To do that, we first
reset the model to its initial state: we flush buffers without moving their contents
to declarative memory (lines 2–9 in [py39]), we set the word argument as the new
stimulus (line 10), we initialize the goal buffer g with the "start" chunk (lines
11–13), and we initialize the lexical decision simulation (lines 14–19).

At this point, we run a while loop that steps through the simulation until a lexical
decision is made by pressing the ’J’ or ’F’ key, at which point we record the time
of the decision in the variable estimated_time (set to −1 if the word was not
retrieved),6 exit the while loop and return the estimated RT (lines 20–28).

The second function run_lex_decision_task() in [py39] runs a full lex-
ical decision task by calling the run_stimulus(word) function for words from
all 16 frequency bands (lines 31–33). The function returns the vector of estimated
lexical decision RTs for all these words (line 34).

6In this Bayes+ACTR-R estimation, we only model latencies for successful retrievals. In other
words, we want the model to always retrieve successfully, and if it does not, we penalize the result
by choosing a latency that is markedly off. To ensure that the model performs a successful retrieval,
the retrieval threshold in the ACT-Rmodel is set to a very low value (τ = −80, see line 7 in [py36]).

7.4 Bayes+ACT-R: Quantitative Comparison for Qualitative Theories 151

[py39] >>> def run_stimulus(word): 1
... try: 2
... lex_decision.retrieval.pop() 3
... except KeyError: 4
... pass 5
... try: 6
... lex_decision.goals["g"].pop() 7
... except KeyError: 8
... pass 9
... stim = {1: {’text’: word, ’position’: (320, 180)}} 10
... lex_decision.goals["g"].add(actr.makechunk(nameofchunk=’start’, 11
... typename="goal", 12
... state=’attend’)) 13
... environment.current_focus = [320,180] 14
... lex_decision.model_parameters[’motor_prepared’] = True 15
... lex_dec_sim = lex_decision.simulation(realtime=False, 16
... gui=False, trace=False, 17
... environment_process=environment.environment_process, 18
... stimuli=stim, triggers=’’, times=10) 19
... while True: 20
... lex_dec_sim.step() 21
... if lex_dec_sim.current_event.action == "KEY PRESSED: J": 22
... estimated_time = lex_dec_sim.show_time() 23
... break 24
... if lex_dec_sim.current_event.action == "KEY PRESSED: F": 25
... estimated_time = -1 26
... break 27
... return estimated_time 28
... 29
>>> def run_lex_decision_task(): 30
... sample = [] 31
... for word in ORDERED_FREQ: 32
... sample.append(run_stimulus(word)) 33
... return sample 34
... 35

With the run_lex_decision_task() function in hand, we only need to be
able to interface the ACT-R model implemented in pyactr with a Bayesian model
implemented in pymc3 (and theano). This is what the function actrmodel_
latency in [py40] belowdoes. This function runs the entire lexical decision task for
specific values of the latency factor lf, latency exponent le and decay parameters
provided by the Bayesian model (which will be discussed below). The activation
computed by theano with the same value of the decay argument is also passed
as a separate argument activation_from_time to save (a significant amount
of) computation time.

The actrmodel_latency function takes these four parameter values as argu-
ments (line 3 in [py40]), initializes the lexical decision model with them (lines 4–9),
runs the lexical decision task with these model parameters (line 10) and returns the
resulting vector of RTs (line 11). The entire function is wrapped inside the theano-
provided decorator @as_op (lines 1–2),7 which enables theano and pymc3 to use
the actrmodel_latency function as if it was a native theano/pymc3 func-
tion. The only thing the @as_op decorator needs is data-type declarations for the
arguments of the actrmodel_latency function (lf, le and decay are scalars,

7Python3 decorators provide a specific way to define and call higher-order functions, that is,
functions that take other functions as arguments and/or return functions as values. Such functions
are, of course, very familiar to formal semanticists, who follow Montague in extensively using
such functions (usually represented in a simply-typed λ-calculus) to model the semantics of natural
languages.

152 7 Competence-Performance Models for Lexical Access and Syntactic Parsing

while activation_from_time is a vector—line 1) and for its value (which is
a vector—line 2).

[py40] >>> @theano.as_op(itypes=[tt.dscalar, tt.dscalar, tt.dscalar, tt.dvector], 1
... otypes=[tt.dvector]) 2
... def actrmodel_latency(lf, le, decay, activation_from_time): 3
... lex_decision.model_parameters["latency_factor"] = lf 4
... lex_decision.model_parameters["latency_exponent"] = le 5
... lex_decision.model_parameters["decay"] = decay 6
... activation_dict = {x[0]: x[1] for x in \ 7
... zip(LEMMA_CHUNKS, activation_from_time)} 8
... lex_decision.decmem.activations.update(activation_dict) 9
... sample = run_lex_decision_task() 10
... return np.array(sample) 11
... 12

We are now ready to use the actrmodel_latency function as the likelihood
function for latencies in a Bayesian model very similar to the ones we already dis-
cussed in this chapter. The model is specified in [py41] below. The prior for the
decay parameter is uniform (line 3), the priors for the lexical-decision accuracy
parameters noise and threshold are uniform and normal (lines 4–5), and the
priors for the lexical-decision latency parameters lf and le are both half-normal
(lines 6–7).

We then compute activation based on word frequency in the same way we did
before (lines 8–15), after which we specify the likelihood function for lexical-
decision latency (lines 16–19), which crucially uses the ACT-R model via the
actrmodel_latency function (line 16), and the likelihood function for lexical-
decision accuracy (lines 20–23). Note that the accuracy is computed independently
of the latency, which simplifies the workings of the pyactr model (as we already
indicated, we can assume that the pyactr model recalls all words successfully).

[py41] >>> lex_decision_with_bayes = pm.Model() 1
>>> with lex_decision_with_bayes: 2
... decay = pm.Uniform(’decay’, lower=0, upper=1) 3
... threshold = pm.Normal(’threshold’, mu=0, sd=10) 4
... noise = pm.Uniform(’noise’, lower=0, upper=5) 5
... lf = pm.HalfNormal(’lf’, sd=1) 6
... le = pm.HalfNormal(’le’, sd=1) 7
... scaled_time = time ** (-decay) 8
... def compute_activation(scaled_time_vector): 9
... compare = tt.isinf(scaled_time_vector) 10
... subvector = scaled_time_vector[(1-compare).nonzero()] 11
... activation_from_time = tt.log(subvector.sum()) 12
... return activation_from_time 13
... activation_from_time, _ = theano.scan(fn=compute_activation, 14
... sequences=scaled_time) 15
... pyactr_rt = actrmodel_latency(lf, le, decay, activation_from_time) 16
... mu_rt = pm.Deterministic(’mu_rt’, pyactr_rt) 17
... rt_observed = pm.Normal(’rt_observed’, mu=mu_rt, sd=0.01, 18
... observed=RT) 19
... odds_reciprocal = tt.exp(-(activation_from_time - threshold)/noise) 20
... mu_prob = pm.Deterministic(’mu_prob’, 1/(1 + odds_reciprocal)) 21
... prob_observed = pm.Normal(’prob_observed’, mu=mu_prob, sd=0.01, 22
... observed=ACCURACY) 23
... 24

The Bayesian model is schematically represented in Fig. 7.4 (following the type
of figures introduced in Kruschke 2011).

The plots in Fig. 7.5 show that the Bayes+ACT-R model without any imaginal-
buffer involvement has a very good fit to both the latency and the accuracy data. The

7.4 Bayes+ACT-R: Quantitative Comparison for Qualitative Theories 153

Fig. 7.4 The structure of the Bayesian model in [py41]

Fig. 7.5 Lex. dec. model, Bayes+ACT-R, no imaginal buffer: estimated and observed RTs and
probabilities

154 7 Competence-Performance Models for Lexical Access and Syntactic Parsing

top panel plots observed RTs against predicted RTs, while the bottom panel plots
observed probabilities against predicted probabilities. The closer the points are to
the red diagonal line, the better the model predictions—and we see that the model
can fit the observed latency and accuracy data very well.

For reference, we provide the Gelman-Rubin diagnostic (a.k.a. Rhat/R̂) for this
model in [py42] below. AsGelman andHill (2007, 352) put it, “Rhat gives informa-
tion about convergence of the algorithm. At convergence, the numbers […] should
equal 1 […]. If Rhat is less than 1.1 for all parameters, then we judge the algorithm
to have approximately converged, in the sense that parallel chains have mixed well.”
We see that the Rhat values for the model are below 1.1, which is reassuring.8

[py42] >>> with lex_decision_with_bayes: 1
... trace = load(’./data/lex_dec_pyactr_no_imaginal’) 2
... 3
>>> pm.diagnostics.gelman_rubin(trace) 4
{’threshold’: 1.0054899750513782, 5
’decay’: 1.0062475153014665, 6
’noise’: 1.009517446448299, 7
’lf’: 1.0083217341786315, 8
’le’: 1.01606803162613, 9
’mu_rt’: array([1.01458128, 1.01275183, 1.01129197, 1.00973846, 10

1.00822621, 1.00639902, 1.00478262, 1.00338619, 11
1.0019927 , 1.00094688, 1.00027242, 0.99997675, 12
1.00019667, 1.00228782, 1.00666908, 1.01181443]), 13

’mu_prob’: array([1.0111905 , 1.01148533, 1.01152191, 1.01144346, 14
1.01127359, 1.01096758, 1.01058891, 1.01014176, 15
1.00953423, 1.00884847, 1.00804849, 1.00736052, 16
1.00533042, 1.00221617, 0.999931 , 1.00598736])} 17

However, this model oversimplifies the process of encoding visually retrieved
data. We assume that the visual value found at a particular visual location is imme-
diately shuttled to the retrieval buffer to place a declarative memory request – see
the productions "attend word" and "retrieving" in [py38] above.

This disregards the cognitively-motivated ACT-R assumption that transfers
between the visual what buffer and the retrieval buffer are mediated by the goal or
imaginal buffers. Cognition in ACT-R is goal-driven, so any important step in a
cognitive process should be crucially driven by the chunks stored in the goal and/or
imaginal buffers.

7.4.2 Bayes+ACT-R Lexical Decision with Imaginal-Buffer
Involvement and Default Encoding Delay for the
Imaginal Buffer

We now turn to the examination of the first of two alternative Bayes+ACT-R models,
both of which crucially involve the imaginal buffer as an intermediary between

8For more information about R̂, see Gelman et al. (2013, 284–286), and also pymc3’s implemen-
tation of and help file for the Gelman-Rubin diagnostic. Plots of the chains for the models in this
book are available in the pyactr-book github repository (see the ‘figures’ folder, specifically
file names that end with ‘…_trace’), and so are the chains themselves (see the ‘data’ folder).

7.4 Bayes+ACT-R: Quantitative Comparison for Qualitative Theories 155

the visual what and retrieval buffers. The full code for the model discussed in this
subsection is available at the link provided in the appendix to this chapter—see Sect.
7.7.1.

The Bayesian model remains the same, the only part we change is the ACT-R
likelihood for latencies. Specifically, we modify the procedural core of the ACT-
R model as shown in [py43] below. We first add the imaginal buffer to the model
(line 1 in [py43]), and then replace the "attend word" and "retrieving"
rules with three rules "attend word" (lines 4–21), "encoding word" (lines
28–42) and "retrieving" (48–62).

The new rule "encoding word" mediates between "attend word" and
"retrieving". The visual value retrieved by the "attend word" rule is
shifted into the imaginal buffer by the "encoding word" rule. Then, the
"retrieving" rule takes that value, i.e., word form, from the imaginal buffer
and places it into the retrieval buffer.

[py43] >>> lex_decision.set_goal("imaginal") 1
set() 2

3
>>> lex_decision.productionstring(name="attend word", string=""" 4
... =g> 5
... isa goal 6
... state attend 7
... =visual_location> 8
... isa _visuallocation 9
... ?visual> 10
... state free 11
... ==> 12
... =g> 13
... isa goal 14
... state encoding 15
... +visual> 16
... isa _visual 17
... cmd move_attention 18
... screen_pos =visual_location 19
... ˜visual_location> 20
... """) 21
{’=g’: goal(state= attend), ’=visual_location’: _visuallocation(color= , 22
screen_x= , screen_y= , value=), ’?visual’: {’state’: ’free’}} 23
==> 24
{’=g’: goal(state= encoding), ’+visual’: _visual(cmd= move_attention, 25
color= , screen_pos= =visual_location, value=), ’˜visual_location’: None} 26

27
>>> lex_decision.productionstring(name="encoding word", string=""" 28
... =g> 29
... isa goal 30
... state encoding 31
... =visual> 32
... isa _visual 33
... value =val 34
... ==> 35
... =g> 36
... isa goal 37
... state retrieving 38
... +imaginal> 39
... isa word 40
... form =val 41
... """) 42
{’=g’: goal(state= encoding), ’=visual’: _visual(cmd= , color= , 43
screen_pos= , value= =val)} 44
==> 45
{’=g’: goal(state= retrieving), ’+imaginal’: word(form= =val)} 46

47
>>> lex_decision.productionstring(name="retrieving", string=""" 48

156 7 Competence-Performance Models for Lexical Access and Syntactic Parsing

... =g> 49

... isa goal 50

... state retrieving 51

... =imaginal> 52

... isa word 53

... form =val 54

... ==> 55

... =g> 56

... isa goal 57

... state retrieval_done 58

... +retrieval> 59

... isa word 60

... form =val 61

... """) 62
{’=g’: goal(state= retrieving), ’=imaginal’: word(form= =val)} 63
==> 64
{’=g’: goal(state= retrieval_done), ’+retrieval’: word(form= =val)} 65

These modifications are all symbolic (discrete, non-quantitative) modifications.
We will however be able to fit the new model to the same data and quantitatively
compare it with the no-imaginal-buffer model discussed in the previous subsection.

The top plot in Fig. 7.6 shows that the model has a very poor fit to the latency
data.Adding the imaginal-buffermediated encoding step adds 200ms to every lexical
decision simulation, since 200 ms is the default ACT-R delay for chunk-encoding
into the imaginal buffer.

We therefore see that the predicted latencies for all 16 word-frequency bands are
greatly overestimated (they are far above the red diagonal line). The model with the
imaginal buffer cannot run faster than about 725 ms, at least not when the imaginal-
buffer encoding delay is left at its default 200 ms value.

We can think of the 200 ms imaginal delay as part of the baseline intercept for
our ACT-R model. The intercept is simply too high to fit high-frequency words, for
which the lexical decision task should take 100 to 200 ms less than this intercept.

The Rhat values for this model are once again below 1.1 (in fact, they are very
close to 1):

(1) {’threshold’: 1.006603925999719, 1
’decay’: 1.0064848072431016, 2
’noise’: 0.9999915488454998, 3
’lf’: 1.0020696744920665, 4
’le’: 1.003927035222827, 5
’mu_rt’: array([1. , 1. , 0.99995 , 1.00003341, 6

0.99998133, 1.00011225, 1.0004147 , 1.0005439 , 7
1.00137661, 1.00200847, 1.00259929, 1.00214862, 8
1.00356952, 1.00571574, 1.00682557, 1.00644145]), 9

’mu_prob’: array([1.00002043, 1.00003799, 1.00005779, 1.00008192, 10
1.00011011, 1.0001483 , 1.00018856, 1.0002309 , 11
1.00028581, 1.00034384, 1.00040581, 1.00045968, 12
1.00060608, 1.00080852, 1.00091303, 1.00046312])} 13

We see here one of the main benefits of our Bayes+ACT-R framework. We are
able to fit any model to experimental data, and we are able to compute quantitative
predictions (means and credible intervals) for any model. We are therefore able to
quantitatively compare our qualitative theories.

In this particular case, we see that a model that is cognitively more plausible fares
more poorly than a simpler, less realistic model.

7.4 Bayes+ACT-R: Quantitative Comparison for Qualitative Theories 157

Fig. 7.6 Lex. dec. model, Bayes+ACT-R, with imaginal buffer and default delay (200 ms): esti-
mated and observed RTs and probabilities

7.4.3 Bayes+ACT-R Lexical Decision with Imaginal Buffer
and 0 Delay

Wewill now improve the imaginal-buffermodel introduced in the previous subsection
by setting the imaginal delay to 0 ms, instead of its default 200 ms value. When we
built our left-corner parser in Chap. 4, we already saw that the imaginal delay might
need to be decreased if we want to have empirically-adequate models of linguistic
phenomena. This is because natural language interpretation involves incremental
construction of rich hierarchical representations that seriously exceed in complexity
the representations needed to model other high-level cognitive processes in ACT-R.

The full code for the model discussed in this subsection is once again available at
the link provided in the appendix to this chapter—see Sect. 7.7.1. The only change
relative to the model in the previous subsection is setting the delay for the imaginal
buffer to 0 when themodel is reset to its initial state in the run_stimulus(word)
function.

158 7 Competence-Performance Models for Lexical Access and Syntactic Parsing

Fig. 7.7 Lex. dec. model, Bayes+ACT-R, with imaginal buffer and 0 ms delay: estimated and
observed RTs and probabilities

The resulting predictions are plotted against the observed data in Fig. 7.7. We
see here that, once the latency ‘intercept’ of the ACT-R model is suitably lowered
by removing the imaginal-encoding delay, a cognitively plausible model that makes
crucial use of the imaginal buffer can fit the data very well.

The Rhat values for this model are also below 1.1:

(2) {’threshold’: 1.0239260960818166, 1
’decay’: 1.0240525803780482, 2
’noise’: 1.0002178227957363, 3
’lf’: 1.0144459091108735, 4
’le’: 1.0015428790086978, 5
’mu_rt’: array([1.00355696, 1.00402281, 1.00437915, 1.00471154, 6

1.00506452, 1.00545713, 1.00575474, 1.00605512, 7
1.00633888, 1.00655243, 1.00678295, 1.00685419, 8
1.00690249, 1.00638288, 1.00460097, 1.00171009]), 9

’mu_prob’: array([1.00049237, 1.00062568, 1.00073162, 1.00083857, 10
1.00094761, 1.00107675, 1.00119749, 1.00130761, 11
1.00144432, 1.00157235, 1.00167635, 1.00177533, 12
1.00196299, 1.00205086, 1.00156458, 1.00025179])} 13

7.4 Bayes+ACT-R: Quantitative Comparison for Qualitative Theories 159

We now have a formally explicit way to connect competence-level theories
to experimental data via explicit processing models. That is, we can formally,
explicitly connect qualitative (symbolic, competence-level) theory construction—
the main business of the generative grammarian—and quantitative (subsymbolic,
performance-level) statistical inference and model comparison based on experimen-
tally collected behavioral data—the main business of the experimental linguist.

Traditionally, these are separate activities that are only connected informally. The
fundamental vagueness of this informal connection is intrinsically unsatisfactory.
But, in addition to that, this vagueness encourages the generative grammarian and the
experimental linguist to work in separate spheres, with the generative grammarian
developing sophisticated theories with a relatively weak empirical basis, and the
experimental linguist often using an informal, overly simplified theory that can fit in
the Procrustean bed of a multi-way ANOVA (or similar linear models).

There are several reasons for embedding ACT-R models in Bayesian models for
statistical inference, rather than just using maximum likelihood estimation. These
reasons are not specific to ACT-R models, but are brought into sharper relief by the
complexity of these models relative to the generalized linear models standardly used
in (psycho)linguistics.

The first reason is that we can put information from previous ACT-R work into
the priors. Most importantly, however, the Bayesian framework enable us to perform
generalizedmodel comparison (via Bayes factors, or using other criteria). In contrast,
maximum likelihood model comparison fails for models for which we cannot esti-
mate the number of parameters in the model. Estimating the number of parameters is
already difficult for models with random effects. For hybrid symbolic-subsymbolic
models like the ACT-R ones we have been constructing, the question of identifying
the “number” of parameters is not even well-formed.

For a distinct line of argumentation that the integration of ACT-R and Bayesian
models is a worthwhile endeavor, see Weaver (2008).

7.5 Modeling Self-paced Reading with a Left-Corner
Parser

Apart from the lexical decision model, Chap. 4 also showed how to implement
a left-corner parser model in ACT-R/pyactr. We noted in that chapter that the
parsingmodelwas not realistic due to, amongother things, its simplifying assumption
that memory retrievals of lexical information always take a fixed amount of time,
irrespective of the specific state and properties of the components of the recall process
(the specific recall cue, the state of declarative memory, the contents of the other
buffers etc.). Since we now have a more realistic model of lexical access at our
disposal, we might want to investigate whether this model could also be used to
improve our parsing model.

160 7 Competence-Performance Models for Lexical Access and Syntactic Parsing

We can go even further than that: one interesting property of ACT-R is that it
assumes one model of retrieval irrespective of the cognitive sub-domain under con-
sideration. We can therefore ask how this model of retrieval fares with respect to
language: can we model both syntactic and lexical retrieval using the same mech-
anisms and the same parameter values within one ACT-R model? ACT-R/pyactr
left-corner parsingmodels addressing these questions were introduced and discussed
inBrasoveanu andDotlačil (2018). In this section, wewill summarize themain points
of that work.

Brasoveanu and Dotlačil (2018) studied the fit of the parser to human data by
simulating Experiment 1 in Grodner andGibson (2005).9 This is a self-paced reading
experiment (non-cumulative moving-window; Just et al. 1982): participants read
sentences that do not appear as a whole on the screen. Rather, they have to press a
key to reveal the first word, and with every key press, the previous word disappears
and the next word appears.What ismeasured (andmodeled) is howmuch time people
spend on each word.

The modeled self-paced reading experiment has two conditions. In one condition,
the subject noun phrase is modified by a subject-gap relative clause—see (3) below.
In the second condition, the subject noun phrase is modified by an object-gap relative
clause—see (4) below.

Using relative clauses is crucial, since this allows us to study the properties of
syntactic retrieval. At the gap site, indicated as ti in (3/4) below, the parser has
to retrieve the wh-word from declarative memory to correctly interpret the relative
clause. Studying the reading-time profiles of these sentences can therefore help us
understand the latencies of both lexical and syntactic recall.

(3) The reporter whoi ti sent the photographer to the editor hoped for a story.

(4) The reporter whoi the photographer sent ti to the editor hoped for a story.

Brasoveanu and Dotlačil (2018) modeled 9 regions of interest (ROIs), boldfaced
in (3/4) above. These are word 2 (the matrix noun in subject position) through word
10 (the matrix verb).

Just as when we modeled lexical decision, Brasoveanu and Dotlačil (2018) built
more than one model and quantitatively compared them. This comparison is a nec-
essary part of developing good ACT-R models, and cognitive models in general.10

But more importantly, it enables us to gain insight into underlying (unobservable)
cognitive mechanisms by identifying the better fitting model(s) in specific ROIs.

In total, three models were created to simulate self-paced reading and parsing. All
three models were extensions of the eager left-corner parser described in Sect. 4.4.
The two main modifications were: (i) the parser was extended with a more realistic
model of lexical access, the same as the one used in the second ACT-R model for
lexical decision in this chapter (see Sect. 7.3), and (ii) the parser had to recall the

9A small subset of this data was studied in a different ACT-R model of parsing, the left-corner
parser discussed in Lewis and Vasishth (2005).
10As well as statistical models, machine learning models etc.

7.5 Modeling Self-paced Reading with a Left-Corner Parser 161

wh-word in the relative clause to correctly parse it. The parser incorporated visual
and motor modules, just like the one in Chap. 4.

The three models differ from each other in two respects. First, Models 1 and 2
assume a slightly different order of information processing than Model 3. Models 1
and 2 are designed in a strongly serial fashion:

• first, a word w is attended visually;
• after that, its lexical information is retrieved, and syntactic retrieval also takes
place (if applicable, e.g., when we need to retrieve the relativizer whoi);

• the parse tree is then created and, finally,
• visual attention is moved to the next word w + 1 at the same time as the motor

module is instructed to press a key to reveal that word;
• then the whole process is repeated for word w + 1.

The processes in Model 3 were staged in a more parallel fashion: after lexical
retrieval, syntactic retrieval (if applicable) and syntactic parsing happened at the
same time as visual-attention and motor commands were prepared and executed.
This difference is schematically shown in Figs. 7.8 and 7.9.

The second way the models differ is with respect to the analysis of subject gaps.
Models 1 and 3 assume that the parser predictively postulates the subject gap imme-
diately after reading the wh-word (word 3 in (3) and (4)). This strategy should slow

Fig. 7.8 Flowchart of parsing process per word for Models 1 and 2

Fig. 7.9 Flowchart of parsing process per word for Model 3

162 7 Competence-Performance Models for Lexical Access and Syntactic Parsing

down the parser on the wh-word itself, since it has to postulate the upcoming gap
when reading it. But the strategy predicts that the parser will speed up when reading
the following word in the subject-relative clause sentence (3), since the parser has
already postulated the gap and nothing further needs to be done to parse the gap.

In contrast, Model 2 assumes that no subject gap is predictively postulated when
reading the wh-word: the gap is parsed bottom-up. This strategy predicts faster read-
ing times on the wh-word compared to Models 1 and 3. But it also predicts a slow-
down on the next word in the subject-relative clause sentence (3), since it is at this
point that the subject gap is parsed/postulated.

Why would we compare these three models? The main reason is to test two
distinct hypotheses (qualitative/symbolic theories) about the human processor. These
hypotheses are commonly entertained in psycholinguistics, but are not usually fully
formalized and computationally implemented.

And it is important to realize that we can never really establish at an informal
level if hypotheses embedded in complex competence-performance theories like the
ones we’re entertaining here make correct predictions. To really test hypotheses and
theories at this level of complexity, we need to fully formalize and computationally
implement them, and then attempt to fit them to experimental data. We don’t really
know what a complex model does until we run it.

The two hypotheses we test are the following. First, we implement and test the
standard assumption that the parser is predictive and fills in gap positions before
they appear (cf. Stowe 1986; Traxler and Pickering 1996). Given that hypothesis, we
expect that Models 1 and 3 fit the reading data better than Model 2.

Second, it is commonly assumed that processing is to some degree parallel. In
particular, a standard assumption of one of the leadingmodels of eye movement (E-Z
Reader, Warren et al. 2009) is that moving visual attention to word n + 1 happens
alongside with the syntactic integration of word n. Under this hypothesis, we expect
Model 3 to have a better fit than Models 1 and 2.

Both predictions turn out to be correct, supporting previous claims and showing
that these claims hold under the careful scrutiny of fully formalized and computa-
tionally implemented end-to-end models that are quantitatively fit to experimental
data.

Equally importantly, this shows that our Bayes+ACT-R framework can be used
to quantitatively test and compare qualitative (symbolic) hypotheses about cognitive
processes underlying syntactic processing.

The code for Model 3 is linked to in the appendix to this chapter (see Sect. 7.7.2).
The threemodelswere fit to experimental data fromGrodner andGibson (2005) (their
Experiment 1) using the Bayesian methods described previously in this chapter.

Four parameters were estimated: the k parameter, which scales the effect of visual
distance, the rule firing parameter r , the latency factor lf and the latency exponent le.
Of these, only the first two have not been discussed in this chapter.

The rule firing parameter specifies how much time any rule should take to fire
and has been (tacitly) used throughout the whole book. The default value of this
parameter, which we always used up to this point, is 50 ms.

7.5 Modeling Self-paced Reading with a Left-Corner Parser 163

●

●

●

●

●●

● ●

●

●

●●●●●●●●

●●

●

● ●

●●

●

● ●

●

●

●●●●

●●

●●

●●

●●

subj
obj

reporter

who
sent /

the
the /

photographer

photographer /

sent

to the editor
hoped

300

350

400

450

500

300

350

400

450

500

Pr
ed

ic
te

d
R

Ts
 (9

5%
 C

R
Is

)
an

d
ob

se
rv

ed
 R

Ts
 (m

s)

Fig. 7.10 Model 1: postulated subject gaps

The k parameter is used to modulate the amount of time that visual encoding Tenc
takes, and it has been discussed in Chap. 4, Sect. 4.3.1.11 We fit the k parameter
mainly to show that parameters associated with peripherals (e.g., the visual and
motor modules) can be jointly estimated with procedural and declarative memory
parameters when fitting full models to data.

After we fit (the parameters of) the three models to data, we collect the posterior
predictions for the 9 ROIs in the two (subject-gap and object-gap) conditions, plot-
ted in Figs. 7.10, 7.11 and 7.12. The diamonds in these graphs indicate the actual,
observedmeanRTs for eachword fromGrodner andGibson (2005). The bars provide
the 95% CRIs for the posterior mean RTs, which are plotted as filled dots.

It is important to note that what we estimate here are parameters for the full
process of reading the 9 ROIs. We do not estimate means and CRIs region by region
(which is the current standard in thefield), falsely assuming independence and leaving
the underlying dependency structure, i.e., the parsing process, largely implicit and
unexamined.

Figure7.10 shows thatModel 1 captures wh-gap retrieval well: the observedmean
reading times on the 3rd word (sent) in the top panel (subj-gap) and the 5th word
(also sent) in the bottom panel (obj-gap) fall within the CRI. However, the spillover
effect on the word after the object gap—the 6th word (to) in the bottom panel—is
not captured: the model underestimates it pretty severely.

11Recall that Tenc is specified by the function K · (− log f) · ekd , where k is the parameter that
scales the effect of visual distance d measured in degrees of visual angle, and f is the (normal-
ized) frequency of the object (word) being encoded. However, since word frequency affects lexical
retrieval, we do not need to use it in visual encoding, so we substitute word length (a straightforward
visual property of a word) for − log f . K is another parameter, set to its default value of 0.01.

164 7 Competence-Performance Models for Lexical Access and Syntactic Parsing

●

●●

●

●

●

● ●

●

●

●●●●●●

●●

●

●

●● ●

●

●

● ●

●

●

●●●●

●●

subj
obj

reporter

who
sent /

the
the /

photographer

photographer /

sent

to the editor
hoped

300

350

400

450

500

300

350

400

450

500

Pr
ed

ic
te

d
R

Ts
 (9

5%
 C

R
Is

)
an

d
ob

se
rv

ed
 R

Ts
 (m

s)

Fig. 7.11 Model 2: no postulated subject gaps

The posterior predictions of Model 2, provided in Fig. 7.11, are clearly worse:
the 95% CRIs are completely below the observed mean RTs for the wh-word in
both conditions, and also for the word immediately following the wh-word in the
object-gap condition. This indicates that the model underestimates the parsing work
triggered by thewh-word, and it also underestimates the reanalysis work that needs to
be done on the word immediately following the wh-word in the object-gap condition.

Finally, Model 3 is the best among these three models. It captures the spillover
effect for object gaps and increases the precision of the estimates (note the smaller
CRIs). At the same time,Model 3maintains the good fit exhibited byModel 1 (but not
Model 2) for the wh-word and the following word in both conditions. This is shown
in Fig. 7.12. As we already mentioned, the code for this final and most successful
model is linked to in the appendix to this chapter (Sect. 7.7.2).

This relatively informal quantitative comparison between models can be made
more precise by using WAIC measures for model comparison. For example, if we
use WAIC2,12 which is variance based, we can clearly see that Model 3 has the most
precise posterior estimates for the Grodner and Gibson (2005) data; see Brasoveanu
and Dotlačil (2018) for more details.

Thus,we see that the left-corner parser, first introduced inChap. 4, can be extended
with a detailed, independentlymotivated theory of lexical and syntactic retrieval. The
resultingmodel can successfully simulate reading time data froma self-paced reading
experiment.

The fact that the three models we considered help us distinguish between several
theoretical assumptions, and that the model with the best fit implements hypotheses

12See Gelman et al. (2013) for more discussion of WAIC1 and WAIC2.

7.5 Modeling Self-paced Reading with a Left-Corner Parser 165

●●

●

●

●

●

● ●

● ●

●●●●●●●●●● ●●

●●●●●●

●●

●

● ●

●●

●

●
●

● ●

●●●●●●●●●● ●●●●●●●●●●

●●

●●

subj
obj

reporter

who
sent /

the
the /

photographer

photographer /

sent

to the editor
hoped

300

350

400

450

500

300

350

400

450

500

Pr
ed

ic
te

d
R

Ts
 (9

5%
 C

R
Is

)
an

d
ob

se
rv

ed
 R

Ts
 (m

s)

Fig. 7.12 Model 3: ‘parallel’ reader

that we expect to be correct for independent reasons, is encouraging for the whole
enterprise of computational cognitive modeling pursued in this book.

Finally, we see thatModel 3 does not show any clear deficiencies in simulating the
mean RTs of self-paced reading tasks, even though it presupposes one and the same
framework for both lexical and syntactic retrieval. This supports the ACT-R posi-
tion of general recall mechanisms across various cognitive sub-domains, including
linguistic sub-domains such as lexical and syntactic memory.

Before concluding, we have to point out that, even though the investigation pre-
sented in Brasoveanu and Dotlačil (2018) and summarized in this section is very
promising, it is rather preliminary, particularly when compared to the models in the
rest of this chapter and the rest of this book. Furthermore, the estimates of the three
models we just discussed were obtained using different sampling methods than the
ones we use for the Bayes+ACT-R models throughout this book.

Improving on these preliminary results and models, and investigating if the sam-
pling methods used in this book would substantially benefit the ACT-R models in
Brasoveanu and Dotlačil (2018) is left for a future occasion.

7.6 Conclusion

The models discussed in this chapter show that the present computational imple-
mentation of ACT-R can be used to successfully fit data from various linguistic
experiments, as well as compare and evaluate assumptions about underlying linguis-
tic representations and parsing processes. While one could investigate many exper-
iments using the presented methodology, we opted for a different approach here,

166 7 Competence-Performance Models for Lexical Access and Syntactic Parsing

focusing only on a handful of studies and dissecting modeling assumptions and the
way computational modeling can be done in our Bayes+ACT-R/pymc3+pyactr
framework.

We take the results to be encouraging. We believe they provide clear evidence
that developing precise and quantitatively accurate computational models of lexical
access and syntactic processing is possible in the proposed Bayes+ACT-R frame-
work, and a fruitful way to pursue linguistic theory development.

Unfortunately, the models are clearly incomplete with respect to many aspects of
natural language use in daily conversation. An important aspect that is completely
missing in these models stands out: natural language meaning and interpretation.

Our goal in conversation is to understandwhat others tell us, not (just) recall lexical
information andmeticulously parse others’ messages into syntactic trees. Ultimately,
we construct meaning representations, and computational cognitive models should
have something to say about that. This is precisely what the next two chapters of this
book will address.

7.7 Appendix: The Bayes and Bayes+ACT-R Models

All the code discussed in this chapter is available on GitHub as part of the repository
https://github.com/abrsvn/pyactr-book. If you want to examine it and run it, install
pyactr (see Chap. 1), download the files and run them the same way as any other
Python script.

7.7.1 Lexical Decision Models

File ch7_first_three_models.py:

☞ https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_first_
three_models.py.

File ch7_lexical_decision_pyactr_no_imaginal.py.:

☞ https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_lexical_
decision_pyactr_no_imaginal.py.

File ch7_lexical_decision_pyactr_with_imaginal.py:

☞ https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_lexical_
decision_pyactr_with_imaginal.py.

https://github.com/abrsvn/pyactr-book
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_first_three_models.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_first_three_models.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_lexical_decision_pyactr_no_imaginal.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_lexical_decision_pyactr_no_imaginal.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_lexical_decision_pyactr_with_imaginal.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_lexical_decision_pyactr_with_imaginal.py

7.7 Appendix: The Bayes and Bayes+ACT-R Models 167

File ch7_lexical_decision_pyactr_with_imaginal_delay_0.py:

☞ https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_lexical_
decision_pyactr_with_imaginal_delay_0.py.

7.7.2 Left-Corner Parser Models

File readme.txt explains how to run the model:

☞ https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_grodner_
gibson/readme.txt.

File parser_rules.py:

☞ https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_grodner_
gibson/parser_rules.py.

File run_parser.py:

☞ https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_grodner_
gibson/run_parser.py.

File estimation_subj_obj_extraction.py:

☞ https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_grodner_
gibson/estimation_subj_obj_extraction.py.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_lexical_decision_pyactr_with_imaginal_delay_0.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_lexical_decision_pyactr_with_imaginal_delay_0.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_grodner_gibson/readme.txt
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_grodner_gibson/readme.txt
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_grodner_gibson/parser_rules.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_grodner_gibson/parser_rules.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_grodner_gibson/run_parser.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_grodner_gibson/run_parser.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_grodner_gibson/estimation_subj_obj_extraction.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch7_grodner_gibson/estimation_subj_obj_extraction.py
http://creativecommons.org/licenses/by/4.0/

Chapter 8
Semantics as a Cognitive Process I:
Discourse Representation Structures
in Declarative Memory

In this chapter, we introduce our assumptions about semantic representations and
build a semantic processor, that is, a basic parser able to incrementally construct such
semantic representations. Our choice for a processing-friendly semantics framework
is Discourse Representation Theory (DRT, Kamp 1981; Kamp and Reyle 1993).

We build an ACT-R parser for Discourse Representation Structures (DRSs), and
motivate the assumptions we make when building it by accounting for the fan exper-
iment reported in Anderson (1974), as summarized and discussed in the more recent
Anderson and Reder (1999).

The fan experiment investigates how basic propositional information of the kind
encoded by atomic DRSs1 is (stored and) retrieved from declarative memory. This is
an essential component of real-time semantic interpretation in at least two respects:

i. incrementally processing semantic representations involves composing/
integrating semantic representations introduced by new sentences or new parts
of a sentence with semantic representations of the previous discourse;

ii. incremental interpretation also involves evaluating new semantic representations
relative to our mental model of the world, and integrating their content into our
world knowledge database stored in declarative memory.

Themain reason for selectingDRTas our semantic framework is that atomicDRSs
and the compositional construction principles used to build them provide meaning
representations and elementary compositional operations that are well understood
mathematically, widely used in formal semantics, and can simultaneously function
as both meaning representations (logical forms, in linguistic parlance) and their
content/world knowledge (models, in linguistic parlance).

1Atomic DRSs are equivalent to atomic first-order logic formulas, conjunctions thereof, and atomic
formulas or conjunctions thereof with a prefix of existential quantifiers. Multiple atomic DRSs
can be merged into a single atomic DRS—with caveats for certain cases, usually requiring bound-
variable renaming. For more discussion, see Kamp and Reyle (1993), Groenendijk and Stokhof
(1991) and Muskens (1996) among others.

© The Author(s) 2020
A. Brasoveanu and J. Dotlačil, Computational Cognitive Modeling
and Linguistic Theory, Language, Cognition, and Mind 6,
https://doi.org/10.1007/978-3-030-31846-8_8

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31846-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-31846-8_8

170 8 Semantics as a Cognitive Process I: Discourse Representation Structures …

Because of this double function, DRT and atomic DRSs can be thought of as
mental models in the sense of Johnson-Laird (1983, 2004); Johnson-Laird et al.
(1989), with several advantages. First, they provide a richer and better understood
array of representations and operations. Second, they come with a comprehensive
mathematical theory of their structure and interpretation (dynamic logic/dynamic
semantics). Finally, they are well-known and used by linguists in the investigation
of a wide variety of natural language semantic phenomena.2

It is no accident that DRT is the most obvious choice for psycholinguistic models
of natural language semantics. DRT has always had an explicit representational
commitment, motivated by the goal of interfacing semantics and cognitive science
more closely (Kamp 1981 already mentions this).

Importantly, DRT is a dynamic semantic framework, so it has a notion of DRS
merge, that is, a merge of two (conjoined) representations into a larger representation
of the same type. This DRS merge operation makes the construction, maintenance
and incremental update of semantic representations more straightforward and, also,
similar to the construction, maintenance and incremental update of syntactic repre-
sentations.3

DRT, however, is not the only possible choice as a way to add meaning repre-
sentation to cognitive models of language comprehension. Less “representational”
systems—whether dynamic, e.g., Dynamic Predicate Logic (DPL, Groenendijk
and Stokhof 1991) or Compositional DRT (CDRT, Muskens 1996), or static, e.g.,

2The ability of DRSs to do this double duty (both logical forms and partial model structures) is
restricted to atomic DRSs—see the discussion of persistent DRSs andmodel extension in Kamp and
Reyle (1993, pp. 96–97). We include a brief quote from that discussion here for ease of reference:

[…] [I]t is not all that easy to see any very clear difference between models and
[atomic/persistent] DRSs at this point: both provide sets of “individuals”, to which they
assign names, properties and relations. Presently we will encounter other DRSs with a more
complicated structure [non-atomicDRSs, needed for negation, conditionals, quantifiers etc.],
and which no longer have the persistence property. These DRSs will look increasingly dif-
ferent from the models in which they are evaluated, and the illusion that DRSs are just small
models will quickly evaporate.

[But] persistent DRSs [can be thought of as partial models] in that they will typically assert
the existence of only a small portion of the totality of individuals that are supposed to exist
in the worlds of which they intend to speak, [and] in that they will specify only some of
the properties and relations of those individuals they mention. Thus a DRS may, for given
discourse referents x and y belonging to its universe, simply leave it open whether or not
they stand in a certain relation. Models, in contrast, leave no relevant information out. Thus,
if a and b are individuals in the universe of model M and the pair 〈a,b〉 does not belong
to the extension in M of, say, the predicate owns, then this means that a does not own b,
not that the question whether a owns b is, as far asM is concerned, undecided. (Kamp and
Reyle 1993, pp. 96–97).

3Merging DRSs—when possible—is a consequence of various facts about dynamic conjunction
and the update semantics associated with variable assignments and atomic lexical relations—see
Groenendijk and Stokhof (1991), Muskens (1996), Brasoveanu and Dotlačil (2007, Chap. 2) and
Brasoveanu and Dotlačil (2020) among others.

8 Semantics as a Cognitive Process I: Discourse Representation Structures … 171

Montague’s Intensional Logic (IL,Montague 1973), variants ofGallin’s Ty3/Ty4/etc.
(Gallin 1975) or partial/multivalued logics (Muskens 1995a)—are also possible,
although less straightforwardly so, at least at a first glance.

The extent to which these alternative semantic frameworks are performance-
friendly, that is, the extent to which they are fairly straightforwardly embeddable in
a cognitive-architecture-based framework for mechanistic processing models, might
provide a useful way to distinguish between them, and a plausible new metric for
semantic theory evaluation. What we have in mind here is nothing new: Sag (1992)
and Sag and Wasow (2011) argue persuasively that linguistic frameworks should be
evaluated with respect to their performance-friendliness. The discussion there under-
standably focuses on syntactic frameworks, but it is easily transferable to semantics.

Our hope is that, once a set of ‘performance-friendly’ semantic frameworks are
identified, and the ways of embedding them into explicit processing models for
semantics are explored and motivated, the predictions of the resulting competence-
performancemodelswill enable us to empirically distinguish between these semantic
frameworks.

The structure of this chapter is as follows. In the following Sect. 8.1, we intro-
duce the fan-effect phenomenon and the original experiment reported in Anderson
(1974) that established its existence. The fan effect provides a window into the way
propositional facts—basically, atomic DRSs—are organized in declarative memory.

Section 8.2 discusses how DRSs can be encoded in ACT-R chunks, and makes
explicit how the fan effect can be interpreted as reflecting DRS organization in
declarative memory.

Sections 8.3 and 8.4 model the fan experiment by parsing the experimental items
(simple English sentences with two indefinites) into DRSs, storing them in memory,
and fitting the resulting model to the retrieval latencies observed in the experiment.

Parsing natural language sentences into DRSs is fully modeled: Sect. 8.3 explic-
itly models how experimental participants comprehend these sentences by means
of a fully specified incremental parser/interpreter for both syntactic and semantic
representations. This eager left-corner parser incrementally constructs the syntactic
representations for the experimental sentences (phrase-structure grammar trees of
the kind we already discussed in Chap. 4), and in parallel, it incrementally constructs
the corresponding semantic representations, that is, DRSs.

Modeling the fan experiment in Anderson (1974) by means of this incremental
syntax/semantics parser will enable us to achieve two goals. First, we shed light on
essential declarative memory structures that subserve the process of natural language
interpretation. Second, we introduce and discuss basic modeling decisions we need
to make when integrating the ACT-R cognitive architecture and the DRT semantic
framework.

Section 8.4 shows that the incremental syntax/semantics parser is able to fit the
fan-effect data well, and Sect. 8.5 summarizes the main points of this chapter.

172 8 Semantics as a Cognitive Process I: Discourse Representation Structures …

8.1 The Fan Effect and the Retrieval of DRSs
from Declarative Memory

The fan effect

refers to the phenomenon that, as participants study more facts about a particular concept,
their time to retrieve a particular fact about that concept increases. Fan effects have been
found in the retrieval of real-world knowledge […], face recognition […] [etc.] The fan
effect is generally conceived of as having strong implications for how retrieval processes
interactwithmemory representations. It has been used to study the representation of semantic
information […] and of prior knowledge […]. (Anderson and Reder 1999,186).

The original experiment in Anderson (1974) demonstrated the fan effect in recog-
nition memory. Participants studied 26 facts about people being in various locations,
10 of which are exemplified in (1) below.

(1) a. A lawyer is in a cave.

b. A debutante is in a bank.

c. A doctor is in a bank.

d. A doctor is in a shop.

e. A captain is in a church.

f. A captain is in a park.

g. A fireman is in a park.

h. A hippie is in a park.

i. A hippie is in a church.

j. A hippie is in a town.

In the training part of the experiment, participants committed 26 items of this
kind to memory. In the test part of the experiment, participants were presented with
a series of sentences, some of which they had studied in the training part and some
of which were novel. They had to recognize the sentences they had studied, i.e., the
targets, and had to reject the foils, which were novel combinations of the same people
and locations.

We selected the 10 items in (1) because, together, they form a minimal network
of facts that instantiates the 9 experimental conditions in Anderson (1974). These
conditions have to do with how many studied facts are connected to each type of
person and location. To see this explicitly, we can represent the set of 10 facts in
(1) as a network in which each fact is connected by an edge to the type/concept of
person and location it is about, as shown in (2) below. Person concepts are listed on
the left, and location concepts are listed on the right.

8.1 The Fan Effect and the Retrieval of DRSs from Declarative Memory 173

(2) (1a)lawyer cave

(1b)debutante bank

(1c)doctor

(1d) shop

(1e)captain church

(1f) park

(1g)fireman

(1h)

hippie (1i)

(1j) town

The network representation in (2) shows how different person and location con-
cepts fan into 1, 2 or 3 sentences/facts. The table in (3) below shows how 9 of the 10
items exemplify the 9 conditions of the Anderson (1974) fan experiment (the 10th
item is needed in our fact database to be able to instantiate all 9 conditions).

(3)

location fan
1 2 3

pe
rs
on

fa
n

1 lawyer-cave (1a) debutante-bank (1b) fireman-park (1g)
2 doctor-shop (1d) captain-church (1e) captain-park (1f)
3 hippie-town (1j) hippie-church (1i) hippie-park (1h)

The table in (3) shows that the term ‘fan’ refers to the number of facts, that is,
sentences, associated with each common concept, that is, noun. The mean reaction
times (RTs, measured in s) for target recognition and foil rejection in the Anderson
(1974) experiment are provided in the tables below (reproduced from Anderson and
Reder 1999, p. 187, Table2).

(4)

Target location fan
RTs 1 2 3

pe
rs
on

fa
n

1 1.11 1.17 1.15
2 1.17 1.20 1.23
3 1.22 1.22 1.36

174 8 Semantics as a Cognitive Process I: Discourse Representation Structures …

(5)

Foil location fan
RTs 1 2 3

pe
rs
on

fa
n

1 1.20 1.25 1.26
2 1.22 1.36 1.47
3 1.26 1.29 1.47

Several generalizations become apparent upon examining this data.

(6) Fan-effect generalizations (as summarized in Anderson and Reder 1999, p.
187):

a. averaging over targets and foils, the effect of 1-fan (both person and
location)was about 1.2 s and increased by about 50ms for each additional
fan:
• the effect was about 1.25 s for 2-fan and about 1.3 s for 3-fan;
• other experiments have shown that the fan effects can be of different
sizes for different kinds of concepts, e.g., animates versus inanimate
objects versus small locations versus large locations;

b. the min effect: retrieval latency is a function of the minimum fan associ-
ated with a probe;
• for example, participants tend to respond more slowly to the 2–2 fan
items than to the 1–3 or 3–1 items;

• this effect has been repeatedly replicated;
• it is taken as evidence for parallel access to memory from the two
cues/concepts, with search being more determined by the lower fan
concept;

c. approximately equal fan effects for targets and foils:
• the target means were 1.16 s for 1-fan, 1.20 s for 2-fan, and 1.26 s for
3-fan;

• the foil means were 1.23 s for 1-fan, 1.33 s for 2-fan, and 1.37 s for
3-fan;

• we see a somewhat larger effect for foils, but this effect is reversed in
other data sets;

• this suggests that foil rejection is not done by a serial (possibly exhaus-
tive) search of the facts one knows about a cue/concept.

The ACT-R account of these generalizations, together with the quantitative fit to
the data in (4) and (5), is provided in Andreson and Reder (1999, pp. 188–189).
This account crucially relies on the spreading activation component of the ACT-R
equation for activation of chunks in memory that we introduced in Chap. 6. Recall
that the activation Ai of a fact/sentence i in memory is:

(7) Ai = Bi + ∑

j
W j S ji

Base activation Bi is determined by the history of usage of fact i (how many
times i was retrieved and how long ago), while the spreading activation component

8.1 The Fan Effect and the Retrieval of DRSs from Declarative Memory 175

∑
j W j S ji boosts the activation of fact i based on the concepts j that fact i is asso-

ciated with. Specifically, for each concept j , Wj is the extra activation flowing from
concept j , and Sji is the strength of the connection between concept j and fact i that
modulates how much of the extra activation Wj actually ends up flowing to fact i .

The account of the fan effect observed in Anderson (1974) crucially relies on
the strengths of association Sji between concepts j and facts i . These strengths are
modeled as shown below:

(8) Sji = S + log P(i | j)
S is a constant (baseline strength) to be estimated for specific experiments, while

P(i | j) is an estimate of the probability of needing fact i from declarative memory
when concept j is present in the cognitive context, e.g., in the goal or imaginal
buffers. That is, P(i | j) is an estimate of how predictive concept j is of fact i .

In an experimental setup in which all facts are studied and tested with equal
frequency, it is reasonable to assume that the predictive probability P(i | j) is simply

1
fan j

, where fan j is the fan of concept j . If a concept has a fan of 1, e.g., lawyer in

(2) above, then the probability of the associated fact (1a) is 1. However, if a concept
has a fan of 3, like hippie, all three facts associated with this concept, namely (1h),
(1i) and (1j), are equiprobable, with a probability of 1

3 .
Thus, for the experiment in Anderson (1974), the strength-of-association equation

can be simplified to:

(9) Sji = S + log
(

1
fan j

)
= S − log(fan j)

The equation in (9) implies that strength of association, and thereby fact activation,
will decrease as a logarithmic function of concept fan. Strength/activation of a fact
decreases with concept fan because the probability of a fact given a concept decreases
with the fan of that concept. For more discussion of strength of association, source
activation etc., see Sect. 6.3.

The last piece of the ACT-R model is the function that outputs retrieval latencies
given fact activations. This is provided in (10) below, which should be familiar from
Chaps. 6 and 7 (the latency exponent is omitted, i.e., set to its default value 1).

(10) T = I + Fe−Ai

The only addition is the intercept I , which captures all cognitive activities other
than fact retrieval, e.g., encoding the test sentence, generating the response etc. Recall
that we used a similar intercept in Chap. 7 when we proposed the first two models
of lexical decision—see Sects. 7.2 and 7.3

All of these model components will be made explicit in Sects. 8.3 and 8.4 below,
where we provide the first end-to-end ACT-Rmodel of the fan effect in the literature.
No such models have been available because incremental semantic interpretation
was never explicitly modeled in ACT-R before.

We can further simplify our mathematical model specification by putting together
Eqs. (7), (9) and (10) as follows:

176 8 Semantics as a Cognitive Process I: Discourse Representation Structures …

(11) T = I + Fe−Ai = I + Fe
−Bi−∑

j
W j S ji = I + Fe

−Bi−∑

j
W j (S−log(fan j))

= I + Fe
−Bi−S

∑

j
W j

e

∑

j
W j log(fan j) = I + Fe

−Bi−S
∑

j
W j ∏

j
eWj log(fan j)

= I + Fe
−Bi−S

∑

j
W j ∏

j
fan

Wj

j

= I + F ′ ∏

j
fan

Wj

j , where F ′ = Fe
−Bi−S

∑

j
W j

We can further assume that
∑

j W j is fixed and set to 1. This is motivated by the
capacity limitations in retrieval discussed in Anderson et al. (1996). Finally, if we
assume that the source activations Wj of all concepts j are equal, we can set them
all to a constant W . The final form of the ACT-R model for fan-dependent retrieval
latencies is therefore:

(12) T = I + F ′ ∏

j
fanWj , where:

• F ′ = Fe−Bi−S

• W = 1
of concepts j associated with fact i

The latency equation in (12) shows how the ACT-R model captures the fan effect,
i.e., the generalization in (6a) that recognition latency increases with fan. To see this
more clearly, let’s apply this equation to the facts in the Anderson (1974) experiment.
These facts are connected to 3 concepts (a person, a location, and the predicate in),
so the source activation W is 1

3 . The resulting latency equation is provided in (13).

(13) T = I + F ′(fanperson · fanlocation · fanin)
1
3 = I + F ′ 3

√
fanperson · fanlocation · fanin

The predicate in is connected to all the sentences/facts, so it will have a constant
fan and it will contribute a constant amount of activation (hence latency) across
all conditions in the experiment. But the person and location fan values fanperson
and fanlocation are manipulated in the experiment, and the equation in (13) correctly
predicts that, as they increase, the corresponding latency T increases.

The equation in (13) also provides an account of the min effect (generalization
(6b) above). The reason is that the product of a set of numbers with a constant sum,
specifically the product fanperson · fanlocation, is maximal when the numbers are equal,
e.g., 2 × 2 > 3 × 1.

To understand how the ACT-R model captures the generalization in (6c), that is,
the fact that foils are retrieved almost as quickly as target sentences, we need to
specify the process of foil recognition. The main idea is that foil recognition does
not involve an exhaustive search. Instead:

(14) Foil recognition

• foils are recognized by retrieving a fact that involves either the person or
the location in the foil;

8.1 The Fan Effect and the Retrieval of DRSs from Declarative Memory 177

• if the retrieved fact does not match the test sentence, participants will
respond ‘false.’

For simplicity, we can assume that participants retrieve the mismatching fact
half the time with a person cue, and half the time with a location cue. Either way,
mismatching facts have one less source of spreading activation coming from the foil
sentence (which is encoded in the goal or imaginal buffer) than matching facts. Their
total activation will therefore be lower, so the time to retrieve foils will be slightly
higher than the time to retrieve targets.

By the same token, the correct fact will almost always be retrieved for target
sentences because this fact will have more sources of spreading activation coming
from the target sentence—hence a higher total activation—than any other incorrect
fact in memory.

To be more specific, the activation of the correct fact given a target sentence is
shown in (15) below. Recall that all source activations Wperson, Wlocation and Win are
assumed to be 1

3 .

(15) Atarget = Btarget + S−log(fanperson)

3 + S−log(fanlocation)

3 + S−log(fanin)

3

All three terms S−log(fanperson)

3 , S−log(fanlocation)

3 and S−log(fanin)

3 are positive, so they
each add an extra activation boost, hence an extra decrease in latency of retrieval.

In contrast, activation of foils has only 2 spreading activation terms. Either the
location term is missing, as in (16a) below, where fact retrieval for the foil sentence
is person-based, or the person term is missing, as in (16b), where fact retrieval
for the foil sentence is location-based. Less spreading activation means lower total
activation, which leads to slightly increased latency of retrieval.

(16) a. Afoil = Bfoil + S−log(fanperson)

3 + S−log(fanin)

3

b. Afoil = Bfoil + S−log(fanlocation)

3 + S−log(fanin)

3

This ACT-R model is sufficiently flexible to account for a range of effects beyond
the original fan experiment in Anderson (1974). Different values for sources of
activation Wj can account for differential fan effects associated with different types
of concepts (inanimate objects versus persons, for example).

Similarly, different values for strengths of activation Sji that depend on the
frequency of presentation of fact-concept associations, which affect probabilities
P(i | j), can account for retrieval interference effects that gobeyond simple fan effects.
For more discussion, see Anderson and Reder (1999).

However, for the remainder of this chapter, we will focus exclusively on the
original fan experiment in Anderson (1974), and specifically on modeling retrieval
latencies for the target sentences in (4). The next section reformulates the fan effect
in terms of the way meaning representations (DRSs) that are associated with target
sentences are organized in declarative memory.

178 8 Semantics as a Cognitive Process I: Discourse Representation Structures …

8.2 The Fan Effect Reflects the Way Meaning
Representations (DRSs) Are Organized in Declarative
Memory

Wecan reformulate the notion of fan inAnderson’s experiment, aswell as the network
of facts and concepts in (2) above, as a relation between the main DRS contributed
by a sentence and the sub-DRSs contributed by its three parts: the person indefinite,
the location indefinite, and the relational predicate in.

Consider the 1–1 fan (that is, 1 person–1 location fan) example in (1a), repeated
in (17) below. The DRSs (meaning representations) of the three major components
of the sentence, that is, the indefinites a lawyer and a cave, and the binary predicate
it, are composed/combined together to form the DRS/meaning representation for the
full sentence.

The exact nature of the three meaning components and the composition method
vary from framework to framework. For example, the method of composition in
Kamp and Reyle (1993) is a set of construction principles operating over hybrid
representations combining DRSs and syntactic trees. The method of composition
in Brasoveanu (2007, Chap. 3), building on much previous work (Groenendijk and
Stokhof 1990; Chierchia 1995; Muskens 1995b, 1996 among others) is classical
Montagovian function application/β-reduction operating over DRS-like representa-
tions, which are just abbreviations of terms in a many-sorted version of classical
simply-typed lambda calculus (Gallin 1975). Finally, the method of composition in
Brasoveanu and Dotlačil (2015b) (building on Vermeulen 1994 and Visser 2002) is
dynamic conjunction over DRSs interpreted as updates of richly structured interpre-
tation contexts that record information state histories.

However, we do not need to fully specify a semantic framework for natural lan-
guage meaning representation and composition to reformulate the fan experiment
in formal semantics/DRT terms. It is sufficient to acknowledge that the main DRS
contributed by a sentence like (17) is formed out of three sub-DRSs, contributed by
the two indefinites a lawyer and a cave, and the preposition in.

This partitioning into three sub-DRSs matches the rough compositional skeleton
generally assumed in the formal semantics literature for this type of sentences, as
well as the real-time incremental comprehension process the ACT-R architecture
imposes on us.

Recall that, because of the seriality imposed in ACT-R by one production firing
at a time, and by the imaginal buffer being able to hold only one chunk at a time, we
never have a full view of the syntactic tree representation.

Similarly, we will never have a full view of the DRS semantic representation.
This representation will be assembled one sub-DRS at a time, resulting in the main
DRS in (18). But this ‘deep’, i.e., hierarchical, representation of the main DRS with
the sub-DRSs actually encoded as values of its slots is only implicitly available in
declarative memory, just like the full syntactic tree of the sentence in (17) is only
implicitly available in declarative memory.

8.2 The Fan Effect Reflects the Way Meaning … 179

(17) A lawyer is in a cave.

(18)

main- drs

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sub- drs1:
x

lawyer(x)

sub- drs2:
y

cave(y)

sub- drs3: in(x, y)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

If we merge (i.e., dynamically conjoin and ‘reduce’) the three sub-DRSs into one
DRS,we obtain theDRS in (19) below,which is precisely the semantic representation
assigned to sentence (17) in DRT. It can be shown that this merged DRS is truth-
conditionally equivalent to the classical first-order logic formula in (20),4 which
is the basic semantic representation that pretty much all static (neo-)Montagovian
semantic frameworks derive for sentence (17).

(19) Merging the sub-DRSs into one DRS:
x, y

lawyer(x)
cave(y)
in(x, y)

(20) ∃x∃y(lawyer(x) ∧ cave(y) ∧ in(x, y))

Chunks like the one exemplified in (18) lend themselves fairly straightforwardly to
modeling the fan experiment in Anderson (1974). But before we show how to do that,
let’s take a further step and encode the sub-DRSs as chunks, i.e., as attribute-value
matrices. One way to do it is as shown in (21) below:

• first, we replace the variables/discourse referents x and y with subscripted vari-
ables, e.g., ν1 and ν2; actually, while we’re at it, we can drop ν altogether and
simply retain the indices 1, 2, . . . as variables/discourse referents5;

– for example, lawyer(x), cave(y) and in(x, y) become lawyer(1), cave(2) and
in(1, 2);

4See Kamp and Reyle (1993) and Groenendijk and Stokhof (1991) among others for pertinent
discussion.
5Some formal semantics textbooks also simplify variable names to natural number indices, e.g.,
Heim andKratzer (1998). Anotherway inwhich this is useful for us is that we can now take variables
to be simply names for positions in a stack, that is, we implicitly move from the total variable
assignments of classical first-order logic or the partial variable assignments (a.k.a. embedding
functions) of DRT to (finite) stacks as the preferred way of representing interpretation contexts.
See Dekker (1994), Vermeulen (1995), Nouwen (2003, 2007) among others for more discussion of
stacks or stack-like structures in (dynamic) semantic frameworks for natural language interpretation.

180 8 Semantics as a Cognitive Process I: Discourse Representation Structures …

• second, we separate DRS conditions into distinct features for the predicate and for
its arguments;

– for example, the condition in(1, 2) is replaced with the chunk/attribute value
matrix

⎡

⎢
⎣

pred in

arg1: 1

arg2: 2

⎤

⎥
⎦

;

• finally, sub-DRSs that introduce new discourse referents—that is, they contribute
something like an implicit existential quantifier in addition to conditions—will
have a new feature dref to indicate what new discourse referent they introduce;

– for example, sub-drs1 in (21) introduces the new discourse referent 1, which
is a lawyer, so 1 is both the value of the dref feature and the value of the arg1
feature (since it is the first, and only, argument of the ‘lawyer’ predicate).

(21)

main- drs

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sub- drs1:
⎡

⎢
⎢
⎣

dref: 1

pred lawyer

arg1: 1

⎤

⎥
⎥
⎦

sub- drs2:
⎡

⎢
⎢
⎣

dref: 2

pred cave

arg1: 2

⎤

⎥
⎥
⎦

sub- drs3:
⎡

⎢
⎢
⎣

pred in

arg1: 1

arg2: 2

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The graph like representation of the chunk in (21) is provided in (22) below.

(22) main- drs (1a)/(17)

⎡

⎢
⎣

dref: 1

pred lawyer

arg1: 1

⎤

⎥
⎦

⎡

⎢
⎣

dref: 2

pred cave

arg1: 2

⎤

⎥
⎦

⎡

⎢
⎣

pred in

arg1: 1

arg2: 2

⎤

⎥
⎦

sub- drs1 sub- drs2

sub- drs3

8.2 The Fan Effect Reflects the Way Meaning … 181

Since all the main DRSs for the items in (1) are going to be connected to the
sub-drs3 contributed by the preposition in, we can omit that connection—and we
will do that from now on.

With that omission in place, we can reproduce the network of facts and concepts
in (2) more properly as a semantic network of DRSs in declarative memory. For
space reasons, (23) below only provides the DRS network corresponding to the first
four experimental items (1a) through (1d).

(23) main- drs (1a)

⎡

⎢
⎣

dref: 1

pred lawyer

arg1: 1

⎤

⎥
⎦

⎡

⎢
⎣

dref: 2

pred cave

arg1: 2

⎤

⎥
⎦

sub- drs1 sub- drs2

main- drs (1b)

⎡

⎢
⎣

dref: 1

pred debutante

arg1: 1

⎤

⎥
⎦

⎡

⎢
⎣

dref: 2

pred bank

arg1: 2

⎤

⎥
⎦

sub- drs1 sub- drs2

main- drs (1c)

⎡

⎢
⎣

dref: 1

pred doctor

arg1: 1

⎤

⎥
⎦

sub- drs1

sub
- d
rs2

main- drs (1d)

⎡

⎢
⎣

dref: 2

pred shop

arg1: 2

⎤

⎥
⎦

sub- drs1

sub- drs2

Structuring DRSs in memory as a network in which a main DRS contains, i.e., is
connected to, sub-DRSs contributed by various sub-sentential expressions is reminis-
cent of the structured meanings approach to natural language semantics in Cresswell
(1985).

We leave the exploration of further connections between the structure of mean-
ing representations in declarative memory, semantic composition, incremental pro-
cessing and various approaches to the formal semantics of propositional attitudes
(structured meanings among others) for a future occasion.

182 8 Semantics as a Cognitive Process I: Discourse Representation Structures …

8.3 Integrating ACT-R and DRT: An Eager Left-Corner
Syntax/Semantics Parser

With these semantic assumptions in place, we are ready to specify our model for the
Anderson (1974) fan experiment. The model we introduce in this section is the first
model of a fan experiment to explicitly incorporate syntactic and semantic parsing.

In fact, this is the first end-to-end model of the testing phase of Anderson (1974)
experiment, explicitly incorporating (i) a visual component (eye-movement while
reading), (ii) a motor component (accept or reject whether the test sentence was
studied in the training phase), and (iii) a syntax/semantics incremental interpreter for
the test sentence as it is being read.

For simplicity, we focus exclusively on modeling target sentences, and the
observed mean target latencies in (4) above. But the model will be designed with
foils in mind too, and could be equally applied to model the mean foil latencies in
(5) above.

The core component of our cognitive model for a participant in the Anderson
(1974) fan experiment is an eager left-corner parser that parses syntactic trees and
DRSs simultaneously and in parallel. As a new word is incrementally read in the
usual left-to-right order for English:

• the model eagerly and predictively builds as much of the syntactic and semantic
representation as it can (before deciding to move the eyes to the next word);

• this process of syntactic and semantic representation building is the process of
comprehending the new word and integrating it into the currently available partial
syntactic and semantic structure;

• these cognitive actions of comprehension and integration result in a new partial
syntactic and semantic structure;

• in turn, this syntax/semantics structure provides the context relative to which the
next word is interpreted, and which will be updated as this next word is compre-
hended and integrated.

The overall dynamics of parsing is thus very similar to dynamic semantics: a
sequence of parsing actions or a sequence of dynamic semantics updates charts a
path through the space of information states. Each info state provides both (i) the
context relative to which a semantic update is interpreted and, at the same time, (ii)
the context that is changed as a result of executing that update.

Information states are simpler for dynamic semantics: they are basically variable
assignments or similar structures. For our ACT-R incremental parser, information
states are complex entities consisting of the partial syntactic and DRS structure built
up to that point, as well as the state of the buffers and modules of the ACT-R mind
at that point in the comprehension process.

Our syntax/semantics parser builds semantic representations and syntactic struc-
tures simultaneously, but the two types of representations are independently encoded
and relatively loosely connected. In particular, we will postulate a separate imaginal-
like buffer, whichwewill labeldiscourse_context, whereDRSs are incremen-

8.3 Integrating ACT-R and DRT: An Eager Left-Corner Syntax/Semantics Parser 183

tally built. We will continue to store partial syntactic representations in the imaginal
buffer.

The decision to build syntax/semantics representations simultaneously, but in
separate buffers is in the spirit of the ACT-R architecture. We avoid integrating
two complex representations directly in a single ‘super-chunk’, keeping chunk size
relatively small and also keeping the chunks themselves relatively flat. By ‘flat’
chunks, we mean chunks without many levels of embedding, that is, without many
features that have other chunks as values, whose features in their turn have other
chunks as values etc.

These ‘deep’ hierarchical representations are ubiquitous in generative syntax and
semantics, but they are not compatible with the view of (high-level) cognitive pro-
cesses embodied by theACT-R cognitive architecture, at least not immediately. Thus,
it is important to note that the independently motivated ACT-R cognitive architecture
places non-trivial constraints on the form of our linguistic performance models, and
indirectly on our competence-level models.

We had to make many implementation decisions when we divided the syntax and
semantics labor across buffers and productions, and some of these decisions could
have beenmade differently. However, the resultingmodel is (we hope) pedagogically
accessible, and is in keepingwithmost of the receivedwisdom about the properties of
the human processor in the psycholinguistic literature (Marslen-Wilson 1973, 1975;
Frazier and Fodor 1978; Gibson 1991, 1998; Tanenhaus et al. 1995; Steedman 2001;
Hale 2011 among many others). While this received wisdom focuses mainly on the
syntactic aspects of real-time language comprehension, the simplest way to extend
it to semantics is to assume that it applies in basically the same form and to the same
extent (if possible).

Specifically, the human processor, and ourmodel of it, is incremental since syntac-
tic parsing and semantic interpretation do not lag significantly behind the perception
of individual words. It is also predictive since the processor forms explicit syntactic
and semantic representations of words and phrases that have not yet been heard.
Finally, it satisfies the competence hypothesis because the incremental interpretation
process requires the recovery of a grammar-based structural description on the syntax
side, and of a meaning representation (DRS) on the semantic side.

Furthermore, the syntax and semantics parsing process we implement formalizes
fairly directly the general view of sentence comprehension summarized in Gibson
(1998, p. 11):

Sentence comprehension involves integrating new input words into the currently existing
syntactic and discourse structure(s). Each integration has a syntactic component, responsible
for attaching structures together, such as matching a syntactic category prediction or linking
together elements in a dependency chain. Each integration also has a semantic and discourse
componentwhich assigns thematic roles and addsmaterial to the discourse structure. (Gibson
1998, p. 11)

Let us now turn to an example and show how our model incrementally interprets
the sentence in (17/1a) above, namely:

A lawyer is in a cave.

184 8 Semantics as a Cognitive Process I: Discourse Representation Structures …

Assume that the first word, i.e., the indefinite article a, has already been read and
recognized as a determiner. At that point, the "project: NP ==> Det N" rule
in (24) below is selected and fired.

(24) parser.productionstring(name="project: NP ==> Det N", string=""" 1
=g> 2
isa parsing_goal 3
task parsing 4
stack1 S 5
stack2 =s2 6
right_frontier =rf 7
parsed_word =w 8
dref_peg =peg 9
=retrieval> 10
isa word 11
cat Det 12
==> 13
=g> 14
isa parsing_goal 15
task move_peg 16
stack1 N 17
stack2 NP 18
stack3 S 19
stack4 =s2 20
+imaginal> 21
isa parse_state 22
node_cat NP 23
daughter1 Det 24
mother =rf 25
lex_head =w 26
+discourse_context> 27
isa drs 28
dref =peg 29
arg1 =peg 30
˜retrieval> 31

""") 32

First, note that:

• the lexical entry for the determiner a is assumed to be available in the retrieval
buffer (lines 10–12 in (24));

• our current top goal is to parse an S (line 5);
• a fresh discourse referent index, a.k.a. dref_peg, is available in the goal buffer
(line 9).

The value of the dref_peg feature is assigned to an ACT-R variable =peg that
will be used in the cognitive actions triggered by this rule. The index =peg is fresh
in the sense that no discourse referent with that index has been introduced up to
this point. Thus, that index has never been part of the semantic representation up
until now: it was never the argument of a predicate, it couldn’t have served as the
antecedent for a pronoun etc. The term ‘peg’ and its specific usage here originates
in Vermeulen (1995).

Given these preconditions, the rule in (24) simultaneously builds:

• a syntactic representation in the imaginal buffer (lines 21–26), and
• a semantic representation in the discourse_context buffer (lines 27–30).

In the imaginal buffer, we build the unary branching node NP dominating the
Det node, which in turn dominates the terminal a.

8.3 Integrating ACT-R and DRT: An Eager Left-Corner Syntax/Semantics Parser 185

In the discourse_context buffer, we start a new DRS that will be further
specified by the upcoming N (lawyer). This DRS introduces a new discourse referent
with the index =peg, and also requires this discourse referent to be the first argument
(arg1) of the still-unspecified predicate contributed by the upcoming N—and also
the first argument of the subsequent VP, as we will soon see.

In the more familiar format, the DRS contributed by rule (24) to the
discourse_context buffer is provided in (25) below. Note that the value of
the =peg index is specified as 1 since this is the first discourse referent introduced
in the sentence.

(25) DRS contributed by the indefinite determiner a:
AVM format:⎡

⎢
⎣

isa: drs

dref: 1

arg1: 1

⎤

⎥
⎦

DRS format:
1

still- unspecified- predicate(1)

The semantic part of the production rule in (24)—and the way it sets up the
interpretation context for the upcoming N and VP—is very similar to the meaning
assigned to the singular indefinite determiner a in dynamic semantic frameworks.
For example, the indefinite a is associated with the following kind of meaning rep-
resentation in Compositional DRT6:

(26) a1 � λP ′
et.λPet. [1]; P ′(1); P(1)

The subscripted type et in (26) ensures that P ′ and P are (dynamic) properties.
These properties will be contributed by the upcoming N lawyer and the subsequent
VP is in a cave. The new discourse referent 1 introduced by the indefinite is super-
scripted on the indefinite a itself, and it is marked as newly introduced in the seman-
tic representation by square brackets [1]. The semicolon ‘;’ is dynamic conjunction
(familiar from imperative programming languages like C).

Technically, the meaning representation in (26) is a function-denoting term in
(classical, static) many-sorted simply-typed higher-order logic. However, it can be
paraphrased as a sequence of update instructions. Specifically, the indefinite deter-
miner a1 ‘says’ that:

• once two properties P ′ and P are given to me in this specific order (λP ′
et.λPet.),

• I will introduce a new discourse referent/‘variable’ ([1]),
• then (;),
• I will check that the discourse referent satisfies the first property (P ′(1)),
• and then (;),
• I will check that the discourse referent satisfies the second property (P(1)).

Wewill see that our processingmodel follows this semantic ‘recipe’ fairly closely,
but it distributes it across:

6SeeMuskens (1996), and also the detailed discussion and extensive examples in Brasoveanu (2007,
Chap. 3).

186 8 Semantics as a Cognitive Process I: Discourse Representation Structures …

i. several distinct productions in procedural memory,
ii. several distinct chunks sequentially updated and stored in the discourse_

context buffer, and
iii. specific patterns of information flow, that is, feature-value flow, between the g

(goal), imaginal and discourse_context buffers.

In addition to adding chunks to the imaginal and discourse_context
buffers, the production rule in (24) above also specifies a new task in the goal buffer,
which is to move_peg (line 16 in (24)). This will trigger a rule that advances the
‘fresh discourse referent’ index to the next number. In our case, it will advance it
to 2. This way, we ensure that we have a fresh discourse referent available for any
future expression, e.g., another indefinite, that might introduce one.

We also have a new stack of expected syntactic categories in the goal buffer (lines
17–19 in (24)). We first expect an N, at which point we will be able to complete the
subject NP. Once that is completed, we can return to our overarching goal of parsing
an S.

We will not discuss the family of move_peg rules. The full code is linked to in
the appendix to this chapter—see Sect. 8.6.2. Instead, we will simply assume that
the discourse reference peg has been advanced and discuss the "project and
complete: N" rule in (27) below. This is the production rule that is triggered after
the word lawyer is read and its lexical entry is retrieved from declarative memory.

(27) parser.productionstring(name="project and complete: N", string=""" 1
=g> 2
isa parsing_goal 3
task parsing 4
stack1 N 5
stack2 =s2 6
stack3 =s3 7
stack4 =s4 8
right_frontier =rf 9
parsed_word =w 10
=retrieval> 11
isa word 12
cat N 13
pred =p 14
?discourse_context> 15
buffer full 16
==> 17
=g> 18
isa parsing_goal 19
stack1 =s2 20
stack2 =s3 21
stack3 =s4 22
stack4 None 23
+imaginal> 24
isa parse_state 25
node_cat NP 26
daughter1 Det 27
daughter2 N 28
lex_head =w 29
mother =rf 30
=discourse_context> 31
isa drs 32
pred =p 33
˜retrieval> 34

""") 35

8.3 Integrating ACT-R and DRT: An Eager Left-Corner Syntax/Semantics Parser 187

The "project and complete: N" rule requires the lexical entry for an N
(lawyer, in our case) to be in the retrieval buffer (lines 11–14 in (27)). It also requires
the top of the goal stack, that is, the most immediate syntactic expectation, to be N
(line 5). Finally, the rule checks that there is a DRS in the discourse_context
buffer (lines 15–16). This is the DRS contributed by the preceding determiner a, and
which will be further updated by the noun lawyer.

Once all these preconditions are satisfied, the "project and complete:
N" rule triggers a several actions that update the current parse state, i.e., the current
syntactic and semantic representations.

First, a new part of the tree is added to the imaginal buffer (lines 24–30): this
is the binary branching node NP with two daughters, a Det on the left branch and an
N on the right.

Second, the DRS in the discourse_context buffer that was introduced by
the determiner a is updated with a specification of the pred feature (lines 31–33).
Specifically, the predicate =p on line 33 is the one contributed by the lexical entry
of the word lawyer, which is currently available in the retrieval buffer (see line
14).

After the "project and complete: N" rule in (27) above fires, the DRS
in the discourse_context buffer becomes:

(28) DRS in discourse_context buffer after the N (lawyer) update:
AVM format:⎡

⎢
⎢
⎢
⎣

isa: drs

dref: 1

pred lawyer

arg1: 1

⎤

⎥
⎥
⎥
⎦

DRS format:
1

lawyer(1)

Note that at this point, the discourse_context buffer holds sub-drs1 of the
Main-drs in (18/21).

With the subject NP a lawyer now completely parsed, both syntactically and
semantically, we have the full left corner of the ‘S → NP VP’ grammar rule, so we
can trigger it. The corresponding production rule "project and complete:
S ==> NP VP" is provided in (29) below.

(29) parser.productionstring(name="project and complete: S ==> NP VP", 1
string=""" 2

=g> 3
isa parsing_goal 4
task parsing 5
stack1 NP 6
stack2 S 7
stack3 =s3 8
stack4 =s4 9
=discourse_context> 10
isa drs 11
dref =d 12
==> 13
=g> 14
isa parsing_goal 15
stack1 VP 16
stack2 =s3 17

188 8 Semantics as a Cognitive Process I: Discourse Representation Structures …

stack3 =s4 18
right_frontier VP 19
arg_stack =d 20
+imaginal> 21
isa parse_state 22
node_cat S 23
daughter1 NP 24
daughter2 VP 25

""") 26

This production rule eagerly discharges the expectations for an NP and an S from
the goal stack (lines 6–7 in (29)) and replaces them both with a VP expectation (line
16). At the same time, a new part of the syntactic tree is built in the imaginal
buffer, namely the top node S and its two daughters NP and VP (lines 21–25).

Finally, one important semantic operation happens in this rule, namely the transfer
of the discourse referent =d from the discourse_context buffer (line 12) to the
top of the argument stack arg_stack in the goal buffer (line 20). This operation
effectively takes the discourse referent 1 introduced by the subject NP a lawyer and
makes it the first argument of the VP we are about to parse. That is, this is how the
cognitive process implements the final P(1) semantic operation/update in formula
(26) above.

We can now proceed to parsing the copula is, which we take to be semantically
vacuous for simplicity. As the rule in (30) shows, the copula (once read and lexically
retrieved) simply introduces a new part of the syntactic tree: the VP node with a
Vcop (copular verb) left daughter and a PP right daughter.

(30) parser.productionstring(name="project and complete: VP ==> Vcop PP", 1
string=""" 2

=g> 3
isa parsing_goal 4
task parsing 5
stack1 VP 6
parsed_word =w 7
right_frontier =rf 8
=retrieval> 9
isa word 10
cat Vcop 11
==> 12
=g> 13
isa parsing_goal 14
stack1 PP 15
right_frontier PP 16
+imaginal> 17
isa parse_state 18
mother =rf 19
node_cat VP 20
daughter1 Vcop 21
daughter2 PP 22
lex_head =w 23
˜retrieval> 24

""") 25

We can now move on to the preposition in. Once this preposition is read and
lexically retrieved, the rule "project and complete: PP ==> P NP" in
(31) below is triggered.

8.3 Integrating ACT-R and DRT: An Eager Left-Corner Syntax/Semantics Parser 189

(31) parser.productionstring(name="project and complete: PP ==> P NP", 1
string=""" 2

=g> 3
isa parsing_goal 4
task parsing 5
stack1 PP 6
parsed_word =w 7
arg_stack =a 8
right_frontier =rf 9
=retrieval> 10
isa word 11
cat P 12
pred =p 13
==> 14
=g> 15
isa parsing_goal 16
stack1 NP 17
+imaginal> 18
isa parse_state 19
mother =rf 20
node_cat PP 21
daughter1 P 22
daughter2 NP 23
lex_head =w 24
+discourse_context> 25
isa drs 26
arg1 =a 27
pred =p 28
˜retrieval> 29

""") 30

The preconditions of the rule in (31) are the following: (i) the top of the goal stack
is a PP (line 6), (ii) the argument stack stores the discourse referent =a contributed
by the subject NP (line 8), and (iii) the retrieval buffer contains the lexical entry
of the preposition, specifically the predicate =p contributed by it (line 13). If these
preconditions are satisfied, the following cognitive actions are triggered:

• replace the PP at top of the goal stack with an NP (line 17); this is the NP that we
expect the preposition to have as its complement;

• build a new part of the syntactic tree in the imaginal buffer, with PP as the
mother node and daughters P and NP (lines 18–24);

• add a new DRS to the discourse_context buffer, the predicate of which is
the binary relation =p contributed by the preposition, and the first argument of
which is the subject discourse referent =a (lines 25–28);

• finally, flush the retrieval buffer (line 29).

While the syntactic components of the PP rule in (31) are specific to prepositions,
the semantic part is more general: this is how binary relations (transitive verbs like
devour, relational nous like friend or aunt etc.) are all supposed to work. They
contribute their predicate =p to a new DRS and they specify the first argument of
their binary relation to be the discourse referent =a contributed by the subject NP,
as shown in (32) below.

Note that the DRS has an empty universe because no new discourse referents are
introduced. Also, the second argument of the IN binary relation is still unspecified
(symbolizedby ‘_’) because the locationNPacave,whichwill provide that argument,
has not yet been read and interpreted.

190 8 Semantics as a Cognitive Process I: Discourse Representation Structures …

(32) DRS in discourse_context buffer after the P (in) update:
AVM format:⎡

⎢
⎣

isa: drs

pred in

arg1: 1

⎤

⎥
⎦

DRS format:

in(1, _)

We can now move on to the location NP a cave. Once the indefinite deter-
miner a is read and lexically retrieved, the "project and complete: NP
==> Det N" rule in (33) below is triggered. Note that this rule is different from
the "project: NP ==> Det N" in (24) above. The earlier "project NP"
rule is triggered for subjects, that is, for positionswhere anNP is not already expected,
i.e., it is not already present at the top of the goal stack.

The "project and complete NP" rule is triggered for objects of preposi-
tions, transitive verbs etc. since these are expected NPs. By expected NPs, we mean
that an NP is already present at the top of the goal stack when the determiner is read,
as shown on line 6 in (33) below.

(33) parser.productionstring(name="project and complete: NP ==> Det N", 1
string=""" 2

=g> 3
isa parsing_goal 4
task parsing 5
stack1 NP 6
right_frontier =rf 7
parsed_word =w 8
dref_peg =peg 9
=retrieval> 10
isa word 11
cat Det 12
?discourse_context> 13
buffer full 14
==> 15
=g> 16
isa parsing_goal 17
task move_peg 18
stack1 N 19
+imaginal> 20
isa parse_state 21
node_cat NP 22
daughter1 Det 23
mother =rf 24
lex_head =w 25
=discourse_context> 26
isa drs 27
dref =peg 28
arg2 =peg 29
+discourse_context> 30
isa drs 31
arg1 =peg 32
˜retrieval> 33

""") 34

The syntactic contribution of the rule in (33) is simply adding an NP node with a
Det daughter to the imaginal buffer (lines 20–25). The semantic contribution is
two-fold.

First, the DRS introduced by the preposition in is further specified by introducing
a new discourse referent and setting the second argument slot of the in predicate to
this newly introduced discourse referent (lines 26–29). The resulting DRS, provided

8.3 Integrating ACT-R and DRT: An Eager Left-Corner Syntax/Semantics Parser 191

in (34) below, is the same as sub-drs3 in (18/21) above, with the modification that
the new discourse referent 2 is introduced in this sub-DRS rather than in sub-drs2.
We return to this issue below.

At this point, we have completely assembled (a version of) sub-drs3 in the
discourse_context buffer.

(34) DRS in discourse_context buffer after the first part of the update with
the indefinite determiner (a), which further specifies the DRS introduced by
the preposition in:
AVM format:⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

isa: drs

dref: 2

pred in

arg1: 1

arg2: 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

DRS format:
2

in(1, 2)

The second semantic contributionmade by rule (33) above is the addition of a new
DRS to the discourse_context buffer (lines 30–32) that will be our location
DRS, i.e., sub-drs2 in (18/21).We simply specify that the newly introduceddiscourse
referent 2 is the first argument of a yet unspecified predicate, to be specified by the
upcoming noun cave. This DRS is provided in (35) below.

(35) DRS in discourse_context buffer after the second part of the update
with the indefinite determiner (a):
AVM format:[
isa: drs

arg1: 2

] DRS format:

still- unspecified- predicate(2)

Unlike sub-drs2 in (18/21), the DRS in (35) has an empty universe, since we
introduced discourse referent 2 in the DRS previously stored in the discourse_
context buffer. For the simple example at hand (A lawyer is in a cave), the decision
to introduce discourse referent 2 in sub-drs3 (34) rather than in sub-drs2 (35) is
inconsequential: the ultimate semantic representation, i.e., merged DRS, will have
the same form as in (19) above.

Wedecided to gowith thiswayof encoding the introduction of objectNPdiscourse
referents rather than with the more standard semantic representation in (18/21) just
to show that it is possible. Also, from a processing perspective, it is simpler and
more natural to introduce a discourse referent at the earliest point in the left-to-right
incremental interpretation process where the referent appears as the argument of a
predicate.

This decision, however, unlike the standard formal semantics decision in (18/21),
makes incorrect predictions with respect to the quantifier scope potential of the
location NP. This is truth-conditionally inconsequential in our example because the
subject NP is also an existential. But if the subject NP had been a universal quantifier,
e.g., every lawyer, we would incorrectly predict that the location NP a cave can have

192 8 Semantics as a Cognitive Process I: Discourse Representation Structures …

only narrow scope relative to that quantifier. This is because its scope is tied to the
point of discourse referent introduction, namely the predicate in. While this narrow-
scope prediction is correct for so-called ‘semantically incorporated’ NPs, e.g., bare
plurals (see Carlson 1977, 1980; Farkas and de Swart 2003 among others for more
discussion), it is not generally correct for bona fide indefinite NPs, which are scopally
unrestricted (see, for example, Brasoveanu and Farkas 2011 for a relatively recent
discussion).

The semantic representation thatmakes correct scopal predictions is easy to obtain
in this case: the discourse referent introduction on line 28 of (33) simply needs to
be moved further down, e.g., immediately after line 31. In general, however, such a
change might be non-trivial.

What we have here is an instance of amore general phenomenon: incremental pro-
cessing order and semantic evaluation order do not always coincide (see Vermeulen
1994; Milward and Cooper 1994; Chater et al. 1995 for insightful discussions of this
issue). We believe that the Bayes+ACT-R+DRT framework introduced in this book
provides the right kind of formal infrastructure to systematically investigate this type
of discrepancies between processing and semantic evaluation order. A detailed sys-
tematic investigation of such discrepancies will likely constrain in non-trivial ways
both competence-level semantic theories and semantically-informed processing the-
ories and models.

Once the final noun cave is read and lexically retrieved, a second application of the
"project and complete: N" rule in (27) above is triggered. The semantic
contribution of this rule is to further specify the DRS in (35) by adding the predicate.
The resulting DRS is provided in (36) below, and is the final version of sub-drs2
produced by our syntax/semantics parser.

(36) DRS in discourse_context buffer after the second part of the update
with the indefinite determiner (a):
AVM format:⎡

⎢
⎣

isa: drs

pred: cave

arg1: 2

⎤

⎥
⎦

DRS format:

cave(2)

8.4 Semantic (Truth-Value) Evaluation as Memory
Retrieval, and Fitting the Model to Data

At this point, our model has completely parsed the test sentence A lawyer is in a
cave. With the DRS for this sentence in hand, we can move to establishing whether
the sentence was studied in the training phase or not.

8.4 Semantic (Truth-Value) Evaluation as Memory … 193

To put it differently, the training phase presented a set of facts, and now we have
to evaluate whether the test sentence is true or not relative to those facts. That is, we
view semantic (truth-value) evaluation as memory retrieval.7

Thus, the bigger picture behind our DRT-based model of the fan effect is that
the process of semantic interpretation proceeds in two stages, similar to the way
interpretation proceeds in DRT.

In the initial stage, we construct the semantic representation/DRS/mental dis-
course model for the current sentence. In DRT, specifically in Kamp and Reyle
(1993), this stage involves a step-by-step transformation of a complete syntactic
representation of the sentence into a DRS by means of a series of construction-
rule applications. In our processing model, this stage consists of applying an eager,
left-corner, syntax-and-semantics parser to the current test sentence.

In the second stage, we evaluate the truth of this DRS/mental model by connecting
it to the actual, ‘real-world’ model, which is our background database of facts stored
in declarative memory. In DRT, the second stage involves constructing an embedding
function (a partial variable assignment) that verifies the DRS relative to the model.
In our processing model, truth/falsity evaluation involves retrieving—or failing to
retrieve—a fact from declarative memory that has the same structure as the DRS we
have just constructed.

Let us turn now to how exactlywemodel semantic evaluation asmemory retrieval.
First, we assume that all the facts studied in the training phase of the fan experiment
are stored in declarative memory before we even start parsing the test sentence. All
the relevant code is linked to in the appendix of this chapter (see Sect. 8.6.1). We
will list here only the lawyer-cave fact, together with the type declarations for main
DRSs and (sub)DRSs:

(37) actr.chunktype("drs", "dref pred arg1 arg2") 1
actr.chunktype("main_drs", "subdrs1 subdrs2 subdrs3") 2

3
lawyer = actr.makechunk(typename="drs", arg1=1, dref=1, pred=’LAWYER’) 4
cave = actr.makechunk(typename="drs", arg1=2, pred=’CAVE’) 5
in_relation = actr.makechunk(typename="drs", arg1=1, arg2=2, dref=2, 6

pred=’IN’) 7
dm.add(actr.makechunk(typename="main_drs", subdrs1=lawyer, 8

subdrs2=cave, subdrs3=in_relation)) 9

The three sub-DRSs are declared on lines 4–7 in (37) with the makechunk
method, and are assigned to three Python3 variables (note: not ACT-R variables).
We can then use these three Python3 variables as subparts/values inside the main
DRS encoding the lawyer-cave fact (lines 8–9). Finally, we add the entire fact to
declarative memory with the dm.add method (also lines 8–9).

The declarative memory module of our model is loaded with all the facts listed
in (1) before the parsing process for a test sentence even starts. When the parse
of a test sentence is completed, we have the location DRS, that is, subdrs2 in the
discourse_context buffer. For the sentence we parsed in the previous section,
that location DRS is provided in (36) above.

7See Budiu and Anderson (2004) for a variety of potential applications of such a proposal.

194 8 Semantics as a Cognitive Process I: Discourse Representation Structures …

To set up the proper spreading-activation configuration for the fan-effect exper-
iment, we have to have all three sub-DRSs that are produced during parsing in the
goal buffer. Since only the location DRS is available, we have to recall the person
DRS and the in DRS listed in (31) and (34) above so that we can add them to the
goal buffer.

We start by recalling the in-relation DRS with the rule in (38) below. This rule is
triggered as soon as the test sentence has been completely parsed: the task is still
parsing (line 5), but the goal stack is empty (the top of the stack is None—line
6). For good measure, we also check that the last DRS that was constructed (the
location DRS) is still in the discourse_context buffer (lines 7–8). Assuming
these pre-conditions are satisfied, we place a retrieval request for a DRS—any DRS
(lines 13–15). Because the inDRS is the one that was most recently added/harvested
to declarative memory, it has the highest activation, and this is the DRS we will end
up retrieving.

(38) parser.productionstring(name="recall in_relation sub-DRS", 1
string=""" 2

=g> 3
isa parsing_goal 4
task parsing 5
stack1 None 6
?discourse_context> 7
buffer full 8
==> 9
=g> 10
isa parsing_goal 11
task recall_person_subdrs 12
+retrieval> 13
isa drs 14
arg1 ˜None 15

""") 16

The retrieval request, however, doesn’t simply state that we should retrieve a
chunk of type drs (line 14 in (38) above), but goes ahead and requires a non-empty
arg1 feature (line 15). This extra-specification seems redundant, but it is in fact
necessary: recall that the identity of a chunk (and of a chunk type) is given by its list
of features, not by the name we give to the type. The type name listed as the value of
the feature isa is simply a convenient abbreviation for us as modelers. Therefore,
placing a retrieval request with a cue consisting only of isa drs is tantamount to
placing a retrieval request for any chunk in declarative memory, whether it is of type
drs, or main_drs, or indeed any of the other types we use (parsing_goal,
parse_state and word—see the beginning of Sect. 8.6.1 for all chunk-type
declarations). To make sure we actually place a retrieval request for a DRS, we need
to list one of its distinguishing features, and we choose the arg1 feature here.

In addition to placing a retrieval request for the DRS with the highest activa-
tion, which is the in DRS, the rule in (38) also updates the task in the goal buffer
to recall_person_subdrs. This sets the cognitive context up for the next
recall rule, provided in (39) below. The preconditions of this rule include a full
discourse_context buffer, where the location DRS is still stored (lines 9–10
in (39)), and a full retrieval buffer, which stores the successfully retrieved in
DRS (lines 7–8).

8.4 Semantic (Truth-Value) Evaluation as Memory … 195

(39) parser.productionstring(name="recall person sub-DRS", 1
string=""" 2

=g> 3
isa parsing_goal 4
task recall_person_subdrs 5
stack1 None 6
=retrieval> 7
isa drs 8
?discourse_context> 9
buffer full 10
==> 11
=g> 12
isa parsing_goal 13
task match_subdrs 14
expected3 =retrieval 15
?retrieval> 16
recently_retrieved False 17
+retrieval> 18
isa drs 19
arg1 ˜None 20

""") 21

Once these preconditions are satisfied, the rule will take the inDRS in the retrieval
buffer and store it in the goal buffer under anexpected3 feature (line 15). Encoding
the inDRSas the value of theexpected3 feature indicates that thisDRS is expected
to be subdrs3 of the verifying fact for the test sentence we just finished parsing.8

Importantly, setting the in DRS as the value of a feature in the goal buffer ensures
that there is spreading activation from this sub-DRS to all the main DRSs/facts in
declarative memory that contain it. This is essential for appropriately modeling the
fan effect.

More generally, at this point in the cognitive process, our goal is to add all three
parsed sub-DRSs to the goal buffer (we still have to add the location and person
sub-DRSs), so that we have spreading activation from each of them to main DRSs in
declarative memory. Once we achieve this state for the goal buffer, we will be able
to semantically evaluate the parsed test sentence. That is, we will place a retrieval
request for a main DRS that can verify it.

In order to store all the sub-DRSs of the parsed test sentence in the goal buffer,
we have to place one final retrieval request to recall the person DRS (lines 16–20 in
(39)), whichwas the first semantic product of our process of parsing the test sentence.
Crucially, this request is modulated by the constraint of not retrieving a DRS that was
recently retrieved (lines 16–17 in (39)). This additional constraint is essential: had
it not been present, the actual retrieval request for a DRS (any DRS) on lines 18–20
would end up retrieving the in DRS all over again. The reason for this is that the in
DRS was the most activated to begin with, and its most recent retrieval triggered by
the rule in (38) above boosted that activation even further.

The constraint to retrieve something that was not recently retrieved (lines 18–20 in
(39)) is not ad hoc. This type of constraint is necessary in a wide variety of processes
involving refractory periods after a cognitive action, and it is modeled in ACT-R (and
pyactr) in terms of Pylyshyn’s FINSTs (fingers of instantiation).

8Of course, the number 3 in expected3 has no actual interpretation, it is only convenient for
us as modelers so that we can more easily keep track of the number of DRSs used for spreading
activation.

196 8 Semantics as a Cognitive Process I: Discourse Representation Structures …

The original motivation for the FINST mechanism in early visual perception is
summarized in Pylyshyn (2007):

Whenwe first came across this problem [of object identity tracking that occurs automatically
and generally unconsciously as we perceive a scene] [i.e., the need to keep track of things
without a conceptual description using their properties] it seemed to us that what we needed
is something like an elastic finger: a finger that could be placed on salient things in a scene
so we could keep track of them as being the same token individuals while we constructed
the representation, including when we moved the direction of gaze or the focus of attention.
What came to mind is a comic strip I enjoyed when I was a young comic book enthusiast,
called Plastic Man. It seemed to me that the superhero in this strip had what we needed to
solve our identity-tracking or reidentification problem. Plastic Man would have been able to
place a finger on each of the salient objects in the figure. Then no matter where he focused
his attention he would have a way to refer to the individual parts of the diagram so long as
he had one of his fingers on it. Even if we assume that he could not detect any information
with his finger tips, Plastic Man would still be able to think ‘this finger’ and ‘that finger’
and thus he might be able to refer to individual things that his fingers were touching. This
is where the playful notion of FINgers of INSTantiation came on the scene and the term
FINST seems to have stuck. (Pylyshyn 2007, pp. 13–14)

ACT-R/pyactr uses the FINST mechanism in the visual module, and also gen-
eralizes it to other perception modules, including declarative memory, which, as
Anderson (2004) puts it, is the perception module for the past.

Specifically, the declarativemodulemaintains a record of the nmost recent chunks
that have been retrieved (n = 4 by default). These are the chunks indexed by a FINST.
The FINST remains on them for a set amount of time (3 s by default), after which
the FINST is removed and the chunk is no longer marked as recently retrieved.

Retrieval requests can specify whether the declarative memory search should be
confined to chunks that are—or are not—indexed by a FINST. In rule (39), we require
the DRS retrieval request on lines 18–20 to target only DRSs that have not been
recently retrieved (lines 16–17), i.e., the retrieval request targets only non-FINSTed
DRSs.

Let us summarize the state of the ACT-R mind, i.e., the cognitive context, imme-
diately after the production rule in (39) fires:

• the discourse_context buffer still contains the location DRS;
• the expected3 feature in the goal buffer (for expected subdrs3) has the inDRS
as its value; this in DRS has just been retrieved from declarative memory;

• finally, we have just placed a retrieval request for the person DRS, restricted to
non-FINSTed DRSs to avoid retrieving the in DRS all over again.

Once this retrieval request is completed, we are ready to fire the rule in (40) below.
We ensure that this rule fires only after the retrieval request is completed by means
of the precondition on lines 8–9, which requires the retrieval buffer to be in a
non-busy/free state.

(40) parser.productionstring(name="recall main DRS by person sub-DRS", 1
string=""" 2

=g> 3
isa parsing_goal 4
task match_subdrs 5

8.4 Semantic (Truth-Value) Evaluation as Memory … 197

=retrieval> 6
isa drs 7
?retrieval> 8
state free 9
=discourse_context> 10
isa drs 11
==> 12
=g> 13
isa parsing_goal 14
task match_main_drs 15
expected1 =retrieval 16
expected2 =discourse_context 17
+retrieval> 18
isa main_drs 19
subdrs1 =retrieval 20

""", utility=0.5) 21

When its preconditions are met, the rule in (40) finishes setting up the correct
environment for spreading activation required by the fan experiment. This means
that the three sub-DRSs that we constructed during the incremental interpretation of
our test sentence have to be added to the goal buffer.

The previous rule already set the in DRS as the value of the expected3 feature
of the goal buffer. We now set the person DRS, who has just been retrieved, as
the value of the expected1 feature of the goal buffer (line 16 in (40)), and the
location DRS, who has been in the discourse_context buffer since the end of
the incremental parsing process, as the value of the expected2 feature (line 17 in
(40)).

All three sub-DRSs in the goal buffer spread activation to declarative memory,
giving an extra boost to the correct fact acquired during the training phase of the
experiment.

We are now ready to semantically evaluate the truth/falsity of the test sentence.
That is, we are ready to place a memory retrieval request for a main_drs/fact in
declarative memory that makes the test sentence true.

Following the ACT-R account of the fan effect proposed in Anderson and Reder
(1999), which we discussed in Sect. 8.1 above, we can place this memory retrieval
request via the person sub-DRS, or via the location sub-DRS (see the discussion
of foil identification in particular). On lines 18–20 of the rule in (40), we place the
retrieval request with the person sub-DRS as the cue (the person sub-DRS is in the
retrieval buffer).

Note the difference between the role that three sub-DRSs play as values that spread
activation and the role that the person DRS plays as a retrieval cue/filter. Using the
person DRS as a filter eliminates any main DRS that does not have the matching
person DRS. In contrast, spreading activation only boosts the activation of the main
DRSs in declarative memory that happen to store the same person, location and in
relation, but it does not filter anything out. This means that recalling the main DRS
by the person sub-DRS must result in retrieving one of those main DRSs that match
the person sub-DRS, but it is possible that the recalled DRS will have a mismatching
location sub-DRS, e.g., if spreading activation plays a very small role.

We can alternatively place the retrieval request with the location DRS as cue,
as shown on lines 19–21 of the rule in (41) below. This rule is identical to the

198 8 Semantics as a Cognitive Process I: Discourse Representation Structures …

rule in (40) except that the retrieval cue is now the location DRS stored in the
discourse_context buffer.

(41) recall_by_location = parser.productionstring(1
name="recall main DRS by location sub-DRS", 2
string=""" 3

=g> 4
isa parsing_goal 5
task match_subdrs 6
=retrieval> 7
isa drs 8
?retrieval> 9
state free 10
=discourse_context> 11
isa drs 12
==> 13
=g> 14
isa parsing_goal 15
task match_main_drs 16
expected1 =retrieval 17
expected2 =discourse_context 18
+retrieval> 19
isa main_drs 20
subdrs2 =discourse_context 21

""") 22

The rules in (40) and (41) are alternatives to each other, and either of them can be
selected to fire. When running simulations of this model, we can simply leave it to
pyactr to select if the retrieval of the main_drs should be in terms of the person
sub-DRS (hence, rule (40)) or in terms of the location sub-DRS (hence, rule (41)).
In the long run, each of these two rules will be selected about half the time, and the
resulting RTs for targets and foils will be the average of person and location based
retrieval (with a small amount of noise).

But if we want to eliminate this source of noise altogether, we can force the model
to choose one rule in one simulation, and the other rule in a second simulation, and
average the results. This is the option we pursue here. To achieve this, we make use
of production-rule utilities, which induce a preference order over rules that is used
when the preconditions of multiple rules are satisfied in a cognitive state. In that case,
the rule with the highest utility is chosen.

To average over the recall-by-person and recall-by-location rules, we set the
utility of recall-by-person rule in (40) to 0.5 (see line 21 in (40)), and we assign
the recall-by-location rule in (41) to a Python3 variable recall_by_location
(line 1 in (41)). With these two things in place, we can update the utility of the
recall_by_location rule either to 0, which is less than the 0.5 utility of the
recall-by-person rule, or to 1, which is more than 0.5. In the first case, the recall-
by-person rule in (40) fires. In the second case, the recall-by-location rule in (41)
fires.

In our Bayesian model, we can run two simulations with these two utilities for
the recall-by-location rule, and take their mean. This is what the Bayesian estimation

8.4 Semantic (Truth-Value) Evaluation as Memory … 199

code linked to in Sect. 8.6.4 at the end of the chapter actually does. The relevant bit
of code is provided in (42) below for ease of reference.9

(42) for i in range(2): 1
recall_by_location["utility"] = i 2
... 3
while True: 4

... 5
if re.search("ˆKEY PRESSED: J", ...): 6

... 7
if run_time: 8

run_time += parser_sim.show_time() 9
run_time = run_time/2 10

else: 11
run_time = parser_sim.show_time() 12

Once the retrieval request for the main_drs verifying the test sentence is com-
pleted, the rule in (43) below fires. This rule checks that the retrieved main_drs
matches the DRS of the parsed test sentence with respect to the person and location
DRSs stored in the goal buffer (lines 5–6 and 12–13). If this condition is met, the
test sentence is declared true (it is part of the set of facts established in the training
phase) and the ’J’ key is pressed (line 18–21). This concludes the simulation, so
the goal buffer is flushed (line 17).

(43) parser.productionstring(name="match found", string=""" 1
=g> 2
isa parsing_goal 3
task match_main_drs 4
expected1 =e1 5
expected2 =e2 6
?retrieval> 7
state free 8
buffer full 9
=retrieval> 10
isa main_drs 11
subdrs1 =e1 12
subdrs2 =e2 13
=discourse_context> 14
isa drs 15
==> 16
˜g> 17
+manual> 18
isa _manual 19
cmd ’press_key’ 20
key ’J’ 21

""") 22

The model includes three other rules "mismatch in person found",
"mismatch in location found" and"failed retrieval", provided
in the code linked to at the end of the chapter in Sect. 8.6.2. These rules enable us to
model foil retrieval and deal with cases in which a main_drs retrieval fails com-
pletely. But in this chapter, we focus exclusively on modeling target sentences, i.e.,
test sentences that were seen in the training phase, and for which the main_drs
retrieval request succeeds.

9In general, it is common to have the model learn utilities rather than set them by hand. Utility
learning is possible in ACT-R and pyactr. See Taatgen and Anderson (2002) among others for
more discussion of utility learning.

200 8 Semantics as a Cognitive Process I: Discourse Representation Structures …

The fullmodel canbe seen in actionby running the scriptrun_parser_fan.py,
linked to in Sect. 8.6.3 at the end of the chapter. The model reads the sentence A
lawyer is in a cave displayed on the virtual screen, incrementally interprets/parses it
and checks that it is true relative to the database of facts/main DRSs in declarative
memory.

The script estimate_parser_fan.py linked to in Sect. 8.6.4 embeds the
ACT-R model into a Bayesian model and fits it to the experimental data from Ander-
son (1974). We do not discuss the code in detail since it should be fairly readable
at this point: it is a variation on the Bayes+ACT-R models introduced in Chap. 7.
Instead, we’ll highlight the main features of the Bayesian model.

First, we focus on estimating four subsymbolic parameters:

• "buffer_spreading_activation" ("bsa" for short), which is the W
parameter in Sect. 8.1 above;

• "strength_of_association" ("soa" for short), which is the S parameter
in Sect. 8.1 above;

• "rule_firing" ("rf" for short), which is by default set to 50 ms;
• "latency_factor" ("lf" for short).

Our discussion in Sect. 8.1 above shows that we need to estimate the "bsa",
"soa" and "lf" parameters.We have also decided to estimate the "rf" parameter,
instead of leaving it to its default value of 50 ms, because it is reasonable for it to
be lower for the kind of detailed, complex language models we are constructing.
In these models, multiple theoretically motivated rules are needed to fire rapidly in
succession, and the total amount of time they can take is highly constrained by the
empirical generalization that people take around 300 ms to read a word in an eye-
tracking experiment, and they take roughly the same amount in a self-paced reading
experiment.

We might be able to revert to the ACT-R default of 50 ms per rule firing if
we take advantage of production compilation, which is a process by which multiple
production rules and retrieval requests canbe aggregated into a single rule. Production
compilation is one of the effects of skill practice, and it is very likely that incremental
interpretation of natural language, which is a highly practiced skill for adult humans,
takes full advantage of it (see Chap. 4 in Anderson 2007 and, also, Taatgen and
Anderson 2002 for more discussion of production compilation).

Production compilation is available in pyactr and we could make use of it in
future developments of this model. However, production compilation will result in
production rules that do not transparently reflect the formal syntax and semantics
theories we assume here, making the connection between processing and formal
linguistics more opaque.

It might very well be that more mature cognitive models of syntax and semantics
will have to head in the direction of significant use of production compilation. How-
ever, we think that at this early point in the development of computationally explicit
processing models for formal linguistics, it is more useful to see that established
linguistic theories can be embedded in language processing ACT-R models in an
easily recognizable fashion.

8.4 Semantic (Truth-Value) Evaluation as Memory … 201

At the same time, we also want to show that the resulting processing models can
fit experimental data well, and can provide theoretical insight into quantitatively-
measured cognitive behavior.

Tomeet both of these desiderata, we need to depart from various default values for
ACT-R subsymbolic parameters. In particular, for the semantic processing models
in this chapter and the next one, we need to allow the "rf" parameter to vary and
we need to estimate it. As we will soon see, the estimated value hovers around 10
ms, that is, it is significantly less than the ACT-R default. The need to lower ACT-
R defaults when modeling natural language phenomena in a way that is faithful to
established linguistic theories is a common thread throughout this book.

As shown in (44) below, the Bayesian model (i) sets up low information priors
for these four parameters, (ii) runs the pyactr model to compute the likelihood of
the experimental data in (4) above, and (iii) estimates the posterior distributions for
these four parameters given the priors and the observed data. Links to the full code
are provided in Sect. 8.6.4 at the end of the chapter.

(44) fan_model = Model() 1
2

with fan_model: 3
Priors 4
buffer_spreading_activation = HalfNormal("bsa", sd=2) 5
strength_of_association = HalfNormal("soa", sd=4) 6
rule_firing = HalfNormal("rf", sd=0.03) 7
latency_factor = HalfNormal("lf", sd=0.2) 8
Likelihood 9
pyactr_rt = actrmodel_latency(rule_firing, latency_factor, 10

buffer_spreading_activation, 11
strength_of_association) 12

mu_rt = Deterministic(’mu_rt’, pyactr_rt) 13
rt_observed = Normal(’rt_observed’, mu=mu_rt, sd=10, observed=RT) 14

15
with fan_model: 16

Compute posteriors 17
step = pm.SMC(parallel=True) 18
trace = pm.sample(draws=5000, step=step, njobs=1, cores=50) 19

The posterior estimates for the four parameters are provided in Fig. 8.1. The most
notable one is the rule firing parameter, whose mean value is 11 ms rather than 50
ms.Wewill see that a similar value is necessary when wemodel cataphoric pronouns
and presuppositions in the next chapter.

Note that the Rhat values for this model are below 1.1:

(45) {’bsa’: 1.0112865739232026, 1
’soa’: 1.0671138466090309, 2
’rf’: 1.0689415222560494, 3
’lf’: 1.0738886077317906, 4
’mu_rt’: array([1.00237602, 1.00518725, 1.00336533, 1.00518725, 1.00455244,5

1.00423505, 1.00336533, 1.00423505, 1.00906647])} 6

As the plot of the posterior predictions of the model in Fig. 8.2 shows, the model is
able to fit the data fairly well. There are slight discrepancies between the predictions
of the model and the actual observations, which are due to variance in the data that
our fan model ignores from the start. For instance, when we inspect the table in 4,
we see that the mean reaction time to recognize targets with a fan of 3 for person and
a fan of 1 for location was 1.22 s, while the mean reaction time to recognize targets

202 8 Semantics as a Cognitive Process I: Discourse Representation Structures …

Fig. 8.1 Fan model estimates

Fig. 8.2 Fan model: observed versus predicted RTs

with a fan of 3 for location and a fan of 1 for person was 1.15 s. This difference of
70 ms cannot be captured by our model, which treats the two cases as identical.

We see that the model captures a large portion of the variance in data, but there
is room for improvement. The model can in principle be enhanced in various ways
if contrasts like the one we just mentioned turn out to be genuine and robust rather
than largely noise, which is our current simplifying assumption.

8.5 Model Discussion and Summary 203

8.5 Model Discussion and Summary

In this chapter, wemodeled the fan experiment inAnderson (1974), bringing together
the ACT-R account in Anderson and Reder (1999) and formal semantics theories of
natural language meaning and interpretation. The resulting incremental interpreter
is the first one to integrate in a computationally explicit way (i) dynamic semantics
in its DRT incarnation and (ii) mechanistic processing models formulated within a
cognitive architecture.

In developing this cognitive model, we argued that the fan effect provides fun-
damental insights into the memory structures and cognitive processes that underlie
semantic evaluation. By semantic evaluation, we mean the process of determining
whether something is true or false relative to a database of known facts/DRSs, i.e.,
relative to a model in the sense of model-theoretic semantics.

Future directions for this line of research include investigating whether a partial
match of known facts is considered good enough for language users in comprehen-
sion. This could provide an integrated account of a variety of interpretation-related
phenomena: (i) Moses illusions (see Budiu and Anderson 2004 for a relatively recent
discussion), (ii) the way we interpret sentences with plural definites like The boys
jumped in the pool, where the sentence it true without every single boy necessarily
jumping in the pool10, and (iii) ‘partial presupposition resolution’ cases, where part
of the presupposition is resolved and part of it is accommodated (see Kamp 2001a
for an argument that this kind of mixture of resolution and accommodation seems to
be the rule rather than the exception).

Spreading activation in general can be used for predictive parsing: words (more
generally, linguistic information) in the previous context can predictively activate
certain other words, i.e., induce expectations for other chunks of linguistic informa-
tion.

Another direction for future research is reexamining the decisions we made when
developing our incremental DRT parser that were not based on cognitive plausibil-
ity, but instead were made for pedagogical reasons—in an effort to ensure that the
contributions made by semantic theories were still recognizable in the final syn-
tax/semantics parser. These decisions led to unrealistic posterior estimates, e.g., 11
ms for rule firing, which is not a fully satisfactory outcome.

In addition, we oversimplified the model in various ways, again for pedagogical
purposes. For example, we initiated the semantic evaluation process (the search for a
matching fact in declarative memory) only when the sentence was fully parsed syn-
tactically and semantically. This is unrealistic: parsing, disambiguation and seman-
tic evaluation are most probably interspersed processes, and searches for matching
facts/main DRSs in declarative memory are probably launched eagerly after every
parsed sub-DRS, if not even more frequently. See Budiu and Anderson (2004) for
a similar proposal, and for an argument that such an approach, coupled with a judi-

10We want to thank Margaret Kroll for bringing the connection between partial matches and plural
definites to our attention.

204 8 Semantics as a Cognitive Process I: Discourse Representation Structures …

cious use of spreading activation, might explain the preference to provide given
(topic) information earlier in the sentence, and new (focused) information later.

Another oversimplification was the decision to add sub-DRSs to the goal buffer
to initiate spreading activation only after the entire sentence was parsed. It is likely
that some, possibly all, sub-DRSs are added to the goal buffer and start spreading
activation to matching main DRSs as soon as they are parsed. It might even be that
such sub-DRSs are added to the goal buffer and start spreading activation even before
they are completely parsed. This might be the case for NPs with a relative clause,
where the partial sub-DRSobtained by processing the nominal part before the relative
clause is added to the goal buffer, and then it is revised once the relative clause is
processed.

In sum, we just barely scratched the surface with the semantic processing model
we introduced in this chapter. There are many semantic phenomena for which we
have detailed formal semantics theories, but no similarly detailed and formalized
theories on the processing side. We hope to have shown in this chapter that there is a
rich space of such theories and models waiting to be formulated and evaluated. The
variety of semantic phenomena to be investigated, the variety of possible choices of
semantic frameworks and the variety of detailed processing hypotheses that can be
formulated and computationally implemented offer a rich and unexplored theoretical
and empirical territory.

The next chapter, which is the last substantial chapter of the book, extends the
incremental interpreter we introduced here to account for the interaction between
cataphoric pronouns/presuppositions and the (dynamic) semantics of two different
sentential operators, conjunction and implication.

8.6 Appendix: End-to-End Model of the Fan Effect
with an Explicit Syntax/Semantics Parser

All the code discussed in this chapter is available on GitHub as part of the repository
https://github.com/abrsvn/pyactr-book. If you want to inspect it and run it, install
pyactr (see Chap. 1), download the files and run them the same way as any other
Python script.

8.6.1 File ch8/parser_dm_fan.py

https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch8/parser_dm_fan.
py.

https://github.com/abrsvn/pyactr-book
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch8/parser_dm_fan.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch8/parser_dm_fan.py

8.6 Appendix: End-to-End Model of the Fan Effect … 205

8.6.2 File ch8/parser_rules_fan.py

https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch8/parser_rules_
fan.py.

8.6.3 File ch8/run_parser_fan.py

https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch8/run_parser_
fan.py.

8.6.4 File ch8/estimate_parser_fan.py

https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch8/estimate_
parser_fan.py.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch8/parser_rules_fan.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch8/parser_rules_fan.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch8/run_parser_fan.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch8/run_parser_fan.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch8/estimate_parser_fan.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch8/estimate_parser_fan.py
http://creativecommons.org/licenses/by/4.0/

Chapter 9
Semantics as a Cognitive Process II:
Active Search for Cataphora Antecedents
and the Semantics of Conditionals

In this chapter, we generalize our eager left-corner incremental interpreter to cover
conditionals and conjunctions.We focus on the (dynamic) semantic contrast between
conditionals and conjunctions because the interaction between these sentential oper-
ators and anaphora/cataphora provides a strong argument that semantic parsing needs
to be incremental, eager and competence-based, as argued inBrasoveanu andDotlačil
(2015a).

An extreme, but clear way to state the main theoretical proposal made by this
chapter is the contention that anaphora, and presupposition in general, are prop-
erly understood as processing-level phenomena that guide and constrain memory
retrieval processes associated with incremental interpretation. That is, they guide
and constrain the cognitive process of integration, or linking, of new and old semantic
information.

Under the assumption that anaphora and presuppositions are components ofmem-
ory retrieval processes associated with the real-time integration of semantic infor-
mation, the intrusion of world knowledge in these processes, i.e., the “pragmatics
of anaphora resolution and presupposition resolution,” comes in naturally: world
knowledge is stored in declarative memory, so it is natural for memory retrieval
processes to be modulated by it.

Thus, the (most probably oversimplifying) hypothesis is that anaphora and presup-
position have semantic effects, but anaphora and presupposition are not exclusively,
or even primarily, semantics. The proper way to analyze them is as a part of the
processing component of a broad theory of natural language interpretation.

This proposal is very close in spirit to theDRT account of presupposition proposed
in van der Sandt (1992), Kamp (2001a, b), among others. Kamp (2001b), with its
extended argument for and extensive use of preliminary representations—that is,
meaning representations that explicitly include unresolved presuppositions—is a
particularly close idea.

© The Author(s) 2020
A. Brasoveanu and J. Dotlačil, Computational Cognitive Modeling
and Linguistic Theory, Language, Cognition, and Mind 6,
https://doi.org/10.1007/978-3-030-31846-8_9

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31846-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-31846-8_9

208 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

To see the connection between our proposal and the theory of presuppositions pro-
posed in Kamp (2001b), consider the problem associated with the use of preliminary
representations raised at the end of Kamp (2001b):

“[S]emanticists of a model-theoretic persuasion may want to see a formal semantics of […]
preliminary representations. […] [T]he possibility of such a semantics is limited. To define
a syntax of preliminary representations […] which characterizes them as the expressions
of a given representation formalism (or as data structures of a certain form) is not too
difficult. Moreover, for those preliminary representations […] in which all presuppositions
appear in the highest possible position, an intuitively plausible model-theoretic semantics
can be stated without too much difficulty. But for representations with presuppositions in
subordinate positions […] I very much doubt that one is to be had.” (Kamp 2001b, 250–51)

The solution to this problem that we propose in this chapter is that we shouldn’t
even ask for a semantics of preliminary representations. This is a category error:
preliminary representations are central to natural language interpretation, but they are
not semantic representations: they are processing-level representations that support
incremental interpretation mechanisms, and have semantic effects because of this.

The chapter is structured as follows. In Sect. 9.1, we discuss why the interaction of
conditionals and cataphora provide a strong empirical argument for incremental inter-
pretation at the semantic level. We also describe two experiments investigating the
interaction between conditionals and pronominal cataphora on one hand (Sect. 9.1.1),
and the interaction between conditionals and cataphoric presuppositions on the other
hand (Sect. 9.1.2).

Section 9.2 sets up the general theoretical scene for the remainder of the chapter
by arguing that mechanistic processing goals should be one of the core explanatory
goals for formal semantics, and that a cognitive-architectural approach to natural
language meaning and interpretation is one way to pursue that goal.

Section 9.3 moves on to the specifics of an ACT-R processing model for condi-
tionals with a sentence-final if -clause that explicitly models their incremental inter-
pretation. We show that the model qualitatively captures the interaction between
conditionals and pronominal cataphora in a simple example.

Section 9.4 expands this model to capture the interaction between conditionals
and cataphoric presuppositions for the items of the study reported in Sect. 9.1.2. We
embed the resultingmodel in a Bayesianmodel, and show that it can quantitatively fit
the experimental data fairly well. This section shows that the Bayes+ACT-R+DRT
framework we introduced enables us to specify in a fully explicit way different
competence-performance hypotheses about conditionals, and that experimental evi-
dence from real-time experiments can be used to quantitatively compare alternative
theories of conditionals and cataphora.

Finally, Sect. 9.5 concludes with a brief summary and an outline of directions for
future research.

9.1 Two Experiments Studying the Interaction Between Conditionals and Cataphora 209

9.1 Two Experiments Studying the Interaction Between
Conditionals and Cataphora

Brasoveanu and Dotlačil (2015a) investigate whether meaning representations com-
monly used in formal semantics are built up incrementally and predictively when
language is used in real time, similar to the incremental and predictive construction
of syntactic representations (Steedman 2001; Lewis and Vasishth 2005; Lau 2009;
Hale 2011 among many others).

The main empirical challenge when studying the incremental processing of
semantic representations is identifying phenomena that can tease apart the syntac-
tic and semantic components of the interpretation process. The pervasive aspects of
meaning composition that are syntax-based cannot provide an unambiguous window
into the nature of semantic representation building: the incremental and predictive
nature of real-time compositional interpretation could be primarily or exclusively
due to our processing strategies for building syntactic representations.

There is a significant amount of work in psycholinguistics on incremental inter-
pretation (Hagoort et al. 2004; Pickering et al. 2006 among many others), but this
research usually focuses on the processing of lexical semantic and syntactic repre-
sentations, and the incremental integration of world knowledge into the language
interpretation process. The processing of logical representations of the kind formal
semanticists are interested in is much less studied.

Similarly, there is a significant amount of work on incremental interpretation in
natural language processing/understanding (Poesio 1994; Bos et al. 2004; Bos 2005;
Hough et al. 2015 among many others), but this research usually discusses it from
a formal and implementation perspective, and focuses much less on the cognitive
aspects of processing semantic representations (the research in Steedman 2001 and
related work is a notable exception).

Brasoveanu and Dotlačil (2015a) report two studies that argue for the incremental
nature of processing formal semantic representations, as distinct from the syntactic
representations they supervene on. The crucial evidence is provided by the interaction
of anaphora and presupposition resolution on one hand, and conjunctions versus
conditionals with a sentence-final antecedent on the other. Consider the contrast
between and and if in the example below, where the presupposition trigger again is
cataphoric:

(1) Tina will have coffee with Alex again and/if she had coffee with him at the
local café.

Assume the construction of semantic representations is incremental, i.e., the inter-
preter processes if as soon as it is encountered. Furthermore, assume incremental
interpretation is predictive, i.e., once if is read, the interpreter expects the upcoming
if -clause to provide (some of) the interpretation context for the previously processed
matrix clause. Then we expect to see a facilitation/speed-up in the second clause she
had coffee with him after if is read, compared to when the same clause follows and.
As we will see, this is what the experimental results show.

210 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

Specifically, we expect the second clause in (1) to be more difficult after and than
after if because and signals that a potential antecedent for the again presupposition is
unlikely to come after this point. Dynamic conjunction is interpreted sequentially: the
second conjunct is interpreted relative to the context provided by the first conjunct,
and not vice-versa. Consequently, an unresolved presupposition in the first conjunct
cannot find an antecedent in the second conjunct.

In contrast, if leaves open the possibility that a suitable resolution for the again
presupposition is forthcoming since the first clause (the matrix) is interpreted relative
to the context provided by the second clause (the if -clause). This possibility allows
interpreters to make better predictions about the content of the clause coming after
if, which should ease its processing.

Crucially, our expectations—which arise from the interaction between the pre-
supposition trigger again and the operators and versus if—are semantically driven.
Nothing in the syntax of conjunction versus if -adjunction could make a successful
presupposition resolution more or less likely.

9.1.1 Experiment 1: Anaphora Versus Cataphora
in Conjunctions Versus Conditionals

Elbourne (2009, 1) defines donkey cataphora as “a configuration in which a pro-
noun precedes and depends for its interpretation on an indefinite that does not
c-command it.” Some cataphora examples with conditionals are provided below,
both with sentence-initial, (2)–(6), and with sentence-final if -clauses, (7).

(2) If it is overcooked, a hamburger doesn’t taste good. (Chierchia 1995, 129)

(3) If she finds it spectacular, a photographer takes many pictures of a landscape.
(Chierchia 1995, 130)

(4) If it enters his territory, a pirate usually attacks a ship. (Chierchia 1995, 130)

(5) If it spots a mouse, a cat attacks it. (Chierchia 1995, 130)

(6) If a foreigner asks him for directions, a person from Milan replies to himwith
courtesy. (Chierchia 1995, 130)

(7) John won’t eat it if a hamburger is overcooked. (Elbourne 2009, 3)

Certain configurations are not acceptable (Elbourne 2009, 2), e.g., (8c) below,
due to Principle C violations. Antecedents are marked with a superscript, and the
corresponding anaphors/cataphors are marked with a subscript.

(8) a. Johni is upset if hei sees a donkey.

b. If Johni sees a donkey, hei is upset.

c. *Hei is upset if Johni sees a donkey.

9.1 Two Experiments Studying the Interaction Between Conditionals and Cataphora 211

The contrast between (8b) and (8c), as well as the fact that Principle C is not
violated if cataphoric pronouns appear in object position (see (7) above and (9)
below), provide evidence that a sentence-final if -clause is adjoined lower than the
matrix-clause subject, but higher than the object. For concreteness, let’s say that a
sentence-final if -clause is VP-adjoined.

(9) Bill visits heri if Maryi is sick.

In contrast, a sentence-initial if -clause is adjoined higher than the matrix-clause
subject. For concreteness, let’s say it is CP-adjoined.

Other arguments for these two syntactic structures are provided by VP ellipsis, as
in (10), and VP topicalization, as in (11); see Bhatt and Pancheva (2006) for more
discussion.

(10) I will leave if you do, and John will [leave if you do] too / do so too.

(11) I told Peter to take the dog out if it rains, and [take the dog out if it rains] he
will. (Iatridou 1991, 12)

Based on these observations, Brasoveanu andDotlačil (2015a) conclude that there
is no ‘ordinary’ syntax-mediated binding from a c-commanding position for direct
object (DO) donkey cataphora in conditionals with sentence-final if clauses. That is,
donkey cataphora from the DO position of the matrix clause is a ‘true’ example of
donkey cataphora that can be used to test the incrementality and predictiveness of
semantic parsing.

Brasoveanu and Dotlačil’s Experiment 1 tested donkey anaphora and cataphora
in a 2 × 2 design, exemplified in (12):

(12) Brasoveanu and Dotlačil’s Experiment 1: and/if × DO anaphora/cataphora

a. An electrician examined a radio for several minutes and his helpful col-
league held it that whole time. and & anaphora

b. An electrician examined a radio for several minutes if his helpful col-
league held it that whole time. if & anaphora

c. An electrician examined it for several minutes and his helpful colleague
held the radio that whole time. and & cataphora

d. An electrician examined it for several minutes if his helpful colleague
held the radio that whole time. if & cataphora

Kazanina et al. (2007) used an on-line reading methodology (self-paced reading)
to show that a cataphoric pronoun triggers an active search for an antecedent in
the following material, and that this search takes into account structural constraints
(Principle C) from an early stage.1 Kazanina et al. (2007) take the temporal priority
of syntactic information as evidence for the incremental and predictive nature of

1That is, cataphoric dependencies are processed with a syntactically constrained search mechanism
similar to the mechanism used for processing long-distance wh-dependencies (Stowe 1986; Traxler
and Pickering 1996; Wagers et al. 2009 among others).

212 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

syntactic constraints. The question investigated in this experiment can therefore be
further specified as: is this active search mechanism also semantically constrained?

The methodology used in Brasoveanu and Dotlačil’s Experiment 1 was also self-
paced reading (Just et al. 1982) with a non-cumulative moving window. The regular
anaphora cases provide the baseline conditions.Assuming a deep enough incremental
and predictive interpretation, the second clause in these conditions is expected to be
more difficult after if than after and because of extra cognitive load coming from
two sources.

The first source of difficulty is the semantics of conditionals versus conjunctions.
For conditionals, we generate a hypothetical intermediate interpretation context sat-
isfying the antecedent, and we evaluate the consequent relative to this hypothetical
context. That is, we need to maintain both the actual, global interpretation context
and the intermediate, antecedent-satisfying context, to complete the interpretation of
conditionals. There is no similar cognitive load for conjunctions.

The second source of difficulty is specific to conditionals with a sentence-final
if -clause. When such conditionals are incrementally interpreted, the matrix clause
needs to be semantically reanalyzed. Thematrix clause is initially interpreted relative
to the global context, just like a top-level assertion is. However, when if is reached,
the matrix clause has to be reinterpreted relative to the intermediate, antecedent-
satisfying context: the comprehender realizes that the matrix clause is not a top-level
assertion, but is the consequent of a conditional instead. There is no such difficulty
for conjunctions: the first conjunct is simply interpreted relative to the global context,
and the second conjunct is interpreted relative to the context that is the result of the
update contributed by the first-conjunct.

For the cataphora (non-baseline cases), we expect a cognitive load reversal. The
conjunction and signals that no suitable antecedent for the cataphor is forthcoming
since the second clause is interpreted relative to the context provided/updated by the
first clause. In contrast, if triggers the semantic reanalysis of the matrix clause and
leaves open the possibility that a suitable antecedent for the cataphor is forthcoming
since the matrix clause is interpreted relative to the context provided/updated by the
second clause. This expectation (and the fact that it is confirmed) should speed up
the processing. So we expect to see a speed-up in the if & cataphora cases, i.e., a
negative if × cataphora interaction.

These predictions were only partially confirmed in Brasoveanu and Dotlačil’s
first experiment: baseline if was indeed harder (statistically significant) but the if ×
cataphora interaction, while negative, did not reach significance.

The regions of interest (ROIs) were primarily (i) the post-connective ROIs his
helpful colleague, and secondarily (ii) the post-resolution ROIs that whole; see (13)
below.

The mean log reading times (log RTs) for the 5 ROIs are plotted in Fig. 9.1 (plots
created with R and ggplot2; R Core Team 2014; Wickham 2009).

(13) An electrician examined a radio/it for several minutes and/if
his helpful colleague held it/the radio that whole time.

9.1 Two Experiments Studying the Interaction Between Conditionals and Cataphora 213

and/if his helpful
Exp. 1: Post−connective and post−resolution regions

colleague ... that whole

A
I

A

I

A

I

A

I

A

I

A

I

A

I

A

I

A

I

A

I

A

I

A
I

5.67

5.70

5.73

5.76

anaphora

cataphora

anaphora

cataphora

anaphora

cataphora

anaphora

cataphora

anaphora

cataphora

anaphora

cataphora

M
ea

n
lo

g
re

ad
in

g
tim

es
 (

lo
g

m
s)

connective
A
I

and
if

Fig. 9.1 Experiment 1: mean log RTs for the five regions of interest (ROIs)

Brasoveanu andDotlačil analyzed the data using linearmixed-effectsmodels. The
response was the log-transformed readings times (log RTs) for the 3 ROIs immedi-
ately following the sentential operator and/if (RTs are log-transformed to mitigate
their characteristic right-skewness). Residualized log RTs (residualized for word
length and word position, following Trueswell et al. 1994) were also analyzed, but
the pattern of results did not change, so Brasoveanu and Dotlačil report the more
easily intelligible models with raw log RT responses.

The predictors (fixed effects) were as follows:

• main effects of connective and ana/cataphora, and
• their interaction;
• the levels of the connective factor: and (reference level) versus if;
• the levels of the ana/cataphora factor: anaphora (reference level) versus cat-
aphora.

Crossed random effects for subjects and items were included, and the models with
maximal random effect structures that converged (Barr et al. 2013) were reported,
usually subject and item random intercepts, and subject and item random slopes for
at least one of the two main effects. The maximum likelihood estimates (MLEs)
and associated standard errors (SEs) and p-values are provided in (14) and (15)
below (we omit the intercepts). Significant and nearly significant effects (p < 0.1)
are boldfaced.

214 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

(14) his helpful colleague
MLE SE p MLE SE p MLE SE p

if 0.02 0.02 0.3 0.05 0.02 0.04 0.05 0.02 0.04
cata 0.01 0.02 0.7 0.02 0.02 0.4 0.03 0.02 0.16
if×cata −0.003 0.03 0.9 −0.04 0.03 0.15 −0.02 0.03 0.6

(15) that whole
MLE SE p MLE SE p

if 0.03 0.02 0.20 0.03 0.02 0.24
cata 0.04 0.02 0.07 0.03 0.02 0.18
if×cata −0.03 0.03 0.26 −0.03 0.03 0.43

Table14 shows several effects. First, baseline if (i.e., if & anaphora) is more
difficult than baseline and (i.e., and & anaphora). This effect is compatible with
the hypothesis that to interpret conditionals, we need to maintain both the actual,
global interpretation context and the intermediate, antecedent-satisfying context. The
effect is also compatible with the hypothesis that the matrix clause is reanalyzed
in conditionals with a final if -clause: it is initially interpreted relative to the global
context until if is reached, atwhichpoint it is reinterpreted relative to the intermediate,
antecedent-satisfying context.

cataphora seems to be more difficult than anaphora for and, but the effect
never reaches significance (it is close to significant in the first ROI after cataphora is
resolved).Maybe theand&cataphora condition is simply too hard, so readers stop
trying to fully comprehend the sentence and speed up. If so, this will obscure the if×
cataphora interaction: there is a negative interaction between if and cataphora
in all ROIs, i.e., if seems to facilitate cataphora (as expected if semantic evaluation
is incremental and predictive), but this effect is not significant.

The consistent negative interaction is promising, so Brasoveanu and Dotlačil
(2015a) elicited it in a follow-up experiment with a hard presupposition trigger
(again; Abusch 2010; Schwarz 2014 among others), whichmight have a larger effect.
A third ‘(mis)match’ manipulation was also added to control for readers speeding
up through conditions that are too hard.

9.1.2 Experiment 2: Cataphoric Presuppositions in
Conjunctions Versus Conditionals

The second experiment in Brasoveanu and Dotlačil (2015a) had a 2 × 2 × 2 design,
exemplified in (16) below. Thematch/mismatchmanipulationwas new, and consisted
of verbs in the second clause that matched or didn’t match the corresponding verbs
in the first clause.

(16) Experiment 2: (mis)match × and/if × nothing/cataphora

a. Jeffrey will argue with Danielle and he argued with her in the courtyard
last night. match & and & nothing

9.1 Two Experiments Studying the Interaction Between Conditionals and Cataphora 215

b. Jeffrey will argue with Danielle if he argued with her in the courtyard
last night. match & if & nothing

c. Jeffrey will argue with Danielle again and he argued with her in the
courtyard last night. match & and & cataphora

d. Jeffrey will argue with Danielle again if he argued with her in the court-
yard last night. match & if & cataphora

e. Jeffrey will argue with Danielle and he played with her in the courtyard
last night. mismatch & and & nothing

f. Jeffrey will argue with Danielle if he played with her in the courtyard
last night. mismatch & if & nothing

g. Jeffrey will argue with Danielle again and he played with her in the
courtyard last night. mismatch & and & cataphora

h. Jeffrey will argue with Danielle again if he played with her in the court-
yard last night. mismatch & if & cataphora

The method was similar to Experiment 1. Self-paced reading with a moving win-
dow was used, but each stimulus ended with an acceptability judgment on a 5-point
Likert scale, from 1 (very bad) to 5 (very good). The acceptability judgment was
elicited on a new screen after every item or filler. Every experimental item was fol-
lowed by a comprehension question. Each of the 8 conditions was tested 4 times, for
32 items total; one item had a typo, and was discarded from all subsequent analy-
ses. There were 70 fillers: monoclausal and multiclausal, conditionals, conjunctions,
when-clauses, relative clauses, quantifiers, adverbs, etc.

Thirty-two native speakers of English participated (UCSC undergraduate stu-
dents). They completed the experiment online for course (extra-)credit on a UCSC
hosted installation of the IBEX platform. Each item was passed through all 8 con-
ditions, and 8 lists were generated following a Latin square design. The participants
were rotated through the 8 lists. Every participant responded to 102 stimuli (32 items
+ 70 fillers), the order of which was randomized for every participant. Any two items
were separated by at least one filler.

There were fillers that were both acceptable (Bob ate his burger and he rented
something to watch, but he didn’t say what) and unacceptable (Willem visited Paris
because Sarah visited Amsterdam too). All participants exhibited the expected dif-
ference in acceptability ratings between these two types of fillers.

There were 72 comprehension questions with correct/incorrect answers, 32 after
experimental items. The accuracy for all participants was above 80%.

The results of this study are visually summarized in Fig. 9.2. The ROIs for Exp.
2 are the words following the verb in the second clause, i.e., the words immediately
following the last experimental manipulation, which is (mis)match. Brasoveanu and
Dotlačil examined only the 4 immediately post-verbal ROIs because the fifth word
was the final one for some items, and the wrap-up effect associated with sentence-
final words would contribute additional, possibly biasing noise.

216 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

argued/played with
Exp. 2: Post−verbal regions

her in the

A

I

A

I

A

I
A
I

A
I

A

I

A

IA

I

AI
A

I

A

IA
I

AIA

I

A

I
A
I

A

I

A

I

A

I
A

I

5.75

5.80

5.85

5.90

5.75

5.80

5.85

5.90

m
atch

m
ism

atch

nothing

cataphora

nothing

cataphora

nothing

cataphora

nothing

cataphora

nothing

cataphora

M
ea

n
lo

g
re

ad
in

g
tim

es
 (

lo
g

m
s)

connective
A
I

and
if

Fig. 9.2 Experiment 2: mean log RTs for the four regions of interest (ROIs)

(17) Jeffrey will argue with Danielle �/again and/if he argued/played
with her in the courtyard last night.

The data analysis was similar to the one conducted for Experiment 1: linear
mixed-effects models with log RTs as the response variable, and main effects of
connective and nothing/cataphora, match/mismatch and their 2-way and
3-way interactions as predictors (fixed effects). The levels of the 3 factors were
as follows:

• for connective, and (reference level) versus if,
• for nothing/cataphora: nothing (reference level) versus cataphora, and
• for (mis)match: match (reference level) versus mismatch.

The models also included crossed random effects for subjects and items, namely
themaximal random effect structure that converged (usually subject and item random
intercepts, and subject and item random slopes for at least two of the three main
effects). The statistical modeling results are summarized in (18) below (once again,
we omit the intercepts).

(18) with her in the
MLE SE p MLE SE p MLE SE p MLE SE p

cata 0.05 0.04 0.21 0.05 0.04 0.30 0.03 0.04 0.50 0.05 0.04 0.23
mismatch 0.05 0.04 0.25 0.04 0.04 0.33 0.06 0.05 0.19 0.07 0.05 0.15
if 0.08 0.04 0.054 0.07 0.04 0.084 0.05 0.04 0.24 −0.003 0.04 0.96
cata × mismatch −0.11 0.06 0.056 −0.05 0.06 0.42 −0.03 0.06 0.59 −0.14 0.06 0.03
cata × if −0.13 0.06 0.026 −0.11 0.06 0.077 −0.08 0.05 0.15 −0.04 0.06 0.54
mismatch × if −0.10 0.06 0.083 −0.06 0.06 0.30 −0.02 0.05 0.73 −0.02 0.06 0.76
cata × mismatch × if 0.20 0.08 0.015 0.10 0.08 0.22 0.06 0.08 0.42 0.11 0.09 0.19

9.1 Two Experiments Studying the Interaction Between Conditionals and Cataphora 217

Just as in Experiment 1, baseline if (i.e., if & nothing & match) is more dif-
ficult than baseline and (i.e., and & nothing & match). This is compatible with
the hypothesis that conditionals are harder than conjunctions—because we need to
maintain two evaluation contexts, and/or because the matrix clause is semantically
reanalyzed when if is reached.2

There is a significant negative interaction of mismatch×if (note: again is not
present here), which basically cancels out the main effect of if. That is, conditionals
with non-identical VP meanings in the antecedent and consequent clauses are pro-
cessed more easily than conditionals with identical VP meanings, about as easily as
conjunctions with non-identical VP meanings in the two conjuncts. The difficulties
tied to conditionals with identical VP meanings are probably caused by a viola-
tion of Maximize Presupposition (Heim 1991), which requires that a presupposed
VP meaning should be marked as such by again. This penalizes conditionals with
matching VP meanings, while conditionals with non-identical VP meanings are not
affected. Furthermore, if participants interpret incrementally and predictively, Max-
imize Presupposition should not affect coordinations (specifically, the first conjunct
in a coordination), which corresponds to our findings.

The Maximize Presupposition constraint provides a third possible reason for the
cost of baseline if relative to baseline and aside from the suggestions discussed
before, namely that conditionals are harder than conjunctions because we need to
maintain two evaluation contexts, and/or because the matrix clause is semantically
reanalyzed. They all might be at work here (distinguishing between them is left for
a future occasion), but Maximize Presupposition might be particularly suitable as an
explanation for the Experiment 2 results: it explains the cost of if, but it also explains
the negative interaction mismatch × if, which is unexpected under the hypothesis
that if on its own is costly. Furthermore, in Experiment 2, the effect of if is observed
onwith and her, whichmakes the explanation in terms of reanalysis unlikely given the
lateness of the effect. In Experiment 1, the effect of if was detectable on the second
word after if, so the reanalysis explanation is more plausible for that experiment.

There are no main effects of cataphora and mismatch, but their 2-way interac-
tion is negative and significant (or close to significant) in two out of the four regions.
Whenever (close to) significant, this interaction effectively cancels the main effects
of both mismatch and cataphora. That is, the and & cataphora & mismatch
condition is about as difficult as the reference condition and& nothing& match,
which suggests that participants stopped trying to properly interpret the difficult
condition and & cataphora & mismatch and moved on/sped up.

2Since Experiment 2 included acceptability judgments, Brasoveanu and Dotlačil were able to check
whether the effect, replicated from Experiment 1, is not due to the fact that the if condition (Jeffrey
will argue with Danielle if he argued with her in the courtyard last night) is less felicitous than
the corresponding and condition (Jeffrey will argue with Danielle and he argued with her in the
courtyard last night). This is not so: the only statistically significant fixed effect was a positive main
effect for if, i.e., baseline if is more acceptable than baseline and, as estimated by a mixed-effects
ordinal probit model (full fixed-effect structure, i.e., main effects + all interactions, & maximal
random effect structure that converged).

218 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

There is a (close to) significant negative interaction of cataphora×if in the
two regions immediately following the verb (note: we are discussing matching
conditions). In both regions, this 2-way interaction effectively cancels out the positive
main effects of cataphora and if put together. This is exactly the configuration
Brasoveanu and Dotlačil were looking for in Experiment 1, only it did not reach
significance there. That is, if facilitates the processing of cataphora, even though
if and cataphora on their own are more difficult. This supports the hypothesis that
the construction of formal semantic representations is incremental and predictive.

Finally, the statistically significant and positive 3-way interaction cataphora
× if × mismatch in the region immediately following the verb provides further
empirical support for the hypothesis that the construction of formal semantic rep-
resentations is incremental and predictive. The mismatch is surprising because the
human interpreter expects to find a suitable antecedent for the again presupposition,
and that expectation is not satisfied.

In sum, Experiments 1 and 2 in Brasoveanu andDotlačil (2015a) provide coherent
support for the incremental and predictive nature of the process of constructing
meaning representations of the kind employed in formal semantics.

9.2 Mechanistic Processing Models as an Explanatory Goal
for Semantics

The main questions at this point are the following. As formal semanticists, should
we account for the incremental and predictive nature of the real-time semantic inter-
pretation process? And if so, how?

It is important to remember that addressing these questions is firmly rooted in the
tradition of dynamic semantics. Kamp (1981) begins like this:

“Two conceptions of meaning have dominated formal semantics of natural language. The
first of these sees meaning principally as that which determines conditions of truth. […]
According to the second conception meaning is, first and foremost, that which a language
user grasps when he understands the words he hears or reads. […] these two conceptions
[…] have remained largely separated for a considerable period of time. This separation has
become an obstacle to the development of semantic theory […] The theory presented here
is an attempt to remove this obstacle. It combines a definition of truth with a systematic
account of semantic representations.” (Kamp 1981, 189)

Thus, the implicit overarching goal for us as (cognitive) scientists studying natural
language meaning and interpretation is to provide a formally explicit account of
natural language interpretive behavior, i.e., a mathematically explicit, unified theory
of semantic/pragmatic competence and performance.

To contextualize our position and outline some possible alternatives, let us con-
sider the corresponding debate on the syntax side. Phillips and Lewis (2013, 14)
identify two reasonable positions that working linguists more or less implicitly sub-
scribe to in practice: (i) principled extensionalism, and (ii) strategic extensionalism.

9.2 Mechanistic Processing Models as an Explanatory Goal for Semantics 219

Principled extensionalism takes a grammar/grammatical theory to be merely an
abstract characterization of a functionwhose extension is all and only thewell-formed
sentences of a given language (plus their denotations, if the grammar incorporates a
semantic component).3 The individual components of the grammatical theory have
no independent status as mental objects or processes: they are components of an
abstract function, not of a more concrete description of a mental system.

This kind of position cannot be tested using most empirical evidence aside from
acceptability (or truth-value/entailment) judgments, since the position only aims to
capture the ‘end products’ of the grammatical system and not the way these products
are actually produced/comprehended.

The ‘principled’ part is that the extensionalist enterprise is understood as an end
in itself, relevant even if lower-level characterizations of the human language system
are provided (algorithmic/mechanistic, or implementation/neural level; Marr 1982).
The linguist’s task is to characterize what the human language system computes and
distinguish it from how speakers actually carry out that computation, which is the
psycholinguist’s task.

The strategic extensionalism position takes the goal of formulating a grammatical
theory to be a reasonable interim goal, but not an end in itself. The ultimate goal is to
move beyond extensional description to a more detailed, mechanistic understanding
of the human language system: describing an abstract function that identifies all
the grammatical sentences of a language is just a first step in understanding how
speakers actually comprehend/produce sentences in real time. We seek theories that
capture how sentences are put together, and not justwhat their final form is. From this
perspective, we should try to account for left-to-right structure buildingmechanisms,
both at the syntactic and at the semantic level.

The strategic-extensionalism position is closely related to the cognitive-
architecture based approach to research in cognitive science, which we have in fact
followed throughout this book. As Anderson (2007, 7–8) puts it:

“A cognitive architecture is a specification of the structure of the brain at a level of abstraction
that explains how it achieves the function of the mind […] [i.e.,] human cognition in all of
its complexity. […] Th[is] type of architectural program […] requires paying attention to
three things: brain, mind (functional cognition), and the architectural abstractions that link
them. […] [A]pproaches that tried to get by with less […] can be viewed as shortcuts to
understanding.”

Anderson (2007) goes on to consider three such shortcuts. The first one is clas-
sical information-processing psychology that completely ignores the brain (at any
level of abstraction), and that is basically the same as the principled-extensionalism
position we characterized above. However, unlike much of formal semantics, cog-
nitive psychology has realized by now that “cognition is not so abstract that our
understanding of it can be totally divorced from our understanding of [the] physical
reality [underlying it].” (Anderson 2007, 11)

3More precisely, assume some background alphabet � that consists of the lexicon/set of words
(‘alphabet’ in the sense of formal language theory), and let �∗ be the set of all finite strings over
�. �∗ is the domain of the function, and {0, 1} its range, so that the function is a characteristic
function of the set of grammatical strings.

220 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

This does not mean, of course, that the opposite position—eliminative
connectionism—is not a shortcut also. “This approach ignores mental function as a
constraint and just provides an abstract characterization of brain structure […] [but
these models] work only because we are able to imagine how [they] could serve a
useful function in a larger system […] [However, this] functionality is not achieved
by a connectionist system.” (Anderson 2007, 11–14)

Finally, a third shortcut that has become recently fairly popular in formal semantics
and pragmatics, is the rational-analysis approach to cognition. The basic insight
behind this approach is that “a constraint on how the brain achieves the mind is that
both the brain and the mind have to survive in the real world: rather than focus on
architecture as the key abstraction, focus on adaptation to the environment […] [T]he
Bayesian statistical methodology that accompanies much of this research […] comes
to take the place of the cognitive architecture.” (Anderson 2007, 15–16)

Anderson’s own work on declarative memory is an early instantiation of this
approach; seeAnderson (1990);Anderson and Schooler (1991); Schooler andAnder-
son (1997). As we discussed in detail in Chap.6, the ACT-R base activation equation
encodes that “a memory for something diminishes in proportion to how likely people
are to need thatmemory. […]Humanmemory […]mirror[s] statistical relationship[s]
in the environment. […] Thus, the argument goes, one does not need a description
of how memory works, which is what an architecture gives; rather, one just needs to
focus on how memory solves the problems it encounters.” (Anderson 2007, 17)

While possibly enlightening for individual cognitive components, this approach
falls short of a complete theory of the human mind.

“[T]he human mind is not just the sum of core competences such as memory, or categoriza-
tion, or reasoning. It is about how all these pieces and other pieces work together to produce
cognition. All the pieces might be adapted to the regularities in the world, but understanding
their individual adaptations does not address how they are put together. […] What distin-
guishes humans is their ability to bring the pieces together, and this unique ability is just
what adaptive analyses do not address, and just what a cognitive architecture is all about.”
(Anderson 2007, 18)

In this book,we have consistently taken a cognitive-architectural approach to natu-
ral language meaning and interpretation. Our ultimate goal is to provide a framework
in which we can build mechanistic processing models for natural language compre-
hension, with pieces that are independently needed for other higher-level cognitive
processes.

It is in this context that we introduced and used Bayesian methods: we use them
for theoretically-informed data analysis. More precisely, we use them as essential
bridges that systematically connect independently-motivated semantics and process-
ing theories and cognitive-architectural organization principles and constraints on
one hand, and experimental data on the other hand.

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 221

9.3 Modeling the Interaction of Conditionals and
Pronominal Cataphora

Assuming a cognitive-architecture based approach to semantics, like we have done
throughout this book (or a strategic extensionalist position), the next question is: how
should we account for the incremental and predictive nature of semantic interpreta-
tion?Wewill not settle this question here, but wewill outline two distinct approaches
and flesh out in detail one of them.

As far as we can tell, there is a spectrum of approaches to incrementality effects,
and the two extremes on that spectrum are accounting for incrementality (i) in the
semantics versus (ii) in the processor.

The first alternative is parallel to the proposal in Phillips (1996, 2003) on the
syntax side. The main claim in Phillips (1996, 2003) is that syntactic structures are
built left-to-right, not top-down/bottom-up, and the incremental left-to-right system
is the only structure-building system that humans have (‘the parser is the grammar’).

A similar proposal on the semantics side is sketched in Brasoveanu and Dotlačil
(2015a, b). The idea is to provide a recursive definition of truth and satisfaction for
first-order predicate logic that is fully incremental, building on the incremental propo-
sitional logic system inVermeulen (1994). The resulting system, dubbed Incremental
Dynamic Predicate Logic (IDPL), builds incrementality into the heart of semantics.

The second alternative is parallel to the proposal in Hofmeister et al. (2013) on
the syntax side, the main goal of which is to argue that “many of the findings from
studies putatively supporting grammar-based interpretations of island phenomena
have plausible, alternative interpretations rooted in specific, well-documented pro-
cessing mechanisms” (Hofmeister et al. 2013, 44). The remainder of this chapter is
dedicated to fleshing out this approach.

Our specific proposal on the processing side is to extend the eager left-corner
parser for DRTwe introduced in the previous chapter with conjunctions, conditionals
and anaphora/cataphora, so that we can explicitly and fully model the two self-paced
reading experiments discussed in Sect. 9.1 above.

In this section, we introduce the basicmodel that captures the qualitative pattern of
interactions between cataphora and conjunctions versus conditionals in Experiment
1. In the next section, we introduce the model in its full complexity. The full model
can syntactically and semantically parse the items in Experiment 2, which enables
us to quantitatively fit it to the data from Experiment 2.

To model pronominal and presuppositional anaphora/cataphora, we add a new
goal-like buffer unresolved_discourse to our ACT-R mind, which will store
the unresolved DRSs contributed by pronouns and the presuppositional trigger
again. We set the encoding delay for this buffer, as well as the imaginal and
discourse_context buffers we used in the previous chapter to 0:

(19) parser.set_goal(name="imaginal", delay=0) 1
parser.set_goal(name="discourse_context", delay=0) 2
parser.set_goal(name="unresolved_discourse", delay=0) 3

222 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

In principle, we might be able to model anaphora and cataphora without this
additional unresolved_discourse buffer, but we decided to use it here for
presentational clarity.4

9.3.1 Chunk Types and the Lexical Information Stored in
Declarative Memory

The chunk types we will need are the same as the ones we used in the previous
chapter, plus a new chunk type for predicates. They are listed in (20) below.

(20) actr.chunktype("parsing_goal", 1
"task stack1 stack2 stack3 \ 2
arg_stack1 arg_stack2 \ 3
right_edge_stack1 right_edge_stack2 \ 4
right_edge_stack3 right_edge_stack4 \ 5
parsed_word found discourse_status \ 6
dref_peg event_peg drs_peg prev_drs_peg embedding_level \ 7
entity_cataphora event_cataphora if_conseq_pred") 8

actr.chunktype("parse_state", 9
"node_cat daughter1 daughter2 daughter3 \ 10
mother mother_of_mother lex_head") 11

actr.chunktype("word", "form cat pred1 pred2") 12
actr.chunktype("pred", "constant_name arity") 13
actr.chunktype("drs", 14

"dref pred1 pred2 event_arg arg1 arg2 \ 15
discourse_status drs embedding_level") 16

Parsing goal chunks have the expected features:

• the current parsing task;
• the stack of syntactic goals driving the parsing process (stack1 stack2
stack3);

• a stack for arguments (arg_stack1 arg_stack2) that need to be passed
across different semantic chunks, e.g., from the subject to the verbal predicate;

• the right-edge stack keeps track of possible points of attachment made available
by the current, partially-built syntactic tree (right_edge_stack1 right_
edge_stack2 ...);

– we called this stack right_frontier in the previous chapter, but we
renamed it here for brevity;

– the right-edge stack we need in this chapter has additional positions because of
the need to attach conjuncts and if -adjuncts;

• the parsed_word and found features are used in much the same way as in the
previous chapters;

• the discourse_status feature will keep track of whether a DRS constructed
at some point during the incremental interpretation process:

4We are of course aware that determining the exact number of modules and buffers needed for
natural language interpretation, as well as their subsymbolic properties, is an empirical issue.

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 223

– contributes to the at_issue meaning, or
– is unresolved, e.g., it is the presupposition contributed by a pronoun or the
adverb again, or

– is presupposed, i.e., it is the resolved presupposition contributed by a pro-
noun or the adverb again;

• just as in the previous chapter, we introduce new discourse referents (drefs) with
fresh (previously unused) indices bykeeping track of the current dref_peg/index
in the goal buffer and updating it as soon as a dref with that peg/index is introduced;

– but in this chapter, we have event drefs (needed for again) in addition to
individual-level drefs, so we also keep track of the current event_peg;

– in addition, we keep track of which sub-DRSs are part of the main DRS by
associating them with current drs_peg; this is a flatter/simpler solution than
the onewe used in the previous chapter, where amainDRS had sub-DRSs stored
in its slots;

– DRS drefs are basically propositional drefs and are independently needed for
conditionals, for example; we keep track of the previousDRS peg (prev_drs_
peg) to be able to capture the semantic reanalysis triggered by sentence-final
if -clauses;

• finally, the three features entity_cataphora, event_cataphora and
if_conseq_pred are needed to account for the processing of cataphoric pro-
nouns and again, and will be discussed in detail later in the chapter.

Chunks of parse_state type have the same structure as before, except for the
addition of a mother_of_mother feature. This feature enables us to keep track of
the partial syntactic structure constructed by the incremental comprehension process
in a little more detail at the local level of an individual chunk.

The lexical entry of a word keeps track of:

• its written form (a proxy for its phonological representation),
• its syntactic category, and
• up to two predicates pred1 and pred2 that represent the meaning of that word.

We use these two predicate slots in various ways. For example, a proper name
like Danielle contributes:

• a predicate danielle (with a singleton set denotation) as its pred1 value (this
follows the analysis of proper names in Kamp and Reyle 1993), and

• the gender predicate female as its pred2 value that can be leveraged to resolve
a subsequent pronoun she/her anaphoric to the proper name.

The values of these two pred1 and pred2 features are chunks of type pred,
which specify the name of the non-logical constant associated with the predicate (the
feature constant_name) and the arity of the constant.

224 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

Finally, chunks of typedrs have the same structure as the one used in the previous
chapter, with the addition of several new features necessary to capture the interaction
of cataphora and conjunctions/conditionals:

• the dref feature keeps track of the new propositional dref (if any) introduced by
the DRS;

• pred1 and pred2 store the predicates that are part of the conditions contributed
by the DRS;

• event_arg stores the event dref (if any) taken as an argument by pred1 and/or
pred2;

• arg1 and arg2 store the entity drefs that are the arguments of pred1 and/or
pred2;

• discourse_status keeps track of the discourse status of the DRS;

– we only need three possible values for this feature in this chapter: at_issue,
unresolved and presupposed;

• the drs feature keeps track of the DRS peg that the current DRS is associated
with;

• finally, embedding_level keeps track of the embedding level of the DRS, the
main function of which is to constrain pronoun and anaphora resolution, just as in
Kamp and Reyle (1993);

– discourse-initial main clauses are embedding_level 0;
– conditional antecedents or the second conjunct in a conjunction are
embedding_level 1;

– conditional consequents or the third conjunct in a conjunction will be
embedding_level 2;

– pronouns and presuppositions, whether anaphoric or cataphoric, can only find
antecedents at a higher embedding level (or at the same level in certain cases).

Let us look at some example lexical entries that will be stored in declarative
memory (dm). The lexical entry of a proper name like Danielle is a chunk of the
following form:

(21) actr.chunkstring(string=""" 1
isa word 2
form Danielle 3
cat ProperN 4
pred1 DANIELLE 5
pred2 FEMALE 6

""") 7

In (21), we use the chunkstring method to assemble the lexical entry for the
proper name Danielle (of type word) from a Python3 string. The values of the form
and cat features are as expected. The pred1 and pred2 values are themselves
chunks of type pred. These predicate chunks are assumed to be already available
in dm at the time we assemble the lexical entry for Danielle, and they are declared
as follows:

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 225

(22) actr.chunkstring(name="DANIELLE", string=""" 1
isa pred 2
constant_name _danielle_ 3
arity 1 4

""") 5

(23) actr.chunkstring(name="FEMALE", string=""" 1
isa pred 2
constant_name _female_ 3
arity 1 4

""") 5

Just as in the previous chapter, the lexical entry for the determiner a does not
contain any semantic information. The associated semantic representations and oper-
ations, namely, introducing a new dref, predicating the common noun and the verbal
predicate of it etc., are all contributed by production rules stored in procedural mem-
ory.

A pronoun like she has a lexical entry of the following form:

(24) dm.add(actr.chunkstring(string=""" 1
isa word 2
form she 3
cat PRO 4
pred1 EQUALS 5
pred2 FEMALE 6

""")) 7

The gender of the pronoun, which the antecedent of the pronoun will have to
satisfy, is stored as the pred2 value.We follow the semantics for pronouns proposed
in Kamp and Reyle (1993) and assume that pronouns introduce their own dref, but
they need to equate it with the dref contributed by a suitable antecedent. This is the
reason for making EQUALS the ‘main’ predicate contributed by the pronoun, i.e.,
the value of the pred1 feature. The exact specification of the EQUALS predicate,
which has an arity of 2 (as expected), is provided in (25) below.

(25) actr.chunkstring(name="EQUALS", string=""" 1
isa pred 2
constant_name _equals_ 3
arity 2 4

""") 5

It would be natural to have a lexical entry for again that would be parallel to that
of pronouns, except that it would relate event drefs instead of entity drefs, and it
would contribute the predicate PRECEDES in (26) below instead of EQUALS.

(26) actr.chunkstring(name="PRECEDES", string=""" 1
isa pred 2
constant_name _precedes_ 3
arity 2 4

""") 5

It turns out, however, that it is more convenient to give again a semantically empty
lexical entry, shown in (27) below, and let suitably formulated production rules make
the correct semantic contributions.

226 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

(27) actr.chunkstring(string=""" 1
isa word 2
form again 3
cat Adv 4

""") 5

This superficial difference between pronouns and again is due to the fact that,
syntactically, again is an adjunct that needs to retrieve the VP it adjoins to and
reopen it for adjunction. In addition, semantically, again is ‘parasitic’ on the event
dref contributed by the verbal predicate it adjoins to. This is in contrast to pronouns,
which introduce their own entity dref.

However, what again and pronouns do have in common is that they both need to
be resolved: they have to relate their dref, whether they introduce that dref or ‘inherit’
it from the VP, to another dref. A successful resolution requires the other dref to be
available in, and retrieved from, declarative memory.

Just like proper names, common nouns introduce two predicates, one being the
common noun itself and the other being the gender. For example, the lexical entry
for car and its associated predicate chunks are as follows:

(28) a. actr.chunkstring(string=""" 1
isa word 2
form car 3
cat N 4
pred1 CAR 5
pred2 NONHUMAN 6

""") 7
b. actr.chunkstring(name="CAR", string=""" 1

isa pred 2
constant_name _car_ 3
arity 1 4

""") 5
c. actr.chunkstring(name="NONHUMAN", string=""" 1

isa pred 2
constant_name _nonhuman_ 3
arity 1 4

""") 5

Intransitive and transitive verbs introduce a single predicate, with an arity that
specifies that an event argument is required, plus 1 or 2 individual-level arguments.
For example, laughed and greeted have the lexical entries in (29) and (30) below.

(29) a. actr.chunkstring(string=""" 1
isa word 2
form laugh 3
cat Vi 4
pred1 LAUGH 5

""") 6
b. actr.chunkstring(name="LAUGH", string=""" 1

isa pred 2
constant_name _laugh_ 3
arity event_plus_1 4

""") 5

(30) a. actr.chunkstring(string=""" 1
isa word 2
form greet 3
cat Vt 4
pred1 GREET 5

""") 6

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 227

b. actr.chunkstring(name="GREET", string=""" 1
isa pred 2
constant_name _greet_ 3
arity event_plus_2 4

""") 5

The items used in Experiment 2 (see Sect. 9.1.2 above) also contain prepositional
verbs like argue/play with. We analyze them as transitive verbs, but we assign a
different syntactic category VtPP to them. This will enable us to formulate produc-
tion rules that will syntactically and semantically integrate them with the subsequent
preposition.

(31) a. actr.chunkstring(string=""" 1
isa word 2
form play 3
cat VtPP 4
pred1 PLAY 5

""") 6
b. actr.chunkstring(name="PLAY", string=""" 1

isa pred 2
constant_name _play_ 3
arity event_plus_2 4

""") 5

For simplicity, we assume that prepositions like with that are part of prepositional
verbs do not take an event argument, as shown in (32) below. We make the same
simplifying assumption about adjectives like overcooked, as shown in (33).

(32) a. actr.chunkstring(string=""" 1
isa word 2
form with 3
cat P 4
pred1 WITH 5

""") 6
b. actr.chunkstring(name="WITH", string=""" 1

isa pred 2
constant_name _with_ 3
arity 2 4

""") 5

(33) a. dm.add(actr.chunkstring(string=""" 1
isa word 2
form hungry 3
cat A 4
pred1 HUNGRY 5

""")) 6
b. actr.chunkstring(name="HUNGRY", string=""" 1

isa pred 2
constant_name _hungry_ 3
arity 1 4

""") 5

Finally, we take the lexical entry of the sentential operators and and if to be
semantically empty. The associated semantic representations and operations will all
be contributed by production rules.

(34) a. actr.chunkstring(string=""" 1
isa word 2
form and 3
cat Conj 4

""") 5

228 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

b. actr.chunkstring(string=""" 1
isa word 2
form if 3
cat C 4

""") 5

The full code for this part of the model is linked to at the end of the chapter in
Appendix 9.6.1.

9.3.2 Rules to Advance Dref Peg Positions, Key Presses and
Word-Related Rules

The entire set of production rules is linked to at the end of this chapter (Appendix
9.6.2). Here, we will highlight only the most crucial ones.

We have several families of production rules that advance the dref peg position
for (i) entity/individual-level drefs, (ii) event drefs and (iii) DRS drefs. The idea of
peg positions was introduced and justified in Chap. 8 (see Sect. 8.3) and the rules we
use in this chapter are the same, except we generalize this idea to drefs for types
other than entities/individuals, namely event drefs and DRS/propositional drefs.

Turning to word-related rules, the "encode word" rule in (35) below fires
whenever the parser is not engaged in a set of tasks that should take priority relative
to word encoding (lines 4–14). We can think of the "encode word" rule as an
‘elsewhere’ rule: if the parser is not engaged in a more pressing task, it should check
whether there is a value in the visual buffer that can be encoded (lines 17–19 in
(35)). If such a value is available, it is encoded in the goal buffer as the value of the
parsed_word feature (line 24).

(35) parser.productionstring(name="encode word", string=""" 1
=g> 2
isa parsing_goal 3
task ˜move_dref_peg 4
task ˜move_event_peg 5
task ˜move_event_peg_and_wait_for_retrieval 6
task ˜move_drs_peg 7
task ˜attempting_to_resolve_PRO 8
task ˜attempting_to_resolve_AGAIN 9
task ˜attempting_to_resolve_cataphoric_PRO 10
task ˜attempting_to_resolve_cataphoric_AGAIN 11
task ˜if_reanalysis 12
task ˜stop_resolution_attempt_PRO 13
task ˜stop_resolution_attempt_AGAIN 14
found None 15
parsed_word None 16
=visual> 17
isa _visual 18
value =val 19
==> 20
=g> 21
isa parsing_goal 22
task encoding_word 23
parsed_word =val 24
˜visual> 25
˜retrieval> 26

""", utility=-1) 27

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 229

The ‘elsewhere’ nature of the "encode word" rule is also reflected in the fact
that we assign it a lower utility of −1 (line 27 in (35)) than the default, which is 0.
In a more realistic system that learns rule utilities from data, this utility would be
automatically inferred, andwewould be able to greatly simplify the rule by removing
the long list of negative conditions on lines 4–14: the fact that all the tasks listed on
lines 4–14 need to take priority over word encoding should arise from the utilities of
the relevant productions rules, rather than being hard-coded in this fashion. However,
to make rule preferences transparent, we opted for hard-coding them in this model.

The "retrieve word" rule in (36) below requests lexical information about
the word we just encoded from declarative memory.

(36) parser.productionstring(name="retrieve word", string=""" 1
=g> 2
isa parsing_goal 3
task encoding_word 4
parsed_word =w 5
==> 6
+retrieval > 7
isa word 8
form =w 9
=g> 10
isa parsing_goal 11
task retrieving_word 12

""") 13

Once the lexical information is retrieved and available in the retrieval buffer,
we shift and project the word (37). This means that we build a unary-branching
syntactic structure in the imaginal buffer, with the word as the daughter and its
syntactic category as the mother (lines 15–18 in (37)). At the same time, we update
the found slot in the goal buffer to the same syntactic category (line 14), so that
other syntax/semantics processing steps necessary to integrate the retrieved word
are triggered. Finally, we start a key_press task (line 13). The motor operations
associated with this task will execute in parallel to the additional syntax/semantics
processing steps associated with the retrieved word.

(37) parser.productionstring(name="shift and project word (not N)", string=""" 1
=g> 2
isa parsing_goal 3
task retrieving_word 4
=retrieval> 5
isa word 6
form =w 7
cat =c 8
cat ˜N 9
==> 10
=g> 11
isa parsing_goal 12
task key_press 13
found =c 14
+imaginal> 15
isa parse_state 16
node_cat =c 17
daughter1 =w 18

""") 19

The shift-and-project rule in (37) applies to all words except nouns (N). The shift-
and-project N rule is different only because the preceding Det has already created
an NP syntactic structure in the imaginal buffer that the N needs to update before

230 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

creating its own unary-branching structure in the same buffer. We do not list the rule
here; the complete set of rules is linked to in Appendix 9.6.2.

The key_press task consists of only one rule: the "press spacebar" rule
in (38) below. This rule adds a command to press the spacebar to the manual buffer
(lines 13–16). Once that is done, we revert to the default task of parsing (line 12).

(38) parser.productionstring(name="press spacebar", string=""" 1
=g> 2
isa parsing_goal 3
task key_press 4
?manual> 5
state free 6
?retrieval> 7
state free 8
==> 9
=g> 10
isa parsing_goal 11
task parsing 12
+manual> 13
isa _manual 14
cmd press_key 15
key ’space’ 16

""") 17

Finally, when there are no more words to be read on the virtual screen, we end the
syntax/semantics parsing process with the "finished: no visual input"
rule in (39) below. This rule flushes all the goal/goal-like buffers.

(39) parser.productionstring(name="finished: no visual input", string=""" 1
=g> 2
isa parsing_goal 3
task parsing 4
stack1 None 5
?visual> 6
state free 7
buffer empty 8
?manual> 9
state free 10
buffer empty 11
==> 12
˜g> 13
˜imaginal> 14
˜discourse_context> 15
˜unresolved_discourse> 16

""") 17
18

9.3.3 Phrase Structure Rules

The project and project-and-complete phrase structure rules encode most of the
syntactic parsing and all the semantic parsing work. Consequently, these rules tend
to have relative large lists of actions to be executed. We will only discuss here
some of the most important phrase structure rules. The remaining ones, linked to in
Appendix 9.6.2, have the same kind of structure and should be straightforward to
understand.

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 231

Consider first the "project: NP ==> Det N" rule in (40) below. This rule
is triggered once a determiner is shifted and projected, so the found feature stores a
Det value (line 10). Another important condition for this rule is that the top parsing
goal is to parse an S (line 5). That is, this rule is triggered by determiners in subject
position. Determiners in object position trigger a different rule ("project and
complete: NP ==> Det N"; seeAppendix 9.6.2),which is very similar except
that the top parsing goal is an NP rather than an S.

(40) parser.productionstring(name="project: NP ==> Det N", string=""" 1
=g> 2
isa parsing_goal 3
task parsing 4
stack1 S 5
arg_stack1 =a1 6
right_edge_stack1 =re1 7
right_edge_stack2 =re2 8
parsed_word =w 9
found Det 10
dref_peg =dref_peg 11
drs_peg =drs_peg 12
embedding_level =el 13
=retrieval> 14
isa word 15
pred1 =p1 16
pred2 =p2 17
==> 18
=g> 19
isa parsing_goal 20
task move_dref_peg 21
stack1 N 22
stack2 NP 23
stack3 S 24
found None 25
parsed_word None 26
arg_stack1 =dref_peg 27
arg_stack2 =a1 28
+imaginal> 29
isa parse_state 30
node_cat NP 31
daughter1 Det 32
daughter2 N 33
mother =re1 34
mother_of_mother =re2 35
+discourse_context> 36
isa drs 37
dref =dref_peg 38
arg1 =dref_peg 39
drs =drs_peg 40
embedding_level =el 41
discourse_status at_issue 42
˜retrieval> 43

""") 44

The "project: NP ==> Det N" rule in (40) also conditions on the
retrieval buffer making available the semantics of the word we just parsed,
specifically, the two predicates =p1 and =p2 it contributes (lines 14–17). This is
spurious in the present case because we have just parsed a determiner, which does
not contribute any predicates, but we include it for uniformity with the phrase struc-
ture rules for proper names, nouns, verbs, pronouns etc.

The "project: NP ==> Det N" rule in (40) triggers three main pars-
ing actions: (i) it updates the goal buffer, thereby setting the context for subse-
quent parsing rules (lines 19–28); (ii) it updates the imaginal buffer with the

232 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

expected NP node with two daughters (Det and N), and it attaches the NP to the top
right-edge attachment point (the S node) (lines 29–35); (iii) finally, it updates the
discourse_context buffer with a new DRS (lines 36–42).

The new DRS has a similar structure to the sub-DRSs contributed by indefinites
that we discussed in the previous chapter (Chap. 8): we introduce a new individual-
level dref (line 38) and we plug it in as the argument of the upcoming N (line 39).

However, in contrast to what we did in the previous chapter, we mark the current
sub-DRS as being part of a larger DRS (i.e., part of a larger propositional update) by
means of a drs slot which has the current DRS dref =drs_peg as its value (line
40). Thus, the fact that this sub-DRS is part of a larger main DRS is only implicit in
this representation, unlike the more explicitly hierarchical structure we built in the
previous chapter. We prefer this flatter structure for sub-DRSs and main DRSs in this
chapter because it is simpler to use, and sufficient for our purposes.

However, because we are modeling pronoun and presupposition resolution, we
need to keep track of two other semantic features: the embedding level of the current
sub-DRS (line 41), which is crucial for the resolution process, and the discourse
status of the current sub-DRS (line 42). The discourse status is at_issue, to be
distinguished from either (i) the unresolved discourse status associated with
unresolved pronouns/presuppositions, or (ii) the presupposed discourse status
associated with resolved pronouns/presuppositions.

Given these imaginal and discourse_context buffer updates, we update
the goal buffer in a variety of ways:

• we update the task to move_dref_peg (line 21 in (40)): we have just introduced
a new dref indexed with the current dref_peg, so we need to move the peg to
the next position in preparation for subsequent indefinites;

• we set up the stack of parsing goals in the expected way (lines 22–24): we have
just parsed a Det in subject position, so we expect to parse an N next, after which
we expect to finish parsing the subject NP, and once that is completed, we revert
to the initial goal of parsing an S;

• we reset the found and parsed_word features to None (lines 25–26) to indi-
cate that we are finished parsing the current word;

• we push the dref we just introduced on the argument stack (lines 27–28) so that it
is available as an argument for the predicate(s) introduced by the upcoming VP.

Finally, we flush the retrieval buffer (line 43 in (40)), since we have no further
use for the lexical information associated with the current word.

The syntactic and semantic parsing actions triggered by the project-NP rule set
up the context for the "project and complete: N" rule in (41) below. If the
syntactic category at the top of the goal stack is N (line 5) andwe have just shifted and
projected anN (line 8), the semantics ofwhich is available in the retrieval buffer (lines
9–12),we take twomain parsing actions.On one hand,we add the two predicates=p1
and =p2 lexically contributed by the N to the DRS in the discourse_context
buffer, which was contributed by the preceding indefinite determiner (lines 23–26).
On the other hand, we pop the N goal off the goal-buffer stack and reset the found

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 233

and parsed_word features back to None. To wrap up, we do some cognitive-state
clean-up and flush the retrieval and imaginal buffers (lines 27–28).

(41) parser.productionstring(name="project and complete: N", string=""" 1
=g> 2
isa parsing_goal 3
task parsing 4
stack1 N 5
stack2 =s2 6
stack3 =s3 7
found N 8
=retrieval> 9
isa word 10
pred1 =p1 11
pred2 =p2 12
?discourse_context> 13
buffer full 14
==> 15
=g> 16
isa parsing_goal 17
stack1 =s2 18
stack2 =s3 19
stack3 None 20
found None 21
parsed_word None 22
=discourse_context> 23
isa drs 24
pred1 =p1 25
pred2 =p2 26
˜retrieval> 27
˜imaginal> 28

""") 29

At this point, we have fully parsed the subject NP, so we need to pop that goal
off the top of the goal-buffer stack. Moreover, we have found the left corner of the
S, namely the subject NP, so we can also pop the S goal off the stack and replace
it with the goal of finding the VP that will complete the S. The "project and
complete: S ==> NP VP" in (42) below triggers all these parsing actions, and
also builds the binary-branching [sNP VP] structure in the imaginal buffer.

(42) parser.productionstring(name="project and complete: S ==> NP VP", 1
string=""" 2

=g> 3
isa parsing_goal 4
task parsing 5
stack1 NP 6
stack2 S 7
stack3 =s3 8
right_edge_stack1 =re1 9
right_edge_stack2 =re2 10
right_edge_stack3 =re3 11
right_edge_stack4 =re4 12
==> 13
=g> 14
isa parsing_goal 15
stack1 VP 16
stack2 =s3 17
stack3 None 18
right_edge_stack1 VP 19
right_edge_stack2 =re1 20
right_edge_stack3 =re2 21
right_edge_stack4 =re3 22
found None 23
parsed_word None 24
+imaginal> 25
isa parse_state 26

234 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

node_cat S 27
daughter1 NP 28
daughter2 VP 29
˜retrieval> 30
˜imaginal> 31
˜discourse_context> 32

""") 33

At this point, various project-and-complete-VP rules can be triggered, depending
on the syntactic category of thefinite verb.Wewill only discuss here the simplest case,
namely intransitive verbs, and then work through a simple example. The "project
and complete: VP ==> Vi" rule is provided in (43) below. This rule is trig-
gered if the top syntactic category in the goal-buffer stack is VP (line 5), and we
have just shifted and projected an intransitive verb (line 6), the semantics of which
is available in the retrieval buffer (lines 16–18).

(43) parser.productionstring(name="project and complete: VP ==> Vi", string=""" 1
=g> 2
isa parsing_goal 3
task parsing 4
stack1 VP 5
found Vi 6
parsed_word =w 7
right_edge_stack1 VP 8
right_edge_stack2 =re2 9
right_edge_stack3 =re3 10
right_edge_stack4 =re4 11
arg_stack1 =a1 12
drs_peg =drs_peg 13
event_peg =ev_peg 14
embedding_level =el 15
=retrieval> 16
isa word 17
pred1 =p1 18
==> 19
=g> 20
isa parsing_goal 21
task move_event_peg 22
stack1 None 23
found None 24
parsed_word None 25
right_edge_stack1 =re2 26
right_edge_stack2 =re3 27
right_edge_stack3 =re4 28
right_edge_stack4 None 29
+imaginal> 30
isa parse_state 31
mother =re2 32
mother_of_mother =re3 33
node_cat VP 34
daughter1 Vi 35
lex_head =w 36
+discourse_context> 37
isa drs 38
dref =ev_peg 39
event_arg =ev_peg 40
arg1 =a1 41
pred1 =p1 42
drs =drs_peg 43
embedding_level =el 44
discourse_status at_issue 45
˜retrieval> 46
˜imaginal> 47
˜discourse_context> 48

""") 49

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 235

If these pre-conditions are met, the "project and complete: VP ==>
Vi" rule in (43) triggers three main parsing actions, just like the project-NP rule in
(40) above, or most other rules associated with words contributing essential semantic
information and operations. Just as before, the three main parsing actions involve:
(i) the goal buffer (lines 20–29); (ii) the imaginal buffer, where new syntac-
tic information is encoded (lines 30–36); (iii) the discourse_context buffer,
where new semantic information is encoded (lines 37–45).

The imaginal buffer update (lines 30–36 in (43) simply builds a unary-
branching structure [VPVi] and specifies its lexical head and its attachment point
in the larger syntactic structure.

The discourse_context buffer update on lines 37–45 is more substantial:

• we introduce a newDRS andmark it as a sub-DRS of the current main DRS by set-
ting the drs feature to the current =drs_peg (line 43), itsembedding_level
feature to the current embedding level =el (line 44), and its discourse status to
at_issue (line 45);

• since this DRS is contributed by a verb, we introduce a new event dref and index
it with the current event dref peg =ev_peg (line 39);

• the intransitive verb contributes a predicate=p1 (line 42) that takes two arguments:
an event argument that is set to the newly introduced event dref =ev_peg (line
40), and an entity argument that is set to the dref =a1 previously introduced by
the subject and stored at the top of the goal-buffer argument stack (line 41).

With the syntactic and semantic updates in place, the goal buffer can be updated
accordingly (lines 20–29):

• since we just introduced a new event dref, we need to update the event dref peg,
so the new task is set to move_event_peg (line 22);

• wehave just completely finished parsing the intransitive verb, sowepop theVPcat-
egory off the goal-buffer stack (line 23) and reset the found and parsed_word
features to None (lines 24–25);

• we also pop the S node off the right-edge stack since this node is not available for
future attachments anymore (lines 26–29).

We are now ready to parse a simple example. When the model reads the sentence
in (44) below word by word (as in a self-paced reading task), it goes through a
cognitive process whose temporal trace is provided in (45). To run the model on the
sentence in (44) and obtain the temporal trace, uncomment the relevant line in the
run_parser.py file (linked to in Appendix 9.6.3) and run the file in the terminal
with the command:

• python3 run_parser.py

The full pyactr output is very detailed, so we edit it down significantly in (45)
below to be able to focus on the main steps of the incremental interpretation process.

(44) A woman smiled.

236 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

(45) ****Environment: {1: {’text’: ’A’, ’position’: (320, 180)}} 1
(0.0255, ’PROCEDURAL’, ’RULE FIRED: encode word’) 2
(0.038, ’PROCEDURAL’, ’RULE FIRED: retrieve word’) 3
(0.1762, ’retrieval’, ’RETRIEVED: word(cat=Det, form=A, pred1=, pred2=)’) 4
(0.1887, ’PROCEDURAL’, ’RULE FIRED: shift and project word (not N)’) 5
(0.1887, ’imaginal’, ’CREATED A CHUNK: parse_state(daughter1=A, 6

node_cat=Det)’) 7
(0.2012, ’PROCEDURAL’, ’RULE FIRED: press spacebar’) 8
(0.2137, ’PROCEDURAL’, ’RULE FIRED: project: NP ==> Det N’) 9
(0.2137, ’imaginal’, ’CREATED A CHUNK: parse_state(daughter1=Det, 10

daughter2=N, daughter3=, mother=S, node_cat=NP)’) 11
(0.2137, ’discourse_context’, ’CREATED A CHUNK: drs(arg1=x1, arg2=, 12

discourse_status=at_issue, dref=x1, drs=d1, embedding_level=0, 13
event_arg=, pred1=, pred2=)’) 14

(0.2262, ’PROCEDURAL’, ’RULE FIRED: move entity/individual dref peg to x2’)15
(0.3512, ’manual’, ’KEY PRESSED: SPACE’) 16
****Environment: {1: {’text’: ’woman’, ’position’: (320, 180)}} 17
(0.3712, ’PROCEDURAL’, ’RULE FIRED: encode word’) 18
(0.3837, ’PROCEDURAL’, ’RULE FIRED: retrieve word’) 19
(0.5302, ’retrieval’, ’RETRIEVED: word(cat=N, form=woman, 20

pred1=pred(arity=1, constant_name=_woman_), 21
pred2=pred(arity=1, constant_name=_female_))’) 22

(0.5427, ’PROCEDURAL’, ’RULE FIRED: shift and project N’) 23
(0.5427, ’imaginal’, ’CREATED A CHUNK: parse_state(daughter1=woman, 24

node_cat=N)’) 25
(0.5552, ’PROCEDURAL’, ’RULE FIRED: press spacebar’) 26
(0.5677, ’PROCEDURAL’, ’RULE FIRED: project and complete: N’) 27
(0.5677, ’discourse_context’, ’MODIFIED’) 28
(0.5802, ’PROCEDURAL’, ’RULE FIRED: project and complete: S ==> NP VP’) 29
(0.5802, ’imaginal’, ’CREATED A CHUNK: parse_state(daughter1=NP, 30

daughter2=VP, node_cat=S)’) 31
(0.7052, ’manual’, ’KEY PRESSED: SPACE’) 32
****Environment: {1: {’text’: ’smiled’, ’position’: (320, 180)}} 33
(0.7285, ’PROCEDURAL’, ’RULE FIRED: encode word’) 34
(0.741, ’PROCEDURAL’, ’RULE FIRED: retrieve word’) 35
(0.8899, ’retrieval’, ’RETRIEVED: word(cat=Vi, form=smiled, 36

pred1=pred(arity=event_plus_1, constant_name=_smile_))’) 37
(0.9024, ’PROCEDURAL’, ’RULE FIRED: shift and project word (not N)’) 38
(0.9024, ’imaginal’, ’CREATED A CHUNK: parse_state(daughter1=smiled, 39

node_cat=Vi)’) 40
0.9149, ’PROCEDURAL’, ’RULE FIRED: press spacebar’) 41
(0.9274, ’PROCEDURAL’, ’RULE FIRED: project and complete: VP ==> Vi’) 42
(0.9274, ’imaginal’, ’CREATED A CHUNK: parse_state(daughter1=Vi, 43

lex_head=smiled, mother=S, node_cat=VP)’) 44
(0.9274, ’discourse_context’, ’CREATED A CHUNK: drs(arg1=x1, 45

discourse_status=at_issue, dref=e1, drs=d1, 46
embedding_level=0, event_arg=e1, 47
pred1=pred(arity=event_plus_1, constant_name=_smile_))’) 48

(0.9399, ’PROCEDURAL’, ’RULE FIRED: move event dref peg to e2’) 49
(1.2274, ’PROCEDURAL’, ’RULE FIRED: finished: no visual input’) 50

51
Parse states in declarative memory at the end of the simulation 52
ordered by time of (re)activation: 53
0.2137 parse_state(daughter1=A, node_cat=Det) 54
0.5427 parse_state(daughter1=Det, daughter2=N, lex_head=woman, 55

mother=S, node_cat=NP) 56
0.5677 parse_state(daughter1=woman, node_cat=N) 57
0.9024 parse_state(daughter1=NP, daughter2=VP, node_cat=S) 58
0.9274 parse_state(daughter1=smiled, node_cat=Vi) 59
1.2274 parse_state(daughter1=Vi, lex_head=smiled, mother=S, 60

node_cat=VP) 61
62

DRSs in declarative memory at the end of the simulation 63
ordered by time of (re)activation: 64
0.5802 drs(arg1=x1, discourse_status=at_issue, dref=x1, 65

drs=d1, embedding_level=0, 66
pred1=pred(arity=1, constant_name=_woman_), 67
pred2=pred(arity=1, constant_name=_female_)) 68

1.2274 drs(arg1=x1, discourse_status=at_issue, dref=e1, 69
drs=d1, embedding_level=0, event_arg=e1, 70
pred1=pred(arity=event_plus_1, constant_name=_smile_)) 71

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 237

Line 1 of the temporal trace in (45) indicates that the first word, namely the
indefinite determiner A, is displayed on the virtual screen from which the model
takes its visual input. This word is encoded 25.5 ms later (line 2), after which a
retrieval request for its lexical information is placed (line 3, time: 38 ms after the
start of the cognitive process). The lexical information is retrieved after≈140ms (line
4), then the word is shifted and projected (line 5), and as a result, our first syntactic
structure [DetA] is built in the imaginal buffer (lines 6–7). At this point, the cognitive
process branches into two sub-processes running in parallel: (i) a motor sub-process
that will culminate in pressing the spacebar to reveal the next work (line 8), and
(ii) the continuation of the incremental parsing process triggered by the indefinite
determiner A (lines 9–15).

The incremental parsing process continueswith the project-NP rule (line 9), which
results in the creation of an [NPDet N] syntactic structure in the imaginal buffer (lines
10–11), and the creation of our firstDRS in thediscourse_context buffer (lines
12–14). Using the familiar DRT format, the DRS can be represented as follows:

(46) DRS contributed by the indefinite A:
x1

predicates- not- yet- specified

[part of main DRS d1]
[at-issue]

[embedding level: 0]
Given that we just introduced a new dref x1 for entities/individuals, we have to

move the entity dref peg to the next position x2 (line 15 in (45)). After this, the
incremental interpretation sub-process has nothing left to do, so we wait until the
motor sub-process completes and the spacebar is pressed (line 16).

At that point, the next word woman is displayed on the virtual screen (line 17),
and we go through the same cycle of encode-retrieve-project rules for the new word
(lines 18–31). Specifically, we encode the word (line 18) and place a retrieval request
for its lexical information (line 19). The lexical entry for the noun woman is retrieved
at ≈530 ms after the start of the entire cognitive process (lines 20–22). Notably, the
noun contributes two predicates: _woman_ and _female_, both of arity 1. The
explicit gender specification is useful for pronoun resolution.

The noun is then shifted and projected (line 23) and, as a result, the unary branch-
ing structure [Nwoman] is created in the imaginal buffer (lines 24–25). At this point,
the cognitive process branches again into a motor process that will culminate in
pressing the spacebar (line 26) and the continuation of the incremental parsing pro-
cess. Incremental parsing continues with the project-and-complete-N rule (line 27),
which results in an update of the DRS contributed by the indefinite determiner A and
stored in the discourse_context buffer (line 28). The DRS is updated with
the two predicates contributed by the noun woman, and can be represented in the
familiar DRT format as follows.

238 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

(47) DRS contributed by the indefinite A and updated by the noun woman:
x1

woman(x1)
female(x1)

[part of main DRS d1]
[at-issue]

[embedding level: 0]
The project-S rule is then fired (line 29) and the binary-branching structure

[SNP VP] is created in the imaginal buffer (lines 30–31). This completes the sequence
of incremental interpretation steps triggered by the noun woman. The process then
waits for the motor sub-process to complete and the spacebar to be pressed, which
happens ≈120 ms later (line 32).

At this point, the final word smiled is displayed on the virtual screen (line 33).
After it is encoded (line 34) and the request for its lexical entry is placed (line 35), we
have access to its lexical information in the retrieval buffer (lines 36–37). The most
notable aspect of this lexical entry is the arity event_plus_1 of the predicate
smile (line 37): this simply means that the predicate _smile_ takes an event
argument and, in addition, an entity argument. The intransitive verb is then shifted and
projected (line 38), at which point the unary branching syntactic structure [Vismiled]
is built in the imaginal buffer (lines 39–40).

Once again, and for the final time, the cognitive process branches into a motor
sub-process that will culminate with a spacebar press (line 41) and a sub-process that
continues with the incremental parsing triggered by the intransitive verb smiled. The
parsing process continues with the project-and-complete-VP rule (line 42), which
simultaneously creates a syntactic structure [VPVi] in the imaginal buffer (lines 43–
44) and a DRS in the discourse_context buffer (lines 45–48). This DRS can
be represented in the usual DRT format as shown below.

(48) DRS contributed by the intransitive verb smiled:
e1

smile(e1, x1)

[part of main DRS d1]
[at-issue]

[embedding level: 0]
The parsing process is basically done, so once the event-dref peg is updated (line

49), the "finished" rule ends the entire cognitive process because of the lack
of visual input (no more words on the virtual screen). For convenience, we list the
syntactic structures built during the parsing process together with their time stamps
on lines 54–61 in (45), and the two DRSs with their time stamps on lines 65–71.

The model includes a variety of other rules—for transitive verbs, prepositional
verbs, NPs in object position, adjectives etc. They are all available in the file linked

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 239

to in Appendix 9.6.2. We encourage you to run the model on the variety of sentences
in the run_parser.py file (Appendix 9.6.3) and examine the temporal-trace out-
puts to understand the time-course predictions of the syntax/semantics interpretation
process implemented by this model.

9.3.4 Rules for Conjunctions and Anaphora Resolution

We are now ready tomodel basic bi-clausal examples, specifically, conjunctions. The
project-and-complete rule for and is provided in (49) below. The rule starts a new
sentence S, that is, the second conjunct, by placing the category S at the top of the
goal-buffer stack (line 13), advancing the DRS dref peg (line 12: the task is updated
to move_drs_peg), and setting the embedding level for the second conjunct to 1
(line 22).

Incrementing the embedding level ensures that drefs in the second conjunct are
not available as antecedents for pronouns in the first conjunct. In general, we use
embedding levels to model both the explicit and the implicit aspects of the discourse
accessibility relation used in DRT. The fact that discourse referents in the second
conjunct cannot serve as antecedents to pronouns in the first conjunct is not explicitly
encoded in the accessibility relation defined in Kamp and Reyle (1993), but it is a
by-product of the DRS construction algorithm that requires the DRS construction
for the second conjunct to take place in the context of the DRS constructed based on
the first conjunct. In our model, we use embedding level uniformly to constrain dref
accessibility, both in conjunctions and conditionals.

Finally, the and rule creates a (non-headed) ternary-branching structure
[ConjSS Conj S] in the imaginal buffer (lines 23–31).

(49) parser.productionstring(name="project and complete: and", string=""" 1
=g> 2
isa parsing_goal 3
task parsing 4
found Conj 5
parsed_word and 6
parsed_word =w 7
embedding_level 0 8
==> 9
=g> 10
isa parsing_goal 11
task move_drs_peg 12
stack1 S 13
arg_stack1 None 14
arg_stack2 None 15
found None 16
parsed_word None 17
right_edge_stack1 S 18
right_edge_stack2 ConjS 19
right_edge_stack3 None 20
right_edge_stack4 None 21
embedding_level 1 22
+imaginal> 23
isa parse_state 24
daughter1 S 25
daughter2 Conj 26
daughter3 S 27

240 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

node_cat ConjS 28
mother None 29
mother_of_mother None 30
lex_head =w 31
˜discourse_context> 32

""") 33

We need to introduce three more rules, related to pronoun resolution, before we
can go through an example. The first rule is the "project: NP ==> PRO" rule
in (50) below, which completes the syntax/semantics parsing of pronouns in subject
position. Given that a PRO has just been found (line 11) and is available in the
retrieval buffer (lines 15–18), we take the usual three types of parsing actions and
update the goal, imaginal and discourse_context buffers. In addition, we also
add an unresolved DRS to the unresolved_discourse buffer. Let’s discuss
them in turn.

(50) parser.productionstring(name="project: NP ==> PRO", string=""" 1
=g> 2
isa parsing_goal 3
task parsing 4
stack1 S 5
stack2 =s2 6
arg_stack1 =a1 7
right_edge_stack1 =re1 8
right_edge_stack2 =re2 9
parsed_word =w 10
found PRO 11
dref_peg =dref_peg 12
drs_peg =drs_peg 13
embedding_level =el 14
=retrieval> 15
isa word 16
pred1 =p1 17
pred2 =p2 18
==> 19
=g> 20
isa parsing_goal 21
task move_dref_peg 22
stack1 NP 23
stack2 S 24
stack3 =s2 25
arg_stack1 =dref_peg 26
arg_stack2 =a1 27
found None 28
+imaginal> 29
isa parse_state 30
node_cat NP 31
daughter1 PRO 32
mother =re1 33
mother_of_mother =re2 34
lex_head =w 35
+discourse_context> 36
isa drs 37
dref =dref_peg 38
arg1 =dref_peg 39
pred1 =p2 40
drs =drs_peg 41
embedding_level =el 42
discourse_status at_issue 43
+unresolved_discourse> 44
isa drs 45
arg1 =dref_peg 46
arg2 UNKNOWN 47
pred1 =p1 48
pred2 =p2 49
drs =drs_peg 50

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 241

embedding_level =el 51
discourse_status unresolved 52
˜retrieval> 53
˜imaginal> 54
˜discourse_context> 55

""") 56

The imaginal buffer update on lines 29–35 in (50) is straightforward: we create
the expected unary branching [NPPRO] structure.

The DRS created in the discourse_context buffer on lines 36–43 follows
the analysis of pronouns in Kamp and Reyle (1993). We introduce a new dref (line
38) and predicate the pronoun gender of it (line 40).

The unresolved_discourse buffer stores a DRS that encodes the unre-
solved presupposition of the pronoun (lines 44–52):

• the main predicate =p1 contributed by the pronoun (line 48) is identity (EQUALS),
relating the dref introduced by the pronoun (line 46) and an UNKNOWN second dref
that needs to be retrieved;

• the UNKNOWN dref is the antecedent dref that needs to be found to complete the
pronoun resolution;

• the antecedent dref needs to be accessible, which is why we keep track of the
embedding level of the pronoun (line 51), and it also needs to satisfy the gender
predicate =p2 contributed by the pronoun (line 49);

• finally, the entire DRS ismarked as having an unresolved discourse status (line
52).

The goal buffer is updated in the expected way after parsing an NP in subject
position (lines 20–28): the task is updated to move_dref_peg (line 22), the dref
introduced by the pronoun is added to the top of the argument stack (line 26), and
NP becomes the top goal on the goal-buffer stack (line 23) in preparation for the
project-S rule.

After fully parsing a pronoun, the cognitive state satisfies the conditions for
attempting to resolve it. There are three different rules for anaphoric pronoun res-
olution, depending on the embedding level of the pronoun. We only discuss here
the rule for embedding level 1, provided in (51) below. The other rules, linked
to in Appendix 9.6.2, are very similar. The rule in (51) is triggered only if the
unresolved_discourse buffer contains an unresolved DRS (lines 15–21).

Pronoun resolution rules are fired when other, higher-ranked tasks have already
been completed (lines 5–11 in 51). Once these higher-ranked tasks are completed,
pronoun resolution has high priority (it has a utility of 5—line 33). As we mentioned
before, ordering rule firing preferences in this fashion (multiple negative specifica-
tions for the task slot & manually setting the utility to a non-default, i.e., non-0,
value) is not cognitively realistic, and does not scale up to larger systems of rules. The
conditions for these rules, as well as their utility, should emerge as a result of a learn-
ing algorithm that leverages both production compilation (for new rule generation)
and reinforcement learning (for utility ‘tuning’).

The rule triggers two actions. The main action is a retrieval request for a suitable
antecedent for the pronoun (lines 26–32): we need to retrieve a DRS in which a new

242 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

dref was introduced (line 28) that was not an event dref (line 29:event_arg None
ensures that only entities, not events, will be considered as possible antecedents).
Furthermore, this DRS should not be indexed with the same DRS dref (line 30): this
is a way to enforce Binding Principle B (Chomsky 1981). Finally, the antecedent
should have an embedding level higher than 2 (line 31) and an at_issue discourse
status (line 32).

The second action is updating the task so that the resolution attempt concludes
with this retrieval request (line 25), and we do not keep attempting to retrieve an
antecedent again and again.

(51) parser.productionstring(name="attempting to resolve pronoun;\ 1
pronoun at embedding level 1", string=""" 2

=g> 3
isa parsing_goal 4
task ˜reading_word 5
task ˜move_dref_peg 6
task ˜move_event_peg 7
task ˜attempting_to_resolve_PRO 8
task ˜attempting_to_resolve_cataphoric_PRO 9
task ˜stop_resolution_attempt_PRO 10
task ˜if_reanalysis 11
found None 12
?retrieval> 13
state free 14
=unresolved_discourse> 15
isa drs 16
arg2 UNKNOWN 17
pred2 =p2 18
drs =drs 19
embedding_level 1 20
discourse_status unresolved 21
==> 22
=g> 23
isa parsing_goal 24
task stop_resolution_attempt_PRO 25
+retrieval> 26
isa drs 27
dref ˜None 28
event_arg None 29
drs ˜=drs 30
embedding_level ˜2 31
discourse_status at_issue 32

""", utility=5) 33

The retrieval request for an antecedent either succeeds or fails. If it succeeds, the
rule in (52) below fires. The rule takes the antecedent available in the retrieval buffer
(lines 6–10) and the unresolved presupposition in the unresolved_discourse
buffer (lines 11–18) and merges information from them into a new DRS added to the
discourse_context buffer.

This DRS encodes the resolved pronominal presupposition: it basically takes
the unresolved presupposition from the unresolved_discourse buffer and
specifies its second, UNKNOWN argument to be the same dref as the dref of the
antecedent DRS available in the retrieval buffer (line 27). The discourse status of the
resolved presupposition is marked as presupposed (line 32).

With the pronoun resolved, we can flush the unresolved_discourse and
retrieval buffers (lines 33–34).

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 243

(52) parser.productionstring(name="resolution of PRO succeeded", string=""" 1
=g> 2
isa parsing_goal 3
task stop_resolution_attempt_PRO 4
embedding_level =el 5
=retrieval> 6
isa drs 7
dref ˜None 8
dref =dref 9
pred2 =p2 10
=unresolved_discourse> 11
isa drs 12
arg1 =a1 13
arg2 UNKNOWN 14
pred1 =p1 15
pred2 =p2 16
drs =drs 17
discourse_status unresolved 18
==> 19
=g> 20
isa parsing_goal 21
task parsing 22
entity_cataphora None 23
+discourse_context> 24
isa drs 25
arg1 =a1 26
arg2 =dref 27
pred1 =p1 28
pred2 =p2 29
drs =drs 30
embedding_level =el 31
discourse_status presupposed 32
˜retrieval> 33
˜unresolved_discourse> 34

""") 35

If the retrieval request for an antecedent fails, we trigger the rule in (53) below.
The rule checks that the unsuccessfully resolved presupposition targets an entity, not
an event (line 12): we check that arg2 is UNKNOWN. For events, we will see that
the arg1 slot will be marked as UNKNOWN. The retrieval of a suitable entity dref
has failed, but we do not simply mark the pronoun as unresolved and move on: we
assume that the pronoun is in fact cataphoric, so we set the entity_cataphora
feature toTrue (line 18). Thiswill ensure that when entity drefs will be subsequently
introduced in discourse, a cataphoric search will be triggered to check if they could
be suitable antecedents for the unresolved pronoun. Finally, the rule flushes the
unresolved_discourse and retrieval buffers (lines 20–21).

(53) parser.productionstring(name="resolution of PRO failed: no antecedent", 1
string=""" 2

=g> 3
isa parsing_goal 4
task stop_resolution_attempt_PRO 5
?retrieval> 6
state error 7
?unresolved_discourse> 8
buffer full 9
=unresolved_discourse> 10
isa drs 11
arg2 UNKNOWN 12
discourse_status unresolved 13
==> 14
=g> 15
isa parsing_goal 16
task parsing 17
entity_cataphora True 18

244 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

found no_antecedent 19
˜unresolved_discourse> 20
˜retrieval> 21

""") 22

There is another way that pronoun resolution could fail. Recall that the retrieval
request for an antecedent placed in (51) above does not constrain the gender of
the antecedent, it only constrains its embedding level and DRS peg (in addition to
requiring the dref slot to be non-empty and the event_arg slot to be empty). We
could, therefore, retrieve an antecedent dref that is suitablewith respect to all features,
but that does not match in gender. This is very much like the process of retrieving
foil sentences in the fan experiment and the corresponding fan model discussed in
the previous chapter (Chap.8).

The "resolution of PRO failed: antecedent with non-
matching gender" rule in (54) below takes care of this case: if the retrieved
DRS has a certain gender specification =p2 (line 10) and the unresolved pronoun
presupposition has a different gender specification ~=p2 (line 13), we declare the
pronoun unresolved and assume that it is a cataphoric pronoun (line 19).

(54) parser.productionstring(name="resolution of PRO failed:\ 1
antecedent with non-matching gender", string=""" 2

=g> 3
isa parsing_goal 4
task stop_resolution_attempt_PRO 5
?unresolved_discourse> 6
buffer full 7
=retrieval> 8
isa drs 9
pred2 =p2 10
=unresolved_discourse> 11
isa drs 12
pred2 ˜=p2 13
discourse_status unresolved 14
==> 15
=g> 16
isa parsing_goal 17
task parsing 18
entity_cataphora True 19
found no_antecedent 20
˜retrieval> 21
˜unresolved_discourse> 22

""") 23

To bring all these rules together, let us work through two examples of conjoined
discourses, one in which the pronoun resolution succeeds and one in which the
resolution fails because of a gender mismatch. The following subsection will discuss
cataphora, so we will show an example of a ‘no retrieved antecedent’ resolution
failure at that point.

Let us first simulate the example in (55) below. The temporal trace is provided
in (56). We omit the parsing steps associated with the first conjunct since they are
identical to the ones in (45) above, except for minor random noise in visual, motor
and retrieval timings. To obtain the temporal trace, we uncomment the relevant sen-
tence in the run_parser.py file and run the file with the command python3
run_parser.py, as we did before.

(55) A woman smiled and she left.

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 245

(56) (1.0599, ’manual’, ’KEY PRESSED: SPACE’) 1
****Environment: {1: {’text’: ’and’, ’position’: (320, 180)}} 2
(1.0787, ’PROCEDURAL’, ’RULE FIRED: encode word’) 3
(1.0912, ’PROCEDURAL’, ’RULE FIRED: retrieve word’) 4
(1.2415, ’retrieval’, ’RETRIEVED: word(cat=Conj, form=and)’) 5
(1.2540, ’PROCEDURAL’, ’RULE FIRED: shift and project word (not N)’) 6
(1.2540, ’imaginal’, ’CREATED A CHUNK: parse_state(daughter1=and, 7

node_cat=Conj)’) 8
(1.2665, ’PROCEDURAL’, ’RULE FIRED: press spacebar’) 9
(1.279, ’PROCEDURAL’, ’RULE FIRED: project and complete: and’) 10
(1.279, ’imaginal’, ’CREATED A CHUNK: parse_state(daughter1=S, 11

daughter2=Conj, daughter3=S, lex_head=and, mother=None, 12
mother_of_mother=None, node_cat=ConjS)’) 13

(1.2915, ’PROCEDURAL’, ’RULE FIRED: move DRS/propositional dref peg to d2’)14
(1.4165, ’manual’, ’KEY PRESSED: SPACE’) 15
****Environment: {1: {’text’: ’she’, ’position’: (320, 180)}} 16
(1.4354, ’PROCEDURAL’, ’RULE FIRED: encode word’) 17
(1.4479, ’PROCEDURAL’, ’RULE FIRED: retrieve word’) 18
(1.5993, ’retrieval’, ’RETRIEVED: word(cat=PRO, form=she, 19

pred1=pred(arity=2, constant_name=_equals_), 20
pred2=pred(arity=1, constant_name=_female_))’) 21

(1.6118, ’PROCEDURAL’, ’RULE FIRED: shift and project word (not N)’) 22
(1.6118, ’imaginal’, ’CREATED A CHUNK: parse_state(daughter1=she, 23

node_cat=PRO)’) 24
(1.6243, ’PROCEDURAL’, ’RULE FIRED: press spacebar’) 25
(1.6368, ’PROCEDURAL’, ’RULE FIRED: project: NP ==> PRO’) 26
(1.6368, ’imaginal’, ’CREATED A CHUNK: parse_state(daughter1=PRO, 27

lex_head=she, mother=S, mother_of_mother=ConjS, 28
node_cat=NP)’) 29

(1.6368, ’discourse_context’, ’CREATED A CHUNK: drs(arg1=x2, 30
discourse_status=at_issue, dref=x2, drs=d2, 31
embedding_level=1, 32
pred1=pred(arity=1, constant_name=_female_))’) 33

(1.6368, ’unresolved_discourse’, ’CREATED A CHUNK: drs(arg1=x2, 34
arg2=UNKNOWN, discourse_status=unresolved, drs=d2, 35
embedding_level=1, 36
pred1=pred(arity=2, constant_name=_equals_), 37
pred2=pred(arity=1, constant_name=_female_))’) 38

(1.6493, ’PROCEDURAL’, ’RULE FIRED: move entity/individual dref peg to x3’)39
(1.6618, ’PROCEDURAL’, ’RULE FIRED: attempting to resolve pronoun;\ 40

pronoun at embedding level 1’) 41
(1.7743, ’manual’, ’KEY PRESSED: SPACE’) 42
****Environment: {1: {’text’: ’left’, ’position’: (320, 180)}} 43
(1.8005, ’retrieval’, ’RETRIEVED: drs(arg1=x1, discourse_status=at_issue, 44

dref=x1, drs=d1, embedding_level=0, 45
pred1=pred(arity=1, constant_name=_woman_), 46
pred2=pred(arity=1, constant_name=_female_))’) 47

(1.8130, ’PROCEDURAL’, ’RULE FIRED: resolution of PRO succeeded’) 48
(1.8130, ’discourse_context’, ’CREATED A CHUNK: drs(arg1=x2, arg2=x1, 49

discourse_status=presupposed, drs=d2, embedding_level=1, 50
pred1=pred(arity=2, constant_name=_equals_), 51
pred2=pred(arity=1, constant_name=_female_))’) 52

(1.8255, ’PROCEDURAL’, ’RULE FIRED: project and complete: S ==> NP VP’) 53
(1.8255, ’imaginal’, ’CREATED A CHUNK: parse_state(daughter1=NP, 54

daughter2=VP, node_cat=S)’) 55
(1.8380, ’PROCEDURAL’, ’RULE FIRED: encode word’) 56
(1.8505, ’PROCEDURAL’, ’RULE FIRED: retrieve word’) 57
(2.0028, ’retrieval’, ’RETRIEVED: word(cat=Vi, form=left, 58

pred1=pred(arity=event_plus_1, constant_name=_left_))’) 59
(2.0153, ’PROCEDURAL’, ’RULE FIRED: shift and project word (not N)’) 60
(2.0153, ’imaginal’, ’CREATED A CHUNK: parse_state(daughter1=left, 61

node_cat=Vi)’) 62
(2.0403, ’PROCEDURAL’, ’RULE FIRED: project and complete: VP ==> Vi’) 63
(2.0403, ’imaginal’, ’CREATED A CHUNK: parse_state(daughter1=Vi, 64

lex_head=left, mother=S, mother_of_mother=ConjS, node_cat=VP)’) 65
(2.0403, ’discourse_context’, ’CREATED A CHUNK: drs(arg1=x2, 66

discourse_status=at_issue, dref=e2, drs=d2, 67
embedding_level=1, event_arg=e2, 68
pred1=pred(arity=event_plus_1, constant_name=_left_))’) 69

(2.0528, ’PROCEDURAL’, ’RULE FIRED: move event dref peg to e3’) 70
(2.3403, ’PROCEDURAL’, ’RULE FIRED: finished: no visual input’) 71

246 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

72
DRSs in declarative memory at the end of the simulation 73
ordered by time of (re)activation: 74
0.5761 drs(arg1=x1, discourse_status=at_issue, dref=x1, drs=d1, 75

embedding_level=0, 76
pred1=pred(arity=1, constant_name=_woman_), 77
pred2=pred(arity=1, constant_name=_female_)) 78

1.2790 drs(arg1=x1, discourse_status=at_issue, dref=e1, drs=d1, 79
embedding_level=0, event_arg=e1, 80
pred1=pred(arity=event_plus_1, constant_name=_smile_)) 81

1.8130 drs(arg1=x2, discourse_status=at_issue, dref=x2, drs=d2, 82
embedding_level=1, 83
pred1=pred(arity=1, constant_name=_female_)) 84

1.8130 drs(arg1=x2, arg2=UNKNOWN, discourse_status=unresolved, 85
drs=d2, embedding_level=1, 86
pred1=pred(arity=2, constant_name=_equals_), 87
pred2=pred(arity=1, constant_name=_female_)) 88

1.8130 drs(arg1=x1, discourse_status=at_issue, dref=x1, drs=d1, 89
embedding_level=0, 90
pred1=pred(arity=1, constant_name=_woman_), 91
pred2=pred(arity=1, constant_name=_female_)) 92

1.8255 drs(arg1=x2, arg2=x1, discourse_status=presupposed, 93
drs=d2, embedding_level=1, 94
pred1=pred(arity=2, constant_name=_equals_), 95
pred2=pred(arity=1, constant_name=_female_)) 96

2.3403 drs(arg1=x2, discourse_status=at_issue, dref=e2, 97
drs=d2, embedding_level=1, event_arg=e2, 98
pred1=pred(arity=event_plus_1, constant_name=_left_)) 99

The first point at which the temporal trace in (56) differs from the previous one
in (45) is the word and. This word is displayed on the virtual screen at 1.06 s after
the model starts reading the sentence in (55)—see lines 1–2 in (56).

The word and is encoded, its lexical information is retrieved and then the word is
projected, i.e., a unary branching structure [Conjand] is created in the imaginal buffer
(lines 7–8). The by-now familiar split into two cognitive sub-processes happens at this
point: ononehand, amotor process to press the spacebar is started (line 9), on the other
hand, we continue to process the word and. Specifically, the project-and-complete-
and rule is fired (line 10), and a ternary branching structure [ConjSS Conj S] is
created in the imaginal buffer (lines 11–13). Furthermore, since a new clause (the
second conjunct) is about to start, we update the DRS dref peg from d1 to d2 (line
14).

The space bar is pressed and the next word, namely the pronoun she, appears on
the virtual screen (lines 15–16) at time 1.4165 s. We go through the usual encode-
retrieve-project-spacebar sequence of rules (lines 17–25), after which the project-
NP rule for pronouns is fired (line 26). At that point, three chunks are created in
the imaginal, discourse_context and unresolved_discourse buffers.
The parse state in the imaginal buffer (lines 27–29) encodes the unary branching
[NPPRO] structure.

The DRS in the discourse_context buffer (lines 30–33) is the contribution
made by the pronoun to at-issue content, and is represented in familiar DRT format
as follows.

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 247

(57) At-issue DRS contributed by the pronoun she:

x2
female(x2)

[part of main DRS d2]
[at-issue]

[embedding level: 1]

TheDRS in theunresolved_discourse buffer (lines 34–38) is the contribu-
tion made by the pronoun to the unresolved presupposed content, and is represented
in familiar DRT format as shown in (58) below. The double contribution of the pro-
noun to both at-issue and unresolved presupposed content follows the account of
presupposition projection as anaphora resolution in van der Sandt (1992) (see also
Kamp 2001a).

(58) Unresolved presupposed DRS contributed by the pronoun she:

x2 = UNKNOWN
female(x2)

[part of main DRS d2]
[unresolved]

[embedding level: 1]

After the dref peg is updated to x3 (line 39), we attempt to resolve the pronoun
(lines 40–41), whichmeans that a retrieval request is placed for a suitable antecedent.
While we wait for the retrieval to complete, the motor module presses the space bar
and reveals the final word left on the virtual screen (lines 42–43). At 1.8005 s, we
successfully retrieve an antecedent for the pronoun (lines 44–47), namely the DRS
contributed by the indefinite NP A woman in the first conjunct. In DRT format, the
retrieved DRS is represented as follows.

(59) Potential antecedent DRS retrieved at time 1.8005 s:

x1
woman(x1)
female(x1)

[part of main DRS d1]
[at-issue]

[embedding level: 0]

248 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

Since the antecedent matches in gender, we declare the pronoun successfully
resolved (line 48) and add a resolved presupposition DRS to the discourse_
context buffer at time 1.8130 s (lines 49–52). This DRS is represented in the
usual DRT format as shown below.

(60) Presupposed DRS resulting from a successful pronoun resolution, added to
the discourse_context buffer at time 1.8130 s:

x2 = x1
female(x2)

[part of main DRS d2]
[presupposed]

[embedding level: 1]

After successfully resolving the pronoun, the incremental parsing process pro-
ceeds as expected. The project-S rule (line 53) is followed by:

• encoding, retrieving and projecting (‘shifting’) the intransitive verb left (lines
56–62),

• the project-VP rule and the syntactic structure and the DRS contributed by this
rule (lines 63–69),

• the move-event-dref-peg rule (line 70), and finally,
• the "finished: no visual input" rule (line 71).

At the end of the simulation, we have sevenDRSs inmemory, listed on lines 75–99
in (56) above, together with their time stamps. The first two DRSs (lines 75–81) are
part of the main DRS d1 contributed by the first conjunct. The next two DRSs (lines
82–88) are contributed by the pronoun she in the second conjunct. The fifth DRS
(lines 89–92) is just the first DRS (contributed by A woman) that is recalled to serve
as the antecedent of the pronoun. The sixth DRS (lines 93–96) encodes the resolved
presupposition of the pronoun, while the seventh DRS is the one contributed by the
intransitive verb left.

Let us turn now to the example in (61) below, where the pronoun resolution fails
because an antecedent with a non-matching gender is retrieved.

The only part of the temporal trace that differs from the one in (55) above is
provided in (62) below. We see that the DRS contributed by the indefinite A woman
is retrieved when we attempt to resolve the pronoun he (lines 5–8). We therefore
declare the resolution failed because the antecedent and the pronoun do not match
in gender.

As was the case in Chap.8, the model predicts that recalling the mismatching
antecedent should take slightly more time than recalling a match because the mis-
matching antecedent does not receive any spreading activation from the gender of
the pronoun held in one of the buffers at the moment of recall.

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 249

At the end of the simulation in (62), we see that only six DRSs are stored in
declarative memory (lines 14–34). These are basically the same DRSs as the ones
stored after the simulation in (55), except for the seventh DRS that encoded the
successfully resolved presupposition of the pronoun.

(61) A woman smiled and he left.
(62) (1.6640, ’PROCEDURAL’, ’RULE FIRED: attempting to resolve pronoun;\ 1

pronoun at embedding level 1’) 2
(1.7765, ’manual’, ’KEY PRESSED: SPACE’) 3
****Environment: {1: {’text’: ’left’, ’position’: (320, 180)}} 4
(1.8143, ’retrieval’, ’RETRIEVED: drs(arg1=x1, discourse_status=at_issue,\ 5

dref=x1, drs=d1, embedding_level=0, event_arg=None,\ 6
pred1=pred(arity=1, constant_name=_woman_),\ 7
pred2=pred(arity=1, constant_name=_female_))’) 8

(1.8268, ’PROCEDURAL’, ’RULE FIRED: resolution of PRO failed:\ 9
antecedent with non-matching gender’) 10

11
DRSs in declarative memory at the end of the simulation 12
ordered by time of (re)activation: 13
0.5765 drs(arg1=x1, arg2=None, discourse_status=at_issue, dref=x1, 14

drs=d1, embedding_level=0, event_arg=None, 15
pred1=pred(arity=1, constant_name=_woman_), 16
pred2=pred(arity=1, constant_name=_female_)) 17

1.2807 drs(arg1=x1, discourse_status=at_issue, dref=e1, drs=d1, 18
embedding_level=0, event_arg=e1, 19
pred1=pred(arity=event_plus_1, constant_name=_smile_)) 20

1.8268 drs(arg1=x2, arg2=UNKNOWN, discourse_status=unresolved, 21
drs=d2, embedding_level=1, 22
pred1=pred(arity=2, constant_name=_equals_), 23
pred2=pred(arity=1, constant_name=_male_)) 24

1.8268 drs(arg1=x1, discourse_status=at_issue, dref=x1, 25
drs=d1, embedding_level=0, 26
pred1=pred(arity=1, constant_name=_woman_), 27
pred2=pred(arity=1, constant_name=_female_)) 28

1.8393 drs(arg1=x2, discourse_status=at_issue, dref=x2, 29
drs=d2, embedding_level=1, 30
pred1=pred(arity=1, constant_name=_male_)) 31

2.3542 drs(arg1=x2, discourse_status=at_issue, dref=e2, 32
drs=d2, embedding_level=1, event_arg=e2, 33
pred1=pred(arity=event_plus_1, constant_name=_left_)) 34

9.3.5 Rules for Conditionals and Cataphora Resolution

We are now ready to discuss conditionals and cataphora resolution.
The project-and-complete rule for conditionals with a sentence-final if -clause

needed to model Experiments 1 and 2 above follows the pattern of the project-and-
complete rule for and. As shown in (63) below, we start a new sentence S for the
conditional antecedent (line 14), we advance the DRS dref peg (line 13), and we
mark the embedding level of the conditional antecedent as 1 (line 23), ensuring that
pronouns in a matrix clause (with embedding level 0) won’t be able to access drefs
introduced by expressions in the conditional antecedent.

250 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

Finally, the rule creates a [CP[Cif] S] structure in the imaginal buffer (lines 24–
31) that will be Chomsky-adjoined to the previous (matrix clause) S by the next rule
we will examine.

(63) parser.productionstring(name="project and complete: sentence-final if", 1
string=""" 2

=g> 3
isa parsing_goal 4
task parsing 5
found C 6
parsed_word if 7
parsed_word =w 8
embedding_level 0 9
==> 10
=g> 11
isa parsing_goal 12
task move_drs_peg 13
stack1 S 14
arg_stack1 None 15
arg_stack2 None 16
found None 17
parsed_word None 18
right_edge_stack1 S 19
right_edge_stack2 CP 20
right_edge_stack3 S 21
right_edge_stack4 none 22
embedding_level 1 23
+imaginal> 24
isa parse_state 25
daughter1 C 26
daughter2 S 27
node_cat CP 28
mother S 29
mother_of_mother None 30
lex_head =w 31
˜discourse_context> 32

""") 33

The project-and-complete rule for sentence final if sets the stage for a sequence
of rules reanalyzing the previous (matrix) clause. We already mentioned this when
we discussed Experiments 1 and 2 earlier in this chapter: a sentence-final if -clause
triggers the reanalysis of the previous matrix clause because, until if is read, the
incremental processor assumes the sentence is an unconditionalized assertion, so it
has an embedding level of 0.When if is read, the previous clause has to be reanalyzed
from a main clause/main assertion to a conditional consequent. Specifically, all the
DRSs contributed as part of that clause should have their embedding level changed
from 0 to 2.

The "start if-triggered reanalysis" rule in (64) below begins the
process of recalling these DRSs for reanalysis. The task is updated to
if_reanalysis (line 21), the CP structure created by the project-and-complete-if
rule in (63) above is Chomsky-adjoined to the S node of the previous clause, and
the structure is encoded in the imaginal buffer (lines 23–29). Most importantly, a
retrieval request is placed for a DRS that has an embedding level of 0 and is indexed
with the DRS dref peg of the previous sentence (lines 30–33).

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 251

(64) parser.productionstring(name="start if-triggered reanalysis\ 1
(for sentence-final if)", string=""" 2

=g> 3
isa parsing_goal 4
task parsing 5
found None 6
parsed_word None 7
right_edge_stack2 =re2 8
right_edge_stack3 =re3 9
drs_peg =drs_peg 10
prev_drs_peg =prev_drs_peg 11
=imaginal> 12
isa parse_state 13
daughter1 C 14
node_cat CP 15
lex_head if 16
lex_head =w 17
==> 18
=g> 19
isa parsing_goal 20
task if_reanalysis 21
right_edge_stack4 None 22
+imaginal> 23
isa parse_state 24
daughter1 S 25
daughter2 =re2 26
node_cat =re3 27
mother None 28
lex_head =w 29
+retrieval> 30
isa drs 31
drs =prev_drs_peg 32
embedding_level 0 33

""") 34

Once the first DRS is recalled for reanalysis, we want to update its embedding
level. To do this, we trigger one of two rules:

• "if-triggered reanalysis (no event recalled)", provided in
(65) below, or

• "if-triggered reanalysis (event recalled)", provided in (66).

We need an ‘event recalled’ version of the rule because we want to capture the
Maximize Presupposition effect we observed in Experiment 2; see the discussion of
Maximize Presupposition in Sect. 9.1.2 above.

The default version of the rule, i.e., "if-triggered reanalysis (no
event recalled)" in (65), is triggered when a DRS has been successfully
retrieved and is available in the retrieval buffer (lines 8–21 in (65)). The rule triggers
two actions. First, an identical DRS, except with an embedding level of 2, is placed
in the discourse_context buffer (lines 25–37). Second, a new retrieval request
for aDRS that has an embedding level of 0 and is indexedwith theDRSdref peg of the
previous sentence is placed (lines 40–43). Crucially, however, if a new DRS is to be
retrieved, it should be different from the previous-sentence DRSs that have already
been retrieved (lines 38–39)—we use here the FINST (‘fingers of instantiation’)
feature we discussed in the previous chapter.

252 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

(65) parser.productionstring(name="if-triggered reanalysis\ 1
(no event recalled)", string=""" 2

=g> 3
isa parsing_goal 4
task if_reanalysis 5
drs_peg =drs_peg 6
prev_drs_peg =prev_drs_peg 7
=retrieval> 8
isa drs 9
drs =drs 10
discourse_status =dstatus 11
embedding_level 0 12
dref =dref 13
pred1 =p1 14
pred2 =p2 15
dref =dref 16
drs =drs 17
event_arg =ea 18
event_arg None 19
arg1 =a1 20
arg2 =a2 21
?retrieval> 22
state free 23
==> 24
+discourse_context> 25
isa drs 26
discourse_status =dstatus 27
drs =drs 28
embedding_level 2 29
dref =dref 30
pred1 =p1 31
pred2 =p2 32
dref =dref 33
drs =drs 34
event_arg =ea 35
arg1 =a1 36
arg2 =a2 37
?retrieval> 38
recently_retrieved False 39
+retrieval> 40
isa drs 41
drs =prev_drs_peg 42
embedding_level 0 43

""") 44

The "if-triggered reanalysis (event recalled)" rule in (66)
below is very similar to the no-event-recalled rule in (65) above. The only difference
is that when a DRS with an event dref is recalled, we keep track of its main predicate
=p1 in the goal buffer: this predicate is stored as the value of an if_conseq_pred
feature (line 40), i.e., it is indexed as the predicate that was contributed by the
conditional consequent.

(66) parser.productionstring(name="if-triggered reanalysis (event recalled)", 1
string=""" 2

=g> 3
isa parsing_goal 4
task if_reanalysis 5
drs_peg =drs_peg 6
prev_drs_peg =prev_drs_peg 7
=retrieval> 8
isa drs 9
drs =drs 10
discourse_status =dstatus 11
embedding_level 0 12
dref =dref 13
pred1 =p1 14
pred2 =p2 15

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 253

dref =dref 16
drs =drs 17
event_arg =ea 18
event_arg ˜None 19
arg1 =a1 20
arg2 =a2 21
?retrieval> 22
state free 23
==> 24
+discourse_context> 25
isa drs 26
discourse_status =dstatus 27
drs =drs 28
embedding_level 2 29
dref =dref 30
pred1 =p1 31
pred2 =p2 32
dref =dref 33
drs =drs 34
event_arg =ea 35
arg1 =a1 36
arg2 =a2 37
=g> 38
isa parsing_goal 39
if_conseq_pred =p1 40
?retrieval> 41
recently_retrieved False 42
+retrieval> 43
isa drs 44
drs =prev_drs_peg 45
embedding_level 0 46

""") 47

The two rules for if -triggered reanalysis (no-event-recalled and event-recalled)
run repeatedly until all theDRSs contributed by the previous sentence are recalled and
reanalyzed, i.e., their embedding level gets set to 2.Once there are nomoreDRSs to be
recalled, the if -triggered reanalysis is complete and the "stop if-triggered
reanalysis" rule in (67) below is triggered. This rule simply resets the task
to reading_word (line 12) and flushes the retrieval, imaginal and
discourse_context buffers (lines 15–17).

(67) parser.productionstring(name="stop if-triggered reanalysis", string=""" 1
=g> 2
isa parsing_goal 3
task if_reanalysis 4
?retrieval> 5
state error 6
?manual> 7
state free 8
==> 9
=g> 10
isa parsing_goal 11
task reading_word 12
found None 13
parsed_word None 14
˜retrieval> 15
˜imaginal> 16
˜discourse_context> 17

""") 18

We are almost ready to parse the conditional & cataphora example in (7) above
(John won’t eat it if a hamburger is overcooked, Elbourne 2009), we only need to
introduce two kinds of rules related to cataphoric search.

254 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

First, there are three rules that trigger a cataphoric search for an antecedent,
depending on the embedding level of the potential antecedent. We only discuss
the ‘embedding level 1’ rule, provided in (68) below. The other rules (linked to in
Appendix 9.6.2) are similar.

(68) parser.productionstring(name="attempting to resolve cataphoric pronoun;\ 1
antecedent at embedding level 1", string=""" 2

=g> 3
isa parsing_goal 4
task ˜reading_word 5
task ˜move_dref_peg 6
task ˜move_event_peg 7
task ˜attempting_to_resolve_PRO 8
task ˜attempting_to_resolve_cataphoric_PRO 9
task ˜stop_resolution_attempt_PRO 10
task ˜if_reanalysis 11
found None 12
entity_cataphora True 13
?retrieval> 14
state free 15
=discourse_context> 16
isa drs 17
dref ˜None 18
dref =dref 19
event_arg None 20
pred2 ˜None 21
pred2 =p2 22
drs =drs 23
embedding_level 1 24
==> 25
=g> 26
isa parsing_goal 27
task stop_resolution_attempt_PRO 28
+unresolved_discourse> 29
isa drs 30
dref =dref 31
arg2 UNKNOWN 32
pred2 =p2 33
drs =drs 34
embedding_level 1 35
discourse_status unresolved 36
+retrieval> 37
isa drs 38
dref None 39
arg1 ˜None 40
arg2 UNKNOWN 41
pred1 ˜None 42
drs ˜=drs 43
embedding_level ˜0 44
discourse_status unresolved 45

""", utility=5) 46

Just as the anaphoric search rules, the cataphoric search rules are ‘elsewhere’ rules:
they have a set of negative constraints for the current task (lines 5–11 in (68)), and a
high utility (line 46). The rule is triggered if the entity_cataphora feature is
set to True (line 13) and the found feature is set to None (line 12). Consequently,
the rule cannot immediately follow a failed anaphoric search because such a search
sets the found feature to no_antecedent. Most importantly, a cataphoric search
is triggered only if a suitable antecedent is available in the discourse_context
buffer (lines 16–24).

If these conditions are met, a cataphoric search is triggered. Cataphoric searches
aremirror images of anaphoric searches. For cataphora,wehave apotential antecedent
in place, and place a retrieval request for an unresolved presuppositionDRS that could

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 255

be resolved by the antecedent. In contrast, for anaphora, we have an unresolved pre-
supposition and we place a retrieval request for an antecedent that could resolve
it.

The "attempting to resolve cataphoric pronoun" rule triggers
three actions. The most important one is placing a retrieval request for an unresolved
presupposition (lines 37–45 in (68)). We specify that no new drefs should be intro-
duced in this unresolved DRS (line 39), that the arg1 and pred1 slots should be
non-empty (lines 40 and 42), that the arg2 slot should be set to UNKNOWN (line
41), that the DRS should be part of a main DRS that is different than the one that
the potential antecedent belongs to (line 43), and that the embedding level of the
unresolved presupposition should not be 0 (line 44) since the potential antecedent
has an embedding level of 1.

The second action is to store information about the current potential antecedent
in the unresolved_discourse buffer (lines 29–36). This is not strictly nec-
essary since the information will be maintained in the discourse_context
buffer, but we do it here just to show how specific buffers can be used to safeguard
information that might otherwise be flushed by subsequent rules. And involving the
unresolved_discourse buffer in the process of cataphoric search is a natural
choice. We save the dref information (line 31), the gender predicate =p2 (line 33),
the DRS peg (line 34) and the embedding level of 1 (line 35).

The third and final action is to update the goal buffer (lines 26–28) so that the
resolution attempt is stopped with this one retrieval request and does not enter a loop.
We therefore update the task to stop_resolution_attempt_PRO.

The retrieval request, i.e., the cataphoric resolution attempt, can either succeed
or fail. If the attempt fails, the same failure rules as for anaphoric attempts are
triggered—see (53) and (54) above.

But if the cataphoric search succeeds, the "resolution of cataphoric
PRO succeeded" rule in (69) below is triggered. This rule adds a DRS to
the discourse_context buffer that resolves the retrieved unresolved pre-
supposition to the currently available antecedent (lines 25–33). The DRS has a
presupposed discourse status (line 33), and is otherwise identical to the DRS
contributed by the "resolution of PRO succeeded" rule in (52) above.

(69) parser.productionstring(name="resolution of cataphoric PRO succeeded", 1
string=""" 2

=g> 3
isa parsing_goal 4
task stop_resolution_attempt_PRO 5
=retrieval> 6
isa drs 7
dref None 8
arg1 ˜None 9
arg1 =a1 10
arg2 UNKNOWN 11
pred1 =p1 12
pred2 =p2 13
=unresolved_discourse> 14
isa drs 15
dref =dref 16
pred2 =p2 17
embedding_level =el 18
drs =drs 19

256 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

==> 20
=g> 21
isa parsing_goal 22
task parsing 23
entity_cataphora None 24
+discourse_context> 25
isa drs 26
arg1 =a1 27
arg2 =dref 28
pred1 =p1 29
pred2 =p2 30
drs =drs 31
embedding_level =el 32
discourse_status presupposed 33
˜unresolved_discourse> 34
˜retrieval> 35

""") 36

We can now see how the model parses the conditional + cataphora example in
(70) below, repeated from (7) above. The temporal trace is provided in (71). We omit
all the output that is not directly relevant to incremental semantic interpretation.

(70) John won’t eat it if a hamburger is overcooked. (Elbourne 2009)
(71) ****Environment: {1: {’text’: ’John’, ’position’: (320, 180)}} 1

(0.2075, ’PROCEDURAL’, ’RULE FIRED: project: NP ==> ProperN’) 2
(0.2075, ’discourse_context’, ’CREATED A CHUNK: drs(arg1=x1,\ 3

discourse_status=at_issue, dref=x1, drs=d1, embedding_level=0,\ 4
pred1=pred(arity=1, constant_name=_john_),\ 5
pred2=pred(arity=1, constant_name=_male_))’) 6

****Environment: {1: {’text’: ’wont’, ’position’: (320, 180)}} 7
(0.5645, ’PROCEDURAL’, ’RULE FIRED: project and complete:\ 8

VP ==> VauxNeg VP’) 9
(0.5645, ’discourse_context’, ’CREATED A CHUNK: drs(drs=d1,\ 10

discourse_status=at_issue, embedding_level=0, pred1=NOT)’) 11
****Environment: {1: {’text’: ’eat’, ’position’: (320, 180)}} 12
(0.9244, ’PROCEDURAL’, ’RULE FIRED: project and complete: VP ==> Vt NP’) 13
(0.9244, ’discourse_context’, ’CREATED A CHUNK: drs(arg1=x1, event_arg=e1,\14

discourse_status=at_issue, dref=e1, drs=d1, embedding_level=0,\ 15
pred1=pred(arity=event_plus_2, constant_name=_eat_))’) 16

****Environment: {1: {’text’: ’it’, ’position’: (320, 180)}} 17
(1.2893, ’PROCEDURAL’, ’RULE FIRED: project and complete: NP ==> PRO’) 18
(1.2893, ’discourse_context’, ’CREATED A CHUNK: drs(arg1=x2,\ 19

discourse_status=at_issue, dref=x2, drs=d1, embedding_level=0,\ 20
pred1=pred(arity=1, constant_name=_nonhuman_))’) 21

(1.2893, ’unresolved_discourse’, ’CREATED A CHUNK: drs(embedding_level=0,\ 22
arg1=x2, arg2=UNKNOWN, discourse_status=unresolved, drs=d1,\ 23
pred1=pred(arity=2, constant_name=_equals_),\ 24
pred2=pred(arity=1, constant_name=_nonhuman_))’) 25

(1.3143, ’PROCEDURAL’, ’RULE FIRED: attempting to resolve pronoun;\ 26
pronoun at embedding level 0’) 27

****Environment: {1: {’text’: ’if’, ’position’: (320, 180)}} 28
(1.5168, ’retrieval’, ’RETRIEVED: None’) 29
(1.5293, ’PROCEDURAL’, ’RULE FIRED: resolution of PRO failed:\ 30

no antecedent’) 31
(1.7435, ’PROCEDURAL’, ’RULE FIRED: project and complete:\ 32

sentence-final if’) 33
(1.7560, ’PROCEDURAL’, ’RULE FIRED:\ 34

move DRS/propositional dref peg to d2’) 35
(1.7685, ’PROCEDURAL’, ’RULE FIRED: start if-triggered reanalysis\ 36

(for sentence-final if)’) 37
****Environment: {1: {’text’: ’a’, ’position’: (320, 180)}} 38
(1.9053, ’retrieval’, ’RETRIEVED: drs(arg1=x2, discourse_status=at_issue,\ 39

dref=x2, drs=d1, embedding_level=0,\ 40
pred1=pred(arity=1, constant_name=_nonhuman_))’) 41

(1.9178, ’PROCEDURAL’, ’RULE FIRED: if-triggered reanalysis\ 42
(no event recalled)’) 43

(1.9178, ’discourse_context’, ’CREATED A CHUNK: drs(arg1=x2,\ 44
discourse_status=at_issue, dref=x2, drs=d1, embedding_level=2,\ 45

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 257

pred1=pred(arity=1, constant_name=_nonhuman_))’) 46
(2.0643, ’retrieval’, ’RETRIEVED: drs(arg1=x2, arg2=UNKNOWN,\ 47

discourse_status=unresolved, drs=d1, embedding_level=0,\ 48
pred1=pred(arity=2, constant_name=_equals_),\ 49
pred2=pred(arity=1, constant_name=_nonhuman_))’) 50

(2.0768, ’PROCEDURAL’, ’RULE FIRED: if-triggered reanalysis\ 51
(no event recalled)’) 52

(2.0768, ’discourse_context’, ’CREATED A CHUNK: drs(arg1=x2, arg2=UNKNOWN,\53
discourse_status=unresolved, drs=d1, embedding_level=2,\ 54
pred1=pred(arity=2, constant_name=_equals_),\ 55
pred2=pred(arity=1, constant_name=_nonhuman_))’) 56

(2.2259, ’retrieval’, ’RETRIEVED: drs(arg1=x1, arg2=x2, dref=e1, drs=d1,\ 57
discourse_status=at_issue, embedding_level=0, event_arg=e1,\ 58
pred1=pred(arity=event_plus_2, constant_name=_eat_))’) 59

(2.2384, ’PROCEDURAL’, ’RULE FIRED: if-triggered reanalysis\ 60
(event recalled)’) 61

(2.2384, ’discourse_context’, ’CREATED A CHUNK: drs(arg1=x1, arg2=x2,\ 62
discourse_status=at_issue, dref=e1, drs=d1, embedding_level=2,\ 63
event_arg=e1,\ 64
pred1=pred(arity=event_plus_2, constant_name=_eat_))’) 65

(2.3894, ’retrieval’, ’RETRIEVED: drs(discourse_status=at_issue, drs=d1,\ 66
embedding_level=0, pred1=NOT)’) 67

(2.4019, ’PROCEDURAL’, ’RULE FIRED: if-triggered reanalysis\ 68
(no event recalled)’) 69

(2.4019, ’discourse_context’, ’CREATED A CHUNK: drs(drs=d1,\ 70
discourse_status=at_issue, embedding_level=2, pred1=NOT)’) 71

(2.5548, ’retrieval’, ’RETRIEVED: drs(arg1=x1, discourse_status=at_issue,\ 72
dref=x1, drs=d1, embedding_level=0,\ 73
pred1=pred(arity=1, constant_name=_john_),\ 74
pred2=pred(arity=1, constant_name=_male_))’) 75

(2.5673, ’PROCEDURAL’, ’RULE FIRED: if-triggered reanalysis\ 76
(no event recalled)’) 77

(2.5673, ’discourse_context’, ’CREATED A CHUNK: drs(arg1=x1,\ 78
discourse_status=at_issue, dref=x1, drs=d1, embedding_level=2,\ 79
pred1=pred(arity=1, constant_name=_john_),\ 80
pred2=pred(arity=1, constant_name=_male_))’) 81

(2.7698, ’retrieval’, ’RETRIEVED: None’) 82
(2.7823, ’PROCEDURAL’, ’RULE FIRED: stop if-triggered reanalysis’) 83
(2.9987, ’PROCEDURAL’, ’RULE FIRED: project: NP ==> Det N’) 84
(2.9987, ’discourse_context’, ’CREATED A CHUNK: drs(arg1=x3,\ 85

discourse_status=at_issue, dref=x3, drs=d2, embedding_level=1)’) 86
****Environment: {1: {’text’: ’hamburger’, ’position’: (320, 180)}} 87
(3.3592, ’PROCEDURAL’, ’RULE FIRED: project and complete: N’) 88
(3.3717, ’PROCEDURAL’, ’RULE FIRED: attempting to resolve cataphoric\ 89

pronoun; antecedent at embedding level 1’) 90
(3.3717, ’unresolved_discourse’, ’CREATED A CHUNK: drs(arg2=UNKNOWN,\ 91

discourse_status=unresolved, dref=x3, drs=d2, embedding_level=1,\92
pred2=pred(arity=1, constant_name=_nonhuman_))’) 93

****Environment: {1: {’text’: ’is’, ’position’: (320, 180)}} 94
(3.5159, ’retrieval’, ’RETRIEVED: drs(arg1=x2, arg2=UNKNOWN,\ 95

discourse_status=unresolved, drs=d1, embedding_level=2,\ 96
pred1=pred(arity=2, constant_name=_equals_),\ 97
pred2=pred(arity=1, constant_name=_nonhuman_))’) 98

(3.5284, ’PROCEDURAL’, ’RULE FIRED: resolution of cataphoric PRO\ 99
succeeded’) 100

(3.5284, ’discourse_context’, ’CREATED A CHUNK: drs(arg1=x2, arg2=x3,\ 101
discourse_status=presupposed, drs=d2, embedding_level=1,\ 102
pred1=pred(arity=2, constant_name=_equals_),\ 103
pred2=pred(arity=1, constant_name=_nonhuman_))’) 104

****Environment: {1: {’text’: ’overcooked’, ’position’: (320, 180)}} 105
(4.1232, ’PROCEDURAL’, ’RULE FIRED: project and complete: AP ==> A’) 106
(4.1232, ’discourse_context’, ’CREATED A CHUNK: drs(arg1=x3,\ 107

discourse_status=at_issue, drs=d2, embedding_level=1,\ 108
pred1=pred(arity=1, constant_name=_overcook_))’) 109

(4.4232, ’PROCEDURAL’, ’RULE FIRED: finished: no visual input’) 110

258 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

The first word, namely the proper name John, contributes the first DRS to the
discourse_context buffer—see lines 3–6 in (71) above. This DRS can be
represented in the familiar DRT format as shown below.

(72) DRS contributed by the proper name John:

x1
john(x1)
male(x1)

[part of main DRS d1]
[at-issue]

[embedding level: 0]

Providing an analysis of negation is outside the scope of this model, so the negated
auxiliary won’t contributes a ‘placeholder’ DRS with no drefs or arguments and a
predicateNOT that simplymarks that theDRSwas contributed by a form of sentential
negation (lines 10–11).

The transitive verb eat contributes the DRS below (see lines 14–16 in (71)):

(73) DRS contributed by the transitive verb eat:

e1
eat(e1, x1, _)

[part of main DRS d1]
[at-issue]

[embedding level: 0]

The pronoun it further specifies the DRS introduced by the verb eat (not shown
in the temporal trace) and introduces its own DRSs (line 19–25):

(74) DRS contributed by the transitive verb eat and updated by the pronoun it:

e1
eat(e1, x1, x2)

[part of main DRS d1]
[at-issue]

[embedding level: 0]
(75) At-issue DRS contributed by the pronoun it:

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 259

x2
nonhuman(x2)

[part of main DRS d1]
[at-issue]

[embedding level: 0]
(76) Unresolved-presupposition DRS contributed by the pronoun it:

x2 = UNKNOWN
nonhuman(x2)

[part of main DRS d1]
[unresolved]

[embedding level: 0]

An attempt to resolve the pronoun it (lines 26–27) ends in failure (lines 29–31),
since there is no suitable antecedent for it. The parsing process then moves on to the
complementizer if (lines 32–33), which triggers the reanalysis of the previous clause
from a main assertion to a conditional consequent. This means recalling all the four
DRSs contributed by the previous clause and creating four new DRSs with the same
content, except that the embedding level is set to 2 (conditional consequent) instead
of 0 (main assertion).

The first DRS that gets recalled as part of the if -triggered reanalysis is the at-
issue DRS in (75) above contributed by the pronoun it (lines 39–41). The reanal-
ysis of this DRS (which sets the embedding level to 2) creates a new DRS in the
discourse_context buffer (lines 44–46), shown below.

(77) The first DRS contributed by if -triggered reanalysis:

x2
nonhuman(x2)

[part of main DRS d1]
[at-issue]

[embedding level: 2]

The secondDRS retrieved as part of if -reanalysis is the unresolved-presupposition
DRS contributed by the pronoun (lines 47–50). We see that recency is the most
important factor for DRS activation in the if -reanalysis process. A new, reanalyzed
unresolved-presupposition DRS is added to the discourse_context buffer
(lines 53–56), which can be represented as follows.

260 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

(78) The second DRS contributed by if -triggered reanalysis:

x2 = UNKNOWN
nonhuman(x2)

[part of main DRS d1]
[unresolved]

[embedding level: 2]

The third DRS retrieved during the if -reanalysis process is the one contributed by
the transitive verb eat (lines 57–59). Because this DRS introduces an event, it triggers
the ‘event recalled’ version of the "if-triggered reanalysis" rule, which
does do things. On one hand, it adds the verbal predicate to the goal buffer as the value
of the if_conseq_pred feature. On the other hand, it resets the embedding level
of the recalled DRS to 2 and adds the modified DRS to the discourse_context
buffer (lines 62–65). This DRS can be represented in DRT format as follows.

(79) DRS contributed by the transitive verb eat and updated by the pronoun it:

e1
eat(e1, x1, x2)

[part of main DRS d1]
[at-issue]

[embedding level: 2]

After this, the ‘dummy’ negative DRS contributed by the negated auxiliary won’t
is retrieved (lines 66–67) and reanalyzed (lines 68–71). Finally, the DRS contributed
by the proper name John is retrieved (lines 72–75) and reanalyzed (lines 76–81).
The new DRS, which is the final one contributed by the if -reanalysis process, can
be represented as shown below.

(80) DRS contributed by the proper name John:

x1
john(x1)
male(x1)

[part of main DRS d1]
[at-issue]

[embedding level: 2]

9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora 261

At this point, the reanalysis process concludes and we continue with the incre-
mental parsing process—specifically, the interpretation of the indefinite article a (in
…a hamburger is …). We should note here that this process is cognitively unreal-
istic: it predicts that we need about 1.2 s to process sentence-final if, because the
process of retrieving all these DRSs and reanalyzing them is very time consuming.
We implement it here just to show that this type of process can be modeled in our
framework, and leave a more appropriate model for a future occasion.5

The next DRS is contributed by the indefinite NP a hamburger in the if -clause
(lines 84–88), and can be represented as follows.

(81) DRS contributed by the indefinite a hamburger:

x3
hamburger(x3)

[part of main DRS d2]
[at-issue]

[embedding level: 1]

The presence of this new DRS in the discourse_context buffer and the
fact that the entity_cataphora feature in the goal buffer is turned on after the
unsuccessful resolution of the pronoun it trigger an attempt to resolve the cataphoric
pronoun (lines 89–90). The rule places the relevant information about the potential
antecedent a hamburger in the unresolved_discourse buffer (lines 91–93)
and places a retrieval request for an unresolved presupposition contributed by a
pronoun. This request is successfully completed, and as a result, the unresolved
DRS contributed by it is available in the retrieval buffer (lines 95–98).

The resolution of the cataphoric pronoun is declared a success (line 99–100)
and the resolved presupposition, provided below for convenience, is added to the
discourse_context buffer (lines 101–104).

5One improvement would be to spread the reanalysis process over several words in the if -clause
rather than eagerly complete it.

Another improvement would be to explicitly model a form of clause-final wrap-up (maybe
supplemented by clause-medial wrap-ups) that integrates/merges some of the DRSs that are indexed
with the same DRS dref. This would ensure that there are fewer DRSs to recall during the if -
reanalysis process.

Yet another improvement would be to explicitly model the main DRS like we did in the previous
chapter (Chap.8), in which case we might just need to recall only one DRS—the main one—and
reanalyze its embedding level only once.

A related improvement would be to maintain the distributed representation of main DRSs we
use in this chapter, but somehow ‘centralize’ their embedding level and DRS dref peg encodings
in a separate DRS that would act as a ‘mother-node’ DRS to all the sub-DRSs. That is, we would
build tree-like structures for discourse contexts; see Vermeulen (1994) and its Incremental Dynamic
Predicate Logic extension in Brasoveanu and Dotlačil (2015a, b) for one way to model discourse
contexts as tree-like update histories.

262 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

(82) Presupposed DRS resolving the pronoun it to the indefinite a hamburger:

x2 = x3
nonhuman(x2)

[part of main DRS d2]
[presupposed]

[embedding level: 1]

The copula is and the adjectival participle overcooked contribute a final DRS
(lines 107–109) to the discourse_context buffer:

(83) Final at-issue DRS contributed by overcooked:

overcook(x3)

[part of main DRS d2]
[at-issue]

[embedding level: 1]

9.4 Modeling the Interaction of Conditionals
and Cataphoric Presuppositions

We are now ready to move to the somewhat more complex case of event
anaphora/cataphora associated with the adverb again. We first introduce the rules for
the syntax and semantics of again and for the process of presupposition resolution
for event anaphora (Sect. 9.4.1). We then discuss one way of capturing the ‘maxi-
mize presupposition’ effect we saw in Experiment 2 above (Sect. 9.4.2). Finally, we
discuss the results of fitting the model to part of the Experiment 2 data (Sect. 9.4.3).

9.4.1 Rules for ‘Again’ and Presupposition Resolution

The resolution of event anaphora/cataphora contributed by the adverb again follows
the same pattern as the resolution of entity anaphora/cataphora contributed by pro-
nouns. The main difference is in the syntax of again: again is an adverb/adjunct, and

9.4 Modeling the Interaction of Conditionals and Cataphoric Presuppositions 263

given the optionality of adjuncts, they basically need to be parsed bottom-up.6 That
is, the syntactic attachment of adjuncts requires a form of syntactic reanalysis.

Consider again the conditional + event cataphora example in (16d) above, repeated
in (84) below:

(84) Jeffrey will argue with Danielle again if he argued with her in the courtyard
last night.

The matrix clause ends with the anaphoric adverb again. To parse it, we need
to attach it to the VP will argue with Danielle that has already been completely
parsed and closed by the time we encounter again. To build the appropriate syntactic
structure, we would therefore need to recall both the VP node and the higher S node
so that the adverb again can be attached intermediately between them. For simplicity,
we will simply recall the higher S node and add the adverb again as a third daughter,
as shown by the two rules in (85) and (86) below.

(85) parser.productionstring(name="recall S for adjoining adv. AGAIN", 1
string=""" 2

=g> 3
isa parsing_goal 4
task parsing 5
stack1 None 6
found Adv 7
parsed_word =w 8
embedding_level =el 9
=retrieval> 10
isa word 11
cat Adv 12
==> 13
=g> 14
isa parsing_goal 15
task recall_S 16
+retrieval> 17
isa parse_state 18
node_cat S 19
daughter1 NP 20
daughter2 VP 21
˜imaginal> 22

""") 23

(86) parser.productionstring(name="build S adjunction and\ 1
recall event for AGAIN", string=""" 2

=g> 3
isa parsing_goal 4
task recall_S 5
stack1 None 6
found Adv 7
drs_peg =drs_peg 8
=retrieval> 9
isa parse_state 10
node_cat S 11
daughter1 NP 12
daughter2 VP 13
==> 14
=g> 15
isa parsing_goal 16
task recall_event 17
+imaginal> 18
isa parse_state 19

6Left-corner, bottom-up and top-down parsing can be all unified under generalized left-corner
parsing (Demers 1977). See Hale (2014) for a recent discussion.

264 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

node_cat S 20
daughter1 NP 21
daughter2 VP 22
daughter3 Adv 23
+retrieval> 24
isa drs 25
dref ˜None 26
event_arg ˜None 27
drs =drs_peg 28

""") 29

In addition to reanalyzing the S node, rule (86) places another retrieval request for
the event contributed by the verb modified by the adverb again. This event is needed
for the semantics of again. The fact that we need two separate retrieval requests, one
on the syntax side for the S node and one on the semantics side for the event, is an
artifact of our setup for syntactic and semantic parsing.

For expository simplicity, the semantic information constructed during incremen-
tal interpretation is assembled in chunks and buffers that are separate from the chunks
and buffers where syntactic information is constructed. This enabled us to import the
left-corner syntax parser we introduced in Chap. 4 basically as-is, and we were able
to focus on the semantic aspects of interpretation in this and the previous chapter
(Chap. 8 and this chapter)withoutworrying about a tighter integration of the syntactic
and semantic aspects of parsing.

As we investigate more complex structures and their interpretation, these simpli-
fying assumptions are likely to come into focus and require revision. It is possible
that the structures constructed during the incremental interpretation process integrate
phonetics/phonology, syntax and semantics in a tighter way, for example, along the
lines of the linguistic representations countenanced by HPSG or CG.

Once the event contributed by the modified verb is available in the retrieval buffer,
we are able to encode the unresolved presupposition contributed by again. This is
accomplished by the rule in (87) below. The unresolved presupposition DRS con-
tributed by again on lines 22–30 is largely parallel to the unresolved presupposi-
tion DRS contributed by pronouns. There are three main differences: (i) arg1 (not
arg2) is marked as UNKNOWN for again (line 24), (ii) the first predicate is (tempo-
rally) PRECEDES (not EQUALS; line 26), and (iii) the second predicate is the verbal
predicate contributed by the modified verb (not gender; line 27).

(87) parser.productionstring(name="encode unresolved event presupposition\ 1
for AGAIN", string=""" 2

=g> 3
isa parsing_goal 4
task recall_event 5
stack1 None 6
found Adv 7
drs_peg =drs 8
=retrieval> 9
isa drs 10
event_arg =ea 11
pred1 =p1 12
drs =drs 13
embedding_level =el 14
discourse_status at_issue 15
==> 16
=g> 17
isa parsing_goal 18
task parsing 19

9.4 Modeling the Interaction of Conditionals and Cataphoric Presuppositions 265

found None 20
parsed_word None 21
+unresolved_discourse> 22
isa drs 23
arg1 UNKNOWN 24
arg2 =ea 25
pred1 PRECEDES 26
pred2 =p1 27
drs =drs 28
embedding_level =el 29
discourse_status unresolved 30
˜retrieval> 31
˜imaginal> 32

""") 33

Once the again presupposition is encoded, we can attempt to resolve it. There are
three different rules for the three different embedding levels of the presupposition.
We provide only the rule for embedding level 1 in (88) below, for ease of comparison
with the pronoun rule. The rule has the same structure, the main difference is that
we now require the potential antecedent to have a non-empty event argument (lines
31–32).

(88) parser.productionstring(name="attempting to resolve event presupposition;\ 1
presupposition at embedding level 1", string=""" 2

=g> 3
isa parsing_goal 4
task ˜reading_word 5
task ˜move_dref_peg 6
task ˜move_event_peg 7
task ˜attempting_to_resolve_AGAIN 8
task ˜attempting_to_resolve_cataphoric_AGAIN 9
task ˜stop_resolution_attempt_AGAIN 10
task ˜move_event_peg_and_wait_for_retrieval 11
task ˜if_reanalysis 12
found None 13
?retrieval> 14
state free 15
=unresolved_discourse> 16
isa drs 17
arg1 UNKNOWN 18
arg2 =ea 19
pred2 =p2 20
drs =drs 21
embedding_level 1 22
discourse_status unresolved 23
==> 24
=g> 25
isa parsing_goal 26
task stop_resolution_attempt_AGAIN 27
+retrieval> 28
isa drs 29
dref ˜None 30
event_arg ˜None 31
event_arg ˜=ea 32
drs ˜=drs 33
embedding_level ˜2 34
discourse_status at_issue 35

""", utility=5) 36

If the resolution succeeds, we add the resolved presupposition to the
discourse_context buffer with the "resolution of AGAIN
succeeded" rule in (89) below.

266 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

(89) parser.productionstring(name="resolution of AGAIN succeeded", string=""" 1
=g> 2
isa parsing_goal 3
task stop_resolution_attempt_AGAIN 4
embedding_level =el 5
=retrieval> 6
isa drs 7
dref ˜None 8
dref =ea 9
event_arg =ea 10
pred1 =p2 11
=unresolved_discourse> 12
isa drs 13
arg1 UNKNOWN 14
arg2 =ea2 15
pred1 =p1 16
pred2 =p2 17
drs =drs 18
discourse_status unresolved 19
==> 20
=g> 21
isa parsing_goal 22
task parsing 23
event_cataphora None 24
+discourse_context> 25
isa drs 26
arg1 =ea 27
arg2 =ea2 28
pred1 =p1 29
pred2 =p2 30
drs =drs 31
embedding_level =el 32
discourse_status presupposed 33
˜retrieval> 34
˜unresolved_discourse> 35

""") 36

Just as for pronouns, the resolution of the again presupposition can fail, either (i)
because no suitable antecedent is retrieved or (ii) because an antecedent is retrieved,
but the retrieved verbal predicate is different from the verbal predicate of the unre-
solved again presupposition. These two cases are handled by the rules in (90) and
(91) below, respectively.

In both cases, we turn the event_cataphora feature on when the retrieval
of a suitable antecedent event fails. That is, we do not simply mark the presuppo-
sition resolution process as a failure and end it. Instead, we assume that the again
presupposition is cataphoric.

(90) parser.productionstring(name="resolution of AGAIN failed: no antecedent", 1
string=""" 2

=g> 3
isa parsing_goal 4
task stop_resolution_attempt_AGAIN 5
?retrieval> 6
state error 7
?unresolved_discourse> 8
buffer full 9
=unresolved_discourse> 10
isa drs 11
arg1 UNKNOWN 12
arg2 =ea2 13
pred1 =p1 14
pred2 =p2 15
drs =drs 16
embedding_level =el 17
discourse_status unresolved 18

9.4 Modeling the Interaction of Conditionals and Cataphoric Presuppositions 267

==> 19
=g> 20
isa parsing_goal 21
task parsing 22
event_cataphora True 23
found no_antecedent 24
˜unresolved_discourse> 25
˜retrieval> 26

""") 27

(91) parser.productionstring(name="resolution of AGAIN failed:\ 1
antecedent with non-matching verbal predicate", string=""" 2

=g> 3
isa parsing_goal 4
task stop_resolution_attempt_AGAIN 5
?unresolved_discourse> 6
buffer full 7
=retrieval> 8
isa drs 9
pred1 =p2 10
=unresolved_discourse> 11
isa drs 12
dref None 13
pred2 ˜=p2 14
discourse_status unresolved 15
==> 16
=g> 17
isa parsing_goal 18
task parsing 19
event_cataphora True 20
found no_antecedent 21
˜retrieval> 22
˜unresolved_discourse> 23

""") 24

Once the event presupposition contributed by again is marked as cataphoric and
a suitable antecedent is available in the discourse_context buffer, we start a
cataphoric search, just as we did for pronouns. Once again, there are three rules for
cataphoric search depending on the embedding level of the potential event antecedent.
We provide only the embedding level 1 rule in (92) below.

(92) parser.productionstring(name="attempting to resolve cataphoric event\ 1
presupposition; antecedent at embedding level 1", string=""" 2

=g> 3
isa parsing_goal 4
task ˜reading_word 5
task ˜move_dref_peg 6
task ˜move_event_peg 7
task ˜attempting_to_resolve_AGAIN 8
task ˜attempting_to_resolve_cataphoric_AGAIN 9
task ˜stop_resolution_attempt_AGAIN 10
task ˜if_reanalysis 11
found None 12
event_cataphora True 13
=discourse_context> 14
isa drs 15
dref ˜None 16
dref =ea 17
arg1 ˜None 18
event_arg =ea 19
pred1 ˜None 20
pred1 ˜None 21
pred1 =p1 22
pred2 None 23
drs =drs 24
embedding_level 1 25
?retrieval> 26

268 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

state free 27
==> 28
=g> 29
isa parsing_goal 30
task stop_resolution_attempt_AGAIN 31
+unresolved_discourse> 32
isa drs 33
dref =ea 34
arg1 UNKNOWN 35
pred2 =p1 36
drs =drs 37
embedding_level 1 38
discourse_status unresolved 39
+retrieval> 40
isa drs 41
dref None 42
arg1 UNKNOWN 43
arg2 ˜None 44
pred1 ˜None 45
drs ˜=drs 46
embedding_level ˜0 47
discourse_status unresolved 48

""", utility=5) 49

If the resolution of cataphoric again succeeds, we add the resolved presupposition
to the discourse_context buffer with the rule in (93) below.

(93) parser.productionstring(name="resolution of cataphoric AGAIN succeeded", 1
string=""" 2

=g> 3
isa parsing_goal 4
task stop_resolution_attempt_AGAIN 5
=retrieval> 6
isa drs 7
dref None 8
arg1 UNKNOWN 9
arg2 ˜None 10
arg2 =a2 11
pred1 =p1 12
pred2 =p2 13
=unresolved_discourse> 14
isa drs 15
dref =dref 16
pred2 =p2 17
embedding_level =el 18
drs =drs 19
==> 20
=g> 21
isa parsing_goal 22
task parsing 23
event_cataphora None 24
+discourse_context> 25
isa drs 26
arg1 =dref 27
arg2 =a2 28
pred1 =p1 29
pred2 =p2 30
drs =drs 31
embedding_level =el 32
discourse_status presupposed 33
˜unresolved_discourse> 34
˜retrieval> 35

""") 36

If the resolution of cataphoric again fails because the antecedent does not match
the verbal predicate, the rule in (94) below is triggered. If there is no suitable

9.4 Modeling the Interaction of Conditionals and Cataphoric Presuppositions 269

antecedent, the general rule in (90) above, which applies to both anaphoric and
cataphoric searches, is triggered.

(94) parser.productionstring(name="resolution of cataphoric AGAIN failed:\ 1
antecedent with non-matching verbal predicate", string=""" 2

=g> 3
isa parsing_goal 4
task stop_resolution_attempt_AGAIN 5
?unresolved_discourse> 6
buffer full 7
=retrieval> 8
isa drs 9
pred2 =p2 10
=unresolved_discourse> 11
isa drs 12
dref ˜None 13
pred2 ˜=p2 14
discourse_status unresolved 15
==> 16
=g> 17
isa parsing_goal 18
task parsing 19
event_cataphora True 20
found no_antecedent 21
˜retrieval> 22
˜unresolved_discourse> 23

""") 24

We are now ready to see how all these rules get deployed during the incremental
interpretation of the conditional & event cataphora example in (95) below, repeated
from above. We stop the parsing immediately after the preposition with in the if -
clause since this is when event cataphora is resolved.

(95) Jeffrey will argue with Danielle again if he argued with [her in the courtyard
last night].

(96) ****Environment: {1: {’text’: ’Jeffrey’, ’position’: (320, 180)}} 1
(0.2012, ’PROCEDURAL’, ’RULE FIRED: project: NP ==> ProperN’) 2
(0.2012, ’discourse_context’, ’CREATED A CHUNK: drs(dref=x1, arg1=x1,\ 3

discourse_status=at_issue, drs=d1, embedding_level=0,\ 4
pred1=pred(arity=1, constant_name=_jeffrey_),\ 5
pred2=pred(arity=1, constant_name=_male_))’) 6

****Environment: {1: {’text’: ’will’, ’position’: (320, 180)}} 7
****Environment: {1: {’text’: ’argue’, ’position’: (320, 180)}} 8
(0.907, ’PROCEDURAL’, ’RULE FIRED: project and complete: VP ==> Vt PP\ 9

(no if_conseq_pred present)’) 10
(0.907, ’discourse_context’, ’CREATED A CHUNK: drs(dref=e1, event_arg=e1,\ 11

arg1=x1, discourse_status=at_issue, drs=d1, embedding_level=0,\ 12
pred1=pred(arity=event_plus_2, constant_name=_argu_))’) 13

****Environment: {1: {’text’: ’with’, ’position’: (320, 180)}} 14
(1.2633, ’PROCEDURAL’, ’RULE FIRED: project and complete: PP ==> P NP’) 15
****Environment: {1: {’text’: ’Danielle’, ’position’: (320, 180)}} 16
(1.6189, ’PROCEDURAL’, ’RULE FIRED: project and complete: NP ==> ProperN’) 17
(1.6189, ’discourse_context’, ’CREATED A CHUNK: drs(dref=x2, arg1=x2,\ 18

discourse_status=at_issue, drs=d1, embedding_level=0,\ 19
pred1=pred(arity=1, constant_name=_danielle_),\ 20
pred2=pred(arity=1, constant_name=_female_))’) 21

****Environment: {1: {’text’: ’again’, ’position’: (320, 180)}} 22
(1.9729, ’PROCEDURAL’, ’RULE FIRED: recall S for adjoining adv. AGAIN’) 23
****Environment: {1: {’text’: ’if’, ’position’: (320, 180)}} 24
(2.1243, ’retrieval’, ’RETRIEVED: parse_state(daughter1=NP, daughter2=VP,\ 25

node_cat=S)’) 26
(2.1353, ’PROCEDURAL’, ’RULE FIRED: build S adjunction and\ 27

recall event for AGAIN’) 28
(2.2828, ’retrieval’, ’RETRIEVED: drs(dref=e1, event_arg=e1, arg1=x1,\ 29

arg2=x2, discourse_status=at_issue, drs=d1, embedding_level=0,\ 30

270 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

pred1=pred(arity=event_plus_2, constant_name=_argu_),\ 31
pred2=pred(arity=2, constant_name=_with_))’) 32

(2.2938, ’PROCEDURAL’, ’RULE FIRED: encode unresolved event presupposition\33
for AGAIN’) 34

(2.2938, ’unresolved_discourse’, ’CREATED A CHUNK: drs(arg1=UNKNOWN,\ 35
arg2=e1, discourse_status=unresolved, drs=d1, embedding_level=0,\36
pred1=pred(arity=2, constant_name=_precedes_),\ 37
pred2=pred(arity=event_plus_2, constant_name=_argu_))’) 38

(2.3048, ’PROCEDURAL’, ’RULE FIRED: attempting to resolve event\ 39
presupposition; presupposition at embedding level 0’) 40

(2.4880, ’retrieval’, ’RETRIEVED: None’) 41
(2.4990, ’PROCEDURAL’, ’RULE FIRED: resolution of AGAIN failed:\ 42

no antecedent’) 43
(2.7075, ’PROCEDURAL’, ’RULE FIRED: project and complete:\ 44

sentence-final if’) 45
(2.7295, ’PROCEDURAL’, ’RULE FIRED: start if-triggered reanalysis\ 46

(for sentence-final if)’) 47
****Environment: {1: {’text’: ’he’, ’position’: (320, 180)}} 48
(2.8768, ’discourse_context’, ’CREATED A CHUNK: drs(dref=x2, arg1=x2,\ 49

discourse_status=at_issue, drs=d1, embedding_level=2,\ 50
pred1=pred(arity=1, constant_name=_danielle_),\ 51
pred2=pred(arity=1, constant_name=_female_))’) 52

(3.0342, ’discourse_context’, ’CREATED A CHUNK: drs(arg1=UNKNOWN, arg2=e1,\53
discourse_status=unresolved, drs=d1, embedding_level=2,\ 54
pred1=pred(arity=2, constant_name=_precedes_),\ 55
pred2=pred(arity=event_plus_2, constant_name=_argu_))’) 56

(3.1991, ’discourse_context’, ’CREATED A CHUNK: drs(dref=x1, arg1=x1,\ 57
discourse_status=at_issue, drs=d1, embedding_level=2,\ 58
pred1=pred(arity=1, constant_name=_jeffrey_),\ 59
pred2=pred(arity=1, constant_name=_male_))’) 60

(3.3556, ’discourse_context’, ’CREATED A CHUNK: drs(dref=e1,\ 61
event_arg=e1, arg1=x1, arg2=x2,\ 62
discourse_status=at_issue, drs=d1, embedding_level=2,\ 63
pred1=pred(arity=event_plus_2, constant_name=_argu_),\ 64
pred2=pred(arity=2, constant_name=_with_))’) 65

(3.5498, ’PROCEDURAL’, ’RULE FIRED: stop if-triggered reanalysis’) 66
(3.7597, ’PROCEDURAL’, ’RULE FIRED: project: NP ==> PRO’) 67
(3.7597, ’discourse_context’, ’CREATED A CHUNK: drs(dref=x3, arg1=x3,\ 68

discourse_status=at_issue, drs=d2, embedding_level=1,\ 69
pred1=pred(arity=1, constant_name=_male_))’) 70

(3.7597, ’unresolved_discourse’, ’CREATED A CHUNK: drs(arg1=x3, drs=d2,\ 71
arg2=UNKNOWN, discourse_status=unresolved, embedding_level=1,\ 72
pred1=pred(arity=2, constant_name=_equals_),\ 73
pred2=pred(arity=1, constant_name=_male_))’) 74

(3.7817, ’PROCEDURAL’, ’RULE FIRED: attempting to resolve pronoun;\ 75
pronoun at embedding level 1’) 76

(3.8984, ’retrieval’, ’RETRIEVED: drs(dref=x1, arg1=x1,\ 77
discourse_status=at_issue, drs=d1, embedding_level=0,\ 78
pred1=pred(arity=1, constant_name=_jeffrey_),\ 79
pred2=pred(arity=1, constant_name=_male_))’) 80

****Environment: {1: {’text’: ’argued’, ’position’: (320, 180)}} 81
(3.9094, ’PROCEDURAL’, ’RULE FIRED: resolution of PRO succeeded’) 82
(3.9094, ’discourse_context’, ’CREATED A CHUNK: drs(arg1=x3, arg2=x1,\ 83

discourse_status=presupposed, drs=d2, embedding_level=1,\ 84
pred1=pred(arity=2, constant_name=_equals_),\ 85
pred2=pred(arity=1, constant_name=_male_))’) 86

(4.1306, ’PROCEDURAL’, ’RULE FIRED: project and complete: VP ==> Vt PP\ 87
(if_conseq_pred present, but also event cataphora)’) 88

(4.1306, ’discourse_context’, ’CREATED A CHUNK: drs(dref=e2, event_arg=e2,\89
arg1=x3, discourse_status=at_issue, drs=d2, embedding_level=1,\ 90
pred1=pred(arity=event_plus_2, constant_name=_argu_))’) 91

(4.1526, ’PROCEDURAL’, ’RULE FIRED: attempting to resolve cataphoric event\92
presupposition; antecedent at embedding level 1’) 93

(4.1526, ’unresolved_discourse’, ’CREATED A CHUNK: drs(arg1=UNKNOWN,\ 94
discourse_status=unresolved, dref=e2, drs=d2, embedding_level=1,\95
pred2=pred(arity=event_plus_2, constant_name=_argu_))’) 96

****Environment: {1: {’text’: ’with’, ’position’: (320, 180)}} 97
(4.2762, ’retrieval’, ’RETRIEVED: drs(arg1=UNKNOWN, arg2=e1,\ 98

discourse_status=unresolved, drs=d1, embedding_level=2,\ 99
pred1=pred(arity=2, constant_name=_precedes_),\ 100
pred2=pred(arity=event_plus_2, constant_name=_argu_))’) 101

9.4 Modeling the Interaction of Conditionals and Cataphoric Presuppositions 271

(4.2872, ’PROCEDURAL’, ’RULE FIRED: resolution of cataphoric AGAIN\ 102
succeeded’) 103

(4.2872, ’discourse_context’, ’CREATED A CHUNK: drs(arg1=e2, arg2=e1,\ 104
discourse_status=presupposed, drs=d2, embedding_level=1,\ 105
pred1=pred(arity=2, constant_name=_precedes_),\ 106
pred2=pred(arity=event_plus_2, constant_name=_argu_))’) 107

108
Time to read preposition: 0.3612000000000002 109

In (96), we only list the processing steps that are most relevant to conditionals
and cataphora resolution. After the proper name Jeffrey, the prepositional verb (will)
argue with and the proper name Danielle contribute DRSs to the discourse context
(lines 1–21), we start parsing the adverb again. The event DRS contributed by (will)
argue with is recalled (lines 29–32), and the again presupposition is encoded in
the unresolved_discourse buffer (lines 35–38). An attempt to anaphorically
resolve this presupposition fails (lines 39–43), after which the process of if -triggered
reanalysis begins, which contributes four new DRSs to the discourse context (lines
46–66): these are the four DRSs contributed by Jeffrey, (will) argue with, Danielle
and again, except their embedding level is set to 2 (conditional consequent) instead
of 0 (main assertion).

The pronoun he is then parsed and correctly resolved to the dref contributed by
the proper name Jeffrey (lines 67–86). Then, as soon as the verb argued is parsed
(lines 87–91), a cataphoric search attempting to resolve again is started (lines 92–
96). The search is successfully completed (lines 98–101), so the again-contributed
presupposition is resolved (lines 102–107).

The simulation ends with the time taken to read the preposition with, reported on
line 109. This time crucially includes the again cataphoric search, so it can be used
to model the Experiment 2 data for this ROI. We see that the time taken to read the
preposition is about 360 ms, which is reasonable. In the next (Sect. 9.4.2), we will
see that this time increases under specific conditions; and in the final (Sect. 9.4.3),
we will fit the predicted RTs for this region to the Experiment 2 data.

9.4.2 Rules for ‘Maximize Presupposition’

In Sect. 9.1.2 above, we noted that conditionals with matching VP meanings and
no presuppositional again, like the one in (97) below (repeated from above), were
significantly slower than conjunctions with matching meanings or conditionals with
mismatching meanings.

(97) Jeffrey will argue with Danielle if he argued with her in the courtyard last
night.

We conjectured that the processing difficulty associated with these conditionals
was an effect of theMaximize Presupposition principle (Heim 1991), which requires
that a presupposed VP meaning should be marked as such by again. This penalizes
conditionals with matching VP meanings, while conditionals with non-identical VP
meanings and coordinations should not be affected.

272 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

While Maximize Presupposition is commonly used as an explanatory principle
in the formal semantics literature, there is no received way to formalize it and no
explicit conjectures about the way it could become part of a mechanistic processing
model of natural language interpretation.

In this section, we propose a tentative model of Maximize Presupposition pro-
cessing as noise/error correction. Specifically, we conjecture that upon encountering
the verb argued in the if -clause of example (97) above, the human processor pauses
to consider whether it has erroneously failed to activate the event_cataphora
feature in the goal buffer.

That is, given that the if -clause could satisfy a presuppositional again in thematrix
clause, which would not violate Maximize Presupposition, the human processor
hypothesizes that such an unresolved again presupposition might actually be present
in declarative memory, but the event_cataphora feature in the goal buffer has
erroneously failed to encode it.

Consequently, a search for anunresolvedagainpresupposition is initialized,which
adds extra reading time. In sum, the processing difficulty associated with aMaximize
Presupposition violation is attributed to an extra retrieval request meant to check
whether a goal feature was erroneously encoded.

This account is implemented in our mechanistic processing model by means of
several rules. First, when the event DRS is recalled during the if -reanalysis process,
its verbal predicate is stored in the goal buffer as the value of the if_conseq_pred
feature (see the rule in (66) above).

Assuming the presence of such a feature, the rule in (98) below is triggered when
we parse the matching verb argued in the if -clause. Specifically, the if_conseq_
pred features has to be non-empty (line 18), and the event_cataphora feature
should be turned off (˜True; line 20). If that is the case, the usual actions associ-
ated with a prepositional verb are triggered (lines 25–51). Crucially, we also place a
retrieval request for an unresolved event presupposition that we might have mistak-
enly failed to encode in theevent_cataphora feature because of communication
noise, comprehension noise, encoding noise etc. (lines 52–61).

(98) parser.productionstring(name="project and complete: VP ==> Vt PP\ 1
(if_conseq_pred present, matching pred)", string=""" 2

=g> 3
isa parsing_goal 4
task parsing 5
stack1 VP 6
found VtPP 7
parsed_word =w 8
arg_stack1 =a1 9
right_edge_stack1 VP 10
right_edge_stack1 =re1 11
right_edge_stack2 =re2 12
right_edge_stack3 =re3 13
right_edge_stack4 =re4 14
event_peg =ev_peg 15
drs_peg =drs_peg 16
embedding_level =el 17
if_conseq_pred ˜None 18
if_conseq_pred =verbal_pred 19
event_cataphora ˜True 20
=retrieval> 21
isa word 22

9.4 Modeling the Interaction of Conditionals and Cataphoric Presuppositions 273

pred1 =verbal_pred 23
==> 24
=g> 25
isa parsing_goal 26
task move_event_peg_and_wait_for_retrieval 27
stack1 PP 28
found None 29
parsed_word None 30
right_edge_stack1 PP 31
right_edge_stack2 =re1 32
right_edge_stack3 =re2 33
right_edge_stack4 =re3 34
+imaginal> 35
isa parse_state 36
mother =re2 37
mother_of_mother =re3 38
node_cat VP 39
daughter1 VtPP 40
daughter2 PP 41
lex_head =w 42
+discourse_context> 43
isa drs 44
dref =ev_peg 45
event_arg =ev_peg 46
arg1 =a1 47
pred1 =verbal_pred 48
drs =drs_peg 49
embedding_level =el 50
discourse_status at_issue 51
+retrieval> 52
isa drs 53
dref None 54
arg1 UNKNOWN 55
arg2 ˜None 56
pred1 ˜None 57
pred2 =verbal_pred 58
drs =drs_peg 59
embedding_level ˜0 60
discourse_status unresolved 61
˜imaginal> 62
˜unresolved_discourse> 63

""") 64

In our example (97), this search for an unencoded again fails, and triggers the
rule in (99) below.

(99) parser.productionstring(name="search for an unencoded AGAIN failed", 1
string=""" 2

=g> 3
isa parsing_goal 4
task stop_resolution_attempt_AGAIN 5
if_conseq_pred ˜None 6
?retrieval> 7
state error 8
?unresolved_discourse> 9
buffer empty 10
==> 11
=g> 12
isa parsing_goal 13
task parsing 14
˜retrieval> 15

""") 16

We can see all these rules in action, as well as their consequences for reading
times, in (101) below.

(100) Jeffrey will argue with Danielle if he argued with [her in the courtyard last
night].

274 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

(101) ****Environment: {1: {’text’: ’Jeffrey’, ’position’: (320, 180)}} 1
(0.2021, ’PROCEDURAL’, ’RULE FIRED: project: NP ==> ProperN’) 2
(0.2021, ’discourse_context’, ’CREATED A CHUNK: drs(dref=x1, arg1=x1,\ 3

discourse_status=at_issue, drs=d1, embedding_level=0,\ 4
pred1=pred(arity=1, constant_name=_jeffrey_),\ 5
pred2=pred(arity=1, constant_name=_male_))’) 6

****Environment: {1: {’text’: ’will’, ’position’: (320, 180)}} 7
****Environment: {1: {’text’: ’argue’, ’position’: (320, 180)}} 8
(0.9099, ’PROCEDURAL’, ’RULE FIRED: project and complete: VP ==> Vt PP\ 9

(no if_conseq_pred present)’) 10
(0.9099, ’discourse_context’, ’CREATED A CHUNK: drs(dref=e1, event_arg=e1,\11

arg1=x1, discourse_status=at_issue, drs=d1, embedding_level=0,\ 12
pred1=pred(arity=event_plus_2, constant_name=_argu_))’) 13

****Environment: {1: {’text’: ’with’, ’position’: (320, 180)}} 14
(1.2635, ’PROCEDURAL’, ’RULE FIRED: project and complete: PP ==> P NP’) 15
****Environment: {1: {’text’: ’Danielle’, ’position’: (320, 180)}} 16
(1.6187, ’PROCEDURAL’, ’RULE FIRED: project and complete: NP ==> ProperN’) 17
(1.6187, ’discourse_context’, ’CREATED A CHUNK: drs(dref=x2, arg1=x2,\ 18

discourse_status=at_issue, drs=d1, embedding_level=0,\ 19
pred1=pred(arity=1, constant_name=_danielle_),\ 20
pred2=pred(arity=1, constant_name=_female_))’) 21

****Environment: {1: {’text’: ’if’, ’position’: (320, 180)}} 22
(1.9741, ’PROCEDURAL’, ’RULE FIRED: project and complete:\ 23

sentence-final if’) 24
(1.9961, ’PROCEDURAL’, ’RULE FIRED: start if-triggered reanalysis\ 25

(for sentence-final if)’) 26
****Environment: {1: {’text’: ’he’, ’position’: (320, 180)}} 27
(2.1434, ’discourse_context’, ’CREATED A CHUNK: drs(dref=x2, arg1=x2,\ 28

discourse_status=at_issue, drs=d1, embedding_level=2,\ 29
pred1=pred(arity=1, constant_name=_danielle_),\ 30
pred2=pred(arity=1, constant_name=_female_))’) 31

(2.3020, ’discourse_context’, ’CREATED A CHUNK: drs(dref=e1, event_arg=e1,\32
arg1=x1, arg2=x2,\ 33
discourse_status=at_issue, drs=d1, embedding_level=2,\ 34
pred1=pred(arity=event_plus_2, constant_name=_argu_),\ 35
pred2=pred(arity=2, constant_name=_with_))’) 36

(2.4658, ’discourse_context’, ’CREATED A CHUNK: drs(dref=x1, arg1=x1,\ 37
discourse_status=at_issue, drs=d1, embedding_level=2,\ 38
pred1=pred(arity=1, constant_name=_jeffrey_),\ 39
pred2=pred(arity=1, constant_name=_male_))’) 40

(2.6600, ’PROCEDURAL’, ’RULE FIRED: stop if-triggered reanalysis’) 41
(2.8687, ’PROCEDURAL’, ’RULE FIRED: project: NP ==> PRO’) 42
(2.8687, ’discourse_context’, ’CREATED A CHUNK: drs(dref=x3, arg1=x3,\ 43

discourse_status=at_issue, drs=d2, embedding_level=1,\ 44
pred1=pred(arity=1, constant_name=_male_))’) 45

(2.8687, ’unresolved_discourse’, ’CREATED A CHUNK: drs(arg1=x3, drs=d2,\ 46
arg2=UNKNOWN, discourse_status=unresolved, embedding_level=1,\ 47
pred1=pred(arity=2, constant_name=_equals_),\ 48
pred2=pred(arity=1, constant_name=_male_))’) 49

(2.8907, ’PROCEDURAL’, ’RULE FIRED: attempting to resolve pronoun;\ 50
pronoun at embedding level 1’) 51

(3.0058, ’retrieval’, ’RETRIEVED: drs(dref=x1, arg1=x1,\ 52
discourse_status=at_issue, drs=d1, embedding_level=0,\ 53
pred1=pred(arity=1, constant_name=_jeffrey_),\ 54
pred2=pred(arity=1, constant_name=_male_))’) 55

****Environment: {1: {’text’: ’argued’, ’position’: (320, 180)}} 56
(3.0168, ’PROCEDURAL’, ’RULE FIRED: resolution of PRO succeeded’) 57
(3.0168, ’discourse_context’, ’CREATED A CHUNK: drs(arg1=x3, arg2=x1,\ 58

discourse_status=presupposed, drs=d2, embedding_level=1,\ 59
pred1=pred(arity=2, constant_name=_equals_),\ 60
pred2=pred(arity=1, constant_name=_male_))’) 61

(3.2370, ’PROCEDURAL’, ’RULE FIRED: project and complete: VP ==> Vt PP\ 62
(if_conseq_pred present, matching pred)’) 63

(3.2370, ’discourse_context’, ’CREATED A CHUNK: drs(dref=e2, event_arg=e2,\64
arg1=x3, discourse_status=at_issue, drs=d2, embedding_level=1,\ 65
pred1=pred(arity=event_plus_2, constant_name=_argu_))’) 66

****Environment: {1: {’text’: ’with’, ’position’: (320, 180)}} 67
(3.4202, ’retrieval’, ’RETRIEVED: None’) 68
(3.4312, ’PROCEDURAL’, ’RULE FIRED: search for an unencoded AGAIN failed’) 69

70
Time to read preposition: 0.39780000000000015 71

9.4 Modeling the Interaction of Conditionals and Cataphoric Presuppositions 275

The simulation in (101) proceeds as expected until we reach the crucial point,
namely the project-and-complete-VP rule on lines (62–63). This rule triggers a
memory search for an unencoded again presupposition, which takes place while
the preposition with is being read (line 67). The search fails (lines 68–69), but the
extra time needed for such a failed search can be seen in the higher reading time
associated with the preposition, which is now almost 400 ms (line 71 in (101)).

9.4.3 Fitting the Model to the Experiment 2 Data

We are now ready to fit the model to part of the Experiment 2 data. Specifically,
we will focus on the four match conditions in ((102a)–102d) below, and the two
mismatch & cataphora conditions in (102e–102f).

(102) a. Jeffrey will argue with Danielle and he argued with her.

b. Jeffrey will argue with Danielle if he argued with her.

c. Jeffrey will argue with Danielle again and he argued with her.

d. Jeffrey will argue with Danielle again if he argued with her.

e. Jeffrey will argue with Danielle again and he played with her.

f. Jeffrey will argue with Danielle again if he played with her.

We do not attempt tomodel the remaining two conditions of Experiment 2 because
our model does not really have to say anything about the mismatch & nothing, i.e.,
no-cataphora, cases. In fact, ourmodel is not designed to capture the and &cataphora
cases either, i.e., (102c) (match) or (102e) (mismatch), but we include them here for
completeness.

Our model is set up to capture the if -conditions in (102b), (102d) and (102f), and
we will focus on these conditions for most of our discussion in this subsection.

The mean RTs for the 6 conditions in (102) obtained in Experiment 2 (averag-
ing over both subjects and items) are, in order: 364.05, 429.01, 390.13, 378.83,
374.28, and 387.72. The file estimate_parser_parallel.py (linked to in
Appendix 9.6.4) lists these 6 conditions and the corresponding mean RTs, and pro-
vides the code for the Bayesian model that fits our incremental interpreter to data.

The Bayesian model is particularly simple: we only estimate the latency exponent
and keep the other parameters fixed (see Appendix 9.6.1 for the exact values). The
prior for the latency exponent is a half-Normal distribution—line 4 in (103) below.
The ACT-R model we have introduced provides the likelihood function (lines 6–8).
We sample NDRAWS (=1500) values from the posterior (lines 10–11).

276 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

(103) parser_model = Model() 1
with parser_model: 2

Priors 3
latency_exponent = HalfNormal(’le’, sd=0.3) 4
Likelihood 5
pyactr_rt = actrmodel_latency(latency_exponent) 6
mu_rt = Deterministic(’mu_rt’, pyactr_rt) 7
rt_observed = Normal(’rt_observed’, mu=mu_rt, sd=30, observed=RT) 8
Compute posteriors 9
step = pm.SMC() 10
trace = sample(draws=NDRAWS, step=step, njobs=1) 11

The posterior estimates for the latency exponent and the 6 mean RTs are provided
in (104) below and are plotted in Fig. 9.3.

(104) mean sd hpd2.5% hpd97.5% observed
le 0.03 0.02 0.0 0.06 n/a
μ0 (conj-nothing-match) 352.63 0.84 351.1 354.00 364.05
μ1 (cond-nothing-match) 385.25 12.53 366.0 408.40 429.01
μ2 (conj-cata-match) 407.43 12.65 388.0 430.80 390.13
μ3 (cond-cata-match) 371.55 9.23 353.5 385.70 378.83
μ4 (conj-cata-mismatch) 407.43 12.65 388.0 430.80 374.28
μ5 (cond-cata-mismatch) 387.72 0.16 387.5 388.00 387.72

Note that the Rhat values for this model are practically 1:

(105) {’le’: 0.9996690236773664, 1
’mu_rt’: array([0.99966776, 0.99966795, 0.99966794, 2

0.99972701, 0.99966794, 0.99976515])} 3

We see that the model captures the conditional & cataphora conditions—both
match, μ3, and mismatch, μ5—very well. This is a consequence of the spreading

Fig. 9.3 Parser model: observed versus predicted RT

9.4 Modeling the Interaction of Conditionals and Cataphoric Presuppositions 277

activation from the discourse_context buffer, which boosts the activation of
the correct antecedent for the match condition μ3, but which has no effect for the
mismatch conditionμ5. The explanatory processing mechanism used here is spread-
ing activation, i.e., the influence of the cognitive context on memory retrieval latency
(and accuracy). This is the same explanatory mechanism as the one we used in the
previous chapter when we captured the difference in latency between the semantic
evaluation of sentences with varying fans.

The conjunction conditions are captured reasonably well, particularly the control
condition μ0 and the conjunction & cataphora & match condition μ2. The model
does not make any distinction between the two conjunction & cataphora conditions
μ2 (match) andμ4 (mismatch): both retrieval requests proceed and fail the sameway.
Unfortunately, we overestimate the time required for retrieval failure, particularly for
the mismatch μ4 condition, where the observed value is a low 374.28 ms.

It might be that, by the time the human participants in the experiment read the
preposition following the second finite verb, they realize that the stimulus overall is
hopeless, and they give up on deeper processing rules like attempting a cataphoric
search. This would explain why the observed RT for the μ4 condition is fairly close
to the control (conjunction) condition μ0. One way to implement this in our model
would be to have a rule that turns off the event_cataphora feature for overly
difficult/incoherent conditions like μ4. Firing this extra rule would add about 10 ms
relative to the control condition μ0, which would be almost exactly right.

Our attempt to capture the ‘maximize presupposition’ effect in the μ1 condition
provides a good qualitative fit, but quantitatively, the effect is greatly underestimated:
the estimated mean is 385.25 ms, while the observed mean is 429.01 ms. Clearly, a
failed attempt to retrieve an unencoded again from declarative memory is not suffi-
cient to capture the processing effects of the semantic-pragmatic reasoning involved
in ascertaining a failure to ‘maximize presupposition’.

But the extra retrieval request and its failure are sufficient to capture the qual-
itative pattern. The estimated mean for μ1 (conditionals with matching predicates
and no cataphora) is greater than the estimated mean for the control condition μ0

(conjunctions with matching predicates and no cataphora). It is also greater than the
estimated mean for μ3 (conditionals with matching predicates and cataphora).

Similarly, we capture the qualitative pattern involving the two cataphora & match
cases: the estimated mean for μ2 (conjunctions), where the attempt to resolve the
again cataphora fails, is higher than the estimated mean for μ3 (conditionals), where
the attempt to resolve the again cataphora succeeds.

However, we do not capture the difference between conditionals and conjunctions
in the cataphora & mismatch cases, i.e., μ4 versus μ5. We predict that conjunctions
(estimated mean: 407.43 ms) take longer than conditionals (estimated mean: 387.72
ms). The observed values exhibit the opposite pattern: 374.28 and 387.72ms, respec-
tively. Once again, the observation we made above about conjunction & cataphora &
mismatch cases could resolve this issue: if these conditions are too hard and human
participants never even start a cataphoric search process, we expect the predicted
pattern to be reversed.

278 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

We leave further developments of this model for future work. But given the rela-
tively poor data fit exhibited by our complex model, it is reasonable to ask if going
for a simpler, but less explanatory model, for example, a linear model of some sort,
is not a better way to proceed.

We believe that the independently-motivated commitments we made to specific
(i) formal semantics representations and theories, (ii) cognitive-architectural organi-
zation principles and constraints and (iii) language processing theories and models
should not be abandoned in future iterations of this modeling endeavor. As Neal
(1996) puts it:

“Sometimes a simple model will outperform a more complex model […] [But] deliberately
limiting the complexity of the model is not fruitful when the problem is evidently complex.
Instead, if a simple model is found that outperforms some particular complex model, the
appropriate response is to define a different complex model that captures whatever aspect of
the problem led to the simple model performing well.” (Neal 1996, 103–104)

9.5 Conclusion

In this chapter, we built the first (to our knowledge) formally and computationally
explicit mechanistic model of active anaphoric/cataphoric search for an antecedent.
This model integrates rich semantic representations (independently motivated in
the formal semantics literature) and processing mechanisms (independently moti-
vated in the psycholinguistics literature) into a wide-coverage cognitive architecture
(ACT-R).

In the spirit of van der Sandt (1992), Kamp (2001a, b), the model analyzes
anaphora and presupposition as fundamentally processing-level phenomena that
guide and constrain the cognitive process of integration, or linking, of new and
old semantic information. Anaphora and presupposition have semantic effects, but
they are not exclusively, or even primarily, semantics.

There are many open questions left for future research about (i) the exact nature
of the semantic representations deployed in these models, (ii) the fine details of the
processing mechanisms, (iii) how exactly these representations and processes should
be integrated into a general, independently-constrained cognitive architecture, and
(iv) the exact division of labor between semantics and processing for the analysis
of anaphora and presupposition. We hope the modeling endeavor pursued in this
chapter provides a framework for formulating these questions in a precise way, and
for mounting a systematic search for answers.

We think that themost important lesson tobedrawn from the extensive anddetailed
modeling attempt in this chapter is methodological. Computationally explicit mecha-
nistic processingmodels that can be fit to experimental data are crucial whenworking
at the interface between theoretical linguistics and experimental psycholinguistics in
general, and at the semantics-psycholinguistics interface in particular.

Our argument for this is as follows. We started the chapter with a general question
about the processing of semantic representations (is it incremental and predictive?).

9.5 Conclusion 279

To shed light on this question, we collected a reasonably rich amount of real-time
experimental data, we analyzed the data with standard methods (mixed-effects linear
models) and we informally stated an account that linked the theoretical question and
the experimental data in a reasonably adequate way.

However, our ACT-R model, which explicitly formalized the proposed account,
was able to quantitatively capture some, but crucially not all the data. This par-
tial quantitative failure of our detailed, computationally-explicit cognitive model is
enlightening: it opens up a variety of specific questions for future research that would
have been missed had we stayed at the informal level of our initial account.

Specifically, it turns out that for the informal account to really work, we need
auxiliary hypotheses that are both crucial for and completely glossed over by that
informal account. Looking carefully only at the experimental data (or the results
of standard statistical methods applied to that data), or only at the formal semantic
representations, or even at both, but separately, is not enough.We need to be formally
and computationally explicit about how we link them via mechanistically-specified
processing models.

This lesson is not new by any means. In fact, it is very familiar to generative
linguists when it comes to formulating competence-level theories:

“Precisely constructed models for linguistic structure can play an important role, both neg-
ative and positive, in the process of discovery itself. By pushing a precise but inadequate
formulation to an unacceptable conclusion, we can often expose the exact source of this inad-
equacy and, consequently, gain a deeper understanding of the linguistic data.More positively,
a formalized theory may automatically provide solutions for many problems other than those
for which it was explicitly designed. Obscure and intuition-bound notions can neither lead
to absurd conclusions nor provide new and correct ones, and hence they fail to be useful
in two important respects. [We need] to recognize the productive potential in the method
of rigorously stating a proposed theory and applying it strictly to linguistic material with
no attempt to avoid unacceptable conclusions by ad hoc adjustments or loose formulation.”
(Chomsky 1957, p. 5)

Computationalmodeling of cognitive phenomena has become increasingly central
to cognitive science for fundamentally the same reason. As Lewandowsky and Farrell
(2010, p. 9) put it: “[e]ven intuitively attractive notions may fail to provide the
desired explanation for behavior once subjected to the rigorous analysis required by
a computational model.”

We take the explicit focus on computationally-specified mechanistic processing
models that are both (i) theoretically informed and (ii) quantitatively fit to exper-
imental data in a statistically informed and thoughtful way to be a distinguishing
feature of research at the semantics-psycholinguistics interface. We distinguish this
kind of work from experimentally-informed semantics, as well as from semantically-
informed psycholinguistics.

In our view, work in experimentally-informed semantics engages primarily with
semantic theories using empirical investigationmethodologies (mostly offline: forced
choice, acceptability etc.) that have become standard in psycholinguistics. But the
semantic theories are connected to the experimental measurements of linguistic
behavior only implicitly and/or informally, hence weakly. In addition, designing

280 9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents …

properly powered experiments in semantics and pragmatics, where the effects are
usually subtle and difficult to detect, is non-trivial,7 which makes the presumed links
between theory and experimental data even more tenuous.

Similarly, work in semantically-informed psycholinguistics engages only in infor-
malwayswith formal semantics theories.While insightful, this work falls short of the
standard of systematicity and formalization that permeates work in formal seman-
tics, and does not engage in substantial ways with formal semantics frameworks and
systems as a whole.

In sum, taking real-time experimental data and explicit computational modeling
seriously opens up exciting new directions of research in formal semantics, and new
ways of (re)connecting formal semantics and the broader field of cognitive science.
This is the reason for the copious amounts of code and behavioral data introduced
in this chapter, and in the book overall.

The specifics of the code and models we included in the book will likely become
obsolete in the near future, just as many of our other auxiliary assumptions will. That
is perfectly fine: their main purpose is to get the larger project off the ground and
demonstrate its feasibility. Ultimately, our intention was to argue for a new range
of theoretical and empirical goals for semantics, introduce an appropriate research
workflow, and help semanticists and psycholinguists start using it.

9.6 Appendix: The Complete Syntax/Semantics Parser

All the code discussed in this chapter is available on GitHub as part of the repository
https://github.com/abrsvn/pyactr-book. If you want to inspect it and run it, install
pyactr (see Chap.1), download the files and run them the same way as any other
Python script.

9.6.1 File ch9/parser_dm.py

https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch9/parser_dm.py.

9.6.2 File ch9/parser_rules.py

https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch9/ parser_rules.py.

7See Kruschke (2011), Vasishth and Nicenboim (2016), Nicenboim and Vasishth (2016) among
others for detailed discussions of power and related statistical issues.

https://github.com/abrsvn/pyactr-book
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch9/parser_dm.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch9/parser_rules.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch9/parser_rules.py

9.6 Appendix: The Complete Syntax/Semantics Parser 281

9.6.3 File ch9/run_parser.py

https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch9/run_parser.py.

9.6.4 File ch9/estimate_parser_parallel.py

https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch9/estimate_
parser_parallel.py.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch9/run_parser.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch9/estimate_parser_parallel.py
https://github.com/abrsvn/pyactr-book/blob/master/book-code/ch9/estimate_parser_parallel.py
http://creativecommons.org/licenses/by/4.0/

Chapter 10
Future Directions

Where do we go from here? We will keep this short because, if the reader has made
it this far, the answer really is: in whatever direction the reader’s research inter-
ests lie. The main purpose of this book was to introduce a general framework and
workflow that enables us to enhance competence theories with fully specified per-
formance/processing components. The resulting competence-performance theories
can furthermore be embedded in Bayesian models, which enables us to fit them to
data and quantitatively compare them in a systematic fashion. This Bayes+ACT-
R+formal linguistics workflow of model development is in principle applicable to
linguistic accounts of many syntactic and/or semantic phenomena—if suitable data
can be obtained from properly designed experiments, which is far from trivial.

This being said, we think there are five specific directions worth pursuing in the
near future:

i. add more structure to the Bayesian models, for example, random effects for
participants, grouping participants according to their strategies in self-paced
reading tasks, etc.;

ii. data-driven modeling: hand-coding models for specific experiments does not
scale up well, and we should find ways to leverage syntactically and seman-
tically annotated corpora to make the process of building ACT-R models for
specific tasks and experiments more automatic and data-driven, and more easily
comparable across tasks/experiments;

iii. enrich the range of studied semantic phenomena—quantifiers, scope, binding,
questions, attitude verbs, modals—and the range of semantic representations
that are considered—(trees of) variable assignments in addition to or instead
of DRSs, compositionally assembled higher-order terms in a suitable logical
system etc.

© The Author(s) 2020
A. Brasoveanu and J. Dotlačil, Computational Cognitive Modeling
and Linguistic Theory, Language, Cognition, and Mind 6,
https://doi.org/10.1007/978-3-030-31846-8_10

283

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31846-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-31846-8_10

284 10 Future Directions

– relatively modest extensions of this framework could be used to build on the
wealth of experimental results gathered in the last ten years or so and explicitly
model and fit to data different theories of presupposition projection, scalar
implicature computation etc., not to mention the large amount of experimental
data about syntactic phenomena that is available in the literature;

iv. provide a framework for integrating and comparing models and theories of lan-
guage interpretation that have been developed in largely disparate traditions up to
this point:

– for example, the rise of distributional semantics and neural-network mod-
eling work in formal semantics (Bowman 2016; McNally and Boleda 2017
amongothers), and linguisticsmore generally, raises a range of questions about
what the appropriate division of labor is in natural language interpretation
between symbolic and subsymbolic components; our Bayes+ACT-R+formal
linguistics framework enables us to explore a range of hybrid models that
would integrate both perspectives and that can be quantitatively compared, for
example, models in which more of the cognitive heavy-lifting is performed
either by symbolic components (chunks, rules) or subsymbolic components
(base/spreading activation, rule utilities); see, for example, Marcus (2018) for
a recent discussion of and arguments for hybrid (symbolic and subsymbolic)
architectures;

– a specific example would involve exploring hybrid representations for lexi-
cal items that would encode both structural information (like we have done
throughout this book) and quantitative information, e.g., dense word embed-
dings of the kind proposed inMikolov et al. (2013) or Pennington et al. (2014);
these dense word embeddings could be used to modulate spreading activation
for lexical items or for larger phrasal units;

– incorporating drift-diffusion models (Ratcliff 1978; Ratcliff et al. 2017) into
ACT-R (cf. (Van Maanen et al. (2012))) and compare the resulting model(s)
of language comprehension with other commonly used modeling choices;

– yet another possibility is to systematically investigate rule learning for natural
language interpretation: rules throughout this book were hand-coded, and no
theory for how new rules are generated was put forth; this is a common feature
of ACT-R modeling, but not a defining and necessary one: ACT-R does have
a system for rule learning (production compilation) and we could go further
by hypothesizing ‘rule-generating’ mechanisms;

– similarly, ACT-R has a system for rule utility learning, but recent advances
in reinforcement learning might contribute new insights to this component of
the cognitive architecture.

v. on the computational side,make improvements to enable faster estimation of pos-
terior distributions for pyactr model parameters, e.g., by emulating pyactr
models with neural networks, Gaussian Processes or other kinds ofmodels; solu-
tions along these lines could also enable us to do Approximate Bayesian Com-
putation (ABC), that is, likelihood-free Bayesian inference for simulation-based

10 Future Directions 285

models with intractable likelihoods, e.g., ACT-R models with various stochastic
components turned on.

In addition, there are several ways in which ACT-R is showing its age for modeling
natural language interpretation:

• it has a rule-ordering architecture that effectively employs transformationalmodels
of the kind generative linguistics used in the ‘60s and ‘70s, and that we moved
away from;

• it has a fairly strict ban on hierarchical structures, rather than a softer one that
would allow but penalize them, e.g., the way a probabilistic context free grammar
penalizes deeper trees;

• the underlying logic for facts/chunks is the logic of feature structures, basically a
modal logic with features as modal operators and values as (atomic) non-modal
sentence variables; in semantics, we have moved away from this type of the-
ory construction with ‘local’-perspective logics, and more towards the ‘global’-
perspective of classical (many-sorted) first-order or higher-order logic, which
makes integrating ACT-R and formal semantics somewhat awkward.

However, ACT-R is a widely used hybrid (symbolic and subsymbolic) cognitive
architecture and as such, it was the obvious choice for a framework in which to build
mechanistic processing models and integrated competence-performance theories for
natural language interpretation. As computational cognitive modeling for natural
language phenomena develops further, we expect to see a critical reevaluation of a
variety of architectural assumptions that we took for granted in the present work.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Bibliography

Abelson, H., Sussman, G. J., & Sussman, J. (1996). Structure and interpretation of computer
programs (2nd ed.). Cambridge: MIT Press/McGraw-Hill.

Abney, S., & Johnson,M. (1991). Memory requirements and local ambiguities of parsing strategies.
Journal of Psycholinguistic Research, 20, 233–50.

Abusch, D. (2010). Presupposition triggering from alternatives. Journal of Semantics, 27, 37–80.
Anderson, C. (2004). The structure and real-time comprehension of quantifier scope ambiguity.
Doctoral Dissertation, Northwestern University, Evanston, Illinois.

Anderson, J. R. (1974). Retrieval of propositional information from long-term memory. Cognitive
Psychology, 6, 451–474.

Anderson, J. R. (1976). Language, memory, and thought. Hillsdale, NJ: Erlbaum.
Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369.
Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Lawrence Erlbaum Asso-
ciates.

Anderson, J. R. (2007).How can the humanmind occur in the physical universe?Oxford University
Press.

Anderson, J. R., Bothell, D.,&Byrne,M.D. (2004). An integrated theory of themind.Psychological
Review, 111, 1036–1060.

Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Anderson, J. R., & Reder, L. M. (1999). The fan effect: New results and new theories. Journal of
Experimental Psychology: General, 128, 186–197.

Anderson, J. R., Reder, L. M., & Lebiere, C. (1996). Working memory: Activation limitations on
retrieval. Cognitive Psychology, 30, 221–256.

Anderson, J. R., & Schooler, L. J. (1991). Reflections of the environment in memory. Psychological
Science, 2, 396–408.

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory
hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255–278.

Bell, C. G., & Newell, A. (1971). Computer structures: Readings and examples. New York:
McGraw-Hill.

Bhatt, R., & Roumyana, P. (2006). Conditionals. In E. Martin & H. van Riemsdijk (Eds.), The
Blackwell companion to syntax (pp. 638–687). Wiley.

© The Editor(s) (if applicable) and The Author(s) 2020
A. Brasoveanu and J. Dotlačil, Computational Cognitive Modeling
and Linguistic Theory, Language, Cognition, and Mind 6,
https://doi.org/10.1007/978-3-030-31846-8

287

https://doi.org/10.1007/978-3-030-31846-8

288 Bibliography

Bos, J. (2005). Towards wide-coverage semantic representation. In Proceedings of the 6th Inter-
national Workshop on Computational Semantics (IWCS ’05) (pp. 42–53). Tilburg: University of
Tilburg.

Bos, J., Clark, S., Steedman, M., Curran, J. R., & Hockenmaier, J. (2004). Wide-coverage seman-
tic representations from a CCG parser. In Proceedings of the 20th international conference on
computational linguistics (p. 1240). Association for Computational Linguistics.

Boston, M. F., Hale, J. T., Vasishth, S., & Kliegl, R. (2011). Parallel processing and sentence
comprehension difficulty. Language and Cognitive Processes, 26, 301–349.

Bowman, S. R. (2016).Modeling natural language semantics in learned representations. Doctoral
Dissertation, Stanford University.

Brasoveanu, A. (2007). Structured nominal and modal reference. Doctoral Dissertation, Rutgers
Univ.

Brasoveanu, A., & Dotlačil, J. (2015a). Incremental and predictive interpretation: Experimental
evidence and possible accounts. Proceedings of Semantics and Linguistic Theory (SALT), 25,
57–81.

Brasoveanu, A., & Dotlačil, J. (2015b). Incremental interpretation and dynamic semantics. UC
Santa Cruz and University of Groningen ms. http://people.ucsc.edu/abrsvn/inc_int_and_dyn_
sem.pdf.

Brasoveanu, A., & Dotlačil, J. (2015c). Strategies for scope taking. Natural Language Semantics,
23, 1–19.

Brasoveanu, A., &Dotlačil, J. (2018). An extensible framework for mechanistic processingmodels:
From representational linguistic theories to quantitative model comparison. In Proceedings of the
2018 international conference on cognitive modelling.

Brasoveanu, A., & Dotlačil, J. (2020). Donkey anaphora: Farmers and bishops. In L. Matthewson,
C. Meier, H. Rullmann, & T. E. Zimmerman (Eds.), Blackwell companion to semantics. Wiley.

Brasoveanu, A., & Farkas, D. (2011). How indefinites choose their scope. Linguistics and Philos-
ophy, 34, 1–55.

Budiu, R., & Anderson, J. R. (2004). Interpretation-based processing: A unified theory of semantic
sentence processing. Cognitive Science, 28, 1–44.

Budiu, R., & Anderson, J. R.. (2005). Negation in nonliteral sentences. In B. Bara, L. Barsalou &
M. Bucciarelli (Eds.), Proceedings of the 27th annual conference of the cognitive science society
(pp. 354–359). Lawrence Erlbaum Associates.

Carlson, G. N. (1977). A unified analysis of the English bare plural. Linguistics and Philosophy 1.
Carlson, G. N. (1980). Reference to kinds in English. New York: Garland Publishing.
Carpenter, B. (1992). The logic of typed feature structures. New York, NY, USA: Cambridge Uni-
versity Press.

Chater, N., Pickering, M., &Milward, D. (1995). What is incremental interpretation? In D.Milward
& P. Sturt (Eds.), Incremental interpretation (Edinburgh working papers in cognitive science)
(Vol. 11, pp. 1–23). Edinburgh: Edinburgh University.

Chierchia, G. (1995).Dynamics of meaning: Anaphora, presupposition, and the theory of grammar.
Chicago: University of Chicago Press.

Chomsky, N. (1956). Three models for the description of language. IEEE Transactions on Infor-
mation Theory, 2, 113–124.

Chomsky, N. (1957). Syntactic structures. The Hague: Mouton.
Chomsky, N. (1981). Lectures on government and binding. Dordrecht: Foris.
Creal, D. (2012). A survey of sequential monte carlo methods for economics and finance. Econo-
metric Reviews, 31, 245–296.

Cresswell, M. J. (1985). Structured meanings: The semantics of propositional attitudes. Bradford
books. Cambridge, MA, USA: MIT Press.

Davies, M. (2001). Knowledge (explicit and implicit): Philosophical aspects. In N. J. Smelser &
B. Baltes (Eds.), International encyclopedia of the social and behavioral sciences (pp. 8126–
8132). Elsevier.

http://people.ucsc.edu/abrsvn/inc_int_and_dyn_sem.pdf
http://people.ucsc.edu/abrsvn/inc_int_and_dyn_sem.pdf

Bibliography 289

Dekker, P. (1994). Predicate logicwith anaphora. InL. Santelmann&M.Harvey (Eds.),Proceedings
of SALT IV (pp. 79–95). Ithaca: CLC Publications.

Demers, A. J. (1977). Generalized left corner parsing. In Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages (pp. 170–182). ACM.

Dillon, B., Mishler, A., Sloggett, S., & Phillips, C. (2013). Contrasting intrusion profiles for agree-
ment and anaphora: Experimental and modeling evidence. Journal of Memory and Language,
69, 85–103.

Dotlačil, J. (2018). Building an act-r reader for eye-tracking corpus data.Topics inCognitive Science,
10, 144–160.

Downey, A. (2012). Think python. O’Reilly Media, Inc.
Ebbinghaus, H. (1913). Memory: A contribution to experimental psychology. New York: Teachers
College, Columbia University. http://psychclassics.yorku.ca/Ebbinghaus/index.htm.

Elbourne, P. (2009). Bishop sentences and donkey cataphora: A response to barker and shan. Seman-
tics and Pragmatics, 2, 1–7.

Engelmann, F., Vasishth, S., Engbert, R., & Kliegl, R. (2013). A framework for modeling the
interaction of syntactic processing and eye movement control. Topics in Cognitive Science, 5,
452–474.

Farkas, D. F., & de Henriëtte, S. (2003). The semantics of incorporation: From argument structure
to discourse transparency. Stanford: CSLI Publications.

Forster, K. (1992). Memory-addressing mechanisms and lexical access. In R. Frost & L. Katz
(Eds.), Orthography, phonology, morphology, and meaning (Vol. 94, pp. 413–434). Amsterdam:
North-Holland.

Forster, K. I. (1976). Accessing the mental lexicon. In R. J. Wales & E. Walker (Eds.), New
approaches to language mechanisms (Vol. 30, pp. 257–287). Amsterdam: North-Holland.

Forster, K. I. (1990a). Lexical processing. The MIT Press.
Forster, K. (1990b). Lexical processing. InD.Osherson&H. Lasnik (Eds.),Language: An invitation
to cognitive science (pp. 95–131). Cambridge, MA: MIT Press.

Frazier, L., & Fodor, J. D. (1978). The sausagemachine: A new two-stage parsingmodel.Cognition,
6, 291–325.

Fuchs, A. (1971). The saccadic system. In The control of eye movements (pp. 343–362).
Gallin, D. (1975). Intensional and higher-order modal logic. Amsterdam: North-Holland Mathe-
matics Studies.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian
data analysis, 3rd edn. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis.

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models.
Analytical Methods for Social Research: Cambridge University Press.

Gibson, E. (1991). A computational theory of human linguistic processing: Memory limitations and
processing breakdown. Doctoral Dissertation, Carnegie Mellon University, Pittsburgh, PA.

Gibson, E. (1998). Linguistic complexity: Locality of syntactic dependencies. Cognition, 68, 1–76.
Grodner, D., & Gibson, E. (2005). Consequences of the serial nature of linguistic input for sentenial
complexity. Cognitive Science, 29, 261–291.

Groenendijk, J., & Stokhof, M. (1990). Dynamic Montague grammar. In Proceedings of the second
symposium on logic and language (pp. 3–48).

Groenendijk, J., & Stokhof, M. (1991). Dynamic predicate logic. Linguistics and Philosophy, 14,
39–100.

Hagoort, P., Hald, L., Bastiaansen, M., & Petersson, K. M. (2004). Integration of word meaning
and world knowledge in language comprehension. Science, 304, 438–441.

Hale, J. (2011). What a rational parser would do. Cognitive Science, 35, 399–443.
Hale, J. T. (2014). Automaton theories of human sentence comprehension. Stanford: CSLI Publi-
cations.

Hart, B., & Risley, T. R. (1995).Meaningful differences in the everyday experience of young amer-
ican children. Baltimore: Paul H Brookes Publishing.

http://psychclassics.yorku.ca/Ebbinghaus/index.htm

290 Bibliography

Heim, I. (1982). The semantics of definite and indefinite noun phrases (published 1988, New York:
Garland). Doctoral Dissertation, UMass Amherst, Amherst, MA.

Heim, I. (1991). Artikel und definitheit. In A. von Stechow & D. Wunderlich (Eds.), Semantik: Ein
internationales handbuch der zeitgenössischen forschung (pp. 40–64). Berlin: Walter de Gruyter.

Heim, I., & Kratzer, A. (1998). Semantics in generative grammar. Oxford: Blackwell.
Hofmeister, P., Casasanto, L. S., & Sag, I. A. (2013). Islands in the grammar? standards of evi-
dence. In J. Sprouse & H. Hornstein (Eds.), Experimental syntax and island effects (pp. 42–63).
Cambridge University Press.

Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2001). Introduction to automata theory, languages,
and computation. Addison-Wesley.

Hough, J., Kennington, C., Schlangen, D., & Ginzburg, J. (2015). Incremental semantics for dia-
logue processing: Requirements and a comparison of two approaches. In Proceedings of the
International Workshop on Computational Semantics (IWCS).

Howes, D. H., & Solomon, R. L. (1951). Visual duration threshold as a function of word-probability.
Journal of Experimental Psychology, 41, 401.

Iatridou, S. (1991). Topics in conditionals. Doctoral Dissertation, MIT.
Jäger, L. A, Benz, L., Roeser, J., Dillon, B. W, & Vasishth, S. (2015). Teasing apart retrieval and
encoding interference in the processing of anaphors. Frontiers in psychology, 6.

Jäger, L. A., Benz, L., Roeser, J., Dillon, B.W., &Vasishth, S. (2017). Similarity-based interference
in sentence comprehension: Literature review and bayesian meta-analysis. Journal of Memory
and Language, 94, 316–339.

Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference,
and consciousness. Harvard University Press.

Johnson-Laird, P. N. (2004). The history of mental models (pp. 179–212). Psychology of reasoning:
Theoretical and historical perspectives.

Just, M. A., & Carpenter, P. A. (1989). Reasoning by model: The case of multiple quantification.
Psychological Review, 96, 658–673.

Just, M. A., Carpenter, P. A., & Woolley, J. D. (1980). A theory of reading: From eye fixations to
comprehension. Psychological Review, 87, 329–354.

Kamp, H. (1982). Paradigms and processes in reading comprehension. Journal of Experimental
Psychology: General, 111, 228–238.

Kamp, H. (1981). A theory of truth and semantic representation. In C. Rohrer, A. Rossdeutscher,
& H. Kamp (Eds.), Formal methods in the study of language (pp. 277–322). Amsterdam: Math-
ematical Centre Tracts.

Kamp, H. (2001a). Presupposition computation and presupposition justification. In M. Bras & L.
Vieu (Eds.), Semantic and pragmatic issues in discourse and dialogue (pp. 57–84). Amsterdam:
Elsevier.

Kamp, H. (2001b). The Importance of Presupposition. In C. Rohrer, A. Rossdeutscher & H. Kamp
(Eds.), Linguistic form and its computation. Studies in computational linguistics (pp. 207–254).
CSLI Publications.

Kamp, H., & Reyle, U. (1993). From discourse to logic. introduction to model theoretic semantics
of natural language, formal logic and Discourse Representation Theory. Dordrecht: Kluwer.

Kaplan, R. M., Bresnan, J., et al. (1982). Lexical-functional grammar: A formal system for gram-
matical representation. In J. Bresnan (Ed.), The mental representation of grammatical relations
(pp. 173–281). Cambridge, MA: MIT Press.

Kazanina, N., Lau, E. F., Lieberman, M., Yoshida, M., & Phillips, C. (2007). The effect of syntactic
constraints on the processing of backwards anaphora. Journal of Memory and Language, 56,
384–409.

Klima, E. (1964). Negation in English. In J. A. Fodor & J. J. Katz (Eds.), The Structure of Language:
Readings in the Philosophy of Language (pp. 246–323). Englewood Cliffs: Prentice-Hall.

Kruschke, J. K. (2011). Doing Bayesian data analysis: A tutorial with R and BUGS. Academic
Press/Elsevier.

Bibliography 291

Kurtzman, H. S., & MacDonald, M. C. (1993). Resolution of quantifier scope ambiguities. Cogni-
tion, 48, 243–279.

Kush, D., Lidz, J., & Phillips, C. (2015). Relation-sensitive retrieval: evidence from bound variable
pronouns. Journal of Memory and Language, 82, 18–40.

Ladusaw, W. (1979). Polarity sensitivity as inherent scope relations. Doctoral Dissertation, Univer-
sity of Texas.

Lambert, B. (2018). A student’s guide to bayesian statistics. SAGE,. Publications.
Lamport, L. (1986). Latex: A document preparation system. Boston, MA, USA: Addison-Wesley.
Lau, E. F. (2009). The predictive nature of language comprehension. Doctoral Dissertation, Uni-
versity of Maryland, College Park.

Lebiere, C. (1999). The dynamics of cognition: An act-r model of cognitive arithmetic. Kognition-
swissenschaft, 8, 5–19.

Lewandowsky, S., & Farrell, S. (2010). Computational modeling in cognition: Principles and prac-
tice. Thousand Oaks, CA, USA: SAGE Publications.

Lewis, R., & Vasishth, S. (2005). An activation-based model of sentence processing as skilled
memory retrieval. Cognitive Science, 29, 1–45.

Logan, G. D. (1990). Repetition priming and automaticity: Common underlying mechanisms?
Cognitive Psychology, 22, 1–35.

Lynch, S. M. (2007). Introduction to applied Bayesian statistics and estimation for social scientists.
New York, NY: Springer Science & Business Media LLC.

Marcus, G. (2018). Deep learning: A critical appraisal. CoRR.,. arXiv:1801.00631.
Marr,D. (1982).Vision:Acomputational investigation into the human representationandprocessing
of visual information. San Francisco: W. H. Freeman and Company.

Marslen-Wilson, W. (1973). Linguistic structure and speech shadowing at very short latencies.
Nature, 244, 522–523.

Marslen-Wilson, W. (1975). Sentence perception as an interactive parallel process. Science, 189,
226–228.

Mätzig, P., Vasishth, S., Engelmann, F., Caplan, D., & Burchert, F. (2018). A computational inves-
tigation of sources of variability in sentence comprehension difficulty in aphasia. Topics in Cog-
nitive Science, 10, 161–174.

McElree, B. (2006). Accessing recent events. In B. H. Ross (Ed.), Psychology of learning and moti-
vation (Vol. 46, pp. 155–200). Academic Press. http://www.sciencedirect.com/science/article/
pii/S0079742106460059.

McNally, L., &Boleda, G. (2017). Conceptual versus referential affordance in concept composition.
In Y. Winter & J. Hampton (Eds.), Compositionality and concepts in linguistics and psychology.
Language, Cognition, and Mind (Vol. 3, pp. 245–267). Springer.

Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive cognitive processes and
multiple-task performance: Part i. basic mechanisms. Psychological Review, 104, 3.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representa-
tions in vector space. In 1st International Conference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2–4, 2013, Workshop Track Proceedings. arXiv:1301.3781.

Milward, D., & Cooper, R. (1994). Incremental interpretation: Applications, theory, and relation-
ship to dynamic semantics. In The 15th International Conference on Computational Linguistics
(COLING 94) (pp. 748–754). Kyoto, Japan: COLING 94 Organizing Comm.

Monsell, S. (1991). The nature and locus of word frequency effects in reading. In D. Besner &
G. W. Humphreys (Eds.), Basic processes in reading: Visual word recognition (pp. 148–197).
Hillsdale, NJ: Erlbaum.

Montague, R. (1970). English as a formal language. In B. Visentini, et al. (Eds.), Linguaggi nella
società e nella tecnica (pp. 189–224). Milan: Edizioni di Communità.

Montague, R. (1973). The proper treatment of quantification in ordinary English. In P. S. J. Hintikka
& J. Moravcsik (Eds.), Approaches to natural language (pp. 221–242). Dordrecht: Reidel.

Murry, W. S., & Forster, K. I. (2004). Serial mechanisms in lexical access: the rank hypothesis.
Psychological Review, 111, 721.

http://arxiv.org/abs/1801.00631
http://www.sciencedirect.com/science/article/pii/S0079742106460059
http://www.sciencedirect.com/science/article/pii/S0079742106460059
http://arxiv.org/abs/1301.3781

292 Bibliography

Muskens, R. (1995a). Meaning and partiality. Studies in Logic Language and Information. Cam-
bridge University Press.

Muskens, R. A. (1995b). Tense and the logic of change. In U. Egli, P. E. Pause, C. Schwarze, A. von
Stechow, &G.Wienold (Eds.), Lexical knowledge in the organization of language (pp. 147–183).
Amsterdam: Benjamins.

Muskens, R. A. (1996). CombiningMontague Semantics andDiscourse Representation. Linguistics
and Philosophy, 19, 143–186.

Neal, R. M. (1996). Bayesian learning for neural networks. Berlin, Heidelberg: Springer-Verlag.
Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.
Newell, A. (1973a). Production systems: Models of control structures. In W. G. Chase, et al. (Eds.),
Visual information processing (pp. 463–526). New York: Academic Press.

Newell, A. (1973b). You can’t play 20 questions with nature and win: Projective comments on
the papers of this symposium. In W. G. Chase, et al. (Eds.), Visual information processing (pp.
283–308). New York: Academic Press.

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of practice.
In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 1–55). Hillsdale, NJ: Erlbaum.

Nicenboim, B., & Vasishth, S. (2016). Statistical methods for linguistic research: Foundational
ideas part ii. Language and Linguistics Compass, 10, 591–613. 10.1111/lnc3.12207 https://
onlinelibrary.wiley.com/.

Nicenboim, B., & Vasishth, S. (2018). Models of retrieval in sentence comprehension: A compu-
tational evaluation using bayesian hierarchical modeling. Journal of Memory and Language, 99,
1–34.

Nouwen, R. (2003). Plural pronominal anaphora in context: Dynamic aspects of quantification.
Doctoral Dissertation, UIL-OTS, Utrecht University.

Nouwen, R. (2007). On dependent pronouns and dynamic semantics. Journal of Philosophical
Logic, 36, 123–154.

Partee, B. (2011). The semantics adventure. https://udrive.oit.umass.edu/partee/Partee2011_
MIT150.pdf.

Pennington, J., Socher, R., &Manning, C. D. (2014). Glove: Global vectors for word representation.
In EMNLP (pp. 1532–1543). ACL.

Phillips, C. (1996).Order and structure. Doctoral Dissertation, Massachusetts Institute of Technol-
ogy.

Phillips, C. (2003). Linear order and constituency. Linguistic Inquiry, 34, 37–90.
Phillips, C., & Lewis, S. (2013). Derivational order in syntax: evidence and architectural conse-
quences. Studies in Linguistics, 6, 11–47.

Pickering, Martin J., McElree, Brian, Frisson, Steven, Chen, Lillian, & Traxler, Matthew J. (2006).
Underspecification and aspectual coercion. Discourse Processes, 42, 131–155.

Poesio, M. (1994). Discourse interpretation and the scope of operators. Doctoral Dissertation,
University of Rochester.

Polanyi, M. (1967). The tacit dimension. London: Routledge and Kegan Paul.
Pollard, C., & Sag, I. A. (1994). Head-driven phrase structure grammar. University of Chicago
Press.

Poore, G. M. (2013). Reproducible documents with pythontex. In S. van der Walt, J. Millman &
K. Huff (Eds.), Proceedings of the 12th Python in Science Conference (pp. 78–84).

Pylkkänen, L., & McElree, B. (2006). The syntax-semantic interface: On-line composition of sen-
tence meaning. In M. Traxler & M. A. Gernsbacher (Eds.), Handbook of psycholinguistics (pp.
537–577). New York: Elsevier.

Pylyshyn, Z. W. (1989). The role of location indexes in spatial perception: A sketch of the finst
spatial-index model. Cognition, 32, 65–97.

Pylyshyn, Z. W. (2007). Things and places: How the mind connects with the world. Mass: Bradford
books.

R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. http://www.R-project.org/.

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
https://udrive.oit.umass.edu/partee/Partee2011_MIT150.pdf
https://udrive.oit.umass.edu/partee/Partee2011_MIT150.pdf
http://www.R-project.org/

Bibliography 293

Ramalho, L. (2015). Fluent python: clear, concise, and effective programming. O’Reilly Media,
Inc.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59.
Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2017). Diffusion decision model: Current
issues and history. Trends in Cognitive Sciences, 20, 260–281.

Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research.
Psychological Bulletin, 124, 372–422.

Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye movement
control in reading. Psychological Review, 105, 125.

Reitter, D., Keller, F., &Moore, J. D. (2011). A computational cognitive model of syntactic priming.
Cognitive Science, 35, 587–637.

Resnik, P. (1992). Left-corner parsing and psychological plausibility. In Proceedings of the four-
teenth international conference on computational linguistics. Nantes, France.

Ryle, G. (1949). The concept of mind. London: Hutchinson’s University Library.
Sag, I.A. (1992). Taking performance seriously. InC.Martin-Vide (Ed.),VIICongreso de Languajes
Naturales y Lenguajes Formales. Barcelona. http://lingo.stanford.edu/sag/papers/vic-paper.pdf.

Sag, I. A., & T. Wasow. (2011). Performance-compatible competence grammar. In R. D. Borsley
& K. Börjars (Eds.), Non-transformational syntax: Formal and explicit models of grammar (pp.
189–199). Blackwell Publishing.

Salvucci, D. D. (2001). An integrated model of eye movements and visual encoding. Cognitive
Systems Research, 1, 201–220.

van der Sandt, R. (1992). Presupposition projection as anaphora resolution. Journal of Semantics,
9, 333–377.

Schilling, H. E. H., Rayner, K., & Chumbley, J. I. (1998). Comparing naming, lexical decision, and
eye fixation times: Word frequency effects and individual differences.Memory & Cognition, 26,
1270–1281.

Schooler, L. J., & Anderson, J. R. (1997). The role of process in the rational analysis of memory.
Cognitive Psychology, 32, 219–250.

Schwarz, F. (2014). Presuppositions are fast, whether hard or soft-evidence from the visual world. In
M.Wiegand, T. Snider & S. D’Antonio (Eds.), Semantics and Linguistic Theory (SALT) (Vol. 24,
pp. 1–22). LSA and CLC Publications.

Shieber, S. M. (2003). An introduction to unification-based approaches to grammar. Microtome
Publishing.

Sisson, S., Fan, Y., & Beaumont, M. (Eds.). (2019). Handbook of approximate bayesian computa-
tion. New York: Chapman and Hall/CRC.

Staub, A. (2011). Word recognition and syntactic attachment in reading: Evidence for a staged
architecture. Journal of Experimental Psychology: General, 140, 407–433.

Steedman, M. (2001). The syntactic process. Cambridge, MA: MIT Press.
Stowe, L. A. (1986). Parsing wh-constructions: Evidence for on-line gap location. Language and
Cognitive Processes, 1, 227–245.

Taatgen, N. A., &Anderson, J. R. (2002).Why do children learn to say “broke”? amodel of learning
the past tense without feedback. Cognition, 86, 123–155.

Taatgen, N. A., Juvina, I., Schipper, M., Borst, J. P., & Martens, S. (2009). Too much control can
hurt: A threaded cognition model of the attentional blink. Cognitive Psychology, 59, 1–29.

Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C. (1995). Integration of
visual and linguistic information in spoken language comprehension. Science, 268, 1632–1634.

Traxler,M. J.,&Pickering,M. J. (1996). Plausibility and the processing of unboundeddependencies:
An eye-tracking study. Journal of Memory and Language, 35, 454–475.

Trueswell, J., Tanenhaus,M.,&Garnsey, S. (1994). Semantic influences on parsing: Use of thematic
role information in syntactic ambiguity resolution. Journal of Memory and Language, 33, 285–
318.

Tunstall, S. (1998). The interpretation of quantifiers: Semantics and processing. Doctoral Disser-
tation, University of Massachusetts, Amherst.

http://lingo.stanford.edu/sag/papers/vic-paper.pdf

294 Bibliography

van Maanen, L., van Rijn, H., & Taatgen, N. (2012). RACE/A: An architectural account of the
interactions between learning, task control, and retrieval dynamics. Cognitive Science, 36, 62–
101.

Vasishth, S., Bruüssow, B., Lewis, R. L., & Drenhaus, H. (2008). Processing polarity: How the
ungrammatical intrudes on the grammatical. Cognitive Science, 32, 685–712.

Vasishth, S., &Nicenboim, B. (2016). Statisticalmethods for linguistic research: Foundational ideas
part i. Language and Linguistics Compass, 10, 349–369.

Vermeulen, C. F. M. (1994). Incremental semantics for propositional texts. Notre Dame Journal of
Formal Logic, 35, 243–271.

Vermeulen, C. F. M. (1995). Merging without mystery: Variables in dynamic semantics. Journal of
Philosophical Logic, 24, 405–450.

Visser, A. (2002). The donkey and the monoid. Journal of Logic, Language and Information, 11,
107–131.

Wagers, M. W., Lau, E. F., & Phillips, C. (2009). Agreement attraction in comprehension: Repre-
sentations and processes. Journal of Memory and Language, 61, 206–237.

Wagers,M.W.,&Phillips, C. (2009).Multiple dependencies and the role of the grammar in real-time
comprehension. Journal of Linguistics, 45, 395–433.

Warren, T., White, S. J., & Reichle, E. D. (2009). Investigating the causes of wrap-up effects:
Evidence from eye movements and E-Z reader. Cognition, 111, 132–137.

Weaver, R. (2008). Parameters, predictions, and evidence computational modeling: A statistical
view informed by ACT-R. Cognitive Science, 32.

West, R., Pyke, A., Rutledge-Taylor, M., & Lang, H. (2010). Interference and act-r: New evidence
from the fan effect. In D. D. Salvucci & G. Gunzelmann (Eds.), Proceedings of the 10th interna-
tional conference on cognitive modeling (pp. 211–216). Philadelphia, PA: Drexel University.

Wexler, K. (1978). A review of john r. anderson’s language, memory, and thought. Cognition, 6,
327–351.

Whaley, C. P. (1978). Word-nonword classification time. Journal of Verbal Learning and Verbal
Behavior, 17, 143–154.

Wickham, H. (2009). ggplot2: elegant graphics for data analysis. New York: Springer.

	Foreword and Acknowledgments
	Contents
	1 Introduction
	1.1 Background Knowledge
	1.2 The Structure of the Book

	2 The ACT-R Cognitive Architecture and Its pyactr Implementation
	2.1 Cognitive Architectures and ACT-R
	2.2 ACT-R in Cognitive Science and Linguistics
	2.3 ACT-R Implementation
	2.4 Knowledge in ACT-R
	2.4.1 Declarative Memory: Chunks
	2.4.2 Procedural Memory: Productions

	2.5 The Basics of pyactr: Declaring Chunks
	2.6 Modules and Buffers
	2.7 Writing Productions in pyactr
	2.8 Running Our First Model
	2.9 Some More Models
	2.9.1 The Counting Model
	2.9.2 Regular Grammars in ACT-R
	2.9.3 Counter Automata in ACT-R

	2.10 Appendix: The Four Models for Agreement, Counting, Regular Grammars and Counter Automata

	3 The Basics of Syntactic Parsing in ACT-R
	3.1 Top-Down Parsing
	3.2 Building a Top-Down Parser in pyactr
	3.2.1 Modules, Buffers, and the Lexicon
	3.2.2 Production Rules

	3.3 Running the Model
	3.4 Failures to Parse and Taking Snapshots of the Mind When It Fails
	3.5 Top-Down Parsing as an Imperfect Psycholinguistic Model
	3.6 Appendix: The Top-Down Parser

	4 Syntax as a Cognitive Process: Left-Corner Parsing with Visual and Motor Interfaces
	4.1 The Environment in ACT-R: Modeling Lexical Decision Tasks
	4.1.1 The Visual Module
	4.1.2 The Motor Module

	4.2 The Lexical Decision Model: Productions
	4.3 Running the Lexical Decision Model and Understanding the Output
	4.3.1 Visual Processes in Our Lexical Decision Model
	4.3.2 Manual Processes in Our Lexical Decision Model

	4.4 A Left-Corner Parser with Visual and Motor Interfaces
	4.5 Appendix: The Lexical Decision Model

	5 Brief Introduction to Bayesian Methods and pymc3 for Linguists
	5.1 The Python Libraries We Need
	5.2 The Data
	5.3 Prior Beliefs and the Basics of pymc3, matplotlib and seaborn
	5.4 Our Function for Generating the Data (The Likelihood)
	5.5 Posterior Beliefs: Estimating the Model Parameters and Answering the Theoretical Question
	5.6 Conclusion
	5.7 Appendix

	6 Modeling Linguistic Performance
	6.1 The Power Law of Forgetting
	6.2 The Base Activation Equation
	6.3 The Attentional Weighting Equation
	6.4 Activation, Retrieval Probability and Retrieval Latency
	6.5 Appendix

	7 Competence-Performance Models for Lexical Access and Syntactic Parsing
	7.1 The Log-Frequency Model of Lexical Decision
	7.2 The Simplest ACT-R Model of Lexical Decision
	7.3 The Second ACT-R Model of Lexical Decision: Adding the Latency Exponent
	7.4 Bayes+ACT-R: Quantitative Comparison for Qualitative Theories
	7.4.1 The Bayes+ACT-R Lexical Decision Model Without the Imaginal Buffer
	7.4.2 Bayes+ACT-R Lexical Decision with Imaginal-Buffer Involvement and Default Encoding Delay for the Imaginal Buffer
	7.4.3 Bayes+ACT-R Lexical Decision with Imaginal Buffer and 0 Delay

	7.5 Modeling Self-paced Reading with a Left-Corner Parser
	7.6 Conclusion
	7.7 Appendix: The Bayes and Bayes+ACT-R Models
	7.7.1 Lexical Decision Models
	7.7.2 Left-Corner Parser Models

	8 Semantics as a Cognitive Process I: Discourse Representation Structures in Declarative Memory
	8.1 The Fan Effect and the Retrieval of DRSs from Declarative Memory
	8.2 The Fan Effect Reflects the Way Meaning Representations (DRSs) Are Organized in Declarative Memory
	8.3 Integrating ACT-R and DRT: An Eager Left-Corner Syntax/Semantics Parser
	8.4 Semantic (Truth-Value) Evaluation as Memory Retrieval, and Fitting the Model to Data
	8.5 Model Discussion and Summary
	8.6 Appendix: End-to-End Model of the Fan Effect with an Explicit Syntax/Semantics Parser
	8.6.1 File ch8/parser_dm_fan.py
	8.6.2 File ch8/parser_rules_fan.py
	8.6.3 File ch8/run_parser_fan.py
	8.6.4 File ch8/estimate_parser_fan.py

	9 Semantics as a Cognitive Process II: Active Search for Cataphora Antecedents and the Semantics of Conditionals
	9.1 Two Experiments Studying the Interaction Between Conditionals and Cataphora
	9.1.1 Experiment 1: Anaphora Versus Cataphora in Conjunctions Versus Conditionals
	9.1.2 Experiment 2: Cataphoric Presuppositions in Conjunctions Versus Conditionals

	9.2 Mechanistic Processing Models as an Explanatory Goal for Semantics
	9.3 Modeling the Interaction of Conditionals and Pronominal Cataphora
	9.3.1 Chunk Types and the Lexical Information Stored in Declarative Memory
	9.3.2 Rules to Advance Dref Peg Positions, Key Presses and Word-Related Rules
	9.3.3 Phrase Structure Rules
	9.3.4 Rules for Conjunctions and Anaphora Resolution
	9.3.5 Rules for Conditionals and Cataphora Resolution

	9.4 Modeling the Interaction of Conditionals and Cataphoric Presuppositions
	9.4.1 Rules for `Again' and Presupposition Resolution
	9.4.2 Rules for `Maximize Presupposition'
	9.4.3 Fitting the Model to the Experiment 2 Data

	9.5 Conclusion
	9.6 Appendix: The Complete Syntax/Semantics Parser
	9.6.1 File ch9/parser_dm.py
	9.6.2 File ch9/parser_rules.py
	9.6.3 File ch9/run_parser.py
	9.6.4 File ch9/estimate_parser_parallel.py

	10 Future Directions
	Appendix Bibliography
	

